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Abstract

The topic of the thesis is focused on different compactness methods used to construct weak
solutions to equations describing the dynamics of viscous compressible fluids. The problems
considered in the dissertation include the question of existence of solutions to three different
systems. The first part concerns the compressible Stokes system, where existence and unique-
ness of weak solutions are obtained. The structure of this equation allows to perform the
analysis at the level of the Lagrangian coordinates. This brings our original problem to the
investigation of the properties of the transformation from the Lagrangian to the FEulerian co-
ordinates. The existence of such transformation is shown using the Crippa—De Lellis stability
results for the transport equation. In order to show uniqueness, we improve the logarithmic
inequality for BMO functions, developed by Mucha and Rusin (2008).

The second outcome of the thesis consists of the existence result for the special case of
a non-Newtonian fluid. It is shown that there exists a weak solution to the compressible
non-Newtonian Stokes system for the case where the shear viscosity is a singular function of a
shear rate. Due to the nonlinear structure of the stress tensor, the previous approach cannot
be applied. Instead, using the Calderén-Zygmund estimates we extract the BM O regularity
for the quantity divu — p(p), where u is a velocity vector and p(p) denotes the pressure. This
information allows to adapt the compactness method, developed by Feireisl, Liao and Malék
(2015) for a different class of non-Newtonian fluids.

The last result concerns the compressible, pressureless Navier—Stokes equations with the
nonlocal attraction-repulsion forces. We consider the case of the density-dependent viscosity,
which causes the degeneracy in the stress tensor. The higher regularity of the density are
obtained via the Bresch—Desjardins estimates. We first obtain a weak solution to the system
on a torus, with a suitable truncation of the nonlocal term, and then extend the spatial domain
to get the result in the whole space. The construction of solutions follows the approach of
Vasseur and Yu (2016). In order to show the compactness of solutions, we obtain the Mellet—
Vasseur estimates, which provide the uniform integrability of a certain logarithmic function of
the velocity. To incorporate the nonlocal term, we apply the generalized version of the Young
inequality for convex functions.

Keywords: weak solutions, compressible flow, Stokes equation, Navier—Stokes equation,
non-Newtonian fluid, nonlocal interaction forces, density-dependent viscosity






Streszczenie

Tematyka pracy doktorskiej skupia sie na réznych metodach zwartosciowych, stosowanych do
konstrukcji stabych rozwiazan réwnan opisujacych lepkie ptyny écisliwe. Zagadnienia rozpa-
trywane w rozprawie obejmuja kwestie istnienia rozwigzan dla trzech réznych uktadéw réw-
nan. Pierwszy otrzymany wynik dotyczy $cigliwego réwnania Stokesa, dla ktérego pokazane
sy istnienie oraz jednoznacznos¢ stabych rozwiazan. Struktura tego réwnania pozwala na
przeprowadzenie analizy na poziomie wspdtrzednych Lagrange’a. Sprowadza to nasz pier-
wotny problem do badania wlasciwosci transformacji ze wspotrzednych Lagrange’a do Eulera.
Istnienie takiego przeksztalcenia zostato pokazane wykorzystujac rezultaty Crippy i De Lellisa
dotyczace stabilnodci dla réwnania transportu. W celu pokazania jednoznacznodci, korzys-
tamy z logarytmicznej nieréwnosci dla funkcji z przestrzeni BM O opracowanej przez Muche
i Rusina (2008), ostabiajac jednoczesnie jej zatozenia.

Drugi wynik otrzymany w dysertacji dotyczy istnienia rozwiazan dla szczegdélnego przy-
padku ptynu nienewtonowskiego. Pokazujemy istnienie stabych rozwigzan écisliwego réwnania
Stokesa dla cieczy, w ktorej lepkosé jest singularna funkcja szybkodci $cinania. Ze wzgledu na
nieliniowa strukture tensora naprezeri, metoda opisana powyzej nie moze by¢ zastosowana.
Zamiast tego, przy uzyciu teorii Calderéna—Zygmunda dla operatoréw singularnych, pokazu-
jemy ograniczonos$¢ w przestrzeni BM O dla wyrazenia divu—p(p), gdzie u to wektor predkosci
a p(p) oznacza cisnienie. Otrzymana regularno$¢ pozwala na zaadaptowanie metody zwartos-
ciowej, opracowanej przez przez Feireisla, Liao i Malka (2015) w kontekscie innego rodzaju
plynéw nienewtonowskich.

Ostatnia czed¢ pracy pochyla sie nad $cisliwym, bezcisnieniowym réwnaniem Naviera—
Stokesa z nielokalnymi sitami przyciggania-odpychania. Rozwazamy tu przypadek lepkosci
zaleznej od gestodci ptynu, co powoduje degeneracje w tensorze naprezen. Za pomoca 0s-
zacowan Brescha—Desjardina otrzymujemy wyzsza regularnodé gestoéci. W pierwszym kroku
uzyskujemy stabe rozwiazanie na torusie z odpowiednio dostosowanym nielokalnym cztonem,
a nastepnie rozszerzamy dziedzine i w konsekwencji dostajemy wynik na calej przestrzeni.
Konstrukcja rozwiazan korzysta z podejscia Vasseura i Yu (2016). W celu pokazania zwartosci,
otrzymujemy oszacowania Melleta—Vasseura, ktére zapewniaja jednostajna catkowalnosé pewnej
logarytmicznej funkcji predkosci. Nielokalny czton jest oszacowany za pomoca uogoélnionej
nieréwnosci Younga dla funkcji wypuktych.

Stowa kluczowe: stabe rozwiazania, przeptyw $cigliwy, réwnanie Stokesa, réwnanie
Naviera—Stokesa, ptyn nienewtonowski, nielokalne sity interakcji, lepkosé zalezna od gestosci






ix

Acknowledgements

I would like to thank my supervisors prof. Piotr Bogustaw Mucha and dr hab. Ewelina
Zatorska for their invaluable help during my PhD studies. They provided me with constant
encouragement and motivation, and dedicated a lot of their time to aid me with my struggles
and to give useful feedback. Without their patience and engagement, this thesis wouldn’t
have been completed. T am also grateful for their support in introducing me to the academic
community and providing me with opportunities to continue my scientific career.

I would also like to thank prof. Milan Pokorny for his hospitality and many helpful
discussions during my internship at Charles University, which resulted in a publication being
a part of this thesis. I also appreciate his patience with me during our collaboration. I would
also like to express many thanks to my collaborators prof. Sérka Necasova and dr Cosmin
Burtea, for numerous stimulating conversations and for hosting me in Prague and Paris.

I would like to express cordial thanks to my friends and family, in particular my partner
Stanistaw and my parents, for providing me with lots of emotional support I very much needed
during my studies.

My work on the results in the dissertation was partially supported by the National Science
Centre grant 2018/29/B/ST1/00339 (Opus). I would also like to acknowledge the programme
"Excellence Initiative — Research University" at the University of Warsaw, which funded my
research visits in Prague and Paris.






Contents

Introduction
1.1  Description of the problem and overview of the theory . . .. .. .. ... ..
1.2 Main results of the thesis . . . . . . . . . . ..o

Compressible Stokes system

2.1 Imtroduction . . . . . . . .o
2.1.1 Statement of the main theorem . . . . . . . .. ... ... .......
2.1.2  Discussion on the pressure term . . . . . . . . . .. ... ...

2.2 The L*° bound on thedensity . . . . . .. .. ... o oL
2.2.1 Energy estimates . . . . . . . ... L L
2.2.2  The Lagrangian formulation . . . . . . . . ... ... L.

2.3 Uniqueness of solutions . . . . . . . . ... .
2.3.1 Definition of the flow x5 . . . . . . . . . . . ...
2.3.2 The final argument . . . . . ... L Lo

2.4 The existence of solutions to (2.10)-(2.11) . . . . ... .. ... ... ..
2.4.1 Additional regularity of w . . . . ... ..o oL
2.4.2 The fixed point argument. . . . . . ..o
243 Letting d — 0. . . . . ..

Compressible Stokes for non-Newtonian fluids

3.1 Introduction . . . . . . . . L
3.1.1 Main result and structure of the paper . . . . . .. .. ... ... ...

3.2 Avprioriestimates. . . . . ...

3.3 Existence of approximate solutions . . . . . . .. ...

34 Compactness . . . . . . o e e e
3.4.1 Limit passage with e =0 . . .. . ... ... L L.
3.4.2 Limit passage with 6 — 0 . . . . .. ... ... L.

Attraction—repulsion system

4.1 TIntroduction . . . . . . . . .
411 Themainresult . . . . . . . . .. L L

4.2 Convergence lemmas . . . . . . . .. ..o

4.3 Fundamental level of approximation . . .. ... ... ... .0 L.
4.3.1 Truncation to periodic domain . . . . . . . ... ... L.
4.3.2 The Galerkin method . . . . ... .. ... L 0oL
4.3.3 Energy estimates . . . . . . . ... oL
4.3.4 The Bresch-Desjardins estimates . . . . . . ... ... .. ... .. ..
4.3.5 Limit passage with v,e =0 . . . . ... . o o L.
4.3.6 Limit passage with n,d — 0.. . . . . . . . ... ...

4.4 The Mellet - Vasseur estimates . . . . . . . .. . .. oL
4.4.1 Limit passage with m — o0 . . . . . .. .. oo oL
4.4.2 Limit passage with k = O0and k —o00 . . . .. ... .. L.

4.5 Limit passage with ro,r1 — 0 . . . . . . . .. L o

xi

— -

11
11
12
15
16
16
17
19
20
22
23
25
26
26

29
29
31
32
34
39
39
40



xii

4.6 Expansion of the torus . . . . . . .. .. oo oL 89
4.6.1 Convergence of the nonlocal term . . . . . . . . ... ... ... .. .. 90

4.6.2 Mass preservation . . . . ... oL oo e e 92

A Supplementary proofs for Chapter 2 95
A1 Existence of solutions to (2.7) . . . . . . . ... Lo o 95
A2 Estimate for the inverse flows. . . . . . . . . ... oo oL 96

B Properties of the BMO space 99
B.1 The logarithmic inequality . . . . . . ... .. ... 0o oL 99

C Supplementary proofs and lemmas for Chapter 4 103
C.1 Proof of Bresch-Desjardins estimates . . . . . . . .. ... ... ... ..... 103
C.2 Weak Gronwall’'s Lemma . . . . .. ... ... oo 107

Bibliography 109



Chapter 1

Introduction

1.1 Description of the problem and overview of the theory

The behaviour of the compressible, isothermal fluid is described by a system of Partial Differ-
ential Equations (PDEs), for the evolution of the density of the fluid ¢ and the velocity field
u. The first equation — called the continuity equation — provides the conservation of mass:

Oro + div (ou) = 0. (1.1)
In the barotropic case, it is coupled with the momentum equation
O(ou) + div (ou ® u) — div S(Du) + Vp(p) = 0. (1.2)

Above, the function p(o) denotes the pressure and S is the viscous stress tensor, depending
on the symmetric gradient of u, Du = 3(Vu + V7u).

The system (1.1)—(1.2) has several modifications, depending on further properties of the
fluid. In the case of a Newtonian fluid it becomes the classical Navier-Stokes equations with
the linear stress tensor given by

S(Du) = pDu + Adiv ul, (1.3)

where I is an identity matrix, for some viscosity coefficients pu, A. Some other considered
models involve the Euler equations, used to model the ideal, inviscid gas. In that case, the
stress tensor disappears and the momentum equation has the form

9 (ou) + div (ou ® u) + Vp(e) = 0.

One can also mention the Navier-Stokes-Fourier system, which covers the case of non-constant
temperature.

The existence results for these types of systems divide into two categories. Concerning
regular solutions, satisfying the equation in the ponitwise sense, one can show only local
existence, meaning that either the solution exists only on some finite time interval, or the
initial conditions has to be close to the stationary state. The early results in this topic
were obtained in the 1960s and 1970s in particular by Nash [82] (for the system including
dependence of the temperature) and Solonnikov [95]. After that, this problem was thoroughly
examined with different types of boundary conditions in the frameworks of different functional
spaces for example by Matsumura and Nishida [74], Tani [101], Mucha, Valli, Zajaczkowski
[77, 104], Danchin [37] and many others. Since it is not the objective of this thesis, we cite
only a small part of the extensive literature on this topic. An illustrative example of a solution
with a finite time blow-up was also shown by Vaigant in [103].

In the case of weak solutions, the picture is very different. Since the solution satisfies
the equation only in the distributional sense, the required conditions on its regularity are
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relaxed. Because of that, one can usually expect the global in time existence for arbitrarily
large initial data. On the other hand, the low regularity of solutions becomes problematic
in the construction, in particular due to the nonlinear terms. In this theory, the significant
breakthrough was due to Lions [67] and Feireisl [48], who constructed weak solutions to
compressible Navier-Stokes equations for the pressure in the form p(g) = ¢ for v > 9/5
(in three space dimensions) and v > 3/2 respectively. This approach was then subsequently
applied to other related systems of equations and is a core for the present studies on this
topic. Some of the modifications include generalization of the pressure, in particular allowing
the lack of monotonicity on a finite interval [47]. Another related results were obtained for
heat conducting fluids for example by Feireisl, Mucha, Novotny and Pokorny [49, 50]. For the
steady case we refer to series of papers by Mucha and Pokorny [79, 92, 76].

The way of showing existence of weak solutions involves first introducing an approximated
equation, usually by adding suitable regularizing terms, and then applying chosen fixed point
theorem. One of the widely used strategies is based on adding the dissipation €Ap in the
continuity equation (1.1). It changes the structure of the equation from hyperbolic into a
parabolic one and greatly improves the regularity of the density. For a given wu, it can be
solved using the Galerkin approximation. In the case of the classical Navier-Stokes equations
with linear stress tensor (1.3), this is a starting point of the construction. It is based on a fixed
point argument on a velocity field, where v is again obtained by the Galerkin method from the
momentum equation. For a more detailed description of this approach we refer to Chapters
7.6-7.7 in the book of Novotny and Straskraba [85]. Another regularization technique involves
mollification of the velocity in the continuity equation. In the context of the Navier-Stokes
equations it was used recently in [29].

The next step is to show that the approximating sequence converges, and that the limit
satisfies the target system of equations. This is usually the biggest challenge. Using the
Banach-Alaoglu theorem, one can show weak compactness of the sequence of approximate
solutions in some suitable spaces. However, it is not enough to pass to the limit in the nonlinear
terms. The regularity of solutions is also too low to apply the well-known compactness tools
like Aubin-Lions lemma. Instead, one has to either find a way to derive some better estimates
for the solutions, or apply more complex tools to show the desired convergence. As mentioned
earlier, in the context of classical Navier-Stokes equations (1.1)-(1.3) this problem was resolved
by Lions in [67]and Feireisl in [48]. The strong convergence of the sequence of approximate
densities, necessary to pass to the limit in the nonlinear pressure term, is deduced from the
compactness of the effective viscous flux

(2u+ N)divu — p(o).

It is observed that this quantity has better compactness properties than div v and the pressure
separately. Denoting by o and u the weak limits of the approximate sequence, one can show
that

op(0) — (2u + Nodivu = op(0) — (2u + A)edivu,

where by 6 we denote the weak limit of the respective sequence. From that relation it
is concluded that glogpe = plog e, and in consequence the sequence of densities converges
strongly. A different approach to show strong convergence of the density sequence, based on
the Kolmogorov compactness criterion, was recently implemented by D. Bresch & P.-E. Jabin
in [10], which allowed to treat non-monotone pressure term and anisotropy in the viscous
stress tensor. The main idea of this approach is that the compactness of the density sequence
in LP is equivalent to the fact that

1
fimsupsup o [ [ Ko = y)latto) - ofty)Pdady 0
k—oo 120 |IKnllLr JJaxa
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as h — 0 for a suitably chosen family of kernels Kp,.

The crucial feature in the above methods is the W12 regularity of the density, coming
from the viscous stress tensor. Because of that, in the context of different types of equations
and complex fluids, the question of existence of global weak solutions still remains open. An
important example is the Euler equation, for which there are no global existence results so far
(in the multidimensional case). On the other hand, it turns out that the system is ill-posed,
i. e. admits infinitely many solutions (see e. g. [30, 31]). Another problem are the systems
with additional nonlinearities in viscous stress tensor, which do not cooperate with the Lions—
Feireisl technique. This is for example the case for the non-Newtonian fluids, which is one of
the topic of this thesis.

1.2 Main results of the thesis

The main objective of the dissertation is to investigate different methods for showing global
existence of weak solutions to equations emerging from modelling of the compressible fluids.
The thesis consists of three main results, each oriented around weak solutions to distinct
equations and their properties. Each of the considered systems involve completely different
methods of analysis.
The first result, presented in Chapter 2 and published in [100], concerns the compressible
Stokes system
Oro + div (ou) = 0,

1.4
—puAu — (4 N)Vdivu + Vp(p) = 0, (1.4)

being the approximation of the Navier-Stokes system (1.1)-(1.3) in the low Reynolds number
regime, where the viscous forces dominate the convective ones. Because of that, the term
9 (ou) +div (ou®u) (which is related to the material derivative 2% = u; +u-Vu) is neglected
in the momentum equation. The spacial domain is the torus and as a initial condition we put
0l,_o = 00 € L™ (T?). The main result concerns the existence and uniqueness of solutions. It

is shown that if the pressure satisfy
?p(s)
0<plp) <CP(p):=C g/ S—st—l—Clg—i-Cg
14

for some C, C1, Co, then there exists a unique global in time weak solution to (1.4), satisfying
o,u € L>(]0,00) x T4), rotu =0,

and
Vu € L*([0,00); BMO), divu € L*®(]0,00) x T%).

Although the existence of weak solutions to system (1.4) has been already established (see
Chapter 8 in the book of Lions [67]), the method we use allows to additionally show the L>
bound on the density and uniqueness of solutions, which were not established before. Another
feature is the required condition on the pressure. It forms a very general class of admissible
functions, which in particular can be non-monotone and dropping to zero for arbitrary large
arguments.

The main tool to treat the equation is to rewrite the system in the Lagrangian coordinates.
Asrotu = 0, by taking the divergence of the momentum equation the system (1.4) is equivalent

to
Oro + div (ou) = 0,

divu=p(0) ~ 2 [ o) @z -



4 Chapter 1. Introduction

Then we solve the continuity equation using the method of characteristics. By putting
n(t,y) = olt,z(t,y)) and o(t, y) = divu(t, z(t,y)) for

it y) =ut,z(t,y), z(0,y) =y, (1.6)
we rewrite (1.5) again as
om+no =0,

7 =) = gz [ ol o8 ay,

For this new system, a simple ODE-like argument allows to show the L*> bound for the density
(roughy speaking, it follows from the fact that the time derivative of n has to be negative
when p(n) becomes too large). By the elliptic estimates and the irrotational assumption on
u, the L*> bound on divu also provides Vu € L>(0,T; BMO).

The most interesting and novel part of this result is the uniqueness of solutions. It is
shown that the transformation to Lagrangian coordinates is reversible. In other words, for a
given o there exists a unique solution u to equation

divu(t, z(t,y)) = o(t,y) (1.7)

for x being the flow generated by u, defined as in (1.6). Note that if v was assumed to be
Lipschitz continuous, this question would be obvious, since the flow generated by u would be
invertible, the inverse being also Lipschitz continuous. In our case the situation becomes more
complicated, nevertheless the improved BMO regularity for Vu turns out to be sufficient.
The strategy is to take two solutions and show that they coincide. It is done by defining
a certain weighted flow between two velocities. For uy,us € L=([0,T] x T9), Vuy, Vuy €
L>(0,T; BMO) and s € [0, 1] we define =4 by

s = sui(t,xs) + (1 — s)ua(t, xzs), z5(0,y) =y.

One can show that

dx,

ds.
ds 5

L2(Td)

[ur (2, -) — ua(t, )|

On the other hand, from the equation on x4 one also gets

dxg dz,
/Td a5 Vo) g dy‘

dag |2
+/hmmw—mw%W®+/‘x
Td Td dS

where v = suj + (1 —s)uy. Note again that in the classical case, when u;, ug are Lipschitz con-
tinuous, the function Vv in (1.8) belongs to L°°([0, T] x T¢) and straight from the Gronwall’s
lemma we get % = 0 and in consequence uj; = us.

In the framework of BMO functions instead, the key point is to use the logarithmic
inequality, proved in Lemma B.6:

’/Tdfgdx

dx, 2
ds

d
dt

dy <2

dy, (1.8)

<C||fllBrollgll

q=2
< (| (lgll ] + (L + [lgllze) + (1 + [ lgl 22 Dllgll 3 )-
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In our setting, Vv € L*°(0,7; BMO) and thus we can apply the logarithmic inequality
(1.9) to the first term on the right hand side of (1.8). In consequence, we get an ODE

dxg

d
ds 5

1
a<Ca(l+|lnal)+Ca for a(t):/
0

L2(T4)

and we conclude that «(t) = 0 from Osgood’s lemma and comparison criterion for ODEs.

Let us also mention the proof of existence of solutions itself. We present the alternative
approach to the one presented in [67]. The approximation scheme also relays on the La-
grangian formulation and thus is consistent with the rest of the chapter. It was used before
in [12] in the context of the compressible Stokes equation for multiphase flows. Here, the key
feature is the stability estimate for regular Lagrangian flows, proved in [35].

The content of Chapter 3 is the second main result in the thesis, recently published in
[93] in collaboration with Milan Pokorny from Charles University in Prague. We again deal
with the question of existence of weak solutions to compressible Stokes system, however in the
non-Newtonian regime. In particular, it means that the viscosity parameters u and A depend
on Vu in a nonlinear way. Our system states

Oro + div (ou) =0,

1.10
—divS + Vp(p) =0, (1.10)

where the viscous stress tensor is given by
S(u, 0) = (po(|Dul) + 2p1)Du + (A(|div u|)div u)l

for p1 > 0 constant and pg, A satisfying the following growth conditions

0< po(2) A(:) < <
together with certain monotonicity assumption. Such form of S in particular involves the
special case of Hershel-Bulkley fluid (see e. g. [42]). Similarly as before, our spacial domain
is the torus T¢ and the initial condition gy belongs to L°°(T%). However, this time we restrict
the pressure form only to the typical barotropic case p(g) ~ o7 for some v > 1. Tt is shown
that there exists a global weak solution to the system (1.10), satisfying

Vu € L2((0,00) x T, o€ L>®(0,00; L7),
and moreover for any 7' > 0 and 1 <p < o0

| div || oo (0,7;10) + @]l oo (0,7;20) < C(p, T),

where C' approaches oo if p or T do so.

Although equation (1.10) has a similar structure to (1.4), the methods of analysis become
completely different. The form of (1.4) in the Lagrangian coordinates strongly relies on the
linear structure of the stress tensor and decomposition of the velocity field into the potential
and rotational part. Here, the additional nonlinearity does not cooperate with the (linear)
decomposition, and thus the previous approach cannot be applied. In particular, the L*>
estimate for ¢ and div u seems to be out of reach. Instead, we adapt the compactness method
developed by Feireisl, Liao and Malek in [45]. In that paper, the authors showed the exis-
tence of weak solutions to the compressible non-Newtonian Navier-Stokes equations with the
assumption that divu is bounded, which is not the case in our situation. However, using the
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special form of our stress tensor, we can again work in the framework of BMO space. The
starting point are the Calderén-Zygmund estimates, which provide that

purdivu — p(p) € L*°(0,T; BMO). (1.11)

It is worth pointing out that estimate (1.11) does not bring any higher regularity separately
for p and div u, which are still only LP-integrable in space for p < co. Nevertheless, it allows to
apply the method from [45]). The idea lays in comparing different energy equalities. First, as
usual we introduce a suitable approximation of the system and show the existence of solution
via Schauder fixed point theorem. Then, calculating the energy at the level of approximated
equation, by the weakly lower semicontinuity of the norm one obtains

¢ e
/ /Mo(\DUDDU s Du A+ pr |Vul® 4 p (divw)? + X(|div u])div e dive dzds
0

1 _ 1
+ S-1 07 (t,)dx < H/dixv

where the monotonicity assumption on the stress tensor provided that

to([Duf)[Duf? > pio(IDu)Du : Du

and analogously for \(|divu|). On the other hand, using weak compactness of the approxi-
mating sequence, by passing to the limit in and then testing by the limiting u, we derive

t —_—
/ /uo(UD)uD]D)u s Du A+ | Vul® + g (div u)?
0
- t
+ A(|divu|)divu dive deds = / /‘(_ﬂdjvu dzds.
0

Comparing these two relations, using the continuity equation we obtain
1 _ tro
] (QV(t, ) = 07(¢, ))da: < —/ / (QV — Q“')divudxds.
T 0

In the case when div u is bounded, from Gronwall’s lemma it immediately follows that o = o7.
In our case, we write

t t
- / / (07 — ¢")divu dads = —/ / (07 — 0")(divu — ¢7)dzds
0 0

t
—/ /(Q’Y—Qw)mdxds.
0

Since 97 > o7 by the convexity of the function z — 27, in the end we have

5 [@e) g s~ [ [@-o)aiva- ) s

Finally, applying inequality (1.9) we derive the logarithmic integral inequality on the quantity

(07 — 07) dz, and the equality of weak and strong limits of the pressure follows again by
Td
the argument based on Osgood’s Lemma and comparison criterion.

Having proven the strong convergence of the pressure (and in consequence also density),
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the strong convergence of the gradients of velocities, required to pass to the limit with the non-
linear term in the stress tensor, is then a simple consequence of the monotonicity assumptions.

The topic of Chapter 4 concerns the more complicated system and is undoubtedly the
most technical. This time, we keep the convective term in (1.2) and include the attraction-
repulsion nonlocal interactions, which replace the standard pressure term. The spacial domain
is the whole space R3. Additionally, we assume that the viscosity coefficients depend on the
density. Overall, the analysed system has the form

0o + div (ou) =0,

. . (1.12)
O(ou) 4+ div (ou ® u) — div (pDu) 4+ oV (K * p) =0,

where for the kernel K we assume that

K(z) = Sy 9|z\2

0,2).
Era ;. a€(0,2)

The motivation to study system (1.12) comes from the models of collective behaviour, where
the movement of particular species depends on other around them. The singular term provides
the particles from colliding, whereas the quadratic term controls their spread in space. It is
also worth pointing out that we do not require an additional (pointwise) pressure term.

The weak solutions to system (1.12) on the torus, in the case of a standard barotropic
pressure o7 instead of the nonlocal term, were recently constructed by Vasseur and Yu in
[106, 105]. Let us now describe their approach, and then present the modifications necessary
for the nonlocal case, which is the original contribution of the thesis. First, note that the
dependence of the viscosity coefficients on the density causes some degeneracy in the system.
Since we allow the case of vacuum (i. e. the density might not be strictly positive), on the set
where ¢ = 0 any information on the velocity field and its gradient is lost. It can be however
compensated to some extent by virtue of an inequality derived by Bresch and Desjardins in
[6], which provides higher regularity on the density. Without the nonlocal term, assuming the
solutions are sufficiently regular, by testing the momentum equation by V log ¢ and combining
it with the energy estimate, one obtains the estimate

T
Sup/ \V\/§|2dx+/ / o|Vu — VTu|? dzdt < C. (1.13)
tel0,T] JR3 0 JR3

In particular, the estimates on Vo provide strong compactness of the sequence of approximated
densities in a suitable LP space. To deal with the lack of estimates on the velocity, one needs
to show the compactness of /ou instead. This would allow to pass to the limit and to derive
system (1.12), where u is defined up to the set {¢ = 0}. However, in order to do that, the
regularity of u still needs to be improved. This is provided by the estimate

1 2
sup / Qﬂln(lﬂu\?)sa (1.14)
te[0,7] JR3 2

which in turn allows to show the strong convergence of ,/ou in L? and pass to the limit
in the nonlinear terms of (1.12). The above estimate was derived by Mellet and Vasseur
in [75] (again in the pointwise case). The idea is based on testing the momentum equation
by (1 +In(1 + |u|?))u. For the construction of the approximate solutions, Vasseur and Yu
introduced several regularizing terms which greatly improve the regularity of solutions, so
that the derivation of Bresch—Desjardins inequality is justified. This allows to construct
weak solutions on a periodic domain, with the additional damping terms rou + r1olu|?u and
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AV

the quantum potential koV <\[> The Mellet—Vasseur estimate is then formally derived
e

by using a suitable bounded truncation of a function F(|u|) = w In(1 + |ul?), and by
approximating the velocity field by v = ¢(0)u, where ¢ is a certain cut-off function on the
set, where p is close to zero or infinity. By passing to the limit with all approximations one
derives the estimate (1.14), which allows to drop the remaining damping terms.

Let us now present the way how to incorporate the nonlocal term in the above approach. In
the Bresch-Desjardins inequality, the term coming from the nonlocal pressure can be written
as

// Vo(t,z)Vo(t,y) K (z — y) dzdy.
R3xR3

By computing the Fourier transform, one can show that the contribution from the singular
part of K has a good sign, i. e.

1
R3xR3

|z —yl*
On the other hand, for the quadratic part we get

2
.
[ vetto Vet S dudy = 3o
R3xR3

Overall, the estimate (1.13) still closes, however the bound will depend on time.

The derivation of the Mellet-Vasseur estimate turns out to be more complicated. The
biggest issue is the fact that the kernel K goes to infinity as |z| — oo, and thus one has to
carefully control the behaviour of p far from the origin. The main idea to close the estimate
(1.14) is based on the following Young inequality for convex functions

ab < F(a) + F*(b)
for I’ convex, where F™* given by
F*(s) =sup{sz — F(z) : z € R}

is a convex conjugate of F'. Denoting F'(z) = # In(1+422%), we (formally) test the momentum
equation by F’(|u\)ﬁ Then, from the quadratic part of K one needs to estimate

// F'(Ju(t, z)]) ]z = ylo(t, x)o(t, y) dedy <[lol| 11 / F*(F'(|u(t, z)]))o(t, ) dz
R3xR3 »
- //RBXR3 F(lz —yl)o(t, )o(t,y) dzdy.
On the other hand, we have
% //RT)XRS Flle=uhett-ojelty) dedy =2 //Rsng F'(jz — y])|u(t, z)olt, 2)o(t, y) dady
<2 //R3XR3 F*(F'(|lx —y|))o(t, z)o(t,y) dedy

2ol [ Fllutt.))elt.a) de.
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Since the properties of F' provide that F*(F'(z)) < CF(z) (see also Proposition 4.21), in the
end we get

G (Leorqueanas [ Fe- ot o) asy)
<C (/R3 o(t,2)F(|u(t,z)]) dz + //wa F(lz —yl)o(t, )o(t,y) d:rdy)

and we close the estimate by Gronwall’s lemma.

Of course the expected regularity of solutions does not allow to perform the above calcu-
lations, analogously as for the "local" case. To construct the solutions, we closely follow the
approach of Vasseur and Yu. First, by introducing a suitable truncations of K and initial
conditions, we restrict the system to a periodic domain. Then, the Vasseur—Yu approximation
from [106] allows to derive the Bresch-Desjardins inequality also in the nonlocal case. In order
to get the Mellet-Vasseur estimate, we follow the arguments from [105]. However, since the
arguments to close the estimate differs from the ones by Mellet—Vasseur in [75], we need to
make significant adjustments in the Vasseur—Yu approach. In particular, we modify the ap-
proximation of F', so that it remains strictly convex. Since all the calculations are performed
at the level of distributional formulation of (1.12), we also use the weak version of Gronwall’s
lemma (see Lemma C.1) to close the estimate. Once we derive all the necessary estimates to
show compactness of solutions, we pass to the limit with the size of the torus and in the end
obtain solutions on the whole space. In this last step we lose the compactness properties of
the nonlocal term. However, the convergence follows from the control of the double second
moment

sup // @ — ya(t, 2)olt, y) dady,
R3 xR3

t€[0,T]

which provides a sufficient decay of the density at infinity.

Concluding remarks. In the end, let me sum up my contributions in each of these results:

e In Chapter 2, the novel contribution to the theory is obtaining the L°° estimates for the
compressible Stokes system and proving uniqueness of solutions. I also improved the
Mucha—-Rusin inequality from [80], which turns out to be a very useful tool to analyse
these types of systems.

e In Chapter 3, I invented the way of adapting the method of Feireisl et al. from [45] to the
particular case with unbounded divergence. I extracted the L°°(0,7; BMO) estimate
for the effective viscous flux using the Calderén—Zygmund theory for singular integrals
and then used it to show compactness of the approximating sequence.

e In Chapter 4, I was resposible for adapting the Vasseur and Yu approach from [106,
105] for the nonlocal system. I defined the suitable truncations to the periodic domain
and performed the construction of solutions. Compared to the literature, my most novel
contribution in this part of the thesis was to find a way to derive the Mellet—Vasseur
estimates. In particular, I observed that the application of the Young inequality allows
to close the estimate.

Notation.

e Throughout the thesis, by C' we will denote the generic positive constants.
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e By LP(0,7; X (Q2)) for a Banach space X(2), we denote the Bochner space of functions
on [0,7T] x  with the norm

T
Wiy = [ 1y dt 10 <,

HfHLOO(O,T;X(Q)) = €8s Sup Hf(t')”X(Q)a p = o0.
t€[0,T]

In our case, © will be either the torus or the whole space R?. For simplicity we will
write X instead of X (€2), when from the context it is clear what the spatial domain is.

e By C(0,7;X(Q2)) we denote the space of functions on [0,7] x €, such that t —
f(t,-) is continuous with respect to the strong topology on X. Similarly, the space
Civeak (0, T; X (£2)) denotes the space of functions continuous in time with respect to the
weak topology.
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Chapter 2

Weak solutions for the Stokes system
for compressible fluids with general
pressure

The content of this chapter was published in [100]. We prove existence and uniqueness of
global in time weak solutions for the Stokes system for compressible fluids with a general, non-
monotone pressure. First, we find the unique solution at the level of Lagrangian formulation
and then define the transformation to the original Fulerian coordinates. For a nonnegative
and bounded initial density, the solution is nonnegative for all ¢ > 0 as well, and belongs
to L>([0,00) x T?%). A key point of our considerations is to show that transformation from
Lagrangian to Eulerian coordinates is unique. Since the velocity might not be Lipschitz
continuous, we develop a method which relies on the results of Crippa & De Lellis, concerning
regular Lagriangian flows. The uniqueness is obtained thanks to the application of a certain
weighted flow and detailed analysis based on the properties of the BM O space.

2.1 Introduction

The Stokes system is an approximation of the Navier-Stokes equations for small Reynolds
number. In such cases, the advective intertial forces are relatively small and explicit depen-
dence on time and convective term can be omitted. This is a typical situation for highly
viscous fluids, or when the velocities are very small. The flows satisfying these conditions are
called Stokes or creeping, and they occur in numerous biological and physical problems, e.g.
to describe dynamics of the blood in a process of sedimentation [88], or to model swimming
of microorganisms [43, 52, 63|. Other applications include also engineering, where the Stokes
flow is used in the process of designing microfluids and microdevices [56, 98]. The Stokes
model is also connected to the Darcy law, which describes the flow of a fluid through porous
media. Such phenomena are observed in biological tissues [14, 41| and have many applications
in petroleum engineering [65, 81]. The other situation, where the fluid motion is governed by
the Stokes equation is a laminar flow. In this case, the fluid particles move in adjacent layers,
with little mixing between them.
We consider the compressible Stokes flow on the d-dimensional torus T¢

ot divlew) =0 (2.1)

— pAu — V(A + p)divu + Vp(p) =0, '

where g: [0,7] x T? = R and u: [0,T] x T? — R? are the sought fluid density and velocity

field. The function p(p) denotes the pressure term, and the parameters u, A represent the
shear and bulk viscosity.
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We further assume that the flow is potential, that is rotu = 0. It is equivalent to velocity
having the form u(t,z) = Vé(t,z) for some ¢: [0,7] x T — R. In consequence, we obtain

the condition / u(t,z) dz = 0. The second equation of (2.1) can be then rewritten in terms
d

of the effective viscous flux, which turns out to be constant. Therefore instead of the second
equation of (2.1) we obtain

(A +2p)divu = p(o) — {p(0)},

1
where {f} = W T

values of A and p, without loss of generality we take A + 2 = 1. Under these assumptions,
the system (2.1) can be transformed into

f(x) dz. As the qualitative properties of solutions do not depend of the

ot + div(ou) =0,

divu = p(e) — {p(0)}, rotu =0. 22

The system (2.2) is coupled with the initial condition on the density, which is assumed to
be bounded and nonnegative, namely

0y =00 € L™(T%), o > 0.

It is worth emphasizing that we do not require the density to be strictly positive. In particular
0o can be equal 14 for some A C T

Our method allows the pressure to be in a quite general form. We require p(p) to be of
class C! and unbounded, so that in particular we can choose a sequence p,, — oo such that
p(on) — 00. Moreover, we assume that there exist constants C, C1, Co, g such that p satisfies
the inequality

0<p(p) <CP(p):=C (Q/_Qpij)ds +Cio+ Cg) . (2.3)

The properties of functions satisfying (2.3) are discussed in Subsection 2.1.2.

2.1.1 Statement of the main theorem

The mathematical theory of weak solutions to the compressible fluid equations has been widely
developing in the last twenty years, since the groundbreaking results of Lions in 1998 [67] and
Feireisl [48, 46] in 2001. They proved the existence of weak solutions to the compressible
Navier-Stokes equations, provided that the pressure term is of the form p(g) = o7 with v > %
and vy > % respectively. In [47] and [99], this method was also adjusted to the pressure which
is non-monotone on some finite interval. In particular, it allows to deal with the pressures
expressed via equations of state, which are of more complex form than ideal gas, the model
example being van der Waals’ equation of state. The Lions & Feireisl approach can be also
adjusted to more complex systems, for example Navier-Stokes-Fourier system [49, 50] and
other including entropy transport [69] or heat conductivity [8].

The important results concerning non-monotone pressure laws are due to Bresch and Jabin
[10, 11]. Their method, based on the Kolmogorov compactness criterion, allows to deal with
the pressure satisfying

C " —C<plo) <Co"+C and [p(0) <po”! (2.4)

for v > % In context of our work, we refer the reader especially to [11]|, where this approach
was also presented for a modification of the Stokes system. In this case Bresch and Jabin
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proved the existence of global weak solutions for any v > 1 with the same regularity as in the
isentropic case, namely o € L>(0,7T; L7).

Besides the relaxed conditions on the pressure, the Bresch & Jabin compactness criterion
can be also applied to various classes of equations, where the Lions and Feireisl method was
insufficient. One of the examples are the systems with the additional term in the continuity
equation. Such models can be obtained from the multi-fluid systems [12] or appear in the
mathematical modelling of tumor growth [107]. In this case the additional term results in
lack of compensated compactness between divu and the pressure and therefore the classical
method fails. However, the Bresch & Jabin criterion allows to omit this problem. The problem
with the convergence of effective viscous flux arise also in the anisotropic case. The recent
result [5], concerning the anisotropic compressible Stokes system, resolves this problem by
controlling a certain defect measure associated to the pressure.

The other related topic are steady flows, where the behaviour of the fluid does not depend
on time. The equations describing such flows are the classical equations of fluid mechanics
with the time derivative set as zero, for example the compressible Navier-Stokes [89, 91] or
the Navier-Stokes-Fourier systems [79, 57]. Another analyzed system is the steady Oseen
flow [90], which is a linearization of the Navier-Stokes system with partial consideration of
the convective forces. Note that in our case the explicit dependence on time is removed only
in the momentum equation, therefore this system can be considered as an intermediate step
between steady and unsteady flows.

As the Stokes system has a simpler structure than the Navier-Stokes system, the analysis
can be carried out in the more general setting. If gg has higher regularity, then the solutions to
the Stokes problem exist and are unique for the general p (see [67], Remark 8.14). However, in
case of g € L>®(T?), the classical method requires the monotonicity condition on the pressure
and the uniqueness was not established. In this paper we obtain the uniqueness of solutions
to the Stokes system in case of the low regularity of the initial density and under very general
pressure laws. Our main theorem states as follows:

Theorem 2.1. Let oo € L>®(T%), 09 > 0 and the pressure satisfy (2.3). Then, there exists a
unique global in time weak solution to (2.2), satisfying

0,u € L®([0,00) x T?)

and
Vu € L*([0,00); BMO), divu € L®([0, 00) x T9),

that is for each o € C$°([0,00) x T%)

—/ / 00y dadt —/ / ou - Vo dxdt :/ 00p(0,-) dx
0 JTd 0 JTd Td

and the second equation of (2.2) is satisfied a. e.

Remark 2.2. Note that from the definition of a weak solution in Theorem 2.1, it follows that
the solution (g, u) satisfies the system (2.1) in the distributional sense, and thus it corresponds
to a conventional definition of a weak solution to the Stokes system.

Our approach is based on the Lagrangian reformulation of the system, which allows us to
obtain a global L estimate on the density. Having that estimate, we can straightforwardly
apply Bresch and Jabin method to obtain compactness, and in consequence existence of
solutions for the relaxed conditions on the pressure. In addition, using the results from the
theory of transport equations and classical harmonic analysis, we were able to establish also
uniqueness of solutions.
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The first step is to reformulate the system in the Lagrangian coordinates. Assuming that
(0,u) is a solution and u is sufficiently smooth, let z: [0,T] x T? — T? be a solution to the
ODE

z=u(t,x), z(0,y)=uy.

Rewriting the system in the new variables n(t,y) = o(t, z(t,y)) and o(t,y) = divu(t, z(t,y)),
we obtain the set of equations in a simpler form, for which we are able to find a unique solution.
Then, it suffices to define a transformation back to the original Eulerian coordinates. However,
one encounters some difficulties in the construction, resulting from the low regularity of the
solution, namely Vu € L*(0,T; BMO). In particular, Vu may not be bounded with respect
to space variable and in consequence the flow z(t,y) generated by u may not be invertible
on the whole torus. Nevertheless, the divergence of u remains bounded, therefore x(¢,y) is
a regular Lagrangian flow and we can treat it using the properties from [34] and [35]. The
key tool needed in our analysis is the recent result of Crippa and De Lellis [35], concerning
the stability of regular Lagrangian flows in L', which allows us to pass to the limit with the
smooth approximation of the system.

The above reasoning, however, does not preserve uniqueness. We prove the latter by
taking two solutions (p1,u1) and (g2, u2) satisfying the same Lagrangian formulation, and
showing that u; = ug (the equality of g1 and gy follows then from the uniqueness of solutions
to continuity equation). For this purpose we introduce the flow x4, which for s € [0,1] is
generated by a convex combination of u; and wue:

‘/I."S = S'U,1(t,(L'5) + (1 - S)UQ(t7xS)7 ws(oay) = y

The key point is to estimate ||u1 —uz|| 12(pa) by a suitable norm of %. Then, having the BM O
regularity of Vu,, ¢ = 1,2, we use the John-Nirenberg inequality and the integral inequality
for functions of bounded mean oscillation from [80, 78] to obtain the necessary estimates for
ddi;. Finally, using the above tools we are able to show that x; does not depend on s and in
consequence uj = ua.

The rest of the chapter is divided into sections, which contain the main steps of the proof
of Theorem 2.1. The structure of the proof is as follows:

e In Section 2.2 we present the a priori estimates and results at the level of Lagrangian
coordinates, namely the L° bounds and unique existence of a solution in the Lagrangian
reformulation.

e Section 2.3 contains the necessary tools and definitions, together with the proof of
uniqueness of solutions to system (2.2).

e In Section 2.4 we define the transformation from Lagrangian to Fulerian coordinates
using the construction from [12]|, and therefore prove the existence of solutions to (2.2).
Note that the estimates obtained in Section 2.2 provide the BM O regularity of the gra-
dient, necessary to obtain uniqueness The existence of solutions could be done indepen-
dently, using for example standard Lions method and the Bresch & Jabin compactness
criterion. Nevertheless, we present here an alternative approach, which is set in the
framework of Lagrangian regular flows and therefore is more consistent with the rest of
this paper.

Notation remarks: For the notational simplicity, we omit the subscript while integrating

over the torus, namely
/ dr = / dx.
Td
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By {-}¢ we denote the mean integral over ), while in the case of the whole torus we again
omit the subscript.
Moreover, to distinguish between the norms in L>(T%) and L*°(]0, 7] x T%), we denote

I oo == 1l l[pee(ray and || - floo, 7 := [ - [ oo (jo,77x14)

2.1.2 Discussion on the pressure term

First, observe that our condition (2.3) in particular includes the assumptions from [11]: if p
satisfies (2.4), then P(p) > co” — cp and for a sufficiently large C' we obtain (2.3). However,
our assumptions also allow the pressure to drop to 0 for arbitrary large o and we do not
require the bounds on the derivative.

Such class of possible pressures includes many physical situations. It contains the cases
which were covered before, for example van der Waals’ fluid. However, our assumptions also
allow the pressure to be expressed via virial expansion, namely defined as a power series of
the density:

o0
p(o) =Y Brd",
k=1

where coefficients By, depend on the temperature and are derived from statistical mechanics.
The virial equation of state was also considered in [10], but our result allows wider range
of pressures of this type. The other case, where our result may be applicable, is the use in
biological models, where the pressure term is responsible for interactions between different
biological agents and therefore can take form other than resulting from physical constitutive
laws.

Let us present some further properties of p satisfying (2.3):

e Condition (2.3) implies that in particular p(p) < CoY + C for ¢ > § and some ~ > 1:
Let p satisfy (2.3) and define a(p) = [2 25 ds, a(p) = 0. Then

o s?

%
. S ~ C c
and by the comparison criterion a(g) < Co” — 717
on g. Therefore

_ o2 B 3
p(o) < Cloafo) + o+ 1) < CCe + crisCa+cC

for v = C' 4 1 and a suitable C.

e On any finite interval we can estimate p by sufficiently large constant, hence in particular
(2.3) is fulfilled. Therefore to check if indeed p satisfies (2.3) for all o > 0, it suffices to
analyse the behaviour of P when ¢ — oo. It is immediate to check that if p(p) < Co7"+C
for some v > 1, and P satisfies

1
liminfwzliminf 1 /p(g)dszc>0,
; S

0—00 Q'Y 0—00 Q'Y*l
then p satisfies (2.3), however these conditions are not equivalent.

e The most significant difference between our class of admissible pressures and the cases
considered before is that we allow the pressure to drop to 0 even for large p. Moreover,
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the derivative of p may grow arbitrarily fast. For example, let f: [0,00) — [0,00) be a
smooth, increasing function such that f’ is also increasing and define

p(e) = 0°(1 4 cos(f(0)))-

By the alternating series test, the integral

o0 [ cos(y)
/@ cos(f(x))dz = /f(g) 7f’(f*1(y))dy

is convergent in the sense of Riemann. Therefore we have

1 [¢ 1 [¢
lim /_ ]Lj)ds = lim — [ 1+cos(f(s)ds=1
0

0—00 0 S 000 0 /5

and p satisfies (2.3). Moreover, it periodically drops to 0 and the derivative of p depends
on f’, which can be arbitrarily large.

e The condition p(p) < Cp” + C is not sufficient to obtain (2.3). For example, let n be a
smooth function supported in [—1,1] such that 0 <7 <1 and n(0) = 1. Define

2 k —k _k
0°n2%(o—k)) for k—27"<p<k+2" k=12, ..
():{ (2.5)

0 otherwise.

Then
k(s k-1 njyo-i , k
/0 Z)iz)ds = Z/@ n(2'(s —i))ds —i—/ n(2(s — k))ds

5 Ji—2—i k—2-k
k—1 ' 1 0
= 21/ ndm+2k/ n dx
i=1 -1 -1
1 0
:(1—2_k+1)/ ndx+2_k/ n dz

-1 -1

and therefore for any C we can choose sufficiently large k such that
2 F p(s) A
0

In Figure 2.1 one can find an illustrative comparison between a typical example of a

function satysfying (2.3) and not.

2.2 The L* bound on the density

2.2.1 Energy estimates

First, we obtain the a priori estimates for our solutions.

Lemma 2.3. Let (p,u) be a sufficiently smooth solution to (2.2). Then it satisfies the estimate

/OT/(diVu)2 dxdt + sup /P(g) dz < C/p(QO) da.

t€[0,T]
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(A) An example of a function satisfying (2.3). (B) A function which does not satisfy (2.3).

FIGURE 2.1: Figure 2.1a shows the plot of a function p(p) = 0?(1 + cos ),

which satisfies (2.3). Figure 2.1b shows the plot of p given by (2.5), which is

an example of a function having similar properties as the function in Figure
2.1a, but not satisfying (2.3).

Proof. By multiplying (2.2) by divu and integrating by parts over the torus, we get

/(div u)? do — /p(.g)divu dz =0.

Moreover,

—/p(g)divudx _ /Vp-udx - /p/(;’)v@. (ou) dz — —/P’(Q) - div(ou) d
= /P/(Q)Qt dz = % P(o) da.

After integration over time, we get the desired estimate. O

The above a priori bounds also provide that p(p) € L*(0,T; L'). Indeed, from assumption
(2.3) we have

sup /p(g)d:v < C sup /P(g)dx < C. (2.6)
te[0,7) te[0,7

2.2.2 The Lagrangian formulation

To prove the global L> estimate on the density, we need to rewrite the system (2.2) in the
Lagrangian coordinates. That is, we carry out a certain change of variables, which allows us
to reduce the continuity equation to a simple ordinary differential equation.

If w is a velocity field, then the trajectory of a single fluid parcel moves along the integral
curve of & = u(t,z). Therefore, if at the starting time the particle was at a point y, then
after the time ¢ it would be at the point z(¢,y), where x(¢,y) is the solution to the Cauchy
problem

&(t,y) = ult, x(t,y)),
z(0,y) = y.

The above ODE defines the flow z: [0,T] x T¢ — T¢ generated by u. Note that if u is
sufficiently smooth, from the classical theory of ODEs it follows that the solution exists
locally. Since in our case x lays on the torus, it cannot blow up in finite time, which gives the
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global existence of the flow.
Differentiating our ODE with respect to y and using the Liouville formula, we obtain the
equation for the Jacobian J = det %:

J(t,y) = divu(t, z(t,y))J(t,y),
J(O7y> = 17

t
and in consequence J(t,y) = exp (/ div u(s,a:(s,y))ds). This in particular means that in
0

the classical setting z(t,-) is a diffeomorphism on T¢ for any t¢.
We rewrite the unknowns of the system (2.2) in terms of y instead of x, so at a time ¢ the
space variable is the position of a parcel starting from y. Let

n(t,y) = et x(t,y)) and  o(t,y) = divu(t, z(t,y)).
Then the system (2.2) has the form

aﬂ]"’ng = 07

o = p(n) — {p(m)}o- 27

where {-}, is the mean integral in the new coordinates given by

(o= iy [ Sty ([ to(s,wds) dy.

Now for the system (2.7) we obtain the following result:
Theorem 2.4. For gy € L®(T%) and any T > 0 there exists a unique solution

(n,0) € L=([0,T] x T x L*°([0,T] x T%)

to the system (2.7) with the initial condition n(0,y) = o(y). Moreover, there exists a constant
r, independent of T, such that
[1llo0 < 7

The immediate consequence of Theorem 2.4 is the similar uniform bound on o. As T is
arbitrary, we hence obtain the existence of a solution on the whole half-line.

The proof of the existence of a unique solution is a standard application of the Banach
Fixed Point Theorem and is presented in the Appendix A.1. Below, we show only the second
part of Theorem 2.4, namely the L° bound on 7.

Proposition 2.5. If (n,0) € L>®([0,T] x T%) x L>=([0,T] x T%) is a solution to (2.7), then

where the constant r does not depend on T.

Proof. Let us solve the first equation of (2.7). We get the identity

ott) =ty esp (- [ to(s,wds) | 28)

Note that this explicit formula for n provides that in particular if ¢ is bounded and the
initial density gq is strictly positive, then for any ¢ the density is strictly positive as well.
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Using (2.8), we see that 7 is also continuous with respect to time. For a fixed y, we have

exp <_ / t“g(s,y)ds) - 1‘

Hence |n(t +¢,y) — n(t,y)| goes to 0 as e — 0 and indeed 7(-,y) is continuous.

In(t +€,5) — 1t 1)) = 2oy) exp (— / tO’(S,y)dS>

e€||0||oo,T _ 1) .

< oo(y)etlolleer

The continuity of n allows us to show global boundedness. Recall that by virtue of (2.6),
the mean value {p(n)}, is bounded. Let

sup {p(n)}, = M.
t€[0,T]

From (2.6) M is finite and does not depend on 7. As p is unbounded, we can choose r >
| 0ol oo (ray such that p(r) > M. Then, at the point 7 = r we get

Onln=r = —r(p(r) = {p()}o) < —r(p(r) — M) <0,

However, as t — n(t,y) is continuous for a fixed y and 7(0,y) = 0o(y) < r, if it exceeds
the value 7, it must have a nonnegative derivative at that point, which gives a contradiction.
Hence for any y € T? the function 7(-,y) is also bounded by 7. O

2.3 Uniqueness of solutions

Using Lagrangian coordinates introduced in the previous section, we are able to show that
the solutions to (2.2) are unique.

Theorem 2.6. If (9;,u;), i = 1,2 are solutions to (2.2) with the regularity from Theorem
2.1, then (o1,u1) = (02, u2).

First, let us show that if (o, u), is a solution to (2.2) satisfying
o,u,divu € L®([0,T] x TY), Vue L*®(0,T; BMO),

then in the Lagrangian coordinates it satisfies (2.7). Under that regularity of u the classical
theory of ODEs does not apply, however from the results from transport theory of DiPerna
& Lions [40] it follows that there exists a unique flow x(¢,y) generated by w, such that
z € C(0,T; LP) for any 1 < p < oo and

& =u(tz), 2(0,y)=y.
Moreover, if p is a solution to the continuity equation
ot +div (ou) =0, 0(0,-) = oo, (2.9)

then the function o(t, z(t,y)) is given by

ot x(t.0) = o) exp (- [ divats, s, ) = anlw)exp (= [ o)
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and therefore n(t,y) = o(t, z(t,y)) satisfies the first equation of (2.7) with o(t,y) = divu(t, z(t,v)).
Furthermore, taking the second equation of (2.2) at a point x(¢,y), we obtain

1

o(t.) = p0(t.) ~ 5 [ plelt.))da.

However, by Lemma 3.1. from [34], for any f € L'(T¢) we have

/ fz)de = / F(a(t,y))elo B ulalaNds gy = / F(a(t,y))elo oevds gy,

Thus
/ polt, z))de = / plolt, x(t, y))elo 7ow)ds gy = / p(n(t, y))elo sy

and o satisfies the second equation of (2.7).

From the uniqueness of solutions in the Lagrangian formulation, we conclude that if
(0i,u;), i = 1,2 are solutions to (2.2), then they are equal at the level of Lagrangian co-
ordinates. In particular,

divug (¢, z1(t,y)) = divug(t, z2(t,y)) = o(t,y).

Therefore the uniqueness of the solutions to (2.2) is equivalent to the uniqueness of solutions
to the equation
divu(t, z(t,y)) = o(t,y), (2.10)

where o € L>([0,T] x T%) is given and (¢, y) satisfies the ODE

2(t,y) = u(t, ),

+(0,9) = . (2.11)

Having the unique w, the uniqueness of g follows then again from the classical results from
transport theory (see [40]). The regularity of u provides that in particular u € L1(0,T; WP)
for some p > 1 and divu € L'(0,T; L>). Therefore there exists a unique o € L>([0, T] x T%),
which is a solution to the continuity equation (2.9).

2.3.1 Definition of the flow z,

For u; and uy being the solutions to (2.10)-(2.11), we introduce the weighted flow between uy
and ug, that is a function z4(t,y), s € [0,1] such that zs for s = 0 is the flow generated by
uz and for s = 1 the flow generated by w;. Such x, is defined by the ordinary differential
equation

Zs(t,y) = sui(t,xs) + (1 — s)ua(t, xs)
zs(0,y) =y
for s € [0,1]. Note that since for every s € [0, 1]

(2.12)

|sdiv uy (t, zs) + (1 — s)div ua(t, zs)||eo < || ]00,

the Jacobian J; = det %“;S of x4 satisfies the same bounds as the Jacobian J of x; and xo,
namely

T
et < Jy(t,y) < el with L:/ o] sodt. (2.13)
0
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The first step to show uniqueness is to obtain certain L estimates for the derivative of x4
with respect to s.

Lemma 2.7. If x, is defined by (2.12) for up,ug € L¥([0,T] x T%) such that Vu; €
L>(0,T; BMO), i = 1,2, then for sufficiently small t, % (t,-) € LP for some p > 4.

Proof. Differentiating &, with respect to s, we get

dag
ds

dxg

2.14
N CRE)

=uy(t,xs) —ua(t,zs) + (sVuy(t,xs) + (1 — s)Vua(t, zs))

hence from the Gronwall’s lemma

d s t t
‘ i < exp </ |sVui (1, zs) + (1 — s)Vua(T, xs)]d7> / |ui (7, 25) — ua (T, x5)|dr.
0 0

Let Vv = sVuy + (1 — 5)Vug. As up,ug € L¥([0,T] x T?), we have

t
/ﬁmwwa—wvwamTSNMMwT+mﬂmﬂ.
0

/

We will now estimate

Therefore

da. |P t
| dy < C'Tp/exp (p/ |Vu(r, :Us)|d7'> dy.
§ 0

I = /exp (p/ot |Vo(r, q:s(r,y))d7> dy.

By Jensen’s inequality and the bounds on Jacobian J,, we have

t
/ e Ji 1Te(ras(r))ldr g, < / 1 / PV ()l 4rdy
</i)
1 1/t
< |[|= - eptW”(T’”CS(T’y))‘JS(T y) drdy
=N Tller ) 7o ’

t
< eLl/ /eptW”(T’m) dadr.
t Jo

From the fact that sup;cjo 17 [ Vil Bpo < Cfor i = 01,2, we know that Vo € L*(0,7; BMO)
and from the Corollary B.4

C
Vol Lo (0,1:BM0)

/eptvv(mﬂ)ldx <C forall p<

In particular, for sufficiently small ¢ we have % € LP(T?) for some p > 4. O

Lemma 2.8. Let x4 be as in Lemma 2.7 and let T1 be such that % € LP for p > 4 and
t €[0,T1]. Then | d(ﬁs (¢, )H; satisfies the inequality

2
1+
2

d 2

dt

dxg
ds

dxg
ds

dxg
ds

2 ’

ln‘

< >+CHUl(ta') —ua(t, )13 (2.15)
2 2

for t € [0,Ty].



22 Chapter 2. Compressible Stokes system

Proof. Multiplying both sides of (2.14) by dxé , we obtain

1d da:S _ dxg dzg dx,

b £z, txs) — un(t, xs)) = 2.16

2 | ds | = as VOB gyl we) —ualt z) (2.16)
Integrating (2.16) over torus, we get
d dzx dx

s <2 2 t,xs) —ug(t, zs)| [—— | d
SNy <o| [ evuttrg Sas] 42 [ it nn vt |52y
d, da, |
< 2‘/ x Vo(t, xs ‘ /|u1 (t,zs —uz(t,x5)2dy+/ da; dy.
s

From the bound (2.13) on Js, we have

/\m(ws) —up(t,z)Pdy < Cllua(t, ) — ua(t, )3

By the regularity of d”“ from Lemma 2.7, ? ¢ L9 for some q > 2. Therefore we

can apply Corollary B.7 to estimate

d d
/ dxs Vul(t, acs)dxsdy‘. In consequence we obtain the
s s

dzs
ds

inequality (2.15), where C' depends on ||Vv|Bmo, ’

and |7 oo- O
q

2.3.2 The final argument

Having the results from the previous subsection, we can now prove the uniqueness:

Theorem 2.9. The solution to system (2.10)-(2.11) with reqularity from Theorem 2.1 is
UNIqUE.

Proof. Let uy,ug be the solutions to (2.10)-(2.11), u; = V¢; and x1, x5 are the flows generated
by wui,ug respectively. We will show that ||u; — uz||2 = 0 for all ¢ € [0,7]. By the weak
formulation of div u(t, z(t,y)) = o(t,y), for any & € C°°([0,T] x T%) we have

l/@q@ﬂﬂ—uﬂhx»Vﬁ@Jﬁdx——1/QMMq@Jﬂ—dNuﬂux»ﬂLx)¢r
=~ [ ottt 0) €1 (1.) — (6 walt) .

Using the definition of the flow x,, we can rewrite the last integral as

1
[ ettt [ et masty
_ ! das(t, y)
- [oti.y) /0 Vet () 0P dsay,

By the density of smooth functions in W12 we can choose & =0¢1— ¢2. Then V& = u; — ug
and we obtain

1 X
[ 1w = o == [ a(t.)60) [ (t0) = wattn(t. ) ) dcy

dxg

ds.
ds 5

2

< llollooll Moo llur = uzll2
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Hence
d

L\l da,
— <C
o= el < € [

Substituting (2.17) into (2.15) and integrating over s, we get

ds. (2.17)
2 1 2 1
dsﬁC/ <1+ )ds—l—C(/
2 0 2 0

2
2
ds>
2
for t € [0,Ty] for some 77 < T.

Now let a(t) = fol Hdda;s (t, )H; ds. As the function z(1 + |Inz|) is concave for x < 1 and
x? is convex, we can estimate both terms in the right hand side from Jensen’s inequality and
obtain

d /1 2

dt Jo

dxg
ds

dxg

dxg
1
n‘ -

ds

dxg
ds

S l2

a<Ca(l+|lnal) + Ca.

From Osgood’s lemma, the problem

2=Cz(14|Inz]), =2(0)=0

has a unique solution z = 0. Therefore, as s =0, we have a(0) = 0 and
ds |t=0

a(t) <0 for all ¢t € [0,T7].

, ddx; =0 for all ¢ € [0,71] and so is ||u; — uz||2. Having that, we can perform

analogous reasoning on the consecutive intervals [nT7, (n + 1)T1] to get u; = g for all t €
[0, T7. O

In conclusion

2.4 The existence of solutions to (2.10)-(2.11)

In this section we prove that the transformation from the system (2.7) to (2.2) is well de-
fined, which will end the proof of Theorem 2.1. Having the solution (n,0) in the Lagrangian
coordinates by Theorem 2.4, we define the transformation to Eulerian coordinates (z,t). In

other words, we need to find u such that /u(t,a;) dz = 0 and u satisfies (2.10)-(2.11). By

virtue of the discussion at the beginning of Section 2.3, such u provides us also existence of
the density o.

Theorem 2.10. Let o € L=([0,T] x T%). There exists u € L>®([0,T] x T?) such that u is a
solution to system (2.10)-(2.11) and

divu € L®([0,T] x T, Vu € L>(0,T; BMO).
Proof. First, we prove the existence for smoothened o, by putting
05 = 0 * Kg,

where kg is a standard mollifier.

Lemma 2.11. There exists a unique us € C(0,T; W) satisfying

div u5(t7 'T(S(tv y)) = U§(t7 y)v

where xs5(t,y) is given by (2.11) with the flow us.
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Proof. We define the suitable map, and then apply the Banach fixed point theorem. Let
®: C(0,T;WhHe) — C(0,T; Wh)
be defined in the following way:
1. If w € C(0,T; W), then @ is Lipschitz, so there exists a unique solution to system

& =u(t,x), z(0)=uy. (2.18)

2. We can now invert z(t,y) to get y(t,z) instead. After differentiation of (2.18) with
respect to y, we get an ODE for the matrix H(t,y) = g—z(t,y):

OH = Va(t, x(t.y) H, H(0,y) = I (2.19)
Moreover, the equation for J(t,y) = det H(t,y) yields

Therefore we have the estimates

T T
exp <—/ ||Vu||oods) < |[H||oo < exp </ HVUHOOdS) ,
0 0
T T
exp (—/ ]divu”oods> < |[J|loo < exp </ ]divu”oods> ,
0 0

and H is invertible, which allows us to treat y as a function of .

and

3. Finally, we put ®(u) = u, where u is a unique solution to the system

u(t,x) = Vo(t,x),
A¢(t’ x) = Ué(tv y(t, $))

for y(t, z) being the inverse flow associated with a.

(2.21)

The function os(t, y(t,-)) is Lipschitz, as

|05 (L, y(t, 1)) — a5t y(t, 22))| < ([ Vosllooly(t, #1) — y(t, 22)|

dy
< Vol |

|x1 — xa].
o

Therefore ¢(t,-) € C>1(T?) and in consequence u(t, ) € CH1(T%) and we have the estimates

sup ||ulloo < Cllos]00,T5
0<t<T (2.22)

sup [|[Vullcon < C sup |los(t, y(t, )l cor-
0<t<T 0<t<T

Moreover, as o € L>®([0,T] x T%), by the classical results for LP regularity of strong
solutions to Poisson equation (see e.g. [108]), for any p € (1, 00) we have the estimate

sup |[ullec + sup |lullwrr + sup [[Vulpmo < Cllofco,r, (2.23)
0<t<T 0<t<T 0<t<T

which are uniform with respect to 6.
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2.4.1 Additional regularity of u

We will now show that the fixed points of ® are uniformly bounded in L>°(0,T; W%P). By
use of an appropriate logarithmic inequality, it implies that ®(K) C K for some bounded and
closed K C C(0,T; Whe).

Proposition 2.12. If us is a fized point of ®, then

sup |[Vusl|lwie < C(p,d,T). (2.24)
o<t<T

Proof. After differentiation of (2.21) with respect to z;, we get

do Oy

Hence for any 1 < p < oo the standard elliptic estimate gives
IVélar < O Voslle | 2]

which leads to

sup_[|Vullwrs < C(p)||Vosloope’ 1V (2.25)
0<t<T

Now take 4 = u = ug in (2.25) and apply the following inequality for p > d:

IV e <€) (1+ 1V lmat0 0 (I flws + 1 120)) %) (2.26)

The proof of the above estimate one can find in [86], Corollary 2.4. By the estimates (2.23)
and Cauchy inequality, we have

[Vus|| Lo (0,7w 10y < C(P)|| V5|0 exp (T sup HVme)
0<t<T

1/2
< exp <CT02U£T IVus| Baro (I ([Vusll oo o rwiey + l|uslloo,r)) / )
<t<

1
< exp (CT2 4 0" (Vusllmioairo) + lusloer) )

1/2
< C (IIVus| g o.rawiey + uslloor) >

Therefore
V812 0 701y~ IV e rawtry = C < 0

and in consequence
Vus|| oo 0,10y < C

for some C depending on p, § and 7. O

The analogous reasoning also provides that ®(Kr,) C Kp, for

KT1 = {u € C(OﬂTl; WLOO) : HUHOO,TN HVUHLO"(O,T1;BMO) < (7 and HVUHOO,Tl < 02}7

where C is the constant from estimates (2.23) and Co = C(p) (1 + C1 (In™(Cp + C’l))l/z) is
the right hand side of (2.26) for C), being the constant from (2.24).
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2.4.2 The fixed point argument.

Local existence. We show that ®: K — K is a contraction for sufficiently small T;. From
the elliptic estimates, we have

Jur(t, ) = ua(t,)lloo < Cllos(t, 1(L, ) = o5(t, ya(t, )l
< ClIVslloorllyr(t, ) = ya(t, -)llco-

By Lemma A.2 from the Appendix, for small ¢ we have

1912, ) = 42(t, )lloo < Ctlltn — Ual|oor

and due to the uniform bound on [|Vul||s for u € K the constant C' does not depend on uy
and uo. Hence

lu1r = wzlloomy < ClIVsllo0,r(Th + o(T1)) |41 — t|oo,7y- (2.27)

Choosing T3 such that C||Vos|leorT1 < 1, we get that ® is a contraction on K. Therefore
there exists a unique fixed point us of ® on the interval [0, T1].

Extension to [0,7]. Having the uniqueness on [0,7}], we are able to perform the same
reasoning on [17,277]. Note that the estimate (2.27) on [T, 27}] would still depend only on
the length of the interval. Therefore again ® is a contraction on [T7,271], which gives us
the unique fixed point on [0,27}]. Performing this procedure on the consecutive intervals
[nTy, (n + 1)T1], we obtain the existence of a unique fixed point on the whole interval [0, 7],
which completes the proof of Lemma 2.11. O

2.4.3 Letting 6 — 0.

In Lemma 2.11 we obtained the unique us = Vg, which satisfies the equation

Ags(t,z) = os5(t,ys(t, x)) (2.28)

and the uniform estimates (2.23). Moreover, it turns out that dsus is uniformly bounded in
L?. Indeed, from the weak formulation of (2.28), for any m € C*°(T¢) we have

/ As(t, 2)n(z) da = / os(t,ys(t, 2)m(x) da = / o5t y)m (s () Ja(t ) dy,

where Js(t,y) = exp (fg os(s, y)ds) is the Jacobian of xs. Differentiating this equality with
respect to time, we obtain

/ Adrs(t, ) () dv = / Bros(t,y)m (s (t, ) Js(t, ) dy
i / o5 (t, y) O (s (1, ) Js (£ ) dy (2.29)
+ / o(t,y)m(s(t, ) 0Tt ) dy.

Let us now estimate the terms on the right hand side of (2.29). First, observe that from
equation (2.7) Oio is bounded, and therefore

0s05| = |(0s0) * Ks| < |0sa| € L°([0,T] x T9).
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For the second term, we have

8t7'['(1‘5(t, y)) = VW(I(S(t? y)).f(;(t, y) = VW(I(S(tv y))u(ta $5(t7 y))

and then using uniform estimates on us, we get

[ 19ntaste. ) Plustas(e )P ay < H}é”m [ 19t Pluste. o) e < .

therefore 0y (x5(t,y)) € L>=(0,T; L?). The third term is bounded as well, as ;Js = o5.Js and
both o5 and Js are bounded by some C(||o||o07).

The above estimates imply that Ad;¢s is bounded in L>(0,7; W—12) uniformly in ¢ and
therefore

[0vus || Lo 0,1;02) = IVO@s || Lo 0.112) < C. (2.30)

We now let § — 0" and therefore obtain the solution to equation (2.10). The estimates
(2.23) give
195l oo (0,7;w2.0) < C,

so ¢s —* ¢ in L>®(0,T;W?P) up to a subsequence. From the uniform estimates (2.23)
and (2.30), Aubin-Lions Lemma implies that in particular us is compact in L'([0,T] x T%).
Moreover, using Theorem 2.9 from [35], we get

-1
t, - t, l SCI - )
52 lle(t,y) = s(t, )y < € i (= wsllisgoriers) )|

where z(t,y) is the flow generated by this weak® limit uw = V¢. Therefore zs — z in
L>(0,T; LY).

The above convergence allows us to pass to the limit with § — 0 in a weak formulation of
(2.21). For any & € C>([0,T] x T%), we have

T T
/0 / A (1, 2)E(t, ) dwdt = /0 / (05 15 (1 s (1, 2) )€ (1, )t
T
:/0 /(U*K/J)(t?y)g(tvx(;(t?y))*]5(t7y)dydt-

Letting 6 — 0, we get
T T
A = .
/O / 6(t, 2)E(t, 2)dudt /0 / o (4, )E(L, 2(t, )T (1, y)dydt, (2.31)

where J = exp <fg o(s, y)ds) is the Jacobian of the limit flow z(¢,y).

To deduce that indeed we have divu(t, z(t,y)) = o(t,y), we need to change the variables
in one of the sides in (2.31). Despite the fact that z(t,-) is not a diffeomorphism, Lemma
3.1 from [34] allows us to perform the change of variables in the left hand side of (2.31) and
obtain

T
/O / divu(t, ot )t 2t 1)) I (1 y)dyd.

Therefore the equality (2.31) is transformed into

T
/0 / [divu(t, 2(t, ) — o(t,y)]€(t, 2(t,y))J (¢, y)dydt = 0.
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As divu € L>([0, T] x T?), the Jacobian J(t, y) is strictly positive. Hence, from the arbitrary
choice of &, we have divu(t,z(t,y)) = o(t,y) in the sense of distributions, which ends the
proof of Theorem 2.10. O

As by Theorem 2.4 the norms |||leo,r and ||o||ee,7 do not depend on T, so are ||¢| oo,
||div u|loo,7 and the estimates given by (2.23). Then again from arbitrary choice of T' we
obtain the unique existence on the whole real half-line and hence the proof of Theorem 2.1 is
completed.
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Chapter 3

Weak solutions for the compressible
non-Newtonian Stokes system with
unbounded divergence

This chapter consists of result published in [93]. We investigate the existence of weak solutions
to a system of equations modeling the behavior of a certain compressible non-Newtonian fluid
for small Reynolds number. We construct the weak solutions despite the lack of the L*°
estimate on the divergence of the velocity field. The result was obtained by combining the
regularity theory for singular operators with the logarithmic integral inequality for BMO
functions, which allowed us to adjust the method from Feireisl et al. [45] to more relaxed
conditions on the velocity.

3.1 Introduction

Our aim is to investigate the existence of weak solutions to equations modelling a special case
of compressible, non-Newtonian fluid. In the most general setting, the motion of such a fluid
without the presence of the external forces is described by the system of partial differential
equations

ot + div (ou) =0,

i 07T Qa 3].
(ou); + div (ou ® u) — divS + Vp(p) = 0, in | | (3.1)

where Q C R?, p is the density, u is a velocity vector and S is the stress tensor; we assume
that it is given by
S(Du) = pDu + Adiv ul,

where T is an idetity matrix, u > 0 and A\ are the viscosity coefficients, D = %(V + V) is
the symmetric gradient and p(p) is the pressure. In the case of constant viscosity (i.e., the
resulting system is called the compressible Navier—Stokes equations) dA + p > 0, where d is
the space dimension.

We will focus on the case where the Reynolds number Re ~ % is small. As in this
situation the advective forces are small compared to the viscous ones, we can approximate
system (3.1) by the compressible Stokes-like system

ot + div (ou) =0,

—div S(Du) + Vp(e) = 0. (8.2

Our aim is to obtain weak solutions to a special case of system (3.2). We assume that the
shear viscosity p is in the form

= po(|Dul) + 21, p1 >0 constant (3.3)
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and the bulk viscosity A = A(|div u|), where

w [ Q

0<po(2),\z)<—, z>0. (3.4)

Furthermore, we impose the monotonicity condition on the functions po(| - |)- and A(| - |)-, i.
e. forall A, B € R*? and s,t € R

(o(|ADA — po(IB)B) : (A—B) >0 and  (A(s)s — A(t)(s— ) >0.  (35)

For the pressure we assume the barotropic case with p(g) = o for v > 1'. For simplicity
we consider the space-periodic boundary conditions, namely

w: [0,7] x T* - R? and : [0,7] x T¢ - R,
where T? is the d-dimensional torus. In conclusion, the analysed system of equations reads

ot + div (QU) = 07
—div (po(|Du|)Du) — p1Au — V((p1 + AM(divu))divu) + Vo7 =0,

with the initial condition

(3.6)

0o = 00 € L¥(T%), 09>0 (3.7)

and the compatibilty constraint

/ u(t,z)de =0 Viso.
Td

Our system describes a type of the power-law fluid. They are characterized by the behavior
of the shear viscosity, which satisfies the relation

i~ D2 (3.8)
for some exponent r > 1. Typically, it is assumed that
p=po|Dul""* or p=po(a+|Dul)"? a>0,

to ensure that the viscosity is strictly positive and does not have singularities. For r = 2
the fluid becomes Newtonian, whereas it is shear-thinning for » < 2 and shear-thickening for
r > 2. The power-law fluids are used in many fields, for example glaciology [72, 59| and to
analyze the dynamics in the Earth’s Mantle [110] or blood flow [32, 96]. For more information
we refer the reader, e.g., to [4]. Our situation corresponds specifically to a Herschel-Bulkley
fluid, where the shear viscosity is in the form

po,  |Du| <6,

w= 70 n—1
—— + k|Du , |Du| >0
Doy MUl >
for some n > 1 and the parameters g, 79, k are chosen in such way that p remains continuous.
Fluids of this type were thoroughly analysed in the incompressible case, and have many
industrial applications, see e.g. |3, 36, 42].

"We could also replace this precise form just by asymptotic growth conditions similarly as in [45], i.e.

p(0) =0, p'(z)>0forz>0, and lim p(z) € (0, 00),

z—o0 27

but we skip it to avoid unnecessary complications
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The mathematical theory concerning weak solutions to systems describing incompressible
non-Newtonian fluids has been thoroughly developed in the past. There is a large number
of results for several aspects of these problems. As it turns out, the existence and regularity
of solutions to incompressible Navier—Stokes equations with the power-law relation (3.8) for
viscosity depends on the value of r. For r > % the existence of weak solutions for the
problem

divu =0,

. . (3.9)
u +div(u®@u) —divS+Vp=0

with the Dirichlet boundary conditions was shown for the first time in [39]; its uniqueness is
known for r > ?’dd—g, see [15]. As a matter of fact, the problem for r < % is ill-posed, see
[16]. However, existence of more general, dissipative solutions can be shown also in this case,
see [1].

Contrary to the incompressible case, the current literature on the compressible non-
Newtonian fluids is very limited. In [70, 71] Mamontov proved the existence of weak solutions
to the system with linear pressure term and in the framework of Orlicz spaces with exponential
growth, see also |2] for further properties of these solutions. The results for more general form
of the stress tensor were obtained in [45], where the authors considered the system (3.1) with
o of the form (3.8) and a special form of A\, which provided the L* bound on div u. Using the
classical Lions & Feireisl method [48, 67], the authors proved the existence of weak solutions
for the same range of ’s as in the uniqueness and regularity theory for incompressible fluids
(r > 1—51 in three dimensions). The additional bound on the divergence was crucial to obtain
the strong convergence of the density in the final limit passage.

3.1.1 Main result and structure of the paper

Let us first define what we understand by a weak solution:

Definition 3.1. We say that (o,u) € L*(0,T; L) x L*(0, T; W'?), v > 1, is a weak solution
to the system (3.2) on [0,T] x T? with the initial condition oo € L*(TY), if

ou, S(Du), p(o) € L'((0,T) x T%)

and for each ¢ € C3°([0,T) x T%4R) and ¢ € C°([0,T) x T4 RY) 4t holds

T T
—/ / 00y dxdt — / / ou -V dzdt = / 00p(0,-) dx
0 JTd 0JTd Td

/OT/W S(Du) : Dy dzdt — /()T/po(g)divw dzdt = 0.

Our main result states:

and

Theorem 3.2. Let oo € L®°(T%), 09 > 0, v > 1 and let (3.4) hold. Then for any T > 0 there
exists a weak solution to the system (3.6), satisfying

IVl L2 0,r)xmay + el Lo (o,r;27) < C,
where C does not depend on T, and
[div ul Lo (0,7;L0) + 0l Lo 0,120y < C(0, T),

for any 1 < p < 0o, where C approaches oo if p or T do so.
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The proof of Theorem 3.2 uses the technique from [45]. However, due to the absence of
the convective term we are able to obtain the result for relaxed assumptions on divu. In
particular, we do not need to derive the L* bound on divu. Instead, we obtain the BMO
regularity in space for the term

2uidivu — o7,

This allows us to replicate the main step in the limit passage by using the logarithmic integral
inequality from the previous chapter, see Lemma B.6 and [100].

The rest of the article is devoted to the proof of Theorem 3.2. First, in Section 3.2 we derive
the a priori estimates, in particular the crucial BM O estimate for the quantity 2divu — o7.
Then, in Section 3.3, we prove the existence of solutions to the approximate system with the
regularized continuity and momentum equations. In Section 3.4 we finish the proof by passing
to the limit in the weak formulation of the approximate system and in consequence we obtain
the weak solution to the original one.

Preliminary remarks. Similarly as in the previous chapter, we omit the subscript while
integrating over the torus, namely
/ dz = / dzx.
Td

Furthermore, as the results do not depend on the values of uq, for simplicity we set u; = 1.

3.2 A priori estimates

Lemma 3.3. Under the assumptions of Theorem 3.2, if the solution to (3.6) is sufficiently
smooth, it satisfies

IVl L20,r)xmay + lell Lo o,r;07) < C

and
[2divu — 07| o (0,7;BM0) < C

for C depending only on || gol|co. Furthermore,
[div ul| oo o,7;20) + ol oo 0,120 < C(p, T)
for any p < oo, where C(p) — 00 as p — o0 or T — 0.

Proof. Multiplying the second equation of (3.6) by u and integrating over the torus, we obtain
(if v = 1, the last integral is replaced by [ olnp dz)

/,uo(]Du|)|]D)u|2dx—|—/|Vu2dx+/(divu)2dx
1
+/)\(|divu])(divu)2dx+7_1dt o’dr =0. (3.10)

Integrating the above equality from 0 to T', we obtain the first desired estimate.
To obtain the LP estimate of the density, we use as a test function in (3.6)s the function
¢ =—(—A)"1V (o — {0"}) for a suitable § > 1. We have

dive = ¢’ — {d}

and
IV 0.1y %) < CE° r (0.7 <y for any 1 < r < oc.
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The above estimate follows for example from the Marcinkiewicz Multiplier Theorem [73].
Note that C(r) — oo if r — 17 or r — oco. Moreover,

—/Au-v,bdm:—/u-V(ge—{Qe})dﬂc:/gedivudx.

Then

/97+9 dz — Q/diivu dz :/u0(|]D)u|)]D)u : Vo da +/Qg)\(\divu|)divu dz

0
|Td\ de/ dz.

Using the growth conditions on pg and A, we get

/Qe)\(|divu|)divu dz < 0/99 dz

and

/MO(UD)u])]Du LV da < c/ V| da < C8)| o | s

1 d 0
/Q dlvudx—e_ldt/g dzx,
in the end we obtain

1
) 3
e ey e VR RO

whence, for a suitably chosen &

Moreover, as

lell zoe 0,730y < C(p, T, 00).

The bound in the BM O space comes from the Calderén—Zygmund estimates. By taking
the divergence of the momentum equation, we get

—A((2 + A(divu))divu — ¢7) = divdiv (uo(|Du|)Du) .

1

Therefore in consequence for A(t) = Td / A(|div u(t, y)|)divu(t,y) — o7 (t,y) dy, we have

(2 4+ A(|divu(t, z)|))divu(t,z) — o7 (t,z) — A(t) = /div div (po(|Du|)Du) K (x — y)dy
— [ div (o(DuhBu) - VR (@ )y

~ [ mo(iu)bu s VR - y)a,

) (3.11)
where K is the fundamental solution to the Laplace equation on T? Note that we can
write K explicitly using Fourier series: if —Ap = f in T¢ for f with mean value 0, then
k2¢(k) = f(k). In consequence

1 1 ik(z—
(p(l‘): Z |k|2 27rzk:vf /f k|2627r E( y)dy

kez4\ {0} keZd\{O}



34 Chapter 3. Compressible Stokes for non-Newtonian fluids

and thus

7 1 2mik-x

kezZd4\{0}

By Example 3.1.19 from [53], we know that

K(z) = mC% + ha(2)

for some hy € C>([0,1)%).
Therefore from the Calderén—Zygmund theorem we conclude that

(2 4+ Adivul))dive — 0" = A(®) | o rimar0) < Cllio(IDulDull po (o 1ys) < C

for some constant C' independent of T' (for the results concerning singular integrals in the
periodic case we refer the reader to [18]). Note that by the condition (3.4)

[A(div ul)div ul| oo o, ryxrey < C

and from (3.10)
[A®)| oo (jo,m) < C.

The BMO regularity is thus satisfied for 2divu — @Y. Moreover, the L*°(0,T’; LP) estimate
on @7 also implies the same regularity for div u, which finishes the proof. O

3.3 Existence of approximate solutions
In this section we construct the approximate solutions. To do that, we consider the system

0¢ + div (ou) + 60° = §Ap,
—div (po(Du)Du) — Au — V(1 + A(divu))divu + Vo7 = —eA*"y, (3.12)

/u(t, z)dr =0

for a sufficiently small §,¢ > 0, sufficiently large m € N and 8 > max{v + 1,4} being an odd
integer, with the initial condition

Ol = 005 € C(T?), 005 >0, 005 0oinany LP, p < co.

To prove the existence of solutions, we will employ the following version of the Schauder
fixed point theorem:

Theorem 3.4. Let X be a Banach space and ®: X — X be continuous and compact. If the
set
{reX: z=sP(x) forsome sel0,1]}

1s bounded, then ® has a fixed point.
Let us define the map ®: C([0,T]; L*') — C([0,T]; L*) in the following way:
1. For g € C([0,T); L*), let u be the unique solution to the equation
—div (o (|Du|)Du) — Au — V(1 + M(divu))divu + V(5)? = —eA?™y,

/U(t,x) dz = 0. (3.13)
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2. Then, let ¢ be the solution to

ot + div (ou) + 60° = 6A0, 0},_, = 00,s. (3.14)

We set ®(9) := o. It is easy to see that the fixed point g and the corresponding u solve
our problem (3.12).

First, let us show that the operator ® is well-defined.

Proposition 3.5. If 57 € L>(0,T;L?), then there exists a unique solution u to equation
(5.13), satisfying

Vull oo o,;02) + VEIA™ Ul oo 0,22y < Cll@7 || oo (0,512)-
In particular, if m is large enough, then
< ¢ o7
HUHLOO(O,T;WLOC) = %HQ HLOO(O,T;L?)-
Proof. By multiplying the equation by u and integrating over the torus, we get
//,Lo(]]Du|)HD)u|2 + [Vaul? + (1 4+ M(diva))(divu)? + e|A™u? dz = /évdivu dz
: 2 c ~y 112
<n [ (divu)*dz + g”@ 1200 (0,722

hence picking 7 small enough and taking supremum over time, we get the desired estimate.
For existence, we consider the functional I defined in

H2m(T9) = {v € H>™(T) : /v dr = o} :
given by
1] = [ (F(V0) + 5|90 + Aldive) + S|A™ — (t, Jdivo)d
= 5 5 07 (t,-)divv )dz,

where I satisfies

0

for B = (b;j)i; € R™? and A is such that A’(s) = s + A(s)s. In particular, the assumptions
on uo and X imply that F' and A are convex and bounded from below.

From the definitions of F' and A it follows that any minimizer of I corresponds to a weak
solution to (3.13). By the convexity of F' and A, the functional I is convex. Moreover, for
certain C' and n < C,

F(B) = po(|B|)bij,

C, . -
I[v] > ellA™ ]2 + ClIVullz2 — 0l Vollz: — gH@”(t, Nz = Cllollzzn — CllE" 7 0,1,22):

and thus I is coercive. Therefore I has at a.e. time level a unique minimizer v(t,-) € H2m(T9)
and in consequence there exists a unique u € L®(0,T; H?*™) with zero mean value over the
torus, solving (3.13). O

Now we use the following classical result for the heat equation (see e.g. Lemmas 7.37-38
in [85]):
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Proposition 3.6. Let h € L?(0,T;L%) for 1 < q < co. Then the solution to
oo —elo=nh, o, ,=00
satisfies the estimate

El/ZHQHLOO(O,T;WLq) + HatgHL2(o,T;Lq) + EHQHL?(O,T;WM)

< C ("lloollwra + WPl z20mizey ) - (3:15)

Moreover, if h = divw, w € L?(0,T; L9), then

1/2

& oll ooz + Vel o0 < € (/2 00lze + Iwllzzo o)) - (3.16)

From the previous Proposition, we can also conclude

Proposition 3.7. If u € L>®(0,T;W1°), then for equation (3.1}) there exists a unique
nonnegative solution o € L>¥(0,T; W) with 0;0 € L*(0,T; W17 for any r < oo.

Proof. We construct o € L>(0,T; W'?) solving (3.14) by the Galerkin approximation. The
nonnegativity of solutions is obtained by testing by negative part of ¢ and is a conclusion of
the fact that the function o — 0% is odd. By decomposing o = o4 — o_ into positive and
negative parts, o4, 0— > 0, testing (3.14) by —o_ we get

1 1
5% 0 dx—l—(s/ggﬂ d$—|—5/]VQ_|2 dx:—2/g2divu dx

< HdiquLoo/QQ_ da

N |

and o_ = 0 from Gronwall’s lemma.
Next, testing equation (3.14) by poP~!, we have

d
S [ @< o= idivul [ g

and therefore -

HQHLOO(O,T;LP) < ”Qoﬁ”Lpe P HU‘HL:[(U,T;WI,OO)'

Taking p — oo we have o € L°°((0,T) x T¢). In consequence gu € L?(0,T; L") for any r < oo
and we can use (3.16) to obtain

Vo€ L*0,T;L").
Employing the fact that v € L°°(0,T; W1>°), we have div (ou) € L?(0,7T; L") and by (3.15)
with h = —divu—00°%, o € L>®(0,T; W) for any r < oo, whereas the estimate for d;0 comes

directly from the equation (3.14). The uniqueness is shown by taking two possibly distinct
solutions o1, 02 and computing [|e1 — 02| e (o,r;z2). Similarly as before, we have

1d
Iq (01 — 02)? dx+5/(gf—95)(91 — 02) dm+5/|V(91 — 02)? da
1
=-3 /(gl — 09)*divu dz

and then we proceed analogously as in the proof of nonnegativity, using the fact that (g’lg —
05)(e1 — 02) > 0. O
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We will now show the properties of ®, which allow us to apply directly the Schauder fixed
point theorem (Theorem 3.4).

Proposition 3.8. The operator ® is continuous and compact from C([0,T]; L?7) to itself.
Moreover, the set

{oe C([0,T); L*) : o= 5®(0) for some sc[0,1]}
s bounded.

Proof. Let 01,00 € C([0,T]; L?") and uq,us be the corresponding solutions to (3.13). As
before, denote ®(g;) = 0;, 1 = 1, 2.

Compactness. From the previous propositions we know that ¢ € L>(0,T; W1?7) and
dro € L*(0,T; W~127) and the bounds are uniform for bounded sets of ¢ in the given spaces.
Therefore, the compactness of ® in C([0, T|; L?") follows straight from a variant of the Aubin—
Lions lemma from [94].

Continuity. We will estimate u; — uo in terms of g1 — 02. We have

_div (,uo(]]Dul])]D)ul - uo(mug\)mw) - V((l A (divug)divay — (1+ Mdivug))div uQ)
— A(up —ug) + 8A2m(u1 —ug) = =V(o] — 03).

Multiplying the above equality by u; — us and integrating over T?, we get
Alug,ug) + /EAm(ul —ug)|? + |V(ur — ug)|? do = /(@Y — 09)(divuy — divug)de,

where

A(U1>U2)=/(M0(DU1|)DU1 fo(|Dug|)Dug) : (Duy — Dus)

+ ((1 + A(divug))divug — (1 + A(divug))div UQ) (divuy — divug)dx > 0

from the monotonicity of the functions B — and s — A(s)s. In consequence, we have

a+|B\
19 (ur = w2) 2y + €A™ (ur = u2) By
<oy - 92||L2 T4) [div (u1 — U2)||L2(1rd)
< € (181172 0y + 122}k ) 181 — 2o |9 — w2)] g3
< CO)la1 — B2 ey + IV (1 = u9) sy
Hence, choosing 1 small enough we get
lur = ugl|poe om0y < ClJA™ (ur — u2)|| Lo 0,7;12)

< Cller — o2l =022
< Cllor — o2l Lo 0,727

Moreover, o1 — 0o satisfy
(01 — 02) +6(0] — 05) — 8A(01 — 02) = —div (011 — 02us) (3.17)

with
(01— 02)},_, = 0.
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Let us now estimate |01 — 02|z (0,7;1r)- First, we write div (o1u1 — o2u2) as
div (o1u1 — 02u2) = w1 V(01 — 02) + Voo (u; — ug) + divug (01 — 02) + 02(divuy — divug).

Then, multiplying (3.17) by plo1 — 02/P~2(01 — 02) and integrating, we obtain
i/lm - @2!pd$+5p/ o1 — 02" (e} — &5)(e1 — o) dz
== 0pp=1) [ o1 — 2PV (er - ) o
-(p-1) / lo1 — 02/Pdiv uida
- /(VQ2(U1 — ug) + g2(divur — divug))|o1 — 02" (01 — 02)dz,

In consequence, as (Q'f - Qg)(gl — 02) > 0, we obtain

d
G [1er = ede < 0= Dllwslhor ooy [ 1o~ e
p—1
Flleallwrozall = wallwro s ller — e2lyin.
Therefore from Gronwall’s lemma
|01 — 02|l Lo (0,7;10) < Cllur — w2l Loo 0,110,
where C' depends on T, |[u1|1(o,7;w1.00) and ||o2|2(0,7;w1.0)- In particular,
o1 — o2llLe(0,1;227) < Cllur — w2l poo 0,100y < Cll01 = 02|l oo (0,7:27)

Estimates for the fixed points. To complete the proof of the Proposition, we need
to check if the points satisfying 0 = s® (o) are bounded in L*(0,7; L*) for any s € [0,1].
Throughout the proof we will denote by C' various constants independent on s. If s = 0, the
claim is trivial. For s > 0, we have

1 1 ) 1
—0ro + —div (ou) + ?Qﬁ = —-0Ap
s s s s

and
—div (po(|Du|)Du) — Au — V(1 4+ A(div u))divu + eA%"u + Vo = 0.

Multiplying the momentum equation by u and integrating, we obtain analogously as for the
a priori estimates

T T
1
/ /|Vu|2 dmdt—ke/ /]Amu\2 dedt + sup —— [ o7 dz
0 0 tejo, 7)Y — 1

o v T T
+ B—l/ /g5+7_1dajdt+57/ /|Vg|297_2dxdt§ /andx < C.
s vy—1Jo 0 ;

Repeating the estimate from Proposition 3.7, we get again

ol oo (0,7;227) < ||Qo,sHLoo(qrd)euu”“((”“wl’w) <C.
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In consequence, the assumptions of Theorem 3.4 are satisfied and there exists at least one
solution to (3.12) on [0, 7] x T¢ for arbitrary 7' > 0.

3.4 Compactness

We will now prove that we can pass to the limit with §,& — 0 to obtain the solutions to
system (3.6). First, we will pass to the limit with € — 0 and then we improve the estimates
on o uniform in § and perform the second limit passage. Below, by f we will denote the weak
limit of a sequence f,.

3.4.1 Limit passage with ¢ — 0

Let (05, use) be a solution to (3.12). We have the following estimates uniform in e:

2
||u5,a||%2(o,T;W1,2) + HQ&EHZOO(U’T;LW) + 5||V9577{5 H%?((O,T)x'ﬂ‘d)

+8-1 2
+ 6”Q5,€||ZW+671((07T)XT¢1) + 5”vQ575||L2((0,T)><Td) <C.
In particular, at least up to a subsequence,

use — us in  L*(0,T; Wh?).

B

Moreover, as the lower bounds on S provide 8+ v — 1 > 2+, we know that

10§ Nl 20,1y x5 1086 Us el Lo ((0,7) x Tty < C(0)

for some suitable p < 2. In consequence,

||v96,5

lL2((0,m)x14)s 106l o ((0.1)xTd)s 110406l oo, rsw—10) < C(6).

Therefore from the Aubin-Lions lemma g5, — 05 in LP((0,7") x T%), (at least up to a subse-

quence). Then we also have Q} . gg and Q? . Q? in suitable L? spaces. In consequence,
we are able to pass to the limit in the continuity equation. For the momentum equation, note
that the regularizing term satisfies
1/2

e 2| A™us e 2o,y xray < C

and thus in the weak formulation
T
5/ /Amu&E - A"™¢ daxdt — 0
0

for ¢ € C3°((0,T) x T). Therefore in the weak formulation we obtain

T e —
/ /,uo(|Du5)]DU5 : Dy + Vus : Vo
0

+ div usdiv ¢ 4+ A(div ugs)div usdiv o — g} div ¢ dadt = 0.
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Testing by us, we get

T e —
/ /Mo(|DU5)DU5 : Dus + |Vug|?
0
+ (divug)? + A(div ug)div usdiv us — o)divus dedt = 0. (3.18)

On the other hand, testing first the momentum equation in (3.12), by us., we get

T
| [ s hbus. + Vs,
0
+ (div U&E)Q + A(|div ug ¢ |) (div uag)2 — o) divues dedt =0

and thus passing to the limit with € we get

T
/ / po(|Dug|) [Dus|? + A(div ugs) (div ug)2dadt
0

T T
+ lim i(I)lf/ / (Vs |* + (div ug . )2dadt — / /Q}div udzdt < 0. (3.19)
E—r 0 0
From the monotonicity assumptions on pg, we know that
(o(/Dus ) Duse — po(|Dus|)Dus) : (Duge — Dug) > 0.

Therefore passing to the limit with ¢ — 0 and using weak convergence of Dus ., we get

po(|Dug|) | Dugs|? > po(|Dug|)Dug : Dug. (3.20)

Analogously, for A we have

A(|div us|)(divug)? > A(|div us|)div usdiv us. (3.21)

Therefore substracting (3.18) from (3.19) and using weak lower semicontinuity of the norm,
we obtain the convergence Vus. — Vus in L?((0,T) x T%), which allows us to pass to the
limit in the remaining nonlinear terms.

3.4.2 Limit passage with § — 0
Now, let (gs,us) be the function obtained in the previous section, solving

o1 + div (ou) + 80° = 6Ap,

. o (3.22)
—div ((po(|Du|) + 1)Du) — V(A(divu)divu) + Vo7 = 0.

Note that repeating the calculations from Section 3.2, we get the estimate

12div us — 04 || Lo 0,7;:BM0) < C.

Moreover, using the uniform estimates on ||us|| 20, 7;w1.2) and || 05| e (0,7;2+), we will improve
the integrability of gs uniformly in 4.

Let p > 1 and let T € C*°([0,00)) be the truncation operator, namely Tj(z) = z for
z <k, Ty(z) = k+1for z > 2k, T)(z) > 0 as well as Ty(z)  z as k — co. We define the

function Py(p) as
2Ty ()P
Pio) = e [ P 0
0 z
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The choice of P; is motivated by the fact that

0P (o) — Pr(0) = Ti(0).

One can also observe that Py(0) Zﬁgp as k — oo.
Testing the continuity equation in (3.22) by P, (p), we get

d Ti(05)P~1T!
4 Pu(os) dx+5/< )+p k(Q&)Q k(Qa)sz) e
5

. / Ty (05)Pdiv u dz. (3.23)
Now, let us test the momentum equation by the function

¥ = ATV (Tr(os) — {Ti(06)"}) -

T
/ /Q}Tk(ga)p dzdt
0

<Cllpo(|Dus)Dus| o 0,7y <1y [Vl 112 (0.7)xT4)

+ A div us ) div us| Lo o) xry [V 1r 2 (OT)xT4)

We have

T
+ 2/ /Tk(g5)pdiv ug dxdt
0
T
+ CHQtSHLOO(O,T;LW) / /Tk(gg)pdxdt
0
T
SCHTk(Q&)HZzMW((O T)xTd) + 2/ /Tk(gg)pdiv ug dxdt.
’ 0

Then by Cauchy inequality,

/ / 3 Ti(08)Pdz < | Ti(es) 1737 (0 rymy + C 1 +2/ /Tk 0s)"div usda.

As Ti(0)P™7 < 07Tk (0)?, for sufficiently small n we get

T T
/ /Q}Tk(g(g)pdxdt — 2/ /Tk(gg)pdiv usdz < C.
0 0

Therefore using (3.23), we get

T
| [ atitesrasat+ s [ Piest
0 t€(0,7]

T p=1p
waf <Q§P,;<@5>+p ’“(@5)96 ’“(’”)wm?) dz < CO(T,p).

Since Py(0s5) I%gp, we pass to the limit with £ — oo using monotone convergence theorem
and in consequence we get

||Q(5||L°°(O,T;Lp) < C(Tap) for any p < o0.
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Having that estimate, we are ready to pass to the limit with § — 0.
From the estimates uniform in §, we know that in particular

us —u in L0, T; Wh?),
os = 0 in L%(0,T;L7),
of =" 07 in L*>(0,T;LP)

and

po(Dug)Dug, A(divus)divus —* po(|Dul)Du, A(divu)dive in  L2((0,T) x TY).

Moreover, [|2divu — o7/ ;Bmm0) < C. Note that from the continuity equation it also
follows that o5 — o in C([0,T]; W~1") for a suitable r, and in consequence pti = pu. Having
the above estimates and testing the continuity equation by os, we also obtain

51/2”v05HL2((07T)><Td) <C.

Then for ¢ € C§°((0,T) x T¢), together with the estimate on 05l o< (0,717

T
5/ /(gf¢+V@g.V¢)dxdt—>0 with 6 — 0.
0

In consequence, (p,u) satisfies the continuity equation in (3.6) in the renormalized sense.
Next, we will pass to the limit in the momentum equation and apply an argument from

[45]. Passing to the limit in the weak formulation, we get for any ¢ € C5°((0,T) x T?) and

t<T

bt -
/ /uo(\DuD]D)u 1D+ Vu : Vo + divu div ¢ + A(divu)divu div ¢ dzds
0
t
= / /éﬂdivd) dzds. (3.24)
0

The regularity of u allows us to put ¢ = v in (3.24) and then

¢ -
/ /uo(HD)u])]D)u : Du + | Vul? + (divu)? + Mdiv u)div e divu dzds
0

t
—/ /mdivudxds. (3.25)
0

On the other hand, the solutions to approximate equation (3.22) satisfy

¢ t
/ /uo(\ﬂ)u(;])UD)qudxds +/ /\Vu(;Z + (div ug)? + M(div ug)(div ug)? dzds
0 0

1 1
+ ﬁ Q:;Y(t, )dl’ < H/Qg,gdl‘. (326)

Analogously as in the previous limit passage, by taking liminfs_,q in the energy inequality
(3.26), we obtain
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t t
/ /u0(|]Du|)|]D)u]2+)\(divu)(divu)Q dmds—Hi]gni(l)lf/ /|VU52+(divu5)2 dzds
0 -0 Jo
+L 'y( )d <L 7d
p— 0 x p— oldz.

Using again the monotonicity of po(|Du|)Du and A(|divu|)divu, by virtue of (3.20) and
(3.21) we obtain

t
/ /u0(|]D)u|)ID>u :Du + |Vaul? + (divu)? + A(divu)dive divu dzds
0
+7 o(t,- dx</ gdz.  (3.27)

Comparing (3.27) with (3.25), we get

1 — 1 L
— [ 07(t,- dx—/gﬂY dr < —/ /QVdivu dzds.
oot ) eIl e 0

We would like to estimate [ o7(t,-) — o7(t,-)dz. As we already know that o satisfies the

continuity equation in the renormalized sense, we have

— [t da:—/ dz = — // Tdivu dads. (3.28)

1

N1 (Q’Y( ) —0(t dJJ< // QV—Q dlvudxds

We now use the fact that 2divu — 97 € L*°(0,T; BMO) and the logarithmic inequality (B.1).
As 07 > 07 and g7, 07 € L>°(0,T; LP) for any p < oo, we have

_/Ot/ (@ - ¢")dive deds = — /Dt/ (@ - ) <divu - ;m> dzds
] e
_ /Ot/ (@ - o) (divu - ;m> dads
-l -er )

where C' depends on ||divu — 507 1 (0,7:5m0) and |[07 — 07| s (0,7, 14) for some ¢ > 2. Thus

Therefore

denoting y(t) = / (07 — 0”)dx, we have the inequality

<C’/ )(|Iny(s)|+1)ds with y(0) = 0.
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t
Let us now define z(t) = / y(s)(|Iny(s)| + 1)ds. Obviously z(0) = 0. Since the function

0
y — y(|Iny| + 1) is increasing, we have
7 =yt)(|Iny(t)|+1) < Cz(t)(|Inz(t)| +1).

Therefore by Osgood’s lemma z = 0 on [0,7] and in consequence y = 0 as well. From
this, as 07 > o7, it follows that in fact o7 = 7. Now taking again the limit in (3.26) and
subtracting (3.25), using o7 = 7 and (3.28) we get

¢
limsup/ / <|Vu5|2 - |Vu|2)d$ds <0.
0—0 0

Since

|Vus|? — |Vul* = |[Vus — Vul? + 2Vu : (Vus — Vu)
and Vus — Vu in L?((0,T) x T?), we conclude that

t
limsup/ /]Vu(; — Vul? dzdt <0
6—0 0

and thus Vu. — Vu in L2((0,T) x T?). Therefore (for possibly another subsequence) the
sequence of velocities converges also a.e. In consequence, by virtue of the Lebesgue dominated

convergence theorem,
po(|Duf)Du = po(|Du|)Du

and
A(divw)divu = A(divu)divu,

and thus (g, u) satisfies the weak formulation of the system (3.6), which finishes the proof of
Theorem 3.2.
Let us finish by the following remark concerning singular viscosities:

Remark 3.9. The assumptions on g and A and the used method allows the situation when
the viscosities are singular at 0, e.g. po = MITIUI' Note, however, that in this case, while passing
to the limit in the weak formulation, the term

Du

— : Vedz

Duf =7
is well defined by the values of Du provided |Du| > 0. For |Du| = 0 it is just defined as the
corresponding limit, which is not necessarily equal to zero if |Dul is so, cf. e.g. [62] in a similar
context. On can also define the limit stress tensor via the relation

D
S=Dut — if |Du|#0,
Dy

S| <1 if Du=0.

Such formulation was used before in the context of incompressible Hershel-Bulkley fluids, see
e.g. |42, 68].
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Chapter 4

An attraction-repulsion system in the
framework of compressible viscous
flows

We analyze the pressureless Navier-Stokes system with nonlocal attraction—repulsion forces.
Such systems appear in the context of models of collective behavior. We prove the existence
of weak solutions on the whole space R? in the case of density-dependent degenerate viscosity,
where for the nonlocal term it is assumed that the interaction kernel has the quadratic growth
at infinity and almost quadratic singularity at zero. Under these assumptions, we derive the
analog of the Bresch—Desjardins and Mellet—Vasseur estimates for the nonlocal system. In
particular, we are able to adapt the approach of Vasseur and Yu [106, 105] to construct a
weak solution. This part of the thesis so far remains unpublished, as the article is still in
preparation.

4.1 Introduction

Hydrodynamic equations with nonlocal forces often arise from the modelling of collective
behaviour. The applications of these types of systems involve in particular flocking and
swarming phenomena, appearing in many animal species and bacteria (see e. g. [60, 87]). On
the microscopic scale, the model consists of NV agents, which in some way align their position
and velocity in relation to others. On the macroscopic scale, assuming the number of agents
is very large, by passing with N — oo one derives the system of partial differential equations
on the macroscopic density ¢ and the macroscopic velocity u. The main difference between
the classical hydrodynamical equations and the systems arising as the limit of the collective
agent-based systems is the presence of the nonlocal interactions. This is due to the fact that
on the microscopic level, the velocity of the particular agent depends on the position of others.
In the continuous model, this corresponds to a nonlocal pressure-like term in the momentum
equation. The examples of the above mathematical models and performing the limit from
discrete to continuous systems one can be found in [26, 17, 33], see also references therein.

The goal of this chapter is to construct a weak solution to the pressureless degenerate
Navier-Stokes system

0o+ div (ou) =0

. . in [0,7] x R?, (4.1)
O (ou) + div (ou ® u) — pdiv (eDu) + oV (K % 0) =0

where o: [0, 7] x R® — R, is the density of the particles and u: [0, T] x R3 — R? its velocity.
The term oV (K * o) corresponds to the attractive-repulsive forces, coming from the collective
nature of the model. Roughly speaking, it corresponds to the situation where the particular
agents want to keep relatively close to each other, but at the same time avoid collision. More
precisely, VK consists of two parts: the first forces the particles to keep some small distance,
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and the second controls its spread in the whole space. We consider the kernel K in the form

C1

||

K(z) = —=+ f\ %, (4.2)

where a € (0,2), ¢1,c2 > 0. Note that we can express the singular part in terms of the Riesz
potential

L(f)(x) = (=A) "2 f(x) = 1/]1{ &dy, Z _W3/225 (%)

3 ‘1’ — ‘3_5

for s = 3 — a. That way
1 -

It is also worth to point out that the special case a = 1 covers the Newtonian potential and
then equation (4.1) becomes the Navier-Stokes-Poisson system. For simplicity, since it does
not affect our result we put g =c; =cp = 1in (4.1) and (4.2).

In recent years, different types of equations with nonlocal interactions were considered.
In case of the potential proportional to |z|~% for a € (0,d), stationary solutions and their
stability were thoroughly studied for example in [19, 20, 28]. In [27] it was shown that the
nonlocal Fuler system admits infinitely many weak solutions. Concerning the existence of
weak solutions, in [24] the authors proved the existence of weak solutions to the compress-
ible Navier-Stokes system with damping, when the nonlocal term is sufficiently integrable.
The existence of weak solutions for Navier-Stokes-Poisson system on the torus in the same,
degenerate setting as equation (4.1), was shown in [109].

The equation (4.1) is a special case of the system, where the viscous stress tensor depends
on the density. In general such models have the form

or + div (ou) =0,

O(ou) + div (pu ®@ u) — div (u(@)Du) — V(A(0)divu) + VP = 0. (4.3)

In two dimensions, equation (4.3) with = o, A = 0 is used to describe shallow water flow.
When 1(0) = 0 the system is degenerate, in the sense that the stress tensor does not provide
us the typical L? integrability of the velocity gradient. An important tool to deal with this
problem is then the Bresch-Desjardins inequality, first established in [6]. It allows to show
that when p and X satisfy the compatibility condition A\(g¢) = op'(0) — p(0), then testing
the momentum equation by a certain function depending on p, one can get the estimate on
V(o) in L>=(0,T; L?) for some ¢ depending on  (in the case u = o, A = 0, the suitable test
function is Vlog ¢ and one gets the estimate on V,/p). With that information at hand, the
authors constructed weak solutions with the additional regularizing terms in the momentum
equation in |7, 9]. Another interesting result, involving density-dependent viscosity, concerns
the existence of weak solutions for quantum fluids, analysed for example in [58]. To construct
weak solutions to the degenerate Navier-Stokes system (4.3) one needs another inequality,
first used by Mellet and Vasseur in [75]. Tt provides the L°°(0,T; L) estimate on the quantity
olu?In(1 + |u|?), which in consequence allows to derive compactness in L? of ,/gu (and in
turn proves stability of solutions). Using this idea, Vasseur and Yu presented full, rigorous
construction of global weak solutions to (4.3) with = ¢, A = 0 in [106, 105]. Independently
at the same time, using a different approximation scheme, the existence of weak solutions
to (4.3) was also shown for pu ~ ¢ in [64]. The case of more general viscosities was also
covered in [13|, where the authors showed the existence of renormalized solutions, following
the definition from [61].
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An important feature of the density-dependent viscosity case and the Bresch-Desjardins
inequality is that it allows to derive a priori estimates for the density without the use of
the pressure term. In the classical theory of weak solutions to Navier-Stokes equations with
constant viscosities, developed by Lions [67] and Feireis] [48], the construction of solutions is
possible when P ~ o7 for v > 3/2. Without the pressure term, or with too low value of ~,
the density is not integrable enough to show the compactness of the approximating sequence.
In the density-dependent viscosity case, by virtue of the Bresch-Desjardins inequality, we
get the estimate on the gradient of the density, and then compactness follows straight from
the Aubin-Lions lemma. The lack of pressure term is natural in the case of systems derived
from the models of collective behaviour, since they describe the interactions of different nature
than gases. The pressureless systems were obtained as a mean-field limit from the agent-based
model for example in [51] in the presence of the nonlocal alignment forces. The Euler-Poisson
system with quadratic confinement was also recently considered in a spherically symmetric
multi-dimensional setting by Carrillo and Shu [22] and we refer to this paper for up to date
overview of results on that system in the context of continuous collective behaviour models.
In the context of our work, particularly interesting results were obtained even earlier in the
one-dimensional setting [23| and [25], where similar form of the nonlocal kernel was consid-
ered. In [23] the authors analysed the asymptotics and critical thresholds for pressureless
Euler system, whereas in [25] they showed that these solutions can be approximated by the
solutions of the corresponding Navier-Stokes type system with degenerate viscosity. In higher
dimensions without symmetry assumptions little is known about weak solutions to pressure-
less systems. In [54], a multidimensional version of result by Haspot and Zatorska [55] was
proved, demonstrating that pressureless limit of (4.3) leads to the porous medium equation
for "well prepared" data. However, according to our knowledge there are no corresponding
results concerning the nonlocal systems.

4.1.1 The main result

We supplement problem (4.1) with the initial data

Q(O,J?) = QO(x)a (Qu)((),il)) = mo(.%'), (44)
and we assume that
0 >0, /oo € H(R?). (4.5)
Moreover, for F' defined as
1 2
P(z) = —In(1 4+ 22), (4.6)
we assume that
[ ooFubde+ [ Pz =)oty dedy < o (4.7
R3 R3xR3

where we define up = 72 on the set {z € R3 : go(x) > 0}. In particular, since 22 < F(z) for
large z, from (4.7) it follows that

1 1
[yl e [[ S yPa@e) dody < .
R3 R3 xR3

Before we formulate the main result, let us precise what we mean by a weak solution in
this case:
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Definition 4.1. We say that (o,u) is a weak solution to (4.1) on [0,T] x R with initial

conditions (09, mo), if
0 € L®(0,T; LY,

Vo € L=(0,T; HY),
Vou € L=(0,T; L?),
oDu € L?(0,T; W11,

T
/ // & — ylo(t, 2)o(t, y) da dy < oo,
0 R3 xR3

and for each p € C§°([0,T) x R R) and ¢ € C§°([0,T) x R3;R?) we have

T T
—/ / 00rp dzdt — / / Vovou- Vo drdt = / 00p(0,-) dx
0 JR3 0 JR3 R3

and
T T
~ s mo(0, ) do — /0 /R3 V o/ oudyp dz dlt—/0 /]1%3(\/Eu ® /ou) : Vi de dt

T
@0+ [ [ oV o) o=

where we define

T T
(oDu, V1)) := —/O/R3 ou - (AY + Vdiv) dxdt—Z/O /R3(V\@® Vou) : Vi dedt

Remark 4.2. Note that in the sense of Definition 4.1, the velocity itself is not defined on the
set where o = 0. Because of that, we operate with the variable /ou instead, and u is defined

only via u(t,z) = % for (t,z) such that o(t,x) # 0. In particular the gradient Du is

not well defined as well. Because of that, we denote the stress tensor by gDu instead, which
is defined using the relation

oDu = D(pu) — Vo u
= D(ou) — 2V/0o ® \/ou.

To avoid unnecessary complications of the notation, later on we will drop the bars and just
write pDu, keeping in mind the above definition.

Under these assumptions, our main result states:

Theorem 4.3. Let (09, mo) satisfy (4.5-4.7). Then there exists a global in time weak solution
(0,u) to (4.1), satisfying

1. the energy estimate

1 & 1
sup / Q\u|2 + o(K * ) dx—i—/ / Q\]D)u|2 dzdt < 2/ Q0|uo\2+ 00(K * 0p) d,
R3 o Jrs R3

>0 2
(4.8)
2. the Bresch-Desjardins estimate
T
sup / |V\/o|? dz + / / o|Vu — VTu|? dzdt < C(T), (4.9)
te[0,T] JR3 0 JR3
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where C(T) — 0o as T — oo,

3. the Meller-Vasseur estimate

sup [ oP(ul)dot sup [[ Pl yhatt.oelt,y) dedy <€), (4.10)
te[0,T] JR3 te[0,T] J JR3xR3

with C(T') — 00 as T — oo as well.

Below, we explain the overall strategy of the proof and discuss the main difficulties. The
starting point is to find a solution to a certain approximation of (4.1). In this construction,
we follow the approach of Vasseur and Yu from [106]. It is a multi-level construction with
many approximation parameters regularising the solutions. Additionally, we need to restrict
the problem to the torus T3 ~ [—L, L]* and modify the interaction kernel to K, = K¢r,
for a suitable cut-off function ¢r. The final step of the construction is the expansion of the
torus to the whole space and recovery of the solution to the original system (4.1) with (4.2).
Similar approach to derive solutions on the whole space was proposed for the system (4.3) by
Li and Xin in [64], and for quantum isothermal fluids by Carles, Carapatoso and Hillairet in
[21]. Our approximate system reads as follows

Oro + div (pu) = €Ap,

9 (ou) + div (ou ® u) — div (oDu) + oV (K, * 0) (4.11)

A
= —rou — r10lul’u + KoV <\/\§> —eVo-Vu—vA?u+nVoe b +50VA3p.

The outline of the paper follows the consecutive steps of the proof of Theorem 4.3, de-
scribed below:

1. Construction of the solution to the approximated system (4.11) on (0,T) x T3 via the
Galerkin method and and the Schauder fixed point theorem. At this point, the artificial
viscosity eAp in the continuity equation allows us to apply classical approach for the
construction.

2. Derivation of the approximate version of the Bresch-Desjardins inequality (4.9). To this
purpose, one needs to test the momentum equation by Vlog . The terms nVo~% and
50V A3p provide that the density is strictly positive and that V log p is sufficiently reg-
ular in space. On the other hand, the parameter v allows to differentiate the continuity
equation and to deduce that Vlog g is also sufficiently regular in time to be used as a
test function.

3. Passage to the limit with e, v, and 6. Having derived the estimate (4.9), the improved
regularity of g allows to pass to the limit with consecutive regularizing parameters. The
proof of Theorem 4.3 up to this point is pretty standard, and is only sketched in Sections
4.3.5-4.3.6.

4. Derivation of the approximate Meller-Vasseur inequality (4.10), uniformly with the size
of the torus. This is the key step of the proof. We employ the approximating procedure
introduced in [105], however due to the presence of nonlocal terms, we need different
arguments to close the estimates. The estimate is derived by renormalization of the
momentum equation. The overall idea lays in using F’(|u!)ﬁ = (1+In(1+ u/?)u as a
test function for the momentum equation. However, due to the lack of differentiability
of u and the growth of F, this function does not belong to L?(0,7; W'2) and thus is
not an admissible test function. Because of that, we introduce suitable approximation

of F, and in place of u we put v = ¢, (0)$°(0)u, where ¢y, and ¢, cut off the density
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at zero and infinity respectively. Then, passing with m and k to oo, we derive the
desired estimate in the limit. Bounding together the parameters x and k, by deriving
the estimate we simultaneously pass to the limit with s as well.

The biggest challenge here is to deal with the attractive part of the kernel K, since on
the whole space it is not integrable with any power. Because of that we are not able
to follow the arguments from [105]. Instead, we apply the weak version of Gronwall’s
lemma and use generalized Young inequality for convex functions.

. Passage to the limit with r¢ and rq, contained in Section 4.5. This is the final limit

passage on the torus. The main issue is that although the density-dependent viscous
stress tensor provides extra regularity for the density (via the Bresch-Desjardins esti-
mate), it gives no information on wu itself on the set where p = 0. Without the extra
friction terms, we end up with very little regularity of the velocity. However, having
the estimate (4.10), following the arguments from [75] we are able to show strong con-
vergence of /ou, which combined with compactness properties of the density allows to
still perform the limit passage.

. Expansion of the torus. In the previous steps we needed to restrict our domain to the

torus ’]1‘% ~ [=L,L]3. The last part of the proof is to pass to the limit with L — oo and
in consequence to obtain the solutions on the whole space R?. The previously derived
estimates are uniform in L and thus allow to extend our solution. During this limit
passage we also lose the compactness of the nonlocal term. Nonetheless, the energy
inequality provides the estimate on a double second moment

//]RS R3 o = y|2@(t7$)@(ta y) dzdy,
X

which allows to control the behaviour of the density far from the origin, and in conse-
quence pass to the limit in the nonlocal term as well.

For the reader’s convenience, Table 4.1 contains a list with all parameters, together with
its short descriptions.

4.2 Convergence lemmas

Before we start the proof of Theorem 4.3, let us present useful convergence lemmas, which
will be used repeatedly in Sections 4.3 and 4.4.

Lemma 4.4. Assume the sequence of functions (on,un) defined on [0,T) x T3 satisfies

HathHL?(o,T;LG/S) + Hat(gnun)HL?(O,T;H*"L) <C

for some m > 1,

T
Sup/ Qn\un\deJr/ / 0n|Vu,|? dzdt
t€(0,7] /T3 0o JT3

and

T T
+/ / |un | dxdt+/ / onlun|t dzdt < C, (4.12)
0 JT3 0o JT3

Ivonl Lo 0,11y < C (4.13)
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€ Necessary to construct the approximate solution by the Faedo-Galerkin approxi-
mation

v Provides that 0,V log o € L?(0,T; L?), which is needed for derivation of the Bresch-
Desjardins estimate

7,0 Provide that % is bounded and that Vlog o € L?(0,T; H?), i.e. is a suitable test
function (together with time regularity)

K Provides that /o € L?(0,T; H?) and Vol/t e L*(0,T; L*), which is necessary for
successful renormalization of the momentum equation

ro, 71 | Provide improved integrability of u; combined with estimates coming from x enable
to renormalize the momentum equation

m, k| The cutoff function ¢3, (o) cuts the area when ¢ < X and ¢7°(p) when o > k. They
appear in the proof of the Mellet-Vasseur inequality and are the additional levels
of approximation needed for renormalization of the momentum equation

L indicates the size of the torus. By taking L. — oo, we obtain the solution on the
whole space

TABLE 4.1: "Cheat sheet" describing the parameters appearing in the paper

uniformly in n. Then up to a subsequence

and

Ven = e in L*0,TiH'),
u, = u in L*(0,T;L%)

on— o0 in C(0,T;L%?),
ontt, — ou in  L*(0,T; L3/2).

Moreover, if additionally O;\/0, is bounded in L*(0,T; L?) and

then

and

T
//Qn|V210an|2d$dt§C,
0o J13

Von =0 in L*(0,T; H?)

Von — o in L*0,T;H').

Proof. The weak convergence of /g, and u,, follows straight from the Banach-Alaoglu The-
orem. To prove strong convergence, we use the Aubin-Lions lemma. Note that

Von = 2y/on Vi/0n

and therefore

IVonll oo o, 08r2) < IV 0nll Lo 0.1;26) IV Vonl Lo o.102) < €

by (4.13) and the Sobolev embedding. Therefore from the Aubin-Lions-Simon lemma (see

e.g. [94])

On — 0 In C’(O,T;L3/2).
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Since
V(Qnun) = in @ Up + anun
= 29£/4v\/ On ® Q£/4u7’l + v Onv 0n Vi,
we have
\V4 <C 1/4 \V. 1/4
| (Qnun)HL2(o,T;L6/5) > HQnHLoo(QT;Ls)” @“LW(O,T;LQ)‘|Qn UnHL4(0,T;L4)
+ Cllv/enll e 0,r;26) v/ onVunl L20,1,12) < C-

Moreover,

HQnun”Loo(o,T;L3/2) < ||\/QnHL°<>(0,T;L6)H\/QnunHLw(o,T;LZ) <C

and thus again from the Aubin-Lions lemma

Ontn — ou in  L*(0,T; L3/2).

For the second part of the lemma, the estimate on o,|V?log g,|? in particular yields

IVenllL20,mm2) + ||VQ117,/4HL4(0,T;L4) <C.

This is the consequence of the following Proposition, proved in [58]:

Proposition 4.5. For smooth o, we have
1
/ 0|V?log o|*dx > / \VQ\/§|2dx
) 7Ty

and )
/ 0| V% log o|*dz > / |V ol/4|*du.
T3 8 Jr3

L

Thus, having the L2(0,T; H?) bound on ,/0,, again by Aubin-Lions lemma

Von = /e in L*0,T;HY).
O

Lemma 4.6 (Limit in the nonlinear damping). If /o, — /0 in L*(0,T; HY), opu, — ou in
L%(0,T; L3?) and u, — u in L*(0,T; L?), and additionally

T
/ / On|tin|*dadt < C
o Jr3

Onltn|?tn — olul?u in  LY(0,T;LY).

uniformly in n, then

Proof. First, note that grl/ Y — o'/*u in L*(0,T; L*). Therefore, from the lower semiconti-

nuity of the norm and Fatou’s lemma,

T T T
/ / olu[*dzdt < / / lim inf o, [u, [*dzdt < lim inf/ / On |t *dzdt < C.

From the strong convergence of ,/p, and g,u,, we know that

on(t,z) = o(t,x) and (opun)(t,x) — (ou)(t,z) a.e.,
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up to a subsequence. Therefore, for almost every (t,x) such that o,(t,z) 4 0, we have

OnUn
On

Up =

For the points where g, — 0, we write
on|Tar (un)|* < MPgp — 0 = o|Thy(u)]?,

where T); is the truncation operator defined as

’U,, |U| S M7
T (u) = Mﬁ’ | > M. (4.14)
u

Therefore from the dominated convergence theorem,
on|Tr (un) PTar (un) = o|Tag (w)|*Tar(w) in LY(0,T;LY)

for any fixed M > 0. Moreover, we have

T T
/ / Qn‘un‘Qun — Q\u|2u‘dxdt S/ /
0 JTj o Jr
T “
+2/ / Qn|un|3]l\un|>jvjdl‘dt
o JT8
g 3
+2/ / Q‘U| ]l\u\>]V[d$dt
0 T%
T
</ )
0 Ti

2 [T 4 2 (T 4
+ — Onun| dzdt + — olul*dzdt.
M Jo Jr3 M Jo Jr3

On|tn|*un — Q!u|2u‘dxdt <

Qn’TM(Un) ‘QTM(U’TL) - Q’TM(U) ’2TM(U) dzdt

Qn|un|2un]l|un|§M - Q‘u|2UH\u\§M‘dxdt

Therefore
<
v

T
limsup/ /
n—o0 0 T?i

Letting M — o0, we obtain the desired convergence. O

4.3 Fundamental level of approximation

The aim of this section is first to construct the solution (¢r,ur) to system (4.11) on the
torus T?i ~ [~L, L]3, and then pass to the limit with &,v,8,17 — 0. The construction is done
by means of the Galerkin approximation and the fixed point theorem. To perform the limit
passages, we use the auxillary lemmas from Section 4.2.

4.3.1 Truncation to periodic domain

We begin by modification of kernel K in a way that allows K % ¢ to be well-defined on the
torus.
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Let ¢, > 0 be a radial, decreasing cut-off function such that supp ¢ C B(0,L), ¢r(x) =1
for |z| < % and

C C
Vor| < T |Agr| < Iz (4.15)

Then we simply put
K; =Koy

In a similar way we prepare the initial conditions. We put

V00,1 = /009L;

where ¢y, is defined above, then periodize. In consequence we obtain the initial condition on
the torus T3, satisfying:

Lemma 4.7. The function /00,1, satisfies the following properties:

C 1/2
IV Veozlizzes) < IVv@lli@s) + 7 lleollifgs):

/ /  oon(@)e0n@)KL(z — y) dady < / / 00(z) 00 () K ( — 1) dady
TS xT%

R3 xR3

and
oo, — 00 in  LY(RY).

Proof. The proof follows straight from the definition of gg 1. First, we have
Vy/eoL = Voopr +eoVor

and thus

C 1/2
IV vzl < IV Vallzams) + 7 lleol; s

The next estimate follows immediately, since
. @K - 56 @3 o - ) dedy
TS xT%

< //RMR3 00(z)0o(y) K (7 — y) dzdy

by integrating over a larger domain and estimating ¢, by 1.
The convergence in L' follows immediately from the dominated convergence theorem,
since ¢5, — 1 pointwise. O

With the definition of gg 1,, we can also define properly the initial conditions on u. Defining
uo,r(x) =0 for gor(x)=0; wugr(r)=up(r) otherwise,

we can periodize it in the same way as 9q 1, and moreover

/ 00.1|uo L|* dz S/ o0|uo|* dz.
T3 R3

L
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The full approximated system on the torus is then given by (4.11) and it is supplemented
with the initial condition:

- 1
U),_o = U0L, O],_y = 00:= Q0L *& + —, (4.16)
my

where my > 0, &5 is the standard mollifier on the torus, and we choose ¢ depending on § such

that 5||VA@0H22(T3) —0asd—0.
L

4.3.2 The Galerkin method

We solve the system (4.11) using the Galerkin approximation. We present here only a sketch
of the construction, and for the details we refer to the paper of Vasseur and Yu [106] and the
book of Feireisl [44]. Let (e;);en be a suitable basis of HZ(T%) and set Xy = {e1,...,en}.

We put
N

un(t,z) =Y Ni(t)ei().

i=1
Moreover, let S: C(0,T; Xy) — C(0,T;C*) be such that ¢ = S(u) solves
ot +div (ou) — eAp =0, 9),—o = 00-

Then, we construct the solution by applying the Schauder fixed point theorem for the operator

T
1S )] (1) (zm[@o] (u) + [ wS(uN),uN)(s)ds) 7

where M[o]: Xy — X} is given by

(M[o|u, w) = /1r3 ou-w dz

L

and

N(o,u) = —div (ou ® u) + div (oDu) — oV (K, * 0)

A
—rou — r1olul*u + KoV (\/\g?) —eVo-Vu—vA?u+nVo b +50VA3p.

As a result, we obtain a smooth solution (on,uy) on some interval [0, 7], corresponding

to initial conditions gy and
N

uo N = > (uo, ;).

=1
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4.3.3 Energy estimates

Testing the momentum equation of (4.11) by uy and using the approximate continuity equa-
tion, we get that the following equality is satisfied uniformly in N

d
E(QN,uN)+1// |AuN|2d:L‘—|—/ QN]]])uN]2dx+s5/ |A2pn|2dx
dt T} T} T}

2 _
—1-3577/ |VQN3|2dx—|-7“o/ |uN|2da:+r1/ on|un|tdz (4.17)
% T T

—i—/%/ QN\VzloggN\2dx+€/ V(KL % on) - Vondz = 0,
T} T3
where

1 1 _ K 1)
E(o,u) = / “olul + So(KL o) + 207 + = |V /a|%dz + = |VA[? ) da.
m \2 2 7 2 2

To deduce useful bounds from this equality, we extract certain estimates from the nonlocal
term e ng V(KL * on) - Vondz, which are a consequence of the following lemma:
L

Lemma 4.8. For a sufficiently smooth o, we have
/ V(KL *0)-Vodr > —Cllel7: s, (4.18)
T3 L

for some C > 0 not depending on L.
Proof. We will consider two cases, depending on «:

1. If < 1, note that
V(L x0)-Vodo=— [[ ooyt @~ y)dedy,
TS T% xT%

We have
A(K¢r) = AK¢r +2VK -Vor + KAgp,

Further note that A (3|z[?) = 3, and

1 1-— 1
A (a> = —%, for a<1 and A <> = —4néy for a=1.
|| || ||

Putting it all together, for a < 1 we get
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/11‘3 V(KL *0)-Vedx
—att=a) [ ataot) P oy

=3 [[, el@ot)ona oty
[ e ot by Voula - oy

- //T%w% o(z)o(y) [!«%’ _1y|a Ll _29’2} A (z — y)dzdy,
(4.19)

whereas if o = 1 the first term gets replaced by 47 / 0? dz. From the assumptions
T3
(4.15) on ¢r,, we have |¢pr| <1,

r—y

‘_O‘|x_y|a+2

1
+x —y' IVor(e =)l < Ol oy (W + 1> <C

and

1 |z —yl? 1
(w—y!a+ g )180re =l < Clygcpycny (Fare 1) < C

Applying these estimates to the last three terms in (4.19), we derive (4.18).

2. In the case a > 1, we use the fact that ]-"(li%) is positive, where by F we denote the

Fourier transform of f on R? or T% respectively, i. e.

F(f)E) = f(&) = / e T f(z) dz, E€R® or f(k) = /T e 2™ f(x) da, k € Z2.

3 3
R L

We have the following proposition:

Proposition 4.9. Let F € L} (R?) be positive, such that F(z) = f(|z|) with rf(r)
decreasing for > 0 and lim, o rf(r) = 0. Then F is positive.

Proof. Using spherical coordinates, we get

F({) = /000 /O27r /O7r efmg‘coseﬂf(r) sin § dfdedr = Tg /000 rf(r)sin(r||) dr,

and the integral [7°rf(r)sin(r|¢|) dr is convergent and positive from the assumptions
on rf(r). O

The positivity of Fourier transform allows us in turn to show the positivity of the integral
operator.

Proposition 4.10. If K is a radially symmetric kernel with support in [—L, L] and
positive Fourier transform, then for any sufficiently reqular function with period 2L we
have

/ f@) [ F@)K @ - y) dady > 0.
T3 R3
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Proof. The assertion follows straight from the identity
/Ta f@)g(x) dz = (f(=) #9)(0) = > F(f(—)*g)(k) = Y f(=k)g(k).
L
In our case, it translates to

L, 7@ [ @K@ =) dyde = 3 FRFU 10

kezd
=Y K-k fk) = 3 K®)IfR)? > 0.
kezd kezd

O
By virtue of Proposition 4.9 and the assumptions on ¢r, the kernel d’lé—‘((f) has positive
Fourier transform. Then in particular

or() _ . oL(z —y)
'JI‘3V v(, | Q) dl’— T%VQ( ) RSVQ<y) |I_y|a

dy dx > 0.

Dealing wht the quadratic part of Ky, in the same way as in the case o < 1, we end the
proof of Lemma 4.8.

O

Thanks to Lemma 4.8, we get from (4.17) the following energy estimate:

sup E(on,un +1// /3 |Aupy| dxdt—l—/ / on | Duy [*dzdt
T

t€[0,T]
—1—8(5/ / \AZQNQd:Udt—i—en/ / Vo' |2dx
o Jr3 3 " Jo

T T
—I-ro/ / |uN]2d:Udt+r1/ / o|un |*dzdt (4.20)
0 JT3 0 JT3

T
+/~$€/ / on|V?log o [*dzdt
o J13

< E(QO; UO) + CaTHQOH%1(T%)~

As the estimates in (4.20) are satisfied for any 7" < oo, we can extend the solution to the

whole interval [0, 7] for any T' < co. From (4.20) we also extract the estimates to pass to the
limit with N — oo. Note that it in particular provides us the estimates needed in Lemmas
4.4 and 4.6, where for the time regularity we get the bound for d;(onuy) in L2(0,T; H3)
straight from the momentum equation. For the estimate on J,on we further have

Oon = —ondivuy — Von - uny + Aoy
. 14 1/4
= —vonvondivuy —4VQ]\; QN/ un - v/oN +eAon,
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and therefore

10ton || 2(0,102) <IVoN!l Lo (o,r;200) [V ONVun] L2 0,7:12)
1/4
+ 4Hv91/4HL4(0,T;L4) ||Q]\/( UN”L4(0,T;L4) B, QNHLOO(O,T;LOO)
+ el Aonll 20,22
<C(6,ke,T1).
In consequence from Lemmmas 4.4 and 4.6 we have the following:
on =0 in L*0,T;HY),
von = e in L*(0,T; H?),

uy —u in  L*(0,T; L?)

and
on — o in C(0,T;L%?),

vV ON — \/E in L2(OaT7 H1)7
onun — ou in L*(0,T;L%?),
on|un|?uny — olul*u in  LY((0,T) x T%).

Moreover, the estimates on VApy and A2py, together with the time regularity, provide
that
oN — o in L*0,T;H®) and oy — o in L*0,T;H%).

To pass to the limit in the term an&G, we use the following version of the Sobolev
inequality:

Lemma 4.11. For o € H3(T3), o' € L%(T3), it holds
o™ zqzgy < OO+ lellssema )21+ o~ o) (4.21)

Proof. We have
1 2
V2t = —?VQQ + EV@ ® Vo.

Therefore
IV%0™ I 2emay < oMl zsra) IV el o) + QHVQH%oo(T%)HQiSHB(Ti)
< Clle™ oy lellscrs) + Cllelgscnyylle™ o
< O+ ol ogrs )21+ o lpocrs )P,
which ends the proof by Sobolev embedding. 0l

From (4.21) and (4.20), we get that

Since gy convergences strongly in C(0, T L3/ 2), it convergences almost everywhere up to a
subsequence. Therefore Q]_\,6 — 0% a. e. as well. Moreover, inequality (4.20) yields the

estimate on QJ_\,G in L>°(0,T; L) and L'(0,T; L?), hence by interpolation we have

—6
”QN ||L5/3(0,T;L5/3) <C.



60 Chapter 4. Attraction—repulsion system

In consequence,
oY =0 % in LY0,T;LY).

The limit passage in the remaining terms follows immediately from the weak and strong
convergences of g and upy in spaces. By the weak lower semicontinuity of convex functions,
the limit also satisfies the energy estimate

sup E(o,u —H// / \Au|2dxdt+/ / |Du2dmdt+€(5/ / |A%p2dadt
t€[0,T] T3
+E77/ / Vg3]2da:+ro/ / \u|2dxdt+r1/ / olu|*dzdt
0o JT3 0o JT3 0o JT3 (4.22)

T
—1—/%‘/ / 0|V?log o|*dzdt
0 JT%
< E(eo, uo) + CeT|ool[7 173

4.3.4 The Bresch-Desjardins estimates

Before we pass to the limit with the approximating parameters, we derive the so-called Bresch—
Desjardins inequality. To do that, we test the momentum equation by V log ¢ and combine
it with the energy inequality (4.22). In consequence, for

1
Epp(o,u) = / (29
T3

we obtain

2

1
u+ —Vo
0

1) K _
+ o(Kp % 0) + §|VAQ|2 + §|V\/§|2 + gg 6) dz

9 T T
sup Epp(e,u)+-n(1l+ 5)/ / Vo 32dadt 4 6(1 + ¢) / / |A%p2dzdt
3 0JT3 0J13

t€[0,T]
1 /7 T
+// Q|VU—VTu]2dxdt+u// | Aul?dzdt
4 0.JT3 0JT3

T T
—i—ro// |ul? dazdt+r1// olul* da dt
0 JT% 0 JT%

1 T
—i-,wf/ 0|V*log o|*dxdt
2 0.J18

LY !
—i—e// dxdt+/ V(Kp * ) - Vo dadt
oJrg @ 0T} (4.23)

<Epp(0o0,u0) + CgTHQOHil(Ti)

2
AQIVIOgQ!

T T
+ 5/ VoVuVlog ¢ dxdt + 8/ dxdt
T3

T
- 5/ / div (ou)— AQ dzdt — 1// Au - VAlog o dxdt
T T$

—rl// |u|2uVdedt—r0// i ng dt
T3 T

=Epp(00, uo) + C€T||QO||L1(T§) T Z R;.
=1
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The necessary calculations to derive (4.23) are performed in the Appendix C.1.
The terms R1—R4 go to 0 as ,v — 0. For Rs5, we have

T T
Rs =—1r / / lul?u - Vo dedt = ry / / odiv (Ju|*u) dzdt
0 JT 0 JT%

T T 1 (T
SC’rl// o|ul?|Vu| dzdt < Cr%// olul*dxdt + // 0| Vu|?dzdt.
0 JT3 0 J13 4 Jo Jm

T T T
1
// g\Vu]dedtS// g]Du\zdmdt—i-// o|Vu — VTu|? dzdt,
0J13 0J18 2 Jo Jr3

the last term is further estimated by

Since

1 (T
/ / Q’Vu— VTu|2 dxdt+E(g0,uo) +C€T||QO||%1(T3)-
8 0 Ti L
For Rg, we write
T . . T T
d —od A
R = —ro// iviow) —edivu 44 — ro/ ) loggdxdt—aro// 20 qzdt.
0.JT} e 0JT13 0oJr3 ©

Since ¢ is bounded in L>°(0,T; L'), defining

log 0, 0 > 1,
log; 0= 0,0<1

we have

o Sup / log, odx < C.
t€(0,7] J T3

For the second term of Rg, we get

T
A
aro// —de
0oJm3 0

which also tends to 0 as ¢ — 0.

< CTWOHQHLD@(O,T;H%||971HL0<>([0,T]xT12)7
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In consequence, using again Lemma 4.8, we get

Egp(o, U)—To/

T

L
9 T T
+77(1+5)// ]VQ_3|2d:cdt+5(1+s)// |A%p2dadt
3 0J13 0 JT3

1T T
+ = / / o|Vu — VTu\dedt + 1// / |Au|2d:cdt
8 Jo Jr3 0JT8

T T
—l—ro// |ul? dxdt—i—n// olul* dz dt (4.24)
0 JT3 0.JT3

1 T Apl?
—i—L +E)// Q\Vzlogglzdxdt—i—s/ 7’ 4 dz
2 0J18 ™ 0

3
L

log o dz
3

4 T
< Z R; + CT%/O /T3 olul*dxdt + CT&TOHQ”LOO(O,T;HZ)HQilHLOO([O,T]xT%)
=1 3

+ Ep(00,u0) — 7“0/

log 00 dz: + E(00,u0) + CT |00l 71 (s -
T3 L

L

4.3.5 Limit passage with v,e — 0

Now we pass to the limit with v,e — 0. Note that the inequality (4.24), together with the
energy estimate (4.22) provides us the estimates required in Lemmas 4.4-4.6 uniformly in e
and v, where the estimate on o|Vu|? comes from the estimate on the symmetric gradient
o/Du|? in (4.22) and the antisymmetric part o|Vu — VT u|? in (4.24).

For the terms depending on € and v, in the weak formulation of (4.11) we have

T
5/0 /11‘3 Voue - Vo dzdt < evel|Vouell 2o IVellr2or:2) — 0,
L

T
€ / VoueVuy, o dedt
0JT8

<ellVyevellre o2y IvVeve Vuvel 20,0 lell L2 (0,r;000) — 0

and

T
I//(; - AUV75AQDd.ZEdt § \/;\/;”AUV,EHLQ(O,T;LQ)HAQOHLZ(O,T;LQ) — 0.
L

In consequence, performing limit passages in the same way as before, we obtain the solu-
tions to the system

Oro + div (ou) =0,

O(ou) + div (ou ® u) — div (oDu) + oV (K1, * o) (4.25)

A
= —rou — rioul*u + £V (\}?) +nVo 0+ 50VA%.

Passing to the limit in (4.22) and (4.24), again by the lower semicontinuity of convex
functions, we get
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sup E(o,u) // o|Du*dzdt
te[0,T]

T
+7“0// \u|2dxdt+r1// olul*dzdt < E(og,ug) (4.26)
0.JT3 0.JT3

and for the Bresch-Desjardins inequality

Epp(o,u)— 7“0/ 10g9d$+77// Vo diﬂdt+25// |A% o dadt
T3
// Q|VUVTU|2dxdt+I€// 0|V?log o|*dzdt (4.27)

<EBp(00,u0) — 70 /3 log 0o dz + E(00, uo) + CT||Q0||L1(T3L>)-
TL

4.3.6 Limit passage with 7,0 — 0.

We will first pass to the limit with n and then with §. Note that the inequalities (4.26) and
(4.27) provide us again the estimates required in Lemmas 4.4 and 4.6, this time uniformly
in n and § (provided that 5||VAQOHL2 T3) — 0). We need to pass to the limit only with the

terms nVo~% and 5oV A3y, since the remaming terms are treated in the same way as before.

Note that since we lose the information on Du on the set where ¢ = 0, we pass to the limit in
the stress tensor using the relation

oDu = D(pu) — Vo ® u.
From (4.26) and (4.27) we also have the estimates
77||9772HL°°(0,T;L1)> \f77||9;§||L2(0,T;H1) <C(T). (4.28)
In consequence, using the interpolation between L°°(0,T; L') and L'(0,T; L?), we have
||77Q,7,?5HL5/3(07T;L5/3) < C(T)

as well.
The above estimates allow us to show

Lemma 4.12. If o, 5 satisfies the estimates following from (4.26) and (4.27), then

T
77/ / g_gdxdt —-0 as n—0.
0 T% 777

Proof. From (4.27) we know that

1
7"0/ log | <> dz < C(T).
T3 On,6

L
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As /0,5 — /05 in L?(0,T; H'), then On,s — 0s a. e. and using the convexity of a function

Y+ log, <%) from Fatou’s Lemma

1 1
lo — | dz §/ lim inf lo <> dx
/T?L B+ <95> om0 ot g

3
L

1
gliminf/ log () de < C.
n—0 TS On,s

Therefore
{z:0s5(t,z) =0} =0 for almost every ¢.

Then, as 0,5 — 05 a. e.,
7795? —0 a. e

As ng;g is uniformly bounded in L5/3(O, T; L5/3), it follows that

ng;§—>o in LY0,T;L"Y).

Now we pass to the limit with 0:

Lemma 4.13. For any ¢ € C5°([0,T] x T3) we have

T
(5/ / 0s VA3 050 dzdt — 0
0 JT¢

as 6 — 0.

Proof. We have
T T
(5/ / 0s VA3 050 dadt = —5/ Adiv (050) A% 05 dadt.
0 JT3 0 JT3

The inequalities (4.26) and (4.27) give
\/5||95||L°°(0,T;H3)> \/SHQ<5HL2(0,T;H4) <C(T).
Moreover, from the uniform estimate on V,/p5 in L*(0, T’; L?), we also have
05l oo 0,128y < C(T).
Using the Gagliardo-Nirenberg inequality
3 4% %
V20515 < ClIVZesll 12106l 35
we get

T 7 1 T
5 / V30501 ,dt < C sup lesllEs / 5174 0522t
0 t€[0,7] 0

and in consequence

3
67 vag‘SHL%(o,T;L?’) <O(T).
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Then

T
5/ AVos - A%pso dadt
o JT%

1 -
< C(@)WH\f5V406||L2(0,T;L2)H(SWJ@HL%(O 715y Y

as § — 0. Applying the same arguments to the rest of the terms from
T
(5/ Adiv (05¢) A2 psdadt,
o Jr3

we finish the proof of the Lemma. O

Remark 4.14. Note that in the limit passage with n we lost any information on Vu. However,
from the uniform estimates we know that up to a subsequence

VOnoVuys — /osVus in L*((0,T) x T3).
Using the relation
VaVu = V(you) - Vyaeu,
from the strong convergence of g, 5 and V,/0, s and weak convergence of u, s we get

\/QT;VW = V(\/@utg) — V\/E R us.

Proceeding analogously, after passing to the limit with 6 — 0 we get as well

VoVu = V(y/ou) — Vi/0® u. (4.29)

In the analogous way we can also define ,/oDu, \/odivu etc. In the next sections we will
again omit the bars, keeping in mind the relation (4.29).

4.4 The Mellet - Vasseur estimates

Before we pass to the limit with the remaining parameters, we need to extract another estimate
from the system. In the previous section, we showed the existence of a weak solution to the
system

0o+ div (ou) =0

A 4.30
O(ou) + div (ou ® u) — div (oDu) + oV (KL, * 0) = —rou — r19|u|2u + KoV <ﬂ> ( )

N

on [0,T] x T3 with the initial conditions

O, = 00,L = 00, + —, U|,_y = U0,L;
mi

where my > 0 and go,1,, uo,r, are like in Section 4.3.1. Similarly as in the Definition 4.1, this
means that for each ¢ € C§°([0,7) x T3;R) and ¢ € C5°([0,T) x T3;R?) it holds

T T
—/ / 00pp dzdt — / / Vovou- Ve drdt = / 00,...¢(0,-) dz
0 JT 0 JT% T
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and

T T
—/TS 00,.v0,.%(0, -) d:z:—/0 /TBL Voy/oudyp dx dt — /0 /Ti(\/@u@@ Vou) : Vip dz dt

L

T
+{oDu, Vi) + / / oV (K * o) -9 dx

:_TO//TE*’U wdmdt—rl// olul?u -+ daxdt
—m// Ay/oy/adiv dxdt—%// AVoV+/o- ¢ dadt.

The solution satisfies the following estimates:

) T
sup — /3 (olul* + o(Ky * 0) + K|V/0]*) dz + / /3 o|Dul*dzdt
T 0 JTy

te[0,7] 2

T T
+7“0/ / ‘U|2dxdt+r1/ / Q|u’4d1’dt§E(§o7L,u07L), (431)
0 JTg 0o Jr

where .
E(0o,1,,u0,1.) = 3 /d <§O,L\UO,L\2 + 00,1.(K1, * 00,1.) + K|V y/ @0,L!2> dz
T

L

and

1 T T
/ (IVy/ol* —rologo) dz + / / o|Vu — VTu)|?dz + /1/ / 0|V log o|*dx
T3 8Jo Jr3 o Jr3
< 2E(po,1,uo,1) + /3 <|V\/ d0,.|* — 7o log éo,L) dz + CT”@O,LH%l(T’JL)- (4.32)
TL

From (4.32) and Proposition 4.5, it also follows that

’fl/QH\/EHB(o,T;m) + ffl/4HV01/4HL4(o,T;L4) <C. (4.33)

For the time regularity we have

1
||8t\/§||L2(0,T;L2 < ||\fleU||L2 0,T;L2) 5||V91/4||L4(0,T;L4)HQIMUHL‘*(O,T;L‘*)

| =

and since
0o =—2V,/p- Q1/4U oMt — Vvoy/odiv u,
from (4.31) and (4.32) we get
00l L2 0,751805) < C.

In this section we perform the limit with k — 0 and simultaneously derive another esti-
mate. The main result states
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Lemma 4.15. There ezists a solution to system (4.30) with k = 0, which satisfies the estimate

o (/Ti oF (|ul) dx+//11‘ix’£r% F(lz — yl)o(x)o(y) da:dy)
<c (/T 00 (Juol) + //TT F(lz — y])oo(x)oo() da:dy) FOE L @)

or F(z) = 122 1n(14 22 , where C' does not depend on ry and r1. Moreover, estimates (4.51
2
and (4.32) are valid with k = 0.

Proof. The strategy of the proof is based on the approach from [105], however the need to
incorporate the nonlocal term imposes some key differences in the method. Let

- 1+ 22

()=~

(14 22), (z) = %F'(Z) — 14+ In(1+22)

for z > 0. To get (4.34), we would like to test the momentum equation by the function

F’(\u|2)‘—fj| However, the regularity of the solution coming from the estimates (4.8) and (4.9)

does not allow that (in particular, they do not provide any Sobolev regularity on wu itself).
Instead, we will introduce a suitable approximation of the function F’ (\u|2)‘—z|, which will

allow us to perform the needed renormalization of the momentum equation. Then (4.34) is
obtained by passing to the limit.

Preparation of initial data. Note that our approximation of the initial data satisfies in
particular

00,1, >

1
mi '
In order to get the suitable continuity of ¢ and u, we need to further truncate the initial data.
Hence we will first derive the desired inequality assuming that

do,r|uo,L|* € L (T3). (4.35)

Under this additional assumption we show that

Proposition 4.16. For (o,u) solving (4.30), we have
0€ C(0,T;L%) and +Jouc C(0,T;L?%).
Proof. Since o € L>(0,T; HY),
On/o € L*(0,T; L*) and +/p <€ L*(0,T; H?),

we have

Vo €C(0,T; L% and Vo€ C(0,T;L?).

(the last convergence is shown by computing & V/o — V/00]2.).
As /o € L>=(0,T; L%), we therefore get

Vo€ C(0,T;LP) for 2<p<6.

In particular, it also follows that
o€ C(0,T;L?).
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Now we show that
Vou € C(0,T; L.

By the estimates on 0;(ou) and pu, we know that
0u € Cleal(0,T; L/?).
We will estimate |,/ou — \/00.0u0,1|? using the continuity properties of energy. Since the

Im(t,@)|?
o(t,x)

function ¢ — [ I{o>0y do is lower-semicontinuous (see also Lemma 7.19 in [85]), we
L

have

/3 60.|vwo.L1* + 80,1 (KL * 60.1) + K|V+/Go.r* dz
T

L

t—0

< liminf/ olul* + o(Kp, x o) + k|V/0|? dz.
T3
Combining that with the energy inequality, we get

lim (Q\u|2 + o(Kp * o) + /-$|V\@|2) dx

t—0 :
T3,
:/ (éo,L\uo,L
T3

L

24 5,0 (Kp * do,n) + KIV/Go ) da
With this information at hand, we write

[, Vo= VarzuosPas = [ (elul? + o(ks « o)+ IV VEE) do
L

L

— / (éo,L
']TS

L
+2 /3 v/ 00,.u0,.(7/ 00,L U0, — \/0ou) dx
TL
+ /3 (00,0.(Kr, * 00,1.) — o(Kr, * 0)) dz
TL

- Ii/TS |V\/éo,r. — V/o|*dx
L
+ 2k /1r3 V/00,.(V/00.L — V/0)dz.
L

uo,L|* + 80,0 (K1 * do,1) + K|V y/ @0,L|2) dz

From the continuity of V,/p, we have

lim [ |Vy/dor — Vyel’dz =0
T

t—0

and

lim V\/é(),L(V\/@(),L — \/E)dx =0.

t—0
T3
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Since K, € LP(T3) for p < 3/a, from the continuity of g it follows that K, x o € C(0,T7; L9)
for ¢ < =25 (or oo if a < 2) and therefore

lim (@O,L(KL * éO,L) — Q(KL * g))dx — 0.
t—0 T:Z

In consequence,

esslimsup/ |/ ou — \/éo,Luo7L|2dx
t—0 T3
= 2ess lim sup /3 \/00,1.v0,1.(\/00,L.v0,1, — \/ou) dz. (4.36)
TL

t—0

Now, let ¢, be a smooth cutoff function such that ¢, (0) =1 for o > mil and ¢, (0) =0
for p < ﬁ Then we write

/1r3 V/ 00,2.u0,.(1/ 00,L U0, — \/ou)dx = /1?3 \/ 00,2.u0,.(1/ 00,LU0,L. — Pm, (0)+/ou)dx
- /T3 v/ 00,0t0,(1 — ¢m, (0))y/ou dz

=Bi1(t) + Ba(t).

For the term Bj, we use the relation

— — — 0), .
vV QO,LUO,L(\/ ©0,LU0,L — ¢m1 (Q)\/EU) =4/ 00,LUQ,L <25m1( )(QO,LUO,L - QU)

Vo
+ Go.z|uo,L|? ( \QfOLéﬁml( )) .

Since go,1, > n"%’ we know that in particular ¢, (00,7,) = 1 and then

)
lim By (t) =i — d
lim 1( tg% \/QOL OL \f (00,Lu0,L — ou)dx

: = - Gy (00, Pmy(0)
+ lim v 00.1|uo L1*\/Bo.1 — dz =0
=013 [uo.z] v 00,L Vo

by the weak continuity of gou and strong continuity of o. For By, by (4.35) we have
|Ba(t)] < ||\/ §O,LUO,L”LOO(1I§)”\/§U||Loo(0,T;L2)Hl — ¢m (0 )HL2 (T3)s

which goes to zero as t — 0 again from the strong continuity of p.
In consequence, /gu € C(0,T; L?) as we needed to prove. O]

Preparation of the test function. Let ¢, and ¢o° be smooth cutoff functions at zero at
infinity respectively, such that

1 1

0 0 0/

1) =1 f (25 =0 f 10} <2
m(g) or o> m’ m(g) or o< om’ ‘( m) ‘ > am,
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and
(o) =1 for o<k, ¢p°(0)=0, for o>2k |[(¢7°)|<

Then we define

I

Ve = Gmp(0)u for  dm (o) = % ()95 (o).

To simplify the notation, we will just write v = vy, and ¢ = ¢, 1, when it does not raise
confusion. It turns out that v has the W12 regularity missing for u:

Proposition 4.17.
Vo € L*((0,T) x T%).

Proof. By straightforward calculations,
Vo =¢'(0)Vo®u+ ¢(0)Vu

:4¢l(g)\/§vgl/4®gl/4u+¢\(fi}\/§vu

From the definition of ¢,

—_

(b\(;;) <Vv2m and |¢'(0)yo| < max (Qm- —,

and therefore

HVUHL%(O,T)xTi)
< C(m,k) (HVQI/4HL4((O,T)><’]T%)||Q1/4U||L4((O,T)><T%) + H\/EVUHLQ((O,T)XT%)> :
O

In order to construct a suitable test function, we need to approximate the functions F'

and ¥ as well. Let
1+ 22

In(1+ 2%), z<n,

FTZ(Z): 1_n2
<nz+ 5 >ln(1+z2), zZ>n

and
1 1+1In(1+42?), z<mn,
Un(2) = —Fo(2) = { n oy 2nz+1-—n?2
z —In(l+2°)+ ———%5—, z2>n
z 142
That way
Fo(z) < Cn|z‘1+6
and

Yn(2)z = Fy(2) < Cal2l

for any ¢ € (0,1) and some C,, > 0. Since F,, < #ln(l +22) and ¢, < 1+1In(1 + 2?), we
also have the estimates

Fo(2) < C+C12*,  thu(2)z < C + Clz|*9,

where this time C' > 0 does not depend on n.
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Finally, we have the estimates for the second derivative:

222
T2 75T

2nz n (n? —1)2% + 4nz — (n? — 1)
1+ 22 (14 22)2 ’

1+1n(1+ 22) +
F(2) =4 (2)z +¥n(z) =

z>mn

and thus it is positive and bounded.

Having the suitable approximations, we can state the first step towards the proof of Lemma
4.15.

Lemma 4.18. For any nonnegative £(t) € C§°(0,+00) we have

T T
_/0 Aif(t)anqm)dde/o /T% E)n(Jv])v - G dadt
T
+/0 /T‘"i E)S : V(n(Jv))v) dedt =0, (4.37)

where

5 = 00(o) (Du + ﬁ/\fn)

G =0’ud/(0)divu + oV (0)Du + ¢(0)oV (KL * 0) + roug(o)
+ r10lul*ug(0) + £v/oVd(0)Ay/o + 26¢(0)V/0A /0.

Proof. Testing the momentum equation by ¢(o)¢ for p € C§°((0,T) x T3), we obtain

and

d¢(ov) — oug'(0)ds0+div (ou ® v) — ou ® uVe(o)
— div (¢(0)oDu) + oDuV¢(0) 4 ¢(0)oV (K * 0)

= —1ov — r1¢(0)olul*u (4.38)
— 1 (VeAVEVS(o) +26(0)AVEVVE ~ V(6(0)VEA V) )
in the sense of distributions. Since
—ou¢' ()80 — ou ® uV (o) = o*u¢’(0)div u,
we can rewrite (4.38) as
O(ov) + div (pu ® v) —divS + G = 0. (4.39)

Now, let us take £ € C3°(0, +00). We test equation (4.39) by ® = (£(¢)¢n(|ve|)ve)e, where
fe = [ *n. denotes the mollification over time and space. Note that since ¢ has compact
support, for sufficiently small e the function ®(¢,-) is well defined on (0,00). Then we get

T
/ / E)Un(ve])ve - (8:(ov) + div (ou ® v) — div S + G’)E dzdt = 0.
o Jr3
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Let us rewrite the first two terms of the above. We have

T
| [ c0vatiodye. - @few)). andt
o Jr3
T
:/ / g(t)wn(|va|)vaat(gve) dxdt + R;

= S (@l + o)) s+

where
Ry = /OT /R3 f(t)wn(|v5|)vg<(3t(gv))€ — at(gv€)> dxdt.

Furthermore,

T
/ / O ([0e])e - (div (u ® ), drdt
0 Jr3
T
= /0 /W E()Yn(Jve])v=div (ou ® v.) dadt + Ry

T
- / / £ = Orotnlvel) oo + duoFu(fve)) dudt + R,
o Jms
where .
Ry = /0 /T% §(t)1/)n(’7)a’)va<(div (ou ® v))g —div (ou ® ya)> dzdt.

In conclusion, we get
T
| [ ewanter oy asd+ ry+ o
0o JT3

T T
_ /0 /T% E(t)n(|ve])ve (div ) dadt + /O /T:z £ (|02 )veGe dzdt = 0.

Since v € L?(0,T; H'), v. — v in L?(0,T; H'). In particular, up to a subsequence v. — v
almost everywhere. For 1 < p and 0 > 0 such that § + w <1 and p(1+9) < 2, by the
definition of F;, we have

1€/ ()0F(0=DI 0 2ers) < CallE <o) / / o P dzat

T
1 )
< Coll€'ll =01 /0 ol o 25+ at

|p 1-‘1‘6)

< C(n,T)lell}; ((0.1)xT3)"

©(0,T;L3) H |

Therefore &'(t)oF,(Jve|) converges in L'((0,T) x T%) and we have

T T
iy [ ] € 0o drdt = /0 / €D (o) drd
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Since G € LY3((0,T) x T3) and 1y, (|ve|)|ve| < Cnlve|®, we similarly have the convergence

T T
;gaé AéfUWmU%D%Geduh—:A Aéé@ﬂmﬂmw~0dw&-

Moreover, we have

//§ Jibn (o (div S). dodt = //5 05, : ¥ (tn(loe])v.) dadt
S A R CA AP

By virtue of the estimates on ,/gDu and A,/p, the function S belongs to L*((0,T) x T3 and
thus S: — S in L2((0,T) x T%). Moreover Vv, converges strongly in L((0,T) x T%) to Vu,
and 9, (Jve|)|ve| 4+ n(|vz]) is uniformly bounded in L°°((0,T') x T3). Therefore we have the
convergence

lim/ /g Vb ([ve|Jve (div ). dadt = / /g )5 : V(¥ (|v|)v) dzdt.

e—0

What is left is to show that Ry, Rs — 0 as e — 0.
To do that, we use the following commutator lemmas (see e. g. Lemma 2.3 in [66]):

Lemma 4.19. Let f € (W'"P(RY)? and g € LY(RY) with 5 + § = 1 < 1. Then
1(div (f9))e = div (fge)llor < Cllfllwrrllgllze
for some C > 0 independent of €, and
(div (£9))e — div(fge) = 0 in L'(RY).

Analogously with respect to time, we also have

Lemma 4.20. Let f; € LP((0,T)) and g € L9(0,T) with 5 + ¢ = 1 < 1. Then

10:(f9))e = 0e(fge)llr < ClifiellLrllgl La

and
(0u(f9))e — Ou(fge) = 0 in L"((0,7)).

Now we apply the above lemmas to Ry and Ry. By Sobolev embedding, v € L2(0, T; L°).
For R, we have

V(ou) = 02Vl @ oM + Vo oVu € L*0,T; L3/2).
Therefore since ¥, (|ve|)|ve| < Cplve|'/3, from Lemma 4.19 we get
| [ nllechoe((@iv (ou s ). — div (gu o v.))d
TL
< Culloellys; ) 1(div (u @ v))e — div (ou ® ve) || o573

1/3
< Cullvll 2 0 ooy IV (@) I/ [0l o
(T3) 7
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and the right hand side is integrable in time (note that the L>(0,T; L?) estimate on v follows
from the same regularity of /ou). Thus from the Dominated Convergence Theorem

T
IRy | < ||51Lw(0,T)/0 /qr (o )oe ((div (0w © v)). — div (ou ® v.))| dardt — 0
L

as ¢ — 0. For Ry, first note that
v=0"""¢(0)0" u € L*((0,T) x T}).

Moreover,
Ao = 4/oV o * oY u + Joyedivu € L32((0,T) x T?).

Then similarly as before we have

T
/0 Y ([ve)oe (4 (0v)) - atwva))dt\ < Collvell 5. 1@e(0v))e = Buove)l iz o)

4/3
< Cullvl| st 10eell 20,19

and from the Dominated Convergence Theorem

T
Rl < lelmr) | [ Tonllocee (@ en))e = 0lgun) dadt = .

Note that in this case we use the estimates in Lebesgue spaces on (0,T) x T3 instead of
Bochner spaces with different exponents over time and space, which allows us to change the
order of integration.

In consequence, when € — 0 we derive (4.37) for any § € C§°(0, +00). O

The next step of the proof of Lemma 4.15 is based on application of the Weak Gronwall’s
Lemma (Lemma C.1). Let us rewrite (4.37) as

- /OT /ff% ¢ (t)oFn(|v]) dedt

T T
—— [ [ €ttt ole)oT s v o) dui— [ eepie) ar,
o JT3 0
where b(t) contains the rest of the terms from G and S, i. e.
0 = [ daol)o- [Pud (@)div u-+ 070(0)Du+ G{)eV (K o)

+roud(o) + riolulfug(o) + ry/oVe(0)Av/e + 2k¢(0)V/eAVe| da

v e (put A/;n)  V(Wn([ol)v) de.

We first focus on the nonlocal term. From the definition of Ky, we have

oL(")
| -]
oL(")
|- ]

V(K * 0)(x)| = -

Yoy [ T sPorle )t dy

<

*Vg‘ +C |z —ylo(y) dy,
lz—y|<L
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where in the last term we used (4.15). Therefore we get

T
/0 /T3 E(&)Yn(|v]))vd(0)oV (KL * o) dzdt

<[ % nlloDlele[ 242 v asa

T
v [Cew [ valv@Dlue)let@emle — o] dedyar
L
=A1 + As.
To estimate A, we use the estimates on Riesz potentials. For f € Ll(’]I‘?i), let

I3—o¢(f) = /’JI‘S ’xf_(y;’a d

Then, in particular

3p

||I3—a(f)||Lp*(1r§) < CHfHLP(T%) for p* = m-

From (4.32), we have

IVoll oo 072872y < 201Vl Lo 0.1,06) IV Vel L 0.7522) < C
and thus

3-3/2 3
3—-(3-a)-3/2 a-1

[ 3-a(Vo)llLe(0,7;10) < ClIVOl Looo,r;p32y for g =

(if @« < 1, then ¢ < 0).
Since ¥, (|v])|v] < C + Clv|'*?, the integral in A; is estimated by

J

. 1-9
|v\1+6@‘q|5%y(a) . v9’ dz = /T Ve "0 |s-a(Ve)| du
L

3
L

1-§
5 58
< ||\/§v||g‘;(0,T;L2)||Q||LZ°(0,T;L3)”I37a(v@)”Loo(0,T;L17§5)

1-6

5 1-6
< CH \/EUH}/L(O,T;LQ) H Q”LiO(O,T;L?’) HVQHLOO(O,T;L3/2)7

provided that % < ﬁ (which is vaild for o < 2 and sufficiently small §). In the end, we
get |A1] < C, where C depends on the right hand sides of (4.31) and (4.32) (in particular it
does not depend on n,m, k,r9,r1 and k).

For the term As, we use the following generalized Young inequality for convex functions:

ab < F(a) + F*(b), a,beR, (4.40)
where F'* is a convex conjugate of F', given by
F*(s) =sup{sz — F(z) : z € R}.
The proof of (4.40) is elementary, since straight from the definition of F*

ab— F(a) <sup{bz — F(z) : z € R} = F*(b).
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Applying this inequality to Ag, we get
T
Ay =C / (1) / / FL (jo(@)]) = — yle(@)e(y) dedydt
0 T3 XT3
T
<c / (1) / / E2(E (Jo(@)]))e(z)oly) dadydt
0 T%XT%

T
e /0 (1) / / sy Tl ey iy

To further simplify the estimate, we use the following Proposition:

Proposition 4.21. If F € C'(R) is strictly convez and such that
2F'(2) < aF(2)

for some a > 1, then
F*(F'(2)) < (a —1)F(2).

Proof. Fix s € F'(R) and let g(z) = sz — F(z). Then
J() =5 - F'(2)

and as F' is increasing, ¢ attains a maximum at z* = (F')"!(s). In consequence, F* is
explicitly given by
F*(s) = g(") = s(F) "' (s) = F((F") " (s)).
Therefore
F*(F'(2)) = F'(z) (") T (F'(2)) = F((F)7H(F'(2)) = 2F'(2) = F(2) < (a = 1)F(2),
which finishes the proof. O

One can check that zF) (z) < 4F,(z) for sufficiently large n and thus it satisfies the
assumptions of Proposition 4.21. Therefore finally we derive

mea [ || . oFulbanti+ | o [ oy Follr = olo)oty) dsdya

To close the estimate, we need to control the second term. To do this, we compute its
derivative using the continuity equation and applying again the Young inequality. From the
continuity equation, we have
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G L Pl = hetlety) dody

_ / /T ., Fullz =y Gro@)e(y) + o(w)droly) dady
- _ //3 , F.(Jx — y|)div z(ou)(z)o(y) dzdy

T xTy
_zf/qrw Fy(|lx =yl o2 - ul@)o(x)ely) dady

=2 / /Ti - (|2 — yl)—v(x)o(x) o(y) dady

i //T%xﬂri Eulle =3 I:v — | (1= élo)w)(@)o(w)e(y) dudy.

Therefore applying Young inequality and Proposition 4.21, we obtain

d

- Eu(le —yl)e(z)o(y) dzdy

dt J J3 «r3

<2 [[ R - u)ewely) dedy
TS xT%
+2lellaiey) [ eFallel) do
R3

2 // g il =)0 o)) (e o)) ey

<C//TS T3 Fo(le = yl)e(z)o(y) dedy

T3

o //T%xqr?i h y|é(1 — ¢(o()))|u(z)|o(z)o(y) dody.

In consequence we obtain

_/OTg’t (t dt<C/Tgtft dt

+/0 £(t) ( )+ C+Cy, //TSXT Ha:—y\ 1- ((a:)))‘(_)(a:)g(y)d:1:dy)7

where

10 = [ oFuel do+ [ Fulle = uhe(woly) dody

L
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and
/ U (Jv])v g uqb o)divu + oVe(0)Du + roug(o) + rl,g]u\zuqﬁ(g)

+ £y/BVO(0)AVE + 260(0)V/8AB) da

o/ e (pu+t Af;ﬂ) Y (W([o])o) d

(4.41)

=J1(t) + Ja(t).

Now applying weak Gronwall’s lemma (Lemma C.1) and using the continuity in time of
Vo and \/ou, we get for a. e. t € [0,T]

L emtebars [ Fie = owew) avay

<eCT ( [ b et [ Fulle=sda@ents) dxdy)

L

g (4.42)
CT/ b(t)dt + CTeT

- CeCT / //H 2)lle = yP (1 — dlo(x)))e()oly) dudydt,

where the constant C' depends on L, but does not depend on n,m, k, x,rg and 1.

4.4.1 Limit passage with m — oo

We now pass to the limit with m in (4.42), i. e. remove the truncation of g at zero. Obviously

vm = P (0)07° (0)u = ¢ (0)u  a. e.

and |vp,| < |u|. Since oFy,(Jul) < Cpolu/'*® is integrable, from the dominated convergence
theorem we have

/ 0F(om]) dz / 0F (6 ()u]) dx
T3 T3

L

as m — oo and similarly
/ 00F([v0,ml) d = / 00 Fn (67 (00) )
T3 T3

Since for § < 1 the term |u(x)||z — y|%0(x)o(y) is integrable on [0,T] x T3 x T% by virtue of
energy estimate (4.31), the last term in (4.42) converges to

/ //TS T3 )|z — y°(1 — 8% (0)) o(x)o(y) dwdydt.

Now we deal with the terms J; and Jy of b(¢) (as in (4.41)). The convergence in all the terms
will be a consequence of the following Proposition:
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Proposition 4.22. If ||an|[z~0rx0) < C, am — a a. e. and f € LY((0,T) x Q), then

ATAZ¢%(Q)amf dmdt—>/0T/Qaf dadt
/ /\Q (62.) (0)am f| dzdt — 0

Proof. Note that ¢0,(0) — 1 a. e. as m — oo. Since |¢0,(0)f — f| < 2|f| and |amf — af| <
|f|(lam]l L + ||a||L>), by Dominated Convergence Theorem,

T T
/ /chgl(g)f—f!dmdt—w and / /|amf—af|dxdt—>0.
0 Q 0 Q
Therefore

T/qubgn(g)amf dxdt—/OT/Qaf dxdt'

T T
suamHLoo/o /Qw%(g)f—f\ dwdt+/0 A!amf—af!dwdtﬁo-

and

as m — oQ.

For the second part of the Proposition, it is enough to notice that |(04%,) (0)] < C and
(#2,)(0) — 0 a. e. Then again from the dominated convergence theorem,

//|g¢0 0)ay, f| dzdt — 0.

We apply the above Proposition to each of the terms in b(¢). First, note that

YV (@n[vm])vm) = W

= 1 (loml) (V60(0) @ (67 (o)) + 65,(0) (V6 (0) © s + 67 (0) Vtm) )

VUm @ U VU, + U (Jom]) Vo,

and therefore

/0 Jo(t) dt = / /R3 00(o (]D)u+/-£ \[\[ > s V(Un(|Jom|)vm) dadt

0
/0 - ¢m( )am f1 dzdt —l-/ / () )amfg dxdt,
where
am = @0, (0) F) (Jvm])
and

AV
Ve

f1 = 067°(0) (Du+ . H) (VR (0) ® u + 62 () V),

f = 67°(0) (Du n m%@ ﬂ) (Voo (6°(eu)).
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By virtue of Proposition 4.22,

m@w/ / 06 i (0 (]D)u—i—m \/\g ) Y (U ([ Yo

- [ e ) (1 w220 (w10 @) (o) .

Now we deal with J;. From (4.41), we see that
J1 :/ U (|vm])om, - <Q2u¢’(g)divu + oVo(o)Du
T
+ rgu(0) + riolulus(o) + ky/aVH(0)AVE + 2660V VEAV2) da
= [ 0ulon)h(0) - 67 (- (Pud' (@i + oTo(e)Du
+ roud(0) + rrolul*ud(o) + ky/BVH(0)AVE + 246(0)V/8A/B) da.

We will group all the terms in J; with respect to ¢, (o) and o(¢2,)'(0). Let

bin = ¢2n(@)¢n(‘”m‘)a

1
= ¢EO(Q)2 (Q\ulzdivu +u-Du-Vo+ ku- A\/§>
Vo
and

g2 =072 (0)(82°)' (0) 0 [ul*div u + 67°(0) (¢7°)' () ou - Du - Vo + 10657 (0)*ul®
+ 1182 (0)?olul® + ko2 (0)u - (62°) (0)v/0V oAV + 2607 (0)%u - Vi/0A/0.

/J1 ) dt = // () (0)bman dxdt+// #0 (0)bmgo dxdt
0 T3

and therefore from Proposition 4.22

Then

T T
i [0 de= [ [ (6o (e (Fulr) (@)divu + oV (¢)Du
m—00 0 0 T%

+roudi” (o) + rielul*ugi (o)

+ 5y/BVOE (0)AVD + 2667 (0)V /0A VD) dudt.

Combining J; and Ja, in the end we get

T T
im_ [ boae= [ [ , U6 (@ (Pul6F) (@)divu + 097 (2)Du

+ o ()u + 197 (o) olulu
+ 5y/BVOR (0) A3+ 2667 (0)VOA VD ) dadt

[ e (a2

V21) £ 900 (@) o))
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Since

T
| L o620 672 (0) (rolul® + ity dade > o

after taking m — oo we finally obtain the following estimate:
[ erutod s+ ([ Fulla = se@)ety) dody
T3 T3 xT3

<eOT (/T 00 P63 (00)0]) dx+// (12 — y)ao(z)e <>dxdy>

(4.43)
T / b(t)dt + CTeT
[ /T @)l — P~ 67 (o()))alx)oly) dadyds
for vy, = ¢3°(0)u, where
= [ wulloon - (ué) (@)dive + Vo (oD
+ ROV (0)AVE + 2607 (0)V/BAVB) da L

A
v/ w0 (pu+t j@ Y (Wn(oel ) de

:j1+j2.

4.4.2 Limit passage with x — 0 and £ — o

We choose the parameters k and k, so that we can pass to the limit in (4.43) and (4.30) with
both of them at the same time. Fix § < 2/3 and let k = x~2/°. We have the following lemma:

Lemma 4.23. If (0., ux) is the solution to (4.30) and v, = $7°(0x )k, then (0, ux) converges
to a solution (o, u) to (4.30) with k = 0, and the limit satisfies for a. e. € [0,T]

/T?i oFu(jul) dz + / /T , iy 7 = wel@)ely) dedy
<C (/T 2o Fn(luol) da + //T _, Fullr =D ao(@)eny) dxdy) +C, (4.45)

where C depends on T and on the right hand sides of (4.31) and (}.52).

Proof. Since [|0(0x, ux)| L2(0,r;w-1.4) < C, by Lemma 4.4, we have
ox — o in in C(0,T; L3/2)

and
Okl — OU in L2(0,T;L3/2).

In consequence
Okl —> OU  a. €.
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and for a. e. (t,x) such that o(t,z) # 0, we get

Okl S
Ok

U =

Therefore vy (t,z) — u(t,z) as well. On the other hand, for a. e. (¢,x) where o(t,z) = 0 we
have
Fu(Jos]) < Cnor | osusl’ =0

as £ — 0. In consequence QHFH(\UH\ — 0F,(Ju|) a. e. Then Fatou’s Lemma yields

/ oF,(|u]) dz < liminf/ 0k Fn(|vg|) do
T3 Kk—0 T3
L

L

Let us pass to the limit with the terms on the right hand side of (4.43) one by one.
Similarly as before,

/ 00 (163° (00)uo]) dz — / 00Fn(luo]) dz
T3 T3

Since, similarly as in the previous limit passage,

Jun (@) = y1° (1 = 67 (0x())) 0x (%) 04 (y)

is uniformly bounded in LP((0,T) x T3 x T%) for some p > 1, and convergent to 0 a. e., we
have

T
lim / / / sy sl = 1P O an (o)) n(2)0n(4) eyt = .

Kk—0 0

What is left is to estimate the terms Jy, Jo defined in (4.44). For J;, we respectively have the
following bounds:

T
[ [ om0 (0 (65 (o) lun Py
0 JT3

< Cp k04 / / o /4 o 4, |1\ Jondiv uy daxdt

1/4 ) .
< COnTI ol V! 0k ) VB0 oo

T
[}, ool (006 onys - 0: 965 0n P d

<cutt [0 L e D e

1/4
< C(n, T)“1/4HQK|| / ||Q1/4UHHL4(O,T;L4) ||’il/4v9.‘1~c/4”L4(O,T;L4) H\/Q_fiDUKHL?(O,T;L?)»
Loo(o,T;Lﬁ
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T
”‘/0 /TS U (|62 (0 )t | D5 (00 ) - /0 VL (0) A/ 0 dxdt
L
L 1/4
= ]{75/4/ / 1/4’9’1€/4uﬁ‘5m1/4vg’1$/4"K1/2A\/g—n‘ dadt

iy KH”“
k5/4 0o (0,T5L T8

X ||K31/4VQ1/4||L4(0,T;L4)”“ /2 A\/QTiHLQ(O,T;LQ)

<C(n, T) [ UHHL4(0TL4)

and

T
o [ nlenben o7 0 o dnat
L
T
<t | / 08 *unl 0l |/ 1V gl /20 ]

<C(n,T)k 1/4”91/4UHHL4 0TL4)||"51/4V91/4HL4(0,T;L4)”"ClﬂAx/QTfHL?(O,T;L?)-

By the estimates in (4.31) and (4.32), all above terms converge to 0 with k — oo, — 0 if
0 <2/3. To estimate Jy, we further write

Jy = / 0x 07 (0D : V(W (Jon]Jox) d + 5 / 0067 (0) 22 div (o) or) o

T3 TS VvV Ok
=51 + 5.

For Sy, we have

T T
/0 Si(t) dt :/0 /T% 005 (0k)Duy + V(Un(|vk])ve) dadt

T /
_/ wn(|vﬁ‘)gﬁ(¢?)2(gﬁ)ﬂ)um : (Vg ® v, V) dadt
o JT3

vk |
T
4 [ [ vallosD eat? (@B - Ve dad
0 ']T?i
=A; + As.

The term A, is estimated as follows:

Ay < / / ! (o] o] 20 (65°) () [Vt ? it

+/0 /T3 10! ([0 ) |[0s |20k (04 D | [ V052 (0| daxdt
L
:Al,l + A]_72.

Since ¢!, (|vk|)||vs| < 2 independently of n, we have

T
A < 2/ / QH|VU,{’2 dadt,
0o J13
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which is bounded uniformly by virtue of (4.31) and (4.32).
For Aj o, from the definition of ¢ we have

223
w/ (2)22 _ 1+ 227 s n,
" o 4nz? —223(1 — n?)
—nln(1+ 2%) + 1127 , Z2>n

Therefore
[0, (i) |0k ]? < C + Crlo]’

for some C,, > 0 and thus
T
M2 2 Co [ [ 00068 (0 VEDunl Vol (g8 + o2/l 0 ) doa.
0J13

In consequence

A1z < CullverDug| 2o,y c3) 15V or | 1o,y xm2) <k_1/2'”~_1/4||92/4\|L4((0,T)x1rg)

4 |0/4 /4 . 1/4 ,1$/4un :
l0417% o 128 sz

which converges to 0 with £ — oo,k — 0.
For As, we write

T
Ay = / / (0] 25 (0) D] dxdlt
0 JT3

T
+/0 /IFS ¢n(|vn|)9n¢zo(g,{)ID>u,{ : (V@?(Qﬁ) ®UN) dzdt
L
:AZ,l + A272.

The term Ay ; is positive and thus we can estimate it in (4.43) by 0. The term Ag o however,
is estimated by

T
Aol < [ [ onllondoslos Dus Vo ()] dadt
L

—1/4
<C(n,T) 15/ HQ,14/4U5H24(0,T;L4) |”€1/4VQ;£/4||L4(0,T;L4) X

1/4
% [lv/@eDusl 20102l 2s]
Le°(0,T;LT=9)

which converges to 0 as well.
What is left is the term

T T

| s at=x [ [ 60 vaAVEL: Vn(iue,) dod
0 o J13

VAR

||

T
:HA /]RB (Z)EO(QH)\/Q?A\/Q? I- (UK ® 'UKV'UH) dzdt

T
+/~e/0 /R (0062 (0) /B>y /B vy
=B + Bo.



4.4. The Mellet - Vasseur estimates 85

Similarly as before,
| B1| EKI/QHKUQA\/ Qz-eHL?(O,T;L?)||\/mun||L2(o,T;L2)
+ ’fl/A‘H'fl/QA\/ QnHL?(o,T;L?) HQ%@MUHHL‘*(O,T;L‘U 1151/4V9£/4\|L4(0,T;L4)
and
| By| <Cpi'?||K12Ay sl 20,722y |/ 0k div || 20,7, £2)
+ CnF@lMH’il/QA\/ okl z2(0,7;22) Hf?1/4VQ,1</4HL4(0,T;L4) ‘|Q;£/4UHHL4(O,T;L4)>

which means that both By, By — 0.
In conclusion, after performing the limit passage x — 0 in (4.43), we end up with the
estimate (4.45). O

With the estimate (4.45) at hand, we are ready to finish the proof of Lemma 4.15. Since
F, / F, simply taking the limit n — oo in (4.45), by monotone convergence theorem we
derive (4.34). In order to show that the limit (o, u) satisfies (4.30) with x = 0, we focus only
on gxDu,, since the limit passage in the remaining terms is performed in the same way as
before. We will show that

Vst — \Jou in L*((0,T) x T}).

The proof is similar to the proof of Lemma 4.6. From the weak convergence of Q,l.g/ 4u,.C in

LA((0,T) x T%) it follows that

T T
/ / olu* dzdt < lim inf/ / oruy dadt < C.
0JT8 =0 Jo J13

From the pointwise convergence of gxu, it follows that \/0.Ths(ux) — /0T (u) a.e. for the
truncation T, defined as in (4.14). Since /0,1 (uy) is also uniformly bounded with respect
to k in L°°(0,T; LY), in particular it also converges in L?((0,7) x T3 ) and therefore

Iverun = voull 2o,y xr2 ) <IVerTh(un) = /oTn ()l p20,m)x13 )
+ 2/[Vor|un| L, > 0l 20,0y <m2 ) + 2lV/elul L mll L2 0,7) <12 -

The last two terms are estimated as follows:

g 2 1 T 4 C
/0/11% O Ui| “ Ly, > 0r dadt < W/O/T% O |ug|” dedt < e

and for the limit analogously. In conclusion,

. C
limsup [|v/oxux — \/EUHLQ((O,T)X’]I‘%) < M3
rk—0

and the convergence follows by taking M — oo.
With the above convergence, we pass to the limit using the relation

QHDU% - ]D(\/ Ok Qnun) - v\/ Ok & V OrUg
and weak convergence of V,/p,, coming from (4.32). O
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Remark 4.24. Note that at this point we cannot use (4.29) to define \/oVu as in the previous
Section. However, from the uniform estimates we still have the convergence

VorVu, = /oVu in  L*(0,T) x T%).

Using the strong convergence of ,/o., we can then pass to the limit in the relation

@@vuﬁ = V(QHUH) - v\/@? o2y \/Q?UH
and obtain
VoveoVu = V(ou) — V/o ® \/ou. (4.46)

In particular, from (4.46) it follows that V(ou) € L%(0,T; L'). Similarly as before, we will
drop the bars and define other differential operators of v analogously.

4.5 Limit passage with ry,r; — 0
In the previous section, we constructed the solutions to

0o+ div (ou) =0

4.47
dr(ou) + div (ou @ u) — div (oDu) + oV(Kp * 0) = —rou — 710[ulu, (4.47)
defined on the torus T3, satisfying the estimates (4.31) and (4.32) with x = 0, together with
(4.34).
Our next goal is to perform the last limit passage 79,71 — 0 and in consequence obtain
the solutions to (4.1) on the torus. The main tool to do so is the following lemma:

Lemma 4.25. Let Q = T3 or R3. Assume the sequence (on,un) satisfies uniformly the
following estimates:

T
sup /gnunl2 dxdt—i—/ /Qn|ID>un]2 dazdt < C, (4.48)
tefo,7] /0 0o Ja
T
sup /\V«/gn|2 d:v+/ /gnVun—VTun|2 dxdt < C, (4.49)
t€[0,7] /9 0o Ja
sup /gnF(|un\) dz < C, (4.50)
t€[0,T] JQ

and
HathHLOO(O,T;W*LS/?y Hat(gnun)||L2(O,T;W*2w4/3) <C.

Then up to a subsequence we have

Op — 0 In C(O,T;L3/2)

loc

(in consequence also in particular /o, — /o in C(0,T; LIQOC)). Moreover, there exists a
function m such that

onttn, —m in L2(0,T;LF ), p<3/2,

loc

and m(t,x) =0 a. e. on {(t,x) : o(t,z) = 0}. In conclusion, there exists also a function u
(defined uniquely on the set {(t,z) : o(t,x) # 0}) such that m = pu, and moreover

Vontn — Jou in L ([0,T] x Q).
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Lemma 4.25 combines together the consecutive limit passages performed in [75] in order
to show stability of solutions to (4.1) without the nonlocal term. However, for completeness
and for the reader’s convenience, we also present the proof below:

Proof. Since
IVonll oo o, 032) < 2[lv/0nll Lo 0.1:26) IV Von | Lo (0,7;12)

the strong convergence of g, follows straight from the Aubin-Lions-Simon lemma. For the
momentum, we have

v(@nun) = QV\/ On ® V OnlUn + V Ony/ anun

and thus
IV (enun)ll 20,751y < C-

Moreover,
” OnlUn |’L°°(07T;Lf’o/f) < H vV On ||LOO(O7T;L160<:) ” V OnUn ||Loo(0,T;L2) )

and thus the desired convergence again follows from the Aubin-Lions lemma.

By the above strong convergences, we can extract the subsequence (indexed again by n)
such that g, and g,u, converge a. e. Denoting opu, = m,, we will now show that the limit
m is zero whenever o = 0. From the estimate (4.48) and Fatou’s lemma,

2

/ liminfm dx < o0
0 n—oo Qn

and thus m(t,z) = 0 a.e. on the set {o(¢,z) = 0}. Denoting u = "} on the set {o(t,z) # 0}

and u = 0 on {o(t,z) = 0}, we get m = pu.

With the notion of u, we are now ready to prove the last part of the Lemma. Here,
the reasoning is again similar to the proof of Lemma 4.6 and the end of the previous Section,
however this time we will use (4.50) instead of the estimates for o'/*u. From a. e. convergence
of o, and g, uy,, on the set {o(t,x) # 0} we have

_ on(t, )un(t, x)

un(t, ) on(t.2)

—u(t,x) a. e

Then from Fatou’s lemma we also have
/ oF (|u]) dz :/ oF (Ju) dz < liminf/ onF(Jun]) dz < oo. (4.51)
Q {o(t,x)#0} e Ja

On the other hand, defining the truncation operator Ths as in (4.14), for (¢,z) such that
o(t,x) = 0 we get
vV Qn‘T]\/[(un)’ < M\/ On — 0= \/ETM(U)

In consequence /0, T (un) = /0T (u) a. e. for any M > 0. Since /0,1 (uy) is bounded
uniformly with respect to n in L>(0,T; L%), in particular it also converges in L2 ([0,T] x ).
Then, fixing a compact set V' C €0, we have

IV enun = veull 2 (o,r)x vy < [IVenTar(un) — v/0Tar ()l L2(o,1xv)

+ 2V on|un| L, 1> a2 0,715 v) + 2Vl L arll L2 (jo,11xv)-
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We estimate the last two terms as follows:

T 1 T
2 2 2
2T, oy dzdt < ——— 2101+ [, [2) dadt,
/O/VQ|U lun|>M AT ln(1+M2)/0 /QQW\ n(l+ |up|”) do

and analogously for the limit. Therefore using the estimates (4.50) and (4.51) we get

C
li S NN
msup [|y/entin = voullzz (o11x0) = In(1 + M?2)

and taking M — oo we get the desired convergence. O

In our case, let 7 = 79 = r; and (g,,u,) be the corresponding solution to (4.47). From
(4.31), (4.32) and (4.34), we have the required uniform estimates. Note that even though the
term ,/0Vu is defined only via (4.46), by virtue of Remark 4.24 it still provides the bound on
V(0w £2(0,7;L1), Wwhich is enough to apply Lemma 4.25. For the time regularity, from the
continuity equation, we have

||ath||W 1,3/2(T3) H\/ QTHLG(T" Hv QTUTHL2 T3 )

For 0;(o,u,), the term of the highest order is div (o,u, ® u,). Since for ¢ € W24(Q)

l}w@w®mwwm=—AWEw®ﬁw»wwmxmewmmwmm@

we get the bound
10 (orun)ll 20,7 —2.4/3) < C.

By Lemma 4.25, we can pass to the limit in all terms in the weak formulation of (4.47). In
the convective term we use strong convergence of |/0,u;. To pass to the limit in the viscous
stress tensor, we proceed analogously as in the previous limit passage and the limit is defined
via relation (4.46).

For the nonlocal term, similarly as before we use the fact that K € LP(T3) for p < 3/cv.
Since Vo, is bounded in L>°(0, T} L3/2), up to a subsequence we get

K +Vo, — Kp*Vo in L®(0,T;La1).

The convergence of 0,V (K, * o,) follows thus from the strong convergence of o,. For the rest
of the terms, we have

T

//u,.godxdt
0 JT%
T

| [ erlurPure dad
o JT3

Using the weak lower semicontinuity of the norm, Fatou’s lemma and (4.51), the limit
solution also satisfies the inequalities (4.31), (4.32) and (4.34) with ro =7 =x = 0.
Note that up to this point we obtained the solutions for initial conditions satisfying

T < Vrollvrourll 2oy 0l L2 o, %2 ) = 0

and

1/4
L (0,T;L3)

1/4 1/4
" <o I oM e |4 0 g |l oo 0,7:10) = 0-

1 ~
L=00r+ m—l and /0o,Luor1 € LOO(T%).
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However, Lemma 4.25 in particular provides the sequential stability of solutions. Repeating
the above reasoning, we are able to pass to the limit with m; — oo and with the truncation
of initial data. In conclusion, we constructed weak solutions to the system

Oro + div (ou) = 0,

4.52
O(ou) + div (ou ® u) — div (pDu) + oV (K, * p) =0, (4:52)

with the initial data (00,1, uo,1,) defined as in Section 4.3.1, satisfying the energy estimate

sup E(o,u / / o|Du|*dzdt < E(oo, ug) (4.53)
t€[0,T]
for )
Blow) = 5 [ oluf + ol o) do
L

the Bresch—Desjardins estimates

1 /T
sup/ IV/o|? dx—l—/ / o|Vu — VTu|?dz
: 8Jo Jm

te[0,T) J T3

< 3E(QO7L,U[)7L) + /3 ’V«/Q07L|2dl‘ + CTHQO,LHle(Ti) (4.54)
Ty

and

ti[%%](/w oF(u ar+ [ Pl = yete)o <y>dmdy>
<C+C (/T 00,0.F' (Juo,z) // F(|lz —y|)oo,r(x)00,1(y) dxdy) , (4.55)

where C depends on E(go 1, uo,1,) and the right hand side of (4.54).

4.6 Expansion of the torus

Having the solutions to (4.52) defined on the torus T3, together with estimates (4.53)—(4.55),
we can now pass to the limit with L — oo and in consequence obtain the solutions on the
whole space R3. Let (o, ur) be the solutions to (4.52) and by (41, 4z) we will denote (o, ur,)
extended by zero outside the torus. Using the properties of gg 7, described in Lemma 4.7, we
have the following estimates, uniform in L:

T ] T o
op L[ (@l v oot a) s [ [ gupigfasa
R3 0 J[-L,L)3

t€[0,7] 2
1
< 2/ ooluo|? + 00(K * 09) dz  (4.56)
RS
and
1 T
sup / VoLl dx+// or|Vay — V¥ag|2dz
tel0,T) J[-L,L]3 L,L)3

S/R 2oluol® + 00(K * go) dx+/ IV /eol*dx + LQHQOH1L/12R5 + OT|lool|71 (gsy-  (4.57)
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From Lemma 4.7 it also follows that the right hand sides of (4.53) and (4.54) are inde-
pendent of L. As a consequence, the constant C' in (4.55) does not depend on L as well, and
we get the uniform bound

sup (/RS orF(|ar|) dz + //R3><]R3 F(lz —yl)or(x)or(y) dxdy) <C (4.58)

te[0,T]

for C depending on T and g, uo.

Now, let V' C R3 be compact. Then V C [—L, L]? for sufficiently large L and the estimates
(4.56), (4.57) and (4.58) provide the uniform estimates on (91, @r) needed in Lemma 4.15 for
Q = V. Moreover, using analogous arguments as in the previous section,

||a§L||L00(07T;W—173/2(V))7 ||8t(éL7 aL)||L2(0,T;W214/3(V)) < C.

Therefore up to a subsequence we get the convergence from Lemma 4.15 for 2 = V. By the
arbitrary choice of V' and applying the diagonal method, we finally get

VoL — e in C0,T; Li,.),
or — o in C(0,T; L?O/CQ),

3/2)

loc
Vorur = ou in L% ([0,T] x R?).

Similarly from the Banach-Alaoglu theorem we get

oLty — ou in L2(0,T;L

VoLl e =" Vye in L=(0,T; L§,.).

Then for the term grpDuy the relation (4.46) again provides convergence in the sense of
distributions.

4.6.1 Convergence of the nonlocal term

The obtained convergence allows us to pass to the limit with (gr,%y) in the weak formulation
of (4.52) in all terms except the nonlocal one. Note that since K is unbounded, as L — oo
we lose any compactness properties of K. However, due to (4.56) we are able to show that

Lemma 4.26. We have
or(VKL *61) = o(VK x0) in L*([0,T] x R?)
Proof. First, note that from the strong convergence of gy, it follows that up to a subsequence
oL — o0 a e in [0,T] xR

From (4.56) in particular we have that

sup / / o1t )61 ()| — y2or(z — y) dady < C.
tef0,1]J JR3xR3
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Therefore by Fatou’s lemma

/ / olt, 2)olt,y)le — y|? dady
R3 xR3
< liminf // 31t 2)aL(t,y)le — yPdn(e —y) dedy < C. (4.59)
R3 xR3

L—oo

Since V,/or, is bounded in L>°(0,T; L

in consequence

2 ), we also have the bound on ||QL||L00(07T;L130C) and

or — o in C(0,T; Lﬁ)c)

for any 3/2 < p < 3.

Now fix R > 0 and denote by Bp the ball of radius R centered in zero. From the definition
of Ky, and the strong convergence of g7, we know that VK; — K and @L — 0 a. e. Moreover,
VK 1p, is uniformly bounded with respect to L in LP(R3) for p < = +1 Therefore we also
have

160(VELLp, * 0n)ll Loo(o,r500) < IVE L1y Lo @310l Foo (0. 712

for g < % and in consequence
or(VKplp, xor) = o(VKlp, o) in L'([0,T] x R%).

We will now estimate the rest. We have

I=

/R3 or (VKL (1 —1p,)*0or) dz

< / / 61(t, 2)ap(t, )| VKL (x — )| dady.
|lt—y|>R

Using the definition of K, and ¢, we have

1
VEL(e - y)| <onlz— ) (W Tl —y|)

1 1
#1Voue -~ (2 + gl o)

1 C 1 1
§|x_y|a+1+¢L(9€—y)’$—y!+L< _y|a+2m_y’2>_

|z
Therefore
_RO‘JF // r(t,z)or(t,y) dedy + // —y)or(t,x)or(t,y)|x —y| dady
RJXH@ |x— y|>R
1w | / 61, 2)o1 (¢, ) dedy + & / 61(t,2)a1 (1. )| — ylPdady.
LR R3xR3 L |x—y|>R

Let us now estimate all terms on the right hand side. For the first and the third term, we
have

_ N o B ) 2
/R3><]R3 or(t,x)or(t,y) dedy = |lerllzy sy = lleo.Llpr(rs ) < loollzrs)-
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For the second term, by (4.56) we get

/ / o1(x — 9)an(t,2)aw(t 2|z — | dedy
lz—y|>R

1 Q)

1 ~ ~
< R// o —y)or(t, 2)ort,y)|r — y|? dedy <
R3 xR3

Finally we estimate the last term using (4.58) as
[, auttn)antt e - yPL- o dody
R3X

1 C
< - 5 5 - < .

In consequence,

¢
Ln(l1+ R?)

Doing analogous estimates for K, using (4.59), we get

C
I<—
_R+

‘ J] ettty K~y dsdy

1
< 72 // o(t,x)o(t,y) dedy + // o(t,x)o(t,y)|x —y| dedy <
R3x3 oy >R

Combining the above estimates, we obtain

w1 Q)

T C
liminf// 0LV KL * 01, — oVK % o)| daedt < —.
0 JR3 R

L—oo
Finally, we end the proof by taking R — oc. Ul

Lemma 4.26 finishes the limit passage in the weak formulation of (4.52), in the sense of
Definition 4.1. In consequence, we obtain the weak solution to (4.1) on [0,7] x R3. Since
VoL — Vy/oin L*(0,T; L2 ),

loc

L—oo

/ |V/e|* dz = lim / Vy/0]* dz < lim liminf/ \Vv/or|? dz < O(T).
R3 R—oo B(O,R) R—oo B(O,R)

Doing analogously with ,/0Vu, we finally show that the solution satisfies the estimates (4.8),
(4.9) and (4.10).

4.6.2 Mass preservation
In the end, let us conclude that

Lemma 4.27. The total mass is conserved, i.e.

/ odx = / oo dz.
R3 R3
Proof. By Fatou’s lemma, we have

/ gd:cgliminf/ or, d:[;:liminf/ QLodxg/ oo dx.
R3 L—oo JRs L—oo T3 ’ R3
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On the other hand, for a smooth function ¢ such that ¢r(x) = 1for |x| < R/2, ¢r € (0,1)
and suppor C Bg, |Voég| < %, for L large enough we have

/, or(t,z)pr(z) dx :/ or(0,2)or(x) dx —|—/ or(t,z)ur(t,x) - Vogr(z) dx
R3 T3 T3
2/11‘3 0o,.(x)¢pr(x) do — %

L

Therefore

/ QdmZ/ odzx = lim ordx
R3 |z|<R L—=co Jiz1<r

C C
> i _ s =
2 lim - orofr dv — &= = /RS eo dv — —

and since R > is arbitrary, we obtain

/de:/ oo dz.
R3 R3
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Appendix A

Supplementary proofs for Chapter 2

A.1 Existence of solutions to (2.7)

—

We now prove that there exists a unique solution to (2.7), which completes the proof of
Theorem 2.4.

Lemma A.l. For oy € L=(T9) and any T > 0 there exists a unique global in time solution
(n,0) € L>([0,T] x T¢) x L>®([0,T] x T%)
to the equation (2.7) with the initial condition n(0,y) = 00(y)-

Proof. The proof relies on double application of the Banach fixed point theorem. First,
observe that for a fixed n € L>([0,T] x T%), there exists a unique o, satisfying

o=t~ i [ttt ess | t o(s.)ds ) dy (A1)

Q={o e 10,71 x T : o]l cr < Ip(n) v}

To see that, take

and ¥: Qg — Qo such that

¥(o) =)~ 2 [ plntee [ ot as) o
([ e ) ([ o) a0

|']Td|/ (t,y)e P °°T/ o1(s,y) — o2(s, y)|dsdy

< Ctllor — 02||cc,r-

Then

W) = (o) < o [ pn(t.0)

Hence taking 7 such that C'7 < 1, from the Banach fixed point theorem we get the existence
of a unique solution on the interval [0, 7]. However, as 7 depends only on ||p(n)||cc,r and T,
we are able to extend the solution to (A.1) to the whole interval 0,7].

Now define ®: L>([0,T] x T¢) — L>([0,T] x T%) as

(1) = ao(y) - / n(s,9)o (s, y)ds,
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where o is given by (A.1). Similarly as before, we want to obtain the estimate

1@ (m) = @(n2)l[o0,r < OTllm = 72]00,7

and choose 7 such that C7 < 1 and ®: {1 : ||n]|ec,r <7} = {n : [|7]lco,r <7} is a contraction.
We have

t t t
!‘1’(771)—‘1’(772)|=' / Mot — mosds| < / i — mallonlds + / nalo — o /ds.
0 0 0

The first integral can be bounded by Ct||m — n2|/c0,r, S0 to complete the desired estimate we
need to estimate the difference of o1 and o9. We have

o1 — oo < [p(m) = p(n2)| + Hp(m)}or = {P(12)} o

As the derivative of p is bounded on an interval [0,7], we can estimate the first element by
Cllm — n2]|ec- Moreover,

T, — )bl = | [ ) s ([ t s = ( [ t oads ) dy

< /eXp </Ot 01d8> lp(m) — p(n2)|dy + /p(nz) exp (/Ot 01d5> — exp </0t 02d8> ‘ dy

t
< Clim = mlloe + C / / (01 — 09)ds
0

< Clm —m2lloe + Ct sup {p(n1)}or — {P(02)}os -
0<s<t

dy

Hence for 7 small enough, we get
sup [{p(m)}o, = {P(n2)}on| < C sup [Im — e,
o<t<r o<t<r

which gives us the desired estimate and ends the proof. O

A.2 Estimate for the inverse flows.

Here we prove the useful lemma for estimating the difference of the inverse flows y; = :Ci_l (t,-)
by the difference of vector fields generating 1, xo.

Lemma A.2. Consider two ordinary differential equations with the same initial value:

1 =wui(t,x1)
Zo = ua(t, x2)
71(0) = 22(0) = v,

where uy,ug € C(0,T;WH°). Let y1(t,z) and y2(t,x) be the inversions of x1 and xo with

respect to y. Then for sufficiently small t

192, ) = y2(t,)lloo < Ctllur — ual|oor,

where C = C (||Vui|oo1)-
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Proof. Let M = ||Vui|loor. We have
lur(t, z1) — ua(t, z2)| < ua(t, x1) — ua(t, x2)| + |ui(t, v2) — u2(t, z2)|
< | Vur|lsolz1 — @2| + [Jur — u2l[oo-

Substituting it into the difference of x1 and x2, we get
t
o1(t,9) — ()| < [ fua(s,1(5,9)) — s, ma(s. ) s
0

t t
< / IV locl@1 (5, ) — @a(s, )| ds + / Jur — uallocds.
0 0

Hence from the Gronwall’s lemma,

t t t S
Jor(t,) 2o < [ s~ vallots + [ 191 s ( / HVuﬂloodT> [~ walctras
0 0 s 0

t
< lug — uz\oo;f/ 14+ MeMiE=5)g ds
0

1

= M (eMt — 1) ||’LL1 — U2||OO’T

< 2t||luy — uglloo,r

for Mt < In2, where we use the fact that e/ — 1 < 26 for § < In2. Analogously, we obtain
the estimate

[z1(t, y1) — z2(t, y2)| < |z1(ty1) — z1(t y2)| + |21 (t y2) — 22(t, y2)|
8.7}1

3y lyr — y2| + |21 — 22|00

S ‘

o0

t
< exp ( / Hw1||oods) 1 — ol + 20l — uslloorr
0

Combining the above estimates, we get
t
|y1(ta IL‘) - y2(t7$)| < / |U1(579€1(8,y1(ta :E))) - UQ(S,$2(S,y2(t,$)))|dS

0
t

< / IVur|loo|z1 (s, y1(E, 7)) — w2(s, y2(t, )| + [lur — uzlocds
0
t s

< [ 1vuslens ([ 19mladr) n(t.0) - .0l
0 0

t t
4 / IV unloc2sllur — ualloords + / s — ualloods
0 0
< (€M = 1) [ya(t, ) — yalt, @)| + (t+ Mt*)|Jur — vzl oo o 7y me) -

For small ¢ we have eM! < 2 and therefore

t 4+ Mt?
ly1(t, ) — y2(t, x)| < m”ul — u2|loor < Ctllur — uzlloo,r

what we needed to prove. O
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Appendix B

Properties of the BMO space

We present here the useful properties of the BM O functions, which can be found for example
in [97] and [102].
Definition B.1. A function f € L'(Q) belongs to space of bounded mean oscillation BMO(L2)
uf
I Flls800 = sup
BMO = AT
Qca Q|

where the supremum is taken over all cubes in §Q.

/ I — {Feldz < oo,
Q

Note that || - ||[Bao is not a norm, as || f||ao = 0 for f constant. However, we can equip
the space BMO(2) with the norm

Il + I - llBMoO

and then it becomes the Banach space.
It is straightforward from the definition that the standard mollification is bounded in
BMO:

Proposition B.2. For f € BMO and ks the standard mollifier we have

1f * ksl Bmo < || fllBmo-
One of the important tools concerning the BM O spaces is the John-Nirenberg inequality:
Lemma B.3 (John-Nirenberg). There exist constants c1,co > 0 such that for any cube Q C
and f € BMO(Q)

I{»’EEQ:If—{f}Q>)\}|S61eXp< A) Ql.

N flsrmo

The useful applications of the John-Nirenberg inequality are the following:
Corollary B.4. Let f € BMO(?). Then

1. feL? () forany 1 <p < oo.

loc

2. sup /Qexp (W{f}@‘) dz < oo.

QcQ IfllBaro

B.1 The logarithmic inequality

We recall here the inequality from [80]:
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Lemma B.5. Let f € BMO(RY) with compact support and g € L*(R%) N L>°(R?). Then

’/Rdfgda:

An analogous inequality was also recently shown in [38] for f in exponential Orlicz space
L®*P ingtead of BMO.

It turns out that after slight modifications, the similar inequality holds for g € LI(T¢) for
sufficiently large q.

< CllflIsmollgller (I llgllzi | +In(e + llgllz)).

Lemma B.6. Let f € BMO(T?) and g € LI(T) for some q > 2. Then

’/Tdfgdx

Proof: Assume [ gdz = 0. Then g € H! and from duality of H! and BMO we have

’/fgdfv

By the characterization of H! (see e.g. paragraph I1L.4 in [97]) we can write ||g|/z as

<C||fllBrollgll

(B.1)
q—2
< (| flgllp:| + (1 + llgllze) + (1 + gl Dllgl Lz )-

< [IflBarollgllzr-

d

lgllzr = llgllzs + D | Ruglls,
k=1

—i%]—'(g). As the Riesz transform is

an operator of weak-type (1,1) and strong-type (p,p), we can apply Proposition V.3.2. from
[102] and obtain

where Ry is the Riesz transform given as F(Rig)

nmwﬁsc+o/m@mﬂwunm. (B.2)

By scaling, we can rewrite (B.2) as

IRiglls < A+C [ lgGo)] ' (gta)|/3)da

for any A > 0. For |g| > A, we have In(]g|/\) = In|g| — In \. Then

!g| |g|‘
In [ —222 | 4 In(1 + ||g]|L In | —2=22 )1
<1+nmuq 1+ lgllze) T+ gloe

Now assume A < 1+ ||g|/zs and take z such that A\ < |g(z)| < w. Then

(5t ) | < 2 ()
T+ gl T+ ol

[In|g(x)] < 2In(1 + [lgllze) + [0 Al.

<In(1+lgllze) +

[ (gl y50)] =

and in consequence
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Choose A = ||g||1. Then

+
/{ggmw;mﬂ} ol llgl/Ade = /{|g|gu+gw} 9121+ llgllze) + [ n gl ) de
< lgllzr (1 + |gllze) + [1n gl 1])

What is left is the case |g(z)| > w. From the Chebyshev inequality, we have

ot S = ()

Therefore from the Hélder inequality

1/2
gl
ot (ol s < LAE ([ g iagglintar)

Algb <1+ngJLq>2 }

Using the fact that both [ |g|?In|g|dz and [ |g|?In? |g|dz are bounded by C(1+||g||§) for any
q > 2, we obtain

/ 192 In(lg]/A)de = / 92102 |gldz — 21n A / 921 |gldz + [In AP / g2

< C(1+lgl 7)1 +2[In A + [In A]%)
= C(1+ llgla) (1 + [ )%

1/2 —2 .. .
As (1+15J2 ~ 14 sq7, after combining the estimates we get

q=2
|9/ I (lg|/A)dz < Cllgllp (1 + [ flgll L)1+ llgll i ).

A|g|> <1+”9)|\‘L11)2 }

Putting all terms together,

q=2
[1Begllr < Cligll (1 +In(1+ [gllza) + [Inigllzr| + (T + [T flgll 2 Dllgll L2 >

and therefore we obtain inequality (B.1).

If [gdx # 0, then we can apply this inequality to g(z) = g(x) — ﬁ J gdz and use the fact

that the LP norms of g are bounded by norms of g up to a constant. O
The same result holds if we replace f by a composition of f and the flow z(¢,y):

Corollary B.7. If f and g salisfy assumptions of Lemma B.6 and z(t,y) is the reqular
Lagrangian flow of some u(t, z) with bounded divergence, then

‘ / f(x(t,y»g(y)dy' <ClfIssrollglln

q=2
x (| lgllpe| +In(e + [lgllze) + (1 + [ llgll s Dllgll 23 )-

Proof: We will first approximate v with smooth vector fields, then make the change of
variables and apply Lemma B.6, and at the end show the convergence to the non-smooth
case.
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Let J(t,y) be the Jacobian of x. By the properties of Lagrangian flows we have

T
e b < J(t,y) < e, where L = / || diva||sodt.
0

Now let us approximate u by convolution, defining u. as a convolution with standard convo-
lution kernels in time and space. Then if x. is a flow of u., then z.(t,-) is the diffeomorphism
and the Jacobian J. of z. still satisfies the bounds

et < J(ty) < et

By the change of variables, we have

/f(ws(t,y y)dy = /f tyZ: tml)))dw,

where y.(t,-) = z-(t,-)~!. Applying Lemma B.6, we obtain inequality (B.1) but with L' and
L% norms of % instead of g. However, changing the variables again and using the
bounds on J;, we obtain for any p > 1

[ It = [l P it ay < 05 [lgPay

(t,ye(t,z))P

and we are done.
Now we will show that indeed

/f(fcs(if,y))g(y)dy—> /f(:ﬂ(t,y))g(y)dy with & — 0. (B.3)

By the stability of the flow, we have the pointwise convergence z.(t,y) — x(t,y) up to a
subsequence. If f € C°°(T9), then (B.3) holds by the dominated convergence theorem. Let
us approximate f by fs = f % ks, where kg is again the standard mollifier. As f € LP for
p = ¢, we have

‘/(fa(w(t,y)) - f(l‘(t,y))g(y)dy‘ < |fs(2(t,-)) = F2(@, )bl
and by the bounds on J(¢,y),
/Ifs(w(t, y)) — fla(t,y)P de < eP* / |[fs(x) = f(2)P dz — 0,
therefore we have the desired convergence. Moreover, by the Proposition B.2 the norms

Il fs|Baro in the right hand side of (B.1) are bounded by || f||gao, which ends the proof of
the Corollary. O
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Appendix C

Supplementary proofs and lemmas for
Chapter 4

C.1 Proof of Bresch-Desjardins estimates

Below we show how to derive the inequality (4.23). We need to compute

d

1 o K _
G L (Getut V10wl 4 o(ux 0+ SIVa0 4 519V + 107 ) as
t Jos \2 2 2 7

(C.1)

d d d
:E(g,u)+/ Qu~V10ggd:B+/ 0|V log o|? dz.

For the first term on the right hand side of (C.1), we use the energy inequality (4.22). For
the second term, we have

/ Qu'atVIOggdx:—/
T3 T3

1 1
= / —(div (ou))? dz — ¢ —Apdiv (pu) dz
T3 @ T @

div (Qu)latg dz
%
(C.2)
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and from the momentum equation

Gt(gu)-Vlodex:—/ div(gu@u)-VIoggde‘+/ div (¢Du) - Vlog o dz
3 3

3
T T T

A\f
— V(KL*Q)-Vloggdx+/<;/ oV -Vlog o dz
3 T3 Ve

—ro/ u-Vloggda:—rl/ olu|?u - Vlog o dz
T3 T3

L L

L

—€ VQ-Vu-Vloggdm—y/ A?u-Viogp
T3 T3

—i—n/ V,Q—G-Vloggdx—i—é/ oV A3 - Vlog o da

) )

:—/ div(gu@u)-Vloggdx—/ oDu : V?1og o dx
T3, T3,

- V(KL*Q)-Vloggdm—;/ 0|V*log o|* dx
T3 )

1
—7“0/ u-V@dx—rl/ lul|?u - Vo dz
™ 0 T3

L

—€ V,Q-VU-Vloggdm—y/ Au - VAlog g dx
) o)

2 .
—377/ Vo 3|2 dm—é/ |A%p|? dz.
T3 T3

Note that

1
— /1?3 oDu : VZlog o da = — 5 Z /11‘3 0(0z;uj + Op;u;)Or,z; log 0 dx
g —
_ Z / 25 (002,15) 0z, 10g 0 + O, (001, 1) 0z ; log Q) dz

= Vu:(Vg@Vlogg)dx—l—/ oVdivu - Viog o do

3 3
TL TL

= Vu: (Vo® Vlog ) do — / Apdivu dz,
11\3 T3
L L
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which gives

8t(gu)-Vloggd:L‘:—/ div(gu@u)'VIOggdm+/ Vu: (Vo Vliog ) dz
3 T%

3
TL TL

— Apdivu dx

T3

— V(KL*Q)-Vloggdx—;/ 0|V*log o|* dx
)

T
1
u-—Vp dxrl/ lul*u - Vo dz
0 T3

To/
3
TL L

—€ VQ-Vu-Vloggdx—u/ Au - VAlogp dx
)

T3
2 —312 2 12
— 31/ Vo™|"dz —6 | |A%|® du.
T T3,

To compute the last term on the right hand side of (C.1), we see that from the continuity
equation

1 2
3t\V 0g ¢|

5 =Vlogo-9;Vlogo

1
=V logp - V(—div ((log o)u) + (log o — 1)divu + EEAQ)
= —u-V?logo-Vlogo— Vu: (Vlogo® Vlogg) — Vlog o - Vdivu

1
+eVlogp -V <QAQ> .

The above calculations are justified, since uw € L?(0,T;H?), o € L>*(0,T; H?) and p is
bounded away from zero. Using the above calculations, we derive

d 1 2 1 2 1 2
/ gi‘v o8 0 dz = Q@tilv og 0| dx—/ [V1og o div (ou)dx
dt T 2 ']I'?i 2 T 2

1 2
+E/ 7\V 0z ¢| Ap dr
T 2

7 7
3

L

:—/ gu-Vzlogg-Vlogg)dm—/
T3 T

1 2

—/ QVlogg-Vdivudx—i-/ Qu-dem
T3 T3 2

L

1 log o|?
—1—5/ QVlogg-V<Ag) dx—i—e/ MAgdw
T 0 T 2

3
L
/Ti

Ao|? 1 2
™ 0 ™ 2

oVu : (Vlog o ® Vlog o) dx
3
L

oVu : (Vlog o ® Vlog o)dz + / Apdivu dx
T3

3
L

Since
Vo-Vlog o= o|Vlogof?
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and
Vo ® Vlogp = pVlogo® Vliog o,

combining (C.2), (C.3) and (C.4), we get

d V log o2 1 1
/ QM + ou - Vlog odz :/ ~(div (ou))? dz — —Apdiv (ou) dz
dt Jrs © 2 ™ 0 T3 0

—/ div (ou ® u) - Vlog o dx
T3

2 1 2
_E/ Y / [Viogo” \ 4,
™ 0 T3 2

— V(KL*Q)-Vloggdx—g/ 0|V?log o dz
o) T3,

1
—ro/ u-Vde—rl/ lul?u - Vo dx
™ 0 T3

—€ Vo-Vu-Vilogpdx —v Au - VAlog e dx
T3 T3

2 _
—3n/ Vo 3|2 dx—é/ |A2p|? du.
T3 T3

We have the relations

) 1
—Vlog - div(ou®@u) = _5 Z &Cig(&;j ouuj + 00y uiuj + Quiaxjuj>

1
- ((u -Vo)% + ou - (VuVo) + odiv uu - Vg)

and
1 1
E(div (ou))? = p (Qz(div u)? + 2odivun - Vo + (u - Vg)z),
therefore
1
—Vlogo-div (ou ® u) + E(div (ou))? dz = divuu - Vo —u - (VuVo) + o(divu)? dz
T3 T3

3
i YTt

Subtracting [rs o/Dul? dz, we get
L

Oz, Ui + Og,u Oz ;ui — Oz u
/ QZ < (JJ) 4 8%%8%%) de = /T3 Z <23) dz
ij

2

1
:—/ o|Vu — VTu|? dz.
4 Tiz
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Combining the above calculations with (4.22) and integrating in time, we finally obtain

3

I T
+// Q|VU—VTu2d:Udt—|—1/// |Au|2dxdt
4 Jo T2 0 JT3
T T
+7’0// Juf? dxdt+r1// olul* dz dt
0JT3 0.J13

1 T T A 2 T
Lt +5)// g\v21og@|2dxdt+a// |2l d:c+/ V(K7 % 0)- Vo de
2 0JT3 oJ13 @ 0JT3

2
<Epp(00,uo) + 3T (/3 20 dl’)
TL

T log o|? 1
+ 5/ / (V@ -Vu-Vlogo+ Agm —div (gu)Ag) dz
0J13 2 0

T T Tr w-Vo
—y/ Au-VAloggdx—rl// lu|?uV o dx—m// dx
0Jr3 013 0Jr @

1
T3

C.2 Weak Gronwall’s Lemma

2 T T
EBD(Q,U)+77(1+5)// ]V,Q_3|2dxdt+6(1+5)// |A2p[2dzdt
0JT% 0 JT%

for

2
1) K _
+ o(Kp, * o) + 5|VAg12 + §yv\/§y2 + gg 6) dz.

1
u+—Vo
1%

Below, let us present the weak version of Gronwall’s Lemma, which becomes useful in Section
4.4 of Chapter 4:

Lemma C.1 (Weak version of Gronwall’s lemma). Let f € L*(0,T) satisfy

T T
- / £(s)f(s)ds < / £(s)(af(s) + b(s))ds
0 0

for any € € C§°(0,T), € >0, a constant a > 0 and nonnegative function b € L1(0,T). Then
for almost all 0 < s <t <T we have

t
F(t) < f(s)e™t=9) 4 / e®=7p(7) dr

s

Proof. Let f. = f*n., where 7. is a standard mollifier. Fix ¢ € (0,7") and let {(s) = n.(t —s).
Then f satisfies

T T T
/0 F(s)(t - 5)ds < a /O F(s)ne(t — s)ds + /0 b(s)ne(t — 5) ds,

which is equivalent to
fé(t) < afz—:(t) + be(t)'

Then from Gronwall inequality on f., we get

t
J(t) < fo(s)ent9) 4 / e, (r)dr.
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for any 0 < s <t < T. Choosing s,t such that f. — f pointwise in s,¢ and passing to the
limit with € — 0, we get

t
f(t) < f(s)e®t=9) 4 / e“="p(7)dr.
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