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Abstract

The topic of the thesis is focused on di�erent compactness methods used to construct weak
solutions to equations describing the dynamics of viscous compressible �uids. The problems
considered in the dissertation include the question of existence of solutions to three di�erent
systems. The �rst part concerns the compressible Stokes system, where existence and unique-
ness of weak solutions are obtained. The structure of this equation allows to perform the
analysis at the level of the Lagrangian coordinates. This brings our original problem to the
investigation of the properties of the transformation from the Lagrangian to the Eulerian co-
ordinates. The existence of such transformation is shown using the Crippa�De Lellis stability
results for the transport equation. In order to show uniqueness, we improve the logarithmic
inequality for BMO functions, developed by Mucha and Rusin (2008).

The second outcome of the thesis consists of the existence result for the special case of
a non-Newtonian �uid. It is shown that there exists a weak solution to the compressible
non-Newtonian Stokes system for the case where the shear viscosity is a singular function of a
shear rate. Due to the nonlinear structure of the stress tensor, the previous approach cannot
be applied. Instead, using the Calderón�Zygmund estimates we extract the BMO regularity
for the quantity div u− p(ϱ), where u is a velocity vector and p(ϱ) denotes the pressure. This
information allows to adapt the compactness method, developed by Feireisl, Liao and Malék
(2015) for a di�erent class of non-Newtonian �uids.

The last result concerns the compressible, pressureless Navier�Stokes equations with the
nonlocal attraction�repulsion forces. We consider the case of the density-dependent viscosity,
which causes the degeneracy in the stress tensor. The higher regularity of the density are
obtained via the Bresch�Desjardins estimates. We �rst obtain a weak solution to the system
on a torus, with a suitable truncation of the nonlocal term, and then extend the spatial domain
to get the result in the whole space. The construction of solutions follows the approach of
Vasseur and Yu (2016). In order to show the compactness of solutions, we obtain the Mellet�
Vasseur estimates, which provide the uniform integrability of a certain logarithmic function of
the velocity. To incorporate the nonlocal term, we apply the generalized version of the Young
inequality for convex functions.

Keywords: weak solutions, compressible �ow, Stokes equation, Navier�Stokes equation,
non-Newtonian �uid, nonlocal interaction forces, density-dependent viscosity





Streszczenie

Tematyka pracy doktorskiej skupia si¦ na ró»nych metodach zwarto±ciowych, stosowanych do
konstrukcji sªabych rozwi¡za« równa« opisuj¡cych lepkie pªyny ±ci±liwe. Zagadnienia rozpa-
trywane w rozprawie obejmuj¡ kwesti¦ istnienia rozwi¡za« dla trzech ró»nych ukªadów rów-
na«. Pierwszy otrzymany wynik dotyczy ±ci±liwego równania Stokesa, dla którego pokazane
s¡ istnienie oraz jednoznaczno±¢ sªabych rozwi¡za«. Struktura tego równania pozwala na
przeprowadzenie analizy na poziomie wspóªrz¦dnych Lagrange'a. Sprowadza to nasz pier-
wotny problem do badania wªa±ciwo±ci transformacji ze wspóªrz¦dnych Lagrange'a do Eulera.
Istnienie takiego przeksztaªcenia zostaªo pokazane wykorzystuj¡c rezultaty Crippy i De Lellisa
dotycz¡ce stabilno±ci dla równania transportu. W celu pokazania jednoznaczno±ci, korzys-
tamy z logarytmicznej nierówno±ci dla funkcji z przestrzeni BMO opracowanej przez Much¦
i Rusina (2008), osªabiaj¡c jednocze±nie jej zaªo»enia.

Drugi wynik otrzymany w dysertacji dotyczy istnienia rozwi¡za« dla szczególnego przy-
padku pªynu nienewtonowskiego. Pokazujemy istnienie sªabych rozwi¡za« ±ci±liwego równania
Stokesa dla cieczy, w której lepko±¢ jest singularn¡ funkcj¡ szybko±ci ±cinania. Ze wzgl¦du na
nieliniow¡ struktur¦ tensora napr¦»e«, metoda opisana powy»ej nie mo»e by¢ zastosowana.
Zamiast tego, przy u»yciu teorii Calderóna�Zygmunda dla operatorów singularnych, pokazu-
jemy ograniczono±¢ w przestrzeni BMO dla wyra»enia div u−p(ϱ), gdzie u to wektor pr¦dko±ci
a p(ϱ) oznacza ci±nienie. Otrzymana regularno±¢ pozwala na zaadaptowanie metody zwarto±-
ciowej, opracowanej przez przez Feireisla, Liao i Malka (2015) w kontek±cie innego rodzaju
pªynów nienewtonowskich.

Ostatnia cz¦±¢ pracy pochyla si¦ nad ±ci±liwym, bezci±nieniowym równaniem Naviera�
Stokesa z nielokalnymi siªami przyci¡gania-odpychania. Rozwa»amy tu przypadek lepko±ci
zale»nej od g¦sto±ci pªynu, co powoduje degeneracj¦ w tensorze napr¦»e«. Za pomoc¡ os-
zacowa« Brescha�Desjardina otrzymujemy wy»sz¡ regularno±¢ g¦sto±ci. W pierwszym kroku
uzyskujemy sªabe rozwi¡zanie na torusie z odpowiednio dostosowanym nielokalnym czªonem,
a nast¦pnie rozszerzamy dziedzin¦ i w konsekwencji dostajemy wynik na caªej przestrzeni.
Konstrukcja rozwi¡za« korzysta z podej±cia Vasseura i Yu (2016). W celu pokazania zwarto±ci,
otrzymujemy oszacowania Melleta�Vasseura, które zapewniaj¡ jednostajn¡ caªkowalno±¢ pewnej
logarytmicznej funkcji pr¦dko±ci. Nielokalny czªon jest oszacowany za pomoc¡ uogólnionej
nierówno±ci Younga dla funkcji wypukªych.

Sªowa kluczowe: sªabe rozwi¡zania, przepªyw ±ci±liwy, równanie Stokesa, równanie
Naviera�Stokesa, pªyn nienewtonowski, nielokalne siªy interakcji, lepko±¢ zale»na od g¦sto±ci
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Chapter 1

Introduction

1.1 Description of the problem and overview of the theory

The behaviour of the compressible, isothermal �uid is described by a system of Partial Di�er-
ential Equations (PDEs), for the evolution of the density of the �uid ϱ and the velocity �eld
u. The �rst equation � called the continuity equation � provides the conservation of mass:

∂tϱ+ div (ϱu) = 0. (1.1)

In the barotropic case, it is coupled with the momentum equation

∂t(ϱu) + div (ϱu⊗ u)− div S(Du) +∇p(ϱ) = 0. (1.2)

Above, the function p(ϱ) denotes the pressure and S is the viscous stress tensor, depending
on the symmetric gradient of u, Du = 1

2(∇u+∇Tu).
The system (1.1)�(1.2) has several modi�cations, depending on further properties of the

�uid. In the case of a Newtonian �uid it becomes the classical Navier-Stokes equations with
the linear stress tensor given by

S(Du) = µDu+ λdiv uI, (1.3)

where I is an identity matrix, for some viscosity coe�cients µ, λ. Some other considered
models involve the Euler equations, used to model the ideal, inviscid gas. In that case, the
stress tensor disappears and the momentum equation has the form

∂t(ϱu) + div (ϱu⊗ u) +∇p(ϱ) = 0.

One can also mention the Navier-Stokes-Fourier system, which covers the case of non-constant
temperature.

The existence results for these types of systems divide into two categories. Concerning
regular solutions, satisfying the equation in the ponitwise sense, one can show only local
existence, meaning that either the solution exists only on some �nite time interval, or the
initial conditions has to be close to the stationary state. The early results in this topic
were obtained in the 1960s and 1970s in particular by Nash [82] (for the system including
dependence of the temperature) and Solonnikov [95]. After that, this problem was thoroughly
examined with di�erent types of boundary conditions in the frameworks of di�erent functional
spaces for example by Matsumura and Nishida [74], Tani [101], Mucha, Valli, Zaj¡czkowski
[77, 104], Danchin [37] and many others. Since it is not the objective of this thesis, we cite
only a small part of the extensive literature on this topic. An illustrative example of a solution
with a �nite time blow-up was also shown by Vaigant in [103].

In the case of weak solutions, the picture is very di�erent. Since the solution satis�es
the equation only in the distributional sense, the required conditions on its regularity are
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relaxed. Because of that, one can usually expect the global in time existence for arbitrarily
large initial data. On the other hand, the low regularity of solutions becomes problematic
in the construction, in particular due to the nonlinear terms. In this theory, the signi�cant
breakthrough was due to Lions [67] and Feireisl [48], who constructed weak solutions to
compressible Navier-Stokes equations for the pressure in the form p(ϱ) = ϱγ for γ > 9/5
(in three space dimensions) and γ > 3/2 respectively. This approach was then subsequently
applied to other related systems of equations and is a core for the present studies on this
topic. Some of the modi�cations include generalization of the pressure, in particular allowing
the lack of monotonicity on a �nite interval [47]. Another related results were obtained for
heat conducting �uids for example by Feireisl, Mucha, Novotný and Pokorný [49, 50]. For the
steady case we refer to series of papers by Mucha and Pokorný [79, 92, 76].

The way of showing existence of weak solutions involves �rst introducing an approximated
equation, usually by adding suitable regularizing terms, and then applying chosen �xed point
theorem. One of the widely used strategies is based on adding the dissipation ε∆ϱ in the
continuity equation (1.1). It changes the structure of the equation from hyperbolic into a
parabolic one and greatly improves the regularity of the density. For a given u, it can be
solved using the Galerkin approximation. In the case of the classical Navier-Stokes equations
with linear stress tensor (1.3), this is a starting point of the construction. It is based on a �xed
point argument on a velocity �eld, where u is again obtained by the Galerkin method from the
momentum equation. For a more detailed description of this approach we refer to Chapters
7.6-7.7 in the book of Novotný and �traskraba [85]. Another regularization technique involves
molli�cation of the velocity in the continuity equation. In the context of the Navier-Stokes
equations it was used recently in [29].

The next step is to show that the approximating sequence converges, and that the limit
satis�es the target system of equations. This is usually the biggest challenge. Using the
Banach-Alaoglu theorem, one can show weak compactness of the sequence of approximate
solutions in some suitable spaces. However, it is not enough to pass to the limit in the nonlinear
terms. The regularity of solutions is also too low to apply the well-known compactness tools
like Aubin-Lions lemma. Instead, one has to either �nd a way to derive some better estimates
for the solutions, or apply more complex tools to show the desired convergence. As mentioned
earlier, in the context of classical Navier-Stokes equations (1.1)-(1.3) this problem was resolved
by Lions in [67]and Feireisl in [48]. The strong convergence of the sequence of approximate
densities, necessary to pass to the limit in the nonlinear pressure term, is deduced from the
compactness of the e�ective viscous �ux

(2µ+ λ)div u− p(ϱ).

It is observed that this quantity has better compactness properties than div u and the pressure
separately. Denoting by ϱ and u the weak limits of the approximate sequence, one can show
that

ϱp(ϱ)− (2µ+ λ)ϱdiv u = ϱp(ϱ)− (2µ+ λ)ϱdiv u,

where by (·) we denote the weak limit of the respective sequence. From that relation it
is concluded that ϱ log ϱ = ϱ log ϱ, and in consequence the sequence of densities converges
strongly. A di�erent approach to show strong convergence of the density sequence, based on
the Kolmogorov compactness criterion, was recently implemented by D. Bresch & P.-E. Jabin
in [10], which allowed to treat non-monotone pressure term and anisotropy in the viscous
stress tensor. The main idea of this approach is that the compactness of the density sequence
in Lp is equivalent to the fact that

lim sup
k→∞

sup
t≥0

1

∥Kh∥L1

∫∫
Ω×Ω

Kh(x− y)|ϱ(t, x)− ϱ(t, y)|pdxdy → 0
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as h→ 0 for a suitably chosen family of kernels Kh.
The crucial feature in the above methods is the W 1,2 regularity of the density, coming

from the viscous stress tensor. Because of that, in the context of di�erent types of equations
and complex �uids, the question of existence of global weak solutions still remains open. An
important example is the Euler equation, for which there are no global existence results so far
(in the multidimensional case). On the other hand, it turns out that the system is ill-posed,
i. e. admits in�nitely many solutions (see e. g. [30, 31]). Another problem are the systems
with additional nonlinearities in viscous stress tensor, which do not cooperate with the Lions�
Feireisl technique. This is for example the case for the non-Newtonian �uids, which is one of
the topic of this thesis.

1.2 Main results of the thesis

The main objective of the dissertation is to investigate di�erent methods for showing global
existence of weak solutions to equations emerging from modelling of the compressible �uids.
The thesis consists of three main results, each oriented around weak solutions to distinct
equations and their properties. Each of the considered systems involve completely di�erent
methods of analysis.

The �rst result, presented in Chapter 2 and published in [100], concerns the compressible
Stokes system

∂tϱ+ div (ϱu) = 0,

−µ∆u− (µ+ λ)∇div u+∇p(ϱ) = 0,
(1.4)

being the approximation of the Navier-Stokes system (1.1)-(1.3) in the low Reynolds number
regime, where the viscous forces dominate the convective ones. Because of that, the term
∂t(ϱu)+div (ϱu⊗u) (which is related to the material derivative Du

Dt = ut+u ·∇u) is neglected
in the momentum equation. The spacial domain is the torus and as a initial condition we put
ϱ|t=0

= ϱ0 ∈ L∞(Td). The main result concerns the existence and uniqueness of solutions. It
is shown that if the pressure satisfy

0 ≤ p(ϱ) ≤ CP (ϱ) := C

(
ϱ

∫ ϱ

ϱ̄

p(s)

s2
ds+ C1ϱ+ C2

)
for some C,C1, C2, then there exists a unique global in time weak solution to (1.4), satisfying

ϱ, u ∈ L∞([0,∞)× Td), rotu = 0,

and
∇u ∈ L∞([0,∞);BMO), div u ∈ L∞([0,∞)× Td).

Although the existence of weak solutions to system (1.4) has been already established (see
Chapter 8 in the book of Lions [67]), the method we use allows to additionally show the L∞

bound on the density and uniqueness of solutions, which were not established before. Another
feature is the required condition on the pressure. It forms a very general class of admissible
functions, which in particular can be non-monotone and dropping to zero for arbitrary large
arguments.

The main tool to treat the equation is to rewrite the system in the Lagrangian coordinates.
As rotu = 0, by taking the divergence of the momentum equation the system (1.4) is equivalent
to

∂tϱ+ div (ϱu) = 0,

div u = p(ϱ)− 1

Td

∫
Td

p(ϱ) dx.
(1.5)
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Then we solve the continuity equation using the method of characteristics. By putting
η(t, y) = ϱ(t, x(t, y)) and σ(t, y) = div u(t, x(t, y)) for

ẋ(t, y) = u(t, x(t, y)), x(0, y) = y, (1.6)

we rewrite (1.5) again as

∂tη + ησ = 0,

σ = p(η)− 1

Td

∫
Td

p(η)e
∫ t
0 σ(s,·) ds dy.

For this new system, a simple ODE-like argument allows to show the L∞ bound for the density
(roughy speaking, it follows from the fact that the time derivative of η has to be negative
when p(η) becomes too large). By the elliptic estimates and the irrotational assumption on
u, the L∞ bound on div u also provides ∇u ∈ L∞(0, T ;BMO).

The most interesting and novel part of this result is the uniqueness of solutions. It is
shown that the transformation to Lagrangian coordinates is reversible. In other words, for a
given σ there exists a unique solution u to equation

div u(t, x(t, y)) = σ(t, y) (1.7)

for x being the �ow generated by u, de�ned as in (1.6). Note that if u was assumed to be
Lipschitz continuous, this question would be obvious, since the �ow generated by u would be
invertible, the inverse being also Lipschitz continuous. In our case the situation becomes more
complicated, nevertheless the improved BMO regularity for ∇u turns out to be su�cient.
The strategy is to take two solutions and show that they coincide. It is done by de�ning
a certain weighted �ow between two velocities. For u1, u2 ∈ L∞([0, T ] × Td), ∇u1,∇u2 ∈
L∞(0, T ;BMO) and s ∈ [0, 1] we de�ne xs by

ẋs = su1(t, xs) + (1− s)u2(t, xs), xs(0, y) = y.

One can show that

∥u1(t, ·)− u2(t, ·)∥L2(Td) ≤ C

∫ 1

0

∥∥∥∥dxsds

∥∥∥∥
L2(Td)

ds.

On the other hand, from the equation on xs one also gets

d

dt

∫
Td

∣∣∣∣dxsds

∣∣∣∣2 dy ≤ 2

∣∣∣∣∫
Td

dxs
ds

∇v(t, xs)
dxs
ds

dy

∣∣∣∣
+

∫
Td

|u1(t, xs)− u2(t, xs)|2dy +
∫
Td

∣∣∣∣dxsds

∣∣∣∣2 dy, (1.8)

where v = su1+(1−s)u2. Note again that in the classical case, when u1, u2 are Lipschitz con-
tinuous, the function ∇v in (1.8) belongs to L∞([0, T ]×Td) and straight from the Gronwall's
lemma we get dxs

ds = 0 and in consequence u1 = u2.
In the framework of BMO functions instead, the key point is to use the logarithmic

inequality, proved in Lemma B.6:∣∣∣∣∫
Td

fgdx

∣∣∣∣ ≤C∥f∥BMO∥g∥L1

×
(
| ln ∥g∥L1 |+ ln(1 + ∥g∥Lq) + (1 + | ln ∥g∥L1 |)∥g∥

q−2
2

Lq

)
.

(1.9)
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In our setting, ∇v ∈ L∞(0, T ;BMO) and thus we can apply the logarithmic inequality
(1.9) to the �rst term on the right hand side of (1.8). In consequence, we get an ODE

α̇ ≤ Cα(1 + | lnα|) + Cα for α(t) =

∫ 1

0

∥∥∥∥dxsds

∥∥∥∥
L2(Td)

ds

and we conclude that α(t) ≡ 0 from Osgood's lemma and comparison criterion for ODEs.
Let us also mention the proof of existence of solutions itself. We present the alternative

approach to the one presented in [67]. The approximation scheme also relays on the La-
grangian formulation and thus is consistent with the rest of the chapter. It was used before
in [12] in the context of the compressible Stokes equation for multiphase �ows. Here, the key
feature is the stability estimate for regular Lagrangian �ows, proved in [35].

The content of Chapter 3 is the second main result in the thesis, recently published in
[93] in collaboration with Milan Pokorný from Charles University in Prague. We again deal
with the question of existence of weak solutions to compressible Stokes system, however in the
non-Newtonian regime. In particular, it means that the viscosity parameters µ and λ depend
on ∇u in a nonlinear way. Our system states

∂tϱ+ div (ϱu) = 0,

−div S+∇p(ϱ) = 0,
(1.10)

where the viscous stress tensor is given by

S(u, ϱ) = (µ0(|Du|) + 2µ1)Du+ (λ(|div u|)div u)I

for µ1 > 0 constant and µ0, λ satisfying the following growth conditions

0 ≤ µ0(z), λ(z) ≤
C

z
,

together with certain monotonicity assumption. Such form of S in particular involves the
special case of Hershel-Bulkley �uid (see e. g. [42]). Similarly as before, our spacial domain
is the torus Td and the initial condition ϱ0 belongs to L∞(Td). However, this time we restrict
the pressure form only to the typical barotropic case p(ϱ) ∼ ϱγ for some γ > 1. It is shown
that there exists a global weak solution to the system (1.10), satisfying

∇u ∈ L2((0,∞)× Td), ϱ ∈ L∞(0,∞;Lγ),

and moreover for any T > 0 and 1 ≤ p <∞

∥div u∥L∞(0,T ;Lp) + ∥ϱ∥L∞(0,T ;Lp) ≤ C(p, T ),

where C approaches ∞ if p or T do so.
Although equation (1.10) has a similar structure to (1.4), the methods of analysis become

completely di�erent. The form of (1.4) in the Lagrangian coordinates strongly relies on the
linear structure of the stress tensor and decomposition of the velocity �eld into the potential
and rotational part. Here, the additional nonlinearity does not cooperate with the (linear)
decomposition, and thus the previous approach cannot be applied. In particular, the L∞

estimate for ϱ and div u seems to be out of reach. Instead, we adapt the compactness method
developed by Feireisl, Liao and Málek in [45]. In that paper, the authors showed the exis-
tence of weak solutions to the compressible non-Newtonian Navier-Stokes equations with the
assumption that div u is bounded, which is not the case in our situation. However, using the
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special form of our stress tensor, we can again work in the framework of BMO space. The
starting point are the Calderón-Zygmund estimates, which provide that

µ1div u− p(ϱ) ∈ L∞(0, T ;BMO). (1.11)

It is worth pointing out that estimate (1.11) does not bring any higher regularity separately
for ϱ and div u, which are still only Lp-integrable in space for p <∞. Nevertheless, it allows to
apply the method from [45]). The idea lays in comparing di�erent energy equalities. First, as
usual we introduce a suitable approximation of the system and show the existence of solution
via Schauder �xed point theorem. Then, calculating the energy at the level of approximated
equation, by the weakly lower semicontinuity of the norm one obtains∫ t

0

∫
µ0(|Du|)Du : Du+ µ1|∇u|2 + µ1(div u)

2 + λ(|div u|)div u div u dxds

+
1

γ − 1

∫
ϱγ(t, ·)dx ≤ 1

γ − 1

∫
ϱγ0dx,

where the monotonicity assumption on the stress tensor provided that

µ0(|Du|)|Du|2 ≥ µ0(|Du|)Du : Du

and analogously for λ(|div u|). On the other hand, using weak compactness of the approxi-
mating sequence, by passing to the limit in and then testing by the limiting u, we derive∫ t

0

∫
µ0(|Du|)Du : Du+ µ1|∇u|2 + µ1(div u)

2

+ λ(|div u|)div u div u dxds =

∫ t

0

∫
ϱγdiv u dxds.

Comparing these two relations, using the continuity equation we obtain

1

γ − 1

∫ (
ϱγ(t, ·)− ϱγ(t, ·)

)
dx ≤ −

∫ t

0

∫ (
ϱγ − ϱγ

)
div udxds.

In the case when div u is bounded, from Gronwall's lemma it immediately follows that ϱ = ϱγ .
In our case, we write

−
∫ t

0

∫ (
ϱγ − ϱγ

)
div u dxds = −

∫ t

0

∫ (
ϱγ − ϱγ

)
(div u− ϱγ)dxds

−
∫ t

0

∫ (
ϱγ − ϱγ

)
ϱγdxds.

Since ϱγ ≥ ϱγ by the convexity of the function z 7→ zγ , in the end we have

1

γ − 1

∫ (
ϱγ(t, ·)− ϱγ(t, ·)

)
dx ≤ −

∫ t

0

∫ (
ϱγ − ϱγ

)
(div u− ϱγ) dxds.

Finally, applying inequality (1.9) we derive the logarithmic integral inequality on the quantity∫
Td

(ϱγ − ϱγ) dx, and the equality of weak and strong limits of the pressure follows again by

the argument based on Osgood's Lemma and comparison criterion.
Having proven the strong convergence of the pressure (and in consequence also density),
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the strong convergence of the gradients of velocities, required to pass to the limit with the non-
linear term in the stress tensor, is then a simple consequence of the monotonicity assumptions.

The topic of Chapter 4 concerns the more complicated system and is undoubtedly the
most technical. This time, we keep the convective term in (1.2) and include the attraction-
repulsion nonlocal interactions, which replace the standard pressure term. The spacial domain
is the whole space R3. Additionally, we assume that the viscosity coe�cients depend on the
density. Overall, the analysed system has the form

∂tϱ+ div (ϱu) = 0,

∂t(ϱu) + div (ϱu⊗ u)− div (ϱDu) + ϱ∇(K ∗ ϱ) = 0,
(1.12)

where for the kernel K we assume that

K(x) =
c1
|x|α

+
c2
2
|x|2, α ∈ (0, 2).

The motivation to study system (1.12) comes from the models of collective behaviour, where
the movement of particular species depends on other around them. The singular term provides
the particles from colliding, whereas the quadratic term controls their spread in space. It is
also worth pointing out that we do not require an additional (pointwise) pressure term.

The weak solutions to system (1.12) on the torus, in the case of a standard barotropic
pressure ϱγ instead of the nonlocal term, were recently constructed by Vasseur and Yu in
[106, 105]. Let us now describe their approach, and then present the modi�cations necessary
for the nonlocal case, which is the original contribution of the thesis. First, note that the
dependence of the viscosity coe�cients on the density causes some degeneracy in the system.
Since we allow the case of vacuum (i. e. the density might not be strictly positive), on the set
where ϱ = 0 any information on the velocity �eld and its gradient is lost. It can be however
compensated to some extent by virtue of an inequality derived by Bresch and Desjardins in
[6], which provides higher regularity on the density. Without the nonlocal term, assuming the
solutions are su�ciently regular, by testing the momentum equation by ∇ log ϱ and combining
it with the energy estimate, one obtains the estimate

sup
t∈[0,T ]

∫
R3

|∇√
ϱ|2 dx+

∫ T

0

∫
R3

ϱ|∇u−∇Tu|2 dxdt ≤ C. (1.13)

In particular, the estimates on∇ϱ provide strong compactness of the sequence of approximated
densities in a suitable Lp space. To deal with the lack of estimates on the velocity, one needs
to show the compactness of

√
ϱu instead. This would allow to pass to the limit and to derive

system (1.12), where u is de�ned up to the set {ϱ = 0}. However, in order to do that, the
regularity of u still needs to be improved. This is provided by the estimate

sup
t∈[0,T ]

∫
R3

ϱ
1 + |u|2

2
ln(1 + |u|2) ≤ C, (1.14)

which in turn allows to show the strong convergence of
√
ϱu in L2 and pass to the limit

in the nonlinear terms of (1.12). The above estimate was derived by Mellet and Vasseur
in [75] (again in the pointwise case). The idea is based on testing the momentum equation
by (1 + ln(1 + |u|2))u. For the construction of the approximate solutions, Vasseur and Yu
introduced several regularizing terms which greatly improve the regularity of solutions, so
that the derivation of Bresch�Desjardins inequality is justi�ed. This allows to construct
weak solutions on a periodic domain, with the additional damping terms r0u+ r1ϱ|u|2u and



8 Chapter 1. Introduction

the quantum potential κϱ∇
(
∆
√
ϱ

√
ϱ

)
. The Mellet�Vasseur estimate is then formally derived

by using a suitable bounded truncation of a function F (|u|) = 1+|u|2
2 ln(1 + |u|2), and by

approximating the velocity �eld by v = ϕ(ϱ)u, where ϕ is a certain cut-o� function on the
set where ϱ is close to zero or in�nity. By passing to the limit with all approximations one
derives the estimate (1.14), which allows to drop the remaining damping terms.

Let us now present the way how to incorporate the nonlocal term in the above approach. In
the Bresch-Desjardins inequality, the term coming from the nonlocal pressure can be written
as ∫∫

R3×R3

∇ϱ(t, x)∇ϱ(t, y)K(x− y) dxdy.

By computing the Fourier transform, one can show that the contribution from the singular
part of K has a good sign, i. e.∫∫

R3×R3

∇ϱ(t, x)∇ϱ(t, y) 1

|x− y|α
dxdy ≥ 0.

On the other hand, for the quadratic part we get∫∫
R3×R3

∇ϱ(t, x)∇ϱ(t, y) |x− y|2

2
dxdy = −3∥ϱ(t, ·)∥2L1 .

Overall, the estimate (1.13) still closes, however the bound will depend on time.
The derivation of the Mellet-Vasseur estimate turns out to be more complicated. The

biggest issue is the fact that the kernel K goes to in�nity as |x| → ∞, and thus one has to
carefully control the behaviour of ϱ far from the origin. The main idea to close the estimate
(1.14) is based on the following Young inequality for convex functions

ab ≤ F (a) + F ∗(b)

for F convex, where F ∗ given by

F ∗(s) = sup{sz − F (z) : z ∈ R}

is a convex conjugate of F . Denoting F (z) = 1+z2

2 ln(1+z2), we (formally) test the momentum
equation by F ′(|u|) u

|u| . Then, from the quadratic part of K one needs to estimate∫∫
R3×R3

F ′(|u(t, x)|)|x− y|ϱ(t, x)ϱ(t, y) dxdy ≤∥ϱ∥L1

∫
R3

F ∗(F ′(|u(t, x)|))ϱ(t, x) dx

+

∫∫
R3×R3

F (|x− y|)ϱ(t, x)ϱ(t, y) dxdy.

On the other hand, we have

d

dt

∫∫
R3×R3

F (|x− y|)ϱ(t, x)ϱ(t, y) dxdy ≤2

∫∫
R3×R3

F ′(|x− y|)|u(t, x)ϱ(t, x)ϱ(t, y) dxdy

≤2

∫∫
R3×R3

F ∗(F ′(|x− y|))ϱ(t, x)ϱ(t, y) dxdy

+ 2∥ϱ∥L1

∫
R3

F (|u(t, x)|)ϱ(t, x) dx.
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Since the properties of F provide that F ∗(F ′(z)) ≤ CF (z) (see also Proposition 4.21), in the
end we get

d

dt

(∫
R3

ϱ(t, x)F (|u(t, x)|) dx+

∫∫
R3×R3

F (|x− y|)ϱ(t, x)ϱ(t, y) dxdy
)

≤ C

(∫
R3

ϱ(t, x)F (|u(t, x)|) dx+

∫∫
R3×R3

F (|x− y|)ϱ(t, x)ϱ(t, y) dxdy
)

and we close the estimate by Gronwall's lemma.
Of course the expected regularity of solutions does not allow to perform the above calcu-

lations, analogously as for the "local" case. To construct the solutions, we closely follow the
approach of Vasseur and Yu. First, by introducing a suitable truncations of K and initial
conditions, we restrict the system to a periodic domain. Then, the Vasseur�Yu approximation
from [106] allows to derive the Bresch�Desjardins inequality also in the nonlocal case. In order
to get the Mellet-Vasseur estimate, we follow the arguments from [105]. However, since the
arguments to close the estimate di�ers from the ones by Mellet�Vasseur in [75], we need to
make signi�cant adjustments in the Vasseur�Yu approach. In particular, we modify the ap-
proximation of F , so that it remains strictly convex. Since all the calculations are performed
at the level of distributional formulation of (1.12), we also use the weak version of Gronwall's
lemma (see Lemma C.1) to close the estimate. Once we derive all the necessary estimates to
show compactness of solutions, we pass to the limit with the size of the torus and in the end
obtain solutions on the whole space. In this last step we lose the compactness properties of
the nonlocal term. However, the convergence follows from the control of the double second
moment

sup
t∈[0,T ]

∫∫
R3×R3

|x− y|2ϱ(t, x)ϱ(t, y) dxdy,

which provides a su�cient decay of the density at in�nity.

Concluding remarks. In the end, let me sum up my contributions in each of these results:

� In Chapter 2, the novel contribution to the theory is obtaining the L∞ estimates for the
compressible Stokes system and proving uniqueness of solutions. I also improved the
Mucha�Rusin inequality from [80], which turns out to be a very useful tool to analyse
these types of systems.

� In Chapter 3, I invented the way of adapting the method of Feireisl et al. from [45] to the
particular case with unbounded divergence. I extracted the L∞(0, T ;BMO) estimate
for the e�ective viscous �ux using the Calderón�Zygmund theory for singular integrals
and then used it to show compactness of the approximating sequence.

� In Chapter 4, I was resposible for adapting the Vasseur and Yu approach from [106,
105] for the nonlocal system. I de�ned the suitable truncations to the periodic domain
and performed the construction of solutions. Compared to the literature, my most novel
contribution in this part of the thesis was to �nd a way to derive the Mellet�Vasseur
estimates. In particular, I observed that the application of the Young inequality allows
to close the estimate.

Notation.

� Throughout the thesis, by C we will denote the generic positive constants.
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� By Lp(0, T ;X(Ω)) for a Banach space X(Ω), we denote the Bochner space of functions
on [0, T ]× Ω with the norm

∥f∥pLp(0,T ;X(Ω)) =

∫ T

0
∥f(t, ·)∥pX(Ω) dt, 1 ≤ p <∞,

∥f∥L∞(0,T ;X(Ω)) = ess sup
t∈[0,T ]

∥f(t·)∥X(Ω), p = ∞.

In our case, Ω will be either the torus or the whole space Rd. For simplicity we will
write X instead of X(Ω), when from the context it is clear what the spatial domain is.

� By C(0, T ;X(Ω)) we denote the space of functions on [0, T ] × Ω, such that t 7→
f(t, ·) is continuous with respect to the strong topology on X. Similarly, the space
Cweak(0, T ;X(Ω)) denotes the space of functions continuous in time with respect to the
weak topology.
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Chapter 2

Weak solutions for the Stokes system

for compressible �uids with general

pressure

The content of this chapter was published in [100]. We prove existence and uniqueness of
global in time weak solutions for the Stokes system for compressible �uids with a general, non-
monotone pressure. First, we �nd the unique solution at the level of Lagrangian formulation
and then de�ne the transformation to the original Eulerian coordinates. For a nonnegative
and bounded initial density, the solution is nonnegative for all t > 0 as well, and belongs
to L∞([0,∞) × Td). A key point of our considerations is to show that transformation from
Lagrangian to Eulerian coordinates is unique. Since the velocity might not be Lipschitz
continuous, we develop a method which relies on the results of Crippa & De Lellis, concerning
regular Lagriangian �ows. The uniqueness is obtained thanks to the application of a certain
weighted �ow and detailed analysis based on the properties of the BMO space.

2.1 Introduction

The Stokes system is an approximation of the Navier-Stokes equations for small Reynolds
number. In such cases, the advective intertial forces are relatively small and explicit depen-
dence on time and convective term can be omitted. This is a typical situation for highly
viscous �uids, or when the velocities are very small. The �ows satisfying these conditions are
called Stokes or creeping, and they occur in numerous biological and physical problems, e.g.
to describe dynamics of the blood in a process of sedimentation [88], or to model swimming
of microorganisms [43, 52, 63]. Other applications include also engineering, where the Stokes
�ow is used in the process of designing micro�uids and microdevices [56, 98]. The Stokes
model is also connected to the Darcy law, which describes the �ow of a �uid through porous
media. Such phenomena are observed in biological tissues [14, 41] and have many applications
in petroleum engineering [65, 81]. The other situation, where the �uid motion is governed by
the Stokes equation is a laminar �ow. In this case, the �uid particles move in adjacent layers,
with little mixing between them.

We consider the compressible Stokes �ow on the d-dimensional torus Td{
ϱt + div(ϱu) = 0,

− µ∆u−∇(λ+ µ)div u+∇p(ϱ) = 0,
(2.1)

where ϱ : [0, T ] × Td → R and u : [0, T ] × Td → Rd are the sought �uid density and velocity
�eld. The function p(ϱ) denotes the pressure term, and the parameters µ, λ represent the
shear and bulk viscosity.
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We further assume that the �ow is potential, that is rotu = 0. It is equivalent to velocity
having the form u(t, x) = ∇ϕ(t, x) for some ϕ : [0, T ] × Td → R. In consequence, we obtain

the condition
∫
Td

u(t, x) dx = 0. The second equation of (2.1) can be then rewritten in terms

of the e�ective viscous �ux, which turns out to be constant. Therefore instead of the second
equation of (2.1) we obtain

(λ+ 2µ)div u = p(ϱ)− {p(ϱ)},

where {f} =
1

|Td|

∫
Td

f(x) dx. As the qualitative properties of solutions do not depend of the

values of λ and µ, without loss of generality we take λ + 2µ = 1. Under these assumptions,
the system (2.1) can be transformed into

ϱt + div(ϱu) = 0,

div u = p(ϱ)− {p(ϱ)}, rotu = 0.
(2.2)

The system (2.2) is coupled with the initial condition on the density, which is assumed to
be bounded and nonnegative, namely

ϱ|t=0
:= ϱ0 ∈ L∞(Td), ϱ0 ≥ 0.

It is worth emphasizing that we do not require the density to be strictly positive. In particular
ϱ0 can be equal 1A for some A ⊂ Td.

Our method allows the pressure to be in a quite general form. We require p(ϱ) to be of
class C1 and unbounded, so that in particular we can choose a sequence ϱn → ∞ such that
p(ϱn) → ∞. Moreover, we assume that there exist constants C,C1, C2, ϱ̄ such that p satis�es
the inequality

0 ≤ p(ϱ) ≤ CP (ϱ) := C

(
ϱ

∫ ϱ

ϱ̄

p(s)

s2
ds+ C1ϱ+ C2

)
. (2.3)

The properties of functions satisfying (2.3) are discussed in Subsection 2.1.2.

2.1.1 Statement of the main theorem

The mathematical theory of weak solutions to the compressible �uid equations has been widely
developing in the last twenty years, since the groundbreaking results of Lions in 1998 [67] and
Feireisl [48, 46] in 2001. They proved the existence of weak solutions to the compressible
Navier-Stokes equations, provided that the pressure term is of the form p(ϱ) = ϱγ with γ > 9

5
and γ > 3

2 respectively. In [47] and [99], this method was also adjusted to the pressure which
is non-monotone on some �nite interval. In particular, it allows to deal with the pressures
expressed via equations of state, which are of more complex form than ideal gas, the model
example being van der Waals' equation of state. The Lions & Feireisl approach can be also
adjusted to more complex systems, for example Navier-Stokes-Fourier system [49, 50] and
other including entropy transport [69] or heat conductivity [8].

The important results concerning non-monotone pressure laws are due to Bresch and Jabin
[10, 11]. Their method, based on the Kolmogorov compactness criterion, allows to deal with
the pressure satisfying

C−1ϱγ − C ≤ p(ϱ) ≤ Cϱγ + C and |p′(ϱ)| ≤ p̄ϱγ−1 (2.4)

for γ > 9
5 . In context of our work, we refer the reader especially to [11], where this approach

was also presented for a modi�cation of the Stokes system. In this case Bresch and Jabin
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proved the existence of global weak solutions for any γ > 1 with the same regularity as in the
isentropic case, namely ϱ ∈ L∞(0, T ;Lγ).

Besides the relaxed conditions on the pressure, the Bresch & Jabin compactness criterion
can be also applied to various classes of equations, where the Lions and Feireisl method was
insu�cient. One of the examples are the systems with the additional term in the continuity
equation. Such models can be obtained from the multi-�uid systems [12] or appear in the
mathematical modelling of tumor growth [107]. In this case the additional term results in
lack of compensated compactness between div u and the pressure and therefore the classical
method fails. However, the Bresch & Jabin criterion allows to omit this problem. The problem
with the convergence of e�ective viscous �ux arise also in the anisotropic case. The recent
result [5], concerning the anisotropic compressible Stokes system, resolves this problem by
controlling a certain defect measure associated to the pressure.

The other related topic are steady �ows, where the behaviour of the �uid does not depend
on time. The equations describing such �ows are the classical equations of �uid mechanics
with the time derivative set as zero, for example the compressible Navier-Stokes [89, 91] or
the Navier-Stokes-Fourier systems [79, 57]. Another analyzed system is the steady Oseen
�ow [90], which is a linearization of the Navier-Stokes system with partial consideration of
the convective forces. Note that in our case the explicit dependence on time is removed only
in the momentum equation, therefore this system can be considered as an intermediate step
between steady and unsteady �ows.

As the Stokes system has a simpler structure than the Navier-Stokes system, the analysis
can be carried out in the more general setting. If ϱ0 has higher regularity, then the solutions to
the Stokes problem exist and are unique for the general p (see [67], Remark 8.14). However, in
case of ϱ0 ∈ L∞(Td), the classical method requires the monotonicity condition on the pressure
and the uniqueness was not established. In this paper we obtain the uniqueness of solutions
to the Stokes system in case of the low regularity of the initial density and under very general
pressure laws. Our main theorem states as follows:

Theorem 2.1. Let ϱ0 ∈ L∞(Td), ϱ0 ≥ 0 and the pressure satisfy (2.3). Then, there exists a
unique global in time weak solution to (2.2), satisfying

ϱ, u ∈ L∞([0,∞)× Td)

and
∇u ∈ L∞([0,∞);BMO), div u ∈ L∞([0,∞)× Td),

that is for each φ ∈ C∞
0 ([0,∞)× Td)

−
∫ ∞

0

∫
Td

ϱ∂tφ dxdt−
∫ ∞

0

∫
Td

ϱu · ∇φ dxdt =

∫
Td

ϱ0φ(0, ·) dx

and the second equation of (2.2) is satis�ed a. e.

Remark 2.2. Note that from the de�nition of a weak solution in Theorem 2.1, it follows that
the solution (ϱ, u) satis�es the system (2.1) in the distributional sense, and thus it corresponds
to a conventional de�nition of a weak solution to the Stokes system.

Our approach is based on the Lagrangian reformulation of the system, which allows us to
obtain a global L∞ estimate on the density. Having that estimate, we can straightforwardly
apply Bresch and Jabin method to obtain compactness, and in consequence existence of
solutions for the relaxed conditions on the pressure. In addition, using the results from the
theory of transport equations and classical harmonic analysis, we were able to establish also
uniqueness of solutions.
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The �rst step is to reformulate the system in the Lagrangian coordinates. Assuming that
(ϱ, u) is a solution and u is su�ciently smooth, let x : [0, T ] × Td → Td be a solution to the
ODE

ẋ = u(t, x), x(0, y) = y.

Rewriting the system in the new variables η(t, y) = ϱ(t, x(t, y)) and σ(t, y) = div u(t, x(t, y)),
we obtain the set of equations in a simpler form, for which we are able to �nd a unique solution.
Then, it su�ces to de�ne a transformation back to the original Eulerian coordinates. However,
one encounters some di�culties in the construction, resulting from the low regularity of the
solution, namely ∇u ∈ L∞(0, T ;BMO). In particular, ∇u may not be bounded with respect
to space variable and in consequence the �ow x(t, y) generated by u may not be invertible
on the whole torus. Nevertheless, the divergence of u remains bounded, therefore x(t, y) is
a regular Lagrangian �ow and we can treat it using the properties from [34] and [35]. The
key tool needed in our analysis is the recent result of Crippa and De Lellis [35], concerning
the stability of regular Lagrangian �ows in L1, which allows us to pass to the limit with the
smooth approximation of the system.

The above reasoning, however, does not preserve uniqueness. We prove the latter by
taking two solutions (ϱ1, u1) and (ϱ2, u2) satisfying the same Lagrangian formulation, and
showing that u1 = u2 (the equality of ϱ1 and ϱ2 follows then from the uniqueness of solutions
to continuity equation). For this purpose we introduce the �ow xs, which for s ∈ [0, 1] is
generated by a convex combination of u1 and u2:

ẋs = su1(t, xs) + (1− s)u2(t, xs), xs(0, y) = y.

The key point is to estimate ∥u1−u2∥L2(Td) by a suitable norm of dxs
ds . Then, having the BMO

regularity of ∇ui, i = 1, 2, we use the John-Nirenberg inequality and the integral inequality
for functions of bounded mean oscillation from [80, 78] to obtain the necessary estimates for
dxs
ds . Finally, using the above tools we are able to show that xs does not depend on s and in
consequence u1 = u2.

The rest of the chapter is divided into sections, which contain the main steps of the proof
of Theorem 2.1. The structure of the proof is as follows:

� In Section 2.2 we present the a priori estimates and results at the level of Lagrangian
coordinates, namely the L∞ bounds and unique existence of a solution in the Lagrangian
reformulation.

� Section 2.3 contains the necessary tools and de�nitions, together with the proof of
uniqueness of solutions to system (2.2).

� In Section 2.4 we de�ne the transformation from Lagrangian to Eulerian coordinates
using the construction from [12], and therefore prove the existence of solutions to (2.2).
Note that the estimates obtained in Section 2.2 provide the BMO regularity of the gra-
dient, necessary to obtain uniqueness The existence of solutions could be done indepen-
dently, using for example standard Lions method and the Bresch & Jabin compactness
criterion. Nevertheless, we present here an alternative approach, which is set in the
framework of Lagrangian regular �ows and therefore is more consistent with the rest of
this paper.

Notation remarks: For the notational simplicity, we omit the subscript while integrating
over the torus, namely ∫

dx :=

∫
Td

dx.
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By {·}Q we denote the mean integral over Q, while in the case of the whole torus we again
omit the subscript.
Moreover, to distinguish between the norms in L∞(Td) and L∞([0, T ]× Td), we denote

∥ · ∥∞ := ∥ · ∥L∞(Td) and ∥ · ∥∞,T := ∥ · ∥L∞([0,T ]×Td).

2.1.2 Discussion on the pressure term

First, observe that our condition (2.3) in particular includes the assumptions from [11]: if p
satis�es (2.4), then P (ϱ) ≥ cϱγ − cϱ and for a su�ciently large C we obtain (2.3). However,
our assumptions also allow the pressure to drop to 0 for arbitrary large ϱ and we do not
require the bounds on the derivative.

Such class of possible pressures includes many physical situations. It contains the cases
which were covered before, for example van der Waals' �uid. However, our assumptions also
allow the pressure to be expressed via virial expansion, namely de�ned as a power series of
the density:

p(ϱ) =
∞∑
k=1

Bkϱ
k,

where coe�cients Bk depend on the temperature and are derived from statistical mechanics.
The virial equation of state was also considered in [10], but our result allows wider range
of pressures of this type. The other case, where our result may be applicable, is the use in
biological models, where the pressure term is responsible for interactions between di�erent
biological agents and therefore can take form other than resulting from physical constitutive
laws.

Let us present some further properties of p satisfying (2.3):

� Condition (2.3) implies that in particular p(ϱ) ≤ C̃ϱγ + C̃ for ϱ ≥ ϱ̄ and some γ > 1:
Let p satisfy (2.3) and de�ne α(ϱ) =

∫ ϱ
ϱ̄

p(s)
s2

ds, α(ϱ̄) = 0. Then

α′(ϱ) =
p(ϱ)

ϱ2
≤ Cα(ϱ)

ϱ
+
C

ϱ

(
1 +

1

ϱ

)
and by the comparison criterion α(ϱ) ≤ C̄ϱC − C

C+1
1
ϱ − 1 for ϱ ≥ ϱ̄, where C̄ depends

on ϱ̄. Therefore

p(ϱ) ≤ C(ϱα(ϱ) + ϱ+ 1) ≤ C̄CϱC+1 +
C2

C + 1
≤ C̃ϱγ + C̃

for γ = C + 1 and a suitable C̃.

� On any �nite interval we can estimate p by su�ciently large constant, hence in particular
(2.3) is ful�lled. Therefore to check if indeed p satis�es (2.3) for all ϱ ≥ 0, it su�ces to
analyse the behaviour of P when ϱ→ ∞. It is immediate to check that if p(ϱ) ≤ Cϱγ+C
for some γ > 1, and P satis�es

lim inf
ϱ→∞

P (ϱ)

ϱγ
= lim inf

ϱ→∞

1

ϱγ−1

∫ ϱ

ϱ̄

p(s)

s2
ds ≥ c > 0,

then p satis�es (2.3), however these conditions are not equivalent.

� The most signi�cant di�erence between our class of admissible pressures and the cases
considered before is that we allow the pressure to drop to 0 even for large ϱ. Moreover,
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the derivative of p may grow arbitrarily fast. For example, let f : [0,∞) → [0,∞) be a
smooth, increasing function such that f ′ is also increasing and de�ne

p(ϱ) = ϱ2(1 + cos(f(ϱ))).

By the alternating series test, the integral∫ ∞

ϱ̄
cos(f(x))dx =

∫ ∞

f(ϱ̄)

cos(y)

f ′(f−1(y))
dy

is convergent in the sense of Riemann. Therefore we have

lim
ϱ→∞

1

ϱ

∫ ϱ

ϱ̄

p(s)

s2
ds = lim

ϱ→∞

1

ϱ

∫ ϱ

ϱ̄
1 + cos(f(s))ds = 1

and p satis�es (2.3). Moreover, it periodically drops to 0 and the derivative of p depends
on f ′, which can be arbitrarily large.

� The condition p(ϱ) ≤ Cϱγ + C is not su�cient to obtain (2.3). For example, let η be a
smooth function supported in [−1, 1] such that 0 ≤ η ≤ 1 and η(0) = 1. De�ne

p(ϱ) =

{
ϱ2η(2k(ϱ− k)) for k − 2−k ≤ ϱ ≤ k + 2−k, k = 1, 2, ...

0 otherwise.
(2.5)

Then ∫ k

0

p(s)

s2
ds =

k−1∑
i=1

∫ i+2−i

i−2−i

η(2i(s− i))ds+

∫ k

k−2−k

η(2k(s− k))ds

=

k−1∑
i=1

2−i

∫ 1

−1
η dx+ 2−k

∫ 0

−1
η dx

= (1− 2−k+1)

∫ 1

−1
η dx+ 2−k

∫ 0

−1
η dx

and therefore for any C we can choose su�ciently large k such that

p(k) = k2 ≥ C

(
k

∫ k

0

p(s)

s2
ds+ k + 1

)
≈ C̃k.

In Figure 2.1 one can �nd an illustrative comparison between a typical example of a
function satysfying (2.3) and not.

2.2 The L∞ bound on the density

2.2.1 Energy estimates

First, we obtain the a priori estimates for our solutions.

Lemma 2.3. Let (ϱ, u) be a su�ciently smooth solution to (2.2). Then it satis�es the estimate∫ T

0

∫
(div u)2 dxdt+ sup

t∈[0,T ]

∫
P (ϱ) dx ≤ C

∫
P (ϱ0) dx.
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(a) An example of a function satisfying (2.3). (b) A function which does not satisfy (2.3).

Figure 2.1: Figure 2.1a shows the plot of a function p(ϱ) = ϱ2(1 + cos ϱ),
which satis�es (2.3). Figure 2.1b shows the plot of p given by (2.5), which is
an example of a function having similar properties as the function in Figure

2.1a, but not satisfying (2.3).

Proof. By multiplying (2.2)2 by div u and integrating by parts over the torus, we get∫
(div u)2 dx−

∫
p(ϱ)div u dx = 0.

Moreover,

−
∫
p(ϱ)div u dx =

∫
∇p · u dx =

∫
p′(ϱ)

ϱ
∇ϱ · (ϱu) dx = −

∫
P ′(ϱ) · div(ϱu) dx

=

∫
P ′(ϱ)ϱt dx =

d

dt

∫
P (ϱ) dx.

After integration over time, we get the desired estimate.

The above a priori bounds also provide that p(ϱ) ∈ L∞(0, T ;L1). Indeed, from assumption
(2.3) we have

sup
t∈[0,T ]

∫
p(ϱ)dx ≤ C sup

t∈[0,T ]

∫
P (ϱ)dx ≤ C. (2.6)

2.2.2 The Lagrangian formulation

To prove the global L∞ estimate on the density, we need to rewrite the system (2.2) in the
Lagrangian coordinates. That is, we carry out a certain change of variables, which allows us
to reduce the continuity equation to a simple ordinary di�erential equation.

If u is a velocity �eld, then the trajectory of a single �uid parcel moves along the integral
curve of ẋ = u(t, x). Therefore, if at the starting time the particle was at a point y, then
after the time t it would be at the point x(t, y), where x(t, y) is the solution to the Cauchy
problem

ẋ(t, y) = u(t, x(t, y)),

x(0, y) = y.

The above ODE de�nes the �ow x : [0, T ] × Td → Td generated by u. Note that if u is
su�ciently smooth, from the classical theory of ODEs it follows that the solution exists
locally. Since in our case x lays on the torus, it cannot blow up in �nite time, which gives the
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global existence of the �ow.
Di�erentiating our ODE with respect to y and using the Liouville formula, we obtain the
equation for the Jacobian J = det dx

dy :

J̇(t, y) = div u(t, x(t, y))J(t, y),

J(0, y) = 1,

and in consequence J(t, y) = exp

(∫ t

0
div u(s, x(s, y))ds

)
. This in particular means that in

the classical setting x(t, ·) is a di�eomorphism on Td for any t.
We rewrite the unknowns of the system (2.2) in terms of y instead of x, so at a time t the

space variable is the position of a parcel starting from y. Let

η(t, y) = ϱ(t, x(t, y)) and σ(t, y) = div u(t, x(t, y)).

Then the system (2.2) has the form

∂tη + ησ = 0,

σ = p(η)− {p(η)}σ,
(2.7)

where {·}σ is the mean integral in the new coordinates given by

{f}σ =
1

|Td|

∫
f(t, y) exp

(∫ t

0
σ(s, y)ds

)
dy.

Now for the system (2.7) we obtain the following result:

Theorem 2.4. For ϱ0 ∈ L∞(Td) and any T > 0 there exists a unique solution

(η, σ) ∈ L∞([0, T ]× Td)× L∞([0, T ]× Td)

to the system (2.7) with the initial condition η(0, y) = ϱ0(y). Moreover, there exists a constant
r, independent of T , such that

∥η∥∞,T ≤ r.

The immediate consequence of Theorem 2.4 is the similar uniform bound on σ. As T is
arbitrary, we hence obtain the existence of a solution on the whole half-line.

The proof of the existence of a unique solution is a standard application of the Banach
Fixed Point Theorem and is presented in the Appendix A.1. Below, we show only the second
part of Theorem 2.4, namely the L∞ bound on η.

Proposition 2.5. If (η, σ) ∈ L∞([0, T ]× Td)× L∞([0, T ]× Td) is a solution to (2.7), then

∥η∥∞,T ≤ r,

where the constant r does not depend on T .

Proof. Let us solve the �rst equation of (2.7). We get the identity

η(t, y) = ϱ0(y) exp

(
−
∫ t

0
σ(s, y)ds

)
. (2.8)

Note that this explicit formula for η provides that in particular if σ is bounded and the
initial density ϱ0 is strictly positive, then for any t the density is strictly positive as well.
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Using (2.8), we see that η is also continuous with respect to time. For a �xed y, we have

|η(t+ ε, y)− η(t, y)| = ϱ0(y) exp

(
−
∫ t

0
σ(s, y)ds

) ∣∣∣∣exp(−∫ t+ε

t
σ(s, y)ds

)
− 1

∣∣∣∣
≤ ϱ0(y)e

t∥σ∥∞,T

∣∣∣eε∥σ∥∞,T − 1
∣∣∣ .

Hence |η(t+ ε, y)− η(t, y)| goes to 0 as ε→ 0 and indeed η(·, y) is continuous.

The continuity of η allows us to show global boundedness. Recall that by virtue of (2.6),
the mean value {p(η)}σ is bounded. Let

sup
t∈[0,T ]

{p(η)}σ =M.

From (2.6) M is �nite and does not depend on T . As p is unbounded, we can choose r >
∥ϱ0∥L∞(Td) such that p(r) > M . Then, at the point η = r we get

∂tη|η=r = −r(p(r)− {p(η)}σ) < −r(p(r)−M) < 0.

However, as t 7→ η(t, y) is continuous for a �xed y and η(0, y) = ϱ0(y) < r, if it exceeds
the value r, it must have a nonnegative derivative at that point, which gives a contradiction.
Hence for any y ∈ Td the function η(·, y) is also bounded by r.

2.3 Uniqueness of solutions

Using Lagrangian coordinates introduced in the previous section, we are able to show that
the solutions to (2.2) are unique.

Theorem 2.6. If (ϱi, ui), i = 1, 2 are solutions to (2.2) with the regularity from Theorem
2.1, then (ϱ1, u1) = (ϱ2, u2).

First, let us show that if (ϱ, u), is a solution to (2.2) satisfying

ϱ, u,div u ∈ L∞([0, T ]× Td), ∇u ∈ L∞(0, T ;BMO),

then in the Lagrangian coordinates it satis�es (2.7). Under that regularity of u the classical
theory of ODEs does not apply, however from the results from transport theory of DiPerna
& Lions [40] it follows that there exists a unique �ow x(t, y) generated by u, such that
x ∈ C(0, T ;Lp) for any 1 < p <∞ and

ẋ = u(t, x), x(0, y) = y.

Moreover, if ϱ is a solution to the continuity equation

ϱt + div (ϱu) = 0, ϱ(0, ·) = ϱ0, (2.9)

then the function ϱ(t, x(t, y)) is given by

ϱ(t, x(t, y)) = ϱ0(y) exp

(
−
∫ t

0
divu(s, x(s, y))ds

)
= ϱ0(y) exp

(
−
∫ t

0
σ(s, y)ds

)
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and therefore η(t, y) = ϱ(t, x(t, y)) satis�es the �rst equation of (2.7) with σ(t, y) = div u(t, x(t, y)).
Furthermore, taking the second equation of (2.2) at a point x(t, y), we obtain

σ(t, y) = p(η(t, y))− 1

Td

∫
p(ϱ(t, x))dx.

However, by Lemma 3.1. from [34], for any f ∈ L1(Td) we have∫
f(x)dx =

∫
f(x(t, y))e

∫ t
0 div u(s,x(s,y))dsdy =

∫
f(x(t, y))e

∫ t
0 σ(s,y)dsdy.

Thus ∫
p(ϱ(t, x))dx =

∫
p(ϱ(t, x(t, y))e

∫ t
0 σ(s,y)dsdy =

∫
p(η(t, y))e

∫ t
0 σ(s,y)dsdy

and σ satis�es the second equation of (2.7).
From the uniqueness of solutions in the Lagrangian formulation, we conclude that if

(ϱi, ui), i = 1, 2 are solutions to (2.2), then they are equal at the level of Lagrangian co-
ordinates. In particular,

div u1(t, x1(t, y)) = div u2(t, x2(t, y)) = σ(t, y).

Therefore the uniqueness of the solutions to (2.2) is equivalent to the uniqueness of solutions
to the equation

div u(t, x(t, y)) = σ(t, y), (2.10)

where σ ∈ L∞([0, T ]× Td) is given and x(t, y) satis�es the ODE

ẋ(t, y) = u(t, x),

x(0, y) = y.
(2.11)

Having the unique u, the uniqueness of ϱ follows then again from the classical results from
transport theory (see [40]). The regularity of u provides that in particular u ∈ L1(0, T ;W 1,p)
for some p ≥ 1 and div u ∈ L1(0, T ;L∞). Therefore there exists a unique ϱ ∈ L∞([0, T ]×Td),
which is a solution to the continuity equation (2.9).

2.3.1 De�nition of the �ow xs

For u1 and u2 being the solutions to (2.10)-(2.11), we introduce the weighted �ow between u1
and u2, that is a function xs(t, y), s ∈ [0, 1] such that xs for s = 0 is the �ow generated by
u2 and for s = 1 the �ow generated by u1. Such xs is de�ned by the ordinary di�erential
equation

ẋs(t, y) = su1(t, xs) + (1− s)u2(t, xs)

xs(0, y) = y
(2.12)

for s ∈ [0, 1]. Note that since for every s ∈ [0, 1]

∥sdiv u1(t, xs) + (1− s)div u2(t, xs)∥∞ ≤ ∥σ∥∞,

the Jacobian Js = det dxs
dy of xs satis�es the same bounds as the Jacobian J of x1 and x2,

namely

e−L ≤ Js(t, y) ≤ eL with L =

∫ T

0
∥σ∥∞dt. (2.13)
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The �rst step to show uniqueness is to obtain certain Lp estimates for the derivative of xs
with respect to s.

Lemma 2.7. If xs is de�ned by (2.12) for u1, u2 ∈ L∞([0, T ] × Td) such that ∇ui ∈
L∞(0, T ;BMO), i = 1, 2, then for su�ciently small t, dxs

ds (t, ·) ∈ Lp for some p > 4.

Proof. Di�erentiating ẋs with respect to s, we get

dẋs
ds

= u1(t, xs)− u2(t, xs) + (s∇u1(t, xs) + (1− s)∇u2(t, xs))
dxs
ds

, (2.14)

hence from the Gronwall's lemma∣∣∣∣dxsds

∣∣∣∣ ≤ exp

(∫ t

0
|s∇u1(τ, xs) + (1− s)∇u2(τ, xs)|dτ

)∫ t

0
|u1(τ, xs)− u2(τ, xs)|dτ.

Let ∇v = s∇u1 + (1− s)∇u2. As u1, u2 ∈ L∞([0, T ]× Td), we have∫ t

0
|u1(τ, xs)− u2(τ, xs)| dτ ≤ T (∥u1∥∞,T + ∥u2∥∞,T ).

Therefore ∫ ∣∣∣∣dxsds

∣∣∣∣p dy ≤ CT p

∫
exp

(
p

∫ t

0
|∇v(τ, xs)|dτ

)
dy.

We will now estimate

I =

∫
exp

(
p

∫ t

0
|∇v(τ, xs(τ, y))dτ

)
dy.

By Jensen's inequality and the bounds on Jacobian Js, we have∫
ep

∫ t
0 |∇v(τ,xs(τ,y))|dτdy ≤

∫
1

t

∫ t

0
ept|∇v(τ,xs(τ,y))| dτdy

≤
∥∥∥∥ 1

Js

∥∥∥∥
∞,T

∫
1

t

∫ t

0
ept|∇v(τ,xs(τ,y))|Js(τ, y) dτdy

≤ eL
1

t

∫ t

0

∫
ept|∇v(τ,x)| dxdτ.

From the fact that supt∈[0,T ] ∥∇ui∥BMO ≤ C for i = 01, 2, we know that∇v ∈ L∞(0, T ;BMO)
and from the Corollary B.4∫

ept|∇v(τ,x)|dx ≤ C for all p ≤ C

t∥∇v∥L∞(0,T ;BMO)
.

In particular, for su�ciently small t we have dxs
ds ∈ Lp(Td) for some p > 4.

Lemma 2.8. Let xs be as in Lemma 2.7 and let T1 be such that dxs
ds ∈ Lp for p > 4 and

t ∈ [0, T1]. Then
∥∥dxs

ds (t, ·)
∥∥2
2
satis�es the inequality

d

dt

∥∥∥∥dxsds

∥∥∥∥2
2

≤ C

∥∥∥∥dxsds

∥∥∥∥2
2

(
1 +

∣∣∣∣∣ln
∥∥∥∥dxsds

∥∥∥∥2
2

∣∣∣∣∣
)

+ C∥u1(t, ·)− u2(t, ·)∥22 (2.15)

for t ∈ [0, T1].
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Proof. Multiplying both sides of (2.14) by dxs
ds , we obtain

1

2

d

dt

∣∣∣∣dxsds

∣∣∣∣2 = dxs
ds

∇v(t, xs)
dxs
ds

+
(
u1(t, xs)− u2(t, xs)

)dxs
ds

. (2.16)

Integrating (2.16) over torus, we get

d

dt

∫ ∣∣∣∣dxsds

∣∣∣∣2 dy ≤ 2

∣∣∣∣∫ dxs
ds

∇v(t, xs)
dxs
ds

dy

∣∣∣∣+ 2

∫
|u1(t, xs)− u2(t, xs)|

∣∣∣∣dxsds

∣∣∣∣ dy
≤ 2

∣∣∣∣∫ dxs
ds

∇v(t, xs)
dxs
ds

dy

∣∣∣∣+ ∫ |u1(t, xs)− u2(t, xs)|2dy +
∫ ∣∣∣∣dxsds

∣∣∣∣2 dy.
From the bound (2.13) on Js, we have∫

|u1(t, xs)− u2(t, xs)|2dy ≤ C∥u1(t, ·)− u2(t, ·)∥22.

By the regularity of dxs
ds from Lemma 2.7,

∣∣dxs
ds

∣∣2 ∈ Lq for some q > 2. Therefore we

can apply Corollary B.7 to estimate
∣∣∣∣∫ dxs

ds
∇v(t, xs)

dxs
ds

dy

∣∣∣∣. In consequence we obtain the

inequality (2.15), where C depends on ∥∇v∥BMO,
∥∥dxs

ds

∥∥
q
and ∥J∥∞.

2.3.2 The �nal argument

Having the results from the previous subsection, we can now prove the uniqueness:

Theorem 2.9. The solution to system (2.10)-(2.11) with regularity from Theorem 2.1 is
unique.

Proof. Let u1, u2 be the solutions to (2.10)-(2.11), ui = ∇ϕi and x1, x2 are the �ows generated
by u1, u2 respectively. We will show that ∥u1 − u2∥2 = 0 for all t ∈ [0, T ]. By the weak
formulation of div u(t, x(t, y)) = σ(t, y), for any ξ ∈ C∞([0, T ]× Td) we have∫

(u1(t, x)− u2(t, x))∇ξ(t, x) dx = −
∫
(div u1(t, x)− div u2(t, x))ξ(t, x) dx

= −
∫
σ(t, y)J(t, y)(ξ(t, x1(t, y))− ξ(t, x2(t, y))) dy.

Using the de�nition of the �ow xs, we can rewrite the last integral as∫
σ(t, y)J(t, y)

∫ 1

0

d

ds
ξ(t, xs(t, y))dsdy

=

∫
σ(t, y)J(t, y)

∫ 1

0
∇ξ(t, xs(t, y))

dxs(t, y)

ds
dsdy.

By the density of smooth functions in W 1,2, we can choose ξ = ϕ1 − ϕ2. Then ∇ξ = u1 − u2
and we obtain∫

|u1 − u2|2 dx = −
∫
σ(t, y)J(t, y)

∫ 1

0
(u1(t, xs(t, y))− u2(t, xs(t, y)))

dxs
ds

(t, y) dsdy

≤ ∥σ∥∞∥J∥∞∥u1 − u2∥2
∫ 1

0

∥∥∥∥dxsds

∥∥∥∥
2

ds.
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Hence

∥u1 − u2∥2 ≤ C

∫ 1

0

∥∥∥∥dxsds

∥∥∥∥
2

ds. (2.17)

Substituting (2.17) into (2.15) and integrating over s, we get

d

dt

∫ 1

0

∥∥∥∥dxsds

∥∥∥∥2
2

ds ≤ C

∫ 1

0

∥∥∥∥dxsds

∥∥∥∥2
2

(
1 +

∣∣∣∣∣ln
∥∥∥∥dxsds

∥∥∥∥2
2

∣∣∣∣∣
)

ds+ C

(∫ 1

0

∥∥∥∥dxsds

∥∥∥∥
2

ds

)2

for t ∈ [0, T1] for some T1 ≤ T .
Now let α(t) =

∫ 1
0

∥∥dxs
ds (t, ·)

∥∥2
2
ds. As the function x(1 + | lnx|) is concave for x < 1 and

x2 is convex, we can estimate both terms in the right hand side from Jensen's inequality and
obtain

α̇ ≤ Cα(1 + | lnα|) + Cα.

From Osgood's lemma, the problem

ż = Cz(1 + | ln z|), z(0) = 0

has a unique solution z ≡ 0. Therefore, as dxs
ds |t=0

= 0, we have α(0) = 0 and

α(t) ≤ 0 for all t ∈ [0, T1].

In conclusion, dxs
ds ≡ 0 for all t ∈ [0, T1] and so is ∥u1 − u2∥2. Having that, we can perform

analogous reasoning on the consecutive intervals [nT1, (n + 1)T1] to get u1 = u2 for all t ∈
[0, T ].

2.4 The existence of solutions to (2.10)-(2.11)

In this section we prove that the transformation from the system (2.7) to (2.2) is well de-
�ned, which will end the proof of Theorem 2.1. Having the solution (η, σ) in the Lagrangian
coordinates by Theorem 2.4, we de�ne the transformation to Eulerian coordinates (x, t). In

other words, we need to �nd u such that
∫
u(t, x) dx = 0 and u satis�es (2.10)�(2.11). By

virtue of the discussion at the beginning of Section 2.3, such u provides us also existence of
the density ϱ.

Theorem 2.10. Let σ ∈ L∞([0, T ]× Td). There exists u ∈ L∞([0, T ]× Td) such that u is a
solution to system (2.10)-(2.11) and

div u ∈ L∞([0, T ]× Td), ∇u ∈ L∞(0, T ;BMO).

Proof. First, we prove the existence for smoothened σ, by putting

σδ = σ ∗ κδ,

where κδ is a standard molli�er.

Lemma 2.11. There exists a unique uδ ∈ C(0, T ;W 1,∞) satisfying

div uδ(t, xδ(t, y)) = σδ(t, y),

where xδ(t, y) is given by (2.11) with the �ow uδ.
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Proof. We de�ne the suitable map, and then apply the Banach �xed point theorem. Let

Φ: C(0, T ;W 1,∞) → C(0, T ;W 1,∞)

be de�ned in the following way:

1. If ū ∈ C(0, T ;W 1,∞), then ū is Lipschitz, so there exists a unique solution to system

ẋ = ū(t, x), x(0) = y. (2.18)

2. We can now invert x(t, y) to get y(t, x) instead. After di�erentiation of (2.18) with
respect to y, we get an ODE for the matrix H(t, y) = ∂x

∂y (t, y):

∂tH = ∇xū(t, x(t, y))H, H(0, y) = I. (2.19)

Moreover, the equation for J(t, y) = detH(t, y) yields

∂tJ(t, y) = divxū(t, x(t, y))J(t, y). (2.20)

Therefore we have the estimates

exp

(
−
∫ T

0
∥∇ū∥∞ds

)
≤ ∥H∥∞ ≤ exp

(∫ T

0
∥∇ū∥∞ds

)
,

and

exp

(
−
∫ T

0
∥divū∥∞ds

)
≤ ∥J∥∞ ≤ exp

(∫ T

0
∥divū∥∞ds

)
,

and H is invertible, which allows us to treat y as a function of x.

3. Finally, we put Φ(ū) = u, where u is a unique solution to the system

u(t, x) = ∇ϕ(t, x),
∆ϕ(t, x) = σδ(t, y(t, x))

(2.21)

for y(t, x) being the inverse �ow associated with ū.

The function σδ(t, y(t, ·)) is Lipschitz, as

|σδ(t, y(t, x1))− σδ(t, y(t, x2))| ≤ ∥∇σδ∥∞|y(t, x1)− y(t, x2)|

≤ ∥∇σδ∥∞
∥∥∥∥dydx

∥∥∥∥
∞
|x1 − x2|.

Therefore ϕ(t, ·) ∈ C2,1(Td) and in consequence u(t, ·) ∈ C1,1(Td) and we have the estimates

sup
0≤t≤T

∥u∥∞ ≤ C∥σδ∥∞,T ,

sup
0≤t≤T

∥∇u∥C0,1 ≤ C sup
0≤t≤T

∥σδ(t, y(t, ·))∥C0,1 .
(2.22)

Moreover, as σ ∈ L∞([0, T ] × Td), by the classical results for Lp regularity of strong
solutions to Poisson equation (see e.g. [108]), for any p ∈ (1,∞) we have the estimate

sup
0≤t≤T

∥u∥∞ + sup
0≤t≤T

∥u∥W 1,p + sup
0≤t≤T

∥∇u∥BMO ≤ C∥σ∥∞,T , (2.23)

which are uniform with respect to δ.
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2.4.1 Additional regularity of u

We will now show that the �xed points of Φ are uniformly bounded in L∞(0, T ;W 2,p). By
use of an appropriate logarithmic inequality, it implies that Φ(K) ⊆ K for some bounded and
closed K ⊂ C(0, T ;W 1,∞).

Proposition 2.12. If uδ is a �xed point of Φ, then

sup
0≤t≤T

∥∇uδ∥W 1,p ≤ C(p, δ, T ). (2.24)

Proof. After di�erentiation of (2.21) with respect to xi, we get

∆x
∂ϕ

∂xi
= ∇yσδ ·

∂y

∂xi
.

Hence for any 1 < p <∞ the standard elliptic estimate gives

∥∇ϕ∥W 2,p ≤ C(p)∥∇σδ∥∞
∥∥∥∥dydx

∥∥∥∥
∞
,

which leads to
sup

0≤t≤T
∥∇u∥W 1,p ≤ C(p)∥∇σδ∥∞,T e

T∥∇ū∥∞,T . (2.25)

Now take ū = u = uδ in (2.25) and apply the following inequality for p > d:

∥∇f∥∞ ≤ C(p)
(
1 + ∥∇f∥BMO

(
ln+(∥∇f∥W 1,p + ∥f∥∞)

)1/2)
. (2.26)

The proof of the above estimate one can �nd in [86], Corollary 2.4. By the estimates (2.23)
and Cauchy inequality, we have

∥∇uδ∥L∞(0,T ;W 1,p) ≤ C(p)∥∇σδ∥∞,T exp

(
T sup

0≤t≤T
∥∇uδ∥∞

)

≤ exp

(
CT sup

0≤t≤T
∥∇uδ∥BMO

(
ln+(∥∇uδ∥L∞(0,T ;W 1,p) + ∥uδ∥∞,T )

)1/2)

≤ exp

(
CT 2 +

1

2
ln+

(
∥∇uδ∥L∞(0,T ;W 1,p) + ∥uδ∥∞,T

))
≤ C

(
∥∇uδ∥L∞(0,T ;W 1,p) + ∥uδ∥∞,T

)1/2
.

Therefore
∥∇uδ∥2L∞(0,T ;W 1,p) − C∥∇uδ∥L∞(0,T ;W 1,p) − C ≤ 0

and in consequence
∥∇uδ∥L∞(0,T ;W 1,p) ≤ C

for some C depending on p, δ and T .

The analogous reasoning also provides that Φ(KT1) ⊆ KT1 for

KT1 = {u ∈ C(0, T1;W
1,∞) : ∥u∥∞,T1 , ∥∇u∥L∞(0,T1;BMO) ≤ C1 and ∥∇u∥∞,T1 ≤ C2},

where C1 is the constant from estimates (2.23) and C2 = C(p)
(
1 + C1

(
ln+(Cp + C1)

)1/2) is

the right hand side of (2.26) for Cp being the constant from (2.24).
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2.4.2 The �xed point argument.

Local existence. We show that Φ: K → K is a contraction for su�ciently small T1. From
the elliptic estimates, we have

∥u1(t, ·)− u2(t, ·)∥∞ ≤ C∥σδ(t, y1(t, ·))− σδ(t, y2(t, ·))∥∞
≤ C∥∇σδ∥∞,T ∥y1(t, ·)− y2(t, ·)∥∞.

By Lemma A.2 from the Appendix, for small t we have

∥y1(t, ·)− y2(t, ·)∥∞ ≤ Ct∥ū1 − ū2∥∞,T

and due to the uniform bound on ∥∇u∥∞ for u ∈ K the constant C does not depend on ū1
and ū2. Hence

∥u1 − u2∥∞,T1 ≤ C∥∇σδ∥∞,T (T1 + o(T1))∥ū1 − ū2∥∞,T1 . (2.27)

Choosing T1 such that C∥∇σδ∥∞,TT1 < 1, we get that Φ is a contraction on K. Therefore
there exists a unique �xed point uδ of Φ on the interval [0, T1].

Extension to [0, T ]. Having the uniqueness on [0, T1], we are able to perform the same
reasoning on [T1, 2T1]. Note that the estimate (2.27) on [T1, 2T1] would still depend only on
the length of the interval. Therefore again Φ is a contraction on [T1, 2T1], which gives us
the unique �xed point on [0, 2T1]. Performing this procedure on the consecutive intervals
[nT1, (n+ 1)T1], we obtain the existence of a unique �xed point on the whole interval [0, T ],
which completes the proof of Lemma 2.11.

2.4.3 Letting δ → 0.

In Lemma 2.11 we obtained the unique uδ = ∇ϕδ, which satis�es the equation

∆ϕδ(t, x) = σδ(t, yδ(t, x)) (2.28)

and the uniform estimates (2.23). Moreover, it turns out that ∂tuδ is uniformly bounded in
L2. Indeed, from the weak formulation of (2.28), for any π ∈ C∞(Td) we have∫

∆ϕδ(t, x)π(x) dx =

∫
σδ(t, yδ(t, x))π(x) dx =

∫
σδ(t, y)π(xδ(t, y))Jδ(t, y) dy,

where Jδ(t, y) = exp
(∫ t

0 σδ(s, y)ds
)
is the Jacobian of xδ. Di�erentiating this equality with

respect to time, we obtain∫
∆∂tϕδ(t, x)π(x) dx =

∫
∂tσδ(t, y)π(xδ(t, y))Jδ(t, y) dy

+

∫
σδ(t, y)∂tπ(xδ(t, y))Jδ(t, y) dy

+

∫
σδ(t, y)π(xδ(t, y))∂tJδ(t, y) dy.

(2.29)

Let us now estimate the terms on the right hand side of (2.29). First, observe that from
equation (2.7) ∂tσ is bounded, and therefore

|∂tσδ| = |(∂tσ) ∗ κδ| ≤ |∂tσ| ∈ L∞([0, T ]× Td).
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For the second term, we have

∂tπ(xδ(t, y)) = ∇π(xδ(t, y))ẋδ(t, y) = ∇π(xδ(t, y))u(t, xδ(t, y))

and then using uniform estimates on uδ, we get∫
|∇π(xδ(t, y))|2|uδ(t, xδ(t, y))|2 dy ≤

∥∥∥∥ 1

Jδ

∥∥∥∥
∞

∫
|∇π(t, x)|2|uδ(t, x)|2 dx ≤ C,

therefore ∂tπ(xδ(t, y)) ∈ L∞(0, T ;L2). The third term is bounded as well, as ∂tJδ = σδJδ and
both σδ and Jδ are bounded by some C(∥σ∥∞,T ).
The above estimates imply that ∆∂tϕδ is bounded in L∞(0, T ;W−1,2) uniformly in δ and
therefore

∥∂tuδ∥L∞(0,T ;L2) = ∥∇∂tϕδ∥L∞(0,T ;L2) ≤ C. (2.30)

We now let δ → 0+ and therefore obtain the solution to equation (2.10). The estimates
(2.23) give

∥ϕδ∥L∞(0,T ;W 2,p) ≤ C,

so ϕδ ⇀∗ ϕ in L∞(0, T ;W 2,p) up to a subsequence. From the uniform estimates (2.23)
and (2.30), Aubin-Lions Lemma implies that in particular uδ is compact in L1([0, T ] × Td).
Moreover, using Theorem 2.9 from [35], we get

sup
0≤t≤T

∥x(t, y)− xδ(t, y)∥L1(Td) ≤ C
∣∣∣ln(∥u− uδ∥L1([0,T ]×Td)

)∣∣∣−1
,

where x(t, y) is the �ow generated by this weak* limit u = ∇ϕ. Therefore xδ → x in
L∞(0, T ;L1).

The above convergence allows us to pass to the limit with δ → 0 in a weak formulation of
(2.21). For any ξ ∈ C∞([0, T ]× Td), we have∫ T

0

∫
∆ϕδ(t, x)ξ(t, x)dxdt =

∫ T

0

∫
(σ ∗ κδ)(t, yδ(t, x))ξ(t, x)dxdt

=

∫ T

0

∫
(σ ∗ κδ)(t, y)ξ(t, xδ(t, y))Jδ(t, y)dydt.

Letting δ → 0, we get∫ T

0

∫
∆ϕ(t, x)ξ(t, x)dxdt =

∫ T

0

∫
σ(t, y)ξ(t, x(t, y))J(t, y)dydt, (2.31)

where J = exp
(∫ t

0 σ(s, y)ds
)
is the Jacobian of the limit �ow x(t, y).

To deduce that indeed we have div u(t, x(t, y)) = σ(t, y), we need to change the variables
in one of the sides in (2.31). Despite the fact that x(t, ·) is not a di�eomorphism, Lemma
3.1 from [34] allows us to perform the change of variables in the left hand side of (2.31) and
obtain ∫ T

0

∫
div u(t, x(t, y))ξ(t, x(t, y))J(t, y)dydt.

Therefore the equality (2.31) is transformed into∫ T

0

∫ [
div u(t, x(t, y))− σ(t, y)

]
ξ(t, x(t, y))J(t, y)dydt = 0.
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As div u ∈ L∞([0, T ]×Td), the Jacobian J(t, y) is strictly positive. Hence, from the arbitrary
choice of ξ, we have div u(t, x(t, y)) = σ(t, y) in the sense of distributions, which ends the
proof of Theorem 2.10.

As by Theorem 2.4 the norms ∥η∥∞,T and ∥σ∥∞,T do not depend on T , so are ∥ϱ∥∞,T ,
∥div u∥∞,T and the estimates given by (2.23). Then again from arbitrary choice of T we
obtain the unique existence on the whole real half-line and hence the proof of Theorem 2.1 is
completed.
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Chapter 3

Weak solutions for the compressible

non-Newtonian Stokes system with

unbounded divergence

This chapter consists of result published in [93]. We investigate the existence of weak solutions
to a system of equations modeling the behavior of a certain compressible non-Newtonian �uid
for small Reynolds number. We construct the weak solutions despite the lack of the L∞

estimate on the divergence of the velocity �eld. The result was obtained by combining the
regularity theory for singular operators with the logarithmic integral inequality for BMO
functions, which allowed us to adjust the method from Feireisl et al. [45] to more relaxed
conditions on the velocity.

3.1 Introduction

Our aim is to investigate the existence of weak solutions to equations modelling a special case
of compressible, non-Newtonian �uid. In the most general setting, the motion of such a �uid
without the presence of the external forces is described by the system of partial di�erential
equations

ϱt + div (ϱu) = 0,

(ϱu)t + div (ϱu⊗ u)− div S+∇p(ϱ) = 0,
in [0, T ]× Ω, (3.1)

where Ω ⊂ Rd, ϱ is the density, u is a velocity vector and S is the stress tensor; we assume
that it is given by

S(Du) = µDu+ λdiv uI,

where I is an idetity matrix, µ > 0 and λ are the viscosity coe�cients, D = 1
2(∇ + ∇T ) is

the symmetric gradient and p(ϱ) is the pressure. In the case of constant viscosity (i.e., the
resulting system is called the compressible Navier�Stokes equations) dλ + µ ≥ 0, where d is
the space dimension.

We will focus on the case where the Reynolds number Re ∼ ϱ|u|
µ is small. As in this

situation the advective forces are small compared to the viscous ones, we can approximate
system (3.1) by the compressible Stokes-like system

ϱt + div (ϱu) = 0,

−div S(Du) +∇p(ϱ) = 0.
(3.2)

Our aim is to obtain weak solutions to a special case of system (3.2). We assume that the
shear viscosity µ is in the form

µ = µ0(|Du|) + 2µ1, µ1 > 0 constant (3.3)
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and the bulk viscosity λ = λ(|div u|), where

0 ≤ µ0(z), λ(z) ≤
C

z
, z > 0. (3.4)

Furthermore, we impose the monotonicity condition on the functions µ0(| · |)· and λ(| · |)·, i.
e. for all A,B ∈ Rd×d and s, t ∈ R(

µ0(|A|)A− µ0(|B|)B
)
: (A−B) ≥ 0 and

(
λ(|s|)s− λ(|t|)t

)
(s− t) ≥ 0. (3.5)

For the pressure we assume the barotropic case with p(ϱ) = ϱγ for γ ≥ 11. For simplicity
we consider the space-periodic boundary conditions, namely

u : [0, T ]× Td → Rd and ϱ : [0, T ]× Td → R,

where Td is the d-dimensional torus. In conclusion, the analysed system of equations reads

ϱt + div (ϱu) = 0,

−div (µ0(|Du|)Du)− µ1∆u−∇((µ1 + λ(div u))div u) +∇ϱγ = 0,
(3.6)

with the initial condition
ϱ|t=0

= ϱ0 ∈ L∞(Td), ϱ0 ≥ 0 (3.7)

and the compatibilty constraint ∫
Td

u(t, x) dx = 0 ∀t>0.

Our system describes a type of the power-law �uid. They are characterized by the behavior
of the shear viscosity, which satis�es the relation

µ ∼ |Du|r−2 (3.8)

for some exponent r ≥ 1. Typically, it is assumed that

µ = µ0|Du|r−2 or µ = µ0(a+ |Du|)r−2, a > 0,

to ensure that the viscosity is strictly positive and does not have singularities. For r = 2
the �uid becomes Newtonian, whereas it is shear-thinning for r < 2 and shear-thickening for
r > 2. The power-law �uids are used in many �elds, for example glaciology [72, 59] and to
analyze the dynamics in the Earth's Mantle [110] or blood �ow [32, 96]. For more information
we refer the reader, e.g., to [4]. Our situation corresponds speci�cally to a Herschel-Bulkley
�uid, where the shear viscosity is in the form

µ =

 µ0, |Du| < δ,
τ0
|Du|

+ k|Du|n−1, |Du| ≥ δ

for some n ≥ 1 and the parameters µ0, τ0, k are chosen in such way that µ remains continuous.
Fluids of this type were thoroughly analysed in the incompressible case, and have many
industrial applications, see e.g. [3, 36, 42].

1We could also replace this precise form just by asymptotic growth conditions similarly as in [45], i.e.

p(0) = 0, p′(z) > 0 for z > 0, and lim
z→∞

p(z)

zγ
∈ (0,∞),

but we skip it to avoid unnecessary complications
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The mathematical theory concerning weak solutions to systems describing incompressible
non-Newtonian �uids has been thoroughly developed in the past. There is a large number
of results for several aspects of these problems. As it turns out, the existence and regularity
of solutions to incompressible Navier�Stokes equations with the power-law relation (3.8) for
viscosity depends on the value of r. For r > 2d

d+2 the existence of weak solutions for the
problem

div u = 0,

ut + div (u⊗ u)− div S+∇p = 0
(3.9)

with the Dirichlet boundary conditions was shown for the �rst time in [39]; its uniqueness is
known for r ≥ 3d+2

d+2 , see [15]. As a matter of fact, the problem for r < 2d
d+2 is ill-posed, see

[16]. However, existence of more general, dissipative solutions can be shown also in this case,
see [1].

Contrary to the incompressible case, the current literature on the compressible non-
Newtonian �uids is very limited. In [70, 71] Mamontov proved the existence of weak solutions
to the system with linear pressure term and in the framework of Orlicz spaces with exponential
growth, see also [2] for further properties of these solutions. The results for more general form
of the stress tensor were obtained in [45], where the authors considered the system (3.1) with
µ of the form (3.8) and a special form of λ, which provided the L∞ bound on div u. Using the
classical Lions & Feireisl method [48, 67], the authors proved the existence of weak solutions
for the same range of r's as in the uniqueness and regularity theory for incompressible �uids
(r ≥ 11

5 in three dimensions). The additional bound on the divergence was crucial to obtain
the strong convergence of the density in the �nal limit passage.

3.1.1 Main result and structure of the paper

Let us �rst de�ne what we understand by a weak solution:

De�nition 3.1. We say that (ϱ, u) ∈ L∞(0, T ;Lγ)×L2(0, T ;W 1,2), γ ≥ 1, is a weak solution
to the system (3.2) on [0, T ]× Td with the initial condition ϱ0 ∈ L1(Td), if

ϱu, S(Du), p(ϱ) ∈ L1((0, T )× Td)

and for each φ ∈ C∞
0 ([0, T )× Td;R) and ψ ∈ C∞

0 ([0, T )× Td;Rd) it holds

−
∫ T

0

∫
Td

ϱ∂tφ dxdt−
∫ T

0

∫
Td

ϱu · ∇φ dxdt =

∫
Td

ϱ0φ(0, ·) dx

and ∫ T

0

∫
Td

S(Du) : Dψ dxdt−
∫ T

0

∫
Td

p(ϱ)divψ dxdt = 0.

Our main result states:

Theorem 3.2. Let ϱ0 ∈ L∞(Td), ϱ0 ≥ 0, γ ≥ 1 and let (3.4) hold. Then for any T > 0 there
exists a weak solution to the system (3.6), satisfying

∥∇u∥L2((0,T )×Td) + ∥ϱ∥L∞(0,T ;Lγ) ≤ C,

where C does not depend on T , and

∥div u∥L∞(0,T ;Lp) + ∥ϱ∥L∞(0,T ;Lp) ≤ C(p, T ),

for any 1 ≤ p <∞, where C approaches ∞ if p or T do so.
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The proof of Theorem 3.2 uses the technique from [45]. However, due to the absence of
the convective term we are able to obtain the result for relaxed assumptions on div u. In
particular, we do not need to derive the L∞ bound on div u. Instead, we obtain the BMO
regularity in space for the term

2µ1div u− ϱγ .

This allows us to replicate the main step in the limit passage by using the logarithmic integral
inequality from the previous chapter, see Lemma B.6 and [100].

The rest of the article is devoted to the proof of Theorem 3.2. First, in Section 3.2 we derive
the a priori estimates, in particular the crucial BMO estimate for the quantity 2div u − ϱγ .
Then, in Section 3.3, we prove the existence of solutions to the approximate system with the
regularized continuity and momentum equations. In Section 3.4 we �nish the proof by passing
to the limit in the weak formulation of the approximate system and in consequence we obtain
the weak solution to the original one.

Preliminary remarks. Similarly as in the previous chapter, we omit the subscript while
integrating over the torus, namely ∫

dx :=

∫
Td

dx.

Furthermore, as the results do not depend on the values of µ1, for simplicity we set µ1 = 1.

3.2 A priori estimates

Lemma 3.3. Under the assumptions of Theorem 3.2, if the solution to (3.6) is su�ciently
smooth, it satis�es

∥∇u∥L2((0,T )×Td) + ∥ϱ∥L∞(0,T ;Lγ) ≤ C

and
∥2div u− ϱγ∥L∞(0,T ;BMO) ≤ C

for C depending only on ∥ϱ0∥∞. Furthermore,

∥div u∥L∞(0,T ;Lp) + ∥ϱ∥L∞(0,T ;Lp) ≤ C(p, T )

for any p <∞, where C(p) → ∞ as p→ ∞ or T → ∞.

Proof. Multiplying the second equation of (3.6) by u and integrating over the torus, we obtain
(if γ = 1, the last integral is replaced by

∫
ϱ ln ϱ dx)∫

µ0(|Du|)|Du|2dx+

∫
|∇u|2dx+

∫
(div u)2dx

+

∫
λ(|div u|)(div u)2dx+

1

γ − 1

d

dt

∫
ϱγdx = 0. (3.10)

Integrating the above equality from 0 to T , we obtain the �rst desired estimate.
To obtain the Lp estimate of the density, we use as a test function in (3.6)2 the function

ψ = −(−∆)−1∇
(
ϱθ − {ϱθ}

)
for a suitable θ > 1. We have

divψ = ϱθ − {ϱθ}

and
∥∇ψ∥Lr((0,T )×Td) ≤ C(r)∥ϱθ∥Lr((0,T )×Td) for any 1 < r <∞.
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The above estimate follows for example from the Marcinkiewicz Multiplier Theorem [73].
Note that C(r) → ∞ if r → 1+ or r → ∞. Moreover,

−
∫

∆u · ψ dx = −
∫
u · ∇

(
ϱθ − {ϱθ}

)
dx =

∫
ϱθdiv u dx.

Then∫
ϱγ+θ dx− 2

∫
ϱθdiv u dx =

∫
µ0(|Du|)Du : ∇ψ dx+

∫
ϱθλ(|div u|)div u dx

+
1

|Td|

∫
ϱγdx

∫
ϱθdx.

Using the growth conditions on µ0 and λ, we get∫
ϱθλ(|div u|)div u dx ≤ C

∫
ϱθ dx

and ∫
µ0(|Du|)Du : ∇ψ dx ≤ C

∫
|∇ψ| dx ≤ C(δ)∥ϱθ∥L1+δ .

Moreover, as ∫
ϱθdiv u dx =

−1

θ − 1

d

dt

∫
ϱθdx,

in the end we obtain

2

θ − 1

d

dt

∫
ϱθdx+

∫
ϱγ+θdx ≤ C

(∫
ϱθdx+

(∫
ϱ(1+δ)θdx

) 1
1+δ

)
;

whence, for a suitably chosen δ

∥ϱ∥L∞(0,T ;Lp) ≤ C(p, T, ϱ0).

The bound in the BMO space comes from the Calderón�Zygmund estimates. By taking
the divergence of the momentum equation, we get

−∆((2 + λ(div u))div u− ϱγ) = div div (µ0(|Du|)Du) .

Therefore in consequence for A(t) =
1

Td

∫
λ(|div u(t, y)|)div u(t, y)− ϱγ(t, y) dy, we have

(2 + λ(|div u(t, x)|))div u(t, x)− ϱγ(t, x)−A(t) =

∫
div div (µ0(|Du|)Du) K̄(x− y)dy

=

∫
div (µ0(|Du|)Du) · ∇K̄(x− y)dy

=

∫
µ0(|Du|)Du : ∇2K̄(x− y)dy,

(3.11)
where K̄ is the fundamental solution to the Laplace equation on Td. Note that we can
write K̄ explicitly using Fourier series: if −∆φ = f in Td for f with mean value 0, then
|k|2φ̂(k) = f̂(k). In consequence

φ(x) =
∑

k∈Zd\{0}

1

|k|2
e2πik·xf̂(k) =

∫
f(y)

∑
k∈Zd\{0}

1

|k|2
e2πik(x−y)dy
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and thus
K̄(x) =

∑
k∈Zd\{0}

1

|k|2
e2πik·x.

By Example 3.1.19 from [53], we know that

K̄(x) =
cd

|x|d−2
+ h1(x)

for some h1 ∈ C∞([0, 1)d).
Therefore from the Calderón�Zygmund theorem we conclude that

∥(2 + λ(|div u|))div u− ϱγ −A(t)∥L∞(0,T ;BMO) ≤ C ∥µ0(|Du|)Du∥L∞((0,T )×Td) ≤ C

for some constant C independent of T (for the results concerning singular integrals in the
periodic case we refer the reader to [18]). Note that by the condition (3.4)

∥λ(|div u|)div u∥L∞([0,T ]×Td) ≤ C

and from (3.10)
∥A(t)∥L∞([0,T ]) ≤ C.

The BMO regularity is thus satis�ed for 2div u − ϱγ . Moreover, the L∞(0, T ;Lp) estimate
on ϱγ also implies the same regularity for div u, which �nishes the proof.

3.3 Existence of approximate solutions

In this section we construct the approximate solutions. To do that, we consider the system

ϱt + div (ϱu) + δϱβ = δ∆ϱ,

−div (µ0(Du)Du)−∆u−∇(1 + λ(div u))div u+∇ϱγ = −ε∆2mu,∫
u(t, x) dx = 0

(3.12)

for a su�ciently small δ, ε > 0, su�ciently large m ∈ N and β ≥ max{γ + 1, 4} being an odd
integer, with the initial condition

ϱ|t=0
= ϱ0,δ ∈ C∞(Td), ϱ0,δ > 0, ϱ0,δ → ϱ0 in any Lp, p <∞.

To prove the existence of solutions, we will employ the following version of the Schauder
�xed point theorem:

Theorem 3.4. Let X be a Banach space and Φ: X → X be continuous and compact. If the
set

{x ∈ X : x = sΦ(x) for some s ∈ [0, 1]}

is bounded, then Φ has a �xed point.

Let us de�ne the map Φ: C([0, T ];L2γ) → C([0, T ];L2γ) in the following way:

1. For ϱ̃ ∈ C([0, T ];L2γ), let u be the unique solution to the equation

−div (µ0(|Du|)Du)−∆u−∇(1 + λ(div u))div u+∇(ϱ̃)γ = −ε∆2mu,∫
u(t, x) dx = 0.

(3.13)
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2. Then, let ϱ be the solution to

ϱt + div (ϱu) + δϱβ = δ∆ϱ, ϱ|t=0
= ϱ0,δ. (3.14)

We set Φ(ϱ̃) := ϱ. It is easy to see that the �xed point ϱ and the corresponding u solve
our problem (3.12).

First, let us show that the operator Φ is well-de�ned.

Proposition 3.5. If ϱ̃γ ∈ L∞(0, T ;L2), then there exists a unique solution u to equation
(3.13), satisfying

∥∇u∥L∞(0,T ;L2) +
√
ε∥∆mu∥L∞(0,T ;L2) ≤ C∥ϱ̃γ∥L∞(0,T ;L2).

In particular, if m is large enough, then

∥u∥L∞(0,T ;W 1,∞) ≤
C√
ε
∥ϱ̃γ∥L∞(0,T ;L2).

Proof. By multiplying the equation by u and integrating over the torus, we get∫
µ0(|Du|)|Du|2 + |∇u|2 + (1 + λ(div u))(div u)2 + ε|∆mu|2 dx =

∫
ϱ̃γdiv u dx

≤ η

∫
(div u)2dx+

C

η
∥ϱ̃γ∥2L∞(0,T ;L2),

hence picking η small enough and taking supremum over time, we get the desired estimate.
For existence, we consider the functional I de�ned in

H2m(Td) =

{
v ∈ H2m(Td) :

∫
v dx = 0

}
,

given by

I[v] :=

∫ (
F (∇v) + 1

2
|∇v|2 + Λ(div v) +

ε

2
|∆mv|2 − ϱ̃γ(t, ·)div v

)
dx,

where F satis�es
∂

∂bi,j
F (B) = µ0(|B|)bi,j ,

for B = (bi,j)i,j ∈ Rd×d and Λ is such that Λ′(s) = s+ λ(s)s. In particular, the assumptions
on µ0 and λ imply that F and Λ are convex and bounded from below.

From the de�nitions of F and Λ it follows that any minimizer of I corresponds to a weak
solution to (3.13). By the convexity of F and Λ, the functional I is convex. Moreover, for
certain C and η < C,

I[v] ≥ ε∥∆mv∥2L2 + C∥∇v∥2L2 − η∥∇v∥2L2 −
C

η
∥ϱ̃γ(t, ·)∥2L2 ≥ C∥v∥2H2m − C∥ϱ̃γ∥2L∞(0,T ;L2),

and thus I is coercive. Therefore I has at a.e. time level a unique minimizer v(t, ·) ∈ H2m(Td)
and in consequence there exists a unique u ∈ L∞(0, T ;H2m) with zero mean value over the
torus, solving (3.13).

Now we use the following classical result for the heat equation (see e.g. Lemmas 7.37-38
in [85]):
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Proposition 3.6. Let h ∈ L2(0, T ;Lq) for 1 < q <∞. Then the solution to

∂tϱ− ε∆ϱ = h, ϱ|t=0
= ϱ0

satis�es the estimate

ε1/2∥ϱ∥L∞(0,T ;W 1,q) + ∥∂tϱ∥L2(0,T ;Lq) + ε∥ϱ∥L2(0,T ;W 2,q)

≤ C
(
ε1/2∥ϱ0∥W 1,q + ∥h∥L2(0,T ;Lq)

)
. (3.15)

Moreover, if h = divw, w ∈ L2(0, T ;Lq), then

ε1/2∥ϱ∥L∞(0,T ;Lq) + ε∥∇ϱ∥L2(0,T ;Lq) ≤ C
(
ε1/2∥ϱ0∥Lq + ∥w∥L2(0,T ;Lq)

)
. (3.16)

From the previous Proposition, we can also conclude

Proposition 3.7. If u ∈ L∞(0, T ;W 1,∞), then for equation (3.14) there exists a unique
nonnegative solution ϱ ∈ L∞(0, T ;W 1,r) with ∂tϱ ∈ L2(0, T ;W−1,r) for any r <∞.

Proof. We construct ϱ ∈ L∞(0, T ;W 1,2) solving (3.14) by the Galerkin approximation. The
nonnegativity of solutions is obtained by testing by negative part of ϱ and is a conclusion of
the fact that the function ϱ 7→ ϱβ is odd. By decomposing ϱ = ϱ+ − ϱ− into positive and
negative parts, ϱ+, ϱ− ≥ 0, testing (3.14) by −ϱ− we get

1

2

d

dt

∫
ϱ2− dx+ δ

∫
ϱβ+1
− dx+ δ

∫
|∇ϱ−|2 dx = −1

2

∫
ϱ2−div u dx

≤ 1

2
∥div u∥L∞

∫
ϱ2− dx

and ϱ− = 0 from Gronwall's lemma.
Next, testing equation (3.14) by pϱp−1, we have

d

dt

∫
ϱpdx ≤ (p− 1)∥div u∥L∞

∫
ϱpdx

and therefore
∥ϱ∥L∞(0,T ;Lp) ≤ ∥ϱ0,ε∥Lpe

p−1
p

∥u∥L1(0,T ;W1,∞) .

Taking p→ ∞ we have ϱ ∈ L∞((0, T )×Td). In consequence ϱu ∈ L2(0, T ;Lr) for any r <∞
and we can use (3.16) to obtain

∇ϱ ∈ L2(0, T ;Lr).

Employing the fact that u ∈ L∞(0, T ;W 1,∞), we have div (ϱu) ∈ L2(0, T ;Lr) and by (3.15)
with h = −div u−δϱβ , ϱ ∈ L∞(0, T ;W 1,r) for any r <∞, whereas the estimate for ∂tϱ comes
directly from the equation (3.14). The uniqueness is shown by taking two possibly distinct
solutions ϱ1, ϱ2 and computing ∥ϱ1 − ϱ2∥L∞(0,T ;L2). Similarly as before, we have

1

2

d

dt

∫
(ϱ1 − ϱ2)

2 dx+ δ

∫
(ϱβ1 − ϱβ2 )(ϱ1 − ϱ2) dx+ δ

∫
|∇(ϱ1 − ϱ2)|2 dx

= −1

2

∫
(ϱ1 − ϱ2)

2div u dx

and then we proceed analogously as in the proof of nonnegativity, using the fact that (ϱβ1 −
ϱβ2 )(ϱ1 − ϱ2) ≥ 0.
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We will now show the properties of Φ, which allow us to apply directly the Schauder �xed
point theorem (Theorem 3.4).

Proposition 3.8. The operator Φ is continuous and compact from C([0, T ];L2γ) to itself.
Moreover, the set

{ϱ ∈ C([0, T ];L2γ) : ϱ = sΦ(ϱ) for some s ∈ [0, 1]}

is bounded.

Proof. Let ϱ̃1, ϱ̃2 ∈ C([0, T ];L2γ) and u1, u2 be the corresponding solutions to (3.13). As
before, denote Φ(ϱ̃i) = ϱi, i = 1, 2.

Compactness. From the previous propositions we know that ϱ ∈ L∞(0, T ;W 1,2γ) and
∂tϱ ∈ L2(0, T ;W−1,2γ) and the bounds are uniform for bounded sets of ϱ̃ in the given spaces.
Therefore, the compactness of Φ in C([0, T ];L2γ) follows straight from a variant of the Aubin�
Lions lemma from [94].

Continuity. We will estimate u1 − u2 in terms of ϱ̃1 − ϱ̃2. We have

− div
(
µ0(|Du1|)Du1 − µ0(|Du2|)Du2

)
−∇

(
(1 + λ(div u1))div u1 − (1 + λ(div u2))div u2

)
−∆(u1 − u2) + ε∆2m(u1 − u2) = −∇(ϱ̃γ1 − ϱ̃γ2).

Multiplying the above equality by u1 − u2 and integrating over Td, we get

A(u1, u2) +

∫
ε|∆m(u1 − u2)|2 + |∇(u1 − u2)|2 dx =

∫
(ϱ̃γ1 − ϱ̃γ2)(div u1 − div u2)dx,

where

A(u1, u2) =

∫
(µ0(|Du1|)Du1 − µ0(|Du2|)Du2) : (Du1 − Du2)

+
(
(1 + λ(div u1))div u1 − (1 + λ(div u2))div u2

)
(div u1 − div u2)dx ≥ 0

from the monotonicity of the functions B 7→ B
a+|B| and s 7→ λ(s)s. In consequence, we have

∥∇(u1 − u2)∥2L2(Td) + ε∥∆m(u1 − u2)∥2L2(Td)

≤ ∥ϱ̃γ1 − ϱ̃γ2∥L2(Td)∥div (u1 − u2)∥L2(Td)

≤ C
(
∥ϱ̃1∥γ−1

L∞(Td)
+ ∥ϱ̃2∥γ−1

L∞(Td)

)
∥ϱ̃1 − ϱ̃2∥L2(Td)∥∇(u1 − u2)∥L2(Td)

≤ C(η)∥ϱ̃1 − ϱ̃2∥2L2(Td) + η∥∇(u1 − u2)∥2L2(Td).

Hence, choosing η small enough we get

∥u1 − u2∥L∞(0,T ;W 1,∞) ≤ C∥∆m(u1 − u2)∥L∞(0,T ;L2)

≤ C∥ϱ̃1 − ϱ̃2∥L∞(0,T ;L2)

≤ C∥ϱ̃1 − ϱ̃2∥L∞(0,T ;L2γ).

Moreover, ϱ1 − ϱ2 satisfy

∂t(ϱ1 − ϱ2) + δ(ϱβ1 − ϱβ2 )− δ∆(ϱ1 − ϱ2) = −div (ϱ1u1 − ϱ2u2) (3.17)

with
(ϱ1 − ϱ2)|t=0

= 0.



38 Chapter 3. Compressible Stokes for non-Newtonian �uids

Let us now estimate ∥ϱ1 − ϱ2∥L∞(0,T ;Lp). First, we write div (ϱ1u1 − ϱ2u2) as

div (ϱ1u1 − ϱ2u2) = u1∇(ϱ1 − ϱ2) +∇ϱ2(u1 − u2) + div u1(ϱ1 − ϱ2) + ϱ2(div u1 − div u2).

Then, multiplying (3.17) by p|ϱ1 − ϱ2|p−2(ϱ1 − ϱ2) and integrating, we obtain

d

dt

∫
|ϱ1 − ϱ2|pdx+δp

∫
|ϱ1 − ϱ2|p−2(ϱβ1 − ϱβ2 )(ϱ1 − ϱ2) dx

=− δp(p− 1)

∫
|ϱ1 − ϱ2|p−2|∇(ϱ1 − ϱ2)|2 dx

− (p− 1)

∫
|ϱ1 − ϱ2|pdiv u1dx

−
∫
(∇ϱ2(u1 − u2) + ϱ2(div u1 − div u2))|ϱ1 − ϱ2|p−2(ϱ1 − ϱ2)dx.

In consequence, as (ϱβ1 − ϱβ2 )(ϱ1 − ϱ2) ≥ 0, we obtain

d

dt

∫
|ϱ1 − ϱ2|pdx ≤ (p− 1)∥u1∥W 1,∞(Td)

∫
|ϱ1 − ϱ2|pdx

+ ∥ϱ2∥W 1,p(Td)∥u1 − u2∥W 1,∞(Td)∥ϱ1 − ϱ2∥p−1
Lp(Td)

.

Therefore from Gronwall's lemma

∥ϱ1 − ϱ2∥L∞(0,T ;Lp) ≤ C∥u1 − u2∥L∞(0,T ;W 1,∞),

where C depends on T , ∥u1∥L1(0,T ;W 1,∞) and ∥ϱ2∥L2(0,T ;W 1,p). In particular,

∥ϱ1 − ϱ2∥L∞(0,T ;L2γ) ≤ C∥u1 − u2∥L∞(0,T ;W 1,∞) ≤ C∥ϱ̃1 − ϱ̃2∥L∞(0,T ;L2γ).

Estimates for the �xed points. To complete the proof of the Proposition, we need
to check if the points satisfying ϱ = sΦ(ϱ) are bounded in L∞(0, T ;L2γ) for any s ∈ [0, 1].
Throughout the proof we will denote by C various constants independent on s. If s = 0, the
claim is trivial. For s > 0, we have

1

s
∂tϱ+

1

s
div (ϱu) +

δ

sβ
ϱβ =

1

s
δ∆ϱ

and
−div (µ0(|Du|)Du)−∆u−∇(1 + λ(div u))div u+ ε∆2mu+∇ϱγ = 0.

Multiplying the momentum equation by u and integrating, we obtain analogously as for the
a priori estimates∫ T

0

∫
|∇u|2 dxdt+ ε

∫ T

0

∫
|∆mu|2 dxdt+ sup

t∈[0,T ]

1

γ − 1

∫
ϱγ dx

+
δ

sβ−1

γ

γ − 1

∫ T

0

∫
ϱβ+γ−1dxdt+ δγ

∫ T

0

∫
|∇ϱ|2ϱγ−2dxdt ≤

∫
ϱγ0,εdx ≤ C.

Repeating the estimate from Proposition 3.7, we get again

∥ϱ∥L∞(0,T ;L2γ) ≤ ∥ϱ0,ε∥L∞(Td)e
∥u∥L1(0,T ;W1,∞) ≤ C.



3.4. Compactness 39

In consequence, the assumptions of Theorem 3.4 are satis�ed and there exists at least one
solution to (3.12) on [0, T ]× Td for arbitrary T > 0.

3.4 Compactness

We will now prove that we can pass to the limit with δ, ε → 0 to obtain the solutions to
system (3.6). First, we will pass to the limit with ε → 0 and then we improve the estimates
on ϱ uniform in δ and perform the second limit passage. Below, by f we will denote the weak
limit of a sequence fn.

3.4.1 Limit passage with ε → 0

Let (ϱδ,ε, uδ,ε) be a solution to (3.12). We have the following estimates uniform in ε:

∥uδ,ε∥2L2(0,T ;W 1,2) + ∥ϱδ,ε∥γL∞(0,T ;Lγ) + δ∥∇ϱγ/2δ,ε ∥2L2((0,T )×Td)

+ δ∥ϱδ,ε∥γ+β−1
Lγ+β−1((0,T )×Td)

+ δ∥∇ϱδ,ε∥2L2((0,T )×Td) ≤ C.

In particular, at least up to a subsequence,

uδ,ε ⇀ uδ in L2(0, T ;W 1,2).

Moreover, as the lower bounds on β provide β + γ − 1 ≥ 2γ, we know that

∥ϱγδ,ε∥L2((0,T )×Td), ∥ϱδ,εuδ,ε∥Lp((0,T )×Td) ≤ C(δ)

for some suitable p < 2. In consequence,

∥∇ϱδ,ε∥L2((0,T )×Td), ∥ϱδ,ε∥Lp((0,T )×Td), ∥∂tϱδ,ε∥Lp(0,T ;W−1,p) ≤ C(δ).

Therefore from the Aubin�Lions lemma ϱδ,ε → ϱδ in Lp((0, T )× Td), (at least up to a subse-
quence). Then we also have ϱγδ,ε → ϱγδ and ϱβδ,ε → ϱβδ in suitable Lq spaces. In consequence,
we are able to pass to the limit in the continuity equation. For the momentum equation, note
that the regularizing term satis�es

ε1/2∥∆muδ,ε∥L2((0,T )×Td) ≤ C

and thus in the weak formulation

ε

∫ T

0

∫
∆muδ,ε ·∆mϕ dxdt→ 0

for ϕ ∈ C∞
0 ((0, T )× Td). Therefore in the weak formulation we obtain∫ T

0

∫
µ0(|Duδ|)Duδ : Dφ+∇uδ : ∇φ

+ div uδdivφ+ λ(div uδ)div uδdivφ− ϱγδdivφ dxdt = 0.
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Testing by uδ, we get∫ T

0

∫
µ0(|Duδ|)Duδ : Duδ + |∇uδ|2

+ (div uδ)
2 + λ(div uδ)div uδdiv uδ − ϱγδdiv uδ dxdt = 0. (3.18)

On the other hand, testing �rst the momentum equation in (3.12), by uδ,ε, we get∫ T

0

∫
µ0(|Duδ,ε|)Duδ,ε + |∇uδ,ε|2

+ (div uδ,ε)
2 + λ(|div uδ,ε|)(div uδ,ε)2 − ϱγδ,εdiv uε,δ dxdt = 0

and thus passing to the limit with ε we get∫ T

0

∫
µ0(|Duδ|)|Duδ|2 + λ(div uδ)(div uδ)2dxdt

+ lim inf
ε→0

∫ T

0

∫
|∇uδ,ε|2 + (div uδ,ε)

2dxdt−
∫ T

0

∫
ϱγδdiv udxdt ≤ 0. (3.19)

From the monotonicity assumptions on µ0, we know that

(µ0(|Duδ,ε|)Duδ,ε − µ0(|Duδ|)Duδ) : (Duδ,ε − Duδ) ≥ 0.

Therefore passing to the limit with ε→ 0 and using weak convergence of Duδ,ε, we get

µ0(|Duδ|)|Duδ|2 ≥ µ0(|Duδ|)Duδ : Duδ. (3.20)

Analogously, for λ we have

λ(|div uδ|)(div uδ)2 ≥ λ(|div uδ|)div uδdiv uδ. (3.21)

Therefore substracting (3.18) from (3.19) and using weak lower semicontinuity of the norm,
we obtain the convergence ∇uδ,ε → ∇uδ in L2((0, T ) × Td), which allows us to pass to the
limit in the remaining nonlinear terms.

3.4.2 Limit passage with δ → 0

Now, let (ϱδ, uδ) be the function obtained in the previous section, solving

ϱt + div (ϱu) + δϱβ = δ∆ϱ,

−div ((µ0(|Du|) + 1)Du)−∇(λ(div u)div u) +∇ϱγ = 0.
(3.22)

Note that repeating the calculations from Section 3.2, we get the estimate

∥2div uδ − ϱγδ∥L∞(0,T ;BMO) ≤ C.

Moreover, using the uniform estimates on ∥uδ∥L2(0,T ;W 1,2) and ∥ϱδ∥L∞(0,T ;Lγ), we will improve
the integrability of ϱδ uniformly in δ.

Let p > 1 and let Tk ∈ C∞([0,∞)) be the truncation operator, namely Tk(z) = z for
z < k, Tk(z) = k + 1 for z > 2k, T ′

k(z) ≥ 0 as well as Tk(z) ↗ z as k → ∞. We de�ne the
function Pk(ϱ) as

Pk(ϱ) = ϱ

∫ ϱ

0

Tk(z)
p

z2
dz.
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The choice of Pk is motivated by the fact that

ϱP ′
k(ϱ)− Pk(ϱ) = Tk(ϱ)

p.

One can also observe that Pk(ϱ) ↗ 1
p−1ϱ

p as k → ∞.
Testing the continuity equation in (3.22) by P ′

k(ϱ), we get

d

dt

∫
Pk(ϱδ) dx+ δ

∫ (
ϱβδP

′
k(ϱδ) +

pTk(ϱδ)
p−1T ′

k(ϱδ)

ϱδ
|∇ϱδ|2

)
dx

= −
∫
Tk(ϱδ)

pdiv uδ dx. (3.23)

Now, let us test the momentum equation by the function

ψ = ∆−1∇ (Tk(ϱδ)
p − {Tk(ϱδ)p}) .

We have ∫ T

0

∫
ϱγδTk(ϱδ)

p dxdt

≤C∥µ0(|Duδ|)Duδ∥L∞((0,T )×Td)∥∇ψ∥L1+
γ
p ((0,T )×Td)

+ ∥λ(|div uδ|)div uδ∥L∞((0,T )×Td)∥∇ψ∥L1+
γ
p ((0,T )×Td)

+ 2

∫ T

0

∫
Tk(ϱδ)

pdiv uδ dxdt

+ C∥ϱδ∥L∞(0,T ;Lγ)

∫ T

0

∫
Tk(ϱδ)

pdxdt

≤C∥Tk(ϱδ)∥pLp+γ((0,T )×Td)
+ 2

∫ T

0

∫
Tk(ϱδ)

pdiv uδ dxdt.

Then by Cauchy inequality,∫ T

0

∫
ϱγδTk(ϱδ)

pdx ≤ η∥Tk(ϱδ)∥p+γ
Lp+γ((0,T )×T) + C(η) + 2

∫ T

0

∫
Tk(ϱδ)

pdiv uδdx.

As Tk(ϱ)p+γ ≤ ϱγTk(ϱ)
p, for su�ciently small η we get∫ T

0

∫
ϱγδTk(ϱδ)

pdxdt− 2

∫ T

0

∫
Tk(ϱδ)

pdiv uδdx ≤ C.

Therefore using (3.23), we get∫ T

0

∫
ϱγδTk(ϱδ)

pdxdt+ sup
t∈(0,T ]

∫
Pk(ϱδ(t, ·))dx

+ δ

∫ (
ϱβδP

′
k(ϱδ) +

pTk(ϱδ)
p−1T ′

k(ϱδ)

ϱδ
|∇ϱδ|2

)
dx ≤ C(T, p).

Since Pk(ϱδ) ↗ 1
p−1ϱ

p
δ , we pass to the limit with k → ∞ using monotone convergence theorem

and in consequence we get

∥ϱδ∥L∞(0,T ;Lp) ≤ C(T, p) for any p <∞.
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Having that estimate, we are ready to pass to the limit with δ → 0.
From the estimates uniform in δ, we know that in particular

uδ ⇀ u in L2(0, T ;W 1,2),

ϱδ ⇀
∗ ϱ in L∞(0, T ;Lγ),

ϱγδ ⇀
∗ ϱγ in L∞(0, T ;Lp)

and

µ0(Duδ)Duδ, λ(div uδ)div uδ ⇀∗ µ0(|Du|)Du, λ(div u)div u in L∞((0, T )× Td).

Moreover, ∥2div u − ϱγ∥L∞(0,T ;BMO) ≤ C. Note that from the continuity equation it also
follows that ϱδ → ϱ in C([0, T ];W−1,r) for a suitable r, and in consequence ϱu = ϱu. Having
the above estimates and testing the continuity equation by ϱδ, we also obtain

δ1/2∥∇ϱδ∥L2((0,T )×Td) ≤ C.

Then for ϕ ∈ C∞
0 ((0, T )× Td), together with the estimate on ∥ϱδ∥L∞(0,T ;Lp),

δ

∫ T

0

∫ (
ϱβδϕ+∇ϱδ · ∇ϕ

)
dxdt→ 0 with δ → 0.

In consequence, (ϱ, u) satis�es the continuity equation in (3.6) in the renormalized sense.
Next, we will pass to the limit in the momentum equation and apply an argument from

[45]. Passing to the limit in the weak formulation, we get for any ϕ ∈ C∞
0 ((0, T ) × Td) and

t ≤ T∫ t

0

∫
µ0(|Du|)Du : Dϕ+∇u : ∇ϕ+ div u div ϕ+ λ(div u)div u div ϕ dxds

=

∫ t

0

∫
ϱγdiv ϕ dxds. (3.24)

The regularity of u allows us to put ϕ = u in (3.24) and then∫ t

0

∫
µ0(|Du|)Du : Du+ |∇u|2 + (div u)2 + λ(div u)div u div u dxds

=

∫ t

0

∫
ϱγdiv u dxds. (3.25)

On the other hand, the solutions to approximate equation (3.22) satisfy∫ t

0

∫
µ0(|Duδ|)|Duδ|2dxds+

∫ t

0

∫
|∇uδ|2 + (div uδ)

2 + λ(div uδ)(div uδ)
2 dxds

+
1

γ − 1

∫
ϱγδ (t, ·)dx ≤ 1

γ − 1

∫
ϱγ0,δdx. (3.26)

Analogously as in the previous limit passage, by taking lim infδ→0 in the energy inequality
(3.26), we obtain



3.4. Compactness 43

∫ t

0

∫
µ0(|Du|)|Du|2 + λ(div u)(div u)2 dxds+ lim inf

δ→0

∫ t

0

∫
|∇uδ|2 + (div uδ)

2 dxds

+
1

γ − 1

∫
ϱγ(t, ·)dx ≤ 1

γ − 1

∫
ϱγ0dx.

Using again the monotonicity of µ0(|Du|)Du and λ(|div u|)div u, by virtue of (3.20) and
(3.21) we obtain∫ t

0

∫
µ0(|Du|)Du : Du+ |∇u|2 + (div u)2 + λ(div u)div u div u dxds

+
1

γ − 1

∫
ϱγ(t, ·)dx ≤ 1

γ − 1

∫
ϱγ0dx. (3.27)

Comparing (3.27) with (3.25), we get

1

γ − 1

∫
ϱγ(t, ·) dx− 1

γ − 1

∫
ϱγ0 dx ≤ −

∫ t

0

∫
ϱγdiv u dxds.

We would like to estimate
∫
ϱγ(t, ·) − ϱγ(t, ·)dx. As we already know that ϱ satis�es the

continuity equation in the renormalized sense, we have

1

γ − 1

∫
ϱγ(t, ·) dx− 1

γ − 1

∫
ϱγ0 dx = −

∫ t

0

∫
ϱγdiv u dxds. (3.28)

Therefore
1

γ − 1

∫ (
ϱγ(t, ·)− ϱγ(t, ·)

)
dx ≤ −

∫ t

0

∫ (
ϱγ − ϱγ

)
div udxds.

We now use the fact that 2div u−ϱγ ∈ L∞(0, T ;BMO) and the logarithmic inequality (B.1).
As ϱγ ≥ ϱγ and ϱγ , ϱγ ∈ L∞(0, T ;Lp) for any p <∞, we have

−
∫ t

0

∫ (
ϱγ − ϱγ

)
div u dxds =−

∫ t

0

∫ (
ϱγ − ϱγ

)(
div u− 1

2
ϱγ
)
dxds

− 1

2

∫ t

0

∫ (
ϱγ − ϱγ

)
ϱγdxds

≤−
∫ t

0

∫ (
ϱγ − ϱγ

)(
div u− 1

2
ϱγ
)
dxds

≤C
∫ t

0

∫ (
ϱγ − ϱγ

)
dx

(∣∣∣∣ln(∫ (ϱγ − ϱγ
)
dx

)∣∣∣∣+ 1

)
ds,

where C depends on ∥div u− 1
2ϱ

γ∥L∞(0,T ;BMO) and ∥ϱγ − ϱγ∥L∞(0,T ;Lq) for some q > 2. Thus

denoting y(t) =
∫ (

ϱγ − ϱγ
)
dx, we have the inequality

y(t) ≤ C

∫ t

0
y(s)(| ln y(s)|+ 1)ds with y(0) = 0.
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Let us now de�ne z(t) =

∫ t

0
y(s)(| ln y(s)| + 1)ds. Obviously z(0) = 0. Since the function

y 7→ y(| ln y|+ 1) is increasing, we have

z′ = y(t)(| ln y(t)|+ 1) ≤ Cz(t)(| ln z(t)|+ 1).

Therefore by Osgood's lemma z ≡ 0 on [0, T ] and in consequence y ≡ 0 as well. From
this, as ϱγ ≥ ϱγ , it follows that in fact ϱγ = ϱγ . Now taking again the limit in (3.26) and
subtracting (3.25), using ϱγ = ϱγ and (3.28) we get

lim sup
δ→0

∫ t

0

∫ (
|∇uδ|2 − |∇u|2

)
dxds ≤ 0.

Since
|∇uδ|2 − |∇u|2 = |∇uδ −∇u|2 + 2∇u : (∇uδ −∇u)

and ∇uδ ⇀ ∇u in L2((0, T )× Td), we conclude that

lim sup
δ→0

∫ t

0

∫
|∇uδ −∇u|2 dxdt ≤ 0

and thus ∇uε → ∇u in L2((0, T ) × Td). Therefore (for possibly another subsequence) the
sequence of velocities converges also a.e. In consequence, by virtue of the Lebesgue dominated
convergence theorem,

µ0(|Du|)Du = µ0(|Du|)Du

and
λ(div u)div u = λ(div u)div u,

and thus (ϱ, u) satis�es the weak formulation of the system (3.6), which �nishes the proof of
Theorem 3.2.

Let us �nish by the following remark concerning singular viscosities:

Remark 3.9. The assumptions on µ0 and λ and the used method allows the situation when
the viscosities are singular at 0, e.g. µ0 = 1

|Du| . Note, however, that in this case, while passing
to the limit in the weak formulation, the term∫

Du
|Du|

: ∇φdx

is well de�ned by the values of Du provided |Du| > 0. For |Du| = 0 it is just de�ned as the
corresponding limit, which is not necessarily equal to zero if |Du| is so, cf. e.g. [62] in a similar
context. On can also de�ne the limit stress tensor via the relation

S = Du+
Du
|Du|

if |Du| ≠ 0,

|S| ≤ 1 if Du = 0.

Such formulation was used before in the context of incompressible Hershel�Bulkley �uids, see
e.g. [42, 68].
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Chapter 4

An attraction�repulsion system in the

framework of compressible viscous

�ows

We analyze the pressureless Navier-Stokes system with nonlocal attraction�repulsion forces.
Such systems appear in the context of models of collective behavior. We prove the existence
of weak solutions on the whole space R3 in the case of density-dependent degenerate viscosity,
where for the nonlocal term it is assumed that the interaction kernel has the quadratic growth
at in�nity and almost quadratic singularity at zero. Under these assumptions, we derive the
analog of the Bresch�Desjardins and Mellet�Vasseur estimates for the nonlocal system. In
particular, we are able to adapt the approach of Vasseur and Yu [106, 105] to construct a
weak solution. This part of the thesis so far remains unpublished, as the article is still in
preparation.

4.1 Introduction

Hydrodynamic equations with nonlocal forces often arise from the modelling of collective
behaviour. The applications of these types of systems involve in particular �ocking and
swarming phenomena, appearing in many animal species and bacteria (see e. g. [60, 87]). On
the microscopic scale, the model consists of N agents, which in some way align their position
and velocity in relation to others. On the macroscopic scale, assuming the number of agents
is very large, by passing with N → ∞ one derives the system of partial di�erential equations
on the macroscopic density ϱ and the macroscopic velocity u. The main di�erence between
the classical hydrodynamical equations and the systems arising as the limit of the collective
agent-based systems is the presence of the nonlocal interactions. This is due to the fact that
on the microscopic level, the velocity of the particular agent depends on the position of others.
In the continuous model, this corresponds to a nonlocal pressure-like term in the momentum
equation. The examples of the above mathematical models and performing the limit from
discrete to continuous systems one can be found in [26, 17, 33], see also references therein.

The goal of this chapter is to construct a weak solution to the pressureless degenerate
Navier-Stokes system

∂tϱ+ div (ϱu) = 0

∂t(ϱu) + div (ϱu⊗ u)− µdiv (ϱDu) + ϱ∇(K ∗ ϱ) = 0
in [0, T ]× R3, (4.1)

where ϱ : [0, T ]×R3 → R+ is the density of the particles and u : [0, T ]×R3 → R3 its velocity.
The term ϱ∇(K ∗ϱ) corresponds to the attractive-repulsive forces, coming from the collective
nature of the model. Roughly speaking, it corresponds to the situation where the particular
agents want to keep relatively close to each other, but at the same time avoid collision. More
precisely, ∇K consists of two parts: the �rst forces the particles to keep some small distance,



46 Chapter 4. Attraction�repulsion system

and the second controls its spread in the whole space. We consider the kernel K in the form

K(x) =
c1
|x|α

+
c2
2
|x|2, (4.2)

where α ∈ (0, 2), c1, c2 > 0. Note that we can express the singular part in terms of the Riesz
potential

Is(f)(x) = (−∆)−s/2f(x) =
1

c̃s

∫
R3

f(y)

|x− y|3−s
dy, c̃s = π3/22s

Γ
(
s
2

)
Γ
(
3−s
2

)
for s = 3− α. That way

1

| · |α
∗ ϱ = c̃3−αI3−α(ϱ).

It is also worth to point out that the special case α = 1 covers the Newtonian potential and
then equation (4.1) becomes the Navier-Stokes-Poisson system. For simplicity, since it does
not a�ect our result we put µ = c1 = c2 = 1 in (4.1) and (4.2).

In recent years, di�erent types of equations with nonlocal interactions were considered.
In case of the potential proportional to |x|−α for α ∈ (0, d), stationary solutions and their
stability were thoroughly studied for example in [19, 20, 28]. In [27] it was shown that the
nonlocal Euler system admits in�nitely many weak solutions. Concerning the existence of
weak solutions, in [24] the authors proved the existence of weak solutions to the compress-
ible Navier-Stokes system with damping, when the nonlocal term is su�ciently integrable.
The existence of weak solutions for Navier-Stokes-Poisson system on the torus in the same,
degenerate setting as equation (4.1), was shown in [109].

The equation (4.1) is a special case of the system, where the viscous stress tensor depends
on the density. In general such models have the form

ϱt + div (ϱu) = 0,

∂t(ϱu) + div (ϱu⊗ u)− div (µ(ϱ)Du)−∇(λ(ϱ)div u) +∇P = 0.
(4.3)

In two dimensions, equation (4.3) with µ = ϱ, λ = 0 is used to describe shallow water �ow.
When µ(0) = 0 the system is degenerate, in the sense that the stress tensor does not provide
us the typical L2 integrability of the velocity gradient. An important tool to deal with this
problem is then the Bresch-Desjardins inequality, �rst established in [6]. It allows to show
that when µ and λ satisfy the compatibility condition λ(ϱ) = ϱµ′(ϱ) − µ(ϱ), then testing
the momentum equation by a certain function depending on ϱ, one can get the estimate on
∇φ(ϱ) in L∞(0, T ;L2) for some φ depending on µ (in the case µ = ϱ, λ = 0, the suitable test
function is ∇ log ϱ and one gets the estimate on ∇√

ϱ). With that information at hand, the
authors constructed weak solutions with the additional regularizing terms in the momentum
equation in [7, 9]. Another interesting result, involving density-dependent viscosity, concerns
the existence of weak solutions for quantum �uids, analysed for example in [58]. To construct
weak solutions to the degenerate Navier-Stokes system (4.3) one needs another inequality,
�rst used by Mellet and Vasseur in [75]. It provides the L∞(0, T ;L1) estimate on the quantity
ϱ|u|2 ln(1 + |u|2), which in consequence allows to derive compactness in L2 of

√
ϱu (and in

turn proves stability of solutions). Using this idea, Vasseur and Yu presented full, rigorous
construction of global weak solutions to (4.3) with µ = ϱ, λ = 0 in [106, 105]. Independently
at the same time, using a di�erent approximation scheme, the existence of weak solutions
to (4.3) was also shown for µ ∼ ϱα in [64]. The case of more general viscosities was also
covered in [13], where the authors showed the existence of renormalized solutions, following
the de�nition from [61].
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An important feature of the density-dependent viscosity case and the Bresch-Desjardins
inequality is that it allows to derive a priori estimates for the density without the use of
the pressure term. In the classical theory of weak solutions to Navier-Stokes equations with
constant viscosities, developed by Lions [67] and Feireisl [48], the construction of solutions is
possible when P ∼ ϱγ for γ > 3/2. Without the pressure term, or with too low value of γ,
the density is not integrable enough to show the compactness of the approximating sequence.
In the density-dependent viscosity case, by virtue of the Bresch-Desjardins inequality, we
get the estimate on the gradient of the density, and then compactness follows straight from
the Aubin-Lions lemma. The lack of pressure term is natural in the case of systems derived
from the models of collective behaviour, since they describe the interactions of di�erent nature
than gases. The pressureless systems were obtained as a mean-�eld limit from the agent-based
model for example in [51] in the presence of the nonlocal alignment forces. The Euler-Poisson
system with quadratic con�nement was also recently considered in a spherically symmetric
multi-dimensional setting by Carrillo and Shu [22] and we refer to this paper for up to date
overview of results on that system in the context of continuous collective behaviour models.
In the context of our work, particularly interesting results were obtained even earlier in the
one-dimensional setting [23] and [25], where similar form of the nonlocal kernel was consid-
ered. In [23] the authors analysed the asymptotics and critical thresholds for pressureless
Euler system, whereas in [25] they showed that these solutions can be approximated by the
solutions of the corresponding Navier-Stokes type system with degenerate viscosity. In higher
dimensions without symmetry assumptions little is known about weak solutions to pressure-
less systems. In [54], a multidimensional version of result by Haspot and Zatorska [55] was
proved, demonstrating that pressureless limit of (4.3) leads to the porous medium equation
for "well prepared" data. However, according to our knowledge there are no corresponding
results concerning the nonlocal systems.

4.1.1 The main result

We supplement problem (4.1) with the initial data

ϱ(0, x) = ϱ0(x), (ϱu)(0, x) = m0(x), (4.4)

and we assume that
ϱ0 ≥ 0,

√
ϱ0 ∈ H1(R3). (4.5)

Moreover, for F de�ned as

F (z) =
1 + z2

2
ln(1 + z2), (4.6)

we assume that ∫
R3

ϱ0F (|u0|) dx+

∫∫
R3×R3

F (|x− y|)ϱ0(x)ϱ0(y) dx dy <∞, (4.7)

where we de�ne u0 = m0
ϱ0

on the set {x ∈ R3 : ϱ0(x) > 0}. In particular, since 1
2z

2 ≤ F (z) for
large z, from (4.7) it follows that∫

R3

1

2
ϱ0|u0|2 dx+

∫∫
R3×R3

1

2
|x− y|2ϱ0(x)ϱ0(y) dx dy <∞.

Before we formulate the main result, let us precise what we mean by a weak solution in
this case:
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De�nition 4.1. We say that (ϱ, u) is a weak solution to (4.1) on [0, T ] × R3 with initial
conditions (ϱ0,m0), if

ϱ ∈ L∞(0, T ;L1),
√
ϱ ∈ L∞(0, T ;H1),

√
ϱu ∈ L∞(0, T ;L2),

ϱDu ∈ L2(0, T ;W−1,1),∫ T

0

∫∫
R3×R3

|x− y|ϱ(t, x)ϱ(t, y) dx dy <∞,

and for each φ ∈ C∞
0 ([0, T )× R3;R) and ψ ∈ C∞

0 ([0, T )× R3;R3) we have

−
∫ T

0

∫
R3

ϱ∂tφ dx dt−
∫ T

0

∫
R3

√
ϱ
√
ϱu · ∇φ dx dt =

∫
R3

ϱ0φ(0, ·) dx

and

−
∫
R3

m0ψ(0, ·) dx−
∫ T

0

∫
R3

√
ϱ
√
ϱu∂tψ dx dt−

∫ T

0

∫
R3

(
√
ϱu⊗√

ϱu) : ∇ψ dx dt

+ ⟨ϱDu,∇ψ⟩+
∫ T

0

∫
R3

ϱ∇(K ∗ ϱ) · ψ dx = 0,

where we de�ne

⟨ϱDu,∇ψ⟩ := −
∫ T

0

∫
R3

ϱu · (∆ψ +∇divψ) dx dt− 2

∫ T

0

∫
R3

(∇√
ϱ⊗√

ϱu) : ∇ψ dxdt

Remark 4.2. Note that in the sense of De�nition 4.1, the velocity itself is not de�ned on the
set where ϱ = 0. Because of that, we operate with the variable

√
ϱu instead, and u is de�ned

only via u(t, x) = (
√
ϱu)(t,x)√
ϱ(t,x) for (t, x) such that ϱ(t, x) ̸= 0. In particular the gradient Du is

not well de�ned as well. Because of that, we denote the stress tensor by ϱDu instead, which
is de�ned using the relation

ϱDu = D(ϱu)−∇ϱ⊗ u

= D(ϱu)− 2∇√
ϱ⊗√

ϱu.

To avoid unnecessary complications of the notation, later on we will drop the bars and just
write ϱDu, keeping in mind the above de�nition.

Under these assumptions, our main result states:

Theorem 4.3. Let (ϱ0,m0) satisfy (4.5-4.7). Then there exists a global in time weak solution
(ϱ, u) to (4.1), satisfying

1. the energy estimate

sup
t≥0

1

2

∫
R3

ϱ|u|2+ ϱ(K ∗ ϱ) dx+
∫ ∞

0

∫
R3

ϱ|Du|2 dxdt ≤ 1

2

∫
R3

ϱ0|u0|2+ ϱ0(K ∗ ϱ0) dx,

(4.8)

2. the Bresch-Desjardins estimate

sup
t∈[0,T ]

∫
R3

|∇√
ϱ|2 dx+

∫ T

0

∫
R3

ϱ|∇u−∇Tu|2 dx dt ≤ C(T ), (4.9)
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where C(T ) → ∞ as T → ∞,

3. the Meller-Vasseur estimate

sup
t∈[0,T ]

∫
R3

ϱF (|u|) dx+ sup
t∈[0,T ]

∫∫
R3×R3

F (|x− y|)ϱ(t, x)ϱ(t, y) dxdy ≤ C(T ), (4.10)

with C(T ) → ∞ as T → ∞ as well.

Below, we explain the overall strategy of the proof and discuss the main di�culties. The
starting point is to �nd a solution to a certain approximation of (4.1). In this construction,
we follow the approach of Vasseur and Yu from [106]. It is a multi-level construction with
many approximation parameters regularising the solutions. Additionally, we need to restrict
the problem to the torus T3

L ∼ [−L,L]3 and modify the interaction kernel to KL = KϕL
for a suitable cut-o� function ϕL. The �nal step of the construction is the expansion of the
torus to the whole space and recovery of the solution to the original system (4.1) with (4.2).
Similar approach to derive solutions on the whole space was proposed for the system (4.3) by
Li and Xin in [64], and for quantum isothermal �uids by Carles, Carapatoso and Hillairet in
[21]. Our approximate system reads as follows

∂tϱ+ div (ϱu) = ε∆ϱ,

∂t(ϱu) + div (ϱu⊗ u)− div (ϱDu) + ϱ∇(KL ∗ ϱ)

= −r0u− r1ϱ|u|2u+ κϱ∇
(
∆
√
ϱ

√
ϱ

)
− ε∇ϱ · ∇u− ν∆2u+ η∇ϱ−6 + δϱ∇∆3ϱ.

(4.11)

The outline of the paper follows the consecutive steps of the proof of Theorem 4.3, de-
scribed below:

1. Construction of the solution to the approximated system (4.11) on (0, T )× T3
L via the

Galerkin method and and the Schauder �xed point theorem. At this point, the arti�cial
viscosity ε∆ϱ in the continuity equation allows us to apply classical approach for the
construction.

2. Derivation of the approximate version of the Bresch-Desjardins inequality (4.9). To this
purpose, one needs to test the momentum equation by ∇ log ϱ. The terms η∇ϱ−6 and
δϱ∇∆3ϱ provide that the density is strictly positive and that ∇ log ϱ is su�ciently reg-
ular in space. On the other hand, the parameter ν allows to di�erentiate the continuity
equation and to deduce that ∇ log ϱ is also su�ciently regular in time to be used as a
test function.

3. Passage to the limit with ε, ν, η and δ. Having derived the estimate (4.9), the improved
regularity of ϱ allows to pass to the limit with consecutive regularizing parameters. The
proof of Theorem 4.3 up to this point is pretty standard, and is only sketched in Sections
4.3.5-4.3.6.

4. Derivation of the approximate Meller-Vasseur inequality (4.10), uniformly with the size
of the torus. This is the key step of the proof. We employ the approximating procedure
introduced in [105], however due to the presence of nonlocal terms, we need di�erent
arguments to close the estimates. The estimate is derived by renormalization of the
momentum equation. The overall idea lays in using F ′(|u|) u

|u| = (1+ ln(1+ |u|2))u as a
test function for the momentum equation. However, due to the lack of di�erentiability
of u and the growth of F , this function does not belong to L2(0, T ;W 1,2) and thus is
not an admissible test function. Because of that, we introduce suitable approximation
of F , and in place of u we put v = ϕ0m(ϱ)ϕ∞k (ϱ)u, where ϕm and ϕk cut o� the density
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at zero and in�nity respectively. Then, passing with m and k to ∞, we derive the
desired estimate in the limit. Bounding together the parameters κ and k, by deriving
the estimate we simultaneously pass to the limit with κ as well.

The biggest challenge here is to deal with the attractive part of the kernel K, since on
the whole space it is not integrable with any power. Because of that we are not able
to follow the arguments from [105]. Instead, we apply the weak version of Gronwall's
lemma and use generalized Young inequality for convex functions.

5. Passage to the limit with r0 and r1, contained in Section 4.5. This is the �nal limit
passage on the torus. The main issue is that although the density-dependent viscous
stress tensor provides extra regularity for the density (via the Bresch-Desjardins esti-
mate), it gives no information on u itself on the set where ϱ = 0. Without the extra
friction terms, we end up with very little regularity of the velocity. However, having
the estimate (4.10), following the arguments from [75] we are able to show strong con-
vergence of

√
ϱu, which combined with compactness properties of the density allows to

still perform the limit passage.

6. Expansion of the torus. In the previous steps we needed to restrict our domain to the
torus T3

L ∼ [−L,L]3. The last part of the proof is to pass to the limit with L→ ∞ and
in consequence to obtain the solutions on the whole space R3. The previously derived
estimates are uniform in L and thus allow to extend our solution. During this limit
passage we also lose the compactness of the nonlocal term. Nonetheless, the energy
inequality provides the estimate on a double second moment∫∫

R3×R3

|x− y|2ϱ(t, x)ϱ(t, y) dxdy,

which allows to control the behaviour of the density far from the origin, and in conse-
quence pass to the limit in the nonlocal term as well.

For the reader's convenience, Table 4.1 contains a list with all parameters, together with
its short descriptions.

4.2 Convergence lemmas

Before we start the proof of Theorem 4.3, let us present useful convergence lemmas, which
will be used repeatedly in Sections 4.3 and 4.4.

Lemma 4.4. Assume the sequence of functions (ϱn, un) de�ned on [0, T ]× T3
L satis�es

∥∂tϱn∥L2(0,T ;L6/5) + ∥∂t(ϱnun)∥L2(0,T ;H−m) ≤ C

for some m ≥ 1,

sup
t∈[0,T ]

∫
T3
L

ϱn|un|2 dx+

∫ T

0

∫
T3
L

ϱn|∇un|2 dxdt

+

∫ T

0

∫
T3
L

|un|2 dxdt+
∫ T

0

∫
T3
L

ϱn|un|4 dxdt ≤ C, (4.12)

and
∥√ϱn∥L∞(0,T ;H1) ≤ C (4.13)
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ε Necessary to construct the approximate solution by the Faedo-Galerkin approxi-
mation

ν Provides that ∂t∇ log ϱ ∈ L2(0, T ;L2), which is needed for derivation of the Bresch-
Desjardins estimate

η, δ Provide that 1
ϱ is bounded and that ∇ log ϱ ∈ L2(0, T ;H2), i.e. is a suitable test

function (together with time regularity)

κ Provides that
√
ϱ ∈ L2(0, T ;H2) and ∇ϱ1/4 ∈ L4(0, T ;L4), which is necessary for

successful renormalization of the momentum equation

r0, r1 Provide improved integrability of u; combined with estimates coming from κ enable
to renormalize the momentum equation

m, k The cuto� function ϕ0m(ϱ) cuts the area when ϱ < 1
m and ϕ∞k (ϱ) when ϱ > k. They

appear in the proof of the Mellet-Vasseur inequality and are the additional levels
of approximation needed for renormalization of the momentum equation

L indicates the size of the torus. By taking L → ∞, we obtain the solution on the
whole space

Table 4.1: "Cheat sheet" describing the parameters appearing in the paper

uniformly in n. Then up to a subsequence

√
ϱn ⇀

√
ϱ in L2(0, T ;H1),

un ⇀ u in L2(0, T ;L2)

and
ϱn → ϱ in C(0, T ;L3/2),

ϱnun → ϱu in L2(0, T ;L3/2).

Moreover, if additionally ∂t
√
ϱn is bounded in L2(0, T ;L2) and∫ T

0

∫
T3
L

ϱn|∇2 log ϱn|2 dxdt ≤ C,

then √
ϱn ⇀

√
ϱ in L2(0, T ;H2)

and √
ϱn → √

ϱ in L2(0, T ;H1).

Proof. The weak convergence of
√
ϱn and un follows straight from the Banach-Alaoglu The-

orem. To prove strong convergence, we use the Aubin-Lions lemma. Note that

∇ϱn = 2
√
ϱn∇

√
ϱn

and therefore

∥∇ϱn∥L∞(0,T ;L3/2) ≤ ∥√ϱn∥L∞(0,T ;L6)∥∇
√
ϱn∥L∞(0,T ;L2) ≤ C

by (4.13) and the Sobolev embedding. Therefore from the Aubin-Lions-Simon lemma (see
e.g. [94])

ϱn → ϱ in C(0, T ;L3/2).
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Since
∇(ϱnun) = ∇ϱn ⊗ un + ϱn∇un

= 2ϱ1/4n ∇√
ϱn ⊗ ϱ1/4n un +

√
ϱn

√
ϱn∇un,

we have

∥∇(ϱnun)∥L2(0,T ;L6/5) ≤C∥ϱn∥
1/4
L∞(0,T ;L3)

∥∇√
ϱn∥L∞(0,T ;L2)∥ϱ1/4n un∥L4(0,T ;L4)

+ C∥√ϱn∥L∞(0,T ;L6)∥
√
ϱn∇un∥L2(0,T ;L2) ≤ C.

Moreover,
∥ϱnun∥L∞(0,T ;L3/2) ≤ ∥√ϱn∥L∞(0,T ;L6)∥

√
ϱnun∥L∞(0,T ;L2) ≤ C

and thus again from the Aubin-Lions lemma

ϱnun → ϱu in L2(0, T ;L3/2).

For the second part of the lemma, the estimate on ϱn|∇2 log ϱn|2 in particular yields

∥√ϱn∥L2(0,T ;H2) + ∥∇ϱ1/4n ∥L4(0,T ;L4) ≤ C.

This is the consequence of the following Proposition, proved in [58]:

Proposition 4.5. For smooth ϱ, we have∫
T3
L

ϱ|∇2 log ϱ|2dx ≥ 1

7

∫
T3
L

|∇2√ϱ|2dx

and ∫
T3
L

ϱ|∇2 log ϱ|2dx ≥ 1

8

∫
T3
L

|∇ϱ1/4|4dx.

Thus, having the L2(0, T ;H2) bound on
√
ϱn, again by Aubin-Lions lemma

√
ϱn → √

ϱ in L2(0, T ;H1).

Lemma 4.6 (Limit in the nonlinear damping). If
√
ϱn → √

ϱ in L2(0, T ;H1), ϱnun → ϱu in

L2(0, T ;L3/2) and un ⇀ u in L2(0, T ;L2), and additionally∫ T

0

∫
T3
L

ϱn|un|4dxdt ≤ C

uniformly in n, then
ϱn|un|2un → ϱ|u|2u in L1(0, T ;L1).

Proof. First, note that ϱ1/4n un ⇀ ϱ1/4u in L4(0, T ;L4). Therefore, from the lower semiconti-
nuity of the norm and Fatou's lemma,∫ T

0

∫
T3
L

ϱ|u|4dxdt ≤
∫ T

0

∫
Ω
lim inf
n→∞

ϱn|un|4dxdt ≤ lim inf
n→∞

∫ T

0

∫
T3
L

ϱn|un|4dxdt ≤ C.

From the strong convergence of
√
ϱn and ϱnun, we know that

ϱn(t, x) → ϱ(t, x) and (ϱnun)(t, x) → (ϱu)(t, x) a.e.,
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up to a subsequence. Therefore, for almost every (t, x) such that ϱn(t, x) ̸→ 0, we have

un =
ϱnun
ϱn

→ u.

For the points where ϱn → 0, we write

ϱn|TM (un)|3 ≤M3ϱn → 0 = ϱ|TM (u)|3,

where TM is the truncation operator de�ned as

TM (u) =

 u, |u| ≤M,

M
u

|u|
, |u| > M,

(4.14)

Therefore from the dominated convergence theorem,

ϱn|TM (un)|2TM (un) → ϱ|TM (u)|2TM (u) in L1(0, T ;L1)

for any �xed M > 0. Moreover, we have∫ T

0

∫
T3
L

∣∣∣ϱn|un|2un − ϱ|u|2u
∣∣∣dxdt ≤∫ T

0

∫
T3
L

∣∣∣ϱn|TM (un)|2TM (un)− ϱ|TM (u)|2TM (u)
∣∣∣dxdt

+ 2

∫ T

0

∫
T3
L

ϱn|un|31|un|>Mdxdt

+ 2

∫ T

0

∫
T3
L

ϱ|u|31|u|>Mdxdt

≤
∫ T

0

∫
T3
L

∣∣∣ϱn|un|2un1|un|≤M − ϱ|u|2u1|u|≤M

∣∣∣dxdt
+

2

M

∫ T

0

∫
T3
L

ϱn|un|4dxdt+
2

M

∫ T

0

∫
T3
L

ϱ|u|4dxdt.

Therefore

lim sup
n→∞

∫ T

0

∫
T3
L

∣∣∣ϱn|un|2un − ϱ|u|2u
∣∣∣dxdt ≤ C

M
.

Letting M → ∞, we obtain the desired convergence.

4.3 Fundamental level of approximation

The aim of this section is �rst to construct the solution (ϱL, uL) to system (4.11) on the
torus T3

L ∼ [−L,L]3, and then pass to the limit with ε, ν, δ, η → 0. The construction is done
by means of the Galerkin approximation and the �xed point theorem. To perform the limit
passages, we use the auxillary lemmas from Section 4.2.

4.3.1 Truncation to periodic domain

We begin by modi�cation of kernel K in a way that allows K ∗ ϱ to be well-de�ned on the
torus.
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Let ϕL ≥ 0 be a radial, decreasing cut-o� function such that supp ϕL ⊂ B(0, L), ϕL(x) ≡ 1
for |x| < L

2 and

|∇ϕL| ≤
C

L
, |∆ϕL| ≤

C

L2
. (4.15)

Then we simply put
KL = KϕL.

In a similar way we prepare the initial conditions. We put

√
ϱ0,L =

√
ϱ0ϕL,

where ϕL is de�ned above, then periodize. In consequence we obtain the initial condition on
the torus T3

L, satisfying:

Lemma 4.7. The function
√
ϱ0,L satis�es the following properties:

∥∇√
ϱ0,L∥L2(T3

L)
≤ ∥∇√

ϱ0∥L2(R3) +
C

L
∥ϱ0∥1/2L1(R3)

,

∫∫
T3
L×T3

L

ϱ0,L(x)ϱ0,L(y)KL(x− y) dxdy ≤
∫∫

R3×R3

ϱ0(x)ϱ0(y)K(x− y) dxdy

and
ϱ0,L → ϱ0 in L1(R3).

Proof. The proof follows straight from the de�nition of ϱ0,L. First, we have

∇√
ϱ0,L = ∇√

ϱ0ϕL +
√
ϱ0∇ϕL

and thus
∥∇√

ϱ0,L∥L2(T3
L)

≤ ∥∇√
ϱ0∥L2(R3) +

C

L
∥ϱ0∥1/2L1(R3)

.

The next estimate follows immediately, since∫∫
T3
L×T3

L

ϱ0(x)ϱ0(y)K(x− y)ϕ2L(x)ϕ
2
L(y)ϕL(x− y) dxdy

≤
∫∫

R3×R3

ϱ0(x)ϱ0(y)K(x− y) dxdy

by integrating over a larger domain and estimating ϕL by 1.
The convergence in L1 follows immediately from the dominated convergence theorem,

since ϕL → 1 pointwise.

With the de�nition of ϱ0,L, we can also de�ne properly the initial conditions on u. De�ning

u0,L(x) = 0 for ϱ0,L(x) = 0; u0,L(x) = u0(x) otherwise,

we can periodize it in the same way as ϱ0,L, and moreover∫
T3
L

ϱ0,L|u0,L|2 dx ≤
∫
R3

ϱ0|u0|2 dx.
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The full approximated system on the torus is then given by (4.11) and it is supplemented
with the initial condition:

u|t=0
= u0,L, ϱ|t=0

= ϱ̃0 := ϱ0,L ∗ ξδ̄ +
1

m1
, (4.16)

where m1 > 0, ξδ̄ is the standard molli�er on the torus, and we choose δ̄ depending on δ such
that δ∥∇∆ϱ̃0∥2L2(T3

L)
→ 0 as δ → 0.

4.3.2 The Galerkin method

We solve the system (4.11) using the Galerkin approximation. We present here only a sketch
of the construction, and for the details we refer to the paper of Vasseur and Yu [106] and the
book of Feireisl [44]. Let (ei)i∈N be a suitable basis of H2(T3

L) and set XN := {e1, . . . , eN}.
We put

uN (t, x) =
N∑
i=1

λi(t)ei(x).

Moreover, let S : C(0, T ;XN ) → C(0, T ;Ck) be such that ϱ = S(u) solves

ϱt + div (ϱu)− ε∆ϱ = 0, ϱ|t=0
= ϱ0.

Then, we construct the solution by applying the Schauder �xed point theorem for the operator

M−1[S(uN )](t)

(
M[ϱ0](u0) +

∫ T

0
N(S(uN ), uN )(s)ds

)
,

where M[ϱ] : XN → X∗
N is given by

⟨M[ϱ]u,w⟩ =
∫
T3
L

ϱu · w dx

and

N(ϱ, u) = −div (ϱu⊗ u) + div (ϱDu)− ϱ∇(KL ∗ ϱ)

− r0u− r1ϱ|u|2u+ κϱ∇
(
∆
√
ϱ

√
ϱ

)
− ε∇ϱ · ∇u− ν∆2u+ η∇ϱ−6 + δϱ∇∆3ϱ.

As a result, we obtain a smooth solution (ϱN , uN ) on some interval [0, T∗], corresponding
to initial conditions ϱ̃0 and

u0,N =
N∑
i=1

⟨u0, ei⟩.
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4.3.3 Energy estimates

Testing the momentum equation of (4.11) by uN and using the approximate continuity equa-
tion, we get that the following equality is satis�ed uniformly in N

d

dt
E(ϱN , uN ) + ν

∫
T3
L

|∆uN |2dx+

∫
T3
L

ϱN |DuN |2dx+ εδ

∫
T3
L

|∆2ϱN |2dx

+
2

3
εη

∫
T3
L

|∇ϱ−3
N |2dx+ r0

∫
T3
L

|uN |2dx+ r1

∫
T3
L

ϱN |uN |4dx

+ κε

∫
T3
L

ϱN |∇2 log ϱN |2dx+ ε

∫
T3
L

∇(KL ∗ ϱN ) · ∇ϱNdx = 0,

(4.17)

where

E(ϱ, u) =

∫
T3
L

(
1

2
ϱ|u|2 + 1

2
ϱ(KL ∗ ϱ) + η

7
ϱ−6 +

κ

2
|∇√

ϱ|2dx+
δ

2
|∇∆ϱ|2

)
dx.

To deduce useful bounds from this equality, we extract certain estimates from the nonlocal
term ε

∫
T3
L
∇(KL ∗ ϱN ) · ∇ϱNdx, which are a consequence of the following lemma:

Lemma 4.8. For a su�ciently smooth ϱ, we have∫
T3
L

∇(KL ∗ ϱ) · ∇ϱ dx ≥ −C∥ϱ∥2L1(T3
L)

(4.18)

for some C > 0 not depending on L.

Proof. We will consider two cases, depending on α:

1. If α ≤ 1, note that∫
T3
L

∇(KL ∗ ϱ) · ∇ϱ dx = −
∫∫

T3
L×T3

L

ϱ(x)ϱ(y)∆(KϕL)(x− y)dxdy.

We have
∆(KϕL) = ∆KϕL + 2∇K · ∇ϕL +K∆ϕL

Further note that ∆
(
1
2 |x|

2
)
= 3, and

∆

(
1

|x|α

)
= −α(1− α)

|x|α+2
, for α < 1 and ∆

(
1

|x|

)
= −4πδ0 for α = 1.

Putting it all together, for α < 1 we get
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∫
T3
L

∇(KL ∗ ϱ) · ∇ϱ dx

=α(1− α)

∫∫
T3
L×T3

L

ϱ(x)ϱ(y)
ϕL(x− y)

|x− y|α+2
dxdy

− 3

∫∫
T3
L×T3

L

ϱ(x)ϱ(y)ϕL(x− y)dxdy

− 2

∫∫
T 3
L×T3

L

ϱ(x)ϱ(y)

[
−α x− y

|x− y|α+2
+ x− y

]
∇ϕL(x− y)dxdy

−
∫∫

T3
L×T3

L

ϱ(x)ϱ(y)

[
1

|x− y|α
+

|x− y|2

2

]
∆ϕL(x− y)dxdy,

(4.19)

whereas if α = 1 the �rst term gets replaced by 4π

∫
T3
L

ϱ2 dx. From the assumptions

(4.15) on ϕL, we have |ϕL| ≤ 1,∣∣∣∣−α x− y

|x− y|α+2
+ x− y

∣∣∣∣ |∇ϕL(x− y)| ≤ C1{L
2
<|x−y|<L}

(
1

Lα+2
+ 1

)
≤ C

and (
1

|x− y|α
+

|x− y|2

2

)
|∆ϕL(x− y)| ≤ C1{L

2
<|x−y|<L}

(
1

Lα+2
+ 1

)
≤ C.

Applying these estimates to the last three terms in (4.19), we derive (4.18).

2. In the case α > 1, we use the fact that F( ϕL

|x|α ) is positive, where by F we denote the
Fourier transform of f on R3 or T3

L respectively, i. e.

F(f)(ξ) = f̂(ξ) =

∫
R3

e−2πiξ·xf(x) dx, ξ ∈ R3 or f̂(k) =

∫
T3
L

e−2πk·xf(x) dx, k ∈ Z3.

We have the following proposition:

Proposition 4.9. Let F ∈ Lp
loc(R

3) be positive, such that F (x) = f(|x|) with rf(r)

decreasing for r > 0 and limr→∞ rf(r) = 0. Then F̂ is positive.

Proof. Using spherical coordinates, we get

F̂ (ξ) =

∫ ∞

0

∫ 2π

0

∫ π

0
e−ir|ξ| cos θr2f(r) sin θ dθdφdr =

4π

|ξ|

∫ ∞

0
rf(r) sin(r|ξ|) dr,

and the integral
∫∞
0 rf(r) sin(r|ξ|) dr is convergent and positive from the assumptions

on rf(r).

The positivity of Fourier transform allows us in turn to show the positivity of the integral
operator.

Proposition 4.10. If K is a radially symmetric kernel with support in [−L,L]d and
positive Fourier transform, then for any su�ciently regular function with period 2L we
have ∫

T3
L

f(x)

∫
R3

f(y)K(x− y) dxdy ≥ 0.
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Proof. The assertion follows straight from the identity∫
T3
L

f(x)g(x) dx = (f(−·) ∗ g)(0) =
∑
k∈Z3

F(f(−·) ∗ g)(k) =
∑
k∈Z3

f̂(−k)ĝ(k).

In our case, it translates to∫
T3
L

f(x)

∫
R3

f(y)K(x− y) dydx =
∑
k∈Zd

f̂(−k)F(K ∗ f)(k)

=
∑
k∈Zd

K̂(k)f̂(−k)f̂(k) =
∑
k∈Zd

K̂(k)|f̂(k)|2 ≥ 0.

By virtue of Proposition 4.9 and the assumptions on ϕL, the kernel ϕL(x)
|x|α has positive

Fourier transform. Then in particular∫
T3
L

∇ϱ · ∇
(
ϕL(·)
| · |α

∗ ϱ
)

dx =

∫
T3
L

∇ϱ(x)
∫
R3

∇ϱ(y)ϕL(x− y)

|x− y|α
dy dx ≥ 0.

Dealing wht the quadratic part of KL in the same way as in the case α ≤ 1, we end the
proof of Lemma 4.8.

Thanks to Lemma 4.8, we get from (4.17) the following energy estimate:

sup
t∈[0,T ]

E(ϱN , uN )+ν

∫ T

0

∫
T3
L

|∆uN |2dxdt+
∫ T

0

∫
T3
L

ϱN |DuN |2dxdt

+ εδ

∫ T

0

∫
T3
L

|∆2ϱN |2dxdt+ 2

3
εη

∫ T

0

∫
T3
L

|∇ϱ−3
N |2dx

+ r0

∫ T

0

∫
T3
L

|uN |2dxdt+ r1

∫ T

0

∫
T3
L

ϱ|uN |4dxdt

+ κε

∫ T

0

∫
T3
L

ϱN |∇2 log ϱN |2dxdt

≤ E(ϱ0, u0) + CεT∥ϱ0∥2L1(T3
L)
.

(4.20)

As the estimates in (4.20) are satis�ed for any T <∞, we can extend the solution to the
whole interval [0, T ] for any T <∞. From (4.20) we also extract the estimates to pass to the
limit with N → ∞. Note that it in particular provides us the estimates needed in Lemmas
4.4 and 4.6, where for the time regularity we get the bound for ∂t(ϱNuN ) in L2(0, T ;H−3)
straight from the momentum equation. For the estimate on ∂tϱN we further have

∂tϱN = −ϱNdiv uN −∇ϱN · uN + ε∆ϱN

= −√
ϱN

√
ϱNdiv uN − 4∇ϱ1/4N · ϱ1/4N uN · √ϱN + ε∆ϱN ,
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and therefore

∥∂tϱN∥L2(0,T ;L2) ≤∥√ϱN∥L∞(0,T ;L∞)∥
√
ϱN∇uN∥L2(0,T ;L2)

+ 4∥∇ϱ1/4∥L4(0,T ;L4)∥ϱ
1/4
N uN∥L4(0,T ;L4)∥

√
ϱN∥L∞(0,T ;L∞)

+ ε∥∆ϱN∥L2(0,T ;L2)

≤C(δ, κε, r1).

In consequence from Lemmmas 4.4 and 4.6 we have the following:

ϱN ⇀ ϱ in L2(0, T ;H1),
√
ϱN ⇀

√
ϱ in L2(0, T ;H2),

uN ⇀ u in L2(0, T ;L2)

and
ϱN → ϱ in C(0, T ;L3/2),

√
ϱN → √

ϱ in L2(0, T ;H1),

ϱNuN → ϱu in L2(0, T ;L3/2),

ϱN |uN |2uN → ϱ|u|2u in L1((0, T )× T3
L).

Moreover, the estimates on ∇∆ϱN and ∆2ϱN , together with the time regularity, provide
that

ϱN → ϱ in L2(0, T ;H3) and ϱN ⇀ ϱ in L2(0, T ;H4).

To pass to the limit in the term η∇ϱ−6
N , we use the following version of the Sobolev

inequality:

Lemma 4.11. For ϱ ∈ H3(T3
L), ϱ

−1 ∈ L6(T3
L), it holds

∥ϱ−1∥L∞(T3
L)

≤ C(1 + ∥ϱ∥H3(T3
L)
)2(1 + ∥ϱ−1∥L6(T3

L)
)3. (4.21)

Proof. We have

∇2ϱ−1 = − 1

ϱ2
∇2ϱ+

2

ϱ3
∇ϱ⊗∇ϱ.

Therefore

∥∇2ϱ−1∥L2(T3
L)

≤ ∥ϱ−2∥L3(T3
L)
∥∇2ϱ∥L6(T3

L)
+ 2∥∇ϱ∥2L∞(T3

L)
∥ϱ−3∥L2(T3

L)

≤ C∥ϱ−1∥2L6(T3
L)
∥ϱ∥H3(T3

L)
+ C∥ϱ∥2H3(T3

L)
∥ϱ−1∥3L6(T3

L)

≤ C(1 + ∥ϱ∥H3(T3
L)
)2(1 + ∥ϱ−1∥L6(T3

L)
)3,

which ends the proof by Sobolev embedding.

From (4.21) and (4.20), we get that

ϱN ≥ C(δ, η) > 0.

Since ϱN convergences strongly in C(0, T ;L3/2), it convergences almost everywhere up to a
subsequence. Therefore ϱ−6

N → ϱ−6 a. e. as well. Moreover, inequality (4.20) yields the
estimate on ϱ−6

N in L∞(0, T ;L1) and L1(0, T ;L3), hence by interpolation we have

∥ϱ−6
N ∥L5/3(0,T ;L5/3) ≤ C.
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In consequence,
ϱ−6
N → ϱ−6 in L1(0, T ;L1).

The limit passage in the remaining terms follows immediately from the weak and strong
convergences of ϱN and uN in spaces. By the weak lower semicontinuity of convex functions,
the limit also satis�es the energy estimate

sup
t∈[0,T ]

E(ϱ, u)+ν

∫ T

0

∫
T3
L

|∆u|2dxdt+
∫ T

0

∫
T3
L

ϱ|Du|2dxdt+ εδ

∫ T

0

∫
T3
L

|∆2ϱ|2dxdt

+εη

∫ T

0

∫
T3
L

|∇ϱ−3|2dx+ r0

∫ T

0

∫
T3
L

|u|2dxdt+ r1

∫ T

0

∫
T3
L

ϱ|u|4dxdt

+κε

∫ T

0

∫
T3
L

ϱ|∇2 log ϱ|2dxdt

≤ E(ϱ0, u0) + CεT∥ϱ0∥2L1(T3
L)
.

(4.22)

4.3.4 The Bresch-Desjardins estimates

Before we pass to the limit with the approximating parameters, we derive the so-called Bresch�
Desjardins inequality. To do that, we test the momentum equation by ∇ log ϱ and combine
it with the energy inequality (4.22). In consequence, for

EBD(ϱ, u) =

∫
T3
L

(
1

2
ϱ

∣∣∣∣u+
1

ϱ
∇ϱ
∣∣∣∣2 + ϱ(KL ∗ ϱ) + δ

2
|∇∆ϱ|2 + κ

2
|∇√

ϱ|2 + η

7
ϱ−6

)
dx

we obtain

sup
t∈[0,T ]

EBD(ϱ, u)+
2

3
η(1 + ε)

∫ T

0

∫
T3
L

|∇ϱ−3|2dxdt+ δ(1 + ε)

∫ T

0

∫
T3
L

|∆2ϱ|2dxdt

+
1

4

∫ T

0

∫
T3
L

ϱ|∇u−∇Tu|2dxdt+ ν

∫ T

0

∫
T3
L

|∆u|2dxdt

+ r0

∫ T

0

∫
T3
L

|u|2 dx dt+ r1

∫ T

0

∫
T3
L

ϱ|u|4 dx dt

+
κ(1 + ε)

2

∫ T

0

∫
T3
L

ϱ|∇2 log ϱ|2dxdt

+ ε

∫ T

0

∫
T3
L

|∆ϱ|2

ϱ
dxdt+

∫ T

0

∫
T3
L

∇(KL ∗ ϱ) · ∇ϱ dxdt

≤EBD(ϱ0, u0) + CεT∥ϱ0∥2L1(T3
L)

+ ε

∫ T

0

∫
T3
L

∇ϱ∇u∇ log ϱ dxdt+ ε

∫ T

0

∫
T3
L

∆ϱ
|∇ log ϱ|2

2
dxdt

− ε

∫ T

0

∫
T3
L

div (ϱu)
1

ϱ
∆ϱ dxdt− ν

∫ T

0

∫
T3
L

∆u · ∇∆ log ϱ dxdt

− r1

∫ T

0

∫
T3
L

|u|2u∇ϱ dxdt− r0

∫ T

0

∫
T3
L

u · ∇ϱ
ϱ

dxdt

=EBD(ϱ0, u0) + CεT∥ϱ0∥2L1(T3
L)

+
6∑

i=1

Ri.

(4.23)
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The necessary calculations to derive (4.23) are performed in the Appendix C.1.
The terms R1�R4 go to 0 as ε, ν → 0. For R5, we have

R5 =− r1

∫ T

0

∫
T3
L

|u|2u · ∇ϱ dxdt = r1

∫ T

0

∫
T3
L

ϱdiv (|u|2u) dxdt

≤Cr1
∫ T

0

∫
T3
L

ϱ|u|2|∇u| dxdt ≤ Cr21

∫ T

0

∫
T3
L

ϱ|u|4dxdt+ 1

4

∫ T

0

∫
T3
L

ϱ|∇u|2dxdt.

Since ∫ T

0

∫
T3
L

ϱ|∇u|2 dxdt ≤
∫ T

0

∫
T3
L

ϱ|Du|2 dxdt+ 1

2

∫ T

0

∫
T3
L

ϱ|∇u−∇Tu|2 dxdt,

the last term is further estimated by

1

8

∫ T

0

∫
T3
L

ϱ|∇u−∇Tu|2 dxdt+ E(ϱ0, u0) + CεT∥ϱ0∥2L1(T3
L)
.

For R6, we write

R6 = −r0
∫ T

0

∫
T3
L

div (ϱu)− ϱdiv u

ϱ
dxdt = r0

∫ T

0

∫
T3
L

∂t log ϱ dxdt− εr0

∫ T

0

∫
T3
L

∆ϱ

ϱ
dxdt.

Since ϱ is bounded in L∞(0, T ;L1), de�ning

log+ ϱ =

{
log ϱ, ϱ > 1,

0, ϱ ≤ 1,

we have
r0 sup

t∈[0,T ]

∫
T3
L

log+ ϱ dx ≤ C.

For the second term of R6, we get∣∣∣∣∣εr0
∫ T

0

∫
T3
L

∆ϱ

ϱ
dx

∣∣∣∣∣ ≤ CTεr0∥ϱ∥L∞(0,T ;H2)∥ϱ−1∥L∞([0,T ]×T3
L)
,

which also tends to 0 as ε→ 0.
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In consequence, using again Lemma 4.8, we get

EBD(ϱ, u)−r0
∫
T3
L

log ϱ dx

+
2

3
η(1 + ε)

∫ T

0

∫
T3
L

|∇ϱ−3|2dxdt+ δ(1 + ε)

∫ T

0

∫
T3
L

|∆2ϱ|2dxdt

+
1

8

∫ T

0

∫
T3
L

ϱ|∇u−∇Tu|2dxdt+ ν

∫ T

0

∫
T3
L

|∆u|2dxdt

+ r0

∫ T

0

∫
T3
L

|u|2 dx dt+ r1

∫ T

0

∫
T3
L

ϱ|u|4 dx dt

+
κ(1 + ε)

2

∫ T

0

∫
T3
L

ϱ|∇2 log ϱ|2dxdt+ ε

∫
T3
L

|∆ϱ|2

ϱ
dx

≤
4∑

i=1

Ri + Cr21

∫ T

0

∫
T3
L

ϱ|u|4dxdt+ CTεr0∥ϱ∥L∞(0,T ;H2)∥ϱ−1∥L∞([0,T ]×T3
L)

+ EBD(ϱ0, u0)− r0

∫
T3
L

log ϱ0 dx+ E(ϱ0, u0) + CT∥ϱ0∥2L1(T3
L)
.

(4.24)

4.3.5 Limit passage with ν, ε → 0

Now we pass to the limit with ν, ε → 0. Note that the inequality (4.24), together with the
energy estimate (4.22) provides us the estimates required in Lemmas 4.4-4.6 uniformly in ε
and ν, where the estimate on ϱ|∇u|2 comes from the estimate on the symmetric gradient
ϱ|Du|2 in (4.22) and the antisymmetric part ϱ|∇u−∇Tu|2 in (4.24).

For the terms depending on ε and ν, in the weak formulation of (4.11) we have

ε

∫ T

0

∫
T3
L

∇ϱν,ε · ∇φ dxdt ≤
√
ε
√
ε∥∇ϱν,ε∥L2(0,T ;L2)∥∇φ∥L2(0,T ;L2) → 0,

ε

∫ T

0

∫
T3
L

∇ϱν,ε∇uν,εφ dxdt

≤ ε∥∇√
ϱν,ε∥L∞(0,T ;L2)∥

√
ϱν,ε∇uν,ε∥L2(0,T ;L2)∥φ∥L2(0,T ;L∞) → 0

and

ν

∫ T

0

∫
T3
L

∆uν,ε∆φdxdt ≤
√
ν
√
ν∥∆uν,ε∥L2(0,T ;L2)∥∆φ∥L2(0,T ;L2) → 0.

In consequence, performing limit passages in the same way as before, we obtain the solu-
tions to the system

∂tϱ+ div (ϱu) = 0,

∂t(ϱu) + div (ϱu⊗ u)− div (ϱDu) + ϱ∇(KL ∗ ϱ)

= −r0u− r1ϱ|u|2u+ κϱ∇
(
∆
√
ϱ

√
ϱ

)
+ η∇ϱ−6 + δϱ∇∆3ϱ.

(4.25)

Passing to the limit in (4.22) and (4.24), again by the lower semicontinuity of convex
functions, we get
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sup
t∈[0,T ]

E(ϱ, u) +

∫ T

0

∫
T3
L

ϱ|Du|2dxdt

+ r0

∫ T

0

∫
T3
L

|u|2dxdt+ r1

∫ T

0

∫
T3
L

ϱ|u|4dxdt ≤ E(ϱ0, u0) (4.26)

and for the Bresch-Desjardins inequality

EBD(ϱ, u)−r0
∫
T3
L

log ϱ dx+ η

∫ T

0

∫
T3
L

|∇ϱ−3|2 dxdt+ 2δ

∫ T

0

∫
T3
L

|∆2ϱ|2dxdt

+
1

8

∫ T

0

∫
T3
L

ϱ|∇u−∇Tu|2dxdt+ κ

∫ T

0

∫
T3
L

ϱ|∇2 log ϱ|2dxdt

≤EBD(ϱ0, u0)− r0

∫
T3
L

log ϱ0 dx+ E(ϱ0, u0) + CT∥ϱ0∥2L1(T3
L)
.

(4.27)

4.3.6 Limit passage with η, δ → 0.

We will �rst pass to the limit with η and then with δ. Note that the inequalities (4.26) and
(4.27) provide us again the estimates required in Lemmas 4.4 and 4.6, this time uniformly
in η and δ (provided that δ∥∇∆ϱ̃0∥2L2(T3

L)
→ 0). We need to pass to the limit only with the

terms η∇ϱ−6 and δϱ∇∆3ϱ, since the remaining terms are treated in the same way as before.
Note that since we lose the information on Du on the set where ϱ = 0, we pass to the limit in
the stress tensor using the relation

ϱDu = D(ϱu)−∇ϱ⊗ u.

From (4.26) and (4.27) we also have the estimates

η∥ϱ−6
η,δ∥L∞(0,T ;L1),

√
η∥ϱ−3

η,δ∥L2(0,T ;H1) ≤ C(T ). (4.28)

In consequence, using the interpolation between L∞(0, T ;L1) and L1(0, T ;L3), we have

∥ηϱ−6
η,δ∥L5/3(0,T ;L5/3) ≤ C(T )

as well.
The above estimates allow us to show

Lemma 4.12. If ϱη,δ satis�es the estimates following from (4.26) and (4.27), then

η

∫ T

0

∫
T3
L

ϱ−6
η,δdxdt→ 0 as η → 0.

Proof. From (4.27) we know that

r0

∫
T3
L

log+

(
1

ϱη,δ

)
dx ≤ C(T ).
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As √ϱη,δ → √
ϱδ in L2(0, T ;H1), then ϱη,δ → ϱδ a. e. and using the convexity of a function

y 7→ log+

(
1
y

)
from Fatou's Lemma∫

T3
L

log+

(
1

ϱδ

)
dx ≤

∫
T3
L

lim inf
η→0

log+

(
1

ϱη,δ

)
dx

≤ lim inf
η→0

∫
T3
L

log+

(
1

ϱη,δ

)
dx ≤ C.

Therefore
|{x : ϱδ(t, x) = 0}| = 0 for almost every t.

Then, as ϱη.δ → ϱδ a. e.,
ηϱ−6

η,δ → 0 a. e.

As ηϱ−6
η,δ is uniformly bounded in L5/3(0, T ;L5/3), it follows that

ηϱ−6
η,δ → 0 in L1(0, T ;L1).

Now we pass to the limit with δ:

Lemma 4.13. For any φ ∈ C∞
0 ([0, T ]× T3

L) we have

δ

∫ T

0

∫
T3
L

ϱδ∇∆3ϱδφ dxdt→ 0

as δ → 0.

Proof. We have

δ

∫ T

0

∫
T3
L

ϱδ∇∆3ϱδφ dxdt = −δ
∫ T

0

∫
T3
L

∆div (ϱδφ)∆
2ϱδ dxdt.

The inequalities (4.26) and (4.27) give
√
δ∥ϱδ∥L∞(0,T ;H3),

√
δ∥ϱδ∥L2(0,T ;H4) ≤ C(T ).

Moreover, from the uniform estimate on ∇√
ϱδ in L∞(0, T ;L2), we also have

∥ϱδ∥L∞(0,T ;L3) ≤ C(T ).

Using the Gagliardo-Nirenberg inequality

∥∇3ϱδ∥L3 ≤ C∥∇4ϱδ∥
6
7

L2∥ϱδ∥
1
7

L3 ,

we get

δ

∫ T

0
∥∇3ϱδ∥

7
3

L3dt ≤ C sup
t∈[0,T ]

∥ϱδ∥
1
3

L3

∫ T

0
δ∥∇4ϱδ∥2L2dt

and in consequence
δ

3
7 ∥∇3ϱδ∥

L
7
3 (0,T ;L3)

≤ C(T ).
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Then∣∣∣∣∣δ
∫ T

0

∫
T3
L

∆∇ϱδ ·∆2ϱδφ dxdt

∣∣∣∣∣
≤ C(φ)δ

1
14 ∥

√
δ∇4ϱδ∥L2(0,T ;L2)∥δ

3
7∇3ϱδ∥

L
7
3 (0,T ;L3)

→ 0

as δ → 0. Applying the same arguments to the rest of the terms from

δ

∫ T

0

∫
T3
L

∆div (ϱδφ)∆
2ϱδdxdt,

we �nish the proof of the Lemma.

Remark 4.14. Note that in the limit passage with η we lost any information on ∇u. However,
from the uniform estimates we know that up to a subsequence

√
ϱη,δ∇uη,δ ⇀

√
ϱδ∇uδ in L2((0, T )× T3

L).

Using the relation √
ϱ∇u = ∇(

√
ϱu)−∇√

ϱ⊗ u,

from the strong convergence of ϱη,δ and ∇√
ϱη,δ and weak convergence of uη,δ we get

√
ϱδ∇uδ = ∇(

√
ϱδuδ)−∇√

ϱδ ⊗ uδ.

Proceeding analogously, after passing to the limit with δ → 0 we get as well

√
ϱ∇u = ∇(

√
ϱu)−∇√

ϱ⊗ u. (4.29)

In the analogous way we can also de�ne
√
ϱDu, √ϱdiv u etc. In the next sections we will

again omit the bars, keeping in mind the relation (4.29).

4.4 The Mellet - Vasseur estimates

Before we pass to the limit with the remaining parameters, we need to extract another estimate
from the system. In the previous section, we showed the existence of a weak solution to the
system

∂tϱ+ div (ϱu) = 0

∂t(ϱu) + div (ϱu⊗ u)− div (ϱDu) + ϱ∇(KL ∗ ϱ) = −r0u− r1ϱ|u|2u+ κϱ∇
(
∆
√
ϱ

√
ϱ

)
(4.30)

on [0, T ]× T3
L with the initial conditions

ϱ|t=0
:= ϱ̃0,L = ϱ0,L +

1

m1
, u|t=0

= u0,L,

where m1 > 0 and ϱ0,L, u0,L are like in Section 4.3.1. Similarly as in the De�nition 4.1, this
means that for each φ ∈ C∞

0 ([0, T )× T3
L;R) and ψ ∈ C∞

0 ([0, T )× T3
L;R3) it holds

−
∫ T

0

∫
T3
L

ϱ∂tφ dx dt−
∫ T

0

∫
T3
L

√
ϱ
√
ϱu · ∇φ dx dt =

∫
T3
L

ϱ̃0,Lφ(0, ·) dx
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and

−
∫
T3
L

ϱ̃0,Lu0,Lψ(0, ·) dx−
∫ T

0

∫
T3
L

√
ϱ
√
ϱu∂tψ dx dt−

∫ T

0

∫
T3
L

(
√
ϱu⊗√

ϱu) : ∇ψ dx dt

+⟨ϱDu,∇ψ⟩+
∫ T

0

∫
T3
L

ϱ∇(KL ∗ ϱ) · ψ dx

= −r0
∫ T

0

∫
T3
L

u · ψ dxdt− r1

∫ T

0

∫
T3
L

ϱ|u|2u · ψ dxdt

− κ

∫ T

0

∫
T3
L

∆
√
ϱ
√
ϱdivψ dxdt− 2κ

∫ T

0

∫
T3
L

∆
√
ϱ∇√

ϱ · ψ dxdt.

The solution satis�es the following estimates:

sup
t∈[0,T ]

1

2

∫
T3
L

(
ϱ|u|2 + ϱ(KL ∗ ϱ) + κ|∇√

ϱ|2
)
dx+

∫ T

0

∫
T3
L

ϱ|Du|2dxdt

+ r0

∫ T

0

∫
T3
L

|u|2dxdt+ r1

∫ T

0

∫
T3
L

ϱ|u|4dxdt ≤ E(ϱ̃0,L, u0,L), (4.31)

where
E(ϱ̃0,L, u0,L) =

1

2

∫
T3
L

(
ϱ̃0,L|u0,L|2 + ϱ̃0,L(KL ∗ ϱ̃0,L) + κ|∇

√
ϱ̃0,L|2

)
dx,

and∫
T3
L

(
|∇√

ϱ|2 − r0 log ϱ
)
dx+

1

8

∫ T

0

∫
T3
L

ϱ|∇u−∇Tu|2dx+ κ

∫ T

0

∫
T3
L

ϱ|∇2 log ϱ|2dx

≤ 2E(ϱ̃0,L, u0,L) +

∫
T3
L

(
|∇
√
ϱ̃0,L|2 − r0 log ϱ̃0,L

)
dx+ CT∥ϱ̃0,L∥2L1(T3

L)
. (4.32)

From (4.32) and Proposition 4.5, it also follows that

κ1/2∥√ϱ∥L2(0,T ;H2) + κ1/4∥∇ϱ1/4∥L4(0,T ;L4) ≤ C. (4.33)

For the time regularity we have

∥∂t
√
ϱ∥L2(0,T ;L2) ≤

1

2
∥√ϱdiv u∥L2(0,T ;L2) +

1

2
∥∇ϱ1/4∥L4(0,T ;L4)∥ϱ1/4u∥L4(0,T ;L4)

and since
∂tϱ = −2∇√

ϱ · ϱ1/4u · ϱ1/4 −√
ϱ
√
ϱdiv u,

from (4.31) and (4.32) we get
∥∂tϱ∥L2(0,T ;L6/5) ≤ C.

In this section we perform the limit with κ → 0 and simultaneously derive another esti-
mate. The main result states
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Lemma 4.15. There exists a solution to system (4.30) with κ = 0, which satis�es the estimate

sup
t∈[0,T ]

(∫
T3
L

ϱF (|u|) dx+

∫∫
T3
L×T3

L

F (|x− y|)ϱ(x)ϱ(y) dxdy

)

≤ C

(∫
T3
L

ϱ0F (|u0|) +
∫∫

T3
L×T3

L

F (|x− y|)ϱ0(x)ϱ0(y) dxdy

)
+ C +

C

L2
(4.34)

for F (z) = 1+z2

2 ln(1+z2), where C does not depend on r0 and r1. Moreover, estimates (4.31)
and (4.32) are valid with κ = 0.

Proof. The strategy of the proof is based on the approach from [105], however the need to
incorporate the nonlocal term imposes some key di�erences in the method. Let

F (z) =
1 + z2

2
ln(1 + z2), ψ(z) =

1

z
F ′(z) = 1 + ln(1 + z2)

for z > 0. To get (4.34), we would like to test the momentum equation by the function
F ′(|u|2) u

|u| . However, the regularity of the solution coming from the estimates (4.8) and (4.9)
does not allow that (in particular, they do not provide any Sobolev regularity on u itself).
Instead, we will introduce a suitable approximation of the function F ′(|u|2) u

|u| , which will
allow us to perform the needed renormalization of the momentum equation. Then (4.34) is
obtained by passing to the limit.

Preparation of initial data. Note that our approximation of the initial data satis�es in
particular

ϱ̃0,L ≥ 1

m1
.

In order to get the suitable continuity of ϱ and u, we need to further truncate the initial data.
Hence we will �rst derive the desired inequality assuming that

ϱ̃0,L|u0,L|2 ∈ L∞(T3
L). (4.35)

Under this additional assumption we show that

Proposition 4.16. For (ϱ, u) solving (4.30), we have

ϱ ∈ C(0, T ;L2) and
√
ϱu ∈ C(0, T ;L2).

Proof. Since ϱ ∈ L∞(0, T ;H1),

∂t
√
ϱ ∈ L2(0, T ;L2) and

√
ϱ ∈ L2(0, T ;H2),

we have √
ϱ ∈ C(0, T ;L2) and ∇√

ϱ ∈ C(0, T ;L2).

(the last convergence is shown by computing d
dt∥∇

√
ϱ−∇√

ϱ0∥2L2).
As

√
ϱ ∈ L∞(0, T ;L6), we therefore get

√
ϱ ∈ C(0, T ;Lp) for 2 ≤ p < 6.

In particular, it also follows that
ϱ ∈ C(0, T ;L2).
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Now we show that √
ϱu ∈ C(0, T ;L2).

By the estimates on ∂t(ϱu) and ϱu, we know that

ϱu ∈ Cweak(0, T ;L
3/2).

We will estimate |√ϱu −
√
ϱ̃0,Lu0,L|2 using the continuity properties of energy. Since the

function t 7→
∫
T3
L

|m(t,x)|2
ϱ(t,x) 1{ϱ>0} dx is lower-semicontinuous (see also Lemma 7.19 in [85]), we

have∫
T3
L

ϱ̃0,L|u0,L|2 + ϱ̃0,L(KL ∗ ϱ̃0,L) + κ|∇
√
ϱ̃0,L|2 dx

≤ lim inf
t→0

∫
T3
L

ϱ|u|2 + ϱ(KL ∗ ϱ) + κ|∇√
ϱ|2 dx.

Combining that with the energy inequality, we get

lim
t→0

∫
T3
L

(
ϱ|u|2 + ϱ(KL ∗ ϱ) + κ|∇√

ϱ|2
)
dx

=

∫
T3
L

(
ϱ̃0,L|u0,L|2 + ϱ̃,L(KL ∗ ϱ̃0,L) + κ|∇

√
ϱ̃0,L|2

)
dx

With this information at hand, we write∫
T3
L

|√ϱu−
√
ϱ̃0,Lu0,L|2dx =

∫
T3
L

(
ϱ|u|2 + ϱ(KL ∗ ϱ) + κ|∇√

ϱ|2
)
dx

−
∫
T3
L

(
ϱ̃0,L|u0,L|2 + ϱ̃0,L(KL ∗ ϱ̃0,L) + κ|∇

√
ϱ̃0,L|2

)
dx

+ 2

∫
T3
L

√
ϱ̃0,Lu0,L(

√
ϱ̃0,Lu0,L −√

ϱu) dx

+

∫
T3
L

(ϱ̃0,L(KL ∗ ϱ̃0,L)− ϱ(KL ∗ ϱ)) dx

− κ

∫
T3
L

|∇
√
ϱ̃0,L −∇√

ϱ|2dx

+ 2κ

∫
T3
L

∇
√
ϱ̃0,L

(
∇
√
ϱ̃0,L −∇√

ϱ
)
dx.

From the continuity of ∇√
ϱ, we have

lim
t→0

∫
T3
L

|∇
√
ϱ̃0,L −∇√

ϱ|2dx = 0

and
lim
t→0

∫
T3
L

∇
√
ϱ̃0,L

(
∇
√
ϱ̃0,L −√

ϱ
)
dx = 0.
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Since KL ∈ Lp(T3
L) for p < 3/α, from the continuity of ϱ it follows that KL ∗ ϱ ∈ C(0, T ;Lq)

for q < 3
α−2 (or ∞ if α ≤ 2) and therefore

lim
t→0

∫
T3
L

(ϱ̃0,L(KL ∗ ϱ̃0,L)− ϱ(KL ∗ ϱ))dx→ 0.

In consequence,

ess lim sup
t→0

∫
T3
L

|√ϱu−
√
ϱ̃0,Lu0,L|2dx

= 2ess lim sup
t→0

∫
T3
L

√
ϱ̃0,Lu0,L(

√
ϱ̃0,Lu0,L −√

ϱu) dx. (4.36)

Now, let ϕm1 be a smooth cuto� function such that ϕm1(ϱ) = 1 for ϱ ≥ 1
m1

and ϕm1(ϱ) = 0

for ϱ ≤ 1
2m1

. Then we write∫
T3
L

√
ϱ̃0,Lu0,L(

√
ϱ̃0,Lu0,L −√

ϱu)dx =

∫
T3
L

√
ϱ̃0,Lu0,L(

√
ϱ̃0,Lu0,L − ϕm1(ϱ)

√
ϱu)dx

−
∫
T3
L

√
ϱ̃0,Lu0,L(1− ϕm1(ϱ))

√
ϱu dx

=B1(t) +B2(t).

For the term B1, we use the relation√
ϱ̃0,Lu0,L(

√
ϱ̃0,Lu0,L − ϕm1(ϱ)

√
ϱu) =

√
ϱ̃0,Lu0,L

ϕm1(ϱ)√
ϱ

(ϱ̃0,Lu0,L − ϱu)

+ ϱ̃0,L|u0,L|2
(
1−

√
ϱ̃0,L√
ϱ
ϕm1(ϱ)

)
.

Since ϱ̃0,L ≥ 1
m1

, we know that in particular ϕm1(ϱ̃0,L) = 1 and then

lim
t→0

B1(t) = lim
t→0

∫
T3
L

√
ϱ̃0,Lu0,L

ϕm1(ϱ)√
ϱ

(ϱ̃0,Lu0,L − ϱu)dx

+ lim
t→0

∫
T3
L

√
ϱ̃0,L|u0,L|2

√
ϱ̃0,L

(
ϕm1(ϱ̃0,L√

ϱ̃0,L
− ϕm1(ϱ)√

ϱ

)
dx = 0

by the weak continuity of ϱu and strong continuity of ϱ. For B2, by (4.35) we have

|B2(t)| ≤ ∥
√
ϱ̃0,Lu0,L∥L∞(T3

L)
∥√ϱu∥L∞(0,T ;L2)∥1− ϕm1(ϱ)∥L2(T3

L)
,

which goes to zero as t→ 0 again from the strong continuity of ϱ.
In consequence,

√
ϱu ∈ C(0, T ;L2) as we needed to prove.

Preparation of the test function. Let ϕ0m and ϕ∞k be smooth cuto� functions at zero at
in�nity respectively, such that

ϕ0m(ϱ) = 1 for ϱ >
1

m
, ϕ0m(ϱ) = 0 for ϱ <

1

2m
, |(ϕ0m)′| ≤ 2m,
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and
ϕ∞k (ϱ) = 1 for ϱ < k, ϕ∞k (ϱ) = 0, for ϱ > 2k, |(ϕ∞k )′| ≤ 2

k
.

Then we de�ne
vm,k = ϕm,k(ϱ)u for ϕm,k(ϱ) = ϕ0m(ϱ)ϕ∞k (ϱ).

To simplify the notation, we will just write v = vm,k and ϕ = ϕm,k when it does not raise
confusion. It turns out that v has the W 1,2 regularity missing for u:

Proposition 4.17.

∇v ∈ L2((0, T )× T3
L).

Proof. By straightforward calculations,

∇v =ϕ′(ϱ)∇ϱ⊗ u+ ϕ(ϱ)∇u

=4ϕ′(ϱ)
√
ϱ∇ϱ1/4 ⊗ ϱ1/4u+

ϕ(ϱ)
√
ϱ

√
ϱ∇u.

From the de�nition of ϕ,

ϕ(ϱ)
√
ϱ

≤
√
2m and |ϕ′(ϱ)√ϱ| ≤ max

(
2m · 1√

m
,
2

k
·
√
2k

)
and therefore

∥∇v∥L2((0,T )×T3
L)

≤ C(m, k)
(
∥∇ϱ1/4∥L4((0,T )×T3

L)
∥ϱ1/4u∥L4((0,T )×T3

L)
+ ∥√ϱ∇u∥L2((0,T )×T3

L)

)
.

In order to construct a suitable test function, we need to approximate the functions F
and ψ as well. Let

Fn(z) =


1 + z2

2
ln(1 + z2), z ≤ n,(

nz +
1− n2

2

)
ln(1 + z2), z > n

and

ψn(z) =
1

z
F ′
n(z) =


1 + ln(1 + z2), z ≤ n,

n

z
ln(1 + z2) +

2nz + 1− n2

1 + z2
, z > n

That way
Fn(z) ≤ Cn|z|1+δ

and
ψn(z)z = F ′

n(z) ≤ Cn|z|δ

for any δ ∈ (0, 1) and some Cn > 0. Since Fn ≤ 1+z2

2 ln(1 + z2) and ψn ≤ 1 + ln(1 + z2), we
also have the estimates

Fn(z) ≤ C + C|z|2+δ, ψn(z)z ≤ C + C|z|1+δ,

where this time C > 0 does not depend on n.
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Finally, we have the estimates for the second derivative:

F ′′
n (z) = ψ′

n(z)z + ψn(z) =


1 + ln(1 + z2) +

2z2

1 + z2
, z ≤ n,

2nz

1 + z2
+

(n2 − 1)z2 + 4nz − (n2 − 1)

(1 + z2)2
, z > n

and thus it is positive and bounded.
Having the suitable approximations, we can state the �rst step towards the proof of Lemma

4.15.

Lemma 4.18. For any nonnegative ξ(t) ∈ C∞
0 (0,+∞) we have

−
∫ T

0

∫
T3
L

ξ′(t)ϱFn(|v|) dxdt+
∫ T

0

∫
T3
L

ξ(t)ψn(|v|)v ·G dxdt

+

∫ T

0

∫
T3
L

ξ(t)S : ∇(ψn(|v|)v) dxdt = 0, (4.37)

where

S = ϱϕ(ϱ)

(
Du+ κ

∆
√
ϱ

√
ϱ

I
)

and
G =ϱ2uϕ′(ϱ)div u+ ϱ∇ϕ(ϱ)Du+ ϕ(ϱ)ϱ∇(KL ∗ ϱ) + r0uϕ(ϱ)

+ r1ϱ|u|2uϕ(ϱ) + κ
√
ϱ∇ϕ(ϱ)∆√

ϱ+ 2κϕ(ϱ)∇√
ϱ∆

√
ϱ.

Proof. Testing the momentum equation by ϕ(ϱ)φ for φ ∈ C∞
0 ((0, T )× T3

L), we obtain

∂t(ϱv)− ϱuϕ′(ϱ)∂tϱ+div (ϱu⊗ v)− ϱu⊗ u∇ϕ(ϱ)
− div (ϕ(ϱ)ϱDu) + ϱDu∇ϕ(ϱ) + ϕ(ϱ)ϱ∇(K ∗ ϱ)

=− r0v − r1ϕ(ϱ)ϱ|u|2u

− κ
(√

ϱ∆
√
ϱ∇ϕ(ϱ) + 2ϕ(ϱ)∆

√
ϱ∇√

ϱ−∇
(
ϕ(ϱ)

√
ϱ∆

√
ϱ
)) (4.38)

in the sense of distributions. Since

−ϱuϕ′(ϱ)∂tϱ− ϱu⊗ u∇ϕ(ϱ) = ϱ2uϕ′(ϱ)div u,

we can rewrite (4.38) as

∂t(ϱv) + div (ϱu⊗ v)− divS +G = 0. (4.39)

Now, let us take ξ ∈ C∞
0 (0,+∞). We test equation (4.39) by Φ = (ξ(t)ψn(|vε|)vε)ε, where

fε = f ∗ ηε denotes the molli�cation over time and space. Note that since ξ has compact
support, for su�ciently small ε the function Φ(t, ·) is well de�ned on (0,∞). Then we get∫ T

0

∫
T3
L

ξ(t)ψn(|vε|)vε ·
(
∂t(ϱv) + div (ϱu⊗ v)− divS +G

)
ε
dxdt = 0.



72 Chapter 4. Attraction�repulsion system

Let us rewrite the �rst two terms of the above. We have∫ T

0

∫
T3
L

ξ(t)ψn(|vε|)vε · (∂t(ϱv))ε dxdt

=

∫ T

0

∫
T3
L

ξ(t)ψn(|vε|)vε∂t(ϱvε) dxdt+R1

=

∫ T

0

∫
T3
L

ξ(t)
(
∂tϱψn(|vε|)|vε|2 + ϱ∂tFn(|vε|)

)
dxdt+R1,

where

R1 =

∫ T

0

∫
R3

ξ(t)ψn(|vε|)vε
((
∂t(ϱv)

)
ε
− ∂t(ϱvε)

)
dxdt.

Furthermore,∫ T

0

∫
T3
L

ξ(t)ψn(|vε|)vε · (div (ϱu⊗ v))ε dxdt

=

∫ T

0

∫
T3
L

ξ(t)ψn(|vε|)vεdiv (ϱu⊗ vε) dxdt+R2

=

∫ T

0

∫
T3
L

ξ(t)
(
− ∂tϱψn(|vε|)|vε|2 + ∂tϱFn(|vε|)

)
dxdt+R2,

where

R2 =

∫ T

0

∫
T3
L

ξ(t)ψn(|vε|)vε
((

div (ϱu⊗ v)
)
ε
− div (ϱu⊗ vε)

)
dxdt.

In conclusion, we get∫ T

0

∫
T3
L

ξ(t)∂t(ϱFn(|vε|)) dxdt+R1 +R2

−
∫ T

0

∫
T3
L

ξ(t)ψn(|vε|)vε
(
divS

)
ε
dxdt+

∫ T

0

∫
T3
L

ξ(t)ψn(|vε|)vεGε dxdt = 0.

Since v ∈ L2(0, T ;H1), vε → v in L2(0, T ;H1). In particular, up to a subsequence vε → v

almost everywhere. For 1 < p and δ > 0 such that p
3 + p(1+δ)

2 ≤ 1 and p(1 + δ) < 2, by the
de�nition of Fn we have

∥ξ′(t)ϱFn(|vε|)∥pLp((0,T )×T3
L)

≤ Cn∥ξ′∥L∞(0,T )

∫ T

0

∫
T3
L

ϱp|vε|p(1+δ) dxdt

≤ Cn∥ξ′∥L∞(0,T )

∫ T

0
∥ϱ∥p

L3∥vε∥
p(1+δ)
L2 dt

≤ C(n, T )∥ϱ∥p
L∞(0,T ;L3)

∥v∥p(1+δ)

L2((0,T )×T3
L)
.

Therefore ξ′(t)ϱFn(|vε|) converges in L1((0, T )× T3
L) and we have

lim
ε→0

∫ T

0

∫
T3
L

ξ′(t)ϱFn(|vε|) dxdt =
∫ T

0

∫
T3
L

ξ′(t)ϱFn(|v|) dxdt.
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Since G ∈ L4/3((0, T )× T3
L) and ψn(|vε|)|vε| ≤ Cn|vε|δ, we similarly have the convergence

lim
ε→0

∫ T

0

∫
T3
L

ξ(t)ψn(|vε|)vεGε dxdt =

∫ T

0

∫
T3
L

ξ(t)ψn(|v|)v ·G dxdt.

Moreover, we have∫ T

0

∫
T3
L

ξ(t)ψn(|vε|)vε(divS)ε dxdt = −
∫ T

0

∫
T3
L

ξ(t)Sε : ∇(ψn(|vε|)vε) dxdt

= −
∫ T

0

∫
T3
L

ξ(t)(ψ′
n(|vε|)|vε|+ ψn(|vε|))Sε : ∇vε dxdt.

By virtue of the estimates on
√
ϱDu and ∆

√
ϱ, the function S belongs to L2((0, T )×T3

L and
thus Sε → S in L2((0, T )× T3

L). Moreover ∇vε converges strongly in L2((0, T )× T3
L) to ∇v,

and ψ′
n(|vε|)|vε| + ψn(|vε|) is uniformly bounded in L∞((0, T ) × T3

L). Therefore we have the
convergence

lim
ε→0

∫ T

0

∫
T3
L

ξ(t)ψn(|vε|)vε(divS)ε dxdt = −
∫ T

0

∫
T3
L

ξ(t)S : ∇(ψn(|v|)v) dxdt.

What is left is to show that R1, R2 → 0 as ε→ 0.
To do that, we use the following commutator lemmas (see e. g. Lemma 2.3 in [66]):

Lemma 4.19. Let f ∈ (W 1,p(Rd))d and g ∈ Lq(Rd) with 1
p + 1

q = 1
r < 1. Then

∥(div (fg))ε − div (fgε)∥Lr ≤ C∥f∥W 1,p∥g∥Lq

for some C > 0 independent of ε, and

(div (fg))ε − div (fgε) → 0 in Lr(Rd).

Analogously with respect to time, we also have

Lemma 4.20. Let ft ∈ Lp((0, T )) and g ∈ Lq(0, T ) with 1
p + 1

q = 1
r < 1. Then

∥(∂t(fg))ε − ∂t(fgε)∥Lr ≤ C∥ft∥Lp∥g∥Lq

and
(∂t(fg))ε − ∂t(fgε) → 0 in Lr((0, T )).

Now we apply the above lemmas to R1 and R2. By Sobolev embedding, v ∈ L2(0, T ;L6).
For R2, we have

∇(ϱu) = ϱ1/2∇ϱ1/4 ⊗ ϱ1/4u+
√
ϱ
√
ϱ∇u ∈ L2(0, T ;L3/2).

Therefore since ψn(|vε|)|vε| ≤ Cn|vε|1/3, from Lemma 4.19 we get∣∣∣ ∫
T3
L

ψn(|vε|)vε
(
(div (ϱu⊗ v))ε − div (ϱu⊗ vε)

)
dx
∣∣∣

≤ Cn∥vε∥1/3L2(T3
L)
∥(div (ϱu⊗ v))ε − div (ϱu⊗ vε)∥L6/5(T3

L)

≤ Cn∥v∥1/3L∞(0,T ;L2)
∥∇(ϱu)∥W 1,3/2(T3

L)
∥v∥L6(T3

L)
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and the right hand side is integrable in time (note that the L∞(0, T ;L2) estimate on v follows
from the same regularity of

√
ϱu). Thus from the Dominated Convergence Theorem

|R2| ≤ ∥ξ∥L∞(0,T )

∫ T

0

∫
T3
L

∣∣ψn(|vε|)vε
(
(div (ϱu⊗ v))ε − div (ϱu⊗ vε)

)∣∣ dxdt→ 0

as ε→ 0. For R1, �rst note that

v = ϱ−1/4ϕ(ϱ)ϱ1/4u ∈ L4((0, T )× T3
L).

Moreover,
∂tϱ = 4

√
ϱ∇ϱ1/4ϱ1/4u+

√
ϱ
√
ϱdiv u ∈ L3/2((0, T )× T3

L).

Then similarly as before we have∣∣∣∣∫ T

0
ψn(|vε|)vε

(
(∂t(ϱv))ε − ∂t(ϱvε)

)
dt

∣∣∣∣ ≤ Cn∥vε∥1/3L4(0,T )
∥(∂t(ϱv))ε − ∂t(ϱvε)∥L12/11(0,T )

≤ Cn∥v∥4/3L4(0,T )
∥∂tϱ∥L3/2(0,T )

and from the Dominated Convergence Theorem

|R1| ≤ ∥ξ∥L∞(0,T )

∫ T

0

∫
T3
L

∣∣ψn(|vε|)vε
(
(∂t(ϱv))ε − ∂t(ϱvε)

)∣∣ dxdt→ 0.

Note that in this case we use the estimates in Lebesgue spaces on (0, T ) × T3
L instead of

Bochner spaces with di�erent exponents over time and space, which allows us to change the
order of integration.

In consequence, when ε→ 0 we derive (4.37) for any ξ ∈ C∞
0 (0,+∞).

The next step of the proof of Lemma 4.15 is based on application of the Weak Gronwall's
Lemma (Lemma C.1). Let us rewrite (4.37) as

−
∫ T

0

∫
T3
L

ξ′(t)ϱFn(|v|) dxdt

= −
∫ T

0

∫
T3
L

ξ(t)ψn(|v|)v · ϕ(ϱ)ϱ∇(KL ∗ ϱ) dxdt−
∫ T

0
ξ(t)b(t) dt,

where b(t) contains the rest of the terms from G and S, i. e.

b(t) =

∫
T3
L

ψn(|v|)v ·
[
ϱ2uϕ′(ϱ)div u+ ϱ∇ϕ(ϱ)Du+ ϕ(ϱ)ϱ∇(KL ∗ ϱ)

+ r0uϕ(ϱ) + r1ϱ|u|2uϕ(ϱ) + κ
√
ϱ∇ϕ(ϱ)∆√

ϱ+ 2κϕ(ϱ)∇√
ϱ∆

√
ϱ
]
dx

+

∫
T3
L

ϱϕ(ϱ)

(
Du+ κ

∆
√
ϱ

√
ϱ

I
)

: ∇(ψn(|v|)v) dx.

We �rst focus on the nonlocal term. From the de�nition of KL, we have

|∇(KL ∗ ϱ)(x)| =
∣∣∣∣ϕL(·)| · |α

∗ ∇ϱ+ 1

2

∫
R3

∇
(
|x− y|2ϕL(x− y)

)
ϱ(y) dy

∣∣∣∣
≤
∣∣∣∣ϕL(·)| · |α

∗ ∇ϱ
∣∣∣∣+ C

∫
|x−y|<L

|x− y|ϱ(y) dy,
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where in the last term we used (4.15). Therefore we get∣∣∣∣∣
∫ T

0

∫
T3
L

ξ(t)ψn(|v|)vϕ(ϱ)ϱ∇(KL ∗ ϱ) dxdt

∣∣∣∣∣
≤
∫ T

0
ξ(t)

∫
T3
L

ψn(|v|)|v|ϱ
∣∣∣∣ϕL(·)| · |α

∗ ∇ϱ
∣∣∣∣ dxdt

+ C

∫ T

0
ξ(t)

∫∫
T3×3
L

ψn(|v(x)|)|v(x)|ϱ(x)ϱ(y)|x− y| dxdydt

=A1 +A2.

To estimate A1, we use the estimates on Riesz potentials. For f ∈ L1(T3
L), let

I3−α(f) =

∫
T3
L

f(y)

|x− y|α
dy.

Then, in particular

∥I3−α(f)∥Lp∗ (T3
L)

≤ C∥f∥Lp(T3
L)

for p∗ =
3p

3− (3− α)p
.

From (4.32), we have

∥∇ϱ∥L∞(0,T ;L3/2) ≤ 2∥√ϱ∥L∞(0,T ;L6)∥∇
√
ϱ∥L∞(0,T ;L2) ≤ C

and thus

∥I3−α(∇ϱ)∥L∞(0,T ;Lq) ≤ C∥∇ϱ∥L∞(0,T ;L3/2) for q =
3 · 3/2

3− (3− α) · 3/2
=

3

α− 1

(if α ≤ 1, then q <∞).
Since ψn(|v|)|v| ≤ C + C|v|1+δ, the integral in A1 is estimated by∫

T3
L

|v|1+δϱ

∣∣∣∣ϕL(·)| · |α
∗ ∇ϱ

∣∣∣∣ dx =

∫
T3
L

|√ϱv|1+δϱ
1−δ
2 |I3−α(∇ϱ)| dx

≤ ∥√ϱv∥1+δ
L∞(0,T ;L2)

∥ϱ∥
1−δ
2

L∞(0,T ;L3)
∥I3−α(∇ϱ)∥

L∞(0,T ;L
3

1−δ )

≤ C∥√ϱv∥1+δ
L∞(0,T ;L2)

∥ϱ∥
1−δ
2

L∞(0,T ;L3)
∥∇ϱ∥L∞(0,T ;L3/2),

provided that 3
1−δ ≤ 3

α−1 (which is vaild for α < 2 and su�ciently small δ). In the end, we
get |A1| ≤ C, where C depends on the right hand sides of (4.31) and (4.32) (in particular it
does not depend on n,m, k, r0, r1 and κ).

For the term A2, we use the following generalized Young inequality for convex functions:

ab ≤ F (a) + F ∗(b), a, b ∈ R, (4.40)

where F ∗ is a convex conjugate of F , given by

F ∗(s) = sup{sz − F (z) : z ∈ R}.

The proof of (4.40) is elementary, since straight from the de�nition of F ∗

ab− F (a) ≤ sup{bz − F (z) : z ∈ R} = F ∗(b).
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Applying this inequality to A2, we get

A2 =C

∫ T

0
ξ(t)

∫∫
T3
L×T3

L

F ′
n(|v(x)|)|x− y|ϱ(x)ϱ(y) dxdydt

≤C
∫ T

0
ξ(t)

∫∫
T3
L×T3

L

F ∗
n(F

′
n(|v(x)|))ϱ(x)ϱ(y) dxdydt

+ C

∫ T

0
ξ(t)

∫∫
T3
L×T3

L

Fn(|x− y|)ϱ(x)ϱ(y) dxdydt.

To further simplify the estimate, we use the following Proposition:

Proposition 4.21. If F ∈ C1(R) is strictly convex and such that

zF ′(z) ≤ aF (z)

for some a > 1, then
F ∗(F ′(z)) ≤ (a− 1)F (z).

Proof. Fix s ∈ F ′(R) and let g(z) = sz − F (z). Then

g′(z) = s− F ′(z)

and as F ′ is increasing, g attains a maximum at z∗ = (F ′)−1(s). In consequence, F ∗ is
explicitly given by

F ∗(s) = g(z∗) = s(F ′)−1(s)− F ((F ′)−1(s)).

Therefore

F ∗(F ′(z)) = F ′(z)(F ′)−1(F ′(z))− F ((F ′)−1(F ′(z))) = zF ′(z)− F (z) ≤ (a− 1)F (z),

which �nishes the proof.

One can check that zF ′
n(z) ≤ 4Fn(z) for su�ciently large n and thus it satis�es the

assumptions of Proposition 4.21. Therefore �nally we derive

A2 ≤ C

∫ T

0
ξ(t)

∫∫
T3
L×T3

L

ϱFn(|v|) dxdt+
∫ T

0
ξ(t)

∫∫
T3
L×T3

L

Fn(|x− y|)ϱ(x)ϱ(y) dxdydt.

To close the estimate, we need to control the second term. To do this, we compute its
derivative using the continuity equation and applying again the Young inequality. From the
continuity equation, we have
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d

dt

∫∫
T3
L×T3

L

Fn(|x− y|)ϱ(x)ϱ(y) dxdy

=

∫∫
T3
L×T3

L

Fn(|x− y|)(∂tϱ(x)ϱ(y) + ϱ(x)∂tϱ(y)) dxdy

=−
∫∫

T3
L×T3

L

Fn(|x− y|)div x(ϱu)(x)ϱ(y) dxdy

=2

∫∫
T3
L×T3

L

F ′
n(|x− y|) x− y

|x− y|
· u(x)ϱ(x)ϱ(y) dxdy

=2

∫∫
T3
L×T3

L

F ′
n(|x− y|) x− y

|x− y|
v(x)ϱ(x)ϱ(y) dxdy

+ 2

∫∫
T3
L×T3

L

F ′
n(|x− y|) x− y

|x− y|
((1− ϕ(ϱ))u)(x)ϱ(x)ϱ(y) dxdy.

Therefore applying Young inequality and Proposition 4.21, we obtain

d

dt

∫∫
T3
L×T3

L

Fn(|x− y|)ϱ(x)ϱ(y) dxdy

≤2

∫∫
T3
L×T3

L

F ∗
n(F

′
n(|x− y|))ϱ(x)ϱ(y) dxdy

+ 2∥ϱ∥L1(T3
L)

∫
R3

ϱFn(|v|) dx

+ 2

∫∫
T3
L×T3

L

F ′
n(|x− y|)(1− ϕ(ϱ(x)))|u(x)|ϱ(x)ϱ(y) dxdy

≤C
∫∫

T3
L×T3

L

Fn(|x− y|)ϱ(x)ϱ(y) dxdy

+ C

∫
T3
L

ϱFn(|v|) dx

+ Cn

∫∫
T3
L×T3

L

|x− y|δ(1− ϕ(ϱ(x)))|u(x)|ϱ(x)ϱ(y) dxdy.

In consequence we obtain

−
∫ T

0
ξ′(t)f(t) dt ≤ C

∫ T

0
ξ(t)f(t) dt

+

∫ T

0
ξ(t)

(
−b(t) + C + Cn

∫∫
T3
L×T3

L

|u(x)||x− y|δ(1− ϕ(ϱ(x)))ϱ(x)ϱ(y) dxdy

)
,

where
f(t) =

∫
T3
L

ϱFn(|v|) dx+

∫∫
T3
L×T3

L

Fn(|x− y|)ϱ(x)ϱ(y) dxdy



78 Chapter 4. Attraction�repulsion system

and

b(t) =

∫
T3
L

ψn(|v|)v ·
(
ϱ2uϕ′(ϱ)div u+ ϱ∇ϕ(ϱ)Du+ r0uϕ(ϱ) + r1ϱ|u|2uϕ(ϱ)

+ κ
√
ϱ∇ϕ(ϱ)∆√

ϱ+ 2κϕ(ϱ)∇√
ϱ∆

√
ϱ
)
dx

+

∫
T3
L

ϱϕ(ϱ)

(
Du+ κ

∆
√
ϱ

√
ϱ

I
)

: ∇(ψn(|v|)v) dx

=J1(t) + J2(t).

(4.41)

Now applying weak Gronwall's lemma (Lemma C.1) and using the continuity in time of√
ϱ and

√
ϱu, we get for a. e. t ∈ [0, T ]

∫
T3
L

ϱFn(|v|) dx+
∫∫

T3
L×T3

L

Fn(|x− y|)ϱ(x)ϱ(y) dxdy

≤eCT

(∫
T3
L

ϱ0Fn(|v0|) dx+

∫∫
T3
L×T3

L

Fn(|x− y|)ϱ0(x)ϱ0(y) dxdy

)

− eCT

∫ T

0
b(t)dt+ CTeCT

+ Cne
CT

∫ T

0

∫∫
T3
L×T3

L

|u(x)||x− y|δ(1− ϕ(ϱ(x)))ϱ(x)ϱ(y) dxdydt,

(4.42)

where the constant C depends on L, but does not depend on n,m, k, κ, r0 and r1.

4.4.1 Limit passage with m → ∞

We now pass to the limit with m in (4.42), i. e. remove the truncation of ϱ at zero. Obviously

vm = ϕ0m(ϱ)ϕ∞k (ϱ)u→ ϕ∞k (ϱ)u a. e.

and |vm| ≤ |u|. Since ϱFn(|u|) ≤ Cnϱ|u|1+δ is integrable, from the dominated convergence
theorem we have ∫

T3
L

ϱFn(|vm|) dx→
∫
T3
L

ϱFn(ϕ
∞
k (ϱ)|u|) dx

as m→ ∞ and similarly∫
T3
L

ϱ0Fn(|v0,m|) dx→
∫
T3
L

ϱ0Fn(ϕ
∞
k (ϱ0)|u0|) dx.

Since for δ < 1 the term |u(x)||x− y|δϱ(x)ϱ(y) is integrable on [0, T ]× T3
L × T3

L by virtue of
energy estimate (4.31), the last term in (4.42) converges to∫ T

0

∫∫
T3
L×T3

L

|u(x)||x− y|δ(1− ϕ∞k (ϱ))ϱ(x)ϱ(y) dxdydt.

Now we deal with the terms J1 and J2 of b(t) (as in (4.41)). The convergence in all the terms
will be a consequence of the following Proposition:
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Proposition 4.22. If ∥am∥L∞((0,T )×Ω) ≤ C, am → a a. e. and f ∈ L1((0, T )× Ω), then∫ T

0

∫
Ω
ϕ0m(ϱ)amf dxdt→

∫ T

0

∫
Ω
af dxdt

and ∫ T

0

∫
Ω
|ϱ(ϕ0m)′(ϱ)amf | dxdt→ 0

as m→ ∞.

Proof. Note that ϕ0m(ϱ) → 1 a. e. as m → ∞. Since |ϕ0m(ϱ)f − f | ≤ 2|f | and |amf − af | ≤
|f |(∥am∥L∞ + ∥a∥L∞), by Dominated Convergence Theorem,∫ T

0

∫
Ω
|ϕ0m(ϱ)f − f | dxdt→ 0 and

∫ T

0

∫
Ω
|amf − af | dxdt→ 0.

Therefore∣∣∣∣∫ T

0

∫
Ω
ϕ0m(ϱ)amf dxdt−

∫ T

0

∫
Ω
af dxdt

∣∣∣∣
≤ ∥am∥L∞

∫ T

0

∫
Ω
|ϕ0m(ϱ)f − f | dxdt+

∫ T

0

∫
Ω
|amf − af | dxdt→ 0.

For the second part of the Proposition, it is enough to notice that |(ϱϕ0m)′(ϱ)| ≤ C and
(ϕ0m)′(ϱ) → 0 a. e. Then again from the dominated convergence theorem,∫ T

0

∫
Ω
|ϱ(ϕ0m)′(ϱ)amf | dxdt→ 0.

We apply the above Proposition to each of the terms in b(t). First, note that

∇(ψn(|vm|)vm) =
ψ′
n(|vm|)
|vm|

vm ⊗ vm∇vm + ψn(|vm|)∇vm

= F ′′
n (|vm|)

(
∇ϕ0m(ϱ)⊗ (ϕ∞k (ϱ)um) + ϕ0m(ϱ)

(
∇ϕ∞k (ϱ)⊗ um + ϕ∞k (ϱ)∇um

))
and therefore∫ T

0
J2(t) dt =

∫ T

0

∫
R3

ϱϕ(ϱ)

(
Du+ κ

∆
√
ϱ

√
ϱ

I
)

: ∇(ψn(|vm|)vm) dxdt

=

∫ T

0

∫
T3
L

ϕ0m(ϱ)amf1 dxdt+

∫ T

0

∫
T3
L

ϱ(ϕ0m)′(ϱ)amf2 dxdt,

where
am = ϕ0m(ϱ)F ′′

n (|vm|)

and

f1 = ϱϕ∞k (ϱ)

(
Du+ κ

∆
√
ϱ

√
ϱ

I
)

:
(
∇ϕ∞k (ϱ)⊗ u+ ϕ∞k (ϱ)∇u

)
,

f2 = ϕ∞k (ϱ)

(
Du+ κ

∆
√
ϱ

√
ϱ

I
)

: (∇ϱ⊗ (ϕ∞k (ϱ)u)).
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By virtue of Proposition 4.22,

lim
m→∞

∫ T

0

∫
T3
L

ϱϕm,k(ϱ)

(
Du+ κ

∆
√
ϱ

√
ϱ

I
)

: ∇(ψn(|vm|)vm) dxdt

=

∫ T

0

∫
T3
L

ϱϕ∞k (ϱ)

(
Du+ κ

∆
√
ϱ

√
ϱ

I
)

: ∇(ψn(|ϕ∞k (ϱ)u|)ϕ∞k (ϱ)u) dxdt.

Now we deal with J1. From (4.41), we see that

J1 =

∫
T3
L

ψn(|vm|)vm ·
(
ϱ2uϕ′(ϱ)div u+ ϱ∇ϕ(ϱ)Du

+ r0uϕ(ϱ) + r1ϱ|u|2uϕ(ϱ) + κ
√
ϱ∇ϕ(ϱ)∆√

ϱ+ 2κϕ(ϱ)∇√
ϱ∆

√
ϱ
)
dx

=

∫
T3
L

ψn(|vm|)ϕ0m(ϱ) · ϕ∞k (ϱ)u ·
(
ϱ2uϕ′(ϱ)div u+ ϱ∇ϕ(ϱ)Du

+ r0uϕ(ϱ) + r1ϱ|u|2uϕ(ϱ) + κ
√
ϱ∇ϕ(ϱ)∆√

ϱ+ 2κϕ(ϱ)∇√
ϱ∆

√
ϱ
)
dx.

We will group all the terms in J1 with respect to ϕ0m(ϱ) and ϱ(ϕ0m)′(ϱ). Let

bm = ϕ0m(ϱ)ψn(|vm|),

g1 = ϕ∞k (ϱ)2
(
ϱ|u|2div u+ u · Du · ∇ϱ+ κu · 1

√
ϱ
∆
√
ϱ

)
and

g2 =ϕ
∞
k (ϱ)(ϕ∞k )′(ϱ)ϱ2|u|2div u+ ϕ∞k (ϱ)(ϕ∞k )′(ϱ)ϱu · Du · ∇ϱ+ r0ϕ

∞
k (ϱ)2|u|2

+ r1ϕ
∞
k (ϱ)2ϱ|u|4 + κϕ∞k (ϱ)u · (ϕ∞k )′(ϱ)

√
ϱ∇ϱ∆√

ϱ+ 2κϕ∞k (ϱ)2u · ∇√
ϱ∆

√
ϱ.

Then ∫ T

0
J1(t) dt =

∫ T

0

∫
T3
L

ϱ(ϕ0m)′(ϱ)bmg1 dxdt+

∫ T

0

∫
T3
L

ϕ0m(ϱ)bmg2 dxdt

and therefore from Proposition 4.22

lim
m→∞

∫ T

0
J1(t) dt =

∫ T

0

∫
T3
L

ψn(|ϕ∞k (ϱ)u|)ϕ∞k (ϱ)u ·
(
ϱ2u(ϕ∞k )′(ϱ)div u+ ϱ∇ϕ∞k (ϱ)Du

+ r0uϕ
∞
k (ϱ) + r1ϱ|u|2uϕ∞k (ϱ)

+ κ
√
ϱ∇ϕ∞k (ϱ)∆

√
ϱ+ 2κϕ∞k (ϱ)∇√

ϱ∆
√
ϱ
)
dxdt.

Combining J1 and J2, in the end we get

lim
m→∞

∫ T

0
b(t)dt =

∫ T

0

∫
T3
L

ψn(|ϕ∞k (ϱ)u|)ϕ∞k (ϱ)u ·
(
ϱ2u(ϕ∞k )′(ϱ)div u+ ϱ∇ϕ∞k (ϱ)Du

+ r0ϕ
∞
k (ϱ)u+ r1ϕ

∞
k (ϱ)ϱ|u|2u

+ κ
√
ϱ∇ϕ∞k (ϱ)∆

√
ϱ+ 2κϕ∞k (ϱ)∇√

ϱ∆
√
ϱ
)
dxdt

+

∫ T

0

∫
T3
L

ϱϕ∞k (ϱ)

(
Du+ κ

∆
√
ϱ

√
ϱ

I
)

: ∇(ψn(|ϕ∞k (ϱ)u|)ϕ∞k (ϱ)u) dxdt.
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Since ∫ T

0

∫
T3
L

ψn(|ϕ∞k (ϱ)u|)(ϕ∞k )2(ϱ)
(
r0|u|2 + r1ϱ|u|4

)
dxdt ≥ 0,

after taking m→ ∞ we �nally obtain the following estimate:∫
T3
L

ϱFn(|vk|) dx+

∫∫
T3
L×T3

L

Fn(|x− y|)ϱ(x)ϱ(y) dxdy

≤eCT

(∫
T3
L

ϱ0Fn(|ϕ∞k (ϱ0)u0|) dx+

∫∫
T3×3
L

Fn(|x− y|)ϱ0(x)ϱ0(y) dxdy

)

− eCT

∫ T

0
b(t)dt+ CTeCT

+ Cne
CT

∫ T

0

∫∫
T3×3
L

|u(x)||x− y|δ(1− ϕ∞k (ϱ(x)))ϱ(x)ϱ(y) dxdydt

(4.43)

for vk = ϕ∞k (ϱ)u, where

b(t) =

∫
T3
L

ψn(|vk|)vk ·
(
ϱ2u(ϕ∞k )′(ϱ)div u+ ϱ∇ϕ∞k (ϱ)Du

+ κ
√
ϱ∇ϕ∞k (ϱ)∆

√
ϱ+ 2κϕ∞k (ϱ)∇√

ϱ∆
√
ϱ
)
dx

+

∫
T3
L

ϱϕ∞k (ϱ)

(
Du+ κ

∆
√
ϱ

√
ϱ

I
)

: ∇(ψn(|vk|)vk) dx

= J̃1 + J̃2.

(4.44)

4.4.2 Limit passage with κ → 0 and k → ∞

We choose the parameters κ and k, so that we can pass to the limit in (4.43) and (4.30) with
both of them at the same time. Fix δ ≤ 2/3 and let k = κ−2/δ. We have the following lemma:

Lemma 4.23. If (ϱκ, uκ) is the solution to (4.30) and vκ = ϕ∞k (ϱκ)uκ, then (ϱκ, uκ) converges
to a solution (ϱ, u) to (4.30) with κ = 0, and the limit satis�es for a. e. ∈ [0, T ]∫

T3
L

ϱFn(|u|) dx+

∫∫
T3
L×T3

L

Fn(|x− y|)ϱ(x)ϱ(y) dxdy

≤ C

(∫
T3
L

ϱ0Fn(|u0|) dx+

∫∫
T3
L×T3

L

Fn(|x− y|)ϱ0(x)ϱ0(y) dxdy

)
+ C, (4.45)

where C depends on T and on the right hand sides of (4.31) and (4.32).

Proof. Since ∥∂t(ϱκ, uκ)∥L2(0,T ;W−1,4) ≤ C, by Lemma 4.4, we have

ϱκ → ϱ in in C(0, T ;L3/2)

and
ϱκuκ → ϱu in L2(0, T ;L3/2).

In consequence
ϱκuκ → ϱu a. e.
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and for a. e. (t, x) such that ϱ(t, x) ̸= 0, we get

uκ =
ϱκuκ
ϱκ

→ u.

Therefore vκ(t, x) → u(t, x) as well. On the other hand, for a. e. (t, x) where ϱ(t, x) = 0 we
have

ϱκFn(|vκ|) ≤ Cnϱ
1−δ
κ |ϱκuκ|δ → 0

as κ→ 0. In consequence ϱκFn(|vκ|) → ϱFn(|u|) a. e. Then Fatou's Lemma yields∫
T3
L

ϱFn(|u|) dx ≤ lim inf
κ→0

∫
T3
L

ϱκFn(|vκ|) dx.

Let us pass to the limit with the terms on the right hand side of (4.43) one by one.
Similarly as before, ∫

T3
L

ϱ0Fn(|ϕ∞k (ϱ0)u0|) dx→
∫
T3
L

ϱ0Fn(|u0|) dx.

Since, similarly as in the previous limit passage,

|uκ(x)||x− y|δ(1− ϕ∞k (ϱκ(x)))ϱκ(x)ϱκ(y)

is uniformly bounded in Lp((0, T )× T3
L × T3

L) for some p > 1, and convergent to 0 a. e., we
have

lim
κ→0

∫ T

0

∫∫
T3
L×T3

L

|uκ(x)||x− y|δ(1− ϕ∞k (ϱκ(x)))ϱκ(x)ϱκ(y) dxdydt = 0.

What is left is to estimate the terms J̃1, J̃2 de�ned in (4.44). For J̃1, we respectively have the
following bounds:

∣∣∣ ∫ T

0

∫
T3
L

ψn(|ϕ∞k (ϱκ)uκ|)ϕ∞k (ϱκ)(ϕ
∞
k )′(ϱκ)ϱ

2
κ|uκ|2div uκ dxdt

∣∣∣
≤ Cnk

−δ/4

∫ T

0

∫
T3
L

ϱ1/4κ |ϱ1/4uκ|1+δ√ϱκdiv uκ dxdt

≤ C(n, T )k−δ/4∥ϱκ∥1/4
L∞(0,T ;L

1
1−δ )

∥ϱ1/4κ uκ∥1+δ
L4(0,T ;L4)

∥√ϱκdiv uκ∥L2(0,T ;L2),

∣∣∣ ∫ T

0

∫
T3
L

ψn(|ϕ∞k (ϱκ)uκ|)ϕ∞k (ϱκ)uκ · ϱκ∇ϕ∞k (ϱκ)Duκ dxdt
∣∣∣

≤ Cnk
−δ/4κ−1/4

∫ T

0

∫
T3
L

ϱ1/4|ϱ1/4κ uκ|δ|κ1/4∇ϱ1/4κ ||√ϱκDuκ| dxdt

≤ C(n, T )κ1/4∥ϱκ∥1/4
L∞(0,T ;L

1
1−δ )

∥ϱ1/4κ uκ∥δL4(0,T ;L4)∥κ
1/4∇ϱ1/4κ ∥L4(0,T ;L4)∥

√
ϱκDuκ∥L2(0,T ;L2),
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κ
∣∣∣ ∫ T

0

∫
T3
L

ψn(|ϕ∞k (ϱκ)uκ|)ϕ∞k (ϱκ)uκ ·
√
ϱκ∇ϕ∞k (ϱκ)∆

√
ϱκ dxdt

∣∣∣
≤Cn

κ1/4

kδ/4

∫ T

0

∫
T3
L

ϱ1/4κ |ϱ1/4κ uκ|δ|κ1/4∇ϱ1/4κ ||κ1/2∆√
ϱκ| dxdt

≤C(n, T )κ
1/4

kδ/4
∥ϱκ∥1/4

L∞(0,T ;L
1

1−δ )
∥ϱ1/4κ uκ∥δL4(0,T ;L4)×

× ∥κ1/4∇ϱ1/4κ ∥L4(0,T ;L4)∥κ1/2∆
√
ϱκ∥L2(0,T ;L2)

and

κ
∣∣∣ ∫ T

0

∫
T3
L

ψn(|vκ|)vκ · ϕ∞k (ϱκ)∇
√
ϱκ∆

√
ϱκ dxdt

∣∣∣
≤ Cnκ

1/4

∫ T

0

∫
T3
L

|ϱ1/4κ uκ|δϱ1/4κ |κ1/4∇ϱ1/4κ ||κ1/2∆√
ϱκ| dxdt

≤ C(n, T )κ1/4∥ϱ1/4κ uκ∥δL4(0,T ;L4)∥κ
1/4∇ϱ1/4κ ∥L4(0,T ;L4)∥κ1/2∆

√
ϱκ∥L2(0,T ;L2).

By the estimates in (4.31) and (4.32), all above terms converge to 0 with k → ∞, κ → 0 if
δ ≤ 2/3. To estimate J̃2, we further write

J̃2 =

∫
T3
L

ϱκϕ
∞
k (ϱκ)Duκ : ∇(ψn(|vk|)vk) dx+ κ

∫
T3
L

ϱκϕ
∞
k (ϱκ)

∆
√
ϱκ√
ϱκ

div (ψn(|vk|)vk) dx

= S1 + S2.

For S1, we have∫ T

0
S1(t) dt =

∫ T

0

∫
T3
L

ϱκϕ
∞
k (ϱκ)Duκ : ∇(ψn(|vκ|)vκ) dxdt

=

∫ T

0

∫
T3
L

ψ′
n(|vκ|)
|vκ|

ϱκ(ϕ
∞
k )2(ϱκ)Duκ : (vκ ⊗ vκ∇vκ) dxdt

+

∫ T

0

∫
T3
L

ψn(|vκ|)ϱκϕ∞k (ϱκ)Duκ : ∇vκ dxdt

=A1 +A2.

The term A1 is estimated as follows:

|A1| ≤
∫ T

0

∫
T3
L

|ψ′
n(|vκ|)||vκ|ϱκ(ϕ∞k )2(ϱκ)|∇uκ|2 dxdt

+

∫ T

0

∫
T3
L

|ψ′
n(|vκ|)||vκ|2ϱκϕ∞k (ϱκ)|Duκ||∇ϕ∞k (ϱκ)| dxdt

=A1,1 +A1,2.

Since |ψ′
n(|vκ|)||vκ| ≤ 2 independently of n, we have

A1,1 ≤ 2

∫ T

0

∫
T3
L

ϱκ|∇uκ|2 dxdt,
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which is bounded uniformly by virtue of (4.31) and (4.32).
For A1,2, from the de�nition of ψ we have

ψ′
n(z)z

2 =


2z3

1 + z2
, z ≤ n,

−n ln(1 + z2) +
4nz2 − 2z3(1− n2)

(1 + z2)2
, z > n

Therefore
|ψ′

n(vκ|)||vκ|2 ≤ Cn + Cn|vκ|δ

for some Cn > 0 and thus

A1,2 ≤ Cn

∫ T

0

∫
T3
L

ϕ∞k (ϱκ)(ϕ
∞
k )′(ϱκ)|

√
ϱκDuκ||∇ϱ1/4κ |

(
ϱ5/4κ + ϱ5/4−δ/4

κ |ϱ1/4κ uκ|δ
)

dxdt.

In consequence

A1,2 ≤ Cn∥
√
ϱκDuκ∥L2((0,T )×T3

L)
∥κ1/4∇ϱ1/4κ ∥L4((0,T )×T3

L)

(
k−1/2κ−1/4∥ϱ3/4κ ∥L4((0,T )×T3

L)

+ k−δ/4κ−1/4∥ϱκ∥1/4
L

1
1−δ ((0,T )×T3

L)
∥ϱ1/4κ uκ∥L4((0,T )×T3

L)

)
,

which converges to 0 with k → ∞, κ→ 0.
For A2, we write

A2 =

∫ T

0

∫
T3
L

ψn(|vκ|)ϱκϕ∞k (ϱκ)|Duκ|2 dxdt

+

∫ T

0

∫
T3
L

ψn(|vκ|)ϱκϕ∞k (ϱκ)Duκ : (∇ϕ∞k (ϱκ)⊗ uκ) dxdt

=A2,1 +A2,2.

The term A2,1 is positive and thus we can estimate it in (4.43) by 0. The term A2,2 however,
is estimated by

|A2,2| ≤
∫ T

0

∫
T3
L

ψn(|vκ|)|vκ|ϱκ|Duκ||∇ϕ∞k (ϱκ)| dxdt

≤C(n, T )κ
−1/4

kδ/4
∥ϱ1/4κ uκ∥δL4(0,T ;L4)∥κ

1/4∇ϱ1/4κ ∥L4(0,T ;L4)×

× ∥√ϱκDuκ∥L2(0,T ;L2)∥ϱκ∥
1/4

L∞(0,T ;L
1

1−δ )

which converges to 0 as well.
What is left is the term∫ T

0
S2(t) dt =κ

∫ T

0

∫
T3
L

ϕ∞k (ϱκ)
√
ϱκ∆

√
ϱκI : ∇(ψn(|vκ|)vκ) dxdt

=κ

∫ T

0

∫
R3

ϕ∞k (ϱκ)
√
ϱκ∆

√
ϱκ
ψ′
n(|vκ|)
|vκ|

I : (vκ ⊗ vκ∇vκ) dxdt

+ κ

∫ T

0

∫
R3

ψn(|vκ|)ϕ∞k (ϱκ)
√
ϱκ∆

√
ϱκdiv vκ dxdt

=B1 +B2.
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Similarly as before,

|B1| ≤κ1/2∥κ1/2∆
√
ϱκ∥L2(0,T ;L2)∥

√
ϱκDuκ∥L2(0,T ;L2)

+ κ1/4∥κ1/2∆√
ϱκ∥L2(0,T ;L2)∥ϱ1/4κ uκ∥L4(0,T ;L4)∥κ1/4∇ϱ1/4κ ∥L4(0,T ;L4)

and

|B2| ≤Cnκ
1/2∥κ1/2∆√

ϱκ∥L2(0,T ;L2)∥
√
ϱκdiv uκ∥L2(0,T ;L2)

+ Cnκ
1/4∥κ1/2∆√

ϱκ∥L2(0,T ;L2)∥κ1/4∇ϱ1/4κ ∥L4(0,T ;L4)∥ϱ1/4κ uκ∥L4(0,T ;L4),

which means that both B1, B2 → 0.
In conclusion, after performing the limit passage κ → 0 in (4.43), we end up with the

estimate (4.45).

With the estimate (4.45) at hand, we are ready to �nish the proof of Lemma 4.15. Since
Fn ↗ F , simply taking the limit n → ∞ in (4.45), by monotone convergence theorem we
derive (4.34). In order to show that the limit (ϱ, u) satis�es (4.30) with κ = 0, we focus only
on ϱκDuκ, since the limit passage in the remaining terms is performed in the same way as
before. We will show that

√
ϱκuκ → √

ϱu in L2((0, T )× T3
L).

The proof is similar to the proof of Lemma 4.6. From the weak convergence of ϱ1/4κ uκ in
L4((0, T )× T3

L) it follows that∫ T

0

∫
T3
L

ϱ|u|4 dxdt ≤ lim inf
κ→0

∫ T

0

∫
T3
L

ϱκuκ dxdt ≤ C.

From the pointwise convergence of ϱκuκ it follows that
√
ϱκTM (uκ) →

√
ϱTM (u) a.e. for the

truncation TM de�ned as in (4.14). Since
√
ϱκTM (uκ) is also uniformly bounded with respect

to κ in L∞(0, T ;L6), in particular it also converges in L2((0, T )× T3
L) and therefore

∥√ϱκuκ −
√
ϱu∥L2((0,T )×T3

L)
≤∥√ϱκTM (uκ)−

√
ϱTM (u)∥L2((0,T )×T3

L)

+ 2∥√ϱκ|uκ|1|uκ|>M∥L2((0,T )×T3
L)

+ 2∥√ϱ|u|1|u|>M∥L2((0,T )×T3
L)
.

The last two terms are estimated as follows:∫ T

0

∫
T3
L

ϱκ|uκ|21|uκ|>M dxdt ≤ 1

M3

∫ T

0

∫
T3
L

ϱκ|uκ|4 dxdt ≤
C

M3

and for the limit analogously. In conclusion,

lim sup
κ→0

∥√ϱκuκ −
√
ϱu∥L2((0,T )×T3

L)
≤ C

M3

and the convergence follows by taking M → ∞.
With the above convergence, we pass to the limit using the relation

ϱκDuκ = D(
√
ϱκ

√
ϱκuκ)−∇√

ϱκ ⊗
√
ϱκuκ

and weak convergence of ∇√
ϱκ, coming from (4.32).
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Remark 4.24. Note that at this point we cannot use (4.29) to de�ne
√
ϱ∇u as in the previous

Section. However, from the uniform estimates we still have the convergence

√
ϱκ∇uκ ⇀

√
ϱ∇u in L2((0, T )× T3

L).

Using the strong convergence of
√
ϱκ, we can then pass to the limit in the relation

√
ϱκ

√
ϱκ∇uκ = ∇(ϱκuκ)−∇√

ϱκ ⊗
√
ϱκuκ

and obtain √
ϱ
√
ϱ∇u = ∇(ϱu)−∇√

ϱ⊗√
ϱu. (4.46)

In particular, from (4.46) it follows that ∇(ϱu) ∈ L2(0, T ;L1). Similarly as before, we will
drop the bars and de�ne other di�erential operators of u analogously.

4.5 Limit passage with r0, r1 → 0

In the previous section, we constructed the solutions to

∂tϱ+ div (ϱu) = 0

∂t(ϱu) + div (ϱu⊗ u)− div (ϱDu) + ϱ∇(KL ∗ ϱ) = −r0u− r1ϱ|u|2u,
(4.47)

de�ned on the torus T3
L, satisfying the estimates (4.31) and (4.32) with κ = 0, together with

(4.34).
Our next goal is to perform the last limit passage r0, r1 → 0 and in consequence obtain

the solutions to (4.1) on the torus. The main tool to do so is the following lemma:

Lemma 4.25. Let Ω = T3 or R3. Assume the sequence (ϱn, un) satis�es uniformly the
following estimates:

sup
t∈[0,T ]

∫
Ω
ϱn|un|2 dxdt+

∫ T

0

∫
Ω
ϱn|Dun|2 dxdt ≤ C, (4.48)

sup
t∈[0,T ]

∫
Ω
|∇√

ϱn|2 dx+

∫ T

0

∫
Ω
ϱn|∇un −∇Tun|2 dxdt ≤ C, (4.49)

sup
t∈[0,T ]

∫
Ω
ϱnF (|un|) dx ≤ C, (4.50)

and
∥∂tϱn∥L∞(0,T ;W−1,3/2), ∥∂t(ϱnun)∥L2(0,T ;W−2,4/3) ≤ C.

Then up to a subsequence we have

ϱn → ϱ in C(0, T ;L
3/2
loc )

(in consequence also in particular
√
ϱn → √

ϱ in C(0, T ;L2
loc)). Moreover, there exists a

function m such that

ϱnun → m in L2(0, T ;Lp
loc), p < 3/2,

and m(t, x) = 0 a. e. on {(t, x) : ϱ(t, x) = 0}. In conclusion, there exists also a function u
(de�ned uniquely on the set {(t, x) : ϱ(t, x) ̸= 0}) such that m = ϱu, and moreover

√
ϱnun → √

ϱu in L2
loc([0, T ]× Ω).
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Lemma 4.25 combines together the consecutive limit passages performed in [75] in order
to show stability of solutions to (4.1) without the nonlocal term. However, for completeness
and for the reader's convenience, we also present the proof below:

Proof. Since
∥∇ϱn∥L∞(0,T ;L3/2) ≤ 2∥√ϱn∥L∞(0,T ;L6)∥∇

√
ϱn∥L∞(0,T ;L2),

the strong convergence of ϱn follows straight from the Aubin-Lions-Simon lemma. For the
momentum, we have

∇(ϱnun) = 2∇√
ϱn ⊗√

ϱnun +
√
ϱn

√
ϱn∇un

and thus
∥∇(ϱnun)∥L2(0,T ;L1) ≤ C.

Moreover,
∥ϱnun∥L∞(0,T ;L

3/2
loc )

≤ ∥√ϱn∥L∞(0,T ;L6
loc)

∥√ϱnun∥L∞(0,T ;L2),

and thus the desired convergence again follows from the Aubin-Lions lemma.
By the above strong convergences, we can extract the subsequence (indexed again by n)

such that ϱn and ϱnun converge a. e. Denoting ϱnun = mn, we will now show that the limit
m is zero whenever ϱ = 0. From the estimate (4.48) and Fatou's lemma,∫

Ω
lim inf
n→∞

|mn|2

ϱn
dx <∞

and thus m(t, x) = 0 a.e. on the set {ϱ(t, x) = 0}. Denoting u = m
ϱ on the set {ϱ(t, x) ̸= 0}

and u = 0 on {ϱ(t, x) = 0}, we get m = ϱu.
With the notion of u, we are now ready to prove the last part of the Lemma. Here,

the reasoning is again similar to the proof of Lemma 4.6 and the end of the previous Section,
however this time we will use (4.50) instead of the estimates for ϱ1/4u. From a. e. convergence
of ϱn and ϱnun, on the set {ϱ(t, x) ̸= 0} we have

un(t, x) =
ϱn(t, x)un(t, x)

ϱn(t, x)
→ u(t, x) a. e.

Then from Fatou's lemma we also have∫
Ω
ϱF (|u|) dx =

∫
{ϱ(t,x)̸=0}

ϱF (|u|) dx ≤ lim inf
n→∞

∫
Ω
ϱnF (|un|) dx <∞. (4.51)

On the other hand, de�ning the truncation operator TM as in (4.14), for (t, x) such that
ϱ(t, x) = 0 we get √

ϱn|TM (un)| ≤M
√
ϱn → 0 =

√
ϱTM (u).

In consequence
√
ϱnTM (un) →

√
ϱTM (u) a. e. for any M > 0. Since

√
ϱnTM (un) is bounded

uniformly with respect to n in L∞(0, T ;L6), in particular it also converges in L2
loc([0, T ]×Ω).

Then, �xing a compact set V ⊆ Ω, we have

∥√ϱnun −√
ϱu∥L2([0,T ]×V ) ≤ ∥√ϱnTM (un)−

√
ϱTM (u)∥L2([0,T ]×V )

+ 2∥√ϱn|un|1|un|>M∥L2([0,T ]×V ) + 2∥√ϱ|u|1|u|>M∥L2([0,T ]×V ).
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We estimate the last two terms as follows:∫ T

0

∫
V
ϱn|un|21|un|>M dxdt ≤ 1

ln(1 +M2)

∫ T

0

∫
Ω
ϱn|un|2 ln(1 + |un|2) dxdt,

and analogously for the limit. Therefore using the estimates (4.50) and (4.51) we get

lim sup
n→∞

∥√ϱnun −√
ϱu∥L2

loc([0,T ]×Ω) ≤
C

ln(1 +M2)

and taking M → ∞ we get the desired convergence.

In our case, let r = r0 = r1 and (ϱr, ur) be the corresponding solution to (4.47). From
(4.31), (4.32) and (4.34), we have the required uniform estimates. Note that even though the
term

√
ϱ∇u is de�ned only via (4.46), by virtue of Remark 4.24 it still provides the bound on

∥∇(ϱu)∥L2(0,T ;L1), which is enough to apply Lemma 4.25. For the time regularity, from the
continuity equation, we have

∥∂tϱr∥W−1,3/2(T3
L)

≤ ∥√ϱr∥L6(T3
L)
∥√ϱrur∥L2(T3

L)
.

For ∂t(ϱrur), the term of the highest order is div (ϱrur ⊗ ur). Since for φ ∈W 2,4(Ω)∫
Ω
div (ϱrur ⊗ ur) · φ dx = −

∫
Ω
(
√
ϱrur ⊗

√
ϱrur) : ∇φ dx ≤ ∥ϱr|ur|2∥L1(Ω)∥∇φ∥L∞(Ω),

we get the bound
∥∂t(ϱrur)∥L2(0,T ;W−2,4/3) ≤ C.

By Lemma 4.25, we can pass to the limit in all terms in the weak formulation of (4.47). In
the convective term we use strong convergence of

√
ϱrur. To pass to the limit in the viscous

stress tensor, we proceed analogously as in the previous limit passage and the limit is de�ned
via relation (4.46).

For the nonlocal term, similarly as before we use the fact that KL ∈ Lp(T3
L) for p < 3/α.

Since ∇ϱr is bounded in L∞(0, T ;L3/2), up to a subsequence we get

KL ∗ ∇ϱr → KL ∗ ∇ϱ in L∞(0, T ;L
3

α−1 ).

The convergence of ϱr∇(KL ∗ ϱr) follows thus from the strong convergence of ϱr. For the rest
of the terms, we have

r0

∣∣∣∣∣
∫ T

0

∫
T3
L

urφ dxdt

∣∣∣∣∣ ≤ √
r0∥

√
r0ur∥L2([0,T ]×T3

L)
∥φ∥L2([0,T ]×T3

L)
→ 0

and

r1

∣∣∣∣∣
∫ T

0

∫
T3
L

ϱr|ur|2urφ dxdt

∣∣∣∣∣ ≤ r
1/4
1 ∥ϱr∥1/4L∞(0,T ;L3)

∥r1/41 ϱ1/4r ur∥3L4(0,T ;L4)∥φ∥L∞(0,T ;L6) → 0.

Using the weak lower semicontinuity of the norm, Fatou's lemma and (4.51), the limit
solution also satis�es the inequalities (4.31), (4.32) and (4.34) with r0 = r1 = κ = 0.

Note that up to this point we obtained the solutions for initial conditions satisfying

ϱ̃0,L = ϱ0,L +
1

m1
and

√
ϱ̃0,Lu0,L ∈ L∞(T3

L).



4.6. Expansion of the torus 89

However, Lemma 4.25 in particular provides the sequential stability of solutions. Repeating
the above reasoning, we are able to pass to the limit with m1 → ∞ and with the truncation
of initial data. In conclusion, we constructed weak solutions to the system

∂tϱ+ div (ϱu) = 0,

∂t(ϱu) + div (ϱu⊗ u)− div (ϱDu) + ϱ∇(KL ∗ ϱ) = 0,
(4.52)

with the initial data (ϱ0,L, u0,L) de�ned as in Section 4.3.1, satisfying the energy estimate

sup
t∈[0,T ]

E(ϱ, u) +

∫ T

0

∫
T3
L

ϱ|Du|2dxdt ≤ E(ϱ0, u0) (4.53)

for
E(ϱ, u) =

1

2

∫
T3
L

ϱ|u|2 + ϱ(KL ∗ ϱ) dx,

the Bresch�Desjardins estimates

sup
t∈[0,T ]

∫
T3
L

|∇√
ϱ|2 dx+

1

8

∫ T

0

∫
T3
L

ϱ|∇u−∇Tu|2dx

≤ 3E(ϱ0,L, u0,L) +

∫
T3
L

|∇√
ϱ0,L|2dx+ CT∥ϱ0,L∥2L1(T3

L)
(4.54)

and

sup
t∈[0,T ]

(∫
T3
L

ϱF (|u|) dx+

∫∫
T3
L×T3

L

F (|x− y|)ϱ(x)ϱ(y) dxdy

)

≤ C + C

(∫
T3
L

ϱ0,LF (|u0,L|) +
∫∫

T3
L×T3

L

F (|x− y|)ϱ0,L(x)ϱ0,L(y) dxdy

)
, (4.55)

where C depends on E(ϱ0,L, u0,L) and the right hand side of (4.54).

4.6 Expansion of the torus

Having the solutions to (4.52) de�ned on the torus T3
L, together with estimates (4.53)�(4.55),

we can now pass to the limit with L → ∞ and in consequence obtain the solutions on the
whole space R3. Let (ϱL, uL) be the solutions to (4.52) and by (ϱ̃L, ũL) we will denote (ϱL, uL)
extended by zero outside the torus. Using the properties of ϱ0,L described in Lemma 4.7, we
have the following estimates, uniform in L:

sup
t∈[0,T ]

1

2

∫
R3

(
ϱ̃L|ũL|2 + ϱ̃L(KL ∗ ϱ̃L)

)
dx+

∫ T

0

∫
[−L,L]3

ϱ̃L|DũL|2dxdt

≤ 1

2

∫
R3

ϱ0|u0|2 + ϱ0(K ∗ ϱ0) dx (4.56)

and

sup
t∈[0,T ]

∫
[−L,L]3

|∇
√
ϱ̃L|2 dx+

1

8

∫ T

0

∫
[−L,L]3

ϱ̃L|∇ũL −∇T ũL|2dx

≤
∫
R3

ϱ0|u0|2 + ϱ0(K ∗ ϱ0) dx+

∫
R3

|∇√
ϱ0|2dx+

C

L2
∥ϱ0∥1/2L1(R3)

+ CT∥ϱ0∥2L1(R3). (4.57)
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From Lemma 4.7 it also follows that the right hand sides of (4.53) and (4.54) are inde-
pendent of L. As a consequence, the constant C in (4.55) does not depend on L as well, and
we get the uniform bound

sup
t∈[0,T ]

(∫
R3

ϱ̃LF (|ũL|) dx+

∫∫
R3×R3

F (|x− y|)ϱ̃L(x)ϱ̃L(y) dxdy

)
≤ C (4.58)

for C depending on T and ϱ0, u0.
Now, let V ⊂ R3 be compact. Then V ⊂ [−L,L]3 for su�ciently large L and the estimates

(4.56), (4.57) and (4.58) provide the uniform estimates on (ϱ̃L, ũL) needed in Lemma 4.15 for
Ω = V . Moreover, using analogous arguments as in the previous section,

∥∂ϱ̃L∥L∞(0,T ;W−1,3/2(V )), ∥∂t(ϱ̃L, ũL)∥L2(0,T ;W 2,4/3(V )) ≤ C.

Therefore up to a subsequence we get the convergence from Lemma 4.15 for Ω = V . By the
arbitrary choice of V and applying the diagonal method, we �nally get√

ϱ̃L → √
ϱ in C(0, T ;L2

loc),

ϱ̃L → ϱ in C(0, T ;L
3/2
loc ),

ϱ̃LũL → ϱu in L2(0, T ;L
3/2
loc ),√

ϱ̃LuL → √
ϱu in L2

loc([0, T ]× R3).

Similarly from the Banach-Alaoglu theorem we get

∇
√
ϱ̃L1[−L,L]d ⇀

∗ ∇√
ϱ in L∞(0, T ;L2

loc).

Then for the term ϱ̃LDuL the relation (4.46) again provides convergence in the sense of
distributions.

4.6.1 Convergence of the nonlocal term

The obtained convergence allows us to pass to the limit with (ϱ̃L, ũL) in the weak formulation
of (4.52) in all terms except the nonlocal one. Note that since K is unbounded, as L → ∞
we lose any compactness properties of KL. However, due to (4.56) we are able to show that

Lemma 4.26. We have

ϱ̃L(∇KL ∗ ϱ̃L) → ϱ(∇K ∗ ϱ) in L1([0, T ]× R3)

Proof. First, note that from the strong convergence of ϱ̃L it follows that up to a subsequence

ϱ̃L → ϱ a. e. in [0, T ]× R3.

From (4.56) in particular we have that

sup
t∈[0,T ]

∫∫
R3×R3

ϱ̃L(t, x)ϱ̃L(t, y)|x− y|2ϕL(x− y) dxdy ≤ C.
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Therefore by Fatou's lemma∫∫
R3×R3

ϱ(t, x)ϱ(t, y)|x− y|2 dxdy

≤ lim inf
L→∞

∫∫
R3×R3

ϱ̃L(t, x)ϱ̃L(t, y)|x− y|2ϕL(x− y) dxdy ≤ C. (4.59)

Since ∇√
ϱL is bounded in L∞(0, T ;L2

loc), we also have the bound on ∥ϱL∥L∞(0,T ;L3
loc)

and
in consequence

ϱ̃L → ϱ in C(0, T ;Lp
loc)

for any 3/2 < p < 3.
Now �x R > 0 and denote by BR the ball of radius R centered in zero. From the de�nition

of KL and the strong convergence of ϱ̃L we know that ∇KL → K and ϱ̃L → ϱ a. e. Moreover,
∇KL1BR

is uniformly bounded with respect to L in Lp(R3) for p < 3
α+1 . Therefore we also

have
∥ϱ̃L(∇KL1BR

∗ ϱL)∥L∞(0,T ;Lq) ≤ ∥∇KL1BR
∥Lp(R3)∥ϱ̃L∥2L∞(0,T ;L3)

for q < 3
α and in consequence

ϱ̃L(∇KL1BR
∗ ϱ̃L) → ϱ(∇K1BR

∗ ϱ) in L1([0, T ]× R3).

We will now estimate the rest. We have

I =

∣∣∣∣∫
R3

ϱ̃L ((∇KL ((1− 1BR
) ∗ ϱ̃L) dx

∣∣∣∣
≤
∫∫

|x−y|>R
ϱ̃L(t, x)ϱ̃L(t, y)|∇KL(x− y)| dxdy.

Using the de�nition of KL and ϕL, we have

|∇KL(x− y)| ≤ϕL(x− y)

(
1

|x− y|α+1
+ |x− y|

)
+ |∇ϕL(x− y)|

(
1

|x− y|α
+

1

2
|x− y|2

)
≤ 1

|x− y|α+1
+ ϕL(x− y)|x− y|+ C

L

(
1

|x− y|α
+

1

2
|x− y|2

)
.

Therefore

I ≤ 1

Rα+1

∫∫
R3×R3

ϱ̃L(t, x)ϱ̃L(t, y) dxdy +

∫∫
|x−y|>R

ϕL(x− y)ϱ̃L(t, x)ϱ̃L(t, y)|x− y| dxdy

+
C

LRα

∫∫
R3×R3

ϱ̃L(t, x)ϱ̃L(t, y) dxdy +
C

L

∫∫
|x−y|>R

ϱ̃L(t, x)ϱ̃L(t, y)|x− y|2dxdy.

Let us now estimate all terms on the right hand side. For the �rst and the third term, we
have ∫∫

R3×R3

ϱ̃L(t, x)ϱ̃L(t, y) dxdy = ∥ϱL∥2L1(T3
L)

= ∥ϱ0,L∥2L1(T3
L)

≤ ∥ϱ0∥2L1(R3).
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For the second term, by (4.56) we get∫∫
|x−y|>R

ϕL(x− y)ϱ̃L(t, x)ϱ̃L(t, x)|x− y| dxdy

≤ 1

R

∫∫
R3×R3

ϕL(x− y)ϱ̃L(t, x)ϱ̃L(t, y)|x− y|2 dxdy ≤ C

R
.

Finally we estimate the last term using (4.58) as∫∫
R3×3

ϱ̃L(t, x)ϱ̃L(t, y)|x− y|21|x−y|>R dxdy

≤ 1

ln(1 +R2)

∫∫
R3×3

ϱ̃L(t, x)ϱ̃L(t, y)F (|x− y|) dxdy ≤ C

ln(1 +R2)
.

In consequence,

I ≤ C

R
+

C

L ln(1 +R2)
.

Doing analogous estimates for K, using (4.59), we get∣∣∣∣∣
∫∫

|x−y|>R
ϱ(t, x)ϱ(t, y)∇K(x− y) dxdy

∣∣∣∣∣
≤ 1

R2

∫∫
R3×3

ϱ(t, x)ϱ(t, y) dxdy +

∫∫
|x−y|>R

ϱ(t, x)ϱ(t, y)|x− y| dxdy ≤ C

R
.

Combining the above estimates, we obtain

lim inf
L→∞

∫ T

0

∫
R3

|ϱ̃L∇KL ∗ ϱ̃L − ϱ∇K ∗ ϱ)| dxdt ≤ C

R
.

Finally, we end the proof by taking R→ ∞.

Lemma 4.26 �nishes the limit passage in the weak formulation of (4.52), in the sense of
De�nition 4.1. In consequence, we obtain the weak solution to (4.1) on [0, T ] × R3. Since
∇
√
ϱ̃L ⇀ ∇√

ϱ in L2(0, T ;L2
loc),∫

R3

|∇√
ϱ|2 dx = lim

R→∞

∫
B(0,R)

|∇√
ϱ|2 dx ≤ lim

R→∞
lim inf
L→∞

∫
B(0,R)

|∇
√
ϱ̃L|2 dx ≤ C(T ).

Doing analogously with
√
ϱ∇u, we �nally show that the solution satis�es the estimates (4.8),

(4.9) and (4.10).

4.6.2 Mass preservation

In the end, let us conclude that

Lemma 4.27. The total mass is conserved, i.e.∫
R3

ϱ dx =

∫
R3

ϱ0 dx.

Proof. By Fatou's lemma, we have∫
R3

ϱ dx ≤ lim inf
L→∞

∫
R3

ϱL dx = lim inf
L→∞

∫
T3
L

ϱL,0dx ≤
∫
R3

ϱ0 dx.
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On the other hand, for a smooth function ϕR such that ϕR(x) = 1 for |x| < R/2, ϕR ∈ (0, 1)
and suppϕR ⊂ BR, |∇ϕR| ≤ C

R , for L large enough we have∫
R3

ϱ̃L(t, x)ϕR(x) dx =

∫
T3
L

ϱL(0, x)ϕR(x) dx+

∫
T3
L

ϱL(t, x)uL(t, x) · ∇ϕR(x) dx

≥
∫
T3
L

ϱ0,L(x)ϕR(x) dx− C

R
.

Therefore ∫
R3

ϱ dx ≥
∫
|x|≤R

ϱ dx = lim
L→∞

∫
|x|≤R

ϱ̃Ldx

≥ lim
L→∞

∫
T3
L

ϱL,0ϕR dx− C

R
≥
∫
R3

ϱ0 dx− C

R

and since R > is arbitrary, we obtain∫
R3

ϱ dx =

∫
R3

ϱ0 dx.
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Appendix A

Supplementary proofs for Chapter 2

A.1 Existence of solutions to (2.7)

We now prove that there exists a unique solution to (2.7), which completes the proof of
Theorem 2.4.

Lemma A.1. For ϱ0 ∈ L∞(Td) and any T > 0 there exists a unique global in time solution

(η, σ) ∈ L∞([0, T ]× Td)× L∞([0, T ]× Td)

to the equation (2.7) with the initial condition η(0, y) = ϱ0(y).

Proof. The proof relies on double application of the Banach �xed point theorem. First,
observe that for a �xed η ∈ L∞([0, T ]× Td), there exists a unique σ, satisfying

σ = p(η)− 1

|Td|

∫
p(η(t, y)) exp

(∫ t

0
σ(s, y)ds

)
dy. (A.1)

To see that, take

Q =
{
σ ∈ L∞([0, T ]× Td) : ∥σ∥∞,T ≤ ∥p(η)∥∞,T

}
and Ψ: Q0 → Q0 such that

Ψ(σ) = p(η)− 1

|Td|

∫
p(η(t, y)) exp

(∫ t

0
σ(s, y) ds

)
dy.

Then

|Ψ(σ1)−Ψ(σ2)| ≤
1

|Td|

∫
p(η(t, y))

∣∣∣∣exp(∫ t

0
σ1(s, y)ds

)
− exp

(∫ t

0
σ2(s, y)ds

)∣∣∣∣ dy.
≤ 1

|Td|

∫
p(η(t, y)eT∥p(η)∥∞,T

∫ t

0
|σ1(s, y)− σ2(s, y)|dsdy

≤ Ct∥σ1 − σ2∥∞,τ .

Hence taking τ such that Cτ < 1, from the Banach �xed point theorem we get the existence
of a unique solution on the interval [0, τ ]. However, as τ depends only on ∥p(η)∥∞,T and T ,
we are able to extend the solution to (A.1) to the whole interval 0, T ].

Now de�ne Φ: L∞([0, T ]× Td) → L∞([0, T ]× Td) as

Φ(η) = ϱ0(y)−
∫ t

0
η(s, y)σ(s, y)ds,
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where σ is given by (A.1). Similarly as before, we want to obtain the estimate

∥Φ(η1)− Φ(η2)∥∞,τ ≤ Cτ∥η1 − η2∥∞,τ

and choose τ such that Cτ < 1 and Φ: {η : ∥η∥∞,τ < r} → {η : ∥η∥∞,τ < r} is a contraction.
We have

|Φ(η1)− Φ(η2)| =
∣∣∣∣∫ t

0
η1σ1 − η2σ2ds

∣∣∣∣ ≤ ∫ t

0
|η1 − η2∥σ1|ds+

∫ t

0
η2|σ1 − σ2|ds.

The �rst integral can be bounded by Ct∥η1 − η2∥∞,τ , so to complete the desired estimate we
need to estimate the di�erence of σ1 and σ2. We have

|σ1 − σ2| ≤ |p(η1)− p(η2)|+ |{p(η1)}σ1 − {p(η2)}σ2 |.

As the derivative of p is bounded on an interval [0, r], we can estimate the �rst element by
C∥η1 − η2∥∞. Moreover,

|Td||{p(η1)}σ1 − {p(η2)}σ2 | =
∣∣∣∣∫ p(η1) exp

(∫ t

0
σ1ds

)
− p(η2) exp

(∫ t

0
σ2ds

)
dy

∣∣∣∣
≤
∫

exp

(∫ t

0
σ1ds

)
|p(η1)− p(η2)|dy +

∫
p(η2)

∣∣∣∣exp(∫ t

0
σ1ds

)
− exp

(∫ t

0
σ2ds

)∣∣∣∣ dy
≤ C∥η1 − η2∥∞ + C

∫ ∣∣∣∣∫ t

0
(σ1 − σ2)ds

∣∣∣∣ dy
≤ C∥η1 − η2∥∞ + Ct sup

0≤s≤t
|{p(η1)}σ1 − {p(η2)}σ2 |.

Hence for τ small enough, we get

sup
0≤t≤τ

|{p(η1)}σ1 − {p(η2)}σ2 | ≤ C sup
0≤t≤τ

∥η1 − η2∥∞,

which gives us the desired estimate and ends the proof.

A.2 Estimate for the inverse �ows.

Here we prove the useful lemma for estimating the di�erence of the inverse �ows yi = x−1
i (t, ·)

by the di�erence of vector �elds generating x1, x2.

Lemma A.2. Consider two ordinary di�erential equations with the same initial value:

ẋ1 = u1(t, x1),

ẋ2 = u2(t, x2),

x1(0) = x2(0) = y,

where u1, u2 ∈ C(0, T ;W 1,∞). Let y1(t, x) and y2(t, x) be the inversions of x1 and x2 with
respect to y. Then for su�ciently small t

∥y1(t, ·)− y2(t, ·)∥∞ ≤ Ct∥u1 − u2∥∞,T ,

where C = C (||∇u1∥∞,T ).
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Proof. Let M = ∥∇u1∥∞,T . We have

|u1(t, x1)− u2(t, x2)| ≤ |u1(t, x1)− u1(t, x2)|+ |u1(t, x2)− u2(t, x2)|
≤ ∥∇u1∥∞|x1 − x2|+ ∥u1 − u2∥∞.

Substituting it into the di�erence of x1 and x2, we get

|x1(t, y)− x2(t, y)| ≤
∫ t

0
|u1(s, x1(s, y))− u2(s, x2(s, y))|ds

≤
∫ t

0
∥∇u1∥∞|x1(s, y)− x2(s, y)| ds+

∫ t

0
∥u1 − u2∥∞ds.

Hence from the Gronwall's lemma,

∥x1(t, ·)− x2(t, ·)∥∞ ≤
∫ t

0
∥u1 − u2∥∞ds+

∫ t

0
∥∇u1∥∞ exp

(∫ t

s
∥∇u1∥∞dτ

)∫ s

0
∥u1 − u2∥∞dτds

≤ ∥u1 − u2∥∞,T

∫ t

0
1 +MeM(t−s)s ds

=
1

M

(
eMt − 1

)
∥u1 − u2∥∞,T

≤ 2t∥u1 − u2∥∞,T

for Mt < ln 2, where we use the fact that eθ − 1 ≤ 2θ for θ ≤ ln 2. Analogously, we obtain
the estimate

|x1(t, y1)− x2(t, y2)| ≤ |x1(t, y1)− x1(t, y2)|+ |x1(t, y2)− x2(t, y2)|

≤
∥∥∥∥∂x1∂y

∥∥∥∥
∞
|y1 − y2|+ ∥x1 − x2∥∞

≤ exp

(∫ t

0
∥∇u1∥∞ds

)
|y1 − y2|+ 2t∥u1 − u2∥∞,T .

Combining the above estimates, we get

|y1(t, x)− y2(t, x)| ≤
∫ t

0
|u1(s, x1(s, y1(t, x)))− u2(s, x2(s, y2(t, x)))|ds

≤
∫ t

0
∥∇u1∥∞|x1(s, y1(t, x))− x2(s, y2(t, x))|+ ∥u1 − u2∥∞ds

≤
∫ t

0
∥∇u1∥∞ exp

(∫ s

0
∥∇u1∥∞dτ

)
|y1(t, x)− y2(t, x)|ds

+

∫ t

0
∥∇u1∥∞2s∥u1 − u2∥∞,Tds+

∫ t

0
∥u1 − u2∥∞ds

≤
(
eMt − 1

)
|y1(t, x)− y2(t, x)|+ (t+Mt2)∥u1 − u2∥L∞([0,T ]×Td).

For small t we have eMt < 2 and therefore

|y1(t, x)− y2(t, x)| ≤
t+Mt2

2− eMt
∥u1 − u2∥∞,T ≤ Ct∥u1 − u2∥∞,T

what we needed to prove.
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Appendix B

Properties of the BMO space

We present here the useful properties of the BMO functions, which can be found for example
in [97] and [102].

De�nition B.1. A function f ∈ L1(Ω) belongs to space of bounded mean oscillation BMO(Ω)
i�

∥f∥BMO = sup
Q⊂Ω

1

|Q|

∫
Q
|f − {f}Q|dx <∞,

where the supremum is taken over all cubes in Ω.

Note that ∥ · ∥BMO is not a norm, as ∥f∥BMO = 0 for f constant. However, we can equip
the space BMO(Ω) with the norm

∥ · ∥L1 + ∥ · ∥BMO

and then it becomes the Banach space.
It is straightforward from the de�nition that the standard molli�cation is bounded in

BMO:

Proposition B.2. For f ∈ BMO and κδ the standard molli�er we have

∥f ∗ κδ∥BMO ≤ ∥f∥BMO.

One of the important tools concerning the BMO spaces is the John-Nirenberg inequality:

Lemma B.3 (John-Nirenberg). There exist constants c1, c2 > 0 such that for any cube Q ⊂ Ω
and f ∈ BMO(Ω)

|{x ∈ Q : |f − {f}Q| > λ}| ≤ c1 exp

(
− c2λ

∥f∥BMO

)
|Q|.

The useful applications of the John-Nirenberg inequality are the following:

Corollary B.4. Let f ∈ BMO(Ω). Then

1. f ∈ Lp
loc(Ω) for any 1 ≤ p <∞.

2. sup
Q⊂Ω

∫
Q
exp

(
|f − {f}Q|
∥f∥BMO

)
dx <∞.

B.1 The logarithmic inequality

We recall here the inequality from [80]:
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Lemma B.5. Let f ∈ BMO(Rd) with compact support and g ∈ L1(Rd) ∩ L∞(Rd). Then∣∣∣∣∫
Rd

fgdx

∣∣∣∣ ≤ C∥f∥BMO∥g∥L1

(
| ln ∥g∥L1 |+ ln(e+ ∥g∥L∞)

)
.

An analogous inequality was also recently shown in [38] for f in exponential Orlicz space
Lexp instead of BMO.

It turns out that after slight modi�cations, the similar inequality holds for g ∈ Lq(Td) for
su�ciently large q.

Lemma B.6. Let f ∈ BMO(Td) and g ∈ Lq(Td) for some q > 2. Then∣∣∣∣∫
Td

fgdx

∣∣∣∣ ≤C∥f∥BMO∥g∥L1

×
(
| ln ∥g∥L1 |+ ln(1 + ∥g∥Lq) + (1 + | ln ∥g∥L1 |)∥g∥

q−2
2

Lq

)
.

(B.1)

Proof: Assume
∫
gdx = 0. Then g ∈ H1 and from duality of H1 and BMO we have∣∣∣∣∫ fg dx

∣∣∣∣ ≤ ∥f∥BMO∥g∥H1 .

By the characterization of H1 (see e.g. paragraph III.4 in [97]) we can write ∥g∥H1 as

∥g∥H1 = ∥g∥L1 +
d∑

k=1

∥Rkg∥L1 ,

where Rk is the Riesz transform given as F(Rkg) = −i ξk|ξ|F(g). As the Riesz transform is
an operator of weak-type (1, 1) and strong-type (p, p), we can apply Proposition V.3.2. from
[102] and obtain

∥Rkg∥L1 ≤ C + C

∫
|g(x)| ln+ |g(x)| dx. (B.2)

By scaling, we can rewrite (B.2) as

∥Rkg∥L1 ≤ λ+ C

∫
|g(x)| ln+(|g(x)|/λ)dx

for any λ > 0. For |g| ≥ λ, we have ln+(|g|/λ) = ln |g| − lnλ. Then

| ln(|g|||g|≥λ
)| =

∣∣∣∣∣ln
(

|g|||g|≥λ

1 + ∥g∥Lq

)
+ ln(1 + ∥g∥Lq)

∣∣∣∣∣ ≤ ln(1 + ∥g∥Lq) +

∣∣∣∣∣ln
(

|g|||g|≥λ

1 + ∥g∥Lq

)∣∣∣∣∣ .
Now assume λ < 1 + ∥g∥Lq and take x such that λ ≤ |g(x)| ≤ (1+∥g∥Lq )2

λ . Then∣∣∣∣ln( |g(x)|
1 + ∥g∥Lq

)∣∣∣∣ ≤ ∣∣∣∣ln( λ

1 + ∥g∥Lq

)∣∣∣∣
and in consequence

| ln |g(x)| ≤ 2 ln(1 + ∥g∥Lq) + | lnλ|.



B.1. The logarithmic inequality 101

Choose λ = ∥g∥L1 . Then∫{
|g|≤ (1+∥g∥Lq )2

λ

} |g| ln+(|g|/λ)dx ≤
∫{

|g|≤ (1+∥g∥Lq )2

λ

} |g|(2 ln(1 + ∥g∥Lq) + | ln ∥g∥L1 |)dx

≤ ∥g∥L1(2 ln(1 + ∥g∥Lq) + | ln ∥g∥L1 |)

What is left is the case |g(x)| > (1+∥g∥Lq )2

λ . From the Chebyshev inequality, we have∣∣∣∣{x : |g(x)| > (1 + ∥g∥Lq)2

∥g∥L1

}∣∣∣∣ ≤ ( ∥g∥L1

1 + ∥g∥Lq

)2

.

Therefore from the Hölder inequality∫{
|g|> (1+∥g∥Lq )2

λ

} |g| ln+(|g|/λ)dx ≤ ∥g∥L1

1 + ∥g∥Lq

(∫
|g|2 ln(|g|/λ)2dx

)1/2

.

Using the fact that both
∫
|g|2 ln |g|dx and

∫
|g|2 ln2 |g|dx are bounded by C(1+∥g∥qq) for any

q > 2, we obtain∫
|g|2 ln(|g|/λ)2dx =

∫
|g|2 ln2 |g|dx− 2 lnλ

∫
|g|2 ln |g|dx+ | lnλ|2

∫
|g|2dx

≤ C(1 + ∥g∥qLq)(1 + 2| lnλ|+ | lnλ|2)
= C(1 + ∥g∥qLq)(1 + | lnλ|)2.

As (1+sq)1/2

1+s ∼ 1 + s
q−2
2 , after combining the estimates we get∫{

|g|> (1+∥g∥Lq )2

λ

} |g| ln+(|g|/λ)dx ≤ C∥g∥L1(1 + | ln ∥g∥L1)(1 + ∥g∥
q−2
2

Lq ).

Putting all terms together,

∥Rkg∥L1 ≤ C∥g∥L1

(
1 + ln(1 + ∥g∥Lq) + | ln ∥g∥L1 |+ (1 + | ln ∥g∥L1 |)∥g∥

q−2
2

Lq

)
and therefore we obtain inequality (B.1).
If
∫
g dx ̸= 0, then we can apply this inequality to ḡ(x) = g(x)− 1

|Td|
∫
gdx and use the fact

that the Lp norms of ḡ are bounded by norms of g up to a constant.
The same result holds if we replace f by a composition of f and the �ow x(t, y):

Corollary B.7. If f and g satisfy assumptions of Lemma B.6 and x(t, y) is the regular
Lagrangian �ow of some u(t, x) with bounded divergence, then∣∣∣∣∫ f(x(t, y))g(y)dy

∣∣∣∣ ≤C∥f∥BMO∥g∥L1

×
(
| ln ∥g∥L1 |+ ln(e+ ∥g∥Lq) + (1 + | ln ∥g∥L1 |)∥g∥

q−2
2

Lq

)
.

Proof: We will �rst approximate u with smooth vector �elds, then make the change of
variables and apply Lemma B.6, and at the end show the convergence to the non-smooth
case.



102 Appendix B. Properties of the BMO space

Let J(t, y) be the Jacobian of x. By the properties of Lagrangian �ows we have

e−L ≤ J(t, y) ≤ eL, where L =

∫ T

0
∥divu∥∞dt.

Now let us approximate u by convolution, de�ning uε as a convolution with standard convo-
lution kernels in time and space. Then if xε is a �ow of uε, then xε(t, ·) is the di�eomorphism
and the Jacobian Jε of xε still satis�es the bounds

e−L ≤ Jε(t, y) ≤ eL.

By the change of variables, we have∫
f(xε(t, y))g(y)dy =

∫
f(x)

g(yε(t, x))

Jε(t, yε(t, x))
dx,

where yε(t, ·) = xε(t, ·)−1. Applying Lemma B.6, we obtain inequality (B.1) but with L1 and
Lq norms of g(yε(t,·))

Jε(t,yε(t,·)) instead of g. However, changing the variables again and using the
bounds on Jε, we obtain for any p ≥ 1∫

|g(yε(t, x)|p

Jε(t, yε(t, x))p
dx =

∫
|g(y)|pJε(t, y)1−pdy ≤ e(p−1)L

∫
|g(y)|pdy

and we are done.
Now we will show that indeed∫

f(xε(t, y))g(y)dy →
∫
f(x(t, y))g(y)dy with ε→ 0. (B.3)

By the stability of the �ow, we have the pointwise convergence xε(t, y) → x(t, y) up to a
subsequence. If f ∈ C∞(Td), then (B.3) holds by the dominated convergence theorem. Let
us approximate f by fδ = f ∗ κδ, where κδ is again the standard molli�er. As f ∈ Lp for
p = q′, we have∣∣∣∣∫ (fδ(x(t, y))− f(x(t, y))g(y)dy

∣∣∣∣ ≤ ∥fδ(x(t, ·))− f(x(t, ·))∥p∥g∥q

and by the bounds on J(t, y),∫
|fδ(x(t, y))− f(x(t, y))|p dx ≤ epL

∫
|fδ(x)− f(x)|p dx→ 0,

therefore we have the desired convergence. Moreover, by the Proposition B.2 the norms
∥fδ∥BMO in the right hand side of (B.1) are bounded by ∥f∥BMO, which ends the proof of
the Corollary.
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Appendix C

Supplementary proofs and lemmas for

Chapter 4

C.1 Proof of Bresch-Desjardins estimates

Below we show how to derive the inequality (4.23). We need to compute

d

dt

∫
T3
L

(
1

2
ϱ|u+∇ log ϱ|2 + ϱ(KL ∗ ϱ) + δ

2
|∇∆ϱ|2 + κ

2
|∇√

ϱ|2 + η

7
ϱ−6

)
dx

=
d

dt
E(ϱ, u) +

d

dt

∫
T3
L

ϱu · ∇ log ϱ dx+
d

dt

∫
T3
L

ϱ|∇ log ϱ|2 dx.
(C.1)

For the �rst term on the right hand side of (C.1), we use the energy inequality (4.22). For
the second term, we have∫

T3
L

ϱu · ∂t∇ log ϱ dx = −
∫
T3
L

div (ϱu)
1

ϱ
∂tϱ dx

=

∫
T3
L

1

ϱ
(div (ϱu))2 dx− ε

∫
T3
L

1

ϱ
∆ϱdiv (ϱu) dx

(C.2)
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and from the momentum equation∫
T3
L

∂t(ϱu) · ∇ log ϱ dx =−
∫
T3
L

div (ϱu⊗ u) · ∇ log ϱ dx+

∫
T3
L

div (ϱDu) · ∇ log ϱ dx

−
∫
T3
L

∇(KL ∗ ϱ) · ∇ log ϱ dx+ κ

∫
T3
L

ϱ∇
(
∆
√
ϱ

√
ϱ

)
· ∇ log ϱ dx

− r0

∫
T3
L

u · ∇ log ϱ dx− r1

∫
T3
L

ϱ|u|2u · ∇ log ϱ dx

− ε

∫
T3
L

∇ϱ · ∇u · ∇ log ϱ dx− ν

∫
T3
L

∆2u · ∇ log ϱ

+ η

∫
T3
L

∇ϱ−6 · ∇ log ϱ dx+ δ

∫
T3
L

ϱ∇∆3ϱ · ∇ log ϱ dx

=−
∫
T3
L

div (ϱu⊗ u) · ∇ log ϱ dx−
∫
T3
L

ϱDu : ∇2 log ϱ dx

−
∫
T3
L

∇(KL ∗ ϱ) · ∇ log ϱ dx− κ

2

∫
T3
L

ϱ|∇2 log ϱ|2 dx

− r0

∫
T3
L

u · 1
ϱ
∇ϱ dx− r1

∫
T3
L

|u|2u · ∇ϱ dx

− ε

∫
T3
L

∇ϱ · ∇u · ∇ log ϱ dx− ν

∫
T3
L

∆u · ∇∆ log ϱ dx

− 2

3
η

∫
T3
L

|∇ϱ−3|2 dx− δ

∫
T3
L

|∆2ϱ|2 dx.

Note that

−
∫
T3
L

ϱDu : ∇2 log ϱ dx =− 1

2

∑
i,j

∫
T3
L

ϱ(∂xiuj + ∂xjui)∂xixj log ϱ dx

=
∑
i,j

∫
T3
L

(
∂xj (ϱ∂xiuj)∂xi log ϱ+ ∂xi(ϱ∂xjui)∂xj log ϱ

)
dx

=

∫
T3
L

∇u : (∇ϱ⊗∇ log ϱ) dx+

∫
T3
L

ϱ∇div u · ∇ log ϱ dx

=

∫
T3
L

∇u : (∇ϱ⊗∇ log ϱ) dx−
∫
T3
L

∆ϱdiv u dx,
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which gives∫
T3
L

∂t(ϱu) · ∇ log ϱ dx =−
∫
T3
L

div (ϱu⊗ u) · ∇ log ϱ dx+

∫
T3
L

∇u : (∇ϱ⊗∇ log ϱ) dx

−
∫
T3
L

∆ϱdiv u dx

−
∫
T3
L

∇(KL ∗ ϱ) · ∇ log ϱ dx− κ

2

∫
T3
L

ϱ|∇2 log ϱ|2 dx

− r0

∫
T3
L

u · 1
ϱ
∇ϱ dx− r1

∫
T3
L

|u|2u · ∇ϱ dx

− ε

∫
T3
L

∇ϱ · ∇u · ∇ log ϱ dx− ν

∫
T3
L

∆u · ∇∆ log ϱ dx

− 2

3
η

∫
T3
L

|∇ϱ−3|2 dx− δ

∫
T3
L

|∆2ϱ|2 dx.

(C.3)

To compute the last term on the right hand side of (C.1), we see that from the continuity
equation

∂t
|∇ log ϱ|2

2
=∇ log ϱ · ∂t∇ log ϱ

=∇ log ϱ · ∇(−div ((log ϱ)u) + (log ϱ− 1)div u+ ε
1

ϱ
∆ϱ)

=− u · ∇2 log ϱ · ∇ log ϱ−∇u : (∇ log ϱ⊗∇ log ϱ)−∇ log ϱ · ∇div u

+ ε∇ log ϱ · ∇
(
1

ϱ
∆ϱ

)
.

The above calculations are justi�ed, since u ∈ L2(0, T ;H2), ϱ ∈ L∞(0, T ;H3) and ϱ is
bounded away from zero. Using the above calculations, we derive

d

dt

∫
T3
L

ϱ
|∇ log ϱ|2

2
dx =

∫
T3
L

ϱ∂t
|∇ log ϱ|2

2
dx−

∫
T3
L

|∇ log ϱ|2

2
div (ϱu)dx

+ ε

∫
T3
L

|∇ log ϱ|2

2
∆ϱ dx

=−
∫
T3
L

ϱu · ∇2 log ϱ · ∇ log ϱ) dx−
∫
T3
L

ϱ∇u : (∇ log ϱ⊗∇ log ϱ) dx

−
∫
T3
L

ϱ∇ log ϱ · ∇div u dx+

∫
T3
L

ϱu · ∇|∇ log ϱ|2

2
dx

+ ε

∫
T3
L

ϱ∇ log ϱ · ∇
(
1

ϱ
∆ϱ

)
dx+ ε

∫
T3
L

|∇ log ϱ|2

2
∆ϱ dx

=−
∫
T3
L

ϱ∇u : (∇ log ϱ⊗∇ log ϱ)dx+

∫
T3
L

∆ϱdiv u dx

− ε

∫
T3
L

|∆ϱ|2

ϱ
dx+ ε

∫
T3
L

|∇ log ϱ|2

2
∆ϱ dx

(C.4)
Since

∇ϱ · ∇ log ϱ = ϱ|∇ log ϱ|2
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and
∇ϱ⊗∇ log ϱ = ϱ∇ log ϱ⊗∇ log ϱ,

combining (C.2), (C.3) and (C.4), we get

d

dt

∫
T3
L

ϱ
|∇ log ϱ|2

2
+ ϱu · ∇ log ϱdx =

∫
T3
L

1

ϱ
(div (ϱu))2 dx− ε

∫
T3
L

1

ϱ
∆ϱdiv (ϱu) dx

−
∫
T3
L

div (ϱu⊗ u) · ∇ log ϱ dx

− ε

∫
T3
L

|∆ϱ|2

ϱ
dx+ ε

∫
T3
L

|∇ log ϱ|2

2
∆ϱ dx

−
∫
T3
L

∇(KL ∗ ϱ) · ∇ log ϱ dx− κ

2

∫
T3
L

ϱ|∇2 log ϱ|2 dx

− r0

∫
T3
L

u · 1
ϱ
∇ϱ dx− r1

∫
T3
L

|u|2u · ∇ϱ dx

− ε

∫
T3
L

∇ϱ · ∇u · ∇ log ϱ dx− ν

∫
T3
L

∆u · ∇∆ log ϱ dx

− 2

3
η

∫
T3
L

|∇ϱ−3|2 dx− δ

∫
T3
L

|∆2ϱ|2 dx.

We have the relations

−∇ log ϱ · div (ϱu⊗ u) = −1

ϱ

∑
i,j

∂xiϱ
(
∂xjϱuiuj + ϱ∂xjuiuj + ϱui∂xjuj

)
= −1

ϱ

(
(u · ∇ϱ)2 + ϱu · (∇u∇ϱ) + ϱdiv uu · ∇ϱ

)
and

1

ϱ
(div (ϱu))2 =

1

ϱ

(
ϱ2(div u)2 + 2ϱdiv uu · ∇ϱ+ (u · ∇ϱ)2

)
,

therefore∫
T3
L

−∇ log ϱ · div (ϱu⊗ u) +
1

ϱ
(div (ϱu))2 dx =

∫
T3
L

div uu · ∇ϱ− u · (∇u∇ϱ) + ϱ(div u)2 dx

=
∑
i,j

∫
T3
L

ϱ∂xjui∂xiuj dx

Subtracting
∫
T3
L
ϱ|Du|2 dx, we get

∫
T3
L

ϱ
∑
i,j

(
−
(
∂xjui + ∂xiuj

2

)2

+ ∂xjui∂xiuj

)
dx = −

∫
T3
L

ϱ
∑
i,j

(
∂xjui − ∂xiuj

2

)2

dx

= −1

4

∫
T3
L

ϱ|∇u−∇Tu|2 dx.
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Combining the above calculations with (4.22) and integrating in time, we �nally obtain

EBD(ϱ, u) +
2

3
η(1 + ε)

∫ T

0

∫
T3
L

|∇ϱ−3|2dxdt+ δ(1 + ε)

∫ T

0

∫
T3
L

|∆2ϱ|2dxdt

+
1

4

∫ T

0

∫
T3
L

ϱ|∇u−∇Tu|2dxdt+ ν

∫ T

0

∫
T3
L

|∆u|2dxdt

+ r0

∫ T

0

∫
T3
L

|u|2 dx dt+ r1

∫ T

0

∫
T3
L

ϱ|u|4 dx dt

+
κ(1 + ε)

2

∫ T

0

∫
T3
L

ϱ|∇2 log ϱ|2dxdt+ ε

∫ T

0

∫
T3
L

|∆ϱ|2

ϱ
dx+

∫ T

0

∫
T3
L

∇(KL ∗ ϱ) · ∇ϱ dx

≤EBD(ϱ0, u0) + 3εT

(∫
T3
L

ϱ0 dx

)2

+ ε

∫ T

0

∫
T3
L

(
∇ϱ · ∇u · ∇ log ϱ+∆ϱ

|∇ log ϱ|2

2
− div (ϱu)

1

ϱ
∆ϱ

)
dx

− ν

∫ T

0

∫
T3
L

∆u · ∇∆ log ϱ dx− r1

∫ T

0

∫
T3
L

|u|2u∇ϱ dx− r0

∫ T

0

∫
T3
L

u · ∇ϱ
ϱ

dx

for

EBD(ϱ, u) =

∫
T3
L

(
1

2
ϱ

∣∣∣∣u+
1

ϱ
∇ϱ
∣∣∣∣2 + ϱ(KL ∗ ϱ) + δ

2
|∇∆ϱ|2 + κ

2
|∇√

ϱ|2 + η

7
ϱ−6

)
dx.

C.2 Weak Gronwall's Lemma

Below, let us present the weak version of Gronwall's Lemma, which becomes useful in Section
4.4 of Chapter 4:

Lemma C.1 (Weak version of Gronwall's lemma). Let f ∈ L1(0, T ) satisfy

−
∫ T

0
ξ′(s)f(s)ds ≤

∫ T

0
ξ(s)(af(s) + b(s))ds

for any ξ ∈ C∞
0 (0, T ), ξ ≥ 0, a constant a ≥ 0 and nonnegative function b ∈ L1(0, T ). Then

for almost all 0 ≤ s < t < T we have

f(t) ≤ f(s)ea(t−s) +

∫ t

s
ea(t−τ)b(τ) dτ

Proof. Let fε = f ∗ηε, where ηε is a standard molli�er. Fix t ∈ (0, T ) and let ξ(s) = ηε(t−s).
Then f satis�es∫ T

0
f(s)η′ε(t− s)ds ≤ a

∫ T

0
f(s)ηε(t− s)ds+

∫ T

0
b(s)ηε(t− s) ds,

which is equivalent to
f ′ε(t) ≤ afε(t) + bε(t).

Then from Gronwall inequality on fε, we get

fε(t) ≤ fε(s)e
a(t−s) +

∫ t

s
ea(t−τ)bε(τ)dτ.
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for any 0 ≤ s < t < T . Choosing s, t such that fε → f pointwise in s, t and passing to the
limit with ε→ 0, we get

f(t) ≤ f(s)ea(t−s) +

∫ t

s
ea(t−τ)b(τ)dτ.
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