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Data analysis and modeling in human genomics
Abstract

Human genomics undergoes fast development thanks to new genome
research technologies, such as aCGH (array Comparative Genomic
Hybridization), or Next Generation Sequencing. Large amounts of data
from patients potentially contain a lot of information about potential
diseases, or susceptibility thereto, about mechanism of emergence of
genetic diseases, and about mechanisms of evolution. Extracting
such information requires careful data processing, constructing of
proper statistical models, in order to analyze emerging hypotheses and
discriminate between them. The basis for the used methods are algorithms
which explore the space of possible models, with the use of Monte
Carlo Markov Chain, or using optimizing schemes such as Expectation
Maximization, as well as statistical tests and adequate heuristics. This
dissertation concerns about issues of aCGH microarray design, comparison
of quality of thereof. We propose a method of spatial denoising based on
Markov Random Fields, which at the same time allows to recover from
aCGH data CNVs (Copy Number Variants). Presented is the database
and computational webservice, as well as biomedical results obtained with
the use of it.

Keywords: DNA microarrays, aCGH, CNV, genomic disorders,
segmentation, Gaussian Markov Random Fields, Bayesian Graphical
model, Expectation Maximization, outlier detection, semantic web
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Promotor rozprawy: dr hab. Anna Gambin Maciej Sykulski

Analiza i modelowanie danych w genomice człowieka
Streszczenie

Genomika człowieka rozwija się szybko dzięki nowym dostępnym
technologiom badania genomu, takim jak macierze aCGH (array
Comparative Genomic Hybridization) lub nowoczesne metody
sekwencjonowania genomu. Duże ilości danych pochodzące od
pacjentów zawierają potencjalnie mnóstwo informacji o możliwych
chorobach, czy skłonnościach ku takowym, o mechanizmach powstawania
chorób genetycznych, także o mechanizmach ewolucji. Wydobycie
takich informacji wymaga uważnego przetwarzania danych, konstrukcji
właściwych modeli statystycznych w celu analizy i dyskryminacji
pomiędzy stawianymi hipotezami. Podstawą używanych metod są
algorytmy eksplorujące przestrzeń dopuszczonych modeli przy użyciu
metod Monte Carlo Markov Chain, schematów optymalizacyjnych
typu Expectation Maximization, testów statystycznych, jak i również
adekwatnych heurystyk. W rozprawie zajmujemy się problematyką
projektowania płytek aCGH, porównywania jakości tychże, oraz analizy
wyników eksperymentów aCGH. Proponujemy opartą na Losowych
Polach Markowowskich metodę odszumiania przestrzennego, która
jednocześnie pozwala na wykrycie z danych aCGH CNVs (Copy
Number Variants), segmentów w genomie pacjenta odpowiadających
rearanżacjom. Przedstawiamy serwis bazodanowo-obliczeniowy, który
powstał dla potrzeb diagnostyki, oraz wyniki biomedyczne otrzymane
przy jego pomocy.

Słowa kluczowe: mikromacierze DNA, aCGH, CNV, choroby genetyczne,
segmentacja, gaussowskie losowe pola markowowskie, bayesowskie modele
graficzne, algorytm Expectation Maximization, wykrywanie przypadków
odstających, sieć semantyczna
Klasyfikacja tematyczna ACM: J.3
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1
Introduction

Consider experimental science as the art of signal and noise annotation,
backed with their assignment to hypotheses, a discipline rooted in theory
and practice. Bioinformatics is the kind of science, build atop vast
amounts of biotechnological data, with aspirations to model biological
systems. How much and which fragments of genomic information can
be learned with the use of DNA microarrays technology? How does the
technology of Array Comparative Genomic Hybridization allows to rapidly
shift its scientific results into clinical application in human medicine?
What insights can be gained from aCGH technology, when results from
many experiments are analyzed together, and merged with large databases
of experiments from laboratories around the world? How useful is the
framework of Bayesian Graphical models in the modeling of aCGH data
to extract genomic knowledge? These are the topics that I attempt to
explore in this thesis.
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Sequencing, and publishing of, the full sequence of human
genome, achieved in 2003 by the Human Genome Project1, marks the
entering into the new era in medicine, and in life sciences. The gravity
of this milestone achievement stands not only in the fact of reading
of a majority of nucleotides from DNA sequence of a human, a great
technological and aesthetic achievement, but even more in the potential to
understand and influence human health. Human genome was the largest
genome, with the length of 3 billion nucleotide base pairs, to be sequenced
fully at the time, preceded by the pioneering sequencing of bacteriophage
ϕX174 in 1977, Epstein-Barr virus in 1984, and the sequencing of the
first free-living organism, the bacterium Haenophilus infuenzae, in 1995.
The fruit fly genome, which is 165 million base pairs in length, about one
twentieth the size of the human genome, was sequenced in the year 2000.

What enabled these great achievements was a merge of advancements
in biotechnology, and in the methods of genomic information retrieval –
statistical methods based on mathematical models of fragmentary data
from short sequenced fragments. The method of shotgun sequencing
was introduced by Sanger and Coulson (1975), where structure of a
long genomic sequence is derived from sequencing of DNA randomly cut
into short fragments (100 to 1000 base pairs). Improvements to master
this technology were made during the years, the important step was the
introduction of the pairwise end sequencing in the 90’s, to which Roach
et al. (1995) proposed a successful strategy for DNA preparation (i.e. the
choice of lengths of cut DNA fragments), and justified it using computer
simulations. This addressed the problem of filling the remaining gaps of
a long sequence with reasonable resources, and allowed to speed up the
sequencing of large genomes including human genome, as predicted by
Weber and Myers (1997).

The story of how we’ve got to the state of the matters as they’re
today – the sequence if human genome in open access freely available
to anyone – is an interesting one, and includes strong competition in late
stages between National Institute of Health, USA and JC Venter’s private
venture Celera Genomics, the latter company to fill patents applications

1See Collins et al. (2003); Guttmacher and Collins (2003).
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on thousands of human genes, and culminates in the year 2000 with $50
billion Nasdaq crash after the announcement made by President Clinton
that genome sequence, as being the ”common heritage of mankind“, could
not be patented,

Translational Medicine today thus seems within the reach of
any team of professionals with the access to biotechnology and internet.
It is a collaborative effort to bring the latest scientific results from
basic research rapidly into applications in medicine. This can be
exemplified by a provision of diagnostic tools, a development, and
improvement of, procedures. Education, the spread of knowledge, also
falls under this category. Polish authors publishing within this trend
include Guzik (2010);Bartnik et al. (2012); Derwińska et al. (2012);
Wiśniowiecka-Kowalnik et al. (2013), the latter three publications were
prepared with the cooperation of the author while working on this thesis.
More than 1000 patients were diagnosed by the Institute of Mother
and Child (IMID), Warszawa, with the cooperation of Baylor College
of Medicine, TX, USA, and with the help of the software developed for
that occasion described briefly in Chapter 6 . Many of these patients
carry inborn genetic diseases: autism, epilepsy, mental retardation,
certain heart defects. This group of genetic diseases is mediated by
aberrations in the genomic material of the carrier. These diseases may
be inherited, or they may be introduced de novo into patients genome
during pre-embryonic and embryonic phases.

Pinpointing in a patients genome the exact genetic aberration
responsible for the disease requires two things: i) a close look into
patient’s genome sequence which allows to see mutations, e.g. segment
deletions, segment duplications, ii) the understanding of each aberration’s
consequences for the phenotype, i.e. patient‘s health. The former
problem is approached by several biotechnological methods, such as
karyotyping, Fluorescent in-situ Hybridization (FISH), DNA microarrays,
and recently the full genome Next Generation Sequencing (NGS). This
thesis is concerned with the analysis of data from Array Comparative
Hybridization (aCGH) – a technique based on DNA microarrays, which

3



is described in Chapter 2 . The latter problem is constantly being solved
through gathering of reports on patients, and their experiments results,
in databases around the world. In Chapter 5 presented is the analysis
connecting data from our IMID2py database of aCGH results from IMID
with aforesaid external databases, in this case those are International
Standards for Cytogenomic Arrays database (ISCA) (Faucett, 2010),
Genetic Association Database (GAD) (Zhang et al., 2010) and Database
of Genomic Variants (DGV) (Zhang et al., 2006).

The importance of information infrastructure in translational medicine
cannot be overestimated. The publicly available reference sequence of
human genome is essential in annotating, relating, and referring data
from labs around the world. The arriving technology of Semantic
Web, with marvelous tools for storing and referencing graph databases
of knowledge, and the Linked Open Data (LOD) publishing method,
are slowly transforming the landscape. In this regard in Chapter 6
summarized is an Early Adoption project of Apache Internet Knowledge
Stack, where the IMID2py database is extended with LOD semantic data
from UniProt and other databases.

The role of computational methods is undeniable either, with the
expectation of sophistication constantly growing. The aCGH technology
for genomic aberrations detection is based on statistical analysis
and transformations of the outputted data. Plethora of software
is implemented for this task, a survey of which is provided by
Karimpour-Fard et al. (2010). In Chapter 3 of this thesis an integrated
solution to the problem of segmentation and, at the same instance, noise
separation in aCGH data is proposed; a solution rooted in the Bayesian
framework of Graphical models and Markov fields. Furthermore, in
Chapter 4 we implement a statistical measure, and a modification of
a popular software, the circular binary segmentation (CBS) algorithm,
which is used to compare the quality of different aCGHmicroarray designs.

Detection of DNA copy number changes in patient’s genome is
crucial in precise diagnosis of genetic diseases, in understanding of thereof,
and the aCGH technology was, and still is, pivotal in medicine, one of

4



the reasons being some of the pathogenic changes are mosaic and not
detectable in conventional karyotyping, reports Stankiewicz and Beaudet
(2007).

DNA copy number changes, or Copy Number Variations (CNVs), are
gains or losses of chromosomal material. They are associated with
many types of genomic disorders like mental retardation, congenital
malformations, or autism, according to Lupski (2009); Shaw et al. (2004).
Genetic aberrations are characteristic of many cancer types and are
thought to drive some cancer pathogenesis process, by Lai et al. (2007);
O’Hagan et al. (2003); Snijders et al. (2005); Wang et al. (2006).

The aCGH technology is widely used for identification of segmental
copy–number alterations in disease genomes, which is corroborated by
many publications including Boone et al. (2010); Miller et al. (2010); Perry
et al. (2008). In a typical experiment, DNA is extracted from two genomic
samples (test vs reference) and labeled differently. Samples are mixed
together and then hybridized to a microarray spotted with DNA probes.
Signal fluorescent intensities of each spot from both samples are considered
to be proportional to the amount of respective genomic sequence present.
A more detailed description is found in Chapter 2 .

The aCGH microarrays can be classified into two types. Targeted arrays
aim in detection of known, clinically relevant copy number changes and
thus provide a better coverage of selected regions, see e. g. Caserta et al.
(2008); Thomas et al. (2005). On the other hand, the whole-genome
arrays, provide a coverage of the entire genome Barrett et al. (2004). Each
design is constrained by the number of DNA probes on the microarray –
hundreds of thousands to more than a million probes on a microarray in
2014. Nevertheless, in many applications, especially clinical, the design of
the array should combine these two goals resulting with the exploration of
the whole genome, with the special focus on certain specific regions (e.g.
containing genes related to the disease under study). An exon array CGH
approach proposed recently accurately measures copy-number changes of
individual exons in the human genome. Chapter 2 contains description
and a diagram of an iterative process of aCGH microarray design, and in
Chapter 4 a method to compare designs is outlined and tested.
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Assigning significance to signals found in aCGH data is a challenging
task, a combination of statistical analysis and of human verification by
geneticists. Methods proposed in Chapter 5 aim at improving this task.
It’s an ongoing effort: improving, automating, and verifying protocols for
detection of rare CNVs which underlie diverse spectrum of diseases in
human, a perfect example from translational medicine.

Collaboration and cooperation catalyzes translational medicine to
happen. This thesis stems from the collaboration between the groups of
Ania Gambin from the University of Warsaw, who lead bioinformaticians
Tomek Gambin, and Maciek Sykulski (the author), and the group
of Paweł Stankiewicz, who lead the Cytogenetic Lab at the Institute
of Mother and Child (IMID), Warsaw, where the team was Barbara
Wiśniowiecka-Kowalnik, Katarzyna Derwińska, Magdalena Bartnik, and
others, under supervision of Ewa Bocian. Moreover, Paweł Stankiewicz
connected Polish efforts with the efforts of Baylor College of Medicine
(BCM), Houston, USA where leading research on aCGH microarrays
and their clinical application takes place. The Polish teams at UW
and IMID took part in the design and testing of V8.x OLIGO aCGH
chip – a custom-designed array with approximately 180,000 selected
”best-performing“ DNA oligonucleotide probes on it – which is used as a
research and diagnostic tool at IMID and BCM, of which reports in print
were made by Bartnik et al. (2012, 2014); Boone et al. (2010); Derwińska
et al. (2012); Wiśniowiecka-Kowalnik et al. (2013).

1.1 Main Results

We present the process of aCGH technology from particular to general
and back. By that understood is the cycle of i) signal vs noise
considerations of incoming aCGH microarray data, on which the design of
microarrays is dependent, ii) processing of data stream in order to derive
its segmentation: a structured signal, aligned along human genome used
as reference coordinate system, this step is often termed Copy Number
Variants (CNVs) calling, iii) collecting, and referencing collections of,
CNVs, either benign or pathogenic, in a suitable data infrastructure,

6



aCGH design

segmentation
in the presence

of noise

quality assessmentrare CNV detection

clinical validation
Chapter 2

Chapter 3

Chapter 4Chapter 5

Chapter 6

Markov Random 
Fields

noise-induced
discrepancy

fitting copulas
mixture

IMID2Py tool
semantic web 

quantifying
signal variance

Microarrays
in Translational

Medicine

Figure 1.1.1: Plotted is the outline of this dissertation. We aspire to follow the
main steps in the process of aCGH design, research, and clinical validation. A more
detailed diagram of aCGH design process can be found in Chapter 2 Figure 2.3.2 .

iv) assigning either medical, or evolutionary significance to CNVs, a
step involving aggregation of knowledge from various sources on human
genetics, where the reference system is either genome sequence coordinates
(e.g. genome annotation databases such as UCSC), or names of knowledge
network nodes such as genes, proteins, RNA transcripts, transcription
factors and their binding sites, v) mapping significant knowledge bits back
to the genome sequence, to influence the design of aCGH microarrays,
with DNA probes printed on which are sensitive to selected genomic
aberrations, and which have good signal-to-noise characteristics. The
outline of this dissertation aligned with the aforementioned cycle is
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sketched on Figure 1.1.1.

In Chapter 2 we acquaint the reader with the technology of
DNA microarrays, and later focus on aCGH method. We analyze
characteristics of log2ratio data from aCGH microarrays, quantify its
heteroscedasticity and signal-to-noise ratio on real data, to later introduce
log2ratio segmentation problem, and the most popular Circular Binary
Segmentation approach. The section is closed with description and a
diagram of the iterative process of targeted microarray design.

The Background and Segments Markov random fields model (BSMF)
for segmentation and spatial denoising is declared in Chapter 3 . This
Bayesian Graphical model with conjugate priors, which is a Markov
Random Field defined on two graphs: spatial grid, and genomic line,
is framed as a partially Quadratic Programming problem, its posterior
conditional distributions are given, Expectation Maximization scheme
for its optimization is proposed and implemented. The model
is then extended with Hidden Markov Model (HMM) state-like prior
mixture for segment field, the double linkage modification of genomic
neighborhood graph is analyzed. The BSMF Markov Chain possibility is
briefly remarked, then the Expectation Maximization scheme for BSMF
implementation is explained. Results of the algorithm on real data from
IMID2py database are described and plotted, its performance is compared
with CBS results, sensitivity to variability in setting of priors is analyzed.

In Chapter 4 the problem of array design and comparison thereof is
taken on. Synthetic data, and modification of real data, with imposed
noise is generated. The measure of robustness to noise is proposed
for a single DNA probe, and later extended to a whole microarray
design resulting with the measure of relative noise-induced discrepancy.
Method is parametrized by the segmentation algorithm used to identify
aberrations. We implemented the efficient Monte Carlo method for testing
noise robustness within CBS procedure. Results on synthetic data and in
the optimization of a concrete aCGH design are presented.

In Chapter 5 we propose a novel multiple sample aCGH analysis
methodology aiming in rare CNVs detection. The majority of previous
approaches dealt with cancer data sets, while we focus on inborn genomic
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abnormalities identified in a diverse spectrum of diseases in human.
Our method is tested on exon targeted V8.1 OLIGO aCGH microarray
by analyzing 366 patients affected with developmental delay/intellectual
disability, epilepsy, or autism. The proposed algorithm can be applied
as a post-processing filtering to any given segmentation method. With
the additional information obtained from multiple samples we efficiently
detect significant segments corresponding to rare CNVs responsible for
pathogenic changes. The robust statistical framework based on rank
statistics applied in our method eliminates the influence of a technical
artifact termed in literature as ’waving’.

In Chapter 6 described are the design and features of IMID2py
database used at IMID to gather and analyze aCGH results. Later,
we present a semantic extension to our database, namely the results of
our Early Adoption project of Apache Internet Knowledge Stack, which
involves using the Apache Stanbol software (Auer et al., 2012) to and
annotate records in the database with Linked Open Data, and search
within it. Uniprot RDF release with Gene Ontology terms, PubMed
abstracts, GeneID references is indexed using Stanbol. A concept of a
tree of enhancements is introduced, with a set of modules: enhancers,
which facilitate certain specific searches within the semantic graph. At
the end of the chapter we summarize results obtained by IMID researches
with the use of IMID2py database.

1.2 Scientific publications and other published
resources

Results in Chapters 4 , 5 stem from the joint work with Tomasz Gambin
who published some of these results in his dissertation Gambin (2012).
Results in Chapter 3 were obtained in cooperation with Bogusław Kluge,
manuscript in preparation, to whom a more detailed thanks are given at
the end of the chapter.

Management, perseverance and faith of Ania Gambin, vision,
consequence, and vigilance of Paweł Stankiewicz, the atmosphere and the
rendition while working with Tomasz Gambin, insights, and proficiency
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of Bogusław Kluge, and the hard work of all people from IMID made this
thesis possible.

Publications and resources coauthored by the author while working on
this dissertation are listed below.

Publications referred to in Chapters 2 .

• P. M. Boone, C. A. Bacino, C. A. Shaw, P. A. Eng, P. M.
Hixson, A. N. Pursley, S.-H. L. Kang, Y. Yang, J. Wiszniewska,
B. A. Nowakowska, D. del Gaudio, Z. Xia, G. Simpson-Patel,
L. L. Immken, J. B. Gibson, A. C.-H. Tsai, J. A. Bowers, T. E.
Reimschisel, C. P. Schaaf, L. Potocki, F. Scaglia, T. Gambin,
M. Sykulski, M. Bartnik, K. Derwinska, B. Wisniowiecka-Kowalnik,
S. R. Lalani, F. J. Probst, W. Bi, A. L. Beaudet, A. Patel,
J. R. Lupski, S. W. Cheung, and P. Stankiewicz. Detection
of clinically relevant exonic copy-number changes by array CGH.
Human Mutation, 31(12):1326–1342, 2010. ISSN 1098-1004. doi:
10.1002/humu.21360. URL http://onlinelibrary.wiley.com/
doi/10.1002/humu.21360/abstract (Boone et al., 2010)

Publication referred to in Chapter 4 .

• T. Gambin, P. Stankiewicz, M. Sykulski, and A. Gambin.
Functional performance of aCGH design for clinical cytogenetics.
Computers in Biology and Medicine, 43(6):775–785, Jan. 2013.
ISSN 0010-4825. doi: 10.1016/j.compbiomed.2013.02.008. URL
http://www.computersinbiologyandmedicine.com/article/
S0010482513000528/abstract (Gambin et al., 2013)

Publication referred to in Chapter 5 .

• M. Sykulski, T. Gambin, M. Bartnik, K. Derwinska,
B. Wisniowiecka-Kowalnik, P. Stankiewicz, and A. Gambin.
Efficient multiple samples aCGH analysis for rare CNVs detection.
In 2011 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pages 406 –409, Nov. 2011. doi:
10.1109/BIBM.2011.38 (Sykulski et al., 2011)
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• M. Sykulski, T. Gambin, M. Bartnik, K. Derwinska,
B. Wisniowiecka-Kowalnik, P. Stankiewicz, and A. Gambin.
Multiple samples aCGH analysis for rare CNVs detection. Journal
of Clinical Bioinformatics, 3:12, June 2013. ISSN 2043-9113. doi:
10.1186/2043-9113-3-12. URL http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3691624/ (Sykulski et al., 2013)

Publications referred to in Chapters 6 .

• M. Bartnik, E. Szczepanik, K. Derwińska,
B. Wiśniowiecka-Kowalnik, T. Gambin, M. Sykulski,
K. Ziemkiewicz, M. Kedzior, M. Gos, D. Hoffman-Zacharska,
T. Mazurczak, A. Jeziorek, D. Antczak-Marach, M. Rudzka-Dybala,
H. Mazurkiewicz, A. Goszczańska-Ciuchta, Z. Zalewska-Miszkurka,
I. Terczyńska, M. Sobierajewicz, C. A. Shaw, A. Gambin,
H. Mierzewska, T. Mazurczak, E. Obersztyn, E. Bocian, and
P. Stankiewicz. Application of array comparative genomic
hybridization in 102 patients with epilepsy and additional
neurodevelopmental disorders. American Journal of Medical
Genetics Part B: Neuropsychiatric Genetics, 159B(7):760–771,
2012. ISSN 1552-485X. doi: 10.1002/ajmg.b.32081. URL
http://onlinelibrary.wiley.com/doi/10.1002/ajmg.b.
32081/abstract (Bartnik et al., 2012)

• M. Bartnik, B. Nowakowska, K. Derwińska,
B. Wiśniowiecka-Kowalnik, M. Kędzior, J. Bernaciak,
K. Ziemkiewicz, T. Gambin, M. Sykulski, N. Bezniakow,
L. Korniszewski, A. Kutkowska-Kaźmierczak, J. Klapecki,
K. Szczałuba, C. A. Shaw, T. Mazurczak, A. Gambin, E. Obersztyn,
E. Bocian, and P. Stankiewicz. Application of array comparative
genomic hybridization in 256 patients with developmental
delay or intellectual disability. Journal of Applied Genetics,
55(1):125–144, Feb. 2014. ISSN 1234-1983, 2190-3883. doi:
10.1007/s13353-013-0181-x. URL http://link.springer.com/
article/10.1007/s13353-013-0181-x (Bartnik et al., 2014)

• K. Derwińska, M. Bartnik, B. Wiśniowiecka-Kowalnik, M. Jagla,
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A. Rudziński, J. J. Pietrzyk, W. Kawalec, L. Ziólkowska,
A. Kutkowska-Kaźmierczak, T. Gambin, M. Sykulski, C. A.
Shaw, A. Gambin, T. Mazurczak, E. Obersztyn, E. Bocian, and
P. Stankiewicz. Assessment of the role of copy-number variants
in 150 patients with congenital heart defects. Medycyna wieku
rozwojowego, 16(3):175–182, Sept. 2012. ISSN 1428-345X. PMID:
23378395 (Derwińska et al., 2012)

• B. Wiśniowiecka-Kowalnik, M. Kastory-Bronowska, M. Bartnik,
K. Derwińska, W. Dymczak-Domini, D. Szumbarska,
E. Ziemka, K. Szczałuba, M. Sykulski, T. Gambin, A. Gambin,
C. A. Shaw, T. Mazurczak, E. Obersztyn, E. Bocian, and
P. Stankiewicz. Application of custom-designed oligonucleotide
array CGH in 145 patients with autistic spectrum disorders.
European Journal of Human Genetics, 21(6):620–625,
June 2013. ISSN 1018-4813. doi: 10.1038/ejhg.2012.219.
URL http://www.nature.com/ejhg/journal/v21/n6/abs/
ejhg2012219a.html (Wiśniowiecka-Kowalnik et al., 2013)

Conferences, and other resources referred to in Chapter 6 .

• M. Sykulski and T. Gambin. IMID2py - a database and tools
for collection and analysis of aCGH data. In III Convention
of the Polish Bioinformatics Society ptb (2010). URL http:
//www.ptbi3.polsl.pl/files/Program_PTBi_Convention_and_
Workshop_2010_ENG.pdf (Sykulski and Gambin, 2010)

• M. Sykulski. Website: IMiD2py – explore aCGH data, 2012b.
the project webpage: http://bioputer.mimuw.edu.pl/iks/, the
demo webpage: http://bioputer.mimuw.edu.pl:9442/welcome/
[Online; accessed 5-November-2014] (Sykulski, 2012b)

• M. Sykulski. Videocast: Cytogenetics Lab Stanbol
Early Adoption demo, part 1, 2012c. URL https:
//www.youtube.com/watch?v=Ua6zN5b3w-M. [Online; accessed
5-November-2014] (Sykulski, 2012c)
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2
aCGH experiment data

characteristics
and microarray design

2.1 DNA microarray technology

In the year 1995 a group of researchers from Stanford University
randomly chose 45 complementary DNA clones from Arabidopsis
thaliana plus 3 control DNA sequences, averaging ∼ 1.0kb (kilo-bases),
amplified these with PCR, and, with the use of an arraying machine
developed in their lab, printed the products, and their duplicates,
with the aim to test reproducibility, onto glass slides 3.5mm by
5.5mm each. (Schena et al., 1995) Three printed microarrays were later
hybridized1 with reverse transcribed mRNA from Arabidopsis thaliana. To

1”Hybridization is the process of establishing a non-covalent, sequence-specific
interaction between two or more complementary strands of nucleic acids into a single
complex, which in the case of two strands is referred to as a duplex. Oligonucleotides,
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minimize experimental variation, two mRNA sources (i.e. root tissue vs
leaf tissue) were reverse transcribed to DNA in the presence of fluorescein2-
and lisamine-labeled nucleotide analogs, respectively. After hybridizing
this two-color mixture to one microarray, it was scanned with a laser, and
intensity signals were read into a personal computer.

Data returned contained two channels corresponding to two colors used.
Under the assumption that scanned intensities correspond to the amount
of hybridized DNA material, this enabled to compare gene expression
between sources, at the same time minimizing variation in signal from the
hybridization process.

At that time already researchers predicted the process to soon scale
up the array printing process to produce arrays containing 20,000 cDNA
targets. Today DNA microarrays contain up to 2 millions3 probes (50-75
base pair in length) per array (Agilent Technologies, 2013). One million
probe arrays allow to achieve resolution with 2̃100 median probe spacing
on human genome.

DNA microarrays with probes matching to human genome are used
in variety of ways: i) measuring gene expression, ii) DNA aberration
detection in postnatal research (Wiśniowiecka-Kowalnik et al., 2013),
iii) prenatal research, iv) cancer research, v) genome wide association
studies (GWAS) (Consortium, 2012), vi) as well as in clinical setting,
such as embryo selection during in vitro fertilization (Liu et al., 2013),
or prenatal procedures (Van den Veyver et al., 2009).

2.1.1 Types of DNA microarrays

DNA microarrays are produced with several technologies, however, the
main concept is the same: a complementary DNA material of specific
(possibly short) sequence is attached (printed) on the array surface at a

DNA, or RNA will bind to their complement under normal conditions, so two perfectly
complementary strands will bind to each other readily.” (Wikipedia)

2The idea for fluorescence hybridization was earlier introduced in the experiment
type named FISH (fluorescent in-situ hybridization), preceded by ISH experiments
(Pardue and Gall, Probes and labeling 1969; John et al., 1969), developed
later in 1989 by DeLong (DeLong et al., 1989). FISH is used to this day as a
low-throughput verification scheme for aCGH, and in many others applications in
microbiology. (Moter and Göbel, 2000)

3Affymetrix 6.0 contains over 1.8 million probes.

16



designated location. On a microarray there are thousands, up to millions,
of such locations, with different sequences printed on them.

What makes DNA microarray (chips) and its applications versatile are
the various possibilities for:

• the type and the source of the genomic material to be hybridized to
a chip, examples include: mRNA, DNA, DNA bound to a particular
protein, bisulfite treated DNA where the unmethylated cytosine is
converted to uracil, etc.

• dyeing (coloring) of the genomic material to be hybridized to a chip
(ref. table 2.1.1); color mixture with reference material

• the choice of the set of DNA sequences printed on a chip

Dyeing Type Output Details

one-color intensity:
{Ri}I

Allows to measure only absolute signal level,
used in gene expression profiling.

two-color
log2ratio:{
log2

(
Ri
Gi

)}
I

Allows to measure signal level relative
to reference. Fluorescent dyeing is done
with Cyanine 3 and Cyanine 5, hence
“Red/Green” intensities.

multicolor vector
intensities

“[...] the capacity to simultaneously
hybridize eight samples confers an
unprecedented flexibility to array-based
analyses, providing a 4-fold increase
in throughput over standard two-color
assays.” (Shepard, 2006)

Table 2.1.1: Dyeing types of material hybridized to DNA microarrays.

2.1.2 aCGH data characteristics

Array Comparative Genomic Hybridization (aCGH) is one of the main
procedures based on DNA microarrays (for a list of DNA microarray
applications see table 2.1.2). In aCGH two colored DNA samples are
hybridized to the same DNA microarray and compared: i) a reference
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Application Details
Array Comparative

Genomic
Hybridization

(aCGH)

Red-dyed mixture of a sample DNA cut with
restriction enzymes is mixed with green-dyed
reference DNA (with known properties, e.g. a
healthy patient) and then hybridized to microarray.

(aCGH + SNP)
microarray

Similar to aCGH, with probes aligned to known
Single Nucleotide Polimorphisms (SNPs) locations,
and their variants.

Gene expression
profiling

One-channel experiment, where transcribed mRNA
from a cell is hybridized to a microarray. Levels of
gene expression can be measured under variety of
conditions.

GeneID Combination of microarray and PCR technology
used to identify organisms, e.g. in food, identifying
pathogens.

Chromatin
immunoprecipitation

on Chip (ChIP)

Isolation, with the use of antibodies, of proteins
with DNA sequences bound to them allows to later
hybridize these specific sequences to a microarray.

Alternative splicing
detection, Fusion
genes microarray

Probes are designed to match to the potential splice
sites of predicted exons for, or cancerous mutations
of, a gene.

Tiling array A set of overlapping probes densely covering a
selected genomic region allows to detect all known,
and discover unknown, possible transcripts from the
region.

Table 2.1.2: Applications of DNA microarrays.

DNA sample with known properties, ii) an examined DNA sample with
suspected genomic aberrations.

In the two-channel DNA microarray aCGH experiment an image of a
microarray is taken with a scanner, and spots of brightness from the image
are transformed into pairs of Red, Green intensities:

{Ri, Gi}I (2.1)

The index sequence I depends on the use case: e.g. Iarray maps intensities
to a (xi, yi) positions in the microarray grid of spots, at the same time
another indexing Igenome maps to specific locus in the reference human
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genome (e.g. HG19 Chr9 132423← 132482).
Two-channel intensities are usually transformed to a single log2ratio

sequence4:

log2ratio = log2
Ri

Gi

(2.2)

In this thesis we focus on the analysis of log2ratio data from DNA
microarrays. To understand it’s characteristic we first acquaint the reader
with the processes from the pipeline which results in obtaining such data.
A general overview of the process is presented in the next Section 2.3.
A more specific statistical features of log2ratio data are reviewed in
Section 2.2 Signal and noise in DNA microarray data.

2.2 Signal and noise in DNA microarray data

Signal from a hybridized DNA microarray is analyzed and transformed
during the following steps of aCGH process:

1. scanning process: image analysis, finding image corners, centering
grid (Agilent Technologies, 2013),

2. noise reduction: background estimation, microarray spatial noise
reduction (ref. Section 3)

3. normalization: either the simple log2ratio transformation, however a
more sophisticated transformations are proposed in literature: e.g.
Variance Stabilization Transform (VST) (Lin et al., 2008). VST
agrees with log2ratio on most data, but on low-hybridized probes.

output: log2ratio

4. segmentation: finding regions of elevated, or degraded, hybridization,
which correspond to aberrated regions in the genome (e.g. Circularly
Binary Segmentation(CBS) algorithm Olshen et al. (2004))

4Some authors, as well as some protocols and software (like Agilent Feature
Extraction), use another convention of log10ratio. This is rarely relevant. In this
thesis, as long as it is not indicated otherwise, we work with log2ratio data.
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5. CNV detection: multiple segments from several genomes may
correspond to a region of variation, called Copy Number Variant
(CNV, ref. chapter 5)

6. functional mapping: modifications in genes, transcription factors,
SNPs, etc. are mapped to functional groups, such as
diseases, signaling pathways, phenotypic traits. The role of
large databases that gather data from labs all around the
world is unquestionable. Databases referred to in this thesis
include UCSC (Meyer et al., 2013), Ensembl (Flicek et al., 2012),
Cytogenomic Arrays database (ISCA) (Faucett, 2010), Genetic
Association Database (GAD) (Zhang et al., 2010), and Database of
Genomic Variants (DGV) (Zhang et al., 2006)

The last two steps vary in technologies other than aCGH. The first three
steps usually are performed by the proprietary software delivered by the
manufacturer of the microarray, e.g. Agilent Feature Extraction. The
building blocks of Agilent Feature Extraction pipeline are enumerated in
table 2.2.1).

Agilent Feature Extraction Software Pipeline:
i) Place Grid ii) Optimize Grid Fit iii) Find Spots iv) eXtended Dynamic

Range(XDR) extraction (optional, two scans required) v) Flag Outliers
vi) Compute Background, Bias and Error (spatial detrending with LOESS)
vii) Correct Dye Biases viii) Compute Log Ratios ix) Calculate QC Metrics

Table 2.2.1: For the complete description of the process
see (Agilent Technologies, 2013, page 212). This thesis concerns with log2ratio
analysis which results from the above process. Characteristics of resulting data is
elaborated further in this thesis; observed log2ratio standard deviation is plotted
in fig. 2.2.1.

It’s important to acknowledge that, although several measures are taken
to extract pure signal from microarrays, the intensity data, and resulting
log2ratio data, is quite noisy. As a quantification of this statement
we present signal-to-noise estimations in a following Section 2.2.2. To
illustrate this fact below we reproduce, and visually verify, the model
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for Estimated Feature Variance used in Agilent Feature Extraction
software (Agilent Technologies, 2013, page 236).

σ2
Estimated = σ2

Labelling/FeatureSynthesis + σ2
Counting + σ2

Noise (2.3)

σ2
Labelling/FeatureSynthesis ∝ x2

σ2
Counting ∝ x

σ2
Noise = const.

where x is the net signal of a feature.

The σ2
Labelling/FeatureSynthesis term estimates the effects from microarray

manufacturing and wet chemistry. These sources of variance turn out to
be intensity dependent, it is proportional to the square of the signal.

The σ2
Counting term includes noise from scanning process and image

analysis (counting pixels and their intensities), it’s linearly dependent on
intensity.

The σ2
Noise constant term estimates variance from electronic noise in

scanner and background level noise in glass.
Agilent Feature Extraction software has more than one protocol to

determine these terms. Usually, for each analyzed DNA microarray the
σ2

Labelling/FeatureSynthesis term is estimated from the coefficient of variation
of pixel noise in features. The other two terms are computed by
multiplying constants pre-established by Agilent with values depending
on the microarray net signal .25 quantile.

2.2.1 Heteroscedasticity in log2ratio

The model for σ2
Estimated is used by Agilent Feature Extraction in

background noise estimation protocol, and in quality control for
“non-uniformity” outlier calling. Nevertheless, the variance dependence in
the outputted log2ratio signal remains. Figure 2.2.1 purports to visualize
this dependence. Here is how this figure was produced. Computing a
variance of a signal requires estimating a mean signal intensity (or mean
log2ratio). To do that, we divide data in clusters corresponding to the
same signal intensity. This tuns out to be the main task in the analysis
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(a) σ2 ∼ mean dependence plotted for
intensity ratios data (geometric segment
means used).

(b) σ2 ∼ mean dependence plotted for
log2ratio data.

Figure 2.2.1: We sampled 50K segments, obtained with CBS algorithm having
analyzed log2ratio from 474 patients aCGH arrays (IMID). We computed variances
around segments’ log2ratio means. Two plots were produced: a) log2ratio were
exponentiated back to intensities ratios to compute variances, b) variances of
log2ratio were produced. LOESS parabola fit visually confirms Agilent’s quadratic
model which applies to intensity data (a). Quadratic dependence persists in
log2ratio data (b). Signal-to-noise log2ratio statistics for significant segments (left
and right subsets) are as following: Min. 0.9309, 1st Qu. 2.2820, Median 3.545,
Mean 13.610, 3rd Qu. 6.564

of log2ratio: segmentation.

Segmentation algorithms, such as Circular Binary
Segmentation (Olshen et al., 2004) (detailed in the next Section 2.2.4),
cluster features in segments spanning contiguous regions along the
genome. To produce Figure 2.2.1 we used 474 results from CBS
segmentation algorithm on aCGH arrays. Mean signal intensities
were computed, and variances of features around them. We observe
that dependence between signal variance and signal intensity remains.
Parabolas fitted with local scatterplot smoothing (LOESS) provide visual
evidence that quadratic dependency is a valid model for signal intensities
ratios, as well as in data transformed to log2ratio. Verification of this
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hypothesis is done with a statistical test similar to Breusch–Pagan test
for heteroscedasticity (Breusch and Pagan, 1979). An ordinary least
squares model is fitted for squared residuals, and it’s F-statistic p-value
confirms, or rejects, variance dependence on regressors.

σ2
feature ∼ β0 + β1µsegment + β2µ

2
segment (2.4)

The summary of this fit in R confirms heteroscedasticity and is reprinted
below. The significant coefficient, order ∼ 0.2 in value, for the quadratic
term confirms heteroscedasticity.

Call: lm(formula = s2 ~ m + I(m^2))
Residuals:

Min 1Q Median 3Q Max
-0.2476 -0.0044 -0.0034 -0.0006 4.8665
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.629e-03 9.973e-06 464.09 <2e-16 ***
m -2.153e-02 3.675e-04 -58.59 <2e-16 ***
I(m^2) 1.766e-01 1.574e-03 112.19 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01902 on 3697034 degrees of freedom
Multiple R-squared: 0.003828,Adjusted R-squared: 0.003827
F-statistic: 7103 on 2 and 3697034 DF, p-value: < 2.2e-16

When data is heteroscedastic estimators of variance, confidence intervals,
standard errors, coming from linear regression, or based on normality
assumption, are biased. This causes errors in statistical tests, if them
being not designed specifically for such cases. In the next section the way
CBS segmentation algorithm approaches the problem is described. In
Chapter 5 we propose a method based on log2ratio rank statistics, which
alleviates the problem of heteroscedasticity.
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2.2.2 Signal-to-noise ratio in log2ratio data

We quantify the amount of noise in the log2ratio data using signal-to-noise
ratio. Another important measure of signal quality used in aCGH
setting is Derivative Log2Ratio Spread (DLRS) used in Agilent’s Feature
Extraction, also used in Leprêtre et al. (2010) to analyze the waving
noise phenomenon (described in chapter 5). In literature SNR has several
definitions, depending on the nature of a signal source. In this case we
use SNR definition as a reciprocal of the coefficient of variation.

SNR =
1

cv
=

µ

σ
(2.5)

As an indication of signal we use the mean value of log2ratio in detected
significant segment. From 116156 segments in the database (the IMID2py
database is described in chapter 6) we’ve selected all with significant
signal5:

∣∣µsegment
∣∣ > log2

3

2
≃ 0.585 (2.6)

length (segment) ≥ 3

This query returns segments from above 0.9939 quantile of all segments
in the database (most segments being no-signal with mean ∼ 0), which
counts 489 segments, for which we’ve calculated SNR, taking as an input
log2ratio data.

Summary statistics for SNRs based on these segments are printed below:

Min. 1st Qu. Median Mean 3rd Qu. Max.
SNR 0.9102 2.2450 3.2320 11.2800 6.5590 605.4000

with more than 10% segments having SNR ≤ 2.
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(a) A grid of MA plots of three gene
expression arrays vs each other. The
middle array is of worse quality, since its
intensities are generally lower than other
two arrays. (Since an expression array
produces signal with only one R channel, data
from another array is taken as a second G
channel.) Charts produced with R package
“lumi” (Lin et al., 2008).

(b) Quality of gene expression arrays coming
in batches of 12 each. Quality of arrays in the
same batch is strongly correlated.

Figure 2.2.2: Plots from the stage of quality control of gene expression arrays
form patients with bladder cancer (MD Anderson Cancer Center, manuscript in
preparation).

2.2.3 Quality Control

One way to asses a quality of one microarray experiment
is MA plot. MA plot is an example of Bland–Altman
plot (Martin Bland and Altman, 1986), where the vertical axis
corresponds to difference of measurements, while the horizontal
axis corresponds to average (or sum) of measurements. In the case of

5Selecting log2
3
2 is justified as following. In the case of an organism with a diploid

genome, such as human, a duplication of a fragment of a genome (possibly a whole
chromosome, as in case of trisomy) results in a duplication of a genomic material, e.g.
a gene fragment. If the aforementioned gene fragment is homozygous this results with
the change ratio 3/2 of duplicated gene DNA to original DNA
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two-color DNA microarray data, a log2ratio between red-green intensities
is plotted vs. its total log-intensity (ref. eqn. 2.7). In the case of one
channel DNA microarray, such as a gene expression array, one microarray
result is plotted vs. another (ref. fig. 2.2.2a).

M = log
(
R/G

)
= log (R)− log (G) intensity log-ratio

A =
1

2
log (RG) =

1

2

(
log (R) + log (G)

)
average log-intensity

(2.7)

MA plot allows to visually inspect microarray results for systematic errors,
such as low hybridization of one of the dyes. It is argued in Martin Bland
and Altman (1986) that since M is a difference of measurements from
the same technology all systematic effects shall cancel, and M shall be
approximately Normally distributed, hence 95% of measurements should
fall between mean± 2 sdev. However, in the case of microarrays we shall
less be worried about extreme M values, as they very well may indicate
genomic signal. On the other hand, a systematic dependence between M
and A is an indicator of a problem (ref. fig. 2.2.2a).

Another important characteristic of DNA microarray experiment is that
arrays are produced in batches: 4–16 arrays of the same type are printed
on a larger surface, to be used at the same time. This may be important
in analysis, as noise characteristic tends to be more similar between arrays
from the same batch (ref. fig. 2.2.2b).

m

We end this Section Signal and noise in DNA microarray data with
a list of noise sources which compose with a genomic signal of a single
feature on a microarray.

chemistry, hybridization: probe melting temperature6, uneven spread
of substrates on the microarray introduces spatial trends

6Temperature at which half of the DNA duplexes become single stranded due
to breaking of the hydrogen bonds between nucleic bases, after which the two
strands separate. It’s dependent on length and GC content of the sequence,
can be approximated with this formula: Tm ≈ 4(#G + #C) + 2(#A +
#T ) ◦C (Dieffenbach et al., 1993).
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(ref. Section 3)

probe sequence specificity: possibly more than one region similar to a
feature DNA sequence is present in the target genome

quality of genomic material: tissue from which genomic material is
extracted may contain heterogeneous cell populations, DNA samples
may have been stored frozen, etc.

scan image analysis: errors induced in image processing (ref.
Figure 2.2.3)

local trends in a genomic sequence: possible explanation
include influence of histons on DNA restriction
enzymes. (Olshen et al., 2004, end of section 2) (Leprêtre et al., 2010)
Chapter 5 validates existence of these trends, and proposes a method
to deal with them.

All these together make up a challenge for segmentation algorithms
to extract common clusters of genomic material intensities, later to
be mapped to functional genomic components (like genes, transcription
factors, binding sites, etc.). Only with a successful segmentation and
functional mapping a higher level analyses of diseases, genomic disorders,
genomic variance in populations, follow.

2.2.4 aCGH data segmentation task

It is clear from previous sections that each aCGH experiment result merges
random noise from several sources. However, the interesting part to
medical researchers is genomic signal. By that phrase we refer to a set
of segments aligned on the reference human genome (e.g. HG 18) which
correspond to Copy Number Variants, i.e. deletions, duplications, or more
complicated rearrangements.

Precisely, since each (non-control) probe on a aCGH microarray
matches with its sequence to a specific place in the reference human
genome, we imagine an aCGH result as points aligned over a line with
x coordinates corresponding to the published reference genome (actually,
over a set of disconnected segments corresponding to chromosomes), see
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Figure 2.2.3: The grid alignment on Agilent DNA microarray. An image from
Feature Extraction software. Misalignment, rotation, wrong fit to the grid may
cause several, or many, probes to report biased data.

Figure 2.2.4. Thus, a set of k subsequent DNA probes with high log2ratio
corresponds to a segment on the reference genome, which is duplicated in
patient’s genome. The task is to discover breakpoints between segments
of significantly different copy number (most often 1). Breakpoints place
between the DNA probes, and they relate with neighboring segments with
different CNVs in the following way.

Brkpn = (i, i+ 1) ∧ Brkpn = (j, j + 1) ∧ Brkpn+1 = (k, k + 1)

⇔

CNV
(
Seg

[
Brkpn−1[1], Brkpn[0]

])
̸= CNV

(
Seg

[
Brkpn[1], Brkpn+1[0]

])
(2.8)

Mean of log2ratio values in a segment mean(log2ratio
(
Seg [a, b]

)
) is what

witnesses of segment’s copy number.
The theoretical mean values of segments take different values depending

on the precise genetics behind, which we leave out of the scope here.
An example theoretical value of log2ratio = 1 should correspond to a
duplication in a haploid genome. Human genome is diploid, however.
We suffice to say that log2ratio mean values outside of (−0.2, 0.2) are of
medical interest.
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Figure 2.2.4: log2ratio data from aCGH experiment aligned along a chromosome.
Aberration at the right end of the chromosome, i.e. shorter deletion and longer
duplication is yet to be detected by a segmentation algorithm. Since the aberrated
segments have substantial length this wouldn’t be a problem for an algorithm,
however shorter segments, or segments with lower mean are more difficult to detect.

Most proposed solutions to recovering CNVs from aCGH data rely
on segmentation methods that try to divide the data into segments
representing aberrant and normal regions Ben-Yaacov and Eldar (2008a);
Cahan et al. (2008); Díaz-Uriarte and Rueda (2007); Lipson et al. (2006).

Comparative studies published so far, e.g. Willenbrock and
Fridlyand (2005), nominate Circular Binary Segmentation (CBS),
as one of best performing methods for finding copy number
segments. The CBS algorithm is implemented e.g. in R package
DNAcopy (Olshen et al., 2004). For a survey of surveys on aCGH
algorithms we refer the reader to Karimpour-Fard et al. (2010).

CBS segmentation algorithm

Segmentation, equivalently a set of breakpoints, can be found recursively.
Starting from one large segment for a chromosome, it may be split into
two smaller ones. Denote Sn as a sum of log2ratio values from beginning of
a segment up to n-th probe. Then, under assumption of uniform variance
σ2 = 1, the procedure of Binary Segmentation, proposed by Sen and
Srivastava (1975), is based on a following t-test-like statistic:

Zi =
Si

i
− Sn−Si

n−i√
1
i
+ 1

n−i

, ZBS = max
1≤i<n

Zi (2.9)
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A segment is divided in two smaller segments, if ZBS is above a threshold
z-value.

Olshen et al. (2004) propose a slight, but important, modification to
binary segmentation, namely they seek not for one but two breakpoints
at once. This allows to detect relatively short segments of outstanding
intensity, which, in case of binary segmentation, would sink in neighboring
noise.

Zij =

Sj−Si

j−i
− Sn−(Sj−Si)

n−j+i√
1

j−i
+ 1

n−j+i

, ZC = max
1≤i<j≤n

Zij (2.10)

This time, a segment is divided in 3 smaller segments [1, i − 1], [i, j −
1], [j + 1, n] ZC is above a threshold. The above Zij statistics is a
two-sample t-test statistic (as well as Welch t-test statistics) with both
sample variances assumed equal σ2

1 = σ2
2 = 1.

In their article Olshen et al. (2004) are aware of heteroscedasticity,
non-normality of log2ratio data. For this reason, instead of extending
statistic from Sen and Srivastava (1975) they propose and implement
a test based on ZC cut off values estimation from permuted data. In
Chapter 4 we explore and modify R package DNAcopy, which implements
permutation based CBS, to quantify its, and aCGH design’s, robustness
to additive noise.

2.3 The iterative process of targeted microarray
design

Every design has its constraints. In the case of aCGH microarrays the
main constraint is the number of nucleotide probes that can be printed
on a chip.
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Figure 2.3.1: Designing microarray for coverage of specific regions.In version 8
there are 180 000 probes, each 60bp in length.

The design of the V8 OLIGO chip involved two stages. First, the
prototype covering only exonic and microRNA regions was constructed.
The main aim at this stage was to develop the array that allows detecting
DNA copy number changes of the single exon. Therefore, it was postulated
to cover each exon by the same number of oligos. For a given set of 1714
selected genes (including those related to epilepsy, autism, heart defects,
mental disorders and other known pathologies) it was decided that each
exon would be covered by approximately 6 probes, ref. Figure 2.3.1.

The prototype coverage was two times denser than the desired one in the
final version. A set of hybridizations was performed with the prototype
version. Performance score of each probe was computed as following:
segmentation procedure was applied on data from these experiments. Let
us call the empirical cumulative distribution function for distribution of
log2ratio deviations from their segments means F . The distribution F
was estimated from all experiments from the prototype version. For each
probe we perform two sided Kolomogorov-Smirnov (K-S) test comparing
the log2ratio deviation from segment mean with distribution F . We assign
the p-value obtained in this test as a score of the probe.

Next step involved combining the prototype design with backbone,

31



i.e., probes putted uniformly across the genome. Densely covered regions,
exonic double covered regions were thinned with heuristic approach which
considered previously assigned scores and uniformity of nascent coverage
(sizes of introduced gaps).

Another step was to cluster MicroRNA probes by distance on the
genome to later thin MicroRNA coverage in clustered regions, removing
worst performing probes first.

Finally, the design consists of rare (distributed every 10 Kbp) probes
in intronic regions and 70 K probes putted uniformly across the genome
(backbone).

The iterative process of aCGH microarray design is depicted on
Figure 2.3.2.
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Control is achieved through learning.
Change is achieved through understanding.

Dalai Lama XIV

3
Markov Random Fields for aCGH

segmentation and spatial denoising

The chemistry of the aCGH hybridization process requires spilling and
evenly distributing a chemical mixture on a microarray. Without going
into the details of the laboratory procedure, we confirm the existence of
spatial artifacts on DNA microarray scans in our database in roughly
20%–25% of cases, an example is found on Figure 3.0.1. The Agilent
Technologies (2013) Feature Extraction software provides spatial detrend
option: a surface fitted with 2D-Loess algorithm on the mean intensities
of the negative control probes is treated as a background component and
subtracted from the signal. 2D-Loess regression can also be used in a
later normalization step. Zahurak et al. (2007) reports that in Agilent
FE simple Loess normalization without background subtraction resulted
in low variance fold changes that more reliably rank gene expression. In
our microarray results database IMID2py, in log2ratio data, outputted
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from Agilent FE, we observe that FE spatial detrending does not fully
remove artifacts, the most probable reason being the fact that artifacts are
non-linear. Such non-linear artifacts from IMID2py database are depicted
on Figure 3.0.1. An important assumption, realized in practice, is of the
spatial distribution of DNA probes being independent of mapping of the
probes onto the genome sequence.

Figure 3.0.1: Noise in log2ratio from aCGH microarrays scans. Top: a microarray
scan containing linear and non-linear spatial trends, bottom: a well hybridized array
with no visible artifacts.

The approaches to the problem of microarray spatial detrending
involve methods such as: i) spatial gradient normalization
with two-dimensional Gaussian function (Workman et al., 2002),
ii) splines with spatial autocorrelation (Baird et al., 2004),
iii) LOESS fit based on MA plot and residuals (Wilson et al., 2003),
iv) feed-forward neural network (Tarca et al., 2005), v) Hidden Markov
Model (Shah et al., 2006). For a survey of these methods we refer to
works of Khojasteh et al. (2005), and Neuvial et al. (2006).
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Neuvial et al. (2006) in their work propose a method which explicitly
deals with strong non-linearity of aberrations, namely, their procedure
involves segmentation of the array into spatial areas with similar trend
values. Their Neighborhood Expectation Maximization algorithm (NEM,
first proposed by Ambroise et al. (1997)) maximizes log-likelihood of a
Gaussian mixture with added quadratic “geographic” term dependent on
spatial neighborhood of probes:

Geo(c) = β
1

2

∑
{i,j}∈Espatial

∑
k∈Clusters

cikcjk (3.1)

where cik is the expectation of the probe i belonging to the cluster k, and β

controls the importance of spatial bounds. Picard et al. (2007) introduce
a mixture model with a Gaussian field of segments allowing for breaks
in the field, however they do not include spatial noise considerations in
their approach. In the next section we introduce a graphical model which
merges the two aforementioned methods. Next we describe Expectation
Maximization algorithm to estimate parameters of our model, and present
its results.

3.1 Outline of the proposal

The following approach to microarray spatial detrending is similar
to Neuvial et al. (2006) by the common underlying assumption of
the existence of spatial segmentation of a background noise. Our
formulation allows to model locally linear trends of noise and non-linear
artifacts, as well as genomic signal segmentation in later installments.
The proposed model are Gaussian Markov fields on two graphs
(equivalently on one graph with two subsets of edges) with Bayesian
hierarchical prior probabilities, extended with a Hidden Markov Model
in the final installment. We are aware of several modeling systems,
and packages, for hierarchical Bayesian interference,to name a few:
Stan Modeling Language (Stan Development Team, 2014), flexmix R
package (Leisch, 2003), BUGS/JAGS (Lunn et al., 2009). We’re not
convinced that these packages have expressive power to define our model,
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or in case they do, to efficiently optimize solution on practical large data,
although we leave it as a possibility. Optimization of our model is partially
a linear problem, the equivalence between solving linear problems and
belief propagation on Gaussian fields is explored extensively by Bickson
(2008).

3.2 Background and Segments Markov random
fields model declaration

The basic background Gaussian field model. Every microarray
is a 2-dimensional surface, with DNA probes printed on it and aligned
on a grid. This implies existence of an undirected Gspatial neighborhood
graph

Gspatial = (V,Espatial) where (3.2)
V = {i : corresponds to i-th feature}

Espatial =
{
{i, j} : i, j are neighbors on the microarray grid graph

}
.

A scan image of a grid of features from an Agilent DNA microarray can
be seen on Figure 2.2.3. We choose to interpret this square lattice,
after addition of “top-left-bottom-right” diagonal edges, as a slightly
row-shifted hexagonal lattice. The two main reasons for choosing such
a lattice are:

• stronger connectedness: after removal of one edge the shortest path
between previously neighboring vertices is of length 2 (while for
square lattice it’s length 4).

• at the same time there exists a regular non-incident vertex coloring
with 3 colors, which we call a stratification to 3 independent subsets

A hexagonal lattice graph, and its stratification, is depicted on
Figure 3.4.1.

Given the log2ratio data xi, we assume the existence of a background
noise field bi which is a Gaussian Markov random field with variance 1/τ
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with neighborhood taken from the graph Gspatial.

1

P background ∝

 ∏
{i,j}∈Espatial

√
τ

2π

 exp

−1

2

∑
{i,j}∈Espatial

τ(bi − bj)
2


(3.3)

In the simplest model we assume that log2ratio data xi is normally
distributed around the background field with variance 1/ν (which is
simplistic, since we know that xi also contains signal from genomic
deletions or duplications).

1

P data ∝

∏
i∈V

√
ν

2π

 exp

−1

2

∑
i∈V

ν(xi − bi)
2

 (3.4)

Prior distributions for τ, ν are chosen to Gamma distributions, which are
conjugate priors to 1/variance (precision) of a Normal distribution. We
set Pprior b, a prior for bi, to N (0, τb), a conjugate prior to mean of a
Normal distribution.

1

P prior =τΩτ0−1 exp (−τΩτ1) · νΩν0−1 exp (−νΩν1)

·

∏
i∈V

√
τb
2π

 exp

−1

2

∑
i∈V

τb(0− bi)
2


· ΩΩτ0

τ1

Γ (Ωτ0)

ΩΩν0
ν1

Γ (Ων0)
/* Gamma normalizing constants */

(3.5)

The required constants for the above set up of priors are Ω =

{Ωτ0,Ωτ1,Ων0,Ων1, τb}.
This renders the total log-posterior likelihood for θ = {b, τ, ν} to

log
1

L(θ; x,Ω) = log
1

P background + log
1

P data + log
1

P prior. (3.6)

Introducing breaks in the background field. In the second
installment breaks in the background field are fixed into the model.
A new set of latent 0, 1 variables is introduced: a priori distributed
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Figure 3.2.1: Zoom to the top left corner of a microarray. Background noise field
levels marked in red/blue, breaks in the field marked black, white dots are spots
without a probe.

yij ∼ Bernoulli(q), where q corresponds to the probability of a violent
break in the background field (an expected proportion of violent breaks
between neighbors in the field). In other words, yij == 0 indicates that
two spatial neighboring features i, j differ to much to be described as a
Gaussian field (ref. Figure 3.2.1).

2

P background ∝

 ∏
{i,j}∈Espatial

√
τ

2π

yij
 exp

−1

2

∑
{i,j}∈Espatial

yijτ(bi − bj)
2


(3.7)

·
∏

{i,j}∈Espatial

(1− q)yijq1−yij

Similarly as before, we introduce a conjugate prior to Bernoulli
distribution for q, namely Beta(Ωq0,Ωq1) distribution.

2

P prior =
1

P prior · qΩq0−1(1− q)Ωq1−1

· 1/B
(
Ωq0,Ωq1

)
/* Beta normalizing constant */

(3.8)
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The total log-posterior likelihood for θ = {b, y, τ, ν, q} and discrete
variables Z = {y} becomes

log
2

L(θ, Z;x,Ω) = log
2

P background + log
1

P data + log
2

P prior. (3.9)

Figure 3.2.2: log2ratio data, scanned from aCGH microarray, aligned along
chromosome Y. Red dashed line represents hidden genomic signal segments. A
deletion on the right end of the chromosome is present (the segment with a
significantly lowered log2ratio mean ∼ −0.5).

Introducing the segments field along a genome. In the final
installment of the Gaussian Markov Field model we address the hidden
signal inside xi log2ratio data. The natural way to look at log2ratio
data is the undirected line graph Ggenome along the genome, that is along
subsequent chromosomes, as depicted on Figure 3.2.2.

Ggenome = (V,Egenome) where
V = {i : corresponds to i-th feature}

Egenome =
{
{i, j} : i, j are probes on the same chromosome

and there is no other probe between them}
(3.10)
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If we choose the indexing of the feature set V to agree with the genomic
order, then the set of edges Egenome is roughly

{
{i, i+ 1}

}
I
.

Again we assume the existence of the segment signal field ai, which is a
Gaussian Markov random field with variance 1/ρ with its neighborhood
taken from the linear graph Ggenome. Breaks in the segment field are
curated by a set of latent 0, 1 variables, a priori distributed zij ∼
Bernoulli(p), where p corresponds to the probability of a violent break
in the segment field. Now zij == 0 indicates that signals on two genomic
neighboring features i, j differ to much to be described as coming from
the same Gaussian field segment.

Psegments ∝

 ∏
{i,j}∈Egenome

√
ρ

2π

zij


· exp

−1

2

∑
{i,j}∈Egenome

zijρ(ai − aj)
2


·

∏
{i,j}∈Egenome

(1− p)zijp1−zij (3.11)

This time we assume that log2ratio data xi is normally distributed around
the background field and the segment field.

2

P data ∝

∏
i∈V

√
ν

2π

 exp

−1

2

∑
i∈V

ν(xi − ai − bi)
2

 (3.12)

The above distribution corresponds to other sources of noise, such as
probe specificity, hybridization chemistry. In Section 2.2 heteroscedastic
nature of this noise was argued, this is not yet addressed here. Related
to this issue is the problem of setting a prior distribution for ai.
One simple possibility is to setup a Normal distribution with a large
variance, however, it is false to assume that segment log2ratio means of
genomic signal are normally distributed around 0. In Section 3.2.3 an
ai prior probability is proposed which addresses heteroscedasticity and
non-normality. Conjugate prior distributions are assumed for ρ and p,
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namely Gamma and Beta.

3

P prior =
2

P prior · ρΩρ0−1 exp
(
−ρΩρ1

)
(3.13)

· pΩp0−1(1− p)Ωp1−1

· Pprior a

·
Ω

Ωρ0

ρ1

Γ
(
Ωρ0

) 1

B
(
Ωp0,Ωp1

)

The complete likelihood for BSMF. The total
posterior likelihood for Background-Segment-Markov-Field
problem (BSMF), where θ = {a, b, τ, ν, ρ, q, p}, where
Z = {y, z}, and given a set of constant parameters Ω =

{(Ωτ0,Ωτ1), (Ων0,Ων1), (Ωρ0,Ωρ1), (Ωq0,Ωq1), (Ωp0,Ωp1), τb,Ωa}, is

LBSMF (θ, Z; x,Ω) ∝ ∏
{i,j}∈Espatial

√
τ

2π

yij
 exp

−1

2

∑
{i,j}∈Espatial

yijτ(bi − bj)
2


·

∏
{i,j}∈Espatial

(1− q)yijq1−yij

·

 ∏
{i,j}∈Egenome

√
ρ

2π

zij
 exp

−1

2

∑
{i,j}∈Egenome

zijρ(ai − aj)
2


·

∏
{i,j}∈Egenome

(1− p)zijp1−zij

·

∏
i

√
ν

2π

 exp

−1

2

∑
i

ν (xi − ai − bi)
2


· τΩτ0−1 exp (−τΩτ1) qΩq0−1(1− q)Ωq1−1

· ρΩρ0−1 exp
(
−ρΩρ1

)
pΩp0−1(1− p)Ωp1−1

· νΩν0−1 exp (−νΩν1)

· Pprior a · Pprior b (3.14)
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Straightforwardly from the above, taking Pprior a with the same
formulation as Pprior b, the log-likelihood presents as follows.

logLBSMF (θ, Z; x,Ω) =

log
2

P background + logPsegments + log
2

P data + log
3

P prior =

(log τ − log 2π)
1

2

∑
{i,j}∈Espatial

yij − τ
1

2

∑
{i,j}∈Espatial

yij(bi − bj)
2

+ log(1− q)
∑

{i,j}∈Espatial

yij + log(q)
∑

{i,j}∈Espatial

(1− yij)

+ (log ρ− log 2π)
1

2

∑
{i,j}∈Egenome

zij − ρ
1

2

∑
{i,j}∈Egenome

zij(ai − aj)
2

+ log(1− p)
∑

{i,j}∈Egenome

zij + log(p)
∑

{i,j}∈Egenome

(1− zij)

+ log(ν)
1

2
|V | − ν

1

2

∑
i∈V

(xi − ai − bi)
2

− τb
1

2

∑
i∈V

b2i − τa
1

2

∑
i∈V

a2i /* a, b priors ∼ N (0, τ•) */

+ log(1− q)
(
Ωq0 − 1

)
+ log(q)

(
Ωq1 − 1

)
+ log(1− p)

(
Ωp0 − 1

)
+ log(p)

(
Ωp1 − 1

)
+ log τ (Ωτ0 − 1)− τΩτ1

+ log ρ
(
Ωρ0 − 1

)
− ρΩρ1

+ log ν (Ων0 − 1)− νΩν1

+ const.
(3.15)

The BSMF model is a graphical Bayesian model build atop of large
graphs Ggenome, Gspatial. Effectively, the complete Bayes network of
the model is large, unless vectors of related variables, as well as their
multivariate distributions, are rendered as single vertices. Such factor
graph for LBSMF (θ, Z; x,Ω) is presented on Figure 3.2.3.

3.2.1 BSMF log-posterior likelihood as a quadratic
problem

Let’s immediately point out the few qualitative observations about the
total log-likelihood. They partially reveal the landscape of the BSFM, and
they come useful later when optimizing for parameters of the model using
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Expectation Maximization approach, as well as in the case of marginal
distributions estimation with Monte-Carlo Markov Chain.

3.2.1. Claim. Conditional maximization of the logLBSMF (θ, Z;x,Ω) as
a function of vectors a, b, while keeping other variables constant, is a
Quadratic Programming problem of size O(|V |).

Proof. The log-likelihood is rewritten as

logLBSMF (θ, Z;x,Ω) =
1

2

[
a b

]
Qy,z

τ,ρ,ν

a
b

+ cTx,ν,τb

a
b

 (3.16)

+ f(τ, ρ, ν, p, q, x) (3.17)

where Qy,z
τ,ρ,ν is a symmetric matrix (the precise definition is given in the

next Claim 3.2.2) of size 2|V | × 2|V |, since len(a) = len(b) = 2|V |, and
cTx,ν,τb is a vector of length 2|V |. In the case of Gspatial being a hexagonal
lattice,

∣∣Espatial
∣∣ ≤ 3|V |, and

∣∣Egenome
∣∣ < |V | since Ggenome is a line graph.

The precise structure depends on Gspatial, however, the total number of
non-zero elements is less than

∣∣Espatial
∣∣+ ∣∣Egenome

∣∣+ |V | ≤ 5|V |.
Thus Qy,z

τ,ρ,ν is a sparse matrix, with O(|V |) non-zero entries.

3.2.2. Claim. Conditional maximization of the logLBSMF (θ, Z;x,Ω) as
a function of vectors a, b, while keeping other variables constant, is a
positive-definite Quadratic Programming problem to which the solution is
given by Qy,z

τ,ρ,ν
−1cx,ν,τb

Proof. Expanding the bilinear form formulation of logLBSMF (θ, Z;x,Ω)

from the previous claim 3.2.1 yields

[
a b

]
Qy,z

τ,ρ,ν

a
b

 =−τ
∑

{i,j}∈Espatial

yij(bi− bj)
2− ρ

∑
{i,j}∈Egenome

zij(ai−aj)
2

− ν
∑
i∈V

(ai + bi)
2 − τa

∑
i∈V

a2i − τb
∑
i∈V

b2i

(3.18)
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thus, since τ > 0 ∧ ρ > 0 ∧ ν > 0

vT −Qy,z
τ,ρ,νv ≥ 0 and

vT −Qy,z
τ,ρ,νv = 0⇔ v = 0 thanks to τa, τb > 0

⇒ −Qy,z
τ,ρ,ν ≻ 0

from which follows that maximization of logLBSMF (θ, Z;x,Ω) is equivalent
to minimization of a positive definite Quadratic Programming problem.

3.2.3. Remark. From Claims 3.2.1 , 3.2.2 it follows that the conditional
maximization with respect to a, b can be solved, using iterative methods
such as Jacobi method, in O(|V |) time if the Qy,z

τ,ρ,ν is well conditioned.
The lowest eigenvalue of the matrix is bounded from below by λ0 >

min(τa, τb), while the largest eigenvalue can be bounded, from the sparsity
of the matrix, by O(|V |) ·max(τ, ρ, ν, τaτb). Unfortunately, this value does
become large in practice, since τ, ρ precisions optimize to high values,
nevertheless they’re bounded from above thanks to prior distributions
imposed on them.

3.2.4. Proposition. [after e.g. (Bickson, 2008)] In a Gaussian Markov
random field with a probability function

P (x) = Z−1 exp

(
−1

2
xTEx+ cTx

)
where Z is the partition function, the posterior distribution is multivariate
Normal: P (x) ∼ N

(
µ, E−1

)
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Proof.

let µ = E−1c then

P (x) = Z−1 exp

(
−1

2
µTEµ)

)
· exp

(
−1

2
xTEx+ µTEx− 1

2
µTEµ

)
= Z ′−1

exp

(
−1

2
µTEµ

)
= N

(
µ, E−1

)

From Proposition 3.2.4, by inverting the final bilinear form matrix,
we may obtain posterior confidence intervals, although, this not exactly
the same as computing posterior marginal distribution (e.g. with
MCMC approach), since here precisions and breaks variables are assumed
constant.

3.2.5. Claim. Conditional maximization of the logLBSMF (θ, Z;x,Ω) as
a function of variables τ, ρ, ν, p, q, while keeping other variables constant,
is a concave problem, and can be optimized globally by maximizing several
one-dimensional concave functions, providing that
Ωτ0 > 1 ∧ Ωρ0 > 1 ∧ Ων0 > 1 ∧ Ωq0 > 1 ∧ Ωq1 > 1 ∧ Ωp0 > 1 ∧ Ωp1 > 1.

Proof. Log-likelihood is a sum of one-dimensional functions with respect
to τ, ρ, ν, q, p.

logLBSMF (θ, Z;x,Ω) = fb,y(τ) + fa,z(ρ) + fa,b(ν) + fy(q) + fz(p) + fb,a,x

(3.19)

The posterior conditional distributions are the same as conjugate prior
distributions. The conditional log-likelihood with respect to τ is

fb,y(τ) = logGamma(α, β)(τ) + const. where

α = Ωτ0 +

∑
{i,j}∈Espatial

yij

2

β = Ωτ1 +

∑
Espatial

(
bi − bj

)2
2

. (3.20)
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Taking the second derivative of log-pdf of Gamma distribution

d2 logGamma(α,β)(τ)
dτ2 =

1− α

τ 2
< 0 ⇔ 1 < α (3.21)

and substituting α results in the condition for concavity:

Ωτ0 > 1−
∑

{i,j}∈Espatial
yij

2
(3.22)

which is always true if Ωτ0 > 1, since yij > 0. Similar reasoning applies
to ρ, ν. Posterior of p, q is Beta distribution with posterior parameters
α′, β′, which second derivative is

d2 logBeta(α′,β′)(p)
dp2 = −α′ + p2(α′ + β′ − 2)− 2(α′ − 1)p− 1

(p− 1)2p2
< 0 ⇔

(β′ − 1)p2 + (α′ − 1)(p− 1)2 > 0 which is true when α′ > 1 ∧ β′ > 1.

The posterior α′, β′ parameters in Beta distribution are always larger than
prior (since α′ = α+#successes, β

′ = β +#failures), so Ωp0 > 1∧Ωp1 > 1⇒
α′ > 1, β′ > 1, and similar reasoning applies to q.

3.2.6. Claim. The logLBSMF (θ, Z;x,Ω) as a function of variables θ is
not everywhere concave on the feasible domain, i.e. its Hessian matrix is
not negative-definite, it can be indefinite.

Proof. As a proof we find a vector h, and point θ̂ for which hTHθ̂h > 0,
where Hθ̂ is a hessian matrix of f(θ) = logLBSMF (θ, Z; x,Ω) at point θ̂.
Let h = h1 dρ + h2 dν + h3 dai, and let Ω′

ρ0 = Ωρ0 +
∑

{i,j}∈Espatial
zij and

Ω′
ν0 = Ων0 + |V | be the posterior Gamma parameters. Now

D2
h,h f(θ) = h2

1
d2f
dρ2

+ h2
2
d2f
dν2

+ h2
3
d2f
da2i

+ 2h1h3
∂2f

∂ρ∂ai
+ 2h2h3

∂2f
∂ν∂ai

+ 2h1h2
∂2f
∂ρ∂ν

= h2
1

1− Ω′
ρ0

ρ2
+ h2

2

1− Ω′
ν0

ν2
− h2

3a
2
i (ρ+ ν)/2

− 2h1h3(zi,i+1(ai − ai+1) + zi,i−1(ai − ai−1))

− 2h2h3(−xi + ai + bi) .

(3.23)
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Part of the expression can be rewritten as

h2
1

1− Ω′
ρ0

ρ2
+ h2

2

1− Ω′
ν0

ν2
− h2

3a
2
i (ρ+ ν)/2 = −hTCρ,ν,ai,z,Ωh

for Cρ,ν,ai,z,Ω ⪰ 0. (3.24)

This is true if Ω fulfills conditions from Claim 3.2.5.

The above 2nd derivative can be made positive and arbitrarily large
in the direction h : h1 = h2 = h3 = 1 by setting ai+1, or ai−1,or xi, to
be positive and large enough to impose hTHθ̂h > 0. This together with
(1 dρ)THθ̂(1 dρ) = d2f

dρ2
< 0 shows indefiniteness of logLBSMF

(
θ̂, Z, x,Ω

)
Hessian.

The above claim suggests that, even with Z = (y, z) held, the
logLBSMF (θ, Z; x,Ω) may not have a global optimum with respect to θ.
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3.2.2 Posterior conditional distributions of the model

The BFSM posterior conditional distributions for θ variables are:

bi ∼N


τ0µτ + τ

∑
j:{i,j}∈Espatial

yijbj + ν(xi − ai)

τ0 + τ
∑

j:{i,j}∈Espatial

yij + ν
,

1

τ0 + τ
∑

j:{i,j}∈Espatial

yij + ν



ai ∼N


ρ0µρ + ρ

∑
j:{i,j}∈Espatial

zijaj + ν(xi − bi)

ρ0 + ρ
∑

j:{i,j}∈Espatial

zij + ν
,

1

ρ0 + ρ
∑

j:{i,j}∈Espatial

zij + ν


τ ∼Gamma

Ωτ0 +

∑
{i,j}∈Espatial

yij

2
, Ωτ1 +

∑
Espatial

(
bi − bj

)2
2


ρ ∼Gamma

Ωρ0 +

∑
{i,j}∈Egenome

zij

2
, Ωρ1 +

∑
Egenome

(
ai − aj

)2
2


ν ∼Gamma

(
Ων0 +

|V |
2

, Ων1 +

∑
V (xi − ai − bi)

2

2

)

q ∼Beta

Ωq0 +
∑

Espatial

yi, Ωq1 +
∣∣Espatial

∣∣− ∑
Espatial

yi


p ∼Beta

Ωp0 +
∑

Egenome

zi, Ωp1 +
∣∣Egenome

∣∣− ∑
Egenome

zi

 (3.25)

Conditional distributions of variables from θ and Z are inter-dependent,
and their dependency graph is depicted on Figure 3.2.3. The
inter-dependency of a⃗ and b⃗ constitutes the marginal maximization
problem as Quadratic Programming, as it is shown in claims 3.2.1, 3.2.2.

Posterior binomial distributions for the latent [0, 1] field break
controlling variables yij, zij are derived from Bayes rule for total
probability:

P (yij = 1|θ, x,Ω) =
L(θ[yij=1], Z;x,Ω)

L(θ[yij=0], Z; x,Ω) + L(θ[yij=1], Z;x,Ω)
(3.26)
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Precisely, the computation proceeds as follows:

P (yij = 1|θ, x,Ω) = exp(v)

exp(v) + 1
where

v = 0.5(log τ − log 2π)− 0.5τ(bi − bj)
2 + log(1− q)− log(q) (3.27)

Probabilities for zij are computed in the same way substituting ai for bi
and q for p.

3.2.3 Categorical mixture prior distribution for the
segment field

Previously we argued that setting Pprior a in the same manner as Pprior b, so
that Pprior a ∼ N (0, τa), does not match realistic expectation of log2ratio
data. Segment means are not distributed around 0, rather they come
form a mixture distribution of (at least) 3 components α ∈ {−1, 0, 1}
each corresponding to deletion, no aberration, duplication accordingly.1

Empirical distributions of segment means are plotted on Figure 3.2.4 in
form of histograms. These components are assumed to be Normal with
means µa,−1, µa,0, µa,1 and precisions ρa,−1, ρa,0, ρa,1. Setting ρa,1 > ρa,0

and ρa,−1 > ρa,0 partially addresses the heteroscedasticity of log2ratio.
Prior proportions in the mixture of components are given by a vector of

probabilities rα where
∑

α∈{−1,0,1} rα = 1. To estimate posterior mixture
probabilities, we introduce a vector of categorical variables ŝi ∈ −1, 0, 1
distributed a priori Categorical(rα). However, in computations we use a
matrix of 0, 1 variables

(
si,α
)
|V |×{−1,0,1}, which we call segment category

states, with the property ∀i
∑

α∈{−1,0,1} si,α = 1. We end up with the
following formula:

Pprior a =
∏

α∈{−1,0,1}

(
rα

√
ρa,α
2π

)si,α

exp

(
−1

2
si,αρa,α(µa,α − ai)

2

)
(3.28)

1Actually, due to diploid genome and various possibilities for mutations, there are
more than 3 basic levels of signal expected. In literature Hidden Markov Models use 3
to 5 states to model signal categories. (Rueda and Diaz-Uriarte, 2009)
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This renders the posterior conditional distribution of ai to

ai ∼ N

(
mpost a

τpost a
,

1

τpost a

)
where

mpost a =
∑

α∈{−1,0,1}

si,αρa,αµa,α + ρ
∑

j:{i,j}∈Egenome

zijaj + ν(xi − bi)

τpost a =
∑

α∈{−1,0,1}

si,αρa,α + ρ
∑

j:{i,j}∈Egenome

zij + ν (3.29)

The expectation step for latent 0, 1 random variables si,• proceeds as
follows, similarly as in the case of yij.

P (si,• = (1, 0, 0))|θ, x,Ω) =
L(θ, Z[si,•=(1,0,0)];x,Ω)

L(θ, Z[si,•=(1,0,0)]; x,Ω) + L(θ, Z[si,•=(0,1,0)];x,Ω) + L(θ, Z[si,•=(0,0,1)];x,Ω)

(3.30)

Precisely

vi,α = 0.5(log ρa,α − log 2π)− 0.5ρa,α(µa,α − ai)
2 + log rα

P (si,α̂|θ, x,Ω) =
exp(vi,α̂)∑

α∈{−1,0,1} exp(vi,α)
. (3.31)

Hyperpriors for µa,α, rα. A natural progressing step is to variate
µa,α by adding it to the set of optimized variables θ, and complement the
log-likelihood with a (hyper)prior Normal distribution (with rather small
variance), as below.

Pprior µa,α =

√
ρ̂a,α
2π

exp

(
−1

2
ρ̂a,α(µ̂a,α − µa,α)

2

)
(3.32)

This corresponds to discovering from the data A similar variation step for
ρa,α with Gamma distribution as a hyperprior is feasible.

The vector r⃗α corresponds to the probabilities of discovering genomic
deletion, duplications, and neutral segments. It can be varied by setting
a prior Dirichlet distribution, which is a conjugate prior to Categorical
distribution.
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Figure 3.2.3: Factor graph for LBSMF (θ, Z;x,Ω) model. log2ratio data x⃗ marked
gray. Gaussian Markov random fields a⃗, b⃗, defined on graphs Gspatial, Ggenome
accordingly, in white log2ratio data x⃗ marked gray. Precision latent variables τ, ρ, ν
marked blue, their prior Gamma distributions not charted on the graph, Normal
prior for b⃗ not charted. Discrete variables Z = {y⃗, z⃗, s⃗} marked green. Background,
segment fields break probabilities p, q marked in yellow. The s⃗ segment category
state is introduced in Section 3.2.3. The multivariate NGgenome , NGspatial correspond
to Gaussian Markov Fields on edges of respective graphs. Interestingly, the graph
is a tree graph when vector variables and multivariate distributions are treated as
typical Bayes network nodes.
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Figure 3.2.4: Histogram of segment log2ratio means from IMID2py database.
Since most segments have no aberration and segments around 0 dominate, data
was divided into 2 groups for better visibility.
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3.3 Double linkage in the segment field

One characteristic of the line graph Ggenome and the segment field
defined on it is the fact that a single break zij = 0 between i-th and
j-th neighboring features disconnects the graph, and in such case no
information flow is preserved along the genome.

This is especially unwanted in the presence of spoiled probes on a
microarray. A spoiled probe is a feature which results with log2ratio
being erratic, without correlation to neighboring probes. A probe can
turn out to be spoiled in one, a group of, or all experiments, for reasons
listed in Section 2.2.3, page 26. We confirm existence of such probes
on microarrays from IMID2py database, for a concrete example refer to
Figure 4.2.1. Thus, a presence of such a spoiled probe in the segment
disrupts dependence structure of probes in the same segment. 2

This inspires to introduce a simple modification to the single linked
segment field, namely double linked segment field and its double linked
graph

Gdouble
genome =

(
V,Egenome ∪ Edouble

genome

)
where

Edouble
genome =

{i, j} : there is exactly one probe between i

and j along the chromosome

. (3.33)

Again, if we choose the indexing of the feature set V to agree with the
genomic order, then the set of edges Edouble

genome is roughly
{
{i, i+ 2}

}
I
.

The modification allows disconnecting single probe outliers from segments
without disconnecting the graph, and there is no break in the segment
dependency structure.

The relevant part of the LBSMF (θ, Z;x,Ω) (ref. eqn. 3.11) is modified in

2The existence of such probes is one of the reasons for the industry standard to
only accept segments with length of at least 3 consecutive probes, see for example
Möhlendick et al. (2013).
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the following way:

exp

−1

2

 ∑
{i,j}∈Egenome

zijρ(ai − aj)
2 +

∑
{i,j}∈Edouble

genome

wzijρ(ai − aj)
2




= exp

(
−
[
a

]T
Mdouble.w

[
a

])
(3.34)

where w ≥ 0 is the weight of the double link. w = 0 is the single link, w =

0.5 is a natural choice from the fact that ai−ai+2 = (ai−ai+1)+(ai+1−ai+2)

is a sum of two Gaussian variables, hence its variance shall be twice the
original. w = 1 also turns out to be an interesting choice, which is analyzed
as follows.

The consequences of double links are analyzed through the
analysis of eigenvalues of the corresponding bilinear form matrices of the
single/double linked graph Msingle, Mdouble.w.

Msingle = Mdouble.1 =

1 −1 0 · · · 0 0 0

−1 2 −1
. . . 0 0 0

0 −1 2
. . .

. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0
. . .

. . . 2 −1 0

0 0 0
. . . −1 2 −1

0 0 0 · · · 0 −1 1





2 −1 −1 · · · 0 0 0

−1 3 −1
. . . 0 0 0

−1 −1 4
. . .

. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0
. . .

. . . 4 −1 −1

0 0 0
. . . −1 3 −1

0 0 0 · · · −1 −1 2
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Mdouble.w =

1 + w −1 −w · · · 0 0 0

−1 2 + w −1
. . . 0 0 0

−w −1 2(w + 1)
. . .

. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0
. . .

. . . 2(w + 1) −1 −w

0 0 0
. . . −1 2 + w −1

0 0 0 · · · −w −1 1 + w


(3.35)

All the above matrices are diagonally weakly dominant 3, hence their
eigenvalues are all λk ≥ 0. The smallest eigenvalue is λ0 = 0, and
it corresponds to a constant segment eigenvector a⃗ = (m,m, . . . ,m).
The second eigenvectors are approximately the slope vector sslope =(
−n−1

2
,−n−1

2
+ 1, . . . , n+1

2
− 1, n−1

2

)
.

Denote b̃ = (x−b) and let M be any of the linked spatial graph bilinear
form matrices. Rewriting the equation 3.16 with appropriate bilinear
form matrix Qspatial, assuming N (0, τa) as a prior for a, and treating

3The Mdouble.1 = Dgenome − Agenome is the Laplacian of the graph Ggenome, where
Dgenome, Agenome are degree and adjacency matrices accordingly.
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Figure 3.3.1: Left: The ratio between the second smallest eigenvalues of matrices
Msingle and Mdouble.w for w = 1 and w = 0.5. The λ0 = 0 for all matrices, while
λdouble.1
1 is 5 times larger, and λdouble.0.5

1 is 3 times larger, than the second eigenvalue
of the single linkage graph matrix for large matrix sizes n. This shows that the
spectral gap for the double linked graph is 5, or 3, times larger than the spectral
gap of the single linked graph. Right: The ratio of optimal slope coefficients in
the segment field âsingle

1

âdouble
1

. Double linked segment fields fit for smaller slopes. (ref.
eqn. 3.40).

the logLBSMF (θ, Z; x,Ω) as a function of a we obtain

logLBSMF (θ, Z;x,Ω) =
1

2

[
a b

]
Qy,z

τ,ρ,ν

a
b

+ cTx,ν,τb

a
b


+f(τ, ρ, ν, p, q, x)

= const.−
⟨
b|Qspatial|b

⟩
−
⟨
b̃− a|b̃− a

⟩
−
⟨
a|M |a

⟩
−
⟨
a|τa/2|a

⟩
= const.−

⟨
b̃|b̃
⟩
+ 2

⟨
b̃|a
⟩
−
⟨
a|(I + τa/2)|a

⟩
−
⟨
a|M |a

⟩
= const.+ 2

⟨
b̃|a
⟩
−
⟨
a|M ′|a

⟩
where M ′ = Diag(1 + τa/2) +M (3.36)

Now, the maximization of logLBSMF (θ, Z;x,Ω) with respect to a is
equivalent to

Min
⟨
a|M ′|a

⟩
− 2

⟨
b̃|a
⟩

(3.37)
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M ′ is symmetric, strictly positive definite with eigenvalues 1 + τa/2 + λk

for k = 0, . . . , n. Let b̃k, ak denote coefficients in the eigenbasis of M ′.
The solution to the maximization problem is given by

â = M ′−1
b̃ ⇔ âk = b̃k/(1 + τa/2 + λk) (3.38)

Denote âsingle = M ′
single

−1b̃, âdouble = M ′
double

−1b̃. It follows that both cases
yield the same segment mean, that is âsingle

0 = âdouble
0 , because the λ0

eigenvalues and corresponding eigenvectors are the same.
It turns out that within a good precision bsingle

1 ≃ bdouble
1 , which

correspond to coefficients of slope component of b̃ and thus

âsingle
1

âdouble
1

≃ 1 + τa/2 + λdouble
1

1 + τa/2 + λsingle
1

. (3.39)

A reasonable prior setting sets τa ≤ 1. We hypothetize that

∣∣∣âsingle
1

∣∣∣ ≃ 1.5 + λdouble
1

1.5 + λsingle
1

∣∣∣âdouble
1

∣∣∣ ⪈ 1 ·
∣∣∣âdouble

1

∣∣∣ . (3.40)

The hypothesis is verified numerically: the slope vector is chosen for
b̃← sslope and âsingle

1

âdouble
1

is computed, results on Figure 3.3.1.
The practical effects of the double link introduction are plotted on

Figure 3.3.2 where we observe that the optimized segment fields for double
links graphs have smaller slopes, to almost no slopes in the case of w = 1,
which gets balanced with more breaks in segment fields, and which stands
in agreement with the above considerations. The slope coefficients ratio
from Figure 3.3.1 approaches 1 when n→∞, however double link causes
the fit of segment fields precisions ρ to be larger, hence resulting segment
fields have less variance.
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The effect of double linkage in the segment field a⃗

Figure 3.3.2: The effect of double linkage in the segment field (marked in red).
i) top panel: no additional links, only {i, i + 1} ii) middle panel: {i, i + 2} with
twice the single link variance (weight w = 0.5) iii) bottom panel: {i, i + 2} with
the same variance (weight w = 1). The double linkage stabilizes the segment field
(small variance, no slope), as a consequence more breaks in the segment field are
imposed. The plotted region indicates duplication in mitochondrial DNA, possibly
due to degeneracy of mitochondrial DNA in the reference sample.
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3.4 Optimizing BSMF parameters with
Expectation Maximization
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Figure 3.4.1: A hexagonal lattice(equivalently a triangular tiling) graph G and
its stratification on Agilent aCGH microarray. Each stratum has its neighborhood
non-intersecting with other nodes from the same stratum. Strata no. 1 marked
in blue. neighborhood of the center node marked in red. We iterate over strata
and maximize log-probability on each one separately, while keeping other strata
constant. Maximal cliques of G are triangles, each consisting of vertices from
strata 1, 2, 3.

Estimating posteriors with Gibbs sampler We denote the
possibility of a Gibbs sampler for the LBSMF (θ, Z;x,Ω). The conditional
distributions to sample from in each step are listed in Equations 3.25. In
the the case of fields a, b one way to proceed is to sample sequentially first
over vertices of Gspatial, and then over vertices of Ggenome. The resampling
of field values on each vertex is essentially what have to be done, however
we may benefit from the structure of graphs and local Markov property of
the field. Precisely, we color Gspatial graph into 3 strata, as illustrated on
Figure 3.4.1. This allows to effectively resample variables in each strata.
This concepts also plays role in our Expectation Maximization scheme
implementation.
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In the EM algorithm background and segment fields are are initialized to
averages from neighborhood log2ratio data in graphs Gspatial and Ggenome

respectively.

ai =
xi +

∑
j∈Ngenome(i)

xj∣∣1 +Ngenome(i)
∣∣ zi = 1

bi =
xi +

∑
j∈Nspatial(i)

xj∣∣1 +Nspatial(i)
∣∣ yi = 1 (3.41)

3.5 Results: application on aCGH microarrays
data

To obtain results presented below, we used the following parameters
for prior distributions. For Gamma prior distribution for all precision
variables we used:

Ωτ0 = Ωρ0 = Ων0 = 1.1

Ωτ1 = Ωρ1 = Ων1 = 1/5 (3.42)

For Beta prior distribution for probabilities p, q of field breaks we used:

Ωp0 = Ωq0 = 2

Ωp1 = Ωq1 = 50 (3.43)

Normal prior for background field b was set to N
(
(, 0
)
, τb = 1). Mixture

Gaussian prior distribution segment field a initialized with:

r⃗α = c(0.01, 0.98, 0.01)

(µa,−1, µa,−1, µa,−1) = (−0.5, 0, 0.5)

(ρa,−1, ρa,−1, ρa,−1) = (
1

(0.4)2
,

1

(0.3)2
,

1

(0.4)2
) (3.44)

.
The convergence properties of EM BSFM optimization are plotted on

Figures 3.5.3 and 3.5.4, on run for clear visibility and many for broader
overview. It can be observed that, except for field breaks, and field break
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probabilities, parameters converge in 3̃0 iterations. Histogram of running
times until convergence (or max 400 iterations ) is on Figure 3.5.5.

Figure 3.5.1: log2ratio together with segment field in red. Middle of yellow
bars indicate original log2ratio value, together with shifted points allow to see the
correction by the background field.

3.5.1 Comparison with CBS results

To check the validity of segmentations resulting from BSMF we compare
40 BSMF segmentation results with CBS results on the same set of aCGH
experiments. Figures 3.5.6 and 3.5.7 summarize this comparison.

3.5.2 Sensitivity to priors

We’ve run BSMF several times on a selected aCGH experiment with
varying prior parameters. On Figures 3.5.8 and 3.5.9 charted is
dependence of the final optimal parameters on the rate parameter of the
Gamma and Beta distributions.

m

The author would like to thank dr Bogusław Kluge for conceiving the
idea of background and segment fields with breaks, and for the initial
EM implementation in R with alternating strata on graphs, and for many
related and unrelated fruitful discussions. All further modifications to this
idea outlined in this chapter, the quadratic problem formulation, their
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BSMF optimized background field

Figure 3.5.2: EM optimized background field of a microarray.

analyses, the experiments and the results elaboration are results of the
author.
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BSMF parameters convergence in Expectation Maximization

Figure 3.5.3: BSMF convergence in an Expectation Maximization run.
Parameters’ convergence by iterations (x-axis). Panels from the top: i) changes
in the number of breaks in segment/background fields(p/q), computed from p, q

probabilities ii) segment field a and background field b relative change: ∥a⃗
n+1−a⃗n∥

2
∥a⃗n∥2

iii) precision parameters τ, ρ, ν converted to standard deviations iv) number of
features in duplicated segments n.seg.p1, in deleted segments n.seg.s2, computed
from posterior segment categories si,α.
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BSMF parameters convergence in Expectation Maximization,
40 runs

Figure 3.5.4: Data from BSMF EM executions on 40 aCGH microarrays. For the
description of charted variables see the caption of Figure 3.5.3.
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Running times on Intel(R) Xeon(R) CPU X5690 @ 3.47GHz

Figure 3.5.5: Running times of 40 runs of BSMF segmentations. Computations
were made in parallel on a server with 24 cores. Maximal number of iterations
was set to 400. For histograms of number of iterations until convergence ref. to
Figure 3.5.6
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Segmentation comparison BSMF vs CBS, 40 microarrays

Figure 3.5.6: Comparison between BSMF and Circular Binary Segmentation
(CBS), histograms summarizing 40 microarrays. From left to right:
i) top panel: correlation between −1, 0, 1 feature segment indicator vectors
(deletion,0,duplication), where high correlation indicates similar segments with
|segment mean| > 0.4; bottom panel: BSMF iterations until EM convergence
criterion was met ii) BSMF posterior probabilities of a break in segment p and
background q fields iii) feature counts for symmetric difference in detected deletions
iv) feature counts for symmetric difference in detected duplications.
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Segmentation comparison BSMF vs CBS

Figure 3.5.7: Comparison with Circular Binary Segmentation (CBS). Marked in
red are experiments where the difference in results from by CBS and BSMF were
largest in the number of probes in it. Scatterplots reveal dependency between
posterior segment break probabilities p, and the size of the symmetric difference
between BSMF and CBS segmentations. No such dependency is observed between
posterior background noise break probabilities q.
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(a) (b)

Figure 3.5.8: Sensitivity to the rate of Gamma prior distribution.

(a) (b)

Figure 3.5.9: Sensitivity to the rate of Beta prior distribution.
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Non, rien de rien
Non, je ne regrette rien
Ni le bien qu’on m’a fait
Ni le mal tout ça m’est bien égal

Michel Vaucaire

4
Functional performance of aCGH

design

The array design is the starting point of the study on genomic disorders
underlying a given disease, Lemoine et al. (2009) elaborates on the issue.
There is a large body of research concerning array design task, see
e.g. Lipson et al. (2002, 2007). Similarly, many papers consider the issues
of normalization, and detrending of, array CGH data: Chen et al. (2008);
Kreil and Russell (2005); Staaf et al. (2007); van Hijum et al. (2008).

It is a reasonable practice, while conducting the large-scale biomedical
research projects, to provide several prototype array designs. Very
important issue here is the methodology for comparison of the functional
quality of different arrays. Often disposing only limited amount of
experimental data, researchers develop several array designs and based
on their suitable comparison they have to choose the best one for
further experiments. The plethora of methods devoted to array design
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and normalization studies were proposed in the literature, but only few
approaches cope with the problem of comparison between different array
designs.

There are some standard statistics calculated for purpose of array
comparison. They comprise usually: Signal to Noise Ratio, Derivative Log
Ratio Standard Deviation, Background Noise, etc (Carter, 2002). Authors
of (Coe et al., 2007) proposed new performance measure called functional
resolution, which reflect the uniformity of probe spacing on the chip and
the sensitivity of the array to single CNVs.

Analogously to other high-throughput technologies (like mass
spectrometry or expression microarrays) various sources of technical and
biological variation affect the array CGH experiment. The measurement
noise comes from the preparation of the microarray slide and the
hybridization process, while the biological variability is the result of the
heterogeneity of the cells (e.g. mosaicism (Iourov et al., 2008)). However,
despite increasing resolution of CGH arrays the variation in signal
measurements cannot be eliminated.

Our goal in this Chapter was to develop the framework for performance
comparison of different CGH array designs. We decided to explore the
concept of robustness. The proposed methodology follows the general
concept of robust statistics Hampel et al. (2005), quoting B.D. Ripley an
important area that is used a lot less than it ought to be.

In our approach we consider the design robust when it is effective in
the detection of aberrations in the presence of noise. The segmentation
obtained for the given design is treated here as a robust estimator
of rearrangement regions. Better designs correspond to more robust
estimators, i.e., those approximating the aberrations for the data
contaminated with the noise.

We decided the built up our method on CBS algorithm for segmentation
calling. To test the robustness of a specific design we have to enhance the
DNAcopy (package implementing CBS) by incorporating parametrized
noise model. Our package named DNAcopyNoise is freely available at
http://bioputer.mimuw.edu.pl/software/DNAcopyNoise.

Our results are twofold: firstly, using synthetic data we demonstrate
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the usefulness of robustness measure for array performance comparison.
Secondly, we apply the concept of robustness to select the best one from
several optimized designs. The optimization aimed in reducing array size
while keeping the same rearrangements detection ability. As a measure
of design quality used for optimization purpose we explore so called
noise-induced discrepancy defined with respect to the performance of the
original (full size) array.

4.1 Methods

4.1.1 Synthetic Array Design

Aiming in validation of the robustness approach we generate several
datasets using framework from Willenbrock and Fridlyand (2005). Two
types of datasets generators are considered: they correspond to different
genomic rearrangements structure (high density of relatively short
segments, like in cancer tissues versus rare long aberrant segments
characteristic to genomic disorders). For each type of data we consider
different array designs. E.g., for data of first type, dataset (a) presented in
Figure 4.1.1 is the exemplary output of aCGH experiments performed on
well designed array. Dataset (b) corresponds to experimental data from
the design, in which the inappropriate probe selection resulted in poor
hybridization. The generator for dataset (b) is obtained as the following
modification of the original generator (a). We choose uniformly at random
20 percent of probes and multiply their signal intensity by the coefficient
sampled from Beta distribution with shape parameters α = 2 and β = 20

(unimodal distribution defined on the interval [0, 1]).
The generator corresponding to array design giving the dataset (c)

mimics the problems arising from erroneous analysis protocol that results
in significant background noise. We assume here, that some probes
may be erroneously analyzed already during the scanning process and
only one from Red (cy5) and Green (cy3) signal is detected. To model
such situation we choose uniformly at random 15% of probes and sample
their intensities from the beta distribution with parameters α = 0.7 and
β = 0.7. Such readouts correspond to the probe signals not well scattered
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Figure 4.1.1: Plots show log2ratio (y-axis) vs. genomic location (x-axis) for
synthetic datasets corresponding to four different array designs: (a) original
datasets, (b) dataset with simulated poor hybridization effect, (c) dataset with
simulated error-prone analysis procedures, (d) dataset with both effects.

around zero in the typical MA plot (See Section 2.2.3 for definition of
MA plot). The design corresponding to dataset (d) suffers from both
shortcomings. We generate 40 datasets using each design. One synthetic
genome hybridization experiment measure the signal intensities of 10000
probes located on 10 chromosomes.

4.1.2 Exon CGH Array Design

Design quality measures proposed here has been tested on samples
obtained in real aCGH experiments. The dataset come from 60 arrays
hybridized with DNA from subjects with epilepsy, autism, heart defects
and mental disorders. Each experiment was performed on the 180 K exon
targeted oligonucleotide array. The construction of exon targeted aCGH
microarray is outlined in Section 2.3.
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4.1.3 Enhancement of DNACopy

DNAcopy package for R environment implements circular binary
segmentation algorithm (Olshen et al., 2004). CBS algorithm finds
segmentation by recursively splitting subsequent segments into three, or
two smaller ones. Each segment cut is found by maximizing the ZC

statistic, as described in Section 2.2.4.
Segmentation proceeds when the null hypothesis is rejected, that is

when ZC is above upper α−quantile of null distribution Z∗
C . CBS

algorithm estimates the null distribution with the use of permutation
method and tail probability estimation.

We quantify the level of robustness of a segment by introducing a
Gaussian noise to the log2ratio data. The aim is to detect the minimal
level of noise that makes the considered segment undetectable with high
probability. Finding these values requires extensive sampling as in our
model the introduced noise corresponds to highly dimensional random
variable. We optimized the implementation by introducing the noise
model inside the sampling phase: every permutation in CBS algorithm is
sampled with random noise added with mean zero and standard deviation
η. This changes the Z∗

C distribution and the sought quantile. This is
compared with the previously computed, however scaled accordingly to
introduced noise variance, ti+1,j statistic for the analyzed segment. To
each aberrant segment k we assign the appropriate noise level ηk by
running the original version of CBS segmentation and introducing noise
in binary search fashion up to desired precision.

4.1.4 Robustness Measure

It is inevitable that the measurement precision vary considerably between
probes depending on the hybridization efficiency. Hence some regions of
the genome are analyzed with significantly higher experimental precision
than others (Baldocchi et al., 2005). Therefore it is desirable to model the
effectiveness of specific array region in detecting aberrations. We propose
an approach that allows to evaluate the quality measure for a whole array
but also to focus on specific set of probes. In our method we measure the
quality of array design using noise robustness of segmentation algorithm
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Figure 4.1.2: The resistance of aberrant segments for increasing noise. y-axis
correspond to increasing (log-)noise level, different segments are placed along x-axis
(genomic location), the log2ratio are color-coded.

performed for all accessible aCGH experiments.

The intuition behind this approach can be explained in simple terms.
Segmentation algorithm provides the information about comparative
hybridization experiment. Aberrant segments are easily detectable if they
are represented by good quality probes. Good probes should tolerate
higher level of measurement noise than poor quality probes. Therefore
we conduct segmentation procedure for several increasing noise levels and
observe the behavior of aberrant segments. There is certain number of
segments found for original experimental data. Then we simulate some
measurement noise and repeat segmentation algorithm. Some segments
(consisted of poor quality probes) disappear and we continue this process,
memorizing for each segment the maximal noise level, for which this
segment is still identifiable (for a fixed segment k we denote this value by
ηk). The output of several segmentation stages for 2 different (synthetic)
designs is presented in Figure 4.1.2. Clearly, the left panel corresponds to
more robust design.

Let us fix the aCGH experiment and let ηk denote the noise level of the
maximal noise resistance of kth segment defined as above. The level of
noise is measured with reference to baseline variation (standard deviation
of probes in non aberrant regions). The robustness of probe k is defined
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Figure 4.1.3: The robustness compared for two synthetic designs. The robustness
has been calculated for all probes (upper plot) as well as corresponding weights
importance (lower plot). The structure of genomic rearrangements mimics the
abnormalities in cancer cells. Good design is coded in blue. Red design contains
20% of poorly hybridizing probes and 15% of outliers (probes causing erroneous
scanning).

as:

θk =
ηk

length(k) · |mean(k)| (4.1)

where length(k) is the length of kth segment (measured in the number of
probes), and |mean(k)| is the absolute value of mean of signal intensities
along the segment. We assign the segment robustness to all the probes it
contains.

Now we combine the segmentation robustness of several aCGH
experiments into the measure of array design quality. The robustness
score for an array is composed from robustness of probes it consists of.
Note that, we can estimate the quality only for those probes that are
witnesses of some aberration. Consider a single probe k and assume,
that it belongs to aberrant segment in some samples (according to
segmentation algorithm run for original data). To this probe robustness
scores θi1k , θ

i2
k , . . . θ

im
k have been assigned in experiments i1, . . . im. Assume,
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that there are m accessible experiments in total. As an overall quality
of this probe we can take the median of the empirical distribution of
robustness scores θi1k , θ

i2
k , . . . θ

im
k .

However in the case of limited number of accessible experimental data
we encounter here the problem of insufficient statistic, because a single
probe can be the witness of only few aberrations. To avoid this difficulty
we apply the sliding window approach. The empirical distribution of
probe robustness is composed for all probes contained in the window
of predefined length n (depending on the resolution of an array). The
median of this distribution is calculated yielding the smoothed version of
the overall probe quality.

The next neighboring window is shifted by the half of the window
length. Therefore any single probe contributes to exactly two window
statistics (the boundary probes are ignored). Assume that the median
(µL) from the first window is calculated for iL events (aCGH experiments
in which this probe lies in the aberrant segment) and the second µR for
iR events. Then the ith probe robustness for the array A is defined as:

ΘA
i =

iLµL + iRµR

iL + iR
(4.2)

The robustness of array design A (containing N probes) can be
calculated by taking the average robustness of all probes.

However, the important issue here is that the calculation of robustness
for some probes relies on many detected aberrations containing this probe,
while for others the robustness measure is supported by only few witnesses.
Consider once more the probe i and two windows containing it. A support
for the ith probe robustness ΘA

i is defined as sAi = iL+iR
nm

i.e., the percent
of experiments in which this probe or its surrounding probes are witnesses
of some aberration.

The support vector is composed of all probe supports sssA =

sA1 , . . . , s
A
i , . . . , s

A
N . This vector is further transformed into importance

weights vector ωωωA = ωA
1 , . . . , ω

A
N by appropriate normalization and scaling

(the scaling function flatten out the support vector, as higher support
values have roughly the same impact). Finally, the robustness of array
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Figure 4.1.4: The robustness compared for two synthetic designs. The robustness
has been calculated for all probes (upper plot) as well as corresponding weights
importance (lower plot). The structure of genomic rearrangements mimics the
abnormalities in classical genetic disorder (relatively rare long aberrant segments).
Good design is coded in blue. Red design contains 15% of outliers (probes causing
erroneous scanning).

design A is defined as:

ΘA = Σiω
A
i Θ

A
i (4.3)

4.1.5 Optimizing Exon CGH Array Design via Noise-induced
Discrepancy

The robustness measure ΘA defined for a given array design A allows
to estimate the functional performance of A i.e., the efficiency of
rearrangements detection for noisy data. In this section we study
the problem of array design optimization. Our goal is to eliminate
certain percent of probes to obtain smaller design which has comparable
performance.

In the following we make an assumption that the segmentation ΠO

computed for the original design uncovers the significant genomic signal.
The robustness of smaller, filtered designs are measured with respect to
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this segmentation. The comparison between the optimized array and the
original one is done by means of the gradually changed segmentation for
increasing noise level.

Let ΠO
i and ΠA

i denote segmentations corresponding to sample
i analyzed on original O and optimized design A, respectively.
Assuming fixed noise level η and sample number i we define the
distance between two segmentations ση(Π

O
i ,Π

A
i ) similarly to raw distance

from (Liu et al., 2006): if both samples express a gain (or loss) at the same
loci τ we consider them identical, otherwise this genomic loci contributes
to the distance between these segmentation. Below the length of whole
genome is denoted by Γ:

ση(Π
O
i ,Π

A
i ) =

1

Γ

∑
τ :τ differs between ΠO

i and ΠA
i

length(τ) (4.4)

Above statistic ση(Π
O
i ,Π

A
i ) corresponds to the fraction of the genome

differentiating segmentations ΠA
i and ΠO

i . The total distance σtot
η is

calculated as the average of ση(Π
O
i ,Π

A
i ) over all m experiments.

σtot(A|O)
η =

1

m

m∑
i=1

ση(Π
O
i ,Π

A
i ) (4.5)

Finally, the first measure called noise-induced discrepancy of smaller array
design A wrt original one O is defined as follows:

ΘA|O =

∫ ηmax

ηmin

σtot(A|O)
η dη (4.6)

Proposed measure ΘA|O corresponds to cumulative total distance
ση(Π

O
i ,Π

A
i ) for different noise levels.

Since the noise-induced discrepancy includes the average distance
ση(Π

O
i ,Π

A
i ) over all experiments, the result may be influenced by outliers.

Moreover, values of ση(Π
O
i ,Π

A
i ) increase consequently with the noise η,

i.e. distances computed for larger η contribute more in overall sum.

To compensate this behavior we propose the notion of relative
noise-induced discrepancy. Let us fix the sample i and noise level η and
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consider statistics ση(Π
O
i ,Π

A
i ) for all n designs selected for comparison

(i.e. A1,A2, . . . ,An). Then we make the rank transformation: i.e. instead
of distances ση(Π

O
i ,Π

A1
i ),ση(Π

O
i ,Π

A2
i ) ,…,ση(Π

O
i ,Π

An
i ) we take their ranks

rη(Π
O
i ,Π

A1
i ),rη(ΠO

i ,Π
A2
i ) ,…,rη(ΠO

i ,Π
An
i ) 1.

Analogously, to the total distance σtot(A|O)
η , we consider the total ranked

distance r
tot(A|O)
η , for the array A, as an average rη(Π

O
i ,Π

A
i ) over all m

experiments:

rtot(A|O)
η =

1

m

m∑
i=1

rη(Π
O
i ,Π

A
i ) (4.7)

Finally, the relative noise-induced discrepancy of smaller array design A
with respect to original one O is defined as follows:

RA|O =

∫ ηmax

ηmin

rtot(A|O)
η dη (4.8)

We would like to emphasize, that the relative noise-induced discrepancy
RA|O is robust to outliers and in contrast to noise-induced discrepancy
does not favor any noise levels.

4.2 Results and discussion

4.2.1 Synthetic Data

Figure 4.1.3 presents the comparison of two designs evaluated on
(synthetic) samples characterized by many relatively short segments (like
in cancer tissues). The blue color corresponds to good design. Weaker
design (coded in red) contains 20% of poorly hybridizing probes and
15% of outliers. Hence it corresponds to generator (d) from the previous
Section.

For all oligo probes we present their robustness ΘA
i (upper plot) in

logarithmic scale and corresponding importance weights vector ωA
i (lower

plot). It is clearly visible, that the robustness is significantly higher for
better (blue) design.

1The concept of ranks turns out to be extremely useful in the procedure for rare
CNV detection described in the next Chapter.
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The evaluation of two other designs tested on typical genomic disorder
(not cancer) datasets is illustrated in Figure 4.1.4. Blue color codes the
outcome for good design and red color corresponds to design containing
15% of poor probes (yielding log2ratio readouts classified as outliers),
i. e. datasets from this design are obtained from generator of type (c).
Analogously as for previous example, the better design yields higher array
robustness.

4.2.2 Noise-induced Discrepancy of Optimized Designs

The case study using synthetic datasets justifies that robustness measure
can be applied for estimation of the design performance in detecting
aberrant regions. The second measure proposed here, i.e. relative
noise-induced discrepancy turned out to be useful in aCGH design
optimization process.

The starting point of the optimization procedure was the calculation
of per-oligo quality score. The authors of Mulle et al. (2010) suggest
that the high variance of a fixed probe in the log2ratio across multiple
samples originates e.g. from the unreliable binding by target sequences
and therefore is related to the poor probe quality. More importantly we
observed that also good performing probes may have a high variance in
the log2ratio whenever they are located in polymorphic regions. Therefore
we decided to consider the log2ratio deviations from the signal (as a signal
we mean the segment means), denoted by δi for i ∈ (1, . . . , N), where N

states for the number of probes in the array.
Next we observed, that the value of segment mean influences the

distribution of these deviations (i.e. higher segment means corresponds
to higher deviations). To cope with this problem we replaced a global
measure of a probe quality by the simple score that reflects the oligo
suitability in the context of surrounding probes. Consider a probe
i and its neighborhood (e.g. probes (i − 1), (i + 1)), denoted by
i∗. For log2ratio data from all considered samples we performed the
Kolomogorov-Smirnov (K-S) test comparing the distribution of δi in all
samples to the distribution of δi∗ . From now on, we interpret the p-values
form K-S test as a measure of the functional performance of given probe.
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Figure 4.2.1: Segmentations performed on original and optimized designs (see
description in the main text). A spoiled probe can be visible around 300 mark.
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Figure 4.2.2: Comparison of relative noise-induced discrepancy RAi|O for three
optimized designs (see description in the main text).

Smaller (i.e. optimized) designs were proposed after analysis of
the data from 60 aCGH experiments, performed on the 180 K
array (Boone et al., 2010) gathered in the software system mentioned in
the last Chapter. The analysis aimed in selecting 80% of oligos from
original design while keeping the ability to detect all significantly aberrant
segments. The influence of design optimization strategy on the robustness
of smaller design was analyzed in three case studies. We tested three
different approaches of probe selection: (i) uniform sampling (optimized
design A1); (ii) removal of most deviated oligos (optimized design A2);
(iii) removal of least deviated oligos (optimized design A3). We assumed
that the most deviated probes had the lowest p-value in KS-test and the
least deviated oligos were defined as probes with the highest K-S p-value.
The performance of segmentation method for all described designs is
illustrated in Figure 4.2.1. Panel (a) presents the fragment of 1000-oligos
distributed along the x-axis; the y-axis corresponds to different samples
( log2ratio value is color-coded). The black boxes mark CNVs common
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to almost all considered samples (i.e. duplications near oligo 600-th, and
deletions near 800-th.). With high probability these CNVs correspond to
benign polymorphisms (not interesting from medical point of view) but
in the sequel we use them as a positive controls. Panel (b) visualizes
the p-values from K-S tests performed for each oligo on the original
design. Panels (c) - (d) present the comparison in segmentation quality for
different array designs: segmentations performed on the original design
and segmentations performed on the optimized designs A1, A2, and A3,
respectively.

Finally Figure 4.2.2 shows the comparison of relative noise-induced
discrepancy. The left subfigure shows the total ranked distance r

tot(Ai|O)
η

versus increasing noise η. The right subfigure presents the values of relative
noise-induced discrepancy RAi|O.

4.3 Conclusions

Several improvements for presented methodology are possible. The
challenging problem is whether DNAcopy segmentation method may be
replaced by more efficient one (e.g. new segmentation method based on a
wavelet decomposition (Ben-Yaacov and Eldar, 2008b)). In our approach
we used several simplified assumptions regarding to noise model. In
particular, we assumed the Gaussian distribution of signal variation, i.e.
we believe that the quality of probe hybridization results in symmetric
deviation of signal intensity. However, this assumption may be too
optimistic and more profound analysis of the noise behaviour may suggest
another type of distribution, e.g. non-symmetric or bi-modal.

Moreover, we treat each probe independently, neglecting possible spatial
correlation of the noise. Although this kind of correlation may exists
in real data, the standard design protocol places probes on the chip in
the random fashion with respect to genome location. This justifies the
assumption of non-correlated random perturbation of each probe.

Obviously the limitation of our method is availability of rearrangement
data. Proposed measure of design quality does not necessary
reflect the global sense of quality, but rather corresponds to
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quality of detection of DNA changes in the already analyzed
data. Since, our approach is devoted to the analysis of
targeted microarrays designed for clinical diagnosis of specific
disorders (Bartnik et al., 2012; Wiśniowiecka-Kowalnik et al., 2013), we
assume that the coverage of possible rearrangements in previously
analyzed DNA is complete enough.

Finally, other possibility of improving array quality is to replace worst
performing probes by newly designed oligos or to optimize the spatial
rearrangements of probes. However such protocol would require extensive
experimental validation.
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I have come to believe.

Fox Mulder

5
Rare CNV detection

In recent years there has been an increase in number of probes on
the array in aCGH technology – the genomic resolution has improved.
Designed high resolution arrays target in detection of changes in single
exons, small as several hundred base pairs in size, and facilitate a better
detection of CNVs. This helps in clinical interpretation of changes
in patients with various clinical phenotypes, especially when a CNV
overlaps with a gene known to be causative of the observed clinical
phenotype (Boone et al., 2010).

The progress in array resolution increases challenges in aCGH data
analysis. The main goal when analyzing aCGH data is to identify genomic
regions with rearrangements. The specific challenge in clinical genetic
diagnostics is to detect strictly pathogenic CNVs (Koolen et al., 2009).

The primary hallmark of CNV’s pathogenicity is its rarity in the
population. CNV is considered rare if it is not polymorphic. An aCGH
sample signifies a rare CNV if it differs significantly from other samples
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in the same genomic region.
Detection of CNVs from aCGH data is a process of separation from

noise contiguous blocks of signal along a patient’s genome (Figure 5.0.1).
This analysis process is called segmentation, and there are plethora of
methods and algorithms for detection of CNVs through segmentation.

There are many approaches to identify and describe the structure of the
intervals, such as Gaussian models (Picard et al., 2005), hidden Markov
models (Cahan et al., 2008), wavelets (Ben-Yaacov and Eldar, 2008b)
and quantile regression (Eilers and de Menezes, 2005). Unfortunately,
most of the methods suffer from two significant drawbacks: high
computational complexity and restriction to single sample analysis.

There exist few methods applicable for
the simultaneous analysis of many aCGH
samples (Diskin et al., 2006; Mitchell et al., 2007; Nowak et al., 2011),
but they are useful only for cancer data analysis, as they assume frequent
rearrangement patterns. On the other hand, in the analysis of rare
CNVs underlying genomic disorders one has to eliminate non–pathogenic
(frequent) polymorphisms. Therefore a different approach should be
developed, being the analogue of SCOUT method for rare CNVs in SNP
microarrays (Mefford et al., 2009).

An important phenomena, that may affect the aberration calling is
waviness. The presence of wave pattern seems be correlated with the GC
content or replication timing of the probes, but the underlying mechanism
remains unexplained. Waves were observed for different platforms
based on DNA hybridization, e.g. ChIP-on-chip DNA methylation
studies (Cardoso et al., 2004; Leprêtre et al., 2010).

Almost all segmentation methods detect too many segments (false
positives) for dataset containing wave-like noise (the phenomenon occurs
especially in tumor samples (van de Wiel et al., 2009)).

Thus, the set of rearrangement regions detected in the segmentation
phase needs to be cleared of segments corresponding to non–pathogenic
polymorphic changes, wave patterns, and spurious segments resulting from
disrupted DNA probes.

In our study, we have focused on in silico detection, and supervised
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verification, of rare CNVs (i.e. non–polymorphic and outstanding)
underlying diverse spectrum of diseases in human. We analyze aCGH
samples from a cohort of 366 patients (180 K probes custom exon–targeted
CGH array (Boone et al., 2010)) from patients with developmental
delay/intellectual disability, epilepsy, or autism. Patients were examined
by Institute of Mother and Child, Warsaw, Poland (IMID). We develop
and apply novel robust outliers detection procedure to identify aberration
associated segments corresponding to the potentially pathogenic changes.
We simultaneously process all accessible samples from patients to
strengthen information about rearrangements patterns.

To this task we create a procedure which analyzes aCGH data from all
samples (a logratio matrix), and detects short fragments of k consecutive
probes (k–mers), which are markers of rare CNVs, and which are used to
assign statistical, and clinical, significance to detected CNVs.

We augment typical normalizations steps with data transformation to
ranks. We propose an outlier statistics, based on ranks, which identifies
markers as lying in a 1% tail of the null distribution. This follows the
definition of rare pathogenic CNVs, which are nearly absent in control
population and present in 1% or less of affected individuals.

From the set of outstanding segments, we sieve out those corresponding
to the non–pathogenic polymorphisms, and filter them basing on
three main publicly available databases storing the information
related to genomic variations and diseases: International Standards
for Cytogenomic Arrays database (ISCA) (Faucett, 2010), Genetic
Association Database (GAD) (Zhang et al., 2010) and Database of
Genomic Variants (DGV) (Zhang et al., 2006).

Our protocol results with a set of medically relevant CNVs. The
validation sets the sensitivity of our method for rare CNVs detection
to be 96%, and the specificity to be about 94%. We summarize the
most interesting 18 CNV segments predicted by our method, that require
further analysis (e.g. FISH) in the Validation section. These regions are
suspected of being significant to autism, or to mental retardation.
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5.1 Methods

5.1.1 Datasets

The dataset comes from 366 arrays hybridized with DNA of
patients suffered from epilepsy, autism, or other neurodevelopmental
disorders (developmental delay/intellectual disability) examined at the
IMC Cytogenetics Labs. Each experiment was performed on the
180 K custom whole–genome microarray with an exonic–coverage
for over 1700 known and candidate genes for neurodevelopmental
disorders (Boone et al., 2010).

Microarrays were prepared on Agilent platform, hybridized and scanned
by Agilent scanner. We used Agilent Feature Extraction software
with default settings, which performs back-ground subtraction, array
spatial detrending, dye normalization and logratio calculations from each
microarray (Zahurak et al., 2007) (Agilent Technologies).

For further analysis we used outputted logratios – each sample consists
of a set of ∼180K logratio intensities mapped to loci in the reference
genome hg18 human assembly.

FISH, Multiplex ligation-dependent probe amplification (MLPA), or
Polymerase chain reaction (PCR) methods were used for experimental
validation.

5.1.2 Outstanding CNVs detection

Although logratio data is already normalized by microarray extraction
software, we observe noisy patterns in it: wave bias and experimenter’s
bias (Figure 5.0.1, also see Discussion). Wave bias has been documented
in the literature before (van de Wiel et al., 2009).

Here, we propose a simple and intuitive solution to overcome these two
pertaining obstacles, Namely, we replace the logratio signal by its rank,
i.e. we analyze the logratio signal relative to other samples.

Figure 5.0.1 justifies the beneficial effect of this approach: at panel (a)
the fragment of the genome with hybridization signal is coded by logratios
and by their ranks (panel (b)) . After the rank transformation both
wave pattern (causing spurious segment calls) and disrupted probes are
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eliminated, without affecting the significant segments (one large deletion
is visible).

In our approach we analyze aCGH data from all samples simultaneously
(the logratio matrix) seeking for markers of rare CNVs (as a marker we
mean here short fragment of k consecutive probes – k–mer). Recall that
we are interested in rare pathogenic CNVs, which should be nearly absent
in control population and present in 1% or less of affected individuals.
Therefore our markers correspond to outliers in the set of all k–mers for
all samples (presented results were obtained for a parameter k = 7). As
the outlier detection in high dimensional spaces is a non–trivial task,
we decided to use distance-based approach with a suitable choice of
metrics (Gogoi et al., 2011).

More precisely, we apply sliding window approach on a rank
transformed logratios matrix as follows: for each window spanning the
range of k columns, we calculate the distances between the k–mers from
all samples. Then, for each k–mer, we compare the average distance to all
others in the same window. The crucial step here is to approximate the
distribution of average distances between k–mers and classify the k–mer
as a outlier (marker) if it lies in a 1% tail of this distribution.

More formally, consider a large log2ratio matrix L, with dimensions
|S|×|Q|, and one of its k-windows LS

Q, containing log2ratio data coming
from a set of patients S = {1, . . . , n}, and from consecutive probes
from the set Q = {p, . . . , p + k − 1} (here probe ordering respects
probes positions on the reference genome). The transformation of each
of k columns into ranks and division of resulting ranks by |S|+1 yields
pseudo–ranks matrix RS

Q with elements:

Rs
q =

rank of Ls
q in LS

q

|S|+1
, s ∈ S, q ∈ Q (5.1)

Let us consider, that S is a patient group sampled from a large group
of all patients S, and that rows of RS contained in [0, 1]k, are in fact
pseudo-ranks in columns of S, respectively. Now, Rs

q, taken from a
random patient s and probe q, has uniform distribution. Hence, RS

Q is a
sample from distribution Dp with c.d.f. Dp : [0, 1]

k → [0, 1] with uniform
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marginals: Dp (1, . . . , ui, . . . , 1) = ui ∀i. However, observe, that if one
or more patients in the sample exhibit CNV segment, columns RS

q∈Q are
correlated with each other, hence Dp is not uniform on [0, 1]k.

In statistics, distributions with uniform marginals on a hyper-cube
[0, 1]k are commonly described using copulas. C is a k-dimensional copula
if C is a joint cumulative distribution function of a k-dimensional random
vector on the unit cube [0, 1]k with uniform marginals. Several families
of copulas (Gaussian copulas, t-copulas, Archimedean copulas), and their
properties, were thoroughly studied in literature.

Our method for discriminating outliers is based on a statistics computed
for each of n patients: mean Lq distance to other rank vectors.

µq(s) =
1

|S|
∑
j∈S

p+k−1∑
l=p

∣∣∣Rs
l −Rj

l

∣∣∣q
 1

q

, s ∈ S, q ∈ (0, inf] (5.2)

For the purpose of this work we selected L1 distance measure, both for
simplicity and greater robustness than L2.

In the case of one dimension k = 1 and in the continuous limit |S|→ inf,
the value of the µ1 statistics for a patient with pseudo-rank z ∈ [0, 1] is
given by:

µ1(z) =

∫ 1

0

|t− z| dt = z2 + (1− z)2 (5.3)

µ1(z) is monotonous over z ∈ [0, 1
2
], and symmetric with respect to 1

2
, z

has uniform distribution. Substituting u = 2|z − 1
2
| we obtain the inverse

cumulative distribution function, and further the cdf and the density of
the null distribution for k = 1.

F−1
µ1 (u) =

(
1 + u

2

)2

+

(
1− u

2

)2

=
u2 + 1

2
, u ∈ [0, 1]

Fµ1(x) =
√
2x− 1 , gµ1(x) =

1√
2x− 1

, x ∈ [
1

2
, 1] (5.4)

For k > 1 the value of the µ1 statistics for a patient with pseudo-ranks
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z = (z1, . . . , zk) ∈ [0, 1]k is given by:

µ1(z) =
k∑

i=1

∫ 1

0

|t− zi| dt =
k∑

i=1

z2i +
k∑

i=1

(1− zi)
2 = ||z||22+||1k − z||22

(5.5)

This signifies that the µ1 statistics converges in limit |S|→ ∞ to the sum
of squared euclidean distances from two extreme corners of hypercube: 0k

and 1k (a k-mer in each of these corners has extreme ranks on every probe).
For k > 1 if we undertake the independence of pseudo-ranked columns

the null distribution Dk
µ1 of µ1 can be computed as a sum of independent

variables. This underlines the adequacy of statistics µ1 as it converges
to the sum of squared euclidean distances from two extreme corners of
hypercube: 0k and 1k (a k-mer in each of the corners has extreme ranks
on every probe). Figure 5.1.1 presents µ1 limit |S|→ ∞ null distributions
for various dimensions k for the dimension independence case.

On the other hand, the null hypothesis may assume a certain structure
of column correlations, e.g. corresponding to a larger group of patients
with CNV segments inside a particular window, and a null distribution
may reflect that. First approach we’ve taken is to fit as a null distribution
Beta(α, β) shifted to the appropriate interval (min(µ1),max(µ1)). This
outlier detection procedure is considered less conservative since Beta has
a lighter tail than the Dk

µ1 for small k.
Second approach presupposes that the distribution of k-mers of

pseudo-ranks is described by a certain copula C. In case the rank
distribution is a certain copula Dp = C, the c.d.f. of the null distribution
Fµ is estimated through approximation of the following integral, by either
computing it numerically, or through sampling from the fitted copula C:

Fµ(m) =

∫
[0,1]k

1F−1
µ (z1,...,zk)≤mdDp(z1, . . . , zk)

=

∫
[0,1]k

1∑k
i=1 F

−1
µ (zi)≤mdC(z1, . . . , zk)

(5.6)

Parameters of copula C are fitted for each window, the null
distribution is obtained by integration of the µ1 statistics over
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Figure 5.1.1: This figure presents histograms from samples from µ1 (L1 distance)
null distributions (limit |S|→ ∞, number of cases converging to infinity) for various
dimensions k. This sampling undertakes the assumption of column (dimensions)
independence.

copula C. However, classical families of copulas (Gaussian, t-copula,
Archimedean) are not suited to model multidimensional k-mers with
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asymmetric dimensional dependencies, a copulas mixture approach is
more adequate (Tewari et al., 2011). Then, the mixture approach suffers
from huge dimensionality – obtained solutions are only locally optimal,
dependent on a mixture fitting starting point. In either approach, k-mers
with p-value less than 0.01 (suggested frequency of pathogenic CNVs) are
selected as markers.

Markers detected by the outlier detection procedure have to be aligned
with the segmentation considered. Then we should filter out segments
without any markers inside and order the remaining segments wrt the
density of coverage by markers. We assign the density score to reported
segments (being the percent of the segment covered by markers).

5.1.3 Polymorphic regions filtering

Described method based on outlier detection yield segments corresponding
to rare CNVs, but still some segments in highly polymorphic regions could
be marked. Therefore the following phase of filtering the non–pathogenic
polymorphisms have to be implemented. We map the considered
segmentation into probes, i.e. to each probe we assign the value of the
mean logratio of the segment containing it. Now, the signal is considered
as significant if its absolute value exceeds 0.07 (i.e. log2ratio = 0.24 –
the commonly used threshold for aberration).

The number of significant signals in each column i are counted and if
there are more than three (1% of 366 samples) we set the i-th coordinate
in the vector called polymorphic profile to 1, otherwise it is set to 0. In the
next step we identify all k-mers of consecutive ones in the polymorphic
profile vector. Outlier k-mers that overlap with polymorphic profile are
excluded from further analysis.

5.1.4 Validation

To validate segments selected as rare CNVs according to our density score
we automate the process of a manual validation of segments based on
UCSC (Rhead et al., 2009), i.e. the protocol by which geneticians usually
act. Lastly, we compare resulting sets of segments with the set produced
manually by geneticists from IMID.
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Manual validation by geneticists involves inspecting reported CNVs
segments, overlaying them on UCSC tracks. This purposes
to filter out known polymorphisms and, by interrogation of all
known syndrome regions, to try to narrow down the segment
set to only those clinically relevant. This step is followed by
FISH or PCR confirmation of the CNVs existence in patient’s
DNA (Derwińska et al., 2012) (Bartnik et al., 2012). For the automated
process we decided to focus on three main databases storing the
information related to genomic variations and diseases resulting
from it: ISCA (Faucett, 2010), DGV (Zhang et al., 2006) and
GAD (Zhang et al., 2010).

During the validation procedure, we correlate the coverage density score
for segments with the contents of mentioned databases. We expect, that
for medically relevant CNVs the significant intersection with DGV and a
non–empty intersection with ISCA and/or GAD should occur.
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5.2 Results and discussion

Figure 5.2.1: Evaluation of CNVs detection results. Venn diagram for the
predicted rare CNVs (Predicted), confirmed as pathogenic or uncertain (Reported),
segments significantly overlapping with DGV (DGV), segments with GAD genes
(GAD), and segments selected as polymorphisms according to polymorphic profile
(Polymorphisms).

The outcomes of our CNVs detection algorithm are presented in
Figure 5.2.1. The Venn diagram depicts five subsets of the set of ca.
3000 segments having absolute mean logratio value greater than 0.1.
Considered sets comprise: all reported segments, predicted segments with
density score above 50%, segments containing GAD genes, segments with
significant intersection with DGV and segments classified as polymorphic.
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The procedure based on polymorphic profile eliminated 98% of segments
with DGV content (probably benign rearrangements), and 1808 other
segments, which are also polymorphic but not reported in DGV. We
can estimate the sensitivity of our method to be ca. 96% (only 4
segments reported by experts are missed from all 102 reported but
non-DGV segments) and the specificity about 94% (as false positives we
classify 10 predicted but non-reported segments having significant DGV
intersection).

5.2.1 Discovery and validation of rare CNVs

Proposed method identified 168 potentially pathogenic duplications
and deletions (having coverage density score 50%). Importantly, 100
rearrangements have been also confirmed as real pathogenic changes (c.f.
Table 5.2.1) or as changes of unknown significance suitable for further
analysis (listed in Table 5.2.2).

case gain/loss cytoband size (Mb) oligo nr. score ISCA GAD diagnosis

1 del 1q43q44 3.3 166 100% 24 — mental retardation

2 del 3q13.2q13.31 4.5 154 99% 4 2 autism

3 del Xp22.12 1.6 100 95% 53 1 mental retardation

4 del 17q21.31 0.3 84 96% 23 3 mental retardation

5 del 5q14.3q15 5.4 596 95% 5 — mental retardation

6 del Xq22.1q22.3 5.2 167 91% 51 2 mental retardation

7 del 2q37.2q37.3 6.3 736 88% 19 2 mental retardation

8 del 15q13.3q14 8 873 87% 2 2 mental retardation

Table 5.2.1: Selected predicted best scored CNVs confirmed later as pathogenic
changes.
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case gain/loss cytoband size (Mb) oligo nr. score ISCA diagnosis

1 del 8q22.2 0.25 56 100% 5 autism

2 del 5q35.3 0.7 27 93% 6 mental retardation

3 dup 3p26.3 0.33 21 90% 10 mental retardation

4 dup 12q24.32 0.4 9 88% 7 mental retardation

5 dup 4q28.2 0.12 77 87% 6 mental retardation

6 dup 3p22.3 1.2 30 83% 4 autism

7 dup 6q25.3 0.9 17 82% 4 mental retardation

8 del 4q21.23q21.3 0.95 22 81% 4 autism

Table 5.2.2: Selected predicted best scored variants of unknown significance

5.3 Conclusions

Many recent studies have emphasized the role of CNVs in the
etiology of many human diseases, with rare variants being particularly
important (Mefford and Eichler, 2009). Current methods for detection of
CNVs in individual samples are not capable to infer such information,
while most approaches for multi sample analysis focus on frequent CNVs
present in tumor samples. We propose the efficient solution filling this gap
that can be used for accurate detection of rare CNVs and has potential
use in clinical diagnostics. Since our procedure produces a set of markers
for rare CNVs, it may be efficiently used to filter a segmentation produced
by any other segmentation algorithm, and help with identification of
segments corresponding to rare pathogenic polymorphisms.

The ongoing study on a group of 366 individuals confirmed large part
of our predictions (see previous section, Table 5.2.1 and 5.2.2).

Moreover, the validation of the proposed segments scoring indicates the
significant enrichment of high scoring segments in disease genes from GAD
database and impoverishment in benign CNVs present in DGV database.
Futhermore, the extensive intersection of rearrangements detected by us
with data stored in ISCA indicates the potential pathogenic changes in
our segments. The presented method is robust in the sense of sensitivity
to outliers coming from spurious probes, or any singular outliers of
other type, when comparing to segmentation on each sample separately
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(DNACopy algorithm was used in this study). Last but not least, it is
also resistant to waviness. The DNA–copy segmentation algorithm used
in the first stage of our method can be replaced by any other procedure,
and more importantly it can be also skipped at all. In that case, we
can cluster the significance markers found during the second phase along
the genome to obtain longer segments. This idea leads to multi-sample
segmentation algorithm that can be highly efficient and we plan to exploit
it in the future.
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Success consists of going from failure to failure
without loss of enthusiasm.

Winston Churchill

6
Semantic Web technologies for

molecular medicine

Results from array experiments, either RNA expression arrays, or
aCGH DNA arrays, are difficult to interpret, in clinical setting, and
in research. The first step involves separating signal from noise with
specialized algorithms, and mapping signals to genomic regions. In the
second step, data from each sample is still large and contains many
signals of various importance. The main task of the analysis is to assess
importance, and assign meaning to those signals. For the quality of
diagnosis, or research, it’s crucial to investigate and validate findings from
experiment results, underline phenotype-genotype links, with the use of
various external data sources. To facilitate this process many genome
browsers were made available in the last decade, most prominent examples
being UCSC. However, genomic browsers are not sufficient, and the whole
process benefits from specialized software.
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6.1 IMID2py – a web application tool for aCGH
analysis

Our team in cooperation with the Institute of Mother and Child in Warsaw
(IMID) and Baylor College of Medicine developed and deployed an aCGH
analysis software in use at the IMID Cytogenetics Lab. IMID2py enables
gathering data, removing noise, statistical signal calling on aCGH chip
scans, signal segments reviewing, and reporting. The software was used to
analyze aCGH experiment results for research and in clinical setting. Our
team participated in the process of microarray chip design, and further
analysis.

The overall aim of the project was to analyze four groups of patients
suffering from: autism, epilepsy, inborn heart diseases, and mental
retardation.

The software tool developed by us helps in managing patients,
experiments and computation tasks. More precisely, it enables to
(i) present segmentation results, charts, compare patients, summarize
genome analysis; (ii) gather phenotype data; (iii) run analyses and (iv)
generate reports.

IMID2py simplifies significantly the process of sample analysis by
providing the concise presentation of preprocessed and filtered data and
customized data filtering. It also gives links to appropriate external
tools and databases, like UCSC Genome Browser (c.f. Fig 6.1.1) or
Decipher - Database of Chromosomal Imbalance.

The most crucial functionality is detecting segments in patients genomes
(further labeling with known genes, microRNAs and known CNVs). To
assess the significancy of a given aberrant segment we similar cases from
gathered patients are reported.
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Figure 6.1.1: IMID2py exports data to display in UCSC genome browser.

Tools that are used in IMID2py project include: at data layer – MySQL
(main database), SQLite (phenotype form schemes - portability); MVC:
Python (web2py web kit); for processing and analysis: R (Bioconductor)
and Python (scipy/numpy). All analyses, reports and data are shared in
„the cloud”. Figure 6.1.2 presents the IMID2py database scheme.
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Figure 6.1.2: IMID2py database scheme created with SchemaSpy (Currier, 2005).

6.2 IMID2py semantic extension

Our recent contribution to the process of analysis of genetic data
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is an experimental extension of IMID2py with semantic technologies,
and with the use of Linked Open Data Sykulski (2012a,b,c). See
Figure 6.2.1 shows the screenshot of the webpage presenting the IMID2py
semantic extension. Utilizing Apache Stanbol components (Entityhub,
Contenthub, Enhancment Engine) enabled us to propose a solution
which allows geneticists to: (i) annotate medical content (i.e. a
result from a genetic experiment) with relevant data; (ii) formulate
various queries to Linked Open Data resources; (iii) use several provided
automatic enhancers; (iv) search indexed Linked Open Data entities
with VIE auto-complete and (v) search among tagged annotations, with
facets provided by Stanbol Contenthub.
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Figure 6.2.1: Webpage presenting the IMID2py semantic extension.

In our solution, user creates a tree of enhancements for her/his content:
this is a small part of a LOD cloud which users find relevant. A user
is able to search for enhancements thanks to Entityhub with pre-indexed
linked data from large open databases: UNIPROT, PubMed, eHealth.

Users explore Linked Data by asking semi-automatically generated
queries, and by reviewing results returned by Stanbol Entityhub. We have
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provided several enhancers based on Stanbol Entityhub query language.
Finding out from our users what is most useful, and providing them with
useful tools is what we were trying to achieve.

IMID2py is used at the cytogenetic lab to review aCGH results from our
patients. A geneticists job is to assist doctors in stating clinical diagnosis.
However, since genetics is a very rapidly developing field, part of the job
is to perform research on difficult, unknown, cases.

By allowing users to easily document their research path in the tree of
enhancements and later search among, and create reports of their findings,
we try to enable reasonable use of constantly-growing Linked Data.
Further development will provide more enhancers and Enhancement
Chains, abstraction of available enhancers to facilitate more thorough,
more automatic research and reporting.

6.3 Biomedical results

As mentioned in the Introduction over 1000 patients were diagnosed
with the help of our system. We participated in four projects aiming
in the analysis of genetic rearrangements underlying following diseases:
epilepsy, developmental delay or intellectual disability, congenital heart
defects and autistic spectrum disorder. Below we sketch main results by
citing the abstract of articles summarizing the projects.

Epilepsy and additional neurodevelopmental
disorders (Bartnik et al., 2012).

Copy-number variants (CNVs) collectively represent an important
cause of neurodevelopmental disorders such as developmental delay
(DD)/intellectual disability (ID), autism, and epilepsy. In contrast
to DD/ID, for which the application of microarray techniques enables
detection of pathogenic CNVs in -10-20% of patients, there are only
few studies of the role of CNVs in epilepsy and genetic etiology in the
vast majority of cases remains unknown. We have applied whole-genome
exon-targeted oligonucleotide array comparative genomic hybridization
(array CGH) to a cohort of 102 patients with various types of epilepsy with
or without additional neurodevelopmental abnormalities. Chromosomal
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microarray analysis revealed 24 non-polymorphic CNVs in 23 patients,
among which 10 CNVs are known to be clinically relevant. Two
rare deletions in 2q24.1q24.3, including KCNJ3 and 9q21.13 are novel
pathogenic genetic loci and 12 CNVs are of unknown clinical significance.
Our results further support the notion that rare CNVs can cause
different types of epilepsy, emphasize the efficiency of detecting novel
candidate genes by whole-genome array CGH, and suggest that the clinical
application of array CGH should be extended to patients with unexplained
epilepsies.

Developmental delay or intellectual
disability (Bartnik et al., 2014).

We used whole-genome exon-targeted oligonucleotide array comparative
genomic hybridization (array CGH) in a cohort of 256 patients with
developmental delay (DD)/intellectual disability (ID) with or without
dysmorphic features, additional neurodevelopmental abnormalities,
and/or congenital malformations. In 69 patients, we identified 84
non-polymorphic copy-number variants, among which 41 are known
to be clinically relevant, including two recently described deletions,
4q21.21q21.22 and 17q24.2. Chromosomal microarray analysis revealed
also 15 potentially pathogenic changes, including three rare deletions,
5q35.3, 10q21.3, and 13q12.11. Additionally, we found 28 copy-number
variants of unknown clinical significance. Our results further support the
notion that copy-number variants significantly contribute to the genetic
etiology of DD/ID and emphasize the efficacy of the detection of novel
candidate genes for neurodevelopmental disorders by whole-genome array
CGH.

Congenital heart defects (Derwińska et al., 2012).
Congenital heart defects are the most common group of major birth

anomalies and one of the leading causes of infant deaths. Mendelian and
chromosomal syndromes account for about 20% of congenital heart defects
and in some cases are associated with other malformations, intellectual
disability, and/or dysmorphic features. The remarkable conservation of
genetic pathways regulating heart development in animals suggests that
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genetic factors can be responsible for a significantly higher percentage
of cases. Our aim was to assess of the role of CNVs in the etiology
of congenital heart defects using microarray studies. Genome-wide
array comparative genomic hybridization, targeting genes known to play
an important role in heart development or responsible for abnormal
cardiac phenotype was used in the study on 150 patients. In addition,
we have used multiplex ligation-dependent probe amplification specific
for chromosome 22q11.2 region. We have identified 21 copy-number
variants, including 13 known causative recurrent rearrangements (12
deletions 22q11.2 and one deletion 7q11.23), three potentially pathogenic
duplications (5q14.2, 15q13.3, and 22q11.2), and five variants likely benign
for cardiac anomalies. We suggest that abnormal copy-number of the
ARRDC3 and KLF13 genes can be responsible for heart defects. Our
study demonstrates that array comparative genomic hybridization enables
detection of clinically significant chromosomal imbalances in patients with
congenital heart defects.

Autistic spectrum disorders (Wiśniowiecka-Kowalnik et al., 2013).
Autism spectrum disorders (ASDs) are a heterogeneous group of

neurodevelopmental disorders, including childhood autism, atypical
autism, and Asperger syndrome, with an estimated prevalence of 1.0-2.5%
in the general population. ASDs have a complex multifactorial etiology,
with genetic causes being recognized in only 10-20% of cases. Recently,
copy-number variants (CNVs) have been shown to contribute to over
10% of ASD cases. We have applied a custom-designed oligonucleotide
array comparative genomic hybridization with an exonic coverage of over
1700 genes, including 221 genes known to cause autism and autism
candidate genes, in a cohort of 145 patients with ASDs. The patients
were classified according to ICD-10 standards and the Childhood Autism
Rating Scale protocol into three groups consisting of 45 individuals with
and 69 individuals without developmental delay/intellectual disability
(DD/ID), and 31 patients, in whom DD/ID could not be excluded. In
12 patients, we have identified 16 copy-number changes, eight (5.5%) of
which likely contribute to ASDs. In addition to known recurrent CNVs
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such as deletions 15q11.2 (BP1-BP2) and 3q13.31 (including DRD3 and
ZBTB20), and duplications 15q13.3 and 16p13.11, our analysis revealed
two novel genes clinically relevant for ASDs: ARHGAP24 (4q21.23q21.3)
and SLC16A7 (12q14.1). Our results further confirm the diagnostic
importance of array CGH in detection of CNVs in patients with ASDs
and demonstrate that CNVs are an important cause of ASDs as a
heterogeneous condition with a variety of contributory genes.
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