
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Maciej Obremski

Flexible Two-Source Extractors and their
Applications

PhD dissertation

Supervisor

dr hab. Stefan Dziembowski

Institute of Informatics
University of Warsaw

November 2012

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this disser-
tation myself and all the contents of the dissertation have been obtained by
legal means.

November, 2012 .
date Maciej Obremski

Supervisor’s declaration:
the dissertation is ready to be reviewed

November, 2012 .
date dr hab. Stefan Dziembowski

3

Abstract

We introduce a new notion flexible extractor. It is a generalization of the standard
concept of a two-source-extractor which require each of a sources to have some
entropy, flexible extractor requires the sum of sources entropy to exceed fixed value.
We distinguish between a strong and a weak flexible extractors and (similarly
to two-source-extractors case) prove that every weak flexible extractor is also a
strong extractor just with a slightly worse parameters. Moreover we prove that
two common two-source extractors are in fact flexible which can be viewed as a
generalization of the Leftover Hash Lemma for those extractors. We use that notion
in joint work with Stefan Dziembowski and Tomasz Kazana “Non-Malleable Codes
from Two-Source Extractors” currently under submission. In that work we use
the flexible extractors to construct an efficient information-theoretically non-mall-
eable code in the split-state model for one-bit messages. Non-malleable codes were
introduced recently by Dziembowski, Pietrzak and Wichs (ICS 2010), as a general
tool for storing messages securely on hardware that can be subject to tampering
attacks. Informally, a code (Enc :M→ L×R,Dec : L×R →M) is non-malleable
in the split-state model if any adversary, by manipulating independently L and R
(where (L,R) is an encoding of some message M), cannot obtain an encoding of a
messageM ′ that is not equal toM but is “related”M in some way. Until now it was
unknown how to construct an information-theoretically secure code with such a
property, even forM = {0, 1}. Our construction solves this problem. Additionally,
it is leakage-resilient, and the amount of leakage that we can tolerate can be an
arbitrary fraction ξ < 1/4 of the length of the codeword. Our code is based on
the inner-product two-source extractor, but in general it can be instantiated by
any two-source extractor that has the property of being flexible. We also show
that the non-malleable codes for one-bit messages have an equivalent, perhaps
simpler characterization, namely such codes can be defined as follows: if M is
chosen uniformly from {0, 1} then the probability (in the experiment described
above) that the output message M ′ is not equal to M can be at most 1/2 + ε.

Key words: non-malleable codes, two-source extractors, flexible two-source extrac-
tors

AMS Classification: 68P20, 68P25, 68P30, 94A60.

4

Streszczenie

Prezentujemy nowe pojęcie elastycznego extraktora dwuźródłowego. W przeciwień-
stwie do standardowych dwuźródłowych ekstraktorów, które wymagają by każde ze
źródeł osobno miało pewną entropię, elastyczny ekstraktor wymaga by sumaryczna
entropia źródeł przekraczała daną wartość. Wyróżniamy słabe i silne elastyczne
ekstraktory i podobnie jak w przypadku słabych i silnych ekstraktorów dwuźró-
dłowych dowodzimy, że każdy słaby ekstraktor jest też silny kosztem nieznacznego
pogorszenia jego parametrów. Ponadto dowodzimy, że dwa z powszechnie znanych
i używanych ekstraktorów są elastyczne co znacząco wzmacnia tezę Leftover Hash
Lemma dla tych ekstraktorów. Pojęcia elastycznych ekstraktorów używamy we
wspólnej pracy ze Stefanem Dziembowskim i Tomaszem Kazaną ”Non-Malleable
Codes from Two-Source Extractors”, praca ta została wysłana na międzynaro-
dową konferencję. Konstruujemy w niej wydajny, teorio-informacyjnie bezpieczny
kod niekowalny w modelu z przepołowioną pamiecią dla wiadomości jednobito-
wych. Pojęcie kodów niekowalnych zostało wprowadzone przez S.Dziembowskiego,
K.Pietrzaka i D.Wichsa (ICS 2010), jako narzędzie do składowania danych na
urządzeniu, które może być poddane działaniu przeciwnika modyfikującego dane.
Nieformalnie ujmując, schemat (Enc : M → L × R,Dec : L × R → M) jest
kodem niekowalnym w modelu z przepołowioną pamięcią jeśli wspomniany prze-
ciwnik manipulujący niezależnie L i R (gdzie (L,R) koduje pewną wiadomość
m) nie może otrzymac, kodu wiadomości m′, która byłaby różna od m ale z nią
“skorelowana”(np. m′ = m + 1). Do teraz efektywna konstrukcja informacyjnie
bezpiecznego kodu o takiej wlasności pozostawala nieznana nawet dla wiadomości
ze zbioru {0, 1}. Nasza konstrukcja rozwiązuje ten problem. Ponadto dowodzimy
jej odporności na wycieki, w następującym sensie: przeciwnik zanim wybierze dwie
funkcje manipulujące (jedną na L, drugą na R) może poznać dowolną, ustaloną
wcześniej funkcję wycieku z (L,R). Formalnie, dla każdego ξ < 1/4 potrafimy
podać efektywną konstrukcje kodu niekowalnego taką, że przeciwnik przed wybo-
rem funkcji manipulacji pozna wartości wybranych przez siebie adaptywnie funkcji
F1(L), F2(R), F3(L), F4(R)... byle tylko sumaryczna dlugość wyjścia tych funkcji
nie przekraczała ξ · (|L|+ |R|). Konstrukcja naszego kodu jest oparta na iloczynie
skalarnym nad ciałami skończonymi, ale pokazujemy jak zbudowac kod z dowol-
nego innego dwuźródłowego ekstraktora, który jest elastyczny (flexible). Poza tym
pokazujemy, ze definicja kodów niekowalnych w przypadku wiadomości jednobi-
towych ma równoważną, prostszą charakteryzację mianowicie: jeśli wybierzemy
wiadomość m jednostajnie z {0, 1} wtedy prawdopodobieństwo, że przeciwnik be-
dzie w stanie uzyskac (w sposób opisany powyżej) wiadomość przeciwną do m jest
niewiększe niż 1/2 + ε.

5

Acknowledgments

I would like to thank my advisor and co-author dr hab. Stefan Dziembowski for his
input in this dissertation and my research work. I would also like to thank professor
dr hab. Stanisław Kwapień for his support and discussions during my research
work. I’m very grateful to professors Yevgeniy Dodis and Krzysztof Pietrzak for
stimulating discussions regarding non-malleable codes in different models. I am
also grateful to dr hab. Wojciech Niemiro for his guidance. Also I want to thank
my college and co-author of all research papers Tomasz Kazana. Last but not least
i want to express my deepest gratitude to my muse S.G.

6 Contents

Contents

1 Introduction . 7
1.1 Our contribution . 11
1.2 Related work . 12
2 Preliminaries . 13
2.1 Entropy . 15
3 Extractors . 17
3.1 Inner product as flexible extractor 19
3.2 Other flexible extractor example 21
4 Inner product, leakage and Leftover Hash Lemma 25
4.1 Leftover Hash Lemma and non-adaptive leakage 25
4.2 Adaptive leakage . 27
4.3 Leakage-resilient storage in the split-state model 28
5 Definition of the non-malleable codes and equivalence to the

hardness of negation . 29
6 The construction . 32
7 Adding Leakages . 45
8 Non-malleable codes vs. extractors 49
9 Non-malleable codes vs. leakage-resilent storage 49
10 Security against affine malling 50

7

1 Introduction

The notion of randomness plays a central role in computer science. For ex-
ample, several algorithmic tasks are much easier to solve if one allows the
algorithm to have access to a string X of random bits. Also in cryptography
it is known that some primitives, such as, e.g., the public-key encryption are
impossible to construct in a deterministic (i.e. not randomized) way. What
is usually assumed in these constructions is that the randomness that they
use is uniform. Since uniform randomess rarely appears in practice, a nat-
ural approach is to weaken the uniformity requirement and assume that X
is far from uniform (for example X could be a result of a measurement of
some physical process). To reason in a modular way, the simplest method is
to take a standard randomized algorithm A and to run it on some random-
ness ext(X) extracted from X. For this reason extractors were introduced as
functions that take weak random sources and output uniformly distributed
bits.

Typically an input to the extractor is a random variable X that is not
necessarily uniform but it has some randomness. This property is usually
formalized by requiring that X has a large min-entropy, a notion which is a
variant of Shannon’s entropy (for a formal definition of min-entropy see Sec-
tion 2.1). The output of an extractor should be close to uniform distribution
(we define this notion formally in Section 2).

Unfortunately in general it is not possible to extract randomness from
one variable, i.e., there does not exist a deterministic function ext that on
every high-min-entropy variable X outputs ext(X) close to uniform (cf. [40],
Remark 1). This problem is solved by introducing an additional assumption
that ext takes an extra input Y , which is a different random variable that is
independent from X. There are two basic classes of extractors. The first one
is called the seeded extractors. In this case Y is guaranteed to be uniform. In
order to exclude a trivial solution (extY (X) = Y) the output of extY (X) must
be larger than the length of variable Y . An important subclass of the seeded
extractors is a strong seeded extractors class, where an output of extY (X) is
close to uniform even if the value of variable Y is revealed, more precisely
the conditional random variable extY (X)|Y is close to uniform. The second
basic class of extractors are the 2-source extractors. In this case we do not
require independent variable Y to be uniform. We only assume that the two
independent random variables X and Y both have high min-entropy. For a
formal definition of extractors and further discussion see Section 3.

Extractors are also a very useful tool to thwart leakage and tampering
attacks. The main contribution of this work is a new notion of a flexible ex-
tractor which is generalization of a 2-source extractors notion. In order to

8 1 Introduction

return uniformly distributed bits a flexible extractor does not require both
sources to have min-entropy exceeding some fixed value, instead it only re-
quires that the sum of sources min-entropies exceeds fixed value. This relax-
ation allows us to use such extractors in a construction of schemes resilient
against tampering and leakage, which are explained below.

Leakage and tampering attacks. Real-life attacks on cryptographic de-
vices often do not break their mathematical foundations, but exploit vul-
nerabilities in their implementations. For example: the PCs can be infected
with viruses. In case of a dedicated cryptographic devices such “physical
attacks” are usually based on passive measurements such as running-time,
electromagnetic radiation, power consumption (see e.g. [36]), or active tam-
pering where the adversary maliciously modifies some part of the device (see
e.g. [2]) in order to force it to reveal information about its secrets. A recent
trend in theoretical cryptography, initiated by [34, 31, 30] is to design cryp-
tographic schemes that already on the abstract level guarantee that they are
secure even if implemented on devices that may be subject to such physi-
cal attacks. Contrary to the approach taken by the practitioners, security of
these constructions is always analyzed formally in a well-defined mathemati-
cal model, and hence covers a broad class of attacks, including those that are
not yet known, but may potentially be invented in the future. Over the last
few years several models for passive and active physical attacks have been
proposed and schemes secure in these models have been constructed (see e.g.
e.g. [31, 30, 22, 1, 35]).

One of the models simulating a computer infected by passive virus (i.e.
a virus that can only steal the data not tamper with it) is the Bounded Re-
trieval Model (see e.g. [16]). In this model the adversary can use a virus to
leak the data from the computer. We assume that the secret key inside that
computer is so large that it is not efficient for the adversary to download
the whole data. To simulate that restriction we let the adversary to choose
any function f : {0, 1}n → {0, 1}l where l is arbitrary and much smaller
then n and then the adversary learns f(sk), where sk is a secret key. On the
other hand we expect that the protocols in the BRM have „locality” prop-
erty. Informally speaking „locality” means that protocol should not require
processing whole secret key sk instead it should only need to access part of
it (possibly randomly chosen part).

In case of passive measurements on a dedicated cryptographic devices the
most common model is very similar to BRM. We simulate passive measure-
ments by any function f : {0, 1}n → {0, 1}l chosen by the adversary. The
adversary learns f(m) where m is whole memory of the device, as before l

9

is smaller then m (if l = cm for c ∈ (0, 1) we call it a linear leakage). If
the memory of the device is split in to two (or more) parts L,R, we model
passive measurement as choice of two functions f, g : {0, 1}n/2 → {0, 1}l/2
and revile to adversary f(L) and g(R). Idea is to prove that a given scheme
is secure even if the adversary leaks that additional information. For more
detail and other models see [15, 24, 1].

In the passive case the proposed models seem to be very broad and cor-
respond to large classes of real-life attacks. Moreover, several constructions
secure in these models are known (including even general compliers [26] for
any cryptographic functionality). The situation in the case of active attacks
is much less satisfactory, usually because the proposed models include an
assumption that some part of the device is tamper-proof (e.g. [25]) or be-
cause the tampering attacks that they consider are very limited (e.g. [30]
or [14] consider only probing attacks, and in [41] the tampering functions
is assumed to be as linear). Hence, providing realistic models for tampering
attacks, and constructing schemes secure in these models is an interesting
research direction.

In a recent paper [23] the authors consider a very basic question of storing
messages securely on devices that may be subject to tampering. To this end
they introduce a new primitive that they call the non-malleable codes. The
motivating scenario for this concept is as follows. Imagine we have a secret
message m ∈ M and we want to store it securely on some hardware D that
may be subject to the tampering attacks. In order to increase the security,
we will encode the message m by some (randomized) function Enc and store
the codeword x := Enc(m) on D. Since we later want to recover m from D
we obviously also need a decoding function Dec : X → M∪ {⊥} such that
for every m ∈ M we have Dec(Enc(m)) = m. Now, suppose the adversary
can tamper with the device in some way, which we model by allowing him to
choose a function F : X → X , from some fixed set F of tampering functions
and substitute the contents of D by F (x). Let m′ := Dec(F (Enc(m))) be the
result of decoding such modified codeword.

Let us now think what kind of security properties one could expect from
such an encoding scheme. Optimistically, e.g., one could hope to achieve
tamper-detection by which we would mean that m′ = ⊥ if F (x) 6= x. Un-
fortunately this is usually unachievable, as, e.g., if the adversary chooses F
to be a constant function equal to Enc(m̃) then m′ = m̃. Hence, even for
very restricted classes F (containing only the constant functions), the ad-
versary can force m′ to be equal to some message of his choice. Therefore,
if one hopes to get any meaningful security notion, one should weaken the
tamper-detection requirement. In [23] the authors propose such a weakening
based on the concept of non-malleability introduced in the seminal paper of

10 1 Introduction

Dolev et al. [19]. Informally, we say that a code (Enc,Dec) is non-malleable if
either (1) the decoded message m′ is equal to m, or (2) the decoded message
m′ is “independent” from m. The formal definition appears in Section 5, and
for an informal discussion of this concept the reader may consult [23]. As
argued in [23] the non-malleable codes can have vast applications to tamper-
resistant cryptography. We will not discuss them in detail here, but let us
mention just on example, that looks particularly appealing to us. A common
practical way of breaking cryptosystems is based on the so-called related-key
attacks (see, e.g. [5, 4]), where the adversary that attacks some device D(K)
(where K is the secret key) can get access to an identical device containing a
related key K ′ = F (K) (by, for example tampering with K). Non-malleable
codes provide an attractive solution to this problem. If (Enc,Dec) is a non-
malleable code secure with respect to same family F , then we can store the
key K on D in an encoded form, and prevent the related key attacks as long
as the “relation F” is in F . This is because, the only thing that the adver-
sary can achieve by applying F to Enc(K) is to produce encoding of either a
completely unrelated key K ′, or to keep K ′ = K. It is clear that both cases
do not help him in attacking D(K).

It is relatively easy to see that if the family F of tampering functions is
equal to the entire space of functions from X to X then it is impossible to con-
struct such a non-malleable code secure against F . This is because in this case
the adversary can always choose F (x) = Enc(H(Dec(x))) for any function
H : M → M, which yields m′ = Dec(x) = Dec(Enc(H(Dec(Enc(m))))) =
H(m), and therefore he can relate m′ to m in an arbitrary way. Therefore
non-malleable codes can exist only with respect to restricted classes F of
functions. The authors of [23] propose some classes like this and provide con-
structions of non-malleable codes secure with respect to them. One example
is the class of bit-wise tampering functions, which tamper with every bit of
x “independently”, more precisely: each ith bit x′i of x′ is a function of xi,
and does not depend on any xj for j 6= i. This is a very strong assumption
and it would be desirable to weaken it. One natural idea for such weakening
would be to allow x′i to depend on the bits of x from positions on some larger
subset Ii ({1, . . . , |x|}. Observe that I always needs to be a proper subset
of {1, . . . , |x|}, as, for the reasons described above, allowing xi to depend on
entire x would render impossible any secure construction. It is of course not
clear what would be the right “natural” subsets Si that one could use here.
The authors of [23] solve this problem in the following simple way. They
assume that the codeword consists of two parts (usually of equal size), i.e.:
x = (L,R) ∈ L × R, and the adversary can tamper in an arbitrary way
with both parts, i.e., F consists of all functions Mallf,g that can be defined as
Mallf,g(L,R) = (f(L), g(R)) (for some f : L → L and g : R → R). In practi-

1.1 Our contribution 11

cal applications this corresponds to a scenario in which L and R are stored on
two separate memory parts that can be tampered independently. A similar
model has been used before in the context of leakages and is called a split-
state model [22, 15, 27]. The authors of [23] show existence of non-malleable
codes secure in this model in a non-constructive way (via the probabilistic
argument). They also provide a construction of such codes in a random or-
acle model, and leave constructing explicit information-theoretically secure
codes as an open problem. A very interesting partial solution to this problem
came recently from Liu and Lysyanskaya [33] who constructed such codes
with computationally-security, assuming a common reference string. Their
construction comes with an additional feature of being leakage-resilient, i.e.
they allow the adversary to obtain some partial information about the code-
word via memory leakage (the amount of leakage that they can tolerate is a
1
2 − o(1) fraction of the length of the codeword). However, constructing the
information-theoretically secure nonmalleable codes in this model remained
an open problem, even if messages are of length 1 only (i.e. M = {0, 1}).

1.1 Our contribution

We show a construction of efficient information-theoretically secure non-
malleable codes in the split-state model for M = {0, 1}. Additionally to
being non-malleable, our code is also leakage-resilient and the amount of
leakage that we can tolerate is an arbitrary constant ξ < 1

4 of the length of
the codeword (cf. Thm. 18). Our construction is fairly simple. The codeword
is divided into two parts, L and R, which are vectors from a linear space Fn,
where F is a field of exponential size (and hence log |F| is linear). Essentially,
to encode a bit B = 0 one chooses at a random pair (L,R) ∈ Fn × Fn of or-
thogonal vectors (i.e. such that 〈L,R〉 = 0), and to encode B = 1 one chooses
a random pair of non-orthogonal vectors (clearly both encoding and decod-
ing can be done very efficiently in such a code). Perhaps surprisingly, the
assumption that F is large is important, as our construction is not secure for
small F’s. An interesting consequence is that our code is “non-balanced”, in
the sense that a random element of the codeword space with an overwhelming
probability encodes 1. We actually use this property in the proof.

Our proof also very strongly relies on the fact that the inner product
over finite field is a two-source extractor (cf. Sect. 3). We actually show that
in general a split-state non-malleable code for one-bit messages can be con-
structed from any two source-extractor with sufficiently strong parameters
(we call such extractors flexible, cf. Sect. 3).

We also provide a simple argument that shows that our scheme is secure
against against affine malling functions (that look at the entire codeword,

12 1 Introduction

hence not in the split-state model).
Typically in theoretical cryptography solving a certain task for one-bit

messages automatically gives a solution for multi-bit messages. Unfortunately
it is not the case for the non-malleable codes. Consider for example a naive
idea of encoding n bits “in parallel” using the one bit encoding function
Enc, i.e. letting Enc′(m1, . . . ,mn) := ((L1, . . . , Ln), (R1, . . . , Rn)), where each
(Li, Ri) = Enc(mi). This encoding is obviously malleable, as the adversary
can, e.g., permute the bits of m by permuting (in the same way) the blocks
L1, . . . , Ln and R1, . . . , Rn. Nevertheless we believe that our solution is an
important step forward, as it may be useful as a building blocks for other,
more advanced constructions, like, e.g., tamper-resilient generic compilers
(in the spirit of [31, 30, 14, 20, 26]). This research direction looks especially
promising since many of the leakage-resilient compliers (e.g. [20, 26]) are
based on the same inner-product extractor.

We also show that for one-bit messages non-malleable codes can be de-
fined in an alternative, and perhaps simpler way. Namely we show (cf. Lemma
15) that any code (Enc,Dec) (not necessarily defined in the split-state model)
in non-malleable with respect to some family F of functions if and only if “it
is hard to negate the encoded bit B with functions from F”, by which we
mean that for a bit B chosen uniformly from {0, 1} any F ∈ F we have that

P (Dec(F (Enc(B))) 6= B) ¬ 1
2
. (1)

(the actual lemma that we prove involves also some small error parameter ε
both in the non-malleability definition and in (1), but for the purpose of this
informal discussion let us omit them). Therefore the problem of constructing
non-malleable bit encoding in the split state model can be translated to a
much simpler and perhaps more natural question: can one encode a random
bit B as (L,R) in such a way that independent manipulation of L and R
produces an encoding (L′, R′) of B with probability at most 1/2? Observe
that, of course, it is easy to negate a random bit with probability exactly
1/2, by deterministically setting (L′, R′) to be an encoding of a fixed bit, 0,
say. Informally speaking, (Enc,Dec) is non-malleable if this is the best that
the adversary can achieve.

1.2 Related work

Some of the related work was already described in the introduction. There
is no space here to mention all papers that propose theoretical countermea-
sures against tampering. This research was initiated by Ishai et al. [30]. Se-
curity against both tampering and leakage attacks were also recently con-

13

sidered in [32]. Unlike us, they construct concrete cryptosystems (not en-
coding schemes) secure against such attacks. Another difference is that their
schemes are computationally secure, while in this work we are interested in
the information-theoreticl security.

It is also worth to compare our result with ”Algorithmic Tamper-Proof
Security” from Gennaro et al. [25]. The idea of that work is to use public-key
signature scheme to prevent stored message from being tampered with. For-
maly we store secret message s along with signature σ = Signsk(s), where sk
is private key. In sense of encoding scheme we can think about it as functions
Encsk(s) = (s, Signsk(s)) and Decpk which only verifies the signature using
public key pk and in case of invalid signature function Decpk outputs ⊥. How-
ever this solution does not fulfill security definition of non-malleable codes.
In [23] authors show very easy attack on that scheme using independent bit
tampering. Simply set first bit of message to 1. If decoding function returns
⊥ that means first bit was 0, in case decoding function returns valid message
we can assume (with high probability) that first bit of message was 1 since
it is unlikely that there was same signature for 2 messages that are different
only on first coordinate.

The notion of non-malleability (introduced in [19]) is used in cryptogra-
phy in several contexts. In recent years it was also analyzed in the context of
randomness extractors, starting from the work of Dodis and Wichs [18] on
non-malleable extractors (see also [17, 13]). Informally speaking an extrac-
tor ext is non-malleable if its output ext(S,X) is (almost) uniform even if
one knows the value ext(F (S), X) for some “related” seed F (S) (such that
F (S) 6= S). Unfortunately, it does not look like this primitive can be used to
construct the non-malleable codes in the split-state model, as this definition
does not capture the situation when X is also modified.

Finally, let us mention that constructions non-malleable codes secure in
different (not split-state) models were recently proposed in [8, 9, 10].

2 Preliminaries

If Z is a set then Z ← Z will denote a random variable sampled uniformly
from Z. We start with some standard definitions and lemmas about the
statistical distance. Recall that if A and B are random variables over the same
set A then the statistical distance between A and B is denoted as ∆(A;B),
and defined as ∆(A;B) = 1

2

∑
a∈A |P (A = a) − P (B = a) |. If the variables

A and B are such that ∆(A,B) ¬ ε then we say that A is ε-close to B,
and write A ≈ε B. If X ,Y are some events then by ∆(A|X ; B|Y) we will
mean the distance between variables A′ and B′, distributed according to the

14 2 Preliminaries

conditional distributions PA|X and PB|Y .
If B is a uniform distribution over A then d(A|X) := ∆(A|X ;B) is called

statistical distance of A from uniform given the event X . If moreover C is
independent from B then d(A|C) := ∆((A,C); (B,C)) is called statistical
distance of A from uniform given the variable C. More generally, if X is an
event then d(A|C,X) := ∆((A,C)|X ; (B,C)|X). It is easy to see that d(A|C)
is equal to

∑
c P (C = c) · d(A|C = c). We now have the following standard

lemmas whose proofs can be found e.g. in [21].

Lemma 1. If A and B are random variables over {0, 1} then for any b ∈
{0, 1} we have ∆(A;B) = |P (A = b)− P (B = b) |.

Lemma 2. For any random variables A and B and any function ϕ we have
that |∆(ϕ(A); ϕ(B))| ¬ ∆(A;B). and in particular d(A) ¬ d(A|B).

Lemma 3. For every random variable A and events X and Y we have

∆(A|Y ; A|X ∧ Y) ¬ 1− P (X|Y) . (2)

Proof. First observe that for every a we have that

P (A = a | Y)− P (A = a | X ∧ Y) (3)

= P (A = a | Y)− P (A = a ∧ X | Y)
P (X | Y)

(4)

¬ P (A = a | Y)− P (A = a ∧ X | Y) (5)

Hence, the left hand side of (2) is at most equal to∑
a:P (A=a | Y)>P (A=a | X ∧Y)

P (A = a | Y)− P (A = a ∧ X | Y) ¬

¬
∑

a:P (A=a | Y)>P (A=a | X∧Y)
P (A = a | Y)− (6)

−
∑

a:P (A=a)>P (A=a | X∧Y)
P (A = a ∧ X | Y) =

= P (A|Y)− P (A ∧ X | Y)︸ ︷︷ ︸
P (A|Y)−(1−P (X|Y))

¬ (7)

¬ 1− P (X|Y)

(whereA in (7) denotes the event thatA ∈ {a : P (A = a | Y) > P (A = a | X ∧ Y)}).
This finishes the proof.

Lemma 4. Let (A,B) ∈ A×B be a random variable such that d(A|B) ¬ ε.
Then for every a ∈ A we have

∆(B|A = a ; B) ¬ 2|A|ε. (8)

2.1 Entropy 15

Proof. Let U be uniform over A and independent from B. We have

ε ∆((U,B); (A,B))

=
1
2

∑
(a,b)∈A×B

|P ((U,B) = (a, b))− P ((A,B) = (a, b)) |

=
1
2

∑
(a,b)∈A×B

|P (U = a) · P ((U,B) = (a, b)|U = a)−

P (A = a) · P ((A,B) = (a, b)|A = a) |

 1
2

∑
(a,b)∈A×B

|P (U = a) · P ((U,B) = (a, b)|U = a)− (9)

P (U = a) · P ((A,B) = (a, b)|A = a) | −

|P (U = a) · P ((A,B) = (a, b)|A = a)−

P (A = a) · P ((A,B) = (a, b)|A = a) |

 1
2

∑
(a,b)∈A×B

P (U = a) · |P ((U,B) = (a, b)|A = a)− P ((A,B) = (a, b)|U = a)| −

¬ d(A) ¬ d(A|B) ¬ ε︷ ︸︸ ︷
1
2

∑
(a,b)∈A×B

P ((A,B) = (a, b)|A = a) · |P (U = a)− P (A = a)|

=
1
2
· 1
|A|
·

∑
(a,b)∈A×B

|P ((A,B) = (a, b)|A = a)− P ((U,B) = (a, b)|U = a) | − ε(10)

=
1
|A|
·
∑
a∈A

1
2
·
∑
b∈B
|P ((A,B) = (a, b)|A = a)− P ((U,B) = (a, b)|U = a) | − ε

=
1
|A|
·
∑
a∈A

∆(B|A = a ; B)− ε

where (9) follows from the triangle inequality, and (10) comes from the fact
that U is uniform on A and from the fact that d(A) ¬ d(A|B) ¬ ε (cf.
Lemma 2). Therefore we obtain (8). This finishes the proof.

2.1 Entropy

Entropy theory was introduced to measure a ’randomness’ or ’chaos’ of given
object. Entropy is used in various fields of the modern science from the codes

16 2 Preliminaries

theory(see. [12, 42]) to the medical screening tests(see. [39]). Let us begin
with the definition from Shannon(see. [7]), let X be a random variable on
X , for x ∈ X define X(x) = P (X = x). Shannon defined entropy (denoted
H(·)) as

H(X) =
∑
x∈X

X(x) log
1

X(x)

Let us remind a few basic properties of Shannon entropy, for C a constant
variable and U uniformly distributed over X

H(C) = 0 H(U) = log |X |

where |X | size(number of elements) of the set X . For an arbitrary chosen,
independent X, Y on X and a random variable Zp defined as follows: with
probability p choose element according to distributionX and with probability
1− p choose element according to distribution Y such inequality holds:

H(Zp) pH(X) + (1− p)H(Y)

Last inequality shows why Shannon entropy is not good measure of ran-
domness for some cryptographic purposes. Take X ≡ 0 and Y distributed
uniformly over X then

H(Zp) (1− p) log |X |

take p equal 0.9 and X very large set, then unfortunately H(Z) is large but
if it is used as cryptographic key we can easly break scheme simply assuming
Z = 0 and we will be right with probability over 0.9. It is quite clear that
we require other measure of randomness. Let X be random variable on X ,
as earlier X(x) = P (X = x), we define min-entropy(denoted as H∞(·)) as

H∞(X) = log
(

1
maxx∈X X(x)

)
= − log

(
max
x∈X

X(x)
)

This measures how easly can we guess random variable. Notice that it has
similar properties as Shanon entropy, for C constant variable and U uniformly
distributed over X

H∞(C) = 0 H∞(U) = log |X | H∞(X) ¬ H(X).

It is easy to see that for Z0.9 defined earlier H∞(Z0.9) ¬ − log(0.9) which is
close to 0.15 is small indicating we should not consider this random variable
as ’truly random’ for cryptographic purposes.

17

3 Extractors

As described in the introduction, the main building block of our construction
is a two-source randomness extractor based on the inner product over finite
fields. The two source extractors were introduced (implicitly) by Chor and
Goldreich [11], who also showed that the inner product over Z2 is a two-source
extractor. The generalization to any field is shown in [38].

The idea behind a randomness extractors is as follows. Suppose we got a
random variable X with some entropy but which is not uniform. For many
cryptographic applications we require an uniformly random variables for ex-
ample to use them as a secret key. Since achieving a perfectly uniform vari-
able is not necessary (and hard) we will be satisfied with a variable that is
indistinguishable from a uniform distribution, formally speaking we need a
variable for which statistical distance from a uniform distribution is negligi-
ble. Therefore we need to somehow extract the randomness from X to get a
shorter (a variable with smaller support) but uniformly distributed output.
However it is easy to see that there does not exist a deterministic function
fk which for every random variable X with H∞(X) k would achieve f(X)
being close to uniform even is output of f is very short compare to the length
of X.

Lemma 5. Let log |X | − 1 k 0, and 1
2 > ε > 0 There does not exist

deterministic function f : X → Z2 such that for every random variable X,
with H∞(X) k we get ∆((f(X));UZ) ¬ ε

Proof. Let f−1(0) denote all x ∈ X such that f(x) = 0. Let Uf−1(0) be random
variable uniformly distributed on set f−1(0), analogously for Uf−1(1). Since
f−1(0)∪ f−1(1) = X and f−1(0)∩ f−1(1) = ∅ hence that, for some i ∈ {0, 1}
we get |f−1(i)| |X |

2 therefore H∞(Uf−1(i)) log |X |−1 while f(Uf−1(i)) = i
therefore d(f(Uf−1(i))) = 1/2.

We can fix this problem in two ways, first by introducing seeded extrac-
tors, second by two-source extractors. Seeded extractor ext takes long random
vector X, H∞(X) k and short uniform seed S which is independent of X
and as a result ∆(ext(X,S);U) ¬ ε. This is quite trivially achieved simply
by choosing ext(X,S) = S so we also require output of ext to be much longer
then length of S.

Let us focus on second solution that is 2-source extractors. We say that
ext : X × Y → Z is (k, ε)-2-source extractor if for every two independent
random variables X on X and Y on Y , such that H∞(X) k and H∞(Y)
k, result of ext(X, Y) is random variable Z which is not further then ε from

18 3 Extractors

uniform distribution over Z formally ∆(Z,UZ) ¬ ε, where UZ is uniformly
distributed over Z.

There are some variations of 2-source extractors. We say that ext : X ×
Y → Z is strong (k, ε)-2-source extractor if for every two independent random
variables X on X and Y on Y , such thatH∞(X) k andH∞(Y) k, we get
∆ ((ext(X, Y), X), (UZ , X)) ¬ ε. Which basically means that even if we show
adversary one of inputs (X or Y) he still can not distinguish between result
of extractor and uniform distribution with probability significantly greater
then 12 . In [38] (Theorem 5.1) we can find proof attributed to Boaz Barak that
every 2-source extractor with sufficiently small error is also strong 2-source
extractor with slightly worse parameters.

Below we introduce two new notions from our paper namely weak flexible
2-source extractor and strong flexible 2-source extractor. Similary to 2-source
and strong 2-source extractors we prove that every weak flexible 2-source
extractor is also strong flexible 2-source extractor or as we will call it later
simply flexible extractor with worse parameters then original weak flexible
extractor.

Our main theorem (Thm. 17) does not use any special properties of the
inner product (like, e.g., the linearity), besides of the fact that it extracts
randomness, and hence it will be stated in a general form, without assuming
that the underlying extractor is necessarily an inner product. The properties
that we need from our two-source extractor are slightly non-standard. Recall
that a typical way to define a strong two-source extractor1 (cf. e.g. [38]) is to
require that d(ext(L,R)|L) and d(ext(L,R)|R) are close to uniform, provided
that L and R have min-entropy at least m (for some parameter m). For the
reasons that we explain below, we need a slightly stronger notion, that we
call flexible extractors. Essentially, instead of requiring that H∞(L) m
and H∞(R) m we will require only that H∞(L) +H∞(R) k (for some
k). Note that if k = 2m then this requirement is obviously weaker than the
standard once, and hence the flexibility strengthens the standard definition.

Formally, let L,R and C be some finite sets. A function ext : L×R → C
is a strong flexible (k, ε)-two source extractor (or: flexible (k, ε)-extractor for
short) if for every L ∈ L and R ∈ R such that H∞(L)+H∞(R) k we have
that d(ext(L,R)|L) ¬ ε and d(ext(L,R)|R) ¬ ε. As it turns out an the inner
product over finite fields is such an extractor.

1 Recall also that a random variable A has min-entropy k, denoted H∞(A) = k if
k = mina (− logP (A = a)).

3.1 Inner product as flexible extractor 19

3.1 Inner product as flexible extractor

Lemma 6. For every finite fields F and any n we have that ext : Fn×Fn → F
defined as extnF(L,R) = 〈L,R〉 is a flexible (k, ε)-extractor for any k and ε
such that

log (1/ε) =
k − (n+ 4) log |F|

3
− 1. (11)

Proof. First, it is easy to see, by inspection of the proof of Lemma 3.1 in [38]
(cf. the line before Remark 3.2), that extnF is a weak flexible

(
k, 2(n log |F|−k+log |F|)/2

)
-

extractor, for any k. This obviously does not finish the proof, since we need
our result to holds for the strong flexible extractors. Fortunately [38] provides
also an argument, attributed there to Boaz Barak, that every weak extractor
is also a strong (for slightly weaker parameters). Since in [38] this argument
is stated for the classical definition of strong extractors, we need to check if it
also holds for the flexible ones. Fortunately it turn out to be true, as shown
below (what follows is copied almost verbatim from [38]).

Claim 1. Let ext : ({0, 1}N)2 → {0, 1}M be a weak flexible (K, ε)-extractor,
for K N . Then for any K ′ K we have that ext is a strong flexible
(K ′, ε′)-extractor where ε′ = 2M(ε+ 2K−K

′
).

Proof. Let X and Y be random variables such that H∞(X) + H∞(Y)
K ′. Without loss of generality, assume that X and Y have flat distribution.
Clearly, it suffices to show that

∑
y∈supp(Y)

2−H∞(Y)∆(ext(X, y);UM) ¬ 2M
(
2K−K

′
+ ε

)
, (12)

where UM is a uniform distribution over {0, 1}M . For any z ∈ {0, 1}M , define
the set Bz of bad y’s for z as follows:

Bz :=
{
y : |P

(
ext(X, y) = z)− 2−M

)
| ε

}
.

Now, we claim that for every z it holds that

|Bz| < 2H∞(Y)−K
′+K . (13)

(Observe that the exponent in (13) is non-negative, since (H∞(Y)−K ′)+K
−H∞(X)+K −N +K > 0). To show (13) suppose it does not hold. Then
the flat distribution on Bz and the variable X are two independent sources
for which the extractor ext fails, becauseH∞(Bz)+H∞(X) H∞(Y)−K ′+

20 3 Extractors

K +H∞(X) K. This contradiction proves (13). Now let B = ∪zBz. We
see that |B| < 2H∞(Y)−K

′+K2M . Therefore,∑
y∈supp(Y)

2−H∞(Y)∆(ext(X, y);UM)

=
∑

y∈supp(Y)∩B
2−H∞(Y)∆(ext(X, y);UM) +

∑
y∈supp(Y)\B

2−H∞(Y)∆(ext(X, y);UM)

¬ 2−H∞(Y)2H∞(Y)−K
′+K+M + ε2M

= 2M(2K−K
′
+ ε),

which, obviously, implies (12).

Now take any k and set M := log |F| and N := n log |F| and K ′ = k and
K := 1

3(n+ 1) log |F|+ 2
3 ·K

′ and ε := 2(n log |F|−K+log |F|)/2. From the remarks
at the beginning of the proof we get that extnF is a weak flexible (K, ε)-
extractor. Then, applying Claim 1 we get that it is also a strong flexible
(K ′, ε′)-extractor for

ε′

= 2M ·
(
ε+ 2K−K

′)
= |F|

(
2(n log |F|− 13 ·(n+1) log |F|− 23 ·k+log |F|)/2 + 2

1
3 ·(n+1) log |F|−

1
3 ·k
)

= 2(13 ·n+ 43 ·log |F|)− 13 ·k+1,

and hence

log (1/ε′) =
k − (n+ 4) log |F|

3
− 1.

Thus the lemma 6 is proven.

Note that since ε can be at most 1, hence (11) makes sense only if
k 6 + 4|F| + n log |F|. It is easy to see that it cannot be improved sig-
nificantly, as in any flexible (k, ε)-extractor ext : L × R → C we need to
have k > max (log |L|, log |R|). To see why it is the case, suppose we have
such a flexible (k, ε)-extractor ext for k = log |L| (the case k = log |R| is ob-
viously symmetric). Now let L′ be a random variable uniformly distributed
over L and let R′ ∈ R be constant. Then obviously H∞(L′) + H∞(R′) =
log |L| + 0 = k, but ext(L′, R′) is a deterministic function of L′, and hence
d(ext(L′, R′)|L′) is large. Therefore, in terms of the entropy threshold k, the
inner product is optimal in the class of flexible extractors (up to a small
additive constant). Note that this is in contrast with the situation with the
“standard” two-source extractors where a better extractor is known [6].

3.2 Other flexible extractor example 21

The reason why we need the “flexibility” property is as follows. In the
proof of Lemma 16 we will actually use in two different ways the fact that
ext is an extractor. In one case (in the proof of Claim 3 within the proof
of Lemma 16) we will use it in the “standard” way, i.e. we will apply it to
two independent random variables with high min-entropy. In the other case
(proof of Claim 2) we will use the fact that d(ext(L,R)|R) ¬ ε even if L has
relatively low min-entropy (H∞(L) = k−|R|) while R is completely uniform
(and henceH∞(L)+H∞(R) = k).2 Hence we will treat ext as standard seeded
extractor. It should not be surprising that we can use the inner product in
this way, as it is easy to see that the inner product is a universal hash
function, and hence the fact that it is a seeded strong extractor follows from
the leftover hash lemma [28]. Hence Lemma 6 in some sense “packs” these
two properties of the inner product into one simple statement.

The observation that the inner product extractor is flexible allows us as
also to talk about the sum of leakages in Section 7, instead of considering
bounded leakage from L and R separately (as it is done, e.g., in [15]). We
would like to stress that this is actually not the main reason for introduc-
ing the “flexibility” property, as it would be needed even if one does not
incorporate leakages into the model.

3.2 Other flexible extractor example

Another extractor that could be used to build a non-malleable code was
introduced in [29] and is defined as follows. Take two independent random
variables X, Y defined on GF (2n). Where GF (2n) denotes Galois field of
polynomials of order n− 1 over Z2. Briefly speaking it is the field of a binary
strings of length n where the addition is defined as a simple coordinate-wise
addition over Z2 while only for purpose of the multiplication binary strings
are interpreted as a polynomials of order n − 1 and the multiplication is
simply a multiplication of a polynomials modulo some irreducible polynomial
of order n. Holenstein in [29] proves that ext(X, Y) := (XY)λ is a strong
seeded extractor, where (·)λ means trimming given sequence to the λ most
significant bits. We will prove something stronger:

Lemma 7. ext : GF (2n) × GF (2n) → GF (2λ), defined as ext(X, Y) =
(X · Y)λ is (k, 2

n−k+2λ−2
2) weak flexible 2-source extractor.

Therefore by Claim 1 we will obtain that it is also strong flexible 2-source
extractor. To begin the proof we need to introduce few definitions regarding

2 We will also use a symmetric fact for d(ext(L,R)|L).

22 3 Extractors

abstract harmonic analysis. All definitions and facts below are classical results
proved in 1950-60. The proofs can be found in [37].

Let C1 be a multiplicative group of {z ∈ C | |z| = 1} where C denotes
complex numbers and the multiplication is standard multiplication over com-
plex numbers.
Let G be a abelian, locally compact group. For the purpose of this section we
will assume that G is a finite discrete group. Reason for that is because we
do not need a general approach, however this theorem is much more general
and all facts and definitions below can be rewritten for any arbitrary abelian,
locally compact group.
We will call ψ : G → C1 the character of group G if and only if ψ is homo-
morphism from G to C1.
All characters of group G form Pontryagin dual group Ĝ with group oper-
ation defined as follows let ψ, φ be characters of G then (ψ · φ) : G → C1,
and (ψ · φ)(g) = ψ(g)φ(g). Neutral element of that group is trivial charac-
ter (character constant, equal to 1). Characters have a following important
geometric property that holds for any character ψ:

∑
g∈G

ψ(g) =
{
|G|, if ψ ≡ 1
0, in other case

(14)

The first case is obvious, let us focus on the second one. If ψ is non trivial then
there exists a ∈ G such that ψ(a) 6= 1. Using property of homomorphism we
obtain: ∑

g∈G
ψ(g) =

∑
g∈G

ψ(g + a) =
∑
g∈G

(ψ(g)ψ(a)) = ψ(a)
∑
g∈G

ψ(g)

Since ψ(a) 6= 1 sum above must be 0. We require a few more definitions
regarding the norm metric. Let f, h : G → C be arbitrary functions, we
define norm metrics and inner product as

||f ||1 =
∑
g∈G
|f(g)|, ||f ||2 =

∑
g∈G
|f(g)|2

1/2 ,
||f ||∞ = maxg∈G|f(g)|, 〈f, h〉 =

∑
g∈G

f(g)h̄(g).

Let f : G→ C be an arbitrary function, we define f̂ : Ĝ→ C as follows

f̂(ψ) =
1
|G|

∑
g∈G

f(g)ψ(g)

3.2 Other flexible extractor example 23

We call function f̂ a Fourier-Stjelties transform of a function f . Let X be
random variable on a group G, we will identify that random variable with its
distribution X : G→ [0, 1], where X(g) = P (X = g). Let us show few facts
about distribution function.

||X(·)||∞ = 2−H∞(X) ||X(·)||2 ¬
√
||X(·)||∞

The first equality follows from definition of min-entropy, second one is simply
statement that average of real numbers is less or equal the largest number.
Now for f, h : G→ C

〈f, g〉 ¬ ||f ||2||g||2 ||f̂ ||2 =
1
|G|
||f ||2

The first one is the Cauchy-Schwartz inequality, the second is Parsaval iden-
tity stating that up to constant factor Fourier-Stjelties transform is isometric.
Key idea behind using harmonic analysis in extractors theory is XOR-lemma.

Theorem 8. (Generalized Vazirani’s XOR - Lemma, see also [38]) Let G,H
be finite abelian groups. Let X be a distribution on G with |E(ψ(X))| ¬ ε for
every non-trivial character ψ of G and let U be the uniform distribution on
G. Let σ : G → H be a function such that for every character φ of H, we
have that

||φ̂ ◦ σ||1 =
∑
ψ∈Ĝ

| 1
|G|

∑
g∈G

φ(σ(g))ψ(g)| ¬ τ

then

∆ ((σ(X)), (σ(U))) ¬ 1
2
ετ
√
|H|

Proof of this theorem can be found in [38]. The XOR-Lemma is crucial for
the proof that σ(X · Y) is a flexible 2-source extractors.

Proof. (of Lemma 7) Let X, Y ∈ GF (2n) be random variables such that
H∞(X) = kx and H∞(Y) = ky and σ : GF (2n) → GF (2λ) defined as a
function that trims given sequence to λ most significant bits. At first we will

24 3 Extractors

prove that |E(ψ(X · Y))| ¬ 2
n−kx−ky

2 for every non-trivial character ψ of G.

|E(ψ(X · Y))| =

∣∣∣∣∣∣
∑

i,j∈GF (2n)
Y (j)X(i)ψ(j · i)

∣∣∣∣∣∣ =

∣∣∣∣∣∣2n
∑

j∈GF (2n)
Y (j)

1
2n

∑
i∈GF (2n)

X(i)ψ(j · i)

∣∣∣∣∣∣ =

∣∣∣∣∣∣2n
∑

j∈GF (2n)
Y (j)X̂(γj)

∣∣∣∣∣∣ =
∣∣∣2n〈X̂(γ·), Y (·)〉

∣∣∣ ¬ (15)

2n||X̂||2||Y ||2 ¬ 2n
(

1√
2n
||X||2||Y ||2

)
¬ (16)

2
n−kx−ky

2 (17)

Where, (15) follows from fact that γj(x) := ψ(j · x) is character of GF (2n),
(16) follows from the Cauchy-Schwartz inequality and Parseval identity, and
(17) we obtain from ||X||2 ¬

√
||X||∞ = 2−H∞(X)/2. Now to use XOR-Lemma

for every φ character of GF (2λ) we need to bound

||φ̂ ◦ σ||1 =
∑

ψ∈ĜF (2n)

∣∣∣∣∣∣ 1
2n

∑
g∈GF (2n)

φ(σ(g))ψ(g)

∣∣∣∣∣∣
At first let us notice that σ defined earlier is homomorphism from GF (2n)
to GF (2λ). Thus φ ◦ σ is a homomorphism from GF (2n) to C1 therefore it
is a character of GF (2n). Moreover φ(σ(g))ψ(g) is also a character and since
characters form group for every φ there exist only one character ψ for which
φ(σ(g))ψ(g) ≡ 1. By (14) we get

∑
g∈GF (2n) φ(σ(g))ψ(g) = 0 for all characters

but one, for that last character this sum is equal |G| which ends the proof
that

||φ̂ ◦ σ||1 =
∑

ψ∈ĜF (2n)

∣∣∣∣∣∣ 1
2n

∑
g∈GF (2n)

φ(σ(g))ψ(g)

∣∣∣∣∣∣ = 1.

Therefore by applying the XOR-Lemma we obtain that for random variables
X, Y ∈ GF (2n) such that H∞(X) +H∞(Y) = k

∆((XY)λ, U) ¬ 1
2

2
n−k
2 |GF (2λ)| = 2

n−k+2λ−2
2 .

This ends the proof that ext(X, Y) = (X · Y)λ is flexible (k, 2
n−k+2λ−2

2) 2-
source extractor.

25

4 Inner product, leakage and Leftover Hash Lemma

Let us begin with the introduction to the area of leakage resilient cryptog-
raphy. In the classical cryptography one usually assumes that the device is
black-boxed, which means that that any adversary attempting to break it can
only use its input-output interface without access to its internal data (such
as, e.g., the secret key). It turns out that this model does not correspond well
to the real life attacks as in practice the adversary can get such information,
via number of so called side channels based on passive measurements such as
running-time, electromagnetic radiation, power consumption (see e.g. [36]).
A recent trend in cryptography is to extend the black-box attacks models by
assuming that the adversary can get some partial information about device’s
internal data. As, obviously, giving to the adversary the complete secret state
of the device ruins any security, every such model needs to somehow limit the
amount of the information that the adversary learns about the secret state.
A typical approach is to assume that the adversary can learn any function
f : {0, 1}∗ → {0, 1}∗ of the state, subject to the restriction that the out-
put of f is much shorter then the length of the state (and hence inevitably
f „forgets” some information about its input). In this dissertation we are
particularly interested in variant of this model (called the split-state model)
where it is assumed that the secret state of the device is split into two parts L
and R and the adversary can learn some bounded information independently
from L and R. In the most basic form this means that the adversary can
chose two functions f and g such that f(L)� |L| and g(R)� |R| and learn
f(L) and g(R). In a more general, adaptive case the adversary can actually
chose a sequence of functions fi and gi in an adaptive way (i.e. his choice of
each fi and gi can depend on what he learned before). For the formal defini-
tions of these notions see Sections 4.2 and Section 4.3. As highlighted in the
introduction the very important method for studying leakage resilience are
the randomness extractors. In the next two sections we discuss the technical
tools that are useful in this context.

4.1 Leftover Hash Lemma and non-adaptive leakage

Let us begin with definition from [3]. A family H of (deterministic) functions
h : X → {0, 1}v is a called p-universal hash family (on space X), if for any
x1 6= x2 ∈ X we have Ph←H[h(x1) = h(x2)] ¬ p. When p = 1

2v , we say that
H is universal. We can finally state the Leftover Hash Lemma (LHL).

Lemma 9. (Leftover-Hash Lemma) Assume that the family H of functions
h : X → {0, 1}v is 1+γ2v -universal hash family. Then the extractor ext(x;h) =

26 4 Inner product, leakage and Leftover Hash Lemma

h(x), where h is uniform overH, is an (m, ε)-extractor, where ε = 1
2

√
γ + 1

2m−v .

Proof of this lemma can be found in [3]. Let x, y ∈ Fn, now define function
hy(x) = 〈x, y〉. It is not hard to see that family H = {hy|y ∈ Fn} is a
universal hash family. Therefore we obtain that for X, Y independent such
that H∞(X) m and Y is uniform:

∆[(〈X, Y 〉, Y); (UF, Y)] ¬ 1
2

√
1

2m−log |F|

This result can be translated to leakage, simply by choosing f(X) ≡ 0 and
g(Y) = Y . Of course if X a priori has high min-entropy then we can choose f
such that Px←X(H∞(X|f(X) = x) m) 1−ε , then LHL result translates
to

P

∆[(〈X, Y 〉, f(X), Y); (UF, f(X), Y)] ¬ 1
2

√
1

2m−log |F|

 1− ε

which satisfies us when ε is negligible factor. We will show how to relax
assumption that Y has to be uniform and to do that we will use flexibility
notion. In Theorem 6 we showed that for X, Y ∈ Fn we get that ext(X, Y) =

〈X, Y 〉 is (k, 2−[k−(n+4) log |F|3 −1]) -strong flexible extractor. Therefore we obtain

Theorem 10. For any X and Y independent random variables on Fn such
thatH∞(Y) k−m and for any f : Fn → G such that Px←f(UFn)(H∞(X|f(X) =
x) m) 1− ε. We get:

P
(

∆[(〈X, Y 〉, f(X), Y); (UF, f(X), Y)] ¬ 2−[k−(n+4) log |F|3 −1]
)
 1− ε

therefore:

∆[(〈X, Y 〉, f(X), Y); (UF, f(X), Y)] ¬ 2−[k−(n+4) log |F|3 −1] + ε

Natural question rises how to choose G such that Px←X(H∞(X|f(X) = x)
m) 1 − ε, to answer that question we present this lemma which is the
generalization of Lemma 5 from [15].

Lemma 11. For every X be random variable on X , such that H∞(X) = k,
and for f : X → {0, 1}λ then

Py←f(UX) (H∞(X|f(X) = y) ¬ m) ¬ 2−k+λ+m.

4.2 Adaptive leakage 27

Proof. Let us define set Ay ⊂ X as follows:

Ay = {x ∈ X |f(x) = y}

We will say that set Ay is small if P (X ∈ Ay) ¬ 2m−k. First observe that
H∞(X|X /∈ small set) m which follows straightforward from conditional
probability. Notice that there is at most 2λ sets that are small. Therefore
P (X ∈ small set) ¬ 2−k+m+λ which ends the proof.

4.2 Adaptive leakage

Theorem 12. Let ext : X ×X → G be flexible (k, ε)−extractor. Let X and Y
be independent random variables such that H∞(X) = kx and H∞(Y) = ky.
For any adaptive sequence of functions fi : X → {0, 1}ai and gi : X →
{0, 1}bi (where i’th function can depend on results of i− 1 previous functions
fi and gi), such that λx + λy ¬ λ where λ is parameter and

∑
i ai = λx and∑

i bi = λy we get:

d(ext(X, Y)|viewf,g) ¬ ε+ 2−kx−ky+k+λ

where viewf,g = (f1(X), g1(Y), f2(X), g2(Y)...).

To prove that theorem we require lemma from [15] (Lemma 4.).

Lemma 13. Let X and Y be independent random variables then

I(X, Y |viewf,g) = 0

where I denotes Shannon’s information, and viewf,g is defined same way as
above.

Now we can prove Theorem 12.

Proof. Let us notice that in order to prove Th. 12 by Lemma 13 its sufficient
to estimate probability

Pc (H∞(X|viewf,g = c) +H∞(Y |viewf,g = c) k)

By Lemma 11 we know that

Pc (H∞(X|viewf,g = c) ¬ mx) ¬ 2−kx+mx+λx

same for
Pc (H∞(Y |viewf,g = c) ¬ my) ¬ 2−ky+my+λy .

28 4 Inner product, leakage and Leftover Hash Lemma

Therefore
Pc (H∞(X|viewf,g = c) ¬ kx − λx − αx) ¬ 2−αx

and
Pc (H∞(Y |viewf,g = c) ¬ ky − λy − αy) ¬ 2−αy .

Thus that by λx + λy ¬ λ and by choosing α = αx + αy we get

Pc (H∞(X|viewf,g = c) +H∞(Y |viewf,g = c) kx + ky − λ− α) 1− 2−α

now take α = −k + kx + ky − λ we get

Pc (H∞(X|viewf,g = c) +H∞(Y |viewf,g = c) k) 1− 2−kx−ky+k+λ

Therefore since ext is flexible (k, ε)−extractor

Pc (d(ext(X, Y)|viewf,g = c) ¬ ε) 1− 2−kx−ky+k+λ

from that we get Theorem 12.

4.3 Leakage-resilient storage in the split-state model

In [15] notion of the leakage-resilient storage was introduced, for purpose of
this dissertation we will generalize the definitions from [15]. For the reasons
explained in the introduction to this section we are interested in creating
storage schemes that are resilient to leakage of the information. Let ext :
X × X → F be a (k, ε)- flexible extractor. Let L and R be a independent
random variables such thatH∞(L)+H∞(R) > k. Now let us define a ((k, ε)−
ext, L,R)-scheme as a pair of functions Enc : F→ X×X and Dec : X×X → F
defined as follows:

Dec(l, r) = ext(l, r)
Enc(m) = (l, r) such that l← L, r ← R and ext(l, r) = m.

Now let us define the (λ, t)-split-state model adversary (or in short the (λ, t)−
SSM adversary) similarly as in [15]. Assume memory of the device is split
in two parts L,R, we execute t-times following procedure: for i = 1, 2, ..., t
the adversary chooses fi : X → {0, 1}ai and gi : X → {0, 1}bi and then
learns fi(L) and gi(R). The adversary can choose any ai and bi such that∑
i ai + bi < λ. We will denote the vector (f1(L), g1(R), f2(L), ..., gt(R)) of

the outputs reviled to the adversary A as viewA(L,R).
We will say that the ((k, ε)− ext, L,R)-scheme is (λ, t, δ)-weak secure in

the split-state model if for every (λ, t)-SSM adversary A following condition
is fulfilled

d(ext(L,R)|viewA(L,R)) ¬ δ.

29

Now let us recall a definition from [15] and rewrite it for the split-state model.
We say that the scheme (Enc,Dec) is (λ, t, δ)−secure if for any two messages
m0 and m1 and for every (λ, t)-SSM adversary following condition is fulfilled:

∆ (viewA(Enc(m0)); viewA(Enc(m1))) ¬ δ

Informally speaking that means that for any two messages m0 and m1 we
can not distinguish their encodings with a probability greater then 1/2 + δ/2
even if additional information leaked.

Theorem 14. If the ((k, ε) − ext, L,R)-scheme is (λ, t, δ)-weak secure then
it is (λ, t, 4|F| · δ)−secure.

Proof. Let the ((k, ε) − ext, L,R)-scheme be (λ, t, δ)-weak secure. Thus for
every (λ, t)-SSM adversary A we get

d(ext(L,R)|viewA(L,R)) ¬ δ.

By Lemma 4 we get that for every m ∈ F

∆ ((viewA(L,R)|ext(L,R) = m); viewA(L,R)) ¬ 2|F| · δ.

Therefore by triangle inequality, for every m0,m1 ∈ F we get

∆ ((viewA(L,R)|ext(L,R) = m0); (viewA(L,R)|ext(L,R) = m1)) ¬ 4|F| · δ
thus
∆ (viewA(Enc(m0)); viewA(Enc(m1))) ¬ 4|F| · δ.

In Theorem 12 we showed that the ((k, ε) − ext, L,R)- scheme is (λ,∞, ε +
2−H∞(L)−H∞(R)+k+λ)-weak secure thus Theorem 14 we get that schemes based
on the flexible extractors are (λ,∞, 4|F|(ε + 2−H∞(L)−H∞(R)+k+λ))- secure
against leakage.

5 Definition of the non-malleable codes and equivalence
to the hardness of negation

In this section we review the definition of the non-malleable codes from [23],
which has already been discussed informally in the introduction. Formally,

305 Definition of the non-malleable codes and equivalence to the hardness of negation

let (Enc : M → X ,Dec : X → M ∪ {⊥}) be an encoding scheme. For
F : X → X and for any m ∈M define the experiment TamperFm as:

TamperFm =

X ← Enc(m),
X ′ := F (X),
m′ := Dec(X ′)

output: m′

Let F be a family of functions from X to X . We say that an encoding scheme
(Enc,Dec) is ε-non-malleable with respect to F if for every function F ∈ F
there exists distribution DF onM∪{same∗,⊥} such that for every m ∈M
we have

TamperFm ≈ε

d← DF

if d = same∗ then output m
otherwise output d.

 (18)

The idea behind the “⊥” symbols is that is should correspond to the
situation when the decoding function detects tampering and outputs an er-
ror message. Since the codes that we construct in this paper do not need
this feature, we will usually drop this symbol and have Dec : X → M. The
“⊥” symbol is actually more useful for the strong non-malleable codes (an-
other notion defined in [23]) where it is required that any tampering with
X should be either “detected” or should produce encoding of an unrelated
message. Our codes do not have this property. This is because, for example,
permuting the elements of the vectors L and R in the same manner does
change these vectors, but does not change their inner product. Fortunately,
for all applications that we are aware of this stronger notion is not needed.
The following lemma, already informally discussed in Sect. 1.1, states that
for one-bit messages non-malleability is equivalent to the hardness of negat-
ing a random encoded bit. It turns out that such a characterization of the
non-malleable codes is much simpler to deal with. We also believe that it
may be of independent interest.

Lemma 15. Suppose M = {0, 1}. Let F be any family of functions from X
to X . An encoding scheme (Enc :M→ X ,Dec : X →M) is ε-non-malleable
with respect to F if and only if for any F ∈ F and B ← {0, 1} we have

P (Dec (F (Enc(B))) 6= B) ¬ 1
2

+ ε. (19)

Proof. First assume that (Enc,Dec) is ε-non-malleable and show that (19)
holds. Fix any F : X → X . Since (Enc,Dec) is ε-non-malleable, hence there

31

exists a distribution DF such that (18) holds. Therefore (cf. Lemma 1) we
have

ε |P
(
TamperF0 = 1

)
− P

(
DF = 1

)
| (20)

and

ε |P
(
TamperF1 = 0

)
− P

(
DF = 0

)
|. (21)

Adding sidewise (20) and (21) we obtain

2ε |P
(
TamperF0 = 1

)
− P

(
DF = 1

)
|+ (22)

|P
(
TamperF1 = 0

)
− P

(
DF = 0

)
|

∣∣∣∣P (TamperF0 = 1

)
+ P

(
TamperF1 = 0

)
− (23)(

P
(
DF = 1

)
+ P

(
DF = 0

)) ∣∣∣∣, (24)

where (24) comes from the triangle inequality. Since obviously P
(
DF = 1

)
+

P
(
DF = 0

)
¬ 1, hence (24) implies that

1 + 2ε P
(
TamperF0 = 1

)
+ P

(
TamperF1 = 0

)
. (25)

On the other hand it is easy to see that

P
(
TamperF0 = 1

)
+ P

(
TamperF1 = 0

)
= P (F (Enc(B)) 6= B|B = 0) + P (F (Enc(B)) 6= B|B = 1)

=
1
2
· P (F (Enc(B)) 6= B) , (26)

where (26) comes from the fact that B has uniform distribution over {0, 1}.
Obviously (25) and (26) imply (19). Hence this part of the lemma is proven.
To show the opposite direction of the lemma assume now that (19) holds.
We will show that (Enc,Dec) is ε-non-malleable. Again, fix any F : X → X .
Denote

ε′ :=
1
2
·max(0, P (Dec (F (Enc(1))) = 0) + (27)

P (Dec (F (Enc(0))) = 1)− 1). (28)

Clearly from (19) we get that ε′ ¬ ε. Now, define DF as follows

DF :=

0 with prob. P (Dec (F (Enc(1))) = 0)− ε′
1 with prob. P (Dec (F (Enc(0))) = 1)− ε′
same∗ otherwise.

32 6 The construction

It is easy to verify that the probabilities above are non-negative, and, from
the definition of ε′ they sum up to 1. Hence the distribution DF is defined
correctly. Now look at the experiment (18). It is obvious that for b = 1 we
have

P
(
TamperF1 = 0

)
= P (Dec (F (Enc(1))) = 0)− ε′.

Hence in this case TamperF1 ≈ε′ Dec (F (Enc(1))). By a symmetric argument
we also get TamperF0 ≈ε′ Dec (F (Enc(0))). Since ε′ ¬ ε this implies that
(Enc,Dec) is ε-non-malleable.

In this paper we are interested in the split-state codes. A split-state code
is an pair (Enc : M → L × R,Dec : L × R → M). We say that it is ε-
non-malleable if it is ε-non-malleable with respect to a family of all functions
Mallf,g defined as Mallf,g(L,R) = (f(L), g(R)).

6 The construction

In this section we present a construction of a non-malleable code in the
split-state model, together with a security proof. Before going to the techni-
cal details, let us start with some intuitions. First let us begin with 2-out-
of-2 secret sharing definition, let S be secret we want to share between 2
parties in such way that neither of those can reconstruct secret (or some-
thing related to it) without knowledge of second share. Formaly we say
that scheme is 2-out-of-2 secret sharing if distribution of (S|left share(S) =
L) is identical as distribution of S (same for right share R). Analogously
scheme is ε−2-out-of-2 secret sharing if ∆ ((S|left share(S) = L); (S)) ¬ ε
and ∆ ((S|right share(S) = R); (S)) ¬ ε.

It is easy to see that any such code (Enc,Dec) needs to be a ε-2-out-of-2
secret sharing scheme, where Enc is the sharing function, Dec is the recon-
struction function, and (L,R) = Enc(M) are shares of a secret M ∈ {0, 1}.
Informally speaking, this is because if one of the “shares”, L, say, reveals
some non-trivial information about M then by modifying L we can “negate”
stored secret M with probability significantly higher than 1/2. Precisely
speaking assume that A : L → Z2 is program that gets vector L ∈ L and
makes a guess what secret is coded using L(symmetric argument works for
R). Now assume our scheme is not (2δ)−secret-sharing scheme that means
∆ ((S|left share(S) = L); (S)) 2δ (without loss of generality let us assume
scheme is not secret sharing with respect to left share). Then there exist
such program A that P (B ← {0, 1};L,R← Enc(B);A(L) = B) 1

2 + δ.
Adversary has access to such program A and can chose any three vectors
l0, l1 ∈ L, r ∈ R such that Dec(l0, r) = 0 and Dec(l1, r) = 1 (he can do that

33

because scheme itself is not secret). Then he chose function g to be constant
g ≡ r, and defines f with help of program A, precisely f(L) = lA(L)+1. Let
us calculate P

(
Dec

(
Mallf,g(Enc(B))

)
6= B

)
.

P
(
Dec

(
Mallf,g(Enc(B))

)
6= B

)
= P (L,R← Enc(B),A(L) = B) 1

2
+ δ.

Therefor by lemma 15 we get that such scheme can not be ε−non-malleable
if δ > ε.

In general case of any arbitrary message space M it is also true that
scheme needs to be 2ε−2-out-of-2 secret sharing in order to be ε−non-malleable.
The idea is very similar to idea for just {0, 1} messages. Assume scheme is
not secret sharing, then there exists two messages m0,m1 ∈ M for which
scheme is not secret sharing (now we assume scheme is only sharing m0 or
m1) and then by earlier reasoning we get that coding scheme can not be
non-malleable.

It is also easy to see that not every secret sharing scheme is a non-
malleable code in the split-state model. As an example consider Enc : Za →
Za × Za (for some a 2) defined as Enc(M) := (L,L+M (mod a)), where
L← Za, and Dec(L,R) := L+R mod m. Obviously it is a good 2-out-of-2 se-
cret sharing scheme. However, unsurprisingly, it is malleable, as an adversary
can, e.g., easily add any constant w ∈ Za to a encoded message, by choosing
an identity function as f , and letting g be such that that g(R) = R+w mod a.
Obviously in this case for every L and R that encode some M we have
Dec(f(L), g(R)) = M + w mod a.

We therefore need to use a secret sharing scheme with some extra security
properties. A natural idea is to look at the two-source randomness extractors,
as they may be viewed exactly as “2-out-of-2 secret sharing schemes with
enhanced security”, and since they have already been used in the past in the
context of the leakage-resilient cryptography. The first, natural idea, is to
take the inner product extractor ext : Fn × Fn → Fn and use it as a code as
follows: to encode a message M ∈ F take a random pair (L,R) ∈ Fn × Fn
such that 〈L,R〉 = M (to decode (L,R) simply compute 〈L,R〉). This way
of encoding messages is a standard method to provide leakage-resilience in
the split-state model (cf. e.g. [15]). Unfortunately, it is easy to see that this
scheme can easily be broken by exploiting the linearity attacks of the inner
product. More precisely, if the adversary chooses f(L) := a ·L and g(R) := R
(for any a ∈ F) then the encoded secret gets multiplied by a. Obviously,
this attack does not work for F = Z2, as in this case the only choices are
a = 0 (which means that the secret is deterministically transformed to 0)
and a = 1 (which leaves the secret unchanged). Sadly, it turns out that for
F = Z2 another attack is possible. Consider f and g that leave their input

34 6 The construction

vectors unchanged except of setting the first coordinate of the vector to 1,
i.e.: f (L1, . . . , Ln) := (1, L2, . . . , Ln) and g (R1, . . . , Rn) := (1, R2, . . . , Rn).
Then it is easy to see that 〈f(L), g(R)〉 6= 〈L,R〉 if and only if L1 · R1 = 0,
which happens with probability 3/4 both for M = 0 and for M = 1.

Note that the last attack is specific for small F’s, as over larger fields the
probability that L1 ·R1 = 0 is negligible. At the first glance, this fact should
not bring any hope for a solution, since, as described above, for larger fields
another attack exists. Our key observation is that for one-bit messages it is
possible to combine the benefits of the “large field” solution with those of
the “small field” solution in such a way that the resulting scheme is secure,
and in particular both attacks are impossible! Our solution works as follows.
The codewords are pairs of vectors from Fn for a large F. The encoding of 0
remains as before – i.e. we encode it as a pair (L,R) of orthogonal vectors. To
encode 1 we choose a random pair (L,R) of non-orthogonal vectors, i.e. such
that 〈L,R〉 is a random non-zero element of F. Before going to the technical
details let us first “test” this construction against the attacks described above.
First, observe that multiplying L (or R) by some constant a 6= 0 never
changes the encoded bit as 〈a · L,R〉 = a 〈L,R〉 which is equal to 0 if and
only if 〈L,R〉 = 0. On the other hand if a = 0 then 〈a · L,R〉 = 0, and hence
the secret gets deterministically transformed to 0, which is also ok. It is also
easy to see that the second attack (setting the first coordinates of both the
vectors to 1) results in 〈f(L), g(R)〉 close to uniform (no matter what was
the value of 〈L,R〉), and hence Dec(f(L), g(R)) = 1 with an overwhelming
probability.

Let us now define our encoding scheme formally. As already mentioned in
Sect. 3 our construction uses a flexible two-source extractor ext : L×R → C
in a black-box way (later we show how it instantiate it with an inner product
extractor, cf. Thm. 18). This in particular means that we do not use any
special properties of the inner product, like the linearity. Also, since C does
not need to be a field, hence obviously the choice to encode 0 is by a pair of
vectors such that 〈L,R〉 = 0 (in the informal discussion above) was arbitrary,
and one can encode 0 as any pair (L,R) such that 〈L,R〉 = c, for some fixed
c ∈ F. Let ext : L×R → C be a flexible (k, ε)-extractor, for some parameters
k and ε, and let c ∈ C be arbitrary. We first define the decoding function.
Let Dcext : L ×R → {0, 1} be defined as:

Dcext(L,R) =
{

0 if ext(X) = c
1 otherwise.

Now, let Ecext : {0, 1} → L×R be an encoding function defined as Ecext(b) :=
(L,R), where (L,R) is a pair chosen uniformly at random from the set

35

{(L,R) : Dcext(L,R) = b}. We also make a small additional assumption about
ext. Namely, we require that is L̃ and R̃ are completely uniform over L and
R (resp.) then ext(L̃, R̃) is completely uniform. More formally

for L̃← L and R̃← R we have d(ext(L̃, R̃)) = 0. (29)

The reason why we impose this assumption is that it significantly simplifies
the proof, thanks to the following fact. It is easy to see that if ext satisfies
(29), then for every x ∈ C the cardinality of each set {(`, r) : ext(`, r) = x}
is exactly 1/|F| fraction of the cardinality of L × R. Hence, if B ← {0, 1}
and (L,R) ← Ecext(B), then in the distribution of (L,R) every (`, r) such
that ext(`, r) = c is exactly (|C| − 1) more likely than any (`′, r′) such that
ext(`′, r′) 6= c. Formally:

P ((L,R) = (`, r)) = (|C| − 1) · P ((L,R) = (`′, r′)) . (30)

It is also straightforward to see that every extractor can be easily converted to
an extractor that satisfies (29)3. Lemma 16 below is the main technical lemma
of this paper. It states that (Ecext,D

c
ext) is non-malleable, for an appropriate

choice of ext. Since later (in Sect. 7) we will re-use this lemma in the context
of non-malleability with leakages, we prove it in a slightly more general form.
Namely, (cf. (32)) we show that it is hard to negate an encoded bit even if
one knows that the codeword (L,R) happens to be an element of some set
L′ × R′ ⊆ L × R. Note that we do not explicitly assume any lower bound
on the cardinality of L′ × R′. This is not needed, since this cardinality is
bounded implicitly in (31) by the fact that in any flexible extractor the
parameter k needs to be larger than max (log |L|, log |R|) (cf. Sect. 3). If
one is not interested in leakages then one can read Lemma 16 and its proof
assuming that L′×R′ = L×R. Lemma 16 is stated abstractly, but one can, of
course, obtain a concrete non-malleable code, by using as ext the two-source
extractor extnF. We postpone presenting the choice of concrete parameters F
and n until section 7, where it is done in a general way, also taking into
account leakages.

Lemma 16. Let L′ and R′ be some subsets of L and R respectively. Suppose
ext : L × R → C is a flexible (k, ε)-extractor that satisfies (29), where, for
some parameter δ we have:

k =
2
3
· (log |L′|+ log |R′|)− 2

3
· log(1/δ). (31)

3 The inner-product extractor satisfies (29) if we assume, e.g., that the fist coordinate
of L and the last coordinate of R are non-zero. In general, if ext : L × R → C is any
extractor, then ext′ : (L×C)×R → C defined as ext((C,L), R) = ext(L,R)+C (assuming
that (C,+) is a group) satisfies (29).

36 6 The construction

Take arbitrary functions f : L → L and g : R → R, let B be chosen
uniformly at random from {0, 1} and let (L,R)← Ecext(B). Then

P (Dcext(f(L), g(R)) 6= B | (L,R) ∈ (L′,R′)) ¬
1
2

+ |C|−1 + 2|C|2ε+ δ/(|C|−1 − ε), (32)

and, in particular (Ecext,D
c
ext) is

(
|C|−1+2|C|2ε+δ/(|C|−1−ε)

)
-non-malleable.

Proof. Before presenting the main proof idea let us start with some simple
observations. First, clearly it is enough to show (32), as then the fact that
(Ecext,D

c
ext) is

(
1
2 · |C|

−1+ 2|C|2ε+δ/(|C|−1−ε)
)
-non-malleable can be obtained

easily by assuming that L′ ×R′ = L ×R and applying Lemma 15. Observe
also that (32) implies that log |L′| + log |R′| k, and hence, from the fact
that ext is a (k, ε)-two source extractor we obtain that if L̃← L′ and R̃← R̃′

then
d(ext(L̃, R̃)) ¬ ε. (33)

We will use this fact later. The basic idea behind the proof is a as follows.
Denote B′ := Mallf,g(Enc(B)). Recall that our code is “non-balanced” in
the sense that a random codeword (L,R) ∈ L′ × R′ with only negligible
probability encodes 0. We will exploit this fact. Very informally speaking, we
would like to prove that if B = 1 then the adversary cannot force B′ to be
equal to 0, as any independent modifications of L and R that encode 1 are
unlikely to produce an encoding of 0. In other words, we would hope to show
that P (B′ = 0|B = 1) is small. Note that if we managed to show it, then we
would obviously get that P (B′ 6= B) cannot be much larger than 1/2 (recall
that B is uniform), and then the proof would be finished. Unfortunately, this
is too good to be true, as the adversary can choose f and g to be constant
such that always Dcext(f(L), g(R)) = 0, which would result in B′ = 0 for any
value of B. Intuitively, what we will actually manage to prove is that the
only way to obtain B′ = 0 if B = 1 is to apply such a “constant function
attack”. Below we show how to make this argument formal.

Let us first observe that any attack where f and g are constant will never
work against any encoding scheme, as in this case (f(L), g(R)) carries no
information about the initial value of B. Our first key observation is that
for our scheme, thanks to the fact that it is based an extractor, this last
statement holds even if any of f and g is only “sufficiently close to constant”.
Formalizing this property is a little bit tricky, as, of course, the adversary
can apply “mixed” strategies, e.g., setting f to be constant on some subset
of L′ and to be injective (and hence “very far from constant”) on the rest of
L′. In order to deal with such cases we will define subsets of LFFC ⊆ L′ and

37

RFFC ⊆ R′ on which f and g (resp.) are “very far from constant”. Formally,
for L̃← L′ and R̃← R′ let

LFFC :=
{
` ∈ L′ : H∞(L̃ | f(L̃) = f(`)) < k − log |R′|

}
,

and
RFFC :=

{
r ∈ R′ : H∞(R̃ | g(R̃) = g(r)) < k − log |L′|

}
,

where FFC stands for “far from constant”. Hence, in some sense, we define
a function to be “very far from constant on some argument x” if there are
only a few other arguments of this function that collide with x. We now state
the following claim that essentially formalizes the intuition outlined above,
by showing that if either L ∈ LFFC or R ∈ RFFC then (f, g) cannot succeed
in negating B.

Claim 2. Let B ← {0, 1} and (L,R)← Ecext(B). Then:

P
(
Dcext(Mall

f,g(L,R)) 6= B | L 6∈ LFFC ∨R 6∈ RFFC
)
¬ 1

2
+

1
2
· |C|−1 + 2|C|2ε.

(34)

Proof. We will actually prove only that

P
(
Dcext(Mall

f,g(L,R) 6= B | L 6∈ LFFC
)
¬ 1

2
+

1
2
· |C|−1 + 2|C|2ε. (35)

This will suffice, as, obviously, because of the symmetry of L and R, the
following inequality can be proven analogously:

P
(
Dcext(Mall

f,g(L,R) 6= B | R 6∈ RFFC
)
¬ 1

2
+

1
2
· |C|−1 + 2|C|2ε, (36)

and (35) and (36) together imply (34). Let (L̃, R̃) be chosen uniformly at
random from L′×R′. From the definition of LFFC for every y 6∈

−→
f (LFFC) we

have that
H∞(L̃ | L̃ 6∈ LFFC ∧ f(L̃) = y) k − log |R′|. (37)

Since R̃ is uniform and independent from L̃ hence we also have that

H∞(R̃ | L̃ 6∈ LFFC ∧ f(L̃) = y) = H∞(R̃) = log |R′|, (38)

and, moreover, clearly L̃ and R̃ are independent conditioned on the event
(L̃ 6∈ LFFC ∧ f(L̃) = y). Since ext is a flexible (k, ε)-extractor, hence we get:

d
(
ext(L̃, R̃) | L̃ 6∈ LFFC ∧ f(L̃) = y, R̃

)
¬ ε, (39)

38 6 The construction

which, since we quantified over all y’s such that y 6∈
−→
f (LFFC), clearly implies

that
d
(
ext(L̃, R̃) | L̃ 6∈ LFFC, f(L̃), R̃

)
¬ ε. (40)

Basically, what it means is: once it happened that L̃ 6∈ LFFC, then ext(L̃, R̃)
is close to uniform even if we give to the adversary f(L̃) and the entire
R̃. Note that in this argument we implicitly used ext as a strong seeded
extractor, which we are allowed to do because of its flexibility (cf. Sect. 3).
Since Dcext

(
f(L̃), g(R̃)

)
is clearly a function of (f(L̃, R̃)) hence, by Lemma 2,

Eq. (40) implies that

d
(
ext(L̃, R̃) | L̃ 6∈ LFFC, Dcext

(
f(L̃), g(R̃)

))
¬ ε. (41)

This is, of course, still very far from what we need, for several reasons, one of
them being that we want to reason about the distance of Dcext

(
f(L̃), g(R̃)

)
from uniformity, and in (41) this term appears on the right-hand-side of the
condition symbol “|”. Fortunately, we can apply now Lemma 4 to “invert”
(41) obtaining that

2|C|ε ∆
((
Dcext

(
f(L̃), g(R̃)

)
| L̃ 6∈ LFFC ∧ ext(L̃, R̃) = c

)
︸ ︷︷ ︸

(∗)

;

(
Dcext

(
f(L̃), g(R̃)

)
| L̃ 6∈ LFFC

)
︸ ︷︷ ︸

(∗∗)

)
(42)

From the construction of Dcext it is easy to see that the conditional distribution
(∗) is equal to the distribution of Dcext (f(L), g(R)) conditioned on the event
that B = 0 and L 6∈ LFFC. We now show that (∗∗) is close the the distribution
of Dcext (f(L), g(R)) conditioned on the event that B = 1 and L 6∈ LFFC.

∆
((∗∗)︷ ︸︸ ︷(
Dcext

(
f(L̃), g(R̃)

)
| L̃ 6∈ LFFC

))
;

(Dcext (f(L), g(R)) |B = 1 ∧ L 6∈ LFFC)
)

= ∆
((
Dcext

(
f(L̃), g(R̃)

)
| L̃ 6∈ LFFC

))
;(

Dcext
(
f(L̃), g(R̃)

)
|ext(L̃, R̃) 6= c ∧ L̃ 6∈ LFFC

))
¬

(
1− P

(
ext(L̃, R̃) 6= c

))
(43)

= P
(
ext(L̃, R̃) = c

)
¬ |C|−1 + ε, (44)

39

where in (43) we used Lemma 3, and in (44) we used (33). Hence, applying
the triangle inequality to (42) and (44) we obtain

2|C|ε+ |C|−1 + ε

 ∆((Dcext(f(L), g(R)) | B = 0 ∧ L 6∈ LFFC) ;
(Dcext(f(L), g(R)) | B = 1 ∧ L 6∈ LFFC)). (45)

Now observe that Dcext takes values in a binary set, and hence, by Lemma 1
the right-hand-side of (45) is equal to

|P (Dcext(f(L), g(R)) = 0 | B = 0 ∧ L 6∈ LFFC)−
P (Dcext(f(L), g(R)) = 0 | B = 1 ∧ L 6∈ LFFC) |

= | (1− P (Dcext(f(L), g(R)) = 1 | B = 0 ∧ L 6∈ LFFC))−
P (Dcext(f(L), g(R)) = 0 | B = 1 ∧ L 6∈ LFFC) |,

and therefore

P (Dcext(f(L), g(R)) = 1 | B = 0 ∧ L 6∈ LFFC) + (46)
P (Dcext(f(L), g(R)) = 0 | B = 1 ∧ L 6∈ LFFC)

¬ 1
2

+ |C|ε+
1
2
· |C|−1 +

1
2
· ε (47)

What (47) essentially states is that
P (B = 1|B = 0 ∧ L 6∈ LFFC) +P (B = 0|B = 1 ∧ L 6∈ LFFC) is at most (ap-
proximately) 1/2. Unfortunately this is still not what we need, as it could
be the case, e.g., that the first summand is equal 1, the second is equal to 0
(and hence (47) holds), but P (B = 0|L 6∈ LFFC) is overwhelming, and hence
the total probability of negating B is much higher than 1/2. Intuitively, this
should not happen, as one can expect the distribution of B conditioned on
L 6∈ LFFC to be close to uniform. We confirm this intuition below. First, from
(40) we get that

|P
(
ext(L̃, R̃) = c | L̃ 6∈ LFFC

)
− 1
|C|
| ¬ ε (48)

and

|P
(
ext(L̃, R̃) 6= c | L̃ 6∈ LFFC

)
− |C| − 1
|C|

| ¬ ε. (49)

Therefore

1− |C|ε
|C| − 1 + |C|ε

¬
P
(
Dcext(L̃, R̃) = 0 | L̃ 6∈ LFFC

)
P
(
Dcext(L̃, R̃) = 1 | L̃ 6∈ LFFC

) ¬ 1 + |C|ε
|C| − 1− |C|ε

40 6 The construction

Now, to get from the uniform (L̃, R̃) to (L,R) (which does not have a uniform
distribution, as it comes from (L,R)← Ecext(B)) we use the observation (30)
and obtain

(|C| − 1) (1− |C|ε)
|C| − 1 + |C|ε

¬ P (Dcext(L,R) = 0 | L 6∈ LFFC)
P (Dcext(L,R) = 1 | L 6∈ LFFC)

¬ (|C| − 1) (1 + |C|ε)
|C| − 1− |C|ε

,

which implies that

1− |C|2ε ¬ P (B = 0 | L 6∈ LFFC)
P (B = 1 | L 6∈ LFFC)

¬ 1 + |C|2ε (50)

Now, from (47) we get

1
2

+ |C|ε+
1
2
· |C|−1 +

1
2
· ε

 P (Dcext(f(L), g(R)) = 1 ∧B = 0 | L 6∈ LFFC)
P (B = 0|L 6∈ LFFC)

+

P (Dcext(f(L), g(R)) = 0 ∧B = 1 | L 6∈ LFFC)
P (B = 1|L 6∈ LFFC)

,

and therefore(1
2

+ |C|ε+
1
2
· |C|−1 +

1
2
· ε
)
· P (B = 0|L 6∈ LFFC)

 P (Dcext(f(L), g(R)) = 1 ∧B = 0 | L 6∈ LFFC) +
P (B = 0|L 6∈ LFFC)
P (B = 1|L 6∈ LFFC)

· P (Dcext(f(L), g(R)) = 0 ∧B = 1 | L 6∈ LFFC)

 P (Dcext(f(L), g(R)) = 1 ∧B = 0 | L 6∈ LFFC) + (51)

P (Dcext(f(L), g(R)) = 0 ∧B = 1 | L 6∈ LFFC) ·
(
1− |C|2ε

)
 P (Dcext(f(L), g(R)) = 1 ∧B = 0 | L 6∈ LFFC) +

P (Dcext(f(L), g(R)) = 0 ∧B = 1 | L 6∈ LFFC)− |C|2ε,

where (51) comes from (50). Thus we get that

P (Dcext(f(L), g(R)) = 1 ∧B = 0 | L 6∈ LFFC) +
P (Dcext(f(L), g(R)) = 0 ∧B = 1 | L 6∈ LFFC) (52)

is at most

1
2

+ |C|ε+
1
2
· |C|−1 +

1
2
· ε · P (B = 0|L 6∈ LFFC) + |C|2ε

41

By a similar argument we can obtain another bound on (52), name that can
show that (52) is also at most is also at most(1

2
+ |C|ε+

1
2
· |C|−1 +

1
2
· ε
)
· P (B = 1|L 6∈ LFFC) + |C|2ε.

We therefore get

P (Dcext(f(L), g(R)) = 1 ∧B = 0 | L 6∈ LFFC) +
P (Dcext(f(L), g(R)) = 0 ∧B = 1 | L 6∈ LFFC)

¬ 1
2

+ |C|ε+
1
2
· |C|−1 +

1
2
· ε · (P (B = 1|L 6∈ LFFC) + P (B = 0|L 6∈ LFFC))︸ ︷︷ ︸

=1

+|C|2ε

¬ 1
2

+
1
2
· |C|−1 + 2|C|2ε

which clearly implies (35).

Hence, what remains is to analyze the case when (L,R) ∈ LFFC ×RFFC.
We will do it only for the case B = 1, and when LFFC × RFFC is relatively
large, more precisely we will assume that

|LFFC ×RFFC| δ · |L′ ×R′|. (53)

This will suffice since later we will show (cf. (69)) that the probability that
Enc(B) ∈ LFFC×RFFC is small for small δ’s (note that this is not completely
trivial as (L,R) does not have a uniform distribution over L′ ×R′).

Claim 3. Let (L1, R1) ← Ecext(1) and suppose LFFC and RFFC are such that
(53) holds. Then

P
(
Dcext

(
Dec(f(L1), g(R1))

)
= 0 | (L1, R1) ∈ LFFC ×RFFC

)
¬ 2|C|−1 + 2ε.

(54)

Proof. Let (L̂, R̂) be distributed uniformly over LFFC × RFFC. Recall that
LFFC and RFFC consist of those elements of L and R (resp.) that do not
collide with too many other elements under the functions f and g (resp.). To
explain the basic proof idea first let us go to the extreme and assume that f
and g are injective on LFFC and RFFC. This implies that the min-entropies of
f(L̂) and g(R̂) are equal to the min-entropies of L̃ and R̃ (resp.), and hence,
by the assumption (53) their sum is at least log |L′| + log |R′| − log(1/δ).

42 6 The construction

Since normally this would be a large value, we could use the fact that ext is
an extractor and obtain that d(ext(L̂, R̂)) is close to uniform, which would
clearly imply that the probability that ext(L̂, R̂) = c is close to |C|−1, and
hence, in turn, that the probability that Dcext(L̂, R̂) = 0 is negligible.

There are two problems with the above argument. Firstly, the distribution
of (L̂, R̂) is not equal to the distribution of (L1, R1) conditioned on the event
that (L1, R1) ∈ LFFC×RFFC. Secondly, f and g are only “close to injective”,
and the proof needs to take it into account. Below we show how to deal
with both problems. We start with showing that the distribution of (L̂, R̂)
is close to the distribution of (L1, R1) (conditioned on (L1, R1) ∈ LFFC ×
RFFC). This is actually not surprising, as a random vector (L̃, R̃) with an
overwhelming probability encodes 1. Formally, this can be shown using the
following transformations.

∆
(
(L̂, R̂) ;

(
(L1, R1)|(L1, R1) ∈ LFFC ×RFFC

))
= ∆

(
(L̂, R̂) ; (L̂, R̂) | Dcext(L̂, R̂) = 1

)
(55)

= ∆
(
(L̂, R̂) ; (L̂, R̂) | ext(L̂, R̂) 6= c

)
(56)

¬ 1− P
(
ext(L̂, R̂) 6= c

)
(57)

= P
(
ext(L̂, R̂) = c

)
, (58)

where (55) comes from the assumption that (L1, R1) ← Enc(1), Eq. (56)
comes from the construction of Ecext and Eq. (57) follows from Lemma 3.
Now, from the assumption (53) we get that H∞(L̂) +H∞(R̂) = log |LFFC|+
log |RFFC| − log(1/δ), which from (31) is at least 3k/2 k. Hence, we can
use the fact that ext is an (k, ε)-two source extractor, and obtain that (58) is
at most |C|−1 + ε. Hence Eq. (58) implies that

P
(
Dcext

(
(f(L1), g(R1))

)
= 0 | (L1, R1) ∈ LFFC ×RFFC

)
¬

P
(
Dcext

(
f(L̂), g(R̂)

)
= 0

)
+ |C|−1 + ε. (59)

Now let us deal with the second problem. Observe that

H∞(f(L̂)) = − log
(

max
y
P
(
f(L̂) = y

))
 − log

2k−log |R
′|

|LFFC|
= log |R′| − k + log |LFFC|

43

and, by the symmetry of L̂ and R̂ also

H∞(f(R̂)|R̂ ∈ RFFC) |L′| − k + log |RFFC|.

Therefore:

H∞(f(L̂)) +H∞(f(R̂))
 log |L′|+ log |R′| − 2k + log |LFFC|+ log |RFFC|
 log |L′|+ log |R′| − 2k + log |L′|+ log |R′| − log(1/δ) (60)
 k, (61)

where (60) comes from (53), and (61) from (31). Thus, from the assumption
that ext is a (k, ε)-two source extractor, and from the fact that L̂ and R̂ are
independent and uniform, we get that

d(ext(f(L̂), g(R̂))) ¬ ε,

and thus
P (ext(f(L̂), g(R̂)) = c︸ ︷︷ ︸

Dcext(f(L̂),g(R̂))=0

) ¬ |C|−1 + ε.

Combining it with (59) we obtain

P
(
Dcext

(
f(L1), g(R1)

)
= 0 | (L1, R1) ∈ LFFC ×RFFC

)
¬ 2|C|−1 + 2ε.

Hence the claim is proven.

To finish the proof we need to combine the two above claims. A small
technical difficulty, that we need still to deal with, comes from the fact that
Claim 3 was proven only under the assumption (53). Let us first expand the
left-hand-side of (32). We have

P
(
Dcext(Mall

f,g(L,R) 6= B|(L,R) ∈ L′ ×R′
)

(62)

=

(∗)︷ ︸︸ ︷
P
(
Dcext(Mall

f,g(L,R) 6= B | L 6∈ LFFC ∨R 6∈ RFFC
)
·

· P (L 6∈ LFFC ∨R 6∈ RFFC)

+

(∗∗)︷ ︸︸ ︷
P
(
Dcext(Mall

f,g(L,R) 6= B | (L,R) ∈ LFFC ×RFFC
)

· P ((L,R) ∈ LFFC ×RFFC) (63)

From Claim 2 we get that (∗) is at most 12 + 1
2 · |C|

−1 + 2|C|2ε. Now consider
two cases.

44 6 The construction

Case 1 First, suppose that (53) holds (i.e. |LFFC ×RFFC| δ · |L × R|). In
this case we get that (∗∗) is a equal to

¬ 2|C|−1+2ε by Claim 3︷ ︸︸ ︷
P
(
Dcext(Mall

f,g(L,R) 6= B ∧ (L,R) ∈ LFFC ×RFFC|B = 0
)
·

= 12︷ ︸︸ ︷
P (B = 0) +

P
(
Dcext(Mall

f,g(L,R) 6= B ∧ (L,R) ∈ LFFC ×RFFC|B = 1
)

︸ ︷︷ ︸
¬1

· P (B = 1)︸ ︷︷ ︸
= 12

¬ 1
2

+ |C|−1 + ε.

Now, since (62) is a weighted average of and (∗) and (∗∗), hence obviously

(62) (64)

¬ max
(1

2
+

1
2
· |C|−1 + 2|C|2ε, 1

2
+ |C|−1 + ε

)
(65)

¬ 1
2

+ |C|−1 + 2|C|2ε. (66)

Case 2 Now consider the case when (53) does not hold, i.e.:

|LFFC ×RFFC| < δ · |L × R| (67)

We now give a bound on the probability that (L,R) is a member of LFFC ×
RFFC.

P ((L,R) ∈ LFFC ×RFFC)

=
1
2
· P (Ecext(0) ∈ LFFC ×RFFC) +

1
2
· P (Ecext(1) ∈ LFFC ×RFFC)

=
1
2
· P

(
(L̃, R̃) ∈ LFFC ×RFFC | ext(L̃, R̃) = c

)
+

1
2
· P

(
(L̃, R̃) ∈ LFFC ×RFFC | ext(L̃, R̃) 6= c

)

(68)

¬ 1
2
·
P
(
(L̃, R̃) ∈ LFFC ×RFFC

)
P
(
ext(L̃, R̃) = c

) +
1
2
·
P
(
(L̃, R̃) ∈ LFFC ×RFFC

)
P
(
ext(L̃, R̃) 6= c

)
¬ 1

2
·
P
(
(L̃, R̃) ∈ LFFC ×RFFC

)
|C|−1 − ε

+
1
2
·
P
(
(L̃, R̃) ∈ LFFC ×RFFC

)
(|C| − 1) · |C|−1 − ε

(69)

¬ δ/(|C|−1 − ε),

45

where in (69) we used (33). Hence, in this case, (63) is at most equal to
δ/(|C|−1 − ε), and therefore, altogether, we can bound (62) by

(62) ¬ (∗) + δ/(|C|−1 − ε) (70)

=
1
2

+ |C|−1 + 2|C|2ε+ δ/(|C|−1 − ε) (71)

Since analyzing both cases gave us bounds (66) and (71), hence all in all
we can bound (62) by their maximum, which is at most

1
2

+ |C|−1 + 2|C|2ε+ δ/(|C|−1 − ε).

Hence (32) is proven.

7 Adding Leakages

In this section we show how to incorporate leakages into our result. First,
we need to extend the non-malleability definition. We do it in the following,
straightforward way. Observe that we can restrict ourselves to the situation
when the leakages happen before the malling process (as it is of no help to the
adversary to leak from (f(L), g(R) if he can leak already from (L,R)). For any
split-state encoding scheme (Ecext :M→ L×R,Dcext : L×R →M), a family
of functions F , any m ∈ M and any adversary A define a game TamperAm
(where λ is some parameter) as follows. First, let (L,R) ← Ecext(m). Then
the adversary A chooses a sequence of functions (v1, w1, . . . , vt, wt), where
each vi has a type vi : L → {0, 1}λi and each wi has a type wi : R → {0, 1}ρi
where the λ’s and ρ’s are some parameters such that

λ1 + · · ·+ λt + ρ1 + · · · ρt ¬ λ. (72)

He learns Leak(L,R) = (v1(L), w1(R), . . . , vt(L), wt(R)). Moreover this pro-
cess is adaptive, i.e. the choice of an ith function in the sequence (72) can
depend on the i−1 first values in the sequence Leak(L,R). Finally the adver-
sary chooses a functions f : L → L and g : R → R. Now define the output
of the game as:

TamperAm := (f(L), g(R)).

We say that the encoding scheme (Ecext,D
c
ext) is ε-non-malleable with leakage

λ if for every adversary A there exists distribution DA onM∪{same∗} such
that for every m ∈M we have

TamperAm ≈ε

d← DA

if d = same∗ then output m,
otherwise output d.

46 7 Adding Leakages

Theorem 17. Suppose ext : L × R → C is a flexible (k, ε)-extractor that
satisfies (29), where, for some parameters δ and λ we have

k =
2
3
· (log |L|+ log |R| − λ)− 4

3
· log(1/δ). (73)

Then the encoding scheme is
(
|C|−1 + 2|C|2ε+ 2δ/(|C|−1 −ε)

)
-non-malleable

with leakage λ.

Proof. Fix some adversaryA. LetB ← {0, 1} and consider the game TamperAB.
Let ` = Leak(L,R) and let (f, g) be functions chosen by A. By Lemma 15
we need to show that for we have

P (Dcext(f(L), g(R)) 6= B) ¬ 1
2

+ |C|−1 + 2|C|2ε+ 2δ/(|C|−1 − ε). (74)

It is a standard argument (cf. e.g. [15]) that the set {(L,R) ∈ L ×R : Leak(L,R) = `}
can be presented as a product L` ×R` for some L` ⊆ L and R` ⊆ R. By a
counting argument for uniform L̃× R̃← L×R′ have

P
(
|L` ×R`| < |L × R| · 2−λ · δ

)
¬ δ,

where the probability is taken over ` ← Leak(L̃, R̃). Therefore (cf. (30)) if
`← Leak(L,R) then

P
(
|L` ×R`| < |L × R| · 2−λ · δ

)
¬ δ · |C|. (75)

Thus, assume that
|L` ×R`| |L ×R| · 2−λ · δ,

which is the same as

log |L`|+ log |R`|+ λ+ log(1/δ) log |L|+ log |R|.

Therefore from (73) we get

k =
2
3
· (log |L|+ log |R| − λ)− 4

3
· log(1/δ)

¬ 2
3
·
(
log |L`|+ log |R`|+ λ+ log(1/δ)− λ

)
− 4

3
· log(1/δ)

=
2
3
·
(
log |L`|+ log |R`|

)
− 2

3
· log(1/δ).

We can therefore use Lemma 16 with L′ ×R′ = L` ×R` and obtain that

P
(
Dcext (f(L), g(R)) 6= B | (L,R) ∈ (L`,R`) ∧ |L` ×R`| |L ×R| · 2−λ · δ

)
¬ 1

2
+ |C|−1 + 2|C|2ε+ δ/(|C|−1 − ε).

47

Therefore we get:

P
(
Dcext (f(L), g(R)) 6= B | (L,R) ∈ (L`,R`)

)
 |L ×R| · 2−λ · δ

¬ 1
2

+ |C|−1 + 2|C|2ε+ δ/(|C|−1 − ε) + δ · |C| (76)

¬ 1
2

+ |C|−1 + 2|C|2ε+ 2δ/(|C|−1 − ε),

(the “+δ · |C|” term in (76) accounts for the probability that |L` ×R`| <
|L × R| · 2−λ · δ — cf. (75)). Hence (74) is proven.

We now show for to instantiate Theorem 17 be the inner-product extrac-
tor from Sect. 3.

Theorem 18. Take any ξ ∈ [0, 1/4) and γ > 0 then there exist an ex-
plicit split-state code (Enc : {0, 1} → {0, 1}N/2 × {0, 1}N/2,Dec : {0, 1}N/2 ×
{0, 1}N/2 → {0, 1}) that is γ-non-malleable with leakage λ := ξN such that
N = O(log(1/γ) · (1/4− ξ)−1). The encoding and decoding functions are
computable in O(N · log2 (log(1/γ))) and the constant hidden under the O-
notation in the formula for N is around 100.

Proof. Set

N := 2 ·
⌈

56
1− 4ξ

⌉
· (3 + log(1/γ)).

Clearly such N = O
(
log(1/γ) · (1/4− ξ)−1

)
. We will “plug-in” the inner-

product extractor into Theorem 17. To this end take F := GF
(
23−dlog(γ)e

)
and n := suf 56

1−4ξ and δ := |F|−2. Set

k :=
2
3
· (2n log |F| − λ)− 4

3
log(1/δ).

From Lemma 6 we get that ext : Fn × Fn → F defined as ext(L,R) = 〈L,R〉
is a flexible (k, ε)-extractor for ε such that

log (1/ε) =
(13n− 4) log |F| − 23λ−

4
3 log(1/δ)

3
− 1.

Hence, by Thm. 17, the encoding scheme (Ecext,D
c
ext) (constructed in Sect. 3)

is
(
2|F|2ε + 2δ/(|F|−1 − ε) + |F|−1

)
-non-malleable with leakage λ. We now

48 7 Adding Leakages

have

2|F|2ε+ 2δ/(|F|−1 − ε) + |F|−1

¬ 2|F|2|F|−3 +
2|F|−2

|F|−1 − |F|−3
+ |F|−1 (77)

¬ 6|F|−1

¬ 6 · 2dlog(γ)e−3

¬ γ,

where in (77) we use the fact ε < |F|−3 that comes from:

log (1/ε) =
(13n− 4) log |F| − 23λ−

4
3 log(1/δ)

3
− 1

=
(13n− 4) log |F| − 232ξn log |F| − 43 log(1/δ)

3
− 1

=
1
3n(1− 4ξ) log |F| − 4 log |F| − 43 log(1/δ)

3
− 1

=
1
3n(1− 4ξ) log |F| − 4 log |F| − 83 log |F|

3
− 1

 12
3

log |F| − 1

 3 log |F|

Clearly the dominating cost in computing both Ecext and Dcext is the time
need for n multiplications in F. Using a standard FFT algorithm each mul-
tiplication can be done in time O(log |F| · log2 log |F|), and hence the to-
tal cost of encoding and decoding is O(n · log |F| · log2 log |F|) = O(N ·
log2 (log (1/γ)))

We would like to remark that it does not look like we could prove, with our
current proof techniques, a better relative leakage bound than ξ < 1

4 . Very
roughly speaking it is because we used the fact that the inner product is an
extractor twice in the proof. On the other hand we do not know any attack on
our scheme for leakage ξ ∈

(
1
4 ,
1
2

)
(recall that for ξ = 1

2 obviously any scheme
is broken). Hence, it is quite possible, that with a different proof strategy
(perhaps relying on some special features of the inner product function) one
could show a higher leakage tolerance of our scheme.

49

8 Non-malleable codes vs. extractors

In this section we discuss the relationship between the non-malleable and
the two-soruce randomness-extractors. Consider, for example, what happens
to our encoding scheme (Ecext,D

c
ext) if, instead of basing it on an extractor,

we base it on an additive secret sharing scheme over Zm. More precisely: let
M = Z2, let Enc(B) be a random pair (L,R) such that L+R = 0 if and only
if B = 0 (obviously, the decoding function just computes L + R and checks
it L + R = 0). We now show an attack on this scheme. Assume that m is
even (a similar attack exists also for odd m) and let f(L) = (L + 1) mod 2
and g(R) = R mod 2. It is easy to verify that if the encoded bit B was equal
to 0 then the decoded bit B′ will always be equal to 1. On the other hand
if B was equal to 1 then the decoded bit will be equal to 0 with probability
(around) 1/4. Hence the probability that for a random B we get B′ 6= B
significantly larger than 1/2 and therefore the code is malleable.

This brings a natural question if we could show some relationship be-
tween the extractors and the non-malleable codes in the split-state model.
Unfortunately, there is no obvious way of formalizing the conjecture that the
non-malleable codes need to be based on extractors, since both of these ob-
jects are known to exist unconditionally, and therefore implications of a type
“the existence of the non-malleable codes implies the existence of extractors”
are trivially true.

Observe also that obviously not every decoding function needs to be a two-
source extractor, as, e.g., our function Dcext : L×R → C is not an extractor,
because even for uniformly random L← L and R← R its output Dcext(L,R)
is almost certainly 1 and hence it is very far from a uniform distribution on
C. The same is true in the other direction, argued already in Sect. 6 there
exist examples (namely: the inner product over a small field) when ext is a
good extractor, but it cannot be used directly as a decoding function in a
non-malleable code.

9 Non-malleable codes vs. leakage-resilent storage

If one looks again at the example from Sect. 8 then, intuitively, the attack
presented there is based on the fact that the additive secret sharing is not
leakage-resilient, by which we mean that the adversary can obtain significant
knowledge about the encoded secret by retrieving only one bit of information
from L and R independently. More precisely, suppose that he learns λ(L) =
L mod 2 and ρ(R) = R mod 2. Then by checking if λ(L) = λ(R) is gets
non-trivial information about B (as λ(L) = λ(R) holds always in B = 0 and

50 10 Security against affine malling

holds with probability around 1/2 if B = 1). Note that the functions λ and
ρ look very similar to the functions f and g that we constructed to show the
malleability of this encoding.

Hence one could conjecture that every split-state non-malleable code
needs to be leakage resilient (the opposite is obviously not true as, e.g, the
encoding based on the inner product over Z2 s leakage resilient, cf. e.g. [15],
but, as shown in Sect. 6 is malleable). The following is example show that
this conjecture is false. More precisely, there exists encoding scheme in the
split-state model that is non-malleable but is not resilient to leakage of an ar-
bitrary small fraction α of information from both L and R. To construct this
example take any non-malleable code (Enc :M→ L×R,Dec : L×R →M)
and construct a new code (Enc′ :M→ L′ ×R′,Dec : L′ ×R′ →M) as fol-
lows. Set L′ = Lt and R′ = Rt for t := suf α−1. Now to compute Enc′(M)
for any M ∈M first calculate (L,R) = Enc(M) and then let

Enc′(M) = ((
t times︷ ︸︸ ︷

L, . . . , L), (
t times︷ ︸︸ ︷

R, . . . , R)).

The decoding function is defined as: Dec′((L1, . . . , Lt), (R1, . . . , Rt) = Dec(L1, R1),
in other words, it just applies Dec to the first blocks of the inputs and ig-
nores the rest. It is easy to show that (Enc′,Dec′) is non-malleable (as any
functions that breaks it can be easily transformed into a function that breaks
(Enc,Dec)). On the other hand leaking just L from (L, . . . , L) and R from
(R, . . . , R) suffices to recover M = Dec(L,R) completely. This finishes the
argument as obviously |L|/|L′| = |R|/|R′| = 1/t ¬ α. Hence we conclude
that leakage-resilience and non-malleability are two orthogonal properties of
an encoding scheme.

10 Security against affine malling

Interestingly, we can also show that our encoding scheme (Ecext,D
c
ext), in-

stantiated with the inner product extractor, is secure in the model where
(L,R) ∈ Fn × Fn can be malled simultaneously (i.e. we do not use the split-
model assumption), but the class of the malling functions is restricted to the
affine functions over F, i.e. each malling function h is of a form

h((L1, . . . , Ln), (R1, . . . , Rn)) = M · (L1, . . . , Ln, R1, . . . , Rn)T + V T , (78)

where M is an (2n×2n)-matrix over F and V ∈ F2n. We now argue informally
why it is the case, by showing that every h that breaks the non-malleability
of this scheme can be transformed into a pair of functions (f, g) that breaks

51

the non malleability of the scheme(
Ecext : Fn+2 ×Fn+2 → {0, 1},Dcext : {0, 1} → Fn+2 ×Fn+2

)
in the split-state model. Let (L,R) ∈ Fn+2 × Fn+2 denote the codeword in
this scheme. Our attack works only under the assumption that it happened
that (L,R) ∈ L′ ×R′, where

L′ ×R′ := (Fn × {0} × {0})× (Fn × {0} × {0})

(in other words: the two last coordinates of both L and R are zero). Since
L′×R′ is large, therefore this clearly suffices to obtain the contradiction with
the fact that our scheme is secure even if (L,R) happen to belong to some
large subdomain of the set of all codewords (cf. Lemma 16). Clearly, to finish
the argument it is enough to construct the functions f and g such that

〈f(L), g(R)〉 =
〈
(L′1, . . . , L

′
n+2), (R

′
1, . . . , R

′
n+2)

〉
,

where (L′1, . . . , L
′
n+2, R

′
1, . . . , R

′
n+2) = h(L1, . . . , Ln, R1, . . . , Rn). It is easy to

see that, since h is affine, hence the value of
〈
(L′1, . . . , L

′
n+2), (R

′
1, . . . , R

′
n+2)

〉
can be represented as a sum of monomials over variables Li and Rj where
each variable appears in power at most 1. Hence it can be rewritten as the
following sum:

n∑
i=1

Li ·∑
j∈Ji

Rj

+

∑
j∈Jn+1

Lj +
∑

i,j∈Kn+1
LiLj

+ y +
∑

j∈Jn+2
Rj +

∑
i,j∈Kn+2

RiRj,

where each Ji is a subset of the indices {1, . . . , n} and y ∈ F is a constant. It
is also easy to see that the above sum is equal to the inner product of vectors
V and W defined as:

V :=
(
L1, . . . , Ln,

∑
j∈Jn+1

Lj +
∑

i,j∈Kn+1
LiLj, 1

)

W :=
(∑
j∈J1

Rj, . . . ,
∑
j∈Jn

Rj, 1, y +
∑

j∈Jn+2
Rj +

∑
i,j∈Kn+2

RiRj

)
.

Now observe that V depends only on the vector L, and similarly, W depends
only on R. We can therefore set f(L) := V and g(R) := W . This finishes the
argument.

52 References

References

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hard-
core bits and cryptography against memory attacks. TCC, pages 474–
495, 2009.

[2] R. Anderson and M. Kuhn. Tamper resistance - a cautionary note. In
The Second USENIX Workshop on Electronic Commerce Proceedings,
November 1996.

[3] B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F.-X. Stan-
daert, and Y. Yu. Leftover hash lemma, revisited. 2011. http:
//eprint.iacr.org/.

[4] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks:
Rka-prps, rka-prfs, and applications. EUROCRYPT 2003, pages 647–
647, 2003.

[5] E. Biham. New types of cryptanalytic attacks using related keys. Journal
of Cryptology, 7(4):229–246, 1994.

[6] J. Bourgain. More on the sum-product phenomenon in prime fields and
its applications. International Journal of Number Theory, 1(01):1–32,
2005.

[7] C.E.Shannon. A mathematical theory of communication. The Bell Sys-
tem Technical Journal, 27, 1948.

[8] H. Chabanne, G. Cohen, J. Flori, and A. Patey. Non-malleable codes
from the wire-tap channel. In Information Theory Workshop (ITW),
2011 IEEE, pages 55–59. IEEE, 2011.

[9] H. Chabanne, G. Cohen, and A. Patey. Secure network coding and non-
malleable codes: Protection against linear tampering. In Information
Theory Proceedings (ISIT), 2012 IEEE International Symposium on,
pages 2546–2550, 2012.

[10] S. Choi, A. Kiayias, and T. Malkin. Bitr: built-in tamper resilience.
ASIACRYPT 2011, pages 740–758, 2011.

[11] B. Chor and O. Goldreich. Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity. SIAM Journal
on Computing, 17(2):230–261, 1988.

References 53

[12] S.-Y. Chung, G. D. F. Jr., T. J. Richardson, and R. Urbanke. On the
design of low-density parity-check codes within 0.0045 db of the shannon
limit. IEEE Communications Letters, 5.

[13] G. Cohen, R. Raz, and G. Segev. Non-malleable extractors with short
seeds and applications to privacy amplification. In Computational Com-
plexity (CCC), pages 298–308, 2012.

[14] D. Dachman-Soled and Y. Kalai. Securing circuits against constant-rate
tampering. CRYPTO 2012, pages 533–551, 2012.

[15] F. Dav̀ı, S. Dziembowski, and D. Venturi. Leakage-resilient storage.
Security and Cryptography for Networks, pages 121–137, 2010.

[16] Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary
input. pages 621–630, 2009.

[17] Y. Dodis, X. Li, T. Wooley, and D. Zuckerman. Privacy amplification
and non-malleable extractors via character sums. In FOCS 2011, pages
668–677, 2011.

[18] Y. Dodis and D. Wichs. Non-malleable extractors and symmetric key
cryptography from weak secrets. In STOC, pages 601–610, 2009.

[19] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM
review, 45(4):727–784, 2003.

[20] S. Dziembowski and S. Faust. Leakage-resilient circuits without compu-
tational assumptions. TCC, pages 230–247, 2012.

[21] S. Dziembowski and K. Pietrzak. Intrusion-resilient secret sharing. In
FOCS’07, pages 227–237.

[22] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In
FOCS’08, pages 293–302. IEEE.

[23] S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. ICS,
pages 434–452, 2010.

[24] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Pro-
tecting circuits from leakage: the computationally-bounded and noisy
cases. pages 135–156, 2010.

[25] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algo-
rithmic tamper-proof (atp) security: Theoretical foundations for security
against hardware tampering. TCC, pages 258–277, 2004.

54 References

[26] S. Goldwasser and G. Rothblum. How to compute in the presence of
leakage, 2012. accepted to FOCS 2012.

[27] S. Halevi and H. Lin. After-the-fact leakage in public-key encryption.
TCC, pages 107–124, 2011.

[28] J. HÅstad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[29] T. Holenstein. Pseudorandom generators from one-way functions: A
simple construction for any hardness. In TCC, pages 443–461, 2006.

[30] Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private circuits ii:
Keeping secrets in tamperable circuits. EUROCRYPT, pages 308–327,
2006.

[31] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware
against probing attacks. CRYPTO, pages 463–481, 2003.

[32] Y. Kalai, B. Kanukurthi, and A. Sahai. Cryptography with tamperable
and leaky memory. CRYPTO 2011, pages 373–390, 2011.

[33] F. Liu and A. Lysyanskaya. Tamper and leakage resilience in the split-
state model. CRYPTO 2012, pages 517–532, 2012.

[34] S. Micali and L. Reyzin. Physically observable cryptography. TCC,
pages 278–296, 2004.

[35] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage.
CRYPTO 2009, pages 18–35, 2009.

[36] E. N. of Excellence (ECRYPT). Side channel cryptanalysis lounge.
http://www.emsec.rub.de/research/projects/sclounge.

[37] L. Pontryagin and R. Gamkrelidze. Topological Groups. Gordon and
Breach Science Publishers.

[38] A. Rao. An exposition of bourgain 2-source extractor. In Electronic Col-
loquium on Computational Complexity (ECCC), volume 14, page 034,
2007.

[39] R.Dorfman. The detectation of defective members of large population.
Ann.Math.Statist., 1943.

References 55

[40] R. Shaltiel. Recent developments in explicit constructions of extractors.
Bulletin of the EATCS, 77:67–95, 2002.

[41] H. Wee. Public key encryption against related key attacks. PKC 2012,
pages 262–279, 2012.

[42] H. Yamamoto. Rate-distortion theory for the shannon cipher system.
IEEE Transactions on Information Theory, 43.

