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Streszczenie 7

O pewnych komunikacyjnych wªasno±ciach stanów

kwantowych

Sªowa kluczowe: kwantowe spl¡tanie, destylacja spl¡tania,
kwantowa kryptogra�a, stany bezpieczne, klucz destylowalny,
stany o zwi¡zanym spl¡taniu

Matematyczna Klasy�kacja Dziedzin AMS 2000:
81P68 Kwantowe obliczenia i kwantowa kryptogra�a

Matematyczna Klasy�kacja Dziedzin AMS 2010:
81P94 Kwantowa kryptogra�a
81P45 Kwantowa informacja, komunikacja, sieci

W niniejszej rozprawie rozwa»amy dwa kwantowe problemy komunikacyjne:
problem istnienia stanów NPT1 o zwi¡zanym spl¡taniu i problem destylowalno±ci
prywatnego (kryptogra�cznego) klucza ze spl¡tanych stanów PPT.

Destylowalno±¢ klucza ze spl¡tanych stanów PPT W pracy [1] poka-
zano, »e ze stanów PPT o zwi¡zanym spl¡taniu mo»na uzyskiwa¢ prywatny
klucz. Wynik ten byª wówczas do±¢ zaskakuj¡cy, gdy» w tamtym czasie do-
wody bezpiecze«stwa protokoªów typu przygotuj-i-zmierz (podklasa protokoªów
kwantowej dystrybucji klucza) polegaªy na pokazaniu ich równowa»no±ci z de-
stylacj¡ stanów maksymalnie spl¡tanych, co doprowadziªo do przekonania, »e
bezpiecze«stwo kwantowej kryptogra�i jest zawsze zwi¡zane z destylacj¡ stanów
maksymalnie spl¡tanych. Podej±cie do uzyskiwania klucza prywatnego ze stanów
PPT przyj¦te w [1] polega na przybli»aniu tzw. prywatnego bitu (zwanego w skró-
cie pbitem) stanem nale»¡cym do zbioru stanów PPT. Podej±cie to powodowaªo,
»e uzyskiwane stany PPT o destylowalnym kluczu byªy wysokowymiarowe.

W rozdziale 3 prezentujemy rezultaty opublikowane w [2, 3] gdzie u»yto in-
nego podej±cia opartego o mieszanie ortogonalnych prywatnych bitów. To po-
dej±cie pozwala na uzyskiwanie stanów PPT o destylowalnym kluczu nawet ni-
skowymiarowych, pocz¡wszy od wymiaru 4⊗ 4. Rozwa»amy dwa przypadki

• Mieszanie dwóch prywatnych bitów. W tym przypadku podajemy ilo±¢ pry-
watnego klucza, który mo»na wydestylowa¢ z mieszanki dwóch pbitów za
pomoc¡ protokoªu Devetaka-Wintera. A spo±ród mieszanek dwóch specjal-
nie dobranych pbitów wskazujemy spl¡tane stany PPT.

• Mieszanie czterech prywatnych bitów. W tym przypadku podajemy czy
z danej mieszanki czterech pbitów mo»na uzyska¢ prywatny klucz za po-
moc¡ rekurencji i protokoªu Devetaka-Wintera (jest to warunek dosta-
teczny i ma on charakter egzystencjalny � nie podajemy ilo±ci uzyski-
wanego prywatnego klucza). A spo±ród mieszanek specjalnie dobranych

1Stan PPT to stan o dodatniej cz¦±ciowej transpozycji, a stan NPT to stan o niedodatniej
cz¦±ciowej transpozycji.
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czterech pbitów wskazujemy spl¡tane stany PPT o destylowalnym kluczu
znajduj¡ce si¦ dowolnie blisko zbioru stanów separowalnych.

Porównujemy równie» zastosowanie samego protokoªu Devetaka-Wintera i pro-
tokoªu Devetaka-Wintera z uprzednim zastosowaniem rekurencji w kontek±cie
poziomu tolerowanego biaªego szumu (w tym porównaniu stosujemy mieszanki
dwóch pbitów). A tak»e porównujemy maksymaln¡ entropi¦ von Neumanna
stanów PPT o destylowalnym kluczu b¦d¡cych mieszankami dwóch i czterech
pbitów. Rozwa»amy równie» zwi¡zek naszych wyników z destylowalno±ci¡ spl¡-
tania przez kanaªy typu erasure. Na koniec podajemy wystarczaj¡cy warunek
destylowalno±ci klucza dla ogólnych stanów.

Destylacja stanów NPT Wernera za pomoc¡ wªasno±ci 1
2

Problem ist-
nienia stanów NPT o zwi¡zanym spl¡taniu jest problemem otwartym od czasu
publikacji [4]. Od czasu tej publikacji uzyskano wiele cz¦±ciowych rezultatów. W
szczególno±ci pokazano, »e wystarczy skupi¢ si¦ na klasie stanów Wernera, gdy»
je±li istniej¡ stany NPT o zwi¡zanym spl¡taniu to istniej¡ równie» stany Wernera
NPT o zwi¡zanym spl¡taniu [5]. Formalnie stan % jest n-destylowalny je»eli n
kopii stanu % mo»na lokalnie sprojektowa¢ by uzyska¢ dwu kubitowy stan NPT.

W rozdziale 4 prezentujemy rezultaty opublikowane w [6]. Koncentrujemy
uwag¦ na stanie Wernera okre±lonym na przestrzeni 4 ⊗ 4 i b¦d¡cym najbar-
dziej spl¡tanym spo±ród tzw. podejrzanych (ang. suspicious) stanów Wernera.
Oznaczmy ten stan przez %W . Przypuszcza si¦, »e stan %W jest niedestylowalny
[7, 8], dlatego rozwa»amy warunek na jego n-niedestylowalno±¢ (zamiast wa-
runku na jego n-destylowalno±¢). Tªumaczymy warunek n-niedestylowalno±ci
stanu %W na warunek nazywany wªasno±ci¡ 1

2
(ang. half-property): stan %W

jest n-niedestylowalny wtedy i tylko wtedy gdy wªasno±¢ 1
2
jest dla n speªniona.

Stan %W speªnia wªasno±¢ 1
2
dla zadanego n je±li przekrycie wszystkich stanów

φ2 o rz¦dzie Schmidta dwa z pewnym operatorem Qn nie przekracza 1
2
, innymi

sªowy dla wszystkich stanów φ2 o rz¦dzie Schmidta dwa 〈φ2|Qn|φ2〉 ≤ 1
2
. Je±li

dla danego stanu φ2 zachodzi 〈φ2|Qn|φ2〉 ≤ 1
2
wówczas mówimy, »e stan φ2 ma

wªasno±¢ 1
2
.

Wiadomo, »e %W jest 1-niedestylowalny. W pierwszej kolejno±ci rozwa»amy
problem jego 2-niedestylowalno±ci. Nie rozwi¡zujemy problemu 2-niedestylowalno±ci
%W , ale podajemy szerokie klasy stanów o rz¦dzie Schmidta dwa które maj¡
wªasno±¢ 1

2
dla n = 2. W szczególno±ci tªumaczymy problem wªasno±ci 1

2
dla

n = 2 na problem z zakresu analizy macierzowej i rozwi¡zujemy go dla ma-
cierzy normalnych. Z tego wynika, »e wszystkie stany o rz¦dzie Schmidta dwa
izomor�czne z macierzami normalnymi (przez tzw. izomor�zm stanów i opera-
torów) maj¡ wªasno±¢ 1

2
. Wykorzystujemy równie» tzw. wspólne stopnie swobody

(ang. common degrees of freedom) by pokaza¢, »e stan maj¡cy na ka»dej parze
przynajmniej jeden podukªad o jednokubitowym no±niku ma wªasno±¢ 1

2
.

Dla ogólnego n obliczamy maksymalne przekrycie stanów produktowych φ1

z projektorem Qn i podajemy posta¢ stanów osi¡gaj¡cych maksimum. Po-
dajemy równie» ograniczenie na przekrycie 〈φ2|Qn|φ2〉 w terminach przekrycia
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〈φ1|Qn|φ1〉. Niestety to ograniczenie w granicy n → ∞ daje tylko trywialne
ograniczenie, »e przekrycie nie przekracza jedynki. Dla n = 2 podajemy równie»
numeryczne ograniczenia lepsze ni» 3/4 (wynikaj¡ce z 〈φ1|Qn|φ1〉) i przypomi-
namy analityczne ograniczenie 0.74971 < 3/4 udowodnione w [6].

Destylacja za pomoc¡ operacji rozszerzalnych W rozdziale 5 rozwa»amy
inne podej±cie do problemu istnienia stanów NPT o zwi¡zanym spl¡taniu. Przy-
pomnijmy, »e stan jest destylowalny wtedy i tylko wtedy gdy Alicja i Bob mog¡
z wielu kopii tego stanu z pewnym prawdopodobie«stwem uzyska¢ za pomoc¡
lokalnych operacji i klasycznej komunikacji (LOKK) stan maksymalnie spl¡tany.
Aby udowodni¢ »e stan jest niedestylowalny mo»emy pozwoli¢ Alicji i Bobowi na
u»ycie nadklasy operacji LOKK uªatwiaj¡cej rozwa»ania matematyczne. Wów-
czas, je±li dany stan jest niedestylowalny przy u»yciu rozwa»anej nadklasy opera-
cji LOKK to jest on równie» niedestylowalny przy u»yciu operacji LOKK. W roz-
dziale 5 wykorzystujemy klas¦ operacji k-rozszerzalnych, które w granicy k →∞
d¡»¡ do operacji separowalnych. Mo»na mie¢ nadziej¦, »e korzystaj¡c z ope-
racji k-rozszerzalnych uda si¦ udowodni¢ niedestylowalno±¢ niektórych z po±ród
podejrzanych stanów Wernera.

Najpierw dla zadanego stanu % rozwa»amy supremum wierno±ci Λ(%) ze sta-
nem maksymalnie spl¡tanym, gdzie supremum jest po wszystkich k-rozszerzalnych
operacjach Λ. Oznaczmy to supremum przez Fk(%). Nast¦pnie pokazujemy
zwi¡zek warto±ci supremum Fk(%) z dodatnio±ci¡ pewnej macierzy. Wprowa-
dzamy równie» podklas¦ operacji k-rozszerzalnych zwan¡ operacjami �zmierz-i-
przygotuj� (ang. measure-and-prepare) i pokazujemy zwi¡zek supremum po tej
klasie z dodatnio±ci¡ pewnej macierzy o mniejszym wymiarze, ale parametryzo-
wanej k parametrami.

Pokazujemy, »e � chocia» operacje k-rozszerzalne w pewnym sensie zmierzaj¡
do operacji separowalnych dla du»ych warto±ci k � to maj¡ one nadspodziewan¡
siª¦. Przede wszystkim dla dowolnego ustalonego k za pomoc¡ klasy operacji k-
rozszerzalnych ka»dy stan, za wyj¡tkiem maksymalnie zmieszanego, mo»e zosta¢
wydestylowany je±li dana jest odpowiednio du»a liczba kopii. Po drugie nawet
je±li dysponujemy pojedyncz¡ kopi¡ stanu operacje k-rozszerzalne mog¡ wyde-
stylowa¢ z wierno±ci¡ 1 ka»dy stan, który ma (k− 1)-rozszerzalny stan w j¡drze.
W szczególno±ci k-rozszerzalne operacje nie s¡ stabilne ze wzgl¦du na zanurzenie
w wi¦kszej przestrzeni Hilberta.

Dla stanów Wernera uzyskujemy analityczny wzór na F1(%W ) przy u»yciu
ortogonalnej bazy liniowej przestrzeni operatorów komutuj¡cych z operacjami
unitarnymi postaci U ⊗ U ⊗ U zaprezentowanej w [9]. Analogicznie uzyskujemy
analityczny wzór dla podklasy zmierz-i-przygotuj klasy operacji 1-rozszerzalnych,
który w tym przypadku jest identyczny ze wzorem dla wszystkich operacji 1-
rozszerzalnych, czyli jest równy F1(%W ).

W ko«cu, korzystaj¡c z oblicze« numerycznych, uzyskujemy wykresy F1(%⊗nW )
dla pewnych ilo±ci rozszerze« k i ilo±ci kopii n. W przypadku k = 1 u»ywamy
ortogonalnej bazy liniowej przestrzeni operatorów komutuj¡cych z unitarnymi
operacjami postaci U⊗U⊗U zaprezentowanej w [9] co pozwala nam doj±¢ a» do
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n = 8. Dla k > 1 u»ywamy bezpo±rednich oblicze« numerycznych, cho¢ wysoce
zoptymalizowanych.
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On some communicational properties of quantum

states

Keywords: quantum entanglement, distillation of entangle-
ment, quantum cryptography, private states, distillable key,
bound entangled states

AMS Mathematical Subject Classi�cation 2000:
81P68 Quantum computation and quantum cryptography

AMS Mathematical Subject Classi�cation 2010:
81P94 Quantum cryptography
81P45 Quantum information, communication, networks

In the thesis two quantum communicational problems are investigated: the
problem of the existence of NPT2 bound entangled states and the problem of
key-distillability of PPT entangled states.

Key-distillability of PPT entangled states In [1] it was shown that one can
obtain private key from bound entangled PPT states. This was quite surprising
as in that time security proofs of prepare and measure protocols (a sublass of
quantum key distribution protocols) had been based on showing equivalence to
the distillation of maximally entangled states which have led to the belief that
security of the quantum cryptography is always connected to the distillation of
the maximally entangled states. The approach taken in [1] to obtaining the
private key from PPT states is to approximate private bit with a PPT state.
This resulted in key-distillable PPT states only in large dimensions.

In chapter 3 we present results published in [2, 3] where another approach
based on mixing orthogonal private bits is used. This approach allows for key-
distillable PPT states even in low dimensions starting from 4⊗ 4. Two cases are
considered:

• Mixing of two private bits. In this case the rate of distillation of the private
key from a given state using Devetak-Winter protocol is presented. And
among the key-distillable mixtures of two specially chosen private bits we
obtain PPT entangled states.

• Mixing of four private bits. In this case the key distillability of mixtures
of private bits by Devetak-Winter protocol with recurrence preprocessing
is considered (we provide a su�cient condition and the condition is ex-
tensional: we do not provide key rate). And among the mixtures of four
specially chosen private bits we present PPT entangled states arbitrary
close to the set of the separable states.

2PPT state stands for a state which has positive partial transpose. NPT state is a state
with non-positive partial transpose.
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Also Devetak-Winter protocol with and without recurrence preprocessing are
compared in the context of tolerable white noise in the case of mixing two pri-
vate bits. Moreover maximal von Neumann entropy is compared between key-
distillable PPT states being mixtures of two and four private bits. We also
consider links of our research with distillability via erasure channel. Finally, we
provide a su�cient condition for key-distillability for general states.

Distillation of NPT Werner state by half-property The problem of ex-
istence of bound entangled NPT states is open since the publication of [4]. Since
that paper many partial results have been obtained. In particular it was shown
that it is enough to concentrate on the class of the Werner states as if there ex-
ist NPT bound entangled states then there exist NPT bound entangled Werner
states [5]. Formally, a state % is n-copy distillable if n copies of % can be locally
projected to obtain a two-qubit NPT state.

In chapter 4 we present results published in [6]. We concentrate on a partic-
ular 4 ⊗ 4 Werner state which is the most entangled of the so-called suspicious
Werner states. Let us denote this state with %W . The state %W is conjectured
to be undistillable [7, 8] so we consider the condition for its n-undistillability
(instead of the condition for its n-distillability). We translate n-undistillability
of %W to a condition called the half-property. That is %W is n-undistillable if and
only if the half-property for n is satis�ed. The state %W satis�es the half-property
for a given n if the overlap of all the Schmidt rank two states φ2 with some pro-
jector Qn does not exceed 1/2. If for a given φ2 the overlap 〈φ2|Qn|φ2〉 ≤ 1

2
then

φ2 is said to have the half-property.
It is known that %W is 1-undistillable. We �rst consider the problem of its

2-undistillability. We do not solve the problem of 2-undistillability of %W but
provide wide classes of Schmidt rank two states having the half-property for
n = 2. In particular, we translate the problem of the half-property for n = 2
into a matrix analysis problem which we solve for normal matrices. This implies
that all Schmidt rank two states isomorphic to normal matrices (trough so-called
state-operator isomorphism) have the half-property. Also using the notion of so-
called common degrees of freedom we show that any state having on each pair at
least one subsystem with one qubit support has the half-property.

For general n, we compute maximal overlap of product states φ1 with the
projector Qn and provide the form of φ1 states attaining the maximum. We also
present a bound on the overlap 〈φ2|Qn|φ2〉 in terms of the overlap 〈φ1|Qn|φ1〉.
Unfortunately, this bound in the limit of n→∞ gives the trivial bound that the
overlap does not exceed one. For n = 2 we provide numerical bounds better than
3/4 (which comes from 〈φ1|Q2|φ1〉) and recall the analytical bound of 0.74971 <
3/4 proven in [6].

Distillation using extendible maps In chapter 5 we consider another ap-
proach to the problem of existence of bound entangled NPT states. Let us recall
that a state is distillable if and only if Alice and Bob may from many copies
of the state with some probability obtain using local operations and classical
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communication (LOCC) a maximally entangled state. To prove that a state is
undistillable we can allow Alice and Bob to use a superclass of LOCC which is
easier in mathematical consideration. Now, if the state is undistillable using the
operations of the superclass then it is also undistillable using LOCC. We use
the class of k-extendible maps which in the limit of k → ∞ tend to the set of
separable maps. One may hope that using k-extendible maps some suspicious
Werner states may be proven undistillable.

First, for a given state % we consider the supremum of the �delity of Λ(%) with
a maximally entangled state where the supremum is taken over all k-extendible
maps Λ. Let us denote this supremum with Fk(%). We connect the value of
the supremum Fk(%) to positivity of some matrix. We also introduce a subclass
of k-extendible maps called `measure-and-prepare' maps and connect supremum
over this class to positivity of some (lower dimensional) matrix but parametrized
with k parameters.

We show that, although k-extendible maps in a sense converge to the class of
separable maps for large k, they are surprisingly powerful. First of all, for any
�xed k, the class of k-extendible maps can distill any state but maximally mixed
one, if large enough number of copies is available. Second, even in single copy,
the maps can provide �delity 1 (with some nonzero probability) for any state
which has a (k − 1)-extendible state in its kernel. In particular, k-extendible
maps are not stable under local embedding into a larger Hilbert space.

For the Werner states we obtain the analytical formula for F1(%W ) using the
orthogonal basis in the linear space of operators that commute with unitary
operators of the form U ⊗U ⊗U given in [9]. Analogously, we obtain the analyt-
ical formula for the subclass of 1-extendible `measure-and-prepare' maps which
happens to be identical to the formula for all 1-extendible maps, i.e., to F1(%W ).

At the end, we use numerical computations to obtain plots of Fk(%
⊗n
W ) for

some values of the number of extensions k and the number of copies n. In case
of k = 1 using the above basis from [9] allows us to go with the number of copies
up to n = 8. For k > 1 direct computation (but highly optimized) was used.
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Chapter 1

Introduction

Entanglement � the correlations between (possibly distant) subsystems of a
quantum system which does not have any analog in our every-day macroscopic
world � is a source of many puzzles since its discovery [10, 11] in 1935. Indeed,
entanglement seemed so peculiar to Einstein, Podolsky and Rosen that they
suggested that one can explain the results of measurements by some hidden
variable model. I.e., they suggested that the results of the measurements come
from some unknown to us properties (so-called hidden variables) if we knew those
hidden variables then we would have known the results of the measurements. In
this consideration they used an entangled state.

On the contrary, in 1964 John Bell proposed [12] an inequality that must be
satis�ed if the hidden variable model is an adequate description of quantum me-
chanics. He showed that the measurements obtained from entangled states may
violate this inequality hence the hidden variable model is not an adequate de-
scription of quantum mechanics. This theoretical result has been later con�rmed
in an experiment [13] to �nally eliminate the opposite resolution of the Bell in-
equality which would state that hidden variable model is correct but quantum
mechanical model is wrong.

In 1991 Nicolas Gisin published a short note [14] showing that every entangled
pure state violates some Bell inequality. But a harder puzzle have been unsolved:
what is the situation for the more general mixed states (represented by density
matrices)? In 1989 Reinhard Werner introduced a class of mixed entangled states
[15] � now commonly called Werner states � which are entangled but results
of thier direct measurements can be explained by hidden variable model which
he explicitly stated therein (this is never the case for entangled pure states as
shown by Gisin). Later, in 1995 Sandu Popescu showed [16] for a subclass of
the Werner states that although they are not violating any of the Bell inequal-
ities when subjected to a direct measurement they could be preprocessed to do
so. Namely, using a local �lter and classical communication one can, with some
probability, obtain from them highly entangled states which violate the CHSH
[17] Bell inequality to a large degree. This is a simple example of distillation
of entanglement. In the following year 1996, a protocol for distillation of en-
tanglement from two-qubit states have been proposed [18]. The protocol can

17
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distill nearly perfect singlets (maximally entangled states) from many copies of
a two-qubit state if its overlap with singlet is greater than 1

2
.

The importance of distillation of entanglement comes from two directions:

1. on one hand from the tasks, such as teleportation of an unknown state [19]
which can be performed if two parties share maximally entangled states (a
universal and powerful resource); and

2. on the other hand from the uncontrolled interaction with environment
which may weaken the entanglement of the states shared by the parties
(a destructive power of noise).

So the important question is: whether all entangled mixed states are dis-
tillable? For a pure states, a positive answer was obtained in 1996 by Charles
Bennett et al. [20]. In 1997 Horodeckis [21] obtained a positive answer for the
special case of two-qubit states: all entangled two-qubit states are distillable.
But, in 1998 they have shown [4] that for the general case the answer is: no.
They showed that an entangled state to be distillable must violate Peres crite-
rion (a necessary condition for a mixed state to be separable � i.e., not entangled
[15] � introduced in 1996 by Asher Peres [22]) and on the other hand they have
recalled examples of entangled states satisfying Peres criterion introduced a year
before by Paweª Horodecki [23]. This way they showed that there are entangled
states which are undistillable and they called them bound entangled states, in
analogy to the bound energy from thermodynamics.

The states which satisfy the Peres criterion are now called the PPT states
(for Positive Partial Transpose) and the states which violate the Peres criterion
are now called the NPT states (for Non-positive Partial Transpose). In [4] exam-
ples of PPT bound entangled states are given and the question is stated, which
remains still open: are all NPT states distillable (which would give partial trans-
pose as the simple mathematical tool to decide if a state is distillable) or is it
that there are also NPT bound entangled states?

Quantum teleportation together with distillation of entanglement allow two
distant parties to reliably transmit quantum states (unknown to the sender) even
if they initially shared noisy entangled states and they are not connected with
a quantum channel. But there is another extremely practical communicational
task that is allowed and secured by quantum mechanics: quantum cryptography.

Quantum cryptography, pioneered by Wiesner [24] (published in 1983), allows
distant parties to obtain cryptographic key (we will also call it private key)
based on physical impossibility of eavesdropping. Namely, if the transmitted
signal is encoded into quantum states, then by reading it, eavesdropper always
introduces noise into the signal. Thus Alice and Bob � the parties who want
to communicate privately � can measure the level of noise and detect whether
their transmission is secure (even if the noise was solely due to eavesdropping).
There are two types of quantum key distribution protocols: prepare and measure
(as the original BB84 protocol [25] published by Bennett and Brassard in 1984)
and protocols based on a shared entangled state (originated from the Ekert's
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protocol [26] introduced in 1991). For quite a time security proofs of prepare
and measure protocols had been based on showing equivalence to the distillation
(by local operations and classical communication) of maximally entangled states
(the �rst such proof is due to Shor and Preskill [27], published in 2000). It have
led to the belief that security of the quantum cryptography is always connected
to the distillation of the maximally entangled states (this issue was perhaps �rst
touched by Gisin and Wolf [28] in 2000).

This belief suggested that one could not obtain secure key from bound en-
tangled states [4], i.e., states from which maximally entangled states cannot be
distilled. On the contrary, the key-distillable bound entangled states have been
found [1] and examples of low dimensional states have been provided [2]. The
multipartite case was also considered [29]. There are two approaches to obtaining
cryptographic key from bound entangled PPT states: one is based on approx-
imating private bit with a PPT state [1, 30] and the other one � on mixing
orthogonal private bits [2, 3].

Distillation of cryptographic key from quantum states may be seen as a gen-
eralization of the problem of distillation of entanglement. Indeed, distillation
of entanglement is a process in which Alice and Bob obtain singlets which are
examples of private bits. While, distillation of cryptographic key is a process in
which one obtains private bits (which in particular could be singlets).

This thesis presents some of the results on the way to solve two important
puzzles (open problems) of the quantum information theory:

1. are there NPT bound entangled states? � we aproach this problem from
two di�erent perspectives. The results presented in chapters 4 and 5 have
been published in [6, 31]:

• �ukasz Pankowski, Marco Piani, Michaª Horodecki, and Paweª Horodecki,
�A few steps more towards NPT bound entanglement�, IEEE Trans.
Inf. Theory 56, 4085�4100 (2010), arXiv:0711.2613 [quant-ph]

• �ukasz Pankowski, Fernando Guadalupe Santos Lins Brandão, Michaª
Horodecki, and Graeme Smith, �Entanglement distillation by means
of k-extendible maps�, arXiv:1109.1779 [quant-ph]

2. deeper understanding of PPT bound entangled states that are key distill-
able � namely, we provide a broad class of PPT bound entangled states
which are key-distillable. The results presented in chapter 3 have been
published in [2, 3]

• Karol Horodecki, �ukasz Pankowski, Michaª Horodecki, and Paweª
Horodecki, �Low-dimensional bound entanglement with one-way dis-
tillable cryptographic key�, IEEE Trans. Inf. Theory 54, 2621�2625
(2008), arXiv:quant-ph/0506203

• �ukasz Pankowski and Michaª Horodecki, �Low-dimensional quite noisy
bound entanglement with cryptographic key�, J. Phys. A: Math.
Theor. 44, 035301 (2011), arXiv:1008.1226 [quant-ph]

http://dx.doi.org/10.1109/TIT.2010.2050810
http://dx.doi.org/10.1109/TIT.2010.2050810
http://arxiv.org/abs/0711.2613
http://arxiv.org/abs/1109.1779
http://dx.doi.org/10.1109/TIT.2008.921709
http://arxiv.org/abs/quant-ph/0506203
http://dx.doi.org/10.1088/1751-8113/44/3/035301
http://dx.doi.org/10.1088/1751-8113/44/3/035301
http://arxiv.org/abs/1008.1226




Chapter 2

De�nitions and previous results

In this chapter we give de�nitions of the quantum informational concepts used in
the following chapters. First, we explain the di�erence between a bit (as used in
classical computing) and a qubit (used in quantum information). Then, we intro-
duce Dirac notation: the notation of linear algebra used in quantum information.
Next, we introduce two notions of the state of a quantum system: the pure state
and the density matrix. We then explain partial trace, a mathematical operation
which given a state of the total system gives us the state of its subsystem. Next
we introduce important classes of quantum states: the separable states, the PPT
states, the NPT states, the Bell diagonal states, and the Werner states. Then,
we introduce measurement and unitary operations and collect all the physically
realizable operations introduced before and give two equivalent formulations of
the set of all physically realizable operations (Completely Positive Trace Preserv-
ing maps and formulation given with Kraus operators). We also de�ne Quantum
channel. Later, we give short introduction to distillation of entanglement and to
quantum cryptography.

2.1 Bits and qubits

In classical computing information is stored and processed using two state regis-
ters called bits. The adjective classical is widely used in the context of quantum
information and quantum computation to describe concepts, methods, and al-
gorithms that refer to physics of the macroscopic world in contrast to concepts,
methods, and algorithms of quantum information and quantum computation
which take into account the e�ects postulated (and observed in nature) by quan-
tum mechanics.

A simplest quantum register, in analogy to classical bit, is called a qubit (i.e.,
quantum bit). A qubit can be realized physically as a single particle (e.g., a
photon) but here we are interested in the mathematical model of the qubit (and
more generally: a quantum register). Mathematically, a qubit may be seen as a
generalization of the bit which catches the richer structure of quantum mechanics
in contrast to the Boolean logic used in classical computers. Note, that we say

21



22 Chapter 2. De�nitions and previous results

a bit (qubit) to denote the single bit (qubit) register and denote its state as the
state of the bit (qubit).

We now point out some of the properties of qubits which di�er them from
classical bits:

1. Bits can have only two possible values, i.e., states (0 and 1) while qubits can
be in one of two basic states |0〉 and |1〉 but also in a so-called superposition
(i.e., linear combination) of the two basic states.

2. It is always possible to read out the value stored in a bit (we assume perfect
registers). In contrast, it is possible to measure (read out) the value stored
in a qubit only if it is in one of the basic states |0〉 or |1〉. Otherwise, if
a qubit is in the superposition of basic states then after the measurement
the state of the qubit probabilistically collapses into one of the basic states
|0〉 or |1〉, so the state of the system is changed by the measurement. In
particular, this implies that one cannot copy the state of the qubit, while
coping is a natural and obvious operation to perform on the state of a bit.

3. Moreover, knowing the state of the register consisting of more than one
qubit gives us, in general, only partial knowledge of the the states of par-
ticular qubits. This peculiarity happens if the qubits are entangled.

We denoted the basic states of a qubit with |0〉 and |1〉. This notation is
called the Dirac notation.

2.2 Dirac notation

States of qubits and, in general, quantum registers are represented with vectors
and matrices of complex numbers. To this end, a little bit strange at �rst sight
but in fact extremely convenient, notation is used: the so-called Dirac notation.

Vectors In Dirac notation a column vector from a d dimensional Hilbert space
Cd is denoted by |x〉 and its Hermitian adjoin |x〉† is denoted by 〈x|, so we have

|x〉 =


x0

x1
...

xd−1

 〈x| ≡ |x〉† =
[
x∗0 x∗1 · · · x∗d−1

]
(2.1)

where xi ∈ C and x∗i denotes complex conjugation of xi. The Hermitian adjoin
〈x| is sometimes called a bra and the column vector |x〉 is often called a ket .

In particular, we will use |i〉 to denote a vector having only one nonzero
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element on i-th position, i.e.,

|0〉 =


1
0
...
0

 |d− 1〉 =


0
...
0
1

 |i〉 =


δi0
δi1
...

δi,d−1

 δij =

{
1 i = j

0 i 6= j.
(2.2)

Whenever a digit or an indexing variable i, j and k is used inside a ket it denotes
a corresponding vector with a single non-zero element.

Inner product The inner product of vectors x and y is given by the matrix
multiplication

〈x|y〉 ≡ 〈x| |y〉 =
[
x∗0 x∗1 · · · x∗d−1

]

y0

y1
...

yd−1

 =
d−1∑
i=0

x∗i yi. (2.3)

Dirac notation is also called bracket notion, which comes from 〈 and 〉 brackets
used in the inner product 〈x|y〉 and thus the names bra and ket used to denote
Hermitian adjoint 〈x| and column vector |y〉 comes from splitting the word bra-
ket into syllables.

Vector norm We de�ne the vector norm in the Hilbert space Cd using the
inner product of an arbitrary vector |x〉 as

‖x‖ =
√
〈x|x〉. (2.4)

Orthonormal basis A set of vectors {|ei〉}d−1
i=0 is called an orthonormal basis

for Cd if two conditions are satis�ed

1. every vector |x〉 ∈ Cd can be written as a linear combination of vectors
from {|ei〉}d−1

i=0

|x〉 =
d−1∑
i=0

ai|ei〉 (2.5)

where ai ∈ C.

2. vectors |ei〉 are normalized and mutually orthogonal, i.e., 〈ei|ej〉 = δij.

We will denote orthonormal basis with either {|ei〉}d−1
i=0 or {|fi〉}d−1

i=0 . When one
mentions a basis in the context of quantum information it is assumed that the
basis is orthonormal.

There is an orthonormal basis of a particular importance called the standard
basis . The standard basis is denoted as

{|i〉}d−1
i=0 = {|0〉, |1〉, . . . , |d− 1〉}. (2.6)
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Matrices The result of the multiplication |x〉〈y| gives a matrix

|x〉〈y| =


x0

x1
...

xd−1

 [y∗0 y∗1 · · · y∗d−1

]
=


x0y

∗
0 x0y

∗
1 · · · x0y

∗
d−1

x1y
∗
0 x1y

∗
1 · · · x1y

∗
d−1

...
...

. . .
...

xd−1y
∗
0 xd−1y

∗
1 · · · xd−1y

∗
d−1

 .
(2.7)

In particular, the result of a multiplication of vectors from the standard basis
|i〉〈j| is a matrix with a single nonzero element in i-th row and j-th column.
Thus, every operator A acting on a Hilbert space Cd (i.e., a d × d matrix) can
be written as

A =
d−1∑
i,j=0

aij|i〉〈j| =


a00 a01 · · · a0,d−1

a10 a11 · · · a1,d−1
...

...
. . .

...
ad−1,0 ad−1,1 · · · ad−1,d−1

 (2.8)

where aij ∈ C.

Trace norm For matrices we will only use the trace norm that is the sum of
the singular values of a matrix

‖A‖ =
∑
i

σi(A) (2.9)

where σi(A) ≥ 0 denote singular values of matrix A.

Projectors Let us recall that an operator P is called a projector if it satis�es
P 2 = P and P † = P . We will mostly use letter P and sometimes Q to denote
projectors. Every projector onto a k dimensional subspace of Cd can be written
as

P =
k−1∑
i=0

|ei〉〈ei| (2.10)

where {|ei〉}k−1
i=0 is an orthonormal basis for the subspace and, in particular, if

k = d then the projector P is equal to the identity matrix I that is a projector
onto the total space Cd. We use HP to denote the Hilbert space corresponding
to projector P .

In particular, if ‖x‖ = 1 then |x〉〈x| is the projector onto a one dimensional
space spanned by the vector |x〉.

We will call expression 〈x|P |x〉 the overlap of x with P .
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2.3 Pure state of a quantum system

A quantum system is modeled as d dimensional Hilbert space Cd. If a quantum
system is not in an interaction with the environment (is not entangled with the
environment) then it is in a so-called pure state. We will denote the pure state
of a quantum system with Greek letters ψ, φ and sometimes χ; putting them in
the ket, e.g., |φ〉, in formulas but referring to a state φ (without the ket) in a
text. The pure state of a quantum system is represented by a vector |ψ〉 ∈ Cd
satisfying ‖ψ‖ = 1.

Each of the vector of the standard basis |0〉, |1〉, . . . , |d−1〉 is a valid state of
a d dimensional quantum system. But also any normalized linear combination
(called superposition) of those vectors is a valid state of the quantum system

|ψ〉 =
d−1∑
i=0

ai|i〉 =


a0

a1
...

ad−1

 (2.11)

where the coe�cients ai ∈ C must satisfy the normalization condition

‖ψ‖ =

√√√√d−1∑
i=0

|ai|2 = 1. (2.12)

In particular, a two dimensional quantum system C2 is called a qubit . The
pure state of a qubit has the form

|ψ〉 = a|0〉+ b|1〉 (2.13)

where the complex coe�cients a and b must satisfy |a|2 + |b|2 = 1. In the column
vector notation the state of the qubit is simply

|ψ〉 = a|0〉+ b|1〉 = a

[
1
0

]
+ b

[
0
1

]
=

[
a
b

]
. (2.14)

2.4 Bipartite and multipartite states

Suppose there are two distant parties (or laboratories) traditionally called Alice
and Bob, and each of them holds a quantum system. Suppose Alice's system is
dA dimensional (CdA) and Bob's system is dB dimensional (CdB). Now, we can
consider Alice's and Bob's systems together as a single larger quantum system.
From the perspective of this larger system we call Alice's and Bob's systems
the subsystems of this total system and often abbreviate their names to single
letters, i.e., we call them subsystem A and subsystem B. We call the total system
a bipartite system (and its state a bipartite state) as it consists of two subsystems
A and B. The name bipartite usually suggests the parties are distant.
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The Hilbert space needed to describe the state of the total system is dAdB
dimensional. In particular, if Alice and Bob each have a single qubit systems
(dA = dB = 2) then the total system is 4 dimensional. More generally, if Alice has
n qubits and Bob has m qubits then their subsystems are 2n and 2m dimensional
and the total system is 2n+m dimensional. Thus the storage required to simulate
quantum system on a classical computer grows exponentially with the number
of simulated qubits. This is in contrast to classical bits, where if Alice has n bit
register and Bob has m bit register the total register has n + m bits (required
storage grows linearly).

We denote the dAdB dimensional Hilbert space of the total system as CdA ⊗
CdB which is isomorphic to CdAdB . The operator ⊗ is called the tensor product ,
it is also known as the Kronecker product in other scienti�c communities. We
will often abbreviate CdA⊗CdB to dA⊗dB, for example 2⊗2 represents a Hilbert
space of a two-qubit system.

Now, let {|i〉}dA−1
i=0 be the standard basis for Alice system and {|j〉}dB−1

j=0 be
the standard basis for Bob's system then the vectors

|i〉A ⊗ |j〉B ∈ CdA ⊗ CdB (2.15)

for i ∈ {0, . . . , dA − 1} and j ∈ {0, . . . , dB − 1} form the standard basis for the
dAdB dimensional system CdA ⊗ CdB . For clarity, we subscribed kets with the
names of the corresponding subsystems.

As already mentioned, the space CdA⊗CdB is isomorphic to the space CdAdB :
the vector |i〉A ⊗ |j〉B ∈ CdA ⊗ CdB corresponds to the vector |k〉 ∈ CdAdB where
k = idB + j. For e.g., a two-qubit state may be in a state

|1〉 ⊗ |0〉 =

[
0
1

]
⊗
[
1
0

]
=


0
0
1
0

 . (2.16)

In general, the tensor product of two matrices A and B where A is a n × m
matrix has the following block matrix form

A⊗B ≡


a00B a01B · · · a0,m−1B
a10B a11B · · · a1,m−1B
...

...
. . .

...
an−1,0B an−1,1B · · · an−1,m−1B

 (2.17)

In particular, this formulation also works for |x〉 ⊗ |y〉 as |x〉 and |y〉 are simply
column vectors.

We will also use the tensor power of a matrix given by

A⊗n = A⊗ A⊗ · · · ⊗ A︸ ︷︷ ︸
n

. (2.18)

Since |x〉|y〉 is illegal as the matrix multiplication (two column vectors) thus
it is widely used as an abbreviation of the tensor product |x〉 ⊗ |y〉. The vector
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|x〉⊗|y〉 may also be written as a single ket with tensor product inside |x⊗y〉, this
improves readability of some formulas by avoiding ambiguity. So the following
are equivalent

|x〉 ⊗ |y〉 = |x〉|y〉 = |x⊗ y〉. (2.19)

In the case of the vectors from the standard basis, |i⊗j〉 is frequently abbreviated
even further to |ij〉. So we have

|i〉 ⊗ |j〉 = |i〉|j〉 = |i⊗ j〉 = |ij〉 (2.20)

|0〉 ⊗ |1〉 = |0〉|1〉 = |0⊗ 1〉 = |01〉. (2.21)

For clarity, we sometimes label the vectors with the name of the subsystems,
even in the abbreviated form

|ij〉AB ≡ |i〉A ⊗ |j〉B. (2.22)

If Alice's system is in a state |ψ〉 and Bob's system is in a state |φ〉 then the
total system is in a state

|ψ〉 ⊗ |φ〉. (2.23)

Such a state is called a product state as the state of the total system is a tensor
product of the states of its subsystems. The subsystems of a product state
are completely independent: Alice can prepare her system in a state |ψ〉 in her
laboratory and Bob can prepare his system in a state |φ〉 in his laboratory, and
they do not have to communicate to do so.

Entanglement Now suppose that at the beginning Alice has both subsystems
A and B in her laboratory and she prepares a state of the total system and then
sends subsystem B to Bob keeping subsystem A in her laboratory. Having access
to the total system, she can prepare the total system in a superposition which
is not a product state. A pure state which is not a product state is called an
entangled state. The best known entangled state is a two-qubit state of the form

|ψ−〉AB =
1√
2

(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B) (2.24)

which is called the singlet state.
If the total system AB is in an entangled state ψAB then we say that Alice

and Bob share the state ψAB. If ψAB is an entangled state then one cannot
describe the state of the individual subsystems A and B as pure states. A more
general notion of a state is necessary to describe them. This more general notion
of the state � called the density matrix � will be described in the next section.

The singlet is an example of so-called maximally entangled states . It is also a
member of a two-qubit orthonormal basis called the Bell basis which consists of
four maximally entangled states (in contrast to the standard basis which consists
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only of product states). The four states ψi of the Bell basis are called the Bell
states and are given by

|ψ1,2〉 =
1√
2

(|00〉 ± |11〉)

|ψ3,4〉 =
1√
2

(|01〉 ± |10〉). (2.25)

For a general d dimensional Hilbert space Cd the canonical maximally entan-
gled state is a generalization of the ψ1 Bell state and has the form

|φ+〉 =
1√
d

d−1∑
i=0

|ii〉. (2.26)

Multiple subsystems We will also consider bipartite states consisting of more
than two subsystems, such as |00〉AA′⊗|10〉BB′ where subsystems A and A′ belong
to Alice and subsystems B and B′ belong to Bob. Here, only one of the tensor
products is written explicitly to visually separate Alice's subsystems from Bob's
subsystems. Sometimes small letters a and b will be used instead of A′ and B′

to emphasize that subsystems a and b are qubits.
Another example of a bipartite state having multiple subsystems is

|ψ−〉AB ⊗ |ψ−〉A′B′ (2.27)

which consists of two singlets shared by Alice and Bob. This state could also be
written in a shorter form |ψ−〉⊗2 if we do not have to give the explicit names of
the subsystems and it is obvious from the context that we mean (2.27) and not

|ψ−〉AA′ ⊗ |ψ−〉BB′ (2.28)

which consists of two singlets one in the Alice's laboratory and the second one in
the Bob's laboratory. In fact, if we use a tensor power such as |ψ−〉⊗n we always
mean (unless explicitly stated otherwise) that individual |ψ−〉 states are shared
by Alice and Bob. In this case we call individual states |ψ−〉 copies as Alice and
Bob clearly share n identical copies of the state |ψ−〉.

Apart from bipartite states, we will also consider multipartite states, in par-
ticular, three-partite states, mainly in the context of quantum cryptography,
where apart from the two parties Alice and Bob involved in the private commu-
nication we will also consider a third party called Eve (for eavesdropper) who
will try to obtain some knowledge of private communication between Alice and
Bob.

Schmidt decomposition Every bipartite pure state ψ de�ned on dA⊗dB can
be written in its so-called Schmidt decomposition

|ψ〉 =
k−1∑
i=0

µi |ei〉A ⊗ |fi〉B (2.29)
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where k ≤ min{dA, dB} is called the Schmidt rank of the state ψ and we will
denote it by Sch(A : B) ≡ k where the relevant state ψ will be evident from the
context; the coe�cients µi are called the Schmidt coe�cients of the state ψ and
are positive numbers and their squares form a probability distribution, i.e.,

k−1∑
i=0

µ2
i = 1 (2.30)

while {|ei〉}dAi=0 and {|fi〉}dBi=0 are orthonormal basis for subsystems A and B,
respectively.

If the state ψ is a state of a quantum system having multiple subsystems,
for e.g., AA′BB′ then the state ψ has several Schmidt decompositions each cor-
responding to a partition of its subsystems into two groups, for e.g., AA′ : BB′

where the �rst group AA′ belongs to Alice and and the second group BB′ belongs
to Bob. We call such a partition of subsystems a cut . In particular, in the text
instead of AA′ : BB′ cut we can also say AA′ versus BB′ cut or Alice versus
Bob cut (if it is obvious from the context which subsystems belong to Alice and
which to Bob). But we can also consider other cuts such as A : A′BB′ and even
AB : A′B′. So we have the following Schmidt decompositions of ψ corresponding
to the those three cuts

|ψ〉AA′BB′ =
k−1∑
i=0

µi |ei〉AA′ ⊗ |fi〉BB′ (2.31)

=
k′−1∑
i=0

µ′i |e′i〉A ⊗ |f ′i〉A′BB′ (2.32)

|ψ〉ABA′B′ =
k′′−1∑
i=0

µ′′i |e′′i 〉AB ⊗ |f ′′i 〉A′B′ (2.33)

where Sch(AA′ : BB′) = k, Sch(A : A′BB′) = k′, and Sch(AB : A′B′) = k′′ are
Schmidt ranks of ψ in AA′ : BB′, A : A′BB′, and AB : A′B′ cuts, respectively.
Here, |ψ〉AA′BB′ and |ψ〉ABA′B′ both represent the same state ψ but with di�erent
order of subsystems so they are di�erent vectors

|ψ〉AA′BB′ 6= |ψ〉ABA′B′ . (2.34)

In the context where Schmidt rank of the state is important, we will denote
a pure state of rank k in a given cut A : B as φA:B

k (subscripted with the
rank and the cut) and the set of all such states as SRk(A : B), so we have
φA:B
k ∈ SRk(A : B). For e.g., we will use φA:B

1 , φA:B
2 and SR2(AA′ : BB′). The

cut may be omitted if evident from the context.
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2.5 Density matrices or mixed states of a quan-

tum system

If a quantum system has been prepared in a pure state and it is kept isolated from
other systems, that is it is not interacting with other systems especially with the
so-called environment (any other quantum system that we do not control) then
we can use the notion of pure states to describe the state of the system. But if
we want to ask for the state of a subsystem of an entangled system or we want
to model the interaction of our state with any other system we have to use the
more general notion of density matrices to model the state of subsystem or the
state of an interacting system.

The state of the d dimensional quantum system Cd may be modeled by d× d
matrix (i.e., an operator acting on Cd space) called the density matrix. The
density matrix % is a matrix satisfying two conditions:

1. it is a positive semide�nite matrix (% ≥ 0), i.e., has only nonnegative
eigenvalues λi ≥ 0 and

2. it is normalized

Tr% =
d−1∑
i=0

λi = 1 (2.35)

Density matrices are usually denoted by Greek letters %, σ, and � to denote the
so-called private bits � γ.

We can observe that eigenvalues of a density matrix form a discrete prob-
ability distribution so we will often denote them with pi rather then λi. The
fact that a density matrix is (by de�nition) positive semide�nite implies that the
density matrix is a Hermitian operator that is %† = %.

Whenever we will refer to the state of the quantum system we will mean the
density matrix representing the state of the quantum system unless we explicitly
mention the system is in a pure state.

Spectral decomposition As the density matrix % is positive semide�nite ma-
trix (% ≥ 0) it can be represented by its spectral decomposition

% =
d−1∑
i=0

pi|ψi〉〈ψi| (2.36)

where pi ≥ 0 are eigenvalues of % and form a discrete probability distribution, and
ψi are normalized eigenvectors of %, so ψi are mutually orthogonal pure states.
If all nonzero pi are distinct then the spectral decomposition is unique.

The spectral decomposition (2.36) is actually possible for any normal oper-
ator A (i.e., operator satisfying A†A = AA†) but for the general normal matrix
the eigenvalues are complex numbers. For a subclass of normal matrices called
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Hermitian operators (i.e., operators satisfying A = A†) the eigenvalues are real
numbers. And the subclass of Hermitian operators called positive semide�nite
operators (which we denote by A ≥ 0) is de�ned by having nonnegative eigen-
values.

Pure states If a quantum system is in a pure state ψ the state of the system
can also be represented as a density matrix (let us denote it by %) of the form

% = |ψ〉〈ψ|. (2.37)

The pure state (2.37) is a special case of the spectral decomposition (2.36) where
there is only one eigenvector ψ associated with the only nonzero eigenvalue equal
to 1.

By referring to a pure state ψ we may mean the vector |ψ〉 or the density
matrix |ψ〉〈ψ|. Which one we actually mean should be evident from the context
and on the other hand they are, in a sense, equivalent so this should not lead
to any ambiguity. Every pure state written as a density matrix is also a one
dimensional projector

Pψ = |ψ〉〈ψ| (2.38)

on a subspace spanned by ψ. In particular, we will use the projectors

Φ+ = |φ+〉〈φ+| (2.39)

Ψ− = |ψ−〉〈ψ−| (2.40)

where φ+ is a maximally entangled state given by (2.26) and ψ− is the singlet
state given by (2.24).

Examples Now, suppose Alice has a quantum system and she prepares it ran-
domly either in a state ψ with probability p or in a state φ with probability
1− p. Then she sends the state % prepared in this way to Bob telling Bob how
she prepared the state without telling him which of the state was randomly cho-
sen. From Bobs perspective the state % is not pure but nevertheless he has some
knowledge about it and this knowledge can be expressed with a density matrix

% = p|ψ〉〈ψ|+ (1− p)|φ〉〈φ|. (2.41)

We say that such % is a mixture of states ψ and φ. We also say that % is a mixed
state which strictly speaking means the state is represented as a density matrix
and is not in a pure state (so a state may be either pure or mixed). But it is
also common to use the term mixed state to refer to any state represented as a
density matrix (which could in particular be a pure state) thus, in this case, the
word mixed is used to stress that we do not restrict ourselves to the set of pure
states.
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In general, if Alice wants to send state % to Bob then she can randomly
select one of ψi with probability pi where pi and ψi come from the spectral
decomposition (2.36) of %.

Now, suppose Alice have sent Bob a state % but have told him nothing about
the way she prepared the state. Bob can still represent his complete lack of
knowledge as a density matrix called the maximally mixed state which has the
form

% =
I

d
(2.42)

where I stands for the identity matrix.
But if Alice prepares many copies of % according to the same recipe and sends

them to Bob but she does not tell him the recipe she used then Bob does not
have to assume he have obtained maximally mixed states (2.42): by the so-called
quantum tomography he can learn the density matrix of % or, in other words, he
learns the spectral decomposition of % (subject to some error, depending on
the number of copies of the state used for the tomography). Bob can also use
tomography if he does not fully trust Alice is really using the promised recipe.

Noise As maximally mixed state represents no knowledge about the state of
the system it is well suited to represent the uncontrolled interaction with the
environment, i.e., it can be used to model the e�ect of noise. This time, suppose
Alice is sending a state % to Bob by a noisy quantum channel and the channel
between Alice and Bob transmits a given state faithfully with probability 1−ε but
with probability ε the state is completely destroyed on a way by the interaction
with an environment. Then if Alice sends a state % to Bob then Bob receives the
state

%′ = (1− ε)%+ ε
I

d
. (2.43)

Preparation Let us come back to the example of Alice sending a mixture of
ψ and φ. If ψ and φ are orthogonal then (2.41) is a spectral decomposition
of %. But if they are not orthogonal then the spectral decomposition is given
by (2.36) where only p0 and p1 are nonzero and the associated eigenvectors ψ1

and ψ2 belong to a subspace spanned by ψ and φ. Thus in general, spectral
decomposition gives one possible way of preparing a state with a given density
matrix % but there are many other recipes of the form

% =
k−1∑
i=0

pi|ψi〉〈ψi| (2.44)

of preparing a state in the state %. Such a recipe for a preparation of % given as
a set of states ψi with associated probabilities pi of the form

{(pi, ψi)}k−1
i=0 (2.45)
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is called an ensemble. So spectral decomposition provides one of many possible
ensembles that may be used to prepare a state % but this ensemble has a unique
feature: all ψi are mutually orthogonal.

2.5.1 Partial trace and the state of a subsystem

Suppose Alice and Bob share a quantum system in a state %AB consisting of two
subsystems A and B: Alice holds subsystem A and Bob holds subsystem B. We
denote the state of subsystem A as %A and the state of subsystem B as %B and
their dimensions with dA and dB, respectively. We can compute the states %A
and %B of subsystems A and B from the state of the total system %AB using an
operation called the partial trace.

We �rst recall that the trace of any d× d matrix X could be written as

TrX =
d−1∑
i=0

〈i|X|i〉 (2.46)

where instead of the standard basis {|i〉}d−1
i=0 any orthonormal basis {|ei〉}d−1

i=0

could be used. Now, the partial trace is a linear operation which applied to a
product of two matrices performs a trace only on the subsystem (or subsystems)
given in subscript

TrA(XA ⊗XB) ≡ Tr(XA)⊗XB = Tr(XA)XB (2.47)

TrB(XA ⊗XB) ≡ XA ⊗ Tr(XB) = Tr(XB)XA (2.48)

In particular, as density matrices have trace equal to 1, we have

TrA(σA ⊗ σB) = Tr(σA)⊗ σB = Tr(σA)σB = σB (2.49)

TrB(σA ⊗ σB) = σA ⊗ Tr(σB) = Tr(σB)σA = σA (2.50)

So we see that if Alice and Bob share a product state σA ⊗ σB in the e�ect of
tracing out one of the subsystems we obtain the state of the second one. But
this is, actually, true for an arbitrary state %AB shared by Alice and Bob � by
the operation of the partial trace of one of the subsystems (B or A) we obtain
the state of the other subsystem (%A or %B):

%A ≡ TrB(%AB) %B ≡ TrA(%AB). (2.51)

The partial trace of a bipartite operator XAB is given by

TrA(XAB) ≡
dA−1∑
i=0

〈i|A ⊗ IB XAB |i〉A ⊗ IB (2.52)

TrB(XAB) ≡
dB−1∑
i=0

IA ⊗ 〈i|B XAB IA ⊗ |i〉B. (2.53)
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In the above sum, vectors from the standard basis |i〉 have been used on the
subsystem which we traced out (forgotten) and identity operator have been used
on a subsystem which have been left in the resulting expression. This generalizes
to more subsystems � we use |i〉 on all traced out subsystems and identity on
all subsystems that are left in the resulting expression, for example

TrA′B′(XAA′BB′) ≡

i=dA′−1
j=dB′−1∑
i,j=0

IA ⊗ 〈i|A′ ⊗ IB ⊗ 〈j|B′ XAA′BB′ IA ⊗ |i〉A′ ⊗ IB ⊗ |j〉B′ .

(2.54)

We will sometimes use the term reduction to refer to the state of a subsystem.

2.5.2 Separable states, PPT and NPT states

If Alice and Bob share a pure state then there are only two possibilities, either:

1. each of them holds a pure state � so they share a product state of the
form |ψ〉A ⊗ |φ〉B and the states of subsystem A and B are unrelated, or

2. they share an entangled state � i.e., there is some quantum mechanical
correlation between subsystems A and B which has no analog in our every-
day macroscopic world.

Analogously, each density matrix % shared by Alice and Bob is either a non-
entangled one, called a separable state, or an entangled one. But, the de�nition
of a separable state is slightly more complicated than the de�nition of a pure
product state.

Suppose, Alice and Bob prepare a pure product state |ψ〉A ⊗ |φ〉B: Alice
prepares her subsystem in a state ψ and Bob prepares his system in a state φ.
Each of them acts locally in her/his own laboratory and they can do this even
if they have never met each other before � the state is obviously not entangled.
Analogously, Alice can prepare her subsystem in a state % and Bob can prepare
his subsystem in a state σ and the state of the total system %⊗σ is not entangled:
it is a product state but not a pure product state (unless both % and σ are pure).
Now suppose, Alice selects randomly an integer i (out of some �nite set), each
with probability pi, and sends her choice to Bob and then depending on integer i
they jointly � each acting in her/his own laboratory � prepare a product state
%i ⊗ σi. The density matrix of such a state % has the form

% =
∑

pi %i ⊗ σi (2.55)

and such a state is not entangled as it can be prepared by randomly selecting
one of several (not entangled) product states according to a �nite probability
distribution. States of the form (2.55) are called separable states. Now, every
state which is not of this form is called an entangled state.
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In general, given a density matrix % it is a computationally hard problem
to decide if it is a separable state [32]. But there is an important necessary
condition for separability of a given state % called the Peres criterion [22] which
states that for a given state % to be separable its partial transposition must be a
positive semide�nite operator

%Γ ≥ 0. (2.56)

In the special case of states of 2⊗ 2 and 2⊗ 3 Hilbert spaces the Peres criterion
is the necessary and su�cient condition for separability [33].

Before de�ning the partial transposition, we �rst recall that the transposition
of a matrix can be de�ned as a linear superoperator that transposes every matrix
from the |i〉〈j| basis, i.e.,

(aA+ bB)T = aAT + bBT (2.57)

(|i〉〈j|)T = |j〉〈i|. (2.58)

Thus for any matrix

X =
∑
ij

aij|i〉〈j| (2.59)

its transposition is given by

XT ≡
∑
ij

aij|j〉〈i|. (2.60)

Now, the partial transposition denoted with XΓ of a bipartite matrix X can
be speci�ed as a linear superoperator that transposes a second subsystem of every
matrix from the product basis |i〉〈j| ⊗ |k〉〈l|, i.e.,

(aA+ bB)Γ = aAΓ + bBΓ (2.61)

(|i〉〈j| ⊗ |k〉〈l|)Γ = |i〉〈j| ⊗ |l〉〈k|. (2.62)

Thus for any bipartite matrix

X =
∑
ijkl

aijkl|i〉〈j| ⊗ |k〉〈l| (2.63)

its partial transposition is given by

XΓ ≡
∑
ijkl

aijkl|i〉〈j| ⊗ |l〉〈k|. (2.64)

If a bipartite density matrix % has a positive semide�nite partial transpose
%Γ ≥ 0 then we call % a PPT state (Positive Partial Transpose) and if the
partial transpose of % is a nonpositive operator %Γ � 0 then we call % an NPT
state (Nonpositive Partial Transpose). Now, the Peres criterion states that every
separable state is a PPT state, so PPT is a precondition for separability. And in
the special case of 2 ⊗ 2 and 2 ⊗ 3 states a state is separable if and only if it is
a PPT state and, on the other hand, it is entangled if and only if it is an NPT
state.
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2.5.3 Bell diagonal states

There is an important class of two-qubit density matrices called Bell diagonal
states

% =
4∑
i=1

pi|ψi〉〈ψi| (2.65)

where ψi are Bell states given by (2.25). The name comes from the fact that
Bell states ψi form an orthonormal basis and so states of the class (2.65) are by
de�nition diagonal if written in this basis. We will use Bell diagonal states in
the context of quantum cryptography.

As explained in a previous section, the two-qubit state can either be separable
or entangled and positivity of the partial transposition of a density matrix can
be used to distinguish between them. Let us consider the density matrix of a
Bell diagonal state and its partial transposition

% =


p1 + p2 0 0 p1 − p2

0 p3 + p4 p3 − p4 0
0 p3 − p4 p3 + p4 0

p1 − p2 0 0 p1 + p2

 (2.66)

%Γ =


p1 + p2 0 0 p3 − p4

0 p3 + p4 p1 − p2 0
0 p1 − p2 p3 + p4 0

p3 − p4 0 0 p1 + p2

 . (2.67)

For %Γ ≥ 0 both outer and inner blocks must be positive semide�nite, i.e.,[
p1 + p2 p3 − p4

p3 − p4 p1 + p2

]
≥ 0 ∧

[
p3 + p4 p1 − p2

p1 − p2 p3 + p4

]
≥ 0 (2.68)

that is

p1 + p2 ≥ |p3 − p4| ∧ p3 + p4 ≥ |p1 − p2| (2.69)

which is satis�ed if all pi ≤ 1
2
. Thus the Bell diagonal state is separable if all

pi ≤ 1
2
and entangled when pi > 1

2
for some i.

2.5.4 Werner states

Another important class of states are the so-called Werner states [15]. We will
use Werner states in the context of distillation of entanglement. Werner states
are states de�ned on d⊗ d Hilbert space as a mixture of two states

%W ≡ p%s + (1− p)%a (2.70)
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and the states %s and %a are given by

%s =
Ps
ds
, %a =

Pa
da

(2.71)

where Ps and Pa are projectors onto the symmetric and antisymmetric subspaces
and ds and da are their dimensions

Ps =
1

2
(I + V ) ds =

d(d+ 1)

2
(2.72)

Pa =
1

2
(I− V ) da =

d(d− 1)

2
. (2.73)

The operator V is the swap operator which acting on a bipartite state swaps its
subsystems

V |ψ ⊗ φ〉 = |φ⊗ ψ〉 (2.74)

The swap operator has the following matrix form

V ≡
d−1∑
i,j=0

|ij〉〈ji|. (2.75)

Alternatively, Werner states could be de�ned directly in terms of operators I
and V as

%W ≡
I + αV

d2 + αd
. (2.76)

Werner states are U ⊗ U invariant, i.e., applying the same unitary operator
U (see section 2.7) to both subsystems does not change a Werner state

%W = U ⊗ U %W U † ⊗ U †. (2.77)

2.6 Measurement

The von Neumann measurement of a quantum system or simply themeasurement
is a process performed on the system in the e�ect of which we obtain some
knowledge about the state of the system before the measurement but we, in
general, pay the price of irreversible modi�cation or even destruction of a state
of the system. The result of the measurement is an integer number i and the
state of the system after the measurement depends on the obtained result i and,
if it is not completely destroyed, also depends on an initial state %.

Measurement of a qubit system Let us �rst consider a measurement of a
qubit system. The qubit is a generalization of the classical bit and the classical
bit can only have one of two states (0 or 1) and the state can be read out from the
bit. We could restrict ourselves to use a qubit as a bit: prepare the state of the
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qubit only in one of the states |0〉 and |1〉 and use only such quantum operations
that represent classical gates. In this restricted case, the measurement of the
qubit works just like a read out of the bit � it gives the result 0 if the qubit has
the state |0〉 or 1 if the qubit is in the state |1〉 and the measurement does not
change the state of the qubit. But this is not the case in general, if the qubit is
prepared in a state ψ which is neither |0〉 nor |1〉 and the measurement checks
whether ψ is one of |0〉 or |1〉 then

1. the result of the measurement will be 0 with probability p0 = |〈ψ|0〉|2 and
the qubit will be in the state |0〉 after the measurement, or

2. the result of the measurement will be 1 with probability p1 = |〈ψ|1〉|2 and
the qubit will be in the state |1〉 after the measurement.

So in general measurement of a quantum system is a random process which
modi�es the state of the system. In fact, the measurement of a qubit destroys
the initial state ψ leaving us with one bit of information � the result of the
measurement i � and with a system in a state |0〉 or |1〉 which is completely
determined by the result i and does not contain any further knowledge of ψ. So
from a rich structure of a qubit we can read, by measurement, only one bit of
information and the rest of the information is lost after the measurement.

The above measurement is called the measurement in the standard basis be-
cause we asked whether the qubit is in one of the states of the standard basis
(|0〉 or |1〉) but a measurement may also be done in any other orthonormal basis
{|e0〉, |e1〉} then vectors |i〉 must be replace with |ei〉 in the above consideration.

Using projectors We can reformulate the e�ect of a measurement of a qubit
in the standard basis (or analogously in any other orthonormal basis) using the
projectors onto the states of the standard basis

P0 = |0〉〈0|, P1 = |1〉〈1|. (2.78)

In the e�ect of the measurement of the qubit in a state ψ in the standard basis
we obtain the result i (0 or 1) with probability

pi = 〈ψ|Pi|ψ〉 = TrPi|ψ〉〈ψ|Pi (2.79)

and the qubit after the measurement is in the state

|ψi〉 =
Pi|ψ〉√
pi

= |i〉. (2.80)

If a qubit before the measurement is in a state % then after the measurement
in the standard basis we obtain the result i (0 or 1) with probability

pi = TrPi%Pi (2.81)

and the qubit after the measurement is in the pure state

%i =
Pi%Pi
pi

= |i〉〈i|. (2.82)
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Direct sum Let us recall that each Hilbert space H = Cd can be represented
as a direct sum of k ≤ d orthogonal subspaces

H = H0 ⊕H1 ⊕ · · · ⊕ Hk−1 (2.83)

where each of the subspaces corresponds to a projector Pi projecting onto the
subspace Hi. Due to the above equality the projectors Pi must satisfy

k−1∑
i=0

Pi = I. (2.84)

We will call this representation the partition of a Hilbert space H into subspaces.
In particular any orthonormal basis partitions the Hilbert space into d one di-
mensional subspaces with Pi = |ei〉〈ei|.

Von Neumann measurement Now, the von Neumann measurement of a
quantum system represented by a d-dimensional Hilbert space H = Cd corre-
sponds to a particular partition of the Hilbert space into subspaces. In partic-
ular if all the subspaces are one dimensional the partition corresponds to some
orthonormal basis {|ei〉}d−1

i=0 and we call such a measurement a measurement in
the basis {|ei〉}d−1

i=0 . Let % be the state of the system before the measurement.
The measurement is a process which checks to which of the subspaces Hi the
state belongs to. If % belongs to one of the subspaces Hi that is % = Pi%Pi
then the state of the system is not changed by the measurement and the result
of the measurement is the index i of the subspace to which % belongs. If % is
not contained in one of the subspaces Hi then it will be projected onto one of
the subspaces and the result i of the measurement will return the index of the
subspace onto which % have been projected by the measurement. Namely, with
probability

pi = TrPi%Pi (2.85)

the measurement gives the result i and the state after the measurement has the
form

%i =
Pi%Pi
pi

. (2.86)

In the case where the state before the measurement is a pure state % = |ψ〉〈ψ|
we can also use the formulas

pi = 〈ψ|Pi|ψ〉, |ψi〉 =
Pi|ψ〉√
pi
. (2.87)

where ψi is the pure state of the system if a result i was obtained.
The von Neumann measurement in some basis may be used to discriminate

between orthogonal quantum states of that basis as it was for |0〉 and |1〉 in the
case of a qubit system.
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Measurement of a subsystem Having a bipartite state %AB we can do the
measurement corresponding to some projectors Pi on a single subsystem, let it
be subsystem A. The above measurement scheme applied directly to the state %A
of the measured subsystem will tell us what are the probabilities pi of obtaining
result i and the corresponding output state %(i)

A . But this does not tell us what
will be the state of the total system after the measurement. To learn this we have
to consider the equivalent measurement on the total system using the projectors
Pi ⊗ IB which will give us the same probabilities pi of obtaining result i but
with the corresponding output state %(i)

AB of the total system. Analogously, for
a measurement of a single subsystem of a multipartite state we use Pi on the
measured system and identity operators on all the others. Thus, we see that
measurement of a subsystem is a special case of measurement of the total system.

Embedding the result The output of the measurement of a state % is an
integer result i and a corresponding state %i but we can also encode the result
i of the measurement into a subsystem of a larger output state, in this form �
which we here call an embedded measurement � the measurement is simply a
linear superoperator M that irreversibly transforms one state into another one
(%̃ → %̃′ = M(%̃)). For this we introduce an additional subsystem called R of
dimension k to encode the result of the measurement

%̃ = %⊗ |0〉R〈0| (2.88)

and the measurement M has the form

M(%̃) ≡
k−1∑
i=0

pi %i ⊗ |i〉R〈i| =
k−1∑
i=0

Pi%Pi ⊗ |i〉R〈i| (2.89)

where pi and %i are given by (2.85) and (2.86), respectively. Having the output
state %̃′ we can always read out (with a non-destructive measurement in the
standard basis) from subsystem R which %i we do have at hand.

Generalized measurement � POVM (Positive Operator Valued Measure)
is a generalization of the von Neumann measurement. It is physically realizable
as a von Neumann measurement on a larger Hilbert space then the Hilbert space
of % but mathematically can be written as a measurement on the Hilbert space
of the measured state % given as a set of operators satisfying

Ai ≥ 0 (2.90)∑
i

Ai = I (2.91)

where the sum may contain any number of operators (increasing the number of
operators increases the larger space used for physical realization). The probabil-
ity of obtaining outcome i is given by

pi = Tr(Ai%). (2.92)

A longer introduction to the POVM measurements may be found in [34].
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2.7 Unitary operators � reversible transformations

of quantum systems

Having a quantum system in a state % (or ψ) we can transform it reversibly to
the state %′ (or ψ′) such a physical operation is represented by a unitary operator.
The reversibility of this transformation means that we can later apply another
unitary operator that will bring the state back to % (or ψ).

A unitary operator U , or simply unitary U , is a matrix satisfying UU † = I.
Columns (and analogously rows) of a unitary operator U form the orthonormal
basis |ei〉d−1

i=0 and so it can be written as

U =
d−1∑
i=0

|ei〉〈i| (2.93)

and the e�ect of a unitary is clearly a change of basis

U |i〉 = |ei〉. (2.94)

A unitary operator represents a reversible transformation of the state of a
quantum system. By applying the unitary U to quantum system in a state ψ or
% we obtain a quantum system in a state ψ′ or %′

|ψ′〉 = U |ψ〉 %′ = U%U †. (2.95)

Now, by the very de�nition of a unitary matrix we have UU † = I and thus U † is
another unitary that reverses the e�ect of the unitary U

U †|ψ′〉 = U †U |ψ〉 = |ψ〉 U †%′U = U †U%U †U = %. (2.96)

Local and global unitaries Having a bipartite state %AB we can apply a
unitary UA to its subsystem A and unitary UB to its subsystem B, this is done
with a product unitary UA ⊗ UB:

UA ⊗ UB %ABU †A ⊗ U †B (2.97)

In particular, doing nothing can be represented as a unitary matrix � the identity
matrix I. So, UA ⊗ IB is a unitary matrix that acts only on subsystem A:

UA ⊗ IB %ABU
†
A ⊗ IB. (2.98)

We say that this is a local unitary, i.e., acting on a speci�c subsystem. If A
is Alice's subsystem then Alice can apply unitary UA on her subsystem and
e�ectively apply unitary UA ⊗ IB to the total system. In contrast we call a
unitary UAB acting on the total system a global unitary. Physical realization of
the global unitary requires access to the total system, which is not possible if the
subsystems are distant. (Unless some other global resources are available such
as classical communication together with entangled state). The swap operator
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V de�ned with (2.75) is a good example of a global unitary that exchanges the
states of two subsystems

V |ψ ⊗ φ〉 = |φ⊗ ψ〉. (2.99)

We will sometimes use the unitary subscripted with a subsystem, for e.g.,
UA, to represent a unitary on the total system that only changes subsystem A
and acts as identity on other subsystems, i.e., such UA is given by UA = U ′A⊗ IB
where U ′A is de�ned on subsystem A.

Examples There are three important single qubit unitaries denoted by σx, σy
and σz called the Pauli matrices . The Pauli matrices have the following form

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(2.100)

Pauli matrices with identity matrix form a basis for the single qubit unitaries.
Another important single qubit unitary is the Hadamard gate

H =
1√
2

[
1 1
1 −1

]
(2.101)

The Hadamard gate is a unimodular matrix that is a matrix with all elements
aij having the same modulus, i.e., |aij| = a. Unimodular unitary matrices exist
for every dimension d, in particular a tensor power of Hadamard matrix H⊗k is
a unimodular matrix of dimension d = 2k.

In general, a single qubit unitary can be written using the following parametriza-
tion [35]

U = eiα

[
ei(−

β
2
− δ

2) cos
(
γ
2

)
−ei(−β2 + δ

2) sin
(
γ
2

)
ei(

β
2
− δ

2) sin
(
γ
2

)
ei(

β
2

+ δ
2) cos

(
γ
2

) ] . (2.102)

where α ∈ [0, 2π) and β, γ, δ ∈ [0, π), i.e., the parametrization needs only four real
parameters. An analogous parametrization of a unitary matrix of an arbitrary
dimension can be found in appendix B of [36].

2.8 General operations on quantum systems

We discussed how the quantum system is modeled by a Hilbert space and how its
state could be described as a vector representing the pure state of the system or
as a density matrix. We also introduced the complete set of possible operations
on the quantum system but now we collect them together. We present the
operations for a bipartite states %AB and ψAB to avoid excessive notation, but
they naturally generalize to a state with many subsystems. Having a quantum
system in a possibly unknown state %AB or ψAB we can:
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1. Perform a reversible transformation of the state of the system represented
by a unitary operator U

%′AB = U%ABU
† |ψ′〉AB = U |ψ〉AB. (2.103)

2. Introduce a new subsystem, let us denote it by E, in any state

%′ABE = %AB ⊗ |0〉E〈0| |ψ′〉ABE = |ψ〉AB ⊗ |0〉E (2.104)

3. Throw away a subsystem (put it in to the trash can, send it to another
party or simply put it on a side as we focus on the remaining subsystems),
this is done using the partial trace

%A = TrB%AB %A = TrB|ψ〉AB〈ψ| (2.105)

4. Measure the state of the system

%AB
M−→ {i, pi, %(i)

AB} ψAB
M−→ {i, pi, ψ(i)

AB} (2.106)

or with the result embedded into additional result subsystem R

%̃ = %⊗ |0〉R〈0| (2.107)

M(%̃) =
k−1∑
i=0

pi %i ⊗ |i〉R〈i| =
k−1∑
i=0

Pi%Pi ⊗ |i〉R〈i|. (2.108)

We already introduced all of the above operations before.

Physically realizable quantum operations If a map Λ : B(Cd) → B(Cd′)
which transforms a d×d matrix into a d′×d′ matrix (also called a superoperator)
is a physically realizable quantum operation then for every density matrix % also
Λ(%) is a density matrix but that is only a necessary condition but not a su�cient
one. The tensor product of the maps Λ1 and Λ2 is de�ned by its action on a tensor
product of states Λ1 ⊗ Λ2(%A ⊗ %B) = Λ1(%A)⊗ Λ2(%B). Each of the above four
types of quantum operations are physically realizable quantum operations (where
measurement is taken in its embedded version). And every physically realizable
quantum operation Λ can be represented as a composition of the above four
operations. We now provide two equivalent formulations of a set of all physically
realizable quantum operations:

Completely Positive Trace Preserving maps A map Λ is a physically re-
alizable quantum operation i� it is completely positive (CP) and trace preserving
(TP). Where
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1. A map Λ is positive if it preserves positivity of its argument

% ≥ 0 ⇒ Λ(%) ≥ 0 (2.109)

A map Λ is completely positive (CP) if the map Λ⊗ I is a positive

% ≥ 0 ⇒ Λ⊗ I(%) ≥ 0 (2.110)

for any dimension of I where I is the identity map I(σ) = σ and % has a
dimension appropriate to be the input of Λ⊗ I.

2. A map Λ is trace preserving (TP) if it satis�es

TrΛ(%) = Tr%. (2.111)

Transposition, let us denote it with T , is an example of a map that is positive
and trace preserving but not completely positive. This feature has been used
in the Peres criterion: the criterion says that I ⊗ T (%) must be positive if % is
separable, and thus the reverse indicates that % is entangled. In general, such
maps which are positive but not completely positive are called entanglement
witnesses . That is because for every witness map W the expression I ⊗W (%) is
positive for all separable states and thus I ⊗W (%) < 0 gives the evidence that %
is an entangled state.

Kraus operators A map Λ is a physically realizable quantum operation i� its
action can be given with the so-called Kraus operators Vi

Λ(%) =
∑
i

Vi%V
†
i (2.112)

where Vi are arbitrary operators satisfying∑
i

V †i Vi = I. (2.113)

Separable operations The particularly important subclass of physically real-
izable quantum operations is the set of separable opearations having the following
form in the decomposition to Kraus operators

Λ(%AB) =
∑
i

Ai ⊗Bi %AB A
†
i ⊗B†i (2.114)

where Ai and Bi are arbitrary operators acting on subsystems A and B, respec-
tively, and satis�ng ∑

i

A†iAi ⊗B†iBi = I. (2.115)
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Local operations and classical communication (LOCC) There is an im-
portant subclass of quantum operations called LOCC operations which we in-
troduce for a bipartite state (Alice and Bob) but it can be naturally generalized
for the multipartite case. Let Alice and Bob share a quantum state such that
Alice has subsystem A and Bob has subsystem B of the total system AB. Now,
Alice can perform every physically realizable quantum operation on her subsys-
tem A and Bob can perform every physically realizable quantum operation on
his subsystem B. The operations that Alice and Bob can perform are called Lo-
cal Operations as each of them can perform quantum operations only in her/his
own laboratory. As Alice and Bob may perform local measurement it is often
desirable to inform the other party what was the result of the measurement, thus
we allow Alice and Bob for Classical Communication, i.e., they are allowed to
send bits in both ways (from Alice to Bob and from Bob to Alice).

In contrast, if Alice and Bob have access to the reliable quantum channel
then they can perform any global operation, i.e., operation on the total system.
As Alice may send her subsystem A to Bob then Bob can perform any physically
realizable quantum operation on the total system AB and send subsystem A
back to Alice.

It is easy to observe that if the state % shared by Alice and Bob is separable
(i.e., not entangled) then the state Λ(%) after they apply any LOCC operation
Λ remains separable.

2.9 Quantum channel

Suppose, Alice has a quantum system in an unknown to her state % and she wants
to send this state to Bob. She can do this if they are connected with a quantum
channel that can reliably transmit qubits from Alice to Bob. See �gure 2.1. The
�gure illustrates that the the quantum channel is only sending the state and not
coping it � the state is no longer on the sender side.

A reliable quantum channel could for example be used to perform a global op-
eration: Alice can send her subsystem to Bob then Bob having both subsystems
can perform some quantum operation on the total system and send Alice's sub-
system back after the operation. So the quantum channel is a powerful quantum
resource.

The quantum channel which reliably transmits a state is an ideal one and,
in general, a quantum channel is not perfect. Every quantum channel can be
represented as a physically realizable quantum operation Λ which transforms
the input state % into the output state %′, i.e., Λ is a completely positive trace
preserving map and can be represented with the Kraus operators.

But there is another representation which nicely encodes the essence of a
quantum channel: the transmitted state % enters into the channel where it is
interacting with a environment (a new subsystem E), the interaction can be
represented as a unitary operator on a total system of % and the environment.
But the environment is out of control of the receiver so to obtain the output
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Alice Bob
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Figure 2.1: Single use of a reliable quantum channel: a) before sending a qubit;
b) after sending a qubit (Alice's subsystem is in a state unrelated to %).

state we have to trace out the environment. Thus

Λ(%) = TrE U %⊗ |0〉E〈0|U †. (2.116)

2.10 Entropic functions

We recall that the binary entropy is given by

h(p) ≡ −p log2 p− (1− p) log2(1− p) (2.117)

The von Neumann entropy of a density matrix is given by

S(%) ≡ −Tr(% log2 %) (2.118)

where expression % log2 % is applied to eigenvalues, i.e., eigenvalues of % log2 % are
equal to λi log2 λi where λi are the eigenvalues of %. So we have

S(%) = −
∑

λi log2 λi. (2.119)

Now, the mutual information of % in A versus B cut is given by

I(A : B) ≡ S(%A) + S(%B)− S(%AB). (2.120)

2.11 Distillation of entanglement

Distillation, in general, is a process in which an imperfect resource is transformed
into a perfect resource or a resource that is arbitrary close to the perfect one.
Distillation of entanglement is a process of obtaining perfect entanglement (max-
imally entangled states; singlets) from many copies of a given entangled state %,
i.e., from %⊗n for some �nite n.

But why maximally entangled states are considered an important resource?
The importance of distillation of entanglement follows from the tasks, such as
teleportation of an unknown state [19], which are possible for two distant parties
if they share maximally entangled states (a universal and powerful resource). On
the other hand the uncontrolled interaction with environment may weaken the
entanglement of the states shared by the parties (a destructive power of noise)
and thus requiring distillation.
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Distillation The process of distillation can be illustrated with

%⊗k
p>0−−−→ ψ+. (2.121)

That is: the state % is distillable if for some �nite k Alice and Bob can by LOCC
operations obtain from k copies of % a maximally entangled state ψ+ with nonzero
probability p > 0.

More formally, a state % is n-copy distillable i� n copies of % can be locally
projected to obtain a two-qubit NPT state, i.e.,

%2 =
1

N
PA ⊗ PB %⊗n PA ⊗ PB (2.122)

where %2 is a two-qubit state satisfying %Γ
2 � 0, N is a normalization factor,

and PA and PB are rank two projectors. The obtained two-qubit NPT state is
distillable to a maximally entangled state ψ+ (see below). Or equivalently, a
state % is n-copy distillable i�

inf
φ2

〈φ2|%Γ⊗n|φ2〉 < 0 (2.123)

where the in�mum is taken over all pure states with Schmidt rank two in Alice
versus Bob cut.

Now, we say that a state % is distillable if it is n-distillable for some �nite n.

History The distillation of entanglement was pioneered in 1995 by Sandu
Popescu [16]. Popescu showed that some Werner states which does not violate
the CHSH [17] Bell inequality and so are far away from maximally entangled
states can be with some non-zero probability transformed into states that are
highly entangled, close to maximally entangled state and violating the CHSH in-
equality in a great degree. In the following year 1996, a protocol for distillation
of entanglement from two-qubit states have been proposed by Charles Bennett
and coworkers [18]. The protocol can distill nearly perfect singlets from many
copies of a two-qubit state if its �delity with singlet is greater than 1

2
.

If maximally entangled states consist a valuable resource then the important
question is whether all entangled states are distillable? The case of pure states
have been solved in 1996 by Charles Bennett and coworkers [20]: all entangled
pure states can be distilled to maximally entangled states. But is the same true
for all entangled density matrices? In 1997 Horodeckis [21] obtained a positive
answer for the special case of two-qubit states: all entangled two-qubit states are
distillable.

But in 1998 it was shown [4] that for the general case the answer is: no. They
showed that an entangled state to be distillable must violate the Peres criterion
(a necessary condition for a mixed state to be separable � i.e., not entangled
[15] � the criterion was introduced in 1996 by Asher Peres [22]) and on the
other hand they recalled examples of entangled states satisfying Peres criterion
introduced a year before by Paweª Horodecki [23]. In this way they showed that
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there are entangled states which are undistillable and they called them bound
entangled states , in analogy to bound energy from thermodynamics. We can
restate the result obtained in [4] in other words: PPT entangled states exist and
although entangled they are not distillable. (As separable/LOCC operations
cannot transform PPT state into an NPT state). This reformulation revels a
problem still opened since [4]: whether all NPT states are distillable or whether
there also exist NPT bound entangled states?

In [5] it was shown that if there exist NPT bound entangled states then
there must exist NPT bound entangled Werner states so it is enough to consider
distillability of Werner states. In two chapters concerning distillability of NPT
states we will concentrate on the problem of distillability of Werner states. In
[7, 8] (David P. DiVincenzo and coworkers; W. Dür and coworkers) subsets of
n-copy undistillable Werner states was given for any �nite n. Those subsets are
decreasing with n and in the limit of n→∞ one obtains the empty set. One could
ask if proving n-copy undistillability for some n can imply n+ 1 undistillability?
Unfortunately it is not the case: John Watrous [37] showed that for any n one
can construct n-copy undistillable state which is n+ 1 distillable.

One can attack the problem of distillability of NPT states by allowing Alice
and Bob to use a superclass of LOCC operations which simpli�es mathemati-
cal consideration. If some NPT state is undistillable by this superclass it is also
undistillable by LOCC operations. Such attempt was made by Tilo Eggeling and
coworkers in [38] where PPT preserving class of operations where used: unfortu-
nately all NPT states are distillable by PPT preserving operations so this class of
operations is to powerful. In chapter 5 we consider other superclasses of LOCC
operations called k-extendible maps. Although the k-extendible maps appear to
be surprisingly powerful but the so far obtained results are not conclusive.

Consequences If all NPT states would be distillable we would have a mathe-
matically simple method of deciding if a state is distillable: one would consider
positivity of partial transposition: if it is positive (the state is PPT) then the
state is undistillable and if it was negative (for NPT states) the state would be
distillable.

On the other hand, if there are NPT bound entangled states several con-
sequences have been discovered. Peter W. Shor and coworkers showed [39] a
surprising consequence: for some hypothetical bound entangled NPT state %
there exists another bound entangled state σ such that the joint state % ⊗ σ
is no longer a bound entangled state. Later, Vollbrecht and Wolf showed [40]
that an arbitrary NPT bound entangled state would exhibit such a property
(it also follows from [38] via so-called Choi-Jamioªkowski isomorphism). Such a
phenomenon of `superactivation' has been indeed found in a multipartite case
[41] and translated into extreme nonadditivity of multipartite quantum channel
capacities [42]. (In a multipartite case, though still very strange, it is less sur-
prising than in a bipartite case due to a rich state structure allowed by many
possible splits between the parties.) In quantum communication language the
phenomenon of `superactivation' would mean that two channels (supported by
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Figure 2.2: Distillability ranges for Werner states

two-way classical communication) none of them separately can convey quantum
information if put together, can be used for reliable transmission of qubits. Anal-
ogous problem for channels that are not supported by classical communication
was solved by Smith and Yard [43] (see also [44] in this context). Another impli-
cation of the existence of NPT bound entangled states is that the basic measure
of entanglement � the distillable entanglement � would be non-convex.

Werner states For a single parameter class of Werner states introduced in
section 2.5.4 we have three ranges of the parameter p concerning distillability
(see �gure 2.2):

1. for p ∈ [1
2
, 1] the Werner states are separable (and thus PPT),

2. for p ∈ [0, p0) where p0 = d+1
4d−2

the Werner states are NPT 1-copy distillable,

3. for p ∈ [p0,
1
2
) the Werner states are NPT 1-copy undistillable and conjec-

tured to be undistillable [7, 8] (We will call them the suspicious Werner
states).

2.12 Quantum cryptography

Quantum cryptography is one of the most widely recognized practical applica-
tion of quantum information. Commercial solutions are sold by for example ID
Quantique1 and MagiQ Technologies2. The widely used in practice part of the
quantum cryptography is the Quantum Key Distribution (QKD). The Quantum
Key Distribution does not introduce new cryptographic algorithms but new pro-
tocols of distributing private keys. In practical cryptography one usually uses a
symmetric-key algorithm such as for example Triple DES (3DES) to encrypt the
data but the private key used is changed frequently. For distributing new keys
public-key cryptography, such algorithms as RSA (which stands for the authors
Rivest, Shamir and Adleman), are frequently used in practice. Now, Quantum
Key Distribution gives a new way of distributing those frequently changed keys
(�rst such commercial hybrid systems have been produced in collaboration by
Senetas3 and ID Quantique). Security of classical algorithms such as RSA is

1http://www.idquantique.com/
2http://www.magiqtech.com/
3http://www.senetas.com/



50 Chapter 2. De�nitions and previous results

based on di�culty of solving computationally hard (or supposedly hard) mathe-
matical problems (such as factorization): that is their security is based on prac-
tical impossibility of solving those mathematical problems even using a cluster
of many today's computers in a reasonable time. In contrast, QKD protocols
are based on physical impossibility of eavesdropping: due to the impossibility
of cloning of quantum states any attempt of reading the states introduces the
noise and Alice and Bob � the parties that want to communicate secretly � can
measure the level of noise and learn whether the keys generated by the quantum
apparatus are secure. One should add that the current implementations are not
free from loopholes, see [45].

There are two kinds of QKD protocols:

1. algorithms based on sending non-orthogonal quantum states by Alice and
their measurements by Bob, so-called prepare and measure protocols, the
original BB84 algorithm [25] is of this kind, and

2. algorithms based on measurements of shared orthogonal states, such as
Ekert protocol [26].

For quite a time security proofs of prepare and measure protocols had been based
on showing the equivalence of the prepare and measure protocol of interest with
entanglement distillation, i.e., distillation of maximally entangled states (�rst
such proof is due to Peter Shor and John Preskill [27]). Thus it was quite
widely believed that this equivalence is essential to the problem of distillation
of private key from quantum states, this was probably �rst touched by Nicolas
Gisin and Stefan Wolf [28]. If this belief was true then one could not obtain
secure key from bound entangled states. But the opposite was shown: new class
of so-called private states [1, 30] have been introduced and it was shown that
distillation of private key from quantum states is not equivalent to distillation of
entanglement but is a generalization of distillation of entanglement. It was shown
that distillation of private key from quantum states is equivalent to distillation
of private states. And maximally entangled states belong to the set of private
states but there are many other private states and some of them (if a large enough
dimension is considered) are close to the set of bound entangled PPT states and
thus by introducing some noise to such states one can obtain key-distillable bound
entangled states.

The method of obtaining bound entangled states from which one can distill
cryptographic key introduced in [1] and widely explained in [30] was only ap-
plicable for high dimensional states. Later, a method based on mixing of two
specially chosen orthogonal private states was introduced in [2] this construction
is possible in low dimensions even for 4⊗4 states, i.e., Alice has a two-qubit sub-
system and Bob has a two-qubit subsystem. The construction gives the states
on the boundary of the set of PPT states but by continuity it was argued that
there are also key-distillable states inside the set of PPT entangled states.

The method used in [2] have been generalized to mixtures of four specially
chosen orthogonal private states [3]. Those generalized states are also laying
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inside the set of the PPT states even approaching arbitrary close to the set of
separable states. But this generalization comes with a price: in [2] the so-called
Devetak-Winter protocol [46] (which requires only one-way communication) was
enough to obtain private key from the states on the boundary of the PPT states
while to enter far into the set of PPT states [3] one has to use the so-called
recurrence preprocessing before applying the Devetak-Winter protocol. The use
of the recurrence preprocessing causes the decrease of the key rate.

The results obtained in [2] and [3] are introduced in the next chapter but to
this end we need to introduce private bits an important subclass of the set of
private states and the technique called privacy squeezing.

2.13 Private bits and privacy squeezing

First we have to specify what do we understand by the private key . A private
key is

1. a perfectly random string of bits, i.e., the bits are independent and zeros
and ones are equally probable, and such that

2. nobody else knows this random string of bits apart from the securely com-
municating parties called Alice and Bob, i.e., it is perfectly secure.

Private key from maximally entangled states One can obtain a single bit
of private key from a maximally entangled state

|φ+〉 =
1√
2

(|00〉+ |11〉). (2.124)

Suppose Alice and Bob share the state φ+. They can both measure their subsys-
tems in the standard basis or any other basis (but the same for Alice and Bob)
and then they obtain one bit of private key: they both get the same result, zero
with probability 1

2
or one with probability 1

2
. The result is decided when �rst

of them measures her/his subsystem and it is secret, i.e., unknown to anyone
other than Alice and Bob. The private key from φ+ is obtained directly, i.e.,
Alice and Bob measure a single copy of φ+ and obtain a bit of private key �
no postprocessing is required. Thus if one can show that some QKD protocol
is equivalent to distillation of maximally entangled states and measurements on
those states, such as the proof by Shor and Preskill [27], then the QKD protocol
is secure. Alice and Bob could also share a state

|ψ+〉 =
1√
2

(|01〉+ |10〉). (2.125)

that has anti-correlation or anty-key: for this maximally entangled state they
obtain opposite results and one of them have to negate the result.

But in [1] a wider class of states, called private states , have been introduced
from which one can directly obtain private key. Private states are simply all of
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the states from which one can by direct measurement obtain private key. This
class is a generalization of the class of maximally entangled states. But in this
generalized class of private states there is a single basis called the secure basis
in which Alice and Bob have to measure to obtain the private key while other
basis do not guarantee security. In contrast, for the maximally entangled state4

every local basis (but the same for Alice and Bob) is secure. In this thesis we
will always use the standard basis as the secure basis of private states as this
simpli�es the consideration. And we also consider only a subclass of private
states called private bits .

Private bit A private bit or pbit is a state from which one can directly obtain
at least one bit of private key. The private bit in its so-called X-form is given
by

γ(X) =
1

2


√
XX† 0 0 X
0 0 0 0
0 0 0 0

X† 0 0
√
X†X

 (2.126)

where X is an arbitrary operator satisfying ‖X‖ = 1. The private bit has four
subsystems: ABA′B′ where block matrix (2.126) represents AB subsystem and
the blocks are operators acting on an A′B′ subsystem. Subsystems A and B are
single qubit subsystems while dimensions of A′ and B′ must be greater or equal to
2, we assume dimensions A′ and B′ are equal and denote them by d. Subsystem
AA′ belongs to Alice while subsystem BB′ belongs to Bob. The lowest dimension
of the pbit is 4⊗4, i.e., all four subsystems are qubits. All of the states presented
in block matrix form and in the context of quantum cryptography will have this
structure. For the private bit given by (2.126) Alice and Bob may obtain single
bit of private key when they measure subsystems A and B in the standard basis
5 (i.e., standard basis is the secure basis). Therefore, subsystem AB is called
the key part of the pbit, while subsystem A′B′ is called the shield of the pbit, as
it protects correlations contained in the key part from an eavesdropper. These
names (the key part and the shield) apply not only to pbits but also to mixtures
of pbits and general states having ABA′B′ subsystems. Note that it may happen
that Eve (a canonical name of an eavesdropper) possesses a copy of the shield
subsystem (when, e.g., the shield consists of two �ag states � states with disjoint
support) yet it does not compromise the security of the key because the very
presence of the shield subsystem in Alice's and Bob's hands protects the bit of
key from an eavesdropper.

Privacy squeezing From private bits one can obtain private key by direct
measurement in the secure basis. In contrast, for a general state % with ABA′B′

4Each maximally entangled state may be transformed by a local unitary on either Alice or
Bob site to the maximally entangled state given by (2.26).

5One can also consider private bits with di�erent secure basis but in this thesis we only
consider the standard basis as secure basis.



2.13. Private bits and privacy squeezing 53

subsystems one may obtain imperfect secret correlations which are typically nei-
ther perfectly random nor perfectly secure. Such imperfect secret correlations
require distillation of the private key � classical postprocessing to improve both
randomness and security (so called privacy ampli�cation). This means that one
needs many copies of the state %, i.e., %⊗n, and the amount of distillable private
key KD(%) per copy of the state and measured in bits, if nonzero, is often less
than one. We use KP(%) to denote the amount of private key-distillable from
% by the protocols consisting of a measurement of the key part in the standard
basis followed by classical postprocessing � the recurrence followed by Devetak-
Winter protocol (cf. [47] for two-qubit states). In the consideration below in
this section one can replace P with DW to restrict the classical postprocessing
to using of sole Devetak-Winter protocol without the recurrence and all of the
results will still hold.

Given a general state % with ABA′B′ subsystems one can lower bound the
amount of the private key KP(%) distillable from % using the method called
the privacy squeezing [30] (analogously for KDW (%)). The essence of privacy
squeezing is that instead of considering the original state % we can consider a
much simpler object � a two-qubit state σ � called the privacy-squeezed state
of the original state %. Where the states % and σ are connected with the following
relation 6

KP(%) ≥ KP(σ). (2.127)

That is one can use protocols designed for two-qubit states (see e.g., [48, 47, 49])
to compute the amount of key-distillable from the privacy-squeezed state σ and
then at least the same amount of private key is distillable from the original state
% by the same set of considered protocols (P or DW ).

The privacy squeezing method can be used for any spider state, i.e., a state
of the form

% =


C · · D
· E F ·
· F † E ′ ·
D† · · C ′

 (2.128)

(where zero blocks have been marked with dots). And the two-qubit privacy-
squeezed state of the spider state has the form

σ =


‖C‖ · · ‖D‖
· ‖E‖ ‖F‖ ·
· ‖F‖ ‖E ′‖ ·
‖D‖ · · ‖C ′‖

 . (2.129)

If a spider state satis�es ‖C‖ = ‖C ′‖ and ‖E‖ = ‖E ′‖ then its privacy-squeezed
state is a Bell diagonal state.

6Actually, it is true for any protocol based on postprocessing of classical data obtained from
measurement in the basis in which the privacy-squeezing is performed.
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Before we explain why the privacy squeezing works we have to introduce an
important ingredient of the proof: a twisting operation, i.e., a unitary transfor-
mation of the following form

U =
∑
ij

|ij〉AB〈ij| ⊗ UA′B′

ij (2.130)

Twisting is a global operation and it is never performed by Alice and Bob but it
is an important ingredient of the proof. Its usefulness comes from the property
that

KP(%) = KP(U%U †). (2.131)

i.e., twisting does not change the amount of key one can obtain from the state
using P protocols.

Now, given a spider state % de�ned by (2.128) privacy squeezing consists of
the two steps:

1. One selects such a twisting operation U which transforms o� diagonal
blocks D and F of % into positive operators U00DU11 and U01FU10. So
in U%U † all blocks are positive operators as diagonal blocks in a density
matrix are positive and stay positive after unitary transformation.

2. Now, we trace out A′B′ subsystem to obtain the privacy squeezed state

σ = TrA′B′U%U
† (2.132)

tracing out A′B′ subsystem replaces each of the block Aij of U%U † with its
trace TrAij in (2.132) but as all of the blocks are positive and for a positive
operator A we have TrA = ‖A‖ thus �nally the privacy squeezed state has
the form (2.129).

The twisting does not change KP and tracing out A′B′ which is equivalent to
giving it to Eve may only decrease KP so we have

KP(%) = KP(U%U †) ≥ KP(TrA′B′U%U
†) = KP(σ) (2.133)

and so one can distill from the original state % at least as much key using protocols
P as one can obtain from the privacy-squeezed state σ. Thus one can say that
one squeezes the private key in some sense spread between the key part and the
shield of % into the key part of U%U † and thus e�ectively into σ (as σ is just like
U%U † but with the probably useless shield A′B′ given to Eve).

Twisting explained But why twisting does not change KP? Having a state
% with subsystems ABA′B′ we consider its so-called puri�cation that is a pure
state ψABA′B′E such that

TrE|ψABA′B′E〉〈ψABA′B′E| = %. (2.134)
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The puri�cation is not unique but di�erent puri�cations di�er only by a local
unitary on E subsystem which is irrelevant in our consideration. We called the
introduced subsystem E: it could simply denote the environment but in the
context of quantum cryptography it stands for Eve as we suppose the worst
case scenario that whole environment (i.e., what is not controlled by Alice and
Bob) is controlled by the eavesdropper Eve. Now in the protocols P we measure
subsystems A and B in the standard basis and disregard the shield (but we do not
give it to Eve) and consider a state %′ABE which is called a ccq state as after the
measurement both A and B are classical registers and only Eve holds a quantum
system, one of the states %ij where i and j are the results of the measurements.
Now, in protocol of the class P one extracts private key from the ccq state and
twisting does not change the ccq state so it also does not change KP .

From a ccq state %′ABE Alice and Bob can distill using the (one-way) Devetak-
Winter protocol the following amount of key

KDW (%′ABE) = I(A : B)− I(A : E) (2.135)

where I(X : Y ) is the mutual entropy in X versus Y cut.
For a deeper discussion of the privacy squeezing see [30], although the name

spider state is not used there.





Chapter 3

Private key from PPT states

In this chapter by mixing properly chosen private bits we obtain key-distillable
states which are bound entangled and may even lay arbitrary close to the set of
separable states. We also provide su�cient condition to obtain private key from
such mixtures and further generalize the condition for arbitrary states.

The results presented in this chapter have been published in [2]1 and [3].

3.1 Mixing two private bits

Let us consider mixtures of two orthogonal private bits

%̃ = λ1γ
+
1 + (1− λ1)γ+

2 (3.1)

where

γ+
1 = γ(X) γ+

2 = σAx γ(Y )σAx (3.2)

i.e., γ+
1 is a pbit that has a key and γ+

2 is a pbit having an antikey (as we applied
σx on subsystem A) and operators X and Y are de�ned on d ⊗ d Hilbert space
and has the form

X =
1

u

d−1∑
i,j=0

uij|ij〉〈ji| Y =
XΓ

‖XΓ‖ (3.3)

where uij are elements of some unitary matrix on Cd and

u =
d−1∑
i,j=0

|uij|. (3.4)

The states %̃ have the following block diagonal form

%̃ =
1

2


λ1

√
XX† · · λ1X

· (1− λ1)
√
Y Y † (1− λ1)Y ·

· (1− λ1)Y † (1− λ1)
√
Y †Y ·

λ1X
† · · λ1

√
X†X

 . (3.5)

1The class obtained in [2] was also presented in [50].

57
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Private key from privacy-squeezed state The privacy-squeezed state of %̃
is a Bell diagonal state of the form

σ̃ = λ1|ψ1〉〈ψ1|+ (1− λ1)|ψ3〉〈ψ3| (3.6)

where ψi are the Bell states given by (2.25) and coe�cients λ1 and 1−λ1 are the
eigenvalues of the privacy-squeezed state. The puri�cation of privacy-squeezed
state has the form

|ψ′ABE〉 =
√
λ1|ψ1〉AB|e1〉E +

√
1− λ1|ψ3〉AB|e3〉E (3.7)

Now, suppose Alice, Bob and Eve share the state ψ′ABE (i.e., we assume the worst
case scenario � Eve controls the whole environment). And Alice and Bob want
to know how much private key KDW they can distill from ψ′ABE. They measure
the state ψ′ABE in the standard basis and obtain a ccq state of the form

σ
(ccq)
ABE =

λ1

2
[P|00〉 + P|11〉]⊗ Pe1 +

1− λ1

2
[P|01〉 + P|10〉]⊗ Pe3 (3.8)

where Pψ = |ψ〉〈ψ|.
We apply the formula (2.135) to obtain the amount of private key Alice and

Bob can distill using Devetak-Winter protocol

KDW (σ
(ccq)
ABE) = I(A : B)− I(A : E) = 1− h(λ1) (3.9)

where I(X : Y ) stands for the mutual information in X versus Y cut and h for
the binary entropy.

Private key from a bound entangled states Thus by privacy squeezing
we obtain that from the original state %̃, using the Devetak-Winter protocol, one
can distill

KDW (%̃) = 1− h(λ1) (3.10)

of the private key.
Now, if λ1 is equal to

λ1 = λ̃1 ≡
1

1 + ‖XΓ‖ . (3.11)

then the state %̃ is a PPT-invariant state (laying on the boundary of the set of
PPT states) and hence %̃ is bound entangled.

One can argue by continuity of distillable key KD that if there are key-
distillable states on the boundary of the set of PPT states then there also have
to be key-distillable states inside the set of PPT states.

To maximize KDW obtained from the PPT-invariant state for a given dimen-
sion d of subsystems A′ and B′ one has to use in (3.3) a unimodular unitary2,

2By use of Lagrange multipliers with slightly more general constraints
∑

ij |uij |2 = d one
gets that optimal U is unimodular.
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i.e., a unitary having all of the elements satisfying

|uij| =
1√
d

(3.12)

which gives

‖XΓ‖ =
1√
d
. (3.13)

In particular, for dimension d = 2k the unimodular unitary has the form U = H⊗k

(H is the Hadamard gate). And in the case of d = 2 we have U = H and denote
the PPT-invariant state with %̃H . From %̃H we can distill

KDW (%̃H) = 0.0213399 (3.14)

of the private key and the density matrix %̃H has the form

%̃H =



s · · · s · · ·
· s · · · · s ·
· · s · · s · ·
· · · s · · · −s

t · · · s · · s
· · · · · · · ·
· · · · · · · ·
· · · t s · · −s
s · · s t · · ·
· · · · · · · ·
· · · · · · · ·
s · · −s · · · t

s · · · s · · ·
· · s · · s · ·
· s · · · · s ·
· · · −s · · · s


(3.15)

where

s =

√
2

8(1 +
√

2)
≈ 0.07 t =

1

4(1 +
√

2)
≈ 0.10 (3.16)

While by the Devetak-Winter protocol we can distill approximately 0.02 bits
of private key from %̃H the best known upper bound so far is approximately 0.116.
This comes from relative entropy of entanglement Er being the upper bound for
distillable key KD and we can obtain

KD(%̃H) ≤ Er(%̃H) < 0.116. (3.17)

This upper bound for Er can be obtained by considering a separable state of the
same form as %̃H but having

s =
1

16
t =

1

8
. (3.18)

Recurrence It has been shown that using the recurrence does not increase the
amount of the private key that can be distilled from the PPT-invariant states
considered in this section. But it increases the robustness of the state against
the noise which we will show further in this chapter.
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3.2 Mixing four private bits: class C
Let us de�ne the class C to denote the class of states satisfying three conditions:

1. A state of the class C is a mixture of four orthogonal private bits

% = λ1γ
+
1 + λ2γ

−
1 + λ3γ

+
2 + λ4γ

−
2 (3.19)

where the private bits are given by

γ±1 = γ(±X) γ±2 = σAx γ(±Y )σAx . (3.20)

2. The operators X and Y are related by

Y =
XΓ

‖XΓ‖ (3.21)

and, by de�nition of the pbit, they are normalized, i.e., ‖X‖ = 1 and
‖Y ‖ = 1.

3. The operators X and Y must be such that operators
√
XX†,

√
X†X,√

Y Y †,
√
Y †Y are all PPT-invariant, i.e., must satisfy A = AΓ.

States of the class C have the following block matrix form

% =
1

2


(λ1 + λ2)

√
XX† · · (λ1 − λ2)X

· (λ3 + λ4)
√
Y Y † (λ3 − λ4)Y ·

· (λ3 − λ4)Y † (λ3 + λ4)
√
Y †Y ·

(λ1 − λ2)X† · · (λ1 + λ2)
√
X†X

 .
(3.22)

Alternative parametrization Instead of parameters λi one can also parametrize
class C with three parameters p, α and β de�ned as follows

p ≡ λ1 + λ2 ∈ [0, 1] (3.23)

α ≡ λ1 − λ2

λ1 + λ2

∈ [−1, 1] (3.24)

β ≡ λ3 − λ4

λ3 + λ4

∈ [−1, 1]. (3.25)

Parameter p denotes the probability of the correlation (versus anticorrelation)
and α and β denote in a sense the degree of dephasing of the correlation and
anticorrelation, respectively. (This can be clearly seen when we pass to privacy-
squeezed state, see equation (3.32)). I.e., α and β measure security of correlation
and anticorrelation (the value 1 stands for perfectly secure).

The mixtures of two private bits %̃ considered in previous section is the subset
of the class C satisfying λ2 = λ4 = 0 or alternatively α = β = 1.

Now, the original parameters λi may be expressed in terms of parameters p,
α and β as

λ1,2 =
1± α

2
p λ3,4 =

1± β
2

(1− p). (3.26)
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PPT conditions The items 2 and 3 of the de�nition of the class C allows us
to de�ne simple PPT conditions. If a state from the class C satis�es

|λ1 − λ2| ≤ (1− λ1 − λ2)‖XΓ‖−1 (3.27)

|λ3 − λ4| ≤ (λ1 + λ2)‖XΓ‖ (3.28)

or equivalently

|α| ≤ min(1, α1) (3.29)

|β| ≤ min(1, α−1
1 ) (3.30)

where

α1 =
1− p
p
‖XΓ‖−1. (3.31)

then the state is a PPT state.

Privacy squeezing The privacy-squeezed state of a state of the class C has
the form

σ =
4∑
i=1

λi|ψi〉〈ψi| =
1

2


p · · αp
· (1− p) β(1− p) ·
· β(1− p) (1− p) ·
αp · · p

 (3.32)

where ψi are Bell states given by (2.25). Thus the privacy-squeezed state is a
Bell diagonal state and parameters λi are simply the eigenvalues of the privacy-
squeezed state that is why we have chosen to denote them with the Greek letter
λ.

Operators X and Y In particular, the PPT-invariance of the diagonal blocks
(item 3 of the de�nition of the class C) holds for

X =
1

u

d−1∑
i,j=0

uij|ij〉〈ji| (3.33)

where uij are elements of some unitary matrix on Cd and

u =
d−1∑
i,j=0

|uij|. (3.34)

For the operator X given by (3.33) we have

‖XΓ‖ =
d

u
,

1√
d
≤ ‖XΓ‖ ≤ 1 (3.35)



62 Chapter 3. Private key from PPT states

where the minimum is achieved for the unimodular unitary [2] and maximum for
the identity matrix.

In case of d = 2 we will also consider the subclass of the class C with operators
X and Y given by

Y = q YU1 + (1− q)σA′x YU2σ
A′

x , X =
Y Γ

‖Y Γ‖ (3.36)

where 0 ≤ q ≤ 1 and

YU =
1

d

d−1∑
i,j=0

uij|ii〉〈jj|. (3.37)

Unitaries U1 and U2 must have the same global phase, i.e., α1 = α2 in the
parametrization of a single qubit unitary given by (2.102). In particular, one
may take U1 = U2.

Subclass %U We will sometimes write %U to denote the subclass of the class
C with operator X given by (3.33) or to stress using a concrete unitary in the
de�nition of X, in particular, we will consider the subclass %H where uij are
elements of the Hadamard unitary matrix.

3.3 Distillability of private key

We now give a su�cient condition for distillability of private key from states
having Bell diagonal privacy-squeezed states which in particular includes the
class C.

Lemma 3.1. A Bell diagonal state

σ =
4∑
i=1

λi|ψi〉〈ψi| =


c · · d
· e f ·
· f e ·
d · · c

 (3.38)

is key-distillable (i.e., one can from σ obtain nonzero amount of private key) by
the measurement in the standard basis and processing of the the resulting classical
data (actually, by using the recurrence followed by the Devetak-Winter protocol,
i.e., P protocols) if and only if [47]

max{(λ1 − λ2)2, (λ3 − λ4)2} > (λ1 + λ2)(1− λ1 − λ2) (3.39)

or equivalently if and only if

max{d2, e2} > ce. (3.40)
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Let us consider a state % having the Bell diagonal privacy-squeezed state σ
that is a state of the form

% =


C · · D
· E F ·
· F † E ′ ·
D† · · C ′

 (3.41)

and satisfying ‖C‖ = ‖C ′‖ and ‖E‖ = ‖E ′‖. Its privacy-squeezed state has the
form

σ =


‖C‖ · · ‖D‖
· ‖E‖ ‖F‖ ·
· ‖F‖ ‖E‖ ·
‖D‖ · · ‖C‖

 . (3.42)

And as σ is a Bell diagonal state using lemma 3.1 we obtain that σ is key-
distillable if and only if it satis�es

max{‖D‖2, ‖F‖2} > ‖C‖ ‖E‖. (3.43)

Thus by the method of privacy squeezing one obtains that from the state % having
the Bell diagonal privacy-squeezed state σ one can obtain nonzero private key
by protocols P if % satis�es condition (3.43) (it is a su�cient but not a necessary
condition).

One can observe that condition (3.43) is equivalent to having one of the
following matrices nonpositive[

‖C‖ ‖D‖
‖D‖ ‖E‖

]
,

[
‖C‖ ‖F‖
‖F‖ ‖E‖

]
. (3.44)

One can also observe that

‖C‖ ‖E‖ =
1

4
pe(1− pe) (3.45)

where pe is the probability of error (i.e. anticorrelation) when the key part is
measured in the standard basis.

Private key from the class C Thus, for a state % of the class C due to
the form (3.32) of the privacy-squeezed state and from above consideration the
su�cient condition for obtaining nonzero private key by protocols P from % has
the form

(λ1 − λ2)2 > (λ1 + λ2)(1− λ1 − λ2) (3.46)

or equivalently

α2 >
1− p
p

. (3.47)
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Actually, the above key condition holds for a wider class of states than the class
C: the class having arbitrary but normalized operators X and Y .

Now, we can observe that for a state of the class C to be both PPT and
key-distillable it must satisfy both (3.29) and (3.47). For a given value of the
parameter p there exists α satisfying both conditions i� p ∈ (1

2
, pmax) where

pmax =
1

1 + ‖XΓ‖2
. (3.48)

Tolerable white noise Given a state % having a Bell diagonal privacy-squeezed
state we can ask how much white noise one can admixture to the state for the
state to remain key-distillable. Such a fraction of noise, let us denote it with δ,
can be seen as a simple measure of robustness of the particular QKD protocol to
noise.

Having a state % we de�ne the state with ε of noise admixtured as

%ε = (1− ε)%+ ε
I

d2
(3.49)

Now, we say that δ is the tolerable noise of a key distillation protocol for a state
% if for any ε < δ the state %ε with ε of the white noise admixtured remains
key-distillable with that protocol.

Having p > 1
2
, the tolerable noise for protocols P for the class C is given by

δ = 1− 1√
8(λ2

1 + λ2
2)− 4(λ1 + λ2) + 1

(3.50)

= 1− 1√
4 (1 + α2) p2 − 4 p+ 1

. (3.51)

In particular, for a key-distillable PPT state %̃H with λ1 = λ̃1 where λ̃1 is given
by (3.11) the tolerable noise for the Devetak-Winter protocol with the recurrence
preprocessing (3.50) is approximately equal to 0.155 while for the sole Devetak-
Winter protocol it is approximately equal to 0.005 (computed numerically), i.e.,
it is 31 times smaller. (See �gure 3.1).

3.4 Separability condition

To obtain private key from bound entangled states arbitrary close to the set of
separable states we propose a separability condition for a subclass of the class C.
We present a su�cient separability condition for a state %U with d = 2 (i.e., for
4⊗ 4 states).
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0.5 0.6

λ1

0

0.25

δ

Recurrence and Devetak-Winter tolerable noise
Devetak-Winter tolerable noise
White noise needed to make states PPT

region of
PPT key

Figure 3.1: Comparison of %̃H tolerable noise in case of using the Devetak-Winter
protocol with and without the recurrence preprocessing.

A state %U with d = 2 is separable if it satis�es

λ1 ≤
1

2
(3.52)

λ2 ≤
1

2
(3.53)

|λ3 − λ4| ≤ (λ1 + λ2)‖XΓ‖ (3.54)

|λ3 − λ4| ≤ (1− λ1 − λ2)‖XΓ‖ (3.55)

or equivalently if

|α| ≤ 1− p
p

(3.56)

|β| ≤ p

1− p‖X
Γ‖ (3.57)

|β| ≤ ‖XΓ‖. (3.58)

Decomposition into two-qubit states The above separability conditions
come from the decomposition of %U into a mixture of four two-qubit operators %ij.
We �rst demand that operators %ij are states (i.e., they must be positive) which
is guaranteed by the condition (3.55) or equivalently (3.58). If this condition is
satis�ed %U is a mixture of four Bell diagonal states

%U =
1∑

i,j=0

|uij|
u
%ij. (3.59)

where uij are the elements of the unitary matrix on C2 used to de�ne operator
X in (3.33) and u is given by (3.34). All four Bell diagonal states %ij have
the same set of eigenvalues. And a Bell diagonal state is separable if all of its
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eigenvalues are less or equal 1
2
(see section 2.5.3): this is guaranteed by the

remaining conditions (3.52)-(3.54) or equivalently (3.56) and (3.57). Note that
conditions (3.54) and (3.57) are identical to the PPT conditions for the class C
given by (3.28) and (3.30), respectively.

Now we have

%ij = V
(ij)
AA′ ⊗ V

(ij)
BB′ %̃ij V

(ij)†
AA′ ⊗ V

(ij)†
BB′ (3.60)

where

V
(00)
AA′ = |00〉〈0|+ |10〉〈1| V

(00)
BB′ = |00〉〈0|+ |10〉〈1| (3.61)

V
(01)
AA′ = |00〉〈0|+ |11〉〈1| V

(01)
BB′ = |01〉〈0|+ |10〉〈1| (3.62)

V
(10)
AA′ = |01〉〈0|+ |10〉〈1| V

(10)
BB′ = |00〉〈0|+ |11〉〈1| (3.63)

V
(11)
AA′ = |01〉〈0|+ |11〉〈1| V

(11)
BB′ = |01〉〈0|+ |11〉〈1| (3.64)

and

%̃ij =
1

2


λ1 + λ2 · · (λ1 − λ2)eiφij

· λ3 + λ4
λ3−λ4

‖XΓ‖ e
iφij ·

· λ3−λ4

‖XΓ‖ e
−iφij λ3 + λ4 ·

(λ1 − λ2)e−iφij · · λ1 + λ2

 (3.65)

where φij comes from the polar decomposition of uij

uij = |uij|eiφij (3.66)

and uij are elements of the single qubit unitary matrix used to de�ne operator
X in (3.33).

Note that we use other then usual order of subsystems: AA′BB′.

3.5 PPT key arbitrary close to separability

Having separability conditions, PPT conditions and key distillability conditions
for states %U with d = 2 (i.e., 4 ⊗ 4 states) we can present a class of states,
subclass of %H (H stands for the Hadamard unitary), with private key arbitrary
close to the separable states. To obtain private key arbitrary close to the set
of separable states the chosen separable state to which we approach must have
p = 1

2
otherwise for p 6= 1

2
we will loose key distillability property before getting

arbitrary close to the separable state.
Now, the �gure 3.2 illustrate two classes of states:

1. The class %̃H � illustrated by the dash line connecting states γ+
1 and γ+

2 .
All states of this class has α = β = 1 and p ∈ [0, 1]. Most of the states of
this class are NPT and there is only single PPT state for p given by (3.11)
laying on the boundary of PPT states, we denote this state with %̃1. The
class is described in section 3.1.
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PPT

separable

%̃1
%̃H

%sep

γ+1

γ+2

%max

p =
1

2

α = 1

β = ‖XΓ‖ = 1√
2

p = λ̃1 =
1

1 + ‖XΓ‖ ≈ 0.586

α = β = 1

p = pmax =
2

3

α = ‖XΓ‖ = 1√
2

β = 1

Figure 3.2: A class of key-distillable PPT entangled states: (a) the solid line
from %̃ on the boundary of the PPT entangled states (inclusive) to the boundary
of the set of separable states, arbitrary close to %sep; (b) the arc of PPT-invariant
states starting in %̃ and approaching arbitrary close to %̃max.

2. The solid line from %sep through %̃1 to %max denotes a class of states which
are key-distillable in every point excluding the boundary states %sep and
%max.3 In particular, there are key-distillable states arbitrary close to the
separable state %sep and thus to the set of separable states. One obtains
states from the class by choosing p ∈ [1

2
, pmax] where p = 1

2
gives %sep and

pmax = (1 + ‖XΓ‖2)−1 = 2
3
gives %max and

α = min(1, α1) β = min(1, α−1
1 ) (3.67)

where α1 is given by (5.73) and has the value

α1 =
1− p
p

√
2. (3.68)

The range p ∈ [1
2
, λ̃1] where λ̃1 is given by (3.11) is represented by the

straight line from %sep to %1. While the range p ∈ [λ̃1, pmax] is represented
by the arc from %1 to %max.

3.6 States %H as mixtures of Bell states with `�ags'

States of the class %H are separable in the AB : A′B′ cut, i.e., subsystems AB and
A′B′ of %H are only classically correlated. A state from %H can be decomposed

3 Actually for %max we do not know if it is key-distillable we know that one cannot obtain
private key from %max using our approach.
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into a mixture of four states. Each of the four states has a Bell state ψi on the
subsystem AB and some corresponding state on A′B′.

One can select parameters p ∈ [0, 1], α ∈ [−1, 1], and β ∈ [−1, 1] satisfying
both the PPT conditions (3.29) and (3.30) and the key condition (3.47), and
prepare a corresponding PPT and thus bound entangled key-distillable state
from the class %H which has the form

%H =
4∑
i=1

qi |ψi〉〈ψi|AB ⊗ %(i)
A′B′ (3.69)

where the Bell states ψi are given by (2.25) and the correlated states are the
following:

%(1) = α
1

2
(P|00〉 + Pψ3) + (1− α)

I

4
(3.70)

%(2) = α
1

2
(P|11〉 + Pψ4) + (1− α)

I

4
(3.71)

%(3,4) = βPχ± + (1− β)
1

2
(P|00〉 + P|11〉) (3.72)

where Pψ denotes the projector onto a pure state ψ and

χ± =
1√

2±
√

2
(|00〉 ± |ψ1〉) (3.73)

q1 = q2 =
p

2
(3.74)

q3 = q4 =
1− p

2
. (3.75)

States that satisfy both PPT and key distillability conditions are bound en-
tangled (i.e., they cannot be separable, as entanglement is a precondition of
private key distillability [51]).

3.7 Maximizing von Neumann Entropy

In this section, we �nd 4 ⊗ 4 key-distillable PPT states with a quite high von
Neumann entropy for two subclasses of the class C and summarize the results in
a table.

3.7.1 Entropy for states of the class PKd

Let PKd denote a subclass of the class C satisfying

1. X is given by (3.33) (the class is subscripted with the dimension of the
unitary used to de�ne operator X),

2. the states are PPT,
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3. the states are key-distillable by (3.46) (or equivalently by (3.47)).

The name PKd comes from as shortcut of PPT and key-distillable. Now, we �nd
the supremum of the von Neumann entropy over states from the class PKd.

As %U (and thus a state from PKd) is a mixture of four orthogonal private
bits its von Neumann entropy is given by

S(%U) = h(p) + p

(
H

(
1− α

2

)
+ S(

√
X†X)

)
+ (1− p)

(
H

(
1− β

2

)
+ S(

√
Y †Y )

)
(3.76)

where

S(
√
X†X) ≤ 2 log2 d (3.77)

S(
√
Y †Y ) = log2 d (3.78)

and the maximal value in (3.77) is achieved if the unitary used to de�ne X in
(3.33) is unimodular. A unimodular unitary also maximizes the allowed range
of p given by (3.48), as it achieves minimum of ‖XΓ‖. Hence, to maximize
the entropy, it is enough to consider a unimodular unitary. The supremum is

achieved for a state with p = pmax, β = 0, and α =
√

1−p
p

(which no longer

satis�es our key-distillability condition) thus

sup
%U∈PKd

S(%U) = sup
p∈( 1

2
,pmax)

(
(1 + p) log2 d+ (1− p) + h(p) + pH

(
1−

√
1−p
p

2

))
(3.79)

where pmax = (1 + ‖XΓ‖2)−1 comes from (3.48).
In particular, for d = 2, i.e., % being 4 ⊗ 4 states, the supremum is achieved

for state having p = pmax = 2/3 which gives

sup
%U∈PK2

S(%U) ≈ 3.319. (3.80)

The supremum corresponds to a state %max on �gure 3.2 but with β = 0.

3.7.2 Entropy for states of a class larger than %U

For the subclass % of the class C with d = 2 and X and Y given by (3.36), we
are able to obtain

S(%) ≈ 3.524 (3.81)

for U1 = U2 = H, q ≈ 0.683, β = 0 and α, p taken as in the previous subsection.
It seems to be the supremum of the von Neumann entropy for this selection of
operators X and Y .
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3.7.3 Summary

Here, we summarize the results of maximizing von Neumann entropy of 4 ⊗ 4
key-distillable PPT states in the following table:

S(%) % satisfying PPT and key conditions

2.564 class %̃ from [2] with p = λ̃1, the maximum is achieved for U = H
3.319 class %U , the supremum is described in section 3.7.1
3.524 class C with X and Y given by (3.36), a supposed supremum is

described in section 3.7.2

3.8 Distillability via erasure channel

In [43], it was shown that two zero capacity channels, if combined together, can
have nonzero capacity. One of the channels was related (through so called Choi-
Jamioªkowski (CJ) isomorphism) to a bound entangled but key-distillable state,
while the other was a so called symmetrically extendable channel. In particular,
authors considered an example, where the �rst channel had 4⊗ 4 CJ state from
the class %̃ described in section 3.1 while the second one was the 50%-erasure
channel. In [52] a simpler scheme was proposed, which also allows to observe
this curious phenomenon.

The second approach amounts to sending a subsystem A′ of a state de�ned
on systems ABA′B′ through the 50%-erasure channel and checking the coherent
information of the resulting state. If it is positive one concludes that the capacity
of combined channel is also positive. Here, we shall use this approach to see how
the presence of coherence β in�uences the phenomenon.

Coherent information after sending the A′ subsystem through the 50%-erasure
channel is given by

Icoh =
1

2
(SA′BB′ − S) +

1

2
(SBB′ − SABB′) (3.82)

where S, SA′BB′ , and SBB′ are given by (3.76), (3.83), and (3.84), respectively,
and SABB′ is computed numerically.

For a PPT state %̃ described in section 3.1 with X given by (3.33) and based
on unimodular unitary and having λ1 = λ̃1, where λ̃1 is given by (3.11), the
coherent information is positive starting from d = 11. For a similar state of our
class with p = λ̃1, α = 1 and β = 0 the coherent information is positive starting
from d = 22.

Formulas for SA′BB′ and SBB′ are as follows:

S(%A′BB′) = 1 +
1

2
S
(
p
√
XX† + (1− p)

√
Y †Y

)
+

1

2
S
(
p
√
X†X + (1− p)

√
Y Y †

)
(3.83)
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S(%BB′) = 1 +
1

2
SB

(
p
√
XX† + (1− p)

√
Y †Y

)
+

1

2
SB

(
p
√
X†X + (1− p)

√
Y Y †

)
. (3.84)

3.9 Condition for obtaining private key from gen-

eral states

In section 3.3 a su�cient condition for obtaining private key in terms of norms
of the nonzero blocks from states having a Bell diagonal privacy-squeezed state
was introduced. In this section, we generalize that condition to the case of an
arbitrary state.

Let us de�ne two `twirling' operations (cf. [53])

ΛXX =
1

2
(̂I⊗ Î + σ̂x ⊗ σ̂x) (3.85)

ΛZZ =
1

2
(̂I⊗ Î + σ̂z ⊗ σ̂z) (3.86)

and one twirling with �ags

Λ′XX(%) =
1

2
(%⊗ |0〉〈0|+ σ̂x ⊗ σ̂x(%)⊗ |1〉〈1|) (3.87)

where Û% = U%U †, σx and σz are Pauli matrices given by (2.100).

Private key from a general state We now give a su�cient condition for
obtaining private key from a general state.

Proposition 3.1. For an arbitrary state

% =


A B C D
B† E F G
C† F † H I
D† G† I† J

 (3.88)

if

max(‖D‖2, ‖F‖2) >
1

4
(‖A‖+ ‖J‖)(‖E‖+ ‖H‖) (3.89)

then Alice and Bob can distill private key by �rst applying twirling Λ′XX ◦ΛZZ to
the key part and measuring the key part of many copies of the state % and then
using the recurrence and the Devetak-Winter protocol.
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Remark Note that the right-hand side of equation (3.89) can also be written
as 1

4
pe(1− pe) where pe is the probability of error (i.e. anticorrelation) when key

part is measured in the standard basis.

Proof of the proposition 3.1. Alice and Bob �rst apply twirling Λ′XX ◦ ΛZZ

(an LOCC operation) to the key part and obtain the following state

Λ′XX ◦ ΛZZ(%) =


A⊕ J · · D ⊕D†
· E ⊕H F ⊕ F † ·
· F ⊕ F † E ⊕H ·

D ⊕D† · · A⊕ J

 . (3.90)

This state is now of the spider form and, thanks to �ags, we have direct sums
within the blocks. Now, the privacy-squeezed state has the following Bell diago-
nal form

σ =


‖A‖+ ‖J‖ · · ‖D‖+ ‖D†‖

· ‖E‖+ ‖H‖ ‖F‖+ ‖F †‖ ·
· ‖F‖+ ‖F †‖ ‖E‖+ ‖H‖ ·

‖D‖+ ‖D†‖ · · ‖A‖+ ‖J‖

 . (3.91)

Then the proof follows from the key condition given in section 3.3.

Note that in the proof above we use Λ′XX , a twirling with �ags. If ΛXX ,
a twirling without �ags, were used instead we would have to replace ‖D‖ with
‖D+D†‖ in (3.89) (analogously for ‖F‖) which can be much smaller than ‖D‖,
and even equal to zero in the extreme case of antihermitian D, i.e., D† = −D,
so in this case no private key can be distilled from ΛXX(%) even if % is a private
state, i.e., % = γ(D).

Note also, that in the proof, we have �rst applied twirling with �ags to the
original state, and then the privacy-squeezing operation. Actually, the same
state would be obtained if we �rst apply the privacy squeezing and then apply
(standard) twirling. This is illustrated by the following diagram

%
Λ′XX◦ΛZZ−−−−−−→ %′

Psq

y yPsq
σ

ΛXX◦ΛZZ−−−−−−→ σ′

(3.92)

where Psq stands for the privacy squeezing. As explained above, this diagram
would not commute if we used solely twirling without �ags. Thus, to seek for
key-distillable states, one can go the alternative route, i.e., �rst compute the
privacy-squeezed state, and then, by twirling, obtain a Bell diagonal state. Now,
if ΛXX ◦ΛZZ(σ) satis�es necessary security condition for realistic QKD on a Pauli
channel from [47], i.e., its eigenvalues λi satisfy (3.46), then % is key-distillable
using the su�cient condition introduced in this section.



Chapter 4

Distillation of NPT Werner state

by half-property

The problem of existence of NPT bound entangled states is an open question
since 1998 [4]. There are many partial results but the problem is still open.

In this chapter we consider distillability of the most entangled of the suspi-
cious Werner states for d = 4. (All of the suspicious Werner states are conjectured
to be undistillable [7, 8]). We show that the problem of 2-undistillability of the
most entangled of the suspicious Werner states for d = 4 is equivalent to hav-
ing the maximum overlap of Schmidt rank to states with some projector Q not
exceeding 1

2
. We call this equivalent problem the half-property. We show wide

ranges of rank two states having the half-property. And we also translate the
problem into matrix analysis problem.

The results presented in this chapter have been published in [6].

4.1 Half-property

Let us consider the most entangled of the suspicious Werner states for d = 4 and
denote it with %W . Parameter p of %W in (2.70) is equal to

p = p0 =
d+ 1

4d− 2
=

5

14
. (4.1)

We recall that the state %W is n-undistillable i�

inf
φ2∈SR2

〈φ2|%Γ⊗n
W |φ2〉 ≥ 0 (4.2)

where SR2 is the set of all Schmidt rank two states, cf equation (2.123). (We
give the condition for n-undistillability instead of n-distillability because %W is
conjectured to be undistillable). We recall that we use φ1 to denote a product
state and φ2 to denote a Schmidt rank two state. Now, as we shall show, n-
undistillability of %W is equivalent to

sup
φ2∈SR2

〈φ2|Qn|φ2〉 ≤
1

2
. (4.3)

73
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where Qn is a projector. We call (4.3) the half-property and say that a given
rank two state φ2 has the half-property (for given n) if it satis�es the inequality
(4.3). The state %W is n-undistillable if all φ2 states have the half-property (for
given n).

We mostly concentrate on the problem of 2-undistillability of %W and thus
will use Q to denote Q2.

Half-property for n = 2 We �rst prove (4.3) for Q = Q2.

%Γ
W

⊗2 ∼ (I− 1
2
V )Γ⊗2

=
(
I− d

2
Φ+

)⊗2

= (Φ⊥+ ⊗ Φ⊥+ + Φ+ ⊗ Φ+)︸ ︷︷ ︸
P+

− (Φ⊥+ ⊗ Φ+ + Φ+ ⊗ Φ⊥+)︸ ︷︷ ︸
Q=P−

= P+ − P−
= I⊗2 − 2Q (4.4)

where Φ+ is given by (2.39), P+ and Q = P− are projectors satisfying P+ +P− =
I⊗2 which justi�es the last equality. Having the last equality we can show the
equivalence of the 2-undistillability condition (4.2) to the half-property condition
(4.3):

inf
φ2

〈φ2|%Γ⊗n
W |φ2〉 ≥ 0 ⇐⇒ inf

φ2

〈φ2|(I⊗2 − 2Q)|φ2〉 ≥ 0

⇐⇒ 1− 2 sup
φ2

〈φ2|Q|φ2〉 ≥ 0

⇐⇒ sup
φ2

〈φ2|Q|φ2〉 ≤
1

2
(4.5)

where the projector Q, let us recall, is given by

Q = Q2 = Φ⊥+ ⊗ Φ+ + Φ+ ⊗ Φ⊥+. (4.6)

Half-property for general n For general n we have

%Γ⊗n
W ∼ (I− d

2
Φ+)⊗n = P+ − P− = I⊗n − 2Qn (4.7)

where P+ and Qn = P− are projectors satisfying P+ + P− = I⊗n. Now, from
equation

(I− d
2
Φ+)⊗n = I⊗n − 2Qn (4.8)

we obtain

Qn ≡ P− =
1

2

(
I⊗n −

(
I− d

2
Φ+

)⊗n)
(4.9)

and n-undistillability condition (4.2) is equivalent to the half-property condition
(4.3) by the reasoning given by equations (4.5) with Q replaced with Qn.
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Recursive formula for Qn For d = 4 operators Qn satisfy the recursive
formula

Q1 = Φ+, (4.10)

Qn+1 = Qn ⊗Q⊥1 +Q⊥n ⊗Q1. (4.11)

The proof is by induction: step n = 1 is evident from (4.9); now, for n + 1
one can obtain the recursive formula (4.11) by substituting into Qn+1 given by
(4.9) equation (4.8) once for n and once for 1:

Qn+1 =
1

2

(
I⊗n+1 −

(
I− d

2
Φ+

)⊗n+1
)

=
1

2

(
I⊗n+1 − (I⊗n − 2Qn)⊗ (I− 2Q1)

)
= I⊗n ⊗Q1 +Qn ⊗ (I− 2Q1)

= I⊗n ⊗Q1 +Qn ⊗Q⊥1 −Qn ⊗Q1

= Q⊥n ⊗Q1 +Qn ⊗Q⊥1 . (4.12)

4.2 Existence of nontrivial maxima of 〈φ2|Q|φ2〉
State %W is 1-undistillable

inf
φ2∈SR2

〈φ2|%Γ
W |φ2〉 ≥ 0. (4.13)

This implies that states of the form φ2⊗φ1 which are product between the copies
(i.e., in the AB : A′B′ cut) must also satisfy

〈φ2 ⊗ φ1|%Γ⊗2
W |φ2 ⊗ φ1〉 ≥ 0. (4.14)

and so we can equivalently say that states of the form φ2 ⊗ φ1 have the half-
property.

Now, we can ask if states of the form φ2 ⊗ φ1 are the only states that attain
equality in the half property. If all of the local maxima would be of the φ2 ⊗ φ1

form then %W would be 2-undistillable. But this is not the case: we provide
states which are superpositions of φ2⊗φ1 and φ′1⊗φ′2 which also attain equality
in the half property and we show that there are rank two states among those
superpositions.

We �rst introduce the following

Fact 4.1. For any ψ

sup
φk∈SRk

|〈φk|ψ〉|2 =
k∑
i=1

µ2
i (4.15)

where µ1, . . . , µk are the k largest Schmidt coe�cients of ψ in the same cut that
φk has Schmidt rank k, i.e. AA

′ : BB′.
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Operator Q may be alternatively written as

Q = I⊗ Φ+ + Φ+ ⊗ I− 2Φ+ ⊗ Φ+ (4.16)

thus

〈φ2 ⊗ φ1|Q |φ2 ⊗ φ1〉 = p+ q − 2pq ≤ 1

2
(4.17)

where from fact (4.1) we have the following bounds

p = 〈φ2|Φ+|φ2〉 ≤
2

d
, q = 〈φ1|Φ+|φ1〉 ≤

1

d
(4.18)

and the maximal value (for d = 4) is obtained by setting p = 2
d
and any q.

We now consider superposition of φ2 ⊗ φ1 and φ′1 ⊗ φ′2 of the form

|ψ〉 =
√
r |φ2〉AB ⊗ |φ1〉A′B′ +

√
1− r |φ′1〉AB ⊗ |φ′2〉A′B′ (4.19)

satisfying

〈φ2|Φ+|φ2〉 = 〈φ′2|Φ+|φ′2〉 =
2

d
(4.20)

〈φ1|Φ+|φ1〉 = 〈φ′1|Φ+|φ′1〉 = 0. (4.21)

Such a superposition attains equality in the half property

〈ψ|Q|ψ〉 =
1

2
. (4.22)

Superpositions (4.19) generally have Schmidt rank higher than two but there
are rank two states among them. For example the following class of states

|φ〉 =
√
r |φ(2)

+ 〉AB ⊗ |01〉A′B′ +
√

1− r |01〉AB ⊗ |φ(2)
+ 〉A′B′ (4.23)

where
|φ(2)

+ 〉 =
1√
2

(|00〉+ |11〉). (4.24)

This class can be rewritten in Alice versus Bob cut as

|φAA′:BB′〉 =
1√
2
|00〉AA′ ⊗

(√
r|01〉+

√
1− r|10〉

)
BB′

+
1√
2

(√
r|10〉+

√
1− r|01〉

)
AA′
⊗ |11〉BB′ (4.25)

and one can easily see that states of this class are rank two states in Alice versus
Bob cut.

4.3 States having `normal' projection on Q

In this section we show that a state φ2 having projection on Q (that is Q|φ2〉)
isomorphic via the state�operator isomorphism to a normal operator has the
half-property. We �rst de�ne
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State�operator isomorphism By the state�operator isomorphism we mean
the following one to one correspondence

|ψ〉 =
∑

aij|i〉|j〉 ←→ X =
∑

aij|i〉〈j|. (4.26)

In this isomorphism 〈ψ|ψ〉 = TrX†X and the Schmidt coe�cients of a state ψ are
equal to the singular values of the corresponding operator X. Thus in particular

sup
ψ∈HP

(µ2
1 + µ2

2) = sup
X

(σ2
1 + σ2

2) (4.27)

where µ1 and µ2 are two largest Schmidt coe�cients of ψ and σ1 and σ2 are
two largest singular values of X and the second supremum is taken over all X
corresponding via state�operator isomorphism to states from the space HP .

We have the following lemma, which is a generalization of a similar one for
product states [54].

Lemma 4.1. For any projector P acting on a bipartite system

sup
φ2∈SR2

〈φ2|P |φ2〉 = sup
ψ∈HP

(µ2
1 + µ2

2) (4.28)

where µ1 and µ2 are the two largest Schmidt coe�cients of ψ and HP is the
subspace de�ned by the projector P .

Note that this lemma immediately generalizes to rank k states for arbitrary
�xed k ≥ 1.

Proof. Let us observe that for all ψ ∈ HP

〈φ2|P |φ2〉 ≥ 〈φ2|ψ〉〈ψ|φ2〉. (4.29)

Moreover there exists ψ ∈ HP which reaches the equality

〈φ2|P |φ2〉 = 〈φ2|ψ〉〈ψ|φ2〉, (4.30)

namely |ψ〉 = P |φ2〉
‖P |φ2〉‖ if ‖P |φ2〉‖ 6= 0 or any ψ ∈ HP otherwise. From these two

observations we get

〈φ2|P |φ2〉 = sup
ψ∈HP

|〈φ2|ψ〉|2. (4.31)

From (4.31) and the fact (4.1) we conclude that

sup
φ2∈SR2

〈φ2|P |φ2〉 = sup
ψ∈HP

sup
φ2∈SR2

|〈φ2|ψ〉|2

= sup
ψ∈HP

(µ2
1 + µ2

2) (4.32)

where µ1 and µ2 are the two largest Schmidt coe�cients of ψ.

Corollary 4.1. Now, from lemma 4.1 and equation (4.27) we obtain

sup
φ2

〈φ2|P |φ2〉 = sup
X

(σ2
1 + σ2

2) (4.33)

where σ1 and σ2 are two largest singular values of X and the supremum is taken
over all X corresponding via state�operator isomorphism to states from the space
HP .
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4.3.1 Half-property in terms of matrices

Every state ψQ ∈ HQ where projector Q is given by (4.6) has the form

|ψQ〉 =
√
p |ψ(1)〉AB ⊗ |φ+〉A′B′ +

√
1− p |φ+〉AB ⊗ |ψ(2)〉A′B′ (4.34)

where p ∈ [0, 1] and

|ψ(1)〉 ⊥ |φ+〉, |ψ(2)〉 ⊥ |φ+〉. (4.35)

Now, the image of a state ψQ ∈ HQ in the state�operator isomorphism has the
form

X =

√
p

d
Ã⊗ I +

√
1− p
d

I⊗ B̃ (4.36)

where

TrÃ = TrB̃ = 0 (4.37)

TrÃ†Ã = TrB̃†B̃ = 1. (4.38)

The �rst condition comes from orthogonality of ψ(1) and ψ(2) with φ+ and the
second from normalization, i.e., from 〈ψ(i)|ψ(i)〉 = 1.

Simple form Now, we can simplify condition (4.36) by absorbing the coe�-
cients info the operators. This way we obtain that the image of ψQ ∈ HQ in the
state�operator isomorphism has the form

X = A⊗ I + I⊗B (4.39)

where

TrA = TrB = 0, TrA†A+ TrB†B =
1

d
. (4.40)

Half-property in terms of matrices Thus the half-property is satis�ed i�
for all operators X of the form (4.39) the sum of squares of the two largest
singular values of X does not exceed 1

2
, i.e.,

σ2
1 + σ2

2 ≤
1

2
. (4.41)

This follows from the corollary 4.1.

4.3.2 Half-property for states having `normal' projection
on Q

In this section we show that a state φ2 having normal projection on Q (i.e., a
state for which Q|φ2〉 is isomorphic trough the state�operator isomorphism to a
normal operator X) has the half-property.

Let us note that the operatorX given in equation (4.39) is normal i� operators
A and B are normal. As normal matrices are diagonalizable and their singular
values are equal to moduli of eigenvalues we arrive at an optimization problem
over numbers rather than matrices which we will now solve. Namely we have



4.3. States having `normal' projection on Q 79

Constraints in terms of eigenvalues The constraints (4.40) can be refor-
mulated as constraints on eigenvalues of A and B denoted by ai and bi. The
constraints in terms of eigenvalues ai and bi are of the form

TrA =
d∑
i=1

ai = 0, TrB =
d∑
i=1

bi = 0, (4.42)

TrA†A+ TrB†B =
d∑
i=1

|ai|2 +
d∑
i=1

|bi|2 =
1

d
. (4.43)

Theorem 4.1. Let Xd be the subset of normal operators X of the form (4.39)
satisfying constraints (4.40). Then for d = 4 we have

sup
X∈Xd

(σ2
1 + σ2

2) ≤ 1

2
(4.44)

where σ1 and σ2 are the two largest singular values of operator X.

Proof. Since X is diagonalizable then we can replace singular values with moduli
of eigenvalues. The latter are of the form

λij = ai + bj (4.45)

where ai and bj are eigenvalues of A and B, respectively. We then have

sup
X∈Xd

(σ2
1 + σ2

2) = sup
X∈Xd

(|λ1|2 + |λ2|2) (4.46)

= sup
X∈Xd

max
i,j,k,l∈{1,...,d},

(i,j)6=(k,l)

(
|ai + bj|2 + |ak + bl|2

)
(4.47)

= sup
X∈Xd

max
{
|a1 + b1|2 + |a2 + b2|2,

|a1 + b1|2 + |a1 + b2|2
}

(4.48)

where λ1 and λ2 are two eigenvalues of X with largest moduli. Equality in the
last equation (4.48) comes from the fact that there are two unique settings

1. i 6= k ∧ j 6= l and

2. i = k ∧ j 6= l ∨ i 6= k ∧ j = l.

In the second setting we consider only one term of the alternative as under the
constraints (4.42) and (4.43) we can exchange A and B. We also take arbitrary
indices as we can freely relabel eigenvalues of A and B.

Thus to prove the theorem we have to show that the following inequalities
hold

|a1 + b1|2 + |a2 + b2|2 ≤
1

2
(4.49)

|a1 + b1|2 + |a1 + b2|2 ≤
1

2
(4.50)
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under the constraints (4.42) and (4.43) with d = 4. The �rst inequality comes
directly from the parallelogram identity

|x+ y|2 = 2(|x|2 + |y|2)− |x− y|2 ≤ 2(|x|2 + |y|2) (4.51)

which implies

|a1 + b1|2 + |a2 + b2|2 ≤ 2(|a1|2 + |b1|2 + |a2|2 + |b2|2) ≤ 2
1

d
=

1

2
. (4.52)

The second inequality is much more involved and we have moved it to the ap-
pendix (proposition A.1) where we prove that

|a1 + b1|2 + |a1 + b2|2 ≤
3d− 4

d2
(4.53)

which for d = 4 gives (4.50).

We are now prepared to state the main result of this section

Theorem 4.2. For d = 4 any rank two state φ2 ∈ SR2(AA′ : BB′) with the
projection on Q (Q|φ2〉) isomorphic through the state�operator isomorphism to
a normal operator satis�es the half-property.

Proof. Let us assume 〈φ2|Q|φ2〉 6= 0 (otherwise the conclusion is obvious). By
hypothesis φ2 reaches its projection on Q on a state |ψQ〉 = Q|φ2〉

‖Q|φ2〉‖ ∈ HQ and
ψQ is isomorphic through the state�operator isomorphism given by (4.26) to a
normal operatorX. Then using the fact (4.1), equality of the Schmidt coe�cients
of ψQ and the singular values of operator X in the state�operator isomorphism,
and theorem 4.1 we obtain

〈φ2|Q|φ2〉 = |〈φ2|ψQ〉|2 ≤ sup
φ2∈SR2(AA′:BB′)

|〈φ2|ψQ〉|2

= µ2
1 + µ2

2 = σ2
1 + σ2

2 ≤ sup
X∈Xd

(σ2
1 + σ2

2) ≤ 1

2
(4.54)

where µ1 and µ2 are the two largest Schmidt coe�cients of ψQ in the same cut
in which φ2 has rank two (i.e., AA′ : BB′) while σ1 and σ2 are the two largest
singular values of operator X, and Xd is the subset of normal operators X of the
form (4.39) satisfying constraints (4.40).

4.4 Half-property for low Schmidt rank states

In this section we show that any state having on each pair at least one subsystem
with one-qubit support satis�es the half-property. For this purpose we introduce
the notion of the so-called common degrees of freedom.

4.4.1 Half-property via `common degrees of freedom'

Let us start with the de�nition of common degrees of freedom.
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Common degrees of freedom For a given state φ and two of its subsys-
tems denoted by A and B we de�ne a set called common degrees of freedom of
subsystem A with B as

cdf(φ,A,B) ≡ {i ∈ I : 〈φ|Pi|φ〉 6= 0} (4.55)

where I = {0, . . . , d− 1} and

Pi = |ii〉〈ii|AB ⊗ IA′B′ . (4.56)

We say that subsystem A has at most k common degrees of freedom with sub-
system B if | cdf(φ,A,B)| ≤ k.

Proposition 4.1. If for a given state φ subsystems A with B and A′ with B′

have at most d
2
common degrees of freedom then φ satis�es the half-property.

Proof. Let φ be a state such that A with B and A′ with B′ have at most d
2

common degrees of freedom, i.e.,

| cdf(φ,A,B)| ≤ d

2
| cdf(φ,A′, B′)| ≤ d

2
(4.57)

We take IAB and IA′B′ to be supersets of above sets but with exactly d
2
elements

cdf(φ,A,B) ⊂ IAB |IAB| =
d

2
(4.58)

cdf(φ,A′, B′) ⊂ IA′B′ |IA′B′| =
d

2
. (4.59)

Let us also de�ne maximally entangled states on subspaces generated by IAB
and IA′B′ :

ΦAB =
2

d

∑
i,j∈IAB

|ii〉〈jj| ΦA′B′ =
2

d

∑
i,j∈IA′B′

|ii〉〈jj|. (4.60)

Now, by the very de�nition of common degrees of freedom φ projects only on
those operators |ii〉〈jj| which are included in ΦAB and ΦA′B′ thus we have

〈φ|IAB ⊗ Φ+|φ〉 = 〈φ|IAB ⊗
1

2
ΦA′B′ |φ〉 (4.61)

〈φ|Φ+ ⊗ IA′B′|φ〉 = 〈φ|1
2

ΦAB ⊗ IA′B′ |φ〉 (4.62)

〈φ|Φ+ ⊗ Φ+|φ〉 = 〈φ|1
2

ΦAB ⊗
1

2
ΦA′B′ |φ〉 (4.63)
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and thus using formula for Q given by (4.16) we have

〈φ|Q|φ〉 = 〈φ|IAB ⊗ Φ+ + Φ+ ⊗ IA′B′ − 2Φ+ ⊗ Φ+|φ〉

= 〈φ|IAB ⊗
1

2
ΦA′B′ +

1

2
ΦAB ⊗ IA′B′ − 2

1

2
ΦAB ⊗

1

2
ΦA′B′|φ〉

=
1

2
〈φ| IAB ⊗ ΦA′B′ + ΦAB ⊗ IA′B′ − ΦAB ⊗ ΦA′B′︸ ︷︷ ︸

Q̃

|φ〉

=
1

2
〈φ|Q̃|φ〉

≤ 1

2
. (4.64)

So we obtain that for φ its projection on Q is equal to 1
2
of its projection on

some other projector Q̃ and the projection of any state on any projector may
not exceed one thus �nally we have that the projection of φ on Q is bounded by
1
2
.

4.4.2 Application of cdf to low Schmidt rank

Here by use of proposition 4.1 we show that any state which on each pair has at
least one subsystem with one-qubit support satis�es the half-property.

Theorem 4.3. Any state φ that satis�es(
Sch(A : A′BB′) ≤ d

2
∨ Sch(B : AA′B′) ≤ d

2

)
∧
(

Sch(A′ : ABB′) ≤ d

2
∨ Sch(B′ : AA′B) ≤ d

2

)
(4.65)

also satis�es the half-property. Here Sch(X : Y ) denotes the Schmidt rank of the
state φ in the X versus Y cut.

Observation 4.1. The operator Q is UA⊗ VA′ ⊗U∗B ⊗ V ∗B′ invariant. (Where U
and V are unitaries).

Proof of theorem 4.3. The hypothesis may be expanded into a four-term al-
ternative. We prove the conclusion for one of the terms (for the others the proof
is analogous). Now suppose

Sch(A : A′BB′) ≤ d

2
∧ Sch(A′ : ABB′) ≤ d

2
(4.66)

I.e., φ have the Schmidt rank at most d
2
in both A : A′BB′ and A′ : ABB′ cuts.

This implies that φ have the following Schmidt decompositions in these cuts:

|φ〉 =

d/2−1∑
i=0

ai|ψAi 〉|ψA
′BB′

i 〉 =

d/2−1∑
i=0

a′i|ψA
′

i 〉|ψABB
′

i 〉 (4.67)
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We can choose unitary matrices U and V which transform φ into

|φ′〉 = UA ⊗ VA′ ⊗ U∗B ⊗ V ∗B′|φ〉 (4.68)

=

d/2−1∑
i=0

ai|iA〉|ψ̃A
′BB′

i 〉 =

d/2−1∑
i=0

a′i|iA
′〉|ψ̃ABB′i 〉 (4.69)

Now, we can observe that for φ′ A with B and A′ with B′ have at most d
2
degrees

of freedom in common (as there are clearly at most d
2
degrees of freedom on A

and A′ subsystems) thus by applying proposition 4.1 we have

〈φ′|Q|φ′〉 ≤ 1

2
(4.70)

and by applying observation 4.1 we �nally get

〈φ|Q|φ〉 = 〈φ′|Q|φ′〉 ≤ 1

2
. (4.71)

4.5 Optimizing over product states and implica-

tions

In this section we consider a problem simpler than the original one: the opti-
mization of the overlap of the product states with projector Qn given by (4.9).
For product states optimization of the overlap with Qn is equivalent to the op-
timization of the overlap with QΓ

n. Knowing the maximum over product states,
we can bound the maximum over Schmidt rank two states. For n = 2 we will
obtain in this way

〈φ2|Q|φ2〉 ≤
3

4
. (4.72)

However the analysis of n copy case shows that in the limit of n→∞ one obtains
a trivial result that the overlap does not exceed one. Nevertheless this approach
can be used to go beyond 3

4
.

4.5.1 Maximum overlap of product states with Qn

We �rst observe that for product states �nding the maximal overlap with Qn is
equivalent to �nding the maximal overlap with QΓ

n:

sup
φ1

〈φ1|Qn|φ1〉 = sup
φ1

Tr (Qn|φ1〉〈φ1|)Γ = sup
φ1

〈φ1|QΓ
n|φ1〉 (4.73)
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where supremum is taken over all product states. This equivalence comes from
the fact that partial transpose of a product state |φ1〉 = |ψA〉 ⊗ |ψB〉 is also a
product state

(|φ1〉〈φ1|)Γ = (|ψA〉〈ψA| ⊗ |ψB〉〈ψB|)Γ

= |ψA〉〈ψA| ⊗ |ψ∗B〉〈ψ∗B|
= |φ̃1〉〈φ̃1|. (4.74)

Following the observation we use QΓ
n to �nd the maximum overlap of product

states with Qn. To this end we consider the spectral decomposition of QΓ
n. We

have

QΓ
n =

1

2

(
I⊗n −

(
I− 1

2
V
)⊗n)

=
1

2

(
I⊗n −

(
1
2
Ps + 3

2
Pa
)⊗n)

=
n∑
i=0

λiAi (4.75)

where Ps and Pa are the projectors onto the symmetric and the antisymmetric
subspaces (given by equations (2.72) and (2.73)) and eigenvalues λi and the
corresponding eigenspaces Ai are of the form

λi =
1

2

(
1− 3i

2n

)
(4.76)

Ai =
∑

lj∈{0,1},
∑
lj=i

Pl1 ⊗ · · · ⊗ Pln (4.77)

where P0 = Ps and P1 = Pa. (Note that
∑n

i=0Ai = I⊗n). One can observe
that eigenvalues of QΓ

n are in decreasing order and the largest eigenvalue λ0 is
associated with the eigenspace A0 = P⊗ns . In particular for, n = 2 we have

λ0 =
3

8
, λ1 =

1

8
, λ2 = −5

8
, (4.78)

so that

QΓ
2 =

3

8
Ps ⊗ Ps +

1

8
(Pa ⊗ Ps + Ps ⊗ Pa)−

5

8
Pa ⊗ Pa. (4.79)

The overlap of product states with QΓ
n is bounded by its largest eigenvalue

λ0 and this value is attainable as there are product states in the corresponding
eigenspace A0 = P⊗ns . As already noted it also gives the maximum overlap of
product states with Qn so we �nally have

sup
φ1

〈φ1|Qn|φ1〉 = sup
φ1

〈φ1|QΓ
n|φ1〉 = λ0 =

1

2

(
1− 1

2n

)
. (4.80)

In particular, for two copies this gives 3
8
.
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4.5.2 Bound for 〈φ2|Qn|φ2〉 in terms of 〈φ1|Qn|φ1〉
A Schmidt rank two state may be decomposed to

|φ2〉 =
√
p|φ1〉+

√
1− p|φ⊥1 〉, (4.81)

where 〈φ1|φ⊥1 〉 = 0. Now, we observe that

sup
φ2

〈φ2|Qn|φ2〉

= sup
φ1,φ⊥1 ,p

(
p〈φ1|Qn|φ1〉+ (1− p)〈φ⊥1 |Qn|φ⊥1 〉+ 2

√
p(1− p) Re〈φ1|Qn|φ⊥1 〉

)
≤ sup

φ1,φ⊥1

(〈φ1|Qn|φ1〉+ |〈φ1|Qn|φ⊥1 〉|) (4.82)

from Schwarz inequality we have

|〈φ1|Qn|φ⊥1 〉| ≤
√
〈φ1|Qn|φ1〉〈φ⊥1 |Qn|φ⊥1 〉 ≤ λ0 =

1

2

(
1− 1

2n

)
(4.83)

and thus

sup
φ2

〈φ2|Qn|φ2〉 ≤ 2 sup
φ1

〈φ1|Qn|φ1〉. (4.84)

In this way we have obtained the bound for the overlap of the Schmidt rank
two states with Qn in terms of optimal overlap with product states. The same
reasoning is also true for any other projector.

Thus, for two copies we obtain the following bound

sup
φ2

〈φ2|Q|φ2〉 ≤
3

4
. (4.85)

Unfortunately, this method does not lead to any bound that would hold for all
n apart from the trivial bound 〈φ2|Qn|φ2〉 ≤ 1.

4.5.3 The form of the product states attaining maximum
on Qn

In section 4.5.1 we obtained the value of the maximum overlap of product states
with Qn. In this section we �nd the form of the product states which attain
the maximal overlap with Qn. As in section 4.5.1 we use the equivalent of
maximization of the overlap with Qn and with QΓ

n for product states.
For n = 2 a state φ̃1 attaining maximal overlap with QΓ must belong to the

subspace PAB
s ⊗ PA′B′

s and thus must have the form

|φ̃1〉 = |ψψ〉AB ⊗ |φφ〉A′B′ . (4.86)
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Now, a product state φ1 attaining maximal overlap withQ is the partial transpose
of φ̃1 and thus must have the form

|φ1〉 = |ψψ∗〉AB ⊗ |φφ∗〉A′B′ . (4.87)

(See equation (4.74) for the explanation of this partial transposition).
This observation in general case of n copies is contained in the following.

Proposition 4.2. For any n all rank-one states φ1 attaining maximum on Qn

has the form

|φ1〉 =
n⊗
i=1

|ψi〉Ai |ψ∗i 〉Bi . (4.88)

Proof. The thesis of the proposition is equivalent to the following statement: for
any n all rank-one states φ̃1 attaining maximum on QΓ

n have the form

|φ̃1〉 =
n⊗
i=1

|ψi〉Ai |ψi〉Bi . (4.89)

We prove it by induction.

1. For n = 1 we have QΓ
1 = 1

4
V and by considering a general product state

|ψφ〉 we obtain

〈ψφ|V |ψφ〉 = |〈ψ|φ〉|2 (4.90)

and maximum is attained by product states of the form |ψψ〉 that is of the
form (4.89) with n = 1.

2. Suppose that for product states maximal overlap with QΓ
n is attained only

by states of the form (4.89) we show that the same holds for QΓ
n+1. Let us

consider φ̃1 for n + 1. First of all φ̃1 is a state of the symmetric subspace
in Alice versus Bob cut which (analogously to the reasoning in point 1)
implies that it has the form |ψψ〉 in Alice versus Bob cut. Next, we consider
Schmidt decomposition of ψ of the form

|ψ〉 =
∑
i

ai|ψi〉|φi〉. (4.91)

Now, we can decompose φ̃1 as

|φ̃1〉 = |ψ〉Aa|ψ〉Bb =

(∑
i

ai|ψi〉A|φi〉a
)(∑

j

aj|ψj〉B|φj〉b
)

=
∑
ij

aiaj|ψiψj〉AB|φiφj〉ab (4.92)
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where AB denotes a subsystem consisting of n pairs and ab denotes a single
pair. And we have

〈φ̃1|P⊗n+1
s |φ̃1〉 =

∑
aiajakal〈ψiψj|P⊗ns |ψkψl〉〈φiφj|Ps|φkφl〉

=
∑

aiajakal〈ψiψj|P⊗ns |ψkψl〉
1

2
(δikδjl + δilδjk) (4.93)

To obtain one in the above expression it is necessary that all the projections
are equal to 1. The projection on Ps given in delta-form to be equal to one
requires i = j = k = l and it is always one only if φ̃1 is product in AB : ab
cut. To obtain one on P⊗ns the ψi ⊗ ψi state must be of the form (4.89)
and thus φ̃1 is of the form (4.89).

4.5.4 Superpositions of product states with maximum on
Qn

States attaining maximum on Qn are product between copies thus one can expect
that their superpositions have the half property. Indeed it is the case.

Proposition 4.3. Let d = 4 and φ1, φ
⊥
1 be n-copy orthogonal product states with

maximum overlap with Qn, i.e. states of the form

|φ1〉 =
n⊗
i=1

|ψi〉Ai |ψ∗i 〉Bi , |φ⊥1 〉 =
n⊗
i=1

|ψ̃i〉Ai |ψ̃∗i 〉Bi (4.94)

then their superposition

|φ2〉 =
√
p|φ1〉+

√
1− p|φ⊥1 〉 (4.95)

has the following overlap with Qn

〈φ2|Qn|φ2〉 =
1

2

(
1− 1

2n

)
−
√
p(1− p)

n∏
i=1

(
|〈ψi|ψ̃i〉|2 −

1

2

)
. (4.96)

In particular, it is equal to 1
2
only if p = 1

2
and φ1, φ

⊥
1 are orthogonal on an odd

number of copies and equal on the rest. Otherwise it is less than 1
2
.

Proof. The form of φ1 and φ⊥1 comes from proposition 4.2 and their overlap with
Qn from (4.80) thus we have

〈φ2|Qn|φ2〉 =
1

2

(
1− 1

2n

)
+ 2
√
p(1− p) Re〈φ1|Qn|φ⊥1 〉 (4.97)

Thus to �nish the proof we will show by induction that

〈φ1|Qn|φ⊥1 〉 = −1

2

n∏
i=1

(
|〈ψi|ψ̃i〉|2 −

1

2

)
. (4.98)
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1. It is true for n = 1

〈φ1|Q1|φ⊥1 〉 = Tr
(

Φ+ |ψ̃1〉〈ψ1| ⊗ |ψ̃∗1〉〈ψ∗1|
)Γ

=
1

d
Tr
(
V |ψ̃1〉〈ψ1| ⊗ |ψ1〉〈ψ̃1|

)
=

1

d
〈ψ1ψ̃1|V |ψ̃1ψ1〉 =

1

d
= −1

2
(0− 1

2
). (4.99)

where ψ1 and ψ̃1 must be orthogonal as φ1 and φ⊥1 are orthogonal.

2. Suppose it is true for some n, let us show it also holds for n+ 1. Without
loss of generality we can assume φ1 and φ⊥1 are orthogonal on one of the
�rst n copies thus we can write

|φ1〉 = |φ〉|ψψ∗〉, |φ⊥1 〉 = |φ⊥〉|ψ̃ψ̃∗〉. (4.100)

Then by using recursive formula (4.11) and the equality

〈φ|Q⊥n |φ⊥〉 = −〈φ|Qn|φ⊥〉 (4.101)

we have

〈φ1|Qn+1|φ⊥1 〉 = 〈φ|Qn|φ⊥〉
(
〈ψψ∗|(I−Q1)|ψ̃ψ̃∗〉 − 〈ψψ∗|Q1|ψ̃ψ̃∗〉

)
= 〈φ|Qn|φ⊥〉

(
〈ψψ∗|ψ̃ψ̃∗〉 − 2〈ψψ∗|Q1|ψ̃ψ̃∗〉

)
= −1

2

n∏
i=1

(
|〈ψi|ψ̃i〉|2 −

1

2

)(
|〈ψ|ψ̃〉|2 − 2

d
〈ψψ̃|V |ψ̃ψ〉

)

= −1

2

n+1∏
i=1

(
|〈ψi|ψ̃i〉|2 −

1

2

)
. (4.102)

It is evident that to maximize (4.96), i.e. obtain 1
2
, one needs p = 1

2
and

(4.98) equal to 2−(n+1). This requires
∣∣∣|〈ψi|ψ̃i〉|2 − 1

2

∣∣∣ = 1
2
for all i, that is

ψi and ψ̃i must be equal or orthogonal and further for (4.98) to be positive
ψi and ψ̃i must be orthogonal on odd number of copies and equal on the
rest.

4.6 Bounds for maximal overlap with Q for all

states φ2.

In this section we show that we can improve the bound obtained by means of
product states in the previous section.
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4.6.1 Strictly less than 3/4

Let us recall the bound of (4.82) on the overlap of rank two states with Q

sup
φ2

〈φ2|Qn|φ2〉 ≤ sup
φ1,φ⊥1

(〈φ1|Qn|φ1〉+ 〈φ1|Qn|φ⊥1 〉). (4.103)

Let us also recall bounds for two terms of the sum in the above supremum

1. the bound for the �rst term introduced in (4.80)

sup
φ1

〈φ1|Qn|φ1〉 =
1

2

(
1− 1

2n

)
. (4.104)

2. the bound for the second term introduced in (4.83)

|〈φ1|Qn|φ⊥1 〉| ≤
√
〈φ1|Qn|φ1〉〈φ⊥1 |Qn|φ⊥1 〉 (4.105)

From these three bounds we obtain

sup
φ2

〈φ2|Qn|φ2〉 ≤ 1− 1

2n
. (4.106)

But the equality in the above equation requires both φ1 and φ⊥1 to attain maxi-
mum overlap on Qn but then by proposition 4.3 we obtain that superposition of
φ1 and φ⊥1 has the half property. Thus for any φ2 we have

〈φ2|Qn|φ2〉 < 1− 1

2n
(4.107)

but from the continuity of (4.104) and (4.105) we also obtain

sup
φ2

〈φ2|Qn|φ2〉 < 1− 1

2n
. (4.108)

which in particular for n = 2 gives

sup
φ2

〈φ2|Q|φ2〉 <
3

4
. (4.109)

Beyond 3/4 The argument of continuity was used in [6] and a slightly better
bound was obtained

〈φ2|Q|φ2〉 ≤ 0.74971 < 3/4. (4.110)

Numerical results Numerical optimization suggests that the bound (4.103)
is actually equal to 17

32
. If we want to optimize independently both terms of the

bound (4.103) we get

sup
φ2

〈φ2|Q|φ2〉 ≤
3

8
+ sup

φ1,φ⊥1

|〈φ1|Q|φ⊥1 〉| (4.111)

which numerically gives 5
8
. At the moment we do not have analytical proofs of

these estimates.





Chapter 5

Distillation using extendible maps

The problem of existence of NPT bound entangled states is an open question
since 1998 [4]. There are many partial results but the problem is still open.

One of the possible research directions on a way to �nd NPT bound entangled
states is to allow Alice and Bob to use a broader than LOCC class of operations.
In this chapter we will consider the class of k-extendible operations which in the
limit of k → ∞ tend to separable operations. These are maps, whose corre-
sponding Choi-Jamioªkowski state is k-fold symmetrically extendible.

We shall not require the operations to be trace-preserving. Our main quantity
of interest will be �delity of output with maximally entangled state, that can be
obtained with some nonzero probability.

First of all we shall show, that those maps are extremely powerful regarding
distillation. Namely, we prove, that for any �xed k, the class of k-extendible
maps can distill any state but maximally mixed one, if large enough number of
copies is available. Second, even in single copy, the maps can provide �delity
1 (with some nonzero probability) for any state which has a (k − 1)-extendible
state in its kernel. In particular, they are not stable under local embedding into
larger Hilbert space.

We then analyze the case of Werner states. We obtain that curve of attainable
�delity is symmetric with respect to identity, on the interval joining symmetric
and antisymmetric state in case of 1- to 4-extendible maps. By use of the orthog-
onal basis in the linear space of operators that commute with unitary operators
of the form U ⊗U ⊗U we obtain analytically the maximal �delity achievable for
single copy of a Werner state and for 1-extendible maps. We consider a subclass
of k-extendible maps, which we call `measure-and-prepare' maps (they belong to
entanglement breaking channels). For single copy of Werner state and k = 1 we
show that this subclass gives the same �delity as all 1-extendible maps.

The results presented in this chapter have been published in [31].

5.1 Choi-Jamioªkowski state and k-extendible maps

Let us �rst de�ne Choi-Jamioªkowski state and then k-extendible maps.

91
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Choi-Jamioªkowski state Let Λ be a Completely Positive map acting on the
input system AB with output system ab, i.e.,

Λ(%AB) = %′ab. (5.1)

Now, for a given map Λ we de�ne its Choi-Jamioªkowski state (or CJ state, for
brevity) as

σA′B′ab = (id⊗ Λ) Φ+
A′A ⊗ Φ+

B′B (5.2)

where A′, B′ are of the same dimensions as A,B, and Φ+ is the maximally en-
tangled state; Λ acts on system AB with output system ab and the identity map
id acts on subsystem A′B′.

If Λ is not trace preserving then the CJ state may be unnormalized.
It turns out that from the CJ state one can reconstruct the map [55]

Λ(%AB) = d2TrAB(σABab %
T
AB ⊗ Iab). (5.3)

For example, Λ is a separable map if and only if its CJ state is separable.

k-extendible state and k-extendible map A state %AB is k-extendible (on
Bob's site) if there exist a state %AB0...Bk such that %ABi = %AB for all i from 0
to k. Analogously, we say that a state %AB is k-extendible on Alice's site if there
exist a state %A0...AkB such that %AiB = %AB for all i from 0 to k.

We call Λ a k-extendible map (on Bob's or Alice's site) if its CJ state is a
k-extendible state (on Bob's or Alice's site).

We will often consider operators having four subsystems (ABab) instead of
two (AB) then A, B, Ai, and Bi will be replaced with Aa, Bb, Aiai, and Bibi
in the de�nition of k-extendability. We will use subsystems Bb and B0b0 inter-
changeably and use Ee to denote subsystem B1 . . . Bk, b1 . . . bk, especially when
k = 1.

Any separable state is k-extendible for any k. Therefore the set of k-extendible
maps includes separable maps. Conversely, if for any k a state is k-extendible
then it is separable [56, 56]. Therefore k-extendible maps in a sense tend to
separable maps when k →∞.

5.2 Formula for �delity with k-extendible maps

Let % be a given state and Λ a given completely positive (not necessarily trace-
preserving) map acting on the input system AB with the output system ab (we
use lowercase letters as we consider two-qubit output system). Now, we apply the
map Λ to % and consider the �delity of the output state Λ(%) with the maximally
entangled state:

F (%,Λ) =


Tr(Λ(%)Φ+)

Tr(Λ(%))
Tr(Λ(%)) > 0

0 Tr(Λ(%)) = 0.

(5.4)
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where Φ+ is the projector onto the maximally entangled stated given by (2.39).
Now we �nd two conditions equivalent to F (%,Λ) > α where α ≥ 0 (the

second of them will be used in the further consideration). Assume �rst, that
Tr(Λ(%)) > 0. Then the following inequalities are equivalent

F (%,Λ) =
Tr(Λ(%)Φ+)

Tr(Λ(%))
> α (5.5)

αTr(Λ(%))− Tr(Λ(%)Φ+) < 0 (5.6)

Tr((αI− Φ+)︸ ︷︷ ︸
Mα
ab

Λ(%)) < 0 (5.7)

Tr(Λ(%)Mα
ab) < 0 (5.8)

so we obtain an equivalence condition

F (%,Λ) > α ⇐⇒ Tr(Λ(%)Mα
ab) < 0. (5.9)

It is easy to check that this equivalence also holds if Tr(Λ(%)) = 0. Now, we use
reformulation of Λ(%) in terms of the the Choi-Jamioªkowski state of our map Λ
given by (5.3). We have

Tr(Λ(%)Mα) = d2Tr(TrAB(σABab%
T
AB ⊗ Iab)M

α
ab) (5.10)

= d2Tr(TrAB(σABab%
T
AB ⊗ IabIAB ⊗Mα

ab)) (5.11)

= d2Tr(σABab %
T
AB ⊗Mα

ab︸ ︷︷ ︸
Xα
ABab

) (5.12)

= d2Tr(Xα
ABabσABab) (5.13)

so we obtain another equivalence condition

F (%,Λ) > α ⇐⇒ Tr(Xα
ABabσABab) < 0 (5.14)

where α ≥ 0.
For states satisfying Tr(Λ(%)) > 0 analogous conditions may be obtained for

F (%,Λ) < α and F (%,Λ) = α. Thus we obtain the following

Fact 5.1. For any state % and any completely positive map Λ and α ≥ 0, the
following condition holds

F (%,Λ) > α ⇐⇒ Tr(Λ(%)Mα
ab) < 0 ⇐⇒ Tr(Xα

ABab σABab) < 0 (5.15)

where Mα
ab = αI − Φ+ acts on a two-qubit Hilbert space, σABab denotes the CJ

state of Λ and Xα
ABab is given by

Xα
ABab = %TAB ⊗Mα

ab. (5.16)

If additionally Tr(Λ(%)) > 0, in particular if % is a full rank state, then we also
have

F (%,Λ) < α ⇐⇒ Tr(Λ(%)Mα
ab) > 0 ⇐⇒ Tr(Xα

ABab σABab) > 0 (5.17)

F (%,Λ) = α ⇐⇒ Tr(Λ(%)Mα
ab) = 0 ⇐⇒ Tr(Xα

ABab σABab) = 0. (5.18)
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Remark 5.1. The �delity is here achievable with some nonzero probability, but
the probability can be very small, and may depend on α. E.g., when α tends to
1, the probability may tend to 0.

We use fact 5.1 to compute the lower and upper bounds for the supremum of
F (%,Λ) over all k-extendible maps:

Proposition 5.1. For any state %AB let Fk(%AB) denote the supremum of �-
delity F (%AB,Λ) achievable by k-extendible maps. Now, Fk(%AB) is connected to
positivity of some operator, namely

Fk(%AB) > α ⇐⇒ λmin(Ŝk(X
α
ABab ⊗ IEe)) < 0 (5.19)

and if % is a full rank state then also

Fk(%AB) < α ⇐⇒ λmin(Ŝk(X
α
ABab ⊗ IEe)) > 0 (5.20)

Fk(%AB) = α ⇐⇒ λmin(Ŝk(X
α
ABab ⊗ IEe)) = 0. (5.21)

where Xα
ABab is given by

Xα
ABab = %TAB ⊗Mα

ab (5.22)

subsystem Ee denotes B1 . . . Bk, b1 . . . bk and Ŝk denotes the symmetrization su-
peroperator

Ŝk(X) =
1

k + 1

k∑
i=0

VB0b0:BibiXVB0b0:Bibi (5.23)

where VY :Z swaps subsystems Y and Z and, for convenience of labeling, we use
B0 and b0 to denote B and b, respectively.

Proof. From fact 5.1 we obtain

Fk(%AB) = sup
Λ∈{Λk}

F (%AB,Λ) > α (5.24)

⇐⇒ ∃Λ∈{Λk} F (%AB,Λ) > α (5.25)

⇐⇒ ∃σABab∈EXTk Tr [Xα
ABabσABab] < 0 (5.26)

⇐⇒ inf
σABab∈EXTk

Tr [Xα
ABabσABab] < 0. (5.27)

where {Λk} denotes the set of all k-extendible maps and EXTk is the set of all
k-extendible states. The right hand side can be transformed as follows

inf
σABab∈EXTk

Tr [Xα
ABab σABab] (5.28)

= inf
σABabEe∈SYMk

Tr [Xα
ABab ⊗ IEe σABabEe] (5.29)

= inf
σABabEe

Tr
[
Xα
ABab ⊗ IEe Ŝk(σABabEe)

]
(5.30)

= inf
σABabEe

Tr
[
Ŝk(X

α
ABab ⊗ IEe)σABabEe

]
(5.31)

= inf
ψABabEe

〈ψABabEe|Ŝk(Xα
ABab ⊗ IEe)|ψABabEe〉 (5.32)

= λmin(Ŝk(X
α
ABab ⊗ IEe)) (5.33)
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where SYMk is the set of all k-symmetric states and λmin(X) denotes the smallest
eigenvalue of X. The equality (5.31) comes from Tr(Λ(A)B) = Tr(AΛ†(B)) for
completely positive Λ and from Ŝ†k = Ŝk

Thus �nally

Fk(%AB) > α ⇐⇒ λmin(Ŝk(X
α
ABab ⊗ IEe)) < 0. (5.34)

The proof of the additional conditions for full rank % is analogous. Those
conditions are given only for full rank states as for full rank states we can use
(5.17) and (5.18).

Corollary 5.1. For any state % one can achieve any F (%,Λ) ≤ α by some k-
extendible map if operator Ŝk(%

T
AB ⊗Mα

ab ⊗ IEe) is non-positive.
If additionally % is a full rank state then F (%,Λ) ≤ α is also achievable if the

least eigenvalue of Ŝk(%
T
AB ⊗Mα

ab ⊗ IEe) is equal to 0.

Proof. From proposition 5.1 some F > α is achievable by some k-extendible map
Λk, but then one can use a class of k-extendible maps Λ

(p)
k which with probability

p works as Λk and with probability 1−p return a state orthogonal to Φ+ to obtain
any �delity F ≤ α.

Finally, there is the following general question: Can it be, that probabilis-
tically one can get F arbitrary close to one, but with probability one, it is not
possible? For LOCC, achieving high F probabilistically, means the same de-
terministically, by law of large numbers, and postselection. However we do not
know whether k-extendible maps can be postselected. Or rather, whether a
complement to k-extendible map can be k-extendible.

More precisely: In LOCC case the distillability by means of trace-preserving
maps is equivalent to distillability by a non-trace preserving ones. Concerning
k-extendible maps, we do not know if it is the case. In this thesis we do not
require preserving of trace, and we get that the maps are very powerful. There
is a possibility, that trace-preserving maps are not that powerful (hence more
useful for the problem of distillability). However they are much harder to deal
with.

5.2.1 `Measure-and-prepare' k-extendible maps

Here we consider a subclass of k-extendible maps, which will in a sense decouple
the state % from the operator Mα.

Proposition 5.2 (Measure-and-prepare maps are k-extendible). Consider any
two states σAB0...Bk and σab0...bk . We shall denote the reductions σABi by σ

in
i and

the reductions σabi by σ
out
i . Then the following map is k-extendible: Alice and

Bob apply to the given state %AB a global probabilistic POVM whose elements are
the states σin0 , . . . , σ

in
k . Then given the outcome i they prepare (globally) the state

σouti from the set of states σout0 , . . . , σoutk . The CJ state of such a map has the
form 1

d2 TrB1...Bk b1...bk Ŝk(σ
T
AB0...Bk

⊗ σab0...bk).
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Remark 5.2. Since our maps are not necessarily trace-preserving, the POVM
elements need not sum to identity.

Proof of proposition 5.2. We shall prove the case with k = 1 for clarity (for
higher k the proof is identical). Let us consider postulated CJ state having the
following form

σABab =
1

d2
TrEeŜ1(σTABE ⊗ σabe) =

1

2d2
(σTAB ⊗ σab + σTAE ⊗ σae) (5.35)

Now using (5.3) we obtain

Λ(%AB) = d2TrAB(σABab %
T
AB ⊗ Iab) (5.36)

=
1

2
TrAB

((
σTAB ⊗ σab + σTAE ⊗ σae

)
%TAB ⊗ Iab

)
(5.37)

=
1

2

(
Tr(σTAB%

T
AB)σab + Tr(σTAE%

T
AB)σae

)
(5.38)

=
1

2
(Tr(%ABσAB)σab + Tr(%ABσAE)σae) (5.39)

where σAE and σae act on AB and ab subsystems, respectively. Starting from the
postulated CJ state of the map (POVM measurement with a numeric output i
followed by outputing the state σouti ) we arrived at the map. Thus the postulated
CJ state is the CJ state of the map. The CJ state is a 1-extendible state so the
map is a 1-extendible map.

Examples. The simplest possible map of this form is when Alice and Bob take
the state σab0...bk which is symmetric. Then each σouti is the same k extendible
state, i.e., σouti = σout. And e�ectively such a map is equivalent to Alice and Bob
removing the initial state, and in its place preparing some k-extendible state.
Other example is when the output states are σout0 = Φ+

ab and σouti = 1
4
Iabi for

i > 0.

Using fact 5.1 and the form the CJ state of measure-and-prepare map we
obtain that �delity α is achievable by measure-and-prepare maps if and only if
the following operator is nonpositive:

Z =
k∑
i=0

(α− Fi)Tr(%ABσABi) (5.40)

where Fi are overlaps of σabi with Φ+, i.e., Fi = Tr(σabiΦ
+).

Indeed, following the proof of preposition 5.1 we obtain the following criterion:

Proposition 5.3. Fidelity F = α is achievable if

inf
F1,...,Fk

λmin(Z) < 0 (5.41)

where Z is given by (5.40) and in�mum runs over all k-tuples (F1, . . . , Fk) allowed
by a joint state σab0...bk .

Remark 5.3. It is enough to consider F0, . . . , Fk from the boundary of the region
allowed by a considered state σab0...bk .
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Figure 5.1: Trade-o� between �delities of reductions of a tri-qubit state

Boundary for 1-extendible maps For just one extension, the region of �-
delities F0, F1 is given by the convex hull of the ellipse [57]:

y2
+ +

1

3
y2
− ≤

1

16
(5.42)

where

y+ = (1− F0 − F1)/2, y− = (F0 − F1)/2. (5.43)

and the point (0, 0). This result can also be easily obtained by the use of the
orthogonal basis in the linear space of operators that commute with unitary
operators of the form U ⊗ U ⊗ U given in [9]. To this end it is more convenient
to consider singlet instead of Φ+ and then it is enough to restrict to the states
that are U ⊗ U ⊗ U invariant. The allowable region is depicted on �gure 5.1.

5.3 The power of k-extendible maps

We �rst show that k-extendible maps are in general surprisingly powerful:

1. the k-extendible map (for any k) can distill with �delity F = 1 from a
single copy of a pure product state,

2. for any k and any state % di�erent from maximally mixed state k-extendible
map may distill n copies of % with �delity arbitrary close to one: for large
enough n there exist a k-extendible map that achives the given �delity.

This unexpected power of k-extendible maps seem to contrast with the fact that
in the limit of k →∞ the k-extendible maps tend to separable maps.
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5.3.1 Single copy: Distillation from product states and
from identity

Distillation from pure product state Let %AB = %A⊗%B be a product state
where %A is an arbitrary state and %B = |0〉〈0| and |0〉 is an arbitrary �xed vector
in subsystem B (for convenience we assume that it belongs to the basis in which
transpose is taken in formula (5.22)). Then, it is enough to consider positivity
of the operator X ′

X ′ = Ŝk (|0〉〈0|B ⊗Mα
ab ⊗ IB1...Bk,b1...bk) (5.44)

where Mα = αI− Φ+.
We shall prove the result for k = 1. The proof for larger k is analogous. One

�nds that

X ′ =
1

2
(PB ⊗ IE ⊗Mα

ab ⊗ Ie + IB ⊗ PE ⊗Mα
ae ⊗ Ib) (5.45)

=
1

2
(PB ⊗ (PE + P⊥E )⊗Mα

ab ⊗ Ie + (PB + P⊥B )⊗ PE ⊗Mα
ae ⊗ Ib) (5.46)

=
1

2
(PB ⊗ PE ⊗ (Mα

ab ⊗ Ie +Mα
ae ⊗ Ib) (5.47)

+ PB ⊗ P⊥E ⊗Mα
ab ⊗ Ie + P⊥B ⊗ PE ⊗Mα

ae ⊗ Ib) (5.48)

where P = |0〉〈0|, P⊥ = I − P . We see that this operator has a block diagonal
form, and e.g., the last block (P⊥B ⊗PE⊗Mα

ae⊗ Ib) has negative eigenvalue when
Mα

ae has negative eigenvalue that is for any α < 1. Thus �delity arbitrary close
to 1 can be achieved for state %AB by one-extendible maps.

The presented argument also holds, if %B is proportional to any projector
di�erent than identity.

Distillation from maximally mixed state. From the above consideration,
it follows that if %AB = 1

dA
IA ⊗ 1

dB
IB, then a 1-extendible map can distill it up

to �delity F = α provided Mab ⊗ Ie + Mae ⊗ Ib is non-positive. One �nds that
eigenvalues of this operator are equal to {2α, (4α− 3)/2, (4α− 1)/2}. Thus the
operator is non-positive, for α < 3/4. Since the state is of a full rank, then not
only F < 3/4 but also F = 3/4 can be obtained.

For k-extendible maps, we need non-positivity of the following operator Ŝk(Mab0⊗
Ib1 ⊗ . . . ⊗ Ibk), where Ŝk symmetrizes over bi's. Before we discuss the case of
k-extendible maps for k larger than 1, let us describe what happened here from
another perspective. Namely, the following is a legitimate k-extendible map: to
remove the original state, and bring in a k-extendible state σab. Indeed, the
CJ state of such an operation is given by σABab = 1

dA
IA ⊗ 1

dB
IB ⊗ σab. (This is

clearly a special case of the `measure-and-prepare' maps.) Thus the �delity that
obviously can be achieved by k-extendible maps is the maximal overlap with
Φ+ possible for a k-extendible bipartite state σab. However this is related to
universal cloning: such a state would allow to clone with average �delity (just
by teleporting the state through k-extensions of σab). The problem of optimal
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�delity of universal cloning has been solved e.g., in [58]. Exploiting the formula
for `black cow factor' from this paper, we obtain that the maximal �delity of
k-extendible state on two-qubit system amounts to

Fmax(k) =
1

2

k + 2

k + 1
(5.49)

for k = 1 we obtain F = 3/4 which is compatible with the above. Thus the max-
imal �delity which can be obtained from maximally mixed state by k-extendible
operations is given by the formula (5.49).

k-extendible maps are not closed under composition When distilling
entanglement with separable and LOCC maps it is enough to obtain F > 1/2
and then �delity arbitrary close to one can also be achieved (see e.g., [18]).
As there exists a distillation protocol which achieves �delity arbitrary close to
one for many copies of input state satisfying F > 1/2. Such distillation is a
concatenation of two protocols: one that achieves F > 1/2 and second one which
achieves �delity arbitrary close to one. One can do this because separable and
LOCC maps are closed under composition which is not the case for k-extendible
maps. This explains why it is possible to obtain �delity larger than half from a
maximally mixed state with a k-extendible map.

k-extendible maps are not stable WRT local embedding The examples
of product state and maximally mixed state show that the k-extendible maps are
not stable with respect to local embedding into larger Hilbert space. Indeed, the
�rst example goes through, if we replace |0〉〈0| with whatever projector which
does not have full rank. Thus a state 1

d
I⊗ 1

d
I, through the second example is not

distillable to maximally entangled state, if it acts on Cd ⊗ Cd. However, if we
consider the same state on Cd ⊗ Cd′ where d′ > d, �delity F = 1 is possible.

5.3.2 Single copy: A wide class of states which o�er F = 1

Let us start with a simple condition which, if satis�ed, implies that �delity F = 1
can be obtained (with some probability).

Lemma 5.1. Let %AB be a given state. Suppose, that there exists a state σABB1...Bk

such that Tr(%ABσABi) = 0 and Tr(%ABσAB) > 0, then one can obtain �delity
F = 1 from %AB by k-extendible maps.

Proof. We shall prove for k = 1, for larger k proof is similar. We use `measure-
and-prepare' strategy introduced in proposition 5.2. Namely, we take σin0 = σAB,
σin1 = σAE and σout0 = Φ+

ab, σ
out
1 = Iab/4. Then clearly only outcome i = 0 will be

observed, and the output state will be Φ+.

Proposition 5.4. If a given state %AB is not a full rank state then one can
obtain from a single copy of %AB �delity F = 1 by means of 1-extendible maps
(either extendible on Bob's or on Alice's site). The F = 1 is achievable by
`measure-and-prepare' maps.
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Proof. We use lemma 5.1. We need to �nd two bipartite states σ0
AB and σ1

AE,
such that they come from some joint tripartite state σABE and the �rst of them
has nonzero overlap with %AB and the other one is orthogonal to %AB.

We consider two cases:

1. If there exists a product state σA ⊗ σB in the kernel of %AB then either

(a) σA ⊗ IB is not in the kernel then we take σ0
AB = σA ⊗ 1

dB
IB and

σ1
AE = σA ⊗ σB and by lemma 5.1 we can achieve �delity F = 1 by a

1-extendible map extendible on Bob's site; or

(b) σA⊗IB is also in the kernel then there must exist σ′A such that σ′A⊗IB
is not in the kernel (as %AB 6= 0) and we take σ0

AB = σ′A ⊗ 1
dB

IB and
σ1
EB = σA ⊗ 1

dB
IB and by lemma 5.1 we can achieve �delity F = 1 by

a 1-extendible map extendible on Alice's site.

2. If there is no product state in the kernel then we take any state from the
kernel as σ1

AE and σ0
AB = σ1

A ⊗ 1
dB

IB and by lemma 5.1 we can achieve
�delity F = 1 by a 1-extendible map extendible on Bobs's site (and also,
analogously, on Alice's site).

Proposition 5.5. If a given state %AB has a k-extendible state in the kernel then
one can obtain from a single copy of %AB �delity F = 1 by means of (k + 1)-
extendible maps (either extendible on Bob's or on Alice's site).

Proof. We extend on the proof of proposition 5.4. We consider two cases:

1. If there is a product state in the kernel of %AB then proposition 5.4 gives
σABE = σA ⊗ σB ⊗ σE which by lemma 5.1 gives �delity F = 1 from a
single copy of %AB by means of 1-extendible maps, either extendible on
Bob's or on Alice's site. As σABE is a product state one can extend it to
σA⊗σB⊗σ⊗kE for any k to obtain by lemma 5.1 �delity F = 1 from a single
copy of %AB by means of (k + 1)-extendible maps extendible on the same
site.

2. If there is no product state in the kernel any state from the kernel can be
used as σAE in the proof of proposition 5.4 so we take the k-extendible
one which exists by assumption (we assume it is extendible on Bob's site
for states extendible on Alice's site the proof is analogous). Now, since
σAE is k-extendible on Bob's site there exists a state σAB1...Bk+1

⊗ σB such
that σABi = σAE for i from 1 to k + 1 and σAB = σA ⊗ σB by assumption
is not in the kernel (as there is no product state in the kernel) and thus,
(analogously to the proof of proposition 5.4) by lemma 5.1 we can obtain
�delity F = 1 from a single copy of %AB by means of (k + 1)-extendible
maps extendible on Bob's site.
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The above proposition implies, that any state which has a product state in the
kernel can obtain �delity F = 1 from a single copy of the state by k-extendible
maps (either extendible on Alice's site or on Bob's site) for all k.

Examples. Consider states %a and %s given by (2.71) and proportional to Pa
and Ps the projectors onto antisymmetric and symmetric subspaces of Cd ⊗Cd,
respectively.

The state %a can obtain �delity F = 1 from a single copy of the state by
k-extendible (on both sides) maps for all dimensions for all k. The �delity F = 1
is obtained for all k since the kernel of %a which is Ps contains a product state.
The �delity F = 1 is obtained by maps extendible on both Alice's and Bob's
sites since Pa is symmetric with respect to A↔ B exchange.

In turn, the state %s can give F = 1 for k ≤ d − 1. This is because, its
complement, the antisymmetric projector is d − 2 symmetrically extendible for
d ≥ 2. But by using proposition 5.1 for d = 3 we obtain numerically F = 1 for
each k ≤ 4 and only for k ≥ 5 �delity is decreasing with k (�gure 5.3). Which
means that for k = 3 and k = 4 measure-and-prepare maps are to weak to obtain
F = 1 but general k-extendible maps still can do this.

5.3.3 Many copies: k-extendible maps can distill arbitrary
state apart from maximally mixed one

Here we show, that the class of k-extendible maps can distill any state apart
from maximally mixed one. We explain this in the case of k = 1. The argument
for larger k is analogous.

To this end, we consider

X = %⊗nAB ⊗ I⊗nE ⊗Mα
ab ⊗ Ie + %⊗nAE ⊗ I⊗nB ⊗Mα

ae ⊗ Ib (5.50)

By Prop. 5.1 arbitrary �delity F < α can be obtained if this operator is non-
positive for this α. We now argue, that for any α < 1, there exists n such that this
operator is indeed non-positive. Namely, note that the operatorM is non-positive
for such α, hence bothMab⊗Ie andMae⊗Ib are non-positive. Furthermore, after
normalization, the operators %⊗nAB ⊗ I⊗nE and %⊗nAE ⊗ I⊗nB are tensor powers of two
distinct states. Therefore they become more and more orthogonal for growing
n. In other words, for n large enough, there exist orthogonal projectors P and
Q which distinguish the two states with arbitrarily large probability of success.
Thus the value Tr(XPABE ⊗ Φ+

ab ⊗ Ie) will be negative. The exact estimates for
the number n of copies needed to obtain negativity for a �xed α can be obtained
from Helstrom condition for distinguishing two states (i.e., by estimating trace
norm distance between the considered states). For k > 1, the same argument
applies: we have k + 1 di�erent states which are for large n distinguishable by
tomography.
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5.4 Analytical solution for distillation of Werner

states with 1-extendible maps

Let us consider a d⊗ d Werner state in the following parametrization

%W (γ) ∼ I− γV (5.51)

In this parametrization normalization is not important for our task.
Now, given a Werner state of this form we will compute the analytical for-

mula for the maximum �delity achievable by applying a 1-extendible map, i.e.,
F1(%W (γ)). For this task we will use the orthogonal basis in the linear space of
operators that commute with unitary operators of the form U ⊗ U ⊗ U given
in [9]. To be able to use this tool, instead of operator X(α) = Ŝ1(Xα

ABab ⊗ IEe)
considered in proposition 5.1 we will use similar operator X ′(α) where Ψ− is used
instead of Φ+.

Namely, the operator X ′(α) is given by

X ′(α) = X1 ⊗ Y1 +X2 ⊗ Y2 (5.52)

where

X1 = %AB ⊗ IE, X2 = %AE ⊗ IB

Y1 = M̃α
ab ⊗ Ie, Y2 = M̃α

ae ⊗ Ib (5.53)

The states %AB and %AE denote the same Werner state given by (5.51) on sub-
systems AB and AE, as given in respective subscript. Instead of Mα we use
M̃α = αI − Ψ− thus all operators given by (5.53) are invariant with respect to
unitary operations of the form U ⊗ U ⊗ U which allows us orthogonal basis of
such a linear space given in [9].

Now, analogously to the proposition 5.1 we have

F1(%W (γ)) > α ⇐⇒ λmin(X ′(α)) < 0 (5.54)

and as Werner states (apart from the boundary ones γ = −1 and γ = 1) are full
rank states we also have

F1(%W (γ)) < α ⇐⇒ λmin(X ′(α)) > 0 (5.55)

F1(%W (γ)) = α ⇐⇒ λmin(X ′(α)) = 0. (5.56)

Clearly, Xi are positive. From section 5.3.1, we also know that for α ≥ 3/4,
Y1 + Y2 is positive too. But α = 3/4 can be obtained from any state by 1-
extendible maps (by replacing it with a suitable symmetrically extendible state,
as discussed in sec. 5.3.1), so it is enough to work with Y1 + Y2 positive. Let us
remind that all the four operators are invariant with respect to unitary operations
of the form U⊗U⊗U . Thus, according to [9], each of them is a linear combination
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of the following operators

R+ =
1

6
(I + V(12) + V(13) + V(23) + V(123) + V(321)),

R− =
1

6
(I− V(12) − V(13) − V(23) + V(123) + V(321)),

R0 = I−R+ −R−,

R1 =
1

3
(2V(23) − V(13) − V(12)),

R2 =
1√
3

(V(12) − V(13)),

R3 =
i√
3

(V(123) − V(321)). (5.57)

Here, Vσ are swaps, permuting systems according to permutation σ (written
down in terms of cycles), for e.g.,

V(12)|ψ1 ⊗ ψ2 ⊗ ψ3〉 = |ψ2 ⊗ ψ1 ⊗ ψ3〉 (5.58)

V(123)|ψ1 ⊗ ψ2 ⊗ ψ3〉 = |ψ3 ⊗ ψ1 ⊗ ψ2〉. (5.59)

The operator R±, R0 are orthogonal projectors, R+, R− being totally symmetric
and antisymmetric ones, respectively. The operators Ri, i = 1, 2, 3 have support
on R0. This subspace can be decomposed into tensor product of two Hilbert
spaces, one of them being a qubit. There is a decomposition such that we have
Ri = I⊗ σi, where σi are Pauli matrices, R0 = I⊗ I2.

So we can write

X1 =
∑
i∈I

siRi, X2 =
∑
i∈I

s̃iRi

Y1 =
∑
i∈I

tiRi, Y2 =
∑
i∈I

t̃iRi (5.60)

where I = {0, 1, 2, 3,+,−}. Now, since X1 and X2 di�er only by a permutations
of subsystems, then s± = s̃± and similarly t± = t̃±. Therefore, due to positivity
ofXi and Y1+Y2 we obtain that s±, s̃± ≥ 0 and t+, t̃+ ≥ 0. Moreover t− = t̃− = 0,
as Yi act on three qubits, where the antisymmetric projector is missing.

This implies that the operator X1⊗Y1 +X2⊗Y2 is positive if and only if the
following two qubit operator is positive

X ′2q(α) =
1

2
(Xq

1 ⊗ Y q
1 +Xq

2 ⊗ Y q
2 ) (5.61)

where

Xq
1 =

3∑
i=0

siσi, Xq
2 =

3∑
i=0

s̃iσi

Y q
1 =

3∑
i=0

tiσi, Y q
2 =

3∑
i=0

t̃iσi (5.62)



104 Chapter 5. Distillation using extendible maps
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Figure 5.2: Fidelity achievable by 1-extendible maps on n copies of Werner state.
I − γV parametrization is used. One can observe that given su�ciently many
copies all states except maximally mixed one are distillable with 1-extendible
map with arbitrary �delity. For n = 1 we use the analytical solution (5.76) for
more copies we do numerical computations using the method described in section
5.4.

Here σ0 is the identity on the qubit space and other σi are Pauli matrices.

Now, in (5.54)�(5.56) we can use simpler operator X ′2q(α) instead of X ′(α)
as one of them is positive if and only if the other one is positive.

The coe�cients si etc. can be easily computed, e.g., si = Tr(X1Ri)/Tr(R†iRi):
as each of Xi and Yi is a linear combination of the identity and one of V(12) or
V(13) so one can �rst compute Tr(V(12)Ri)/Tr(R†iRi), Tr(V(13)Ri)/Tr(R†iRi) and
Tr(Ri)/Tr(R†iRi), and compute si etc. as the proper combination of those.

We obtain

s0 = 1 t0 = −1

2
+ α (5.63)

s1 = −1

2
γ t1 = −1

4
(5.64)

s2 =

√
3

2
γ t2 =

√
3

4
(5.65)

s3 = 0 t3 = 0 (5.66)

s̃i =

{
si i ∈ {0, 1, 3}
−si i = 2

t̃i =

{
ti i ∈ {0, 1, 3}
−ti i = 2

(5.67)

The two qubit operatorX ′2q(α) given by (5.61) has the following form in terms
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of the coe�cients si and ti

X ′2q(α) =


s0t0 s0t1 s1t0 s1t1 − s2t2
s0t1 s0t0 s2t2 + s1t1 s1t0
s1t0 s2t2 + s1t1 s0t0 s0t1

s1t1 − s2t2 s1t0 s0t1 s0t0

 (5.68)

and its eigenvalues are given by

λ1,2 = ±
√
s2

2t
2
2 + (s0t1 − s1t0)2 − s1t1 + s0t0 (5.69)

λ3,4 = ±
√
s2

2t
2
2 + (s0t1 + s1t0)2 + s1t1 + s0t0. (5.70)

We have to �nd α1 such that for any α less then α1 at least one of eigenvalues
λ2 ≤ λ1 and λ4 ≤ λ3 is negative. It turns out that both λ2 and λ4 are zeroed for
the same α = α1 which is the greater of the roots of the equation

s2
2t

2
2 + (s0t1 ∓ s1t0)2 = (s1t1 ∓ s0t0)2 (5.71)

which is (up to the normalization) equivalent to a quadratic equation

(16− 4γ2)α2 − (16− 4γ2)α + (3− 3γ2) = 0. (5.72)

The greater of the solutions of (5.72) has the form

αmax =
1

2
+

1

2

√
1 + 2γ2

4− γ2
. (5.73)

Due to using of the I − γV parametrization of the Werner state the solution
(5.73) has a simple dimension independent form and is a symmetric function.

For all α < αmax operator X ′2q(α) and for αmax it is positive with two zero
eigenvalues thus by considering (5.54)�(5.56) we �nally obtain

F1(%W (γ)) =
1

2
+

1

2

√
1 + 2γ2

4− γ2
. (5.74)

One can transform (5.74) to a d ⊗ d parametrization of the Werner state
%W (p) given by (2.70). The transformation can be done using the substitution

γ = −2dp− d− 1

2p− d− 1
. (5.75)

In particular for d = 4 we obtain

F1(%W (p)) =
1

2
+

√
1

4
− 15p(1− p)

25− 16p2
. (5.76)

We see that any Werner state apart from maximally mixed one has �delity
larger than 3/4.
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5.4.1 Distillation of Werner states by 1-extendible measure-
and-prepare maps

We now consider a single copy of a Werner state and the `measure-and-prepare'
1-extendible maps. We shall show that the �delity is the same as in the case of
all 1-extendible maps. To this end, we need to �nd minimum eigenvalue of the
operator Z given by (5.41). Using the method from the previous section, we can
write Z as

Z = (α− F1)X1 + (α− F2)X2 (5.77)

where Xi are given by (5.60). We obtain that

Zq =
3∑
i=0

βiσi (5.78)

where βi are given by

βi = (α− F1)si + (α− F2)s̃i (5.79)

Recall, that s3 = s̃3 = 0. Here Zq denotes the restriction of Z to the qubit,
similarly as it was for for Xq

i and Y q
i .

The operator is positive if and only if

3∑
i=1

β2
i ≤ β2

0 (5.80)

If we put equality there are the following two solutions:

α1,2 =
1

2
− y+ ± |y−|f(p, d) (5.81)

where

f(p, d) =

√
3| − 2dp+ d+ 1|√

((2(d− 2)p+ d+ 1))(3(d+ 1)− 2(d+ 2)p)
(5.82)

and

y2
+ +

1

3
y2
− =

1

16
(5.83)

with y± given by (5.43). (Note, that the pair of �delities (0, 0) is not relevant
here, and moreover it is enough to consider extremal points of the region of pairs
of �delities, hence we can con�ne ourselves to (5.83)). We have now to maximize
the α's over y+, y− satisfying the above constraints. This gives

αmax =
1

4

(√
3f(p, d)2 + 1 + 2

)
(5.84)

which, once applied (2.70), is exactly the same as the �delity achievable with the
general 1-extendible map given in equation (5.74).
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Figure 5.3: Fidelity achievable by means of k-extendible maps for a single copy
of Werner state with d = 3.

Two copies Note, that in I + γV parametrization, αmax does not depend on
dimension, which is partially responsible for its very simple form. However the
parametrization does not help much for two copies � we are able to obtain the
expression for eigenvalues of the expression for two copies

Xq
1 ⊗Xq

1 ⊗ Y q
1 +Xq

2 ⊗Xq
2 ⊗ Y q

2 (5.85)

in terms of si and ti but these are huge expressions and even after substituting
si and ti, i.e., in terms of α and γ they stay huge.

5.4.2 More copies and more extensions

We have obtained numerical results for larger number of copies and k-extendible
maps with larger k. We present the results on subsequent �gures. On �gure 5.2
we present the plot for exemplary numbers of copies up to n = 8, and for 1-
extendible maps. For n = 1 we use the analytical solution (5.76) while for more
copies we do numerical computations i.e. we are diagonalizing the operators
of the sort of (5.85) with number of X's equal to number of copies. The plot
con�rms the result of section 5.3.3: for larger and larger number of copies, the
�delity of any state but the maximally mixed one tend to 1.

We have also done exemplary numerical calculations for more extensions and
more copies. On �gure 5.3 we consider single copy, and k-extendible maps up to
k = 7. We see that up to k = 4 the �delity for symmetric state (one with γ = 1)
has �delity equal to 1, and only for k ≥ 5 the �delity drops down. As discussed
in section 5.3.2, we have analytical proof that F = 1 for k ≤ 2, while the cases
of k = 3, 4 are still not fully understood. We also can see, that up to k = 4 the
plots are symmetric with respect to maximally mixed state (γ = 0). This means
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Figure 5.4: Fidelity for two copies, and k = 1, 2 and 3 extendible maps. The
larger the number k, the lower the curve.
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Figure 5.5: Fidelity achievable by means of k-extendible maps for single, two and
three copies
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that for the classes of k-extendible maps up to k = 4, entanglement/separability
property of Werner states is completely irrelevant.

Note also, that once k is growing two cusps are forming: the right one will
materialize in the coordinates (α = 1

2
, γ = 1) and will mean, that all state with

γ > 0 are not distillable. The left one tends to (α = 1
2
, γ = −1

2
, where it will

constitute the boundary of distillable region according to [8]. Finally, on �gure
5.4 we consider two copies and k-extendible maps with k = 1, 2, 3 for d = 3.
and on �gure 5.5 we put all the plots together, to visualize, what happens if we
change both the number of copies of the state and the number of extensions for
the maps.





Chapter 6

Computer tools used during the

research

During the research presented in this thesis computer aided computations where
used. Both analytical and numerical computations where performed. All pre-
sented tools are free software and open source.

Numerical computation For numerical computation a programing language
Python1 was used. Python is an interpreted programming language which allows
for quick writing of code and easy debugging. Python together with a Python
library NumPy2 (which adds multidimensional arrays to the Python language)
makes an excellent environment for linear algebraic numerical computations. The
author of the thesis during his research in quantum information has developed a
Python library called lpqph3 (not published) based on NumPy arrays and imple-
menting many functions useful in the context of quantum information. Including
an implementation of the Genetic Algorithm and a function which returns a uni-
tary matrix given a vector of random numbers (implementation of an algorithm
proposed in [36]) suitable in optimizations with Genetic Algorithm. The Genetic
Algorithm was used to obtain �rst forms of operator X for mixing two private
bits (section 3.1) then analytical form was obtained from numerical results and
the obtained analytical form was improved and generalized to the form given by
(3.3). Genetic Algorithm was also used in the research presented in chapter 4 to
con�rm numerically the half-property and to obtain numerical upper bounds for
the half-property.

To obtain data for most of the plots4 presented in chapter 5 a Python library
called Pysparse5 was used which includes fast sparse matrix implementation and

1http://python.org/
2http://numpy.scipy.org/
3Partially written in the language C to improve performance and using the tool called

Pyrex (http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/) which greatly simpli�es
writing Python extensions.

4All plots except �gure 5.2 which was obtained using the method presented in section 5.4
5http://pysparse.sourceforge.net/
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the JDSYM algorithm for �nding eigenvalues and eigenvectors. The implementa-
tion of the JDSYM algorithm apart from sparse matrix implementation provided
by Pysparse may use any other matrix implementation which supports matrix-
vector multiplication. Such memory-optimized matrix implementation was de-
veloped during the research presented in chapter 5. This research works on huge
matrices (even 2 · 106 × 2 · 106) for which we had to compute the eigenvalues.
Fortunately those matrices are direct sums of smaller blocks so to compute eigen-
values of the whole matrix one can compute eigenvalues of the individual blocks.
Matrices of this size does not �t at once in computers memory so we had to split
the matrix into blocks (without building the whole matrix) and then prepare
blocks in multiple runs in each run preparing such number of blocks which will
�t into memory and then compute their eigenvalues.

Analytical computation For analytical computations we used a Computer
Algebra System called Maxima6 and the Python library for symbolic computa-
tions called SymPy7.

Figures Plots were prepared using graph plotting program PyXPlot8 and other
�gures were prepared using PGF9 (Portable Graphics Format) which is a TeX
macro allowing for preparation of high-quality graphics.

6http://maxima.sourceforge.net/
7http://code.google.com/p/sympy/
8http://www.pyxplot.org.uk/
9http://sourceforge.net/projects/pgf/



Chapter 7

Conclusion

In the thesis two quantum communicational problems where investigated: the
problem of the existence of NPT bound entangled states and the problem of
key-distillability of PPT entangled states.

Key-distillability of PPT entangled states In chapter 3, in the area of
key-distillability of PPT states mixtures of two and four specially chosen private
bits (also called pbits) were introduced. The construction is possible in low
dimensions starting from 4⊗ 4.

For the mixtures of two private bits their key-distillability using Devetak-
Winter protocol was considered and the rate of distillation of the private key
(e�ciency of key distillation in bits of private key per copy of the state) was
computed. Mixtures of two pbits laying on the boundary of PPT states was
presented which are key-distillable PPT states possible even in low dimension
(4⊗ 4).

For mixtures of four private bits Devetak-Winter protocol was used with re-
currence preprocessing. In contrast to mixing two private bits the rate of key
distillation was not considered: the key distillation was only considered exis-
tentially not quantitatively. For the four pbits case separability conditions were
introduced and the key-distillable class of PPT states approaching arbitrary close
to the set of separable states was presented. The decomposition of 4⊗4 class %H
was provided which allows for experimental realization of the states of the class
in the lab.

Also Devetak-Winter protocol with recurrence and sole Devetak-Winter pro-
tocol where compared in the context of tolerable white noise in the case of mixing
two pbits. Moreover maximal von Neumann entropy was compared between the
PPT key-distillable mixtures of two pbits and four pbits. Links of our research
with distillability via erasure channel were considered. Finally, a su�cient con-
dition for key-distillability for general states was provided.

One could extend on our research and compute the rate of distillation of
private key in the case of mixing four private bits using Devetak-Winter protocol
with recurrence preprocessing. An interesting open question is whether all PPT
entangled states are key-distillable? Or whether PPT key-distillable states are
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only in close neighborhoods of mixtures of private bits?

Distillation of NPT Werner state by half-property In chapter 4 the
problem of n-undistillability of the most entangled of the NPT suspicious Werner
states for d = 4 was considered. Let us denote this state with %W . The n-
undistillability of %W was translated to the equivalent problem of the so-called
half-property. The state %W is n-undistillable if the overlap of the Schmidt rank
two states φ2 with projector Qn does not exceed 1/2. A particular Schmidt rank
two state φ2 which satis�es 〈φ2|Qn|φ2〉 ≤ 1

2
is said to have the half-property.

It is known that %W is 1-undistillable. So �rst, the problem of 2-undistillability
of %W was considered: the problem was not solved but wide range of the Schmidt
rank two states was shown to have the half-property for n = 2. It was shown
that there are nontrivial maxima of the overlap of Q2 with Schmidt rank two
states which shows that one could not consider only Schmidt rank two states
product in the cut between the copies. Then the half-property problem for n = 2
was translated into a matrix analysis problem. The matrix analysis problem was
solved for normal matrices which translates back to the half-property as follows:
all Schmidt rank two states φ2 which has the `normal' projection on Q2 (i.e.,
Q2|φ2〉 is isomorphic through the so-called state-operator isomorphism to a nor-
mal matrix) satisfy the half-property. Also using the notion of so-called common
degrees of freedom it was shown that any state having on each pair at least one
subsystem with one qubit support satis�es the half-property.

For general n, maximal overlap of product states φ1 with the projector Qn was
computed and also the form of φ1 states attaining the maximum was provided.
Also bounds on the overlap 〈φ2|Qn|φ2〉 in terms of the overlap 〈φ1|Qn|φ1〉 was
given but in the limit of n→∞ it, unfortunately, gives the trivial bound that the
overlap does not exceed one. For n = 2 numerical bounds better than 3/4 (which
comes from 〈φ1|Q2|φ1〉) was provided and the analytical bound of 0.74971 < 3/4
given in [6] was recalled.

One could extend on our research by analytically proving one of the numerical
bounds or even better by solving the matrix analysis problem for general matrices
to prove 2-undistillability of %W . There is still the open and hard problem of
whether there are NPT bound entangled states.

Distillation using extendible maps In chapter 5 distillation of entangle-
ment using so called k-extendible maps was considered. The k-extendible maps
for large k in a sense converge to separable maps and are shrinking supersets
of the separable maps (so in a limit of k → ∞ one obtains standard distilla-
tion of entanglement). Those wider than LOCC classes of operations are used
because they are easier in mathematical consideration than LOCC maps. One
may hope that using k-extendible maps some suspicious Werner states may be
proven undistillable.

First, for a given state % the supremum of the �delity of Λ(%) with singlet
where the supremum is taken over all k-extendible maps was considered. Let
us denote this supremum with Fk(%). The value of the supremum Fk(%) was
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then connected to positivity of some matrix. Then a subclass of k-extendible
maps called `measure-and-prepare' maps was introduced and supremum over
this class was also connected to positivity of some (lower dimensional) matrix
but parametrized with k parameters.

Later it was shown that, although k-extendible maps in a sense converge to
the class of separable maps for large k, they are surprisingly powerful. First
of all, for any �xed k, the class of k-extendible maps can distill any state but
maximally mixed one, if large enough number of copies is available. Second,
even in single copy case, the maps can provide �delity 1 (with some nonzero
probability) for any state which has a (k − 1)-extendible state in its kernel. In
particular, k-extendible maps are not stable under local embedding into a larger
Hilbert space.

Then, for the Werner states, the analytical formula for F1(%W ) was obtained
using the orthogonal basis in the linear space of operators that commute with
unitary operators of the form U ⊗U ⊗U given in [9]. Analogously, the analytical
formula was obtained for the subclass of 1-extendible `measure-and-prepare' maps
which happens to be identical to the formula for all 1-extendible maps, i.e., to
F1(%W ).

Finally, numerical computations were used to obtain plots of Fk(%
⊗n
W ) for some

values of the number of extensions k and the number of copies n. In case of k = 1
the above basis from [9] was used allowing us to go with the number of copies
up to n = 8. For k > 1 direct computation (but highly optimized) was used.

To extend on our research, one can use the irreducible representation of sym-
metric group for k > 1 which would allow to obtain plots with higher number of
copies for k > 1 and may be one could perhaps also obtain an analytical formula
for F2(%W ).





Appendix A

Proof of a proposition A.1

Lemma A.1. The minimum value of
∑d

i=1 |ãi|2 subject to
∑d

i=1 ãi = z where
ãi, z ∈ C is obtained by settings ãi = z

d
.

Proof. From the parallelogram identity we have

1

2
|ãi + ãj|2 = |ãi|2 + |ãj|2 −

1

2
|ãi − ãj| ≤ |ãi|2 + |ãj|2 (A.1)

with equality i� ãi = ãj. Thus whenever for some ãi, ãj we have ãi 6= ãj we can
replace them with two instances of ãi+ãj

2
decreasing the value of

∑d
i=1 |ãi|2 and

leaving the constrain satis�ed. This implies that the optimal solution is to take
all ãi equal, i.e., ãi = z

d
.

Proposition A.1. For all d ≥ 3 dimensional vectors ~a and ~b with complex
elements ãi and b̃i and satisfying the constraints

d∑
i=1

ãi =
d∑
i=1

b̃i = 0,
d∑
i=1

|ãi|2 +
d∑
i=1

|b̃i|2 =
1

d
(A.2)

the following equality holds

max
~a,~b

(
|ã1 + b̃1|2 + |ã1 + b̃2|2

)
=

3d− 4

d2
. (A.3)

Corollary A.1. For d = 4 under this constraints we have

max
~a,~b

(
|ã1 + b̃1|2 + |ã1 + b̃2|2

)
=

1

2
. (A.4)

Proof of proposition A.1. We denote function (A.3) as f , the vector of all ãi
as ~a, the vector of all b̃i as ~b, and we use their polar decompositions

ãi = aie
iαi , b̃i = bie

iβi , ai, bi ∈ R. (A.5)

In optimizing function f under the constraints (A.2) we shrink the set of
possible ~a and ~b in such a way to simplify the form of f and the constraints but
keeping at least one of the global maxima within the shrinking set.
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1. Without loss of generality we can take ã1 = a1 ≥ 0. Thus we optimize

f(~a,~b) = |a1 + b̃1|2 + |a1 + b̃2|2 (A.6)

= 2a2
1 + b2

1 + b2
2 + 2a1(b1 cos β1 + b2 cos β2). (A.7)

2. We can consider only ~b for which

b1 cos β1 + b2 cos β2 ≥ 0. (A.8)

(If it is negative we can change its sign by multiplying ~b by eiπ and thus
increase f).

3. In maximizing f under the constraints it is always best to set

ãi = − a1

d− 1
(i > 1) (A.9)

b̃i = − 1

d− 2
(b̃1 + b̃2) (i > 2) (A.10)

Indeed, whenever this setting is not used we can by lemma A.1 obtain some
freedom in the second constraint which we can use to increase a1 and one
of b1 or b2 without decreasing f . Thus it is enough to consider ~a and ~b
satisfying this setting, i.e., we optimize function f(a1, b̃1, b̃2) subject to the
following constraints

d

d− 1
a2

1 + b2
1 + b2

2 +
1

d− 2

∣∣∣b̃1 + b̃2

∣∣∣2 =
1

d
,

a1 ≥ 0, b1 cos β1 + b2 cos β2 ≥ 0. (A.11)

4. Further we show that it is enough to consider b̃1, b̃2 ∈ R as replacing b̃1

with b̃′1 = b1 cos β1 and b̃2 with b̃′2 = b2 cos β2 and changing a1 to a′1 to �t
the constraint does not decrease f , i.e., f(a′1, b̃

′
1, b̃
′
2) ≥ f(a1, b̃1, b̃2). Namely

we have

f(a′1, b̃
′
1, b̃
′
2) = 2a′21 + b2

1 cos2 β1 + b2
2 cos2 β2

+ 2a′1(b1 cos β1 + b2 cos β2) (A.12)

and the main constraint is

d

d− 1
a′21 + b2

1 cos2 β1 + b2
2 cos2 β2

+
1

d− 2
|b1 cos β1 + b2 cos β2|2 =

1

d
. (A.13)

First we show that a′1 ≥ a1 which is evident from the di�erence of main
constraints

d

d− 1
(a′21 − a2

1) = b2
1 sin2 β1 + b2

2 sin2 β2

+
1

d− 2

(∣∣b1e
iβ1 + b2e

iβ2
∣∣2 − |b1 cos β1 + b2 cos β2|2

)
≥ 0. (A.14)



119

Next we use this di�erence to show that f does not decrease after the
replacement

f(a′1, b̃
′
1, b̃
′
2)− f(a1, b̃1, b̃2)

= 2(a′21 − a2
1)− b2

1 sin2 β1 − b2
2 sin2 β2

+ 2(a′1 − a1)(b1 cos β1 + b2 cos β2)

≥ d− 2

d
(b2

1 sin2 β1 + b2
2 sin2 β2) ≥ 0. (A.15)

So we can focus on a problem with b̃1, b̃2 ∈ R

f(a1, b1, b2) = 2a2
1 + b2

1 + b2
2 + 2a1(b1 + b2) (A.16)

d

d− 1
a2

1 + b2
1 + b2

2 +
1

d− 2
(b1 + b2)2 =

1

d
,

a1 ≥ 0, b1 + b2 ≥ 0. (A.17)

5. In analogous way we show that it is enough to consider b1 = b2 ≥ 0 as
taking b′1 = b′2 = |b1+b2|

2
and changing a1 to a′1 to �t the constraint does not

decrease f . Then the optimization simpli�es to

f(a1, b1) = 2(a1 + b1)2 (A.18)
d

d− 1
a2

1 +
2d

d− 2
b2

1 =
1

d
, a1, b1 ≥ 0. (A.19)

6. We compute b1 from the constraint and substitute to f which gives

f(a1) = 2

(
a1 +

√
x− ya2

1

)2

(A.20)

a1 ∈
[
0,
√
x/y
]

(A.21)

where

x =
d− 2

2d2
, y =

d− 2

2(d− 1)
. (A.22)

Function f has its maximum when the expression in the parenthesis has
the maximum (as it is nonnegative). We consider its derivative

∂

∂a1

(
a1 +

√
x− ya2

1

)
= 1− ya1√

x− ya2
1

(A.23)

which is zero for

a?1 =

√
x

y2 + y
(A.24)
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and the second derivative is negative in a?1 so the maximum is equal to

f(a?1) = 2

(√
x

y2 + y
+

√
xy

y + 1

)2

= 2x(y−1 + 1) =
3d− 4

d2
(A.25)

The global maximum could also be on one of the boundaries but for d ≥ 3
f(a?1) is always greater than the values on the boundaries.
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