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Abstract

Illative systems of combinatory logic consist of combinatory logic extended with additional
constants intended to represent logical notions. We introduce some strong systems of illative
combinatory logic, extending earlier systems of Barendregt, Bunder and Dekkers. This
continues Curry’s and Bunder’s lines of research on illative combinatory logic. We define
semantics for illative systems and show our systems consistent by model constructions. We
also investigate properties of translations of traditional systems of logic into the corresponding
systems of illative combinatory logic. Some of the systems shown consistent in the present
work are much stronger than the systems shown consistent by Barendregt, Bunder and
Dekkers. In particular, the strongest of our systems essentially incorporates full extensional
classical higher-order logic extended with dependent function types, dependent sums, subtypes
and W-types, which allows to interpret a great deal of mathematics in this system.



Streszczenie

Systemy illatywnej logiki kombinatorycznej rozszerzają beztypowy rachunek kombinatorów
o dodatkowe stałe mające na celu reprezentację pojęć logicznych. W pracy wprowadzamy
pewne silne systemy illatywnej logiki kombinatorycznej będące rozszerzeniem wcześniejszych
systemów Barendregta, Bundera i Dekkersa. Tym samym kontynuujemy kierunek badań
Curry’ego i Bundera nad illatywną logiką kombinatoryczną. Definiujemy semantykę dla
systemów illatywnych i poprzez konstrukcje modeli pokazujemy niesprzeczność naszych
systemów. Niektóre spośród systemów których niesprzeczność wykazaliśmy są znacznie
silniejsze niż systemy Barendregta, Bundera i Dekkersa. W szczególności, najsilniejszy z
naszych systemów zawiera pełną ekstensjonalną klasyczną logikę wyższego rzędu rozszerzoną
o zależne typy funkcyjne, sumy zależne, podtypy i W-typy.



Słowa kluczowe

rachunek lambda, illatywna logika kombinatoryczna, semantyka

Keywords

lambda calculus, illative combinatory logic, semantics

ACM Computing Classification

F. Theory of Computation
F.4 Mathematical Logic and Formal Languages
F.4.1 Mathematical Logic
Lambda calculus and related systems



Acknowledgements

I would like to thank Paweł Urzyczyn for his general support and his helpful comments on
my not always perfect writings. I also acknowledge the support of the Polish government
NCN grant 2012/07/N/ST6/03398.





Contents

1 Introduction 3
1.1 Illative combinatory logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 The systems of Barendregt, Bunder and Dekkers . . . . . . . . . . . . . . . . 13

2 Preliminaries 17
2.1 Fixpoint definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Rewriting, lambda-calculus, and combinatory logic . . . . . . . . . . . . . . 20

2.3.1 Abstract rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Lambda-calculus and combinatory logic . . . . . . . . . . . . . . . . . 22
2.3.3 Reduction systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Traditional systems of logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Propositional logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 First-order predicate logic . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Higher-order predicate logic . . . . . . . . . . . . . . . . . . . . . . . 30

3 Paradoxes 33
3.1 Curry’s paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Bunder’s paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Kleene-Rosser paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Propositional logic 61
4.1 Illative systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Kripke semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Classical semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.3 An alternative formulation of IKp . . . . . . . . . . . . . . . . . . . 74

4.2 Model constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.1 Model construction for IJp . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2 Model construction for IKp . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1



5 First-order predicate logic 85
5.1 Illative systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Kripke semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.2 Classical semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Model constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.1 Model construction for IJ . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.2 Model construction for IK . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Higher-order predicate logic 104
6.1 Illative systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Model construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3 Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Extensions 124
7.1 Illative system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2 Model construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Conclusion 150

Bibliography 152

2



Chapter 1

Introduction

Illative systems of combinatory logic or lambda-calculus consist of type-free combinatory logic
or lambda-calculus extended with additional constants intended to represent logical notions.
In fact, early systems of combinatory logic and lambda calculus (by Schönfinkel [Sch24],
Curry [Cur30] and Church [Chu32, Chu33]) were meant as very simple foundations for logic
and mathematics. However, the Kleene-Rosser and Curry paradoxes caused most logicians to
abandon this work.

It has proven surprisingly difficult to formulate and show consistent illative systems
strong enough to interpret traditional logic. This was accomplished in [BBD93], [DBB98a]
and [DBB98b], where several systems were shown complete for the universal-implicational
fragment of first-order intuitionistic predicate logic. In [Cza13b] an extension of one system
from [BBD93, DBB98a, DBB98b] in which full higher-order classical logic may be interpreted
was shown consistent by semantic methods.

The difficulty in proving consistency of illative systems in essence stems from the fact
that, lacking a type regime, arbitrary recursive definitions involving logical operators may be
formulated, including negative ones. In early systems containing an unrestricted implication
introduction rule this was the reason for the Curry’s paradox (see Section 3.1). Formulating
appropriate and not too cumbersome restrictions is not easy if the fundamental property
of allowing unrestricted recursion is to be retained, to which the Bunder (Section 3.2) and
Kleene-Rosser (Section 3.3) paradoxes testify.

The fact that in illative systems unrestricted recursion is directly incorporated into the
logic is one of the properties that make these systems interesting from the point of view
of computer science. In [Cza13c, Cza13d] it is suggested that using illative-like systems
may be a viable approach to the problem of handling unrestricted recursion in interactive
theorem provers. An advantage of illative systems is that no justifications are needed for
formulating unrestricted recursive definitions. One may just introduce a possibly non-well-
founded recursive function definition and start reasoning about it within the logic. There is
obviously a trade-off – some inference rules need to be restricted by adding premises which
essentially state that some terms are “propositions”. To be able to derive that some terms
are propositions, illative systems include certain “typing rules”, i.e., rules for reasoning about
which types (categories) a term belongs to. In contrast to traditional systems, however, these

3



rules are internal to the system. The functions do not need to be “typed” a priori, but
reasoning about “types” may be interleaved with other reasoning. For instance, one may
show typability by induction. This may possibly be an interesting way of reasoning about
potentially non-well-founded function definitions in an interactive theorem prover.

The initial motivation of Curry for studying illative combinatory logic was to develop
extremely simple foundations for mathematics and logic, which assume as primitive the
notions of self-applicable function-in-intension (operation), and stress the very mechanism of
definition/combination of concepts. In this approach to the foundations of mathematics, the
notion of function takes priority over the notion of set. A set is a special function, whose
application to an argument may sometimes be a proposition. The members of a set are those
arguments for which the application is a true assertion.

It is important to note, however, that Curry’s aim was not merely to provide an alternative
foundational system for mathematics, which would compete with the theory of types, set
theory, etc. In Curry’s view, combinatory logic concerns itself with the ultimate foundations.
Its purpose is the analysis of certain notions of such a basic character that they are taken
for granted in most other systems of logic. These are, above all, the analysis of the process
of substitution, and also the classification of objects into types or categories. Such notions
constitute what Curry calls a prelogic. Although very basic and generally presupposed, these
notions are not simple and thus they merit further investigation. Moreover, an analysis of the
prelogic may shed some light on the sources of paradoxes, and this was also one of Curry’s
original motivations. See [CFC58, p. 1] and [Cur80, Sel80, Des04].

In systems of illative combinatory logic, there is a priori only a single sort of terms, only
a single binary application operation to form composite terms, and only a single form of
judgements. The rules of these systems are to have a simple character, without involving
complex notions like substitution. The process of substitution, and the categorisations of
terms, are performed entirely inside the system.

In this work we develop semantics for various systems of illative combinatory logic and
lambda-calculus which are extensions of some systems from [BBD93, DBB98a, DBB98b,
Cza13b]. The systems are then shown consistent by constructing models. We also consider
natural embeddings of traditional logical systems into corresponding illative systems. Using
semantic methods, we investigate soundness and completeness of these translations.

Some of the systems shown consistent in the present work are much stronger than the
systems of [BBD93, DBB98a, DBB98b]. In particular, the system eIKω from Chapter 6
essentially incorporates full extensional classical higher-order logic. The system I+ from
Chapter 7 extends eIKω by dependent function types, dependent sums, subtypes and
W-types.

The system I+ is rich enough to interpret much of mathematics. Many common type-
theoretic constructions are possible. Using dependent sums one may define finite products
and (non-dependent) disjoint sums. Using W-types, which originate from Martin-Löf’s type
theory [ML84], [NPS90, Chapter 15], one may define inductive types, including the type
of natural numbers. The derived induction principles associated with inductive types are
unrestricted, i.e., it is possible to apply inductive reasoning to terms whose types have not
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yet been established, thus for instance enabling reasoning about types of terms by induction.
In most previous work the approach is syntactic – consistency is shown by cut-elimination or

by analysis of possible forms of derivable terms using grammars. Establishing cut-elimination
is more informative than only constructing a model, but for illative systems it also seems
much harder. Our methods are semantic. The consistency proofs are not constructive and
need much of the power of set theory. In fact, the model construction for the strongest
system I+ assumes the existence of a strongly inaccessible cardinal, so it is not formalisable
in ZFC.

The rest of this chapter is organised as follows. In Section 1.1 we provide some background
on illative combinatory logic. In Section 1.2 we briefly outline the results obtained in this work.
In Section 1.3 we survey previous work related to illative combinatory logic. In Section 1.4
we give an overview of the systems and results from [BBD93, DBB98a, DBB98b].

1.1 Illative combinatory logic

All illative systems we consider (except I+) come in three variants differing in the underlying
reduction system, which is either combinatory logic with weak reduction, (untyped) lambda-
calculus with β-reduction or lambda-calculus with βη-reduction (see Section 2.3), with
constants from a fixed signature Σ. Since most of the proofs and definitions are the same or
very similar for each of the variants, we usually give only a single generic proof or definition,
and possibly note the differences for each variant. We use T to generically denote the set of
terms of an illative system, which is either the set of terms of combinatory logic with extra
constants from Σ (TCL(Σ)) or the set of terms of lambda-calculus with constants from Σ
(Tλ(Σ)). Analogously, we use = to generically denote =w, =β or =βη, as appropriate. By ≡ we
denote syntactic identity of terms (up to α-conversion in lambda-calculus). We use S and K
to generically denote either the constants of combinatory logic, or the terms λxyz.xz(yz)
and λxy.x in lambda-calculus. We define I ≡ λx.x in lambda-calculus, or I ≡ SKK in
combinatory logic. The notation λx.M is used to denote either combinatory abstraction
in CL, or abstraction in lambda-calculus.

Illative systems extend combinatory logic (or lambda-calculus) with illative primitives
representing logical notions. Unlike in most traditional systems of logic, there is no a
priori distinction between various categories: propositions (formulas), individual terms,
functions, relations, etc. Instead, there are inference rules which allow some categorisations
to be performed inside the system. Certain illative primitives represent primitive types1

(categories), and there are combinators which allow the formation of new types. If a term T
represents a type, then TX is an assertion that X has type T . In fact, any term may
be potentially asserted as a proposition (which does not mean that all terms represent
well-formed propositions), and equal terms (in the sense of weak, β-, or βη-equality, as
appropriate) are always interchangeable. Intuitively, types represent permissible quantifier
ranges – quantification is allowed only over objects of a fixed type. Predicates on a type T ,
or subsets of T , are represented by functions from T to the type of propositions H.
1The notion of “type” is used informally in this section, interchangeably with “category”.
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The illative primitives need not be constants – they may be composite terms. An illative
primitive which is a constant is called an illative constant. Below we list some common illative
primitives together with an informal explanation of their meaning (cf. [CHS72, §12B2]). Any
given illative system may contain any number of these primitives, and possibly some more.
All primitives listed here have appeared in previous work on illative combinatory logic. In
Chapter 6 and in Chapter 7 we use some additional primitives, which to our knowledge have
not been considered before. In what follows, by X, Y, Z, . . . we denote arbitrary terms from T.

P Implication. Instead of PXY we often write X ⊃ Y . Implication is sometimes defined
by P ≡ λxy.Ξ(Kx)(Ky) (see below for an explanation of Ξ).

V

Conjunction. Instead of

V

XY we often write X ∧ Y .

V Disjunction. Instead of VXY we often write X ∨ Y .

⊥ False proposition.

> True proposition. Often defined by > ≡ P⊥⊥.

¬ Negation. Often defined by ¬ ≡ λx.Px⊥.

Ξ Restricted generality – a restricted universal quantifier. The term ΞXY is intuitively
interpreted as “X ⊆ Y ”, or “for every object Z such that XZ we have Y Z”, or “for
every object Z of type X we have Y Z”. The notation ∀x :X . Y is often used to denote
ΞX(λx.Y ). Note that x is not bound in X.

X Restricted existential quantifier. The term XY Z is intuitively interpreted as “there
is an object X such that Y X and ZX”, or “there exists an object X of type Y such
that ZX”. The notation ∃x : Y . Z is often used to denote XY λx.Z. Note that x is not
bound in Y .

F Functionality (cf. [CFC58, §8C]). The term FXY F is intuitively interpreted as “F is a
function from X to Y ”, or “for every object Z of type X we have Y (FZ)”. Functionality
is often defined by F ≡ λxyf.Ξx(λz.y(fz)). Sometimes we write A → B instead of
FAB.

G Dependent functionality. The term GXY F is intuitively interpreted as “F is a dependent
function which for each Z of type X gives an object of type Y Z”, or “for every
object Z of type X we have Y Z(FZ)”. Dependent functionality is often defined by
G ≡ λxyf.Ξx(λz.yz(fz)).

Fn Functionality of n arguments. The term FnX1 . . . XnY F is intuitively interpreted as
“F is an n-argument function from X1, . . . , Xn to Y ”. Usually Fn is defined inductively
as follows:

F0 ≡ I
Fn+1 ≡ λx1 . . . xn+1y.Fx1(Fnx2 . . . xn+1y)

Q Equality. The term QXY is intuitively interpreted as “X and Y are equal”.

H Type of propositions. The term HX is intuitively interpreted as “X is a proposition”.
The type of propositions is sometimes defined by H ≡ λx.Pxx or by H ≡ λx.L(Kx).
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L Category of types. The term LX is intuitively interpreted as “X is a type” or “X
represents a permissible range of quantification”. The category of types is sometimes
defined by L ≡ λx.Ξxx.

A Type of individuals. When interpreting first-order logic this type represents the first-
order universe.

E Universal category – the type of all objects. The assertion EX should be true for any
object X.

Using illative primitives, it is possible to interpret ordinary logic in illative combinatory
logic. For instance, a first-order sentence

∀x(r(x)→ s(f(x), g(x)) ∧ r(f(x)))

is translated as the statement

∀x : A . rx ⊃ s(fx)(gx) ∧ r(fx)

which is
ΞA(λx.P(rx)(

V

(s(fx)(gx))(r(fx))))

where r, s, f, g are constants corresponding to the relation and function symbols from the
first-order language, and A represents the first-order universe.

In this work we treat only natural deduction formulations of illative systems. In case of
illative combinatory logic, it is not always easy to formulate Hilbert-style or Genzen-style
systems equivalent to a given natural deduction system (the papers [Bun79, BD08] deal with
a similar issue). In the present work we do not concern ourselves with this problem. Actually,
in view of the results of Section 3.3 it seems plausible that our strongest system I+ does not
have any equivalent Hilbert-style formulation.

In an illative system judgements have the form Γ ` X where Γ is a finite set of terms
and X is a term.2 If X is a term and Γ a set of terms, then by Γ, X we denote Γ ∪ {X}. For
an infinite set of terms Γ we write Γ ` X if there exists a finite subset Γ′ ⊆ Γ with Γ′ ` X.
2Thus our usage of the symbol ` differs somewhat from its usage by Curry. Curry mostly considers

(essentially) Hilbert-style systems. The symbol ` then denotes a “unary predicate” such that ` X for
a term X is a meta-level statement meaning “X is provable (in the system under consideration; with no
additional hypotheses)”. Then X1, . . . , Xn ` X is only an abbreviation for the meta-level statement “X is
provable after adjoining X1, . . . , Xn to the list of axioms”. Our form of judgements is more complex. Strictly
speaking, we need two syntactic categories: one for terms and one for finite sets of terms. Hence our systems
are not completely formalised in the sense of [CFC58, §1E5]. Since we are not so much interested in analysing
prelogic as in incorporating unrestricted recursion into a system of logic, we shall not concern ourselves too
much with such issues. See [CFC58, Chapter 1], [Cur80, §8] and [Cur41b, §2-3] for a more thorough and
precise discussion of Curry’s conception of formal systems and of the meaning of `. In fact, by the results of
Section 3.3 it seems plausible that the strongest of our systems incorporating unrestricted induction rules has
no reasonable Hilbert-style formulations. We are not concerned by this situation, and in this respect our
approach differs from that of Curry. For Curry the (“naturalness” preserving) reduction of certain general
types of formal systems to completely formalised (in the sense of [CFC58, §1E5]) systems of preferably strictly
finite structure was one of the main tasks of combinatory logic.
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All illative systems are required to include the following axiom (Ax) and the rule (Eq)
(cf. the definition of F0 in [CFC58, §8E]). The rule (Eq) essentially incorporates unrestricted
recursion into the system.

Γ, X ` X (Ax) Γ ` X X = Y
Γ ` Y (Eq)

Here X = Y is a meta-level side condition. Recall that = denotes either weak, β-, or
βη-equality, as appropriate.

Note that, strictly speaking, the rule (Eq) does not have a simple character, because the
meta-level side condition is of a complex nature, and in the case of β- or βη-equality in the
lambda-calculus it involves the notion of substitution. However, at least in the case of weak
equality in combinatory logic, this rule could be broken up into several rules of a simple
character, at the cost of introducing the illative primitive Q for equality, or a new form of
judgement ` X = Y . Since our interest lies more in the fact that illative systems incorporate
unrestricted recursion directly into the logic, rather than with the aim of analysing prelogic,
we shall not concern ourselves too much with such issues.

If an illative system includes one of the illative primitives P, Ξ, F, G, then we require that
it incorporates the corresponding elimination rules (either directly or as derived rules).

Γ ` X ⊃ Y Γ ` X
Γ ` Y (PE) Γ ` ΞXY Γ ` XZ

Γ ` Y Z (ΞE)

Γ ` FXY F Γ ` XZ
Γ ` Y (FZ)

(FE) Γ ` GXY F Γ ` XZ
Γ ` Y Z(FZ)

(GE)

It is less clear how introduction rules should look like. Curry’s paradox implies that
adding the following natural candidate for an introduction rule for P yields an inconsistent
system (see Section 3.1).

Γ, X ` Y
Γ ` X ⊃ Y

(DED)

Intuitively, the problem is that, a priori, we do not know whether X is a proposition, so
X ⊃ Y may not make any sense. If X = (X ⊃ ⊥) then using the above rule we can derive a
contradiction.

A way out of the paradox is to add the illative primitive H, appropriately restrict
introduction rules, and add rules to reason about which terms represent propositions. Of
course, we would like the restrictions in introduction rules to be as unobtrusive as possible.
It would not be difficult to formulate and show consistent an “illative” system in which the
restrictions would be so strong as to make it indistiguishable in practice from a system in
which terms are a priori assigned to definite syntactic categories (or typed statically), but
the point of introducing such a system is dubious. The illative systems we will be concerned
with have minimal restrictions in introduction rules – in the sense that removing any of these
restrictions yields an inconsistent system.

With regard to illative systems, there are two common notions of consistency [Bun77]:
weak and strong consistency. Weak consistency means that there exists a term which is not
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derivable. Strong consistency means that there exists a term X which is not derivable, and it
is provable that X is a proposition, i.e., 6` X and ` HX. When referring to consistency we
shall always mean strong consistency. In fact, for systems introduced in the present work
these notions are equivalent.

The introduction rule for P which we shall adopt is the following.

Γ, X ` Y Γ ` HX
Γ ` X ⊃ Y

(PI)

A visible disadvantage of this rule is that to use it an additional premise Γ ` HX needs to be
shown, but if we want the rule (Eq) we cannot do much better. However, the “typing rules”
for H, i.e., rules for reasoning about which terms represent propositions, will be of such a
character that in most cases deriving this premise will be straightforward. This is made more
precise in the succeeding chapters. In particular, the soundness of translations of traditional
systems of logic into illative combinatory logic shows that additional premises in introduction
rules hold as long as we deal only with terms which are translations of terms or formulas of
a traditional system. Explicitly deriving the additional premises may be needed only when
dealing with terms which do not have direct counterparts in traditional systems.

An advantage of illative systems is that their “typing rules”, i.e., rules for reasoning about
which types (categories) a term belongs to, are similar to rules in traditional type systems. In
fact, these rules are usually generalisations of traditional typing rules. Therefore, in a machine
implementation of illative logic, it may be possible to adapt standard type checking or type
inference algorithms to obtain algorithms which, in common cases, automatically produce a
derivation establishing which type a given term belongs to, and thus dispose of the additional
premises in introduction rules. See also [Cza13c, Cza13d].

1.2 Contribution

The main result of this work is that all the illative systems IJp, IKp, IJ, IK, IKω, eIKω
and I+ introduced in the following chapters are consistent, i.e., ⊥ is not derivable in the
empty context. To prove this result, for each system we introduce a semantics with respect
to which the system is shown to be sound, and then we construct a model. Some of the
systems are also shown complete w.r.t. the corresponding semantics. The model constructions
are parameterised by corresponding models of traditional systems of logic. They essentially
show truth-preserving transformations of models of traditional systems into corresponding
models of illative systems. We later use the constructions to show completeness of some
translations of traditional systems into illative systems. Soundness of these translations is
also show, usually by semantic means. Soundness means that if a judgement of a traditional
system is provable, then so is its translation. Completeness means that if the translation of
a judgement is provable then so is the original judgement. Below we give a more detailed
overview of the contents of the present work and of the obtained results.

In Chapter 2 we provide the necessary background and introduce various notions needed
in the subsequent chapters. We also introduce definitions of a few non-standard notions and
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some simple lemmas concerning these notions. In particular, we define Extended Abstract
Reduction Systems, and the notions of coherence and invariance, which are crucial in the
model constructions.

In Chapter 3 we present three paradoxes in systems of illative combinatory logic: Curry’s
paradox, Bunder’s paradox, and the Kleene-Rosser paradox. These paradoxes show certain
limitations on the rules an illative system may contain. Our treatment of the Kleene-Rosser
paradox, though based on earlier work, is new: it reveals an essential incompatibility between
an unrestricted induction principle for natural numbers and a Hilbert-style formulation of an
illative system.

In Chapter 4 we study two illative systems: the system IJp of propositional intuitionistic
logic, and the system IKp of propositional classical logic. We develop semantics for both
of these system. The models for IJp are essentially combinatory algebras combined with
Kripke frames. The models for IKp are combinatory algebras with two sets T and F of
true and false elements of the algebra, with some natural conditions imposed on T and F .
We show that IJp and IKp are sound and complete w.r.t the corresponding semantics. We
prove the consistency of IJp and IKp by constructing models. The model constructions are
parameterised by corresponding models for traditional systems. We use the constructions to
show and completeness of natural translations of the traditional system NJp of propositional
intuitionistic logic into IJp, and of the traditional system NKp of propositional classical logic
into IKp. Soundness of these translations is also established by semantic arguments.

In Chapter 5 we investigate the intuitionistic first-order illative system IJ, and the classical
first-order illative system IK. We develop Kripke-style semantics for IJ, which extends the
semantics for IJp. We prove that IJ is sound and complete w.r.t. this semantics. For IK
the natural semantics extending the semantics for IKp is show to be sound, but we do not
know whether it is complete. The problem is that in classical illative systems with quantifiers
we have excluded middle only for terms which may be proved to be propositions. This
makes it impossible to easily adapt the standard Henkin-style completeness proof. We show
that IK is complete w.r.t. a somewhat less natural semantics which allows more than one
state. We prove consistency of IJ and IK by model constructions, which are parameterised
by corresponding models of traditional systems. Like in Chapter 5, the constructions are then
used to show completeness of natural translations of traditional intuitionistic first-order logic
into IJ, and of traditional classical first-order logic into IK. Soundness of the translations is
also shown.

In Chapter 6 we study the classical intensional higher-order illative system IKω, and
its extensional variant eIKω. We provide natural semantics for both of the systems. We
show the systems sound w.r.t. the corresponding semantics. We construct a model for eIKω,
which establishes the consistency of both IKω and eIKω. The construction is parameterised
by a standard model for traditional higher-order logic. We show a sound translation from
traditional classical intensional (extensional) higher-order logic into IKω (eIKω). We did
not prove the completeness of these translations, because our model construction relies on
the fact that the model of traditional higher-order logic by which it is parameterised is a
standard model, and traditional higher-order logic is not complete w.r.t. standard semantics.
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However, the model construction suffices to derive a limited completeness result: if a translated
judgement of higher-order logic is provable in eIKω then it is valid in all standard models
for higher-order logic.

In Chapter 7 we introduce the strongest of our illative systems: the system I+ which
extends eIKω by a choice operator, universal and empty types, the conditional combinator,
subtypes, dependent function types, dependent sums and W-types. The semantics of I+ is an
extension of that for eIKω. The model construction is also an extension of the construction
for eIKω. For I+ we carry out the model construction under the assumption of the existence
of a strongly inaccessible cardinal.

1.3 Related work

The subject of combinatory logic began with Schönfinkel’s [Sch24], where it is shown how to
eliminate bound variables in logical expressions by reducing them to applicative terms built
up from the combinators S and K (see Section 2.3.2) and the Unverträglichkeitsfunktion U
defined by the equation

Ufg = ∀x(¬(fx) ∨ ¬(gx)).

Actually, in [Sch24] no logical axioms for U are formulated, and no formal system in modern
sense is given. The function U is only defined informally by the above equation.

Later Curry formulated systems of logic based on untyped combinatory logic [Cur30,
Cur31, Cur32, Cur33, Cur34a, Cur34b], and Church introduced systems of logic based on
the untyped lambda-calculus [Chu32, Chu33]. These systems were shown inconsistent by
Kleene and Rosser [KR35] (see also Section 3.3). A simpler paradox was later found by
Curry [Cur42b] (see Section 3.1).

Curry and his school then started the program of defining systems of illative combinatory
logic of varying strength, hoping to ultimately obtain consistent systems strong enough to
interpret traditional logic. See [Cur42c] and [CFC58, §8]. Bunder [Bun69, Bun73a, Bun74a,
Bun83] introduced restrictions in the rules for illative primitives so that traditional logic may
be interpreted in the resulting systems, but their consistency remains open. Some variations
on several systems of Bunder were shown consistent in [BBD93, DBB98a, DBB98b, Cza13b].

The monograph [CFC58] contains an introduction to illative combinatory logic, which
is followed by a more extensive exposition in the second volume [CHS72]. However, the
main system F∗21 of [CHS72] was shown inconsistent in [Bun76]. Later in [BM78, Shu78] this
inconsistency result was extended to a larger class of systems similar to F∗21. See Section 3.2.

It is also worthwhile to mention the system F22 introduced by Curry in [Cur73]. In [Cur73]
Curry proved this system consistent in a weak sense (every term which occurs in a proof
belongs to a class of terms intended to represent propositions). Later Seldin obtained stronger
consistency results (normalisation) [Sel75, Sel77a, Sel77b]. The system F22 is essentially
a type-free intuitionistic predicate calculus without conjunction, alternation and negation
but with quantification over propositional functions. It may be extended to include the
remaining connectives and quantifiers [Sel77b]. However, in F22 the illative primitive L (see
Section 1.1) is defined by L ≡ FEH, i.e., the “types” are identified with propositional functions

11



defined on arbitrary objects. This makes it impossible to extend F22 to a system allowing
quantification over propositions, because of Bunder’s paradox (` LH would imply ` H(HX)
for an arbitrary X; see Section 3.2).

In [Sel00] Seldin proves consistent a system of illative combinatory logic with quantifiers
and all propositional connectives except for implication and negation. The rules for the
connectives are unrestricted, and the consistency proof is strictly finitary. This gives some
evidence to the claim that these are the rules for implication which influence the strength of
an illative system. In [Sel00] Seldin also shows consistent an illative system with a restricted
set of rules for implication, related to BCK-logic.

A readable introduction to illative combinatory logic, as well as a historical overview, may
be found in [Sel09]. Chapter 17 of the book [HS86] also treats illative combinatory logic in
an introductory way. The annotated bibliography [Bet99] has an extensive (but by no means
complete) section on illative combinatory logic. Also the monographs [CFC58, CHS72] and
the articles [BBD93] and [CH09, §5.4] contain additional references and historical remarks.
For some philosophical issues concerning illative combinatory logic and a description of
Curry’s initial motivations see [Cur80, Sel80, Des04] and [CFC58, Chapter 1].

The systems studied in the present work are extensions of some systems from [BBD93,
DBB98a, DBB98b, Cza13b], which in turn are based on the work of Bunder [Bun69, Bun73a,
Bun74a, Bun83]. The idea of using the illative primitive H to represent the category of
propositions dates back to Curry’s [Cur42c].

There are many illative systems which differ substantially from those originating in Curry’s
and Bunder’s lines of research. One example are Fitch’s systems [Fit74, Fit80a, Fit80b, Fit81],
in particular his system Q [Fit74, Fit81]. System Q is strong enough to interpret traditional
logic and it was shown consistent in [Fit81], after minor modifications. Essentially, implication
introduction is restricted by requiring that the law of excluded middle holds for the antecedent.
There are some differences in handling equality, with some restrictions on certain subproofs.
Quantification ranges over all terms, and there is a constant N representing the class of
natural numbers. There is an axiom to the effect that NX satisfies the law of excluded middle
for arbitrary X, which essentially enables quantification over natural numbers. However, this
axiom is incompatible with the conditional combinator (see Section 7.1).

There are also many systems which are not systems of illative combinatory logic, but to
some extent incorporate recursion and the notion of self-application without type restrictions.
For instance, Feferman’s systems of explicit mathematics [Fef75, Fef79, Bee85], in their
formulation from [Bee85, Chapter X], are based on Beeson’s Logic of Partial Terms [Fef95,
Bee85, Chapter VI] and include the axioms of a partial combinatory algebra. One difference
from illative systems is that application is partial – illative combinatory logic is based on
ordinary total combinatory logic. Another and perhaps even more fundamental difference
is that in Feferman’s systems there is an a priori syntactic distinction between formulas
and terms. In illative systems there is just one syntactic category, and all reasoning about
which terms represent propositions is carried out within the system. This property of illative
systems makes it hard to construct models.

Another development in partial logics are Farmer’s papers [Far90, Far93, FGT93] which

12



introduce higher-order logics with partial functions. However, these papers deal mostly with
handling partial functions in higher-order logic, not with general unrestricted recursion. In
fact, the language of these theories is typed – they are essentially variants of Church’s simple
type theory [Chu40].

Aczel’s classic [Acz80] introduces Frege structures, giving a semantic account of Frege’s
logical notion of set, i.e., sets understood as extensions of propositional functions. Frege
structures are models of lambda-calculus together with a collection of “propositions” and
its subcollection of “truths”. Thus, unrestricted recursion and self-application are allowed,
and recursion may involve logical operators. In fact, Frege structures may be used to give an
interpretation of some first-order illative systems [HS86, Chapter 17]. Aczel’s construction of
Frege structures is very similar to the simplest of our model constructions for IKp and IK.
The general idea of this construction – a monotone inductive definition of a “truth predicate”
– has appeared in many other works, e.g. [Sco75, Kri75, Fit81].

In [Cza11] a semantic treatment of a combination of classical first-order logic with type-free
combinatory logic was given. The system of [Cza11] is more complex than Aczel’s [Acz80] or
than simple illative systems in that it contains the conditional combinator (see Section 7.1),
which makes equality dependent on truth values of terms, and the model construction becomes
more difficult. Nonetheless, the idea of the construction in [Cza11] is also a monotone inductive
definition, but of a term rewriting system. The model construction method from [Cza11]
was later significantly revised and extended in [Cza13b, Cza13c, Cza13d] and in the present
work. In fact, the basic method of [Cza11] may be traced back to [JS95], which constructs a
model for a certain total applicative theory with a non-constructive µ-operator. Applicative
theories form the basis of systems of explicit mathematics [JKS99]. They are usually partial,
i.e., based on the Logic of Partial Terms.

Systems of illative combinatory logic are also close to Pure Type Systems (PTS). This
connection has been explored in [BD05] where some illative-like systems were proven equivalent
to more liberal variants of PTSs from [BD01]. Those illative systems, however, differ somewhat
from what is in the literature.

1.4 The systems of Barendregt, Bunder and Dekkers

Since the illative systems studied in the present work are essentially extensions of some
systems from the papers [BBD93, DBB98a, DBB98b] by Barendregt, Bunder and Dekkers,
we shall now give an overview of the systems and results from these papers.

In [BBD93] four systems IP, IF, IΞ and IG of illative combinatory logic are defined.
The set of terms in each of them is the set of all untyped lambda-terms extended with the
extra illative constants Ξ and L. Other illative primitives are defined as follows:

P ≡ λxy.Ξ(Kx)(Ky)
F ≡ λxyf.Ξx(λz.y(fz))
G ≡ λxyf.Ξx(λz.yz(fz))
H ≡ λx.L(Kx)
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where K ≡ λxy.x. An abbreviation X ⊃ Y is adopted for PXY .
The judgements in all four systems have the form Γ ` X where X is a term and Γ is a

finite set of terms. We often write Γ, X instead of the formally correct Γ ∪ {X}.
All four systems have the rules from Figure 1.1. The rules specific to each system are

presented in Figures 1.2-1.5.

Γ, X ` X (Ax)
Γ ` X X =βη Y

Γ ` Y (Eq)

Figure 1.1: Common rules of IP, IF, IΞ and IG.

Γ ` X ⊃ Y Γ ` X
Γ ` Y (PE)

Γ, X ` Y Γ ` HX
Γ ` X ⊃ Y

(PI)
Γ, X ` HY Γ ` HX

Γ ` H(X ⊃ Y )
(PH)

Figure 1.2: Rules of IP

Γ ` FXY Z Γ ` XV
Γ ` Y (ZV )

(FE)
Γ, Xx ` Y (Zx) Γ ` LX x /∈ FV(Γ, X, Y, Z)

Γ ` FXY Z
(FI)

Γ, Xx ` LY Γ ` LX x /∈ FV(Γ, X, Y )

Γ ` L(FXY )
(FL)

Figure 1.3: Rules of IF

The systems IP and IF can represent propositional minimal logic. The systems IΞ and IG
can represent the universal-implicational fragment of first-order intuitionistic logic. For the
systems IP and IΞ the interpretation is direct, while for IF and IG it follows the propositions-
as-types paradigm by translating derivations to combinators inside the system. In [BBD93] it is
shown that the two direct translations are complete, and in [DBB98a, DBB98b] completeness
is shown for the indirect translations. This establishes strong consistency of all the systems IP,
IF, IΞ and IG.

We shall now outline the translation from the universal-implicational fragment of first-
order intuitionistic logic into IΞ, to give a flavour of how such a translation looks like. This
translation is very similar to translations used later in the present work.

First, we define the system PRED of universal-implicational first-order intuitionistic
logic. Let Σ be a first-order signature, and V a set of variables. The set of terms of PRED,
denoted T, is defined inductively:

• V ⊆ T,

• if f ∈ Σ is an n-ary function symbol (possibly n = 0) and t1, . . . , tn ∈ T, then
f(t1, . . . , tn) ∈ T.
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Γ ` ΞXY Γ ` XV
Γ ` Y V (ΞE)

Γ, Xx ` Y x Γ ` LX x /∈ FV(Γ, X, Y )

Γ ` ΞXY
(ΞI)

Γ, Xx ` H(Y x) Γ ` LX x /∈ FV(Γ, X, Y )

Γ ` H(ΞXY )
(ΞH)

Figure 1.4: Rules of IΞ

Γ ` GXY Z Γ ` XV
Γ ` Y V (ZV )

(GE)
Γ, Xx ` Y x(Zx) Γ ` LX x /∈ FV(Γ, X, Y, Z)

Γ ` GXY Z
(GI)

Γ, Xx ` L(Y x) Γ ` LX x /∈ FV(Γ, X, Y )

Γ ` L(GXY )
(GL)

Figure 1.5: Rules of IG

The set of formulas of PRED, denoted F, is defined inductively:

• if r ∈ Σ is an n-ary relation symbol and t1, . . . , tn ∈ T, then r(t1, . . . , tn) ∈ F,

• if ϕ, ψ ∈ F then ϕ ⊃ ψ ∈ F,

• if x ∈ V and ϕ ∈ F then ∀xϕ ∈ F.

The judgements of PRED have the form ∆ ` ϕ, where ∆ is a finite set of formulas and ϕ
is a formula. We use the notation ∆, ϕ for ∆ ∪ {ϕ}. The rules of PRED are presented in
Figure 1.6.

∆, ϕ ` ϕ (Ax)

∆ ` ϕ ⊃ ψ ∆ ` ϕ
∆ ` ψ (⊃e)

∆, ϕ ` ψ
∆ ` ϕ ⊃ ψ

(⊃i)

∆ ` ∀xϕ t ∈ T
∆ ` ψ[x/t]

(∀e)
∆ ` ϕ x /∈ FV(∆)

∆ ` ∀xϕ (∀i)

Figure 1.6: Rules of PRED

For the translation, we assume that the set of terms of IΞ contains each element of Σ as
a constant, each variable from V as a variable, and there is a constant A representing the
first-order universe. The translation d−e from the terms and formulas of PRED into the set
of terms of IΞ is defined inductively as follows:

• dxe = x,

15



• df(t1, . . . , tn)e = fdt1e . . . dtne,
• dr(t1, . . . , tn)e = rdt1e . . . dtne,
• dϕ ⊃ ψe = dϕe ⊃ dψe,
• d∀xϕe = ΞA(λx.dϕe).

The function d−e is extended to sets of formulas by defining d∆e = {dϕe | ϕ ∈ ∆}. We define
the context-providing mapping Γ from sets of formulas to sets of terms of IΞ as follows,
where Fn is defined as in Section 1.1:

• FnA . . .AAf ∈ Γ(∆) for f ∈ Σ an n-ary function symbol,

• FnA . . .AHr ∈ Γ(∆) for r ∈ Σ an n-ary relation symbol,

• Ax ∈ Γ(∆) for every x ∈ FV(∆),

• Ay ∈ Γ(∆) for some fresh y /∈ FV(∆).

The soundness and completeness of the translation are stated in the following theorem.
Soundness is the implication from left to right, and completeness is the implication in the
other direction.

Theorem 1.4.1 ([BBD93]). ∆ `PRED ϕ iff Γ(∆, ϕ), d∆e `IΞ dϕe.

The methods of [BBD93, DBB98a, DBB98b] are purely syntactic. Soundness of the
translations is not difficult to establish, and it is shown by a relatively straightforward
induction on the length of derivations. The more difficult completeness, which also implies
consistency, is shown by analysing possible forms of derivable terms using grammars.

In contrast, the approach of the present work is semantic. By constructing models, we
show consistency of some strong illative systems which are extensions of IP, IF, IΞ and IG,
with minor modifications. We also show soundness and completeness of direct translations of
traditional systems of logic into some of our illative systems.
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Chapter 2

Preliminaries

In this chapter we provide the necessary background and introduce various notions needed
in the subsequent chapters. The first section is devoted to fixpoint definitions, including
two variants of the Knaster-Tarski fixpoint theorem. In the second section we review a few
set-theoretic notions needed in Chapter 7, in particular the strongly inaccessible cardinals.
In the third section we review basic notions and results in lambda-calculus and combinatory
logic. We also introduce definitions of a few non-standard notions and some simple lemmas
concerning these notions. In the last section we give a presentation of some traditional
systems of logic.

2.1 Fixpoint definitions

Definition 2.1.1. Let A be a set. We define a partial order ≤I on P(A)I coordinatewise:
f ≤I g iff ∀i∈If(i) ⊆ g(i). The supremum

∨
X ∈ P(A)I of X ⊆ P(A)I is defined by:

(
∨
X)(i) =

⋃
f∈X f(i). A function F : P(A)I → P(A)I is monotone if f ≤I g implies

F (f) ≤I F (g). A fixpoint of F is an r ∈ P(A)I such that F (r) = r. The least fixpoint of F is
a fixpoint r such that r ≤I s for any other fixpoint s of F .

The following is a special case of the well-known Knaster-Tarski fixpoint theorem [Tar55,
Kna28].

Theorem 2.1.2 (Tarski fixpoint theorem). If F : P(A)I → P(A)I is a monotone function
then there exists the least fixpoint r of F . Moreover, r may be characterised by the transfinite
inductive definition: Fα = F (F<α) for all ordinals α, where F<α =

∨
β<α F

β, and r = F ζ

for the smallest ordinal ζ such that F ζ = F<ζ.

The above theorem allows us to define sets of relations by mutually recursive conditional
rules. For instance, we give a definition of a binary relation � on the set of terms T by the
following conditional rules:

• > � >,

• ⊥ � ⊥,
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•

V

XY � > if X � > and Y � >,

•

V

XY � ⊥ if X � ⊥ or Y � ⊥.

It is to be understood that � is the least fixpoint of the monotone operator

F : P(T× T)→ P(T× T)

determined in an obvious way from the rules:

F (R) = {〈M,>〉 | (M ≡ >) ∨ (M ≡

V

XY ∧ 〈X,>〉 ∈ R ∧ 〈Y,>〉 ∈ R)}∪
{〈M,⊥〉 | (M ≡ ⊥) ∨ (M ≡

V

XY ∧ (〈X,⊥〉 ∈ R ∨ 〈Y,⊥〉 ∈ R))}

If a set of conditional rules determines an operator which is monotone, then we say that the
rules are monotone. If a relation � is defined by monotone rules, then we use the notations
�α = Fα and �<α = F<α, where Fα and F<α are as in Theorem 2.1.2. The relation �α is
called the α-th approximant of �. The least ordinal ζ such that �ζ = � is called the closure
ordinal of the definition of �.

Also the following variant of the Tarski fixpoint theorem will be used in some model
constructions.

Theorem 2.1.3. Let {Xα
s }s∈S be a family of subsets of a set A for each ordinal α, i.e.,

Xα
s ⊆ A for all s ∈ S and all ordinals α. Let X<α

s =
⋃
β<αX

β
s . If for all s ∈ S and all α ≤ β

we have Xα
s ⊆ Xβ

s , then there exists an ordinal ζ such that Xζ
s = X<ζ

s for each s ∈ S.

2.2 Set theory

In this section we review a few set-theoretic notions needed in Chapter 7. We assume
familiarity with basic set theory, including cardinal arithmetic. A standard reference for set
theory is [Jec02].

Below we use κ, λ for cardinals and α, β for ordinals. By |x| we denote the cardinality of
a set x, i.e., the cardinal which is equinumerous with x. Recall that in the Zelmero-Fraenkel
set theory with choice (ZFC) a cardinal κ is an ordinal which is not equinumerous with any
ordinal α < κ. Moreover, in ZFC each ordinal α is equal to the set of all ordinals β < α.

Definition 2.2.1. The cumulative hierarchy is an ordinal-indexed sequence of sets Vα defined
as follows:

• V0 = ∅,
• Vα+1 = P(Vα),

• Vα =
⋃
β<α Vβ if α is a limit ordinal.

The rank of a set x is the least ordinal α such that x ∈ Vα.

The last point in the following lemma implies that the notion of rank is well-defined.
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Lemma 2.2.2.

1. Vα ⊆ Vβ for α ≤ β.

2. If x ∈ Vα then x ⊆ Vα.

3. For every set x there is an ordinal α such that x ∈ Vα.

Definition 2.2.3. A cardinal κ is a strong limit if for any cardinal λ < κ we have 2λ < κ.
An infinite cardinal κ is regular if there is no A ⊆ κ with supA = κ and |A| < κ. A cardinal
is strongly inaccessible if it is uncountable, regular and a strong limit.

In ZFC the existence of strongly inaccessible cardinals cannot be proven (provided ZFC
is consistent). In fact, the theory ZFC+SI, which is ZFC plus the axiom “there exists a
strongly inaccessible cardinal”, proves the consistency of ZFC. For each strongly inaccessible
cardinal κ, the set Vκ is a model of ZFC.

Definition 2.2.4. A set U is a Grothendieck universe if it satisfies the following:

1. if x ∈ U then x ⊆ U ,

2. if x ∈ U then P(x) ∈ U ,

3. if x ∈ U then {x} ∈ U ,

4. if I ∈ U and f ∈ U I then
⋃
i∈I f(i) ∈ U ,

5. ω ∈ U .

The intuition behind a Grothendieck universe is that it is a set U such that all standard
operations of set theory (union, power set, etc.) may be performed on its elements with the
results still in U . This intuition is validated by the following lemma.

Lemma 2.2.5. For any Grothendieck universe U the following conditions hold:

1. if x ⊆ y ∈ U then x ∈ U ,

2. if x, y ∈ U then x ∪ y ∈ U ,

3. if x, y ∈ U then {x, y} ∈ U ,

4. if x, y ∈ U then 〈x, y〉 ∈ U ,

5. if x, y ∈ U then x× y ∈ U ,

6. if x, y ∈ U then xy ∈ U ,

7. if I ∈ U and f ∈ U I then
∏

i∈I f(i) ∈ U ,

8. if I ∈ U and f ∈ U I then f ∈ U .

Proof.

1. Observe that x ∈ P(y) ∈ U .

2. Since 2 ∈ ω ∈ U , we have 2 ∈ U . Now observe that x ∪ y =
⋃
i∈2 f(i), where f ∈ U2 is

such that f(0) = x and f(1) = y.
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3. Observe that {x, y} = {x} ∪ {y}.
4. Observe that 〈x, y〉 = {{x}, {x, y}}, assuming the standard Kuratowski definition of an

ordered pair.

5. Observe that x× y ⊆ P(P(x ∪ y)).

6. Observe that xY ⊆ P(x× y).

7. Observe that
∏

i∈I f(i) ⊆ P(I ×
⋃
i∈I f(i)).

8. Observe that f ∈ (
⋃
i∈I{f(i)})I .

The next lemma implies that the existence of a Grothendieck universe is equivalent to
the existence of a strongly inaccessible cardinal.

Lemma 2.2.6. A set U is a Grothendieck universe iff U = Vκ for some strongly inaccessible
cardinal κ.

Proof. See [Wil69].

2.3 Rewriting, lambda-calculus, and combinatory logic

2.3.1 Abstract rewriting

Definition 2.3.1. An Extended Abstract Reduction System (EARS) is a tuple 〈A,→, {�i}i∈I〉
where A is a carrier set,→ a binary contraction relation on A, and {�i}i∈I is a family of binary
representation relations with �i ∈ P(A× Bi) for some set Bi, i ∈ I. We write →R for the
contraction relation of an EARS R. When A is obvious from the context we sometimes say that
〈→, {�i}i∈I〉 is an EARS. When I = {�1, . . . ,�n} we sometimes say that 〈A,→,�1, . . . ,�n〉
or 〈→,�1, . . . ,�n〉 is an EARS. We also often confuse an EARS with its rewrite relation,
particularly when the family of representation relations is empty.

Let → be a binary relation. By ∗→ we denote the transitive-reflexive closure, by ≡−→ the
reflexive closure, and by ← the inverse of →.

We often write expressions of the form, e.g., t1 →1 · →2 t2 →2 · →1 t3, which means: there
exist s1, s2 such that t1 →1 s1 →2 t2 →2 s2 →1 t3. In a statement of the form “t1 ← · → t2
implies t1 → · ← t2” the variables t1, t2 are implicitly universally quantified, e.g., the above
statement means “for all t1, t2, if there exists s such that t1 ← s→ t2, then there exists s′

such that t1 → s′ ← t2”. We write t;i s if t ∗→ · �i s.
We say that a binary relation → has the diamond property if t1 ← · → t2 implies

t1 → · ← t2. We say that → is confluent if ∗→ has the diamond property. We say that →1

and →2 have the commuting diamond property if t1 ←1 · →2 t2 implies t1 →1 · ←2 t2. We
say that →1 and →2 commute if ∗→1 and ∗→2 have the commuting diamond property. Our
definition of commuting relations differs from [Bar84] but it is consistent with [Ter03, BN99].

We say that → preserves � if t← · � s implies t � s.
An EARS 〈A,→, {�i}i∈I〉 is coherent if
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1. → is confluent,

2. → preserves �i, for each i ∈ I,

3. each �i is a partial function, i.e., if t �i s and t �i s′ then s ≡ s′.

Two EARSes 〈A,→1, {�1
i }i∈I〉 and 〈B,→2, {�2

i }i∈I〉 are mutually coherent if

1. →1 and →2 commute,

2. →1 preserves �2
i for i ∈ I,

3. →2 preserves �1
i for i ∈ I,

4. if t �1
i s and t �2

i s
′ then s ≡ s′.

Intuitively, t �i s is interpreted as “t is represented by s in i”. Most often, i will be a
type. In other words, if t �i s then t treated as an object of type i “behaves” exactly like s.

Lemma 2.3.2. Let →, →1, →2 be binary relations.

1. If ≡−→1 and ≡−→2 have the commuting diamond property, then →1 and →2 commute.

2. If ≡−→ has the diamond property, then → is confluent.

The following lemma is a generalisation of the well-known Hindley-Rosen lemma (see
e.g. [Bar84, Proposition 3.3.5] or [Ter03, Exercise 1.3.4]). The Hindley-Rosen lemma is
obtained by taking both families to be {→1,→2}.
Lemma 2.3.3 (General Hindley-Rosen lemma). Let {→1

i }i∈I and {→2
j}j∈J be two families

of binary relations on a set A. If for all i ∈ I and all j ∈ J , the relations →1
i and →2

j

commute, then
⋃
i∈I →1

i and
⋃
j∈J →2

j commute.

Proof. See Figure 2.1.

Lemma 2.3.4. If for any s1, s2 the condition s1 ←1 · →2 s2 implies s1
∗→2 ·

≡←−1 s2, then →1

and →2 commute.

Proof. By a simple diagram chase.

The following two lemmas will often be used implicitly when working with coherent
EARSes.

Lemma 2.3.5. If an EARS 〈A,→, {�i}i∈I〉 is coherent, then t;i s iff t
∗↔ · �i s.

Proof. The implication from left to right is obvious. For the other direction, suppose that
t
∗↔ t′ �i s. Then by confluence of → there is r such that t ∗−→ r and t′

∗−→ r. Because →
preserves �i we still have r �i s. So t ∗−→ r �i s, i.e., t;i s.

Lemma 2.3.6. Suppose an EARS 〈A,→, {�i}i∈I〉 is coherent. If t;i s1 and t;i s2, then
s1 ≡ s2.

Proof. Follows directly from definitions.

Lemma 2.3.7. An EARS R is coherent iff R and R are mutually coherent.

Proof. Follows directly from definitions.
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Figure 2.1: General Hindley-Rosen lemma

2.3.2 Lambda-calculus and combinatory logic

We now review some basic definitions and results in lambda-calculus and combinatory logic.
A standard reference is [Bar84].

Definition 2.3.8. The set of lambda-terms over a set of constants Σ, denoted Tλ(Σ), is
defined by the grammar

Tλ ::= Σ | V | (λV Tλ) | (TλTλ)

where V is a countably infinite set of variables. We write Tλ instead of Tλ(Σ) when Σ is clear
or irrelevant, and we leave out spurious brackets. By FV(X) we denote the set of free variables
of a term X. We treat lambda-terms up to α-equivalence, i.e., up to renaming of bound
variables. By ≡ we denote identity of terms (up to α-equivalence). Substitution X[x/Y ]
of a term Y for all free occurences of x in X is defined in the expected way, avoiding
variable capture. By X[x1/Y1, . . . , xn/Yn] we denote simultaneous substitution of Y1, . . . , Yn
for x1, . . . , xn, avoiding variable capture. The binary relation →β on Tλ of β-contraction is
the compatible closure of the β-rule

(λx.X)Y →β X[x/Y ].

The relation ∗→β of β-reduction is the transitive-reflexive closure of β-contraction. Analogously,
we define η-contraction and η-reduction using the η-rule

λx.Xx→η X if x /∈ FV(X)

The relations of βη-contraction and βη-reduction are defined using both rules. We write =β,
=η, =βη for the least equivalence relation containing →β, →η, →βη, respectively.
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The set of combinatory terms over a set of constants Σ, denoted TCL(Σ), is defined by
the grammar

TCL ::= Σ | V | K | S | (TCLTCL)

where V is a countably infinite set of variables and K, S are constants not present in Σ. We
write TCL instead of TCL(Σ) when Σ is clear or irrelevant, and we omit spurious brackets. The
notations FV and ≡ are defined as for lambda-terms. The relation →w of weak contraction
is the compatible closure of the rules

Kxy → x
Sxyz → xz(yz)

The relation ∗→w of weak reduction is the transitive-reflexive closure of weak contraction.
By =w we denote the least equivalence relation containing →w.

We use the notation I ≡ SKK. The term I is called the identity combinator.

Theorem 2.3.9. The following conditions hold.

1. The relations →β, →βη and →w are confluent.

2. In lambda-calculus, for every term X there exists a term M such that M =β X[z/M ].
The same holds with =w in combinatory logic.

Proof. See [Bar84].

The above proposition states two main properties of lambda-calculus and combinatory
logic that we will need. The second of these properties essentially implies that these systems
enable unrestricted recursive definitions. We will often use the second property implicitly to
define terms by recursive equations.

Definition 2.3.10. For a term X ∈ TCL and a variable x, the combinatory abstraction λ∗x.X
is defined inductively:

• λ∗x.x ≡ I,

• λ∗x.X ≡ KX if x /∈ FV(X),

• λ∗x.XY ≡ S(λx∗.X)(λx∗.Y ).

We define a translation (−)CL : Tλ(Σ)→ TCL(Σ) inductively:

• (x)CL ≡ x, for x ∈ V ,

• (c)CL ≡ c, for c ∈ Σ,

• (XY )CL ≡ (X)CL(Y )CL,

• (λx.X)CL ≡ λx∗.(X)CL.

A translation (−)λ : TCL → Tλ is defined inductively:

• (x)λ ≡ x, for x ∈ V ,

• (c)λ ≡ c, for c ∈ Σ,
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• (K)λ ≡ λxy.x,

• (S)λ ≡ λxyz.xz(yz),

• (XY )λ ≡ (X)λ(Y )λ.

We often write λx.X instead of λ∗x.X, when it is clear that X ∈ TCL, or to generically
denote an abstraction when it is irrelevant whether we work in lambda-calculus or combinatory
logic.

Lemma 2.3.11.

1. (λ∗x.X)Y
∗→w X[x/Y ].

2. ((X)CL)λ =β X.

Lemma 2.3.12. If x 6= y and x /∈ FV(Y ) then λ∗x.X[y/Y ] ≡ (λ∗x.X)[y/Y ].

Proof. Induction on the structure of X.

Lemma 2.3.13. (Y [x/X])CL ≡ (Y )CL[x/(X)CL]

Proof. Induction on the structure of Y , using Lemma 2.3.12.

As remarked in Section 1.1, the illative systems we shall deal with in the following chapters
may be based either on lambda-calculus with β-reduction or η-reduction, or on combinatory
logic with weak equality. Usually it does not make much difference in definitions or proofs
which of these systems is used. This is why we give generic definitions and proofs for any of
these systems, or just specialised definitions and proofs for only one of them, and possibly
note the differences with the others.

2.3.3 Reduction systems

Definition 2.3.14. A reduction system is an EARS whose carrier is either Tλ(Σ) or TCL(Σ),
for some Σ. We usually treat a reduction system as a pair 〈→, {�i}i∈I〉, leaving out the carrier.
A reduction system 〈→, {�i}i∈I〉 is invariant when for any i, j ∈ I such that �i ∈ P(T× T)
the following condition holds:

• if t �i s and us;j s
′ then ut;j s

′.

A reduction system 〈→, {�i}i∈I〉 is closed under substitution when the following conditions
hold:

• if t1 → t2 then t1[x/t]→ t2[x/t],

• if t1 �i s then t1[x/t] �i s.

Recall that t �i s is interpreted as “t is represented by s in (type, state) i”. A reduction
system is invariant if whenever t is “represented” by s (t �i s) and some “reasonable” property
holds for s (us ;j s

′), then this same property holds for t (ut ;j s
′), i.e., the system is

“invariant” under substitution of t for s.
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Lemma 2.3.15. If a reduction system 〈→, {�i}i∈I〉 is invariant, then the following condition
holds for any terms t, s, s′, u.

• If t;i s and us;j s
′ then ut;j s

′.

Definition 2.3.16. We define the following reduction systems:

• lambda-calculus with β-reduction: λβ = 〈→β, ∅〉,
• lambda-calculus with βη-reduction: λβη = 〈→βη, ∅〉,
• combinatory logic with weak reduction: CLw = 〈→w, ∅〉.

2.3.4 Models

In this section we introduce the notions of combinatory algebra, λ-algebra and λ-model.
Combinatory algebras are models of combinatory logic, while λ-algebras and λ-models are
models of the lambda-calculus. Our exposition mostly follows [Bar84, Chapter 5].

Definition 2.3.17. A combinatory algebra C is a tuple 〈C, ·, k, s〉 where C is a set, · is
a binary operation on C, and k, s ∈ C satisfy the following for any a, b, c ∈ C:

• k · a · b = a,

• s · a · b · c = a · c · (b · c).
The operation · is assumed to be left-associative. We often write a ∈ C instead of a ∈ C.

A combinatory algebra C is extensional if all a, b ∈ C satisfy:

• ∀c ∈ C(a · c = b · c) ⇒ a = b.

Let C be a combinatory algebra. A C-valuation is a function from the set of variables V to C.
Given t ∈ TCL(C) and a C-valuation ρ, we inductively define the value JtKCρ of t in C under ρ:

• JxKCρ = ρ(x),

• JKKCρ = k, JSKCρ = s,

• JcKCρ = c, for c ∈ C,
• Jt1t2KCρ = Jt1KCρ · Jt2KCρ .

The superscript C is dropped when obvious or irrelevant, as is the subscript ρ when t is
closed.

A combinatory algebra C is a λ-algebra if for t, s ∈ TCL(C), the condition tλ =β sλ implies
that JtKCρ = JsKCρ for all C-valuations ρ. A combinatory algebra C is weakly extensional when
the following conditon holds for any t, s ∈ TCL(C):

• if JtKCρ = JsKCρ for all ρ, then Jλ∗x.tKCρ = Jλ∗x.sKCρ for all ρ.

A λ-model is a weakly extensional λ-algebra.

Note that a weakly extensional combinatory algebra need not be a λ-algebra. Indeed,
using [Bar84, Lemma 7.3.5] one may construct a weakly extensional combinatory algebra C
satisfying J((K)λ)CLKC 6= JKKC. By Lemma 2.3.11 we have (((K)λ)CL)λ =β (K)λ, so C is not
a λ-algebra.
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Lemma 2.3.18. If a weakly extensional combinatory algebra C satisfies J((K)λ)CLKC = JKKC
and J((S)λ)CLKC = JSKC, then it is a λ-algebra.

Proof. Follows from [Bar84, Lemma 5.2.3].

Corollary 2.3.19. Every extensional combinatory algebra is a λ-model.

2.4 Traditional systems of logic

2.4.1 Propositional logic

In this section we give definitions of the natural deduction systems NJp and NKp of intu-
itionistic and classical propositional logic. We also define Kripke semantics for NJp and
truth-table semantics for NKp. Our exposition mostly follows that of [SU06, Chapter 2].

Definition 2.4.1. The syntax of propositional formulas is given by the grammar:

FP ::= VP | ⊥ | FP ∨ FP | FP ∧ FP | FP → FP

where VP is a set of propositional variables. We use the abbreviation: ¬ϕ ≡ ϕ→ ⊥.
In what follows, ϕ, ψ, ν, etc., stand for formulas, ∆, ∆′, etc., stand for sets of formulas.

The notation ∆, ϕ abbreviates ∆ ∪ {ϕ}.
A judgement in the system NJp of intuitionistic propositional logic has the form ∆ ` ϕ

where ϕ is a formula and ∆ is a finite set of formulas. The rules of NJp are given in Figure 2.2.
For an infinite set of formulas ∆ we write ∆ ` ϕ if there exists a finite ∆′ ⊆ ∆ such that
∆′ ` ϕ is derivable.

The system NKp of classical propositional logic is obtained from NJp by replacing the
rule (⊥E) with:

∆,¬ϕ ` ⊥
∆ ` ϕ (⊥Ec)

We write ∆ `NJp ϕ when ∆ ` ϕ is derivable in NJp, and analogously for ∆ `NKp ϕ. The
subscript is dropped when obvious from the context.

Definition 2.4.2. A Kripke NJp-model is a triple S = 〈S,≤,
〉 where S is a non-empty set
of states, ≤ is a partial order on S, and 
 is a binary relation between states and propositional
variables which satisfies: if s ≤ s′ and s 
 p then s′ 
 p. We often confuse S with S.

Intuitively, the elements of S represent states of knowledge. The relation ≤ corresponds to
extending states by gaining more knowledge, and the relation 
 determines which propositional
variables are true in a given state.

The relation 
 is extended to propositional formulas by the following inductive definition:

• s 
 ϕ ∨ ψ iff s 
 ϕ or s 
 ψ,

• s 
 ϕ ∧ ψ iff s 
 ϕ and s 
 ψ,
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∆, ϕ ` ϕ (Ax)

∆, ϕ ` ψ
∆ ` ϕ→ ψ

(→I)
∆ ` ϕ ∆ ` ϕ→ ψ

∆ ` ψ (→E)

∆ ` ϕ ∆ ` ψ
∆ ` ϕ ∧ ψ (∧I)

∆ ` ϕ ∧ ψ
∆ ` ϕ (∧El)

∆ ` ϕ ∧ ψ
∆ ` ψ (∧Er)

∆ ` ϕ
∆ ` ϕ ∨ ψ (∨Il)

∆ ` ψ
∆ ` ϕ ∨ ψ (∨Ir)

∆ ` ϕ ∨ ψ ∆, ϕ ` ν ∆, ψ ` ν
∆ ` ν (∨E)

∆ ` ⊥
∆ ` ϕ (⊥E)

Figure 2.2: Rules of NJp

• s 
 ϕ→ ψ iff s′ 
 ψ for all s′ ≥ s with s′ 
 ϕ,

• s 1 ⊥.

The above definition implies the following rule for negation:

• s 
 ¬ϕ iff s′ 1 ϕ for all s′ ≥ s.

Sometimes we write S, s 
 ϕ to make it clear which model is being used. We write S 
 ϕ if
s 
 ϕ for all s ∈ S. We write s 
 ∆ if s 
 ϕ for all ϕ ∈ ∆. Finally, we write ∆ 
 ϕ if for
every Kripke NJp-model S and every state s of S, the condition S, s 
 ∆ implies S, s 
 ϕ.
When we want to emphasize that we are concerned with Kripke NJp-models, we write 
NJp.
This will become useful later, when we consider Kripke semantics for various other systems.

Theorem 2.4.3. ∆ `NJp ϕ iff ∆ 
NJp ϕ.

Proof. See e.g. [SU06, Chapter 2].

Definition 2.4.4. A propositional valuation (or NKp-valuation) is a function from VP to
the set B = {0, 1}. Valuations will be denoted by u, v, etc. The relation |= between
NKp-valuations and propositional formulas is defined inductively:

• v |= p iff v(p) = 1,

• v |= ϕ ∨ ψ iff v |= ϕ or v |= ψ,

• v |= ϕ ∧ ψ iff v |= ϕ and v |= ψ,

• v |= ϕ→ ψ iff v 6|= ϕ or v |= ψ,

• v 6|= ⊥.

We write v |= ∆ if v |= ϕ for every ϕ ∈ ∆. We write ∆ |= ϕ if for every NKp-valuation v
such that v |= ∆ we have v |= ϕ. When we want to emphasize that the valuations considered
are NKp-valuations, we write ∆ |=NKp ϕ.
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Note that there is an obvious one-to-one correspondence between single-state Kripke
NJp-models and NKp-valuations. Let S be a single-state Kripke NJp-model. Then the
valuation v defined by

v(x) = 1 ⇔ S 
 t

satisfies
v |= t ⇔ S 
 t

for any term t. Conversely, given an NKp-valuation v, the single-state Kripke model S defined
by

S = 〈{s0}, {〈s0, s0〉}, {〈s0, x〉 | v(x) = 1}〉
satisfies

v |= t ⇔ S 
 t

for any term t.

Theorem 2.4.5. ∆ `NKp ϕ iff ∆ |=NKp ϕ.

2.4.2 First-order predicate logic

In this section we define traditional natural deduction systems NJ and NK of first-order
intuitionistic predicate logic and first-order classical predicate logic. Our exposition mostly
follows that of [SU06, Chapter 8].

Definition 2.4.6. A signature ΣNJ of NJ consists of function and relation symbols with
associated arity. Constants are nullary function symbols. The set of terms TNJ of NJ is
defined by the grammar:

TNJ ::= VNJ | f(TNJ, . . . ,TNJ)

where f is a function symbol, and VNJ is a set of individual variables. The set of formulas FNJ

of NJ is defined by:

FNJ ::= r(TNJ, . . . ,TNJ) | ⊥ | FNJ ∨ FNJ | FNJ ∧ FNJ | FNJ → FNJ | ∀x.FNJ | ∃x.FNJ

where r is a relation symbol.
The judgements of NJ have the form ∆ ` ϕ where ϕ is a formula of NJ and ∆ is a finite

set of formulas. We adopt analogous notational conventions to those in Definition 2.4.1. The
rules of NJ are the rules of NJp plus the following.

∆ ` ϕ x /∈ FV(∆)

∆ ` ∀x.ϕ (∀I)
∆ ` ∀x.ϕ

∆ ` ϕ[x/t]
(∀E)

∆ ` ϕ[x/t]

∆ ` ∃x.ϕ (∃I)
∆ ` ∃x.ϕ ∆, ϕ ` ψ x /∈ FV(∆, ψ)

∆ ` ψ (∃E)

The system NK is obtained from NJ by replacing (⊥E) with (⊥Ec) (see Definition 2.4.1).
When dealing with NK we write TNK, FNK, etc., instead of TNJ, FNJ, etc.
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Definition 2.4.7. A classical NK-structure A = 〈A, {fAi }, {rAi }〉 consists of a non-empty
carrier set A, functions fAi and relations rAi corresponding to function and relation symbols
in the signature ΣNK. We often confuse A with A.

An A-valuation is a mapping from variables VNK to elements of A. For an A-valuation v
and a ∈ A, the valuation v[x/a] is defined as the valuation u such that u(x) = a and
u(y) = v(y) for y 6= x. Given an A-valuation v we define the value JtKAv of a term t ∈ TNK

by induction:

• JxKAv = v(x),

• Jf(t1, . . . , tn)KAv = fA(Jt1KAv , . . . , JtnKAv ),

where fA is the function in A corresponding to the function symbol f .
For a formula ϕ the relation A, v |= ϕ of satisfaction is defined inductively:

• A, v |= r(t1, . . . , tn) iff rA(Jt1KAv , . . . , JtnKAv ) holds,

• A, v 6|= ⊥,

• A, v |= ϕ ∨ ψ iff A, v |= ϕ or A, v |= ψ,

• A, v |= ϕ ∧ ψ iff A, v |= ϕ and A, v |= ψ,

• A, v |= ϕ→ ψ iff A, v |= ϕ implies A, v |= ψ,

• A, v |= ∀x.ϕ iff for every a ∈ A we have A, v[x/a] |= ϕ,

• A, v |= ∃x.ϕ iff there exists a ∈ A such that A, v[x/a] |= ϕ.

We write A |= ϕ if A, v |= ϕ for every v. We write A |= ∆ (A, v |= ∆) if A |= ϕ (A, v |= ϕ)
for every ϕ ∈ ∆. Finally, we write ∆ |= ϕ if for every A and v such that A, v |= ∆ we have
A, v |= ϕ. We sometimes use |=NK instead of |= to emphasize which system we have in mind.

A structure B = 〈B, {fBi }, {rBi }〉 is an extension of A = 〈A, {fAi }, {rAi }〉, denoted A ⊆ B,
if the following hold:

• A ⊆ B,

• rAi ⊆ rBi for all i,

• fAi (a) = fBi (a) for a ∈ A, for all i.

Theorem 2.4.8. ∆ `NK ϕ iff ∆ |=NK ϕ.

Proof. See e.g. [SU06, Theorem 8.4.7].

Definition 2.4.9. A Kripke NJ-model is a triple S = 〈S,≤, {As | s ∈ S}〉 where S is a
non-empty set of states, ≤ is a partial order on states, and the As are classical structures
such that: s ≤ s′ implies As ⊆ As′ .

Let ϕ be a formula and v be an As-valuation. Note that then v is an As′-valuation for all
s′ ≥ s. The relation s, v 
 ϕ is defined by induction on ϕ.

• s, v 
 r(t1, . . . , tn) iff rAs(Jt1KAsv , . . . , JtnKAsv ) holds,

• s, v 1 ⊥,
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• s, v 
 ϕ ∨ ψ iff s, v 
 ϕ or s, v 
 ψ,

• s, v 
 ϕ ∧ ψ iff s, v 
 ϕ and s, v 
 ψ,

• s, v 
 ϕ→ ψ iff for all s′ ≥ s such that s′, v 
 ϕ we have s′, v 
 ψ,

• s, v 
 ∀x.ϕ iff for all s′ ≥ s and all a ∈ As′ we have s′, v[x/a] 
 ϕ,

• s, v 
 ∃x.ϕ iff there exists a ∈ As such that s, v[x/a] 
 ϕ.

The symbol 
 is used as usual (see Definition 2.4.2). In particular, ∆ 
 ϕ means that for all
Kripke NJ-models S, all s ∈ S and all As-valuations v, if s, v 
 ∆ then s, v 
 ϕ.

Theorem 2.4.10. ∆ `NJ ϕ iff ∆ 
NJ ϕ.

Proof. See e.g. [SU06, Theorem 8.6.7].

2.4.3 Higher-order predicate logic

In this section we present the system NKω of classical higher-order logic, together with some
of its variants. For more background on higher-order logic see e.g. [BBK04, Lei94, Chu40].

Definition 2.4.11. The system NKω of intensional classical higher-order logic is defined as
follows.

• The types of NKω are given by

T ::= o | B | T → T

where B is a specific finite set of base types. The type o is the type of propositions. We
assume o /∈ B.

• The set of terms of NKω of type τ , denoted Tτ , is defined as follows:

– Vτ ,Στ ⊆ Tτ where Vτ is the set of variables of type τ and Στ is the set of constants
of type τ ,

– if t1 ∈ Tσ→τ and t2 ∈ Tσ then t1t2 ∈ Tτ ,
– if x ∈ Vτ1 and t ∈ Tτ2 then λx : τ1 . t ∈ Tτ1→τ2 ,
– if ϕ, ψ ∈ To then ϕ→ ψ ∈ To,
– if x ∈ Vτ and ϕ ∈ To then ∀x : τ . ϕ ∈ To,

where for each type τ the set Vτ is a countable set of variables and Στ is a countable
set of constants. We assume that the sets Vτ and Σσ are all pairwise disjoint. Terms of
type o are formulas. As usual, we omit spurious brackets and assume that application
associates to the left. We identify α-equivalent terms, i.e., terms differing only in the
names of bound variables are considered identical.

• The rules of NKω are given in Figure 2.3, where ∆ is a finite set of formulas, ϕ, ψ are
formulas, and ⊥ ≡ ∀p : o . p. The notation ∆, ϕ is a shorthand for ∆ ∪ {ϕ}.
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∆, ϕ ` ϕ (Ax)
∆, ϕ→ ⊥ ` ⊥

∆ ` ϕ (⊥Ec)

∆, ϕ ` ψ
∆ ` ϕ→ ψ

(→I)
∆ ` ϕ→ ψ ∆ ` ϕ

∆ ` ψ (→E)

∆ ` ϕ x /∈ FV(∆), x ∈ Vτ
∆ ` ∀x : τ . ϕ

(∀I)
∆ ` ∀x : τ . ϕ t ∈ Tτ

∆ ` ϕ[x/t]
(∀E)

∆ ` ϕ ϕ =βη ψ

∆ ` ψ (conv)

Figure 2.3: Rules of NKω

In NKω, we define Leibniz equality in type τ ∈ T by

t1 =τ t2 ≡ ∀p : τ → o . pt1 → pt2

The system NKω is intensional. An extensional variant eNKω may be obtained by adding
the following axioms for all τ, σ ∈ T :

ef : ∀f1, f2 : τ → σ . (∀x : τ . f1x =σ f2x)→ (f1 =τ→σ f2)

eb : ∀ϕ1, ϕ2 : o . ((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1))→ (ϕ1 =o ϕ2)

For an arbitrary set of formulas ∆ we write ∆ `S ϕ if ϕ is derivable from a subset of ∆ in
system S. The subscript is dropped when obvious or irrelevant.

The only logical connectives in NKω are → and ∀. The remaining connectives may be
defined as follows:

⊥ ≡ ∀p : o . p
¬ϕ ≡ ϕ→ ⊥

ϕ ∧ ψ ≡ ∀p : o . (ϕ→ ψ → p)→ p
ϕ ∨ ψ ≡ ∀p : o . (ϕ→ p)→ (ψ → p)→ p

∃x : τ . ϕ ≡ ∀p : o . (∀x : τ . ϕ→ p)→ p

Lemma 2.4.12. The rules in Figure 2.4 are admissible in NKω.

Definition 2.4.13 (Standard semantics). A standard model is a tuple

M = 〈{Dτ | τ ∈ T }, I〉

where each Dτ is a non-empty set for τ ∈ B, Do = {>,⊥}, each Dτ1→τ2 is the set of all
functions from Dτ1 to Dτ2 , and I is a function mapping constants of type τ to Dτ . We assume
that Dτ1 ∩ Dτ2 = ∅ for τ1, τ2 ∈ B, τ1 6= τ2.

AnM-valuation is a function mapping variables of type τ to Dτ . Given anM-valuation ρ,
the interpretation function JKMρ , mapping each term t ∈ Tτ to Dτ , for each τ ∈ T , is defined
inductively:
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∆ ` ϕ ∆ ` ψ
∆ ` ϕ ∧ ψ (∧I)

∆ ` ϕ ∧ ψ
∆ ` ϕ (∧El)

∆ ` ϕ ∧ ψ
∆ ` ψ (∧Er)

∆ ` ϕ
∆ ` ϕ ∨ ψ (∨Il)

∆ ` ψ
∆ ` ϕ ∨ ψ (∨Ir)

∆ ` ϕ ∨ ψ ∆, ϕ ` ν ∆, ψ ` ν
∆ ` ν (∨E)

∆ ` ϕ[x/t] t ∈ Tτ
∆ ` ∃x : τ . ϕ

(∃I)
∆ ` ∃x : τ . ϕ ∆, ϕ ` ψ x /∈ FV(∆, ψ)

∆ ` ψ (∃E)

∆ ` ⊥
∆ ` ϕ (⊥E)

Figure 2.4: Admissible rules in NKω

• JxKMρ = v(x),

• JcKMρ = I(c),

• Jt1t2KMρ = Jt1KMρ (Jt2KMρ ),

• Jλx.tKMρ (d) = JtKMρ[x/d] for d ∈ Dτ1 , where x ∈ Vτ1 and t ∈ Tτ2 ,

• Jϕ→ ψKMρ = > iff JϕKMρ = ⊥ or JψKMρ = >,

• J∀x : τ . ϕKMρ = > iff for all d ∈ Dτ we have JϕKMρ[x/d] = >.

The satisfaction relation |=std is defined in the standard way.

Theorem 2.4.14. If ∆ `eNKω ϕ then ∆ |=std ϕ.

Of course, eNKω is not complete with respect to standard semantics. There are other
notions of models with respect to which various systems of higher-order logic are complete.
See e.g. [BBK04].
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Chapter 3

Paradoxes

In this chapter we present three paradoxes in systems of illative combinatory logic: Curry’s
paradox, Bunder’s paradox, and the Kleene-Rosser paradox. These paradoxes show certain
limitations on the rules an illative system may contain. To be able to formulate the paradoxes
in a general way, we now give a definition of a general illative system.

Definition 3.1. A general λβη-illative system (resp. λβ- or CLw-illative system) is a pair
I = 〈Σ,`〉 where Σ is a set of constants and ` is a binary provability relation between finite
sets of terms from T and a term from T, where T = Tλ(Σ) for a λβη- or λβ-illative system,
and T = TCL(Σ) for a CLw-illative system. A (general) illative system is a general λβη-, λβ-
or a CLw-illative system. Conventions from Section 1.1 apply. In particular, the equality = is
used to generically denote βη-, β- or CLw-equality, depending on the kind of illative system
considered. We sometimes write `I for the provability relation of an illative system I. We say
that an illative system I contains illative primitives P1, . . . , Pn and rules (axioms) R1, . . . , Rm

if there are terms X1, . . . , Xn of I such that all rules (axioms) R1, . . . , Rm are true when Pi
is interpreted with Xi and ` with `I . We do not give a completely precise definition of a
rule or “interpretation” of an illative primitive, because the meaning is intuitively obvious
and precise definitions would only add excessive formalism.

3.1 Curry’s paradox

In this section we present Curry’s paradox. It was first obtained in [Cur42b]. See also [CFC58,
§8A] and [Sel09].

Theorem 3.1.1 (Curry’s paradox). Any illative system I containing the illative primitive P,
the axiom (Ax) and the rules (DED), (PE), (Eq) below is inconsistent, i.e., `I Y for an
arbitrary term Y .

Γ, X ` X (Ax) Γ ` X X = Y
Γ ` Y (Eq)

Γ, X ` Y
Γ ` X ⊃ Y

(DED) Γ ` X ⊃ Y Γ ` X
Γ ` Y (PE)
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Proof. Let Y be an arbitrary term. Define a term X by the equation X = (X ⊃ Y ) (see
Section 2.3.2). We have:

1. X ` X by (Ax),

2. X ` X ⊃ Y by 1 and (Eq),

3. X ` Y by 2, 1 and (PE),

4. ` X ⊃ Y by 3 and (DED),

5. ` Y by 4, 1 and (PE).

The principle of combinatory completeness states that any function we can define intuitively
by means of a variable can be represented formally as an entity of the system (cf. [CFC58,
p. 5]). More precisely, for any term M and any variable x, there should exist a term X such
that x /∈ FV(X) and Xx = M . Curry’s paradox shows that this principle (which necessitates
the rule (Eq) if fundamental properties of equality are to be retained) is incompatible with
deductive completeness (rule (DED)). Therefore, if we want to retain the rule (Eq), some
restrictions to (DED) are necessary.

3.2 Bunder’s paradox

Bunder’s paradox shows a limitation on those illative systems which use the illative primitive H
to restrict the implication introduction rule. Essentially, any (reasonable) sufficiently strong
illative system with an axiom scheme ` HkX, with X an arbitrary term, is inconsistent,
where HkX denotes k-time application of H to X, e.g., H3X ≡ H(H(HX)). In what follows
we adopt the convention H0X ≡ X.

Theorem 3.2.1 (Bunder’s paradox). Any illative system I containing the illative primitives P,
H, the following rules (PE), (PI), (HI), (Eq) and the axioms (Ax) and (Hk) for some k > 0
is inconsistent, i.e., `I Y for an arbitrary term Y .

Γ, X ` X (Ax)
Γ ` HkX

(Hk)

Γ, X ` Y Γ ` HX
Γ ` X ⊃ Y

(PI) Γ ` X ⊃ Y Γ ` X
Γ ` Y (PE)

Γ ` X
Γ ` HX

(HI) Γ ` X X = Y
Γ ` Y (Eq)

Proof. Let Y be an arbitrary term. Define a term X by the equation

X = (Hk−1X ⊃ . . . ⊃ H2X ⊃ HX ⊃ X ⊃ Y )
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where ⊃ is assumed to associate to the right. We have

Hk−1X, . . . ,HX,X ` X

by (Ax), and thus

Hk−1X, . . . ,HX,X ` Hk−1X ⊃ . . . ⊃ HX ⊃ X ⊃ Y

by (Eq). Since
Hk−1X, . . . ,HX,X ` HiX

for 1 ≤ i ≤ k − 1 by (Ax), we obtain

Hk−1X, . . . ,HX,X ` Y

by applying (PE) with Hk−1X, . . . ,HX,X consecutively. Now, applying (PI) consecutively
k − 1 times we obtain

Hk−1X ` Hk−2X ⊃ . . . ⊃ HX ⊃ X ⊃ Y.

Since ` HkX by (Hk), i.e. ` H(Hk−1X), we have

` Hk−1X ⊃ . . . ⊃ HX ⊃ X ⊃ Y

by (PI), so
` X

by (Eq). Using (HI) we may now obtain ` HiX for 1 ≤ i ≤ k − 1. Since

` Hk−1X ⊃ . . . ⊃ HX ⊃ X ⊃ Y

we ultimately obtain
` Y

by applying (PE) consecutively with Hk−1X, . . . ,HX,X.

For k = 2 a variant of the above result was shown by Curry in [Cur42c, Cur42a], but
under somewhat different assumptions. Curry also stated that the result holds for arbitrary
k > 0 but the proof was lost. The result was later rediscovered by Bunder [Bun70]. See
also [CHS72, §15C5]. The proof in [Bun70] does not apply to the system F∗21 from [CHS72]
and requires the following rule (PHI).

Γ, X ` HY Γ ` HX

Γ ` H(X ⊃ Y )
(PHI)

In [Bun76] the inconsistency of F∗21 is shown by adapting the method of [Bun70]. Earlier
in [Bun74b] Bunder proves inconsistency of a related system of Seldin [Sel68]. In [BM78]
Bunder and Meyer extend the results of [Bun70, Bun76] to systems similar to F∗21, which
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includes the result of our Theorem 3.2.1. Actually, in [BM78] Bunder and Meyer essentially
show inconsistency of any system with (Ax), (Hk), (Eq), (PE), (HI), the rule

Γ ` HX Γ ` HY
Γ ` H(X ⊃ Y )

(PHI′)

and with
Γ, X ` Y Γ ` HX Γ ` HY

Γ ` X ⊃ Y
(PI′)

instead of (PI), and then they note that the inconsistency of systems without (PHI′) and
with (PI) instead of (PI′) follows by an analogous argument. In the USSR, Shumikhin [Shu78]
seems to have discovered a proof of Theorem 3.2.1 independently of [Bun76, BM78] (but he
knew about [Bun74b] which he cites). Our proof of Theorem 3.2.1 follows [BM78, Shu78].
We chose to name the paradox after Bunder, since he seems to be the person who contributed
most to its discovery.

Bunder’s paradox shows that (HI) and (Hk) are incompatible. The rule (HI) seems very
natural – it says that if X is provable (it is true) then it is a proposition. On the other hand,
the interpretation of (Hk) is less clear. Hence, it is usually the choice to abandon (Hk) in
favor of (HI). This choice is also adopted in the illative systems studied in the present work.

3.3 Kleene-Rosser paradox

The first paradox in the early illative systems of Church [Chu32, Chu33] and Curry [Cur30,
Cur31, Cur32, Cur33, Cur34b] was derived by Kleene and Rosser [KR35]. The Kleene-Rosser
paradox is much more complicated than the subsequently discovered Curry’s paradox [Cur42b].
However, it may be adapted to apply to some systems to which Curry’s paradox does not
apply. In this section we present a variant of the Kleene-Rosser paradox.

The original paper [KR35] of Kleene and Rosser is very dense and presupposes intimate
knowledge of some specific illative systems and of a few previous papers. A more readable
but still quite complex exposition may be found in [Cur41b]. The method of deriving the
paradox in [Cur41b] is different from the original method of [KR35] and stronger assumptions
are used. In particular, both deductive completeness for Ξ, i.e., essentially the rule

Γ, Xx ` Y x x /∈ FV(Γ, X, Y )

Γ ` ΞXY
(ΞDED)

and full combinatory completeness are presupposed, which makes the system amenable to the
much simpler Curry’s paradox1. The systems of Church [Chu32, Chu33] shown inconsistent
in [KR35] restrict both the combinatory completeness (they are based on the λI-calculus) and
deductive completeness (essentially by adding in (ΞDED) a premise Γ ` XZ with Z some

1In an illative system with (ΞDED) and (Eq), the illative primitive P may be defined by P ≡ λx.Ξ(Kx)(Kx).
Then (DED) follows from (ΞDED) and (Eq).
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arbitrary term). Thus Curry’s paradox cannot be directly derived in them. See also [CHS72,
p. 182] and [Bun73b].

Our presentation of the Kleene-Rosser paradox is loosely based on [Cur41b], but differs
from that paper considerably in technical details, and also in the assumptions about the illative
system. Our exposition is simpler than [Cur41b], but we assume more illative primitives and
rules. In particular, we assume an unrestricted induction principle. In [Cur41b] a similar
principle is derived using deductive completeness. On the other hand, we do not presuppose
any form of deductive completeness – neither (DED), (ΞDED) nor even the weak deductive
completeness assumed in the original proof of Kleene and Rosser. Our presentation of the
Kleene-Rosser paradox reveals an essential incompatibility between an unrestricted induction
principle and a Hilbert-style formulation of an illative system.

The Kleene-Rosser paradox essentially refines the Richard paradox by setting it up formally
inside an illative system. The Richard paradox may be informally described as follows. The
set of definable numerical functions (i.e. functions from N to N) is countable, because each
such function is defined by a sentence in the language, i.e., by a finite sequence of symbols.
Let (fi)i∈N be an enumeration of all definable numerical functions. Define a function f by
f(n) = fn(n) + 1 for n ∈ N. Since f is definable, there exists m ∈ N such that fm = f . But
then fm(m) = f(m) = fm(m) + 1, so 0 = 1. Contradiction.

The above argument is made more precise in the following proposition, where N represents
the type of natural numbers, s represents the successor function, U represents an enumeration
of definable numerical functions (UY = X means that Y represents the number of the
term X, and X represents a numerical function), and F is the functionality combinator (see
Section 1.1).

Proposition 3.3.1 (Richard paradox). Any illative system I which contains the illative
primitives N, s, U , F and satisfies the conditions (a)− (g) below, is inconsistent, i.e., `I Y
for an arbitrary term Y . In the following conditions X, Y are arbitrary terms and Γ is an
arbitrary finite set of terms.

(a) X ` X.

(b) If Nx ` NX then ` FNN(λx.X).

(c) If Γ ` FNXY and Γ ` NZ then Γ ` X(Y Z).

(d) Γ ` FNNs.

(e) If ` NX and X = sX then ` Y .

(f) If ` FNNX then there is Y with ` NY and UY = X.

(g) Γ ` FN(FNN)U .

Proof. Let Y be an arbitrary term. Define M ≡ λx.s(Uxx). We have:

1. Nx ` Nx by (a),

2. Nx ` FNN(Ux) by (c), (g) and 1,

3. Nx ` N(Uxx) by (c), 2 and 1,
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4. Nx ` N(s(Uxx)) by (c), (d) and 3,

5. ` FNNM by (b) and 4,

6. ` NX and UX = M for some X, by (f) and 5,

7. ` N(MX) by (c), 5 and 6,

8. MX = s(MX) by 6,

9. ` Y by (e), 7 and 8.

The conditions (a) − (e) are very natural and we would expect them to hold in any
illative system containing the type of natural numbers and the functionality combinator.
Also, in any reasonable illative system with the type of natural numbers represented by N,
and with a recursively enumerable set of theorems, there is a term U satisfying (f), thanks
to unrestricted recursive definitions available in lambda-calculus and combinatory logic.
Indeed, assuming enough operations on terms representing natural numbers, because the
set of theorems is recursively enumerable, one may construct a term Ω which enumerates
(possibly with repetitions) the terms representing the numerical codes of terms X satisfying
` FNNX, i.e., a term Ω such that for every term X satisfying ` FNNX there is n ∈ N with
Ωn = m where m ∈ N is the code of X, and n,m are terms representing the numbers n
and m, respectively. With an appropriate coding scheme it is also not difficult to construct a
term T which “evaluates” terms representing numerical codes of terms, i.e., Tn = X when
n ∈ N is the code of X and n represents the number n. Then we may take U ≡ T ◦ Ω.
Therefore, the real problem is with condition (g), which states that U may be typed inside
the system. In the remainder of this section we shall formulate some seemingly innocuous
assumptions on an illative system, which nonetheless will be shown to imply (g).

Definition 3.3.2. We define numerals by:

0 ≡ I
n+ 1 ≡ λx.x(KI)n

See also [Bar84, Chapter 6]. We define the following terms:

s ≡ λnx.x(KI)n
p ≡ λn.n(KI)
z ≡ λn.nK

An illative system contains arithmetic if it contains the illative primitives P, H, Ξ, N, Q and
the rules from Figure 3.1.

The primitive Q represents equality on natural numbers. The primitive N represents the
type of natural numbers. The rule (NInd) expresses an unrestricted induction principle –
nothing is assumed a priori about the term X. The term s represents the successor function
on natural numbers, p the predecessor, and z the test for zero.
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Γ, X ` X (Ax) Γ ` X
Γ, Y ` X (Weak)

Γ ` X Γ, X ` Y
Γ ` Y (Cut)

Γ ` X X = Y
Γ ` Y (Eq)

Γ, X ` Y Γ ` HX
Γ ` X ⊃ Y

(PI) Γ ` X ⊃ Y Γ ` X
Γ ` Y (PE)

Γ,Nx ` Xx x /∈ FV(Γ, X)

Γ ` ΞNX
(ΞNI) Γ ` ΞNX Γ ` NY

Γ ` XY (ΞNE)

Γ ` X0 Γ,Nx,Xx ` X(sx) x /∈ FV(Γ, X)

Γ ` ΞNX
(NInd)

Γ ` N0
(NI0)

Γ ` NX
Γ ` N(sX)

(NIs)

Γ ` NX
Γ ` QXX

(QI)
Γ ` QXY Γ ` ZX

Γ ` ZY (QE)
Γ ` NX Γ ` NY

Γ ` H(QXY )
(QH)

Figure 3.1: Rules for illative systems containing arithmetic

In what follows we shall implicitly assume a fixed illative system containing arithmetic.
Unless otherwise stated, all the following lemmas concern illative systems containing arithmetic.
The symbols Γ, Γ′, etc., are used to denote finite sets of terms, and X, Y , etc., denote terms,
unless otherwise specified.

The results of this section do not depend on the details of the encoding of natural numbers.
In fact, we use only the properties of numerals and the terms s, p and z summmarised in the
following lemma. Note, however, that we could not use Church numerals, because the second
point of the lemma would not hold.

Lemma 3.3.3. We have the following equalities:2

1. sn = n+ 1,

2. p(sX) = X for an arbitrary term X,

3. z 0 = K,

4. z(sX) = KI for an arbitrary term X.

We use the notations ⊥ ≡ Q 0 1 and > ≡ Q 0 0. We also write ¬X for X ⊃ ⊥. Like in
Section 1.1 we use the notation F ≡ λfxy.Ξx(λz.y(fz)).

Lemma 3.3.4. The rules from Figure 3.2 are admissible.
2As usual = denotes either weak-, β- or βη-equality, depending on the kind of the illative system considered.
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Γ ` NX Γ ` QXY
Γ ` QY X

(QS)
Γ ` NX Γ ` QXY Γ ` ZY

Γ ` ZX (QE′)
Γ ` Q0(sX)

Γ ` Y (Q⊥)

Γ ` NX Γ ` QXY
Γ ` Q(sX)(sY )

(Qs+)
Γ ` NX Γ ` Q(sX)(sY )

Γ ` QXY
(Qs−)

Γ ` NX Γ,QX0 ` ZY1 Γ,Nx,QX(sx) ` ZY2 x /∈ FV(Γ, X, Z, Y1, Y2)

Γ ` Z(zXY1Y2)
(Qz)

Γ ` ⊥
Γ ` Y (⊥E)

Γ ` H⊥ (⊥H)
Γ ` > (>I)

Γ ` H> (>H)

Γ ` X0 Γ,Nx ` X(sx) x /∈ FV(Γ, X)

Γ ` ΞNX
(NC)

Γ,Nx ` X(Y x) x /∈ FV(Γ, X, Y )

Γ ` FNXY
(FNI)

Γ ` FNXY Γ ` NZ
Γ ` X(Y Z)

(FNE)

Γ, X ` Z X = Y

Γ, Y ` Z (EqL)

Figure 3.2: Admissible rules in illative systems containing arithmetic
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Proof. The rule (QS) is derived as follows:

Γ ` QXY

Γ ` NX
Γ ` QXX

(QI)

Γ ` (λx.QxX)X
(Eq)

Γ ` (λx.QxX)Y
(QE)

Γ ` QY X
(Eq)

The rule (QE′) is derived using (QS) and (QE).
To derive the rule (Q⊥) assume Γ ` Q0(sX). Since z0(N0)Y = N0 we have Γ ` z0(N0)Y

by (NI0) and (Eq). By (Eq) and (QE) we obtain Γ ` z(sX)(N0)Y . But z(sX)(N0)Y = Y , so
Γ ` Y by (Eq).

To derive (Qs+) assume Γ ` NX and Γ ` QXY . We have Γ ` Q(sX)(sX) by (NIs)
and (QI). Then Γ ` Q(sX)(sY ) follows from (Eq) and (QE).

To derive (Qs−) assume Γ ` NX and Γ ` Q(sX)(sY ). Then Γ ` Q(p(sX))(p(sX)) by (QI)
and (Eq), because p(sX) = X. Hence Γ ` QXY follows from (Eq) and (QE).

The rule (⊥E) follows from (Q⊥). The rule (⊥H) is derived using (NI0), (NIs) and (QH).
The rule (>I) follows from (NI0) and (QI). The rule (>H) follows from (NI0) and (QH). The
rule (NC) is derived using (NInd) and (Weak). The rule (FNI) follows from (ΞNI) and (Eq).
The rule (FNE) follows from (ΞNE) and (Eq).

To derive (Qz) assume Γ ` NX, Γ,QX0 ` ZY1 and Γ,Nx,QX(sx) ` ZY2, where
x /∈ FV(Γ, X, Z, Y1, Y2). We have ZY1 = Z(z 0Y1 Y2), so

Γ,QX0 ` Z(z 0Y1 Y2)

by (Eq). Since Γ ` NX, using (Ax) and (QE′) we obtain

Γ,QX0 ` Z(zXY1Y2)

Since Γ ` NX, using (NI0) and (QH) we obtain Γ ` H(QX0). Therefore

(?) Γ ` QX0 ⊃ Z(zXY1Y2)

by (PI). On the other hand, we have ZY2 = Z(z(sx)Y1Y2), so

Γ,Nx,QX(sx) ` Z(z(sx)Y1Y2)

by (Eq). Since Γ ` NX, using (Ax) and (QE′) we obtain

Γ,Nx,QX(sx) ` Z(zXY1Y2).

Since Γ,Nx ` NX by (Weak), using (NIs) and (QH) we obtain Γ,Nx ` H(QX(sx)). Therefore

(??) Γ,Nx ` QX(sx) ⊃ Z(zXY1Y2)

Using (?), (??), (Eq) and (NC) we obtain

Γ ` ΞN(λx.QXx ⊃ Z(zXY1Y2))
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Hence, because Γ ` NX, by (ΞNE) and (Eq) we have

Γ ` QXX ⊃ Z(zXY1Y2)

Since Γ ` NX, we have Γ ` QXX by (QI), so we finally obtain

Γ ` Z(zXY1Y2)

by (PE).
The admissibility of (EqL) follows from (Weak), (Cut) and (Eq):

Γ, Y ` Y (Ax)
Y = X

Γ, Y ` X (Eq)
Γ, X ` Z

Γ, Y,X ` Z (Weak)

Γ, Y ` Z (Cut)

Like in Section 1.1 we use the notation ∀x : N . X for ΞN(λx . X). We abbreviate
ΞN(λx .ΞN(λy .X)) by ∀x, y : N . X, etc. By Y k(X) we denote k-time application of Y to X,
e.g., Y 2(X) ≡ Y (Y X). We assume Y 0(X) ≡ X.

Lemma 3.3.5. We have ` ∀x : N . Qx(s(x)) ⊃ Y for any term Y .

Proof. First note that ` Q0(s(0)) ⊃ Y follows from (Q⊥), (PI), (NI0), (NIs) and (QH). Thus
by (NInd), (Eq), (PI), (NIs) and (QH) it suffices to show

Nx, (λy . Qy(s(y)) ⊃ Y )x,Q(sx)(s(s(x))) ` Y.

But this follows from (NIs), (Qs−), (Eq) and (PE).

For the sake of brevity, from now on we shall only give sketches of formal proofs. We will
use some rules implicitly, in particular, the rules (Weak), (Eq), (EqL), (NI0), (NIs), (FNE)
and (ΞNE). When using the rule (NInd) we shall refer to the assumption Xx in the second
premise as the formal inductive hypothesis, to the second premise as the inductive step, and to
the first premise as the base case. When using the rule (Qz) we refer to the second premise as
the case for zero, and to the third premise as the case for successor. Analogous terminology
is used with (NC). For the sake of readability, we often write ifzX thenY elseZ instead of
zXY Z.

Many of the following lemmas are not particularly surprising, because any illative system
containing arithmetic essentially incorporates primitive recursive arithmetic (PRA). For
some background on PRA see [TvD88, Chapter 3] and [Goo57, Cur41a]. We will not make
this observation precise. Instead, we directly derive the requisite properties of a few terms
representing certain recursive functions.
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Definition 3.3.6. We set flip ≡ λx.zx 1 0. We define the following terms by the recursive
equations:

iter = λfxy.ifzx then y else (f(iterf(px)y))
even = λx.ifzx then 0 else flip(even(px))
div2 = λx.ifzx then 0 else ifz pz then 0 else s(div2(p2(x)))
inv1 = λx.ifz evenx then s(inv1(div2 x)) else 0
inv2 = λx.ifz evenx then inv2(div2 x) else div2(px)

eq = λxy.ifzx then y else ifz y then 1 else eq(px)(py)

We set
add2 ≡ λx.s2(x)
mul2 ≡ λx.iter add2 x 0
pow2 ≡ λxy.iter mul2 x y

m ≡ λxy.pow2 x (s(mul2 y))
fst ≡ λx.ifzx then 0 else inv1 x

snd ≡ λx.ifzx then 0 else inv2 x

For k ∈ N we also set
nthk ≡ λx.sndk(fstx)

We define Le by the recursive equation

Le = λxy.ifzx then> else ifz y then⊥ else Le(px)(py)

The following lemma sheds some light on the meaning of the terms defined above. The
terms we will ultimately need are m, fst, snd, nthk and Le. Other terms are only needed to
implement them. What we need is the pairing operation m which encodes pairs of numbers by
a number. The terms fst and snd implement the first and second projections. The term nthk
implements the operation of taking the k-th element of a list of natural numbers encoded in
a single natural by repeated use of m. The term Le implements the less-or-equal predicate on
natural numbers.

Lemma 3.3.7. For n,m ∈ N we have the following equalities:

• even 2n = 0,

• even 2n+ 1 = 1,

• add2 n = n+ 2,

• mul2 n = 2n,

• pow2 nm = 2nm,

• div2 2n = n,

• mnm = 2n(2m+ 1),

• fst 2n(2m+ 1) = n,

• snd 2n(2m+ 1) = m,
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• eqnm = 0 iff n = m.

Proof. By induction.

Lemma 3.3.8. If n,m ∈ N and n ≤ m then ` Lenm.

Proof. By induction.

Lemma 3.3.9. If n ∈ N then ` Nn.

Proof. Use (NI0) and then (NIs) repeatedly n times.

Most of the following lemmas are rather straightforward. They collectively show that the
desired properties of the pairing operator m and the projections fst and snd may be formally
proved in an illative system containing arithmetic. The proofs of most of these lemmas are
as one would ordinarily do them. Essentially, once we have established the types of the
terms under consideration, derivations in illative combinatory logic are much the same as in
ordinary logic.

Lemma 3.3.10.

1. ` FNN(flip),

2. ` FNN(even),

3. ` FNN(add2),

4. ` FN(FNN)(eq),

5. ` FN(FNH)(Le),

6. ` FN(FN(FNN))(z).

Proof.

1. We use (NC). We have ` N(flip 0) because flip 0 = 1. Since flip(sx) = 0, we also have
Nx ` N(flip(sx)).

2. Use (NInd) and the previous point.

3. Use (NIs) twice.

4. Use (NInd) and (NC).

5. Use (NInd) and (NC).

6. Use (NC) and (ΞNI).

Lemma 3.3.11. If ` FNNX then ` FN(FNN)(iterX).

Proof. Using (NInd) and (ΞNI).

Corollary 3.3.12.
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1. ` FNN(mul2),

2. ` FN(FNN)(pow2),

3. ` FN(FNN)(m).

Lemma 3.3.13. ` ∀x, y : N . Q(eqxy)0 ⊃ Qxy.

Proof. We use (NInd). It suffices to prove the following two judgements.

• Ny ` Q(eq0y)0 ⊃ Q0y. Using Lemma 3.3.10 and (QH) we obtain

Ny ` H(Q(eq0y)0)

so by (PI) it suffices to show

Ny,Q(eq0y)0 ` Q0y

We have eq0y = y, so it suffices to show

Ny,Qy0 ` Q0y

But this follows from (QS).

• Γ ` ∀y : N . Q(eq(sx)y)0 ⊃ Q(sx)y with Γ equal to

Nx,∀y : N . Q(eqxy)0 ⊃ Qxy

We use (NC). By Lemma 3.3.10 and (QH) and (PI), for the case for zero it suffices to
show

(?) Γ,Q(eq(sx)0)0 ` Q(sx)0

But eq(sx)0 = 1, so
Γ,Q(eq(sx)0)0 ` ⊥

by (Eq) and (QS). Using (⊥E) we obtain (?).

Therefore, it remains to show

Γ,Ny ` Q(eq(sx)(sy))0 ⊃ Q(sx)(sy)

By Lemma 3.3.10, (QH) and (PI), it suffices to prove

(??) Γ,Ny,Q(eq(sx)(sy))0 ` Q(sx)(sy)

We have eq(sx)(sy) = eqxy, so using the formal inductive hypothesis with (ΞNE), and
then (Eq) and (PE), we obtain

Γ,Ny,Q(eq(sx)(sy))0 ` Qxy

Thus (??) follows from (Qs+).
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Lemma 3.3.14. ` ∀x : N . Q0(even(mul2 x)).

Proof. We use (NInd). The base case ` Q0(even(mul2 0)) follows from even(mul2 0) =
even(0) = 0, and rules (Eq) and (QI). Hence it suffices to show Γ ` Q0(even(mul2(sx))) with
appropriate Γ. Because flip(flip(0)) = 0 we have ` Q0(flip(flip(0))). Since Γ ` Q0(mul2 x),
and Γ ` N0, we obtain

Γ ` Q0(flip(flip(even(mul2 x))))

by (QE′). Because mul2(sx) = s(s(mul2 x)) we have

even(mul2(sx)) = flip(flip(even(mul2 x))).

Therefore
Γ ` Q0(even(mul2(sx)))

Corollary 3.3.15. ` ∀x : N . Q1(even(s(mul2 x))).

Proof. Follows from Lemma 3.3.14, using even(s(mul2 x)) = flip(even(mul2 x)), Γ ` Q1(flip 0),
and the rule (QE).

Lemma 3.3.16. ` ∀x : N . Qx(div2(mul2 x)).

Proof. We use (NInd). The base case follows from (QI) and div2(mul2 0) = 0. For the
inductive step it suffices to show

(?) Γ ` Q(sx)(div2(mul2(sx)))

with Γ equal to Nx,Qx(div2(mul2 x)). Since Γ ` Nx, by (Qs+) we have

Γ ` Q(sx)(s(div2(mul2 x))).

We also have
div2(mul2(sx)) = div2(s2(mul2 x)) = s(div2(mul2 x))

so (?) follows by (Eq).

Lemma 3.3.17. ` ∀x, y : N . Qx(inv1(mxy)).

Proof. We use (NInd). It suffices to show the following two judgements.

• Ny ` Q0(inv1(m 0 y)). By Corollary 3.3.15 we have

(?) Ny ` Q1(even(s(mul2 y)))

We have Ny ` Q00, so

Ny ` Q0(z1(s(inv1(div2(m 0 y))))0)
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by (Eq). Thus using (QE) with (?) we obtain

Ny ` Q0(z(even(s(mul2 y)))(s(inv1(div2(m 0 y))))0)

Because m 0 y = s(mul2 y), we have

Ny ` Q0(inv1(m 0 y))

by (Eq).

• Γ ` Q(sx)(inv1(m(sx)y)) with Γ equal to

Nx,Ny,∀y : N . Qx(inv1(mxy))

From the formal inductive hypothesis we obtain

Γ ` Qx(inv1(mxy))

Since Γ ` Nx, by (Qs+) we have

Γ ` Q(sx)(s(inv1(mxy)))

Since Γ ` H(mxy) by Corollary 3.3.12, using Lemma 3.3.16 and (QE) we obtain

Γ ` Q(sx)(s(inv1(div2(mul2(mxy)))))

Using (Eq) we get

Γ ` Q(sx)(z0(s(inv1(div2(mul2(mxy)))))0)

By Corollary 3.3.12 we have Γ ` N(mxy). So using Lemma 3.3.14 and (QE) we obtain

Γ ` Q(sx)(z(even(mul2(mxy)))(s(inv1(div2(mul2(mxy)))))0)

We have m(sx)y = mul2(mxy), so

inv1(m(sx)y) = z(even(mul2(mxy)))(s(inv1(div2(mul2(mxy)))))0

Therefore, by (Eq) we finally obtain

Γ ` Q(sx)(inv1(m(sx)y))

Lemma 3.3.18. ` ∀x, y : N . Qy(inv2(mxy)).

Proof. We use (NInd). It suffices to show the following two judgements.
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• Ny ` Qy(inv2(m 0 y)). By Corollary 3.3.15 we have

(?) Ny ` Q1(even(s(mul2 y)))

We have Ny ` Qyy, so
Ny ` Qy(z1(inv2(div2(m 0 y)))y)

by (Eq). Thus using (QE) with (?) we obtain

Ny ` Qy(z(even(s(mul2 y)))(inv2(div2(m 0 y)))y)

Hence by Lemma 3.3.16 and (QE) we obtain

Ny ` Qy(z(even(s(mul2 y)))(inv2(div2(m 0 y)))(div2(p(s(mul2 y))))

so
Ny ` Qy(z(even(s(mul2 y)))(inv2(div2(m 0 y)))(div2(p(s(mul2 y))))

Because m 0 y = s(mul2 y), we finally obtain

Ny ` Qy(inv2(m 0 y))

by (Eq).

• Γ ` Qy(inv2(m(sx)y)) with Γ equal to

Nx,Ny,∀y : N . Qy(inv2(mxy))

From the formal inductive hypothesis we obtain

Γ ` Qy(inv2(mxy))

Since Γ ` H(mxy) by Corollary 3.3.12, using Lemma 3.3.16 and (QE) we obtain

Γ ` Qy(inv2(div2(mul2(mxy))))

Using (Eq) we get

Γ ` Qy(z0(inv2(div2(mul2(mxy))))(div2(p(m(sx)y))))

By Corollary 3.3.12 we have Γ ` N(mxy). So using Lemma 3.3.14 and (QE) we obtain

Γ ` Qy(z(even(mul2(mxy)))(inv2(div2(mul2(mxy))))(div2(p(m(sx)y))))

We have m(sx)y = mul2(mxy), so

inv2(m(sx)y) = z(even(mul2(mxy)))(inv2(div2(mul2(mxy))))(div2(p(m(sx)y)))

Therefore, by (Eq) we finally obtain

Γ ` Qy(inv2(m(sx)y))
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Lemma 3.3.19. ` ∀x : N . Q0(mul2 x) ⊃ Q0x.

Proof. We use (NC). The case for zero is obvious. By (PI) and Corollary 3.3.12, for the case
for successor it suffices to show Nx,Q0(mul2(sx)) ` Q0. We have mul2(sx) = s2(mul2), so this
follows from (Q⊥).

Lemma 3.3.20. ` ∀x, y : N . Q0(pow2 x y) ⊃ Q0y.

Proof. We use (NInd). The base case is obvious, because pow2 0 y = y. By (ΞNI), (PI) and
Corollary 3.3.12, for the inductive step it suffices to show Γ ` Q0y with Γ equal to

Nx,Ny,Q0(pow2(sx)y),∀z : N . Q0(pow2 x z) ⊃ Q0z

We have pow2(sx)y = mul2(pow2 x y), so Γ ` Q0(mul2(pow2 x y)). Using Corollary 3.3.12 and
Lemma 3.3.19 we obtain Γ ` Q0(pow2 x y). Hence Γ ` Q0y follows by the formal inductive
hypothesis.

Corollary 3.3.21. ` ∀x, y : N . ¬(Q0(mxy)).

Proof. Follows from Lemma 3.3.19, Lemma 3.3.20 and Corollary 3.3.12.

Lemma 3.3.22.

1. ` ∀x, y : N . Qx(fst(mxy)),

2. ` ∀x, y : N . Qy(snd(mxy)).

Proof.

1. By (ΞNI) it suffices to show

Nx,Ny ` Qx(fst(mxy)).

We have fst(mxy) = ifzmxy then 0 else inv1(mxy). By Corollary 3.3.12 we have

Nx,Ny ` N(mxy)

So we may use (Qz). For the case for zero we need to show

Nx,Ny,Q(mxy)0 ` Qx0.

This follows by Corollary 3.3.12, (QS), Corollary 3.3.21 and (⊥E). For the case for
successor we need to show

Nx,Ny,Nz,Q(mxy)(sz) ` Qx(inv1(mxy)).

This follows from Lemma 3.3.17.

2. Analogous to the previous point, using Lemma 3.3.18.
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Lemma 3.3.23. ` ∀x : N . Lex (sx).

Proof. Using (NInd).

Lemma 3.3.24. ` ∀x, y, z : N . Lex y ⊃ Le y z ⊃ Lex z.

Proof. We use (NInd). By Lemma 3.3.10, (PI) and (ΞNI), it suffices to show the following
two judgements.

• Ny,Nz, Le 0 y, Le y z ` Le 0 z. But Le 0 z = >, so this holds.

• Γ ` ∀y, z : N . Le(sx)y ⊃ Le y z ⊃ Le(sx)z where Γ is equal to

Nx,∀y, z : N . Lex y ⊃ Le y z ⊃ Lex z.

We use (NC) twice. The cases for zero are easily shown using the definition of Le and
the rule (⊥E). By Lemma 3.3.10 and (PI) it suffices to prove

(?) Γ′ ` Le(sx)(sz)

where Γ′ is equal to
Γ,Ny,Nz, Le(sx)(sy), Le(sy)(sz).

But we have Γ′ ` Lex y, because Le(sx)(sy) = Lex y. Similarly Γ′ ` Le y z. So using
the formal inductive hypothesis we obtain

Γ′ ` Lex z

By (Eq) we conclude (?).

Lemma 3.3.25. The following rule is derivable.

Γ ` X0 Γ,Nx,∀y : N . Le y x ⊃ Xy ` X(sx) x /∈ FV(Γ, X)

Γ ` ΞNX
(NInd′)

Proof. Assume Γ ` X0 and Γ,Ny,∀z : N . Le z y ⊃ Xz ` X(sy) with y /∈ FV(Γ, X). We
show Γ ` ∀x : N . (∀y : N . Le y x ⊃ Xy) using (NInd). From this ΞNX follows using (ΞNI),
twice (ΞNE), and (PE). So we need to prove the following.

• Γ ` ∀y : N . Le y 0 ⊃ Xy. We use (NC). The case for zero Γ ` Le 0 0 ⊃ X0 follows from
Γ ` X0 and (PI). By Lemma 3.3.10 and (PI), for the case for successor it suffices to
show

Γ,Ny, Le(sy)0 ` X(sy)

But Le(sy)0 = ⊥, so this follows from (⊥E).

50



• Γ′ ` ∀y : N . Le y (sx) ⊃ Xy where Γ′ is equal to

Γ,Nx, ∀y : N . Le y x ⊃ Xy

We use (NC). The case for zero follows from Γ ` X0 and (PI). By Lemma 3.3.10
and (PI), for the case for successor it suffices to show

Γ′,Ny, Le(sy)(sx) ` X(sy).

We will prove
(?) Γ′,Ny, Le(sy)(sx) ` ∀z : N . Le z y ⊃ Xz

By (ΞNI), Lemma 3.3.10 and (PI) it suffices to show

(??) Γ′,Ny, Le(sy)(sx),Nz, Le z y ` Xz

But Le(sy)(sx) = Le y x, so by Lemma 3.3.24 we have

Γ′,Ny, Le(sy)(sx),Nz, Le z y ` Le z x

Using the formal inductive hypothesis we obtain (??). Hence (?) holds.

Now using the second assumption, i.e.,

Γ,Ny,∀z : N . Le z y ⊃ Xz ` X(sy)

and (?) with the rules (Weak) and (Cut) we obtain

Γ′,Ny, Le(sy)(sx) ` X(sy)

which is what we needed.

Like with (NInd), when using (NInd′) we also use the terminology of the base case, the
inductive step and the formal inductive hypothesis.

Lemma 3.3.26. ` FNN(div2).

Proof. We use (NInd′). The base case follows from div2 0 = 0. For the inductive step we
need to show Γ ` N(div2(sx)) with appropriate Γ. We have div2(sx) = zx0(s(div2(px))). We
use (Qz). The case for zero follows from ` N0. For the case for successor we need to show

(?) Γ,Ny,Qx(sy) ` N(s(div2(px)))

We have Γ,Ny ` Le y (sy) by Lemma 3.3.23. Therefore

Γ,Ny,Qx(sy) ` Le y x

by (QE′). From the formal inductive hypothesis it now follows that

Γ,Ny,Qx(sy) ` N(div2 y)

so
Γ,Ny,Qx(sy) ` N(div2(p(sy)))

Hence (?) follows using (QE′) and (NIs).

51



Lemma 3.3.27. ` ∀x : N . Le(div2 x)x.

Proof. Using (NInd′), (Qz), Lemma 3.3.23, Lemma 3.3.26 and Lemma 3.3.24.

Lemma 3.3.28. ` ∀x : N . N(inv1(sx)).

Proof. We use (NInd′). The base case is obvious, because inv1(s0) = 0. By (NC) and (ΞNE),
for the inductive step we need to show Γ ` N(s(inv1(div2(s2(x))))) with appropriate Γ. By
Lemma 3.3.27 we have Γ ` Le(div2 x)x, and by Lemma 3.3.26 we have Γ ` N(div2 x). So
using the formal inductive hypothesis and (NIs) we obtain Γ ` N(s(inv1(s(div2 x)))). But
div2(s2(x)) = s(div2 x), so we are done by (Eq).

Lemma 3.3.29. ` ∀x : N . N(inv2(sx)).

Proof. Similar to the proof of Lemma 3.3.28. We use (NInd′). The base case is obvious,
because inv2(s0) = div2 0 = 0. By (NC) and (ΞNE), for the inductive step we need to show
Γ ` N(inv2(div2(s2(x)))) with appropriate Γ. By Lemma 3.3.27 we have Γ ` Le(div2 x)x, and
by Lemma 3.3.26 we have Γ ` N(div2 x). So using the formal inductive hypothesis we obtain
Γ ` N(inv2(s(div2 x))). But div2(s2(x)) = s(div2 x), so we are done by (Eq).

Corollary 3.3.30.

1. ` FNN(fst),

2. ` FNN(snd),

3. ` FNN(nthk).

Proof. Follows from (NC), Lemma 3.3.28 and Lemma 3.3.29.

Lemma 3.3.31. ` ∀x : N . Le(inv1(sx))x.

Proof. We use (NInd′). The base case follows by computation. For the inductive step we
need to show Γ ` Le(inv1(s2(x)))(sx) with appropriate Γ. Since

inv1(s2(x)) = ifz even(s2(x)) then s(inv1(div2(s2(x)))) else 0
= ifz even(s2(x)) then s(inv1(s(div2 x))) else 0

and Γ ` N(even(s2(x))) by Lemma 3.3.10. Hence we may use (NC) and (ΞNE). Obviously,
Γ ` Le 0 (sx), so it suffices to show

(?) Γ ` Le(s(inv1(s(div2 x))))(sx)

By Lemma 3.3.27 we have Γ ` Le(div2 x)x. Because Γ ` N(div2 x) by Lemma 3.3.26, using
the formal inductive hypothesis we obtain

Γ ` Le(inv1(s(div2 x)))(div2 x)

Because Γ ` N(inv1(s(div2 x))) by Lemma 3.3.28, using Lemma 3.3.24 we obtain

Γ ` Le(inv1(s(div2 x)))x

Hence (?) follows by (Qs+).
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Lemma 3.3.32. ` ∀x : N . Le(inv2(sx))x.

Proof. We use (NInd′). The base case follows by computation. For the inductive step we
need to show Γ ` Le(inv2(s2(x)))(sx) with appropriate Γ. Since

inv2(s2(x)) = ifz even(s2(x)) then inv2(div2(s2(x))) else div2(sx)
= ifz even(s2(x)) then inv2(s(div2 x)) else div2(sx)

and Γ ` N(even(s2(x))) by Lemma 3.3.10, we may use (NC) and (ΞNE). For the case for zero
we need to show

Γ ` Le(div2(sx))(sx)

This follows from Lemma 3.3.27. For the case for successor it suffices to show

(?) Γ ` Le(inv2(s(div2 x)))(sx)

By Lemma 3.3.27 we have Γ ` Le(div2 x)x. Because Γ ` N(div2 x) by Lemma 3.3.26, using
the formal inductive hypothesis we obtain

Γ ` Le(inv2(s(div2 x)))(div2 x)

Because Γ ` N(inv2(s(div2 x))) by Lemma 3.3.29, using Lemma 3.3.24 we obtain

Γ ` Le(inv2(s(div2 x)))x

Hence (?) follows by Lemma 3.3.23 and Lemma 3.3.24.

Corollary 3.3.33.

1. ` ∀x : N . Le(fst(sx))x,

2. ` ∀x : N . Le(snd(sx))x.

Corollary 3.3.34.

1. ` ∀x : N . Le(fstx)x,

2. ` ∀x : N . Le(sndx)x.

Proof. Follows from (NC), Corollary 3.3.33, Corollary 3.3.30 and Lemma 3.3.24.

Corollary 3.3.35. ` ∀x : N . Le(nthk(sx))x.

Proof. Follows from Corollary 3.3.33, Corollary 3.3.34, Corollary 3.3.30 and Lemma 3.3.24.

Having developed enough formal machinery, we may proceed to the derivation of the
paradox. For this purpose we need some additional assumptions on the illative system.
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Definition 3.3.36. A Hilbert-style illative system is a pair 〈Σ,R〉 where Σ is a finite set
of constants and R is a finite set of rules. Each rule is a pair 〈P , Y 〉 where P ⊆ T(Σ)
is a finite set of premises, and Y ∈ T(Σ) is the conclusion. A term X ∈ T(Σ) is a direct
consequence of terms X1, . . . , Xk if there is a rule 〈{Y1, . . . , Yk}, Y 〉 ∈ R and terms Z1, . . . , Zm
such that X ≡ Y [x1/Z1, . . . , xm/Zm] and Xi ≡ Yi[x1/Z1, . . . , xm/Zm] for i = 1, . . . , k. A term
X ∈ T(Σ) is derivable from a set of assumptions Γ ⊆ T(Σ), denoted Γ ` X, if there exists
a finite sequence of terms X1, . . . , Xn such that X ≡ Xn and for every i ≤ n the term Xi

is either a member of Γ or it is a direct consequence of some terms Xi1 , . . . , Xik where
1 ≤ i1, . . . , ik < i. A term X ∈ T(Σ) is derivable, denoted ` X, if it is derivable from the
empty set of assumptions.

Note that a Hilbert-style illative system uniquely determines a general illative system
(see Definition 3.1). We often confuse Hilbert-style illative systems with their corresponding
general illative systems. In particular, we say that a Hilbert-style illative system contains
arithmetic if the corresponding general illative system does. Note that in every Hilbert-style
illative system the axiom (Ax) and the rules (Weak) and (Cut) are admissible.

Theorem 3.3.37 (Kleene-Rosser paradox). Any Hilbert-style illative system I containing
arithmetic is inconsistent, i.e., `I Y for an arbitrary term Y .

Proof. Let I = 〈Σ,R〉 be a Hilbert-style illative system containing arithmetic. Without
loss of generality we may assume that the system is based on combinatory logic with weak
equality. For the sake of concreteness, assume Σ = {c1, c2, . . . , cn} and

R = {〈{c1x, y(c2xz)}, x(c2y)〉, 〈∅, x(c2(Kx))〉, . . .}.

We shall only give definitions and proofs for the first two rules in R and the first two constants
in Σ. It should be evident that the following arguments may be straightforwardly adapted to
the general case.

First, we define the code ϕ(X) ∈ N of a term X ∈ T(Σ) inductively:

• ϕ(K) = 21, ϕ(S) = 22,

• ϕ(ci) = 2i+2 for i = 1, . . . , n,

• ϕ(XY ) = 20(2(2ϕ(X)(2ϕ(Y ) + 1)) + 1) = 2ϕ(X)+1(2ϕ(Y ) + 1) + 1.

We set dXe = ϕ(X), i.e., dXe is the numeral representing the code of X. We say that dXe
is the numeral code of X. We define the term app by app ≡ λxy.m0(mxy). We have
app dXe dY e = dXY e for any terms X, Y , by Lemma 3.3.7. We define the evaluator T by the
recursive equation:

T = λx.
ifz evenx then

(ifz eqx 2 thenK
else ifz eqx 4 then S
else ifz eqx 8 then c1

else c2)
else (T(fst(sndx)))(T(snd(sndx)))

54



Using Lemma 3.3.7, it follows by induction that TdXe = X for any term X. We define the
term R1 implementing the first rule of R:

R1 ≡ λabxyz.
ifz eq a (appdc1ex) then

(ifz eq b (app y (app(appdc2ex)z)) then
appx (appdc2ey)

else d>e)
else d>e

Similarly, we set R2 ≡ λx.appx (appdc2e(appdKex)). Now the term Θ enumerating the
numeral codes of derivable terms is defined by the recursive equation:

Θ = λx.
ifzx then
d>e

else ifz nth0 x then
R1(Θ(nth1 x))(Θ(nth2 x))(nth3 x)(nth4 x)(nth5 x)

else
R2(nth1 x)

It follows by induction on the length of derivation that if `I X then there is n ∈ N with
Θn = dXe. Indeed, let ψ(n,m) = 2n(2m + 1) for n,m ∈ N. If ` X is derived by the first
rule from the premises c1X1 and X2(c2X1X3), then Θm = dXe for

m = ψ(0, ψ(n, ψ(k, ψ(ϕ(X1), ψ(ϕ(X2), ψ(ϕ(X3), 0)))))),

where n, k ∈ N such that Θn = dc1X1e and Θk = dX2(c2X1X3)e are obtained from the
inductive hypothesis. If ` X is derived by the second rule, then X ≡ X ′(c2(KX ′)) and
Θm = dXe for m = ψ(1, ψ(ϕ(X ′), 0)).

The converse is also true, i.e., for any n ∈ N the term Θn is the numeral code of a
derivable term. In (9) below we will show that this may be proved formally in I.

The term Ω enumerating the numeral codes of terms representing numerical functions is
defined by

Ω ≡ λx.
ifz eq(Θ(fstx))(appdFNNe(sndx)) then

sndx
else
dIe

Finally, we set U ≡ λx.T(Ωx). It is clear that for every X such that ` FNNX there is n ∈ N
with Ωn = dXe. Indeed, it suffices to take n = 2m(2ϕ(X) + 1) where m ∈ N is such that
Θm = dFNNXe.

To derive the paradox we shall prove the following conditions, and then apply Proposi-
tion 3.3.1.
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(1) ` FN(FNN)(app).

(2) ` ∀x1, . . . , x5 : N . N(R1x1 . . . x5).

(3) ` FNNR2.

(4) ` FNNΘ.

(5) If Γ ` NX, Γ ` NY and Γ ` Z(T(appX Y )) then Γ ` Z(TX(TY )).

(6) If Γ ` NX, Γ ` NY and Γ ` Z(TX(TY )) then Γ ` Z(T(appX Y )).

(7) If Γ ` TX1, Γ ` TX2 and Γ ` NXi for i = 1, . . . , 5 then Γ ` T(R1X1X2X3X4X5).

(8) If Γ ` NX then Γ ` T(R2X).

(9) ` ∀x : N.T(Θx).

(10) ` ∀x : N.FNN(T(Ωx)).

We proceed with the proof of (1)− (10).

(1) Follows from Corollary 3.3.12.

(2) Follows from (1), Lemma 3.3.10 and Lemma 3.3.9.

(3) Follows from (1) and Lemma 3.3.9.

(4) We use (NInd′). The base case follows from ` Nd>e (which holds by Lemma 3.3.9,
because d>e is a numeral). For the inductive step we need to show Γ ` N(Θ(sx)) with
appropriate Γ. We have

Θ(sx) = z(nth0(sx))
(R1(Θ(nth1(sx)))(Θ(nth2(sx)))(nth3(sx))(nth4(sx))(nth5(sx)))
(R2(nth1(sx)))

By Corollary 3.3.30 we obtain

(?1) Γ ` N(nthi(sx))

for i = 1, . . . , 5. So by (3) we have

(?2) Γ ` N(R2(nth1(sx)))

Using (?1) and Corollary 3.3.35 we obtain Γ ` Le(nthi(sx))x for i = 1, 2. Therefore

(?3) Γ ` N(Θ(nthi(sx)))

for i = 1, 2 follows from the formal inductive hypothesis. Using (?1), (?3) and (2) we
obtain

(?4) Γ ` N(R1(Θ(nth1(sx)))(Θ(nth2(sx)))(nth3(sx))(nth4(sx))(nth5(sx)))

Now Γ ` N(Θ(sx)) follows from (?1), (?4), (?2) and Lemma 3.3.10.
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(5) Assume Γ ` NX, Γ ` NY and Γ ` Z(T(appX Y )). By (1) we have Γ ` N(appX Y ).
We have appX Y = m0(mXY ) = s(mul2(mXY )), so Γ ` Q1(even(appX Y )) by Corol-
lary 3.3.15 and Corollary 3.3.12. Therefore, by (QE′) we obtain

Γ ` Z(T(fst(snd(appX Y )))(T(snd(snd(appX Y )))))

because

T(appX Y ) = z (even(appX Y ))
(z(eq(appX Y )2)K(z(eq(appX Y )4)S(z(eq(appX Y )8)c1c2)))
((T(fst(snd(appX Y ))))(T(snd(snd(appX Y )))))

Because appX Y = m0(mXY ), Γ ` X, Γ ` Y and Γ ` N(mX Y ) by Corollary 3.3.12,
using Lemma 3.3.22 and (QE′) we obtain

Γ ` Z(TX(TY )).

(6) Assume Γ ` NX, Γ ` NY and Γ ` Z(TX(TY )). By Lemma 3.3.22 and (QE) we
have Γ ` Z(T(fst(mXY ))(T(snd(mXY )))). Because Γ ` N(mXY ) by Corollary 3.3.12,
applying Lemma 3.3.22 and (QE) again, we obtain

Γ ` Z(T(fst(snd(m0(mXY ))))(T(snd(snd(m0(mXY )))))

i.e.
Γ ` Z(T(fst(snd(appX Y )))(T(snd(snd(appX Y ))))).

We have appX Y = m0(mXY ) = s(mul2(mXY )), so Γ ` Q1(even(appX Y )) by Corol-
lary 3.3.15 and Corollary 3.3.12. Therefore Γ ` Z(T(appX Y )) by (QE) and (Eq).

(7) Assume Γ ` TX1, Γ ` TX2 and Γ ` NXi for i = 1, . . . , 5. We have

R1X1 . . . X5 = z (eqX1 (appdc1eX3))
(z (eqX2 (appX4 (app(appdc2eX3)X5))) (appX3 (appdc2eX4)) d>e)
d>e

By (1), Lemma 3.3.9 and Lemma 3.3.10 we have

Γ ` N(eqX1 (appdc1eX3)).

Hence we may use (Qz). The case for successor is obvious, because Td>e = >. For the
case for zero we need to show

Γ,Q(eqX1 (appdc1eX3))0 ` T(z (eqX2 (appX4 (app(appdc2eX3)X5)))
(appX3 (appdc2eX4))
d>e)

By (1), Lemma 3.3.9 and Lemma 3.3.10 we have

Γ ` N(eqX2 (appX4 (app(appdc2eX3)X5))).
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Hence we may again use (Qz). The case for successor is again obvious. For the case for
zero we need to show

(?) Γ′ ` T(appX3 (appdc2eX4))

with Γ′ equal to

Γ,Q(eqX1 (appdc1eX3))0,Q(eqX2 (appX4 (app(appdc2eX3)X5)))0.

Since Γ′ ` NX1 and Γ′ ` N(appdc1eX3) by Lemma 3.3.9 and (1), using Lemma 3.3.13 we
obtain Γ′ ` QX1(appdc1eX3). Since Γ′ ` TX1, by (QE) we obtain Γ′ ` T(appdc1eX3).
Hence by (5) and Tdc1e = c1 we have Γ′ ` c1(TX3).

Because Γ′ ` NX2 and Γ′ ` N(appX4 (app(appdc2eX3)X5)) by Lemma 3.3.9 and (1),
using Lemma 3.3.13 we obtain Γ′ ` QX2(appX4 (app(appdc2eX3)X5)). Since Γ′ ` TX2,
by (QE) we obtain Γ′ ` T(appX4 (app(appdc2eX3)X5)). Hence by (5), (1), Lemma 3.3.9
and Tdc2e = c2 we have Γ′ ` TX4(c2(TX3)(TX5)).

Because Γ′ ` c1(TX3) and Γ′ ` TX4(c2(TX3)(TX5)), by the first rule of I we obtain
Γ′ ` TX3(c2(TX4)). By (6) this implies (?).

(8) Follows using the second rule of I and (6).

(9) We use (NInd′). The base case is obvious, because T(Θ0) = Td>e = >. For the
inductive step we need to show Γ ` T(Θ(sx)) with appropriate Γ. We have

Θ(sx) = z(nth0(sx))
(R1(Θ(nth1(sx)))(Θ(nth2(sx)))(nth3(sx))(nth4(sx))(nth5(sx)))
(R2(nth1(sx)))

By Corollary 3.3.30 we have Γ ` N(nthi(sx)) for i = 0, . . . , 5. We use (NC) and (ΞNE)
with nth0(sx). For the case for zero we need to show

(?) Γ ` T(R1(Θ(nth1(sx)))(Θ(nth2(sx)))(nth3(sx))(nth4(sx))(nth5(sx)))

By Corollary 3.3.35 we have Γ ` Le(nthi(sx))x for i = 1, 2. Hence by the formal
inductive hypothesis we obtain Γ ` T(Θ(nthi(sx))) for i = 1, 2. By (4) we also have
Γ ` N(Θ(nthi(sx))) for i = 1, 2. Therefore, by (7) we conclude (?).

For the case for successor it suffices to show

Γ ` T(R2(nth1(sx))).

This follows from Γ ` N(nth1(sx)) and (8).

(10) We use (ΞNI). We have

FNN(T(Ωx)) = FNN(T(z(eq(Θ(fstx))(appdFNNe(sndx)))(sndx)dIe))
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By Corollary 3.3.30, Lemma 3.3.9, Lemma 3.3.10, (1) and (4), we obtain

Nx ` N(eq(Θ(fstx))(appdFNNe(sndx))).

Thus we may use (Qz). The case for successor is obvious, because TdIe = I, and we
have ` FNNI. For the case for zero we need to show

(?) Γ ` FNN(T(sndx))

with Γ equal to
Nx,Q(eq(Θ(fstx))(appdFNNe(sndx)))0.

By Corollary 3.3.30 and (4) we have Nx ` N(Θ(fstx)). By Lemma 3.3.9, Corollary 3.3.30
and (1) we have Nx ` N(appdFNNe(sndx)). Hence by Lemma 3.3.13 we have

Γ ` Q(Θ(fstx))(appdFNNe(sndx)).

Because Nx ` N(fstx) by Corollary 3.3.30, using (9) we obtain Γ ` T(Θ(fstx)). Hence
by (QE) we have Γ ` T(appdFNNe(sndx)). Thus by Corollary 3.3.30, Lemma 3.3.9
and (5) we obtain Γ ` TdFNNe(T(sndx)). Then (?) follows from TdFNNe = FNN.

To conclude that I is inconsistent, it remains to check (a)− (g) in Proposition 3.3.1.

(a) Follows from (Ax).

(b) Follows from (FNI) and (Eq).

(c) Follows from (FNE).

(d) Follows from (FNI) and (NIs).

(e) Follows from (QI) and Lemma 3.3.5.

(f) Recall that U ≡ λx.T(Ωx). We have shown above (just after the definition of Ω) that if
` FNNX then there is n ∈ N with Ωn = dXe, so also Un = TdXe = X. Since ` Nn for
n ∈ N, the condition (f) follows.

(g) Follows from (10) above.

Our formulation of the Kleene-Rosser paradox reveals an essential incompatibility between
an unrestricted induction principle (NInd) and a Hilbert-style formulation of an illative
system. Actually, the strongest of our systems I+ from Chapter 7 has (NInd) as a derived
rule. It does not contain arithmetic in the sense of Definition 3.3.2, because it does not have
the primitive Q with required properties. Nonetheless, we conjecture that the arguments of
the present section could be adapted to show that every Hilbert-style illative system which
contains all rules of I+ is inconsistent.

In fact, by modifying the model construction for IK from Section 5.2.2 it would not be
difficult to show consistency of a natural deduction illative system I containing arithmetic in
the sense of Definition 3.3.2. Theorem 3.3.37 would then imply that any Hilbert-style illative

59



system containing all rules of I must be inconsistent, i.e., I would have no Hilbert-style
formalisation. This situation may seem strange, but upon closer consideration it is not really so
surprising. The essential difference between natural deduction and Hilbert-style formulations
of illative systems is that it may be impossible to faithfully represent the judgements of a
natural deduction illative system in the system itself. In other words, there might not exist a
function ψ from judgements to terms, such that Γ ` X iff ` ψ(Γ ` X). Note that representing
X1, . . . , Xn ` X by X1 ⊃ . . . ⊃ Xn ⊃ X does not work if the implication introduction rule is
restricted like in (PI). Because the rules of a natural deduction system operate on judgements
with possibly non-empty contexts, in the definition of the enumerator Θ we would need
to operate on codes of terms representing judgments. Therefore, it may be impossible to
define an enumerator Θ for which ∀x : N . T(Θx) would be provable in the system. With
Hilbert-style systems this difficulty does not arise, because the rules of Hilbert-style systems
essentially operate on judgements with empty contexts, and a judgement ` X may be simply
represented by X. When coupled with an unrestricted induction principle, this property of
Hilbert-style illative systems allows them to “say” too much about themselves, leading to an
inconsistency.
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Chapter 4

Propositional logic

4.1 Illative systems

Definition 4.1.1. The system IJp of intuitionistic propositional illative combinatory logic
comes in three variants: IJpλβη, IJpλβ and IJpCLw. They differ in the underlying reduction
systems. Let Σ be a set of constants containing at least the illative constants P,

V

, V and ⊥.
For IJpλβη and IJpλβ the set of terms is Tλ(Σ), for IJpCLw it is TCL(Σ). By IJp we denote
any of the three variants. We will give definitions and proofs for IJpλβη, and only indicate
what (usually minor) changes are needed for other variants.

We adopt the abbreviations (compare Section 1.1):

• HX ≡ PXX,

• X ⊃ Y ≡ PXY ,

• X ∧ Y ≡

V

XY ,

• X ∨ Y ≡ VXY ,

• ¬X ≡ X ⊃ ⊥.

Intuitively, HX means “X is a proposition”. See also Section 1.1.
As in Section 1.1, the symbols X, Y , Z, etc., stand for terms, and Γ, Γ′, etc., stand for

sets of terms. The notation Γ, X abbreviates Γ ∪ {X}.
A judgement in IJp has the form Γ ` X where Γ is finite. The rules of IJp are given in

Figure 4.1. For the variant IJpλβη the equality = in rule (Eq) is the βη-equality, for IJpλβη
it is β-equality, and for IJpCLw it is weak equality. For an infinite set of terms Γ we write
Γ ` X if there exists a finite Γ′ ⊆ Γ such that Γ′ ` X is derivable.

The system IKp of classical propositional illative combinatory logic is obtained by adding
to IJp the rule of excluded middle:

Γ ` HX
Γ ` X ∨ ¬X (EM)

We write Γ `IJp X when Γ ` X is derivable in IJp, and analogously for Γ `IKp X. The
subscript is dropped when obvious from the context.
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A set of terms Γ is consistent if Γ 6` ⊥.

Note that it is not possible to consistently add to IJp the unrestricted axiom of excluded
middle: Γ ` X ∨ ¬X. With this axiom it is easy to derive Γ ` ⊥ using rule (VE) and
a term X such that X = ¬X.

Lemma 4.1.2. The following rules are admissible in IJp and IKp:

Γ ` X
Γ, Y ` X (Weak)

Γ ` X
Γ[x/Y ] ` X[x/Y ]

(Sub)

Γ, X ` Z X = Y

Γ, Y ` Z (EqL)
Γ ` X Γ, X ` Y

Γ ` Y (Cut)

Proof. The admissibility of (Weak) and (Sub) follows by straightforward induction on the
length of derivation. The rule (Cut) is derived thus:

Γ ` X
Γ, X ` Y

Γ ` X
Γ ` HX

(HI)

Γ ` X ⊃ Y
(PIl)

Γ ` Y (PE)

The admissibility of (EqL) now follows from (Weak), (Cut) and (Eq):

Γ, Y ` Y (Ax)
Y = X

Γ, Y ` X (Eq)
Γ, X ` Z

Γ, Y,X ` Z (Weak)

Γ, Y ` Z (Cut)

In fact, it would not be difficult to prove the admissibility of (Cut) and (EqL) directly by
induction on the length of derivation.

Informally, the illative system IKp may be interpreted in a kind of three-valued logic, in
the sense explained below. The truth tables for propositional connectives are in Figure 4.2.
The symbol T stands for true, F for false, and N for neither. The tables agree with the ones
used by Bunder [Bun73a],[CHS72, §15C5].

The tables may be interpreted in the following manner (see also [CHS72, §15C5]). If X
is true, then T is assigned to X. If X is false (in some sense), then F is assigned to X.
Otherwise X has the value N. A judgement Γ ` X means that if all elements of Γ are true,
then so is X.

For instance, we give an informal justification for the rule (PIl). According to our
interpretation, the premises of the rule mean that:

1. if all elements of Γ and X are true, then Y is also true,

2. if all elements of Γ are true, then HX is also true.
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Γ, X ` X (Ax)
Γ ` H⊥ (⊥HI)

Γ, X ` Y Γ ` HX
Γ ` X ⊃ Y

(PIl)

Γ ` Y
Γ ` X ⊃ Y

(PIr)

Γ ` X Γ ` X ⊃ Y
Γ ` Y (PE)

Γ, X ` HY Γ ` HX

Γ ` H(X ⊃ Y )
(PHI)

Γ ` H(X ⊃ Y ) Γ,HX ` Z Γ, Y ` Z
Γ ` Z (PHEl)

Γ ` X Γ ` H(X ⊃ Y )

Γ ` HY
(PHEr)

Γ ` X Γ ` Y
Γ ` X ∧ Y (

V

I) Γ ` X ∧ Y
Γ ` X (

V

El)
Γ ` X ∧ Y

Γ ` Y (

V

Er)

Γ ` HX Γ, X ` HY

Γ ` H(X ∧ Y )
(

V

HIl)

Γ ` HY Γ, Y ` HX

Γ ` H(X ∧ Y )
(

V
HIr)

Γ ` X Γ ` H(X ∧ Y )

Γ ` HY
(

V

HEl)

Γ ` Y Γ ` H(X ∧ Y )

Γ ` HX
(

V
HEr)

Γ ` H(X ∧ Y ) Γ,HX ` Z Γ,HY ` Z
Γ ` Z (

V

HE)

Γ ` X
Γ ` X ∨ Y (VIl)

Γ ` Y
Γ ` X ∨ Y (VIr)

Γ ` X ∨ Y Γ, X ` Z Γ, Y ` Z
Γ ` Z (VE)

Γ ` HX Γ ` HY
Γ ` H(X ∨ Y )

(VHI)

Γ ` H(X ∨ Y ) Γ, X ` Z Γ, Y ` Z Γ,HX,HY ` Z
Γ ` Z (VHE)

Γ ` X
Γ ` HX

(HI) Γ ` ⊥
Γ ` X (⊥E)

Γ ` X X = Y
Γ ` Y (Eq)

Figure 4.1: Rules of IJp
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PXY

X
Y

T F N

T T F N
F T T T
N T N N

V

XY

X
Y

T F N

T T F N
F F F F
N N F N

VXY

X
Y

T F N

T T T T
F T F N
N T N N

X ¬X
T F
F T
N N

X HX
T T
F T
N N

Figure 4.2: Truth tables for propositional connectives

Suppose all elements of Γ are true. By 2 above HX is also true, which by the truth table
for H means that X is either true or false. If X is true, then by 1 also Y is true, and by the
table for P we conclude that PXY is true. If X is false, then PXY is true by the truth table
for P. By this informal argument we conclude that the rule (PIl) is correct.

Essentially, the above informal semantics is formalised in the notion of an IKp-model in
Definition 4.1.12. Note that the connectives are “lazy”, e.g., X ∨Y is true if X is, irrespective
of the value of Y . So if X is true then X∨Y is a true proposition, even if Y does not represent
a well-formed proposition at all. This interpretation of the meaning of logical connectives
enables us to omit many premises which otherwise would be necessary in introduction rules.
This agrees with our goal of minimising restrictions in inference rules.

Systems of illative combinatory logic usually do not include H-elimination rules (∗HE).
They generally strive to minimise the number of rules and illative constants. Usually, also

V

and V are defined in terms of other illative primitives and not taken as constants. However,
it is not clear, even in classical setting, how to define

V

and V from P so as to obtain the
unrestricted introduction and elimination rules as in Figure 4.1. Note that standard definitions
do not work, because the derived rules would then have some additional restrictions, i.e.,
additional premises. In any case, we are less concerned with minimising the number of rules
and illative constants. Our interest in illative systems lies more in the fact that by including
untyped lambda calculus (or combinatory logic) unrestricted recursion is incorporated directly
into the logic.

As for the H-elimination rules, they may seem strange at first sight, but they can be
informally justified by the truth tables in Figure 4.2. There are three main reasons for
including these rules.

1. The symmetry between introduction and elimination rules in natural deduction is
restored. Usually, illative systems include only H-introduction rules (∗HI), without
corresponding elimination rules.

2. The system IJp with the rules of H-elimination is complete w.r.t. the Kripke semantics
in Section 4.1.1, but a system without them is not complete.
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3. Without these rules some of the rules in Lemma 4.1.3 are not admissible. The rules of
Lemma 4.1.3 are useful in practice, e.g. in [Cza13c] (see also [Cza13d]) the rule (¬HE)
is indispensable in some derivations.

In Section 4.1.3 we provide an equivalent alternative formulation of IKp. In this formula-
tion, all rules correspond directly to, and in a sense generalise, standard principles of classical
propositional logic.

Lemma 4.1.3. The following rules are admissible in IJp.

Γ ` H(¬X)

Γ ` HX
(¬HE)

Γ ` HX
Γ ` H(¬X)

Γ ` X
Γ ` ¬¬X

Γ ` ¬X
Γ ` X ⊃ Y

Γ ` ¬X
Γ ` ¬(X ∧ Y )

Γ ` ¬Y
Γ ` ¬(X ∧ Y )

Γ ` ¬X ∨ ¬Y
Γ ` ¬(X ∧ Y )

Γ ` ¬X ∧ ¬Y
Γ ` ¬(X ∨ Y )

Γ ` ¬(X ∨ Y )

Γ ` ¬X ∧ ¬Y

Moreover, in IKp also the following rules are admissible.

Γ ` ¬(X ∧ Y )

Γ ` ¬X ∨ ¬Y
Γ ` ¬¬X

Γ ` X

Proof. Easy.

4.1.1 Kripke semantics

In this section we define Kripke semantics for IJp.

Definition 4.1.4. A propositional illative combinatory algebra (PICA) is a tuple

C = 〈C, ·, k, s, h, p, v, v,¬¬¬,⊥⊥⊥〉

where 〈C, ·, k, s〉 is a combinatory algebra and h, p, v, v,¬¬¬,⊥⊥⊥ ∈ C, i.e., it is simply a combinatory
algebra with distinguished elements h, p, v, v,¬¬¬,⊥⊥⊥. Given a PICA C we often confuse C with C.

A PICA is extensional if its associated combinatory algebra is extensional. A PICA is
a propositional illative λ-model if its associated combinatory algebra is a λ-model.

Definition 4.1.5. A Kripke IJpλβη-model (respectively IJpλβ-model or IJpCLw-model) is
a tuple S = 〈C, I, S,≤, σ0, σ1〉 where:

• C is an extensional propositional illative combinatory algebra (respectively a propo-
sitional illative λ-model, or a propositional illative combinatory algebra) satisfying
h · a = p · a · a and ¬¬¬ · a = p · a · ⊥⊥⊥ for any a ∈ C,

• I is a function from Σ to C providing an interpretation for constants,
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• S is a non-empty set of states,

• ≤ is a partial order on S,

• σ0 and σ1 are functions from C to P(S), satisfying the following for any a, b ∈ C, where
σh(a) = σ0(a) ∪ σ1(a):

1. σh(a) and σ1(a) are upward-closed1 wrt. ≤,
2. σ0(⊥⊥⊥) = S,
3. σ0(a) ∩ σ1(a) = ∅,
4. σ1(v · a · b) = σ1(a) ∪ σ1(b),
5. σ0(v · a · b) = σ0(a) ∩ σ0(b),
6. σ1( v· a · b) = σ1(a) ∩ σ1(b),
7. s ∈ σ0( v· a · b) iff

– s ∈ σ0(a) and for every s′ ≥ s such that s′ ∈ σ1(a) we have s′ ∈ σh(b), or
– s ∈ σ0(b) and for every s′ ≥ s such that s′ ∈ σ1(b) we have s′ ∈ σh(a),

8. s ∈ σ1(p · a · b) iff
– s ∈ σh(a) and for every s′ ≥ s such that s′ ∈ σ1(a) we have s′ ∈ σ1(b), or
– s ∈ σ1(b),

9. s ∈ σ0(p · a · b) iff
– s ∈ σh(a), and
– for every s′ ≥ s such that s′ ∈ σ1(a) we have s′ ∈ σh(b), and
– there exists s′ ≥ s such that s′ ∈ σ1(a) and s′ ∈ σ0(b).

An S-valuation is a function from V to C (cf. Definition 2.3.17). Given an S-valuation
ρ : V → C we define the value of M ∈ TCL, denoted JMKSρ or just JMKρ, by induction on the
structure of M :

• JxKρ = ρ(x) if x ∈ V ,

• JKKρ = k, JSKρ = s,

• JPKρ = p, JVKρ = v, J

V

Kρ = v, J⊥Kρ = ⊥⊥⊥,

• JcKρ = I(c) if c ∈ Σ \ {P,V,

V

,⊥},
• JM1M2Kρ = JM1Kρ · JM1Kρ.

For M ∈ Tλ we set JMKρ = J(M)CLKρ. We drop the subscript and/or the superscript when
clear or irrelevant.

If s ∈ σi(JMKρ), we write s, ρ 
i M . If M is closed then we use the notation s 
i M . We
write S, ρ 
i M if s, ρ 
i M for all s ∈ S. We use the notation s, ρ 
i Γ (resp. S, ρ 
i Γ) if
s, ρ 
i M (resp. S, ρ 
i M) for all M ∈ Γ. Finally, we write Γ 
i M if for every S, every
s ∈ S and every ρ, the condition s, ρ 
1 Γ implies s, ρ 
i M . Instead of 
1 we sometimes
use 
. To make it clear what kind of Kripke models are used we also write Γ 
IJp M for
Γ 
1 M .
1A set A ⊆ S is upward-closed wrt. ≤ iff s ∈ A and s′ ≥ s imply s′ ∈ A.
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Intuitively, s ∈ σ1(a) means that a is known to be a true proposition in state s, and
s ∈ σ0(a) means that in state s, the element a is known to be a proposition which is not
(known/forced to be) true. So s ∈ σh(a) = σ0(a) ∪ σ1(a) means that a is known to be
a proposition in state s. Thus, if s ∈ σ0(a) then we may have s′ ∈ σ1(a) for some s′ ≥ s.
A proposition which is not true may become true with expanding our knowledge. However,
if s ∈ σ0(a) then s′ ∈ σ0(a) ∪ σ1(a) for all s′ ≥ s, because knowledge is monotonous – once
we know a is a proposition it will be a proposition in any future state of knowledge. If a is
a proposition which is not true, then in any future state, it may either remain so, or become
true. That a is false in state s is expressed by s ∈ σ1(p · a · ⊥⊥⊥), i.e., that its negation is true,
not by s ∈ σ0(a). A proposition is false in state s if it is a proposition which is not true in
all states s′ ≥ s. If s ∈ σh(a), i.e., a is a proposition in state s, then a is “always ultimately
knowable”, i.e., however we expand our knowlege, it is always possible to expand it further
so that a becomes either true or false.

With regard to condition 7, its interpretation is as follows: v· a · b is a proposition which
is not true in state s iff a is a proposition which is not true in state s or b is a proposition
which is not true in state s, and v· a · b remains a proposition when we expand our knowledge.
Condition 7 is formulated in a way to ensure that if v· a · b is a proposition which is
not true in some state s then it remains a proposition in all states s′ ≥ s. If we took
σ0(

v· a · b) = σ0(a) ∪ σ0(b) then this might not be so. Similar considerations apply to the
formulation of condition 9 for p.

Given a Kripke model S, we often confuse S with S and we implicitly assume that k, s, p,
etc., belong to the combinatory algebra associated with S.

We use the notion of a Kripke IJp-model to refer generically to a Kripke IJpλβη-, IJpλβ-,
or IJpCLw-model, when it does not matter exactly which one it is.

Note that the conditions on σ1 and σ0 above are not a definition of σ1 or σ0, but just
some properties we wish σ1 and σ0 to satisfy. Because of the combinatory completeness of C,
it is not obvious that there exists a structure satisfying the above requirements.

Lemma 4.1.6. In any Kripke IJp-model the following conditions hold for any s ∈ S and
a, b ∈ C:

• s ∈ σ1(h · a) iff s ∈ σh(a),

• s ∈ σ1(p · a · ⊥⊥⊥) iff for every s′ ≥ s we have s′ ∈ σ0(a),

• s ∈ σ0(p · a · ⊥⊥⊥) iff s ∈ σh(a) and there exists s′ ≥ s such that s′ ∈ σ1(a),

• if s ∈ σ1(h · a) then for every s′ ≥ s there exists s′′ ≥ s′ such that s′′ ∈ σ1(a) or
s′′ ∈ σ1(p · a · ⊥⊥⊥).

Proof. Follows easily from definitions.

For convenience of reference, we now reformulate in terms of 
1 and 
0 some of the
conditions on σ1 and σ0 in a Kripke IJp-model.

Lemma 4.1.7. For any Kripke IJp-model S and any valuation ρ the following hold for
s ∈ S and X, Y ∈ T:
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1. s, ρ 
1 X ∨ Y iff s, ρ 
1 X or s, ρ 
1 Y ,

2. s, ρ 
0 X ∨ Y iff s, ρ 
0 X and s, ρ 
0 Y ,

3. s, ρ 
1 X ∧ Y iff s, ρ 
1 X and s, ρ 
1 Y ,

4. s, ρ 
0 X ∧ Y iff

• s, ρ 
0 X and for every s′ ≥ s such that s′, ρ 
1 X we have s′, ρ 
1 HY , or
• s, ρ 
0 Y and for every s′ ≥ s such that s′, ρ 
1 Y we have s′, ρ 
1 HX,

5. s, ρ 
1 X ⊃ Y iff

• s, ρ 
1 HX and for every s′ ≥ s such that s′, ρ 
1 X we have s′, ρ 
1 Y , or
• s, ρ 
1 Y ,

6. s, ρ 
0 X ⊃ Y iff

• s, ρ 
1 HX, and
• for every s′ ≥ s such that s′, ρ 
1 X we have s′, ρ 
1 HY , and
• there exists s′ ≥ s such that s′, ρ 
1 X and s′, ρ 
0 Y ,

7. s, ρ 11 ⊥ and s, ρ 
0 ⊥,

8. s, ρ 
1 HX iff s, ρ 
1 X or s, ρ 
0 X.

Proof. Follows easily from definitions.

Theorem 4.1.8 (Soundness of Kripke semantics for IJp).
If Γ `IJp M then Γ 
IJp M .

Proof. The proof is by fairly straightforward induction on the length of derivation of Γ `M .
Despite its easiness, we give the proof in full for the sake of completeness.

Assume S is a Kripke IJp-model, ρ a valuation and s ∈ S. Suppose s, ρ 
1 Γ, and
consider the last rule used in the derivation of Γ ` M . We show s, ρ 
1 M . The claim is
obvious for the axioms (Ax) and (⊥HI).

(PIl) Then M ≡ X ⊃ Y and Γ, X ` Y and Γ ` HX. So s, ρ 
1 HX by the IH. Let s′ ≥ s
be such that s′, ρ 
1 X. Then s′, ρ 
1 Γ, X, and thus s′, ρ 
1 Y by the IH, because
Γ, X ` Y . Therefore, s, ρ 
1 X ⊃ Y .

(PIr) Then M ≡ X ⊃ Y and Γ ` Y . By the IH we have s, ρ 
1 Y , so s, ρ1 
1 M .

(PE) Then Γ ` N and Γ ` N ⊃M . By the IH we have s, ρ 
1 N and s, ρ 
1 N ⊃M . This
implies that s, ρ 
1 M .

(PHI) Then M ≡ H(X ⊃ Y ) and Γ, X ` HY and Γ ` HX. By the IH, s, ρ 
1 HX. Because
Γ, X ` HY , by the IH for every s′ ≥ s such that s′, ρ 
1 X we have s′, ρ 
1 Y or
s′, ρ 
0 Y , i.e., s′, ρ 
1 HY . If there exists s′ ≥ s such that s′, ρ 
1 X and s′, ρ 
0 Y ,
then s, ρ 
0 X ⊃ Y . Otherwise, s, ρ 
1 X ⊃ Y . In any case, s, ρ 
1 H(X ⊃ Y ).
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(PHEl) Then Γ ` H(X ⊃ Y ), Γ,HX ` M and Γ, Y ` M . By the IH, s, ρ 
1 X ⊃ Y or
s, ρ 
0 X ⊃ Y . Suppose s, ρ 
1 X ⊃ Y . If s, ρ 
1 Y then by the IH s, ρ 
1 M .
Otherwise, s, ρ 
1 HX, so s, ρ 
1 M by the IH. Suppose s, ρ 
0 X ⊃ Y . Then
s, ρ 
1 HX, so s, ρ 
1 M by the IH.

(PHEr) Then M ≡ HY and Γ ` X and Γ ` H(X ⊃ Y ). By the IH, s, ρ 
1 X, and either
s, ρ 
1 X ⊃ Y or s, ρ 
0 X ⊃ Y . If s, ρ 
1 X ⊃ Y then s, ρ 
1 Y , hence s, ρ 
1 HY .
If s, ρ 
0 X ⊃ Y then also s, ρ 
1 HY , because s, ρ 
1 X.

(

V

I) Then M ≡ X ∧ Y and Γ ` X and Γ ` Y . By the IH, s, ρ 
1 X and s, ρ 
1 Y . Thus
s, ρ 
1 X ∧ Y .

(

V

El) Then Γ `M ∧N . By the IH, s, ρ 
1 M ∧N . Thus s, ρ 
1 M .

(

V

Er) Analogous to (

V

El).

(

V

HIl) Then M ≡ H(X ∧ Y ) and Γ ` HX and Γ, X ` HY . By the IH, s, ρ 
1 X or s, ρ 
0 X,
and for every s′ ≥ s such that s′, ρ 
1 X we have s′, ρ 
1 HY . If s, ρ 
1 X then
s, ρ 
1 HY . Thus s, ρ 
1 Y or s, ρ 
0 Y . In the first case, s, ρ 
1 X ∧ Y , so
s, ρ 
1 H(X ∧ Y ). In the second case, or when s, ρ 
0 X, we have s, ρ 
0 X ∧ Y , so
also s, ρ 
1 H(X ∧ Y ).

(

V

HIr) Analogous to (

V

HIl).

(

V

HE) Then Γ ` H(X ∧ Y ), Γ,HX ` M and Γ,HY ` M . By the IH, s, ρ 
1 X ∧ Y or
s, ρ 
0 X ∧ Y . In any case, it is easy to check that s, ρ 
1 HX or s, ρ 
1 HY , and thus
s, ρ 
1 M by the IH.

(

V

HEl) Then M ≡ HY and Γ ` X and Γ ` H(X ∧ Y ). By the IH, s, ρ 
1 X, and either
s, ρ 
1 X ∧ Y or s, ρ 
0 X ∧ Y . If s, ρ 
1 X ∧ Y then s, ρ 
1 Y . If s, ρ 
0 X ∧ Y then
s, ρ 
0 X or s, ρ 
0 Y . Thus s, ρ 
0 Y because s, ρ 
1 X. In any case, s, ρ 
1 HY .

(

V

HEr) Analogous to (

V

HEl).

(VIl) Then M ≡ X ∨ Y and Γ ` X. By the IH, s, ρ 
1 X. Thus s, ρ 
1 X ∨ Y .

(VIr) Analogous to (VIl).

(VE) Then Γ ` X ∨ Y and Γ, X ` M and Γ, Y ` M . By the IH, s, ρ 
1 X or s, ρ 
1 Y . If
s, ρ 
1 X then s, ρ 
1 Γ, X, and thus s, ρ 
1 M by the IH. If s, ρ 
1 Y the proof is
analogous.

(VHI) Then M ≡ H(X ∨ Y ) and Γ ` HX and Γ ` HY . By the IH, s, ρ 
1 X or s, ρ 
0 X,
and s, ρ 
1 Y or s, ρ 
0 Y . It is easy to check that in any case s, ρ 
1 H(X ∨ Y ).

(VHE) Then Γ ` H(X ∨ Y ), Γ, X ` M , Γ, Y ` M and Γ,HX,HY ` M . By the IH, either
s, ρ 
1 X ∨ Y or s, ρ 
0 X ∨ Y . If s, ρ 
1 X ∨ Y then s, ρ 
1 X or s, ρ 
1 Y , and thus
s, ρ 
1 M by the IH. If s, ρ 
0 X ∨ Y then s, ρ 
0 X and s, ρ 
0 Y . Thus s, ρ 
1 HX
and s, ρ 
1 HY , so s, ρ 
1 M by the IH.

(HI) Then M ≡ HX and Γ ` X. By the IH, s, ρ 
1 X, so s, ρ 
1 HX.

(⊥E) Then Γ ` ⊥, so by the IH, s, ρ 
1 ⊥. This is, however, impossible. Hence, there are
no s and ρ such that s, ρ 
1 Γ, and the claim holds.
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(Eq) Follows from the fact that C is an extensional combinatory algebra (for IJpλβ a λ-model,
for IJpCLw a combinatory algebra).

Our next aim is to prove completeness of Kripke semantics for IJp. For this purpose we
need some auxiliary definitions and lemmas.

Definition 4.1.9. A set of terms Γ is prime if:

• it is closed under consequence in IJp, i.e., Γ ` X implies X ∈ Γ,

• Γ ` X ∨ Y implies Γ ` X or Γ ` Y .

Lemma 4.1.10. For every Γ with Γ 6`M , there exists a prime Γ′ ⊇ Γ with Γ′ 6`M .

Proof. Consider the set X = {Γ′ ⊇ Γ | Γ′ 6`M} ordered by inclusion. Is is easy to see that
every chain C of elements of X has an upper bound

⋃
C ∈ X . Indeed, if

⋃
C `M then there

exists a finite Γ0 ⊆
⋃
C such that Γ0 `M . But since C is a chain and Γ0 is finite, it must be

a subset of some Γ1 ∈ C. So Γ1 `M . Contradiction. Of course, also X 6= ∅, because Γ ∈ X .
Therefore, by the Kuratowski-Zorn Lemma, there exists a maximal element Γ′ ∈ X . To

show that Γ′ is prime it suffices to check:

• Γ′, X 6`M for any X such that Γ′ ` X,

• if Γ′ ` X ∨ Y then Γ′, X 6`M or Γ′, Y 6`M .

For the first part, suppose Γ′ ` X and Γ′, X `M . Then Γ′ `M by the derived rule (Cut).
Contradiction. For the second part, assume Γ′ ` X ∨ Y and Γ′, X `M and Γ′, Y `M . Then
Γ′ `M by rule (VE). Contradiction.

Theorem 4.1.11 (Completeness of Kripke semantics for IJp).
If Γ 
IJp M then Γ `IJp M .

Proof. Assume Γ 6`M . We construct a Kripke IJp-model S = 〈C, I, S,≤, σ0, σ1〉 and a valu-
ation ρ such that there exists a state s ∈ S with s, ρ 
 Γ but s, ρ 6
M .

As the carrier of C we take βη-equality (for IJpλβ: β-equality, for IJpCLw: w-equality)
equivalence classes of terms from T. We will denote by [X] the equivalence class of X. We
use the notation [Γ′] = {[X] | X ∈ Γ′}. We take k = [K], s = [S], p = [P], etc. As h we
take [λx.Pxx] and as ¬¬¬ we take [λx.Px⊥]. Application is defined by [X] · [Y ] = [XY ]. It is
easy to check that C is a PICA which is extensional (for IJpλβ: a λ-model) and it satisfies
h · a = p · a · a and ¬¬¬ · a = p · a · ⊥⊥⊥ for any a ∈ C. We define the interpretation of constants I
by I(c) = [c].

The set of states S is defined as the set of all [Γ′] such that Γ′ is a prime and consistent
set of terms. Because Γ 6`M , the set S is non-empty, by Lemma 4.1.10. We define:

• σ1([X]) = {[Γ′] ∈ S | Γ′ ` X},
• σ0([X]) = {[Γ′] ∈ S | Γ′ ` HX and Γ′ 6` X}.
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So states are sets of equivalence classes. As the order on states we take set inclusion.
Note that σ1 and σ0 are well-defined because of the presence of rule (Eq). Note also that:

• [Γ′] ∈ σ1([X]) iff Γ′ ` X,

• [Γ′] ∈ σ0([X]) iff Γ′ 6` X and Γ′ ` HX,

• [Γ′] ∈ σh([X]) iff Γ′ ` HX.

This follows from the fact that Γ′ is closed under consequence, from the rule (Eq) and the
derived rule (EqL). Therefore, we may identify states with prime and consistent sets of terms,
indentify σ1([X]) with the set of prime and consistent Γ′ such that Γ′ ` X, and analogously
for σ0 and σh.

It remains to check that the conditions on σ0 and σ1 from Definition 4.1.5 are satisfied.

1. It is obvious that σ1([X]) and σh([X]) are upward-closed, because the ordering is by
inclusion.

2. Follows from the rule (⊥HI).

3. Holds by definition of σ0 and σ1.

4. Follows from primeness and rules (VIl) and (VIr).

5. First, we show the inclusion from left to right. Assume [Γ′] ∈ σ0([X∨Y ]), i.e., Γ′ 6` X∨Y
and Γ′ ` H(X ∨ Y ). We have Γ′ 6` X and Γ′ 6` Y by rules (VIl) and (VIr). Using
rules (VIl), (VIr) and (VHE) we obtain Γ′ ` X ∨ Y ∨ (HX ∧ HY ). Because Γ′ 6` X and
Γ′ 6` Y , by primeness of Γ′ we have Γ′ ` HX ∧ HY . So Γ′ ` HX and Γ′ ` HY by (

V

Il)
and (

V
Ir). Thus [Γ′] ∈ σ0([X]) ∩ σ0([Y ]).

For the other inclusion, assume [Γ′] ∈ σ0([X]) ∩ σ0([Y ]). Then Γ′ 6` X, Γ′ 6` Y ,
Γ′ ` HX and Γ′ ` HY . Thus Γ′ ` H(X ∨ Y ) by (VHI). If Γ′ ` X ∨ Y then Γ′ ` X or
Γ′ ` Y by primeness of Γ′, which gives a contradiction. Hence Γ′ 6` X ∨ Y . Therefore
[Γ′] ∈ σ0([X ∨ Y ]).

6. Follows from rules (

V

I), (

V

El) and (

V

Er).

7. For the implication from left to right, suppose Γ′ ` H(X ∧ Y ) but Γ′ 6` X ∧ Y .
Using (

V

HE) we may show Γ′ ` HX ∨ HY . By primeness of Γ′ we obtain Γ′ ` HX
or Γ′ ` HY . Since Γ′ 6` X ∧ Y , also Γ′ 6` X or Γ′ 6` Y by rule (

V

I). Without loss of
generality assume Γ′ 6` X. Then [Γ′] ∈ σ0([X]). Let Γ′′ ⊇ Γ′ be prime and consistent
with Γ′′ ` X. We need to show Γ′′ ` HY . But this follows from (

V

HEl).

For the other direction, suppose Γ′ ` HX and Γ′ 6` X and

(?) for all prime and consistent Γ′′ ⊇ Γ′ such that Γ′′ ` X we have Γ′′ ` HY .

We would like to show Γ′, X ` HY , and then conclude Γ′ ` H(X∧Y ) by rule (

V

HIl), but
Γ′ ∪ {X} may not be prime. However, we can use Lemma 4.1.10. Suppose Γ′, X 6` HY .
Then by Lemma 4.1.10 there exists a prime Γ′′ ⊇ Γ′ ∪ {X} such that Γ′′ 6` HY . But
Γ′′ ` X, which contradicts (?). Hence ultimately Γ′, X ` HY and thus Γ′ ` H(X ∧ Y )
by rule (

V

HIl). Also Γ′ 6` X ∧ Y , because otherwise Γ′ ` X by rule (

V

El).
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8. The implication from left to right follows from rules (PE) and (PHEl). The implication
from right to left follows from rules (PIl) and (PIr) and from Lemma 4.1.10.

9. The implication from left to right follows from rules (PHEl), (PHEr), (PIl) and (PIr),
and from Lemma 4.1.10. The implication from right to left follows from Lemma 4.1.10
and rules (PHI) and (PE).

We define the valuation ρ by ρ(x) = [x]. By Lemma 4.1.10 there exists a prime Γ′ ⊇ Γ such
that Γ′ 6`M . So [Γ′] ∈ S. It is easy to check that [Γ′], ρ 
 Γ but [Γ′], ρ 1M .

Note that the above proof does not imply the consistency of IJp, because to construct
the model we assume Γ 6`M .

4.1.2 Classical semantics

In this section we define classical semantics for IKp. It is in fact a restriction of the Kripke
semantics for IJp to single-state Kripke models.

Definition 4.1.12. An IKp-model is a Kripke IJp-model with exactly one state s0. For an
IKp-model we adopt the abbreviations T = {a | s0 ∈ σ1(a)} and F = {a | s0 ∈ σ0(a)}. Note
that a PICA C and the sets T and F uniquely determine an IKp-model. We sometimes say
that a tuple M = 〈C, I, T ,F〉 is an IKp-model.

For convenience of reference, we reformulate in terms of T and F the conditions on σ0

and σ1 from Definition 4.1.5:

1. ⊥⊥⊥ ∈ F ,

2. T ∩ F = ∅.
3. v · a · b ∈ T iff a ∈ T or b ∈ T ,

4. v · a · b ∈ F iff a ∈ F and b ∈ F ,

5. v· a · b ∈ T iff a ∈ T and b ∈ T ,

6. v· a · b ∈ F iff a ∈ F or b ∈ F ,

7. p · a · b ∈ T iff a ∈ F or b ∈ T ,

8. p · a · b ∈ F iff a ∈ T and b ∈ F .

For an IKp-model M, we use the notation M, ρ |=i M or ρ |=i M , instead of s0, ρ 
i M .
The notations M, ρ |=i Γ, ρ |=i Γ, Γ |=iM, Γ |=IKp M are defined in the obvious way.

Lemma 4.1.13. In every IKp-model we have:

• h · a ∈ T iff a ∈ T ∪ F ,

• ¬¬¬ · a ∈ T iff a ∈ F ,

• ¬¬¬ · a ∈ F iff a ∈ T .

Proof. Follows directly from definitions.
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The intuitive interpretation of T and F is rather obvious: T is the set of true elements,
and F is the set of false elements. An element is a proposition iff it is either true or false.
Thus, by restricting our Kripke semantics for IJp to single-state models we obtain a quite
natural semantics for IKp. We will now show that this semantics is sound and complete.

Theorem 4.1.14 (Soundness of classical semantics for IKp).
If Γ `IKp M then Γ |=IKp M . Moreover, if Γ `IKp ¬M then Γ |=0 M .

Proof. The proof of the first implication proceeds by induction on the length of derivation of
Γ `M , like in the proof of Theorem 4.1.8. Take any IKp-modelM and any valuation ρ, and
supposeM, ρ |=1 Γ. All axioms and rules except (EM) are checked by exactly the same proofs
as in Theorem 4.1.8. So suppose the last rule in the derivation of Γ `M was (EM). Then
M ≡ X ∨ ¬X and Γ ` HX. Hence M, ρ |=1 HX by the IH. So M, ρ |=1 X or M, ρ |=0 X,
which implies M, ρ |=1 M .

Now suppose Γ ` ¬M . Then Γ |=1 ¬M , which implies Γ |=0 M .

Definition 4.1.9 of primeness may be used for IKp if we interpret ` there as provability
in IKp. Then Lemma 4.1.10 also holds for IKp, by an identical proof.

Lemma 4.1.15. If Γ is prime, then the following conditions hold:

• Γ ` X ∨ Y iff Γ ` X or Γ ` Y ,

• Γ ` ¬(X ∨ Y ) iff Γ ` ¬X and Γ ` ¬Y ,

• Γ ` X ∧ Y iff Γ ` X and Γ ` Y ,

• Γ ` ¬(X ∧ Y ) iff Γ ` ¬X or Γ ` ¬Y ,

• Γ ` X ⊃ Y iff Γ ` ¬X or Γ ` Y ,

• Γ ` ¬(X ⊃ Y ) iff Γ ` X and Γ ` ¬Y ,

• Γ ` ¬⊥,

where ` denotes provability in IKp.

Proof. Easy, using Lemma 4.1.3.

Theorem 4.1.16 (Completeness of classical semantics for IKp).
If Γ |=IKp M then Γ `IKp M . Moreover, if Γ |=0 M then Γ ` ¬M .

Proof. The proof of the first implication is similar to the proof of Theorem 4.1.11, but easier.
Assume Γ 6` M . By Lemma 4.1.10 there is a prime Γ′ ⊇ Γ with Γ′ 6` M . We construct an
IKp-model M like in the proof of Theorem 4.1.11, but as the single state we take Γ′. Note
that with this construction we have:

• [X] ∈ T iff Γ′ ` X,

• [X] ∈ F iff Γ′ ` ¬X.

Using Lemma 4.1.15 it is easy to check the conditions from Definition 4.1.12. Then we take ρ
such that ρ(x) = [x], and check that M, ρ |=1 Γ but M, ρ 6|=1 M .

Now suppose Γ |=0 M . Then Γ |=1 ¬M , and consequently Γ ` ¬M .
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Γ, X ` X (Ax)
Γ ` ¬⊥ (¬⊥)

Γ ` X Γ ` Y
Γ ` X ∧ Y (

V

I) Γ ` X ∧ Y
Γ ` X (

V

El)
Γ ` X ∧ Y

Γ ` Y (

V

Er)

Γ ` X
Γ ` X ∨ Y (VIl)

Γ ` Y
Γ ` X ∨ Y (VIr)

Γ ` X ∨ Y Γ, X ` Z Γ, Y ` Z
Γ ` Z (VE)

Γ ` ¬X
Γ ` ¬(X ∧ Y )

(¬

V

Il)

Γ ` ¬Y
Γ ` ¬(X ∧ Y )

(¬

V

Ir)

Γ ` ¬(X ∧ Y ) Γ,¬X ` Z Γ,¬Y ` Z
Γ ` Z (¬

V

E)

Γ ` ¬X Γ ` ¬Y
Γ ` ¬(X ∨ Y )

(¬VI)

Γ ` ¬(X ∨ Y )

Γ ` ¬X (¬VEl)

Γ ` ¬(X ∨ Y )

Γ ` ¬Y (¬VEr)

Γ ` X
Γ ` ¬¬X (¬¬I) Γ ` ¬¬X

Γ ` X (¬¬E)

Γ ` X X = Y
Γ ` Y (Eq) Γ ` X Γ ` ¬X

Γ ` Y (¬E)

Figure 4.3: Rules of IKp′

4.1.3 An alternative formulation of IKp

Definition 4.1.17. The system IKp′ has T(Σ) as the set of terms, with the signature Σ
containing the illative constants: ¬,

V

,V,⊥. We adopt the abbreviations:

• X ∧ Y ≡

V

XY ,

• X ∨ Y ≡ VXY ,

• X ⊃ Y ≡ ¬X ∨ Y ,

• HX ≡ X ∨ ¬X.

The rules of IKp′ are shown in Figure 4.3.

Formally, the language of IKp is different from the language of IKp′, but there are
obvious translations between the languages, so, e.g., the rules of IKp may be interpreted
as rules with terms from the language of IKp′, by replacing the constants of IKp with
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their translations in IKp′. The following theorem implies that all rules from Figure 4.1 are
derivable in IKp′.

Theorem 4.1.18. All rules of IKp′ are derivable in IKp. Conversely, all rules of IKp are
derivable in IKp′.

Proof. First, we show that all rules of IKp′ are derivable in IKp. The rules (Ax), (

V

I),
(

V

El), (

V

Er), (VIl), (VIr) and (Eq) are present in IKp. The rule (¬⊥) follows from (H⊥I).
The rules (¬

V

Il), (¬

V

Ir), (¬

V

E), (¬VI), (¬VEl), (¬VEr), (¬¬I) and (¬¬E) follow from
Lemma 4.1.3. The rule (¬E) follows from (PE) and (⊥E).

Now we show that all rules of IKp are derivable in IKp′. The rules (Ax), (

V

I), (

V

El),
(

V

Er), (VIl), (VIr) and (Eq) are present in IKp′. The rule (EM) follows from the definition
of H in IKp′. We indicate how to derive the remaining rules.

(⊥HI) Follows from (¬⊥) and (VIr).

(PIl) Follows from (VE), (VIl) and (VIr).

(PIr) Follows from (VIr).

(PE) Follows from (VE) and (¬E).

(PHI) Follows from (VE), (VIl), (VIr), (¬¬I) and (¬VI).

(PHEl) Follows from (VE), (VIl), (VIr), (¬VEl) and (¬¬E).

(PHEr) Follows from (VE), (¬VEl), (¬¬E) and (¬E).

(
V

HIl) Follows from (VE), (VIl), (VIr), (
V

I), (¬
V

Il) and (¬
V

Ir).

(

V

HIr) Analogous to (

V

HIl).

(

V

HE) Follows from (VE), (VIl), (VIr), (

V

El) and (¬

V

E).

(

V

HEl) Follows from (VE), (VIl), (VIr), (

V

Er), (¬

V

E) and (¬E).

(

V

HEr) Analogous to (

V

HEl).

(VHI) Follows from (VE), (VIl), (VIr) and (¬VI).

(VHE) Follows from (VE), (VIl), (VIr), (¬VEl) and (¬VEr).

(HI) Follows from (VIl).

(⊥E) Follows from (¬⊥) and (¬E).

Lemma 4.1.19. The following rule is admissible in IKp′.

Γ,¬X ` ⊥ Γ ` HX
Γ ` X (¬I)

Proof. Use (PIl), (VE), (¬¬E) and (⊥E).
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4.2 Model constructions

In this section we construct models for IJp and IKp. A corollary of the model constructions
is consistency of IJp and IKp. The constructions will also be used in the next section to
prove completeness of translations of NJp into IJp, and of NKp into IKp.

To facilitate completeness of translation proofs, each construction of a model M for an
illative system (including the ones in the subsequent chapters) will be parameterised by
a model N for a corresponding traditional system, and there will be a natural injection from
the set of elements true in (a state of) N to the set of elements true in (a corresponding state
of) M. We will give only two constructions for intuitionistic systems – the following one
for IJp and one for a first-order system in Chapter 5. It is more difficult for intuitionistic
than classical systems to construct a model with an appropriate injection which can be used
in a completeness of translation proof.2

4.2.1 Model construction for IJp

Fix a Kripke NJp-model S = 〈S,≤,
〉. Our construction of a Kripke IJp-model MS will
be parameterised by S. As the states of MS we will adopt the states of S. The Kripke
IJp-modelMS will be constructed in such a way that for each state s there will be a natural
injection from the set of elements true in state s in S to the set of elements true in state s
inMS . In Section 4.3 this will be used to show completeness of a translation of NJp into IJp.

We assume that all elements of VP , i.e., the propositional variables of NJp, are present as
constants in the syntax of IJp. We adopt the abbreviation > ≡ P⊥⊥.

Definition 4.2.1. For s ∈ S and an ordinal α we define binary relations �αs on T by
induction. In the following the notation X ;α

s Y stands for X ∗→βη · �αs Y , and X ;<α
s Y

abbreviates “there is β < α with X ;β
s Y ”, and similarly X �<αs Y abbreviates “there is

β < α with X �βs Y ”.

(V>) p �αs > if p ∈ VP and S, s 
 p,

(V⊥) p �αs ⊥ if p ∈ VP and S, s 1 p,

(>>) > �αs >,

(⊥⊥) ⊥ �αs ⊥,

(V>) X ∨ Y �αs > if X ;<α
s > or Y ;<α

s >,

(V⊥) X ∨ Y �αs ⊥ if X ;<α
s ⊥ and Y ;<α

s ⊥,

(

V

>) X ∧ Y �αs > if X ;<α
s > and Y ;<α

s >,

2Of course, if we do not require such an injection, then it is easier to construct models for intuitionistic
systems, because every model for a classical system is a model for its intuitionistic version. But a model
construction for a classical system cannot then be used to show completeness of a translation of traditional
intuitionistic logic into intuitionistic illative combinatory logic.
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(

V

⊥) X ∧ Y �αs ⊥ if

– X ;<α
s ⊥ and for all s′ ≥ s, such that X ;<α

s′ >, we have Y ;<α
s′ ρ with

ρ ∈ {>,⊥}, or
– Y ;<α

s ⊥ and for all s′ ≥ s, such that Y ;<α
s′ >, we have X ;<α

s′ ρ with
ρ ∈ {>,⊥},

(P>) X ⊃ Y �αs > if

– X ;<α
s ρ with ρ ∈ {>,⊥}, and for every s′ ≥ s such that X ;<α

s′ > we have
Y ;<α

s′ >, or
– Y ;<α

s >.

(P⊥) X ⊃ Y �αs ⊥ if

– X ;<α
s ρ with ρ ∈ {>,⊥}, and

– for every s′ ≥ s such that X ;<α
s′ > we have Y ;<α

s′ ρ with ρ ∈ {>,⊥}, and
– there exists s′ ≥ s such that X ;<α

s′ > and Y ;<α
s′ ⊥.

Above X and Y are arbitrary terms.

Note that it is not obvious that �αs ⊆ �βs for α ≤ β, because of the negative conditions
in (

V

⊥), (P>) and (P⊥). We will show this only in Lemma 4.2.5. However, we obviously have
�<αs ⊆ �<βs and ;<α

s ⊆;<β
s for α ≤ β.

In the rest of this section we assume that s ∈ S, p ∈ VP , ρ, ρ′, . . . ∈ {>,⊥} and M , N ,
X, Y , Z, etc., are terms of IJp, unless otherwise stated.

Lemma 4.2.2. If X �αs ρ and X ∗→βη Y , then Y �αs ρ.

Proof. Induction on α.
First, notice that the inductive hypothesis implies:

(?) for all terms M,N and all ρ ∈ {>,⊥}, if M ;<α
s ρ and M

∗→βη N , then N ;<α
s ρ.

Indeed, assume M ;<α
s ρ and M

∗→βη N . Then M
∗→βη M

′ �<αs ρ for some M ′. By
confluence of λβη there is N ′ such that N ∗→βη N

′ and M ′ ∗→βη N
′. By the inductive

hypothesis N ′ �<αs ρ. Thus N ;<α
s ρ. See Figure 4.4.

M
βη

∗ //

βη
∗
��

M ′

βη
∗
��

�<αs ρ

N
βη

∗ // N ′ �<αs ρ

Figure 4.4

Now assume X �αs ρ and X
∗→βη Y . We need to consider all possible rules by which

X �αs ρ may be obtained.
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Suppose X �αs ρ follows by rule (P>). Then ρ ≡ >, X ≡ X1 ⊃ X2, Y ≡ Y1 ⊃ Y2,
Xi

∗→βη Yi, and X2 ;
<α
s > or:

(a) X1 ;
<α
s ρ′ with ρ′ ∈ {>,⊥}, and

(b) for every s′ ≥ s such that X1 ;
<α
s′ > we have X2 ;

<α
s′ >.

If X2 ;
<α
s > then also Y2 ;

<α
s > by (?). Thus Y �αs >. So assume (a) and (b) hold. By (∗)

the condition (a) still holds with Y1 substituted for X1. Assume s′ ≥ s and Y1 ;
<α
s′ >. Then

also X1 ;
<α
s′ > because X1

∗→βη Y1. So X2 ;
<α
s′ > by (b). Thus by (?) we have Y2 ;

<α
s′ >.

Hence, (b) holds with Yi substituted for Xi. Therefore, Y �αs >.
Suppose X �αs ρ follows by rule (P⊥). Then ρ ≡ ⊥, X ≡ X1 ⊃ X2 and Y ≡ Y1 ⊃ Y2 with

Xi
∗→βη Yi. Also:

(a) X1 ;
<α
s ρ′ with ρ′ ∈ {>,⊥}, and

(b) for every s′ ≥ s such that X1 ;
<α
s′ > we have X2 ;

<α
s′ ρ′ with ρ′ ∈ {>,⊥}, and

(c) there exists s′ ≥ s such that X1 ;
<α
s′ > and X2 ;

<α
s′ ⊥.

By (?) the condition (a) still holds for Y1. Suppose s′ ≥ s and Y1 ;<α
s′ >. Then also

X1 ;
<α
s′ >, because X1

∗→βη Y1. Hence X2 ;
<α
s′ ρ′ with ρ′ ∈ {>,⊥}. By (?) also Y2 ;

<α
s′ ρ′.

So (b) holds for Y , i.e., with Yi substituted for Xi. Let s′ ≥ s be such that X1 ;
<α
s′ > and

X2 ;<α
s′ ⊥. By (?) we have Y1 ;<α

s′ > and Y2 ;<α
s′ ⊥. Thus (c) holds for Y . Therefore,

Y �αs ⊥.
Other cases are similar.

Corollary 4.2.3. X ;α
s Y iff there exists X ′ such that X =βη X

′ �αs Y .

Lemma 4.2.4. The following conditions hold.

1. If M �αs > and s ≤ s0 then M �αs0 >.

2. If M �αs ⊥ and s ≤ s0 then M �αs0 > or M �αs0 ⊥.

Proof. Induction on α.

1. Follows directly from definitions and the inductive hypothesis.

2. Suppose M �αs ⊥ and s0 ≥ s. The only non-obvious cases are when (

V

⊥) or (P⊥) is
used to obtain M �αs ⊥.

(

V

⊥) Then M ≡ X ∧ Y and e.g.
(?) X ;<α

s ⊥ and for all s′ ≥ s, such that X ;<α
s′ >, we have Y ;<α

s′ ρ with
ρ ∈ {>,⊥}.

If X ;<α
s0
⊥, then still M �αs0 ⊥. If not, then by the second part of the inductive

hypothesis X ;<α
s0
>. By (?) we have Y ;<α

s0
> or Y ;<α

s0
⊥. If Y ;<α

s0
>

then M �αs0 > by (

V

>). Otherwise, by the first part of the inductive hypothesis,
X ;<α

s′ > for all s′ ≥ s0. So in particular for all s′ ≥ s0 such that Y ;<α
s′ > we

have X ;<α
s′ >. Thus M �αs0 ⊥ by (

V

⊥).
(P⊥) Then M ≡ X ⊃ Y and
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(a) X ;<α
s ρ with ρ ∈ {>,⊥}, and

(b) for every s′ ≥ s such that X ;<α
s′ > we have Y ;<α

s′ ρ with ρ ∈ {>,⊥}, and
(c) there exists s′ ≥ s such that X ;<α

s′ > and Y ;<α
s′ ⊥.

By the inductive hypothesis, X ;<α
s0

ρ′ for some ρ′ ∈ {>,⊥}, so (a) holds with s0

instead of s. The condition (b) also holds with s0 substituted for s. Assume (c)
does not hold for s0, i.e., for every s′ ≥ s0 such that X ;<α

s′ > we have Y 6;<α
s′ ⊥.

Then by (b), for every s′ ≥ s0 such that X ;<α
s′ > we have Y ;<α

s′ >. Therefore,
M �αs0 > by (P>).

Lemma 4.2.5. The following conditions hold.

1. If M �<αs ρ then M �αs ρ.

2. If M �αs > then M 6�αs ⊥.

Proof. Induction on α.
First, note that it follows from the inductive hypothesis that:

(?) for γ < α, if X ;γ
s > then X 6;γ

s ⊥.

Indeed, assume X ;γ
s > and X ;γ

s ⊥. Then X
∗→βη X1 �γs > and X

∗→βη X2 �γs ⊥. By
confluence of λβη, there is Y such that X1

∗→βη Y and X2
∗→βη Y . By Lemma 4.2.2 we

obtain Y �γs > and Y �γs ⊥. This contradicts the second part of the inductive hypothesis.
See Figure 4.5.

X
βη

∗ //

βη
∗
��

X1

βη
∗
��

�γs >

X2

�
γs

βη

∗ // Y

�
γs

�γs >

⊥ ⊥
Figure 4.5

Now we check conditions 1 and 2.

1. Suppose, e.g., that X ⊃ Y �βs > is obtained by (P>) for some β < α. The other cases
are similar. We want to show X ⊃ Y �αs >. We have Y ;<β

s > or

(a) X ;<β
s ρ with ρ ∈ {>,⊥}, and

(b) for every s′ ≥ s such that X ;
<β
s′ > we have Y ;

<β
s′ >.

If Y ;<β
s > then also Y ;<β

s >, so X ⊃ Y �αs >.
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Thus assume (a) and (b) hold. Obviously, (a) still holds with α instead of β. So assume
s′ ≥ s and X ;<α

s′ >, i.e., X ;
γ
s′ > for some γ < α.

If γ < β then obviously X ;
<β
s′ >. Assume β ≤ γ < α. Since X ;<β

s ρ, by
Lemma 4.2.4 we have X ;

<β
s′ > or X ;

<β
s′ ⊥. If X ;

<β
s′ ⊥ then X ;

γ
s′ ⊥ by the first

part of the inductive hypothesis. However, this contradicts (?), because also X ;
γ
s′ >.

Therefore X ;
<β
s′ >. Then Y ;

<β
s′ > by (b), so also Y ;<α

s′ >. Thus (b) holds with α
instead of β. This proves that X ⊃ Y �αs >.

2. Follows from (?) and Definition 4.2.1.

Lemma 4.2.5 implies that �αs ⊆ �βs for α ≤ β and s ∈ S. Therefore, by Theorem 2.1.3
there exists the closure ordinal of Definition 4.2.1, i.e., the least ordinal ζ such that �ζs = �<ζs
for each s ∈ S. We write �s and ;s without superscripts to denote �ζs and ;ζ

s. It is not
difficult to check that if the set of states S is finite then ζ = ω. In general, the closure ordinal
may depend on the cardinality of S.

Note that Lemma 4.2.2 and the second part of Lemma 4.2.5 imply the following corollary.

Corollary 4.2.6. The reduction system 〈→βη, {�s}s∈S〉 is coherent.

Now, we are ready to construct the model M for IJp.

Definition 4.2.7. Define MS = 〈C, I, S,≤, σ0, σ1〉 where:

• C is the extensional propositional illative combinatory algebra constructed from the
βη-equality equivalence classes of terms, with k = [K], s = [S], p = [P], etc., where
by [X] we denote the equivalence class of X,

• I is defined by I(c) = [c] for c ∈ Σ,

• S is the set of states of S,

• ≤ is the order on states from S,

• σ1([X]) = {s ∈ S | X ;s >},
• σ0([X]) = {s ∈ S | X ;s ⊥}.

Note that by coherence σ0 and σ1 are well-defined, i.e., the definitions do not depend on the
choice of representants.

Theorem 4.2.8. The structure MS is a Kripke IJp-model such that for each p ∈ VP there
is p ∈ C satisfying for each s ∈ S:

• s ∈ σ1(p) iff S, s 
 p,

• s ∈ σ0(p) iff S, s 1 p.

Proof. Using Corollary 4.2.6 it is easy to verify the conditions from Definition 4.1.5. The
additional requirements in the statement of the theorem follow directly from definitions.
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Corollary 4.2.9. The system IJp is consistent, i.e., 6`IJp ⊥.

Proof. Since there exists some Kripke NJp-model, by Theorem 4.2.8 there exists a Kripke
IJp-model M. If `IJp ⊥, then M 
 ⊥ by Theorem 4.1.8. This is a contradiction.

4.2.2 Model construction for IKp

In this section we give a model construction for IKp. Essentially, it is a simplification of the
construction for IJp.

Let v be an NKp-valuation. Our construction of an IKp-modelMv will be parameterised
by v. We assume that the propositional variables from VP are present as constants in the set
of terms T.

Definition 4.2.10. We define a binary relation � ⊆ T× T inductively:

(V>) p � > if p ∈ Vp and v(p) = 1,

(V⊥) p � ⊥ if p ∈ Vp and v(p) = 0,

(>>) > � >,

(⊥⊥) ⊥ � ⊥,

(V>) X ∨ Y � > if X � > or Y � >,

(V⊥) X ∨ Y � ⊥ if X � ⊥ and Y � ⊥,

(
V

>) X ∧ Y � > if X � > and Y � >,

(

V

⊥) X ∧ Y � ⊥ if X � ⊥ or Y � ⊥,

(P>) X ⊃ Y � > if X � ⊥ or Y � >,

(P⊥) X ⊃ Y � ⊥ if X � > and Y � ⊥.

Like in Section 2.1, we use �α to denote the α-th approximant of �, and we set �<α =⋃
β<α�α. As in Section 4.2.1 we use X, Y,M, . . . for terms. The closure ordinal of the

definition of � is clearly ω.

Lemma 4.2.11. The reduction system 〈→βη,�〉 is coherent.

Proof. We check the conditions in Definition 2.3.1.

1. →βη is confluent by Theorem 2.3.9.

2. It follows by straightforward induction on α that →βη preserves �α. For instance,
assume X ∨ Y �α > and X ∨ Y ∗→βη X

′ ∨ Y ′. Then e.g. X �<α >. By the IH we have
X ′ �<α >. Thus X ′ ∨ Y ′ �α >.

3. By straightforward induction on α one shows that if X �α > then X 6�α ⊥.

Definition 4.2.12. Define Mv = 〈C, I, T ,F〉 where:
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• C is the extensional propositional illative combinatory algebra constructed from the
βη-equality equivalence classes of terms, with k = [K], s = [S], p = [P], etc., where
by [X] we denote the equivalence class of X,

• I is defined by I(c) = [c] for c ∈ Σ,

• T = {[X] | X ; >},
• F = {[X] | X ; ⊥}.

Here ; is defined as usual: X ; Y iff X
∗→βη · � Y .

Theorem 4.2.13. The structure Mv is an IKp-model such that for every p ∈ VP there is
p ∈ C satisfying:

• p ∈ T iff v(p) = 1,

• p ∈ F iff v(p) = 0.

Proof. Using Lemma 4.2.11, it is easy to check the conditions from Definition 4.1.12. The
additional condition in the statement of the theorem holds by construction.

Corollary 4.2.14. The system IKp is consistent, i.e., 6`IKp ⊥.

4.3 Translations

In this section we prove that there exist sound and complete syntactic translations of
traditional systems of propositional logic into the corresponding illative systems. The proofs
are done semantically, using the results of the previous section. Since the translations are
very straightforward and natural, the results of this section may be seen as establishing
conservativity of propositional illative systems over the corresponding traditional systems.

Translations very similar to the ones we provide, both for propositional logic and for
first-order logic, were already defined before. Their soundness was shown syntactically.
See [Bun74a, BBD93].

We adopt the notational conventions like in the previous section, i.e., X, Y , Z stand for
terms in T, etc. Also ϕ, ψ, etc., stand for propositional formulas, and ∆, ∆′, etc., stand for
sets of propositional formulas. We assume that all propositional variables from VP occur as
constants in T. Sometimes we write, e.g., ∆, ϕ instead of ∆ ∪ {ϕ}.

Definition 4.3.1. We define a mapping d−e from propositional formulas to the set of terms T
of illative systems, and a context-providing mapping Γ(−) from sets of propositional formulas
to sets of terms. The definition of dϕe is by induction on the structure of ϕ:

• dpe ≡ p for p ∈ VP ,

• d⊥e ≡ ⊥,

• dϕ ∨ ψe ≡ dϕe ∨ dψe,
• dϕ ∧ ψe ≡ dϕe ∧ dψe,
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• dϕ→ ψe ≡ dϕe ⊃ dψe.
We extend the mapping d−e to sets of propositional formulas thus: d∆e = {dϕe | ϕ ∈ ∆}.

For a set of propositional formulas ∆, the set Γ(∆) is defined to contain Hp for each
p ∈ FV(∆).

Note that, e.g., in the right-hand side of the third rule for d−e the expression dϕe ∨ dψe
is just an abbreviation for Vdϕedψe, whereas the ∨ in the left-hand side is an operator in the
syntax of propositonal formulas.

The mapping Γ(−) provides so-called “grammatical conditions”. In illative systems it is
not specified a priori which category a given variable belongs to, i.e., what is the type of the
variable. So this information must be provided explicitly in the context.

Lemma 4.3.2. Γ({ϕ}) `IJp Hdϕe.

Proof. Induction on the structure of ϕ.

Theorem 4.3.3 (Completeness of the translation for IJp).
∆ 
NJp ϕ iff Γ(∆, ϕ), d∆e 
IJp dϕe.

Proof. Assume ∆ 
NJp ϕ. Let M be a Kripke IJp-model, s0 a state of M, and ρ an M-
valuation such that M, s0, ρ 
 Γ(∆, ϕ), d∆e. We define a Kripke NJp-model S = 〈S,≤,
〉
by taking S and ≤ to be the same as in M, and defining 
 by: S, s 
 p iff M, s, ρ 
 p. By
induction on the structure of a subformula ψ of a formula from ∆ ∪ {ϕ}, it is easy to prove
that for s ≥ s0 we have: S, s 
 ψ iff M, s, ρ 
 dψe. By way of an example, we show the case
ψ ≡ ψ1 → ψ2. Other cases are similar. We have dψe ≡ dψ1e ⊃ dψ2e.

Suppose S, s 
 ψ1 → ψ2. Then for every s′ ≥ s such that S, s′ 
 ψ1 we have S, s′ 
 ψ2.
Let s′ ≥ s be such thatM, s′, ρ 
 dψ1e. By the induction hypothesis S, s′ 
 ψ1, so S, s′ 
 ψ2.
Applying again the induction hypothesis we obtain M, s′, ρ 
 dψ2e. By Lemma 4.3.2 we
also have Γ(ψ1) `IJp Hdψ1e. Since ψ1 is a subformula of a formula from ∆ ∪ {ϕ} and
M, s, ρ 
 Γ(∆, ϕ), we obtain M, s, ρ 
 Γ(ψ1). Hence M, s, ρ 
 Hdψ1e by Theorem 4.1.8.
Therefore, we finally conclude M, s, ρ 
 dψe by 5 in Lemma 4.1.7.

Now assume M, s, ρ 
 dψ1e ⊃ dψ2e. Let s′ ≥ s be such that S, s′ 
 ψ1. By the inductive
hypothesis M, s′, ρ 
 dψ1e, so M, s′, ρ 
 dψ2e. Again by the inductive hypothesis S, s′ 
 ψ2.
This shows that S, s 
 ψ1 → ψ2.

Hence, we have S, s0 
 ∆, because M, s0, ρ 
 d∆e. Thus S, s0 
 ϕ. This in turn implies
M, s0, ρ 
 dϕe. Since M, s0 and ρ were arbitrary satisfying M, s0, ρ 
 Γ(∆, ϕ), d∆e, we
have Γ(∆, ϕ), d∆e 
IJp dϕe.

Assume Γ(∆, ϕ), d∆e `IJp dϕe. Let S be a Kripke NJp-model and s0 ∈ S be such that
S, s0 
 ∆. We construct a Kripke IJp-model M using Theorem 4.2.8. This model has the
same states and state ordering as S, and it satisfies the following for every state s ∈ S and
each p ∈ Vp:

• M, s, ρ 
1 p iff S, s 
 p,

• M, s, ρ 
0 p iff S, s 1 p,
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where ρ is an M-valuation such that ρ(p) ≡ p. Thus M, ρ 
1 Hp for each p ∈ Vp. Using this
it is easy to show by induction on the structure of a formula ψ thatM, ρ 
1 Hdψe. It is then
straightforward to prove by induction on the structure of ψ that: M, s, ρ 
1 dψe iff S, s 
 ψ.

Hence, we have M, s0, ρ 
 d∆e, because S, s0 
 ∆. Since M, ρ 
 Hp for each p ∈ Vp,
we also have M, ρ 
 Γ(∆, ϕ). Thus M, ρ 
 dϕe. So S 
 ϕ. Since S and s0 were arbitrary
satisfying S, s0 
 ∆, we obtain ∆ 
NJp ϕ.

Corollary 4.3.4. ∆ `NJp ϕ iff Γ(∆, ϕ), d∆e `IJp dϕe.

Proof. Follows from Theorem 4.3.3, Theorem 4.1.8, Theorem 4.1.11 and Theorem 2.4.3.

Theorem 4.3.5 (Completeness of the translation for IKp).
∆ |=NKp ϕ iff Γ(∆, ϕ), d∆e |=IKp dϕe.

Proof. The proof is similar to the proof of Theorem 4.3.3, but somewhat simpler. First, assume
∆ |=NKp ϕ. Let M be an IKp-model and ρ an M-valuation such that M, ρ |= Γ(∆, ϕ), d∆e.
Let v be an NKp-valuation defined by:

• v(p) = 1 iff M, ρ |= p,

• v(p) = 0 iff M, ρ 6|= p.

Using Lemma 4.3.2 and Theorem 4.1.14 it is easy to show by induction on the structure of a
subformula ψ of a formula from ∆ ∪ {ϕ} that: M, ρ |= dψe iff v |= ψ. Hence v |= ∆, because
M, ρ |= d∆e. So v |= ϕ. Thus M, ρ |= dϕe. Therefore, Γ(∆, ϕ), d∆e |=IKp dϕe.

In the other direction, assume Γ(∆, ϕ), d∆e |=IKp dϕe. Let v be an NKp-valuation such
that v |= ∆. Take M to be the IKp-model obtained by applying Theorem 4.2.13 to v. It is
easy to check by induction on the structure of a formula ψ that:

• M, ρ |= Hdψe, and

• M, ρ |= dψe iff v |= ψ,

where ρ is an M-valuation such that ρ(p) ≡ p for p ∈ VP . Then M, ρ |= Γ(∆, ϕ), d∆e. Thus
M, ρ |= dϕe. Hence v |= ϕ. Therefore, ∆ |=NKp ϕ.

Corollary 4.3.6. ∆ `NJp ϕ iff Γ(∆, ϕ), d∆e `IJp dϕe.

Proof. Follows from Theorem 4.3.3, Theorem 4.1.14, Theorem 4.1.16 and Theorem 2.4.5.
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Chapter 5

First-order predicate logic

5.1 Illative systems

Definition 5.1.1. The system IJ of intuitionistic first-order illative combinatory logic comes
in three variants: IJλβη, IJλβ, IJCLw. They differ chiefly in the underlying reduction system.
The set of terms T is defined separately for each of the variants, as in Definition 4.1.1, basing
on a signature Σ containing the following illative constants: Ξ, X, A, P,

V

, V, ⊥. We adopt
the same abbreviations as in Definition 4.1.1 plus the following (see also Section 1.1):

• L ≡ λx.Ξxx,

• M ◦N ≡ λx.M(Nx),

• ∀x :M . N ≡ ΞM(λx.N) when x /∈ FV(M),

• ∃x :M . N ≡ XM(λx.N) when x /∈ FV(M).

Whenever we write ∃x :X . Y or ∀x :X . Y we assume that x /∈ FV(X).
A judgement in IJ has the form Γ ` X where Γ is a finite set of terms and X is a term.

We adopt the same conventions concerning ` as in Definition 4.1.1. The rules of IJ consist
of the rules of IJp in Figure 4.1, the rules for quantifiers in Figure 5.1, and the rule (ALI):

Γ ` LA
(ALI)

The system IK of classical first-order illative combinatory logic is obtained from IJ by
adding the rule of excluded middle (EM) (see Definition 4.1.1).

Intuitively, LX means “X is a type” or “X represents a permissible range of quantification”.
The illative constant A represents a first-order universe – the type of all individuals. We
could easily add more such constants to effectively obtain a many-sorted system, but we will
not do so to keep things simple. See also Section 1.1.

Informally, the interpretation of quantifiers is as follows:

• ΞXY is true iff X is a type, and for all Z such that XZ is true, Y Z is true,
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Γ, Xx ` Y x Γ ` LX x /∈ FV(Γ, X, Y )

Γ ` ΞXY
(ΞI) Γ ` ΞXY Γ ` XZ

Γ ` Y Z (ΞE)

Γ, Xx ` H(Y x) Γ ` LX x /∈ FV(Γ, X, Y )

Γ ` H(ΞXY )
(ΞHI)

Γ ` H(ΞXY )

Γ ` ΞX(H ◦ Y )
(ΞHE)

Γ ` H(ΞXY )

Γ ` LX
(ΞLE)

Γ `MZ Γ ` NZ Γ ` LM
Γ ` XMN

(XI)

Γ ` XMN Γ,Mx,Nx ` Z x /∈ FV(Γ,M,N, Z)

Γ ` Z (XE)

Γ,Mx ` H(Nx) Γ ` LM x /∈ FV(Γ,M,N)

Γ ` H(XMN)
(XHI)

Γ ` H(XMN) Γ,XMN ` Z Γ,ΞM(H ◦N) ` Z
Γ ` Z (XHE)

Γ ` H(XMN)

Γ ` LM
(XLE)

Figure 5.1: Rules for quantifiers (Ξ and X)
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• ΞXY is false iff X is a type, and there is Z such that XZ is true and Y Z is false, and
for all Z such that XZ is true, Y Z is true or false,

• XMN is true iff M is a type, and there is Z such that MZ is true and NZ is true,

• XMN is false iff M is a type, and for all Z such that MZ is true, NZ is false.

Note there is a certain asymmetry in the rules for Ξ and X. It is not true that Γ `IK ∀x :X.Y
is equivalent to Γ `IK ¬∃x : X . ¬Y .1 In the classical setting it may be more convenient
to simply define ∀x :X . Y as ¬∃x :X . ¬Y . However, this obviously does not work for the
intutitionistic system. We do not know how to formulate rules for Ξ in a way that would be
satisfactorily simple, would make sense in intuitionistic logic, and after the addition of the
rule of excluded middle (EM) would yield the desired equivalence. We shall thus stick with
the present formulation of the rules for Ξ.

Systems of illative combinatory logic known to the author do not have the H-elimination
rules (ΞHE) and (XHE), nor the L-elimination rules (ΞLE) and (XLE). The reasons for
including these rules are as with the H-elimination rules for other connectives: they make our
semantics complete and are useful in practice.

We could simplify the rules for X by dropping (XLE) and replacing (XI) with

Γ `MZ Γ ` NZ
Γ ` XMN

(XI′)

It is easy to change the proofs and definitions that follow2 to work with this modification of
our systems. However, this would require complicating the semantics slightly. Condition 13
in Definition 5.1.4 would have to be split into two conditions. We shall thus continue with
our original formulation.

Now we consider the question of whether it is possible to define some connectives from
the other ones in a way that would make the relevant rules derivable. Certainly, one may
define P in terms of Ξ by PXY ≡ Ξ(KX)(KY ). This is a standard definition, but to make all
rules for P derivable one would need to add to IJ the following rule for Ξ, which intuitively
says that if Y Z holds for an arbitrary object Z, then ΞXY holds, regardless of what X is (it
may not represent a type at all).

Γ ` Y x x /∈ FV(Γ, X, Y )

Γ ` ΞXY
(ΞIr)

However, such a definition complicates slightly the model constructions, so we will not adopt
it. As for the other connectives, it is an open question whether they may be defined from Ξ,
or possibly some more constants. Note that the presence of unrestricted λ-abstraction and
illative primitives like H provides additional possibilities for such definitions, as compared to

1However, as we shall see, in IK all classical tautologies are provable if we restrict the right-hand sides of
judgements to terms which are propositions, i.e., terms M such that HM is provable.
2This remark pertains only to the proofs and definitions in the present chapter – for the first-order system.

For a higher-order system in the next chapter it is an open problem whether an analogous modification can
be made.
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ordinary logic. See e.g. [Bun84] for a definition of

V

from Ξ and H which gives unrestricted
introduction and elimination rules, though in a somewhat different system, with H essentially
being a type, among other differences.

Lemma 5.1.2. The rules (Weak), (Sub), (EqL) and (Cut) from Lemma 4.1.2 are admissible
in IJ.

Proof. Analogous to Lemma 4.1.2.

5.1.1 Kripke semantics

In this section we define Kripke semantics for IJ.

Definition 5.1.3. A first-order illative combinatory algebra (FOICA) is a propositional
illative combinatory algebra (see Definition 4.1.4) with additional distinguished elements: A,
L, Ξ and x.

Definition 5.1.4. A Kripke IJ-model (IJλβη-model, IJλβ-model or IJCLw-model) is a tuple
S = 〈C, I, S,≤, σ0, σ1〉 where:

• C is a first-order illative combinatory algebra (extensional for IJλβη, λ-model for IJλβ)
satisfying h · a = p · a · a and L · a = Ξ · a · a for any a ∈ C,

• S is a set of states,

• ≤ is a partial order on states,

• σ0 and σ1 are mappings from C to S satisfying conditions 1-9 from Definition 4.1.5 and
the following:

10. s ∈ σ1(Ξ · a · b) iff
– s ∈ σ1(L · a), and
– for every s′ ≥ s and c ∈ C such that s′ ∈ σ1(a · c) we have s′ ∈ σ1(b · c),

11. s ∈ σ0(Ξ · a · b) iff
– s ∈ σ1(L · a), and
– for every s′ ≥ s and c ∈ C such that s′ ∈ σ1(a · c) we have s′ ∈ σh(b · c), and
– there exists s′ ≥ s and c ∈ C such that s′ ∈ σ1(a · c) and s′ ∈ σ0(b · c),

12. s ∈ σ1(x · a · b) iff
– s ∈ σ1(L · a), and
– there exists c ∈ C such that s ∈ σ1(a · c) and s ∈ σ1(b · c),

13. s ∈ σ0(x · a · b) iff
– s ∈ σ1(L · a), and
– for every s′ ≥ s and c ∈ C such that s′ ∈ σ1(a · c) we have s′ ∈ σh(b · c), and
– for every c ∈ C such that s ∈ σ1(a · c) we have s ∈ σ0(b · c),

14. σ1(L · A) = S.
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Given an S-valuation ρ : V → C, the value of M ∈ T, denoted JMKSρ or just JMKρ, is
defined analogously to the corresponding notion in Definition 4.1.5, with additional conditions
for the new illative constants.

We adopt conventions analogous to those in Definition 4.1.5. In particular, Γ 
i M means
that for every S, every s ∈ S and every ρ, the condition s, ρ 
i Γ implies s, ρ 
i M . And
Γ 
IJ M stands for Γ 
1 M .

Note that any Kripke IJ-model is a Kripke IJp-model. It is thus clear that Lemma 4.1.6
also holds for Kripke IJ-models. The intuitive interpretation of σ0, σ1, σh and S is as for
Kripke IJp-models. See the discussion just after Definition 4.1.5. The statement s ∈ σ1(L · a)
is intuitively interpreted as “a is a type in state s” or “a determines a permissible range of
quantification in state s”.

Lemma 5.1.5. If ρ′ = ρ[x/JXKρ] then JY Kρ′ = JY [x/X]Kρ.

Proof. If T = TCL then we proceed by induction on the structure of Y . Otherwise, T = Tλ
and ρ′ = ρ[x/J(X)CLKρ] and JY Kρ′ = J(Y )CLKρ′ , so by the case T = TCL we have

JY Kρ′ = J(Y )CL[x/(X)CL]Kρ.

Thus JY Kρ′ = J(Y [x/X])CLKρ = JY [x/X]Kρ by Lemma 2.3.13.

For convenience of reference, we now reformulate in terms of 
1 and 
0 the conditions
from Definition 5.1.4.

Lemma 5.1.6. For any Kripke IJ-model S and any valuation ρ the following hold for s ∈ S,
X, Y ∈ T and x /∈ FV(X, Y, Z):

10. s, ρ 
1 ΞXY iff

• s, ρ 
1 LX, and
• for every s′ ≥ s and c ∈ C such that s′, ρ[x/c] 
1 Xx we have s′, ρ[x/c] 
1 Y x,

11. s, ρ 
0 ΞXY iff

• s, ρ 
1 LX, and
• for every s′ ≥ s and c ∈ C such that s′, ρ[x/c] 
1 Xx we have s′, ρ[x/c] 
1 H(Y x),

and
• there exists s′ ≥ s and c ∈ C such that s′, ρ[x/c] 
1 Xx and s′, ρ[x/c] 
0 Y x,

12. s, ρ 
1 XY Z iff

• s, ρ 
1 LY , and
• there exists c ∈ C such that s, ρ[x/c] 
1 Y x and s, ρ[x/c] 
1 Zx,

13. s, ρ 
0 XY Z iff

• s, ρ 
1 LY , and
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• for every s′ ≥ s and c ∈ C such that s′, ρ[x/c] 
1 Y x we have s′, ρ[x/c] 
1 H(Zx),
and

• for every c ∈ C such that s, ρ[x/c] 
1 Y x we have s, ρ[x/c] 
0 Zx,

14. s, ρ 
1 LA for any s ∈ S.

Proof. Follows from definitions.

Theorem 5.1.7 (Soundness of Kripke semantics for IJ).
If Γ `IJ M then Γ 
IJ M .

Proof. The proof is by straightforward induction on the length of derivation of Γ `M .
Assume S is a Kripke IJ-model, ρ a valuation and s ∈ S. Suppose S, s 
1 Γ and consider

the last rule used in the derivation of Γ `M . Since S is also a Kripke IJp-model, all rules
of IJp have already been verified in the proof of Theorem 4.1.8. Hence, it remains to consider
the following possibilities.

(ALI) Follows directly from condition 14 in Definition 5.1.4.

(ΞI) Then M ≡ ΞXY and x /∈ FV(Γ, X, Y ) and Γ, Xx ` Y x and Γ ` LX. Let s′ ≥ s and
c ∈ C be such that s′, ρ[x/c] 
1 Xx. Since x /∈ FV(Γ), we have s′, ρ[x/c] 
1 Γ, Xx.
Hence s′, ρ[x/c] 
1 Y x by the IH. Of course, also s, ρ 
1 LX, by the IH. Therefore,
s, ρ 
1 M .

(ΞE) Then M ≡ Y Z and Γ ` ΞXY and Γ ` XZ. By IH we obtain s, ρ 
1 ΞXY and
s, ρ 
1 XZ. Thus s, ρ[x/JZKρ] 
1 Y x. By Lemma 5.1.5, s, ρ 
1 Y Z.

(ΞHI) Then M ≡ H(ΞXY ) and x /∈ FV(Γ, X, Y ) and Γ, Xx ` H(Y x) and Γ ` LX. Let
s′ ≥ s and c ∈ C be such that s′, ρ[x/c] 
1 Xx. Then s′, ρ[x/c] 
1 H(Y x) by the IH, so
s′, ρ[x/c] 
1 Y x or s′, ρ[x/c] 
0 Y x. Also s, ρ 
1 LX. Thus, if there exists s′ ≥ s and
c ∈ C such that s′, ρ[x/c] 
1 Xx and s′, ρ[x/c] 
0 Y x, then s, ρ 
0 ΞXY . Otherwise
s, ρ 
1 ΞXY . In any case s, ρ 
1 M .

(ΞHE) Then M ≡ ΞX(H ◦ Y ) and Γ ` H(ΞXY ). Let s′ ≥ s and c ∈ C be such that
s′, ρ[x/c] 
1 Xx. By the IH, s, ρ 
1 ΞXY or s, ρ 
0 ΞXY . In any case, s′, ρ[x/c] 
1 Xx
implies s′, ρ[x/c] 
1 H(Y x). Obviously, also s, ρ 
1 LX. Thus s, ρ 
1 M .

(ΞLE) Follows from the IH and conditions 10 and 11 in Definition 5.1.4.

(XI) Follows from the IH, condition 12 in Definition 5.1.4, and from Lemma 5.1.5.

(XE) Follows from the IH and condition 12 in Definition 5.1.4.

(XHI) Follows from the IH and conditions 12 and 13 in Definition 5.1.4.

(XHE) Follows from the IH and conditions 4, 10, 12 and 13 in Definition 5.1.4.

(XLE) Follows from the IH and conditions 12 and 13 in Definition 5.1.4.

We shall now prove that the semantics based on Kripke IJ-models is also complete for IJ.
For this purpose, we need to augment the definition of primeness.
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Definition 5.1.8. A set of terms Γ over a signature Σ is prime with respect to Σ if:

• Γ ` X implies X ∈ Γ,

• Γ ` X ∨ Y implies Γ ` X or Γ ` Y ,

• Γ ` XY Z implies Γ ` Y c ∧ Zc for some constant c ∈ Σ.

The following simple lemma implies that provability in IJ is conservative under extensions
of signature.

Lemma 5.1.9. Let Γ be a set of terms over Σ and M a term over Σ. Let Σ′ ⊇ Σ. Let `Σ

denote provability in IJ with terms over Σ, and `Σ′ provability in IJ with terms over Σ′.
Then we have the following equivalence:

• Γ `Σ M iff Γ `Σ′ M .

Proof. The implication from left to right is obvious. The other direction is proven by induction
on the length of derivation, showing that the constants from Σ′ \ Σ may be replaced with
fresh free variables.

Lemma 5.1.10. Assume Σ is a countable signature and C is a countably infinite set of
constants, disjoint with Σ, such that Σ ∪ C ⊆ Σ′. Let Γ be a set of terms over Σ, and M a
term over Σ′.

If Γ 6`M then there exists a set Γ′ ⊇ Γ of terms over Σ ∪ C, which is prime with respect
to Σ ∪ C and satisfies Γ′ 6`M .

Proof. Without loss of generality we may assume that C =
⋃
n∈NCn where Cn are pairwise

disjoint countably infinite sets of constants. Because the number of constants occuring in M
is finite, we may also assume that none of the constants in C occur in M .

We define by induction sets Γn of terms over signature Σn = Σ ∪
⋃
k≤nCk such that

Γn 6`M . We take Γ0 = Γ. Now suppose we have defined Γn. Since Σn, and thus the set of
terms over Σn, is countable, we may assume that Cn+1 contains a distinct constant cξ for
each term ξ ≡ XY Z in Γn. Consider the set X , ordered by inclusion, of all A ⊆ T(Σn+1)
such that:

(a) A ⊇ Γn,

(b) A 6`M ,

(c) if ξ ≡ XY Z is in Γn and cξ occurs in some term in A, then Y cξ ∧ Zcξ ∈ A.

It is easy to see that every non-empty chain L of elements of X has an upper bound
⋃
L ∈ X .

Of course, also X 6= ∅, because Γn ∈ X (note that the second condition follows from the
inductive hypothesis). Therefore, by Zorn’s Lemma, there exists a maximal element in X ,
and we take Γn+1 to be any such maximal element. Obviously, we then have Γn+1 6`M .

We prove the following:

1. if ξ ≡ XY Z is in Γn then cξ occurs in some term in Γn+1 (and thus Y cξ ∧ Zcξ ∈ Γn+1

by (c)),
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2. if Γn+1 ` X then X ∈ Γn+1,

3. if Γn+1 ` X ∨ Y then Γn+1 ` X or Γn+1 ` Y .

Suppose cξ does not occur in any term in Γn+1. We show that Γn+1 ∪ {N} contradicts the
maximality of Γn+1, where N ≡ Y cξ ∧ Zcξ. It suffices to show that Γn+1, N 6` M . Assume
otherwise. Since cξ is a constant not occuring in any term in Γn+1 or in M , we may as well
change it to a fresh variable x. Thus we have Γn+1, Y x ∧ Zx `M . It is easy to see that then
Γn+1, Y x, Zx `M . Since ξ ∈ Γn ⊆ Γn+1, we have Γn+1 ` ξ. So by (XE) we obtain Γn+1 `M .
Contradiction.

Now let A be any superset of Γn+1. Of course A ⊇ Γn, because Γn ⊆ Γn+1. Using the
implication just proven, it is easy to see that A also satisfies (c).

Suppose Γn+1 ` X and X /∈ Γn+1. We show that Γn+1 ∪ {X} ∈ X , which contradicts the
maximality of Γn+1. It suffices to show (b), since the conditions (a) and (c) were shown in the
previous paragraph. If Γn+1, X `M and Γn+1 ` X, then Γn+1 `M by (Cut), contradiction.
So Γn+1, X 6`M and thus (b) is satisfied for Γn+1 ∪ {X}.

Suppose Γn+1 ` X∨Y and Γn+1 6` X and Γn+1 6` Y . Then either Γn+1∪{X} or Γn+1∪{Y }
contradicts the maximality of Γn+1. It suffices to show that at least one of Γn+1 ∪ {X} or
Γn+1 ∪{Y } satisfies (b). Assuming otherwise, Γn+1, X `M and Γn+1, Y `M , so Γn+1 `M –
contradiction.

Now, we finally take Σ′ =
⋃
n∈N Σn and Γ′ =

⋃
n∈N Γn. It is easy to see that Γ′ is prime

and Γ′ 6` M . This follows from the fact that if Γ′ ` X then A ` X for some finite subset
A ⊆ Γ′. So there exists n such that A ⊆ Γn and X ∈ T(Σn). Thus Γn ` X, so X ∈ Γn+1,
from which the claim easily follows using the three implications shown above.

The proof of completeness for IJ is similar to the proof of Theorem 4.1.11.

Theorem 5.1.11 (Completeness of Kripke semantics for IJ).
If Γ 
IJ M then Γ `IJ M .

Proof. Assume Γ 6` M . We construct a Kripke IJ-model S = 〈C, I, S,≤, σ0, σ1〉 and a
valuation ρ such that there exists a state s ∈ S with s, ρ 
 Γ but s, ρ 6
M .

Let C1 ⊆ C2 ⊆ . . . be countable sets of constants disjoint with Σ and such that Cn+1 \Cn
is infinite for each n ∈ N. Let Σn = Σ ∪ Cn, C =

⋃
n∈NCn and Σ′ = Σ ∪ C.

As the carrier of C we take βη-equality (for IJλβ: β-equality, for IJCLw: w-equality)
equivalence classes of terms from T(Σ′). We will denote by [X] the equivalence class of X.
We take k = [K], s = [S], etc. As h we take [λx.Pxx], and as L we take [λx.Ξxx]. Application
is defined by [X] · [Y ] = [XY ]. It is easy to check that C is a FOICA which is extensional
(for IJpλβ: a λ-model) and it satisfies h · a = p · a · a and L · a = Ξ · a · a for any a ∈ C.

The set of states S is defined as the set of all pairs 〈Γ′,Σn〉 such that Γ′ is a consistent set
of terms over Σn which is prime with respect to Σn. Because Γ 6`M , the set S is non-empty,
by Lemma 5.1.10. We define:

• σ1([X]) = {〈Γ′,Σn〉 ∈ S | Γ′ ` X},
• σ0([X]) = {〈Γ′,Σn〉 ∈ S | Γ′ ` HX and Γ′ 6` X}.
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Note that σ0 and σ1 are well-defined because of rule (Eq). The order ≤ on states is defined
as follows: 〈Γ1,Σn〉 ≤ 〈Γ2,Σm〉 iff Γ1 ⊆ Γ2 and n ≤ m.

It remains to check that the conditions on σ0 and σ1 from Definition 5.1.4 are satisfied.
Conditions 1-9 follow by proofs analogous to those in the proof of Theorem 4.1.11, but using
Lemma 5.1.10 instead of Lemma 4.1.10. We check the remaining conditions.

10. The implication from left to right follows from rules (HI), (ΞLE) and (ΞE). For the
other direction, suppose Γ′ is a consistent set of terms over Σn which is prime with
respect to Σn, and Γ′ ` LX, and:

(?) for all 〈Γ′′,Σm〉 ≥ 〈Γ′,Σn〉 and all Z such that Γ′′ ` XZ we have Γ′′ ` Y Z.

Let x /∈ FV(Γ′, X, Y ) be a fresh variable, and assume Γ′, Xx 6` Y x. Let k ≥ n be
such that X ∈ T(Σk). Then by Lemma 5.1.10 there exists a set Γ′′ ⊇ Γ′ ∪ {Xx} of
terms over Σk+1 which is prime with respect to Σk+1 and satisfies Γ′′ 6` Y x. But this
contradicts (?). Therefore, Γ′, Xx ` Y x, and since also Γ′ ` LX, we obtain Γ′ ` ΞXY
by rule (ΞI).

11. The implication from left to right follows from rules (ΞLE), (ΞHE) and (Ξ), and from
Lemma 5.1.10. For the other direction, suppose Γ′ is a consistent set of terms over Σn

which is prime with respect to Σn, and

• Γ′ ` LX,
• for every 〈Γ′′,Σm〉 ≥ 〈Γ′,Σn〉 and every Z such that Γ′′ ` XZ we have Γ′′ ` H(Y Z),
• there is 〈Γ0,Σn0〉 ≥ 〈Γ′,Σn〉 and Z0 such that Γ0 ` XZ0 but Γ0 6` Y Z0.

Using Lemma 5.1.10 and rule (ΞHI) we may show Γ′ ` H(ΞXY ), by a proof analogous to
the proof of Γ′ ` ΞXY in the previous point. Assume also Γ′ ` ΞXY . Then Γ0 ` ΞXY ,
because Γ0 ⊇ Γ′. Since also Γ0 ` XZ0 we obtain Γ0 ` Y Z0 by rule (ΞE). Contradiction.

12. The implication from left to right follows from rules (HI) and (XLE), and from primeness.
The implication from right to left follows from rule (XI).

13. The implication from left to right follows from primeness and rules (XLE), (XHE), (ΞE)
and (XI). The implication from right to left follows from rule (XHI), Lemma 5.1.10 and
primeness.

14. Follows from (ALI).

We define the valuation ρ by ρ(x) = [x]. By Lemma 5.1.10 there exists a set Γ′ ⊇ Γ of
terms over Σ1 which is prime with respect to Σ1 and satisfies Γ′ 6`M . So 〈Γ′,Σ1〉 ∈ S. It is
easy to check that 〈Γ′,Σ1〉, ρ 
 Γ but 〈Γ′,Σ1〉, ρ 1M .

5.1.2 Classical semantics

In this section we define two variants of classical semantics for IK. The first one is based
on classical IK-models, which are simply single-state Kripke IJ-models. In contrast to the
propositional case, we have not been able to show that this semantics is complete. There

93



is one subtlety which prevents a straightforward adaptation of the standard Henkin-style
completeness proof. In fact, it seems plausible that classical IK-models may not be complete
for IK. We will explain this in more detail later.

The second semantics, which is complete, is based on Kripke IK-models, which are
Kripke IJ-models 〈C, I,S,≤, σ0, σ1〉 satisfying: for all s ∈ S and a ∈ C, if s ∈ σh(a) then
s ∈ σ1(v · a · (p · a · ⊥⊥⊥)).

Definition 5.1.12. A classical IK-model is a Kripke IJ-model with exactly one state s0.
For a classical IK-model we adopt the abbreviations T = {a | s0 ∈ σ1(a)} and F = {a |
s0 ∈ σ0(a)}. Note that a FOICA C and the sets T and F uniquely determine a classical
IK-model. We sometimes say that a tuple M = 〈C, I, T ,F〉 is a classical IK-model.

For convenience of reference, we reformulate in terms of T and F the conditions on σ0

and σ1 from Definition 5.1.4. The reformulation of conditions 1-9 is as in Definition 4.1.12.
The remaining conditions are reformulated as follows:

10. Ξ · a · b ∈ T iff

• L · a ∈ T , and
• for every c ∈ C such that a · c ∈ T we have b · c ∈ T ,

11. Ξ · a · b ∈ F iff

• L · a ∈ T , and
• for every c ∈ C such that a · c ∈ T we have b · c ∈ T ∪ F , and
• there exists c ∈ C such that a · c ∈ T and b · c ∈ F ,

12. x · a · b ∈ T iff

• L · a ∈ T , and
• there exists c ∈ C such that a · c ∈ T and b · c ∈ T ,

13. x · a · b ∈ F iff

• L · a ∈ T , and
• for every c ∈ C such that a · c ∈ T we have b · c ∈ F ,

14. L · A ∈ T .

For a classical IK-model M and a valuation ρ, the notations M, ρ |=i M , ρ |=i M ,
M, ρ |=i Γ, etc., are defined as in Definition 4.1.12.

The intuitive interpretation of T and F is the same as for classical IKp-models: T is the
set of true elements, and F is the set of false elements.

Theorem 5.1.13 (Soundness of semantics for IK based on classical IK-models).
If Γ `IK M then Γ |=IK M .

Proof. The proof proceeds by induction on the length of derivation of Γ ` M , like in the
proof of Theorem 5.1.7. Only the additional rule (EM) needs to be checked, which is done in
exactly the same way as in the proof of Theorem 4.1.14.
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As we have remarked, it is an open problem whether the semantics based on classical
IK-models is complete for IK. The standard Henkin-style completeness proof cannot be
easily adapted. To see where the problem is, consider conditions 13 in Definition 5.1.12. To
show this condition for a one-state model we would need to have the following for prime Γ:

(?) if Γ ` LX, and for every Z, Γ ` XZ implies Γ ` ¬Y [x/Z], then Γ ` ¬(∃x :X . Y ).

If Γ ` (∃x : X . Y ) ∨ ¬(∃x : X . Y ) then (?) follows from the primeness of Γ, but we have
excluded middle only for terms ∃x :X . Y for which H(∃x :X . Y ) is provable. Essentially, this
makes it impossible to easily adapt the standard trick with Henkin constants in the case we
have only one state. This observation also makes it plausible that classical IK-models may in
fact not be complete for IK. However, proving this would probably be difficult. One would
need to find a term M which is not provable in IK but is true in all classical IK-models.
Finding such a term would imply the consistency of IK. Moreover, the model construction
for IK that we provide to show consistency is a construction of a classical IK-model, so it
cannot be used to settle this question.

Definition 5.1.14. A Kripke IK-model is a Kripke IJ-model 〈C, I,S,≤, σ0, σ1〉 satisfying:

• for all s ∈ S and a ∈ C, if s ∈ σh(a) then s ∈ σ1(v · a · (p · a · ⊥⊥⊥)).

Semantics based on Kripke IK-models seems somewhat less intuitive, but it is easy to see
that it is sound and complete for IK. We state the relevant theorems without proofs, since
they are straightforward modifications of the proofs for IJ. One just needs to consider the
additional cases to account for the condition in Definition 5.1.14. We shall denote by 
kIK

the semantic consequence relation with respect to Kripke IK-models.

Theorem 5.1.15 (Soundness of the semantics for IK based on Kripke IK-models).
If Γ `IK M then Γ 
kIK M .

Theorem 5.1.16 (Completeness of the semantics for IK based on Kripke IK-models).
If Γ 
kIK M then Γ `IK M .

5.2 Model constructions

In this section we construct models for IJ and IK. A corollary is consistency of these systems.
Like in Section 4.2, the constructions are parameterised by appropriate models for traditional
systems, and used later to show completeness of translations of corresponding traditional
systems into IJ and IK.

5.2.1 Model construction for IJ

Fix a Kripke NJ-model S = 〈S,≤, {As | s ∈ S}〉. We construct a Kripke IJ-model M
parameterised by S. The construction is a relatively straightforward extension of the
construction from Section 4.2.1. We assume that function and relation symbols of NJ are
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present in the syntax of IJ. Also, for the purpose of constructing the model, we assume3 that
each element of

⋃
s∈S As occurs as a distinct constant in the set of terms T. Without loss of

generality we may assume that for s1, s2 ∈ S, if there is no s0 with s0 ≤ s1 and s0 ≤ s2, then
As1 ∩As2 = ∅. We will construct the modelM from appropriate equivalence classes of terms
from T. As in Section 4.2.1, we adopt the abbreviation > ≡ P⊥⊥. In this section we adopt
the convention LX ≡ ΞXX, i.e., when we write LX this stands for ΞXX, not for (λx.Ξxx)X.
This convention is to shorten notations. The important thing is that LX is never a redex.

Definition 5.2.1. We define binary relation →R on T as the compatible closure of the
following rules:

• rules of β- and η-reduction,

• fa1 . . . an → a if f is a function symbol and there is s ∈ S such that a1, . . . , an ∈ As
and fAs(a1, . . . , an) = a.

Denote by →F the compatible closure of the rules for function symbols above. Assume
fa1 . . . an → a and fa1 . . . an → b. Then a = fAs1 (a1, . . . , an), b = fAs2 (a1, . . . , an) and
a1, . . . , an ∈ As1 ∩ As2 for some s1, s2 ∈ S. So there is s0 ≤ s1, s2 with a1, . . . , an ∈ As0 . But
this implies fAs1 (a1, . . . , an) = fAs2 (a1, . . . , an) = fAs0 (a1, . . . , an). Hence →F is confluent.
Using Lemma 2.3.4 one also easily shows that →F commutes with βη-reduction. Therefore,
it follows from the Hindley-Rosen lemma that →R is confluent (see Lemma 2.3.3).

Definition 5.2.2. For s ∈ S and an ordinal α we inductively define binary relations �αs
on T by the rules from Definition 4.2.1, except (V>) and (V⊥), plus the following rules, where
the relation ;α

s is given by: X ;α
s Y iff X

∗−→R · �αs Y . The notations ;<α
s and �<αs are as

in Definition 4.2.1.

(LA>) LA �αs >,

(A>) Aa �αs > if a ∈ As,
(r>) ra1 . . . an �αs > if a1, . . . , an ∈ As and rAs(a1, . . . , an) holds,

(r⊥) ra1 . . . an �αs ⊥ if a1, . . . , an ∈ As and rAs(a1, . . . , an) does not hold,

(ΞA>) ΞAX �αs > if for every s′ ≥ s and a ∈ As′ we have Xa;<α
s′ >,

(ΞA⊥) ΞAX �αs ⊥ if

– for every s′ ≥ s and a ∈ As′ we have Xa;<α
s′ ρ with ρ ∈ {>,⊥},

– there exists s′ ≥ s and a ∈ As′ such that Xa;<α
s′ ⊥,

(XA>) XAX �αs > if there exists a ∈ As such that Xa;<α
s >,

(XA>) XAX �αs ⊥ if

3This assumption holds only in the present section – in general the syntax of IJ is not assumed to be
parameterised by any specific Kripke NJ-model. It is more convenient to extend the terms of IJ and build the
Kripke IJ-model from equivalence classes of these terms, then to define a separate class of terms specifically
for the model construction.
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– for every s′ ≥ s and a ∈ As′ we have Xa;<α
s′ ρ with ρ ∈ {>,⊥},

– for every a ∈ As we have Xa;<α
s ⊥.

Above X is an arbitrary term.

Like in Section 4.2.1, we assume that s ∈ S, f and r are function and relation symbols,
ρ, ρ′, . . . ∈ {>,⊥} and M , N , X, Y , Z, etc., are terms, unless otherwise stated.

Lemma 5.2.3. If X �αs ρ and X ∗−→R Y , then Y �αs ρ.

Proof. The proof is completely analogous to the proof of Lemma 4.2.2. One just needs to
consider additional easy cases corresponding to new rules in Definition 5.2.2.

Corollary 5.2.4. X ;α
s Y iff there exists X ′ such that X =R X

′ �αs Y .

Lemma 5.2.5. The following conditions hold.

1. If M �αs > and s′ ≥ s then M �αs′ >.

2. If M �αs ⊥ and s′ ≥ s then M �αs′ > or M �αs′ ⊥.

Proof. The proof is analogous to the proof of Lemma 4.2.4. The additional cases are
straightforward.

Lemma 5.2.6. The following conditions hold.

1. If M �<αs ρ then M �αs ρ.

2. If M �αs > then M 6�αs ⊥.

Proof. Again, the proof is analogous to the proof of Lemma 4.2.5, the additional cases being
straightforward.

Like in Section 4.2.1, it follows from Lemma 5.2.6 and Theorem 2.1.3 that there exists
the closure ordinal ζ, i.e., the least ordinal such that �ζs = �<ζs for each s ∈ S. We write �s
and ;s without superscripts to denote �ζs and ;ζ

s. If the set of states S is finite and for
all s ∈ S the structure As is finite, then ζ = ω. In general, ζ may depend on the Kripke
NJ-model S.

Lemma 5.2.3 and the second part of Lemma 5.2.6 imply the following corollary.

Corollary 5.2.7. The reduction system 〈→R, {�s}s∈S〉 is coherent.

Coherence implies that the following is a good definition.

Definition 5.2.8. Define MS = 〈C, I, S,≤, σ0, σ1〉 where:

• C is the extensional first-order illative combinatory algebra constructed from the ∗↔R-
equivalence classes of terms, with k = [K], s = [S], p = [P], etc., where by [X] we denote
the equivalence class of X,

• I is defined by I(c) = [c],
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• S is the set of states of S,

• ≤ is the order on states from S,

• σ1([X]) = {s ∈ S | X ;s >},
• σ0([X]) = {s ∈ S | X ;s ⊥}.

Theorem 5.2.9. The structureMS is a Kripke IJ-model such that for each relation symbol r
(in the signature of NJ) there is r ∈ C, and for each function symbol f there is f ∈ C, and
for each s ∈ S and each a ∈ As there is a ∈ C, so that for s ∈ S and a1, . . . , an, a ∈ As:

• f · a1 · . . . · an = a iff fA(a1, . . . , an) = a,

• s ∈ σ1(r · a1 · . . . · an) iff rAs(a1, . . . , an) holds,

• s ∈ σ0(r · a1 · . . . · an) iff rAs(a1, . . . , an) does not hold.

Proof. Using Corollary 5.2.7 it is straightforward to check that MS is a Kripke IJ-model
satisfying the required conditions.

Corollary 5.2.10. The system IJ is consistent, i.e., 6`IJ ⊥.

5.2.2 Model construction for IK

The construction for IK is an extension of the construction for IKp from Section 4.2.2.
Let A be a classical NK-structure. We construct a classical IK-model (Definition 5.1.12).
The construction is parameterised by A.

We assume that the function and relation symbols of NK are present in the syntax of IK.
For the model construction, we also assume4 that all elements of A occur as distinct constants
in the set of terms T. As in Section 5.2.1, we adopt the convention LX ≡ ΞXX.

Definition 5.2.11. We define a reduction system R = 〈→R, {�}〉 by the rules for reduction

• rules of η- and β-reduction,

• fa1 . . . an →R a if a1, . . . , an ∈ A and fA(a1, . . . , an) = a,

the rules from Definition 4.2.10, except (V>) and (V⊥), and the following rules:

(LA>) LA � >,

(r>) ra1 . . . an � > if a1, . . . , an ∈ A and rA(a1, . . . , an) holds,

(r>) ra1 . . . an � > if a1, . . . , an ∈ A and rA(a1, . . . , an) does not hold,

(ΞA>) ΞAX � > if for every a ∈ A we have Xa; >,

(ΞA⊥) ΞAX � ⊥ if

– for every a ∈ A there is ρ ∈ {>,⊥} with Xa; ρ,
– there exists a ∈ A such that Xa; ⊥,

4This assumption holds within the present section. Cf. Section 5.2.1.
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(XA>) XAX � > if there exists a ∈ A such that Xa; >,

(XA⊥) XAX � ⊥ if for every a ∈ A we have Xa; ⊥,

where X ; Y denotes X ∗−→ · � Y .

If the structureA is finite then ω is the closure ordinal of the definition of �. In general, the
closure ordinal depends on A and it may be quite large even for countable structures. Indeed,
we conjecture (but we have not checked the details) that if the structure A is sufficiently rich
(essentially includes the natural numbers with enough operations on them), then the closure
ordinal ζ is at least the Church-Kleene ordinal ωCK

1 , i.e., the first non-recursive ordinal (see
e.g. [Rog67, §11.7-8]). Indeed, if ζ were recursive then, by encoding ordinals below ζ with
natural numbers, we could essentially replicate the definition of ; inside the structure MA
(see Definition 5.2.13 below), i.e., we could define a term T such that TX ; > iff X is the
code of a true element of MA. By a diagonal argument this would lead to a contradiction.

Lemma 5.2.12. The reduction system R is coherent.

Proof. We check the conditions in the definition of coherence. The compatible closure of
the reduction rules for function symbols is a confluent relation. Using Lemma 2.3.4 one
also easily checks that reduction according to the rules for function symbols commutes with
βη-reduction. Thus →R is confluent by Theorem 2.3.9 and the Hindley-Rosen Lemma 2.3.3.
The remaining two conditions follow by straightforward transfinite induction, like in the proof
of Lemma 4.2.11.

Definition 5.2.13. Define MA = 〈C, I, T ,F〉 where:

• C is the extensional first-order illative combinatory algebra constructed from the R-
equality equivalence classes of terms, with k = [K], s = [S], p = [P], etc., where by [X]
we denote the equivalence class of X,

• I is defined by I(c) = [c] for c ∈ Σ,

• T = {[X] | X ; >},
• F = {[X] | X ; ⊥}.

Theorem 5.2.14. The structure MA is a classical IK-model such that for every a ∈ A
there is a ∈ C, for every relation symbol r there is r ∈ C, and for every function symbol f
there is f ∈ C, so that for a1, . . . , an, a ∈ A:

• f · a1 · . . . · an = a iff fA(a1, . . . , an) = a,

• r · a1 · . . . · an ∈ T iff rA(a1, . . . , an) holds,

• r · a1 · . . . · an ∈ F iff rA(a1, . . . , an) does not hold.

Proof. Using Lemma 4.2.11 it is easy to check the conditions from Definition 5.1.12. The
additional conditions in the statement of the theorem hold by construction.

Corollary 5.2.15. The system IK is consistent, i.e., 6`IK ⊥.
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5.3 Translations

In this section we show sound and complete syntactic translations of traditional systems of
first-order logic into corresponding illative systems. The proofs are similar to the ones in
Section 4.3.

We adopt the notational conventions like in the previous section, i.e., X, Y , Z, etc., stand
for terms in T. Also t, s, etc., stand for first-order terms, ϕ, ψ, etc., stand for first-order
formulas, and ∆, ∆′, etc., stand for sets of first-order formulas. We assume that all function
and relation symbols of traditional systems occur as constants in T, and all variables of
traditional systems occur as variables in T. Sometimes we write, e.g., ∆, ϕ instead of ∆∪{ϕ}.

Recall the following abbreviations from Section 1.1.

F ≡ λxyf.Ξx(λz.y(fz))
F0 ≡ I

Fn+1 ≡ λx1 . . . xn+1y.Fx1(Fnx2 . . . xn+1y)

Intuitively, FXY F means that F is a function from X to Y , and FnX1 . . . XnY F means
that F is an n-argument function from X1, . . . , Xn to Y .

Definition 5.3.1. We define a mapping d−e from first-order terms and formulas to the set
of terms T of illative systems, and a context-providing mapping Γ(−) from sets of first-order
terms and formulas to sets of terms from T. The definition of d−e is by induction of the
structure of its argument:

• dxe ≡ x for x a variable,

• df(t1, . . . , tn)e ≡ fdt1e . . . dtne,
• dr(t1, . . . , tn)e ≡ rdt1e . . . dtne,
• d⊥e ≡ ⊥,

• dϕ ∨ ψe ≡ dϕe ∨ dψe,
• dϕ ∧ ψe ≡ dϕe ∧ dψe,
• dϕ→ ψe ≡ dϕe ⊃ dψe,
• d∀x.ϕe ≡ ΞAλx.dϕe,
• d∃x.ϕe ≡ XAλx.dϕe.

We extend the mapping d−e to sets of first-order formulas thus: d∆e = {dϕe | ϕ ∈ ∆}.
For a set of first-order terms and formulas ∆, the set Γ(∆) is defined to contain:

• FnA . . .AHr for each relation symbol r of arity n, where A occurs n times,

• FnA . . .AAf for each function symbol f of arity n, where A occurs n+ 1 times,

• Ax for each x ∈ FV(∆),

• Ay for a fresh variable y, i.e., we assume y not to occur free in any first-order formula.5

5Note that the set of variables of T is distinct from the set of first-order variables. We assume each
first-order variable to occur as a variable in T, but not vice versa.
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The last point is necessary, because in ordinary logic the universe is implicitly assumed to be
non-empty. If we did not include the last point, we would not be able to prove soundness of
the translations. In the proof of Theorem 5.3.4 we would not be able to transform an arbitrary
Kripke IJ-model into a Kripke NJ-model, because some of the universes As might turn out
to be empty. The proof of Theorem 5.3.6 would break down in the case for implication
elimination.

Lemma 5.3.2. Γ({t}) `IJ Adte.

Proof. Induction on the structure of t.

Lemma 5.3.3. Γ({ϕ}) `IJ Hdϕe.

Proof. Induction on the structure of ϕ, using Lemma 5.3.2.

Theorem 5.3.4 (Completeness of the translation for IJ).
∆ 
NJ ϕ iff Γ(∆, ϕ), d∆e 
IJ dϕe.

Proof. Assume ∆ 
NJ ϕ. Let M = 〈C, I, S,≤, σ0, σ1〉 be a Kripke IJ-model, s0 ∈ S and ρ
an M-valuation such that M, s0, ρ 
 Γ(∆, ϕ), d∆e. We define a Kripke NJ-model

S = 〈S,≤, {As}〉

by taking S and ≤ to be the same as in M, and defining As = 〈As, {fAsi }, {r
As
i }〉 by:

• As = {c ∈ C | s ∈ σ1(A · c)},
• fAs(a1, . . . , an) = I(f) · a1 · . . . · an,

• rAs(a1, . . . , an) holds iff s ∈ σ1(I(r) · a1 · . . . · an).

Note that As 6= ∅ for s ∈ S. This is because Ay is present in Γ(∆, ϕ) for a fresh variable y,
so for each s ≥ s0 there exists a ∈ C such that s ∈ σ1(A · a). Hence S is a well-defined Kripke
NJ-model.

For v an M-valuation and s ≥ s0, we define an As-valuation vs by: vs(x) = v(x) for
x ∈ FV(∆, ϕ), and vs(x) = a for other variables x /∈ FV(∆, ϕ) and some arbitrary a ∈ As.
This is well-defined, because Ax is present in Γ(∆, ϕ) for x ∈ FV(∆, ϕ).

First, by induction on the structure of a term t such that FV(t) ⊆ FV(∆, ϕ) we show for
s ≥ s0:

(a) JtKMv = JtKAsvs .

Then, by induction on the structure of a subformula ψ of a formula from ∆ ∪ {ϕ}, we prove
that for s ≥ s0 we have:

(b) S, s, vs 
 ψ iff M, s, v 
 dψe.
For example, we show the case ψ ≡ ∀x.ψ′. Other cases are similar, with Lemma 5.3.3 and
Theorem 5.1.7 needed for implication. We also need to use (a) for the base case when
ψ ≡ r(t1, . . . , tn). Assuming ψ ≡ ∀x.ψ′ we have dψe ≡ ΞA(λx.dψ′e).
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Suppose S, s, vs 
 ∀x.ψ′. Let s′ ≥ s and a ∈ C be such that s′ ∈ σ1(A · a). Then
a ∈ As′ , so S, s′, v′s′ 
 ψ′ where v′(y) = v(y) for x 6= y and v′(x) = a. By the inductive
hypothesis M, s′, v′ 
 dψ′e. Since s′ ≥ s was arbitrary, and of course M, s 
 LA, we obtain
M, s, v 
 ΞA(λx.dψ′e).

Now assumeM, s, v 
 d∀x.ψe, i.e.,M, s, v 
 ΞA(λx.dψ′e). Let s′ ≥ s and a ∈ As′ . Then
M, s′, v′ 
 dψ′e where v′(y) = v(y) for y 6= x and v′(x) = a. By the inductive hypothesis
S, s′, v′s′ 
 ψ′. This implies that S, s 
 ∀x.ψ′.

Hence, by (b), we have S, s0, ρs 
 ∆, because M, s0, ρ 
 d∆e. Thus S, s0, ρs 
 ϕ. This
in turn implies M, s0, ρ 
 dϕe. Since M, s0 and ρ were arbitrary satisfying M, s0, ρ 

Γ(∆, ϕ), d∆e, we have Γ(∆, ϕ), d∆e 
IJ dϕe.

Assume Γ(∆, ϕ), d∆e 
IJ dϕe. Let S = 〈S,≤, {As | s ∈ S}〉 be a Kripke NJ-model,
s0 ∈ S and ρ be an As0-valuation such that S, s0, ρ 
 ∆. We construct a Kripke IJ-modelM
using Theorem 5.2.9. This model has the same states and state ordering as S. By induction
we show that it satisfies the following for s ≥ s0 and v an As-valuation:

• M, s, v 
 Adte,
• M, s, v 
 Hdψe,
• JtKMv = JtKAsv ,

• M, s, v 
 dψe iff S, s, v 
 ψ,

where FV(t, ψ) ⊆ FV(∆, ϕ), and v is an M-valuation such that v(x) ≡ v(x), where a for
a ∈ As is like in Theorem 5.2.9. The proof is straightforward and we omit it.

Hence, we have M, s0, ρ 
 d∆e, because S, s0, ρ 
 ∆. If follows from the definition of M
that also M, s0, ρ 
 Γ(∆, ϕ). Thus M, s0, ρ 
 dϕe. So S, s0, ρ 
 ϕ. Since S, s0 and ρ were
arbitrary satisfying S, s0, ρ 
 ∆, we obtain ∆ 
NJ ϕ.

Corollary 5.3.5. ∆ `NJ ϕ iff Γ(∆, ϕ), d∆e `IJ dϕe.

Proof. Follows from Theorem 5.3.4, Theorem 5.1.7, Theorem 5.1.11 and Theorem 2.4.10.

Theorem 5.3.6 (Soundness of the translation for IK).
If ∆ `NK ϕ then Γ(∆, ϕ), d∆e `IK dϕe.

Proof. Because we have not proved completeness of classical IK-models for IK, the proof
needs to be done syntactically, using Lemma 5.3.3. We proceed by induction on the length
of derivation of ∆ `NK ϕ. The interesting case is with implication elimination. So assume
∆ `NK ϕ was obtained from ∆ `NK ψ and ∆ `NK ψ → ϕ. By the inductive hypothesis

Γ(∆, ϕ, ψ), d∆e `IK dψe ⊃ dϕe

and also Γ(∆, ψ), d∆e `IK dψe. Since Γ(∆, ψ) ⊆ Γ(∆, ϕ, ψ) = Γ(∆, ϕ) ∪ Γ(ψ) we obtain

Γ(∆, ϕ),Γ(ψ), d∆e `IK dϕe.

We have Γ(ψ) \Γ(∆, ϕ) = Ax1, . . . ,Axn for some x1, . . . , xn ∈ FV(ψ) \FV(∆, ϕ). Recall that
Ay ∈ Γ(∆, ψ) for a fresh variable y /∈ FV(∆, ϕ, ψ). Substituting y for each xi, by (Sub) from
Lemma 4.1.2 we have Γ(∆, ϕ),Ay, . . . ,Ay, d∆e `IK dϕe, i.e., Γ(∆, ϕ) `IK dϕe.
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Theorem 5.3.7 (Completeness of the translation for IK).
If Γ(∆, ϕ), d∆e |=IK dϕe then ∆ |=NK ϕ.

Proof. Assume Γ(∆, ϕ), d∆e |=IK dϕe. Let A be a classical NK-structure and ρ an A-
valuation such that A, v |= ∆. Take M to be the classical IK-model obtained by applying
Theorem 5.2.14 to A. It is easy to check by induction on the structure of a formula ψ that:

• M, v |= Adte,
• M, v |= Hdψe,
• JtKMv = JtKAv ,

• M, v |= dψe iff A, v |= ψ,

where v is an M-valuation such that v(x) ≡ v(x), where a for a ∈ A is as in Theorem 5.2.14.
Then we have M, ρ |= Γ(∆, ϕ), d∆e. Thus M, ρ |= dϕe. Hence A, ρ |= ϕ. Therefore,
∆ |=NK ϕ.

Corollary 5.3.8. If Γ(∆, ϕ), d∆e `IK dϕe then ∆ `NK ϕ.

Proof. Follows from Theorem 5.3.7, Theorem 5.1.13 and Theorem 2.4.8.
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Chapter 6

Higher-order predicate logic

6.1 Illative systems

Definition 6.1.1. The system IKω of intensional classical higher-order illative combinatory
logic comes in three variants IKωλβη, IKωλβ and IKωCLw which differ in the underlying
reduction system. As in the preceeding chapters, we shall only give definitions and proofs
for IKωλβη, and possibly note the differences with other variants. The set of terms T is
defined separately for each variant, basing on a signature Σ containing the following illative
constants: Ξ,

V

, V, ¬, ⊥, and a constant Aτ for each τ ∈ B, where B is some specific set of
base types. We adopt the abbreviations (see also Section 1.1):

• > ≡ ¬⊥,

• X ∧ Y ≡

V

XY ,

• X ∨ Y ≡ VXY ,

• X ⊃ Y ≡ ¬X ∨ Y ,

• H ≡ λx.x ∨ ¬x,

• L ≡ λx.Ξxx,

• X ≡ λxy.¬(Ξx(λz.¬(yz))),

• ∀x : X . Y ≡ ΞX(λx.Y ) where x /∈ FV(X),

• ∃x : X . Y ≡ XX(λx.Y ) where x /∈ FV(X),

• F ≡ λxyf.Ξx(λz.y(fz)),

• F0 ≡ I,

• Fn+1 ≡ λx1 . . . xn+1y.Fx1(Fnx2 . . . xn+1y),

• A→ B ≡ FAB,

• QL ≡ λaxy.∀p : a→ H . px ⊃ py,

• X =A Y ≡ QLAXY
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The rules of IKω are those of Figure 4.3 and Figure 6.1.
The illative primitive QL represents typed Leibniz equality: QLA denotes Leibniz equality

in type A. As mentioned above, we usually write X =A Y instead of QLAXY . The
system IKω may be extended to a system eIKω extensional wrt. QL by adding the following
rules:

Γ ` ∀x : A . Xx =B Y x x /∈ FV(X, Y,A,B)

Γ ` X =A→B Y
(Extf )

Γ ` X ⊃ Y Γ ` Y ⊃ X
Γ ` X =H Y

(Extb)

Γ, Xx ` Y x Γ ` LX x /∈ FV(Γ, X, Y )

Γ ` ΞXY
(ΞI) Γ ` ΞXY Γ ` XZ

Γ ` Y Z (ΞE)

Γ ` XZ Γ ` ¬(Y Z) Γ ` LX

Γ ` ¬(ΞXY )
(¬ΞI)

Γ ` ¬(ΞXY ) Γ, Xx,¬(Y x) ` Z x /∈ FV(Γ, X, Y, Z)

Γ ` Z (¬ΞE)

Γ, Xx ` H(Y x) Γ ` LX x /∈ FV(Γ, X, Y )

Γ ` H(ΞXY )
(ΞHI)

Γ ` H(ΞXY )

Γ ` LX
(ΞLE)

τ ∈ B
Γ ` LAτ

(AτL)
Γ ` LH

(HL)
Γ ` LX Γ, Xx ` LY x /∈ FV(Γ, X, Y )

Γ ` L(FXY )
(FL)

Figure 6.1: Additional rules of IKω

Lemma 6.1.2. The rules from Figure 4.1, rule (EM) from Definition 4.1.1, and rules (XI),
(XE), (XHI) and (XLE) form Figure 5.1, are all admissible in IKω.

Proof. Straightforward, using Theorem 4.1.18.

Lemma 6.1.3. If Γ ` X =A Y , Γ ` FABZ, Γ ` AX and Γ ` LB, then Γ ` ZX =B ZY .

Proof. Assume Γ ` X =A Y , Γ ` FABZ, Γ ` LA and Γ ` LB. Since Γ ` LB, by (ΞI) it
suffices to show

(?) Γ,FBHp ` p(ZX) ⊃ p(ZY ).
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Let M ≡ λx.p(Zx). We have Γ,FBHp ` FAHM , because Γ ` FABZ. Hence

Γ,FBHp `MX ⊃MY

because Γ ` X =A Y . Therefore

Γ,FBHp, p(ZX) ` p(ZY )

by (PE) and (Eq). Because Γ ` AX and Γ ` FABZ, we have Γ,FBHp ` H(p(ZX)). Hence
we obtain (?) by (PI).

Definition 6.1.4. A higher-order illative combinatory algebra (HOICA) is a tuple

〈C, ·, k, s, v, v,¬¬¬,⊥⊥⊥, Ξ, {Aτ}τ∈B〉

where 〈C, ·, k, s〉 is an extensional combinatory algebra, v, v,¬¬¬,⊥⊥⊥, Ξ ∈ C and Aτ ∈ C for τ ∈ B.
In other words, a higher-order illative combinatory algebra is an extensional combinatory
algebra with additional distinguished elements. We often confuse a HOICA with its carrier
set C. In a HOICA C we define the elements h, p, etc., by the following equations, for arbitrary
a, b, c ∈ C:

• h · a = v · (¬¬¬ · a) · a,

• p · a · b = v · (¬¬¬ · a) · b,
• L · a = Ξ · a · a,

• x · a · b = ¬¬¬ · (Ξ · a · (s · (k · ¬¬¬) · b)),
• f · a · b · c = Ξ · a · (s · (k · b) · c),
• q · a · b · c = Ξ · (f · a · h) · e,

where e ∈ C is the unique element such that

e · d = p · (d · b) · (d · c)

for any d ∈ C. Note that the above equations uniquely define elements of C, because C is
extensional.

Definition 6.1.5. An IKω-model is a tuple 〈C, I, T ,F〉 where:

• C is a higher-order illative combinatory algebra.

• I is a function from Σ to C.
• T and F are sets of elements of C satisfying the following for any a, b ∈ C, where we

use the notation T (a) = {b | a · b ∈ T } for a ∈ C.

1. T ∩ F = ∅,
2. ⊥⊥⊥ ∈ F ,
3. ¬¬¬ · a ∈ T iff a ∈ F ,
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4. ¬¬¬ · a ∈ F iff a ∈ T ,
5. v · a · b ∈ T iff a ∈ T or b ∈ T ,
6. v · a · b ∈ F iff a ∈ F and b ∈ F ,
7. v· a · b ∈ T iff a ∈ T and b ∈ T ,
8. v· a · b ∈ F iff a ∈ F or b ∈ F ,
9. Ξ · a · b ∈ T iff L · a ∈ T and for every c ∈ C with a · c ∈ C we have b · c ∈ C,

10. Ξ · a · b ∈ F iff L · a ∈ T and there exists c ∈ C with a · c ∈ T and b · c ∈ F ,
11. L · h ∈ T ,
12. L · Aτ ∈ T for each τ ∈ B,
13. if L · a ∈ T , and T (a) = ∅ or L · b ∈ T , then L · (f · a · b) ∈ T .

An eIKω-model is an IKω-model additionally satisfying the following for all a, b, c, d ∈ C:
14. if L ·a ∈ T and for every e ∈ T (a) we have q ·b ·(c ·e) ·(d ·e) ∈ T , then q ·(f ·a ·b) ·c ·d ∈ T ,

15. if a, b ∈ T or a, b ∈ F then q · h · a · b ∈ T .

Let M be an IKω-model or an eIKω-model. An M-valuation is a function from V to C
(cf. Definition 2.3.17). Given an M-valuation ρ : V → C we define the value of M ∈ TCL,
denoted JMKMρ or just JMKρ, by induction on the structure of M :

• JxKρ = ρ(x) if x ∈ V ,

• JKKρ = k, JSKρ = s,

• J¬Kρ = ¬¬¬, JVKρ = v, J
V

Kρ = v, J⊥Kρ = ⊥⊥⊥, JΞKρ = Ξ,

• JcKρ = I(c) if c ∈ Σ \ {¬,V,

V

,⊥,Ξ},
• JM1M2Kρ = JM1Kρ · JM1Kρ.

For M ∈ Tλ we set JMKρ = J(M)CLKρ.
If JMKMρ ∈ T , we write M, ρ |= M . If M is closed then we write M |= M . We write

M, ρ |= Γ if M, ρ |= M for all M ∈ Γ. Finally, we write Γ |=IKω M (resp. Γ |=eIKω M) if for
every IKω-model (resp. eIKω-model)M and everyM-valuation ρ, the conditionM, ρ |= Γ
implies M, ρ |= M .

Lemma 6.1.6. If ρ′ = ρ[x/JXKρ] then JY Kρ′ = JY [x/X]Kρ.

Proof. Analogous to Lemma 5.1.5.

Theorem 6.1.7. If Γ `I X then Γ |=I X, where I = IKω or I = eIKω.

Proof. Straightforward induction on the length of derivation of Γ `I X.
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6.2 Model construction

In this section we construct a model for IKω and eIKω, thus establishing consistency of
these systems. The model construction is parameterised by a standard model

N = 〈{Dτ | τ ∈ T }, I〉

for higher-order logic (see Definition 2.4.13). We assume the set of base types B in the
model N to be the same as the set of base types of IKω, and that all constants of NKω are
present in the syntax of IKω. For the model construction, we also assume that each element
d ∈ Dτ for any τ ∈ T occurs as a distinct constant in the set of terms T. If I(c) = d ∈ Dτ
then without loss of generality we assume that c ≡ d. If f ∈ Dτ→ρ and a ∈ Dτ , then to
avoid confusion with the term fa we write fN (a) instead of f(a) to denote the value of the
function f at argument a. Without loss of generality, we identify the term ⊥ (resp. >) with
the element ⊥ (resp. >) of Do. In this section we use the abbreviation LX ≡ ΞXX, i.e., LX
stands for ΞXX and not for (λx.Ξxx)X. This convention is to shorten notations.

Definition 6.2.1. For τ ∈ T and an ordinal α we define the representation relations
�ατ ∈ T×T, the contraction relation →α ∈ T×T, and the relation �αT ∈ T×T inductively.
The notation X ;α

τ Y stands for X ∗→
α
· �ατ Y , and the notations �<ατ , ;<α

τ are defined as
usual.

(β) (λx.X)Y →α X[x/Y ],

(η) λx.Xx→α X if x /∈ FV(X),

(γ) fX →α b if f ∈ Dτ1→τ2 , b ∈ Dτ2 , fN (a) = b and X �<ατ1 a, for some a ∈ Dτ1 ,
(Dτ ) d �ατ d for d ∈ Dτ and τ ∈ B ∪ {o},
(Fτ ) X �ατ d if τ = τ1 → τ2, d ∈ Dτ1→τ2 and for every a ∈ Dτ1 we have Xa;<α

τ2
dN (a),

(¬>) ¬X �αo > if X �<αo ⊥,

(¬⊥) ¬X �αo ⊥ if X �<αo >,

(V>) X ∨ Y �αo > if X �<αo > or Y �<αo >,

(V⊥) X ∨ Y �αo ⊥ if X �<αo ⊥ and Y �<αo ⊥,

(

V

>) X ∧ Y �αo > if X �<αo > and Y �<αo >,

(

V

⊥) X ∧ Y �αo ⊥ if X �<αo ⊥ or Y �<αo ⊥,

(Ξ>) ΞXY �αo > if X �<αT τ and for every d ∈ Dτ we have Y d;<α
o >,

(Ξ⊥) ΞXY �αo ⊥ if X �<αT τ and there exists d ∈ Dτ with Y d;<α
o ⊥,

(L>) LX �αo > if X �<αT τ for some τ ∈ T ,

(A>) Aτd �αo > if τ ∈ B and d ∈ Dτ ,
(HT ) H �αT o,

(AT ) Aτ �αT τ for τ ∈ B,
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(FT ) λf.ΞX(λx.Y [y/(fx)]) �αT τ1 → τ2 if f, x /∈ FV(X, Y ), X �<αT τ1 and λy.Y ;<α
T τ2.

It is to be understood that the relation →α is the compatible closure of the rules (β), (η)
and (γ), while the relations �ατ for τ ∈ T and �αT are defined directly by the corresponding
rules, i.e., without taking compatible closure – these are not contraction relations.

It is easy to see that for α ≤ κ we have →α ⊆ →κ, �ατ ⊆ �κτ for τ ∈ T , and �αT ⊆ �κT .
Hence by Theorem 2.1.3 there is the closure ordinal ζ with →ζ =→<ζ , �ζτ = �<ζτ for τ ∈ T ,
and �ζT = �<ζT . We use the notations →, �τ (τ ∈ T ), �T for →ζ , �ζτ (τ ∈ T ), �ζT ,
respectively.

By →α
γ we denote →α \→βη, and by →γ we denote →\→βη. We sometimes write →βηγ

instead of → to avoid confusion with other reduction relations. The relation →γ is called
γ-contraction, and its transitive-reflexive closure ∗→γ is called γ-reduction.

We define the reduction system R by R = 〈→βηγ, {�τ}τ∈T ∪ {�T }〉. The reduction
system Rα is defined by Rα = 〈→α, {�ατ }τ∈T ∪ {�αT }〉.

The intuition behind �τ for τ ∈ T is that X �τ d means “X is represented by d in
type τ”, i.e., “X behaves exactly like d in every context where a value of type τ is expected”.
The closure under arbitrary contexts where a value of type τ is “expected” is essentially
implemented by γ-reduction. The relation X �T τ is interpreted as “X intepreted as a type
is represented by τ”.

The rules for �o correspond to the conditions on T and F in Definition 6.1.5. They are
as one would expect them to be, except perhaps the rules (Ξ>) and (Ξ⊥). Instead of the
rule (Ξ>) one might expect

(Ξ′>) ΞXY �αo > if LX �<αo > and for all Z such that XZ ;<α
o > we have Y Z ;<α

o >.

However, in this rule there is a negative reference to ;<α
o in XZ ;<α

o >, so it may no longer
be the case that �αo ⊆ �κo for α ≤ κ, and we could not apply Theorem 2.1.3. The way
we solve this major problem is to restrict quantification to constants from appropriate Dτ .
We will show that if X �T τ then quantifying over only elements of Dτ is equivalent to
quantifying over all Z such that XZ ;o >. A crucial step is to show that the reduction
system R is invariant (see Section 2.3.3).

To see how the argument goes and where invariance is used, assume that X �T τ and for
every d ∈ Dτ we have Y d;o >. Suppose XZ ;o >. We will show in one of the following
lemmas that if X �T τ , then XZ ;o > implies that there is d ∈ Dτ with Z ;τ d, i.e., that
there is an element of Dτ by which Z is represented in type τ . But since Y d ;o > and
Z ;τ d, by invariance (see Lemma 2.3.15) we then obtain Y Z ;τ >. In other words, if Y d
holds for all d ∈ Dτ , then also Y Z holds for all terms of type τ (the terms of type τ are
those Z such that XZ ;o >, because X interpreted as a type is represented by τ).

The real problem here, and the reason we need an argument like the one sketched above,
is with function types. For a base type τ ∈ B, the only terms which have type τ are the
elements of Dτ (more precisely, the constants in T corresponding to these elements). But the
terms having a function type τ1 → τ2 are defined “semantically”: these are all terms X such
that for any Y of type τ1 the term XY has type τ2.

We now give several examples to illustrate Definition 6.2.1.
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Example 6.2.2. Let τ ∈ B and let id ∈ Dτ→τ be the identity function on Dτ , i.e. idN (d) = d
for d ∈ Dτ . We show λx.x �τ→τ id. For d ∈ Dτ we have (λx.x)d →β d �τ d, so
(λx.x)d;τ d = idN (d). Thus λx.x �τ→τ d by (Fτ→τ ).

Let f ∈ Dτ→τ→τ be such that fN (d) = id for d ∈ Dτ . We show λyx.x �τ→τ→τ f . For
d ∈ Dτ we have (λyx.x)d →β λx.x �τ→τ id, so (λyx.x)d ;τ→τ id. Thus λyx.x �τ→τ→τ f
by (Fτ→τ→τ ).

Let g ∈ D((τ→τ→τ)→τ)→τ be such that gN (d) = dN (f) for d ∈ D(τ→τ→τ)→τ , where f is as
in the previous paragraph. We show λz.z(λyx.x) �((τ→τ→τ)→τ)→τ g. For d ∈ D(τ→τ→τ)→τ we
have (λz.z(λyx.x))d →β d(λyx.x) →γ dN (f) because λyx.x �τ→τ→τ f . We also have
dN (f) �τ dN (f) by (Dτ ), so (λz.z(λyx.x))d ;τ dN (f) = gN (d). Thus we conclude
λz.z(λyx.x) �((τ→τ→τ)→τ)→τ g by (F((τ→τ→τ)→τ)→τ ).

Now we proceed with the model construction. We shall show that the reduction system R
is closed under substitution (see Definition 2.3.14), coherent (see Definition 2.3.1) and invariant
(see Definition 2.3.14).

Lemma 6.2.3. Let α be an ordinal, X, Y be arbitrary terms, and x1, . . . , xn /∈ FV(X). Then
the following conditions hold.

• If X[y/x1 . . . xn] →α X ′ then X ′ ≡ X ′′[y/x1 . . . xn] where X[y/Y ] →α X ′′[y/Y ] and
x1, . . . , xn /∈ FV(X ′′).

• If X[y/x1 . . . xn] �αi d then X[y/Y ] �αi d.

Proof. Induction on α. First note that the inductive hypothesis implies:

• if X[y/x1 . . . xn] ;<α
τ d then X[y/Y ] ;<α

τ d.

Indeed, assuming X[y/x1 . . . xn]
∗→
<α

X1 �<ατ d, by the inductive hypothesis there ex-
ists X ′1 with x1, . . . , xn /∈ FV(X ′1) and X1 ≡ X ′1[y/x1 . . . xn], X[y/Y ]

∗→
<α

X ′1[y/Y ]. Hence
X ′1[y/Y ] �<ατ d by applying the IH again. Thus X[y/Y ] ;<α

τ d.
Assume Ξ(X1[y/x1 . . . xn])(X2[y/x1 . . . xn]) �αo > follows by rule (Ξ>), i.e.,

X1[y/x1 . . . xn] �<αT τ

and for every d ∈ Dτ we have X2[y/x1 . . . xn]d;<α
o >. We want to show

Ξ(X1[y/Y ])(X2[y/Y ]) �αo >.

By the IH we obtain X1[y/Y ] �<αT τ and for every d ∈ Dτ we have X2[y/Y ] ;<α
o >. Thus

Ξ(X1[y/Y ])(X2[y/Y ]) �αo > by (Ξ>).
Assume (λu.X1[y/x1 . . . xn])(X2[y/x1 . . . xn]) →β X1[y/x1 . . . xn][u/X2[y/x1 . . . xn]] and

x1, . . . , xn /∈ FV(X1, X2). Then X1[y/x1 . . . xn][u/X2[y/x1 . . . xn]] ≡ X1[u/X2][y/x1 . . . xn].
Since x1, . . . , xn /∈ FV(X1, X2) then also x1, . . . , xn /∈ FV(X1[u/X2]). Hence we may take
X ′′ ≡ X1[u/X2].

Assume fX[y/x1 . . . xn] →α b, f ∈ Dτ1→τ2 , a ∈ Dτ1 , b ∈ Dτ2 , fN (a) = b and X �<ατ1 a.
Then by the IH we obtain X[y/Y ] �<ατ1 . Thus also fX[y/Y ]→α b and we may take X ′′ ≡ b.

Other cases are similar.
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Corollary 6.2.4. For each ordinal α the reduction system Rα is closed under substitution.
In particular, the reduction system R is closed under substitution.

Lemma 6.2.5. For τ ∈ T , d, a1, . . . , an ∈ T in normal form, and any variable x we have
xa1 . . . an 6�τ d.

Proof. Induction on the structure of τ . If xa1 . . . an �τ d then this may only follow from
rule (Fτ ). Then τ = τ1 → τ2, d ∈ Dτ1→τ2 , and for a ∈ Dτ1 we have xa1 . . . ana;τ2 d

N (a).
Since Dτ1 6= ∅, there is a ∈ Dτ1 with xa1 . . . ana;τ2 d

N (a), which is only possible when
xa1 . . . ana �τ2 dN (a). But this is impossible by the inductive hypothesis.

Lemma 6.2.6. For all ordinals α, κ the reduction systems Rα and Rκ are mutually coherent.
In particular, the reduction system R is coherent.

Proof. We proceed by induction on pairs of ordinals 〈α, κ〉 ordered componentwise. We need
to show the conditions:

(a) →α and →κ commute,

(b) →κ preserves �αi ,

(c) →α preserves �κi ,
(d) if X �αi d1 and X �κi d2 then d1 = d2,

where i ∈ T or i = T .
So assume (a)− (d) hold for all pairs of ordinals 〈α′, κ′〉 with α′ < α and κ′ ≤ κ, or α′ ≤ α

and κ′ < κ. We show that (a) − (d) also hold for 〈α, κ〉. First we prove the following, for
arbitrary terms X, Y .

(?) If X ;<α
i d and X →κ Y then Y ;<α

i d, where i ∈ T or i = T . The same holds
with α and κ exchanged.

Assume X ;<α
i d and X →κ Y . Then X

∗→
<α

X ′ �<αi d for some X ′. By part (a) of
the IH there is Y ′ with Y

∗→
<α

Y ′ and X ′
∗→
κ
Y ′. By part (b) of the IH we have Y ′ �<αi d.

Thus Y ;<α
i d. See Figure 6.2. The proof of the statement with α and κ exchanged is

analogous, but using part (c) of the IH instead of part (b).

X ∗ <α//

κ��

X ′

κ

∗
��

�<αi d

Y
<α∗ // Y ′ �<αi d

Figure 6.2

We also show the following for arbitrary terms X, Y , and i ∈ T or i = T .

(??) If X ;<α
i d1 and X ;κ

i d2 then d1 = d2. The same holds with α and κ exchanged.
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Assume X ;<α
i d1 and X ;κ

i d2. Then there are X1, X2 with X
∗→
<α

X1 �<αi d1 and
X

∗→
κ
X2 �κi d2. By part (a) of the IH there is X ′ with X1

∗→
κ
X ′ and X2

∗→
<α

X ′. By
parts (b) and (c) of the IH we have X ′ �<αi d1 and X ′ �κi d2. By part (d) of the IH we obtain
d1 = d2. See Figure 6.3. The proof for the statement with α and κ exchanged is analogous.

X
∗ <α//

∗
κ��

X1

∗
κ��

�<αi d1

X2
∗ <α//

�
κi

X ′ �<αi

�
κi

d1

d2 d2

Figure 6.3

Now we prove (a)− (d).

(a) We show that the following pairs of relations commute: →α
γ and →κ

γ , →α
γ and →βη,

→κ
γ and →βη. Since →βη is confluent, →α= →α

γ ∪→βη and →κ= →κ
γ ∪→βη, it then

follows from the general Hindley-Rosen Lemma 2.3.3 that →α and →κ commute.

Assume X →α
γ X1 and X →κ

γ X2. We show that there is X ′ with X1
≡−→
κ

γ X
′ ≡←−

α

γ X2.
Without loss of generality assume that the contraction X →α

γ X1 occurs at the root.
We have X ≡ fY , f ∈ Dτ1→τ2 , X1 ≡ fN (d1) and Y �<ατ1 d1. If the contraction
X ≡ fY →κ

γ X2 also occurs at the root, then X2 ≡ fN (d2), Y �<κτ1 d2 and by part (d)
of the IH we obtain d1 = d2, so we may take X ′ ≡ X1 ≡ X2. Otherwise, X2 ≡ fY ′

with Y →κ
γ Y

′. Since Y �<ατ1 d1, by part (b) of the IH we have Y ′ �<ατ1 d1. Thus still
X2 ≡ fY ′ →α

γ d1 ≡ X1, so we may take X ′ ≡ X1.

It remains to show that →α
γ and →βη commute, the proof for →κ

γ and →βη being
analogous. We will show that if X →α

γ X1 and X →βη X2 then there is X ′ such that
X1 →βη X

′ and X2
∗→
α

γ X
′. Then the claim will follow by Lemma 2.3.4.

So assume X →α
γ X1 and X →βη X2. First suppose the contraction X →α

γ X1 is at the
root. Then X ≡ fY for some f ∈ Dτ1→τ2 , Y �<ατ1 d and X1 ≡ fN (d). Hence X2 ≡ fY ′

with Y →βη Y
′. By part (b) of the IH we obtain Y ′ �<ατ1 d, so still X2 →α

γ d ≡ X1. We
may thus take X ′ ≡ X1.

If the contraction X →α
γ X1 is not at the root, then assume without loss of generality

that the contraction X →βη X2 is at the root.

Suppose X →β X2 occurs at the root. Then X ≡ (λx.Y1)Y2 and X2 ≡ Y1[x/Y2]. If the
contraction X →α

γ X1 occurs in Y2, i.e., Y2 →α
γ Y

′
2 then take X ′ ≡ Y1[x/Y

′
2 ]. We then

have X2 ≡ Y1[x/Y2]
∗→
α

γ Y1[x/Y ′2 ] ≡ X ′, and

X1 ≡ (λx.Y1)Y ′2 →β Y1[x/Y ′2 ]
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as required. Otherwise, the contraction X →α
γ X1 occurs in Y1, i.e., Y1 →α

γ Y
′

1 . Then
Y1[x/Y2]→α

γ Y
′

1 [x/Y2] by Corollary 6.2.4, and we may take X ′ ≡ Y ′1 [x/Y2].

Finally, suppose X →η X2 occurs at the root. Then X ≡ λx.X2x with x /∈ FV(X2). It
is impossible that X2x is the redex contracted in X →α

γ X1. Indeed, otherwise x �τ d
for some d ∈ Dτ , which is impossible by Lemma 6.2.5. So the contraction X →α

γ X1

must occur inside X2, i.e., X2 →α
γ X

′
2. Then we may simply take X ′ ≡ X ′2.

(b) Assume X �αi d and X →κ X ′. We need to show X ′ �αi d. We consider possible cases
according to the definition of X �αi d.

Assume X �αi d follows from (Ξ>), i.e., i = o, X ≡ ΞX1X2, d ≡ >, X1 �<αT τ for
some τ ∈ T , and for every a ∈ Dτ we have X2a;<α

o >. Then also X ′ ≡ ΞX ′1X
′
2 with

Xk
≡−→
κ
X ′k. By part (b) of the IH we have X ′1 �<αT τ . By (?), for every a ∈ Dτ we have

X ′2a;<α
o >. Hence X ′ ≡ ΞX ′1X

′
2 �αo > by (Ξ>).

Assume X �αi d follows from (Ξ⊥), i.e., i = o, X ≡ ΞX1X2, d ≡ ⊥, X1 �<αT τ for
some τ ∈ T , and there exists a ∈ Dτ with X2a;<α

o ⊥. Then also X ′ ≡ ΞX ′1X
′
2 with

Xk
≡−→
κ
X ′k. By part (b) of the IH we have X ′1 �<αT τ . By (?) we also have X ′2a;<α

o ⊥.
Hence X ′ ≡ ΞX ′1X

′
2 �αo ⊥ by (Ξ⊥).

Assume X �αi d follows from (FT ), i.e., i = T , X ≡ λf.ΞX1(λx.Y [y/fx]), d = τ1 →
τ2 ∈ T , f, x /∈ FV(X, Y ) X1 �<αT τ1 and λy.Y ;<α

T τ2. If the contraction X →κ X ′

occurs inside X1 then it follows from the IH and (FT ) that X ′ �αT τ . Otherwise the
contraction occurs in λx.Y [y/fx], i.e., λx.Y [y/fx]→κ Z. If λx.Y [y/fx] ≡ λx.fx→η

f ≡ Z then Y ≡ y and λy.y �<αT τ2, which is impossible by Definition 6.2.1. Hence
by Lemma 6.2.3 we have Y ′ ≡ Y ′′[y/fx] with Y →κ Y ′′ and f, x /∈ FV(Y ′′). Thus
λy.Y →κ λy.Y ′′, so λy.Y ′′ ;<α

T τ2 by (?). Then Y ′ �αT τ follows from (FT ).

Assume X �αi d follows from (Fτ ), i.e., i = τ1 → τ2, d ∈ Dτ1→τ2 , and for every a ∈ Dτ1
we have Xa;<α

τ2
dN (a). By (?), for a ∈ Dτ1 we have X ′a;<α

τ2
dN (a). Thus X ′ �αi d

by (Fτ ).
Assume X �αi d follows from (¬>), i.e., i = o, d ≡ >, X ≡ ¬Y and Y �<αo ⊥. Then
X ′ ≡ ¬Y ′ with Y →κ Y ′. We have Y ′ �<αo ⊥ by part (b) of the IH. Thus X ′ �αo >
by (¬>).

Other cases are similar.

(c) Analogous to (b).

(d) Suppose X �αi d1 and X �κi d2. We need to show d1 = d2. We consider all possible
overlaps of rules in Definition 6.2.1, i.e., all possible pairs of rules by which X �αi d1

and X �κi d2 could be obtained.

Assume both X �αi d1 and X �κi d2 follow from (Fτ ). Then i = τ = τ1 → τ2,
d1, d2 ∈ Dτ and for a ∈ Dτ1 we have Xa ;<α

τ2
dN1 (a) and Xa ;<κ

τ2
dN2 (a). Then

dN1 (a) = dN2 (a) for a ∈ Dτ1 , by (??). Thus d1 = d2.

Assume X �αi d1 follows from (Ξ>) and X �κi d2 from (Ξ⊥). Then i = o, X ≡ ΞX1X2,
d1 ≡ >, d2 ≡ ⊥ and
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– X1 �<αT τ and for all d ∈ Dτ we have X2d;<α
o >, and

– X1 �<κT τ ′ and there is d′ ∈ Dτ ′ with X2d
′ ;<κ

o ⊥.

By part (d) of the IH we have τ = τ ′. But then X2d
′ ;<α

o > and X2d
′ ;<κ

o ⊥. This
contradicts (??).

Assume X �αi d1 follows from (¬>) and X �κi d2 follows from (¬⊥). Then i = o,
d1 ≡ >, d2 ≡ ⊥, X ≡ ¬Y , Y �<αo ⊥ and Y �<κo >. But Y �<αo ⊥ and Y �<κo >
cannot both hold by part (d) of the IH.

Other cases are similar.

Definition 6.2.7. The rank of a type τ ∈ T , denoted rank(τ), is defined as follows. If
τ ∈ B ∪ {o} then rank(τ) = 1. Otherwise τ = τ1 → τ2 and we set

rank(τ) = max{rank(τ1) + 1, rank(τ2)}.

We write X �n Y if there exists a term Z, distinct variables x1, . . . , xm ∈ FV(X), and terms
X1, . . . , Xm, d1, . . . , dm such that:

• X ≡ Z[x1/X1, . . . , xm/Xm],

• Y ≡ Z[x1/d1, . . . , xm/dm],

• for each k = 1, . . . ,m there is τ ∈ T with rank(τ) ≤ n and Xk �τ dk.
We set �<n =

⋃
m<n�m and � =

⋃
n∈N�n.

The following simple lemma will be used implicitly.

Lemma 6.2.8.

1. If X �n Y1Y2 then X ≡ X1X2 with X1 �n Y1 and X2 �n Y2.

2. If X �n λx.Y then X ≡ λx.X ′ with X ′ �n Y . Moreover, if X1, . . . , Xm are as in the
definition of X ′ �n Y , then x /∈ FV(X1, . . . , Xm).

Proof. Follows directly from Definition 6.2.7.

Lemma 6.2.9. The reduction system R is invariant.

Proof. We show the following two conditions by induction on pairs 〈n, α〉 ordered lexico-
graphically, i.e., 〈n1, α1〉 < 〈n2, α2〉 iff n1 < n2, or n1 = n2 and α1 < α2.

(1) If X �n Y �αi d then X �i d, where i ∈ T or i = T .

(2) If X �n Y
∗→
α
Z then there is Y ′ with X

∗→ Y ′ �n Z.

For α = ζ, where ζ is the closure ordinal of Definition 6.2.1, the above conditions imply the
invariance of R. Indeed, assuming X �i d and Y d;j d

′, we have Y X � Y d
∗→ · �j d′, so

Y X
∗→ · � · �j d′ by (2), hence Y X ∗→ · �j d′ by (1), and thus Y X ;j d

′.
So assume (1) and (2) hold for all 〈n′, α′〉 < 〈n, α〉. First we show the following:
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(?) if X �n Y ;<α
τ d then X ;τ d.

Assume X �n Y
∗→
<α
· �<ατ d. Applying part (2) of the IH we obtain X

∗→ · �n · �<ατ d,
and thus X ∗→ · �τ d by part (1) of the IH, i.e., X ;τ d.

Now we show (1) and (2) for 〈n, α〉.
(1) Assume X �n Y �αi d where i ∈ T or i = T . We consider all possible rules by which

Y �αi d could be obtained.

(Dτ ) Then X �n d �ατ d. This is only possible when X ≡ d or X �τ d. In any case
X �τ d.

(Fτ ) Then X �n Y �ατ d, τ = τ1 → τ2, d ∈ Dτ , and for every a ∈ Dτ1 we have
Y a;<α

τ2
dN (a). Let a ∈ Dτ1 . Then Xa�n Y a;<α

τ2
dN (a). Thus Xa;τ2 d

N (a)
by (?). Since a ∈ Dτ1 was arbitrary, we conclude X �τ d.

(¬>) Then X �n ¬Y ′ �αo > and Y ′ �<αo ⊥. We have X ≡ ¬X ′ with X ′ �n Y ′. So
X ′ �o ⊥ by the IH. Therefore X ≡ ¬X ′ �o > by (¬>).

(Ξ>) Then X �n ΞY1Y2 �αo >, Y1 �<αT τ and for every d ∈ Dτ we have Y2d ;<α
o >.

We have X ≡ ΞX1X2 with Xk �n Yk. So X1 �n Y1 �<αT τ , and by part (1) of
the IH we obtain X1 �T τ . If d ∈ Dτ then X2d �n Y2d ;<α

o >, so X2d ;o >
by (?). Therefore, X ≡ ΞX1X2 �o >.

(Ξ⊥) Then X �n ΞY1Y2 �αo ⊥, Y1 �<αT τ and there is d ∈ Dτ with Y2d ;<α
o ⊥. We

have X ≡ ΞX1X2 with Xk �n Yk. So X1 �n Y1 �<αT τ , and by part (1) of the IH
we obtain X1 �T τ . Also X2d �n Y2d ;<α

o ⊥, so X2d ;o ⊥ by (?). Therefore,
X ≡ ΞX1X2 �o ⊥.

(A>) Then X �n Aτd �o > with τ ∈ B and d ∈ Dτ . Because τ ∈ B we must have
X ≡ Aτd. Indeed, the only other possibility would be X ≡ AτX

′ with X ′ �τ d,
but by inspecting Definition 6.2.1 one sees that for τ ∈ B this implies X ′ ≡ d.

(FT ) Then X �n λf.ΞY1(λx.Y2[y/fx]) �αT τ1 → τ2, f, x /∈ FV(Y1, Y2), Y1 �<αT τ1

and λy.Y2 ;<α
T τ2. We have X ≡ λf.ΞX1(λx.X2[y/fx]) with f, x /∈ FV(X1, X2),

X1 �n Y1 and X2 �n Y2 (because if Z �j d then d is closed and in particular
f, x /∈ FV(d), so M �n Y2[y/fx] implies M ≡ X2[y/fx] with X2 �n Y2). Thus
X1 �n Y1 �<αT τ1 and λy.X2 �n λy.Y2 ;<α

T τ2. Hence X1 �T τ1 by part (1) of
the IH. Also λy.X2 ;T τ2 by (?). Thus X �T τ1 → τ2.

Other cases are similar.

(2) It suffices to show that if X �n Y →α Z then X ∗→ · �n Z. Without loss of generality,
we may assume that the contraction Y →α Z occurs at the root. We consider possible
rules by which this contraction could occur.

(β) Then Y ≡ (λx.Y1)Y2, X ≡ (λx.X1)X2, Z ≡ Y1[x/Y2] and Xk �n Yk. Note that
X1[x/X2]�n Y1[x/Y2] follows from Lemma 6.2.8. Indeed,

Xk ≡ X ′k[x1/M1, . . . , xm/Mm]
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and
Yk ≡ Y ′k [x1/d1, . . . , xm/dm]

with Mi �τi di and x /∈ FV(M1, . . . ,Mm), so

(X ′1[x1/M1, . . . , xm/Mm])[x/X ′2[x1/M1, . . . , xm/Mm]] ≡
X ′1[x/X ′2][x1/M1, . . . , xm/Mm].

Also
(Y ′1 [x1/d1, . . . , xm/dm])[x/Y ′2 [x1/d1, . . . , xm/dm]] ≡

Y ′1 [x/Y ′2 ][x1/d1, . . . , xm/dm].

Hence
X1[x/X2] ≡ X ′1[x/X ′2][x1/M1, . . . , xm/Mm]

and
Y1[x/Y2] ≡ Y ′1 [x/Y ′2 ][x1/d1, . . . , xm/dm]

so X →β X1[x/X2]�n Y1[x/Y2] ≡ Z.
(η) Then Y ≡ λx.Zx and X ≡ λx.X ′x with X ′ �n Z, n /∈ FV(X ′, Z). Therefore

X →η X
′ �n Z.

(γ) We have X �n Y →α
γ Z. There are two possibilities.

1. X ≡ fX ′, Y ≡ fY ′, X ′ �n Y ′ and f ∈ Dτ1→τ2 . Then Y ′ �<ατ1 d for some
d ∈ Dτ1 and Z ≡ fN (d). By part (1) of the IH we have X ′ �τ1 d. So
X ≡ fX ′ →γ f

N (d) ≡ Z �n Z.
2. X ≡ FX ′, Y ≡ fY ′, F �τ f , X ′ �n Y ′, f ∈ Dτ , rank(τ) ≤ n and
τ = τ1 → τ2. Then also Y ′ �<ατ1 d for some d ∈ Dτ1 and Z ≡ fN (d). Since
X ′ �n Y ′ �<ατ1 d, we have X ′ �τ1 d by part (1) of the IH. Since τ = τ1 → τ1

one sees by inspecting Definition 6.2.1 that F �τ f can only be obtained
by rule (Fτ ). Since d ∈ Dτ1 we thus have Fd ;τ2 f

N (d) ≡ Z. We have
FX ′ �<n Fd

∗→ · �τ2 Z, because rank(τ1) < rank(τ) ≤ n and X ′ �τ1 d.
Thus FX ′ ∗→ · �<n · �τ2 Z by part (2) of the IH. So FX ′

∗→ · �τ2 Z by
part (1) of the IH. Since rank(τ2) ≤ rank(τ) ≤ n, X ≡ FX ′

∗→ · �n Z.

Coherence of the system R together with Lemma 2.3.5 and Lemma 2.3.6 implies the
following for i ∈ T or i = T :

• X ;i d iff X =R · �i d,

• if X ;i d1 and X ;i d2 then d1 ≡ d2.

In particular, if X ;i d and X =R Y then also Y ;i d.
Coherence and invariance also imply that if X ;i d and Y [x/d] ;i d

′ then Y [x/X] ;i d
′.

Indeed, assume X ;i d and Y [x/d] ;i d
′. Then (λx.Y )d→ Y [x/d] ;i d

′, so (λx.Y )d;i d
′.

By Lemma 2.3.15 we obtain (λx.Y )X ;i d
′. Since (λx.Y )X → Y [x/X], by coherence we

have Y [x/X] ;i d
′.
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In what follows we use the above simple properties implicitly, only noting that something
follows by coherence and/or invariance (of the system R).

Also note that if, e.g., ΞXY ;o > then X ;T τ for some τ ∈ T and for all d ∈ Dτ we
have Y d ;o >. Indeed, ΞXY

∗→ Z �o > implies Z ≡ ΞX ′Y ′ with X
∗→ X ′ and Y

∗→ Y ′.
By inspecting Definition 6.2.1 one sees that ΞX ′Y ′ �o > can only be obtained by rule (Ξ>).
Hence X ∗→ X ′ �T τ for some τ ∈ T and for all d ∈ Dτ we have Y d ∗→ Y ′d;o >.

For the sake of brevity, justifications of analogous trivial observations will be left implicit.

Lemma 6.2.10. If X �T τ then for any Z with XZ ;o > there is d ∈ Dτ with Z ;τ d.

Proof. We proceed by induction on the structure of τ . Suppose X �T τ and XZ ;o >.
If τ ∈ B then X ≡ Aτ and AτZ

∗→ AτZ
′ �o > where Z ∗→ Z ′. Then Z ′ ≡ d for some

d ∈ Dτ , so Z ;τ d. If τ = o then X ≡ H, and HZ ;o >. By coherence (Lemma 6.2.6) we
have Z ∨ ¬Z ;o >. This implies Z ;o > or Z ;o ⊥, and we are done because >,⊥ ∈ Do.

So assume τ = τ1 → τ2. Then X ≡ λf.ΞX1(λx.X2[y/fx]) with f, x /∈ FV(X1, X2),
X1 �T τ1 and λy.X2 �T τ2. Since XZ ;o >, by coherence ΞX1(λx.X2[y/Zx]) ;o >. By
coherence and (Ξ>) this implies that for every d ∈ Dτ1 we have (λy.X2)(Zd) ;o >. Since
λy.X2 �T τ2, by the IH, for every d ∈ Dτ1 there is ad ∈ Dτ2 with Zd;τ2 ad. So by (Fτ ) we
have Z �τ f for f ∈ Dτ such that fN (d) = ad for d ∈ Dτ1 .

Lemma 6.2.11. If d ∈ Dτ for τ ∈ T , then d �τ d.

Proof. Induction on the size of τ .

Lemma 6.2.12. If X �T τ then Xd;o > for any d ∈ Dτ .

Proof. Induction on the structure of τ . Suppose X �T τ and d ∈ Dτ .
If τ ∈ B then X ≡ Aτ and Aτd �o > by (A>). If τ = o then X ≡ H, d ∈ {>,⊥}, and

Hd �o > follows from definitions.
So assume τ = τ1 → τ2. Then X =β FX1X2 with X1 �T τ1 and X2 �T τ2. Let a ∈ Dτ1 .

Then X2(dN (a)) ;o > by the IH. By Lemma 6.2.11 we have a �τ1 a, so da→γ d
N (a). Hence

X2(da) ;o >. Thus Xd;o > by (Ξ>) and coherence.

Lemma 6.2.13. The following conditions hold.

1. ΞXY ;o > iff LX ;o > and for every Z with XZ ;o > we have Y Z ;o >.

2. ΞXY ;o ⊥ iff LX ;o > and there exists Z with XZ ;o > and Y Z ;o ⊥.

Proof. Follows from Lemma 6.2.6, Lemma 6.2.9, Lemma 6.2.10 and Lemma 6.2.12.

Lemma 6.2.14. If X ;T τ1 and Y ;T τ2 then FXY ;T τ1 → τ2.

Proof. We have FXY ≡ λf.ΞX(λx.Y (fx)) with f, x /∈ FV(X, Y ). Assume X ;T τ1, i.e.,
X

∗→ X ′ �T τ1, and assume Y ;T τ2. Then λy.Y y ;T τ2 for y /∈ FV(Y ). By (FT )

this implies FXY
∗→ λf.ΞX ′(λx.Y (fx)) �T τ1 → τ2 where f, x /∈ FV(X, Y ). Hence

FXY ;T τ1 → τ2.
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Lemma 6.2.15. If LX ;o >, and either LY ;o > or there is no Z with XZ ;o >, then
L(FXY ) ;o >.

Proof. Assume the antecedent of the implication in the lemma. Since LX ;o >, there is
τ1 ∈ T with X ;T τ1. We have Dτ1 6= ∅, so by Lemma 6.2.12 there is d ∈ Dτ1 with
Xd;o >. Hence LY ;o >, so there is τ2 ∈ T with Y ;T τ2. Thus FXY ;T τ1 → τ2 by
Lemma 6.2.14. Hence L(FXY ) ;o >.

The model we construct will in fact be an eIKω-model, validating extensionality of
Leibniz equality. To show this we need the following lemmas.

Lemma 6.2.16. If p ∈ Dτ1→τ2 and pX ;τ2 b for some b ∈ Dτ2, then there is a ∈ Dτ1 with
X ;τ1 a and pN (a) ≡ b.

Proof. Assume p ∈ Dτ1→τ2 and pX ;τ2 b for some b ∈ Dτ2 . By straightforward induction
on α one shows

(?) for any n ∈ N, any terms X1, . . . , Xn, c and any type τ ∈ T , if pX1 . . . Xn ;τ c then
there are a term X ′ and a constant d such that X1

∗→ X ′ and pX ′ →γ d.

Using (?) and coherence we conclude that there is X ′ with X ∗→ X ′ and pX ′ →γ b. But then
X ′ �τ1 a for a ∈ Dτ1 such that pN (a) ≡ b. So X ;τ1 a.

Lemma 6.2.17. If QLAXY ;o > and A;T τ then there is d ∈ Dτ such that X ;τ d and
Y ;τ d.

Proof. Recall that QLAXY = Ξ(FAH)(λp.¬(pX) ∨ pY ). Assume QLAXY ;o > and
A ;T τ . Then FAH ;T τ → o. Let p ∈ Dτ→o be such that pN (d) ≡ ⊥ for d ∈ Dτ . We
have ¬(pX) ∨ pY ;o >, so ¬(pX) ;o > or pY ;o >. If pY ;o > then by Lemma 6.2.16
there is d ∈ Dτ with pN (d) ≡ >, which contradicts pN (d) ≡ ⊥. Hence ¬(pX) ;o >, so
pX ;o ⊥. By Lemma 6.2.16 there is dX ∈ Dτ with X ;τ dX . By an analogous argument,
using p ∈ Dτ→o such that pN (d) ≡ > for d ∈ Dτ , one concludes that there is dY with
Y ;τ dY . Suppose dX 6≡ dY . Take p ∈ Dτ→o such that pN (dX) ≡ > and pN (dY ) ≡ ⊥.
We have ¬(pdX) ∨ pdY ;o ⊥, so ¬(pX) ∨ pY ;o ⊥ by invariance. But this contradicts
QLAXY ;o >.

Lemma 6.2.18. If LA;o > and for every Z with AZ ;o > we have QLB(XZ)(Y Z) ;o >,
then QL(FAB)XY ;o >.

Proof. Recall that QLAXY =β Ξ(FAH)(λp.¬(pX) ∨ pY ).
Suppose LA;o > and for every Z with AZ ;o > we have QLB(XZ)(Y Z) ;o >. Since

LA;o >, we have A;T τ1 for some τ1 ∈ T by (L>) in Definition 6.2.1. Because Dτ1 6= ∅,
there is d ∈ Dτ1 , and by Lemma 6.2.12 we have Ad ;o >. Thus QLB(Xd)(Y d) ;o >, so
LB ;o > by (L>), (Ξ>), (FT ) and coherence. Hence B ;T τ2 for some τ2 ∈ T .

We show that there is f ∈ Dτ1→τ2 with X ;τ1→τ2 f and Y ;τ1→τ2 f . Let d ∈ Dτ1 . Then
Ad;o > by Lemma 6.2.12, because A;T τ1. So QLB(Xd)(Y d) ;o > and by Lemma 6.2.17
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there is bd ∈ Dτ2 with Xd;τ2 bd and Y d;τ2 bd. Thus by (Fτ1→τ2) we may take f ∈ Dτ1→τ2
with fN (d) ≡ bd for d ∈ Dτ1 .

By Lemma 6.2.14 we obtain FAB ;T τ1 → τ2, so F(FAB)H ;T (τ1 → τ2) → o. Let
p ∈ D(τ1→τ2)→o. We have pf ;o > or pf ;o ⊥, by Definition 6.2.1. Thus ¬(pf) ∨ pf ;o >.
By invariance ¬(pX) ∨ pY ;o >. Since p ∈ D(τ1→τ2)→o was arbitrary, QL(FAB)XY ;o >
by (Ξ>) and coherence.

Lemma 6.2.19. If X, Y ;o > or X, Y ;o ⊥ then QLHXY ;o >.

Proof. For concreteness, assume X ;o > and Y ;o >. Recall that

QLHXY =β Ξ(FHH)(λp.¬(pX) ∨ pY ).

By Lemma 6.2.14 we have FHH ;T o→ o. Let p ∈ Do→o. It suffices to show that pX ;o ⊥
or pY ;o >. If pN (>) = > then p> →γ >, and thus pY ;o > by invariance. If pN (>) = ⊥
then p> →γ ⊥, and thus pX ;o ⊥ by invariance.

Definition 6.2.20. Define MN = 〈C, I, T ,F〉 where:

• C is the extensional higher-order illative combinatory algebra constructed from the
βηγ-equality equivalence classes of terms, with k = [K], s = [S], Ξ = [Ξ], etc., where
by [X] we denote the equivalence class of X,

• I is defined by I(c) = [c] for c ∈ Σ,

• T = {[X] | X ;o >},
• F = {[X] | X ;o ⊥}.

Theorem 6.2.21. The structure MN from Definition 6.2.20 is an eIKω-model such that
for every d ∈ Dτ there exists d ∈ C so that:

• f · d = f(d) for f ∈ Dτ1→τ2, d ∈ Dτ1,

• IM(c) = IN (c) for c a constant in the language of higher-order logic.

Proof. Using Lemma 6.2.6, Lemma 6.2.13, Lemma 6.2.15, Lemma 6.2.18 and Lemma 6.2.19
it is straightforward to check the conditions for an eIKω-model from Definition 6.1.5. The
additional conditions in the statement of the theorem follow from definitions.

Corollary 6.2.22. The system eIKω is consistent, i.e., 6`eIKω ⊥.

6.3 Translations

In this section we give sound translations of systems of higher-order logic into corresponding
illative systems. The translations are extensions of those from Section 5.3. We show soundness
syntactically. We also derive a limited completeness result with respect to standard semantics
for higher-order logic.
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In what follows X, Y, Z, . . . stand for terms from T, and t, s, . . . stand for terms of higher-
order logic (NKω), and ϕ, ψ, . . . stand for higher-order formulas (terms of type o), and
∆,∆′, . . . stand for sets of formulas. We assume that all constants from the syntax of
traditional higher-order logic occur as constants in T, and also all variables of traditional
systems occur as variables in T. Sometimes we write, e.g., ∆, ϕ instead of ∆ ∪ {ϕ}.

Like in the previous section, we assume that the set of base types B of eIKω (IKω) is
the same as the set of base types for traditional higher-order logic. For each base type τ ∈ B
there is a constant Aτ in T. For other types τ ∈ T we define Aτ by induction on the structure
of τ :

• Ao ≡ H,

• Aτ1→τ2 ≡ FAτ1Aτ2 .

Definition 6.3.1. We define a mapping d−e from higher-order terms and formulas to the
set of illative terms T, and a context-providing mapping Γ(−) from sets of higher-order terms
and formulas to sets of terms from T. The definition of d−e is by induction on the structure
of its argument:

• dxe ≡ x, for x a variable,

• dce ≡ c, for c a constant,

• dt1t2e ≡ dt1edt2e,
• dλx.te ≡ λx.dte,
• dϕ→ ψe ≡ dϕe ⊃ dψe,
• d∀x : τ . ϕe ≡ ΞAτλx.dϕe if x ∈ Vτ .

We extend the mapping d−e to sets of higher-order formulas thus: d∆e = {dϕe | ϕ ∈ ∆}.
For a set of higher-order terms and formulas ∆, the set Γ(∆) is defined to contain:

• Aτc for each c ∈ Στ ,

• Aτx for each x ∈ FV(∆) with x ∈ Vτ ,
• Aτy for each τ ∈ B and a fresh variable y.

The last point is necessary, because in ordinary higher-order logic each base type is assumed
to be non-empty. If t is a term of higher-order logic, we write Γ(t) for Γ({t}).

Lemma 6.3.2. dte[x/dse] ≡ dt[x/s]e.

Proof. Induction on the structure of t.

Lemma 6.3.3. `IKω LAτ for τ ∈ T .

Proof. Induction on τ .

Lemma 6.3.4. If t ∈ Tτ then Γ(t) `IKω Aτdte.

120



Proof. Induction on the structure of t. If t ≡ c then dce ≡ c and Aτc ∈ Γ(t). If t ≡ x then
dxe ≡ x and Aτx ∈ Γ(t).

If t ≡ t1t2 then t1 ∈ Tτ1→τ2 and t2 ∈ Tτ1 for some τ1, τ2 ∈ T . By the IH we have
Γ(t1) ` FAτ1Aτ2t1 and Γ(t2) ` Aτ1t2. Note that Γ(t1t2) = Γ(t1, t2). Hence Γ(t1t2) ` Aτ2(t1t2).

If t ≡ λx.t1 with x ∈ Vτ1 and t1 ∈ Tτ2 then dte ≡ λx.dt1e. By the inductive hypothesis
Γ(t1) ` Aτ2dt1e. Note that Γ(t1) = Γ(t) ∪ {Aτ1x}. By Lemma 6.3.3 we have Γ(t) ` LAτ1 .
We may assume x /∈ FV(Γ(t)). Then Γ(t) ` FAτ1Aτ2(λx.t1) by (ΞI) and (Eq). Therefore
Γ(t) ` Aτ1→τ2t.

If t ≡ ϕ→ ψ then dte ≡ dϕe ⊃ dψe. By the IH we have Γ(ϕ) ` Hdϕe and Γ(ψ) ` Hdψe.
Since Γ(ϕ, ψ) = Γ(ϕ→ ψ), this implies Γ(ϕ→ ψ) ` Hdϕ→ ψe.

If t ≡ ∀x : τ . ϕ then dte ≡ ΞAτλx.dϕe. By the inductive hypothesis we have Γ(ϕ) ` Hdϕe.
Since Γ(ϕ) = Γ(∀x : τ . ϕ) ∪ {Aτx}, and Γ(∀x : τ . ϕ) ` LH and we may assume that
x /∈ FV(Γ(∀x : τ . ϕ)), we have Γ(∀x : τ . ϕ) ` H(ΞAτλx.dϕe) by (ΞHI) and (Eq).

Lemma 6.3.5. If τ ∈ T then there exists a term X ∈ T with Γ(∅) `IKω AτX.

Proof. Induction on τ . If τ ∈ B then Aτy ∈ Γ(∅) for some variable y and we may take X ≡ y.
If τ = o then we may take X ≡ ⊥. Otherwise τ = τ1 → τ2 and by the IH there is Y with
Γ(∅) ` Aτ2Y . Then Γ(∅) ` FAτ1Aτ2(KY ), so we take X ≡ KY .

Theorem 6.3.6 (Soundness of the translation).
If ∆ `N ϕ then Γ(∆, ϕ), d∆e `I dϕe, where N = NKω and I = IKω, or N = eNKω and

I = eIKω.

Proof. First, we consider the case when N = NKω and I = IKω. We proceed by induction
on the length of derivation of ∆ `NKω ϕ. We consider possible rules by which ∆ `NKω ϕ is
derived.

(Ax) Then ∆ = ∆′, ϕ and we have Γ(∆, ϕ), d∆′e, dϕe `IKω dϕe.
(⊥Ec) Then ∆, ϕ → ⊥ ` ⊥. By the IH we have1 Γ(∆, ϕ → ⊥), d∆e, dϕe ⊃ d⊥e `IKω d⊥e.

Notice that Γ(∆, ϕ→ ⊥) = Γ(∆, ϕ). We have Γ(ϕ) ` Hdϕe by Lemma 6.3.4. From this
one easily obtains Γ(ϕ) ` H(dϕe ⊃ d⊥e). Hence Γ(∆, ϕ), d∆e ` (dϕe ⊃ d⊥e) ⊃ d⊥e
by (PIl), so Γ(∆, ϕ), d∆e ` ¬(¬dϕe ∨ d⊥e) ∨ d⊥e. By Lemma 4.1.19 it suffices to show

Γ(∆, ϕ), d∆e,¬dϕe ` ⊥.

We have
Γ(∆, ϕ), d∆e,¬dϕe ` ¬dϕe ∨ d⊥e.

Because d⊥e ≡ ΞHI, we have d⊥e ` ⊥ by (⊥HI) and (ΞE). Since

Γ(∆, ϕ), d∆e,¬dϕe ` ¬(¬dϕe ∨ d⊥e) ∨ d⊥e

by (VE) and (¬E) we obtain Γ(∆, ϕ), d∆e,¬dϕe ` ⊥.

1We use ⊥ here in two distinct meanings: as a constant in the set of illative terms T, and as the term
⊥ ≡ ∀p : o . p in the language of NKω.
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(→I) Then ∆, ϕ ` ψ. By the IH we have Γ(∆, ϕ, ψ), d∆e, dϕe ` dψe. By Lemma 6.3.4 we
have Γ(ϕ) ` Hdϕe. Since Γ(∆, ϕ→ ψ) = Γ(∆, ϕ, ψ), by (PIl) we ultimately obtain

Γ(∆, ϕ→ ψ), d∆e ` dϕ→ ψe

because dϕ→ ψe ≡ dϕe ⊃ dψe.
(→E) Then ∆ ` ψ → ϕ and ∆ ` ψ. By the IH we have Γ(∆, ϕ, ψ), d∆e ` dψe ⊃ dϕe and

Γ(∆, ψ), d∆e ` dψe. Hence Γ(∆, ϕ, ψ), d∆e ` dϕe. Since Γ(∆, ϕ, ψ) = Γ(∆, ϕ) ∪ Γ(ψ)
we have

Γ(∆, ϕ), d∆e,Aτ1x1, . . . ,Aτnxn ` dϕe

where {x1, . . . , xn} = FV(ψ) \ FV(∆, ϕ). By Lemma 6.3.5 there exist X1, . . . , Xn with
Γ(∅) ` AτiXi. By (Sub) (see Lemma 4.1.2) we have

Γ(∆, ϕ), d∆e,Aτ1X1, . . . ,AτnXn ` dϕe.

Applying (Cut) consecutively n times we obtain

Γ(∆, ϕ), d∆e ` dϕe.

(∀I) Then ϕ ≡ ∀x : τ . ψ and ∆ ` ψ, where x /∈ FV(∆). By the inductive hypothesis we
have Γ(∆, ψ), d∆e ` dψe. Since Γ(∆, ψ) = Γ(∆, ∀x : τ . ψ),Aτx we have

Γ(∆,∀x : τ . ψ), d∆e,Aτx ` dψe.

Thus
Γ(∆,∀x : τ . ψ), d∆e ` ΞAτ (λx.dψe).

(∀E) Then ϕ ≡ ψ[x/t] with t ∈ Tτ and ∆ ` ∀x : τ . ψ. By the inductive hypothesis
Γ(∆, ∀x : τ . ψ), d∆e ` ΞAτλx.dψe. By Lemma 6.3.4 we have Γ(t) ` Aτdte. Thus

Γ(∆,∀x : τ . ψ), d∆e ` dψe[x/dte]

by (ΞE). So by Lemma 6.3.2 we have

Γ(∆,∀x : τ . ψ), d∆e ` dψ[x/t]e.

Since Γ(∆,∀x : τ . ψ) ⊆ Γ(∆, ψ[x/t]), we finally obtain

Γ(∆, ψ[x/t]), d∆e ` dψ[x/t]e.

(conv) Follows from rule (Eq).

To show the case when N = eNKω and I = eIKω it now suffices to prove that the
translations of the axioms ef and eb (see Definition 2.4.11) are derivable in eIKω. This is
straightforward using (Extf ) and (Extb).
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Completeness of the above translation is an open problem, i.e., we do not know whether
Γ(∆, ϕ), d∆e `I dϕe implies ∆ `N ϕ, where N = NKω and I = IKω, or N = eNKω and
I = eIKω. However, we have the following partial result.

Theorem 6.3.7 (Completeness of the translation with respect to standard semantics).
If Γ(∆, ϕ), d∆e |=eIKω dϕe then ∆ |=std ϕ.

Proof. Let N = 〈{Dτ | τ ∈ T }, IN 〉 be a standard model for higher-order logic and ρ an
N -valuation such that N , ρ |=std ∆ but N , ρ 6|=std ϕ. Let M = 〈C, IM, T ,F〉 be the model
from Theorem 6.2.21. Let ρ be an M-valuation defined by: ρ(x) = ρ(x).

For a term t in the syntax of traditional higher-order logic, by dteρ we denote dte with
each free variable x replaced by ρ(x) treated as a constant in the set of terms T from which
the model is built.

First, we show by induction on the structure of t ∈ Tτ that

(?) dteρ ;τ JtKNρ ,

where ;τ is as in Definition 6.2.20. If t ≡ c then c �τ c by Lemma 6.2.11. If t ≡ x then
ρ(x) �τ ρ(x) by (Dτ ).

If t ≡ t1t2 with t1 ∈ Tτ1→τ2 and t2 ∈ Tτ1 then dt1eρ ;τ1→τ2 Jt1KNρ and dt2eρ ;τ1 Jt2KNρ , by
the inductive hypothesis. By (γ) and (Fτ1→τ2), we have dt1t2eρ ;τ2 Jt1t2KNρ .

If t ≡ λx.t′ with x ∈ Vτ1 and t′ ∈ Tτ2 , then by the IH dt′eρ[x/d] ;τ2 Jt′KNρ[x/d] for every
d ∈ Dτ1 . Hence (λx.dt′eρ)d;τ2 (Jλx.t′KNρ )N (d) for every d ∈ Dτ1 . Therefore by (Fτ1→τ2) we
obtain dλx.t′eρ ≡ λx.dt′eρ ;τ1→τ2 Jλx.t′KNρ .

If t ≡ ∀x : τ . ϕ then dλx.ϕeρd ;o JϕKNρ[x/d] ∈ {>,⊥} for every d ∈ Dτ . Therefore
d∀x : τ . ϕeρ ;o J∀x : τ . ϕKNρ by (Ξ>) or (Ξ⊥).

If t ≡ ϕ ⊃ ψ then the claim follows from the inductive hypothesis, (¬>), (¬⊥), (V>)
and (V⊥).

This concludes the proof of (?).
Now if T = TCL then for t ∈ Tτ one easily shows by induction on the structure of dte

that JdteKMρ = [dteρ], where [X] denotes the βηγ-equivalence class as in Definition 6.2.20. If
T 6= TCL then for t ∈ Tτ we have JdteKMρ = J(dte)CLKMρ = [((dteρ)CL)λ] = [dteρ].

Since T = {[X] | X ;o >}, F = {[X] | X ;o ⊥} (see Definition 6.2.20), the condition (?)
and T ∩ F = ∅ imply:

• JdteKMρ ∈ T iff JtKNρ = >,

• JdteKMρ ∈ F iff JtKNρ = ⊥.

From this it follows that M, ρ |= Γ(∆, ϕ), d∆e but M, ρ 6|= dϕe.

Corollary 6.3.8. If Γ(∆, ϕ), d∆e `eIKω dϕe then ∆ |=std ϕ.
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Chapter 7

Extensions

In this chapter we introduce the system I+ which is an extension of the system eIKωCLw

from the previous chapter by a choice operator, universal and empty types, the conditional
combinator, subtypes, dependent function types, dependent sums and W-types. The sys-
tem I+ may interpret a great deal of mathematics. We study only a version of I+ based
on combinatory logic with weak equality, in order to avoid some complications in the model
construction. The incorporation of β- and η-reduction adds some tedious technicalities which
obscure the main ideas of the construction.

7.1 Illative system

Definition 7.1.1. The set of terms T of the system I+ is defined as TCL(Σ) where Σ contains
the following illative constants: Ξ,

V

, V, ¬, ⊥, ε, M, W, sup, T, D. We adopt the abbreviations
from Definition 6.1.1, except the one for F, plus the following:

• G ≡ λxyf.Ξx(λz.yz(fz)),

• F ≡ λxy.Gx(Ky),

• π ≡ λxyz.zxy,

• π1 ≡ λx.xK,

• π2 ≡ λx.x(KI),

• Υ ≡ λxyz.xz ∧ yz,

• Σ ≡ λxyz.x(π1z) ∧ y(π1z)(π2z),

• if X then Y else Z ≡ MXY Z,

• A×B ≡ ΣA(KB),

• A+B ≡ ΣH(λx.if x then A else B),

• O ≡ K⊥,

• E ≡ FOO.
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A judgement of the system I+ has one of two forms: Γ ` X or Γ ` X = Y , where X, Y are
terms and Γ is a finite set of terms. The rules of I+ are those of Figure 4.3 except (Eq),
plus the rules (ΞI), (ΞE), (¬ΞI), (¬ΞE), (ΞHI), (ΞLE), (HL) from Figure 6.1 and all rules
from Figure 7.1 and Figure 7.2. Recall that X =A Y is an abbreviation for QLAXY (the
definition of QL appears in Definition 6.1.1).

Note that we use a different abbreviation for F than in Chapter 6. This is because by
basing the system on combinatory logic with weak equality we have effectively disallowed
reduction “under lambdas”, and we need the new definition of F to make the rule (FL)
admissible.

The term π represents a pair-forming operator, and π1, π2 are the first and second
projections, respectively. Their definitions are standard. Now we shall give an informal
explanation of the meaning of the new illative primitives not explained in Section 1.1 or in
Chapter 6.

M Conditional combinator. This combinator allows “branching” on arbitrary formulas.
Intuitively, the term MXY Z should be equal to Y if X is true, or to Z if X is false. An
important thing to notice is that X above need not be computable – it may represent
any proposition, possibly one containing unbounded quantification. To incorporate
the conditional combinator it is necessary to extend the syntax of judgments of I+

by judgements of the form Γ ` X = Y . Alternatively, instead of introducing a new
form of judgement Γ ` X = Y we could introduce a new combinator for equality inside
the system. This approach was adopted in [Cza13c, Cza13d]. However, such a choice
complicates the model construction.

ε Choice operator. Intuitively, εAX is an object of type A satisfying X, if such an object
exists, or an arbitrary object of type A otherwise. If A is empty then εAX is undefined.

O Empty type. Using the empty type O and the functionality combinator F one may
define the universal type E by E ≡ FOO. Indeed, every object X is a function from O
to O, because for every object Y of type O (and there none) the object XY is of type O.

Υ Subtype constructor. A term ΥAX is interpreted as the subtype of A consisting of all
objects Y of type A such that XY is true.

Σ Dependent sum type constructor. A term ΣAB represents a dependent sum type – the
type of all pairs πXY such that X has type A and Y has type BX. Using dependent
sums one may define binary products A×B and non-dependent binary sums A+B.

W W-type constructor. A term WAB is interpreted as a W-type: the type of all well-
founded trees with nodes labelled with objects of the constructor type A and branching
specified by the selector family B, i.e., a node labelled with a has a distinct child for
each object of type Ba. If we have an object a of type A, i.e. a particular label, and if
we have a function b from Ba to WAB, i.e. a collection of subtrees, then we may form
the tree sup(WAB)ab.

W-types originally appeared in Martin-Löf’s type theory [ML84],[NPS90, Chapter 15].
Using W-types it is possible to define many inductive types. For example, to define the
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type of natural numbers, we need a type A with exactly two elements z and s, and a
family B such that Bz is empty and Bs has exactly one element. Then WAB represents
the type of natural numbers. The tree corresponding to the natural number n consists
of n nodes labelled by s (the first of these is the root), one after another, ending in one
more node (a leaf) labelled by z (if the number is zero, then the root is the leaf).

T Test combinator for W-types. This combinator allows to test the labels of nodes in
a tree which is an element of a W-type. Intuitively, if X =A X ′ is true (X is equal
to X ′ in type A, i.e., QLAXX

′ holds, see Definition 6.1.1) then T(sup(WAB)XY )X ′

is true (provided (sup(WAB)XY ) has the type WAB). If X =A X ′ is false, then
T(sup(WAB)XY )X ′ is false.

D Destructor combinator for W-types. This combinator allows to destruct a tree which is
a member of a W-type, i.e., to obtain its subtrees. Intuitively, if sup(WAB)XY has
type WAB and Z has type BX, then D(sup(WAB)XY )Z is identical with Y Z, or
in other words D(sup(WAB)XY )Z is the child of sup(WAB)XY associated with the
object Z.

One may wonder why we chose to include the above illative primitives and not some others,
e.g. an illative primitive representing a constructor of a power type (the type of all subtypes
of a given type). The answer is that (most of) the listed primitives correspond to types known
from type theory, they make sense in a constructive setting (subtypes, dependent types and
W-types essentially appear in Martin-Löf’s type theory), and they suffice to interpret a great
deal of mathematics. Actually, it seems highly plausible that the model construction in
Section 7.2 could be adapted for an illative system incorporating virtually any notion from
standard set theory. We leave for future work the problem of incorporating in a conceptually
satisfactory way the notions of set theory into an illative system.

Most of the rules from Figure 7.1 are self-explanatory. They implement the intuitions
about the illative primitives explained above. Note that the induction rule (WInd) for
W-types in Figure 7.1 is unrestricted, i.e., the term X is not required a priori to have any
particular type. One can thus, e.g., reason about types of terms by induction.

Lemma 7.1.2. The rules from Figure 4.1, rule (EM) from Definition 4.1.1, and rules (XI),
(XE), (XHI) and (XLE) form Figure 5.1, are all admissible in I+.

Proof. Follows directly from Lemma 6.1.2.

Lemma 7.1.3. The rule (FL) from Figure 6.1 and all rules from Figure 7.3 are admissible
in I+.

Proof. Follows directly from definitions.

Therefore, all rules of eIKω except (AτL) are admissible in I+. The system I+ is thus
essentially an extension of eIKω, but without the base types B.

Lemma 7.1.4. If Γ ` X =A Y , Γ ` FABZ, Γ ` AX and Γ ` LB, then Γ ` ZX =B ZY .
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Γ ` LA Γ, Ax ` L(Bx) x /∈ FV(Γ, A,B)

Γ ` L(GAB)
(GL)

Γ ` LO
(OL)

Γ ` LA Γ ` FALB
Γ ` L(ΣAB)

(ΣL)

Γ ` LA Γ ` FALB
Γ ` L(WAB)

(WL) Γ ` LA Γ ` FAHX
Γ ` L(ΥAX)

(ΥL)

Γ ` X Γ ` X = Y
Γ ` Y (Eq)

X =w Y
Γ ` X = Y

(EqI) Γ ` Y = Z
Γ ` XY = XZ

(EqC)

Γ ` X = Y
Γ ` Y = X

(EqS) Γ ` X = Y Γ ` Y = Z
Γ ` X = Z

(EqT)

Γ ` X
Γ ` MX = K

(MI1) Γ ` ¬X
Γ ` MX = KI

(MI2)

Γ ` XAX Γ ` FAHX
Γ ` X(εAX)

(εIl)
Γ ` XAA Γ ` FAHX

Γ ` A(εAX)
(εIr)

Γ ` AX Γ ` F(BX)(WAB)Y Γ ` L(WAB)

Γ ` WAB(sup(WAB)XY )
(WI)

Γ ` WAB(sup(WAB)XY ) Γ ` X =A Z

Γ ` T(sup(WAB)XY )Z
(TI1)

Γ ` WAB(sup(WAB)XY ) Γ ` ¬(X =A Z)

Γ ` ¬(T(sup(WAB)XY )Z)
(TI2)

Γ ` WAB(sup(WAB)XY ) Γ ` BXZ
Γ ` D(sup(WAB)XY )Z = Y Z

(DI)

Γ ` L(WAB) Γ, Ax,F(Bx)(WAB)y,∀z:Bx.X(yz) ` X(sup(WAB)xy)

Γ ` Ξ(WAB)X
(WInd)

(in (WInd) we assume x, y, z /∈ FV(Γ, A,B,X))

Figure 7.1: Additional rules for I+
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Γ ` ∀x : A . Xx =Bx Y x x /∈ FV(X, Y,A,B)

Γ ` X =GAB Y
(Extf )

Γ ` X ⊃ Y Γ ` Y ⊃ X
Γ ` X =H Y

(Extb)

Γ ` π1X =A π1Y Γ ` π2X =B(π1X) π2Y Γ ` L(ΣAB)

Γ ` X =ΣAB Y
(Exts)

Γ ` X =A X
′ Γ ` Y =F(BX)(WAB) Y

′ Γ ` L(WAB)

Γ ` sup(WAB)XY = sup(WAB)X ′Y ′
(Extw)

Figure 7.2: Extensionality rules for I+

Proof. Identical to the proof of Lemma 6.1.3.

The following proposition shows that, because of the presence of the conditional combina-
tor M, all functions whose domain is the universal type E are essentially constant functions.
This property of the system I+ may seem paradoxical at first sight, but it only means that
quantifying over the whole universe does not make much sense. It should be kept in mind
that, intuitively, the universe contains some nonsensical, meaningless objects, like for instance
an X such that X = ¬X. Usually, one just considers objects which have some “reasonable”
types.

Proposition 7.1.5. If Γ ` LA and for every X we have Γ ` A(FX), then for all X, Y we
have Γ ` FX =A FY .

Proof. Let X, Y be arbitrary terms. Define Z by the following recursive equation:

Z = if FX =A FZ then Y else X

Because Γ ` A(FZ) and Γ ` A(FX), we have Γ,FAHp ` H(p(FX) ⊃ p(FZ)) where
p /∈ FV(Γ, A, F,X, Z). Since Γ ` LA and Γ ` LH, we have Γ ` L(FAH), and thus

Γ ` H(∀p : FAH . p(FX) ⊃ p(FZ))

by (ΞHI) and the rules for equality. Thus Γ ` H(FX =A FZ). Of course

Γ, FX =A FZ ` FX =A FZ.

Also Γ, FX =A FZ ` Z = Y by (MI1) and the rules for equality. Hence

Γ, FX =A FZ ` FX =A FY.

We also have Γ,¬(FX =A FZ) ` Z = X by (MI2) and the rules for equality. Because
Γ ` A(FX) and Γ ` L(FAH), we have Γ ` FX =A FX using (ΞI), the rules for propositional
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Γ ` OX
Γ ` Y (OE)

Γ ` EX
(EI)

Γ ` LE
(EL)

Γ ` AY Γ ` XY
Γ ` ΥAXY

(ΥI) Γ ` ΥAXY
Γ ` AY (ΥE1) Γ ` ΥAXY

Γ ` XY (ΥE2)

Γ ` A(π1X) Γ ` B(π1X)(π2X)

Γ ` ΣABX
(ΣI)

Γ ` ΣABX
Γ ` A(π1X)

(ΣE1)

Γ ` ΣABX
Γ ` B(π1X)(π2X)

(ΣE2)

Γ ` A(π1X) Γ ` B(π2X)

Γ ` (A×B)X
(×I)

Γ ` (A×B)X

Γ ` A(π1X)
(×E1)

Γ ` (A×B)X

Γ ` B(π2X)
(×E2)

Γ ` LA Γ ` LB
Γ ` L(A×B)

(×L)

Γ ` AX Γ ` Z
Γ ` (A+B)(πZX)

(+I1) Γ ` BX Γ ` ¬Z
Γ ` (A+B)(πZX)

(+I2)

Γ ` (A+B)X Γ, π1X,A(π2X) ` Y Γ,¬(π1X), B(π2X) ` Y
Γ ` Y (+E)

Γ ` LA Γ ` LB
Γ ` L(A+B)

(+L)

Figure 7.3: Admissible rules in I+
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Γ ` N0
(NI0)

Γ ` NX
Γ ` N(sX)

(NIs)
Γ ` LN

(NL)

Γ ` X0 Γ,Nx,Xx ` X(sx) x /∈ FV(Γ, X)

Γ ` ΞNX
(NInd)

Figure 7.4: Rules for the type of natural numbers

connectives and the rules for equality. Thus Γ,¬(FX =A FZ) ` FX =A FZ, and therefore
Γ,¬(FX =A FZ) ` ⊥. Hence

Γ,¬(FX =A FZ) ` FX =A FY

by (⊥E). Therefore, since Γ ` H(FX =A FZ), and Γ, FX =A FZ ` FX =A FY ,
and Γ,¬(FX =A FZ) ` FX =A FY , we ultimately obtain Γ ` FX =A FY by (EM)
and (VE).

In extensional Martin-Löf’s type theory, using W-types it is possible to define many
inductive types [Dyb97, AAG04]. A very similar construction may be carried out in I+. The
extensionality rules (Extf ), (Extb) and (Extw) are essential here. Without them, when trying
to derive induction principles for inductive types defined using W-types, one encounters a
problem similar to the problem encountered in intensional Martin-Löf’s type theory.

We will not formulate here a general theorem. We just present the example of natural
numbers. The type N is defined by:

N ≡ WH(λx . if x then ΥHI else O)

Recall from the previous informal discussion that the type of natural numbers should be
represented by WAB where A has two elements z, s, and Bz is empty and Bs is a singleton.
Because the system I+ is classical, the type of propositions H has two elements > and ⊥ (up
to Leibniz equality =H in type H). The type ΥHI is essentially a singleton – its only element
is >.

We use the abbreviations:

0 ≡ sup N⊥K
s ≡ λx. sup N>(Kx)
p ≡ λx.Dx>

Lemma 7.1.6. The rules from Figure 7.4 are admissible in I+.

Proof. The rule (NL) follows from (WL). Indeed, we have Γ ` LH by (HL) and Γ ` L(ΥHI)
by (ΥL) and Γ ` LO by (OL). Because Hx ≡ x ∨ ¬x, by (ΞI), (VE), (MI1) and (MI2) we
conclude Γ ` FHLB. Therefore Γ ` LN by (NL).

Let B ≡ λx.if x then ΥHI else O. The rule (NI0) follows from (WI), (Eq), (⊥E) and (FI).
Indeed, we have Γ ` H⊥. Because Γ ` B⊥ = O and O ≡ K⊥, we have Γ, B⊥x ` ⊥ with
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x /∈ FV(Γ). Hence Γ, B⊥x ` N(Kx) by (⊥E). Thus Γ ` F(B⊥)NK by (FI). So we conclude
Γ ` N0 using (WI), because 0 ≡ sup N⊥K and Γ ` LN by (WL).

The rule (NIs) follows by a similar argument. Indeed, assume Γ ` NX. We have
Γ ` sX = sup N>(KX). Of course Γ ` H>. By (MI1) and the rules for equality we have
Γ ` B> = ΥHI. Using (ΥL) we thus obtain Γ ` L(B>). Because Γ ` NX, we have
Γ, B>x ` KXx where x /∈ FV(Γ, B,X). Hence using (ΞI) we obtain Γ ` F(B>)N(KX). Also
Γ ` LN by (NL). Therefore, by (WI) we conclude Γ ` N(sup N>(KX)), i.e., Γ ` N(sX).

We prove that (NInd) is admissible. Thus assume Γ ` X0 and Γ,Nx,Xx ` X(sx),
where x /∈ FV(Γ, X). By (WInd) it suffices to show that Γ,Hx,F(Bx)Ny,∀z : Bx . X(yz) `
X(sup Nxy) where x, y, z /∈ FV(Γ, X). Since Hx ≡ x ∨ ¬x, by (VE), (MI1), (MI2), (EqL)
and (Weak) it suffices to show two cases:

• Γ, x, F(ΥHI)Ny,∀z : ΥHI . X(yz) ` X(sup Nxy). First note that ` ΥHI>. We thus have
F(ΥHI)Ny ` N(y>) and F(ΥHI)Ny,∀z : ΥHI . X(yz) ` X(y>). Because

Γ,N(y>), X(y>) ` X(s(y>))

and s(y>) = sup N>(K(y>)), we have

(?) Γ,F(ΥHI)Ny,∀z : ΥHI . X(yz) ` X(sup N>(K(y>)))

using (Sub), (Weak) and (Cut). By (Extb) we have x ` > =H x. Then also

x ` > =ΥHI x,

because the provability of F(ΥHI)Np implies the provability of FHNp. So

Γ,F(ΥHI)Ny,ΥHIx ` y> =N yx

by Lemma 7.1.4. Since K(y>)x =w y>, by the rules for equality we obtain

Γ,F(ΥHI)Ny,ΥHIx ` K(y>)x =N yx.

Thus by (ΞI) and (Extf ) we have

Γ,F(ΥHI)Ny ` K(y>) =F(ΥHI)N y.

Since we also have x ` > =H x and ` LN, by (Extw) we obtain

Γ, x,F(ΥHI)Ny ` sup N>(Ky>) = sup Nxy.

Therefore, by (?) and the rules for equality we conclude

Γ, x,F(ΥHI)Ny,∀z : ΥHI . X(yz) ` X(sup Nxy)
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• Γ,¬x,FONy,∀z : O . X(yz) ` X(sup Nxy). We have Γ ` X0, i.e., Γ ` X(sup N⊥K).
By (Extb) we have ¬x ` ⊥ =H x. We also have ` K =FON y. Therefore

¬x ` sup N⊥K = sup Nxy

by (Extw). So we finally conclude

Γ,¬x,FONy,∀z : O . X(yz) ` X(sup Nxy)

by Γ ` X(sup N⊥K) and the rules for equality.

Lemma 7.1.7. If Γ ` NX then Γ ` p(sX) = X.

Proof. Assume Γ ` NX. We have p(sX) =w D(sup N>(KX))>. Since Γ ` N(sup N>(KX))
and Γ ` KX>, by (DI) we obtain Γ ` D(sup N>(KX))> = KX>. Using the rules for equality,
we conclude Γ ` p(sX) = X.

Definition 7.1.8. An I+-model is a tuple 〈C, I, T ,F〉 where

• C is a combinatory algebra.

• I is a function from the signature Σ to C. We use the notations s = I(S), k = I(K),
Ξ = I(Ξ), ε = I(ε), w = I(W), etc. We define the elements g, f, υ, Σ, . . . ∈ C in an
obvious way to correspond to G,F,Υ,Σ, etc.

• T and F are sets of elements of C satisfying the following for any a, b, c, d ∈ C, where we
use the notation T (a) = {b | a · b ∈ T } for a ∈ C. The first 11 conditions are identical
with the conditions in Definition 6.1.5.

1. T ∩ F = ∅,
2. ⊥⊥⊥ ∈ F ,
3. ¬¬¬ · a ∈ T iff a ∈ F ,
4. ¬¬¬ · a ∈ F iff a ∈ T ,
5. v · a · b ∈ T iff a ∈ T or b ∈ T ,
6. v · a · b ∈ F iff a ∈ F and b ∈ F ,
7. v· a · b ∈ T iff a ∈ T and b ∈ T ,
8. v· a · b ∈ F iff a ∈ F or b ∈ F ,
9. Ξ · a · b ∈ T iff L · a ∈ T and for every c ∈ C with a · c ∈ C we have b · c ∈ C,

10. Ξ · a · b ∈ F iff L · a ∈ T and there exists c ∈ C with a · c ∈ T and b · c ∈ F ,
11. L · h ∈ T ,
12. L · o ∈ T ,
13. if a ∈ T then M · a = k,
14. if a ∈ F then M · a = k · I,
15. if w ·a ·b ·(sup ·(w ·a ·b) ·c ·d) ∈ T and q ·a ·c ·e ∈ T then t ·(sup ·(w ·a ·b) ·c ·d) ·e ∈ T ,
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16. if w ·a ·b ·(sup ·(w ·a ·b) ·c ·d) ∈ T and q ·a ·c ·e ∈ F then t ·(sup ·(w ·a ·b) ·c ·d) ·e ∈ F ,
17. if w ·a ·b ·(sup ·(w ·a ·b) ·c ·d) ∈ T and b ·c ·e ∈ T then d ·(sup ·(w ·a ·b) ·c ·d) ·e = d ·e,
18. if x · a · b ∈ T and f · a · h · b ∈ T then b · (ε · a · b) ∈ T ,
19. if x · a · a ∈ T and f · a · h · b ∈ T then a · (ε · a · b) ∈ T ,
20. if a ·c ∈ T , f · (b ·c) · (w ·a ·b) ·d ∈ T and L · (w ·a ·b) ∈ T then w ·a ·b · (sup ·c ·d) ∈ T ,
21. if L · a ∈ T and for every c ∈ T (a) we have L · (b · c) ∈ T , then L · (g · a · b) ∈ T ,
22. if L · a ∈ T and f · a · L · b ∈ T then L · (Σ · a · b) ∈ T ,
23. if L · a ∈ T and f · a · L · b ∈ T then L · (w · a · b) ∈ T ,
24. if L · a ∈ T and f · a · h · b ∈ T then L · (υ · a · b) ∈ T ,
25. if L · (w ·a · b) ∈ T and for every c ∈ C such that a · c ∈ T , f · (b · c) · (w ·a · b) ·d ∈ T

and Ξ · (b · c) · (s · (k · e) · d) ∈ T we have e · (sup · (w · a · b) · c · d) ∈ T , then
Ξ · (w · a · b) · e ∈ T ,

26. if L · a ∈ T and for every e ∈ T (a) we have q · (b · e) · (c · e) · (d · e) ∈ T , then
q · (g · a · b) · c · d ∈ T ,

27. if a, b ∈ T or a, b ∈ F then q · h · a · b ∈ T ,
28. if q · a · (πππ1 · c) · (πππ1 · d) ∈ T , q · (b · (πππ1 · c)) · (πππ2 · c) · (πππ2 · d) ∈ T and L · (Σ · a · b) ∈ T

then q · (Σ · a · b) · c · d ∈ T ,
29. if q · a · c · c′ ∈ T , q · (f · (b · c) · (w · a · b)) · d · d′ ∈ T and L · (w · a · b) ∈ T then

sup · (w · a · b) · c · d = sup · (w · a · b) · c′ · d′.

Let M be an I+-model. An M-valuation is a function from the set of variables V to C
(cf. Definition 2.3.17). Given an M-valuation ρ : V → C we define the value of M ∈ TCL,
denoted JMKMρ or just JMKρ, by induction on the structure of M :

• JxKρ = ρ(x) if x ∈ V ,

• JKKρ = k, JSKρ = s,

• JcKρ = I(c) if c ∈ Σ,

• JM1M2Kρ = JM1Kρ · JM1Kρ.

If JMKMρ ∈ T , we write M, ρ |= M . If M is closed then we write M |= M . We write
M, ρ |= Γ if M, ρ |= M for all M ∈ Γ. We write Γ |=I+ M if for every I+-model M and
every M-valuation ρ, the condition M, ρ |= Γ implies M, ρ |= M . We use the notation
Γ |=I+ M1 = M2 if for every I+-modelM and everyM-valuation ρ, the conditionM, ρ |= Γ
implies JM1KMρ = JM2KMρ .

Theorem 7.1.9. If Γ `I+ X then Γ |=I+ X. Also, if Γ `I+ X = Y then Γ |=I+ X = Y .

Proof. Induction on the length of derivation.
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7.2 Model construction

In this section we construct a model for I+. This implies the consistency of I+. We assume
the existence of a strongly inaccessible cardinal, i.e., in this section we work in ZFC+SI
(see Section 2.2). The existence of a strongly inaccessible cardinal is necessary to handle
dependent function types, dependent sums and W-types. Without a strongly inaccessible
cardinal we just would not be able to define the set of types T .

Definition 7.2.1. The set of types T is defined by a fixpoint construction. We define Tα by
induction on an ordinal α, together with the domains Dτ . As usual, we set T<α =

⋃
β<α Tβ.

• ε, o ∈ Tα, and Dε = ∅, Do = {>,⊥},
• if τ ∈ T<α and S ⊆ Dτ then1 Υ(τ, S) ∈ Tα and DΥ(τ,S) = S,

• if τ ∈ T<α and F is a function from Dτ to T<α then G(τ, F ) ∈ Tα and

DG(τ,F ) =
∏
d∈Dτ

DF (d),

• if τ ∈ T<α and F is a function from Dτ to T<α then Σ(τ, F ) ∈ Tα and

DΣ(τ,F ) = {〈d1, d2〉 | d1 ∈ Dτ , d2 ∈ DF (d1)},

• if τ ∈ T<α and F is a function from Dτ to T<α such that there is d ∈ Dτ with DF (d) = ∅,
then W(τ, F ) ∈ Tα and DW(τ,F ) is defined as follows. Let γ be the maximum of ω
and the least cardinal greater than the cardinality of

⋃
d∈Dτ DF (d). We define DβW(τ,F )

inductively by:

– if d ∈ Dτ and f is a function from DF (d) to D<βW(τ,F ) =
⋃
δ<β DδW(τ,F ) then

〈d, f〉 ∈ DβW(τ,F ).

We set DW(τ,F ) =
⋃
β<γ D

β
W(τ,F ).

Because there exists a strongly inaccessible cardinal, by Lemma 2.2.6 there is a Grothendieck
universe U . Using Lemma 2.2.5 one shows by induction on α that Tα ⊆ U and Dτ ∈ U for
τ ∈ Tα. It is also easy to see that Tα ⊆ Tβ for α ≤ β. Hence we can apply Theorem 2.1.3 to
obtain an ordinal ζ with Tζ = T<ζ . We take T = Tζ .

If F is a function from Dτ1 to T such that F (d) = τ2 for every d ∈ Dτ1 , for some fixed
τ2 ∈ T , then instead of G(τ1, F ) we also write τ1 → τ2. If F (d) = τ2 for all d ∈ Dτ1 then we
use the abbreviation τ1 × τ2 = Σ(τ1, F ).

The set of terms T is defined to be the set of all combinatory terms over the signature
containing all constants of I+ plus a distinct constant dτ for each d ∈ Dτ with τ = o or

1Formally, Υ(τ, S) should be understood as a triple 〈Υ, τ, S〉 where Υ is some “tag” (some appropriately
constructed constant set) uniquely identifying the kind of this type (i.e. the tag signifies that this is a subtype).
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τ = G(τ ′, F ) ∈ T or τ = Σ(τ ′, F ) ∈ T or τ = W(τ ′, F ) ∈ T . To save on notation, we usually
drop the superscript τ , i.e., we confuse elements of Dτ with the corresponding constants in T.
The point of superscripting elements with their types is to ensure that each constant f has a
uniquely determined type which is not a subtype. Note that, e.g., the constants corresponding
to the elements of DΥ(o,S) are superscripted with the type o, not with Υ(o, S).

If f ∈ DG(τ,F ) then we use the notation fF(d) for the value of f at d ∈ Dτ , to avoid
confusion with the term fd (i.e. with fG(τ,F )dτ ).

Lemma 7.2.2. 〈d, f〉 ∈ DW(τ,F ) iff d ∈ Dτ and f is a function from DF (d) to DW(τ,F ).

Proof. The implication from left to right follows directly from definitions. For the other
direction, assume that d ∈ Dτ and f is a function from DF (d) to DW(τ,F ) =

⋃
α<γ DαW(τ,F ).

Then for every e ∈ DF (d) there is α(e) < γ with f(e) ∈ Dα(e)
W(τ,F ). It suffices to show that

supe∈DF (d)
α(e) < γ. First assume γ > ω. Note that each α(e) has cardinality at most

µ = |
⋃
d∈Dτ DF (d)|, because |α(e)| ≤ α(e) < γ, and γ is the least cardinal greater than µ.

Hence we have
| supe∈DF (d)

α(e)| = |
⋃
e∈DF (d)

α(e)|
≤ |DF (d)|µ
≤ µ2.

Because γ > ω and γ is the least cardinal greater than µ, the cardinal µ is infinite and
we have µ = µ2. Therefore | supe∈DF (d)

α(e)| ≤ µ2 = µ < γ. Since γ is a cardinal, this
implies supe∈DF (d)

α(e) < γ. If γ = ω then
⋃
d∈Dτ DF (d) is finite. Hence so is DF (d) and thus

supe∈DF (d)
α(e) is also finite, i.e., supe∈DF (d)

α(e) < ω = γ.

In this section we adopt the following conventions:

• LX ≡ ΞXX,

• GXY ≡ λf.ΞX(λx.Y x(fx)) where x /∈ FV(Y ) and f /∈ FV(X, Y ), i.e.,

GXY ≡ S(K(ΞX))(S(S(S(KY )I))(S(S(KS)(S(KK)I))(KI))),

• πXY ≡ λx.XY ,

• π1X ≡ XK,

• π2X ≡ X(KI),

• ΥAX ≡ λx.Ax ∧Xx,

• ΣAB ≡ λx.A(π1x) ∧B(π1x)(π2x).

In other words, whenever we write, e.g., π1X, this denotes the term XK, not the term
(λx.xK)X. This convention allows us to shorten some notations. Its significance is purely
technical. Without it we would simply have to replace, e.g., π1X with XK in some places
below. The important thing is that LX, GXY , πXY , ΥAX, ΣAB are never a w-redex, and
π1c, π2c are not a w-redex when c is a constant.
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Definition 7.2.3. For τ ∈ T and an ordinal α we define the representation relations
�ατ ∈ T×T, the contraction relation →α ∈ T×T, and the relation �αT ∈ T×T inductively.
The notation X ;α

τ Y stands for X ∗→
α
· �ατ Y , and the notations �<ατ , ;<α

τ are defined as
usual. Let ητ be a choice function for P(Dτ ) \ {∅} and let Dτ,p = {d ∈ Dτ | pF(d) = >} for
p ∈ Dτ→o.
(w1) KXY →α X,

(w2) SXY Z →α XZ(Y Z),

(γ) fX →α b if f ∈ DG(τ,F ), fF(a) = b and X �<ατ a, for some a ∈ Dτ ,
(ε1) εAX →α ητ (Dτ,p) if A �<αT τ , X �<ατ→o p and Dτ,p 6= ∅,
(ε2) εAX →α ητ (Dτ ) if A �<αT τ , Dτ 6= ∅, X �<ατ→o p and Dτ,p = ∅,
(µ1) MX →α K if X �<αo >,

(µ2) MX →α KI if X �<αo ⊥,

(π1) π1〈a, b〉τ →α a if τ = Σ(τ ′, F ),

(π2) π2〈a, b〉τ →α b if τ = Σ(τ ′, F ),

(sup) supAXY →α 〈d, f〉τ if A �<αT τ = W(τ ′, F ), X �<ατ ′ d and Y �<αF (d)→τ f ,

(D) D〈d, f〉τX →α fX if τ = W(τ ′, F ),

(Dτ ) d �ατ d if d ∈ Dτ and τ = o or τ = W(τ ′, F ),

(Fτ ) X �ατ d if τ = G(τ ′, F ), d ∈ Dτ and for every a ∈ Dτ ′ we have Xa;<α
F (a) d

F(a),

(Sτ ) X �ατ d if τ = Υ(τ ′, S), X �<ατ ′ d and d ∈ S,

(πΣ
τ ) X �ατ 〈a, b〉τ if τ = Σ(τ ′, F ), a ∈ Dτ ′ , b ∈ DF (a), and π1X ;<α

τ ′ a and π2X ;<α
F (a) b,

(¬>) ¬X �αo > if X �<αo ⊥,

(¬⊥) ¬X �αo ⊥ if X �<αo >,

(V>) X ∨ Y �αo > if X �<αo > or Y �<αo >,

(V⊥) X ∨ Y �αo ⊥ if X �<αo ⊥ and Y �<αo ⊥,

(

V

>) X ∧ Y �αo > if X �<αo > and Y �<αo >,

(

V

⊥) X ∧ Y �αo ⊥ if X �<αo ⊥ or Y �<αo ⊥,

(Ξ>) ΞXY �αo > if X �<αT τ and for every d ∈ Dτ we have Y d;<α
o >,

(Ξ⊥) ΞXY �αo ⊥ if X �<αT τ and there exists d ∈ Dτ with Y d;<α
o ⊥,

(W>) WAB〈d, f〉τ �αo > if WAB �<αT τ ,

(T>) T〈d, f〉τX �αo > if τ = W(τ ′, F ) and X �<ατ ′ d

(T⊥) T〈d, f〉τX �αo ⊥ if τ = W(τ ′, F ), X �<ατ ′ d′ and d′ 6≡ d,

(L>) LX �αo > if X �<αT τ for some τ ∈ T ,

(HT ) H �αT o,
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(OT ) O �αT ε,

(GT ) GAB �αT G(τ, F ) if A �<αT τ and for every d ∈ Dτ we have Bd;<α
T F (d),

(ΣT ) ΣAB �αT Σ(τ, F ) if A �<αT τ and for every d ∈ Dτ we have Bd;<α
T F (d),

(WT ) WAB �αT W(τ, F ) if A �<αT τ and for every d ∈ Dτ we have Bd;<α
T F (d),

(ΥT ) ΥAX �αT Υ(τ, Sp) if A �<αT τ , X �<ατ→o p and

Sp = {d ∈ Dτ | pF(d) ≡ >}.

It is to be understood that the relation →α is the compatible closure of the rules (w1), (w2),
(γ), (ε1), (ε2), (µ1), (µ2), (π1), (π2), (sup) and (D), while the relations �ατ for τ ∈ T and �αT
are defined directly by the corresponding rules, i.e., without taking compatible closure – these
are not contraction relations.

It is easy to see that for α ≤ κ we have →α ⊆ →κ, �ατ ⊆ �κτ for τ ∈ T , and �αT ⊆ �κT .
Hence by Theorem 2.1.3 there is the closure ordinal ζ with →ζ =→<ζ , �ζτ = �<ζτ for τ ∈ T ,
and �ζT = �<ζT . We use the notations →, �τ (τ ∈ T ), �T for →ζ , �ζτ (τ ∈ T ), �ζT ,
respectively.

By →γ we denote the γ-contraction relation determined by the rule (γ), by →ε the
ε-contraction relation determined by the rules (ε1) and (ε2), and so on. We also use the
notations →α

γ , →α
ε , etc., accordingly.

We define the reduction system R by R = 〈→, {�τ}τ∈T ∪{�T }〉. The reduction system Rα

is defined by Rα = 〈→α, {�ατ }τ∈T ∪ {�αT }〉.

The following lemma will often be used implicitly. Note that this lemma would be false
in the lambda-calculus with β-reduction.

Lemma 7.2.4. If GXY
∗→ Z then Z ≡ GX ′Y ′ with X

∗→ X ′ and Y
∗→ Y ′. An analogous

result holds when ΣXY
∗→ Z or ΥXY

∗→ Z or WXY
∗→ Z. Here ∗→ may be any of ∗→w, ∗→

α
,

∗→γ, etc.

The general strategy of the correctness proof for the model construction is the same as in
Section 6.2, we just need to consider the additional cases for the new illative primitives. We
show that the reduction system R is coherent and invariant, and then we use these properties
to show a sequence of lemmas corresponding to the conditions in the definition of an I+-model
(see Definition 7.1.8). Because I+ is based on combinatory logic with weak equality, no
reduction “below lambdas” is possible, so in contrast to Section 6.2 it is not necessary to
prove that R is closed under substitution. The fact that I+ is based on combinatory logic
with weak equality also allows us to avoid many purely technical problems which would
otherwise appear.

Lemma 7.2.5. For all ordinals α, κ the reduction systems Rα and Rκ are mutually coherent.
In particular, the reduction system R is coherent.

Proof. Like in Lemma 6.2.6, we proceed by induction on pairs of ordinals 〈α, κ〉 ordered
componentwise. We need to show the conditions:
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(a) →α and →κ commute,

(b) →κ preserves �αi ,

(c) →α preserves �κi ,
(d) if X �αi d1 and X �κi d2 then d1 = d2,

where i ∈ T or i = T .
So assume (a)− (d) hold for all pairs of ordinals 〈α′, κ′〉 with α′ < α and κ′ ≤ κ, or α′ ≤ α

and κ′ < κ. We show that (a)− (d) also hold for 〈α, κ〉.
As in Lemma 6.2.6 one may show the following two conditions (?) and (??), by identical

proofs.

(?) If X ;<α
i d and X →κ Y then Y ;<α

i d, where i ∈ T or i = T . The same holds
with α and κ exchanged.

(??) If X ;<α
i d1 and X ;κ

i d2 then d1 = d2. The same holds with α and κ exchanged.

Now we prove (a)− (d).

(a) Define →ν
s =→ν

γ ∪→ν
ε ∪→ν

µ ∪→π ∪→ν
sup ∪→ν

D for an ordinal ν. We show that the
following pairs of relations commute: →w and→α

s ,→w and→κ
s ,→α

s and→κ
s . Since→w

is confluent, →α= →w ∪ →α
s and →κ= →w ∪ →κ

s , it then follows from the general
Hindley-Rosen Lemma 2.3.3 that →α and →κ commute.

First we show that →α
s and →κ

s commute. Assume X →α
s X1 and X →κ

s X2. We show
that there is X ′ with X1

≡−→
κ

s X
′ ≡←−

α

s X2. Without loss of generality assume that the
contraction X →α

s X1 occurs at the root. We consider possible rules by which the
contraction X →α

s X1 may occur.

(γ) We have X ≡ fY , f ∈ DG(τ,F ), X1 ≡ fF(d1) and Y �<ατ d1. If the contraction
X ≡ fY →κ

s X2 also occurs at the root then it is a γ-contraction and we have
X2 ≡ fF(d2) and Y �<κτ d2. By part (d) of the IH we obtain d1 = d2, so we may
take X ′ ≡ X1 ≡ X2. Otherwise, X2 ≡ fY ′ with Y →κ

s Y
′. Since Y �<ατ d1, by

part (b) of the IH we have Y ′ �<ατ d1. Thus still X2 ≡ fY ′ →α
γ d1 ≡ X1, so we

may take X ′ ≡ X1.
(ε1) We have X ≡ εAY , A �<αT τ , Y �<ατ→o p, and X1 ≡ d for appropriate d ∈ Dτ . If

the contraction εAY →κ
ε X2 also occurs at the root, then A �<αT τ ′, Y �<ατ ′→o p′

and X2 ≡ d′ for appropriate d′ ∈ Dτ ′ . By part (d) of the IH we conclude that
τ ′ = τ and p′ ≡ p, which implies d′ ≡ d. Otherwise, if the contraction X →κ

s X2

does not occur at the root, then X2 ≡ εA′Y ′ with A
≡−→
κ

s A
′ and Y

≡−→
β

s X
′. Using

part (b) of the IH one checks that still X2 ≡ εA′Y ′ →α
ε d.

(ε2) The argument is analogous to the case for (ε1).
(µ1) We have X ≡ MY , X1 ≡ K and Y �<αo >. If the contraction X →κ

s X2 occurs
at the root, then it is a µ-contraction, and either X2 ≡ K, in which case we may
take X ′ ≡ K, or X2 ≡ KI. But if X2 ≡ KI then Y �<αo ⊥ which contradicts
part (d) of the IH. If the contraction X →κ

s X2 does not occur at the root, then
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X2 ≡ MY ′ with Y →κ
s Y

′. Then Y ′ �<αo > by part (b) of the IH. Thus still
X2 ≡ MY ′ →α

µ K ≡ X1, so we may take X ′ ≡ X1.
(µ2) Analogous to the case for (µ1).
(π1) We have X ≡ π1〈a, b〉 and X1 ≡ a. By inspecting definitions one sees that

X →κ
s X2 is only possible when X2 ≡ a.

(π2) Analogous to the case for (π1).
(sup) We have X ≡ supAZ1Z2, X1 ≡ 〈d, f〉τ , A �<αT τ = W(τ ′, F ), Z1 �<ατ ′ d and

Z2 �<αF (d)→τ f . If the contraction X →κ
s X2 occurs at the root, then it is a

sup-contraction, and X2 ≡ 〈d0, f0〉τ0 A �<κT τ0 = W(τ ′0, F0), Z1 �<κτ ′0 d0 and
Z2 �<κF0(d0)→τ0 f0. Using part (d) of the IH we then conclude that τ0 = τ , d0 = d
and f0 = f , so X2 ≡ X1. If the contraction X →κ

s X2 does not occur at the root,
then X2 ≡ supA′Z ′1Z

′
2 with A

≡−→
κ

s A
′, Z1

≡−→
κ

s Z
′
1, Z2

≡−→
κ

s Z
′
2. Using part (b) of

the IH we conclude that X2 →α
sup X1.

(D) We have X ≡ D〈d, f〉Y and X1 ≡ fY . If the contraction X →κ
s X2 occurs at

the root, then X2 ≡ X1. Otherwise, X2 ≡ D〈d, f〉Y ′ where Y →κ
s Y

′. Then
X2 →α

s fY
′ and X1 →κ

s fY
′.

Now we show that →w and →α
s commute. The proof for →w and →κ

s is completely
analogous. We show that if X →α

s X1 and X →w X2 then there is X ′ such that
X1 →w X ′ and X2

∗→
α

s X
′. Then it will follow from Lemma 2.3.4 that →w and →α

s

commute. So assume X →α
s X1 and X →w X2. If the contraction X →α

s X1 is at the
root, then the proof is analogous to an appropriate case considered above. For instance,
if the contraction X →α

s X1 is a γ-contraction, then X ≡ fY for some f ∈ DG(τ,F ),
Y �<ατ d and X1 ≡ fF(d). Hence X2 ≡ fY ′ with Y →w Y

′. By part (b) of the IH we
obtain Y ′ �<ατ d, so still X2 →α

γ d ≡ X1. We may thus take X ′ ≡ X1.

If the contraction X →α
s X1 is not at the root, then assume without loss of generality

that the contraction X →w X2 is at the root. If X ≡ KX2Y then X1 ≡ KX ′2Y
′

with X2
≡−→
α

s X
′
2 and Y

≡−→
α

s Y
′. Hence X1 →w X ′2 and we may take X ′ ≡ X ′2. So

suppose X ≡ SY1Y2Y3, X1 ≡ SY ′1Y
′

2Y
′

3 and X2 ≡ Y1Y3(Y2Y3), where Yi
≡−→
α

s Y
′
i . Then

X2
∗→
α

s Y
′

1Y
′

3(Y ′2Y
′

3) and we may take X ′ ≡ Y ′1Y
′

3(Y ′2Y
′

3).

(b) Assume X �αi d and X →κ X ′. We need to show X ′ �αi d. We consider possible cases
according to the definition of X �αi d.

Assume X �αi d follows from (Fτ ), i.e., i = τ = G(τ ′, F ), d ∈ DG(τ ′,F ), and for every
a ∈ Dτ ′ we have Xa;<α

F (a) d
F(a). By (?), for a ∈ Dτ ′ we have X ′a;<α

F (a) d
F(a). Thus

X ′ �αi d by (Fτ ).
Assume X �αi d follows from (Sτ ), i.e., i = τ = Υ(τ ′, S), X �<ατ ′ d and d ∈ S. By
part (b) of the IH we obtain X ′ �<ατ ′ d. Thus X ′ �αi d by (Sτ ).
Assume X �αi d follows from (πΣ

τ ), i.e., i = τ = Σ(τ ′, F ), d = 〈a, b〉, a ∈ Dτ ′ , b ∈ DF (a),
π1X ;<α

τ ′ a and π2X ;<α
F (a) b. Then by (?) we obtain π1X

′ ;<α
τ ′ a and π2X

′ ;<α
F (a) b,

and thus X ′ �αi d by (πΣ
τ ).
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Assume X �αi d follows from (GT ), i.e., i = T , d = G(τ, F ), X ≡ GAB, A �<αT τ

and for every d ∈ Dτ we have Bd ;<α
T F (d). Then X ′ ≡ GA′B′ with A

≡−→
κ
A′ and

B
≡−→
κ
B′. By part (b) of the IH we obtain A′ �<αT τ . By (?), for d ∈ Dτ we have

B′d;<α
T F (d). Hence X ′ ≡ GA′B′ �αT G(τ, F ) by (GT ).

Other cases are similar to the above or analogous to the corresponding cases in the
proof of Lemma 6.2.6.

(c) Analogous to (b).

(d) Suppose X �αi d1 and X �κi d2. We need to show d1 = d2. We consider all possible
overlaps of rules in Definition 7.2.3, i.e., all possible pairs of rules by which X �αi d1

and X �κi d2 could be obtained.

Assume both X �αi d1 and X �κi d2 follow from (Fτ ). Then i = τ = G(τ ′, F ),
d1, d2 ∈ Dτ and for a ∈ Dτ ′ we have Xa ;<α

F (a) d
F
1 (a) and Xa ;<κ

F (a) d
F
2 (a). Then

dF1 (a) = dF2 (a) for a ∈ Dτ ′ , by (??). Thus d1 = d2.

Assume both X �αi d1 and X �κi d2 follow from (Sτ ). Then i = τ = Υ(τ ′, S), d1, d2 ∈ S,
X �<ατ ′ d1 and X �<ατ ′ d2. By part (d) of the IH we obtain d1 ≡ d2.

Other cases are similar to the above or analogous to the corresponding cases in the
proof of Lemma 6.2.6.

Like in Definition 6.2.7 we introduce the notion of the rank of a type. This notion is
needed in the inductive proof of Lemma 7.2.9 – at certain points in the proof we need to show
that the rank of the type considered decreases to be able to use the inductive hypothesis.
Because here types are not finite objects, the rank of a type may be an infinite ordinal.

Definition 7.2.6. The rank of a type τ ∈ T , denoted rank(τ), is an ordinal number defined
inductively as follows.

rank(o) = 1
rank(ε) = 1

rank(G(τ, F )) = max(rank(τ) + 1, supd∈Dτ rank(F (d)))
rank(Σ(τ, F )) = max(rank(τ), supd∈Dτ rank(F (d)))
rank(W(τ, F )) = max(rank(τ), supd∈Dτ (rank(F (d)) + 1))
rank(Υ(τ, S)) = rank(τ)

We write X �κ Y if there exists a term Z, distinct variables x1, . . . , xm ∈ FV(X), and terms
X1, . . . , Xm, d1, . . . , dm such that:

• X ≡ Z[x1/X1, . . . , xm/Xm],

• Y ≡ Z[x1/d1, . . . , xm/dm],

• for each k = 1, . . . ,m there is τ ∈ T with rank(τ) ≤ κ and Xk �τ dk.
We set �<κ =

⋃
α<κ�α. We define a binary subtype relation v on T inductively:
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• τ v τ ,

• if τ ′ v τ then Υ(τ ′, S) v τ .

Note that τ v τ ′ implies rank(τ) = rank(τ ′).

Intuitively, one could equivalently think that when X �τ d, the rank is associated with
the element d. The notion of rank used here bears some similarity to the notion of rank in
ZFC set theory (see Section 2.2): the (types of) constituents (at least those that we care
about) of an object have smaller rank than (the type of) the object itself. In fact, we could
define, e.g.,

rank(G(τ, F )) = max(rank(τ), sup
d∈Dτ

rank(F (d))) + 1

and the proofs would still go through. However, we need rank(Υ(τ, S)) = rank(τ), because
DΥ(τ,S) ⊆ Dτ .

Lemma 7.2.7.

1. If X �τ ′ d and τ ′ v τ then X �τ d.

2. If X �τ d, d ∈ Dτ ′ and τ ′ v τ then X �τ ′ d.

Proof.

1. Induction on the definition of τ ′ v τ . If τ = τ ′ then the claim is obvious. Otherwise
τ ′ = Υ(τ0, S) with τ0 v τ . Then X �τ ′ d could only be obtained by (Sτ ′). So X �τ0 d,
and by the inductive hypothesis X �τ d.

2. Induction on the definition of τ ′ v τ . If τ = τ ′ then the claim is obvious. Otherwise
τ ′ = Υ(τ0, S) with τ0 v τ . Then d ∈ S ⊆ Dτ0 , so by the inductive hypothesis X �τ0 d.
Thus X �τ ′ d by (Sτ ′).

The following simple lemma will be used implicitly.

Lemma 7.2.8.

1. If X �κ Y1Y2 then X ≡ X1X2 with X1 �κ Y1 and X2 �κ Y2.

2. If X �κ NY where N ∈ {S,K,Ξ,

V

,V,¬, ε,M,W, sup,T,D} then X ≡ NX ′ with
X ′ �κ Y .

3. If X �κ GY1Y2 then X ≡ GX1X2 with Xi �κ Yi. An analogous result holds when
X �κ ΣY1Y2 or X �κ ΥY1Y2.

Proof. Follows directly from Definition 7.2.6.

Lemma 7.2.9. The reduction system R is invariant.

Proof. Like in Lemma 6.2.9, we show the following two conditions by induction on pairs
〈κ, α〉 ordered lexicographically, i.e., 〈κ1, α1〉 < 〈κ2, α2〉 iff κ1 < κ2, or κ1 = κ2 and α1 < α2.

141



(1) If X �κ Y �αi d then X �i d, where i ∈ T or i = T .

(2) If X �κ Y
∗→
α
Z then there is Y ′ with X

∗→ Y ′ �κ Z.

For κ = α = ζ, where ζ is the closure ordinal of Definition 7.2.3, the above conditions imply
the invariance of R. Indeed, assume X �i d and Y d;j d

′. Then Y X �κ Y d
∗→
κ
· �κj d′ for

some κ. Using (2) and then (1) we obtain Y X ;j d
′.

So assume (1) and (2) hold for all 〈κ′, α′〉 < 〈κ, α〉. As in the proof of Lemma 6.2.9, one
may show the following condition.

(?) If X �κ Y ;<α
τ d then X ;τ d.

Now we show (1) and (2) for 〈κ, α〉.
(1) Assume X �κ Y �αi d where i ∈ T or i = T . We consider all possible rules by which

Y �αi d could be obtained.

(Dτ ) Then X �κ d �ατ d with τ = o or τ = W(τ0, F ). This is only possible when X ≡ d
or X �τ ′ d. If X �τ ′ d then τ ′ v τ . By Lemma 7.2.7 we obtain X �τ d.

(Fτ ) Then X �κ Y �ατ d, τ = G(τ ′, F ), d ∈ Dτ , and for every a ∈ Dτ ′ we have
Y a ;<α

F (a) d
F(a). Let a ∈ Dτ ′ . Then Xa �κ Y a ;<α

F (a) d
F(a). Thus Xa ;F (a)

dF(a) by (?). Since a ∈ Dτ ′ was arbitrary, we conclude X �τ d.
(T>) Then X �κ T〈d, f〉τY1 �αo >, τ = W(τ ′, F ) and Y1 �<ατ ′ d. Because τ = W(τ ′, F ),

we have X ≡ T〈d, f〉τY0 with Y0 �κ Y1. By part (1) of the IH we obtain Y0 �τ ′ d.
Thus X �o >.

(πΣ
τ ) Then X �κ Y �ατ 〈a, b〉, τ = Σ(τ ′, F ), a ∈ Dτ ′ , b ∈ DF (a), π1Y ;<α

τ ′ a and
π2Y ;<α

F (a) b. We have π1X �κ π1Y and π2X �κ π2Y , so π1X ;τ ′ a and
π2X ;F (a) b by (?).

(GT ) Then X �κ GY1Y2 �αT G(τ, F ), Y1 �<αT τ and for every d ∈ Dτ we have Y2d;<α
T

F (d). We have X ≡ GX1X2 with X1 �κ Y1 and X2 �κ Y2. Thus X1 �κ

Y1 �<αT τ , so by part (1) of the IH we obtain X1 �T τ . Let d ∈ Dτ . We have
X2d�κ Y2d;<α

T F (d), so X2d;T F (d) by (?). Thus X �T G(τ, F ).

Other cases are similar to the above or analogous to corresponding cases in the proof of
Lemma 6.2.9.

(2) It suffices to show that if X �κ Y →α Z then X ∗→ · �κ Z. Without loss of generality,
we may assume that the contraction Y →α Z occurs at the root. We consider possible
rules by which this contraction could occur.

(w1) We have X �κ KY1Y2 →w Y1. Then X ≡ KX1X2 with Xi �κ Yi. Hence
X →w X1 �κ Y1.

(w2) We have X �κ SY1Y2Y3 →w Y1Y3(Y2Y3). Then X ≡ SX1X2X3 with Xi �κ Yi.
Hence X →w X1X3(X2X3)�κ Y1Y3(Y2Y3).

(γ) We have X �κ Y →α
γ Z. There are two possibilities.
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1. X ≡ fX ′, Y ≡ fY ′, X ′ �κ Y ′ and f ∈ DG(τ,F ). Then Y ′ �<ατ d for some
d ∈ Dτ and Z ≡ fF(d). By part (1) of the IH we have X ′ �τ d. So
X ≡ fX ′ →γ f

F(d) ≡ Z �κ Z.
2. X ≡ MX ′, Y ≡ fY ′, M �τ f , X ′ �κ Y ′, rank(τ) ≤ κ and τ v G(τ1, F ).

Then Y ′ �<ατ1 d for some d ∈ Dτ1 and Z ≡ fF(d). Since X ′ �κ Y ′ �<ατ1 d,
we have X ′ �τ1 d by part (1) of the IH. Let τ0 = G(τ1, F ). Since τ v τ0, by
Lemma 7.2.7 we also have M �τ0 f . One sees by inspecting Definition 7.2.3
that M �τ0 f can only be obtained by (Fτ0). Since d ∈ Dτ1 we thus have
Md ;F (d) f

F(d) ≡ Z. Because rank(τ1) < rank(τ0) ≤ κ and X ′ �τ1 d,
we have MX ′ �<κ Md

∗→ · �F (d) Z. Thus MX ′
∗→ · �<κ · �F (d) Z

by part (2) of the IH. So MX ′
∗→ · �F (d) Z by part (1) of the IH. Since

rank(F (d)) ≤ rank(τ0) ≤ κ we have X ≡MX ′
∗→ · �κ Z.

(ε1) We have X �κ εAY1 →α
ε d with A �<αT τ , Y1 �<ατ→o p and d = ητ (Dτ,p). We need

to find Y ′ with X ∗→ Y ′ �κ d. We have X ≡ εA0Y0 with A0 �κ A and Y0 �κ Y1.
It suffices to show that A0 �T τ and Y0 �τ→o p. We have A0 �n A �<αT τ , so
A0 �T τ by part (1) of the IH. Also Y0 �κ Y1 �<ατ→o p, so Y0 �τ→o p by part (1)
of the IH.

(ε2) Analogous to the case for (ε1).
(µ1) We have X �κ MY1 →α

µ K and Y1 �<αo >. Then X ≡ MX1 with X1 �κ Y1. So
X1 �o > by part (1) of the IH. Thus X →µ K.

(µ2) Analogous to the case for (µ1).
(π1) We have X �κ π1〈a, b〉τ →π a with τ = Σ(τ ′, F ), and either X ≡ Y , which case

is trivial, or X ≡ π1X
′ with X ′ �τ1 〈a, b〉, rank(τ1) ≤ κ. Then X ′ �τ1 〈a, b〉 must

follow by rule (πΣ
τ ) (and possibly some applications of (Sτ ) but these may be

ignored by Lemma 7.2.7), so we have τ1 = τ . Then a ∈ Dτ ′ and π1X
′ ;τ ′ a, i.e.,

X ≡ π1X
′ ∗→ Y ′ �τ ′ a. Since rank(τ ′) ≤ rank(τ) ≤ κ, we actually have Y ′ �κ a.

(π2) We have X �κ π2〈d, f〉τ → f with τ = Σ(τ ′, F ). The argument is analogous to
the case for (π1).

(sup) We have X �κ supAY1Y2 →α 〈d, f〉τ where A �<αT τ = W(τ ′, F ), Y1 �<ατ ′ d
and Y2 �<αF (d)→τ f . Then X ≡ supA′X1X2, A′ �κ A, X1 �κ Y1 and X2 �κ Y2.
By part (1) of the IH we obtain A′ �T τ , X1 �τ ′ d and X2 �F (d)→τ ′ f . Thus
X → 〈d, f〉τ .

(D) We have X �κ D〈d, f〉τY1 →α fY1 with τ = W(τ ′, F ). Then X ≡ D〈d, f〉τX1

with X1 �κ Y1. So X → fX1 � fY1.

We have thus established coherence and invariance of the system R. Like in Section 6.2,
it remains to show some lemmas corresponding to the conditions 1-29 in Definition 7.1.8.
The proofs of these lemmas are mostly straightforward, using coherence and invariance of the
system R.
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Definition 7.2.10. We define the size of a type τ , denoted |τ |, to be the ordinal number
given by the following inductive definition:

• |ε| = |o| = 1,

• |Υ(τ, S)| = |τ |+ 1,

• |G(τ, F )| = max(|τ |, supd∈Dτ |F (d)|) + 1,

• |Σ(τ, F )| = max(|τ |, supd∈Dτ |F (d)|) + 1,

• |W(τ, F )| = max(|τ |, supd∈Dτ |F (d)|) + 1.

Lemma 7.2.11. If d ∈ Dτ ′ for τ ′ v τ ∈ T , then dτ �τ ′ dτ .

Proof. Induction on the size of τ .

The above lemma implies that if X ∗→ d for d ∈ Dτ , then X ;τ d. We will sometimes
use this property implicitly.

Lemma 7.2.12. If X �T τ then for any Z with XZ ;o > there is d ∈ Dτ with Z ;τ d.

Proof. By induction on pairs 〈|τ |, α〉 ordered lexicographically we show that if X �T τ and
XZ ;α

o > then there exists d ∈ Dτ such that Z ;τ d. Suppose X �T τ and XZ ;α
o >.

If τ = o then X ≡ H, and HZ ;o >. By coherence we have Z ∨ ¬Z ;o >. This implies
Z ;o > or Z ;o ⊥, and we are done because >,⊥ ∈ Do. If X �T ε then X ≡ O and
OZ

∗→ ⊥, so XZ ;o > is impossible by coherence.
Assume X �T G(τ, F ) follows by (GT ), and XZ ;o >. Then X ≡ GX1X2 with X1 �T τ

and for every d ∈ Dτ we have X2d ;T F (d). Since XZ ;o >, we have GX1X2Z ;o >.
Let d ∈ Dτ . By coherence and (Ξ>) we have X2d(Zd) ;o >. Since X2d ;T F (d) and
|F (d)| < |G(τ, F )|, by the IH and coherence there is ad ∈ DF (d) with Zd ;F (d) ad. So
by (FG(τ,F )) we have Z �G(τ,F ) f for f ∈ DG(τ,F ) such that fF(d) = ad for d ∈ Dτ .

Assume X �αT Σ(τ, F ) and XZ ;o >. Then X ≡ ΣAB where A �T τ and for each
d ∈ Dτ we have Bd;T F (d). Since XZ ;o >, we have A(π1Z) ;o > and B(π1Z)(π2Z) ;o

>. Since |τ | < |Σ(τ, F )|, by the IH there is d ∈ Dτ with π1Z ;τ d. Since Bd ;T F (d)
and π1Z ;τ d, we have B(π1Z) ;T F (d) by invariance. Because B(π1Z) ;T F (d),
B(π1Z)(π2Z) ;o > and |F (d)| < |Σ(τ, F )|, by the IH there is d′ ∈ DF (d) with π2Z ;F (d) d

′.
Then Z ;Σ(τ,F ) 〈d, d′〉 by (πΣ

Σ(τ,F )).

Assume X �T τ = W(τ ′, F ) and XZ ;α
o >. Then X ≡ WAB. Also XZ ≡ WABZ

∗→
WA′B′Z ′ �αo >, which implies Z ′ ≡ 〈d0, f〉τ1 and WA′B′ �<αT τ1. Because A ∗→ A′ and
B

∗→ B′, we have X ≡ WAB
∗→ WA′B′, and by coherence we conclude that WA′B′ �T τ .

Therefore Z ;τ 〈d0, f〉 ∈ Dτ .
So assume X �T τ = Υ(τ ′, Sp), XZ ;o > and X ≡ ΥAY with A �T τ ′, Y �τ ′→o p

and Sp = {d ∈ Dτ ′ | pF(d) ≡ >}. Hence by coherence, by XZ ;o > and by (

V

>) we have
AZ ;o > and Y Z ;o >. Since |τ ′| < |τ |, by the IH there is d ∈ Dτ ′ with Z ;τ ′ d. If
pF(d) ≡ > then d ∈ Dτ and Z ;τ d by (Sτ ). Otherwise we have pd→γ p

F(d) ≡ ⊥ because
d �τ ′ d by Lemma 7.2.11. So Y d ;o ⊥ by coherence and invariance, because Y �τ ′→o p.
Since Z ;τ ′ d we obtain Y Z ;o ⊥ by coherence and invariance. Thus XZ = AZ∧Y Z ;o ⊥.
But since XZ ;o > this contradicts coherence.
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Lemma 7.2.13. If X �T τ then Xd;o > for any d ∈ Dτ .

Proof. Induction on the size of τ . Suppose X �T τ and d ∈ Dτ .
If τ = o then X ≡ H, d ∈ {>,⊥}, and Hd �o > follows from definitions. The case τ = ε

is trivial because Dε = ∅.
Assume X �T G(τ, F ) follows by (GT ), and d ∈ DG(τ,F ). Then X ≡ GX1X2 where

X1 �T τ and for every a ∈ Dτ we have X2a;T F (a). Let a ∈ Dτ . Then X2a(dF(a)) ;o >
by the IH. Since a �τ a by Lemma 7.2.11, we have da→γ d

F(a), and thus X2a(da) ;o >.
Hence Xd;o > by (Ξ>) and coherence.

Assume X �αT τ = Σ(τ ′, F ) and d ∈ Dτ . Then X ≡ ΣAB and d = 〈d1, d2〉 with d1 ∈ Dτ ′
and d2 ∈ DF (d1). We have Xd = A(π1d) ∧ B(π1d)(π2d) = Ad1 ∧ Bd1d2. By X �T τ and
d1 ∈ Dτ ′ we have: A �T τ ′ and Bd1 ;

<α
T F (d1). Hence by the IH and coherence, Ad1 ;o >

and Bd1d2 ;o >. Thus Xd;o >.
Assume X �T τ = W(τ ′, F ). Then X ≡ WAB and d = 〈d0, f〉 ∈ Dτ . By (W>) we obtain

Xd �o >.
So assume X �T τ = Υ(τ ′, Sp), d ∈ Dτ and X ≡ ΥAY with A �T τ ′, Y �τ ′→o p and

Sp = {d ∈ Dτ ′ | pF(d) ≡ >}. We have d ∈ Dτ = Sp, so d ∈ Dτ ′ and pF(d) ≡ >. By the
inductive hypothesis Ad;o >. Since d �τ ′ d by Lemma 7.2.11 we have pd→γ p

F(d) ≡ >,
i.e., pd ;o >. Thus Y d ;o > by coherence and invariance. Hence Ad ∧ Y d ;o >, so
Xd;o > by coherence.

Lemma 7.2.14. The following conditions hold.

1. ΞXY ;o > iff LX ;o > and for every Z with XZ ;o > we have Y Z ;o >.

2. ΞXY ;o ⊥ iff LX ;o > and there exists Z with XZ ;o > and Y Z ;o ⊥.

Proof. Follows from Lemma 7.2.5, Lemma 7.2.9, Lemma 7.2.12 and Lemma 7.2.13.

Lemma 7.2.15. If p ∈ Dτ1→τ2 and pX ;τ2 b for some b ∈ Dτ2, then there is a ∈ Dτ1 with
X ;τ1 a and pF(a) ≡ b.

Proof. The proof is completely analogous to the proof of Lemma 6.2.16. In the inductive
proof of (?) one needs to consider additional cases according to Definition 7.2.3.

Lemma 7.2.16. If QLAXY ;o > and A;T τ then there is d ∈ Dτ such that X ;τ d and
Y ;τ d.

Proof. The proof is completely analogous to the proof of Lemma 6.2.17, but instead of
Lemma 6.2.16 we use Lemma 7.2.15.

Lemma 7.2.17. If QLAXY ;o ⊥ and A;T τ then there are d1, d2 ∈ Dτ such that d1 6= d2,
X ;τ d1 and Y ;τ d2.

Proof. Recall that QLAXY = Ξ(FAH)(λp.¬(pX) ∨ pY ). Assume QLAXY ;o ⊥ and
A ;T τ . Then FAH ;T τ → o. Because QLAXY ;o ⊥, there is p ∈ Dτ→o such that
¬(pX)∨pY ;o ⊥, i.e., pX ;o > and pY ;o ⊥. Hence by Lemma 7.2.15 there are d1, d2 ∈ Dτ
such that pF(d1) ≡ >, pF(d2) ≡ ⊥, X ;τ d1 and Y ;τ d2. Then also d1 6= d2.
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Lemma 7.2.18. If WAB(sup(WAB)XY ) ;o > then WAB ;T W(τ, F ), X ;τ d for some
d ∈ Dτ , and Y ;F (d)→W(τ,F ) f for some f ∈ DF (d)→W(τ,F ).

Proof. Note that in order to obtain WAB(sup(WAB)XY ) ;o > one must use the rules (W>)
and (sup).

Lemma 7.2.19.

1. If WAB(sup(WAB)XY ) ;o > and QLAXX
′ ;o > then T(sup(WAB)XY )X ′ ;o >.

2. If WAB(sup(WAB)XY ) ;o > and QLAXX
′ ;o ⊥ then T(sup(WAB)XY )X ′ ;o ⊥.

3. If WAB(sup(WAB)XY ) ;o > and BXZ ;o > then D(sup(WAB)XY )Z =R Y Z.

Proof. 1. Assume WAB(sup(WAB)XY ) ;o > and QLAXX
′ ;o >. By Lemma 7.2.18

we have WAB ;T W(τ, F ), X ;τ d for some d ∈ Dτ and Y ;F (d)→W(τ,F ) f for some
f ∈ DF (d)→W(τ,F ). Thus sup(WAB)XY

∗→ 〈d, f〉. By Lemma 7.2.16 there is d′ ∈ Dτ
such that X ;τ d

′. By coherence d ≡ d′. Hence T(sup(WAB)XY )X ′ ;o > by (T>).

2. Analogous to the previous point, using Lemma 7.2.17 and (T⊥).

3. Assume WAB(sup(WAB)XY ) ;o > and BXZ ;o >. By Lemma 7.2.18 we have
WAB ;T W(τ, F ), X ;τ d for some d ∈ Dτ and Y ;F (d)→W(τ,F ) f for some
f ∈ DF (d)→W(τ,F ). Thus sup(WAB)XY

∗→ 〈d, f〉. Then D(sup(WAB)XY )Z
∗→ fZ.

We have Bd;T F (d). Thus BX ;T F (d) by invariance. By Lemma 7.2.12 there is
b ∈ DF (d) with Z ;F (d) b. Then fZ →γ f

F(b). Since Y ;F (d)→W(τ,F ) f , by invariance
Y Z ;W(τ,F ) f

F(b), i.e., Y Z ∗→ Y ′ �W(τ,F ) f
F(b). But Y ′ �W(τ,F ) f

F(b) is only possible
when Y ′ ≡ fF(b). Thus Y Z ∗→ fF(b). Also D(sup(WAB)XY )Z

∗→ fZ → fF(b).
Therefore D(sup(WAB)XY )Z = Y Z.

Lemma 7.2.20.

1. If XAY ;o > and FAHY ;o > then Y (εAY ) ;o >.

2. If XAA;o > and FAHY ;o > then A(εAY ) ;o >.

Proof. Recall that XAY = ¬(ΞA(λx.¬(Y x))).

1. Assume XAY ;o > and FAHY ;o >. Then ΞA(λx.¬(Y x)) ;o ⊥, so A ;T τ for
some τ ∈ T , and there is d ∈ Dτ such that ¬(Y d) ;o ⊥, i.e., Y d ;o >. We have
FAH ;T τ → o. So by Lemma 7.2.12 there is p ∈ Dτ→o with Y ;τ→o p. Because
pF(d) = >, we have Dτ,p 6= ∅. Thus εAY → ητ (Dτ,p). By the definition of Dτ,p we
have pF(ητ (Dτ,p)) = >. So p(ητ (Dτ,p))→γ >, using Lemma 7.2.11. By Lemma 7.2.11,
coherence and invariance we obtain Y (ητ (Dτ,p)) ;o >. Therefore Y (εAY ) ;o >.

2. Assume XAA;o > and FAHY ;o >. Then A;T τ for some τ ∈ T , and Dτ 6= ∅. As
in the previous paragraph, there is p ∈ Dτ→o with Y ;τ→o p. We thus have εAY →ε d
for some d ∈ Dτ . By Lemma 7.2.13 we obtain Ad;o >. Hence A(εAY ) ;o >.

146



Lemma 7.2.21. If the following conditions hold

1. AX ;o >,

2. F(BX)(WAB)Y ;o >,

3. L(WAB) ;o >,

then WAB(sup(WAB)XY ) ;o >.

Proof. Follows from (sup), (W>), Lemma 7.2.12, invariance and definitions.

Lemma 7.2.22. If LX ;o > and for every Z such that XZ ;o > we have L(Y Z) ;o >,
then L(GXY ) ;o >.

Proof. Follows from definitions and Lemma 7.2.13.

Lemma 7.2.23. If LX ;o > and FXLY ;o > then L(ΣXY ) ;o >.

Proof. Assume LX ;o > and FXLY ;o >. Then X ;T τ for some τ ∈ T . Hence
L(Y d) ;o > for d ∈ Dτ , by (Ξ>), coherence and the definition of F. By (L>), (ΣT ) and
coherence this implies that ΣXY ;T Σ(τ, F ) for appropriate F . Therefore L(ΣXY ) ;o >
by (L>).

Lemma 7.2.24. If LX ;o > and FXLY ;o > then L(WXY ) ;o >.

Proof. Analogous to Lemma 7.2.23.

Lemma 7.2.25. If LA;o > and FAHX ;o > then L(ΥAX) ;o >.

Proof. Assume LA ;o > and FAHX ;o >. Then A ;T τ for some τ ∈ T . Because
FAHX ;o >, for every d ∈ Dτ we have H(Xd) ;o >, i.e., Xd ;o ad ∈ Do. By (Fτ→o)
there is p ∈ Dτ→o such that X ;τ→o p. Using (ΥT ) and coherence we conclude that
ΥAX ;T Υ(τ, Sp). Hence L(ΥAX) ;o > by (L>).

Lemma 7.2.26. If L(WAB) ;o > and for all X, Y such that

• AX ;o > and

• F(BX)(WAB)Y ;o > and

• Ξ(BX)(λx.Z(Y x)) ;o >
we have Z(sup(WAB)XY ) ;o >, then Ξ(WAB)Z ;o >.

Proof. Assume the antecedent of the above implication. Since L(WAB) ;o >, there is
τ = W(τ ′, F ) ∈ T such that WAB ;T τ . By induction on α we show that if e ∈ Dατ then
Ze;o >. By (Ξ>) this will imply that Ξ(WAB)Z ;o >. So let e = 〈d, f〉 ∈ Dατ . Because
WAB ;T τ = W(τ ′, F ) and d ∈ Dτ ′ , we have A;T τ ′ and Bd;T F (d). By Lemma 7.2.13
we also have Ad ;o >. Let a ∈ DF (d). Then fF(a) ∈ D<ατ , so Z(fF(a)) ;o > by the
inductive hypothesis. Since a ∈ DF (d) was arbitrary, this implies Ξ(Bd)(λx.Z(fx)) ;o >.
Since for every a ∈ DF (d) we have WAB(fa) ;o > by Lemma 7.2.13, and Bd;T F (d), we
also have F(Bd)(WAB)f ;o >. Hence Z(sup(WAB)df) ;o >. Since sup(WAB)df → 〈d, f〉
by (sup), we conclude Ze ≡ Z〈d, f〉;o > by coherence.
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Lemma 7.2.27. If LA;o > and for all Z with AZ ;o > we have QL(BZ)(XZ)(Y Z) ;o >,
then QL(GAB)XY ;o >.

Proof. The proof is similar to the proof of Lemma 6.2.18. Recall that

QLAXY =β Ξ(FAH)(λp.¬(pX) ∨ pY ).

Suppose

(1) LA;o > and

(2) for every Z with AZ ;o > we have QL(BZ)(XZ)(Y Z) ;o >.

Since LA;o >, we have A;T τ1 for some τ1 ∈ T by (L>) in Definition 7.2.3. We need to
show

(?) Ξ(F(GAB)H)(λp.¬(pX) ∨ pY ).

First assume Dτ1 = ∅. Then GAB ;T τ = G(τ1, F ) by (GT ), where F is the empty
function. Then F(GAB)H ;T τ → o. Let f ∈ Dτ be the only element of Dτ – the empty
function. Note that because Dτ1 = ∅, by (Fτ ) we have Z �τ f for an arbitrary term Z. Let
p ∈ Dτ→o. It suffices to show that pX ;o ⊥ or pY ;o >, and then (?) follows by definitions.
We have pf ;o > or pf ;o ⊥. Since X �τ f and Y �τ f we obtain pX ;o ⊥ or pY ;o >
by invariance.

Now assume Dτ1 6= ∅. Then there is d ∈ Dτ1 , and by Lemma 7.2.13 we have Ad ;o >.
Thus QL(Bd)(Xd)(Y d) ;o > by (2), so there is τd ∈ T with Bd ;T τd by (L>), (Ξ>),
(FT ) and coherence. Since A;T τ1 and for every d ∈ Dτ1 we have Bd;T τd, by (GT ) we
conclude GAB ;T τ where τ = G(τ1, FB) ∈ T and FB(d) = τd for d ∈ Dτ1 .

We show that there is f ∈ Dτ with X ;τ f and Y ;τ f . Let d ∈ Dτ1 . Then Ad;o > by
Lemma 7.2.13, because A;T τ1. So QL(Bd)(Xd)(Y d) ;o > and by Lemma 7.2.16 there is
bd ∈ Dτd with Xd;τd bd and Y d;τd bd. Thus by (Fτ ) we may take f ∈ Dτ with fF(d) ≡ bd
for d ∈ Dτ1 .

Since GAB ;T τ , we have F(GAB)H ;T τ → o. Let p ∈ Dτ→o. We have pf ;o > or
pf ;o ⊥. Therefore ¬(pf) ∨ pf ;o >. By invariance ¬(pX) ∨ pY ;o >. Since p ∈ Dτ was
arbitrary, we obtain (?) by (Ξ>) and coherence.

Lemma 7.2.28. If X, Y ;o > or X, Y ;o ⊥ then QLHXY ;o >.

Proof. The proof is analogous to the proof of Lemma 6.2.19.

Lemma 7.2.29. If the following conditions hold

(1) QLA(π1X)(π1Y ) ;o >,

(2) QL(B(π1X))(π2X)(π2Y ) ;o >,

(3) L(ΣAB) ;o >,

then QL(ΣAB)XY ;o >.
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Proof. Assume (1)−(3). Since QLA(π1X)(π1Y ) ;o >, there is τ ∈ T with A;T τ , by (Ξ>),
(L>), (FT ) and coherence. By Lemma 7.2.16 there is d ∈ Dτ with π1X ;τ d and π1Y ;τ d.
Since L(ΣAB) ;o >, there is τ = Σ(τ1, F ) ∈ T with ΣAB ;T τ . Then Bd;T τ2 = F (d),
so also B(π1X) ;T τ2 by invariance. By (2) and Lemma 7.2.16 there is b ∈ Dτ2 with
π2X ;τ2 b and π2Y ;τ2 b. Now by (πΣ

τ ) we conclude X ;τ 〈d, b〉 and Y ;τ 〈d, b〉. Since,
as is easily checked, QL(ΣAB)〈d, b〉〈d, b〉;o >, by invariance QL(ΣAB)XY ;o >.

Lemma 7.2.30. If QLAXX
′ ;o > and QL(F(BX)(WAB))Y Y ′ ;o > and L(WAB) ;o >,

then sup(WAB)XY = sup(WAB)X ′Y ′.

Proof. Assume the antecedent of the implication. Since L(WAB) ;o >, we have WAB ;T

W(τ, F ). Then A ;T τ . Because QLAXX
′ ;o >, by Lemma 7.2.16 there is d ∈ Dτ such

that X ;τ d and X ′ ;τ d. Then also Bd;T F (d), so BX ;T F (d) by invariance. Thus
F(BX)(WAB) ;T F (d) → W(τ, F ). Hence, because QL(F(BX)(WAB))Y Y ′ ;o >, by
Lemma 7.2.16 there is f ∈ DF (d)→W(τ,F ) such that Y ;F (d)→W(τ,F ) f and Y ′ ;F (d)→W(τ,F ) f .
Hence by (sup) we conclude sup(WAB)XY → 〈d, f〉 and sup(WAB)X ′Y ′ → 〈d, f〉.

Definition 7.2.31. Define M = 〈C, I, T ,F〉 where:

• C is the combinatory algebra constructed from the R-equality equivalence classes of
terms, with k = [K], s = [S], Ξ = [Ξ], etc., where by [X] we denote the equivalence class
of X,

• I is defined by I(c) = [c] for c ∈ Σ,

• T = {[X] | X ;o >},
• F = {[X] | X ;o ⊥}.

Theorem 7.2.32. The structure M from Definition 7.2.31 is an I+-model.

Proof. We need to check that M satisfies the conditions 1-29 from Definition 7.1.8. The
conditions 1-14 follow from definitions, coherence and Lemma 7.2.14. Conditions 15-17 follow
from Lemma 7.2.19, conditions 18-19 from Lemma 7.2.20, condition 20 from Lemma 7.2.21,
condition 21 from Lemma 7.2.22, condition 22 from Lemma 7.2.23, condition 23 from
Lemma 7.2.24, condition 24 from Lemma 7.2.25, condition 25 from Lemma 7.2.26, condition 26
from Lemma 7.2.27, condition 27 from Lemma 7.2.28, condition 28 follows from Lemma 7.2.29,
and condition 29 from Lemma 7.2.30.

Corollary 7.2.33. The system I+ is consistent, i.e., 6`I+ ⊥.
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Conclusion

We introduced four classical systems of illative combinatory logic: the propositional sys-
tem IKp, the first-order system IK, the higher-order system eIKω, and the extended
higher-order system I+. We also investigated the intuitionistic variant IJp (resp. IJ) of IKp
(resp. IK), and an intensional variant IKω of eIKω. For each system a semantics was
presented and the systems were shown sound w.r.t. the corresponding semantics. The sys-
tems IJp, IKp and IJ were also shown to be complete. The system IK was shown complete
w.r.t. a sligthly less natural class of models. We proved all systems consistent by model
constructions.

We also investigated some translations of traditional systems of logic into corresponding
illative systems. We proved all those translations to be sound, i.e., if a judgement of
a traditional system is provable, then so is its translation. For IJp, IKp, IJ and IK we
also showed the translations complete, i.e., if the translation of a judgement is provable,
then so is the original judgement. For IKω and eIKω we derived a limited completeness
result: if a translated judgement of higher-order logic is provable in eIKω then it is valid
in all standard models for higher-order logic. The proofs of most of these results were done
semantically, by showing a truth-preserving transformation of models of illative systems into
models of corresponding traditional systems, and vice versa.

Some of the systems shown consistent in the present work are much stronger than
the systems of [BBD93, DBB98a, DBB98b]. In particular, the system eIKω essentially
incorporates full extensional classical higher-order logic. The strongest of our systems I+

extends eIKω with dependent function types, dependent sums, subtypes and W-types.
The system I+ is rich enough to interpret a great deal of mathematics. Many common

type-theoretic constructions are possible. Using dependent sums one may define finite
products and (non-dependent) disjoint sums. Using W-types one may define inductive types,
including the type of natural numbers. The derived induction principles associated with
inductive types are unrestricted, i.e., it is possible to apply inductive reasoning to terms
whose types have not yet been established, thus for instance enabling reasoning about types
of terms by induction.

From a foundational viewpoint, what distinguishes illative combinatory logic is that it is
extremely simple and it assumes as primitive the notion of self-applicable function-in-intension
(operation). The simplicity of illative combinatory logic is a consequence of the fact that
it was invented with the intention of analysing prelogic. According to Curry, the aim of
illative combinatory logic is not merely to provide an alternative foundational system for
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mathematics, which would compete with the theory of types, set theory, etc. In Curry’s
view, combinatory logic concerns itself with the ultimate foundations. Its purpose is the
analysis of certain notions of such a basic character that they are taken for granted in most
other systems of logic. These are, above all, the analysis of the process of substitution, and
also the classification of objects into types or categories. Such notions constitute a prelogic.
Although very basic and generally presupposed, these notions are not simple and thus they
merit further investigation. Moreover, an analysis of prelogic may shed some light on the
sources of paradoxes.

From the point of view of computer science, an interesting feature of illative systems is
that by basing on the untyped lambda-calculus (combinatory logic) they incorporate general
recursion into the logic. Using illative-like systems may thus be a viable approach to the
problem of handling unrestricted recursion in interactive theorem provers. An advantage
of illative systems is that no justifications are needed for formulating unrestricted recursive
definitions. One may just introduce a possibly non-well-founded recursive function definition
and start reasoning about it within the logic.

To avoid inconsistency some inference rules need to be restricted by adding premises
which essentially state that some terms are “propositions”. To be able to derive that some
terms are propositions, illative systems include certain “typing rules”, i.e., rules for reasoning
about which types (categories) a term belongs to. In contrast to traditional systems, however,
these rules are internal to the system. The functions do not need to be “typed” a priori, but
reasoning about “types” may be interleaved with other reasoning. For instance, one may
show typability by induction.

The “typing rules” in illative systems are of such a character that in most cases deriving
the additional premises is straightforward. In particular, the soundness of translations of
traditional systems of logic into illative combinatory logic shows that additional premises in
introduction rules hold as long as we deal only with terms which are translations of terms or
formulas of a traditional system. Explicitly deriving the additional premises may be needed
only when dealing with terms which do not have direct counterparts in traditional systems.

Furthermore, the “typing rules” are similar to rules in traditional type systems. In fact,
these rules are usually generalisations of traditional typing rules. Therefore, in a machine
implementation of illative logic, it may be possible to adapt standard type checking or type
inference algorithms to obtain algorithms which, in common cases, automatically produce
a derivation establishing which type a given term belongs to, and thus dispose of the additional
premises in introduction rules.
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[ML84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
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