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Abstract

This thesis pertains to the study of elliptic and parabolic partial differential equations on
"thin" structures. These structures are closed sets S embedded in Euclidean space R3 of
the form S = ⋃m

i=1 Si, where Si are smooth manifolds of dimensions dimSi ∈ {1,2}.

In this setting, a singular measure µ with support on S is defined and equipped with a
tangent bundle Tµ. The µ-related gradient ∇µ is established by the orthogonal projection
Pµ on the tangent bundle Tµ. The Sobolev space H1

µ is defined as a complement of C∞c (R3)

in the norm ∥ ⋅ ∥µ ∶= (∥ ⋅ ∥2L2
µ
+ ∥∇µ ⋅ ∥

2
L2
µ
)

1
2 .

Low-dimensional elliptic-type problems of the form ∫ΩAµ∇µu ⋅ ∇µφdµ = ∫Ω fφdµ are con-
sidered within this setting.

For strong-form parabolic problems, a setting based on the Bouchitté-Fraglà framework
[Bou02] is proposed. A space of pairs (u, b) is introduced, where u ∈H1

µ and b is a Cosserat
vector field playing the role of an artificial normal component of the classical gradient.
Specifically, it is demanded that ∇µu+ b ∈H

1
µ. In this space, low-dimensional counterparts

of classical second-order operators are introduced.

The thesis consists of two papers authored by the researcher:

• Parabolic PDEs on low-dimensional structures[Cho24]

• Higher regularity of solutions to elliptic equations on low-dimensional structures[Cho23].

The first main objective of the thesis is to establish the strong and weak low-dimensional
counterparts of the parabolic problem ∂tu − div(B∇u) = 0 with the Neumann boundary
condition and initial datum u = g, defined on the low-dimensional structure S. The suitable
measure-theoretic second-order framework is developed by analogy with the first-order
setting sketched above. Fundamental outcomes regarding the existence and uniqueness
of solutions are established by combining the two crucial facts: first, the low-dimensional
counterpart Lµ of the operator div(B∇u) is closed, and second, the operator Lµ generates
a proper type of a semigroup.

The main technical result is achieving the closedness of the low-dimensional second-order
Lµ. This is done by applying special geometric extensions of functions defined on S with
the convergence results of the second-order operators, and new characterisations of the
involved spaces of functions.

To construct a semigroup generated by Lµ, a variant of Magyar [Mag89] of the Hille-Yosida
Theorem for non-invertible operators is adapted. The idea is to construct the semigroup
by the series of "forward" iterations 1

k!L
k
µ =

1
k!(Lµ ○ ... ○ Lµ). The proposed method only

accesses highly regular initial data g ∈ ⋂∞k=1D(L
k
µ).

An alternative direction of study is presented to extend the class of accessible initial data.
Weak-type parabolic problems are defined, and the existence of solutions is obtained by
the application of the Lions version of the Lax-Milgram Lemma. It is also shown that the
obtained weak solutions are regularized by demonstrating that they belong to the space of
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solutions to a stronger type of problem.

The asymptotic behaviour of parabolic solutions is studied to establish a connection be-
tween parabolic and elliptic problems.

The second aspect of the thesis is to examine the higher regularity of weak solutions to
the abovementioned elliptic problems. A componentwise H2(Si) regularity is proven as
the most elementary regularity result. The geometry of the set S causes problems with
applications of the difference quotients method due to the lack of the proper definition for
shifts u(⋅ + hv), v ∈ S of weak solutions u ∈ H1

µ. To circumvent the related issues, suitable
extensions of solutions are constructed.

Our proposed method involves extending the solution to the entire space using a formula
that can be informally represented as: "ũ(x, y, z) ∶= u(0, y, z)−(trΣ u)(0, y,0)+u(x, y,0)".
This approach has been combined with componentwise estimates, trace estimates, and
other tools to conclude that the H1

µ space is closed with respect to the generalised shifts
of functions. Next, the uniform upper bound for the generalised difference quotients is
obtained. While this result confirms that the solution satisfies u ∈ H2(Si), it falls short
of our expectations as the correspondence in the second-order behaviour between various
component manifolds is not controlled.

The essential regularity result is established by rectifying the obtained outcome. This
theorem proves that for any weak elliptic solution u ∈H1

µ exists some Cosserat vector field
b being a witness of the membership of u to the domain of the second-order operator Lµ.

The continuity of weak solutions in neighbourhoods of junction sets Si ∩Sj is investigated
by connecting the established results with the Sobolev-capacity theory and facts related
to the global behaviour of the partial traces. As a result, it is concluded that the solutions
are indeed continuous.

2020 Mathematics Subject Classification: 35K10, 35K65, 28A25, 47D06 35J15,
35B65, 35R06, 35D30.

Key words and phrases: non-standard domains, rectifiable sets, generating semigroup,
second-order parabolic equation, existence and uniqueness of solutions, weak solutions,
regularity, singular measures.
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Streszczenie

Niniejsza rozprawa dotyczy badania eliptycznych i parabolicznych równań różniczkowych
cząstkowych na "cienkich" strukturach. Struktury te są domkniętymi podzbiorami S
przestrzeni euklidesowej R3 o postaci S = ⋃m

i=1 Si, gdzie Si są gładkimi rozmaitościami
wymiaru dimSi ∈ {1,2}.

Na strukturze S rozważamy miarę µ oraz stowarzyszoną z nią wiązkę styczną. W tym celu
wprowadzamy zbiór Nµ gładkich pól wektorowych o zwartych nośnikach w ∈ C∞c (R3;R3)

takich, że w = ∇v na supp µ dla pewnej funkcji v ∈ C∞c (R3), która znika na supp µ.
Przestrzeń styczna Tµ(x) do miary µ w punkcie x jest zadana jako dopełnienie ortogonalne
w przestrzeni R3 zbioru {w(x) ∈ R3 ∶ w ∈ Nµ}.

Gradient odpowiadający mierze µ, oznaczany ∇µ, jest zdefiniowany przez rzut ortogonalny
Pµ na wiązkę styczną Tµ. W tym kontekście rozważamy zarówno zagadnienia eliptyczne jak
również silne zagadnienia paraboliczne. W tym celu wprowadzamy przestrzeń Sobolewa

H1
µ, zdefiniowana jako uzupełnienie C∞c (R3) w normie ∥⋅∥µ ∶= (∥ ⋅ ∥2L2

µ
+ ∥∇µ ⋅ ∥

2
L2
µ
)

1
2 . Wyko-

rzystujemy także teorię Bouchitté’a-Fragàlii wprowadzoną w pracy [Bou02]. Rozważamy
mianowicie przestrzeń par (u, b), gdzie u ∈ H1

µ oraz b jest polem wektorowym Cosserata
odgrywającym rolę sztucznej składowej normalnej klasycznego gradientu. W szczególności,
wymagane jest aby ∇µu + b ∈ H

1
µ. W przestrzeni tej zostają wprowadzone niskowymi-

arowe odpowiedniki klasycznych operatorów drugiego rzędu. Rozważana teoria równań
różniczkowych cząstkowych jest zgodna z niskowymiarowymi zagadnieniami wariacyjnymi
oraz niskowymiarowymi problemami eliptycznymi słabej postaci.

Rozprawa składa się z wyników otrzymanych przez autora w dwóch pracach:

• Parabolic PDEs on low-dimensional structures[Cho24]

• Higher regularity of solutions to elliptic equations on low-dimensional structures[Cho23].

Pierwszym z głównych zagadnień poruszanych w rozprawie jest zdefiniowanie na struk-
turze S silnego i słabego niskowymiarowego odpowiednika parabolicznego zagadnienia Neu-
manna postaci ∂tu − div(B∇u) = 0 z danymi początkowymi u = g. Zasadniczym rezultatem
jest wykazanie istnienia i jednoznaczności rozwiązań. Dowód tego faktu bazuje na udowod-
nieniu dwóch zasadniczych faktów: operator Lµ będący niskowymiarowym odpowiednikiem
klasycznego operatora div(B∇u) jest operatorem domkniętym, oraz operator Lµ generuje
półgrupę właściwego typu.

Kluczowym wynikiem technicznym jest wykazanie domkniętości niskowymiarowego op-
eratora drugiego rzędu Lµ. Dowód polega na konstrukcji specjalnych rozszerzeń funkcji
zadanych na niskowymiarowej strukturze S, zastosowaniu wyników dotyczących zbieżności
operatorów drugiego rzędu, oraz użyciu nowych charakteryzacji przestrzeni funkcyjnych.

Konstrukcja półgrupy generowanej przez operator Lµ bazuje na zaadaptowaniu wariantu
Magyara [Mag89] Twierdzenia Hille’a-Yosidy. Idea zastosowanej metody polega na kon-
strukcji półgrupy za pomocą szeregu iteracji "w przód": 1

k!L
k
µ =

1
k!(Lµ ○ ... ○ Lµ). Zapro-
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ponowane podejście wymaga bardzo regularnych danych początowych g ∈ ⋂∞k=1D(L
k
µ).

W rozprawie badane jest także alteratywne podejście, którego celem jest otrzymanie rezul-
tatów dla szerszej klasy danych początkowych. W tym celu wprowadzamy zagadnienia
paraboliczne słabego typu. Istnienie rozwiązań otrzymujemy przez zastosowanie Lematu
Laxa-Milgrama w wersji Lionsa. Wykazujemy także wyższą regularność słabych rozwiązań
oraz badamy ich asymptotykę.

Drugim kluczowym zagadnieniem wchodzącym w skład rozprawy są badania dotyczące
wyższej regularności wspomnianych wcześniej, problemów eliptycznych. Podstawowy wynik
dotyczy wyższej regularności typu H2(Si) na wszystkich rozmaitościach składowych struk-
tury S. Geometria zbioru S powoduje przeszkody w prawidłowym zdefiniowaniu przesunię-
cia słabego rozwiązania u ∈ H1

µ, tzn. zdefiniowaniu u(⋅ + hv), dla v ∈ S i zastosowaniu
metody ilorazów różnicowych. Aby ominąć te trudności konstruujemy odpowiednie rozsz-
erzenia rozwiązań.

Nasza metoda polega na zastosowaniu rozszerzeń słabych rozwiązań do całej przestrzeni eu-
klidesowej przy użyciu formuły, która w sposób nieformalny może zostać wyrażona następu-
jącym wzorem:

"ũ(x, y, z) ∶= u(0, y, z) − (trΣ u)(0, y,0) + u(x, y,0)".

Podejście to łączy wykorzystanie odpowiednich oszacowań na rozmaitościach składowych,
estymacji śladów, oraz innych narzędzi w celu wykazania, że przestrzeń H1

µ jest zamknięta
względem operacji brania uogólnionych przesunięć funkcji. Wynikiem przeprowadzonego
rozumowania jest konkluzja, iż rozwiązania posiadają regularność typu u ∈H2(Si).

Dzięki zastosowaniu wyżej wspomnianego wyniku otrzymujemy główny rezultat dotyczący
regularności słabego rozwiązania u ∈ H1

µ niskowymiarowego zagadnienia eliptycznego: ist-
nieje pewne pole wektorowe Cosserata b, które świadczy o tym, że funkcja u należy do
dziedziny operatora drugiego rzędu Lµ.

Otrzymane rezultaty dotyczą również zachowania słabych rozwiązań w otoczeniu zbiorów
styku rozmaitości składowych, tj. w otoczeniu zbiorów Si ∩ Sj . Dzięki zastosowaniu
omówionych wyników wraz z użyciem pewnych faktów z teorii pojemności Sobolewa,
oraz pewnych uzyskanych faktów dotyczących globalnego zachowania się śladów możemy
wnioskować o ciągłości rozwiązań.
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Chapter 1

Introduction

1.1 Overview of the theory and state of the art

The field of engineering sciences poses several fundamental challenges that are difficult
to overcome due to the unique geometry involved. One of such significant challenges is
determining the optimal value of a quantity that is an outcome of a specific process on a
"thin" fragment of the domain.

Figure 1.1: Two discs glued to the interval - a simple model of a "thin" conductor.
The figure taken from [Ryb20].

There were several attempts at the analysis on "thin" subsets. For example, in paper
[Ace91], the authors use the method of fattening the lower dimensional manifold to avoid
working with the sets of the zero Lebesgue measure.

If the structure that is described as "thin" exhibits a degree of smoothness that is suitable,
it is possible to obtain accurate results through the employment of the fattening method,
as, for instance, demonstrated in [Fon98]. Generally speaking, this method involves con-
sidering the higher dimensional version of a variational problem in an ε-neighborhood Zε

of the aforementioned "thin" structure Z and then taking the limit of ε-solutions as ε ap-
proaches zero. A study of such convergence is usually done with the help of Γ-convergence.
Definitions and facts related to the Γ-convergence theory of functionals are explained, for
example, in the book [Mas93].
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However, it should be noted that this approach has a limitation in that it cannot cover
structures such as the one illustrated in Figure 1.1 due to the required level of smoothness.
Geometric structures that have cusps, corners, some kind of discontinuity, or are composed
of parts with varying dimensions of the tangent space cannot be accurately approximated
using a sequence of auxiliary problems defined on shrinking ε-neighbourhoods. However, if
the considered structure is at least twice continuously differentiable, the existence of suit-
able neighbourhoods is guaranteed by the existence of smooth normal vector fields. This
follows from the Tubular Neighbourhood Theorem. The existence of ε-neighbourhoods in
cases where the dimension of the tangent structure varies cannot be addressed by single-
scale convergence of neighbourhoods. This results in irregularities at the points of inter-
section of components of different dimensions. The singularities that arise in the limit
produce problems with passing to the ε-limit of solutions.

Another approach has been designed to circumvent the abovementioned difficulties and
covers the general case of irregular, lower-dimensional, closed subsets of the Euclidean
space Rn. This class of structures contains a variety of geometrical objects originating
from various fields, including frames, CW-complexes, graphs, stratified manifolds, and
many others. The central idea of this new approach is to pair the "thin" subset of the
Euclidean space with a measure µ that is singular with respect to the Lebesgue measure
of the domain in which it is embedded. Further in the thesis, we will name such "thin"
subsets or corresponding singular measures as low-dimensional structures. By equipping
the related measure µ with the tangent bundle, various notions of differential geometry
can be reformulated in the measure-theoretical setting. With this in hand, it is possible
to transfer the analytical or geometrical framework into the introduced measure-related
setting. Indeed, the first- and second-order variational theories have certain counterparts
there. If a "thin" domain S is of the form S = ⋃m

i=1 Si ⊂ Rn, where Si are component
manifolds, then very often in applications, it is enough to use µ = Σm

i=1H
dimSi⌊Si , where

Hk is the natural k-dimensional Hausdorff measure associated with each component. Such
measures are sometimes called the multijunction measures (see, e.g., [Bou02]).

The basics of this new theory were introduced by Bouchitté, Buttazzo, and Seppecher in
[Bou97]. The authors study the issues of finding minimizers of functionals posed on sets
that are singular with respect to the underlying Lebesgue measure. The simplest example
is a question of minimizing the energy functional

F (φ) = ∫
A
∣∇φ∣2 (1.1)

on the "thin" set A ⊂ Rn, in the class of smooth functions φ ∈ C∞c (Rn) satisfying some
kind of boundary conditions. The direct approach to such issues demands the functional
to be lower semicontinuous in a given class of functions. To construct a proper relaxation –
the lower-semicontinuous envelope, i.e., the largest lower-semicontinuous functional smaller
than F , the measure-theoretical framework is utilized to establish a "thin" version of the
first-order Sobolev spaces denoted by H1

µ.

The concept of Sobolev spaces related to a singular measure was independently introduced
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by many authors using different approaches, see [Fra99, Lou14] for more discussion. We
will rely on the framework introduced in [Bou97]. It was later reestablished in [Haf03] in a
slightly different setting relying on concepts from [Fra99]. The authors of [Fra99] obtained
a notion of the tangent bundle to a measure in a less complicated way and more adequate
to apply in our further applications.

To define the tangent structure Tµ, by analogy with a standard smooth setting, we first
consider the class

Nµ = {w ∈ C
∞
c (R

3;R3
)∶ w = ∇v for some v ∈ C∞c (R

3
), s.t. v = 0 on S}.

The space Tµ(x) is defined as the R3-orthogonal complement of the evaluation Nµ(x). This
construction allowed for introducing the Sobolev-like space H1

µ as a completion of smooth
functions C∞c (Rn) in the norm (∫Ω ∣u∣

2dµ + ∫Ω ∣∇µu∣
2dµ)

1
2 . For a detailed discussion and

comparison of different formulations of the setting, please refer to [Fra99]. The formal
definition is given in Section 2.2.

In paper [Man05] Mandallena refined the relaxation results given in [Bou97]. He pro-
posed a method of constructing the lower-semicontinuous envelope for functionals on a
low-dimensional set A of the form ∫A f(∇u), where the integrand f need not be convex.
It was a significant improvement of the results of [Bou97] as they worked only under the
assumption of convexity of an integrand. In papers [Bou01, Bou021] the low-dimensional
analysis is connected with the Γ-convergence approach to study convergence in various
scales.

The results listed above are characterized by the fact that functionals under examination
are of the first-order; that is, the integrand depends only on the gradient and lower-order
terms. It was initially unclear how to approach the handling of higher-order problems.
However, Bouchitté and Fragalà made significant advancements in this area in their work
[Bou02]. Their paper focuses on variational problems of the second-order. They adapt
the technicalities used to establish the low-dimensional first-order framework into a more
complex second-order setting. One of the main challenges encountered in this process was
the inability to decouple second-order derivatives from first-order derivatives. The low-
dimensional second-order setting is the fundamental framework used in our research to
study strong-type parabolic problems on the low-dimensional structures.

As discussed earlier, the µ-tangent gradient ∇µu, defined as the projection of the full
gradient onto the tangent structure, is the right low-dimensional counterpart of the classical
gradient. This means that to establish the second-order differential operator on a "thin"
structure S, we first need to focus on how ∇µ acts on a tangent vector field.

Let us focus on the structure S = S1 ∪ S2 ⊂ R2 such that

S1 = {(x,0) ∈ R2
∶ x ∈ [−1,1]} and S2 = {(0, y) ∈ R2

∶ y ∈ [−1,1]}.

Let µ = H1⌊S1+H
1⌊S2 . Consider u ∈H1

µ and v ∶= ∇µu ∶ S → R2 be a fixed tangent vector field
on S. A first trivial observation is that v does not necessary belong to the domain of ∇µ

11



due to a potential discontinuity in S1 ∩S2. A natural way to circumvent this problem is to
consider an extension of v. To this end, we add to v some normal to S vector field and extend
this new vector field to obtain, let us say, smooth vector field ṽ ∶ R2 → R. The constructed
vector field ṽ is differentiable in the sense of ∇µ. Now the issue is in understanding how the
function ∇µṽ is connected to u and to the choice of extension. These observations suggest
that the operator associated with the measure-related second-order derivative should not
solely act on a single function supported on a lower-dimensional structure, but instead, it
should also depend on the normal (to the structure S) component of the (full) gradient.
Moreover, this is still not enough to ensure that the second derivative operator will be a
well-defined single-valued operator. We should also consider not the standard Hessian but
its projection onto the space of "tangent matrices". Otherwise, the second-order operator
would be multivalued, which is an outcome that is rather not expected. The precise
definition of the second-order framework is given in Section 2.3.

In [Bou02], the authors resolve the mentioned problems by assuming that the measure-
related second-order operator acts on pairs (u, b), which consists of a function u supported
on a low-dimensional structure and an additional, normal to the low-dimensional structure,
vector field b, called later the Cosserat vector field (see Definition 2.9 in Section 2.3). This
vector field plays the role of the artificial normal component of the µ-tangent gradient ∇µ.
Taking a sequence of smooth functions wn defined in the whole space, such that wn → u

and ∇⊥wn → b in a suitable sense, we are able to define the low-dimensional second-order
derivative operator Aµ(u, b) acting on pairs (u, b), as the limit of Q(∇2wn), where the
operator Q is a certain kind of projection on the space of "tangent matrices".

The fact that the introduced second derivative involves acting on the mentioned Cosserat
vector fields is the source of some original phenomena that appear in this theory and are
not present in the classical (Euclidean) cases. For instance, it is worth noting that finding
a suitable relaxation of the second-order functional in this context is not a local problem.
This fact is clearly illustrated in the example given in [Bou02], which we briefly sketch
here.

Let S ⊂ R2 be an equilateral triangle with the prescribed measure µ = H1⌊S . We consider
a problem of finding a relaxation of the Dirichlet functional G(u) = ∫S ∣∇u∣

2. It is shown
that the relaxed form of G on the structure S is expressed by the formula

G̃(u) = inf{∫ ∣u
′′
∣
2
+ 2∣b′∣2dµ},

where the infimum is taken over the set of pairs (u, b), with a fixed function u, satisfying a
certain compatibility condition. On the other hand, if we remove one side of the triangle,
and denote the restriction of the measure µ to this structure by ν, then the relaxation of
G is given by

G(u) = ∫ ∣u
′′
∣
2dν.

The recalled non-locality is a unique feature of the low-dimensional variational setting.

The development of variational theories in the context of singular subsets has raised ques-
tions about differential equations in this area. In the Euclidean setting, there is a well-
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known relationship between the calculus of variations and the theory of partial differential
equations. Therefore, it is natural to ask about a similar relationship in the low-dimensional
framework. Surprisingly, this aspect has not been widely studied. Partial differential equa-
tions appeared for the first time in the low-dimensional context in paper [Bou01], but in
a form connected with the measure-theoretic two-scale convergence method used there;
not as an independent object of studies. The first publication focused on this subject was
[Ryb20], published in 2020, aiming to provide a rigorous framework for the problem of
heat dissipation in a "thin" conductor. The authors of the article studied the class of weak
elliptic Neumann problems in the low-dimensional framework and sought to establish the
existence of solutions in the Sobolev-type space H1

µ. More precisely, they examine if there
exists a function u ∈H1

µ satisfying for all φ ∈ C∞(Rd)

∫
Ω
Aµ∇µu ⋅ ∇µφdµ = ∫

Ω
fφdµ, (1.2)

where ∇µ is a µ-tangent gradient, Aµ is a suitable relaxation of the matrix of coefficients,
and µ is a measure corresponding to the given low-dimensional structure.

The proof is based on the fact that this issue can be treated as the Euler-Lagrange equation
for some low-dimensional variational problem. The existence and uniqueness of solutions
are obtained by solving a minimization problem of the corresponding energy functional.
An important technical contribution of the paper is in establishing a new variant of the
Poincaré-type inequality. Problems with the classical Poincaré inequality appear if a point
of junction is small in the sense of the Sobolev capacity (for basic facts and definitions
related to the Sobolev capacity theory, we refer to [Eva15]). Paper [Ryb20] proposes a
weaker variant of the Poincaré inequality valid on the general class of low-dimensional
structures, see Section 2.2

However, it is important to note that further properties of such solutions have not been
discussed, nor have other types of equations been examined. This lack of further investiga-
tion, coupled with the intriguing and unique phenomena that emerge in low-dimensional
problems, serves as a key motivator for our current research.

Let us just mention that recent studies conducted in [But23] use the low-dimensional setting
to consider a specific variant of the so-called mass optimization problem - the problem of
minimization of min{−E(µ) + C(µ)}, where E is the energy functional, C is the cost
functional and the minimization is over the space of positive scalar measures µ. Later, the
µ-related low-dimensional analysis was applied in paper [Bol22], where the authors study
links between the free material design problem, the mass optimization problem, and the
theory of Monge-Kantorovich. Another version of the mass optimization problem, related
to the problem of determining the optimal conductivity tensor, was considered in [Lew23].

1.2 Brief discussion of the results

The research presented in the thesis is focused on various types of partial differential equa-
tions defined on low-dimensional structures. We can distinguish two primary objectives of
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our studies.

The first part is devoted to establishing the theory of strong and weak parabolic equa-
tions in the low-dimensional setting. This encompasses various types of time-dependent
equations and their relation with other variational theories. We establish key properties
of second-order differential operators and prove the main theorem regarding the existence
and uniqueness of solutions to second-order problems with the Neumann initial data. In
order to broaden the class of accessible initial data, we also investigate parabolic problems
of weak-type and examine the regularity of weak solutions. Additionally, we explore the
asymptotic behaviour of parabolic solutions, establishing a connection between solutions
to low-dimensional parabolic and elliptic equations. Our work relies on the development
of new characterizations of Sobolev-type spaces on low-dimensional structures and the
establishment of new functional-theoretic properties of low-dimensional differential opera-
tors. This type of result is the outcome of the paper "Parabolic PDEs on low-dimensional
structures" [Cho24].

The second objective of our studies is to develop the regularity theory for low-dimensional
weak elliptic problems. The results connected to this subject are based on the paper
"Higher regularity of solutions to elliptic equations on low-dimensional structures" [Cho23].

1.2.1 Low-dimesional parabolic problems

Let S = ⋃m
i=1 Si ⊂ R3, where Si are compact, smooth submanifolds (with boundary) of R3,

which are pairwise transversal and dimSi ∈ {1,2}. The goal of this work is to establish
the right meaning of the following formal Neumann boundary problem on the geometric
structure S,

ut − div(B∇u) = 0 in S × [0, T ],

B∇u ⋅ ν = 0 on ∂S × [0, T ],

u = g on S × {0},

(1.3)

where the matrix of coefficients B satisfies a suitable ellipticity condition, (B∇u ⋅ ν)⌊∂S is
an appropriate normal derivative and g is a given initial data.

To translate the problem into a suitable framework, we associate with the structure S
a corresponding singular measure µ, which encodes the geometry of the set S. By an
application of the second-order setting of [Bou02], we define a counterpart of the operator
∂t −L, where Lu = div(B∇u) is related with the underlying measure µ.

The main result deals with the existence of solutions:

● The low-dimensional conterpart of Problem (1.3) has a unique solution u, assuming
that the initial data g is sufficiently regular. This is the statement of Theorem 4.1
in Chapter 4.

For definitions of the involved operators (Definition 2.15 and Definition 2.16) we refer to
Chapter 2. Reformulated Problem (2.7) and Definition 2.19 of a solution can also be found
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in Chapter 2 of the thesis. The proof applies the general semigroup theory of differential
operators (for example, see [Paz83]) and a specific variant of the Hille-Yosida Theorem
about operators generating contraction semigroups established in [Mag89]. A core of this
approach is in avoiding using a resolvent operator, which turns out to be not well-defined
due to the lack of invertibility of the considered operator.

A crucial technical component of the proof is verifying the following property:

● The low-dimensional realisation of the operator div(B∇u) is a closed operator. This
is the content of Theorem 4.2 in Chapter 4.

Definitions of the mentioned differential operator and its domain are located in Chapter 2
(Definition 2.15 and Definition 2.17, respectively).

In our reasoning, we use a second-order functional space consisting of pairs (u, b), where u is
a function that belongs to a proper subspace of the Sobolev-type space H1

µ related to µ, and
b is a Cosserat vector field normal to the low-dimensional structure S. Precise formulation
of the considered second-order space is given in Definition 2.3. We construct the operator
Lµ, which is a low-dimensional generalization of div(B∇u). This implies that the second-
order operator also needs to be defined on the space of pairs (u, b). On the other hand,
as our aim is to generalise the classical parabolic problems posed in Euclidean domains,
on smooth manifolds, and we aim for consistency with the low-dimensional stationary
problems defined in [Ryb20], the operator Lµ cannot depend on the choice of the particular
Cosserat vector field b. Indeed, the proposed construction of the second-order equation
operator Lµ, see Definition 2.15 in Chapter 2, satisfies all of the expected properties.

The initial step needed in our construction of solutions to the low-dimensional counterpart
of the Neumann problem, see Definition 2.19, is in proving the closedness of the operator
Lµ. It turns out that this issue is much more challenging than the closedness of the second
derivative operator introduced in [Bou02].

It is worth noting that for a given value of u, the vector field b is not uniquely determined,
and there is insufficient information regarding its behaviour. Thus, issues arise in control-
ling the convergence of sequences of tuples (un, bn). Even in scenarios where the sequence
un converges in a suitable strong sense and it is established that Lµun also converges,
concluding that the limit of the sequence un also has a corresponding Cosserat field is
unfeasible.

To address these challenges, we propose a procedure for modifying the vector field bn for
a given pair (un, bn). As the process is based on special geometrical constructions, we
localise it to reduce the initial structure to a set of generic parts. This can be done with
the help of the new characterisation of the low-dimensional Sobolev-type spaces. The
method of constructing the new sequence of Cosserat vector fields generates a new normal
vector field b̃n, which possesses properties comparable to the original field bn. The rationale
behind introducing the modified sequence of vector fields b̃n is that its convergence can be
entirely controlled in terms of the corresponding functions un. Combining these conclusions
with the closedness results given in [Bou02], Lemma 3.4 in Chapter 3, characterisations
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of membership in the domain of the second-order derivative operator and some additional
facts related to well-posedness of Whitney-type extensions, we can derive that the limit
term u (un → u) is also equipped with the proper Cosserat vector field b. Finally, this
implies that the equation operator Lµ is closed in a considered sense.

The subsequent task of our programme of establishing the existence of strong parabolic
solutions relies on adapting the Magyar variant of the Hille-Yosida theorem proposed in
paper [Mag89]. The essential obstacle that we encounter is the lack of a well-defined
resolvent operator corresponding to the equation operator Lµ. Indeed, the operator Lµ is
not surjective in the expected sense, which implies that the resolvent can not be defined.
The approach presented in [Mag89] circumvents the use of the resolvent operator. Applying
the results of [Mag89] to the considered framework, we construct the contraction semigroup
generated by the operator Lµ. The method of construction of the generated semigroup is
based on a "forward" iteration process, namely the semigroup is obtained as a limit n→∞
of the series of subsequent iterations

k=n
∑
k=0

1

k!
Lk
µ =

k=n
∑
k=0

1

k!
(Lµ ○ ... ○Lµ).

This method of construction of solutions works well for our problem, but it has a drawback
that is inseparable from its nature. It forces narrowing the set of admissible initial data
to the class ⋂∞k=1D(L

k
µ) of functions that are smooth with respect to the operator Lµ. To

broaden the class of accessible initial data, we explore various versions of weak formulations
of the parabolic problem (Chapter 5) and study their regularity.

● The weak counterpart of the low-dimensional parabolic problem has a unique so-
lution. Moreover, under the additional regularity assumption on the initial data,
the stronger type of the problem is uniquely solvable. These kind of results are
established in Chapter 5.

Proving the existence of solutions to weak variants of the considered issue is less compli-
cated than that of the strong formulation. To this end, we adapt the Lions version of
the Lax-Milgram theorem to the considered setting. Further, our focus is on verifying
the membership of the obtained weak solutions in the space of solutions to equations of a
more regular form (yet less regular than the initially considered strong-type setting). We
derive important information about the regularity of weak solutions and demonstrate the
connection between parabolic and elliptic problems.

We examine the asymptotic behaviour of weak-type solutions. We show that in a long
time, weak parabolic solutions converge to weak solutions to the low-dimensional elliptic
problem (Section 5.3). The results are obtained by the use of the methods proposed in
[Gol08] for the classical p-Laplace equations.

1.2.2 Higher regularity of solutions to elliptic problems.

The second major objective of our project is focused on validating the higher regular-
ity of low-dimensional solutions of elliptic problems. This is a fundamental and prelimi-
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nary step towards establishing the relationship between this category of equations and the
second-order variational theory of Bouchitté and Fragalà, as introduced in their publica-
tion [Bou02], or between the strong-form parabolic problems examined by the author in
paper [Cho24].

In [Ryb20], the authors prove the existence of weak solutions to elliptic problems considered
on a general class of glued manifolds of potentially different dimensions (equation (1.2)).
This naturally leads to the question of the higher regularity of said solutions. In the
low-dimensional setting, the most fundamental notion of regularity is the higher Sobolev
regularity on the component manifolds of the given low-dimensional structure. This kind
of regularity is required for further studies but is far from sufficient from the perspective of
the low-dimensional structures theory since it does not capture any additional connection
between higher-order behaviour on different component manifolds of the structure. It
turns out that a membership of a weak solution in the domain of the second-order operator
introduced in [Bou02] is the most adequate kind of differential regularity in this framework.
Indeed, the mentioned framework is rich enough to encode the geometry of the structure,
provides correspondence between regularity on various components and arises naturally in
low-dimensional variational problems.

Firstly, we address the aforementioned problem of upgrading the elliptic regularity in the
classical Sobolev sense on components. This is the starting point for further improvements.
Further, we examine other regularity-related properties of weak solutions. Combining the
local regularity result with some facts from the capacity theory, we conclude that weak
solutions are continuous. A different critical aspect of our study uses technical properties
of the low-dimensional second-order operator to prove the membership of weak solutions
in the proper higher-order space of functions.

We are especially interested in the elliptic problems on structures with one- or two-
dimensional parts embedded in R3, and throughout the research, we restrict our attention
to this setting. Such restriction is motivated by physical applications (see, for example,
[Lew23]) as well as the application of our earlier results about parabolic problems, which use
methods designed to work in the case of structures consisting of at most two-dimensional
component manifolds. It is expected that our research may be generalised to analogous
problems in an arbitrary n-dimensional Euclidean space, but this needs further non-trivial
improvements. To avoid technical complications, we also impose additional restrictions
on the class of considered structures. Nonetheless, we believe that the presented methods
are likely to carry over to more general geometric structures. Potential generalisations are
discussed in the next section.

The following facts concerning an additional regularity of low-dimensional weak solutions
to elliptic equations constitute the main results of our studies:

• On each component manifold Si of the low-dimensional structure S a weak solution
u of the elliptic issue (1.2) has the extra regularity u ∈H2(Si). This is the statement
of Theorem 6.5 in Chapter 6.
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• A weak solution u is globally continuous on the given low-dimensional structure, that
is u ∈ C(S). This fact is precisely expressed in Theorem 6.8 in Chapter 6.

• If u solves weak problem (1.2), then u is a member of the domain of the low-
dimensional second-order derivative operator Lµ. This is the result of Theorem 6.10
in Chapter 6.

The proof of the result of the first point is technical and combines new constructions and
methods dedicated to the considered low-dimensional framework as well as modifications
of the classical facts. As our approach is closely related to the geometry of the examined
structure before we proceed to the proper consideration, we first show that without losing
the generality, one can simplify the reasoning by examining a set of generic types of sub-
structures of the form Si ∩ Sj , Si ∩ Sj ≠ ∅. The main obstacle in showing componentwise
higher regularity lies in defining a proper notion of shift u(⋅ + hv), h > 0, v ∈ S of the
function u supported on the "thin" subset S.

As we aim to generalise the difference quotients method (see, for instance, [Eva10]), it is
necessary to address this question. We propose a construction based on a properly chosen
sequence of well-behaved extensions of weak solutions.

To illustrate the idea, let us suppose that u is a function supported on S = D1 ∪D2 ⊂ R3,
with D1 being the unit disc with origin at zero in variables x, y and D2 analogous disc but
in variables y, z. Moreover, let the support of u be contained within the set (1 − ε)S for
some small ε > 0.

Determining the shift of the function u in the direction parallel to the set of the inter-
section of two component manifolds, that is, as Σ = S1 ∩ S2 = {(0, y,0) ∶ y ∈ [−1,1]}, is
a straightforward task. Precisely, defining the function u(⋅ + hey), where ∣h∣ is sufficiently
small, poses no problems. However, determining the shift in the direction of the variable x
or z is not immediately apparent as we do not know the value of the shift on the component
orthogonal to the direction of shifting.

We would intuitively like to extend the function u ∶ S → R to ũ ∶ R3 → R by the formula

"ũ(x, y, z) ∶= u(0, y, z) − (trΣ u)(0, y,0) + u(x, y,0)", (1.4)

where trΣ denotes the trace on the intersection Σ. Above, we used quotation marks because
the presented formula expresses a general idea standing behind the proposed extension.
The formal construction of the extension is quite involved and technical, and it is the crucial
part of Theorem 6.5 in Chapter 6. It is important to mention that in the general case (as
considered in Theorem 6.5), the function to which we apply this formula is a solution to a
low-dimensional elliptic problem. It turns out that it is not valid for an arbitrary function
of the class H1

µ.

In the next step, we construct a sequence of approximations αn of the extension ũ sharing
two special properties. Firstly, we can extend each term αn from the considered structure
to the whole Euclidean space and obtain a sufficiently regular function. Secondly, the
global behaviour of extensions is controlled in terms of the original function posed on the
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low-dimensional structure. Now, each term of the sequence αn can be shifted giving the
sequence αn(⋅+hv), v ∈ S. To prove that the shifted sequence converges in a suitable sense
and the limit is regular enough, we examine the regularity of the trace trΣ u. Establishing
that trΣ u ∈H2(Σ) and combining this result with the local regularity in regions separated
from the intersection set Σ we are able to conclude that the function space is closed under
shifts and the generalised difference quotients. This allows us to prove a higher regularity
of solutions by controlling uniform bounds of generalised difference quotients.

Latter results are implications or refinements of the main theorem. We establish the global
continuity of low-dimensional weak solutions by utilising some facts from the Sobolev
capacity theory and conclusions provided by our main result. An interesting fact is that
the continuity on the whole structure depends on the dimensions of the components.

Furthermore, still relying on the main theorem, we provide a membership of a weak solution
in the domain of the measure-related second-order operator Lµ. To show that a solution u
is in D(Lµ) we need to prove that there exists the Cosserat vector field corresponding to u.
That is for u exists some normal to S vector field b such that the pair (u, b) belongs to the
domain of the low-dimensional second-order derivative. The main tool used to establish
this is the closedness result for the operator Lµ stated in [Cho24].

1.2.3 Further discussion of the results

Let us briefly discuss some other potentially related results and highlight differences.
Equipped with the naturally induced metric, the low-dimensional structure S is a met-
ric measure space. In the category of metric measure spaces, there are several known
candidates for generalisations of the Euclidean gradient, amongst them two are probably
best known: the upper gradient discussed in [Amb05, Hei15] and the Cheeger gradient,
see [Che99]. It turns out that interpreting the low-dimensional setting as metric measure
spaces, the upper gradient corresponds to ∣∇Si ∣, where ∇Si is a component of the gradient
tangent to Si. In other words, such an approach loses a significant amount of information
required by our goals. Therefore, we start with the µ-related gradient, which is the most
natural generalisation of a gradient tangent to a manifold. It should be mentioned that
our regularity results are strongly based on a form of the gradient and the fact that it rep-
resents the classical gradient locally. Potential generalisations of the obtained regularity
results to a less geometrical, more abstract setting seem to be difficult.

It should be noted that the considered setting of measures equipped with a tangent struc-
ture is very close to a special case of the general notion of a varifold, see [All72]. The
difference is that in the case of the theory examined in this project, tangent structures
to the considered objects are defined intrinsically by the inherited embedding into the
Euclidean space, and varifolds may possess very general tangent structures.

We would like to draw attention to a recent paper [Cap22] that addresses the Neumann
problem for the fractional Laplacian. The authors of this paper consider this problem in the
context of a general setting of doubling metric measure spaces X, which are equipped with
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the Poincaré inequality. Through the development of Caccioppoli-type estimates in this
context, the authors establish the Hölder continuity of solutions to this problem. Moreover,
the authors investigate the existence of solutions to a similar fractional Laplacian problem
on those spaces that are equivalent to the "boundary" X ∖X. Significantly, they are able
to relax the assumptions and expand the class of considered spaces by eliminating the
Poincaré inequality assumption. Our low-dimensional setting, in contrast to the general
theory of [Cap22], offers a distinct advantage in that it provides a well-defined notion of the
second-order derivative, which enables us to consider second-order problems of the strong
form.

There is a rich theory of partial differential equations on graphs. For an introduction to the
theory, we recommend referring to [Lag04], and for an overview of some results, we suggest
[Meh01]. There are two ways to describe analytic problems on graphs. In the continuous
approach, we consider functions defined on the edges of the graph with some transmission
conditions posed on vertices, for instance see [Kra20]. In the discrete approach, we consider
classes of functions defined on the vertices of the graph, and the integration or differential
operators are in the discrete form, see [Gri16]. From our perspective, the former type
of setting is more important as it is closer to the framework we consider. Therefore,
we limit our discussion to it. The extensive research in this theory includes studies of
elliptic or parabolic problems [Kra20], or variational problems [Lin22]. Moreover, this type
of formalism has a wide range of practical applications, for instance, in biological sciences
[Kra20] or image processing [Haf16]. Comparing the theory of partial differential equations
on a graph with the setting we examine, we can point out two differences. First, graphs are
naturally one-dimensional structures, and in our considerations, we study a more general
class of objects that also have their own geometry. Second, and more importantly, in the
analysis on graphs the functions are usually initially defined on the edges ei, i = 1, ...,m of
graphs, that is, spaces like Πm

i=1H
1([0,1]) are considered, and the interplay between edges

is introduced as set of conditions posed in nodes of the graph. In our approach, we define
functional spaces on the given structure S, which is a subset of R3, as a completion of
smooth functions u ∶ R3 → R in a corresponding norm. This is crucial as the problems we
consider are related to variational problems obtained as relaxations of the classical issues
of the form F ∶ C∞(R3) → R. Besides that, in the low-dimensional setting, counterparts
of transmission conditions used in graph theories are naturally included in domains of
finiteness of low-dimensional differential operators.

Let us note that, in general, the solutions to low-dimensional problems are not simple
gluings of classical solutions on component manifolds. To present that the low-dimensional
solutions might differ in an essential way from solutions of classical problems, we recall the
conclusion given by Example 5.11. For a more detailed discussion, see Example 5.11 and
5.12 in Section 5.2, showing that quite unexpected phenomena appear even in the simple
case of the stationary heat equation.

Assume that Ω ⊂ R2 is a 2-dimensional unit ball B(0,1), and set

E1 ∶= {(y,0) ∶ y ∈ [−1,1]}, E2 ∶= {(0, z) ∶ z ∈ [−1,1]}
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and µ ∶= H1∣E1 + H
1∣E2 . Let us choose f ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

y on E1,

0 on E2

and consider the stationary heat

problem (see [Ryb20] for the existence and uniqueness result)

∫
Ω
∇µu ⋅ ∇µφdµ = ∫

Ω
fφdµ (1.5)

for φ ∈ C∞c (R2).

On the component E1 let us take u1(y) ∶= − 21
1080 −

y4

12 +
y3

6 +
y2

6 −
y
2 and on the component E2

the constant function u2(z) ∶= −
21

1080 . It can be observed (see Example 5.11) that neither
u1 nor u2 satisfies the weak equation separately on components, because ∫Ei

uidx ≠ 0. On

the other hand, the function u ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u1 on E1,

u2 on E2

belongs to H1
µ with ∫Ω udµ = 0, and is a

solution to weak problem (1.5).

We would like to discuss the potential applications of our results and the future prospects
of development in the related theory. By establishing the right parabolic setting, we can
describe time-dependent phenomena whose static counterparts were examined previously.
This includes a long list of various types of problems mentioned earlier. We also note
that the strong-form second-order framework was not widely studied before in the analysis
of singular measures, and the obtained results provide a suitable setting for expressing
issues studied earlier in a more regular way. Rephrasing the weak problems in this way
is important because it allows us to capture more of the specific geometrical properties of
the singular subsets.

The higher regularity results given for the elliptic type equations are not only important
in applications to weak problems as considered in [Ryb20], but also have a wide range
of other possible applications. Specifically, due to the Euler-Lagrange correspondence of
weak elliptic problems with the first-order variational theory established in [Ryb20] our
results imply higher regularity of minimizers. Given the richness of the variational theory
on low-dimensional structures, this has far-reaching consequences in many areas.

There are several ways in which the obtained results can be generalized. First and foremost,
it is worth noting that our proofs of main theorems included certain additional restrictions
on the class of considered structures. Specifically, we assumed that all structures are embed-
ded in R3 and we excluded the possibility of the common intersection of three components
of the structure. This was done because, in the main technical result of our paper [Cho24],
which is the proof of the closedness of the operator Lµ, we proposed a suitable explicit
geometrical construction of extensions of functions defined on low-dimensional structures
that works in this setting. However, it does not appear to be immediately generalizable to
higher dimensions. We utilized this result in our paper devoted to regularity theory, where
we conclude that weak solutions belong to the domain of higher-order operators. Although
we have not encountered any counterexamples, we believe it may be possible to replicate
the proposed construction with a more abstract one that will work in higher dimensions.

Regarding the elimination of the common intersections of multiple components, a similar
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situation arises in the paper dealing with parabolic problems. We believe that such gen-
eralization in the regularity-related paper can be established by the following observation:
the smooth approximation formula for functions supported in low-dimensional domains, as
described in [Cho23], can be interpreted as a variant of the inclusion-exclusion principle.
By analogy, if we extend this formula to the case of k-many structures, the further com-
plications that arise appear to be only of a technical nature and likely can be eliminated.

The thesis is organised as follows.

In Chapter 2 we evoke basic notions of the new framework. Among others, we present here:
definitions of spaces of functions and the adequate low-dimensional framework, preliminary
properties of introduced operators, or notions of solutions to parabolic problems.

Chapter 3 contains elementary and basic results describing the properties of newly in-
troduced objects. Section 3.3 includes new and significant characterisations of first- and
second-order spaces of functions.

Chapter 4 is devoted to the main theorems of the parabolic setting – the proof of the
existence of a semigroup generated by the operator Lµ and the result showing the closedness
of the operator Lµ.

Chapter 5 is devoted to weak variants of the parabolic equations and the regularity of
solutions. We prove that when passing t → ∞, parabolic solutions converge to a solution
of the stationary equation. This chapter also contains examples of low-dimensional issues,
in particular Example 5.11 shows it is not always possible to obtain low-dimensional weak
solutions with the expected regularity by adding up weak solutions component-wise.

Chapter 6 deals with the higher regularity of solutions to the elliptic problems. A various
types of regularity-related statements are proven there. Finally, we establish connections
between the strong-form second-order operator and weak solutions of elliptic equations.

1.3 Notation

Here we collect the basic notation used throughout the thesis:

P (X) – the power set of the set X

⊥ – orthogonality relation in the sense of the R3 scalar product

R3×3
sym – the space of 3 × 3 symmetric matrices

µ – a positive Radon measure

dimM – a dimension of a smooth manifold M

(f)A – the mean of a function f on a set A i.e., (f)A = 1
µ(A) ∫A fdµ

X∗ – the space of continuous linear functionals on a Banach space X

g∣A, ν⌊A – a restriction of a function f, a measure ν respectively, to a set A.

We sometimes abuse the notation in the following two cases.
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If f ∶ A→ R, B ⊂ A, and f ∣B ∈K(B), where K(B) is some set of functions on B, we
write f ∈K(B).

If M is a smooth manifold and g ∶ M → R we write that g has property p almost
everywhere (a.e. for short) on M, meaning that g satisfies p almost everywhere on
M with respect to the standard Hausdorff measure HdimM ⌊M restricted to the the
manifold M.
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Chapter 2

Preliminaries

In this chapter, we present concepts and theories that form the foundation of our research.
We formulate the low-dimensional framework and provide an overview of the associated
analytical setting. Following this, we delve into differential problems, which encompass
various forms of low-dimensional counterparts of elliptic and parabolic problems.

To conduct an analysis in the considered setting, it is essential to establish a notion of a
tangent bundle to a closed subset of the Euclidean space. Various methods can be used to
define such objects, including a variant presented in [Bou97], utilizing the general theory
of variational manifolds as in [All72], or generalizing the definition of the notion of tangent
space in the case of a smooth manifold as presented in [Haf03]. A detailed discussion of
different methods can be found in paper [Fra99].

Each of the concurrent methods of defining such objects is better suited to certain problems.
For this purpose, we choose the method based on the analogy with the classical way
of constructing a tangent structure to a smooth manifold, as presented in [Fra99]. Our
decision was influenced by two factors. Firstly, as presented in [Ryb20], this definition
works well with partial differential equations. Secondly, it suits second-order problems
considered in this scenario. Indeed, by utilizing this definition, we immediately obtain
the existence of a smooth approximating sequence of functions posed on the whole space.
This is crucial in constructing suitable extensions of functions defined on a low-dimensional
structure.

The definitions pertaining to the first-order functional setting have been sourced from
[Bou97], [Haf03], and [Fra99]. The majority of the definitions in the second-order frame-
work have been extracted from [Bou02]. The operator related to the second-order equation
is the concept defined in [Cho24]. The theory of weak elliptic equations has been presented
in a format outlined in [Ryb20]. The spaces of time-dependent functions and appropriate
framework used later in the weak parabolic equations are taken from [Sho97]. The parts
related to the higher regularity with respect to the abstract operator and semigroup theory
are taken from [Mag89].

Throughout the rest of the chapter, if not specified more precisely, the letter µ denotes a
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positive real-valued Radon measure on R3.

2.1 Low-dimensional structures

We introduce a primary object of interest – the class of low-dimensional structures. This
class consists of specific Radon measures that represent geometrical structures.

The presented class of measures, introduced in [Cho24], is a modification of that defined
in papers [Bou97], [Haf03].

Definition 2.1. (Low-dimensional structure) Let Ω ⊂ R3 be a non-empty, open, bounded
and connected set. For a fixed m ∈ N and 0 ⩽ k ⩽m + 1, let Si, 1 ⩽ i ⩽m be a:

• 2–dimensional compact smooth manifold with boundary for i ⩽ k;

• 1–dimensional compact smooth manifold with boundary for i > k.

In addition, let the atlas of each Si contains exactly one map.1 Assume further that for
each 1 ⩽ i, j ⩽m, i ≠ j:

LDS1: ∂Ω ∩ Si = ∂Si;

LDS2: Si is transversal to Sj and ∂Si ∩ ∂Sj = ∅;

LDS3: for any 1 ⩽ i, j, k ⩽m, Si ∩ Sj ∩ Sk = ∅.

With each Si we associate the pair (HdimSi⌊Si , θi), whereHdimSi⌊Si is the dimSi-dimensional
Hausdorff measure restricted to Si and θi ∈ L∞(Si), where θi ⩾ c > 0, for some constant c.
We say that a positive Radon measure µ belongs to the class Ŝ if it is of the form

µ =
m

∑
i=1
θiH

dimSi⌊Si .

A positive Radon measure µ belongs to the class S̃ if it is of the form

µ =
m

∑
i=1
H

dimSi⌊Si .

Let us briefly explain the restrictions imposed on the Ŝ class. First of all, we should
understand that each structure S is dependent on the choice of the region Ω, maybe
not in a topological, but at least in a geometrical sense. This is forced by LDS1. The
transversality condition of LDS2 excludes those kinds of domains that do not need the
presented framework and similar results can be proved with the help of standard methods.
The second part of condition LDS2 is introduced to avoid problems with defining the
normal vector field to the boundary of S. Finally, condition LDS3 disallows for more than
two component manifolds to intersect at a single point. This assumption is introduced to
simplify technicalities, and we believe it can be relaxed for a price of longer computations.

Throughout the thesis, we name measures belonging to the class Ŝ as low-dimensional
structures. We also use the same name to refer to sets on which the singular measures

1The assumption is a technical one, and it is added to simplify the proof of the main theorem.
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are supported. This ambiguity does not produce confusion; the type of object we refer to
should be clear from a context.

By S we denote the subclass of the class S̃ consisting of low-dimensional structures whose
component manifolds have fixed dimension, that is, if µ ∈ S and suppµ = ⋃m

i=1 Si, then for
all i ∈ {1, ...,m} dimSi = k, for k = 1 or k = 2. The subclass S will be especially important
for us when considering problems related to the strong-form operators (see Section 2.3). In
some cases, it is more appropriate to refer directly to the set S in which the low-dimensional
structure µ is supported and write S ∈ S. Indeed, we use this from time to time if such
disambiguation does not cause problems.

The introduced above class Ŝ of lower dimensional structures considered here is a proper
subset of the one used, for example, in [Ryb20]. The difference is in two aspects. First, we
assume that a boundary of each component manifold Si is exactly the set of intersection
of Si with the boundary of the ambient set Ω (condition LDS1). In [Ryb20], the authors
allow a situation, where ∂Si ⊂ Sj , i ≠ j. A second difference is in an additional restric-
tion on possible types of intersections of components. This is expressed in LDS3. This
restriction rules out common intersections of three or more component manifolds. The
above-mentioned conditions are not crucial from our perspective and were introduced to
simplify further reasoning and shorten the exposition.

Let µ ∈ Ŝ and S = suppµ. Let S = ⋃m
i=1 Si, where Si are component manifolds. We denote

∂S ∶=
m

⋃
i=1
∂Si.

For any i ∈ {1, ...,m} let n⌊∂Si
∶ ∂Si → R3 denote the uniquely determined outward normal

unit vector field to ∂Si in the sense of Spivak [Spi65]. By the outward normal unit vector
field to the low-dimensional structure µ we call the function n ∶ ∂S → R3 defined as

n ∶=
m

⋃
i=1
n⌊∂Si

.

We list some examples of low-dimensional structures here. For instance, this class includes
the following structures.

• Any smooth manifold of a dimension 1 or 2 with a boundary embedded in R3 can
be considered as a low-dimensional structure with exactly one component and the
corresponding Hausdorff measure.

• CW-complex with smooth cells is an example of a low-dimensional structure. In fact,
this generalizes the first point as any smooth manifold has a CW-complex structure.

• Certain finite graphs belong to the class S.

• An isometric embedding into the Euclidean space of a singular metric space X, as
considered by Gromov and Schoen in [Gro92].

• Smooth immersed submanifolds that have transversal self-intersections.

Let us discuss the following two examples of structures.

26



• Let the set A ⊂ R3 be defined as A = A1 ∪ A2, with component manifolds A1 =

{(0,0, z) ∈ R3 ∶ z ∈ [−1,1]} and A2 = {(x, y,0) ∈ R3 ∶ x2 + y2 ⩽ 1}. Let µ =

H1∣A1+H
2∣A2 . Clearly, the measure µ is a low-dimensional structure with the ob-

vious partition to component manifolds.

• The second example presents a structure that is not contained in our definition.

Let us consider the disc B1 = {(x, y,0) ∈ R3 ∶ x2 + y2 ⩽ 1} and the manifold B2 =

{(x, y, z) ∈ R3 ∶ x, y ∈ [−1,1], z = x2}. We define a subset B = B1 ∪ B2 with the
corresponding singular measure ν = H2∣B1+H

2∣B2 .

The tangent space to the component B2 in the point (0,0,0) is a plane R2. Obviously
at any point of B1 the tangent is also R2. This means that the condition LDS2 of
the definition of the low-dimensional structure is violated.

2.2 First-order space of functions

To define a derivative of a function given on some (possibly irregular) low-dimensional
structure (or, in general, on a support of a Radon measure), we need to develop a notion of
a tangent bundle of a measure. Before formalising this object, let us recall the well-known
measure-related Lebesgue space.

For p ∈ [1,∞] the Lebesgue space Lp
µ is defined as a subspace of the space of µ-measurable

functions such that

a) for p ∈ [1,∞) the norm

∥f∥Lp
µ
∶= (∫

Ω
∣f ∣pdµ)

1
p

,

b) for p = ∞ the norm
∥f∥L∞µ ∶= ess supµ ∣f ∣,

is finite.

A tangent space to a Radon measure µ can be defined in many non-equivalent ways. An
extensive discussion of this subject with a comparison of various definitions can be found
in [Fra99]. We follow the method of construction proposed in [Bou97] and in [Haf03]. The
main advantage of this approach is its simplicity and direct analogy with a classical tangent
space to a smooth manifold.

Definition 2.2 (Tangent space to a Radon measure). Consider a set of all smooth functions
vanishing on suppµ, and the set T ⊥µ of gradients of such functions:

T
⊥
µ ∶= {w ∈ C

∞
c (R

3;R3
) ∶ w = ∇v on suppµ for some v ∈ C∞c (R

3, v = 0 on suppµ} .

It is easy to observe that a set-valued mapping T ⊥µ ∶ R3 → P (R3),

T ⊥µ (x) ∶= {w(x) ∈ R
3
∶ w ∈ T ⊥µ }
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assigns to each x ∈ R3 certain linear subspace of R3. The space Tµ(x) tangent to the
measure µ at a point x ∈ R3 is defined as

Tµ(x) ∶= {w ∈ R3
∶ w ⊥ T ⊥µ (x)} ,

the symbol ⊥ denotes the orthogonality in the Euclidean scalar product in R3.

With a notion of the tangent structure to µ, we might project the classical gradient onto
it to obtain its measure-related counterpart. Strictly speaking, for µ almost every x ∈ R3

let Pµ(x) ∶ R3 → Tµ(x) denote the orthogonal projection onto the tangent space Tµ. Then
the tangent gradient of a function u ∈ C∞c (R3) is defined for a.e. x ∈ R3 as

∇µu(x) ∶= Pµ(x)∇u(x).

We are ready to introduce the basic Sobolev-like space H1
µ. The Sobolev space H1

µ is defined
as a completion of the space C∞c (R3) in the Sobolev norm

∥ ⋅ ∥µ ∶= (∥ ⋅ ∥
2
L2
µ
+ ∥∇µ ⋅ ∥

2
L2
µ
)

1
2
.

Combining a useful characterisation of the space H1
µ established in [Bou02, Lem. 2.2] with

the fact that multiplying a measure by a bounded and separated from zero density does
not change a tangent structure [Ryb20], we derive the following observations expressing
relations between classical tangent spaces and spaces tangent to a measure µ ∈ Ŝ.

Proposition 2.3 (see [Bou02, Ryb20]). Assume, that µ ∈ Ŝ, suppµ = ⋃m
i=1 Si. A classical

tangent structure on the component manifold Si is denoted by TSi , and a classical tangent
gradient on the component Si is denoted by ∇Si . Then

a) Tµ(x) = ∑
m
i=1 TSi(x) for µ-a.e. x ∈ R3,

b) if u ∈H1
µ, then for i ∈ {1, ...,m} u⌊Si∈H

1(Si),

c) if u ∈H1
µ, then for i ∈ {1, ...,m} (∇µu)⌊Si= ∇Siu,

d) for a fixed i ∈ {1, ...,m} , let φ ∈ C∞(R3), φ = 0 on ⋃j≠i Sj , u ∈ L
2
µ and u⌊Si∈H

1(Si),

then φu ∈H1
µ.

The basic tool in the classical Sobolev spaces is the Poincaré-type inequality.

If the considered low-dimensional structure has all component manifolds of the same di-
mension, then, as pointed out in [Ryb20, Sec. 2.2], the standard Poincaré inequality is
valid.

Lemma 2.4 (Standard Poincaré inequality). Assume that µ ∈ Ŝ, suppµ = S = ⋃m
i=1 Si and

for i ∈ {1, ...,m} dimSi = k ∈ {1,2}, then the standard Poincaré inequality

∫
Ω
∣u − (u)S ∣

2dµ ⩽ C ∫
Ω
∣∇µu∣

2dµ (2.1)

is valid for any u ∈H1
µ.
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It is also shown in [Ryb20, Sec. 2.2] that in a case in which there exist i, j ∈ {1, ...,m}
such that dimSi ≠ dimSj , where Si, Sj are component manifolds of the low-dimensional
structure µ ∈ Ŝ, the Poincaré inequality (2.1) for functions of the class H1

µ is not valid.
In such a situation, we can prove that the kernel of ∇µ is two-dimensional, which proves
that the Poincaré inequality (2.1) is false. This last fact is implied by the observation that
the function that on each component is a different constant belongs to the space H1

µ. The
fact that the kernel of ∇µ is two-dimensional is related to the null Sobolev capacity of the
intersection of component manifolds and it follows as in the proof of Proposition 3.2 of
Section 3.1.

Due to this fact, the authors of the mentioned paper introduce a generalised version of the
Poincaré inequality (see [Ryb20, Thm. 2.1]]):

Lemma 2.5 (Generalised Poincaré inequality). Consider a partition I1, ..., Id of the set of
indexes {1, ...,m} = I1 ∪ ... ∪ Id, where sets Ik, k ∈ {1, ..., d} are pairwise disjoint and the
following conditions are satisfied:

a) for any k ∈ {1, ..., d} the characteristic function χ{⋃i∈Ik Si}
of a sum of component

manifolds with indexes in Ik belongs to the kernel of the tangent gradient operator,
that is

χ{⋃i∈Ik Si}
∈ ker∇µ

b) the set Ik, k ∈ {1, ..., d} is the largest set of indices with the property a): if α ∈ Ik
and Ĩk ∶= Ik ∖ {α}, then

χ{⋃i∈Ĩk
Si}
∉ ker∇µ.

With any element Ik of the partition, we associate the projection

Pku ∶= χ{⋃i∈Ik Si}⨏⋃i∈Ik Si

udµ,

where ⨏X fdµ ∶=
1

µ(X) ∫X fdµ. Then for µ ∈ S̃ exists a set of positive constants {C1, ...,Cd}

such that for all k ∈ {1, ..., d} and any u ∈H1
µ the following version of the Poincaré inequality

is satisfied
∑
j∈Ik
∫
Ω
∣u − Pku∣

2dµj ⩽ Ck ∑
j∈Ik
∫
Ω
∣∇µu∣

2dµj , (2.2)

for µj ∶= µ⌊Sj .

Let us remark that the idea of introducing this kind of partition of component manifolds
is to divide the low-dimensional structure into maximal groups of components on which
the classical Poincaré inequality is valid.

2.3 Second-order framework

Let us assume that S ⊂ R2 is a closed subset defined as

S ∶= S1 ∪ S2, S1 ∶= {(x,0) ∶ x ∈ [−1,1]}, S2 ∶= {(0, y) ∶ y ∈ [−1,1]}.
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Consider an arbitrary function u ∶ R2 → R that is smooth as a function on R2 and in
addition let assume that ∂xu(0,0) ≠ ∂yu(0,0). As the function u∣S is continuous, differ-
entiable in every point of S and is obtained as a restriction of some R2-smooth function,
it seems not controversial to expect that such function u∣S is an element of any properly
defined space of lower dimensional first-order functions on S. A discontinuity at the level
of gradients can present challenges in managing higher-order derivatives. A natural way
to circumvent such difficulties is to replace the "inner" gradient of the function u∣S with
a restriction of a classical gradient of the open set extension. However, using such restric-
tions may prove problematic in capturing the underlying geometry of a structure. Besides
that, we are interested in considering less regular functions on the set S that do not need
to be restrictions of some regular function posed on an open set containing S. As such, it
is imperative to explore alternative approaches to ensure a comprehensive understanding
of the structure. This indicates that when thinking of a higher-order regularity of func-
tions defined on S, we need to deal somehow with this kind of discontinuity in points of
transversal intersection of components S1 and S2. Although the jump type discontinuity
of the gradient of functions supported on "thin" subsets of weak regularity may look like
an obstacle to establishing a second-order theory, it has been shown that the problem can
be addressed in the measure-related framework by introducing an artificial regularizing
component of the "inner" gradient.

This part is focused on defining the operator of a second derivative and corresponding
spaces of functions. A general idea is close to the one used in the previous chapter to
construct first-order Sobolev spaces, but now a formal realisation is much more complicated
and technical. The first problem is that, in general, even in the case of the smooth function
u, the µ-tangent gradient does not belong to H1

µ space. Thus we cannot apply the operator
∇µ to it. A second significant thing is related to a choice of a smooth approximating
sequence of a function defined on some low-dimensional structure. It turns out that a
choice of an approximating sequence affects the value of a second derivative of the limiting
function. To solve this problematic issue, we introduce a certain kind of a normal vector
field b, consider the differentiability of ∇µu+ b, and properly project the matrix of second-
order derivatives.

The presented here exposition of the second-order framework follows paper [Bou02]. Such
notions were originally introduced to study the calculus of variations on low-dimensional
structures in a measure-oriented setting.

In this section we assume that µ ∈ S.

For each u ∈ C∞c (R3) by ∇⊥u we denote a µ-a.e. normal component of a gradient, that is
∇u = ∇µu +∇

⊥u. The symbol R3×3
sym stands for the space of 3 × 3 symmetric matrices, and

∇2u is a matrix of second partial derivatives of a function u.
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We introduce a set of triples

gµ ∶= {(u,∇
⊥u,∇2u) ∶ u ∈ C∞c (R

3
)}

gµ ∶= the closure of the set gµ in the space L2
µ ×L

2
µ(R

3;T ⊥µ ) ×L
2
µ(R

3;R3×3
sym)

The set gµ is equipped with the natural product norm.

We define the space
mµ ∶= {z ∈ L

2
µ(R

3;R3×3
sym) ∶ (0,0, z) ∈ gµ} .

We need the following technical result (see [Bou02, Prop3.3(ii)]).

Proposition 2.6. For µ-almost every x ∈ R3 there exists a µ-measurable multifunction
M⊥

µ ∶ R3 → P (R3), such that

mµ = {z ∈ L
2
µ(R

3;R3×3
sym) ∶ z(x) ∈M

⊥
µ(x) for µ − a.e. x ∈ R3} .

For µ-a.e. x ∈ R3, the space of µ-tangent matrices Mµ is defined as

Mµ ∶= {z ∈ L
2
µ(R

3;R3×3
sym) ∶ z(x) ⊥M

⊥
µ(x) for µ − a.e. x ∈ R3} .

The space Mµ, intuitively can be seen as a second-order counterpart of the space Tµ. For
more details of M⊥

µ , Mµ and the space gµ, we refer to [Bou02, Lem. 3.2, Prop. 3.3].

Definition 2.7. For µ-a.e. x ∈ R3, let Qµ(x) ∶ R3×3
sym →Mµ(x) be the orthogonal projection.

Consider the set

D(Aµ) ∶= {(u, b) ∈ L
2
µ ×L

2
µ(R

3;T ⊥µ ) ∶ ∃z ∈ L
2
µ(R

3;R3×3
sym) such that (u, b, z) ∈ gµ} . (2.3)

On the domain D(Aµ) we introduce the operator Aµ as

Aµ(u, b) ∶= Qµ(z). (2.4)

This operator can be understood as a µ-related matrix of second-order derivatives of a
function u.

Remark 2.8. In [Bou02, Sec. 3] the operator Aµ is introduced in a more general class
of measures. In particular, it should be noted that the same construction is valid if the
measure µ ∈ S is equipped with densities θi ∈ C∞(Si), where θi is bounded and separated
from zero.

Definition 2.9 (The Cosserat vector field). A vector field b ∈ L2
µ(R3;T ⊥µ ) with values in

the orthogonal complement to Tµ and such that (u, b) ∈D(Aµ) is called the Cosserat vector
field of a function u ∈ L2

µ.

We would like to mention the following proposition describing the orthogonal projection
Qµ in case of µ ∈ S (see [Bou02, Prop.3.9]).

Proposition 2.10 (Representation of Qµ). If µ ∈ S, then for every E ∈ R3×3
sym we have

Qµ(E) = PµEPµ + P
⊥
µEPµ + PµEP

⊥
µ .
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In the next step, we propose generalising a classical tangent Hessian of a function defined
on a smooth manifold. For µ-a.e. x ∈ R3 let P ⊥µ (x) ∶ R3 → T ⊥µ (x) denotes an orthogonal
projection onto the normal space T ⊥µ (x). Put

D(C) ∶= {v ∈ L2
µ(R

3;R3
) ∶ Pµ(x)v(x) ∈ (H

1
µ)

3, P ⊥µ (x)v(x) ∈ (H
1
µ)

3 for µ − a.e. x ∈ R3
}.

Let C ∶D(C) → L2
µ, be an operator defined as

Cv ∶= P ⊥µ∇µ(Pµv) + Pµ∇µ(P
⊥
µ v),

and let TC ∶ R3 → R3×3 be a tensor field

TC(x)v(x) ∶= (Cv)(x).

Definition 2.11 (A generalisation of a tangent Hessian to the class of lower dimensional
structures). We define an operator ∇2

µ ∶D(∇
2
µ) → (L

2
µ)

3×3 by setting

D(∇2
µ) ∶= {u ∈H

1
µ ∶ ∃b ∶ (u, b) ∈D(Aµ)}.

and
∇

2
µu ∶= PµAµ(u, b)Pµ − TCb.

The operator C ∶ D(C) → L2
µ might be extended to a continuous operator on the whole

L2
µ space (this can be done by the Hahn-Banach Theorem). This fact implies, that the

expression TCb makes sense for any Cosserat vector field b related to u ∈D(∇2
µ).

To verify that the operator ∇2
µ is properly defined on the space D(∇2

µ), it is necessary to
check that the value of the operator ∇2

µ is independent of a choice of a Cosserat vector
field b (see [Bou02, Prop.3.15(i)]).

Proposition 2.12. Let µ ∈ S. The operator PµAµ(u, b)Pµ−TCb is independent of a choice
of Cosserat vector field b.

Let us recall an observation ([Bou02, Prop. 3.10]) describing more straightforwardly a
structure of the operator Aµ if µ is an element of the class S. Firstly please notice that in
the considered case, the following inclusion is true

D(Aµ) ⊂ {(u, b) ∈H
1
µ ×L

2
µ(R

3;T ⊥µ ) ∶ ∇µu + b ∈H
1
µ} . (2.5)

The above inclusion is strict for a generic measure being a member of S. A second worth-
to-observe thing is that if µ ∈ S, then thanks to Proposition 2.10, the operator Aµ takes a
rather expected form and can be expressed as

Aµ(u, b)Pµ = ∇µ(∇µu + b). (2.6)

Remark 2.13. This fact turns out to be helpful. Indeed as observed in [Bou02], by
Proposition 2.10, the fact that Aµ(u, b) = Qµ(Aµ(u, b)), and the fact that P ⊥µAµ(u, b)Pµ

and PµAµ(u, b)P
⊥
µ are transpose to each other, a behaviour of the operator Aµ(u, b) is fully

determined by the form in equation (2.6).
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Definition 2.14 (Space of elliptic matrices). Let B stand for a class of 3 × 3 smooth,
symmetric, and elliptic matrices, i.e., there exists a constant C > 0 such that for every
ξ ∈ R3 there holds ∑3

i,j=1 bijξiξj ≥ C ∣ξ∣
2.

In [Cho24] we introduced an operator that can be interpreted as an implementation of
the operator div(B∇u) in the setting of the second-order low-dimensional theory. As the
formula is given in terms of the previously proposed operators, it is consistent both with
the second-order theory of Bouchitté and Fragalà [Bou02] and with the theory of first-order
differential equations established in [Ryb20].

Definition 2.15 (Second-order differential operator Lµ). We introduce the tangent diver-
gence operator divµ ∶ (H

1
µ)

3 → L2
µ, as

divµ((v1, v2, v3)) ∶= tr∇µ(v1, v2, v3).

We set D(Lµ) ∶= D(∇
2
µ) and let B ∈ B. The low-dimensional second-order differential

operator Lµ ∶D(Lµ) → L2
µ is defined as

Lµu ∶=
3

∑
i,j=1

bij(∇
2
µu)ij +

3

∑
i=1
(∇µu)i divµ(bi1, bi2, bi3).

Definition 2.16 (Operator ∆µ). Let the operator Lµ be as defined above and assume
that the matrix B is the identity matrix, i.e. B = Id. In such case the operator Lµ will be
denoted by ∆µ and its domain by D(∆µ). The operator ∆µ can be expressed as

∆µu = tr∇
2
µu.

A slightly modified version of the domain D(Lµ), which includes information about Neu-
mann boundary conditions, will also be needed. The definition we give might be without
any problems expressed in case of any regular enough flow through the boundary ∂S, but
for clarity of further proceedings, we pose it in the special case of zero flow through the
boundary.

Definition 2.17 (D(Lµ) with Neumann boundary conditions). Assume that a matrix B
corresponds to Lµ as in Definition 2.15. By D(Lµ)N ⊂ D(Lµ) we denote a subspace that
consists of all u ∈D(Lµ) such that for all component manifolds Si, i ∈ {1, ...,m} we have

(B∇Siu)∣∂Si
⋅ n∣Si = 0,

almost everywhere with respect to the measure HdimSi−1 on ∂Si. Here n is the outward
normal unit vector to ∂S.

Directly from the definition of D(Lµ) it follows, that if u ∈D(Lµ), then for all i ∈ {1, ...,m}
u∣Si ∈ H

2(Si). This implies, that a trace of ∇Siu for u ∈ D(Lµ) is well-defined. Moreover,
please note that D(Lµ)N is a Banach subspace of the space D(Lµ) in the inherited norm.

Analogously the domain of the operator Aµ can be equipped with Neumann boundary
conditions.
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Definition 2.18 (D(Aµ) with Neumann boundary conditions). We define the subspace
D(Aµ)N ⊂D(Aµ) as

D(Aµ)N ∶= {(u, b) ∈D(Aµ) ∶ u ∈D(Lµ)N} .

From a perspective of the research conducted in this thesis, an important role will be
played by semigroups of linear operators whose evolution is governed by the operator Lµ.

We say that the operator Lµ generates a semigroup S ∶ [0,+∞) × L2
µ → L2

µ if for all
u ∈D(Lµ) we have

Lµu = lim
t→0+

S(t)u − u

t
,

where the limit is taken in the L2
µ-norm.

Let µ ∈ S be a low-dimensional structure. Denote E ∶= suppµ; E ⊂ Ω. Let E = ⋃m
i=1Ei,

where Ei is a component manifold and n be a normal unit vector field on ∂E directed
outward. Let l1 denote the one-dimensional Lebesgue measure and assume that g ∈ L2

µ.

Moreover, let B be a matrix of coefficients of the operator Lµ as in Definition 2.15.

A low-dimensional counterpart of a parabolic problem with Neumann boundary conditions
is defined as

∂tu −Lµu = 0 µ × l1 − a.e. in E × [0, T ],

B∇µu ⋅ n = 0 on ∂E × [0, T ],

u = g on E × {0}.

(2.7)

Definition 2.19 (Solution to a parabolic problem). A solution to the low-dimensional
parabolic problem is a function u ∶ [0, T ] × E → R determined by a strongly continuous
semigroup S ∶ [0, T ] ×L2

µ → L2
µ (see, [Mag89]) generated by the operator Lµ. Precisely,

u ∶ [0, T ] → L2
µ is a solution of parabolic Neumann problem (2.7) if

a) for all t ∈ [0, T ] ,
u(t) = S(t)g,

where S ∶ [0, T ] × L2
µ → L2

µ is a semigroup generated by the operator Lµ and the
function g is a given initial data,

b) the function u satisfies the equation

∂tu −Lµu = 0,

µ × l1 − almost everywhere in E × [0, T ],

c) u satisfies zero Neumann boundary condition in a sense formulated below.

For every t ∈ [0, T ] and every i ∈ {1, ...,m} we have B∇µu ⋅n = 0 almost everywhere on ∂Ei

with respect to Hdim∂Ei⌊∂Ei
, where B∇µu ⋅ n ∶D(Lµ) → L2

H1⌊∂Ei
,

(B∇µu ⋅ n)(x) ∶= B(x)(∇µu)∣∂Ei
(x) ⋅ n∣∂Ei

(x).
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(∇µu)∣∂Ei
is a trace of a Sobolev function on the boundary of Ei, and n(x) is the outer

normal vector (of length one) at a point x ∈ ∂E.

2.4 Weak formulations of elliptic and parabolic problems

Throughout this chapter, we do not limit our attention to structures consisting of com-
ponent manifolds of fixed dimension one or two, but we consider general low-dimensional
structures µ ∈ Ŝ. Let us recall that on such structures, the Poincaré inequality is satisfied
in the generalised sense as stated in equation (2.2).

In order to introduce an appropriate elliptic setting, we begin with a notion of a suitable
relaxation of a given matrix of coefficients (see [Ryb20, Prop. 3.1]).

Proposition 2.20 (Relaxed matrix of coefficients). Let B ∈ (L∞µ )
3×3 be such that for

µ-almost every x ∈ R3:

a) B(x) is a symmetric matrix;

b) Tµ(x) ⊂ ImB(x);

c) (B(x)ξ, ξ) ⩾ λ∣ξ∣2 for all ξ ∈ ImB(x) and some λ > 0.

The relaxation Bµ of the matrix B is given by the formula

Bµ(x) ∶= B(x) −
l

∑
i=1

B(x)ei(x) ⊗B(x)ei(x)

(B(x)ei(x), ei(x))
,

where l = 1,2, ei(x), 1 ⩽ i ⩽ l are linearly independent, µ-measurable, span Tµ(x)⊥∩ImB(x)
and for 1 ⩽ i, j ⩽ l, (B(x)ei(x), ej(x)) = δij , where δij is the Kronecker’s delta.

We now refer to the low-dimensional weak equations and the theory first presented in
[Ryb20] to introduce Weak formulation of the Neumann problem, see [Cho24].

Definition 2.21. Let f ∈ L2
µ and ∫Ω fgdµ = 0 for all g ∈ ker∇µ. We say that u ∈ H1

µ, such
that ∫Ω ugdµ = 0 for all g ∈ ker∇µ, is a weak solution to the elliptic Neumann problem

div(B∇u) = f, B∇µu ⋅ ν∣∂S= 0

provided that

∫
Ω
Bµ∇µu ⋅ ∇µφdµ = ∫

Ω
fφdµ, (2.8)

holds for all φ ∈ C1
c (R3).

Remark 2.22. The concept of the elliptic problem as formulated in Definition 2.21 comes
from [Ryb20], but the authors do not formulate it as a definition. Due to this fact, we
credit paper [Cho24] where the definition is formulated.

By the definition of the space H1
µ, smooth functions C∞c (R3) are dense in H1

µ. This means
that the class of test functions in the definition above may be extended to H1

µ.
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Moreover, by the fundamental theorem of the calculus of variations, it can be checked that
condition ∫Ω uφdµ = 0 for all φ ∈ ker∇µ implies ∫Ω udµ = 0.

As it is stated in paper [Ryb20], it is possible to give a meaning to the zero Neumann
condition using the theory of measures with divergences, see [Che01].

Our considerations will also be held in the following spaces of functions.

Definition 2.23. Let L̊2
µ ∶= {u ∈ L

2
µ ∶ ∫Ω udµ = 0}, H̊

1
µ ∶= {u ∈H

1
µ ∶ ∫Ω udµ = 0}. We define

H ∶= L2
(0, T ;H1

µ), H̊ ∶= L
2
(0, T ; H̊1

µ)

and
T ∶= {v ∈ H ∶ v ∈W 1,2

(0, T ;L2
µ), v(T ) = 0},

with the zero mean counterpart

T̊ ∶= {v ∈ H̊ ∶ v ∈W 1,2
(0, T ;L2

µ), v(T ) = 0}.

The spaces T , T̊ are equipped with the norm

∥u∥T ∶= (∥u∥
2
L2H1

µ
+ ∥u(0)∥L2

µ
)

1
2
.

Moreover, let
C
∞
0 ∶= {w ∈ C

∞
([0, T ];C∞c (R

N
)) ∶ w(T ) = 0},

and
C̊∞0 ∶= {w ∈ C

∞
([0, T ];C∞c (R

N
)) ∶ w(T ) = 0,∫

Ω
wdµ = 0}.

In the next definition, we define operators needed for establishing the weak counterpart of
the parabolic problem. Definition 2.25 gives the precise meaning of the considered issue.

Definition 2.24. Let B ∈ B. We introduce a bilinear form E ∶ H̊ × T̊ → R by a formula

E(u, v) ∶= ∫
T

0
∫
Ω
(B∇µu(t),∇µv(t)) − u(t)v

′
(t)dµdt,

and a functional F ∶ T̊ → R defined as

F (v) ∶= ∫
T

0
∫
Ω
f(t)v(t)dµdt + ∫

Ω
u0v(0)dµ.

Here we assume that f ∈ L2(0, T ;L2
µ), u0 ∈ L̊

2
µ and v′ ∶= d

dtv.

Definition 2.25. Let f ∈ L2(0, T ;L2
µ) and u0 ∈ L̊2

µ. By a weak parabolic problem with the
zero Neumann boundary condition we name an issue of finding a function u ∈ H̊ satisfying

E(u,φ) = F (φ) (2.9)

for all φ ∈ C̊∞0 .

Remark 2.26. As pointed out in [Cho24], upon initial observation, it might appear that
the weak solutions are simply glueings of weak solutions to classical problems that have
been set on manifolds Si. However, this is not always the case, even in elliptic issues,
as demonstrated in examples of Section 5.2. It is not always possible to obtain a low-
dimensional weak solution with the expected regularity by simply adding up weak solutions
component-wise.
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2.5 Smooth functions with respect to operators

Throughout this chapter, we introduce notions used to construct the semigroup generated
by the low-dimensional second-order operator. For our applications, it is enough to consider
the operator ∆µ, but it seems possible to generalise the presented method to cover the case
of a more general form of the operator Lµ.

In further reasonings, the space As(∆µ)N plays a role of a part of the domain D(∆µ)N

in which all needed operations make sense. By this fact the set As(∆µ)N will replace the
domain D(∆µ)N .

The definitions given here are taken from paper [Mag89] and adapted to the low-dimensional
framework considered here.

Definition 2.27 (Domain of iterations, "very regular" functions). LetD(∆1
µ)N ∶=D(∆µ)N .

For n ∈ {2,3, ...} a domain of the n-th iteration of the operator ∆µ is defined as

D(∆n
µ)N ∶= {u ∈ L

2
µ ∶∆

n−1
µ u ∈D(∆µ), u ∈D(∆

n−1
µ )N}.

Put DN ∶= ⋂
+∞
n=1D(∆

n
µ)N .

We introduce a space of "very regular" functions as

As(∆µ)N ∶= {u ∈DN ∶ ∃M > 0 ∀n ∈ N ∀t ∈ (0, s)
tn

n!
∥∆n

µu∥L2
µ
<M}.

Moreover, let L2
µ,s ∶= As(∆µ)N

∥⋅∥
L2
µ . It will be useful to put E(∆µ)

T
N ∶= ⋂s∈[0,T ]As(∆µ)N .

We will need to introduce a notion of smoothness with respect to an operator that generates
a semigroup. In these terms, the elements of the set As defined above can be interpreted
as functions analytic with respect to a given differential operator.

Definition 2.28 (Smooth functions with respect to a generator). Let V be a semigroup
on the space L2

µ, let G be a generator of V. We define the space

C∞(V ) ∶= {u ∈
∞
⋂
n=1

D(Gn
) ∶ ∥Gnu∥L2

µ
< +∞ ∀n ∈ {0,1,2,3, ...}}.

The family of seminorms {∥Gn ⋅ ∥L2
µ
}n∈{0,1,2,...} will be denoted for short as ∥ ⋅ ∥C∞(V ). In

the case of the operator ∆µ we introduce the space

C∞(∆µ)N ∶= {u ∈DN ∶ ∀n ∈ {0,1,2, ...}, ∥∆
n
µu∥L2

µ
< +∞}.

Similarly, we denote the related family of seminorms by ∥ ⋅ ∥C∞(∆µ)N .

The Magyar paper [Mag89, Thm. 2] proposes a variant of the Hille-Yosida theorem that will
be crucial in our considerations of Section 4.2. The original formulation of the mentioned
theorem is stated for general locally convex Hausdorff spaces, but we recall it in a special
case of the space L2

µ which is Hilbert.

Theorem 2.29 (Generation of a semigroup). Assume that
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• For any neighbourhood of zero W ⊂ L2
µ exists a neighbourhood of zero U ⊂ L2

µ such
that if for all k ∈ {1,2, ...}, for all u ∈ D(∆k

µ)N and some constants α,C > 0 we have
(1 − αC)−k(Id − α∆µ)

ku ∈ U, then u ∈W,

• E(∆µ)
T
N is dense in L2

µ.

Then the operator ∆µ is closable in L2
µ and its closure ∆µ generates continuous locally

equicontinuous semigroup V in L2
µ such that e−CtV (t) is equicontinuous.
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Chapter 3

Basic results

This chapter contains facts and observations, which will be applied in further reasoning.

Section 3.1 deals with new properties of the H1
µ Sobolev-type space. The results presented

here will be applied in our considerations related to the higher elliptic regularity of weak
solutions. Section 3.2 is devoted to the results regarding the µ-related second derivative
operator Aµ. The goal of Section 3.3 is to introduce new characterisations of spaces of
functions. These results will be helpful in reducing the abstract problem to a set of generic
cases of a geometric nature.

Results exposed in Section 3.1 are taken from [Cho23]. The content of Sections 3.2 and
3.3 is established in [Cho24].

3.1 Properties of the space H1
µ

If a given function u belongs to the Sobolev-type spaceH1
µ, it is immediately that u ∈H1(Si)

on each component manifold Si. We propose two remarkable results showing how the clas-
sical Sobolev regularity interplays between various component manifolds.

The following observation shows a correspondence between componentwise behaviour in
terms of the equality of traces. This is an important tool applied in further studies of the
regularity of elliptic solutions.

Proposition 3.1. Let S ⊂ R3 be a low-dimensional structure of the form S = S1 ∪ S2,

with dimS1 = dimS2, and denote Σ = S1 ∩ S2. Let u ∈ H1
µ, ui ∶= u∣Si , i = 1,2. Then

trΣ u1 = tr
Σ u2, where trΣ denotes the usual trace on Σ.

Proof. Let αn ∈ C
∞(R3), αn → u in H1

µ and let αi
n ∶= αn∣Si , i = 1,2. Since αn is smooth,

we know that trΣ αi
n = α

i
n∣Σ. Since α1

n∣Σ= α
2
n∣Σ, it follows that trΣ α1

n = tr
Σ α2

n. Since αi
n

converges to ui in H1(Si), the continuity of the trace operator implies

trΣ αi
n

L2(Σ)
ÐÐÐ→ trΣ ui, i = 1,2.

However, trΣ α1
n = tr

Σ α2
n and thus trΣ u1 = tr

Σ u2.
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It remains to address the case of dimS1 ≠ dimS2. Let us assume that dimS1 < dimS2; as
the components S1, S2 of the low-dimensional structure are transversal (condition LDS2)
in the definition of a low-dimensional structure), this implies dim(S1 ∩ S2) < dimS2 − 1,

and the S1∩S2-trace operator of a function defined on S2 is ill-posed, at least in a classical
sense. Even under some extra assumptions (like, for instance, componentwise continuity)
we cannot expect any agreement of traces. Indeed, we have the following result.

Proposition 3.2. Assume that dimS1 ≠ dimS2. Let w ∈ H1(Si), i = 1,2. Then the
functions

u ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

w on S1,

0 on S2
and v ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 on S1,

w on S2

belong to H1
µ.

Proof. Without the loss of generality, we can assume that dimS1 > dimS2. Let us observe
that Cap2(S1 ∩S2, S1) = 0 (the Cap stands for the Sobolev capacity – for its definition see
[Eva15, Sec. 4.7]). This means that there exists a sequence φn ∈ C

∞(R2) which proves the
mentioned fact.

For the function w ∈ H1(S1) we find the sequence αn ∈ C
∞(R2) approximating in the

H1-norm, and for each term we introduce the R3-extension α̃n ∈ C
∞(R3) by the simple

formula α̃n(x, y, z) ∶= αn(x, y).

Similarly, we extend the φn sequence to the sequence φ̃n ∈ C
∞(R3), φ̃n(x, y, z) ∶= φn(x, y).

Now we define another sequence Ψn ∈ C
∞(R3), Ψn ∶= 1 − φ̃nα̃n. It can be easily verified

that Ψn

H1
µ
ÐÐ→ u, what gives u ∈ H1

µ. This provides that u ∈ H1
µ. The fact that v ∈ H1

µ is
established analogously.

Remark 3.3. From the Proposition 3.2 we can derive a short proof of the fact that in
the case of a low-dimensional structure with component manifolds of various dimensions,
the µ-tangent gradient operator ∇µ has more than one-dimensional kernel. Indeed, let
S be a low-dimensional structure. For shortening, let us assume that S = S1 ∪ S2 and
dimS1 > dimS2. By Proposition 3.2 we obtain that the functions

u1 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 on S1,

0 on S2
, and u2 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 on S1,

1 on S2

are members of the H1
µ space. Of course we have u1, u2 ∈ ker∇µ, and they span ker∇µ.

3.2 Some properties of the operator Aµ

The construction of µ-essential second derivative operator Aµ is given in Section 2.3; see
Definition 2.4. Despite its non-standard form, the operator shares properties expected from
a reasonable differential operator. From our research perspective, the next observation is
essential for further reasoning.
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Lemma 3.4. Assume that µ ∈ S.

a) The operator Aµ ∶ D(Aµ) → (L
2
µ)

3×3 is closed in the sense of the L2
µ-convergence,

that is, if

(un, bn) ∈D(Aµ), un
L2
µ
Ð→ u ∈ L2

µ, bn
L2
µ
Ð→ b ∈ L2

µ(R
3;T ⊥µ )

and

Aµ(un, bn)
L2
µ
Ð→D ∈ (L2

µ)
3×3,

then
(u, b) ∈D(Aµ) and D = Aµ(u, b).

b) The same is true if the domain D(Aµ) is replaced with D(Aµ)N .

Proof. a) For the proof, see [Bou02, Prop. 3.5 (i)].

b) By the result of point a), the inclusion D(Aµ)N ⊂ D(Aµ), by applying the classical
Poincaré inequality (2.4) on each component manifold Ei, (suppµ = ⋃m

i=1Ei), and
due to continuity of the trace operator it can be checked that the space D(Aµ)N

is closed with respect to the convergence described in point a). Thus the proposed
result follows.

Next lemma shows that a global continuity of a function u ∈ D(Aµ) can be derived not
only in the case of component manifolds of a fixed dimension but also if the dimensions of
components vary.

Lemma 3.5. Let u ∈ D(Aµ). Assume that µ ∈ S, P ∶= suppµ = Ei ∪ Ej , Ei ∩Ej ≠ ∅,

dimEi = 1 and dimEj = 2. Then the function u is continuous on the set P.

Proof. To avoid discussion of technical aspects let us assume that u⌊Ej is compactly sup-
ported in the interior of the component Ej . By inclusion (2.5) we know that u ∈ H1

µ and
u⌊Ek
∈H2(Ek) for k = i, j. We justify continuity of u proceeding by a contradiction.

Suppose our claim is false, i.e. u is discontinuous. As u⌊Ek
∈ H2(Ek) for k = i, j provides

continuity on each component manifold Ek, k = i, j, a discontinuity have to appear in the
junction set Ei∩Ej . Let p ∈ Ei∩Ej be a fixed point of discontinuity. After multiplying the
function u by a constant, we can assume that a jump at the discontinuity point p is greater
than 2. Let {φn}n∈N, φn ∈ C

∞
c (R3) be an approximating sequence of u, which justifies the

membership in domain D(Aµ).

A convergence in the sense of D(Aµ) implies convergence in the H1-norm on the 1-
dimensional component Ei (of course D(Aµ)-convergence implies H2(Ei)-convergence, but
the weaker type is enough at this moment of reasoning). This implies that it is possible to
extract a subsequence converging uniformly on Ei (relabelling is omitted).

Let us consider a sequence wn ∶ Ej → R, wn ∶= u⌊Ej−ψn. The sequence wn satisfies
wn ∈ Cc(intEj), wn ∈ H

2(Ej) and wn → 0 in H2(Ej). Moreover, ∣wn(p)∣ > 1. This means
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that the sequence wn can be used to show that the H2-capacity of the point p in the
disc Ej is zero. This is a contradiction with the general theory of Sobolev capacity. A
general situation where u⌊Ej is not necessarily compactly supported in the intel of Ej can
be reduced to the discussed above case by modifying the function u⌊Ej properly.

3.3 Local characterisation of the functional spaces

We introduce a local characterisation of low-dimensional Sobolev-type spaces in terms of
the behaviour of functions in a neighbourhood of junction sets. This will allow us to divide
our study into a certain number of "generic" local cases.

In this paragraph we assume that µ ∈ S.

Definition 3.6 (Partition of unity). Let µ be an arbitrary measure of the class S. Denote
S ∶= suppµ ⊂ R3, where S = ⋃m

i=1 Si and Si are component manifolds. We introduce the set

J̃ ∶= {p ∈ S ∶ ∃i, j ∈ {1, ...,m}, i ≠ j, p ∈ Si ∩ Sj} .

On the set J̃ we define a relation ∼r as

p ∼r q ⇐⇒ ∃i, j ∈ {1, ...,m}, i ≠ j, ∃w ∈ C
∞
([0,1];Si ∩ Sj) ∶ w(0) = p, w(1) = q.

It is easy to check that ∼r is an equivalence relation and the number of all equivalence
classes is finite. In each equivalence class [p]r we arbitrarily choose one representative p.
Let J stands for the set of all such representatives. Every element of the set J represents
a different junction set of the structure S.

A standard result of the mathematical analysis determines the existence of a finite set K
and a partition of unity that consists of functions αp ∈ C

∞
c (R3), p ∈ I ∶= J ∪K and two

sequences of sets (open in the topology of R3): {Op}p∈I , {Up}p∈I ⊂ R3 satisfying stated
below properties.

For each p ∈ J, p ∈ Si ∩ Sj exists an open set Op ⊃ Si ∩ Sj and exists an open set Up such
that Si ∩ Sj ⊂ Up ⊂ Op, Up ∩Oq = ∅, for q ∈ I, q ≠ p.

The family {Op}p∈I cover the set S, that is ⋃p∈I Op ⊃ S. For each p ∈ I the functions αp

satisfy αp ⊂ Op and ∑p∈I αp ≡ 1 on S.

The following propositions show that being a member of the spaces H1
µ or D(Aµ) can be

completely characterised in terms of behaviour near points of junctions. Let us denote
µp ∶= µ⌊Op for p ∈ I.

Proposition 3.7 ("from local to global" characterisation of H1
µ). The space H1

µ can be
characterised as

H1
µ =

⎧⎪⎪
⎨
⎪⎪⎩

u ∈ L2
µ ∶ ∀p ∈ I ∀i ∈ {1, ...,m} ∃up ∈H

1
µp
, u = ∑

p∈I
αpup

⎫⎪⎪
⎬
⎪⎪⎭

.

Proof. ( Ô⇒ ) Assume that u ∈H1
µ, put up ∶= u⌊suppαp for p ∈ I. By standard properties of

a partition of unity, it follows that u = ∑p∈I αpup.
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(⇐Ô) Let u ∈ {w ∈ L2
µ ∶ ∀p ∈ I ∃wp ∈H

1
µp
w = ∑p∈I αpwp} . For any up ∈ H1

µp
, the functions

αpup can be extended by zero to obtain αpup ∈ H
1
µ. Let φn

p ∈ C
∞(R3) be a sequence

witnessing belonging of up to H1
µp
. Taking the sequence

∑
p∈I
αpφ

n
p ∈ C

∞
c (R

3
)

and passing to the limit n→∞ we conclude that u ∈H1
µ.

An analogous fact can be established in the second-order framework.

Proposition 3.8 ("from local to global" characterisation of D(Aµ)). There holds

D(Aµ) =

⎧⎪⎪
⎨
⎪⎪⎩

(u, b) ∈ L2
µ ×L

2
µ(R

3;T ⊥µ ) ∶ ∀p ∈ I ∃(up, bp) ∈D(Aµp), u = ∑
p∈I
αpup, b = ∑

p∈I
αpbp

⎫⎪⎪
⎬
⎪⎪⎭

.

(3.1)

Proof. ( Ô⇒ ) Let (u, b) ∈ D(Aµ). For each p ∈ I, take up ∶= αpu. By a definition of the
domain D(Aµ) there exists a sequence ψn ∈ C

∞(R3), such that (ψn,∇
⊥ψn) → (u, b) in the

sense of the L2
µ ×L

2
µ(R3;T ⊥µ )-convergence and Aµ(ψn,∇

⊥ψn) → Aµ(u, b) as n→∞.

For any p ∈ I consider sequence αpψn.

It is easy to see, that there exist bp ∈ L2
µp
(R3;T ⊥µp

) such that

Aµp(αpψn,∇
⊥
(αpψn)) → Aµp(αpu, bp)

in the norm of (L2
µ)

3×3
, when we pass with n→∞. This shows that

(αpu, bp) ∈D(Aµp) for all p ∈ I

and proves the considered implication.

(⇐Ô) Assume that (u, b) belongs to the right hand side of equality (3.1). Let ψn
p ∈ C

∞
c (R3)

be a sequence justifying membership (up, bp) ∈ D(Aµp). Let take αp and consider αpψ
n
p

for p ∈ I. The functions αpup, can be extended by zero to the whole set suppµ, thus
(αpup,∇

⊥(αpup)) ∈D(Aµ). Each term of the sum

∑
p∈I
αpψ

n
p ∈ C

∞
(R3
)

converges in the sense of D(Aµ), thus (u, b) ∈D(Aµ) with b = ∑p∈I αpbp.

The case of the second derivative operator equipped with the Neumann boundary condition
can be immediately covered too.

Proposition 3.9. ("from local to global" characterisation of D(Aµ)N ) There holds

D(Aµ)N =

⎧⎪⎪
⎨
⎪⎪⎩

(u, b) ∈ L2
µ ×L

2
µ(R

3;T ⊥µ ) ∶ ∀p ∈ I ∃(up, bp) ∈D(Aµp)N , u = ∑
p∈I
αpup, b = ∑

p∈I
αpbp

⎫⎪⎪
⎬
⎪⎪⎭

.

(3.2)
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Proof. The proof follows exactly the same lines as the proof of Proposition 3.8. The needed
modification is to change for all p ∈ I the domains D(Aµp) to its counterparts equipped
with the zero Neumann boundary conditions – the spaces D(Aµp)N .
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Chapter 4

Strong-form parabolic problems

The content presented in this chapter consists of the main results established in our paper
[Cho24].

This chapter aims to establish the existence and uniqueness of solutions to strong-form
parabolic equations posed on lower dimensional structures.

The chapter has the following structure. In Section 4.1 we prove the main technical result
of [Cho24], showing that the second-order equation operator Lµ is a closed operator in the
sense of the L2

µ-convergence. The heart of the proof of this result is based on a suitable
geometrical extension of functions from the low-dimensional structure to the whole space
in which it is embedded. Then in Section 4.2 we proceed to the main result which is proof
of the existence of parabolic solutions in the sense of Definition 2.19. To this end, we make
use of the results of [Mag89], where the author study the approach to the Hille-Yosida
Theorem based on "forward" iterations of an operator. This allows us to circumvent the
use of the resolvent operator and construct the demanded strong solution.

In order to establish the existence of strong-type solutions, we consider a method that does
not require additional studies of a higher-order regularity of solutions. The advantage of
utilizing the semigroup approach is that we can perform all operations in the space of func-
tions with an assigned Cosserat vector field b, as opposed to methods that rely on studying
weak variants of the problem. This is important because obtaining the existence of the
Cosserat field b requires additional information about the behaviour near the intersection
set, which is typically difficult to control when dealing with weak problems.

The main existential result in the parabolic setting is expressed in the following theorem:

Theorem 4.1. (Existence and uniqueness of solutions) Assume that Lµ = ∆µ. For any
given initial data g ∈ AT (∆µ)N (see, Definition 2.27) of the low-dimensional parabolic
problem (equation 2.7) exists a unique, up to a constant, solution u ∶ [0, T ] → L2

µ in the
sense of Definition 2.19.

Throughout Chapter 4 we assume that µ ∈ S. Further, we will discuss in a more detailed
way the need to pose such demands. Let us only mention that it will be crucial for us to
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adapt some results discussed in [Bou02], where the authors pose this kind of assumption
on the considered class of measures.

4.1 Closedness of the operator Lµ

To prove this result, we will adapt the semigroup theory, and a conclusion will be derived
by applying a certain variant of the Hille-Yosida Theorem, treating semigroups generated
by differential operators. Before we proceed to the proof of Theorem 4.1, we need to prove
Theorem 4.2, which is the main technical result of paper [Cho24].

Theorem 4.2. Let µ ∈ S be a low-dimensional structure. The operator Lµ ∶D(Lµ)N → L2
µ

is closed in the L2
µ-convergence.

It turns out that the proof of this property in the case of the operator Lµ is more de-
manding than showing the closedness of Aµ. This phenomenon is related to the fact that a
convergence of functions in the sense of D(Lµ) space does not provide control of Cosserat
vector fields.

Proof. Let {un}n∈N ⊂D(Lµ)N be a sequence such that un
L2
µ
Ð→ u ∈ L2

µ and Lµun
L2
µ
Ð→ B ∈ L2

µ.

We need to show that u ∈D(Lµ)N and B = Lµu. A proposed strategy of the proof is based
on the fact that the operator Aµ is closed (see Lemma 3.4).

For the sequence {un}n∈N ⊂ D(Lµ)N we modify the corresponding Cosserat sequence
{bn}n∈N and construct a new sequence of normal vector fields {̃bn}n∈N convergent in the
L2
µ-norm and for which the result of Lemma 3.4 is valid.

As D(Lµ)N ⊂ D(Lµ) for any element un ∈ D(Lµ)N exists a sequence {umn }m∈N ⊂ C∞c (R3)

such that umn
L2
µ
Ð→ un, ∇

⊥umn
L2
µ
Ð→ bn and A(umn ,∇

⊥umn )
L2
µ
Ð→ A(un, bn). Existence of such

sequences is ensured by the definition of the domain D(Aµ) (Definition 2.3).

After extracting, if it is necessary, a subsequence from the sequence {umn }m∈N (we omit to
relabel of the chosen subsequence) we may assume that

∥umn −un∥L2
µ
⩽

1

m2
, ∥∇

⊥umn −bn∥L2
µ
⩽

1

m2
, ∥Aµ(u

m
n ,∇

⊥umn )−Aµ(un, bn)∥L2
µ
⩽

1

m2
. (4.1)

By the weaker Poincaré inequality (2.2) or alternatively by using the classical Poincaré
inequality on each component manifold separately we notice that ∥∇µu

m
n − ∇µun∥L2

µ
⩽ 1

m2

possibly after passing to a subsequence once again.

Before we start the process of modifying the Cosserat vectors bn, we will show that without
any loss on generality, the domain can be "straightened out" locally.

From this moment until the end of the proof, we assume that the low-dimensional structure
S consists of exactly two component manifolds with a non-trivial intersection. At the end
of the proof, we will evoke Proposition 3.9 to conclude the global instance.

We consider two fixed manifolds Ei,Ej such that Ei∩Ej ≠ ∅ and treat separately each of the
following instances: dimEi = dimEj = 2, dimEi = dimEj = 1, and dimEi = 2, dimEj = 1.
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Let µ ∈ S, suppµ = Ei ∪ Ej , Ei ∩ Ej ≠ ∅, dimEi = dimEj = 2. Let us assume that
each component Ek, k = i, j can be parametrized by a single parametrization – existence
of a partition of unity similar to the one presented in Proposition 3.9 justifies, that such
restriction do not narrow the class of considered structures.

Let Ψi be a parameterization of Ei (up to the boundary) and Ψi(B
1) = Ei, where B1

is the 2-dimensional unit ball in variables (x, y) with the center at zero. We define a
diffeomorphism Θi by the formula Θi(x, y, z) ∶= (0,0, z) + Ψi(x, z). By a construction of
Θi we have Θ−1i (Ei ∪Ej) = B

1 ∪ Fj , where Fj is some 2-dimensional manifold and B1 ∩Fj

is a smooth curve. Let Ψj be a parametrisation of Fj . Existence of such mappings is
provided by assumptions posed on component manifolds in the definition of the class of
low-dimensional structures S.

Analogously to what was made in the case of the component Ei we define a diffeomorphism
Θj by the formula Θj(x, y, z) ∶= (0, y,0) +Ψj(x, y). Now Θ−1j (B

1 ∪ Fj) = P
1 ∪ P 2, where

P 1, P 2 are "flat" 2-dimensional manifolds with P 1 ∩ P 2 ⊂ {(x, y, z) ∈ R3 ∶ y = z = 0} . Let
us denote I ∶= Θi ○ Θj , thus clearly I−1(Ei ∪ Ej) = P

1 ∪ P 2. Having the "flat" structure
P 1 ∪ P 2 we can easily find a smooth diffeomorphism mapping both components P 1 and
P 2 to 2-dimensional discs.

If µ ∈ S is the given low-dimensional structure and ν ∶= H2⌊P 1+H2⌊P 2 , then obviously
ν ∈ S and the D(Aµ)-convergence is equivalent to the convergence in the sense of D(Aν).

To see this, let us notice that the pushback of the measure µ by the diffeomorphism
I−1 is a measure absolutely continuous with respect to ν, and its ν-related density will
be bounded, smooth and separated from zero. Recalling the Remark 2.8, after a simple
computation shows that convergence in the sense of H1

ν is equivalent to H1
µ-convergence,

D(Aν)-convergence is equivalent to D(Aµ)-convergence. This also implies that conver-
gence in the sense of D(Lν) is equivalent to convergence in the sense of D(Lµ). An im-
portant consequence of this observation is that in further studies it is enough to focus our
attention on the case of the measure ν being a sum of Hausdorff measures representing
each "flattened" component manifold.

dimEi = dimEj = 2

We start by examining a case of dimEi = dimEj = 2. Further considerations can be
conducted in the coordinate system related to components Ei, Ej . This means that without
loss of generality we can take

Ei = {(x, y,0) ∈ R3
∶ x2 + y2 ⩽ 1, x, y ∈ [−1,1]} ,

Ej = {(x,0, z) ∈ R3
∶ x2 + z2 ⩽ 1, x, z ∈ [−1,1]}

and
µ = H2

⌊Ei+H
2
⌊Ej .

As the intersection E1 ∩ E2 is the set {(x,0,0) ∈ R3 ∶ x ∈ [−1,1]} we know that for any
function w ∈ D(Lµ) a first coordinate of the gradient vector ∇µw = (wx,µ,wy,µ,wz,µ)
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belongs to H1
µ, that is wx,µ ∈ H

1
µ. The Cosserat vector field b is needed to prove the

membership (0,wy,µ,wz,µ) + b ∈ (H
1
µ)

3.

For n ∈ N, define

hn,µ = (0, hn1µ, hn2µ) ∶= (0, un+1y,µ, un+1z,µ) − (0, uny,µ, unz,µ) ∈ (H
1
(Ek))

3
, k = i, j.

By a fact that Lµun, n ∈ N is a Cauchy sequence in L2
µ we are going to show that, after

extracting a suitable subsequence, we have for all n ∈ N

∥hn,µ∥H1(Ek) ⩽
1

n2
, k ∈ {i, j}.

The operator Lµ can be decomposed into two classical operators acting on each component
Ek, k = i, j separately. This observation allows us to apply to restricted operators classical
estimates of the elliptic regularity theory (with Neumann boundary conditions). For the
detailed formulation of the recalled facts, see the appendix in [Las21], or [Eva15, Ch. 6.3.2]
for the Dirichlet boundary condition version.

On each Ek this gives the estimate

∥hn,µ∥H1(Ek) ⩽ C (∥Lµun+1 −Lµun∥L2(Ek) + ∥un+1 − un∥L2(Ek)) . (4.2)

By the L2
µ-convergence of the right-hand side, after passing to a subsequence if necessary,

we obtain that for k = i, j ∥hn,µ∥H1(Ek) ⩽
1
n2 .

Further, for each n,m ∈ N the function hmn,µ is introduced as

hmn,µ = (0, h
m
n1µ, h

m
n2µ) ∶= (0, u

m+1
n+1 y,µ, u

m+1
n+1 z,µ) − (0, u

m
n y,µ, u

m
n z,µ) ∈ (H

1
(Ek))

3
, k = i, j.

Applying the triangle inequality, estimate (4.2) for the H1(Ek)-norm of hn,µ, estimates
(4.1) for the speed of convergence of sequences of smooth functions Aµ(u

m
n ,∇

⊥umn ) and
umn , combined with the Poincaré inequality on each component manifold Ek, the following
estimate is obtained (for k ∈ {i, j})

∥hmn,µ∥H1(Ek) ⩽ ∥u
m+1
n+1 − u

m
n+1∥H2(Ek) + ∥u

m
n+1 − un+1∥H2(Ek)

+∥hn,µ∥H1(Ek) + ∥u
m
n − un∥H2(Ek) ⩽

1

n2
+

3

m2
.

(4.3)

For each smooth function umn ∈ C
∞
c (R3) we know that (umn ,∇⊥umn ) ∈ D(Aµ). To ensure

the good behaviour of the Cosserat sequence, our next goal is to modify the sequence
(umn , b

m
n ) ∈D(Aµ), where bmn = ∇⊥umn . Precisely speaking, for each umn , we construct a new

normal vector field b̃mn , for which (umn , b̃mn ) is also a member of D(Aµ) and a sequence of
diagonal elements of the presented below infinite lower triangular matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇µu
1
1 + b̃

1
1

∇µu
2
1 + b̃

2
1 ∇µu

2
2 + b̃

2
2

∇µu
3
1 + b̃

3
1 ∇µu

3
2 + b̃

3
2 ∇µu

3
3 + b̃

3
3

⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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converges in the space (H1
µ)

3.

We are going to show that the diagonal sequence ((unn, b̃nn))n∈N satisfies the next prop-

erties: (unn, b̃nn) ∈ D(Aµ), unn
L2
µ
Ð→ u, b̃nn

L2
µ
Ð→ b̃ for some u, b̃ ∈ L2

µ, and besides that

∇µ (∇µu
n
n + b̃

n
n)

L2
µ
Ð→ ∇µ (∇µu + b̃) ∈ L

2
µ.

Let a restriction of w ∈ L2
µ to the component manifold Ek, k ∈ {i, j} be denoted by wk,

that is wk ∶= w⌊Ek
.

For the function umn the new Cosserat vector field b̃mn ∈ L2
µ(R3;T ⊥µ ) is defined as

b̃mn (x, y, z) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(0, 0, umn z
j(x, y)) on Ei

(0, umn y
i(x, z), 0) on Ej

.

An idea standing behind the sequence b̃mn is to ’copy’ the function umn y
i from the component

manifold Ei (in variables (x, y)) to the component manifold Ej (in variables (x, z)) and
analogously to ’copy’ umn z

j from Ej (variables (x, z)) to Ei (variables (x, y)).

To ensure that the constructed pairs belong to the domain D(Aµ) we use the fact that in
the case of µ ∈ S there exists a characterisation of membership in the domain D(Aµ) stated
in [Bou02, Prop. 3.11]. The mentioned proposition is based on the idea of constructing
a smooth approximating sequence of the class C∞(R3) by extending a sequence initially
defined on suppµ to the whole space R3 by the help of the Whitney Extension Theorem.

To conclude that each pair (umn , b̃mn ) ∈H1
µ ×L

2
µ(R3;T ⊥µ ) is an element of the domain D(Aµ)

we need to verify if the following three conditions are satisfied by

a) For k ∈ {i, j}, we need to check if umn
k ∈ H2(Ek) and bmn

k ∈ (H1(Ek))
3
. It turns out

to be trivial due to the fact that umn is a smooth function in R3 and due to the way
in which we constructed the Cosserat field b̃mn .

b) We can use the same arguments as before to verify that the junction set Ei ∩ Ej

belongs to continuity points of (umn ,∇µu
m
n + b

m
n ). This is the second assumption,

which needs to be satisfied.

c) The third condition demands that we check if on each component Ek the corre-
sponding restriction umn

k is of class C2(Ek), the normal vector field b̃mn
k

is Lipschitz
continuous on Ek and (umn

k,∇Ek
umn

k + b̃mn
k
)⌊Ei∩Ej= (u

m
n ,∇µu

m
n + b̃

m
n )⌊Ei∩Ej .

All of the above demands are satisfied immediately because of the smoothness of umn and
the choice of the vector field b̃mn . As the listed conditions are satisfied, by application of
the mentioned characterisation, we have (umn , b̃mn ) ∈D(Aµ).

Now we consider the diagonal sequence

(unn, b̃
n
n)n∈N.

By estimate (4.3), the construction of the Cosserat field b̃nn and a completeness of the space
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H1
µ it follows that

lim
n→∞
(∇µu

n
n + b̃

n
n) ∈ (H

1
µ)

3
.

By Remark 2.13 this means that

Aµ(u
n
n, b̃

n
n)
(L2

µ)
3×3

ÐÐÐÐ→D ∈ (L2
µ)

3×3
.

We know that unn
L2
µ
Ð→ u ∈ L2

µ. Moreover, by the way it was constructed, b̃nn converges in

L2
µ(R3;T ⊥µ ) to some element, from now on called as b̃, that is b̃nn

L2
µ(R3;T ⊥µ)
ÐÐÐÐÐÐ→ b̃.

A compactness of the operator Aµ (Theorem 4.2) implies that

Aµ(u
n
n, b̃

n
n)
(L2

µ)
3×3

ÐÐÐÐ→ Aµ(u, b̃)

and
(u, b̃) ∈D(Aµ).

Finally, under the assumption Lµu
n
n

L2
µ
Ð→ B, we obtain that

Lµu
n
n

L2
µ
Ð→ Lµu,

thus

Lµun
L2
µ
Ð→ Lµu

and u ∈D(Lµ).

On each component manifold Ek, k = 1,2 of the considered structure, we have shown the
convergence ∥unn − un∥H2(Ek) → 0, as n → ∞. This implies that on each boundary ∂Ek we
have a convergence of normal traces in L2(∂Ek). In this way we conclude that both

(u, b̃) ∈D(Aµ)N and u ∈D(Lµ)N .

This proves that the operator Lµ is closed in the case of two component manifolds of
dimEi = dimEj = 2.

dimEi = dimEj = 1

Finally, we study the remaining case of dimEi = dimEj = 1.

Let
Ei = {(x,0,0) ∈ R3

∶ x, y ∈ [−1,1]} ,

Ej = {(0, y,0) ∈ R3
∶ x, z ∈ [−1,1]}

and
µ = H1

⌊Ei+H
1
⌊Ej .
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It is possible to follow analogously as in the two-dimensional case considered above, but the
simplicity of a one-dimensional junction gives a chance to formulate an explicit definition
of the domain D(Aµ) (see [Bou02, Ex. 5.2]).

Let P = Ei ∪Ej ,

τ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(1,0,0) on Ei,

(0,1,0) on Ej

be a tangent to P unit vector field and

ν =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(0,1,0) on Ei,

(1,0,0) on Ej

be a normal to P outer unit vector field.

We show that in the studied case, the following characterisation is true:

D(Aµ) = {(u, b) ∈H
1
µ×L

2
µ(R

3;T ⊥µ ) ∶ u⌊Ek
∈H2

(Ek), b⌊Ek
∈H1

(Ek), u
′τ+bν ∈ C(P ) for k = {i, j}}.

If the pair (u, b) belongs to the right hand side of the above equality, then the conditions of
[Bou02, Prop. 3.11], recalled in the proof of two-dimensional case, are immediately valid.
This implies that (u, b) ∈ D(Aµ). To prove the opposite implication, let us assume that
(u, b) ∈D(Aµ). By inclusion (2.5) we obtain that for k = {i, j} we have u∣Ek

∈H2(Ek), and
b∣Ek
∈H1(Ek). Applying Proposition 3.1 to the function u′τ + bν ∈ (H1

µ)
3, we conclude that

u′τ + bν ∈ C(P ).

Without loss of generality, we may assume that Ei ∩Ej = {(0,0,0)} ∈ R3. For k ∈ {i, j}, let
v̂ ∶= ηEk

v denote the parallel transport on the component manifold Ek of a vector v ∈ R3.

We put bEi(0,0,0) ∶= (∇µu)∣Ej and we define the Cosserat vector field on the component
manifold Ei as b̂Ei ∶= ηEibEi(0,0,0).

Analogously we proceed on Ej . Then we put b̂ ∶= b̂Ei + b̂Ej . By the above characterisation
of D(Aµ) it is easy to see that for any element of the sequence (un, bn) ∈ D(Aµ) there
exists a mentioned before modification b̂n such that (un, b̂n) ∈D(Aµ).

By standard properties of Sobolev functions (e.g., see [Leo09, Thm. 7.13]), if v ∈H1(Ek),

then v ∈ C(Ek), and moreover, if vn ∈H1(Ek) and vn
H1(Ek)
ÐÐÐÐ→ v, then exists a subsequence

converging locally uniformly. Each b̂n is well-defined and a vector field b being a L2
µ-limit

of the sequence of this Cosserat vectors exists.

Due to the fact that the L2
µ-convergence of Lµun implies convergence of un in the sense

of H2(Ek) and further that (u, b) ∈ D(Aµ), by closedness of the operator Aµ in L2
µ we

conclude that u ∈D(Lµ) and B = Lµu.

This proves closedness in the sense of L2
µ-norm convergence of the operator Lµ. The same

argument as the one used in the previously considered case gives that the result is valid
also in the subspace D(Lµ)N .

"From local to global"
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We have examined closedness in the "local" variants. To show a similar result on a whole
structure, we need to gather all established results.

Let un ∈ D(Lµ)N , un
L2
µ
Ð→ u, Lµun

L2
µ
Ð→ B. Denote upn ∶= un∣suppµp . We have shown that

locally for all p ∈ I exists up ∈D(Lµp)N which satisfies upn
L2
µp
ÐÐ→ up with Lµpu

p
n

L2
µp
ÐÐ→ Lµpu

p.

Using the introduced partition of unity, we write

un = ∑
p∈I
αpu

p
n and u = ∑

p∈I
αpu

p.

By the aforementioned observations, we have for all p ∈ I

• αpu
p
n ∈D(Lµp)N ,

• αpu
p
n

L2
µp
ÐÐ→ αpu

p,

• Lµp(αpu
p
n)

L2
µp
ÐÐ→ Lµp(αpu

p).

Applying Proposition 3.9 gives u ∈D(Lµ)N satisfying Lµun
L2
µ
Ð→ Lµu. This proves that the

operator Lµ is closed.

Comment. In the above proof, the last two conditions (Chapter 2.1, points b) and c))
that were given on the measure µ ∈ S played an essential role. However, we believe that
these restrictions on the class of accessible measures can be loosened. This is an interesting
question that we leave open for further exploration.

The next propositions show more properties of the operator Lµ. For the need of our future
applications, instead of the operator Lµ we consider the operator Id−αLµ, for some fixed
positive constant α.

Proposition 4.3. For any α > 0, the operator Id − αLµ ∶ D(Lµ)N → L2
µ is closed with

respect to the L2
µ-convergence.

Proof. A sum of closed operators is a closed operator. The identity operator Id is contin-
uous, thus it is closed, and Theorem 4.2 provides that the operator Lµ is closed.

Proposition 4.4. D(Lµ)N is dense in L2
µ.

Proof. We have the inclusion {u ∈ C∞(Ω) ∶ (B∇µu ⋅ n)⌊∂Ω= 0} ⊂ D(Lµ)N . Moreover, the
space {u ∈ C∞(Ω) ∶ (B∇µu ⋅ n)⌊∂Ω= 0} is a dense subset of L2

µ. This two facts imply that
D(Lµ)N is dense in L2

µ.

Now we can proceed to the construction of a semigroup generated by the operator ∆µ.

4.2 Generation of a semigroup

Well-known methods of constructing semigroups generated by linear operators are based
on the notion of the resolvent operator. In the case considered in our paper [Cho24], the
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operator λId−∆µ ∶D(∆µ)N → L2
µ (or equivalently the operator Id−α∆µ) is not surjective,

thus its inverse does not exist and it is not possible to introduce the resolvent operator (at
least in a standard way).

To circumvent this problem, we apply a technique proposed in [Mag89], where instead of
inverting the given operator, the "forward" iterations on a set of "very regular" functions
are considered.

Throughout this chapter, we consider the operator ∆µ, but it seems possible to generalise
the presented method to cover the case of a more general form of the operator Lµ.

Proposition 4.5. Assume that the operator G generates the semigroup V, ∆µ ⊂ G be a
restriction of A. Then for any u ∈ As(∆µ)N we have ∥u∥C∞(V ) = ∥u∥C∞(∆µ)N .

Proof. An elementary observation.

Next proposition shows that spaces L2
µ,s are independent of the parameter s > 0.

Proposition 4.6. For any s > 0 the equality L2
µ,s = L

2
µ holds.

Proof. Instead of working with the general µ ∈ S we begin our study with the junctions of
two flat components E1, E2, like in Theorem 4.2. At the end of the proof we derive the
general case. First we deal with the one-dimensional case. Let us note that any function
φ ∈ C∞(E1) can be extended to the structure E = E1 ∪E2 by the formula

φ̃ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φ, on E1

φ, on E2.

The fact that it is a member of ⋂∞n=1D(∆
n
µ) follows from [Bou02, Prop. 3.11] characterising

membership in the set D(Aµ) what implies membership in D(∆µ).

Choosing a suitable family of smooth functions, we conclude that for any v ∈ L2(E1), the
function

ṽ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v, on E1

v, on E2

,

belongs to As(∆µ)N
∥⋅∥

L2
µ . To show that the set As(∆µ)N

∥⋅∥
L2
µ contains other functions of

the class L2
µ we will follow the following procedure.

We will indicate a family of smooth functions φn ∈ L
2(E1) satisfying Neumann boundary

conditions on E1 such that extending them by zero to the whole E, i.e., taking

φ̃n =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φn, on E1

0, on E2

results with φ̃n ∈ As(∆µ)N . Besides that, the family {φn} should span a "large enough"
subspace of L2

µ, for instance, the odd subspace of L2
µ.
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Next, we show that characteristic functions

χ̃A =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

χA, on E1

0, on E2,

for A ⊂ E1, can be obtained as a L2
µ-limit of elements of As(∆µ)N . This is enough to

conclude that L2
µ = As(∆µ)N

∥⋅∥
L2
µ .

Due to an explicit construction of the sequence {φn} we will need to conduct the mentioned
procedure separately for the case dimE1 = dimE2 = 1 and the case dimE1 = dimE2 = 2.

Let us start with the one-dimensional situation.

We define the family {H2k−1,H4k−2,H4k ∶ k = 1,2,3, ...}, where

H4k−2 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sin(π2nx) +
π
2nx, on E1

0, on E2

,

H4k =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sin(π2nx) −
π
2nx, on E1

0, on E2

, and H2k−1 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sin(π2nx), on E1

0, on E2

.

Let {αn} ∈ l
2 be a sequence of coefficients of the Fourier series of a fixed odd function

f ∈ L2(E1), that is SN = ∑N
n=1 αn sin(

π
2nx) and ∥SN − f∥L2 → 0 as N →∞. Let us assume

the decay condition ∣αn∣ ⩽
C′

n4 , for some positive constant C ′.

Denote hn ∶= Hn⌊E1 and we introduce γN ∶= ∑N
n=1 αnhn. There exists a constant c ∈ R for

which ∥γN − Sn − cx∥L2 → 0 as N →∞. Thus γN
L2

ÐÐÐ→
N→∞

f + cx.

Our aim is to replace the function f with the function cx and conduct a similar procedure.
A series of absolute values of Fourier coefficients of the function cx decays asymptotically
to 1

n , thus the decay condition needed to obtain the above convergence of partial sums is
violated, and we cannot proceed directly.

As odd periodic smooth functions are dense in L2(E1) (assuming that the endpoints −1
and 1 of E1 are glued together, thus we consider smoothness in the sense of the torus T1)
let us take a sequence {zm} of such functions converging in the L2-norm to the function
cx. It is clear that the Fourier coefficients {ẑm(k)} of each zm decay faster then C

kp for any
exponent p ∈ N.

Let ζmN ∶= ∑
N
k=1 ẑm(k)hk. We have ζmN

L2

ÐÐÐ→
N→∞

zm + cmx.

By the fact that the L2-convergence of functions implies l2-convergence of corresponding

Fourier coefficients we judge that ζNN
L2

ÐÐÐ→
N→∞

cx+ c̃x = (c+ c̃)x, where c, c̃ are real constants.
Now we see that the function

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(c + c̃)x, on E1

0, on E2

lies in As(∆)N
∥⋅∥

L2
µ . Without any loss on generality, we might expect that both constants

c and c̃ are non-zero.
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From the above observations, we immediately derive that

(γN −
c

c + c̃
ζNN )

L2

ÐÐÐ→
N→∞

f,

and thus the function
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f, on E1

0, on E2

is a member of the space As(∆µ)N
∥⋅∥

L2
µ .

Repeating this procedure on the component E2, we prove that

L2
odd(E1) ×L

2
odd(E2) ⊂ As(∆µ)N

∥⋅∥
L2
µ ,

where L2
odd stands for the odd subspace of the space L2.

To finish the study of this instance, we notice that both: the function 1 ∈ As(∆µ)N
∥⋅∥

L2
µ

and the function
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, x ∈ A

−1, x ∉ A
, on E1

0, on E2

belong to the space As(∆µ)N
∥⋅∥

L2
µ for any measurable set A ⊂ E1.

As a consequence, we obtain that for any measurable A ⊂ E1, we have

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

χA, on E1

0, on E2

belongs to As(∆µ)N
∥⋅∥

L2
µ . Therefore L2

µ = As(∆µ)N
∥⋅∥

L2
µ in the one-dimensional case.

In the two-dimensional case, we will follow an essentially similar way. The crucial difficulty
is finding a disc analogue of the functions hn.

It turns out that all the necessary requirements are fulfilled by the family {un, n = 1,2,3, ...}
which in polar coordinates can be written as un(φ, r) = c−1n sin(nφ)Jn(j

′
nr), where c−1n is a

L2-normalizing constant, Jn is the n-th order Bessel function of the first kind, and j′n is a
root of J ′n. For a more detailed discussion of the family un see [Wat62].

As un is an eigenfunction of the Neumann Laplacian corresponding to the eigenvalue j′n,
by the standard facts of the spectral theory we know that un are smooth, satisfy Neumann
boundary conditions and the functions un span the odd subspace of L2(E1). Moreover, the
eigenvalue equality implies that all derivatives of each un have proper growth.

The polar representation of un shows that each un and each ∆mun vanishes on the inter-
section set Σ = E1 ∩E2 (or this happens up to rotation), thus un can be extended by zero
to the whole structure E and

ũn =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

un, on E1

0, on E2
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satisfies ũn ∈ As(∆µ)N . Now, we are able to proceed analogously to the earlier discussed
one-dimensional case.

In this way we conclude L2
µ = As(∆µ)N

∥⋅∥
L2
µ . To proceed in the general case of µ ∈ S we

notice that the same result is obtained in the case of the low-dimensional structure with two
arbitrary component manifolds by the fact that multiplying µ by bounded and separated
from zero density does not change the space As(∆µ)N and the equivalence of convergence
presented in the first part of the proof of Theorem 4.2. By applying Proposition 3.9 to the
space As(∆µ)N we obtain the fact in the general case of the structure with m component
manifolds Ei, i = 1, ...,m.

The fact that convergence in the sense of the graph of ∆µ implies convergence in the
Sobolev norm H2 on each component manifold will be needed in further considerations.

Proposition 4.7. Assume that un ∈ As(∆µ)N , both the sequence un and the sequence ∆µun

are convergent in the L2
µ-norm, then the sequence un is convergent in H2(Ei), i = 1, ...,m.

Proof. The evoked earlier characterisation (see [Bou02, Prop. 3.11]) of the space D(∆µ)

shows that membership un ∈ As(∆µ)N implies un ∈H2(Ei), for i = 1, ...,m.

By considering separately each component Ei, i = 1, ...,m and using the local regularity
estimates (see for instance [Eva10, p.306]) we obtain that convergence in the sense of
graph of ∆ implies convergence in the seminorm ∥∇2 ⋅ ∥L2

µ
.By the interpolation theorem

(see e.g., [Ada03, Thm 5.2]) we obtain that a joint convergence in seminorms ∥ ⋅∥L2(Ei) and
∥∇2 ⋅ ∥L2(Ei) is equivalent to a convergence in the standard H2(Ei)-norm.

To provide that a solution constructed by the action of a semigroup is fully valuable, we
need to ensure that for each time t it is a member of the domain of the generator.

Lemma 4.8. Let u ∈ As(∆µ)N , let Vs be a family of operators constructed in the proof of
[Mag89, Thm. 2]. Then for each t ∈ (0, s) we have Vs(t)u ∈D(∆µ)N .

Proof. From the proof of [Mag89, Thm. 2] it follows that for an arbitrary u ∈ As(∆µ)N

and t ∈ (0, s) we have Vs(t)u ∈ As(∆µ)N
∥⋅∥C∞(Vs) .

By the equality of Proposition 4.5 it follows Vs(t)u ∈ As(∆µ)N
∥⋅∥C∞(∆µ)N . Let wn ∈ As(∆µ)N

be a Cauchy sequence in ∥ ⋅ ∥C∞(∆µ)N .

As Proposition 4.7 implies convergence of wn in the sense of H2(Ei) on each component
manifold Ei, i = 1, ...,m, and, as the normal trace ∂wn

∂n ⌊∂Ei
∶H1(Ei) → L2(Ei), i = 1, ...,m is

continuous, we conclude that the limit w ∶= limn→∞wn in ∥ ⋅ ∥C∞(∆µ)N satisfies ∂w
∂n ⌊∂Ei

= 0,
i = 1, ...,m. It is easy to check that w ∈H2(Ei) and w ∈ C(E).

Now using Theorem 4.2 proving closedness of the operator ∆µ we deduce that w ∈D(∆µ)N .

In this way we obtained Vs(t)u ∈D(∆µ)N , for all t ∈ (0, s).

We will also need the following simple observation.
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Proposition 4.9. E(∆µ)
T
N is dense in L2

µ.

Proof. It follows directly from the proof of Proposition 4.6.

The following proposition is equivalent to the continuity of the resolvent operator if such
an operator is well-defined.

Proposition 4.10. For any neighbourhood of zero W ⊂ L2
µ exists a neighbourhood of zero

U ⊂ L2
µ such that if for all k ∈ {1,2, ...}, for all u ∈ D(∆k

µ)N and some constants α,C > 0
we have (1 − αC)−k(Id − α∆µ)

ku ∈ U, then u ∈W.

Proof. Let us recall that the operator Id − α∆µ ∶ D(∆µ)N ⊂ L
2
µ → L2

µ is closed due to
closedness of ∆µ. Assume that the statement postulated in the thesis is not true. This
means that the following sentence is valid: ∃k ∈ {1,2, ...} ∃u ∈D(∆k

µ)N , and there exists a
neighbourhood of zero W ⊂ L2

µ such that for any neighbourhood of zero U ⊂ L2
µ we have

(1 − αC)−k(Id − α∆µ)
ku ∈ U and u ∉W.

This implies existence of a sequence un ∈ D(∆µ)N such that ∥(Id − α∆µ)un∥L2
µ
→ 0 and

∥un∥L2
µ
> c′ > 0. By continuity of the classical resolvent operator defined for the Laplace

operator ∆ on each component Ei, we see that the convergence ∥(Id − α∆µ)un∥L2
µ
→ 0

implies ∥un∥L2
µ
→ 0 as n → ∞. By induction over k ∈ {1,2, ...}, we stipulate that the

condition expressed in the thesis is valid.

Finally, we can summarise our study of generating semigroups in the following theorem.

Theorem 4.11. The operator ∆µ generates an equicontinuous semigroup S ∶ [0, T ] ×L2
µ → L2

µ.

Proof. We verified that on the interval [0, T ] all conditions of Theorem 2.29 are satisfied.
This implies, that ∆µ generates an equicontinuous semigroup S ∶ [0, T ] ×L2

µ → L2
µ.

We may conclude the results established in this chapter with the proof of Theorem 4.1.

Proof of the Theorem 4.1. Let S be the semigroup as in Theorem 4.11. As g ∈ AT (∆µ)N

and the semigroup S is generated by the operator ∆µ we immediately notice that the
function u(t, x) ∶= (S(t)g)(x) is a solution in a sense of Definition 2.19. The uniqueness
of the solution, up to a constant c ∈ R, for the initial function g ∈ AT (∆µ)N is a standard
result and follows from the fact that the semigroup is equicontinuous on the domain of the
generator, we refer to book [Paz83, Thm. 2.4c)].

Example 4.12. We present an example of an application of Theorem 4.1 to the existence
of solutions in a case of two orthogonal discs intersecting each other.

Let µ ∈ S be a low-dimensional structure of the form

µ ∶= H2
∣D1 +H

2
∣D2 ,
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where D1 ∶= {(x, y,0) ∈ R3 ∶ x2 + y2 ⩽ 1} and D2 ∶= {(x,0, z) ∈ R3 ∶ x2 + y2 ⩽ 1}. We denote
D ∶=D1 ∪D2 and ∂D ∶= ∂D1 ∪ ∂D2.

Assume that the matrix B = (bij), i, j ∈ {1,2,3} from Definition 2.15 consists of constant
entries bii ≡ 1, i ∈ {1,2,3} and bij ≡ 0, i ≠ j, i, j ∈ {1,2,3}.

The operator Lµ ∶D(Lµ)N → L2
µ related with this matrix is of the simple form

Lµu =
3

∑
i=1
(∇

2
µu)ii =∆µu.

We consider the evolutionary heat equation

ut −∆µu = 0 (H
2
∣D1 +H

2
∣D2) × l

1
([0, T ]) − a.e. in (D1 ∪D2) × [0, T ]

(∇µu, η) = 0 on (∂D1 ∪ ∂D2) × [0, T ]

u = g on (D1 ∪D2) × {0}.

(4.4)

Here g ∈ AT (∆µ)N and η is a vector field such that η⌊D1 is the outer normal unit vector
field to D1 and η⌊D2 is the outer normal unit vector field to D2.

By the result of Theorem 4.1, there exists a unique function u ∶ [0, T ] → L2
µ which is a

solution of the heat transfer issue (4.4) in the sense of Definition 2.19.
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Chapter 5

Non-semigroup approach

The results of this chapter are established in our paper [Cho24].

For the convenience of the readers, we shortly recall the formulation of weak problems
considered in this chapter. In the classes of functions introduced in Definition 2.23 and for
an elliptic matrix B ∈ B (Definition 2.14) we define (in Definition 2.24) the bilinear form
E ∶ H̊ × T̊ → R by a formula

E(u, v) ∶= ∫
T

0
∫
Ω
(B∇µu(t),∇µv(t)) − u(t)v

′
(t)dµdt,

and a functional F ∶ T̊ → R defined as

F (v) ∶= ∫
T

0
∫
Ω
f(t)v(t)dµdt + ∫

Ω
u0v(0)dµ,

where f ∈ L2(0, T ;L2
µ), u0 ∈ L̊

2
µ and v′ ∶= d

dtv. A function u ∈ H̊ is a solution to weak
problem (Definition 2.25) if it satisfies

E(u,φ) = F (φ)

for all φ ∈ C̊∞0 .

A fundamental drawback of the presented semigroup method is that it provides the ex-
istence of solutions in a narrow space of functions and under the assumption of a very
regular initial input, see Theorem 4.11 in the previous chapter. This is closely related to
two aspects: a form of the considered second-order operator and the non-existence of the
corresponding resolvent operator.

The second-order operator Lµ was constructed to be consistent with the variational theory
introduced in [Bou02] and the operators used there. The operator Lµ needs restrictive con-
ditions to be posed on function spaces to provide well-definiteness of it. Further restrictions
are caused by the fact that the considered operator is non-invertible, implying that the
resolvent operator does not exist (at least in a classical sense). Due to this, our method of
constructing solutions is based on "forward" iterations of the considered operator. Such a
method demands further significant restrictions on the considered space of functions.
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Now our goal is to touch the low-dimensional parabolic issues differently. Firstly ensuring
that the class of solutions is wide enough, and later on, we try to deduce additional
regularity of obtained solutions.

In this chapter, we focus on constructing solutions to weak versions of parabolic problems
with initial data of low regularity, and in further considerations, we show in what sense the
regularity of it can be upgraded. We begin by introducing a notion of weak parabolic prob-
lems and by examining the existence of solutions in the first-order framework of [Ryb20].

Throughout this chapter, we can loosen our restrictions on the class of considered low-
dimensional structures. We need only to assume that µ ∈ S̃. This means that components
of low-dimensional structures may have non-fixed dimensions.

We adapt the framework exposed, for instance, in book [Sho97] to provide the existence of
solutions to the weak parabolic problems on the low-dimensional structures.

We will need the next proposition to prove the existence of solutions to (2.9).

Proposition 5.1. For any φ ∈ T̊ we have

a) ∥φ∥L2H1
µ
⩽ ∥φ∥T ,

b) E(φ,φ) ⩾ C∥φ∥2T , where C > 0 is a constant independent of a choice of φ.

Proof. Point a) follows directly from the definitions of the related norms. This means that
the space T̊ embeds continuously in the space H̊. We move to the proof of point b).

Using integration by parts with respect to the time variable and ellipticity of the matrix
B ∈ B (Definition 2.14), we see that

E(φ,φ) = ∫
T

0
∫
Ω
(B∇µφ,∇µφ)dµdt − ∫

T

0
∫
Ω
φφ′dµdt ⩾ C ′ (∥∇µφ∥

2
L2L2

µ
+ ∥φ(0)∥2L2

µ
)

with a constant C ′ > 0 that does not depend on φ.

Rewriting the T -norm, we estimate

∥φ∥2T = ∥φ∥
2
L2H1

µ
+ ∥φ(0)∥2L2

µ

= ∥∇µφ∥
2
L2L2

µ
+ ∥φ∥2L2L2

µ
+ ∥φ(0)∥2L2

µ

⩽ (1 +Cp)∥∇µφ∥
2
L2L2

µ
+ ∥φ(0)∥2L2

µ
,

where the constant Cp comes from the generalized Poincaré inequality (formula (2.2) in
Section 2.2). As a conclusion we derive that C∥φ∥2T ⩽ E(φ,φ).

Let us recall the Lions variant of the Lax-Milgram Lemma (see, for instance, [Sho97]).

Theorem 5.2. Let M be a Hilbert space equipped with the norm ∥ ⋅ ∥M and N with the
norm ∥ ⋅ ∥N be a normed space. Let H ∶ M×N → R be a bilinear form and assume that for
any φ ∈ N we have H(⋅, φ) ∈ M∗. Then the condition

inf
∥φ∥N =1

sup
∥u∥M⩽1

∣H(u,φ)∣ ⩾ c > 0
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is equivalent to the fact that for any F ∈ N ∗ there exists u ∈ M such that for all φ ∈ N we
have H(u,φ) = F (φ).

The following proposition (see, e.g., [Sho97]) serves as a useful criterion for verifying that
one of the implications of the Lions Theorem is valid.

Proposition 5.3. Let there exists a continuous embedding of N in M. If there is some
positive constant A such that H(φ,φ) ⩾ A∥φ∥2N for all φ ∈ N , then for any F ∈ N ∗ exists
u ∈ M satisfying H(u,φ) = F (φ) for all φ ∈ N .

Now we are prepared to deal with the well-posedness of problem (2.9).

Theorem 5.4. Let f ∈ L2(0, T ;L2
µ) and u0 ∈ L̊2

µ. The problem (2.9) has exactly only one
solution u ∈ H̊.

Proof. Proposition 5.1 implies that the assumption of Proposition 5.3 is satisfied. Thus,
by applying the Lions Theorem (Theorem 5.2), the existential part is done.

To derive the uniqueness of solutions notice that point b) of Proposition 5.1 is stricter than
the monotonicity of the operator. This implies that the uniqueness is provided by applying
[Sho97, Prop. 2.3].

As the existence of weak solutions is already discussed, our next goal is to analyse their
regularity.

5.1 More regular solutions

Before we proceed with the strict reasoning, let us begin with the following, at this moment
only formal, computations:

∫
Ω
∇µu ⋅ ∇µvdµ = ∫

E1

∇µu ⋅ ∇µvdx̄ + ∫
E2

∇µu ⋅ ∇µvdx̄

= −∫
E1

∆uvdx̄ + ∫
∂E1

∂u

∂n
vdσ − ∫

E2

∆uvdx̄ + ∫
∂E2

∂u

∂n
vdσ

= −∫
Ω
Auvdµ + ∫

∂E

∂u

∂n
vdσ,

here we denote A ∶=∆E1 +∆E2 .

It should be clear that the above computations make sense only when we additionally
assume u ∈H2(Ei), i = 1,2. Moreover, introducing the zero Neumann boundary condition
on each component Ei, i = 1,2, it follows by continuity of the operator

A ∶H2
(E1) ×H

2
(E2) → L2

µ

that

∫
Ω
∇µu∇µvdµ ⩽ C∥v∥L2

µ
,

for all v ∈H1
µ.
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Definition 5.5. Let D(A) ⊂ H̊1
µ be a subspace such that for u ∈D(A) we have

∫
Ω
(B∇µu,∇µv)dµ ⩽ C∥v∥L2

µ

for all v ∈ H̊1
µ, some positive constant C and a matrix B ∈ B.

We define the operator A ∶D(A) → L2
µ by the equality

∫
Ω
(B∇µu,∇µv)dµ = ∫

Ω
(Au)v dµ

satisfied for all v ∈ H̊1
µ. Existence of the element Au is guaranteed by the Riesz Represen-

tation Theorem for functionals on a Hilbert space.

Let us point out that the operator A is consistent with the integration by parts formula.
We do not assume enough regularity on u to ensure the existence of the normal trace
in the classical sense. We must follow the generalized approach by applying the results
established in [Che01]. This theory provides the existence of the normal trace and the
operator A in the sense of distributions or measures.

Further, by a condition from the definition of the domain D(A) (Definition 5.5), we rep-
resent the normal trace and other terms of the integration by parts formula (we refer to
[Che01, Thm. 2.2]) as functionals on adequate variants of L2 spaces.

In this way, we obtain

∫
Ω
Auv dµ + ∫

∂Ω
[B∇µu, ν]⌊∂Ωv dσ ⩽ C∥v∥L2

µ
.

If [B∇µu, ν]⌊∂Ω is non-zero somewhere on ∂Ω, then we can find a sequence of continuous
functions vn ∈ H̊1

µ such that the second integral on the left side of the inequality diverges
and the other terms on both sides are bounded. This indicates that in fact the operator
A satisfies

∫
Ω
B∇µu∇µv dµ = ∫

Ω
Auv dµ.

Finally, let us observe that

{u ∈ H̊1
µ ∶ u∣Ei ∈H

2
(Ei), [B∇µu, ν]⌊∂Ω= 0, i = 1,2} ⊂D(A).

Remark 5.6. The operator A ∶ D(A) → L2
µ is selfadjoint. This follows directly from the

symmetry of the matrix operator B(x̄) for µ-a.e. x̄ ∈ E and the symmetry of the bilinear
form (⋅, ⋅)L2

µ
.

Using the theorem of Lions - Theorem 5.2, we prove the existence of strong solutions in
the sense of the operator A.

Proposition 5.7. Let f ∈ L2(0, T ;L2
µ), u0 ∈ H̊

1
µ. Then there exists a unique function

u ∈W 1,2(0, T ;L2
µ) satisfying u′ + Au = f in L2(0, T ;L2

µ) with u(0) = u0. Moreover, for
almost every t ∈ (0, T ) there is u(t) ∈D(A).
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Proof. By a fact that the operator A is obtained from the non-negative, symmetric bilinear
form, see Definition 5.5, and due to its self-adjointness (see Remark 5.6 above) we are in
a case covered by [Sho97, Prop. 2.5]. It allows adapting the Lions Theorem 5.2 to the
equation with the operator A. In this way we obtain existence of unique function u such
that equality u′ +Au = f is satisfied in the norm of the space L2(0, T ;L2

µ).

Now we focus on extending a class of accessible initial data u0 and discuss remarks dealing
with the regularity of the obtained solution.

Proposition 5.8. A solution determined in Proposition 5.7 is a member of the space of
functions C([0, T ]; H̊1

µ).

Proof. This is a result of an equivalence of ∫Ω(B∇µu,∇µv)dµ and the scalar product of the
Hilbert space H̊1

µ. Such equivalence is valid because we assume that on the low-dimensional
structure µ the generalized Poincaré inequality is true. Moreover, the mentioned equiva-
lence implies that the assumption u0 ∈ H̊1

µ cannot be relaxed in the given class of solutions
to the considered problem.

Finally, we examine the regularity of solutions in the setting where, as an initial data, we
can take the function of the class L̊2

µ.

Proposition 5.9. Let the operator A and the function f be as in Proposition 5.7. Assume
that u0 ∈ L̊2

µ. Then the unique solution u ∈W 1,2(0, T ;L2
µ) of the problem u′ +Au = f in the

space L2(0, T ;L2
µ), with u(0) = u0 ∈ L̊2

µ satisfies t1/2u′ ∈ L2(0, T ;L2
µ) and for an arbitrary

d ∈ (0, T ) satisfies u ∈W 1,2(d, T ;L2
µ) ∩C([d, T ]; H̊

1
µ).

Proof. Under the given assumptions, we are in the regime of [Sho97, Cor. 2.4], which gives
the proposed statements.

A relation between solutions of the form evoked in Proposition 5.7 and weaker solutions
recalled in Theorem 5.4 is investigated in the below lemma.

Lemma 5.10. Let u ∈ W 1,2(0, T ;L2
µ), u0 ∈ H̊

1
µ satisfies the equation u′ + Au = f in

L2(0, T ;L2
µ) with u(0) = u0. Then u is a weak solution in the sense of Definition 2.25.

Proof. After multiplying the equation u′+Au = f by a test function φ ∈ C̊∞0 and integrating
over Ω and time, we obtain

∫

T

0
∫
Ω
u′φ +Auφdµdt = ∫

T

0
∫
Ω
u′φ + (B∇µu,∇µφ)dµdt.

Continuing by integrating by parts the term with the time derivative it follows that

∫

T

0
∫
Ω
u′φ + (B∇µu,∇µφ)dµdt = ∫

T

0
∫
Ω
(B∇µu,∇µφ) − uφ

′ dµdt + ∫
Ω
u0φ(0)dµ.

From this, we conclude that E(u,φ) = F (φ), thus the function u is a weak solution in the
sense of Definition 2.25.
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5.2 Examples

The following examples are evoked to present that in the low-dimensional setting, even
the simplest stationary elliptic equation might possess weak solutions which give a new
quality.

We will show that there are solutions that are not simple gluings of classical solutions of
projected problems on component manifolds.

Example 5.11. Assume that Ω ⊂ R2 is a 2-dimensional unit ball B(0,1). Define the
subsets E1 ∶= {(y,0) ∶ y ∈ [−1,1]}, E2 ∶= {(0, z) ∶ z ∈ [−1,1]} and the corresponding measure
µ ∶= H1∣E1 +H

1∣E2 . Let us consider the function

f ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

y on E1,

0 on E2

.

Clearly we have f ∈ L̊2
µ. Let us consider the stationary heat problem (see [Ryb20] for the

existence and uniqueness result)

∫
Ω
∇µu ⋅ ∇µφdµ = ∫

Ω
fφdµ (5.1)

for φ ∈ C∞c (R2). In this case the projected gradient ∇µ has a form of the classical 1-
dimensional derivative ∂ in variables corresponding to each component Ei, i = 1,2.

We can write down equation (5.1) in a form

∫
E1

∂yu∂yφdy + ∫
E2

∂zu∂zφdz = ∫
E1

yφdy + ∫
E2

0φdz = ∫
E1

yφdy.

On the component E1 let us take

u1(y) ∶= −
21

1080
−
y4

12
+
y3

6
+
y2

6
−
y

2
.

Computations show that

u′1(−1) = u
′
1(1) = 0,

u1(0) =
−21

1080

and ∫E1
u(y)dy = 7

180 . Let us put on the component E2 the constant function u2(z) ∶= − 21
1080 .

The function u2 has a mean over E2 equal to − 7
180 .

It is easy to observe that neither u1 nor u2 satisfies the weak equation separately on
components, that is ui, i = 1,2 is not the solution of

∫
Ei

∂xui∂xφdx = ∫
Ei

fφdx, for x ∈ {y, z},

due to the fact that ∫Ei
uidx ≠ 0.
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On the other hand, the function

u ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u1 on E1,

u2 on E2

belongs to H̊1
µ and is a solution to weak problem (5.1).

The second example shows that a solution to the weak low-dimensional Poisson problem
(5.1) may differ from a sum of solutions to classical problems considered separately on each
component manifold.

Example 5.12. We are considering Poisson equation (5.1) taking for Ω ⊂ R3 a 3-dimensional
unit ball B(0,1), the manifolds E1 ∶= {(x, y,0) ∶ x

2 + y2 ⩽ 1}, E2 ∶= {(x,0, z) ∶ x
2 + z2 ⩽ 1}

and the measure µ ∶= H2∣E1 +H
2∣E2 .

Let us define a function w ∶ E1 → R, w(x, y) ∶= cos(π(x2 + y2)) and for the force term let

us put the function f ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∆w on E1,

0 on E2

.

After some computations, we can check that

∇w = −2π sin(π(x2 + y2))(x, y),
∂w

∂n
⌊∂E1= 0,

and
∆w = −4π sin(π(x2 + y2)) − 4π2(x2 + y2) cos(π(x2 + y2)).

By a change of variables for the polar coordinates, we can easily verify that ∫E1
∆wdx̄ = 0.

The previous observations show that f ∈ L̊2
µ. Both w and the zero function are the solutions

of the classical weak Poisson problem posed on the corresponding component, but the

function u ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

w on E1

0 on E2

does not belong to H̊1
µ or even to H1

µ. It should be noted that

even the modified function ũ ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

w + c1 on E1

0 + c2 on E2

for any c1, c2 ∈ R is not a member of H1
µ.

The general existence theorem established in [Ryb20] can be applied to this problem and
provides the existence of the solution û ∈ H̊1

µ. The conducted reasoning shows that the
solution û will be different from any function ũ and thus will be different from the function
u in an essential way, meaning that neither only by some constant nor by two different
constants added independently on components.

5.3 Asymptotic convergence

We focus on studying the asymptotic behaviour of weak solutions to parabolic problems.

Transferring the results of [Gol08], we prove that solutions to parabolic problem (2.9)
converge as t→∞ to a solution of the stationary heat equation.
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We will work with a slightly different formulation of the weak equation. Thus we will need
an equivalence (see [Sho97, Prop. 2.1]) phrased by the below proposition.

Proposition 5.13. Weak formulation of the parabolic initial problem (2.9) is equivalent to
a problem of finding u ∈ H̊ with u(0) = u0 ∈ L2

µ such that the equation u′(t) + Au(t) = f(t)

is satisfied in the sense of the dual space H̊∗ for a.e. t ∈ (0,+∞).

Proof. This can be proved by applying [Sho97, Prop. 2.1] to equation (2.9) in the corre-
sponding framework.

To shorten the notation, we introduce a notion of the energy functional related to the
considered problem.

Definition 5.14. Let a functional Eµ ∶ H̊1
µ → R be defined as Eµ(u) ∶= ∫Ω(B∇µu,∇µu)dµ.

The functional Eµ is called the energy functional.

To avoid confusion, we formulate the notion of a weak elliptic problem, which we consider
further.

Definition 5.15. Let f ∈ H̊1
µ. We say that a function u∗ ∈ H̊1

µ is a solution of the stationary
heat equation if

∫
Ω
(B∇µu

∗,∇µv)dµ = ∫
Ω
fvdµ

is satisfied for all functions v ∈H1
µ.

Adapting the proof of [Gol08, Thm. 1, p.269] to the considered case, we obtain the following
theorem dealing with the asymptotic behaviour of parabolic solutions.

Theorem 5.16. Let u∗ ∈ H̊1
µ be a solution to stationary heat equation (Definition 5.15). A

solution u to parabolic issue (2.9) converges as t→∞ to u∗ in the sense of the H1
µ-norm.

Proof. A main point of the proof is in verifying that Eµ(u(t) − u
∗) → 0 as t→∞.

Let us compute:

d

dt
∥u − u∗∥2L2

µ
= ∫

Ω
ut(u − u

∗
)dµ = ∫

Ω
f(u − u∗)dµ − ∫

Ω
(B∇µu,∇µ(u − u

∗
))dµ

= ∫
Ω
f(u − u∗)dµ − ∫

Ω
(B∇µu,∇µ(u − u

∗
))dµ

+ ∫
Ω
(B∇µu

∗,∇µ(u − u
∗
))dµ − ∫

Ω
f(u − u∗)dµ

= −∫
Ω
(B∇µu,∇µ(u − u

∗
))dµ + ∫

Ω
(B∇µu

∗,∇µ(u − u
∗
))dµ

= −∫
Ω
(B∇µ(u − u

∗
),∇µ(u − u

∗
))dµ = −Eµ(u − u

∗
)

⩽ 0.

(5.2)

This shows that the term ∥u − u∗∥2L2
µ

is non-increasing. Please note that if Eµ(w) = 0 for

some w ∈ H̊1
µ, then w ≡ 0. This means if u(t) = u∗ for some t ∈ (0,∞), then this implies we

have u(t + s) = u0 for all s > 0.
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Now we see that as ∥u − u∗∥2L2
µ
⩾ 0, there exists a sequence of times ti ∈ (0,∞) such that

d
dt∥ui−u

∗∥2L2
µ
→ 0 as ti →∞. Here we denote ui ∶= u(ti). In this way we get Eµ(ui−u

∗) → 0

as ti →∞.

As (5.2) shows, the term ∥u − u∗∥2L2
µ

is non-increasing with respect to t ∈ (0,∞) thus we
can deduce that the convergence occurs for any sequence of times, that is Eµ(u − u

∗) → 0

as t → ∞. The ellipticity of the operator B implies that ∇µu
t→∞
ÐÐ→ ∇µu

∗ in the L2
µ-norm

sense. Making use of the fact that for the low-dimensional structure µ the generalized
Poincaré inequality is satisfied combining it with ∫Ω u(t)dµ = ∫Ω u

∗dµ = 0 we conclude that

u
t→∞
ÐÐ→ u∗ in H̊1

µ.

Comment. It seems possible to adapt the proof of [Gol08, Thm. 1] to a wider class
of differential equations on low-dimensional structures like, for instance, the p-Laplace
equation with the force term dependent on a solution. Nevertheless, this kind of differential
equation in the framework of low-dimensional structures has not been studied yet, and we
leave it for future studies.

67



Chapter 6

Higher regularity of weak elliptic
solutions

This chapter contains the results obtained in our paper [Cho23].

The following three theorems concerning an additional regularity of low-dimensional weak
solutions to elliptic equations constitute the main results of our studies:

• On each component manifold Si of the low-dimensional structure S a weak solution
u of the elliptic issue (1.2) has the extra regularity u ∈H2(Si). This is the statement
of Theorem 6.5.

• A weak solution u is globally continuous on the given low-dimensional structure, that
is u ∈ C(S). This fact is precisely expressed in Theorem 6.8.

• If u solves weak problem (1.2), then u is a member of the domain of the low-
dimensional second-order derivative operator Lµ. This is the result of Theorem 6.10.

One of the standard ways of showing extra Sobolev regularity in the Euclidean setting
is the method of difference quotients - if they are uniformly bounded, they justify the
existence of a weak gradient. In a classical setting (see, for example, [Eva10, Chapter 6.3]),
one obtains uniform bound on difference quotients of weak solutions, thus improving their
regularity.

We aim to proceed analogously on low-dimensional structures. However, the difficulties
in such an approach are readily visible - in general, we cannot easily shift the function
supported on the structures we work with in the directions orthogonal to its components.
We circumvent this issue in the following way:

• For a given u ∈ H1
µ, we take a sequence of smooth functions C∞c (R3) ∋ φn

H1
µ
ÐÐ→ u,

which we can arbitrarily shift in any direction;

• As we shall see, we need further control of φn, and therefore we introduce a special
modification of φn, which we denote by φ̂n. Its key property is that its global
behaviour is determined by the restriction to a low-dimensional structure;
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• Our modification still obeys the H1
µ convergence and its shifts are well-defined. The

limit lim
n→∞

φ̂n(⋅ + h) plays the role of a generalized shift of u.

Remark 6.1. The third point above is not as immediate as it may seem, since for an
arbitrary approximating sequence φn ∈ C

∞
c (R3), justifying the membership u ∈H1

µ, it may
happen that φn(⋅ + h) no longer converges in H1

µ. This is one of the fundamental reasons
why we introduce a specific form of the extension.

The proof of our main theorem – H2-type regularity on each component manifold – consists
of two parts: showing that the functional space H1

µ is closed with respect to the aforemen-
tioned generalised translation and secondly, establishing uniform bounds on generalized
difference quotients.

6.1 Geometric approach to componentwise regularity

In what follows, we restrict our attention to the structures consisting only of "straightened
out" components. While such structures serve as generic models of various types of inter-
sections, we later show that the general result follows from the one we obtain in the model
cases. We address this issue at the end of this chapter.

We consider the following structure:

Let S = S1 ∪ S2, where

S1 = {(x, y,0) ∈ R3
∶ x2 + y2 ⩽ 1}, S2 = {(0, y, z) ∈ R3

∶ y2 + z2 ⩽ 1}. (6.1)

We introduce two Hausdorff measures associated with S:

µ ∶= H2
⌊S1+H

2
⌊S2 , µ̃ ∶= θ1H

2
⌊S1+θ2H

2
⌊S2 , θi ∈ C

∞
(Si) for i = 1,2. (6.2)

Denote the intersection set by

Σ ∶= S1
∩ S2

= {(0, y,0) ∶ ∣y∣ ⩽ 1}

and the restriction of u to a single disc as ui ∶= u∣Si . We are ready to state the first result.

Let us now consider the low-dimensional elliptic problem for S previously formulated in
Definition 2.21.

For a given f ∈ L̊2
µ, a solution u ∈ H̊1

µ satisfies the equality

∫
Ω
Bµ̃∇µ̃u ⋅ ∇µ̃φdµ̃ = ∫

Ω
fφdµ̃ (6.3)

for any φ ∈ C∞(R3). Existence of the unique solution to this problem is the main result of
paper [Ryb20].

We may include the densities in the operator Bµ and change µ̃-related gradients to ∇µ,

∫
Ω
B̃µ∇µu ⋅ ∇µφdµ = ∫

Ω
f̃φ dµ. (6.4)
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We now apply the strategy outlined before to the solution u.

The below reasoning was established in our paper [Cho23].

Step 1: trΣ u ∈H1
loc(Σ)

We begin by showing extra differentiability in the direction of the variable y. Let us define

uh,y ∶= u(⋅ + hey), where ey = (0,1,0).

Such translation is a well-defined function, at least on any low-dimensional structure S′

satisfying intS′ ⊂⊂ intS (in the inherited topology on S; we refer to S′ as a substructure
of S) and for sufficiently small h > 0. We abuse the notation a little and by µ denote the
restriction µ⌊S′ ; it is justified since all of the further reasoning is carried out locally.

Taking any φn ∈ C
∞(R3) satisfying φn → u in H1

µ, we see that

φh,y
n

H1
µ

ÐÐÐ→
n→∞

uh,y,

and thus uh,y ∈H1
µ.

We put

Dh
yu ∶=

1

h
(uh,y − u) ∈H1

µ.

Let ξ ∈ C∞c (R3) be a smooth function which will be specified later. We have ξ2Dh
yu ∈ H

1
µ

and further φy ∶= −D−hy (ξ
2Dh

yu) ∈ H
1
µ. This means that φy can be used as a test function

in equation (6.4).

Since Σ is µ-negligible, we are able to rewrite

∫
Ω
B̃µ∇µu ⋅ ∇µφ

ydµ = ∫
S1

B̃µ∇S1u ⋅ ∇S1φ
ydS1 + ∫

S2

B̃µ∇S2u ⋅ ∇S2φ
ydS2,

and the right-hand side of the equation (6.4) can be presented as

∫
Ω
f̃φydµ = ∫

S1

f̃φydS1 + ∫
S2

f̃φydS2.

Having the equality in the expanded form as above, we might apply the standard method
of showing higher regularity of solutions by establishing a uniform bound on difference
quotients (for example, see e.g., [Eva10]).

Recall that we assumed µ to be a restriction of the measure H1⌊S1+H
1⌊S2 to a fixed subset

S′ ⊂⊂ S.

This provides that for small enough h > 0 we have ∥Dh
y∇µu∥L2

µ
⩽ C, which further implies

that ∥∂y∇µu∥L2
µ
⩽ C, where the constant C > 0 is independent of h. Using the explicit form

of ∇µ, we have
∥∂2yu∥L2

µ
⩽ C and ∥∂y∂xu∥L2

µ
⩽ C.

Now, we make use of the fact that in a region separated from the junction set Σ, the
equation is reduced to the standard case, and the local regularity is known. Define

S+1 ∶= {(x, y,0) ∈ S1 ∶ x > 0}, S−1 ∶= {(x, y,0) ∈ S1 ∶ x < 0}.
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Let V ⊂⊂ S+1 ; in particular, notice that inf{x ∶ ∃y, (x, y,0) ∈ V } ⩾ α > 0. Taking for ξ
properly chosen (as in the classical proof) function supported in V, we conclude by the
standard elliptic regularity theory that u ∈H2

loc(V ).

Moreover, the H2-regularity implies almost everywhere in V the symmetry of the second
derivatives: ∂y∂xu = ∂x∂yu. By the fact that the set V was chosen arbitrary, we deduce
that the equality ∂y∂xu = ∂x∂yu is valid a.e. in S+1 with respect to the measure H2⌊S+1

.

Proceeding analogously on S−1 we get ∂y∂xu = ∂x∂yu a.e. on S−1 , so the demanded equality
∂y∂xu = ∂x∂yu is true a.e. on S1.

By the fact that ∂y∂xu ∈ L2
loc(S1) and ∂y∂xu = ∂x∂yu a.e. on S1 we deduce ∂x∂yu ∈ L2

loc(S1).

We will check that ∂x∂yu is actually a weak ∂x-derivative of ∂yu on S1.

Let
A ∶= {φ ∈ C∞c (R

3
) ∶ φ∣S1∈ C

∞
c (S1)}.

For any φ ∈ A it follows that

∫
S1

∂x∂yuφdS1 = ∫
S1

∂y∂xuφdS1 = −∫
S1

∂xu∂yφdS1

= ∫
S1

u∂x∂yφdS1 = ∫
S1

u∂y∂xφdS1 = −∫
S1

∂yu∂xφdS1,

thus ∂x∂yu = ∂x(∂yu), so indeed ∂x∂yu is a weak derivative of ∂yu.

The result implies that ∂yu ∈ H1(S1), and so Σ-trace of ∂yu is well-defined. This implies
the membership trΣ ∂yu ∈ L

2(Σ).

Notice that the standard mollification argument shows that smooth functions C∞(R2) are
dense in the subspace

{u ∈H1
(S1) ∶ ∂yu ∈H

1
(S1)}

inherited with the norm
(∥u∥2H1(S1) + ∥∂yu∥

2
H1(S1))

1
2
.

This fact provides the existence of a smooth sequence φn approximating u in the above
norm, and further, we can derive the commutation trΣ ∂yu = ∂y tr

Σ u. As a conclusion
this gives ∂y trΣ u ∈ L2(Σ). A verification that ∂y trΣ u is a weak derivative of trΣ u is a
byproduct of the proof of the above commutation. Finally, we obtain

trΣ u ∈H1
(Σ).

Step 2: Construction of the extension

Now we introduce the special form of an extension of a function supported on a low-
dimensional structure to the whole R3.

Before proceeding with a rather technical construction, we propose an informal description:
for a given point (x, y, z) ∈ R3 (not necessarily (x, y, z) ∈ S), the extension can be expressed
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as
ũ(x, y, z) ∶= u(0, y, z) − (trΣ u)(0, y,0) + u(x, y,0).

By the previous step, we know that trΣ u ∈ H1(Σ). Let us recall that the classical trace
theory provides the trace operator

trΣ ∶H1
(S1) →H1/2

(Σ)

which is surjective and trΣ(H3/2(S1)) = H
1(Σ). Thus there exists v ∈ H3/2(S1) such that

trΣ v = trΣ u. It follows that trΣ(v−u) = trΣ v−trΣ u = 0. Moreover, we have v−u ∈H1(S1).

Observe that proceeding as in Step 1, we obtain that for any set W ⊂⊂ S1 separated from
the intersection Σ it holds that u ∈ H2(W ). Let us choose small, fixed h > 0 and assume
that Σ − (h,0,0) ⊂W for some fixed W as above.

Now, let αn, βn ∈ C
∞(R2) be sequences converging in the H1(S1)-norm to v and v − u,

respectively. Besides that, we demand from the sequence αn to converge to v in H3/2(S1)

and from βn to converge to v − u in H3/2(W ); the latter can be constructed using the
diagonal argument. Without the loss of generality, we can assume βn∣Σ= 0.

The extension of such sequences to the R2 space is a standard fact; first, we judge the
existence of sequences converging on S1, then each sequence term can be smoothly extended
to the whole R2 space. By the continuity of the trace operator, we have

trΣ αn
H1(Σ)
ÐÐÐ→ trΣ v, trΣ βn

H1(Σ)
ÐÐÐ→ trΣ(v − u) = 0.

We express the function u as
u = v − (v − u)

and we put γn ∶= αn−βn ∈ C
∞(R2). Immediately, we see that trΣ γn = trΣ(αn−βn) = tr

Σ αn,

and further
γn

H1(S1)
ÐÐÐÐ→ v − (v − u) = u and trΣ γn

H1(Σ)
ÐÐÐ→ trΣ v = trΣ u.

Recall that αn is defined only on S1, which lies in xy plane. We introduce the R3-extension
of αn by the formula α̃n(x, y, z) ∶= αn(x, y).

We collect some readily seen properties of this extension: α̃n ∈ C
∞(R3) ∩H1

µ,

α̃n∣S=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αn on S1,

trΣ αn on S2
and α̃n

H1
µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v on S1,

trΣ v on S2
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v on S1,

trΣ u on S2,

with the last expression belonging to H1
µ (by the completeness of this space).

Analogously we extend βn to β̃n and we introduce γ̃n ∶= α̃n − β̃n, which is exactly the
extension of γn one would obtain by following the same process as for αn and βn.

Similarly as before, the function γ̃n has the following properties: γ̃n ∈ C∞(R3) ∩H1
µ,

γ̃n∣S=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

γn on S1,

trΣ αn on S2
and γ̃n

H1
µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u on S1,

trΣ u on S2
∈H1

µ.
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Repeating analogous construction on the component S2, we obtain δ̃n ∈ C∞(R3)∩H1
µ such

that

δ̃n∣S=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

trΣ α′n on S1,

δn on S2
and δ̃n

H1
µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

trΣ u on S1,

u, on S2
∈H1

µ,

where α′n is defined just as αn was defined on S1.

Having extended the function u, we proceed with extending the trace in a similar fashion.
As trΣ u ∈H1(Σ) we might find a sequence ρn ∈ C∞(R) converging to trΣ u in H1(Σ).

Define ρ̃n(x, y, z) ∶= ρn(y), ρ̃n ∈ C∞(R3) ∩H1
µ. The function ρ̃n shares the following prop-

erties:

ρ̃n∣S=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ρn on S1,

ρn on S2
and ρ̃n

H1
µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

trΣ u on S1,

trΣ u on S2
∈H1

µ.

With all the needed extensions in hand, we define the sequence Γn ∈ C
∞(R3) ∶

Γn(x, y, z) ∶= γ̃n(x, y, z) + δ̃n(x, y, z) − ρ̃n(x, y, z). (6.5)

We have Γn ∈H
1
µ and

Γn∣S=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

γn + tr
Σ α′n − ρn on S1,

trΣ αn + δn − ρn, on S2.

Moreover, collecting all the limits of γ̃n, δ̃n and ρ̃n we arrive at

Γn

H1
µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u + trΣ u − trΣ u on S1,

trΣ u + u − trΣ u on S2
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u on S1,

u on S2
= u ∈H1

µ.

Step 3: Generalized translation and difference quotient

We use the sequence Γn to introduce a generalized notion of translation, i.e. we show
how to construct a shift of the function u by the vector (h,0,0), where h ∈ R. To fix the
perspective, let us choose h > 0 to be as in the Step 2. Otherwise, we would translate the
function in the opposite direction, which can be clearly done by the same method.

Define

Γh,x
n (x, y, z) ∶= Γn(x + h, y, z) = γ̃n(x + h, y, z) + δ̃n(x + h, y, z) − ρ̃n(x + h, y, z). (6.6)

Notice that

γ̃n(x + h, y, z) = α̃n(x + h, y, z) − β̃n(x + h, y, z) = αn(x + h, y) − βn(x + h, y),

where

αn(x + h, y)∣S=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αn(x + h, y) on S1,

αn(−h, y) on S2
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αn(x + h, y) on S1,

trΣ[αn(⋅1 + h, ⋅2)] on S2
∈H1

µ.
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The sequence βn has an analogous representation on the structure S. Therefore, the
translated sequence γ̃n can be expressed as

γ̃n(x + h, y, z) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αn(x + h, y) − βn(x + h, y) on S1,

αn(−h, y) − βn(−h, y) on S2

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αn(x + h, y) − βn(x + h, y) on S1,

trΣ[αn(⋅1 + h, ⋅2)] − tr
Σ[βn(⋅1 + h, ⋅2)] on S2.

Passing to the limit in the H1
µ-norm we obtain the following closed-form expression

γ̃n(x + h, y, z)
H1

µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v(x + h, y) − (v(x + h, y) − u(x + h, y)) on S1,

trΣ[v(⋅1 + h, ⋅2)] − (tr
Σ[v(⋅1 + h, ⋅2)] − tr

Σ[u(⋅1 + h, ⋅2)]) on S2

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u(x + h, y) on S1,

trΣ[u(⋅1 + h, ⋅2)] on S2.

From now on, to avoid possible confusion, we will use the notation ui ∶= u∣Si , for i = 1,2.
Thus the last equality can be written as

γ̃n(x + h, y, z)
H1

µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u1(x + h, y) on S1,

trΣ [u(⋅1 + h, ⋅2)] on S2.

Similar calculations allow us to check the convergence of γ̃n, which was the extension of
u2 = u∣S2 . Omitting the details, we arrive at

δ̃n(x + h, y, z) = α̃n
′
(x + h, y, z) − β̃n

′
(x + h, y, z)

= α′n(y, z)(x + h) − β
′
n(y, z)(x + h)

= α′n(y, z)(x) − β
′
n(y, z)(x)

(recall that α′, β′ are constructed analogously to α,β, but this time around on S2).

Moreover, we have

δ̃n∣S=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

trΣ (α′n − β
′
n) on S1,

α′n(y, z) − β
′
n(y, z) on S2

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

trΣ α′n on S1,

δn(y, z) on S2,

thus after passing with n→∞ we obtain

δ̃n(x + h, y, z)
H1

µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

trΣ u2 on S1,

u2(y, z) on S2.

Lastly, we consider the sequence ρn associated with the extension of Σ–trace.

We have:
ρ̃n(x + h, y, z) = ρn(y)(x + h, z) = ρn(y)(x, z) = ρn(y),
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and further

ρ̃n(x + h, y, z)
H1

µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

trΣ u1 on S1,

trΣ u1 on S2.

For the convenience of the readers, we summarise all the obtained limits:

γ̃n(x + h, y, z)
H1

µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u1(x + h, y) on S1,

trΣ[u1(⋅1 + h, ⋅2)] on S2,

δ̃n(x + h, y, z)
H1

µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

trΣ u on S1,

u2(y, z) on S2,

ρ̃n(x + h, y, z)
H1

µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

trΣ u on S1,

trΣ u on S2.

Recalling the definition of Γh,x
n in (6.6), we arrive at

Γh,x
n

H1
µ
ÐÐ→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u1(x + h, y) + tr
Σ u − trΣ u on S1,

trΣ[u1(⋅1 + h, ⋅2)] + u2(y, z) − tr
Σ u on S2

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u1(x + h, y) on S1,

trΣ[u1(⋅1 + h, ⋅2)] + u2(y, z) − tr
Σ u1 on S2

∈H1
µ.

This limit will be treated as a generalized translation of u.

From now on, we denote

uh,x ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u1(x + h, y) on S1,

trΣ[u1(⋅1 + h, ⋅2)] + u2(y, z) − tr
Σ u1 on S2.

.

In a completely analogous way, we introduce the z-direction translation: uh,z.

With the notion of translation at hand, we define generalized difference quotients as

Dh,xu ∶=
1

h
(uh,x − u), Dh,zu ∶=

1

h
(uh,z − u).

We have
Dh,xu, Dh,zu ∈H1

µ.

Note that uh,x and uh,z coincide with classical translations on S1 and S2, respectively.

Step 4: Higher regularity estimates

In this step, we use the notion of generalized difference quotients to establish higher regu-
larity.

Let φ ∶= −ξ2D−h,x(u) ∈ H1
µ, where ξ ∈ C∞(R3), supp(ξ∣S) ⊂⊂ S is the properly chosen

cut-off function to be specified later. Due to Remark 2.22, it is a suitable test function in
weak formulation (2.8) and thus in an equivalent formulation (6.4).
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Proceeding with the latter one, we have

∫
Ω
B̃µ∇µu ⋅ ∇µ(D

h,xφ)dµ = ∫
S1

B̃µ∇S1u ⋅ ∇S1D
h,xφdS1 + ∫

S2

B̃µ∇S2u ⋅ ∇S2D
h,xφdS2

= ∫
S1

B̃µ∇S1u ⋅ ∇S1D
h
xφdS1 + ∫

S2

B̃µ∇S2u ⋅ ∇S2D
h,xφdS2.

(6.7)

Here Dh
x is a classical difference quotient, which follows from the observation that the

generalised translation φx,h coincides with a classical one (in x direction still) on S1, as
mentioned before.

Therefore the integral over S1 already is in a proper form, but we need to show that a
constant independent of h uniformly bounds the second term on the right-hand side.

We have

∫
S2

B̃µ∇S2u ⋅ ∇S2D
h,xφdS2 = ∫

S2

B̃µ∇S2u ⋅ ∇S2 [
1

h
(φh,x

− φ)]dS2

=∫
S2

B̃µ∇S2u ⋅ ∇S2 [
1

h
(trΣ[φ1(⋅1 + h, ⋅2)] + φ2(y, z) − tr

Σ
[φ1(⋅1, ⋅2)] − φ2(y, z))]dS2

=∫
S2

B̃µ∇S2u ⋅ ∇S2 [
1

h
(trΣ[φ1(⋅1 + h, ⋅2)] − tr

Σ
[φ(⋅1, ⋅2)])]dS2.

(6.8)

We estimate this last integral. In the below computations, the constant C > 0 varies from
line to line and is independent of the parameter h.

∣∫
S2

B̃µ∂yu∂y [
1

h
(trΣ[φ1(⋅1 + h, ⋅2)] − tr

Σ
[φ1(⋅1, ⋅2)])]dydz∣

⩽ ∣∫
S2

B̃µ∂
2
yu [

1

h
(trΣ[φ1(⋅1 + h, ⋅2)] − tr

Σ
[φ1(⋅1, ⋅2)])]dydz∣

+ ∣∫
S2

∂yB̃µ∂yu [
1

h
(trΣ[φ1(⋅1 + h, ⋅2)] − tr

Σ
[φ1(⋅1, ⋅2)])]dydz∣

⩽ C∥∂yu∥L2(S2) ∥
1

h
(trΣ[φ1(⋅1 + h, ⋅2)] − tr

Σ
[φ1(⋅1, ⋅2)])∥

L2(S2)

+C∥∂2yu∥L2(S2) ∥
1

h
(trΣ[φ1(⋅1 + h, ⋅2)] − tr

Σ
[φ1(⋅1, ⋅2)])∥

L2(S2)

=C(∥∂yu∥L2(S2) + ∥∂
2
yu∥L2(S2)) ∥

1

h
(trΣ[φ1(⋅1 + h, ⋅2)] − tr

Σ
[φ1(⋅1, ⋅2)])∥

L2(S2)

⩽C(∥∂yu∥L2(S2) + ∥∂
2
yu∥L2(S2)) ∥

1

h
(trΣ[φ1(⋅1 + h, ⋅2)] − tr

Σ
[φ1(⋅1, ⋅2)])∥

L2(Σ)

⩽ C (∥∂2yu∥L2(S2) + ∥∂yu∥L2(S2)) ∥
1

h
([φ1(⋅1 + h, ⋅2)] − [φ1(⋅1, ⋅2)])∥

L2(S1)
.

(6.9)

The second estimate follows from the assumption that Bµ∣Si∈W
1,∞(Si), i = 1,2.

In the second to last inequality, we used the fact that traces are independent of the
z-variable. This implies that it is possible to estimate it from above by the integral over
the intersection set Σ.
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The last inequality results from the linearity and the boundedness of the trace operator.
This estimate is meaningful as it allows us to change integration over Σ to integration over
the component S1, where the x-variable is "contained".

Using the Young inequality with ε, we obtain

C (∥∂2yu∥L2(S2) + ∥∂yu∥L2(S2)) ∥
1

h
([φ1(⋅1 + h, ⋅2)] − [φ1(⋅1, ⋅2)])∥

L2(S1)
(6.10)

⩽ C (
1

ε2
(∥∂2yu∥L2(S2) + ∥∂yu∥L2(S2)) + ε∥D

h
xφ1∥L2(S1)) . (6.11)

As in the classical proof, we choose ε > 0 small enough and move the term ε∥Dh
xφ1∥L2(S1)

to the left-hand side of (6.4), obtaining the expression of the type

C̃∥Dh
xφ1∥L2(S1) ⩽ C + ∫

Ω
f̃Dh,xφdµ,

with positive constants C̃,C independent of the parameter h.

We deal with the right-hand side of the equation analogously. Firstly, we decompose the
integral as

∫
Ω
f̃Dh,xφdµ = ∫

S1

f̃Dh
xφdS1 + ∫

S2

f̃Dh,xφdS2.

The integral over S1 is in a standard form and can be treated as in the classical proof.
To deal with the integral over S2, we use the analogous estimates as in the computations
presented in estimation (6.9). Applying the standard difference quotients method (i.e.,
also fixing a function ξ) we conclude a uniform boundedness of the first integral; this is
clearly explained in the mentioned book of Evans [Eva10, Ch. 6.3.1].

In this way, we end up with the formula

∥Dh
xφ1∥L2(S1) ⩽ C,

where C > 0 is again independent of h. This implies that

∂2xu ∈ L
2
(S1)

and ∂2xu is a second weak derivative of the function u. We can invoke the analogous pro-
cedure to provide extra regularity with respect to the z-variable.

Concluding all the reasoning, we arrive at

Theorem 6.2. Assume µ ∈ Ŝ is as in (6.2) and suppµ is as in (6.1). Let u ∈ H1
µ be a

solution to Problem (6.4) with the coefficients matrix Bµ∣Si∈ W
1,∞(Si), i = 1,2. Then for

i = 1,2 we have u ∈H2
loc(Si).

The same reasoning (with simpler technicalities) can also be applied to establish the anal-
ogous result if dimS1 = dimS2 = 1, which we state in the following

Theorem 6.3. Let

S1 ∶= {(x,0,0) ∈ R3
∶ x ∈ [−1,1]}, S2 ∶= {(0,0, z) ∈ R3

∶ z ∈ [−1,1]},
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S ∶= S1 ∪ S2, µ ∶= H1
⌊S1+H

1
⌊S2 .

Let u ∈ H1
µ be a solution to (6.4) on S and Bµ∣Si∈W

1,∞(Si), i = 1,2. Then for i = 1,2 the
solution satisfies u ∈H2

loc(Si).

Proof. Observe that S ⊂ {(x,0, z) ∈ R3 ∶ x, z ∈ R}. This allows us to work in a two-
dimensional subspace and then trivially extend constructions to R3. The proof is based
on completely analogous constructions and reasoning as in the two-dimensional regularity
theorem proved above. To avoid repetition, we skip the presentation of the proof here.

Now we can give a short proof of the higher regularity of weak solutions in the instance of
components of different dimensions.

Theorem 6.4. Assume that dimS1 ≠ dimS2. If u ∈H1
µ is a weak solution of Problem (6.4)

with Bµ∣Si∈W
1,∞(Si), i = 1,2, then u ∈H2

loc(Si), i = 1,2.

Proof. For i = 1,2 denote bi ∶= −D−h(ξ2Dhui), with a smooth function ξ chosen as in the
classical proof. By Proposition 3.2, we know that the functions

a1 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

b1, S1

0, S2
and a2 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, S1

b2, S2

are inH1
µ, and therefore, we can use them as test functions. This implies that the considered

low-dimensional problem reduces to the classical one, and the classical proof yields the
desired regularity.

As a last effort in this part, we address two assumptions previously made to simplify
the proof of Theorem 6.2. Firstly, we assumed that without the loss of generality, we can
restrict our attention to structures composed of two sub-manifolds. Secondly, we considered
only "straightened-out" domains.

In what follows, we show that our construction easily carries on to the general setting.

Let us begin with discussing how to pass from the case of two intersecting manifolds, both
being subsets of either R or R2, to a general case of a low-dimensional structure consisting
of multiple components (which we assume to be "straightened-out" still).

Let
S =

m

⋃
i=1
Si and µ ∶=

m

∑
i=1
H

dimSi⌊Si .

Keeping in line with the previous notation, we will denote for 1 ⩽ i ≠ j ⩽m

Σij ∶= Si ∩ Sj .

Recall that the intersections Σij are mutually isolated, i.e. for each two Σij ≠ Σi′j′ there
exist fixed open (in R3) sets Oij and Oi′j′ satisfying

Σij ⊂ Oij , Σi′j′ ⊂ Oi′j′ and Oij ∩Oi′j′ = ∅. (6.12)
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Let us put

C∞ij ∶= {φ ∈ C
∞
(R3
) ∶ suppφ ⊂ Oij} and µij ∶= µ⌊Oij for 1 ⩽ i, j ⩽m.

Then if u ∈H1
µ solves (6.4) it also satisfies

∫
Oij

B̃µ∇µiju ⋅ ∇µijφdµij = ∫
Oij

f̃φdµij (6.13)

for all φ ∈ C∞ij . Now we can conclude that if Sij ∶= Oij ∩S and we know that u ∈H2
loc(Sij),

then u ∈H2
loc(Si) for all 1 ⩽ i ⩽m.

Secondly, we address the "flatten-out" assumption. It was justified since after decomposing
the general structure S into substructures Sij , 1 ⩽ i, j ⩽m it is possible to use the proper
composition of diffeomorphisms to obtain the demanded "flat" structures. As we work with
closed manifolds, the diffeomorphic changes of manifolds produce some smooth densities
that are bounded and isolated from zero. This means that such changes do not impact
the convergence in the norms of the spaces H1

µ, H
2(Si) or D(Aµ). For the construction

and detailed discussion of the related diffeomorphisms, see the beginning of the proof of
Theorem 4.2 in Section 4.1.

Collecting all the elements of our reasoning, we arrive at the

Theorem 6.5. Let
S =

m

⋃
i=1
Si and µ =

m

∑
i=1
H

dimSi⌊Si .

If u ∈ H1
µ is a weak solution to (6.4) on S with Bµ∣Si∈ W

1,∞(Si), 1 ⩽ i ⩽ m. Then
u ∈H2

loc(Si) for 1 ⩽ i ⩽m.

6.2 Continuity of solutions

In this chapter, we show how we can apply the main regularity result to obtain continuity
of solutions in the case of structures with a constant dimension of components.

In other words, we prove that if a measure µ belongs to the class S and moreover

suppµ = S =
m

⋃
i=1
Si, dimS1 = . . . = dimSm = k = 1,2, (6.14)

then weak solutions to elliptic Problem (6.4) are continuous.

Theorem 6.6 (Continuity of solutions). Let S = S1 ∪ S2, dimS1 = dimS2. Let u ∈ H1
µ be

a weak solution of Problem (2.8) and Bµ∣Si∈W
1,∞(Si), for i = 1,2. Then u ∈ C(S).

Proof. By regularity Theorem 6.5, we know that u ∈H2
loc(Si), i = 1,2. By Proposition 3.1

trΣ u1 = tr
Σ u2 a.e. on Σ.

As u ∈ H2
loc(Si) implies u ∈ C(Si), we have trΣ ui = ui∣Σ. In this way we conclude that

u1∣Σ= u2∣Σ and thus u ∈ C(S).
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Remark 6.7. We make the following observations regarding the continuity of u:

a) In the case d = 1, we do not use the fact that u is a weak solution to (2.8). This
shows that continuity is a general property of the space H1

µ considered on structures
built with one-dimensional components.

b) In the case d = 2 there exist examples of solutions which belong to H1
µ and are

discontinuous. In light of Theorem 6.6, any possible discontinuities might come only
from the lack of continuity of u∣Si ∈H

1(Si) for some component Si.

c) For a general µ ∈ S, not necessarily satisfying dimS1 = . . . = dimSm, we cannot
ensure that u ∈ H1

µ solving (2.8) is continuous. Intuitively, this is due to the fact
that the intersection of some components will be a point, and a single point has zero
W 1,2-capacity in a plane.

Note that Theorem 6.6 addresses the case of structures consisting of two components only.
As it turns out, we can easily extend this result.

Theorem 6.8. Assume that S and µ ∈ S satisfy (6.14) and let u ∈ H1
µ satisfy (2.8) with

Bµ∣Si∈W
1,∞(Si), 1 ⩽ i ⩽m. Then u ∈ C(S).

Proof. By Theorem 6.6, we have that u ∈ C(Oij) for 1 ⩽ i, j ⩽ m, where the sets Oij

are elements of the covering as in (6.12). Regularity Theorem 6.4 implies that on each
component u ∈ H2

loc(Si), 1 ⩽ i ⩽ m, thus u ∈ C(Si). These two results immediately yield
the global continuity, that is u ∈ C(S).

6.3 Membership in the domain of the measure-related second-
order operator

Having established the higher Sobolev-type regularity, it is only natural to consider whether
it is possible to obtain a strong form of the original equation. To this end, it is necessary
to introduce second-order differential operators defined on structures in S.

We focus on showing that thanks to the regularity result of Section 6.1, it is possible to show
that a weak solution u of the elliptic problem belongs to the domain of the low-dimensional
second-order differential operator.

Firstly, we need the basic notions of the low-dimensional second-order framework. The def-
inition of the second-order operator Aµ, its domain D(Aµ), the operator ∇2

µ, the Cosserat
vector field b and discussion of their basic properties can be found in Section 2.3.

The regularity result of Section 6.2 is local – we have shown H2-regularity on subsets that
are compactly embedded in component manifolds of a low-dimensional structure. To avoid
extensive technicalities, we do not aim for up-to-the-boundary regularity and choose to
keep working in a local setting. This calls for further modification.

Let u ∈ H1
µ be a solution to (6.4). Let us define a low-dimensional structure S satisfying

S ⊂⊂ intS and consider µ ∶= µ⌊S . Abusing notation a bit, we will denote µ as µ. This
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allows us to write u ∈ H2(Si), where Si is a component manifold of suppµ. Let us clearly
state that with this procedure, we do not bother with behaviour on the boundary.

As an intermediate step, we need to establish an auxiliary result showing that the smooth-
ness of the force term is propagated to the solution.

Proposition 6.9. Let u ∈H1
µ be a solution to (2.8) with Bµ = Idµ and f ∈ C∞(R3). Then

it implies that u ∈ C∞(R3).

Proof. Take the covering of the structure S with R3-open sets Oij , i, j ∈ {1, ...,m} such
that Σij = Si ∩ Sj ⊂ Oij and Oij is isolated from Σi′j′ if i′ ≠ i or j′ ≠ j.

Let φ ∈ C∞(R3), φi ∶= φ∣Si∈ C
∞
c (Si), i = 1, ...,m, and - for simplicity - let us assume that

suppφ ∩ S ⊂ O12. The same argument works for an arbitrary covering element Oij , i ≠ j.

As the support of φ touches only S1 and S2, we decompose the left-hand side of (6.4) as

∫
Ω
∇µu ⋅ ∇µφdµ = ∫

S1

∇S1u1 ⋅ ∇S1φ1dS1 + ∫
S2

∇S2u2 ⋅ ∇S2φ2dS2.

After integrating by parts, we obtain for i = 1,2

∫
Si

∇Siui ⋅ ∇SiφidSi = −∫
Si

(∆Siui)φidSi.

Plugging this into equation (6.4) and moving the S2-integral to the right-hand side, we
arrive at

−∫
S1

(∆S1u1)φ1dS1 = ∫
S2

(∆S2u2)φ2dS2 + ∫
S1

f1φ1dS1 + ∫
S2

f2φ2dS2. (6.15)

Now, let φε
2 ∈ C

∞(R3) satisfy

suppφε
2 ⊂ {(x, y, z) ∈ R

3
∶ ∣z∣ < ε} and φε

2 = φ2 on {(x, y, z) ∈ R3
∶ ∣z∣ <

ε

2
}

and consider

φε
∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φ1 on S1,

φε
2 on S2.

By the construction, we have φε ∈H1
µ; thus, it is an admissible test function.

Since in equation (6.15) no derivative acts on either φ1 or φ2, we can easily pass with ε to
zero, obtaining

∫
S2

(∆S2u2)φ
ε
2dS2

ε→0
ÐÐ→ 0 and ∫

S2

f2φ2dS2
ε→0
ÐÐ→ 0.

As a consequence, this gives

−∫
S1

(∆S1u1)φ1dS1 = ∫
S1

f1φ1dS1.

Since φ1 ∈ C
∞
c (O12 ∩ S1) can be chosen arbitrary, we conclude

−∆S1u1 = f1 a.e. in O12 ∩ S1.
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This implies that u1 ∈ C∞(O12 ∩ S1). We proceed analogously on the second component
manifold S2 and obtain u2 ∈ C

∞(O12 ∩ S2). Substituting O12 with other elements of the
covering, we conclude ui ∈ C∞(Si) for all 1 ⩽ i ⩽ m. Applying the Whitney Extension
Theorem to u, we obtain u ∈ C∞(R3).

With the above result at hand, we show that u belongs to the domain of Aµ.

For clarity in the presentation of the next result, let us abandon the identification of the
structure S = suppµ with its compactly embedded substructure S = suppµ.

Theorem 6.10. Let u ∈ H1
µ satisfy equation (2.8) with Bµ = Idµ. Assume that µ,

suppµ = S is a low-dimensional measure such that intS ⊂⊂ intS (in the inherited topology
on S). Then there exists b ∈ L2

µ(R3;T ⊥µ ) such that (u, b) ∈D(Aµ).

Proof. Firstly, we deal with the case of a regular right-hand side. Let f ∈ L̊2
µ and addition-

ally let us assume that f ∈ C∞(R3).

By Proposition 6.9 we know that u ∈ H̊1
µ being a solution of

∫
Ω
∇µu ⋅ ∇µφdµ = ∫

Ω
fφdµ ∀φ ∈ C∞(R3

)

has the property that u∣S can be extended to u∣S ∈ C
∞(R3), where S is as before a

compactly embedded substructure.

Now, for a given h ∈ L̊2
µ, let uh ∈ H̊1

µ be a solution to (2.8) with h as the right hand side.

Consider a sequence gn such that

gn ∈ C
∞
(R3
) ∩ L̊2

µ, gn
L2
µ
Ð→ h

and denote solution corresponding to the right-hand side gn as vn ∈ H̊1
µ.

In other words, we have

∫
Ω
∇µvn ⋅ ∇µφdµ = ∫

Ω
gnφdµ,

∫
Ω
∇µu

h
⋅ ∇µφdµ = ∫

Ω
hφdµ.

Subtracting both sides, we obtain

∫
Ω
∇µ(vn − u

h
) ⋅ ∇µφdµ = ∫

Ω
(gn − h)φdµ

which yields the estimate

∣∫
Ω
∇µ(vn − u

h
) ⋅ ∇µφdµ∣ ⩽ ∫

Ω
∣gn − h∣∣φ∣dµ

Choosing φ ∶= vn − uh ∈H1
µ as a test function, we get

∫
Ω
∣∇µ(vn − u

h
)∣
2dµ ⩽ ∫

Ω
∣gn − h∣∣vn − u

h
∣dµ
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and after applying the Young inequality with the ε we conclude

C ∫
Ω
∣∇µ(vn − u

h
)∣
2dµ ⩽ ∥gn − h∥

2
L2
µ
,

for some positive constant C.

Passing with n to infinity, we see that

∇µvn
L2
µ
Ð→ ∇µu

h.

Notice that ∫Ω vndµ = 0 and ∫Ω u
hdµ = 0. Now, the weak Poincaré inequality (2.2) implies

that

vn
H1

µ
ÐÐ→ uh.

Now, we restrict further considerations on a compactly embedded S ⊂ S with the corre-
sponding measure µ. Theorem 4.2 provides that the operator ∆µ ∶D(Aµ) → L2

µ is closed.

From a definition of the domain D(Aµ) it follows that vn ∈ C∞(R3) implies vn ∈ D(Aµ).

Since we already know

vn
L2
µ
Ð→ uh, ∆µvn = gn

L2
µ
Ð→ h,

we derive
uh ∈D(∆µ) and ∆µu

h
= h.

By the definition of the domain D(∆µ), there exists buh ∈ L2
µ(R

3;T ⊥µ ) such that

(uh, buh) ∈D(Aµ).

We decided to introduce the assumption Bµ = Idµ in order to simplify the proofs of
Proposition 6.9 and Theorem 6.10. Without any qualitative changes, we can follow the
methods of those proofs and generalise the results to an arbitrary matrix Bµ satisfying
Proposition 2.20. For the sake of readability, we omit the details.

83



Bibliography

[Ace91] E. Acerbi, G. Buttazzo, D. Percivale, A variational definition for strain
energy of an elastic string, J. Elasticity 25, 137–148, 1991

[Ada03] R. Adams, J. Fournier, Sobolev Spaces, (second edition), Elsevier, ISBN:
9780120441433, 2003

[All72] W. K. Allard On the First Variation of a Varifold, Annals of Mathematics,
Second Series, Vol. 95, No. 3, pp. 417-491, 1972

[Amb05] L. Ambrosio, N.Gigli, G.Savaré, Gradient Flows, (In Metric Spaces and in
the Space of Probability Measures), Birkhäuser Basel, 2005

[Bol22] K.Bołbotowski, G.Bouchitté, Optimal Design Versus Maximal
Monge–Kantorovich Metrics, Arch. Rational Mech. Anal. 243, 1449–1524, 2022

[Bou97] G. Bouchitté, G. Buttazzo, P. Seppecher, Energies with Respect to a Mea-
sure and Applications to Low Dimensional Structures, Calc. Var. PDEs 5, 37–54, 1997

[Bou01] G. Bouchitté, I. Fragalà, Homogenization of thin structures by two-scale
method with respect to measures, SIAM J. Math. Anal. 32(6), 1198–1226, 2001

[Bou02] G. Bouchitté, I. Fragalà, Second-order energies on thin structures: varia-
tional theory and non-local effects, J. Funct. Anal. 204, 228–267, 2002

[Bou021] G. Bouchitté, I. Fragalà, Homogenization of Elastic Thin Structures: A
Measure-Fattening Approach, Journal of Convex Analysis 9(2), 339–362, 2002
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