
University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Leszek Gryz

Impact of Data Organization on Distributed

Storage System

PhD dissertation

Supervisors

prof. dr hab. Krzysztof Diks

Institute of Informatics

Faculty of Mathematics, Informatics and Mechanics

University of Warsaw

dr Cezary Dubnicki

9LivesData, LLC

January 2012

Author’s declaration:

aware of legal responsibility I hereby declare that I have written this dissertation

myself and all the contents of the dissertation have been obtained by legal

means.

January 09, 2012 .

date Leszek Gryz

Supervisors’ declarations:

the dissertation is ready to be reviewed

January 09, 2012 .

date prof. dr hab. Krzysztof Diks

January 09, 2012 .

date dr Cezary Dubnicki

Abstract

With the explosive growth of data stored in digital format, there is a need for

a new approach to data storage. Large amount of stored data requires modern

storage systems to be scalable and easily extendable on-line. Moreover, the data

must be resilient and highly available, which in turn requires failure-tolerant and

highly available storage. To address these needs a new storage segment called

scalable distributed storage systems (DSS) has recently emerged.

One of the key architectural decisions for a DSS system is the design of its

data organization defining data distribution among multiple nodes as well as local

data placement on each node. The fulfillment of almost all the requirements of

DSS systems depends directly on proper data organization.

In this thesis we describe DSS requirements dependent on data placement.

Moreover, we identify trade-offs among these requirements and discuss how trade-

off resolution is related to design choices for data organization. Next, we propose

a novel data organization that resolves the trade-offs in a reasonable way. This is

verified by using the proposed organization in a commercial DSS system called

HYDRAstor. We have a substantial first-hand experience with this system, as for

the last few years we have been part of a core team designing and implementing

HYDRAstor.

In this system, data is organized around a distributed hash table with virtual

supernodes spanned over physical nodes. Data resiliency is provided with era-

sure codes, with fragments of erasure-coded blocks distributed among supernode

components. Fragments are stored in containers that are organized into chains to

allow fast storage of data streams and enable efficient data consistency manage-

ment, data health verification and data reconstruction.

We conclude that the design of data organization in HYDRAstor allows for

the balancing of conflicting DSS requirements which has resulted in the creation

of a break-through, highly innovative storage system.

Keywords: data organization, distributed storage system, storage system re-

quirements, failure resilient system, scalable system, self-manageable system,

backup and archival system, failure tolerant distributed hash table

ACM Classification: E.2, H.3.1, H.3.2, H.3.4, C.2.4, C.4

Streszczenie

Z powodu gwałtownego wzrostu ilości danych cyfrowych, potrzebne jest nowe

podejście do sposobu ich przechowywania. Bardzo duże ilości danych wymagają,

aby nowoczesne systemy przechowujące dane były skalowalne, łatwo rozszerzalne

on-line, cechowały się wysoką dostępnością i zapewniały, że dane nie zostaną stra-

cone w przypadku awarii. Aby zaspokoić te potrzeby, ostatnio powstał nowy typ

systemu zwany rozproszonym systemem pamięci masowej (RSPM) (ang. distri-

buted storage system).

Jednym z kluczowym elementów architektury systemu RSPM jest projekt

organizacji danych, który określa rozproszenie danych pomiędzy wiele serwerów,

jak również ich lokalne rozmieszczenie na każdym serwerze. Właściwa organizacja

danych jest kluczowa, ponieważ wpływa ona bezpośrednio na spełnienie prawie

wszystkich wymagań systemu RSPM.

W rozprawie zostały opisane wymagania RSPM, których realizacja zależy od

organizacji danych. Ponadto zostały zidentyfikowane konfliktujące wymagania

oraz została przeprowadzona dyskusja w jaki sposób rozwiązanie tych konfliktów

jest związane z organizacją danych. Następnie zaproponowana została nowator-

ska organizacja danych, która uwzględnia problemy wynikające z tych konfliktów.

Skuteczność tej organizacji danych została przez nas zweryfikowana poprzez uży-

cie jej w systemie HYDRAstor, który jest komercyjnym systemem RSPM. W

ciągu kilku ostatnich lat byliśmy główną częścią zespołu, który zaprojektował i

zaimplementował system HYDRAstor. Dzięki temu zdobyliśmy doświadczenie w

projektowaniu organizacji danych tego typu systemów.

W systemie HYDRAstor dane są zorganizowane wokół rozproszonej tablicy

mieszającej opartej na wirtualnych super-węzłach rozpostartych na fizycznych

serwerach. Odporność danych na awarie jest zapewniona poprzez użycie kodów

korekcyjnych typu “erasure codes” i rozdystrybuowanie zakodowanych fragmen-

tów danych na wszystkie serwery danego super-węzła. Fragmenty danych są prze-

chowywane w łańcuchach następujących po sobie kontenerów fragmentów. Umoż-

liwia to szybkie zapisywanie danych strumieniowych, wydajną weryfikację spój-

ności i jakości danych oraz rekonstrukcję utraconych danych.

Podsumowując, projekt organizacji danych w systemie HYDRAstor umożli-

wił równoważenie sprzecznych wymagań RSPM, co w rezultacie doprowadziło do

zbudowania przełomowego i innowacyjnego systemu pamięci masowej.

Słowa kluczowe: organizacja danych, rozproszony system pamięci masowej, wy-

magania systemu pamięci masowej, system odporny na awarie, skalowalny system,

system samozarządzający, systemy kopii zapasowych i archiwizacji, rozproszona

tablica mieszająca odporna na awarie

Klasyfikacja tematyczna ACM: E.2, H.3.1, H.3.2, H.3.4, C.2.4, C.4

Contents

Contents i

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 4

1.3 Thesis Contributions . 4

1.4 Outline of Dissertation . 5

2 Distributed Storage Systems 6

2.1 What is DSS . 6

2.2 Motivation for DSS for Backup and Archival 8

2.3 DSS Model . 12

2.4 Importance of Data Organization in DSS 13

3 DSS Requirements Related to Data Organization 15

3.1 Efficient Storage Usage . 15

3.1.1 Support for Deduplication 16

3.1.2 Deletion on Demand 17

3.1.3 Handling Almost Full System 17

3.2 Fault Tolerance . 18

3.2.1 Data Resiliency . 18

3.2.2 Operation under Faulty System 19

3.2.3 Operation after Failure Repair 20

3.2.4 Failure Reporting . 20

3.2.5 Data and Metadata Consistency During and After Failure 20

3.3 Scalability . 21

3.4 Self Management . 21

3.4.1 Self Healing . 22

i

CONTENTS

3.4.2 Self Balancing . 22

3.5 High Availability . 22

3.5.1 On line Maintenance 22

3.6 Performance . 22

3.6.1 Fast Direct User Operations 23

3.6.2 Fast Background Operations 23

3.6.3 Fast Data Location 24

3.6.4 Disk Data Locality 24

3.6.5 Optimal Initial Data Placement 24

3.6.6 Performance under Failure 24

4 Trade-offs and Mutual Benefits among Requirements 25

4.1 Trade-offs . 25

4.1.1 Efficient Storage Usage vs. Fault Tolerance 26

4.1.2 Efficient Storage Usage vs. Availability 26

4.1.3 Efficient Storage Usage vs. Performance 27

4.1.4 Fault Tolerance and Availability vs Scalability 29

4.1.5 Fault Tolerance vs. Performance 30

4.1.6 Scalability vs. Performance 30

4.1.7 Intra Requirements Trade-offs 32

4.2 Mutual Benefits . 35

5 Proposed Solution 36

5.1 HYDRAstor DSS . 36

5.1.1 History and Current Status 36

5.1.2 Additional Requirements 37

5.2 Architecture of HYDRAstor 37

5.2.1 Overview . 37

5.2.2 Global Data Organization 38

5.2.3 Local Data Organization 51

5.3 Functionality Implementation of HYDRAstor 55

5.3.1 Supernode Consistent State 55

5.3.2 Overlay Network Monitoring and Supernode State Propagation 56

5.3.3 Routing . 57

5.3.4 Failure Discovery and Recovery 60

5.3.5 Write and Read Operation 62

5.3.6 Balancing . 66

5.3.7 Deletion Algorithm 74

5.3.8 Background Tasks 77

ii

5.4 Requirements Satisfaction Discussion 79

5.4.1 Efficient Storage Usage 79

5.4.2 Fault Tolerance . 87

5.4.3 Scalability . 94

5.4.4 Self Management . 98

5.4.5 High Availability . 98

5.4.6 Performance . 98

5.5 Trade-offs resolution in HYDRAstor 107

5.5.1 Efficient Storage Usage vs. Fault Tolerance 107

5.5.2 Efficient Storage Usage vs. Availability 109

5.5.3 Efficient Storage Usage vs. Performance 110

5.5.4 Fault Tolerance and Availability vs Scalability 112

5.5.5 Fault Tolerance vs. Performance 112

5.5.6 Scalability vs. Performance 115

5.5.7 Intra Requirements Trade-offs Resolution 117

6 Related Work 120

7 Conclusions 128

7.1 Summary . 128

7.2 Future Work . 129

Bibliography 131

A Appendix 142

A.1 Standard deviation from the mean size of a supernode 142

List of Figures 144

List of Tables 145

iii

Chapter 1

Introduction

1.1 Motivation

With the development of information technology, the amount of information

generated is increasing exponentially [40]. For example, nearly 800 exabytes

were created in 2009, which is 62% more than the amount generated a

year earlier. For 2010, this amount was nearly 1200 exabytes, an increase

of 50% [32]. This study also projects that by 2020 the amount of digital

information created annually will be 44 times as big as it was in 2009.

Since practically all of the new data created is stored digitally, the ex-

ponential growth in the amount of data created leads directly to similar

increase in the demand for storage. The increase in the transactional data

stored in the database is 30-50% annually on average. The growth of WORM

data (write once, read many) e.g. medical data (such as X-rays), financial,

insurance, multimedia data, is 100% per annum [19]. Additionally, in many

areas, legislation [60, 5] requires keeping of data for a long time, which

further increases storage needs.

Currently, there are two common main types of storage systems used for

long term data retention - storage based on hard disk drives and storage

based on tape libraries (optical storage is less popular today, so we omit

it here). Hard disk drives are typically organized in one of the following

forms: Direct-Attached Storage (DAS), Network Attached Storage (NAS),

and Storage Area Network (SAN). The tapes are organized in a tape library.

DAS is the simplest hard disk form of organization. Several hard drives

are directly attached to computers. This causes every computer to become

small storage island, since storage is not shared among computers. Thus,

1

Introduction

DAS-based solution are not scalable and utilize capacity in a very ineffi-

cient manner. They are practically unmanageable and unusable for a large

amount of data.

NAS integrates multiple disks into a single device with file level interface

accessible over a computer network. NAS-based solutions are more scalable

than DAS-based ones but still form storage islands around NAS servers.

The scalability of each NAS is limited by the number of disks each server

can handle. To store huge amount of data, administrators have to use many

NAS servers and manually assign data to them. Static allocation results

in inefficient capacity utilization and performance. Each NAS server is a

single point of failure. Finally, manual management increases significantly

operational cost of these solutions.

SAN makes use of a computer network to connect many hard disk drives

that can be divided into logical units. Computers maintain their own file

systems on those logical units in a non-shared manner and thus still generate

storage islands. Moreover, storage usage is inefficient, as space needs to

be pre-allocated to file systems and databases. To make hard disks truly

shared, dedicated shared or distributed files systems are built on top of

SAN, something which is beyond topic of this thesis.

A tape library contains many magnetic tapes, tape drives and a robot

for loading tapes into the drives for reading or writing. Even though tape-

based solutions can reach capacity of petabytes, they cannot be extended

gradually to grow with increasing needs, i.e. large up-front investment is

required. Moreover, tapes have very long access time, because the robot has

to load tapes into drivers and rewind them to the right location. Last but

not least, tapes are very fragile - they must be stored at the appropriate

temperature and humidity which increases cost of their maintenance.

All these solutions have additional common disadvantages. They do not

provide flexible failure tolerance. Typically used disk redundancy schemas

like RAID-5 [61] and RAID-6 [83] fail to protect data when more than one

or two disks fail respectively. Tape libraries do not provide any failure pro-

tection - tape damage results in loss of data it stores. To reach the required

level of failure resiliency administrators create excess data copies which re-

sults in inefficient capacity utilization. Last but not least, current solutions

do not eliminate duplicated data. Such feature would greatly improve effi-

ciency of storage usage for backup and archival data, because it contains a

lot of duplicates – consider full backup done weekly which usually contains

very little new data. Elimination of duplicated data is impossible to accom-

plish in the case of tapes because of lack of random access, but it is feasible

2

Motivation

in the case of disk-based solutions.

The above review of existing storage paradigms shows that currently

available solutions are not designed to manage large amount of fast growing

data in an effective, failure resistant, highly available and scalable man-

ner. Fortunately, the recent increase in magnetic disk capacity and multi-

core CPU performance, together with their falling costs, allow for a new

approach. Scalable, distributed storage systems (DSS) are specifically tar-

geted for the efficient storage of huge amount of data. Key features of DSS

include automated management, efficient storage usage by avoiding space

pre-allocation and supporting deduplication of stored data; and high avail-

ability and resiliency to failures.

Recognizing the challenges related to efficiently storing the rapidly ex-

panding amount of digital data, NEC Corporation (the largest Japanese

IT company) started a project called HYDRAstor in late 2002, aimed at

building a DSS for backup and archival data. I have been privileged to be

a member of the core team working on architecture and implementation of

the system since the beginning of the project. Initially, it was a research

project run by NEC Laboratories America in Princeton, NJ, USA. After a

few years, HYDRAstor was introduced as a commercial product available

for sale in Japan and the US. Since then, this product has been recognized

as a break-through technology. This recognition has been documented with

multiple awards and distinctions:

• 2007 US Product of the Year in the Backup and Disaster Recovery

Hardware category awarded by TechTarget’s Storage magazine and

SearchStorage.com,

• 2008 Product Innovation Award given by the Network Products Guide,

• 2008 American Business Award for the first grid-based storage solu-

tion optimized for backup and archiving with unlimited scalability,

effortless management, self-evolving capabilities and secure, reliable

data deduplication,

• 2009 publication [26] in the 7th USENIX Conference on File and Stor-

age Technology (FAST) conference, which is the best storage-related

conference in the world,

• 2010 the fastest deduplication storage system in the world as shown by

analysis of the most famous independent storage analyst Curtis W.

Preston [68].

3

Introduction

While working on HYDRAstor, my area of responsibility was the design

and refinement of the load balancing algorithm and implementation of the

related fault tolerance distributed hash table which is the backbone of the

DSS system. In the course of this work I gained a lot of experience and

insights into the design of DSS in general. One of the major challenges in

creation of disk-based DSS is the design and implementation of proper data

organization. All major features of DSS like scalability, fault tolerance, high

availability, efficient storage usage and performance directly depend on the

careful design of data organization in the system.

1.2 Problem Statement

Satisfaction of many functional requirements of distributed storage systems

depends directly on the organization of data stored in the system. However,

organizing data in a way that allows the system to meet each requirement

separately in an optimal way is an impossible task, as many requirements are

indirectly conflicting with respect to data organization. That is, for many

pairs of requirements, organizing data in a way that improves the fulfillment

of one requirement reduces the level of fulfillment of the other requirement.

As a result, the selection of proper data organization is a balancing act. In

this thesis we describe trade-offs among the DSS requirements influenced

by data organization. Next, we show how to address these trade-offs with

proper data organization using as an example a commercial DSS HYDRA-

stor, which to our knowledge is the only system that reasonably satisfies all

the DSS requirements.

1.3 Thesis Contributions

The main contributions of this thesis are:

• Identification of DSS requirements dependent on data organization

and description of these dependencies.

• Identification of trade-offs among indirectly conflicting DSS require-

ments (as defined above).

• Proposal of a novel data organization that addresses all the distributed

storage requirements.

4

Outline of Dissertation

• Description of functional implementation based on proposed data or-

ganization in a highly successful, commercial system.

• Analysis of the requirements satisfaction and trade-offs resolution of

proposed data organization.

1.4 Outline of Dissertation

This thesis is structured as follows. In chapter 2 we define distributed stor-

age systems (DSS), discuss the motivation for them and the importance

of DSS data organization. Chapter 3 contains a description of DSS func-

tional requirements whose fulfillment is dependent on the organization of

data stored in such systems. In chapter 4 we show that many of these re-

quirements are conflicting and discuss details of related trade-offs. Chapter

5 describes our solution in a commercial DSS called HYDRAstor, and dis-

cusses how the requirements and trade-offs are addressed in this solution.

Chapter 6 contains a review of related work, in which we outline data orga-

nization in other DSS systems and show differences and similarities between

these approaches and our solution. Conclusions and future work are given

in chapter 7.

5

Chapter 2

Distributed Storage Systems

2.1 What is DSS

Data storage plays a crucial role in information technology. All storage de-

vices like magnetic and optical disks and magnetic tapes have physical limits

to their capacity and performance. One approach to address these limita-

tions is to group storage devices into multi-device entities like RAID arrays

for disks and tape robots for tapes. The resulting systems may have quite

substantial capacities. However, these architectures have serious drawbacks

- they are very difficult to grow both in terms of storage and performance.

Upgrading frequently is destructive, i.e. the old, smaller device needs to

be got rid of and replaced completely with a new, larger device instead of

adding more capacity to the old device. Moreover, both failure tolerance and

availability are limited and are not satisfactory for the most demanding cus-

tomers like enterprise companies. To address these limitations distributed

storage systems are created. These systems consist of multiple storage de-

vices connected via a fast computer network. The capacity and performance

of such systems is the sum of capacity and performance of the individual

storage devices. Additionally, in contrast to RAID arrays and tape robots,

such systems can grow from one or few nodes incrementally by adding new

nodes without interrupting system operation. Distributed storage systems

provide interface to store and retrieve data, but in general these systems

hide the number and type of equipment with which the system is built from

the user.

According to DSS taxonomy[63], the following categories of DSS exist

6

What is DSS

based on application functional requirements:

• Backup and Archival. Systems in this category provide the ability to

backup and retrieve data (backup) and store data for long-term read-

only retention (archival). High reliability, availability and scalability

are the main objectives. For backup, efficient storage usage and high

streaming performance are also very important. Such systems have

to provide strong consistency i.e. in case of any failures the system

should resolve any data inconsistency without user interaction. The

usage pattern is write-once and read-many with no data updates. Ex-

amples of research systems are Pergamum [86], CFS [21], PAST [25]

and OceanStore [75]. Examples of commercial systems are ExaGrid [1],

EMC Centera [3], EMC GDA [4], Symantec NetBackup 5020 [88] and

EMC Avamar [2].

• General Purpose Filesystem. Systems in this category provide persis-

tent storage with filesystem like interface that complies with most,

if not all, POSIX API standards [47]. Examples of such systems are

NFS [77], AFS [53], Coda [78], xFS [8], Farsite [7] and Ivy [55].

• Publish/share. The main objective of systems in this category is pro-

viding (to some extent) volatile storage for publishing or sharing

files among users. The most famous system in this category is Nap-

ster [57] and its variants like Gnutella [57], MojoNation [96] and Bit-

Torrent [42]. Often systems in this category have completely decen-

tralized peer-to-peer architecture (Free Haven [23], Freenet [17], Pub-

lius [92]).

• Performance. Systems in this category satisfy the requirements of I/O-

intensive parallel applications. They stripe data across multiple nodes

to reach high bandwidth. Many of the systems in this category are

parallel file systems operating within a computer cluster. Examples

of systems in this category are PPFS [44], Zebra [41], PVFS [38],

Lustre [14], GPFS [79].

• Federation Middleware. Systems in this category integrate heteroge-

neous storage systems belonging to many institutions into single, con-

sistent interface. Examples of such systems and related research are

data grids [16] and SRB [10, 71].

7

Distributed Storage Systems

• Custom. Systems in this category are characterized by a unique set of

functional requirements, typically being a mixture of the above system

categories. Examples of such system is Google File System [34].

In our work we focus on the Backup and Archival category. There are

many reasons for this decision. First of all, the market for backup and

archival storage is enormous [33], as practically every company needs to

backup all its data. The customer needs on this market for scalable capac-

ity and performance are to a large degree unsatisfied. Backups are done

mostly to tape robots and single-node RAID arrays, both of which are not

scalable. Backup data often contains many duplicated blocks, as full back-

ups are done usually at least once every week. As a result data deduplication

is very important in this market. Additionally, building DSS is much more

feasible for the backup and archival market than for the primary storage

market. This is because distributed storage usually comes with high latency,

which is well tolerated by backup applications, but can be highly problem-

atic for primary storage. Last but not least, recent research advances, hard-

ware developments and pricing trends make building a commercial DSS

for the backup and archival market possible. Techniques like distributed

hash tables [85, 73, 51], erasure codes [12], Rabin fingerprinting [65] are

all directly applicable to such systems. The advent of very fast and cheap

multi-core CPUs, multi-terabyte SATA drives, 10 GigE networks are the

main developments which offer an opportunity to create a scalable, disk-

based data distributed storage system which supports deduplication. Such

a system would perfectly meet unsatisfied needs for the retention of highly

redundant backup data.

2.2 Motivation for DSS for Backup and Archival

As discussed in Section 1.1 the main motivation for creating the DSS is an

exponential growth of data that must be retained. Furthermore demand for

greater application availability shortens both backup window and time for

recovery after failure or disaster. A common trend is that more data has to

be backed up in a shorter space of time. Existing systems do not meet these

capacity and performance requirements. Additionally, demand for higher

capacity and performance increases backup environment complexity and

management overheads. These problems are reflected in customers’ percep-

tions of quality of backup and recovery processes. According to Enterprise

Strategy Group report [89] 66 percent of users claim that backups take too

8

Motivation for DSS for Backup and Archival

long, 49 percent claim that recoveries take too long, 40 percent complain

that backups and recoveries consume too many human resources, 37 per-

cent complain that it is difficult to validate backup/recovery success and 33

percent claim that backup media management is a problem for them.

Tape libraries are still the most popular for backup storage today. Tapes

must be stored in special conditions ensuring proper temperature and hu-

midity, otherwise their lifespan is degraded [18]. They require strong com-

mitment from the backup administrator in the processes of data backup,

data management and data recovery. Because of sequential access, tapes

also have a very long data seek and access time, which slows down the re-

covery process and makes single-file restoration very long. Sequential access

makes tapes unusable for an on-line archive solution.

Another problem is that most tape drives can efficiently operate only

at their maximum designed throughput. To record a high-quality signal,

the recording head must be moved across the tape at high, constant and

predefined speed. If a tape drive does not receive enough data, the drive

spends some time waiting for its buffer to be filled up with data, rewinds

the tape to the exact place where the last write took place, writes at the

maximum speed and repeats the whole cycle again. This effect is called shoe-

shining [66]. It results in a throughput lower than the throughput of data

arriving to the drive and negatively impacts the tape lifespan as each tape

has a limited number of passes (i.e. the number of times the tape passes over

the drive head). To avoid shoe-shining, backup applications use a technique

called multiplexing - they send multiple data streams simultaneously to

a tape drive to reach its designed speed. However, such technique results

in data being interwoven on each tape. It has negative impact on restore

operation, because the whole tape has to be read, but most of the data

is disregarded. Multiplexing also decreases reliability, because a single tape

stores streams of many backups, so if one tape is broken many, instead of

one, backups become unrecoverable.

As stated earlier, the scalability of tape libraries is not incremental.

Even though tape libraries have a huge capacity, a single instance may not

provide the required throughput. If the throughput of existing equipment is

exhausted, moving to the next level involves considerable capital investment

not only in new resources, but also in additional space in a data center.

In addition, multiple libraries complicate administration and create non-

unified storage islands.

With respect to the price of raw capacity, magnetic tapes may look at-

tractive when compared to other media like magnetic disks. However, typical

9

Distributed Storage Systems

tape usage schema grandfather-father-son (GFS) may require up to 25TB

of raw tape capacity to backup 1TB of data of production environment,

depending on retention periods [20]. This 25TB contains highly redundant

data. If it was deduplicated then only around 1TB of raw data would have

to be required to store the backup data. Deduplication is feasible with a

disk-based solution, it is not feasible with tape-based ones.

Tape library solutions are also a logistical challenge. For example to keep

backup of 40TB of production data organization needs to have 1250TB. This

assumes GFS policy with factor 25 and an 80 percent efficiency usage for

each tape. 1250TB is around 3125 of LTO-3 tapes [43] to manage - keeping

track, retirement, offsite transport and storage of the tapes.

Last but not least, tapes are hardly ever checked for errors and corrupted

data. There is no way to make automatic checks for smaller appliances that

do not have robots that load and unload tapes automatically. Even in the

case of sophisticated tape libraries tapes may be stored offsite and cannot

be automatically loaded by library robots. What is more, only recently tape

library manufacturers have added tape verification to their products [70].

Lack of backed up data verification leads to serious problems with data re-

covery. Gartner estimates that 10 to 50 percent of all subsequent restores

from tape fail, depending on the time elapsed since the backup occurred.

What is worse these problems are often unnoticed. Both Gartner and Stor-

age Magazine report that some 34 percent of companies never test a restore

from tape. Of those that do test, 77 percent experienced failures in their

tape backups [72].

Because of problems with tapes and with the advent of lower-priced

SATA-based disk arrays, software backup vendors added options to backup

data to magnetic hard drives. Backing up to disk drives solves some of

the tape-based solution problems. Disk drives provide random access and

provide flexible throughput. Using disk drives backup software does not

require the sending of multiple data streams simultaneously to a tape to

avoid shoe-shining. Disk accept writes at any throughput. Disks can support

much faster recovery. They provide fast single backup or even single file

restoration. They are less sensitive to environment factors like temperature

and humidity. Finally, since disks are always on-line they can be periodically

and automatically checked for data corruption to avoid failures during data

recovery.

However, disk-based backup using SAN and NAS as backup targets also

has serious problems. First of all, provisioning and static assignment of

space on target to backed-up volumes is a management nightmare. Perfor-

10

Motivation for DSS for Backup and Archival

mance is also limited, as backup applications write to filesystems, which

impose significant overheads. Resulting backup files are usually very large

and get fragmented all over the disk [67]. To avoid this problem, reduce the

hassle with provisioning, and additionally make backup up to disks more

friendly for existing backup applications Virtual Tape Libraries (VTL) were

introduced.

VTL emulates a standard tape library, but writes data to disks. A VTL

solution facilitates disks management because users only define the number

of virtual tapes to emulate. Actual space provisioning and allocation of the

appropriate amount of disks is done by the VTL. VTL also provides good

performance because they write to a raw disk device. VTL makes use of a

backup application usage pattern to store continuous, big chunks of data

on disks which avoids fragmentation.

Existing disk-base solutions solve some of the tape libraries problem,

but they are far from complete solutions that would address all backup and

archive requirements. First of all, these solutions are not reliable. They are

all based on RAID-5 or RAID-6 that have many disadvantages:

• They only provide a fixed failure resiliency meaning that users cannot

define reliability levels in an uniform way.

• In a typical configuration there is no standby hard disk that would

take over a failed one - until the administrator manually replaces a

failed disk (which may take a long time) RAID runs in degraded mode

with decreased resiliency.

• RAID typically has only one controller which is a single point of fail-

ure.

• The RAID array is also inefficient in data recovery - after disk fails

and is replaced by a new one the entire disk is rebuilt even though it

may have very little data.

Disk-based solutions are not easily scalable, because all of them form storage

islands. These islands cannot provide global data deduplication which would

greatly improve storage usage efficiency, decrease storage costs and simplify

management by reducing required amount of hardware. Even though re-

cently manufactured VTL and NAS are equipped with deduplication [99],

this deduplication is done only within a single VTL or NAS, not among all

appliances which reduces the deduplication ratio.

11

Distributed Storage Systems

Due to all these factors there is a clear need for a new distributed solution

that would integrate all the disks into a single coherent, reliable and scalable

system which utilizes capacity efficiently.

2.3 DSS Model

We consider a system consisting of multiple physical nodes connected with

an underlying transport network. Physical nodes can differ in the number of

disks and their storage space, processing power and other resources. Com-

munication between nodes is asynchronous. Nodes send messages to each

other. The messages can be lost, duplicated, delayed for arbitrarily long

time before being delivered; they can be also delivered out-of-order. How-

ever, if delivered, a message content cannot be corrupted or modified by a

malicious user. In most cases, messages are delivered within a reasonable

time and in the order they were sent. Physical nodes and network links are

subject to failures:

• physical node fail-stop: a node hosting components stops operating

forever; all data on local disks of this node is lost.

• transient failure: an event or series of events occur which render a node

or a set of nodes temporarily unreachable. This case includes network

partition, as well as temporary node failure that is later repaired by

restarting this node in its last consistent state.

Physical nodes are assumed to be trusted. The system does not handle

Byzantine failures, in particular malicious nodes conspiring to break the

system. In the case of the failure of a destination node or the failure of

the network link leading to that node, the communication layer does not

provide information to other nodes whose messages cannot be delivered.

Each physical node maintains its own clock. Clocks can differ by no more

than some constant. We expect this constant to be in the order of seconds

at most. Servers are stored in a controlled environment and are always

available unless there are failures or maintenance work.

There are two types of operations:

• Interactive operations that handle direct user action like storing and

retrieving data. Such operations are initiated directly by the user.

• Background operations that are not directly related to user actions.

Such operations are started by the system itself. Example of such tasks

are data transfer between nodes and data rebuilding.

12

Importance of Data Organization in DSS

User writes to system data blocks. These data blocks create user data

stream when concatenated in order they were received. Users read data

streams i.e. they read blocks in the same order as they were stored.

We define three types of systems:

• homogeneous system - all nodes are exactly the same,

• heterogeneous with proportional nodes - system consists of different

nodes, but components of all nodes are proportional i.e. ratio between

CPU power and node capacity is the same on each node,

• heterogeneous with non-proportional nodes - system consists of dif-

ferent nodes and relative resources of components that the nodes are

built of are different.

2.4 Importance of Data Organization in DSS

Data organization is the physical and spacial arrangement of data hosted by

a system. In the context of distributed systems we distinguish 1) high level

organization that manages the placement of data among physical nodes -

we will call such organization data placement and 2) low-level organization

that manages data blocks on physical disks - we will call such organization

disk-level organization.

Feasibility of DSS requirements is a derivative of proper data organiza-

tion:

• For efficient storage usage, data should saturate the capacity of all

nodes and disks when system is filled up.

• For high resiliency and high availability, the system should have re-

dundant data and place it in a way that minimizes probability of data

loss or data unavailability.

• For fault tolerance, data organization has to be distributed and there

should not be a single point of failure.

• For scalability, the system should have its data organized in a way

that is independent of the system size.

• For ease of system management, data organization should support self

healing and self balancing.

13

Distributed Storage Systems

• For performance, data organization should support both fast locating

of data on nodes and disk and high throughput of write and read

operations.

DSS requirements that depend on proper data organization are described

in detail in section 3 on page 15.

14

Chapter 3

DSS Requirements Related to

Data Organization

This chapter describes DSS requirements dependent on data organization.

3.1 Efficient Storage Usage

In distributed storage systems user data is placed on a subset of system

nodes. Data placement policy should distribute the data in such a way that

all available storage space on all nodes and disks is used up when system

becomes full. All data should be organized as an automatically managed,

global common storage pool. Such data organization would avoid over-

utilization on some nodes and under-utilization on others. To reduce the

likelihood of excess capacity data organization should require no, or very

limited need for provisioning and the system should be easily scalable to

allow capacity to be extended by adding new nodes just when it is needed,

not up front preallocated. Additionally, data organization should not re-

quire setting sizes of any volumes or pools - such settings quickly become

outdated during the system’s lifetime and would result in constant human

intervention.

We measure efficiency of storage usage as a ratio of size of user data

stored in the full system to the total raw disk space of all disks of the

system. Higher the ratio better the efficiency of storage usage. The ratio

has no upper limit. This is because system can store more data than its

total capacity, for example due to data compression.

15

DSS Requirements Related to Data Organization

In this thesis we also use term storage utilization which means ratio of

raw disk space used by the data (user data, redundant data, metadata)

stored in the system to the total raw disk space of all disks that are in the

system. This ratio maximums value is 1. The high storage utilization is one

of the factors determining the efficient use of disk storage.

3.1.1 Support for Deduplication

Proper data organization should allow to detect duplicated data and stores

only one copy of it. Such feature used to be unfeasible mostly due to the

high demand placed on the CPU. But due to hardware and pricing trends

(increasing capacity of SATA drives and increasing performance of new

multi-core CPUs coupled with a decrease in their prices), new technology

like distributed hash tables [85, 73, 51] and exponential increase in the

amount of data to be backed up, data deduplication becomes a must.

The deduplication ratio depends on user’s backup policy. A common

scenario is the creation of over twenty or so full backups of user data. Such

backups typically contain data that differs very little. In such cases data

deduplication is at least 20 to 1. By finding such duplicates, a system can

store at least 20 times more data using the same capacity. Thus data orga-

nization must provide support for deduplication. For the best results dedu-

plication:

• should be done globally against all data already stored in the system

to make it as efficient as possible,

• should detect deduplication in storage objects i.e. after they are slightly

changed after sequence of edits or modification, for example after in-

sertion of one byte at the beginning of a file.

Further to lowering storage costs deduplication also decreases consump-

tion of electricity (to power and cool the disk drives) and bandwidth (e.g.

for system replication).

However, note that deduplication achieves the best results for full back-

ups policy. If other backup policies, like differential or incremental, are used

deduplication efficiency might be very low. For example, under incremen-

tal backup differences between a successive and the preceding backup are

stored. Such differences contain almost no duplicates.

16

Efficient Storage Usage

3.1.2 Deletion on Demand

The user has to be able to delete data stored in the system. On the one

hand this requirement seems to be an obvious one. On the other hand an

operation that simply removes an individual block conflicts with data dedu-

plication, because deduplication leads to multiple ownership of data blocks.

A block that is to be removed by a user may have been already used as a base

deduplication for another write by this or another user. One could consider

keeping counters for each block with a number of references. A delete oper-

ation would decrease the counter and a deduplicate write would increase it.

However, since messages can be duplicated, counters would be decreased or

increased in an inconsistent way unless some techniques were used to guar-

antee idempotency of these operations. Additionally, such counters would

require writing data to disks in case of duplicate writes even though logically

such writes do not require the storage of any data and thus do not require

disk access. Unnecessary disk access would slow down the duplicate write.

Since it is common that ratio of duplicate to non-duplicate writes is in the

range of 8:1 to 9:1 such a solution would negatively impact the performance

of write operations experienced by users. Thus proper data organization

must be able to handle the above mentioned problem.

3.1.3 Handling Almost Full System

A system should operate normally with high, close to 100%, system capacity

utilization i.e. in the case when the system is almost full. In a dynamically

changing DSS there are cases when some nodes are full while other are

underutilized. For example, after the disk failure of an almost full node, or

when a full system was extended with new nodes. In such cases some nodes

become full while others are not. Data organization has to be able to handle

it gracefully without any major performance drop or other user noticeable

symptoms. In particular, a system has to avoid the situation when one full

node, by trying to get rid of too much data, transfers away the data to other

nodes and ”infects” them with ”fullness”. In turn, the other nodes try to

get rid of their data. Such chain of data transfers would lead to system

instability.

17

DSS Requirements Related to Data Organization

3.2 Fault Tolerance

A fault tolerant system is able to continue operation, possibly at gracefully

reduced level, instead of failing completely when some part of the system

unexpectedly fails. Such a requirement is obvious and crucial for any storage

system. In the case of DSS it is even more important than in centralized

systems because DSS is constructed of a large number of components. Each

component’s failure probability stays at the same level, thus the increased

number of components increases the probability that some part of the sys-

tem fails. In particular, data must be organized in such a way that no single

point of failure results in its loss.

To achieve fault tolerance data placement policy has to provide high

data resiliency.

3.2.1 Data Resiliency

DSS has to store user data reliably. Therefore data should be organized

in such a way that the probability of data loss caused by nodes or disks

failures is very low. This is achieved by adding redundant data and spreading

the original and the redundant data across nodes in a way that minimizes

data loss when some parts of the system, especially disks, fail. Apart from

appropriate arrangement of data, fast data reconstruction after failure is

also very important in order to limit the time during which system operates

with a lowered data redundancy level.

With the increase of the system size its data resiliency should at least

stay at the same level. Note that this might be hard to achieve because a

bigger system has more components, in particular disks, thus probability of

failures also increases.

We measure data resiliency by two statistics:

• Number of concurrent nodes or disks failures tolerated by the system

without data loss.

• Ratio of redundant data to raw user data.

There should be a flexible data resiliency policy to allow users to increase

resiliency in exchange for decrease in efficiency of capacity usage due to

higher ratio of redundant data to raw user data.

Data Reconstruction Data organization has to support the data re-

construction background process. After a disk or node fails data originally

18

Fault Tolerance

stored on it has to be efficiently reconstructed by this process in another

location in order to reach the initial, desired resiliency level.

Data Scrubbing Data organization has to support data scrubbing [81].

Data scrubbing is a background task that periodically inspects disks data

for errors, and corrects them using redundant data. This process is required

to detect and fix potential latent errors i.e. errors that are undetected until

the disks sectors are accessed.

3.2.2 Operation under Faulty System

Data organization policy has to handle a system while some of its compo-

nents have failed. Such policy needs to:

1. Enable non-stop execution of data storing, retrieving and deletion.

The user should not notice any symptoms except:

• performance drop if before the failure system was utilized at close

to maximum performance,

• rejection of new block writes if they are not duplicates and disks

were failed causing total system capacity dropping below amount

of raw data written by users.

2. Assign a new place for data that is stored on failed or unreachable

nodes and disks and then cause system to rebuild the data to reach

the original level of resiliency. Resiliency has to be rebuilt to increase

chances of surviving any additional failures. Finding new places for

data hosted by broken nodes/disk should not cause the reassignment

of data that is hosted by healthy nodes and should not cause any

transfers except the ones that are required to rebuild unreachable or

lost data.

3. Keep system in balanced state so as not to cause too much of a drop

in performance. Perfect policy should ensure that the proportional

decrease in performance is not greater than proportional decline in

resources caused by failure.

19

DSS Requirements Related to Data Organization

3.2.3 Operation after Failure Repair

After failure repair system should reach resiliency level required by the

user. Performance of the repaired system should not be lower than before

the failure.

Data should be organized in such a way that after a failure is repaired

the system should minimize the amount of data transferred between nodes.

In particular, if the failure was caused by network partition so that some

of the nodes where not reachable but did not lose any data, and during the

failure no data was written or updated, there should be no data transferred

after the failure is repaired. Data placement should be the same as it was

before the failure.

3.2.4 Failure Reporting

Even though a system has to support non-stop read, write and deletion

operations under failures, it should also report any failures to users and

inform them of possible threats. In particular, data organization should

support the easy detection and reporting of data state health. Users should

be able to easily find out if their data is lost and if not, to know what is the

chance of such a loss. There are at least two important statistics that have

to be reported:

• resiliency level - reports the minimum number of nodes and disks

whose failure will cause data loss,

• data lost - reports which data has been lost.

3.2.5 Data and Metadata Consistency During and After

Failure

While a system operates under failure data organization must guarantee

data consistency. The most problematic case is when a node or disk is

unreachable while new user data is being written or existing data is being

updated. After a failure is repaired data organization has to support proper

integration of temporarily unreachable data with user updates done during

the failure.

Another important issue is metadata consistency. Besides recreating

missing user data a data placement policy algorithm has to rebuild proper

information about metadata. This means that a system has to heal itself in

20

Scalability

a distributed environment that does not have any central, managing entity.

Such healing must be properly designed in order not to lead to the creation

of two or more equivalent instances of the system (i.e. split-brain) that leads

to desynchronization of metadata and user data.

3.3 Scalability

Scalability is a very important requirement for DSS. Ideal data organization

should guarantee that performance and capacity of the system grow linearly

with the addition of new hardware. Availability, resiliency, fault tolerance

and efficiency of storage usage should stay at the same level. It allows users

to start with small setup and grow with increasing data volume.

While taking care of scalability data placement policy must also limit the

amount of data transferred after node addition/removal. This is to limit the

number of background tasks that use up system resources and to limit the

time window in which the system is changing its data to nodes assignment.

Such transient states in most cases are not optimal with respect to data

placement requirements. Ideally, when a new node is added to or removed

from a homogeneous system consisting of n nodes only 1/n of data stored

by it should be transferred.

Scalability can be measured by comparing the increase in throughput

after system extension to increase in system resources (i.e. number of nodes

in case of homogeneous system). The ratio of increase in throughput to

increase in resources is 1 for an ideally scalable system. Values of less than

one means that system is not ideally scalable.

3.4 Self Management

As the complexity of distributed system increases, systems management

tasks become significantly more complicated [84]. Management operations

relied mainly on highly skilled human intervention and administration, but

the availability of human resources is limited and their costs are increas-

ing. At the current rate of expansion, there will not be enough skilled IT

people to administrate the world’s computing systems [45]. Besides, about

30-40% of all computer problems are attributable to system administra-

tors errors [35, 36, 56]. A large distributed system requires high level of

automation and self management.

21

DSS Requirements Related to Data Organization

In the context of data organization this boils down to at least the fol-

lowing requirements listed below.

3.4.1 Self Healing

Data organization has to support automatic failure discovery and rebuilding

missing metadata and user data.

3.4.2 Self Balancing

Data placement policy has to automatically reassign mapping from nodes

to data that they host when a system is rebuilding after failure or when an

administrator adds or removes nodes. Balancing should be both accurate

and responsive to changing conditions that are result of failures.

3.5 High Availability

In DSS data should be placed in such a way that temporary failures of

any system component should not stop serving user requests and should

not cause loss of user data. This requirement is motivated by the require-

ments for systems to be constantly on-line. A common industry requirement

for large systems availability is ”four nines” (99.99%) or even ”five nines”

(99.999%). The first means that a system can be unavailable for maximum

4.32 minutes per month, the second means that a system can be unavailable

for maximum only 25.9 seconds per month.

3.5.1 On line Maintenance

In addition to unplanned events data organization has to support planned

events related to system administration like hardware and software up-

grades. It should be possible to mark nodes or disks for temporal removal

from the system to let data temporarily migrate in non-disturbing manner

to other locations.

3.6 Performance

Effective data organization is crucial to performance for any system which

has multiple nodes and disk. Data should be placed in such a way that

the load on each node and disk is proportional to its resources in order to

22

Performance

avoid non-uniform distribution of the load and the formation of bottlenecks.

There should be no hot spots i.e. nodes that are over-utilized due to storing

data that is frequently accessed by users.

In a distributed storage system there are two important performance

metrics:

• Aggregated throughput of write operations executed by all system

users. It is measured in MB or GB per second. It is an aggregated

value, because for large systems one user does not have enough re-

sources like network bandwidth to fully drive a big system and because

commonly all users store their backup at the same time. This is the

main statistic that is used to compare different systems performance.

• Throughput of read operations. However aggregated throughput, spe-

cially in big systems, is less critical than in case of write operation,

because it is unlikely that all users read data at the same time. Thus

system should provide high read throughput for fraction of users read-

ing their data concurrently.

Low response time of user write and read operations is less important than

in case of primary systems like file systems, because backups are stored and

retrieved as consecutive streams of data, not a separate data objects. High

latency is well tolerated by backup applications.

There are several areas of performance requirements in distributed stor-

age system that have to be supported by proper data organization.

3.6.1 Fast Direct User Operations

Data organization has to support good performance for operations directly

visible by users like read, write and deletion. These operations require high

throughput in case of read and write and a short time to complete in case

of deletion.

3.6.2 Fast Background Operations

Background task operations are data transfer between nodes, data recon-

struction after failures, data scrubbing, space reclamation, etc.

Tasks that increase resiliency (data reconstruction) or stabilize system

by reaching desirable state (data transfer between nodes) are more impor-

tant then other ones, thus they should have higher priority and be optimized

for short time of execution.

23

DSS Requirements Related to Data Organization

Space reclamation should reclaim space fast enough to make the system

able to accept new writes.

Other tasks like data scrubbing have lower priority, however they should

be fast enough to execute within reasonable time like several days.

3.6.3 Fast Data Location

Data must be organized in such a way that locating and retrieving user data

is fast and ideally does not require any central, prone to failure, directory.

It is necessary to satisfy fast direct user operations. In addition to that,

to support deduplication, data must be quickly found by its content to

check if it is already stored by the system. Even in centralized systems this

requirement is hard to achieve [99]; in distributed systems it becomes a big

challenge, especially in a scalable, dynamically changing system where data

is transferred from one node to another, where nodes with previously stored

data may be unreachable, may contain outdated data (i.e. data that was

already deleted while node was detached from the rest of the system) or

contain subset of data it is supposed to store (i.e. in case some disks on

given node were broken).

3.6.4 Disk Data Locality

Data organization should also take into account the locality of data on disks

i.e. it should allow for the creation of disk level storage structures that would

put blocks of a file ”near” each other so that many blocks of data can be

read at the same time with a single disk head movement thus avoiding the

disk seek penalties.

3.6.5 Optimal Initial Data Placement

Initial data placement for given hardware configuration should be the final

data placement. The reorganization of data placement is an expensive pro-

cess; thus a change in type of user load and amount of data in the system

should not impact data placement

3.6.6 Performance under Failure

Under failure performance should be degraded proportionally to the per-

centage of failed nodes and disks. Tasks executed by failed nodes and disks

should be distributed among healthy ones.

24

Chapter 4

Trade-offs and Mutual Benefits

among Requirements

4.1 Trade-offs

Determining the optimal data placement with respect to all system require-

ments is problematic. For many pairs of requirements organizing data in a

way that improves fulfillment of one requirement reduces level of fulfillment

of the other requirement. Supporting all the requirements within one system

is not possible. Some conflicts can be mitigated by proper data organiza-

tion, whereas others are resolved by design decisions that prioritize some

requirements and sacrifice others.

Efficient

Stor-

age

Usage

Fault

Toler-

ance

Scalabi-

lity

Self

Man-

age-

ment

Availa-

bility

Perfor-

mance

Efficient Storage

Usage

N/A 4.1.1 + + 4.1.2 4.1.3

Fault Tolerance 4.1.1 N/A 4.1.4 + + 4.1.5

Scalability + 4.1.4 N/A + 4.1.4 4.1.6

Self Management + + + N/A + +

Availability 4.1.2 + 4.1.4 + N/A

Performance 4.1.3 4.1.5 4.1.6 + N/A

Table 4.1: Requirements matrix.

25

Trade-offs and Mutual Benefits among Requirements

In addition, requirements may positively influence each other. Support-

ing one requirement might help to satisfy the other one. We call such rela-

tions mutual benefits among requirements.

Table 4.1 provides all combinations of any two requirements. If there

is a trade-off between two requirements corresponding intersection contains

number of section of this document that describes that trade-off. If there are

mutual benefits they are marked with ’+’ sign and are described in section

4.2 on page 35.

4.1.1 Efficient Storage Usage vs. Fault Tolerance

There are the following trade-offs regarding data organization supporting

both fault tolerance and efficient storage usage:

• Fault tolerance requires the storage of redundant data. Such data low-

ers the efficiency of storage usage. The tension can be mitigated by

using efficient methods for redundant data like erasure coding [12] in-

stead of data replication, but cannot be eliminated entirely. Erasure

codes add resiliency to the stored data with fine-grain control between

required resiliency level and resulting storage overhead. Details of era-

sure codes are described in section 5.2.2.3 on page 43.

• Data organization supporting fault tolerance imposes an arrangement

of data that can cause inefficient use of disk space. For example, if

there is data whose resiliency is to be provided by additional n replicas

to handle n failures of system built upon n+1 nodes each node would

have to store original data or its replica, thus each node would store

the same amount of data. If the nodes did not have the same capacity

then the bigger nodes would never by fully utilized. A similar problem

exists when instead of replicas correction codes are used. For example

all disks in RAID systems have to be the same size to fully utilize

their capacity.

4.1.2 Efficient Storage Usage vs. Availability

If each storage node had unlimited storage space then each piece of data

could be stored on each node to maximize the availability of that data.

Obviously, such a solution is not acceptable due to economic factors i.e.

the cost of storage. In large systems it would also lead to problems with

the efficient management of a huge number of data copies and problems

26

Trade-offs

with the network’s bandwidth that would have to transfer copies of each

piece of data. On the other hand, there is a solution where each node stores

only original pieces of data without any redundant data. Such a solution

maximizes efficiency of storage usage but results in very low availability.

Inaccessibility of any node causes some data to be unavailable. Thus the

final data organization solution has to be somewhere in between.

Efficient Storage Usage vs. Reliable Detection of Duplicated Blocks on

Write

While some nodes are not reachable it may not be possible to deduplicate

new data being stored because a system cannot verify if the same data

has already been stored. In such a case one possible option would be to

favour availability over efficient storage usage and store the data even if the

duplicate was not discovered. Another option would be to block the write

until nodes are reachable, which would sacrifice availability in order to gain

efficient storage usage. To limit this trade-off data should be organized in

such a way that deduplication checks can be reliably done even if multiple

nodes are unreachable.

4.1.3 Efficient Storage Usage vs. Performance

We have identified the following areas for trade-offs regarding performance

and efficient storage usage.

Providing Resiliency

There are two main data organization techniques for providing resiliency -

data replication and some kind of data coding i.e. erasure codes. Replicas

are better suited for performance than coding - the creation of replicas is

a relatively fast process in terms of CPU usage; only one replica is needed

to retrieve data, thus the system only needs to read data from one disk.

In contrast, data coding and decoding is CPU intensive process. Further to

this, retrieving data requires reading data from many disks. On the other

hand coding uses disk space much more efficiently than replicas for the same

level of resiliency [94], so it is much better suited to efficient storage usage.

Heterogeneous, Non-proportional Nodes

In the case of a system built upon heterogeneous nodes that do not have

the same ratio of storage capacity and node speed (in broad sense the speed

27

Trade-offs and Mutual Benefits among Requirements

is the number of CPU cores and their speed, RAM speed, network speed

and disk speed) there is a conflict between reaching the highest possible

performance and using all available storage space. If data was organized in

such a way that each node storage space was to be consumed on an ongoing

basis proportional to node capacity, the system would have to slow down

to the slowest node in the system i.e. node with the smallest ratio of speed

to capacity. On the other hand, if the system was to perform as fast as

possible then the slowest node would have to receive a smaller fraction of

writes. This fraction of writes would be less than the ratio of this node disk

space to total space of all the other nodes. This is because this fraction would

be proportional to node speed, not to node capacity. This would result in

unequal utilization of storage space on nodes and the system being unable

to accept new data without the execution of some background process that

would transfer data from over-utilized nodes to under-utilized ones. Such

processes would only make sense if there were enough idle time windows,

i.e. when there are no user activities to consume system resources. If this

was not the case such background process would be in conflict with direct

user operations i.e. writes and would decrease write performance anyway.

Furthermore, such a background process does not help the performance of

data retrieval that would be slowed down by the slowest nodes.

Deduplication vs. Performance

The impact of deduplication on write performance is ambiguous and it

depends on the ratio between duplicated and non-duplicated data in the

user data stream. A write with deduplication is more complicated than

non-deduplication write because before data block is stored on disk the

system needs to check if that block already exists. In the case that it does

not exist, the system does additional work before the actual data storing

which has negative impact on performance. On the other hand, if it is a

duplicate write then the check for duplicate is the only operation that has

to be done. If the data organization is properly designed checking for a

duplicate could be faster than actually storing user data. This is because

in order to provide resiliency a system needs to access many disks to store

replicas or coded data on many nodes. However, verification that a given

piece of data is a duplicate may not require any disk access at all. For

example some kind of small data summary can be kept in RAM to answer

deduplication queries directly without disk I/O. Thus the performance of

writing streams containing many duplicates might be faster on a system

28

Trade-offs

supporting deduplication than on a system without this feature.

Deduplication has negative impact on read performance. Deduplication

devastates data locality because during a write deduplicated parts of user

data stream are scattered over nodes and disks where the data was previ-

ously stored. Reading such stream might result in close to random access

to disks that hurts performance.

Efficient Storage Usage vs. Fast Data Location

For the best storage usage efficiency there should be no metadata informa-

tion about the location of stored blocks, because such information occupies

storage, thus lowers efficiency of storage usage. Blocks should be simply

stored on free sectors of disks. Obviously, such a solution would be ex-

tremely inefficient when it comes to locating a given block. The only possi-

ble method would be to scan all blocks stored in the system. An alternative

to this would be a data organization with a global directory mapping each

block’s id into its physical location on the node and disk. The directory

would serve requests for block’s data location very quickly. However, the di-

rectory would have to be replicated on many nodes and disks to avoid single

node/disk bottleneck. Such a solution provides fast data location but stor-

age usage wise it is inefficient. The final solution should be found somewhere

in between these two methods.

4.1.4 Fault Tolerance and Availability vs Scalability

Every increase in system size increases the number of hardware components

it is built from. Since the probability of each component failure does not

change, the larger the system and higher the number of components, the

greater the risk of failure. For big systems failure is the norm rather than the

exception. Even only taking into account magnetic disk empirical results,

analysis in [80, 62] show that annualized failure rates (AFR) range from 1%

to 13% which is much higher than the information provided by disk vendors.

Common AFR is around 6%. This means that a system built of 1000 disks

experiences disk failure every 6 days on average. Similar to the trade-off

between scalability and failure tolerance, availability may be decreased in

a big system because of the increase in probability of failure in a situation

when a system has a single point of failures. On the other hand, a bigger

system has more components, thus data can be organized in a way that

provides redundancy increasing both fault tolerance and availability.

29

Trade-offs and Mutual Benefits among Requirements

4.1.5 Fault Tolerance vs. Performance

There are several data organization issues regarding performance vs. fault

tolerance:

• Fault Tolerance is improved by spreading each redundant data over

many or all nodes. However, such a wide spread has a negative impact

on the performance of writes because the additional data has to be

stored and the write operations are slowed down by the slowest node

storing the data. The latter problem can be mitigated by ignoring

the slowest nodes as long as certain, minimal level of redundancy is

preserved and hoping that later background process will reconstruct

and store the missing data. Albeit, such an approach is a pure example

of trade-off between fault tolerance vs. performance.

However, data redundancy may improve performance of read oper-

ation, because there are many nodes and disks that can serve the

request, and the fastest ones can be chosen.

• Similar to capacity vs. performance trade-off there is a tension between

types of redundancy i.e. replications vs. coding. On the one hand,

erasure coding gives better fault tolerance than replicas [94]. On the

other hand replicated data is much faster to read - only one disk on

one node needs to be accessed in contrast to coding that requires reads

from multiple disks. Additionally, in both read and write operations

coding requires more CPU power which also has negative impact on

performance.

• A fault tolerant system must execute additional processes which ver-

ify data health and rebuild data after failure to reach original data

resiliency. Such additional processes consume system resources that

cannot be used by regular read and write operations. Thus, the addi-

tional process may lower system performance.

4.1.6 Scalability vs. Performance

In a distributed system, data placement policy should distribute load and

user data evenly over all nodes to reach both high performance and even

space utilization. This solution may become troublesome in a big system

because of the assumption that all nodes participate equally in processing

requests - in case of a node or a disk failure the system’s performance drops

until the failure is repaired manually or automatically. Since probability

30

Trade-offs

of any failures increases in bigger systems, it may negatively impact per-

formance. The problem may be even more severe in cases when a failed

component does not stop but executes with lowered performance - such a

failure negatively impacts performance, but may not be easily detected for

a long time.

Scalability vs. Fast Data Location

DSS stores pieces of user data over all nodes. The efficient management of

the locations of each data block is harder to achieve in bigger systems. A

naive data organization solution like keeping some kind of central directory

of data blocks and their locations provides fast data location, but is not

scalable. This is because in a big, dynamically changing system it would

be difficult to keep the directory up to date. On the other hand, there is a

solution where each node keeps directory of a subset of blocks, for example

blocks stored locally. Such a solution is scalable in terms of keeping the

directories information up to date, but to find a single block all nodes would

have to be queried which would overload the nodes. As a result, ideally we

need a solution which is both scalable and allows for fast data location.

Scalability vs. Fast Background Operations

The performance of background operations may suffer in a big system due

to the following reasons.

Similarly to regular operations, background operations might have to

operate over all system’s data thus they would have to contact all or most

of the nodes of the system. A transient performance problem with any of the

nodes may slow down background operation processes. This is more serious

for bigger systems.

In bigger systems, especially the ones without any central point of con-

trol, it is harder to control interoperability of many background processes.

They may interfere with each other and slow themselves down. In other

words, it might be hard to distribute background processes work evenly

over all nodes.

Scalability vs. Disk Data Locality

Data organization preserving disk data locality is crucial for efficient disk

read and write operations. It may be hard to achieve this in systems built

upon many disks. Data that is written to the system should be stored on

31

Trade-offs and Mutual Benefits among Requirements

as many disks as possible to utilize total throughput of all disks. As long

as only one user writes data that is distributed over all nodes, locality on

disks may be accomplished. Problems may occur when many users write

data streams concurrently which is common in big systems. To reach high

throughput of disk writes those streams should be stored on consecutive

sectors of every disk to avoid head seeks. However, this leads to streams of

data coming from different users becoming interwoven on the disk. Thus,

there would be no disk locality with respect to one stream. Later on, read

operations for that stream would be inefficient because data would have to

be read from non-consecutive parts of the disk.

4.1.7 Intra Requirements Trade-offs

While working on design of DSS, in addition to trade-offs between separate

requirements, we have identified noticeable trade-offs within some require-

ments. These intra trade-offs refer to fault tolerance, self balancing and

deduplication requirements.

Fast Data Recovery vs. Resiliency For Concurrent Failures

Within fault tolerance requirement alone there is a tension between data

placement policy, that minimizes probability of data loss when many con-

current failures occur, and data placement policy that supports fast data

reconstruction. Reconstruction time determines the length of time that the

system is vulnerable to data loss caused by additional failures. Fast recon-

struction gets system quick back to faulty-free, resilient state.

In order to examine this trade-off in detail let us consider system built

upon n nodes. Assuming that the system guarantees that k nodes can fail

without data loss, there must be some kind of data redundancy. For simplic-

ity and without loss of generality let us assume that redundancy is provided

by storing k replicas for each user block. We will consider two data place-

ment policies. The first policy randomly spreads each user data block and

its replicas over all nodes. If there is enough data written to the system,

then for each k+1 element subset S of nodes there is a data block such that

this block and its all replicas are stored by nodes from S. Thus, a concurrent

failure any of k + 1 nodes causes data loss. The probability of data loss is

1. However, data recovery under such data placement is very fast, because

when a node fails all its data can be recreated by reading replicas from all

other nodes in parallel. The second policy divides n nodes into g disjointed

32

Trade-offs

groups of size k + 1. The user data block and its replicas are stored within

one randomly chosen group. Such data placement has lower probability of

data loss when k + 1 nodes fails, because data loss occurs only when nodes

building a group fail. For (k + 1) being a divisor of n probability of data

loss is n/(k+1)
(n
k+1)
, where n/(k + 1) is the number of groups and

(

n
k+1

)

is the

number of all subsets of size k+1. Thus, the probability of data loss is lower

than 1 as in case of the first policy. However, data recovery under second

data placement policy is slower, because after a node fails the recovery pro-

cess can only read data from k nodes, thus it is slower by (n− 1)/k factor

compared to the first policy. When a second node within that group fails,

recovery is lowered by factor (n− 2)/(k − 1) and so on.

To sum up, a system that supports many simultaneous node failures

(the second policy) tends to need more time to reach its original resiliency

level than a system that is more prone to concurrent node failures (the first

policy). The first policy is better for failures uniformly distributed in time,

the second one is better for multiple failures occurring at the same moment

followed by long non-failure periods of time.

Local Balancing vs. Global Balancing

Within balancing itself there is another intra trade-off. Any data placement

policy has to dynamically balance a system after events that change a set of

available nodes and their characteristics like capacity or CPU power. Such

events may be planned events like adding, removing and replacing hard-

ware and unplanned events that are results of failures i.e. some node being

unreachable, disk failures, node failures, network error, etc. Such dynamic

balancing can be done at two levels: local and global. By balancing at a

local level we mean actions taken by subset of nodes that balance a system

without any global management. A node takes action based on limited infor-

mation received from nodes that are its neighbours, thus that information

is incomplete and does not describe the state of all nodes. By global bal-

ancing we mean taking actions that are coordinated by some global entity

that decides what actions to execute based on information gathered from

all alive nodes.

Both types of balancing have advantages and disadvantages. Local bal-

ancing is quickly adaptable and starts balancing actions shortly after an

event. However, its decisions may not be globally optimal and are not sta-

ble. This is because they are based on incomplete information that may

vary and actions are not coordinated, possibly leading to conflicting deci-

33

Trade-offs and Mutual Benefits among Requirements

sions that abandon each other. Our experience is that local balancing works

properly as long as the requirements for it are simple and decisions require

very limited information. On the other hand, global balancing finds data

placement that is globally optimal and stable. One problem with global

balancing is that it requires long time to execute actions because it needs

to gather information from all nodes, leaving a system in unbalanced state

for a long period. It also requires a global entity thus it is prone to failures

and may be a bottleneck limiting scalability.

Inline vs Offline Deduplication

There are two main methods of implementing deduplication: inline and

offline. Inline deduplication finds duplicated blocks on the fly while data

is written to the system and only non-duplicated blocks are stored. Offline

deduplication first stores all the written data on some short term storage,

finds duplicates, removes them and moves non-duplicated data to long term

storage later on in a background process.

Inline deduplication minimizes disk capacity requirement but its per-

formance might be negatively impacted by deduplication being performed

during regular write operation. Inline deduplication data organization is

simple to manage because data is stored only once it is in its final version.

This limits the number of disk I/O operations. The inline deduplication sys-

tem has a simple administration policy, because the next backup operation

can be started just after the previous one is finished. Inline deduplication

also provides a safe and efficient storage system replication on a remote

site for disaster recovery. It is common policy to set up a secondary system

that mirrors data of the primary one. In the case of disaster of the primary

system, the secondary one can be used for data restore. The primary sys-

tem can send newly stored blocks (ones that were not duplicates) to the

secondary system just after a write operation is finished - the time lag is

very small.

The advantages and disadvantages of offline deduplication opposite to

those of inline. Offline deduplication requires more storage for storing writ-

ten data in original form to be used later by background operation process.

However, since deduplication is not carried out while data is being written,

the performance of non-duplicated write can be better. With regards to

administration offline is more complicated than inline because the adminis-

trator needs two polices for each backup - one for writing the backup and the

other for letting the system do the deduplication as a background process.

34

Mutual Benefits

Offline deduplication also complicates disaster recovery and makes it more

dangerous because it has to wait for the background deduplication process

to be finished before sending non-deduplicated data to the secondary sys-

tem. During that window time data is not mirrored, which increases the

chances of user data loss in case of a primary system disaster. Last but not

least, two distinguished capacity areas make the data organization more

complicated and harder both to implement and support.

To sum up, apart from performance, inline deduplication is better in all

aspects of data storing. Performance depends on actual implementation of

the system.

4.2 Mutual Benefits

For some pairs of requirements, organizing data in a way that improves the

level of fulfillment of one requirement increases the level of fulfillment of the

other one.

Data organization which supports availability also supports resiliency.

This is because to support both of these requirements, redundant data has

to be created. Another reason is that one might consider availability as a

stronger version of resiliency. Resiliency guarantees that user data exists,

however it may not be reachable. Availability guarantees that data is reach-

able which implies that the data exists.

Scalability may positively influence efficiency of storage usage. This oc-

curs when data organization supports global deduplication. Since a bigger

system has more data, there are more options for data blocks to be dedupli-

cated against each other. More options result in better data deduplication

which improves storage usage efficiency.

Self balancing and self healing results in the automatic adaptation of

the system to changes in the environment. Automatic system reaction is

commonly faster and more accurate than human intervention. Thus, self

management shortens the time during which efficiency of storage usage,

fault tolerance, availability and performance are degraded.

35

Chapter 5

Proposed Solution

5.1 HYDRAstor DSS

5.1.1 History and Current Status

In 2002 I began working on a new DSS project run by NEC Laborato-

ries America, Inc. We designed and developed a novel distributed stor-

age system called HYDRAstor. To my knowledge, this system is the first

commercial implementation of a highly scalable, high-performance content-

addressable storage system supporting global duplicate elimination, per-

block user-selectable failure resiliency, self-maintenance including automatic

recovery from failures with data and network overlay rebuilding. From the

beginning, HYDRAstor was designed to address the DSS requirements de-

scribed in the previous chapter. This was achieved with original ground-

breaking research utilizing creatively the latest technologies. One-way se-

cure hashing like SHA-1 [29] and content-addressable storage paradigm

(CAS) [3, 69, 99] were our inspirations for a fast and safe duplicate elimi-

nation. Distributed hash tables (DHT) [27, 51, 73, 76, 85, 98] allowed us to

build a scalable, failure resistant system and extend duplicate elimination

to a global level. Erasure codes [12] added space-efficient redundancy with

fine-grain control between redundancy levels and storage overhead.

I have been involved in the project from the first day of its existence.

During this time I have been working on design and implementation of data

placement policy and data organization that were the key for reaching the

above requirements. The result of this work is described in this chapter.

36

Architecture of HYDRAstor

5.1.2 Additional Requirements

Beside the generic distributed storage system requirements described in the

previous chapter we had to take additional specific requirement into account

while working on design of the system:

• The system should survive a configurable number of disk or physical

nodes (machines) failures. That number is in the range of 2-11. The

default number is 3.

• The system should scale from one to hundreds of physical nodes.

• In big systems, the computer network is not homogeneous. Physi-

cal nodes are grouped into racks which have a default number of 10

machines. An intra-rack network has a higher throughput than an

inter-rack network.

5.2 Architecture of HYDRAstor

5.2.1 Overview

Figure 5.1: HYDRAstor architecture. Clients communicate with ANs. Each

AN communicates with all SNs. Physical node may host singe AN, single

SN or their combinations.

HYDRAstor system consists of two types of logical nodes: (1) frontend

nodes called Access Nodes (ANs), and (2) backend nodes called Storage

Nodes (SNs). ANs and SNs can be hosted by separate physical nodes or can

37

Proposed Solution

be combined and hosted by one physical node. Figure 5.1 shows example of

ANs and SNs configuration.

Clients communicate with ANs which role is to distribute read and write

requests to SNs. SNs take care of storing data on disks and finding dupli-

cated data. The entire system can be accessed with a regular file system

interface which is exported by Hydra File System (HFS) [91] built on top

of ANs. HFS uses HYDRAstor driver interface exported by ANs. That low-

level interface may be used to implement other standard access protocols,

for example VTL or SMB/CIFS protocol [82]. ANs can also be used to

decrease network traffic, because ANs can cooperate with SNs to find out

duplicated data before actually sending it to the backend. Deduplication

done on ANs is called deduplication on source in opposition to deduplica-

tion on SNs called deduplication on target.

In this work we concentrate on the functionality of the backend, as it

alone constitutes a full blown example of DSS. It provides support for read,

write and deletion operations, automatically reconfigures data placement

after node additions, removals and failures; and automatically rebuilds data

resiliency to required levels after failures.

High-level data placement in backend is organized around Fixed Prefix

Network (FPN) (section 5.2.2.2) that is our version of distributed hash

table (DHT) (section 5.2.2.1). In HYDRAstor, each FPN nodes is replaced

with a supernode (section 5.2.2.3) which spans over many physical nodes for

high resiliency and availability. Local, disk-level data organization supports

streaming access to disks. Data is stored in containers that are organized

into chains (section 5.2.3) to allow fast storage of data streams and enable

efficient data consistency management, data health verification and data

reconstruction.

In the next section (5.3) we describe how these global and local data

organization allowed us to implement functionality of the system.

5.2.2 Global Data Organization

5.2.2.1 Distributed Hash Tables

Since scalability and failure resilience are major requirements of data orga-

nization, the use of distributed hash table was a natural choice.

Distributed hash tables provide a scalable mechanism of mapping keys

onto values, delivering standard functionality of a hash table. It is possible

to store a key and value pair, and to pick up a value based on the key.

38

Architecture of HYDRAstor

Mapping from keys to values is distributed among the nodes, that is the

entire hash space is divided into disjoint regions which in turn are assigned

to participating node. DHTs are fully decentralized and they scale very

well. Node addition or removal causes usually minimal disruption of the

mapping. In most cases they provide consistent hashing - adding or removing

a node results in remapping only k/n keys where k is number of keys and

n is number of nodes. DHTs are also failure resilient - they rebuild their

structures even with nodes continuously joining, leaving, and failing.

To satisfy these requirements, each node of a DHT maintains links to

only a few other nodes in the system commonly called neighbours. These

links form the overlay network. Typically each node has O(log n) neighbours

in a system with n nodes. The method of selecting neighbours determines

the network topology.

The hash table’s key space is a set of bit strings, typically ranging from

128 to 256 in length. Each node is assigned an identifier and a node owns

keys that are closest to its identifier according to some pre-defined metric.

To find a node owning given key k, a node checks if it is the owner. If not it

passes the key to the neighbour that is closest to k in terms of this metric.

Typically, the maximum number of hops in any route (route length) is

O(log n) when node degree (number of neighbours) is O(log n) (Chord [85],

Kademlia [51]). Other common options are route lengthO(d d
√

(n)) for degree

O(d) (CAN [73]) (where d is system constant) and route length O(log n) for

degree O(1) (Koorde [48]).

There are many proposal of new DHTs in recent research. The most

well known of these are Chord, CAN, Kademlia, Tapestry [98], Pastry [76].

All these proposals were designed for peer-to-peer networks [93] that have

thousands of nodes and are characterized by a high ratio of nodes arrival

and failure. The system designers were more focused on small node degree

and fast reconstruction of nodes state after failure or node departure than

short routing paths. In a commercial system that consists of no more than a

thousand of nodes and operates under controlled environment where nodes

are added and removed in planned way the priorities are the opposite -

short routing paths are more important than the size of a node state. Thus,

slightly different DHT than the ones available so far was needed . That

is why HYDRAstor is built upon a specialized DHT named Fixed Prefix

Network (FPN) [27].

39

Proposed Solution

5.2.2.2 Fixed Prefix Network

This section presents some preliminary material. It is presented for com-

pleteness to make the thesis self-contained. The reader familiar with Fixed

Prefix Network can move straight to section 5.2.2.3 ‘FPN with Supernodes‘

on page 43.

Fixed Prefix Network (FPN) is a distributed hash table. Hash keys have

the same length S. FPN divides hash key space into FPN nodes. FPN nodes

are hosted by physical nodes. Each physical node may host many FPN nodes

simultaneously.

FPN node is identified by string of bits. It is called an FPN node fixed

prefix. An FPN node with fixed prefix

f1f2 · · · fk

is responsible for hashes starting with this prefix i.e. hashes of the form

f1f2 · · · fkxk+1xk+2 · · ·xS

where xk+1xk+2 · · · xS are any bits.

Figure 5.2 illustrates prefix tree of FPN nodes. Leaves represent FPN

nodes. Digits along the path from the root to the leaf are FPN node prefix.

Two values with keys K1 = 10000101 and K2 = 10101011 would be stored

on nodes H and J , respectively.

FPN ids do not overlap with each other i.e. for each hash key there

is only one FPN node with id being the hash key prefix. Additionally, a

healthy FPN network i.e. FPN with all FPN nodes alive has hash key space

fully covered i.e for every hash key there is an FPN node with an id that is

a prefix of the hash key.

Two FPN nodes are neighbours if their fixed prefixes differ only on

one bit position and the rest of the bits are the same. If fixed prefixes

differ in length only the first shorter length bits are considered, where

shorter length is the length of the shorter fixed prefix. Thus, in FPN with

all fixed prefixes length equal to l each node has l neighbours. In FPN with

different lengths of fixed prefixes, FPN nodes with shorter prefixes may have

more than one neighbour along a given bit. For example, consider node E

with fixed prefix 010 from figure 5.2. Its neighbors are nodes: K (prefix

1100) and L (prefix 1101) along the first bit; A (prefix 0000) and B (prefix

0001) along the second bit; and F (prefix 0110) and G (prefix 0111) along

the third bit. If node E was replaced by nodes with fixed prefixes longer

by one bit E0 (prefix 0100) and E1 (prefix 0101) they would inherit E’s

40

Architecture of HYDRAstor

neighbours in such a way that they would have only one neighbour along

any given bit. E0’s neighbours would be K, A, F , and E1’s neighbors would

be L, B and G.

1

A B C D F G H I

J
K L M N

0

0 0 1

1

1

0

0 0

0 0 0

0 0 0 0

E

1

1

1

1 1

1 1

1

Figure 5.2: FPN example.

source: [28]

Routing Basic routing is done by resolving bits from left to right. It

guarantees that already resolved bits are not lost and that there will be

no more than max prefix length hops where max prefix length is the

longest fixed prefix in the system. max prefix length is in the order of the

logarithm of number of FPN nodes.

To decrease the number of hops, each FPN node keeps jump tables.

Each fixed prefix is divided into groups of bits of size D. Groups start at bit

position 0, D, 2D and so on. Such groups are called digits. With each digit

there is associated information about the location of FPN nodes having

fixed prefix of the form:

f1 · · · fid1 · · · dDfj · · · fk

where f denotes bit value of local FPN node and d denotes any bit of the

digit. Such information is called jump tables. As with bits they are used

for routing. Instead of resolving bit by bit they are used to resolve digit

by digit from left to right. Resolving by digits decreases number of hops.

Digits can be dynamically increased while system increases. It allows the

maintenance of a limited number of hops while the system increases in size.

By keeping additional O(dn1/d) node locations, where n is number of nodes

and d is is the number of digits in fixed prefix, the number of hops is limited

to O(log d)

41

Proposed Solution

Pings Neighbouring FPN nodes periodically (every T seconds) send each

other short messages called pings. Pings are used to detect neighbours’ fail-

ures and propagate changes of the network. Pings carry information about

sender location and its version (the version is increased when an FPN node

changes the physical node hosting it). Pings also carry information about

changes in a jump table for a given digit if it is sent to a neighbour along

a bit belonging to that digit. After receiving a ping the node reconciles its

state. A node version is used to find out the latest information. After D ∗T

seconds (where D is digit size) information about the jump table changes

is updated on all involved nodes.

FPN Operations

FPN Node Split FPN Node split operation creates two children nodes

in place of the parent node. New nodes have their parent’s fixed prefixes

extended with zero and one. Children inherit neighbours and jump tables

information that is relevant to them. This operation is local i.e. children’s

physical nodes are hosted by the parent’s physical node. An FPN node is

split if the number of hash keys it is responsible for exceeds the system

wide constant. Since hash keys are equally distributed over hash key space

FPN nodes should split more or less at the same time assuming that new

hash-value pairs are continuously being added to the system. The difference

in the length of their fixed prefixes should not be higher than one.

There is no operation that would revoke a split - two children nodes are

never merged.

FPN Node Transfer FPN nodes can change physical nodes that host

them. Such an operation is called an FPN node transfer. After a node is

transferred information about its new location is propagated through pings.

Additionally, the old physical node keeps information where the FPN node

was transferred to forward there message sent to that FPN node by sender

that did not yet update information about its new location.

Transfers are used for balancing purposes when physical nodes are added

or removed and when FPN nodes are recovered after they were lost due to

failures.

Handling Failures

42

Architecture of HYDRAstor

FPN Node Recovery FPN has defined an algorithm that re-assigns part

of the hash space handled by dead FPN node (i.e. hosted by dead or un-

reachable physical node) to other physical node. The algorithm only works

properly under assumption that a physical network is not partitioned into

to separated subnetworks of physical nodes. New instances of the FPN node

rebuilds the FPN network. However, it does not rebuild information about

lost hashes and their values, because this information has no redundancy -

one failure causes permanent data loss.

Routing Under Failures In the case of failures, routing which consists of

resolving bits or digits from left to right, may not be possible. In such a case

information about neighbours and jump tables is used to pass the message

to any FPN node that reduces value of XOR between the hash key and the

fixed prefix of a destination node. If there is no such node, a random node

is chosen as the next destination and it is kept by the message in a list of

already visited FPN nodes to avoid loops.

5.2.2.3 FPN with Supernodes

The original Fixed Prefix Network design introduced a complex recovery

scheme of a failed physical node which was difficult to implement. Addi-

tionally, it did not guarantee that a series of physical node recoveries would

not create two or more equivalent versions of the system. Furthermore, since

there is no redundancy in FPN, even if the overlay network can be repaired,

some of user data is lost. RAID-like resiliency could have been built on top

of FPN. However, such a solution would make it difficult to satisfy DSS re-

quirements like high resiliency for large configurations, tolerance for entire

physical nodes failures and fast rebuilding of data resiliency after failures.

To address these shortcomings, FPN was extended with the concept of su-

pernodes. We call this system FPN with supernodes (FPN/SN).

Supernodes A Supernode represents one FPN node, but it is spanned

over several physical nodes in order to increase its resilience to physical

node failures. Each supernode consists of a fixed number of supernode com-

ponents. A component can exist on no more than one physical node in a

given point in time. Components of the same supernode are called peers.

The number of components of each supernode is given by a constant

called supernode cardinality. Usually, this constant ranges from 4-24. For

the commercial system HYDRAstor it is set to 12. For a given system

43

Proposed Solution

incarnation, supernode cardinality is the same for all supernodes and is

constant throughout entire system lifetime. As a supernode is equivalent to

FPN node, it is identified with a fixed prefix. One physical node can host

multiple components of different or the same supernodes (in case of small

systems), although peers are usually placed on separate physical nodes to

maintain high resiliency to failures. A given component distribution is de-

fined by supernode incarnation. Whenever a component changes its location,

a new incarnation of this supernode is created.

Figure 5.3: Supernodes and Components. 4 supernodes of fixed prefixes

00, 01, 10 and 11 spanned over 6 physical nodes. Each supernode has 4

components, i.e. supernode cardinality is 4. Each component within a given

supernode is identified with component index.

Figure 5.3 shows an example of FPN/SN system. The upper part of

the figure contains prefix tree showing four FPN nodes as leaves dividing

the prefix space into four disjoint subspaces. The lower part of the figure

shows four supernodes of cardinality 4 spanned over 6 physical nodes. These

supernodes are FPN nodes representation.

44

Architecture of HYDRAstor

Figure 5.4: Erasure codes schema.

Supernodes solve two FPN problems:

• Simple overlay network recovery - FPN has a very complex recov-

ery scheme and does not guarantee that a series of recoveries will not

lead to the creation of more than one instance of the system. Due to

the introduction of supernodes, this inter FPN nodes recovery scheme

is no longer needed. Instead, a much simpler intra supernode recovery

mechanism was introduced. A supernode quickly recovers its compo-

nents in case of failure of any physical machine that the supernode is

spanned over. Under standard configuration that mechanism is able

to rebuild a supernode as long as there is supernode cardinality/2 +

1 components alive i.e. supernode cardinality/2 + 1 components is

hosted by non-failed and reachable physical nodes. We assume that

the supernode cardinality is large enough so that the probability of

simultaneous permanent loss of more than supernode cardinality/2-1

components is very small.

• User data resiliency - a supernode is basic logical entity that stores

user data in a failure resistant manner. This is achieved by erasure

coding [12].

Figure 5.4 shows erasure codes schema and possibility to use it for

resilient storage of data blocks. An erasure code is an error correc-

tion code originally used in telecommunication. Erasure codes divide

45

Proposed Solution

a source block into n fragments and adds additional r redundant frag-

ments. k = n
n+r
< 1 is the rate of encoding. Storage cost is increased

by a factor of 1
k
. The key property is that the source block can be

reconstructed from any n encoded fragments.

Erasure codes are a superset of replication and RAID schema. A data

block with c replicas can be described by an (n = 1, r = c) erasure

code. RAID level 1 can be described by an (n = 1, r = 1) erasure

code, RAID level 4 and 5 can be described by an (n = 4, r = 1)

erasure code.

To provide failure resiliency each user data block is encoded into su-

pernode cardinality fragments. These fragments are spread over the

physical nodes that the supernode is spanned over. In case of very im-

portant data, instead of coded fragments, supernode cardinality copies

of the block are spread over the physical nodes.

Supernode Components A component is described by a component de-

scription that contains:

• Fixed prefix of the supernode a given component belongs to.

• Component’s index - a number between 0 and supernode cardinality -

1 which is an id of this component in any incarnation of its supernode.

• Component’s version (or incarnation) that is increased when this com-

ponent changes host.

• IP of physical node hosting component.

A component’s prefix and index are fixed for a given component lifetime.

Supernode Composition A supernode is a logical entity. The physical

representation of the supernode incarnation is a supernode composition. It

consists of a fixed prefix identifying a given supernode, a supernode version,

which is a sequence number and an list of component descriptions. Each such

description has information about component location and its version. A su-

pernode composition always contains supernode cardinality of components.

Dead components (hosted by failed or unreachable physical machines) re-

main in the composition they occurred. A component recovered on another

physical node is described by a newer composition. A composition version

i.e. sequence number is increased on every supernode change.

46

Architecture of HYDRAstor

Figure 5.5: Example of two incarnations of supernode with fixed prefix

01 and compositions describing them. Left part shows the first incarnation.

Right part shows the second incarnation after component with index 3 has

changed location from physical node 5 to 4. The component version is in-

creased from 5 to 6. All active components has updated id of the latest com-

position from 01:22 to 01:23. The component marked gray is an old, not

active, version of component of index 3.

Figure 5.5 shows two incarnations of supernode identified by fixed prefix

01. Left part of the figure shows first incarnation which consists of compo-

nents hosted by physical nodes 1, 2, 3 and 5. This incarnation is described

by supernode composition identified with id 01:22 (01 stands for fixed pre-

fix of the supernode, 22 is a supernode incarnation sequence number). Each

47

Proposed Solution

component has a local copy of this supernode composition. Right part of

the figure shows incarnation of the supernode after component identified

with index 3 has changed location from physical node 5 to physical node 4.

Information that has been update due to this change is bold. New supern-

ode incarnation with version equal to 23 is described by new supernode

composition identified with 01:23. Components that still are part of the

supernode keep local copy of the new supernode composition. New incar-

nation of component with index 3 has changed version number from 5 to

6. The previous incarnation of the component, marked gray, is still located

on physical node 5. However, the component is not active and is not part

of the newest incarnation of the supernode.

A supernode composition is changed by a distributed consensus proto-

col [11] run by the components currently belonging to this supernode. This

protocol is described below in section 5.3.1 on page 55. Consensus guaran-

tees that two compositions with the same fixed prefix and sequence number

have exactly the same content i.e. description of peers location.

Each component maintains one most recent and active supernode com-

position which reflects the most up-to-date knowledge this component has

about the state of its supernode. Each composition is stored persistently on

physical nodes that host components described by that composition.

The compositions are partially ordered by their fixed prefix and sequence

number. We say that a composition A is younger than B if they have the

same fixed prefixes and A has higher sequence number or A’s fixed prefix is

proper prefix of B’s fixed prefix. We define composition C as the youngest

if there is no younger composition than C.

Compositions are identified by their ids that consist of fixed prefix and

sequence number.

The sequence of consecutive, ordered compositions is called a chain of

compositions.

Except the list of components compositions keep some additional auxil-

iary information about the supernode. In particular compositions keep global

state described in section 5.2.2.3 on page 50.

Overlay Network Similar to FPN nodes, supernodes create overlay net-

work. Each component keeps compositions of its neighbouring partners. A

component’s neighbouring partner is a component which belongs to a neigh-

bouring supernode (neighboring in terms of FPN node) and has the same

index as the component. A component also keeps information about its

peers whose locations are described by the current composition. Thus, com-

48

Architecture of HYDRAstor

ponents create an overlay network by keeping location information about

peers and neighbouring components.

Supernode Changes A supernode can be changed by three operations:

supernode split, component transfer and component recovery.

A supernode split is a global supernode operation. It is the counter-

part of the FPN node split. Two compositions with fixed prefixes extended

with zero and one are created on physical nodes hosting components of

the supernode. After the physical nodes receive these two compositions, the

components of the old supernode are deactivated and two new ones are cre-

ated in their place. Children components are hosted by the physical node

hosting parent component. As with FPN, components inherit information

about appropriate neighbours. The aim of the split is to keep the size of

components at limited level to efficiently balance them between physical

nodes.

A component transfer changes the location of one component. A new

composition is created both on physical nodes belonging to the previous

composition and to the physical node hosting component after the transfer.

A new composition deactivates the old incarnation of a component on the

old location and creates a new incarnation on the new physical node. After

the transfer, the component immediately rebuilds its information about

its neighbours. Component transfer operation is a base unit for balancing

algorithm described in section 5.3.6 on page 66.

Component recovery is an operation that creates a new instance of a

component after the physical node hosting it becomes unavailable. This

process is executed by component peers. After half of supernode cardinality

peers decide that the component is not reachable they find new location for

the recovered component and create new composition describing component

in the new location. This process is described in more details in section 5.3.4

on page 60.

User Data Failure Resiliency Supernodes enable the application of

erasure codes to provide failure resiliency. Each block that is to be stored is

divided into K original fragments. Based on these fragments, L redundant

fragments are created, where L = supernode cardinality - K. Fragment size

is equal to the size of the original block divided by K. All the fragments are

distributed across destination supernode components. Using any of the K

fragments, the original data block can be reconstructed, thus data of that

supernode is available even if L components of that supernode are lost.

49

Proposed Solution

When a physical node is lost, all components that it hosted are recovered

on other physical nodes as described in section 5.3.4 on page 60.

Global Information and Global State

Global information HYDRAstor provides a mechanism that allows the

aggregated values of various statistics reported by components to be gath-

ered. For example, components may report if they have finished a given task

for reporting: 0 for not finished yet and 1 for finished. The minimum of all

such statistics is enough for the system find out if the task is finished or

not. First, statistics are reported by components to their local leader. The

local leader is a component of index 0. The local leader aggregates statistics

according to a predefined aggregation method depending on the statistic

type - it may be minimum, maximum, average, total, etc. Then the local

leader reports the statistics up the supernode tree. This is done by send-

ing statistics to a virtual node which has a prefix shorter by one bit. This

virtual node is handled by the local leader of the component responsible

for hash equal to the virtual node prefix extended with zeros. After such a

component receives statistics from two children components, it applies the

appropriate aggregation function and sends them to a virtual node which

has a prefix shorter by one bit. Finally, the statistics are delivered to a vir-

tual node of prefix ǫ (i.e. prefix of length zero) handled by a global leader.

The global leader is a component of index 0 which has a prefix consisting

only of zeros i.e. a prefix in form 0∗. The global leader passes the aggregated

statistics down the supernodes tree to each local leader.

Together with aggregated statistics, global information includes also in-

formation about components’ locations that is used by the balancing algo-

rithm described below in section 5.3.6 on page 66.

Global state All components have access to globally available informa-

tion called global state. Global state is a set of various small pieces of in-

formation like the list of all physical nodes the system is built upon, status

of certain background operations, etc. Global state is kept by each compo-

sition. The global leader is responsible for changing and propagating the

global state to all components. The global state is changed when the global

leader receives a request to change a given element in the set. Depending on

the type of information it may verify that a given change is acceptable - for

example, a request that carries the change also carries information about

the value of the element considered as up to date by the requester. If it

50

Architecture of HYDRAstor

differs from the value global leader has, the request is dropped. This is to

handle potential races when the global state is changed by many sources at

the same time, or messages with the request are reordered. If the change

is acceptable, the global leader creates a new global state with the change

applied and propagates the new global state to its peers. Every new global

state change has the sequence number increased. The global leader com-

pares the global state sequence number reported in global information (this

is the minimum of global state sequence numbers reported by all supern-

odes). If the global leader has a higher sequence number than the one in

global info, then the leader periodically propagates the global state down

the supernodes tree. Finally, such a message is received by all local leaders.

Local leaders propagate the new global state to all theirs peers.

Global information and global state are used by many HYDRAstor al-

gorithms, in particular the deletion algorithm described in section 5.3.7 on

page 74.

5.2.3 Local Data Organization

Disk Level Data Organization There are several goals that local data

organization has to reach. First, it has to support efficient storage and re-

trieval of data streams. Data from one stream should be placed on the con-

secutive sectors of disks to limit disk drive heads movement during write

and allow efficient stream prefetch to RAM cache during reads. Second, data

organization has to support easy identification of availability and reliability

of the stored data. In a case of a failure, data organization has to allow

for both fast identification of missing fragments and location of fragments

to be used for missing fragments reconstruction. Thirdly, data organization

should support fast location and retrieval of data from old component lo-

cations after components transfer between physical nodes. Fourth, the data

organization should support distributed deletion. Last, the data organiza-

tion have to support data deduplication.

A stream of user data blocks is converted into supernode cardinality

streams of erasure coded fragments distributed over physical nodes. Frag-

ments belonging to a consecutive limited number of blocks form a logical

unit of data management called a synchrun. Single stream of fragments be-

longing to a synchrun is called synchrun component. Figure 5.6 shows an

example of such organization.

Adjacent synchrun components are stored on one disk for fast disk write

and read operations. Similarly to a stripe in a RAID group, a synchrun

51

Proposed Solution

Figure 5.6: Synchrun and synchrun components schema for supernode

cardinality = 4. The upper part of the figure shows stream of data blocks

routed to a given supernode. Each block from the stream in converted into 4

erasure coded fragments. Each fragment is stored in a synchrun component.

Synchrun components form synchruns, which are logical data management

units. Synchrun keeps erasure coded data blocks.

harness multiple disks to write and read data faster than any single disk

can do. Implementation of write operation is described in section 5.3.5 on

page 63.

For a given supernode, user data blocks are written within the current

composition. Synchruns are stamped with the composition sequence num-

ber under which the write is executed and a sequence number within the

composition. Thus, synchruns can be ordered in chains. Since fragments are

also stamped with a sequence number within a synchrun, they also can be

ordered in a chain. In a fragments chain, every given fragment is identified

by pair of synchrun stamp and sequence number within the synchrun. That

identification is used by read operation to quickly find appropriate fragment

on disk as described in section 5.3.5 on page 65. Figure 5.7 shows examples

of chain of synchruns and chains of fragments.

Due to failures, chain of fragments may contain holes i.e. sequences of

missing fragments. Fragments chains can be scanned for easy identification

of such holes. Data is available as long as for each block there are enough

52

Architecture of HYDRAstor

Figure 5.7: Chain of synchruns and synchrun components.

fragments chains without holes in places where the block’s fragments are

stored. The available fragments are used to created the missing fragments

and remove the holes.

Figure 5.8: Synchrun component containers (SCCs). The upper part shows

two SCCs. Each of them originally stores one synchrun component. After

some fragments are deleted SCCs become smaller. To keep their size similar

to the original the SCCs are concatenated into one SCC containing both the

synchruns.

Each synchrun component is stored in a file called synchrun component

container (SCC). SCCs are limited in size and in number of fragments they

53

Proposed Solution

keep. By default an SCC is well below 100 MB in size and has several thou-

sand fragments. SCC is the base unit for both data management on disks

and the base unit for data movement between the physical nodes. Initially,

one SCC stores one synchrun component. However, size of SCCs may be de-

creased, for example after some fragments are deleted. System tries to keep

SCCs size similar to the original value to limit number of local SCCs and

be able to keep their metadata cached in RAM. Thus small, adjacent SCCs

may be concatenated. After such operation an SCC may keep multiple con-

secutive synchrun components. Figure 5.8 shows an example of two SCCs

originally storing one synchrun component each and then concatenated into

one SCC.

Each SCC has another file associated with it. The file is called an SCC

index. SCC index keeps metadata information about fragments like a list

of fragments, the offset of each fragment in SCC, deletion counters keeping

number of blocks/fragments pointing to each fragment (there are details of

deletion in section 5.3.7 on page 74), etc. SCC indexes of a given supernode

keep exactly the same data, thus each supernode has supernode cardinality

copies of each SCC index providing that its peers have their data in sync.

Separation of metadata from data allows efficient data management af-

ter component transfers or component recovery. After component is trans-

ferred or recovered, it downloads its SCC indexes. Their size is relatively

very small comparing to the size of SCC, thus such operation is fast. Af-

ter downloading the SCC indexes the component has complete view of all

data it manages and allows it to identify SCCs that have to be downloaded

or reconstructed from peers’ fragments. There are more details about this

process in section 5.3.4 on page 60.

To provide support for deduplication queries there is an additional data

structure that maps part of the hash keys stored locally to the list of poten-

tial SCC indexes that may contain metadata about the associated block. To

check that a given hash belongs to a previously stored fragment, potential

SCC indexes have to be read from the disk. This map keeps part of the hash

keys instead of the whole hash keys to limit memory they consume. More

details about deduplication is described in section 5.3.5 on page 65.

Each server keeps a RAM cache of SCC and SCC indexes. SCCs and

SCC indexes are prefetched to serve succeeding requests belonging to the

same stream without disk access.

54

Functionality Implementation of HYDRAstor

5.3 Functionality Implementation of HYDRA-

stor

5.3.1 Supernode Consistent State

Ensuring the consistent state of a supernode is crucial for providing con-

sistent overlay network. Consistency is provided by a consensus algorithm.

HYDRAstor uses a modified version of Ben-Or algorithm [11]. Participants

are peers of the supernode. The input for the algorithm is the current com-

position called base composition and changes proposed by components, for

example new location of given component or a supernode split. A typical

result of the algorithm is a composition with the non-conflicting proposed

changes merged and applied to the base composition. The new composition

has the sequence number increased by one. In the case of a split opera-

tion consensus results in two compositions describing a supernode after the

split. In such a case, the compositions have the fixed prefixes extended with

zero and one and also their sequence numbers are higher by one than the

sequence number of the base composition. A split vote cannot be merged

with any other voting proposals, thus children components are created on

the same physical node as the parent component i.e. supernode split is a

local operation.

Under standard configuration a new composition can be created if at

least the majority of peers which know up to date composition participate in

the voting procedure and agree on the change. Peers that did not participate

in voting, for example due to transition network problems, are notified about

the composition by peers participating in the voting.

HYDRAstor can also be configured to successfully finish the voting pro-

cedure when only half of supernode cardinality peers are active. This is

done with the help of an arbiter process that can be executed on any ma-

chine other then the physical nodes that the system is built upon. This is

to handle a very small HYDRAstor setup when the system is built on only

two physical nodes. In such a case, single node failure blocks the voting

procedure. An arbiter allows peers from one physical node to temporarily

decrease the quorum to half of supernode cardinality (instead of half plus

1) and it additionally guarantees that two physical nodes will not receive

such permission for the same base composition. For a system built upon

more than two physical nodes an arbiter is not used because any single

node failure does not block the consensus algorithm.

The base composition carried by consensus messages is a guard against

55

Proposed Solution

participation of out of date components in the voting. Only components

active according to the base composition can take part in the voting process.

Each peer verifies if it is eligible to vote by verifying that its composition

is the same as the base composition carried by consensus messages. If its

composition is older then it updates the composition. If component is still

active after the update it participates in the voting, otherwise it does not.

If a component’s composition is newer than the base composition it means

that other peers have an old composition. In such a case the component

ignores the voting messages and propagates the newer composition to the

out of date peers. That newer composition stops the voting process initiated

by out of date peers and updates their information about the supernode.

If the new composition results in a change of location of a component,

peers send this composition to that new location. The physical node that

receives it stores it persistently and creates the new instance of the compo-

nent. In the case of a transfer the old location creates a so called inactive

component. This is used to coordinate the transference of the component’s

data from the old to new location.

The HYDRAstor system model assumes that messages can be lost, re-

ordered and retransmitted. Thus composition may be duplicated, lost and

reordered. Composition sequence number is used by components to find out

the most up to date composition.

Every physical node persistently stores all received composition that are

the youngest among all the stored compositions so far. It does not matter

whether there are local active components associated with those composi-

tions. It is done this way because such compositions may describe location

of neighbouring supernodes. Information about supernodes locations is re-

quired for routing. To reclaim the storage space the physical node removes

compositions that are not the youngest.

5.3.2 Overlay Network Monitoring and Supernode State

Propagation

Peers monitor each other in order to detect failures by periodically exchang-

ing messages called internal pings. Internal pings are also used to propagate

various auxiliary information within the supernode. The most important in-

formation carried by the ping is the current component’s composition. Pings

propagate the newest composition among peers. Pings are also sent to old

incarnations of components that do not exist in the current composition

in response to pings received from them. This is to handle a case when an

56

Functionality Implementation of HYDRAstor

component is disconnected from the system, its new incarnation is created

in another location and then the component is reconnected back to the sys-

tem. Such a component does not know about the new composition so it acts

as an active component and sends pings to its peers. Any peer that receives

such ping from old component incarnation replies with a ping carrying the

latest composition that deactivates the old component incarnation.

External ping messages are sent between neighbouring partners. Exter-

nal pings correspond to base FPN pings - they propagate routing informa-

tion between neighboring supernodes and monitor neighbours availability.

Additionally, external pings propagate information about known physical

nodes. This information is used by the balancing algorithm described be-

low.

Under default settings pings are sent every 5 seconds. If a component

does not receive several pings (by default 6) from its remote peer or partner,

the component treats the remote peer or partner as unreachable.

5.3.3 Routing

Messages in FPN/SN can be routed to a specific supernode or to a specific

supernode component. Routing to a specific supernode is very similar to

routing in the original FPN, except that instead of routing messages through

FPN nodes, they are logically routed through supernodes. In practice this

means that messages are passed through components that belong to these

supernodes. Messages are passed over network links which are monitored

by neighbouring partners or peers.

If there are no failures, messages are passed between supernodes along

components which have the same index as the component initiating the

routing. When routing to a specific component, the routing differs only in

the last hop, in which the message is passed from the first component receiv-

ing this message in the destination supernode to the destination component

in this supernode.

Figure 5.9 shows how messages are routed. Because each physical node

hosts multiple components it may occur that apart from next hop com-

ponent it also hosts a component that is closer to the target supernode

or target component. Thus, as an optimization such components take over

routing the message and make a routing shortcut.

Routing in changing network Components may change their location

while a message is being sent to them. Since information about new loca-

tions is not propagated instantly a message may be sent to a physical node

57

Proposed Solution

Figure 5.9: Example of routing a message from component of index 00:1

(component of index 1 belonging to supernode of fixed prefix equal to 00)

to component 11:2. Supernode cardinality is 4. Black arrows show routing

under assumption that physical nodes do not optimize the routing by making

shortcuts through locally stored components. In such a case message goes

from component 00:1 to component 10:1, then to 11:1 and finally is passed

to component 11:2. However, since physical nodes hosts multiple components

there can be routing shortcuts. Since 00:1 and 11:2 are hosted by the same

physical node message can be routed faster (red arrow).

that does not already host the destination component. To handle this loca-

tion change gracefully compositions stored on the old location are scanned

to find a composition that describes new location of the component (such

composition must exist if component was deactivated in the physical node).

This message is then passed to new location.

Routing under failures

Links along which messages are routed are monitored by pings. As de-

scribed above, if a component does not receive several pings from a peer or a

partner it treats them as unreachable. Messages are not passed to unreach-

able peers or partners. Figure 5.10 shows how routing is handled around

a broken partner. If a message cannot be passed to a partner because it is

unreachable, the message is passed to any reachable peer. That peer will try

to pass the message to its appropriate partner to reach the next hop supern-

ode. A component that passes a message to a peer adds itself to message’s

list of visited components within the current supernode. This list is used

to avoid sending message to already visited components in the case when

58

Functionality Implementation of HYDRAstor

Figure 5.10: Example of routing a message from component of index 00:1

(component of index 1 belonging to supernode of fixed prefix equal to 00)

to component 11:2 when 10:1 is unreachable. Supernode cardinality is 4.

In this example we assume physical nodes do not make routing shortcuts

through locally stored components. 00:1 cannot send message to its neigh-

boring partner 10:1, because it is unreachable. To bypass the unreachable

component 00:1 passes the message to its peer 00:2. 00:2 passes it to 10:2

which finishes the routing by passing the message to 11:2.

several peers have broken links to partners of the next hop supernode and

the message is being routed within a supernode trying to find a way out to

the next hop supernode. The list is cleared when the message is passed to

the next supernode, because routing guarantees that the message will not

get back to the same supernode again. This is because routing resolves bits

from left to right and each hop between supernodes resolves at least one

additional bit.

Note that messages might be sent to a failed physical node before a

component passing the message decides that next hop destination is un-

reachable. That is because on default a component is treated as unreachable

after no ping is received from it during a 30 second time window. During

that 30 second window messages might be lost. Such cases are handled by

message retransmissions done by the source component that started mes-

sage passing. Each component that initiates message passing and wants to

make sure that the message is delivered has to retransmit the message un-

til it receives an acknowledgment that it is delivered to the target. This

is consistent with our system model that assumes that a message can be

59

Proposed Solution

lost, thus such retransmission and acknowledgment mechanism has to be

done anyway. However, we are currently working on making use of TCP/IP

sessions to shorten that time from 30 to 10 or less seconds.

Initially we planned to implement FPN jump tables that would limit

the number of routing hops between supernodes. During the project imple-

mentation it turned out that jump tables are not important for the current

version. That is because HYDRAstor is delivered to customers together with

the Hydra File System [91] (HFS). HFS stays on top of HYDRAstor and

provides regular file system interface. Since the biggest currently available

systems are built upon no more than 100 physical nodes, HFS is able to

keep a cache of all components’ locations. In a stable system (i.e. when no

components are transferred or recovered) it passes write or read requests

directly to the destination physical nodes. Requests are routed only when

components change locations. Furthermore, such location changes are im-

mediately reflected in the cache when HFS receives a read or write reply

from HYDRAstor. Subsequent requests are again passed directly to desti-

nation physical nodes.

5.3.4 Failure Discovery and Recovery

A supernode is a basic logical entity that provides failure resiliency. We

assume that the probability of concurrent loss of half components i.e. the

concurrent loss of physical nodes hosting these components is very low.

Such an assumption greatly simplifies system design, because there is no

need for complex recovery of lost supernodes by other supernodes. Instead,

each supernode monitors its state and has the ability to recover itself in

case some of its components are lost (we say that a component is lost if its

hosting physical node fails).

As peers ping each other, they detect unreachable peers. A peer P1

is declared unreachable by another peer P2 after a threshold number of

periodically sent pings (by default the period is 5 seconds and the threshold

number is 6) from P1 is not delivered to P2. P2 may reconsider and declare

P1 reachable again after even only one ping from P1 is delivered. Each

internal ping includes a vector of bits indicating peers declared unreachable

by this ping source peer. Peer P2 decides to recover P1 only if the majority

of peers declared P1 unreachable in the most recent pings received by P2.

To recover P1 component P2 finds a physical node that will be P1’s new

host. It does this through the entropy function described below. Following

this P2 initiates voting over changing the location of P1. At least supernode

60

Functionality Implementation of HYDRAstor

(a) Node 1 failed. (b) Components are recovered,

but missing data is not

rebuilt. Components get

fragments from their peers.

(c) Components recovered and their data re-

built.

Figure 5.11: Overlay network recovery and data reconstruction.

cardinality/2 + 1 peers have to participate in the voting. If P2 wins the

voting the new composition describes new location of P1. Otherwise, if

the new composition does not reflect P2’s vote, P2 may start the recovery

procedure again if P1 is still declared unreachable.

After the lost component is recovered on a new location it has no data

stored locally. It receives from its peers list of its SCC indexes (copy of each

SCC index is kept by each peer). Based on the SCC indexes the component

finds out which fragments are missing. Then it downloads appropriate SCCs

from the peers and rebuilds the missing fragments as described in section

5.3.8 on page 77 below. After all the missing fragments are rebuilt supernode

resiliency reaches the desired, original level.

Figure 5.11 shows the recovery and data rebuild process in a four su-

61

Proposed Solution

pernodes system built upon six physical nodes with a supernode cardinality

set to four. Picture (a) shows the system with a failed physical node 1. Lost

components are marked red. Each of the supernodes 00, 10 and 11 finds out

that it has lost one of its components. Within each supernode, peers of each

lost component start the recovery procedure that leads to creation of new

incarnations of the lost components (picture (b)). The new component in-

carnations are marked white, to indicate they do not have their data stored

locally. To rebuild missing fragments each ”empty” component downloads

appropriate SCCs from peers and rebuilds missing data. On picture (c)

all components have their data stored locally - the system has reached its

normal state with original redundancy.

5.3.5 Write and Read Operation

Block Interface HYDRAstor exposes block interface. Data blocks are

of variable size for better duplicates elimination [65, 52, 50]. Usually their

average size is 64 KB. Blocks are immutable. They consist of data and op-

tional pointers to ids of previously stored blocks. A block hash is computed

as SHA-1 of its contents. A client provides information about required block

resiliency class on a block write. Higher resiliency classes have more redun-

dancy with higher storage overhead. HYDRAstor replies with the id of the

block. This id is provided to facilitate the read operation for retrieving the

block. Pointers stored in blocks are exposed to HYDRAstor to facilitate

deletion operation. A client provides its unique id that is used to identify

its streams of data in the write operations.

Blocks form a directed acyclic graph (DAG). Clients store data as a tree

of blocks similar to file system structures. Because of deduplication trees

may share some blocks. This is why blocks form DAGs instead of trees.

The root of the tree is pointed by special block called a retention root. The

retention root guarantees that a tree pointed by it will not be deleted as

long as it is not pointed by another special block called a deletion root. After

a tree of blocks is created the client uses a retention root to mark the tree

not to be deleted. When client decides that the tree should be deleted it

additionally marks it with a deletion root.

Figure 5.12 shows blocks organized into a DAG with 3 source vertices.

One of them is a retention root (SP2), one is a deletion root (SP1) and the

last one is a regular block (A), which indicates that this part of DAG is

still under construction. Assuming that user will not add any new retention

roots all blocks not reachable from live retention roots (i.e. ones not pointed

62

Functionality Implementation of HYDRAstor

SP1

SP1

SP2

RETENTION ROOT

RETENTION ROOT

A

B

C

F

D

E

DELETION ROOT

Figure 5.12: Blocks organized in a directed acyclic graph. Data part of each

block is shaded, pointers are not.

source: [26]

by deletion roots) will be deleted (blocks with dotted lines). Such block are

B, E, A and D. However, if user creates retention root pointing to block A

before the deletion operation processes this block, blocks A and D will not

be deleted.

Write Operation An access node (AN) computes the hash key of the

block it wants to store. Like the the original FPN, the hash key deter-

mines the destination supernode. In addition, it also determines index of

the component of the supernode that manages the write operation. Such a

component is called a write initiator. A write request message containing a

block to be written is routed to the write initiator. Based on resiliency class

it creates an appropriate number of original and redundant erasure coding

fragments (unless the block keeps pointers to other blocks - in such a case

fragments are copies of the block) and propagates them to itself and all

other peers. Peers store the fragments in the latest SCC in the SCC chain.

The write initiator waits for write threshold acknowledgments and confirms

the write with the client. The reply contains the block id that is required to

read the data. Among other information the block id contains the synchrun

id and the serial sequence number of the write within the synchrun. This

63

Proposed Solution

information is required to localize data on the disk by the read operation

(see 5.3.5 on page 65 for details).

Figure 5.13 shows the write operation of block with key starting with

bits 010111. Component of index 1 is a write initiator.

The write threshold can vary from a number of original fragments to

supernode cardinality. Its value determines the trade-off between latency

and resiliency: the greater the write threshold, the higher the resiliency

and latency. Under the current version the write threshold is system wide

constant.

Figure 5.13: Writing of block with key starting with bits 010111.

A write initiator manages creation and closing of all its peers SCCs.

It also stamps synchruns with the current composition sequence number

and with consecutive sequence numbers within the composition and stamps

fragments with sequence numbers within the synchruns. Thus, the write

initiator takes care of forming SCCs and fragments into chains.

Any component can be a write initiator. However, practically speaking

it turned out that only limited number of components within a supern-

ode should create and propagate data fragments. There are two reasons.

Firstly, write initiators are more CPU intensive than non-write initiators.

This allows us to balance a heterogeneous system with physical nodes with-

out having an equal ratio of CPU to capacity. More details are included in

64

Functionality Implementation of HYDRAstor

section 5.3.6 on page 66. Secondly, each write initiator causes fragments to

be written to supernode cardinality SCC files. This is due to the fact that

each peer stores fragments received from a given write initiator in a sepa-

rate SCC file. Later, when many users read the data concurrently (i.e. many

data streams are read at the same time) each disks serves read requests from

multiple files which results in many disk seeks and degraded performance.

Lowering number of write initiators reduces the performance degradation.

Performance problems related to reading data concurrently from many files

are described in detail in section 5.4.6 on page 103. By default, there are

three write initiators per supernode.

Data Deduplication HYDRAstor uses content-addressable storage paradigm

to implement data deduplication. Data block key is computed based on the

block’s content. Thus it is very easy to achieve data deduplication. Dedu-

plication query is routed to a write initiator handling the hash. First it is

checked if a matching SCC index is already kept by RAM cache. If not,

based on the hash and the data structure that maps part of the hash keys

stored locally to the list of potential SCC indexes, matching SCC indexes

are found and read from disk to RAM cache. Also SCC indexes followed

in the chain are prefetched to limited disk access while serving succeeding

deduplication queries. If any of the matching SCC indexes have informa-

tion about the hash it means that the duplicate is found. Otherwise, there

is no duplicate in the system. If the duplicate is found, the system has to

verify that the previously stored block is readable. The write initiator re-

ceives from its peers summary of remote SCCs it has created and manages.

Such summaries are sent whenever the state of the remote SCCs is changed.

Based on the summaries write initiator builds information about ranges of

SCCs chains that have complete and missing data fragments. This informa-

tion together with id of the previously stored block taken from local SCC

index suffices to verify readability of the block.

Read Operation To read a block from FPN/SN system, a client pro-

vides a block id that was returned by the write operation executed earlier.

This address contains the hash key of the data block. Using this hash key

the read request message is routed to the read initiator component which

manages the read operation within the supernode. Beside the hash, the

block id also contains synchrun id under which the write was executed and

the sequence number of the write within the synchrun. These information

allows to find, in the fragments chain, SCC index with information about

65

Proposed Solution

SCC that contains the fragment, offset in the SCC where the fragment is

stored and number of minimal fragments required to reconstruct the block.

As in the case of data deduplication query, SCC index and SCCs followed

in the fragments chain are prefetched to RAM cache to speed up succeed-

ing read operations. Then the read initiator sends fragment read requests to

peers storing original fragments. This is because reconstructing a block from

original fragments is more efficient than reconstructing one from redundant

fragments. In addition to the block id, peer receives from the read initia-

tor id of SCC that should store the fragment and offset within it. Since all

fragments chains in a synchrun are loosely synchronized on all peers, such

additional information allows a peer to bypass its local SCC index and read

the fragment directly from SCC to limit number of disk accesses. If it turns

out that the data was not synchronized between the peers, then the peer

has to read its local SCC index. However, it is uncommon scenario. After

the read initiator receives enough fragments, it reconstructs the block and

sends it to the client.

In the case of failures peers may not have the fragments. In such a case

the read initiator sends fragment read requests to all the remaining peers

and reconstructs the block from the redundant fragments.

Even in a healthy system peers may also not have the required fragments

stored locally. This occurs after the peer was transferred from other physical

node, but its data is still hosted by the old one. In such a case the request

is passed to the old physical node. Information about its location comes

from two alternative sources. One is a compositions chain that can be used

to find out the previous peer location. The other is reports that the old

physical node sends to the peer about its orphaned fragments.

5.3.6 Balancing

Proper distribution of data among physical nodes is critical for data re-

siliency and availability, efficient storage usage, and system performance.

There are many criteria that a balancing algorithm has to satisfy.

Desired data distribution is achieved by proper components distribu-

tion over the physical nodes. We have defined a multi-dimensional function

called system entropy that prioritizes balancing criteria. The function is

fully ordered. The lower the value of the function, the better the system is

balanced.

The entropy function has the following dimensions ordered by their pri-

ority (highest priority first):

66

Functionality Implementation of HYDRAstor

(a) (b)

Figure 5.14: Example of peer dimension of two components distributions.

System is built from four supernodes with SNC=4. (a) shows an example

of components distribution such that one physical node (3) hosts three peers

(00:0, 00:2 and 00:3). (b) show a better components distribution - there is

no physical node hosting three peers. Peer dimension of the left configuration

is higher that the peer dimension of the right configuration (peer dimensions

are compared as vectors with reversed order of their elements).

• Disk full - measures system capacity overload. For each physical node

there is defined a relative overload. It is equal to

max(0,
sum of components size hosted by physical node

physical node usable capacity
− 1)

where usable capacity is around 99% of total capacity of a physical

node. The value of disk full is equal to the sum of all physical nodes

relative overload. Component size is the size of all its non-deleted

fragments.

• Components on retired physical nodes. A system administrator may

temporarily set physical node to be retired. In such case a physical

node transfers to other physical nodes all its components with their

data fragments and can be turned off for maintenance tasks. This

dimension is a number of components hosted by such retired physical

nodes.

• Peers - measures system resiliency to physical nodes failures. This

dimension is an integer vector of supernode cardinality size. Peers[i]

= j means that in the system there are j peer tuples of size i such that

each tuple is hosted by one physical node. Failure of such node results

67

Proposed Solution

in the loss of i peers. Figure 5.14 shows example of peers dimension

for two distribution of components.

Peer dimension comparison operator treats higher indexes with higher

priority i.e. for two peer dimensions A = (a1, a2, ..., an) and B =

(b1, b2, ..., bn) A < B if:

an < bn

or

an = bn and (a1, a2, ..., an−1) < (b1, b2, ..., bn−1)

Such comparison prefers system with many tuples of peers of size n

even over a system with only one tuple of peers of size n+1 i.e. in case

of physical node failure it is better to lose n peers in many supernodes

than n+ 1 peers in one supernode.

• Components over capacity density - measures the degree of balanced

use of physical node disk space by components. It is a standard de-

viation of components over node capacity density computed for all

physical nodes. The component over node capacity density is defined

as
number of components hosted by physical node

usable capacity of physical node

• Write initiators over physical node CPU density - measures the degree

of balanced use of physical node CPU power by write initiator com-

ponents. It is standard deviation of write initiators over node CPU

power density computed for all physical nodes. Write initiator over

CPU power density is defined as

number of write initiators hosted by physical node

physical node power

where physical node power is an integer value defined by an adminis-

trator. It should be proportional to physical node CPU power.

• Data to download - measures amount of data that has to be transferred

or recovered to reach a state in which all components have their data

stored locally. The aim of this dimension is the preference for putting

components on physical nodes that already host their data. For ex-

ample, when a physical node is temporarily down its components are

recovered on other physical nodes. After the node is started it is de-

sirable that these components are transferred back to it, even if the

other set of components would be equally efficient according to higher

dimensions.

68

Functionality Implementation of HYDRAstor

HYDRAstor uses a hybrid balancing algorithm that consists of so called

local balancing and global balancing.

Local Balancing

Internal and external pings carry sender physical node summaries called

pnodeStats. PnodeStats contain limited information that is almost sufficient

to compute entropy. PnodesStats contain:

• total disk space,

• used disk space,

• physical node power,

• prefix space covered by components,

• prefix space covered by write initiators,

• information about retirement

Additionally each component keeps information about:

• the size of its data which is stored locally,

• its target size i.e. size after all its data is recovered on or transferred

to the local physical node (the size of component data stored locally

is equal to its target size if all its data is locally complete) and

• the size of data located on remote physical nodes (physical nodes

periodically send reports about data which does not belong to any

local component to components that are responsible for this orphaned

data).

This information together with pnodeStats and information about peer

locations taken from locally stored compositions is sufficient to compute

the physical node’s view of entropy. Such entropy is computed for a system

consisted of physical nodes that send pings to the local physical node i.e.

this is entropy for a local physical node neighbourhood defined by peers

and supernode neighbours of all components hosted by the physical node.

Besides limited number of physical nodes such view of entropy is also limited

in the sense of peers dimension. This dimension only has information about

peers of supernodes that have at least one component hosted by a local

physical node.

69

Proposed Solution

Each physical node periodically (every 10 seconds by default) considers

all possible transfers of locally hosted components to neighboring physical

nodes. For each such potential transfer local node computes physical node

view of entropy as if the component was transferred. Then it chooses the

view of entropy with lowest value. If it is lower than current view of entropy

appropriate transfer is scheduled.

Comparing physical nodes views of entropy instead of the regular en-

tropies is good enough. That is because such transfers impact only nodes

neighbourhood based on which the views of entropies are computed, but

does not impact wider neighbourhood based on which regular entropies

would have to be computed. Two regular entropies and two views of the

entropies computed for systems before and after the transfer would have

exactly the same differences on all dimensions, except Components over ca-

pacity density and Write initiators over physical node CPU density. Since

Components over capacity density and Write initiators over physical node

CPU density are standard deviations (and depend, inter alia, on number

of physical nodes the deviations are computed based on), the difference are

not the same for regular entropies and for views of entropies. However, they

have turned out good enough approximations in practice.

Before a component is transferred, an initialization message is passed

to the target physical node. The message carries destination pnodeStats to

verify that target node pnodeStats are similar to the ones about which the

transfer decision was made. If they are similar the destination node creates

a component skeleton. It exists longer than the balancing period i.e. for

15 seconds. During that time it gathers any other transfer proposals and

chooses the one with the best view of entropy computed by physical nodes

that are trying to transfer components to the target physical node. Then the

transfer leading to the system with the best view of entropy is executed. The

aim of the component skeleton is to select the transfer that best improves

the entropy among many concurrent transfer proposals. Such concurrent

transfers may for example occur after the physical node not hosting any

active components is started up. It would cause that many other physical

nodes at the same time would decide that it is a good transfer target. If

they were not serialized all such transfers would be executed leading to the

physical node being overloaded with components that in turn would transfer

away. In turn this would lead to component thrashing.

Local balancing is also used to find out location for an unreachable

component to be recovered. Component that executes the recovery, called

recoverer, simulates that the unreachable component is hosted by the lo-

70

Functionality Implementation of HYDRAstor

cal physical node. Then the recoverer executes local balancing with this

unreachable component only to find out the best location for it. Then it

executes the same steps as in case of regular transfer. The only difference

is that under component recovery component skeleton immediately replies

for creation request without gathering any other transfer proposals. This is

to speed up component recovery. If recovered component is not hosted by

the optimal physical node, then the component can be later transferred to

a better matching physical node.

Initially HYDRAstor used local balancing only. However this approach

had several disadvantages:

• Entropy is optimized by one transfer only and within limited number

of physical nodes. Thus, the entropy function is optimized locally.

Globally optimal components distribution may not be achieved.

• Components distribution depends on races between physical nodes

trying to execute transfer operations. Even if a component skeleton

accepts the best transfer there may still be situations where a non

optimal transfer is executed (non optimal even in the sense of the

improvement of local view of entropy). For example, this happens

when the physical node that should initiate the best transfer oper-

ation is temporarily unavailable. During this period of unavailability

other components may be transferred to the destination physical node,

occupy it and block the best operation.

• Due to the above mentioned problems and the very low priority of

data to download entropy dimension there were problems with com-

ponents not being transferred to physical nodes hosting the most of

their data. Quite often after a physical node was restarted it received

components that were not hosted by it before its restart. This led

to many unnecessary transfers of fragments between physical nodes.

If the original components were transferred then most of their data

would already be in the correct location - a restarted physical node

would only have to download fragments written while it was down.

• There was no guarantee that required resiliency would be preserved in

heterogeneous system with physical nodes with small and large disk

space. When small physical nodes becoming full they transfer their

components to the bigger ones thus overloading them with many peers

belonging to the same supernodes. This decreases data resiliency - the

failure of a big node would result in data loss. To block too many peers

71

Proposed Solution

being hosted by a big physical node there could be added a limit on

maximum number of peers a physical node can host. But this in turn

would block recovery of components and their data on machines with

free capacity under scenario when many physical nodes fail in such a

way that only the big physical nodes can host the reconstructed data.

Even though such physical nodes cannot resiliently host reconstructed

data it is still better to reconstruct the data on them and, after failed

physical nodes are repaired and restarted, quickly transfer the data to

proper location than not doing the reconstruction at all.

• It is hard to determine what is the raw capacity of the heterogeneous

system, because it depends on the final components distribution that

is not deterministic.

• The addition of new physical nodes results in many components being

transferred to them at the same time. This results in many peers of

each supernode not having their fragments stored locally. In such cases

execution of deletion algorithm (described below) is blocked. This is

because deletion algorithm in order to execute needs within each su-

pernode certain minimal number of peers with all their data fragments

stored locally i.e. peers with their SCC chains locally complete.

The above problems were solved by introduction of global balancing.

Global Balancing

Global balancing extends local balancing to globally computed affiliation of

components to physical nodes.

HYDRAstor keeps list of physical nodes the system is built upon in the

global state. For each physical node there is information about its total

capacity, its CPU power and optionally rack number it belongs to. Addi-

tionally, the global state keeps information about minimum resiliency class.

Minimum resiliency class is the weakest data resiliency class that the user

is planning to use. Both types of information are provided by the admin-

istrator on system initialization and whenever physical nodes are added,

removed or replaced or when user wants to change the minimum resiliency

class. Based on this information the global leader computes components

global distribution.

Components global distribution is globally optimal in terms of entropy

function within the restriction of the minimum resiliency class that defines

maximum number of peers hosted by one physical node. Entropy function

72

Functionality Implementation of HYDRAstor

is slightly modified to cluster supernodes along racks. For example if there

are two racks, each having 12 physical nodes then for SNC=12 half of the

supernodes will be hosted by physical nodes of the first rack and other half

will be hosted by the physical nodes of the second rack. Since network traffic

within supernodes is higher than between supernodes such clustering limits

inter-rack network traffic which is lower then intra-rack network.

Additionally, the new global distribution is close to the current com-

ponents distribution taken from global information. It is close in terms of

number of components that have to be transferred to reach the new compo-

nents global distribution. Global distribution is stored in the global state.

There is an additional flag associated with a list of physical nodes the

system is built upon. The flag is reset on every change of the physical nodes

list or change of the minimum resiliency class. The global leader sets the

flag after the leader computes the global components distribution for the

given list of physical nodes and minimum resiliency class. This is to deal

with the possibility of the global leader being ”killed” while computing

the distribution - its new incarnation will start the computation from the

beginning if the flag is not set.

Each supernode adopts to the new distribution. This process is managed

by local leaders and local balancing. Compositions keep additional informa-

tion called target pinning. Target pinning defines the target location of each

peer. Entropy used by local balancing is modified. After Components on

retired physical nodes dimension, and before Peers, new dimension Pinning

is added. This represents the number of components that are not hosted by

their target physical nodes as defined by target pinning. Additionally, local

balancing is modified in such a way that:

• components hosted by the target physical node are never transferred

away from it even if it is full, as long as all its disks are healthy,

• components are always transferred to the target physical node even if

it is full as long as all its disks are healthy.

These two additional conditions are motivated by the fact that components

global distribution is optimal for healthy physical nodes; thus components

should be located according to the distribution as long as their target hosts

are healthy. Healthy full physical node hosting only components defined

by target pinning means that the system is totally full and no more data

can be stored anyway. It makes no sense to transfer components to some

other physical nodes. If the target hosts have some broken disks then their

73

Proposed Solution

capacity is lower than assumed by global distribution. In such a case some

of its pinned components are allowed to be transferred to other physical

nodes. Otherwise, broken physical node would block user writes.

Local balancing adopts the location of a component to target pinning.

In turn, target pinning of each supernode is adopted to components global

distribution by the local leader. The local leader does not update target

pinning to conform to global distribution in one step. This is because it

would result in many concurrent component transfers. In turn this would

result in many peers not having their fragments stored locally and would

block the deletion algorithm. Therefore the local leader monitors the num-

ber of components which do not have locally stored fragments and gradually

adopts target pinning to the global distribution. It changes a limited num-

ber of target pinnings in order to sustain at least ten (default, configurable

value) components with their fragments stored locally. After each compo-

nent transfer it waits until the component fragments are transferred to the

new location before changing the next target pinning.

Global balancing solves problems local balancing was experiencing:

• Components distribution is optimal according to the entropy function.

Local balancing is still used to handle failures, but it only changes

components distribution locally so that distribution is still close the

optimal and more importantly, after the failure is fixed components

are transferred to their original locations.

• After healthy physical node is restarted, it hosts exactly the same

components.

• In heterogeneous system components do not transfer to bigger phys-

ical nodes losing resiliency while system becomes full. By defining

minimum resiliency class the user defines acceptable resiliency loss for

such a case.

• Components global distribution deterministically defines components

location thus raw system capacity can be easily computed.

• Addition or removal of physical nodes does not cause too many con-

current transfers that would block execution of the deletion algorithm.

5.3.7 Deletion Algorithm

The deletion algorithm used in HYDRAstor is similar to the distributed

garbage collection algorithm [64]. With each block there is an associated

74

Functionality Implementation of HYDRAstor

counter that keeps a number of other blocks with a pointer pointing to

this block. Blocks with a counter equal to zero can be reclaimed. Counters

are not updated on block writes because it would negatively impact write

performance. Instead, there is an update counters process that periodically

scans block trees and updates the counters. It starts with roots pointed by

retention roots written after the last deletion process was executed. Deletion

increases the counters of blocks that directly or indirectly are pointed by

such roots. After the counters incrementation phase is done a very similar

process is repeated for decrementing counters of blocks that are directly or

indirectly pointed by roots that in turn are pointed by deletion roots written

since the last deletion execution. There is other independent background

process called space reclamation that removes from disks fragments with

counter equal to zero later on.

Actual counters incrementation and decrementation for blocks stored by

a given supernode are executed by peers. Since a block with pointers is kept

in a resiliency class copy (fragments are copies of the block) and counters are

kept per fragment each peer can compute the counters on its own without

the cooperation of other peers. To increase resiliency of counters’ computa-

tion process and their values to intermittent failures, peers compute them

independently. Since the counters should have the same values after they

are computed, peers can verify them to make sure that the process was

correct and that there were no software or hardware errors.

In order for a peer to be able to update counters it needs to have its

SCCs chains complete on a local physical node. Such a peer is called a good

peer. To maximize the resiliency of counter values, all components should

compute the counters. However, in a large, dynamically changing system

the chance that all components are good peers is low. Thus the counters

upgrade process is started when at least nine peers of each supernode are

good peers (nine is a default and configurable value). During the process

computed counters are kept in temporary files. If during the process, the

number of good peers of any supernode drops below seven (another config-

urable value), the process is aborted for safety reasons (i.e. there is a higher

chance of counters being lost). Counters computed so far are disposed and

computation is repeated after system has more peers with complete local

data. Otherwise, when all counters are updated and each supernode has at

least seven good peers, temporary counters are stored in SCC indexes and

become regular ones. Write initiators distributed the new counters to peers

that were not good peers and did not compute the counters on their own.

Aborted deletion means that during the counters update the system

75

Proposed Solution

experienced failures that broke chains of SCCs on too many physical nodes.

After such broken chains are repaired by background operations the update

counters process can be started again.

A system providing both deduplication and deletion must guarantee

that when a block is deduplicated against an older block, it is not sched-

uled for deletion. HYDRAstor solves this problem by imposing additional

restrictions on the block interface and by temporary marking blocks non-

deletable if they are base for deduplication. HYDRAstor introduces user

visible virtual time. Time is divided into deletion epochs. A deletion epoch

is a counter with increase operation. At any given point in time the system

is in only one epoch. Within given epoch only one update counters process

can be executed i.e. before the process is started the epoch is increased. The

counters update process processes the pointers that were written in epochs

earlier than the current one. The id of each block returned to the user by

write operation contains current epoch E. The user can only write blocks

with pointers to blocks which have ids with the epoch E or E − 1. Ids with

older epochs are rejected during the write operation. When a client is noti-

fied that the epoch is to be increased, he has to write a block with pointers

to the blocks that were written in previous epoch in order to guard them

against deletion. Additionally, while the counters upgrade process is active,

a write initiator which deduplicates block against an older block, requests

that all its good peers mark the older block with special marker. The marker

guarantees that the block will not be deleted until next epoch, even if its

counter drops to zero. In next epoch the user will guard the block by writing

a pointer to it or system will be allowed to delete it. Markers are kept in

good peers’ RAM, not on disk. Thus their overhead on write operation is

very small. However, keeping this information in RAM is safe with respect

to loosing this information after server restart, because it has to last until

the counters upgrade is finished. If in the meantime peer is restarted it is

not good peer any more and no longer participates in the counters upgrade

process, so it will not mistakenly allow for the deletion of the block that

was used as a duplicate.

The deletion algorithm makes use of global information and global state

to synchronize and drive the various phases of the counter upgrades. Ini-

tially, each supernode reports the number of good peers it has by global

info. This information is propagated up the supernodes tree to the global

leader as the minimum of all such numbers. If it is nine or higher, it initiates

the upgrade counters process by adding information to the global state that

the deletion process can start. Good peers execute actions according to the

76

Functionality Implementation of HYDRAstor

global state phase. After they finish, they report it by global information.

The global leader receives these reports and moves the process to the next

phase by changing the global state. Such iterations last until good peers re-

port that all the work is done. It means that the latest computed counters

stamped with current deletion epoch are persistently stored in SCC indexes.

The global leader finishes the process and stores the current deletion epoch

in the global state. This information is used by space reclamation back-

ground tasks (described below) to verify that they reclaim disk space (i.e.

remove fragments) based on up to date counter values.

The above description of the deletion algorithm is very simplified as a

detailed description is beyond the scope of this document.

5.3.8 Background Tasks

Chains of SCCs allow the easy implementation of various background oper-

ations. The separation of data from metadata i.e. SCCs from SCC indexes

allows components to easily find out what data should be stored locally.

First of all, component can verify that it has all SCC indexes by checking if

the SCC index chain is complete from the beginning of the system’s lifetime

up to SCC index of current composition. If there are holes in the chain the

component gets missing SCC indexes from its peers. Then it verifies that

the SCC indexes are up to date. Since the only operation that might make

SCC index outdated is the deletion counters update process, the compo-

nent verifies that the deletion epoch associated with SCC indexes is the

same as the epoch kept in the global state. If there are SCC indexes with

an older epoch the component gets up to date indexes from its peers. With

all SCC indexes up to date the component can perform various background

operations over the data.

Rebuilding of missing fragments The component scans its SCC in-

dexes and associated SCCs. If an SCC is missing or it does not have all

required fragments the component first checks if there are physical nodes

that reported to it that they have the missing SCCs. Such case is possi-

ble after the component is transferred or it was recovered, but the original

physical node is reachable (for example, the component was recovered while

the original physical node was restarted, but for some reason the component

is not transferred back after the node is up and running again). The miss-

ing SCCs are downloaded if they are available on remote physical nodes.

77

Proposed Solution

Otherwise, SCCs have to be rebuilt. The components download appropriate

SCCs from its peers and rebuilds the locally missing SCCs.

Space reclamation The component scans SCC indexes and removes

SCCs that have fragments with counters set to zero and which are not

marked as non-deletable (they are marked as non-deletable if during cur-

rent deletion epoch fragment was used as a duplicate for new fragment

write). It starts with the SCC that has the most reclaimable fragments to

maximize the amount of capacity freed within a singe SCC recreation.

SCC concatenation Physical nodes try to store limited number of SCCs.

Due to space reclamation and splits the size of an SCC may drop below the

desired threshold. In such a case the adjacent SCCs are concatenated. This

operation is synchronized within a supernode in order to have SCCs covering

the same chains of fragments on all peers.

SCC sorting Just after a new SCC is closed for writing its fragments are

sorted by unique client id. This operation speeds up reads because data is

read from consecutive sectors of disks.

SCC split After component is split its SCC are split too. The actual SCC

split is executed as a background process.

Data scrubbing Background process sequentially reads SCCs along their

chain. If an SCC cannot be read due to disk errors it is removed and rebuilt

from SCCs stored on peers.

All the above data operations result in the creation of new SCCs. SCCs

are not changed in place in order to avoid fragmentation of data on disk.

SCCs chains also allow for the creation of reports about data health.

Each write initiator receives information from peers about the state of the

SCC chains it has created. Based on the information the write initiator finds

out what is the minimal resiliency of the data in various resiliency classes.

It reports it by global info to the global leader. Based on information from

all supernodes the global leader can create reports about the whole system.

This information can be used by administrators to find out what is the

health of the users’ data.

78

Requirements Satisfaction Discussion

5.4 Requirements Satisfaction Discussion

The proposed solution addresses all data organization requirements. Most of

the requirements are fully satisfied, although a few of them have imperfect

solutions.

5.4.1 Efficient Storage Usage

Metadata Overhead Efficiency of storage usage is decreased by meta-

data. HYDRAstor has constant, system size independent, 2% overhead of

metadata associated with SCCs. This overhead comes from 1 MB SCC index

and 20 bytes metadata associated with each fragment of an SCC.

Additionally, around 3% of storage is reserved for temporary data gen-

erated by deletion operation. Without this reserve deletion could not be

executed when the system is full.

Storage Utilization Storage utilization is determined by the lack of dif-

ferences in the sizes of components and the uniformity of components dis-

tribution over physical nodes.

If the components had different sizes then physical nodes hosting smaller

components would be underutilized. However, the size of data managed by

all component is almost the same. Standard deviation from the mean size

of component is O(
√

p
n
∗ µ) where p is the number of supernodes, n is the

number of data blocks stored in the system and µ is an average compo-

nent size (the formula is derived in the appendix on page 142). Assuming

that SHA-1 uniformly distributes hash keys, average block size with erasure

coding overhead is 100 KB, maximum component size is 0.5 TB, supernode

cardinality is 12 and each physical node has 12 TB of capacity this standard

deviation from the mean is not more than 0,017 percent of the average com-

ponent size. It practically means that all components have the same size.

Negative impact of difference in components size on storage utilization is

negligible.

Uniformity of components distribution over physical nodes is determined

by number of components and number of physical nodes. The number of

components is equal to supernode cardinality multiplied by the number

of supernodes. The number of supernodes is power of 2 and depends on

the number of physical nodes, their size and configurable variable defining

maximum component size. The system splits components in such a way

that in a full system the size of data managed by each component is no

79

Proposed Solution

Number of

Physical

nodes

1 2 3-4 5-8 9-16 17-

32

33-

64

65-

100

Number of

Supernodes

2 4 8 16 32 64 128 256

Number

of Compo-

nents

24 48 96 192 384 768 1536 3072

Table 5.1: Number of supernodes and components for different number of

physical nodes.

greater than the maximum component size. For the current homogeneous

commercial version of the system physical node capacity is 12 TB, maximum

component size is 0.5 TB and supernode cardinality is 12. Table 5.1 shows

the total number of supernodes and components for such physical node size

and configuration parameters for systems which have physical nodes ranging

from 1 to 100.

The components are evenly distributed over physical nodes if the to-

tal number of components is a multiple of the number of physical nodes.

Otherwise some physical nodes host k components and others k + 1. Con-

sider the case of a system built upon five physical nodes. Such a system

has 192 components. They can not be equally distributed among phys-

ical nodes - three physical nodes host 38 components and two physical

nodes host 39 components. When a system becomes full physical nodes

with 38 components will be utilized at 38/39 ∗ 100% = 97, 44%. There will

be 3 ∗ 2, 56% ∗ 12TB = 0, 9230TB space unused. Thus maximum system

utilization will be

5 ∗ 12TB − 0, 9230TB

5 ∗ 12TB
∗ 100% = 98, 46%

Figure 5.15 shows the percentage of non-utilized total capacity for dif-

ferent system sizes with a range of 1-100 physical nodes. When the number

of physical nodes is power of 2 and in some other cases when number of

component is a multiple of the number of physical nodes, the system is uti-

lized at 100% (13 system configurations). In most cases (69 configurations)

utilization is between 98% and 100%. In other cases system utilization is

between 97% and 98% (15 configurations) and in the worst three cases it

is below 97%. This figure shows that some configurations should not be

80

Requirements Satisfaction Discussion

Figure 5.15: Storage Utilization

instantiated by system administrators if high utilization is their primary

concern.

In the case of heterogeneous systems with physical nodes of different

capacity, apart from degree of match of components to physical nodes, data

resiliency may also limit storage utilization. Consider a system that is built

on four physical nodes which is designed to handle the failure of one physical

node without data loss with minimal redundancy overhead. Its supernode

cardinality is set to default value of 12. To satisfy the requirements each

block has to be split into 9 original and 3 redundant fragments. Each phys-

ical node has to host 3 of these 12 fragments. If any physical node fails each

block could be rebuilt from the remaining fragments. This means that each

physical node hosts 3 components of each supernode. If the physical nodes

are not the same capacity then the physical nodes that are not the smallest

ones will never be fully utilized. This problem becomes less severe in bigger

systems where the number of physical nodes is greater then supernode car-

dinality. Under such systems there is more freedom of supernode to physical

nodes assignment within the same resiliency level. This allows the system

to assign more components to bigger physical nodes.

Support for Deduplication By using a distributed hash table with key

computed based on block content using a hashing function we have created

an elegant solution for truly global duplicate elimination in distributed sys-

tem. Data is deduplicated against all blocks stored in the system.

Studies have shown that variable-size blocks provides better deduplica-

tion than fixed-size blocks ([65, 52, 50]). HYDRAstor supports such blocks.

It allows external to HYDRAstor systems i.e. HFS to implement deduplica-

81

Proposed Solution

tion efficiently. HFS uses content-defined division of files into blocks, similar

to one in [54], that produces blocks between a given minimum and maxi-

mum size. Content-defined division handles deduplication of files after they

have been shifted by additions, removals, or modifications.

System deduplication ratio depends very much on the pattern of data

stored in the system and backup data retention policy, thus it is hard to

measure its effectiveness by running tests with artificial data. There are cur-

rently no academic or industry standard benchmarks that could be used to

compare deduplication efficiency. However, the deduplication ratio of sub-

sequent backups reaches more than 95% at some NEC clients. Total dedu-

plication ratio i.e. ratio of the size of duplicates discovered by the system to

the size of logically stored data, depends on number of full backups kept in

the system. For example, if last 20 full backups were kept by such clients,

then the total deduplication ratio would be 90%. This is because dedupli-

cation for first backup would be 0% and deduplication ratio of subsequent

backups would be 95%. Total deduplication would be

0% backup size + 19 ∗ 95% backup size

20 ∗ backup size
≈ 90%

Deletion on Demand Deletion on demand and data deduplication are

hard to achieve within one system because of multiple ownership of data

blocks. Distribution over many physical nodes, failure tolerance and content-

addressability make it even harder to implement. By proper data organiza-

tion, notion of explicit pointers to blocks in programming model and the

separation of marking data for deletion from data reclamation, deletion on

demand is successfully accomplished. To our knowledge HYDRAstor is the

first highly scalable system supporting deduplication and deletion in a dis-

tributed environment.

The explicit pointers and DAG structure of blocks stored by HYDRAstor

allowed the implementation of a deletion algorithm similar to a distributed

garbage collection that computes reference counters for each data block.

Splitting deletion into deletion epochs, and making guarantees that blocks

will be not deleted only when they are directly or indirectly pointed by

retention root stored in the same or next epoch than the block was stored,

allowed us to solve the problem with deduplication against blocks scheduled

for reclamation. In other words, whenever a block with reference counters

set to 0 is used as a duplicate it is marked to survive until the next deletion

epoch; within next epoch the counters computing process will include the

newly stored retention root, thus the block will not be removed.

82

Requirements Satisfaction Discussion

Keeping supernode cardinality copies of per-block reference counters

provides robustness in the face of failures. Stamping counters with dele-

tion epoch allows the detection of obsolete counters on physical nodes that

were temporarily detached from the system that executed subsequent dele-

tion rounds. Additionally, since counters have higher redundancy than data

and pointers are kept in class copy deletion and space reclamation may be

executed even if data stored with a lower redundancy is lost. This high meta-

data resiliency allows the system to reclaim space occupied by fragments

even if blocks related to these fragments cannot be rebuilt.

Multiple ownership of data blocks makes any mistake in computing coun-

ters much more devastating compared to non-deduplication storage systems

because all the data that the block was used for as a base for deduplication

is lost too. Additionally, the scale of the system and its dynamism increases

chances of software or hardware error. That is why several components of

each supernode computes counters in parallel to verify that all the values

are the same at the end of the process. If they are not the same counters

computing is aborted and the administrator is notified about the problem.

However, as yet HYDRAstor has never reported such a problem in produc-

tion environment.

The deletion operation has a low impact on write and read operations.

First of all counters are not updated on regular user writes. This is very

important in the case of duplicate writes which are much faster than non-

duplicate writes, because they do not need to write any data to disk. In

fact, in most cases they do not even need any disk read operations due

to the RAM cache with hash keys of data stored on the disks and SCC

chains summary kept by write initiators. Counters computation is executed

by several peers of each supernode. Since supernodes are balanced over the

physical nodes and data is evenly distributed over the supernodes, counters

computation executed as a batch processing is well balanced over all phys-

ical nodes. The amount of work that has to be done in any given deletion

epoch is proportional to the number of pointers written since the previous

counters computation, the number of stored deletion roots (i.e. number of

trees marked for deletion) and to the trees’ depth and size. It does not de-

pend on the total number of blocks in the system. The counters updating

process finds out pointers and deletion roots that have to be processed in

the current round by scanning SCCs belonging to the tail of SCCs chains

created after the last counters update. Last but not least, SCCs metadata

(i.e. SCC indexes) is separated from SCCs itself. By doing this the deletion

operation only updates metadata. Compared to SCC, this is a very small

83

Proposed Solution

file. This results in a smaller number of disks accesses required to update

counters information. Actual space reclamation is done by other background

processes that create new SCCs updated according to the metadata. The

process starts with the SCCs with highest ratio of space to be gained to

maximizes reclaimed space within one SCCs update.

Handling Almost Full System While working on the HYDRAstor project,

there were many problems with handling an almost full system in a stable

and predictable way. We suspected that the problems are generic and are

related to the fact that there are many conditions imposed on balancing

data in a distributed storage system. Most of the conditions are static for a

given list of physical nodes and can be computed and set only once. For ex-

ample, in the case of HYDRAstor such conditions are related to peers and

write initiators distribution. However, there are conditions that are more

dynamic and depend on other, unstable factors. An example of such condi-

tion is the physical node being full. This depends both on the physical nodes

list, the amount of data in the system and its distribution over the physical

nodes. Since the amount of data may constantly change, the condition for

the physical node being full may also constantly change. If the balancing

algorithm is sensitive to these changes (i.e. the system tries to be instantly

and perfectly balanced all the time) it results in data constantly being trans-

ferring back and forth. The first version of HYDRAstor clearly showed these

problems. It only had local balancing implemented - without implemented

global balancing, components pinning and conditions that limit cases when

a full physical node can transfer out some of its components. Each physical

node decided independently what balancing action should be executed by

analyzing possible transfers to its neighboring physical nodes and values

of related entropy improvements, including improvements of physical nodes

fullness. We encountered three problematic cases:

• System with failed physical nodes. Components are recovered on phys-

ical nodes that are the best according to a local entropy change. The

recovered components may cause “alive” physical nodes to become

full due to the reconstruction of data previously hosted by failed ones

and new writes coming in. Additionally, after component is trans-

ferred, it may turn out that the recovered component disrupts other

entropy dimensions. For example, after a physical node that hosts the

new component becomes full, it should transfer away other, originally

hosted component, to another physical node in order to optimize write

84

Requirements Satisfaction Discussion

initiator dimension. Thus, another transfer is executed. This transfer

in turn may disrupt entropy of the additional physical node and in-

duce next transfer. This leads to a chain of transfers and causes the

system to become unstable at least in terms of components not having

their data stored locally. This leads to problems with write and read

performance and deletion execution.

• A restart of multiple physical nodes may cause two or more com-

ponents swapping their hosting physical nodes. If the physical nodes

are almost full, the components cannot change back their locations -

they would require two single transfers, but the first single transfer

would increase the value of entropy function, so it is not allowed. Two

”atomic” transfers would be required, but system does not support

such an operation. Such case results in unnecessary transfers of data

belonging to the swapped components.

• Heterogeneous system with the smaller physical nodes reaching full

state. Such physical nodes transfer components out to the bigger ones.

This may lead to a situation when a significant number of components

of each supernode is hosted by a limited number of physical nodes.

As a result, the system loses failure resiliency because a failure of a

big physical nodes may cause data loss if a failed physical node hosts

more components than the number of resilient fragments. Such failure

may even cause metadata loss if a failed physical node hosts at least

half of the supernode cardinality components.

To address above problems, global balancing, pinning and limiting the

freedom of component transfers out of full physical nodes were introduced.

The general rule for handling full physical nodes is that pinned components

are not transferred unless they are hosted by a physical node with a failed

disk or their pinning target physical node is down. This greatly limits the

possible number of transfers. Only components that are originally hosted

by a failed physical node can be transferred between physical nodes. This

practically solves the problem with transfers that induce chain of transfers

and makes system unstable.

In the current version, there are three scenarios for a physical node being

full:

• Full healthy physical node (i.e. a physical node with all healthy disks)

hosting pinned components only.

85

Proposed Solution

• Physical node hosting non-pinned components becomes full. Such com-

ponents come from broken or unreachable physical nodes. At the time

when components are recovered, they are placed on physical nodes

that are best according to various entropy criteria i.e. they provide

the best resiliency level. They do not have to be placed on physical

nodes that have the most free space. Later, when a user writes data it

may turn out that the physical nodes that host recovered components

become full.

• Physical node that becomes full after one or more of its disks fail. Data

that was hosted by the failed disk is reconstructed on the remaining

ones making them full.

The first scenario means that system has become full globally. This is be-

cause global balancing places components in the optimal way with regard

to storage utilization and other balancing conditions (i.e. resiliency level).

Thus, no component transfer can improve utilization without worsening

other conditions. A system does nothing when such type of full physical

node occurs. The second and third scenarios occur when the physical node

is full, but system is not full globally. In such a case if a component or com-

ponents were not transferred away from the full physical node it would stop

accepting writes - this would result in writes not being accepted totally.

This is due to the uniform distribution of keys over components; all com-

ponents receive the same number of blocks thus, if one component blocks

writes, writes are blocked globally. In the second scenario only non-pinned

components can be transferred. Pinned components are not transferred for

the same reason as in the first scenario.

The second and third scenarios are dealt with by a balancing algorithm

and resource management system. If in the second or third scenario a physi-

cal node becomes close to full (depending on configuration it is 98% - 99% of

used disk space) a balancing algorithm finds physical node that has enough

free space to accept a new component and is optimal with regards to other

balancing requirements. Then component is moved to the new physical node

and transfer of its data from the old to the new physical node is started.

However, if during this process the user is writing data at pace that exceeds

pace of data being transferred out then it is possible that the near full phys-

ical node may reach 100% utilization and block all writes globally. Thus to

handle such a situation data transferred out of the near full physical node

gets higher priority in order to ensure that data is transferred out at least

as fast as the new user writes are coming. This guarantees that the physi-

86

Requirements Satisfaction Discussion

cal node accepts writes without interruption, but it may temporarily slow

down total system throughput by 50% because 50% of full physical node

resources is used by handing the transferred out component.

5.4.2 Fault Tolerance

HYDRAstor architecture has no single point of failure. Data is spread over

physical nodes in such a way that enables the system to operate non-stop

as long as there is no massive failure of many physical nodes at the same

time (i.e. more than half of supernode cardinality minus 1) or there are

consecutive failures that occur in time window short enough for metadata

and data lost in a previous failure to not have been recovered yet. Users can

configure failure tolerance by changing supernode cardinality. The higher

value the higher failure tolerance (assuming that number of physical nodes

is higher than supernode cardinality). Users can also choose a redundancy

level for each written data block which allows them to create flexible data

storing policies for various types of backed up data.

Data Resiliency By using erasure coding HYDRAstor is very flexible

and efficient in providing resiliency. For each data block the user decides the

resiliency level and related storage overhead. A solution based on erasure

codes is much more efficient than RAID-1, RAID-5 and RAID-6 that are

commonly used in industry. Tables 5.2 shows flexibility in terms of number

of possible physical node/disk failures HYDRAstor can accept before data

is lost and related storage overhead for supernode cardinality is equal to 12

and 16.

Number of acceptable

failures before data

loss (i.e. number of re-

dundant fragments)

1 2 3 4 5 6 7 8

Storage overhead (%)

for SNC=12

9,09 20 33,33 50 71,43 100 N/A N/A

Storage overhead (%)

for SNC=16

6,67 14,29 23,08 33,3 45,45 60 77,78 100

Table 5.2: Number of Accepted Failures and Storage Overhead.

RAID-1 accepts one disk failure with 100% storage overhead. For such

overhead HYDRAstor handles 6 and 8 disk failures for supernode cardinal-

87

Proposed Solution

ity equal to 12 and 16 respectively. RAID-5 accepts one disk failure with

25% storage overhead. With similar storage overhead of 20% and 23,08%

HYDRAstor handles 2 and 3 disk failures for supernode cardinality equal

to 12 and 16 respectively. HYDRAstor handles the failure of one disk with

9,09% and 6,67% overhead for supernode cardinality equal to 12 and 16

respectively. Similarly, compared to RAID-6 HYDRAstor has a greater re-

silience at lower storage overhead. RAID-6 accepts two disk failures with

50% storage overhead. For that level of resiliency HYDRAstor requires only

20% and 14,28% of storage overhead for supernode cardinality equal to 12

and 16 respectively. With 50% and 45.45% of storage overhead HYDRAstor

can handle 4 and 5 disk failures for supernode cardinality equal to 12 and

16 respectively.

HYDRAstor does not satisfy one of the resiliency requirements described

in chapter 3 on page 15. As the system increases the number of physical

nodes and supernodes spanned over them also increases. The level of re-

siliency each supernode provides stays at the same level, but since number

of supernodes increases so does the probability that at least one of them

will lose data. If one supernode losses data all data is lost (after a supernode

is lost there are data holes in the user data stream which makes it prac-

tically unusable). To solve this problem HYDRAstor should automatically

increase supernode cardinality and proportionally increase the number of re-

dundant fragments of each data block together with increasing system size.

This would overcome the increased probability of data loss coming from

increased number of supernodes. HYDRAstor does not contain this feature

because it is quite hard to implement and so far no client has requested it.

However, such a feature is feasible and can be added if requested by the

storage market.

Data Reconstruction The data placement organization of HYDRAstor

allows fast detection of a failed or unreachable physical node and efficient

data reconstruction. After a physical node fails all components that were

hosted by it are recovered by their peers on other physical nodes. After a

component is recovered it initiates checking completeness of its SCCs chain

to find out which fragments are missing locally. It then communicates with

its peers and reconstructs this data locally by downloading fragments from

peers and reconstructing missing local fragments. To make this operation

faster fragments are reconstructed at the level of SCCs i.e. the whole new

SCCs are created - there is no in place operations. This limits random disk

access and limits fragmentation of data stored on disks.

88

Requirements Satisfaction Discussion

Data reconstruction in HYDRAstor is superior to RAIDs because:

• HYDRAstor starts reconstruction just after it finds out that a failure

has occurred. RAID starts reconstruction after failed disk is replaced

by the administrator, thus reconstruction depends on human interven-

tion that may be very delayed. During that time the system operates

with decreased resiliency.

• HYDRAstor reconstructs only the missing data. RAID reconstructs

the whole disk regardless of amount of data originally stored by that

disk.

• HYDRAstor tries to spread recovered components in such a way that

number of recovered components hosted by one physical node is min-

imized. By doing this re-computation of missing fragments from ex-

cising fragments is distributed over many physical nodes. In the case

of RAID only one physical node does all the work.

In a fully utilized system data reconstruction tasks compete for sys-

tem resources with other tasks in particular write and read operations. The

user can choose a system wide policy that assigns specified percentage of

resources to data reconstruction tasks and the rest to store and retrieve

operations. For example, a fast policy assigns all resources to store and

retrieve operations. Such a policy allows the user to store backup data as

quickly as possible but with increased risk of data loss. It should be used by

users that have very small time windows for making the backup, but they

seldom do the backup i.e. once a day, and the resources can be consumed

by reconstruction tasks the rest of the time. In opposition to fast policy is

reliable policy that assigns most of the resources, for example 80%, to criti-

cal tasks i.e. tasks that reconstruct data that has very low or no redundancy

left. Tasks that are less critical get fewer resources. Such a policy increases

the data resiliency at the expense of read and write performance.

Data Scrubbing SCCs chains allow each physical node to scan disk data

that belong to components hosted by the physical node in an orderly man-

ner. If some fragments are not readable they are reconstructed from frag-

ments read from peers and stored in different location on the disk. Addi-

tionally, data scrubbing can be done by one piece of SCCs chain at once,

thus the process can be divided into smaller operations that are executed

when a physical node is lightly loaded.

89

Proposed Solution

Operation under Faulty System HYDRAstor enables the non-stop ex-

ecution of data storing, retrieving and deletion upon physical node or disk

failure. Upon physical node failure components hosted by it are quickly re-

covered by their peers on other physical nodes. By doing this the system

can accept new writes even if the user requires that all components of each

supernode store fragments (i.e. in the case when the write threshold is set

to supernode cardinality). Data deduplication works properly even if some

peers of each supernode do not have their SCCs complete. As long data

blocks can be read and their resiliency level is not too low they can be used

for deduplication. With the respect to read operation it works properly as

long as there is enough data fragments to reconstruct blocks. Deletion op-

eration can proceed as long as each supernode has several (by default 3/4

of supernode cardinality) full compositions chains in order to be able to

reliably analyze all written pointers to blocks and reliably store computed

reference counters. System strives to keep several (by default 3/4 of su-

pernode cardinality) full chains within each supernode. If number of full

chains in a given supernode is low, component transfers of this supernode

are blocked until some of the component’s peer reconstruct its full local

chain. Thus, only massive failures causing one or more supernodes having

less than seven SCCs chains stored locally would block deletion.

Upon disk failure physical node rebuilds missing fragments locally on

other available disks. If this disk loss, resulting in physical node capacity

decrease, causes the physical node to become full, some of its components

are transferred to other physical nodes as described above in section 5.4.1

on page 84.

In summary HYDRAstor survives failures as long as no more than half of

supernode cardinality minus 1 physical nodes hosting components belonging

to the same supernode fail at the same moment. In such a case missing

components and important metadata are recovered and reconstructed to

reach the initial level of failure resiliency. User data resiliency depends on

the level of redundancy associated with each data block. Even if data with

low redundancy is lost due to a failure, data with higher redundancy is

available. Further to this, since metadata related to deletion operation like

chains completeness is kept by each component of each supernode, the user

may delete fragments related to missing blocks to reclaim space occupied

by lost data.

Upon failure the system gradually decreases performance. The perfor-

mance loss after components are recovered depends on the degree of uniform

dispersion of recovered components over available physical nodes. For ex-

90

Requirements Satisfaction Discussion

ample, if a homogeneous system’s component are evenly recovered on other

physical nodes then the performance loss is proportional to the loss in re-

sources. If they are not uniformly distributed then the performance drop

is slightly higher because system performance is limited by the physical

nodes being mostly loaded i.e. in case of homogeneous system is limited

by the physical nodes hosting the most components . However, since the

difference in the number of components hosted by each physical node is not

greater than one, then that additional performance drop is around 1/num-

ber of components hosted by a physical node . For a standard commercial

configuration the number of components hosted by a physical node is be-

tween 24 and 48 depending on number of physical nodes the system is built

upon. Thus the additional performance drop which results from an unequal

number of components on physical nodes is between 2 and 4 percent.

Figure 5.16 shows the system behavior just after physical node failure.

In the experiment there were four physical nodes each having twelve 1 TB

SATA disks, 20 GB or RAM, two quad-core 3GHz CPUs.

0 16 32 48 64 80 96 112 128
Duration in minutes

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (

M
B

/s
)

Reconstruction read
Reconstruction write
Non-duplicate user write

1 SN failure

Failed SN restart

Backup window Backup window

Figure 5.16: Writes Under Failed Physical Node.

source: [26]

91

Proposed Solution

The test started with writing to the healthy system, achieving through-

put over 600 MB/s. After 14 minutes one physical node failed. Write per-

formance initially dropped to 300 MB/s and then stabilized at around 400

MB/s. The initial drop is caused by timeouts on messages to the failed phys-

ical nodes. After missing components are recovered throughput stabilizes at

400 MB/s. Each recovered component initiates data rebuilding. This exper-

iment was executed with the fast policy set i.e. one that prefers high write

performance over quick data reconstruction. Thus reconstruction tasks are

suppressed because of the ongoing user backup. After the backup session is

finished reconstruction started to work with full bandwidth (around 33th

minute). The reconstruction of each block required reading 9 fragments to

rebuild 3 missing ones. The reconstruction read bandwidth reached 480

MB/s and reconstruction write bandwidth reached 160 MB/s. In the 58th

minute rebuilding was finished leaving a healthy system running over three

physical nodes. In the 64th minute the next backup session started achieving

write bandwidth of 430 MB/s. In the 100th minute the failed physical node

was recovered and connected back to the system. Just after the reconnection

write bandwidth dropped to 380 MB/s, because of destabilization caused

by components being transferred back to their original location. After com-

ponent re-balancing was finished write performance increased to about 550

MB/s. It was lower than the initial 600 MB/s because some of the data i.e.

SCCs was not in the correct place. After they were transferred back to the

correct location i.e. to the reconnected physical node, write throughput was

back around 600 MB/s (not shown on the figure).

Operation after Failure Repair After a physical node is repaired and

reconnected to the system components that were hosted by it before the

failure, i.e. components pinned to it, are transferred back. By doing this the

system minimizes the amount of data that has to be transferred. Most of

the components data is hosted by the failed physical node because failure

typically results in no data loss (i.e. the physical node was considered as

failed because it was unreachable due to network problems) or small part of

the data is lost (i.e. one out of twelve disks failed). Transferring components

back to their original configuration guarantees that the data distribution is

optimal, because it was optimal before the failure.

The reconnected physical node has to integrate its local data with the

corresponding data that was recovered on other physical nodes. This data

might have been deleted while the physical node was down and new data

might have been stored. By scanning compositions chains and communicat-

92

Requirements Satisfaction Discussion

ing with peers of all components the physical node hosts it finds out about

the newest SCC indexes related to its local, possible outdated, SCCs. Since

these remote SCC indexes contain up to date metadata information it is

used to update local SCC indexes. After local SCC indexes are updated

the physical node downloads missing fragments and removes data that was

deleted by the user while the physical node was down.

Failure Reporting Data organization of HYDRAstor allows the system

to easily verify data health. Each component scans chains of its SCCs and

sends reports to write initiators with the status of each SCC. Among other

information such reports contain information about fragments data classes

and information about missing fragments. Based on this information write

initiators build information about the state of all local and remote SCCs

they have created. That information is sufficient for write initiator to figure

out the state of all data blocks related to writes executed from beginning

of the system lifetime. In particular the write initiator finds out what is the

least number of potential failures that will cause data loss if they occur. If

that number is negative it means that data has already been lost. The write

initiator sends this report to the global leader component that aggregates

it to build a report for the whole system. Then the user can send a request

to the global leader to get this information.

Data andMetadata Consistency During and After Failure HYDRA-

stor provides consistency on several levels. On the highest level it guarantees

that overlay network with the self-repairing feature does not lead to net-

work disintegration in the case of failures. The overlay network is based

on a distributed hash table. At the beginning of the project we analyzed

available distributed hash tables (together with our in-house fixed prefix

network) and were not convinced that any of these DHTs guarantees that

in case of a very unusual sequence of failures it provides network integra-

tion. In particular it does not create more than one instance of the network

which obviously would lead to major metadata disintegration. To avoid this

potential problem we have decided to use DHT without any recovery oper-

ations, but instead assume that DHT nodes are entities that provide very

high failure tolerance. Thus the idea of the supernode was born. Since su-

pernodes are spanned over a dozen physical nodes, the physical nodes can

cooperate to support the supernode’s consistent state. It turned out to be

a relatively easy task, since there were well known algorithms described

in the literature that provide consensus [11] and thus a consistent state of

93

Proposed Solution

data over physical nodes. Thus overlay network consistency is provided by

limited functionality DHT that is spanned over failure resilient nodes i.e.

supernodes. Consistency of user data is provided on a supernode level. Since

data blocks can only be stored or deleted, but cannot be updated, provid-

ing consistency boils down to the recreation of missing fragments and the

removal of deleted ones. Simply put, after a physical node is reconnected to

the system its components download SCC indexes about SCCs that where

created while the physical node was disconnected from the system and up-

date SCC indexes information about deleted fragments in the existing SCCs.

Based on the updated SCCs indexes the physical node rebuilds and removes

appropriate data fragments. Data blocks consistency is also provided by re-

computing hash keys of blocks and comparing them with hash keys stored

together with data fragments. If it turns out that they do not match most

probably due to corruption of a fragment, blocks can be reconstructed by

choosing different subsets of fragments to find out one that can rebuild the

block with the proper hash. If such set is found other fragments are removed

and recomputed from the proper ones.

5.4.3 Scalability

Building system upon a distributed hash table gave as solid base for reaching

scalability.

Scalability of Capacity Scalability of capacity is a direct consequence

of efficient storage usage described in section 5.4.1 on page 79. Since storage

utilization in general does not depend on the number of physical nodes and

since data deduplication is done globally, its efficiency does not depend on

system size, thus the capacity of HYDRAstor scales very well.

Scalability of Write and Read Performance Figure 5.17 shows scal-

ability of performance of non-duplicated write, write of 100% duplicated

blocks and read operation.

Each storage node (SN) was running under Linux version Red Hat EL

5, and had twelve 1TB SATA disks, 24GB RAM, two quad-core 3 GHz

CPUs and four GigE cards. Each access node (AN) was running under the

same Linux version, and had two 146GB disks, 8GB RAM and the same

two quad-core 3 GHz CPUs, four GigE cards for connections with SNs and

six GigE cards for external connections.

94

Requirements Satisfaction Discussion

Figure 5.17: Scalability of write and read operations.

Performance was tested for five hardware configurations: 1 AN + 2 SNs,

2 ANs + 4 SNs, 4 ANs + 8 SNs, 5 ANs + 10 SNs, 15 ANs + 30 ANs, and 20

ANs + 40 SNs. Unfortunately we do not have results for this exact hardware

setup for middle configurations for deduplicated write. However, there are

other performance results (no presented here) executed on slightly modified

versions of software and hardware that are consistent with the figure 5.17

for deduplication writes.

For each initially empty system data was written. There were no dupli-

cated blocks. In the figure it is shown as “write”. Then the same data was

stored again, making all blocks duplicates. This is shown as “dup-write”.

Then the stored data was read. It is shown as “read”.

These results show that write operations, both in case of non-duplicates

and duplicates, scale linearly. The throughput of a duplicated write is around

260 MB/s per storage node. The throughput of a non-duplicated write is

around 145 MB/s. Read operation for small configurations, i.e systems hav-

ing ten or less physical nodes scales linearly. For a bigger system the scala-

bility is not that good - it is lower by 30% than the expected throughput.

This is related to problem with efficiency of handling many user streams.

95

Proposed Solution

This problem is described below in section 5.4.6 on page 103.

8 16 24 32 40 48 56 64 72 80
Duration in minutes (nodes added while writing)

0

100

200

300

400

500

600

700

800

900

N
on

-d
up

lic
at

e
w

ri
te

 b
an

dw
id

th
 (

M
B

/s
)

Write bandwidth (nodes added while writing)

Write bandwidth (stable system)

FPN split on all prefixes

2SN

4SN

6SN

8SN

10SN

12SN

Figure 5.18: Write Scalability.

source: [26]

Scalability of Write Operation under Dynamic System Extension

Figure 5.18 shows how performance of a write operation is scaled when the

number of physical nodes increases dynamically. Each physical node was

running one backend HYDRAstor server under Linux version Red Hat EL

5.1, and had six 500 GB SATA disks, 6GB RAM, two dual-core 3 GHz

CPUs and two GigE cards. There were two experiments done:

• dynamic one - physical nodes are added while user writes are coming

• static one - number of physical nodes is stable - each measurement

was performed independently; test initialized system from scratch and

loaded the same amount of random, non-duplicated data. Time on X

axis refers to the dynamic case only.

The results indicate that in range of 2 to 12 homogeneous physical nodes

tested, the system performance scales linearly with the system growth in

the static example. The hash space is equally divided across the storage

of physical nodes. It guarantees that every machine is equally loaded and

96

Requirements Satisfaction Discussion

does not become a bottleneck. The dynamic example shows the cost of the

system growth. It is manifested in a lower bandwidth than in the static

example. This is due to most of the data being stored on the oldest physical

nodes. In order to check for duplicate elimination the system has to query

these physical nodes on every write. The older physical nodes becomes bot-

tlenecks and slow down the whole system. However, after all data transfers

are completed the system reaches the same throughput as in the static case

(this is not shown on the figure).

Scalability of Heterogeneous Systems The results presented above

demonstrate performance of a homogeneous systems. Since our priority was

so far to deliver system which run over homogeneous physical nodes we did

not execute scalability tests of heterogeneous systems. To some extend we

already verified that scalability of capacity could be reached because the

module that computes components distribution over physical nodes had

already been executed against various heterogeneous systems, and it was

generating components distribution that results in capacity utilization sim-

ilar to that of homogeneous systems.

We expect that scalability of performance of heterogeneous systems with

proportional physical nodes will scale in the same manner as homogeneous

systems. By assigning supernode components proportionally to physical

nodes resources the system should utilize each physical node at the same

level, thus performance should scale.

HYDRAstor architecture also handles the most difficult heterogeneous

systems with non-proportional physical nodes. From a DSS standpoint it

is hard to solve imbalances in physical nodes computing power and capac-

ity. Generally if a physical node throughput is assigned proportionally to

its capacity then physical nodes with weaker computing power slow down

the system, because they are the bottlenecks. If throughput is assigned

proportionally to computing power than physical nodes with higher than

average ratio of capacity to computing power will not use up all its capacity.

The proposed solution to this challenge is to divide components into two

groups - write initiators and non-write initiators. Write initiators are more

computing power intensive than non-write initiator components. Balanc-

ing algorithm assigns components proportionally to physical nodes capacity

and within this assignment it gives more write initiators to more powerful

physical nodes.

97

Proposed Solution

5.4.4 Self Management

HYDRAstor is highly self managing system. The role of administrator is

very limited. First of all, there are no volumes or storage configuration

parameters that have to be estimated in advance and changed during system

extension. In HYDRAstor the only action an administrator has to take is to

update the list of physical nodes that a system should use. Data migration

and balancing is done automatically by the system and does not require any

human intervention.

The system automatically detect failures, recovers missing components

and rebuilds lost data to reach the resiliency level required by the user.

After being notified about a failure the administrator only has to replace the

failed physical nodes or disks. After this operation the system automatically

incorporates reconnected or fixed hardware and reaches the same state as

before the failure.

5.4.5 High Availability

The high availability of HYDRAstor is a result of failure tolerance and self

management, especially self healing. Upon temporary failures components

are quickly recovered on other physical nodes and are ready to serve write

requests. Data redundancy provides non-stop data retrieval even if some

part of the system is not reachable.

Physical node retiring operations allow for the temporary removal of

physical nodes for planned administration actions like hardware or software

upgrade. Physical node retiring in big systems which have more than supern-

odes cardinality nodes allows for such actions without sacrificing of failure

resiliency, because all components and their fragments are transferred to

other physical nodes in the system in such a way that no physical node

hosts more then one peer of any supernode.

5.4.6 Performance

Duplicate and Non-Duplicate Write and Read Throughput

Figure 5.19 shows the result of an experiment that shows write throughput

as a function of the fraction of blocks detected as duplicates. The tested

system was built upon four physical nodes. Each storage node had twelve 1

TB SATA disks, 20 GB of RAM, two quad-core 3GHz CPUs and four GigE

cards and was running Red Hal EL 5.1 version of Linux operating system.

98

Requirements Satisfaction Discussion

Four client machines generated stream of blocks with a specified per-

centage of duplicates. The sequence of duplicated blocks were written in

the same order as the base data, thus they recreated the same stream as it

was written before. The duplicates were evenly distributed in the stream.

For the read experiment data was read in the same order as it was written.

0 25 50 75 100
Percentage of duplicate eliminated blocks

0

200

400

600

800

1000

W
ri

te
 th

ro
ug

hp
ut

 (
M

B
/s

)

Write

0

20

40

60

80

100

C
PU

 u
til

iz
at

io
n

(%
)

CPU usage

Figure 5.19: Write throughput as a function of duplicate ratio.

source: [26]

The results show that HYDRAstor provides very high bandwidth, espe-

cially of duplicated blocks. The graph shows that with increase of duplicated

blocks write throughput increased almost linearly. Only at 100% of dupli-

cates is the increase slightly lower, but this is a result of the limits of network

bandwidth between HYDRAstor and clients writing data. Tests of results

executed by other teams working on the project suggest that without this

network bottleneck throughput for 100% duplicates would be slightly higher

and would reach 950 MB/s.

This high throughput is the result of proper design of both high level

data organization i.e. hash table with supernodes and low level organization

on disks. High level organization results in the even distribution of data over

the system, balanced load over all physical nodes and fast mechanism for

data location. On low, disk level, non-duplicate writes result of bulk transfer

99

Proposed Solution

to disks - for a loaded system fragments are written to disk in 2MB chunks.

Duplicate writes are fast due to SCC-based organization. Such organization

allows the prefetching of SCC indexes to the RAM cache - it allows for

quick checks if a given block is already stored. If it is stored checking SCC

summary reports submitted in the background by the remaining peers is

enough to verify that the block is reconstructable. Through such data or-

ganization writing duplicate blocks does not require access to disk in most

cases. Furthermore, a high duplicates ratio decreases network utilization

between physical nodes because no fragments are sent and decreases CPU

utilization because no erasure coding processing is required. This decrease

in CPU is shown on Figure 5.19. Since in the typical backup stream dedupli-

cation ratio is over 80% there is enough free CPU for processing background

operations like data reconstruction, space reclamation and data scrubbing,

thus the background operations do not impact user-visible performance.

The performance of read operation is highly dependent on factors like

the sequentiality of the data read, number of clients reading simultaneously,

distribution of the duplicates and degree of stream sequentiality and locality

on disks. These factors determine how much disk data prefetching into RAM

cache limits access to the disks. In this experiment read throughput was

between 400MB/s and 550MB/s, so it was similar to throughput of non-

duplicate writes.

HYDRAstor Performance Compared to Other Systems

It is hard to compare efficiency of data organization of a commercial systems

like HYDRAstor to other commercial systems for two reasons. First, there

are no standard benchmarks that vendors can use to test their systems.

Thus performance results may not be exactly comparable. Second, vendors

use different hardware with different characteristics of main components

like CPU speed, disks throughput and size of RAM, so the solutions are not

compared based on the same hardware. However, we would try to outline the

position of HYDRAstor among other main competitors. Not much can be

done with the first problem. Thus we assume that the performance results

published by vendors to some extend are comparable and we will compare

the maximum throughput the systems provide. For the second problem one

could compare ratio of throughput to purchase price for the system. Price

of the system can be considered as a price for ”abstract units of hardware”.

Thus such ratio is a performance of single ”abstract hardware unit” and

can be compared. Unfortunately, in most cases vendors do not publish price

100

Requirements Satisfaction Discussion

information officially. However, system prices tend to be correlated with

system capacity. Thus it it reasonable to compare ratio of performance to

capacity.

Total Write

Throughput

(MB/s)

Usable Raw Ca-

pacity (TB)

Write Through-

put per Usable

Raw Capacity

(MB/s/TB)

HYDRAstor

20AN + 40SN

10646 480 21,8

EMC GDA 3555 384 9,26

EMC DD880

w/Boost

2444 192 12,73

Greenbytes

GB4000

950 230 4,13

HP D2D4312 666 48 13,86

IBM ProtecTier 1500 1000 1,5

Symantec Net-

Backup 5020

3250 288 11,28

Table 5.3: HYDRAstor and Competing Systems Performance.

Table 5.3 shows the total maximum write throughput of duplicated

blocks, maximum raw capacity and write duplication throughput per TB of

capacity for systems competing with HYDRAstor. These are the systems

that support global inline duplicate elimination. Selection of the system to

compare is taken from their performance comparison [68] done by W. Curtis

Preston who is an expert in backup and recovery systems.

Maximum write throughput and maximum capacity are taken from W.

Curtis Preston’s comparison. However, we have updated some of the infor-

mation. The original comparison has mixture of raw capacity (i.e. capacity

that is consumed by both user data and redundant data like RAID par-

ity data or erasure coded redundant fragments) and usable capacity (i.e.

capacity without space required for redundant data). We unified the data

and compared raw capacity only. However, in case of IBM ProtectTier we

are not sure that reported capacity is in fact raw capacity because it is

not clearly stated in IBM’s specification. NetBackup 5000 is replaced by

its newer version NetBackup 5020 having higher capacity. Its maximum

throughput is corrected from 7166 MB/s down to 3250 MB/s (source [88]).

101

Proposed Solution

IBM ProtectTier’s throughput is updated from 1000 MB/s to 1500 MB/s

(source [46]). In case of HYDRAstor data is taken from our performance

experiments for system built upon 40 storage nodes and 20 access nodes.

Data reported by Curtis is an expected throughput for 110 storage nodes

and 55 access nodes.

This comparison shows that HYDRAstor is the best performing system

both in total throughput and in throughput per TB of provided capacity.

Moreover, data organization of HYDRAstor allows the write throughput to

be scaled up by adding additional physical nodes to the system. In fact,

NEC in its commercial offer has HYDRAstor built upon 110 storage nodes

and 55 access nodes. Such system, if scaled linearly to that size, would give a

total write throughput around 29000 MB/s. Other systems cannot be scaled

by adding additional nodes.

Total Write

Throughput

(MB/s)

Usable Raw

Capacity

(TB)

Write

Through-

put per

Usable Raw

Capacity

(MB/s/TB)

HYDRAstor + HFS

20AN + 40SN no du-

plication

5800 480 12,09

Thecus N5500 (*) 54,5 5 10,9

QNAP TS-559 Pro (*) 105,5 10 10,55

Synology DS1010+

(*)

103,2 15 6,88

Blue Arc Titan 1100

Series (**)

312,5 128 2,44

Hitachi NAS Platform

3080 (**)

700 4000 0,18

DDN S2A6620 (**) 2000 240 8,3

DDN SFA10000 (**) 10000 2400 4,17

Panasas PAS 12 (**) 1500 40 37,5

Table 5.4: Write performance of NAS systems.

HYDRAstor and HFS together implement NFS and CIFS interface thus

together they are a NAS system. Since they are NAS system they can be

102

Requirements Satisfaction Discussion

compared to standard NAS systems (i.e. systems without deduplication)

to find out how HYDRAstor’s novel data organization with support for

deduplication impacts the performance of regular non duplicated writes.

Table 5.4 shows the write throughput of various small, middle and enter-

prise size NAS systems that have performance results published by vendors

(marked with ’**’) or the performance results were published by service

www.smallnetbuilder.com (marked with ’*’) that tested them. The table

also shows the throughput of non duplicated write of HYDRAstor running

with HFS.

The comparison shows that HYDRAstor can compete with NAS systems

as long as the NAS systems were used for storing backup files (HYDRA-

stor would not reach such a high throughput if small files were written - in

such a case regular NAS systems would be superior). Apart from Panasas

PAS 12 (this is probably the fastest NAS currently available) HYDRA-

stor has similar level of performance compared to NAS systems. It means

that HYDRAstor’s novel data organization provides performance at least

as good as the old well known and tuned data organization based on regular

file systems.

Read Performance Problem

Figure 5.17 in section 5.4.3 shows that there is a problem with the scalability

of the read operation. This reflects symptom of inefficiency when many users

read data that was stored by many users writing simultaneously. Further

to this, theoretically there is another related problem that might impact

throughput of duplicate write.

The first problem is related to a number of concurrent users writing

data blocks at the same time. Since the number of users in the tests shown

on figure 5.17 was proportional to system size that problem is visible on

this figure. The stream of blocks generated by each user is distributed over

the whole system. Each supernode receives the same number of blocks from

each stream. Each stream of blocks is divided into supernode cardinality

streams of fragments. Each fragment is stored at the end of the last open

SCC file. If there are many users writing data simultaneously then frag-

ments coming from different streams are interwoven in each SCC. Even

though the stream sorting process merges the interwoven fragments within

each SCCs into consecutive disk sectors, with high number of streams of

fragments there is not enough consecutive space on the disk of sufficient

length to efficiently prefetch stream data fragments into the RAM cache.

103

Proposed Solution

The prefetch size has a constant size. For a high enough number of streams

the consecutive space on disk has smaller size then the prefetch size. This

results in reading into the cache not needed fragments which kicks out other

prefetched ones that would be used by following read operations. It lowers

the efficiency of the cache and increases random accesses to disks. Another

problem is the number of total streams of fragments that are read from one

storage node at the same time. It is proportional to number of streams that

are read simultaneously by all users. Each such stream is read from a dif-

ferent SCC, thus it is read from different file. The increase in the number of

streams read increases the number of random reads on disk, which are inef-

ficient. These problems might even be multiplied by the data deduplication.

Deduplication devastates data locality because during a write parts of user

data stream may be deduplicated over all previously stored user streams. It

results in user data stream being randomly scattered over the whole storage

space. When users read stream of blocks that were stored as a duplicates

against many previously stored streams the data may have to be gathered

from multiple SCCs uniformly distributed over the SCC chains. This further

increases random disk accesses and degrades read operation performance.

There might be another scalability performance problem that concerns

the performance of write of duplicated blocks. For small systems with a small

number of streams written concurrently almost all deduplicated blocks are

identified in the RAM cache. Bigger systems with more concurrent streams

written have higher frequency of disk I/O for deduplication checks. The

mechanism is very similar to the problem with scalability of reads. The

system checks if a new block that is to be stored is a duplicate by sending

a query to the physical node that is responsible for the key space the block

belongs to. This check is done by reading parts of matching SCC indexes.

The size of SCCs index is around 1,2 MB. The smallest reasonable size

of a block to read from disk is around 100 KB, because reading smaller

blocks takes the same time. Problem shows up when there are so many

streams written concurrently in the SCCs by users that were writing at

the same time. If there are more than 12 streams in an SCC each stream

has less than 100 KB of metadata in SCC index. This degrades prefetching

efficiency. It might be noticeable when there are tens of concurrent streams.

Additionally, to simplify implementation, the SCCs index cache keeps all

entries read from disk within single 100 KB I/O, not only the entries that are

related to prefetched stream. This causes quicker removal of cache entries

that still contain data that would be needed by following deduplication

requests which results in additional random access to disks and throughput

104

Requirements Satisfaction Discussion

degradation. However, in practice we have not seen the problem with drop

of write performance of duplicated blocks of regular backups.

The decrease of read performance is only a potential problem in most

cases. It is not noticeable for small and middle range systems. The problem

affects big systems but only for uncommon usage pattern i.e. when all users

read all their data at the same time. Such pattern would occur when all

users lost their data at the same time. It is quite unlikely, because the data

comes from separate sources. In case of big system only limited number of

users read the data at the same time in a typical case. Read performance of

such usage pattern is not degraded comparing to smaller systems, because

problems described above are mitigated by higher number of disks serving

read requests in parallel.

Some of the problems with read operation will be improved by increasing

efficiency of RAM caches. It will be done by keeping only the needed data,

in contrast to the current version which keeps in RAM all data read from

disk.

Total Performance Limited by Slowest Physical Node

On very high level HYDRAstor data organization is based on two founda-

tions - distributed hash table and keys of blocks computed based on their

content. Since keys are randomly and evenly distributed over hash key space

it is very easy to evenly distribute load over the whole system. This is be-

cause each component statistically receives the same number of fragments

to store. However, there is the other side of the coin. Since all components

receive the same number of fragments the system can only be as fast as the

slowest component. Since component’s speed depends on the storage node

it is hosted by, the system is as fast as the slowest storage node. The bal-

ancing algorithm takes into account each storage node’s performance and

assigns components in such a way that each storage node load is more or less

the same. Problems may appear when a physical node fails in such a way

that it does not stop, but its performance is decreased. The current version

of HYDRAstor does not handle such problems automatically. However, the

system detects disks with degraded performance which allows administrator

to take manual actions.

Fast Background Operations

Data organized as chains of SCCs provides support for fast background

operations. It is seen on figure 5.16. Data recovery operation reaches 160

105

Proposed Solution

MB/s/physical node which is slightly higher then 150 MB/s/physical node

reached by write operation.

Fast Data Location

Proposed data organization supports fast data location based on data con-

tent or id returned by previous write operation. DHT with hash of the data

content allows for fast locating of component handling the hash, and there-

fore the physical node which hosts the data. Separation of metadata (SCC

indexes) from data (SCCs) allows for fast location of data on disk, because

stream access and prefetched SCC indexes result in most of the location

queries being resolved in RAM cache without disk access.

In a dynamically changing system where data is transferred from one

node to another, the component may not have its SCC index chain locally

complete. In such a case one of its peers with complete SCC index chain is

used to locate the SCC storing the data. In an extreme case after massive

failures when non of the peers has complete SCC index the location may

be found by checking partial SCC index chains stored by physical nodes

previously hosting the component (such physical nodes send to the compo-

nent reports about its orphaned chains, thus the component has information

about the part of the chains hosted by other nodes). After the proper SCC

index is found the component knows the SCC which stores the data. If the

SCC is not hosted locally then it is located on one of the physical nodes

previously hosting the component or other peers can be used to reconstruct

the data.

Disk Data Locality

Proposed data organization takes into account locality of data on disks.

Streams of users data fragments are stored in the tail of SCC chain (i.e. the

latest open SCC file). This allows the write operation to store data on con-

secutive sectors of disks and thus provides high throughput. Then, after an

SCC is closed for writing, the stream sorting background task consolidates

data of different users streams in such a way that the fragments of the same

stream are located next to each other on the disk. Later on, it allows the

read operation to prefetch users data into RAM to avoid disk seek penalties.

106

Trade-offs resolution in HYDRAstor

Optimal Initial Data Placement

Initial data placement computed by global leader is the optimal and final

one in terms of entropy. Due to pinning components to physical nodes any

temporal disturbances caused by failures or maintenance works results in

limited amount of data changing their locations (i.e. limited number of

components being transferred). After the disturbances disappear data is

transferred to its original locations.

Performance under Failure

If under failure components can be evenly reconstructed then the perfor-

mance drop is almost proportional to the percentage of failed nodes. It can

be seen on figure 5.16. Write throughput under 4 healthy physical nodes is

600 MB/s. After one node is failed and all recovery background tasks are

finished, the throughput stabilizes at 430 MB/s.

If components cannot be evenly reconstructed on the remaining physical

nodes then there would be an additional performance drop proportional to

relative inequalities in number of components hosted by physical nodes.

5.5 Trade-offs resolution in HYDRAstor

5.5.1 Efficient Storage Usage vs. Fault Tolerance

As previously described there are two issues related to efficient storage usage

vs. fault tolerance trade-off:

• fault tolerance requiring redundant data that worsens the efficiency

of storage usage, and

• fault tolerance may impose placement of data that is not optimal with

regard to storage utilization.

Both trade-offs are not resolvable. To support fault tolerance there needs

to be some kind of redundant data to handle disk failures. Redundancy

cannot be removed totally, but the extent of its negative impact on stor-

age utilization depends on data placement policy. By using erasure codes

HYDRAstor provides much better storage utilization than other commer-

cial storage systems that are based on RAID technology (see section 5.4.2

on page 87 for more details). Additionally HYDRAstor gives users freedom

107

Proposed Solution

in deciding how much additional storage they want to sacrifice for increased

data resiliency on each block level.

Non optimal storage utilization imposed by data placement providing

a given level of resiliency cannot be resolved either. The most simple case

of such an unresolvable trade-off is a system that is built on n non-equal

capacity physical nodes and is to guarantee no data loss if n − 1 physical

nodes fails. To satisfy such a requirement each data block needs n − 1 its

replicas. Original block and replicas have to be spread over all physical

nodes. Such data placement makes the system full when the first physical

node is full. This means that physical nodes with a higher than minimal

capacity cannot be fully utilized. Storage systems can only strive to optimize

capacity utilization within the boundaries of data resiliency.

Due to data organization based on supernodes and components HYDRA-

stor has many points of freedom in assigning data to physical nodes, much

more than commonly used RAID solutions. However, HYDRAstor does not

find optimal solutions for all cases. One such case is the above example

with SNC=n=12. Another case is the example above with n set to 7 but

with the same capacity physical nodes. Then HYDRAstor with supernode

cardinality set to 12 could only keep original data in one component and

its replicas in the 11 remaining components. Components would have to be

spread over n physical nodes in such a way that each physical node hosted

at least one component. Such data placement results in inefficient storage

usage, because 5 replicas do not add any additional resiliency (i.e. there

are 5 physical nodes hosting two replicas). To solve such problems within

its current architecture HYDRAstor would have to either support supern-

odes with different supernode cardinality depending on requested resiliency

or some of the components for some data classes would be allowed to be

empty i.e. do not store fragments/replicas for chosen user data blocks. This

would greatly complicate the system and we do not plan to introduce such

changes. In any case, the problem with inefficient storage utilization fades

away as the system size increases. Systems built upon more than supernode

cardinality physical nodes have more freedom in distributing components

within given resiliency levels in such a way that capacity is better utilized -

bigger physical nodes can host component with many different supernodes.

This improves physical nodes utilization but does not decrease resiliency.

108

Trade-offs resolution in HYDRAstor

5.5.2 Efficient Storage Usage vs. Availability

To provide highest availability each piece of data should be stored on each

disk of each physical node. To reach the maximum storage usage efficiency

each piece of data should only be stored once. HYDRAstor addresses this

trade-off in several ways. First of all, it uses erasure codes that are at

once storage efficient and provide both high resiliency and availability. Be-

cause only fraction of data fragments are required to reconstruct the data

block, data can be read even if some physical node are not reachable. Sec-

ondly, quick components recovery after failures allows the system to accept

writes almost without any noticeable interruption. Thirdly, after physical

nodes failure, automatic data recovery of missing fragments on other phys-

ical nodes rebuilds data resiliency to the required level. This minimizes

the chances that any following failures would result in data unavailability.

Fourthly, the user decides how much resiliency given block should have.

This allows him to flexibly define the trade-off resolution.

Efficient Storage Usage vs. Reliable Detection of Duplicated Blocks on

Write

The architecture of supernodes provides very high redundancy of informa-

tion about previously stored blocks even if the block is not readable. This

is because each peer keeps the block’s fragment together with its hash key.

Thus only one component with complete metadata information about its

fragments (i.e. complete SCC index chain) is enough to verify that a block

to be written is not a duplicate. This means that the availability of infor-

mation that a new block is not a duplicate is very high. The availability

of information that a block is a duplicate is lower and depends on redun-

dancy of the previously stored block. To verify that a block is a duplicate

at least one component has to report that it has its metadata with block’s

hash key and the block has to be readable. A block is readable if enough

peers have readable fragments to be able to reconstruct the block. Block

readability depends on the level of its redundancy. If it is low and many

physical nodes are not reachable the block may not be readable. In such

a case the write operation stores the block as a non-duplicate by default.

Users may change system wide setting so as not to store block if they are

discovered as duplicates, but are not readable.

In summary, HYDRAstor is highly available when it comes to replying

to queries for blocks that are not duplicates. In the case of duplicates the

availability of such a reply depends on redundancy of the base block i.e.

109

Proposed Solution

an older block that is the base for deduplication. If the base block is not

readable HYDRAstor stores the new block again by default. This decision

comes from the fact that in typical backup polices users remove backups

when they are old enough. This means that inefficiency related to storing

a new block is temporary, because sooner or later the old unreadable block

will be deleted and the new one will be the base for further duplicates. If

the base block became readable (i.e. physical nodes that were storing its

fragments were connected back to the system) it would be the base for

further duplicates and the second block would be removed after its backup

was removed. In any case one of the duplicates would be removed from the

system if users applied typical backup polices.

5.5.3 Efficient Storage Usage vs. Performance

Providing Resiliency

HYDRAstor uses erasure coding instead of replicas. This is due to the fact

that replicas are not acceptable due to their inefficient storage usage - the

resulting solutions are very costly. Erasure coding is worse than replicas

in terms of CPU usage and disk access pattern for read operations. Due

to the constant increase in commodity CPUs computation of erasure codes

becomes a minor problem. The problem with performance of read operations

is more severe. It is associated with the fact that, to read a block several

fragments have to be read from several disks. This is in contrast to replicas

where only one fragment (copy) would have to be read. This is one of the

reasons for read performance issues described in section 5.4.6 on page 103.

Compared to replicas erasure codes increase the number of concurrently

read streams on disks which increases disk random reads. This is the cost

we pay for higher storage usage efficiency.

Heterogeneous, Non-proportional Nodes

HYDRAstor address the problem of the disparities between the CPU and

the capacity among physical nodes by introducing two types of components

and distributing them according to physical nodes resources. There are two

types of components: regular components and write initiator components.

Regular components are responsible for storing block fragments on disks.

They do not generate any CPU intensive work. Write initiator components

are responsible for data block compression and computing erasure code

fragments. They generate much more CPU work than regular components.

110

Trade-offs resolution in HYDRAstor

Due to these two types of components all components are entities that uti-

lize capacity and write initiators are entities that generate CPU work. The

balancing algorithm spreads components in such a way that physical nodes

have a similar fraction of their capacity utilized. Within this distribution the

balancing algorithm reassigns components in such a way that CPU richer

physical nodes receives more write initiators.

Deduplication vs. Performance

The impact of deduplication on performance depends on the type of op-

eration. It turned out that HYDRAstor data organization is very efficient

in providing highly performing write operation both non-duplicate and du-

plicated. The comparison of HYDRAstor to NAS systems in table 5.4 on

page 102 shows that data organization that supports deduplication has non-

duplicated block write throughput comparable to regular NAS systems.

What is more, due to efficient support for deduplication, verification if a

block is a duplicate is done without disk access in most cases. This results

in the deduplication write being twice as fast as regular writes. This means

that for a common write stream where 80-90% of blocks are duplicates write

throughput is 80-90% faster than systems without deduplication. From this

we can see that the trade-off between storage utilization and write perfor-

mance was successfully resolved.

As described in section 5.4.6 on page 103 deduplication is one of the rea-

sons for performance problems of read operation. A stream of written data

is deduplicated against previously stored streams. Each new stream repre-

senting the same of set of users’ data is slightly modified compared to the

previous one. In the worst case scenario it may happen that the new stream

is deduplicated against parts of all previously stored streams. This degrades

the locality of such a stream on the disk. Later, when the stream is to be

read, its performance suffers, because small parts of all previously stored

streams need to be read instead of reading one continuous stream. This

is a general problem which affects all systems with deduplication. We are

not aware of any deduplication system that resolves this problem without

sacrificing storage efficiency.

Efficient Storage Usage vs. Fast Data Location

The HYDRAstor system architecture based on DHT provides very fast data

location. Data blocks address space i.e. hash key space is divided into non-

overlapping subspaces, each handled by one supernode and its components.

111

Proposed Solution

Each physical node hosts tens of the components. Components create an

overlay network that can provide very short routing paths. After jump ta-

bles are implemented these paths can be as short as one hop. So far the

jump tables have not been required because HYDRAstor clients like HFS

cache locations of all components in order to access them directly without

any intermediate nodes. For big system built upon 100 physical nodes there

is around 3000 components. Keeping in RAM their locations is easily man-

ageable by HFS. However, such a coarse division of key space comes with

a price of non-optimal storage utilization. This occurs when nodes’ capac-

ity divided by the number of components hosted by them is not equal on

all nodes. Because components are the same size it results in system that

cannot accept new writes because some physical nodes are full even though

there are other physical nodes which still having free space. For a system

with a default size of maximum component size (0,5 TB) it leads to up to

3.5% of storage not being utilized as seen on figure 5.15 on page 81. Uti-

lization could be improved by increasing the number of components in the

system by decreasing their maximum size. However, this would increase the

number of streams of fragments and result in worse read performance.

5.5.4 Fault Tolerance and Availability vs Scalability

The basic entity that provides both fault tolerance and availability is a su-

pernode. Supernode resiliency is defined by supernode cardinality that is

a system constant set during system initialization. As the system increases

so the number of supernodes also increases. However, since resiliency and

availability provided by each supernode stays at the same level total system

availability and resiliency decreases. To properly handle the trade-off be-

tween fault tolerance and availability vs scalability the system would have

to dynamically increase supernode cardinality together with system growth.

We decided not to implement such feature so far because on the one hand

it would make the system implementation more complex and on the other

hand supernode cardinality can be set during system initialization to a high

enough level if the system is planned to be very big. However, we might add

dynamically growing supernode cardinality in the future.

5.5.5 Fault Tolerance vs. Performance

The tension between performance and the potential negative impact of re-

dundant data that has to be stored on each write operation turned out to

112

Trade-offs resolution in HYDRAstor

be nonexistent in practice. Even though each block is divided into smaller

fragments that together with redundant fragments are passed over the net-

work and stored on supernode cardinality disks, the write operation has

high throughput. This is because fragments coming from different blocks

are merged into one stream of data stored on disk within one SCC (i.e.

one file) which allows it to reach a high throughput. Additionally, since the

number of minimal fragments required to restore a block is lower than su-

pernode cardinality, the write operation does not have to store all fragments.

Later the missing fragments can be reconstructed. Such schema can be used

to provide high write throughput in case of a slow or temporarily unavail-

able physical nodes. However, current version of HYDRAstor required all

supernode cardinality of fragments to be stored by write operation.

Although HYDRAstor experiences problems with big systems aggre-

gated read operation performance, they are related more to deduplication

that scatters data user streams and with the fact that all users streams

are interwoven on disks than to the data redundancy. Data redundancy in-

creases the number of concurrent streams by a constant factor in contrast to

deduplication and the number of concurrent users. Deduplication and high

number of concurrent users may increase number of streams in a unlimited

manner.

In summary, the most critical factor for storage systems is the short time

needed for storing backup because the time window when such backup can

be done is very short. HYDRAstor fulfills this requirement very well. The

aggregated read operation is less critical, because the chances that all users

of a big system will read backups at the same time are low. In a typical case

one or several users lose primary system data and only those users read the

backup. Performance of read operation for several concurrent users does not

suffer much.

With respect to the tension between types of redundancy i.e. replication

vs. erasure coding, replication would provide better results for read opera-

tions. This is because to read a block only one fragment (copy) would have

to be read. If there were many users reading data concurrently they would

be divided into supernode cardinality groups. Each group would be handled

by a separate peer of each supernode. This would result in a lower number

of streams read by disks and thus it would partially solve problems with

read performance. However, storing replicas instead of coded blocks is so

much more inefficient storage-wise.

With respect to performance being negatively impacted by operations

that rebuild data after physical node failures HYDRAstor data organization

113

Proposed Solution

address it in two ways. First of all, after failure components that are recov-

ered are distributed over “living” physical nodes in such a way that evenly

distributes the load generated by rebuilding data. Thus data rebuilding af-

ter physical node failure does not generate data reconstruction hot spots.

However, theoretically there might be performance issues on physical nodes

serving fragments (i.e. source nodes). Data for reconstruction is read from

peers of recovered components. If supernodes are clustered into separated

groups of physical nodes (i.e. in a case when supernodes are assigned to

racks) only one such group serves the fragments required to rebuild data

and this may cause a hot spot. Albeit the reconstruction process does not

read the fragments separately. Instead whole SCCs are read which is very

efficient in terms of disk access. In practice source physical nodes are not per-

formance bottlenecks. Second, HYDRAstor data organization allows quick

verification of the resiliency of data after a failure. This allows the system to

prioritize the background rebuilding processes according to loss in resiliency.

If this loss is minor or moderate background processes are slowed down while

users regular operations like read and write are executed. Since storage sys-

tem typically has short intensive periods of regular operations and long time

windows when no user actions are executed, non-critical background oper-

ations are executed during that idle time and do not interfere with users

regular operations.

However, there are two cases when the current version of HYDRAstor

creates hot spots. One is when one or several disks of a physical node fail.

The other case is when a failed physical node is replaced by a new one

before its data is reconstructed on other physical nodes. Both these scenarios

require the reconstruction of data fragments which, due to resiliency loss,

may be a high priority task. The fragments are only written to one physical

node. This physical node becomes a hot spot and a bottleneck. However,

the proposed data organization is flexible enough to support a solution to

this problem. Data fragments could first be reconstructed on physical nodes

where write initiators are hosted to reach required resiliency level. Later on,

when the system is idle, fragments would be transferred to the final location

as a low priority tasks not overloading the target physical node. Since write

initiators are distributed over multiple physical nodes and they should not

become hot spots. We plan to implement this improvement.

114

Trade-offs resolution in HYDRAstor

5.5.6 Scalability vs. Performance

The probability of any failures increases with growth in system size. Any

such failures may negatively impact performance because it may stop or

slow down users’ operations. On the one hand HYDRAstor is sensitive to

such errors because the load generated by users is evenly distributed over

all supernodes and their components. Total throughput slowdown is propor-

tional to the slowdown of any supernode. On the other hand each supernode

is to some extent an autonomous entity that recovers from failures and has

redundancy that allows it to handle users’ requests even if there are failures.

In case of deletion (i.e. marking blocks to be reclaimed) for default config-

uration only seven out of twelve components of each supernode have to be

healthy (i.e. have full chain stored locally) to successfully execute the oper-

ation. In the case of write and read operations, as long as a supernode has

“living” write initiators, a read operation can be executed by reading frag-

ments from remaining peers and writing write threshold fragments instead

of supernode fragments (writing write threshold feature is not implemented

yet, but it is designed and relatively easy to add). A more problematic case

is when the write initiator is hosted by a failed node. In such a case read

and writes are stopped until the component has recovered which takes up to

thirty seconds. The problems with dropping performance can be mitigated

by an additional layer between the user and the system. For example HFS

buffers users’ requests to hide the intermittent performance drops.

There is another problem with hardware failures that manifest in de-

creased performance. In the case of DSS, the most important are problems

with disks, that due to failures have degraded performance, but do not fail

completely. In the case of HYDRAstor these types of failures slow down

total throughput at the same level as the physical node with the failed disk

(HYDRAstor is as fast as the slowest physical node). These types of failures

are more likely to happen in bigger systems which have many disks. To ad-

dress this problem, HYDRAstor discovers such disks and the administrator

is notified about the problem. Then the administrator decides if such disks

should be replaced.

Scalability vs. Fast Data Location

HYDRAstor architecture based on DHT is highly scalable. Due to the dis-

tribution of mapping from keys to blocks among all the physical nodes

and very low disruption after nodes’ arrival or departure DHTs scale to

very large number of physical nodes. DHTs provide fast data location. FPN

115

Proposed Solution

with the to-be-implemented jump tables would have a very low constant

path length with little increase in node state.

Scalability vs. Fast Background Operations

Almost all background operations are processed within supernodes that

coordinate and manage them. This makes background operations resistant

to potential scalability issues because background tasks have high physical

nodes locality i.e. they depend on a limited number of physical nodes. The

performance problem of one physical node only impacts supernodes that

have at least one component hosted by that physical node. For default

configuration clustering supernodes along racks this is not more than 48

supernodes and this number does not depend on system size. Although there

is one background operation that depends on all supernodes. This is the

deletion upgrade counters process that is finished after all supernodes finish

their work. The performance of this process may suffer if even one supernode

has degraded performance, which is more likely in a bigger system.

Scalability vs. Disk Data Locality

HYDRAstor spreads each data stream equally among all supernodes, and

in consequence, among all physical nodes. Main advantage of such an or-

ganization is load balancing among all physical nodes. However, it may be

a drawback for very big systems in case when all stream are read at the

same time. As an increasing number of data streams is associated with an

increase in the number of physical nodes, each physical node keeps growing

a number of substreams of smaller length. This finally results in a situation

when each physical node stores so many short substreams that reading them

all at the same time, regardless of organization of data on disks, results in

decrease of disk read operations performance caused by decrease in disk

data locality.

However, note that current high level data organization provides high

performance of read operation when not all, but limited number of streams

are read at the same time. In such a case data is read from a smaller number

of disk sectors, so there is fewer random reads. Additionally, since there is

fewer streams, RAM cache keeps more prefetched data of each stream which

results in further decrease in disk I/O. And because data is spread over all

physical nodes, system harnesses all disks to handle single or several stream

reads which results in high performance.

116

Trade-offs resolution in HYDRAstor

Since reading limited number of streams is more common than reading

all of them at once, current high level data organization is good enough in

practice.

5.5.7 Intra Requirements Trade-offs Resolution

Fast Data Recovery vs. Resiliency For Concurrent Failures

HYDRAstor deals with this trade-off in several ways. First of all users can

choose if they prefer clustered data placement by providing information to

the system about physical nodes division into machine racks. If that infor-

mation is provided supernodes are clustered along racks. If the information

is not provided supernodes are more randomly distributed over all physi-

cal nodes. To guarantee the highest level of declustering the entropy func-

tion could be easily changed to prefer that distribution. Having said this,

typical network topology has better network throughput between physical

nodes in the same rack than between physical nodes in different racks. Thus

it makes clustering supernodes along racks more a preferable distribution.

This is because components belonging to the same supernode generate more

network traffic than components belonging to different supernodes. The en-

tropy changes that would prefer random supernodes distribution where not

required by users and are not implemented. Secondly, the data recovery al-

gorithm is very similar to the one described in [9]. The algorithm prioritizes

the data to be recovered in such a way that data with a critical loss in

resiliency is reconstructed first and its tasks, (in the case where a reliable

policy is set for data reconstruction), have higher priority than write and

read operations. This allows the system to quickly reach a safer level of re-

siliency. It mitigates the problem with prolonged data recovery in clustered

systems. Thirdly, due to asymmetry in resource consumption between phys-

ical nodes that provide fragments for reconstruction and physical nodes that

do actual reconstruction of missing fragments the trade-off to some extent

melts away in favor of clustered distribution. Physical nodes are heavily

loaded by processes that reconstruct data, because they recompute erasure

coded missing fragments, which is a CPU intensive process. Physical nodes

that provide fragments that are used to reconstruct missing ones are very

lightly loaded because they only read the whole SCCs from disks (it is fast

stream access and does not result in random I/O on disks because SCC

is tens of megabytes file) and pass them through the network. This means

that in the erasure coded data reconstruction process the source physical

117

Proposed Solution

node can handle many target physical nodes for the same load on source and

target. Recovered components are distributed evenly over all physical nodes

(recovered components are not affiliated with racks). Such distribution of

recovered components together with asymmetry in resource consumption

between target and source physical nodes results in fast erasure coded data

recovery performance, even when supernodes are clustered along racks to

improve resiliency for concurrent failures.

Local Balancing vs. Global Balancing

HYDRAstor addresses this trade-off by the hybrid balancing algorithm that

joins both local and global balancing. This results in system that has the

advantages of both types of balancing, but does not have their disadvan-

tages. The method of pinning components according to globally computed

components distribution guarantees that component distribution is optimal

and stable as long as the system has no failures. Since global balancing is

computed by one central entity which gathers information from all physi-

cal nodes it can take many balancing criteria into account. Pinning makes

system reach optimal, initial component distribution after the distribution

is temporarily disturbed by planned or unplanned events like administra-

tion tasks (i.e. node retirement) or failures. After such events are gone (i.e.

node is unretired or started after a failure) components are transferred back

to their original locations. It both stabilizes the system and minimizes the

amount of data being transferred between nodes after failures are repaired

because components are transferred back to where most of their data is

stored. Local balancing kicks in only in the case of physical node or disk

failures. It makes decisions about the placement of components which have

pinning target physical node broken, thus they operate only on very lim-

ited number of components and introduce little imbalance into the system.

Additionally, local balancing executed by a physical node makes decisions

based only on information received from neighboring physical nodes, which

makes it fast and quickly adaptable to changes in the system caused by fail-

ures. Furthermore, even though the global distribution is computed by one

chosen component (global leader) balancing algorithm is failure resistant. If

that component dies while computing the distribution, its newer recovered

incarnation executes components global distribution again. Unless there are

continuous failures the optimal distribution is computed and delivered to

all components.

118

Trade-offs resolution in HYDRAstor

Inline vs Offline Deduplication

As described in section 4.1.7 on page 34, offline deduplication may have

only one advantage over inline deduplication - performance. Despite this

advantage it has many disadvantages: - higher disk capacity requirements,

more complicated administration, worse support for disaster recovery, and

more complicated system design and implementation. Taking this into ac-

count HYDRAstor was designed as an inline deduplication system. This

decision turned out to be the right one. HYDRAstor is a highly complex

system. An additional subsystem temporarily storing users data and pro-

viding at least the same failure resiliency as the long term storage could

make the implementation unfeasible. However, more importantly HYDRA-

stor performance results show that offline deduplication would not be faster

and could in fact be slower. To support an offline deduplication the system

would have to temporarily store data in a fashion very similar to NAS stor-

age. However, the performance results presented in table 5.4 on page 102

shows that HYDRAstor stores streams of non duplicated data at least as

fast as common NAS storage systems. This means that storing temporarily

data for later offline deduplication processing would not give better per-

formance. What is more, in the case of deduplication writes, HYDRAstor

is around twice as fast as NAS storage which means that in case of dedu-

plicated data offline deduplication would be even slower than the current

solution.

119

Chapter 6

Related Work

A review of related work can be organized along many dimensions, but we

have decided to concentrate on the dimension of scalability. This is because

scalability is the most important feature of DSS systems; if scalability is not

important, a DSS can be replaced, usually by a single node, which today

can have a significant storage capacity and deliver many other DSS features.

With respect to scalability, existing disk-based solutions for backup and

archiving can be divided into the following groups:

• Non-scalable, single node systems.

• Limited scalability clustered systems.

• Highly-scalable distributed systems.

Below we consider both commercial and research systems and concen-

trate on how data organization of these systems impacts their functionality.

Non-scalable systems In this group there are single-node systems tar-

geting backup and archiving. They focus on efficient storage usage by sup-

porting data deduplication. Some of them also focus on high performance.

Flexibility of data resiliency is commonly limited to the RAID method of

organization.

Venti [69] is a single server research solution targeting archiving. It cuts

streams of data into variable size data blocks of maximum size 52 KB. Blocks

are kept in an append-only log on a RAID array of disk drives (Venti does

not support deletion). This log is similar to HYDRAstor’s chain of SCCs.

120

The log is divided into sections called arenas. Arenas are similar to HYDRA-

stor’ SCCs. For each block the SHA-1 key is computed to find duplicates. A

separate index structure is used to locate a block based on a key. This index

is stored on the disk drive. Venti keeps an RAM LRU cache for both the

log and the index. The log cache with prefetching improves performance

by limiting access to the disk log. However, the cache does not work for

the index, because keys are random which results in no spatial locality in

the index access. What is more, there is very little temporal locality in

backup data stream. This causes LRU cache policy to be very inefficient. It

results in random disk access and poor performance. The Foundation [74]

is a research solution that improves Venti’s design by storing a separate

summary file for each arena. This file has list all of (hash, offset) pairs of

the arena. The Foundation prefetches summary files and take advantage

of the spatial locality inherent in sequential reads. It improves hash cache

efficiency and increases the throughput of read and deduplicated write oper-

ations. HYDRAstor’s SCC indexes are similar to summary files and are also

prefetched to the RAM cache to improve performance. However, since Foun-

dation is designed for personal use, it does solve the problem of multiple

streams written concurrently but later read separately.

IBM ProtectTIER [59] a single node commercial solution with a very

high capacity of 1 PB, but relatively slow throughput of 1000 MB/s. This

system has unique data organization. Unlike HYDRAstor and other com-

mercial solutions it does not use hash of data blocks to find duplicates.

Instead it uses HyperFactor technology [58]. It retains the RAM index of

summary of stored blocks. When new data is received, the system checks

for data similarities in the index. When the matches are found, the sim-

ilar blocks are read from the disk. Binary differential is performed and

only unique data is stored. This is a different approach the one we used

in HYDRAstor. HYDRAstor deduplicates data against exactly the same

blocks and does not store any binary differences between data blocks. IBM

claims that it uses differential solution to avoid possible hash collisions in

CAS systems.

DataDomain [99] is another commercial solution. Since its architecture

is described in detail we can compare its data organization with that of

HYDRAstor. Originally DataDomain was a single node solution. It imple-

ments a file system interface. The file system divides streams of data into

chunks of variable size, on average 8 KB vs. 64 KB in HYDRAstor. Smaller

chunks provide a better ratio of data deduplication. Compressed chunks

are combined into 1000-element groups. Groups are stored in 4 MB con-

121

Related Work

tainers. Containers are very similar to HYDRAstor SCCs. However, since

DataDomain is a single node solution containers store chunks of user data

blocks vs. SCCs that store erasure code fragments. DataDomain uses a raw

disk for storing containers vs. SCCs that are ext3 file system files. As with

HYDRAstor DataDomain keeps containers separated form their metadata

to allow metadata prefetch for better throughput. DataDomain creates a

separate sequence of containers for each data stream to increase effective-

ness of data prefetching. HYDRAstor achieves a similar result by sorting

fragments stored in SCCs by their stream ids. HYDRAstor cannot use sepa-

rate SCC chain for each data stream because in big systems it would result

in very large number of containers (i.e. files) written concurrently which

would have a negative impact on write throughput.

Limited scalability systems In this group there are multi-node storage

systems targeting backup and archival. The data organization of these sys-

tems can potentially provide higher capacity and performance than systems

of the previous group. However, scalability is still limited.

Pergamum [86] is an archival system built with disk-based storage nodes

that store data reliably and in an energy-efficiently manner. The aim is of

this research project was to replace tapes with long-term disk-based archival

storage. Each node is equipped with flash-memory that keeps metadata like

index of blocks stored in disks, data signatures and information about pend-

ing writes. It allows as many as 95 percent of the disks to be spun down

while still providing reasonable performance and high reliability. Data or-

ganization based on flash memory that would keep content of existing SCC

index cache and other metadata is an interesting option that we intend

to investigate to increase performance of HYDRAstor. To provide reliabil-

ity segments on disks are grouped into regions. Regions from multiple disk

together with redundant erasure coded data form a redundancy group. Re-

dundancy group are reliability entities similar to HYDRAstor’s supernodes.

However, Pergamum does not provide deduplication.

Designers of DataDomain are trying to add a scalability feature to their

system [24]. They created commercial Data Domain Global Deduplication

Array (DDG) [4] with this goal in mind. The goal here is to preserve existing

DataDomain data organization and add additional data placement policy

that would provide scalability. DDG Client machine cuts data stream into

regular chunks and combines them together into a super chunk of 1 MB

size. Next, the client machine computes the feature that is the SHA-1 hash

of the first 64 bytes of the super-chunk. The value of the feature statically

122

determines the node that stores all chunks of the given super chunk. This is a

very simple solution, but it has several disadvantages: the failure of any node

results in data loss; according to simulation results published in [4] systems

with more than 2 nodes have uneven capacity utilization which requires

ongoing data migration between the nodes; chunks are deduplicated only

within single nodes, thus many chunks may not be deduplicated, because

they are stored according to a feature computed based on one chunk in the

super chunk, not based on the locations of chunks stored earlier. Commercial

DataDomain solution scales only up to 2 nodes. HYDRAstor makes use of

DHT extended with supernodes to implement data placement policy that

avoids the disadvantages DDG experiences.

EMC Centera [3] if one of the first (if not the first) commercial systems

to use content-addressed storage for archiving. To provide resiliency it’s ar-

chitecture is based on redundant arrays of independent nodes (RAIN) [13],

which is a kind of RAID parity protection applied to system nodes. Ad-

ditionally, two copies of each data object are stored on disks on separate

nodes. The system consists of storage nodes and access nodes handling read,

write and delete operations. According to available information [37] chunks

have constant and large 100 MB size. This approach results in lower dedu-

plication than the much smaller variable block size used in HYDRAstor.

The architecture of EMC Centera is not publicly available. However, ac-

cording to information gathered by intra-box analysis of EMC Centera in

[37] we conclude that the hash table is replicated over all access nodes.

Write or delete operations result in broadcast messages that update that

the hash table on each access node. This solution limits scalability. Since it

is an archival solution its performance is not the main objective. Centera’s

designers focused more on configurable retention settings ensuring infor-

mation is not erased prior to the expiration of its defined retention period

(non-eraseability feature).

HYDRAstor’s CAS-based data organization allows ANs to deduplicate

data before sending it to SNs. There are other commercial solutions that

deduplicate data at the source i.e. on client machines. Such solutions de-

creases network traffic between client machines and a global repository.

Clients filter out redundant data before sending backup data over networks,

making it possible to protect systems even if they are over congested LANs

or WANs. A global repository provides deduplication for all clients. Such a

solution decreases network traffic for backup, but may suffer when all backed

up data has to be transferred for recovery. Thus remote offices can configure

their local repository. Clients backup data to the local repository which in

123

Related Work

turn replicates data back to the central data repository. Such a feature is

not supported by HYDRAstor’s data organization. A local repository pro-

vides fast recovery. EMC Avamar [2], Symantec PureDisk [22, 87], Symantec

NetBackup 5020 [88] and ExaGrid [1] are examples of this type of solution.

Avamar uses 24 KB variable size blocks. The hash of a block determines

which node and disk stores the block in the global repository. This is similar

to HYDRAstor where the block hash determines block location based on

component location that handles that hash. However, Avamar scalability

of global repository is limited to 16-node configurations. PureDisk together

with Symantec backup media servers can be used to create a global reposi-

tory providing deduplication. From the available information it is not clear

what is the exact data organization of such configuration. We suspect that

media servers balance load between PureDisks and divide hash key space

between the PureDisks or statically assigns backup streams to PureDisks.

The latter case would mean that the deduplication is not global among all

PureDisks. However, even if the deduplication is global such repository has

limited scalability - it can scale up to 96 TB. Symantec NetBackup 5020

provides better scalability - it scales up to 192 TB. ExaGrid is an offline

deduplication grid solution providing incremental scalability, but can only

configure up to ten servers into a single grid configuration of up to 320

TB raw capacity with maximum full backup size limited to 130 TB. To

support fast data restore it maintains full, non-deduplicated copies of the

most recent backups on the client site and only sends delta changes to the

offsite global repository during post-process deduplication. In addition to

using fast LAN instead of slower WAN network, such a solution ensures

fast recovery, because data does not have to be reassembled from many

deduplicated fragments. The solution addresses problems related HYDRA-

stor’s data organization which has limited performance of read operations.

However, this fast recovery is achieved at the expense of worse efficiency of

storage usage - more or less half of the capacity has to keep non-deduplicated

latest backup on the client site and the other half deduplicated backups in

the global repository.

RepStore [97] units LAN tailored DHT (similar to FPN) with so called

smart storage bricks to archive low storage cost and high performance bal-

ance. RepStore’s data organization automatically employs replication for ac-

tive write-intensive data and erasure-coding for archive data. HYDRAstor’s

data organization does not support such automatic and dynamic change

of redundancy type for better performance. RepStore uses content-based

addressing, but does not provide deduplication. Since RepStore’s data or-

124

ganization is based on DHT it is the only system in this group that is highly

scalable.

FAB [31] is a another system that makes use of smart storage bricks to

create a distributed disk array. To provide resiliency FAB uses a Seggroups.

Seggroup defines the distribution of user blocks over smart bricks. The lo-

cation of bricks hosting a seggroup is changed by an agreement protocol,

a technique similar to the one used in HYDRAstor. Seggroups are data

organization similar to HYDRAstor’s supernodes. As opposed to HYDRA-

stor, seggroups’ metadata has to be replicated by all bricks in the system

to support read and write operations. This may limit FAB’s scalability.

RADOS [95] harnesses smart storage intelligence and autonomy to dis-

tribute complexity surrounding redundant storage, failure detection and

failure recovery. Data objects are organized within placement groups, a logi-

cal collection of objects that are replicated by the same set of devices. Thus

they resemble HYDRAstor’s supernodes. The functionality of devices acting

within the placement group are similar to the functionality of HYDRAstor’s

components.

Ursa Minor [6] prototype extends the idea of the flexible redundancy

policy implemented by RepStore to versatile cluster-based storage. Ursa

Minor data is organized in such a way that for each stored block users can

choose a redundancy policy (replication or erasure coding), storage-node

fault type (fail-stop or Byzantine), number of storage-node faults to toler-

ate, data location and timing model (synchronous or asynchronous). This

flexibility exceeds HYDRAstor’s, RepStore’s and FAB’s data organization.

However, it comes with disadvantage of data managed by a single object

manager that limits system scalability.

RepStore, FAB, RADOS and Ursa Minor are all research projects.

FalconStor [30] is the market-leading Virtual Tape Library(VTL) solu-

tion provider. FalconStor has two pools of storage - a VTL pool (RAID-5

with hot spare) managed by VTL nodes and a Single Instance Repository

(SIR) pool (RAID-6) managed by SIR nodes. The VTL pool can scale up

to 8 VTL nodes, the SIR pool can scale up to 4 SIR nodes. Client data is

sent to the VTL pool in a backup tape format that is stored in disks. The

incoming data is stored on disk in a self-describing format that is optimized

for sequential reads and writes. To avoid data defragmentation on disks and

to reach high performance FalconStor does not use a file system. Instead,

FalconStor allocates raw, consecutive disk sectors to each virtual tape at

the full size of the emulated tape. Data deduplication is done later on by a

background process that scans the VTL data pool and determines whether

125

Related Work

data is unique or has already been copied to the SIR pool. The process then

passes only single instances of unique data to the SIR pool. The original

data from the virtual tape is replaced by direct references of where the data

is stored on the SIR node [90]. This allows data to be directly read from

appropriate locations. However, such solution suggests that data within a

SIR pool cannot change location and the system cannot quickly balance

itself after new nodes are added. FalconStor tries to decipher virtual tape

format prior to the deduplication process to increase the deduplication ratio

by identifying data from different parts of the backup stream multiplexed

by a backup application. FalconStor uses SHA-1 over various size chunks

of data. The hash table is distributed amongst all SIR nodes. SIR nodes

keep counters of instances of hashes and deletes data when counters drop

to zero. FalconStor solves the problem of lack of locality of the hash table

by storing the entire hash table in RAM. However, this brute force solution

comes with cost - SIR nodes themselves (not including RAM of VTL nodes)

require five times more RAM for each TB of storage than HYDRAstor does.

Highly-scalable systems In this group there are archival systems that

store data in wide area networks built with untrusted nodes. Often the nodes

are commodity PCs with with unused, free disk capacity. Such systems deal

with failures (quite often byzantine ones), malicious users, and nodes con-

tinually enter and exit the network, often without warning. Some of them

address anonymity of users who publish data. Such systems provide very

high scalability, however due to the abundance of disks the storage capacity

is consumed inefficiently - these systems often do not provide deduplication,

store data in many replicas and may keep stored data forever (no delete op-

eration). These systems use some kind of distributed hash tables, commonly

Chord [85], and are self-reorganizing and self-repairing. All the systems in

this group are results of research projects and are not commercial solutions.

OceanStore [75] is a globally scalable persistent storage utility with a

file system interface and strong data consistency. Users can store and up-

date data objects. Objects are kept forever. As with HYDRAstor blocks,

OceanStore blocks are immutable. Update operations result in the creation

of new versions of the objects - there is no in-place update. OceanStore

employs two-tier based data organization. The first is the inner-ring hosted

by servers maintained by trusted providers. The inner-ring is responsible

for maintenance of primary replica of objects and provides consistent and

autonomic operations on the replicas. All operations are executed under the

Byzantine agreement protocol. HYDRAstor supernodes’ functionality and

126

organization is similar to the inner-ring. The second tier, the archival-tier, is

responsible for replication by the creation of additional replicas and archiv-

ing by the creation of an erasure coding version of the primary replica. The

second tier utilizes desktop computers as nodes that may not be powerful,

well connected and trusted. OceanStore utilizes Tapestry [98], a distributed

hash table, to locate objects in the system. Objects are divided into blocks.

OceanStore identifies blocks by the hash of their content, thus with help of

Tapestry the same block can be part of many data objects. Thus OceanStore

finds duplicates, but its positive impact on efficient storage usage is limited

by keeping many replicas and erasure coded versions of the deduplicated

blocks.

PAST [25] resembles a simpler version of OceanStore. It provides a sim-

ple storage abstraction for persistent, immutable files. It makes use of the

Pastry [76] distributed hash table as location and routing schema. Stored

files are identified by an unique id returned to the users. There is no filesys-

tem interface. To provide resiliency many replicas of each file are created.

Whole files are stored.

CFS [21] is a better version of PAST. It stores blocks, rather the whole

files and balances the nodes by spreading blocks evenly over the nodes. It

uses Chord [85] to locate data. IVY [55] is a peer-to-peer read-write file

system built on top the CFS. Unlike OceanStore, it does not provide strong

data consistency.

Glacier [39] uses desktop PCs that have abundant but unreliable storage

space to build highly durable, decentralized storage. It assumes large scale

correlated and unpredictable Byzantine failures. Glacier data organization

trades storage usage efficiency for durability. For example, to ensure an

objects survives failure of 60 percent of the nodes with a probability of

0.999999, the storage overhead is about eleven-fold. To minimize the cost

of the storage overhead Glacier uses erasure codes instead of replicas.

SafeStore [49] is a concept that uses multiple autonomous storage service

providers (SSPs) to ensure data safety by spreading RAID-ed or erasure

coded data among them. It uses SSPs audit mechanism to quickly detect

data loss and trigger data recovery before additional faults. The idea of

an erasure code system dedicated to the environment with multiple data

centers protecting one another data is also described in Myriad [15].

127

Chapter 7

Conclusions

7.1 Summary

In this thesis we have studied the impact of data organization on distributed

storage systems for backup and archival data.

We have identified and described system requirements whose fulfillment

depends on the organization of the data stored in the system. Additionally,

we have shown that organizing data to fully satisfy each requirement is

impossible. This is because there are trade-offs among indirectly conflicting

distributed storage system requirements. For many pairs of requirements,

organizing data in a way that improves the fulfillment of one requirement

reduces level of fulfillment of the other requirement. We have identified and

described such conflicting requirements.

Next, we have proposed a novel data organization that resolves the trade-

offs among requirements in a reasonable way. This is verified by using the

proposed organization in a commercial DSS system called HYDRAstor. In

this system, data is organized around a distributed hash table with virtual

supernodes spanned over physical nodes. Data resiliency is provided with

erasure codes, with fragments of erasure-coded blocks distributed among su-

pernode components. Fragments are stored in containers that are organized

into chains to allow fast storage of data streams and enable efficient data

consistency management, data health verification and data reconstruction.

We have analyzed the requirements’ fulfillment and described trade-

offs resolution of proposed data organization. The analysis showed that the

proposed data organization satisfied almost all storage system requirements.

However, based on experience gathered during the work on HYDRAstor, we

128

Future Work

have identified improvement opportunities described in the next section.

7.2 Future Work

The analysis of system requirements fulfillment in sections 5.4 on page 79

and 5.5 on page 107 shows the following improvement opportunities:

Limited scalability of read operation due to deduplication As de-

scribed in section 5.5.3 on page 111, deduplication degrades the locality of

data streams stored on disks. The first, initial backup is stored by the system

as stream of sequential data located on successive sectors of disks. However,

each subsequent backup stream has some fraction of its data changed. Such

streams are deduplicated based on all previously stored backups streams.

Thus, a backup stream may be scattered over random sectors of disks. This

leads to a situation in which the reading of the first backup is fast, but read-

ing the most recent one is slow, because the system has to gather backup

data from many disk locations. This is a problem, because users expect

the opposite behaviour. That is, reading the most recent backups should

be fast, because they are usually used for data recovery, whereas earlier

backups are commonly used for archival purposes so their retrieval is not

performance critical. One possible approach to address this problem is to

change the write operation so that it will not deduplicate data if it leads to

a high level of stream degradation. With this approach, the stream of the

most recent backup will not be degraded, but at the reduced deduplication

effectiveness.

Limited scalability of read operation due to high number of con-

current writes The number of users concurrently writing data to the

system is proportional to the system size. In a very big system this leads to

another problem with the performance of the read operation as described

in section 5.4.6 on page 103. Many users writing data simultaneously cause

many fragments from different streams to be interwoven in each SCC. The

stream sorting process merges the interwoven fragments within each SCC

into consecutive disk sectors. However, with a high number of users, streams

may be still fragmented even after stream sorting. As a result, stream

prefetch is not effective which leads to random disk access. The source of

the problem is the distributed hash table that uniformly distributes streams

129

Conclusions

over all nodes. Fixing the problem requires an increase in streams’ temporal

locality on nodes of big systems while preserving effective deduplication.

A physical node overloaded by data fragment reconstruction As

described in section 5.5.5 on page 112 a physical node with one or sev-

eral disks failed or a quick replacement of a failed physical node result in

all reconstructed data fragments being written to one physical node. Such

physical node may become a hot spot and a bottleneck. To avoid this prob-

lem reconstructed data should be initially written to other physical nodes

to reach desired resiliency level. Later on, the fragments should be trans-

ferred to the target physical node as a low priority task not to overload the

physical node.

Constant size of supernodes The size of supernodes and their failure

resiliency stays at the same level with increased system size and increased

number of supernodes. Since the reliability of each supernode is constant,

with very large systems the reliability of the entire system can be signif-

icantly decreased. The solution here is to allow supernode cardinality to

change dynamically with the growth of the system. Such solution will cer-

tainly require changes of the system implementation, however general idea

of the proposed data organization will not change.

130

Bibliography

[1] ExaGrid. http://www.exagrid.com.

[2] EMC Avamar: Backup and recovery with global deduplication, 2008.

http://www.emc.com/avamar.

[3] EMC Centera: content addressed storage system, January 2008.

http://www.emc.com/centera.

[4] Data Domain Global Deduplication Array, 2011.

http://www.datadomain.com/products/global-deduplication-array.html.

[5] United States of America 107th Congress. Public Law 107-204: ”Sarbanes-

Oxley Act of 2002”. July 2002.

[6] Michael Abd-El-Malek, William V. Courtright II, Chuck Cranor, Gregory R.

Ganger, James Hendricks, Andrew J. Klosterman, Michael P. Mesnier, Man-

ish Prasad, Brandon Salmon, Raja R. Sambasivan, Shafeeq Sinnamohideen,

John D. Strunk, Eno Thereska, Matthew Wachs, and Jay J. Wylie. Ursa

minor: Versatile cluster-based storage. In FAST, 2005.

[7] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. Douceur,

J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer. Farsite: Federated,

available, and reliable storage for an incompletely trusted environment, 2002.

[8] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Pat-

terson, Drew S. Roselli, and Olph Y. Wang. Serverless network file systems.

In ACM Transactions on Computer Systems, pages 109–126, 1995.

[9] Rekha Bachwani, Leszek Gryz, Ricardo Bianchini, and Cezary Dubnicki.

Dynamically quantifying and improving the reliability of distributed storage

systems. In SRDS, pages 85–94. IEEE, 2008.

131

BIBLIOGRAPHY

[10] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, and Michael Wan. The

sdsc storage resource broker. In Proceedings of the 1998 conference of the

Centre for Advanced Studies on Collaborative research, CASCON ’98, pages

5–. IBM Press, 1998.

[11] Michael Ben-Or. Another advantage of free choice (extended abstract): Com-

pletely asynchronous agreement protocols. In PODC ’83: Proceedings of

the second annual ACM symposium on Principles of distributed computing,

pages 27–30, New York, NY, USA, 1983. ACM.

[12] Johannes Blömer, Malik Kalfane, Marek Karpinski, Richard Karp, Michael

Luby, and David Zuckerman. An xor-based erasure-resilient coding scheme.

Technical Report TR-95-048, International Computer Science Institute, Au-

gust 1995.

[13] Vasken Bohossian, Chenggong C. Fan, Paul S. LeMahieu, Marc D. Riedel,

Jehoshua Bruck, and Lihao Xu. Computing in the RAIN: A Reliable Ar-

ray of Independent Nodes. IEEE Trans. Parallel Distrib. Syst., 12:99–114,

February 2001.

[14] Peter J. Braam. The Lustre Storage Architecture, 2004.

[15] F. Chang, M. Ji, S. Leung, J. MacCormick, S. Perl, and L. Zhang. Myriad:

cost-effective disaster tolerance, 2002.

[16] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven

Tuecke. The data grid: Towards an architecture for the distributed manage-

ment and analysis of large scientific datasets. JOURNAL OF NETWORK

AND COMPUTER APPLICATIONS, 23:187–200, 1999.

[17] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.

Freenet: A distributed anonymous information storage and retrieval system.

Lecture Notes in Computer Science, 2009, 2001.

[18] Rick Cook. How to estimate the lifespan of LTO tapes. Search-

DataBackup.com, May 2007.

[19] EMC Corporation. EMC Centera. Content Addressable Storage. Product

Description Guide.

[20] Hitachi Data Systems Corporation. Virtual Tape Library Solutions Brief

Improving the Cost, Reliability, and Responsiveness of Your Backup and

Recovery Infrastructure . Hitachi Data Systems Corporation, January 2006.

132

[21] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion

Stoica. Wide-area cooperative storage with cfs. SIGOPS Oper. Syst. Rev.,

35(5):202–215, 2001.

[22] Mayur Dewaikar. Symantec netbackup puredisk. June 2009.

[23] Roger Dingledine, Michael J. Freedman, and David Molnar. The free haven

project: Distributed anonymous storage service. Lecture Notes in Computer

Science, 2009, 2001.

[24] Wei Dong, Fred Douglis, Kai Li, Hugo Patterson, Sazzala Reddy, and Philip

Shilane. Tradeoffs in scalable data routing for deduplication clusters. In

Proceedings of the 9th USENIX conference on File and stroage technologies,

FAST’11, pages 2–2, Berkeley, CA, USA, 2011. USENIX Association.

[25] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer

storage utility. In HotOS VIII, pages 75–80, Schloss Elmau, Germany, May

2001.

[26] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Woj-

ciech Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Ungure-

anu, and Michal Welnicki. HYDRAstor: a Scalable Secondary Storage. In

FAST ’09: Proccedings of the 7th conference on File and storage technologies,

pages 197–210, Berkeley, CA, USA, 2009. USENIX Association.

[27] Cezary Dubnicki, Cristian Ungureanu, and Wojciech Kilian. FPN: A Dis-

tributed Hash Table for Commercial Applications. In Proceedings of the

Thirteenth International Symposium on High-Performance Distributed Com-

puting (HPDC-13 2004), pages 120–128, Honolulu, Hawaii, June 2004.

[28] Cezary Dubnicki, Cristian Ungureanu, and Wojciech Kilian. Fpn: A dis-

tributed hash table for commercial applications. In Proceedings of the 13th

IEEE International Symposium on High Performance Distributed Comput-

ing, pages 120–128, Washington, DC, USA, 2004. IEEE Computer Society.

[29] Donald E. Eastlake and Paul E. Jones. US Secure Hash Algorithm 1 (SHA1).

RFC 3174 (Informational), September 2001.

[30] Inc. FalconStor Software. Virtual Tape Library (VTL), May 2010.

http://www.falconstor.com/products/virtual-tape-library.

[31] Svend Frølund, Arif Merchant, Yasushi Saito, Susan Spence, and Alistair C.

Veitch. Fab: Enterprise storage systems on a shoestring. In HotOS, pages

169–174, 2003.

133

BIBLIOGRAPHY

[32] John Gantz and David Reinse. The Digital Universe Decade - Are You

Ready? IEEE Trans. Parallel Distrib. Syst., May 2010. Sponsored by EMC

Corporation.

[33] Gartner. Market Share Analysis: Enterprise Distributed System

Backup/Recovery Market, Worldwide, 2009. June 2010.

[34] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file

system. In SOSP, pages 29–43, 2003.

[35] Jim Gray. Why do computers stop and what can be done about it?, 1985.

Tandem Computers.

[36] Jim Gray. A Census of Tandem System Availability Between 1985 and 1990,

January 1990. Tandem Computers.

[37] Haryadi S. Gunawi, Nitin Agrawal, Andrea C. Arpaci-Dusseau, Remzi H.

Arpaci-Dusseau, and Jiri Schindler. Deconstructing Commodity Storage

Clusters. In Proceedings of the 32nd International Symposium on Computer

Architecture, Madison, WI, June 2005.

[38] Ibrahim F. Haddad. Pvfs: A parallel virtual file system for linux clusters.

Linux J., 2000, November 2000.

[39] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: highly

durable, decentralized storage despite massive correlated failures. In

NSDI’05: Proceedings of the 2nd conference on Symposium on Networked

Systems Design & Implementation, pages 143–158, Berkeley, CA, USA, 2005.

USENIX Association.

[40] John Hantz, Christopher Chute, Alex Manfredi, Stephen Minton, David

Reinsel, Wolfgang Schlichting, and Anna Toncheva. The diverse and explod-

ing digital universe: an updated forecast of worldwide information growth

through 2011. In An IDC White Paper sponsored by EMC, March 2008.

[41] John H. Hartman and John K. Ousterhout. The zebra striped network

file system. In SOSP ’93: Proceedings of the fourteenth ACM symposium

on Operating systems principles, pages 29–43, New York, NY, USA, 1993.

ACM.

[42] Ragib Hasan, Zahid Anwar, William Yurcik, Larry Brumbaugh, and Roy

Campbell. A survey of peer-to-peer storage techniques for distributed file

systems. In Proceedings of the International Conference on Information

Technology: Coding and Computing (ITCC’05) - Volume II - Volume 02,

ITCC ’05, pages 205–213, Washington, DC, USA, 2005. IEEE Computer

Society.

134

[43] Quantum Hewlett-Packard, IBM. LTO Program: The First Year. 1990.

[44] James V. Huber, Jr., Andrew A. Chien, Christopher L. Elford, David S. Blu-

menthal, and Daniel A. Reed. Ppfs: a high performance portable parallel

file system. In Proceedings of the 9th international conference on Supercom-

puting, ICS ’95, pages 385–394, New York, NY, USA, 1995. ACM.

[45] IBM. Autonomic computing: Ibm’s perspective on the state of information

technology. IBM.

[46] IBM. IBM ProtecTIER Deduplication Solution. http://www-

03.ibm.com/systems/storage/tape/protectier/.

[47] IEEE/ANSI STD. 1003.1. Portable operating system interface (posix) —

part 1: System application program interface (api) [c language], 1996.

[48] M. Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal

distributed hash table. In Proceedings of the 2nd International Workshop

on Peer-to-Peer Systems, 2003.

[49] Ramakrishna Kotla, Lorenzo Alvisi, and Michael Dahlin. Safestore: A

durable and practical storage system. In USENIX Annual Technical Con-

ference, pages 129–142, 2007.

[50] Purushottam Kulkarni, Fred Douglis, Jason LaVoie, and John M. Tracey.

Redundancy elimination within large collections of files. In Proceedings of

the annual conference on USENIX Annual Technical Conference, ATEC ’04,

pages 5–5, Berkeley, CA, USA, 2004. USENIX Association.

[51] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information

system based on the xor metric. In In Proceedings of IPTPS02, Cambridge,

USA, March 2002.

[52] Dutch T. Meyer and William J. Bolosky. A study of practical deduplication.

In Proceedings of the 9th USENIX conference on File and stroage technolo-

gies, FAST’11, pages 1–1, Berkeley, CA, USA, 2011. USENIX Association.

[53] James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H.

Howard, David S. Rosenthal, and F. Donelson Smith. Andrew: a distributed

personal computing environment. Commun. ACM, 29:184–201, March 1986.

[54] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-

bandwidth network file system. In Proceedings of the eighteenth ACM sympo-

sium on Operating systems principles, SOSP ’01, pages 174–187, New York,

NY, USA, 2001. ACM.

135

BIBLIOGRAPHY

[55] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen.

Ivy: a read/write peer-to-peer file system. SIGOPS Oper. Syst. Rev., 36:31–

44, December 2002.

[56] David Oppenheimer, Archana Ganapathi, and David A. Patterson. Why do

internet services fail, and what can be done about it? In Proceedings of the

4th conference on USENIX Symposium on Internet Technologies and Sys-

tems - Volume 4, USITS’03, pages 1–1, Berkeley, CA, USA, 2003. USENIX

Association.

[57] Andy Oram. Peer-to-Peer : Harnessing the Power of Disruptive Technolo-

gies. O’Reilly & Associates, Sebastopol, CA, March 2001.

[58] Alex Osuna, Eva Balogh, Alexandre Ramos Galante de Carvalho, Rucel F.

Javier, and Zohar Mann. Implementing IBM Storage Data Deduplication

Solutions. IBM Redbooks, March 2011.

[59] Alex Osuna, Reimar Pflieger, Lothar Weinert, Xu X Yan, and Erwin Zwem-

mer. IBM System Storage TS7650 and TS7650G with ProtecTIER . IBM

Redbooks, 2010.

[60] European Parliament. Directive 2006/24/EC ”On the retention of data gen-

erated or processed in connection with the provision of publicly available

electronic communications services or of public communication networks”.

March 2006.

[61] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redun-

dant arrays of inexpensive disks (RAID). In Proceedings of the 1988 ACM

SIGMOD international conference on Management of data, SIGMOD ’88,

pages 109–116, New York, NY, USA, 1988. ACM.

[62] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure

trends in a large disk drive population. In Proceedings of the 5th USENIX

conference on File and Storage Technologies, pages 2–2, Berkeley, CA, USA,

2007. USENIX Association.

[63] Martin Placek and Rajkumar Buyy. A taxonomy of distributed storage sys-

tems, technical report. In GRIDS-TR-2006-11, Australia, July 2006. Grid

Computing and Distributed Systems Laboratory, The University of Mel-

bourne.

[64] David Plainfossé and Marc Shapiro. A survey of distributed garbage col-

lection techniques. In Proceedings of the International Workshop on Mem-

ory Management, IWMM ’95, pages 211–249, London, UK, 1995. Springer-

Verlag.

136

[65] Calicrates Policroniades and Ian Pratt. Alternatives for detecting redun-

dancy in storage systems data. In ATEC ’04: Proceedings of the annual

conference on USENIX Annual Technical Conference, pages 6–6, Berkeley,

CA, USA, 2004. USENIX Association.

[66] W. Curtis Preston. Use disk as a primary backup target and overcome

shoeshining. SearchDataBackup.com, October 2006.

[67] W. Curtis Preston. Backup & recovery. Inexpensive Backup Solutions for

Open Systems. O’Reilly Media, January 2007.

[68] W. Curtis Preston. Target deduplication appliance performance com-

parison. http://www.backupcentral.com/mr-backup-blog-mainmenu-

47/13-mr-backup-blog/348-target-deduplication-appliance-performance-

comparison.html, October 2010.

[69] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage.

In FAST ’02: Proceedings of the Conference on File and Storage Technolo-

gies, pages 89–101, Berkeley, CA, USA, 2002. USENIX Association.

[70] Lelii Sonia R. Quantum adds data verification for tape with StorNext archiv-

ing software. SearchDataBackup.com, April 2011.

[71] Arcot Rajasekar, Michael Wan, and Reagan Moore. Mysrb & srb: Compo-

nents of a data grid. In Proceedings of the 11th IEEE International Sympo-

sium on High Performance Distributed Computing, HPDC ’02, pages 301–,

Washington, DC, USA, 2002. IEEE Computer Society.

[72] Chalfant Randy. Tape: A Collapsing Star. www.mainframezone.com, March

2010.

[73] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Schenker. A scalable content-addressable network. In SIGCOMM ’01: Pro-

ceedings of the 2001 conference on Applications, technologies, architectures,

and protocols for computer communications, pages 161–172, New York, NY,

USA, 2001. ACM.

[74] Sean Rhea, Russ Cox, and Alex Pesterev. Fast, inexpensive content-

addressed storage in foundation. In Proceedings of the 2008 USENIX Annual

Technical Conference, pages 143–156, Berkeley, CA, USA, 2008. USENIX

Association.

[75] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao,

and John Kubiatowicz. Pond: the oceanstore prototype. In FAST’03: Pro-

ceedings of the 6th USENIX Conference on File and Storage Technologies,

pages 1–14, Berkeley, CA, USA, 2003. USENIX Association.

137

BIBLIOGRAPHY

[76] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. Lecture Notes in

Computer Science, 2218:329+, 2001.

[77] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob

Lyon. Design and implementation or the sun network filesystem, 1985.

[78] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E.

Okasaki, Ellen H. Siegel, and David C. Steere. Coda: A highly available

file system for a distributed workstation environment. IEEE Trans. Com-

put., 39:447–459, April 1990.

[79] Frank Schmuck and Roger Haskin. Gpfs: A shared-disk file system for large

computing clusters. In Proceedings of the 1st USENIX Conference on File

and Storage Technologies, FAST ’02, Berkeley, CA, USA, 2002. USENIX

Association.

[80] Bianca Schroeder and Garth A. Gibson. Disk failures in the real world:

What does an mttf of 1,000,000 hours mean to you?, 2007.

[81] Thomas J. E. Schwarz, Qin Xin, Ethan L. Miller, Darrell D. E. Long, Andy

Hospodor, and Spencer Ng. Disk scrubbing in large archival storage systems.

In Proceedings of the The IEEE Computer Society’s 12th Annual Interna-

tional Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems, pages 409–418, Washington, DC, USA, 2004.

IEEE Computer Society.

[82] SNIA. Common Internet File System (CIFS), Technical Reference. Technical

Report 1.0, January 2002. Storage Networking Industry Association (SNIA).

[83] SNIA. Common RAID Disk Data Format Specication. SNIA Storage Net-

working Industry Association., March 2009. Version 2.0, Revision 19.

[84] Steffen Staab, Francis Heylighen, Carlos Gershenson, Gary William Flake,

David M. Pennock, Daniel C. Fain, David De Roure, Karl Aberer, Wei-Min

Shen, Olivier Dousse, and Patrick Thiran. Neurons, viscose fluids, freshwa-

ter polyp hydra-and self-organizing information systems. IEEE Intelligent

Systems, 18:72–86, July 2003.

[85] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet

applications. In Proceedings of the 2001 conference on applications, tech-

nologies, architectures, and protocols for computer communications, pages

149–160. ACM Press, 2001.

138

[86] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, and Kaladhar Voru-

ganti. Pergamum: replacing tape with energy efficient, reliable, disk-based

archival storage. In FAST’08: Proceedings of the 6th USENIX Conference

on File and Storage Technologies, pages 1–16, Berkeley, CA, USA, 2008.

USENIX Association.

[87] Symantec. Netbackup puredisk 6.6 data sheet.

[88] Symantec. Symantec netbackup appliances.

http://www.symantec.com/business/ theme.jsp?themeid=nbu-appliance.

[89] Asaro Tony. iSCSI Report. The State of iSCSI SANs. Enterprise Strategy

Group, Inc., January 2005.

[90] TruthInIT.com. Product Analysis Report FalconStor SIR VTL, August

2009. http://www.falconstor.com/dmdocuments/TruthINIT-FS-VTL.pdf.

[91] C. Ungureanu, A. Aranya, S. Gokhale, S. Rago, B. Atkin, A. Bohra, C. Dub-

nicki, and G. Calkowski. Hydrafs: A high-throughput file system for the hy-

drastor content-addressable storage system. In FAST ’10: Proceedings of the

8th USENIX Conference on File and Storage Technologies, pages 225–239,

Berkeley, CA, USA, 2010. USENIX Association.

[92] Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. Publius: A robust,

tamper-evident, censorship-resistant, web publishing system. In Proc. 9th

USENIX Security Symposium, pages 59–72, August 2000.

[93] Chonggang Wang and Bo Li. Peer-to-Peer Overlay Networks: A Survey,

April 2003.

[94] Hakim Weatherspoon and John Kubiatowicz. Erasure coding vs. replication:

A quantitative comparison. In Revised Papers from the First International

Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 328–338, London, UK,

2002. Springer-Verlag.

[95] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn.

Rados: a scalable, reliable storage service for petabyte-scale storage clusters.

In Garth A. Gibson, editor, PDSW, pages 35–44. ACM Press, 2007.

[96] Bryce Wilcox-O’Hearn. Experiences deploying a large-scale emergent net-

work. In Revised Papers from the First International Workshop on Peer-

to-Peer Systems, IPTPS ’01, pages 104–110, London, UK, 2002. Springer-

Verlag.

139

BIBLIOGRAPHY

[97] Zheng Zhang, Shiding Lin, Qiao Lian, and Chao Jin. Repstore: A self-

managing and self-tuning storage backend with smart bricks. In ICAC,

pages 122–129, 2004.

[98] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D.

Joseph, and John D. Kubiatowicz. Tapestry: A resilient global-scale overlay

for service deployment. IEEE Journal on Selected Areas in Communications,

22:41–53, 2004.

[99] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck

in the Data Domain deduplication file system. In FAST’08: Proceedings of

the 6th USENIX Conference on File and Storage Technologies, pages 1–14,

Berkeley, CA, USA, 2008. USENIX Association.

140

Appendices

141

Appendix A

Appendix

A.1 Standard deviation from the mean size of a

supernode

Let:

• p be the number of supernodes,

• n be the number of user blocks stored in the system,

• b be the block size,

•
1
p
be probability that a block is stored by supernode S,

• Xi be a random variable whose value is change in supernode S size

after storing ith block in the system.

• XN be a random variable whose value is size of supernode S after n

blocks are stored in the system.

The block i with probability of 1 − 1
p
is stored by some other supernode

than S and with probability of 1
p
is stored by supernode S. Thus Xi is equal

to b with probability 1
p
and is equal to 0 with probability 1− 1

p
. Thus:

E(Xi) =
b

p

V AR(Xi) = E((Xi − EXi)
2) = (1−

1

p
)(0−

b

p
)2 +
1

p
(b−
b

p
)2 = b2(

1

p
−

1

p2
)

142

Standard deviation from the mean size of a supernode

Since XN =
n
∑

i=1

Xi then

E(XN) = n ∗ E(Xi) = n ∗
b

p

Since Xi and Xj are uncorrelated random variables then

V AR(XN) = n ∗ V AR(Xi) = nb
2(
1

p
−

1

p2
)

Standard deviation is

stdev(XN) =
√

V AR(XN) = b ∗

√

n(
1

p
−

1

p2
)

Coefficient of variation(CV) of XN (used in section 5.4.1 on page 79) is

CV (XN) =
stdev(XN)

E(XN)
=

√

p− 1

n

143

List of Figures

5.1 HYDRAstor architecture. 37

5.2 FPN example. 41

5.3 Supernodes and Components. 44

5.4 Erasure codes schema. 45

5.5 Example of two incarnations of a supernode and its compositions. 47

5.6 Synchrun and synchrun components. 52

5.7 Chain of synchruns and synchrun components. 53

5.8 Synchrun component containers (SCCs). 53

5.9 Example of routing a message. 58

5.10 Example of routing a message when a component is unreachable. 59

5.11 Overlay network recovery and data reconstruction. 61

5.12 Blocks organized in a directed acyclic graph. 63

5.13 Writing of block with key starting with bits 010111. 64

5.14 Example of peer dimension. 67

5.15 Storage Utilization . 81

5.16 Writes Under Failed Physical Node. 91

5.17 Scalability of write and read operations. 95

5.18 Write Scalability. 96

5.19 Write throughput as a function of duplicate ratio. 99

144

List of Tables

4.1 Requirements matrix. 25

5.1 Number of supernodes for different number of physical nodes. . 80

5.2 Number of Accepted Failures and Storage Overhead. 87

5.3 HYDRAstor and Competing Systems Performance. 101

5.4 Write performance of NAS systems. 102

145

	Contents
	Introduction
	Motivation
	Problem Statement
	Thesis Contributions
	Outline of Dissertation

	Distributed Storage Systems
	What is DSS
	Motivation for DSS for Backup and Archival
	DSS Model
	Importance of Data Organization in DSS

	DSS Requirements Related to Data Organization
	Efficient Storage Usage
	Support for Deduplication
	Deletion on Demand
	Handling Almost Full System

	Fault Tolerance
	Data Resiliency
	Operation under Faulty System
	Operation after Failure Repair
	Failure Reporting
	Data and Metadata Consistency During and After Failure

	Scalability
	Self Management
	Self Healing
	Self Balancing

	High Availability
	On line Maintenance

	Performance
	Fast Direct User Operations
	Fast Background Operations
	Fast Data Location
	Disk Data Locality
	Optimal Initial Data Placement
	Performance under Failure

	Trade-offs and Mutual Benefits among Requirements
	Trade-offs
	Efficient Storage Usage vs. Fault Tolerance
	Efficient Storage Usage vs. Availability
	Efficient Storage Usage vs. Performance
	Fault Tolerance and Availability vs Scalability
	Fault Tolerance vs. Performance
	Scalability vs. Performance
	Intra Requirements Trade-offs

	Mutual Benefits

	Proposed Solution
	HYDRAstor DSS
	History and Current Status
	Additional Requirements

	Architecture of HYDRAstor
	Overview
	Global Data Organization
	Local Data Organization

	Functionality Implementation of HYDRAstor
	Supernode Consistent State
	Overlay Network Monitoring and Supernode State Propagation
	Routing
	Failure Discovery and Recovery
	Write and Read Operation
	Balancing
	Deletion Algorithm
	Background Tasks

	Requirements Satisfaction Discussion
	Efficient Storage Usage
	Fault Tolerance
	Scalability
	Self Management
	High Availability
	Performance

	Trade-offs resolution in HYDRAstor
	Efficient Storage Usage vs. Fault Tolerance
	Efficient Storage Usage vs. Availability
	Efficient Storage Usage vs. Performance
	Fault Tolerance and Availability vs Scalability
	Fault Tolerance vs. Performance
	Scalability vs. Performance
	Intra Requirements Trade-offs Resolution

	Related Work
	Conclusions
	Summary
	Future Work

	Bibliography
	Appendix
	Standard deviation from the mean size of a supernode

	List of Figures
	List of Tables

