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Abstract

In the thesis we take the split chain approach to analyzing Markov chains
and use it to establish fixed-width results for estimators obtained via Markov
chain Monte Carlo procedures (MCMC). Theoretical results include neces-
sary and sufficient conditions in terms of regeneration for central limit the-
orems for ergodic Markov chains and a regenerative proof of a CLT version
for uniformly ergodic Markov chains with Eπf 2 < ∞. To obtain asymptotic
confidence intervals for MCMC estimators, strongly consistent estimators
of the asymptotic variance are essential. We relax assumptions required to
obtain such estimators. Moreover, under a drift condition, nonasymptotic
fixed-width results for MCMC estimators for a general state space setting
(not necessarily compact) and not necessarily bounded target function f are
obtained. The last chapter is devoted to the idea of adaptive Monte Carlo
simulation and provides convergence results and law of large numbers for
adaptive procedures under path-stability condition for transition kernels.

Keywords and phrases: Markov chain, MCMC, adaptive Monte
Carlo, split chain, regeneration, drift condition, (ε−α)−approximation,
confidence intervals, asymptotic confidence intervals, central limit
theorem, law of large numbers

AMS Subject Classification: 60J10, 60J05, 60F15, 60F05
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Streszczenie

W pracy przedstawione są rezultaty dotyczące estymacji stałoprecyzyjnej
dla algorytmów Monte Carlo opartych na łańcuchach Markowa (MCMC).
Podstawową techniką w analizie łańcuchów Markowa i związanych z nimi
procedur MCMC, jest łańcuch rozszczepiony i regeneracja, co prowadzi do
koniecznego i dostatecznego warunku w terminach regeneracji dla central-
nego twierdzenia granicznego dla ergodycznych łańcuchów Markowa. Do-
datkowym rezultatem jest regeneracyjny dowód CTG dla jednostajnie er-
godycznych łańcuchów Markowa przy założeniu Eπf 2 < ∞. Aby otrzymać
asymptotyczne przedziały ufności za pomocą algorytmów MCMC konieczna
jest m.in. mocno zgodna estymacja wariancji asymptotycznej. Osłabiamy
znane założenia wymagane do konstrukcji takich estymatorów. Przy założe-
niu warunku dryfu, ale bez założeń o ograniczoności funkcji podcałkowej
f i zwartości przestrzeni stanów, otrzymujemy nieasymptotyczną estymację
stałoprecyzyjną. Ostatni rozdział poświęcony jest procedurom adaptacyjnym,
a uzyskane tam wyniki dotyczące zbieżności i prawa wielkich liczb zakładają
stabilność operatorów przejścia względem trajektorii.

Słowa kluczowe: łańcuch Markowa, MCMC, adaptacyjne Monte
Carlo, łańcuch rozszczepiony, regeneracja, warunek dryfu, (ε −
α)−aproksymacja, przedziały ufności, asymptotyczne przedziały ufności,
centralne twierdzenie graniczne, prawo wielkich liczb

Klasyfikacja tematyczna wg. AMS: 60J10, 60J05, 60F15, 60F05
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Chapter 1

Introduction

In this chapter we give some background for results presented in later chap-
ters and introduce main ideas behind the thesis in an informal way. There-
fore mathematical rigour will not always be our priority here. We start with
defining the problem addressed by Markov chain Monte Carlo methods in
Section 1.1 and proceed to describing typical sampling schemes and MCMC
algorithms (the Metropolis algorithm and the Gibbs sampler) in Section 1.2.
Section 1.3 provides an overview of the results of the thesis.

1.1 Markov Chain Monte Carlo

Let X be a region in a possibly high-dimensional space, and let f be a real
valued function on X . Moreover consider a probability distribution π with
density p with respect to some standard measure dx, usually either Lebesque
or counting measure, i.e. π(dx) = p(x)dx. An essential part of many problems
in Bayesian inference, statistical physics and combinatorial enumeration is
the computation of analytically intractable integral

I = Eπf = πf =

∫

X
f(x)π(dx), (1.1)

where p and thus π is known up to a normalizing constant and direct simula-
tion from π is not feasible (see e.g. [Casella & Robert 1999], [Liu, JS 2001]).
The common approach to this problem is to simulate an ergodic Markov chain
(Xn)n≥0, using a transition kernel P , with stationary distribution π, which
ensures the convergence in distribution of Xn to a random variable from π.
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Thus, for a "large enough" t, Xn for n ≥ t can be considered as having
distribution approximately equal to π. Since a simple and powerful algo-
rithm for constructing such a Markov chain has been introduced in 1953 by
Metropolis et al. in the very seminal paper [Metropolis et al. 1953], various
sampling schemes and approximation strategies for estimating the unknown
value of I have been developed and analyzed ([Niemiro & Pokarowski 2007],
[Liu, JS 2001], [Casella & Robert 1999]). The method is referred to as Markov
chain Monte Carlo (MCMC).

To avoid problems with integrating functions with respect to probabil-
ity distributions with unknown normalizing constants, Bayesian statisticians
used to restrict attention to conjugate priors (see e.g. [Robert 1994]). This
concept, although technically appealing, deprives the bayesian approach of
flexibility which is one of its main strengths. Also, when building complex
models with many parameters (as in the example of Section ??), even us-
ing conjugate priors usually leads to intractable multidimensional posterior
distributions.

The invention of MCMC has transformed dramatically Bayesian infer-
ence since it allows practitioners to sample from complicated posterior dis-
tributions and to integrate functions with respect to these distributions.
Thus Bayesian inference became a feasible and powerful approach for prac-
titioners and now receives immense attention from the statistics community
([Roberts & Rosenthal 2005],[Casella & Robert 1999]).

In addition to their importance for applications, MCMC algorithms rise
numerous questions related to Markov chains and probability. It is crucial
to understand the nature and speed of convergence of the distribution of Xn

to π as n →∞.

1.2 Sampling Schemes and MCMC Algorithms

Before we proceed to the description of MCMC algorithms let us recall the
independent Monte Carlo solution to the problem in (1.1) when simulating
from π is feasible. In this case one takes i.i.d. random variables Xi, . . . , Xn ∼
π and estimates I by

În =
1

n

n∑
i=1

f(Xi). (1.2)

Remark 1.2.1. Basic properties of the independent Monte Carlo estimation
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are very easy to obtain.

• If I exists then În is its unbiased and (by the weak law of large numbers)
consistent estimate.

• Furthermore, if πf 2 < ∞, then by the classical Central Limit Theorem
√

n(Î − I)
d→ N(0, πf 2 − (πf)2).

• Confidence intervals for I can be obtained e.g. by the Chebyshev in-
equality

P (|În − I| ≥ ε) ≤ πf 2 − (πf)2

nε2
,

provided that the variance πf 2 − (πf)2 can be bounded a priori.

• Asymptotic confidence intervals can be derived from the CLT,

P (|În − I| ≥ ε) . 2− 2Φ

( √
nε√

πf 2 − (πf)2

)
,

and effectively computed using a consistent estimate or an upper bound
of πf 2 − (πf)2.

Assume now the MCMC setting, where no efficient procedure for sam-
pling independent random variables from π is available. Let (Xn)n≥0 be an
ergodic Markov chain on X with transition kernel P and stationary limit-
ing distribution π. Let π0 denote the initial distribution of the chain, i.e.
X0 ∼ π0. The distribution of Xt is πt = π0P

t → π, but X0, X1, . . . are
dependent random variables and (1.2) is no longer an obvious and easy to
analyze estimator. There are several possible strategies (cf. [Geyer 1992],
[Niemiro & Pokarowski 2007], [Chan & Yue 1996], [Liu, JS 2001], [Casella & Robert 1999]).

• Estimation Along one Walk. Use average along a single trajectory of
the underlying Markov chain and discard the initial part to reduce bias.
In this case the estimate is of the form

Ît,n =
1

n

t+n−1∑
i=t

f(Xi) (1.3)

and t is called the burn-in time.
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• Estimation Along one Walk with Spacing. Discard the initial part of a
single trajectory to reduce bias and then take every s−th observation
to reduce correlation. In this case the estimate is of the form

Ît,n,s =
1

n

t+n−1∑
i=t

f(Xis) (1.4)

and s is called the spacing parameter.

• Multiple Run. Use average over final states of multiple independent
runs of the chain. Thus we need first to simulate say n trajectories of
length say t:

X
(1)
0 , X

(1)
1 . . . , X

(1)
t ,

...
X

(n)
0 , X

(n)
1 . . . , X

(n)
t ,

and for an estimate we take

Ît,n =
1

n

n∑
m=1

f(X
(m)
t ), (1.5)

where m numbers the independent runs of the chain and t should be
large enough to reduce bias.

• Median of Averages. Use median of multiple independent shorter runs.
Here we simulate

– Simulate m independent runs of length t + n of the underlying
Markov chain,

X
(k)
0 , . . . , X

(k)
t+n−1, k = 1, . . . , m.

– Calculate m estimates of I, each based on a single run,

Îk = Î
(k)
t,n =

1

n

t+n−1∑
i=t

f(X
(k)
i ), k = 1, . . . ,m.

– For the final estimate take

Î = med{Î1, . . . , Îm}.
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The one walk estimators are harder to analyze since both Xt, . . . Xt+n−1 and
Xts, . . . X(t+n−1)s are not independent, whereas X

(1)
t , . . . , X

(m)
t are. Yet one

walk strategies are believed to be more efficient and are usually the prac-
titioners’ choice. Some precise results comparing the first three estimators
under certain assumptions are available and confirm the practitioners’ intu-
ition. We refer to them later.

For each choice of estimation strategy additional questions arise, since one
has to decide how to chose parameters t, n or t, n, s or t, n,m respectively,
that assure ”good quality of estimation”. This choice must clearly depend on
how one defines the desired ”quality of estimation”.

Moreover, we see from the above that MCMC requires a Markov chain
on X which is easily run on a computer, and which has π as its stationary
limiting distribution. It may be a bit surprising that there exist reasonably
general recipes for constructing such a chain that converges to π in most
settings of practical interest.

1.2.1 The Metropolis Algorithm

The Metropolis algorithm has been introduced by Metropolis et al. in [Metropolis et al. 1953].
Let Q be a transition kernel of any other Markov chain that is easily simu-
lated on a computer. Recall that π(·) has a density π(dx) = p(x)dx, with
possibly unknown normalizing constant. Let also Q(x, ·) have a density
Q(x, dy) = q(x, y)dy. These densities are taken with respect to some σ−finite
reference measure dx, which typically is the Lebesgue measure on Rd, how-
ever other settings are possible, including counting measures on discrete state
spaces.

The Metropolis algorithm proceeds as follows.

1. Draw X0 from an initial distribution π0 (typically π0 = δx0 for some
x0 ∈ X ).

2. Given Xn draw a proposal Yn+1 from Q(Xn, ·).
3. Set

Xn+1 =

{
Yn+1 with probability α(Xn, Yn+1),
Xn with probability 1− α(Xn, Yn+1),

where
α(x, y) := min

{
1,

p(y)q(y, x)

p(x)q(x, y)

}
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(Also, set α(x, y) = 1 whenever p(x)q(x, y) = 0.)

4. Replace n by n + 1 and go to 2.

Note that one only has to compute the ratio of densities p(y)/p(x), and
hence the unknown normalizing constant for π in the acceptance probability
α(x, y) simplifies and one does not need to know it to run the chain.

Choosing the proposal density is another question that arises when imple-
menting the Metropolis algorithm and different ways of doing it lead to differ-
ent classes of algorithms. Typical classes include (see e.g. [Roberts & Rosenthal 2005])

• Symmetric Metropolis Algorithm. In this case q(x, y) = q(y, x) and
hence α(x, y) = min{1, π(y)

π(x)
}.

• Random Walk Metropolis-Hastings. In this case q(x, y) = q(y − x).

• Independence Sampler. In this case the proposal does not depend on
x, i.e. q(x, y) = q(y).

• Langevin Algorithm. Where Q(Xn, ·) = N(Xn + (δ/2)∇ log π(Xn), δ)
for some δ > 0.

1.2.2 The Gibbs Sampler

The Gibbs Sampler is suitable in a setting where X is a product space. For
simplicity we suppose in this section that X is an open subset of Rd, and
write x = (x1, . . . , xd).

The i−th component Pi of the Gibbs sampler P replaces xi by a draw
from the conditional distribution π(xi|x1, . . . , xi−1, xi+1, . . . , xd).

To state it more formally let, similarly as in [Roberts & Rosenthal 2005],

Sx,i,a,b = {y ∈ X ; yj = xj for j 6= i, and a ≤ yi ≤ b}.
And

Pi(x, Sx,i,a,b) =

∫ b

a
p(x1, . . . , xi−1, t, xi+1, . . . , xd)dt∫∞

−∞ p(x1, . . . , xi−1, t, xi+1, . . . , xd)dt
. (1.6)

Now the deterministic scan Gibbs sampler uses the transition kernel

P = P1P2 · · ·Pd, (1.7)
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i.e. updates the coordinates of Xn in a systematic way, one after another,
with draws from full conditional distributions.

On the other hand the random scan Gibbs sampler choses a coordinate
uniformly at random and performs its update, i.e. it uses the transition
kernel

P =
1

d

d∑
i=1

Pi. (1.8)

In the example of Section 5.6 drawing from conditional distributions will
be straightforward and in fact this is often the case for bayesian posterior
distributions. However, if this step is infeasible, then instead of using Pi as
defined in (1.6), one performs one step of a Metropolis algorithm designed to
update i−th coordinate. Such a procedure is then called Metropolis within
Gibbs algorithm.

1.3 Overview of the Results
Existing literature on Markov chains and their applications to Markov chain
Monte Carlo procedures is to large extent focused on obtaining bounds on
convergence rates to the stationary distribution ([Baxendale 2005], [Douc et al. 2003],
[Jones & Hobert 2004], [Roberts & Tweedie 1999], [Rosenthal 1995b]) and on
asymptotical results for MCMC estimators ([Jones et al. 2006], [Kipnis & Varadhan 1986],
[Meyn & Tweedie 1993]). However, when analyzing MCMC estimators, re-
sults on the rate of convergence to the stationary distribution allow only
to keep bias in control and do not translate in a straightforward way into
bounds on the mean square error or confidence intervals. Moreover, asymp-
totic results may turn out useless in practice and may even be misleading
([Roberts & Rosenthal 2005]).

The main goal of this thesis is to obtain fixed-width results for an esti-
mator, say Î , based on an MCMC algorithm. In particular we strive for the
(ε− α)−approximation, i.e.

P (|Î − I| ≥ ε) ≤ α, (1.9)

where ε is the desired quality of estimation and α is the confidence level.
In analyzing Markov chains and estimators based on MCMC procedures

we take the regenerative approach based on the split chain. The split chain
construction allows to divide the Markov chain trajectory into independent
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or 1−dependent blocks and turns out to be an extremely powerful technique
with wide range of applications. The approach has been introduced indepen-
dently in [Athreya & Ney 1978] and [Nummelin 1978] and immensely devel-
oped in [Nummelin 1984] and [Meyn & Tweedie 1993]. We give the basics of
the approach in Chapter 2.

Results related to (1.9) are known in literature for discrete state space X
and bounded function f ([Aldous 1987], [Gillman 1998], [León & Perron 2004]).
For general state space X , and uniformly ergodic Markov chains (which in
practice implies that X is compact) and bounded function f, exponential
inequalities are available (due to [Glynn & Ormoneit 2002] and an improved
result due to [Kontoyiannis at al. 2005]) thus (ε−α)−approximation can be
easily deduced.

For a general, not necessarily compact, state space X (or equivalently,
not uniformly ergodic chains) and unbounded function f (which is e.g. the
case when computing bayesian estimators for a quadratic loss function) no
nonasymptotic results of type (1.9) are available. Fixed-width estimation is
performed by deriving asymptotic confidence intervals based on

În =
1

n

n−1∑
i=0

f(Xi).

This construction requires two steps. First requirement is that a central limit
theorem must hold, i.e.

În − I√
n

d−→ N(0, σ2
f ), (1.10)

where σ2
f < ∞ is the asymptotic variance. The second step is to obtain

a strongly consistent estimator σ̂2
f of σ2

f . Recent paper [Jones et al. 2006]
presents the state of the art approach to the problem.

Results of Chapter 3 and Chapter 4 are related to this methodology.
In Chapter 3, based on [Bednorz, Latała & Łatuszyński 2008], a neces-

sary and sufficient condition in terms of regeneration for a central limit theo-
rem for functionals of ergodic Markov chains (as defined in (1.10) have been
obtained. It turns out, that the CLT holds if and only if excursions be-
tween regenerations are square integrable. An additional result of Chapter
3 is a solution to the open problem posed in [Roberts & Rosenthal 2005],
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i.e. a regeneration proof of a CLT for uniformly ergodic Markov chains with
Eπf 2 < ∞.

Chapter 4, based on [Bednorz & Łatuszyński 2007], is devoted to relaxing
assumptions for strongly consistent estimators of σ2

f . Results of Chapter 4
improve the methodology of [Jones et al. 2006].

In Chapter 5 nonasymptotic results of type (1.9) are obtained for noncom-
pact state space X and without assuming boundedness of the target function
f.

More precisely, the goal of this chapter is to analyze estimation along one
walk

Ît,n =
1

n

t+n−1∑
i=t

f(Xi) (1.11)

of the unknown value I under the following drift condition towards a small
set.

(A.1) Small set. There exist C ∈ B(X ), β̃ > 0 and a probability measure ν
on (X ,B(X )) such that for all x ∈ C and A ∈ B(X )

P (x,A) ≥ β̃ν(A).

(A.2) Drift. There exist a function V : X → [1,∞) and constants λ < 1 and
K < ∞ satisfying

PV (x) ≤
{

λV (x), if x /∈ C,
K, if x ∈ C.

(A.3) Aperiodicity. There exists β > 0 such that β̃ν(C) ≥ β.

Under this assumption we provide explicit lower bounds on the burn-in time t
and the length of simulation n that guarantee (ε−α)−approximation. These
bounds depend only and explicitly on the estimation parameters ε and α,
drift parameters β̃, β, λ, K and the the V−norm of the target function f, i.e.
|f 2|V = supx f 2(x)/V (x).

Moreover we analyze also estimation by the median of averages intro-
duced in the previous section. It turns out that for small α sharper bounds
on the total simulation cost needed for (ε − α)-approximation are available
in this case by a simple exponential inequality.
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The results of Chapter 5 have been applied for Gibbs samplers for a
Hierarchical Random Effects Model of practical interest enabling nonasymp-
totic fixed-width analysis of this model. In particular this extends the results
form [Jones & Hobert 2004], where burn in bounds in terms of total variation
norm have been established for this model.

Chapter 6 deals with a slightly different topic, namely adaptive proce-
dures. The idea is to modify the transition kernel based on the information
collected during the simulation. This usually leads to a stochastic process
that are not Markov chains any more and are less tractable theoretically.
On the other hand, an adaptive procedure at time n as allowed to make use
of an additional information: the sample trajectory up to time n. Clearly
the class of stochastic processes used for simulation is bigger. Thus a smart
use of the idea may lead to improvements in estimation quality. Simula-
tions confirm this expectations and numerical examples for numerous spe-
cific algorithms outperform classical procedures [Roberts & Rosenthal 2006],
[Kohn & Nott 2005]. An important example of the application of adaptive
schemes is the Metropolis algorithm with multivariate normal proposal. In
this case adaptation allows for automated choice of the covariance matrix for
the proposal distribution [Atchadé & Rosenthal 2005]. Theoretical results on
convergence and quality of estimation for adaptive procedures are very mod-
est so far. Typical conditions that allow for investigation of convergence are
called diminishing adaptation will be provided in Chapter 6. Time stability
conditions for transition kernels assumed in ([Atchadé & Rosenthal 2005],
[Kohn & Nott 2005]) fit into the diminishing adaptation framework. Intu-
itively time stability means that the adaptive process approaches a time
homogeneous Markov chain.

In Chapter 6 we prove two results a convergence rate theorem and a law of
large numbers for adaptive schemes. For both results we assume a path sta-
bility condition for transition kernels which is weaker then the time stability
condition, assumed in [Atchadé & Rosenthal 2005] to prove similar results.
The path stablity condition results from time stability condition by the tri-
angle inequality and intuitively means that the adaptive process approaches
a time in-homogeneous Markov chain.
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Chapter 2

Some Markov Chains

In this chapter we give some basic definitions and facts about stationarity
and ergodicity of Markov chains that justify the Metropolis algorithm and the
Gibbs sampler of Section 1.2 and provide grounds for the MCMC methodol-
ogy. Next we outline the regeneration construction and the split chain and
introduce typical objects and tools useful in for analyzing regenerative chains.
Systematic, applications driven development of Markov chains theory via re-
generation can be found e.g. in [Meyn & Tweedie 1993] and [Nummelin 1984]
that constitute an immense body of work. Hence we we do not attempt a sys-
tematic treatment of the Markov chain theory here and this chapter, based on
[Meyn & Tweedie 1993], [Nummelin 1984], [Roberts & Rosenthal 2005] and
[Nummelin 2002] is nothing more then a place for notions and tools frequently
used in later chapters.

2.1 Stationarity and Ergodicity

Although majority of the results we describe carry over to the setting where
X is a general set and B(X ) is a countably generated σ−algebra (see e.g.
[Meyn & Tweedie 1993]), in our applications driven development we believe
Polish spaces offer more then sufficient generality and a grat deal of ”comfort”.
Thus, if not stated otherwise, the state space X shall be a Polish and B(X )
shall denote the Borel σ−algebra on X . A transition kernel P on (X ,B(X ))
is a map P : X × B(X ) → [0, 1], such that

• for any fixed A ∈ B(X ) the function P (·, A) is measurable,
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• for any fixed x ∈ X the function P (x, ·) is a probability measure on
(X ,B(X )).

For a probability measure µ and a transition kernel Q, by µQ we denote
a probability measure defined by

µQ(·) :=

∫

X
Q(x, ·)µ(dx),

furthermore if g is a real-valued measurable function on X let

Qg(x) :=

∫

X
g(y)Q(x, dy)

and
µg :=

∫

X
g(x)µ(dx).

We will also use Eµg for µg, especially if µ = δx we will write Exg. For
transition kernels Q1 and Q2, Q1Q2 is also a transition kernel defined by

Q1Q2(x, ·) :=

∫

X
Q2(y, ·)Q1(x, dy).

Let (Xn)n≥0 denote a time homogeneous Markov chain on X evolving
according to the transition kernel P, i.e. such that L(Xn+1|Xn) = P (Xn, ·).
By π0 denote the distribution of X0, i.e. the initial distribution of the chain.
Then, using the above notation the distribution of Xn is πn = π0P

n. In
particular, if π = δx, then Xn is distributed as πn = δxP

n = P n(x, ·). Clearly
the behavior of πn is of our vital interest.

We say that a probability distribution π is stationary for P, if πP = π.
A crucial notion related to stationarity via Proposition 2.1.2 is reversibility.

Definition 2.1.1. A Markov chain on a state space X with transition kernel
P is reversible with respect to a probability distribution π on X , if

∫

A

P (x,B)π(dx) =

∫

B

P (y, A)π(dy), for all A,B ∈ B(X )

we shall write equivalently

π(dx)P (x, dy) = π(dy)P (y, dx), for all x, y ∈ X .
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Proposition 2.1.2. If a Markov chain with transition kernel P is reversible
with respect to π, then π is stationary for P.

Proof.

πP (A) =

∫

X
P (x,A)π(dx) =

∫

A

P (y,X )π(dy) =

∫

A

π(dy) = π(A).

It is straightforward to check that the acceptance probability α(x, y) of
the Metropolis algorithm of Section 1.2.1 makes the procedure reversible with
respect to π and thus it has π as its stationary distribution.

Also the i−th component Pi of the Gibbs sampler of Section 1.2.2 is a
special case of the Metropolis algorithm (with α(x, y) = 1) and hence π
is stationary for Pi. This implies that the random scan Gibbs sampler is
reversible and has π as its stationary distribution. The deterministic scan
Gibbs sampler usually is not reversible, however since π is stationary for each
Pi, it is also stationary for P.

Obviously stationarity is not enough for the applications in question since
it does not even imply πn → π (see [Roberts & Rosenthal 2005] for exam-
ples), not to mention justifying any of the estimation schemes (1.3-1.5). One
needs some more assumptions and notions to investigate convergence of πn

to π and properties of estimation strategies of previous sections.
In particular the total variation distance is a very common tool to evaluate

distance between two probability measures µ1 and µ2 and is defined as

‖µ1 − µ2‖tv = sup
A∈B(X )

|µ1(A)− µ2(A)|. (2.1)

We shall distinguish between the two following types of convergence to π.

lim
n→∞

‖P n(x, ·)− π‖tv = 0, for π−almost every x ∈ X , (2.2)

lim
n→∞

‖P n(x, ·)− π‖tv = 0, for all x ∈ X . (2.3)

φ−irreducibility and aperiodicity are properties that guarantee convergence
in (2.2).

Definition 2.1.3. AMarkov chain (X)n≥0 with transition kernel P is φ−irreducible
if there exists a non-zero σ−finite measure φ on X such that for all A ⊆ X
with φ(A) > 0, and for all x ∈ X , there exists a positive integer n = n(x,A)
such that P n(x,A) > 0.
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Definition 2.1.4. A Markov chain (X)n≥0 with transition kernel P and
stationary distribution π is periodic with period d ≥ 2 if there exist disjoint
subsets X0, . . . ,Xd−1 ⊆ X such that π(X1) > 0 and for all 0 ≤ i ≤ d − 1,
and for all x ∈ Xi, P (x,Xi+1 mod d) = 1. And d is maximal for the property.
Otherwise the chain is called aperiodic.

Theorem 2.1.5. If a Markov chain (X)n≥0 with transition kernel P and
stationary distribution π on a state space X is φ−irreducible and aperiodic,
then (2.2) holds.
Moreover, if a function f : X → R is such that π(|f |) < ∞, then a strong
law of large numbers holds in the following sense

1

n

n−1∑
i=0

f(Xi) → πf, as n →∞, w.p. 1. (2.4)

The foregoing convergence result is one of many possible formulations. A
proof of the first part can be found in [Roberts & Rosenthal 2005] Section 4.6
and the strong law of large numbers part results e.g. from Theorem 17.0.1 of
[Meyn & Tweedie 1993]. Theorem 2.1.5 is widely applicable to MCMC algo-
rithms. The Metropolis algorithm and the Gibbs samplers of Section 1.2 are
designed precisely so that π is stationary. Also, it is usually straightforward
to verify that the chain is aperiodic and φ−irreducible with e.g. φ being the
Lebesgue measure or φ = π.

The following example due to C. Geyer (cf. [Roberts & Rosenthal 2005])
provides a simple Markov chain that exhibits a ”bad” behavior on a null set.

Example 2.1.6. Let X = {1, 2, . . . } and define transition probabilities by
P (1, {1}) = 1, and for x ≥ 2, let P (x, {1}) = 1/x2 and P (x, {x + 1}) =
1−1/x2. Then the chain is aperiodic and π = δ1 is the invariant distribution.
The chain is also π−irreducible. However, if X0 = x ≥ 2, then P (Xn =
x + n for all n) > 0, and ‖P n(x, ·)− π(·)‖9 0. Thus the convergence holds
only for x = 1 which in this case is π−a.e. x ∈ X .

To guarantee convergence for all x ∈ X , as in (2.3) one needs to assume
slightly more, namely Harris recurrence.

Definition 2.1.7 (Harris Recurrence). A Markov chain (Xn)n>0 with tran-
sition kernel P and stationary probability measure π is Harris recurrent if
for all A ∈ B(X ), such that π(A) > 0, and all x ∈ X , the chain started at x
will eventually reach A with probability 1, i.e. P (∃n : Xn ∈ A|X0 = x) = 1.
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Theorem 2.1.8. Ergodicity as defined in (2.3) in equivalent to Harris re-
currence and aperiodicity.

The foregoing Theorem 2.1.8 results form Proposition 6.3 in [Nummelin 1984].
Harris recurrent and aperiodic chains are often referred to as Harris ergodic.

The speed of convergence in (2.2) or (2.3) is another natural criterion for
classifying chains. Geometrically ergodic and uniformly ergodic chains are of
particular interest.

Definition 2.1.9 (Uniform Ergodicity and Geometric Ergodicity). We say
that a Markov chain (Xn)n≥0 with transition kernel P and stationary distri-
bution π is

• geometrically ergodic, if ‖P n(x, ·) − π(·)‖tv ≤ M(x)ρn, for some ρ < 1
and M(x) < ∞ π−almost everywhere,

• uniformly ergodic, if ‖P n(x, ·) − π(·)‖tv ≤ Mρn, for some ρ < 1 and
M < ∞,

The difference between geometric ergodicity and uniform ergodicity is
that M may depend on the initial state x. Obviously, if a chain is geometri-
cally ergodic and M(x) is a bounded function, then the chain is also uniformly
ergodic. In particular, if the state space is finite, then every geometrically
ergodic Markov chain is uniformly ergodic. (And from the standard theory
of discrete state space Markov chains we know that every ergodic chain is
uniformly ergodic.) Verifying uniform or geometric ergodicity is in general
nontrivial and we will refer to it later. An interesting result for the algo-
rithms presented in Chapter 1 is for example that a symmetric random-walk
Metropolis algorithm is geometrically ergodic if and only if π has finite ex-
ponential moments, as shown in [Mengersen & Tweedie 1996].

Since in the sequel we deal with integrals of unbounded functions f with
respect to probability measures, the very common total variation distance
defined by (2.1) is in this case inappropriate for measuring distances between
probability measures and we need to introduce the V−norm and V−norm
distance.

Let V : X → [1,∞) be a measurable function. For measurable function
g : X → R define its V-norm as

|g|V := sup
x∈X

|g(x)|
V (x)

.
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To evaluate the distance between two probability measures µ1 and µ2 we use
the V-norm distance, defined for probability measures µ1 and µ2 as

‖µ1 − µ2‖V := sup
|g|≤V

|µ1g − µ2g| .

Note that for V ≡ 1 the V−norm distance || · ||V amounts to the total
variation distance, i.e. ‖µ1 − µ2‖V = 2 supA∈B(X ) |µ1(A) − µ2(A)| = 2||µ1 −
µ2||tv. Finally for two transition kernels Q1 and Q2 the V-norm distance
between Q1 and Q2 is defined by

|||Q1 −Q2|||V :=
∣∣‖Q1(x, ·)−Q2(x, ·)‖V

∣∣
V

= sup
x∈X

‖Q1(x, ·)−Q2(x, ·)‖V

V (x)
.

For a probability distribution µ, define a transition kernel µ(x, ·) := µ(·),
to allow for writing |||Q − µ|||V and |||µ1 − µ2|||V . Define also the following
Banach space

BV := {f : f : X → R, |f |V < ∞}.
Now if |||Q1 −Q2|||V < ∞, then Q1 −Q2 is a bounded operator from BV to
itself, and |||Q1 − Q2|||V is its operator norm. See [Meyn & Tweedie 1993]
Chapter 16 for details.

Now we are in a position to introduce the V−uniform ergodicity.

Definition 2.1.10 (V−uniform ergodicity). We say that a Markov chain
(Xn)n≥0 with transition kernel P and stationary distribution π is V−uniformly
ergodic, if

|||P n − π|||V → 0, as n →∞. (2.5)

Moreover, since ||| · |||V is an operator norm (2.5) is equivalent to

|||P n − π|||V ≤ Mρn, for some M < ∞ and ρ < 1. (2.6)

2.2 Small Sets and the Split Chain
The regeneration construction has been invented independently by [Nummelin 1978]
and [Athreya & Ney 1978] and is now a very celebrated technique. The de-
velopment of this approach resulted in intuitive and rather simple proofs
of most results about Markov chains and enabled better understanding and
rapid progress of the theory. In this section we provide the basics of the
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regeneration and split chain construction needed for the following chapters.
Systematic development of the theory can be found in [Nummelin 1984] and
[Meyn & Tweedie 1993] which we exploit here.

We begin with the following definition of an atom.

Definition 2.2.1 (Atom). A set B ∈ B(X ) is called an atom for a Markov
chain (X)n≥0 with transition kernel P if there exists a probability measure
ν on B(X ), such that for all x ∈ B,

P (x, ·) = ν(·).
If the Markov chain is ψ−irreducible and ψ(B) > 0 then B is called an
accessible atom.

A single point x ∈ X is always an atom. For a discrete state space
irreducible Markov chain every single point is an accessible atom. Much of
the discrete state space theory is developed by studying Markov chain tours
between consecutive visits to a distinguished atom c ∈ X . On a general state
space accessible atoms typically do not exist. However such atoms can be
artificially constructed. First we provide a general version of a minorization
condition that enables this construction.

Definition 2.2.2 (Minorization Condition - a general version). Let s : X →
[0, 1] be a function for which Eπs > 0 and there exists an m > 0 and such a
probability measure νm on B(X ), that for all x ∈ X ,

Pm(x, ·) ≥ s(x)νm(·). (2.7)

However, a special case of this condition with s(x) = εIC(x) usually turns
out to be as powerful as the general version and is often more suitable to work
with.

Definition 2.2.3 (Small Set). A set C ∈ B(X ) is νm−small, if there exist
m > 0, ε > 0, and a probability measure νm on B(X ), such that for all x ∈ C,

Pm(x, ·) ≥ ενm(·). (2.8)

Remark 2.2.4. Theorem 5.2.2 of [Meyn & Tweedie 1993] states that any ψ−irreducible
Markov chain is well-endowed with small sets C of positive measure ψ and
such that νm(C) > 0. Since ergodic Markov chains are π−irreducible, for an
ergodic chain a small set C with π(C) > 0 and νm(C) > 0 always exists.
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Definition 2.2.3 and Remark 2.2.4 imply the following minorization con-
dition.

Definition 2.2.5 (Minorization Condition). For some ε > 0, some C such
that ψ(C) > 0, and some probability measure νm with νm(C) = 1 we have
for all x ∈ C,

Pm(x, ·) ≥ ενm(·). (2.9)

The minorization condition (2.9) allows for constructing the split chain
for (Xn)n≥0 which is the central object of the approach (see Section 17.3
of [Meyn & Tweedie 1993] for a detailed description). Let (Xnm)n≥0 be the
m−skeleton of (Xn)n≥0, i.e. a Markov chain evolving according to the m−step
transition kernel Pm. The minorization condition allows to write Pm as a
mixture of two distributions:

Pm(x, ·) = εIC(x)νm(·) + [1− εIC(x)]R(x, ·), (2.10)

where R(x, ·) = [1 − εIC(x)]−1[P (x, ·) − εIC(x)νm(·)]. Now let (Xnm, Yn)n≥0

be the split chain of the m−skeleton i.e. let the random variable Yn ∈ {0, 1}
be the level of the split m−skeleton at time nm. The split chain (Xnm, Yn)n≥0

is a Markov chain that obeys the following transition rule P̌ .

P̌ (Yn = 1, X(n+1)m ∈ dy|Yn−1, Xnm = x) = εIC(x)νm(dy) (2.11)
P̌ (Yn = 0, X(n+1)m ∈ dy|Yn−1, Xnm = x) = (1− εIC(x))R(x, dy), (2.12)

and Yn can be interpreted as a coin toss indicating whether X(n+1)m given
Xnm = x should be drawn from νm(·) - with probability εIC(x) - or from
R(x, ·) - with probability 1− εIC(x).

Obviously (Xnm, Yn)n≥0, i.e. the split chain of the m−skeleton is a Markov
chain and the crucial observation follows from the Bayes rule, namely the set
α̌ := C × {1} is an accessible atom for this chain.

One obtains the split chain (Xk, Yn)k≥0,n≥0 of the initial Markov chain
(Xn)n≥0 by defining appropriate conditional probabilities. To this end let
Xnm

0 = {X0, . . . , Xnm−1} and Y n
0 = {Y0, . . . , Yn−1}.

P̌ (Yn = 1, Xnm+1 ∈ dx1, . . . , X(n+1)m−1 ∈ dxm−1, X(n+1)m ∈ dy| (2.13)

|Y n
0 , Xnm

0 ; Xnm = x) =
εIC(x)νm(dy)

Pm(x, dy)
P (x, dx1) · · ·P (xm−1, dy),

P̌ (Yn = 0, Xnm+1 ∈ dx1, . . . , X(n+1)m−1 ∈ dxm−1, X(n+1)m ∈ dy| (2.14)

|Y n
0 , Xnm

0 ; Xnm = x) =
(1− εIC(x))R(x, dy)

Pm(x, dy)
P (x, dx1) · · ·P (xm−1, dy),
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where νm(dy)
P m(x,dy)

and R(x,dy)
P m(x,dy)

are Radon-Nykodym derivatives. Note that the
marginal distribution of (Xk)k≥0 in the split chain is that of the underlying
Markov chain with transition kernel P.

An important characterization of the invariant measure obtained via the
splitting technique is a generalization of the Kac’s Theorem, namely Theorem
2.2.8, which is the key conclusion of Chapter 10 in [Meyn & Tweedie 1993].
Let

U(x,A) :=
∞∑

n=1

P n(x,A) = Ex

( ∞∑
n=1

IA(Xn)

)

and for a measure ψ define

B+(X ) := {A ∈ B(X ) : ψ(A) > 0}.

Definition 2.2.6 (Recurrent Chains). A chain (Xn)n≥0 with a transition
kernel P is called recurrent if it is ψ−irreducible and U(x,A) = ∞ for any
x ∈ X and every A ∈ B+(X ).

Remark 2.2.7. Recurrence is a weaker condition then Harris recurrence, in
particular the Markov chain defined in Example 2.1.6 is recurrent but not
Harris recurrent.

Moreover, for a set A ∈ X define its hitting time τA as

τA := min{n ≥ 1 : Xn ∈ A}.

Theorem 2.2.8. Let the Markov chain (Xn)n>0 be recurrent. Then there ex-
ists an unique (up to constant multiples) invariant measure πu. This measure
πu has the following representation for any A ∈ B+(X )

πu(B) =

∫

A

Ex

[
τA∑

n=1

IB(Xn)

]
πu(dx), B ∈ B(X ). (2.15)

Moreover, the measure πu is finite if there exists a small set C such that

sup
x∈C

Ex[τC ] < ∞.

To take advantage of the splitting technique for analyzing Markov chains
and functionals of Markov chains we need a bit more formalism. For a
measure λ on (X ,B(X )) let λ∗ denote the measure on X × {0, 1} (with
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product σ−algebra) defined by λ∗(B×{1}) = ελ(B ∩C) and λ∗(B×{0}) =
(1− ε)λ(B ∩C)+λ(B ∩Cc). In the sequel we shall use ν∗m for which ν∗m(B×
{1}) = ενm(B) and ν∗m(B×{0}) = (1−ε)νm(B) due to the fact that νm(C) =
1.

Now integrate (2.13) over x1, . . . , xm−1 and then over y. This yields

P̌ (Yn = 1, X(n+1)m ∈ dy|Y n
0 , Xnm

0 ; Xnm = x) = εIC(x)νm(dy), (2.16)

and
P̌ (Yn = 1|Y n

0 , Xnm
0 ; Xnm = x) = εIC(x). (2.17)

From the Bayes rule we obtain

P̌ (X(n+1)m ∈ dy|Y n
0 , Xnm

0 ; Yn = 1, Xnm = x) = νm(dy), (2.18)

and the crucial observation due to Meyn and Tweedie, emphasized here as
Lemma 2.2.9 follows.

Lemma 2.2.9. Conditional on {Yn = 1}, the pre−nm process {Xk, Yi : k 6
nm, i 6 n} and the post−(n + 1)m process {Xk, Yi : k > (n + 1)m, i >
n + 1} are independent. Moreover, the post−(n + 1)m process has the same
distribution as {Xk, Yi : k > 0, i > 0} with ν∗m for the initial distribution of
(X0, Y0).

Next, let σα̌(n) denote entrance times of the split chain to the set α̌ =
C × {1}, i.e.

σα̌(0) = min{k > 0 : Yk = 1}, σα̌(n) = min{k > σ(n−1) : Yk = 1}, n > 1,

whereas hitting times τα̌(n) are defined as follows:

τα̌(1) = min{k > 1 : Yk = 1}, τα̌(n) = min{k > τα̌(n−1) : Yk = 1}, n > 2.

In view of Lemma 2.2.9 it should be intuitively clear that the following tours
{{X(σα̌(n)+1)m, X(σα̌(n)+1)m+1, . . . , X(σα̌(n+1)+1)m−1}, n = 0, 1, . . .

}

that start whenever Xk ∼ νm are of crucial importance. In fact in the next
chapter they will turn out to be much more tractable then the crude chain
(Xn)n>0 on X .
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Since we are interested in functionals of the Markov chain (Xn)n>0, for a
real-valued function, say g, on X , we define here also

si = si(g) =

m(σα̌(i+1)+1)−1∑

j=m(σα̌(i)+1)

g(Xj) =

σα̌(i+1)∑

j=σα̌(i)+1

Zj(g), (2.19)

where

Zj(g) =
m−1∑

k=0

g(Xjm+k). (2.20)

Remark 2.2.10. Clearly, one can construct the split chain based on the more
general minorization condition (2.7) instead of (2.9). We chose (2.9) for
simplicity. However, we use the split chain construction based on (2.7) in
Chapter 4.

27



Chapter 3

A Complete Characterisation of√
n−CLTs for Ergodic Markov

Chains via Regeneration

Central limit theorems for functionals of general state space Markov chains
are of crucial importance in sensible implementation of Markov chain Monte
Carlo algorithms as well as of vital theoretical interest. Different approaches
to proving this type of results under diverse assumptions led to a large variety
of CTL versions. However due to the recent development of the regeneration
theory of Markov chains, many classical CLTs can be reproved using this
intuitive probabilistic approach, avoiding technicalities of original proofs. In
this paper we provide an if and only if characterization of

√
n−CLTs for

ergodic Markov chains via regeneration and then use the result to solve the
open problem posed in [Roberts & Rosenthal 2005]. We then discuss the
difference between one-step and multiple-step small set condition.

Results of this chapter are based on paper [Bednorz, Latała & Łatuszyński 2008]
and are joint work with Witold Bednorz and Rafał Latała.

3.1 CLTs for Markov Chains
Let (Xn)n>0 be a time homogeneous, ergodic Markov chain on a measurable
space (X ,B(X )), with transition kernel P and a unique stationary measure
π on X . We remark that here ergodicity means that

lim
n→∞

‖P n(x, ·)− π‖tv = 0, for all x ∈ X , (3.1)
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where ‖ · ‖tv denotes the total variation distance. The process (Xn)n>0 may
start from any initial distribution π0. Let g be a real valued Borel function
on X , square integrable against the stationary measure π. We denote by ḡ its
centered version, namely ḡ = g−∫

gdπ and for simplicity Sn :=
∑n−1

i=0 ḡ(Xi).
We say that a

√
n−CLT holds for (Xn)n>0 and g if

Sn/
√

n
d−→ N(0, σ2

g), as n →∞, (3.2)

where σ2
g < ∞.

Central limit theorems as defined by condition (3.2) are crucial for as-
sessing the quality of Markov chain Monte Carlo estimation as we demon-
strate in Chapter 4 (c.f. [Jones et al. 2006] and [Geyer 1992]) and are also
of independent theoretical interest. Thus a large body of work on CLTs for
functionals of Markov chains exists and a variety of results have been estab-
lished under different assumptions and with different approaches to proofs
(see [Jones 2005] for a review).

First we aim to provide a general result, namely Theorem 3.3.1, that gives
a necessary and sufficient condition for

√
n-CLTs for ergodic chains (which is

a generalization of the well known Theorem 17.3.6 [Meyn & Tweedie 1993]).
Assume for a moment that there exists an accessible atom α ∈ B(X ), i.e.
such a set α that π(α) > 0 and there exists a probability measure ν on B(X ),
such that P (x,A) = ν(A) for all x ∈ α. Let τα be the first hitting time for
α. In this simplistic case we can rephrase our Theorem 3.3.1 as follows:

Theorem 3.1.1. Suppose that (Xn)n>0 is ergodic and possess an accessible
atom α, then the

√
n−CLT holds if and only if

Eα

[( τα∑

k=1

ḡ(Xk)

)2]
< ∞. (3.3)

Furthermore we have the following formula for the variance

σ2
g = π(α)Eα

[( τα∑

k=1

ḡ(Xk)

)2]
.

We discuss briefly the relation between two classical CLT formulations for
geometrically ergodic and uniformly ergodic Markov chains (recall Definition
2.1.9). Recently the following CLT provided by [Ibragimov & Linnik 1971]
has been reproved in [Roberts & Rosenthal 2005] using the intuitive regen-
eration approach and avoiding technicalities of the original proof (however
see Section 3.5 for a commentary).
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Theorem 3.1.2. If a Markov chain (Xn)n>0 with stationary distribution π
is geometrically ergodic, then a

√
n−CLT holds for (Xn)n>0 and g whenever

π(|g|2+δ) < ∞ for some δ > 0. Moreover σ2
g :=

∫
X ḡ2dπ+2

∫
X

∑∞
n=1 ḡ(X0)ḡ(Xn)dπ.

Remark 3.1.3. Note that for reversible chains the condition π(|g|2+δ) < ∞
for some δ > 0 in Theorem 3.1.2 can be weakened to π(g2) < ∞ as proved
in [Roberts & Rosenthal 1997b], however this is not possible for the general
case, see [Bradley 1983] or [Häggström 2005] for counterexamples.

Roberts and Rosenthal posed an open problem, whether the following
CLT version for uniformly ergodic Markov chains due to [Cogburn 1972] can
also be reproved using direct regeneration arguments.

Theorem 3.1.4. If a Markov chain (Xn)n>0 with stationary distribution π
is uniformly ergodic, then a

√
n−CLT holds for (Xn)n>0 and g whenever

π(g2) < ∞. Moreover σ2
g :=

∫
X ḡ2dπ + 2

∫
X

∑∞
n=1 ḡ(X0)ḡ(Xn)dπ.

The aim of this chapter is to prove Theorem 3.3.1 and show how to
derive from this general framework the regeneration proof of Theorem 3.1.4.
The outline of the chapter is as follows. In Section 3.2 we provide some
preliminary results which may also be of independent interest. In Section 3.3
we detail the proof of Theorem 3.3.1, and derive Theorem 3.1.4 as a corollary
in Section 3.4. Section 3.5 comprises a discussion of some difficulties of the
regeneration approach.

3.2 Tools and Preliminary Results
Recall the split chain construction of the previous chapter and the notation
therein. In particular si, defined by (2.19) will be of our vital interest.

In this section we take ḡ, the centered version of g, and analyze the se-
quence si(ḡ), i > 0. The basic result we often refer to is Theorem 17.3.1 in
[Meyn & Tweedie 1993], which states that (si)i>0 is a sequence of 1-dependent,
identically distributed r.v.’s with Ěsi = 0. In our approach we use the fol-
lowing decomposition: si = si + si, where

si : =

σα̌(i+1)−1∑

j=σα̌(i)+1

Zj(ḡ)− Ěπ∗0

[ σα̌(i+1)−1∑

j=σα̌(i)+1

Zj(ḡ)

]
, (3.4)

si : = Zσα̌(i+1)(ḡ)− Ěπ∗0

[
Zσα̌(i+1)(ḡ)

]
. (3.5)
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A look into the proof of Lemma 3.2.3 later in this section clarifies that si and
si are well defined.

Lemma 3.2.1. The sequence (si)i>0 consists of i.i.d. random variables.

Proof. First note that si is a function of {X(σα̌(i)+1)m, X(σα̌(i)+1)m+1, . . . } and
that Yσα̌(i) = 1, hence by Lemma 2.2.9 s0, s1, s2, . . . are identically dis-
tributed. Now focus on si, si+k and Yσα̌(i+k) for some k > 1. Obviously
Yσα̌(i+k) = 1. Moreover si is a function of the pre−σα̌(i + k)m process and
si+k is a function of the post−(σα̌(i+ k)+1)m process. Thus si and si+k are
independent again by Lemma 2.2.9 and for Ai, Ai+k, Borel subsets of R, we
have

P̌π∗0 ({si ∈ Ai} ∩ {si+k ∈ Ai+k}) = P̌π∗0 ({si ∈ Ai})P̌ ({si+k ∈ Ai+k}).

Let 0 6 i1 < i2 < · · · < il. By the same pre- and post- process reasoning we
obtain for Ai1 , . . . , Ail Borel subsets of R that

P̌π∗0 ({si1
∈ Ai1}∩· · ·∩{sil

∈ Ail}) =

= P̌π∗0 ({si1
∈ Ai1} ∩ · · · ∩ {sil−1

∈ Ail−1
}) · P̌π∗0 ({sil

∈ Ail}),
and the proof is complete by induction.

Now we turn to prove the following lemma, which generalizes the conclu-
sions drawn in [Hobert & Robert 2004] for uniformly ergodic Markov chains.

Lemma 3.2.2. Let the Markov chain (Xn)n>0 be recurrent (and (Xnm)n>0

be recurrent) and let the minorization condition (2.9) hold with π(C) > 0.
Then

L(Xτα̌(1)|{X0, Y0} ∈ α̌) = L(Xσα̌(0)|{X0, Y0} ∼ ν∗m) = πC(·), (3.6)

where πC(·) is a probability measure proportional to π truncated to C, that is
πC(B) = π(C)−1π(B ∩ C).

Proof. The first equation in (3.6) is a straightforward consequence of the split
chain construction. To prove the second one we use Theorem 2.2.8 for the
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split m−skeleton with A = α̌. Thus τA = τα̌(1) and π̌ := π∗ is the invariant
measure for the split m−skeleton. Let C ⊇ B ∈ B(X ), and compute

επ(B) = π̌(B × {1}) =

∫

α̌

Ěx,y




τα̌(1)∑
n=1

IB×{1}(Xnm, Yn)


 π̌(dx, dy)

= π̌(α̌)Ěν∗m




σα̌(0)∑
n=0

IB×{1}(Xnm, Yn)


 = π̌(α̌)Ěν∗mIB(Xσα̌(0)).

This implies proportionality and the proof is complete.

Lemma 3.2.3. Ěπ∗0s
2
i ≤ m2πḡ2

επ(C)
< ∞ and (si)i>0 are 1-dependent identically

distributed r.v.’s.

Proof. Recall that si =
∑m−1

k=0 ḡ(Xσα̌(i+1)m+k) − Ěπ∗0

(∑m−1
k=0 ḡ(Xσα̌(i+1)m+k)

)
and is a function of the random variable

{Xσα̌(i+1)m, . . . , Xσα̌(i+1)m+m−1}. (3.7)

By µi(·) denote the distribution of (3.7) on Xm. We will show that µi does
not depend on i. From (2.13), (2.17) and the Bayes rule, for x ∈ C, we obtain

P̌
(
Xnm+1 ∈ dx1, . . . , X(n+1)m−1 ∈ dxm−1, X(n+1)m ∈ dy

∣∣∣ (3.8)

∣∣∣Y n
0 , Xnm

0 ; Yn = 1, Xnm = x
)

=
νm(dy)

Pm(x, dy)
P (x, dx1) · · ·P (xm−1, dy).

Lemma 3.2.2 together with (3.8) yields

P̌
(
Xnm ∈ dx,Xnm+1 ∈ dx1, . . . , X(n+1)m−1 ∈ dxm−1, X(n+1)m ∈ dy

∣∣∣ (3.9)

∣∣∣Y n
0 , Xnm

0 ; Yn = 1; σα̌(0) < n
)

= πC(dx)
νm(dy)

Pm(x, dy)
P (x, dx1) · · ·P (xm−1, dy).

Note that νm(dy)
P m(x,dy)

is just a Radon-Nykodym derivative and thus (3.9) is a
well defined measure on Xm+1, say µ(·). It remains to notice, that µi(A) =
µ(A× X ) for any Borel A ⊂ Xm. Thus µi, i > 0 are identical and hence si,
i > 0 have the same distribution. Due to Lemma 2.2.9 we obtain that si,
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i > 0 are 1-dependent. To prove Ěπ∗0s
2
i < ∞, we first note that νm(dy)

P m(x,dy)
6 1/ε

and also πC(·) 6 1
π(C)

π(·). Hence

µi(A) = µ(A×X ) 6 1

επ(C)
µchain(A),

where µchain is defined by π(dx)P (x, dx1) . . . P (xm−2, dxm−1). Thus
∣∣∣∣∣Ěπ∗0

(
m−1∑

k=0

ḡ(Xσα̌(i+1)m+k)

)∣∣∣∣∣ ≤
mπ|ḡ|
επ(C)

< ∞.

Now let s̃i =
∑m−1

k=0 ḡ(Xσα̌(i+1)m+k) and proceed

Ěπ∗0s
2
i 6 Ěπ∗0 s̃

2
i 6 1

επ(C)
µchains̃

2
i =

1

επ(C)
Eπ

(
m−1∑

k=0

ḡ(Xk)

)2

6 m

επ(C)
Eπ

[
m−1∑

k=0

ḡ2(Xk)

]
6 m2πḡ2

επ(C)
.

We need a result which gives the connection between stochastic bound-
edness and the existence of the second moment of si. We state it in a general
form.

Theorem 3.2.4. Let (Xn)n>0 be a sequence of independent identically dis-
tributed random variables and Sn =

∑n−1
k=0 Xk. Suppose that (τn) is a sequence

of positive, integer valued r.v.’s such that τn/n → a ∈ (0,∞) in probability
when n → ∞ and the sequence (n−1/2Sτn) is stochastically bounded. Then
EX2

0 < ∞ and EX0 = 0.

The proof of Theorem 3.2.4 is based on the following lemmas.

Lemma 3.2.5. Let δ ∈ (0, 1) and t0 := sup{t > 0: sup06k6n P (|Sk| > t) >
δ}. Then P (|S10n| > 4t0) > (1−δ)(δ/4)20 and P (supk6n |Sk| 6 3t0) > 1−3δ.

Proof. By the definition of t0 there exists 0 6 n0 6 n such that P (|Sn0| >
t0) > δ. Then either P (|Sn| > t0/2) > δ/2 or P (|Sn| > t0/2) < δ/2 and
consequently

P (|Sn−n0| > t0/2) = P (|Sn − Sn0| > t0/2)

> P (|Sn0| > t0)− P (|Sn| > t0/2) > δ/2.
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Thus there exists n/2 6 n1 6 n such that P (|Sn1| > t0/2) > δ/2. Let
10n = an1 + b with 0 6 b < n1, then 10 6 a 6 20,

P (|San1| > 5t0) > P (San1 > at0/2) + P (San1 6 −at0/2)

> (P (Sn1 > t0/2))a + (P (Sn1 6 −t0/2))a > (δ/4)a,

hence

P
(|S10n| > 4t0

)
> P

(|San1| > 5t0
)
P

(|S10n − San1| 6 t0
)

> (δ/4)a(1− δ) > (1− δ)(δ/4)20.

Finally by the Levy-Octaviani inequality we obtain

P
(

sup
k6n

|Sk| > 3t0

)
6 3 sup

k6n
P

(|Sk| > t0
)

6 3δ.

Lemma 3.2.6. Let c2 < Var(X1), then for sufficiently large n, P (|Sn| >
c
√

n/4) > 1/16.

Proof. Let (X ′
i) be an independent copy of (Xi) and S ′k =

∑n
i=1 X ′

i. Moreover
let (εi) be a sequence of independent symmetric±1 r.v.’s, independent of (Xi)
and (X ′

i). For any reals (ai) we get by the Paley-Zygmund inequality,

P

(∣∣
n∑

i=1

aiεi

∣∣ > 1

2

( ∑
i

a2
i

)1/2
)

= P

(∣∣∣
n∑

i=1

aiεi

∣∣∣
2

> 1

4
E

∣∣∣
n∑

i=1

aiεi

∣∣∣
2
)

>
(
1− 1

4

)2
(
E|∑n

i=1 aiεi|2
)2

E|∑n
i=1 aiεi|4 > 3

16
.

Hence

P
(
|Sn − S ′n| >

c

2

√
n
)

= P
(
|

n∑
i=1

εi(Xi −X ′
i)| >

c

2

√
n
)

> 3

16
P

( n∑
i=1

(Xi −X ′
i)

2 > c2n
)

> 1

8

for sufficiently large n by the Weak LLN. Thus
1

8
6 P

(
|Sn − S ′n| >

c

2

√
n
)

6 P
(
|Sn| > c

4

√
n
)

+ P
(
|S ′n| >

c

4

√
n
)

6 2P
(
|Sn| > c

4

√
n
)
.
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Corollary 3.2.7. Let c2 < Var(X1), then for sufficiently large n,

P ( inf
10n6k611n

|Sk| > 1

4
c
√

n) > 2−121.

Proof. Let t0 be as in Lemma 3.2.5 for δ = 1/16, then

P
(

inf
10n6k611n

|Sk| > t0

)
> P

(
|S10n| > 4t0, sup

10n6k611n
|Sk − S10n| 6 3t0

)

= P
(|S10n| > 4t0

)
P

(
sup
k6n

|Sk| 6 3t0

)
> 2−121.

Hence by Lemma 3.2.5 we obtain t0 > c
√

n/4 for large n.

Proof of Theorem 3.2.4. By Corollary 3.2.7 for any c2 < Var(X) we have,

P
(
|Sτn | >

c

20

√
an

)
> P

(∣∣τn

n
− a

∣∣ 6 a

21
, inf

20
21

an6k6 22
21

an
|Sk| > c

20

√
an

)
>

> P

(
inf

20
21

an6k6 22
21

an
|Sk| > c

4

√
2an

21

)
− P

(∣∣τn

n
− a

∣∣ >
a

21

)

> 2−121 − P
(∣∣τn

n
− a

∣∣ >
a

21

)
> 2−122

for sufficiently large n. Since (n−1/2Sτn) is stochastically bounded, we imme-
diately obtain Var(X1) < ∞. If EX1 6= 0 then

∣∣ 1√
n

Sτn

∣∣ =
∣∣Sτn

τn

∣∣∣∣τn

n

∣∣√n →∞ in probability when n →∞.

3.3 A Characterization of
√

n-CLTs
In this section we provide a generalization of Theorem 17.3.6 of [Meyn & Tweedie 1993].
We obtain an if and only if condition for the

√
n-CLT in terms of finiteness

of the second moment of a centered excursion from α̌.

Theorem 3.3.1. Suppose that (Xn)n>0 is ergodic and π(g2) < ∞. Let νm

be the measure satisfying (2.9), then the
√

n−CLT holds if and only if

Ěν∗m

[( σα̌(0)∑
n=0

Zn(ḡ)

)2]
< ∞. (3.10)
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Furthermore we have the following formula for variance

σ2
g =

επ(C)

m

{
Ěν∗m

[( σα̌(0)∑
n=0

Zn(ḡ)

)2]
+2Ěν∗m

[( σα̌(0)∑
n=0

Zn(ḡ)

)( σα̌(1)∑

n=σα̌(0)+1

Zn(ḡ)

)]}
.

Proof. For n > 0 define

ln := max{k > 1 : m(σα̌(k) + 1) 6 n}
and for completeness ln := 0 if m(σα̌(0)+1) > n. First we are going to show
that ∣∣∣∣

1√
n

n−1∑
j=0

ḡ(Xj)− 1√
n

ln−1∑
j=0

sj

∣∣∣∣ → 0 in probability. (3.11)

Thus we have to verify that the initial and final terms of the sum do not mat-
ter. First observe that by the Harris recurrence property of the chain σα̌(0) <
∞, P̌π∗0 -a.s. and hence limn→∞ P̌π∗0 (mσα̌(0) > n) = 0 and P̌π∗0 (σα̌(0) < ∞) =
1. This yields

∣∣∣∣
1√
n

n−1∑
j=0

ḡ(Xj)− 1√
n

n−1∑

j=m(σα̌(0)+1)

ḡ(Xj)

∣∣∣∣ → 0, P̌ − a.s. (3.12)

The second point is to provide a similar argument for the tail terms and to
show that

∣∣∣∣
1√
n

n−1∑

j=m(σα̌(0)+1)

ḡ(Xj)− 1√
n

mσα̌(ln)+m−1∑

j=m(σα̌(0)+1)

ḡ(Xj)

∣∣∣∣ → 0, in probability.

(3.13)
For ε > 0 we have

P̌π∗0

(∣∣∣ 1√
n

n−1∑

j=m(σα̌(ln)+1)

ḡ(Xj)
∣∣∣ > ε

)
6 P̌π∗0

(
1√
n

σα̌(ln+1)∑

j=σα̌(ln)+1

Zj(|ḡ|) > ε

)

6
∞∑

k=0

P̌α̌

(
1√
n

τα̌(1)∑
j=1

Zj(|ḡ|) > ε, τα̌(1) > k

)
.

Now since
∑∞

k=0 P̌α̌(τα̌(1) > k) 6 Ěα̌τα̌(1) < ∞, where we use that α̌ is an
atom for the split chain, we deduce form the Lebesgue majorized convergence
theorem that (3.13) holds. Obviously (3.12) and (3.13) yield (3.11).
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We turn to prove that the condition (3.10) is sufficient for the CLT to
hold. We will show that random numbers ln can be replaced by their
non-random equivalents. Namely we apply the LLN (Theorem 17.3.2 in
[Meyn & Tweedie 1993])) to ensure that

lim
n→∞

ln
n

= lim
n→∞

1

n

[n/m]−1∑

k=1

I{(Xmk,Yk)∈α̌} =
π̌(α̌)

m
, P̌π∗0 − a.s. (3.14)

Let

n∗ := bπ̌(α̌)nm−1c, n := d(1−ε)π̌(α̌)nm−1e, n := b(1+ε)π̌(α̌)nm−1c.

Due to the LLN we know that for any ε > 0, there exists n0 such that for all
n > n0 we have P̌π∗0 (n 6 ln 6 n) > 1− ε. Consequently

P̌π∗0

(∣∣∣
ln−1∑
j=0

sj −
n∗∑
j=0

sj

∣∣∣ >
√

nβ

)
6 ε + P̌π∗0

(
max

n6l6n∗

∣∣∣
n∗∑

j=l

sj

∣∣∣ > β
√

n

)
+

+P̌π∗0

(
max

n∗+16l6n

∣∣∣
l∑

j=n∗+1

sj

∣∣∣ > β
√

n

)
. (3.15)

Since (sj)j>0 are 1-dependent, Mk :=
∑k

j=0 sj is not necessarily a martin-
gale. Thus to apply the classical Kolmogorov inequality we define M0

k =∑∞
j=0 s2jI{2j≤k} and M1

k =
∑∞

j=0 s1+2jI{1+2j≤k}, which are clearly square-
integrable martingales (due to (3.10)). Hence

P̌π∗0

(
max

n6l6n∗
|Mn∗ −Ml| > β

√
n
)

6 P̌π∗0

(
max

n6l6n∗
|M0

n∗ −M0
l | >

β
√

n

2

)
+

+P̌π∗0

(
max

n6l6n∗
|M1

n∗ −M1
l | >

β
√

n

2

)

6 4

nβ2

1∑

k=0

(
Ěπ∗0 |Mk

n∗ −Mk
n |2

)

6 Cεβ−2Ěν∗m(s2
0), (3.16)

where C is a universal constant. In the same way we show that

P̌ ( max
n∗+16l6n

|Ml −Mn∗+1| > β
√

n) 6 Cεβ−2Ěν∗m(s2
0),
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consequently, since ε is arbitrary, we obtain

∣∣∣ 1√
n

ln−1∑
j=0

sj − 1√
n

n∗∑
j=0

sj

∣∣∣ → 0, in probability. (3.17)

The last step is to provide an argument for the CLT for 1-dependent, iden-
tically distributed random variables. Namely, we have to prove that

1√
n

n∑
j=0

sj
d→ N (0, σ̄2), as n →∞, (3.18)

where
σ̄2 := Ěν∗m(s0(ḡ))2 + 2Ěν∗m(s0(ḡ)s1(ḡ)).

Observe that (3.12), (3.13), (3.17) and (3.18) imply Theorem 3.3.1. We fix
k > 2 and define ξj := skj+1(ḡ) + ... + skj+k−1(ḡ), consequently ξj are i.i.d.
random variables and

1√
n

n∑
j=0

sj =
1√
n

bn/kc−1∑
j=0

ξj +
1√
n

bn/kc∑
j=0

skj(ḡ) +
1√
n

n∑

j=k[n/k]+1

sj. (3.19)

Obviously the last term converges to 0 in probability. Denoting

σ2
k := Ěπ∗0 (ξj)

2 = (k − 1)Ěν∗m(s0(ḡ))2 + 2(k − 2)Ěν∗m(s0(ḡ)s1(ḡ)),

σ2
s := Ěν∗m(s0(ḡ))2.

we use the classical CLT for i.i.d. random variables to see that

1√
n

bn/kc−1∑
j=0

ξj
d→ N (0, k−1σ2

k), and
1√
n

bn/kc∑
j=0

skj(ḡ)
d→ N (0, k−1σ2

s).

(3.20)
Moreover

lim
n→∞

[ 1√
n

bn/kc−1∑
j=0

ξj +
1√
n

bn/kc∑
j=0

skj(ḡ)
]

(3.21)

converges toN (0, σ2
g), with k →∞. Since the weak convergence is metrizable

we deduce from (3.19), (3.20) and (3.21) that (3.18) holds.
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The remaining part is to prove that (3.10) is also necessary for the CLT to
hold. Note that if

∑n
k=0 ḡ(Xk)/

√
n verifies the CLT then

∑ln−1
j=0 sj is sto-

chastically bounded by (3.11). We use the decomposition si = si + si, i > 0
introduced in Section 3.2. By Lemma 3.2.3 we know that sj is a sequence of
1-dependent random variables with the same distribution and finite second
moment. Thus from the first part of the proof we deduce that

∑ln−1
j=0 sj/

√
n

verifies a CLT and thus is stochastically bounded. Consequently the remain-
ing sequence

∑ln−1
j=0 sj/

√
n also must be stochastically bounded. Lemma

3.2.1 states that (sj)j>0 is a sequence of i.i.d. r.v.’s, hence Ě[s2
j ] < ∞ by

Theorem 3.2.4. Also ln/n → π̌(α̌)m−1 by (3.14). Applying the inequality
(a + b)2 6 2(a2 + b2) we obtain

Ěπ∗0 [sj]
2 6 2(Ěπ∗0 [s

2
j ] + Ěπ∗0 [s

2
j ]) < ∞

which completes the proof.

Remark 3.3.2. Note that in the case of m = 1 we have s̄i ≡ 0 and for Theorem
3.3.1 to hold, it is enough to assume π|g| < ∞ instead of π(g2) < ∞. In the
case of m > 1, assuming only π|g| < ∞ and (3.10) implies the

√
n-CLT, but

the proof of the converse statement fails, and in fact the converse statement
does not hold (one can easily provide an appropriate counterexample).

3.4 Uniform Ergodicity
In view of Theorem 3.3.1 providing a regeneration proof of Theorem 3.1.4
amounts to establishing conditions (3.10) and checking the formula for the
asymptotic variance. To this end we need some additional facts about small
sets for uniformly ergodic Markov chains.

Theorem 3.4.1. If (Xn)n>0, a Markov chain on (X ,B(X )) with stationary
distribution π is uniformly ergodic, then X is νm−small for some νm.

Hence for uniformly ergodic chains (2.9) holds for all x ∈ X . Theorem
3.4.1 is well known in literature, in particular it results from Theorems 5.2.1
and 5.2.4 in [Meyn & Tweedie 1993] with their ψ = π.

Theorem 3.4.1 implies that for uniformly ergodic Markov chains (2.10) can
be rewritten as

Pm(x, ·) = ενm(·) + (1− ε)R(x, ·). (3.22)

The following mixture representation of π will turn out very useful.
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Lemma 3.4.2. If (Xn)n>0 is an ergodic Markov chain with transition kernel
P and (3.22) holds, then

π = εµ := ε

∞∑
n=0

νm(1− ε)nRn. (3.23)

Remark 3.4.3. This can be easily extended to the more general setting than
this of uniformly ergodic chains, namely let Pm(x, ·) = s(x)νm(·) + (1 −
s(x))R(x, ·), s : X → [0, 1], πs > 0. In this case π = πs

∑∞
n=0 νmRn

#, where
R#(x, ·) = (1− s(x))R(x, ·). Related decompositions under various assump-
tions can be found e.g. in [Nummelin 2002], [Hobert & Robert 2004] and
[Breyer & Roberts 2001] and are closely related to perfect sampling algo-
rithms, such as coupling form the past (CFTP) introduced in [Propp & Wilson 1996].

Proof. First check that the measure in question is a probability measure.

(
ε

∞∑
n=0

νm(1− ε)nRn

)
(X ) = ε

∞∑
n=0

(1− ε)n
(
νmRn

)
(X ) = 1.

It is also invariant for Pm :

( ∞∑
n=0

νm(1− ε)nRn

)
Pm =

( ∞∑
n=0

νm(1− ε)nRn

)
(ενm + (1− ε)R)

= εµνm +
∞∑

n=1

νm(1− ε)nRn =
∞∑

n=0

νm(1− ε)nRn.

Hence by ergodicity εµ = εµP nm → π, as n → ∞. This completes the
proof.

Corollary 3.4.4. The decomposition in Lemma 3.4.2 implies that

(i) Ěν∗m

( σ(0)∑
n=0

I{Xnm∈A}
)

= Ěν∗m

( ∞∑
n=0

I{Xnm∈A}I{Y0=0,...,Yn−1=0}
)

= ε−1π(A),

(ii) Ěν∗m

( ∞∑
n=0

f(Xnm, Xnm+1, . . . ; Yn, Yn+1, . . . )I{Y0=0,...,Yn−1=0}
)

=

= ε−1Ěπ∗f(X0, X1, . . . ; Y0, Y1, . . . ).
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Proof. (i) is a direct consequence of (3.23). To see (ii) note that Yn is a coin
toss independent of {Y0, . . . , Yn−1} and Xnm, this allows for π∗ instead of π on
the RHS of (ii). Moreover the evolution of {Xnm+1, Xnm+2, . . . ; Yn+1, Yn+2, . . . }
depends only (and explicitly by (2.13) and (2.14)) on Xnm and Yn. Now use
(i).

Our object of interest is

I = Ěν∗m

[( σ(0)∑
n=0

Zn(ḡ)

)2]
= Ěν∗m

[( ∞∑
n=0

Zn(ḡ)I{σα̌(0)>n}

)2]

= Ěν∗m

[ ∞∑
n=0

Zn(ḡ)2I{Y0=0,...,Yn−1=0}

]
+

+ 2Ěν∗m

[ ∞∑
n=0

∞∑

k=n+1

Zn(ḡ)I{σ(0)>n}Zk(ḡ)I{σα̌(0)>k}

]

= A + B (3.24)

Next we use Corollary 3.4.4 and then the inequality 2ab 6 a2 + b2 to bound
the term A in (3.24).

A = ε−1Ěπ∗Z0(ḡ)2 = ε−1Eπ

( m−1∑

k=0

ḡ(Xk)
)2

6 ε−1mEπ

[ m−1∑

k=0

ḡ2(Xk)
]

6 ε−1m2πḡ2 < ∞.

We proceed similarly with the term B

|B| 6 2Ěν∗m

[ ∞∑
n=0

|Zn(ḡ)|I{σα̌(0)>n}
∞∑

k=1

|Zn+k(ḡ)|I{σα̌(0)>n+k}

]

= 2ε−1Ěπ∗

[
|Z0(ḡ)|

∞∑

k=1

|Zk(ḡ)|I{σα̌(0)>k}

]
.

By Cauchy-Schwarz,

Ěπ∗
[
I{σα̌(0)>k}|Z0(ḡ)||Zk(ḡ)|] 6

√
Ěπ∗

[
I{σα̌(0)>k}Z0(ḡ)2

]√
Ěπ∗Zk(ḡ)2

=
√

Ěπ∗
[
I{Y0=0}I{Y1=0,...,Yk−1=0}Z0(ḡ)2

]√
Ěπ∗Z0(ḡ)2.
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Observe that {Y1, . . . , Yk−1} and {X0, . . . , Xm−1} are independent. We drop
I{Y0=0} to obtain

Ěπ∗
[
I{σα̌(0)>k}|Z0(ḡ)||Zk(ḡ)|] 6 (1− ε)

k−1
2 Ěπ∗Z0(ḡ)2 6 (1− ε)

k−1
2 m2πg2.

Hence |B| < ∞, and the proof of (3.10) is complete. To get the variance
formula note that the convergence we have established implies

I = ε−1Ěπ∗

[
Z0(ḡ)

]2

+ 2ε−1Ěπ∗

[
Z0(ḡ)

∞∑

k=1

Zk(ḡ)I{σα̌(0)>k}

]
.

Similarly we obtain

J := 2Ěν∗m

[( σα̌(0)∑
n=0

Zn(ḡ)
)( σα̌(1)∑

n=σα̌(0)+1

Zn(ḡ)
)]

= 2ε−1Ěπ∗

[
Z0(ḡ)

∞∑

k=σα̌(0)+1

Zk(ḡ)I{σα̌(1)>k}

]
.

Since π(C) = 1, we have σ2
g = εm−1(I + J). Next we use Lemma 2.2.9 and

Ěπ∗Z0(ḡ) = 0 to drop indicators and since for f : X → R, also Ěπ∗f = Eπf,
we have

ε(I + J) = Ěπ∗

[
Z0(ḡ)

(
Z0(ḡ) + 2

∞∑

k=1

Zk(ḡ)

)]

= Eπ

[
Z0(ḡ)

(
Z0(ḡ) + 2

∞∑

k=1

Zk(ḡ)

)]
.

Now, since all the integrals are taken with respect to the stationary measure,
we can for a moment assume that the chain runs in stationarity from −∞
rather than starts at time 0 with X0 ∼ π. Thus

σ2
g = m−1Eπ

[
Z0(ḡ)

( ∞∑

k=−∞
Zk(ḡ)

)]
= m−1Eπ

[ m−1∑

l=0

ḡ(Xl)

( ∞∑

k=−∞
ḡ(Xk)

)]

= Eπ

[
ḡ(X0)

∞∑

k=−∞
ḡ(Xk)

]
=

∫

X
ḡ2dπ + 2

∫

X

∞∑
n=1

ḡ(X0)ḡ(Xn)dπ.
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3.5 The difference between m = 1 and m 6= 1

Assume the small set condition (2.9) holds and consider the split chain de-
fined by (2.13) and (2.14). The following tours

{{X(σ(n)+1)m, X(σ(n)+1)m+1, . . . , X(σ(n+1)+1)m−1}, n = 0, 1, . . .
}

that start whenever Xk ∼ νm are of crucial importance to the regeneration
theory and are eagerly analyzed by researchers. In virtually every paper
on the subject there is a claim these objects are independent identically
distributed random variables. This claim is usually considered obvious and
no proof is provided. However this is not true if m > 1. In fact formulas (2.13)
and (2.14) should be convincing enough, as Xmn+1, . . . , X(n+1)m given Yn = 1
and Xnm = x are linked in a way described by P (x, dx1) · · ·P (xm−1, dy).
In particular consider a Markov chain on X = {a, b, c, d, e} with transition
probabilities

P (a, b) = P (a, c) = P (b, b) = P (b, d) = P (c, c) = P (c, e) = 1/2,

P (d, a) = P (e, a) = 1.

Let ν4(d) = ν4(e) = 1/2 and ε = 1/8. Clearly P 4(x, ·) > εν4(·) for every
x ∈ X , hence we established (2.9) with C = X . Note that for this simplistic
example each tour can start with d or e. However if it starts with d or e the
previous tour must have ended with b or c respectively. This makes them
dependent. Similar examples with general state space X and C 6= X can be
easily provided. Hence Theorem 3.3.1 is critical to providing regeneration
proofs of CLTs and standard arguments that involve i.i.d. random variables
are not valid.
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Chapter 4

Fixed-Width Asymptotics

Determining the length of simulation for MCMC algorithms that guarantees
good quality of estimation is a fundamental problem. One possible approach
is to wait until width of an asymptotic confidence interval based on the
approximation by a normal distribution becomes smaller then a user-specified
value. This requires estimating σ2

g the variance of the asymptotic normal
distribution. In this chapter we relax assumptions required to obtain strongly
consistent estimators of σ2

g in the regenerative setting.
Results of this chapter (in particular the key Lemma 4.3.3 and result-

ing from it Lemma 4.3.6 and Proposition 4.3.7) are based on the paper
[Bednorz & Łatuszyński 2007] and are joint work with Witold Bednorz.

The presentation of the fixed-width asymptotic approach is based on
[Jones et al. 2006]. We provide only a quick sketch, since the approach
is well known in literature (see also [Geyer 1992], [Mykland et al. 1995],
[Hobert et al. 2002]) and [Jones et al. 2006] is an excellent recent reference.

4.1 Asymptotic Confidence Intervals
Suppose that we are in the standard MCMC setting and our goal is to esti-
mate I = Eπg =

∫
X g(x)π(dx). Let (Xn)n>0 be a time homogeneous, aperi-

odic and Harris recurrent Markov chain with transition kernel P and limiting
invariant probability distribution π.

Consider the estimator along one walk without burn-in, i.e.

În =
1

n

n−1∑
i=0

g(Xi) (4.1)
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of the unknown value I. By Theorem 2.1.5, În → I, as n →∞, with proba-
bility 1. Moreover, assume for a moment that a

√
n−CLT holds and let σ2

g

be the asymptotic variance, as defined in (3.2).
We will study the following sequential procedure. Let n∗ = n∗(ε) be the

first time that
q•

σ̂n√
n

+ p(n) ≤ ε, (4.2)

where σ̂2
n is an estimate of σ2

g at time n, and q• is an appropriate quantile,
p(n) > 0 is a strictly positive decreasing function on Z+, and ε > 0 is the
desired half-width.

At time n∗ we build an interval I∗(ε) := [În∗ − ε, În∗ + ε] of width 2ε.
For independent samples such procedures are known to work well and be-
long to classical results of sequential statistics (c.f. [Chow & Robbins 1965],
[Nadas 1969] and [Liu, W 1997]). However in our context we have to apply
the following result form [Glynn & Whitt 1992].

Theorem 4.1.1 (Glynn & Whitt 1992). If

(a) A functional central limit theorem holds, i.e. as n → ∞, the distribu-
tion of

Yn(t) :=
1√
n

bntc∑
i=1

g(Xi)

converges to Brownian motion with variance σ2
g weakly in the Skorohod

space on any finite interval,

(b) σ̂2
n → σ2

g with probability 1 as n →∞,

(c) The sequence p(n) is strictly positive and decreasing and p(n) = o(n−1/2),

then
P (I ∈ I∗(ε)) → 1− δ, as ε → 0. (4.3)

Markov chains often enjoy a functional central limit theorem under the
same conditions that ensure the standard

√
n−CLT. In particular the follow-

ing results are well known:

Theorem 4.1.2. Assume (Xn)n>0 is a Harris ergodic Markov chain. If one
of the following conditions holds, then a functional central limit theorem also
holds.
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(a) (due to [Doukhan et al. 1994]) The chain is geometrically ergodic and
Eπ[g2(x)(log+ |g(x)|)] < ∞,

(b) (due to [Roberts & Rosenthal 1997b]) The chain is geometrically er-
godic, reversible, and Eπg2(x) < ∞,

(c) (due to [Billingsley 1968]) The chain is uniformly ergodic and Eπg2(x) <
∞.

The goal of this chapter is to obtain additionally condition (b) of Theorem
4.1.1 for a suitable estimator σ̂2

n of σ2
g , under possibly weak assumptions and

consequently conclude (4.3). In particular we will need stronger assumptions
then those listed in Theorem 4.1.2, thus condition (a) of Theorem 4.1.1 will
hold automatically.

4.2 Estimating Asymptotic Variance

We will discuss two methods of estimating the asymptotic variance described
in [Jones et al. 2006], based on batch means and regenerative simulation.

4.2.1 Batch Means

For the bath means estimator suppose that n− 1 iterations of the algorithm
are performed and we partition the trajectory of length n into an blocks of
length bn i.e.

n ' anbn

Define Ȳ1, . . . , Ȳan as

Ȳj :=
1

bn

jbn−1∑

i=(j−1)bn

g(Xi).

Then the bath means estimate of σ2
g is

σ̂2
BM =

bn

an − 1

an∑
j=1

(Ȳj − În)2. (4.4)

In the next section we provide an appropriate strategy for choosing an

and bn for σ̂2
BM to be a consistent estimator.
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4.2.2 Regenerative Estimation

Assume that the following minorization condition with m = 1, as introduced
in Definition 2.2.2 holds.

P (x, ·) ≥ s(x)ν(·), for all x ∈ X , (4.5)

and define the residual transition kernel R(x, dy) as

R(x, dy) :=

{
(1− s(x))−1(P (x, dy)− s(x)ν(dy)) if s(x) < 1,
0 if s(x) = 1.

By straightforward modification of the split chain construction of Section
2.2 we obtain a bivariate process (Xn, Yn)n≥0 that evolves according to the
following transition rule:

• given Xn = x, draw Yn ∼ Bernoulli(s(x))

• If Yn = 1, then draw Xn+1 ∼ ν(·), otherwise draw Xn+1 ∼ R(x, ·).
Moreover, the artificial atom α̌ is now of the form α̌ = X × {1}. Let us

simplify the notation of Section 2.2 by setting τn = τα̌(n), for n = 1, 2, . . .
Suppose also that X0 ∼ ν and set τ0 = −1 to keep notation coherent with
probabilistic behavior of the chain. Define also Ni = τi+1−τi, for i = 0, 1, . . . ,
and recall si defined by (2.19). Since m = 1,

si =

τi+1∑
j=τi+1

g(Xj),

and observe that the (Ni, si) pairs are iid random variables.
For regenerative estimation of the asymptotic variance we will need (Yi)i≥0,

thus we must simulate the split chain (Xi, Yi)i≥0, not only the initial chain
(Xi)i≥0. However the simulation from R(x, ·) in real life examples is often
challenging. The following solution to this problem is provided in [Mykland et al. 1995].

Suppose that P (x, ·) has a density k(·|x) and ν(·) has a density v(·) with
respect to a reference measure dx. Given Xi = x draw Xi+1 ∼ k(·|x) and
draw Yi from the distribution of Yi|Xi, Xi+1, that is

Yi ∼ Bernoulli
(s(Xi)v(Xi+1)

k(Xi+1|Xi)

)
.
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The method is feasible in many settings of practical interest (cf. [Mykland et al. 1995],
[Jones et al. 2006]).

Once we are able to simulate the split chain (Xi, Yi)i≥0, we can observe
τ0, τ1, . . . and compute the following regenerative estimator of I.

ÎτR
=

1

τR + 1

τR∑
j=0

g(Xj), (4.6)

where the fixed number R is the total number of regenerations observed.
Note that ÎτR

is a sum of fixed number of iid. random variables. Thus if
EνN

2
0 < ∞ and Eνs

2
0 < ∞ then

√
R(ÎτR

− I) → N(0, ξ2
g), as R →∞, (4.7)

where

ξ2
g =

Eν(s0 −N0I)2

(EνN0)2
.

Let N̄ = R−1(τR + 1) = R−1
∑R−1

i=0 Ni. As an approximation for ξ2
g one can

take the following regenerative estimator

ξ̂2
RS :=

1

RN̄2

R−1∑
i=0

(si − ÎτR
Ni)

2. (4.8)

Now observe that

ξ̂2
RS − ξ2

g =
1

RN̄2

R−1∑
i=0

(si − ÎτR
Ni)

2 ± Eν(s0 −N0I)2

N̄2
− Eν(s0 −N0I)2

(EνN0)2

=
1

RN̄2

R−1∑
i=0

[
(si − ÎτR

Ni)
2 ± (si −NiI)2 − Eν(s0 −N0I)2

]
+

+Eν(s0 −N0I)2

[
1

N̄2
− 1

(EνN0)2

]
.

As noticed in [Jones et al. 2006], repeated application of the strong law of
large numbers (with R →∞) yields that ξ̂2

RS is a strongly consistent estima-
tor of ξ2

g so it is enough to establish conditions EνN
2
0 < ∞ and Eνs

2
0 < ∞ for

the fixed width methodology to work. This is deferred to the next section.
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Clearly, in this modified regenerative setting an asymptotically valid fixed-
width result is obtained by terminating the simulation the first time that

q•
ξ̂RS√

R
+ p(R) ≤ ε. (4.9)

4.3 A Lemma and its Consequences
For geometrically ergodic Markov chains hitting times for sets of positive
stationary measure have geometrically decreasing tails. In particular the
following lemma is shown in [Hobert et al. 2002].

Lemma 4.3.1 (Lemma 2 of [Hobert et al. 2002]). Let (Xn)n>0 be a Har-
ris ergodic chain and assume that (4.5) holds. If (Xn)n>0 is geometrically
ergodic, then there exists a β > 1, such that Eπβτ1 < ∞.

Which immediately yields the following corollary.

Corollary 4.3.2. Under the conditions of Lemma 4.3.1, for any a > 0,

∞∑
i=0

(
Pπ(τ1 ≥ i + 1)

)a

≤
(
Eπβτ1

)a
∞∑
i=0

β−a(i+1) < ∞. (4.10)

Proof.
∞∑
i=0

(
Pπ(τ1 ≥ i + 1)

)a

≤
∞∑
i=0

(
Eπ(I{τ1≥i+1}β

τ1β−(i+1))
)a

=
∞∑
i=0

β−a(i+1)
(
Eπ(I{τ1≥i+1}β

τ1)
)a

≤
∞∑
i=0

β−a(i+1)
(
Eπβτ1

)a

.

Observe also that we can integrate (4.5) with respect to π and obtain
π(·) ≥ cν(·), where c = Eπs. Thus for any function h : X∞ → R,

Eπ|h(X0, X1, . . . )| ≥ cEν |h(X0, X1, . . . )|. (4.11)

Now we are in a position to prove our key result, namely the following
lemma.
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Lemma 4.3.3. Let (Xn)n>0 be a Harris ergodic Markov chain, assume the
minorization condition (4.5) holds, and (Xn)n>0 is geometrically ergodic. Let
g : X → R be a real valued Borel function. Then, if

Eπ|g|p+δ < ∞ for some p > 0 and δ > 0,

then
EνN

p
0 < ∞ and Eν |s0|p < ∞.

Remark 4.3.4. Lemma 4.3.3 improves the two following results:

• Theorem 2 of [Hobert et al. 2002] that provides the implication

Eπ|g|2+δ < ∞⇒ EνN
2
0 < ∞ and Eν |s0|2 < ∞.

• Lemma 1 of [Jones et al. 2006] that for p ≥ 1 provides implications

Eπ|g|2(p−1)+δ < ∞⇒ EνN
p
0 < ∞ and Eν |s0|p < ∞.

and
Eπ|g|2p+δ < ∞⇒ EνN

p
0 < ∞ and Eν |s0|p+δ < ∞.

Remark 4.3.5. Without additional restrictions Eπ|g|p < ∞ does not imply
Eν |s0|p < ∞, so Lemma 4.3.3 can not be improved. To see this note that The-
orem 3.3.1 of Chapter 3 combined with the presumption that in the setting of
Lemma 4.3.3 Eπ|g|p < ∞ implies Eν |s0|p < ∞ yields the Central Limit The-
orem for normalized sums of g(Xi) for geometrically ergodic Markov chains
assuming only Eπg2 < ∞. This however is not enough for the CLT, Bradley in
[Bradley 1983] and also Häggström in [Häggström 2005] provide counterex-
amples. Hence to obtain the implication Eπ|g|p < ∞ ⇒ Eν |s0|p < ∞, one
needs stronger assumptions, e.g. if p = 2 then uniform ergodicity is enough,
as proved in Chapter 3.

Proof of Lemma 4.3.3. First note that by (4.11) it is enough to show that

EπNp
0 < ∞ and Eπ|s0|p < ∞.

Moreover, since maxk

{
kp

βk

}
< ∞ for every p > 0 and β > 1, by Lemma

4.3.1 we obtain immediately EπNp
0 < ∞. Thus we proceed to show that

Eπ|s0|p < ∞. To this end first note that

C :=
((

Eπ|g(Xi)|p+δ
) p

p+δ

)1/p

< ∞. (4.12)
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For p ≥ 1 we use first the triangle inequality in Lp, then Hölder inequality,
then (4.12) and finally Corollary 4.3.2.

(Eπ|s0|p)1/p ≤
[
Eπ

(
τ1∑

i=0

|g(Xi)|
)p]1/p

=

[
Eπ

( ∞∑
i=0

1(i ≤ τ1)|g(Xi)|
)p]1/p

≤
∞∑
i=0

[
Eπ1(i ≤ τ1)|g(Xi)|p

]1/p

≤
∞∑
i=0

[
(Eπ1(i ≤ τ1))

δ
p+δ

(
Eπ|g(Xi)|p+δ

) p
p+δ

]1/p

= C

∞∑
i=0

(Pπ(τ1 ≥ i))
δ

p(p+δ) < ∞. (4.13)

For 0 < p < 1 we use the fact xp is concave and then proceed similarly as in
(4.13) to obtain

Eπ|s0|p ≤ Eπ

( ∞∑
i=0

1(i ≤ τ1)|g(Xi)|
)p

≤
∞∑
i=0

Eπ1(i ≤ τ1)|g(Xi)|p

≤ Cp

∞∑
i=0

(Pπ(τ1 ≥ i))
δ

(p+δ) < ∞.

Lemma 4.3.3 allows us to restate results from section 3.2 of [Jones et al. 2006]
with relaxed assumptions. In particular in Lemma 2 and in Proposition 3
therein it is enough to assume Eπ|g|2+δ+ε < ∞ for some δ > 0 and some ε > 0,
instead of Eπ|g|4+δ < ∞ for some δ > 0. Modifications of the (rather long
and complicated) proofs in [Jones et al. 2006] are straightforward. Hence we
have

Lemma 4.3.6 (Part b of Lemma 2 of [Jones et al. 2006]). Let (Xn)n>0 be
a Harris ergodic Markov chain with invariant distribution π. If (Xn)n>0 is
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geometrically ergodic, (4.5) holds and Eπ|g|2+δ+ε < ∞ for some δ > 0 and
some ε > 0, then there exists a constant 0 < σg < ∞, and a sufficiently large
probability space such that

∣∣∣∣∣
n∑

i=1

g(Xi)− nEπg − σgB(n)

∣∣∣∣∣ = O(γ(n))

with probability 1 as n → ∞, where γ(n) = nα log n, α = 1/(2 + δ), and
B = {B(t), t ≥ 0} denotes a standard Brownian motion.

Proposition 4.3.7 (Proposition 3 of [Jones et al. 2006]). Let (Xn)n>0 be a
Harris ergodic Markov chain with invariant distribution π. Further, suppose
(Xn)n>0 is geometrically ergodic, (4.5) holds and Eπ|g|2+δ+ε < ∞ for some
δ > 0 and some ε > 0. If

1. an →∞, as n →∞,

2. bn →∞ and bn/n → 0 as n →∞,

3. b−1
n n2α[log n]3 → 0 as n →∞, where α = 1/(2 + δ),

4. there exists a constant c ≥ 1, such that
∑∞

n=1(bn/n)c < ∞,

Then σ̂2
BM → σ2

g w.p.1 as n →∞.

Concluding Remark 4.3.8. Compare the foregoing result with Section 4.2.2 or
with Proposition 1 of [Jones et al. 2006] to see that both methods described
here, i.e. regenerative simulation (RS) and batch means (CBM), provide
strongly consistent estimators of σ2

g under the same assumption for the target
function g.
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Chapter 5

Fixed-Width Nonasymptotic
Results under Drift Condition

In this Chapter we establish nonasymptotic fixed width estimation. We as-
sume a drift condition towards a small set and bound the mean square error of
estimators obtained by taking averages along a single trajectory of a Markov
chain Monte Carlo algorithm. We use these bounds to determine the length
of the trajectory and the burn-in time that ensures (ε− α)−approximation,
i.e. desired precision of estimation with given probability. Let I be the value
of interest and Î its MCMC estimate. Precisely, our lower bounds for the
length of the trajectory and burn-in time ensure that

P (|Î − I| ≤ ε) ≥ 1− α

and depend only and explicitly on drift parameters, ε and α. Next we intro-
duce an MCMC estimator based on the median of multiple shorter runs. It
turns out that this estimation scheme allows for sharper bounds for the total
simulation cost required for the (ε−α)−approximation. For both estimation
schemes numerical examples are provided that include practically relevant
Gibbs samplers for a hierarchical random effects model.

5.1 Introduction
Recall the estimation strategies introduced in Section 1.2 and described by
(1.3-1.5). Estimation Along one Walk uses average along a single trajectory
of the underlying Markov chain and discards the initial part to reduce bias.
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The estimate of the unknown value I =
∫
X f(x)π(dx) is of the form

Ît,n =
1

n

t+n−1∑
i=t

f(Xi) (5.1)

and t is called the burn-in time.
The strategy is believed to be more efficient then estimation along one

walk with spacing and multiple run described in Section 1.2 and is usually the
practitioners choice. Some precise results are available for reversible Markov
chains. Geyer in [Geyer 1992] shows that using spacing as in (1.4) is ineffec-
tive (in terms of asymptotic variance) and Chan and Yue in [Chan & Yue 1996]
prove that (5.1) is asymptotically efficient in a class of linear estimators (in
terms of mean square error).

The goal of this chapter is to derive lower bounds for n and t in (5.1),
that minimize the total computation cost n+t, and that ensure the following
condition of (ε, α)−approximation:

P (|Ît,n − I| ≤ ε) ≥ 1− α, (5.2)

where ε is the precision of estimation and 1−α, the confidence level. Due to
results in [Geyer 1992] and [Chan & Yue 1996] no other linear modifications
of the estimation scheme in (5.1) are analyzed. To decrease the total simu-
lation cost for (5.2) we introduce instead a nonlinear estimator based on the
median of multiple shorter runs.

Results of this or related type have been obtained for discrete state space
X and bounded target function f by Aldous in [Aldous 1987], Gillman in
[Gillman 1998] and recently by León and Perron in [León & Perron 2004].
Niemiro and Pokarowski in [Niemiro & Pokarowski 2007] give results for rel-
ative precision estimation. For uniformly ergodic chains on continuous state
space X and bounded function f, Hoeffding type inequalities are available
(due to Glynn and Ormonait in [Glynn & Ormoneit 2002], and an improved
bound due to Meyn et al. in [Kontoyiannis at al. 2005]) and can easily lead
to the desired (ε − α)−approximation. To our best knowledge there are no
explicit bounds for n and t in more general settings, especially when f is not
bounded and the chain is not uniformly ergodic. A remarkable presentation
of the state of the art approach to dealing with this problem is provided by
Jones at al. in the recent paper [Jones et al. 2006]. They suggest two proce-
dures for constructing consistent estimators for the variance of the asymptotic
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normal distribution for geometrically ergodic split chains and thus under the
additional assumption of Eπ|f |2+δ < ∞ for some δ > 0 (see Chapter 4 here
for this weakened assumption and details of the procedure).

Our approach is to assume a version of the well known drift condition to-
wards a small set (Assumption 5.2.1) and give explicit lower bounds on n and
t in terms of drift parameters defined in Assumption 5.2.1 and approximation
parameters defined in (5.2).

The rest of the Chapter is organized as follows. In Section 5.2 we intro-
duce the drift condition assumption and preliminary results. In Section 5.3
we obtain an explicit bound for the mean square error of the estimator defined
in (1.3). In Section 5.4 we construct two different (ε − α)−approximation
procedures, one based on the sample mean of one long trajectory and the
other based on the median of multiple shorter runs. We close with examples
in Sections 5.5 and 5.6, in particular we show how to obtain explicit lower
bounds for t and n that guarantee the ε−α−approximarion for a hierarchical
random effects model of practical relevance.

5.2 A Drift Condition and Preliminary Lem-
mas

Since in what follows we deal with integrals of unbounded functions f with
respect to probability measures, the very common total variation distance
defined by (2.1) is inappropriate for measuring distances between probability
measures and we need to use the V−norm and V−norm distance introduced
in Section 2.1.

We analyze the MCMC estimation along a single trajectory under the
following assumption of a drift condition towards a small set.

Assumption 5.2.1.(A.1) Small set. There exist C ∈ B(X ), β̃ > 0 and
a probability measure ν on (X ,B(X )) such that for all x ∈ C and
A ∈ B(X )

P (x,A) ≥ β̃ν(A).

(A.2) Drift. There exist a function V : X → [1,∞) and constants λ < 1 and
K < ∞ satisfying

PV (x) ≤
{

λV (x), if x /∈ C,
K, if x ∈ C.
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(A.3) Aperiodicity. There exists β > 0 such that β̃ν(C) ≥ β.

In the sequel we refer to β̃, V (x), λ, K, β as drift parameters.

Remark 5.2.2. Establishing a drift condition for real life examples is usually
not an easy task. As indicated in [Meyn & Tweedie 1993] polynomials are
often suitable candidates for a drift function V and also functions propor-
tional to π1/2 may turn out to be a lucky choice. Computable toy and real
life examples of [Baxendale 2005] and [Jones & Hobert 2004] confirm this
observations.

Remark 5.2.3. There is a strong probabilistic intuition behind Assumption
5.2.1. Every time the chain visits the small set C, it regenerates with proba-
bility β̃. The role of the drift condition (A.2) is to guarantee that the chain
visits the small set C frequently enough. Typically C is in the „center” of
the state space X and the drift function V takes small values on C and in-
creases as it goes away from C. Assume first that Xn = x /∈ C. The condition
PV (x) ≤ λV (x) means that Xn+1 ∼ P (x, ·) is on average getting closer to
C (closer in terms of V ). Whereas PV (x) ≤ K for Xn = x ∈ C means that
Xn+1 will perhaps jump out of C, but not too far away, i.e. the integral of
V with respect to the distribution of Xn+1 is bounded (by the same value)
for all x ∈ C. Assumption (A.3) together with (A.1) imply aperiodicity.

Assumption 5.2.1 is often used and widely discussed in Markov chains
literature. Substantial effort has been devoted to establishing convergence
rates for Markov chains under the drift condition (A.1-3) or related as-
sumptions. For discussion of various drift conditions and their relation see
Meyn and Tweedie [Meyn & Tweedie 1993]. For quantitative bounds on
convergence rates of Markov chains see the survey paper by Roberts and
Rosenthal [Roberts & Rosenthal 2005] and references therein. In the sequel
we make use of the recent convergence bounds obtained by Baxendale in
[Baxendale 2005].

Theorem 5.2.4 (Baxendale [Baxendale 2005]). Under Assumption 5.2.1
(X)n≥0 has a unique stationary distribution π and πV < ∞. Moreover, there
exists ρ < 1 depending only and explicitly on β̃, β, λ and K such that when-
ever ρ < γ < 1 there exists M < ∞ depending only and explicitly on γ, β̃, β, λ
and K such that for all n ≥ 0

|||P n − π|||V ≤ Mγn. (5.3)
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When we refer in the sequel to V−uniform ergodicity, we mean the con-
vergence determined by (5.3). There are different formulas for ρ and M for
general operators, self adjoint operators and self adjoint positive operators
in both atomic and nonatomic case. We give them in Section 5.8 for the sake
of completeness. To our knowledge the above-mentioned theorem gives the
best available explicit constants.

Corollary 5.2.5. Under Assumption 5.2.1

‖π0P
n − π‖V ≤ min{π0V, ‖π0 − π‖V }Mγn,

where M and γ are such as in Theorem 5.2.4.

Proof. From Theorem 5.2.4 we have ‖P n(x, ·) − π(·)‖V ≤ MγnV (x), which
yields

π0V Mγn ≥
∫

X
‖P n(x, ·)− π(·)‖V π0(dx) ≥ sup

|g|≤V

∫

X
|P n(x, ·)g − πg|π0(dx)

≥ sup
|g|≤V

|π0P
ng − πg| = ‖π0P

n − π‖V .

Now let bV = infx∈X V (x). Since |||·|||V is an operator norm and π is invariant
for P , we have

‖π0P
n − π‖V = bV |||π0P

n − π|||V = bV |||(π0 − π)(P n − π)|||V
≤ bV |||π0 − π|||V |||P n − π|||V = ‖π0 − π‖V |||P n − π|||V .

≤ ‖π0 − π‖V Mγn.

Now we focus on the following simple but useful observation.

Lemma 5.2.6. If for a Markov chain (Xn)n≥0 on X with transition kernel
P Assumption 5.2.1 holds with parameters β̃, V (x), λ, K, β, it holds also with
β̃r := β̃, Vr(x) := V (x)1/r, λr := λ1/r, Kr := K1/r, βr := β for every r > 1.

Proof. It is enough to check (A.2). For x /∈ C by Jensen inequality we have

λV (x) ≥
∫

X
V (y)P (x, dy) ≥

(∫

X
V (y)1/rP (x, dy)

)r

and hence PV (x)1/r ≤ λ1/rV (x)1/r, as claimed. Similarly for x ∈ C we obtain
PV (x)1/r ≤ K1/r.
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Lemma 5.2.6 together with Theorem 5.2.4 yield the following corollary.

Corollary 5.2.7. Under Assumption 5.2.1 we have

|||P n − π|||V 1/r ≤ Mrγ
n
r ,

where Mr and γr are constants defined as in Theorem 5.2.4 resulting from
drift parameters defined in Lemma 5.2.6.

Integrating the drift condition with respect to π yields the following bound
on πV.

Lemma 5.2.8. Under Assumption 5.2.1

πV ≤ π(C)
K − λ

1− λ
≤ K − λ

1− λ
.

Let fc = f − πf. The next lemma provides a bound on ||fc|p|V in terms
of ||f |p|V without additional effort.

Lemma 5.2.9. Under Assumption 5.2.1

||fc|p|2/p
V ≤

(
C

1/p

fp
V

+
π(C)

b
1/p
V

Kp,λ

)2

≤ (
C

1/p

fp
V

+ Kp,λ

)2
,

where bV = infx∈X V (x), Cfp
V

= ||f |p|V and Kp,λ = K1/p−λ1/p

1−λ1/p .

Proof. Note that πV 1/p ≤ π(C)Kp,λ ≤ Kp,λ by Lemma 5.2.8 and proceed:

||fc|p|V = sup
x∈X

|f(x)− πf |p
V (x)

≤ sup
x∈X

(
C

1/p

fp
V

V 1/p(x) + π|f |
)p

V (x)

≤ sup
x∈X

(
C

1/p

fp
V

V 1/p(x) + π(C)Kp,λ

)p

V (x)
≤ Cfp

V

(
1 +

π(C)Kp,λ

b
1/p
V C

1/p

fp
V

)p

.
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5.3 MSE Bounds
By MSE(Î0,n) we denote the mean square error of Î0,n, i.e.

MSE(Î0,n) = Eπ0 [Î0,n − I]2.

Bonds on MSE(Î0,n) are essential to establish (ε−α)−approximation of type
(5.2) and are also of independent interest.

Theorem 5.3.1. Assume the Drift Condition 5.2.1 holds and X0 ∼ π0. Then
for every measurable function f : X → R, every p ≥ 2 and every r ∈ [ p

p−1
, p]

MSE(Î0,n) ≤ ||fc|p|2/p
V

n

(
1 +

2Mrγr

1− γr

)(
πV +

M min{π0V, ‖π0 − π‖V }
n(1− γ)

)
,

(5.4)
where fc = f − πf and constants M, γ, Mr, γr depend only and explicitly
on β̃, β, λ and K from Assumption 5.2.1 as in Theorem 5.2.4 and Corollary
5.2.6.

The formulation of the foregoing Theorem 5.3.1 is motivated by a trade-
off between small V and small λ in Assumption 5.2.1. It should be intuitively
clear that establishing the drift condition for a quickly increasing V should
result in smaller λ at the cost of bigger πV. So it may be reasonable to look
for a valid drift condition with V ≥ C||fc|p| for some p > 2 instead of the
natural choice of p = 2. Lemma 5.2.6 should strengthen this intuition. The
most important special case for p = r = 2 is emphasized below as a corollary.

The unknown value π0V in (5.4) depends on π0 which is users choice and
usually a deterministic point. Also, in many cases a fairly small bound for
πV should be possible to obtain by direct calculations, since in the typical
setting π is exponentially concentrated whereas V is a polynomial of degree
2. These calculations should probably borrow from those used to obtain the
minorization and drift conditions. However, in absence of a better bound for
πV Lemma 5.2.8 is at hand. Similarly Lemma 5.2.9 bounds the unknown
value ||fc|p|2/p

V in terms of ||f |p|V . Note that in applications both f and V
have explicit formulas known to the user and ||f |p|V can be evaluated directly
or easily bounded.

Proof. Note that |f |r
V 1/r = ||f |r|V . Without loss of generality consider fc

instead of f and assume ||fc|p|V = 1. In this setting |f 2
c |V ≤ 1, V arπfc =
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πf 2
c ≤ πV, MSE(Î0,n) = Eπ0(Î0,n)2, and also for every r ∈ [ p

p−1
, p],

|fc|V 1/r ≤ ||fc|p/r|V 1/r = 1 and |fc|V 1−1/r ≤ ||fc|p−p/r|V 1−1/r = 1.

Obviously

nMSE(Î0,n) =
1

n

n−1∑
i=0

Eπ0fc(Xi)
2 +

2

n

n−2∑
i=0

n−1∑
j=i+1

Eπ0fc(Xi)fc(Xj). (5.5)

We start with a bound for the first term of the right hand side of (5.5). Since
f 2

c (x) ≤ V (x), we use Corollary 5.2.5 for f 2
c . Let C = min{π0V, ‖π0 − π‖V }

and proceed

1

n

n−1∑
i=0

Eπ0fc(Xi)
2 =

1

n

n−1∑
i=0

π0P
if 2

c ≤ πf 2
c +

1

n

n−1∑
i=0

CMγi ≤ πV +
CM

n(1− γ)
.

(5.6)
To bound the second term of the right hand side of (5.5) note that |fc| ≤ V 1/r

and use Corollary 5.2.7.

2

n

n−2∑
i=0

n−1∑
j=i+1

Eπ0fc(Xi)fc(Xj) =
2

n

n−2∑
i=0

n−1∑
j=i+1

π0

(
P i

(
fcP

j−ifc

))

≤ 2

n

n−2∑
i=0

n−1∑
j=i+1

π0

(
P i

(|fc||P j−ifc|
))

≤ 2Mr

n

n−2∑
i=0

∞∑
j=i+1

γj−i
r π0

(
P i

(|fc|V 1/r
))

≤ 2Mrγr

n(1− γr)

n−2∑
i=0

π0

(
P i

(|fc|V 1/r
))

= ♠

Since |fc| ≤ V 1/r and |fc| ≤ V 1−1/r, also |fcV
1/r| ≤ V and we use Corollary

5.2.5 for |fc|V 1/r.

♠ ≤ 2Mrγr

n(1− γr)

n−2∑
i=0

(
π

(|fc|V 1/r
)

+ CMγi
) ≤ 2Mrγr

1− γr

(
πV +

CM

n(1− γ)

)
.(5.7)

Combine (5.6) and (5.7) to obtain

MSE(Î0,n) ≤ ||fc|p|2/p
V

n

(
1 +

2Mrγr

1− γr

)(
πV +

CM

n(1− γ)

)
.
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Corollary 5.3.2. In the setting of Theorem 5.3.1, we have in particular

MSE(Î0,n) ≤ |f 2
c |V
n

(
1 +

2M2γ2

1− γ2

)(
πV +

M min{π0V, ‖π0 − π‖V }
n(1− γ)

)
.

(5.8)

The foregoing bound is easy to interpret: πV |f 2
c |V should be close to

V arπf for an appropriate choice of V, moreover 2M2γ2/(1− γ2) corresponds
to the autocorrelation of the chain and the last term M min{π0V, ‖π0 −
π‖V }/n(1 − γ) is the price for nonstationarity of the initial distribution.
See also Theorem 5.3.4 for further interpretation.

Theorem 5.3.1 is explicitly stated for Î0,n, but the structure of the bound
is flexible enough to cover most typical settings as indicated below.

Corollary 5.3.3. In the setting of Theorem 5.3.1,

MSE(Î0,n) ≤ πV ||fc|p|2/p
V

n

(
1 +

2Mrγr

1− γr

)
, if π0 = π, (5.9)

MSE(Î0,n) ≤ ||fc|p|2/p
V

n

(
1 +

2Mrγr

1− γr

)(
πV +

MV (x)

n(1− γ)

)
, if π0 = δx,

(5.10)

MSE(Ît,n) ≤ ||fc|p|2/p
V

n

(
1 +

2Mrγr

1− γr

)(
πV +

M2γtV (x)

n(1− γ)

)
, if π0 = δx.

(5.11)

Proof. Only (5.11) needs a proof. Note that Xt ∼ δxP
t. Now use Theorem

5.2.4 to see that ‖δxP
t − π‖V ≤ MγtV (x), and apply Theorem 5.3.1 with

π0 = δxP
t.

Bound (5.9) corresponds to the situation when a perfect sampler is avail-
able. For deterministic start without burn-in and with burn-in (5.10) and
(5.11) should be applied respectively.

Next we derive computable bounds for the asymptotic variance σ2
f in

central limit theorems for Markov chains under the assumption of the Drift
Condition 5.2.1.
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Theorem 5.3.4. Under the Drift Condition 5.2.1 the Markov chain (Xn)n≥0

and a function f, such that |f 2
c |V < ∞ (or equivalently |f 2|V < ∞), admit a

central limit theorem, i.e:

√
n(Î0,n − I)

d→ N(0, σ2
f ) as n →∞, (5.12)

moreover

σ2
f = lim

n→∞
nEπ[Î0,n − I]2 ≤ πV ||fc|p|2/p

V

(
1 +

2Mrγr

1− γr

)
. (5.13)

Proof. The CLT (i.e. (5.12) and the equation in (5.13)) is a well known fact
and results from V−uniform ergodicity implied by Theorem 5.2.4 combined
with Theorems 17.5.4 and 17.5.3 of [Meyn & Tweedie 1993]. Theorem 5.3.1
with π0 = π yields the bound for σ2

f in (5.13).

Remark 5.3.5. For reversible Markov chains significantly sharper bounds for
σ2

f can be obtained via functional analytic approach. For a reversible Markov
chain its transition kernel P is a self-adjoint operator on L2

π. Let f ∈ L2
π and

πf = 0. If we denote by Ef the positive measure on (−1, 1) associated with f
in the spectral decomposition of P, we obtain (cf. [Kipnis & Varadhan 1986],
[Geyer 1992])

σ2
f =

∫

(−1,1)

1 + λ

1− λ
Ef (dλ) ≤ 1 + ρ

1− ρ
V arπf ≤ 1 + ρ

1− ρ
πV |f 2

c |V . (5.14)

Where the first inequality in (5.14) holds if we are able to bound the spectral
radius of P acting on L2

π by some ρ < 1 (cf. [Geyer 1992], [Roberts & Rosenthal 1997b]).
Corollary 6.1 of [Baxendale 2005] yields the required bound with ρ defined
as in Theorem 5.2.4.

5.4 (ε− α)−Approximation

(ε−α)−approximation is an easy corollary of MSE bounds by the Chebyshev
inequality.
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Theorem 5.4.1 ((ε− α)−approximation). Let

b =
πV ||fc|p|2/p

V

ε2α

(
1 +

2Mrγr

1− γr

)
, (5.15)

c =
M min{π0V, ‖π0 − π‖V }||fc|p|2/p

V

ε2α(1− γ)

(
1 +

2Mrγr

1− γr

)
, (5.16)

n(t) =
b +

√
b2 + 4c(t)

2
, (5.17)

c(t) =
M2γtV (x)||fc|p|2/p

V

ε2α(1− γ)

(
1 +

2Mrγr

1− γr

)
, (5.18)

c̃ =
M2V (x)||fc|p|2/p

V

ε2α(1− γ)

(
1 +

2Mrγr

1− γr

)
. (5.19)

Then under Assumption 5.2.1,

P (|Î0,n − I| ≤ ε) ≥ 1− α, if X0 ∼ π0, n ≥ b +
√

b2 + 4c

2
. (5.20)

P (|Ît,n − I| ≤ ε) ≥ 1− α, if





X0 ∼ δx,

t ≥ max

{
0, logγ

(
2+
√

4+b2 ln2 γ

c̃ ln2 γ

)}
,

n ≥ n(t).

(5.21)

And the above bounds in (5.21) give the minimal length of the trajectory
(t + n) resulting from (5.11).

Proof. From the Chebyshev’s inequality we get

P (|Ît,n − I| ≤ ε) = 1− P (|Ît,n − I| ≥ ε)

≥ 1− MSE(Ît,n)

ε2
≥ 1− α if MSE(Ît,n) ≤ ε2α.(5.22)

To prove (5.20) set C = min{π0V, ‖π0−π‖V }, and combine (5.22) with (5.4)
to get

n2 − n
πV ||fc|p|2/p

V

ε2α

(
1 +

2Mrγr

1− γr

)
− MC||fc|p|2/p

V

ε2α(1− γ)

(
1 +

2Mrγr

1− γr

)
≥ 0,

and hence n ≥ b+
√

b2+4c
2

, where b and c are defined by (5.15) and (5.16)
respectively. The only difference in (5.21) is that now we have c(t) defined
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by (5.18) instead of c. It is easy to check that the best bound on t and n (i.e.
that minimizes t + n) is such that

n ≥ n(t) and t ≥ max {0, min{t ∈ N : n′(t) ≥ −1}} ,

where n(t) is defined by (5.17). Standard calculations show that

min{t ∈ N : n′(t) ≥ −1} = min{t ∈ N : (γt)2c̃2 ln2 γ − γt4c̃− b2 ≤ 0},

where c̃ is defined by (5.19). Hence we obtain

t ≥ max

{
0, (ln γ)−1 ln

(
2 +

√
4 + b2 ln2 γ

c̃ ln2 γ

)}
and n ≥ n(t).

This completes the proof.

Remark 5.4.2. The formulation of Theorem 5.4.1 and the above proof indicate
how the issue of a sufficient burn-in should be understood. The common
description of t as time to stationarity and the often encountered approach
that t∗ = t(x, ε̃) should be such that ρ(π, δxP

t∗) ≤ ε̃ (where ρ(·, ·) is a
distance function for probability measures, e.g. total variation distance, or
V−norm distance) seems not appropriate for such a natural goal as (ε −
α)−approximation. The optimal burn-in time can be much smaller then t∗

and in particular cases it can be 0. Also we would like to emphasize that in
the typical drift condition setting, i.e. if X is not compact and the target
function f is not bounded, the V−norm should be used as a measure of
convergence, since ||πt − π||tv → 0 does not even imply πtf → πf.

Next we suggest an alternative estimation scheme that allows for sharper
bounds for the total simulation cost needed to obtain (ε−α)−approximation
for small α. We will make use of the following simple lemma taken from the
more complicated setting of [Niemiro & Pokarowski 2007].

Lemma 5.4.3. Let m ∈ N be an odd number and let Î1, . . . , Îm be inde-
pendent random variables, such that P (|Îk − I| ≤ ε) ≥ 1 − a > 1/2, for
k = 1, . . . , m. Define Î := med{Î1, . . . , Îm}. Then

P (|Î − I| ≤ ε) ≥ 1− α, if m ≥ 2 ln(2α)

ln[4a(1− a)]
. (5.23)
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Proof. Since P (|Îk − I| > ε) ≤ a < 1/2, by elementary arguments we obtain

P (|Î − I| > ε) ≤
m∑

k=(m+1)/2

(
m

k

)
ak(1− a)n−k

≤ 2m−1am/2(1− a)m/2

=
1

2
exp

{m

2
ln(4a(1− a))

}
.

The last term does not exceed α if m ≥ 2 ln(2α)/ ln[4a(1−a)], as claimed.

Hence (ε−α)−approximation can be obtained by the following Algorithm
5.4.4, where Theorem 5.4.1 should be used to find t and n that guarantee
(ε− a)−approximation and m results from Lemma 5.4.3.

Algorithm 5.4.4.

1. Simulate m independent runs of length t + n of the underlying Markov
chain,

X
(k)
0 , . . . , X

(k)
t+n−1, k = 1, . . . , m.

2. Calculate m estimates of I, each based on a single run,

Îk = Î
(k)
t,n =

1

n

t+n−1∑
i=t

f(X
(k)
i ), k = 1, . . . , m.

3. For the final estimate take

Î = med{Î1, . . . , Îm}.

The total cost of Algorithm 5.4.4 amounts to

C = C(a) = m(t + n) (5.24)

and depends on a (in addition to previous parameters). The optimal a can
be found numerically, however it is worth mentioning a = 0, 11969 is an
acceptable arbitrary choice (cf. [Niemiro & Pokarowski 2007]). A closer look
at equation (5.24) reveals that the leading term is

mb =
1

a ln{[4a(1− a)]−1}

{
2 ln{(2α)−1}πV ||fc|p|2/p

V

ε2

(
1 +

2Mrγr

1− γr

)}
,

where b is defined by (5.15). Function a ln{[4a(1− a)]−1} has one maximum
on (0, 1/2) at a ≈ 0, 11969.
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5.5 A Toy Example - Contracting Normals
To illustrate the results of previous sections we analyze the contracting nor-
mals example studied by Baxendale in [Baxendale 2005] (see also [Roberts & Tweedie 1999],
[Roberts & Rosenthal 1997a] and [Rosenthal 1995a]), where Markov chains
with transition probabilities P (x, ·) = N(θx, 1 − θ2) for some parameter
θ ∈ (−1, 1) are considered.

Similarly as in [Baxendale 2005] we take a drift function V (x) = 1 +
x2 and a small set C = [−c, c] with c > 1, which allows for λ = θ2 +
2(1−θ2)

1+c2
< 1 and K = 2 + θ2(c2 − 1). We also use the same minorization

condition with ν concentrated on C, such that β̃ν(dy) = minx∈C(2π(1 −
θ2))−1/2 exp(− (θx−y)2

2(1−θ2)
)dy. This yields β̃ = 2[Φ( (1+|θ|)c√

1−θ2 ) − Φ( |θ|c√
1−θ2 )], where Φ

denotes the standard normal cumulative distribution function.
Baxendale in [Baxendale 2005] indicated that the chain is reversible with

respect to its invariant distribution π = N(0, 1) for all θ ∈ (−1, 1) and it is
reversible and positive for θ > 0.

Moreover, in Lemma 5.5.1 we observe a relationship between marginal dis-
tributions of the chain with positive and negative values of θ. By L(Xn|X0, θ)
denote the distribution of Xn given the starting point X0 and the parameter
value θ.

Lemma 5.5.1.
L(Xn|X0, θ) = L(Xn|(−1)nX0,−θ). (5.25)

Proof. Let Z1, Z2, . . . be an iid N(0, 1) sequence, then

L(Xn|X0, θ) = L
(
θnX0 +

n∑

k=1

θn−k
√

1− θ2Zk

)

= L
(
(−θ)n(−1)nX0 +

n∑

k=1

(−θ)n−k
√

1− θ2Zk

)

= L(Xn|(−1)nX0,−θ),

and we used the fact that Zk and −Zk have the same distribution.

For θ < 0 using Lemma 5.5.1 and the fact that V (x) = 1+x2 is symmetric
we obtain

||L(Xn|X0, θ)− π||V = ||L(Xn|(−1)nX0,−θ)− π||V ≤ MγnV ((−1)nX0)

= MγnV (X0) = Mγn(1 + X2
0 ).
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Thus for all θ ∈ (−1, 1) we can bound the V−norm distance between π
and the distribution of Xn via Theorem 5.2.4 with ρ and M = M(γ),
where γ ∈ (ρ, 1), computed for reversible and positive Markov chains (see
Appendix 5.8.3 for formulas). The choice of V (x) = 1 + x2 allows for

Table 5.5 - bounds based on Baxendale’s V−uniform ergodicity constants.
|θ| ε α ρ ρ2 γ γ2 M M2 m t n total cost
.5 .1 .1 .895 .899 .915 .971 36436 748 1 218 6.46e+09 6.46e+09
.5 .1 10−5 .895 .899 .915 .971 36436 748 1 218 6.46e+13 6.46e+13
.5 .1 10−5 .895 .899 .915 .971 36436 748 27 218 5.39e+09 1.46e+11

(ε − α)−approximation of
∫
X f(x)π(dx) if |f 2|V < ∞ for the possibly un-

bounded function f. In particular the MCMC works for all linear functions
on X . We take f(x) = x where |f 2|V = 1 as an example. We have to provide
parameters and constants required for Theorem 5.4.1. In this case the opti-
mal starting point is X0 = 0 since it minimizes V (x) = 1 + x2. To bound πV

we use Lemma 5.2.8 and Lemma 5.2.9 yields a bound on ||fc|2|2/p
V = |f 2

c |V .
Examples of bounds for t and n for the one walk estimator, or t, n and

m for the median of multiple runs estimator are given in Table 5.5. The
bounds are computed for c = 1.6226 which minimizes ρ2 (rather than ρ)
for θ = 0.5. Then a grid search is performed to find optimal values of γ
and γ2 that minimize the total simulation cost. Note that in Baxendale’s
constant M depends on γ and M goes relatively quickly to ∞ as γ → ρ.
This is the reason why optimal γ and γ2 are far from ρ and ρ2 and this
turns out to be the main weakness of Baxendale’s bounds. Also for small
α = 10−5 we observe a clear computational advantage of the median of
multiple runs estimation. The m = 27 shorter runs have significantly lower
total cost then the single long run. R functions for computing this example
and also the general bounds resulting from Theorem 5.4.1 are available at
http://akson.sgh.waw.pl/˜klatus/

5.6 The Example - a Hierarchical Random Ef-
fects Model

In this section we describe a hierarchical random effects model which is a
widely applicable example and provides a typical target density π that arises

67



in Bayesian statistics. Versions of this model and the efficiency of MCMC
sampling have been analyzed e.g. by Gelfand and Smith in [Gelfand & Smith 1990],
Rosenthal in [Rosenthal 1995a], [Rosenthal 1995b] and many other authors.
In particular Hobert and Geyer in [Hobert & Geyer 1998] analyzed a Gibbs
sampler and a block Gibbs sampler for this model and showed the under-
lying Markov chains are in both cases geometrically ergodic (we describe
these samplers in the sequel). Jones and Hobert in [Jones & Hobert 2004]
derived computable bounds for the geometric ergodicity parameters and con-
sequently computable bounds for the total variation distance ‖P t(x, ·)−π‖tv

to stationarity in both cases. They used these bounds to determine the
burn-in time. Their work was a breakthrough in analyzing the hierarchical
random effects model, however, mere bounds on burn-in time do not give a
clue on the total amount of simulation needed. Also, bounding the total vari-
ation distance seems inappropriate when estimating integrals of unbounded
functions, as indicated in Remark 5.4.2. In this section we establish the
(ε− α)−approximation for the hierarchical random effects model. This con-
sists of choosing a suitable sampler, establishing the Drift Condition 5.2.1
with explicit constants, computing V−uniform ergodicity parameters, and
optimizing lower bounds for t and n in case of estimation along one walk
or for t, n and m in (5.24) for the median of shorter runs. This may turn
out to be a confusing procedure, hence we outline it here in detail, discuss
computational issues and provide necessary R functions.

5.6.1 The Model

Since we will make use of the drift conditions established by Jones and Hobert
in [Jones & Hobert 2004] we also try to follow their notation in the model
description. Let µ and λθ be independent and distributed as

µ ∼ N(m0, s
−1
0 ) and λθ ∼ Gamma(a1, b1),

where m0 ∈ R, s0 > 0, a1 > 0, and b1 > 0 are known constants.
At the second stage, conditional on µ and λθ, random variables θ1, . . . θK

and λe are independent and distributed as

θi|µ, λθ ∼ N(µ, λ−1
θ ) and λe ∼ Gamma(a2, b2),

where a2 > 0, b2 > 0 are known constants.
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Finally in the third stage, conditional on θ = (θ1, . . . , θK) and λe, the
observed data y = {Yij} are independent with

Yij|θ, λe ∼ N(θi, λ
−1
e ),

where i = 1, . . . , K and j = 1, . . . , mi.
The Bayesian approach involves conditioning on the values of the observed

data {Yij} and considering the joint distribution of all K+3 parameters given
this data. Thus we are interested in the posterior distribution, that is, the
following distribution defined on the space X = (0,∞)2 × RK+1,

L(θ1, . . . , θK , µ, λθ, λe|{Yij}) = π(θ, µ, λ|y) (5.26)
∝ d(y|θ, λe)d(θ|µ, λθ)d(λe)d(λθ)d(µ) = ♣,

where d denotes a generic density and hence the final formula for the unnor-
malised density takes the form of

♣ = e−b1λθλa1−1
θ e−b2λeλa2−1

e e−
1
2
s0(µ−m0)2

×
K∏

i=1

[
e−

1
2
λθ(θi−µ)2λ

1/2
θ

]
×

K∏
i=1

mi∏
j=1

[
e−

1
2
λe(yij−θi)

2

λ1/2
e

]
, (5.27)

and we have to deal with a density that is high-dimensional, irregular, strictly
positive in X and concentrated in the „center” of X , which is very typical
for MCMC situations [Roberts & Rosenthal 2005]. Computing expectations
with respect to π(θ, µ, λ|y) is crucial for bayesian inference (e.g. to obtain
bayesian estimators) and requires MCMC techniques.

5.6.2 Gibbs Samplers for the Model

Full conditional distributions required for a Gibbs sampler can be computed
without difficulty. Let

ȳi :=
1

mi

mi∑
j=1

yij, M :=
∑

i

mi, θ̄ =
1

K

∑
i

θi,

θ−i := (θ1, . . . , θi−1, θi+1, . . . , θK), ν1(θ, µ) :=
K∑

i=1

(θi − µ)2,
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ν2(θ) :=
K∑

i=1

(θi − ȳi)
2, SSE := (yij − ȳi)

2.

Now the conditionals are

λθ|θ, µ, λe, y ∼ Gamma
(

K

2
+ a1,

ν1(θ, µ)

2
+ b1

)
, (5.28)

λe|θ, µ, λθ, y ∼ Gamma
(

M

2
+ a2,

ν2(θ) + SSE

2
+ b2

)
, (5.29)

θi|θ−i, µ, λθ, λe, y ∼ N

(
λθµ + miλeȳi

λθ + miλe

,
1

λθ + miλe

)
, (5.30)

µ|θ, λθ, λe, y ∼ N

(
s0m0 + Kλθθ̄

s0 + Kλθ

,
1

s0 + Kλθ

)
. (5.31)

Gibbs samplers for the variance components model and its versions have been
used and studied by many authors. We consider the two Gibbs samplers
analyzed by Jones and Hobert in [Jones & Hobert 2004].

• The fixed-scan Gibbs sampler that updates µ, then θ = (θ1, . . . θK),
then λ = (λθ, λe). Note that θi’s are conditionally independent given
(µ, λ) and so are λθ and λe given (θ, µ). Thus the one step Markov
transition density (µ′, θ′, λ′) → (µ, θ, λ) of this Gibbs sampler is

p(µ, θ, λ|µ′, θ′, λ′) = d(µ|θ′, λ′, y)

[
K∏

i=1

d(θi|µ, λ′, y)

]
(5.32)

× d(λθ|θ, µ, y)d(λe|θ, µ, y).

Where d denotes a generic density and y = {Yij}, i = 1, . . . , K; j =
1, . . . mi, is the observed data.

• Hobert and Geyer in [Hobert & Geyer 1998] introduced a more effi-
cient block Gibbs sampler (also analyzed by Jones and Hobert in
[Jones & Hobert 2004]), in which all the components of

ξ = (θ1, . . . θK , µ)

are updated simultaneously. It turns out that

ξ|λ, y ∼ N(ξ∗, Σ) where ξ∗ = ξ∗(λ, y) and Σ = Σ(λ, y).
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Thus the one step Markov transition density (λ′, ξ′) → (λ, ξ) of the
block Gibbs sampler is

p(λ, ξ|λ′, ξ′) = d(λθ|ξ′, y)d(λe|ξ′, y)d(ξ|λ, y). (5.33)

We give now the formulas for ξ∗ and Σ derived in [Hobert & Geyer 1998].
Let

τ =
K∑

i=1

miλθλe

λθ+miλe

,

then

E(µ|λ) =
1

s0 + τ

[ K∑
i=1

miλθλeȳi

λθ+miλe

+ m0s0

]
,

E(θi|λ) =
λθE(µ|λ)

λθ + miλe

+
miλeȳi

λθ+miλe

.

and

V ar(θi|λ) =
1

λθ + miλe

[
1 +

λ2
θ

(λθ + miλe)(s0 + τ)

]
,

Cov(θi, θj|λ) =
λ2

θ

λθ + miλe)(λθ + mjλe)(s0 + τ)
,

Cov(θi, θj|λ) =
λ2

θ

λθ + miλe)(λθ + mjλe)(s0 + τ)
,

V ar(µ|λ) =
1

s0 + τ
.

5.6.3 Relations between Drift Conditions

A crucial step for (ε− α)−approximation is establishing the drift condition
5.2.1 which in the sequel will be referred to as the Baxendale-type drift
condition. To this end we use the Rosenthal-type (cf. [Rosenthal 1995b]) and
Roberts-and-Tweedie-type (cf. [Roberts & Tweedie 1999]) drift conditions
established by Jones and Hobert in [Jones & Hobert 2004] combined with
their type of a small set condition.

In the following definitions and lemmas P denotes the transition kernel of
the Markov chain (Xn)n>0 and the subscripts of drift condition parameters
indicate the type of drift condition they refer to.
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Assumption 5.6.1 (The Rosenthal-type drift condition).

(R.1) There exists a function VR : X → [0,∞) and constants 0 < λR < 1 and
KR < ∞ satisfying

PVR(x) ≤ λRVR(x) + KR. (5.34)

(R.2) Let CR = {x ∈ X : VR(x) ≤ dR}, where dR > 2KR/(1 − λR). There
exists a probability measure νR on X and β̃R > 0, such that for all
x ∈ CR and A ∈ B(X ),

P (x,A) ≥ β̃RνR(A). (5.35)

Assumption 5.6.2 (The Roberts-and-Tweedie-type drift condition).

(RT.1) There exists a function VRT : X → [1,∞) and constants 0 < λRT < 1
and KRT < ∞ satisfying

PVRT (x) ≤ λRT VRT (x) + KRT ICRT
(x), (5.36)

where CRT = {x ∈ X : VRT (x) ≤ dRT}, and dRT ≥ KRT

1−λRT
− 1.

(RT.2) There exists a probability measure νRT on X and β̃RT > 0, such that
for all x ∈ CRT and A ∈ B(X ),

P (x,A) ≥ β̃RT νRT (A). (5.37)

The following lemma relates the two drift conditions.

Lemma 5.6.3 (Lemma 3.1 of [Jones & Hobert 2004]). Assume that the Rosenthal-
type drift condition holds. Then for any d > 0 the Roberts-and-Tweedie-type
drift condition holds with parameters

VRT = VR+1, λRT = λRT (d) =
d + λR

d + 1
, KRT = KR+1−λR, β̃RT = β̃R,

CRT = CRT (d) =

{
x ∈ X : VRT (x) ≤ (d + 1)KRT

d(1− λRT )

}
and νRT = νR.

The Baxendale-type drift condition we work with results from each of the
above conditions and the following lemma is easy to verify by simple algebra.

72



Lemma 5.6.4. If the Rosenthal-type or the Roberts-and-Tweedie-type drift
condition holds, then the Baxendale-type drift condition (A.1-2) verifies with

V = VRT = VR + 1, λ = λ(d) = λRT =
d + λR

d + 1
,

ν = νRT = νR, C = C(d) = CRT , β̃ = β̃RT = β̃R,

K = K(d) = KRT + λRT dRT = (KR + 1− λR)
d2 + 2d + λR

d(1− λR)
.

Observe next that integrating each of the drift conditions yields a bound
on πV similar to the one obtained in Lemma 5.2.8 and the best available
bound should be used in Theorem 5.3.4 and Theorem 5.4.1. In particu-
lar, if the Baxendale-type drift condition is obtained from the Roberts-and-
Tweedie-type drift condition via Lemma 5.6.4, integrating the latter always
leads to a better bound on πV. Also, if one starts with establishing the
Rosenthal-type drift condition, the value of d used for bounding πV does
not have to be the same as the one used for establishing the Baxendale-
type drift and minorization condition and it should be optimized. Moreover

KR

1−λR
+ 1 < KRT

1−λRT
< K−λ

1−λ
for every d > 0. This leads to the following lemma

which can be checked by straightforward calculations.

Lemma 5.6.5. Provided the drift functions are as in Lemma 5.6.4, the bound
on πV can be optimized as follows

πV ≤ min

{
inf
d

{
π(CRT (d))

KRT

1− λRT (d)

}
,

KR

1− λR

+ 1

}
≤ KR

1− λR

+ 1.

(5.38)

5.6.4 Drift and Minorization Conditions for the Sam-
plers

For the fixed-scan Gibbs sampler and the block Gibbs sampler of Section
5.6.2 Jones and Hobert in [Jones & Hobert 2004] (Section 4 and 5 therein)
obtained the following drift and minorization conditions. See their paper for
derivation and more elaborative commentary of these results.
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Drift and Minorization for the block Gibbs Sampler

Assume m′ = min{m1, . . . , mK} ≥ 2 and K ≥ 3. Moreover define

δ1 =
1

2a1 + K − 2
, δ2 =

1

2a2 + M − 2
, δ3 = (K +1)δ2, δ4 = δ2

K∑
i=1

m−1
i ,

δ = max{δ1, δ3}, c1 =
2b1

2a1 + K − 2
, c2 =

2b2 + SSE

2a2 + M − 2
.

Observe that 0 < δi < 1 for i = 1, 2, 3, 4. Also let 4 denote the length of the
convex hull of the set {ȳ1, . . . , ȳK ,m0}.

Proposition 5.6.6 (Drift for unbalanced case). Fix λR ∈ (δ, 1) and let φ1

and φ2 be positive numbers such that φ1δ4
φ2

+ δ < λR. Define the drift function
as

V1(θ, µ) = φ1ν1(θ, µ) + φ2ν2(θ), (5.39)

where ν1(θ, µ) and ν2(θ) are defined in Section 5.6.2. With this drift function
the block Gibbs sampler satisfies the Rosenthal-type drift condition with

KR = φ1

[
c1 + c2

δ4

δ2

+ K42
]
+ φ2

[
c2(K + 1) + M42

]
. (5.40)

A better drift condition can be obtained in the balanced case, when mi =
m ≥ 2 for i = 1, . . . , K. Let δ5 = Kδ2.

Proposition 5.6.7 (Drift for balanced case). Fix λR ∈ (δ, 1) and let φ be a
positive number such that φδ5 + δ < λR. Define the drift function as

V2(θ, µ) = φν1(θ, µ) + m−1ν2(θ). (5.41)

With this drift function the block Gibbs sampler satisfies the Rosenthal-type
drift condition with

KR = φc1 + (φK + K + 1)
c2

m
+ max{φ, 1}

K∑
i=1

max
{
(ȳ − ȳi)

2, (m0 − ȳi)
2
}
,

(5.42)
where ȳ := K−1

∑K
i=1 ȳi.
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Proposition 5.6.8 (Proposition 4.1 of [Jones & Hobert 2004]) provides a
minorization condition for the Rosenthal-type drift-minorization condition
for the block Gibbs sampler for both, the balanced and unbalanced case. Note
that the balanced case drift function V2 is a special case of the unbalanced
drift function V1, hence we focus on V1.

Now consider the candidate CR = {(θ, µ) : V1(θ, µ) ≤ dR} for a small
set. Note that CR is contained in SB = SB1 ∩ SB2 , where SB1 = {(θ, µ) :
ν1(θ, µ) < dR/φ1} and SB2 = {(θ, µ) : ν2(θ) < dR/φ2}. Hence it is enough to
establish a minorization condition that holds for SB.

Let Γ(α, β; x) denote the value of the Gamma(α, β) density at x and
define functions h1(λθ) and h2(λe) as follows:

h1(λθ) =

{
Γ
(

K
2

+ a1, b1; λθ

)
, λθ < λ∗θ,

Γ
(

K
2

+ a1,
dR

2φ1
+ b1; λθ

)
, λθ ≥ λ∗θ,

where
λ∗θ =

φ1(K + 2a1)

dR

log
(
1 +

dR

2b1φ1

)

and

h2(λe) =

{
Γ
(

M
2

+ a2,
SSE

2
+ b2; λe

)
, λe < λ∗e,

Γ
(

M
2

+ a2,
dR+φ2SSE

2φ2
+ b2; λe

)
, λe ≥ λ∗e,

where
λ∗e =

φ2(M + 2a2)

dR

log
(
1 +

dR

φ2(2b2 + SSE)

)
.

Now define a density q(λ, θ, µ) on R2
+ ×RK ×R by

q(λ, θ, µ) =
( h1(λθ)∫

R+
h1(λθ)dλθ

)( h2(λe)∫
R+

h2(λe)dλe

)
d(ξ|λ, y),

where d(ξ|λ, y) is the normal density in (5.33) resulting from the block Gibbs
sampler construction. Next define

β̃R =

( ∫

R+

h1(λθ)dλθ

)( ∫

R+

h2(λe)dλe

)
.

Also recall p(λ, ξ|λ′, ξ′) = p(λ, θ, µ|λ′, θ′, µ′), the Markov transition density of
the block Gibbs sampler as specified in (5.33).

We are in a position to state the minorization condition.
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Proposition 5.6.8 (Minorization Condition). The Markov transition den-
sity for the block Gibbs sampler satisfies the following minorization condition:

p(λ, θ, µ|λ′, θ′, µ′) ≥ β̃Rq(λ, θ, µ) for every (θ′, µ′) ∈ SB. (5.43)

Drift and Minorization for the fixed-scan Gibbs sampler

As before assume that K ≥ 3 and

2 ≤ m′ = min{m1, . . . , mK} ≤ max{m1, . . . , mK} = m′′.

Define
δ6 =

K2 + 2Ka1

2s0 + K2 + 2Ka1

and δ7 =
1

2(a1 − 1)
.

Clearly δ6 ∈ (0, 1) and if a1 > 3/2 then also δ7 ∈ (0, 1). Moreover if a1 > 3/2,
then since 2s0b1 > 0, there exists ρ1 ∈ (0, 1) such that

(
K +

δ6

δ7

)
δ1 < ρ1. (5.44)

Define also

ν3(θ, λ) =
Kλθ

s0 + Kλθ

(θ̄ − ȳ)2 and s2 =
K∑

i=1

(ȳi − ȳ)2.

Proposition 5.6.9 (Drift Condition). Assume that a1 > 3/2, 5m′ > m′′ and
let ρ1 ∈ (0, 1) satisfy (5.44). Fix

c3 ∈ (0, min{b1, b2}) and λR ∈ (max{ρ1, δ6, δ7}, 1).

Define the drift function as

V3(θ, λ) = ec3λθ + ec3λe +
δ7

Kδ1λθ

+ ν3(θ, λ). (5.45)

With this drift function the fixed-scan Gibbs sampler satisfies the Rosenthal-
type drift condition with

KR =
( b1

b1 − c3

)a1+K
2 +

( b2

b2 − c3

)a2+M?
2 +(δ6+δ7)

[ 1

s0

+(m0− ȳ)2+
s2

K

]
+

2b1δ7

K
.

(5.46)
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We now turn to the minorization condition for the fixed-scan Gibbs sam-
pler provided in Section 5.2 of [Jones & Hobert 2004]. Similarly as before,
consider the candidate CR = {(θ, λ) : V3 ≤ dR} for a small set and let

c4 =
δ7

Kδ1dR

, cl = ȳ−
√

(m0 − ȳ)2 + dR and cu = ȳ+
√

(m0 − ȳ)2 + dR.

The minorization condition will be given on a set SG such that

CR ⊆ SG = SG1 ∩ SG2 ∩ SG3 ,

where

SG1 =
{

(θ, λ) : c4 ≤ λθ ≤ log dR

c3

}
,

SG2 =
{

(θ, λ) : 0 < λe ≤ log dR

c3

}
,

SG3 =
{

(θ, λ) : cl ≤ s0m0 + Kλθθ̄

s0 + Kλθ

≤ cu

}
.

Moreover to assure that SG1 ∩ SG2 is nonempty, choose dR such that

dR log dR >
c3δ7

Kδ1

.

Let N(ζ, σ2; x) denote the value of the N(ζ, σ2) density at x and define
functions g1(µ, θ) and g2(µ) as follows:

g1(ν, θ) =
( c4

2π

)K
2 exp

{
− log dR

2c3

K∑
i=1

[
(θi − µ)2 + mi(θi − ȳi)

2
]}

and

g2(µ) =

{
N

(
cu,

[
s0 + K log(dR)

c3

]−1
; µ

)
, µ ≤ ȳ,

N
(
cl,

[
s0 + K log(dR)

c3

]−1
; µ

)
, µ > ȳ.

Now define a density on R×RK ×R2
+ by

q(µ, θ, λ) =
( g1(µ, θ)g2(µ)∫

R

∫
RK g1(µ, θ)g2(µ)dθdµ

)
d(λ|µ, θ, y),

77



where d(λ|µ, θ, y) is the joint Gamma distribution of λθ and λe in (5.32)
resulting from the fixed-scan Gibbs sampler construction. Next define

β̃R =
( s0 + Kc4

s0 + K log dR

c3

)1/2( ∫

R

∫

RK

g1(µ, θ)g2(µ)dθdµ
)
.

Also recall p(µ, θ, λ|µ′, θ′, λ′), the Markov transition density of the fixed-scan
Gibbs sampler as specified in (5.32). We are in a position to state the mi-
norization condition.

Proposition 5.6.10. The Markov transition density for the fixed-scan Gibbs
sampler satisfies the following minorization condition

p(µ, θ, λ|µ′, θ′, λ′) ≥ β̃Rq(µ, θ, λ) for every (θ′, λ′) ∈ SG. (5.47)

Moreover Jones and Hobert in [Jones & Hobert 2004] obtained a closed
form expression for β̃R in (5.47) involving the standard normal cumulative
distribution function Φ. Let

ν =

[
s0 +

log dR

c3

(
K +

K∑
i=1

mi

1 + mi

)]−1

,

ml = ν

[
cls0 +

log dR

c3

(
Kcl +

K∑
i=1

ȳimi

1 + mi

)]
,

mu = ν

[
cus0 +

log dR

c3

(
Kcu +

K∑
i=1

ȳimi

1 + mi

)]
.

Then

β̃R =
( c4c3

log dR

)K
2
√

ν(s0 + Kc4)

√√√√
K∏

i=1

1

1 + mi

exp

{
− log dR

2c3

K∑
i=1

ȳ2
i mi

1 + mi

}

×
[

exp

{
− c2

us0

2
− Kc2

u log dR

2c3

+
m2

u

2ν

}
Φ

( ȳ −mu√
ν

)

+ exp

{
− c2

l s0

2
− Kc2

l log dR

2c3

+
m2

l

2ν

}(
1− Φ

( ȳ −ml√
ν

))]
.
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5.6.5 Obtaining the Bounds

We focus on obtaining the bounds for (ε − α)−approximation for bayesian
estimators of parameters µ, λθ, λe and θi. This involves integrating one di-
mensional projections of the identity function on parameter space. The drift
function V has to be at least of order f 2 since |f 2|V has to be finite. Note
that for the two described samplers different drift conditions has been estab-
lished and neither of them majorizes quadratic functions in all the parame-
ters. Thus specifying a parameter, say λe implies the choice of the fixed-scan
Gibbs sampler with the drift function V3, whereas for µ the block-scan Gibbs
sampler with drift function V1 or V2 is the only option.

Once the sampler and the type of the drift condition is chosen, the
user must provide his choice of λR, φ and dR for the Rosenthal-type drift-
minorization condition. The next step is the right choice of d in Lemma 5.6.4
which yields the parameters of the Baxendale-type drift condition. Provided
the Baxendale-type drift condition is established with computable parame-
ters, there are still four parameters left to the user, namely the mutually
dependent γ and M in Baxendale’s Theorem 5.2.4 and their counterparts γ2

and M2 from Corollary 5.2.7. Unfortunately the bounds on t and n or t, n
and m are very complicated functions of these parameters subject to users
choice and finding optimal values analytically seems impossible. Also, in our
experience, small changes in these quantities usually result in dramatically
different bounds.

Similarly as burn-in bounds in [Jones & Hobert 2004], final bounds for
(ε− α)−approximation also strongly depend on the hyperparameter setting
and the observed data.

Thus we provide appropriate R functions for approximating optimal bonds
on the simulation parameters. This functions are available on http://akson.sgh.waw.pl/˜klatus/

5.7 Concluding Remarks

To our best knowledge, in the above setting of an unbounded target func-
tion f and without assuming uniform ergodicity of the underlying Markov
chain (which in practice means the state space X is not compact) we de-
rived first explicit bounds for the total simulation cost required for (ε −
α)−approximation. These bounds are sometimes feasible and sometimes in-
feasible on a PC, and probably always exceed the true values by many orders
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of magnitude. Although 109 iterations in our Toy Example takes about 1
minute on a standard PC, sampling more realistic chains will take more time
and the bound will be even more conservative.

However, the message of the Chapter is a very positive one: the current
theoretical knowledge of Markov chains has reached the stage when for many
MCMC algorithms of practical relevance applied to difficult problems, i.e.
estimating expectations of unbounded functions, we are able to provide a
rigorous, nonasymptotic, a priori analysis of of the quality of estimation. This
is much more then the often used in practice visual assessment of convergence
, more sophisticated a posteriori convergence diagnostics, bounding only burn
in time or even using asymptotic confidence intervals.

We also notice the following:

• The leading term in the bound for n is b = πV |f2
c |V

ε2α
(1 + 2M2γ2

1−γ2
) (where

we took p = r = 2 for simplicity). πV |f 2
c |V should be of the order

of V arπf, thus this term is inevitable. ε−2 results from Chebyshev’s
inequality, since we proceed by bounding the mean square error. α−1

can be reduced to log(α−1) for small α by Lemma 5.4.3 and Algorithm
5.4.4 which in fact results in an exponential inequality. The last term
1 + 2M2γ2

1−γ2
is of the same order as a general bound for the ratio of the

asymptotic variance and the stationary variance, under drift condition
and without reversibility as indicated by Theorem 5.3.4. Thus it also
seems to be inevitable. However we acknowledge this bound seems to be
very poor due to the present form of V−uniform ergodicity constants.

• The term 1+ 2M2γ2

1−γ2
is the bottleneck of the approach. Here good bounds

on γ and the somewhat disregarded M(γ) are equally important. Im-
provements in Baxendale-type convergence bounds may lead to dra-
matic improvement of the bounds on the total simulation cost (e.g. by
applying the preliminary results of [Bednorz 2008]).

• Improvements of drift parameters (i.e. establishing better drift func-
tions and minorization conditions) imply significant improvement of
the convergence bounds in Baxendale’s Theorem.

• The drift conditions we used as well as the Baxendale’s theorem are far
from optimal and subject to improvement.

• We applied the theoretical results to the toy example of Section 5.5
where the drift and minorization conditions are available without much
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effort and to the Hierarchical Random Effects Model with drift and
minorization conditions established in [Jones & Hobert 2004]. Even
more general models are feasible in this setting, in particular in the
recent paper [1] Johnson and Jones established drift and minorization
conditions for a bayesian hierarchical version of a general linear mixed
model.

• Establishing drift conditions might be difficult. A good first try may be
V (x) proportional to π(x)−1/2 or to some suitable quadratic function.

5.8 Appendix - Formulas for ρ and M

In the sequel the term atomic case and nonatomic case refers to β̃ = 1 and
β̃ < 1 respectively. If β̃ < 1, define

α1 = 1+
log K−β̃

1−β

log λ−1
, α2 =





1, if ν(C) = 1,

1 + log K̃
log λ−1 , if ν(C) +

∫
Cc V dν ≤ K̃,

1 +
(
log K

β̃

)/
(log λ−1), otherwise.

Then let

R0 = min{λ−1, (1− β̃)−1/α1}, L(R) =

{
β̃Rα2

1−(1−β̃)Rα1
, if 1 < R < R0,

∞ if R = R0.

5.8.1 Formulas for general operators

For β > 0, R > 1 and L > 1, let R1 = R1(β, R, L) be the unique solution
r ∈ (1, R) of the equation

r − 1

r(log(R/r))2
=

e2β(R− 1)

8(L− 1)

and for 1 < r < R1, define

K1(r, β, R, L) =
2β + 2(log N)(log(R/r))−1 − 8Ne−2(r − 1)r−1(log(R/r))−2

(r − 1)[β − 8Ne−2(r − 1)r−1(log(R/r))−2]
,

where N = (L− 1)/(R− 1).
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For the atomic case we have ρ = 1/R1(β, λ−1, λ−1K) and for ρ < γ < 1,

M =
max(λ,K − λ/γ)

γ − λ
+

K(K − λ/γ)

γ(γ − λ)
K1(γ

−1, β, λ−1, λ−1K)

+
(K − λ/γ) max(λ, K − λ)

(γ − λ)(1− λ)
+

λ(K − 1)

(γ − λ)(1− λ)
. (5.48)

For the nonatomic case let R̃ = argmax1<R<R0 R1(β, R, L(R)). Then we have
ρ = 1/R1(β, R̃, L(R̃)) and for ρ < γ < 1,

M =
γ−α2−1(Kγ − λ)

(γ − λ)[1− (1− β̃)γ−α1 ]2
×

(
β̃ max(λ,K − λ)

1− λ
+

(1− β̃)(γ−α1 − 1)

γ−1 − 1

)

+
max(λ,K − λ/γ)

γ − λ
+

β̃γ−α2−2K(Kγ − λ)

(γ − λ)[1− (1− β̃)γ−α1 ]2
K1(γ

−1, β, R̃, L(R̃))

+
γ−α2λ(K − 1)

(1− λ)(γ − λ)[1− (1− β̃)γ−α1 ]
+

K[Kγ − λ− β̃(γ − λ)]

γ2(γ − λ)[1− (1− β̃)γ−α1 ]

+
K − λ− β̃(1− λ)

(1− λ)(1− γ)

(
(γ−α2 − 1) + (1− β̃)(γ−α1 − 1)/β̃

)
. (5.49)

5.8.2 Formulas for self-adjoint operators

AMarkov chain is said to be reversible with respect to π if
∫
X Pf(x)g(x)π(dx) =∫

X f(x)Pg(x)π(dx) for all f, g ∈ L2(π). For reversible Markov chains the fol-
lowing tighter bounds are available.

For the atomic case define

R2 =

{
min {λ−1, rs} , if K > λ + 2β,
λ−1, if K ≤ λ + 2β,

where rs is the unique solution of 1 + 2βr = r1+(log K)(log λ−1). Then ρ = R−1
2

and for ρ < γ < 1 take M as in (5.48) with K1(γ
−1, β, λ−1, λ−1K) replaced

by K2 = 1 + 1/(γ − ρ).
For the nonatomic case let

R2 =

{
rs, if L(R0) > 1 + 2βR0,
R0, if L(R0) ≤ 1 + 2βR0,

where rs is the unique solution of 1 + 2βr = L(r). Then ρ = R−1
2 and

for ρ < γ < 1 take M as in (5.49) with K1(γ
−1, β, R̃, L(R̃)) replaced by

K2 = 1 +

√
β̃/(γ − ρ).
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5.8.3 Formulas for self-adjoint positive operators

A Markov chain is said to be positive if
∫
X Pf(x)f(x)π(dx) ≥ 0 for every

f ∈ L2(π). For reversible and positive markov chains take M ’s as in Section
5.8.2 with ρ = λ in the atomic case and ρ = R−1

0 in the nonatomic case.
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Chapter 6

Convergence Results for Adaptive
Monte Carlo

Ergodicity results for adaptive Monte Carlo algorithms usually assume time-
stability of transition kernels. On the other hand, a large class of time-
inhomogeneous Markov Chains is ergodic. This suggests existence of adap-
tive MC algorithms which fail to satisfy the time-stability condition but are
still ergodic. We present a modification of Atchadé-Rosenthal ergodicity
Theorems (3.1 and 3.2 in [Atchadé & Rosenthal 2005]) that does not assume
time-stability of transition kernels. We use a weaker path-stability condition
instead, that results from time-stability condition by the triangle inequality.

6.1 Introduction

As before, we deal with computation of analytically intractable integral

I =

∫

X
f(x)π(x)dx.

For computational efficiency of the Markov chain Monte Carlo approach,
the simulated Markov chain should converge to its stationary distribution
reasonably quickly. This can sometimes be achieved by careful design of
the transition kernel P of the chain, on the basis of a detailed preliminary
analysis of π. Intuitively, the more features of π are known, the better P can
be designed. So a non-Markovian approach might be to allow the transition
kernel of the simulated stochastic process (Xn)n≥0 to adapt whenever new
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features of π are encountered during the process run. Simulations show that
this approach can indeed outperform algorithms based on classical ideas. For
numerous examples and an insight of how to tune the transition kernel ”on the
fly” see [Roberts & Rosenthal 2006] and references therein. However, since
in this case (Xn)n≥0 is not a Markov chain any more, it may fail to converge
to the expected asymptotic distribution even if each participating transition
kernel is ergodic and has the same stationary distribution. A simple but
nonintuitive example is given in Section 6.2. Difficulty to obtain general
ergodicity results appears to be the main problem in adaptive Monte Carlo.

For versions of adaptive MC and related work we refer to e.g. [Fishman 1996],
[Evans 1991], [Gelfand & Sahu 1994]. In more recent papers [Gilks at al. 1998]
showed adaptation of the transition kernel can be performed (without damag-
ing the ergodicity of the algorithm) on regeneration times. The idea of adap-
tive MC through regeneration was then investigated in [Brockwell & Kadane 2005]
and [Sahu & Zhigljavsy 2003]. Convergence results in fairly general setting
have been derived in [Haario et al. 2001] which was followed by refined the-
orems in [Atchadé & Rosenthal 2005] and a discrete state space version of
those results presented in [Kohn & Nott 2005].

In each of the above mentioned papers ergodicity results either on regen-
eration times, or fit within the so called diminishing adaptation framework
and assume the time-stability condition for transition kernels. Yet the exis-
tence of ergodic inhomogeneous Markov chains suggests the time-stability of
transition kernels is not necessary for ergodicity of adaptive MC algorithms.
After introductory examples in Section 6.2, in Section 6.3 we give ergodicity
theorems that use a weaker path-stability condition, which results from the
time-stability condition by triangle inequality. However we have to pay the
price for it and formulate the uniform ergodicity condition in the time in-
homogeneous setting, which makes it more complicated then in the original
Atchadé and Rosenthal’s theorems. In Section 6.4 we prove the main result
of this Chapter.

6.2 One Intuitive and One Not-so-Intuitive Ex-
ample

We begin with a simple example where we briefly analyze two stochastic
processes using the same two transition matrices.
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Consider the state space X = {0, 1} and π, the uniform distribution on
X . Let

P1 =

[
1/2 1/2
1/2 1/2

]
and P2 = (1− ε)

[
1 0
0 1

]
+ εP1 for some ε > 0.

Note that π is the stationary distribution for both, P1 and P2. Let ℘ be
some probability distribution on {P1, P2}. Let P (0), P (1), P (2), ... be an iid
sample from ℘. In the sequel we will use the convention min∅ = ∞ and
max∅ = −∞.

Example 6.2.1. Let (Xn)n≥0 be a stochastic process with an initial distrib-
ution p0, evolving in step k according to the transition matrix P (k). (Xn)n≥0

is clearly an in-homogeneous Markov Chain and pn (the distribution of Xn)
converges to the stationary distribution π: let Un := {k : k ≤ n, P (k) = P1}
and un = max Un. The distribution of Xn, given un 6= −∞ is π, so we have
the following bound on the total variation distance between pn and π:

‖pn − π‖tv ≤ P (un = −∞)
n→∞−→ 0 a.s.

Example 6.2.2. (due to W. Niemiro). Now consider (Yn)n≥0 with an ini-
tial distribution q0 and an initial transition matrix Q0, evolving for n ≥ 1
according to the following adaptive rule:

Qk =

{
P1 if Yk−1 = 0
P2 if Yk−1 = 1

Note that after two consecutive 1 (and this occurs with probability at least
1
4
for any k, k + 1) Yn is trapped in 1 and can escape only with probability

ε. Let q̄1 = limn→∞ P (Yn = 1) and q̄0 = limn→∞ P (Yn = 0). Now it is clear,
that for small ε we will have q̄1 À q̄0 and the procedure fails to give the
expected asymptotic distribution.

Both processes (Xn)n≥0 and (Yn)n≥0 are allowed to use essentially different
transition matrices in two consecutive steps. But one of them converges to
the desired distribution π and the other one fails to converge. In our opinion
it is not the ”time stability” condition, that is crucial for convergence of an
adaptive Monte Carlo algorithm. It is the ”path-stability” condition, that
reads ”if the path is similar, the transition kernel should be similar as well”.
Obviously (Xn)n≥0 satisfies this condition and (Yn)n≥0 does not.

In the following section we will try to formalize this intuition.
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6.3 Convergence Results
We will similarly as in [Atchadé & Rosenthal 2005] analyze a stochastic process
(Xn)n≥0 on a general state space X , generated by the following algorithm:

Algorithm 6.3.1. Assuming we have an initial transition kernel Px0 and an
initial point x0 ∈ X , the algorithm proceeds as follows:

1. If for time n ≥ 0 we have Xn = x and a transition kernel Pn, eXn
, which

is allowed to depend on the path X̃n = (X0, . . . , Xn) ∈ X n+1; then
sample from Pn, eXn

(x, ·).

2. Use X̃n+1 = (X0, . . . , Xn+1) to build a new transition kernel Pn, eXn+1
to

be used at time n + 1.

For (Xn)n≥0 generated by Algorithm 6.3.1 we shall write Pµ to denote its
distribution on (X∞,F∞) when X0 ∼ µ, and Eµ to denote the expectation
with respect to Pµ. If µ = δx, we usually write Ex and Px instead of Eµ and
Pµ. By Pµ,n we will denote the marginal distribution of Xn induced by Pµ,
thus Pµ,n is a probability measure on X . To denote two trajectories of length
n + k + 1, that have a common initial part of length n + 1 and then split, we
will write (x̃n, ỹk) and (x̃n, ỹ

′
k).

We will prove ergodicity theorems similar to Theorem 3.1 and 3.2 in
[Atchadé & Rosenthal 2005], but under modified assumptions.

Assumption 6.3.2. There exist a measurable function V : X → [1,∞) and
real number sequences (τn), (an), (Rn), such that (τn), (Rn) → 0 as n → ∞
and:

A.1 (uniform ergodicity) For all j ≥ 1, n ≥ 0, x ∈ X and x̃n ∈ X n+1, there
exists ỹ′j = (y′1, . . . , y

′
j) and 0 ≤ l ≤ j − 1 such that

∥∥∥
j−1∏
i=0

Pn+i,(x̃n,y′1,...,y′i)(x, ·)− πn+l,(x̃n,y′1,...,y′l)(·)
∥∥∥

V
≤ RjV (x). (6.1)

A.2 (path-stability) For all x ∈ X , x̃n ∈ X n+1, there exists ỹ′k ∈ X k, such
that x̃n and ỹ′k satisfy (6.1) with j = k and for all ỹk ∈ X k,

∥∥Pn+k,(x̃n,ỹk)(x, ·)− Pn+k,(x̃n,ỹ′k)(x, ·)
∥∥

V
≤ K1τnakV (x). (6.2)

87



A.3 For all x ∈ X , x̃n ∈ X n+1, ỹk ∈ X k,
∥∥πn+k,(x̃n,ỹk) − πn,x̃n

∥∥
V
≤ K2τnak. (6.3)

A.4 For all n ≥ 1,
∫

V 2(xn)Pµ,n(dxn) = (6.4)

=
∫

. . .
∫

V 2(xn)Pn−1,x̃n−1(xn−1, dxn) . . . P0,x̃0(x0, dx1) ≤ K3V
2(x0)

and
sup
n,x̃n

πn,x̃n(V ) < ∞. (6.5)

A.5 For any finite constants c1, c2, define

B(c1, c2, n) := min
1≤k≤n

(c1φkτn−k + c2Rk),

where φn =
∑n

k=1 ak. Assume that B(c1, c2, n) = O( 1
nε ) for some ε > 0.

Under these assumptions we will prove two ergodicity theorems:

Theorem 6.3.3. Let (Xn)n≥0 be the stochastic process generated by Algo-
rithm 6.3.1 with X0 = x0. Under A.1-A.4 there exist constants k1, k2 < ∞
such that for any measurable function f : X → R with |f | ≤ V ,

∣∣Ex0(f(Xn)− πn,X̃n
(f))

∣∣ ≤ B(k1, k2, n)V (x0). (6.6)

Theorem 6.3.4. Under A.1-A.5, for any measurable function f : X → R
and |f | ≤ V , for any starting point x0 ∈ X ,

1

n

n−1∑
i=0

(
f(Xi)− πi,x̃i

(f)
) → 0, as n →∞, Px0- a.s. (6.7)

Remark 6.3.5. 1. If πn,x̃n ≡ π, as it usually occurs in Monte Carlo setting
(π is the invariant target distribution), then Theorem 6.3.3 gives a
bound on the rate of convergence of the distribution of Xn to π and
Theorem 6.3.4 provides a law of large numbers type result.
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2. In this typical case (πn,x̃n ≡ π) the theory of inhomogeneous Markov
chains can be applied to check Assumption A.1 (compare [Douc et al. 2003]).

3. In particular this theorems can be applied in case when πn,x̃n ≡ π and
Pn,x̃n ≥ επ, for some ε > 0, as considered in [Kohn & Nott 2005].

4. Assumptions used here differ from those in [Atchadé & Rosenthal 2005],
where A.1 and A.2 are as follows:

A.1’ (uniform ergodicity) For all j > 0, n ≥ 0, x ∈ X and x̃n ∈ X n+1,
∥∥P j

n,x̃n
(x, ·)− πn,x̃n(·)

∥∥
V
≤ RjV (x).

A.2’ (time-stability) For all x ∈ X , x̃n ∈ X n+1, ỹk ∈ X k,
∥∥Pn+k,(x̃n,ỹk)(x, ·)− Pn,x̃n(x, ·)

∥∥
V
≤ K1τnakV (x).

The path-stability condition results from the time-stability condition
by the triangle inequality, so assumption A.2 presented here is weaker.
Assumptions A.1 here and A.1’ in [Atchadé & Rosenthal 2005] are in-
comparable. ‖P j

n,x̃n
(x, ·)− πn,x̃n(·)‖V does not have to converge even if

A.1-5 hold. It involves some computation, similar to this in the proof
of Lemma 6.4.1, to show A.1’, A.2’ together with A.3-4 imply

∥∥∥
j−1∏
i=0

Pn+i,(x̃n,y′1,...,y′i)(x, ·)− πn+l,(x̃n,y′1,...,y′l)(·)
∥∥∥

V
≤ B(k1, k2, j)V (x),

so if additionally A.5 holds,

∥∥∥
j−1∏
i=0

Pn+i,(x̃n,y′1,...,y′i)(x, ·)− πn+l,(x̃n,y′1,...,y′l)(·)
∥∥∥

V
= O( 1

nε

)
.

However our version is more complicated and might turn out to be
difficult to check even if πn,x̃n ≡ π.

5. Path-stability instead of time-stability condition enables to apply this
ergodicity theorems to Monte Carlo algorithms that are inhomogeneous
in their nature, like simulated annealing. In other words we can adapt
Monte Carlo methods based on inhomogeneous Markov chains as well.
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6. Finally, the theorem handles our introductory toy examples i.e. (Xn)n≥0

that converges to the desired distribution satisfies A.1-A.4 (but does
not satisfy A.2’ in [Atchadé & Rosenthal 2005]). (Yn)n≥0 that fails to
converge, fails to satisfy assumption A.2 as well.

6.4 Proofs

We now proceed to prove theorems from Section 6.3. The proof follows
closely Atchadé and Rosenthal [Atchadé & Rosenthal 2005]. Crucial point
of the proof is Lemma 6.4.1. Once Lemma 6.4.1 is shown under our modi-
fied assumptions, we derive Theorems 6.3.3 and 6.3.4 in essentially identical
manner as in [Atchadé & Rosenthal 2005]. This part of the proof is purely
expository and presented here for the sake of completeness.

Let (Fn)∞n=−∞ be a filtration defined by:

Fn :=

{ {, Ω} if n < 0
σ(X0, . . . , Xn) if n ≥ 0

(6.8)

and gk,X̃k
(x) := f(x)− πk,X̃k

(f).

Lemma 6.4.1. Assume A.1-A.4 hold. Then there are some constants 0 <
k1, k2 < ∞ such that for any n ≥ 0, j ≥ 1 and any measurable function f
with |f | ≤ V , we have:

∥∥∥Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn

)∥∥∥
2
≤ B(k1, k2, j)V (x0). (6.9)

The proof of Lemma 6.4.1 is given later in this section. We start with
Theorems 6.3.3 and 6.3.4.

Proof of Theorem 6.3.3. Let n = 0 in Lemma 6.4.1. We obtain the following:
∥∥∥Ex0

(
gj,X̃j

(Xj)|F0

)∥∥∥
2

=
∣∣Ex0

(
f(Xj)− πj,X̃j

(f)
)∣∣ ≤ B(k1, k2, j)V (x0),

for all |f | ≤ V , which is Theorem 6.3.3.
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Proof of Theorem 6.3.4. To prove Theorem 6.3.4 we will use the theory of
mixingales. Theorem 6.5.2 used here is presented in Appendix. Let

Yn := f(Xn)− πn,X̃n
(f)− Ex0

(
f(Xn)− πn,X̃n

(f)
)
. (6.10)

The proof will proceed according to the following plan:

1. Show that
Ex0

(
f(Xn)− πn,X̃n

(f)
) → 0 as n →∞. (6.11)

2. Show that (Yn)n≥0 is a mixingale of size − ε
2
and use Theorem 6.5.2 to

conclude that
1

n

n−1∑
i=0

Yi → 0 as n →∞ Px0 a.s. (6.12)

3. The foregoing results in

1

n

n−1∑
i=0

(
f(Xi)− πi,X̃i

(f)
) → 0 as n →∞ Px0 a.s. (6.13)

This states Theorem 6.3.4.

To see that (6.11) holds, it is enough to recall Theorem 6.3.3 and As-
sumption A.5.

To prove (6.12) consider first condition (6.30). Since the filtration is
defined by (6.8), we have E(Yn|Fn+j) = Yn and (6.30) is satisfied for any
positive number sequences (cn) and (ψn).

Condition (6.29) is obviously satisfied for j ≥ n, for any positive number
sequences (cn) and (ψn) as well, since EYn = 0. For the case j < n we will
use Lemma 6.4.1:

∥∥Ex0(Yn|Fn−j)
∥∥

2
=

∥∥∥Ex0

(
gn,X̃n

(Xn)− (
Ex0(gn,X̃n

(Xn))
)∣∣Fn−j

)∥∥∥
2

≤
∥∥∥Ex0

(
gn,X̃n

(Xn)|Fn−j

)∥∥∥
2
+

+
∥∥∥Ex0

(
Ex0

(
gn,X̃n

(Xn)
)∣∣Fn−j

)∥∥∥
2

=
∥∥∥Ex0

(
gn,X̃n

(Xn)|Fn−j

)∥∥∥
2
+

∥∥∥Ex0

(
gn,X̃n

(Xn)
∣∣F0

)∥∥∥
2

≤ B(k1, k2, j)V (x0) + B(k1, k2, n)V (x0)

= O(j−ε) +O(n−ε) = O(j−ε)
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Now we set in (6.29) cn ≡ 1 and take appropriate ψj, such that ψj =
O(j−ε). Hence (Yn)n≥0 is a mixingale of size − ε

2
. Since cn

n
= O(n−1)

and −1 < min{−1
2
, ε

2
− 1}, we can apply Theorem 6.5.2 and conclude that

1
n

∑n−1
i=0 Yi → 0 as n →∞ Px0 a.s.
Combining (6.11) and (6.12), we get (6.13) by an elementary argument.

Now we proceed to prove Lemma 6.4.1.

Proof of Lemma 6.4.1. Note that

πn,X̃n
(gn,X̃n

) = πn,X̃n
(f − πn,X̃n

(f)) = 0 Px0 a.s. (6.14)

The idea of the proof is to split the quantity
∥∥Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn

)∥∥
2

into two terms, say A and B and bound them using Assumptions A.1, A.2
and A.3.

Denote by (x̃n, ỹj) = (x̃n, y1, . . . , yj) a trajectory of length n + j. Accord-
ing to this notation we will usually write yi for xn+i. Given (X0, . . . , Xn) = x̃n

we have

Ex0

(
gn,X̃n

(Xn+j)|X̃n = x̃n

)
=

=

∫
gn,x̃n(yj)Pn+j−1,(x̃n,y1,...,yj−1)(yj−1, dyj) . . . Pn,x̃n(xn, dy1)

= ηj−1(x̃n) +

+

∫
gn,x̃n(yj)Pn+j−1,(x̃n,ỹ′j−1)(yj−1, dyj)Pn+j−2,(x̃n,ỹj−2)(yj−2, dyj−1) . . .

. . . Pn,x̃n(xn, dy1),

where ỹ′j = (y′1, . . . , y
′
j) is as in Assumption A.2, and

ηj−1(x̃n) =

=

∫
gn,x̃n(yj)

(
Pn+j−1,(x̃n,ỹj−1)(yj−1, dyj)− Pn+j−1,(x̃n,ỹ′j−1)(yj−1, dyj)

)

Pn+j−2,(x̃n,ỹj−2)(yj−2, dyj−1) . . . . . . Pn,x̃n(xn, dy1).
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By exchanging transition kernels for all coordinates, we get:

Ex0

(
gn,X̃n

(Xn+j)|X̃n = x̃n

)
=

j−1∑

k=1

ηk(x̃n) +
( j−1∏

i=0

Pn+i,(x̃n,ỹ′i)

)
gn,x̃n(xn),

(6.15)
where

ηk(x̃n) =

∫ ( j−1∏

i=k+1

Pn+i,(x̃n,ỹ′i)

)
gn,x̃n(yk+1)

(
Pn+k,(x̃n,ỹk)(yk, dyk+1)− Pn+k,(x̃n,ỹ′k)(yk, dyk+1)

)

Pn+k−1,(x̃n,ỹk−1)(yk−1, dyk) . . . . . . Pn,x̃n(xn, dy1). (6.16)

Consider the second term of the right hand side of (6.15):

∣∣∣∣∣
( j−1∏

i=0

Pn+i,(x̃n,ỹ′i)

)
gn,x̃n(xn)

∣∣∣∣∣ =

=

∣∣∣∣∣
( j−1∏

i=0

Pn+i,(x̃n,ỹ′i)

)(
f − πn,x̃n(f)

)
∣∣∣∣∣

=

∣∣∣∣∣
( j−1∏

i=0

Pn+i,(x̃n,ỹ′i)

)
f(xn)− πn,x̃n(f)

∣∣∣∣∣

=

∣∣∣∣∣
( j−1∏

i=0

Pn+i,(x̃n,ỹ′i)

)
f(xn)− πn+l,(x̃n,ỹ′l)(f)

∣∣∣∣∣ +
∣∣∣πn+l,(x̃n,ỹ′l)(f)− πn,x̃n(f)

∣∣∣

≤
∥∥∥

j−1∏
i=0

Pn+i,(x̃n,ỹ′i)(xn, ·)− πn+l,(x̃n,ỹ′l)(·)
∥∥∥

V
+

∥∥πn+l,(x̃n,ỹ′l) − πn,x̃n

∥∥
V

≤ RjV (xn) + K2τnaj, (6.17)

where the inequalities result from Assumptions A.1 and A.3.
We will now bound the first term of the right hand side of (6.15). Note

that since gn,x̃n(yk+1) = f(yk+1)−πn,x̃n(f) and πn,x̃n(f) given x̃n is some real
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number, we obtain:

( j−1∏

i=k+1

Pn+i,(x̃n,ỹ′i)

)
gn,x̃n(yk+1) =

=
( j−1∏

i=k+1

Pn+i,(x̃n,ỹ′i)

)
f(yk+1)− πn,x̃n(f) (6.18)

and

∫
πn,x̃n(f)

(
Pn+k,(x̃n,ỹk)(yk, dyk+1)− Pn+k,(x̃n,ỹ′k)(yk, dyk+1)

)

Pn+k−1,(x̃n,ỹk−1)(yk−1, dyk) . . . . . . Pn,x̃n(xn, dy1) = 0. (6.19)

Hence using (6.18) and (6.19) we get

ηk(x̃n) =

∫ ( j−1∏

i=k+1

Pn+i,(x̃n,ỹ′i)

)
f(yk+1)

(
Pn+k,(x̃n,ỹk)(yk, dyk+1)− Pn+k,(x̃n,ỹ′k)(yk, dyk+1)

)

Pn+k−1,(x̃n,ỹk−1)(yk−1, dyk) . . . . . . Pn,x̃n(xn, dy1). (6.20)

Since for each 0 ≤ l ≤ j − k − 2 and ỹ′′l we have

∣∣∣
( j−1∏

i=k+1

Pn+i,(x̃n,ỹ′i)

)
f(yk+1)

∣∣∣ =
∣∣∣
( j−1∏

i=k+1

Pn+i,(x̃n,ỹ′i)

)
f(yk+1)

− πn+k+1+l,(x̃n,ỹ′k+1,ỹ′′l )(f) + πn+k+1+l,(x̃n,ỹ′k+1,ỹ′′l )(f)
∣∣∣

≤
∥∥∥

j−1∏

i=k+1

Pn+i,(x̃n,ỹi
(yk+1, ·)− πn+k+1+l,(x̃n,ỹ′k+1,ỹ′′l )(·)

∥∥∥
V

+ |πn+k+1+l,(x̃n,ỹ′k+1,ỹ′′l )(f)|, (6.21)

we can apply A.1 and write an analogous equality to (6.19) for πn+k+1+l,(x̃n,ỹ′k+1,ỹ′′l )(f)
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resulting from A.1 to get:

|ηk(x̃n)| ≤ sup
I:X→{−1,1}

∫
Rj−1−kV (yk+1)I(yk+1)

(
Pn+k,(x̃n,ỹk)(yk, dyk+1)− Pn+k,(x̃n,ỹ′k)(yk, dyk+1)

)

Pn+k−1,(x̃n,ỹk−1)(yk−1, dyk) . . . . . . Pn,x̃n(xn, dy1)

≤ Rj−1−k

∫
K1τnakV (yk)

Pn+k−1,(x̃n,ỹk−1)(yk−1, dyk) . . . . . . Pn,x̃n(xn, dy1)

≤ r0τnakEx0

(
V (Xn+k)|X̃n = x̃n

)
. (6.22)

Where the second inequality results from path-stability condition A.2 and r0

is some finite constant, since K1 < ∞ and (Rn) → 0 as n →∞.

Putting (6.17) and (6.22) together in (6.15), we get:

∣∣Ex0

(
gn,X̃n

(Xn+j)|Fn

)∣∣ ≤

≤ RjV (Xn) + K2τnaj + r0τn

j−1∑

k=1

akEx0

(
V (Xn+k)|Fn

)
.(6.23)

By Assumption A.3 we have

∣∣Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn

)∣∣ ≤
∣∣Ex0

(
gn,X̃n

(Xn+j)|Fn

)∣∣

+ Ex0

(∣∣πn+j,X̃n+j
(f)− πn,X̃n

(f)
∣∣|Fn

)

≤
∣∣Ex0

(
gn,X̃n

(Xn+j)|Fn

)∣∣ + K2τnaj. (6.24)

We now combine (6.23) and (6.24) to obtain the first inequality of the
following bound:
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∥∥Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn

)∥∥
2
≤ Rj‖V (Xn)‖2 + 2K2τnaj +

+ r0τn

j−1∑

k=1

ak‖Ex0

(
V (Xn+k)|Fn

)‖2

≤ Rj‖V (Xn)‖2 +

+ max{r0, 2K2}τn

j∑

k=1

ak‖V (Xn+k)‖2

≤ Rj

√
K3V (X0) +

+ max{r0, 2K2}τn

j∑

k=1

ak

√
K3V (X0)

≤ V (x0)(r3Rj + r2τnφj), (6.25)

where we use Assumption A.4 and apply

‖Ex0(V (Xn+k)|Fn)‖2 =
{
E

[(
Ex0(V (Xn+k)|Fn)

)2]}1/2

≤ {
E

(
Ex0(V

2(Xn+k)|Fn)
)}1/2

=
{
EV 2(Xn+k)

}1/2
= ‖V (Xn+k)‖2

The constants in (6.25) are defined as r3 :=
√

K3, r2 := max{r0, 2K2}
√

K3

and φj :=
∑j

k=1 ak.
Since (Fn)∞n=−∞ is a filtration, Fn ⊆ Fn+j−k, for k = 1, . . . , j and therefore

Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn

)
= Ex0

(
Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn+j−k

)∣∣Fn

)
.

This implies
{

Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn

)}2

≤ Ex0

({
Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn+j−k

)}2∣∣Fn

)
.

And therefore∥∥∥Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn

)∥∥∥
2
≤

∥∥∥Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn+j−k

)∥∥∥
2
. (6.26)

We now apply (6.25) to the right hand side of (6.26) and get:
∥∥∥Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn

)∥∥∥
2
≤ V (x0)(r3Rk + r2τn+j−kφk). (6.27)
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Finally, since (6.27) holds for every k = 1, . . . , j, we can take the minimum:
∥∥∥Ex0

(
gn+j,X̃n+j

(Xn+j)|Fn

)∥∥∥
2
≤ V (x0) min

1≤k≤j

{
r3Rk + r2τn+j−kφk

}
. (6.28)

Obviously V (x0) min1≤k≤j

{
r3Rk + r2τn+j−kφk

} ≤ V (x0)B(k1, k2, j) for some
constants k1 and k2, which completes the proof of the lemma.

Hence the proof of Theorems (6.3.3) and (6.3.4) is complete as well.

6.5 Appendix - Mixingales
We present here a version of Strong Law of Large Numbers for mixingales that
is used to conclude the proof of Theorem 6.3.4. Theorem 6.5.2 presented here
is a version of Corollary 2.1 in [Davidson & Jong 1997]. For an introduction
to mixingales see the books [Hall & Heyde 1980] or [Davidson 1994].

Let (Zn)n≥0 be a real-valued stochastic process on some probability space
(Ω,F , P ). Assume (Zn) is L2-bounded, i.e. ‖Zn‖2 =

{ ∫
Z2

n(ω)dP (ω)
}1/2

<
∞ for all n ≥ 0. Let (Fn)∞n=−∞ be a filtration.

Definition 6.5.1. The process (Zn)n≥0 is a L2-mixingale with respect to
filtration (Fn)∞n=−∞ if there exist real number sequences (cn) and (ψn), ψn →
0 as j →∞, such that for all n ≥ 0 and all j ≥ 0,

∥∥E(Zn|Fn−j)
∥∥

2
≤ cnψj, (6.29)

and ∥∥Zn − E(Zn|Fn+j)
∥∥

2
≤ cnψj+1. (6.30)

If for some λ > 0, ψn = O(n−λ−ε) for some ε > 0, we say that mixingale
Zn is of size −λ.

Theorem 6.5.2. Let (Zn) be a L2-mixingale of size −λ. If cn

n
= O(nα),

where α < min{−1
2
, λ− 1}, then 1

n

∑n−1
i=0 Zi → 0 a.s.
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