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Abstract

Computational models for drug sensitivity prediction have the potential to significantly im-
prove personalized cancer medicine. Drug sensitivity assays, combined with molecular pro-
filing of cancer cell lines and drugs become increasingly available for training such models.
Existing models largely differ in terms of the modeling framework, utilized data and modeling
objectives. This thesis is devoted to comprehensive modeling of drug sensitivity data and
builds upon three projects. In the first one, we comprehensively developed and evaluated sev-
eral feature selection strategies for per-drug sensitivity prediction. In the second, we developed
a deep recommender system for prediction of kinase inhibitors efficacy across cancer cell lines,
with a tailored model interpretability approach. The third project established a methodology
for clustering of the latent data representations within a variational autoencoder framework,
with an application to drug sensitivity prediction and new compounds generation. The the-
sis highlights crucial challenges regarding the problem of drug sensitivity prediction problem
and provides several means to address them. Specifically, research topics include feature
selection, multi-task learning, model intepretability, representation learning and generative
modeling. The research presented in the thesis naturally evolved from using well-established
machine learning models with more emphasis put on data exploratory side, to developing cus-
tom methods based on neural networks and generative modeling, introducing novel technical
solutions.
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Chapter 1

Introduction

Cancer is one of the leading causes of death worldwide. According to the International Agency
for Research on Cancer, in 2020 there were nearly 20 million new cases and nearly 10 million
cancer-related deaths worldwide [1]. Approximately 39.5% of people will be diagnosed with
cancer at some point during their lifetimes [2]. The national costs for cancer care in the
United States were estimated at 208.9 billion USD in 2020, and are projected to grow in the
next years. Notably, this expected growth of costs is not only due to the projected increase of
cancer incidents, but also to the fact that new, more effective, but also more expensive forms
of treatment are being adopted as a standard of care.

Cancer is a disease which occurs when some of the body’s cells become abnormal and
start to divide uncontrollably [3]. Cancer cells arise from the accumulation of genetic alter-
ations leading to the abnormal expression of mRNA and proteins which disrupt the cellular
mechanisms of growth and division control. These cells can form lumps of tissue referred to
as tumors. Cancerous (or malignant) tumors can invade nearby tissues or spread to other
parts of a body through the blood or lymph system in a process of metastasis [4]. Metastasis
is responsible for a majority of cancer-related deaths [5], with some sources estimating the
death rate for metastatic cancers as high as 90% [6, 7].

One of the biggest challenges in cancer treatment is tumor heterogeneity. The inter-
patient and inter-tumor heterogeneity refers to the fact that cancers that are similar at the
macroscopic level can be very different at the molecular level, e.g. having different mutation
or gene expression profiles. These differences can account for significant variation in treatment
outcomes and disease prognosis. In order to mitigate this problem, there is a growing focus
on precision, or personalized, medicine in cancer [8, 9, 10]. National Cancer Institute (NCI)
defines precision medicine as "a form of medicine that uses information about a person’s own
genes or proteins to prevent, diagnose, or treat disease" [11]|. In cancer treatment, that means
utilizing the molecular description of a specific tumor in order to tailor the most optimal
available treatment.

While modern sequencing technologies, including next-generation sequencing (NGS) [12],
have enabled in-depth profiling of cancer cells and tumors, the existing approved biomarkers
for treatment are mostly limited to a single gene or a combination of few genes [8, 9]. NGS
produces inherently high-dimensional data which is hard to interpret for humans. Therefore,
there is a need for computational models for drug sensitivity prediction (DSP), which are able
to predict treatment outcomes based on high-dimensional characterizations of given cancer
cells. Drug sensitivity is also often referred to as drug response.

The thesis is devoted to the problem of computational drug sensitivity prediction. It
builds upon three research projects that I worked on during my PhD studies together with
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collaborators. Although projects deal with the same general problem, they largely differ in
terms of modeling framework, utilized data, and machine learning (ML) methodologies used.

The thesis is organized as follows. In the rest of Chapter 1, I describe the biggest re-
search challenges present in the field and how research presented in the thesis addresses these
challenges. Chapters 2 and 3 provide preliminaries helpful in comprehending the presented
work, considering cancer biology, data characterizations and machine learning aspects. In
chapters 4, 5 and 6, I present the projects which make up for the thesis. Besides description
of methods and results, each of those chapters provides a more project-specific background
and discussion. Finally, Chapter 7 comprises a summary and discussion of all presented work
in a broader context.

1.1. Research topics covered in the thesis

1.1.1. Challenges

Traditional statistical models and more complex machine learning approaches can be utilized
to predict drug sensitivity from existing data. However, as complexity of these models in-
creases, they require more observations to train them [13]. Although this is especially the
case for deep learning models, traditional ML methods also require sufficient number of ob-
servations for training, especially in high-dimensional settings. Clinical outcomes of patients
combined with molecular profiles of their tumors would constitute the most robust dataset for
clinically relevant models for DSP, however, these data sources are usually limited in size due
to factors such as high costs, problems with data sharing and anonymization, or other legal
regulations. In addition, testing multiple therapeutics on the same patient is infeasible in
clinical practice. Consequently, most of the methods for computational DSP resort to in vivo
cancer models, or in vitro cancer models in the form of immortalized cancer cell lines (CCL)
or cell lines derived from patient biopsies, with cancer cell lines being the most common data
source for training of DSP models. Although the drawbacks of cell line data have been raised
and extensively studied [14, 15, 16, 17|, these resources remain a vital tool for development
of DSP models, due to the large amounts of drug screening data and the depth of molecular
profiling of cell lines 18, 19].

The problem of drug sensitivity prediction in in wvitro cancer models can be stated as
follows: given molecular features of cancer cell lines and/or features of drugs X and quantified
drug sensitivity y, the goal is to find a function f(X) which estimates y, where f can be
approximated by a machine learning model (Fig. 1.1). Computational DSP can be therefore
seen as a common machine learning prediction task, with quantified drug sensitivity as a
target variable. If y is continuous, this takes a form of a classical regression task.

Nevertheless, although DSP in essence is a standard ML prediction task, there are number
of domain-specific challenges to be considered. These challenges arise from several factors,
such as high dimensionality of data, relatively small data abundance, lack of well-defined
approaches to evaluate the models, or model interpretability. Research presented in this thesis
addresses some of these challenges. Specifically, the thesis concerns the following research
topics:

Feature selection The problem of choosing appropriate features which are most suitable
for modeling drug sensitivity has two major aspects. In the high-level view, this corresponds
to choosing appropriate type of data, such as different omics measurements of cell lines and
different molecular descriptions of drugs. While, in the case of cell lines, gene expression and
mutations emerge as an important data type suitable for many task including DSP, in the
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case of drugs this problem is more nuanced with different data types having their advantages
and disadvantages. The second, lower-level aspect concerns which features to choose when
general data type is already fixed, e.g. expression or mutation of which genes are the most
indicative of the drug sensitivity.

Multi-task learning One important choice regarding the modeling framework in DSP is
between building independent per-drug models or building a single, multi-task model, which
can predict drug sensitivity for multiple drugs. While, in principle, per-drug models can be
more accurate by utilizing specific drug’s properties, their major disadvantage is the lack of
possibility to model relationships between drugs’ features and their action, which can lead to
important biological insights. On the other hand, multi-task models can capture action of
multiple drugs on multiple cancer cell lines via single model, which makes it more universal
as well as provide more means to intepret the model.

Interpretability One of the main concerns generally in ML, and specifically in the DSP
field, is the interpretability of ML models. It is hard to define interpretability mathematically,
however, it can be defined non-mathematically in several ways. One of the suitable definitions
of interpretability is "the degree to which an observer can understand the cause of a deci-
sion" [20, 21]. In general, the higher the model’s interpretability, the easier it is for someone
to comprehend why certain decisions or predictions have been made [22]. Interpretablity of
ML models is especially important in the field of computational oncology, or, more broadly,
computational medicine. In the problem of DSP specifically, one of the most important ques-
tions that could be answered by interpretability analysis is: what are the underlying chemical
and biological mechanisms which drive the drug sensitivity and are captured by the model?

Representation learning Manual feature engineering can be infeasible, especially in the
high-dimensional setting and complex problems like DSP. One of the reasons behind the
success of neural networks in many applications is their ability to automatically learn repre-
sentations of input data that are most suitable for a given task. Although this is especially
transparent in the fields such as computer vision and natural language processing, representa-
tion learning is very beneficial also in the field of computational biology. Specifically, it can be
used to find the most informative, lower-dimensional representations of drugs and cell lines.
Those representations extract the most important information from the large sets of initial
input features, can be passed as an input to the subsequent models performing predictions,
or be visualized and analyzed to increase model’s interpretability.

Generative modeling Recently, there is a growing interest in building models which are
not only able to predict certain variables, but can also generate new objects. In the field
of computational medicine, a particular interest concerns generation of new drug candidates.
Generative modeling requires that objects such as drugs or cell lines are not modeled as a single
data points, but rather probability distributions over some variables. The main challenge in
this context is to generate objects which have some desired properties and are valid, e.g. drugs
which are effective against some type of cancer and are possible to synthesize.

1.1.2. How the research presented in this thesis addresses the challenges

The thesis builds upon three research projects generally concerning the problem of computa-
tional drug sensitivity prediction. Each of those projects is addressing the challenges listed
above, but with differing methodologies and different points of emphasis:
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Per-drug feature selection strategies for drug sensitivity prediction [23]. The focal
point of the first project was feature selection. As large-scale pharmacogenomics studies
provide a wide range of biological measurements, the high dimensionality of such data makes
it difficult to develop effective predictive models and to identify the features which are the
real drivers for cell lines’ response to treatment. Here, we compared standard, data-driven
feature selection methods to feature selection based on prior knowledge regarding drug targets,
target pathways, and gene expression signatures. We assessed these methodologies on a
pharmacogenomic dataset, evaluating a total of 2484 ML models. Such drugs for which
smaller feature sets yielded better predictive performance were identified and described.

Interpretable deep recommender system model for prediction of kinase inhibitor
efficacy across cancer cell lines [24]. The second work considered aspects of high-level
feature selection, representation learning and model interpretability. Drug sensitivity predic-
tion problem can also be defined as a recommendation problem, where the goal is to recom-
mend the best drug for a given cancer cell line. Here, rather than building a separate model for
each compound, we developed DEERS, a multi-task deep recommender system which achieves
this objective for multiple drugs and cell lines. The model utilizes both molecular features of
the cancer cell lines as well as kinase inhibition profiles of the drugs. We introduced a novel
model interpretability approach, which in addition to the set of modeled features considers
also the genes and processes outside of the features set used for training. Predictive perfor-
mance of DEERS was evaluated against simpler matrix factorization approaches and common
ML models. The novel interpretability approach was utilized to identify a group of biological
processes that are most responsible for driving cancer cell lines’ response to treatment.

A generative recommender system with GMM prior for cancer drug generation
and sensitivity prediction [25]. Finally, in the third work, the focus was switched to deep
generative modeling, specifically variational autoencoders (VAE), which also involved repre-
sentation learning and model interpretablity. In particular, we established a methodology for
distribution-based clustering of of data representations in the variational autoencoder’s latent
space using external guiding data through gaussian mixture models (GMM). In principle,
the developed method can be applied to a broad spectrum of vector-represented data. How-
ever, to put it in the context of DSP, this new model was applied on drugs’ SMILES vector
representations as input data. SMILES, standing for Simplified Molecular Input Line Entry
System, is a line notation system used for describing the structure of chemical species using
short strings |26, 27, 28|. In this case, the guiding data were the drugs’ inhibition profiles
(which were also utilized in the second project but using standard autoencoders). Here, we
developed a drug variational autoencoder, which takes drugs’ SMILES vector representations
as input, and outputs reconstructed SMILES representations along with predicted inhibition
profiles across panel of protein kinases. This VAE uses GMM with learnable parameters as
a latent space prior distribution, where component assignments are observed for a subset of
drugs. This drugs VAE model was incorporated into larger modeling framework along with
cancer cell lines’ data, creating VADEERS, an extension to the DEERS model capable of
predicting cell lines response to drugs and drugs’ inhibition profiles. The variational autoen-
coder part of the model can be utilized to generate new drugs with properties defined by the
guiding data used for clustering.
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Chapter 2

Cancer biology

2.1. Cancer development and properties

Since cancer can result from abnormal proliferation of any kind of cells, there are many ways
to classify cancers. One important distinction is between benign and malignant tumors. A
benign tumor remains constrained to its original location, not posing a threat to other organs
and making it susceptible to localized treatment such as surgical intervention. On the other
hand, a malignant tumor is able to invade surrounding normal tissues and metastize, which
makes it dangerous and resistant to localized forms of treatment. Only malignant tumors are
properly reffered to as cancers. Tumors can then be classified according to the type of cells
from which they arise, falling mostly into one of three groups: carcinomas, sarcomas, and
leukemias or lymphomas [29]. Further classification involves tumor’s or cancer’s site of origin,
e.g. lung cancer or prostate cancers.

One of the most fundamental characteristics of cancer is tumor clonality, i.e. the develop-
ment of tumors from single, abnormal cells [29]. However, this tumor clonality does not mean
that the abnormal cell of origin has initially possessed all of the attributes of a cancer cell. On
the contrary, the development of cancer is a multi-step process, in which cells become more
malignant through a progressive series of alterations (mutations) in DNA sequence. These
successive rounds of mutation and selective expansion of these abnormal cells eventually re-
sults in the formation of a tumor mass [30]. Therefore, tumor progression creates clones, some
of which acquire mutations giving them selective advantage in the overall tumor population.
This process of clonal evolution [31] gives rise to tumor heterogeneity and significantly affects
treatment. For example, application of a general cytotoxic drug may initially kill majority of
cancer cells, but it also may create an evolutionary niche for remaining, treatment-resistant
population of cells and allow them to become dominant within the tumor.

The uncontrolled proliferation of cancer cells in vivo can be mimicked in vitro through cell
cultures. Cells do not exist in isolation, their behavior is dependent on signals coming from the
surrounding environment, such as growth factors which trigger cell division. These external
growth factors (or ligands) bind to membrane-bound glycoprotein receptors that transmit the
message via a series of intracellular signals that promote or inhibit the expression of specific
genes [30]. In a cell culture, normal cells will cease to proliferate when reaching a finite cell
concentration, which is dependent on the availability of growth factors in a culture medium.
Cancer cells, on the other hand, can continue to grow and divide without dependence on
external growth factors, increasing the chances of acquiring further mutations in a genome.
There are three main mechanisms through which cancer cells achieve the independence from
external growth factors [30]. Firstly, cancer cells can produce their own growth factors,
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stimulating their own proliferation. Secondly, they can induce changes in, or change the
number of cell surface protein receptors which transmit growth-stimulatory signals into the
cell interior, making the cell more responsive to external growth factors. Finally, they can
induce changes in intracellular growth factor signaling pathways, leading to the undesired
signals triggering cell proliferation. Many of the aforementioned cancer mechanisms are caused
by unfavorable mutations in proto-oncogenes. A proto-oncogene is a gene involved in normal
cell growth [32]. However, upon activation, a proto-oncogene can turn into oncogene [33],
producing oncoproteins, which in turn predispose cell to be cancerous. Oncoproteins, as well
as other proteins involved in downstream and upstream of key signaling pathways are often
molecular targets of anti-cancer therapeutics.

Another fundamental feature of cancer cells is their ability to bypass anti-growth signals.
Besides growth factors, normal cells are also subjected to signals which are responsible for
cell quiescence, which serve as brakes against proliferation signals [30]. Similar to growth
factor signaling pathways, signals that normally suppress cell division are also received by
cell-surface receptors that are coupled to intracellular signaling pathways. The genes that
encode this class of proteins involved in restraining normal cell division are termed tumour
suppressor genes [34]. Mutations in these genes can lead to loss-of-function and increased cell
division. Probably the most known tumor supressor gene is TP53. About 50% of cancers
have mutations in TP53 (35, 36]. Protein product of TP53 called p53 is responsible for
regulating cell cycle progression and programmed cell death, or apoptosis. Cells exhibiting
loss-of-function of the p53 protein fail to undergo apoptosis in response to DNA damage caused
by treatment such as radiation and chemotherapy drugs. This mechanism largely contributes
to the resistance of many tumors to chemotherapy.

Another important characteristics of cancer cells concern their interactions with other
tissue elements. One of the most important and harmful steps in tumor development is the
process of angiogenesis, i.e. formation of new blood vessels. After reaching some size, tumors
require these new vessels to provide nutrients and oxygen to cancer cells. The new blood
vessels are created in response to growth factors secreted by cancer cells themselves, which
promote proliferation of endothelial cells in the walls of capillaries in the neighboring tissue,
resulting in the growth of new capillaries into the tumor [29]. One transparent example
of such pro-angiogenic growth factor is vascular endothelial growth factor (VEGF) [37, 38|.
Angiogenesis is crucial from the standpoint of drug design, since it is a key process in transition
between relatively small, constrained tumor, to an agressive tumor able to invade other tissues.
In addition, new capillaries formed during angiogenesis are easily penetrable by tumor cells,
enabling them to spread via circulatory system, laying the foundation for the process of
metastasis, which is the main cause of death in cancer patients [5, 6, 7].

2.2. Drug action

Depending on how it works, the pharmacological treatment of cancer can be broadly clas-
sified into four major types: chemotherapy, hormone therapy, immunotherapy and targeted
therapy [39, 40].

The term "chemotherapy" is usually reserved for compounds which are generally cytotoxic
and are therefore used to kill cancer cells [41]. Chemotherapeutics target the cell cycle,
interfering with cell proliferation by damaging its DNA and RNA and their metabolism [42].
Because of its general cytotoxicity and non-specificity to cancer cells, chemotherapy causes
major undesired side effects [42, 43]. Hormone therapy acts upon cancers which rely on
hormones to grow, by stopping the body from producing particular hormone, blocking the
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hormone from ataching to cancer cells, or by altering hormone’s function [44]|. This type of
therapy is commonly used in treatment of breast and prostate cancers, which rely on estrogen
and testosterone, respectively. Immunotherapy is a type of biological therapy [42] which helps
patient’s own immune system to identify and attack cancer cells, which normally can avoid
body’s immunological response [45].

Targeted therapy is considered to be a cornerstone of precision medicine [46, 47]. Tar-
geted therapy is based on drugs and compounds which suppress the growth and spread of
cancer by targeting specific molecules involved in cancer development. In contrast to stan-
dard chemotherapy, targeted therapy is cancer-specific, i.e. it acts upon specific molecular
targets affecting cancer cells, while leaving normal cells mostly unaffected [48]. In addi-
tion, targeted agents are usually cytostatic, blocking tumor proliferation, while standard
chemotherapy drugs are cytotoxic, i.e. they kill existing cells [46].

The majority of targeted therapeutics belong to two categories: monoclonal antibodies and
small-molecule drugs [49]. Monoclonal antibodies are proteins designed in the lab to attach
to specific molecules present on cancer cells” surface [47]. On the other hand, because of
their smaller size, small-molecule agents [50] can penetrate to cells’ interior and are therefore
used to target intracellular signaling molecules [47]. The type and molecular action of targeted
therapeutics is often indicated in their names; small molecules with inhibitory properties have
"-ib" as a suffix (e.g. erlotinib, imatinib), while monoclonal antibodies have "-mab" as a suffix
(e.g. cetuximab, trastuzumab) [51]. There are several general biological mechanisms through
which targeted drugs attempt to fight cancer. Signal transduction inhibitors suppress activity
of molecules involved in signal transduction, or cell signaling, i.e. the process by which a
cell responds to environmental signals through a cascade of biochemical reactions [46, 52].
Angiogenesis inhibitors stop formation of new blood vessels interfering with the action of
related growth factors such as VEGF. Proteasome inhibitors [53] disrupt cancer cells’ function
causing the cells to die.

One particular, important category of targeted drugs are protein kinase inhibitors [54,
55]. Protein kinases are a class of enzymes which act by adding a phosphate group to a
protein, modulating the protein’s function and often making it active. They are often classified
based upon amino acid which they phosphorylate: serine, threonine or tyrosine [56]. There
are over 500 protein kinases in humans [54], involved in numerous cellular mechanisms and
signaling pathways, including cell growth and proliferation. Some protein kinases are cell
surface receptors which initiate and intracellular pathway of activation after the receptor binds
with its ligand (e.g. growth factor), while others are intracellular and participate in signal
transduction within a cell [56]. Mutations of protein kinases often lead to uncontrolled growth
and proliferation, making these mutated variants potentially alluring drug targets. Inhibitors
of cell surface receptors are called protein kinase receptor inhibitors, intracellular receptors
are targeted by non-receptor kinase inhibitors, while some kinase inhibitors have specificity
for multiple kinases and are referred to as multi-kinase inhibitors [56]. It is estimated that
protein kinases constitute the second most targeted group of drug targets [54] and 20-33% of
drug discovery efforts worldwide concentrate on the protein kinase family [57]. As of 2020,
there were 52 small molecule protein kinase inhibitors approved by the US Food and Drug
Administration (FDA), from which 11 target serine/threonine protein kinases, 2 are directed
against dual specificity protein kinases, 11 inhibit non-receptor protein-tyrosine kinases, and
28 block receptor protein-tyrosine kinases [57].

Despite its advantage over conventional chemotherapy, targeted therapy is not without
drawbacks. Some targeted therapeutics can cause undesired side effects, including skin prob-
lems, cardio-vascular problems, autoimmune responses, and other, more mild conditions [58].
Still, intra- and inter-tumor heterogeneity poses a great obstacle in treatment with targeted
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drugs. Because of increased selectivity of targeted therapeutics, only a subset of patients
with specific biomarkers can be effectively treated. Moreover, these therapeutics often pro-
long patents survival but fail to cure the disease due to the acquired resistance to of some
tumor subclones [51]|. Finally, the development of such drugs is not straightforward since some
attractive biological targets are often not druggable, i.e. can’t be inhibited by known chem-
ical structures. Overall, these issues highlight the importance of approaches for appropriate
matching of biological makeups of tumors to treatment, including computational models.

2.3. Data characterization

2.3.1. Cell viability studies

In recent years, experimental efforts by different research consortia have produced several
public pharmacogenomic databases containing molecular and drug sensitivity profiles across
a large number of cancer cell lines [59]. The drug screenings are usually conducted using a
robotic system in which compounds are delivered to wells containing cell cultures of inter-
est [60]. Following an incubation period lasting usually 72 hours upon drug delivery, a cell
viability readout is conducted. This process is performed several times (commonly 5-10) with
multiple drug concentrations, producing several dose-response data points, which can be fitted
to produce a dose-response curve. Such dose-response curves are generalized in order to get
a single, real-valued numerical indicator of drug sensitivity. Two commonly used univariate
metrics include half maximal inhibitory concentration (IC50), which is a drug concentration
required to reduce cell viability by 50% [61], and area under the dose-response curve (AUC).
Therefore, in the case of both metrics, lower values indicate better drug efficacy. Owverall,
the protocol described above results in the table, or a matrix, containing drug sensitivity
numerical indicators for each of the tested drug-cell line pair.

One of the first public pharmacogenomic resources was the NCI-60 dataset released by
National Cancer Institute, containing screening data of thousands of compounds 60 cell lines
spanning nine cancers [62, 63]. Notably, NCI-60 facilitated some important drug discoveries,
including 26S proteasome inhibitor bortezomib used in multiple myeloma treatment [13].
Since then, larger-scale databases have been publicly released, including pan-cancer assays
containing hundreds of cell lines from multiple tumor sites [13, 64]. One of the most prominent
of such databases, also exploited the most in this thesis, is the Genomics od Drug Sensitivity
in Cancer (GDSC) [65] database developed by Sanger Institute, currently containing drug
screening measurements of hundreds of compounds across 1000 human cancer cell lines.

2.3.2. Genomics

Connecting drug sensitivity phenotypes with biological description of cell lines requires molec-
ular profiling of the latter. These cells’ characterizations can be extracted from different
molecular levels such as genome, transcriptome, proteome, or metabolome. Two most ex-
ploited omics data types in this thesis are genomics, corresponding to DNA level and tran-
scriptomics, corresponding to mRNA level or gene expression.

At the DNA level, two important variation types are single nucleotide polymorphisms and
chromosomal rearrangements [60]. SNPs refer to variants in a single nucleotide block, e.g
replacement of one nucleotide base with another. Such alterations can lead to the subsequent
production of abnormal protein, making the cell cancerous. These variants can be detected
through direct DNA sequencing, or, specifically, through whole exome sequencing (WES) (66,
67], measuring variations in the coding regions of the genome. This can result in a per-gene
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binary information indicating presence or absence of a mutation in a given gene in a given cell
line. Overall, from a technical perspective, mutation data used for prediction tasks including
DSP is binary, and usually sparse containing mostly zeros, since for many considered genes
only a small subset of cell lines exhibit point mutations in them.

Another type of genetic alterations, or mutations, may come from changes on the chromo-
somal level. In particular, copy number variations (CNV) indicate duplications of deletions
of whole fragments of DNA, denoting number of copies of a given fragment or a segment [60].
For the purpose of DSP and other prediction tasks, it is beneficial to convert segment-level in-
formation to gene-level information, indicating number of copies of a given gene, which makes
it more feasible to compare these features across cell lines. CNV are important in a con-
text of cancer, since some cancer cells exhibit over-amplification of oncogenes or deletions of
tumor-suppressor genes. Again, such preprocessed data produces gene-level discrete features
for each cell line, with binary values, indicating presence or absence of abnormal number of
copies, or values indicating number of copies itself. For many tasks, including work presented
in this thesis, point mutation and CNV data is included for only a subset of highly-variate or
cancer related genes, as opposed to considering all ~ 20,000 of human genes.

2.3.3. Transcriptomics

Gene expression is the process in which cells convert the information stored in DNA to func-
tional proteins. The first step of this process involves transcription, in which DNA of a
gene is copied into complementary fragment of RNA, producing a messenger RNA (mRNA)
transcript. The message carried by mRNA is then used to synthesize a protein carrying out
specific cellular functions. Therefore, measurement of mRNA can indicate which genes are
active and describe the cell’s type, state, or a condition.

Gene expression, or transcriptomics profiling is usually carried out using two common
technologies used to derive gene expression, or transcriptomics profiles, are microarrays and
RNA sequencing [68], with the latter being more modern and gaining more popularity [69].
Both tools measure the levels of mRNA transcripts across multiple genes and samples. Fol-
lowing post-processing and normalization, the end result are continuous numerical indicators
of expression of considered genes, which can be used to differentiate between samples. In
pharmacogenomic datasets, transcriptomics profiles of cancer cell lines are commonly whole
genome-wide, i.e. they span ~ 20,000 coding genes [65, 18]. Such abundance of features nat-
urally generates a problem of feature selection. Another technical difficulties associated with
this datatype are correlation between features and noisiness of the data. Still, gene expression
constitutes perhaps the most ubiquitous data type for representing cell lines in DSP and other
fields of computational biology |70, 59].

2.3.4. Drug characterizations

Independent of their sensitivity profiles across cell lines, there are several ways to represent
drugs in order to utilize prior knowledge about them or feed those representations into a
machine learning model. One category of such characterizations concerns drugs’ function and
mechanism of action. For example, drugs can be described in terms of their target signaling
pathways or, more specifically, gene targets for which they were designed for. Such meta-
annotations can often be found in pharmacogenomic databases themselves or in the external
data repositories dedicated solely to drugs and compounds annotations |71, 72|. Utilizing
binary information about drugs’ putative targets can be beneficial, e.g. it can cause the ML
model to pay more attention to cell lines’ molecular features corresponding to those targets,
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however, such information also has its drawbacks. Firstly, from a technical standpoint, if such
targets are fed into a model as binary-encoder features, this data would be sparse, since most
of the compounds have only one or a few putative targets. Secondly, from a drug function
perspective, such description does not capture the whole picture of drug action, since it does
not account for drug off-targeting which influences how they interact with the cells [73]. For
the latter reason, it might be more beneficial to represent drugs by their continuous inhibition
profiles across a panel of targets, i.e. a vector containing a numerical indicators of inhibition
levels for a given set of targets. On the other hand, such data is less abundant and available
for only a subset of drugs, since it requires a relatively significant experimental effort.

Another, qualitatively different, approach to drug or molecule characterization concerns
their chemical structure. One common representation of substances’ chemical structure are
SMILES strings [26, 27, 28]. SMILES stands for “Simplified Molecular-Input Line-Entry
System” and describes the atoms and bonds of a molecule [74]. As raw SMILES are strings,
i.e. sequences of characters, they require an additional featurization step which converts them
to numerical representations which can be fed into ML algotithm. These molecular featurizers
can range from relatively simple ones, e.g. molecular fingerprints which are binary vectors of
that indicate the presence or absence of specific features in a molecule [74], to featurizers which
are complex models themselves, e.g. neural networks used in natural language processing [75,
76] or based on graph convolutions [77, 74]. One major advantage of using SMILES is that
it is a raw data type, i.e. it is available for almost every drug or compound, which enables to
gather more data for training. On the other hand, this characterization is on much lower-level
compared to e.g. inhibition profiles or drug function, which, in principle, should be the most
important for prediction of cellular responses. These functional characteristics have to be
derived explicitly or implicitly from SMILES by the model itself. Furthermore, a need for
featurizer adds an extra degree of freedom and important choice when building a model for
DSP since different featurizers represent different aspects of SMILES string.

Overall, these considerations make choosing a proper drug representation not a straight-
forward problem. Notably, all of the afore-mentioned types of drug information have been
utilized in works presented in the thesis, providing an overview of them in different models
and applications.
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Chapter 3

Machine learning models

3.1. Conventional machine learning

Machine learning can be described as a branch of artificial intelligence dedicated to models
which can learn from data without being explicitly programmed. ML models adjust their
parameters during the training phase, learning from training data, in order to make predictions
or decisions on a new, unseen data. In a supervised learning framework [78, 79|, observations
or examples come in a form of a pair containing an input (vector of features) and a desired
output (which can be a single-valued label, or a target variable). The goal of a ML algorithm
is then to use these labeled training examples to learn a function mapping from input variables
(features) to target variable, which can be used to determine correct labels for new examples. If
the target variable is discrete, this is reffered to as a classification problem, whereas continous
target variable poses a regression problem.

A typical machine learning workflow involves four major steps: data extraction, data
splitting and preprocessing, model selection, and model evaluation. Following data extrac-
tion, data is splitted into training, validation, and test (held-out) set. Data preprocessing
involves preparation of the data so they can be fed into and ML model and additional steps
such as scaling or normalization. Model selection involves training different models on the
training data and validating them on the unseen validation set. Instead of performing this
process on a single training-validation data split, one common technique is a k-fold cross-
validation in which available training data is split into k folds, and in each iteration model is
trained on k-1 folds and evaluated on the remaining one, where the end evaluation metrics
are averaged over k iterations. Model selection often involves hyperparameter-tuning, where
different combinations of the same algorithm’s hyperparameters are tested and evaluated.
After the best overall model is chosen, it is applied to the held-out set in order to get a final
estimate of its performance. The particular steps of the above-described problems may take
a different form depending on the data and a task at hand.

One important consideration when comparing the models and evaluating their perfor-
mance are evaluation metrics. For a regression problems, a common metric is root mean
squared error (RMSE) between actual and predicted labels:

1 m
MSE = | —  — i) 1
RMSE = \| 3 (= 0 (3.1)

where m is a number of observations, y; denotes actual value for an ith example, and g;
denotes a predicted value for an ith example. Therefore, lower values of RMSE indicate better

23



model performance. The mean squared error (MSE) is commonly used as an loss function
for regression algorithms during the training phase, in the evaluation phase the square root
is taken to have an error on the same scale as the actual labels. Although most common,
RMSE may not always be the most intuitive metric. For that reason, regression models are
often evaluated using Pearson correlation coefficient which measures how closely predicted
and actual labels co-vary:

) (3.2)

where § denotes the mean of actual labels and ¢ denotes the mean of predicted labels across
m observations. The Pearson r coefficient is in the [—1, 1] range and values closer to 1 indicate
bigger positive correlation between two variables, hence better predictive performance.

One important concept in ML is the bias-variance tradeoff [80, 81|. Models with too
high bias are too simple to accurately fit the data, and, as such, exhibit high training and
test errors. On the other hand, models with too high variance are too complex, resulting in
overfitting to the training data. As such, these models will have a low training error, but will
fail to generalize to unseen observations, ending up modeling the random noise in the training
data and exhibiting high test error. Finding the optimal spot for model’s bias and variance
is at the core of ML model development. Model regularization aims to reduce variance of
the model. Common regularization techniques involve reducing the number of parameters
or shrinkage methods, i.e. reducing the values of parameters, however, many ML algorithms
have their own specific hyper-parameters controlling model complexity.

3.2. Deep learning

Deep learning refers to a subfield of machine learning concerning deep neural networks (DNN).
Neural networks are comprised of layers of nodes, or neurons, which are connected to neurons
in a neighboring layer with associated weights. In a common, fully-connected feed forward
network, the initial input features vector is propagated through network’s hidden layers until
the output layer, which, in case of supervised learning, outputs the target variable estimate.
This forward propagation is essentially a series of linear transformations performed by matrices
with learnable parameters, followed by an application of a non-linear, element-wise activation
function in each hidden layer. This allows the neural network to represent complex, non-linear
functions mapping from input features to the desired output. During the training phase, DNN
adjust its parameters in order to minimize a loss function defined in terms of model predicted
outputs and the actual outputs. The term "deep" refers to the number of hidden layers,
however, there is no clear definition of how many hidden layers make a given neural network
"deep".

From a functional perspective, perhaps the most important distinction between conven-
tional ML models and deep neural networks is the ability of deep learning system to au-
tomatically extract important features from the raw input data [79]. In this context, deep
neural networks essentially perform a hierarchical feature learning, exploiting the unknown
structure in the input data in order to come up with subsequently better representations, with
higher-level learned features defined in terms of lower-level features [82]. This makes DNNs
an essential class of algorithms for representation learning.

The training of DNNs is performed in an iterative fashion using gradient descent-based
optimization [79, 83]. At each iteration, a batch of training input data is fed to the model
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and the forward pass is performed. Then, a specified loss function is calculated based on the
predicted and actual values. Next, the gradients of the loss function w.r.t. model’s parameters
are calculated using the backpropagation algorithm, in which prediction error is propagated
to individual parameters according to the chain rule. After gradients are calculated, the
parameters are simultaneously updated in the direction of negative gradient, adjusting the
parameters so that the loss function is closer to the minimum. The size of this update step
is controlled by a learning rate hyper-parameter. This process is repeated for the subsequent
batches. A single passage through entire training data is referred to as an epoch. The training
is performed for a specified number of epochs or after a desired stopping criterion is met.

A typical loss function for a straightforward regression problem is MSE, which maximizes
the likelihood of the data. However, loss functions can be much more complex and their custom
specification is a main way to force a model to achieve a desired task or incorporate some
prior knowledge into the modeling problem. As DNN contain a large number of parameters,
they are also susceptible to overfitting. Common regularization techniques in deep learning
include adding a L2 loss, shrinking the parameters, dropout layers, in which some proportion
of nodes in the layer are randomly ignored, or early stopping, in which model training is
stopped when the performance on validation data starts to decrease [82].

3.3. Generative modeling

One distinction that can be made for ML models is between discriminative and generative
models. Informally, generative models have the ability to generate new observations or data
instances, e.g. new images, words, or compounds resembling the real ones, while discriminative
models can only distinguish between different kinds of observations. More formally, generative
models learn a model of the joint probability p(x, y) of the input features x and label y, or just
p(x) in a unsupervised setting with no labels. In contrast, discriminative classifiers either learn
conditional probability p(y|x) directly, or learn an explicit mapping from inputs x to label
y [84]. In the context of generative modeling, given data points can be viewed as realisations
of the underlying random phenomenon [85]. The goal then is to use this observed data to
learn a probability density model which resembles the true data generating distribution as
closely as possible. Notably, this requires from such model to properly capture the underlying
relationships and patterns in the data, hence generative modeling is often highly intertwined
with representation learning.

Consider a dataset D = {x1,...,X;,} comprising of data points (N-dimensional vectors of
input features, where N is the number of features) x € RY. In a generative modeling frame-
work, samples (observations) in D are seen as realisations of an underlying random variable
X in an N-dimensional space D. The goal is then to learn the distribution p* underlying
samples in D, where density at particular x denoted as p*(X = x), or, more concisely, just
p*(x) [85]. In a parametric approach to this problem, consider a family of parameterized
density functions Pg = {py|0 € O}, where O denotes a set of possible parameters’ values 6.
Next, define a performance metric given by a function L£(p*, pg) which measures how well py
captures the true distribution p*. The goal of the generative model is to find such 8* € ©
which, depending on the form of a performance metric, minimizes or maximizes £, hence
optimizing for the appropriate recovery of p*. Choice of £ depends on the type of the model
and its desired properties.

Often, generating samples from py directly in a data space D may be infeasible, especially
in a high-dimensional setting and in a presence of dependencies between features. One com-
mon way to reformulate pg is through latent variables. In the latent variable models, the
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assumption is that most of the variability in the data can be explained by some number of
factors of variation [85], which are captured by latent variables. Latent variables are called la-
tent (or hidden), because they are not directly observed and need to be inferred from observed
variables (whose realisations are datapoints x). Latent variables can represent types or classes
of objects being modeled, and can also be interpreted informally as a decision that the model
makes prior to generating a data sample. For example, in a case of images of hand-written
digits, it might be beneficial for a model to first decide which digit to generate, and the pro-
duce the corresponding pixel-level values based on this prior decision [86]. Therefore, in the
latent generative models, a latent representation z is chosen first, and an actual sample X is
generated given z. Importantly, in this setting, it is assumed that most of the variability and
relations between features of x is captured by these latent variables, and individual feature
variables are independent given z (conditional independence) [85]. Given a model with latent
variable Z in space Z, the corresponding distribution of the observed variable X is obtained
through marginalization of the joint distribution of latent and observed variables:

oo = | _plez)iz = / _ plxlz)p(a)dz. (3.3)

In principle, a deterministic function fy : Z — RY can be defined to map latent rep-
resentations to data points. In practice, fy is usually used to parametrize the probability
distribution of the output random variable. For example, fy(z) might output the mean of the
Gaussian distribution with unit isotropic standard deviation, corresponding to conditional
probability density of x given z:

p(x|z) = N (x|fy(z),1), (3.4)

where I is the identity matrix. When integrated over z, this allows for representing complex
probability distributions in the data space.

One popular example of a latent variable model is a Gaussian mixture model (GMM) or
a mixture of Gaussians. GMM distribution can be simply stated as a linear superposition of
Gaussian components [80]:

K
p(x) = 37 e (xl by, i), (3.5)
k=1
where 7 is a weight of a kth component, p;, and 3 are mean vector and covariance matrix
corresponding to a kth Gaussian component, respectively. This model can be formulated in
terms of a discrete latent variable. Consider a K-dimensional binary random variable z in
which a particular, kth element zj is equal to 1 and rest of elements are 0, with the probability
density described in terms of weights 7, such that:

2 € {0,1} (3.6)
K
=1 (3.7)
k=1
p(zx =1) = m (3.8)
K
0O<m,<land » m =1 (3.9)
k=1

In a GMM, the conditional probability distribution of x given a particular value of z is
a Gaussian distribution parametrized by means and covariance matrix corresponding to a
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particular component:

p(x[z) = N (xlp, Z). (3.10)

Therefore, the joint distribution p(x,z) is given by p(x|z)p(z), and the marginal distribu-
tion of x is obtained by summing over all possible values (K components) of z:

K
p(x) =Y p(2)p(x|z) = > N (x|, ), (3.11)
z k=1

arriving at the linear superposition formulation in Eq. (3.5). Using the joint probability and
the Bayes rule we can also perform inference and find conditional probability p(z|x), indicating
which components were most likely to produce a particular x.

It turns out that applying the standard maximum likelihood framework in order to learn
the parameters of GMM is not straightforward [80]. GMMs are commonly learned using the
expectation-maximization (EM) algorithm, but can also be trained using variational inference
and gradient based optimization [80].

3.4. Variational autoencoders

Often, the complexity of the data requires a complicated, expressive function mapping from
the latent variable to data space. Such functions can be computed with deep neural networks.
Models which utilize DNNs in a generative process are referred to as deep generative models.
One particular category of deep generative models are variational auto-encoders (VAEs).

VAESs can be simplistically introduced as an extension of deterministic autoencoders with
incorporated randomness. In that setting, a single datapoint x is mapped to a probability
distribution over latent space, rather than a single point. The corresponding latent represen-
tation is then sampled from this mapped distribution and fed into a deterministic decoder to
obtain the output. Although sometimes useful and simple, this formulation does not capture
the main idea behind VAE theory, as the encoder-decoder architecture is only introduced as
the means to optimize a training objective derived from a probabilistic model.

In fact, VAESs can be seen as latent variable models, in which the main idea is to transform
some simple distribution p(z) using a non-linear function to obtain a more complex distri-
bution in a data space. As in latent variable models in general, the goal is to maximize the
marginal probability over x:

m@z/ﬂﬂM@M% (3.12)

where p(z) is referred to as a prior distribution over latent variable z. In standard VAEs, prior
distribution is a standard normal (with 0 mean and unit isotropic standard deviation). The
function fy is computed by a neural network referred to as a decoder and is used to output
the parameters of a Gaussian distribution in the data space:

po(x|z) = N'(x|} (2), f5 (2))- (3.13)

In principle, given a computable and differentiable w.r.t. model’s parameters formula
for p(x), one could use gradient descent to optimize it. However, due to the neural net
computing fy, the integral in Eq. (3.12) does not have a closed form and is intractable. A
natural way to solve this issue would be to approximate p(x) using Monte Carlo estimation;
sample large number of z values from prior p(z) and compute p(x) =~ %Zle p(x|z;), where
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k is a number of samples and z; indicates a particular sample. A problem with this is that
with a standard normal multi-dimensional Gaussian p(z) and higher-dimensional data space,
most of the samples z; would produce p(x|z;) which is very close to zero, hence the accurate
approximation would require very large number of samples. This problem can be mitigated
with weighted sampling, i.e. first identifying the region of latent space which is most likely to
produce a given x and sample zs from there. In VAEs, this posterior distribution of z given x
is computed by an inference network g4, referred to as an encoder. A usual choice for the form
which this approximate posterior takes is a Gaussian distribution, this time parameterized
with the means and covariance matrices outputted by the encoder:

q(z[x) = N(2|g} (%), g (x))- (3.14)
The approximated posterior can then be used to re-weight the objective integral [85]:
p(z)
q0(2[x)
As typical in probabilistic models, in VAEs we are interested in computing log-probability

of the evidence (Inp(x)). By combining weighted sampling from Eq. (3.15) with Jensen
inequality, we can derive the variational lower bound of the evidence:

o) = 10 ([ ao(alx)palxla) L2 dz) (3.16)

po(x) = /pe(X!Z)pe(Z)dz = /%(ZIX)W(X\Z) (3.15)

z qy(2]x)
p(z)
> /Z%(ZIX) In (pe(xlz)%(zlx))dz (3.17)
= Eq, (21x) [In o (x[2)] — Dic1.(44(x|2)][p(2)), (3.18)

where Dgr,(qes(x|2)|[p(2)) is the Kullback-Leibler divergence [87, 80| between learned posterior
(¢4(x|z) and prior p(z). This yields the final maximization objective of VAE, referred to as
evidence lower bound (ELBO), expressed in terms of encoder’s and decoder’s parameters:

L5579 = By, o) (0 po(x|2)] — Dicr(as(x|2)|[p(2)), (3.19)

where, in practice, Ey, (4)x) is computed by sampling from the learned posterior g4 (z|x). This
form of ELBO explains the auto-encoder interpretation of VAE model; learning ¢4(z|x) corre-
sponds to encoding known x into latent representation z via the encoder, while learning py(x|z)
corresponds to reconstructing x from z via the decoder. Hence, the first term in Eq. (3.19)
can be seen as a reconstruction error, while the second as the regularization term [86]. Given
Gaussian distributions as parametric forms of both g4(x|z) and p(z), the Dk, term can be
computed analytically.

While ELBO from Eq. (3.19) is tractable and can be computed in practice, it does require
sampling from the learned posterior, which makes the ELBO non-differentiable and hence
unsuitable for the gradient descent optimization. This obstacle can be bypassed using the so
called reparametrization trick, where randomness is injected as an additional input indepen-
dent from model’s parameters [88]. Specifically, for a given datapoint, a random sample €
from standard Gaussian is drawn, and then transformed into posterior g4(z|x) using means
and covariances outputted by the decoder:

z=g,(x) +9;(x) O¢ (3.20)

where z is denotes a single sample from a distribution, ® denotes an element-wise product,
and € ~ N(0,1). Since sampling is now formulated in terms of addition and multiplication
w.r.t. to model’s parameters, gradient can flow through a hidden layer.
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3.5. Computational drug sensitivity prediction

As stated above, the amount of clinical data available for DSP models in cancer is insuf-
ficient, mainly due to the infeasibility of testing multiple compounds on cancer patients.
Therefore, most of the databases for DSP concern pre-clinical models, such as cell lines, tu-
mor organoids [89], and patient-derived xenographs in mice [90]. The important advantage of
the latter two is that they also mimick the tumor microenvironment, which is not a feature of
cell lines. Another potential drawback of cell lines is that they may diverge from the original
tumor [91]. However, cancer cell lines are still a vital tool in cancer research in general, and
are particularly suitable for development of DSP models due to the relatively high availabil-
ity of large and systematic databases [64, 18]. The common feature of such existing public
resources is that they contain panels of responses of cell lines across multiple approved drugs
and other compounds along with molecular features which can be used to describe the cell
lines. However, particular databases may differ from each other in terms of the number of
screened drugs and cell lines, available omics data, drug annotations, and dose-response curve
summary metrics. An overview of existing pharmacogenomic databases and their depiction
in terms of factors listed above can be found in [59]. Notably, there are also databases and
models concerning the responses for combination therapy, i.e. combination of two or more
compounds. However, this thesis is devoted to the prediction of sensitivity to monotherapy,
i.e. a single compound.

In principle, the development of ML models for DSP does not significantly differ from the
standard ML development [62], in that it consists of essentially the same steps: data extrac-
tion, data splitting and preprocessing, model selection, and model evaluation. Nonetheless,
when developing such models, there are several concerns and choices to make which are spe-
cific to computational DSP. Some of these concerns are closely related to challenges listed in
Chapter 1. The differences in existing approaches to DSP can be depicted in terms of several
major aspects.

One of such major aspects is the overall modeling framework, namely per-drug or multi-
task, or multi-drug approach. In the former, a separate, independent ML model is built for
every compound, while in the latter, a single model able to predict responses to multiple
drugs is developed. Notably, these two settings significantly differ in terms of the form of the
data, data preprocessing and model evaluation. In the per-drug setting, a single datapoint
corresponds to a cell line, while in a multi-task framework a single datapoint is a drug-cell
line pair, therefore theoretically in the latter approach there is more data available, however,
with repeating drugs and cell lines. This has consequences in the choice of ML algrithms; in
the per-drug approach common, traditional ML models such as linear regression, K-nearest
neighbors, SVMs are used, while multi-task framework utilizes more complex, customizable
models, in particular neural networks [13, 59|. Multi-task models have become increasingly
popular in recent years, replacing pre-existing per-drug approaches. Still, new variants of
models in the latter framework continue being developed and reported as successful [59].

Another important factor in terms of which DSP models are distinguished is the choice
of input data. In terms of omics data used to describe the cell lines, gene expression is
the most ubiquitous one, especially when a model uses single cell lines’ modality, or data
type [62, 70, 59]. Adding additional data types such as point mutations or CNVs can improve
predictive performance for some target-specific drugs. On the other hand, it adds more initial
features and therefore make feature selection harder. The second essential part of the data
aspect is whether or not a given approach utilizes drug information, and if so, what is the
form of this information. Again, incorporation of drug features into DSP modeling has become
more popular in recent years [59].
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Besides two major differences described above, there are several, less significant factors
differentiating between DSP models. One of them is the form of the target variable, i.e. the
drug sensitivity metric. In the pharmacogenomic databases, it comes in a continuous form,
naturally posing a regression problem, although it can be discretisized (e.g. as sensitive vs.
non-sensitive) [92], turning the task into a classification problem. While this approach has
some advantages, it also loses some information about the sensitivity profiles and is volatile
w.r.t. discretization procedure. Therefore, all of the works depicted in this thesis concern
DSP in a form of regression problem. Another factor is a model interpretability approach.
This is largely influenced by the model itself; some standard ML algorithms, such as linear
regression and K-nearest neighbors have some properties which make them more interpretable,
while others, e.g. SVMs, are not as straightforward to analyze. While neural networks have
the opinion of not being easily interpretable, because of their flexibility they also allow for
customizable, tailored approaches to interpretability.

From a strictly technical perspective of ML algorithms used, DSP has been approached by
a whole variety of methods coming from many different ML subfields, including common, well-
established ML algorithms, ensemble methods, network-based methods, deep neural networks,
recommender systems and more. As mentioned above, the choice of the type of algorithm
depends on which challenges associated with DSP one chooses to address. Because of the
abundance of existing methods, it is infeasible to list them all in this section; a more compre-
hensive list and classification of existing methods can be found in [59, 93], while background
sections of subsequent chapters contain context-specific literature overview relevant for the
given project.
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Chapter 4

Per-drug feature selection strategies
for drug sensitivity prediction

4.1. Background

The ability to predict a response of a specific cancer type to a therapy is one of the main goals
of precision medicine. Considering molecular features of cancer cells is crucial for mitigating
heterogeneity and for tailoring the therapy to specific patients [94]. The emergence of large
scale high-throughput screening studies (95, 65, 96, 97, 98] have allowed researchers to develop
computational models for drug sensitivity prediction from molecular profiles of human cancer
cell lines or drug properties [62, 99]. Although the inconsistencies and limitations of cell line
data have been raised and extensively studied [14, 15, 16, 17|, these resources remain a vital
tool for the development of such models.

Arguably, the desired quality of computational models of drug sensitivity is not only their
predictive performance, but also interpretability. To evaluate candidate drug efficacy on a
specific patient’s tumor, many approaches apply black-box algorithms with a set of highly
dimensional features as input. In clinical practice, the capability of extracting such high-
volume data from patient’s material is limited. Thus, there is a growing need of proper
identification of concise, limited subset of features, or biomarkers, that are most informative
of drug sensitivity. Therefore, strong emphasis should be put on feature selection approaches
for drug sensitivity prediction. Despite its paramount importance, no systematic assessment
of feature selection strategies in the task of drug response prediction was so far performed.

The problem of drug response prediction has been approached by a wide spectrum of linear
and non-linear machine learning algorithms, including regularized linear regression, k-nearest
neighbors (KNN), support vector machines and random forests |70, 92, 100, 101, 102, 103|.
Multitask learning was proposed to improve drug sensitivity prediction by pooling information
learned for different drugs [104, 100|. Finally, a number of kernel-based multi-view and multi-
task models were introduced for drug sensitivity [105, 106, 107]. Although these approaches
show very good predictive performance, they suffer from low interpretability. As a remedy,
a multi-task learning approach based on a Bayesian model for collaborative filtering was
proposed [108], which allows for identifying general interactions between features of the drugs
with features of the cell lines. For example, it gives insights in the form of "activation of
pathway Y will confer sensitivity to any drug targeting protein X". This approach, however,
does not directly address the crucial need of identifying biomarkers for specific drugs.

For that aim, data-driven, automatic techniques of feature selection were applied {107, 109,
102]. Generally, the problem of identifying the optimal subset of features is intractable [110].
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Data-driven feature selection thus proceeds either as a heuristic search over the space of fea-
ture combinations, or is embedded directly in the learning algorithm by imposing sparsity
of parameters associated with the features via regularization. Although these methods can
achieve good predictive performance and deal with the curse of high data dimensionality [102],
feature importance estimates and selection might not always be accurate and stable, espe-
cially in vastly high-dimensional data and in the presence of correlation between features [111].
Stability selection was proposed to mitigate this problem when regularized regression is ap-
plied [112], but it still comes without the guarantee to choose the most biologically relevant
predictive features.

Drug prediction approaches largely differ with respect to the type of features that they
model. Among the molecular data feature types which characterize the cancer cell lines,
gene expression was assessed as the most informative, with remaining types such as muta-
tion or copy number data bringing limited predictive power [92, 70|. Accordingly, genome-
wide gene expression is the most common choice in the case of models utilizing single data
type |62, 113, 102, 107, 108]. Other studies reported that in some cases gene expression alone
might not be sufficient, especially in a cancer- or drug-specific setting [114, 115]. Importantly,
expanding the feature space related only to cancer cell lines’ biology with drug-related prop-
erties was shown to improve predictive performance [100, 108, 115, 106, 107|. The predictive
drug-specific features may be related to their chemical properties, such as compound structure
[100, 115], their known primary targets or pathway activation [106, 107]. Recently, multiple
methods based on deep learning have emerged, showing promising results in the application
to drug sensitivity prediction [116]. The published neural network architectures range from
common stacks of fully connected layers [117] to more sophisticated architectures involving
residual and convolutional networks [118, 119, 120]. Furthermore, methods employing au-
toencoders [121, 122] and variational autoencoders [123] have been proposed. Due to their
complicated, non-linear structure, neural networks may suffer from the lack of interpretablity,
including difficulties in assessment of feature importance. However, methods from the growing
field of explainable artificial intelligence can help to mitigate this problem [124].

Here, we utilize the knowledge regarding drug targets and their mode of action to select
plausible features describing the cancer cell lines. This drug-related prior knowledge is thus
used to directly limit the initial feature space, rather than first expanding it and next using
data-driven selection techniques to narrow it down. We argue that this approach for fea-
ture selection in combination with common regression techniques can provide a simple and
highly interpretable model without losing the predictive performance characteristic for models
starting from high-dimensional data. In fact, the direct utilization of prior knowledge is the
number one strategy recommended for feature selection according to the classics in machine
learning [110]. It was however, never exploited in the task of drug response prediction. We
assess this methodology in a systematic fashion for a broad spectrum of anti-cancer com-
pounds, integrating multiple data types and comparing the results to the baseline models
utilizing genome-wide gene expression data and data-driven feature selection techniques. On
top of that, we evaluate gene expression signatures as the means of dimensionality reduction
of the transcriptomics data and evaluate their predictive power in this context. This com-
prehensive analysis pin-points a set of drugs for which easily interpretable, informative, small
sets of features can be identified.
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4.2. Methods

Analyzed dataset

The analyzed dataset was acquired from the Genomics of Drug Sensitivity in Cancer (GDSC) [65]
database. A total of 251 compounds were included in the analysis. Each was assigned one of
24 classes of target pathways, defined by the GDSC.

The total set of samples consisted of 983 cancer cell lines originated from 13 tissue sites.
The available data types for describing the cell lines included: gene expression (17737 fea-
tures), coding variants (310 features), copy number variants (CNV, 425 features) and tissue
type (13 features). Coding variants and copy number variants were represented as binary calls
determining the presence or absence of a variant in a given gene or segment, respectively. We
have dummy encoded the tissue types resulting in 13 distinct binary features for every cell
line. All biological input data were acquired directly from the GDSC resource.

GDSC provides two types of metrics representing the drug efficacy: half maximal in-
hibitory concentration (ICsp) and area under the dose-response curve (AUC). Since in our
analysis we did not observe significant differences in predictive performance when using one
metric in favor of the other, we picked AUC as our single target variable.

Predictive algorithms

We employed two common machine learning algorithms in order to predict the AUC values:
elastic net linear regression and random forest regression. We implemented both methods
using Python3 scikit-learn 0.19.2 library [125]. See Supplementary Methods for descriptions
of the algorithms and implementation details.

Feature selection

With a total of 18485 biological features that can be used to describe the cancer cell lines, the
analyzed dataset is very high-dimensional. In contrast, the number of samples is in the order
of hundreds, which poses the danger of overfitting. This might especially be the case when
considering all available genome-wide information regardless of the drug being modeled. Here,
we investigate different feature selection methods to mitigate this problem. These approaches
can be divided into two groups: biologically driven and automatic, data-driven selection
methods.

Biologically driven feature selection

Features based only on drug targets and tissue type, shortly only targets (OT).
In the most restricted feature space, we included only predictors corresponding to the direct
targets of the drugs, as well as tissue type. Drug targets information was derived directly
from GDSC. As an additional resource, we used DrugBank [71] database, assigning targets
for 88 matched compounds. For each drug target, we included features representing the target
gene’s expression, coding variant and copy number variation. In the case of copy number data,
a given genetic feature was incorporated if the corresponding segment included at least one
of the drug target genes. We only considered drugs with explicit gene targets annotation
in GDSC or DrugBank and for which at least one feature in addition to the tissue type was
available in the data. These conditions were met for 184 compounds. Applying two regression
algorithms for each drug resulted in 368 separate models.
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Set of features based on drug targets, tissue type, and target pathways, shortly
pathway genes (PG). In this approach, we included features related to genes that be-
longed to the same signaling pathway as the set of target genes. Pathways information was
derived from Reactome [126, 127| database (version 66 accessed on October 2018). For each
compound, first its target set was derived, followed by finding all pathways which included
at least one of the given targets. The total set of considered genes was then computed as the
union of all members of the found pathways. Lastly, corresponding gene expressions, coding
variants, copy number variants and tissue types were extracted to create the final feature set.
The drug targets and pathway information was available for 186 drugs, producing 372 models.

Sets of features resulting from addition of gene expression signatures, shortly OT
+ S or PG + S. Gene expression signatures can explain the activation level of complex
biological phenomena in the investigated cell lines. Here, we refer to a gene signature as a set
of genes related to a certain known biological phenomenon that can be deduced from cancer
gene expression data. For each signature S with ¢ genes, we calculated two scores. The first
characterizes the coherent expression and the second estimates the activation level of S. Given
a gene expression matrix for S in n samples (X**™), the previously described coherence score
(CS) [128], is calculated as the mean pairwise Pearson correlation between all columns of X.
Therefore, a strong negative or positive correlation between all genes in S is indicated by CS
values close to —1 and 1, respectively. The activity of S (i.e. the signature score) for each
sample is calculated by first z-scoring the gene expression values across samples, followed by
averaging the resulting z-scores across genes. Here, we calculated the signature scores using
the cancer cell line expression data provided by GDSC. We set the threshold for a significantly
coherent activation of S to CS(S) > 0.1, resulting in 128 signature features. The OT + S
set contains features based on target genes, signature scores and tissue type. The PG + S
set contains target genes, pathway genes, signature scores and tissue type. Applying two
regression algorithms for each drug resulted in 740 separate models.

Set of features based on genome-wide gene expression, shortly genome-wide (GW).
Finally, we constructed a feature set based exclusively on the expression of 17737 genes as
features. We evaluated this feature set for 251 drugs in total, resulting in 502 different models.

Data-driven feature selection, shortly GW SEL.

In addition to feature pre-selection based on drug properties and biological relevance, we also
evaluated automated feature selection algorithms in application to genome-wide expression
data. We used two techniques, based on linear and non-linear methods. First, stability se-
lection, which uses lasso regression on multiple bootstrap samples in order to choose robust
features [112]. Such selected features were next passed as input for elastic net models (fur-
ther referred to as GW SEL EN). For the second technique, feature importance estimates
derived directly from random forest were used. These features were then used for random
forest regression models (GW SEL RF). For more detailed description of both techniques, see
Supplementary Methods.

Model evaluation

During cross-validation tuning, we used Mean Squared Error (MSE) as a scoring metric for
best hyperparameters search. Although MSE is suitable for evaluation of different models
within one compound, it is not reliable when comparing results across diverse drugs because
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of differences in corresponding AUC distributions. Furthermore, when a given target variable
distribution has little variation, one can achieve a reasonably low MSE just by predicting
the mean of a target variable. In order to avoid this problem and identify the models which
performed well, we used Relative Root Mean Squared Error (RelRMSE), which is normalized
in such a way that the score of 1 corresponds to a dummy model which always predicts the
mean of target variable in the training data. RelRMSE is defined as the fraction of the dummy
model’s RMSE on the test data and the analyzed model’s RMSE on the test data:

RMSE gummy

RelRMSE =
¢ RMSEmodel ’

(4.1)
i.e. better performance corresponds to bigger RelRMSE metric, with a baseline score of 1.

The use of RelRMSE allowed us to distinguish drugs for which predictive algorithms could
not outperform the dummy model, meaning that for those compounds no actual learning
occurred.

In order to make further assessments and comparisons between compounds, we used Pear-
son correlation coefficient with the response AUC in the test set as a performance metric.
As stated in a previous section, the recorded results for each method were averaged over five
modeling procedures that were performed with different data splits.

4.3. Results

Modeling workflow

In order to comprehensively evaluate different feature selection strategies, we devised the
following workflow (Fig. 4.1). We first extracted the sensitivity data for each particular drug
and corresponding screened cell lines along with their biological features: gene expression,
coding variants, copy number variation (CNV) and tissue type (see Methods for the details
of the analyzed dataset). We then employed each of the feature selection approaches, which
can be divided into two categories: biologically driven and automatic, data-driven selection
methods. We considered different biologically driven feature selection strategies, depending
on the type of prior knowledge used to define them. In the first approach, we narrowed the
initial feature set by including only the features corresponding to drug’s direct gene targets
(shortly only targets, OT feature set). In the second, we considered the union of the direct
target genes and the drug’s target pathway genes (pathway genes, PG feature set). Finally,
we additionally extended the only targets features and the pathway genes features with gene
expression signatures, resulting in two more feature sets (OT + S and PG + S). For a baseline
model we considered all available, 17737 gene expression features, referred to as the genome-
wide model (GW). For data-driven feature selection we applied two techniques to the baseline
gene expression feature set: stability selection (GW SEL EN) and random forest feature
importance estimation (GW SEL RF). See Methods for more detailed description of the
feature selection approaches. After the feature selection step, we fed the resulting data into
elastic net (EN) or random forest (RF) algorithms and evaluated the predictive performance
on the test set (Fig. 4.1). This modeling process was performed independently for each drug.

Models with genome-wide features have larger feature sets and more sam-
ples than the models with biologically-driven features.
The median numbers of input features are 3 and 387 for only targets and pathway genes

feature sets, respectively (Fig. 4.2a). The input features are further expanded by including
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Figure 4.1: Flowchart describing the modeling framework for a single compound. Abbrevi-
ations: GW — genome-wide, PG — pathway genes, OT — only targets, EN — elastic net, RF — random
forest, SEL — automated feature selection, S — gene expression signatures. For every feature space, we
performed modeling separately for each drug. We randomly split the corresponding data into training
and test set, with 0.3 of the data included in the test set. We used 3-fold cross-validation on the
training data for hyperparameter tuning and evaluated the best model on the test set. The whole
modeling process was repeated five times with different training/test set data splits.

128 gene expression signatures. In the case of methods based on automated feature selection,
the optimal number of features, k, is shown. The median k values are 70 and 1155 for
random forests and for stability selection, respectively. All foregoing values constitute a
drastic decrease in comparison to the number of 17737 genome-wide input features.

The number of samples for each drug also slightly differs for only targets and pathway
genes feature sets, since for some cell lines the coding variants or CNV information are not
available (Fig. 4.2b). This results in a lower number of samples for models with biologically
driven features, with the median of 849 for only targets and 818 for pathway genes feature
sets, compared to 876 for genome-wide expression features.

Drug response distributions are different across compounds, tend to have
low variance for drugs targeting specific genes and pathways and high vari-
ance for drugs targeting general cellular mechanisms.

The area under the dose-response curve (AUC; Methods) measures the overall drug efficacy,
with lower values corresponding to stronger efficacy. The distribution of this metric varies
significantly among compounds with different target pathways (Fig. 4.2c). The median AUC
value per target pathway ranges from 0.98 for hormone-related drugs to 0.73 for compounds
targeting metabolism pathways. The smallest variation of AUC is observed for drugs target-
ing the hormone-related pathways. The largest AUC variation is observed for the apoptosis
regulation pathway. The AUC for drugs targeting general mechanisms, such as DNA replica-
tion or metabolism, tends to have larger variance, which means their sensitivity is easier to
model.
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Figure 4.2: Models’ properties and response variable grouped by target pathways. (a)
Number of input features across compounds in different methods. For genome-wide models, number
of features was 17737 for each drug. Vertical axis uses log scale. (b) Number of samples across
compounds in different methods. Abbreviation SS refers to stability selection (Methods). (c) AUC
values grouped by target pathway of the drug, raw data from GDSC. Target pathways are sorted by
interquartile range of the AUC values. Pathways corresponding to more general cell mechanisms are
marked with red dots. See Fig. 4.1 for abbreviations.
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Figure 4.3: Predictive performance for all of the analyzed drugs. (a) 1 - RMSE versus
correlation per drug, obtained by elastic net using genome-wide gene expression data as predictors. For
1-RMSE, higher values correspond to better performance. (b) Correlation versus standard deviation
of true AUC for all cell lines screened for a given drug, correlation obtained by genome-wide elastic
net. (c) RelRMSE versus correlation obtained by the best model for a given drug. Higher values of
RelRMSE correspond to better performance and improvement over a dummy model, which predicts
average AUC. Each point represents a single drug. For each of them, corresponding best performance
was determined using correlation as a metric. Colors represent models with feature set that obtained
the best performance for a given drug. Horizontal line at 1 represents the baseline RelRMSE score.
Most of these correlations are statistically significant (test based on Student’s t-distribution at 0.05
significance level, Fig. Al). (d) Distribution of per-drug predictive performance grouped by per-
drug number of available samples. Colors represent models with feature set that obtained the best
performance for a given drug. See Fig. 4.1 for model abbreviations.

The per-drug results show the importance of comparing to a dummy model
and that different feature selection strategies are best suited for different
drugs.

Since root mean squared error (RMSE) measures the level of model error, and correlation mea-
sures the model agreement with the test set, both large (1-RMSE) and high correlation should
coherently indicate a high model performance. The negative relation between (1 - RMSE)
quantity and correlation, however, confirms the fact that raw RMSE is not a good metric
for performance comparison between compounds (Fig. 4.3a; Methods). Instead, correlation
achieved by the model increases with the modeled AUC variance (Fig. 4.3b).

Both these facts support that relative root mean squared error (RelRMSE; ratio of the
RMSE obtained by a dummy model to the RMSE obtained by the analyzed model; see
Methods) is a better performance measure than raw RMSE (Fig. 4.3c). Indeed, RelRMSE
grows with the correlation. Importantly, for some drugs, the best performing models fail to
achieve the baseline ReIRMSE score of 1 or are very close to 1 (Fig. 4.3c). Further inspection
of these models reveals that they can capture only the mean AUC, since the modeled AUC
distribution does not have enough variation. In total, there were 19 of such compounds and
these were excluded from further analysis.

It is apparent from Fig. 4.3c, that for most of the drugs, the best suited method is modeling
using genome-wide features and elastic net. However, this is not the case for compounds with
the top corresponding modeling performances, as the two best correlation scores are achieved
by models with biologically driven feature space. These two compounds are Dabrafenib and
Linifanib, both with correlation of 0.75, for models with feature spaces: only targets genes
with gene expression signatures and only targets genes, respectively. In terms of performance,
they are followed by Trametinib (correlation 0.71) and Alectinib (correlation 0.70), both scores
being achieved by genome-wide methods. In general, as we consider more top performances,
the frequency of genome-wide methods among them increases, although they are not as highly
represented when looking at the small group of absolute best scores.
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Figure 4.4: Frequencies of all applied methods among best models per drug. (a) Correlation
of AUC predictions with the true AUC values in the test set across compounds in methods with
different feature spaces. Results are shown for 175 drugs which were common across all applied
models. (b) Model frequencies for compounds for which all methods were applied. (c) Differences in
correlation between best model per drug overall and best model from the other class. Two cases are
shown — genome-wide and biologically driven feature sets. (d) Model frequencies among best models
for compounds where models with biologically driven could not have been applied. See Fig. 4.1 for
abbreviations.

The considered set of drugs is diversified in terms of available data (Fig. 4.3d). The bigger
number of samples leads to better predictive performance, as more training data mitigates the
overfitting effect, especially in high-dimensional setting. However, there is a significant spread
in performance among drugs with similar number of samples, implicating that available data
is not a single factor explaining the differences in performance.

The difference in predictive performance of biologically driven versus genome-
wide models is small, despite using significantly less input features.

In general, genome-wide feature set combined with elastic net (GW EN) emerges as the best
model with the median correlation of 0.39 (Fig. 4.4a). However, models with biologically
driven feature spaces perform very similarly, (excluding only targets (OT) approaches), with
the best median correlation of 0.37 produced by models employing target pathway genes
features combined with gene expression signatures and elastic net (PG + S EN). Furthermore,
the difference in median performance was negligible between genome-wide random forest (GW
RF, with 17737 features) and genome-wide random forest with automated selection (GW
SEL RF, with 70 features on average). This suggests that for many compounds, most gene
expression features do not have significant power in predicting drug response. The spread in
performance (defined as the difference between the maximum and the minimum value) reaches
over 0.6 for all of the methods, suggesting that each drug should be approached individually
in terms of modeling.
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The standard, genome-wide model achieves the best performance for over half of considered
drugs (Fig. 4.4b). However, for many of these cases the correlation difference between the best
genome-wide model and the best model with biologically driven features is not significantly
large, with the median of only 0.034 (Fig. 4.4c). The reverse is also true, with median
correlation difference between the best biologically driven model and the worse genome-wide
model 0.028. Despite a drastic reduction in feature space, the biologically driven models
based either on only targets or pathways yield the best modeling performance for 23 drugs,
outperforming all other models including the genome-wide approach. For further 60 drugs,
the best models have feature space expanded with expression signatures. Noticeably, there
are also 15 cases where data-driven feature selection helps to produce better performance with
much smaller subset of the original feature set (Fig 4.4b, d).

Predictive performance using different feature selection strategies depends
on drugs’ target pathways.

Next, we investigate the general tendencies concerning which feature selection is particularly
better suited for modeling drugs targeting specific pathways. To this end, we compare the
overall performance of biologically driven feature selection as one group to the baseline of
genome-wide features and the genome-wide features with automatic selection as another (Fig.
4.5a), for different target pathways. Genome-wide models achieve better performance in 15
out of 24 pathways in total, however, the difference is statistically significant in only four of
them (at 0.05 significance level): DNA replication, metabolism, apoptosis regulation pathways
and a group of pathways referred to as "other". This indicates that these models capture a
broad mechanism of action of the corresponding drugs. Conversely, the target pathways for
which the models with biologically driven features most notably outperform models with
genome-wide features include ABL, IGFR and EGFR signaling pathways, although these
results are not statistically significant due to small sample sizes. The models with biologically-
driven features perform also better for the hormone-related pathway, but overall the modeling
performance is bad in this case and we do not consider this result reliable. In summary,
compounds with specific signaling target pathways seem to benefit more from the initially
restricted feature space. Notably, the median number of available sample sizes for drugs
targeting specific pathways is similar between the pathways (Fig. A2a) and does not affect
the modeling performance (Fig. A2b). Although the number of drugs per target pathway
does differ between the pathways, these differences should not affect the comparison outcome
as the comparisons of model performance are made within a given pathway.

We next inspect in detail the results for distinct drugs coming from DNA replication and
RTK signaling pathways, respectively (Fig. 4.5b and c¢). Among the drugs targeting the DNA
replication pathway, Bleomycin, Methotrexate and SN-38 exhibit good modeling ability with
the genome-wide features. However, in case of Methotrexate similar performance is achieved
also by methods with biologically driven feature space, contrary to SN-38. Conversely to DNA
replication pathway, among the drugs targeting the RTK signaling pathway the best result is
more often produced by biologically driven features, with most noticeable cases of Linifanib
and Quizartinib. In contrast, Alectinib exhibits good modeling performance exclusively with
genome-wide approaches. In general, although the above described general tendencies apply,
information about drug’s target pathway alone seems to be insufficient to clearly tell which
feature space is the most suitable for predicting its response, with the potential exception of
the DNA replication pathway.
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Figure 4.5: Predictive performance in relation to compounds’ target pathway. (a) Corre-
lation with the test set grouped by pathways. Methods were classified into two groups — one that
uses genome-wide feature space, and one with biologically driven feature space. Numbers displayed
represent p-values for the one-sided Mann-Whitney-Wilcoxon test. Lack of number means no statisti-
cal significance at 0.05 significance level. (b) Predictive performance for drugs with DNA replication
target pathway. (c) Predictive performance for drugs with RTK signaling pathway. See Fig. 4.1 for
model abbreviations.
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Figure 4.6: Frequencies of considered feature types among top k£ most predictive features.
Feature importance coefficients were extracted from top 50 drugs in terms of modeling performance
using methods with biologically driven feature space.

Gene expression and mutations constitute the most predictive feature types.

In order to assess, which feature types are most informative of drug response, we consider such
models with biologically driven feature space, which use all five available data types (Fig. 4.6).
To make results more robust, we consider only top 50 drugs in terms of corresponding modeling
performance achieved by the biologically driven feature sets, resulting in worst considered
model’s correlation of 0.47. Next, we extract top k& most predictive features in each model
and record the frequencies of particular data classes among them. Results confirm the fact
that gene expression is the most predictive feature type, although mutation (coding variant)
and tissue type are also important, especially for drugs designed to target specific cancer
type with a particular mutation. In contrast, copy number variants seem not to incorporate
much useful information. The relative effect of gene expression data increases with number of
considered most predictive features, but this is expected given that this category is the most
frequent of all available data types overall. Finally, the high frequency of gene expression
signatures among the top predictive features implies that the signatures can act as good
representatives of genome-wide information.

Feature selection enables interpretation of the mode of action and pin-
pointing biomarkers for the best modeled drugs.

We further focus the analysis on ten drugs of most interest (Fig. 4.7), based on two simple cri-
teria: top modeling performance achieved by all of the feature selection methods, or distinctly
better performance achieved by one of the methods’ class (genome-wide or biologically driven)
in comparison to another. In five of those compounds the best result is produced by mod-
els with the genome-wide features, whereas another five are better modeled with biologically
driven features.

From all analyzed drugs, Dabrafenib emerges as the compound which is the easiest to
model. The highest correlation of 0.75 is achieved by the model combining only targets
features with gene expression signatures and random forest (OT + S RF), and performance
of other approaches is only slightly worse (Fig. 4.7). This good modeling ability with the OT -+
S RF features could be explained by two factors. First, the AUC distribution corresponding to
Dabrafenib is well-diversified, with relatively many cell lines sensitive to treatment (Fig. 4.8a),
which leads to better modeling performance (compare Fig. 4.3b). Second, the relative effects
of the selected features are in excellent concordance with the Dabrafenib’s pharmaceutical
properties. The most predictive feature — mutation in BRAF oncogene (Fig. 4.8a) — and
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Figure 4.7: Results for specific compounds exhibiting good ability to model with one or all
of the methods. Displayed numbers represent number of features which was used by best performing
model for a particular drug. Top horizontal axis show compounds’ target pathways along with model
which achieved the best modeling result. See Fig. 4.1 for model abbreviations.

the second most predictive feature — the BRAF gene expression signature — well agree with
the design of Dabrafenib as the BRAF inhibitor. Interestingly, the feature corresponding
to BRAF gene expression alone ranks lower, 28 among 136 features for the best OT + S
RF model and as low as 15817 among 17737 features for the GW EN model in terms of
predictive power. Finally, in concordance with Dabrafenib’s intended use in treatment of
BRAF mutation-positive melanomas and lung cancers [129, 130], the skin tissue feature is the
third most predictive one for the best OT + S RF model.

In the case of Linifanib, the best result (0.75 correlation) is accomplished by using only 7
features related to the drug’s targets (only targets and random forest, OT RF model), which
significantly outperforms the genome-wide models (Fig. 4.7). Linifanib is an inhibitor of
FMS-like tyrosine kinase 3 (FLT3) and vascular endothelial growth factor receptor (VEGF)
tyrosine kinases involved in clinical trials concerning non-small cell lung cancer (NSCLC),
breast, liver, and colorectal cancer as well as leukemia [131, 132, 133]. Contrary to the
Dabrafenib’s example, Linifanib is one of the rare examples where good modeling results are
achievable despite low standard deviation of the AUC distribution (Fig. 4.8b). The high
correlation achieved by the OT RF model mainly comes from its ability to accurately predict
lowered AUC for three outlying, sensitive cell lines. The most decisive predictive feature in
this model is the expression of FLT3 gene, which exhibits high over expression in these cell
lines, with much higher mean 11.53 expression than the mean 3.30 for all cell lines in the
training set. The expression of FLT3 ranks lower (11th) among features of the genome-wide
model.

Similarly to Linifanib, Quizartinib is also characterized by low variation in the treatment
response (Fig. 4.8¢), and is also an FLT3 inhibitor. Quizartinib is tested in clinical trials for
acute myeloid leukemia (AML) [134]. The best biologically-driven model (pathway genes and
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Figure 4.8: Predicted versus actual AUC values and most predictive features for (a)
Dabrafenib, (b) Linifanib and (c¢) Quizartinib. Top panels show predicted versus actual AUC
values when both biologically driven and genome-wide models were trained and tested on the same
sets of samples. The biologically driven models correspond to best suited feature set for each drug:
OT + S RF for Dabrafenib, OT RF for Linifanib and PG RF for Quizartinib. Middle and bottom
panels present top 5 most informative features when fitting the model with genome-wide data (middle)
and biologically driven feature space (bottom).
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random forest, PG RF) uses features related to genes present in drug’s target pathway (218
features), and the most important feature is expression of FLT3. The accurate prediction
done by PG RF model for the single outlying, responsive sample (Fig. 4.8c) probably arises
from the over-expression of FLT3 in that cell line (11.20 value for that feature in this sample
versus the mean of 3.26 for all training samples). Although expression of FLT3 also appears as
the fourth most important feature in the genome-wide model, it is unable to correctly predict
AUC for the responsive cell line, since the relative impact of FLT3 is much smaller. Overall,
these three examples well show that feature selection can facilitate derivation of interpretable
insights.

4.4. Discussion

This work, constituting the first project of the thesis, is, to our knowledge, the first com-
prehensive analysis of feature selection strategies for drug sensitivity prediction. Previous
systematic assessments [92, 70| compared different modeling techniques and data types de-
scribing the cell lines, but did not comprehensively evaluate feature selection approaches.
Similarly, although numerous modeling methods were developed specifically for the task of
drug sensitivity prediction [62, 99|, they were solely optimized for predictive power and not
interpretability. If feature selection was applied at all, it was not driven by pre-existing bi-
ological knowledge, but performed using standard and often not robust selection techniques
such as regularization [107].

Such comprehensive feature selection assessment is needed for several reasons. First of all,
both feature selection driven by pre-existing biological knowledge and data driven selection
have their advantages and disadvantages. Intuitively, selecting the features using a priori
knowledge of the drug mode of action as a guideline should improve modeling. On the other
hand, it is also restricting the available information for the model, and if the prior knowledge
is wrong, may result in missing important dependencies. Given the vast number of features
compared to the number of samples, the models with genome-wide data as features or ones
with automated feature selection are badly ill-posed and prone to over-fitting. On the other
hand, they are given the advantage of a larger number of samples (resulting in higher power)
and access to more information, compared to the models with biologically driven features
(Fig. 4.2). Second, as there is no obvious recipe for choosing the feature set for a particular
drug, the in-depth comparative analysis of different feature selection strategies may suggest
indications for the recommended type of features for drugs depending on their mode of action
or knowledge of their target pathway. Finally, if the best performing feature set is small, each
particular feature can be inspected and further evaluated as a potential biomarker for the
drug.

Here, different feature selection strategies driven by prior knowledge were compared to
using genome-wide feature sets and the data-driven, automatic feature selection techniques
across all analyzed drugs. We identified the best suited feature set for each drug and inves-
tigated them in the context of drugs’ target pathways. Finally, we evaluated the predictive
power of different features types and inspected example drug-specific models in more detail.
The entire assessment workflow aimed at the identification of such strategies that could de-
liver highly predictive, but also highly interpretable models, bringing insights about specific
drugs that are informative for their application in precision medicine.

Both Jang et al. [92] and the DREAM challenge [70]| assessments indicated that adding
the features representing mutation and copy number status on top of genome-wide expression
features did not improve the overall performance of modeling drug sensitivity [92, 70]. This
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is likely due to the fact that gene expression is sometimes already reflecting genomic changes
or tissue type. In contrast, our analysis shows that additional features corresponding to
mutations are often significant predictors when they are evaluated as part of smaller feature
set and are not vastly outnumbered by the gene expression features (for example, in the cases
of Dabrafenib, PLX-4720, Nutlin-3a, SB590885 and Pelitinib).

Our results bring important conclusions about feature selection strategies for drug sensi-
tivity prediction. In general, the baseline genome-wide set of features or data-driven feature
selection yields higher median predictive performance than biologically driven features. There
are, however, multiple individual drugs, for which the feature selection driven by biological
knowledge gives the best results, including models for the drugs with the top two performance
scores. Moreover, feature selection driven by prior knowledge drastically reduces the number
of features. At the same time, if the drop of performance in comparison with genome-wide
models occurs, it is often only slight.

In addition, the presented analysis illuminates the mechanisms behind the sensitivity of
different cancer cell lines to different types of drugs, suggesting which types of features should
be used to model different classes of drugs. Drugs that are generally toxic or target general
cellular mechanisms such as DNA replication or metabolism affect a relatively large proportion
of cancer cell lines and thus have a wide response distribution. These compounds tend to be
better modeled using genome-wide features, indicating that their effect on the cancer cells
depends on a large spectrum of different cellular features. Conversely, for drugs targeting
specific pathways, sensitivity distribution tends to be narrow, with most cells not responding
at all and only a few interesting outliers of sensitive cells. For these compounds, high-level drug
properties such as direct targets or target pathways allow to build highly predictive models
with small numbers of interpretable features, such as Dabrafenib, Linifanib or Quizartinib.
In particular, highly predictive models with an extremely low number of input features can
be obtained, as in the cases of Linifanib, Afatinib, and GNF-2. Overall, this analysis shows
the importance of using adequate feature selection strategies for each individual drug.

Overall, this work can be seen as a good entry point into a problem of drug sensitivity
prediction, while providing guidelines regarding feature selection helpful for further research
in this field.
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Chapter 5

Interpretable deep recommender
system model for prediction of kinase
inhibitor efficacy across cancer cell
lines

5.1. Background

Matching the optimal drugs for individual cancer patients remains a crucial problem of pre-
cision medicine [135]. Drug sensitivity data from cancer models are frequently generated to
provide the basis for the discovery of molecular markers to predict drug efficacy. To predict
the response of a specific cell line to a specific drug, there is a need of computational models
that can leverage the abundance of information about drugs and cancer cell lines.

Kinase inhibitors are a class of anticancer drugs that target specific mutated kinases
and disregulated biological processes in tumor cells [55]. As such, they constitute flagship
examples of personalized cancer treatments [54, 57]. The set of kinase inhibitors is deeply in-
vestigated experimentally. First, they are commonly characterized by their inhibition profiles,
measuring their strength of inhibition of a vector of kinases [136, 137|. Second, large-scale
experiments were performed, measuring the sensitivity of cancer cell lines to these and other
cancer compounds [138, 95, 139]. Third, the molecular features of the cancer cell lines, such
as gene mutations and gene expression were measured [138, 95, 140]. Despite their limi-
tations [14, 15, 141, 17], cancer cell lines commonly act as laboratory proxies for patients’
tumors and it is known that their molecular features are key determinants of their response
to anticancer drugs [95, 16]. Arguably, the kinase inhibitor drugs are best characterized by
their kinase inhibition profiles, which, apart from the intended on-targets, manifest also off-
target effects. Despite their frequent use during the early phases of drug development, when
inhibitory profiles of kinase inhibitors are optimized, to our knowledge such data has not been
used for modelling of drug response.

Computational drug sensitivity prediction has been approached by many machine learn-
ing methodologies [62, 70, 142|, ranging from traditional algorithms [92, 102, 103, 113] to
models based on neural networks and deep learning [116, 122, 121, 118, 143, 119]. Re-
cently, the problem has also been addressed using generative modeling, including variational
autoencoders [123, 144, 145|, as well as using the reinforcement learning framework [146].

The problem of drug sensitivity prediction can be stated as a recommendation problem,
where cancer cell lines and drugs are analogous to users and items, respectively. The goal
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is to recommend the best drug for a given cell line. One of the most popular recommender
system techniques is matrix factorization (MF), where the user-item interaction matrix is
decomposed into a product of two lower-dimensional rectangular matrices. The problem of
so called matrix factorization with side information incorporates features of users and items
in the factorization process. The simplest approach to such MF problems involves linear
projection of the features to lower-dimensional hidden space, followed by computing the dot
product between corresponding user and item hidden representations in order to obtain user-
item interaction prediction [147, 108, 148]. Recently, this approach has been modified by
introducing non-linearity in the projection step, where the projections are computed by neural
networks or autoencoders, but the corresponding hidden representations are still connected
via a dot product in the linear fashion. Dot product, however, as a simple linear function,
has a limited ability to capture the complex user-item interactions in the hidden space. To
address this issue, deep neural networks have been proposed to replace the dot product for
modeling the user-item interactions in the latent space [149, 150]. Since neural networks are
known as the universal approximators [151], they are expected to be more suitable to learn
complex relationships between the hidden representations of the users and items and the
response variable.

While the neural-network based models are more expressive, previous analyses point out
that the deep learning models do not necessarily outperform simpler models when the latter
are finely tuned, and that some published neural network model results are hard to repro-
duce [152]. Moreover, deep neural networks have a reputation of being difficult to interpret
due to their non-linearity and complex structure. The majority of so called explainable artifi-
cial intelligence methods focus on finding attributions between specific neurons in the network
by analyzing the underlying gradient flow [153, 154, 155, 156|. Although useful, these methods
provide rather standard utilities (e.g. feature importances), often available also for traditional
machine learning models. Moreover, the insights derived from such interpretability approaches
are limited by the features chosen for training the model.

We argue that a desired recommender system for the problem of drug sensitivity prediction
should satisfy several objectives. First, it should solve a multi-task learning problem, i.e.
model multiple drugs and cell lines simultaneously. This allows to capture general mechanisms
driving the drug-cell lines interactions. Second, it should achieve state-of-the art predictive
performance, especially in the task of predicting drug sensitivities for new cell lines. This is due
to the fact that in this setting, the new cell line mimics a new patient, and the recommendation
problem corresponds to identifying the best therapy for that patient. Finally, the model should
be interpretable. Specifically, the model should explain the rationale behind its predictions
and provide biological and pharmacological insights regarding the mechanism underlying the
drugs-cell lines interactions. The emphasis on model interpretability is crucial in the context
of its potential clinical applications.

To address these objectives, we develop a recommender system model for drug sensitivity
prediction, called DEERS (Drug Efficacy Estimation Recommender System). DEERS incor-
porates two autoencoders to project the drug and cell line features, respectively, into lower
dimensional representations, and uses a feed forward network to predict the sensitivities of
the cell lines to the drugs based on their hidden representations. The proposed framework
brings several advantages. First, the model solves a multi-drug and multi-cell line sensitivity
learning problem and utilizes cell lines biological data and drugs inhibition profiles as side
information (Fig. 5.1a,b). Second, the model is highly predictive. In a comparative analysis,
DEERS outperforms two other MF-based recommender system models, and achieves simi-
larly good results to the best performing XGBoost algorithm. Third, we provide an approach
for model interpretability, on two levels: i) meaningful drug and cell line feature representa-
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tion learning, and ii) explaining the cell line sensitivities to drugs in terms of the underlying
biological processes.

The crucial aspect of the proposed interpretability approach is that it offers the widest
possible assessment of the specific genes and biological processes that underlie the action of
the drugs on the cell lines. The novelty of this approach stems from the fact that it considers
also such genes and processes that were not included in the set of modeled features. Using
the interpretablity approach, we demonstrate that the low-dimensional representations of the
model capture the high dimensional features of drugs or cell lines, specifically the molecular
patterns of cell lines and drug inhibition profiles that govern the response of distinct cell lines
to drugs (Fig. 5.1c). Finally, we find the relationships between drug response and biological
processes of cell lines (Fig. 5.1d).

5.2. Methods

Analyzed data

The analyzed dataset comprised measurements of drug sensitivity of cell lines using viability
assays for a total of 922 cell lines and 74 drugs, corresponding to 52,730 drug-cell line pairs.
Both sensitivity metrics provided by the GDSC (AUC and IC50) were used to train and assess
the performance of the presented models. Drug sensitivity of a cell line is the prediction target
of our modeling approach.

The group of 74 drugs selected for modeling consisted exclusively of kinase inhibitors.
The drugs in this group differ from other cancer drugs by their mode of action. Data to
characterize the 74 kinase inhibitors were extracted from the HMS LINCS KINOMEscan
data resource [157]. The features set of these drugs consisted of binding strength across
a panel of 294 protein kinases (Fig. 5.1a). The value for a given compound-kinase pair
represents a percent of control, where a 100% result means no inhibition of kinase binding
to the ligand in the presence of the compound, and where low percent results mean strong
inhibition [158, 159|. The data was acquired for those 74 drugs which were also present in the
GDSC database, yielding a final drug characterization matrix for 74 drugs and 294 protein
kinases.

Data to characterize the 922 cell lines were downloaded from the GDSC. For the molecular
features of the cell lines, we considered only the genes coding for kinases present in KINOMEs-
can dataset, as well as any putative gene targets of all considered compounds. This resulted
in the set of 202 genes, for which mRNA expression levels (202 features) and binary mutation
calls (21 features) were extracted for all cell lines. Furthermore, the dummy-encoded tissue
type was added, producing additional 18 binary features, yielding the final set of 241 biological
features for 922 cell lines (Fig. 5.1a).

DEERS: a deep neural network model of drug sensitivity accounting for
inhibition of protein kinases by drugs and cancer cell line features

The goal of the proposed model is to predict a response of a given cell line to a given drug,
i.e. estimate the corresponding AUC or IC50 value, given the drug and cell line feature rep-
resentations (Fig. 5.1a). The final prediction is computed in two steps: first, we compute
lower-dimensional representations of the considered drug and cell line, and second, the rep-
resentations are combined, in order to make the sensitivity estimation. This problem can
be viewed as a matrix factorization task, where every element of the target matrix y(*) is
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Figure 5.1: Overview of the data and the modeling process. (a) Recommender system frame-
work for drug sensitivity prediction from drug and cell line features. The drugs are described by their
inhibition profiles on a panel of 294 kinases. The biological features of the cell lines include continu-
ous mRNA expressions, binary indicators of coding variants, and dummy-encoded tissue type. Two
drug response metrics are considered: AUC and IC50. The recommender system first independently
encodes drugs and cell lines input data into lower-dimensional representations. The two hidden repre-
sentations are then transformed in order to compute the drug response estimation. (b) Architecture of
the DEERS model. First, the drugs and cell lines inputs are passed into corresponding autoencoders
which output the 10-dimensional representations and reconstructed data. Next, the hidden represen-
tations are concatenated and used as an input to the two-layered, feed-forward network which outputs
the drug response estimate. (¢) Method for relating biological meaning to hidden dimensions of cell
lines. First, the hidden dimensions of the cell line autoencoder are correlated with gene expression
data. Here, Z< denotes the matrix with cell line hidden representations stacked in rows, Z.[:, |
denotes a column of Zo, G denotes the gene expression data for cell lines and G¢l[:, g] denotes
a column of G¢. The resulting ranked lists, one per each dimension, are then passed as an input
to GSEA Preranked analysis, obtaining biological processes enriched in every hidden dimension (see
Methods). (d) Method for relating the drug action directly to biological processes. For a given drug d,
the cell line response is correlated with a given cell line hidden dimension c¢. The obtained correlation
coefficient is then mapped to the biological processes enriched in hidden dimension ¢. This procedure
is performed for every drug and every hidden dimension, obtaining the matrix relating drugs to the
biological processes (see Methods).
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modeled as some form of a transformation of the corresponding hidden representations of the
drug and cell line (Fig. 5.1a).

DEERS is a deep neural network-based recommender system. It consists of three major
parts: drug autoencoder, cell line autoencoder and the subsequent feed-forward neural net-
work. (Fig. 5.1b) [82, 160]. The two autoencoder networks have the same architecture, with
one 128-dimensional hidden layer in both encoder and the decoder with the rectified linear
unit (ReLU) activation function, and the 10-dimensional hidden representation layer. The
subsequent feed-forward network consists of a 20-dimensional input layer, followed by two
hidden layers of length 512 and 256 with the ReLLU activation. The regularization of the sys-
tem is incorporated via the dropout with 0.5 probability, applied in the first, 512-dimensional
hidden layer of the feed-forward network.

Consider a training data point consisting of original drug ¢ and cell line j feature vector
representations along with the corresponding response value, (XD(i), xo0), ylid )). The input
training data vectors are first passed into drug and cell line autoencoders, producing reduced,
10-dimensional vector representations (the hidden representations) (zp®,zc()) and recon-
structed inputs (XID(Z),X/C(])) (Fig. 5.1b). The hidden representations zp and zcU) are
then concatenated, forming a 20-dimensional vector, which serves as an input for the subse-
quent feed-forward neural network, which in turn computes the final response estimate ()
(Fig. 5.1b).

DEERS has three outputs and three main optimization goals: minimizing the differences
between xp® and XID (Z), minimizing the differences between xcU) and xlc(j), and minimiz-
ing the errors between y(»7) and §(/). The incorporation of reconstruction errors causes the
network to find informative representations of the input drug and cell line features. In ad-
dition, it is desired for the hidden dimensions to be independent. This enables the hidden
representations to capture more information about the full input data and facilitates easier
interpretations of the hidden dimensions. In the proposed model, it is achieved by minimizing
the squared values in the off-diagonal entries of the drugs and cell lines covariance matrices
in the latent space. All of the described optimization tasks are captured by a single cost
function, which is iteratively minimized for each training batch to train the model:

J(W) =MSE(y — §)
+rp-MSE(Xp — Xp) + rc - MSE(X ¢ — X¢)
tdo Y (KplmoaPde Y (Kolm,n))?

m,n,m#n m,n,m#n

(5.1)

where J is the cost function, MSE denotes mean squared error, W is a set of the model
parameters (weights), rp is the real-valued weight of the drugs reconstruction error, X p is
the drugs’ data matrix in the training batch, X ID is the drugs data reconstruction matrix in the
batch, r¢ is a real-valued weight of the cell lines reconstruction error, X ¢ is the cell lines data
matrix in the batch, X /C is the cell lines data reconstruction matrix in the batch, d is a weight
of the dependence penalty, K p is the covariance matrix of drugs hidden representations in
the batch, and K¢ is the covariance matrix of cell lines hidden representations in the batch,
and K[m,n] denotes the m,n-th entry of matrix K.

Intuitively, the cost function weights rp, rc and d control the contribution of the particular
optimization task in the general optimization goal of the system. Setting all of these weights
to zero would result in a network without decoding tasks and no dependence restrictions on
the hidden dimensions of the drugs and cell lines.
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Compared models

We compare the proposed model to four other methods; two of which are based on traditional
machine learning algorithms, while the other two are forms of matrix factorization.

In order to evaluate the traditional methods in a multi-task setting, where the data for
all drugs and all cell lines are modeled at once, the traditional methods are used to predict
drug response for the union of drugs and cell lines features. To this end, for every data
point (XD(i),xc(j),y(i’j)), we first concatenate vectors xp® and xc@), forming one 535-
dimensional vector per drug-cell line pair. Applying this to all available data points produces
a 52730 x 535 input data matrix X and the corresponding 52730-dimensional vector with
true response values y. This data is used to train and evaluate two common machine learning
algorithms: Elastic net [161] and XGBoost [162]. The former is a linear model and the latter
is a more complex, nonlinear model.

The compared matrix factorization models aim at solving a similar matrix-factorization
type of problem (Fig. 5.1a) and can be seen as simpler or reduced versions of the proposed
model. The first is a basic matrix factorization with side information method, reducing
the dimension of the additional information about both drugs and cell lines using linear
projections, and applying a dot product to produce the prediction of the response variable
(here, the sensitivity of cell lines to drugs). We refer to this model as Lin MF (Fig. S3a).
The basic architecture of this model is the same as the model applied by Yang et al. [108].

The second of the compared matrix factorization-based models is an non-linear extension of
the basic model, where the dimensionality reduction is performed via one-layered autoencoders
and data reconstruction is also taken into consideration (Fig. S3b). Similarly as in Lin
MF, the final prediction is obtained by taking the dot product of the corresponding hidden
representations, in contrast to the proposed DEERS model, where a separate feed-forward
network is used to obtain the response estimate (Fig. 5.1b). We refer to this model as Autoen
MF. To estimate the parameters of both Lin MF and Autoen MF we use gradient descent
optimization implemented in Adam optimizer [163].

Experimental setup and model training

In order to assess the performance of the considered models on the unseen cell lines, we
construct the validation and test sets by first randomly selecting two sets of 100 unique
cell lines each. We then extract the data points containing selected cell lines, producing
the validation and test sets with ~ 5000 drug-cell line pairs each. The rest of the pairs
corresponding to the remaining 722 unique cell lines (with ~ 42, 000 pairs) constitute the
training set.

Before the training, the input cell line data were preprocessed by standard scaling of
the continuous gene expression data so that every feature has zero mean and unit standard
deviation, while binary coding variants and dummy encoded tissue types were unmodified.
For the input drug data, all features were standardized in the same way as the gene expression.
Since the GDSC AUC values are in the range of [0, 1], they were not scaled, while the log
IC50 values were linearly preprocessed with min-max scaler to the [0, 1] range. Notably, all
values necessary to perform each of the applied preprocessing schemes were calculated only
on the training set and applied to the validation and test sets.

We use the training and validation sets in order to find the optimal set of hyperparameters,
consisting of: network architecture, cost function weights rp, rc and d, regularization type and
learning rate. We establish the DEERS architecture as consisting of two-layer autoencoders,
with 10-dimensional hidden representations (Fig. 5.1b). The subsequent feed-forward network
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has two hidden layers of size 512 and 256. The optimal cost function weights were set to
rq = 0.1, rc = 0.25 and d = 0.1. As a regularization type, we use combination of dropout
applied in the first hidden layer of the feed-forward network (Fig. 5.1b) and early stopping.
With these hyperparameters fixed, for every split of the data (into the training, validation and
test sets) we tune the learning rate, dropout rate and number of epochs for early stopping.

After all parameters are found, we use them to train the model using the union of training
and validation sets, and apply the resulting model to the test set in order to assess the
performance. We repeat this procedure ten times with different cell lines in training, validation
and test sets in order to improve the robustness of the results.

We adopt the similar methodology for the compared models, where we first tune the hy-
perparameters using training and validation sets, and then apply the final retrained model to
the test set, using the same data splits for training, validation and testing for all models.For
the compared models, we perform this experimental procedure five times. In addition, we
incorporate a simple data augmentation scheme, where we add a random gaussian noise with
zero mean to the cell lines gene expression data and the corresponding AUC or IC50 values.
The standard deviations of cell lines and response noise were 0.6 and 0.15, respectively. The
augmentation was performed iteratively in every batch during training, tripling the original
batch size. This data augmentation scheme was added for the two models involving autoen-
coders, i.e. both the Autoen MF and the DEERS model.

Interpretation of hidden dimensions in DEERS

This analysis aims at an explanation of the model predictions from the biological standpoint.
In order to incorporate all available data for model interpretation, we first re-train the model
with all available 922 cell lines and 74 drugs, without excluding any cell lines, and using [C50
as a drug response metric.

The interpretation of the hidden dimensions concerns assigning a biological meaning to the
individual dimensions of the hidden space. To this end, we first pass the input drugs and cell
lines input representations into their corresponding, already trained autoencoders, producing
a 10-dimensional representation for each 294-dimensional input data vector corresponding
to a drug and a 10-dimensional representation for each 241-dimensional input data vector
corresponding to a cell line, respectively.

Associating input features with hidden dimensions

To compute the association of each input feature with each hidden dimension, we utilize the
Integrated Gradients method [156], by computing the attributions between input features and
the ten neurons constituting the hidden representation layers. This is performed separately
for the drug and the cell line autoencoders, and the attributions are averaged across the drugs
and cell lines, respectively. As a result, we obtain drugs and cell lines feature-representation
attribution matrices of size 294 x 10 and 241 x 10, respectively, where each entry is a score
reflecting how much a given feature impacts the given variable in the hidden space. We then
perform the row-wise hierarchical clustering on the resulting attribution matrices, grouping
features associated with the same dimension together. The clustering was performed after
normalizing the rows to unit norm, using the Ward linkage method and the Euclidean distance
metric. This interpretability approach is applied separately for the 10 dimensions encoding
the drugs and for the 10 dimensions encoding the cell lines.
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Associating biological processes with hidden dimensions encoding the cell lines
data

In this interpretability analysis, we exploit the fact that the cell line autoencoder in DEERS
is trained to reconstruct the data and to find low-dimensional representations that reflect the
true properties of the analyzed cell lines. The produced hidden representations of the cell lines
are organized into a 922 x 10 matrix Z¢, where every row j corresponds to a single cell line
hidden representation, and every column c represents the values of a given hidden variable
across all cell lines. Next, we examine the full genome-wide gene expression data of the full
set 17,419 genes extracted from GDSC. In this way, this analysis goes beyond the restricted
set of the modeled input 241 cell line features. Using this data, we construct a 922 x 17419
matrix G¢, where every row j corresponds to a single cell line gene expression profile, and
every column g represents the expression values of a given gene across the examined cell lines.
We then compute a 17,419 x 10 correlation matrix C, where every entry Clg, c|] corresponds
to Spearman correlation coefficient between g column of G¢ and ¢ column of Z¢, i.e. the
correlation between the expression of a given gene and a value of a given hidden dimension
across 922 considered cell lines (Fig. 5.1c) .

Given such correlation matrix C, we create a ranked list of genes for every hidden dimen-
sion, where the ranking metric is the correlation coefficient of the genes with that dimension.
The genes at the top and bottom of the ten resulting ranked lists are the ones that are most
positively or negatively correlated with the corresponding dimensions, respectively. We then
take the first and the last 1000 genes with corresponding correlation coefficients for every hid-
den dimension and run the GSEA Preranked analysis [164] against gene sets that are involved
in specific biological processes as defined by the Biological Process GO Terms (Fig. 5.1c).
The GSEA Preranked is performed using the gseapy Python package [164, 165, 166]. We then
extract the top 15 enriched terms with the smallest FDR value for every hidden dimension,
which indicates the general biological mechanisms are most related to that dimension. Finally,
we eliminate the redundant gene ontology terms using the Revigo tool [167|, assigning the set
of biological mechanisms to every dimension of the cell lines hidden space.

5.3. Results

DEERS was developed with two aims in mind. One, to achieve state-of-the art predictive
performance in predicting the response of cancer cell lines to kinase inhibitor drugs. Second,
to identify the biological mechanisms that drive this response. Below, we evaluate the perfor-
mance of DEERS in comparison to other models and conduct its interpretability analysis.

Evaluation of the predictive performance of DEERS in comparison to other
models

The drug sensitivity measurements were acquired from the Genomics of Drug Sensitivity in
Cancer (GDSC) [138| database. GDSC provides two sensitivity measurements, summariz-
ing the dose-response curve: area under the curve (AUC) and log half maximal inhibitory
concentration (IC50), defined as a drug concentration needed to reduce cell viability by 50%.

The predictive performance of DEERS is compared with four other methods. Two of
those, Elastic net and XGBoost, are traditional, frequently used machine learning algorithms.
Remaining two, referred to as Lin MF and Autoen MF| are versions of matrix factorization
with side information (see Methods for a description of the compared models). In order to
evaluate the performance of DEERS and other models on a test set containing responses of

54



unseen cell lines, we first pass the drugs and cell lines input data to the model and obtain a
table of predicted responses for each drug and cell line pair. Given such a table, we calcu-
late the Pearson correlation and RMSE (root mean squared error) of the true to predicted
responses across all drug-cell line pairs. In addition to such metrics calculated globally, we
also group the previously described table, and calculate correlation (abbreviated corr.) and
RMSE of true and predicted responses across pairs per given drug or cell line. To aggregate
the per-drug and the per-cell line results, we take the median across the cell lines and drugs,
respectively. The per cell line results mimic an envisioned clinical application of the model,
where prediction of drug efficacy will be made for a new patient with specific tumor features,
enabling a personalized medicine approach. This evaluation scheme yields six performance
metrics per model (referred to as “Pairs RMSE”, “Pairs corr.”, “Per-drug RMSE”, “Per-drug
corr.”, “Per-cl RMSE” and “Per-cl corr.”). These metrics are evaluated both for IC50 (Tab. 5.1)
and AUC (Tab. 5.2). The metrics are computed for several experiments with different random
data splits into training, validation and test sets (ten experiments for DEERS and five for each
of the compared methods). In order to obtain a more robust comparison between DEERS and
the simpler approach of matrix factorization with side information, we group the results for
the five experiments of the Lin MF and Autoen MF models, yielding two ten-element groups
of results per each evaluation metric (ten for DEERS and ten for the matrix factorization with
side information). We then perform the one-sided Wilcoxon rank-sum tests, testing whether
DEERS obtains statistically significantly better performance in a given evaluation metric.
In general, IC50 as a prediction target is easier to learn than AUC. Indeed, in terms of
correlation between predicted and true response values, better results are obtained by all

models for IC50 than for AUC.

Ale. t Pairs Pairs Per-drug  Per-drug Per-cl Per-cl
& WP® RMSE  corr. RMSE  corr. RMSE  corr.
Elastic net T 0.09 0.80 0.08 0.31 0.08 0.84
astic ne +0.002  +0.007  +0.019  +0.155  40.002  +0.003
0.08 0.83 0.08 0.40 0.08 0.86
XGBoost T +0.002  +0.009 +0.017  +0.131  +0.001  +0.006
. 0.09 0.78 0.09 0.30 0.08 0.85
Lin MF RS 4+0.003  +0.012  +0.003  +0.045  +0.002  +0.008
0.09 0.80 0.09 0.31 0.08 0.84
Autoen MF RS +0.002  40.009  +0.004  +0.024  40.003  40.006
DEERS w/o RS 0.09 0.80 0.08 0.38 0.08 0.84
inhib. profs. +0.002  +£0.012  £0.002  +0.047  40.002  +0.003
*kkk kokk *kkk kokk *kkk kk
DEERS RS 0.08 0.82 0.08 0.41 0.08 0.86

+0.002  +£0.006  £0.002 +0.035 +0.002 $0.010

Table 5.1: Predictive performance of DEERS and compared models when using IC50
as a drug response metric. The presented values are averages of metrics taken across several
experiments (ten for DEERS and five for each other method), with different data splits, along with
the corresponding standard deviations. The presented per-drug and per-cell line results are medians
taken across all considered drugs and cell lines, respectively. The evaluated models are split into two
categories: frequently used, traditional machine learning algorithms (T) and recommender system class
(RS). Best results within a model category are highlighted with bold font, while the best results overall
are underlined. Asterisks indicate the intervals containing the p-values of the one-sided Wilcoxon rank-
sum tests of the better performance of DEERS over the other two RS models: no asterisks — [0.05, 1),
*—[0.01, 0.1), ** —1[0.001, 0.01), *** — (0, 0.001). Abbreviations: alg. — algorithm, corr. — correlation,
cl — cell line, w/o inhib. profs. — without inhibition profiles.

With IC50 as the response variable, the DEERS model mostly outperforms or at least
performs similarly well as the other two matrix factorization-based models with regard to
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all of the six performance metrics (indicated by bolded values in Tab. 5.1). For IC50, the
XGBoost outperforms the other traditional method, Elastic net, in all performance measures.
This indicates that nonlinear models are needed to capture the dependence of IC50 on drug
and cell line features. DEERS and XGBoost achieve comparable evaluation results (with
the best model according to each evaluation metric underlined in Tab. 5.1). In particular,
DEERS obtains a high Pearson correlation coefficient r=0.82, calculated on all drug-cell line
pairs in the test set. Moreover, the median per cell line correlation of r=0.86 indicates that
DEERS achieves the state-of-the-art performance in predicting cell line responses to drugs,
which most closely resembles the hypothetical clinical setup. Notably, compared to per-cell
line correlation, all models obtain relatively poor results in terms of per-drug correlation. This
may be due to the fact that our input data is asymmetric as it covers much fewer drugs (74)
than cell lines (922).

Ale. t Pairs Pairs Per-drug  Per-drug Per-cl Per-cl
& WP®  RMSE  corr. RMSE  corr. RMSE corr.
Elastic et T 0.13 0.71 0.11 0.23 0.12 0.77
astic ne 4+0.002 40.011 +0.050  +0.188  +0.003  +0.005
0.12 0.77 0.10 0.34 0.11 0.81
XGBoost T +0.002 +0.013 40.050 +0.176  +0.002  +0.012
. 0.13 0.73 0.11 0.34 0.12 0.80
Lin MF RS 4+0.004 40.012 +0.005  +0.044  +0.004  +0.011
0.13 0.75 0.11 0.27 0.12 0.80
Autoen MF RS 4+0.005 40.008 40.005  +0.044  +0.006  +0.003
* *kk *
DEERS RS 0.12 0.76 0.11 0.35 0.11 0.81

+0.004 +0.013 +0.005 +0.027 40.005 * +0.014

Table 5.2: Predictive performance of DEERS and compared models when using AUC as
a drug response metric. Table columns and formatting the same as in Tab. 5.1

In the case of AUC as the response variable, the comparison of model performance
yields similar results as the IC50. Here again DEERS outperforms the other two matrix
factorization-based methods, while from the two traditional methods XGBoost performs bet-
ter than Elastic net (Tab. 5.2). Overall, the performance of DEERS is very similar to XG-
Boost. For AUC, the DEERS achieves r=0.76 Pearson correlation coefficient calculated on all
drug-cell line pairs in the test set. For the per-cell line results, the median correlation across
the unseen cell lines is r=0.81, constituting the best result along with XGBoost.

Evaluation of the added value of inhibition profiles and putative targets

In order to quantify the benefit of incorporating inhibition profiles of the drugs, we performed
an ablation study and estimated the performance of DEERS with drug putative targets as drug
input data. This model is referred to as “DEERS without inhibition profiles” in Tab. 5.1. To
this end, the reduced drug features were defined by a binary matrix with 74 rows corresponding
to kinase inhibitors and 92 drug targets, and entries 1 if the drug has the gene as target and 0
otherwise. With this alternative drug input data and IC50 as a target variable, we evaluated
DEERS using the same procedure as previously (with five experimental iterations), with all
hyperparameters besides learning and dropout rates unchanged. Learning and dropouts rates
were tuned using validation set in the same manner as before. DEERS with inhibition profiles
outperforms DEERS with binary targets in 3 evaluation metrics (Pairs RMSE, Pairs corr.,
Per-cl corr.), achieves the same results in 2 metrics (Per drug RMSE and Per-cl RMSE) and
slightly underperforms in Per-drug corr. metric. The improvement in Pairs RMSE, Pairs
corr., Per-cl corr. metrics constitutes 11.1%, 2.5%, and 2.4% relative increase, respectively.
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We also performed the ablation study in the opposite direction, and removed the set of
putative targets of the analyzed 74 drugs from the kinases panel used to describe the inhibition
profiles. This resulted in removing of 45 kinases, leaving 249 features to describe the drugs.
This change did not affect the predictive performance, as there was no significant results
difference in any evaluation metric compared to DEERS trained with the whole panel of 294
kinases. This analysis underlines the added value of accounting for the inhibition profiles of
the drugs.

Evaluation on an independent dataset

In order to estimate the performance of DEERS on other data than cell line sensitivities
from GDSC, we extracted drug sensitivity data from the Cancer Cell Line Encyclopedia
(CCLE) [95] project. Next, we constructed a dataset consisting of an intersection between
the our analyzed dataset (containing data for 74 drugs derived from GDSC for kinase in-
hibitors), and the CCLE dataset in terms of cell lines and drugs, along with corresponding,
min-max-scaled CCLE IC50 values. The data regarding the intersection between GDSC and
CCLE, as well as CCLE IC50 values were extracted using the PharmacoDB package [168, 64].
The resulting dataset contained 351 common cell lines and 5 common drugs (Crizotinib, La-
patinib, PD0325901, PLX-4720 and Sorafenib), constituting 1747 pairs in total. The cell
lines and drugs were described by the same features as in the original GDSC dataset. We
next used the GDSC data corresponding to the remaining 571 cell lines that are not present
in the CCLE-GDSC intersection dataset and all 74 drugs to train DEERS. From those 571
cell lines of GDSC, 50 were randomly chosen to construct the validation dataset for tuning
the learning and dropout rates (see Methods). We then re-trained the model with the best
hyperparameters on all 571 cell lines and applied it to the CCLE-GDSC intersection dataset,
obtaining IC50 predictions for unseen cell lines. It is important to note that the maximum
obtainable correlation between the model predictions and the true IC50 values in the inter-
section dataset in this experiment is 0.53, defined by the correlation between the true IC50
values in the CCLE dataset and the true IC50 values in the GDSC for these cell line-drug
pairs. Given this upper bound, the obtained correlation result of 0.40 is relatively high. In
comparison, for the XGBoost evaluated in the same scheme as described above, the obtained
correlation is 0.39.

Taken together, these results demonstrate that thanks to its deep neural network-based
recommender system architecture and utilization of informative drug features, DEERS obtains
state-of-the art performance in predicting cell lines sensitivity to drugs in a multitask setup.
In contrast to the other well performing model, XGBoost, however, DEERS obtains highly
informative reduced-dimension representations of the cell line and drug features, respectively.
This aspect of the model is discussed below.

Attributions between input features and hidden dimensions using neural
network analysis

As the first step of the DEERS model interpretability analysis, we computed the attribu-
tions between the input features and the hidden dimensions using Integrated Gradients (see
Methods). Next, we performed hierarchical clustering of the resulting attribution matrix, in
which the rows were the features, and columns were the hidden dimensions. The clustering
identifies well-defined groups of features associated with each specific hidden dimension (Fig.
B1). There is very little overlap between feature groups for both drugs and cell lines, indicat-
ing that hidden dimensions are independent in terms of which features affect them the most.
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This independence effect is also evident when we compare the covariance matrices of drugs
and cell lines represented in a hidden space, when dependence penalty was incorporated and
not incorporated into the overall cost function (Fig. B2). The number of drug input features
associated with a single hidden dimension ranges from 20 for dimensions 2 and 8, to 44 for
dimension 1. For the cell lines, this number ranges from 11 for hidden dimension 7 and 44 for
hidden dimension 1.

Linking hidden dimensions to the general biological mechanisms

In the next step of the interpretability analysis, we associate each hidden dimension of the
cell line autoencoder with a biological process. To this end, for each hidden dimension and
each gene, we correlate the values of the hidden dimension with the expression values of the
gene across cell lines. For a given hidden dimension, the obtained correlations are then ranked
and we apply gene set enrichment analysis (GSEA) to identify biological processes positively
or negatively correlated with that dimension (Fig. 5.1c). Importantly, this analysis links the
dimensions to all genes measured in the cell lines, that is, also to the genes outside of the cell
line features used in the model (see Methods for a full description of this analysis). Here, we
run the GSEA considering the gene-sets included in the Gene Ontology Biological Processes.
The analysis and subsequent filtering of redundant terms yield a final set of GO terms for
each dimension of the hidden space of the cell line autoencoder (Fig 5.2). We identify 67 GO
terms in total, many of which are related to cancer (e.g. DNA replication, regulation of cell
cycle process, regulation of angiogenesis). The number of enriched terms per dimension varies
from 6 to 13. The majority of enrichment scores (67%) are positive, which indicates that they
are positively correlated with that dimension. Conversely, the negatively signed FDR value
implies that the given term is negatively correlated. Markedly, the sets of enriched terms
almost do not overlap between the dimensions, indicating the independence of the dimensions
in terms of their associated biological mechanisms. Out of 67 terms, only 12 are associated
with more than one hidden dimension, from which 10 are associated with two dimensions.

When inspecting the heatmap (Fig. 5.2), we identify groups of biological mechanisms as-
sociated with specific hidden dimensions. For example, hidden dimension 2 is mainly linked
with DNA replication and cell cycle, as terms enriched in it include: DNA replication, DNA-
dependent DNA replication, G1/S transition of mitotic cell cycle and regulation of cell cycle
process. Dimension 4 is related to protein metabolism (post-translational protein modifica-
tion, cellular protein metabolic process, cellular protein modification process), while dimension
3 is connected with DNA and RNA metabolism (DNA metabolic process, RNA metabolic pro-
cess, rRNA metabolic process) and known cancer-related processes like regulation of MAPK
cascade and regulation of angiogenesis. Other such terms include regulation of extrinsic apop-
totic signaling pathway (dimension 9), cellular response to DNA damage stimulus (dimension
6), cellular response to tumor necrosis factor (dimension 0) and DNA damage response, signal
transduction by p53 class mediator (dimension 1). Interestingly, some of the terms are not
commonly linked to cell cycle or other processes related to oncogenesis, e.g. for dimension
8 the set of enriched terms includes central nervous system development, nervous system
development and axonogenesis. This analysis provides a form of interpretation of hidden di-
mensions from the biological standpoint and facilitates a better understanding of the model
prediction based on cell lines hidden representations. Overall, the obtained list of biological
processes reflects the repertoire of common biological mechanisms that are affected by the
analyzed kinase inhibitors in the set of analyzed cell lines, and as a general summary can only
be obtained from such a multitask learning model as DEERS.

58



Signed FDR

—-0.01

0.01 0.02 0.03

0.00

—-0.02

—-0.03

g mmg
Lo N
6C97€S08TL

uoisuswip usppiH

Term

imensions

Figure 5.2: Heatmap reflecting Biological Process GO terms enriched in hidden d

of the cell line autoencoder. Negatively and positively signed FDR values correspond to negative
and positive enrichment scores, i.e. negative and positive side of the ranked list, respectively. Hidden

— process, reg.

— transcription, transd.
— nucleus, macromol.

proc.

Abbreviations:
— positive, transcr.

dimensions are sorted by the number of enriched terms.

regulation, resp.

— negative, pos.

— response, neg.

— damage, nucl.

— transduction, mRNA-cont — mRNA-containing, dam.

macromolecule, biosyn. — biosynthetic, cellul. — cellular, signal. — signaling, act. — activity, trans. —

transition.

59



Case studies

We further focus the analysis on three case studies, showing how the model predictions and
true responses can be explained and interpreted for individual drugs and features. For this
purpose, we examine three specific compounds: the pan-CDK inhibitor PHA-793887, the
ALK/CDK?7 inhibitor XMD14-99 and the BRAF inhibitor Dabrafenib (Fig. 5.3). First, we
establish which features are most important for the model prediction given the input data
for a particular compound. To this end, we calculate the attributions between input features
and the final output layer of the model using the Integrated Gradients method [156]. The
attributions are first computed separately for each cell line and IC50 as the response variable,
and next summarized by averaging over all cell lines. Second, for each compound we display
the cell lines in two chosen dimensions of the hidden space of the cell line autoencoder, and
color them by their IC50 response to the compound. In this way, we identify such regions
in this space that are correlated with sensitivity to the compound. Finally, we explore in
detail how well one chosen hidden dimension correlates with the true response and we list
the biological processes that are associated with that dimension (as per analysis in Fig. 5.2).
Altogether, the case studies identify such features and hidden dimensions that are important
for modeling the response, and such biological processes that are important for the action of
the three analyzed drugs.

PHA-793887 is an inhibitor of multiple cyclin dependent kinases (CDK) with activity
against CDK2, CDK1 and CDK4 [169]. According to the attribution analysis, the activity
against CDK is reflected in the most informative drug features, where CDK2 kinase is one
of the most important drug features for prediction (Fig. 5.3a, top row panel). However, the
most important feature of that drug is MK03. According to Uniprot [170], the gene coding
for MKO03 is MAPKS3, also known as ERK1 [171]. Other CDK inhibitors have been shown
to inhibit not only the CDKs, but also ERK1 [172|. Moreover, there is an evidence within
the KINOMEscan data, stating that several other MAP-kinases (but not including MAPK3)
are inhibited by PHA-793887 [173]. Interestingly, cell line features corresponding to the
CDK family do not obtain top attribution values. Instead, the highest average attributions
are associated with the expression of BTK, PIM2 and TEC genes, suggesting that their
activity in the cell lines is important for PHA-793887 action (Fig. 5.3a, second row panel).
Again, there is some evidence for another CDK inhibitor, abemaciclib, targeting one of the
listed genes, namely PIM kinase [174]. Representing cell lines in two dimensions (by hidden
dimensions 3 and 0) identifies a region corresponding to a good response of PHA-793887
(Fig. 5.3a, third row panel). This validates that that in general the hidden dimensions well
represent the cell line data and that in particular these two hidden dimensions well capture
the cell line response to PHA-793887. However, most of the cell lines response variance can
be explained using hidden dimension 3 alone, which is negatively correlated with the true
response (Pearson correlation r = -0.40; Fig. 5.3a, bottom row panel). The biological process
terms enriched for different dimensions, visualized in Fig. 5.2, can provide the meaning behind
these dimensions. Analysing the processes associated with the most informative dimension
3 can shed the light on the way the response to PHA-793887 is conveyed in the cell lines.
The hidden dimension 3 is associated with eight biological processes, five of them positively
(DNA metabolic process, regulation of cellular macromolecule biosynthetic process, RNA
metabolic process, rRNA metabolic process, ribonucleoprotein complex assembly) and three
of them negatively (regulation of cell migration, regulation of MAPK cascade, regulation
of angiogenesis). Since the GSEA analysis is performed using gene expression data, large
values of hidden variable 3 (which correspond to a better response) implicitly indicate the
over-expression of genes associated with the five positively enriched terms, whereas the over-
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Figure 5.3: Case studies corresponding to compounds: (a) PHA-793887, (b) XMD14-99
and (c) Dabrafenib. Top row panels: top ten most important drug features for a response prediction
by the model, derived using Integrated Gradients. Second row panels: top ten most important cell
lines features for a model’s response prediction. Feature names abbreviations: exp. — expression,
mut. — mutation. Asterisks indicate the intervals containing the p-values of the Spearman correlation
coefficients r between a given feature and log IC50 values for a given drug across screened cell lines:
no asterisks — [0.05, 1), * — [0.01, 0.1), ** — [0.001, 0.01), *** — (0, 0.001). Third row panels: cell
lines plotted using two chosen hidden dimensions of the cell line hidden space, colored by the true
log IC50 values (shown for those cell lines that were screened against the presented drug). Bottom
row panels: scatter plots of true log IC50 values w.r.t. hidden dimension most correlated with the
response for a given drug. The presented r values are the Spearman correlation coefficients. Text on
top shows which GO terms are enriched in a considered hidden dimension, following Fig. 5.2, where
blue and brown colors correspond to positive and negative enrichment, respectively. See Fig. 5.2 for
term names abbreviations.
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expression of genes related to three negatively enriched terms can indicate poor response.

According to GDSC annotations, XMD14-19 targets include ALK, CDK7, LTK and others.
The known target LTK is listed as one of the most important drug features (i.e., with a large
attribution; Fig. 5.3b, top row panel). Cell line features with top attributions for XMD14-
19 strongly overlap with those related to PHA-793887 (Fig. 5.3b, second row panel). In
particular, the top three to features are exactly the same (expression of BTK, PIM2 and
TEC genes), indicating some similarity between these two drugs. Hidden dimensions 3 and
4 allow to visualize regions in the cell line hidden space with distinctive responses (Fig. 5.3b,
third row panel). Similarly to PHA-793887, hidden dimension 3 carries the most information
about cell lines response to XMD14-99 and thus we can conclude that the same biological
processes may be associated with the response to these two drugs (Fig. 5.3b, bottom row
panel).

In the case of Dabrafenib, both drug and cell line feature sensitivities are consistent with its
design and clinical usage. Dabrafenib is a selective inhibitor of mutant BRAF kinase, approved
by the FDA for the treatment of metastatic melanoma with mutant BRAF(V600) [175, 176].
Accordingly, the two most important cell line features are BRAF mutation and skin tissue
indicator (Fig. 5.3¢c, second row panel). The inhibition of BRAF also emerges among the most
informative drug features, though being preceded by the inhibition of RAF1, MLK and AMPK
(Fig. 5.3c, top row panel). The hidden dimensions 3 and 4 capture significant information
about cell lines response (Fig. 5.3¢c, third row panel), with the hidden dimension 4 being the
sole good indicator of the Dabrafenib efficacy (Fig. 5.3¢c, fourth panel). The hidden dimension
4 has nine positively enriched biological process terms associated with it (Figures 5.2; 5.3c,
bottom row panel). Thus, we conclude that a better response to Dabrafenib corresponds to
the over-expression of genes involved in: neutrophil mediated immunity, positive regulation
of I-kappaB kinase/NF-kappaB signaling, regulation of cell migration, post-translational pro-
tein modification, cellular protein metabolic process, cellular protein modification process,
extracellular matrix organization, regulated exocytosis, and cell morphogenesis involved in
differentiation.

Associating biological processes to all of the analyzed drugs

In the final step of the interpretability analysis, we associate biological processes to all of the
analyzed drugs. This analysis is based on the idea behind the bottom panels of Fig. 5.3. Just
like for PHA-793887, XMD14-99 and Dabrafenib, we can calculate the correlation coefficient
between the response profile for a given drug and a given hidden dimension across cell lines,
for each of 74 drugs and each of 10 hidden dimensions (Fig. 5.1d). This calculation yields a
74 x 10 matrix, in which each entry represents a Spearman correlation coefficient for a given
compound and hidden dimension. We then utilize the associations between hidden dimensions
and biological processes presented in Fig. 5.2 in order to connect drugs to biological processes.
For a given drug and process, we first establish which hidden dimension is enriched for that
process. Next, we assign a corresponding correlation coefficient between the drug response
and the dimension to the drug and process pair. If more than one hidden dimension is enriched
for the process, we take the average of the corresponding correlations. This analysis produces
a 74 x 67 drug-process matrix, where each entry is a correlation coefficient indicating how
important a given biological process is for driving the response of a cell line to a given drug.
We divide this matrix into five sub-matrices by the main target pathways of the drugs: RTK
signaling, PI3K/MTOR signaling, ERK MAPK signaling, Cell cycle, and Others. Finally, we
perform the row-wise hierarchical clustering of each such drug-process sub-matrix in order to
group drugs by the similarity of processes that drive their efficacy (Fig. 5.4). The obtained
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clustermaps clearly indicate such processes that are shared among drugs targeting the same
pathways, as well as point at their differences, some of which are related to the particular
gene targets.

Five of the drugs targeting the RTK signaling pathway (Fig. 5.4a) are positively correlated
with a large group of processes related to DNA replication and cell cycle (DNA replication,
DNA-dependent DNA replication, G1/S transition of mitotic cell cycle, cellular macromolecule
biosynthetic process, cytoskeleton-dependent cytokinesis, mitochondrial translational elonga-
tion, regulation of cell cycle process, translational elongation, negative regulation of transcrip-
tion from RNA polymerase Il promoter, regulation of transcription from RNA polymerase 11
promoter), from which four drugs are positvely correlated with processes related to transport
and sensory perception (ubiquitin-dependent protein catabolic process, processes endosomal
transport, cellular protein localization, monovalent inorganic cation transport, sensory percep-
tion of chemical stimulus and chemical synaptic transmission). These drugs, however, visibly
divide into two distinct groups with respect to a group of processes related to RNA metabolism
and regulation of MAPK cascade and angiogenesis (RNA metabolic process, rRNA metabolic
process, ribonucleoprotein complex assembly, regulation of MAPK cascade, regulation of an-
giogenesis). This difference is the reflection of putative targets of the drugs; drugs which have
ERBB2 or EGFR as the putative targets are not or are only slightly correlated with these
processes, while remaining drugs are strongly negatively correlated with them. In general, the
RTK signaling drugs with shared target genes have similar associated processes and cluster
together.

Drugs targeting the PI3K/MTOR signaling pathways generally share very similar profiles
of association with biological processes (Fig. 5.4b). All but three of the drugs in this cate-
gory have consistent positive correlation with five processes (epidermis development, cell-cell
junction assembly, regulation of autophagy, plasma membrane bounded cell projection as-
sembly and cilium organization), which distinguishes PI3K/MTOR signaling from other drug
categories (e.g. ERK MAPK signaling drugs have noticeably different association profiles,
Fig. 5.4¢). There are, however, still some processes which tend to be correlated only with a
subset of drugs. For example, seven drugs (AKT inhibitor VIII, ZSTK474, Omipalisib, Bu-
parlisib, GSK1059615, WYE-125132 and Torin 2) exhibit stronger negative correlation with
five previously listed processes related to RNA metabolism and regulation of MAPK cascade
and angiogenesis, while others do not. The associations with the foregoing processes seem to
be more prevalent in drugs which have the mammalian target of rapamycin (mTOR) kinase
among their putative targets in addition to phosphoinositide 3-kinases (PI3Ks), with the ex-
ception of Dactolisib. Notably, two drugs presumably targeting solely mTOR (WYE-125132,
Torin 2) have very similar association profiles across all 67 processes. Another considerable
group of processes with relatively high correlation in the PI3K/MTOR signaling category
consists of eight processes: negative regulation of cytokine production, positive regulation of
MAPK cascade, positive regulation of intracellular signal transduction, positive regulation of
peptidyl-tyrosine phosphorylation, proteolysis, regulation of defense response, regulation of
extrinsic apoptotic signaling pathway and regulation of immune response. Two out of three
drugs associated with these processes (TGX221 and AZD6482) target solely PI3Kbeta. Asso-
ciations with the listed eight processes are also noticeable in the cell cycle category (Fig. 5.4d),
specifically for CGP-082996, CGP-60474, Seliciclib and Palbociclib, as well as for WZ-1-84
and XMD8-85 in the others category (Fig. 5.4e).

In general, these results can serve as a validation and explanation of the model predictions,
as well as provide insights regarding the drugs mechanisms of action and drivers of the cell
lines response. Considering drug-biological process associations within a certain drug category
enables insights into drugs action on a more general level than putative targets or target
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Figure 5.4: Associations between cell lines biological processes (horizontal axes) and all
of the 74 analyzed drugs (vertical axes), plotted separately for (a) RTK signaling, (b)
PI3K/MTOR signaling, (c) ERK MAPK signaling, (d) Cell cycle and (e) Others target
pathways. First, for every drug, the Spearman correlation coefficient between every cell line hidden
dimension and the response is computed, as shown in Fig. 5.3. These correlations are then assigned to
biological processes associated with a given hidden dimension (see Fig. 5.2). If more than one hidden
dimension is related to a process, an average of correlation is taken and assigned to the process. Drugs
were hierarchically clustered using the Euclidean distance and average linkage within a given target
pathway category. The horizontal axis is shared for all panels. The vertical axis tick label is formatted
as: Drug Name; Putative Targets. Drugs target pathways and putative targets are taken from GDSC
annotations. The labels are color-coded by the target pathway. For some drugs, putative targets have
not been listed for readability. Those targets are: * — PI3K (class 1), MTORC1, MTORC2, ** —
PI3Kalpha, PI3Kdelta, PI3Kbeta, PI3Kgamma, *** — CDK1,CDK2,CDK5,CDK7,CDK9, PKC, ****
- RC, ROCK2, NTRK2, FLT3, IRAK1, others, ***** — BRSK2, FLT4, MARK4, PRKCD, RET,
SRPK1. The color scale of correlation heatmaps is the same for all categories. See Fig. 5.2 for term
names abbreviations.
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pathway information alone.

5.4. Discussion

In this work, constituting the second project of this thesis, we propose a deep neural network
recommender system-based approach to the problem of kinase inhibitor sensitivity prediction
based on side information about drugs and cancer cell lines. The proposed model, DEERS,
combines dimensionality reduction of the cell line and drug features using autoencoders and
neural network-based prediction based on the obtained hidden representations. The modeled
drug features are the strengths of inhibition of kinases by the drugs. The cell line features
include expression and mutation calls for the same kinases in cancer cell lines, complemented
by primary tissue type of origin for the cell lines. To our knowledge, this type of modeling
using these types of input data has not been applied before to predict sensitivity to kinase
inhibitors.

Our focus on modeling kinase inhibitors is motivated by the fact that binding profiles
across kinases represent exquisite data to characterize such drugs. Alternative information
about drugs could be the list of specific known drug targets. In contrast to continuous
and rich data about kinase inhibition, however, annotations of known targets are relatively
incomplete. The quality of the kinase binding data that we used is assured by a standardized
assay platform interrogating a large number of kinases. Therefore, off-target inhibition effects
are most likely captured completely. An alternative could be to use information on which
signaling pathways are affected by a drug since this information is often provided in drug
databases. However, clearly the information about target pathways is only high-level, less
detailed than using kinase binding data, and suffers from incomplete understanding about
the complete set of pathways that a drug effects in different cellular contexts.

Despite its advantages, the data used to describe the drugs can also be seen as a source of
limitation of this study. While usage of continuous inhibition profiles provides more informa-
tion regarding drugs’ action, these types of data are available only for a subset of drugs. In
comparison, utilizing raw data (e.g. SMILES) would lead to more labelled samples for train-
ing, which could improve the predictive performance. However, using continuous inhibition
profiles sheds a light on drugs’ mechanisms of action w.r.t. their response on cell lines and
provide more interpretable drugs’ representations. The ablation study regarding inhibition
profiles and putative targets shows that drugs’ interactions across a large enough panel of
kinases can provide more informative profile of drugs, even in the absence of their putative
targets. This provides valuable insight on which properties of the drugs are useful to model
in these kind of prediction tasks.

The DEERs model aims at two goals: 1) high predictive performance and 2) outstand-
ing model interpretability. Our analysis constitutes a thorough comparative assessment of
model performance, evaluating both traditional and variants of matrix factorization-based
methods. Out of the two traditional models, XGBoost achieves better results than Elastic
net, indicating that accounting for non-linear interactions among features is crucial for predic-
tion performance. DEERS outperforms the other two matrix factorization-based approaches,
Lin MF (basic matrix factorization model) and Autoen MF (a model using autoencoders for
dimensionality reduction and a dot-product for combining the reduced data to make predic-
tion). We observe little difference in performance between the Lin MF model and Autoen MF
(Tables 2, 1), although, importantly, the latter has a more difficult optimization goal. Indeed,
similar to DEERS, Autoen MF reconstructs the input features from the reduced representa-
tions. The advantage of DEERS over these two MF-based models is most likely caused by the
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incorporation of the feed-forward network which combines the hidden representations, instead
of the simple dot product. Compared to the dot product, which only considers element-wise
product, these additional feed-forward network layers allow the system to adjust the weights
after the data encoding step and to estimate a more complex function that maps from the
hidden representations to the response. Importantly, despite the more complex mapping, the
hidden dimensions in the DEERS model are still clearly indicative of the true response in some
cases. Across all compared models, both DEERS and XGBoost show top and very similar
performance. In contrast to XGBoost, however, DEERS is easier to interpret, as it provides
highly informative 10-dimensional representations of the input cell lines molecular setup and
the drug features.

A model by Manica et al. [177] aims at similar objectives as DEERS, and accounts for
information about both drugs and cell lines, but is not directly comparable to DEERS, as it
bases on different input data and uses a distinct interpretability approach. The best model
of Manica et al. [177] achieves 0.104 RMSE between scaled predicted and true IC50 for the
strict data split, compared to 0.08 obtained by DEERS. Importantly, this result cannot be
interpreted in favor of DEERS, since in the strict data split in Manica et al. [177] subsets of
both drugs and cell lines are left out in the validation set, therefore posing a more challenging
problem. The interpretability analysis in the Manica et al.[177] model is of the "ante-hoc”-
type as it utilizes the neural attention mechanisms . In this way, the interpretability is
intrinsically build into the system [178]. Some other examples of attention-based methods
and transformers [179] have been successfully applied in related fields [180, 181]. Regarding
the drugs this model identifies molecular substructures that are the most responsible for
making a prediction for a given drug. This differs from DEERS, since we used the higher-
level drugs’ features in the form of the inhibition profiles, which are not explicitly connected
with the drugs’ chemical structure. Both for the Manica et al. [177] model and DEERS,
external evidence validating the interpretability results can be found.

Extensive interpretability analysis demonstrates that the 10 hidden dimensions of the
drug and cell line autoencoders seem to capture the majority of important information for
both drugs and cell lines. The results imply mutual independence of hidden dimensions
(Fig. 5.2, B1, B2) and also suggest that the hidden representations are representative of
the drug and cell line input data. In particular, hidden dimensions 3 and 4 show as most
relevant for driving the cell lines drug response for the majority of drugs (Fig. 5.2, 5.4), as
demonstrated by the presented examples (Fig. 5.3, bottom panels). The correlation analysis
of genome-wide cell lines features and hidden representations, combined with GSEA, helps to
provide biological meaning to the hidden dimensions (Fig. 5.2). The same analysis performed
using the restricted set of kinase- and tissue type-related 241 cell lines features that are
used to train the models would have resulted in the bias towards GO terms or pathways
related to protein kinases in general. Instead, using genome-wide gene expression helps to
identify the enriched terms which are not influenced by the choice of features in the training
data and spanning a broader range of biological processes. Moreover, this methodology is
potentially very versatile, as different drugs and cell lines properties outside of the training
data can be correlated, and different gene set libraries can be queried for enrichments. We show
that combining the influence of distinct hidden dimensions for drug response, and biological
processes associated with the hidden dimensions constitutes a framework which can directly
explain drug response by concrete biological mechanisms. Such a map facilitates the easier
explanation of drugs’ mechanisms of action and can potentially identify the new, unexpected
ones (Fig. 5.4). Overall, this study shows how data encoding combined with the series of
analyses can help to increase the interpretability even in the case of deep neural network
recommender models, while maintaining the complex nature of such systems.
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This work differs from the first one in several major ways. First, the research problem;
while feature selection is related to model’s interpretability, in this work we tackle the in-
tepretability problem more directly. Secondly, the whole modeling paradigm; previously we
built separate model for each compound and here we performed multi-task learning. Thirdly,
the machine learning methodology; while previous work utilized standard ML methods, here
we entered a deep learning paradigm and developed our custom model. The choice of com-
pounds’ inpute features, namely their inhibition profiles, stemmed from the first work. We
have observed that drug targets constitute an important information for drug sensitivity pre-
diction, however, we were also aware of drugs’ off-targeting and that putative targets might
not be a comprehensive description, hence we decided to use the inhibition profiles and fo-
cus the modeling on kinase inhibitors. Overall, this study is rather not an extension of the
first one, more a qualitatively different work within the same field, but with very different
emphasis, modeling paradigm, and level of technical advancement.
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Chapter 6

A generative recommender system
with GMM prior for cancer drug
generation and sensitivity prediction

6.1. Background

Kinase inhibitors constitute a very important class of targeted anticancer therapeutics. They
are commonly characterized by their inhibition profiles, measuring their strength of inhibition
across a panel of protein kinases. Despite being a specific category of anticancer compounds,
kinase inhibitors can be further grouped into different clusters, for example by their target
pathways, or kinase inhibitory activity. Specifically, it has been observed that they differ by
the numbers of so called off-targets, i.e. unintentionally inhibited kinases, which is reflected
in their inhibitory profiles. While a number of kinase inhibitor drugs is already successfully
applied in the clinic, there is a pressing need for novel drug discovery, due to the mechanism
of resistance to existing drugs and the large variety of mutations that could be targeted in
individual patients’ tumors.

Unfortunately, the current pre-clinical process of proposing novel compounds proves inef-
ficient, as the proposed drugs fail further stages of clinical trials, yielding the entire process of
novel drug discovery a daunting, time and money consuming task [182, 183, 184]. Deep genera-
tive models transform the field of molecule discovery, providing promising synthetic molecules
such as proteins or drugs with desired chemical properties [185, 186, 187, 188, 189, 190, 191].
However, these approaches are not directly applicable to kinase inhibitors or other anticancer
therapeutics. First, they require large amounts of compounds for training, while the number
of known kinase inhibitors is scarce. Second, they do not account for the molecular features
of tumors that the drugs are supposed to act on. Specifically, drug sensitivity is a function of
both compound’s and tumor’s features, and it is the relationship between these two features
sets that determines the treatment outcome. Although multiple machine learning models were
proposed for the prediction of the sensitivity of cancer cell lines to the drugs [62, 13, 59, 92, 70],
including recommender system-based approaches [192, 24, 193], these methods lack a gener-
ative ability. Therefore, a new class of generative models for kinase inhibitor discovery and
simultaneous sensitivity prediction is needed, which would restrict the vast space of potential
generative model hypotheses by accounting for and drawing from the wealth of additional
experimental data such as kinase inhibitor profiles and their clustering, cell line sensitivity
screens, as well as the molecular profiling of the cell lines.

In this work, we propose a novel variational autoencoder (VAE) model for generation of
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specific types of anticancer compounds, guided by the clustering of their inhibitory profiles
within the GMM prior. The model infers representations of reduced dimensionality of the
drugs’ SMILES [194] (a string-based representation of molecule’s chemical structure), and
leverages drug sensitivity screening data, as well as molecular features of the cancer cell lines.
The proposed model offers the following key functionalities:

e clustering of the drugs in the latent space and generation of novel drugs from
specific clusters, here having specific types of inhibitory profiles,

e inference of latent representations of the drugs’ SMILES and the molecular features
of the cell lines,

e prediction of sensitivity of the cancer cell lines to the drugs.

On the most general level, the proposed model can be thought of as an extension of a
recommender system with side information [195, 196, 197, 198, 199] with a generative model.
In a recommender system with side information, objects and users are characterized by vectors
of their specific features (the side information), and users assign scores to objects, yielding an
object per user matrix. The task of a recommender system is to predict the scores given the
side information for the objects and users. Our contributed extension is twofold. First, we
assume the objects can be grouped into clusters, and we generate new objects with features
that are characteristic of their corresponding clusters. Second, we aim to predict the scores for
these synthetic objects and for existing users. In our particular application, in the generative
recommender system the objects correspond to drugs from the family of kinase inhibitors,
users to cancer cell lines, while the scores correspond to the sensitivity of the cell lines to
the drugs, i.e. the ability of the drugs to kill cancer cells. Hence the name of the model, i.e,
Variational Autoencoder-based Drug Efficacy Estimation Recommender System (VADEERS).

The majority of existing methods for compound generation focus on generating compounds
with specified chemical properties, without taking into account the broader biological context,
e.g. efficacy of compounds against cancer cell lines or other cancer models. Recently, Born
et al. [200] proposed a model aiming at generating compounds which target specific gene
expression profiles via a hybrid variational autoencoder acting as compounds generator. In
the proposed reinforcement learning paradigm, the compound generator serves as an agent,
while the output of a drug sensitivity prediction model serves as a reward function, which
allows to train the agent to produce more and more effective compound against a given gene
expression profile. Joo et al. [201]| proposed a conditional VAE, in which generation of new
molecular fingerprints is conditioned on drug sensitivity. Related problem was also approached
without resolving to probabilistic generative models by efficient Monte Carlo tree search [202].
VAEs have also appeared in the context of drug sensitivity modeling focusing more on the
prediction aspect [203], or applied to cancer models, rather than compounds [123, 204].

Recommender systems were traditionally applied in the field of e-commerce, where user
decisions are recorded online. Generative adversarial network-based models proved useful
in dealing with the lack of explicitly negative samples in such applications [205, 206, 207,
208]. GANs were also used to imitate user behavior dynamics in reinforcement learning-
based recommender systems to better approximate the reward function and simulate the
environment in this setting [209, 210|. We are not aware of recommender systems equipped
with VAE that accounts of a given clustering of the objects.
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6.2. Methods

Variational Autoencoders

Recall from Section 3.4 that variational autoencoders [88] can be viewed as neural network-
based probabilistic graphical models designed to learn complexed probability distributions.
They are latent variable models, where sampling from a prior distribution p(z) in the latent
space Z is followed by a sampling from pg(x|z) in the data space X. The probability distri-
bution py(x|z) is modeled using a neural network parametrized by 6 called a decoder. Since
usually the log marginal likelihood p(x) is intractable, its following evidence lower bound
(ELBO) is maximized:

LEGPC(X) = By, (sx) [In po(x|2)] — Dic1,(q0(2[x)||p(2)), (6.1)

where ¢4 (z|x) is the variational approximation of a posterior distribution p(z|x), and Dk,
stands for Kullback-Leibler divergence. g¢(z|x) is usually modeled as a Gaussian distribution
N (u(x),diag(o(x))) where pu(x) and o(x) are outputs from a neural network parametrized
by ¢, called encoder. The first term in Eq. (6.1) is often referred to as the reconstruction term,
while the second as the regularization term, as it forces the posterior towards the prior. In
case when both g4 (z|x) and p(z), are Gaussian distributions, the Kullback-Leibler divergence
has an easy to optimize analytical form [88], which in turn enables an efficient optimization
of Eq. (6.1). In a more general case, Eq. (6.1) can be further decomposed into [211]:

LEGP? =By, (ax) [ In po(x|2) + In p(z) — In g4 (z[x)]. (6.2)

Since In g4 (z[x) is under the expectation over gg(z|x), this equals:
L557C = Eq (o)) Inpo(x|2) + In p(2)] + Hlgy(z]x)], (6.3)

where Hgg(z|z)] denotes the entropy of the posterior. Typically, the expected value in
Eq. (6.2) or (6.3) is approximated by sampling L point(s) from ¢4(z|x) [211]. In VAEs,
the goal is to maximize the ELBO, while when training neural networks in general commonly
the goal is to minimize a cost function. Therefore, with L = 1, the loss function takes the
form of

Lso(x) = —lnpy(xW[2Y) —np(z) — Hlgy (zx""))], (6.4)

where x(®) indicates the i-th data point and z(*) is a sample from a ¢(z/x®). In case when
a variational posterior approximation is N (u(x),diag(o(x))), the entropy has an easy to
optimize analytical form. In such a case, optimization of Eq. (6.4) is feasible for In p(z(i)) that
are easy to evaluate.

GMM VAEs

In VAE, different choices of prior distributions p(z) impose different trade-offs between the
optimization simplicity and the complexity of modeled distributions. E.g., the classical choice
of the prior to be the standard normal distribution, i.e. p(z) ~ N (0,I) carries the simplicity
of optimization of Dgr (ge(2|x)||p(2)), at the cost of not imposing any particular structure
on the latent space, nor utilizing any prior knowledge regarding the data. Another popular
choice of a prior p(z) is a GMM [212, 213, 214, 215, 216]. In this model, for a given point
z there is a categorical hidden variable C ~ Cat (7, ... 7k ), defining the component of the
mixture for that point. The conditional probability of z given the component C' = k, is then
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Figure 6.1: Model’s overview. (a) DVAE module. (b) CAE module. (¢c) DSPN module. DSPN
takes concatenation of DVAE’s encoder output, i.e. mean vector, and CAE’s latent vector as input.

defined by a Gaussian distribution N (ug, Xg), for k =1,..., K. Therefore, in a GMM VAE,
the prior for z in Eq. (6.3) is obtained by marginalizing over the values of C:

K
p(z) = 3 N (2l g 5. (6.5)

k=1

The closed, analytical form of Eq. (6.5) makes computation of the Inp(z) term in Eq. (6.3)
tractable and enables an efficient optimization of ELBO. Such a GMM prior naturally cor-
responds to a clustering, where the points from the same component k come from the same
Gaussian distribution and thus group together in the latent space.

Generative recommender system overview

The proposed VADEERS model is a neural network consisting of three major modules: drug
variational autoencoder (DVAE) (Fig. 6.1a), cell lines autoencoder (CAE) (Fig. 6.1b), and
drug sensitivity prediction network (DSPN) (Fig. 6.1c). The whole model has two inputs,
one to DVAE and another to CAE, and four outputs in total. The input to DVAE is a
vector representation of a drug’s chemical formula, expressed as its SMILES string. DVAE
consists of an encoder, which projects the data into a lower-dimensional latent space, and two
decoders: the first one outputs the input’s reconstruction, while the second predicts the drug’s
inhibition profile (IP), i.e. the vector of inhibition strengths across a panel of protein kinases.
We assume that the drugs can be grouped into clusters by some guiding data that specifies
the grouping. Here, the guiding data used are the inhibitory profiles, i.e., drugs with similar
inhibitory profiles form distinct clusters (see Section 6.2 and Supplementary Methods). CAE
is an autoencoder taking vector representation of a cell line’s biological features as input to
an encoder, and returning its reconstruction from a decoder.
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The use of DVAE and CAE allows to find lower-dimensional, informative data representa-
tions of drugs and cell lines, respectively. During the forward pass, the latent representations
of a given cell line and a given drug are extracted, concatenated and passed as an input to
DSPN, which predicts the numerical value indicating the sensitivity of that cell line to that
drug. Here, this value is represented by log half maximal inhibitory concentration (IC50) [61],
defined as a drug concentration needed to reduce cell viability by 50%.

Extension of a GMM VAE model to unknown guiding data and unknown
components

We propose an extension to the classical GMM VAE by allowing a semi-supervision of the
GMM prior. Specifically, we consider that the categorical variables defining the mixture
components for each point in the latent space are partially observed for some of the training
data. More formally, the training input data D with N samples can be divided into two
disjoint sets D, and Dy, with D = D,UDy,. The set D, = {;17(1), e ,x(")}, where 0 <n < N,
is a set of samples z(¥) for which the component variable C is observed and C9 = k()
where k() ¢ {1,...,G}, for G < K. We further refer to these observed component values as
the guiding labels. Note that with G < K some of the assumed components will not appear
as a guiding label for any training sample. Such components correspond to additional clusters
of samples that truly exist but are never observed. By allowing additional components in the
latent space, we still are able to model these clusters in the latent space. In contrast to D,,
the set Dy, = {x(”H), ... ,x(N)}, is a set of samples, for which the components are hidden. In
such a setting, the latent prior p(z) in Eq. (6.5) is replaced by
(2) = N (z| g, g ) if z is a sample for input 2% e D, and C = k* (6.6)
Zszl TN (2| py, X)) otherwise, '

where k* indicates the particular Gaussian component (cluster), K is the total number of
components, and 7y, is the weight of component k. Note that the prior defined by Eq. (6.6)
is a generalization of the classical GMM prior defined by Eq. (6.5). Indeed, Eq. (6.6) reduces
to Eq. (6.5) in the case when D, = ().

The guiding labels can be defined by an independent, given clustering of the samples in
some external data space. In such a case, the external data is referred to as guiding data.

The described model with the GMM prior is used to implement the DVAE in VADEERS
(Fig. 6.1a). Here, the input samples 2@ correspond to SMILES, the guiding data is defined
by the inhibitory profiles of the drugs, and the guiding labels by the clusters of these inhibitory
profiles. In this way, we transfer a clustering of inhibition profiles to the latent space, as the
latent representation of drugs sharing £* are made to follow the same Gaussian distribution
in Z.

Importantly, the parameters of GMM, i.e. (mg, g, ) for kin {1,..., K}, can be learned
via gradient descent together with the remaining parameters of VADEERS, yielding a com-
plete model of the data, including the GMM prior. The use of GMM as a prior then allows
to sample z from a particular of component of p(z) e.g. corresponding to a particular guiding
label. At the same time, for the drug x for which the guiding label is unknown, the cluster
assignment is obtained using a posterior inference over C' based on the values sampled from
q(z|x). This enables the inference of the guiding label (i.e., the category of inhibition profiles)
for every drug.

Recall from section 6.2 that DVAE part of VADEERS has two decoders corresponding to
reconstructed compounds’ input and compounds’ inhibition profiles (IP). Combining Eq. (6.4)
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with the fact that decoders’ outputs are continuous, we define the DVAE’s loss function for a
single compound as:

’ /

,CDVAE(XS(i),XS(i) ,X[(i),X](i)/,Z(i)) =rg- MSE(XS(i),xS(i)l) +rr- MSE(X[(i),X[(i) ) (6.7)
—rp-Inpy(29) — rpg - Hlgy(z[xs")], (6.8)

’

where x5 and xg(® are the i-th compound’s SMILES representation and it’s reconstruc-
tion, respectively, x;(® and X[(i)/ are true and predicted inhibition profiles, respectively, z(?)
is a z sample corresponding to the ¢-th compound, rg is the positive real-valued weight corre-
sponding to the compounds’ input reconstruction error, MSE denotes mean squared error, ry
is the weight of the IP prediction error, rp is the weight corresponding to the prior likelihood,
rg is the weight of encoder’s entropy, and the last term corresponds to the entropy of latent
variables returned by the encoder.

In the case of CAE, the loss function is given simply by the reconstruction error between
the cell lines’” input and its reconstruction:

/ ’

ECAE(XB(j),XB(j) ) = MSE(XB(j),XB(j) ), (6.9)

where x5 and x5(® are cell line’s input features and their reconstruction, respectively.
Finally, the loss corresponding to DSPN is the error between continuous true and predicted
IC50 values defined for compound-cell line pair:

Lpspn(y®), 509y = MSE(y® ), 59), (6.10)

where y(i’j) and g)(i’j) is a true and predicted IC50 corresponding to ith compound and jth
cell line, respectively. The loss for the whole model is the weighted sum of above expressions:

Lirodel(:) = Lpvap(-) + rcak - Loae(:) + rpspn - Lpspen(+), (6.11)

where rcap and rpgpy are weights corresponding to CAE and DSPN errors, respectively
(arguments are replaced by - for simplicity). The formulation with the vector r of weights
allows to change model’s emphasis by controlling these hyperparameters.

Dataset

The analyzed dataset D = {Xg, X7, X5, YRr,yg} consists of five parts, where Xg € R304x300
denotes drugs’ SMILES vector representations, X; € R'17%2%4 denotes drugs’ inihibition
profiles across a panel of protein kinases, X g € R922%241 denotes a matrix of cell lines biological
features, Y p € R922X304 denotes a matrix with drug response indicators for a given cell line ¢
and drug d, and yg € R!7 denotes a vector of guiding labels for a subset of considered drugs
(see below).

The primary source of drug sensitivity data for cell lines was the Genomics of Drug Sen-
sitivity in Cancer (GDSC) database [138, 140]. The set of 304 compounds in Xg extracted
from GDSC database were represented by their chemical structure indicated by corresponding
SMILES strings. In order to convert SMILES strings into numerical vector representations,
we used the pre-trained Mol2vec model [75] treating it as SMILEs featurizer which produces
300-dimensonial vectors of continuous values. These representations served as an input to
DVAE.

Another considered features of compounds were their inhibition profiles, i.e., their binding
strengths across a panel of 294 protein kinases. Such inhibitory profiles were available and
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extracted for 117 compounds from the HMS LINCS KINOMEscan data resource [157]. The
value for a given compound-kinase pair represents a percent of control, where a value of 100%
means no inhibition of kinase binding to its ligand in the presence of the compound, and
where low value means a strong inhibition [158, 159].

Data to characterize the 922 cell lines were downloaded from the GDSC. For the molecular
features of the cell lines, we considered only the genes coding for kinases present in the
KINOMEscan dataset, as well as subset of putative gene targets of considered compounds.
This resulted in a set of 202 genes, for which mRNA expression levels (202 features) and
binary mutation calls (21 features) were extracted for all cell lines. Furthermore, the dummy-
encoded tissue type was added, producing additional 18 binary features, yielding the final set
of 241 biological features for 922 cell lines.

For the drug response indicators in Y g we used the log half maximal inhibitory concen-
tration (IC50) values from GDSC. For a given compound-cell line pair, IC50 is defined as a
drug concentration needed to reduce cell viability by 50%. Note that some values in Y p were
missing since not every cell line is screened against every available compound.

In principle, guiding labels in y& could be any discrete class assignments for compounds.
In this case, we utilized inhibition profiles from X; to assign compounds to their functional
categories. To this end, compounds were clustered according to their inhibition profiles using
K-means, with the number of clusters set to G = 3. Cluster assignments resulting from this
approach were then used as the guiding labels for the 117 compounds with known inhibition
profiles.

Experimental setup, VADEERS model architecture, training and imple-
mentation

The validation and test sets were constructed by randomly selecting two sets of 100 unique cell
lines each. We then extracted the compound-cell line datapoints containing selected cell lines
and used them to construct validation and test sets, while the rest of the pairs corresponding
to the remaining 722 unique cell lines constituted the training set.

The hyperparameters of the model were empirically determined using the validation set.
The encoders for both DVAE and CAE were fully-connected forward networks with two
hidden layers with 128 and 64 neurons, respectively. All of the decoders followed a similar
architecture, but with 64 neurons in a first hidden layer and 128 in a second. The latent space
dimensionality in both DVAE and CAE was set to 10.

The DSPN was a fully-connected network with three hidden layers with 512, 256 and 128
neurons, respectively, and an output layer outputting an IC50 prediction. Dropout with p =
0.5 was applied at the first and second layer. ReLu activation function was used throughout
the whole model.

Model training was performed on 200 epochs using the Adam optimizer [83] with a learning
rate of 0.005 and batch size of 128. The whole model was trained together for the first 150
epochs, after which, DVAE and CAE were frozen and DSPN alone was trained for another
50 epochs with a newly set learning rate of 0.001, decreasing by a factor of 0.1 with every
10 epochs. In addition, every 1000 training steps there was a break devoted to only training
DVAE part. During each break, DVAE was trained for 100 epochs using only compounds with
known inhibition profiles, with the batch size of 8. For the purpose of experiments, the r loss
function weights were all set to 1. Both the number of unique guiding labels and components
in GMM prior were set to 3, i.e, G = K = 3.

The neural networks related code was implemented using Python 3.8.8, PyTorch 1.10.0
and PyTorch Lightning 1.5.0. K-means clustering for the guiding data was implemented using
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scikit-learn 1.0.1 [125].

6.3. Results

We evaluated three versions of the proposed model, differing by the way the DVAE module
was implemented: i) a classical VAE with the standard normal prior ("Vanilla VAE"), ii), the
DVAE as described in Section 6.2 (with GMM prior and loss function given by Eq. (6.7) and
(6.11), however, only weights 7;’s and components’ means j;’s were the trainable parameters
of the GMM prior (Eq. (6.6)), while components’ covariance matrices ¥;’s set to be identity
matrices ("GMM VAE constrained"), iii) the DVAE was as described in Section 3.2., in its
least constrained version, where all parameters of the GMM, including ¥j’s, were trainable
("GMM VAE unconstrained").

DVAE version IC50 RMSE IC50 Pearson IP RMSE

Vanilla VAE 1.33+0.022 0.87£0.006 1.13+0.109
GMM VAE constrained 1.33+£0.023 0.87£0.006 1.09 +0.062
GMM VAE unconstrained 1.34 £0.012 0.87£0.004  1.04 +0.030

Table 6.1: IC50 and IP prediction performance for VADEERS with different versions of
the DVAE module.

Predictive performance

The predictive performance of the IC50 estimation was assessed by calculating the root mean
squared error (RMSE) and Pearson correlation between the true and predicted IC50 values.
In addition, we computed the RMSE between the true and predicted inhibition profiles,
corresponding to the second decoder in DVAE (Table 6.1). This procedure was repeated five
times with different random data splits (see Methods).

Despite the large differences in the complexity of the prior distribution, the three model
versions perform almost equally well in terms of IC50 prediction. This suggest that models
achieved the limit of predictive performance for this particular dataset. Although the opti-
mization of the IC50 prediction was not the main goal of this study, the low RMSE and high
correlation indicate that VADEERS correctly captures drug and cell line features and reliably
predicts the sensitivity of unseen cancer cell lines to kinase inhibitor drugs.

In contrast to IC50, the three model versions do differ in terms of the ability to reconstruct
inhibition profiles (Table 1), measured by RMSE between true and reconstructed IPs. The
best result in that regard is achieved by the GMM VAE unconstrained model (RMSE = 1.04).
Such a result is expected, as lower constraints on the latent space representations make it
easier for the model to optimize this metric. However, note that in the described setup the IP
RMSE metric was computed for the training data, therefore it should rather be interpreted as
model’s ability to converge w.r.t. this particular metric than model’s predictive performance.
Still, this result suggests that the nature of the latent space is important with regard to the
decoding, in the sense that this task is not entirely dependent on the decoder alone and is
improved by imposing a latent space’s structure.

Latent space structure

Figure 6.2 compares the structures of the latent spaces of the three considered models. It is
clear that in both GMM VAE models the clustering defined by the guiding labels is preserved
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Figure 6.2: Latent spaces of the three VADEERS model versions, differing by the DVAE
subnetwork. For each model, the latent representations of the 117 compounds with guiding labels
(see Section 6.2) are obtained by passing their SMILES representations to the model’s DVAE’s encoder.
The encoder’s output for a given model is then plotted in 2D using principal components analysis
(PCA) and colored with the corresponding guiding labels. Results for the first of five random data
splits.

in the latent space (Fig. 6.2 b, c), i.e. points with the same guiding label are grouped
together. By visual assessment, the clusters are the most clearly separated for the GMM
VAE unconstrained model (Fig. 6.2c). This is also reflected by the corresponding Silhoutte
scores that are much higher for GMM models than for Vanilla VAE, with the highest one
obtained by GMM VAE constrained (Fig. 6.3a). Interestingly, the latent clustering is to
some extent preserved also for the Vanilla VAE model version (Fig. 6.2a). This suggests
that the sole presence of the IP decoder encourages compounds with similar IPs to group
together. However, the use of the GMM prior imposes that explicitly. Most importantly,
the GMM prior defines the clusters of latent drug representations by associating them to the
GMM components, with each guiding label obtaining its separate cluster. In this way, first,
we are able to assign a label to a new drug by finding its latent representation and component.
Second, we are able to generate new drugs with a pre-specified guiding label.

Generative performance

In a VAE, new data points can be generated by first sampling from the latent prior and then
passing each sample z to a decoder. The use of a GMM instead of a normal prior allows to
perform this process more precisely; the sample z can be obtained from a given, kth Gaussian
component, which should reflect the actual properties of the compounds in the guiding data
space. This is the case in this study, where the guiding labels stem from the clustering in the
space of the drugs’ IPs. In Fig. 6.4, we verify this hypothesis by visualizing the IPs of the
generated samples.

The IPs generated by the Vanilla VAE model do not form any particular clusters (Fig.
6.4b). In contrast, the samples generated from both GMM VAEs clearly confirm that the
above assumption is correct; samples generated from different components are also distin-
guishable after decoding, i.e. the information regarding the latent component is preserved in
the true data space (Fig. 6.4c, d). Interestingly, not only the grouping of the data points
into clusters, but even the actual mutual spatial arrangement of those clusters is preserved
between the true IPs (Fig. 6.4a), latent space (Fig. 6.2 b, c¢), and the generated IPs (Fig.
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Figure 6.3: Numerical assessment of models’ generative performance. All presented metrics
are averaged over five experimental runs, with error bars corresponding to standard deviations across
experimental runs. (a) Silhouette score of latent representations, with compounds’ guiding labels as
compounds’ true clusters. (b) Silhouette scores of generated inhibition profiles, with GMM compo-
nents from which samples are drawn as true clusters. (c) Average RMSE (left panel) and Pearson
correlation (right panel) between true and generated feature-wise, within-cluster IPs’ statistics, shown
for cluster means (centroids) and STDs. Average metrics are taken by first averaging over all three
clusters and next over the experimental runs.
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Figure 6.4: True and generated inhibition profiles visualized in 2D. (a) The true IPs for
the 117 available drugs. (b) 900 IPs generated from the Vanilla VAE. (c) IPs generated from the
GMM VAE constrained model. 300 samples are drawn. (d) IPs generated from the GMM VAE
unconstrained model. Again, 300 samples are drawn per-component. Colors correspond to guiding
label or a corresponding GMM component, see Fig. 6.2 for legend.
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6.4c, d). However, note that the points are visualized after PCA. Fixing GMM components’
3 to I impacts the generated IPs; GMM VAE constrained produces more concise and better-
separated clusters than unconstrained (Fig. 6.4c, d), which is also reflected by corresponding
Silhouette scores (Fig. 6.3).

The similarities between the true and generated IPs can also be shown without resolving
to dimensionality reduction methods by computing per-cluster, feature-wise statistics such as
mean or standard deviation (STD) (Fig. 6.5), where feature-wise means can be thought of
as clusters’ centroids. The IPs generated by both variants of GMM VAE exhibit an excellent
concordance with true data in terms of cluster means (Fig. 6.5a). This is apparent on both
absolute values level and correlation across features within a given cluster. For example,
for a true data, cluster 2 in general corresponds to relatively high inhibition, but for some
kinases (features) inhibition is low, and low inhibition of exact same kinases is observed for
the generated data. While differences between GMM VAE constrained and unconstrained
in terms of generated IP centroids are hard to assess visually, this is not the case for the
within-cluster, feature-wise STDs (Fig. 6.5b). Again, the effect of fixing GMM components’
STD is visible; for the constrained model, within-cluster STDs are much smaller compared
to the true ones. This also demonstrates that IP decoder has relatively low variance; namely,
it is unable to compensate for the low variance of samples from p(z) in order to bring the
generated data’s STD closer to the true one. In case of the unconstrained model, the STD is
higher and closer to the true one. This clearly demonstrates that in the absence of constraints,
the learned components’ STDs are larger, and more closely resemble the true data. Indeed,
for this particular model, the average value in the covariance matrices X is 9.25. These
differences are also clear when assessed by computing the RMSE between true and generated
IPs’ STD averaged across all three components (Fig. 6.3c).

In essence, numerical results support all the observations made based on visual assess-
ment. The quality of clustering in the latent space is the highest for GMM VAE constrained
model (mean Silhouette score across five experimental runs 0.095), followed by GMM VAE
unconstrained and the lowest value obtained by Vanilla VAE (Fig. 6.3a). Similarly, GMM
VAE constrained obtains better clustering quality of generated IPs than the unconstrained
version (Silhouette scores 0.223 and 0.177, respectively, Fig. 6.3b).

In contrast, GMM VAE constrained obtains slightly worse results than unconstrained
in terms of within-cluster statistics similarity between true and generated IPs (6.3c). Both
constrained and unconstrained models are similarly close to the original data in terms of
cluster centroids (average RMSE between true and generated centroids across three clusters
of 5.228 and 4.627, respectively), especially in terms of correlation (average Pearson correlation
0.928 and 0.947, respectively). As in Fig. 6.5b), the differences are more noticeable when
considering within-cluster STDs; both models achieve similar correlation (0.783 and 0.796,
respectively), but GMM VAE constrained is worse than unconstrained w.r.t. RMSE (9.602
for constrained and 6.407 for unconstrained).

6.4. Discussion

In this work, we propose VADEERS, a multi-task generative recommender system for drug
sensitivity prediction. The generative part of the model, DVAE, is a variational autoencoder
with two decoders and a GMM latent prior. The latent GMM is optimized using guiding
labels in order to reflect a given external clustering. This allows to sample data points from
a cluster of interest, i.e., having specific desired features. Hence DVAE, along with other
modules, forms a comprehensive model of drugs’ and cell lines’ properties and interactions,
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Figure 6.5: True and generated IPs’ feature-wise, within-cluster (a) means and (b) STDs.

with a guided generative ability.

One of the limitations of the proposed model is its inability to generate data points with
totally arbitrary features. Namely, the model allows to generate new data points with prop-
erties that strictly reflect the clustering observed in the training data. In principle, this could
be bypassed by performing various operations on multiple generated data points, however,
testing this hypothesis was not in the scope of this analysis. Another important limitation
corresponds to the analyzed data; a different choice of data for drugs’ representations (e.g.
representing SMILES strings as graphs) and guiding data might be more suitable for generat-
ing molecule candidates, which, at least in theory, could be synthesized. Both above aspects
are directions of future work regarding this study.

This work introduces several key concepts important for drug sensitivity modeling and
compound generation. Still, the proposed model, and more specifically, GMM VAE with
semi-supervised clustering with guiding labels, is generic and not limited only to modeling
compounds. The notion of optimizing latent space with guiding labels can potentially be ben-
eficial and improve the performance of generative models also in other applications. Moreover,
the proposed model offers additional functionality not exploited in this study. For example,
setting the number of Gaussian components K greater than number of unique labels G might
lead to identification of novel subgroups of samples, not limited to the original choice of
guiding labels.

Since VADEERS integrates several sources of data on compounds, cell lines, and drug
sensitivity, it can provide important insights regarding these modalities. For example, the
usage of the guiding labels and subsequent sampling from a given Gaussian component helps
to identify the relationship between variables used as guiding labels and the variables which
are decoded by DVAE, i.e, the SMILES embeddings and IPs. The model comes with the
added bonus of the drug sensitivity estimation for these samples for a given cell line or a
panel of cell lines.

In principle, any work on models involving generation of compounds with given properties,
including the one presented here, can potentially be used to generate or help to generate
harmful chemical agents, such as highly addictive or toxic compounds. In addition, it should
be stated that any compound candidate or drug sensitivity estimation originating from an in
silico model, including the one presented here, is not properly validated in experimental nor
clinical setting and should not be directly acted upon without such a validation.

The crucial difference between this work and two previous ones is the new field it enters,
namely the generative modeling, here in the context of chemical compounds. As mentioned in
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the introduction to this chapter, we felt that methods for compounds’ generation in the biolog-
ical context has not been extensively studied, which was the motivation to enter the topic of
generative modeling. From the technical standpoint, VADEERS is the most natural extension
of the previous DEERS model with the generative component; essentially drug autoencoder
was replaced by drug variational autoencoder with two decoders. However, there are other
major changes; VADEERS model aims also at predicting drugs’ inhibition profiles from raw
data, namely SMILES strings, rather than receiving them as input. This adds another di-
mension to model’s multi-task nature; multi-tasking not only refers to multiple compounds
themselves but also multiple compounds’ properties. Although the model is formulated in
a general way and is adaptable, the motivation to employ GMM and latent space clustering
was driven by application; previous works showed high variability among compounds and
the primary goal was to capture that variability in a structured way via clustering. Overall;
VADEERS constitutes a major extension to a DEERS model with several new modeling as-
pects. It is also the most comprehensive and technically advanced model from all presented
in the thesis.
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Chapter 7

Summary

The thesis builds upon three research projects in a broad topic of computational drug sensi-
tivity prediction. They consider several major research questions at the intersection of general
machine learning and this specific application. Specifically, the topics undertaken in the the-
sis include multi-task learning, model intepretability, representation learning and generative
modeling.

The work presented in Chapter 4 focuses on choosing appropriate feature selection ap-
proach for modeling drug sensitivity. In this work, a separate model with different feature
selection was developed for each compound, resulting in 2484 distinct models. Although
using existing, standard machine learning algorithms, the study gives several important in-
sights about drug sensitivity modeling, not limited only to feature selection. In the context
of the thesis, this work can be viewed as the one focusing on exploring and understanding of
the nature of the analyzed data, rather than technical modeling advancement, yet still pro-
viding useful guidelines for anti-cancer drug sensitivity modeling. Some of the observations
committed in the study also directly influenced the subsequent research directions.

Chapter 5 describes the Drug Efficacy Estimation Recommender System, or DEERS
model. This work differs from the one from Chapter 4 in several major ways. Rather than
building separate model for every drug, DEERS is a multi-task (in terms of compounds)
model, which makes the sensitivity prediction as a function of both compound’s and cell line’s
features. The choice of compound’s features for this study, namely inhibition profiles across
panel of protein kinases, was partially influenced by observations committed in Chapter 4.
Furthermore, kinase inhibitors constitute perhaps the most prominent class of anti-cancer tar-
geted therapeutics, which makes them an interesting object of research, but, to our knowledge
were not a part of any systematic assessment before. Another major difference is a shift from
conventional machine learning to deep learning. Besides the model itself, DEERS work also
introduces a novel interpretability approach which enables connecting cell lines’ latent space
dimensions to biological processes, which is not limited only to this particular network archi-
tecture. Subsequently, it allowed to connect drug action directly to biological mechanisms in
the cell lines, creating a map which can provide clues about why particular compounds work
against particular cell line. The model is also more technically advanced, as several custom
methodologies have been introduced. In general, this work constitutes a coherent continuation
of the drug sensitivity prediction problem, but with qualitatively different set of tools and
important shifts in emphasis.

Finally, VADEERS, the model depicted in Chapter 6, can be viewed as a natural exten-
sion of the DEERS model into a topic of generative modeling. The motivation for VADEERS
was to build a drug sensitivity prediction model which is not only a discriminator. Namely,
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it operates on probability distributions rather than single data points and has an ability to
generate new objects. Given the potential application, it is more natural to apply generative
modeling to compounds, rather than cell lines. From the technical standpoint, the most nat-
ural way to extend DEERS by a generative component is to replace the drug autoencoder
with a variational autoencoder. However, two other major changes are made. First, the input
compound’s features are replaced by their SMILES strings and inhibition profiles become the
target for prediction by one of two decoders. Secondly, a GMM prior with semi-supervised
guiding is introduced, which enables clustering of the data representations in the latent space
according to external clustering in an independent data space, referred to as a guiding data
space. This not only imposes a structure on the latent space, increasing the model’s inter-
pretability, but, more importantly, enables to sample from a particular Gaussian component
of a prior mixture and generate new samples with defined features that correspond to that
component. Results show that the relationships between data points in a guiding data space
are indeed preserved in the latent space. Moreover, the features of generated, new data points
show very good concordance with the real, observed ones. In summary, VADEERS consti-
tutes the most comprehensive, multitask model presented here, which accounts for multiple
data modalities and which possesses both discriminative and generative abilities.

In summary, this thesis presents a comprehensive and cohesive research related to a single,
but wide topic. Each of the presented works answer a particular subset of the posed research
challenges. Overall, this thesis can be seen as a comprehensive work on computational drug
sensitivity prediction, showing multiple research problems associated with the topic and the
means to address them.
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Appendix A

Chapter 4 Supplementary Material

A.1. Supplementary Methods

A.1.1. Elastic net regression

Elastic net regression belongs to the family of regularized linear regression models where the
target value is expected to be a noisy linear combination of input features. The model intro-
duces the regularization through adding a combination of ¢; and > norms of it’s coefficients
to the loss function. Therefore, elastic net’s optimization problem can be represented as:

1 2 2
min ;”XU} —ylls + apllwll; + a1 = p)lJw]3

where n is the number of samples, X and w represent the input data and coeflicients vector,
respectively. The amount and type of regularization are controlled by hyperparameters o and
p, corresponding to alpha and l1 ratio arguments in scikit-learn implementation [125]. These
two parameters where tuned during cross-validation.

A.1.2. Random forest regression

Random forest is an ensemble method, which works by combining the outputs of several
decision trees in order to make final predictions. In contrast to linear regression, decision
trees is a non-parametric method which learns simple decision rules inferred from the data
features. It’s goal is to partition the input feature space such that samples with similar labels
are grouped together. At each node m, corresponding data @ is split into two subsets:

Quet(0) = (2, y)|lzj <tm
Qright(e) = Q\Qleft

where 6 is a candidate split consisting of a feature j and corresponding threshold ¢,, and
(x,y) represents training samples. Decision trees select parameters j and t,, which minimize
the impurity of resulting subsets. The choice of a specific impurity function depends on
application. In our analysis, we used mean squared error, which is common for regression
tasks.

Decision trees have many advantages, but are also prone to create over-complex graphs
which tend to overfit the data. In random forest, each tree is built from the bootstrap sample
from the training set. Furthermore, the best split at each node is picked from a random subset
of features. Such randomness, combined with averaging the predictions of single trees, helps
to decrease the variance of the overall model. The hyperparameters we tuned when using
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random forests included (following scikit-learn notation): n_ estimators — number of trees in
the ensemble, max features — maximum number of features considered when splitting the
data, maz_depth — maximum depth of the trees, min_ samples split — minimum number of
samples required to perform the split and min_ samples leaf — minimum number of samples
allowed in a leaf node.

A.1.3. Stability selection with lasso regression.

Stability selection [112] works by generating N bootstrap samples of available data and using
an underlying feature selection algorithm (in this case lasso regression) to determine which
features are relevant for a given sample. For every generated sample, it fits the selection
algorithm with a specified value of regularization parameter A, which produces a selection set
SY{\ indicating which features to choose. Given selection sets from each sample, the empirical
probability of choosing a particular feature k£ can be computed as:

N
. S
A A
Iy =Prlk € 8% = = > Tgeqn
=1

i.e. counting the number of times k occurred as an important component for in the samples.
This process is then repeated for several values of A. The final stable set of relevant features
can be then constructed as follows:

Gstabl T
e L I}\leaﬁ{nk > Tihe

where A is a set of all A values and 7y, is a predefined probability threshold. In our work, we
used scikit-learn compatible implementation of stability selection [217] combined with lasso
regression, fitting for N = 100 samples with five different values of A: 107°,107%,5-10~4,1073
and 1072,

When applying automated stability selection, we first fitted the model using five different
values of A and 100 bootstrap samples, which resulted in stability scores corresponding to every
feature. We then iterated over predefined range (0, 1) of stability thresholds 7y, with 0.025
increment, performing the whole modeling process with a corresponding number of features
at each iteration using elastic net regression. This procedure was repeated for five random
data splits. In order to establish the single best stability threshold for every compound, we
averaged the results over data splits. The performance metrics used to evaluate the model
were then the averages of metrics achieved with the chosen best threshold for every data split.

A.1.4. Feature importance derived from random forest

In a single decision tree, the depth of a feature used as a decision node represents the relative
importance of that feature when predicting the target variable. Features present at the top of
a tree contribute to the final prediction result for a bigger fraction of samples. The importance
of a particular feature is also associated with the decrease of impurity when splitting the data
using that feature (i.e. the bigger the importance, the bigger decrease in impurity measure).
Therefore, the corresponding impurity decrease can be used to estimate the feature importance
in a single tree [218]. In random forests, this predictive ability of a given feature can be
averaged over several trees to define a new metric, Mean Decrease Impurity (MDI) [219],
which provides the feature importance estimate with reduced variance.

When using random forest for feature selection, after data extraction and hyperparameter
tuning steps, we first trained the algorithm on the whole training set and extracted a vector

86



with values representing the importance of all features. We then ranged over a grid of values
k, each time performing the whole modeling process using random forests regression with &
most important features and recording the corresponding results. Similarly, as in the stability
selection setting, one best value of k was chosen by averaging the results over five data splits,
and the corresponding performance metrics for best found k£ were averaged in order to evaluate

the model.

A.2. Supplementary Figures
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Figure A.1: P-values of achieved correlations with the test set, calculated based on Stu-
dent’s t-distribution. (a) RelRMSE vs. correlation obtained by the best model for a given drug
(copy of Fig. 3c from the main manuscript for reference). (b) Same plot as in panel a, colored by
the corresponding correlation p-value. (c) Same plot as in panel a, with corresponding correlation
p-values classified into significant and non-significant categories at 0.05 confidence level. See Fig. 1 in
the main manuscript for model abbreviations.
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Figure A.2: Data availability and modeling perfromance grouped by target pathways of
the drugs. (a) Number of available samples per drugs belonging to a specific target pathway. Target
pathways are sorted by median of per-drug samples. The median values are similar across target
pathways (excluding ABL signaling pathway), however, with some pathways exhibiting significant
spread. (b) Median modeling performance versus median number of per-drug available samples across
drugs belonging to given pathways (each point represents a specific target pathway).
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Appendix B

Chapter 5 Supplementary Material

B.1. Supplementary Figures
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Figure B.1: Clustermaps of attribution scores between input features and hidden dimen-
sions for (a) drug autoencoder and (b) cell line autoencoder. Color reflects the importance
of a given feature for a given hidden dimension. The vertical color bars next to the dendrograms
represent the cluster assignment of groups of features.
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Figure B.2: Effect of dependence penalty d shown for (a) drugs and (b) cell lines. First, the
drug and cell line data are passed to drug and cell line autoencoders of the DEERS model, respectively,
obtaining 10-dimensional hidden representations of all drugs and cell lines used in the analysis. The
covariance matrices are calculated across drugs and cell lines in the hidden space. The displayed
covariance matrices correspond to the case where DEERS was trained without depencence penalty
(d =0), and with dependence penalty term d = 0.1.
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Figure B.3: Architecture of the models used for comparison. (a) Linear matrix factorization
model (Lin MF). First, drug and cell line data are linearly projected to 10-dimensional hidden rep-
resentations. Prediction of the response of a cell line to a drug ¢ is obtained by applying the dot
product to the corresponding hidden representations. (b) Non-linear extension of the basic linear
model (Autoen MF). The dimensionality reduction is performed via autoencoders with one hidden
layer. Prediction of the response of a cell line to a drug is again obtained by taking the dot product
of the corresponding, 10-dimensional hidden representations. Drug and cell line data reconstruction
errors are also included in the optimization goal.
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