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Abstract

The rapid growth of computer industry requires creating large, highly complicated
and sophisticated software. This implies increasing probability for errors, bugs
and failures. Various software verification techniques are used to ensure quality of
produced programs. Unfortunately, verification using formal methods is not very
popular, because it is considered not practical and expensive. Therefore, formal
methods are used to verify only high risk programs, such as control software for
nuclear power plants or flight control software in airplanes.

The goal of this thesis is to design a static analysis technique that uses formal
methods and can be applied to real, large computer software created in Java lan-
guage. Three topics were raised.

First, the thesis focuses on the abstract interpretation framework, which is a the-
ory of sound approximation of program semantics. In particular, we are interested
in numerical abstract domains. We propose a new approach on the abstract do-
main of boxes, which is a disjunctive refinement of the domain of intervals, and
we introduce thresholds in the construction of the widening operator for the do-
main. We present a construction of domain elements based on the sweeping line
technique, implementation of domain operators, transfer function and widening
operator. We introduce two versions of the widening operator: a generic one, and
the second one with a theorem about one-step precision of the operator depending
on thresholds.

Next, practicality of formal methods is investigated. A tool CodeStatistics is in-
troduced, that makes it possible to discover particular coding patterns on large Java
projects and to generate specifications. An experiment is described, where the tool
was successfully used to generate JML loop termination specifications on a set of
large and popular Java projects.

Finally, an extension of the pattern discovery technique from the second part by
the use of a semantic analysis is presented, in particular by abstract interpretation.
It is shown that the combination is useful in evaluating abstract interpretation do-
mains on real code. Additionally, it is presented that the new widening operator
introduced in the first part of the thesis is more precise in practice than the one
known so far.
Key words: static analysis, formal methods, abstract interpretation, widening op-
erator, Java, termination, specification generation
ACM Classification: D.2.4, F.3.1, F.3.2





Streszczenie

Szybki rozwój przemysłu komputerowego wymaga budowy coraz potężniejszych
i coraz bardziej skomplikowanych systemów, które potrzebują bardzo zaawanso-
wanego i złożonego oprogramowania. Niesie to ze sobą rosnące prawdopodobień-
stwo wystąpienia błędów. Różne techniki weryfikacji programów są stosowane do
zwiększenia jakości oprogramowania. Niestety, techniki wykorzystujące metody
formalne nie są zbyt popularne, ponieważ uważa się je za niepraktyczne i dro-
gie. Zastosowanie metod formalnych jest ograniczone do weryfikacji systemów
zwiększonego ryzyka, takich jak oprogramowanie sterujące elektrownią jądrową
czy oprogramowanie kontroli lotu w samolotach.

Podstawowym celem niniejszej rozprawy doktorskiej jest stworzenie techniki
analizy statycznej opartej na metodach formalnych, którą można stosować na rze-
czywistych programach pisanych w języku Java. Poruszono trzy zagadnienia.

Najpierw skoncentrowano się na technikach abstrakcyjnej interpretacji, która
jest teorią przybliżania semantyki programu. W szczególności rozważane są nu-
meryczne dziedziny abstrakcyjne. Zaproponowano nowe spojrzenie na dziedzinę
pudełek, która jest dysjunktywnym rozszerzeniem dziedziny przedziałów, oraz za-
stosowano techniki punktów progowych w operatorze rozszerzającym dla tej dzie-
dziny. Przedstawiono konstrukcję elementów dziedziny pudełek bazującą na tech-
nice zamiatania wraz z operacjami kratowymi, funkcją transferu i operatorem
rozszerzającym. Wprowadzono dwie wersje operatora rozszerzającego: pierwszą
ogólną, drugą z twierdzeniem o precyzji jednego kroku rozszerzania uzależnionej
od punktów progowych.

Następnie skupiono się na praktyczności metod formalnych. Przedstawiono na-
rzędzie CodeStatistics, które służy to wyszukiwania wzorców w kodzie źródło-
wym Javy i umożliwia generowanie specyfikacji. Zostało ono z sukcesem wyko-
rzystane do wygenerowania warunków terminacji pętli w formacie klauzul decre-
ases języka JML na zestawie dużych, popularnych projektów.

Na koniec zaprezentowano rozszerzenie techniki wyszukiwania wzorców będą-
cej przedmiotem rozważań etapu poprzedniego, o techniki analizy semantycznej,
w szczególności abstrakcyjnej interpretacji. Wykazano, że połączenie takie może
zostać praktycznie zastosowane do oceny dziedzin abstrakcyjnej interpretacji na
rzeczywistych programach. Ponadto pokazano, że nowy operator rozszerzający
z części pierwszej daje wyniki dokładniejsze niż dotychczas znany.
Słowa kluczowe: analiza statyczna, metody formalne, abstrakcyjna interpretacja,
operator rozszerzający, Java, terminacja, generowanie specyfikacji
Klasyfikacja tematyczna ACM: D.2.4, F.3.1, F.3.2
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Chapter 1

Introduction

1.1 Motivation
Due to the popularity of computers, computer software became a very large indus-
try. According to market researcher DataMonitor [45], the value of the worldwide
software industry in 2009 was 242.4 billion dollars. DataMonitor forecasts that in
2014 the global software market will have a value of 330 billion dollars, which is
a 36,1% increase since 2009. According to a report by Market and Markets [78],
the mobile application marketplace in 2010 was around 6.8 billion dollars and is
estimated to reach 25 billion dollars by 2015. Fig. 1.1 presents growing numbers
for the most popular mobile application stores — Apple AppStore and Android
Market.
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(a) Apple AppStore
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(b) Android Market

Figure 1.1: Statistics of number of applications and total number of downloads for
the most popular smartphone application stores.
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Chapter 1 Introduction

The increasing popularity of computers results in building more powerful and
complex computer systems. They require large, highly complicated and sophis-
ticated software. Fig. 1.2 presents increasing size of source code for a few very
popular open source projects.
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(a) Eclipse programming IDE
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(c) MySQL database
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(d) Python programming language

Figure 1.2: Project growth in time for selected open source projects.

The growth of both complexity and size of programs implies increasing prob-
ability for errors, bugs and failures. Unless, of course, the production process is
strictly supervised. Usually errors and crashes are harmless but there are some ar-
eas, where errors simply cannot happen. Errors in programs have caused a number
of spectacular failures:

Mariner 1 [21] A bug in the flight software of a NASA probe Mariner 1 caused
the rocket to divert from the desired path on launch. The investigation dis-
covered that the error was in a hand-transcription of a mathematical formula
in the program specification.

Therac-25 [76] Therac-25 was a radiation therapy machine. Between June 1985
and January 1987 six people were overexposed during treatments by the
machine, which resulted in deaths and serious injuries. As it turned out, the
cause of the accidents was the software that operated the machine. It was

2



1.2 Software Verification

written by a single person, there was no specification involved, very little
documentation was produced during the development. Additionally, there
were lacks of quality control and finally hardly any tests were executed.

Ariane 5 [48] On June 4, 1996 a rocket Ariane 5 self-destructed 37 seconds af-
ter launch due to a malfunction in the control software. The problem was
that the newly designed rocket reused the navigation package code from the
previous version — Ariane 4. The new rocket was faster, therefore some val-
ues became higher. Just after the start of Ariane 5, a conversion from 64-bit
floating-point number to a 16-bit integer generated an overflow. The error
was caught but the code executed shut down whole subsystem and rocket
veered off the course and exploded. Fortunately, there were no victims but
the losses reached approximately 370 million dollars.

As computers and programs become more and more crucial to human civilisation,
one should put more effort to ensure high quality of produced software. There are
various methods that can be used to serve the purpose.

1.2 Software Verification
Software verification can be considered as any type of analysis, the goal of which
is to find errors in programs or check if program does what it was intended to do. In
general, by applying verification one wants to assure that the software satisfies the
requirements. There are two possible approaches to software verification: dynamic
and static.

1.2.1 Dynamic Software Verification
The concept of dynamic software verification (or runtime verification) covers test-
ing in general — unit tests, integration tests, system tests, functional tests, accep-
tance tests, stress tests etc. Dynamic software verification is the most popular in
practice, mostly because the actual product is tested thus it is easier to understand
by non-technical people. The main problem of such approach is that it is usually
not feasible to cover all possible executions, therefore one cannot be sure if the
software that passes all the tests does not contain any errors and meets all the re-
quirements.

The most popular method to ensure the quality of software in practice is unit
testing [11]. The idea is to create a set of tests for each unit of the source code. The
goal is to show that every individual unit works as expected, where the expected
behaviour is expressed by placing assertions in the unit test scenario. Unit testing

3



Chapter 1 Introduction

is often used internally in companies to assure that the produced code works prop-
erly. There is also a practice called continuous integration, which relies on unit
tests. The idea is that every change in the source code that is applied to a source
code repository triggers an automatic build process of the changed application and
execution of a number of unit tests for that application. This way, one can assure
that every build that is created presents some quality. The continuous integration
methodology plays very nicely with regression tests: for example, when an error in
application is found, a new unit test is written to cover the scenario, so that every
future build will be tested against that particular error.

Unit tests are also often used by the other side of a contract — clients. Usually,
when a piece of software is ordered, a series of tests is prepared — they are so
called acceptance tests. Unit tests may be a part of them. Acceptance tests may be
prepared by either client, the producer or by both sides. Passing the tests results in
the acceptance of the product and the final payment for the work.

In practice unit tests work quite well. The main problem is that it is hard to
reach satisfactory code coverage. Usually, it is not feasible to create scenarios for
all possible executions of a program.

1.2.2 Static Software Analysis
The static analysis is the analysis of program code, which may be either the source
code form, bytecode or even machine code, without actually executing the program
itself. The notion of static software verification is a very wide subject, it covers:

Checking code conventions — whether the source code meets some guidelines
specific for the programming language used. These conventions cover quite
broad spectrum: from organisation of files, naming conventions to indenta-
tion, comments or white space. Code conventions improve readability of the
source code, which allows engineers to understand it much quicker. This is
important for two main reasons: the first one is that about 80% of lifetime
cost of software goes to maintenance [82]. The second one is that hardly any
software is maintained by the same author for its whole lifetime.

Detection of bad practices — searching for so-called anti-patterns, which are pat-
terns that are very common but known to be faulty, ineffective or counter-
productive [19]. When such anti-pattern is detected, by means of refactori-
sation, one may fix the code and introduce design patterns [19, 55], which
are a commonly known to be reliable. Additionally, since design patterns
are popular and people understand them, the code is more comprehensive.

4



1.3 Goal of the Thesis

Calculation of software metrics — measure some property of software. There
are some metrics that help to find fragments of code that are very com-
plex, e.g. McCabe’s cyclomatic complexity metrics [80] measures the num-
ber of linearly independent paths through the source code of a program (or
method). Other, such as Depth of Inheritance or Number of Children, may
suggest bad design of class structure.

Formal verification — this is the analysis that uses mathematical formal methods
in order to prove some property of the analysed program. Based on some
mathematical theory one can conclude that the program, when executed,
will not contain a specific type of error, e.g. integer overflow error or array
out of bounds error.

In the thesis we focus on the last item — formal verification. In the rest of the thesis
by verification we mean static verification using formal methods. One of popular
formal methods is abstract interpretation. It may be used to verify software, e.g.
it was successfully applied to ensure quality of the Airbus A340 and A380 flight
control software [47]. Also it might be applied to automatically infer invariants
of a program. A great advantage of abstract interpretation is that the technique is
fully automatic. It might be imprecise but does not require any attention from the
user.

Commercial applications often do not make use of specification and verification
techniques, because people believe that such theoretical solutions are not appli-
cable to software created for the real market. Business managers know that em-
ploying formal methods would increase quality of produced software, but these
methods are considered to be very expensive and impractical. Therefore, program
specification and verification methods are used only in critical components or high
risk software, e.g. avionics [30] or in nuclear power plants control software [93],
places where correctness and reliability is crucial [13]. It is considered to be not
profitable to apply these techniques to standard code.

1.3 Goal of the Thesis
The goal of the thesis is to develop a method that could be used to investigate
practicality of a particular software verification technique, abstract interpretation,
in real Java code. We divide this into three steps:

• we present a numerical abstract interpretation domain with new: generic and
highly configurable widening operator,

5



Chapter 1 Introduction

• we create a tool that makes it possible to discover particular coding patterns
on large Java projects and to generate specifications (we show its usefulness
through generation of JML loop termination specifications),

• we also apply the tool to evaluate the strength of the developed domain and
the proposed widening operator.

1.4 Overview of the Thesis
The dissertation is organised into seven chapters. The current chapter provides
the introduction to the thesis including motivation and goals. Chapter 2 provides
necessary mathematical definitions, introduction to the abstract interpretation and
a brief presentation of the Java Modeling Language. Chapter 3 is an overview of
numerical abstract domains and existing approaches to path-sensitive analysis.

Chapter 4 is the main theoretical contribution of the thesis — we introduce a new
approach to the abstract domain of boxes and a new widening operator for the
domain. The preliminary results have been the subject of a publication [69]. We
present here an extended version and complete proofs.

Chapter 5 is a description of CodeStatistics — a tool for Java language, that can
be used to find patterns in code and compute statistics of their occurrences. We
also present an application of CodeStatistics — an experiment that shows that we
are able to generate about 80% of termination conditions for numerical for loops.
The preliminary results have already been published in [54].

Chapter 6 combines two previous chapters. First, we describe an implementa-
tion of an abstract interpreter tool for Java — JavaAI . The domain of boxes with
the proposed widening operator is implemented in the analyser. Next, we present
how a combination of pattern discovery extended by results of the abstract inter-
pretation analysis can be applied for practical evaluation of abstract domains.

Finally, in Chapter 7 we conclude the thesis.
Companion disk
The companion disk included with the thesis provides the following:

• A VirtualBox1 virtual machine: Lubuntu 12.04 Linux distribution with full
environment configuration to run the software created for the thesis.

• Built version and sources of both CodeStatistics and JavaAI .
• Output and input files of both experiments.

Further instructions are in the README.txt file on the companion disk. The con-
tents of the disk is also available at http://www.mimuw.edu.pl/~kjk/phd/.

1For details see: https://www.virtualbox.org/
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Chapter 2

Preliminaries

In this chapter, we introduce definitions and notations that are used throughout
the thesis. In Section 2.1 and Section 2.2 we focus on basic mathematical concepts.
Next, in Section 2.3 we define a simple imperative language, which we use later
in the abstract interpretation analysis. In Section 2.4 we introduce the abstract
interpretation framework. Finally, Section 2.5 is a brief introduction to the Java
Modeling Language that is used later in Chapter 5.

2.1 Relations, Orders and Lattices
We start with fixing basic notation used throughout the thesis. In programming,
language semantics are usually expressed in terms of partial orders.

Definition 2.1.1. A partially ordered set (or a poset) is an ordered pair ⟨𭒟, ≤⟩,
where 𭒟 is a set and ≤ ∶ 𭒟 × 𭒟 → 𭒟 is a binary relation that fulfils the following
conditions:

• reflexivity — for all a ∈ 𭒟 it holds that a ≤ a,

• anti-symmetry — for all a, b ∈ 𭒟 if a ≤ b and b ≤ a then a = b,

• transitivity — for all a, b, c ∈ 𭒟 if a ≤ b and b ≤ c then a ≤ c.

Let ⟨𭒟, ≤⟩ be a partially ordered set and 𭒳 be any subset of 𭒟. For x1, x2 ∈ 𭒟 we
write x1 < x2 to denote x1 ≤ x2 ∧ x1 ≠ x2. An element a ∈ 𭒟 is called an upper
bound of 𭒳 if for all x ∈ 𭒳 it holds that x ≤ a. Dually, b ∈ 𭒟 is called a lower
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bound of 𭒳 if for all x ∈ 𭒳 it holds that b ≤ x. We call a ∈ 𭒳 the greatest element
in 𭒳 if for any x ∈ 𭒳 it holds that x ≤ a. The greatest element in the whole set 𭒟,
if it exists, is denoted by ⊤. Analogically, a ∈ 𭒳 is the least element in 𭒳 if for any
x ∈ 𭒳 it holds that a ≤ x. The least element in whole set 𭒟, if it exists, is denoted
by ⊥.

Definition 2.1.2. Let ⟨𭒟, ≤⟩ be a partially ordered set and 𭒳 ⊆ 𭒟. An element
a ∈ 𭒟 is the least upper bound of 𭒳 if it is an upper bound of 𭒳 and for all b ∈ 𭒟
if b is an upper bound of 𭒳 then a ≤ b.

Definition 2.1.3. Let ⟨𭒟, ≤⟩ be a partially ordered set and 𭒳 ⊆ 𭒟. An element
b ∈ 𭒟 is the greatest lower bound of 𭒳 if it is a lower bound of 𭒳 and for all a ∈ 𭒟
if a is a lower bound of 𭒳 then a ≤ b.

Both the least upper bound and the greatest lower bound may not exist. If the least
upper bound of 𭒳 exists, we denote it as ⨆ 𭒳. Analogically, if exists, the greatest
lower bound is denoted by ⨅ 𭒳.

We say that a partially ordered set 𭒟 satisfies the ascending chain condition, if
for any sequence of elements from 𭒟: x1 ≤ x2 ≤ … there exists an index n > 0
such that: xn = xn+1 = xn+2 = …, i.e. the sequence is eventually constant.

Definition 2.1.4. A lattice is a partially ordered set ⟨𭒟, ≤⟩ such that for every pair
of elements a, b ∈ 𭒟:

• the set {a, b} has the least upper bound (join), denoted as a ∨ b,

• the set {a, b} has the greatest lower bound (meet), denoted as a ∧ b.

When one needs to prove that a partially ordered set is a lattice, an equivalent
definition may be useful:

Definition 2.1.5. A lattice is an algebraic structure ⟨𭒟, ∧, ∨⟩, where ∧, ∨ ∶ 𭒟 ×
𭒟 → 𭒟 are binary operations that are:

• commutative — for all a, b ∈ 𭒟 it holds that a ∨ b = b ∨ a and a ∧ b = b ∧ a,

• associative — for all a, b, c ∈ 𭒟 it holds that a ∨ (b ∨ c) = (a ∨ b) ∨ c and
a ∧ (b ∧ c) = (a ∧ b) ∧ c,

• idempotent — for all a ∈ 𭒟 it holds that a ∨ a = a and a ∧ a = a,

• fulfil absorption laws — for all a, b ∈ 𭒟 it holds that a ∨ (a ∧ b) = a and
a ∧ (a ∨ b) = a.
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The equivalence between these two definitions can be seen by an isomorphism,
where x ≤ y ⟺ x ∨ y = x ⟺ x ∧ y = y and ⨆ {x, y} = x ∨ y, ⨅ {x, y} =
x ∧ y. In the thesis we find two variants of a lattice especially interesting. The first
one is a bounded lattice:

Definition 2.1.6. We say that a lattice ⟨𭒟, ≤⟩ is bounded if there exist two ele-
ments ⊥, ⊤ ∈ 𭒟 such that ⊥ = ⨅ 𭒟 and ⊤ = ⨆ 𭒟.

The second interesting variant is a complete lattice:

Definition 2.1.7. We say that a lattice ⟨𭒟, ≤⟩ is complete if for every subset 𭒮 ⊆ 𭒟
both ⨆ 𭒮 and ⨅ 𭒮 exist in 𭒟.

In some situations we are not interested in the meet operation:

Definition 2.1.8. A join-semilattice (or upper semilattice) is a partially ordered
set that has a least upper bound for any nonempty finite subset.

We write ⟨𭒟, ≤, ⊥, ∪⟩ to denote a join-semilattice, where ⊥ is the least element
and ∪ is the least upper bound operator.

2.2 Functions and Fixpoints
We proceed with definitions of functions and overview fixpoint theorems that are
later required by the abstract interpretation framework.

We say that f is a function from 𭒳 to 𭒴 and denote by f ∶ 𭒳 → 𭒴. We write f (x)
for the result of f on x. Sometimes a generalisation of a function may be required:

Definition 2.2.1. A partial function from 𭒳 to 𭒴, denoted by f ∶ 𭒳 ⇀ 𭒴, is
a function f ∶ 𭒳′ → 𭒴, for some 𭒳′ ⊆ 𭒳.

Let f ∶ 𭒳 ⇀ 𭒴 be a partial function. We say that the set dom(f ) = {x ∈ 𭒳 ∣
∃y ∈ 𭒴 ∶ f (x) = y} is a domain of f . If f is a function then dom(f ) ≝ 𭒳. An image
of f is defined as im(f ) ≝ {y ∈ 𭒴 ∣ ∃x ∈ 𭒳 ∶ f (x) = y}.

Definition 2.2.2. Let f ∶ 𭒳 → 𭒴 be a function and ⟨𭒳, ≤𭒳⟩, ⟨𭒴, ≤𭒴⟩ be two par-
tially ordered sets. The function f is monotone or order-preserving if it preserves
orderings, that is for all x1, x2 ∈ 𭒳 if x1 ≤𭒳 x2 then f (x1) ≤𭒴 f (x2).

Definition 2.2.3. Let ⟨𭒳, ≤𭒳⟩ and ⟨𭒴, ≤𭒴⟩ be partially ordered sets. An order-
preserving function f ∶ 𭒳 → 𭒴 is continuous or limit-preserving if for any 𭒜 ⊆ 𭒳
it holds that:

f (⨆ (𭒜)) = ⨆ (f (𭒜)),

where f (𭒵) ≝ {f (z) ∣ z ∈ 𭒵} for 𭒵 ⊆ 𭒳 .
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Let f ∶ 𭒳 → 𭒴 and g ∶ 𭒴 → 𭒵 be two functions. Then g ∘ f denotes a function
h ∶ 𭒳 → 𭒵 such that for any x ∈ 𭒳 it holds that h(x) = g(f (x)).

The semantics of a program can be expressed in terms of a fixpoint of a seman-
tic function. We introduce definition of a fixpoint and important theorems about
existence of fixpoints, and how they can be computed.

Definition 2.2.4. A fixpoint of a function f ∶ 𭒳 → 𭒳 is an element x ∈ 𭒳 such
that f (x) = x.

Definition 2.2.5. The least fixpoint of a function f ∶ 𭒳 → 𭒳, where ⟨𭒳, ≤⟩ is
a partially ordered set, is an element a ∈ 𭒳 such that f (a) = a and for all x ∈ 𭒳 if
f (x) = x then a ≤ x.

Definition 2.2.6. The greatest fixpoint of a function f ∶ 𭒳 → 𭒳, where ⟨𭒳, ≤⟩ is
a partially ordered set, is an element a ∈ 𭒳 such that f (a) = a and for all x ∈ 𭒳 if
f (x) = x then x ≤ a.

We denote the least fixpoint of a function f by lfp (f) and the least fixpoint of
a function f that is greater than x by lfpx (f). Dually, by gfp (f) we denote the
greatest fixpoint of f and by gfpx (f) the greatest fixpoint of f that is smaller than
the element x.

Now we recall Tarski’s fixpoint theorem that ensures the existence of a fixpoint
in a complete lattice.

Theorem 2.2.7 (Tarski’s Fixpoint Theorem). Let ⟨𭒟, ≤⟩ be any complete lattice
and a function f ∶ 𭒟 → 𭒟 be monotone. The set 𭒫 of all fixpoints of the function
f is not empty and ⟨𭒫, ≤⟩ is a complete lattice, in particular:

gfp (f) = ⨆ 𭒫 = ⨆ {x ∈ 𭒫 ∣ x ≤ f (x)},

lfp (f) = ⨅ 𭒫 = ⨅ {x ∈ 𭒫 ∣ f (x) ≤ x}.

Proof. See [90].

The most important implication of Theorem 2.2.7 is the existence of both the
least and the greatest fixed point. Unfortunately, the theorem does not yield a con-
struction that could be used to find a fixpoint.

The following two theorems characterise fixpoints in a constructive fashion.
Theorem 2.2.8 uses an ascending Kleene’s chain to obtain the least fixpoint of
a function f — therefore it presents how the fixpoint can be computed.
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Theorem 2.2.8 (Kleene’s Fixpoint Theorem). Let ⟨𭒟, ≤⟩ be a complete partial
order and f ∶ 𭒟 → 𭒟 be a continuous function. Then the least fixpoint of f is the
limit of the following iteration sequence:

f 0(x) = x,
f n+1(x) = f (f n(x)),

that is:
lfp (f) = ⨆ {f n(⊥) ∣ n ∈ ℕ}.

Proof. See [29, Lecture 12].

Next, Theorem 2.2.9 is a constructive version of Tarski’s theorem, by Cousot and
Cousot.

Theorem 2.2.9 (Constructive Version of Tarski’s Lattice Theoretical Fixpoint
Theorem). Let ⟨𭒟, ≤⟩ be a complete lattice and a function f ∶ 𭒟 → 𭒟 be mono-
tone. The set 𭒫 of all fixpoints of function f is not empty and ⟨𭒫, ≤⟩ is a complete
lattice, where:

• gfp (f) = ⨆ 𭒫 = ⨆ {f n(⊤) ∣ n ∈ ℕ},

• lfp (f) = ⨅ 𭒫 = ⨅ {f n(⊥) ∣ n ∈ ℕ},

• the least upper bound operator is λ𭒳 . ⨆ {f n(𭒳) ∣ n ∈ ℕ},

• the greatest lower bound operator is λ𭒳 . ⨅ {f n(𭒳) ∣ n ∈ ℕ}.

Proof. See [36, Theorem 5.1].

2.3 Programming Language Simple
In this section we introduce Simple — a small programming language, which is
used throughout the thesis. The purpose of this language is to instantiate a theory
that is presented in the thesis, and show some examples. Simple is a plain sequential
language that does not contain procedures nor pointers, however it has if and while
loop constructs. There is only one data type that is a selected numeric set, which
is either a set of reals ℝ, rationals ℚ or integers ℤ. All instructions in the language
have unique labels from the set of labels — 𝘓𝘢𝘣.
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<var> ::= variable from the set of variables 𝘝𝘢𝘳
<const> ::= numeric constants from 𝘕𝘶𝘮

<atom> :: = <var> | <const>
<expr> ::= <atom> | − <atom> | <atom> + <atom>

| <atom> − <atom> | <atom> ∗ <atom>

<test> ::= <atom> = <atom> | <atom> ≠ <atom>
| <atom> < <atom> | <atom> ≤ <atom>
| <test> and <test> | <test> or <test>
| not <test>

<instr> ::= <var> ← <expr> | skip
| if <test> then <block> else <block> fi
| while <test> do <block> od

<block> ::= <instr> ; <block> | <instr> ;

<program> ::= program <block> end

Figure 2.1: The syntax of the Simple language described using BNF notation.

2.3.1 Language Syntax
The syntax of the Simple language is presented in Fig. 2.1. Numerical expressions
can use numeric constants from 𝘕𝘶𝘮 and variables from 𝘝𝘢𝘳. Here we do not dis-
tinguish variable names from their mathematical symbols. Numerical expressions
allowed are sum, difference, multiplication and change of sign (unary minus). Sim-
ple does not provide boolean variables, however boolean expressions exist. They
are used in conditional instruction if, and the condition of the while loop. These
conditions can be constructed by comparisons of numerical expressions extended
by negation and binary disjunction, and conjunction operators. A program writ-
ten in Simple is a block of instructions that is a list of instructions separated by
a semicolon ;. The instructions allowed by Simple are the empty instruction skip,
an assignment, a conditional instruction if-then-else, and a while-do loop.

2.3.2 Instruction Labelling
In the abstract syntax of Simple we assume that all instructions are labelled in the
following fashion:
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program
ℒ0 ∶ sum ← 0 ;
ℒ1 ∶ i ← 0 ;
ℒ2 ∶ while ℒw ∶ i < 10 do

ℒ3 ∶ sum ← sum + i ;
ℒ4 ∶ i ← i + 1;
ℒ5

od;
ℒ6

end
(a) Source code

ℒ0

sum ← 0

ℒ1

i ← 0

ℒ2
ℒw

i < 10
ℒ3

sum ← sum + i

ℒ4

i ← i + 1

ℒ5

ℒ6
yes

no

(b) Control flow graph

Figure 2.2: An example of a program written in Simple: (a) program source code
(b) control flow graph of the program with labels (black dots) and tran-
sitions between them (arrows).

• every instruction is labelled — there is a label before every instruction in the
block and after the last instruction in the block,

• every while loop has an additional label, just before the loop test condition
(the label is reached when entering the loop for the first time and after every
loop iteration, just before executing the test).

An example of a program written in Simple language with instruction labelling is
presented in Fig. 2.2(a). Every label that exists in a program is unique. We denote
labels by letters ℒ that might have some additional lower or upper index, e.g. ℒ′

or ℒi. For every program 𭒫 we define the following functions:

• atP ∶ 𝘚𝘵𝘮𝘵 → 𝘓𝘢𝘣 that returns the unique label that appears in a block just
before the instruction in the argument,

• afterP ∶ 𝘚𝘵𝘮𝘵 → 𝘓𝘢𝘣 that returns the unique label that appears in a block
just after the instruction in the argument,

where 𝘚𝘵𝘮𝘵 is the set of all occurrences of instructions in the program. These func-
tions are easily defined by induction on the structure of the syntax of Simple [29,
Lecture 5]. We present a few examples of applications of these functions for the
program from Fig. 2.2:

• atP(sum ← sum + i) = ℒ3,
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• afterP(sum ← sum + i) = ℒ4.

Labels that appear in a program 𭒫 represent control points of a program.

2.3.3 Language Semantics
Let 𝕀 be a selected numerical set, which is either integers ℤ, rationals ℚ or reals
ℝ. The concrete environment is the state of variables of the analysed program, i.e.
a function:

s ∈ 𝘚𝘵𝘢𝘵𝘦 = 𝘝𝘢𝘳 → 𝕀

that maps every variable to its actual value. In order to get the value of a variable
v ∈ 𝘝𝘢𝘳 in the state s ∈ 𝘚𝘵𝘢𝘵𝘦 we apply the function s to the variable v and denote
such application by s v. We write s′ = s[u ↦ c] to denote the update of the state
s and assign value c ∈ 𝕀 to the variable u ∈ 𝘝𝘢𝘳. The updated state s′ ∈ 𝘚𝘵𝘢𝘵𝘦 is
such that for any v ∈ 𝘝𝘢𝘳 :

s′ v =
{

s v if v ≠ u
u if v = u.

Numerical constants that appear in the source of the program are mapped to their
real values by the following semantic function:

𭒩 ∶ 𝘕𝘶𝘮 → 𝕀

that translates strings representing numerical values to real numerical values.

ℰ⟦v⟧ s = s v
ℰ⟦c⟧ s = 𭒩⟦c⟧
ℰ⟦−e⟧ s = − ℰ⟦e⟧ s
ℰ⟦e1 + e2⟧ s = ℰ⟦e1⟧ s + ℰ⟦e2⟧ s
ℰ⟦e1 ∗ e2⟧ s = ℰ⟦e1⟧ s ∗ ℰ⟦e2⟧ s
ℰ⟦e1 − e2⟧ s = ℰ⟦e1⟧ s − ℰ⟦e2⟧ s

where v ∈ 𝘝𝘢𝘳, c ∈ 𝘕𝘶𝘮, e1, e2 ∈ 𝘌𝘹𝘱 and s ∈ 𝘚𝘵𝘢𝘵𝘦.

Figure 2.3: Semantics of expressions for Simple.

Let 𝘌𝘹𝘱 be the set of possible arithmetic expressions created with the syntax
rules from Fig. 2.1. The meaning of an arithmetic expression is given by the fol-
lowing semantic function:

ℰ ∶ 𝘌𝘹𝘱 → (𝘚𝘵𝘢𝘵𝘦 → 𝕀).
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ℬ⟦not b⟧ s =
{

𝘧𝘧 if ℬ⟦b⟧ s = 𝘵𝘵
𝘵𝘵 otherwise

ℬ⟦b1 and b2⟧ s =
{

𝘵𝘵 if ℬ⟦b1⟧ s = 𝘵𝘵 and ℬ⟦b2⟧ s = 𝘵𝘵
𝘧𝘧 otherwise

ℬ⟦b1 or b2⟧ s =
{

𝘵𝘵 if ℬ⟦b1⟧ s = 𝘵𝘵 or ℬ⟦b2⟧ s = 𝘵𝘵
𝘧𝘧 otherwise

ℬ⟦e1 = e2⟧ s =
{

𝘵𝘵 if ℰ⟦e1⟧ s = ℰ⟦e2⟧ s
𝘧𝘧 otherwise

ℬ⟦e1 < e2⟧ s =
{

𝘵𝘵 if ℰ⟦e1⟧ s < ℰ⟦e2⟧ s
𝘧𝘧 otherwise

ℬ⟦e1 ≤ e2⟧ s =
{

𝘵𝘵 if ℰ⟦e1⟧ s ≤ ℰ⟦e2⟧ s
𝘧𝘧 otherwise

ℬ⟦e1 ≠ e2⟧ s = ℬ⟦not e1 = e2⟧ s

where b, b1, b2 ∈ 𝘉𝘌𝘹𝘱, e1, e2 ∈ 𝘌𝘹𝘱 and s ∈ 𝘚𝘵𝘢𝘵𝘦.

Figure 2.4: Semantics of test expressions for Simple.

The function is defined by induction on the syntax of expressions in Fig. 2.3.
We deal with boolean test expressions analogously to arithmetic expressions.

Let 𝘉𝘌𝘹𝘱 be the set of possible test expressions for Simple. The meaning of a test
expression is given by the following semantic function:

ℬ ∶ 𝘉𝘌𝘹𝘱 → (𝘚𝘵𝘢𝘵𝘦 → 𝘉𝘰𝘰𝘭),

where 𝘉𝘰𝘰𝘭 = {𝘵𝘵, 𝘧𝘧}. The constants 𝘵𝘵 and 𝘧𝘧 represent real values of true and false
respectively. The semantics of test expressions in Simple is defined by induction
on the syntax of test expressions presented in Fig. 2.4.

The state element s ∈ 𝘚𝘵𝘢𝘵𝘦 records only the valuation of variables, without
information about the current program point. We extend the definition by adding
information about label ℒ ∈ 𝘓𝘢𝘣 that uniquely determines the current program
point. An execution state for Simple is a pair defined as follows:

⟨ℒ, s⟩ ∈ 𝘌𝘹𝘦𝘤𝘚𝘵𝘢𝘵𝘦 = 𝘓𝘢𝘣 × 𝘚𝘵𝘢𝘵𝘦.

An execution of a program in Simple is a sequence of transitions between elements
of 𝘌𝘹𝘦𝘤𝘚𝘵𝘢𝘵𝘦 starting from some initial state. These transitions describe a control
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flow graph — an example is presented in Fig. 2.2(b). Most of the transitions do not
depend on the current state of the program. The ones that depend on the current
state are conditional transitions (represented by a diamond-shaped nodes), which
appear both in conditional if-then-else statements and while loops.

We introduce a small-step operational semantics [86] for instructions and pro-
grams written in Simple. Operational semantics is a transition system that is a pair
τ = ⟨Σ, t⟩, where:

• Σ is the set of states,

• t is the relation that defines transitions between states from the set Σ: t ⊆
Σ × Σ— we write s t s′ if and only if ⟨s, s′⟩ ∈ t.

For the language Simple it holds that Σ = 𝘌𝘹𝘦𝘤𝘚𝘵𝘢𝘵𝘦 and the transition relation is
deterministic, i.e. for every execution state s ∈ Σ there is at most one state s′ ∈ Σ
such that s t s′.

A transition rule for the Simple language has the following form:

A1 A2 … An

⟨ℒ, s⟩ t ⟨ℒ′, s′⟩

for some n ≥ 1. The meaning is that the transition below the horizontal line exists
if and only if all the conditions above the line, i.e. A1, … ,An, hold.

𭒞 = skip atP(𭒞) = ℒ afterP(𭒞) = ℒ′

⟨ℒ, s⟩ t ⟨ℒ′, s⟩

𭒞 = x ← e atP(𭒞) = ℒ afterP(𭒞) = ℒ′ ℰ⟦e⟧ s = v
⟨ℒ, s⟩ t ⟨ℒ′, s[x ↦ v]⟩

Figure 2.5: Transitions of skip and assignment instructions for Simple.

Two basic transitions for the Simple language are presented in Fig. 2.5. The tran-
sition for skip instruction is trivial: it just moves to the label after the instruction
without any modification of the input state. The assignment instruction first evalu-
ates the assignment expression and then transfers to a state, in which the modified
variable has the computed value.

Next, we deal with transitions for the if-then-else instruction — presented in
Fig. 2.6. The first two transitions depend on the result of the evaluation of the
boolean condition. If the condition evaluates to true, there is a transition that leads
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𭒞 = if b then ℬt else ℬf fi atP(𭒞) = ℒ atP(ℬt) = ℒ′ ℬ⟦b⟧ s = 𝘵𝘵

⟨ℒ, s⟩ t ⟨ℒ′, s⟩

𭒞 = if b then ℬt else ℬf fi atP(𭒞) = ℒ atP(ℬf ) = ℒ′ ℬ⟦b⟧ s = 𝘧𝘧

⟨ℒ, s⟩ t ⟨ℒ′, s⟩
𭒞 = if b then ℬt else ℬf fi afterP(ℬf ) = ℒ afterP(𭒞) = ℒ′

⟨ℒ, s⟩ t ⟨ℒ′, s⟩
𭒞 = if b then ℬt else ℬf fi afterP(ℬt) = ℒ afterP(𭒞) = ℒ′

⟨ℒ, s⟩ t ⟨ℒ′, s⟩

Figure 2.6: Transitions for the if-then-else instruction.

to the label just before the true block. Otherwise, there is a transition that leads
to the label just before the false block. Both transitions are performed without any
modifications to the input state. The next two transitions connect labels after then
block and else block with the label that is after the if-then-else instruction.

𭒞 = while ℒw ∶ b do ℬ od atP(ℬ) = ℒ ℬ⟦b⟧ s = 𝘵𝘵
⟨ℒw, s⟩ t ⟨ℒ, s⟩

𭒞 = while ℒw ∶ b do ℬ od afterP(𭒞) = ℒ ℬ⟦b⟧ s = 𝘧𝘧
⟨ℒw, s⟩ t ⟨ℒ, s⟩

𭒞 = while ℒw ∶ b do ℬ od afterP(ℬ) = ℒ
⟨ℒ, s⟩ t ⟨ℒw, s⟩

𭒞 = while ℒw ∶ b do ℬ od atP(𭒞) = ℒ
⟨ℒ, s⟩ t ⟨ℒw, s⟩

Figure 2.7: Transitions for while loop.

Now we deal with transitions for the while loop — presented in Fig. 2.7. The
first two transitions depend on the evaluation of the loop condition. If the condition
evaluates to true, there is a transition from the special loop label, ℒw to the label
before the loop body. Otherwise, there is a transition from the loop label to the
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label just after the loop. The third transition makes the actual loop in the control
flow graph: it connects the label after the loop body with the loop label. The last
transition connects the label before the loop with the loop label. All transitions
mentioned for the while loop do not modify input states.

2.4 Abstract Interpretation Primer

In most cases, the verification of computer software based on concrete program
semantics is infeasible. However, the precise semantics usually contains much
more information than a verifier needs — the verification process is mainly used
to search for specific types of errors such as index out of bounds error, integer
overflow or null pointer exceptions. Based on these observations, abstract inter-
pretation [28, 32, 39] was created. The idea is to use an abstraction of the real
semantics and focus only on interesting properties of a program. The main as-
sumption of the abstract interpretation is the soundness of the analysis: if there
is no error found in the abstract world, there is no error in the real one. Since the
abstraction deals with only a subset of properties, some of the dependencies that
exist in the real world are not detected. Therefore, the abstract analysis may yield
false positives — it may find a possible error that actually does not occur in the
program.

Abstract interpretation is a general theory for designing approximate semantics
of computer programs. It is used to gather information about programs without
executing them in order to provide answers to questions about their run-time be-
haviour. The essential property of the approximate semantics designed with ab-
stract interpretation is its soundness. The idea is to focus on semantic domains and
relationships between them. We deal with two levels of semantics:

• concrete semantics — an ordering ⟨𭒟, ≤⟩, it is a domain of concrete or exact
properties (elements of 𭒟),

• abstract semantics — an ordering ⟨𭒟♯, ≤♯⟩, which is an approximation of
the concrete one, therefore it deals with abstract or approximate properties.

The most concrete semantics of a program is the standard semantics. Usually,
it is considered as a set of program states that are reachable from any of the in-
put states, where the transition between states can be derived from a single-step
semantics of the program.
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2.4.1 Soundness
The crucial part of the definition of the abstraction is the correspondence between
the concrete and abstract semantics — it is responsible for the soundness of the
abstract semantics. The meaning of abstract properties is defined by a soundness
relation [34] σ ⊆ 𭒟 × 𭒟♯ such that σ(x, x♯) holds if and only if x♯ ∈ 𭒟♯ is a sound
abstraction of x ∈ 𭒟, i.e. the concrete property x enjoys the abstract property x♯.

The goal of the abstract interpretation is to find an abstract property, if any, that
is a correct approximation of the concrete element: for x ∈ 𭒟 find x♯ ∈ 𭒟♯ such
that σ(x, x♯). Because concrete and abstract semantics are orderings, both ≤ and
≤♯ must be compatible with the soundness relation:

• if x♯ is a sound abstraction of x, then also y♯, such that x♯≤♯y♯, is a sound
abstraction of x, however less precise:

∀x ∈ 𭒟 ∶ ∀x♯, y♯ ∈ 𭒟♯ ∶ (σ(x, x♯) ∧ x♯≤♯y♯) ⇒ σ(x, y♯),

• dually, if x♯ is a sound abstraction of x, then it is also a sound abstraction of
y such that y ≤ x:

∀x♯ ∈ 𭒟♯ ∶ ∀x, y ∈ 𭒟 ∶ (σ(x, x♯) ∧ y ≤ x) ⇒ σ(y, x♯).

Various methods of constructing the soundness relation σ exist [34]. A classical,
though restrictive approach [32] requires existence of Galois connection. Different
constructions try to relax the requirement.

Abstraction Based on Galois Connection

A Galois connection [32] is a particular correspondence between two partially
ordered sets, defined as follows:

Definition 2.4.1. A Galois connection between two partially ordered sets ⟨𭒳, ⪯𭒳⟩
and ⟨𭒴, ⪯𭒴⟩ is a pair of functions ⟨α, γ⟩, where α ∶ 𭒳 → 𭒴, γ ∶ 𭒴 → 𭒳 such that:

∀x ∈ 𭒳 ∶ ∀y ∈ 𭒴 ∶ α(x) ⪯𭒴 y ⟺ x ⪯𭒳 γ(y),

and denoted:
⟨𭒳, ⪯𭒳⟩ −−−→←−−−

α

γ
⟨𭒴, ⪯𭒴⟩.

A Galois connection is often used to describe a connection between concrete and
abstract domains. Let ⟨𭒟, ≤⟩ be a concrete domain, ⟨𭒟♯, ≤♯⟩ be an abstract domain
and there is a Galois connection between these domains:

⟨𭒟, ≤⟩ −−−→←−−−
α

γ
⟨𭒟♯, ≤♯⟩.
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We say that d♯ ∈ 𭒟♯ is a sound abstraction (or a sound approximation) of d ∈ 𭒟
if α(d)≤♯d♯, or equivalently, if d ≤ γ(d♯). The function γ ∶ 𭒟♯ → 𭒟 that maps an
abstract element d♯ to the greatest concrete element that satisfies the property d♯ is
called a concretisation function. The function α ∶ 𭒟 → 𭒟♯ that maps a concrete
element d to the strongest property (the least abstract element in ≤♯) that is satisfied
for d is called an abstraction function.

Galois connection has some interesting properties [33, Sec. 4.2]. Here we recall
some of them:

• the function γ ∘ α is extensive (or inflationary):

∀x ∈ 𭒳 ∶ x ⪯𭒳 γ(α(x)),

which means that the loss of the information in the abstraction process is
sound;

• the function γ ∘ α is an upper closure operator, that is monotone, extensive
(see previous point) and idempotent;

• the function α ∘ γ is reductive:

∀y ∈ 𭒴 ∶ α(γ(y)) ⪯𭒴 y,

which means that the concretisation does not introduce any loss of informa-
tion;

• the function α ∘γ is lower closure operator, that is monotone, reductive (see
previous point) and idempotent;

• in Galois connection one function uniquely determines the other, that is if
⟨𭒳, ⪯𭒳⟩ −−−→←−−−

α1

γ1
⟨𭒴, ⪯𭒴⟩ and ⟨𭒳, ⪯𭒳⟩ −−−→←−−−

α2

γ2
⟨𭒴, ⪯𭒴⟩ then it holds that α1 = α2 if

and only if γ1 = γ2;

• a composition of Galois connections is a Galois connection:

(⟨𭒳, ⪯𭒳⟩ −−−→←−−−
α1

γ1
⟨𭒴, ⪯𭒴⟩ ∧ ⟨𭒴, ⪯𭒴⟩ −−−→←−−−

α2

γ2
⟨𭒵, ⪯𭒵⟩) ⇒ ⟨𭒳, ⪯𭒳⟩ −−−−−→←−−−−−

α2∘α1

γ1∘γ2
⟨𭒵, ⪯𭒵⟩.

The last property is a basis for designing analysers by composition of successive
approximations.
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Abstraction Based on Concretisation Function

The existence of a Galois connection is sometimes a too strong requirement. In
fact, any of the two functions from Definition 2.4.1 may not exist, e.g. for the
domain of polyhedra the best abstraction for a concrete element does not always
exist [34, Example 6.3]. The abstraction function often does not exist when the
abstract domain is not a complete lattice. The abstract interpretation framework
can still work in such situation. We assume that there exists a monotone concreti-
sation function γ ∶ 𭒟♯ → 𭒟. We say that d♯ ∈ 𭒟♯ is an abstraction of d ∈ 𭒟 if
d ≤ γ(d♯). In the thesis we assume the existence of the concretisation function.

2.4.2 Transformer Abstraction
A transformer is an operator on a domain, i.e. for a domain ⟨𭒟, ≤⟩ it is any func-
tion F ∶ 𭒟 → 𭒟. An abstract transformer is a transformer operator for the abstract
domain. First, we introduce a definition of a transformer abstraction in the situa-
tion when there is a Galois connection between two domains (see [39, Theorem
7.1.0.2]):

Definition 2.4.2 (Sound Transformer Abstraction Using Galois Connection).
Let ⟨𭒟, ≤⟩ be the concrete domain, ⟨𭒟♯, ≤⟩ be the abstract domain and ⟨𭒟, ≤⟩ −−−→←−−−

α

γ

⟨𭒟♯, ≤⟩ be a Galois connection between these domains. The abstract transformer
operator F♯ ∶ 𭒟♯ → 𭒟♯ is a sound abstraction of the concrete transformer F ∶
𭒟 → 𭒟 if and only if for any d♯ ∈ 𭒟♯ it holds that:

α ∘ F ∘ γ(d♯)≤♯F♯(d♯).

The idea of a transformer abstraction using Galois connection is illustrated in
Fig. 2.8(a). The abstract operator F♯ is the best approximation if F♯ = α ∘ F ∘ γ.

d1 d2

d′
2

♯d1
♯ d2

♯

γ α

F♯

F

≤♯

(a) Galois connection

d1 d2 d′
2

d1
♯ d2

♯

F

F♯

γ γ

≤

(b) Concretisation only

Figure 2.8: Sound transformer abstraction.

An alternative definition of the transformer abstraction using only a concretisa-
tion function is as follows:

21



Chapter 2 Preliminaries

Definition 2.4.3 (Sound Transformer Abstraction Using Concretisation). Let
⟨𭒟, ≤⟩ be the concrete domain, ⟨𭒟♯, ≤⟩ be the abstract domain and γ ∶ 𭒟♯ → 𭒟
be the concretisation function. The abstract transformer operator F♯ ∶ 𭒟♯ → 𭒟♯ is
called a sound approximation of the concrete transformer F ∶ 𭒟 → 𭒟 if and only
if for any d♯ ∈ 𭒟♯ it holds that:

F ∘ γ(d♯) ≤ γ ∘ F♯(d♯)

The idea of a transformer abstraction using the concretisation function only is
illustrated in Fig. 2.8(b). When γ ∘F♯ = F ∘γ the operator is an exact abstraction of
F. Such situation usually does not appear, since the result of the concrete operator
F may not be exactly representable in the abstract domain. When there is a Galois
connection both definitions are equivalent (simple proof using properties of Galois
connections).

2.4.3 Fixpoint Transfer
In this section we describe dependencies between fixpoints of the concrete and the
abstract semantics. Consider a situation when one is able to compute the abstract
semantics of a program (the least fixpoint of the semantic function). Then, if as-
sumptions of a fixpoint transfer theorem such as Theorem 2.4.4 are fulfilled, the
computed result is a sound approximation of the concrete semantics.

Theorem 2.4.4 (Fixpoint Transfer Theorem). Let ⟨𭒟, ≤⟩ and ⟨𭒟♯, ≤♯⟩ be both
complete partial orders and there is a Galois connection ⟨𭒟, ≤⟩ −−−→←−−−

α

γ
⟨𭒟♯, ≤♯⟩.

Let f ∶ 𭒟 → 𭒟 and f ♯ ∶ 𭒟♯ → 𭒟♯ be monotone functions such that:

∀d ∈ 𭒟 ∶ d ≤ lfp (f) ⇒ α ∘ f (d) = f ♯ ∘ α(d),

then
α(lfp (f)) = lfp (f ♯) .

Proof. See [31, Theorem 2].

There are various variants of the fixpoint transfer theorem [33, 41], but the main
problem is that the computation of a fixpoint of the abstract semantics may be in-
feasible. If the programming language chosen for the analysis contains loops, the
computation of the fixpoint is not trivial. If the abstract domain does not contain
any infinite chain of elements that is strictly increasing and the semantic func-
tion is monotone, one could simply apply Theorem 2.2.9 and compute Kleene’s
iteration sequence. Otherwise, if the abstract domain contains strictly increasing
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infinite chains, the termination of such iteration usually is not guaranteed. In such
situations a fixpoint transfer theorem is not sufficient. Therefore, abstract interpre-
tation introduces a procedure to compute an over-approximation of a fixpoint — it
is presented in the next section.

2.4.4 Widening Operator
Since in most cases the computation of the fixpoint with the Kleene iteration is
not feasible, a widening operator was introduced [38]. It is a form of convergence
accelerator for Kleene iterations. The widening operator is defined as follows:

Definition 2.4.5 (Widening operator). Let ⟨𭒟, ≤⟩ be a partially ordered set. A bi-
nary operator ▿ ∶ 𭒟 × 𭒟 → 𭒟 is a widening operator if and only if the following
properties hold:

• over-approximation — for all d1, d2 ∈ 𭒟 it holds that:

d1 ≤ d1▿d2 and d2 ≤ d1▿d2,

• stabilisation — for every increasing chain in 𭒟: d0 ≤ d1 ≤ d2 ≤ … the
increasing chain defined by:

y0 = d0,
yn+1 = yn▿dn+1 for n ≥ 0,

is not strictly increasing, i.e. there exists i ∈ ℕ such that yi = yi+1.

A widening operator is used to compute an over-approximation of a fixpoint — we
may receive something more, but the result is sound and computable. Theorem 2.4.6
states that the abstract iteration result is a sound approximation of the concrete fix-
point.

Theorem 2.4.6 (Abstract Iteration Sequence with Widening). Let ⟨𭒟, ≤⟩ be
a complete lattice, function f ∶ 𭒟 → 𭒟 be monotone, ⟨𭒟♯, ≤♯⟩ be a complete par-
tial order, and a concretisation function γ ∶ 𭒟♯ → 𭒟 be monotone. Let a function
f ♯ ∶ 𭒟♯ → 𭒟♯ be an abstraction of f , i.e. f ∘ γ ≤ γ ∘ f ♯. Let x ∈ 𭒟, x♯ ∈ 𭒟♯ be such
that x ≤ γ(x♯). Then in a chain defined by:

y♯
0 = x♯,

y♯
n+1 = y♯

n▿f (y♯
n) for n ≥ 0,

there exists n ≥ 0 such that f ♯(yn♯)≤♯yn♯ and:

lfpx (f) ≤ γ(yn♯).
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Proof. See [84, Theorem 2.2.7].

Usually, in order to compute the abstraction, the iteration starts from some abstract
element x♯ ∈ 𭒟♯ such that γ(x♯) = ⊥, where ⊥ is the least element in 𭒟. Note that
the abstract transformer f ♯ does not need to be monotone.

In some cases one may require a little different definition of the widening oper-
ator, where it is a partial operator defined when the second argument is greater or
equal to the first one [10, 42]:

Definition 2.4.7 (Widening operator variant). Let ⟨𭒟, ≤, ⊥, ∪⟩ be an upper semi-
lattice. A widening operator is a partial operator ▿ ∶ 𭒟 × 𭒟 ⇀ 𭒟 if and only if
the following properties hold:

• over-approximation — for every d1, d2 ∈ 𭒟, d1 ≤ d2 implies that d1▿d2 is
defined and d2 ≤ d1▿d2,

• stabilisation — for every increasing chain d0 ≤ d1 ≤ d2 ≤ … the increasing
chain defined by:

y0 = d0,
yn+1 = yn▿(yn ∪ dn+1) for n ≥ 0,

is not strictly increasing, i.e. there exists i ∈ ℕ such that yi = yi+1.

In the definition of the new widening operator introduced in the thesis we use
the variant of the widening operator presented in Definition 2.4.7.

2.4.5 Collecting Semantics
While standard semantics describes behaviour of programs during their execu-
tions, the collecting semantics focuses on some class of properties of these execu-
tions. It collects information about program executions and defines the strongest
static property of interest (it is also called static semantics). The choice of the
collecting semantics depends on the properties one would like to analyse. In this
section we present a few most popular ones.

Let τ = ⟨Σ, t⟩ be a transition system for a program P, where Σ is the set of states
and t ∈ 𝒫 (Σ × Σ) is the transition relation between states from Σ. The notation is
the same as for the language Simple from Section 2.3.
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Partial Trace Semantics

The basic version of the collecting semantics is a partial trace semantics, which
collects information about all possible program executions. A finite trace σ ∈ Σ∗

of a program is a finite sequence of program states, which have transitions between
them, that is σ = ⟨s0, s1, … , sn⟩ for some n ≥ 0, where for all i ∈ {0, … , n} it holds
that si ∈ Σ and the sequence is created by transitions from t:

∀i ∈ {0, … , n − 1} ∶ si  t si+1.

We use a shorter notation to denote sequences from Σ: we write s0s1 … sn for a se-
quence σ = ⟨s0, s1, … , sn⟩ and σs′ for a sequence ⟨s0, s1, … sn, s′⟩.

LetΣn
t denote all the traces of length exactly n ≥ 0 of a programP and a transition

system τ. Then we have:

Σ0
t = ∅,

Σ1
t = {⟨s⟩ ∣ s ∈ Σ},

Σn+1
t = {σss′ ∣ σs ∈ Σn

t ∧ s t s′} for n > 1.

A partial trace semantics, denoted Σ∗
t , is a set of all the traces of finite length and

is defined as:
Σ∗
t = ⋃

n≥0
Σn
t .

Theorem 2.4.8 states that the semantics can be defined as a fixpoint.

Theorem 2.4.8. The collecting semantics of partial traces can be expressed in
terms of a fixpoint, that is:

Σ∗
t = lfp (ℱ∗

t ) = ⋃
n≥0

ℱ∗
t
n(∅),

where function ℱ∗
t ∶ 𝒫 (Σ∗) → 𝒫 (Σ∗) is defined as follows:

ℱ∗
t (X) = {⟨s⟩ ∣ s ∈ Σ} ∪ {σss′ ∣ σs ∈ X ∧ s t s′}.

Proof. Can be found in [35, Sec. 4].

Transitive Closure Semantics

The partial traces semantics is very strong, since it handles all possible execution
traces of a program, but one usually does not require to reason about the whole
history of an execution. The transitive closure semantics abandons most of the
information about a trace, it focuses only on the first and the last state in every
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trace instead. It forgets intermediate states, therefore is as abstraction of the partial
traces semantics. The fact is stated by the abstraction function α∗ ∶ 𝒫 (Σ∗) →
𝒫 (Σ × Σ):

α∗(X) = {α→(σ) ∣ σ ∈ X},

where α→(s0s1 … sk) = ⟨s0, sk⟩ for k ≥ 0. The transitive closure semantics is a set
of pairs: t∗ ∈ 𝒫 (Σ × Σ) and is defined as:

t∗ = α∗(Σ∗
t ).

Note that t∗ is the reflexive transitive closure of the t relation (hence the name).
Since we already have the abstraction function α∗, we introduce a concretisation
function γ∗ ∶ 𝒫 (Σ × Σ) → 𝒫 (Σ∗), which for a set of pairs of states returns all
possible finite traces that start at the first element of pair and finish at the second
element. Formally, the function γ∗ is defined as follows:

γ∗(Y) = {σ ∣ α→(σ) ∈ Y}.

Note that for a set of partial traces X, it holds that X ⊆ γ∗(α∗(X))). Additionally,
the pair of functions ⟨α∗, γ∗⟩ forms a Galois connection:

Theorem 2.4.9. Functions α∗ and γ∗ form a Galois connection.

Proof. Can be found in [35, Sec. 7].

As it happened with partial trace semantics, the transitive closure semantics can
be expressed in a fixpoint form [35, Sec. 8]. The fact is a consequence of a fixpoint
transfer theorem.

Reachability Semantics

Let Σi ∈ Σ be a set of initial states for the transition system τ = ⟨Σ, t⟩. The reach-
ability semantics ℛt ∈ Σ is a set of states that are reachable from any initial state
s ∈ Σi and is defined as:

ℛt = {s′ ∣ ∃s ∈ Σi ∶ ⟨s, s′⟩ ∈ t∗}.

This is an abstraction of the transitive closure semantics (therefore also partial
trace semantics). The fact is characterised by the following pair of functions: an
abstraction α∘ ∶ 𝒫 (Σ × Σ) → 𝒫 (Σ) and a concretisation γ∘ ∶ 𝒫 (Σ) → 𝒫 (Σ × Σ)
that are defined as follows:

α∘(Y) = {s′ ∣ ∃s ∈ Σi ∶ ⟨s, s′⟩ ∈ Y},
γ∘(Z) = {⟨s, s′⟩ ∣ s ∈ Σi => s′ ∈ Z}.
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The definition of α∘ is quite natural — the result is created from elements that ap-
pear as second items of pairs in the argument and are reachable from any of the
initial states. The function γ∘ returns all pairs of states between any of the initial
states and any element in the argument.

As it happened in case of the transitive closure semantics, this time the pair of
abstraction and concretisation functions for the reachability semantics form a Ga-
lois connection:

Theorem 2.4.10. Functions α∘ and γ∘ form a Galois connection.

Proof. Can be found in [35, Sec. 9].

The reachability semantics also can be expressed in terms of a fixpoint [35, Sec.
10].

Hierarchy of Collecting Semantics

The three semantics that were presented form a hierarchy ordered by an abstraction
order:

⟨Σ∗
t , ⊆⟩ −−−→←−−−

α∗

γ∗

⟨t∗, ⊆⟩ −−−→←−−−
α∘

γ∘

⟨ℛt, ⊆⟩,

where the one on the left is the most abstract and the one on the right is the least
abstract. Since the composition of Galois connections is a Galois connection, we
obtain:

⟨Σ∗
t , ⊆⟩ −−−−−→←−−−−−

α∘∘α∗

γ∗∘γ∘

⟨ℛt, ⊆⟩.

The Choice of the Collecting Semantics

States in the Simple language are pairs ⟨ℒ, s⟩ ∈ 𝘓𝘢𝘣 × 𝘚𝘵𝘢𝘵𝘦. The reachability
semantics for Simple, instead of a subset of 𝘓𝘢𝘣×𝘚𝘵𝘢𝘵𝘦, can be defined as a function
fℛt

∶ 𝘓𝘢𝘣 → 𝒫 (𝘚𝘵𝘢𝘵𝘦) as follows:

fℛt
(ℒ) = {s ∣ ⟨ℒ, s⟩ ∈ ℛt}.

The function fℛt
simply assigns, to every control point of a program, a set of states

(valuations of variables) that appear at that point during the execution. Both defi-
nitions are equivalent and the function fℛt

is the classical variant of the definition
for the concrete semantics [32]. For the rest of the thesis we choose this definition
of the reachability semantics to be our collecting (concrete) semantics.
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program
ℒ1 ∶ i ← 0 ;
ℒ2 ∶ while ℒw ∶ i ≤ 10 do

ℒ3 ∶ i ← i + 1;
ℒ4

od;
ℒ5

end

(a) Source code

ℒ1

i ← 0

ℒ2
ℒw

i ≤ 10

ℒ3

i ← i + 1

ℒ4

ℒ5
yes

no

(b) Control flow
graph

d1 = ⊥
d2 = [0, 0]
dw = d2 ∪ d4

d3 = d2 ∩ [−∞, 10]
d4 = d3 + [1, 1]
d5 = dw ∩ [11, +∞]

(c) Equation system

Figure 2.9: Semantic equations for an example program written in Simple: (a) pro-
gram source code, (b) control flow graph, (c) equation system for the
program.

2.4.6 Abstract Interpreter
A computer program can be represented by a control flow graph 𭒢 = (V,E).
The set of vertices is a finite set of program control points (labels): V = 𝘓𝘢𝘣 =
{ℒ1, … , ℒn}. The set of edges E ⊆ 𝘓𝘢𝘣 × 𝘓𝘢𝘣 is the set of connections between
control points. We assume that the concrete domain is a pointwise lifting 𝘓𝘢𝘣 → 𭒟,
where ⟨𭒟, ⊆⟩ is a complete lattice of concrete properties. Every edge in the graph
𭒢 represents a transition in the program. The semantics of the program can be
easily transformed to a set of equations [32]:

⎧⎪
⎨
⎪⎩

d1 = F1(d1, d2, … , dn)
…
dn = Fn(d1, d2, … , dn)

where for every i ∈ {1, … , n} it holds that di ∈ 𭒟 and Fi ∶ 𭒟n → 𭒟 is monotone.
The equation at index i corresponds to the label ℒi. The function Fi computes the
property that holds at the point ℒi of the program after one program step executed
from any point leading to ℒi. It describes how the property at label ℒi depends on
its predecessors in graph 𭒢. It holds that the function Fi depends on the parameter
dj if there is an edge between ℒj and ℒi in the graph 𭒢, i.e. ⟨ℒj, ℒi⟩ ∈ E. An example
of such equation system for a one-dimensional version of the domain of intervals
is presented in Fig. 2.9(c).

The semantics of the program is the least solution of the equation system. An
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algorithm for solving the equation system is called chaotic iteration strategy. An
example of such algorithm is to iterate a parallel execution of all equations, ana-
logically to Kleene’s iteration sequence. But as expected, such solution is not guar-
anteed to terminate.

The technique called chaotic iteration strategy with widening extends the so-
lution from Theorem 2.4.6 to a system of semantic equations. Let the abstract
domain be also a pointwise lifting 𝘓𝘢𝘣 → D♯. Then for every function Fi there is
an abstract version F♯

i ∶ D♯n → D♯ that is a sound abstraction of Fi. The goal of
an abstract interpreter is to solve the equation system in the abstract world. The
idea [32, Sec. 9.1.3] is to choose a subset of program points W ⊆ 𝘓𝘢𝘣 and for
every label ℒi ∈ W replace the i-th equation by:

di♯ = di♯▿Fi
♯(d1

♯, … , dn♯).

When the set W is chosen in a way that every cycle in the equation dependency
graph contains at least one element from W [32], the computation is guaranteed
to terminate and stabilise on a sound approximation of the solution of the concrete
equation.

Theorem 2.4.11 (Chaotic Iteration Sequence with Widening). The chaotic it-
eration sequence with widening stabilises in finite number of steps on a sound
approximation of the least solution of the equation system.

Proof. See [84, Theorem. 2.2.9].

The set of widening pointsWmay be chosen in various ways [16]. For a program
written in the Simple language, we choose as the set W the set of all labels that
appear just before the loop test (special labels that were added to while loops, see
Section 2.3.2).

2.5 Java Modeling Language
The current section is an introduction to the Java Modeling Language (JML) that
is a specification language for Java that we use in the thesis. The structure of the
majority of specifications languages, such as JML [74] for Java or Microsoft Code
Contracts for the .NET platform [4], follows the structure of programming lan-
guages. The Java Modeling Language is a behavioural interface specification lan-
guage for Java programs [73]. In such specification technique one specifies the
interface of a method or abstract data type and the behavior of this method. With
JML the interface specification does not require any additional format, JML uses
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regular Java method descriptors for this purpose. JML specification for a specific
class or interface can be placed either inside the source code file or in some ex-
ternal specification file. In the second case one has to duplicate fragments of Java
code such as class or method descriptors. An example of an external JML annota-
tion of the java.util.Dictionary abstract class from the standard Java library
is presented in Fig. 2.10.

package java.util;
public abstract class Dictionary<K,V> {
//@ pure
public Dictionary();

//@ modifies \nothing;
public abstract int size();

//@ modifies \nothing;
public abstract boolean isEmpty();

//@ modifies \nothing;
public abstract /*@non_null*/ Enumeration<K> keys();

//@ modifies \nothing;
public abstract /*@non_null*/ Enumeration<V> elements();

//@ modifies \nothing;
public abstract /*@nullable*/ V get(/*@non_null*/ Object key);

public abstract /*@nullable*/ V put(/*@non_null*/ K key,
/*@non_null*/ V value);

public abstract /*@nullable*/ V remove(/*@non_null*/ Object key);
}

Figure 2.10: An external JML specification of the java.util.Dictionary ab-
stract class (taken from JML Specs project).

The behaviour of a method is described by JML in the design-by-contract fash-
ion, introduced by B. Meyer for Eiffel [81]. The behaviour description is placed
within JML annotations, not to be confused with Java annotations. JML annota-
tions are Java comments that have the at-sign (@) as their first character following
the usual comment beginning. This way, they do not disturb standard Java compil-
ers that treat JML annotations as regular Java comments and ignore them during
the compilation process. There exists, however, a compiler JMLRac [24] (JML
Runtime Assertion Checker) that is able to compile the specifications along with
the regular program code, so that assertions present in specifications are verified
during program run-time. There is a Type Annotations Specification concept (also
known as JSR 3081) to extend regular Java annotations and use them for the spec-

1For details see http://types.cs.washington.edu/jsr308/
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ification purpose. The idea is to allow Java annotations to be placed in any use of
a type instead of declarations only, as it is currently allowed in Java 7. The idea
is very limited compared to JML but still may be very useful, especially because
there are plans to include type annotations to the next official OpenJDK 8.

JML includes annotations that make it possible to describe invariant properties
that are maintained by objects, method specifications (pre- and post-conditions),
and some lower level properties of the code (e.g. loop invariants or assertions).
Let us focus on the example specification presented in Fig. 2.10. The constructor
of the java.util.Dictionary class is said to be pure, which means that method
has no side effects when executed [75, Sec. 6.2.5 and 7.1.1.3] (i.e. the state before
the execution is equal to the one after the execution). In case of constructors, the
attribute pure is equivalent to the clauses:

diverges false;
assignable this.*;

where diverges false means the constructor must return to the caller (either
throw an exception or return normally [75, Sec. 9.9.7]), and assignable this.*

clause means that only assignments to fields of the object being initialised are
allowed during the execution of the constructor [75, Sec. 9.9.9]. The modifies

\nothing specification for most of the methods of the class means that these meth-
ods do not modify any location — field of an object or a local variable. In fact, this
is an equivalent to pure, since if diverges is not specified it defaults to false.
We can see that only put and remove methods of a Dictionary can modify pro-
gram state. The non_null modifier means that the result of a method (e.g. keys)
or an argument (e.g. key argument of the method get) cannot have null value.
Similarly, nullable modifier means that the result of a method or an argument
may have null value.

JML already has a very rich tool support [20]. One of the projects in the JML
infrastructure is Specs. It provides a specification of the standard Java library. Un-
fortunately, the project is not complete, specification is present only for some of
the classes and interfaces. As we have already described in Section 1.2, there are
two approaches for software verification. The dynamic verification is performed
in JML by run-time assertion checking (RAC) tools, for example already men-
tioned JMLRac [24]. Two tools are especially popular for verification in the JML
infrastructure: ESC/Java2 [26] and KeY [2].

Loop Variant Functions
Apart from pre-, postconditions and class invariants JML provides some lower
level constructions such as loop invariants or loop variant functions. They are
specifications that are often used to assist probing of function invariants. In JML,
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loop invariants and loop variant functions are placed in JML annotation just be-
fore the loop. An example is presented in Fig. 2.11. The maintaining keyword is
followed by the loop invariant expression. In the example, there are two loop in-
variants present. The first one describes the range of values for the integer variable
i and the second one relates the variable with a partial sum variable sum. A JML
loop variant function is preceded by the decreases or decreasing keyword.

package org.jmlspecs.samples.jmlrefman;
public abstract class SumArrayLoop {

...
public static long sumArray(int [] a) {

long sum = 0; int i = a.length;

/*@ maintaining -1 <= i && i <= a.length;
@ maintaining sum ==
@ (\sum int j; i <= j && 0 <= j && j < a.length; (\bigint)a[j]);
@ decreasing i; @*/

while (--i >= 0) {
sum += a[i];

}
...

return sum;
}

}

Figure 2.11: An example of a loop invariant and a loop variant function taken from
JML reference manual.

In the thesis we focus on loop variant functions, especially on the decreases
formula [75, Sec. 13.2.2]. The decreases formula specifies an expression that is of
Java integer type (either long or int) that in every iteration:

• must be greater than or equal to 0,

• must decrease at least by one.

Semantics of the decreases formula
Here we present the semantics of the decreases formula in order to acquaint the
reader with JML. The semantics is defined in terms of assertions [75, Sec. 13.2.2].
In order to obtain the semantics of a loop with the decreases formula, the loop is
syntactically transformed to an equivalent one that contains assert statements.
Here we present a few examples of such transformation for a while loop.

First, consider a simple loop that does not contain continue statement in its
body, presented in Fig. 2.12(a). The decreases formula has to be checked in every
loop iteration, therefore the translated version of the loop must check value of the
expression E before and after an execution of the block S. The translated version
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//@ decreases E;
while (B) {
S

}

(a) Original loop

while (true) {
long fv = E; // fv is fresh, unused variable
if (!(B)) {

break;
}
S
//@ assert 0 <= fv;
//@ assert E < fv;

}

(b) Loop with decreases translated to assertions

Figure 2.12: Translation of while loop without continue in its body.

//@ decreases E;
while (B) {

S1
if (C) {

S2
continue;

}
S3

}

(a) Original loop

while (true) {
long fv = E; // fv is fresh, unused variable
if (!(B)) {

break;
}
S1
if (C) {
S2
//@ assert 0 <= fv;
//@ assert E < fv;
continue;

}
S3
//@ assert 0 <= fv;
//@ assert E < fv;

}

(b) Loop with decreases translated to assertions

Figure 2.13: Translation of while with continue statement in its body.

of the loop is presented in Fig. 2.12(b). For the purpose of the assertion check we
have introduced a fresh variable fv that was not present in the code before. We can
see that the translation in the considered case is quite simple.

The situation is more complicated when the while loop contains the continue
statement in its body. As the continue statement moves the execution of the loop
straight to the next iteration, the loop variant has to be additionally checked before
every use of the continue statement. A while loop with a single continue state-
ment and its translated version are presented in Fig. 2.13. As before, we introduce
a new variable fv that was not present in the code. The only difference is that as-
sertions on the new variable are put into all the positions in the code, where we
are just going to jump to the condition of the loop, thus also before all continue
statement.

In the thesis we are more interested in for loops. The semantics of decreases for-
mula for a for loop is quite similar. The idea is perform two translations: first, we
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translate a for loop into a while loop, and then, perform translations as described
in the current section. The translation of a for loop into an equivalent while loop
is as follows:

for (I; B; U) {
S;

}

 

I;
while (B) {
S;
U;

}

where I are loop initializer expressions, B is the loop condition, U are update ex-
pressions, and S is the loop body.
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Numerical Abstract Domains

3.1 Introduction
In the thesis we deal with numerical abstract domains. These domains focus on
values of numerical variables that appear in programs. The goal of static analysis
based on numerical abstract domains is to collect the set of possible values of all
numerical variables for every program control point. The set of possible values
for a single control point is a set of vectors, which store valuation of all the vari-
ables. An abstraction is used to describe the set of possible values for variables in
a compact and effective way. We can divide numerical abstract domains by their
construction:
Non-relational domains are numerical abstract domains, in which no relationship
between numerical variables is described, that is each variable is abstracted inde-
pendently. The construction of non-relational domains can be generalised so that
one has to define one-variable version of the domain and then the full domain
is a pointwise lifting of this one-variable version. The only thing that has to be
created for all variables is the transfer function. The most popular non-relational
abstract domains are:

• domain of signs [32], where every numerical variable is abstracted by a pos-
sible sign of its value, an example is presented in Fig. 3.1 (b),

• domain of intervals [32] abstracts every variable by an interval that con-
tains its possible values (this corresponds to a set of constraints a ≤ x ≤ b,
where x is program variable and a, b are numerical constants), an example
is presented in Fig. 3.1 (c),
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Figure 3.1: Comparison of abstract domains for 2-dimensional case.

• domain of non-relational integral grids [58, 59] that can be represented by
a conjunctions of linear congruence relations of the form ∑i ai ∗ xi = c mod
m, an example is presented in Fig. 3.1 (d).

Relational domains are numerical abstract domains that make it possible to ex-
press also relationships between variables. The most popular relational domains
are:

• domain of pentagons [77] is an extension of the domain of intervals by
adding linear constraints of the form x1 < x2, where x1, x2 are program
variables, an example is presented in Fig. 3.1 (e),

• domain of weighted hexagons [53] handles linear inequalities of the form
x1 ≤ a ∗ x2, where x1, x2 are program variables and a is non-negative con-
stant, an example is presented in Fig. 3.1 (f),

• domain of octagons [83] handles inequalities of the form ±x1 ± x2 ≤ a,
where a is a numerical constant and x1, x2 are program variables, an example
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is presented Fig. 3.1 (g),

• domain of polyhedra [40] handles linear inequalities among program vari-
ables, that is a1 ∗ x1 + a2 ∗ x2 + … an ∗ xn ≤ a0, where n > 0, x1, … , xn are
program variables and a0, a1, … , an are numerical constants, an example is
presented in Fig. 3.1 (i),

• two variables per inequality(TVPI) abstract domain [89] is a simplification
of the domain of polyhedra, where linear constraints are limited to two vari-
ables, an example is presented in Fig. 3.1 (h). Note that the two-dimensional
example is exactly the same as the one for polyhedra but in general the do-
main is less precise than the domain of polyhedra.

3.2 Construction of a Numerical Abstract Domain
In this section we focus on the analysis of numerical variables using the abstract
interpretation framework. We state the requirements on the construction of a nu-
merical abstract domain that we use in the thesis. The concrete domain for the
Simple language is a tuple:

⟨𝒫 (𝘚𝘵𝘢𝘵𝘦), ⊆, ∅, 𝘚𝘵𝘢𝘵𝘦, ∪, ∩⟩,

where ⊆, ∩ and ∪ are standard set operators. We recall that 𝘚𝘵𝘢𝘵𝘦 = 𝘝𝘢𝘳 → 𝕀. Note
that ⟨𝒫 (𝘚𝘵𝘢𝘵𝘦), ⊆⟩ is a complete lattice, where the least element is the empty set
∅ and the greatest element is 𝘚𝘵𝘢𝘵𝘦, i.e. the set of all possible functions from 𝘝𝘢𝘳
to 𝕀.

For the purpose of the thesis we assume that the numeric abstract domain is
a bounded lattice. Let:

⟨𭒟♯, ≤♯, ⊥♯, ⊤♯, ∪♯, ∩♯⟩

be the abstract domain, where ⟨𭒟♯, ≤♯⟩ is a lattice, such that ⊥♯ is the least (bottom)
element of the lattice, ⊤♯ is the greatest (top) element of the lattice, ∪♯ is the greatest
upper bound operator (join) and ∩♯ is the least upper bound operator. Additionally,
we assume there is a concretisation function γ ∶ 𭒟♯ → 𝒫 (𝘚𝘵𝘢𝘵𝘦). An element of
the abstract domain is a sound approximation of a set of possible valuations of
variables at some control point (label). The full abstract semantics is a bounded
lattice obtained by a simple lifting 𝘓𝘢𝘣 → 𭒟♯.

We set the following requirements on the construction of the numerical abstract
domain:

• Elements of 𭒟♯ are computer-representable.
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• The least abstract element is an abstraction of least concrete element, i.e.
γ(⊥♯) = ∅.

• The greatest abstract element is an abstraction of the greatest concrete ele-
ment, i.e. γ(⊤♯) = 𝘝𝘢𝘳 → 𝕀.

• The abstract join ∪♯ and meet ∩♯ operators are sound approximations of
concrete counterparts, that is for any d♯

1, d♯
2 ∈ D♯ and S1, S2 ∈ 𝒫 (𝕀) such that

S1 ⊆ γ(d♯
1) ∧ S2 ⊆ γ(d♯

2), it holds that:

S1 ∪ S2 ⊆ γ(d♯
1∪♯d♯

2),

S1 ∩ S2 ⊆ γ(d♯
1∩♯d♯

2).

• There is a widening operator ▿♯ for the domain.

• There is a sound abstraction of the semantic function.

We implement the last item with two functions described in what follows.

Abstract Evaluation of Boolean Expressions
We require existence of a sound abstraction of the evaluation of boolean expres-
sions: a function test ∶ 𝘉𝘌𝘹𝘱 × 𝘉𝘰𝘰𝘭 × 𭒟♯ → 𭒟♯ such that for every test expression
b ∈ 𝘉𝘌𝘹𝘱, abstract state d♯ ∈ 𭒟♯, possible test result bb ∈ 𝘉𝘰𝘰𝘭, and a concrete
state s ∈ 𝘚𝘵𝘢𝘵𝘦 it holds that:

(s ∈ γ(d♯) ∧ ℬ⟦b⟧ s = bb) ⟹ s ∈ γ(test(b, bb, d♯)).

Additionally, we would like the test operation to narrow down the input set of states,
therefore we add a condition that γ(test(b, bb, d♯)) ⊆ γ(d♯). The definition is con-
sistent with the soundness definition of transformer abstraction in Definition 2.4.3.
The test function is illustrated in Fig. 3.2.

In order to simplify the definition of the test function we present generic rules
to deal with non-atomic tests. When these rules are applied one is only required to
define the test function for atomic tests. The first generic step is to apply syntactic
transformation of the expressions. We apply De Morgan’s laws to move the not
operator into operands the and and or expression:

not (a and b) (not a) or (not b),
not (a or b) (not a) and (not b),
not (not a) a.
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ℒ ∶ if b then
ℒT

Else
ℒF

fi
ℒ′

(a) Source code fragment

S1 S2 = {s ∣ s ∈ S1 ∧ ℬ⟦b⟧ s = 𝘵𝘵}

S′
2

d1
♯ d2

♯ = test(b, 𝘵𝘵, d♯
1)♯

t

t

γ
γ

⊆

(b) Transfer functions

Figure 3.2: Abstract simulation of a concrete computation of a conditional instruc-
tion when the test condition is fulfilled.

The next step is to reverse expression comparisons when they are preceded by not:

not (e1 ≤ e2) e2 < e1,
not (e1 < e2) e2 ≤ e1,
not (e1 = e2) e2 ≠ e1,
not (e1 ≠ e2) e2 = e1.

The last step is to compute the transfer function for non-atomic boolean expres-
sions inductive application of the following rules:

test(a and b, bb, d♯) = test(a, bb, d♯) ∩♯ test(b, bb, d♯),
test(a or b, bb, d♯) = test(a, bb, d♯) ∪♯ test(b, bb, d♯).

Abstract Evaluation of Assignment Expressions
We require existence of a sound abstraction of the assignment operation: a function
assign ∶ 𝘝𝘢𝘳 × 𝘌𝘹𝘱 × 𭒟♯ → 𭒟♯ such that for any abstract element d♯ ∈ D♯, an
expression e ∈ 𝘌𝘹𝘱, a variable v ∈ 𝘝𝘢𝘳 and a concrete state s ∈ 𝘚𝘵𝘢𝘵𝘦 it holds that:

(s ∈ γ(d♯) ∧ ℰ⟦e⟧ s = w) ⟹ s[v ← w] ∈ γ(assign(v, e, d♯)).

The definition is also consistent with the soundness definition of transformer ab-
straction in Definition 2.4.3. Abstract simulation using assign function is illustrated
in Fig. 3.3.

3.2.1 Abstract Semantics
Here we describe the abstract semantics of the Simple language. We assume that
we have an instance of an abstract numerical domain from the previous section.
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ℒ ∶ v ← e
ℒ′

(a) Source code fragment

S1 S2 = {s[v ← ℰ⟦e⟧ s] ∣ s ∈ S1}

S′
2

d1
♯ d2

♯ = assign(v, e, d♯
1)♯

t

t

γ
γ

⊆

(b) Transfer functions

Figure 3.3: Abstract simulation of a concrete computation of the assignment in-
struction v ← e.

The semantics is a set of functions that describe transitions between labels, thus
they are very similar to those of the concrete semantics. The difference is that we
use the test and the assign operations instead of real evaluation of expressions and
conditions.

First, in Fig. 3.4(a) we present the abstract semantics of skip, which is analog-
ical to the concrete one since there is no modification of the abstract state. The
semantics of the abstract assignment, which is presented in Fig. 3.4(b), uses the
assign operation that comes from the definition of the abstract domain from the
previous section. The abstract semantics of a conditional instruction is presented
in Fig. 3.4(c). The first two transitions use the test operation to evaluate the condi-
tion. The last two transitions are analogical to the ones in the concrete semantics.
Finally, the semantics of the while loop is presented in Fig. 3.4(d). The first two
transitions use the test operation while the last two remain unchanged.

Since we have transfer functions for the abstract domain (they correspond to
transitions presented in Fig. 3.4) and Theorem 2.4.11, the only thing missing from
a working abstract interpreter is an numerical abstract domain that matches the
assumptions from Section 3.2.

3.3 Examples of Numerical Abstract Domains
In this section we provide a few examples of numerical abstract domains. We focus
on non-relational ones, because a domain of this kind is a subject of our analysis
in the next chapter.

Since non-relational abstract domains do not handle constraints between vari-
ables, every variable is abstracted independently. It is possible to define a one-
dimensional version of an abstract domain together with domain operations, widen-
ing operator and abstract transfer functions, and then, lift this abstract domain to
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𭒞 = skip atP(𭒞) = ℒ afterP(𭒞) = ℒ′

⟨ℒ, s♯⟩ t
♯⟨ℒ′, s♯⟩

(a) Abstract transition for skip

𭒞 = x ← e atP(𭒞) = ℒ afterP(𭒞) = ℒ′

⟨ℒ, s♯⟩ t
♯⟨ℒ′, assign(x, e, s♯)⟩

(b) Abstract transition for the assignment instruction

𭒞 = if b then ℬt else ℬf fi atP(𭒞) = ℒ atP(ℬt) = ℒ′

⟨ℒ, d♯⟩ t
♯⟨ℒ′, test(b, 𝘵𝘵, d♯)⟩

𭒞 = if b then ℬt else ℬf fi atP(𭒞) = ℒ atP(ℬf ) = ℒ′

⟨ℒ, d♯⟩ t
♯⟨ℒ′, test(b, 𝘧𝘧, d♯)⟩

𭒞 = if b then ℬt else ℬf fi afterP(ℬf ) = ℒ afterP(𭒞) = ℒ′

⟨ℒ, d♯⟩ t
♯⟨ℒ′, d♯⟩

𭒞 = if b then ℬt else ℬf fi afterP(ℬt) = ℒ afterP(𭒞) = ℒ′

⟨ℒ, d♯⟩ t
♯⟨ℒ′, d♯⟩

(c) Abstract transitions for the if-then-else instruction

𭒞 = while ℒw ∶ b do ℬ od atP(ℬ) = ℒ

⟨ℒw, d♯⟩ t
♯⟨ℒ, test(b, 𝘵𝘵, d♯)⟩

𭒞 = while ℒw ∶ b do ℬ od afterP(𭒞) = ℒ

⟨ℒw, d♯⟩ t
♯⟨ℒ, test(b, 𝘧𝘧, d♯)⟩

𭒞 = while ℒw ∶ b do ℬ od afterP(ℬ) = ℒ

⟨ℒ, d♯⟩ t
♯⟨ℒw, d♯⟩

𭒞 = while ℒw ∶ b do ℬ od atP(𭒞) = ℒ

⟨ℒ, d♯⟩ t
♯⟨ℒw, d♯⟩

(d) Abstract transitions for the while instruction

Figure 3.4: Abstract transitions for the Simple language.
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create domain that handles multiple variables. The one-dimensional domain is
called a non-relational basis. Let ⟨ℬ, ≤ℬ⟩ be a one-dimensional version of the ab-
stract domain that abstracts ⟨𝒫 (𝕀), ⊆⟩. Additionally, we assume that there is a pair
of functions αℬ ∶ 𝒫 (𝕀) → ℬ and γℬ ∶ ℬ → 𝒫 (𝕀) that form a Galois connection:

⟨𝒫 (𝕀), ⊆⟩ −−−→←−−−
αℬ

γℬ
⟨ℬ, ≤ℬ⟩.

The multi-dimensional domain ℬ′ = 𝘝𝘢𝘳 → ℬ is obtained by a pointwise lifting
of ℬ to 𝘝𝘢𝘳 [31, Sec. 8]. Additionally, there is a Galois connection between the
concrete domain 𝒫 (𝘝𝘢𝘳 → 𝕀) and ℬ′, which is stated by Theorem 3.3.1.

Theorem 3.3.1. Let ⟨ℬ, ≤ℬ⟩ be a complete lattice and let the pair of functions
αℬ ∶ 𝒫 (𝕀) → ℬ, γℬ ∶ ℬ → 𝒫 (𝕀) form a Galois connection. Then ⟨ℬ𝘝𝘢𝘳, ≤𝘝𝘢𝘳→ℬ⟩ is
a complete lattice, where ≤𝘝𝘢𝘳→ℬ is a pointwise ordering. Additionally, two func-
tions γ ∶ ℬ𝘝𝘢𝘳 → 𝒫 (𝘝𝘢𝘳 → 𝕀) and α ∶ 𝒫 (𝘝𝘢𝘳 → 𝕀) → ℬ𝘝𝘢𝘳 defined as:

γ(f ) = {g ∶ 𝘝𝘢𝘳 → 𝕀 ∣ ∀v∈𝘝𝘢𝘳g(x) ∈ γℬ(f (v))},
α(X) = λv ∶ αℬ({g(v) ∣ g ∈ X})

form a Galois connection:

⟨𝒫 (𝘝𝘢𝘳 → 𝕀), ⊆⟩ −−−→←−−−
γ

α
⟨ℬ𝘝𝘢𝘳, ≤𝘝𝘢𝘳→ℬ⟩.

Proof. See [43, Prop. 3].

Theorem 3.3.1 yields a construction of non-relational domains, where one only
has to define domain operations for one-dimensional case. The extension to multi-
dimensional version is generic. Since in expressions there may exist multiple vari-
ables, one still has to define the transfer function for the multi-dimensional domain.
We define abstract semantics of expressions:

ℰ♯ ∶ 𝘌𝘹𝘱 → (ℬ𝘝𝘢𝘳 → ℬ)

as presented in Fig. 3.5. Note that the semantics uses abstract operators: unary −♯

and binary +♯, −♯, ∗♯.
With the abstract semantics of expressions the definition of the assign (see Sec-

tion 3.2) function is straightforward. It is enough to evaluate the right hand side of
the assignment and update the abstract value associated with the variable on left
hand side, that is:

assign(v, e, ⊥♯) = ⊥♯, assign(v, e, d♯) = λw .
{

ℰ♯⟦e⟧ d♯ if v = w
d♯(w) otherwise.

For boolean test expressions it is enough to present definition of the test function
for atomic tests.
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ℰ♯⟦v⟧ d♯ = d♯(v)
ℰ♯⟦c⟧ s = 𭒩♯⟦c⟧
ℰ♯⟦−e⟧ d♯ = −♯ ℰ♯⟦e⟧ d♯

ℰ♯⟦e1 + e2⟧ d♯ = ℰ♯⟦e1⟧ d♯ +♯ ℰ♯⟦e2⟧ d♯

ℰ♯⟦e1 ∗ e2⟧ d♯ = ℰ♯⟦e1⟧ d♯ ∗♯ ℰ♯⟦e2⟧ d♯

ℰ♯⟦e1 − e2⟧ d♯ = ℰ♯⟦e1⟧ d♯ −♯ ℰ♯⟦e2⟧ d♯

where v ∈ 𝘝𝘢𝘳, c ∈ 𝘕𝘶𝘮, e1, e2 ∈ 𝘌𝘹𝘱 and d♯ ∈ 𭒟♯.

Figure 3.5: Non-relational abstract semantics of numerical expressions.

3.3.1 Domain of Signs
The first of the numerical abstract domains presented in the thesis is a simple non-
rational domain — the domain of signs, Sgn [32, 33]. The idea is to forget particular
values of numerical variables, instead we focus only on their signs. For elementary
operations, e.g. multiplication, such abstraction does not introduce any loss of pre-
cision, i.e. to compute the sign of a product it is sufficient to know only the signs of
the operands. Still, other operations may introduce imprecision. For example, it is
impossible to know the sign of a sum, where operands have opposite signs — one
of them is negative and another one is positive.

±Sgn

−Sgn +Sgn0Sgn

⊥Sgn

Figure 3.6: A lattice for the domain Sgn.

The Sgn domain uses a simple finite lattice to abstract element values. There
are several ways to create the lattice [39, Ex. 10.2.0.2]. Our choice is presented in
Fig. 3.6.

Concretisation and Abstraction

In this section we present the abstraction and concretisation functions for the do-
main of signs. Both, the abstraction function αSgn ∶ 𝒫 (𝕀) → Sgn and the concreti-
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sation function γSgn ∶ Sgn → 𝒫 (𝕀), are quite straightforward. They are defined as
follows:

αSgn(X) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

⊥Sgn if X = ∅
0Sgn if X = {0}
−Sgn if ∀x ∈ X ∶ x < 0
+Sgn if ∀x ∈ X ∶ 0 < x
±Sgn otherwise,

γSgn(s) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

∅ if s = ⊥Sgn

{0} if s = 0Sgn

{x ∈ 𝕀 ∣ x < 0} if s = −Sgn

{x ∈ 𝕀 ∣ 0 < x} if s = +Sgn

𝕀 if s = ±.

It is easy to verify that both functions form a Galois connection, that is:

⟨Sgn, ≤Sgn⟩ −−−−→←−−−−
αSgn

γSgn
⟨𝒫 (𝕀), ⊆⟩.

Transfer functions

The final part required by the abstract domain is a definition of the transfer func-
tions. First, we define the transfer function for numeric expressions. Semantics of
simple expressions is presented in Fig. 3.7.

𭒩♯⟦c⟧ ≝
⎧⎪
⎨
⎪⎩

−Sgn if c > 0
0Sgn if c = 0
+Sgn otherwise,

(a) Numeric constant

−♯d♯ ≝
⎧⎪
⎨
⎪⎩

−Sgn if d♯ = +Sgn

+Sgn if d♯ = −Sgn

d♯ otherwise.

(b) Unary minus

Figure 3.7: Abstract semantics of simple expressions.

In case of any other domain operators, if any of the arguments is ⊥Sgn then the
result is also ⊥Sgn. The semantics of a multiplication presented in Fig. 3.8 is a pre-
cise operation. We always can deduce the exact sign of the result when we know
signs of both arguments.

d♯
1∗♯d♯

2 ≝

⎧⎪
⎪
⎨
⎪
⎪⎩

+Sgn if d♯
1 = d♯

2 = +Sgn or d♯
1 = d♯

2 = −Sgn

0Sgn if d♯
1 = 0Sgn or d♯

2 = 0Sgn

−Sgn if d♯
1 = −Sgn and d♯

2 = +Sgn or d♯
1 = +Sgn and d♯

2 = −Sgn

±Sgn otherwise.

Figure 3.8: Abstract semantics of multiplication expression.
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The semantics of a sum presented in Fig. 3.9 is not a precise operation. The
imprecision is when both arguments have opposite signs. Then we are unable to
deduce the sign of the result based only on signs of both arguments, because it
depends on the difference of their values. The transfer function for a binary mi-
nus operation can be easily created from transfer functions of a unary minus and
a binary sum.

d♯
1+♯d♯

2 ≝
⎧⎪
⎨
⎪⎩

+Sgn if +Sgn ∈ {d1} ∪ {d2} and {d1} ∪ {d2} ⊆ {0Sgn, +Sgn}
0Sgn if −Sgn ∈ {d1} ∪ {d2} and {d1} ∪ {d2} ⊆ {0Sgn, −Sgn}
±Sgn otherwise.

Figure 3.9: Abstract semantics of sum expression.

An example of the implementation of a test function for an atomic comparison
is presented in Fig. 3.10. The rest of atomic comparisons are similar, thus we do
not present them here.

test(v1 ≤ v2, 𝘵𝘵, d♯) ≝
⎧⎪
⎨
⎪⎩

⊥Sgn if v1 = +Sgn and v2 ∈ {−Sgn, 0Sgn}
⊥Sgn if v2 = −Sgn and v1 = 0Sgn

d♯ otherwise.

Figure 3.10: Abstract semantics of multiplication expression.

3.3.2 Domain of Intervals
The abstract domain of intervals uses a concept of interval arithmetic, which was
originally introduced to handle rounding errors. The idea to adapt the technique for
the abstract interpretation was introduced by Cousot and Cousot [38]. We present
here the non-relational basis of the domain, which is lifted to multiple dimensions
using standard non-relational domain lifting construction. We present here a clas-
sical version that handles only non-strict interval constraints since it is enough to
understand the general idea. The extension introduces unnecessary complication
level.

Domain structure

The one-dimensional version of the domain of intervals is a tuple:

⟨𝔹v, ⊆v, ⊥v, ⊤v, ⊎, ∩⟩,
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where:

• 𝔹v is the set of all possible non-strict intervals on 𝕀, that is:

𝔹v = {[a, b] ∣ a ∈ 𝕀 ∪ {−∞} and b ∈ 𝕀 ∪ {∞} and a ≤ b}.

• ⊥v is the smallest element of the lattice — the empty interval. We may write
∅ to denote the element.

• ⊤v is the biggest element in the lattice, that is ⊤v = [−∞, ∞]. We may write
𝕀 to denote the element.

• ⊆v is a subset ordering on elements of 𝔹v such that for any X ∈ 𝔹v it holds
that ⊥v ⊆v X and [a1, b1] ⊆v [a2, b2] ⟺ a2 ≤ a1 and b1 ≤ b2, where
[a1, b1], [a2, b2] ∈ 𝔹v and ≤ is natural ordering on 𝕀 ∪ {−∞, ∞}.

• ⊎ is the join operator defined for any X,Y ∈ 𝔹v as follows:

X ⊎ Y ≝
⎧⎪
⎨
⎪⎩

X if Y = ⊥v

Y if X = ⊥v

[min(a1, a2), max(b1, b2)] if X = [a1, b1] and Y = [a2, b2].

Note that the join operator may over-approximate the exact result, for exam-
ple when the arguments of join are disjoint intervals.

• ∩ is the meet operator defined for any X,Y ∈ 𝔹v as follows:

X ∩ Y ≝
⎧⎪
⎨
⎪⎩

[max(a1, a2), min(b1, b2)] if X = [a1, b1] and Y = [a2, b2]
and max(a1, a2) ≤ min(b1, b2)

⊥v otherwise.

The meet operator is always precise.

The structure of the lattice for the case of integer interval endings is illustrated
in Fig. 3.11. When 𝕀 ∈ {ℤ, ℝ} the lattice is complete but for 𝕀 = ℚ it is not.

The concretisation function for the domain γv ∶ 𝔹v → 𝒫(𝕀) is defined as follows:

γv(X) ≝
{

∅ if X = ⊥v

{i ∈ 𝕀 ∣ a ≤ i ≤ b} otherwise, for X = [a, b]

and the abstraction function αv ∶ 𝒫 (𝕀) → 𝔹v for 𝕀 = ℤ is defined as:

αv(I) ≝
{

⊥v if I = ∅
[min(I), max(I)] otherwise.
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⊥

[-2,-2] [-1,-1] [0,0] [1,1] [2,2]

[-2,-1] [-1,0] [0,1] [1,2]

[-2,0] [-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]

Figure 3.11: A fragment of the lattice for the abstract domain of intervals for 𝕀 = ℤ.

In case of 𝕀 = ℝ, instead of min and max, we can use the infimum and supremum
respectively. When 𝕀 = ℚ the lattice is not complete and the abstraction function
does not exist.

Widening operator

The domain of intervals is of infinite size and there exist infinite sequences of
strictly increasing elements in 𝔹v. For example, the sequence [0, 1], [0, 2], [0, 3], …
is strictly increasing. Therefore, a widening operator is required in order to termi-
nate the process of abstract interpretation. The idea behind the widening operator
is to go straight to ∞ when the end of the interval in the second argument of
widening is greater than the end of the interval in the first argument. The situation
is symmetrical for the beginnings of intervals. For any X,Y ∈ 𝔹v the widening
operator is defined as follows:

X▿Y ≝
⎧⎪
⎨
⎪⎩

[a, b] if X = [a1, b1] and Y = [a2, b2]
Y if X = ⊥v

X if Y = ⊥v,

where:

a =
{

a1 if a1 ≤ a2

−∞ otherwise,
b =

{
b1 if b2 ≤ b1

∞ otherwise.
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Transfer functions

In order to apply the generic construction of the assign function we have do define
abstract semantics of expressions for the domain of intervals. In case of any domain
operator, if any of the arguments is ⊥v then the result is also ⊥v. The semantics for
the rest of situations is presented in Fig. 3.12.

𭒩♯⟦c⟧ ≝ [c, c]
−♯[a, b] ≝ [−b, −a]

[a1, b1] +♯ [a2, b2] ≝ [a1 + a2, b1 + b2]
[a1, b1] −♯ [a2, b2] ≝ [a1 − b2, b1 − a2]
[a1, b1] ∗♯ [a2, b2] ≝ [min(a1 ∗ a2, a1 ∗ b2, b1 ∗ a2, b1 ∗ b2),

max(a1 ∗ a2, a1 ∗ b2, b1 ∗ a2, b1 ∗ b2)]

Figure 3.12: Abstract semantics of expressions for the domain of intervals.

Here we present a few examples of a test function for atomic comparisons. When
the third argument of the test function is bottom element, the result is also bottom,
i.e. test(b, 𝘵𝘵, ⊥v) ≝ ⊥v. A simple comparison of a variable and a constant for the
case of 𝕀 = ℤ is as follows:

test(v < c, 𝘵𝘵, d♯) ≝ λw ∶
{

d♯(w) if w ≠ v
[av, min(c − 1, bv)] otherwise for d♯(v) = [av, bv].

A little more complex comparison of two variables u, v ∈ 𝘝𝘢𝘳 such that u ≠ v is
as follows:

test(u < v, 𝘵𝘵, d♯) ≝ λw ∶
⎧⎪
⎨
⎪⎩

d♯(w) if w ∉ {u, v}
[av, bv] ∩ [−∞, bu] if w = v
[au, bu] ∩ [av, +∞] if w = u,

where d♯(u) = [au, bu] and d♯(v) = [av, bv].

3.4 Path-sensitive analysis
Numerical domains that were mentioned in the previous section as well as most
of the existing ones share two certain features:
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x

y

(a) Concrete points of
the first argument

x

y

(b) Concrete points of
the second argument

x

y

(c) Interval arguments

x

y

(d) Octagon arguments

x

y

(e) Polyhedron arguments

x

y

(f) Join for intervals

x

y

(g) Join for octagons

x

y

(h) Join for polyhedra

Figure 3.13: Examples of imprecise join for various numerical domains: (a)-(b)
concrete arguments, (c)-(e) various representations of arguments,
(f)-(h) various results of join.

• meet operation is precise in the domain — the result is an element of the
domain,

• join operation is not precise — the result may not be an element of the do-
main and usually is over-approximated to the smallest element that contains
the result (in case of polyhedra such element may not exist).

Examples of over-approximation during the join operation for a few of numerical
domains from the previous section are presented in Fig. 3.13.

Let us consider an analysis that uses domains that over-approximate join. Sup-
pose that a program P at some control point ℒ has a few input edges. When the
analysis goes through the point it merges information from all the input edges us-
ing the join operation. Since this is an over-approximating procedure, one may
loose particular information about each of the input edges (and also about paths
that lead to the label ℒ). Therefore, such analysis is called path-insensitive. An-
other disadvantage of the path-insensitive analysis is that it produces high rate of
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false positives. In disjunctive analysis the join operation is precise, therefore in-
formation about each of the input paths is kept (as disjuncts) — such analysis is
called path-sensitive.

An overview of techniques used for the path-sensitive analysis is presented in
Section 3.4.1. In Section 3.4.2 we describe a trace partitioning technique intro-
duced by Mauborgne and Rival [79]. Next, in Section 3.4.3, we present a traditional
construction of a disjunctive refinement (or disjunctive completion) [39] with an
overview of methods for creating widening operators.

3.4.1 Disjunctive Refinement
The idea of a disjunctive completion [37, 39] was introduced by Cousot and Cousot
as one of generic constructions that can be used to enhance abstract domains. Let
𭒟 be the base domain that has precise meet but join may loose some information.
The idea is to move to a more expressive abstract domain 𝒫 (𭒟), where sets of
elements from the original domain 𭒟 represent disjunctions of these elements.
The original definition of disjunctive completion allows for any set of disjuncts,
even infinite.

The construction by Patric Cousot is not very practical since the number of dis-
juncts may be infinite. The finite powerset domain [8, 10] is a similar construction
to the disjunctive completion with the difference that the number of disjuncts is
finite (but not bounded). The assumption is reasonable since the representation of
infinite number of disjuncts may be very hard, or even impossible to store in the
memory of a computer.

In the thesis we are interested in a disjunctive refinement, which is a general term
for dealing with refinements of domains that handle disjunctions. Patric Cousot’s
disjunctive completion is an example of the disjunctive refinement. Popular tech-
niques, such as trace partitioning [79] or splitting locations in the control flow
graph [88], allow bounded number of disjuncts. The main disadvantage of these
techniques is that they usually do not scale well to a large number of disjuncts.

3.4.2 Trace Partitioning
There are various techniques to introduce path-sensitivity and, therefore, improve
precision beside the disjunctive refinement construction. The idea of trace parti-
tioning was proposed by Handjieva and Tzolovski [63], then expanded and gener-
alised by Rival and Mauborgne [79, 87]. In the described approach the set of all
possible finite traces Σ∗

t (see Section 2.4.5) is split into number of groups using
some chosen criterion. Instead of handling every possible trace separately one can
look at groups of traces that share a specific characteristic. When the abstraction
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is well-chosen, static analysis using the abstract domain may be feasible.
The trace discriminating reachability semantics that was introduced by Rival

and Mauborgne lies in terms of precision between the partial trace semantics and
the reachability semantics:

• it abstracts the partial trace semantics — makes some of the traces indistin-
guishable (they are put into one group),

• the reachability semantics is an abstraction of the trace discriminating reach-
ability semantics — any information about traces is abandoned, only reach-
able states are considered.

The technique is generic and can be applied to any partitioning of the set of
traces. Since we would like to improve accuracy of the join operation, considering
traces that go through control points of a program, where branching appears, are
especially interesting.

ℒif ∶ if c then
Bt

else
Bf

fi
ℒs ∶ s
ℒ

(a) Source code

ℒif

BtBf

ℒs

ℒ

(b) Control flow
graph

ℒif

BtBf

ℒsℒs

ℒℒ

(c) Control flow
partition

ℒif

BtBf

ℒsℒs

ℒ

(d) Merging control
flow partition

Figure 3.14: Example of a program trace partitions.

The first place to improve precision are conditional instructions. As an example,
we use the domain of signs Sgn as the base domain and we analyse a fragment
of a program presented in Fig. 3.14(a). The program consists of a conditional in-
struction and exactly one instruction s that appears after it. In Fig. 3.14 (b) a control
flow graph of the program is presented. Abstract interpretation algorithm using the
base domain of signs, presented in Section 3.3.1, would result in applying the join
operation at the label ℒs. This may cause loss of precision. Assume that after the
block Bf we have information that some variable v has the abstract value of +Sgn,
while after block Bt it has the value of −Sgn. The application of join in the label
ℒs would cause the value of v to be ±Sgn. Therefore, we loose information that v
cannot be equal to 0. If the instruction s is a division by v, the analysis would say
that there is a division by 0 error, which is a false positive. If we use control flow
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partition, where traces that go though the block Bt are distinguished from the ones
that go through the block Bf — presented in Fig. 3.14 (c), we get two instances of
the label ℒs (and also ℒ) to analyse (therefore, such analysis is also called control
flow based partition) but in both cases one may reason that v is not equal to 0.

The second place, where branching is introduced, are loop instructions. One
of strategies that can be applied to those is called loop unrolling. It is especially
useful in cases, where computation of the widening in the initial iterations may
result in a very imprecise result. The idea is to delay application of the widening
operator — for the first n iterations the widening is not applied (a regular join is
computed), and then, for the following iterations widening operator is applied. The
result may be then merged at the loop end or every element of partitions can be
analysed separately.

In the example from Fig. 3.14 (c) the traces that go through the positive branch
and negative branch are distinguished (note two instances of the label ℒ). In order
to reduce the cost of the analysis it is possible to merge traces at some points. An
example is presented in Fig. 3.14 (d), where the merge of traces is done in the label
ℒ. As a result we do not receive false positive alarm in the point ℒs but the analysis
is still efficient.

Another method introduced by Rival and Mauborgne is a value based parition-
ing. When one focuses only on the partition based on the control flow, some inter-
esting information about relationships between variables might get lost. To regain
the relationship one can introduce partitioning according to the values of the vari-
able at some control point.

The construction by Mauborgne and Rival is generic — it can be applied to any
abstract domain. The definition of trace paritioning abstract domain created for
some base domain includes domain operations and the widening operator that are
created using the corresponding operations from the base domain. The crucial and
a very difficult part of the construction is to properly choose a correct strategy for
the partitioning:

• which control points to choose for the control flow partitioning,

• in which points to apply the value based partition and how to split val-
ues — the value based partitioning is domain-specific,

• and finally, which control points to choose for merging.
It seems that there is no universal solution but authors give some ideas for “good”
partitions [87]:

• for sequences of conditional statements, partitioning done in the first may
improve precision of the following ones when the condition of the second
conditionals depends on the content of the branches created in the first one,
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• unrolling loops — in some loops the first iteration includes initialization of
some variables, sometimes it is worth to distinguish the first iteration, so that
this is taken into account.

3.4.3 Powerset Domains
Assume that we have a base domain, where the join operation is imprecise. The
idea of a powerset construction is to create a new domain, in which elements are
sets of the base domain elements. This way, join can be easily implemented as a set
sum of both arguments. There are two main problems with such constructions: how
to efficiently represent domain elements and the implementation of the widening
operator. The idea of the powerset construction was introduced by Cousot and
Cousot [39]. It is based on a down-set completion [33].

In the description we focus on the join operation, therefore the construction uses
a join-semilattice instead of a lattice.

Definition 3.4.1 (Non-redundancy). Let ⟨𭒟, ⊆𭒟, ⊥𭒟, ∪𭒟⟩ be a join-semilattice.
The set X ∈ 𝒫 (𭒟) is called non-redundant with respect to ⊆𭒟 if and only if
⊥𭒟 ∉ X and for all x1, x2 ∈ X it holds that x1 ⊆𭒟 x2 ⇒ x1 =𭒟 x2.

We denote 𝒫fn (𭒟𭒟) as the set of all finite subsets of 𭒟 and 𝒫fn (𭒟, ⊆𭒟) as the set
of all finite non-redundant subsets of 𭒟 with respect to ⊆𭒟. There is a reduction
function Ω⊆𭒟

𭒟 ∶ 𝒫fn (𭒟) → 𝒫fn (𭒟, ⊆𭒟), which maps any finite set X ∈ 𝒫fn (𭒟) to
its non-redundant counterpart. Let X ∈ 𝒫fn (𭒟), then:

Ω⊆𭒟
𭒟 (X) = X ⧵ {x ∈ X ∣ x = ⊥𭒟 ∨ ∃x′ ∈ X ∶ x ⊂ x′}.

For any non-empty set X ∈ 𝒫fn (𭒟) the reduction function Ω⊆𭒟
𭒟 (X) returns a set

of maximal elements from X according to the ordering ⊆𭒟 — it is sufficient as
a representation of X. This kind of reduction is the main idea behind the down-set
completion construction (here presented for finite subsets only). It may highly re-
duce the size of the representation of domain elements. As an example, consider
a powerset of elements the domain of signs from Section 3.3.1. The sets: {±Sgn},
{±Sgn, −Sgn} and {±Sgn, −Sgn, +Sgn, 0Sgn, ⊥Sgn} have the same concrete meaning. The
down-set completion construction removes this obvious redundancy — it is con-
sidered as a kind of partial, syntactic reduction. A complete example of a down-set
completion for the domain of signs is presented in Fig. 3.15. Note that the lattice
from Fig. 3.15(b) is another possible variant for the domain of signs.

53



Chapter 3 Numerical Abstract Domains

±Sgn

−Sgn +Sgn0Sgn

⊥Sgn

(a) The domain of signs: Sgn

⊤

⊥

=0

≤0 ≥0

>0<0

≠0

(b) Down-set completion of Sgn

Figure 3.15: A down-set completion for the domain of signs Sgn.

Finite Powerset Domain Construction

The finite powerset domain [8, 10] is a construction that does not limit the number
of disjuncts but assumes that the number is finite. The assumption is reasonable
since the representation of infinite number of disjuncts may be very hard or even
impossible to store in computer memory.

Let ⟨𭒞, ⊑, ⊥, ⊤, ⊔, ⊓⟩ be the concrete domain, where ⟨𭒞, ⊑⟩ is a complete lattice,
⊥ is the smallest element in 𭒞, ⊤ is the greatest element, ⊔ is the join operator,
and ⊓ is the meet operator. We consider the abstract domain ⟨𭒟♯, ⊆♯, ⊥♯, ∪♯⟩ to be
a join-semilattice and assume there is a concretisation function γ ∶ 𭒟♯ → 𭒞 that
is monotone and injective. For X ∈ 𝒫fn (𭒟♯) we write ⋃♯X to denote the greatest
upper bound of X.

Definition 3.4.2 (Finite Powerset Domain). Let �̌�♯ = ⟨𭒟♯, ⊆♯, ⊥♯, ∪♯⟩ be a join-
semilattice. A finite powerset domain over �̌�♯ is the join-semilattice:

�̌�♯
P = ⟨𝒫fn (𭒟♯, ⊆♯), ⊆♯

P, ⊥♯
P, ∪♯

P⟩,

where ⊥♯
P = ∅, the relation ⊆♯

P is defined as follows:

X1⊆♯
PX2 ⟺ ∀x1 ∈ X1 ∶ ∃x2 ∈ X2 ∶ x1⊆♯x2

and X1∪♯
PX2 = Ω⊆♯

𭒟♯(X1 ∪ X2).

Note that in the definition of ∪P
♯ a regular set sum is used: we perform a syntactic

normalisation of the sum of both arguments. The concretisation function γP ∶
𝒫fn (𭒟♯, ⊆♯) → 𭒞 relates the finite powerset domain to the concrete domain by the
function:

γP(X) = ⋃ {γ(x) ∣ x ∈ X}.
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3.4 Path-sensitive analysis

Note that the function γP is monotone but not necessarily injective — an example
is presented in Fig. 3.16 — every set in {X1,X2,X3,X4} is non-redundant with
respect to ⊆, they are all different and γP(X1) = γP(X2) = γP(X3) = γP(X4).
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x2

X1 = {x1, x2}
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X2 = {x1, x2}
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X4 = {x1, x2}

Figure 3.16: Many possible representations of the same set of concrete points by
the finite powerset domain extension for intervals.

As we have already stated, the non-redundancy constraint provides only a partial
form of reduction. It is not a full reduction because the concretisation function γP
is not injective (example in Fig. 3.16). The full form of reduction is required by
abstract interpretation since the equality comparison is required to compute the
abstract semantics of a given program with either a form of Kleene’s chains or
with help of a widening operator.

For two elements X1,X2 ∈ 𝒫fn (𭒟♯, ⊆♯) we denote X1 ≡γP X2 if and only if
γP(X1) = γP(X2). The relation ≡γP is a congruence on 𝒫fn (𭒟♯, ⊆♯). It distinguishes
abstract elements that represent the same concrete element. The direct implemen-
tation of the simple redundancy reduction function Ω⊆♯

𭒟♯ performs a quadratic (in
size of the set in the argument) number of the base domain inclusion ⊆♯ tests. Bag-
nara et al. [10] do not present a generic full reduction algorithm (or an operator
that checks equality). Such operation is usually implemented domain-specific and
even then can be computationally very expensive [9].

The advantage of the idea by Bagnara et al. is that in some cases an abstract
semantic function can be simply constructed instead of introducing ad hoc defini-
tions. If the concrete semantic function F ∶ 𭒞 → 𭒞 is additive, the abstract seman-
tic function for the finite powerset domain F♯

P ∶ 𝒫fn (𭒟♯, ⊆♯) → 𝒫fn (𭒟♯, ⊆♯) can be
constructed from the abstract semantic function for the base domain F♯ ∶ 𭒟♯ → 𭒟♯

as follows:
F♯
P(X) = Ω⊆♯

𭒟♯({F♯(x) ∣ x ∈ X}).

A different solution to decrease computational cost of introducing a disjunctive
refinement is to exploit certain characteristics of the base domain — in the current
thesis we apply the idea to the abstract domain of intervals.
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Widening Operator

The main contribution of Bagnara, Hill, and Zaffanella [10] is the introduction of
generic techniques for creating widening operators for finite powerset domains.
They present a few generic constructions that use widening operators from the
base domain in order to create a proper widening for the finite powerset version.
These constructions are based on the structure of the powerset domain elements
and orderings. They are quite complex. In order to describe their ideas we first
introduce some definitions and denotations.

Bagnara et al. use a variant of the widening operator, where the second argument
is greater than or equal to the first one (see Definition 2.4.7). The widening operator
for the base domain ▿ ∶ 𭒟♯ ×𭒟♯ → 𭒟♯ induces a partial ordering ⪯▿ on 𭒟♯, which
is defined as the reflexive, transitive closure of the relation:

{(d1, d2) ∈ 𭒟♯ × 𭒟♯ ∣ ∃d ∈ 𭒟♯ ∶ d1⊂♯d ∧ d2 = d1▿d}. (3.1)

The statement d1 ⪯▿ d2 means that element d1 precedes d2 in some iteration se-
quence with widening. We define a partial order relation ⊆EM on 𝒫fn (𭒟♯, ⊆♯) as
follows:

X ⊆EM Y ⟺ X = ⊥♯
P ∨ (X⊆♯

PY ∧ ∀y ∈ Y ∶ ∃x ∈ X ∶ x⊆♯y).

The statement X ⊆EM Y means that either X is bottom or every element in Y is
an over-approximation of some element from X and every element in X is over-
approximated by some element from Y.

Definition 3.4.3 (Extrapolation heuristics). An operator h▿
P ∶ 𝒫fn (𭒟♯, ⊆♯) ×

𝒫fn (𭒟♯, ⊆♯) → 𝒫fn (𭒟♯, ⊆♯) is an extrapolation heuristics for �̌� when for any
X,Y ∈ 𝒫fn (𭒟, ⊆♯) such that X ⊂P Y, h▿

P is defined and satisfies the following
conditions:

Y ⊆EM h▿
P (X,Y), (3.2)

∀x ∈ h▿
P (X,Y) ⧵ Y ∶ ∃x′ ∈ X ∶ x′ ≺▿ x. (3.3)

The condition (3.2) ensures that the result is an over-approximation of Y— every
element in the result is an over-approximation of some element in Y. Thus, the
extrapolation heuristics cannot introduce any element that is unrelated to Y. The
condition (3.3) ensures that every element in the result set, that was not in Y, is
obtained by an application of the widening operator to some element of X (not
necessarily once).

The extrapolation heuristics itself is not enough for the widening. As an ex-
ample, we take a one-dimensional domain of intervals. We define a sequence of
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elements 𭒯0, 𭒯1, … such that 𭒯j = {[i, i] ∣ 0 ≤ i ≤ j}. The element 𭒯j consists of
j + 1 points. Note that by (3.2) it holds that h▿

P (𭒯j, 𭒯j+1) = 𭒯j+1. Therefore, for any
definition of the base widening the sequence of applications of the extrapolation
heuristics operator is diverging.

The extrapolation heuristics is the base for creating generic widening construc-
tions. It already gives some intuition about the constructions of these widening
operators: in the following constructions we control the origin of elements that
appear during the widening.

Powerset Widenings using Set Cardinality
The first method of creating widening operators is to control the number of dis-
juncts during the widening sequence. For that purpose a k-collapsor unary opera-
tor for �̌�♯ is introduced.

Definition 3.4.4 (k-collapsor). For k ≥ 1, a unary operator ⇑k∶ 𝒫fn (𭒟♯, ⊆♯) →
𝒫fn (𭒟♯, ⊆♯) is called a k-collapsor for �̌�♯ if for every X ∈ 𝒫fn (𭒟♯, ⊆♯) it holds
that if |X| ≤ k then ⇑k (X) = X or when |X| > k then there is Y ⊆ X such that
|X| − k < |Y| and ⇑k (X) = (X ⧵ Y) ∪P {⋃♯Y}.

The k-collapsor ensures that the result has at most k elements. If the argument X
has more than k elements, the k-collapsor replaces a subset Y of elements of X by
their join. The number of elements that are left in the set X ⧵ Y is smaller than k.

The k-collapsor itself also does not ensure the termination [10, Example 3] (an
example is quite complex, thus we do not present it here). The problem is that the
reduction function Ω⊆♯

𭒟♯ somehow interferes with the cardinality control mecha-
nism. A solution is to add some additional constraints on the extrapolation heuris-
tics:

Definition 3.4.5 (▿-covered heuristics). The extrapolation heuristics h▿
P is called

▿-covered if for all X,Y ∈ 𝒫fn (𭒟♯, ⊆♯) such that X ⊂P Y it holds that:

∀x ∈ X ∶ ∃z ∈ h▿
P (X,Y) ∶ x ⪯▿ z.

Now every element x in the first argument must be ▿-covered by some element z
from the result: the element z is obtained by an application of the widening operator
to x (possibly multiple times). The cardinality-based widening is a combination
of the ▿-covered heuristics and the k-collapsor:

Theorem 3.4.6 (Cardinality-based widening). Let h▿
P be a ▿-covered extrap-

olation heuristics and ⇑k be a k-collapsor for �̌� and some k ≥ 1. Let ▿k,P ∶
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𝒫fn (𭒟♯, ⊆♯) × 𝒫fn (𭒟♯, ⊆♯) ⇀ 𝒫fn (𭒟♯) be a partial operator such that for any
X,Y ∈ 𝒫fn (𭒟♯, ⊆♯) it holds that X⊂♯

PY. Then:

X▿k,PY ≝ h▿
P (X, ⇑k (Y))

is a widening operator for �̌�. The operator is called cardinality-based widening.

Proof. In [10].

The precision of the cardinality-based widening depends on quite a lot of fac-
tors. There is a generic construction of a ▿-covered heuristics that can be ob-
tained for any base-level widening operator [10, Def. 9]. Still, one has to adjust
the k-collapsor operator. First of all, it depends on the parameter k, which con-
trols the number of disjuncts. The k-collapsor is also responsible for the choice of
a subset of elements to join together.

Powerset Widenings using Connectors
Another method of obtaining a generic widening operator proposed by Bagnara
et al. is to ensure that the base-level widening is used. We define a new subclass
of extrapolation heuristics:

Definition 3.4.7 (▿-connected heuristics). The extrapolation heuristics h▿
P is said

to be ▿-connected if for all X,Y ∈ 𝒫fn (𭒟♯, ⊆♯) such that X⊂♯
PY it holds that:

∀z ∈ h▿
P (X,Y) ∩ Y ∶ (∃x ∈ X ∶ x⊂♯z) ⇒ (∃x′ ∈ X ∶ x′ ≺▿ z).

The ▿-connected heuristics makes sure that every element in the result that covers
(i.e. is greater than) some element of the first argument X originates from an ap-
plication of the widening operator to an element of X. Note it might be a different
element of X than the one that is covered.

We recall the simple example, which exposed that the extrapolation heuristics is
not a widening operator. The example still applies for the ▿-connected heuristics.
The divergence is caused by elements in the second argument that do not cover
elements from the first argument. The idea is to replace the second argument by
an upper bound of both arguments in the ⊆EM order (any upper bound):

Definition 3.4.8 (Connector). An operator ⊔EM ∶ 𝒫fn (𭒟♯, ⊆♯) × 𝒫fn (𭒟♯, ⊆♯) →
𝒫fn (𭒟♯, ⊆♯) is called a connector for �̌�♯ if it is an upper bound operator for ⊆EM,
that is for any X,Y ∈ 𝒫fn (𭒟♯, ⊆♯) it holds that X ⊆EM (X ⊔EM Y) and Y ⊆EM
(X ⊔EM Y).

A combination of ▿-connected extrapolation heuristics with the connector can
be used to create a widening operator, which is stated by Theorem 3.4.9.
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Theorem 3.4.9 (Connector-based widening). Let h▿
P be a ▿-connected extrapo-

lation heuristics and ⊔EM be a connector for �̌�♯. Let also X,Y ∈ 𝒫fn (𭒟♯, ⊆♯) be
such that X⊂♯

PY. Then a partial operator ▿EM,P ∶ 𝒫fn (𭒟♯, ⊆♯) × 𝒫fn (𭒟♯, ⊆♯) ⇀
𝒫fn (𭒟♯, ⊆♯) such that X▿EM,PY ≝ h▿

P (X,Y′), where:

Y′ =
{

Y if X ⊆EM Y
X ⊔EM Y otherwise,

is a widening operator for �̌�. The operator is called connector-based widening.

Proof. In [10].

Powerset Widenings using Certificates
Bagnara et al. also introduce a certificate-based widening operator. The construc-
tion is a bit different from the constructions based on connectors and cardinality
that we have presented, but it is even more complicated. Authors claim that the
certificate-based widening construction is not a good choice for powersets of sim-
pler domains such as intervals, therefore we do not present the technique in detail
here. The widening operator is based on a notion of a convergence certificate:

Definition 3.4.10 (Finite convergence certificate). A finite convergence certifi-
cate for an upper bound operator ⊔ on �̌�♯ is a triple ⟨𭒪, ⪯, μ⟩, where ⟨𭒪, ⪯⟩ is
a partially ordered set satisfying the ascending chain condition and μ ∶ 𭒟 → 𭒪
(called a level mapping function) is such that:

∀x, x′ ∈ 𭒟 ∶ x⊂♯x′ ⇒ μ(x) ≺ μ(x ⊔ x′).

The certificate based widening operator is created from a finitely computable cer-
tificate for the base-domain. The crucial part of the construction is to create, from
the certificate and the widening operator for the base-domain, a relation on the
powerset domain that is both finitely computable and satisfies the ascending chain
condition. Bagnara et al. present a generic construction of such relation — ↷P.
Together with any upper bound operator on the powerset domain, the relation ↷P
is used to build a widening operator for the powerset domain.

Conclusion
We have presented a brief overview of three generic constructions of widening
operators that can be applied for powerset domains. All the constructions use the
widening operator from the base domain. The main drawback of these construc-
tions is their complexity — the blocks required to build each of presented widen-
ings are listed in Table 3.1. The level of complexity and various constraints of all
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three constructions makes creating a reasonable widening operator very hard. On
the other hand, the generality of these constructions enables to create a widening
for a powerset domain possibly without deeper understanding of the underlying
base domain. Bagnara et al. have presented applications of the method for the
powerset of the domain of polyhedra. Their widening operators turned out to be
better that known before. We have to note that the domain of polyhedra is quite
complex and creation of a widening that takes advantage of its specific features is
very hard.

Widening Required constructions
Cardinality-based ▿-covered heuristics, k-collapsor
Connector-based ▿-connected heuristics, connector operator
Certificate-based convergence certificate, upper bound operator,

substraction operator

Table 3.1: Operators required to apply presented widening constructions.

In case of simpler domains, as domain of intervals, the powerset domain is more
natural. The simplicity of the base domain gives us possibility to create our own
implementation of the powerset version (possibly with a full reduction) along with
a specific construction of the widening operator that exploits some of the features
of the domain. In the construction presented in the thesis we apply this approach
in order to create an implementation of the powerset of the domain of intervals
along with the widening operator.

3.4.4 Other techniques
There are also other techniques to introduce path-sensitive analysis. For exam-
ple, Sankaranarayanan et al. [88] introduce a concept of elaboration. The idea is
similar to the trace-partitioning technique by Mauborgne and Rival. One creates
a modified control flow graph, which is constructed as an extension of the orig-
inal graph by replicating some of the nodes. As an application of the technique
Sankaranarayanan et al. consider a bounded elaboration, which corresponds to
powerset extensions, where the number of disjuncts is limited by some constant.
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Chapter 4

Generic Disjunctive Refinement for
the Domain of Intervals

4.1 Introduction
In this chapter, we present an adaptation of the concept of the sweeping line to
abstract interpretation. Sweeping line algorithms are very important in the com-
putational geometry. They are used to compute all crossings in a set of line seg-
ments (Bentley-Ottmann algorithm [12]) or a construction of the Voronoi diagram
(Fortune’s algorithm [52]). We demonstrate here how the sweeping line technique
can be used to efficiently represent elements and perform operations for a domain
that is a disjunctive refinement of the domain of intervals. Our format handles both
strict and non-strict inequalities. We also give some ideas for optimisations of the
presented base version, which may reduce the size of the representation and the
cost of domain operations. We apply thresholds to the construction of the widen-
ing operator for the domain. We introduce two versions of the widening operator:
a generic one, and the second one with a theorem about one-step precision of the
operator depending on the choice of threshold points.

4.1.1 Related Work
Abstract interpretation successfully takes advantage of techniques used in various
fields. There have been works, which employ different graph-based algorithms [53,
83]. Also lately quadtrees, a data structure used in computational geometry was
proposed to be adapted for the abstract interpretation [68]. The current research in-
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vestigates advantages and disadvantages of a new technique in the field of abstract
interpretation — the sweeping line technique [12], which is one of the key tech-
niques of the computational geometry. The introduction of the new concept brings
new insights. We use the concept of a sweeping line to represent elements of the
domain of boxes, which is a disjunctive refinement of the domain of intervals.

There have been proposed some ways to build a disjunctive refinement. We have
briefly presented a few techniques in Section 3.4. They usually use special strate-
gies of controlling the disjuncts [10, 79, 88], but most of them do not scale to
a large number of disjuncts. Also achieving a satisfactory precision of the widen-
ing is hard. Recently, a new implementation of the domain of boxes has been pro-
posed [60]. The solution by Gurfinkel and Chaki is based on Linear Decision Di-
agrams (LDD) and easily scales to large number of disjuncts. Additionally, quite
high precision of widening was presented. We propose here a different approach
to the same domain of boxes. Our construction is more generic, the implemen-
tation of the domain that uses LDDs can be regarded as an optimisation of the
technique presented in the current thesis. The widening operator introduced here
uses thresholds [14] to gain precision. Single application of the widening operator
gives more precise result than the one by Gurfinkel and Chaki.

4.2 Problem Definition
The basic version of the domain of intervals makes it possible to represent only
convex sets (as described in Section 3.4). We would like to extend the domain to
make it possible to represent finite disjunctions of intervals. We define this more
formally in what follows. First, we define the new numerical abstract domain and
then introduce representation of domain elements, algorithms for domain opera-
tors and widening operator as well as transfer functions.

We extend the construction from Section 3.3.2 to represent finite sets of elements
from the domain of intervals. The domain of boxes is a tuple:

⟨𝔹𝕊n, ⊆, ∅, 𝕀n, ∪, ∩⟩,

where:

• 𝔹𝕊n = {ℬ𭒮 ∈ 𝕀n ∣ there exist ℬ1, ℬ2, … , ℬk ∈ 𝔹n such that ℬ𭒮 = ⋃k
i=1 ℬi},

• ⊆ is the subset ordering,

• ∅ is the empty set that is also ⊥ of the ordering,

• 𝕀n is the whole n-variable space, which is the ⊤ of the ordering,
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• ∪ is the join operator for the domain, which is an exact sum of two elements,

• ∩ is the meet operator for the domain, which is an exact intersection.

The improvement compared to the domain of intervals is that in the domain of
boxes the operation ∪ is exactly set theoretical sum and does not require any kind
of closure. Note that for elements ℬ𭒮 ∈ 𝔹𝕊n there may exist multiple splits into
separate boxes from the domain of intervals.

Our goal is to efficiently represent elements of the domain of boxes and effi-
ciently perform domain operations on such elements. With the chosen technique
we directly describe element ℬ𭒮 ∈ 𝔹𝕊n, not as a set of separate boxes. However,
in some situations we require to split the element into separate boxes. Then, we
choose only one “unique” split that is maximal in some sense, which is a conse-
quence of the chosen representation.

Interval Constraints
The domain of intervals, as presented in Section 3.3.2, uses only non-strict in-
equalities. Since we would like to accept both strict and non-strict inequalities, we
introduce a few definitions that are used in the presented construction.

Let ℬ ∈ 𝔹n for some n ≥ 0 be a single box from the domain of intervals. Let
𝘝𝘢𝘳 = {v1, … , vn} be the set of variables. The element ℬ is either empty, i.e. ⊥v,
or it is defined by a finite set C of interval constraints such that:

• every constraint c ∈ C limits only one variable,

• there are exactly two constraints that limit every variable v ∈ 𝘝𝘢𝘳 :
– a lower boundary interval constraint cL for variable v— an inequality

of form c ≡ a < v, where a ∈ 𝕀 ∪ {−∞}, or c ≡ a ≤ v, where a ∈ 𝕀,
– a higher boundary interval constraint cH for variable v— an inequality

of form c ≡ v < b, where b ∈ 𝕀 ∪ {∞}, or c ≡ v ≤ b, where b ∈ 𝕀,
– both constraints define a non-empty set of possible values for v, i.e. if

either of cL or cH is a non-strict inequality then it holds that a < b or
a ≤ b otherwise.

If cL ≡ −∞ < v we say there is no lower boundary interval constraint on the
variable v. Dually, if cH ≡ v < ∞ we say there is no higher boundary interval con-
straint on the variable v. If there is no lower boundary interval constraint and no
higher boundary interval constraint for v, we say that there are no interval restric-
tions on v. We say that ⃖⃗𝒙 ∈ 𝕀n such that ⃖⃗𝒙 = ⟨xn, … , x1⟩ fulfils interval constraints
defining ℬ if for every i ∈ {1, … , n} it holds that xi fulfils interval constraints for
the variable vi.
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Since every constraint c ∈ C limits only one variable, constraints for different
variables are independent, which is stated by Remark 4.2.1.

Remark 4.2.1. Let n > 0, ⃖⃗𝒙 ∈ 𝕀n be such that ⃖⃗𝒙 = ⟨xn, … , x1⟩, ℬ ∈ 𝔹n and
𝘝𝘢𝘳 = {v1, … , vn} be the set of variables. It holds that:

⃖⃗𝒙 fulfils all interval constraints defining ℬ ⟺
∀i ∈ {1, … , n} ∶ xi fulfils interval constraints for variable vi.

4.3 Adaptation of the Sweeping Line Technique
The general idea of the sweeping line technique uses a conceptual sweeping line
or sweeping surface to solve various problems in Euclidean space. It is one of the
key techniques used in the computational geometry. The idea behind algorithms
of this type is to imagine that a line (usually a vertical one) is swept across a plane,
stopping at some points. A data structure, which is associated with the sweeping
line, is updated every time the line is stopped. When the line has swept across all
the points, a result of interest is computed from the final data structure.
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Figure 4.1: The idea of the way the sweeping line technique is used to represent
domain elements.

To demonstrate the idea how to adapt the technique to construct the domain of
boxes, we describe two and three-dimensional examples presented in Fig. 4.1. Let
us assume that we already have a representation of the one-dimensional version of
the domain, which is a set of possible values for a single variable x. Now, let us
focus on the two-dimensional version presented in Fig. 4.1(a). We sweep through
the values of the variable y starting from −∞ to +∞, and observe what happens
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with values of the variable x. As the data associated with the sweeping line — SL1,
we store the set of values of the variable x that are possible for the current value
of y. This is in fact a one-dimensional version of the domain. We stop at values
of the variable y, where the set changes, and update the data structure SL1 accord-
ingly. Consider the example in Fig. 4.1(a). The set of stop points for the variable
y is y ∈ {−∞, 1, 2, 3, 4}. For every such value the set of corresponding values of
the variable x is displayed in black. The process of sweeping is summarized in
Table 4.1.

Sweeping line location
(value of y)

Data associated with the sweeping line:
SL1 (possible values for x)

y = −∞ ∅
y = 1 [1, 2]
y = 2 [1, 2] ∪ [3, 5]
y = 3 [1, 5]
y = 4 [1, 4]
y = 5 ∅

Table 4.1: Details of the sweeping process for the example from Fig. 4.1(a).

We proceed analogically for the three-dimensional version from Fig. 4.1(b).
When we sweep through the values of the variable z, the data associated with the
sweeping line — SL2, is a two-dimensional version of the domain. Thus, for z < 0
we have that SL2 is empty, for z = 0 it becomes an area described by the following
two-dimensional representation: for y < 0 the structure SL1 is empty, for y = 0 it
is changed to an interval [0, 3], and for y > 3 the data SL1 becomes empty again.
For z = 1 the area described by SL2 becomes a little more complicated (a small
square is removed) and for z > 2 the structure SL2 becomes empty.

The representation of elements of the domain of boxes is based on the technique
described above. The difference is that we actually collect whole history of sweep-
ing. For example, for the sweeping process from Fig. 4.1(a) we collect all the data
from Table 4.1. We obtain a list of pairs, where first elements are values of the
variable y and second elements are possible values for the variable x.

4.4 Representation of Domain Elements
In order to manage both strict and non-strict inequalities, special points that are
encountered during the process of sweeping are described as pairs (x, b) ∈ 𝕀×ℙ𝕄,
where ℙ𝕄 = {⊕, ⊖}. Each such pair describes the beginning of an interval. In
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case (x, ⊕) the number x is included in the interval and in case (x, ⊖) the value x
is excluded from it. We define the set of pairs as follows:

ℙ = 𝕀 × ℙ𝕄.

Additionally, when 𝕀 = ℤ we add a restriction that ⊖ is not used. We introduce an
ordering on elements of ℙ, that is ≺⊆ ℙ × ℙ, defined as:

(x, b) ≺ (x′, b′) ⟺ x < x′ or x = x′ ∧ b = ⊕ ∧ b′ = ⊖ (4.1)

and ⪯ ⊆ ℙ × ℙ, which is the reflexive closure of ≺. Note that these are lexico-
graphical orderings on pairs in case when ℙ𝕄 is ordered as ⊕ < ⊖. When 𝕀 = ℤ,
since second elements of pairs are always ⊕, the ordering is isomorphic to the
ordering on first elements of pairs only. Unfortunately, the set ℙ is not sufficient to
describe all possible beginnings of intervals. Therefore, we define ℙ∞ = ℙ∪{−∞}
and we extend the ordering ≺ to an ordering on ℙ∞ in the natural fashion, so that
∀p ∈ ℙ ∶ −∞ ≺ p. The ordering ⪯ is extended analogously.

We introduce a relation in ⊆ ℙ∞ × 𝕀 × ℙ defined as follows:

in(p, x, p′) ⟺ p ⪯ (x, ⊕) ≺ p′. (4.2)

Intuitively, it states that x ∈ 𝕀 belongs to the interval described by p and p′, where
p is the beginning of the interval and p′ is the first element of ℙ∞ that does not
belong to the interval. For example:

• the interval (−∞, 10) is represented by a pair ⟨−∞, (10, ⊕)⟩,

• the interval [3, 7) is represented by a pair ⟨(3, ⊕), (7, ⊕)⟩,

• the interval (3, 7] is represented by:
– a pair ⟨(3, ⊖), (7, ⊖)⟩ if 𝕀 ∈ {ℝ, ℚ},
– or by a pair ⟨(4, ⊕), (8, ⊕)⟩ if 𝕀 = ℤ.

In the second case we cannot use ⊖, therefore we add 1 to the first coordinate
describing the interval. This is similar to regular intervals, i.e. the interval
(3, 7] represents the same set of integer values as the interval [4, 8).

Note that the second element p′ does not describe the end of the interval directly.
This may seem odd but such approach is more appropriate for describing partitions
of 𝕀, which we aim to do. Also, note that the interval (4, +∞) cannot be described
by the relation in. This is not a problem for us since we will not use the relation in
to describe the last interval in the partition.
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Lemma 4.4.1 states that any two different elements in ℙ∞ and the relation in can
be used to describe a non-empty interval, i.e. that the interval contains at least one
element from 𝕀. This is important, since we use a subset of ℙ∞ to describe partitions
of 𝕀 and every two adjacent elements in the subset can be used to describe a proper
interval.

Lemma 4.4.1 (Density). For all p, p′ ∈ ℙ∞, if p ≺ p′ then there is i ∈ 𝕀 such that
in(p, i, p′).

Proof. If p = −∞ then by the extended definition of ≺ we have that p′ ∈ ℙ, hence
p′ = (j′, b′) for some j′ ∈ 𝕀 and b′ ∈ ℙ𝕄. Then it holds that p = −∞ ≺ (j′ − 1, ⊕).
Additionally, (j′ − 1, ⊕) ≺ (j′, b′) = p′, therefore −∞ ⪯ (j′ − 1, ⊕) ≺ p′, which
means that in(p, j′ − 1, p′) and i = j′ − 1 meets desired criteria.

Otherwise, if p ≠ −∞ then p = (j, b) and p′ = (j′, b′) for some j, j′ ∈ 𝕀 and
b, b′ ∈ ℙ𝕄. If b = ⊕ then p ⪯ (j, b) ≺ p′, hence in(p, j, p′) and we choose i = j.
Otherwise, if b = ⊖ then by the definition of ≺ we have that j < j′. Additionally,
⊖ was not allowed for 𝕀 = ℤ, therefore 𝕀 = ℝ or 𝕀 = ℚ. Then there is i ∈ 𝕀
such that j < i < j′. By the definition of ≺ it holds that p = (j, b) ≺ (i, ⊕) and
(i, ⊕) ≺ (j′, b′) = p′, thus in(p, i, p′).

We use the ordering ≺ as the base to construct a representation for elements of
boxes. Let us define an infinite sequence of sets 𝕊0, 𝕊1, … as follows:

𝕊0 = {ϵ, ⊤0},
𝕊n+1 = {ϵ} ∪ {((p1, v1), (p2, v2), … , (pm, vm)) ∣ v1, … , vm ∈ 𝕊n, v1 ≠ ϵ,

p1, … , pm ∈ ℙ∞, ∀j∈{1,…,m−1}pj ≺ pj+1 ∧ vj ≠ vj+1},
(4.3)

where ϵ is the empty sequence. Every sequence 𭒮n ∈ 𝕊n for n > 0 represents
data collected by sweeping through the space of the n-th variable. The sequence
uniquely describes a segmentation of the space for the variable so that every seg-
ment has a value in 𝕊n−1. Examples of such sequences are illustrated in Fig. 4.2.

First elements of pairs in a sequence 𭒮 ∈ 𝕊n+1 for n ≥ 0 describe special points
encountered during the process of sweeping through the (n+ 1)-st dimension. The
set {p1, … , pm} defines the partition of the space for the (n+ 1)-st variable. Values
v1, … , vm correspond to the values of the n-dimensional space encountered while
sweeping through values of (n + 1)-st variable. The restriction that ⊖ is not used
for 𝕀 = ℤ in the description of special points is introduced, because we want the
representation of domain elements to be unique — so that each domain element
has only one possible representation. This can be easily achieved and it simplifies
domain operations.
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p1
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p4
𭒮n if p1 ≠ −∞

Figure 4.2: Example sequences and corresponding segmentations of the space of
the n-th variable.

We define a function find ∶ 𝕀 × ⋃n>0 𝕊n → ℕ such that for any i ∈ 𝕀, n ≥ 1 and
𭒮 ∈ 𝕊n it holds that:

find(i, 𭒮) =
⎧⎪
⎨
⎪⎩

0 if 𭒮 = ϵ or 𭒮 = ((p1, v1), … , (pm, vm)) and (i, ⊕) ≺ p1

k if 𭒮 = ((p1, v1), … , (pm, vm)) and
k = max( j ∣ j ∈ {1, … ,m} and pj ⪯ (i, ⊕)).

(4.4)

The function gives the index of the pair in the sequence 𭒮 that corresponds to the
interval in the partition that contains i. If the sequence is empty or i is before the
first value in the partition — p1, then the function returns 0. If find(i, 𭒮) = k and
0 < k < m then in(pk, i, pk+1). At last, when i belongs to the last interval in the
partition then find outputs m.

The function find is well-defined, which is a consequence of the fact that first
elements of pairs in the sequence 𭒮 ∈ 𝕊n form a partition of the space of the n-th
variable. Lemma 4.4.2 states this in a more detailed fashion.

Lemma 4.4.2 (find is Well-defined Function). For all i ∈ 𝕀, 𭒮 ∈ 𝕊n and n > 0
there is only one k ∈ ℕ such that find(i, 𭒮) = k.

Proof. The lemma holds trivially for 𭒮 = ϵ. From now on we assume that 𭒮 ≠ ϵ.
Let 𭒮 = ((p1, v1), … , (pm, vm)) ∈ 𝕊n for some n > 0, m > 0 and i ∈ 𝕀. Assume
there are indexes k, k′ ∈ ℕ such that k ≠ k′, find(i, 𭒮) = k and find(i, 𭒮) = k′.
There are three possibilities:

• If k = m, then by the definition of find the only option is that pm ⪯ (i, ⊕),
therefore also k′ = m.

• If k = 0 then k′ = 0.

• Both 0 < k < m and 0 < k′ < m. Without loss of generality we assume that
k < k′. By the definition of 𝕊n it holds that pk ≺ pk′ and pk+1 ≺ pk′+1. By the
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definition of find we obtain pk′ ⪯ (i, ⊕), therefore pk ≺ pk′ ⪯ (i, ⊕). Also,
by the definition of find, it holds that pk ⪯ (i, ⊕) but pk+1 � (i, ⊕). Since ⪯
is a total order, it holds that (i, ⊕) ⪯ pk+1. Thus, we obtain:

pk ≺ pk′ ⪯ (i, ⊕) ≺ pk+1 ≺ pk′+1.

So between elements pk and pk+1 in the sequence 𭒮 there should be another
element pk′, which is a contradiction.

In all the examined cases we have obtained a contradiction, therefore find is a well-
defined function.

The function find(i, 𭒮) gives the index of the interval in the partition by the first
elements of pairs in 𭒮 that contains i. We are usually interested in the value cor-
responding to the interval that contains i, not the index of the interval. Here we
introduce an auxiliary access notation that can be used to directly get the value
associated with the correct interval:

𭒮[i] =
{

ϵ if find(i, 𭒮) = 0
vfind(i,𭒮) otherwise.

(4.5)

The value 𭒮[i] is ϵ when the sequence 𭒮 is empty or when i is before the first
special point in the sequence 𭒮. Otherwise we use find to search for the index of
the correct pair in the sequence 𭒮 and return the value, i.e. the second element of
the pair at the index.

Now we define a relation that holds when an element of 𝕀n belongs to the domain
element represented by 𭒮 ∈ 𝕊n. In order to simplify the definition we assume that
𝕀0 = { ⃖⃗𝝐}. The satisfiability relation satn ⊆ 𝕀n × 𝕊n is defined for n ≥ 0 as follows:

satn( ⃖⃗𝝐, 𭒮) ⟺ 𭒮 ∈ 𝕊n ∧ 𭒮 = ⊤0,
satn+1(⟨in+1, in, … , i1⟩, 𭒮) ⟺ 𭒮[in+1] = w ∧ satn(⟨in, … , i1⟩,w).

(4.6)

Here we present a few examples of sequences for the one-dimensional space (from
𝕊1) and equivalent intervals:

Sequence from 𝕊1 Equivalent intervals in ℝ
ϵ ∅
(((0, ⊕), ⊤0)) [0, ∞)
(((0, ⊕), ⊤0), ((1, ⊕), ϵ)) [0, 1)
(((0, ⊕), ⊤0), ((1, ⊖), ϵ)) [0, 1]
((−∞, ⊤0), ((0, ⊕), ϵ), ((3, ⊖), ⊤0)) (−∞, 0) ∪ (3, ∞)
((−∞, ⊤0), ((0, ⊖), ϵ), ((2, ⊕), ⊤0), ((5, ⊕), ϵ)) (−∞, 0] ∪ [2, 5)
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With the help of the sat relation we define the concretisation function γ ∶ 𝕊n →
𝒫 (𝕀n) for any n > 0. For any domain element 𭒮 ∈ 𝕊n the function is defined as
follows:

γ(𭒮) = {𝒊 ∈ 𝕀n ∣ satn(𝒊, 𭒮)}. (4.7)

The relation sat(𝒊, 𭒮) holds only for vectors 𝒊 ∈ 𝕀n that belong to the representation
𭒮 ∈ 𝕊n, i.e. for vectors that are in the element of boxes that corresponds to 𭒮. This
is proved in what follows.

Theorem 4.4.3 states that the proposed representation is unique in terms of the
sat relation. Therefore, the representation proposed in the thesis does not require
the non-redundancy reduction of the representation, which is one of the drawbacks
of the generic powerset construction presented in Section 3.4.3.

Theorem 4.4.3 (Uniqueness of Representation). For all n ≥ 0, 𭒮, 𭒮′ ∈ 𝕊n, if
𭒮 ≠ 𭒮′ then there is 𝒊 ∈ 𝕀n such that only one of satn(𝒊, 𭒮) and satn(𝒊, 𭒮′) holds.

Before proceed with the proof of Theorem 4.4.3 we introduce a few auxiliary
lemmas. First, Lemma 4.4.4 states that all elements of a non-empty sequence are
needed, i.e. that every element in the sequence corresponds to a non-empty interval
in the partition. This feature is required for the representation to be unique.

Lemma 4.4.4. Let 𭒮 ∈ 𝕊n for some n > 0 and 𭒮 ≠ ϵ. For each k ∈ {1, … , |𭒮|}
there is i ∈ 𝕀 such that find(i, 𭒮) = k.

Proof. Let 𭒮 = ((p1, v1), … , (pm, vm)) ∈ 𝕊n and pk = (ik, bk). If k = m then as
our witness we choose ik + 1 such that pk = (ik, bk) ≺ (ik + 1, ⊖), therefore by the
definition of find we have that find(ik + 1, 𭒮) = m. Otherwise, 0 < k < m and we
have two possibilities:

• If bk = ⊕ (this closes the case 𝕀 = ℤ) then our witness is ik such that
pk = (ik, ⊕) and by the definition of 𝕊n we know that (ik, ⊕) ≺ pk+1, therefore
by the definition of find we obtain find(ik, 𭒮) = k.

• If bk = ⊖ then 𝕀 = ℝ or 𝕀 = ℚ. Let pk+1 = (ik+1, bk+1). By the definition
of 𝕊n we have that pk ≺ pk+1, therefore by the definition of ≺ we obtain
ik < ik+1. Taking into consideration the restriction on 𝕀, there is i ∈ 𝕀 such
that ik < i < ik+1. Because pk = (ik, ⊖) ≺ (i, ⊕) ≺ (ik+1, bk+1) = pk+1 we can
use i as the witness: find(i, 𭒮) = k.

Lemma 4.4.5 below states that every non-empty sequence 𭒮 ∈ 𝕊n for some n > 0
is not-empty in terms of the predicate sat. The sequence 𭒮 represents some subset
of 𝕀n that contains at least one element.
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Lemma 4.4.5. For each n ≥ 0 and 𭒮 ∈ 𝕊n it holds that:

𭒮 ≠ ϵ ⟺ ∃𝒊 ∈ 𝕀n such that satn(𝒊, 𭒮). (4.8)

Proof. We prove this by induction on n. For n = 0 we first assume the left hand
side of (4.8): if 𭒮 ≠ ϵ then by (4.3) we have that 𭒮 = ⊤0. By the definition of sat
we obtain that sat0(𝒊, 𭒮) holds. Now assume the right hand side. By the definition
of sat we have that 𭒮 = ⊤0 ≠ ϵ.

Now assume that the current lemma holds for n ≥ 0. We prove that it also holds
for n + 1. First, assume the left hand side, that 𭒮 ≠ ϵ. Then we can consider the
first element (p1, v1) of the sequence 𭒮. By Lemma 4.4.4, there is i ∈ 𝕀 such that
find(i, 𭒮) = 1 thus 𭒮[i] = v1. Additionally, by (4.3) we have that v1 ≠ ϵ. By the
induction hypothesis we obtain that there is 𝒊 = ⟨in, … , i1⟩ such that satn(𝒊, v1)
holds. Then, by the definition of satn+1 also satn+1(⟨i, in, … , i1⟩, 𭒮) holds. Now as-
sume the right hand side, that there is 𝒊 ∈ 𝕀n+1 such that satn+1(𝒊, 𭒮) holds. Let
𝒊 = ⟨in+1, in, … , i1⟩. Then, by the definition of satn+1 we have that 𭒮[in+1] = v for
some v ∈ 𝕊n such that satn(⟨in, … , i1⟩, v) holds. By the induction hypothesis we
obtain that v ≠ ϵ. Then, by (4.3) the sequence 𭒮 must have at least one element,
therefore 𭒮 ≠ ϵ.

Lemma 4.4.6 is a little more complex. Assume that we have an arbitrary se-
quence 𭒮 ∈ 𝕊n and any element of the sequence. The element is a pair with some
pi ∈ 𝕀 as the first element. Lemma 4.4.6 states that if we choose any p ∈ 𝕀 that is
strictly greater that pi in terms of the ordering ≺, then we can always find i ∈ 𝕀,
which belongs to the interval represented by pi and p (in terms of the predicate in).

Lemma 4.4.6. For all n ≥ 1, 𭒮 ∈ 𝕊n, where 𭒮 = ((p1, v1), … , (pm, vm)), for
m ≥ 1, k ∈ {1, … ,m} and any p ∈ ℙ such that pk ≺ p there is i ∈ 𝕀 such that
in(pk, i, p) and find(i, 𭒮) = k.

Proof. Let n, 𭒮, k, p be as in the current lemma assumptions. First, consider a case
when k = m. By Lemma 4.4.1, there is i such that in(pm, i, p). By the definition of
in we have pm ⪯ (i, ⊕), therefore find(i, 𭒮) = m. Assume now that k < m. We have
two possibilities:

• If pk+1 ⪯ p, then because pk ≺ pk+1, there is i such that in(pk, i, pk+1) (see
Lemma 4.4.1). Then find(i, 𭒮) = k but also pk ≺ (i, ⊕) ≺ pk+1 ⪯ p, therefore
in(pk, i, p).

• If p ≺ pk+1, then there exists i such that in(pk, i, p) (by Lemma 4.4.1), but
also pk ⪯ (i, ⊕) ≺ p ≺ pk+1, therefore find(i, 𭒮) = k.
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Finally, we prove Theorem 4.4.3. Just to remind: we want to show that for any
n ≥ 0, 𭒮, 𭒮′ ∈ 𝕊n, if 𭒮 ≠ 𭒮′ then we can distinguish these sequences by the
predicate satn. We do this by finding 𝒊 ∈ 𝕀n such that exactly one of satn(𝒊, 𭒮) and
satn(𝒊, 𭒮′) holds.

Proof. The case when one of the sequences 𭒮, 𭒮′ is equal to ϵ follows immediately
by Lemma 4.4.5. From now on we assume that both sequences are not empty. The
rest of the proof is by induction on n. For n = 0 if 𭒮 ≠ 𭒮′ then either 𭒮 = ϵ or
𭒮′ = ϵ, which is already handled.

Now assume that the current lemma holds for some n ≥ 0, where 𭒮, 𭒮′ ∈ 𝕊n.
We prove that it also holds for n + 1. Let 𭒮, 𭒮′ ∈ 𝕊n+1 be such that 𭒮 ≠ 𭒮′,
𭒮 = ((p1, v1), … , (p|𭒮|, v|𭒮|)), and 𭒮′ = ((p′

1, v′
1), … , (p′

|𭒮′|, v
′
|𭒮′|)).

First, consider the case when the sequences differ at some index. Formally, we
assume that there is an index j ∈ {1, … , min(|𭒮|, |𭒮′|)} such that (pj, vj) ≠ (p′

j , v′
j ).

Let k be the smallest such index, that is for all 1 ≤ i < k it holds that (pi, vi) =
(p′

i , v′
i ) and (pk, vk) ≠ (p′

k, v
′
k). We have the following cases:

1. Elements at index k differ at first element of the pair, that is pk ≠ p′
k. Then,

without loss of generality we may assume that pk ≺ p′
k. By Lemma 4.4.6

there is i ∈ 𝕀 such that find(i, 𭒮) = k and in(pk, i, p′
k). There are two possibil-

ities:
• If the sequences differ at the first element, i.e. k = 1, then by (4.3)

we have that v1 ≠ ϵ. By Lemma 4.4.5 there is 𝒊 = ⟨in, … i1⟩ such
that satn(𝒊, v1) holds. Because find(i, 𭒮) = 1, by the definition of satn+1
we obtain that satn+1(⟨i, in, … , i1⟩, 𭒮) also holds. Additionally, since
in(p1, i, p′

1) we have that (i, ⊕) ≺ p′
1. By (4.4) we obtain find(i, 𭒮′) = 0,

which by (4.5) we can write using the access notation as 𭒮′[i] = ϵ.
Therefore, satn+1(⟨i, in, … , i1⟩, 𭒮′) does not hold.

• If the sequences 𭒮 and 𭒮′ differ at some index k > 1 then vk−1 = v′
k−1

and pk−1 = p′
k−1. By the definition of 𝕊n+1 we have that vk ≠ vk−1.

We use the induction hypothesis for vk and v′
k−1. We obtain a vector

⟨in, … , i1⟩ such that:

satn(⟨in, … , i1⟩, vk) ⟺ ¬satn(⟨in, … , i1⟩, v′
k−1). (4.9)

Since pk ⪯ (i, ⊕) ≺ p′
k (by in(pk, i, p′

k)) and p′
k−1 ≺ pk (by (4.3)) then

also p′
k−1 ⪯ (i, ⊕) ≺ p′

k, therefore in(p′
k−1, i, p′

k). By the definition of
find we obtain that find(i, 𭒮′) = k − 1, and using the access notation
we have 𭒮′[i] = v′

k−1 = vk−1. By the definition of satn+1 we obtain:

satn+1(⟨i, in, … , i1⟩, 𭒮′) ⟺ satn(⟨in, … , i1⟩, v′
k−1). (4.10)
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Also we have that find(i, 𭒮) = k, thus 𭒮[i] = vk and:

satn+1(⟨i, in, … , i1⟩, 𭒮) ⟺ satn(⟨in, … , i1⟩, vk). (4.11)

Therefore, by (4.9) combined with (4.10) and (4.11), exactly one of
satn+1(⟨i, in, … , i1⟩, 𭒮) and satn+1(⟨i, in, … , i1⟩, 𭒮′) holds.

2. Otherwise, elements of sequences 𭒮 and 𭒮′ at index k differ on the second
element of pair, i.e. pk = p′

k, vk ≠ v′
k and for all 1 < j < k it holds that

(pj, vj) = (p′
j , v′

j ). We use the induction hypothesis for vk and v′
k to obtain

𝒊 = ⟨in, … , i1⟩ such that exactly one of satn(𝒊, vk) and satn(𝒊, v′
k) holds. All

we need to do is to find i ∈ 𝕀 such that find(i, 𭒮) = find(i, 𭒮′) = k. In that
case exactly one of satn+1(⟨i, in, … , i1⟩, 𭒮) and satn+1(⟨i, in, … , i1⟩, 𭒮′) holds.
We have the following possibilities:

• If k = |𭒮| = |𭒮′| then by Lemma 4.4.4 there exists i ∈ 𝕀 such that
find(i, 𭒮) = k. Then x′

k = xk ⪯ i, therefore find(i, 𭒮′) = k.
• If k = |𭒮| < |𭒮′| then by Lemma 4.4.6 there exists i ∈ 𝕀 such that
in(pk, i, p′

k+1) and find(i, 𭒮) = k. Then p′
k = pk ⪯ i ≺ pk+1, therefore

find(i, 𭒮′) = k.
• If k = |𭒮′| < |𭒮| then we proceed analogically to the case above.
• Otherwise, it holds that k < min(|𭒮|, |𭒮′|). We use Lemma 4.4.6 for
p = min≺(pk+1, p′

k+1) and obtain i ∈ 𝕀 such that in(pk, i, p) and find(i, 𭒮) =
k. Recall that pk = p′

k, by the definition of inwe obtain that in(p′
k, i, p

′
k+1)

holds. Therefore, find(i, 𭒮′) = k.
We have covered cases, where the sequences 𭒮 and 𭒮′ differ at some index. If there
is no such index, i.e. for any k ∈ {1, … , min(|𭒮|, |𭒮′|)} it holds that (pk, vk) =
(p′

k, v
′
k), then one sequence is a prefix of the other. Without loss of generality we

assume 𭒮 is the prefix of 𭒮′, thus |𭒮| < |𭒮′|. Let m be the length of the shorter
sequence 𭒮, i.e. m = |𭒮|. By Lemma 4.4.4 for the sequence 𭒮′ and k = m + 1 we
obtain that there exists i ∈ 𝕀 such that find(i, 𭒮′) = m + 1. By (4.5) we can write
this using the access notation, i.e. 𭒮′[i] = v′

m+1. We have that pm = p′
m ⪯ pm+1,

therefore find(i, 𭒮) = m and by (4.5) we obtain 𭒮[i] = vm. Since 𭒮 is the prefix
of 𭒮′, it holds that vm = v′

m, thus by (4.3) we obtain vm ≠ v′
m+1. By the induction

hypothesis there is vector 𝒊 = ⟨in, … , i1⟩ such that exactly one of satn(𝒊, vm) and
satn(𝒊, v′

m+1) holds. By the definition of satn+1 and the fact that 𭒮[i] = vm we have:

satn+1(⟨i, in, … , i1⟩, 𭒮) ⟺ satn(⟨in, … i1⟩, vm).

Analogically, since 𭒮′[i] = v′
m+1 it holds that:

satn+1(⟨i, in, … , i1⟩, 𭒮′) ⟺ satn(⟨in, … i1⟩, v′
m+1).
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Therefore, by the definition of satn+1 exactly one of satn+1(⟨i, in, … , i1⟩, 𭒮) and
satn+1(⟨i, in, … , i1⟩, 𭒮′) holds.

We have proved that elements of the sequence 𝕊n represent unique subsets of 𝕀n,
but we still have not proved that they can be used to represent elements of boxes.
This is done in the next section.

Representation of boxes based on Linear Decision Diagrams
An LDD [22] is a binary decision diagram with two terminal nodes: true and false,
in which non-terminal nodes (decisions) are linear constraints. It happens that an
LDD is also a DAG. Additionally, there is a total order ⪯LDD on all nodes, i.e. order
on linear constraints extended to cover also constants true, false. The order ⪯LDD
corresponds to an order, in which decisions in the LDD are made, i.e. if v ⪯LDD u
then the node v is in the LDD graph before the node u. From every linear constraint
node in the LDD, there is a path to both true and false nodes. An example of an
LDD is presented in Fig. 4.3. Note that in the example first we make decisions
about values of the variable x, and then about values of the variable y, i.e. there
are no edges from nodes with the variable y to nodes with the variable x. This is
a consequence of the ordering ⪯LDD.

x ≤ 1

x < 2

y < 1

y ≤ 3

false true

Figure 4.3: An example of a Linear Decision Diagram — ellipse nodes represent
non-terminal (decision) nodes, square true an false nodes are terminal
nodes, positive decisions (node test results) are denoted as solid arrows,
while negative ones as dashed grey ones.

The representation of boxes proposed by Gurfinkel and Chaki uses LDDs with
relational interval constraints (both strict and non-strict). Let ⪯ ⊆ 𝘝𝘢𝘳 × 𝘝𝘢𝘳 be
a total order on variables. The order ⪯LDD on interval constraints that is used in
the implementation of boxes, for any x1, x2 ∈ 𝘝𝘢𝘳 and k1, k2 ∈ 𝕀 is defined as
follows:

(x1 ≾1 k1) ⪯LDD (x2 ≾2 k2) ⟺ (x1 ⪯ x2) ∨ ((x1 ≾1 k1) ⇒ (x2 ≾2 k2)),

where ≾1, ≾2 are strict or non-strict inequalities, i.e. ≾1, ≾2∈ {<, ≤} and ⇒ is
constraint inference. For example, x < 0 ⇒ x < 2, but x ≤ 0 ⇏ x < 0 because
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4.4 Representation of Domain Elements

x = 0 fulfils the left hand side and does not fulfil the right hand side. The ordering
is additionally extended to true and false nodes as follows:

u ⪯LDD v ⟺ (v ∈ {true, false}) ∨ (u ∉ {true, false} ∧ u ⪯LDD v).

LDDs that satisfy certain ordering and reduction constraints (see [22, Sec. IID]) are
canonical representations of propositional formulæ. The example LDD in Fig. 4.3
is an LDD for boxes, where the variable order is x ⪯ y: all the nodes with variable
x appear before nodes with variable y.

x

y

0
0

1

1

2

2

3

3

(a) Geometric representation

x < 0

x ≤ 1

x < 2

x ≤ 3

y < 0

y ≤ 1

y < 2

y ≤ 3 truefalse

(b) LDD based representation

x

y
(0, ⊕), (((0, ⊕), ⊤0), ((1, ⊖), ϵ), ((2, ⊕), ⊤0), ((3, ⊖), ϵ))

(1, ⊖), ϵ

(2, ⊕), (((0, ⊕), ⊤0), ((1, ⊖), ϵ), ((2, ⊕), ⊤0), ((3, ⊖), ϵ))

(3, ⊖), ϵ

(c) Sweeping line representation

Figure 4.4: Comparison of the proposed representation (c) and the representation
based on LDDs (b) for the example element in (a).

The proposed representation that is based on the sweeping line technique can
be considered as a generalisation of the representation using LDDs. The ordering
proposed by Gurfinkel and Chaki sorts nodes in an LDD by variables first, and
then by the entailment of constraints for a variable (see Fig. 4.4(b)). The sweeping
line representation sorts in the same way (see Fig. 4.4(c)) — every special point
corresponds to a constraint (node) in the LDD. The difference is that the LDD
DAG is an optimised version of the sweeping line technique tree representation,
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where duplicate subtrees are merged together. That is why an LDD is a DAG in-
stead of a tree. In the example in Fig. 4.4(c), values (sequences) for x = (0, ⊕)
and x = (2, ⊕) are exactly the same, thus in the corresponding LDD solid arrows
from x ≤ 1 and x ≤ 3 lead to the same node. The LDD-based representation is one
of the optimisations that can be applied to the sweeping line representation. One
could use some graph algorithms or compression techniques used in graphical ap-
plications. For example, two-dimensional case can be represented as a compressed
image using any lossless image compression algorithm.

4.5 Domain Operations
In this section, we describe an implementation of exact ∪, ∩ and ⊆ operations on
elements of sequences 𝕊0, 𝕊1, … We use these algorithms to prove the correspon-
dence between elements in our representation and the domain of boxes, i.e. that the
representation using the sweeping line technique can be used to describe elements
of the domain.

The main idea behind the definition of domain operators is to define operators on
𝕊0 and provide a generic, inductive construction that can be used to extend them
to 𝕊n for any n ≥ 0. Such extension is defined as follows:

Definition 4.5.1 (♦-extension). Let ♦ ∶ 𝕊0 × 𝕊0 → 𝕊0 be some base operator
defined for 𝕊0. We define ♦-extension ♦ ∶ 𝕊n × 𝕊n → 𝕊n for any n ≥ 0 such that
for n = 0 it is equal to the base operator and for n > 0, any 𭒮, 𭒮′ ∈ 𝕊n it holds that
𭒮 ♦ 𭒮′ = ℛ, where:

∀i ∈ 𝕀 ∶ ℛ[i] = 𭒮[i] ♦ 𭒮′[i]. (4.12)

The definition of ♦-extension function is correct, which is stated by Theorem 4.5.2.

Theorem 4.5.2. For any function ♦ ∶ 𝕊0 × 𝕊0 → 𝕊0, there is only one function
that is a ♦-extension, that is for any n > 0 and 𭒮, 𭒮′ ∈ 𝕊n there is only one ℛ ∈ 𝕊n
such that (4.12) holds.

In the proof of Theorem 4.5.2, which is presented after few auxiliary lemmas,
we construct a function that is a ♦-extension, and then show that it is the only one
possible. For n > 0 and two sequences 𭒮, 𭒮′ ∈ 𝕊n, the result sequence ℛ = 𭒮 ♦ 𭒮′

is built from pairs such that:

• first elements of pairs in ℛ come from one of the two sequences 𭒮 or 𭒮′,

• second elements of pairs in ℛ are computed by an inductive application of
the ♦-extension for second elements of the input sequences 𭒮 and 𭒮′.
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The implementation of ♦-extension first creates an unnormalized version of the
result sequence, which is similar to (4.3) but without the constraints about sec-
ond elements of pairs (i.e. values). Then the sequence is normalized. We define
a sequence normalisation procedure:

Definition 4.5.3 (Sequence Normalisation). Let 𭒬′ be a finite, non-empty se-
quence of pairs:

𭒬′ = ((p′
1, v′

1), (p′
2, v′

2), … , (p′
|𭒬′|, v

′
|𭒬′|)) , (4.13)

where for any j ∈ {1, … , |𭒬′|} it holds that p′
j ∈ ℙ∞, n > 0, vj ∈ 𝕊n and for any

j ∈ {1, … , |𭒬′| − 1} it holds that p′
j ≺ p′

j+1. We define a normalised version of the
sequence 𭒬′ as a sequence 𭒬:

𭒬 = ((p1, v1), … , (p|𭒬|, v|𭒬|)) (4.14)

such that:

1. The sequence 𭒬 is a subsequence of 𭒬′. It means that it is built from el-
ements of the sequence 𭒬′, i.e. for every j ∈ {1, … , |𭒬|} there is k ∈
{1, … , |𭒬′|} such that (pj, vj) = (p′

k, v
′
k). Also elements of the sequence 𭒬

are in the same order as in the sequence 𭒬′, i.e.

∀j ∈ {1, … , |𭒬| − 1} ∶ pj ≺ pj+1. (4.15)

2. The first element in 𭒬′ — the pair (p′
1, v′

1), appears in 𭒬 only if it has a non-
empty value, that is:

v′
1 = ϵ ⟺ p′

1 ∉ {p1, … , p|𭒬|}. (4.16)

3. A pair from 𭒬′ appears in 𭒬 only if it has a different value than the pair
preceding it in 𭒬′:

∀j ∈ {1, … , |𭒬′| − 1} ∶ v′
j ≠ v′

j+1 ⟺ p′
j+1 ∈ {p1, … , p|𭒬|}. (4.17)

Now we prove a few lemmas that we use in the proof of Theorem 4.5.2. Consider
a block of consecutive pairs removed during the sequence normalisation proce-
dure. All pairs in such block have equal values, which is stated by Lemma 4.5.4.

Lemma 4.5.4. Let 𭒬′ and 𭒬 be as in Definition 4.5.3. For every k ≥ 1 and l ∈
{k, k + 1, … , |𭒬′|}. Then it holds that:

(∀k ≤ j ≤ l ∶ p′
j ∉ {p1, … , p|𭒬|}) ⇒ v′

k = v′
k+1 = … = v′

l . (4.18)
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Proof. Let 𭒬, 𭒬′, k, l be as in the current lemma assumptions. Assume further the
left hand side of eq. (4.18). If l = k then the current lemma trivially holds since
there is only one value on the right hand side. Now assume that l > k. Let m be any
index such that k ≤ m ≤ l − 1. Since p′

m+1 ∉ {p1, … , p|𭒬|}, by eq. (4.17) it holds
that v′

m = v′
m+1. Since it holds for every m ∈ {k, … , l− 1}, using simple induction

we obtain v′
k = v′

k+1 = … = v′
l .

Now we proceed to the next lemma that states what is the purpose of the normal-
isation procedure introduced in Definition 4.5.3 — the normalised version belongs
to ⋃n>0 𝕊n.

Lemma 4.5.5. Let 𭒬′ and 𭒬 be as introduced in Definition 4.5.3 and for some
n ≥ 0. Then it holds that 𭒬 ∈ 𝕊n+1.

Proof. Let 𭒬, 𭒬′ be as in the current lemma assumptions. We prove that 𭒬 fulfills
all conditions in the definition of 𝕊n+1, see eq. (4.3). If 𭒬 = ϵ then trivially 𭒬 ∈
𝕊n+1. For the rest of the proof we assume that 𭒬 ≠ ϵ. By eq. (4.15) we directly
obtain one of the conditions from eq. (4.3) — that first elements of 𭒬 are sorted.
Therefore, in the rest of the proof we focus only on values, i.e. second elements of
pairs.

Note that by Definition 4.5.3 second elements of pairs in the sequence 𭒬′ are
from 𝕊n, i.e. for any j ∈ {1, … , |𭒬′|} it holds that v′

j ∈ 𝕊n. Since 𭒬 is a subse-
quence of 𭒬′, for every j ∈ {1, … , |𭒬|} it holds that vj ∈ 𝕊n.

We prove that v1 ≠ ϵ. Assume the contrary, that v1 = ϵ. Let us present 𭒬, 𭒬′ as
follows:

𭒬′ = ( (p′
1, v′

1), (p′
2, v′

2), … , (p′
l , vl), (p′

l+1, v′
l+1), … ) ,

𭒬 = ( (p1, v1), … ) .

By eq. (4.16) the first pair in 𭒬 — (p1, v1) is not the first one in the sequence 𭒬′,
thus p1 ≠ p′

1. Since 𭒬 is a subsequence of 𭒬′ it holds that p′
1 ≺ p1. Additionally,

since p′
1 ∉ {p1, … , p|𭒬|} by eq. (4.16) it holds that v′

1 = ϵ. By Lemma 4.5.4
for k = 1 and l = max(j ∣ p′

j ≺ p1) it holds that v′
1 = … = v′

l , thus v′
l = ϵ.

Additionally, p′
l+1 = p1 = ϵ and by eq. (4.17) we obtain p′

l+1 ∉ {p1, … , p|𭒬|},
which is a contradiction.

Now we prove that for every j ∈ {1, … , |𭒬| − 1} it holds that vj ≠ vj+1. Assume
the contrary, that there exists index j such that vj = vj+1. Let us present 𭒬, 𭒬′ as
follows:

𭒬′ = ( … , (p′
i , v′

i ), (p′
i+1, v′

i+1), … , (p′
l , vl), (p′

l+1, v′
l+1), … ) ,

𭒬 = ( … , (pj, vj), (pj+1, vj+1), … ) .
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Since 𭒬 is a subsequence of 𭒬′, there exists index i ∈ {1, … , |𭒬′| − 1} such that
(pj, vj) = (p′

i , v′
i ). Note that p′

i+1 ≺ pj+1. Otherwise, if pj+1 ≺ p′
i+1 then we obtain

a contradiction with the fact that 𭒬 is a subsequence of 𭒬′ and if pj+1 = p′
i+1, by

eq. (4.17) it would hold that pj+1 ∉ {p1, … , p|𭒬|}. By Lemma 4.5.4 for k = i + 1
and l = max(m ∣ p′

m ≺ pj+1) it holds that v′
i+1 = … = v′

l . Additionally, p′
l+1 = pj+1.

By eq. (4.17) for index i and i + 1 we have that vj = v′
i = v′

i+1. Similarly, by
eq. (4.17) for index l and l + 1 we have that v′

l ≠ v′
l+1 = vj+1. Finally, we obtain

vj = v′
i = v′

i+1 = v′
l ≠ v′

l+1 = vj+1, which is a contradiction.
We have proved that 𭒬 fulfils all the conditions in eq. (4.3), therefore 𭒬 ∈ 𝕊n+1.

In the proof of Theorem 4.5.2 we use a concept of a special point. We define
a function specL ∶ ⋃n>0 𝕊n → 𝒫 (ℙ∞), which outputs a set of local special points
for a given sequence as follows:

specL(𭒮) =
{

∅ if 𭒮 = ϵ
{p1, … , pk} otherwise, for 𭒮 = ((p1, v1), … , (pk, vk)) .

(4.19)

The set of local special points of sequence 𭒮 is the set of first elements of pairs
in 𭒮, which are stop points encountered during the process of sweeping (see Sec-
tion 4.3). Now we proceed with the proof of Theorem 4.5.2.

Proof. Let ♦ be a base operator on 𝕊0 as in Definition 4.5.1. The proof is by
induction on n. For n = 0 the correctness results directly from the definition as the
♦-extension is the same as the base ♦ operator. Now assume that the definition is
correct for some n ≥ 0, we prove that it is also correct for n+ 1. More specifically,
we prove that for any 𭒮, 𭒮′ ∈ 𝕊n+1 there is only one ℛ ∈ 𝕊n+1 such that eq. (4.12)
holds. We construct ℛ ∈ 𝕊n+1 that fulfills the definition.

Let X be the set of special points from both sequences 𭒮, 𭒮′ ∈ 𝕊n+1 with addi-
tional point −∞, that is:

X = {−∞} ∪ specL(𭒮) ∪ specL(𭒮′)

and p′
1, … , p′

|X| be consecutive elements of X, that is X = {p′
1, … , p′

|X|}, where
for any j ∈ {1, … |X| − 1} it holds that p′

j ≺ p′
j+1. By Lemma 4.4.1, for every j

such that j ∈ {1 … |X| − 1} there is ij such that in(p′
j , ij, p′

j+1). Additionally, there
is i|X| such that p|X| ⪯ (i|X|, ⊕). These elements i1, … , i|X| are representatives of
consequent segments in the segmentation of 𝕀 by special points from X. We have:

−∞ = p′
1 ⪯ (i1, ⊕) ≺ p′

2 ⪯ … ≺ p|X| ⪯ (i|X|, ⊕).

For every j ∈ {0, … , |X| − 1} and i ∈ 𝕀 such that in(p′
j , i, p′

j+1) it holds that 𭒮[i] =
𭒮[ij] and 𭒮′[i] = 𭒮′[ij]. Additionally, for every i ∈ 𝕀 such that p|X| ⪯ (i, ⊕) it holds
that 𭒮[i] = 𭒮[i|X|] and 𭒮′[i] = 𭒮′[i|X|].
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We construct a sequence of pairs ℛ′ as follows:

ℛ′ = ((p′
1, v′

1), (p′
2, v′

2), … , (p′
|X|, v

′
|X|)) , (4.20)

where v′
j = 𭒮[ij] ♦ 𭒮′[ij] for any j ∈ {1, … , |X|}. Note that by the induction hy-

pothesis v′
j is well defined and belongs to 𝕊n. Also, the sequence ℛ′ does not

depend on the choice of the representatives i1, … , i|X|, i.e. it is the same for every
such choice. The construction of ℛ′ is a kind of pointwise application of ♦ to seg-
ments that appear in the segmentation of 𝕀 by the set of special points —X. Let ℛ
be a normalised version of the sequence. By Lemma 4.5.5 it holds that ℛ ∈ 𝕊n+1.

Now we prove that for any i ∈ 𝕀 it holds that ℛ[i] = 𭒮[i] ♦ 𭒮′[i]. Let i ∈ 𝕀. Since
p1 = −∞, we may compute j = max(m ∣ p′

m ⪯ (i, ⊕)). By the construction of X it
holds that 𭒮[i] = 𭒮[ij] and 𭒮′[i] = 𭒮′[ij], therefore 𭒮[i] ♦ 𭒮′[i] = 𭒮[ij] ♦ 𭒮′[ij] = v′

j .
We prove that ℛ[i] = v′

j . Let find(ℛ, i) = k. Consider the following cases:

• If k = 0 and ℛ = ϵ then all pairs were removed from the non-empty se-
quence ℛ′ during the normalisation procedure. By Lemma 4.5.4 for k = 1
and l = |ℛ′| it holds that all removed pairs had equal values, thus v′

j = v′
1

and by eq. (4.16) we have v′
j = v′

1 = ϵ, and finally by eq. (4.5) we obtain
ℛ[i] = ϵ = v′

j .

• If k = 0 and ℛ ≠ ϵ then by eq. (4.5) it holds that ℛ[i] = ϵ. By eq. (4.4) we
have (i, ⊕) ≺ p1. Since ℛ is a subsequence of ℛ′, during the normalisation
procedure a whole block of elements preceding (p1, v1) was removed. By
Lemma 4.5.4 for k = 1 and l = max(m ∣ p′

m ≺ p1) all these pairs had equal
values and by eq. (4.16) these values were equal to ϵ. Since p′

j ⪯ (i, ⊕) ≺ p1,
it holds that 1 ≤ j ≤ l, therefore v′

j = ϵ.

• If k > 0 then by the definition of find it holds that pk ⪯ (i, ⊕). Additionally,
since ℛ is a subsequence of ℛ′, it holds that pk ⪯ p′

j . If pk = p′
j then the

element at index j was not removed from ℛ′ and ℛ[i] = vk = v′
j . Otherwise,

if pk ≺ p′
j , the element at index jwas removed from ℛ′. Let us present ℛ, ℛ′

and i as follows:
ℛ′ = (… (p′

k′, v′
k′), … , (p′

j , v′
j ), … ) ,

ℛ = (… (pk, vk), … ) .
i

Since ℛ is a subsequence of ℛ′, there is index k′ ∈ {1, … , |X|} such
that (p′

k′, v′
k′) = (pk, vk). Because pk ⪯ p′

j , then all items with indexes in
{k′ + 1, k′ +2, … , j′} were removed during the normalisation procedure and
by Lemma 4.5.4 it holds that v′

k′+1 = … = v′
j . By eq. (4.17) we obtain

vk′ = vk′+1 = v′
j , therefore ℛ[i] = vk = v′

j .
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The uniqueness of ℛ is a direct consequence of the definition of the normalisation
procedure in Definition 4.5.3 and Theorem 4.4.3.

Let ‖ ⋅ ‖ ∶ ⋃n≥0 𝕊n → ℕ be the function that returns the size of a domain element
(cumulative length of all sequences), i.e. for any 𭒮 ∈ 𝕊n such that n ≥ 0 it is
defined as follows:

‖𭒮‖ =
{

1 if 𭒮 = ϵ or 𭒮 = ⊤0

k + ∑k
i=1 ‖si‖ otherwise, for 𭒮 = ((p1, s1), … , (pk, sk)) and k > 0.

Then the ♦-extension can be implemented with time complexity O(‖𭒮‖ ∗ ‖𭒮′‖).
This is also a limit of the size of the result.

Lemma 4.5.6 (Domain Operations). Exact domain operations can be defined as
♦-extensions of the operations for 𭒮, 𭒮′ ∈ 𝕊0:

• join — by an extension of 𭒮 ♦ 𭒮′ = ⊤0 ⟺ 𭒮 = ⊤0 or 𭒮′ = ⊤0;

• meet — by an extension of 𭒮 ♦ 𭒮′ = ⊤0 ⟺ 𭒮 = 𭒮′ = ⊤0;

• inclusion — for ⊆ we first compute the extension of an auxiliary operator
𭒮 ♦ 𭒮′ = ⊤0 ⟺ 𭒮 = ⊤0 and 𭒮′ = ϵ; for 𭒮n, 𭒮′

n ∈ 𝕊n it holds that
𭒮n ♦ 𭒮′

n = ϵ ⟺ γ(𭒮n) ⊆ γ(𭒮′
n), where γ is the concretisation function

defined in eq. (4.7).

Proof. We follow the cases from the formulation of the lemma:

join We prove that for n ≥ 0 and 𭒮, 𭒮′, ℛ ∈ 𝕊n if ℛ = 𭒮 ♦ 𭒮′ then for any 𝒊 ∈ 𝕀n
it holds that:

satn(𝒊, ℛ) ⟺ satn(𝒊, 𭒮) or satn(𝒊, 𭒮′). (4.21)

We prove this by induction on n. For n = 0 the operator is defined as
𭒮 ♦ 𭒮′ = ⊤0 ⟺ 𭒮 = ⊤0 or 𭒮′ = ⊤0. Thus, (4.21) holds directly by
the definition of sat0. Now assume that (4.21) holds for n ≥ 0. We prove that
it also holds for n + 1. Let 𝒊 = ⟨in+1, in, … , i1⟩.
First, assume the right hand side. Without loss of generality we may assume
that satn+1(𝒊, 𭒮) holds. By the definition of satn+1 we obtain 𭒮[in+1] = v
for some v ∈ 𝕊n such that satn(⟨in, … , i1⟩, v) holds. By (4.12) we have that
ℛ[in+1] = 𭒮[in+1] ♦ 𭒮′[in+1] = v♦ 𭒮′[in+1]. Since satn(⟨in, … , i1⟩, v) holds,
by the induction hypothesis we obtain that satn(⟨in, … , i1⟩, ℛ[in+1]) holds.
Finally, by the definition of satn+1 we have the left hand side: satn+1(𝒊, ℛ).
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Now assume the left hand side of eq. (4.21), i.e. that satn+1(𝒊, ℛ) holds.
By the definition of satn+1 we have that ℛ[in+1] = v for some v ∈ 𝕊n
such that satn(⟨in, … , i1⟩, v) holds. By the construction of the ♦-extension
we have that v = ℛ[in+1] = 𭒮[in+1] ♦ 𭒮′[in+1]. Since satn(⟨in, … , i1⟩, v)
holds, by the induction hypothesis we obtain that satn(⟨in, … , i1⟩, 𭒮[in+1])
or satn(⟨in, … , i1⟩, 𭒮′[in+1]) holds. Finally, by the definition of satn+1 also
satn+1(𝒊, 𭒮) or satn+1(𝒊, 𭒮′) holds.

meet A proof by induction on n is analogical to the proof of the previous case.

inclusion We prove that for n ≥ 0 and 𭒮, 𭒮′, ℛ ∈ 𝕊n if ℛ = 𭒮 ♦ 𭒮′ then:

ℛ = ϵ ⟺ ∀𝒊 ∈ 𝕀n ∶ satn(𝒊, 𭒮) ⇒ satn(𝒊, 𭒮′). (4.22)

We prove this by induction on n. If n = 0 the operator is defined as 𭒮 ♦ 𭒮′ =
⊤0 ⟺ 𭒮 = ⊤0 and 𭒮′ = ϵ. Simple case analysis of possible values of
𭒮,𭒮′ and ℛ proves (4.22). Now assume that (4.22) holds for n ≥ 0. We prove
that it holds for n + 1.

First, assume that the left hand side of (4.22) holds. By the definition of
satn+1 for any in+1 ∈ 𝕀 it holds that ℛ[in+1] = ϵ. We apply the induction
hypothesis to ℛ[in+1] and obtain that for any 𝒊 = ⟨in, … , i1⟩ ∈ 𝕀n it holds
that satn(𝒊, 𭒮[in+1]) ⇒ satn(𝒊, 𭒮′[in+1]). Then, by the definition of satn+1 also
satn+1(⟨in+1, in … , i1⟩, 𭒮) ⇒ satn+1(⟨in+1, in … , i1⟩, 𭒮′) holds. Therefore, the
right hand side of (4.22) holds.

Now assume the right hand side of (4.22), that is that for any vector 𝒊 =
⟨in+1, in, … , i1⟩ it holds that satn+1(𝒊, 𭒮) ⇒ satn+1(𝒊, 𭒮′). By the definition of
satn+1 we have that satn(⟨in, … , i1⟩, 𭒮[in+1]) ⇒ satn(⟨in, … , i1⟩, 𭒮′[in+1]). By
the construction of the ♦-extension and the induction hypothesis we obtain
ℛ[in+1] = ϵ. Thus, by the definition of satn+1 we have that ℛ = ϵ.

Lemma 4.5.6 states how domain operations can be defined with the ♦-extension.
Now we finally introduce Theorem 4.5.7, which states that the proposed represen-
tation of domain elements using the sweeping line technique, together with the
operations defined with ♦-extensions, can be used to implement the domain of
boxes.

Theorem 4.5.7 (Representation of Boxes). For every n > 0 there exists a func-
tion F ∶ 𝔹𝕊n → 𝕊n such that for every ℬ𭒮 ∈ 𝔹𝕊n and 𝒊 ∈ 𝕀n it holds that:

𝒊 ∈ ℬ𭒮 ⟺ satn(𝒊,F(ℬ𭒮)) (4.23)
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and F preserves domain operations, that is for every ℬ𭒮, ℬ𭒮′ ∈ 𝔹𝕊n it holds that:

F(∅) = ϵ,
ℬ𭒮 ⊆ ℬ𭒮 ⟺ F(ℬ𭒮) ⊆♦ F(ℬ𭒮′),
F(ℬ𭒮 ∪ ℬ𭒮′) = F(ℬ𭒮) ∪♦ F(ℬ𭒮′),
F(ℬ𭒮 ∩ ℬ𭒮′) = F(ℬ𭒮) ∩♦ F(ℬ𭒮′).

The idea of the proof is to prove first that representation of a single box is correct,
and then to use domain operations to construct the target element of domain of
boxes. We present a few supplementary lemmas that help in the proof. First, we
express interval constraints in terms of our denotations. We use interval constraints
terminology introduced in Section 4.2.
Definition 4.5.8 (Higher Boundary). Let variable v ∈ 𝘝𝘢𝘳 be limited by a higher
boundary interval constraint cH such that cH ≠ v < ∞. We say that v is limited by
a higher boundary pH ∈ ℙ such that:

pH =
⎧⎪
⎨
⎪⎩

(b, ⊕) if cH ≡ v < b
(b, ⊖) if cH ≡ v ≤ b, 𝕀 ≠ ℤ
(b + 1, ⊕) if cH ≡ v ≤ b, 𝕀 = ℤ,

(4.24)

where b ∈ 𝕀.
The next Lemma 4.5.9 states that Definition 4.5.8 is a correct translation of a higher
boundary interval constraint to our denotations.
Lemma 4.5.9. Let v, pH, b and cH be as in Definition 4.5.8. It holds that:

x ∈ 𝕀 fulfils constraint cH ⟺ (x, ⊕) ≺ pH.

Proof. Let v, pH, b and cH be as in the current lemma assumptions. A simple case
analysis of possible constraints cH, which correspond to the cases in eq. (4.24). In
every case the equivalence is proved by the definition of the ordering ≺.

Analogically to Definition 4.5.8, we express a lower boundary interval constraint
in terms of our denotations:
Definition 4.5.10 (Lower Boundary). Let variable v ∈ 𝘝𝘢𝘳 be limited by a lower
boundary interval constraint cL such that cL ≠ −∞ < v. We say that v is limited
by a lower boundary pL ∈ ℙ such that:

pL =
⎧⎪
⎨
⎪⎩

(a, ⊕) if cL ≡ a ≤ v
(a, ⊖) if cL ≡ a < v and 𝕀 ≠ ℤ
(a + 1, ⊕) if cL ≡ a < v and 𝕀 = ℤ,

(4.25)

where a ∈ 𝕀.
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The next Lemma 4.5.11 states that Definition 4.5.10 is a correct translation of
a lower boundary interval constraint to our denotations.

Lemma 4.5.11. Let v, pL, a, and cL be as in Definition 4.5.10. It holds that:

x ∈ 𝕀 fulfils constraint cL ⟺ pL ⪯ (x, ⊕).

Proof. Let v, pL, a, and cL be as in the current lemma assumptions. A simple case
analysis of possible constraints cL, which correspond to the cases in eq. (4.25). In
every case the equivalence is proved by the definition of the ordering ≺.

Lemma 4.5.12 presents a construction of an element of 𝕊m that represents a single
non-empty interval box from given interval constraints on variables from 𝘝𝘢𝘳.

Lemma 4.5.12. Let ℬ ∈ 𝔹m for some m > 0 be a non-empty interval box, 𝘝𝘢𝘳 =
{v1, … , vm} be a set of variables, C = {cL,1, cH,1, … , cL,m, cH,m} be a set of interval
constraints describing ℬ. Let 𭒮0, 𭒮1, … 𭒮m be a sequence defined by the following
inductive construction:

𭒮0 = ⊤0,

𭒮n =

⎧⎪
⎪
⎨
⎪
⎪⎩

((−∞, 𭒮n−1)) if there are no restrictions on vn
((pL,n, 𭒮n−1)) if there is only a lower interval constraint for vn
((−∞, 𭒮n−1), (pH,n, ϵ)) if there is only a higher interval constraint for vn
((pL,n, 𭒮n−1), (pH,n, ϵ)) if there are both interval boundaries on vn,

where pL,n is a lower boundary for vn resulting from cL,n as in Definition 4.5.10,
and pH,n is a higher boundary for vn resulting from cH,n as in Definition 4.5.8. Then
for any n ∈ {1, … ,m} it holds that for 𭒮n ∈ 𝕊n and i ∈ 𝕀, 𭒮n fulfils the following
condition:

𭒮n[i] =
{

𭒮n−1 if value i fulfils interval constraints on vn
ϵ otherwise.

(4.26)

Proof. Let 𝘝𝘢𝘳 andC be defined as in the current lemma assumptions. The fact that
𭒮n ∈ 𝕊n for any n ∈ 1, … ,m can be easily proved by induction. Let n ∈ {1, … ,m}
and i ∈ 𝕀. We prove eq. (4.26). We analyse cases from the definition of 𭒮n. We have
the following possibilities:

1. If there are no restrictions on the variable vn then 𭒮n = ((−∞, 𭒮n−1)) and
lower and higher interval constraints for vn are respectively cL,n ≡ −∞ < vn
and cH,n ≡ vn < ∞. The value i trivially fulfils both cL,n and cH,n. Also, it
holds that find(i, 𭒮n) = 1. Therefore 𭒮n[i] = 𭒮n−1, which proves eq. (4.26).
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2. If there is only a lower boundary interval constraint on the variable vn then
𭒮n = ((pL,n, 𭒮n−1)). Since cH,n = vn < ∞, the value i trivially fulfils the
constraint. If i is such that pL,n ⪯ (x, ⊕) then by the definition of find we
have that find(i, 𭒮n) = 1 thus 𭒮n[i] = 𭒮n−1. By Lemma 4.5.11 we have
that the constraint cL,n is fulfilled, therefore eq. (4.26) holds. Otherwise, if
(i, ⊕) ≺ pL,n, by Lemma 4.5.11 the constraint cL,n is not fulfilled. By the
definition of find it holds that find(x, 𭒮n) = 0, thus 𭒮n[x] = ϵ and eq. (4.26)
holds.

3. If the variable vn is restricted only by a higher boundary interval constraint
then 𭒮n = ((−∞, 𭒮n−1), (pH,n, ϵ)). Since cL,n = −∞ < vn, the value i trivially
fulfils the constraint. If i is such that (i, ⊕) ≺ pH,n then by Lemma 4.5.9 the
constraint cH,n is fulfilled. By the definition of findwe have that find(i, 𭒮n+1) =
1, thus 𭒮n[i] = 𭒮n−1 and eq. (4.26) holds. Otherwise, if pH,n ⪯ (i, ⊕) then by
Lemma 4.5.9 the constraint cH,n is not fulfilled. Also, we have find(i, 𭒮n) = 2,
therefore 𭒮n[x] = ϵ and eq. (4.26) holds.

4. If there are both lower and higher boundary interval constraints on vn then
𭒮n = ((pL,n, 𭒮n−1), (pH,n, ϵ)). If (i, ⊕) ≺ pL,n, by Lemma 4.5.11 the con-
straint CL,n is not fulfilled. By the definition of find we obtain find(i, 𭒮n) =
0 and 𭒮n[i] = ϵ, therefore eq. (4.26) holds. If pL,n ⪯ (i, ⊕) ≺ pH,n, by
Lemma 4.5.11 and Lemma 4.5.9 both constraints cH,n and cL,n hold. Then
we have find(i, 𭒮n) = 1 and 𭒮n[x] = 𭒮n−1, thus eq. (4.26) holds. Finally, if
pH,n ⪯ (x, ⊕) then by Lemma 4.5.9 the constraint cH,n is not fulfilled. Also,
we have find(i, 𭒮n) = 2 and 𭒮n[x] = ϵ, therefore eq. (4.26) holds.

Next we prove Lemma 4.5.13, which is an auxiliary lemma, that shows the relation
of satk(x, 𭒮) to the interval constraints for variables from 𝘝𝘢𝘳. The lemma states
that for any interval box ℬ ∈ 𝔹n defined by interval constraints from C and any
k ∈ {1, … , n} we can find an element 𭒮 ∈ 𝕊k that can be used to represent
a smaller box created from variables v1, … , vk and constraints for these variables.

Lemma 4.5.13. For n > 0, ℬ ∈ 𝔹n, and k ∈ {0, … , n} there is 𭒮 ∈ 𝕊k such that
for all 𝒊 ∈ 𝕀k, where 𝒊 = ⟨ik, … , i1⟩, it holds that:

satk(𝒊, 𭒮) ⟺ ∀j∈{1,…,k}ij fulfils interval constraints for vi in ℬ. (4.27)

Proof. Let n > 0, and ℬ ∈ 𝔹n be as in the current lemma assumptions. We define
𭒮 = 𭒮n, where 𭒮n is created using the construction from Lemma 4.5.12. We prove
the current lemma by induction on k.

If k = 0 then the right hand side of eq. (4.27) is always fulfilled. We choose
𭒮 = ⊤0 ∈ 𭒮0, therefore by the definition of sat0 the left hand side holds.
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Now assume that the current lemma holds for k ≥ 0. We prove that it also holds
for k + 1. Let 𝒊 = ⟨ik+1, … , i1⟩. First assume the left hand side of eq. (4.27), i.e.
that satk+1(𝒊, 𭒮k+1) holds. By the definition of satk+1 we have that 𭒮k+1[ik+1] = 𭒮k
for some 𭒮k ∈ 𝕊k such that satk(⟨ik, … , i1⟩, 𭒮k) holds. By Lemma 4.4.5 we have
𭒮k ≠ ϵ. We use the induction hypothesis for ⟨ik, … , i1⟩ and 𭒮k to obtain that for
all j ∈ {1, … , k} it holds that ij fulfils interval constraints for variable vj in ℬ. By
Lemma 4.5.12 we obtain that ik+1 fulfils interval constraints for vk+1, thus the right
hand side of eq. (4.27) holds.

Now assume the right hand side of eq. (4.27). Since ik+1 fulfils interval con-
straints for vk+1, by Lemma 4.5.12 we have 𭒮k+1[ik+1] = 𭒮k. We use the induction
hypothesis to obtain that satk(⟨ik, … , i1⟩, 𭒮k) holds, therefore by the definition of
satk+1 the property satk+1(𝒊, 𭒮k+1) holds.

Finally, Lemma 4.5.14 states that elements of the sequence 𝕊n can be used to
represent elements of domain of intervals.

Lemma 4.5.14. For n > 0 and ℬ ∈ 𝔹n there is exactly one 𭒮 ∈ 𝕊n such that for
all 𝒊 ∈ 𝕀n it holds that:

satn(𝒊, 𭒮) ⟺ 𝒊 ∈ ℬ, (4.28)

which is equivalent to:

satn(𝒊, 𭒮) ⟺ 𝒊 fulfils all interval constraints defining ℬ. (4.29)

Proof. Let n > 0 and ℬ ∈ 𝔹n. First, we prove that there exists 𭒮 ∈ 𝕊n that fulfils
eq. (4.29). Let 𝒊 = ⟨in, … , i1⟩. By Lemma 4.5.13 for k = n there exists 𭒮 ∈ 𝕊n
such that:

satn(𝒊, 𭒮) ⟺ ∀j∈{1,…,n}ij fulfils interval constraints for vj in ℬ.

We use Remark 4.2.1 to obtain that:

satn(𝒊, 𭒮) ⟺ 𝒊 fulfils all interval constraints defining ℬ.

Now we only have to prove that there is exactly one 𭒮 ∈ 𝕊n that fulfils eq. (4.29).
We assume the contrary, that there exist 𭒮, 𭒮′ ∈ 𝕊n such that 𭒮 ≠ 𭒮′ and both fulfil
eq. (4.29). By Theorem 4.4.3 there exists 𝒊 ∈ 𝕀n such that exactly one of satn(𝒊, 𭒮)
and satn(𝒊, 𭒮′) holds. Without loss of generality we may assume that satn(𝒊, 𭒮)
holds. Then the right hand side of eq. (4.29) holds. We have that satn(𝒊, 𭒮′) does
not hold, therefore the right hand side of eq. (4.29) does not hold. We have obtained
a contradiction.
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We proceed with the proof of Theorem 4.5.7. The idea is to define a function that
for a single box returns an element of 𝕊n as defined in Lemma 4.5.14, and then use
join operation as defined in Lemma 4.5.6 to construct more complex elements of
𝔹𝕊n.

Proof. Let n > 0 and ℬ𭒮, ℬ𭒮′ ∈ 𝔹𝕊n. First we define operations ⊆♦, ∪♦ and ∩♦
on 𝕊n as in Lemma 4.5.6. Let ℬ𭒮 = ⋃i∈{1,…,k} ℬi, where ℬi ∈ 𝔹n and k ≥ 0.
Note that this construction is equivocal, but it does not interfere with our proof:
any choice of interval boxes that compose ℬ𭒮 leads to the same result. We define
a function F ∶ 𝔹𝕊n → 𝕊n as follows:

F(ℬ𭒮) =
⎧⎪
⎨
⎪⎩

ϵ if k = 0
𭒮n if k = 1
F(⋃i∈{1,…,k−1} ℬi) ∪♦ F(ℬk) if k > 1,

(4.30)

where 𭒮n is an application of Lemma 4.5.12 for a box ℬ1 ∈ 𝔹n. The function is
well-defined because of Theorem 4.5.2.

First, we show that for any ℬ𭒮 ∈ 𝔹𝕊n eq. (4.23) holds. We prove this by in-
duction on the number of interval boxes in ℬ𭒮. Let ℬ𭒮 = ⋃i∈{1,…,k} ℬi, where
ℬi ∈ 𝔹n. If k = 1 then ℬ𭒮 = ℬ1 and F(ℬ𭒮) = 𭒮n as defined in Lemma 4.5.12. By
Lemma 4.5.14 eq. (4.23) holds. Now assume that eq. (4.23) holds for k > 0. We
prove that it also holds for k+1. Let ℬ𭒮 = ⋃i∈{1,…,k+1} ℬi = (⋃i∈{1,…,k} ℬi)∪ℬk+1.
By the induction hypothesis there is exactly one 𭒮′ ∈ 𝕊n such that:

satn(𝒊, 𭒮′) ⟺ 𝒊 ∈ ⋃
j∈{1,…,k}

ℬj.

By eq. (4.23) there is exactly one 𭒮 ∈ 𝕊n such that:

satn(𝒊, 𭒮) ⟺ 𝒊 ∈ ℬk+1.

Now we use the definition of F and apply ♦-extension operator for join as defined
in Lemma 4.5.6 to obtain ℛ ∈ 𝕊n such that:

satn(𝒊, ℛ) ⟺ satn(𝒊, 𭒮) or satn(𝒊, 𭒮′).

The element ℛ is unique by Theorem 4.4.3, therefore eq. (4.23) holds.
By the definition of F it holds that F(∅) = ϵ. Let ℬ𭒮, ℬ𭒮′ ∈ 𝔹𝕊n and 𝒊 ∈ 𝕀n.

By eq. (4.23) and Lemma 4.5.6 we obtain that:

satn(𝒊,F(ℬ𭒮 ∪ ℬ𭒮′)) ⟺ satn(𝒊,F(ℬ𭒮) ∪♦ F(ℬ𭒮′)).

Finally, by Theorem 4.4.3 we obtain that F(ℬ𭒮 ∪ ℬ𭒮′) = F(ℬ𭒮) ∪♦ F(ℬ𭒮′). The
proof for F(ℬ𭒮 ∩ ℬ𭒮′) = F(ℬ𭒮) ∩♦ F(ℬ𭒮′) and ℬ𭒮 ⊆ ℬ𭒮′ ⟺ F(ℬ𭒮) ⊆♦
F(ℬ𭒮′) is analogical.
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Theorem 4.5.7 does not state that F is surjective. In fact, the function F as defined
in eq. (4.30) is surjective. We present a construction that can be used to prove this
fact: for any element 𭒮 ∈ 𝕊n we give a set of corresponding disjoint interval boxes.
The construction is based on an observation that element 𭒮 ∈ 𝕊n can be considered
as a decision tree, where on a dimension k we make a decision about variable vk:
which interval we fall into (the function find returns the index of the interval).
When we get to a leaf in the tree we have already made decisions about all the
variables. If an interval at every decision was not empty, we have created a single
interval box.

Split into disjoint boxes
Here we present a construction that can be used to split an element of boxes rep-
resented by 𭒮 ∈ 𝕊n for some n > 0 into single, disjoint elements of the domain
of intervals. The element 𭒮 ∈ 𝕊n corresponds to a set of disjoint boxes ℬ1, … , ℬk
for some k ≥ 0 such that:

• for any i ∈ {1, … , k} it holds that ℬi ∈ 𝔹n,

• for any 1 ≤ i < j ≤ k it holds that ℬi ∩v ℬj = ⊥v,

• the sum of these boxes combines to the element 𭒮: 𭒮 = ⋃k
i=1 ℬi.

For any i ∈ {1, … , k}, the box ℬi is described by a path in the tree 𭒮 that ends with
a leaf ⊤0. Otherwise, if path ends with ϵ, it describes a kind of “hole box” — a box
that does not belong to 𭒮.

In the description, we identify a single interval box ℬ ∈ 𝔹n for any n ≥ 0
with the set of interval constraints defining ℬ. Let C be the set of all possible
interval constraints for variables from 𝘝𝘢𝘳. We introduce an auxiliary function
lb ∶ 𝘝𝘢𝘳 × ℙ∞ → C that translates our special point into a lower boundary interval
constraint:

lb(v, p) =
⎧⎪
⎨
⎪⎩

−∞ < v if p = −∞
a ≤ v if p = (a, ⊕)
a < v otherwise, if p = (a, ⊖),

where a ∈ 𝕀. Analogously, we define a function hb ∶ 𝘝𝘢𝘳 × (ℙ ∪ {∞}) → C that
translates our special point to a corresponding higher boundary interval constraint:

hb(v, p) =

⎧⎪
⎪
⎨
⎪
⎪⎩

v < ∞ if p = ∞
v ≤ b if p = (b, ⊖)
v ≤ b − 1 if p = (b, ⊕) and 𝕀 = ℤ
v < b otherwise, if p = (b, ⊕) and 𝕀 ≠ ℤ,
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where b ∈ 𝕀. We introduce a series of functions spliti ∶ 𝕊i → 𝒫 (𝔹i) for i ∈
{0, … , n} such that splitj(ϵ) = ∅ for any j ≥ 0 and:

split1(⊤0) = {∅},

splitj(𭒮j) =
k

⋃
i=0

{C ∪ {lb(pi), hb(pi+1)} ∣ C ∈ spliti−1(si)} ,

where j > 0, 𭒮j ∈ 𝕊j is such that 𭒮j = ((p1, s1), (p2, s2), … , (pk, sk)) for some k ≥ 0
and (pk+1, sk+1) = (∞, ϵ). The function splitn(𭒮) returns the set of disjoint boxes
(described as sets of constraints) corresponding to 𭒮 ∈ 𝕊n as described above.
The splitj function simply goes through all paths in the tree 𭒮 ∈ 𝕊j and collects
real boxes and omits “holes”.

The presented construction can be used to prove that the function F is surjective:
for any element ℬ𭒮 ∈ 𝔹𝕊n we can construct a corresponding element 𭒮 ∈ 𝕊n and
using the function split go back to ℬ𭒮 showing a possible (a specific one) set
of boxes that create ℬ𭒮. Observe that the function F is also injective: since the
introduced representation is unique by Theorem 4.4.3, it happens that for any two
elements ℬ𭒮, ℬ𭒮′ ∈ 𝔹𝕊n if γ(ℬ𭒮) = γ(ℬ𭒮′) then F(ℬ𭒮) = F(ℬ𭒮′).

4.6 Widening Operator
In the construction of the widening operator for the domain of boxes we use a vari-
ant of the classical definition of the widening operator, where the second argument
is greater or equal to the first one (see Definition 2.4.7). We recall the definition:

Definition 4.6.1 (Widening operator variant). Let ⟨𭒟, ≤, ⊥, ∪⟩ be an upper semi-
lattice. A widening operator is a partial operator ▿ ∶ 𭒟 × 𭒟 ⇀ 𭒟 if and only if
the following properties hold:

1) over-approximation — for every d, d′ ∈ 𭒟, d ≤ d′ implies that d▿d′ is
defined and d′ ≤ d▿d′,

2) stabilisation — for every increasing chain d0 ≤ d1 ≤ d2 … the increasing
chain defined by:

y0 = d0,
yn+1 = yn▿(yn ∪ dn+1) for n ≥ 0

(4.31)

is not strictly increasing, i.e. there exists i ∈ ℕ such that yi = yi+1.

The sequence y0, y1, … of consequent results of the widening from eq. (4.31) is
called a widening sequence.
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4.6.1 Widening thresholds
The main idea of the proposed enhancement of the construction of the widening
operator is to compute, before every step of the computation of the widening se-
quence, for every variable v ∈ 𝘝𝘢𝘳, a special finite set of threshold points (or sim-
ply thresholds). Then, if a refinement is needed, we take into consideration these
points. The notion of widening step thresholds is introduced formally in Defini-
tion 4.6.2.

Definition 4.6.2 (Widening step thresholds). A function spec▿ ∶ 𝘝𝘢𝘳 → 2ℙ is
called widening step thresholds if for every variable v ∈ 𝘝𝘢𝘳 the set spec▿(v) is
finite.

In general, it is not possible to apply widening step thresholds for every step of
the widening since it might break the infinite chain property. Therefore, we in-
troduce a restriction that the sequence of widening step thresholds must also be
stationary, i.e. from some point it cannot introduce new threshold points. A se-
quence of widening step thresholds that can be used in the proposed widening
operator is defined in Definition 4.6.3.

Definition 4.6.3 (Widening sequence thresholds). An infinite sequence of widen-
ing step thresholds functions: spec▿,1, spec▿,2, … is called widening sequence thresh-
olds if there exists k ≥ 0 such that for any n > k and every v ∈ 𝘝𝘢𝘳 it holds that:

spec▿,n(v) ⊆
k

⋃
i=1

spec▿,i(v).

Definition 4.6.3 states that a sequence of widening step thresholds starting from
the step k cannot introduce new threshold points, i.e. any point for any variable
must have been a threshold point in some widening step threshold function until
step k.

The construction of the widening is recursive. Let spec▿ be a widening step
thresholds function used in the current step of the widening sequence. A first step
of the computation of ℛ = 𭒮▿𭒮′ for 𭒮, 𭒮′ ∈ 𝕊n and n > 0 is to prepare two sets:

• A smaller set that contains local special points (see eq. (4.19)) from the
first argument 𭒮, threshold points for the variable vn and −∞, i.e. X▿ =
{−∞} ∪ specL(𭒮) ∪ spec▿(vn).

• A bigger set, which is the set X▿ extended by local special points that appear
in the second argument of the widening 𭒮′, i.e. X′

▿ = X▿ ∪ specL(𭒮′).
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The computation of the widening is similar to the computation of the ♦-extension.
First, we compute a sequence ℛ′ such that first elements of pairs in ℛ′ form the
set X′

▿, and second elements (values) of pairs are computed almost by a point-
wise application of the widening for the previous dimension. Then, we perform
a sequence normalisation (see Definition 4.5.3) to obtain the result ℛ.

4.6.2 Pointwise approach
In order to compute the value of the ♦-extension for some x ∈ 𝕀 we take values of
arguments at the point x, i.e. 𭒮[x] and 𭒮′[x] (see eq. (4.12)), and obtain the result
as an application of the ♦-extension to these values. We cannot do the same for
the widening operator since we could obtain an infinitely increasing sequence. As
an example, consider the following strictly increasing sequence of elements from
𝕊1 and equivalent intervals in ℝ:

Sequence from 𝕊1 Equivalent interval in ℝ
𭒬0 = ( ((0, ⊕), ⊤0), ((1, ⊖), ϵ) ) [0, 1]
𭒬1 = ( ((0, ⊕), ⊤0), ((2, ⊖), ϵ) ) [0, 2]
𭒬2 = ( ((0, ⊕), ⊤0), ((3, ⊖), ϵ) ) [0, 3]
… …

Assume that spec▿ = λv . ∅. When we compute ℛ1 = 𭒬0▿𭒬1 we have:

X▿ = {−∞, (0, ⊕), (1, ⊖)} and X′
▿ = {−∞, (0, ⊕), (1, ⊖), (2, ⊖)}

and the result sequence before normalisation is:

ℛ′
1 = ((−∞,w1), ((0, ⊕),w2), ((1, ⊖),w3)), ((2, ⊖),w4)) .

Now we analyse the situation to figure out the proper definition of the widening.
First, assume that we compute valuesw1,w2,w3,w4 analogically to the ♦-extension
performing a pointwise computation. We obtain w1 = ϵ▿ϵ, w2 = ⊤0▿⊤0, w3 =
ϵ▿⊤0, and w4 = ϵ▿ϵ = w1. Since the widening operator is an over-approximation
of both arguments it holds that w2 = w3 = ⊤0. If we say that w1 = w4 = ⊤0 then
we obtain ℛ = ((−∞, ⊤0)), which is the top element in 𝕊1, thus a very imprecise
result. Otherwise, if w1 = w4 = ϵ▿ϵ = ϵ, we have a strictly increasing widening
sequence:

ℛ1 = 𭒬1 ⪯ ℛ2 = 𭒬2 …

Therefore, we distinguish w1 from w4 and say that w1 = ϵ while w4 = ⊤0. The
situation is presented in Fig. 4.5(a). Intuitively, since the beginning of the interval
[0, 1] remains unchanged (it is not growing to the left), we do not have to touch it.
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The end of the interval is growing and we have to act to ensure termination. This
is why we use a refined value for w4. Here we explain the principle in detail. We
focus on the interval (1, ∞), denoted by A in Fig. 4.5(a). The interval A appears
in 𭒬0 but in the result ℛ′

1 it is split into two intervals: (1, 2] denoted as B, and
(2, ∞) denoted as C. The split is caused by the point (2, ⊖) from 𭒬1. The value
w4 is the value associated with the interval C in the result ℛ′. The problem with
termination is because the interval C is contained in the interval A, but the value
of it’s neighbour in A (interval B) has changed, i.e. it is strictly greater. In order to
ensure termination, as the refined value for the interval C we take a value that is
strictly greater than the value of C in 𭒬1, i.e. instead of ϵ we use ⊤0. This rule is
generalised by Remark 4.6.4.

𭒬0

𭒬1

ℛ′
1

⊤0 ϵ

(0, ⊕) (1, ⊖)

A

⊤0 ϵ

(0, ⊕) (2, ⊖)
⊤0 ⊤0

−∞ (0, ⊕) (1, ⊖) (2, ⊖)

ϵ ⊤0

B C

(a) Case when spec▿(v1) = ∅

𭒬0

𭒬1

ℛ′
1

⊤0 ϵ ϵ

(0, ⊕) (1, ⊖) (3, ⊕)

A

⊤0 ϵ ϵ

(0, ⊕) (2, ⊖) (3, ⊕)
⊤0 ⊤0

−∞ (0, ⊕) (1, ⊖) (2, ⊖) (3, ⊕)

ϵ ⊤0 ϵ

B C

(b) Case when spec▿(v1) = {(3, ⊕)}

Figure 4.5: Example application of a single step of the widening operator on 𝕊1.

Remark 4.6.4 (The need of refinement in the widening operator). Assume we
have a widening arguments 𭒮, 𭒮′ ∈ 𝕊n for some n > 0 such that 𭒮 ⊆ 𭒮′. When
some interval C in 𭒮′ is contained in a bigger interval A in 𭒮 with the same value
associated then a refinement is required. When we compute the value of the widen-
ing for the interval C, as the second value we take a value that is strictly greater
than the value of C in 𭒮′.

In the situation, when spec▿(v1) = {(3, ⊕)}, presented in Fig. 4.5(b), both seg-
mentations are more precise, i.e. some intervals are split into smaller ones. The
special point (3, ⊕) acts as a threshold in the widening step and the single step
result is more precise. Instead of going straight to ∞, the point (3, ⊕) becomes the
right end in the result. Of course, when we proceed with the next widening steps
for the sequence 𭒬0, 𭒬1, … we still obtain the ∞, since the widening sequence
thresholds (see Definition 4.6.3) add only a finite number of threshold points for
every variable.
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In the abstract interpretation of a program, the widening is applied when loops
appear. If we have a for loop to an integer constant (see Section 5.5.2) we could
add the constant as a threshold for the control variable and the result of the whole
widening sequence could be more precise.

4.6.3 Generic widening operator for boxes
In this section we propose a widening operator for the domain of boxes that em-
ploys widening sequence thresholds. First, we introduce notion of segmentation of
a numeric space 𝕀.

Definition 4.6.5 (Segmentation of 𝕀). Let X = {p1, … , pm} for some m > 0 be
a finite subset of ℙ∞ such that −∞ = p1 ≺ p2 ≺ … ≺ pm. We define a finite
sequence I1, … , Im of disjoint, non-empty subsets of 𝕀 as follows:

Ii =
{

{x ∈ 𝕀 ∣ in(pi, x, pi+1)} when 1 ≤ i < m
{x ∈ 𝕀 ∣ pm ⪯ (i, ⊕)} if i = m.

The set ℐ(X) = {I1, … , Im} is called a segmentation by X and elements of the set
are called segments. We say that element x ∈ 𝕀 is a representative of i-th segment
in the segmentation by X if x ∈ Ii.

For any segmentation ℐ of 𝕀 it holds that any x ∈ 𝕀 is a member of exactly one
of the segments in the segmentation. By ℐ(X)[x] we denote the segment Ij in the
segmentation ℐ(X) such that x ∈ Ij.

Remark 4.6.6 states a relationship between segments of two segmentations of 𝕀
by sets X,Y such that X ⊆ Y.

Remark 4.6.6. Let there be two segmentations of 𝕀: ℐ(X) and ℐ(Y), whereX ⊆ Y.
The segmentation ℐ(Y) is more precise than ℐ(X), i.e. for any segment I ∈ ℐ(X)
it holds that:

• either I ∈ ℐ(Y),

• or there is a finite number of segments I1, … , Ik in ℐ(Y) such that I =
⋃k

i=0 Ik — the segment I is split into smaller segments I1, … , Ik.

For two segmentations ℐ(X), ℐ(Y) such that X ⊆ Y for any x ∈ 𝕀 it holds that
ℐ(Y)[x] ⊆ ℐ(X)[x]. When ℐ(Y)[x] ⊂ ℐ(X)[x] then the segment ℐ(X) is split into
smaller segment in the more precise segmentation ℐ(Y).

Now we formally define the widening operator. Let spec▿ be the widening step
thresholds for the current step of the application of the widening. Let ▿ ∶ 𝕊0×𝕊0 →
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𝕊0 be such that 𭒮0▿𭒮′
0 = 𭒮0 ∪♦ 𭒮′

0 for 𭒮0, 𭒮′
0 ∈ 𝕊0. We extend the operator to 𝕊n

for any n > 0 by an inductive construction. Let 𭒮, 𭒮′ ∈ 𝕊n. We compute:

X▿ = {−∞} ∪ specL(𭒮) ∪ spec▿(vn), X′
▿ = X▿ ∪ specL(𭒮′).

Let X′
▿ = {p1, p2, … , pm} for some m > 1 such that p1 ≺ p2 ≺ … , pm. Let ele-

ments x1, … , xm be representatives of consequent segments I1, … , Im in the seg-
mentation ℐ(X′

▿), i.e:

−∞ = p1 ⪯ (x1, ⊕) ≺ p2 ⪯ … ≺ pm ⪯ (xm, ⊕).

We define ▿-extension, ▿ ∶ 𝕊n+1 × 𝕊n+1 ⇀ 𝕊n+1 as 𭒮▿𭒮′ = ℛ such that ℛ = 𭒮′

if 𭒮 = ϵ, and otherwise we define:

ℛ′ = ((p1, v1), … , (pm, vm))
such that for any i ∈ {1, … ,m}:

vi =
⎧⎪
⎨
⎪⎩

𭒮[xi]▿n𭒮′[xi] if 𭒮[xi] ≠ 𭒮′[xi] (4.32a)
𭒮[xi] if 𭒮[xi] = 𭒮′[xi] and Ii ∈ ℐ(X▿) (4.32b)
𭒮[xi]▿nWi otherwise, (4.32c)

where Wi ∈ 𝕊n is such that 𭒮[xi] ⊂ Wi.
The first case eq. (4.32a) is straightforward. The second case eq. (4.32b) handles

situation when the segment Ii that contains element xi appears in both segmenta-
tions ℐ(X▿) and ℐ(X′

▿). Then we just do a pointwise application of the widening.
We could compute the widening as 𭒮[xi]▿n𭒮′[xi], but since arguments are equal
the result would be the same so the case is simplified. The last case eq. (4.32c) is
when Ij = ℐ(X′

▿)[xi] ⊂ ℐ(X▿)[xi], thus a refinement is required. Here we present
a generic condition for the refinement that is enough for ▿ to be a widening oper-
ator. Note that refined arguments: Wi for i ∈ {1, … ,m}, are specific for this par-
ticular application of the widening operator (similarily to spec▿). Theorem 4.6.10
applies to this generic construction, however in Section 4.6.4 we present an in-
stance of the widening that has some interesting properties.

Example: one step of the application of the widening operator
We explain the cases of the construction on the example presented in Fig. 4.6.

We have:

specL(𭒮) = {p3, p6}, specL(𭒮′) = {p2, p4, p7}.

Since spec▿(v) = {p5} and p1 = −∞, we compute:

X▿ = {−∞, p3, p5, p6}, X′
▿ = {−∞, p2, p3, p4, p5, p6, p7}.

Next, we compute ℛ′ = ((p1, v1), … , (p7, v7)) (we recall p1 = −∞), where:
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w ϵ

W w ϵ

v1 = W1 v2 = W v3 = w▿W v4 = W2 v5 = w v6 = w v7 = W3

W1 W w▿W W2 w W3

−∞ = p1 p2 p3 p4 p5 p6 p7
𭒮

−∞ = p1 p2 p3 p4 p5 p6 p7
𭒮′

−∞ = p1 p2 p3 p4 p5 p6 p7
ℛ′

−∞ = p1 p2 p3 p4 p5 p6 p7
ℛ = 𭒮▿𭒮′

𝕀x1 x2 x3 x4 x5 x6 x7

Figure 4.6: Example that covers different cases in a single step of the generic con-
struction of the widening operator for the widening step thresholds
function: spec▿(v) = {p5} for any v ∈ 𝘝𝘢𝘳. Heights of bars correlate to
values.

• Value v1: 𭒮[x1] = 𭒮′[x1]. Since p2 ∉ X▿ it holds that ℐ(X′
▿)[x1] ⊂ ℐ(X▿)[x1]

and we apply eq. (4.32c). As the second argument we use valueW1 such that
ϵ ⊂ W1.

• Value v2: since 𭒮[x2] = ϵ ⊂ W = 𭒮′[x2] we apply eq. (4.32a).

• Value v3: since 𭒮[x3] = w ⊂ W = 𭒮′[x3] we apply eq. (4.32a).

• Value v4: 𭒮[x4] = 𭒮′[x4]. Since p4 ∉ X▿ it holds that ℐ(X′
▿)[x4] ⊂ ℐ(X▿)[x4]

and we apply eq. (4.32c). As the second argument we use valueW2 such that
w ⊂ W2.

• Value v5: 𭒮[x5] = 𭒮′[x5]. Since both p5 ∈ X▿ and p6 ∈ X▿ it holds that
ℐ(X′

▿)[x5] = ℐ(X▿)[x5] and we apply eq. (4.32b).

• Value v6: since 𭒮[x6] = ϵ ⊂ w = 𭒮′[x6] we apply eq. (4.32a).

• Value v7: 𭒮[x7] = 𭒮′[x7]. Since p7 ∉ X▿ it holds that ℐ(X′
▿)[x7] = ℐ(X▿)[x7]

and we apply eq. (4.32c). As the second argument we use valueW3 such that
ϵ ⊂ W3.

The final result ℛ is a normalised version of ℛ′, i.e.

ℛ = ((p1,W1), (p2,W), (p3,w▿W), (p4,W2), (p5,w), (p7,W3)) .

Next, we present a few remarks about the proposed construction.
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Remark 4.6.7. When a refinement is done, a segment from 𭒮 is replaced by finitely
many segments, for which value is strictly greater than the original one.

Remark 4.6.8 states that every first element in pairs in the sequence that is the
result of the application the widening comes either from one of the two arguments
or from widening step thresholds.

Remark 4.6.8. Let 𭒮, 𭒮′ ∈ 𝕊n for n > 0 be such that 𭒮 ⊆♦ 𭒮′, spec▿ be widening
step thresholds for the widening step and vn be the variable for n-th dimension.
Then let ℛ = 𭒮▿𭒮′. It holds that:

specL(ℛ) ⊆ specL(𭒮) ∪ specL(𭒮′) ∪ spec▿(vn). (4.33)

The remark is a consequence of the construction of the widening. The unnor-
malised sequence ℛ′ is created, so that first elements come from either of the
arguments and the normalisation might remove some of the pairs in ℛ′.

Consider a widening sequence with some widening sequence thresholds. As-
sume that after first k steps the widening sequence thresholds stabilises, i.e. no
new threshold points are added anymore. Then, in the following widening steps
the set of special points depends only on special points from arguments. The fact
is stated formally by Remark 4.6.9.

Remark 4.6.9. Letm be the index from the definition of widening sequence thresh-
olds and j be the step of the widening sequence such that j > m. Let arguments of
the step j be 𭒮, 𭒮′. Then all new special points that appear in the result sequence
ℛ = 𭒮▿𭒮′ come from one of the arguments, i.e.: specL(ℛ) ⊆ specL(𭒮)∪specL(𭒮′).

Theorem 4.6.10 (Widening). The ▿-extension is a proper widening operator, i.e.
for any n ≥ 0 the tuple ⟨𝕊n, ⊆♦, ϵ, ∪♦⟩ fulfils the conditions of Definition 4.6.1.

First, we present a lemma that we use in the proof of Theorem 4.6.10:

Lemma 4.6.11 (König’s Lemma). Let T be a rooted directed tree. If each ver-
tex in T has finite degree but there are arbitrary long rooted paths in T, then T
contains an infinite path.

Proof. See [71, Chapter VI, Lemma 10].

We proceed with the proof of Theorem 4.6.10:

Proof. We prove properties from Definition 4.6.1:

Over-approximation
First, we prove that over-approximation property (1) from Definition 4.6.1 holds
for the proposed ▿-extension. Proof by induction on n. For n = 0 and 𭒮, 𭒮′ ∈ 𝕊0
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a simple case analysis proves the current property. Now assume the property holds
for n ≥ 0. We prove that it also holds for n + 1. Let 𭒮, 𭒮′ ∈ 𝕊n+1, where 𭒮 ⊆♦ 𭒮′.
If 𭒮 = ϵ then 𭒮▿𭒮′ = 𭒮′, thus the property holds. Otherwise, let x ∈ 𝕀 and
ℛ = 𭒮▿𭒮′. Then in any case of the definition of the ▿-extension, it holds that
𭒮′[x] ⊆♦ ℛ[x] (by the induction hypothesis), therefore 𭒮′ ⊆♦ ℛ.

Stabilisation
Let 𭒬1 ⊆♦ 𭒬2 ⊆♦ 𭒬3 … be an infinite increasing sequence of elements from 𝕊n
for some n ≥ 0, as in property 2) of Definition 4.6.1. We construct two infinite
sequences 𭒮1, 𭒮2, … and ℛ1, ℛ2, … made of elements from 𝕊n. The first one con-
sists of second arguments from widening sequence in eq. (4.31) and the second
one is widening sequence itself. More formally:

𭒮k =
{

𭒬1 if k = 1
ℛk−1 ∪♦ 𭒬k if k > 1,

ℛk =
{

𭒮1 if k = 1
ℛk−1▿𭒮k if k > 1.

Note that it follows directly from the definition that ℛk−1 ⊆♦ 𭒮k. Moreover, the
sequence 𭒮1, 𭒮2, … is increasing, i.e. for any i ≥ 0 it holds that 𭒮i ⊆♦ 𭒮i+1. The
over-approximation property implies that ℛk−1 ⊆♦ ℛk. We prove that the sequence
ℛ1, ℛ2, … is a proper widening sequence, i.e. it is not strictly increasing. In the
proof we focus on consequent arguments appearing of the sequence, that is on
elements of 𭒮1, 𭒮2, … Let spec▿,1, spec▿,2, … be widening sequence thresholds used
for computing the sequence ℛ1, ℛ2, …

Proof by induction on n, which is the dimension of elements in the widening
sequence. For n = 0 there is no infinite strictly increasing sequence, because there
are only two elements in the domain, thus the stabilisation property holds.

Now assume the stabilisation property holds for n, we prove that it also holds for
n+ 1. Proof by contradiction — we assume that the sequence ℛ1, ℛ2, … is strictly
increasing. We create a sequence of sets T0,T1, … as follows:

Tk =
{

{−∞, ∞} if k = 0
spec▿,k(vn+1) ∪ specL(𭒮i) ∪ Tk−1 if k > 0.

(4.34)

The set Tk for k > 0 is the set of special points that might appear in the sequence
ℛk. It is the set of all special points that appeared in elements 𭒮i for i ∈ {1, … , k}
extended by threshold points for the variable vn+1 ∈ 𝘝𝘢𝘳 from all widening steps
from 1 to k, extended by {∞}, i.e.:

Tk = {∞} ∪
k

⋃
i=1

specL(𭒮i) ∪ spec▿,i(vn+1).
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By Remark 4.6.8 and eq. (4.34) for any k > 0 it holds that specL(ℛk) ⊆ Tk. We
introduce the following notation for elements of Tk for any k ≥ 0:

Tk = {pk,1, … , pk,|Tk|}, where ∀j ∈ {1, … , |Tk| − 1} ∶ pk,j ≺ pk,j+1.

The graph of direct refinements
Now we create a graph of refinements that are applied to segments of elements in
the sequence ℛ1, ℛ2, … The graph G(V,E) is such that:
Vertices. The set of vertices V is the set of quadruples (p,w, q, i) for i ≥ 0 that
describe all possible segments that might have appeared during the widening se-
quence. The quadruple (p,w, q, k) corresponds to the segment Ikp,q that appears in
the segmentation by the set Tk (the segmentation ℐ(Tk)) in the computation the
result of the k-th step of the widening sequence – ℛk. More formally:

Ikp,q = {x ∈ 𝕀 ∣ in(p, x, q)} for q ≠ ∞,
Ikp,∞ = {x ∈ 𝕀 ∣ p ⪯ (x, ⊕)}.

The segments Ikpk,1,pk,2
, Ikpk,2,pk,3

, … , Ikpk,|Tk|−1,pk,|Tk|
are consequent segments in the seg-

mentation ℐ(Tk).
The set of vertices describes possible segments, i.e. the segment Ikp,q need not

appear directly in the segmentation ℐ(specL(ℛk)) but since specL(ℛk) ⊆ Tk, by
Remark 4.6.6, the segment is a subsegment of some segment in that segmentation.
All elements x ∈ Ikp,q have the same value in ℛk, i.e. there exists w ∈ 𝕊n−1 such
that for any x ∈ Ikp,q it holds ℛk[x] = w. The value w is the second element in the
quadruple.

Formally, the set of all vertices in G is defined as follows:

V = ⋃
i≥0

Vk,

where Vk = {(p,w, q, k) ∣ Ikp,q ∈ ℐ(Tk) and w = ℛk[x], where x ∈ Ikp,q}.
Edges. The set of edges E ⊆ V×V describes refinements that are performed when
the sequence ℛ1, ℛ2, … is computed. We connect a vertex (p,w, q, i) with a vertex
(p′,w′, q′, j), when the source vertex is from the step 0 and target from step 1 or all
the following requirements are fulfilled:

1. The target vertex comes from the step following (not necessarily directly)
the step of the source vertex, i.e. i < j.

2. The segment associated with the target vertex is a subset of the segment
associated with the source, i.e. Ijp′,q′ ⊆ Iip,q.
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3. There was a refinement — the target vertex has value strictly greater than the
source one, i.e. w ⊂♦ w′.

4. In the intermediate vertices between the two connected ones there was no
other refinement done. The step j is the first step since i, where the refinement
for the segment Ijp′,q′ was made, i.e. for any step k ∈ {i + 1, … , j − 1} and
x ∈ Ijp′,q′ it holds that ℛk[x] = w.

5. A vertex has no output edges when it has no input edges, i.e. graph input
degree of the source vertex must be greater than 0: ♯in((p,w, q, i)) > 0.

(p1,w, p4, i)

(p1,w, p3, i + 1)

(p1,w, p3, i + 2)

(p2,W, p3, i + 3)

vn+1
p1 p2 p3 p4

Figure 4.7: Illustration of how the set of edges E is created.

A simple illustration of how the set E is constructed is presented in Fig. 4.7.
We say that the vertex (p1,w, p4, i) is the first vertex, the following two vertices
(p1,w, p3, i + 1) and (p1,w, p3, i + 2) are intermediate vertices, and finally the ver-
tex (p2,W, p3, i + 3) is the last vertex. We assume the first vertex has some input
edge. All intermediate vertices and the last vertex describe segments that are sub-
sets of the one described by the first vertex, therefore according to the condition 2
there are potential edges going from the first vertex to any of them. Since two inter-
mediate vertices have the same value as the first vertex, there are no edges going to
them (condition 4). Since there are no edges going to intermediate vertices, there
are no edges going out (condition 5) — that is why these vertices are displayed in
grey. There is an edge from the first vertex to the last vertex since all intermediate
vertices have value for the segment displayed by the last vertex the same as the
value of the first vertex: w.
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To sum up, the set of edges E is defined as follows:

E ={((p,w, q, i), (p′,w′, q′, j)) ∣ (i = 0 and j = 1) or

(0 < i < j and Ijp′,q′ ⊆ Iip,q and w ⊂♦ w′ and

∀k∈{i,…,j−1}ℛk[x] = ℛi[x], where x ∈ Ijp′,q′ and
♯in((p,w, q, i)) > 0)}.

(4.35)

An example of a graph created for some widening sequence is presented in
Fig. 4.8. Note that the graph G(V′,E′) created from G(V,E) such that V′ = {v ∈
V ∣ ♯in(v) + ♯out(v) > 0} and E′ = E is a tree.

w1

p3 p4

w2 w1
w2

p1 p2 p3 p4 p5 p6

w2 w3
w2

p1 p2 p4 p6

w5 w2

p1 p5 p6

𭒮1

𭒮2

𭒮3

𭒮4

(a) Input sequence

w1

p3 p4

w2 w1
w2

p1 p3 p4 p6

w5 w4
w2

p1 p2 p4 p6

w6

−∞ p6

ℛ0 = S0

ℛ1 = R0▿S1

ℛ2 = R1▿S2

ℛ3 = R2▿S3

(b) Widening sequence
(−∞, ϵ, ∞, 0)

(−∞, ϵ, p3, 1) (p3,w1, p4, 1) (p4, ϵ, ∞, 1)

(−∞, ϵ, p1, 2) (p1,w2, p2, 2) (p2,w2, p3, 2) (p3,w1, p4, 2) (p4,w2, p5, 2) (p5,w2, p6, 2) (p6, ϵ, ∞, 2)

(−∞, ϵ, p1, 3) (p1,w5, p2, 3) (p2,w5, p3, 3) (p3,w4, p4, 3) (p4,w2, p5, 3) (p5,w2, p6, 3) (p6, ϵ, ∞, 3)

(−∞,w6, p1, 4) (p1,w6, p2, 4) (p2,w6, p3, 4) (p3,w6, p4, 4) (p4,w6, p5, 4) (p5,w6, p6, 4) (p6, ϵ, ∞, 4)

(c) Refinement graph

Figure 4.8: An example of a refinement graph.

We prove that every node in G has finitely many children.
Every node in G has finite output degree
Let m be an iteration number from the definition of widening sequence thresholds
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such that since the step m no new threshold points are added. Let (p,w, q, i) ∈ V
be a vertex for the step i ≥ 0 and I denote the segment described by the vertex, i.e.
I = Iip,q. We prove that the vertex (p,w, q, i) has finitely many children. Proof by
contradiction. Assume the contrary, that the vertex has infinitely many children in
G. We have the following cases:

• First we assume that i > m. By Remark 4.6.9 all new points that appear in
Tj for j ≥ i come from the second argument of the widening in step j and
widening sequence thresholds does not introduce any new split points. Let
j be the lowest index among all the children of (p,w, q, i). We prove that all
children have the same index j.
In steps between i and j there was no refinement done to the segment I. This
might have only happened by the application of the case eq. (4.32b) to the
segment, in which I is included in these intermediate steps. Therefore, the
segment I is not partitioned in the intermediate steps. Thus, it holds that
I ∈ Tj−1. Let P be the set of partition points of the segment I in the step j. It
holds that P ⊆ Tj ⧵ Tj−1.
If P = ∅ then whole segment I is refined at once, thus there is only one
child of (p,w, q, i) and we obtain contradiction. Otherwise P ≠ ∅. Then I is
split into smaller subsegments. Let Il be one of subsegments in the split. It
holds that Il ⊆ I′l , where I′l is a segment in the segmentation ℐ(ℙ′

▿) from the
step j. One of the cases in eq. (4.32) is applied to I′l . Note that since the split
was performed, the case eq. (4.32b) cannot be applied. Therefore, either the
case eq. (4.32a) or eq. (4.32c) is applied. In either of them, the segment I′l is
refined. Since Il ⊆ I′l , the segment Il is also refined, and thus all subsegments
of I are refined in the step j. Therefore, the vertex (p,w, q, i) has finite number
of children (every one corresponds to one of subsegments of I in the split in
step j).

• Otherwise i ≤ m. We consider the situation after step m. The segment I may
be split into a number of subsegments during intermediate steps i + 1, … ,m.
Since Tm is finite, the number of these subsegments is finite. For every sub-
segment Ik ⊆ I that was not refined until step m we apply reasoning ana-
logical to the previous case. All subsegments of I that are included in Ik
are refined in the same step of the widening. Therefore, (p,w, q, i) has finite
number of children in G.

Termination
We recall our assumption that the infinite sequence ℛ1, ℛ2, … created from el-
ements from 𝕊n+1 is strictly increasing. Therefore, in every widening step a re-
finement is done and at least one new edge is added to G. Hence, in G there is
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a finite path of any length. The graph of refinements G(V′,E′) obtained from
G(V,E) such that V′ = {v ∈ V ∣ ♯in(v) + ♯out(v) > 0} and E′ = E is a tree.
The tree G′ is created from the graph G by removing vertices without any edge.
By König’s lemma (see Lemma 4.6.11) there is an infinite path in G′. Let the path
be (−∞, ϵ, ∞, 0), (p1,w1, q1, i1), (p2,w2, q2, i2), … By eq. (4.35) we obtain that the
sequencew1,w2, … is strictly increasing, i.e.w1 ⊂♦ w2 ⊂♦ … The sequence is cre-
ated from elements from 𝕊n. We use the induction hypothesis to obtain a contradic-
tion — there is no infinite, strictly increasing widening sequence in 𝕊n. Therefore,
the sequence ℛ1, ℛ2, … is not strictly increasing, and thus ▿ is a proper widening
operator.

Note that the proposed definition of the widening for boxes is very generic. There
are two places, where different strategies may be applied. The first one is the choice
of the value in the case eq. (4.32c). We propose a new strategy in Section 4.6.4.
The second place is the choice of widening sequence thresholds. We give a few
ideas for building the sequence of functions.

Choosing widening sequence thresholds
There are many ways how to build widening sequence thresholds. It might be com-
puted once at the beginning of the whole widening sequence, e.g.:

• One could gather global special points from the first argument that appears
in the widening sequence. Let n > 0. The global special points function
specG ∶ ⋃n

i=1 𝕊i → 𝘝𝘢𝘳 → 2ℙ∞ is defined as follows:

specG(𭒮)(vi) =
⎧⎪
⎨
⎪⎩

∅ if 𭒮 = ϵ
specL(𭒮) if 𭒮 ∈ 𝕊i

⋃j∈{1,…,k} specG(v, sj) otherwise,
(4.36)

where 𭒮 = ((p1, s1), … , (pk, sk)) for some k ≥ 1. Let 𭒮0 ∈ 𝕊n be the first
argument that appears in the widening sequence. Then we define spec▿,j =
specG(𭒮0) for any j >= 1.

• The function spec▿,j for any j ≥ 1 of special points can be based on the source
code of the analysed software, e.g. it may contain all constants that appear
in the code.

The definition of widening sequence thresholds does not prohibit dynamic compu-
tation of consequent elements based on the result of previous widening step. The
only restriction is that the sequence must be stationary at some point. One of the
proposed strategies is to dynamically build the sequence. In the following example
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we update consequent elements with global special points of widening arguments
k > 0 times. Let n > 0 and 𭒮0, 𭒮1, … be the sequence of widening arguments. We
define widening sequence thresholds by the following inductive construction:

spec▿,i =
⎧⎪
⎨
⎪⎩

specG(𭒮0) if i = 1
λv . spec▿,i−1(v) ∪ specG(𭒮i−1)(v) if 1 < i ≤ k
spec▿,i−1 otherwise.

It is also possible to combine code analysis and the dynamic computation of widen-
ing sequence thresholds.

4.6.4 Refinement strategy for the widening operator
In this section we present a specific implementation of the refinement strategy in
eq. (4.32)(c). First, we recall notation from Section 4.6.3. Let spec▿ be the widening
step thresholds for the current step of the application of the widening. The widen-
ing ▿ ∶ 𝕊0 × 𝕊0 → 𝕊0 is such that 𭒮0▿𭒮′

0 = 𭒮0 ∪♦ 𭒮′
0 for 𭒮0, 𭒮′

0 ∈ 𝕊0. We extend
the operator to 𝕊n for any n > 0 by an inductive construction. Let 𭒮, 𭒮′ ∈ 𝕊n. We
compute:

X▿ = {−∞} ∪ specL(𭒮) ∪ spec▿(vn), X′
▿ = X▿ ∪ specL(𭒮′).

Let X′
▿ = {p1, p2, … , pm} for some m > 1 such that p1 ≺ p2 ≺ … , pm. Let ele-

ments x1, … , xm be representatives of consequent segments I1, … , Im in the seg-
mentation ℐ(X′

▿), i.e.:

−∞ = p1 ⪯ (x1, ⊕) ≺ p2 ⪯ … ≺ pm ⪯ (xm, ⊕).

We define ▿-extension, ▿ ∶ 𝕊n+1 × 𝕊n+1 ⇀ 𝕊n+1 as 𭒮▿𭒮′ = ℛ such that ℛ = 𭒮′

if 𭒮 = ϵ. Otherwise we define:

ℛ′ = ((p1, v1), … , (pm, vm))

such that for any i ∈ {1, … ,m}:

vi =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𭒮[xi]▿n𭒮′[xi] if 𭒮[xi] ≠ 𭒮′[xi] (4.37a)
𭒮[xi] if 𭒮[xi] = 𭒮′[xi] and Ii ∈ ℐ(X▿) (4.37b)

𭒮[xi]▿n𭒮′[xk]
if 𭒮[xi] = 𭒮′[xi], Ii ∉ ℐ(X▿),
k exists and pk ∉ specL(𭒮)

(4.37c)

𭒮[xi]▿n𭒮′[xi−1] otherwise, (4.37d)
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where k = min{j ∣ i < j ≤ m and pj ∈ specL(𭒮) ∪ specL(𭒮′)}. The element xk is
the first element in specL(𭒮) ∪ specL(𭒮′) that is greater than xi. The final result ℛ
of the widening is the normalised version of ℛ′.

The proposed refinement strategy extends eq. (4.32c) into two cases eq. (4.37c)
and eq. (4.37d). As the refined value of the widening we take a value of a neighbour
segment in the segmentation by {−∞} ∪ specL(𭒮) ∪ specL(𭒮′) that belongs to the
same segment in the segmentation by {−∞} ∪ specL(𭒮).

Example application of the proposed refinement strategy

In Fig. 4.9 we illustrate the proposed strategy. We have:

specL(𭒮) = {p2, p7}, specL(𭒮′) = {p2, p3, p5, p6}, spec▿(v) = {p4}.

w

W1
w W2

w

w▿W1 w▿W2

−∞ = p1 p2 p3 p4 p5 p6 p7
𭒮

−∞ = p1 p2 p3 p4 p5 p6 p7
𭒮′

−∞ = p1 p2 p3 p4 p5 p6 p7
ℛ = 𭒮▿𭒮′

𝕀x1 x2 x3 x4 x5 x6 x7

Figure 4.9: Example application of the proposed refinement strategy. Heights of
bars correlate to values.

We compute:

X▿ = {−∞, p2, p4, p7}, X′
▿ = {−∞, p2, p3, p4, p5, p6, p7}.

Next, we compute ℛ′ = ((p1, v1), … , (p6, v6)). Values v1, v2, v5, v7 are computed
with generic construction presented in Section 4.6.3, therefore we focus only on
application of cases eq. (4.37c) and eq. (4.37d). The segmentations used in these
cases are as follows:

• for {−∞} ∪ specL(𭒮): ℐ = [−∞, p2), [p2, p7), [p7, ∞),

• for {−∞} ∪ specL(𭒮) ∪ specL(𭒮′): ℐ′ = [−∞, p2), [p2, p3), [p3, p5), [p5, p6),
[p7, ∞).

Therefore, the values v3, v4, and v6 are computed as follows:
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• Value v3: since 𭒮[x3] = 𭒮′[x3] and p3 ∉ X▿ we compute index k = 5.
Since p5 ∉ specL(𭒮) we use case eq. (4.37c) to obtain v3 = 𭒮[x3]▿n𭒮′[x5] =
w▿nW2. The element x3 belongs to the segment [p3, p5) in the segmentation
ℐ′. In ℐ the segment is included in the segment [p2, p7). In ℐ′ there is a seg-
ment that is on the right of [p3, p5) and is also included in the same segment
[p2, p7). As the refined value we take value of the right neighbour — segment
[p5, p6).

• Value v4: since 𭒮[x4] = 𭒮′[x4] and p5 ∉ X▿ we compute index k = 5.
Since p5 ∉ specL(𭒮) we use case eq. (4.37c) to obtain v4 = 𭒮[x4]▿n𭒮′[x5] =
w▿nW2. Since x4 is in the same segment as x3 in the segmentation by {−∞}∪
specL(𭒮) ∪ specL(𭒮′), as the refinement we use the same value as in the pre-
vious case. Since x4 belongs to the same segment as x3 in the segmentation
ℐ′, the situation is analogical as in the previous case.

• Value v6: since 𭒮[x6] = 𭒮′[x6] and p6 ∉ X▿ we compute index k = 7.
Since p7 ∈ specL(𭒮) we use case eq. (4.37d) to obtain v6 = 𭒮[x6]▿n𭒮′[x5] =
w▿nW2. The element x6 belongs to the segment [p6, p7) in the segmentation
ℐ′. In ℐ the segment is included in [p2, p7), but it is the rightmost fragment of
the segment [p2, p7). Therefore, there is no right side neighbour. But there is
a left hand side neighbour segment [p5, p6) in ℐ′ that is included in [p2, p7).
As a refined value we take the value of this segment.

Lemma 4.6.12 states, that the proposed refinement strategy is an implementation
of the widening operator proposed in Section 4.6.3.

Lemma 4.6.12. The last two steps eq. (4.37c) and eq. (4.37d) in the definition
of the current operator fulfil the condition eq. (4.32c) from the definition of the
generic widening operator, i.e. the refinement of the second argument in both cases
is strictly greater than the value of the first argument.

Proof. At the beginning we recall that we use the definition of the widening op-
erator, where the second argument is greater or equal to the first one. Therefore, it
holds that 𭒮 ⊆♦ 𭒮′.

First, we analyse the case eq. (4.37c). We prove that 𭒮[xi] ⊂♦ 𭒮′[xk]. The situa-
tion is illustrated in Fig. 4.10a. Note that it holds that 𭒮[xi] = 𭒮′[xi]. The element
pi does not necessarily have to be either in specL(𭒮) or in specL(𭒮′) (hence, the
question mark “?”). The element pk is the smallest element from the set specL(𭒮) ∪
specL(𭒮′) that is greater than pi, and furthermore, it holds that pk ∈ specL(𭒮′) ⧵
specL(𭒮). Since pk ∉ specL(𭒮) and there is no special point in specL(𭒮) that is be-
tween pi and pk, it holds that 𭒮[xi] = 𭒮[xk]. The element pk ∈ specL(𭒮′) in the
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?

?

pi pkpi+1 pk−1 vn
xi xk

specL(𭒮′) onlyX′
▿

not specL(𭒮) ∪ specL(𭒮′)

(a) Case eq. (4.37c)

? ?

?
?

pi pi+1 pk−1 ?pk? vn
xixi−1

specL(𭒮) or not existsspecL(𭒮′)

not specL(𭒮) ∪ specL(𭒮′)

(b) Case eq. (4.37d)

𭒮

𭒮′

segm. ℐ(X′
▿)

Figure 4.10: Illustration of the last two cases in eq. (4.37).

sequence 𭒮′ is the beginning of a segment that has a value different than the previ-
ous segment, thus 𭒮′[xk] ≠ 𭒮[xk]. Since 𭒮 ⊆♦ 𭒮′, we obtain the desired property,
i.e. 𭒮[xi] ⊂♦ 𭒮′[xk].

Now we analyse the case eq. (4.37d). First, we prove that we may write 𭒮′[xi−1],
i.e. that i > 1. Assume the contrary, that i = 1. Then p1 = −∞. If k exists, by
the definition of the current case it holds that pk ∈ specL(𭒮), therefore I1 ∈ ℐ(X▿)
and the eq. (4.37d) cannot be used to compute vi — we obtain a contradiction.
Otherwise, if k does not exist then there are no other special points in 𭒮 or 𭒮′, hence
also I1 ∈ ℐ(X▿) and we obtain contradiction. Now we prove that 𭒮[xi] ⊂♦ 𭒮′[xi−1].
The situation is illustrated in Fig. 4.10b. Note that the element pk, if exists, is the
beginning of a new segment in both 𭒮 and 𭒮′. The element pi is the end of some
segment in 𭒮′ and it does not appear in specL(𭒮) (otherwise, the case eq. (4.37b)
would be used to compute vi). Therefore 𭒮′[xi−1] ≠ 𭒮[xi−1]. Since 𭒮 ⊆♦ 𭒮′ we
obtain the desired property, i.e. 𭒮[xi] ⊂♦ 𭒮′[xi−1].

By Lemma 4.6.12 and Theorem 4.6.10 the current operator is a proper widening
operator.

Single-step precision analysis

The single-step precision of the widening operator proposed in eq. (4.37) depends
on the choice of the widening step thresholds function. A larger sets of threshold
points may increase the precision. The fact is stated formally by Theorem 4.6.13.

Theorem 4.6.13 (Single step precision of the widening). Let 𭒮, 𭒮′ ∈ 𝕊n for
some n > 0 be such that 𭒮 ⊆♦ 𭒮′. Let there be two widening operators ▿ and ▿⋆

defined by eq. (4.37) that use different widening step thresholds spec▿ and spec▿⋆
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respectively to compute result of widening for arguments 𭒮 and 𭒮′. Let spec▿ and
spec▿⋆ be such that:

∀v∈𝘝𝘢𝘳 spec▿(v) ⊆ spec▿⋆(v). (4.38)

Then it holds that:
𭒮 ▿⋆𭒮′ ⊆♦ 𭒮▿𭒮′. (4.39)

Proof. We assume the notation as in the formulation of the theorem. The proof is
by induction on n. For n = 0 both widening operators are defined exactly the same
way since the widening step threshold is not used at all. Therefore (4.39) holds.
Now assume that the theorem holds for n − 1, where n ≥ 1. We prove that it also
holds for n.

First, we introduce auxiliary denotations. Let X▿, X′
▿ be sets from the definition

of the widening ▿:

X▿ = {−∞} ∪ specL(𭒮) ∪ spec▿(vn), X′
▿ = X▿ ∪ specL(𭒮′)

and ℛ′ be as in the definition of ▿, that is:

ℛ′ = ((p1, v1), … , (pl, vl))

for some l > 0, and xi ∈ 𝕀 for i ∈ {1, … , l} be representatives of consequent
segments I1, … , Il in the segmentation ℐ(X′

▿) (see Definition 4.6.5).
Analogously, let Y▿⋆, Y′

▿⋆ be sets from the definition of the widening ▿⋆:

Y▿⋆ = {−∞} ∪ specL(𭒮) ∪ spec▿⋆(vn), Y′
▿⋆ = Y▿⋆ ∪ specL(𭒮′)

and ℛ⋆ be as in the definition of ▿⋆, that is:

ℛ∗ = ((p⋆
1 , v⋆

1 ), … , (p⋆
m, v⋆

m))

for some m > 0, and x⋆
j ∈ 𝕀 for j ∈ {1, … ,m} be representatives of consequent

segments I⋆1 , … , I⋆m in the segmentation ℐ(Y′
▿⋆).

Let j ∈ {1, … ,m}. By Remark 4.6.6 it holds that I⋆j ⊆ Ii for some i ∈ {1, … , l}.
Intuitively by eq. (4.38), the second widening operator ▿⋆ may extend the seg-
mentation from ▿ by adding some new special points for the current variable.
Therefore, the segmentation for ▿⋆ is more precise than for ▿, i.e. with these addi-
tional special points some segments might be split into smaller subsegments. The
segment I⋆j is a subsegment of some segment Ii (which might have been split to
obtain I⋆j ). The element x⋆

j is a representative of both segment I⋆j and Ii, therefore
it holds that:

𭒮[x⋆
j ] = 𭒮[xi], 𭒮′[x⋆

j ] = 𭒮′[xi], (𭒮▿𭒮′)[x⋆
j ] = (𭒮▿𭒮′)[xi]. (4.40)
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The last equality results directly from I⋆j ⊆ Ii and the construction of ▿ — one
value is computed for the whole segment Ii.

The rest of the proof is a case analysis of the cases in the definition of the widen-
ing operator in eq. (4.37) for the widening ▿⋆. In every case we show that:

v⋆
j = (𭒮▿⋆

n 𭒮′)[x⋆
j ] ⊆♦ (𭒮▿n𭒮′)[xi] = vi, (4.41)

which satisfies eq. (4.39).

Case eq. (4.37a) In this case values for the segment I⋆j are different in sequences
𭒮 and 𭒮′, i.e. 𭒮[x⋆

j ] ≠ 𭒮′[x⋆
j ]. By eq. (4.40) also 𭒮[xi] ≠ 𭒮′[xi]. By the induction

hypothesis for arguments 𭒮[x⋆
j ] and 𭒮′[x⋆

j ], and eq. (4.40) we obtain that:

v⋆
j = 𭒮[x⋆

j ]▿⋆
n 𭒮′[x⋆

j ] ⊆♦ 𭒮[x⋆
j ]▿n𭒮′[x⋆

j ] = 𭒮[xi]▿n𭒮′[xi] = (𭒮▿n+1𭒮′)[xi] = vi.

Case eq. (4.37b) This time values for the segment I⋆j are equal in 𭒮 and 𭒮′, and
I⋆j ∈ ℐ(Y▿⋆). Then v⋆

j = 𭒮[x⋆
j ]. We analyse the subcases of eq. (4.37), in which

the value vi is computed:

• Since 𭒮[xi] ≠ 𭒮′[xi], the value is not computed with the case eq. (4.37a).

• If vi is computed with the same case as v⋆
j , i.e. eq. (4.37b), then vi = 𭒮[xi]

and by eq. (4.40) we obtain eq. (4.41).

• If the value vi is computed with either case eq. (4.37c) or eq. (4.37d) we apply
Lemma 4.6.12 to obtain that vi = 𭒮[xi]▿nW for some W ∈ 𝕊n such that
𭒮[xi] ⊂♦ W. Therefore, by the over-approximation property of the widening
operator ▿ it holds that:

W ⊆♦ 𭒮[xi]▿nW = vi

and by eq. (4.40) we obtain eq. (4.41).

Case eq. (4.37c) It holds that 𭒮[x⋆
j ] = 𭒮′[x⋆

j ] and the segment I⋆j is not in the
segmentation ℐ(Y▿⋆), i.e. I⋆j ∉ ℐ(Y▿⋆). What is more, the first element in the set
specL(𭒮) ∪ specL(𭒮′) that is greater than p⋆

j exists: it is p⋆
k⋆, where j < k⋆ ≤ m and

p⋆
k⋆ ∈ specL(𭒮′) ⧵ specL(𭒮). Since I⋆j ∉ ℐ(Y▿⋆) at least one of the split points: p⋆

j or
p⋆
j+1 does not belong to Y▿⋆. Both situations are illustrated in Fig. 4.11. We prove

that in both situations the current case eq. (4.37c) is used in the computation of
vi, and that the refined value for the second argument is the same for both widen-
ing operators — it is a value of a neighbour segment to the right in 𭒮′, which is
included in the current segment in 𭒮. The cases are as follows:

108



4.6 Widening Operator

p⋆
j p⋆

k⋆p⋆
j+1 p⋆

k⋆−1I⋆j I⋆k⋆

pi pk′pi+1 pk′−1Ii Ik′

specL(𭒮′) only

not specL(𭒮) ∪ specL(𭒮′)

(a) Left split point of I⋆j does not
appear in Y▿⋆

p⋆
j

p⋆
j+1I⋆j I⋆j+1

pi pi+1Ii Ii+1

specL(𭒮′) only

(b) Right split point of I⋆j
does not appear in Y▿⋆

𭒮

𭒮′

segm. ℐ(Y′
▿⋆)

segm. ℐ(X′
▿)

Figure 4.11: Possible situations when v⋆
j is computed with eq. (4.37c). First two

rows are graphical representations of arguments 𭒮 and 𭒮′. Last two
rows present fragments of two segmentations: ℐ(X′

▿) and ℐ(Y′
▿⋆).

• The left split point of the segment I⋆j does not belong to Y▿⋆, i.e.:

p⋆
j ∈ specL(𭒮′) ⧵ Y▿⋆.

The situation is illustrated in Fig. 4.11a. The element p⋆
j is also used as

a split point in the segmentation ℐ(X′
▿), which is less precise than ℐ(Y′

▿⋆).
Therefore, it holds that p⋆

j = pi. The element p⋆
k⋆ is the first element from the

set specL(𭒮) ∪ specL(𭒮′) that is to the right of the segment I⋆j . The element
is also to the right of the segment Ii, therefore index k exists also when vi is
computed. Let k′ denote the index. It holds that p⋆

k⋆ = pk′. The same case
eq. (4.37c) is used to compute the value vi. Since I⋆k⋆ ⊆ Ik′ it holds that
𭒮′[x⋆

k⋆] = 𭒮′[xk′], i.e. the refined value for the right argument is the same
for both widenings. Finally, by eq. (4.40) and the induction hypothesis we
obtain eq. (4.41).

• Otherwise, the right split point of I⋆j does not belong to Y▿⋆, i.e.:

j < m and p⋆
j+1 ∈ specL(𭒮′) ⧵ Y▿⋆.

Then k⋆, the index k used in the computation of v⋆
j , is j + 1. The situation

is illustrated in Fig. 4.11b. Since p⋆
j+1 ∈ specL(𭒮′), by the construction of

X′
▿, it holds that p⋆

j+1 ∈ X′
▿. Also, it holds that pi+1 = p⋆

j+1, i.e. the right split
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p⋆
j p⋆

k⋆p⋆
j+1 p⋆

k⋆−1I⋆j−1 I⋆j

pi pk′pi+1 pk′−1Ii−1 Ii

specL(𭒮′) only specL(𭒮)

not specL(𭒮) ∪ specL(𭒮′)

(a) The index k exists and p⋆
k⋆ ∈

specL(𭒮)

p⋆
j p⋆

j+1I⋆j−1 I⋆j

pi pi+1Ii−1 Ii

specL(𭒮′) only

not specL(𭒮) ∪ specL(𭒮′)

(b) The index k does not ex-
ist

𭒮

𭒮′

segm. ℐ(Y′
▿⋆)

segm. ℐ(X′
▿)

Figure 4.12: Possible situations when v⋆
j is computed with eq. (4.37d). First two

rows are graphical representations of arguments 𭒮 and 𭒮′. Last two
rows present fragments of two segmentations: ℐ(X′

▿) and ℐ(Y′
▿⋆).

point for segments I⋆j and Ii is the same element. It is a consequence of the
segment inclusion I⋆j ⊆ Ii and the fact that the right split point of I⋆j appears
as a split point in ℐ(X′

▿). The index i + 1 matches conditions of eq. (4.37c)
as the index k in the computation of vi, therefore the same case is used to
compute vi.

The value 𭒮′[x⋆
j+1] is the refined value of the second argument in the com-

putation of v⋆
j and 𭒮′[xi+1] is the refined value of the second argument in

the computation of vi. Since it holds that I⋆j+1 ⊆ Ii+1 (the left split point is
the same element and X′

▿ ⊆ Y′
▿⋆), we obtain 𭒮′[x⋆

j+1] = 𭒮′[xi+1], thus re-
fined values are equal. Finally, by eq. (4.40) and the induction hypothesis
we obtain eq. (4.41).

Case eq. (4.37d) It holds that 𭒮[x⋆
j ] = 𭒮′[x⋆

j ] and the segment I⋆j is not in the
segmentation ℐ(Y▿⋆), i.e. I⋆j ∉ ℐ(Y▿⋆). We have two possibilities depending on
the existence of the index k⋆ = min{q ∣ j < q ≤ m and pq ∈ specL(𭒮) ∪ specL(𭒮′)}
(both situations are illustrated in Fig. 4.12):

• The index exists. This situation is illustrated in Fig. 4.12a. Then, by the defi-
nition of the current case it holds that p⋆

k⋆ ∈ specL(𭒮). It means that the value
of the sequence 𭒮 changes at the split point p⋆

k⋆, i.e. 𭒮[x⋆
k⋆−1] ≠ 𭒮[x⋆

k⋆].

110



4.6 Widening Operator

By the definition of the current case it holds that I⋆j ∉ ℐ(Y▿⋆), therefore the
left split point does not belong to Y▿⋆, i.e. p⋆

j ∈ specL(𭒮′) ⧵ Y▿⋆. But then,
also p⋆

j ∈ specL(𭒮′) ⧵ X▿, therefore as I⋆j ⊆ Ii we have pi = p⋆
j .

To calculate vi, we observe that the following conditions hold:

– 𭒮[xi] = 𭒮′[xi], as 𭒮[xi] = 𭒮[x⋆
j ] = 𭒮′[x⋆

j ] = 𭒮′[xi].

– Ii ∉ ℐ(X▿), as pi ∈ specL(𭒮′) ⧵ X▿.

– The index k′ = min{q ∣ i < q ≤ l and pq ∈ specL(𭒮) ∪ specL(𭒮′)} is
defined since i < k⋆ and p⋆

k⋆ ∈ specL(𭒮). Moreover pk′ = p⋆
k⋆.

As a result, we must use the case eq. (4.37d) to compute (𭒮 ▿𭒮′)[xi]. The
result is 𭒮[xi]▿n𭒮′[xi−1]. Since pi = p⋆

j ∉ Y▿⋆ it holds that p⋆
j ≠ −∞, and

this implies j > 1 and i > 1. As Y▿⋆ is a refinement of X▿ and the right-hand
bounds of I⋆j−1 and Ii−1 are equal, we obtain I⋆j−1 ⊆ Ii−1. This implies 𭒮′[x⋆

j−1] =
𭒮′[xi−1]. We can now compute:

vi = (𭒮 ▿n𭒮′)[xi] = 𭒮[xi]▿n𭒮′[xi−1] = 𭒮[x⋆
j ]▿n𭒮′[x⋆

j−1].

By the induction hypothesis to obtain 𭒮[x⋆
j ]▿⋆

n 𭒮′[x⋆
j−1] ⊆♦ 𭒮[x⋆

j ]▿n𭒮′[x⋆
j−1].

Finally, 𭒮[x⋆
j ]▿⋆

n 𭒮′[x⋆
j−1] = (𭒮 ▿⋆

n 𭒮′)[x⋆
j ] = v⋆

j , thus v⋆
j ⊆♦ vi.

• Otherwise, the index does not exist. The situation is illustrated in Fig. 4.12b.
By the definition of the current case it holds that I⋆j ∉ ℐ(Y▿⋆). As a result
p⋆
j ∈ specL(𭒮′) ⧵ Y▿⋆. But then, also p⋆

j ∈ specL(𭒮′) ⧵ X▿. Since I⋆j ⊆ Ii, it
holds that pi = p⋆

j . Further reasoning is analogical to the previous case.

Theorem 4.6.13 only states that when we take a greater widening step thresholds
(pointwise ordering, for every variable) then the result of application of the widen-
ing step is not worse. But it might happen that the result is strictly greater. A simple
example for the two-dimensional case is presented in Fig. 4.13. The variable x is
the variable of the first dimension and y is the variable of the second dimension. We
focus on segments in the second dimension (of variable y). The segment [−∞, 0)
is handled exactly the same way by both widenings. For the segment [0, 1) both
widening operators apply one-dimensional version. The first widening ▿ widens
straight to ∞ while the proposed widening ▿′ stops at the threshold 2 ∈ spec▿(x).
Note that the second widening operator ▿′ is able to share information about spe-
cial points for the variable x between different blocks for the variable y. That is why
in the block y ∈ [0, 1) we use the special point x = 2 as a threshold and obtain
a more precise result.
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y

x

1 2 3

1

2

3

𭒮

y

x

1 2 3

1

2

3

𭒮′

y

x

1 2 3

1

2

3

𭒮▿𭒮′

y

x

1 2 3

1

2

3

𭒮▿′𭒮′

Figure 4.13: Comparison of a single-step precision of widening operators for
different widening step thresholds functions. The widening opera-
tor ▿ uses spec▿ = λv . ∅ and ▿′ uses spec′

▿ = specG(𭒮), therefore
spec′

▿(x) = {0, 1, 2, 3}.

Comparison with the widening operator based on LDDs
The proposed widening operator is similar to ▿LDD — the widening operator based
on LDDs. The construction of the widening ▿LDD expressed in terms of the pre-
sented sweeping line representation of domain elements is an instance of the pre-
sented generic widening operator with proposed refinement strategy for empty
widening sequence thresholds, i.e. in every step widening step thresholds function
is spec▿,LDD(v) = ∅. As a consequence, single step application of the introduced
widening is more precise than ▿LDD. The fact is stated by Theorem 4.6.14.

Theorem 4.6.14. For any n ≥ 0 and 𭒮, 𭒮′ ∈ 𝕊n it holds that:

𭒮▿𭒮′ ⊆♦ 𭒮▿LDD𭒮′. (4.42)

Proof. For any widening step thresholds function spec▿ it holds that:

∀v ∈ 𝘝𝘢𝘳 ∶ ∅ = spec▿,LDD(v) ⊆ spec▿(v),

and therefore, by Theorem 4.6.13 we obtain eq. (4.42).

For the comparison of ▿ and ▿LDD consider an example from Fig. 4.13. In the
example, we compute as widening step thresholds global special points (defined
in eq. (4.36)).

Dependence on the variable ordering
One drawback of the proposed widening operator is that the result depends on the
ordering of variables. Lemma 4.6.15 states what accuracy of the widening oper-
ator can be expected. An operator obtained by intersection of results obtained for
all possible variable orderings does not create a proper widening operator. By in-
troduction of special points spec▿ to the widening sequence we try to get closer
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to the result of the intersection and depend less on the variable ordering. The re-
sult of the proposed widening in the example from Fig. 4.13 is pretty close to the
intersection of widenings based on LDDs for both variable orderings.

Lemma 4.6.15. For empty widening sequence thresholds, 𝕀 ∈ {ℚ, ℝ} and n ≥ 2
the operator defined as the intersection of results for all possible variable order-
ings is not a widening operator.

Proof. Let Sn be the set of permutations of {1, … , n}, i.e. Sn = {π ∶ {1, … , n} →
{1, … , n} ∣ π is bijective}. Let 𝘝𝘢𝘳 = {v1, … , vn} be the set of variables. The
operator ♡ ∶ 𝕊n → 𝕊n for every n ≥ 0 is defined as follows:

𭒮 ♡𭒮′ ≝ ⋂
π∈Sn

𭒮 ▿π𭒮′,

where ▿π is the widening operator as defined in the current section that uses the
following variable ordering: vπ(1), vπ(2), … , vπ(n) and ⋂ is the generalised intersec-
tion operator (greatest lower bound). The operator can be easily implemented for
𝕊n since meet is precise and the set of permutations Sn is finite.

For n = 2 we show an infinite, strictly increasing sequence 𭒮0 ⊆ 𭒮1 ⊆ … such
that the sequence:

ℛ0 = 𭒮0,
ℛi+1 = ℛi♡(ℛi ∪ 𭒮i+1)

(4.43)

is strictly increasing. Now we explain the construction of the sequence. It is il-
lustrated in Fig. 4.14. Arguments and results of consequent steps are presented in
rows. The first argument of the operator (which is also the result of previous step)
is displayed in the column (i). The second argument is displayed in the column
(ii). The result, which is the intersection of two possible widenings, is presented
in the column (iii). The input sequence is constructed as follows (first 3 steps are
described in detail):

1. The first element 𭒮0 is presented in step 0, col. (ii). It consists of two disjoint
square boxes. Every square box has edge of length 1.

2. The second element 𭒮1 is presented in step 1, col. (ii). It is created from
the previous element by extending both disjoint polygons from the previous
step by adding a rectangle next to each of them. We place a rectangle of size
(width × height) 1

2
× (1 + 1

2
) on the right of the upper box and a rectangle of

size (1 + 1
2
) × 1

2
above the lower box.
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step 0:

(i) (ii) (iii)

v1

v24

3

2

1

4321

𭒮0

step 1:

v1

v24

3

2

1

4321

ℛ0 = 𭒮0
v1

v24

3

2

1

4321

𭒮1
v1

v24

3

2

1

4321

step 2:

v1

v24

3

2

1

4321

ℛ1 = ℛ0♡(ℛ0 ∪ 𭒮1)
v1

v24

3

2

1

4321

𭒮2

v1

v24

3

2

1

4321

step 3:

v1

v24

3

2

1

4321

ℛ2 = ℛ1♡(ℛ1 ∪ 𭒮2)
v1

v24

3

2

1

4321

𭒮3

v1

v24

3

2

1

4321

step 4:

…

v1

v24

3

2

1

4321

ℛ3 = ℛ2♡(ℛ2 ∪ 𭒮3)
v1

v24

3

2

1

4321

𭒮4

v1

v24

3

2

1

4321

Figure 4.14: Construction of the divergent sequence, columns describe (i) first ar-
gument, (ii) second argument (input sequence), and (iii) results of ♡
(intersection of results of ▿ for two possible variable orderings v1, v2
and v2, v1)

114



4.6 Widening Operator

3. The third element 𭒮2 is presented in step 2, col. (ii). First, similarly to the
previous step, we extend both polygons from the previous step. Next, we add
rectangle of size 1

4
× (1 + 1

2
+ 1

4
) on the right of the upper polygon and of

size (1 + 1
2

+ 1
4
) × 1

4
above the lower one.

4. …

A general rule for creating element 𭒮k for k > 0 from the previous one is as follows:

• add a rectangle of size 1
2k

× ∑k
i=0

1
2k

on the right of upper-right polygon,

• add a rectangle of size ∑k
i=0

1
2k

× 1
2k

above the lower-right polygon.

v1

v2

ℛ0
v1

v2

ℛ1
v1

v2

ℛ2
v1

v2

ℛ3
v1

v2

ℛ4

Figure 4.15: Divergent sequence ℛ0, ℛ1, ℛ2, …

The sequence ℛ0, ℛ1, … created with presented algorithm is strictly increasing.
A longer fragment of the sequence is presented in Fig. 4.15. As we can see, all
three polygons grow and converge to the center point (2,2). We can easily extend
the construction to higher dimensions by adding any set of values there. Since
variables are independent the sequence would still be strictly increasing.

Lemma 4.6.15 gives us just a rough estimate of the limitations of the widening
operator for the domain of boxes. A discussion about precision of the widening
operator is a difficult matter since widening operator is not monotone. It may hap-
pen that some widening operator ▿′ at some step may come up with a worse result
than ▿ at the step, but the overall result (the value at which we reach stabilisation)
is more precise.

Let us consider the input sequence from Lemma 4.6.15. A widening operator
that gives the best (the most precise) result for the input sequence does not exist.
A number of possible widening results for the input sequence from Lemma 4.6.15
are presented in Fig. 4.16. In fact, this is a sequence of possible results such that ev-
ery next element is strictly greater than the previous one. The sequence ℛ0

▿, ℛ1
▿, …

converges to an element that is not a member of the domain of boxes, since it con-
sists of infinitely many disjoint boxes.
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0
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3

4

4
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▿
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0
0

1

1

2

2

3

3

4

4
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▿
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0
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1

1
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3

4

4

ℛ3
▿

Figure 4.16: Strictly decreasing sequence of possible widening results for the input
sequence from Lemma 4.6.15.

The results of widening presented in Fig. 4.16 can be obtained by applying the
presented widening operator. What is required is a proper choice of widening se-
quence thresholds. In order to obtain the result ℛk

▿ for k ≥ 0 we choose con-
stant widening sequence thresholds, i.e. exactly the same widening step thresholds
function speck▿ is used for every step. These widening step thresholds functions are
defined as follows:

spec0
▿(v) = {2} = {2},

spec1
▿(v) = spec0

▿(v) ∪ specG(𭒮1)(v) = {0, 1, 11
2
, 2, 2 1

2
, 3, 4},

spec2
▿(v) = spec1

▿(v) ∪ specG(𭒮2)(v) = {0, 1, 11
2
, 1 3

4
, 2, 2 1

4
, 2 1

2
, 3, 4},

spec3
▿(v) = spec2

▿(v) ∪ specG(𭒮3)(v) = {0, 1, 11
2
, 1 3

4
, 1 7

8
, 2, 2 1

8
, 2 1

4
, 2 1

2
, 3, 4}.

Note that we have added threshold point 2. This caused that the top-right square
box that occurred in elements presented in Fig. 4.15 has disappeared.

4.7 Transfer Functions
In this section we present implementations of assign and test functions described
in Section 3.2 (page 37) for the introduced representation of the domain of boxes.
For both function, when the argument 𭒮 ∈ 𝕊n for some n > 0 is ϵ, the result is ϵ.
So, from now on we assume 𭒮 ≠ ϵ.

We recall that function split from Section 4.5 (page 88) splits an element 𭒮 ∈ 𝕊n
for some n > 0 to corresponding disjoint boxes. The test function for the domain of
boxes can be defined using the testv function for the domain of intervals as follows:
first we apply the split function to obtain disjoint boxes, next we compute result
of testv for every box in the split, and finally we apply the join operator for these
results. Such function test is a sound approximation of the concrete test of boolean
expressions. This is stated formally by Theorem 4.7.1.
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Theorem 4.7.1. Let 𭒮 ∈ 𝕊n for some n > 0 and splitn(𭒮) = {ℬ1, … , ℬk} for some
k > 0. Furthermore, let 𝘣𝘣 ∈ 𝘉𝘰𝘰𝘭 and t ∈ 𝘉𝘌𝘹𝘱 be a test expression. Then test
function for the domain of boxes defined as follows:

test(t, 𝘣𝘣, 𭒮) =
k

⋃
i=1

testv(t, 𝘣𝘣, ℬi),

is a sound approximation of the boolean test t, i.e. it fulfils the following property:

(s ∈ γ(𭒮) ∧ ℬ⟦t⟧ s = 𝘣𝘣) ⟹ s ∈ γ(test(b, 𝘣𝘣, 𭒮)).

Proof. Proof left to the reader.

Analogously, we proceed with the definition of the assign function for the domain
of boxes:

Theorem 4.7.2. Let 𭒮 ∈ 𝕊n for some n > 0 and splitn(𭒮) = {ℬ1, … , ℬk} for some
k > 0. Furthermore, let vi ∈ 𝘝𝘢𝘳 and e ∈ 𝘌𝘹𝘱. Then assign function for the domain
of boxes defined as follows:

assign(vi, e, 𭒮) =
k

⋃
i=1

assignv(vi, e, ℬi),

is a sound approximation of the assignment operation, i.e. it fulfils the following
property:

(s ∈ γ(𭒮) ∧ ℰ⟦e⟧ s = w) ⟹ s[vi ← w] ∈ γ(assign(vi, e, 𭒮)).

Proof. Proof left to the reader.

Note that the transfer function is not monotone. We analyse an example that
is presented in Fig. 4.17. In Fig. 4.17(a) the transfer function does not change the
input domain value. In Fig. 4.17(b) the input domain value is split into two disjoint
boxes and the application of the transfer function modifies only one of them.

In some cases the generic definition is too costly in realization. There are many
cases, where it may be done in a more efficient fashion, without the split function.
We sketch below how a more optimal version can be defined. To do this we start
with a definition of a series of helping functions applyj,i ∶ (𝕊i → 𝕊i) × 𝕊j → 𝕊j,
where i, j ∈ {1, … , n} and i ≤ j. Let 𭒮j ∈ 𝕊j be such that 𭒮j = ((p1, s1), … , (pk, sk))
for some k ≥ 0, then:

applyj,i(t, 𭒮j) =
{

t(𭒮j) if i = j
ℛ otherwise,

117



Chapter 4 Generic Disjunctive Refinement for the Domain of Intervals

v2

v1

ℬ1

v2 ≤ v1

v2

v1

ℬ′
1

(a) No value change

v2

v1

ℬ1 ℬ2

v2 ≤ v1

v2

v1

ℬ′
1 ℬ′

2

(b) Strictly greater argument gives
a strictly smaller result

Figure 4.17: Example that shows the transfer function for boxes is not monotone.

where ℛ is a normalised version of the sequence:

ℛ′ = ((p1, applyj−1,i(t, s1)), … , (pk, applyj−1,i(t, sk))) .

The application of the function applyj,i(t, 𭒮) for 𭒮 ∈ 𝕊j returns a modified sequence
𭒮′, where sequences for the variable vi are replaced by application of the function
t. We use the function apply in the implementation of both assign and test functions
below.

4.7.1 Test
First, we focus on the test function. Let 𭒮 ∈ 𝕊n for some n > 0 be an element
of the domain of boxes. Recall first that it is enough to consider atomic boolean
expressions only, i.e. ones of the form e1 ⋈ e2, where ⋈ ∈ {=, ≠, <, ≤} and e1, e2
are either constants or variables.

When the test expression does not contain any variables the evaluation process
is analogical to the corresponding one in the concrete domain:

test(b, 𝘣𝘣, 𭒮) =
{

⊥ if ℬ⟦b⟧ 𭒮 = ff
𭒮 otherwise,

where 𝘣𝘣 ∈ 𝘉𝘰𝘰𝘭. When the test expression contains exactly one variable (exactly
one of the atoms a1, a2 is a variable) the situation becomes a bit more complex.
We use the apply function to make the operation more efficient. When 𝕀 ∈ {ℚ, ℝ}
the implementations are as follows:

• test(vi = a, 𝘵𝘵, 𭒮) = applyn,i(λ𭒮i . 𭒮i ∩ (((a, ⊕), ⊤i), ((a, ⊖), ϵ)), 𭒮),

• test(vi = a, 𝘧𝘧, 𭒮) = applyn,i(λ𭒮i . 𭒮i ∩ ((−∞, ⊤i), ((a, ⊕), ϵ), ((a, ⊖), ⊤i)), 𭒮),

• test(vi ≠ a, 𝘣𝘣, 𭒮) = test(vi = a, not 𝘣𝘣, 𭒮),
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• test(vi < a, 𝘵𝘵, 𭒮) = applyn,i(λ𭒮i . 𭒮i ∩ ((−∞, ⊤i), ((a, ⊕), ϵ)), 𭒮),

• test(vi ≤ a, 𝘵𝘵, 𭒮) = applyn,i(λ𭒮i . 𭒮i ∩ ((−∞, ⊤i), ((a, ⊖), ϵ)), 𭒮),

• test(vi < a, 𝘧𝘧, 𭒮) = applyn,i(λ𭒮i . 𭒮i ∩ (((a, ⊕), ⊤0)), 𭒮),

• test(vi ≤ a, 𝘧𝘧, 𭒮) = applyn,i(λ𭒮i . 𭒮i ∩ (((a, ⊖), ⊤0)), 𭒮),

• test(a ≤ vi, 𝘣𝘣, 𭒮) = test(vi < a, not 𝘣𝘣, 𭒮),

• test(a < vi, 𝘣𝘣, 𭒮) = test(vi ≤ a, not 𝘣𝘣, 𭒮),

where 𝘣𝘣 ∈ 𝘉𝘰𝘰𝘭 and ⊤i denotes the top element in the i-dimensional space. When
𝕀 = ℤ we have to replace each (a, ⊖) with (a + 1, ⊕).
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Figure 4.18: Example application of the test function.

The last and the most difficult case is when both atoms in the test are variables.
First, consider a simple example for the domain of intervals: testv(v1 ≤ v2, 𝘵𝘵, ℐ)
and ℐ is such that ℐ(v1) = (a1, b1), ℐ(v2) = (a2, b2). After the test operation it must
hold that a1 ≤ v1 ≤ v2 ≤ b2, therefore the test introduces two constraints: a1 ≤ v2
and v1 ≤ b2. These constraints may narrow down intervals for v1 or v2, and when
the interval for any of the variables becomes empty, the result of the test is ⊥v. For
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the domain of boxes the situation is quite similar. The only difference is that we
deal with multiple boxes at once and such constraints have to be applied to every
one separately. The problem is that with our representation of domain elements,
the result of the test operation may become much bigger in size than the input
argument. An example of such a situation is presented in Fig. 4.18.

The simplest solution is to apply generic solution with the split function. In some
cases a more optimal solution may be applied but it is much more complicated.
The idea is to traverse the tree describing the input element:

• When we reach the variable with a bigger index (the one that appears higher
in the tree) we use the constraint for the variable and go down to sequences
of the second variable and apply the constraint. This part is easy, it is similar
to the function apply with the difference that the interval is chosen when we
analyse the first variable.

• When we have reached sequence for variable with a smaller index (the one
that appears deeper in the tree) we take constraints for the variable and prop-
agate it upper to the sequences of the first variable. This part is much more
difficult. We have to propagate constraints up the tree and this may highly
increase the size of the result (as in Fig. 4.18).

4.7.2 Assignment
First we focus on simple cases of the assign function. The simplest case is when
the assignment expression is a numeric constant, i.e. assign(vi, a, 𭒮) = 𭒮′, where
𭒮 ∈ 𝕊n and a ∈ 𝕀. It is implemented as follows:

assign(vi, a, 𭒮) = test(vi = a, 𝘵𝘵, 𭒮).

The next case is a simple shift vi ← vi + a for a ∈ 𝕀 and vi ∈ 𝘝𝘢𝘳. This can be
implemented with apply as follows:

assign(vi, vi + a, 𭒮) = applyn,i(inci(a), 𭒮),

where the function inci ∶ 𝕀 → 𝕊i → 𝕊i is defined as:

inci(a)(((p1, s1), … , (pk, sk))) = ((p1 + a, s1), … , (pk + a, sk)) ,

where for simplicity we assume that −∞ + a = −∞.
The case of assignment vi ← vi ∗ a for a ∈ 𝕀 and vi ∈ 𝘝𝘢𝘳 depends on the value

of the numeric constant a. There are three possibilities:

• The case when a = 0 is already covered by the numeric constant assignment.
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• The case when a > 0 is implemented using the function apply as follows:

assign(vi, vi ∗ a, 𭒮) = applyn,i(muli(a), 𭒮),

where the function muli ∶ 𝕀 → 𝕊i → 𝕊i is defined as:

muli(a)(((p1, s1), … , (pk, sk))) = ((p1 ∗ a, s1), … , (pk ∗ a, sk)) ,

where for simplicity we assume that −∞ ∗ a = −∞.

• The case when a < 0 is a little bit more difficult, since additionally we
have to reverse every sequence for the variable vi. Let 𭒮 ∈ 𝕊n such that 𭒮 =
((p1, s1), … (pk, sk)) for some k > 0 be the input argument of the assignment.
We define a function inv ∶ ℙ → ℙ as:

inv(p) =
{

(a, ⊕) if p = (−a, ⊖)
(a, ⊖) if p = (−a, ⊕).

Next, we compute the unnormalised reversed version of 𭒮 — the sequence
ℛ′, as follows:

ℛ′ =
⎧⎪
⎨
⎪⎩

((−∞, sk), (inv(pk), sk−1), … ,
(inv(p2), s1), (inv(p1), ϵ)) if p1 ≠ −∞

((−∞, sk), (inv(pk), sk−1), … , (inv(p2), s1)) otherwise.

Finally, the assignment is implemented using the function apply as follows:

assign(vi, vi ∗ a, 𭒮) = applyn,i(muli(−a)), ℛ),

where ℛ is the sequence ℛ′ after normalisation.

More complex assignments that use different variables such as assign(vi, vj, 𭒮) or
assign(vi, vi + vj, 𭒮) can be computed using the generic implementation.

4.8 Conclusions
In this chapter we have introduced a sweeping line technique to the abstract inter-
pretation. We have used it to create a representation for the domain of boxes, which
is a disjunctive refinement of the domain of intervals. Our construction generalises
the construction of the domain that uses LDDs. We have introduced a generic con-
struction of a widening operator for the domain that uses threshold points. We have
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presented two widening operators: the first one with a condition in the construc-
tion and the second one that has a single-step precision property depending on
the threshold points. We have shown examples, where the new widening opera-
tor is more precise than the one based on LDDs. Also, we have described generic
construction for transfer functions for the presented construction and proposed
a number of optimisations.
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Chapter 5

Developing Formal Techniques for
Typical Code

5.1 Introduction
In this chapter, we present an approach to develop formal techniques, which may
be useful in typical, commercial code. This approach relies on existing tools that
check if the code realises given specifications, like ESC/Java2 [23] or JmlRAC [24],
but it broadens their applicability by automatic generation of specifications based
on the existing code. Specifications can be split into two groups:

• Those describing contracts [81] — these are high level specifications that
are used to specify behaviour of classes or methods. Program verification
usually checks if the code meets these contracts.

• Assisting specifications, which are low level specifications that describe as-
sertions, loop invariants or variant functions. These specifications are used
to assist verification of the program code. Assistance is especially desirable
in case of loops verification.

If the code is mature and its functionality was well tested using common testing
techniques, generated specifications may still be helpful when someone wants to
turn the code into a library. The specifications may also act as documentation for
maintenance. What is more, specifications describe different aspects of the code
than unit tests. If the code is immature, automatic generation of specifications de-
scribing correctness properties of the program (such as loop termination, absence
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of NullPointerExceptions or ArrayIndexOutOfBoundsExceptions, etc.) combined
with static checking can give feedback on what errors are present in the code. With
these scenarios in mind we have developed a tool, which helps to build annotations
generators and reveals code fragments that are not obvious and should be reviewed
by a human. In addition, we have conducted an experiment, which shows that our
approach, using even very basic techniques, can give promising results on real,
large-scale code.

Applicability of formal methods has been widely discussed [18, 65, 92], but the
considerations are mostly limited to safety-critical systems. According to Heit-
meyer [65], tools associated with formal methods are not user-friendly, therefore
their usage is difficult. Also the effort needed to employ formal methods to real
computer programs seems too costly compared to the benefits it may provide.
There are many myths concerning the use of formal methods [17, 62] and most
of them can be easily dispelled. Craigen et al. [44] and Woodcock et al. [92] pro-
vide various examples of applications of formal methods. Recent publications [61]
expose benefits of employing formal methods, but there is still a lot of room for im-
provement. Also, automatic generation of annotations has already been explored
and several generators were presented, e.g. CANAPA [25] for JML, Houdini [51]
for ESC/Java or Daikon [49] for various programming languages.

5.2 Static Analysis Tools for Java Language
There is a wide variety of tools for Java language that perform static analysis of
program code, however the popular ones (and widely accessible) do not employ
formal methods. These tools focus on the first three subjects listed in Section 1.2.2,
that is checking code conventions, detecting bad programming practices, and cal-
culation of various software metrics. Some of the popular open-source tools for
static analysis of Java are1:

Eclipse Metrics plugin [91] helps to find unnecessarily complex places in the
code. The plugin measures various metrics and performs a dependency anal-
ysis of types and packages, which enables to detect cycles. The calculated
metrics include simple ones like number of classes, number of children (i.e.
the number of direct subclasses of a class), number of interfaces, depth of
inheritance tree (DIT), number of overridden methods (NORM), number of
methods (NOM), number of fields, lines of code (TLOC, KLOC, MLOC)
like specialisation index, or more complex ones like McCabe cyclomatic

1A broader list of tools can be found here: http://java-source.net/open-source/

code-analyzers
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complexity, weighted methods per class (WMC), lack of cohesion methods
(LCOM*), afferent coupling, efferent coupling, instability, abstractness.

Semmle is a more powerful, commercial code analyser that comes with its own
Query Language [85]. It allows to create and run checks to enforce specific
architecture rules and coding standards.

FindBugs [7, 66, 67] detects code instances — so called bug patterns, that are
likely to be errors. It uses a number of ad-hoc techniques, which are cali-
brated to be precise and efficient. These techniques search for syntactic code
patterns as well as perform simple intraprocedural dataflow analysis.

JLint [5, 6] is similar to FindBugs, performs simple syntactic checks and inter-
procedural dataflow analysis. It searches for synchronization problems by
doing data flow analysis and building the lock graph.

PMD [27] is similar to FindBugs or JLint but the checks are limited to syntactic
checks. The main difference is that PMD looks for some stylistic conventions
that might be suspicious in specific situations.

The CodeStatistics tool that is presented here is designed to find any user defined
patterns and is able to insert annotations into the code (preliminary version of the
tool was developed with technical help of Jędrzej Fulara [54]). In [3], statistics
collected on Java libraries are used as a motivation to focus on particular aspect
of the code in termination analysis. In this approach statistics are used to estimate
coverage of a given formal method.

5.3 Towards Practical Formal Methods
This chapter is an attempt to answer the question what does it mean to create
specification-based formal methods suitable for typical large-scale business appli-
cations, where code correctness is not considered to be critical but it also may be
applied for such software. A formal method designed for the real market cannot in-
crease development costs too much. If one could show that a formal method gives
acceptable results on various, existing projects, then the code producers might ex-
pect that this method would be applicable also to their software. Thus, to rate the
created formal method, a large set of typical projects should be used. In this sec-
tion, a methodology is sketched that can be used to review usability of a formal
method in practice.
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5.3.1 The Pareto Principle
The Pareto principle is also known as ”80:20” rule, the law of the vital few or
the principle of the factor sparsity. It states that roughly 80% of the effects come
from 20% of causes. The original idea is attributed to Vilfredo Pareto, an Italian
economist and sociologist. In the early 1900’s he noticed the unequal distribution
of wealth, which he observed and measured in his country. The observation was
that in the late 1800’s roughly 80% of the land in Italy was owned by 20% of the
population. Later, in 1940’s, J. M. Juran suggested that a small number of causes
determine most of the results in any situation [56]. In fact, J. M. Juran is responsible
for attributing the law of the vital few to Pareto [70] and thus creating the Pareto
principle as we know today. It turned out that principle can be applied to variety
of areas, especially economics. We have to note that the Pareto principle is just
a concept that solid majority of effects tend to come from a minority of causes
and the 80:20 ratio is just a rough estimation, thus not always exact. It may as well
be 75:25 or 85:15. Applications of the Pareto principle may be also found in the
computer software business:

• Microsoft noted that 20% of most reported bugs are respoinsible for 80% of
the errors and crashes2.

• Various studies over the years have shown that 60% to 90% of the defects
arise from about 20% of the modules [15]. Also Fenton and Ohlsson bring
up lots of examples [50], in which the ratio varies considerably, e.g. 12%
of modules responsible for 75% of errors, or 38% responsible for 80% of
faults.

An important conclusion that comes from the Pareto principle is that most of the
code in real projects is simple and does not require much time for understanding
or analysis.

5.3.2 Proposed Methodology
To successfully convince managers to use formal methods, one should show them
that a chosen formal method covers most of existing code automatically, without
any intervention of programmers. Creating practical tools that automatically cover
100% of existing code is impossible [72]. A viable solution is to consider devel-
opment of verification tools that cover automatically the most common situations

2Rooney, Paula (October 3, 2002), Microsoft’s CEO: 80–20 Rule Applies To Bugs,
Not Just Features, ChannelWeb http://www.crn.com/news/security/18821726/

microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
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appearing in real software. These places are usually obvious and not interesting,
evidently not sufficiently hard to be handled by expensive programmers. Big parts
of systems can even be generated automatically from requirements or specifica-
tions [64] and one does not want to waste time on them. All these common situa-
tions create a ’bureaucratic burden’, very problematic to deal with by the business.
A code reviewer should focus on pieces of code, which are by nature complicated
or written improperly. These parts may contain programming tricks, hacks or re-
quire analysis, or understanding bigger context of the created program. They need
to be covered manually.

It is assumed here that solving automatically 80% of cases (for example, proving
termination property of 80% of loops in the code) would be acceptable in practical
projects. Of course, the 80% threshold is arbitrary and one can choose a different
value, but it has to be remembered that solving the remaining 20% may be very
difficult and, in some cases, even impossible. Since Pareto principle is well known
in business world, it may be accepted by business managers. They can expect that
automatic analysis of the vast majority of source code should be performed eas-
ily, cheap and fast. To successfully convince managers to use formal methods, one
should show them that a chosen formal method covers most of existing code au-
tomatically, without any intervention of programmers.

Modern programming languages offer developers big flexibility in creating the
code. This may lead to some inconsistencies in the code that can result in errors,
which are hard to find. Using tests one can check, if the code meets functional
requirements, but to find programming errors (such as null pointer dereferences,
not terminating loops, etc.) that occur in rare, but sometimes critical situations,
one should employ other techniques. This is especially important when the code
changes its original context of use, what often happens in case it is turned to a li-
brary or is a subject to maintenance tasks. Generating logical conditions assur-
ing absence of such inconsistencies may be the first step in introducing formal
methods in real, large-scale code. Such conditions can be safely generated auto-
matically. However, specifications that describe program semantics (for example,
method pre- or postconditions) might be generated only for mature and well tested
code. When they would be generated from incorrect code, they could be even mis-
leading.

Building simple verification methods should be done iteratively. This process
involves following steps:

1. Select code constructions one wants to handle — e.g. for loops.

2. Execute created method on the selected set of projects.

3. Find cases that are not handled yet.
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4. From these cases pick up one, for which one is able to provide generic so-
lution.

5. Mark as solved cases covered by the solution.

6. Generate statistics and calculate effectiveness.

7. If the effectiveness does not meet the selected threshold, go to step 2.

To apply this strategy in practice, one has to identify interesting constructions and
their frequencies in the real code. Collecting frequencies should be done auto-
matically, based on a big, representative sample of software. In our work we have
developed a flexible tool to compute necessary statistics on the code and estimate
how effective given annotation generation (and verification) method is.

For example, let us consider classification of Java for loops in the context of
generating termination conditions. First step is to identify all interesting code con-
structions – that is all for loops that appear in the code. Next, we need to take a look
at all loops and try to find patterns, for which we could easily generate the termi-
nation condition. The simplest pattern is a for loop, which increments a counter
up to some constant and the counter is updated only in the update expression of the
loop, presented in Fig. 5.1. Creating termination condition for this case is trivial.

//@ decreases 15 - i;
for (int i = 0; i < 15; i++) {

// Loop body that does not modify i
}

Figure 5.1: Simple for loop with decreases formula.

The next step is to generate statistics — how many loops matching this pattern
are present in the code, and discover what part of all interesting for loops is cov-
ered by this case. After this, we know for how many loops we can generate termi-
nation condition. If this coverage does not meet the selected threshold, we should
do another iteration — look at the for loops that are not yet covered, and produce
new patterns.

Each iteration of the presented methodology can take advantage of a different
strategy and technique as far as the goal — achieving desired threshold, is accom-
plished. The main advantage of the presented procedure is a possibility to use
different verification techniques, each applied where it performs best.

A formal method created using this approach may give satisfactory results on
a large set of typical projects. Such result should convince managers and develop-
ers that such solution can be successfully applied in their work.
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In this study, it is shown that it is possible to achieve, using simple methods, the
expected by the market approximate 80% coverage for a practical problem. The
above methodology is applied here to generate annotations for for loops termina-
tion in Java programs. The results are described in Section 5.5.

5.4 The CodeStatistics Tool
To make the above-described approach applicable in practice, a tool that helps to
rate the effectiveness of a verification method for a programming language is nec-
essary. For this, CodeStatistics3 was developed. This tool is designed for Java pro-
gramming language. It can recognise patterns specified by the user, count their fre-
quencies in given Java projects and output all matching code fragments — together
with their locations in the project. Together with the methodology proposed in Sec-
tion 5.3.2, the CodeStatistics tool can be used to measure effectiveness of designed
formal methods.

5.4.1 Abstract Syntax Tree
Abstract Syntax Tree (AST) is a tree representation of the structure of the source
code written in a specific programming language [1], which in our case is Java.
Each node in the tree denotes a construct that occurs in the source code. An ex-
ample of AST representation for a small code fragment is presented in Fig. 5.2.
In CodeStatistics AST is generated for each analysed source file. The structure of
generated tree has some changes and enhancements compared to the regular Java
AST. Nodes that occur in our tree may contain pieces of information available at
compile time, for example:

• type and scope of variables,

• values that are evaluated at compile time — e.g. access to static final integer
fields is translated to the actual value,

• access to the full hierarchy of types, including all superclasses and inter-
faces.

The information is included in the AST since it may be later required to find code
patterns in the tree.

Patterns that CodeStatistics finds can be expressed as structural conditions for
the AST. The tool is generic. The patterns are not hardcoded, but supplied by the

3Available at the companion disk and http://www.mimuw.edu.pl/~kjk/phd
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while (x > y) {
a = a + 1;

}

(a) Source code of a simple while loop

while

>

x y

Block

=

a +

a 1

(b) Abstract Syntax Tree

<While>
<Cond> ... </Cond>
<Block>
<Assignment>
<Left>
<Var name=”a”/>

</Left>
<Right> ... </Right>

</Assignment>
</Block>

</While>

(c) XML representation

Figure 5.2: Sample AST representation (b) of a simple while loop (a) and corre-
sponding XML representation (c).

user as a part of the system configuration. They should be written in a simple and
expressive language. The CodeStatistics tool adapts XML as an AST text repre-
sentation format and XPath as the language to express patterns. The adaptation is
described in Section 5.4.4.

5.4.2 Extensible Markup Language
The Extensible Markup Language (XML) is a general-purpose specification for
creating custom markup languages recommended by the World Wide Web Con-
sortium (W3C)4. It was designed to transport and store data. The XML format is
defined, so that it is both human-readable and machine-readable. An example of
an XML file is presented in Fig. 5.3.

<?xml version=”1.0” encoding=”UTF-8”?>
<address>
<name>
<title>Mr.</title>
<first-name>Krzysztof</first-name>
<last-name>Jakubczyk</last-name>

</name>
<city voivodeship=”Masovian”>Warsaw</city>
</empty-tag>

</address>

Figure 5.3: An example of an XML file that stores simple personal information.

4Full specification is available at http://www.w3.org/TR/REC-xml/
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An XML document is a textual document. It begins with an XML declaration
that contains some information about the document itself like version of the XML
format (according to W3C specification) and character encoding of the content
(first line in Fig. 5.3). The rest of the document consists of a mixture of tags and
textual content. Tags are fragments that begin with < and end with >. There are
three possible versions of tags:

• starting tag, for example <address>,

• finishing tag, for example </address>,

• empty element tag, for example <empty-tag/>.

An element of the document is a fragment that begins with a starting tag and ends
with a matching finishing tag (for example, <title>Mr.</title>), or an empty
element tag. Elements may contain other elements mixed with textual content.
These XML elements inside an XML file form a tree structure, e.g. root name
element from Fig. 5.3 has three child elements: title, first-name and last-name.

Elements may contain a series number of name/value pair elements called at-
tributes. For example, the element city in Fig. 5.3 has an attribute voivodeship

with value Masovian.

5.4.3 XPath
XPath is a language for selecting nodes in XML documents recommended by
W3C. It is based on a tree structure of the XML document. Here we use XPath ver-
sion 2.05. There are seven kinds of nodes that correspond to different constructs in
the syntax of XML. Here we use only four kinds, which are: elements, attributes,
text nodes, and document nodes. XPath uses path expressions to navigate in the
XML documents. It provides a wide range of functions and operators designed for
maximal expressiveness. Here we describe just a fragment of the path syntax of
XPath that we have used in our experiment, though CodeStatistics makes available
a full implementation of XPath 2.0.

Path Expression

A path expression is evaluated with respect to a context node and consists of a se-
quence of steps separated by the / operator. It is a binary operator that applies
the expression on the right-hand side to every item selected by the expression on
the left-hand side. For example, an expression address/name selects all elements
named name that are children of an element named address of the context node.

5Full specification is available at http://www.w3.org/TR/xpath20/
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Location Step

Basic step in the path expression of XPath 1.0 is a location step. XPath 2.0 is
more generic. For example, functions may be used as a right-hand side operand of
the operator /. The location step consists of an axis, node test, and zero or more
predicates:

axis :: node-test [predicate]*.
The axis part indicates navigation direction from the context node within the tree
representation of the XML document. Here are some of the possible axes that are
available in XPath syntax:

• ancestor axis holds ancestor nodes of the context node,

• attribute axis holds the attributes of the context node, @abc is a shorthand
for attribute::abc,

• child axis holds child nodes of the context node, xyz is a shorthand for
child::xyz,

• descendant axis holds all descendant nodes of the context node,

• descendant-or-self axis holds the context node and all descendant nodes
of the context node, // is a shorthand for /descendant-or-self::node()/,

• parent axis holds the parent of the context node.

Node test may consist of specific node names or more general expressions. Some
of the possible node tests are:

• the * wildcard character that matches any element or attribute,

• a name that matches a node with the name, for example child:xyz matches
all children of the context node that have name xyz,

• node() that matches any type of node,

• text() that matches a text node.

The last part of the location step is a predicate. It is used to restrict a node-set to
those nodes that match the predicate condition. All predicates must be satisfied for
a match to occur. Paths that appear in a predicate condition begin at the context of
the current step and do not modify the context. When a value of the predicate is
numeric it is interpreted as a test on the position of the node, e.g. xyz[1] selects the
first xyz child element while xyz[last()] selects the last one. Otherwise, when
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value is not numeric, it is automatically converted to a boolean. Predicate condition
value may evaluate to a node-set. In such case conversion to a boolean returns true
when the node-set is not empty. Therefore, path expression xyz[@abc] returns
elements xyz that have an attribute abc. Predicate expressions may use a variety
of operators and functions.

Example

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<bibliography>
<article>
<title lang=”en”>Systematic Design of Program Analysis

Frameworks</title>
<author>Patrick Cousot</author>
<author>Radhia Cousot</author>
<year>1979</year>

</article>
<article>
<title lang=”en”>Automatic Discovery of Linear Restraints

among Variables of a Program</title>
<author>Patrick Cousot</author>
<author>Nicolas Halbwachs</author>
<year>1978</year>

</article>
<article>
<title lang=”en”>Relational Abstract Domain of Weighted

Hexagons</title>
<title lang=”pl”>Abstrakcyjna Dziedzina Numeryczna Wazonych

Szesciokatow</title>
<author>Jedrzej Fulara</author>
<author>Konrad Durnoga</author>
<author>Krzysztof Jakubczyk</author>
<author>Aleksy Schubert</author>
<year>2010</year>

</article>
<article>
<title>The Octagon Abstract Domain</title>
<author>Antoine Mine</author>
<year>2006</year>

</article>
</bibliography>

Figure 5.4: Sample XML with a fragment of bibliography of this thesis.

An example of XML file that contains a small fragment of bibliography for this
thesis is presented in Fig. 5.4. The file carries some information about four se-
lected articles. The information includes the article title stored in textual content
of the title element. There may be various language versions, where language
of the title is determined by the value of the lang attribute of the title element.
The article element also brings author information. Article may have many au-
thors, therefore there may be multiple author elements. The last information that
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is provided by the XML file for an article is the year of publication — the year

element.

Expression Refers to
//article all articles
//author all authors
//article[title/@lang = ”pl”] all articles that have Polish title
//article[title/@lang = ”pl”]/author authors of articles with Polish title
//article[year/text() < 1980] articles written before 1980
//article[author[2]] articles that have at least two authors
//article[year/text() > 1980][author[2]] articles written after 1980 with at

least two authors

Table 5.1: A few examples of XPath queries with their semantics.

Some examples of XPath queries executed for the root bibliography element
for the XML file in Fig. 5.4 are presented in Table 5.1.

5.4.4 Application of XML and XPath
In CodeStatistics the source code of a program is parsed and transformed to an
abstract syntax tree. Then the tree is transformed to an XML format. This way,
we obtain a different textual format of the source code than the original one. The
new format has some additional information that comes from the compile-time
analysis of the code. Additionally, we generate a mapping between XML elements
and source code fragments, so that we can point exactly the place in the source file
that is represented by an XML element. Next, we apply some XPath queries to the
generated XML file. These queries are used to find structural patterns in the XML
file. These patterns correspond to structural and syntactic patterns that appear in
the source code.

An XPath query that finds all elements representing while loops that assign
something to a variable a is as follows:

//While[Block//Assignment/Left/Var/attribute::name=”a”].
An example of such loop may be found in Fig. 5.2. The example query searches
for all While elements that have Block child with Assignment descendant, not
necessarily a child. We want the left side of the assignment to be the variable a,
therefore Assignment element must have child element Left with child Var that
has name attribute value equal to ”a”. When we have found XML elements repre-
senting while loops we may apply our mapping to receive actual code snippets.
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5.4.5 CodeStatistics in Eclipse
CodeStatistics works as Eclipse plugin. It provides two operations, which can be
executed through the Eclipse tool bar — see Fig. 5.5. The first option Print as XML
can be executed on a Java source file. It generates an XML representation of the
AST, which is used by CodeStatistics. The output is printed to the Eclipse console.
This option is used to make writing XPath expressions easier for the user. One can
generate the XML output for a few sample files, and then, knowing what the XML
structure is, he can write proper XPath expressions easier.

Figure 5.5: CodeStatistics plugin options available in Eclipse tool bar.

The second operation provided by CodeStatistics that is available in the Eclipse
tool bar is Run Code Statistics. This option can be executed on a single Java file or
on a group of files. The operation executes the CodeStatistics on every file in the
group as described in Section 5.4.4. It executes XPath expressions on every XML
file generated and gathers statistical information about elements matched.

Configuration Options

Configuration options of the CodeStatistics Eclipse plugin are available through
the Eclipse Preferences in Window menu. The CodeStatistics plugin options page
is presented in Fig. 5.6. The entry consists of three options:

• Log file — selection of the output log file. This is the file, to which the output
of the Run Code Statistics operation is written.
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• Input XPath expressions file — which points to an input configuration file
that contains the definitions of XPath expressions. This file contains pat-
terns, which CodeStatistics will search for in Java source files.

• Log Level — this selection gives user a possibility to choose the logging
level. With FULL logging level setting CodeStatistics outputs exact code
fragments that user was eager to find, it includes code snippets correspond-
ing to XML elements found by XPath queries. With COUNT_FOR_FILE
logging level CodeStatistics outputs counts of elements found by every XPath
query. These counts are computed on the per file basis. With TOTAL_COUNT
setting CodeStatistics outputs total counts of elements found by every XPath
query. For every XPath query it is a sum of matches that were found in all
files.

Figure 5.6: Configuration options of the CodeStatistics plugin.

XPath Expression Configuration File Format

The user specifies a path to the XPath expression configuration file in CodeStatis-
tics submenu available from Preferences in Window menu. These user defined
XPath patterns are stored in an XML format file. The file contains the following
elements:

• A root element descriptions.
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<?xml version=”1.0” encoding=”ISO-8859-1”?>
<descriptions>

<all name=”AllForLoops” xpath=”//ForStatement” />
<description name=”ForWithReturn”

xpath=”//ForStatement[Block//Return]” />
</descriptions>

Figure 5.7: Sample configuration file.

• One subelement all with two attributes: name and xpath. This XPath query
should describe all interesting code constructions, for example all for loops.

• One or more description subelements with two attributes: name and xpath.
Each of the elements represents a single pattern that is used to cover a subset
of interesting constructs.

A very simple configuration file is presented in Fig. 5.7.

5.4.6 Implementation Details
CodeStatistics is written in the Java language, it uses the following technologies:

Eclipse IDE plugin framework6 CodeStatistics works as Eclipse plugin. It in-
tegrates with the editor: a new option is added to the toolbar and a new
preferences page is available in the preferences window. CodeStatistics is
executed on Eclipse project files.

Eclipse Java development tools (JDT)7 The library provides a Java compiler and
a very rich Java abstract syntax tree implementation. With the help of the
JDT we have take advantage of some compile-time data that is available
during the traversal of the AST. For example, we have access to the class
structure or evaluation of compile-time constants.

Java XML DOM API8 The standard Java library includes support for the cre-
ation of documents in the XML format. We use the included XML DOM
API to create output XML document from the AST representation.

6For details see: http://www.eclipse.org/articles/Article-Plug-in-architecture/

plugin_architecture.html
7For details see: http://www.eclipse.org/jdt/overview.php
8For details see: http://www.genedavis.com/library/xml/java_dom_xml_creation.jsp
9For details see: http://saxon.sourceforge.net/
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Saxon XSLT processor9 This is an open source library, which provides a com-
plete implementation of XSLT 2.0, XQuery 1.0 and XPath 2.0 recommen-
dations. CodeStatistics uses the library to evaluate XPath expressions on
generated XML documents.

5.4.7 Usage Example
Here a small example of how CodeStatistics can be used is provided. First, we
create a new Java project examples with only one simple Java source file. The
listing of the file is presented in Fig. 5.8. This is a very simple Java class with
only one parametrised method that contains a loop, which just prints the iteration
number to the standard output.

public class Example {
public void method(int x) {

for(int i=0; i<(x+15)*2; i++){
System.out.println(i);

}
}

}

Figure 5.8: Listing of an Example Java class.

We would like to search how many expressions are, in fact, multiplications. We
create a configuration file, which is presented in Fig. 5.9. Our interesting code
constructions are all InfixExpression nodes. Since we would like to search for all
multiplication expressions we search for such InfixExpression nodes that have *
as an operator.

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<descriptions>
<all name=”Expressions” xpath=’//InfixExpression’ />
<description name=”multiplication”

xpath=’//InfixExpression[attribute::operator=”*”]’ />
</descriptions>

Figure 5.9: Example of an XPath configuration of the CodeStatistics.

Now we execute CodeStatistics with FULL logging settings on the file. The out-
put of the execution is presented in Fig. 5.10. The format of the output file is as
follows:

• Every XPath expression has a group of matches in the output file. These
groups are separated by a line with a series of “&” characters. Every group
in the file starts with the name of the XPath expression (as specified in the
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&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
TYPE: ALL: Expressions

=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|
FILE : /examples/src/Example.java
[4]
(x + 15) * 2
--------------------------------------------
[4]
x + 15
--------------------------------------------
[4]
i < (x + 15) * 2
--------------------------------------------

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
TYPE: notCategorized

=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|
FILE : /examples/src/Example.java
[4]
x + 15
--------------------------------------------
[4]
i < (x + 15) * 2
--------------------------------------------

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
TYPE: multiplication

=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|
FILE : /examples/src/Example.java
[4]
(x + 15) * 2
--------------------------------------------

Figure 5.10: Output of CodeStatistics.

configuration file) with the “TYPE:” prefix. A special group, which contains
all interesting matches, is prefixed with “TYPE: ALL:”. Every group name
is followed by findings of the XPath expression in subsequent files.

• Findings of the XPath expression in a single file start with a line with a series
of “#” characters, which is followed by the name of the file with a path to
the file within the Eclipse project. Findings in a single file are separated by
a line with a series of “-” characters.

• Every finding of the XPath expression instance starts with a line number
placed in square brackets, e.g. “[4]”. The line number is followed by a code
snippet, which contains the found code fragment.

We can see that CodeStatistics found exactly three binary expression items, which
are listed in section “TYPE: ALL: Expressions”. One of them is an expression
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of type “multiplication”, which is what we were looking for. The rest are two
not categorised expressions that are built with operators “<” and “+”.

5.5 Experiment: Loop Termination

5.5.1 Introduction
In this section, an experiment with loop termination conditions generations is pre-
sented. It is an application of the methodology proposed in Section 5.3.2, addi-
tionally with the CodeStatistics tool. In the experiment, a generator of termination
conditions of for loops in Java programs is developed. First, structural properties
of real, production code are analysed. Then, for loops are categorised in analysed
projects. A subset of loops is chosen, where termination is controlled by a numeric
variable and the loop condition contains a numeric variable. The set of test projects
is an arbitrary choice of open source Java projects that are popular and widely used
in commercial applications. These projects come from various sources like Apache
Software Foundation software repository, SourceForge repository, or more com-
mercial ones. The following open source applications are used:

Apache Hadoop10 is a software platform that lets one easily write and run ap-
plications that process vast amounts of data. It allows for the distributed
processing of large data sets across clusters of computers using a simple
programming framework — MapReduce [46]. It is designed to scale up from
single servers to thousands of machines each offering local computation and
storage. It does not rely on hardware to deliver high-availability. Instead, it is
designed to detect and handle failures at the application layer, so delivering
a highly-available service on top of a cluster of computers, each of which
may be prone to failures. It is used by large companies such as Adobe, AOL,
EBay, Facebook, IBM, or Twitter.

Google App Engine11 lets to run web applications on Google’s infrastructure.
App Engine applications are easy to build, easy to maintain, easy to scale
as the traffic and data storage needs grow. With App Engine, there are no
servers to maintain: one just uploads an application, and it is ready to serve
users. Unfortunately, full source code for Google App Engine Java project is
publicly unavailable. However, a quite large portion is present in the official
distribution, package org.datanucleus that is responsible for accessing the
data.

10For details see http://hadoop.apache.org/
11For details see http://code.google.com/appengine/
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JEdit12 is a cross platform programmer’s text editor that is customisable with
plugins and macros. There are hundreds of them available. JEdit provides
syntax highlighting for more than 200 programming languages and supports
the most important character encodings.

Hibernate13 is a powerful, high performance object/relational persistence and
query service. Hibernate lets to develop persistent classes following object-
oriented idiom — including polymorphism, association, inheritance, com-
position, and collections. Hibernate makes it possible to express queries in
its own portable SQL extension (HQL), as well as in native SQL, or with an
object-oriented Criteria and Example API. It is used by companies, such as
AT Labs, Cisco, PriceWaterhouseCoopers, Sony.

Oracle Berkeley DB14 is an open source, fast, embeddable database that elimi-
nates the overhead of SQL. It stores arbitrary key/value pairs as byte arrays.
Berkeley DB can handle multiple threads or concurrent processes access-
ing the database. It is used by companies, such as Amazon, LinkedIn, AOL,
Motorola, or Symantec.

Tomcat15 is a servlet container developed by the Apache Software Foundation.
It implements the Java Servlet and Java Server Pages specifications, and it
provides a Web server for Java code to run. It is used by companies, like
WalMart or General Motors.

Some details of these projects are presented in Table 5.2. Note that the statistics of
occurrences of interesting for loops varies between projects — e.g. Hibernate is
almost four times bigger than JEdit but the number of for loops is a little smaller.

Our goal is to automatically prove termination property of a vast majority (about
80%) of for loops in the code. The task is performed by generating decreases
formula, and then using ESC/Java2 to verify them. The only assumption is that
every instruction used in the loop body finishes in finite time, therefore a loop,
for which we have generated the decreases formula, terminates if all instructions
in the loop terminate. The ideas used in this research are very basic. The main
advantage of the presented approach is that the effectiveness of such methods is
shown on practical, large-scale applications.

12For details see http://www.jedit.org/
13For details see http://www.hibernate.org/
14For details see http://www.oracle.com/technology/products/berkeley-db/index.html
15For details see http://tomcat.apache.org/
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Project Name Version Size in
KLoC

No. of
for’s

for’s per
1000 lines

Oracle Berkeley DB 5.0.34 253 1799 7,11
Google App Engine 1.6.4.1 163 967 5,93
Apache Hadoop 1.0.1 292 1898 6,50
Hibernate 4.1.2 405 855 2,11
JEdit 4.5.1 111 894 8,05
Tomcat 7.0.27 216 1510 6,99
Total 1440 7923 5,50

Table 5.2: Details of analysed projects (sizes are given in Kilo Lines of Code, only
interesting for loops are considered).

5.5.2 Patterns and Rules
In the current experiment for loops are the subject of interest. We would like
to find usage patterns of such loops, and possibly for each such pattern generate
proper decreases formula that could be used to prove termination of the loop. The
syntax of for loop in Java is similar to the one in C or C++ and is as follows:

for (initialisation; termination; increment) {
S

}

where initialisation is an expression that initialises the loop and it is executed
once, just before the whole loop begins. The termination expression is evaluated
after every loop iteration, when it evaluates to false the loop is terminated. The
increment expression is also invoked after each iteration. Usually, it increases or
decreases some value.

A control variable is a numeric variable that controls the number of loop iter-
ations. It is used in the termination expression to verify the loop end. A typical
scenario is when the variable is initialised in the initialisation expression and in-
cremented or decremented in the increment expression. Usually, the variable is
not changed in the loop body, however during the experiment it turned out that
sometimes it happens.

First, one has to define an XPath pattern that describes all the interesting code
constructions, which are for loops that contain a numeric variable in the termina-
tion condition. The basic version of the configuration file for CodeStatistics is as
follows:

<descriptions>
<all name=”For” xpath=”//ForStatement[Condition//Name[@numeric]]” />

</descriptions>
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The element ForStatement represents for loop and the Condition child element
stores the termination condition of the loop. The Name descendant represents a vari-
able that appears in the condition. The type of the variable is limited to numeric
types only, which is represented by the existence of the numeric attribute.

Patterns that are used to find subsequent code patterns, for which we are able to
create a proper decreases condition, are presented in what follows.

Literal
Let us start with the simplest category of for loops. It is a loop, where the ter-
mination condition is a simple comparison of the control variable with a numeric
literal. For loops that match this pattern, we can automatically generate the ap-
propriate JML decreases formula. An example of such loop together with a valid
decreases formula is presented in Fig. 5.11. With CodeStatistics one can easily
find such loops.

//@ decreases 256 - i;
for (int i=1; i <= 256; i++) {

cftab[i]=m_unzftab[i - 1];
}

Figure 5.11: Example of for loop to a literal taken from JEdit project (from file
installer.CBZip2InputStream.java).

1 //ForStatement
2 [starts-with(Condition/InfixExpression/@operator, ”<”)]
3 [Condition/InfixExpression/Expr[1]/Name/@scope = ”local”]
4 [Condition/InfixExpression/Expr[1]/Name/@name =
5 Updaters/ChangeVal/LeftOfAssignment/Name/@name]
6 [Updaters/ChangeVal[@kind = ”inc”]
7 [RightOfAssignment[number(Constant/@value) >= 1 or not(node())]]]
8 [Condition/InfixExpression/Expr[2]/Constant/@node = ”NumberLiteral”]
9 [not(Block//ChangeVal/LeftOfAssignment/Name/@name =
10 Condition/InfixExpression/Expr[1]/Name/@name)]

Figure 5.12: XPath expression used to find for loops to a literal.

A proper XPath expression that is used to find for loops that increase the control
variable is presented in Fig. 5.12. The XPath may seem complicated but, in fact,
it is a conjunction of a series of simple conditions:

line 1 : the search is limited to ForStatement elements, which represent for loops;
line 2 : makes sure the termination condition (element Condition) is a binary ex-

pression (element InfixExpression), where the operator is either < or <=;
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line 3 : the control variable appears on the left of the condition expression (note
that indexing in XPath starts from 1), it must have a local scope — it is either
a parameter or a local variable;

lines 4-5 : ensure that the update expression (element Updaters) is a value change
expression (elements ChangeVal represent assignments and prefix or postfix
–, ++ expressions);

lines 6-7 : the update expression has to increase the value of the control vari-
able — the attribute kind of ChangeVal element has the value inc only for
+= assignment expressions and ++ prefix/postfix expressions; analogically
for -= and -- the attribute has value dec; here two cases are accepted:

• when the operator is ++, then the right hand side of the expression
is empty, the corresponding XPath expression fragment is RightOfAs-
signment[not(node())],

• when the operator is +=<constant>, where the <constant> is a nu-
meric constant with a value greater or equal to 1, then the correspond-
ing XPath expression fragment is RightOfAssignment[number(Con-
stant/@value) >= 1]);

line 8 : the right hand side of the condition must be a numeric literal;

lines 9-10 : ensure that the control variable is not modified in the loop body, it
means that it does not appear on the left hand side of any assignment ex-
pression in the body of the loop — and this is expressed by a formula that
makes sure there is no ChangeVal descendant of Block element, which has
the control variable on the left hand side.

Note that the XPath expression presented in Fig. 5.12 handles only loops, where
the value of the control variable is increased and the condition is written in the
way, where the variable is on the left hand side of the comparison operator, e.g.
x < 2. In order not to unnecessarily complicate XPath expressions, separate ones
are created to handle all four cases (increasing, decreasing the value of the control
variable, and two possibilities to write the condition in every case). These cases
are analogical to the one from Fig. 5.12.

Statistics of discoveries of for loops to a numeric literal found by CodeStatis-
tics are presented in Table 5.3. Such loops cover 10,72% of all the numeric for

loops. Loops, where the numeric literal is some number greater than 0, are usu-
ally not good coding practice. Such number literals are called magic numbers16 or
unnamed numerical constants and they are not desirable, because a modification

16For details see http://en.wikipedia.org/wiki/Magic_number_(programming)
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Project Name No of for’s To literal Percentage
Berkley DB 1799 396 22,01 %
Google App Engine 967 17 1,76 %
Hadoop 1898 208 10,96 %
Hibernate 855 78 9,12 %
jEdit 894 84 9,40 %
Tomcat 1510 66 4,37 %
Total 7923 849 10,72 %

Table 5.3: Discoveries of for loops to a numeric literal.

of such number in one place might require change in another and these are not
automatically synchronised. It would be better to use a static final field to store
the value.

Constant
In the next step the search is extended to loops that use a constant in the termination
comparison expression. An example of such loop is presented in Fig. 5.13. This
case is an extension of the previous one. Since a numeric literal has a constant
value, all for loops found in previous case are also covered by the current case.
Thanks to using JDT, all expressions that are evaluated by the JDT compiler into
a constant are treated as a constant in the analysis. For example, the expression
CONST+3, where CONST is a final field with a value 5, is evaluated by the JDT
parser to a constant 8. This way, only expressions that are built with constants are
handled easily.

private final int RECORDNUM = 5000;
...
//@ decreases RECORDNUM - i;
for (int i=0; i < RECORDNUM; i++) {
theData.setKey(i);
theData.setData(”Record ” + i);
da.dataByKey.put(theData);

}

Figure 5.13: Example of for loop to a constant, taken from BerkleyDB project
(from file android.JECursoAdapter.JECursorAdapterExam-

ple.java).

The XPath for this case is just a slight modification of the one from Fig. 5.12.
The new XPath is presented in Fig. 5.14, where the modified part is emphasised. In
line 8 the test for the element Constant is simply removed. In the case of loops that
match this pattern, the decreases formula can be easily generated automatically.
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1 //ForStatement
2 [starts-with(Condition/InfixExpression/@operator, ”<”)]
3 [Condition/InfixExpression/Expr[1]/Name/@scope = ”local”]
4 [Condition/InfixExpression/Expr[1]/Name/@name =
5 Updaters/ChangeVal/LeftOfAssignment/Name/@name]
6 [Updaters/ChangeVal[@kind = ”inc”]
7 [RightOfAssignment[number(Constant/@value) >= 1 or not(node())]]]
8 [Condition/InfixExpression/Expr[2]/Constant]
9 [not(Block//ChangeVal/LeftOfAssignment/Name/@name =
10 Condition/InfixExpression/Expr[1]/Name/@name)]

Figure 5.14: XPath expression used to find for loops to a constant.

Analogically to the previous case, multiple XPath expressions must be created,
that cover loops, which decrease or increase the value of the control variable, and
situations, where the condition is written in the different direction.

Project Name No of for’s To constant Percentage
Berkley DB 1799 658 36,58 %
Google App Engine 967 19 1,96 %
Hadoop 1898 322 16,97 %
Hibernate 855 94 10,99 %
jEdit 894 95 10,63 %
Tomcat 1510 99 6,56 %
Total 7923 1287 16,24 %

Table 5.4: Discoveries of for loops to a constant.

Statistics concerning discoveries of for loops to a constant are presented in Ta-
ble 5.4. We can see that we have gained additional 5,5% over the previous coverage
and thus total coverage is 16,24% of for loops.

Local expression
Another simple case that can be solved automatically is when the control variable
is compared to an arithmetic expression composed only from constants or local nu-
meric variables that are not modified in the loop body nor in the update expression.
An example of such loop, with corresponding decreases formula, is presented in
Fig. 5.15.

Decreases formula can be easily generated, because the result of the arithmetic
expression in the loop condition does not change during the execution of the loop.
Here the search is limited to a situation, where the update expression updates only
the control variable. Therefore, the rest of variables that appear in the loop condi-
tion must not change in the loop update expression. Thus, one only has to ensure
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private String indent(int indentation) {
...
//@ decreases 4 * indentation - i;
for (int i = 0; i < 4 * indentation; i++) {
sb.append(” ”);

}
...

}

Figure 5.15: Example of for loop to an expression with local numeric vari-
ables taken from Google App Engine project (from file org.datanu-
cleus.query.node.Node.java).

that these variables are not modified in the loop body. The new case covers the
preceding ones.

1 //ForStatement
2 [starts-with(Condition/InfixExpression/@operator, ”<”)]
3 [Condition/InfixExpression/Expr[1]/Name/@scope = ”local”]
4 [Condition/InfixExpression/Expr[1]/Name/@name =
5 Updaters/ChangeVal/LeftOfAssignment/Name/@name]
6 [Updaters/ChangeVal[@kind = ”inc”]
7 [RightOfAssignment[number(Constant/@value) >= 1 or not(node())]]]
8 [count(Condition/InfixExpression/Expr[2]//*) =
9 count(Condition/InfixExpression/Expr[2]//(Constant | Expr | InfixExpression |
10 Name[@scope=”local”][@numeric]))]
11 [not(Block//ChangeVal/LeftOfAssignment/Name/@name =
12 Condition/InfixExpression//Name/@name)]

Figure 5.16: XPath expression used to find for loops to a local expression.

The XPath expression for the case is presented in Fig. 5.16. Some of the con-
ditions are the same as in the XPath expression for the literal case, the difference
occurs in lines 8-12. First, lines 8-10 ensure the right hand side expression in the
loop condition is composed of binary expressions (InfixExpression element), sub-
expressions of binary expressions (Expr element), constants, or local numeric vari-
ables. In fact, the last two are interesting, other are just building block elements of
the expression. The condition in lines 11-12 states that any variable that appears
in the condition of the loop cannot be modified in the loop body. In the previous
case, similar constraint involved only the control variable, since the right hand side
was constant. Analogically to previous cases, multiple XPath expressions must be
created, that cover loops, where the value of the control variable is increased or
decreased, and where the control variable appears either on the left or the right
hand side in the loop condition expression.

Statistics concerning discoveries of for loops to an expression built with con-
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Project Name No of for’s To local expression Percentage
Berkley DB 1799 1047 58,20 %
Google App Engine 967 100 10,34 %
Hadoop 1898 782 41,20 %
Hibernate 855 336 39,30 %
jEdit 894 269 30,09 %
Tomcat 1510 360 23,84 %
Total 7923 2894 36,53 %

Table 5.5: Discoveries of for loops to a local expression.

stants and local numeric variables are presented in Table 5.5. This case covers both
previous cases. This time the gain is bigger, it is around 20%, and therefore total
coverage is 36,53% of numeric for loops.

Final field
Very often programmers iterate over an array. If the array variable is not modified
during the interaction then the length of the table does not change. This is because
it is a final field of the array object. A final field in Java is such field that can
be assigned only once in a constructor or directly in the field definition fragment.
Therefore, the final length field of an array object, which is of a primitive type,
does not change its value during the life of the array object, and thus we are able to
generate proper decreases formula. An example of a for loop, where a final field
is used in the loop condition along with generated decreases formula, is presented
in Fig. 5.17.

//@ decreases params.length - j;
for (int j=0; j < params.length; ++j) {

if (!params[j].equals(parameterTypes[j])) {
eq=false;
break;

}
}

Figure 5.17: Example of a for loop to a final field taken from Hibernate
project (from file org.hibernate.bytecode.internal.javas-

sist.FastClass.java).

The example of iteration over an array is generalised here. A very restrictive
”alias safe” approach is chosen. If the guard (in our simple example tab.length)
is of the form o1.o2.o3...on, then:

• o1 must either be declared as final or be a local variable that is not assigned
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in the loop body,

• all o2, o3, ... on must be declared as final fields.

In this case, the well-known problem of modification using aliases (when the same
object is referenced by multiple variables and modifications to one of them in-
duces changes of the others) is eliminated. The CodeStatistics tool generates fi-

nal attribute for Name elements that represent variable accesses, which meet the
presented safety criteria. For example, for an array access some_array.length,
where some_array is a local variable, a following XML element is generated:
<Name final=”true” fullname=”some_array.length” name=”some_array” name=”local”/>

The XPath expression for the analysed case is an extension of the one that ap-
peared in the previous case, it is presented in Fig. 5.18. The only difference is in
line 10, where in the loop condition Name elements that have final attribute are
admitted. These are elements that match the restrictive alias-safe approach.

1 //ForStatement
2 [starts-with(Condition/InfixExpression/@operator, ”<”)]
3 [Condition/InfixExpression/Expr[1]/Name/@scope = ”local”]
4 [Condition/InfixExpression/Expr[1]/Name/@name =
5 Updaters/ChangeVal/LeftOfAssignment/Name/@name]
6 [Updaters/ChangeVal[@kind = ”inc”]
7 [RightOfAssignment[number(Constant/@value) >= 1 or not(node())]]]
8 [count(Condition/InfixExpression/Expr[2]//*) =
9 count(Condition/InfixExpression/Expr[2]//(Constant | Expr | InfixExpression |
10 Name[@scope=”local”][@numeric] | Name[@final]))]
11 [not(Block//ChangeVal/LeftOfAssignment/Name/@name =
12 Condition/InfixExpression//Name/@name)]

Figure 5.18: XPath expression used to find for loops to a final expression.

In fact, it may happen that the update expression of the loop is expressed by an
assignment in such way that the right hand side is a sum of the variable from the
left hand side and some constant value (e.g. i = i + 3). This can be expressed
by the following condition:

1 Updaters/ChangeVal[@kind=”assign” and
2 RightOfAssignment[InfixExpression/Expr[1]/Name/@name =
3 parent::ChangeVal/LeftOfAssignment/Name/@name]
4 /InfixExpression[@operator=”+”][number(Expr[2]/Constant/@value) >= 1]]

This condition is used to extend the one in Fig. 5.18 in lines 6-7.
As it turns out, qualified names with many access steps are not very frequent in

practice. Usually, only one step is used (as in the example from Fig. 5.17). Using
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Project Name No of for’s Local expression
with final Percentage

Berkley DB 1799 1312 72,93 %
Google App Engine 967 638 65,98 %
Hadoop 1898 1324 69,76 %
Hibernate 855 711 83,16 %
jEdit 894 547 61,19 %
Tomcat 1510 903 59,80 %
Total 7923 5435 68,60 %

Table 5.6: Discoveries of for loops to a final expression.

CodeStatistics, it occurs that 68,60% of all for loops match this pattern, which
gives us additional 32% (see Table 5.6). Cases, which have been analysed so far,
cover a great majority of the interesting for loops. Next cases become more com-
plicated and cover much smaller numbers of for loops.

Update in loop body
In all the previous cases the control variable was updated in the update expression
of the loop and not changed in the loop body. As it turns out, it happens sometimes
that the control variable is updated in the loop body but in the fashion, which does
not influence the termination. Two situations are especially interesting:

possible speedup when the control variable is updated in the update expression
and possibly in the body of the loop, but when the second happens all up-
dates in the body are in the same direction as in the update expression — all
changes increase the variable or all changes decrease it (see Fig. 5.19),

update only in body when the control variable is not updated in the update con-
dition of the loop at all, but instead it is updated in the body of the loop but
all these updates are in the same direction.

When the update inside the loop body is not performed in an inner loop then it
is possible to generate a decreases formula for the case. The inner loop is prob-
lematic, because the decreases formula must evaluate to a number that is greater
or equal to 0. If there are no changes in inner loop one can just include the sum
of possible modifications of the variable in the decreases formula. An example of
the first case (termination speedup) with generated decreases formula is presented
in Fig. 5.19. In the example, 1 is added to the generated termination condition.

An XPath for the speedup case is an extension of the previous case. The con-
dition in lines 11-12 is updated. An actual XPath expression for the possible ter-
mination speedup case is presented in Fig. 5.20. First, lines 11-12 ensure that any
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public static void main(String[] args) {
...
//@ decreases args.length + 1 - i;
for (int i=0; i < args.length; i+=1) {

if (args[i].equals(”-h”)) {
i+=1;
homeDir=args[i];

} else {
throw new IllegalArgumentException(”Unknown arg: ”+args[i]);

}
}
...

}

Figure 5.19: Example of a for loop, where control value is additionally in-
creased in the loop body, taken from BerkleyDB project (from file
com.sleepycat.je.cleaner.MakeMigrationLogFiles.java).

variable that appears in the right hand side of the loop condition is not updated
in the loop body. In lines 13-14 it is guaranteed that any assignment to the con-
trol variable is not performed in an inner loop. Next, lines 15-18 ensure that every
change in loop body that is done to a control variable is performed in the correct
direction — it increases the variable by a number greater or equal to 0. The pos-
sible speedup case is an extension of previous one, it covers all the loops found
before.

1 //ForStatement
2 [starts-with(Condition/InfixExpression/@operator, ”<”)]
3 [Condition/InfixExpression/Expr[1]/Name/@scope = ”local”]
4 [Condition/InfixExpression/Expr[1]/Name/@name =
5 Updaters/ChangeVal/LeftOfAssignment/Name/@name]
6 [Updaters/ChangeVal[@kind = ”inc”]
7 [RightOfAssignment[number(Constant/@value) >= 1 or not(node())]]]
8 [count(Condition/InfixExpression/Expr[2]//*) =
9 count(Condition/InfixExpression/Expr[2]//(Constant | Expr | InfixExpression |
10 Name[@scope=”local”][@numeric] | Name[@final]))]
11 [not(Block//ChangeVal/LeftOfAssignment/Name/@name =
12 Condition/InfixExpression/Expr[2]//Name/@name)]
13 [not(Block//*[@isLoop]//ChangeVal/LeftOfAssignment/Name/@name =
14 Condition/InfixExpression/Expr[1]/Name/@name)]
15 [not(Block//ChangeVal[@kind != ”inc” or
16 not(RightOfAssignment[not(node()) or number(Constant/@value) >= 0])]
17 /LeftOfAssignment/Name/@name =
18 Condition/InfixExpression/Expr[1]/Name/@name)]

Figure 5.20: XPath expression used to find for loops to a final expression with
control variable speedup in the loop body.
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The second case, when the update is done only in the body of the loop, is disjoint
with previous ones since no update to the control variable is performed in the
update expression. An example is presented in Fig. 5.21.

private static final String[] DEFAULT_MIME_MAPPINGS = ...
...
//@ decreases DEFAULT_MIME_MAPPINGS.length + 1 - i;
for (int i=0; i < DEFAULT_MIME_MAPPINGS.length; ) {
ctx.addMimeMapping(DEFAULT_MIME_MAPPINGS[i++],

DEFAULT_MIME_MAPPINGS[i++]);
}

Figure 5.21: Example of a for loop, where the value of the control variable is
only increased in the loop body, taken from Tomcat project (from file
org.apache.catalina.startup.Tomcat.java).

In fact, the XPath expression for the case is quite similar to the one presented
in Fig. 5.20, and thus it not present here. First, the requirement from lines 4-5 is
changed to ensure the control variable does not appear in the updaters at all. Next,
it is assured that at least one change to the control variable is always performed in
the loop iteration. It is formulated as follows: a number of all assignments to the
control variable in the loop body must be greater than number of assignments that
appear inside conditions (if, switch, conditional expression), outside inner loops
or try-catch blocks.

Project Name No of
for’s

Only in
body

Possible
speedup Total

Berkley DB 1799 0 0,00 % 1338 74,37 % 1338 74,37 %
Google App Eng. 967 12 1,24 % 640 66,18 % 652 66,18 %
Hadoop 1898 4 0,21 % 1364 71,87 % 1368 71,87 %
Hibernate 855 3 0,35 % 711 83,16 % 714 83,16 %
jEdit 894 2 0,22 % 548 61,30 % 550 61,30 %
Tomcat 1510 1 0,07 % 917 60,73 % 918 60,73 %
Total 7923 22 0,28 % 5518 69,65 % 5540 69,92 %

Table 5.7: Discoveries of for loops with possible speedup in loop body and with-
out update in the update condition.

Statistics of both cases are presented in Table 5.7. As we have noted before, the
increase of coverage is much smaller now, around 1,3%.

Immutable objects
An immutable object is an object, a state of which cannot be modified after it is
created. However, Java does not have a special marking for classes the instances of
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which are immutable, one may find some in the standard Java library. When a class
is defined as final then it is not possible to subclass it, and thus to change behaviour
of it. An example of such class is String, which is present in the standard Java li-
brary. The class is defined as final and execution of any method of a String object
does not change the state the object — String instances are immutable. It turns
out that the method length() of the class is quite frequently used in the condition
of for loops. Since String object is immutable, every length method call gives
the same result. In fact, in standard Java implementation the method returns a pri-
vate integer final field. Here a special case is created to find all for loops, where
the loop condition contains an execution of the length method on a variable of
class String, which is not assigned in the loop body nor in the update expression.
An example of such loop is presented in Fig. 5.22. In fact, all the previous cases
are extended to allow also unmodified variables of type String in the condition
expression.

String abbrev = ...
...
for (int i=0; i < abbrev.length(); i++) {

if (abbrev.charAt(i) == ’#’) {
m_pp.addElement(abbrev.substring(lastIndex,i));
lastIndex=i + 1;

}
}

Figure 5.22: Example of a for loop, where a string length is used in the loop con-
dition, taken from JEdit project (from file org.gjt.sp.jedit.Ab-

brevs.java).

In the XML representation in CodeStatistics, every method invocation is rep-
resented by MethodInvocation element. Every such element has methodName at-
tribute, which stores the name of the method called. In most cases a method invo-
cation has an expression prefix (eg. in some_string.length(), some_string is
the expression prefix), it may not exist when we call a method on current object.
An element representing the prefix expression is a first child of the MethodInvo-
cation element. If method invocation has any arguments then MethodArguments
child is present with arguments as children. When we consider length method in-
vocation of a String object, the expression prefix child always exists, since we do
not analyse the standard Java library. The prefix is the String object instance. The
methodName attribute has length value and there is no MethodArguments subele-
ment present.

XPath expressions for this case are extensions of the ones from the previous
case — Update in loop body. An updated XPath expression for the case of possible
termination speedup is described here in detail. The expression is presented in
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1 //ForStatement
2 [starts-with(Condition/InfixExpression/@operator, ”<”)]
3 [Condition/InfixExpression/Expr[1]/Name/@scope = ”local”]
4 [Condition/InfixExpression/Expr[1]/Name/@name =
5 Updaters/ChangeVal/LeftOfAssignment/Name/@name]
6 [Updaters/ChangeVal[@kind = ”inc”]
7 [RightOfAssignment[number(Constant/@value) >= 1 or not(node())]]]
8 [count(Condition/InfixExpression/Expr[2]//*) =
9 count(Condition/InfixExpression/Expr[2]//(Constant | Expr | InfixExpression |
10 Name[@final] | Name[@scope=”local”][@numeric or @type=”String”] |
11 MethodInvocation[*[1][@type=”String”]][@methodName = ”length”]))]
12 [not(Block//ChangeVal/LeftOfAssignment/Name/@name =
13 Condition/InfixExpression/Expr[2]//Name/@name)]
14 [not(Block//*[@isLoop]//ChangeVal/LeftOfAssignment/Name/@name =
15 Condition/InfixExpression/Expr[1]/Name/@name)]
16 [not(Block//ChangeVal[@kind != ”inc” or
17 not(RightOfAssignment[not(node()) or number(Constant/@value) >= 0])]
18 /LeftOfAssignment/Name/@name =
19 Condition/InfixExpression/Expr[1]/Name/@name)]
20 [Condition//MethodInvocation]

Figure 5.23: XPath expression used to find for loops, which have length method
call of a String object in the loop condition.

Fig. 5.23. Differences from Fig. 5.20 are emphasised in bold. First, in line 10, local
variables of type String are admitted. Then, in line 11, MethodInvocation elements
are admitted, which represent invocations of the length method on String objects
(first child is of the correct type and methodName attribute is correct). The last
part is the introduction of line 20, where it is ensured that any method invocation
must appear in loop condition. This way, loops that have length method call in the
condition with a possibility of termination speedup are covered. The last fragment
is to make the case disjoint with previously described ones. Analogically, a case
is created, where the control variable is updated only in the loop body.

Project Name No of for’s String Total
Berkley DB 1799 2 0,11 % 1340 74,49 %
Google App Engine 967 10 1,03 % 662 68,46 %
Hadoop 1898 11 0,58 % 1379 72,66 %
Hibernate 855 3 0,35 % 717 83,86 %
jEdit 894 24 2,68 % 574 64,21 %
Tomcat 1510 30 1,99 % 948 62,78 %
Total 7923 80 1,01 % 5620 70,93 %

Table 5.8: Discoveries of for loops to the length of string.
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Statistics of the findings are presented in Table 5.8. This time 1.01% of the re-
maining cases is covered. Our total coverage is 70,93%.

Condition with conjunction
When the termination condition of the for loop evaluates to false, the loop is
terminated. Therefore, if the condition contains a conjunction of conditions, it is
enough that one of the conditions evaluates to false to terminate the loop. The
current case extends the previous one and applies this observation. The difference
from the previous case is that the restrictions on condition expression now apply
to either the right or the left conjunct of the expression. The decreases formula for
the conjunction is the same as for the matching one conjunct only, thus may be
generated exactly the same way as in the previous case. An example of a conjunc-
tion in the loop condition, together with generated decreases formula, is presented
in Fig. 5.24.

MBeanAttributeInfo attrs[] = minfo.getAttributes();
...
//@ decreases attrs.length - i;
for (int i = 0; mattrType == null && i < attrs.length; i++) {

if (attribute.equals(attrs[i].getName()))
mattrType = attrs[i].getType();

}

Figure 5.24: Example of a for loop with a conjunction, taken from Tom-
cat (from file org.apache.catalina.ant.jmx.JMXAccessorSet-

Task.java).

The XPath expression is based on the one described in the previous section.
First, the restriction for the existence of method invocation in line 20 in Fig. 5.23
is removed. Also, one has to make sure now that the condition is a conjunction:

//ForStatement[Condition/InfixExpression[@operator = ”&&”]]

and that all variables used in the interesting condition (the one used for generating
the decreases formula) part are not modified in the other one, e.g. when the left
conjunct is the interesting one:
[not(Condition/InfixExpression/Expr[2]//ChangeVal/LeftOfAssignment/Name/@name =

Condition/InfixExpression/Expr[1]//Name/@name)].
The rest of the XPath expression is derived from the previous section, with a mod-
ification that all constraints on element:

Condition/InfixExpression/Expr[1]

must be updated in order to apply to exactly one of the conjuncts, e.g. for the left
conjunct it should be changed to:

Condition/InfixExpression/Expr[1]/InfixExpression/Expr[1].
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Of course, more patterns must be created, since for every one of the conjuncts
we have multiple situations to cover: increasing or decreasing the control variable
and two ways to write the condition.

Project Name No of for’s And Total
Berkley DB 1799 13 0,72 % 1353 75,21 %
Google App Engine 967 13 1,34 % 675 69,80 %
Hadoop 1898 33 1,74 % 1412 74,39 %
Hibernate 855 5 0,58 % 722 84,44 %
jEdit 894 10 1,12 % 584 65,32 %
Tomcat 1510 69 4,57 % 1017 67,35 %
Total 7923 143 1,80 % 5763 72,74 %

Table 5.9: Discoveries of for loops, where the condition is a conjunction and one
of the conjuncts is interesting.

XPath expressions created for the described case are disjoint with the previous
ones. Statistics of the findings are presented in Table 5.9. New XPath expressions
cover 1,80% of the remaining numeric for loops, which gives us total coverage of
72,74%.

No dangerous function call
Note that all previous cases were thread safe. In the current case access to fields
that are not final is taken into consideration. Therefore, a single thread execution of
the analysed loop is assumed, that no other thread can change values of non-final
fields. Let us consider a situation when the loop body, the update expression and
the condition expression do not contain any method execution nor class instance
creation. This means that no function is called during the execution of the loop
and therefore, if a field is not changed explicitly in the loop by an assignment
then it is not modified at all. In fact, it is possible to be a little less restrictive.
What one would like here is assurance that any function from the body of the
loop does not modify any field. There are several widely used final classes in
the standard Java library that have this property. These classes are, for example:
String, StringBuffer, StringBuilder, Integer, Array. Any call to a method
from any of the classes does not modify state of other objects. An example is
presented in Fig. 5.25. If the update expression is a standard increase of the control
variable and other variables that are used in the loop conditions are not modified
in the loop body, one can easily generate decreases formula for the loop despite
existence of method calls from limited classes.

An XPath for the case is presented in Fig. 5.26. First of all, restrictions are intro-
duced in lines 13-15, which do not allow any method invocation or object creation
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private String securityRoles[] ...
...
for (int i=0; i < securityRoles.length; i++) {

if (role.equals(securityRoles[i])) {
n=i;
break;

}
}

Figure 5.25: Example of a for loop with a safe equals method
call on a String object, taken from Tomcat (from file
org.apache.catalina.core.StandardContext.java).

in the condition itself. Creating object instances in the body of the loop is also
disallowed. Next, in lines 16-17, method calls on objects from safe classes listed
before are admitted while other are forbidden. In lines 18-19 the search is nar-
rowed down to minimise number of loops overlapping with previously covered
cases. Similarly to previous cases, multiple patterns are created. Also conjunction
cases are included here.

1 //ForStatement
2 [starts-with(Condition/InfixExpression/@operator, ”<”)]
3 [Condition/InfixExpression/Expr[1]/Name/@name =
4 Updaters/ChangeVal/LeftOfAssignment/Name/@name]
5 [Updaters/ChangeVal[@kind = ”inc”]
6 [RightOfAssignment[number(Constant/@value) >= 1 or not(node())]]]
7 [not(Block//ChangeVal/LeftOfAssignment/Name/@name =
8 Condition/InfixExpression/Expr[2]//Name/@name)]
9 [not(Block//*[@isLoop]//ChangeVal/LeftOfAssignment/Name/@name =
10 Condition/InfixExpression/Expr[1]/Name/@name)]
11 [not(Block//ChangeVal[@kind != ”inc” or
12 not(RightOfAssignment[not(node()) or number(Constant/@value) >= 0])]
13 /LeftOfAssignment/Name/@name =
14 Condition/InfixExpression/Expr[1]/Name/@name)]
13 [not(Block//ClassInstanceCreation)]
14 [not(Condition//MethodInvocation)]
15 [not(Condition//ClassInstanceCreation)]
16 [not(Block//MethodInvocation[not(*[1][@type=”String” or @type=”Array” or
17 @type=”StringBuffer” or @type=”StringBuilder” or @type=”Integer”])])]
18 [Condition/InfixExpression/Expr[2]//Name[@scope=”field”]
19 [not(@final) or parent::MethodInvocation]]

Figure 5.26: XPath expression used to find for loops with only safe method invo-
cations.

Statistics of the findings are presented in Table 5.10. Unfortunately, the current
case may not be fully disjoint with previous ones. It may happen that a branch of
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Project Name No of for’s No function call Total
Berkley DB 1799 18 1,00 % 1371 76,21 %
Google App Engine 967 19 1,96 % 694 71,77 %
Hadoop 1898 36 1,90 % 1448 76,29 %
Hibernate 855 9 1,05 % 731 85,50 %
jEdit 894 30 3,36 % 614 68,68 %
Tomcat 1510 106 7,02 % 1123 74,37 %
Total 7923 218 2,75 % 5981 75,49 %

Table 5.10: Discoveries of for loops with only safe method invocations.

a conjunction expression matches the current case but the other branch matches
one of the previous cases. But this is a very rare situation. The column No function
contains number of newly covered loops. A group of XPath expressions made it
possible to cover additional 2,75% of cases, thus we are able to generate decreases
formula for 75,49% of numeric for loops.

Expression with private field access
In this section cases are taken into account, where a private field is used in the
loop condition. Since the field is private, it cannot be directly accessed by any
subclass. When a single thread execution is assumed, in some cases generating
proper decreases formula is possible. These cases are:

• A private field is assigned directly in the field declaration and never updated.
Since the field is private, it cannot be accessed by a subclass, therefore it is
not changed during the execution. Such field probably should be declared as
final. An example of the situation is presented in Fig. 5.27.

public class MBeanUtils {
...
private static String exceptions[][] = ...;
...
for (int i=0; i < exceptions.length; i++) {

if (className.equals(exceptions[i][0])) {
return (exceptions[i][1]);

}
}
...

}

Figure 5.27: Example of a for loop with a private field in loop condition. The field
is assigned only in the declaration. Taken from Tomcat project (from
file org.apache.catalina.mbeans.MBeanUtils.java).
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• A private field is assigned only in a constructor or in the field declaration,
and for loop, in which it is used, appears outside a constructor. Since the
loop is outside a constructor, the value of the private field does not change
during the execution of the loop. An example of such situation is presented
in Fig. 5.28.

public class SQLQueryReturnProcessor {
...
private NativeSQLQueryReturn[] queryReturns;
...
public SQLQueryReturnProcessor(NativeSQLQueryReturn[] queryReturns, ...) {

this.queryReturns = queryReturns;
...

}
public ResultAliasContext process() {

...
for (int i=0; i < queryReturns.length; i++) {
processReturn(queryReturns[i]);

}
...

}
...

}

Figure 5.28: Example of a for loop with a private field in loop condition. The
field is assigned only in a constructor and the loop appears outside
a constructor. Taken from Hibernate project (from file org.hiber-

nate.loader.custom.sql.SQLQueryReturnProcessor.java).

For the first case, the most important is to find out if the Name element that
appears in the expression is a private field that is assigned only in the declaration.
The XPath fragment responsible for such check is as follows:

1 Name[@private][@finalSuffix or @numeric or @type=”String”][@name =
2 ancestor::TypeDeclaration/FieldDeclaration
3 [VariableDeclarationFragment/Name[@private]]
4 [not(VariableDeclarationFragment/Name/@name =
5 parent::*//LeftOfAssignment/Name/@name)]
6 /VariableDeclarationFragment/Name/@name]))]

Line 1 narrows down the search to only private fields that are either numeric or have
a final suffix (for example, the expression x.y, where x is private and y is not final
is not interesting). Lines 2-6 are responsible for the search for a TypeDeclaration
ancestor (it represents a class declaration), which has a field element that has the
same name as the current Name element. First, the condition in lines 2-3 ensures
that there exists a TypeDeclaration ancestor that has a private field declaration.
Next, lines 4-5 guarantee that the name of the field does not appear anywhere in
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the class on the left hand side of an assignment. Line 6 matches the name from
line 1 with the name from the declaration. The full XPath expression for the case
is a slight modification of the one from Fig. 5.23 with the name filter element
included and removed constraint from line 20. Analogically, there is an extended
case, where updates of the control variable appears only in the body of the loop.

The case of private field that is assigned in constructors and the for loop is used
outside a constructor is a little more complex. Similarly to the private field assigned
only in the declaration, the fragment responsible for counting descendant elements
in the loop condition element is modified. One has to ensure that the Name element
appears as the field in the class and is not assigned outside a constructor. The check
is as follows:

1 Name[@private][@finalSuffix or @numeric or @type=”String”][@name=
2 ancestor::TypeDeclaration/FieldDeclaration
3 [VariableDeclarationFragment/Name[@private]]
4 [not(VariableDeclarationFragment/Name/@name = parent::*//LeftOfAssignment
5 [not(ancestor::MethodDeclaration/@constructor)]/Name/@name)]
6 [VariableDeclarationFragment/Name/@name = parent::*//LeftOfAssignment
7 [ancestor::MethodDeclaration/@constructor]/Name/@name]
8 /VariableDeclarationFragment/Name/@name]))]

Analogically to the previous case, the name attribute of the Name element is matched
with a field declaration, which has a number of filters. Lines 4-5 guarantee that the
field is not assigned in methods, which are not constructors. Lines 6-7 ensure that
the field is actually assigned in some constructor method. Finally, line 8 finishes
the match of the name from line 1 with the field name.

Project Name No of
for’s

Declaration
only Constructor Total

Berkley DB 1799 41 2,28 % 14 0,78 % 1426 79,27 %
Google App Eng. 967 0 0,00 % 1 0,10 % 695 71,87 %
Hadoop 1898 14 0,74 % 37 1,95 % 1499 78,98 %
Hibernate 855 0 0,00 % 3 0,35 % 734 85,85 %
jEdit 894 0 0,00 % 5 0,56 % 619 69,24 %
Tomcat 1510 29 1,92 % 22 1,46 % 1174 77,75 %
Total 7923 84 1,06 % 82 1,03 % 6147 77,58 %

Table 5.11: Discoveries of for loops with private field in the loop condition.

Statistics of the findings are presented in Table 5.11. XPath expressions for con-
junction cases are also created. A new group of XPath expressions made it possible
to cover additional 2.09% of cases, thus total coverage is 77,58%.
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Some strange cases
Here a few special cases of for loops that can be found in analysed projects are
described. They are not very frequent, though they helped to break the barrier of
78%. XPath expressions for these situations are not presented, because they are
quite simple, hence not very interesting. These cases are:

Multiplication in the update expression: when a multiplication by a constant is
done in the update expression of a positive variable, one can easily generate a de-
creases formula. An example of such situation is presented in Fig. 5.29.

//@ decreases WritingServlet.EXPECTED_CONTENT_LENGTH*10 - i;
for (int i=1; i <= WritingServlet.EXPECTED_CONTENT_LENGTH; i*=10) {

WritingServlet servlet=new WritingServlet(i);
Tomcat.addServlet(root,”servlet” + i,servlet);
root.addServletMapping(”/servlet” + i,”servlet” + i);

}

Figure 5.29: Example of a for loop with multiplication in the update expression,
taken from Tomcat project (from file org.apache.catalina.con-

nector.TestOutputBuffer.java).

Increase the control variable in the loop condition: such situation is possible
because of an existence of operators ++ and --. An example of the case together
with the generated decreases formula is presented in Fig. 5.30.

//@ decreases i;
for (int i=MAX_CODE_LEN; --i > 0; ) {
base[i]=0;
limit[i]=0;

}

Figure 5.30: Example of a for loop with update in condition itself, taken
from Hadoop project (from file org.apache.hadoop.io.com-

press.bzip2.CBZip2InputStream.java).

In the XPath expression for the case, it is assumed that the update expression is
empty, the condition has unary expression with the control variable on one side of
the comparison and a final expression on the other side of it.

Increase the control variable by a random integer: in the standard Java library
there is a Random class that can be used to generate random numbers. According
to the documentation of Java17, the method:

public int nextInt(int n)

17For details see http://docs.oracle.com/javase/6/docs/api/java/util/Random.html
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generates an integer between 0 (inclusive) and the specified value n (exclusive).
Therefore, when the result of the method, but increased by a positive integer, is
used in the update expression of a loop, then one is able to generate a proper de-
creases formula. An example is presented in Fig. 5.31.

private static final int MAX_LENGTH = 15000;
...
//@ decreases Integer.MAX_VALUE + MAX_LENGTH - i;
for (int length=0; length < MAX_LENGTH;

length += random.nextInt(MAX_LENGTH / 10) + 1) {
LOG.info(”******Number of records: ” + length);
createSequenceFile(length);
LOG.info(”Accepted ” + countRecords(0) + ” records”);

}

Figure 5.31: Example of a for loop, where the control variable is increased
by a positive integer in the update condition, taken from Hadoop
project (from file org.apache.hadoop.mapred.TestSequence-

FileInputFilter.java).

Since Random class is not final, created XPath expressions need to ensure that the
object, which is used in the update expression, is in fact an instance of the Random
class, not a subclass. XPath expressions created for the case assure that the variable
is of Random class. The variable may be a final field, which has new Random object
assigned in the field definition fragment. It may also be a local variable that is
initialised in the method, where the for loop appears. In such situation it is assured
that the variable has a new Random object instance assigned in the method. The last
case is when the variable is a private field, which is not final, but is assigned only in
the field definition fragment. For the loop condition a “safe” private field approach
is used, where expressions build of constants, local variables, final variables, and
private fields that are assigned only in the field definition fragment are allowed.

Use of Math.min function in the loop condition: there are situations, where the
function is used in the loop condition, but one of the parameters does not change.
The function:

public static int min(int a, int b)

is available in a final class Math and returns a smaller of the two arguments. When
one of the arguments does not change during the execution of the loop, i.e. it meets
the expression with “safe” private field property, it is possible to generate the de-
creases formula. An example together with the generated decreases formula is
presented in Fig. 5.32.
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static final private int NUM_OF_PATHS = 4;
...
//@ decreases NUM_OF_PATHS - i;
for (int i=0; i < Math.min(NUM_OF_PATHS,files.length); i++) {

path[i]=new Path(files[i]).makeQualified(fs);
if (!fs.mkdirs(path[i])) {

throw new IOException(”Mkdirs failed to create ”+path[i].toString());
}

}

Figure 5.32: Example of a for loop, where Math.min appears in the
loop condition, taken from Hadoop project (from file
org.apache.hadoop.fs.TestGlobPaths.java).

Project Name No of for’s Specific cases Total
Berkley DB 1799 0 0,00 % 1426 79,27 %
Google App Engine 967 0 0,00 % 695 71,87 %
Hadoop 1898 49 2,58 % 1548 81,56 %
Hibernate 855 0 0,00 % 734 85,85 %
jEdit 894 0 0,00 % 621 69,46 %
Tomcat 1510 6 0,40 % 1180 78,15 %
Total 7923 55 0,69 % 6204 78,30 %

Table 5.12: Discoveries of for loops for some specific cases.

Statistics of the findings for all the cases mentioned are presented in Table 5.12.
With these cases the boundary of 78% is broken and final coverage 78,30% of
numeric for loops is achieved.

5.5.3 Final Result
In the current section, an experiment was described, in which decreases formula
were generated for over 78% of numeric for loops in the analysed projects. Note
that all the above-described categories were expressed by purely syntactic criteria.
A summary of the discoveries is presented in Fig. 5.33. Most of the uncovered
cases were using method calls and were iterations over Java collections like List.
These cases are very hard or even impossible to cover by syntactic only criteria.
The problem is that usually one cannot discover what is the actual class of the
collection. It might be one of the standard Java collections but it may be user’s
own implementation as well. Therefore, we may not have any information about
possible side effects of method calls on such object.

In order to verify that the obtained results also apply to other projects, the method
was checked against a fresh set of applications. Here, also an arbitrary set of very
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10.72% Literal

5.53% Constant

20.28% Local expression

32.07% Final expression

1.33% Speedup

1.01% String

1.80% And

2.75% No function call

2.10% Private

0.72% Strange

Figure 5.33: Contribution of each loop type.

popular and quite large projects was chosen. These project come from various
sources: Sourceforge project repository, Eclipse open-source projects repository
and one is commercial. These projects are:

AspectJ18 is a seamless aspect-oriented extension to the Java programming lan-
guage that enables clean modularisation of the ’crosscutting concerns’.

Spring19 is an application framework for Java platform. It includes Inversion of
Control container that manages object lifecycles.

Vuze20 (previously named Azureus) is an application to exchange and distribute
data over the Internet. One of the most popular projects in Sourceforge repos-
itory21. It is also one of the most popular BitTorrent clients.

Details of the projects used for verification of the results along with statistics of
for loops coverage are presented in Fig. 5.34. For over 78% of numeric for loops
decreases formula was generated, which is consistent with the original findings.

5.5.4 Bad Loops Found
One of the outcomes of the loop termination experiment was that a number of
non-trivial loops was found in the analysed projects. They were sometimes written
improperly, sometimes could be simplified, may contain bugs, or cause errors after
18For details see http://www.eclipse.org/aspectj/
19For details see http://www.springsource.org/
20For details see http://www.vuze.com
213rd place on May 22, 2012, for details see http://sourceforge.net/top/

164

http://www.eclipse.org/aspectj/
http://www.springsource.org/
http://www.vuze.com
http://sourceforge.net/top/


5.5 Experiment: Loop Termination

Project Name Version Size in
KLoC

No. of
for’s

for’s per
1000 lines Coverage

AspectJ 1.6.12 385 5049 13,11 4461 88,35 %
Spring toolkit 3.1.1 181 457 2,52 349 76,37 %
Vuze 4.7.0.2 496 3689 7,44 2395 64,92 %
Total 1062 9195 8,66 7205 78,36 %

Figure 5.34: Details of projects used for verification and statistics of covered loops
(sizes are given in Kilo Lines of Code, only interesting for loops are
considered).

the maintenance. CodeStatistics tool provides them (their code, location in the
project etc.), so that a programmer can handle them manually. Using the output
generated by CodeStatistics it was quite easy to select examples for this section.
They were taken from the code snippets that were marked as ”not classified” and
were short enough to be included in the thesis.

First, let us consider the example from Fig. 5.35. Note that the control variable is
increased in the update expression of the loop, but it may be decreased in the inner
if condition. In some iterations the value of the control variable may not change.
Therefore, termination of the loop is not clear and requires thorough analysis.

for (int i=0; i < markers.size(); i++) {
Marker marker=markers.get(i);
if (getLineOfOffset(marker.getPosition()) == line) {

setFlag(MARKERS_CHANGED,true);
marker.removePosition();
markers.removeElementAt(i);
i--;

}
}

Figure 5.35: Bad loop example, taken from JEdit (from file
org.gjt.sp.jedit.Buffer.java).

Example from Fig. 5.36 is similar to the previous one. Here, further analysis
makes it possible to discover that the loop terminates, because the value of count
is decreased inside the removeHeader(j--) function call.

In the code fragment from Fig. 5.37 it is not obvious why the loop should be
terminating. At first, it seems correct but one can notice that the inequality direction
in the termination condition is against intuition. The loop will terminate only if
nSamples - nRemove gets smaller than i, but this can be done only inside the
deltas.remove method.

In all the examples presented in this subsection, it is not obvious why loops are
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for (int i=0; i < count; i++) {
if (headers[i].getName().equalsIgnoreCase(name)) {

removeHeader(i--);
}

}

Figure 5.36: Bad loop example, taken from Tomcat (from file org.apache.tom-

cat.util.http.MimeHeaders.java).

for (int i=nSamples - 1; i < nSamples - nRemove; i--) {
deltas.remove(i);

}

Figure 5.37: Bad loop example, taken from Vuze (from file com.aeli-

tis.azureus.core.networkmanager.admin.impl.NetworkAd-

minSpeedTesterBTImpl.java).

eventually terminating. It should be at least documented why they are working
correctly. It should be explained in the loop and in the place, which is responsible
for the termination. Finding such error prone code fragments is crucial also for
maintenance.

5.5.5 Verification
In this experiment ESC/Java2 tool was used to verify loop termination property
of for loops enriched with decreases annotations inserted by CodeStatistics tool.
ESC/Java2 provides -LoopSafe option that can be used to verify these annota-
tions. Since ESC/Java2 accepts only Java 1.4 source code and selected projects
use features introduced in Java 1.5 (e.g. generics and enums), the source code had
to be adapted to the older Java version. This was applied to jEdit project. Unfortu-
nately, ESC/Java2 did not manage to verify all files containing for loops — there
were some fatal errors caused by missing or invalid standard library specifica-
tions (most of them caused by the java.awt package). All files that were success-
fully processed by ESC/Java2 did not return any errors or warnings concerning
decreases formulae.

5.6 Summary
In this chapter a simple approach for creating verification methods was presented.
Additionally, CodeStatistics tool that supports this methodology was described.
The approach was applied in an experiment — simple loop termination prover for
Java for loops. The results obtained show that basic verification techniques can
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5.6 Summary

be successfully used in real, production code. Tools similar to CodeStatistics can
be really helpful in the Quality Assurance process. Code reviewers can pay less
attention to simple cases, hence they can focus on difficult aspects that are usually
more error prone. Such methods can even guarantee correctness of some aspects
of the code (e.g. that for loops terminate). They can be used as a first step in
introducing formal methods into business applications.
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Chapter 6

Extended Pattern Discovery in
Evaluation of Abstract Domains

6.1 Introduction
In this chapter an engine is presented that can be used to evaluate abstract do-
mains. First, in Section 6.2, JavaAI is introduced — an abstract interpreter for
Java language that was implemented as a part of this study. Next, in Section 6.3,
a generic extension mechanism for CodeStatistics is described that makes it pos-
sible to write plugins that perform additional code analysis and extend the query
language used by CodeStatistics with user-defined functions. The extension was
also implemented as a part of this study. In Section 6.4, an adaptation of JavaAI
as the analysis plugin for CodeStatistics is presented. Finally, in Section 6.5, an
experiment is described that uses the JavaAI analysis plugin for CodeStatistics to
evaluate abstract domain implementations.

6.2 JavaAI — an Abstract Interpreter for Java
In this section an implementation of a static analyser for Java language is pre-
sented — JavaAI1. The analyser works on Java source code. It uses the abstract
interpretation technique as described in Section 2.4.6. In JavaAI the following
abstract domains are implemented:

• Bool: a non-relational abstract domain of boolean values;
1Available at the companion disk and http://www.mimuw.edu.pl/~kjk/phd
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• Intv: a non relational abstract domain of intervals;

• Bool × Intv: a product domain of booleans and intervals;

• Boxes: an abstract domain of boxes — together with a widening operator that
has configurable widening sequence thresholds;

• Bool × Boxes: product domain of booleans and boxes.

First, in Section 6.2.1 some interesting details about the semantics and syntax of
Java are presented. Next, in Section 6.2.3 the assumptions made in the implementa-
tion of JavaAI are described. In Section 6.2.4 the control flow graph used in JavaAI
is presented, and finally, Section 6.2.5 contains a short review of tests written for
the implementation.

6.2.1 The Java Programming Language
The Java language [57] is much more complex than the language Simple that was
introduced to present the abstract interpretation framework and the domain of
boxes. Java is a class-based and object-oriented programming language. Every
statement in Java is attached to some class: it may be either a part of a method or
in an initializer block.

Types
There are two kinds of types in Java:

• Primitive types: boolean type (boolean), integer types (byte, short, int,
long and char) and floating point types (float and double). There are vari-
ous conversions between these primitive types (details can be found in [57,
Chapter 5]).

• Reference types: this includes class types, interface types, type variables and
array types [57, Section 4.3].

Boxing and Unboxing
The feature was introduced in Java version 5. It simplifies usage of primitive types
in situations when objects (reference types) are required, e.q. collections. For ev-
ery primitive type there is a corresponding reference type, e.g. for boolean class
Boolean. Boxing is the operation of converting a primitive type value into a value
of the corresponding reference type (a wrapper). Unboxing is the reverse opera-
tion — it extracts a primitive value from the reference type. Both operations are
implicit. For example, the expression true && new Boolean(false) is a correct
Java code (&& is a boolean conjunction). In the expression, when executed, the
second argument is automatically converted to the primitive value false.
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Statements
In the Java language, a method or an initializer block is built from statements. Both
statements or statement blocks may be labelled. Here we list the most interesting
statement types:

• conditional if statement,

• switch statement,

• three loop statements: while, do-while, and standard for loop,

• enhanced for loop statement, which simplifies iteration over arrays and
built-in collections (this is just a syntactic sugar and is translated to a regular
for loop, see [57, Section 14.14]),

• break statement that breaks out the innermost enclosing loop or switch
statement, there is a also a break <label> version of the statement, which
causes break out of the block/statement with the label <label>,

• continue statement that stops the current loop iteration and jumps straight
to the next one, (also, label is allowed here: in such case a control jumps to
the next iteration of the loop with the chosen label),

• return statement that is used to end a method and return a value (the if
result type is not void),

• try-catch-finally statement is used to handle exceptions,

• throw statement to throw an exception and end a block or method execution,

• synchronized statement that is used to control concurrency,

• assert statement used to make assertions in the source code.

6.2.2 Expression Evaluation
At first, we have to note that expression evaluation may cause side-effects, e.g.
(c = 17) > 3 is a boolean expression that evaluates to true and as a side-effect
it sets the value of the integer variable c to 17. The general rule of expression
evaluation in Java is that operands are evaluated before the operation, for example:

• In case of a method call, arguments are evaluated from left to right first and
then the call is executed.
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• In case of a prefix or a postfix expression, the operand is evaluated first and
then the operator is applied.

• In case of a binary expressions, operands are calculated first and then the
operator is applied.

It may happen than an exception occurs when some operand is evaluated (e.g.
division by 0 or an exception in some method call). When that happens, other
operands are not evaluated.

There is one exception from the general rule of expression evaluation in Java,
i.e. boolean expressions are evaluated in a lazy fashion. That means that when left
argument of a conjunction evaluates to false, the right argument is not evaluated
(therefore, there are no side-effects from that evaluation). Similarly, when an al-
ternative is calculated and left argument evaluates to true, the right one is not
evaluated.

Here we explain the semantics of boolean expressions in JavaAI in detail. Let
𝘉𝘌𝘹𝘱Java be the set of Java boolean expressions and ⟨≤𭒟, 𭒟⟩ be an abstract domain.
The abstract boolean semantic function has type:

ℬJava ∶ 𝘉𝘌𝘹𝘱Java → (𭒟 → 𭒟 × 𭒟).

The abstract transfer function for some boolean expression calculates simultane-
ously the result of both positive and negative evaluation of that boolean expression.
The implementation of the lazy conjunction is as follows:

ℬJava⟦a⟧D = ⟨D′
T,D′

F⟩ ℬJava⟦b⟧D′
T = ⟨D″

T,D″
F⟩

ℬJava⟦a && b⟧D = ⟨D″
T,D′

F ∪𭒟 D″
F⟩

,

and similarly for the alternative:
ℬJava⟦a⟧D = ⟨D′

T,D′
F⟩ ℬJava⟦b⟧D′

F = ⟨D″
T,D″

F⟩

ℬJava⟦a || b⟧D = ⟨D′
T ∪𭒟 D″

T,D″
F⟩

.

The implementation of negation is pretty straightforward:
ℬJava⟦a⟧D = ⟨DT,DF⟩

ℬJava⟦!a⟧D = ⟨DF,DT⟩
as well as evaluation of boolean constants:

ℬJava⟦true⟧D = ⟨D, ⊥𭒟⟩, ℬJava⟦false⟧D = ⟨⊥𭒟,D⟩.

The evaluation of atomic boolean expressions, such as boolean variable, boolean
field access, boolean method call, or an arithmetic comparison depends on the
implementation of the domain itself. Every domain that is implemented in JavaAI
has to provide implementation of such transfer functions.
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6.2.3 Implementation Assumptions
The abstract interpreter JavaAI focuses only on primitive Java types, it performs
intra-method analysis on local variables. The list of the assumptions made is as
follows:

• Only primitive types are interesting. All domains that are implemented han-
dle only boolean or integer values (all integer types).

• Every method or an initializer block is analysed separately.

• During the analysis of a method or an initializer block we do not go inside
any other method that is defined inside (e.g. a part of inner class definition or
anonymous class). In Java language, only the method, where a local variable
is defined, can modify the variable. In particular, when a class is defined
inside a method (also anonymous class) and performs an access to a variable
of the method, the variable must be declared as final.

• When a primitive value comes from unboxing, method call, field access, or
array access we assume that we know nothing about the value.

• No exception analysis is performed: at the entry to catch or finally block
we assume that anything might have happened (the state is cleared). Also
we do not analyse, where to a throw might lead.

• We assume that we analyse production code — assert expression content
is ignored.

Besides the assumptions listed above, we have to note that we highly depend
on the variable and type binding provided by the Eclipse JDT. Therefore, if the
project’s classpath settings are incorrect or incomplete, the analysis may give not
accurate results, i.e. some control points may not have the domain value calculated
at all or the result that is calculated may be imprecise. Regular CodeStatistics does
not have this limitation since it uses only syntactic matching.

6.2.4 Control Flow Graph
In order to create an abstract interpreter, one needs to build a control flow graph
for Java programs. Since in JavaAI every method or initializer block is analysed
separately, a separate control flow graph is created for every such item. We call
such graph a method control flow graph.

The method control flow graph is constructed by traversing the abstract syntax
tree of the method or the initializer and every time a statement is encountered,
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a specific graph fragment for that statement is built. An example of a control flow
graph fragment for Java for statement is presented in Fig. 6.1. The first step is to

for(int i=0; i < 15; i++) {
//Body

}

(a) Source code

ℒbefore

int i = 0

ℒloop

i < 15
ℒbody

Bodyℒendbody

i++

ℒclear

del i

ℒend

yes

no

continue

break

(b) Control flow graph

Figure 6.1: Fragment of a method control flow graph for the Java for statement.
Optional break and continue edges from loop body are present.

create consequent edges representing for loop initialization statements (e.g. int
i = 0), where new variables may be introduced. The last initialization edge leads
to the loop vertex, labelled ℒloop. Next, a conditional edge is created. It has two
output edges:

• positive, that leads to the graph fragment for the loop body, and later through
the for loop update statements back to the loop vertex,

• negative, that goes through the variable removal edge, where variables in-
troduced in for loop initialization statements are removed, to the node after
the loop (labelled ℒend).

Specific Modifications

In a few cases, implementation assumptions from Section 6.2.3 are applied that
simplify the process of creation of the control flow graph. A first example is the
Java enhanced for statement. This is just a syntactic sugar — every enhanced for

can be translated into a regular for [57, Section 14.14.2]. The value of the new
variable that is introduced in the enhanced for may come either from the array
access (if we iterate over array items) or from a method call possibly connected
with unboxing (if we iterate over a elements of a collection it is a result of a next
method call). Since we have assumed that we know nothing about such variables,
we simplify the construction of method control flow graph. An example of a frag-
ment of the method control flow graph for the enhanced for statement is presented
in Fig. 6.2. The first simplification is that the loop test is a “dummy” test that as-
sumes we know nothing. The second simplification is that the variable is not stored
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for(int i: expr()) {
//Body

}

(a) Source code

ℒbefore

expr()

ℒloop

del i ?

ℒvar

int i = ?
ℒbody

Body
ℒendbody

ℒend

yes

no

(b) Control flow graph

Figure 6.2: A simplified fragment of method control flow graph for the Java en-
hanced for statement.

between loop iterations: the introduction of the new variable is moved to the loca-
tion just before the loop body and the variable is removed just after the loop body.
Additionally, the variable is introduced with unknown value.

Another simplification of the method control flow graph construction is done
for the try-catch-finally block. Since we do not handle exceptions at all, we do not
analyse when a specific exception may be thrown. In Fig. 6.3 a fragment of the
method control flow graph that is created for the try-catch-finally statement is
presented.

try {
// Block

} catch {Exception1 e1} {
// EBlock1

} catch {Exception1 e2} {
// EBlock1

} finally {
//FBlock

}

(a) Source code

ℒbefore

Block EBlock1

ℒbeforeExc1

catch e1

ℒafterExc1

del e1

catch e2

ℒbeforeExc2

EBlock2

ℒafterExc2

del e2

finally

ℒbeforeFinally

FBlock

ℒend

(b) Control flow graph

Figure 6.3: A simplified fragment of method control flow graph for the Java try-
catch-finally statement.

For every catch statement we create a graph fragment that introduces a new
exception variable and after the catch block the variable is removed. There is
also a finally edge that leads from the input edge to the vertex directly before
finally block (it bypasses the block). This edge represents an uncaught exception.
Every abstract domain in JavaAI implements the abstract transfer function in such

175



Chapter 6 Extended Pattern Discovery in Evaluation of Abstract Domains

fashion, that the finally edge as well as any catch edge clears the knowledge (i.e.
it should return the top element of the domain). This way, it is not necessary to
create edges to catch and finally from every instruction of the block.

Variable Scope

In the construction of the control flow graph the scope of variables is taken into
consideration: some of the edges introduce new variables and there are special
edges that remove them. New variables may be introduced in two situations: at
the beginning of a method (method arguments) and in every block with explicit
variable declaration statement. Information that a variable is removed is attached to
every edge that goes to the target that is outside the scope of the variable, e.g. to the
edge that goes out of the variable declaration block. When attaching information
about variable removal, besides the regular end of a block, edges corresponding to
break, continue, and return statements are considered. It holds that for every
vertex in the method control flow graph all paths, which lead to the vertex, bring
the same set of variables (when one keeps track of the variable set: add and remove
them when going through mentioned edges).

6.2.5 Testing of JavaAI
The JavaAI , the abstract interpreter for Java, is implemented in Java and it works
as the Eclipse plugin. The implementation of various aspects of the interpreter
were thoroughly tested with unit tests. In the application of unit tests, Eclipse is
executed with a special workspace that contains a test project with all the test files.
The following aspects of the interpreter are tested:

Method control flow graph — a special text format is used to describe the graph
of a method. The description is stored with method’s Javadoc, and automat-
ically, read by the test engine and compared with the graph that is built for
the method.

Expression evaluation — analogically to the previous case, a special text format
is used to describe domain state in vertices of the graph. This is also stored
in method’s Javadoc. Multiple tests for evaluation of boolean expressions
(including lazy evaluation) and numeric expressions were created. The main
focus was on testing whether the interpreter correctly implements expression
evaluation principles of the Java language.

Statement evaluation — simple tests were created in order to verify if abstract
evaluation of statements works correctly.
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Domain tests — tests for intervals, booleans, non-relational domain of booleans,
non-relational domain of intervals, and the domain of boxes were created.
They check if the domain operations, i.e. join, meet, widening, comparison,
are properly implemented.

About 240 test cases were created, where some include multiple smaller tests. The
coverage obtained by these tests is over 75% of the code.

6.3 Extending CodeStatistics
The CodeStatistics tool was extended in order to make it possible to extend the
default XPath language so that user-defined functions can be used. The extension
is very generic. The Eclipse plugin engine mechanism, called Extension points,
was employed for the purpose. It makes it possible to extend an Eclipse plugin by
another Eclispe plugin. With this mechanism one can add new functions according
to the needs of a specific task.

CodeStatistics provides a codeStatistics.analysisPlugin extension point
for analysis plugins. An implementation of the extension provides:

• Analysis algorithm that can be applied on a piece of code and return a map
from AST nodes to analysis results. An interface of the plugin is presented
in Fig. 6.4.

public interface IAnalysisPlugin {
public String getName();
public void initialiseAnalysis();
public List<IAnalysisFunction> getExtensionFunctions();
public Map<ASTNode, Object> analyse(CompilationUnit cu);
public String getSummary();

}

Figure 6.4: Interface of the CodeStatistics anlalysis plugin.

• A number of extension functions that can be used in XPath queries, e.g.
ask questions about the analysis result. An interface of the analysis plugin
extension function is presented in Fig. 6.5.
The implementation of extension functions is a little bit more complex. In
this case, the programmer must define types of arguments and the result of
the function. These types are verified at runtime, when XPath is evaluated.

When Eclipse starts, CodeStatistics looks for extensions that are analysis plugins,
and then loads them in order to extend the XPath language by functions provided
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public interface IAnalysisFunction {
public String getName();
public Object execute(Object[] args, Map<ASTNode, Object> context);
public Class<?>[] getArgumentType();
public Class<?> getResultType();

}

Figure 6.5: Interface of the CodeStatistics analysis plugin extension function.

by the plugins. CodeStatistics itself adds one XPath function: cs:ast(<elem>)
that returns AST node for the XML elements. Extension functions may work on
these nodes.

6.4 JavaAI Analysis Extension for CodeStatistics
JavaAI implementation provides an analysis plugin implementation for CodeStatis-
tics. The plugin executes the JavaAI analyser on all methods and initializer blocks
of the source file. The analysis with multiple domains may be executed and results
compared. The execution of the analysis plugin should return a mapping between
AST node and analysis result objects, which in case of JavaAI are domain values.
In the implementation of the analysis plugin, the translation between AST nodes
and control points, for which domain values are computed, is simplified. Not every
AST node has a corresponding value and some nodes may have multiple values:

• For every statement in the code we actually have two values: one from the
control point just before the statement, and another one from the point just
after the statement.

• For every loop statement we attach the loop invariant value. This is done
in order to unify access to these values, otherwise for every loop kind we
would have to look for the invariant differently.

• AST nodes that are not statements do not have any value attached.

6.4.1 XPath Extension Functions
The analysis plugin provides XPath functions to access various abstract domain
values as well as functions to evaluate them (e.g. to check whether a value is non-
trivial — not the top element in the domain) or compare concrete values corre-
sponding to abstract ones. The plugin provides the following extension functions:

• cs:isTop(<domain-value) that returns true if the domain value is top.
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• cs:lt(<domain-value>, <domain-value>) is a function that can be used
to compare concrete domain values corresponding to the abstract ones. It re-
turns true if the concrete value corresponding to the first argument is strictly
less (by inclusion) than the concrete value corresponding to the second ar-
gument.

• cs:incomparable(<domain-value>, <domain-value>) is similar to the
previous function. The difference is that it returns true if the concrete value
corresponding to the first argument is not directly comparable with the con-
crete value corresponding to the second argument.

• cs:dom_before(<domain-name>, <ast-node>) is a function that returns
the value of an abstract domain with given name in the control point before
the AST node in the parameter, or empty sequence if there is no value.

• cs:dom_after(<domain-name>, <ast-node>) is similar to the previous
one, but returns the value of domain in the control point after the AST node
in the parameter.

• cs:dom_invariant(<domain-name>, <ast-node>) is a function that re-
turns the loop invariant for the domain with given name for the loop node in
the parameter, or empty sequence if the parameter is not a loop node.

6.4.2 JavaAI Analysis Plugin Configuration
In JavaAI analysis plugin, the user may define a number of abstract domains to use
in the analysis. To every such domain, the user has to assign a unique name that
is used to access domain values in extension functions. An example configuration

Figure 6.6: JavaAI analysis plugin configuration.
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of domains is presented in Fig. 6.6. In the screen, there are three abstract domains
configured:

• Bool × Intv with the name intv,

• Bool × Boxes with empty thresholds sequence — named boxes_empty,

• Bool × Boxes with simple thresholds sequence created from the box sur-
rounding the first argument in the widening sequence — named boxes_first-
box.

The domain configuration dialog, which is shown when the user defines new do-
main, is presented in Fig. 6.7. Currently, only two domains are provided:Bool×Intv
and Bool × Boxes, which has three strategies for widening thresholds available.

Figure 6.7: JavaAI analysis plugin domain configuration.

The analysis plugin executes JavaAI abstract interpreter separately for every
domain that is configured, therefore it may affect the waiting time experienced by
the user.

Note that there is also a timeout setting available (in the top of the preferences
window in Fig. 6.6) for the JavaAI analysis plugin. The purpose of this setting is
to stop the analysis of a single method or initializer block when it is taking longer
than the timeout value.

6.4.3 Example CodeStatistics XPath Configuration File
Here, an example of XPath configuration file is presented that uses the exten-
sion functions provided by JavaAI analysis plugin for CodeStatistics. We consider
JavaAI plugin configuration as presented in Fig. 6.6. An example XPath configu-
ration file for CodeStatistics is presented in Fig. 6.8.
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<descriptions>
<all name=”AllLoops” xpath=”//*[@isLoop]” />
<description name=”nonTrivialIntv”
xpath=’//*[@isLoop][cs:dom_invariant(”intv”, cs:ast(.))]

[not(cs:isTop(cs:dom_invariant(”intv”, cs:ast(.))))]’/>
<description name=”nonTrivialFirstBox”
xpath=’//*[@isLoop][cs:dom_invariant(”boxes_firstbox”, cs:ast(.))]

[not(cs:isTop(cs:dom_invariant(”boxes_firstbox”, cs:ast(.))))]’/>
</descriptions>

Figure 6.8: Example of an XPath configuration of the CodeStatistics.

In the example, we focus on loop invariants, therefore we search for elements that
are loops. The category nonTrivialIntv is used to find all non-trivial invariants
for the Bool×Intv domain, which is named intv in the JavaAI plugin configuration.
The XPath expression test for the category applies the following filters for the node:

• [@isLoop] to ensure the node is a loop node,

• [cs:dom_invariant(”intv”, cs:ast(.))] to ensure the loop invariant
for the domain named intv is present for the AST node corresponding to the
XML node,

• [not(cs:isTop(cs:dom_invariant(”intv”, cs:ast(.))))] to ensure
the invariant is not trivial.

6.5 Experiment: Evaluate Abstract Domain of Boxes

In this section, an experiment is described. It uses CodeStatistics with the JavaAI
analysis plugin to evaluate the abstract domain of boxes (see Chapter 4) focusing
on the widening operator enhancements proposed in Section 4.6. Since we focus
on the widening operator, the obvious choice is the analysis and comparison of
loop invariants.

In the experiment, the same set of projects was used as in the CodeStatistics loop
termination experiment presented in Section 5.5. We recall details of the projects in
Table 6.1. Note that one of the projects that was present in the first experiment with
CodeStatistics presented in the thesis — Spring toolkit, is missing in the list. This
is because the project depends on a large number of external libraries and we did
manage to configure the Java classpath for the Eclipse project properly. Therefore,
there were lots of variable and type binding errors, which highly disturbed results.
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Project Name Version Size in KLoC Number of loops
Oracle Berkeley DB (BDB) 5.0.34 253 3412
Google App Engine (GAE) 1.6.4.1 163 1853
Apache Hadoop 1.0.1 292 4726
Hibernate 4.1.2 405 2875
JEdit 4.5.1 111 1523
Tomcat 7.0.27 216 3023
AspectJ 1.6.12 385 7534
Vuze 4.7.0.2 496 6140
Total 2321 31086

Table 6.1: Details of analysed projects (sizes are given in Kilo Lines of Code).

6.5.1 Configuration
In the experiment, the following domains configuration of JavaAI analysis plugin
was used:

• Bool × Intv with the name intv,

• Bool × Boxes with empty thresholds sequence — named boxes_ldd, which
is actually the implementation of the widening operator for boxes based on
LDDs adopted to our representation,

• Bool × Boxes with simple thresholds sequence created from the box sur-
rounding the first argument in the widening sequence — named boxes_first-
box.

We were interested in finding non-trivial loop invariants. The CodeStatistics XPath
configuration file was an extension of the one presented in Fig. 6.8. Patterns for
computing non-trivial loop invariants for every domain in the experiment and mul-
tiple patterns for pairwise comparison of these loop invariants were created.

A timeout of 120 seconds was used for the analysis of a single method or initial-
izer block. After this time, the analysis was stopped and no domain values were
present in the analysis results for the method or initializer block. The XPath pat-
terns that were prepared took this into consideration: we say that domain A is better
than B if value of the domain A is present and either value of B does not exist or it
is strictly less precise than A — a strict inclusion of corresponding concrete states.

6.5.2 Results
Before the actual results of the comparison are presented, we focus on timeouts
that appeared during the analysis. Timeouts statistics details are presented in Ta-
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ble 6.2. For the domain intv there were no timeouts at all. For both variants of the
domain of boxes timeouts occurred for analysis of the same methods with one ex-
ception: JEdit project, where analysis for the variant with simple threshold finished
correctly. All timeouts happened for methods that were very large or highly com-
plicated. For example, the only method analysis that exhausted the time limit for
the Berkley DB project (accept from class com.sleepycat.asm.ClassReader)
has over 800 lines of code, 37 internal loops, and over 20 integer variables in the
scope at once in some of analysed control points!

Project Name intv boxes_ldd boxes_firstbox
Methods Loops Methods Loops

Berkley DB 0 1 37 1 37
Google App Engine 0 0 0 0 0
Hadoop 0 1 2 1 2
Hibernate 0 0 0 0 0
JEdit 0 1 35 0 0
Tomcat 0 1 3 1 3
AspectJ 0 3 7 3 7
Vuze 0 2 4 2 4
Total 0 9 88 8 53

Table 6.2: Timeout details for the anlaysis using the boxes domain.

Project
Name intv

Boxes with empty thresholds (boxes_ldd)
Non-trivial Better Worse Incomp.
∑ Δ (%) ∑ % ∑ % ∑ %

BDB 1986 1955 −1,56 378 19,03 39 1,96 2 0,10
GAE 1153 1153 0,00 113 9,80 0 0,00 2 0,17
Hadoop 2420 2428 0,33 656 27,11 6 0,25 23 0,95
Hibernate 1144 1144 0,00 277 24,21 0 0,00 0 0,00
JEdit 971 939 −3,30 206 21,22 37 3,81 1 0,10
Tomcat 1705 1701 −0,23 319 18,71 9 0,53 14 0,82
AspectJ 5366 5366 0,00 1882 35,07 21 0,39 112 2,09
Vuze 3782 3784 0,05 542 14,33 10 0,26 23 0,61
Total 18527 18470 −0,31 4373 23,60 122 0,66 177 0,96

Table 6.3: Comparison of non-trivial invariants for intv and boxes_ldd.

Now we present results of the comparison of both variants of the domain of boxes
with the domain of intervals. The results of the comparison of the first variant of
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the domain of boxes — boxes_ldd (with empty widening sequence thresholds) are
presented in Table 6.3. One may notice a slightly smaller number of non-trivial
loop invariants found for the domain of boxes in some of the projects. This is
caused by timeouts that appeared in the analysis. The number of cases, in which
we obtain strictly more precise loop invariant, is quite high: almost 1/4 of all cases.
Unfortunately, we also can notice a number of cases, in which we obtain a strictly
worse result (this includes timeouts), and a few when invariants are incomparable.

Project
Name intv

Boxes with simple thresholds (boxes_firstbox)
Non-trivial Better Worse Incomp.
∑ Δ (%) ∑ % ∑ % ∑ %

BDB 1986 1957 −1,46 385 19,39 37 1,86 1 0,05
GAE 1153 1153 0,00 125 10,84 0 0,00 0 0,00
Hadoop 2420 2431 0,45 695 28,72 2 0,08 0 0,00
Hibernate 1144 1144 0,00 279 24,39 0 0,00 0 0,00
JEdit 971 976 0,51 248 25,54 0 0,00 0 0,00
Tomcat 1705 1704 −0,06 335 19,65 6 0,35 5 0,29
AspectJ 5366 5370 0,07 2000 37,27 8 0,15 13 0,24
Vuze 3782 3784 0,05 590 15,60 4 0,11 3 0,08
Total 18527 18519 −0,04 4657 25,14 57 0,31 22 0,12

Table 6.4: Comparison of non-trivial invariants for intv and boxes_firstbox.

Analogical results for the variant of boxes with simple widening sequence thresh-
olds — boxes_firstbox, is presented in Table 6.4. The analysis with the variant with
simple thresholds caused finding a few non-trivial invariants more than with the
basic version of the widening operator. The number of strictly better results is also
higher: about 1,5% more such cases. With adding very simple thresholds we have
reduced the number of incomparable invariants by almost 8 times. Also, when we
take into consideration timeouts (subtract numbers from Table 6.2), we obtain only
4 loops, for which analysis with the domain of intervals gives strictly more precise
result.

The last part of the results concerns the direct comparison of the two widening
strategies for the domain of boxes, which is presented in Table 6.5. It is worth not-
ing that we have a marginal number of the cases, in which adding simple thresholds
leads to a strictly worse or incomparable result. On the other hand, the number of
cases, in which the result is strictly more precise, is noticeable — over 2%.
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Project
Name boxes_ldd

Boxes with simple thresholds (boxes_firstbox)
Non-trivial Better Worse Incomp.

Total Δ (%) ∑ % ∑ % ∑ %
BDB 1955 1957 0,10 16 0,82 0 0,00 0 0,00
GAE 1153 1153 0,00 18 1,56 0 0,00 0 0,00
Hadoop 2428 2431 0,12 57 2,35 5 0,21 0 0,00
Hibernate 1144 1144 0,00 3 0,26 0 0,00 0 0,00
JEdit 939 941 0,21 54 5,75 0 0,00 0 0,00
Tomcat 1701 1704 0,18 49 2,88 1 0,06 3 0,18
AspectJ 5366 5364 −0,04 149 2,78 2 0,04 16 0,30
Vuze 3784 3784 0,00 70 1,85 1 0,03 0 0,00
Total 14686 14694 0,05 346 2,36 8 0,05 19 0,13

Table 6.5: Direct comparison of Boxes with two widening operators: one with
empty thresholds (boxes_ldd) and the other with simple widening se-
quence thresholds (boxes_firstbox).

6.6 Summary
In this chapter, we have presented a tool that helps to evaluate and compare abstract
domains. We have applied it to evaluate the domain of boxes and compare the
proposed widening operator with the existing one from the construction based on
LDDs. The tool showed that the domain of boxes with a simple variant of the new
widening operator is almost never less precise than the domain of intervals, and
that in about 1/4 situations the result is strictly more precise. Additionally, it turned
out that the domain of boxes with the proposed widening operator is almost never
less precise than with the previously known widening operator, and that in about
1.5% situations the result is strictly better.
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Conclusions

The main objective of the thesis was to design a technique that could be used to
investigate practicality of abstract interpretation domains on real Java code.

The first matter we focused on was the abstract interpretation framework. An
implementation of the abstract domain of boxes was presented that is based on the
sweeping line technique that was not applied to the abstract interpretation before.
Two new widening operators for the domain were introduced. Both use threshold
points to enhance precision. The first operator is a generic one, the second is an
instance of the generic operator that has an interesting one-step precision charac-
teristic. Namely, it was proved that adding new threshold points to widening step
threshold may increase precision of the single-step application of the operator. Ex-
amples were presented, in which the proper choice of threshold points increases
precision, and also examples, in which the new widening operator is more precise
that previously known.

The second matter concerned CodeStatistics that had been developed. It is a tool
that makes it possible to discover patterns in large Java projects and generate speci-
fications. It was successfully applied to generate JML loop termination conditions.
Using it, we generated the JML decreases clauses for over 78% of numeric for

loops in large Java projects.
The last task of the thesis was a combination of the first and the second matter.

The CodeStatistics tool was extended by implementing a plugin engine that can be
used to extend the pattern language with semantic tests. An abstract interpretation
analyser — JavaAI was implemented as a part of this study. It works as the analysis
plugin for CodeStatistics. By connecting these two tools it was possible to evaluate
and compare abstract domains on real Java code. It proved that the domain of boxes

187



Chapter 7 Conclusions

with a simple variant of the proposed widening operator is more precise than with
the existing widening operator on typical code. Note that loop invariants that were
generated in the experiment can be transformed into specifications and together
with the loop termination conditions these specifications may be used to support
verification tools like KeY or ESC/Java2.
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