
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

N O N - M A L L E A B L E R A N D O M N E S S
E X T R A C T O R S

PhD Dissertation

konrad durnoga

under supervision of
Professor Jacek Pomykała

June 2013





Die ganze Zahl schuf der liebe Gott, alles Übrige ist Menschenwerk.
(God made the integers, all else is the work of man.)

— Leopold Kronecker

iii





D E C L A R AT I O N

Aware of legal responsibility I hereby declare that I have written
this dissertation myself and all the contents of the dissertation
have been obtained by legal means.

Warsaw, June 2013

Konrad Durnoga

SUPERVISOR’S DECLARATION

This dissertation is ready to be reviewed.

Warsaw, June 2013

Professor Jacek Pomykała

v





A B S T R A C T

We give an unconditional construction of a non-malleable extrac-
tor improving the solution from the recent paper Privacy Amplifica-
tion and Non-Malleable Extractors via Character Sums by Dodis et al.
(FOCS’11). There, the authors provide the first explicit example of
a non-malleable extractor – a cryptographic primitive that signifi-
cantly strengthens the notion of a classical randomness extractor.
In order to make the extractor robust, so that it runs in polynomial
time and outputs a linear number of bits, they rely on a certain
conjecture on the least prime in a residue class. In this dissertation
we present a modification of their construction that allows to re-
move that dependency and address an issue we identified in the
original development. Namely, it required an additional assump-
tion about feasibility of finding a primitive element in a finite field.
As an auxiliary result, which can be of independent interest, we
show an efficiently computable bijection between any order M
subgroup of the multiplicative group of a finite field and a set of
integers modulo M with the provision that M is a smooth number.
Also, we provide a version of the baby-step giant-step method for
solving multiple instances of the discrete logarithm problem in the
multiplicative group of a prime field. It performs better than the
generic algorithm when run on a machine without constant-time
access to each memory cell, e.g., on a classical Turing machine.

Keywords: randomness extractor, non-malleable extractor,
discrete logarithm, baby-steps giant-steps, derandomization,
algorithm with external memory.

ACM Classification: F.1.1, F.1.2, F.2.1

vii





S T R E S Z C Z E N I E

Rozprawa poświęcona jest analizie ekstraktorów losowości, czyli de-
terministycznych funkcji przekształcających niedoskonałe źródła
losowości na takie, które są w statystycznym sensie bliskie roz-
kładom jednostajnym. Główny rezultat dysertacji stanowi bezwa-
runkowa i efektywna konstrukcja ekstraktora pewnego szczegól-
nego typu, zwanego ekstraktorem niekowalnym. Jest to poprawie-
nie wyniku z opublikowanej niedawno pracy Privacy Amplification
and Non-Malleable Extractors via Character Sums autorstwa Dodisa
i in. (FOCS’11). Podana tam konstrukcja stanowiła pierwszy jawny
przykład ekstraktora niekowalnego, choć był to rezultat warun-
kowy, odwołujący się do pewnej hipotezy dotyczącej liczb pierw-
szych w postępach arytmetycznych. W rozprawie przedstawiona
jest modyfikacja rozwiązania Dodisa i in., która pozwala na usu-
nięcie tego dodatkowego założenia. Jednocześnie wskazana w dy-
sertacji i występująca w oryginalnym rozumowaniu luka, zwią-
zana z problemem wydajnego znajdowania generatora grupy mul-
tiplikatywnej w ciele skończonym, nie przenosi się na propono-
waną w rozprawie konstrukcję.

Słowa kluczowe: ekstraktor losowości, ekstraktor niekowalny, lo-
garytm dyskretny, algorytm małych-wielkich kroków, derandomi-
zacja, algorytm z pamięcią zewnętrzną

Klasyfikacja wg ACM: F.1.1, F.1.2, F.2.1

ix





A C K N O W L E D G M E N T S

I would like to thank Professor Stefan Dziembowski for introduc-
ing me to the topic of randomness extractors. My thanks also go
to members of the Cryptology and Data Security Group from Uni-
versity of Warsaw, in particular: Dr. Tomasz Kazana, Dr. Maciej
Obremski, and Michał Zając.

I appreciate guidance of my advisor, Professor Jacek Pomykała,
thanking for his help and understanding during my PhD studies.
I express my deep gratitude to Dr. Bartosz Źrałek, a coauthor of
the manuscript (Durnoga & Źrałek 2013) this thesis is based upon.

I am obliged to Professor Carl Pomerance for his hints on the
proof of Theorem 3.8. I also offer my thanks to Professor Joachim
von zur Gathen for reading the preprint (Durnoga & Źrałek 2013)
and pointing some references on generating safe primes and find-
ing elements of large orders in finite fields.

I acknowledge the financial support provided to me by the Euro-
pean Research Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement
no CNTM-207908.

Last but not least, I am indebted to my parents for their contin-
uous support from my very beginning. This thesis would not have
been possible without you.

xi





C O N T E N T S

1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 non-malleable extractor . . . . . . . . . . . . . . . . 9

4 online pseudorandom generator . . . . . . . . . . . 17

5 non-malleable extractor without the erh . . . . 25

6 effective bijection . . . . . . . . . . . . . . . . . . . . . 29

7 non-malleable extractor with long output . . . 37

8 computing discrete logarithms with gaussian

periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xiii





1
I N T R O D U C T I O N

One of the pivotal problems in practical computer science (suffice
it to mention such areas like scientific numerical computations,
probabilistic algorithms, or cryptographic purposes) is providing
users with “good” sources of randomness. Here, the word good
refers to statistical properties of a source which is supposed to
produce truly random bits, or at least to be close to uniform. Such
requirements can be accomplished using physical devices yet with
a caveat that specialized hardware can be relatively expensive and
not as efficient as needed in practice. Thus there emerges a need
to construct effective extractors – deterministic algorithms capable
of transforming a (cheap) source of weak randomness into a one
being close to uniform distribution. Employing an extractor allows
us to amplify the so called min-entropy that measures quality of
randomness of a source.

The history of this topic goes back to the ’50s and credit should
be given to von Neumann for his pioneer work on unbiasing a bi-
ased coin. The term extractor was devised by Nisan & Zuckerman
(1993) but the foundations of this field had been laid earlier by
Chor & Goldreich (1988), Cohen & Wigderson (1989), and Zuck-
erman (1990). One of the first explicit constructions of extractors
stem from works of Chor & Goldreich, or of Impagliazzo et al.
(1989) on hash function families. Since the late ’80s the problem
has drawn attention of many researchers which resulted in nu-
merous papers (see, e.g., a survey by Shaltiel (2002) for an exten-
sive list of references), one of the most notable being Trevisan’s
development built on pseudorandom generators. A major break-
through was due to Bourgain (2005) who challenged the problem
of breaking the famous 1/2-rate barrier.

1



2 introduction

An important contribution of Dodis et al. (2011) is showing that
the Chor-Goldreich extractor enjoys a non-malleability property,
which is apparently very strong. The term non-malleable extractor
was coined by Dodis & Wichs (2009) who, using this primitive,
gave a protocol for privacy amplification that remains secure in
presence of an active adversary. One considerable deficiency of
the solution by Dodis et al. is that it relies on certain long-standing
conjecture on the least prime in arithmetic progression. In this
dissertation, we slightly modify their construction and get an un-
conditional result. Also, we identify a pitfall in their development
which, in essence, is that the authors assume a primitive element
of a finite field is given. However, they do not elaborate on the ex-
act way of how this element can be chosen (this was overlooked by
the authors as confirmed in a private communication), and, in fact,
the question whether it is possible to generate such an element in,
say, Z/pZ for large p in polynomial time in logp remains an open
problem when the factorization of p− 1 is unknown. We address
this particular issue of the construction in subsequent chapters. We
note that a shortcoming of a similar nature is present in a work by
Li (2012b) which also covers non-malleable extractors.

There are several recent papers, e.g., by Cohen et al. (2012), Li
(2012b), and Li (2012a), discussing the non-malleability property
of extractors and related topics. They offer solutions superior, in
terms of min-entropy rate or error bound, to the construction of
Dodis & Wichs which, chronologically, is the earliest example of
a non-malleable extractor. These results were obtained using dif-
ferent means that supposedly have little to do with the number-
theoretic approach of Chor & Goldreich.

As a by-product of our considerations on non-malleable extrac-
tors we come up with a method for calculating certain bijective
mapping between a subgroup of (Z/pZ)∗ of large order M and
Z/MZ. A running time of our algorithm is roughly proportional
to the largest prime factor of M. The problem of finding such an
algorithm which is polynomial in logp can be interesting on its
own. This would have a remarkable impact in practical cryptogra-



introduction 3

phy. For instance, it is sensible to ask how to extract a random key
from a random group element, e.g., in the Diffie-Hellman proto-
col. Chevalier et al. (2009) show a simple shrinking function that
trims bit representation of a group element to its least significant
bits and produces satisfactory, if not optimal, results. Yet, com-
puting an exact bijection is known to be feasible only for certain
subgroups of (Z/pZ)∗, e.g., the subgroup of quadratic residues
mod p if (p− 1)/2 is a Sophie Germain prime.

The bottom line of the Chor-Goldreich extractor is computing
a discrete logarithm. The discrete logarithm problem (DLP) is ubiq-
uitous in cryptography, but here, unlike in other cryptographic
applications, we are interested in cases where this problem is ac-
tually easy to solve. This is done by the standard algorithm of
Pohlig & Hellman (1978) together with Shanks’ baby-step giant-
step (BSGS) method. We invoke it in several places and finally tai-
lor the generic BSGS algorithm to solve multiple instances of the
DLP in the multiplicative group of a prime field. The modification
does not offer any substantial improvements in the common com-
putation model, i.e., the RAM, where memory can be accessed in
constant time. However, in certain subgroups of (Z/pZ)∗ it out-
performs the BSGS method when run on a Turing machine. As
argued by Diem (2012), the motivation behind switching to the
Turing model is that the algorithm can possibly operate on large
amounts of data which cannot be fit into computer’s main mem-
ory at once. It thus has to reside on some slow external storage that
is abstracted with a machine’s tape. Historically, the very same ar-
gument led to developing algorithms for external sorting, such as
the mergesort. Diem reviews some nowadays standard number-
theoretic algorithms, including the BSGS method, implemented
on a multitape Turing machine. Where our solution departs from
the typical approach is in the fact that it does not involve sorting
large arrays. It is thus aimed at machines with a single work-tape,
where sorting is not a viable option.

The algorithms we propose in the dissertation are aimed at pro-
cessing multiple inputs. For instance, we present a method to cal-



4 introduction

culate an extractor-backing function for many arguments. In some
sense this algorithm is capable of “streaming” nearly random val-
ues. Its real-life counterparts are (pseudo-)random generators in
computer systems, yet with the difference that our program is
not initalized with a seed, but instead it has to be fed with ap-
propriate imperfect randomness repeatedly. An important feature
our algorithms enjoy is that they process their inputs sequentially.
That is, a portion of input is read, processed, and an answer is
returned before moving on to the next portion. Algorithms of this
kind, called online algorithms, are fundamental in interactive com-
putations, where the whole input is unavailable at start. Online
algorithms have been extensively studied, see, e.g., the survey by
Fiat & Woeginger (1998), and the interest they receive is motivated
by their applicability to operating systems and networks.

organization of the thesis . Some basic definitions, we re-
fer to later on, are listed in Chapter 2. For completeness of exposi-
tion, in Chapter 3 we recall the construction of a non-malleable ex-
tractor given by Dodis et al. and focus on its computational aspect.
In Chapter 4, we propose a method to evaluate extractor’s under-
lying function for multiple arguments without knowing a primi-
tive element in a finite field. A modified version of the extractor,
which performs equally well as the original one but does not in-
volve a primitive element, is presented in Chapter 5. Next, in Chap-
ter 6, we show bijective mappings to transform a group element
outputted by our extractor to an integer modulo some parameter.
Chapter 7 demonstrates that trimming a result of our extractor
to least significant bits produces nearly uniformly random values.
By this last fact we obtain an unconditional construction of a non-
malleable extractor with long output. Chapter 8 contains an algo-
rithm for finding discrete logarithms in GF(p) that surpasses the
usual BSGS method on a classical Turing machine when there are
multiple instances of the DLP to solve.



2
P R E L I M I N A R I E S

Throughout the dissertation p and q always denote prime num-
bers. We use the letter g for a primitive element of a prime field
Z/pZ, i.e., g is a generator of the multiplicative group (Z/pZ)∗.
We let M > 1 be a divisor of p− 1, possibly subject to some ad-
ditional restrictions stated separately in due course. For a prime
q |M, we use qαq to denote the largest power of q dividing M; in
short qαq ‖M. We write P+(M) for the largest prime divisor of M.
The cardinality of a set Z is denoted by |Z|. The same notation is
used to write the order of a finite group.

For fixed p and M, a subgroup of (Z/pZ)∗ that attracts our
particular interest in the remainder of the thesis is defined by

G := {a
(p−1)/M

| a ∈ (Z/pZ)∗} .

Closely related to G are its Sylow q-subgroups

Gq := {a
M/q

αq

| a ∈ G}

for each qαq ‖M.

computing discrete logarithms

We apply the well-known generic baby-step giant-step method
by Shanks (1971) to compute discrete logarithms in subgroups of
(Z/pZ)∗. Its running time for groups of order q isO

(
q
s poly(logp)

)
if it is allowed O

(
spoly(logp)

)
bits of memory, where the param-

eter s 6 q
1/2 can be chosen arbitrarily. Often, we use the BSGS

method in conjunction with the Pohlig-Hellman (PH) algorithm
for order M subgroups. Then, for any s 6

√
P+(M) the time com-

plexity becomes O
(
P+(M) · s−1 poly(logp)

)
with the same space

bound as in the generic BSGS.

5



6 preliminaries

Both algorithms are classic, yet there are some more recent de-
velopments, e.g., the ones by Terr (2000) or Stein & Teske (2005),
that offer slight advantages over the original BSGS method in cer-
tain settings. Our construction from Chapter 8 is also in this vein.

All the running costs we consider count the number of bit op-
erations and already include costs of group arithmetic. We use
the standard primitives for performing integer multiplication (e.g.
the Schönhage–Strassen algorithm) or exponentiation, yet their de-
tailed contribution to the overall time cost is hidden in a poly(logp)
factor. This factor could be made explicit but it would obscure the
general exposition.

min-entropy and probability distributions

The established way to define a randomness extractor, including
a non-malleable one which we introduce next, relies on the well-
known notion of min-entropy that measures randomness of a dis-
tribution. For a discrete random variable X, the min-entropy of X is
defined as

H∞(X) := min
x

log2
1

Pr(X = x)
,

where the minimum is taken over all x from the support of X.
In this context, it is a common practice to use the two phrases:
a random variable and a probability distribution interchangeably with
a slight abuse of notation. To quantify how similar two variables
X and X ′, both distributed over the same finite set X, are, we use
a statistical distance ∆(X,X ′) specified by

∆(X,X ′) := max
S⊆X

|Pr(X ∈ S) − Pr(X ′ ∈ S)|

= 1
2

∑
x∈X

|Pr(X = x) − Pr(X ′ = x)| .

We write X ≈ε X
′ to indicate that ∆(X,X ′) 6 ε for some ε > 0.

Typically, ε is required to be negligible in some security parameter,



preliminaries 7

say n. That is, ε as a function of n should vanish faster than the
inverse of any polynomial of n.
UZ stands for a uniform distribution over some finite set Z.

fourier analysis and non-uniform xor lemma

Fourier analysis is a paramount tool in the theory of randomness
extractors (see, e.g., the expository work by Rao (2007)). Although
we do not use these techniques ourselves in this thesis, we list
some basic notions to state results of other authors in subsequent
chapters. The notation we use is standard but we adopt the nor-
malization from the work by Dodis et al. which differs from the
one present in literature.

For two functions f, f ′ : X→ C over some finite set X their inner
product 〈f, f ′〉 is defined by 〈f, f ′〉 :=

∑
x∈X f(x)f

′(x). The `1-norm
of f is just ‖f‖`1 =

∑
x∈X|f(x)|. A probability distribution X over X

can also be viewed as a real-valued function assigning the proba-
bility Pr(X = x) to each x ∈ X.

A character of a finite abelian group H is any homomorphism
H → C

∗. A character is called non-trivial if it is not identically
equal to 1. All the characters of H form a finite abelian group,
called the dual group of H, with pointwise multiplication as the
group operation. The Fourier transform f̂ of a function f : H → C

is a function acting on the dual group of H. For every character φ
of H the Fourier coefficient f̂(φ) is defined as 〈f,φ〉.

Vazirani’s XOR lemma is, by all means, the main link that con-
nects random variables, statistical distances, and Fourier analysis
and it appears to be a folklore. For non-malleable extractors a more
general version of it, the non-uniform XOR lemma recently de-
vised and proven by Dodis et al., is needed. We formulate it below.

Lemma 2.1 (Dodis et al., Lemma 3.8). LetH be a finite abelian group.
Suppose that for a pair of random variables Z and Z ′ distributed over



8 preliminaries

H, and all characters φ and φ ′ on H with φ ′ non-trivial, we have the
following bound on the expectation of φ(Z) ·φ ′(Z ′):

(2.2) |E(Z,Z ′)[φ(Z)φ
′(Z ′)]| 6 α .

Then, ∆
(
(Z,Z ′), (UH,Z ′)

)
6 1
2α · |H| for a uniformly distributed vari-

able UH which is independent of Z ′.

We invoke Lemma 2.1 in the next chapter when discussing non-
malleability of the Chor-Goldreich extractor.



3
N O N - M A L L E A B L E E X T R A C T O R

In this chapter, we recall the construction of a discrete logarithm-
based randomness extractor. It was proposed in a seminal work by
Chor & Goldreich (1988). Below, we follow the exposition given
by Dodis et al. (2011) and point out some significant differences
between these two approaches. We comment on feasibility of eval-
uating the extractor, in particular, on how its key parameters can
be chosen effectively.

definition

A function Ext : X× Y → Z is a (k, ε)–non-malleable extractor if for
any pair of independent random variables X and Y, distributed
over X and Y, respectively, and every function A : Y→ Y satisfying
A(y) 6= y for each y ∈ Y, we have:

(3.1)
(
Ext(X, Y), Ext(X,A(Y)), Y

)
≈ε

(
UZ, Ext(X,A(Y)), Y

)
,

provided that H∞(X) > k, and Y is uniform on Y. Intuitively, this
definition states that if x is drawn from a sufficiently random dis-
tribution, then no adversary can distinguish Ext(x,y) from a ran-
dom value, even if he is given a random seed y and Ext(x,A(y))
for a function A the adversary could choose beforehand. We note
that this notion offers a significant strengthening of a randomness
extractor, where the condition (3.1) is substituted with Ext(X, Y) ≈ε
UZ, and a strong extractor, where we can use(

Ext(X, Y), Y) ≈ε
(
UZ, Y

)
in place of (3.1). Dodis & Wichs (2009) came up with a probabilistic
argument showing that non-malleable extractors exist under some

9



10 non-malleable extractor

plausible assumptions on parameters, yet no explicit construction
had been known until the work by Dodis et al. (2011).

construction

Now, suppose that we are given a prime p, a generator g of (Z/pZ)∗,
and a divisor M > 1 of p− 1. The crux of the Chor-Goldreich ex-
tractor is the following function fg : (Z/pZ)∗ → Z/MZ:

(3.2) fg(a) := logg a mod M

extended to Z/pZ by letting, e.g., fg(0) = 0. Theorem 3.3 declares
that one can build a non-malleable extractor based on fg.

Theorem 3.3 (Dodis et al., Theorem 4.1). For a fixed prime p, a divi-
sorM | p− 1, and a primitive element g, define Ext : Z/pZ×Z/pZ→
Z/MZ by

(3.4) Ext(x,y) := fg(x+ y) .

Then, for any k, the above function Ext is a (k, ε)–non-malleable extrac-
tor with ε = 2Mp1/42−k/2.

Note that the above theorem can be non-trivial only for source
entropy rate greater than 1/2, i.e., for k > (1/2+ δ) log2 p for some
constant δ > 0.

To prove Theorem 3.3 Dodis et al. use the non-uniform XOR
lemma (Lemma 2.1). An ingenious observation is that for any char-
acter φ of Z/MZ the composition φ ◦ fg corresponds to a Dirich-
let (multiplicative) character of (Z/pZ)∗. By making the most of
Weil’s estimate on character sums over finite fields (see, e.g., the
book by Schmidt (1976)) it is possible to handle the expectation on
the left-hand side of (2.2).

Prior to this result it had been known that (3.4) defined a ran-
domness extractor, which followed from the initial paper of Chor
& Goldreich. Later, Dodis & Oliveira (2003) established that Chor-
Goldreich extractor was strong. In fact, the main result Dodis et al.



non-malleable extractor 11

achieve is slightly more general than Theorem 3.3 in that it holds
for any finite field, not necessarily a prime one.

parameters

A subject of our foremost concern in this thesis is feasibility of
computing Ext, or, equivalently, fg. A variant of the PH algorithm,
where discrete logarithms are calculated modulo each qαq ‖ M,
allows for evaluating fg in O

(
P+(M)poly(logp)

)
steps. This is

polynomial time when M is sufficiently smooth. A problem that
arises here is how to generate suitable p and M with M | p− 1.
One can decide on the following approach. In order to have an
extractor outputting m bits, we pick M = 2

m. Given the values
of k and ε we expect to achieve, we take an integer n > m to be
an approximation of log2 p backtracked from the formula for ε of
Theorem 3.3. Let N = 2

n. We choose p to be the smallest prime
appearing in the residue class 1 (mod N). Each candidate can be
tested for primality in deterministic polynomial time, e.g., using
the algorithm by Agrawal et al. (2002) or Lenstra (2002), and the
searching procedure is effective under a widely-believed conjec-
ture (cf. Granville & Pomerance (1990)) on primes in arithmetic
progressions.

Conjecture 3.5. For any a and d with gcd (a,d) = 1 the least prime
p(a,d) in the arithmetic progression a (mod r) is O(ϕ(d) log2 d).

An argument of this kind is also given by Dodis et al., but ac-
tually their work contains an oversight in that it suggests look-
ing at the progression modM instead of modN. This, however,
does not guarantee a proper magnitude of a prime found in the
process. For instance, it could happen that M + 1 is prime, yet
p = M+ 1 would yield non-negligible ε in Theorem 3.3, regard-
less of the min-entropy bound k. Also, for this reason one cannot
apply, as suggested by Dodis et al., any of unconditional results on
Linnik’s constant (e.g. p(a,d) = O(d5) recently established by Xy-



12 non-malleable extractor

louris (2011)) in the case where M is small, say M = O(poly(k)) =
O(poly(logN)). Despite this fact, it is possible to generate p for
such M without relying on Conjecture 3.5, which comes at the
price of introducing nondeterminism. Namely, for small M and
N as above, we sample l uniformly at random such that l ≡ 1

(mod M) and N < l 6 2N. If l is prime then we pick p := l, re-
peating the procedure otherwise. The expected number of trials
is O(logN) which follows from the below corollary of the Siegel-
Walfisz theorem (cf. Iwaniec & Kowalski (2004)).

Theorem 3.6 (Siegel-Walfisz). Let π(x;a,d) be the function counting
the number of primes up to x which are congruent to a (mod d), where
gcd(a,d) = 1. Then, for any constant C > 0, it holds that

(3.7) π(x;a,d) =
π(x)

ϕ(d)
+OC(x log−C

x) .

An inherent downside of (3.7) is that the implied big-O constant,
which depends on C, is not effectively computable. The error term
in (3.7) limits applicability of the above theorem to small d, i.e.,
d = (log x)O(1). We note, however, that the asymptotic relation
π(x;a,d) ∼ π(x)/ϕ(d) is purportedly true for much broader range
of moduli d. Namely, under the Extended Riemann Hypothesis
(ERH) the error term in (3.7) can be reduced to O(x

1
2 log−C

x) for
any constant C > 0.

Another approach to generating p and M that only slightly dif-
fers from the previous ones would be finding a random prime
p of logN bits first, factoring poly(logN)-smooth part of p − 1,
and letting M to be a divisor of this part. To estimate the ex-
pected number of p that need to be tested until M of preselected
magnitude is found one can turn to density results for smooth
shifted primes. If we let π(x,y) count primes p 6 x such that p− 1
is y-smooth and write u = log x/ logy, then it is believed that
π(x,y) ∼ ρ(u)π(x) holds (see, e.g., the article by Pomerance & Sh-
parlinski (2002) for this conjecture and the current state of the art)



non-malleable extractor 13

for a wide range of u, where ρ(u) = u
−u+o(u) is the Dickman-

de Bruijn function. Unfortunately, even if this relation was true
for large u (like in the setting: x = N, y = O(poly(logN)), and
u = Ω(logN/ log logN)) then the expected searching time for p
and M would be Ω(ρ(u)−1), which is unacceptably large (expo-
nential in logN in our example). Readjusting some parameters
brings this complexity back to the polynomial level. Also, we only
need p− 1 to have a large smooth divisor but p− 1 itself does not
have to be smooth. Chor & Goldreich take the following path: fix

a parameter n, let N := n
√

log logn, and search for a prime p such
that N < p 6 N2 with p− 1 having an n-smooth part M between
p
3/16 and p1/4, where the actual exponents 3/16 and 1/4 are just

an artifact of their proof method which differs significantly from
the one used later by Dodis et al. and, in particular, does not work
for small M. The authors then claim that the search procedure
is effective as the probability of finding a suitable pair (p,M) is
Ω(1/ log2 n). This estimate comes from a private communication
with Carl Pomerance and is stated without a rigorous proof. It can
be inferred indeed from the below theorem.

Theorem 3.8. There exist efficiently computable positive constants x0
and C such that for every x > x0 and y > log x the number of primes
p 6 x with p− 1 having a y-smooth divisor exceeding x1/3 is at least
(Cu log logy)−u/3 · x/ log x, where u = log x/ logy.

As Carl Pomerance has pointed us, the theorem can be estab-
lished by modifying the reasoning given by Konyagin & Pomer-
ance (1996) (cf. the proof of Theorem 5.2 there) that relies on the
powerful result by Alford et al. (1994). The latter is excerpted as
Theorem 5.2 in Chapter 5, where we reuse it to obtain another, yet
simple, estimate for primes in arithmetic progressions.

We note that what Chor & Goldreich require is finding the full
factorization of p− 1 for each candidate p. This can be done by an
algorithm which is subexponential in logp but polynomial in n.
Then, a probabilistic primality test is run in attempt to construct



14 non-malleable extractor

a certificate using Pratt’s method. As an important by-product it
yields a primitive element g in Z/pZ if p happens to be prime.
Overall, Chor & Goldreich manage to construct a two-source ex-

tractor with the error bound ε = O
(
n
−2
√

log logn). This is clearly
negligible in n yet it is a bit uncommon to let the key parameters
p, M, and ε−1 be only subexponential in the security parameter.

Getting back to the work by Dodis et al., the last parameter that
has to be determined is g, but the authors do not comment on its
choice in the paper. In general, the problem of finding a prim-
itive element in a large finite field in deterministic polynomial
time remains open. On the other hand, if we have the full prime
factorization of p − 1 then there is an obvious randomized algo-
rithm to get such g efficiently. Now, if Conjecture 3.5 is assumed
then p− 1 is O(log2 p)-smooth and its factorization can be found
with ease. This procedure can be further derandomized under the
ERH. Namely, the theorem by Ankeny (1952) asserts that every
proper subgroup of (Z/pZ)∗ omits a small element, of magnitude
O(log2 p), in (Z/pZ)∗. This leads to a deterministic algorithm for
finding a generator of the whole group (Z/pZ)∗. The big-O con-
stant in the last bound was made explicit by several authors with
the up to date record 3

2 held by Wedeniwski (2001). In the light of
a conditional result by Shoup (1990) there is a primitive element
among the first O(log6 p) elements of Z/pZ. Later, also assuming
the ERH, Bach (1997) showed how to construct, in deterministic
polynomial time, a set of moderate size, i.e., of o(log4 p) residues,
that contains a primitive element.

Surprisingly, the problem of finding g gets more interesting in
the seemingly simpler case whenM is small, where Conjecture 3.5
is not needed and the factorization is not known. We observe,
however, that even in the general case what we actually need is
an element of order being equal to M or some multiple of M
in (Z/pZ)∗, but not necessarily a primitive element. That said,
if we had an element, say h, with M | ord(h) we could modify
our extractor first by sending x + y to 〈h〉 and then taking base



non-malleable extractor 15

h logarithm modulo M of the resulting image, i.e., Ext ′(x,y) :=

logh(x+ y)
(p−1)/ ord(h) mod M.

The task of generating an element of possibly large order is a bit
easier. For instance, Gao (1997) shows how to construct an element
of GF(pl) with order superpolynomial in l. This result can be use-
ful for the extractor in non-prime fields. Recently, Joachim von
zur Gathen has informed us that Gao’s result can be improved
to exponential orders but generated elements come from a small
extension of GF(pl) and not the base field itself (von zur Gathen
& Shparlinski 2001). The aforementioned theorem of Ankeny im-
plies that an element of orderM can be found efficiently under the
ERH. Finally, the profound work by Pila (1990) gives an uncondi-
tional algorithm for prime M with (logp)OM(1) running time in
Z/pZ but the exponent OM(1) depends on M. This allows us to
cover the case of extractors having output of constant length. How-
ever, we are still short of a method that works unconditionally for
general M. In Chapter 5 we explore the above idea of mapping
x+ y to some group of large order, which enables us to get rid of
generating g (or h) and computing discrete logarithms.





4
O N L I N E P S E U D O R A N D O M G E N E R AT O R

Below, we devise an algorithm for computing the function fg,
given by (3.2), where a primitive element g is not known in ad-
vance. Arguably, this task may not seem well posed as we can-
not viably calculate an unknown function in a deterministic way.
What we actually propose is a method for evaluating a certain
partial function f for multiple arguments ai, for say i = 1, . . . , `,
ensuring there always exists g such that f(ai) = fg(ai) for each ai.
The value of g depends on the given sequence of ai. There may
be more than one g yielding fg which is consistent with f, yet our
algorithm offers no feasible method to infer any of them explic-
itly. A motivation behind such an approach is that fg gives rise to
a non-malleable extractor no matter which g is plugged into it.

auxiliary lemata

Before we proceed to the algorithm, we prove two auxiliary facts.
Everywhere below when we use the term homomorphism, possibly
an injective or bijective one, we refer to a mapping between a sub-
group of (Z/pZ)∗ and an additive group modulo some integer,
typically G → Z/MZ or Gq → Z/q

αqZ, where qαq ‖ M. The
following lemma relates f and fg characterizing these primitive
elements g for which both functions are identical.

Lemma 4.1. Let ψ : G→ Z/MZ be an isomorphism and let a function
f : (Z/pZ)∗ → Z/MZ be given by

f(a) := ψ(a(p−1)/M) .

Then, f = fg for every primitive element g such that

g
(p−1)/M = ψ−1(1) .

17



18 online pseudorandom generator

Proof. Write g ′ for the unique element of G satisfying ψ(g ′) = 1.
Consider any primitive element g of Z/pZ such that g(p−1)/M =

g
′. Take any a ∈ (Z/pZ)∗ and let u := logg a. Now, g ′u modM =

a
(p−1)/M and hence

fg(a) = u mod M = (u mod M)ψ(g ′) = ψ(a(p−1)/M) ,

as claimed in the lemma. �

The below lemma is just an application of the Chinese remain-
der theorem (CRT) to bijective mappings Gq → Z/q

αqZ.

Lemma 4.2. Suppose that for each qαq ‖ M there exists a bijection
ψq : Gq → Z/q

αqZ. Then, the mapping ψ : G → Z/MZ defined by
means of the CRT by

(4.3) ψ(a) := ψq(a
M/q

αq

) mod qαq for each qαq ‖M

is a bijection. Moreover, if each ψq is an isomorphism then so is ψ.

Proof. Since |G| = M = |Z/MZ|, it suffices to show that ψ, as
given by (4.3), is injective. To this end, suppose that ψ(a) = ψ(b)

for some a,b ∈ G. In other words, it holds that ψq(a
M/q

αq

) =

ψq(b
M/q

αq

) for every qαq ‖M. By the fact that each ψq is a one-

to-one function, this relation is equivalent to aM/q
αq

= b
M/q

αq

.
Clearly, gcd{M/qαq | q is a prime, qαq ‖M} = 1, so there exist
integers rq satisfying

∑ ′
rqM/q

αq = 1, where the sum
∑ ′ ranges

over all qαq ‖M. Hence,

a = a
∑ ′
rqM/q

αq

= b
∑ ′
rqM/q

αq

= b

and ψ is indeed injective.
Additionally, if each ψq is a homomorphism, then for a,b ∈

G we obtain that ψ(ab) = ψ(a) + ψ(b) simply by adding two
formulæ (4.3) for ψ(a) and ψ(b), and applying the CRT. �



online pseudorandom generator 19

algorithm

In the light of the above lemata, our task boils down to construct-
ing an online algorithm that computes some isomorphism Gq →
Z/q

αqZ. We outline it as Algorithm 4.4. The idea is to keep track
of a generator of a currently known subgroup (generated by all
inputs processed previously) of Gq and, each time when the sub-
group grows after adding a new input, to extend the constructed
monomorphism in a consistent way.

Algorithm 1. Online computing of ψq.

Input: A sequence a1, . . . ,a` ∈ (Z/pZ)∗

Output: A sequence v1, . . . , v` such that ψq(a
(p−1)/q

αq

i ) = vi for
i = 1, . . . , ` and some isomorphism ψq : Gq → Z/q

αqZ

depending on a1, . . . ,a`

1. b0 ← 1

2. g0 ← b0 e0 ← q
αq/ ord(g0)

3. For i← 1, . . . , ` do 4–14

4. bi ← a
(p−1)/q

αq

i

5. If ord(bi) 6 ord(gi−1) then
6. compute 0 6 u < qαq such that gui−1 = bi
7. vi ← u · ei−1 mod qαq

8. gi ← gi−1 ei ← ei−1
9. Else

10. compute 0 < u < qαq such that bui = gi−1
11. let u = qβ ·w where q - w
12. vi ← (w−1 mod qαq) · ei−1

q
β mod qαq

13. gi ← bi ei ← vi
14. Output vi

Now, Algorithm 4.4 gives rise to a method of computing fg. This
is asserted by the below theorem.



20 online pseudorandom generator

Theorem 4.4. There exists a deterministic online algorithm that given
a sequence a1, . . . ,a` ∈ (Z/pZ)∗ computes fg(a1), . . . , fg(a`), where
fg is an epimorphism defined by (3.2) for some, a priori unknown, prim-
itive element g of Z/pZ depending on a1, . . . ,a`. The algorithm out-
puts fg(ai) for i = 1, . . . , ` before reading a subsequent argument ai+1.
A single value fg(ai) can be found inO

(
P+(M) · s−1 poly(logp)

)
time

using O
(
spoly(logp)

)
bits of space, where 0 < s 6

√
P+(M) is arbi-

trary.

Proof. Assume that Algorithm 4.4, having received a sequence
a1, . . . ,a`, outputs v1, . . . , v`. First, we demonstrate that there ex-
ists an isomorphism ψq : Gq → Z/q

αqZ satisfying

ψq(a
(p−1)/q

αq

i ) = vi .

Clearly, such ψq does not necessarily need to be unique.
An immediate observation is that for each bi computed in Line 4

of Algorithm 4.4, it holds that ord(bi) | q
αq , i.e., bi ∈ Gq. The loop

of Lines 3–14 preserves the following invariant: gi is a generator
of 〈b0,b1, . . . ,bi〉 ⊆ Gq. Clearly, 〈g0〉 = 〈b0〉. Now, suppose that
〈gi〉 = 〈b0,b1, . . . ,bi〉 after the ith iteration. If ord(bi+1) 6 ord(gi)
then bi+1 ∈ 〈gi〉, and setting gi+1 := gi does not violate the invari-
ant. In the case when ord(bi+1) > ord(gi), we get gi ∈ 〈bi+1〉 so
〈bi+1〉 = 〈b0,b1, . . . ,bi+1〉, and again the invariant is preserved
by letting gi+1 := bi+1.

We claim that Algorithm 4.4 constructs a sequence of implicit
monomorphisms µi : 〈gi〉 ↪→ Z/q

αqZ induced by µi(gi) := ei
with a property that µi restricted to 〈gi−1〉 is µi−1. Letting e0 :=

q
αq/ ord(g0) fixes a monomorphism µ0 : g0 7→ e0 which is ex-

tended afterwards, each time the else branch of Lines 9–13 is ex-
ecuted by the algorithm and the generator actually changes. We



online pseudorandom generator 21

first note that when gi−1 ∈ 〈bi〉 then qβ | ei−1, where u = q
β
w,

q - w, and u = logbi gi−1 was computed in Line 10. Indeed,

q
αq−βei−1 = q

αq−βµi−1(gi−1) = µi−1(g
q
αq−β

i−1 )

= µi−1(b
wq

αq

i ) = µi−1(1) = 0 (mod qαq) .

As the result, the division in Line 12 can be performed over in-
tegers. A simple calculation confirms that restricting µi to 〈gi−1〉
yields µi−1:

µi(gi−1) = µi(b
u
i ) = u · ei

= qβ ·w · (w−1 mod qαq) · ei−1/q
β mod qαq

= ei−1 = µi−1(gi−1) .

We also observe that the mapping gi 7→ ei is order preserving,
i.e., ord(gi) = ord(ei) for each i = 1, . . . , `. This follows from the
fact that q

αq

ord(bi)
‖ ei, which can be proven inductively using the

formula deriving ei from ei−1. This property of µi implies that µi
is injective.

Now, if after the `th iteration we end up with 〈b`〉 ( Gq, then
there exists an extension of µ` to an isomorphism Gq → Z/q

αqZ,
which could be computed by repeating Lines 9–13 with additional
b`+1 being a generator of Gq. It is also clear that µi(bi) = vi for
each i. This proves the existence of ψq for every qαq ‖ M. By
Lemma 4.1 and Lemma 4.2, one can efficiently obtain fg(ai) from

ψq(a
(p−1)/q

αq

i ) via the CRT.
We note that changing the initial value b0, set in Line 2 of Algo-

rithm 4.4, may lead to a different base g of fg.
For a single q, each bi and gi belongs to Gq, and so the cost

of order comparison is O
(
poly(logp)

)
. Therefore, the most time

and space consuming step is determining discrete logarithms in
Lines 6 and 10. Employing the PH algorithm together with the
BSGS method allows achieving it in O

(
qs

−1 poly(logp)
)

time and



22 online pseudorandom generator

O
(
spoly(logp)

)
space, where 0 < s 6 q1/2 can be chosen in ad-

vance. The overall complexity can be bounded above, as stated in
the theorem, by the cost of Algorithm 4.4 for q = P+(M) times
some polylogarithmic factor. �

indistinguishability

A notable difference between a non-malleable extractor and our
algorithm from Theorem 4.5 is that the former is defined in terms
of statistical distance between two distributions. Clearly, this in-
terpretation becomes void for distributions induced by a single
output of the algorithm, which is supposed to work for multiple
arguments. Although our construction does not constitute a re-
placement for the non-malleable extractor (3.4) in classic scenar-
ios, e.g., the privacy amplification protocol analyzed by Dodis &
Wichs (2009), we can still conceive of some analogue of indistin-
guishability that applies to this algorithm.

Corollary 4.5. Take p, M, k, and ε = 2Mp
1/4
2
−k/2 as in Theo-

rem 3.3. Let X and Y be two independent random variables distributed
over Z/pZ with H∞(X) = k and Y being uniform on Z/pZ. Consider
any, possibly computationally unbounded, distinguisher which is allowed
to pick a fix-point free function A : Z/pZ → Z/pZ. Suppose that the
following experiment is run:

(i) sample ` > 4 triples (xi,yi,ui)i=1,...,`, where xi is chosen from
the distribution X, yi from Y, ui from UZ/MZ, and each element
is sampled independently of all other choices,

(ii) run the algorithm from Theorem 4.5 on the sequence

x1 + y1, x1 +A(y1), . . . , x` + y`, x` +A(y`)

of length 2` obtaining

v1, v ′1, . . . , v`, v
′
`

as the result,



online pseudorandom generator 23

(iii) the distinguisher is given ` challenges of the form: (vi, v
′
i,yi) and

(ui, v
′
i,yi) simultaneously.

Then, for i = 4, . . . , ` the probability (taken over random coin tosses of
the distinguisher and all random choices made during the experiment
when sampling xi, yi, and ui) that the distinguisher tells apart the ith
pair (vi, v

′
i,yi) and (ui, v

′
i,yi) does not exceed 1/2+ ε+ 6 · 2−i.

Proof. We relate these chances to the ones of any distinguisher
for the extractor of Theorem 3.3, where a correct guess is made
with probability at most 1/2+ ε, uniformly for each pair. Ideally,
we would like to view each realization in our experiment as an
independent challenge. A possible dependence of algorithm’s out-
put on previous inputs (due to the relationship between gi and bj
for j = 1, . . . , i in Algorithm 4.4) is thus an issue. That said, from
the moment when for each q | M the corresponding bi generates
the whole group Gq, only the first branch in Lines 6-8 of If-Else
statement in Algorithm 4.4 gets executed. For a fixed generator of
Gq there is a fixed isomorphism ψq these lines implement verba-
tim. Put differently, if {(xj+ yj)

(p−1)/M
| 1 6 j < i} is a generating

set of G then there is no hidden dependence between subsequent
challenges starting from the ith one. The only things that the dis-
tinguisher can learn from the initial i− 1 challenges are: the iso-
morphism ψ induced by ψq with a set of primitive elements g
satisfying g(p−1)/M) = ψ

−1(1) (cf. Lemma 4.1), the distributions
X and Y. All these parameters are “public” and do not grant the
distinguisher any advantage, which follows from Theorem 3.3.

Now, we note that since each yj for j = 1, . . . , i− 1 is sampled
uniformly and independently, the values zj = (xj+yj)

(p−1)/M are
equidistributed over G. We argue that there may be only a short
sequence of initial distinguisher’s guesses which are correct solely
because 〈z1, . . . , zi−1〉 6= G. In fact, a general result by Pomerance
(2002) shows that the expected number of random samples to gen-
erate any finite cyclic group is less than three. Reducing his ar-
gument to our particular case we let Pj =

∏
q|M(1− q−(j+1)) to



24 online pseudorandom generator

be the probability that j + 1 random elements of G jointly gen-
erate the whole group. The probability of an event that the dis-
tinguisher tells apart the ith pair conditioned on the event that
〈z1, . . . , zi−1〉 = G is simply 6 1/2 + ε. It remains to estimate
1 − Pi−2. Bounding Pj above by Euler product for the Riemann
ζ function we get that Pj > ζ(j + 1)−1 for j > 1. Since ζ(j) 6
1 + 2−j +

∫∞
2 t

−jdt 6 1 + 3 · 2−j for j > 2 we have 1 − Pi−2 6
1− 1/(1+ 3 · 2−i+1) 6 6 · 2−i. �

We also notice that the additional 6 · 2−i term in adversary’s
advantage actually arises only in steps where the currently known
subgroup 〈gi〉, considered in Theorem 4.5, grows after adding a
new input. In the other case the probability of making a correct
guess is at most 1/2+ε as guaranteed by Theorem 3.3. As the final
remark, we note that Pj >

∏
q6M(1−q−(j+1)), where the product

is taken over all primes q 6M. Using a generalization of Mertens’
theorem for such a product, one can bound the additional error
term slightly better. Namely, we can hope for 1/ logM factor that
further reduces this term yet this is only a minor improvement.



5
N O N - M A L L E A B L E E X T R A C T O R W I T H O U T T H E
E R H

In this chapter, we provide an alternative construction of a non-
malleable extractor. As announced in Chapter 3, our idea is to re-
place discrete logarithm appearing in the Chor-Goldreich extractor
with exponentiation. This way we circumvent the problem of find-
ing a primitive element g of Z/pZ and remove a possible depen-
dence on the ERH. We still need a prime p andM | p− 1, although
in this chapter it is not required to assume that M is smooth. First,
we describe our extractor, which is effective provided that both
parameters are given, and then we reassess possibilities of gener-
ating suitable numbers p and M.

Lemma 5.1. Let p, M, k, and ε be constrained in the same way as in
Theorem 3.3. Then, the function ExtG : Z/pZ×Z/pZ→ G given by

ExtG(x,y) := (x+ y)(p−1)/M

is an efficiently computable (k, ε)–non-malleable extractor.

Proof. Set g to be any primitive element of Z/pZ. Then,

〈g(p−1)/M〉 = G .

Fix an isomorphism ψ : G→ Z/MZ induced by ψ(g(p−1)/M) = 1.
By Lemma 4.1 for all x,y ∈ Z/pZ it holds that

Ext(x,y) = ψ(ExtG(x,y)) ,

where Ext is the non-malleable extractor from Theorem 3.3 based
on fg. That is, the relation (3.1) holds for Ext and any independent
variables X with H∞(X) > k and Y – uniformly random on Z/pZ.

25



26 non-malleable extractor without the erh

Since ψ is bijective then by rearranging terms in the formula for
statistical distance between(

Ext(X, Y), Ext(X,A(Y)), Y
)

and
(
UZ/MZ, Ext(X,A(Y)), Y

)
we get that the distance is equal to the one between(
ψ

−1 ◦ Ext(X, Y),ψ−1 ◦ Ext(X,A(Y)), Y
)

and(
UG,ψ−1 ◦ Ext(X,A(Y)), Y

)
.

Therefore, ExtG is a non-malleable extractor with the same error ε
as Ext and can be computed in O(poly(logp)) time. �

In order to set up the extractor, i.e., to fix M and p, defined in
the above lemma, we can follow one of the approaches outlined
in Chapter 3. For instance, under Conjecture 3.5 this can be done
deterministically for a wide range of M. Unconditionally, if we
keep to Chor & Goldreich then Theorem 3.8 leads to an expected
polynomial time algorithm and only superpolynomial ε−1. An ex-
ponential bound is achievable via Theorem 3.6 for extractors with
short output, and presumably for all plausible M assuming the
ERH. We show how to make such a transition to large M with-
out relying on any conjectures. This stems directly from the fact
that the error term in (3.7) can be reliably controlled even for large
(exceeding the polylogarithimic bound) d with only few excep-
tional moduli d. Of several results of this type, among them the
Bombieri-Vinogradov (BV) theorem, we apply the one from the in-
fluential paper by Alford et al. (1994), which is best tailored to our
particular application.

Theorem 5.2 (Alford et al. 1994). For every κ > 0 and 0 < λ < 5
12

there exist constants γ > 0, x0, and D, all depending only on κ and λ,
such that for every x > x0 there is a set D(x) of at most D integers with
the following property: for every y and each 1 6 d 6 min(xλ,y/x1−λ)
coprime to a and not divisible by any element of D(x) it holds that∣∣∣∑∗

p6y

logp−
y

ϕ(d)

∣∣∣ 6 κ y

ϕ(d)
,



non-malleable extractor without the erh 27

where
∑∗ runs over all primes p ≡ a (mod d) and a is fixed. Moreover,

all elements of D(x) exceed log x, and all, but at most one, exceed xγ.

As an immediate consequence of Theorem 5.2 we obtain the below
corollary.

Corollary 5.3. For all sufficiently large z, z ′, and all l > 0 satisfy-
ing (z+ l)4 < 1

2z
′ there exist at least 13z

′
/(ϕ(d) log z ′) primes in the

interval (12z
′, z ′] that belong to the arithmetic progression 1 (mod d)

for every modulus d from (z, z+ l) with at most O
(
l/ log(z+ l)

)
excep-

tional d.

Proof. Fix κ := 1
9 , λ := 1

4 , and apply Theorem 5.2 with x :=

(z + l)4, y := z
′, provided that z is sufficiently large. Then the

interval (z, z+ l) is contained in the range of valid d the theorem
is applicable to. Ignoring possible overlaps, there are at most D ·
(bl/ log xc+ 1) = O

(
l/ log(z+ l)

)
integers in (z, z+ l) divisible by

some element from the set D(x). For every other d in this interval
we have that ∑∗

p6z ′
logp > (1− κ)z ′/ϕ(d) .

Applying Theorem 5.2 the second time with y replaced with y :=
1
2z
′ yields, for the same modulus d, an upper bound of the form∑∗

p612z
′

logp 6 1
2(1+ κ)z

′
/ϕ(d) .

Combining these two estimates together and bounding logp triv-
ially by log z ′ we get the claimed result. �

Now, suppose that we are to construct a (k, ε)–non-malleable ex-
tractor being given a min-entropy rate 1/2+ δ 6 1, an error ε, and
a number of bits m the extractor should output. These parameters
can be realized if, for some m-bit modulus M, we choose p ≡ 1
(mod M) to be an n-bit prime, where

n := d2δ−1(log2 ε
−1 +m+ 2)e .



28 non-malleable extractor without the erh

The last value follows from the error bound ε = 2Mp
1/4
2
−k/2 of

Theorem 3.3 with k = (1/2+ δ) log2 p. Under these constraints we
pick pairs (M,p) in a nondeterministic way, sampling M first and
then testing whether a random element p in the arithmetic pro-
gression modM is prime. By Corollary 5.3 the expected number
of Bernoulli trials until the first success does not exceed

(1−O(1/m))−1 ·O(log 2n+1) = O(n) .

Alternatively, we can derive a similar corollary from the better
known BV theorem, which provides even more relaxed condition
on d, yet at the expense of lengthening intervals where d or p
should be searched in, and, more importantly, of having ineffective
constants (due to appeal to the Siegel-Walfisz theorem). Since the
formula for ε implies that we are only interested in the case where
p > M

4, the BV theorem offers no advantage. On the other hand,
the proof method used by Alford et al. does allow for computing
all the constants referenced in Theorem 5.2, and thus the estimate
of running time of our algorithm is effective.



6
E F F E C T I V E B I J E C T I O N

A drawback of the solution from Chapter 5 is that ExtG produces
values belonging to the group G. It may be regarded impractical
as G, viewed as a set of bit-strings, has an “irregular” structure.
Thus, one may favor an extractor outputting values from Z/MZ,
which are easily transformable to nearly random bits, over ExtG.
Below, we work out an explicit bijective mapping σ : G → Z/MZ

so that σ ◦ ExtG is such a preferred extractor. The construction im-
plies that σ is efficiently computable when M is a smooth number,
which essentially means that calculating discrete logarithms in G
is feasible. We, however, do not assume that a generator of G is
known a priori nor we attempt to find one nondeterministically.
Our result can be easily generalized to any cyclic group of smooth
order, not necessarily a multiplicative subgroup of a prime field, as
long as its elements possess a natural representation as bit-strings.

We note that the problem of finding efficiently computable σ
for general groups of any order may be of independent interest.
It could be of practical value if achieved for cryptographically
significant groups, where the DLP is actually hard. For instance,
when used as a key derivation primitive after Diffie-Hellman key
exchange phase it would allow extracting a random string from
a random group element. Chevassut et al. (2006) give a simple ex-
tractor for that when p = 2q+ 1 and q is an odd Sophie Germain
prime. Then, taking G to be the subgroup of quadratic residues
mod p, letting M = q, and interpreting elements of G as integers,
we can define the bijection by:

σ(a) =

{
a if a 6 q

p− a otherwise .

29



30 effective bijection

Sophie Germain primes often appear in handbook cryptographic
protocols yet their density remains conjectured, and it is not even
known whether there exist infinitely many such numbers. Recently,
Joachim von zur Gathen has pointed out to us that safe primes p of
slightly more general form, namely such that (p− 1)/2 possesses
at most two prime factors and each factor is large, are provably suf-
ficiently dense and can be reliably generated (von zur Gathen &
Shparlinski 2013). As every number outputted by their algorithm
is a Blum prime, i.e., p ≡ 3 (mod 4), and thus −1 is a quadratic
non-residue modulo p, the above extractor by Chevassut et al. also
applies to such primes. However, the smoothness condition we
assume makes constructing σ possible for much wider family of
groups. To the best of our knowledge, the case where no generator
of G is given has not been considered before.

In the first step, we describe a method for calculating a bijection
σq : Gq → Z/q

αqZ for each qαq ‖M. The big picture of how the
construction of σq looks like is quite simple: we organize members
of Gq in a certain sequence and let σq correspond to a position in
that sequence. The elements are arranged with respect to their
multiplicative orders in (Z/pZ)∗. If these happen to be the same
for some two elements then we recursively check positions of qth
powers of these elements. We formalize this approach below.

Fix a prime divisor q of M. For any a ∈ Gq we define the
radical R(a) of a to be R(a) := {b ∈ Gq | b

q = a
q
}. Suppose that

we are given an auxiliary function θq : Gq → {0, 1, . . . ,q− 1} with
θq(1) = 0 and satisfying the following property:

for each a ∈ Gq the function θq restricted to the radical R(a)
is a bijective mapping R(a)→ {0, 1, . . . ,q− 1}.

Below, we give two examples of how θq can be specified in
a way enabling its efficient evaluations provided M is smooth.



effective bijection 31

Based on θq we define a strict total order ≺ on Gq recursively
so that b ≺ a iff b 6= a and one of the below conditions holds:

ord(b) < ord(a)(6.1)

ord(b) = ord(a) and bq ≺ aq(6.2)

b
q = aq and θq(b) < θq(a) .(6.3)

Finally, we let σq : Gq → Z/q
αqZ be a bijective mapping induced

by this ordering:

(6.4) σq(a) := |{b ∈ Gq | b ≺ a}| .

Figure 6.5 depicts how this construction works. Each cell repre-
sents a single element of Gq. All q elements of every radical are

grouped as except for the neutral element ofGq, which is drawn

separately.
Our intermediate goal is to prove that if θq is efficiently com-

putable then so is σq.

Lemma 6.6. The function σq satisfies the following recursive relation

(6.7) σq(a) =

{
θq(a) if ord(a) 6 q

q · σq(a
q) + θq(a) if ord(a) > q2.

Proof. By the definition of ≺, the claim is clear for a ∈ Gq with
ord(a) 6 q. We verify the second property of (6.7). Let ord(a) =

q
α for α > 2. Consider a partition of {b ∈ Gq | b ≺ a} into sets S1,

S2, and S3 implied by (6.1)-(6.3):

S1 := {b ∈ Gq | ord(b) < qα}

S2 := {b ∈ Gq | ord(b) = qα and bq ≺ aq}
S3 := {b ∈ R(a) | θq(b) < θq(a)} .



32 effective bijection

ord(a) = 1

ord(a) = q

ord(a) = q2
ord(a) = qαq

Figure 6.5: An ordering of Gq for q = 5 inducing a bijection
σq : Gq → Z/q

αqZ.

It is straightforward that |S1| = q
α−1, |S3| = θq(a), and

|S2| = q · |{c ∈ Gq | ord(c) = qα−1 and c ≺ aq}|

= q ·
(
|{c ∈ Gq | c ≺ aq}|− |{c ∈ Gq | ord(c) < qα−1}|

)
= q ·

(
σq(a

q) − qα−2
)

.

Hence, σq(a) = |S1|+ |S2|+ |S3| = q · σq(a
q) + θq(a). �

We are now ready to prove the principal result of this section.



effective bijection 33

Theorem 6.8. There exists a bijective mapping σ : G → Z/MZ such
that for a given h ∈ G the corresponding value σ(h) can be computed by
a deterministic algorithm in O

(
P+(M)poly(logp)

)
time.

Proof. For the sake of this proof we instantiate θq with a bijec-
tion induced by lexicographical order on each radical. That is:

θq(a) := |{b ∈ R(a) | b < a}| ,

where the comparison b < a is over integers. We argue that the
bijection σq given by (6.4) for every q | M can be computed ef-
ficiently, i.e., in O

(
qpoly(logp)

)
steps, using the dependency of

Lemma 6.6. Take any a ∈ Gq. We can assume that a 6= 1 and let
ord(a) = q

α for some α > 1. To find σq(a), by (6.7), we need

to compute the successive values σq(a
q
α−1

),σq(a
q
α−2

), . . . ,σq(a),

and the only difficulty lies in determining θq(a
q
i

) for each i =

0, . . . ,α − 1. Note that for any c ∈ Gq \ {1} the radical R(c) is
composed of precisely these bj ∈ Gq which can be expressed
as bj = ε

j · c, where ε is some qth root of unity in Gq, and

j = 0, . . . ,q− 1. For instance, we can take ε = a
q
α−1

. All bj are
pairwise distinct. Therefore

R(aq
i

) = {(aq
α−1

)j · aq
i

| 0 6 j 6 q− 1} .

Calculating θq(a
q
i

) is thus a straightforward task – it suffices to

generate all members of R(aq
i

) on the fly and count only these

elements that precede aq
i

lexicographically. Here, we observe that
the whole process can be achieved within O

(
poly(logp)

)
space.

Applying Lemma 4.2 we obtain a bijection σ such that a single
value of σ is computable via the CRT in O

(
P+(M)poly(logp)

)
deterministic time. �

We are also able to devise an algorithm that calculates a bijection
for multiple arguments reducing the asymptotic cost for a single
computation.



34 effective bijection

Algorithm 2. Online computing of θq.

Input: A sequence a1, . . . ,a` ∈ Gq \ {1}
Output: A sequence θq(a1), . . . , θq(a`)

1. α← 0 εα ← 1

2. For i← 1, . . . , ` do 3–10

3. find β such that ord(ai) = q
β

4. While β > α do 5–6

5. compute 0 < u 6 qβ such that aui = εα
6. α← α+ 1 εα ← max6 R(a

u/q
i )

7. εβ ← ε
q
α−β

α

8. compute 0 6 t < qβ−1 such that
(
ε
q
β

)t
= aqi

9. compute 0 6 v < q such that (εq
β−1

β )v = aiε
−t
β

10. Output v

With Algorithm 6.9 we can prove the following result.

Theorem 6.9. There exists a deterministic online algorithm that com-
putes some fixed bijective mapping G → Z/MZ. The algorithm uses
O(spoly(logp)

)
bits of memory, and its total running time for ` in-

puts is O
(
P+(M)(`s−1 + 1)poly(logp)

)
, where 0 < s 6

√
P+(M) is

arbitrary.

Proof. By Lemma 4.2 and Lemma 6.6 it suffices to show that,
for each qαq ‖ M, Algorithm 6.9, given a1, . . . ,a` ∈ Gq \ {1}, out-
puts θq(a1), . . . , θq(a`) for certain θq, and that it does so within
O
(
q(`s−1+1)poly(logp)

)
time usingO

(
spoly(logp)

)
space. First,

we provide an explicit formula for θq. With each order qα for α =

0, . . . ,αq we associate an element εα ∈ Gq such that ord(εα) = q
α,

and εα is defined inductively by: ε0 := 1 and

(6.10) εα+1 := max6
{
b ∈ Gq \ {1} | b

q = εα
}

,

where, again, 6 is the lexicographical order. Also, we pair ev-
ery a ∈ Gq \ {1} with ξ = ξ(a) ∈ R(a) in the following way:



effective bijection 35

let ord(a) = q
β and t be the smallest positive exponent satis-

fying ε
t
β−1 = a

q. Then ξ(a) := ε
t
β. One can easily verify that

ξ
q = ε

tq
β = ε

t
β−1 = a

q so, by the definition of radical, ξ ∈ R(a).
Finally, we set

(6.11) θq(a) := logε(aξ
−1) for a 6= 1 ,

where ε := ε1 and ξ := ξ(a). This is a well-defined function admit-
ting values from {0, 1, . . . ,q− 1}, which comes from the fact that
a and ξ belong to the same radical, aξ−1 and ε are qth roots of
unity in Gq. Further, observe that all elements of R(a) share the
same t, and thus ξ(a) = ξ(a ′) for every a ′ ∈ R(a), a ′ 6= 1. There-
fore θq restricted to each R(a) is injective, so indeed it satisfies the
required property.

Now, for each a = ai of order qβ, provided that εβ is calculated
correctly in Line 7 of Algorithm 6.9, Lines 8 and 9 literally imple-

ment (6.12) because εqβ = εβ−1 and εq
β−1

β = ε. If, at the beginning
of the ith iteration of Lines 2–10, we happen to have β 6 α then,
clearly, εβ is the qα−βth power of current εα. In the other case, ai
is of larger order than εα, so the exponent u calculated in Line 5 is
divisible by q. It is thus possible to update εα according to (6.11)
and advance α up to β.

The use of the PH algorithm with the BSGS method to find u,
t, and v contributes O(q/spoly(logp)) to time complexity in each
iteration of the main loop, where s 6

√
P+(M) can be chosen

arbitrarily. Each update of εα in Line 6 requires enumerating all
elements of the radical R(au/qi ), which can be achieved, as we have
already mentioned in the proof of Theorem 6.8, inO(qpoly(logp))

steps using some qth root of unity, e.g., aq
β−1

i . The overall number
of times the inner loop can be executed is at most αq = O(logp).
Hence the total cost of the algorithm. �

We note that in the above proof the functions θq and, conse-
quently, the induced bijection are all fixed, i.e., they do not depend
on inputs supplied to the algorithm, as opposed to the construc-



36 effective bijection

tion from Theorem 4.5. Also, for ` = Ω(s) the time complexity be-
comes O

(
` · P+(M) · s−1 poly(logp)

)
as we can disregard the term

that emerges from finding members of each radical R(au/qi ). Thus,
the amortized cost for a single argument keeps up with the stan-
dard “qs -time vs. s-memory” correspondence of the BSGS method
for groups of order q.



7
N O N - M A L L E A B L E E X T R A C T O R W I T H L O N G
O U T P U T

Below, we complete the development of the non-malleable extrac-
tor initiated in Chapter 5. The bijection σ : G→ Z/MZ constructed
in Chapter 6 provides a lossless conversion of our extractor’s out-
put to Z/MZ. That is, σ ◦ ExtG achieves the same error ε as ExtG
has. The computational limitation, however, is that σ remains ef-
fective only when M is smooth. It essentially means that we end
up with the same problem concerning M and p as in the extractor
by Dodis et al. discussed in Chapter 3. The procedure we have for
generating these parameters, but with an additional smoothness
requirement on M, is conditional unless M is small, polynomial
in logp. Now, we focus on the more challenging case of a non-
malleable extractor with long output, i.e., having a range of cardi-
nality pΩ(1).

An elementary observation towards our final construction is
that we can, in fact, allow some entropy loss when transforming
elements of G to strings of bits. Put differently, we do not necessar-
ily need σ in the composition σ ◦ExtG to be injective. The solution
we propose is to take some fixed fraction of bits appearing in bit
representation of elements of G. This is a natural and quite simple
approach, yet a strict estimate of error bound for such an extractor
is not that straightforward and requires more involved arguments.

The idea of restricting representations to least significant bits
is not new in the theory of randomness extractors. For instance,
one of the classical examples in this field (cf. Holenstein (2006))
uses trimming elements of binary Galois fields as its ingredient.
Fouque et al. (2006) and Chevalier et al. (2009) study suitability
of such a method for extracting random bits from Diffie-Hellman
elements of multiplicative groups of prime fields and of groups on

37



38 non-malleable extractor with long output

elliptic curves over prime fields. Finally, Dodis et al. also suggest
a similar way to circumvent the inconvenient divisibility condition:
M | p− 1. We briefly restate their result to compare the parameters
they attain with ours.

Let p andN < p be given numbers, and g be a primitive element
of Z/pZ. Define a function σ : Z/(p− 1)Z → Z/NZ by σ(a) :=

a mod N. Dodis et al. consider an extractor

(7.1) Ext ′(x,y) := σ
(
logg(x+ y)

)
= logg(x+ y) mod N ,

which is given by virtually the same formula as Ext before, yet
this time we allow that N - p − 1. Clearly, this construction is
purely theoretical because evaluating Ext ′ gets even more intricate.
Namely, no more efficient method to do this is known other than
finding logg(x+ y) first and then reducing the result mod N. Us-
ing the PH algorithm for this purpose yields running time roughly
proportional to P+(p− 1) which is not practical.

Now, for a character φ of Z/NZ the composition φ ◦ σ ◦ logg
may not be a Dirichlet character of (Z/pZ)∗ if N - p − 1. This
is a problem which impedes proving that for N ≈ M the above
extractor Ext ′ enjoys approximately the same error bound as Ext
does. The expectation (2.2) cannot be estimated with Weil’s bound,
and thus the hypothesis of Lemma 2.1 is not satisfied. Instead,
Dodis et al. establish the following extension of the non-uniform
XOR lemma.

Lemma 7.2 (Dodis et al., Lemma A.3). LetH1 andH2 be finite abelian
groups. Suppose that for two random variables Z and Z ′, distributed over
H1, it holds that |E(Z,Z ′)[φ(Z)φ

′(Z ′)]| 6 α for every pair φ,φ ′ of char-
acters over H1 with φ non-trivial. Let σ : H1 → H2 be any function
satisfying

(7.3) ‖ψ̂ ◦ σ‖`1 6 β · |H1|

for every character ψ of H2. Then,

∆
((
σ(Z),σ(Z ′)

)
,
(
σ(UH1),σ(Z

′)
))
6
1

2
αβ · |H1| ,



non-malleable extractor with long output 39

where UH1 is uniform and independent of Z ′.

In a sense, the condition (7.3) captures the distance between σ
and a homomorphism. We note that if σ is an epimorphism then,
for a non-trivial ψ, the composition ψ ◦σ is also a non-trivial char-
acter. In this scenario the left-hand side of (7.3) is equal to |H1| and
Lemma 7.2 becomes the same as Lemma 2.1.

To bound the `1-norm of ψ̂ ◦ σ in the particular case where σ is
a reduction modulo an integer, we can use the following lemma
attributed to Rao (2007).

Lemma 7.4 (Dodis et al., Lemma A.4). Let L and N < L be integers.
For H1 = Z/LZ, H2 = Z/NZ, a function σ : H1 → H2 given by

σ(a) := a mod N ,

and any character ψ of H2, it holds that ‖ψ̂ ◦ σ‖`1 = O(L logL).

With H1, H2, and σ as in Lemma 7.4 it is not hard to see that

(7.5) ∆
(
σ(UH1),UH2

)
6 2N/L .

Now, let X and Y be any independent random variables over
Z/pZ with H∞(X) > k and Y uniform on Z/pZ. Combining
Lemma 7.2, Lemma 7.4, Weil’s bound for character sums, and (7.5)
for Z = logg(X+ Y), Z ′ = logg

(
X+A(Y)

)
, L = p− 1, H1 = Z/LZ,

and H2 = Z/NZ, we get the below result.

Theorem 7.6 (Dodis et al., Theorem A.1 and Lemma A.2). For any
prime p, a primitive element g of Z/pZ, and positive integers k and
N < p, the function Ext ′ given by (7.1) is a (k, ε ′)–non-malleable ex-
tractor with

(7.7) ε
′ = O(Np1/42−k/2 logp+N/p) .

Again, (7.7) is meaningful only for sufficiently large k and mod-
erately largeN. Namely, ε ′ is non-trivial if for some constant C > 0
we have k > 1

2 log2 p+ log2 logp+C and N 6 2k/2−Cp−1/4.



40 non-malleable extractor with long output

Our goal in this chapter is to demonstrate a similar bound but
for logg(x+ y) in (7.1) replaced with ExtG(x,y). There are, how-
ever, two difficulties on this route. First, Rao’s proof of Lemma 7.4
breaks if repeated for H1 = G. This is because his reasoning relies
on the fact that elements of H1 are consecutive integers, which
is not the case for G. So instead of using the lemma and Fourier
analysis, we bound statistical distance directly at the expense of
a slightly worse error estimate. The second problem we encounter
pertains to bounding above ∆

(
σ(UG),UZ/NZ

)
like in (7.5). Obtain-

ing a suitable inequality is possible yet it involves employing more
sophisticated tools. We elaborate on this below.

For simplicity, we consider the case where N is a power of two,
say N = 2

n. Then, the function σ(a) = a mod N = lsbn(a) trims
an element a ∈ G to n least significant bits. Chevalier et al. (2009)
prove, using exponential sum techniques, that such a truncation of
a random element of a sugroup H of (Z/pZ)∗ yields a nearly ran-
dom string of bits. The authors focus only on rather large groups,
i.e., |H| = Ω(p1/3), which have greater cryptographic significance
and, more importantly, allow using much sharper estimates for
exponential sums over H. We, however, are interested in smaller
groups because ExtG, by Lemma 5.1 and Theorem 3.3, is non-
trivial for M = |G| < p

1/4. Fortunately, we can also cover such
groups thanks to the sum-product theorems by Bourgain et al..

Write ep(x) := e
2πi
p x and let

S(H) := max
ξ 6=0

|
∑
h∈H

ep(hξ)|

bound the exponential sum over H. By looking at the proof of
Chevalier et al. we can infer the following inequality.

Lemma 7.8 (Chevalier et al., see the proof of Theorem 8). For any
subgroup H of (Z/pZ)∗ it holds that

∆
(
lsbn(UH),UZ/NZ

)
6 1
2N

1/2 ·
(
p
−1/2 + S(H) · |H|−1 log1/22 p

)
.



non-malleable extractor with long output 41

It remains to estimate S(H). The well-known Polya-Vinogradov
inequality allows taking S(H) 6 p1/2 in the above lemma but it is
only relevant for |H| > p1/2. We apply the below estimate sketched
by Bourgain & Konyagin (2003) with a complete proof given by
Bourgain et al. (2006). Both are based on the powerful result by
Bourgain et al. (2004).

Theorem 7.9 (Bourgain & Konyagin, Theorem 2.1). There exist pos-
itive constants C1 and C2 such that for β > 0 and every subgroup H of
order |H| > pβ we have

S(H) 6 p−γ|H| ,

where γ = 2−C1/β
C2 .

We can now show the following theorem on our extractor.

Theorem 7.10. For every constant β > 0 there exists γ = γ(β) > 0

such that for any prime p, an integer M | p − 1 satisfying M > p
β,

a min-entropy k, and n > 0 the function Ext ′′ : Z/pZ ×Z/pZ →
Z/NZ given by

Ext ′′(x,y) := lsbn
(
ExtG(x,y)

)
= lsbn

(
(x+ y)(p−1)/M

)
is an efficiently computable (k, ε ′′)–non-malleable extractor with

ε
′′ = 2Mp1/42−k/2 + 1

2N
1/2
p
−γ log1/22 p ,

where N = 2n.

Proof. Consider any pair X and Y of independent random vari-
ables on Z/pZ, where H∞(X) > k and Y is uniform. Let Z ′ and
Z
′′ be shorthands for ExtG(X, Y) and ExtG(X,A(Y)), respectively.

Write Z ′1 = lsbn(Z1) and Z ′2 = lsbn(Z2). Let UG be a uniformly



42 non-malleable extractor with long output

distributed variable independent of (X, Y). Then, by the triangle
inequality for ∆:

(7.11) ∆
(
(Z ′1,Z ′2, Y), (UZ/NZ,Z ′2, Y)

)
6

∆
(
(Z ′1,Z ′2, Y), (lsbn(UG),Z

′
2, Y)

)
+

∆
(
(lsbn(UG),Z

′
2, Y), (UZ/NZ,Z ′2, Y)

)
.

Since lsbn: G → Z/NZ is a deterministic function, the first term
on the right-hand side of (7.11) can be bounded above by

∆
(
(Z1,Z2, Y), (UG,Z2, Y)

)
.

By Lemma 5.1 it follows that (Z1,Z2, Y) ≈ε (UG,Z2, Y) and so
(Z ′1,Z ′2, Y) ≈ε (lsbn(UG),Z

′
2, Y), where ε = 2Mp

1/4
2
−k/2 is the

error bound from Theorem 3.3. As for the second term of (7.11),
it is just ∆(lsbn(UG),UZ/NZ) because UG and UZ/NZ are both
independent of (Z ′2, Y). Applying Lemma 7.8 for H = G together
with the exponential sum bound from Theorem 7.9 gives the de-
sired result since without loss of generality we can assume that
γ < 1/2. �

The error bound in the above theorem is weaker than yet still
comparable to the one from Theorem 7.6. Clearly, the dependence
between β and γ = γ(β) from Theorem 7.9 implies that γ degrades
rapidly when β gets smaller. However, if we fix β we can still
extract a constant fraction of bits by choosing, e.g., N ≈ pγ(β)/2

with the error bound ε ′′ negligible in logp.



8
C O M P U T I N G D I S C R E T E L O G A R I T H M S W I T H
G A U S S I A N P E R I O D S

As a by-product of our construction of the algorithm for comput-
ing a bijection G → Z/MZ for multiple arguments developed
in Chapter 6, we obtain a method for solving multiple instances
of the DLP in (Z/pZ)∗. We aim to amortize the cost for a sin-
gle instance of the problem so the algorithm performs better than
just applying the generic algorithm independently to each indi-
vidual instance. Our basic idea is rather straightforward: extract
the most time consuming step of the BSGS method, i.e., building
a lookup table, run it only once, and reuse this result for every
instance of the DLP. What is novel in our proposal is that the
time and space complexities of this method are preserved when
switching from the RAM model to a classical Turing machine.
Clearly, both models are polynomially equivalent, but since we
deal with exponential-level complexities the exact blow-up factor
of such a reduction matters. Diem (2012) adapts the BSGS method
to a multitape Turing machine keeping the sorting step of a lookup
table. Our concluding solution does not require sorting at all, and
it primarily addresses Turing machines with a single work-tape,
where no subquadratic sorting algorithm exists (Petersen 2008).

First, we note that the space bound parameter s in Theorem 6.10

can be in fact much larger, i.e., we can set it arbitrarily as long as
0 < s 6 P+(M). This change requires the inner algorithm for com-
puting discrete logarithms to be modified. We present the relevant
adjustment of the BSGS method for online algorithm below.

Let q | p − 1 and 0 < s 6 q, where s can be assumed to
be an integer. Suppose we are given an instance of the DLP: for
a,b ∈ (Z/pZ)∗ with ord(a) = q and b ∈ 〈a〉 find 0 6 u < q

such that au = b. Here and below, we focus on prime order sub-

43



44 computing discrete logarithms with gaussian periods

groups 〈a〉, which is the hardest case of the DLP. A transition to
general groups can be performed in the same standard way as
it is done in the PH algorithm. Write u = u0 + u1 · s with un-
knowns u0 and u1 satisfying 0 6 u0 < s and 0 6 u1 6 bq/sc.
We memoize values a−j for j = 0, . . . , s− 1 and store every pair
(j,a−j) in an array of s entries, say T , which is sorted (lexico-
graphically) according to the second entry of each pair. Finally, for
each u1 = 0, . . . , bq/sc we use a binary search to check whether
(as)u1 · b−1 appears in T . Finding a collision as·u1 · b−1 = a

−u0

yields the desired solution of the DLP. The array T , once com-
puted, can be reused to speed up subsequent calculations. That
is, given another instance: ai,bi ∈ (Z/pZ)∗ with ord(ai) = q

and bi ∈ 〈ai〉 we compute logai bi as follows. We find u
′ and

u
′′ such that au

′
= ai and a

u
′′

= bi by searching in T like
above but with b substituted with ai and bi, respectively. Then,
logai bi = u

′′
u
′−1 (mod q). This way a single instance is solved in

O
(
q
s (log s)poly (logp)

)
= O(qs−1 poly(logp)) steps, and the pre-

computation phase, where T is constructed, takesO
(
qpoly(logp)

)
time.

The use of a binary search in the aforesaid method implies that
we work in the usual model of computations where each memory
cell can be accessed in constant time. The fact that q and s are typ-
ically large makes the assumption about keeping whole T in the
main memory unrealistic and justifies turning attention to external
algorithms. Our motivation behind such an approach is similar to
the one that historically led to introducing external sorting. We
thus consider and analyze an algorithm for a classical Turing ma-
chine. In the solution we provide the array T remains unsorted,
resides on a machine’s tape, and can be scanned for a given value
in linear time. As for complexity of the algorithm, we are unable to
maintain the “qs -time vs. s-memory” trade-off, but we come close
to. A downside of the construction is that the parameter s can no
longer be chosen flexibly. Our method exploits invariance of Gaus-



computing discrete logarithms with gaussian periods 45

sian periods, which have numerous applications. We briefly recall
some relevant notions.

For a prime q | p−1 let q−1 = s · t be some known factorization
of q − 1. Our method works best when q − 1 splits evenly, i.e.,
when s ≈ t ≈ √q, yet, in principle, s and t can be arbitrary. Set
ζq := e2πi/q to be a qth primitive complex root of unity. Consider
the group (Z/qZ)∗ = 〈h〉 with some generator h and its subgroup
H := 〈hs〉. We define a Gaussian period ηj for j = 0, . . . , s− 1 as the

trace of ζh
j

q to the unique subfield of Q(ζq) of degree s over Q.
That is,

ηj :=
∑
α∈hjHζ

α
q ,

where the sum is taken over the coset hjH in (Z/qZ)∗. Let F =

Fq ∈ Q[X] be the minimal polynomial for η0, namely

F(X) :=

s−1∏
j=0

(X− ηj) .

We note that F is irreducible over Q and has integer coefficients.
When considered over a finite field, Z/pZ in our case, using a
canonical mapping F 7→ F mod p may possess a non-trivial factor-
ization (and, in fact, for q | p− 1 it does have such a factorization).
In several salient applications, e.g., in the one by Lenstra (2002),
it is required to keep F irreducible, which is typically ensured via
Kummer’s criterion. We, however, have to guarantee that much
weaker property holds, specifically that F does not have repeated
roots in Z/pZ. This is equivalent to non-vanishing of the discrim-
inant ∆F of F in Z/pZ.

Theorem 8.1. Suppose that p does not divide the discriminant∆F. There
exists a deterministic Turing machine that given ` pairs (ai,bi) over
(Z/pZ)∗ for i = 1, . . . , ` with ord(ai) = q and bi ∈ 〈ai〉 com-
putes ` discrete logarithms logai bi sequentially, and it does so within
O
(
(q+ `max (s, t))poly(logp)

)
total time using O(s logp) bits of ad-

ditional space, i.e., the total memory excluding the space reserved for
input and output data.



46 computing discrete logarithms with gaussian periods

Proof. In our construction we assume that there are two tapes
available on the machine. The first one plays the role of an in-
put/output tape and is only used to store the initial configuration
of (ai,bi) and resulting discrete logarithms. The other tape, which
is limited to O(s logp) bits, functions as a “working” area to write
intermediate data, including an array T described next.

First, the machine fixes a qth root of unity in (Z/pZ)∗, say ε.
Since each ai is such a root we can, for instance, choose ε equal
to a1. As we have already noted at the beginning of this chapter,
it suffices to specify how to find 0 6 u < q such that εu = a for
any given a ∈ 〈ε〉. Without loss of generality we can assume that
a 6= 1, so ord(a) = q.

Define a polynomial f ∈ (Z/pZ)[Y] by

(8.2) f(Y) :=
∑
α∈H

Y
α .

In the precomputation phase the machine calculates f(εh
j

) and
stores this value in the jth entry of the array T for j = 0, . . . , s− 1.
Filling T contributes O

(
s · tpoly(logp)

)
to the time complexity

if the naïve method of evaluating f is used, but this step is per-
formed only once. Now, given a the machine determines f(a) and

scans T until an index j such that f(a) = f(εh
j

) is found. Clearly,
u = logε a belongs to hjH for some 0 6 j < s, so the value f(a)
is indeed present in the array. We claim that the index j is unique

and T contains no duplicates. Suppose that f(εh
j

) = f(εh
j
′

) for
some 0 6 j ′ < s. Let Φq(Y) = 1+ Y + · · ·+ Yq−1 be the qth cyclo-
tomic polynomial. Since Z(ζq) ' Z[Y]/(Φq) there is a canonical
projection modulo p, namely

Z(ζq)[X]→
(
Z[Y]/(p,Φq)

)
[X]→

(
Z[Y]/(p, Y − ε)

)
[X] ,

that maps F to F mod p =
∏s−1
j=0

(
X − f(εh

j

)
)
. The condition on

the discriminant of F implies that F mod p does not have repeated

roots. Therefore, f(εh
j

) = f(εh
j
′

) necessarily means that j = j ′.



computing discrete logarithms with gaussian periods 47

Now that j is found, the machine tests each 0 6 j ′′ < t to find the

one satisfying a = ε
h
j·(hs)j

′′

. The solution for the DLP instance is
thus u := hj+sj

′′
. For each a, the complexity of calculating f(a) and

scanning T is O
(
(t+ s)poly(logp)

)
. Finding j ′′ incurs additional

O
(
tpoly(logp)

)
time cost. �

To compare this result with the BSGS method, we note that
Diem’s estimate of the running time of the latter implemented
on a multitape machine is O

(
q
1/2(logq)poly(logp)

)
, where the

poly(logp) factor, arising from integer multiplication and expo-
nentiation, is roughly of the same magnitude as ours. Therefore,
if we look at the amortized cost for a single DLP instance in the
case of balanced partitioning s ≈ t ≈ q1/2 and ` = Ω(q1/2), our
algorithm performs on par with the generic method, even though
the model we work in is less powerful. By Petersen’s impossibility
result, on single-tape machines the BSGS method does not offer
any significant advantage over brute-force search.

As an immediate corollary of Theorem 8.1, under the same as-
sumption on discriminant as above, there exists a bijective map-
ping Gq → Z/q

αqZ that can be computed by a deterministic Tur-
ing machine for a sequence of ` arguments in

O
(
(q+ `max (s, t))poly(logp)

)
time and O(s logp) additional space. Clearly, this algorithm gives
rise to calculating a bijective mapping G → Z/MZ provided that
p - ∆Fq for all q | M. The last condition can be relaxed to some
degree. Namely, ifQ is a prime divisor ofM such that p - ∆FQ ,Q−

1 = s · t, and q = O
(
max(s, t)

)
for all the remaining prime divisors

q of M, then we can apply the algorithm from Theorem 8.1 for Q-
subgroups and calculate discrete logarithms for other factors q
simply by exhaustive search. This would not increase the overall
asymptotic complexity.

A “bottleneck” of the above algorithm is the step where the
polynomial f is evaluated at some given point. This is indeed time



48 computing discrete logarithms with gaussian periods

consuming as the formula (8.2) possibly consists of many terms.
Regrettably, we were unable to come up with a more efficient way
to do this other than the naïve method. An improvement in this
matter could also speed up the entire algorithm, and therefore this
problem looks like an interesting open question.



B I B L I O G R A P H Y

Manindra Agrawal, Neeraj Kayal & Nitin Saxena (2002). PRIMES
is in P. Annals of Mathematics 160(2), 781–793.

William R. Alford, Andrew Granville & Carl Pomerance (1994).
There are infinitely many Carmichael numbers. Annals of Mathematics
139(3), 703–722. ISSN 0003–486X.

Nesmith C. Ankeny (1952). The least quadratic non residue. Annals of
Mathematics 55, 65–72. ISSN 0003–486X.

Eric Bach (1997). Comments on search procedures for primitive roots.
Mathematics of Computation 66(220), 1719–1727.

Jean Bourgain (2005). More on the sum-product phenomenon in prime
fields and its applications. International Journal of Number Theory 1(1),
1–32.

Jean Bourgain, Alexey Glibichuk & Sergei Konyagin (2006). Esti-
mates for the number of sums and products and for exponential sums
in fields of prime order. Journal of the London Mathematical Society 73(2),
380–398.

Jean Bourgain, Nets Katz & Terence Tao (2004). A sum-product es-
timate in finite fields, and applications. Geometric & Functional Analysis
GAFA 14(1), 27–57. ISSN 1016-443X. URL http://dx.doi.org/10.1007/
s00039-004-0451-1.

Jean Bourgain & Sergei Konyagin (2003). Estimates for the num-
ber of sums and products and for exponential sums over subgroups
in fields of prime order. Comptes Rendus Mathematique 337(2), 75 –
80. ISSN 1631-073X. URL http://www.sciencedirect.com/science/
article/pii/S1631073X03002814.

Céline Chevalier, Pierre-Alain Fouque, David Pointcheval &
Sébastien Zimmer (2009). Optimal randomness extraction from a Diffie-
Hellman element. In Advances in Cryptology - Proceedings of EUROCRYPT

49

http://dx.doi.org/10.1007/s00039-004-0451-1
http://dx.doi.org/10.1007/s00039-004-0451-1
http://www.sciencedirect.com/science/article/pii/S1631073X03002814
http://www.sciencedirect.com/science/article/pii/S1631073X03002814


50 Bibliography

’09, Antoine Joux, editor, volume 5479 of Lecture Notes in Computer Sci-
ence, 572–589. Springer, Cologne, Germany.

Olivier Chevassut, Pierre-Alain Fouque, Pierrick Gaudry & David

Pointcheval (2006). The twist-AUgmented technique for key exchange.
In PKC ’06, Moti Yung, Yevgeniy Dodis, Aggelos Kiayias & Tal

Malkin, editors, volume 3958 of Lecture Notes in Computer Science, 410–
426. Springer-Verlag.

Benny Chor & Oded Goldreich (1988). Unbiased bits from sources of
weak randomness and probabilistic communication complexity. SIAM
Journal of Computing 17(2), 230–261. ISSN 0097-5397.

Aviad Cohen & Avi Wigderson (1989). Dispersers, deterministic am-
plification, and weak random sources (extended abstract). In FOCS ’89,
14–19. IEEE Computer Society.

Gil Cohen, Ran Raz & Gil Segev (2012). Non-malleable extractors with
short seeds and applications to privacy amplification. In IEEE Conference
on Computational Complexity, 298–308. IEEE. ISBN 978-1-4673-1663-7.

Claus Diem (2012). On the complexity of some computational problems
in the Turing model. Preprint.

Yevgeniy Dodis, Xin Li, Trevor D. Wooley & David Zuckerman (2011).
Privacy amplification and non-malleable extractors via character sums.
In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS ’11, 668–677. IEEE Computer Society, Washing-
ton, DC, USA. ISBN 978-0-7695-4571-4.

Yevgeniy Dodis & Roberto Oliveira (2003). On extracting private ran-
domness over a public channel. In RANDOM-APPROX, Sanjeev Arora,
Klaus Jansen, José D. P. Rolim & Amit Sahai, editors, volume 2764 of
Lecture Notes in Computer Science, 252–263. Springer. ISBN 3-540-40770-7.

Yevgeniy Dodis & Daniel Wichs (2009). Non-malleable extractors and
symmetric key cryptography from weak secrets. In Proceedings of the 41st
annual ACM symposium on Theory of computing, STOC ’09, 601–610. ACM,
New York, NY, USA. ISBN 978-1-60558-506-2.

Konrad Durnoga & Bartosz Źrałek (2013). On Randomness Extrac-
tors and Computing Discrete Logarithms in Bulk. Preprint (submitted
to Computational Complexity).



Bibliography 51

Amos Fiat & Gerhard J. Woeginger (editors) (1998). Online Algorithms,
The State of the Art (the book grow out of a Dagstuhl Seminar, June 1996),
volume 1442 of Lecture Notes in Computer Science. Springer. ISBN 3-540-
64917-4.

Pierre-Alain Fouque, David Pointcheval, Jacques Stern &
Sébastien Zimmer (2006). Hardness of Distinguishing the MSB or LSB
of Secret Keys in Diffie-Hellman Schemes. In Automata, Languages and
Programming, Michele Bugliesi, Bart Preneel, Vladimiro Sassone &
Ingo Wegener, editors, volume 4052 of Lecture Notes in Computer Science,
240–251. Springer Berlin Heidelberg. ISBN 978-3-540-35907-4.

Shuhong Gao (1997). Elements of provable high orders in finite fields.
Proceedings of the American Mathematical Society 127, 1615–1623.

Joachim von zur Gathen & Igor E. Shparlinski (2001). Gauß Periods
in Finite Fields. In Finite Fields and Applications, Dieter Jungnickel &
Harald Niederreiter, editors, 162–177. Springer-Verlag. ISBN 3-540-
41109-7.

Joachim von zur Gathen & Igor E. Shparlinski (2013). Generating
safe primes. Preprint.

Andrew Granville & Carl Pomerance (1990). On the least prime in
certain arithmetic progressions. Journal of the London Mathematical Society
2(2), 193–200.

Thomas Holenstein (2006). Pseudorandom generators from one-way
functions: A simple construction for any hardness. In In 3rd Theory of
Cryptography Conference – (TCC ’06), Shai Halevi & Tal Rabin, editors,
Lecture Notes in Computer Science. Springer-Verlag.

Russell Impagliazzo, Leonid A. Levin & Michael Luby (1989).
Pseudo-random generation from one-way functions. In Proceedings of
the twenty-first annual ACM symposium on Theory of computing, STOC ’89,
12–24. ACM, New York, NY, USA. ISBN 0-89791-307-8.

Henryk Iwaniec & Emmanuel Kowalski (2004). Analytic Number The-
ory. Number vol. 53 in American Mathematical Society Colloquium
Publications. American Mathematical Society, Providence, Rhode Island,
USA. ISBN 0-8218-3633-1.



52 Bibliography

Sergei Konyagin & Carl Pomerance (1996). On primes recognizable
in deterministic polynomial time. In The Mathematics of Paul Erdös, vol-
ume 13 of Algorithms Combin., 176–198. Springer, Berlin.

Hendrik W. Lenstra (2002). Primality Testing with Gaussian Periods. In
FST TCS 2002: Foundations of Software Technology and Theoretical Computer
Science, 22nd Conference Kanpur, India, December 12-14, 2002, Proceedings,
Manindra Agrawal & Anil Seth, editors, volume 2556 of Lecture Notes
in Computer Science, 1. Springer. ISBN 3-540-00225-1.

Xin Li (2012a). Non-Malleable Condensers for Arbitrary Min-Entropy,
and Almost Optimal Protocols for Privacy Amplification.

Xin Li (2012b). Non-malleable extractors, two-source extractors and pri-
vacy amplification. In FOCS ’12, 688–697. IEEE Computer Society, Los
Alamitos, CA, USA. ISSN 0272-5428.

Noam Nisan & David Zuckerman (1993). More deterministic simula-
tion in logspace. In Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, STOC ’93, 235–244. ACM, New York, NY, USA.
ISBN 0-89791-591-7.

Holger Petersen (2008). Sorting and element distinctness on one-way
Turing machines. In LATA, Carlos Martín-Vide, Friedrich Otto &
Henning Fernau, editors, volume 5196 of Lecture Notes in Computer Sci-
ence, 433–439. Springer. ISBN 978-3-540-88281-7.

Jonathan Pila (1990). Frobenius maps of abelian varieties and finding
roots of unity in finite fields. Mathematics of Computation 55(192), 745–763.
ISSN 00255718.

Stephen Pohlig & Martin Hellman (1978). An improved algorithm
for computing logarithms over GF(p) and its cryptographic significance.
IEEE Transactions on Information Theory 24(1), 106–110. ISSN 0018-9448.

Carl Pomerance (2002). The expected number of random elements to
generate a finite abelian group. Periodica Mathematica Hungarica 43(1-2),
191–198.

Carl Pomerance & Igor Shparlinski (2002). Smooth orders and cryp-
tographic applications. In ANTS, Claus Fieker & David R. Kohel, edi-
tors, volume 2369 of Lecture Notes in Computer Science, 338–348. Springer.
ISBN 3-540-43863-7.



Bibliography 53

Anup Rao (2007). An exposition of Bourgain’s 2-source extractor. Elec-
tronic Colloquium on Computational Complexity 14. Technical Report TR07-
034.

Wolfgang M. Schmidt (1976). Equations Over Finite Fields: An Elementary
Approach. Number no. 536 in Lecture Notes in Mathematics. Springer-
Verlag. ISBN 9783540078555.

Ronen Shaltiel (2002). Recent Developments in Explicit Constructions
of Extractors. Bulletin of the EATCS 77, 67–95.

Daniel Shanks (1971). Class number, a theory of factorization, and
genera. In 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol.
XX, State Univ. New York, Stony Brook, N.Y., 1969), 415–440. Amer. Math.
Soc., Providence, Rhode Island, USA.

Victor Shoup (1990). Searching for primitive roots in finite fields. In
Proceedings of the twenty-second annual ACM symposium on Theory of com-
puting, STOC ’90, 546–554. ACM, New York, NY, USA. ISBN 0-89791-
361-2.

Andreas Stein & Edlyn Teske (2005). Optimized baby step-giant step
methods. Journal of the Ramanujan Mathematical Society 20(1), 1–32.

David Terr (2000). A modification of Shanks’ baby-step giant-step al-
gorithm. Mathematics of Computation of the American Mathematical Society
69(230), 767–773.

Luca Trevisan (1999). Construction of extractors using pseudo-random
generators (extended abstract). In STOC ’99, 141–148. Atlanta, Georgia,
USA.

Sebastian Wedeniwski (2001). Primality Tests on Commutator Curves.
Ph.D. thesis, Eberhard-Karls-Universität Tübingen.

Triantafyllos Xylouris (2011). Über die Nullstellen der Dirichletschen
L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression.
Ph.D. thesis, Mathematisch-Naturwissenschaftliche Fakultät der Univer-
sität Bonn.

David Zuckerman (1990). General weak random sources. In FOCS ’90,
534–543. IEEE Computer Society, Los Alamitos, CA, USA.


	Introduction
	Preliminaries
	Non-malleable Extractor
	Online Pseudorandom Generator
	Non-malleable Extractor without the ERH
	Effective Bijection
	Non-malleable Extractor with Long Output
	Computing Discrete Logarithms with Gaussian Periods
	Bibliography

