
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

mgr Karol Żebrowski

Analysis of the Simple Refreshing in the Noisy
Leakage Model

PhD dissertation

Supervisor
prof. dr hab. Stefan Dziembowski

Institute of Informatics
University of Warsaw

June 2024

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this disser-
tation myself and all the contents of the dissertation have been obtained by
legal means.

June, 2024 .
mgr Karol Żebrowski

Supervisor’s declaration:
The dissertation is ready to be reviewed.

June, 2024 .
prof. dr hab. Stefan Dziembowski

Abstract

Masking schemes are a prominent countermeasure against power analysis
and work by concealing the values that are produced during the compu-
tation through randomness. The randomness is typically injected into the
masked algorithm using a so-called refreshing scheme, which is placed after
each masked operation, and hence is one of the main bottlenecks for de-
signing efficient masking schemes. The dissertation investigates the security
of a very simple and efficient refreshing scheme and prove its security in
the noisy leakage model. Compared to earlier constructions our refreshing
is significantly more efficient and uses only n − 1 random values and < 2n
operations, where n is the security parameter. It is also more practical, as
the proof gives meaningful results even for small security parameter n. In
addition we show how our refreshing can be used in more complex masked
computation in the presence of noisy leakage.

The dissertation presents a new, invented by the author, methodology for
analyzing and proving the security of the masked computation with a simple
refreshing, that we call a leakage diagram. The results of this dissertation
were partially presented in the paper Simple Refreshing in the Noisy Leakage
Model [18] by Stefan Dziembowski, Sebastian Faust and Karol Żebrowski. In
comparison to the paper, the dissertation contains also a detailed proof of
the security of our construction and presents the technical tools used in the
proof.

Key words: leakage-resilient cryptography, side-channel attack, masking scheme

AMS Classification: 94A60, 68P20, 68P30

3

4

Streszczenie

Schematy maskuj ↪ace stanowi ↪a znacz ↪acy środek zaradczy zapobiegaj ↪acy
analizie mocy i dzia laj ↪a poprzez ukrywanie wartości generowanych podczas
obliczeń używaj ↪ac losowości. Losowość jest zazwyczaj wprowadzana do ma-
skowanego algorytmu przy użyciu tak zwanego schematu odświeżaj ↪acego,
który jest umieszczany po każdej maskowanej operacji, dlatego stanowi on
jedno z g lównych w ↪askich garde l w projektowaniu wydajnych schematów
maskuj ↪acych. Rozprawa bada bezpieczeństwo bardzo prostego i wydajnego
schematu odświeżania i dowodzi jego bezpieczeństwa w modelu zaszumionego
wycieku. W porównaniu do wcześniejszych konstrukcji nasze odświeżanie jest
znacznie wydajniejsze i wykorzystuje tylko n−1 losowych wartości oraz < 2n
operacj, gdzie n jest parametrem bezpieczeństwa. Ponadto pokazujemy, jak
nasze odświeżanie może zostać wykorzystane w bardziej z lożonych maskowa-
nych obliczeniach w obecności zaszumionego wycieku.

Rozprawa doktorska przedstawia now ↪a, wynalezion ↪a przez autora, me-
todologi ↪e analizy i dowodu bezpieczeństwa obliczeń maskowanych z pro-
stym odświeżaniem, nazywn ↪a przez nas diagramem wycieku. Wyniki z roz-
prawy by ly cz ↪eściowo przedstawione w artykule Simple Refreshing in the
Noisy Leakage Model [18] autorstwa Stefana Dziembowskiego, Sebastiana
Fausta i Karola Żebrowskiego. W porównaniu do artyku lu, rozprawa za-
wiera również szczegó ly dowodu bezpieczeństwa oraz przedstawia techniczne
narz ↪edzia użyte w dowodzie.

S lowa kluczowe: leakage-resilient cryptography, side-channel attack, masking
scheme

Klasyfikacja AMS: 94A60, 68P20, 68P30

5

6

Contents

1 Introduction 9

1.1 Side-channel attacks . 9

1.2 Leakage-resilient cryptography 10

1.2.1 Masking schemes . 12

1.2.2 Refreshing schemes . 13

1.2.3 Noisy leakage and p-random probing models 16

1.3 Results . 17

1.4 Organization of the dissertation 19

2 Our approach informally 20

2.1 Proof sketch of Informal Lemma 1 26

2.2 Bounding the probability of E 31

2.3 Generalizations to arbitrary circuits 32

3 Preliminaries 37

3.1 Partial order of the distributions over the subsets 37

3.2 Assumptions about the circuit 38

3.3 Security definitions . 39

3.4 p-random probing model to noisy leakage model 41

4 Details of the circuit transformation 43

4.1 Our construction of the transformed circuit Ĉ 43

4.2 General gadget description . 44

4.3 The gadgets used in our construction 47

4.3.1 ISW multiplication gadget 47

4.3.2 Other gadgets . 50

7

5 Technical tools 52
5.1 Refreshing gadget properties 52
5.2 Leakage diagrams . 55
5.3 Modification vectors . 56
5.4 Leakage and extended leakage from a gadget 57
5.5 Refreshed gadget reconstruction 63

6 The main theorem: privacy of the construction 71
6.1 Concrete results . 81
6.2 Open problems . 82

7 Conclusion 83

8

Chapter 1

Introduction

Traditional security proofs in cryptography assume the existence of physical
devices that are completely safe against the attacker, and that the parties
use such devices for the computation required by the cryptographic protocol.
This provides them with a theoretical privacy of local computations. For
example, in the chosen-plaintext attack model the adversary has access to
an encryption oracle and can ask for the ciphertext of arbitrary plaintext
messages. Here, it is assumed that the adversary has only a black-box access
to the oracle, which means that the computation of the ciphertexts from the
plaintexts does not reveal any information on the secret key.

Unfortunately, in practice it is difficult to construct a physical device
that ensures no leakage of information during computation, for example when
signing a message with a private key. There are many known practical attacks
on cryptographic protocols that exploit this additional information on the
internal state of the device.

1.1 Side-channel attacks

The so-called side-channel attacks are cryptanalytic techniques which tar-
get the cryptographic hardware. They exploit various physical phenomena
that occur during computation on a physical device, which allow to extract
some additional information about the sensitive data, including the secret
key, from a cryptographic implementation. Thereby they violate the funda-
mental assumption of cryptography. Timing attacks [29] rely on measuring
the time taken by the computation. Also electromagnatic radiation during

9

computation on a smart card can lead to an attack [21]. Some attacks [31, 28]
show even how isolated processes can read information from other processes
running on the same machine.

Power analysis One of the most powerful side-channel attack is the so-
called power analysis, introduced by Kocher et al. [30]. Power analysis
exploits that the power consumption of an unprotected physical device is
correlated with the internal computation – and in particular with the secret
key. There are countless examples that show how an adversary can use these
correlations to learn information about the secret key (see, e.g., [36] for an
introduction to this topic).

For instance, a very well known attack on a concrete implementation of
the RSA algorithm exploits the fact that it proceeds in a loop over the bits
of the secret key, and depending the bit executes different operations. If the
bit is 1 it performs one squaring operation and one multiplication, and if
the bit is 0 just one multiplication is performed. The attacker observing the
power consumption trace can easily distinguish between these two cases, and
therefore recover the whole secret bit by bit. Essentially, what allows for
this attack is the correlation between the side-channel observations and the
internal computation of a device, for example a smart card.

These examples clearly show that the real world adversary has to be modeled
as having more than just a black box access to the cryptosystem. To ensure
security even in the presence of such adversary, the area of leakage-resilient
cryptography emerged.

1.2 Leakage-resilient cryptography

In recent years cryptographic research has made tremendous progress in de-
veloping solid foundations for cryptography in the presence of side-channel
leakage (see, e.g., [27] for an overview). The common approach in this area
– often referred to as “leakage resilient cryptography” – is to first extend the
black-box model to incorporate side-channel leakage, and then to propose
countermeasures that are provable secure within this model. The typical
leakage model considered in the literature assumes an adversary that obtains
some partial knowledge about the internal state of the device. For instance,

10

the adversary may learn a few bits of the intermediate values that are pro-
duced by the device during its computation.

The main challenge in choosing a leakage model is to maintain a balance
between practice and theory. On one hand, the model should be broad
enough to encapsulate the real-world physical leakage accurately. On the
other hand, it should be restrictive enough so that a formal security analysis is
still possible. This has sometimes lead to the development of countermeasures
that are overly complex to defeat artificial attacks. One prominent example
for such a case is the “alternating structure” frequently used to design leakage
resilient stream ciphers [19, 33]. Although much simpler constructions are
believed to exhibit the same level of practical side-channel resistance [37], an
additional complexity – the alternating structure – was introduced into the
design to defend against the highly artificial “pre-computation attack” [19].

Roughly speaking, the field of leakage-resilient cryptography can be di-
vided into two strands: first incorporating into the model the leakage from
memory, and the second incorporating the leakage from computation. In the
first category it is assumed that the adversary is gaining some partial infor-
mation about the secret key, and the goal is to build cryptographic schemes
secure in such model. As an example, in the bounded retrieval model, intro-
duced by Dziembowski [15] and Di Crescenzo et al. [12], adversary can obtain
an arbitrary polynomial-time computable leakage function of the secret key,
but the output size of this leakage function is bounded.

On the other hand, leakage from computation, which is the main focus
of this dissertation, assumes that the adversary has access to the entire com-
putation rather than just the secret memory. Therefore, to provide some
security guaranties, in this category the leakage model typically has to be
more restricted.

The effort to provide countermeasures against leakage from computation
can be roughly divided into two categories: building secure (in the presence
of the side-channel leakage) specific cryptographic primitives, e.g., stream ci-
phers [19], and building a generic compiler that is able to provide security for
any computations, including these required by the cryptographic primitive.

General circuit compilers The goal of a general leakage-resilient com-
piler is to compile an arbitrary circuit C into a transformed circuit Ĉ with
the same functionality that is secure in a given leakage model. To model
the leakage from a cryptographic device, the circuit C is usually assumed to

11

be stateful, and the state is assumed to contain some sensitive information,
like a secret key. The adversary has input/output access to the circuit Ĉ
and runs it repeatedly, additionally observing the side-channel leakage. The
securtiy definition is simulation-based: the construction is said to be secure
if the leakage observed by the adversary can be produced by a simulator that
only observes the input/output behavior of the circuit.

In their seminal work Ishai, Sahai and Wagner [25] achieve a general
compiler secure in the t-probing model. In this model the adversary can
choose up to t wires of the circuit and probe them obtaining their values
during computation. A long line of the following work is focused on building
circuit compilers under various assumptions. Some works consider only a
leakage that, as a function of the internal wires of the circuit, is of limited
complexity. For example, in [20] it is assumed that the leaking funtion is
in the class AC0, and that its range is bounded. The compilers proposed in
the literature often assume also a leak-free components in their constructions
[20, 34, 26, 22].

It worth noting that building the compilers for the stateless circuits is
also very useful. Indeed, the transformation of Ishai, Sahai and Wagner [25]
for stateful circuits is based on a compiler for the stateless ones. The state
is simply treated as an additional input to the stateless circuit, and it is
updated according to its computed output.

One of the most widely used approach to building a leakage-resilient circuit
compiler is through the use of so called masking schemes.

1.2.1 Masking schemes

One of the most common countermeasures against power analysis attacks
are masking schemes (see, e.g., [25, 34, 13, 32, 6, 10, 1, 8, 5, 9]). In order
to de-correlate the internal computation of a device from the observable
leakage, masking schemes randomize the intermediate values produced during
the computation of an algorithm through secret sharing. To this end each
sensitive variable x is represented by an encoding Enc(x) := (x1, . . . , xn) and
the corresponding decoding function Dec(·) recovers x := Dec(x1, . . . , xn). A
simple encoding function uses the additive encoding function, which works
by sampling xi uniformly at random from some finite field F subject to the
constraint that x :=

∑n
i=1 xi. If F is the binary field, then such a masking

scheme is typically called Boolean masking.

12

In addition to an encoding scheme, we need secure algorithms to compute
with encoded elements. To this end, the algorithm’s computation is typically
modeled as an arithmetic circuit over a finite field F. In such circuits the
wires carry values from F and the gates perform operations from F. At
a high-level the circuit is made out of gates that represent the basic field
operations (i.e., addition gate denoted “⊕” and multiplication gate denoted
“⊗”). Moreover, it may consist of gates for inversion (i.e., outputting −x
on input x), and so-called randomness gates RND that take no input and
produce an output that is distributed uniformly over F.

Given a circuit built from these gates, a masking scheme then typically
works by replacing each of the above operations by a “masked” version of
the gate, a so called gadget. For instance, in case of the aforementioned
additive encoding scheme (Enc,Dec) the masked version of the ⊕ takes as
input two encodings Enc(x) and Enc(y) and outputs an encoding Enc(z),
where

∑
i zi :=

∑
i xi+

∑
i yi. Informally, the gadget is said to be secure if the

leakage emitted from its internal computation does not reveal any sensitive
information. The exact definition depends on the circuit construction and
the leakage model considered.

1.2.2 Refreshing schemes

A core ingredient of many secure masking schemes is a refreshing algorithm.
At a very high level the refreshing algorithm introduces new randomness into
the masked computation, thereby preventing an adversary from exploiting
correlations between different intermediate values of the computation. Since
refreshing schemes are computationally expensive a large body of work has
explored how to securely improve their efficiency. One of the most simple and
efficient (in terms of computation and randomness) refreshing schemes was
proposed by Rivain and Prouff [35]. Unforunately, it was shown in [11] that
a simple – though impractical – attack breaks the scheme in the common
threshold probing leakage model [25].

The refreshing scheme takes as input an encoding ~xj := (xj1, . . . , x
j
n) =

Enc(x) and outputs a new encoding (xj+1
1 , . . . , xj+1

n) = ~xj+1 of x. By “new
encoding” we mean that this procedure should inject new randomness into
the encoding, in such a way that the leakage from the previous encodings
should not accumulate. In other words: if we periodically refresh the encod-
ings of x (which leads to a sequence of encodings: ~x0 7→ ~x1 7→ ~x2 7→ · · ·)
then x should remain secret even if bounded partial information about each

13

~xj leaks to the adversary. The operations of computing ~xj+1 from ~xj is also
called a refreshing round, and a circuit that consists of some number of such
rounds (and not other operations) is called a multi-round refreshing circuit.

Simple refreshing. A common approach for securely refreshing additive
encodings is to exploit the homomorphism of the underlying encoding with
respect to addition. By this we mean that for every x and y we have
Dec(Enc(x) + Enc(y)) = x + y, where “+” on the left-hand-side denotes
the vector addition. One starts by designing an algorithm that samples
(b1, . . . , bn) from the distribution Enc(0), and then, in order to refresh an
encoding (xj1, . . . , x

j
n) one adds (b1, . . . , bn) to it. Therefore, the refreshed

encoding is equal to (xj1 + b1, . . . , x
j
n + bn). Observe that after Enc(0) is

generated, the refreshing can be done without any further computation, by
just adding bi to every xji . Of course in this approach the whole technical
difficulty is to generate the encodings of 0 in a secure way (without relying
on any assumptions on leakage-freeness of the encoding generation).

The most simple and efficient refreshing scheme originally introduced
in [35] uses the “encoding of 0 approach” mentioned above and works as
follows (see also Fig. 2.1 on page 21). In order to refresh ~xj = (xj1, . . . , x

j
n),

we first sample bj1, . . . , b
j
n−1 uniformly at random from F and set bjn := −bj1−

. . .− bjn−1. Then, we compute the fresh encoding of x as (xj+1
1 , . . . , xj+1

n) :=

(xj1 + bj1, . . . , x
j
n + bjn). Notice that besides its simplicity the above refreshing

enjoys additional beneficial properties including optimal randomness com-
plexity (only n − 1 random values are used) and minimal circuit size (only
2n− 1 field operations are required). Somewhat surprisingly this simple re-
freshing scheme turns out to be insecure in the security model of threshold
probing attacks introduced in the seminal work of Ishai, Sahai and Wag-
ner [25].

Insecurity of simple refreshing. The standard model to analyze the
security of masking schemes is the t-probing model [25]. In the t-probing
model the adversary can (adaptively) select up to t wires of the internal
masked computation and learn the values carried on these wires during com-
putation. While originally it was believed that the simple refreshing from
above guarantees security for t = n − 1 [35], Coron et al. [11] showed that
when it is combined with certain other masked operations (e.g., in a masked
AES) the resulting construction can be broken using only ≤ t := n/2 + 1

14

probes.

An even more devastating attack against this natural refreshing can be
shown in the following setting. Consider a circuit that consists of a sequence
of n refreshings of an encoding ~x0. This may naturally happen in a masked
key schedule of the AES algorithm, where the secret key is encoded and
after each use for encrypting/decrypting is refreshed. If for each of these
refreshings the adversary can learn 2 values, then a simple attack allows to
recover the secret (we describe this attack in more detail in Chapter 2). The
attack, however, is rather impossible to carry out in practice. In particular,
it requires the adversary to learn for the n consecutive executions of the
refreshing scheme specific (different) intermediate values.

Other refreshing schemes and their usage. The most often used re-
freshing scheme proposed by Ishai, Sahai and Wagner [25] is based on “artifi-
cial” multiplication by 1: the encoding of a secret value is simply multiplied,
using the multiplication gadget, with a fixed encoding of 1. Therefore the
refreshing complexity, in terms of randomness and computation, is the same
as for the multiplication and requires O(n2) random values and O(n2) gates.

The randomness consumption is often the bottleneck for an efficient
masked implementation. True randomness is hard to generate in practice,
and producing securely pseudorandomness is costly as we need to run, e.g.,
an AES algorithm. Hence, an important goal of research is to minimize the
overheads resulting from the use of refreshing. There are two main directions
to achieve this. First, we may improve the refreshing algorithm itself. In par-
ticular, in [1, 3] it was shown how to build a secure refreshing with circuits
size and randomness complexity O(n), where n is the security parameter.
While asymptotically optimal from a concrete practical point of view these
schemes are very inefficient as they are based on expander graphs and re-
quire n to be impractically large. A second direction to improve on the costs
for refreshing is to reduce the number of times the refreshing algorithms are
used. This approach was taken by several works [6, 10, 8] which develop tools
for placing the refreshing algorithm in an efficiency optimizing way without
compromising on security.

As the attacks on the simple refreshing in the probing leakage model are
rather impractical, it leads to a natural question: Can we prove the security
of the simple refreshing scheme in a weaker model?

15

1.2.3 Noisy leakage and p-random probing models

The attack against the simple refreshing illustrates that in some sense the
probing model is too strong. An alternative model is the so-called noisy
leakage model of Prouff and Rivain [34]. In the noisy leakage model the
leakage is not quantitatively bounded but instead it is assumed that the
adversary obtains a “noisy distribution” of each value carried on a wire (see
Sect.3.4). The noisy leakage model is believed to model real-world physical
leakage accurately, because such leakages are inherently noisy, and hence it
is prominently used in practice to analyze the real-world security of physical
devices [14].

In [13] it was shown that the noisy leakage model of [34] can be reduced
to the p-random probing model. In the p-random probing model we assume
that the value carried on each wire is revealed independently with probability
p. Since in the p-random probing model the adversary looses control over the
choice of wire that he learns, the attack against the simple refreshing ceases to
work. This raises the question if the simple refreshing scheme is secure in the
p-random probing model, and therefore in the noisy leakage model. The main
contribution of this dissertation is to answer this question affirmatively, with
security guaranties for constant probability p (independent of the security
parameter n).

In contrast, the refreshing scheme of Ishai et al. [25] (mentioned already
in Sect. 1.2.2), for security parameter n, results into a circuit of size O(n2),
while only tolerating that wires leak with probability p ≈ 1/n (in the p-
random probing model). In addition, this refreshing scheme consumes O(n2)
randomness, which in practice will be the main bottleneck for using masking
schemes due to high costs for securely generating randomness.

Secure computation in the noisy leakage model. Unfortuantelly both
constructions for secure computation in [34, 13] require p ≈ 1/n, and thus
assume the noise to decrease with an increase of the security parameter n.
Therefore, one important goal of research is to improve the noise parameter
p. There has recently been significant progress on this. In [1, 3] it was
shown how to securely compute in the random probing model for constant p.
Further improvements are made in [2, 23], where the latter achieves security
under a quasi-constant noise for a construction with complexity O(n log(n))
avoiding heavy tools such as expander graphs and AG codes. Another line
of work investigates relations between different noisy leakage models [17, 24]

16

and provides tight relations between them. A more practical view on noisy
leakage – and in particular a quantitative study of its relation to real-world
leakage – was given by Duc et al. [14].

1.3 Results

Here we give a high-level summary of the results presented in this disserta-
tion.

Simple refreshing analysis. Our main contribution is to analyze the se-
curity of the simple refreshing scheme from [35] in the noisy leakage model.
In particular, we show that refreshing an encoding (x1, . . . , xn) is secure even
if each wire in the refreshing circuit is revealed with constant probability p.
Our result directly implies that refreshing an encoded secret k times (where
k may be much larger than the security parameter n) remains secure under
noisy leakages for constant noise parameter. Such consecutive use of refresh-
ings naturally appears in many practical settings such as the key schedule of
the AES mentioned above, or in general for refreshing the secret key between
multiple runs of any cryptographic primitive. Since the simple refreshing is
optimal in terms of circuit size and randomness complexity our result signif-
icantly improves the practicality of the masking countermeasure.

Concretely, the simple refreshing requires n − 1 random values and uses
2n− 1 addition gates to securely refresh an encoding (x1, . . . , xn) in the ran-
dom probing model (and hence implying security in the noisy leakage model
of [34]). In contrast, the most widely used refreshing scheme from Ishai, Sa-
hai and Wagner [25] requires (n− 1)2/2 randoms and 2n2 + n gates and has
been proven secure only for p ≈ 1/n, which is significantly worse than ours.
Various works provide asymptotically improved refreshing algorithms. In
particular, in [1, 3] it was shown how to build a secure refreshing with circuit
size O(n), and randomness complexity O(n) for a constant noise parameter
p. While asymptotically these constructions are the same as for the simple
refreshing analyzed in our work, from a practical point of view these schemes
are very inefficient as they are based on expander graphs.

New techniques for proving security. At the technical level, our main
contribution is to introduce a new technique for proving security in the ran-
dom probing model. Our main observation is that probing security can be

17

translated into a question of connectivity between nodes in certain graphs.
As an example consider the circuit Ĉ executing k times the simple refreshing.
It can be represented as a grid G with k + 1 rows and n+ 1 columns, where
in each row we have n + 1 nodes. The edges between the nodes represent
intermediate values that are computed during the execution of the circuit.
Leakage of a certain subset of wires then corresponds to a subgraph of G,
which we call leakage diagram.

A crucial property of such representation of a leakage is the following:
if its “leftmost side” and its “rightmost side” are not connected by a path
in the leakage diagram, then it can be shown that the adversary does not
learn any information about the encoded secret from the leakage. The above
can be extended to arbitrary masked arithmetic circuits, in which the graphs
representing the circuit are slightly more involved.

The above allows us to cast security against probing leakage as a ques-
tion about connectivity of nodes within a graph. To show security in the
p-random probing model we then need to bound the probability that the
random sub-graph of G representing the leakage contains a path that con-
nects the two sides of G. The main challenge is that although in the
p-random probing model each wire leaks independently with probability p,
in our graph representation certain edges are more likely to be part of the
leakage diagram. Even worse, the events of particular edges of G ending up
in the leakage diagram are not independent. This significantly complicates
our analysis. We believe that the techniques introduced in this dissertation
are of independent interest and provide a novel tool set for analyzing security
of masked computation in the random probing model.

Extension to any masked computation. As our last contribution we
show how to use the simple refreshing as part of a more complex masked
computation. To this end, we study the security of the masking compiler
provided by Ishai, Sahai and Wagner [25] when using the simple refreshing
described above. Notably, we first show that the simple refreshing can be used
to securely compose any affine masked operations. This result is important
because it shows for the first time that the most natural and efficient way to
carry out affine computation in the masked domain is secure against noisy
leakages. Compared to the standard construction of [25] we save a factor
of n in circuit and randomness complexity. Moreover, at the concrete level
we make huge practical improvements when compared to the recent works

18

of [1, 3], which use expander graphs and algebraic geometric codes.
Finally, we show that the simple refreshing can also be securely composed

with the masked multiplication of [25]. Since the masked multiplication
of [25] itself is a composable refreshing [13], this result is maybe not so
surprising.

1.4 Organization of the dissertation

Chapter 2 contains an informal description of our techniques and intuitions
behind them. In it, we present analysis of the security in case of the multi-
round refreshing circuit in the p-random probing model.

Chapter 3 presents the necessary preliminaries and formal security defi-
nitions relevant to our work.

Chapter 4 provides detailed description of our circuit compiler and give a
general definition of a gadget that can be composed securely with the simple
refreshing.

Chapter 5 contains all the auxiliary notions and their properties, neces-
sary for the proof of our main theorem.

In Chapter 6 we state the main theorem of our work and present its proof.

Most parts of this dissertation are covered by the paper [18]. This pa-
per was supported by the Foundation for Polish Science (grant agreement
TEAM/2016-1/4) co-financed with the support of the EU Smart Growth
Operational Programme (PO IR).

Acknowledgements

First and foremost I would like to thank my advisor, prof. dr hab. Stefan
Dziembowski, for his guidance and invaluable help during the process of
writing this dissertation and for co-authoring the research paper on which it
is based. I would like to thank prof. Sebastian Faust for collaboration during
my PhD studies and co-authoring the research paper. I am grateful also to
Dr. Vincenzo Iovino for collaboration and support. Finally, I am grateful
to all my friends and family for providing help and motivation during my
studies.

19

Chapter 2

Our approach informally

This Chapter is a slightly extended version of the section with the same title
in [18]. Here we describe informally our analysis of the security of multi-
round refreshing circuit.

As a simple example of circuit to present our approach let us consider a
circuit Ĉ (in the following the “hat notation” will denote masked/transformed
circuits) that is a k-round refreshing circuit. This circuit consist of k con-

secutive subcircuits that we call refreshing gadgets R̂, presented in Fig. 2.1.
Note that in addition to the notation from Sect. 1.2.2 we also use terms cji
that denote the partial sums: cji = bj1 + · · · + bji (for consistency define cj0
and cjn to be always equal to 0). Also, for i = 0, . . . , n let T ji be the partial
sum T ji := xj1 + · · ·+ xji (assume that always T j0 := 0). The following simple
observation, that easily follows from the construction on Fig. 2.1, will be
useful in the sequel.

Claim 1. For every i and j we have that T j+1
i = T ji + cji .

Proof. Transform T j+1
i as follows:

T j+1
i = xj+1

1 + · · ·+ xj+1
i

= (xj1 + bj1) + · · ·+ (xji + bji)

= xj1 + · · ·+ xjj︸ ︷︷ ︸
=T j

i

+ bj1 + · · ·+ bji︸ ︷︷ ︸
=cji

.

We show that the adversary can learn the encoded secret even if just
2 wires from each refreshing gadget leak to her (and no additional leakage

20

is given). Similar attacks for different refreshing schemes have been shown
in [16, 7]. Let x0

1, . . . , x
0
n be some initial encoding of x, and consider a k-round

(bj1, . . . , b
j
n−1)← Fn−1

cj0 := 0

for i = 1, . . . , n− 1 do

cji := cji−1 + bji

bjn := −cjn−1

for i = 1, . . . , n do

xj+1
i := xji + bji

(a) Pseudocode of the simple refreshing gadget R̂.

+ + + +

xj1

xj+1
1

xj2

xj+1
2

xj3

xj+1
3

xj4

xj+1
4

RND

CP

bj1

RND

CP

bj2

RND

CP

bj3

+

+NEG

c
j

1

c
j

2

cj3bj4

(b) Corresponding circuit (for n = 4).

Figure 2.1: The refreshing gadget. The “j” superscript is added for the
future reference (e.g. on Fig. (2.3a)).

refreshing circuit Ĉ. In the jth round (for j = 0, . . . , n − 1), the adversary
chooses to learn xjj+1, and the partial sum cjj+1

1. We now show that the
following invariant holds.

1The reader may notice that strictly speaking leaking the last cjj+1 (i.e.: cn−1
n) is not

needed, since anyway, this value is always equal to 0.

21

Claim 2. After n rounds the adversary can compute the sum T nn .

After showing this we will be done, since clearly x = T nn .

Proof. By applying recursively n times Claim 1 alternately with the fact that
T ji = T ji−1 + xji we get that

T nn = T n−1
n + cn−1

n

= T n−1
n−1 + xn−1

n + cn−1
n

...

= T 0
0 + (x0

1 + c0
1) + · · ·+ (xn−1

n + cn−1
n) (2.1)

This finishes the proof, since T 0
0 = 0 and all the other variables in Eq. (2.1)

are known to the adversary.

We now show how the proof of Claim 2 can be represented “graphically”.
First draw an (n+ 1)× (n+ 1) grid G with edges labeled with the edges xji
and cji as on Fig. (2.2a). Now, assume n = 4 and mark every edge that leaked
to the adversary with double colored lines (with the exception of cn−1

n which,
by the observation from footnote 1 is anyway not relevant to the attack).
This is done on Fig. (2.2b). Additionally, observe that the adversary knows
every cj0 and cjn “for free” since they are always equal to 0. Therefore we also
draw double lines over every cj0 and cjn.

It is easy to see that the proof of Claim 2 went through because the left-
most side of the graph on Fig. (2.2b) (i.e. the path labeled with c0

0, c
1
0, . . .) is

connected by a double line “diagonal” path (labeled with x0
1, c

0
1, x

1
2, c

1
2, . . . , c

2
3, x

3
4)

with the rightmost path (labeled with c0
n, c

1
n, . . .). Indeed, what our inductive

proof essentially shows (for n = 4) is that

x0
1 + c0

1 + x1
2 + c1

2 + · · ·+ c2
3 + x3

4

= x4
1 + · · ·+ x4

4 (= x).

Relaxing the leakage model. It is easy to see that the attack described
above strongly relies on the fact that the adversary can choose which wires he
learns, since only then she is able to gradually learn the values of T 1

1 , T
2
2 ,

As discussed in the introduction, in the weaker p-random probing model
it is very unlikely that the adversary will be lucky enough to learn xjj+1

and cjj+1 in each round (unless p is close to 1). Of course, the fact that one

22

x0
1

xk1

x0
n

xkn

c0
0

ck−1
0

c0
1

ck−1
1

c0
n−1

ck−1
n−1

c0
n

ck−1
n

...

· · ·

· · ·

(a) Graph G corresponding to the k-
round refreshing circuit. It has k + 1
rows. In each jth row (for j = 0, . . . , k)
it has n+1 vertices connected with edges
(there is an edge labeled with “xi” be-
tween the ith and (i + 1)st vertex). It
also has an edge between every pair of
ith vertices (for i = 0, . . . , n) in the jth
and j + 1st row. This edge is labeled
with “cji”.

x0
1

x1
1

x2
1

x3
1

x4
1

x0
2

x1
2

x2
2

x3
2

x4
2

x0
3

x1
3

x2
3

x3
3

x4
3

x0
4

x1
4

x2
4

x3
4

x4
4

c0
0

c1
0

c2
0

c3
0

c0
1

c1
1

c2
1

c3
1

c0
2

c1
2

c2
2

c3
2

c0
3

c1
3

c2
3

c3
3

c0
4

c1
4

c2
4

c3
4

(b) The nodes and the lines represent the
diagram that corresponds to the proof
of Claim 2 (see remarks after the proof
of this claim). The colored double lines
correspond to the wires that leaked to
the adversary, or are known to him be-
cause they are always equal to 0 (i.e.:
the cj0’s and the cj4’s).

Figure 2.2: Graph G and a leakage diagram.

particular attack does not work, does not immediately imply that the scheme
is secure. As already mentioned in Sect. 1.3 our first main contribution is
a formal proof that indeed this simple refreshing procedure is secure in the
p-random probing model. Our starting point is the natural question: can we
characterize the leakages which allow the adversary to compute the secret?
We answer this question affirmatively by introducing the notion of leakage
diagrams, which we explain below (for formal definitions see Sect. 5.2).

Leakage diagrams. Essentially, the leakage diagrams are graphs that can
be viewed as abstract representations of the leakage that occurred during the
evaluation of a circuit. For a moment let us focus only on leakage diagrams

23

that correspond to k-round refreshing circuits Ĉ. Let x0
1, . . . , x

0
n be some

initial encoding of the secret x. In this case the leakage diagram will be a
subgraph of a (n + 1) × (k + 1) grid G with edges labeled xji and cji as on
Fig. (2.2a).

To illustrate how the leakage diagrams are constructed take as an example
a 2-round refreshing circuit (with n = 3) that is depicted on Fig. (2.3a). Note
that this picture omits the part of circuit that is responsible for generating
the bji ’s, and in particular the wires carrying the cji values are missing on it.
This is done in order to save space on the picture. Let L be the wires that

+

+

+

+

+

+

x0
1

x1
1

x2
1

x0
2

x1
2

x2
2

x0
3

x1
3

x2
3

b0
1

b1
1

b0
2

b1
2

b0
3

b1
3

(a) A circuit with leaking wires marked
with colored double lines. Addition-
ally wires c0

2(= b01 + b02), c
1
1(= b11), and

c1
2(= b11 + b12) leak, which is indicated
by colored shaded areas around “b01 b

0
2”,

“b11”, “b
1
1 b

1
2”.

? ?x0
1

x1
1

x2
1

x0
2

x1
2

x2
2

x0
3

x1
3

x2
3

c0
0

c1
0

c0
1

c1
1

c0
2

c1
2

c0
3

c1
3

(b) The corresponding leakage diagram.
We show how the adversary can com-
pute the sum of edges x0

1, x
0
2, and x0

3.
The leftmost and the rightmost vertices
of the row containing these edges are
marked with “ ?○”.

Figure 2.3: A leaking circuit and its corresponding leakage diagram.

leaked in the refreshing procedure. Suppose the leaking wires are x0
3, x

1
1, x

3
2,

and b1
2, which is indicated by double color lines over the corresponding edges

on Fig. (2.3a). We also have to remember about the cji ’s that were omitted on
the figure and can also leak. Recall that every cji is equal to a sum bj1+· · ·+bji .
Hence, the leakage from cji is indicated by a shaded colored region around
bj1, . . . , b

j
i . Let us assume that c0

2, c
1
1, and c1

2 are leaking, and therefore the
shaded regions on Fig. (2.3a) are placed over b1

1, and the pairs (b0
1, b

0
2), (b1

1, b
1
2).

The corresponding leakage diagram is a subgraph of the graph G from

24

Fig. (2.2a) with k := 2 and n := 3. The leakage diagram S(L) has the
same vertices as G, but it has only a subset of its edges. Informally, the
labels on the edges of S(L) are variables that suffice to fully reconstruct the
leakage from the circuit. More precisely: given these values one can compute
the same leakage information that the adversary received. Going back to
our example: the leakage diagram corresponding to the leakage presented
on Fig. (2.3a) is depicted on Fig. (2.3b), on which the members of S(L) are
marked with double colored lines. The set S(L) is created according to the
following rules. First, we add to S(L) all the edges labeled xji and cji if the
corresponding wires are in L. For this reason S(L) on Fig. (2.3b) contains
x0

3, x
1
1, x

2
2, c

0
2, c

1
1, and c1

2. Handling leaking bji ’s is slightly less natural, since
graph G does not contain edges labeled with the bji ’s. To deal with this, we
make use of the fact that every bji can be computed from cji and cji−1 (as

bji = cji − cji−1). Hence, for every bji from L we simply add cji and cji−1 to
S(L). For this reason we add c1

1 and c1
2 to L (as b1

2 is in L). This approach
works, since, as mentioned above, the edges in S(L) should suffice to fully
reconstruct L. Note that in some sense we are “giving out too much” in
the leakage diagram (as cji and cji−1 cannot be uniquely determined from bji).
Fortunately, this “looseness” does not cost us much in terms of parameters,
while at the same time it greatly simplifies our proofs. Finally, we add to
S(L) all the edges labeled with cj0 and cjn (i.e.: the leftmost and the rightmost
columns in G). We can do it since these edges are always equal to 0 and hence
the adversary knows them “for free”.

What the adversary can learn from a leakage diagram. The ultimate
goal of the adversary is to gain some information about the encoded secret.
To achieve this it is enough that she learns the sum of all the xji ’s from some
row of the diagram. We now show how in case of leakage from Fig. 2.3 the
adversary can compute x0

1 + x0
2 + x0

3 from the values that belong to the S(L)
(i.e. those that are marked with double colored lines on Fig. (2.3b)). Using
the facts that xj+1

i = xji + bji and cji+1 = cji + bji+1 several times we have:

x0
1 + x0

2 + x0
3 = (x1

1 − b0
1) + (x1

2 − b0
2) + x0

3 = x1
1 + x1

2 − (b0
1 + b0

2) + x0
3 =

x1
1 + (x2

2 − b1
2)− c0

2 + x0
3 = x1

1 + x2
2 + c1

1 − c1
2 − c0

2 + x0
3

where all the variables on the right hand side belong to S(L). It is easy to see
that the reason why the adversary is able to compute x0

1 +x0
2 +x0

3 is that the
leftmost and the rightmost nodes in the row containing edges labeled with

25

variables were connected. These nodes are indicated with the “ ?○” symbol
on Fig. (2.3b).

Since the leftmost and the rightmost columns always belong to the leakage
diagram, thus in general a similar computation is possible when these two
columns are connected. Our first key observation is that if these columns are
not connected, then the secret x remains secure. We state this fact below in
the form of a following informal lemma.

Informal Lemma 1. Consider a multi-round refreshing circuit. Let L be the
set of leaking wires. Let E denote the event that the leftmost and the right-
most columns of S(L) are connected. If E did not occur then the adversary
gains no information about the secret.

This informal lemma is formalized as Claim 6 in the full proof of our central
Theorem 1, where it is also stated in a more general form, covering the
case of more complicated circuits (i.e. those that perform some operations in
addition to refreshing).

The rest of this chapter is organized as follows. In Sect. 2.1 we outline
the main ideas behind the proof on Informal Lemma 1, in Sect. 2.2 we sketch
the proof of the upper bound on the probability of E. This, together with
the Informal Lemma 1 shows the security of our multi-round refreshing con-
struction. Then in Sect. 2.3 we describe how these ideas can be generalized
to arbitrary circuits. Besides of presenting the intuitions behind our formal
proof, the goal of this part is also to introduce some more terminology that
is useful later (e.g.: the “modification vectors”). In the sequel we use the
following convention: if G is a labeled graph such that the labels on its edges
are unique, then we sometimes say “edge λ” as a shortcut for “edge labeled
with λ”. The same convention applies to circuits and wires.

2.1 Proof sketch of Informal Lemma 1

Here we present the main ideas behind the proof of Informal Lemma 1. Con-
sider a k-round refreshing circuit Ĉ that takes as input a secret shared over
n wires. For two arbitrary field elements x0, x1 ∈ F consider experiments
of applying Ĉ to their random encodings. In the proof we consider a fixed
set L of leaking wires in Ĉ. Assume that event E did not occur, i.e., the
leftmost and the rightmost columns of the leakage diagram are disconnected.

26

To prove Informal Lemma 1, it is enough to show that for the distribu-
tions of the values of wires in L are identical in both experiments (following
the standard approach in cryptography this formally captures the fact that
the adversary “gains no information about the secret”). We do it using a
hybrid argument. Namely, we consider a sequence of experiments denoted
Exp0

A,Exp0
B,ExpC ,Exp1

B, and Exp1
A (see below), such that: (a) Exp`A (for

` = 0, 1) is equal to the original experiment in which x` is refreshed k times,
and (b) the view of the adversary is identical for each pair of consecutive
experiments on this list (and hence it is identical for all of them).

Extending the notation from the pseudocode given in Fig. (2.1a), we
will add for future reference to the procedure that refreshes a secret x`

(with ` ∈ {0, 1}) a superscript “`” to all the labels, i.e., denote ~xj,` :=

(xj,`1 , . . . , x
j,`
n),~bj,` := (bj,`1 , . . . , b

j,`
n) and ~cj,` := (cj,`1 , . . . , c

j,`
n). Note that all the

operations in the refreshing circuit are linear, and in terms of linear algebra
this experiment (repeated k times) can be described as:

Exp`A:

Sample ~x0,` ← Enc(x`).
For j = 0 to k − 1 do:

1. sample ~bj,` ← Enc(0),

2. let ~cj,` := f(~bj,`),

3. let ~xj+1,` := ~xj,` +~bj,`,

where f is a linear function defined as

f(~bj,`) = (bj,`1 ,

bj,`1 + bj,`2 ,
...

bj,`1 + · · ·+ bj,`n).

(2.2)

It is easy to see that the following experiment (where the ~xj,`’s are chosen

first, and then ~bj,` is computed as their difference) has the same distribution
of the variables

Exp`B:

Sample ~x0,` ← Enc(x`).
For j = 0 to k − 1 do:

1. sample ~xj+1,` ← Enc(x`),

2. let ~bj,` := ~xj+1,` − ~xj,`,

3. let ~cj,` := f(~bj,`).

27

Hence, we can think of the k-round refreshing of secret x` (for ` = 1, 2) as an
experiment of choosing k + 1 random encodings ~x0,`, . . . , ~xk,` of x` and then
computing the ~bj,`’s and ~cj,`’s (according to the rules from steps 2 and 3 of
Exp`B). Let ~x0,`, . . . , ~xk,` be the random encodings of x`. Recall that our goal
is to show that the encodings of x0 are indistinguishable from encodings of x1

given the leakage from wires in the set L. Our approach to this is as follows.
Based on the leakage diagram S(L) (and independently from the choice of
the xj,`i ’s) we construct carefully crafted vectors ~m0, . . . , ~mk ∈ {−1, 0, 1}n
that we call basic modification vectors such that for every j we have that

mj
1 + · · ·+mj

n = 1 (2.3)

(where (mj
1, . . . ,m

j
n) = ~mj). These vectors have to satisfy also some other

conditions (that we define in a moment, see Eq. (2.8) and (2.9)). See Fig. 2.4
for an example. We then consider the following modification of Exp`B:

ExpC :

Sample ~x0,1 ← Enc(x0) + (x1 − x0) · ~m0.
For j = 0 to k − 1 do:

1. sample ~xj+1,1 ← Enc(x0) + (x1 −
x0) · ~mj+1,

2. let ~bj,1 := ~xj+1,1 − ~xj,1,

3. let ~cj,1 := f(~bj,1).

We now have the following simple observation.

Claim 3. The joint distribution of the variables ~xj,1,~bj,1, and ~cj,1 in ExpC is
the same as in Exp1

B.

Proof. Since the ~bj,1’s and ~cj,1’s are functions of the ~xj,1’s thus it is enough
to consider only the ~xj,1’s. First observe that ~xj,1 in ExpC indeed encode x1.
Indeed, we have

Dec(~xj,1) = Dec(Enc(x0) + (x1 − x0) · ~mj)

= Dec(Enc(x0)) + (x1 − x0) ·Dec(~mj) (2.4)

= x0 + (x1 − x0) · 1 (2.5)

= x1,

where in (2.4) we used the linearity of the encoding scheme, and in (2.5)
we used the property of the basic modification vectors from Eq. (2.3). To

28

see why every ~xj,1 is distributed uniformly over the set of all encodings of
x1 it is enough to observe that ~xj,1 is a result of adding a constant vector
(x1−x0)· ~mj to a vector that is chosen uniformly from the set of all encodings
of x0.

Therefore what remains is to show the following.

Claim 4. The view of the adversary (i.e. the values that leak) are distributed
identically in ExpC and in Exp0

B.

(Clearly, after showing this we will be done as Claims 3 and 4 will together
imply that the leakages in Exp0

B and Exp1
B are distributed identically.)

We do not show a formal proof of this claim (for a formal proof in case of
arbitrary circuits see the proof of Thm. 1 in Chapter 6), but only provide some
intuitions behind it. The validity of Claim 4 depends, of course, on the details
of the construction of the basic modification vectors (whose description we
postponed until now). Informally, we need to construct them in such a way
that the encodings

~xj,1 := Enc(x0) (2.6)

and
~xj,1 := Enc(x0) + (x1 − x0) · ~mj (2.7)

are “indistinguishable” from the point of view of the adversary, i.e., the
leaking edges S(L) have the same values no matter if ~xj,1 was computed
according to (2.6) or (2.7). To deal with leaking xj,1i ’s we introduce the
following requirement:

if an edge xj,1i belongs to S(L), then the ith coordinate of ~mj

equals to 0.
(2.8)

The reason for having this requirement is that without it (2.6) and (2.7)
would obviously differ on the ith coordinate. To deal with leaking cj,1i ’s we
have the following:

if the edge cj,1i belongs to S(L), then the sum of first i coor-
dinates is the same for vectors ~mj and ~mj+1.

(2.9)

The reason for having this is similar to the one for (2.8). To see it let Xj and
Xj+1 be two independent and random encodings of x0, let ~cj,1(2.6) be computed

from (2.6) as in Exp0
B, i.e.:

~cj,1(2.6) = f(Xj+1 −Xj),

29

and let ~cj,1(2.7) denote the “~cj,1 vector computed from (2.7) as in ExpC”, i.e.

~cj,1(2.7) = f
(
(Xj+1 + (x1 − x0) · ~mj+1)− (Xj + (x1 − x0) · ~mj)

)
= f(Xj+1 −Xj) + (x1 − x0) · f(~mj+1 − ~mj), (2.10)

where (2.10) follows from the linearity of f . Obviously ~cj,1(2.6) and ~cj,1(2.7) are
not necessarily identical since vector

f(~mj+1 − ~mj) (2.11)

does not need to be equal to (0, . . . , 0). Fortunately what suffices for us is
that ~cj,1(2.6) and ~cj,1(2.7) are equal to each other “from the point of view of the

adversary”. This can be expressed as: for every ~cji that belongs to S(L), the
value of the ith coordinate of vector (2.11) has to be equal to 0. From the
definition of f (see Eq. (2.2)) we know that the ith coordinate of f(~mj+1−~mj)
is equal the sum of first i coordinates of the vector (~mj − ~mj+1), which has
to be equal to 0 by the requirement from Eq. (2.9). Hence ~cj,1(2.6) and ~cj,1(2.7) are
indeed indistinguishable from the point of view of the adversary. Note that
by dealing with the cji ’s we automatically dealt with leaking bji ’s, because of
the way S(L) was constructed: for each leaking bji ’s two c’s were added.

What remains is to show how the basic modification vectors are con-
structed. Let LS be the connected component of S(L) that contains its
leftmost column. By assumption, E did not occur so LS does not con-
tain the rightmost column of S(L). This makes it possible to construct
the basic modification vectors with desired properties. For each j construct
~mj = (mj

1, . . . ,m
j
n) according to the following rules: (i) if the left node of the

edge “xji” does belong to LS and its right node does not belong to LS, then
let mj

i be equal to +1, (ii) if the left node of the edge “xji” does not belong
to LS and its right node does belong to LS , then let mj

i be equal to −1,
and (iii) let all the other mj

i ’s be equal to 0. An example of how the basic
modification vectors are constructed is presented on Fig. 2.4 (these vectors
and their coordinates are marked there with numbers in boxes). As it turns
out (see Lemma 8 in the security proof for a generalization of this statement)
these rules guarantee that the requirements from Eq. (2.3), (2.8), and (2.9)
are satisfied.

30

0

x0
1

0

x1
1

0

x2
1

0

x3
1

0

x0
2

0

x1
2

0

x2
2

0

x3
2

0

x0
3

0

x1
3

0

x2
3

0

x3
3

0

x0
4

0

x1
4

0

x2
4

0

x3
4

+1

x0
2

+1

x1
1

−1

x1
2

+1

x1
4

+1

x2
4

+1

x3
2

−1

x3
3

+1

x3
4

c0
0

c1
0

c2
0

c0
1

c1
1

c2
1

c0
2

c1
2

c2
2

c0
3

c1
3

c2
3

c0
4

c1
4

c2
4

~m0 :=

~m1 :=

~m2 :=

~m3 :=

Figure 2.4: The example of the leakage diagram with leakage indicated with
double colored lines. The nodes of the connected component LS (containing
the leftmost column) are indicated with gray color. The modification vectors
~mj and their coordinates are placed in boxes (e.g.: ~m0 := (0,+1, 0, 0)).

2.2 Bounding the probability of E

To show how we derive a bound on the probability of E we take a closer
look at how, from the probabilistic point of view, the leakage diagram is
constructed (see p. 25). By definition, it is a subgraph of a graph G from

Fig. (2.2a). Recall that in our experiment every wire of the circuit Ĉ leaks
independently at random with probability p. The leakage diagram S(L)
corresponding to leakage L is a random subgraph of G.

Let us now analyze the distribution of S(L). It is easy to see that every
edge “xji” is added to S(L) independently with probability p. Unfortunately,
the situation is slightly more complicated when it comes to the cji ’s. Recall
that cji ’s can be added to S(L) for three reasons. The first (trivial) reason

is that i = 0 or i = n. The second reason is that the wire “cji” leaks in Ĉ

(i.e.: it belongs to L). The third reason is that the wire bji or bji+1 leaks in Ĉ.

Because of this, the events {“cji belongs to S(L)”}i,j are not independent,
and the probability of each of them may not equal to p.2

2For example: it is easy to see that if we know that cji ∈ S(L) then the event “cji+1

31

Let us look at the “non-trivial” edges in S(L), i.e., the xji ’s and the cji ’s
such that i ∈ {1, . . . , n − 1}. Let U be the variable equal to the set of non-
trivial edges in S(L). To make the analysis of the leakage diagram simpler
it will be very useful to eliminate the dependencies between the “cji ∈ U”
events. We do it by defining another random variable Q (that takes the same
values as U), and that has the following properties.

1. It is “more generous to the adversary”, i.e., for every set C of the edges
we have that

Pr[C ⊂ Q] ≥ Pr[C ⊂ U] (2.12)

(we will also say that the distribution of Q covers the distribution of
U , see Def. 1 on p. 37), and

2. The events {v ∈ Q} (where v is a non-trivial edge) are independent
and have equal probability. Denote this probability q, and say that Q
has a standard distribution (see Def. 2 on p. 37).

Now, consider an experiment ExpQ of constructing a leakage diagram when
the “ci,j” and “xi,j” edges are chosen according to Q. More precisely: let
the edges in the leakage diagram be sampled independently according to the
following rules: the {cj0}’s and {cjn}’s are chosen with probability 1, and
the remaining {cji}’s are chosen with probability q. It is easy to see that,
thanks to Eq. (2.12), the probability of E in ExpQ is at least as high as in
the probability in the original experiment. Hence, to give a bound on the
probability of E it suffices to bound the probability of this event in ExpQ.

Thanks to the independence of the events {cji ∈ Q}i,j ∪{x
j
i ∈ Q}i,j bounding

the probability of E in ExpQ becomes a straightforward probability-theoretic
exercise. For the details on how it is done see the proof of the Thm. 1 in
Chapter 6.

2.3 Generalizations to arbitrary circuits

As mentioned in Sect. 1.3, our final main contribution is a circuit compiler
that uses the simple refreshing together with gadgets that perform the field
operations. We follow the standard method of constructing compilers in a
“gate-by-gate” fashion (see, e.g., [25], and the follow up work). A compiler

belongs to S(L)” becomes more likely (because leakage of bji+1 is more likely).

32

takes as input a circuit C (for simplicity assume it has no randomness gates)

and produces as output a transformed circuit Ĉ (that contains randomness
gates RND). More concretely a wire carrying x in C gets transformed into
a bundle of n wires carrying a random encoding of x. Every gate Γ in C is
transformed into a “masked gate” Γ̂. For example, an addition gadget will
have 2n inputs for n-share encodings of two values a and b, and n output
wires that will carry some encoding of a+ b. The masked input gates simply
encode the secret (they have one input and n outputs). The masked output
gates decode the secret (they have n inputs and one outputs). These two

gadgets are assumed to be leak-free. They are also called: input encoder Î
and output decoder Ô, respectively. For technical reasons, in our construction
we insert the refreshing gadgets between the connected gadgets.

The main challenge in extending our ideas to such general circuits is that
we need to take into account the leakage from wires of the individual gad-
gets, and represent them in the leakage diagram. We do it in such a way
that unless an event E occurs, we are guaranteed that the adversary gained
no information about the secret input. By the “event E” we mean a gen-
eralization of the event E (from the previous sections) to more complicated
leakage diagrams. More concretely (see Sect. 5.2 for details) our approach

is to represent each gadget Γ̂ in the graph G with a path N Γ̂
0 – · · · – N Γ̂

n

of length n and to “project” the leaking wires of the given gadget onto the
edges of the path. Technically, this is done be defining, for every gadget Γ̂, a
leakage projection function (see Sect. 4.2) that describes how a leakage from
an internal wire is mapped on the path.

A projection function P , by definition, takes as argument a leaking wire
w in a gadget Γ̂, and returns a subset of [n] (usually of size 1 except for
some wires in the multiplication gadget). We can refer to a projection of

a set of wires in Γ̂ defined in a natural way as P ({w1, . . . , wl}) := P (w1) ∪
· · · ∪ P (wl). One of the requirements that we impose on the function P is
the following: every set of probes {w1, . . . , wl} (regardless of its size) from

Γ̂ can be simulated knowing only input shares of indices in the projection
P ({w1, . . . , wl}) within each input bundle. Notice that it makes our definition
of the gadget security similar in spirit to the existing definitions for the t-
probing leakage model, like d-non-interference. One of the differences is that
we care not only about the number of input shares that suffice to simulate
the leakage, but also take into account their indices in a particular input
bundle. Having a leakage projection function P defined for a gadget Γ̂, we

33

will represent a leakage from that gadget in the leakage diagram as a subset
of the edges from the path in G: N Γ̂

0 – · · · – N Γ̂
n . The positions (with the

edge N Γ̂
0 – N Γ̂

1 being the 1st one) of these edges in the path are taken from
the set P ({w1, . . . , wl}), when the wires w1, . . . , wl are leaking. This way we
can “project” any given leakage from a gadget onto the path of length n in
the leakage diagram.

As an example consider the addition gadget “⊕̂” that computes an en-
coding ~z of z = x+ y as ~z := ~x+ ~y (where ~x and ~y are encodings of x and y,
respectively). The leakage projection function P⊕̂ for this gadget is defined
as follows. Each input wire that is on ith position in the input bundle is
projected onto the set {i}, i.e., P⊕̂(xi) = {i} and P⊕̂(yi) = {i}. Moreover,
projection of the output wires is defined similarly, namely P⊕̂(zi) = {i}. It is
easy to see that with such projection function the above mentioned simulation
requirement is satisfied. For example, the leakage illustrated on Fig. (2.5a)
can be simulated knowing 3 input shares from each input bundle, namely
x2, x4, x5 and y2, y4, y5. On the leakage diagram we represent this particular
leakage from the addition gadget with 3 edges, as illustrated on Fig. (2.5b).
Note that the addition gate is simple, and hence the projection function for it
is rather straightforward. The projection function for a multiplication gadget
is more involved (see Sect. 4.3).

+

x1 y1

z1

+

x2 y2

z2

+

x3 y3

z3

+

x4 y4

z4

+

x5 y5

z5

(a) An example of leakage from the addition gad-
get “⊕̂” (marked with double colored lines).

N ⊕̂
0 N ⊕̂

1 N ⊕̂
2 N ⊕̂

3 N ⊕̂
4 N ⊕̂

5

(b) The corresponding
“projected” leakage in
the leakage diagram
(marked with double
colored lines).

Figure 2.5: Leakage from an addition gadget and the corresponding “pro-
jected” leakage. This is a valid projection, since it is enough to know x2, x4, x5

and y2, y4, y5 to simulate the leakage.

Having the projections of leakages for individual gadgets defined, we can
generalize the idea of a leakage diagram S(L) presented in previous sections

34

from simple sequential k-round refreshing circuits to arbitrary private cir-
cuits built according to our construction. Recall that we insert a refreshing
gadget between each pair of connected gadgets. The leakage from each in-
dividual gadget is projected onto a respective path in the leakage diagram,
and the leakage from the remaining wires, i.e., wires used to generate encod-
ings Enc(0) between two gadgets is “projected” onto the edges connecting
the respective paths (analogue of the edges cji ’s from previous sections). See
Sect. 5.2 for the details. Overall, we obtain a graph that is similar to the
leakage diagrams from the previous sections, but it is more general. In case
of an example depicted on Fig. 2.6 the leakage from the gadget Γ̂1 induces a

projection set {3}. This fact is represented by including the edge N Γ̂1
2 – N Γ̂1

3

into the leakage diagram.
A crucial property of such leakage diagrams is that the generalization

of the Informal Lemma 1 still holds: the notion of the leftmost and the
rightmost column are generalized to the leftmost and the rightmost sides
(respectively). On Fig. 2.6 the leftmost side is a graph consisting of nodes

N Γ̂1
0 , N Γ̂2

0 , N Γ̂3
0 , N Γ̂4

0 , and N Γ̂5
0 , while the rightmost one consists of nodes

N Γ̂1
3 , N Γ̂2

3 , N Γ̂3
3 , N Γ̂4

3 , and N Γ̂5
3 . We now define the event E as: “the left-

most and the rightmost sides are connected”. For example E does not hold
for the diagram on Fig. 2.6. To make it easier to verify this fact, we indicate
(with gray color) the nodes connected with the leftmost side.

N Γ̂1
0N
Γ̂1
0

N Γ̂2
0N
Γ̂2
0

N Γ̂3
0N
Γ̂3
0

N Γ̂4
0

N Γ̂5
0

N Γ̂1
1N
Γ̂1
1

N Γ̂2
1N
Γ̂2
1

N Γ̂3
1N
Γ̂3
1

N Γ̂4
1

N Γ̂5
1

N Γ̂1
2N
Γ̂1
2

N Γ̂2
2N
Γ̂2
2

N Γ̂3
2N
Γ̂3
2

N Γ̂4
2

N Γ̂5
2

N Γ̂1
3N
Γ̂1
3

N Γ̂2
3N
Γ̂2
3

N Γ̂3
3N
Γ̂3
3

N Γ̂4
3

N Γ̂5
3

Figure 2.6: An example of a leakage diagram for a transformed circuit Ĉ
with 5 gadgets. The nodes connected with the leftmost side are marked in
gray.

When using the leakage projection functions we encounter the following

35

problem that is similar to the “lack of independency problem” described in
Sect. 2.2. Namely, it may happen that the events different edges become part
of the projected set are not independent (this is, e.g., the case for the mul-
tiplication gadget in Sect. 4.3). We handle this problem in a similar way as
before (see points 1 and 2 on page 32). That is: we define a “more generous”
leakage projection distribution that (1) “covers” the original distribution, and
(2) is “standard” (see the aforementioned points for the definition). Let q be
the parameter denoting the probability in the standard distribution. This
parameter, of course, depends on the probability p with which a wire leaks. A
function that describes this dependence is called projection probability func-
tion. Every gadget in our construction comes with such a function. See
Sect. 4.2 for a formalization of these notions.

Our construction is modular and works for different implementations of
the addition and multiplication gadgets, assuming that they come with the
leakage projection that satisfies certain conditions (see Thm. 1 on p. 71).
We show (see Sect. 4.3) that the standard gadgets from the literature (in-
cluding the ISW multiplication gadget [25]) satisfy this condition. Note that
the construction and reasoning regarding the refreshing circuit presented in
previous sections are special case of the construction and the security proof
for the general arithmetic circuit. Indeed, we can treat each bundle between
refreshing gadgets as an “identity gadget” (see Sect. 4.3).

36

Chapter 3

Preliminaries

In this chapter we present some basic notions and definitions used in the
sequel chapters. Moreover, we recall the security reduction of [13] from the
noisy leakage model to the random probing model.

Let us start with introducing some standard notation. In the sequel [n]
denotes the set {1, 2, . . . , n}. We write x← X when the element x is chosen
uniformly at random from the finite set X . For a random variable X we
denote with D(X) its distribution.

3.1 Partial order of the distributions over the

subsets

In this section we provide a formal definition of what it means that one prob-
ability distribution “covers” another one. The motivation and the intuition
behind this concept were described in Sect. 2.2.

Definition 1. Consider a fixed finite set A and its power set P (A). Let D1

and D2 be some probability distributions over P (A). We will say that distribu-
tion D2 covers distribution D1 if there exist a finite sequence D0, D1, . . . , Dm

of distributions over P (A) such that D0 = D1, Dm = D2 and for each
i = 1, 2, . . . ,m the distribution Di is obtained by modifying distribution Di−1

in the following way:

37

1. Pick two subsets S1, S2 satisfying S1 ⊂ S2 ⊂ A.

2. Pick a real value d satisfying 0 ≤ d ≤ Di−1(S1).

3. Define the distribution Di as follows:

? Di(S) := Di−1(S) for each subset S ⊂ A except for S1

and S2

? Di(S1) := Di−1(S1)− d
? Di(S2) := Di−1(S2) + d

Remark 1. It is clear from the definition above that the relation of covering
is a partial order of the probability distributions. We will write D1 ≥ D2 to
denote the coverage relationship of the distributions D1 and D2 (when it is
clear from the context over which power set these distributions are).

As already mentioned in Sect. 2.2, one specific distribution over a power
set P (A) that we will consider is a standard distribution Dp(A) where 0 <
p < 1.

Definition 2. Let A be a finite set and let 0 < p < 1. We define a random
subset S of A as follows: any element of A belongs to S with probability p,
independently. We call the distribution over the power set P (A) determined
by the random subset S a standard distribution Dp(A).

For a random variable X with a domain P (A) we denote by D(X) the
probability distribution over P (A) generated by that variable. For two ran-
dom variables X, Y with the same domain P (A) we will say that Y covers
X if D(Y) covers D(X).

3.2 Assumptions about the circuit

Throughout the rest of the dissertation we assume that the original circuit C
that is a subject to our transformation is a standard arithmetic circuit over
field F, i.e., its gates are

• addition gate ⊕,

• multiplication gate ⊗,

38

• negation gate NEG implementing the additive inverse operation in F,
i.e., for input x it outputs −x

• copy gate CP copying its input, which for input x it has two outputs
(x, x),

• constant gate Constα that has no input and outputs constant α.

Notice that we assume that the original circuit C is deterministic, i.e. it has no
random gates. This can be done without loss of generality, as the randomness
can be provided to C as an additional input. The concrete gadgets replacing
the gates in our construction are listed in Sect. 4.3. Moreover, we assume
that the gadgets in the transformed circuit Ĉ may use the random gate RND ,
which outputs a field element x chosen uniformly at random, i.e., x← F.

In the sequel we always assume a fixed security parameter n, i.e. every
wire in the original circuit C will be replaced by a bundle of n wires in the
transformed circuit Ĉ.

We introduce also a special input encoding gate I and a special output
decoding gate O. They simply implement the identity function, but are
replaced during our transformation with special non-leaking input encoder Î
and output decoder Ô, introduced already in Sect. 2.3. The input encoder Î
simply takes one input x ∈ F, and outputs an encoding of x chosen uniformly
at random, i.e., outputs n shares (x1, . . . , xn) ∈ Fn chosen uniformly at
random subject to a condition Σn

i=1xi = x. Similarly, the output decoder
takes as input n shares (x1, . . . , xn) ∈ Fn and simply outputs x = Σn

i=1xi.
We say that a circuit C is affine if it has only affine gates, i.e., does not

use multiplication gates. We denote with |C| the size of circuit C, i.e., the
number of gates in C.

3.3 Security definitions

In this section we present the formal definitions of soundness and privacy of a
circuit transformation. First, let us recall a standard definition of a statistical
distance.

Definition 3. A statistical distance between two random variables X0 and
X1 (distributed over some set X) is defined as

∆(X0;X1) := 1/2 ·
∑
x∈X

|Pr[X0 = x]− Pr[X1 = x]|.

39

If ∆(X0;X1) ≤ ε then we say that X0 and X1 are ε-close.

Soundness of the circuit transformation is defined as follows.

Definition 4. We say that transformation Ĉ of k-input circuit C is sound
if it preserves the functionality of C, that is

Ĉ(~x) = C(~x)

for every input ~x of length k.

Our privacy definition of a transformed circuit is essentially the same as
the definition of statistical privacy given by Ishai, Sahai and Wagner in [25].
To reason about privacy of the circuit we consider the following experiment.

Definition 5. For a fixed circuit C with k input wires, its input ~x = (x1, . . . ,
xk) and probability p we define an experiment Leak(C, ~x, p) that outputs an
adversarial view as follows:

1. Transformed circuit Ĉ is fed with (x1, . . . , xk) resulting with

some assignment of the wires in Ĉ.

2. Each wire in Ĉ leaks independently with probability p.

Note that the input and output wires do not leak, as they are
part of non-leaking Î and Ô gadgets.

3. Output: (LW : set of leaking wires in Ĉ, A: values assigned
to the leaking wires in LW during the circuit evaluation).

We are now ready to define the privacy of a circuit transformation.

Definition 6. We say that transformation Ĉ of circuit C is (p, ε)-private
if leakage in experiment Leak(C, ~x, p) can be simulated up to ε statistical
distance, for any input ~x. More precisely, there exist a simulation algorithm
that, not knowing input ~x, outputs a random variable that is ε-close to the
actual output of Leak(C, ~x, p).

40

3.4 p-random probing model to noisy leakage

model

As mentioned in Sect. 1.2.3, the noisy leakage model can be reduced to
the p-random probing model. In this section we recall the definition of the
noisy leakage model, originally proposed by Prouff and Rivain in [34], and
its reduction to the p-random probing model proved by Duc et al. in [13].
The definitions given here are adapted to our needs, as we do not consider
stateful circuits.

First, we give the definition of a noisy function.

Definition 7. Let Noise : X → Y be a randomized function. We say that
Noise is δ-noisy if

δ = ∆(X; (X|Noise(X)))

for X being chosen from X uniformly at random, i.e. X ← X .

In the noisy leakage model the adversary specifies a noisy function for each
of the wire in the circuit. The adversarial view consists of noisy leakage from
all the wires, assuming the noises are mutually independent. More precisely,
the adversary A plays and receives the output of the following game:

Definition 8. For a fixed circuit C with k input wires, its input ~x = (x1, . . . , xk)
and noise δ we define a game NoisyLeak(C, ~x, δ) that outputs an adversarial
view as follows:

1. Adversary A specifies for each wire wi in the transformed cir-
cuit Ĉ a δi-noisy function Noise i, where δi ≤ δ.

2. Ĉ is fed with (x1, . . . , xk) resulting with some assignment of

the wires in Ĉ.

3. For each wire wi in Ĉ that is assigned with value vi, the noisy
value Noise i(vi) is added to the adversarial view, where the
noises is mutually independent. Note that the input and output
wires do not leak, as they are part of non-leaking Î and Ô
gadgets.

4. Output: All the noisy values Noise i(vi).

41

Thanks to the Lemma 3 in [13], we can reduce the security in the noisy
leakage model to the security in the random probing model. Here we state
this lemma in a slightly adapted version:

Lemma 1. Let A be an adversary in the game NoisyLeak(C, ~x, δ). His view
can be simulated perfectly, given the output of the experiment Leak(C, ~x, δ ·
|F|).

Therefore, the adversarial view in the noisy leakage model can be sim-
ulated perfectly, given the leakage in the p-random probing model. Thus
in the rest of the dissertation we focus solely on proving the privacy of our
construction in the random probing model.

42

Chapter 4

Details of the circuit
transformation

In this chapter we present the technical details of our construction of the
transformed circuit Ĉ, including a general description of a gadget and con-
crete gadgets we use.

4.1 Our construction of the transformed cir-

cuit Ĉ

We assume that the arithmetic circuit C that is subject to our transformation
is as described in Sect. 3.2. For syntactic purposes we introduce also a
special single-input single-output refreshing gate R that simply implements
an identity function, similarly to I and O gates (see Sect. 3.2), but can be
placed anywhere in the circuit C.

The transformation of the original circuit C consists of two phases:

1. Preprocessing phase. In this phase we add I gate to every input wire
and O to every output wire in C. Moreover, we add refreshing gate R
on every wire of C that connects any two gates, except for I and O
(see Fig. 4.1). We call the resulting circuit C ′.

2. Actual transformation phase. During this phase each wire in C ′, except
its input and output wires, is replaced with a bundle of n wires (car-
rying an encoding). Each gate Γ in C ′ is replaced with a respective

43

gadget subcircuit Γ̂ that operates on the encodings. In particular, each
refreshing gate R is replaced with a refreshing gadget R̂.

We give a detailed description of the gadget subcircuits in Sect. 4.3.

+ CP

+

(a) An original circuit C

+ CP

+

I I I

O O

R R

(b) Circuit C ′ after the preprocessing
phase

Figure 4.1: Example of the preprocessing phase of the transformation.

We say that two gadgets, other than refreshing gadgets, Γ̂1 and Γ̂2 in Ĉ
are connected if there is a refreshing gadget between them. More precisely, if
there is a refreshing gadget R̂ that takes as input the output bundle of Γ̂1,
and outputs the input bundle to Γ̂2.

4.2 General gadget description

In this section we give a general definition of a gadget that can be used in
our construction of a transformed circuit, and its required properties. Every
gadget used in the construction, except for the special refreshing gadget R̂,
satisfies the given definition (see Sect. 4.3). To distinguish them from the
refreshing gadget, we call them regular gadgets.

44

Input and output wires of the gadget. Let us consider a gate Γ in the
original circuit C with 0 ≤ i ≤ 2 inputs and 1 ≤ o ≤ 2 outputs, excluding the
case (i, o) = (2, 2). For example Γ might be a sum gate ⊕ or a multiplication

gate ⊗. A respective gadget Γ̂ will have i input wire bundles and o output
wire bundles, each bundle consisting of n wires, that is i · n inputs and o · n
outputs in total.

We will denote with IN b
k(Γ̂) the k-th wire of its b-th input bundle and

with OUT b
k(Γ̂) the k wire of its b-th output bundle. We denote with IN k(Γ̂)

all the input wires of index k in its input bundle. More precisely,

IN k(Γ̂) := {IN b
k(Γ̂)|1 ≤ b ≤ i}.

Similarly, we define OUT k(Γ̂) as

OUT k(Γ̂) := {OUT b
k(Γ̂)|1 ≤ b ≤ o}.

Moreover, we use IN b(Γ̂) to denote the b-th input bundle of Γ̂ and OUT b(Γ̂)
to denote its b-th output bundle. That is,

IN b(Γ̂) := {IN b
k(Γ̂)|1 ≤ k ≤ n},

and
OUT b(Γ̂) = {OUT b

k(Γ̂)|1 ≤ k ≤ n}.

Gadget correctness. Let g : Fi → Fo be the function computed by the
gate Γ. The gadget Γ̂ should implement the same functionality as Γ. More
precisely, if g(x1, . . . , xi) = (y1, . . . , yo) then for any encoding (~x1, . . . , ~xi) of

(x1, . . . , xi) fed to circuit Γ̂ as input, it outputs some encoding (~y1, . . . , ~yo) of
(y1, . . . , yo).

Leakage projections. We now define the “leakage projections” already
informally discussed in Sect. 2.3. Every gadget Γ̂ comes with a leakage pro-
jection function P that takes as argument a leaking wire w in Γ̂ and returns
an associated subset P (w) of [n] (usually an one-element subset, except for
the ISW multiplication gadget). We extend the domain of the function P ,

in a natural way, to the subsets of wires in Γ̂. For a subset of wires W we
define it as

P (W) :=
⋃
w∈W

P (w).

We require two following properties of the projection P to be satisfied:

45

• For any subset LG of leaking wires in Γ̂, it is enough to know the
values carried by wires of the indices in the set P (LG) from every

input bundle, i.e., the wires in {IN b
k(Γ̂)|1 ≤ b ≤ i, k ∈ P (LG)}, to

simulate the leakage from Γ̂ perfectly (without knowing the values of
the other input wires).

• For every output wire w in Γ̂ that is k-th wire in any output bundle,
i.e. w ∈ OUT k(Γ̂), we have P (w) = {k}.

Leakage projection distribution. As described in Sect. 2.3, the leakage
from the wires in a gadget used in our construction is “projected” onto a
path in the diagram corresponding to the gadget (see Sect. 5.2 for details).
In order to reason about the properties of the resulting leakage diagram,
treated as a random variable, we introduce the notion of leakage projection
distribution:

Definition 9. Consider an experiment where each wire in the gadget Γ̂ leaks
independently with probability p. Let LG denote the random set of the leaking
wires. Induced projection of the leakage P (LG), treated as a random variable,
defines a probability distribution over the subsets of [n]. We call it a leakage

projection distribution and denote it with Dp(Γ̂).

Projection probability function. As described in Sect. 2.3, when using
a leakage diagram representing the leakage in our construction of the private
circuit, we encounter a “lack of independency problem”: for a particular
gadget Γ̂ (e.g., see the case of multiplication gadget in Sect. 4.3.1) the events

of the edges representing the leakage in Γ̂ being included into the diagram, are
not independent. To tackle this problem, we introduce a notion of projection
probability function describing a particular gadget. Essentially, it expresses
with what probability do we need to include each of the numbers from the
set [n] independently, to cover (as in Def. 1) the projection of the leakage

from Γ̂.

Definition 10. We say that a function f : [0, 1] → R is a projection prob-

ability function for a gadget Γ̂ if the leakage projection distribution Dp(Γ̂) is
covered (as in Def. 1) by the standard distribution Df(p)([n]) (see Def. 2).

Note that the function f may depend on the security parameter n, like in
the case of the ISW multiplication gadget (see Sect. 4.3.1).

46

4.3 The gadgets used in our construction

In this section we present all the gadgets used in our construction.

4.3.1 ISW multiplication gadget

As the multiplication gadget ⊗̂ in our construction we use the gadget pro-
posed in [25]. Here we recall their scheme and prove that it satisfies the
general gadget definition.

1. Input: 2 bundles ~x = (x1, . . . xn) and ~y = (y1, . . . yn)

2. For 1 ≤ i < j ≤ n sample zi,j ← F

3. For 1 ≤ i < j ≤ n compute zj,i = (zi,j ⊕ xi ⊗ yj)⊕ xj ⊗ yi

4. Compute the output encoding (t1, . . . tn) as ti = xi⊗yi⊕
⊕

j 6=i zi,j

5. Output: a bundle ~t = (t1, . . . , tn)

We define the projection function P for this gadget as follows: For every wire
w of the form xi, yi, xi ⊗ yi, zi,j (for any j 6= i) or a sum of values of the
above form (with ti as a special case), P (w) = {i}. For the remaining wires
w, which are of the form xi ⊗ yj or zi,j ⊕ xi ⊗ yj, we define P (w) = {i, j}.

The following two lemmas allow the use of the ISW multiplication gadget
in our construction.

Lemma 2. The ISW multiplication gadget with its projection function sat-
isfies a general gadget description (given in Sect. 4.2) for the multiplication
function g(x, y) = x · y.

Proof. For the correctness, first notice that for i 6= j we have zj,i ⊕ zi,j =
xi⊗ yj ⊕ xj ⊗ yi. It is clear that the gadget output bundle encodes the value

n∑
i=1

ti =
n∑
i=1

(xi ⊗ yi ⊕
⊕
j 6=i

zi,j) =

(
n∑
i=1

xi ⊗ yi

)
⊕

⊕
1≤i<j≤n

zi,j ⊕ zj,i

=
n∑
i=1

n∑
j=1

(xi ⊗ yj) =

(
n∑
i=1

xi

)
⊗

(
n∑
i=1

yi

)
,

so indeed the gadget implements a multiplication function.

47

For the leakage projection properties of the gadget, it is clear that for the
i-th wire w of the output bundle we have P (w) = {i}. Now let us assume
that the gadget is fed with some input (~x, ~y) and LG is a set of leaking wires.
Let I = P (LG). We will show how to simulate the joint leakage from wires
in LG given the values {xi, yi|i ∈ I}. The procedure is as follows:

1. Assign values to the zi,j as follows:

• If i /∈ I (regardless of j) then zi,j does not enter into the
computation for any w ∈ LG and can be left unassigned.

• If i ∈ I, but j /∈ I then zi,j ← F is assigned with a
random independent value. Note that if i < j this is
what would have happened during an honest evaluation
of the gadget. However, if i > j then we are making
use of the fact that, by construction of the gadget and
the definition of the projection function, zj,i will never be
used in the computation of values asigned to any wires
w ∈ LG. Hence, we can treat zi,j as an uniformly random
and independent value.

• If both i ∈ I and j ∈ I then we have access to xi, xj, yi, yj.
Thus, we compute zi,j and zj,i honestly, as it would hap-
pen during the evaluation of the gadget: assuming i < j
we assign zi,j a random independent value and compute
zj,i = (zi,j ⊕ xi ⊗ yj)⊕ xj ⊗ yi.

2. For every wire w ∈ LG of the form xi, yi, xi ⊗ yi, zi,j or a
sum of values of the above form, we have i ∈ I and hence we
have access to xi and yi. Also, all the needed values of zi,j
have already been assigned in a perfect simulation. Thus the
value carried by the wire w also can be computed in a perfect
simulation.

3. The remaining unassigned wires w ∈ LG are of the form xi ⊗
yj or zi,j ⊕ xi ⊗ yj. In this case both i, j ∈ I and zi,j has
been already assigned. Thus, the value of w can be simulated
perfectly.

This perfect simulation shows that the ISW multiplication gadget indeed

48

satisfies the general gadget description.

Lemma 3. The function f(p) = n(8p +
√

3p) is a projection probability
function for the ISW multiplication gadget.

Proof. Notice that by construction of the gadget, for any i ∈ [n] there is no
more that 8n wires that are projected onto the set {i}. Moreover, for any
pair i, j ∈ [n] such that i 6= j there is no more than 3 wires that are projected
onto the set {i, j}. These observations allow us to estimate the projection
probability function for the gadget.

Fix probability p ∈ [0, 1]. Because of the observations above, it is clear
that the leakage projection distribution Dp(⊗̂) is covered (as in Def. 1) by
the distribution D(P1) of a random subset P1 of the set [n], produced in the
following experiment:

1. Start with an empty set P1.

2. For each i ∈ [n], add i to P1 with probability 8np.

3. For each pair i 6= j ∈ [n], add both i, j to P1 with probability
3p.

This distribution in turn is covered by the distribution D(P2) of a random
variable P2 produced in the following experiment:

1. Start with an empty set P2.

2. For each i ∈ [n], add i to P1 with probability 8np.

3. For each pair i 6= j ∈ [n] do the following:

• add i to P2 with probability
√

3p

• add j to P2 with probability
√

3p

It is clear from the description of P2 that its distribution is covered by a
standard distribution (see Def. 2) Dn(8p+

√
3p)([n]). Hence, we have the cover-

age D(P2) ≤ Dn(8p+
√

3p)([n]), and thus we obtain the coverage relation (see
Remark 1):

Dp(⊗̂) ≤ D(P1) ≤ D(P2) ≤ Dn(8p+
√

3p)([n]),

which shows that f(p) = n(8p +
√

3p) is indeed a projection probability
function for the gadget.

49

4.3.2 Other gadgets

We already described the addition gadget ⊕̂ that implements the function
g(x, y) = x+ y in Sect. 2.3. In this section we give a formal definition of this
gadget and the rest of the gadgets used in our construction.

Addition gadget ⊕̂ implementing the function g(x, y) = x+ y:

1. Input: 2 bundles ~x = (x1, . . . xn) and ~y = (y1, . . . yn)

2. Compute the output encoding (z1, . . . zn) as zi = xi ⊕ yi

3. Output: a bundle (z1, . . . , zn)

Copy gadget ĈP implementing the function g(x) = (x, x):

1. Input: 1 bundle ~x = (x1, . . . xn)

2. Apply copy gate CP to x1, . . . xn to obtain (yi, zi) = CP(xi)

3. Output: 2 bundles ~y = (y1, . . . , yn) and ~z = (z1, . . . , zn)

Negation gadget N̂EG implementing the function g(x) = −x:

1. Input: 1 bundle ~x = (x1, . . . xn)

2. Apply negation gate NEG to x1, . . . xn to obtain yi = N̂EG(xi)

3. Output: 1 bundles ~y = (y1, . . . , yn)

Constant gadget Ĉonstα implementing the function g() = α:

1. Input: takes no input bundles

2. Output: 1 bundle (α, 0, . . . , 0)

A special identity gadget ÎD implements the identity function g(x) = x.

50

Identity gadget ÎD implementing the function g(x) = x:

1. Input: 1 bundle ~x = (x1, . . . xn)

2. Output: 1 bundle ~x = (x1, . . . xn)

The projection function P . For each of these gadgets we define the
projection function P as follows: for every wire w of the form xi, yi, zi, we
define P (w) = {i}.

Properties of gadgets other than ISW multiplication gadget. It is
clear that all the gadgets described above correctly implement the desired
functions.

Moreover, for each of these gadgets the function f(p) = 3p is a projection
probability function, because for each number i ∈ [n] there are at most 3 wires
that are projected onto i, and these events are independent. For the gadgets

Ĉonstα and ÎD even smaller function f(p) = p is a projection probability
function, because in cases of these gadgets there is exactly 1 wire projected
onto number i, for each i ∈ [n].

51

Chapter 5

Technical tools

In this section we present the technical tools used in the proof of our central
theorem given in Chapter 6.

5.1 Refreshing gadget properties

In this section we describe properties of the refreshing gadget R̂ (see Fig. (2.1a)
on p. 21) that are crucial to the security of the construction, and are used in
the privacy proof. We will denote by refreshing bundle BR̂ the wires that are

used to generate the fresh encoding Enc(0) in the refreshing gadget R̂, i.e.,
wires carrying bj1, . . . , b

j
n and cj1, . . . , c

j
n−1 on Fig. 2.1.

In order to represent the leakage from the refreshing bundles in the trans-
formed circuit on the leakage diagram we need to define the projection of the
leakage.

Refreshing bundle leakage projection. Consider a refreshing bundle
BR̂. Suppose that LR is a set of leaking wires in BR̂. We define a subset
PR(LR) of the set {0, . . . , n} representing the leakage LR as follows:

• Start with the set PR = {0, n}.

• For every wire of the form cjk = bj1⊕b
j
2⊕· · ·⊕b

j
k in LR, where 1 ≤ k < n,

add k to PR.

• For every wire of the form bjk in LR , where 1 < k ≤ n, add k and k−1
to PR.

52

Remark 2. One may think of the function PR(·) as an analogue of the
leakage projection function (introduced in Section 4.2) in case of a refreshing
gadget. The difference is, however, that PR(·) codomain size is n+ 1 instead
of n, and that two elements, namely 0 and n, belong to PR(LR) “by default”.

Leakage projection coverage. For the purposes of the privacy proof we
construct a random subset of the set {0, . . . , n} that covers (as in Def. 1) the
projection of the refreshing bundle leakage.

Definition 11. Let us define a random subset Rq of {0, . . . , n} as follows:

• Rq contains 0 and n with probability 1.

• For any other number i ∈ {0, . . . , n}, Rq contains i with probability q,
independently.

Lemma 4. Let LR be a random subset of the leaking wires of a refreshing
bundle BR̂ when each wire leaks independently with probability p. Then the
distribution of the random subset PR(LR) ⊂ {0, . . . , n} is covered (as in
Def. 1) by the distribution of Rp+2

√
3p (see Def. 11), i.e. D(PR(LR)) ≤

D(Rp+2
√

3p).

Proof. By construction of the refreshing gadget and by definition of PR(LR),
for any i ∈ {1, . . . , n− 1} there is no more than 1 wire that is projected onto
the set {i}. Moreover, for any i ∈ {0, . . . , n − 1} there is no more than 3
wires that are projected onto the set {i, i+ 1}. These observations allow us
to prove the Lemma.

By construction, the distribution D(PR(LR)) is covered by the distribu-
tion D(P1) of a random subset P1 produced in the following experiment:

1. Start with a set P1 = {0, n}.

2. For each i ∈ {1, . . . , n− 1}, add i to P1 with probability p.

3. For each i ∈ {0, . . . , n − 1}, add both i, i + 1 to P1 with
probability 3p.

This distribution in turn is covered by the distribution D(P2) of a random
subset P2 produced in the following experiment:

53

1. Start with a set P2 = {0, n}.

2. For each i ∈ {1, . . . , n− 1}, add i to P2 with probability p.

3. For each i ∈ {0, . . . , n− 1} do the following:

• add i to P2 with probability
√

3p

• add i+ 1 to P2 with probability
√

3p

Let Ai be the event of i ∈ P2. It is clear that events A1, . . . , An−1 are
independent and for all i

Pr[Ai] ≤ p+ 2
√

3p.

Hence we have the coverage D(P2) ≤ D(Rp+2
√

3p), and we obtain a coverage
relation (see Remark 1):

D(PR(LR)) ≤ D(P1) ≤ D(P2) ≤ D(Rp+2
√

3p),

what finishes the proof of the lemma.

Another crucial property of the refreshing gadget is that when its input
and output are fixed, then values carried by all its internal wires are deter-
mined by these fixed values. We will call this unique assignment RefRec(~x, ~y).

Definition 12. Suppose that a refreshing gadget R̂ takes as input a vector
~x and outputs a vector ~y. Then, it is possible to reconstruct in a unique
way the values assigned to all the internal wires of R̂, i.e. the wires of the
refreshing bundle BR̂, and this assignment is determined by ~x and ~y. We
call this unique assignment RefRec(~x, ~y). Additionally, for a specified subset
of leaking wires LR in the refreshing bundle BR̂ we denote the reconstructed
assignment of these wires with RefRecLR(~x, ~y).

Proof. Indeed, it is clear that for 1 ≤ k ≤ n − 1 the values bk (see Fig. 2.1)
carried by wires in the refreshing bundle BR̂ are determined by the equality
xk+bk = yk, and in turn all the values carried by wires in BR̂ are determined.

54

5.2 Leakage diagrams

The main technical concept of this work is a leakage diagram (already intro-
duced informally in Sect. 2).

Consider a transformed circuit Ĉ, as described in Sect. 4.1. Suppose that
LW is the set of leaking wires in Ĉ. The leakage diagram is a representation
of the set LW . As explained in Chapter 2, in the security proof the leakage
diagram is used to determine whether the leakage compromises the secret
or not. This can be done because of its property that if the leftmost and
rightmost sides of the leakage diagram are disconnected then the privacy of
the secret is preserved. This observation is formalized as Claim 6 in the proof
of the main theorem.

The leakage diagram is a subgraph of a graph G(Ĉ) associated with the

transformed circuit Ĉ. The leakage diagram inherits all nodes from G(Ĉ)
and some of its edges, depending on the set of leaking wires LW . The exact
construction of graph G(Ĉ) and the leakage diagram are described in the
following paragraphs.

Graph G(Ĉ) associated with the transformed circuit Ĉ Let C be

any circuit and Ĉ its transformation as described in Sect. 4.1. We define an
associated undirected graph G(Ĉ) as follows. For each regular gadget Γ̂ in Ĉ,

G(Ĉ) contains a crosswise path of length n, where n is the security parameter

of the construction. We denote the nodes in this path with N Γ̂
0 , . . . , N

Γ̂
n .

Moreover, for every pair Γ̂1, Γ̂2 of connected gadgets in Ĉ, we add to
the graph G(Ĉ) a vertical matching consisting of the following n + 1 edges:

(N Γ̂1
0 , N Γ̂2

0), . . . , (N Γ̂1
n , N Γ̂2

n).

Leftmost and rightmost sides of G(Ĉ). We call all the nodes of the

form N Γ̂
0 , for some gadget Γ̂ in Ĉ, together with the edges between these

nodes a leftmost side of G(Ĉ). Similarly, we define a rightmost side of G(Ĉ)

as all the nodes of the form N Γ̂
n with all the edges between them.

Decomposition of G(Ĉ). The graph G(Ĉ) can be naturally decomposed
into separate subsets of edges - its crosswise paths, for each of the gadgets,
and vertical matchings, for each pair of connected gadgets. We will call it a
decomposition of G(Ĉ).

55

Leakage diagram. In the experiments, during the computation on circuit
Ĉ some wires will leak the carried values. Let LW denote the set of all the
leaking wires. We will be representing this set with a leakage diagram S(LW)

- a subgraph of G(Ĉ). The leakage diagram inherits all the nodes from G(Ĉ)
and some of its edges, as in the following construction.

Each leaking wire w ∈ LW that belongs to some regular gadget Γ̂ is
projected onto the respective crosswise path in G(Ĉ). More precisely, if PΓ̂

is leakage projection function for the gadget Γ̂ then we add to the leakage
diagram S the edges in the crosswise path that are in the set

{(N Γ̂
i−1, N

Γ̂
i)|i ∈ PΓ̂(w)}.

By construction of the transformed circuit Ĉ, the rest of the leaking wires
in the set LW are part of some refreshing bundle BR̂, where the refreshing

gadget R̂ connects some gadgets Γ̂1 and Γ̂2. Let LR be the set of leaking
wires in this refreshing bundle, i.e. LR = BR̂ ∩ LW . It is represented in
the leakage diagram S by the subset of the vertical matching between two
respective crosswise paths, namely the edges in the set

{(N Γ̂1
i , N Γ̂2

i)|i ∈ PR(LR)},

where PR(LR) is the projection of the refreshing bundle leakage LR (defined
in Sect. 5.1). An example of a leakage diagram is illustrated on Fig. 2.6.

5.3 Modification vectors

In the security proof for our construction, presented in Chapter 6, we use
a sequence of hybrid experiments that produce exactly the same adversarial
view. One of the hybrids requires to assign every gadget in Ĉ with a basic
modification vector. They were already informally introduced in Chapter 2.
We also generalize this notion to a modification vector. Let us now present
their formal definition.

Definition 13. A basic modification vector is a vector ~m = (m1, . . . ,mn) of
length n satisfying two conditions:

• mi ∈ {−1, 0, 1} for i = 1, . . . , n, and

•
∑n

i=1mi = 1.

56

We will say that a vector ~w is a modification vector if it is of the form
~w = v · ~m for some scalar value v ∈ F and a basic modification vector ~m.

Moreover, we formalize the requirement imposed on the modification vec-
tors for the hybrid argument in the privacy proof to go through, which was
already presented informally as the requirement from Eq. (2.8) on p. 29. If
a modification vector ~m and a set A ⊂ [n] satisfy that condition then we say
that they are disjoint.

Definition 14. We say that a modification vector ~m = (m1, . . . ,mn) is
disjoint with a set A ⊂ [n] if ma = 0 for all a ∈ A.

Modification vectors indistinguishability. In the security proof, one of
the steps of the hybrid argument is to add to the vectors of values assigned
to the input bundles of the gadgets in the transformed circuit a certain mod-
ification vector. It needs to be done in a way that is not noticeable to the
adversary, and it turns out that it can be done, but one of the conditions
(see Def. 21 for the other condition) that we need to impose on the modifi-
cation vectors is that they are “indistinguishable” under the set that is the
projection of the leakage in the refreshing bundle (this projection is defined
in Sect. 5.1) between the connected gadgets. Similar condition was imposed
on the modification vectors in the informal part in the requirement 2.9. Here
we give the definition of vectors indistinguishability.

Definition 15. Let S be a subset of {0, . . . , n} and let ~m1, ~m2 be any modifi-
cation vectors of length n. We will say that ~m1 and ~m2 are indistinguishable
under the set S if for every k ∈ S we have that

∑k
i=1m

1
i =

∑k
i=1m

2
i .

5.4 Leakage and extended leakage from a gad-

get

In this section we give a formal definitions of the leakage and extended leak-
age from a gadget, and also prove that every gadget satisfying the general
definition from Sect. 4.2 satisfies also the extended leakage shiftability prop-
erty.

One of the hybrid experiments in the proof of the main theorem given
in Chapter 6 constructs the adversarial view by “shifting” first the values
fed to the gadgets in the transformed circuit Ĉ, i.e., adding to them certain

57

carefully chosen modification vectors. This technique was already introduced
in the informally in Sect. 2.1 where in ExpC we sample ~xj+1,1 ← Enc(x0) +
(x1 − x0) · ~mj+1, which is encoding of x0 shifted by (x1 − x0) · ~mj+1. In
the hybrid experiment, for the proof to succeed, we need to control also the
values carried by all the output wires of all the gadgets in Ĉ. It is necessary
in order to reason about the whole leakage from the circuit Ĉ, including the
refreshing bundles in between the gadgets. Thus, we introduce the notion
of the extended leakage, which includes also the output wires evaluation.
Moreover, we crucially rely on the introduced extended leakage shiftability
property of the gadgets, that allow to shift the input vectors of a gadget
without changing the adversarial view.

First, we define a leakage from a gadget. This notion is only used in the
proof of the Lemma 5.

Definition 16. Let Γ̂ be a gadget with i input bundles and o output bundles
and let LG be a subset of its wires. We define a function GadgetLeakLG

Γ̂
(~x1, . . . ,

~xi) as the output of the following experiment:

1. The gadget Γ̂ is fed with input (~x1, . . . , ~xi) resulting with some

assignment of the wires of Γ̂.

2. Output: values assigned to the wires in LG.

Extended leakage. It is a leakage from a subset of wires in Γ̂ together
with values carried by all the output wires of Γ̂, including the non-leaking
wires.

Definition 17. Let Γ̂ be a gadget with i input bundles and o output bundles
and let LG be a subset of its wires. We define a function ExtLeakLG

Γ̂
(~x1, . . . , ~xi)

as the output of the following experiment:

1. The gadget Γ̂ is fed with input (~x1, . . . , ~xi) resulting with some

assignment of the wires of Γ̂.

2. Let ~y1, . . . , ~yo be the produced output of Γ̂.

3. Output: (values assigned to wires in LG, values assigned to
all the output wires ~y1, . . . , ~yo).

58

Extended leakage shiftability. Recall that in Sect. 2.1 one of the main
technical tricks was to show that the experiments ExpC and Exp0

B are in-
distinguishable from the point of view of the adversary. This was done by
showing that the vectors encoding the secret can be “shifted” (i.e. a certain
vector can be added to it) in way that is not noticeable to the adversary.
This idea is formalized and generalized to gadgets below.

First, we define the shift function:

Definition 18. Let ~v1, . . . ~vk and ~m be vectors of the same length. and let T =
(T1, . . . , Tk) be a sequence of k field elements. We define a shiftT~m(~v1, . . . , ~vk)
as follows: it is a sequence of vectors ~w1, . . . , ~wk, with ~wj being a modified
vector ~vj, defined as:

~wj := ~vj + Tj · ~m.
Also, when applicable, the function shift takes as input a sequence of scalars
v1, . . . , vk. Then we write shiftT (v1, . . . , vk) assuming a default basic modifi-
cation vector (1), to denote a sequnce of scalars w1, . . . , wk, defined as:

wj := vj + Tj.

Now we are ready to define the extended leakage shiftability property.
Informally speaking, this property says that shifting the values of the wires
of index i /∈ P (LG) in the input bundles of Γ̂ results in shifting the extended
leakage only on the index i in the output bundles. This is formalized below.

Definition 19. Let Γ̂ be a gadget with i input bundles and o output bundles
implementing a function g, and let P be its leakage projection function. We
say that a pair (Γ̂, P) satisfies an extended leakage shiftability property
if the following holds: Let x1, . . . , xi be any input to g and suppose that
g(shiftS(x1, . . . , xi)) = shiftT (g(x1, . . . , xi)) for some sequences S and T of
lengths i and o, respectively. For any fixed encodings ~x1, . . . , ~xi of x1, . . . , xi,
any subset of leaking wires LG and any basic modification vector ~m that is
disjoint with the set P (LG) we have

ExtLeakLG
Γ̂

(shiftS~m(~x1, . . . , ~xi)) = shiftT~m(ExtLeakLG
Γ̂

(~x1, . . . , ~xi)).

Here, the Remark 3 applies.

Remark 3. Whenever the function shift takes as argument some output of
the ExtLeak experiment, it is applied only to the second part of the experi-
ment output, i.e. the values assigned ot the output bundles of the gadget (see
Def.17).

59

Based on the following lemma, every gadget used in our construction
satisfies the extended leakage shiftability property.

Lemma 5. Every gadget Γ̂ with its leakage projection function, as described
in Section 4.2, satisfies the extended leakage shiftability property.

Proof. If a basic modification vector ~m = (0, . . . , 0, 1, 0, . . . , 0) has 1 as j-th
coordinate, and 0 as the rest of the coordinates then we say that it is a basis
vector and we will denote it with ~m = ~ej. Moreover, we will say that a
modification vector is of weight w if it has exactly w non-zero coordinates.

Throughout the proof we use the following notation:

• (x′1, . . . , x
′
i) := shiftS(x1, . . . , xi)

• (~x1
′, . . . , ~xi

′) := shiftS~m(~x1, . . . , ~xi)

• (y1, . . . , yo) := g(x1, . . . , xi)

• (y′1, . . . , y
′
o) := g(x′1, . . . , x

′
i)

We prove the Lemma by induction over the weight of the basic modifica-
tion vector ~m. Notice that the weight of a basic modification vector is always
an odd natural number.

Base case: Suppose that the weight of ~m equals 1. Then ~m is a basis
vector, i.e. ~m = ~ej for some j. Let us define LG′ as the set of wires

LG′ := LG ∪
⋃
k 6=j

OUT k(Γ̂).

By the properties of a gadget, and because, by assumption, ~m is disjoint
with the projection P (LG), we have P (LG′) = {1, . . . , j − 1, j + 1, . . . , n}.
Because of the form of ~m, vectors ~xl

′ and ~xl differ only on the j-th coordinate
by Sl, for 1 ≤ l ≤ i. More precisely, ~xl

′ − ~xl = Sl · ~ej. Hence, by the simula-
tion property of the gadget, the leakage from the set LG′ can be simulated
perfectly given the values carried by all the input wires except the j-th wires
of each input bundle of Γ̂. Therefore we have the equality of the leakages

GadgetLeakLG
′

Γ̂
(~x1, . . . , ~xi) = GadgetLeakLG

′

Γ̂
(~x1
′. . . . , ~xi

′).

Let A be this random variable assignment of the wires in LG′.

60

Now, let us observe that with all the input wires fixed to (~x1, . . . , ~xi), the

values carried by the wires in the set OUT j(Γ̂) are determined by the values

carried by the rest of the output wires, i.e. wires in the set
⋃
k 6=j OUT k(Γ̂).

It is due to the fact that, by the correctness of the gadget, the output must
encode (y1, . . . , yo) = g(x1, . . . , xi).

Hence, due to the observation above, ExtLeakLG
Γ̂

(~x1, . . . , ~xi) is a deter-

ministic function of A = GadgetLeakLG
′

Γ̂
(~x1, . . . , ~xi), parametrized by the

output of the function g, here equal to (y1, . . . , yo). Let us call this function
complete(y1,...,yo). It can be described in details as follows:

1. Input: an assignment of wires in the set LG′.

2. Consider the l-th output bundle B = OUT l(Γ̂), where 1 ≤
l ≤ o

• All the wires in B except for the j-th wire w = OUT l
j(Γ̂)

are already assigned, as a part of the set LG′, with some
values y1

l , . . . , y
j−1
l , yj+1

l , . . . , ynl .

• Assign the wire w with an appropriate value, so that the
bundle B carries an encoding of yl. Namely, it can be
done in a unique way by assigning w with

yl − (Σk 6=jy
k
l)

3. Output: (values assigned to wires in LG , values assigned to

all the output wires of the gadged Γ̂), like in the Def. 17 of
the extended leakage.

Clearly, we have ExtLeakLG
Γ̂

(~x1, . . . , ~xi) = complete(y1,...,yo)(A).

Similarly, ExtLeakLG
Γ̂

(~x′1, . . . ,
~x′i) is a deterministic function of the variable

A = GadgetLeakLG
′

Γ̂
(~x′1, . . . ,

~x′i). More precisely, we have ExtLeakLG
Γ̂

(~x′1, . . . ,
~x′i) =

complete(y′1,...,y
′
o)(A).

From the description above we can conclude that complete(y′1,...,y
′
o)(A) =

shiftT~m(complete(y1,...,yo)(A)). Indeed, let us consider a fixed assignment of the
wires in LG′. Suppose that it assigns all the wires in l-th output bundle ex-
cept the j-th one, i.e. {OUT l

k(Γ̂)|k 6= j}, with values y1
l , . . . , y

j−1
l , yj+1

l , . . . , ynl .

61

Then the wire OUT l
j(Γ̂) will be assigned with

yl − (Σk 6=jy
k
l)

by the function complete(y1,...,yo), and with

y′l − (Σk 6=jy
k
l)

by the function complete(y′1,...,y
′
o). The difference between the latter value and

the former one equals

y′l − yl = Tl.

Thus, we have complete(y′1,...,y
′
o)(A) = shiftT~m(complete(y1,...,yo)(A)).

Now, the thesis of the lemma follows from the equality

ExtLeakLG
Γ̂

(shiftS~m(~x1, . . . , ~xi)) = ExtLeakLG
Γ̂

(~x′1, . . . ,
~x′i)

= complete(y′1,...,y
′
o)(A)

= shiftT~m(complete(y1,...,yo)(A))

= shiftT~m(ExtLeakLG
Γ̂

(~x1, . . . , ~xi)),

what finishes the proof of the inductive base case.

Inductive step: Now, let ~m be a basic modification vector of weight at
least 3 (recall that it must be an odd number), disjoint with the set P (LG).
Then, we can express the vector ~m as

~m = ~m′ + ~m+ − ~m−,

where ~m+ and ~m− are some basis modification vectors, and ~m′ is a basic
modification vector of weight smaller than ~m, all three disjoint with P (LG)
as well.

Notice that because ~m+ and ~m− are basis modification vectors, the se-
quence of vectors shiftS~m+−~m−(~x1, . . . , ~xi) encodes the sequence (x1, . . . , xi).
Therefore, based on the inductive assumption we have

ExtLeakLG
Γ̂

(shiftS~m′(shiftS~m+−~m−(~x1, . . . , ~xi)))

= shiftT~m′(ExtLeakLG
Γ̂

(shiftS~m+−~m−(~x1, . . . , ~xi))).

62

Moreover, the assumed equality g(shiftS(x1, . . . , xi)) = shiftT (g(x1, . . . , xi))
implies that g(shift−S(x′1, . . . , x

′
i)) = shift−T (g(x′1, . . . , x

′
i)), and it is clear

that shiftS~m+(~x1, . . . , ~xi) encodes (x′1, . . . , x
′
i). Therefore, by the inductive

base case we have

ExtLeakLG
Γ̂

(shift−S~m−(shiftS~m+(~x1, . . . , ~xi)))

= shift−T~m−(ExtLeakLG
Γ̂

(shiftS~m+(~x1, . . . , ~xi))).

Similarly, by the inductive base case we also have

ExtLeakLG
Γ̂

(shiftS~m+(~x1, . . . , ~xi)) = shiftT~m+(ExtLeakLG
Γ̂

(~x1, . . . , ~xi)).

Now, combining the three above equalities gives us

ExtLeakLG
Γ̂

(shiftS~m(~x1, . . . , ~xi)) = ExtLeakLG
Γ̂

(shiftS~m′+~m+−~m−(~x1, . . . , ~xi))

= ExtLeakLG
Γ̂

(shiftS~m′(shiftS~m+−~m−(~x1, . . . , ~xi)))

= shiftT~m′(ExtLeakLG
Γ̂

(shiftS~m+−~m−(~x1, . . . , ~xi)))

= shiftT~m′(ExtLeakLG
Γ̂

(shiftS−~m−(shiftS~m+(~x1, . . . , ~xi))))

= shiftT~m′(ExtLeakLG
Γ̂

(shift−S~m−(shiftS~m+(~x1, . . . , ~xi))))

= shiftT~m′(shift−T~m−(ExtLeakLG
Γ̂

(shiftS~m+(~x1, . . . , ~xi))))

= shiftT~m′(shiftT−~m−(ExtLeakLG
Γ̂

(shiftS~m+(~x1, . . . , ~xi))))

= shiftT~m′(shiftT−~m−(shiftT~m+(ExtLeakLG
Γ̂

(~x1, . . . , ~xi))))

= shiftT~m′−~m−+~m+(ExtLeakLG
Γ̂

(~x1, . . . , ~xi))

= shiftT~m(ExtLeakLG
Γ̂

(~x1, . . . , ~xi)),

what finishes the inductive step.

5.5 Refreshed gadget reconstruction

In the security proof for our construction, given in Chapter 6, in some ex-
periments we reason about the leakage from the transformed circuit Ĉ when
the input values for each individual gadget are fixed. The values assigned to
all the leaking wires in Ĉ are reconstructed based on these fixed values. In
this section we define and prove the properties of such reconstruction.

63

Refreshed gadget. Suppose that a gadget Γ̂ has i input bundles and o
output bundles. Consider a subcircuit Γ̂R which consists of Γ̂ with all o
output bundles being refreshed. By this we mean that Γ̂R consists of Γ̂ and
the refreshing gadgets applied to all its output bundles. We will call it a
refreshed gadget. See an example on Fig. 5.1.

Firstly, we define a reconstruct variable for a given gadget Γ̂, that allows
us to express the reconstruction invariability property, presented in Def. 21.

Γ̂

R̂R̂

Figure 5.1: An example of a refreshed gadget Γ̂R, where the gadget Γ̂ has
one input bundle and two output bundles.

Definition 20. Suppose that a gadget Γ̂ implements a function g and that
g(x1, . . . , xi) = (z1, . . . , zo). Let ~x1, . . . , ~xi, ~z1, . . . , ~zo be any encodings of these
inputs and outputs of g, respectively. Let LG be a set of leaking wires in
Γ̂ and LR1, . . . ,LRo sets of leaking wires in the refreshing bundles of the
refreshed gadget Γ̂R, respectively. Let ~x1, . . . , ~xi be fixed vectors assigned to
input bundles of Γ̂R and ~z1, . . . , ~zo be fixed vectors assigned to the output
bundles of Γ̂R i.e. output bundles of Γ̂ after refreshing. We define a random
variable

reconstructLG,LR1,...,LRo

Γ̂
(~x1, . . . , ~xi, ~z1, . . . , ~zo)

as the leakage from wires in the set LG ∪ LR1 ∪ · · · ∪ LRo when input and
output bundles values of Γ̂R are fixed to ~x1, . . . , ~xi and ~z1, . . . , ~zo, respectively
(with the randomness introduced within the gadget Γ̂). See also Remark 4.

64

Remark 4. Notice that the variable reconstructLG,LR1,...,LRo

Γ̂
(~x1, . . . , ~xi, ~z1,

. . . , ~zo) does not include the leakage from the output wires of the refreshed

gadget Γ̂R, i.e. the output bundles of the gadget Γ̂ after being refreshed. Such
definition is purposeful, as in the security proof these wires are considered a
part of another gadgets’ input, according to the transformed cirucit Ĉ con-
struction.

In other words, reconstructLG,LR1,...,LRo

Γ̂
(~x1, . . . , ~xi, ~z1, . . . , ~zo) are the val-

ues assigned to wires in the set LG ∪ LR1 ∪ · · · ∪ LRo, conditioned on the
inputs of Γ̂R being ~x1, . . . , ~xi and the outputs being ~z1, . . . , ~zo.

Now we can define the reonstruction invariability property.

Definition 21. We say that a gadget Γ̂ with a leakage projection function P ,
implementing a function g, satisfies a reconstruction invariability property
if the following holds. Suppose that g(x1, . . . , xi) = (z1, . . . , zo) and that
vectors ~x1, . . . , ~xi, ~z1, . . . , ~zo encode the values x1, . . . , xi, z1, . . . , zo. Moreover,
suppose that g(x′1, . . . , x

′
i) = (z′1, . . . , z

′
o). Let ~m, ~m1, . . . , ~mo be some basic

modification vectors. We define

~xk
′ = ~xk + (x′k − xk) · ~m for 1 ≤ k ≤ i

and
~zk
′ = ~zk + (z′k − zk) · ~mk for 1 ≤ k ≤ o.

If the set of leaking wires LG in Γ̂, sets of leaking wires LR1, . . . ,LRo in the
refreshing bundles of Γ̂R and basic modification vectors ~m, ~m1, . . . , ~mo satisfy
the two conditions:

• ~m is disjoint with the set P (LG)

• ~m and ~mk are indistinguishable under the set PR(LRk) for 1 ≤ k ≤
o,

then the following equality holds:

reconstructLG,LR1,...,LRo

Γ̂
(~x1
′, . . . , ~xi

′, ~z1
′, . . . , ~zo

′) =

reconstructLG,LR1,...,LRo

Γ̂
(~x1, . . . , ~xi, ~z1, . . . , ~zo).

The privacy proof for our construction is crucially based on the following
lemma.

65

Lemma 6. Every regular gadget Γ̂ with its projection function P , as de-
scribed in Section 4.2, satisfies reconstruction invariability property.

Proof. First, we prove the following claim on the reconstruction of the wires
in the refreshing bundles (see Def. 12):

Claim 5. Let LR be some subset of the refreshing bundle BR̂. Suppose
that the modification vectors ~m1 and ~m2 are indistinguishable under the set
PR(LR). Then for any vectors ~x, ~y encoding the same value we have (see
Def. 12 of RefRec)

RefRecLR(~x+ ~m1, ~y + ~m2) = RefRecLR(~x, ~y).

Proof. It is enough to show that for any wire w ∈ LR, RefRecLR(~x+ ~m1, ~y+
~m2) and RefRecLR(~x, ~y) assign w the same value. Let us denote with v1 and
v2 the respective assignments. Based on the construction of the refreshing
gadget (see Fig. 2.1), there are three possible cases:

Case 1: w is of the form b1 ⊕ · · · ⊕ bk where 1 ≤ k ≤ n − 1. Then
k ∈ PR(LR), and because ~m1 and ~m2 are indistinguishable under the set
PR(LR) we have

v1 =
k∑
i=1

(xi+m
1
i−yi−m2

i) =
k∑
i=1

(xi−yi)+
k∑
i=1

m1
i−

k∑
i=1

m2
i =

k∑
i=1

(xi−yi) = v2.

Case 2: w is of the form −(b1 ⊕ · · · ⊕ bn−1). Then the equality v1 = v2

is implied by Case 1 for k = n− 1.
Case 3: w is of the form bk for some 2 ≤ k ≤ n−1. Then, by definition of

the set PR(LR), we have k−1, k ∈ PR(LR). From the argument used in Case
1 we can conclude that both of the wires w1 = b1⊕· · ·⊕bk and w2 = b1⊕· · ·⊕
bk−1 are assigned with the same value by the reconstruction RefRecLR(~x +
~m1, ~y + ~m2) and by the reconstruction RefRecLR(~x, ~y). Therefore, because
the value assigned to w is a difference of these two, it is the same in both
reconstructions.

Now, we prove the equality of the reconstructions reconstructLG,LR1,...,LRo

Γ̂
(~x1
′,

. . . , ~xi
′, ~z1

′, . . . , ~zo
′) and reconstructLG,LR1,...,LRo

Γ̂
(~x1, . . . , ~xi, ~z1, . . . , ~zo), postu-

lated by the Def. 21 with a hybrid argument. We define three hybrid ex-
periments, such that the first produces an assignment equal to one of the
reconstructions, the last one produced an assignment equal to the other re-
construction, and any two consecutive hybrids have the same output.

66

Hybrid1:

1. Compute

(A1, ~Y 1
1 , . . . ,

~Y 1
o) = ExtLeakLG

Γ̂
(~x1, . . . , ~xi),

where A1 is the assignment to the wires in LG and ~Y 1
1 , . . . ,

~Y 1
o

is the assignment to the output bundles of Γ̂ (compare with
Def. 17).

2. Recover the leakage from the sets LR1, . . . , LRo. Namely,
compute

A1
k = RefRecLRk(~Y 1

k , ~zk) for 1 ≤ k ≤ o.

3. Output: (A1, A1
1, . . . , A

1
o)

Clearly, the output of the experiment Hybrid1 equals to reconstructLG,LR1,...,LRo

Γ̂
(~x1,

. . . , ~xi, ~z1, . . . , ~zo), because in both cases it is determined, in the same man-

ner, by the inputs and outputs of the refreshed gadget Γ̂R, and the internal
randomness of the gadget Γ̂.

Hybrid2:

67

1. Compute

(A2, ~Y1

′
, . . . , ~Yo

′
) = ExtLeakLG

Γ̂
(~x1
′, . . . , ~xi

′),

where A2 is the assignment to the wires in LG and ~Y1

′
, . . . , ~Yo

′

is the assignment to the output bundles of Γ̂.

2. “Shift back” the assignments of the output bundles by appro-
priate modification vectors, namely compute

~Y 2
k = ~Yk

′
− (z′k − zk) · ~m for 1 ≤ k ≤ i.

3. Recover the leakage from the sets LR1, . . . , LRo. More pre-
cisely, compute

A2
k = RefRecLRk(~Y 2

k , ~zk) for 1 ≤ k ≤ o.

4. Output: (A2, A2
1, . . . , A

2
o)

To show that Hybrid1 and Hybrid2 produce the same output, let us first define
sequences S = (x′1 − x1, . . . , x

′
i − xi) and T = (z′1 − z1, . . . , z

′
o − zo) (compare

with Def. 21). Then we have

g((x1, . . . , xi) + S) = g(x′1, . . . , x
′
i) = (z′1, . . . , z

′
i) = (z1, . . . , zi) + T.

Hence
g(shiftS(x1, . . . , xi)) = shiftT (g(x1, . . . , xi)).

Moreover, by assumption, vector ~m is disjoint with the set P (LG). Thus, we
can apply Lemma 5 obtaining the equality

ExtLeakLG
Γ̂

(shiftS~m(~x1, . . . , ~xi)) = shiftT~m(ExtLeakLG
Γ̂

(~x1, . . . , ~xi)).

Notice also that, by definition of S, we have

(~x1
′, . . . , ~xi

′) = shiftS~m(~x1, . . . , ~xi).

Hence,

(A2, ~Y1

′
, . . . , ~Yo

′
) = ExtLeakLG

Γ̂
(~x1
′, . . . , ~xi

′) = ExtLeakLG
Γ̂

(shiftS~m(~x1, . . . , ~xi))

= shiftT~m(ExtLeakLG
Γ̂

(~x1, . . . , ~xi)) = shiftT~m(A1, ~Y1, . . . , ~Yo)

= (A1, ~Y 1
1 + (z′1 − z1) · ~m, . . . , ~Y 1

o + (z′o − zo) · ~m)

68

and therefore, because by definition ~Y 2
k = ~Yk

′
− (z′k − zk) · ~m for each k, we

have

(A2, ~Y 2
1 , . . . ,

~Y 2
o) =(A2, ~Y1

′
− (z′1 − z1) · ~m, . . . , ~Yo

′
− (z′o − zo) · ~m)

=(A1, ~Y1 + (z′1 − z1) · ~m− (z′1 − z1) · ~m, . . . ,
~Yo + (z′o − zo) · ~m− (z′o − zo) · ~m)

=(A1, ~Y 1
1 , . . . ,

~Y 1
o).

Thus, the joint distribution of (A2, ~Y 2
1 , . . . ,

~Y 2
o) in Hybrid2 is the same as the

joint distribution of (A1, ~Y 1
1 , . . . ,

~Y 1
o) in Hybrid1. Therefore also their outputs

(A1, A1
1, . . . , A

1
o) and (A2, A2

1, . . . , A
2
o) are equal, because they are determined,

in the same manner, by these joint variables.

Hybrid3:

1. Compute

(A3, ~Y 3
1 , . . . ,

~Y 3
o) = ExtLeakLG

Γ̂
(~x1
′, . . . , ~xi

′),

where A3 is assignment to wires in LG and ~Y 3
1 , . . . ,

~Y 3
o is as-

signment to the output bundles of Γ̂.

2. Recover the leakage from sets LR1, . . . , LRo. More precisely,
compute

A3
k = RefRecLRk(~Y 3

k , ~zk
′) for 1 ≤ k ≤ o.

3. Output: (A3, A3
1, . . . , A

3
o)

Clearly, the output of this experiment equals reconstructLG,LR1,...,LRo

Γ̂
(~x1
′,

. . . , ~xi
′, ~z1

′, . . . , ~zo
′), because in both cases it is determined, in the same man-

ner, by the fixed inputs and outputs of the refreshed gadget Γ̂R, and the
internal randomness of the gadget Γ̂.

On the other hand, to show that Hybrid2 and Hybrid3 produce the same
output, observe that, by construction of the hybrids, we have:

(A3, ~Y 3
1 , . . . ,

~Y 3
o) = (A2, ~Y 2

1 + (z′1 − z1) · ~m, . . . , ~Y 2
o + (z′o − zo) · ~m).

69

Morever, by assumption, for any k the vectors ~m and ~mk are indistinguishable
under the set PR(LRk) and, as a consequence, the vectors (z′k − zk) · ~m and
(z′k − zk) · ~mk are indistinguishable under that set as well. Hence, using

Lemma 5, we have that for any pair of fixed vectors ~y3
k,
~y2
k satisfying ~y3

k =
~y2
k + (z′k − zk) · ~m:

RefRecLRk(~y3
k, ~zk

′) = RefRecLRk(~y2
k + (z′k − zk) · ~m, ~zk + (z′k − zk) · ~mk)

= RefRecLRk(~y2
k, ~zk).

Now, because of how the variables A2
k in Hybrid2 and A3

k in Hybrid3 are defined,
namely as

A2
k = RefRecLRk(~Y 2

k , ~zk)

and
A3
k = RefRecLRk(~Y 3

k , ~zk
′),

we can conclude that the output (A3, A3
1, . . . , A

3
o) of Hybrid3 is the same as

the output (A2, A2
1, . . . , A

2
o) of Hybrid2. This finishes the proof of the lemma.

70

Chapter 6

The main theorem: privacy of
the construction

In this chapter we present and prove the main theorem of our work.

Theorem 1. Let C be any arithmetic circuit and Ĉ its transformation as
described in Section 4.1. Assume that for all gadgets used in Ĉ the projection
probability functions are upper-bounded by a function q : [0, 1] → R, which

also upper-bounds the function f(p) = p + 2
√

3p. Then Ĉ is sound imple-

mentation of C (see Def. 4) and Ĉ is (p, |C| · (4q(p))n)-private (see Def. 6)
for any probability p, where |C| is the number of gates in the circuit C.

This theorem is proven along the lines of the intuitions presented in
Sect. 2. For ease of presentation we give a proof overview first and then
the detailed proof below.

Proof overview. The soundness of the transformed ciruit Ĉ follows easily
from its construction, as each of its gadgets corresponds to a gate in the
original circuit C and has the same functionality over the encodings. Thus,
Ĉ has the same functionality as the original circuit C.

To prove the privacy of our construction, we will show that any two
inputs X1, X2 to circuit Ĉ induce leakages that are close in terms of statistical
distance. To do this, we compare these two leakages conditioned on the set
of leaking wires being some fixed set. Let S be a leakage diagram induced
by W . We show that if the leftmost and rightmost sides of the graph S
are not connected then the two conditioned leakages are actually identical.

71

To this end, we use a classic hybrid argument, showing a sequence of so
called hybrid experiments and argumenting that every two consecutive ones
produce identical output. Here we briefly describe the hybrid experiments:

Hybrid1 (this corresponds to experiment Exp0
A in Sect. 2.1): simply out-

puts the leakage when Ĉ is fed with X1.

Hybrid2 (this corresponds to experiment Exp0
B): in this experiment each

gadget in Ĉ is evaluated separately, and the assignment of the refreshing
bundles between the gadgets are derived from there. To this end, we consider
the evaluation of the original circuit C when fed with X1. If a particular
wire w in C, which is an input to a gate Γ, is assigned with a value v
then the respective input bundle in the gadget Γ̂ in Ĉ is fed with a freshly
chosen random encoding ~v ← Enc(v). Then each gadget in Ĉ is evaluated
accordingly to the chosen inputs. This determines the assignment of all the
refreshing bundles in Ĉ. The output of the experiment consists of the values
assigned to wires in W .

Hybrid3 (this corresponds to experiment ExpC): this experiment is the
same as experiment Hybrid2, except for the random vectors that are assigned
to the input bundles of each individual gadget. Here, after choosing a random
encoding ~v ← Enc(v) just as in Hybrid2, we shift it by carefully chosen
modification vector ~m. As a result, we feed the particular input bundle
with ~v + ~m. The modification vector for the input bundles of each gadget is
constructed based on inputs X1 and X2, and the leakage diagram S. At this
point we use the fact that the leftmost and rightmost sides of the leakage
diagram S are not connected. The details of the construction of modification
vectors are given in the full proof of the theorem.

Based on the properties of the refreshed gadgets subcircuits in Ĉ and
the construction of the modification vectors, we argue that shifting values
that are fed to each gadget actually does not change the leakage from the
set of wires W . Hence this experiment outputs the same random variable as
Hybrid2.

Hybrid4 (this corresponds to experiment Exp1
B): this experiment is analo-

gous to the Hybrid2, with input X2 instead of X1. We argue that the random
vectors assigned to the input bundles of each individual gadget in are actu-
ally the same in this experiment and in Hybrid3. Hence, the two experiments
produce identical outputs.

Hybrid5 (this corresponds to experiment Exp1
A) : this experiment is analo-

gous to the Hybrid1, with input X2 instead of X1. Also the transition between

72

Hybrid4 and this experiment is analogous to the transition for experiments
Hybrid1 and Hybrid2.

The hybrid argument above essentially shows that unless the leftmost and
rightmost sides of the leakage diagram S are connected, the leakage is the
same independently of the input X fed to the transformed circuit Ĉ.

Now, to complete the privacy proof, it is enough to upper-bound the
probability of the leftmost and rightmost sides of S being connected. This is
a pure probability theory exercise, given that q(p) upper-bounds the leakage
projection function of the gadgets used, which means that each edge will be
included to the leakage diagram independently with probability at most q(p).

Next, we give a full proof of Thm. 1:

Proof. By construction, Ĉ is a sound transformation of circuit C because
during transformation each gate is replaced with a gadget with the same
functionality for the encodings of the intermediate values (see Sect. 4.1).

To prove the privacy of the transformed circuit, let us define E as an
event in the experiment Leak (see Def. 8) for circuit C when the leftmost and
rightmost sides of the leakage diagram, representing the set of the leaking
wires, are connected. The proof is based on the two following claims about
the event E.

Claim 6. Unless the event E occurs in the Leak experiment, the privacy of
circuit Ĉ is preserved, i.e. adversary does not learn from the leakage any
information about the input X. More precisely, for any two inputs X1, X2

the two adversarial views are equal:

(Leak(C,X1, p)|¬E) = (Leak(C,X2, p)|¬E).

Proof. Let LW be the random set of the leaking wires in the experiment
Leak . By definition, the occurrence of event E is determined by this set.
Hence, it is enough to show that for any fixed set of wires W in Ĉ for
which the associated leakage diagram S has its leftmost and rightmost sides
disconnected, the following holds

(Leak(C,X1, p)|LW = W) = (Leak(C,X2, p)|LW = W). (6.1)

Let W be any of such sets and let S be the corresponding leakage diagram,
as defined in Sect. 5.2. Now, based on S, we construct the basic modification
vectors (see Sect. 5.3), one for each of the gadgets in Ĉ. Let LS be the
connected component of S that contains its leftmost side. Notice that, by

73

assumption on event E, LS does not contain any nodes of the rightmost side
of S.

Consider any gadget Γ̂ in Ĉ and its corresponding crosswise pathN Γ̂
0 , . . . , N

Γ̂
n

(see Sect. 5.2). We define the corresponding basic modification vector ~mΓ̂ of
length n as:

~mΓ̂ = (1LS(N Γ̂
0)−1LS(N Γ̂

1),1LS(N Γ̂
1)−1LS(N Γ̂

2), . . . ,1LS(N Γ̂
n−1)−1LS(N Γ̂

n)),
(6.2)

where 1LS(·) is an indicator function for the set of nodes in LS. Notice that

all coordinates of ~mΓ̂ equal −1, 0 or 1. Moreover LS does not contain N Γ̂
n

because this node belongs to the rightmost side of S. Hence, it is easy to
see that the sum of the coordinates of ~mΓ̂ equals 1 and it indeed satisfies the
basic modification vector definition.

Now we show the following lemmas about the assigned modification vec-
tors, used later in the hybrid argument:

Lemma 7. Let Γ̂ be any gadget in Ĉ, and LG the set of its leaking wires, i.e.
subset of W that are in Γ̂. Let P (·) be its projection function (see Sect. 4.2).

Then the basic modification vector ~mΓ̂ is disjoint (see Sect. 5.3) with the set
P (LG).

Proof. Suppose that k ∈ P (LG). By construction of the leakage diagram S

(see Sect. 5.2), the nodes N Γ̂
k−1 and N Γ̂

k are connected. Thus, either both of
them or none of them belong to the connected component of the leakaged
diagram LS. So, by definition of the vector ~mΓ̂, its k-th coordinate equals
to 1LS(N Γ̂

k−1)− 1LS(N Γ̂
k) = 0, which ends the proof.

Lemma 8. Let Γ̂1, Γ̂2 be any two connected gadgets in Ĉ (see Sect. 4.1) with
a refreshing bundle BR̂ (see Sect. 5.1) between. Let LR be a leaking subset of

BR̂, i.e. LR = W ∩ BR̂. Then ~mΓ̂1 and ~mΓ̂2 are indistinguishable under the
set PR(LR) (see Def. 15).

Proof. Let A1 ⊂ {0, . . . , n} be the set of indices of the nodes in S respective

to Γ̂1, i.e. {N Γ̂1
0 , . . . , N Γ̂1

n }, that belong to LS. Similarly, we define A2 ⊂
{0, . . . , n} as the set of indices of the nodes belonging to LS respective to Γ̂2.

74

Let k ∈ PR(LR). We will show that
∑k

i=1 ~m
Γ̂1
i =

∑k
i=1 ~m

Γ̂2
i . By the

definition of ~mΓ̂1 and ~mΓ̂2 we have

k∑
i=1

~mΓ̂1
i = 1LS(N Γ̂1

0)− 1LS(N Γ̂1
k),

and similarly
k∑
i=1

~mΓ̂2
i = 1LS(N Γ̂2

0)− 1LS(N Γ̂2
k).

Notice that, by definition, the nodesN Γ̂1
0 andN Γ̂2

0 belong to LS, and therefore

1LS(N Γ̂1
0) = 1LS(N Γ̂2

0) = 1. Also, because k ∈ PR(LR), the edge between the

nodes N Γ̂1
k and N Γ̂2

k belong to the leakage diagram S. Hence, either both

of them or none of them belong to LS. Therefore we also have 1LS(N Γ̂1
k) =

1LS(N Γ̂2
k), which finishes the proof of the lemma.

Now, we will argue that Eq. (6.1) holds by a hybrid argument in which
every experiment in the sequence produces an identical output - the adver-
sarial view. Here, C ′ denotes the circuit C after the preprocessing phase (see
Sect. 4.1). The hybrids are as follows.

• Hybrid1: outputs the leakage from wires in W when Ĉ is fed with X1.

• Hybrid2: in this experiment, firstly each gadget in Ĉ is evaluated sepa-
rately. In order to assign the values to the input bundles of the gadgets,
we consider the evaluation of the circuit C ′ when fed with X1. If some
wire in C ′, that is input to a gate Γ, is assigned with the value v then
the respective input bundle of the gadget Γ̂ in Ĉ is fed with a freshly
chosen random encoding ~v ← Enc(v). Gadget Γ̂ is evaluated with these
encodings as inputs.

Then the assignment of the refreshing bundles in Ĉ are derived from
the values already assigned to the bundle before, with value ~x, and the
bundle after the refreshing, assigned with ~y. Indeed, these values are
uniquely determined by RefRec(~x, ~y) (see Def. 12).

The output of the experiment consists of values assigned to the leaking
wires in W .

75

• Hybrid3: this is the same experiment as Hybrid2, except for the encod-
ings fed to each of the gadgets as inputs.

Here, in order to obtain the modified encodings we make use of the
leakage diagram S induced by the set W of leaking wires (see 5.2).

The leakage diagram S determines for each gadget Γ̂ in Ĉ an associated
basic modification vector ~mΓ̂, as defined in Eq. 6.2. Let B be an input
bundle of a gadget Γ̂ in Ĉ corresponding to a wire w in the preprocessed
circuit C ′ (see Sect. 4.1). Suppose that w carries value v1 when C ′ is
fed with X1 and v2 when C ′ is fed with X2. To assign values to the
input bundle B, we draw a fresh random encoding ~v ← Enc(v1) and

add to it the modification vector (v2 − v1)~mΓ̂ - so it is fed with the

vector ~v + (v2 − v1)~mΓ̂.

Then, each of the gadgets is evaluated separately and the assignments
of all the refreshing bundles in Ĉ are derived just like in Hybrid2, and
the output of this experiment is the assignment of the leaking wires in
W .

• Hybrid4: it is an analogous experiment to Hybrid2, with the only differ-
ence being that here we use the input X2 instead of X1 to derive the
values carried by the wires of the circuit C ′.

• Hybrid5: outputs the leakage from wires in W when the transformed

circuit Ĉ is fed with X2.

We now show that the outputs of every two consecutive hybrids are iden-
tical, which completes the proof of the claim.

Hybrid1 to Hybrid2: We will argue that in these two experiments not only
the assignment to the wires in W is identical (as a random variable), but

something more: that the assignment of all the wires of Ĉ, as a random
variable, is identical.

Observe that in Hybrid1 every intermediate (i.e. carried by a bundle
between two gadgets) encoding of a given value v is refreshed using the ran-

domness introduced by some refreshing gadget R̂. The randomness used is
independent of the input to R̂. Moreover, this randomness is uniquely deter-
mined by the inputs and the outputs of R̂. Therefore, there is an equivalence
between choosing the randomness used in R̂ in Hybrid1 and choosing the

encoding at random, ~v ← Enc(v), and assigning it to the output of R̂ in
Hybrid2.

76

Thus, in the experiment Hybrid2 the values assigned to all the wires in Ĉ
form the same random variable as in Hybrid1 and the outputs of the experi-
ments are identical.

Hybrid2 to Hybrid3:

Both hybrids begin constructing the adversarial view (the leakage from
wires in W) by choosing a random encodings assigned to all the input bundles

of the gadgets in Ĉ. In Hybrid3, before evaluating each gadget, they are
shifted by appropriately constructed modification vectors. So it is enough to
show that for any such fixed initial (i.e., before shifting) input encodings the
adversarial view is the same in both hybrids.

Consider any refreshed gadget subcircuit Γ̂R in Ĉ (see Sect. 5.5). We
will show that the leakage from this subcircuit, as a random variable (with

a randomness possibly introduced during evaluation of the gadget Γ̂ if it is
randomized), is the same in both hybrids for any fixed initial input encod-

ings. Here, we consider the leakage from the refreshed gadget subcircuit Γ̂R,
excluding its output wires, just like in Def. 20 of the reconstruct variable
(see also Remark 4). Notice also that, in both hybrids, such leakages from

the refreshed gadgets across the whole circuit Ĉ are mutually independent,
because each of them is determined by the randomness used during the eval-
uation of the gadget Γ̂. Therefore, showing that leakages from just refreshed
gadgets in both hybrids are equal will imply that the whole adversarial view,
which is a joint distribution of such random variables, is the same in both
hybrids.

We will do that using previously proven lemmas on the modification vec-
tors properties and the reconstruction invariability property (see Def. 21)

of the gadget Γ̂, satisfied based on Lemma 6. Let Γ̂1, . . . , Γ̂o be the gad-
gets connected with Γ̂ by its output bundles. Let LR1, . . . , LRo ⊂ W be
the sets of leaking wires in the refreshing bundles between Γ̂ and Γ̂1, . . . , Γ̂o,
respectively. Let LG ⊂ W be the set of the leaking wires in the gadget Γ̂.
Suppose that gate Γ in C ′ corresponding to the gadget Γ̂ in Ĉ takes as inputs
x1, . . . , xi and outputs z1, . . . , zo, when C ′ is fed with input X1. Similarly,
suppose that Γ takes input values x′1 . . . , x

′
i and outputs z′1, . . . , z

′
o, when C ′

is fed with X2.

Let the fixed input encodings of the refreshed gadget Γ̂R, chosen initially
in both hybrids, be ~x1, . . . , ~xi. Its output encodings are also fixed, as they are
the inputs to Γ̂1, . . . , Γ̂o. Let them be ~z1, . . . , ~zo. Notice that the aforemen-

77

tioned leakage from the subcircuit Γ̂R in Hybrid2 equals exactly (see Def. 20)

reconstructLG,LR1,...,LRo

Γ̂
(~x1, . . . , ~xi, ~z1, . . . , ~zo). (6.3)

In Hybrid3, before evaluating the gadget Γ̂ the vectors ~x1, . . . , ~xi and ~z1, . . . , ~zo
are shifted by appropriate modification vectors, so that the leakage from Γ̂R

equals
reconstructLG,LR1,...,LRo

Γ̂
(~x′1, . . . ,

~x′i,
~z′1, . . . , ~z

′
o), (6.4)

where
~xk
′ = ~xk + (x′k − xk) · ~mΓ̂ for 1 ≤ k ≤ i,

~zk
′ = ~zk + (z′k − zk) · ~mΓ̂k for 1 ≤ k ≤ o.

Based on Lemma 8, the vectors ~mΓ̂ and ~mΓ̂k are indistinguishable under the
set PR(LRk), for each k = 1, . . . , o. Moreover, based on Lemma 7, the vector

~mΓ̂ is disjoint with the set P (LG). Therefore we can use the reconstruction

invariability property of the gadget Γ̂, which states directly (see Def. 21) that
the two variables in 6.3 and in 6.4 are equal.

Hence, the two adversarial views are equal, what justifies the transition
from Hybrid2 to Hybrid3.

Hybrid3 to Hybrid4: Notice that the vectors fed to the input bundles of the

gadgets in Ĉ in both hybrids are actually drawn from the same distribution,
what justifies the transition. Let Γ̂ be any gadget in Ĉ and B be any of
its input bundles, that correspond to the gate Γ and its input wire w in the
circuit C ′. Suppose that w carries value v1 when C is fed with the input X1

and v2 when it is fed with X2. In Hybrid3 we assign bundle B with vector

~v + (v2 − v1)~mΓ̂ for a random encoding ~v ← Enc(v1). It is easy to see that,

because the sum of the coordinates in the basic modification vector ~mΓ̂ is
equal to 1, this assignment is a random encoding of the value v2, exactly like
in Hybrid4. Therefore these two experiments produce the same adversarial
view.

Hybrid4 to Hybrid5: This transition is perfectly analogous to the transition
between Hybrid1 and Hybrid2.

The sequence of transitions between the hybrid experiments finishes the
proof of the claim.

The second claim about the event E, on which the theorem proof is based,
states:

78

Claim 7. The probability of the event E in the experiment Leak(C,X, p) (see
Def. 8)is upper-bounded by |C| · (4q(p))n.

Proof. Recall that we denote by S the leakage diagram representing the leak-
age in the experiment Leak(C,X, p). In the following we treat it as a ran-
dom variable, which is determined by the set of leaking wires LW . To prove
the claim we describe another random graph, whose set of edges covers (see
Def. 1) the set of edges of S.

Namely, let us consider the following experiment RandJ :

1. Start with a graph J having the same nodes as graph G(Ĉ)
(see Sect. 5.2) and the edges on its leftmost and rightmost
sides.

2. For every edge e in G(Ĉ) outside of its leftmost and rightmost
sides, add e to J independently with probability q(p).

3. Output: graph J .

We make two observations about this experiment, which combined prove
Claim 7.

Observation 1: the set of the edges of RandJ , treated as a random
variable, has a distribution that covers (as in Def. 1) the distribution of the
set of the edges of the leakage diagram S.

To justify this observation firstly notice that, by construction, in both
cases the subsets of each vertical matching and the subsets of each crosswise
path (see Sect. 5.2) are generated independently. Thus, it is enough to argue

that for each component of the decomposition (as in Sect. 5.2) of G(Ĉ), the
distribution of its edges belonging to the leakage diagram S is covered (as in
Def. 1) by the distribution of its edges belonging to the graph RandJ . For the
crosswise paths, this follows directly from the fact that q(p) upper-bounds
the projection probability function for each gadget used in the construction
of Ĉ. For the vertical matchings, it follows from Lemma 4 combined with
the assumption that q(p) ≥ p+ 2

√
3p.

Now, let us denote by EJ an event in the experiment RandJ when the
leftmost and rightmost sides of J are connected. Notice that the following
inequality holds

Pr[E] ≤ Pr[EJ]. (6.5)

79

It is due to the Observation 1, and the fact that adding an edge to any set
of edges preserves all the paths in the graph, including the ones connecting
its leftmost and rightmost sides (compare with Def. 1).

Let Γ̂1, . . . , Γ̂|C| be all the gadgets in circuit Ĉ. For 1 ≤ i ≤ |C| let us

denote by event EJ
i the occurrence of a path in J that begins in the node N Γ̂i

0

on the leftmost side, does not contain any other node from the leftmost side,
and ends on the rightmost side of J . For any path connecting the leftmost

and the rightmost sides in J , the last node of the form N Γ̂i
0 on this path

begins a path in J that connects its leftmost and rightmost sides and does
not contain any other nodes from the leftmost side. Therefore, from the
union bound we have

Pr[EJ] ≤ Pr[EJ
1] + · · ·+ Pr[EJ

|C|].

Observation 2: For any i, the probability Pr[EJ
i] is upper-bounded by

(4q(p))n.
To justify this observation notice that, by construction, the degree of each

node in graph G(Ĉ) associated with the circuit Ĉ is at most 5. Thus, there

are at most 4n different paths of length exactly n in G(Ĉ) that begin in the

node N Γ̂i
0 on the leftmost side and does not contain any other node from that

side. Notice also that for the event EJ
i to occur, at least one of these paths

must be included in the random graph J because the distance between the
leftmost and the rightmost sides in graph G(Ĉ) equals exactly n. For each of
these paths, the probability of it being included into J equals q(p)n. Hence,
by union bound Pr[EJ

i] ≤ 4n · q(p)n = (4q(p))n.
The two Observations imply together that

Pr[E] ≤ Pr[EJ] ≤ Pr[EJ
1] + · · ·+ Pr[EJ

|C|] ≤ |C| · (4q(p))n,

what finishes the proof of Claim 7.

Claim 7 states that the event E will occur during the Leak experiment
(see Def. 8) with probability not greater than |C| · (4q(p))n. Claim 6 states

that unless E occurs the leakage from circuit Ĉ can be simulated perfectly
by feeding any input to the circuit. Therefore, based on the two claims,
for a given input X, the output of the experiment Leak(C,X, p) can be

simulated up to (4q(p))n in statistical distance just by feeding Ĉ with any
input and leaking each wire with probability p. This finishes the proof of the
theorem.

80

6.1 Concrete results

In this section we present the concrete results implied by Theorem 1. These
are immediate consequences of the theorem. For affine circuits we obtain the
following.

Proposition 1. Assume that a circuit C is an affine circuit. Our transfor-
mation Ĉ, as described in Section 4.1, is (p, |C| · (4p + 8

√
3p)n)-private for

any probability p.

Proof. As stated in the Section 4.3, for every gadget used in Ĉ its projection
probability function is upper-bounded by 3p and hence by p+ 2

√
3p. Thus,

the Proposition is a consequence of the Theorem 1 for the function q(p) =
p+ 2

√
3p.

For the general circuits we have the following.

Proposition 2. Assume that a circuit C is an arithmetic circuit. Our trans-
formation Ĉ, as described in Section 4.1, is (p, |C| ·(32np+4n

√
3p)n)-private

for any probability p.

Proof. From the Section 4.3, and the Lemma 3 on ISW multiplication gadget
in particular, we conclude that for every gadget used in Ĉ its projection
probability function is upper-bounded by n(8p+

√
3p). Assuming n ≥ 2, this

function also upper-bounds p+2
√

3p. Thus, the Proposition is a consequence
of the Theorem 1 for the function q(p) = n(8p+

√
3p).

Finally, let us state the result for the multi-round refreshing circuits.

Proposition 3. Consider a k-round refreshing circuit (see Sect. 2). This
circuit is (p, k · (4p+ 8

√
3p)n)-private for any probability p.

Proof. As stated in the Section 4.3, the projection probability function of the
identity gadgets ÎD used in the circuit equals p and hence is upper-bounded
by p + 2

√
3p. Thus, the Proposition is a consequence of the Theorem 1 for

the function q(p) = p+ 2
√

3p.

81

6.2 Open problems

We propose two interesting research directions.
One question that remains open is if the ISW multiplication gadget can be

replaced by some a gadget with better parameters, i.e. gadget implementing
the multiplication function g(x, y) = x·y with a smaller projection probability
function than f(p) = n(8p +

√
3p) (see Lemma 3). Ideally, the function f

would not depend on the security parameter n. Using such gadget in the
construction would improve the result of Proposition 2.

Second line of research poses the question if we can combine the simple
refreshing with masked multiplications that are secure for constant p, e.g.,
the schemes from [1, 3].

82

Chapter 7

Conclusion

In this work we introduce a new method to analyze the security of masking
schemes in the noisy leakage model of Prouff and Rivain [34]. Our approach
enables us to show the security of a simple refreshing scheme which is optimal
in terms of randomness complexity (it requires only n − 1 random values),
and uses a small number of arithmetic operations. Our results are achieved
by introducing a new technique for analyzing masked circuits against noisy
leakages, which is of independent interest.

We believe that our results are of practical importance to the analysis
of side-channel resistant masking schemes. The reason for this are twofold.
First, our refreshing scheme is very simple and efficient, and reduces the
overheads of the masking countermeasure significantly – in particular, for
certain types of computation. For example in the case of a secure key update
mechanism as used in any cryptographic scheme, we can reduce randomness
and circuit complexity from O(n2) using ISW-like refreshing to O(n), where
the asymptotic in the latter is with nearly optimal constants. Second, while
in [7] it was shown how to construct a very simple refreshing scheme (similar
to the one used in our work), the security analysis was in a more restricted
model (the bounded moment model), and carried out only for small n. In
our case, the analysis works for any n and in the standard noisy model that is
considered generally to accurately model physical side-channel leakage, and
hence our result implies that the simple refreshing can securely replace more
complex and expensive schemes in practice.

Interesting questions for future research include to extend our analysis
to other masking schemes [4], to explore the tightness of our bounds and to
verify our results experimentally in practice (e.g., by providing simulations

83

on the practical resistance of the countermeasure and its efficiency).

84

Bibliography

[1] Miklós Ajtai. Secure computation with information leaking to an adver-
sary. In Lance Fortnow and Salil P. Vadhan, editors, 43rd Annual ACM
Symposium on Theory of Computing, pages 715–724. ACM Press, June
2011.

[2] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A
modular approach. In Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, Proceedings, Part III, pages 427–455, 2018.

[3] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Cir-
cuit compilers withO(1/ log(n)) leakage rate. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016,
Part II, volume 9666 of Lecture Notes in Computer Science, pages 586–
615. Springer, Heidelberg, May 2016.

[4] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Theory and practice of a leakage resilient masking scheme.
In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology –
ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science,
pages 758–775. Springer, Heidelberg, December 2012.

[5] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-
order masking. In Elisabeth Oswald and Marc Fischlin, editors, Ad-
vances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of
Lecture Notes in Computer Science, pages 457–485. Springer, Heidel-
berg, April 2015.

85

[6] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong
non-interference and type-directed higher-order masking. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 16: 23rd Conference on Com-
puter and Communications Security, pages 116–129. ACM Press, Oc-
tober 2016.

[7] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implemen-
tations of masking schemes and the bounded moment leakage model.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in
Cryptology – EUROCRYPT 2017, Part I, volume 10210 of Lecture Notes
in Computer Science, pages 535–566. Springer, Heidelberg, April / May
2017.

[8] Sonia Beläıd, Dahmun Goudarzi, and Matthieu Rivain. Tight private
circuits: Achieving probing security with the least refreshing. In Ad-
vances in Cryptology - ASIACRYPT 2018 - 24th International Con-
ference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings,
Part II, pages 343–372, 2018.

[9] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Ro-
hatgi. Towards sound approaches to counteract power-analysis attacks.
In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99,
volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, Heidelberg, August 1999.

[10] Jean-Sébastien Coron. Formal verification of side-channel countermea-
sures via elementary circuit transformations. In Applied Cryptography
and Network Security - 16th International Conference, ACNS 2018, Leu-
ven, Belgium, July 2-4, 2018, Proceedings, pages 65–82, 2018.

[11] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. Higher-order side channel security and mask refreshing. In Shiho
Moriai, editor, Fast Software Encryption – FSE 2013, volume 8424 of
Lecture Notes in Computer Science, pages 410–424. Springer, Heidel-
berg, March 2014.

86

[12] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Per-
fectly secure password protocols in the bounded retrieval model. In
Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptog-
raphy Conference, volume 3876 of Lecture Notes in Computer Science,
pages 225–244. Springer, Heidelberg, March 2006.

[13] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying
leakage models: From probing attacks to noisy leakage. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EU-
ROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science,
pages 423–440. Springer, Heidelberg, May 2014.

[14] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Mak-
ing masking security proofs concrete - or how to evaluate the security
of any leaking device. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of
Lecture Notes in Computer Science, pages 401–429. Springer, Heidel-
berg, April 2015.

[15] Stefan Dziembowski. Intrusion-resilience via the bounded-storage
model. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory
of Cryptography Conference, volume 3876 of Lecture Notes in Computer
Science, pages 207–224. Springer, Heidelberg, March 2006.

[16] Stefan Dziembowski and Sebastian Faust. Leakage-resilient cryptogra-
phy from the inner-product extractor. In Dong Hoon Lee and Xiaoyun
Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume
7073 of Lecture Notes in Computer Science, pages 702–721. Springer,
Heidelberg, December 2011.

[17] Stefan Dziembowski, Sebastian Faust, and Maciej Skorski. Noisy leakage
revisited. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes
in Computer Science, pages 159–188. Springer, Heidelberg, April 2015.

[18] Stefan Dziembowski, Sebastian Faust, and Karol Zebrowski. Simple re-
freshing in the noisy leakage model. Lecture Notes in Computer Science,
pages 315–344. Springer, Heidelberg, December 2019.

87

[19] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptog-
raphy. In 49th Annual Symposium on Foundations of Computer Science,
pages 293–302. IEEE Computer Society Press, October 2008.

[20] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod
Vaikuntanathan. Protecting circuits from leakage: the computationally-
bounded and noisy cases. In Henri Gilbert, editor, Advances in Cryptol-
ogy – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, pages 135–156. Springer, Heidelberg, May / June 2010.

[21] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Çetin Kaya Koç, David Naccache,
and Christof Paar, editors, Cryptographic Hardware and Embedded Sys-
tems – CHES 2001, volume 2162 of Lecture Notes in Computer Science,
pages 251–261. Springer, Heidelberg, May 2001.

[22] Shafi Goldwasser and Guy N. Rothblum. Securing computation against
continuous leakage. In Tal Rabin, editor, Advances in Cryptology –
CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 59–79. Springer, Heidelberg, August 2010.

[23] Dahmun Goudarzi, Antoine Joux, and Matthieu Rivain. How to securely
compute with noisy leakage in quasilinear complexity. In Advances in
Cryptology - ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information Security, Bris-
bane, QLD, Australia, December 2-6, 2018, Proceedings, Part II, pages
547–574, 2018.

[24] Dahmun Goudarzi, Ange Martinelli, Alain Passelègue, and Thomas
Prest. Unifying leakage models on a rényi day. Cryptology ePrint
Archive, Report 2019/138, 2019. https://eprint.iacr.org/2019/

138.

[25] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in
Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 463–481. Springer, Heidelberg, August 2003.

[26] Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against
continual leakage. In Tal Rabin, editor, Advances in Cryptology –

88

https://eprint.iacr.org/2019/138
https://eprint.iacr.org/2019/138

CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 41–58. Springer, Heidelberg, August 2010.

[27] Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-resilient
cryptography. IACR Cryptology ePrint Archive, 2019:302, 2019.

[28] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 2019 IEEE Symposium on Security and
Privacy, pages 1–19. IEEE Computer Society Press, 2019.

[29] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, Advances in
Cryptology – CRYPTO’96, volume 1109 of Lecture Notes in Computer
Science, pages 104–113. Springer, Heidelberg, August 1996.

[30] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Michael J. Wiener, editor, Advances in Cryptology –
CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, Heidelberg, August 1999.

[31] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. pages 973–990, 2018.

[32] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold
implementations against side-channel attacks and glitches. In Infor-
mation and Communications Security, 8th International Conference,
ICICS 2006, Raleigh, NC, USA, December 4-7, 2006, Proceedings, pages
529–545, 2006.

[33] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine
Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume
5479 of Lecture Notes in Computer Science, pages 462–482. Springer,
Heidelberg, April 2009.

[34] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel
attacks: A formal security proof. In Thomas Johansson and Phong Q.

89

Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 142–159. Springer,
Heidelberg, May 2013.

[35] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order
masking of AES. In Stefan Mangard and François-Xavier Standaert,
editors, Cryptographic Hardware and Embedded Systems – CHES 2010,
volume 6225 of Lecture Notes in Computer Science, pages 413–427.
Springer, Heidelberg, August 2010.

[36] François-Xavier Standaert. Introduction to Side-Channel Attacks, pages
27–42. Springer US, Boston, MA, 2010.

[37] Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung.
Practical leakage-resilient pseudorandom generators. In Ehab Al-Shaer,
Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10:
17th Conference on Computer and Communications Security, pages 141–
151. ACM Press, October 2010.

90

	Introduction
	Side-channel attacks
	Leakage-resilient cryptography
	Masking schemes
	Refreshing schemes
	Noisy leakage and p-random probing models

	Results
	Organization of the dissertation

	Our approach informally
	Proof sketch of Informal Lemma 1
	Bounding the probability of E
	Generalizations to arbitrary circuits

	Preliminaries
	Partial order of the distributions over the subsets
	Assumptions about the circuit
	Security definitions
	p-random probing model to noisy leakage model

	Details of the circuit transformation
	Our construction of the transformed circuit C"0362C
	General gadget description
	The gadgets used in our construction
	ISW multiplication gadget
	Other gadgets

	Technical tools
	Refreshing gadget properties
	Leakage diagrams
	Modification vectors
	Leakage and extended leakage from a gadget
	Refreshed gadget reconstruction

	The main theorem: privacy of the construction
	Concrete results
	Open problems

	Conclusion

