Warsaw University
 Faculty of Mathematics, Informatics and Mechanics

Karol Palka

Singular \mathbb{Q}-homology planes
 PhD dissertation

Author's declaration:
 aware of legal responsibility I hereby declare that I have written this dissertation myself and all the contents of the dissertation have been obtained by legal means.

December 2, 2008
date
Karol Palka

Supervisor's declaration:
the dissertation is ready to be reviewed

December 2, 2008

Abstract

The thesis is devoted to studying normal complex \mathbb{Q}-acyclic algebraic surfaces S^{\prime}. Let S_{0} be the smooth locus of such a surface. The following results have been obtained. If S^{\prime} has non-negative Kodaira dimension then it is logarithmic, i.e. its singularities are of quotient type. We classify possible S^{\prime} with non-quotient singularities. S^{\prime} can be nonrational. The completion of the resolution of S^{\prime} is birationally ruled, i.e. it is a a blowup of a \mathbb{P}^{1} bundle over some smooth complete curve. We classify possible S^{\prime} for which $\bar{\kappa}\left(S_{0}\right)=0$ and S_{0} does not admit a \mathbb{C}^{*}-fibration. The main result is the theorem saying that if $\bar{\kappa}\left(S^{\prime}\right)=-\infty$ then $\bar{\kappa}\left(S_{0}\right) \neq 2$. The full description of possible singular \mathbb{Q}-homology planes S^{\prime} of negative Kodaira dimension is given.

Keywords: Q-homology plane, acyclic surface, Kodaira dimension, quotient singularities;

2000 Mathematics Subject Classification: Primary: 14R05;
Secondary: 14B05, 14R10, 14R20 14R25.

Streszczenie

Rozprawa poświęcona jest badaniu normalnych, zespolonych, \mathbb{Q}-acyklicznych powierzchni algebraicznych S^{\prime}. Niech S_{0} będzie częścią gładką takiej powierzchni. Uzyskano następujące wyniki. Jeśli S^{\prime} ma nieujemny wymiar Kodairy, to S^{\prime} jest logarytmiczna, tzn. jej osobliwości są ilorazowe. Sklasyfikowano możliwe S^{\prime} z osobliwościami nieilorazowymi. S^{\prime} może być niewymierne. Uzupełnienie rezolwenty S^{\prime} jest jest rozdmuchaniem pewnej \mathbb{P}^{1}-wiązki nad gładką krzywą zupełną. Sklasyfikowano możliwe S^{\prime}, dla których $\bar{\kappa}\left(S_{0}\right)=0$ i S_{0} nie posiada \mathbb{C}^{*}-rozwłóknienia. Głównym wynikiem jest twierdzenie mówiące, że jeśli $\bar{\kappa}\left(S^{\prime}\right)=-\infty$, to $\bar{\kappa}\left(S_{0}\right) \neq 2$. Podano pełny opis możliwych osobliwych płaszczyzn \mathbb{Q}-homologicznych S^{\prime} o ujemnym wymiarze Kodairy.

Słowa kluczowe: płaszczyzna Q-homologiczna, powierzchnia acykliczna, wymiar Kodairy, osobliwości ilorazowe;

2000 Mathematics Subject Classification: Primary: 14R05; Secondary: 14B05, 14R10, 14R20 14R25.

Introduction

We consider the problem of classifying normal \mathbb{Q}-acyclic singular surfaces defined over \mathbb{C}, we call them singular \mathbb{Q}-homology planes. (For convenience we exclude the smooth case by definition). This generalizes the notion of a logarithmic \mathbb{Q}-homology plane by relaxing the assumption on the type of the singular locus, i.e. we do not assume that it is of quotient type. Let S^{\prime} be such a surface and let S_{0} be its smooth locus. Denote the desingularization of S^{\prime} by S. By definition we have $\bar{\kappa}\left(S^{\prime}\right)=\bar{\kappa}(S)$, we have also $\bar{\kappa}(S) \leq \bar{\kappa}\left(S_{0}\right)$. The main goal of this paper is to give the classification of singular \mathbb{Q}-homology planes S^{\prime} satisfying $\bar{\kappa}\left(S^{\prime}\right)=-\infty$.

In the logarithmic case, under the assumption that S^{\prime} (and hence S_{0}) is \mathbb{C}^{1} - or \mathbb{C}^{*}-ruled, a structure theorem was obtained in MS91. The assumption that the singular locus of S^{\prime} is of quotient type simplifies calculations and excludes some exotic situations one has to deal with in general. Some results known for logarithmic \mathbb{Q}-homology planes do not hold in general. In particular, the theorem PS97, Theorem 1.1] saying that logarithmic singular \mathbb{Q} - homology planes are rational does not hold for general singular \mathbb{Q}-homology planes (cf. 5.4).

In chapter 1 we give basic definitions and recall well-known facts from the theory of open surfaces, we state a lemma 1.7.1 which helps us later to obtain some singular \mathbb{Q}-homology planes. Let $\widehat{E} \subset S$ be the exceptional divisor of the resolution. Let \bar{S} be the completion of S, denote the boundary divisor of $S \subset \bar{S}$ by D.

In chapter 2 we study the topology of the pair $(\bar{S}, D+\widehat{E})$. We show that S^{\prime} is affine and \bar{S} is \mathbb{P}^{1}-ruled (2.2.3), this generalizes [PS97, Theorem 1.1]. We prove also that if $\bar{\kappa}\left(S^{\prime}\right) \geq 0$ then the singularities of S^{\prime} are of quotient type 2.2.4.

In chapter 3 by studying various \mathbb{P}^{1}-rulings of \bar{S} induced by some 0 -curves contained in D we prove that if $\bar{\kappa}\left(S_{0}\right)=0$ then with two exceptions (cf. 3.2.7) S_{0} is \mathbb{C}^{*}-ruled. By general structure theorems it is known that if $\bar{\kappa}\left(S_{0}\right)=-\infty$ or 1 then S_{0} has a \mathbb{C}^{1} - or a \mathbb{C}^{*}-ruling. Therefore our result complements these theorems allowing to study S^{\prime} 's with smooth locus of non-general type in a unified manner.

In the simplest case, when $\bar{\kappa}\left(S_{0}\right)=-\infty$ (chapter 4) S^{\prime} has to be logarithmic, hence only well known examples appear (cf. MS91).

If $\bar{\kappa}\left(S_{0}\right)=0,1$ and $\bar{\kappa}\left(S^{\prime}\right) \geq 0$ then by the results of chapter 2 and $3 S^{\prime}$ is logarithmic and (again with two exceptions) S_{0} is \mathbb{C}^{*}-ruled, hence we reduce the analysis to the one done in MS91. Therefore the analysis of the following cases is needed:
(A) $\bar{\kappa}\left(S_{0}\right)=0,1, \bar{\kappa}\left(S^{\prime}\right)=-\infty$,
(B) $\bar{\kappa}\left(S_{0}\right)=2$, any $\bar{\kappa}\left(S^{\prime}\right)$.

In chapter 5 we study the case (A) by analyzing various \mathbb{C}^{*}-rulings of S_{0}. There are three possible types: (1) gyoza - with one 2 -section, which is contained in $D,(2)$ sandwich of type II - with two 1 -sections contained in D and (3) sandwich of type I - with one 1 -section in D and one 1 -section in \widehat{E}. The type (3) (for which almost by definition $\bar{\kappa}\left(S^{\prime}\right)=-\infty$) was not studied before, up to now only \mathbb{C}^{*}-rulings of S_{0} induced by a \mathbb{C}^{*}-ruling of S^{\prime} were considered (cf. MS91]). We reduce the case (1) to the case (2) by finding another \mathbb{C}^{*}-ruling. In cases (2) and (3) we obtain a full description of possible $S^{\prime \prime}$'s. We show how to construct them starting from a \mathbb{P}^{1}-ruled surfaces by blowing up, contracting some divisors and throwing out others. In case (3) we obtain new examples of singular \mathbb{Q}-homology planes with non-quotient or non-rational singularities (cf. 5.4.6).

The case (B) is the most difficult, since there are no structure theorems for open surfaces of general type. It is easy to show that then S^{\prime} has exactly one singular point and it is of quotient type (cf. 2.2.1). For $\bar{\kappa}\left(S^{\prime}\right)=-\infty$ (still case (B)) it is the main result of KR07] that S^{\prime} cannot be topologically contractible. Modifying the methods developed in KR99] and KR07] we deal with case (B) for $\bar{\kappa}\left(S^{\prime}\right)=-\infty$ for general
\mathbb{Q}-homology planes in chapter 6reproving the theorem of Koras and Russell as a special case (cf. 6.6.5. The analysis of the case (B) for $\bar{\kappa}\left(S^{\prime}\right)=0$ is possible. For $\bar{\kappa}\left(S^{\prime}\right)=1$ this will be more difficult, and for $\bar{\kappa}\left(S^{\prime}\right)=2$ the problem of classification is rather hopeless.

For clarity we state the main result:
Theorem: Let S be a desingularization of a singular \mathbb{Q}-homology plane S^{\prime}. Let $S_{0}=S^{\prime}-\operatorname{Sing} S^{\prime}$.
(1) The completion of S is \mathbb{P}^{1}-ruled (cf. 2.2.3).
(2) If $\bar{\kappa}\left(S^{\prime}\right) \geq 0$ then S^{\prime} is logarithmic (cf. 2.2.4).
(3) If $\bar{\kappa}\left(S_{0}\right)=0$ then with two exceptions S_{0} is \mathbb{C}^{*}-ruled (cf. 3.2.7 and 3.2.2.
(4) If $\bar{\kappa}\left(S^{\prime}\right)=-\infty$ then $\bar{\kappa}\left(S_{0}\right) \neq 2$ (cf. 6.6.5).
(5) Assume $\bar{\kappa}\left(S^{\prime}\right)=-\infty$ and $\bar{\kappa}\left(S_{0}\right)<2$. All such surfaces S^{\prime} are classified (see 4.1.3, 4.2.1, 3.2.2, 5.2 .1 . 5.3.3 and 5.4.5. They can be obtained in a precisely described way by blowing up generalized Hirzebruch surfaces and contracting some exceptional divisors to singular points. The boundary divisors and the exceptional divisors are described. If $\bar{\kappa}\left(S_{0}\right) \geq 0$ then Sing S^{\prime} consist precisely of one point, which does not have to be a rational singularity.

Acknowledgements. I would like to thank dr hab. Mariusz Koras for his patience, numerous helpful discussions and for guiding me through my doctoral research. I am grateful for his willingness to help and to share ideas. Writing this thesis was not only hard work but also fun. I owe much to discussions with dr hab. Adrian Langer and prof. Jarosław Wisniewski. Special thanks to Maciej for giving me reasons to work and also to make breaks.

Contents

Introduction 3
1 Definitions and general results 7
1.1 Generalities on divisors 7
1.2 Pairs 8
1.3 Barks 9
1.4 Singularities 10
1.5 Rulings 11
1.6 Minimal models 12
1.7 Quotients 16
2 Topology of \mathbb{Q}-homology planes 17
2.1 Homology groups 17
2.2 Algebraic properties 20
$3 \quad S_{0}$ not \mathbb{C}^{*}-ruled, $\bar{\kappa}\left(S_{0}\right)=0$ 23
3.1 Description of the boundary 23
3.2 Rulings of S_{0} with $\nu>0$ 25
$4 \quad \bar{\kappa}\left(S_{0}\right)=-\infty$ 33
4.1 Affine-ruled S_{0} 33
4.2 Non affine-ruled S_{0} 34
$5 \quad \mathbb{C}^{*}$-rulings on $S_{0}, \bar{\kappa}\left(S^{\prime}\right)=-\infty$ 35
5.1 Generalities on \mathbb{C}^{*}-rulings on S_{0} 35
5.2 Gyoza 37
5.3 Sandwich II 38
5.4 Sandwich I 41
$6 \quad \bar{\kappa}\left(S_{0}\right)=2$ and $\bar{\kappa}\left(S^{\prime}\right)=-\infty$ 45
6.1 Preliminary results 45
6.2 Bounding the shape of \hat{E} 47
6.3 Pre-minimal rulings 49
6.4 D is a fork 54
6.5 Surface W. 58
6.6 Special cases 66

Chapter 1

Definitions and general results

We consider algebraic varieties defined over \mathbb{C}. In this chapter we set up the notation and collect basic facts from the theory of open surfaces we will use.

1.1 Generalities on divisors

Let $T=\sum_{i=1}^{n} m_{i} T_{i}$ with T_{i} irreducible and $m_{i} \in \mathbb{Z} \backslash\{0\}$ (or more generally $m_{i} \in \mathbb{Q} \backslash\{0\}$) be a simple normal crossing divisor (snc-divisor) on a smooth complete surface, i.e. all its components are smooth, intersect transversally, at most two in one point (nc-divisor). Notice that by a result of Zariski a smooth complete surface is projective. By a component we always mean an irreducible component. Let

$$
Q(T)=\left(m_{i} m_{j} T_{i} T_{j}\right)_{1 \leq i, j \leq n}
$$

and let

$$
d(T)=\operatorname{det}(-Q(T))
$$

We put $d(\emptyset)=1$. We define the reduction of T as $\underline{T}=\sum T_{i}$ and denote the number of components of T by $\# T$. We say that T is rational if all its components are rational. If we refer to a divisor as a subset of a surface, we refer really to its support. For example, writing $T \subseteq T^{\prime}$ we mean that T and T^{\prime} satisfy $\operatorname{Supp} T \subseteq \operatorname{Supp} T^{\prime}$. We will denote the free abelian group generated by irreducible components of T by $\mathcal{L}(T)$. The numerical equivalence of divisors will be denoted by \equiv. We write $T \geq 0$ for effective (\mathbb{Z} - and \mathbb{Q}-) divisors and for \mathbb{Z}-divisors linearly equivalent to effective \mathbb{Z}-divisors. Two \mathbb{Q}-divisors T, U are linearly equivalent if $r T$ and $r U$ are linearly equivalent \mathbb{Z}-divisors for some nonzero integer r. If T is a \mathbb{Q}-divisor linearly equivalent to some effective \mathbb{Q}-divisor then we write $T \geq_{\mathbb{Q}} 0$.

Let $\operatorname{DGraph}(T)$ be a dual graph of T, i.e. a weighted one-dimensional simplicial complex with one vertex v_{i} for each irreducible component T_{i} of T and one edge between v_{i} and v_{j} for each point of intersection of T_{i} with T_{j}. The weight assigned to v_{i} is $-T_{i}^{2}$. Let $|\operatorname{Draph}(T)|$ be the geometric realization of $\operatorname{DGraph}(T)$. Consider T as a topological subspace of a surface with its analytical topology. The natural map $\coprod_{i=1}^{n} T_{i} \rightarrow T$ identifies some pairs of points, which homotopically is the same as adding a cone over them. It is an exercise in homotopy theory to see that for a connected T this gives

$$
T \underset{\text { htp }}{\approx} \bigvee_{i=1}^{n} T_{i} \vee|D G r a p h(T)|
$$

In particular,

$$
\widetilde{H}_{j}(T, \mathbb{Z})=\oplus_{i=1}^{n} \widetilde{H}_{j}\left(T_{i}, \mathbb{Z}\right) \oplus \widetilde{H}_{j}(|D \operatorname{Graph}(T)|, \mathbb{Z}),
$$

where $\widetilde{H}_{j}(|D G r a p h(T)|, \mathbb{Z})=0$ for $j \neq 1\left(\widetilde{H}_{j}\right.$'s are the reduced homology groups). We say that T is a tree if each connected component of $\operatorname{DGraph}(T)$ contains no loops, i.e $\pi_{1}(|\operatorname{Draph}(T)|)=0$.

We define the branching number of T_{i} as $\beta_{T}\left(T_{i}\right)=T_{i}\left(\underline{T}-T_{i}\right)$. We say that T_{i} is a tip of T if $\beta_{T}\left(T_{i}\right)=1$. It is a branching component if $\beta_{T}\left(T_{i}\right) \geq 3$. If T is connected and does not have any branching components then it is a chain. An snc-chain T is admissible if it is rational and $T_{i}^{2} \leq-2$ for every i. A curve L is a (b)-curve if and only if $L \cong \mathbb{P}^{1}$ and $L^{2}=b$.

Lemma 1.1.1. (KR07, 2.1.1]). Let $T=\underline{T}$ be a connected snc-tree. The following formulas hold:
(i) Let C be a component of T and let $T_{1} \ldots, T_{\beta}$ be the connected components of $T-C$. If C_{i} is the component of T_{i} meeting C then

$$
d(T)=-C^{2} \prod_{i} d\left(T_{i}\right)-\sum_{i} d\left(T_{i}-C_{i}\right) \prod_{i \neq j} d\left(T_{j}\right)
$$

(ii) Let $T=T_{1}+T_{2}$, where T_{1}, T_{2} are connected and intersect in one point. Let C_{1}, C_{2} be the intersecting components, then

$$
d(T)=d\left(T_{1}\right) d\left(T_{2}\right)-d\left(T_{1}-C_{1}\right) d\left(T_{2}-C_{2}\right)
$$

Suppose T is a chain and a tip T_{1} of T is fixed. This choice induces a unique linear order on the set of irreducible components of T with T_{1} as a first component. We write $T=T_{1}+T_{2}+\ldots+T_{n}$, where T_{i} 's are irreducible components of T. We write also $T=\left[-T_{1}^{2},-T_{2}^{2}, \ldots,-T_{n}^{2}\right]$. We denote a chain of (-2)-curves of length k by $[(k)]$. For example, $[3,(4)]$ is just $[3,2,2,2,2]$.

Lemma 1.1.2. Let T be an admissible chain. For every $d>2$ there exist at least two T 's with $d(T)=d$: $[d]$ and $[(d-1)]$. This is a full list of all other T 's for $d \leq 11$:

$$
\begin{aligned}
d & =5:[3,2], \\
d & =7:[4,2],[3,(2)], \\
d & =8:[3,3],[2,3,2], \\
d & =9:[5,2],[3,(3)], \\
d & =10:[4,(2)], \\
d & =11:[6,2],[4,3],[3,(4)],[2,3,(2)] .
\end{aligned}
$$

1.2 Pairs

An snc-pair (W, D) is a pair consisting of a smooth complete surface W and a reduced snc-divisor D on W. D is snc-minimal if for every (-1)-curve in D the direct image of D after its contraction is not an snc-divisor. The pair (W, D) is snc-minimal if D is. If D is a tree then this is equivalent to the property that each (-1)-curve in D has $\beta_{D}>2$. The blowup and blowdown of an snc-pair (W, D) are defined as appropriate transformation of W with the divisorial part defined as a full preimage and proper image of D with reduced structure. The divisorial part is assumed to remain snc. We identify isomorphic pairs. We have a natural partial order: $\left(W^{\prime}, D^{\prime}\right) \prec(W, D)$ if and only if there exists a birational regular morphism $\eta: W^{\prime} \rightarrow W$, such that $\eta_{*} D^{\prime}=D$. We say that the snc-pair (W, D) is minimal with respect to some property if it is a minimal element of the set of snc-pairs satisfying this property. The modification of an snc-pair is just a birational transformation of snc-pairs, i.e. a sequence of blowdowns and blowups. If (W, D) is an snc-pair then we will write $W-D$ for $W \backslash \operatorname{Supp} D$.

Let X be a smooth surface. If X is not complete then by Nagata's embedding theorem and Hironaka's theorem on resolution of singularities we can embed X into a smooth complete surface \bar{X}, such that $D=\bar{X} \backslash X$ is an snc-divisor. Moreover, \bar{X} is projective by Zariski's theorem. We call the pair (\bar{X}, D) an snc-completion of X.

If $p: Y \rightarrow X$ is a dominating morphism of surfaces and D a divisor on X we write $p^{-1}(D)$ for the reduced full preimage of D.

Example 1.2.1. $\mathbb{C}^{2} \backslash\{0\}$ does not have an snc-minimal completion.
Definition 1.2.2. The sequence of blowups is connected if for every $i>0$ the center of the $(i+1)$-th blowup belongs to the exceptional locus of the i-th blowup. The sequence of blowdowns is connected if the sequence of blowups reversing it is connected.

Let D be an snc-divisor. The blowup of D is sprouting if its center belongs to exactly one component of D. In other case it is subdivisional.

Corollary 1.2.3. Assume that X^{\prime} is a normal affine surface. Let $X_{0}=X^{\prime} \backslash \operatorname{Sing} X^{\prime}-D^{\prime}$ for some divisor D^{\prime} on X^{\prime}. Then the snc-minimal completion of X_{0} exists.
Proof. Let $p: X \rightarrow X^{\prime}$ be a desingularization of X^{\prime}, such that $\widehat{E}=p^{-1}\left(\operatorname{Sing} X^{\prime}\right)$ is an snc-divisor. Let \bar{X} be a smooth completion of X. Let D be a reduced divisor with support $p^{-1}\left(D^{\prime}\right) \cup \bar{X} \backslash X$. We can assume that D is an snc-divisor. It is connected, which follows from X^{\prime} being affine. Let E be the sum of components of \widehat{E} not contained in D. We see that $(\bar{X}, D+E)$ is an snc-completion of X_{0}. Clearly, we can assume that E is snc-minimal. Moreover, since there exists an ample divisor with support contained in D, $Q(D)$ is not negative definite, so in the process of snc-minimalization the divisor D cannot be contracted to a point (cf. Goo69, Gra62]).

1.3 Barks

We recall basic definitions from the theory of peeling (see Miy01, §2.3] for a complete discussion). In this paragraph we consider only reduced snc-divisors.

Assume that T is a chain with $Q(T)$ negative definite (this holds for example for admissible T). Fix an ordering of components of T induced by choosing some tip T_{1}. We define some numbers describing $T=T_{1}+T_{2}+\ldots+T_{n}$ as follows:

$$
d^{\prime}(T)=d\left(T-T_{1}\right), d^{\prime}(\emptyset)=0, e(T)=\frac{d^{\prime}(T)}{d(T)}, \widetilde{e}(T)=e\left(T^{t}\right)
$$

where $T^{t}=T_{n}+\ldots+T_{1}$. Bark of T is a \mathbb{Q}-divisor $\operatorname{Bk} T=\sum \alpha_{i} T_{i}$ satisfying

$$
T_{1} \operatorname{Bk} T=-1, T_{i} \operatorname{Bk} T=0 \text { for } i>0
$$

It is well defined, since $d(T) \neq 0$. We put

$$
\mathrm{Bk}^{*} T=\operatorname{Bk} T+\operatorname{Bk} T^{t}
$$

Let's fix a divisor T^{\prime}. Suppose that T is a rational chain contained in T^{\prime}, such that T does not contain any branching component of T^{\prime}. If T is a connected component of T^{\prime} and $Q(T)$ is negative definite then we call T a rod of T^{\prime}. In this case let $T_{1}+T_{2} \ldots+T_{n}$ be any linear ordering of T, we put $\operatorname{Bk} T=\operatorname{Bk}\left(T_{1}+\ldots+T_{n}\right)+\operatorname{Bk}\left(T_{n}+\ldots+T_{1}\right)$. Clearly, this does not depend on the ordering chosen. If T contains exactly one tip U of T^{\prime} then T is called a twig of T^{\prime}. If additionally $Q(T)$ is negative definite then we write $\operatorname{Bk} T$ for a bark of T considered with a linear ordering induced by U. A maximal twig of T^{\prime} is a twig which is maximal with respect to $T \subseteq T^{\prime}$. Similarly, a maximal admissible twig is an admissible twig, which is maximal (among admissible twigs of T) with respect to $T \subseteq T^{\prime}$.

Assume that the divisor V is not a chain and let V_{1}, \ldots, V_{k} be all its maximal admissible twigs. We define

$$
\delta(V)=\sum_{i=1}^{k} \frac{1}{d\left(V_{i}\right)}, e(V)=\sum_{i=1}^{k} e\left(V_{i}\right) \text { and } \widetilde{e}(V)=\sum_{i=1}^{k} \widetilde{e}\left(V_{i}\right)
$$

We say that V is a fork (wide fork) if V is connected, has a unique branching component and three (three or more) maximal twigs. The fork V is admissible if it is rational, with maximal twigs being admissible, $\delta(V)>1$ and the branching component B satisfies $B^{2} \leq-2$. It is easy to check that, assuming the remaining conditions, the condition $B^{2} \leq-2$ is equivalent to negative definiteness of $Q(V)$. Let $F=B+T(1)+T(2)+T(3)$ be an admissible fork with maximal twigs $T(i)$. We define

$$
\operatorname{Bk} F=\frac{\delta(F)-1}{-B^{2}-\widetilde{e}(F)}\left(B+\sum_{i=1}^{3} \operatorname{Bk} T(i)^{t}\right)+\sum_{i=1}^{3} \operatorname{Bk} T(i)
$$

For a general reduced snc-divisor D let $\left\{T_{\alpha}\right\},\left\{R_{\beta}\right\}$ and $\left\{F_{\gamma}\right\}$ be the sets of its maximal admissible twigs that are not contained in some admissible forks of D, a set of admissible rods of D and a set of admissible forks of D. Define

$$
\operatorname{Bk} D=\sum_{\alpha} \operatorname{Bk} T_{\alpha}+\sum_{\beta} \operatorname{Bk} R_{\beta}+\sum_{\gamma} \operatorname{Bk} F_{\gamma}
$$

and set $D^{\#}=D-B k D$. The following propositions describe important properties of $\left.\operatorname{Bk} D(\boxed{M i y 01}, \S 2.3]\right)$.

Proposition 1.3.1. Let D be a reduced snc-divisor, then:
(i) $\operatorname{Bk} D$ is effective and either $Q(\operatorname{Bk} D)$ is negative definite or $\operatorname{Bk} D=0$,
(ii) $\left(K_{X}+D^{\#}\right) Z=0$ for every $Z \subseteq \operatorname{Bk} D$,
(iii) Supp $D \backslash$ Supp $D^{\#}$ consists of (-2)-rods and (-2)-forks, i.e. rods and forks consisting of components with self-intersection -2 .
Proposition 1.3.2. Let $T=T_{1}+\ldots+T_{n}$ be an admissible ordered snc-chain, let $\operatorname{Bk} T=\sum_{i=1}^{n} m_{i} T_{i}$ and $\mathrm{Bk}^{*} T=\sum_{i=1}^{n} m_{i}^{*} T_{i}$, then:
(i) $d^{\prime}(T) \leq d(T)-1, e(T)=\frac{1}{-T_{1}^{2}-e\left(T-T_{1}\right)}, \frac{1}{d(T)} \leq e(T) \leq 1-\frac{1}{d(T)}$,
(ii) $m_{i}=\frac{d\left(T_{i+1}+\ldots+T_{n}\right)}{d(T)}$,
(iii) $0<m_{i}<1$ and $0<m_{i}^{*} \leq 1$ (in particular $\operatorname{Supp} \operatorname{Bk} T=\operatorname{Supp} \mathrm{Bk}^{*} T=\operatorname{Supp} T$). Moreover, if $m_{i}^{*}=1$ for some i then $T=[2,2, \ldots, 2]$ and $m_{i}^{*}=1$ for each i,
(iv) $\mathrm{Bk}^{2} T=-e(T),\left(\mathrm{Bk}^{*} T\right)^{2}=-e(T)-\widetilde{e}(T)-\frac{2}{d(T)}=-\frac{d^{\prime}(T)+d^{\prime}\left(T^{t}\right)+2}{d(T)} \geq-2$.

Remark 1.3.3. The function $e($), called inductance or capacity, gives in terms of Hirzebruch-Jung continued fractions (see 1.3.4 a one-to-one correspondence between weighted ordered dual graphs of ordered admissible chains and points in $\mathbb{Q} \cap(0,1)$ (Miy01, 2.3.3(3)]). However, although $e(T)$ determines the chain T, hence also $d(T)$ and $\widetilde{e}(T)$, there is no simple formula for $d(T)$ or $\widetilde{e}(T)$ as a function of $e(T)$. In fact, the graph of $\widetilde{e}(T)$ as a function of $e(T)$ is dense in $[0,1]^{2}$.
Example 1.3.4. Let $e=\frac{11}{19}$. Then we can write e as $\frac{11}{19}=\frac{1}{2-\frac{1}{4-\frac{1}{3}}}$, and for $T=[2,4,3]$ we have $e(T)=e$. We have also $\widetilde{e}(T)=\frac{7}{19}$ and $d(T)=19$.
Proposition 1.3.5. Let $F=B+T(1)+T(2)+T(3)$ be a reduced, admissible fork with maximal twigs $T(i)$. Let $\operatorname{Bk} F=\sum_{i=1}^{n} m_{i} F_{i}$ and $d_{i}=d\left(T_{i}\right)$, then:
(i) $0<m_{i} \leq 1$ (in particular $\operatorname{Supp} \operatorname{Bk} F=\operatorname{Supp} F$). Moreover, if $m_{i}=1$ for some i then F is a (-2)-fork and $m_{i}=1$ for each i,
(ii) $\left(d_{1}, d_{2}, d_{3}\right)$ is one of the Platonic triples: $(2,3,3),(2,3,4),(2,3,5)$ or $(2,2, k)$ for some $k \geq 2$,
(iii) $1<\widetilde{e}(F)<2 \leq-B^{2}$,
(iv) $d(F)=d_{1} d_{2} d_{3}\left(-B^{2}-\widetilde{e}(F)\right)$,
(v) $\mathrm{Bk}^{2} F=-\frac{(\delta(F)-1)^{2}}{-B^{2}-\widetilde{e}(F)}-e(F)<-e(F)<-1$.

Remark 1.3.6. Notice that since $e(T)+\delta(T) \leq 1$ for an admissible chain T, we have $\left(\operatorname{Bk}^{*} T\right)^{2}=-2$ if and only if T consists of (-2)-curves. For an admissible fork F we get also by 1.3 .5 (iii) that $\frac{\delta-1}{-B^{2}-\widetilde{e}} \leq 1$, so $-\mathrm{Bk}^{2} F \leq \delta-1+e \leq 2$ and again the equality occurs if and only if F consists of (-2)-curves.

1.4 Singularities

Let q be a singular point on a normal surface X. Let $p: \widetilde{X} \rightarrow X$ be a desingularization of $q \in X$. Put $\widehat{E}=p^{-1}(q)$. The matrix $Q(\widehat{E})$ is negative definite (i.e $\widehat{\widehat{E}}$ is algebraically contractible or contractible for short). We will always assume that resolutions are good, i.e. \widehat{E} is an snc-divisor. We say that p is a minimal good resolution if it is good and \widehat{E} is snc-minimal.

We say that $q \in X$ is topologically rational if \widehat{E} is a rational tree. It is rational if $R^{1} p_{*} \mathcal{O}_{\widetilde{X}}=0$. It is of quotient type if there exists an analytical neighborhood N of q and a small (i.e. not containing any pseudo-reflections) finite subgroup G of $G L(2, \mathbb{C})$, such that (N, q) is analytically isomorphic to $(\widetilde{N} / G, 0)$ for some ball \tilde{N} around 0 in \mathbb{C}^{2}. It follows that $G=\pi_{1}(N \backslash\{q\})$. All these notions are well-known to be independent of the choice of a resolution.

Proposition 1.4.1. Assume $q \in X$ is of quotient type. Let G be as above. Assume that \widehat{E} is the exceptional divisor of a minimal good resolution. Then ([Art66, Bri68]):
(i) G is cyclic if and only if \widehat{E} is an admissible chain, moreover then $d(\widehat{E})=|G|$,
(ii) G is non-cyclic if and only if it is non-abelian if and only if \widehat{E} is an admissible fork, moreover then $d(\widehat{E})=|G /[G, G]|$,
(iii) if $q \in X$ is of quotient type then it is rational,
(iv) if $q \in X$ is rational then it is topologically rational.

Example 1.4.2. (Abh79). Let $V \subseteq \mathbb{C}^{3}$ be given by $x^{2}+y^{3}+z^{7}=0$. Then the blowup of V in 0 has an exceptional line contained in the singular locus, hence is not normal. Since the blowup of a normal surface with rational singularity remains normal (Lip69, 8.1]), $0 \in V$ is not a rational singularity. On the other hand, it is topologically rational. More generally, let $V\left(p_{1}, p_{2}, p_{3}\right) \subseteq \mathbb{C}^{3}$ be a Pham-Brieskorn surface given by the equation $x_{1}^{p_{1}}+x_{2}^{p_{2}}+x_{3}^{p_{3}}=0$, where $p_{1}, p_{2}, p_{3} \geq 2$. If one of p_{1}, p_{2}, p_{3} is relatively prime with two others then $0 \in V\left(p_{1}, p_{2}, p_{3}\right)$ is topologically rational (see Ore95 for an easy proof). The rationality of $0 \in V\left(p_{1}, p_{2}, p_{3}\right)$ is equivalent to each of the following conditions ([FZ03, 2.21]): (i) $0 \in V\left(p_{1}, p_{2}, p_{3}\right)$ is of quotient type, (ii) $\sum_{i=1}^{3} \frac{1}{p_{i}}>1$, (iii) $\bar{\kappa}(V \backslash\{0\})=-\infty$.

1.5 Rulings

We say that the surface X is \mathbb{P}^{1}-ruled (respectively \mathbb{C}^{1}-ruled, \mathbb{C}^{*}-ruled, $\mathbb{C}^{* *}$-ruled) if there exists a curve B and a regular dominating map $p: X \rightarrow B$, such that the generic fiber F of p is isomorphic to \mathbb{P}^{1} (respectively to $\mathbb{C}^{1}, \mathbb{C}^{*}$ and $\mathbb{C}^{* *}$). We call also the \mathbb{C}^{1}-ruling an affine ruling. We say that X is $\mathbb{C}^{* * *}$-ruled if for generic fiber there exists an isomorphism with $\mathbb{C} \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$, where p_{1}, p_{2}, p_{3} are different points of \mathbb{C} (they can be different for different fibers). If X is normal then B has to be smooth.

Suppose that X is smooth and has a ruling as above. Then for some snc-completion (\bar{X}, D) this ruling can be extended to a \mathbb{P}^{1}-ruling $\bar{p}: \bar{X} \rightarrow \bar{B}$, where \bar{B} is a smooth completion of B. Depending on the type of the ruling of X we will say that (\bar{X}, D) is is affine- (respectively \mathbb{C}^{*}-, $\mathbb{C}^{* *}$-, etc.) ruled. Let F denote a generic fiber of \bar{p}. An irreducible curve C on \bar{X} is called a D-component if $C \subseteq D$. It is called an X-component if it is not a D-component. C is an n-section if $F C=n$. We will say just section for a 1-section. C is horizontal if $n>0$, otherwise it is vertical. The divisor is horizontal (vertical) if all its components are such. The snc-completion (\bar{X}, D) is p-minimal if it is minimal with respect to the property that the extension of p from X to \bar{X} exists. This is equivalent to the property that every (-1)-curve in D with $\beta_{D} \leq 2$ is horizontal. If X has an snc-minimal completion then it has also a p-minimal completion.

Lemma 1.5.1. Let F be a singular fiber of a \mathbb{P}^{1}-ruling of a smooth complete surface. We denote by $\mu(C)$ the multiplicity of an irreducible curve C in the fiber containing it. One has (cf. [Fuj82, §4]):
(i) F is a connected rational snc-tree containing a (-1 -curve,
(ii) each (-1)-curve of F intersects at most two other components of F,
(iii) if a contraction of some (-1)-curve of F increases the number of (-1)-curves in the induced fiber then $F=[2,1,2]$,
(iv) F is produced from a smooth 0 -curve by a sequence of blowups. If the (-1)-curve of F is unique then the sequence is connected (cf. 1.2),
Suppose further that F as above has a unique (-1)-curve C. Let B_{1}, \ldots, B_{n} be the branching components of F written in order in which they are produced in the sequence of blowups as in (iv) and let $B_{n+1}=C$. We can write \underline{F} as $\underline{F}=T_{1}+T_{2}+\ldots+T_{n+1}$, where the divisors T_{i} are connected chains consisting of all components of $\underline{F}-T_{1}-\ldots-T_{i-1}$ created not later than B_{i}. We call T_{i} the i-th branch of F. We say that F is branched if $n \neq 0$.
(v) $\mu(C)>1$ and there are exactly two components of F with multiplicity one. They are tips of the fiber and lie on the first branch,
(vi) if $\mu(C)=2$ then either $F=[2,1,2]$ or C is a tip of F and $\underline{F}-C$ is a (-2)-chain or a (-2)-fork of type $(2,2, n)$
(vii) if F is branched then the connected component of $\underline{F}-C$ not containing curves of multiplicity one is a chain (possibly empty).

Definition 1.5.2. For an snc-pair (\bar{X}, D) put $X=\bar{X}-D$. Let π be a \mathbb{P}^{1}-ruling of \bar{X}. Following Fuj82 we introduce some characteristic numbers of the triple $\tau=(\bar{X}, D, \pi)$:
(i) h_{τ} is the number of horizontal D-components,
(ii) $\sigma_{\tau}(F)$ is the number of X-components contained in F,
(iii) $\Sigma_{\tau}=\sum_{F \nsubseteq D}\left(\sigma_{\tau}(F)-1\right)$,
(iv) ν_{τ} is the number of fibers contained in D,
(v) we also define a rivet as an intersection point of at least two different horizontal components of D or a connected component of $F \cap D$ which meets horizontal component(s) of D at more than one point.

If there is no danger of confusion we omit indices writing h for $h_{\tau}, \sigma(F)$ for $\sigma_{\tau}(F)$, etc. If \bar{X} and π are fixed but more than one choice of D is possible we write $\Sigma_{\bar{X}-D}$ instead of $\Sigma_{(\bar{X}, D, \pi)}$.

Lemma 1.5.3. (cf. Fuj82, 4.16]) If $\pi: \bar{X} \rightarrow C$ is a \mathbb{P}^{1}-ruling as above then

$$
\Sigma=h+\nu+b_{2}(\bar{X})-b_{2}(D)-2
$$

Proof. If we contract a vertical (-1)-curve and change \bar{X} and D for their images then one checks easily that the numbers $b_{2}(\bar{X})-b_{2}(D)-\Sigma+\nu$ and h do not change, so we can assume that all fibers of π are smooth. Then $b_{2}(D)=h+\nu, \Sigma=0$ and $b_{2}(\bar{X})=2$.

Definition 1.5.4. Let φ be a \mathbb{C}^{*}-ruling from a smooth open surface X onto \mathbb{P}^{1}. It is a Platonic fibration if and only if two conditions are satisfied:
(i) φ has precisely three singular fibers which are equal to $\mu_{i} F_{i}$, where $F_{i} \cong \mathbb{C}^{*}$ and $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ is a Platonic triple (cf. 1.3.5 (ii)),
(ii) there exists an snc-completion $\left(\bar{X}, D_{1}+D_{2}\right)$ of X with $D_{1} \cap D_{2}=\emptyset$ and an extension $\bar{\varphi}: \bar{X} \rightarrow \mathbb{P}^{1}$, such that every fiber of $\bar{\varphi}$ is a chain and each D_{i} contains a section of $\bar{\varphi}$.

1.6 Minimal models

In this section X is a smooth open surface and (\bar{X}, D) is its snc-completion.
Definition 1.6.1. A smooth open surface X is almost minimal if it has an snc-completion (\bar{X}, D) for which there does not exist a log-exceptional curve of the first kind on \bar{X}, i.e. an irreducible curve C, such that

$$
\left(K_{\bar{X}}+D^{\#}\right) C<0 \text { and } Q(\operatorname{Bk} D+C) \text { is negative definite. }
$$

The pair (\bar{X}, D) is then called almost minimal.
Remark. If $\bar{\kappa}(X) \geq 0$ then from the Zariski decomposition it follows that the condition for C can be changed for $\left(D^{\#}+K_{\bar{X}}\right) C<0$ and $C^{2}<0$.
Lemma 1.6.2. (Miy01, 2.3.8, 2.3.4]). Let C be a log-exceptional curve of the first kind, then:
(i) if $C \subseteq D$, then C is a (-1)-curve and $\beta_{D}(C) \leq 2$,
(ii) if $C \nsubseteq D$, then C is a (-1 -curve, intersects D transversally and the points of intersection belong to different components of $\operatorname{Bk} D$. Moreover, either $C D=1$ or $C D=2$ and one of the connected components of $\mathrm{Bk} D$ intersecting C is a rod of D. In particular, C intersects each connected component of D at most once.

Proposition 1.6.3. (Miy01, 2.3.11]). The construction of an almost minimal model (which does not have to be unique) for a given snc-pair (\bar{X}, D) goes by repeating operations (1) and (2) alternately:
(1) snc-minimalize D, i.e. contract subsequently all non-branching (-1)-curves in D,
(2) find and contract a log-exceptional curve of the first kind C, such that $C \nsubseteq D$.

After each step change D for its proper image. After finite number of steps the resulting pair is an snc-pair and is almost minimal.

Definition 1.6.4. For a smooth open surface X let (\bar{X}, D) be its snc-completion and let $\left(\bar{X}_{m}, D_{m}\right)$ be the almost minimal model. The connected components of $\mathrm{Bk} D_{m}$ can be contracted to quotient singularities. The resulting pair $\left(\bar{X}_{r}, D_{r}\right)$ is called a relatively minimal model of (\bar{X}, D). We define the almost minimal and the relatively minimal model of X to be respectively $\bar{X}_{m}-D_{m}$ and $\bar{X}_{r}-D_{r}$. If $\bar{\kappa}(X) \geq 0$ then these models are unique. Clearly, the almost minimal model of X is a smooth locus of the relatively minimal model of X.

Example 1.6.5. An almost minimal model of $\mathbb{C}^{2} \backslash\{0\}$ is \mathbb{C}^{2}.
Let T be a \mathbb{Q}-divisor on a smooth projective surface. T is nef if $T C \geq 0$ for every irreducible curve C. T is pseudoeffective if $T H \geq 0$ for every nef divisor H. Effective and nef divisors are pseudoeffective.

Proposition 1.6.6. (Zariski-Fujita decomposition; cf. Miy01, 2.1.19]). Let T be a pseudo-effective \mathbb{Q} divisor on a smooth projective surface V. There exists a unique effective divisor $T^{-}=\sum_{i=1}^{r} a_{i} N_{i}$ with N_{i} irreducible, such that:
(i) either $Q\left(T^{-}\right)$is negative definite or $T^{-}=0$,
(ii) $T^{+}:=T-T^{-}$is nef (hence pseudoeffective),
(iii) $T^{+} N_{i}=0$ for every $1 \leq i \leq r$.

Remark. It follows from the lemma stated below that if T is effective then T^{+}is effective.

Lemma 1.6.7.

(i) Let A and B be some (\mathbb{Z} - or \mathbb{Q}-) divisors, such that $A+B$ is effective and $Q(B)$ is negative definite. If $A B_{i}=0$ for each irreducible component B_{i} of B then A is effective.
(ii) For every natural n one has $h^{0}\left(n\left(K_{\bar{X}}+D\right)\right)=h^{0}\left(\left[n\left(K_{\bar{X}}+D^{\#}\right)\right]\right)$, where [] denotes the integer part of $a \mathbb{Q}$-divisor.

Proof. (i) We can assume that A and B are \mathbb{Z}-divisors and B is effective and nonzero. Write $B=\sum b_{i} B_{i}$ for some positive integers b_{i} and irreducible components B_{i} of B. Choose $b_{i}^{\prime} \in \mathbb{N}$, such that the sum $\sum b_{i}^{\prime}$ is the smallest possible among divisors $\sum b_{i}^{\prime} B_{i}$, such that $A+\sum b_{i}^{\prime} B_{i}$ is effective. If $b_{i}^{\prime}>0$ for some i then $\left(A+\sum b_{i}^{\prime} B_{i}\right)\left(\sum b_{i}^{\prime} B_{i}\right)=\left(\sum b_{i}^{\prime} B_{i}\right)^{2}<0$ by the assumptions. Hence $\operatorname{Supp}\left(A+\sum b_{i}^{\prime} B_{i}\right)$ contains some B_{i}, a contradiction with the definition of b_{i}^{\prime}. Thus A is effective.
(ii) Let $\{T\}$ denote the fractional part of a \mathbb{Q}-divisor T, i.e. $T=[T]+\{T\}$. Let T be some effective divisor, such that $n\left(K_{\bar{X}}+D\right) \sim T$. Then $T-n \operatorname{Bk} D$ is effective by (i) and $n\left(K_{\bar{X}}+D^{\#}\right) \sim T-n \operatorname{Bk} D$. This gives $[T-n \operatorname{Bk} D] \geq-\{T-n \operatorname{Bk} D\}$, and since $[T-n \operatorname{Bk} D]$ is a \mathbb{Z}-divisor and components of $\{T-n \mathrm{Bk} D\}$ appear in $\{T-n \mathrm{Bk} D\}$ with proper fractional coefficients, we get that $[T-n \mathrm{Bk} D]$ is effective.

Proposition 1.6.8. (Kawamata, cf. Fuj82, 6.11]). Let (\bar{X}, D) be an snc-completion of X, such that $\bar{\kappa}(X) \geq 0$. For $\mathcal{P}=\left(K_{\bar{X}}+D\right)^{+}$one has:
(i) $\mathcal{P} \equiv 0$ if and only if $\bar{\kappa}(X)=0$,
(ii) $\mathcal{P} \not \equiv 0$ and $\mathcal{P}^{2}=0$ if and only if $\bar{\kappa}(X)=1$,
(iii) $\mathcal{P}^{2}>0$ if and only if $\bar{\kappa}(X)=2$.

Notice that by the remark after 1.6.6 in case (i) $\mathcal{P} \sim 0$ as a \mathbb{Q}-divisor.
Lemma 1.6.9. Assume $\kappa\left(K_{\bar{X}}+D\right) \geq 0$. One has:
(i) The maximal twigs of D are contained in Supp $\left(K_{\bar{X}}+D\right)^{-}$. If D is snc-minimal then the maximal twigs of D are admissible (Fuj82, 6.13]).
(ii) If (\bar{X}, D) is almost minimal then $\left(K_{\bar{X}}+D\right)^{+}=K_{\bar{X}}+D^{\#}$ and $\left(K_{\bar{X}}+D\right)^{-}=\operatorname{Bk} D$ (cf. Miy01, §2.3]).
Proof. (i) Let $T=C_{1}+\ldots+C_{n}$ be a maximal twig of D. We have $C_{i}\left(K_{\bar{X}}+D\right)=\beta_{D}\left(C_{i}\right)-2 \leq 0$. Clearly, $C_{1} \subseteq D^{-}$and since $C_{i} C_{i+1}=1$, we get $C_{i} \subseteq\left(K_{\bar{X}}+D\right)^{-}$by induction.

Proposition 1.6.10. (Iitaka, Kawamata). Let $\varphi: X \rightarrow Y$ be a fibration, i.e. a dominating morphism with irreducible and reduced generic fiber. Assume that X is smooth. Then for a general $y \in Y$:
(i) $\bar{\kappa}(X) \leq \bar{\kappa}\left(\varphi^{-1}(y)\right)+\operatorname{dim} Y($ [Iit82, Theorem 10.4]),
(ii) if Y is smooth and $\operatorname{dim} X-\operatorname{dim} Y \leq 1$ then $\bar{\kappa}\left(\varphi^{-1}(y)\right)+\bar{\kappa}(Y) \leq \bar{\kappa}(X)$ (Kaw78).

Remark. For $\operatorname{dim} Y=\operatorname{dim} X$ (ii) implies $\bar{\kappa}(Y) \leq \bar{\kappa}(X)$. For a proof of (ii) in case X is a surface see [Miy01, 2.1.14].

Theorem 1.6.11. (Structure theorem).
(i) If $\bar{\kappa}(X)=-\infty$ and D is connected or X is not rational then X is affine-ruled (Rus81], Miy01, 2.2.1]).
(ii) Assume that $\bar{\kappa}(X)=-\infty$ and X is not affine-ruled. There exists a smooth surface \tilde{X} dominating X, which is affine-ruled (KM99, Theorem 1.1]). If $Q(D)$ is not negative definite then the almost minimal model of X has a Platonic fibration, hence is isomorphic with $\left(\mathbb{C}^{2}-\{0\}\right) / / G$ for some small finite non-abelian subgroup of $G L(2, \mathbb{C})$ (cf. Miy01, 2.5.1] and MT84a]).
(iii) If $\bar{\kappa}(X)=0$ and (\bar{X}, D) is almost minimal then for every connected component J of D either J is a smooth elliptic curve or it is rational and is one of the following (Fuj82, 8.8]):
(I) an admissible chain or an admissible fork,
(O) a cycle, i.e. every component C of J satisfies $\beta_{J}(C)=2$,
(Y) a fork F satisfying $\delta(F)=1$,
(H) has dual graph

(X) has dual graph

(iv) If $\bar{\kappa}(X)=1$ then X is either \mathbb{C}^{*}-ruled or elliptically ruled, i.e. it has a fibration with a generic fiber isomorphic to an elliptic curve (cf. Fuj82, 6.11]).

Remark. A surface, which is affine-ruled or is dominated by an affine-ruled surface has $\bar{\kappa}=-\infty$. Ellipticallyand \mathbb{C}^{*}-ruled surfaces have $\bar{\kappa}<2$ by 1.6 .10 , but do not have to satisfy $\bar{\kappa}=1$. For a more detailed structure theorems in cases (iii) and (iv) see Miy01, §2.6].

We state a version of Bogomolov-Miyaoka-Yau inequality proved by Langer ($($ Lan03, Corollary 5.2]), which generalizes the inequalities of Miyaoka Miy84, Theorem 1.1] and Kobayashi [Kob90, Theorem 2]:

Theorem 1.6.12. Let (X, D) be a normal projective surface together with a \mathbb{Q}-divisor $D=\sum a_{i} D_{i}$ with $0 \leq a_{i} \leq 1$. Assume that the pair is log-canonical and a multiple of $K_{X}+D$ is effective. Then

$$
3 \chi_{o r b}(X, D)+\frac{1}{4}\left(\left(K_{X}+D\right)^{-}\right)^{2} \geq\left(K_{X}+D\right)^{2}
$$

where $\chi_{\text {orb }}(X, D)$ is the orbifold Euler number (see [Lan03, 3.4] for a general definition and [Lan03, §9] for computations in special cases).

Corollary 1.6.13. Let (X, D) be an snc-pair with $\kappa\left(K_{X}+D\right) \geq 0$. Then:
(1)

$$
3 \chi(X-D)+\frac{1}{4}\left(\left(K_{X}+D\right)^{-}\right)^{2} \geq\left(K_{X}+D\right)^{2}
$$

(2) Let $D_{1}, D_{2}, \ldots, D_{n}$ be all the connected components of D which are also connected components of Bk D. In particular, D_{i} 's are contractible to quotient singularities ($c f$. Miy01, 2.3.14]). Denote the respective local fundamental groups by G_{1}, \ldots, G_{n}. Then

$$
\chi(X-D)+\sum_{i=1}^{n} \frac{1}{\left|G_{i}\right|} \geq \frac{1}{3}\left(K_{X}+D^{\#}\right)^{2}
$$

Proof. According to Lan03, 3.4, 7.6] if (X, D) is a pair as in 1.6 .12 and D is reduced then for $x \in D$ the local orbifold numbers $\chi_{\text {orb }}(x ; X, D)$ vanish, hence

$$
\chi_{o r b}(X, D)=\chi(X-\operatorname{Sing} X-D)+\sum_{x \in \operatorname{Sing} X} \chi_{\text {orb }}(x ; X, D)
$$

This already proves (1), where X is smooth. Let $\pi:(X, D) \rightarrow\left(X^{\prime}, D^{\prime}\right)$ be a morphism contracting the connected components of Bk D to quotient points. Then $K_{X}+D^{\#} \equiv \pi^{*}\left(K_{X^{\prime}}+D^{\prime}\right)$ by Miy01, 2.3.14.1]. We need to know $\chi_{o r b}\left(x ; X^{\prime}, D^{\prime}\right)$. If $x \notin D^{\prime}$ then the preimage of x is a connected component of D (and of $\operatorname{Bk} D$), so by [Lan03, 3.7] we have $\chi_{\text {orb }}\left(x ; X^{\prime}, D^{\prime}\right)=\frac{1}{|G|}$, where G is the local fundamental group of x. We have $\chi\left(X^{\prime}-\operatorname{Sing} X^{\prime}-D^{\prime}\right)=\chi(X-D)$. Since $\left(\left(K_{X}^{\prime}+D^{\prime}\right)^{-}\right)^{2} \leq 0,(2)$ follows from 1.6 .12 applied to $\left(X^{\prime}, D^{\prime}\right)$.

Remark. Part (2) generalizes the Kobayashi inequality for the case $\bar{\kappa}(X-D)=0,1$, it is stronger than the original Miyaoka inequality (there is no $\frac{1}{4} N^{2}$ term, using the notation of Miy84, Theorem 1.1]). If $\bar{\kappa}(X-D)=2$ then to get the original Kobayashi inequality one has to apply 1.6 .12 to the strongly minimal model of (X, D) (cf. Miy01, 2.4.12, 2.6.6]).

Lemma 1.6.14. Let X_{0} be as in 1.2.3. Then there exists an open subset $X_{m} \subseteq X_{0}$, such that $\chi\left(X_{m}\right) \leq$ $\chi\left(X_{0}\right)$ and X_{m} is isomorphic to an almost minimal model of X.

Proof. Let $(\bar{X}, D+E)$ be an snc-minimal completion of X_{0} as in the proof of 1.2.3. Consider the process of producing an almost minimal model of $(\bar{X}, D+E)$. If we contract a curve as in $1.6 .3(2)$, then the lemma 1.6.2 implies that it causes a subtraction of a curve with $\chi=1$ or $\chi=0$ from X_{0}. Contractions of (-1)-curves contained in the boundary divisor do not affect X_{0}, unless some connected component of the boundary is eventually contracted to a smooth point which does not belong to the proper image of the boundary divisor. Then this point adds to an almost minimal model of X_{0}. This cannot happen for D. Indeed, since X^{\prime} is affine, there exists an ample divisor with support contained in D, so $Q(D)$ is not negative definite. Affiness of X^{\prime} implies that each curve intersects D or its image. Thus the snc-minimality of E implies that the above contraction to a smooth point cannot happen for E also.

Remark. If $\bar{\kappa}\left(X_{0}\right)=2$ then analogously the smooth part of the strongly minimal model $X_{s m}$ of X_{0} is an open subset of X_{m} with $\chi\left(X_{s m}\right) \leq \chi\left(X_{m}\right)$.

1.7 Quotients

The following lemma will be used to construct some (singular) \mathbb{Q}-homology planes. It is also useful in considering the question of affiness of singular \mathbb{Q}-homology planes.

Lemma 1.7.1. (Contraction lemma). Let A and B be effective snc-divisors on a smooth complete surface X. Assume that $A \cap B=\emptyset$ and that for every irreducible curve $C \nsubseteq B$ on X one has $A C>0$. Then for sufficiently large and sufficiently divisible n one has:
(i) $|n A|$ has no base points,
(ii) $\varphi_{|n A|}$ is birational and contracts exactly the curves in B,
(iii) Im $\varphi_{|n A|}$ is normal, projective and is isomorphic to $\operatorname{Proj} \bigoplus_{n \geq 0} H^{0}\left(\mathcal{O}_{X}(n A)\right)$.

The proof of (i) is a part of the proof of Nakai's criterion in Har77, V.1.10]. One shows that $\mathcal{O}_{X}(A) \otimes \mathcal{O}_{A}$ is ample on A and then using the exact sequence $0 \rightarrow \mathcal{O}(-A) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{A} \rightarrow 0$ that $\mathcal{O}(n A)$ is generated by global sections for $n \gg 0$.

Statements (ii) and (iii) are proved for example in Rei87, 2.3, 2.4].
Definition 1.7.2. Let (\bar{X}, D) be an snc-completion of a smooth surface X and let $N S(\bar{X})$ be the NeronSeveri group \bar{X}. Define $N S(X)$ as a cokernel of the natural map $\mathcal{L}(D) \rightarrow N S(\bar{X})$ (cf. 1.1. . This does not depend on an snc-completion of X (cf. [Fuj82, 1.19]). We denote $N S(X) \otimes \mathbb{Q}$ by $N S_{\mathbb{Q}}(X)$.

Remark. Assume X is complete. Since a homology class of a numerically trivial divisor on X is torsion (cf. Laz04, 1.1.21]), there is a natural map $j: N S(X) \rightarrow H_{2}(X, \mathbb{Q})$. Since $N S(X)$ is torsionless, j is a monomorphism. On the other hand, if X is not complete then $N S(X)$ can have torsion.

Corollary 1.7.3. Let A and B be effective snc-divisors on a smooth complete surface X. Assume that $A \cap B=\emptyset, A$ is connected, $Q(B)$ negative definite and $N S_{\mathbb{Q}}(X-A-B)=0$. Then there exists a normal affine surface Y and a morphism $\zeta: X-A \rightarrow Y$ contracting connected components of B, such that $\zeta: X-A-B \rightarrow Y-\zeta(B)$ is an isomorphism.

Proof. Since $N S_{\mathbb{Q}}(X-A-B)=0$, there exists a divisor $H=H_{A}+H_{B}$ with $H_{A} \subseteq A$ and $H_{B} \subseteq B$, which is numerically equivalent to an ample divisor on X. Then H is ample, because ampleness is a numerical property by Nakai's criterion. To use 1.7 .1 we need to show that there exists a divisor F, such that $\operatorname{Supp} F=\operatorname{Supp} A$ and $F C>0$ for all irreducible curves $C \nsubseteq B$. To deal with curves $C \subseteq A$ we use Fujita's argument (Fuj82, 2.4]). Let \mathcal{U} consist of all effective divisors T, such that $T \subseteq A$ and $T T_{i}>0$ for any prime component T_{i} of T. Writing $H_{A}=H_{+}-H_{-}$, where H_{+}, H_{-}are effective and have no common component, we see that \mathcal{U} is nonempty because $H_{+} \in \mathcal{U}$. Suppose F is an element of \mathcal{U} with maximal number of components. For an irreducible curve $C \nsubseteq F$ satisfying $C F>0$ one would get $t F+C \in \mathcal{U}$ for $t>\max \left(0,-C^{2}\right)$, hence $\operatorname{Supp} F=\operatorname{Supp} A$ by connectedness of A.

Suppose an irreducible curve $C \nsubseteq B$ satisfies $C F=0$. Since $F \in U$, we have $C \nsubseteq F$. We can choose some reduced divisor $F^{\prime} \subseteq F$, such that the irreducible components of $F^{\prime}+B$ give a basis of $N S_{\mathbb{Q}}(X)$. Let's write $C \equiv \sum_{i} \alpha_{i} F_{i}+B^{+}-B^{-}$, where $F_{i} \subseteq F^{\prime}$, the divisors $B^{+}, B^{-} \subseteq B$ are effective and have no common component. For each j we have $C F_{j}=0$, so $\left(\sum_{i} \alpha_{i} F_{i}\right) F_{j}=C F_{j}=0$, hence $\sum_{i} \alpha_{i} F_{i}=0$ because $d\left(F^{\prime}\right) \neq 0$. We have $\left(B^{+}\right)^{2}=B^{+} C+B^{+} B^{-} \geq 0$, so $B^{+}=0$. Thus the divisor $C+B^{-}$is nonzero, effective and numerically trivial, a contradiction. Let $\zeta=\varphi_{|n F|}$ for n as in lemma 1.7.1. Then $\zeta: X-A \rightarrow \operatorname{Im} \zeta$ contracts connected components of B. We have also $n F=\zeta^{*} H$, where H is a very ample divisor on $\operatorname{Im} \zeta$, which implies that $\operatorname{Im} \zeta$ is affine.

Chapter 2

Topology of \mathbb{Q}-homology planes

2.1 Homology groups

2.1.1. Notation. Let S^{\prime} be a singular \mathbb{Q}-homology plane, i.e. an irreducible normal surface, which is \mathbb{Q}-acyclic and not smooth. We assume nothing more about the type of singularities. In particular, S^{\prime} does not have to be a logarithmic \mathbb{Q}-homology plane, i.e. its singularities do not have to be of quotient type. If $\epsilon: S \rightarrow S^{\prime}$ is a good resolution and (\bar{S}, D) is an snc-completion of S then by definition $\bar{\kappa}\left(S^{\prime}\right)=\bar{\kappa}(S)=$ $\kappa\left(K_{\bar{S}}+D\right)$, where $K_{\bar{S}}$ stands for a canonical divisor on \bar{S} (see 【it82] for the definition and properties of Kodaira dimension of a divisor). Let $\left\{p_{1}, \ldots, p_{q}\right\}$ be the singular locus of S^{\prime} and let $\widehat{E}_{i}=\epsilon^{-1}\left(p_{i}\right)$. We assume that $\widehat{E}=\widehat{E}_{1}+\widehat{E}_{2}+\ldots+\widehat{E}_{q}$ is snc-minimal. The intersection matrix $Q(\widehat{E})$ is negative definite. We put $S_{0}=S \backslash \widehat{E} \cong S^{\prime} \backslash$ Sing S^{\prime}. We define $M_{i}=\partial T u b\left(\widehat{E}_{i}\right)$, where $T u b\left(\widehat{E}_{i}\right)$ is a tubular neighborhood of \widehat{E}_{i} in S. There exists a deformation retraction $\operatorname{Tub}\left(\widehat{E}_{i}\right) \rightarrow \widehat{E}_{i}$. We can assume that $\operatorname{Tub}\left(\widehat{E}_{i}\right) \cap \operatorname{Tub}\left(\widehat{E}_{j}\right)=\emptyset$ for $i \neq j$ and that every M_{i} is a closed oriented 3-manifold. Put $M=\bigcup_{i=1}^{q} M_{i}$. The construction of $\operatorname{Tub}\left(\widehat{E}_{i}\right)$ can be found in Mum61.

Convention. We write $H_{i}(X, A)$ for $H_{i}(X, A ; \mathbb{Q})$ and define $b_{i}(X, A)=\operatorname{dim} H_{i}(X, A)$.
Lemma 2.1.2. (Mum61]). There exist exact sequences

$$
0 \longrightarrow K_{i} \longrightarrow H_{1}\left(M_{i}, \mathbb{Z}\right) \xrightarrow{j} H_{1}\left(\widehat{E}_{i}, \mathbb{Z}\right) \longrightarrow 0
$$

where K_{i} are finite groups, $\left|K_{i}\right|=\left|d\left(\widehat{E}_{i}\right)\right|$ and j is induced by a composition of inclusion $M_{i} \rightarrow \operatorname{cl}\left(T u b\left(\widehat{E}_{i}\right)\right)$ with retraction onto \widehat{E}_{i}.

Remark. Since $H_{1}(\widehat{E}, \mathbb{Z})$ is free abelian, it follows that $H_{1}\left(M_{i}, \mathbb{Z}\right)=H_{1}\left(\widehat{E}_{i}, \mathbb{Z}\right) \oplus K_{i}$. Clearly, Betti numbers of M are: $b_{0}(M)=b_{3}(M)=q$ and $b_{2}(M)=b_{1}(M)=b_{1}(\widehat{E})$.

Proposition 2.1.3. Let $j_{\widehat{E}}: \widehat{E} \rightarrow S, j_{M}: M \rightarrow S_{0}, i_{D}: D \rightarrow \bar{S}$ and $i_{D \cup \widehat{E}}: D \cup \widehat{E} \rightarrow \bar{S}$ be the inclusion maps. One has:
(i) $H_{k}\left(j_{\widehat{E}}\right)$ is an isomorphism for positive k,
(ii) $H_{k}\left(j_{M}\right)$ is an isomorphism for positive k,
(iii) D is connected,
(iv) $H_{1}\left(i_{D}\right)$ is an isomorphism,
(v) $H_{2}\left(i_{D \cup \widehat{E}}\right)$ is an isomorphism,
(vi) $b_{1}(\widehat{E})=b_{1}(D)=b_{1}(\bar{S})$,
(vii) $H_{k}\left(S^{\prime}, \mathbb{Z}\right)=0$ for $k \geq 2$,
(viii) $\pi_{1}(\epsilon): \pi_{1}(S) \rightarrow \pi_{1}\left(S^{\prime}\right)$ is an epimorphism, it is an isomorphism if $b_{1}(\widehat{E})=0$.
(ix) if $b_{1}(\widehat{E})=0$ then $|d(D)|=|d(\widehat{E})| \cdot\left|H_{1}\left(S^{\prime}, \mathbb{Z}\right)\right|^{2}$.

Proof. (i) We look at the homology exact sequence of a pair (S, \widehat{E}). The pairs (S, \widehat{E}) and $\left(S^{\prime}, \operatorname{Sing} S^{\prime}\right)$ are 'good CW-pairs' (see Hat02, Thm 2.13]), so for $k>1$ we have $H_{k}(S, \widehat{E})=H_{k}\left(S^{\prime}\right.$, Sing $\left.S^{\prime}\right)=0$ and then $H_{k}\left(j_{\widehat{E}}\right): H_{k}(\widehat{E}) \rightarrow H_{k}(S)$ induced by inclusion $j_{\widehat{E}}$ is an isomorphism for $k>1$. Now $b_{1}(S, \widehat{E})=$ $b_{1}\left(S^{\prime}, \operatorname{Sing} S^{\prime}\right)=q-1=b_{0}(\widehat{E})-1$, so $H_{1}\left(j_{\widehat{E}}\right)$ is also an isomorphism.
(ii) Let $k>0$. We know that $H_{k}\left(j_{\widehat{E}}\right)$ is an epimorphism, so the Mayer-Vietories sequence for $S=$ $S_{0} \cup \bigcup_{i=1}^{q} \operatorname{Tub}\left(\widehat{E}_{i}\right)$ splits into exact sequences:

$$
0 \longrightarrow H_{k}(M) \longrightarrow H_{k}\left(S_{0}\right) \oplus H_{k}(\widehat{E}) \longrightarrow H_{k}(S) \longrightarrow 0
$$

Now by (i) $H_{k}\left(j_{M}\right)$ is a homomorphism between spaces of the same dimension and it is injective, because $H_{k}\left(j_{\widehat{E}}\right)$ is.
(iii) \bar{S} is connected, so by (ii) the Lefschetz duality (see Dol80) $H^{0}(D)=H_{4}(\bar{S}, S)$ gives a connectedness of D :

$$
0=H_{4}(S) \longrightarrow H_{4}(\bar{S}) \longrightarrow H_{4}(\bar{S}, S) \longrightarrow H_{3}(S)=0
$$

(iv) The Neron-Severi group of a smooth complete surface X embeds into $H^{2}(X) \cong H_{2}(X)$. Since $d(\widehat{E}) \neq 0$, we see that the inclusion $j: \widehat{E} \hookrightarrow \bar{S}$ induces a monomorphism on H_{2}. Using (i) we can write the exact sequence of a pair (\bar{S}, S) as:

$$
\ldots \longrightarrow H_{3}(\widehat{E}) \longrightarrow H_{3}(\bar{S}) \longrightarrow H_{3}(\bar{S}, S) \longrightarrow H_{2}(\widehat{E}) \longrightarrow H_{2}(\bar{S}) \rightarrow \ldots
$$

Now $H_{2}(j)$ is a monomorphism, so $H_{3}(\bar{S}) \rightarrow H_{3}(\bar{S}, S)$ is an epimorphism. Hence it is an isomorphism, because $H_{3}(\widehat{E})=0$. By Poincare and Lefschetz duality we get $b_{1}(\bar{S})=b_{1}(D)$. Now looking at the exact sequence of the pair (\bar{S}, D) :

$$
\ldots \longrightarrow H_{1}(D) \longrightarrow H_{1}(\bar{S}) \longrightarrow H_{1}(\bar{S}, D) \longrightarrow \ldots
$$

we see that $H_{1}\left(i_{D}\right)$ is an epimorphism, because by (ii) and Lefschetz duality $H_{1}(\bar{S}, D)=H^{3}(S)=H^{3}(\widehat{E})=$ 0 . It is therefore an isomorphism.
(v) Let $\gamma=H_{2}\left(i_{D \cup \widehat{E}}\right)$. Consider the exact sequence of a pair $(\bar{S}, D \cup \widehat{E})$:

$$
\begin{aligned}
0 \longrightarrow & H_{3}(\bar{S}) \xrightarrow{\alpha} H_{3}(\bar{S}, D \cup \widehat{E}) \xrightarrow{\beta} H_{2}(D \cup \widehat{E}) \xrightarrow{\gamma} H_{2}(\bar{S}) \longrightarrow H_{2}(\bar{S}, D \cup \widehat{E}) \\
& \xrightarrow{\delta} H_{1}(D \cup \widehat{E}) \xrightarrow{\epsilon} H_{1}(\bar{S}) \longrightarrow H_{1}(\bar{S}, D \cup \widehat{E}) \xrightarrow{\zeta} \widetilde{H}_{0}(D \cup \widehat{E}) \longrightarrow 0 .
\end{aligned}
$$

Since $b_{1}(\bar{S}, D \cup \widehat{E})=b_{3}\left(S_{0}\right)=q$ by (ii) and $b_{0}(D \cup \widehat{E})=q+1$ by (iii), we get that ζ is a monomorphism, hence ϵ is an epimorphism. Therefore by (v) $\operatorname{dim} \operatorname{Im} \delta=\operatorname{dim} \operatorname{Ker} \epsilon=b_{1}(\widehat{E})+b_{1}(D)-b_{1}(\bar{S})=b_{1}(\widehat{E})$. However, $b_{2}(\bar{S}, D \cup \widehat{E})=b_{2}\left(S_{0}\right)=b_{1}(\widehat{E})$ by (ii), so δ is a monomorphism. We infer that γ is an epimorphism. We compute $b_{2}(\bar{S})=b_{2}(D \cup \widehat{E})-\operatorname{dim} \operatorname{Im} \beta$ and $\operatorname{dim} \operatorname{Im} \beta=b_{3}(\bar{S}, D \cup \widehat{E})-b_{3}(\bar{S})=b_{1}\left(S_{0}\right)-b_{1}(\bar{S})=b_{1}(\widehat{E})-b_{1}(D)$ by (ii) and (iv). Hence $b_{2}(\bar{S})=b_{2}(D \cup \widehat{E})+b_{1}(D)-b_{1}(\widehat{E})$.

We will now prove that γ is a monomorphism. By the above computation of $b_{2}(\bar{S})$ this is equivalent to the equality $b_{1}(D)=b_{1}(\widehat{E})$. Consider the case when \widehat{E} is a rational tree. Then $H_{3}(\bar{S}, D)=H^{1}(S)=0$ by (i). The homology exact sequence of a pair (\bar{S}, D) then gives $H_{3}(\bar{S})=0$. Since $H_{2}\left(S_{0}\right)=0$ by (ii) and 2.1.2 the homology exact sequence of a pair (\bar{S}, S_{0}) gives $H_{3}\left(\bar{S}, S_{0}\right)=0$. By Lefschetz duality the last group is isomorphic to $H^{1}(D)$, so the statement is proved. Now assume that \widehat{E} is not a rational tree. This implies that $\bar{\kappa}\left(S_{0}\right) \leq 1$ by 2.2.1. If $\bar{\kappa}\left(S_{0}\right)=1$ then S_{0} is either elliptically ruled or \mathbb{C}^{*}-ruled (cf. 1.6.11(iv)). Since modifications of $D+\widehat{E}$ do not change $b_{1}(D)$ and $b_{1}(\widehat{E})$, we can assume that this ruling extends to \bar{S}. In the case of elliptically ruled S_{0} the divisor $D+\widehat{E}$ is vertical, hence $Q(D+\widehat{E})$ is semi-negative definite, but since γ is an epimorphism, we know that $N S(\bar{S})$ is generated by classes of irreducible components of $D+\widehat{E}$, so this contradicts the Hodge index theorem. Thus S_{0} is \mathbb{C}^{*}-ruled and there are unique sections contained in \widehat{E} and in D, because \widehat{E} cannot be vertical, otherwise would be a rational tree. It follows that $b_{1}(\widehat{E})=b_{1}(D)=b_{1}(B)$, where B is the base curve of the ruling. Hence we can assume $\bar{\kappa}\left(S_{0}\right) \leq 0$. First we will obtain a contradiction in the case $\bar{\kappa}(S)=\bar{\kappa}\left(S_{0}\right)=0$ by showing that \widehat{E} is a rational tree. Indeed, in the above case we can assume that S_{0} is almost minimal, because the minimalization does not effect the
rationality of \widehat{E}. We have $K+D^{\#}+\widehat{E}^{\#} \equiv 0$ by 1.6 .8 and $K+D^{\#} \geq_{\mathbb{Q}} 0$ by 1.6.7. Therefore in this case $\widehat{E}^{\#}=0$, so \widehat{E} is a rational tree by 1.3 .1 (iii), a contradiction. Thus we get $\bar{\kappa}(S)<0$, so S is affine-ruled (cf. 1.6.11(i)). Let π be the extension of this ruling to \bar{S}. Consider a divisor $T=\sum_{i} d_{i} D_{i}+\sum_{j} e_{j} E_{j} \equiv 0$ with distinct irreducible components $D_{i} \subseteq D$ and $E_{j} \subseteq \widehat{E}$. To finish the proof that γ has no kernel it is enough to show that $T=0$. Using negative definiteness of $Q(\widehat{E})$ we see that each e_{j} vanishes, otherwise $0>\left(\sum_{j} e_{j} E_{j}\right)^{2}=T\left(\sum_{j} e_{j} E_{j}\right)$. Intersecting T with a fiber we see that the horizontal component of D does not occur in the sum $T=\sum_{j} d_{j} D_{j}$ with nonzero coefficient, therefore $\operatorname{Supp} T$ is contained in fibers of the \mathbb{P}^{1}-ruling of \bar{S}. If $T \neq 0$ then T, and hence D, has to contain at least one fiber, otherwise $T^{2}<0$. However, this implies that \widehat{E} is vertical, hence is a rational tree, a contradiction.
(vi) It was shown in the proof of (v) that $b_{2}(\bar{S})=b_{2}(D \cup \widehat{E})+b_{1}(D)-b_{1}(\widehat{E})$, hence by $(\mathrm{v}) b_{1}(\widehat{E})=b_{1}(D)$.
(vii) Let $3 \leq k \leq 4$. Since $H_{k}\left(j_{\widehat{E}}\right)$ is an isomorphism by (i), the groups $H_{k}(S, \widehat{E}, \mathbb{Z})$ are torsion. We have $H_{k}(S, \widehat{E}, \mathbb{Z}) \cong H_{k}\left(S^{\prime}, \mathbb{Z}\right)$, so the exact sequence of a pair (S, \widehat{E}) with coefficients in \mathbb{Z} gives $H_{k}\left(S^{\prime}, \mathbb{Z}\right) \cong H_{k}(S, \widehat{E}, \mathbb{Z}) \cong H_{k}(S, \mathbb{Z})$. However, since $H_{k}(S, \mathbb{Z})$ are torsion, by the universal coefficient formula and Lefschetz duality we get $H_{k}(S, \mathbb{Z}) \cong H^{k+1}(S, \mathbb{Z}) \cong H_{3-k}(\bar{S}, D, \mathbb{Z})=0$. The vanishing of $H_{2}\left(S^{\prime}, \mathbb{Z}\right)$ is more subtle (it will not be used until chapter 6). The generalization of Andreotti-Frankel theorem proved by Karchyauskas says that an affine variety X of complex dimension n has the homotopy type of a $C W$-complex of real dimension not greater than n (see GM88 for proofs and generalizations). In particular, $H_{n}(X, \mathbb{Z})$ is torsionless. Knowing that S^{\prime} is affine (cf. 2.2.3(iii)) we get that $H_{2}\left(S^{\prime}, \mathbb{Z}\right)$ is torsionless, hence vanishes.
(viii) For simplicity we assume that \widehat{E} is connected. In general the proof is by induction on the number of connected components of \widehat{E}. Let $B \subseteq S^{\prime}$ be a contractible neighborhood of p_{1}. We can assume that the preimage of B under $\epsilon: S \rightarrow S^{\prime}$ is $T u b(\widehat{E})$ and that the boundaries $\partial T u b(\widehat{E})$ and ∂B are homeomorphic. Put $G=\pi_{1}\left(S^{\prime} \backslash B\right) \cong \pi_{1}(S \backslash T u b(\widehat{E}))$ and $H=\pi_{1}(\partial B) \cong \pi_{1}(\partial T u b(\widehat{E}))$. Then by van Kampen's theorem $\pi_{1}(S) \cong \underset{H}{*} \pi_{1}(\widehat{E})$ and $\pi_{1}\left(S^{\prime}\right) \cong G \underset{H}{*}\{1\}$. Clearly, $\pi_{1}(\widehat{E})$ is in the kernel of $\pi_{1}(\epsilon)$.
(ix) Let $M_{D}=\partial T u b(D)$ be the boundary of the tubular neighborhood of D. We can assume that M_{D} is a 3 -manifold disjoint from $M=\partial T u b(\widehat{E}) . \quad D$ is a rational tree and $d(D) \neq 0$, because by (v) the components of D are independent in $H_{2}(\bar{S})$. Thus we can use Mumford's result 2.1.2 Notice that $H_{2}\left(M_{D}, \mathbb{Z}\right)$ and $H_{2}(M, \mathbb{Z})$ are free abelian groups by Poincare duality. We know also that $H_{2}\left(S_{0}\right)$ is finite in this case. Consider an exact sequence of a pair $\left(K, M_{D}\right)$, where $K=\bar{S} \backslash(T u b(D) \cup T u b(\widehat{E}))$:

$$
0 \longrightarrow H_{2}(K, \mathbb{Z}) \longrightarrow H_{2}\left(K, M_{D}, \mathbb{Z}\right) \longrightarrow H_{1}\left(M_{D}, \mathbb{Z}\right) \longrightarrow H_{1}(K, \mathbb{Z}) \longrightarrow H_{1}\left(K, M_{D}, \mathbb{Z}\right) \longrightarrow 0
$$

By Lefschetz duality (cf. Hat02, 3.43]) $H_{i}\left(K, M_{D}, \mathbb{Z}\right) \cong H^{4-i}(K, M, \mathbb{Z})=H^{4-i}\left(S^{\prime}, \operatorname{Sing} S^{\prime}, \mathbb{Z}\right)$, and for $i>1$ we get $H_{i}\left(K, M_{D}, \mathbb{Z}\right) \cong H^{4-i}\left(S^{\prime}, \mathbb{Z}\right) \cong H_{3-i}\left(S^{\prime}, \mathbb{Z}\right)$ by universal coefficient formula. This gives an exact sequence:

$$
0 \longrightarrow H_{2}(K, \mathbb{Z}) \longrightarrow H_{1}\left(S^{\prime}, \mathbb{Z}\right) \longrightarrow H_{1}\left(M_{D}, \mathbb{Z}\right) \longrightarrow H_{1}(K, \mathbb{Z}) \longrightarrow H_{2}\left(S^{\prime}, \mathbb{Z}\right) \longrightarrow 0
$$

Consider the reduced exact sequence of a pair (K, M) :

$$
0 \longrightarrow H_{2}(K, \mathbb{Z}) \longrightarrow H_{2}(K, M, \mathbb{Z}) \longrightarrow H_{1}(M, \mathbb{Z}) \longrightarrow H_{1}(K, \mathbb{Z}) \longrightarrow H_{1}(K, M, \mathbb{Z}) \longrightarrow \widetilde{H}_{0}(M, \mathbb{Z}) \longrightarrow 0
$$

Since $H_{i}(K, M, \mathbb{Z}) \cong H_{i}\left(S^{\prime}, \operatorname{Sing} S^{\prime}, \mathbb{Z}\right)$ and $H_{1}\left(S^{\prime}, \operatorname{Sing} S^{\prime}, \mathbb{Z}\right)=H_{1}\left(S^{\prime}, \mathbb{Z}\right) \oplus \widetilde{H}_{0}\left(\operatorname{Sing} S^{\prime}, \mathbb{Z}\right)$ we get:

$$
0 \longrightarrow H_{2}(K, \mathbb{Z}) \longrightarrow H_{2}\left(S^{\prime}, \mathbb{Z}\right) \longrightarrow H_{1}(M, \mathbb{Z}) \longrightarrow H_{1}(K, \mathbb{Z}) \longrightarrow H_{1}\left(S^{\prime}, \mathbb{Z}\right) \longrightarrow 0
$$

Since $H_{2}\left(S^{\prime}, \mathbb{Z}\right)=0$ by (vii), we get $H_{2}(K, \mathbb{Z})=0$. Now $\left|H_{1}(M, \mathbb{Z})\right|=|d(\widehat{E})|$ and $\left|H_{1}\left(M_{D}, \mathbb{Z}\right)\right|=|d(D)|$ by 2.1.2 so we get the thesis easily.

Corollary 2.1.4.

(i) $b_{1}\left(S_{0}\right)=b_{2}\left(S_{0}\right)=b_{1}(\widehat{E}), b_{3}\left(S_{0}\right)=q, b_{4}\left(S_{0}\right)=0$,
(ii) $\chi\left(S_{0}\right)=1-q, \chi(S)=\# \widehat{E}+1-b_{1}(\widehat{E}), \chi(\bar{S})=\# D+\# \widehat{E}+2-2 b_{1}(\widehat{E})$,
(iii) $\Sigma_{S_{0}}=h+\nu-2$ and $\nu \leq 1$.

Proof. (i) follows from 2.1.3(ii) and 2.1.2.
(ii) $\chi\left(S_{0}\right)=\chi\left(S^{\prime}\right)-q=1-q$ and other equalities are follow from (i) and 2.1.3(vi).
(iii) By 1.5.3 and 2.1.3(v) $\Sigma_{S_{0}}=h+\nu-2$. Suppose $\nu>1$. Then the numerical equivalence of fibers of a \mathbb{P}^{1}-ruling gives a numerical dependence of components of $D+\widehat{E}$, hence $Q(D+\widehat{E})$ is not of full rank and we get $d(D+\widehat{E})=0$. This contradicts 2.1.3. v).

2.2 Algebraic properties

It is known (PS97, Theorem 1.1]) that logarithmic \mathbb{Q}-homology planes are rational. We will see that this is not true for a general \mathbb{Q}-homology plane S^{\prime}, so the description of birational type of S^{\prime} is of interest. We describe also general properties of the singularities of S^{\prime}.

Lemma 2.2.1.

(i) if $\bar{\kappa}\left(S_{0}\right)=2$ then S^{\prime} is logarithmic and \# Sing $S^{\prime}=1$,
(ii) if $\bar{\kappa}\left(S_{0}\right)=0$ or 1 then either $\# \operatorname{Sing} S^{\prime}=1$ or $\# \operatorname{Sing} S^{\prime}=2$ and $\widehat{E}_{1}=\widehat{E}_{2}=[2]$.

Proof. We assume additionally that S^{\prime} is affine, this will be proved in 2.2 .3 (iii). Let $\left(S_{m}, D_{m}\right)$ be the almost minimal model of $(\bar{S}, D+\widehat{E})$. By 1.6 .14 the almost minimal model $S_{m}-D_{m}$ of S_{0} is isomorphic to an open subset of S_{0} satisfying $\chi\left(S_{m}-D_{m}\right) \leq \chi\left(S_{0}\right)=1-q$. By 1.6.13 2$) \frac{1}{3}\left(\left(K_{S_{m}}+D_{m}\right)^{+}\right)^{2} \leq$ $\chi\left(S_{m}-D_{m}\right)+\sum_{P \in Q} \frac{1}{\left|G_{P}\right|} \leq 1-q+\frac{\# Q}{2} \leq 1-\frac{q}{2}$, where Q is the set of singular points of $S_{m}-D_{m}$. If $\bar{\kappa}\left(S_{0}\right)=2$ then we get $q=1$ and $0<\sum_{P \in Q} \frac{1}{\left|G_{P}\right|}$, so there is a unique singular point on S^{\prime} and it is of quotient type. If \# Sing $S^{\prime}>1$ then we get $q=2$ and $1 \leq 1 /\left|G_{P_{1}}\right|+1 /\left|G_{P_{2}}\right|$, so $\left|G_{P_{1}}\right|=\left|G_{P_{2}}\right|=2$.
Remark 2.2.2. If $\kappa(\bar{S})=-\infty$ then by modifying the pair (\bar{S}, D) we can assume that there exists a \mathbb{P}^{1}-ruling $\bar{p}: \bar{S} \rightarrow B$, such that B is a smooth complete curve. It is easy to see that topologically B is determined uniquely. Indeed, since blowup does not change the fundamental group of a surface, we can assume that all fibers are smooth. Applying the exact sequence of a fibration we get $\pi_{1}(\bar{S})=\pi_{1}(B)$. This determines B. If S or S_{0} are \mathbb{C}^{1} - or \mathbb{C}^{*}-ruled we can always assume that \bar{p} extends the given ruling.

Proposition 2.2.3.

(i) $N S_{\mathbb{Q}}\left(S_{0}\right)=0$,
(ii) $d(D)<0$, and $Q(D)$ has signature $\left(1^{+},(\# D-1)^{-}\right)$,
(iii) S^{\prime} is affine,
(iv) \bar{S} is \mathbb{P}^{1}-ruled over a curve of genus $\frac{1}{2} b_{1}(D)=\frac{1}{2} b_{1}(\widehat{E})$ (hence $\kappa(\bar{S})=-\infty$),
(v) if $\bar{\kappa}\left(S^{\prime}\right) \geq 0$ then \bar{S} is rational and S^{\prime} has topologically rational singularities,
(vi) \widehat{E} and D are trees with at most one nonrational component,
(vii) $\pi_{1}\left(i_{D}\right): \pi_{1}(D) \rightarrow \pi_{1}(\bar{S})$ is an isomorphism,
(viii) if \widehat{E} consist only of (-2)-curves then $\bar{\kappa}\left(S^{\prime}\right)=\bar{\kappa}\left(S_{0}\right)$.

Proof. (i) follows from 2.1.3(v) and the inclusion $N S(\bar{S}) \hookrightarrow H^{2}(\bar{S}) \cong H_{2}(\bar{S})$.
(ii) Since by 2.1.3 (v) the components of $D+\widehat{E}$ form a basis of $H_{2}(\bar{S})$ we get $d(D) \neq 0$. By Hodge's index theorem we get that the signature of $Q(D)$ is $\left(1^{+},(\# D-1)^{-}\right)$, because $Q(\widehat{E})$ is negative definite. It follows that $d(D)=\operatorname{det}(Q(-D))<0$.
(iii) 2.1.3 (iii) and (i) imply that $A=D$ and $B=\widehat{E}$ satisfy the assumptions of 1.7.3 so S^{\prime} is affine. Notice that by 1.7.1 (ii) the boundary divisor D of S can be identified with the boundary divisor of S^{\prime} in the image of appropriate $\varphi_{|n D|}$.
(iv) Assume on the contrary that \bar{S} is not \mathbb{P}^{1}-ruled, or equivalently that $\kappa(\bar{S}) \geq 0$. \bar{S} cannot be rational, so S^{\prime} is not logarithmic by PS97, Theorem 1.1], hence $0 \leq \kappa(\bar{S}) \leq \bar{\kappa}(S) \leq \bar{\kappa}\left(S_{0}\right)<2$ by 2.2.1. Affiness
of S^{\prime} implies that S cannot contain complete curves not contained in \widehat{E}, hence S cannot be elliptically ruled. It follows from 1.6 .11 (iv) that if $\bar{\kappa}(S)=1$ then S is \mathbb{C}^{*}-ruled, so \bar{S} is \mathbb{P}^{1}-ruled, a contradiction with $\kappa(\bar{S}) \geq 0$. Therefore we have $\bar{\kappa}(S)=0$. We will prove that D is algebraically contractible. We can assume that (\bar{S}, D) is almost minimal, so $\left(K_{\bar{S}}+D\right)^{+}=K_{\bar{S}}+D^{\#} \equiv 0$ by 1.6 .9 (ii). Now $K_{\bar{S}} \geq \mathbb{Q} 0$ implies $D^{\#}=0$, so $D=\operatorname{Bk} D$ and $Q(D)$ is negative definite, which contradicts (ii).
(v) By (iv) we can assume that there exists a \mathbb{P}^{1}-ruling $\bar{p}: \bar{S} \rightarrow B$ as in 2.2.2. We have $b_{1}(B)=b_{1}(\bar{S})=$ $b_{1}(\widehat{E})$ by 2.1.3 (vi), so \bar{S} is rational if and only if $b_{1}(\widehat{E})=0$. By 2.2.3 we can assume that $\bar{\kappa}\left(S_{0}\right) \leq 1$. If S_{0} is \mathbb{C}^{*}-ruled then from $\bar{\kappa}(S) \geq 0$ we get that \widehat{E} has to be contained in some fibers of \bar{p}, so it is a rational tree. We have left with the case $\bar{\kappa}(S)=\bar{\kappa}\left(S_{0}\right)=0$. We can assume that S_{0} is relatively minimal, because the minimalization does not effect the rationality of \widehat{E}. We have $K+D^{\#}+\widehat{E}^{\#} \equiv 0$ by 1.6.8 and $K+D^{\#} \geq_{\mathbb{Q}} 0$ by 1.6.7. Therefore $\widehat{E}^{\#}=0$, so \widehat{E} is a rational tree by 1.3.1 iii).
(vi) This is clear if \bar{S} is rational (cf. 2.1.3(vi)), so by (v) we can assume that $\bar{\kappa}(S)=-\infty$, so S is affineruled. Let $\bar{p}: \bar{S} \rightarrow B$ be the extension to a \mathbb{P}^{1}-ruling of \bar{S}. Then D is a tree and has exactly one irreducible component - the horizontal section. Now \widehat{E} is not a rational tree, so it has a horizontal component E_{0}. Then $g\left(E_{0}\right) \geq g(B)$, so $b_{1}\left(E_{0}\right) \geq b_{1}(B)$. However, $b_{1}(B)=b_{1}(D)=b_{1}(\widehat{E})$, so $b_{1}\left(E_{0}\right)=b_{1}(\widehat{E})$, hence \widehat{E} is a tree by 1.1
(vii) If $\bar{\kappa}(S) \geq 0$ then the statement follows from (v) and 2.1.3(iv). If $\bar{\kappa}(S)=-\infty$ then S is affineruled by 2.1.3(iv). Let D_{h} be the horizontal component of D, then $\pi_{1}(D)=\pi_{1}\left(D_{h}\right)$, so the composition $\bar{p} \circ i_{D}: D \rightarrow S \rightarrow B$ induces an isomorphism on π_{1}. The exact sequence of fibration gives that $\pi_{1}(\bar{p})$ is an isomorphism.
(viii) We have to prove $\bar{\kappa}\left(S_{0}\right) \leq \bar{\kappa}(S)$. If \widehat{E} consists of (-2)-curves then $(K+D) E_{i}=0$ for each irreducible component E_{i} of \widehat{E}. If T is an effective divisor linearly equivalent to $n(K+D+\widehat{E})$ then, since $Q(\widehat{E})$ is negative definite, $T-n \widehat{E}$ is effective by 1.6.7 and we are done.

We now state a theorem strengthening the proposition 2.2 .3 v). As we will see later it does not generalize to the case $\bar{\kappa}\left(S^{\prime}\right)=-\infty$.

Theorem 2.2.4. Singular \mathbb{Q}-homology planes of non-negative Kodaira dimension are rational and logarithmic, i.e. the singularities are of quotient type. If the singular locus is disconnected then it consists of two points of type A_{1}.

Proof. We only need to prove the logarithmicity of S^{\prime}. By 2.2.1 we can assume that $\bar{\kappa}\left(S_{0}\right)=0$ or 1 and that \widehat{E} is connected. If $\bar{\kappa}\left(S_{0}\right)=1$ then S_{0} is \mathbb{C}^{*}-ruled by 1.6.11(iv). It will be proved in chapter 3 (cf. 3.2.2 that with two exceptions (for which \widehat{E} is a (-2)-chain), if $\bar{\kappa}\left(S_{0}\right)=0$ then S_{0} is \mathbb{C}^{*}-ruled as well. Therefore, we can assume that S_{0} is \mathbb{C}^{*}-ruled. Consider an extension $\pi: \bar{S} \rightarrow B$ of this ruling to an snc-completion $(\bar{S}, D+\widehat{E})$ with $D+\widehat{E}$ being π-minimal. Denote the set of horizontal components of $D+\widehat{E}$ by D_{h}. Since $\bar{\kappa}\left(S^{\prime}\right) \geq 0, D_{h} \subseteq D$ and D_{h} consists of at most two components. It consists either of two 1 -sections or of one 2 -section, hence it can intersect only these fiber components which have multiplicity not greater than two. Let F be a singular fiber containing \widehat{E} and let D_{v} be the divisor of D-components of F. We use 1.5.1 without comments. By 2.1 .4 (iii) we get $\nu \leq 1$ and $\Sigma_{S_{0}}=\# D_{h}+\nu-2 \leq 1$, so $\sigma \leq 2$ for every fiber of π. Suppose \widehat{E} is not a resolution of a quotient singularity, in particular it is not an admissible chain (cf. 1.4.1. We obtain a successive restrictions on F eventually leading to a contradiction.
(1) (-1)-curves of F are S_{0}-components.

Proof. Suppose F contains a (-1)-curve $D_{0} \subseteq D$. We have $\Sigma_{S_{0}}=0$. Indeed, if $\Sigma_{S_{0}}>0$ then $\# D_{h}=2$ and $\nu=1$, so by simply connectedness of D at most one horizontal component of D intersects D_{0}. However, in this case $\mu\left(D_{0}\right)=1$, so D_{0} is a tip of F, which contradicts the π-minimality of D. First we prove that D_{v} contains components of multiplicity one. If $\# D_{h}=2$ then π-minimality of D implies that D_{0} intersects both horizontal components of D, hence $\mu\left(D_{0}\right)=1$. If $\# D_{h}=1$ then simply connectedness of D implies that $D_{h} \cap F$ is a branching point of $\pi_{\mid D_{h}}$ and by π-minimality D_{0} intersects two other D-components of F, which have multiplicity one, because $\mu\left(D_{0}\right)=2$. Thus we are done. Let C be the unique S_{0}-component of F. We see easily that D_{0} cannot be the unique (-1)-curve of F, hence $C^{2}=-1$ and there are no more (-1)-curves in F. Let's make a connected sequence of blowdowns starting from D_{0} until the number of (-1)-curves decreases. Clearly, since $\widehat{E} \cap D=\emptyset$, in this process we do not touch $C+\widehat{E}$ (first we would touch C, and then C becomes a 0 -curve). Let F^{\prime} be the image of F, we can write $\underline{F}^{\prime}-C=D^{\prime}+\widehat{E}$, where
D^{\prime} is the image of D_{v}. Since $C+\widehat{E}$ is not touched, $D^{\prime} \neq 0$. Notice that D_{v} contains a component of multiplicity one, hence the same is true for D^{\prime}. Since C is the unique (-1)-curve of F^{\prime}, it follows that \widehat{E} is a chain, a contradiction.
(2) F contains two (-1)-curves.

Proof. Suppose F has a unique (-1)-curve C. Write $\underline{F}-C=A+B$, where A and B are disjoint, connected, and B is a chain (possibly empty). By our assumption on \widehat{E} we have $\widehat{E} \subseteq A$, hence B can contain only $S_{0^{-}}$and D-components. Notice that by 2.2 .3 (iii) each S_{0}-component intersects D. Since D is connected, this implies that either $B D_{h}>0$ or $B=0$. If $B \neq 0$ we get that B contains a curve with $\mu \leq 2$, so then F consist of two branches with the first being equal to [2,k,2] for some $k>1$, hence \widehat{E} is an admissible fork of type $(2,2, n)$, a contradiction. Thus $B=0$. If $\mu(C) \leq 2$ then again \widehat{E} would be an admissible fork, so we get $\mu(C)>2$. If follows that $D_{h} C=0$, so there is a unique D-component D_{1} intersecting C. Since D is connected, there is a chain $T \subseteq F$ of D-components containing D_{1} and some D-component D_{2} with $\mu\left(D_{2}\right) \leq 2$. If D_{2} lies on the first branch of F then T contains all branching components of F, so \widehat{E} is a chain, a contradiction. If D_{2} lies on the second branch then \widehat{E} is an admissible fork of type $(2,2, n)$, a contradiction.
(3) Both (-1)-curves of F intersect \widehat{E}.

Proof. Let C_{1} and C_{2} be the (-1)-curves of F. They are S_{0} components by (1). We get $\Sigma_{S_{0}}>0$, so D_{h} consists of two 1-sections, which can intersect F only in components of multiplicity one. Suppose one of C_{i} 's, say C_{2}, does not intersect \widehat{E}. Then $D_{v} \neq 0$, because C_{2} has to intersect some component of F. We make a connected sequence of blowdowns starting from C_{2} until there is only one (-1)-curve left, we denote the image of F by F^{\prime}. In this process we do not touch $C_{1}+\widehat{E}$, so we can write $\underline{F}^{\prime}-C_{1}=D^{\prime}+\widehat{E}$, where D^{\prime} is the image of $D_{v}+C_{2}$. Since D^{\prime} intersects the image of D_{h}, it contains a component of multiplicity one. It follows that \widehat{E} is a chain, a contradiction.
(4) There are no D-components in F.

Proof. We can write $\underline{F}-C_{1}-C_{2}=\widehat{E}+D^{\prime}+D^{\prime \prime}$, where $D_{v}=D^{\prime}+D^{\prime \prime}, D^{\prime}$ and $D^{\prime \prime}$ are connected and $D^{\prime} \cap D^{\prime \prime}=\emptyset$. Suppose $D_{v} \neq 0$, say $D^{\prime} \neq 0$. One of C_{i} 's, say C_{1}, intersects D^{\prime}. Contract C_{2} and subsequent (-1)-curves until the number of (-1)-curves decreases. Clearly, $C_{1}+D^{\prime}$ is not touched in this process. Denote the image of F by F^{\prime} and let U be the image of $D^{\prime \prime}+C_{2}+\widehat{E}$. Now F^{\prime} is a fiber with a unique (-1)-curve and since both $C_{2}+D^{\prime \prime}$ and $C_{1}+D^{\prime}$ intersect D_{h}, we infer that both U and $D^{\prime}+C_{1}$ contain components of multiplicity one. Thus F^{\prime} is a chain. Consider the reverse sequence of blowups recovering F from F^{\prime}. The fiber F is not a chain, so a branching curve is produced. It follows that $D^{\prime \prime} \neq 0$, otherwise C_{2} is a tip of F with multiplicity greater than one, hence $D C=D_{h} C=0$, which is impossible. Now it is easy to see that one of the connected components of $\underline{F}-C_{2}$ is a chain not containing curves of multiplicity one, a contradiction.
$D_{v}=0$ implies that D_{h} intersects both C_{i} 's, so they have multiplicity one, hence are tips of F. It follows that F is a chain, a contradiction.

Chapter 3

$S_{0} \operatorname{not} \mathbb{C}^{*}$-ruled, $\bar{\kappa}\left(S_{0}\right)=0$

In this chapter we assume that $\bar{\kappa}\left(S_{0}\right)=0$, hence $\bar{\kappa}\left(S^{\prime}\right) \leq 0$. We assume that \widehat{E} is snc-minimal and that S_{0} does not admit any \mathbb{C}^{*}-ruling. We prove that there are exactly two surfaces S^{\prime} satisfying these conditions, for this surfaces $\bar{\kappa}\left(S^{\prime}\right)=0$ (cf. 3.2.7).

3.1 Description of the boundary

Lemma 3.1.1. The divisor D is rational.
Proof. Suppose D is not rational. Then \widehat{E} is not rational by 2.1.3(vi). Let $(\bar{S}, D+\widehat{E}) \rightarrow(\widetilde{S}, \widetilde{D}+\widetilde{E})$ be a modification of $(\bar{S}, D+\widehat{E})$, such that $(\widetilde{S}, \widetilde{D}+\widetilde{E})$ is almost minimal. By 1.6 .11 (iii) \widetilde{D} and \widetilde{E} are disjoint smooth elliptic curves. By 2.2 .3 (iv) we can assume that \bar{S} is \mathbb{P}^{1}-ruled over a smooth elliptic curve, so Lüroth theorem implies that every rational curve in \bar{S} is vertical. In particular, (-1)-curves contracted in the process of minimalization are vertical, hence the number of horizontal components of $D+\widehat{E}$ and $\widetilde{D}+\widetilde{E}$ is the same. Thus by 1.6 .8 (i) and 1.6 .9 (ii) for a generic fiber F we get $-2+F(D+\widehat{E})=F K_{\widetilde{S}}+F \widetilde{D}+F \widetilde{E}=$ $F \operatorname{Bk}(\widetilde{D}+\widetilde{E})=0$, because all components contained in $\operatorname{Supp} \operatorname{Bk}(\widetilde{D}+\widetilde{E})$ are rational, hence vertical. We get $F(D+\widehat{E})=2$, so S_{0} is \mathbb{C}^{*}-ruled, a contradiction.

From now on we assume that D is rational. In particular, \bar{S} and \widehat{E} are rational by 2.2 .3 (iv).
Lemma 3.1.2. Every irreducible curve L, such that $L \nsubseteq D \cup \widehat{E}$ satisfies $\bar{\kappa}\left(S_{0}-L\right)=2$.
Proof. Suppose $\bar{\kappa}\left(S_{0}-L\right)=1$. Since S_{0} does not contain complete curves, 1.6 .11 (iv) implies that $S_{0}-L$ is \mathbb{C}^{*}-ruled. S_{0} is not \mathbb{C}^{*}-ruled, so it is affine-ruled, a contradiction with $\bar{\kappa}\left(S_{0}\right)=0$. Suppose $\bar{\kappa}\left(S_{0}-L\right)=0$. Since \bar{S} is rational, we have $\operatorname{Pic}\left(S_{0}\right) \otimes \mathbb{Q} \cong N S_{\mathbb{Q}}\left(S_{0}\right)=0$ by 2.2 .3 (i), so there exists a rational function f such that $(f)=k L$ for some $k>0$. We get a morphism $f: S_{0}-L \rightarrow \mathbb{C}^{*}$. If $S_{0}-L \rightarrow B \rightarrow \mathbb{C}^{*}$ is its Stein factorization then $\bar{\kappa}(B) \geq \bar{\kappa}\left(\mathbb{C}^{*}\right)=0$ and $0 \geq \bar{\kappa}\left(f^{-1}(b)\right)+\bar{\kappa}(B)$ for a generic $b \in B$ by 1.6.10. Since $S_{0}-L$ is not affine ruled, we get $\bar{\kappa}\left(f^{-1}(b)\right)=0$, i.e. f is a \mathbb{C}^{*}-ruling, a contradiction.

Definition 3.1.3. Let (X, B) be an snc-pair. A smooth curve C on X is a simple curve on (X, B) if it is rational and for any J, a connected component of B, satisfies $|C \cap J| \leq 1$. If $C^{2}=-1$ then we say that it is exceptional.
Corollary 3.1.4. There is no simple curve on $(\bar{S}, D+\widehat{E})$. If D is snc-minimal then the pair $(\bar{S}, D+\widehat{E})$ is almost minimal.
Proof. Let L be a simple curve on $(\bar{S}, D+\widehat{E})$. By 2.2 .3 (iii) S^{\prime} is affine, so $L \cap D \neq \emptyset$. By 1.6 .14 the almost minimal model X_{m} of $S_{0}-L$ is an open subset of $S_{0}-L$ satisfying $\chi\left(X_{m}\right) \leq \chi\left(S_{0}-L\right)$. By 1.6.13 (2) and 3.1.2 it satisfies $0<\chi\left(X_{m}\right)+\sum_{P \in Q} \frac{1}{\left|G_{P}\right|}$, where Q is the set of singular points of the relatively minimal model X_{r} of $S_{0}-L$. Put $s=|L \cap \widehat{E}|$. Observe that $Q(D)$ is not negative definite, so by the construction of X_{r} we have $|Q| \leq q-s$. This gives $\sum_{P \in Q} \frac{1}{\left|G_{P}\right|} \leq \frac{q-s}{2}$, so $\chi\left(S_{0}-L\right) \geq \chi\left(X_{m}\right)>$ $-\sum_{P \in Q} \frac{1}{\left|G_{P}\right|} \geq \frac{s-q}{2}$. We compute $\chi\left(S_{0}-L\right)=\chi\left(S_{0}\right)-\chi(L)+|L \cap D|+s=1-q+s-2+|L \cap D|$, hence $|L \cap D|=\chi\left(S_{0}-L\right)+1+q-s>\frac{q-s}{2}+1$, i.e. $|L \cap D|>1$, a contradiction.

If the pair $(\bar{S}, D+\widehat{E})$ is not almost minimal then by 1.6 .2 there exists an exceptional simple curve on $(\bar{S}, D+\widehat{E})$, a contradiction.

Let T_{1}, \ldots, T_{n} be the maximal twigs of D. The following technical lemma, which is a small generalization of Kor93] 6.2] allows to bound from below the self-intersection of one of the branching components of D having four maximal twigs.
Lemma 3.1.5. Let T be an snc-divisor with two branching components B_{1}, B_{s} with branching numbers $\beta_{T}\left(B_{1}\right)=\beta_{T}\left(B_{s}\right)=3$. Let T_{1}, T_{2} and T_{3}, T_{4} be maximal twigs of T intersecting B_{1} and B_{s} respectively. Write $T-T_{1}-T_{2}-T_{3}-T_{4}=B_{1}+B_{2}+\ldots+B_{s}$. Assume that $T-B_{1}-B_{2}$ is contractible, T is not negative definite and $d(T) \neq 0$. Then $\widetilde{e}\left(T_{1}\right)+\widetilde{e}\left(T_{2}\right)>-B_{1}^{2}-1$ or $\widetilde{e}\left(T_{3}\right)+\widetilde{e}\left(T_{4}\right)>-B_{s}^{2}-1$.
Proof. Put $b_{i}=-B_{i}^{2}$. Assume that $\widetilde{e}\left(T_{3}\right)+\widetilde{e}\left(T_{4}\right)<b_{s}-1$. Define $D^{(i)}=T_{3}+T_{4}+B_{s}+B_{s-1}+\ldots+B_{i}$. Put $d_{i}=d\left(D^{(i)}\right)$ and $\Delta_{i}=d_{i+1}-d_{i}$. By 1.1.1 ii) applied to $D^{(i)}$ for $i=2, \ldots, s-2$ we can write $d_{i}=d_{i+1} b_{i}-d_{i+2}\left(\right.$ we put $\left.d_{s+2}=0\right)$, so $\Delta_{i+1}=d_{i+1}\left(b_{i}-2\right)+\Delta_{i}$. Put $T_{0}=B_{s-1}+\ldots+B_{2}$. Since $\widetilde{e}\left(T_{0}\right)<1$ we have $d_{2}=d\left(T_{3}\right) d\left(T_{4}\right) d\left(T_{0}\right)\left(b_{s}-\widetilde{e}\left(T_{3}\right)-\widetilde{e}\left(T_{4}\right)-\widetilde{e}\left(T_{0}\right)\right)>0$, so $D^{(2)}$ is negative definite. In particular $d_{i}>0$ for $i=2, \ldots, s$. Hence $\Delta_{2} \leq \Delta_{3} \leq \ldots \leq \Delta_{s-1}$. Since T is not negative definite, we have $d(T)<0$ by Sylvester's criterion. Applying 1.1.1 (ii) for D we get $0>d(D)=d_{2} d\left(T_{1}+B_{1}+T_{2}\right)-$ $d_{3} d\left(T_{1}+T_{2}\right)$, so $\Delta_{2} d\left(T_{1}+T_{2}\right)>d_{2}\left(d\left(T_{1}+B_{1}+T_{2}\right)-d\left(T_{1}+T_{2}\right)\right)=d_{2} d\left(T_{1}\right) d\left(T_{2}\right)\left(b_{1}-1-\widetilde{e}\left(T_{1}\right)-\widetilde{e}\left(T_{3}\right)\right)$. Suppose $b_{1}-1 \geq \widetilde{e}\left(T_{1}\right)-\widetilde{e}\left(T_{2}\right)$. Then $\Delta_{s-1} \geq \Delta_{2}>0$. By 1.1.1 (i) applied to $T_{3}+B_{s}+T_{4}$ we get $\left(b_{s-1}-1\right)\left(b_{s}-e\left(T_{3}\right)-e\left(T_{4}\right)\right)<1$, hence $b_{s}-1<\widetilde{e}\left(T_{3}\right)+\widetilde{e}\left(T_{4}\right)$, a contradiction.

From now on up to the end of this chapter we will assume that D is snc-minimal. Recall that the connected components of $D+\widehat{E}$ are described in 1.6.11(iii). We use the notation of 1.6.11 (iii) below.
Lemma 3.1.6. D can be only of type (X) or (Y). If it is of type (X) then its branching component B is either a 0 -curve or a (-1 -curve. In case (Y) it is a (-1)-curve and the triple $\left(d\left(T_{1}\right), d\left(T_{2}\right), d\left(T_{3}\right)\right)$ is up to permutation one of the following: $(3,3,3),(2,3,6),(2,4,4)$.
Proof. By 2.2 .3 ii) D is not negative definite, so the case (I) is impossible. Case (O) is excluded by 2.2.3. vi). In case (H) write $D-T_{1}-T_{2}-T_{3}-T_{4}=B_{1}+\ldots+B_{s}$. The chain $B_{2}+\ldots+B_{s-1}$ is admissible, otherwise after some modifications gives a \mathbb{C}^{*}-ruling of S_{0} (cf. 5.1.2 (4)). By 3.1 .5 we can assume that $B_{1}^{2}>-2$. Assume T_{1} and T_{2} meet B_{1}. Blow up on the intersection of B_{1} with $D-T_{1}-T_{2}-B_{1}$ until $B_{1}^{2}=-1$. Then $T_{1}+2 B_{1}+T_{2}$ gives a \mathbb{C}^{*}-ruling of S_{0}, a contradiction. Thus only (X) and (Y) remain.

We have $d(D)<0$ by 2.2 .3 (ii), so by 1.1 .1 (i) $B^{2} \geq-1$. In case (Y) we have $\delta(D)=1$ by definition, so we need only to prove that $B^{2}=-1$. Suppose $B^{2}>0$ in case (X) or $B^{2} \geq 0$ in case (Y). Let $\pi:(\widetilde{S}, \widetilde{D}) \rightarrow(\bar{S}, D)$ be the modification obtained by blowing up the point of intersection of T_{1} with B until $B^{2}=0$. Consider the \mathbb{P}^{1}-ruling of \widetilde{S} given by B. We see that \widetilde{D} contains no vertical (-1)-curves. Let D_{h} be the divisor of horizontal components of \widetilde{D} (these are disjoint sections of the ruling). Put $D_{v}=\widetilde{D}-D_{h}-B$. Notice that if some component H of D_{h} intersects a vertical curve T then $\mu(T)=1$ and H does not intersect any other component lying in the fiber containing T.

We prove that S_{0}-components of singular fibers are (-1)-curves. Let C be an S_{0}-component of some fiber. We have $K_{\bar{S}}+D+\widehat{E} \equiv \operatorname{Bk} D+\operatorname{Bk} \widehat{E}$, so $K_{\tilde{S}}+\widetilde{D}+\widehat{E} \equiv \pi^{*} \operatorname{Bk} D+\operatorname{Bk} \widehat{E}$. We have $L^{2}=-2-L K_{\widetilde{S}}=$ $-2+L\left(\widetilde{D}-\pi^{*} \operatorname{Bk} D\right)+L(\widehat{E}-\operatorname{Bk} \widehat{E}) \geq-2+L\left(\widetilde{D}-\pi^{*} \operatorname{Bk} D\right)$. Since $B \nsubseteq \operatorname{Bk} D$ and since π is obtained by blowing up in the tips of the subsequent reduced full preimages of $D-T_{1}-T_{2}-B$, the components in $\pi^{*} \operatorname{Bk} D \subseteq \widetilde{D}$ have multiplicities smaller than one ($\operatorname{Bk} D \neq D$ because $Q(D)$ is not negative definite). Thus $L^{2}>-2$ and we are done.

Let F be a fiber containing some connected component of \widehat{E}. If F contains some \widetilde{D}-components, then there exists a chain of S_{0}-components in F connecting $\widehat{E} \cap F$ with some \widetilde{D}-component of F. In fact this chain consists of a unique (-1)-curve L, since all S_{0}-components are (-1)-curves and two of them cannot meet. By 3.1.4 $D_{h} L>0$, so $\mu(L)=1$, a contradiction. Therefore there are no \widetilde{D}-components in F, hence each S_{0}-component intersects D_{h}, so it has $\mu=1$. We have $\# D_{h} \leq 4$, so from 3.1.4 it follows that there are exactly two S_{0}-components, each intersecting two components of D_{h}. This eliminates the case (Y). Notice that it follows also that these two (-1)-curves are tips of F and $\widehat{E} \cap F$ is a (-2 -chain.

Consider the case (X). We have $D_{v} \neq 0$, because $B^{2}>0$. We can write $D_{v}=D_{0}+D_{1}+\ldots+D_{n}$, where $D_{0}^{2}=-3, n \geq 0$ and $D_{i}^{2}=-2$ for every $1 \leq i \leq n$. Let F^{\prime} be a fiber containing D_{v}. Connectedness of D_{v} implies that each (-1)-curve of F^{\prime} intersects D_{h}. In particular, the (-1)-curves, and hence all components of F^{\prime} have $\mu=1$. We have $K D_{v}=1$ and $K F=-2$, so there are exactly three (-1)-curves
in F^{\prime}, call them L_{2}, L_{3} and L_{4}. We have $\sigma\left(F^{\prime}\right)=3, \sigma(F)=2$ and $\Sigma_{S_{0}}=3$ by 1.5.3, so any other singular fiber has $\sigma=1$. However, the unique (-1)-curve of such a fiber has $\mu>1$, so cannot intersect D_{h}, hence cannot intersect \widetilde{D}, a contradiction. Thus F and F^{\prime} are the only singular fibers, which implies that \widehat{E} is connected. Since $\mu\left(L_{i}\right)=1$ and F^{\prime} cannot contain a 0 -curve as a proper subdivisor, we get that one of L_{i} 's, say L_{4}, intersects D_{n} and two others intersect D_{0} (it is possible that $n=0$). Each L_{i} intersects exactly one T_{i}, so by renaming we can assume that for $i=2,3,4$ we have $T_{i}^{2}=-2$ and $L_{i} T_{i}=1$. The remaining section contained in D_{h}, call it T_{1}^{\prime}, is a (-1 -curve and intersects D_{n}. Let M_{2} be the (-1)-curve of F intersected by T_{4}. Denote the second (-1)-curve of F by M_{1}. If $T_{1}^{\prime} M_{2}>0$ then the contraction of $F-M_{2}+F^{\prime}-L_{4}$ does not touch T_{4} and touches T_{1}^{\prime} once. Therefore the images of T_{4} and T_{1}^{\prime} are disjoint sections of a \mathbb{P}^{1}-ruling of a Hirzebruch surface and have self-intersections -2 and 0 . This is impossible. We infer that $T_{1}^{\prime} M_{2}=0$ and $T_{1}^{\prime} M_{1}=1$. Now by symmetry we can assume that T_{2} intersects M_{2} and T_{3} intersects M_{1}. The contraction of $F-M_{1}+F^{\prime}-L_{3}$ does not touch T_{3} and touches T_{1}^{\prime} exactly $n+1$ times. Thus as above we get a \mathbb{P}^{1}-ruling of a Hirzebruch surface with two disjoint sections having self-intersections -2 and n. It follows from the properties of a Hirzebruch surface that $n=2$. Now observe that $T_{4}+2 L_{4}+D_{2}$ and $T_{3}+2 L_{3}+D_{0}+L_{2}$ are disjoint 0-divisors, so they are fibers of the same \mathbb{P}^{1}-ruling of \widetilde{S}. This contradicts the fact that T_{2} intersects the second one and not the first one.

3.2 Rulings of S_{0} with $\nu>0$

We need couple of remarks about rulings of special type on \bar{S}. All the characteristic numbers used below refer to the pair $(\bar{S}, D+\widehat{E})$.

Lemma 3.2.1. With the assumptions as above, let $p: \bar{S} \rightarrow \mathbb{P}^{1}$ be a \mathbb{P}^{1}-ruling, such that $\nu>0$ (cf. 1.5). Let F_{∞} be a fiber contained in D and D_{h} be the divisor of horizontal components of D. One has:
(i) \widehat{E} is vertical, $\nu=1$ and $\Sigma=\# D_{h}-1$,
(ii) components of D_{h} are disjoint and each ot them intersects F_{∞} in a point,
(iii) a component of a singular fiber is an S_{0}-component if and only if it is a (-1)-curve.

Proof. (i) $D \cap \widehat{E}=\emptyset$, so \widehat{E} is vertical. By 2.1.4 (iii) $\nu=1$ and $\Sigma=h-1$.
(ii) Since D does not contain any loops, this is obvious.
(iii) Since $(\bar{S}, D+\widehat{E})$ is almost minimal by 3.1.4 we have $K_{\bar{S}}+D+\widehat{E} \equiv \operatorname{Bk} D+\operatorname{Bk} \widehat{E}$, i.e. $K_{\bar{S}}+D^{\#}+$ $\widehat{E}^{\#} \equiv 0 . D$ is connected and not negative definite, so $\operatorname{Supp} D=\operatorname{Supp} D^{\#}$. Hence for any S_{0}-component L we have $L^{2}=-2-K_{\bar{S}} L=-2+L D^{\#}+L \widehat{E}^{\#} \geq-2+L D^{\#}>-2$, so $L^{2}=-1$, because L is contained in some singular fiber. On the other hand, a vertical (-1)-curve is an S_{0}-component, because $D+\widehat{E}$ is snc-minimal.

Theorem 3.2.2. Let S_{0} be the smooth locus of a singular \mathbb{Q}-homology plane S^{\prime}, such that $\bar{\kappa}\left(S_{0}\right)=0$ and S_{0} is not \mathbb{C}^{*}-ruled. Then $\bar{\kappa}\left(S^{\prime}\right)=0$ and S^{\prime} has a unique singular point. Moreover, either (i) S^{\prime} (hence S_{0}) is $\mathbb{C}^{* *}$-ruled, its singularity is of type A_{1} and its snc-minimal boundary D is a fork with branching (-1)-curve and three maximal twigs: $[2],[2,2,2]$ and $[2,2,2]$ (cf. 3.2.4) or (ii) S^{\prime} (hence S_{0}) is $\mathbb{C}^{* * *}$-ruled, its singularity is of type A_{2} and its snc-minimal boundary D is a fork with branching (-1)-curve and three maximal twigs: $[2,2],[2,2]$ and $[2,2]$. (cf. 3.2.6).
Proof. Suppose S_{0} is not \mathbb{C}^{*}-ruled. By 3.1 .6 we have only 13 cases to consider:
(X0) $T_{1}=T_{2}=T_{3}=T_{4}=[2]$ and $B^{2}=0$,
(X1) $T_{1}=T_{2}=T_{3}=T_{4}=[2]$ and $B^{2}=-1$,
D is of type (Y) with $B^{2}=-1$ and:
$(\mathrm{Y} 1 \mathrm{a}) T_{1}=[3], T_{2}=[3], T_{3}=[3]$,
$(\mathrm{Y} 1 \mathrm{~b}) T_{1}=[3], T_{2}=[3], T_{3}=[2,2]$,
$(\mathrm{Y} 1 \mathrm{c}) T_{1}=[3], T_{2}=[2,2], T_{3}=[2,2]$,
(Y1d) $T_{1}=[2,2], T_{2}=[2,2], T_{3}=[2,2]$,
(Y2a) $T_{1}=[2], T_{2}=[4], T_{3}=[4]$,
$(\mathrm{Y} 2 \mathrm{~b}) T_{1}=[2], T_{2}=[4], T_{3}=[2,2,2]$,
$(\mathrm{Y} 2 \mathrm{c}) T_{1}=[2], T_{2}=[2,2,2], T_{3}=[2,2,2]$,
(Y3a) $T_{1}=[2], T_{2}=[3], T_{3}=[6]$,
(Y3b) $T_{1}=[2], T_{2}=[3], T_{3}=[2,2,2,2,2]$,
$(\mathrm{Y} 3 \mathrm{c}) T_{1}=[2], T_{2}=[2,2], T_{3}=[6]$,
$(\mathrm{Y} 3 \mathrm{~d}) T_{1}=[2], T_{2}=[2,2], T_{3}=[2,2,2,2,2]$.
Write each T_{i} as $T_{i}=T_{i, 1}+T_{i, 2}+\ldots+T_{i, k_{i}}$, where $T_{i, 1}$ is a tip of D. In cases (Y1a), (Y2a) and (Y3a) we compute $d(D)=0$, so these are excluded by 2.2 .3 ii). In each other case we specify a \mathbb{P}^{1}-ruling $\pi: \bar{S} \rightarrow \mathbb{P}^{1}$ with $\nu>0$ defined by some 0-divisor $\left(F_{\infty}\right)$ in D. Below we list appropriate quadruples $\left(F_{\infty}, F D, \Sigma_{S_{0}}, D_{v}\right)$, where F is the generic fiber and $D_{v}=D-\underline{F}_{\infty}-D_{h}$. In fact in case (Y2c) we consider two rulings simultaneously.
(X0) $(B, 4,3,0)$,
(X1) $\left(T_{1}+2 B+T_{2}, 4,1,0\right)$,
(Y1b) $\left(T_{1}+3 B+2 T_{3,2}+T_{3,1}, 3,0,0\right)$,
$(\mathrm{Y} 1 \mathrm{c})\left(T_{1}+3 B+2 T_{3,2}+T_{3,1}, 3,0, T_{2,1}\right)$,
(Y1d) $\left(T_{1,2}+2 B+T_{3,2}, 4,2, T_{2,1}\right)$,
(Y2b) $\left(T_{1}+2 B+T_{3,3}, 3,1, T_{3,1}\right)$,
(Y2c) $\left(T_{1}+2 B+T_{3,3}, 3,1, T_{3,1}+T_{2,1}+T_{2,2}\right)$,
(Y2c) ${ }^{\prime}\left(T_{2,3}+2 B+T_{3,3}, 4,2, T_{3,1}+T_{2,1}\right)$,
(Y3b) $\left(T_{1}+2 B+T_{3,5}, 3,1, T_{3,1}+T_{3,2}+T_{3,3}\right)$,
(Y3c) $\left(T_{1}+2 B+T_{2,2}, 3,1,0\right)$,
(Y3d) $\left(T_{1}+2 B+T_{3,5}, 3,1, T_{2,1}+T_{3,1}+T_{3,2}+T_{3,3}\right)$.
Notice that D_{v} has at most two connected components and each of them is a chain of (-2)-curves. Let F be some singular fiber of π. The S_{0}-components of F are (-1)-curves by 3.2.1 (iii), denote them by L_{i}, $i=1, \ldots, \sigma(F)$. We prove successive statements. We use 3.1.4 repeatedly.
(1) Every S_{0}-component intersects D_{h}.

Proof. If L is an S_{0}-component then $L^{2}=-1$ by 3.2.1 (iii). Suppose $L D_{h}=0$. Then L intersects two D-components by 3.1.4 which are (-2 -curves, so $F=[2,1,2]$. Both these D-components must be tips of D. Since $L D_{h}=0$ and $\nu>0$, we obtain $F D=2$, otherwise D would contain a loop. This is a contradiction.
(2) If $\mu(L)>1$ for some S_{0}-component L of F then $\sigma(F)=1$ and $\mu(L)=2$.

Proof. Suppose $\sigma(F) \geq 2$. The curve $L=L_{1}$ intersects some D-component of F, otherwise $D_{h} L_{1} \geq 2$ and $D_{h} F \geq D_{h}\left(\mu\left(L_{1}\right) L_{1}+L_{2}\right)>4$, which is impossible. Thus $D_{v} \cap F \neq \emptyset$ and we get that $4 \geq D_{h} F \geq$ $D_{h}\left(\mu\left(L_{1}\right) L_{1}+D_{v} \cap F+\mu\left(L_{2}\right) L_{2}\right) \geq 2+D_{h}\left(D_{v} \cap F\right)+\mu\left(L_{2}\right) D_{h} L_{2}$, so by (1) $\mu\left(L_{2}\right)=D_{h} L_{2}=1$ and $D_{v} \cap F$ is connected. We get $L_{2} D_{v}>0$, because L_{2} cannot be simple. It follows that $F=[1,(k), 1]$ for some $k>0$, a contradiction.

Suppose $\sigma(F)=1$ and $\mu\left(L_{1}\right)>2$. Since $D_{h} L_{1}>0$, this is possible only for (Y1b) or (Y1c). Moreover, then $\left|D_{h} \cap L_{1}\right|=1$ and the point of intersection does not belong to any other component of F. However, $F D=3$ for $(\mathrm{Y} 1 \mathrm{~b})$ and $(\mathrm{Y} 1 \mathrm{c})$, so there are no D-components in F. Thus L_{1} is simple, a contradiction.
(3) If $\sigma(F)>1$ then $F=[1,(k), 1]$ for some $k \geq 0$. If $\sigma(F)=1$ then in cases other than (X1) $F=[2,1,2]$ and F contains a D-component.

Proof. If $\sigma(F)>1$ then all L_{i} 's are tips of F by (2). Suppose $\sigma(F)>2$. Then there are some D components in F, otherwise $F D \geq 6$ by 3.1.4 The divisor $F-\sum_{i} L_{i}$ is connected and contains a D-component, so there are no \widehat{E}-components in F. Since D_{v} consists of (-2 -curves, we get $-2=K_{\bar{S}} F=$ $\sum_{i} K_{\bar{S}} L_{i}=-\sigma(F)$, a contradiction. Thus $\sigma(F)=2$ and both (-1)-curves have multiplicities one by (2), so $F=[1,(k), 1]$ for some $k \geq 0$.

Assume now $\sigma(F)=1$ and consider cases different from (X1). We have $\mu\left(L_{1}\right)=2$ by (2). There are some D-components in F, otherwise by $3.1 .4 L$ would meet two 2 -sections contained in D_{h}, which is possible in case (X1) only. Suppose F is branched. Then L_{1} is a tip of F and $\underline{F}-L_{1}$ is one of the connected components of D_{v}, hence it must be $[2,2,2]$, which is possible for (Y 3 b) only. In this case D_{v} is connected, $F D=3$ and $\Sigma_{S_{0}}=1$. In particular, there exists a fiber F^{\prime} with $\sigma\left(F^{\prime}\right)=2$ and it does not have any D-components, so both S_{0}-components of F^{\prime} meet D_{h} at least twice, which contradicts $F D=3$. Thus F is a chain, so $F=[2,1,2]$.
(4) $\bar{\kappa}(S)=0$ and $K_{\bar{S}}+D^{\#} \equiv 0$.

Proof. By (2), (3) and 1.5.1 vi) every singular fiber consists of (-1)- and (-2)-curves. \widehat{E} is vertical, so 2.2 .3 (viii) implies $\bar{\kappa}(S)=\bar{\kappa}\left(S_{0}\right)=0$. The pair $(\bar{S}, D+\widehat{E})$ is almost minimal, so by 1.6.8(i) and 1.6.9 (ii) we get $K_{\bar{S}}+D^{\#}+\widehat{E}^{\#} \equiv 0$. Since by (2) and (3) \widehat{E} consists of (-2)-chains and admissible (-2)-forks, $\widehat{E}=\operatorname{Bk} \widehat{E}$, so $\widehat{E}^{\#}=0$.
(5) Cases other than (X0), (X1), (Y1d) and (Y2c) are impossible. $\# \widehat{E}=8-B^{2}-\# D$.

Proof. By (4) we have $K_{\bar{S}} \mathrm{Bk} D=K_{\bar{S}}^{2}+K_{\bar{S}} D$, so $K_{\bar{S}} \mathrm{Bk} D \in \mathbb{Z}$. This excludes (Y1b), (Y1c), (Y2b), (Y3b) and (Y3c). In the remaining cases (X0), (X1), (Y1d), (Y2c) and (Y3d) the maximal twigs of D are (-2)-chains, so by (4) $K_{\bar{S}}\left(K_{\bar{S}}+B\right)=0$. Noether's formula and 2.1.4 (ii) give $12=K_{\bar{S}}^{2}+2+\# D+\# \widehat{E}$, so $\# \widehat{E}=8-B^{2}-\# D$. For (Y3d) we get $\# \widehat{E}=0$, a contradiction.
(6) Case (X0) is impossible. \widehat{E} is connected.

Proof. By (5) we have $\# \widehat{E}=3-B^{2} \geq 3$ for (X1) and (X0), so by 2.2.1 (ii) \widehat{E} is connected. Consider the case (Y1d). Suppose there exists a singular fiber F with $\sigma(F)=1$, let L be its (-1)-curve. By (3) $F=[2,1,2]$ and there is a D-component in F, so $D_{v}=T_{2,1} \subseteq F$ and F contains an \widehat{E}-component. It follows that the sections $T_{1,1}$ and $T_{3,1}$ intersect L, a contradiction. By (3) there are only two singular fibers and they are of type $[1,(k), 1]$, so \widehat{E} is connected, since $D_{v} \neq 0$.

Suppose that the case (X0) occurs. Since $\Sigma_{S_{0}}=3$, there is a singular fiber F with $\sigma(F)>1$, hence by (3) $F=[1,(k), 1]$ for some $k \geq 0$. It is easy to see that for every such fiber $k>0$. In fact, if $k=0$ then take any (-1)-curve $L \subseteq F$ and two components $H_{1}, H_{2} \subseteq D_{h}$ intersecting L. Since $D_{v}=0, H_{1}+2 L+H_{2}$ gives a \mathbb{C}^{*}-ruling of S_{0}, a contradiction. Since \widehat{E} is connected, we see that there is only one fiber with $\sigma>1$. This contradicts $\Sigma_{S_{0}}=3$.
(7) Case (X1) is impossible.

Proof. Suppose the case (X1) occurs. We have $\Sigma_{S_{0}}=1$, so there is a fiber $F_{1}=[1,(k), 1]$, where $k \geq 0$. Suppose $k>0$. We have $D_{v}=0$, so $\widehat{E} \subseteq F_{1}$ by (6) and F_{∞} and F_{1} are the only singular fibers. By (5) we can write $F_{1}=L_{1}+E_{1}+E_{2}+E_{3}+E_{4}+L_{2}$. Notice that D_{h} consists of two 2 -sections, T_{3} and T_{4}, and by 3.1.4 D_{h} intersects $F_{1}-\widehat{E}$ in four points. If L_{1} intersects both 2 -sections then the contraction of $\underline{F}_{\infty}-T_{2}+F_{1}-L_{1}$ touches T_{3} seven times, so the image of T_{3} is a smooth 2-section on a Hirzebruch surface with self-intersection 5 , a contradiction. Thus L_{1} intersects only one component of D_{h}, say T_{3}, hence L_{2} intersects T_{4}. After the contraction of $\underline{F}_{\infty}-T_{1}+F_{1}-L_{1}$ the surface becomes a Hirzebruch surface and the images of the 2 -sections, T_{3}^{\prime} and T_{4}^{\prime}, satisfy $T_{3}^{\prime} T_{4}^{\prime}=2, T_{3}^{\prime 2}=0$ and $T_{4}^{\prime 2}=20$. However, $T_{3}^{\prime}-T_{4}^{\prime} \equiv \alpha F$ for some $\alpha \in \mathbb{Z}$ and a generic fiber F, because T_{3}^{\prime} and T_{4}^{\prime} are 2-sections. Thus $\left(T_{3}^{\prime}-T_{4}^{\prime}\right)^{2}=0$, which is a contradiction. Thus $k=0$ and $\widehat{E} \subseteq F_{0}$, where F_{0} is a singular fiber with $\sigma\left(F_{0}\right)=1$. By (5) and 1.5 .1 (vi) \widehat{E} is a (-2)-fork with four components. Let M be the (-1)-curve of F_{0}. Denote the \widehat{E}-component intersecting M by E_{0} and the branching component of \widehat{E} by E_{1}. Consider a new \mathbb{P}^{1}-ruling of \bar{S} given by the 0 -divisor $T_{3}+2 M+T_{4}$. For this ruling we have $\Sigma_{S_{0}}=0$. Let F^{\prime} be a fiber containing $\widehat{E}-E_{0}$. There is exactly one (-1)-curve $U \subseteq F^{\prime}$, which is the unique S_{0}-component of F^{\prime}. Notice that T_{1} and T_{2} are now the only possible vertical D-components and they are (-2)-curves. It follows that U cannot intersect them, hence \underline{F}^{\prime} contains no D-components. Hence U intersects E_{1} and $\mu\left(E_{1}\right)=\mu(U)=2$. It follows that
E_{0} intersects F^{\prime} only in E_{1} and B intersects U in one point. Thus U is a simple curve on $(\bar{S}, D+\widehat{E})$, a contradiction.

Figure 3.1: (Y2c), ruling

Figure 3.2: (Y2c), contraction

Lemma 3.2.3. In the case (Y2c) there are three singular fibers (see Fig. 3.1): $F_{\infty}=T_{1}+2 B+T_{3,3}$, $F_{1}=L_{1}+T_{2,2}+T_{2,1}+L_{2}$ and $F_{0}=T_{3,1}+M+\widehat{E}$, where $\widehat{E}=[2]$ and L_{1}, L_{2}, M are (-1)-curves. $L_{1} T_{3,2}=1$ and the 2-section $T_{2,3}$ meets L_{2}. The divisor $D+L_{1}+L_{2}+M+\widehat{E}$ can be contracted to a sum of three lines and a smooth conic in \mathbb{P}^{2}, where the lines intersect in one point and exactly two of them are tangent to the conic (see Fig. 3.3).
Proof. We use the facts showed in the proof of 3.2 .2 We have $\Sigma_{S_{0}}=1$, so by (3) there exists a fiber $F_{1}=[1,(k), 1]$ for some $k \geq 0$ and this is the unique fiber with $\sigma>1$. There exists also a singular fiber F_{0} with $\sigma\left(F_{0}\right)=1$. Indeed, otherwise F_{1} would contain \widehat{E}, hence would not contain any D-component and this contradicts $D_{v} \neq 0$. We have $F_{0}=[2,1,2]$ by (3). Since $\# D_{v}=3$ and $\# \widehat{E}=1$ by (5), F_{1} contains two components of D_{v} and F_{0} contains \widehat{E} and one D-component. Besides F_{∞}, F_{0} and F_{1} there are no singular fibers. Notice that $T_{2,3}$ is a 2 -section intersecting the unique (-1)-curve of F_{0}, call it M, in a branching point of $\pi_{\mid T_{2,3}}$. Let $L_{1} \subset F_{1}$ be the (-1)-curve meeting $T_{2,2}$. Suppose L_{1} meets the 2-section $T_{2,3}$ also. Then L_{2}, the second (-1)-curve of F_{1}, meets $T_{2,1}$ and $T_{3,2}$. Contraction of $F_{\infty}-T_{3,3}+F_{1}-T_{2,2}+F_{0}-T_{3,1}$ touches $T_{3,2}$ twice and $T_{2,3}$ five times. Therefore we get a ruling of a Hirzebruch surface having a section with self-intersection 0 and a disjoint 2 -section with self-intersection 3. This is a contradiction, hence L_{1} meets the section $T_{3,2}$. Contraction of $F_{\infty}-T_{3,3}+F_{1}-T_{2,2}+F_{0}-T_{3,1}$ touches $T_{3,2}$ once, so its image is a section of a \mathbb{P}^{1}-ruling of a Hirzebruch surface having self-intersection -1. Moreover, the image of $T_{2,3}$ is a smooth 2-section tangent to the images of $T_{3,3}$ and $T_{3,1}$ (see Fig. 3.2. Contracting the 1-section we get a divisor as in the thesis.

We recover the situation of case (Y2c).

Figure 3.3: (Y2c), final configuration

Example 3.2.4. Let $x_{1}, x_{2}, y_{1} \in T_{2,3}$ be three points lying on a smooth conic in \mathbb{P}^{2}. This choice is unique up to an automorphism of \mathbb{P}^{2}. (This can be seen as follows. Using an automorphism of \mathbb{P}^{2} we can assume that these points are $([1: 0: 0],[0: 1: 0],[0: 0: 1])$, hence the conic is $\left\{[x: y: z] \in \mathbb{P}^{2}: a x y+b y z+c z x=0\right\}$ for some $a, b, c \in \mathbb{C}$, such that $a b c \neq 0$. Automorphisms of \mathbb{P}^{2} which are diagonal in chosen coordinates fix the chosen points and act transitively on the set of described conics.) Let $T_{3,3}, T_{3,1}$ be two lines tangent to $T_{2,3}$ at x_{1} and x_{2} respectively. Let $T_{2,2}$ be a line through $T_{3,3} \cap T_{3,1}$ intersecting $T_{2,3}$ in y_{1}, denote the second point of intersection by $y_{2}\left(y_{2} \neq y_{1}\right.$, because $T_{2,3}$ is non-degenerate). We use the same names for divisors and their birational transforms. Blow once in each of $T_{3,3} \cap T_{3,1}, x_{1}, x_{2}, y_{1}$ and denote the respective exceptional curves by $T_{3,2}, T_{1}, \widehat{E}$ and $T_{2,1}$. Now blow once in each of $T_{3,3} \cap T_{1}, T_{2,2} \cap T_{3,2}$, $T_{2,1} \cap T_{2,3}$ and $T_{3,1} \cap \widehat{E}$ and denote the respective exceptional curves by B, L_{1}, L_{2} and M. Denote the resulting complete surface by \bar{S}. Define $D=T_{3,1}+T_{3,2}+T_{3,3}+T_{2,1}+T_{2,2}+T_{2,3}+T_{1}+B, S=\bar{S}-D$ and $S^{\prime}=S / \widehat{E}$. Clearly, D is a fork with $\delta(D)=1, B^{2}=-1$ and other components of D are (-2)-curves.

Lemma 3.2.5. In the case (Y1d) there are three singular fibers (see Fig. 3.4): $F_{\infty}=T_{1,2}+2 B+T_{3,2}, F_{1}=$ $L_{1}+E_{1}+E_{2}+L_{2}$ and $F_{2}=M+T_{2,1}+L_{3}$, where $\widehat{E}=E_{1}+E_{2}=[2,2]$ and L_{1}, L_{2}, L_{3}, M are (-1)-curves. $T_{3,1} M=T_{3,1} L_{1}=1, T_{1,1} L_{2}=T_{1,1} M=1, T_{2,2} L_{1}=T_{2,2} L_{2}=T_{2,2} L_{3}=1$ and $T_{2,2} \cap T_{2,1} \neq T_{2,2} \cap L_{3}$. There exists regular morphism $\theta: \bar{S} \rightarrow \mathbb{P}^{2}$ contracting the divisor $B+M+L_{1}+L_{2}+L_{1}^{\prime}+L_{2}^{\prime}+L_{1}^{\prime \prime}+L_{2}^{\prime \prime}$ consisting of disjoint (-1)-curves, such that the image of $T_{1,2}+T_{2,2}+T_{3,2}$ is a triple of lines intersecting in $\theta(B)$ and the image of $T_{1,1}+T_{2,1}+T_{3,1}$ is a triple of lines intersecting in $\theta(M)$ (see Fig. 3.6). Moreover, $\theta\left(T_{1,2}\right) \cap \theta\left(T_{2,1}\right), \theta\left(T_{2,2}\right) \cap \theta\left(T_{3,1}\right), \theta\left(T_{3,2}\right) \cap \theta\left(T_{1,1}\right)$ lie on a line $\theta\left(E_{1}\right)$ and $\theta\left(T_{1,2}\right) \cap \theta\left(T_{3,1}\right), \theta\left(T_{2,2}\right) \cap \theta\left(T_{1,1}\right)$, $\theta\left(T_{3,2}\right) \cap \theta\left(T_{2,1}\right)$ lie on a line $\theta\left(E_{2}\right)$.

Proof. We have $\Sigma_{S_{0}}=2$, so by (3) there exist fibers $F_{1}=\left[1,\left(k_{1}\right), 1\right]$ and $F_{2}=\left[1,\left(k_{2}\right), 1\right]$ and since by (6) \widehat{E} is connected, (3) implies that F_{∞}, F_{1} and F_{2} are the only singular fibers of π. We can assume that $T_{2,1}$ is contained in F_{2}, so $k_{2}=1, \widehat{E} \subseteq F_{1}$ and $k_{1}=2$ by (5). There is a (-1)-curve in F_{2}, call it M, such that $T_{2,2} M=0$. By 3.1.4 $T_{1,1}+T_{3,1}$ intersects M, so by symmetry we can assume that $T_{3,1}$ does. Let L_{1} be the (-1)-curve of F_{1} intersecting $T_{3,1}$. The contraction of $F_{\infty}-T_{3,2}+F_{1}-L_{1}+F_{2}-M$ does not touch $T_{3,1}$ and the images of $T_{3,1}$ and $T_{1,1}$ are two disjoint sections on a Hirzebruch surface, hence the image of $T_{1,1}$ must have self-intersection 2 and we infer that the contraction touches $T_{1,1}$ exactly four times. Since $k_{2}=2$, it follows that $T_{1,1}$ does not intersect L_{1} and intersects M (see Fig. 3.4). Clearly, the analogous rulings of \bar{S} induced by $F_{\infty}^{\prime}=T_{1,2}+2 B+T_{2,2}$ or $F_{\infty}^{\prime \prime}=T_{2,2}+2 B+T_{3,2}$ have the same structure of singular fibers. Denote the (-1)-curves of the fibers of these rulings containing \widehat{E} as $L_{1}^{\prime}, L_{2}^{\prime}$ and $L_{1}^{\prime \prime}, L_{2}^{\prime \prime}$ respectively. It is easy to see that $L_{1}, L_{1}^{\prime}, L_{1}^{\prime \prime}, L_{2}, L_{2}^{\prime}, L_{2}^{\prime \prime}$ are disjoint. For example, for $i=1,2$ we have $L_{i} F_{\infty}^{\prime}=1$, so $L_{i}\left(L_{1}^{\prime}+L_{2}^{\prime}\right)=0$. Let $\omega: \bar{S} \rightarrow \widetilde{S}$ be the contraction of all these exceptional curves. For any $i, j, k \in\{1,2\}$ we have $\omega\left(T_{i, 2}\right) \omega\left(T_{j, 1}\right)=1, \omega\left(T_{i, j}\right)^{2}=0$ and $\omega\left(E_{k}\right)^{2}=1$. We see also that $\omega\left(E_{k}\right)$ meets each $T_{i, j}$ once and only in points being images of curves contracted by ω (see Fig. 3.5). Now since $b_{2}(\widetilde{S})=b_{2}(\bar{S})-6=3$, the \mathbb{P}^{1}-ruling $\widetilde{p}: \widetilde{S} \rightarrow \mathbb{P}^{1}$ induced by $\omega\left(T_{1,2}\right)$ has only one singular fiber \widetilde{F}. Furthermore, $F M=F^{\prime} M=F^{\prime \prime} M=0$ implies that $\widetilde{F}=M+N$, where N is the birational transform of some S_{0}-component (see Fig. 3.5). We have $\omega\left(T_{i, j}\right) N=0$ and $B N=1$. If we define θ as the composition of ω with the contraction of $B+M$, then the properties of θ stated in the thesis follow (see Fig. 3.6).

We recover the situation of case (Y1d).
Example 3.2.6. Let $P_{1}=[0,1,1], P_{2}=[1,1,0], Q_{1}=[1,0,0], Q_{2}=[0,0,1]$ be points in $\mathbb{P}_{(x, y, z)}^{2}$. The lines $\overline{Q_{1} P_{1}}, \overline{Q_{1} P_{2}}, \overline{Q_{2} P_{1}}$ and $\overline{Q_{2} P_{2}}$ have equations $y=z, z=0, x=0$ and $x=y$. Put $P_{3}=[1, \epsilon, \epsilon-1]$, where $\epsilon=-\zeta_{3}$ for some primitive third root of unity ζ_{3}. Then following condition is satisfied: the points $\overline{Q_{1} P_{1}} \cap \overline{Q_{2} P_{2}}=\{[1,1,1]\}, \overline{Q_{1} P_{2}} \cap \overline{Q_{2} P_{3}}=\{[\epsilon, \epsilon-1,0]\}, \overline{Q_{1} P_{3}} \cap \overline{Q_{2} P_{1}}=\{[0,1, \epsilon]\}$ lie on a common line E_{2} (having equation $(1-\epsilon) x+\epsilon y=z$) and the points $\overline{Q_{1} P_{1}} \cap \overline{Q_{2} P_{3}}=\{[1, \epsilon, \epsilon]\}, \overline{Q_{1} P_{2}} \cap \overline{Q_{2} P_{1}}=\{[0,1,0]\}$, $\overline{Q_{1} P_{3}} \cap \overline{Q_{2} P_{2}}=\{[\epsilon, \epsilon, \epsilon-1]\}$ lie on a common line E_{1} (having equation $z=\epsilon x$). Blow once in Q_{1} and Q_{2} and denote the exceptional curve of the first blowup by B. Blow once in each of the six points of intersection of lines $\overline{Q_{i}, P_{j}}$ with $E_{1}+E_{2}$. Let D be the divisor consisting of the proper transforms of B and of lines $\overline{Q_{i} P_{j}}$. Denote the resulting surface by \bar{S} and put $S=\bar{S} \backslash D, S^{\prime}=S / \widehat{E}$, where $\widehat{E}=E_{1}+E_{2}$. Clearly, D is a fork with $\delta(D)=1, B^{2}=-1$ and $D-B+\widehat{E}$ consists of (-2)-curves.

Figure 3.4: (Y1d), ruling

Figure 3.5: (Y1d), contraction

Figure 3.6: (Y1d), final configuration

Corollary 3.2.7. There are exactly two non-isomorphic singular \mathbb{Q}-homology planes S^{\prime}, such that their smooth parts have Kodaira dimension zero and do not admit \mathbb{C}^{*}-rulings. These surfaces have Kodaira dimension zero. Their construction is given in 3.2.4 and 3.2.6.

Proof. It follows from 3.2.2 that S^{\prime} as above can be only of type (Y2c) or (Y1d). If it is of type (Y2c) then 3.2 .3 implies that it can be constructed as in 3.2.4. The construction was determined uniquely by a choice of a smooth conic in \mathbb{P}^{2} and a triple of different points on it, hence S^{\prime} with S_{0} of type (Y2c) is unique up to isomorphism. Clearly, the surfaces S^{\prime} with S_{0} of type (Y2c) and of type (Y1d) are non-isomorphic, because their singularities are of different type. We now prove that if S^{\prime} is of type (Y1d) then it can be constructed as in 3.2.6. Let $\theta: \bar{S} \rightarrow \mathbb{P}^{2}$ be as in 3.2.5. put $Q_{1}=\theta(B), Q_{2}=\theta(M), P_{1}=\theta\left(T_{1,2} \cap T_{1,1}\right)$ and $P_{2}=\theta\left(T_{3,2} \cap T_{3,1}\right)$, we can assume that their coordinates are as in 3.2.5. Since $P_{3}=\theta\left(T_{2,2} \cap T_{2,1}\right) \notin \overline{P_{1} Q_{2}}$, we can write $P_{3}=[1, \epsilon, u]$ for some $\epsilon, u \in \mathbb{C}$. The condition of collinearity of $\theta\left(T_{1,2}\right) \cap \theta\left(T_{2,1}\right)=[1, \epsilon, \epsilon]$, $\theta\left(T_{2,2}\right) \cap \theta\left(T_{3,1}\right)=[\epsilon, \epsilon, u], \theta\left(T_{3,2}\right) \cap \theta\left(T_{1,1}\right)=[0,1,0]$ implies $u=\epsilon^{2}$ and the condition of collinearity of $\theta\left(T_{1,2}\right) \cap \theta\left(T_{3,1}\right)=[1,1,1], \theta\left(T_{2,2}\right) \cap \theta\left(T_{1,1}\right)=[0, \epsilon, u], \theta\left(T_{3,2}\right) \cap \theta\left(T_{2,1}\right)=[1, \epsilon, 0]$ implies $\epsilon^{2}-\epsilon+1=0$, hence $-\epsilon$ is a primitive third root of unity. Therefore for fixed choice of points $P_{1}, P_{2}, Q_{1}, Q_{2}$ there are two choices for P_{3}, we call them P_{3} and P_{3}^{\prime}. This implies that up to isomorphism there are at most two surfaces S^{\prime} of type (Y1d) as above. Notice that the change of P_{1} with P_{2} gives rise to the same set of
points $\left\{P_{3}, P_{3}^{\prime}\right\}$. Now the automorphism $\sigma \in$ Aut \mathbb{P}^{2} given by

$$
\left(\begin{array}{lll}
1 & -1 & 0 \\
0 & -1 & 0 \\
0 & -1 & 1
\end{array}\right)
$$

fixes Q_{1}, Q_{2} and changes P_{1} with P_{2}. Since σ changes P_{3} with P_{3}^{\prime} we conclude that the choices of P_{3} and P_{3}^{\prime} are equivalent.

We now check that constructions 3.2 .6 and 3.2 .4 result with singular \mathbb{Q}-homology planes with prescribed properties. In each case we have $b_{1}(S)=0, b_{2}(S)=9$ and it is easy to check that the components of $D+\widehat{E}$ are independent in $N S(\bar{S})$, hence $H_{2}(D+\widehat{E}) \rightarrow H_{2}(\bar{S})$ is a monomorphism. The homology exact sequence of a pair (\bar{S}, D) and the Lefschetz duality give $b_{1}(S)=b_{3}(S)=b_{4}(S)=0$ and $b_{2}(S)=\# \widehat{E}$. Then the homology exact sequence of a pair (S, \widehat{E}) gives that S^{\prime} is \mathbb{Q}-acyclic. Since \widehat{E} 's are resolutions of singular points of type A_{1} and A_{2} respectively, the constructed $S^{\prime \prime}$ s are normal. We get $\bar{\kappa}(S)=\bar{\kappa}\left(S_{0}\right)$ by 2.2.3(viii). We check easily that $K_{\bar{S}}+D^{\#}$ intersects trivially with all components of $D+\widehat{E}$, hence $K_{\bar{S}}+D^{\#} \equiv 0$. Thus $\bar{\kappa}(S)=0$.

Suppose that for one of S^{\prime} as above the smooth locus S_{0} admits a \mathbb{C}^{*}-ruling. There exists a modification $(\widetilde{S}, \widetilde{D}+\widetilde{E}) \rightarrow(\bar{S}, D+\widehat{E})$, such that this ruling extends to a \mathbb{P}^{1}-ruling $\pi: \widetilde{S} \rightarrow \mathbb{P}^{1}$. We can assume that $\widetilde{D}+\widetilde{E}$ is π-minimal. Since $\bar{\kappa}\left(S^{\prime}\right) \neq-\infty$, there are no sections contained in \widetilde{E}, hence $\widetilde{E}=\widehat{E}$. Since D does not contain components with non-negative self-intersection, the same holds for \widetilde{D}. Suppose $h=1$, let D_{h} be the horizontal section of \widetilde{D}. We have $\nu=1$ by 2.1 .4 (iii), so there exists a fiber $F_{\infty} \subseteq \widetilde{D}$. Since \widetilde{D} is simply connected, F_{∞} can intersect D_{h} only in a branching point of $\pi_{\mid D_{h}}$, hence by π-minimality $F_{\infty}=[2,1,2]$. The contractions minimalizing \widetilde{D} cannot touch F_{∞}, hence D contains two (-2 -tips as maximal twigs, a contradiction. Therefore $h=2$ and we get $\Sigma_{S_{0}}=\nu \leq 1$ by 2.1.4(iii). Denote the horizontal components of \widetilde{D} by D_{0} and D_{∞}. If $\nu>0$ then $D_{0}+D_{\infty}$ intersects the fiber contained in \widetilde{D} in two different points, hence the fiber is smooth by the π-minimality of \widetilde{D}, so \widetilde{D} contains a 0 -curve, a contradiction. Thus $\Sigma_{S_{0}}=\nu=0$. Now $\bar{\kappa}\left(S_{0}\right)=0$ implies that $F\left(K_{\bar{S}}+\widetilde{D}+\widehat{E}\right)^{-}=F\left(K_{\widetilde{S}}+\widetilde{D}+\widehat{E}\right)=0$, so D_{0} and D_{∞} cannot be contained in maximal twigs of \widetilde{D} by 1.6 .9 (i). There is a unique singular fiber F_{0} containing a rivet, other fibers are chains intersected by D_{0} and D_{∞} in tips (i.e. they are column fibers, cf. 5.1.7 and 5.1.8(ii)). It follows that there are at least two such fibers, otherwise D_{0} and D_{∞} would be contained in maximal twigs of \widetilde{D}. Thus D_{0} and D_{∞} are branching in \widetilde{D} and since (-1)-curves contained in \widetilde{D} can appear only in F_{0}, after minimalization of \widetilde{D} they images are branching in D, a contradiction.
Remark 3.2.8. Using the description 3.2 .5 it is easy to compute Aut S^{\prime}. Let η be an automorphism of a surface S^{\prime} of type (Y1d). Since $D+E$ does not contain curves with non-negative self-intersection, $\eta_{\mid S_{0}}$ extends to $\bar{\eta} \in \operatorname{Aut}(\bar{S}, D+\widehat{E})$. We proved in 3.2 .7 that one can assume that θ maps B, M to fixed points $Q_{1}, Q_{2} \in \mathbb{P}^{2}$ and maps the set of nodes of maximal twigs of D to the fixed set of three points $\left\{P_{1}, P_{2}, P_{3}\right\} \subseteq \mathbb{P}^{2}\left(P_{1}, P_{2}\right.$ can be fixed arbitrarily and then up to automorphism of \mathbb{P}^{2} fixing Q_{1}, Q_{2} and $\left\{P_{1}, P_{2}\right\}$ there is only one choice for $\left.P_{3}\right)$. Notice that $\bar{\eta}$ fixes B and M and acts on $\left\{L_{1}, L_{1}^{\prime}, L_{2}, L_{2}^{\prime}, L_{3}, L_{3}^{\prime}\right\}$, hence descends to $\widetilde{\eta} \in$ Aut $\mathbb{P}^{2}=\theta(\bar{S})$ fixing Q_{1}, Q_{2} and $\left\{P_{1}, P_{2}, P_{3}\right\}$. The automorphism of \mathbb{P}^{2} is defined uniquely by specifying the images of four points in general position, so Aut S^{\prime} is isomorphic with a subgroup of the group of permutations of three elements. However, σ defined in 3.2.7, which fixes Q_{1}, Q_{2} and changes P_{1} with P_{2}, does not fix P_{3}, hence Aut $S^{\prime}<\mathbb{Z}_{3}$. We conclude that Aut $S^{\prime} \cong \mathbb{Z}_{3}$, where the generator in the coordinates as before is given by

$$
\left(\begin{array}{lll}
1 & -1 & 0 \\
0 & -\epsilon & 0 \\
0 & -\epsilon & 1
\end{array}\right),
$$

where $\epsilon=-\zeta_{3}$ for some primitive third root of unity ζ_{3}.
Remark. Let S^{\prime} be of type (Y2c). Notice that using the ruling given by $F_{\infty}=T_{1}+2 B+T_{3,3}$ we found an exceptional S_{0}-component M intersecting $T_{3,1}$ and $T_{2,3}$. Similarly using the ruling given by $F_{\infty}^{\prime}=T_{1}+2 B+T_{2,3}$ we find an exceptional S_{0}-component M^{\prime} intersecting $T_{2,1}$ and $T_{3,3}$. Now one can check that the ruling of type (Y2c)' given by $T_{2,3}+2 B+T_{3,3}$ has precisely five exceptional S_{0}-components and precisely three of them, say L_{1}, L_{2} and L_{3}, are disjoint from $M, M^{\prime}, T_{2,1}, T_{3,1}$ and from each other. After contracting the divisor $B+M+M^{\prime}+L_{1}+L_{2}+L_{3}$ the image of \bar{S} has $b_{2}=3$ and $T_{2,1}$ and $T_{3,1}$ became exceptional. Contracting them we get a morphism $\theta: \bar{S} \rightarrow \mathbb{P}^{2}$, such that $\theta(\widehat{E})$ is a conic and $\theta(D)$ is a sum of five lines. Moreover, θ is Aut S^{\prime}-equivariant. Then one shows as above that Aut $S^{\prime} \cong \mathbb{Z}_{2}$.

Chapter 4

$$
\bar{\kappa}\left(S_{0}\right)=-\infty
$$

In this chapter we assume that $\bar{\kappa}\left(S_{0}\right)=-\infty$, which implies that $\bar{\kappa}\left(S^{\prime}\right)=-\infty$. This is the simplest case and it was analyzed before (assuming affiness and logarithmicity) by Miyanishi and Sugie ([MS91, 2.5-2.8]). For completeness we recover their results.
Remark. We warn that in MS91 an unusual definition of the Kodaira dimension of a singular surface is used, i.e. it is identified with the Kodaira dimension of the smooth locus, not with the Kodaira dimension of the resolution.

By 1.6.11(i) there is an snc-completion (\bar{S}, D) with a \mathbb{P}^{1}-ruling $p: \bar{S} \rightarrow B$ onto some smooth complete curve B with D being p-minimal. If S_{0} is \mathbb{C}^{1} - or \mathbb{C}^{*}-ruled we assume that p extends this ruling and \widehat{E} is p-minimal.

4.1 Affine-ruled S_{0}

Lemma 4.1.1. If S_{0} is affine-ruled then S^{\prime} is rational and there exists exactly one fiber of p contained in D. Each other singular fiber has a unique (-1)-curve, which is an S_{0}-component. S^{\prime} has only cyclic singularities.
Proof. Clearly, the section D_{h} of p contained in $D+\widehat{E}$ is in fact contained in D, otherwise D is contained in some fiber and $Q(D)$ is negative definite. Hence \widehat{E} is vertical, so it is a rational tree (not necessarily connected). Then \bar{S}, D and B are rational by 2.1.3(vi). We have $\Sigma_{S_{0}}=\nu-1$ and $\nu \leq 1$ by 2.1.4(iii), hence $\Sigma_{S_{0}}=0$ and there exists exactly one fiber F_{∞} contained in D, which is smooth by p-minimality of D. Each singular fiber of p contains exactly one (-1)-curve. Indeed, if $D_{0} \subseteq D$ is a (-1)-curve contained in some fiber then by p-minimality of D it intersects D_{h} and two D-components contained in a fiber. But then $\mu\left(D_{0}\right)>1$, so for any fiber F we get $F D_{h} \geq \mu\left(D_{0}\right) D_{0} D_{h}>1$, a contradiction. Thus a singular fiber F has exactly one (-1)-curve, say C, which is the unique S_{0}-component, hence $\mu(C)>1$. There are exactly two components of multiplicity one in F and they are tips of F. The section D_{h} intersects one of them. If $\underline{F}-C$ is connected, then C is a tip of F and F is branched. If $\underline{F}-C$ is not connected, then its connected component not contained in D is just some connected component of \widehat{E}. Hence \widehat{E} is a sum of admissible chains, so S^{\prime} has only cyclic singularities.

Remark. In fact, singularities of any normal surface containing a cylinder (a product of a curve with \mathbb{C}^{1}) are cyclic by [MS80].

To not to introduce additional symbols, for the needs of the construction and lemma below we cancel the assumptions made about S, S_{0}, etc.
Construction 4.1.2. Take $\widetilde{S}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$ for some $n \in \mathbb{Z}$ and denote the section of the projection $\widetilde{p}: \widetilde{S} \rightarrow B$, where $B \cong \mathbb{P}^{1}$, corresponding to the inclusion of the second summand by D_{h}. Then $D_{h}^{2}=-n$. Let F_{∞} be a smooth fiber and D_{0} some section disjoint from D_{∞}. Choose k distinct points $x_{1}, \ldots, x_{k} \in$ $D_{0} \backslash F_{\infty}$ and blow each of them once. For each i make a connected sequence of blowups subdivisional for the respective fiber. This produces fibers F_{1}, \ldots, F_{k} with unique (-1)-curves $C_{i} \subseteq F_{i}$. Let D_{i} be the connected component of $\underline{F}_{i}-C_{i}$ intersecting D_{h}. By renumbering we can assume there is $m \leq k$, such
that C_{i} is a tip of F_{i} if and only if $i>m$. Assume also that $m \geq 1$ (for $m=0$ we would get a smooth surface). For $i \leq m$ put $\widehat{E}_{i}=\underline{F}_{i}-D_{i}-C_{i}$. Clearly, each \widehat{E}_{i} is a chain. Let \bar{S} be the preimage of \widetilde{S} under all these blowups and $p: \bar{S} \rightarrow B$ be the induced \mathbb{P}^{1}-ruling. Put $D=\underline{F}_{\infty}+D_{h}+\sum_{i=1}^{k} D_{i}, S=\bar{S}-D$ and $\widehat{E}=\sum_{i=1}^{m} \widehat{E}_{i}$. Let $S \rightarrow S^{\prime}$ be the morphism contracting \widehat{E}_{i} 's.

Lemma 4.1.3. The surface S^{\prime} constructed in 4.1.2 is a singular, normal \mathbb{Q}-homology plane of negative Kodaira dimension. Its smooth locus is affine-ruled. Conversely, each singular, normal \mathbb{Q}-homology plane with affine-ruled smooth locus (hence of negative Kodaira dimension) can be obtained by construction 4.1.2.

Proof. The last part of the statement is a consequence of lemma 4.1.1. By definition \widehat{E}_{i} 's are admissible chains, so S^{\prime} is normal and has only cyclic singularities. We have $\bar{\kappa}\left(S^{\prime}\right)=-\infty$, because S is affine ruled (cf. 1.6.10. We have $d(D)=-\prod_{i} d\left(D_{i}\right)$ by 1.1.1 (i), so $d(D) \neq 0$. This shows that the natural map $\mathcal{L}(D+E) \otimes \mathbb{Q} \rightarrow N S(\bar{S})$ (cf. 1.1) is injective. Hence the homomorphism $H_{2}(D \cup \widehat{E}) \rightarrow H_{2}(\bar{S})$ induced by inclusion is injective. Since $b_{2}(\widetilde{S})=2$, we have $b_{2}(\bar{S})=\# D+\# \widehat{E}$, so it is an isomorphism. It follows from 1.7.3 that S^{\prime} is affine. Since $H_{2}(\widehat{E}) \rightarrow H_{2}(\bar{S})$ and $H_{2}(D) \rightarrow H_{2}(\bar{S})$ induced by inclusions are injective, from the exact sequence of the pair (\bar{S}, D) we get $b_{1}(S)=b_{3}(S)=b_{4}(S)=0$ and $b_{2}(S)=\# \widehat{E}$. Using the exact sequence of a pair (S, \widehat{E}) we conclude that $b_{i}\left(S^{\prime}\right)=0$ for $i>0$.

4.2 Non affine-ruled S_{0}

Lemma 4.2.1. If $\bar{\kappa}\left(S_{0}\right)=-\infty$ and S_{0} is not affine-ruled then S_{0} has a structure of a Platonic fibration. Moreover, $S^{\prime} \cong \mathbb{C}^{2} / / G$ for some small, noncyclic group $G<G L(2, \mathbb{C})$.

Proof. We follow the arguments of KR07, §3]. Assume that S_{0} is not affine-ruled. The boundary divisor $D+\widehat{E}$ is not connected and by 2.2 .3 (ii) not negative definite, so 1.6 .11 (ii) implies that it contains a Platonically fibred open subset U, which is its almost minimal model. By 1.6.14 we have $\chi(U) \leq \chi\left(S_{0}\right)$. Furthermore, $S_{0}-U$ is a disjoint sum of s curves isomorphic to \mathbb{C} and s^{\prime} curves isomorphic to \mathbb{C}^{*} for some $s, s^{\prime} \in \mathbb{N}$ (cf. 1.6.2. It follows that $0=\chi(U)=\chi\left(S_{0}\right)-s=\chi\left(S^{\prime}\right)-q-s=1-q-s$, so $s=0$ and $q=1$. Then $s^{\prime} \leq 1$, so we get $s^{\prime}=0$, otherwise S_{0} is affine-ruled, a contradiction. Thus $S_{0}=U$ and by 1.6.11 (ii) $S^{\prime} \cong \mathbb{C}^{2} / G$, where G is a small noncyclic subgroup of $G L(2, \mathbb{C})$.

Remark. In the next chapter we give a general construction of $S^{\prime \prime}$ s with \mathbb{C}^{*}-ruled smooth locus. In particular, we will reconstruct all S^{\prime} 's with Platonic fibration on S_{0} (see 5.4.5).

Chapter 5

\mathbb{C}^{*}-rulings on $S_{0}, \bar{\kappa}\left(S^{\prime}\right)=-\infty$

5.1 Generalities on \mathbb{C}^{*}-rulings on S_{0}

In this chapter we assume that S_{0} is \mathbb{C}^{*}-ruled, $\bar{\kappa}\left(S_{0}\right) \geq 0$ and $\bar{\kappa}\left(S^{\prime}\right)=-\infty$. By Iitaka's easy addition theorem 1.6 .10 (i) we have $\bar{\kappa}\left(S_{0}\right) \neq 2$. We describe such S^{\prime} 's and show how to construct them. To give a construction we describe singular fibers of the extension of the ruling to some completion \bar{S} of S_{0} (cf. 5.2.1 5.3.3 5.4.5.

Remark 5.1.1. We comment on the assumption $\bar{\kappa}\left(S^{\prime}\right)=-\infty$. Consider the problem of classification of singular \mathbb{Q}-homology planes S^{\prime} with smooth locus S_{0} of non-generic Kodaira dimension. By the results of chapter 4 we can assume that $\bar{\kappa}\left(S_{0}\right) \geq 0$. If $\bar{\kappa}\left(S_{0}\right)=1$ then by the structure theorem 1.6.11 (iv) S_{0} is \mathbb{C}^{*}-ruled. By the results of chapter 3. excluding two well described exceptions (cf. 3.2.7), this is also the case if $\bar{\kappa}\left(S_{0}\right)=0$ (cf. 3.2 .2 . Therefore without loss of generality we can assume that S_{0} is \mathbb{C}^{*}-ruled. Let $p: \bar{S} \rightarrow B$ be an extension of this ruling. Since $\bar{\kappa}\left(S^{\prime}\right) \leq \bar{\kappa}\left(S_{0}\right), \bar{\kappa}\left(S^{\prime}\right) \neq 2$. If $\bar{\kappa}\left(S^{\prime}\right) \geq 0$ then \widehat{E} cannot be a section of p, hence $p_{\mid S}$ gives a \mathbb{C}^{*}-ruling of S^{\prime}. Moreover, by $2.2 .4 S^{\prime}$ is logarithmic in this case. These are exactly the assumptions made in [MS91, 2.9-2.17], where the possible fibers of \mathbb{C}^{*}-rulings are described and a structure theorem (without construction) is given. Notice that in MS91 $\bar{\kappa}\left(S^{\prime}\right)$ is defined as $\bar{\kappa}\left(S_{0}\right)$, and not as $\bar{\kappa}(S)$.

First we collect some well-known results about linear systems of divisors.
Proposition 5.1.2. Let D be an effective divisor on a complete smooth surface X.
(1) Assume $\kappa\left(K_{X}+D\right)=-\infty$. If D is snc and reduced or X is rational then for every divisor F and $n \gg 0$ one has $\kappa\left(F+n\left(K_{X}+D\right)\right)=-\infty$ (Fuj79, 2.5], cf. Miy01, 2.2.7]).
(2) If $h^{0}(D) \geq 2$ then the generic member of $|D|$ can be written as $R+A_{1}+\ldots+A_{n}$, where R is the fixed part of $|D|, A_{i}$'s are irreducible and $A_{i}^{2} \geq 0$.
(3) If D is snc and C is a (-1)-curve, such that $C D \leq 1$, then $\kappa\left(K_{X}+D+C\right)=\kappa\left(K_{X}+D\right)$.
(4) If X is rational and D is a smooth 0 -curve then there exists a \mathbb{P}^{1}-ruling of X, such that D is a fiber.
(5) If X is rational and $\left|K_{X}+D\right|=\emptyset$ then $p_{a}(D):=\frac{1}{2} D\left(K_{X}+D\right)+1 \leq 0$. In particular, D is a rational snc-tree and if $D=D_{1}+D_{2}$ for some reduced connected divisors D_{1}, D_{2} then $D_{1} D_{2} \leq 1$ (Rus80]).
(6) If X rational, not isomorphic to a Hirzebruch surface or \mathbb{P}^{2} and D is a rational snc-divisor then there exist smooth rational curves A_{i}, such that $D \sim A_{1}+\ldots+A_{n}$ and $A_{i}^{2}<0$ for every i ([KR99, 4.1]).

Proof. (2) We can assume that $|D|$ has no fixed components. Blow up in base points of $|D|$ until $\left|D^{\prime}\right|$, where D^{\prime} is the proper inverse image of D, is base-point free. It is enough to prove the statement for D^{\prime}, because blowdown can only increase the self-intersection numbers of curves. Bertini's theorem (cf. Har77, III.10.9]) implies that the generic member of $\left|D^{\prime}\right|$ is smooth. We can write $D^{\prime} \sim A_{1}+\ldots+A_{n}$ for disjoint A_{i} 's, so $A_{i}^{2}=0$.
(3) Since $C\left(K_{X}+D+C\right) \leq-1, n C$ is contained in the fixed part of $n\left(K_{X}+D+C\right)$, so $\operatorname{dim} \mid n\left(K_{X}+\right.$ $D+C)|\leq \operatorname{dim}| n\left(K_{X}+D\right) \mid$. The opposite is obvious.
(4) Since $D^{2}=0$ and X is rational, the Riemann-Roch theorem gives $h^{0}(D)=h^{0}(D)+h^{0}\left(K_{X}-D\right) \geq 2$. Thus $|D|$ contains a pencil $\left\{F_{t}: t \in \mathbb{P}^{1}\right\}$ containing D and for this reason it does not have fixed components. It follows from the equality $F_{t_{1}} F_{t_{2}}=0$ that it does not have fixed points too. Thus F_{t} 's are disjoint for different $t \in \mathbb{P}^{1}$. Let $F_{0}=D$. If $D-F_{\infty}=(\varphi)$ then φ defines a morphism $\varphi: X \rightarrow \mathbb{P}^{1}$. Its generic fiber F is smooth by Bertini's theorem, hence it is isomorphic to \mathbb{P}^{1}.
(6) We can assume that D is a smooth rational curve. Using induction the proof reduces easily to the case $A^{2}=0$. Then by (4) A gives a \mathbb{P}^{1}-ruling and there exists a singular fiber of this ruling linearly equivalent to A.

Definition 5.1.3. Let V, W and $W+V$ be connected snc-trees on a smooth complete surface X, such that V and W have no common components. We say that W contracts to W^{\prime} using V if and only if there exists a birational morphism $\alpha: X \rightarrow X^{\prime}$, such that $\alpha_{*} W=W^{\prime}, W^{\prime}$ is snc and all contractions in α take place inside $V+W$. If W contracts to W^{\prime} using $V=0$ then we simply say that W contracts to W^{\prime}. If W contracts to 0 we will say also that it contracts to a point.

Example 5.1.4. Let F be a fiber of a \mathbb{P}^{1}-ruling of a smooth complete surface. Then F contracts to a smooth 0 -curve (using 0). Assume that F has a unique (-1)-curve C. Then $\underline{F}-C=F_{0}+F_{1}$ where F_{0} and F_{1} are disjoint connected rational snc-trees. If F is branched let's assume also that F_{0} is the part containing curves with multiplicity $\mu=1$. Then F_{1} contracts to a point using $F_{0}+C$.

Remark. It is clear, that 5.1.2(4) works also for D which contracts to a smooth 0 -curve.
Lemma 5.1.5. (Pac-man lemma). Let V, W be as in 5.1.3. Assume that W contracts to a point using V. Then $\kappa\left(K_{X}+V+W\right)=\kappa\left(K_{X}+V\right)$.
Proof. Contraction of W to a point is obtained by a sequence of contractions of (-1)-curves that are non-branching in successive images of $V+W$, so $\kappa\left(K_{X}+V+W\right)$ does not change in this process. By 5.1.2 3$) ~ \kappa\left(K_{X}+V\right)$ does not change too.

Let $p: \bar{S} \rightarrow B$ be an extension of a \mathbb{C}^{*}-ruling of S_{0}. We assume that the boundary divisor $D+\widehat{E}$ is p-minimal (cf. 1.5. Let D_{h} and E_{h} be the divisors of horizontal components of D and \widehat{E} respectively. We have $D_{h} \neq 0$, otherwise D would be contained in a fiber, which contradicts 2.2.3 (ii).

Definition 5.1.6. After Fujita, we say that p is a gyoza if D_{h} is a 2-section, $E_{h}=0$ in this case. If $D_{h}+E_{h}$ consists of two 1 -sections we say that p is a sandwich. (Gyoza and sandwich are called respectively twisted and untwisted \mathbb{C}^{*}-fibrations in MS91.) This second kind of a \mathbb{C}^{*}-ruling can be of two types: type (I) when E_{h} and D_{h} are 1-sections and type (II) with two sections in D_{h}. In case of a gyoza and sandwich (II) \widehat{E} is vertical, so it is snc-minimal.

Definition 5.1.7. A singular fiber F of p will be called a column fiber if and only if it a chain $\underline{F}=A_{n}+\ldots+A_{1}+C+B_{1}+\ldots+B_{m}$ with a unique (-1)-curve C, such that $D_{h}+E_{h}$ intersects F exactly in A_{n} and B_{m}, in each once and transversally. A and B are called adjoint chains. Now $A=A_{1}+\ldots+A_{n}$ and $B=B_{1}+\ldots+B_{m}$ are admissible chains, so from 1.1.1 i) and the fact that $d(A)$ and $d^{\prime}(A)$ are coprime we get easily that $e(A)+e(B)=1$ and $d(A)=d(B)=\mu_{F}(C)$. In fact, we have also $\widetilde{e}(B)+\widetilde{e}(A)=1$ (see [Fuj82, 3.7]). We will say that F has weight $w=\widetilde{e}(A)$ with respect to the the component of $D_{h}+E_{h}$ intersecting A. (It is therefore of weight $\widetilde{e}(B)=1-w$ with respect to the second component of $D_{h}+E_{h}$).

Remark. In our considerations the middle (-1)-curve will be always an S_{0}-component.

We state an easy lemma describing singular fibers with $\sigma \leq 1$:
Lemma 5.1.8. (Fuj82, 7.5, 7.6]). Let F be a singular fiber of p. One has:
(i) if $\sigma(F)=0$ then $F=[2,1,2], p$ is a gyoza and $p(F)$ is a branching point of $p_{\mid D_{h}}$,
(ii) if $\sigma(F)=1$ and F does not contain a rivet (cf. 1.5.2) then either F is a column fiber or p is a gyoza and $p(F)$ is a branching point of $p_{\mid D_{h}}$.
(iii) if $\sigma(F)=1$ and F contains a rivet then D_{h} meets F in two different points.

5.2 Gyoza

Theorem 5.2.1. If S^{\prime} is a singular, normal \mathbb{Q}-homology plane of negative Kodaira dimension with \mathbb{C}^{*} ruled smooth locus of non-negative Kodaira dimension then this ruling can be assumed to be of type sandwich (I) or (II).

Proof. Assume that $p: \bar{S} \rightarrow B$ is a gyoza. Then \widehat{E} is vertical, hence rational, so by 2.2.3 D is a rational tree and \bar{S} and B are rational. By 2.1.3(v) and 2.1.4 (iii) $\Sigma_{S_{0}}=\nu-1$ and $\nu \leq 1$, hence $\Sigma_{S_{0}}=0$ and $\nu=1$. Let F_{∞} be the unique fiber contained in D. Let F_{1}, \ldots, F_{n} be all column fibers of p. Since no F_{i} can contain components of \widehat{E}, there is another singular fiber, call it F_{0}. We state and prove successive statements.
(1) $F_{\infty}=[2,1,2], F_{0}$ is unique and contains $\widehat{E} . D_{h}$ is not contained in any maximal twig of D.

Proof. By 5.1 .8 (i) $F_{\infty}=[2,1,2]$ and F_{∞} contains a branching point of $p_{\mid D_{h}}$. By simply connectedness of D, F_{0} does not contain a rivet, so by 5.1.8(ii) it contains a branching point of $p_{\mid D_{h}}$ too. Since $p_{\mid D_{h}}$ is a 2-covering, it has exactly two branching points by Hurwitz formula, so F_{0} is unique, hence contains \widehat{E}.

Since $\mathcal{N}=\left(K_{\bar{S}}+D+\widehat{E}\right)^{-}$is effective and any fiber F of p satisfies $F \mathcal{N}=F\left(K_{\bar{S}}+D+\widehat{E}\right)-F\left(K_{\bar{S}}+\right.$ $D+\widehat{E})^{+}=-F\left(K_{\bar{S}}+D+\widehat{E}\right)^{+} \leq 0$, we get $F \mathcal{N}=0$, so \mathcal{N} is vertical. By 1.6.9(i) it follows that D_{h} is not contained in any maximal twig of D.
(2) $n=0$.

Proof. Let's contract successively all (-1)-curves C in F_{0} satisfying $C D \leq 1$ (if there are any). This includes non-branching (-1)-curves in D. At each step of the contraction process the image of D remains snc. Denote the images of D, F_{0} and \bar{S} by $\widetilde{D}, \widetilde{F}_{0}$ and \widetilde{S} respectively. Let \widetilde{p} be the ruling induced from p. We have $\kappa\left(K_{\widetilde{S}}+\widetilde{D}\right)=\kappa\left(K_{\bar{S}}+D\right)$ by 5.1.5. Let F be a smooth fiber of \widetilde{p}. By 5.1.2 (1) $\left|F+k\left(K_{\widetilde{S}}+\widetilde{D}\right)\right|=\emptyset$ for $k \gg 0$ and simultaneously $\left|F+K_{\widetilde{S}}+\widetilde{D}\right| \neq \emptyset$, because $F+\widetilde{D}$ contains a loop (cf. 5.1.2(5)). Let m be a maximal natural number, such that $\left|F+m\left(K_{\widetilde{S}}+\widetilde{D}\right)\right| \neq \emptyset$. There exist curves $A_{l}, l=1, \ldots, t$, such that $F+m\left(K_{\widetilde{S}}+\widetilde{D}\right) \sim A_{1}+\ldots+A_{t}$. Since $\left|\sum_{i=1}^{t} A_{i}+K_{\widetilde{S}}+\widetilde{D}\right|=\emptyset$ by maximality of m, for each i we get $\left|A_{i}+K_{\widetilde{S}}\right|=\emptyset$ and $\left|A_{i}+K_{\widetilde{S}}+\widetilde{D}\right|=\emptyset$, so A_{i} are smooth rational curves and $A_{i} \widetilde{D} \leq 1$ by 5.1.2(5). Now by 5.1.2 (6) we can assume $A_{i}^{2}<0$. We have $F\left(\sum_{i=1}^{t} A_{i}\right)=F\left(F+m\left(K_{\widetilde{S}}+\widetilde{D}\right)\right)=0$, which implies that every A_{i} is vertical. If $K_{\widetilde{S}}\left(K_{\widetilde{S}}+\widetilde{D}\right) \leq 0$ then $-2=K_{\widetilde{S}} F \geq K_{\widetilde{S}}\left(F+m\left(K_{\widetilde{S}}+\widetilde{D}\right)\right)=\sum_{i=1}^{t} K A_{i}$, so for some A_{i}, say $A_{1}, K_{\widetilde{S}} A_{1}<0$. Then A_{1} would be a vertical (-1)-curve and $A_{1} \widetilde{D} \leq 1$, which is not possible for column fibers and F_{∞}. By the definition of \widetilde{F}_{0} this is in fact a contradiction, so we get $K_{\widetilde{S}}\left(K_{\widetilde{S}}+\widetilde{D}\right)>0$. Since \widetilde{D} is a rational tree, Riemann-Roch's theorem for a divisor $-\left(K_{\widetilde{S}}+\widetilde{D}\right)$ implies that $h^{0}\left(-\left(K_{\widetilde{S}}+\widetilde{D}\right)\right)+h^{0}\left(2 K_{\widetilde{S}}+\widetilde{D}\right) \geq K_{\widetilde{S}}\left(K_{\widetilde{S}}+\widetilde{D}\right)>0$. This gives $-\left(K_{\widetilde{S}}+\widetilde{D}\right) \geq 0$. Suppose $n \neq 0$. Let C be a (-1)-curve of some column fiber. Then from $C\left(-\left(K_{\widetilde{S}}+\widetilde{D}\right)\right)=-1$ we get $-\left(K_{\widetilde{S}}+\widetilde{D}+C\right) \geq 0$. Now by $5.1 .2(5) C \widetilde{D}=2$ implies $\left|K_{\widetilde{S}}+\widetilde{D}+C\right| \neq \emptyset$, hence $K_{\widetilde{S}}+\widetilde{D}+C=0$. From $D_{h}\left(K_{\widetilde{S}}+\widetilde{D}+C\right)=0$ we obtain $\beta_{\widetilde{D}}\left(D_{h}\right)=2$. However, a contribution of a column fiber and of F_{∞} to $\beta_{\widetilde{D}}\left(D_{h}\right)$ is equal to two and one appropriately, a contradiction.
(3) F_{0} is a chain.

Proof. Let $T \subseteq F_{0}$ be a component intersecting D_{h}. Since F_{0} contains a branching point of $p_{\mid D_{h}}, T$ is unique and has $\mu(T)=2$. Moreover, $T \subseteq D$, otherwise D_{h} would be a tip of D, contradicting (1). Let L be the unique S_{0}-component of F_{0}. We have $L^{2}=-1$, otherwise by p-minimality T would be the unique (-1)-curve of F_{0}, hence by 1.5.1. vi) \widehat{E} would consists of (-2)-curves in contradiction to 2.2.3. viii). Let ϕ be the composition of contractions of (-1)-curves in F_{0} starting from L until T becomes the unique (-1)curve. Denote the images of F_{0} and T by F_{0}^{\prime} and T^{\prime}. If in the backward process ϕ^{-1} recovering F_{0} from F_{0}^{\prime} some sprouting blowup is made then $L+\widehat{E}$ contracts to a point using D, a contradiction with 5.1.5. Suppose F_{0}^{\prime} is branched. Then by 1.5 .1 vi) T^{\prime} is a tip of F_{0}^{\prime}. Since ϕ consists only of sprouting blowups, T is a tip of F_{0} and $D \cap F_{0}$ is a chain, a contradiction with (1). Thus F_{0} is a chain and $F_{0}^{\prime}=[2,1,2]$.
(4) $D_{h}^{2}=0$.

Proof. Let D_{h}^{\prime} be the image of D_{h} after contraction of F_{0} and F_{∞} to smooth fibers. Since ϕ does not touch $D_{h}, D_{h}^{\prime 2}=D_{h}^{2}+4$. Now the image of \bar{S}, call it \widetilde{S}, is a Hirzebruch surface, thus $K_{\widetilde{S}}^{2}=8$. Let F be a fiber of the induced \mathbb{P}^{1}-ruling of \widetilde{S}. Since $D_{h}^{\prime} F=2$ and D_{h}^{\prime} is smooth and rational, we check easily that $K_{\widetilde{S}}+D_{h}^{\prime} \equiv-F$, so $K_{\widetilde{S}} D_{h}^{\prime}=-6$ and we get $D_{h}^{2}=D_{h}^{\prime 2}-4=0$.

Now 5.1.2 (4) gives another \mathbb{P}^{1}-ruling of \bar{S} with D_{h} as a fiber. This is a \mathbb{C}^{*}-ruling (sandwich of type (II)) of S_{0} with T and the (-1)-curve of F_{∞} as sections.

5.3 Sandwich II

Assume $p: \bar{S} \rightarrow B$ is a sandwich of type (II) (cf. 5.1.6. \widehat{E} is vertical, so by 2.2 .3 (iv) D is a rational tree and \bar{S} and B are rational. Write $D_{h}=D_{0}+D_{\infty}$. By 2.1.3(v) and 2.1.4 (iii) $\Sigma_{S_{0}}=\nu \leq 1$.

Lemma 5.3.1. There is a unique smooth fiber F_{∞} contained in D and there are two singular fibers (see Fig. 5.1), F_{0} and $F_{1} . F_{1}$ is a column fiber, F_{0} is a chain with two (-1) curves, none of which is a tip of F_{0}, and \widehat{E} is a chain between them. The sections D_{0} and D_{∞} are disjoint and intersect F_{0} in tips. At least one of them has negative self-intersection.
Proof. Let $F_{1}, F_{2}, \ldots, F_{n}$ be all column fibers of p. They do not contain components of \widehat{E}, so there exists another singular fiber F_{0}. We state and prove successive statements.
(1) F_{0} is unique and contains $\widehat{E} . D_{0}$ and D_{∞} are not contained in maximal twigs of D.

Proof. If $\Sigma_{S_{0}}=\nu=1$ then F_{0} does not contain a rivet by simply connectedness of D, so $\sigma\left(F_{0}\right)=2$ by 5.1.8 hence F_{0} is unique. If $\Sigma_{S_{0}}=\nu=0$ then F_{0} contains a rivet by 5.1.8. hence is unique by simply connectedness of D.

Since $F \mathcal{N}=-F(K+D+\widehat{E})^{+} \leq 0$ and \mathcal{N} is effective, we get $F \mathcal{N}=0$, so \mathcal{N} is vertical. By 1.6.9 (i) we get that D_{0} and D_{∞} cannot be contained in maximal twigs of D.
(2) $\Sigma_{S_{0}}=\nu=1$. If $n>0$ then $n=1, \widetilde{F}_{0}$ (defined below) is smooth and does not contain a rivet.

Proof. Clearly, $\Sigma_{S_{0}}=\nu=n=0$ is impossible by (1), so we can assume $n>0$. Let ϕ be the composition of subsequent contractions of (-1)-curves C in F_{0} satisfying $C D \leq 1$ (if there are any). Let $\widetilde{F}_{0}, \widetilde{D}, \widetilde{S}$ be the images of F_{0}, D and \bar{S} and \widetilde{p} the induced ruling of \widetilde{S}. Then \widetilde{D} is \widetilde{p}-minimal and \widetilde{F}_{0} contains a rivet if and only of F_{0} does. By the definition of \widetilde{F}_{0} we have $\kappa\left(K_{\widetilde{S}}+\widetilde{D}\right)=\kappa\left(K_{\bar{S}}+D\right)$. Since \bar{S} is rational, repeating word by word the arguments from 5.2.1 (2) we get $-K_{\widetilde{S}}-\widetilde{D}>0$. Let C be a (-1)-curve of some column fiber. From $C\left(-\left(K_{\widetilde{S}}+\widetilde{D}\right)\right)=-1$ we get $-\left(K_{\widetilde{S}}+\widetilde{D}+C\right) \geq 0$. Now $C \widetilde{D}=2$ implies $\left|K_{\widetilde{S}}+\widetilde{D}+C\right| \neq \emptyset$, hence $K_{\widetilde{S}}+\widetilde{D}+C=0$. We obtain $0=D_{0}\left(K_{\widetilde{S}}+\widetilde{D}+C\right)=D_{0}\left(\widetilde{D}-D_{0}\right)-2$, so $\beta_{\widetilde{D}}\left(D_{0}\right)=2$ (similarly $\beta_{\widetilde{D}}\left(D_{\infty}\right)=2$). We argue that \widetilde{F}_{0} is smooth. If $\nu=0$ then $n \geq 2$ by (1), so \widetilde{F}_{0} cannot contain any \widetilde{D}-components, hence \widetilde{F}_{0} is smooth by 5.1.8 On the other hand, if $\nu=1$ then the assumption $n>0$ implies that again \widetilde{F}_{0} contains no \widetilde{D}-components, hence by the definition of \widetilde{F}_{0} every (-1)-curve contained in \widetilde{F}_{0} intersects both sections contained in \widetilde{D}. Therefore, if F_{0} is singular then it contains exactly one (-1)-curve L, so $\mu(L)>1$ and L intersects 1 -sections of p, which is impossible. Now we need only to prove $\Sigma_{S_{0}}=\nu=1$.

Suppose $\Sigma_{S_{0}}=\nu=0$. Consider the image F_{0}^{\prime} of F_{0} before the last contraction of ϕ. Write $F_{0}^{\prime}=U_{1}+U_{1}$, where U_{1} is a birational transform of \widetilde{F}_{0}. Since F_{0}^{\prime} contains a rivet, U_{2} is an image of some D-component. Now instead of contracting U_{2} we can contract U_{1}, which shows that $L+\widehat{E}$, where L is the unique S_{0}-component of F_{0}, contracts to a point using D, a contradiction.
(3) $n=1 . F_{0}$ is a chain with two (-1)-curves, they are S_{0}-components and are not tips of F_{0}.

Proof. Let T_{0} and T_{∞} be the components of F_{0} meeting D_{0} and D_{∞} respectively. They are both D components, otherwise D_{0} or D_{∞} would be contained in some maximal twig of D by (2). They have $\mu\left(T_{0}\right)=\mu\left(T_{\infty}\right)=1$ and since F_{0} does not contain a rivet, they are contained in different connected components of $D \cap F_{0}, W_{0}$ and W_{∞} respectively. By p-minimality of D it follows that (-1)-curves in F_{0} are S_{0}-components. Now if there is only one (-1)-curve in F_{0} then T_{0} and T_{∞} are tips of F_{0} and at least one of W_{0} or W_{∞} is a chain, which contradicts (1). Denote the (-1)-curves of F_{0} by C_{0} and C_{∞}, they are not tips of F_{0}, because $\underline{F}_{0}-C_{0}-C_{\infty}$ has exactly three connected components. F_{0} is simply connected, so
one of the S_{0}-components, say C_{0}, satisfies $C_{0} D=1$, say $C_{0} W_{0}=1$. Let's make a connected sequence of contractions of (-1)-curves in F_{0} starting from C_{0} until the number of (-1)-curves in the fiber decreases. This process is connected, so it cannot touch C_{∞}, because $W_{\infty} \neq 0$. Hence W_{∞} is not touched and we get that all contracted curves have intersection with the proper image of D smaller than two, so the image of F_{0}, denote it by F_{0}^{\prime}, does not contain a rivet. It follows that F_{0}^{\prime} is a column fiber, so T_{∞} is a tip of W_{∞}, which implies that $n \neq 0$ by (1).

Suppose F_{0} is not a chain. Consider the backward connected sequence of blowups recovering F_{0} from F_{0}^{\prime}. Let R be the last curve produced in this sequence, such that the respective preimage of F_{0}^{\prime}, call it $F_{0}^{\prime \prime}$, is not branched. Then $\mu(R)>1$, so the points of intersection of birational transforms of D_{0} and D_{∞} with $F_{0}^{\prime \prime}$ do not belong to R. It follows that \widehat{E} and R are contained in different connected components of $\underline{F}_{0}-C_{0}$, so $R \subseteq D$ and $\widehat{E}+C_{0}$ contracts to a point using D, a contradiction.
(4) T_{0} and T_{∞} are tips of F_{0}.

Proof. Since F_{0} is a chain, the backward sequence of blowups as above begins on a tip of F_{0}^{\prime}. Moreover, since C_{0} and C_{∞} are not tips of F_{0}, the set Λ of components of multiplicity one contained in F_{0} has three connected components, two of them are tips of F_{0}. These are exactly T_{0} and T_{∞}, otherwise $\widehat{E}+C_{0}$ would contract to a point using D.
(5) At least one of D_{0} or D_{∞} has negative self-intersection.

Proof. Assume $D_{0}^{2} \geq 0$. We can contract F_{1} and F_{0} to smooth fibers without touching D_{0}. Let D_{∞}^{\prime} be the proper image of D_{∞} after contractions. From (4) it follows that D_{0} and D_{∞}^{\prime} are disjoint. We get on the Hirzebruch surface $D_{0}-D_{\infty}^{\prime} \equiv F$, so $D_{\infty}^{2}<D_{\infty}^{\prime 2}=-D_{0}^{2} \leq 0$.

Figure 5.1: sandwich II

We will show now that there are no more restrictions. As we did in chapter 4 for the needs of the construction and lemma below we cancel the assumptions made about S, S_{0}, etc.

Construction 5.3.2. Pick $n \in \mathbb{N}, s \in \mathbb{N}_{+}$and $w_{1}, w_{0}, w_{\infty} \in \mathbb{Q} \cap(0,1)$. Let $\mathbb{F}_{n}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-n)\right)$ be the Hirzebruch surface and $\widetilde{p}: \mathbb{F}_{n} \rightarrow \mathbb{P}^{1}$ the \mathbb{P}^{1}-ruling. Let D_{0} and D_{∞} be two sections corresponding to the first and the second summand of the bundle. We have $D_{0}^{2}=n$ and $D_{\infty}^{2}=-n$. Choose three different points on D_{0} and denote the fibers of \widetilde{p} containing them by $F_{\infty}, \widetilde{F}_{1}$ and \widetilde{F}_{0}. By a connected sequence of blowups starting from $D \cap \widetilde{F}_{1}$ produce a column fiber F_{1} which has weight w_{1} with respect to the birational transform of D_{0}. Let C_{1} be its (-1)-curve. Proceed analogously with \widetilde{F}_{0} and produce a column fiber with weight w_{∞} with respect to D_{∞}, denote its (-1)-curve by C_{∞}. Make a sequence of s sprouting blowups
in the same fiber, each time on the point of intersection with the birational transform of D_{0}. Denote the produced curves subsequently by U_{1}, \ldots, U_{s}. Finally, make a connected sequence of subdivisional blowups in F_{0}^{\prime} starting from $U_{s-1} \cap U_{s}$, denote the resulting singular fiber by F_{0} and its second (-1)-curve (i.e. different form C_{∞}) by C_{0}. By construction $\underline{F}_{0}-C_{0}-C_{\infty}$ has three connected components. Denote the one intersecting C_{0} and C_{∞} by \widehat{E}, and the one intersecting D_{i} by $W_{i}(i \in\{0, \infty\})$. We give a natural order to W_{0} and W_{∞}, such that their components intersecting D_{0} and D_{∞} are the last ones. (Hence $\left.\widetilde{e}\left(W_{\infty}\right)=w_{\infty}\right)$. Since we can obtain any positive non-integral proper fraction as $\widetilde{e}\left(W_{0}\right)$, we can assume that $\widetilde{e}\left(W_{0}\right)=w_{0}$. We have $D_{0}^{2}=n-2-s$.

Let \bar{S} be the obtained surface and $p: \bar{S} \rightarrow \mathbb{P}^{1}$ the induced ruling. Let $D=D_{0}+D_{\infty}+\underline{F}_{\infty}+W_{0}+$ $W_{\infty}+\left(\underline{F}_{1}-C_{1}\right)$. Define $S=\bar{S}-D, S_{0}=S-\widehat{E}$ and $S^{\prime}=S / \widehat{E}$ (as a topological space). We will show below that $N S_{\mathbb{Q}}\left(S_{0}\right)=0$, hence by 1.7.3 S^{\prime} and the quotient morphism can be realized in the algebraic category.

The order given to W_{0} and W_{∞} agrees with their order as twigs of D (cf. 1.3). Let's fix a natural order on \widehat{E}, such that C_{0} intersects the first curve of \widehat{E}. Define $\alpha=1-\frac{1}{\mu_{1}}-\frac{1}{\min \left(\mu_{0}, \mu_{\infty}\right)}$, where $\mu_{i}=\mu\left(C_{i}\right)$ is the multiplicity of a respective curve in a fiber. Of course, α is determined by w_{1}, w_{0}, e_{∞} and s and it can be computed easily in each particular case.

Theorem 5.3.3. The surface S^{\prime} constructed in 5.3.2 is a singular, normal \mathbb{Q}-homology plane of negative Kodaira dimension. $\bar{\kappa}\left(S_{0}\right)$ is 0 or 1 and it is determined by the sign of the number $\alpha=1-\frac{1}{\mu_{1}}-\frac{1}{\min \left(\mu_{0}, \mu_{\infty}\right)}$ (i.e. $\bar{\kappa}\left(S_{0}\right)=\operatorname{sgn} \alpha$). Moreover, each singular, normal \mathbb{Q}-homology plane S^{\prime} with $\bar{\kappa}\left(S^{\prime}\right)=-\infty$ and $\bar{\kappa}\left(S_{0}\right) \geq 0$, which has a \mathbb{C}^{*}-ruling of type sandwich (II) can be obtained by construction 5.3.2.

Proof. As for the last part of the statement notice that we can contract both F_{0} and F_{1} to smooth fibers without touching the negative section. Then it is clear, that the construction 5.3 .2 is forced by lemma 5.3.1

By definition \widehat{E} is contained in a fiber, so $Q(\widehat{E})$ is negative definite. To apply 1.7.3 and infer that S^{\prime} is normal and affine one needs to prove that $N S_{\mathbb{Q}}\left(S_{0}\right)=0$. Since $b_{2}\left(\mathbb{F}_{n}\right)=2$, it follows from the construction that $b_{2}(\bar{S})=\# D+\# \widehat{E}$, so it is enough to show that the classes of irreducible components of $D+\widehat{E}$ are independent in $N S(\bar{S})$. If there exists a divisor $T=\sum_{i} d_{i} D_{i}+\sum_{j} e_{j} E_{j}$ for $D_{i} \subseteq D$ and $E_{j} \subseteq \widehat{E}$ which is numerically trivial, then $T=\sum_{i} d_{i} D_{i}$, otherwise $0=T \sum_{j} e_{j} E_{j}=\left(\sum_{j} e_{j} E_{j}\right)^{2}<0$ by negative definiteness of $Q(\widehat{E})$. Assume $d_{i} \neq 0$. None of the components of $W_{0}+W_{\infty}$ can be a component of T. Indeed, for example let $U \subseteq W_{0}$ be the smallest (with the respect to the natural ordering of a maximal twig) component contained in T. If U is the first component of W_{0} we get a contradiction by multiplying by C_{0}, otherwise by a component of W_{0} smaller than U and intersecting U. Now multiplying T by the last components of W_{0} and W_{∞} we see that T is vertical. From the properties of the intersection matrix of a fiber it follows that $T^{2}=0$ implies $T=f F_{\infty}$ for some $f \in \mathbb{Q}$, because F_{∞} is the only fiber contained in D. Intersecting with D_{0} we get $T=0$. We infer that $H_{2}(D \cup \widehat{E}) \rightarrow H_{2}(\bar{S})$ is a monomorphism, hence an isomorphism.

We check that S^{\prime} is \mathbb{Q}-acyclic. We know that $H_{2}(D) \rightarrow H_{2}(\bar{S})$ and $H_{2}(\widehat{E}) \rightarrow H_{2}(\bar{S})$ induced by inclusions are monomorphisms. We see that $b_{1}(D)=b_{1}(\widehat{E})=0$ and $b_{3}(\bar{S})=b_{1}(\bar{S})=0$, because \bar{S} is rational. The exact sequence of a pair (\bar{S}, D) together with Lefschetz duality give $b_{1}(S)=b_{3}(S)=b_{4}(S)=$ 0 and $b_{2}(S)=\# \widehat{E}$. Then the exact sequence of a pair (\widehat{E}, S) gives $b_{1}\left(S^{\prime}\right)=b_{2}\left(S^{\prime}\right)=b_{3}\left(S^{\prime}\right)=b_{4}\left(S^{\prime}\right)=0$.

We analyze the Kodaira dimension. For $\xi \in \mathbb{Q}$ define a divisor $X_{\xi}=(\xi+1) \mathrm{Bk} W_{0}+\xi C_{0}+(\xi+1) \mathrm{Bk} \widehat{E}+$ $(\rho+1) \operatorname{Bk} \widehat{E}^{t}+\rho C_{\infty}+(\rho+1) \operatorname{Bk} W_{\infty}$ (notice the ordering of \widehat{E} defined above), where $\rho=(\xi+1) \frac{\mu_{\infty}}{\mu_{0}}-1$. For all irreducible components T of F_{0} we have $T(K+D+\widehat{E})=T X_{\xi}=0$. This is clear for F_{0} and follows from the definition of a bark for all non-exceptional curves in F_{0}, so we only check it for C_{0} : by 1.3 .2 (ii) we get $C_{0} X_{\xi}=(\xi+1) e\left(W_{0}\right)-\xi+(\xi+1) e(\widehat{E})+(\rho+1) \frac{1}{d(\widehat{E})}$. By 5.1.7 and 1.1.1 (i) $\mu_{\infty}=d\left(W_{\infty}\right)=$ $d\left(W_{0}+C_{0}+\widehat{E}\right)=\mu_{0} d(\widehat{E})\left(1-e\left(W_{0}\right)-e(\widehat{E})\right)$, so $C_{0} X_{\xi}=1=L(K+D+\widehat{E})$. We now define the effective \mathbb{Q}-divisor X as $X=X_{\frac{\mu_{0}}{\mu_{\infty}}-1}$ if $\mu_{0} \geq \mu_{\infty}$ and as $X=X_{0}$ if not. In this way $\operatorname{Supp} X \subsetneq \operatorname{Supp} F_{0}$.

Let Y be the sum of barks of maximal twigs of D contained in F_{1}. We define $\mathcal{P}=K+D+\widehat{E}-Y-X$, then $T \mathcal{P}=0$ for all vertical curves. Since $N S(\bar{S})$ is generated by fiber components together with D_{0} then it follows that $\mathcal{P}-\left(\mathcal{P} D_{0}\right) F \equiv 0$. We compute $\mathcal{P} D_{0}=1-D_{0}(Y+X)=1-\frac{1}{\mu_{1}}-\frac{\xi+1}{\mu_{0}}=\alpha$. Clearly, $\alpha \geq 0$, so $K+D+\widehat{E} \equiv \alpha F+Y+X$ and in fact $K+D+\widehat{E} \sim \alpha F+Y+X$, because \bar{S} is rational.

Thus $\bar{\kappa}\left(S_{0}\right) \geq 0$. Moreover, $Y+X$ is effective and negative definite, so $(K+D+\widehat{E})^{+}=\mathcal{P}$ from the uniqueness of Zariski decomposition. We see that \widetilde{F}_{0} defined in construction 5.3.2 is the same as defined in 5.3.1 (3) if we put $C=C_{0}$. Let \widetilde{S} and \widetilde{D} be as in 5.3.1. 3). If $K_{\widetilde{S}}+\widetilde{D}$ has a Zariski decomposition then $F_{\infty} \subseteq \operatorname{Supp}\left(K_{\widetilde{S}}+\widetilde{D}\right)^{-}$by 1.6 .9 (i), because D_{0} is non-branching in \widetilde{D}. This gives a contradiction, because $F_{\infty}^{2}=0$. Thus $\bar{\kappa}(S)=\kappa\left(K_{\bar{S}}+D\right)=\kappa\left(K_{\widetilde{S}}+\widetilde{D}\right)=-\infty$.
Remark. Since \widehat{E} is a chain, the unique singular point of S^{\prime} is a cyclic singularity, i.e. it is of type $\mathbb{C}^{2} / / G$ for a small cyclic group $G<G L(2, \mathbb{C})$. We have $|G|=d(\widehat{E})$ by 1.4.1(i).
Remark. Our result expressing the $\bar{\kappa}\left(S_{0}\right)$ in terms of α contradicts the result of Miyanishi and Sugie MS91, Lemma $2.15(2)]$. This is because their formula computing the Kodaira dimension ($\bar{\kappa}(X)$ is our $\bar{\kappa}\left(S_{0}\right)$) is wrong, it does not take into account the fiber F_{1} (their F_{0}).

5.4 Sandwich I

5.4.1. Notice that if $p: \bar{S} \rightarrow B$ is a sandwich of type (I), then $p_{\mid S}$ is a \mathbb{C}^{1}-ruling, so the assumption $\bar{\kappa}\left(S^{\prime}\right)=-\infty$ is satisfied automatically. Let $E_{h}^{2}=-N<0$. Let $F_{1}, F_{2}, \ldots, F_{n}$ be all the column fibers of p. Denote their weights with respect to E_{h} (cf. 5.1.7) by $w_{1}, w_{2}, \ldots, w_{n}$. Let C_{i} be the unique (-1)-curve of F_{i}, put $\mu_{i}=\mu\left(C_{i}\right)$.

Notice that by 2.2 .3 (iv) the rationality of one of \bar{S}, \widehat{E}, D or B implies the rationality of all others. We remind that the rationality of \widehat{E} as a divisor does not imply that the singularities of S^{\prime} are rational (cf. 1.4.2.

Lemma 5.4.2. If the morphism p is a sandwich of type (I), then its singular fibers are column fibers with weights satisfying $\sum_{i=1}^{n} w_{i}<N$ (see Fig.5.2). There exists a linear bundle \mathcal{L} over B with $\operatorname{deg} \mathcal{L}=-N<0$, such that \bar{S} is a blowup of $\mathbb{P}\left(\mathcal{O}_{\mathcal{B}} \oplus \mathcal{L}\right)$ and p is the morphism induced by the projection onto B.

Proof. Since $\widehat{E} \cap D=\emptyset, \nu=0$ and there are no rivets in $D+\widehat{E}$. By 2.1.4 (iii) $\Sigma_{S_{0}}=0$, hence every fiber has exactly one S_{0}-component. By 5.1 .8 (ii) every singular fiber is a column fiber. We contract all singular fibers to smooth fibers (i.e. contract subsequently their (-1 -curves) without touching E_{h}. Denote the image of \bar{S} by \widetilde{S} and the image of D_{h} by \widetilde{D}_{h}. Then E_{h} is disjoint from \widetilde{D}_{h}. Since $E_{h}^{2}=-N<0$, we can write $\widetilde{S}=\mathbb{P}\left(\mathcal{O}_{B} \oplus \mathcal{L}\right)$ for a line bundle \mathcal{L} with $\operatorname{deg} \mathcal{L}=-N<0$ (see [Har77, V.2]). Now \widetilde{D}_{h} and E_{h} are sections coming from the linear summands of the bundle. Let $E_{i} \subseteq F_{i}$ be the maximal twig of $\widehat{E}-E_{h}$ with its natural ordering as a twig of \widehat{E}. The matrix $Q(\widehat{E})$ is negative definite, so $0<\operatorname{det} Q(-\widehat{E})=d\left(E_{1}\right) d\left(E_{2}\right) \ldots d\left(E_{n}\right)\left(-E_{h}^{2}-\sum_{i=1}^{n} \widetilde{e}\left(E_{i}\right)\right)\left(\right.$ cf. 1.1.1(i)), hence $\sum_{i=1}^{n} w_{i}<N$, because $w_{i}=\widetilde{e}\left(E_{i}\right)$.

Corollary 5.4.3. If p is a sandwich of type (I) then S^{\prime} is contractible.
Proof. By 5.4.2 singular fibers are column fibers, so in each fiber there is a component of \widehat{E} of multiplicity one, hence by [Fuj82, 4.19] $\pi_{1}(S)=\pi_{1}(B)$. We can assume that the generators are contained in E_{h}, hence they are contracted when creating S^{\prime}, so $\pi_{1}\left(S^{\prime}\right)=0$. Thus by 2.1.3 vii)-(viii) and Whitehead's theorem S^{\prime} is contractible.

Again, for the needs of the construction and lemma below we cancel the assumptions made about S, S_{0}, etc.

Construction 5.4.4. Pick $n \in \mathbb{N}$ and for each $i=1, \ldots, n$ choose a number $w_{i} \in \mathbb{Q} \cap(0,1)$. Choose a positive integer N, such that $\sum_{i=1}^{n} w_{i}<N$. Let B be a complete curve of genus $g(B)$, such that $g(B)>0$ if n was chosen smaller than 3 . Define $\widetilde{S}=\mathbb{P}\left(\mathcal{L} \oplus \mathcal{O}_{B}\right)$, where \mathcal{L} is a line bundle over B of degree $\operatorname{deg} \mathcal{L}=-N$. Let $\widetilde{p}: \widetilde{S} \rightarrow B$ be the induced \mathbb{P}^{1}-fibration. Denote the sections induced by inclusions of the direct summands \mathcal{O}_{B} and \mathcal{L} by \widetilde{D}_{h} and E_{h}. Then $\widetilde{D}_{h}^{2}=N$ and $E_{h}^{2}=-N$. Choose n distinct points $x_{1}, \ldots, x_{n} \in \widetilde{D}_{h}$ and blow up each point once. For each i make a connected sequence of subdivisional blowups creating over x_{i} a column fiber F_{i}, such that its weight with respect to E_{h} is w_{i}. Denote the birational transform of \widetilde{D}_{h} by D_{h}. Write $\underline{F}_{i}=E_{i}+C_{i}+D_{i}$ where $C_{i}^{2}=-1, E_{i}$ and D_{i} are connected chains and $D_{i} \cap E_{h}=\emptyset$. Let μ_{i} be the multiplicity of C_{i} in F_{i}. Fix a natural order on each E_{i} and D_{i}

Figure 5.2: sandwich I
treated as a twigs of $\widehat{E}=E_{1}+\ldots+E_{n}+E_{h}$ and $D=D_{1}+\ldots+D_{n}+D_{h}$ respectively. Denote the obtained surface by \bar{S} and the induced \mathbb{P}^{1}-ruling by p. Define $S=\bar{S} \backslash D, S_{0}=S-\widehat{E}$ and $S^{\prime}=S / \widehat{E}$ (as a topological space). We will show below that $N S_{\mathbb{Q}}\left(S_{0}\right)=0$, hence by $1.7 .3 S^{\prime}$ and the quotient morphism can be realized in the algebraic category.

Remark. The additional assumption that $g(B)>0$ if $n<3$ is justified as follows. If $g(B)=0$ and $n<3$, then \widehat{E} is a chain, so it contracts either to a smooth point or to a cyclic singularity. Moreover, $\bar{\kappa}\left(S_{0}\right)=-\infty$ in this case (see the proof of 5.4.5). But then S_{0} is affine ruled (see 4.2.1), and appropriate S^{\prime} 's were described in 4.1.1

Theorem 5.4.5. The surface S^{\prime} constructed in 5.4.4 is a singular, normal, contractible surface of negative Kodaira dimension. $\bar{\kappa}\left(S_{0}\right)$ is determined by the sign of the number $\alpha=n-2+2 g(B)-\sum_{i=1}^{n} \frac{1}{\mu_{i}}$ (i.e. it is $-\infty$ for negative α, zero for $\alpha=0$ and one for $\alpha>0$). Moreover, each singular, normal \mathbb{Q}-homology plane of negative Kodaira dimension with smooth locus having $a \mathbb{C}^{*}$-ruling of type sandwich (I) can be obtained by construction 5.4.4.

Proof. The last part of the statement is a consequence of the lemma 5.4.2 (Notice that the assumption $\bar{\kappa}\left(S_{0}\right) \geq 0$ was not used there.)

The matrix $Q\left(\widehat{E}-E_{h}\right)$ is negative definite and $d(\widehat{E})=d\left(E_{1}\right) d\left(E_{2}\right) \cdots d\left(E_{n}\right)\left(N-\sum_{i=1}^{n} w_{i}\right)>0$, so by Sylvester's theorem $Q(\widehat{E})$ is negative definite. We have $d(D)=d\left(D_{1}\right) d\left(D_{2}\right) \cdots d\left(D_{n}\right)\left(-N+n-\sum_{i=1}^{n}(1-\right.$ $\left.w_{i}\right)$), so $d(D) \neq 0$. It follows that the classes of irreducible components of $D+\widehat{E}$ are independent in $N S(\bar{S})$, hence are a basis, because $b_{2}(\bar{S})=\# D+\# E$. We apply 1.7.3 and infer that S^{\prime} is normal and affine. By Iitaka's easy addition theorem 1.6 .10 we have $\bar{\kappa}\left(S_{0}\right) \leq 1$. Define an effective divisor $X=$ $\sum_{i=1}^{n}\left(\mathrm{Bk} D_{i}+\mathrm{Bk} E_{i}\right)$ and put $\mathcal{P}=K_{\bar{S}}+D+\overparen{E}-X$. For every irreducible curve T contained in the fibers of p the divisor X satisfies $T\left(K_{\bar{S}}+D+\widehat{E}\right)=T X$. For a general fiber F the divisor $\mathcal{P}-\left(\mathcal{P} D_{h}\right) F$ intersects trivially with D_{h} and all fiber components, hence $\mathcal{P} \equiv \alpha F$, because $\mathcal{P} D_{h}=n-2+2 g\left(D_{h}\right)-X D_{h}=\alpha$ by 1.3 .2 (ii) and 5.1.7. We get $K_{\bar{S}}+D+\widehat{E} \equiv \alpha F+X$. Now if $\alpha \geq 0$ then $K_{\bar{S}}+D+\widehat{E}$ is pseudo-effective, so $\bar{\kappa}\left(S_{0}\right) \geq 0$ by Miy01, 2.2.6]. Conversely, if $\bar{\kappa}\left(S_{0}\right) \geq 0$ then from $F\left(K_{\bar{S}}+D+\widehat{E}\right)=0$ it follows that the supports of $\left(K_{\bar{S}}+D+\widehat{E}\right)^{-}$and $\left(K_{\bar{S}}+D+\widehat{E}\right)^{+}$are contained in the fibers of p. Since $\mathcal{P}^{2} \geq 0$, we get $\left(K_{\bar{S}}+D+\widehat{E}\right)^{+} \equiv \beta F$ for some $\beta \geq 0$ and $\operatorname{Supp}\left(K_{\bar{S}}+D+\widehat{E}\right)^{-}=\operatorname{Supp} X$ by 1.6.9(i). Using the equivalence $\mathcal{P}+X \equiv\left(K_{\bar{S}}+D+\widehat{E}\right) \equiv\left(K_{\bar{S}}+D+\widehat{E}\right)^{+}+\left(K_{\bar{S}}+D+\widehat{E}\right)^{-}$we get $(\alpha-\beta) F \equiv\left(K_{\bar{S}}+D+\widehat{E}\right)^{-}-X$. The divisor on the right hand side is supported on Supp X and since $F^{2}=0$, its intersection matrix is not negative definite. Thus $\left(K_{\bar{S}}+D+\widehat{E}\right)^{-}=X$ and $\alpha=\beta \geq 0$. By 1.6.8 this proves that $\bar{\kappa}\left(S_{0}\right)$ is determined by the sign of α as stated.

Now we check that S^{\prime} is a \mathbb{Q}-acyclic (then it is contractible by 5.4.3). We know from the above that that the map $H_{2}(D+\widehat{E}) \rightarrow H_{2}(\bar{S})$ induced by inclusion is an isomorphism. Clearly, $H_{1}(D) \rightarrow H_{1}(\bar{S})$ and
$H_{1}(\widehat{E}) \rightarrow H_{1}(\bar{S})$ are monomorphism, because they are monomorphisms after composing with $H_{1}(p)$. The exact sequence of a pair (D, \bar{S}) gives $b_{4}(S)=b_{3}(S)=0, b_{2}(S)=\# \widehat{E}$ and $b_{1}(S)=b_{1}(\bar{S})=b_{1}(B)$. Then the exact sequence of a pair (\widehat{E}, S) gives $b_{1}\left(S^{\prime}\right)=b_{2}\left(S^{\prime}\right)=b_{3}\left(S^{\prime}\right)=b_{4}\left(S^{\prime}\right)=0$. Since we assumed that $g(B)>0$ if $n<3, S^{\prime}$ is singular.

Corollary 5.4.6. Let P be the image of \widehat{E} under the contraction morphism $S \rightarrow S^{\prime}$ as above. It is a topologically rational singularity if and only if $B \cong \mathbb{P}^{1}$. Furthermore:
(i) $\bar{\kappa}\left(S_{0}\right)=-\infty$ if and only if $\alpha<0, g(B)=0, n=3$ and $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ is up to order one of the Platonic triples (cf. 1.3.5). Moreover, the smooth locus of S^{\prime} has a structure of a Platonic fibration and P is a noncyclic singularity of quotient type. Conversely, each such S^{\prime} can be obtained by the construction above. (This complements the description given in 4.2.1).
(ii) Assume $\bar{\kappa}\left(S_{0}\right) \geq 0$. Then P is not of quotient type.
(iii) $\bar{\kappa}\left(S_{0}\right)=0$ if and only if either
(a) $g(B)=1$ and $n=0$ or
(b) $g(B)=0, n=4$ and $\mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=2$ or
(c) $g(B)=0, n=3$ and $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ is up to order one of $(2,3,6),(2,4,4),(3,3,3)$.

Proof. (i) If $\alpha<0$ then $\frac{n}{2} \leq \sum_{i=1}^{n}\left(1-\frac{1}{\mu_{i}}\right)<2(1-g(B))$, so $g(B)=0$ and $n \leq 3$, hence $n=3$ by the assumptions of the construction. Then $\sum_{i=1}^{3} \frac{1}{\mu_{i}}>1$, so $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ is up to order one of the Platonic triples. Thus S_{0} has a structure of a Platonic fibration and \widehat{E} is an admissible rational fork, because $N>\sum_{i=1}^{3} w_{i} \geq \sum_{i=1}^{3} \frac{1}{\mu_{i}}>1$. Conversely, a Platonic \mathbb{C}^{*}-fibration of S_{0} can be extended to a \mathbb{P}^{1}-fibration of some snc-completion of S_{0}. The sections contained in the boundary have to be contained in different connected components of the boundary, so the extension is of type sandwich (I). Moreover, $g(B)=0$ by the definition of a Platonic \mathbb{C}^{*}-fibration, so $\alpha<0$.
(ii) If P is of quotient type then by 1.3 .5 (ii) $\alpha=1-\sum_{i=1}^{3} \frac{1}{\mu_{i}}<0$, so $\bar{\kappa}\left(S_{0}\right)=-\infty$.
(iii) Assume $\alpha=0$. For $n=0$ we get $g(B)=1$. Assume $n>0$. We have $\frac{n}{2} \leq \sum_{i=1}^{n}\left(1-\frac{1}{\mu_{i}}\right)=$ $2(1-g(B))$, so we get $g(B)=0$ and $n \leq 4$. We have $n \geq 3$ by the assumptions of the construction. For $n=3$ and $n=4$ we get $\sum_{i=1}^{3} \frac{1}{\mu_{i}}=1$ and $\sum_{i=1}^{4} \frac{1}{\mu_{i}}=2$, so we get the case (b) or (c) respectively. Conversely, in each case $\alpha=0$.

From theorems 2.2.4 5.4.5 and 5.3.3 we have the following
Corollary 5.4.7. If the singular \mathbb{Q}-homology plane is nonrational or has singularities which are not of quotient type, then it is contractible and has negative Kodaira dimension. Moreover, the singularity is unique and the smooth locus is \mathbb{C}^{*}-ruled.

For $g(B)=0$ the singularity $P \in S^{\prime}$ is topologically rational. It does not have to be rational, as follows from the following example.

Example 5.4.8. Assume $g(B)=0$. Then:
(i) if $N>n$ then P is a rational singularity,
(ii) if $N=1, n=3$ and $E_{1}=[a], E_{2}=[b]$ and $E_{3}=[c]$ with $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>1$ then $P \in S^{\prime}$ is a topologically rational but not a rational singularity.

Proof. A criterion of Artin Art66, Theorem 3] says that $P \in S^{\prime}$ is a rational singularity if and only if $p_{a}(Z)=0$ for a fundamental cycle Z of \widehat{E}. A fundamental cycle is the smallest nonzero effective divisor $Z \subseteq \widehat{E}$, such that $Z E_{i} \leq$ for each irreducible $E_{i} \subseteq \widehat{E}$. Now if $N>n$ then the fundamental cycle is reduced, and since \widehat{E} is a rational snc-tree, its arithmetic genus vanishes. In case (ii) the fundamental cycle is $Z=3 E_{h}+E_{1}+E_{2}+E_{3}$, hence $p_{a}(Z)=1$.

Remark. In more complicated cases the fundamental cycle can be computed easily using Lau72, Proposition 4.1].

Remark 5.4.9. It is well known that a \mathbb{P}^{1}-bundle over a complete curve is a projectivization of a \mathbb{C}^{2} bundle. If s_{1}, s_{2} are disjoint sections of this \mathbb{P}^{1}-bundle then the action of \mathbb{C}^{*} given by $t *\left[\alpha s_{1}+\beta s_{2}\right]=$ $\left[\alpha s_{1}+t \beta s_{2}\right]$ fixes precisely s_{1} and s_{2}. Notice that if we have a smooth surface with a \mathbb{C}^{*}-action and we blow up in such a way that the center is contained in the fixed point locus then the action extends to the blowup. It follows that all surfaces S^{\prime} appearing in 5.4.4 admit a \mathbb{C}^{*}-action with $\operatorname{Sing} S^{\prime}$ as the fixed point locus. The weighted graphs of exceptional loci for the resolutions of normal surfaces with good \mathbb{C}^{*}-action (i.e. having positive weights for some equivariant embedding in some affine space) were described in OW71. It follows from 5.4.5 that all of them can be realized as graphs of exceptional loci for the resolutions of singular contractible \mathbb{Q}-homology planes.

Chapter 6

$$
\bar{\kappa}\left(S_{0}\right)=2 \text { and } \bar{\kappa}\left(S^{\prime}\right)=-\infty
$$

In this chapter we assume that $\bar{\kappa}\left(S_{0}\right)=2, \bar{\kappa}\left(S^{\prime}\right)=-\infty$ and that $D+\widehat{E}$ is snc-minimal. Although we do not assume that S^{\prime} is contractible, but only that it is \mathbb{Q}-acyclic, still part of the methods from KR07] work. We adapt them to our situation. We do not hesitate to use computer programs if necessary. Finally, by careful analysis of numerical and geometrical properties of S^{\prime} we show that $\bar{\kappa}\left(S_{0}\right)=2$ is impossible.

6.1 Preliminary results

Definition 6.1.1. Decompose \widehat{E} as $\widehat{E}=E+\Delta$, where Δ is the divisor of external (-2)-curves in \widehat{E}, i.e. Δ is a reduced divisor with the smallest support, such that E does not contain a (-2)-tip. By 2.2 .3 (viii) $\Delta \neq \widehat{E}$, so $K \widehat{E}=K E>0$. Define ϵ by the equality $(K+D+\widehat{E})^{2}=-1-\epsilon$. Since $\bar{\kappa}\left(S_{0}\right)=2$ and S_{0} is rational, the snc-minimal completion $(\bar{S}, D+\widehat{E})$ is unique, hence ϵ is an invariant of S.

We begin with a lemma which mainly collects some results obtained in the previous chapters.

Lemma 6.1.2.

(i) S^{\prime} has exactly one singular point and it is of quotient type,
(ii) there is no simple curve on $(\bar{S}, D+\widehat{E})$,
(iii) S_{0} and the pair $(\bar{S}, D+\widehat{E})$ are almost minimal, in particular $K+D+\widehat{E} \equiv(K+D+\widehat{E})^{+}+\operatorname{Bk} D+\operatorname{Bk} \widehat{E}$,
(iv) $\epsilon \geq 0$,
(v) \widehat{E} and D are rational trees and \bar{S} is rational,
(vi) $\# \widehat{E}+\# D=7+\epsilon+K D+K E$,
(vii) if $\epsilon<2$ then $|2 K+D+E| \neq \emptyset$,
(viii) $K E+\epsilon \geq 3$,
(ix) if D has a component with nonnegative self-intersection
then this component is branching in D and D is not a fork.
Proof. (i) is just 2.2.1(i). The proof of (ii) is the same as in 3.1.4. (iii) follows from (ii) and 1.6.9(ii). (iv) is a consequence of 1.6.13(1). (v) Since the unique singular point of S^{\prime} is of quotient type, E is a rational tree, so we are done by 2.2 .3 (iv).
(vi) Since D and \widehat{E} are connected rational trees, we have $K(K+D+\widehat{E})=3-\epsilon$, so $K^{2}=3-\epsilon-K D-K E$ and the formula follows from the Noether formula and 2.1.4 (ii).
(vii) Riemann-Roch's theorem for a divisor $-K-D-E$ gives $h^{0}(-K-D-E)+h^{0}(2 K+D+E) \geq 2-\epsilon$. If $-K-D-E \geq 0$ then $-K-D-\widehat{E} \geq 0$, which contradicts $\kappa(K+D+\widehat{E})=2$. Thus $2 K+D+E \geq 0$.
(viii) Suppose $K E+\epsilon \leq 2$. By Riemann-Roch's theorem $h^{0}(-K-D)+h^{0}(2 K+D) \geq K(K+D)=$ $3-\epsilon-E K>0$, so $-K-D \geq 0$, otherwise we would have $\kappa(K+D) \geq 0$. By (vii) this gives $K+E \geq 0$. Maximal twigs of E are in the fixed part of $K+E$, so E cannot be a chain. Let's write $\widehat{E}=B+E_{1}+E_{2}+E_{3}$, where B is the branching component of \widehat{E}, and E_{i} 's are its maximal twigs. Since E is not a chain, $d\left(E_{i}\right) \geq 3$ for all i, so $\delta(\widehat{E}) \leq 1$. This is a contradiction, because \widehat{E} is a resolution of a quotient singularity (cf. 1.4.1 (ii)).
(ix) Let D_{0} be a component of D with $D_{0}^{2}=-b \geq 0$. After some connected modification $(\widetilde{S}, \widetilde{D}) \rightarrow$ (\bar{S}, D) we can assume that $b=0$. In fact we can assume that this modification is subdivisional for D, unless $D=D_{0}$. In any case, if $\beta_{D}\left(D_{0}\right)<3$ we get a \mathbb{C}^{1} - or \mathbb{C}^{*} - ruling of S_{0}. Then $\bar{\kappa}\left(S_{0}\right) \leq 1$ by Iitaka's addition theorem (cf. 1.6.10(i)), a contradiction. Suppose now D_{0} is the branching component of a fork. Now D_{0} gives a $\mathbb{C}^{* *}$ - ruling of \widetilde{S}. We have $\Sigma_{S_{0}}=2$, because $\widehat{E} \subseteq F_{0}$ for some fiber F_{0}. Notice that since there are no vertical (-1)-curves in \widetilde{D}, every vertical (-1)-curve is an S_{0}-component. Let D_{h} be the divisor of horizontal sections of \widetilde{D}, it consists of three sections. Denote the divisor of \widetilde{D}-components contained in F_{0} by D_{v}. Suppose F is a singular fiber with the unique (-1)-curve L. D_{h} can intersect F only in components of multiplicity one, which in this case are two tips of the first branch of F (cf. 1.5.1 v)). \widetilde{D} does not contain loops, so at most one of these tips is a \widetilde{D}-component, hence L is simple, a contradiction with (ii). Thus every singular fiber has at least two (-1)-curves. Since $D_{h} F<4$, by (ii) this implies that $D_{v} \neq 0$. Notice that any exceptional S_{0}-component intersecting \widehat{E} is a tip of F_{0}, otherwise it would have $\mu>1$ and it could not intersect D_{h}, which contradicts (ii). Hence some S_{0}-component $M \subseteq F_{0}$ intersecting \widehat{E} is not exceptional and intersects D_{v}. We conclude that F_{0} contains precisely two exceptional components, L_{1} and L_{2}, and $\sigma\left(F_{0}\right)=3$, hence F_{0} is the only singular fiber.

Suppose F_{0} is branched. Then at least for one of L_{1} or L_{2}, say for L_{1}, after making successive contractions of L_{1} (i.e. after making a connected sequence of contractions starting from L_{1}) the number of branching components in the fiber decreases. It follows that $\mu\left(L_{1}\right)>1$. Indeed, if T is the maximal twig of \widetilde{D} containing L_{1} and T intersects $\widetilde{D}-T$ in T_{0} then we see that the equality $\mu\left(L_{1}\right)=1$ would imply that after contraction of T the component T_{0} becomes a non-exceptional component of a fiber with unique (-1)-curve and satisfies $\beta \geq 2$ and $\mu=1$, a contradiction with 1.5.1 (v). We infer that $D_{h} L_{1}=0$, so by (ii) L_{1} is not a tip of F_{0}. Moreover, one of the connected components of $\underline{F}_{0}-L_{1}$ does not contain curves with multiplicity one, so it is not intersected by D_{h}, which implies that it does not contain any \widetilde{D}-component. Hence L_{1} is simple, a contradiction with (ii).

Since F_{0} is a chain, M is not branching, so (ii) implies that it intersects D_{h}, hence $\mu(M)=1$. Now $D_{v} \neq 0$ implies $D_{h}\left(L_{1}+L_{2}\right) \leq 1$, so by (ii) $L_{1} \widehat{E}=L_{2} \widehat{E}=0$. Therefore we can successively contract L_{1} and L_{2} without touching \widehat{E} until M becomes the unique exceptional component of the fiber. This contradicts $\mu(M)=1$.

Remark. In fact, S_{0} is not only almost minimal, but also strongly minimal (cf. Miy01, 2.4.12]). From (ix) we see that the maximal twigs of D are admissible, in particular D is not a chain by 2.2 .3 (ii).

Definition 6.1.3. We denote the local fundamental group of the unique singular point of S^{\prime} by G and write K for $K_{\bar{S}}$. Let T_{i} for $i=1, \ldots, s$ be all maximal twigs of D and let $T=T_{1}+\ldots+T_{s}$. We put $d_{i}=d\left(T_{i}\right), e_{i}=e\left(T_{i}\right)$ (recall that by our convention from 1.3 tip of a maximal twig is its first component), $\widetilde{e}_{i}=e\left(T_{i}^{t}\right), \delta=\delta(D), e=e(D)$ and $\widetilde{e}=\widetilde{e}(D)$. We write \mathcal{P} for $\left(K_{\bar{S}}+D+\widehat{E}\right)^{+}$and \mathcal{N} for $\left(K_{\bar{S}}+D+\widehat{E}\right)^{-}$.

Lemma 6.1.4. (Koras-Russell, KR07, 5.3, 5.15])
(i) $\delta \leq e=-\mathrm{Bk}^{2} D \leq 1+\epsilon+\mathrm{Bk}^{2} \widehat{E}+\frac{3}{|G|}$,
(ii) If $\epsilon<2$ then $s-2-\frac{6}{|G|} \leq \delta$,
(iii) If $\epsilon<2$ then $s-3 \leq \epsilon+\mathrm{Bk}^{2} \widehat{E}+\frac{9}{|G|}$,
(iv) If $\epsilon<2$ and $\Delta=\emptyset$ then $e+\delta \geq s+\epsilon-\frac{5}{2}+\frac{K E}{4}$.

Proof. (i) We have $e=-\mathrm{Bk}^{2} D$ by 1.3 .2 (iv). Computing a square of 6.1 .2 (iii) gives $-1-\epsilon=\mathcal{P}^{2}+\mathrm{Bk}^{2} D+$ $\mathrm{Bk}^{2} \widehat{E}$, so (i) follows from the Kobayashi inequality.
(ii) By 6.1.2 (vii) we have $0 \leq \mathcal{P}(2 K+D+E)=2 \mathcal{P}(K+D+E)-\mathcal{P}(D+E)=2 \mathcal{P}^{2}-\mathcal{P} R \leq \frac{6}{|G|}-\mathcal{P} R$, where $R=D-T$. Now R is a rational connected tree, so $\mathcal{P} R=(K+D-\operatorname{Bk} D) R=-2+(T-\operatorname{Bk} D) R=-2+s-\delta$ by 1.3.2 ii).
(iii) is a consequence of (i) and (ii).
(iv) From the proof of [KR07, 5.15] it follows that if $\Delta=\emptyset$ then $e+\delta \geq s-\frac{v}{4}$, where $v=(E+2 K)(E+$ $2(K+D))=-2+K E+2(E+2 K)(K+D)=10-4 \epsilon-E K$. This gives (iv).

6.2 Bounding the shape of \widehat{E}

The following theorem is the key result in case $\bar{\kappa}\left(S_{0}\right)=2$. It is a modification of [KR07, 5.10].
Proposition 6.2.1. Either $K E+2 \epsilon \leq 5$ or $\epsilon=2, \widehat{E}=[4]$ and D consists of (-2)-curves.
Proof. The idea is to use (1) and (4) of 5.1 .2 to find and contract an exceptional simple curve on $(\bar{S}, D+\widehat{E})$. Notice that $(2 K+E)(K+D)=6-2 \epsilon-E K$. Suppose there exists a (-1)-curve $A \subseteq \bar{S}$, such that $A \widehat{E} \leq 1$. Under this assumption it is proved in KR07, 5.10, 5.11] that if S^{\prime} is contractible then the inequality $K E+2 \epsilon>5$ would imply that the process of finding and contracting exceptional simple curves could be iterated to infinity, which is impossible. The proof of [KR07, 5.10] does not require the contractibility, but only the \mathbb{Q}-acyclicity of S^{\prime}, so it can be applied in our situation. However, the existence of the curve A, which is assured by lemma KR07, 5.7] in case S^{\prime} is topologically contractible, has to be reconsidered in our situation.

Suppose $K E+2 \epsilon>5$. From the above remarks it follows that we can assume that there is no (-1)curve $A \subseteq \bar{S}$, such that $A \widehat{E} \leq 1$. It appears that the only point where the proof of existence of the curve A given in KR07, 5.7] does not work in our more general situation is the case [KR07, 5.7.4(ii)], where $K D=0, K+\widehat{E}^{\#} \equiv 0$ and $\mathrm{Bk}^{2} \widehat{E}$ is an integer. Then by 6.1.4 (i) we get $\mathrm{Bk} \widehat{E}^{2}=-1$, so \widehat{E} is a chain by 1.3.5 (iii). We have $D^{2}=-2-D K=-2$, so $-1-\epsilon=(K+D+\widehat{E})^{2}=(D+\operatorname{Bk} \widehat{E})^{2}=D^{2}-1$, hence $\epsilon=2$ and $K(K+\widehat{E})=3-\epsilon-D K=1$. Moreover, any (-1)-curve contained in D could serve as the curve A, so we get that $D_{i}^{2} \leq-2$ for every $D_{i} \subseteq D$, hence D consists of (-2)-curves. Further arguments have to be modified as follows. By Riemann-Roch's theorem $h^{0}(\widehat{E}+2 K)+h^{0}(-K-\widehat{E}) \geq K(K+\widehat{E})=1$. If $-K-\widehat{E} \sim U$ for an effective divisor U then $K+\widehat{E}^{\#} \equiv 0$ implies $U+\operatorname{Bk} \widehat{E} \equiv 0$, hence $\operatorname{Bk} \widehat{E}=0$, which is impossible. We get $2(K+\widehat{E}) \geq 0$, which by 1.6 .7 (ii) implies that $\left[2\left(K+\widehat{E}^{\#}\right)\right] \sim U$ for some effective divisor U. Now $K+\widehat{E}^{\#} \equiv 0$ implies that $U+\{2 \operatorname{Bk} \widehat{E}\}=0$, hence $2 \mathrm{Bk} \widehat{E}$ is a \mathbb{Z}-divisor. Since \widehat{E} is not a (-2)-chain we obtain $2 \mathrm{Bk} \widehat{E}=\widehat{E}$ and $2 K+\widehat{E}=0$. It follows that $\Delta=0$ and $K E=2$. Moreover, since $E_{i}(2 K+E)=0$ for each component E_{i} of E, we get that either $\widehat{E}=[4]$ or $\widehat{E}=[3,(k), 3]$ for some $k \geq 0$. To finish the proof we need to exclude cases other than $\widehat{E}=[4]$.

Suppose $\widehat{E}=[3,(k), 3]$ for some $k \geq 0$. We have $\# D=9-k$ by 6.1.2 (vi), so there are only finitely many possibilities for the weighted dual graph of D. Notice that the inequality 6.1.4 (i) gives $e(D) \leq$ $1+\epsilon+\mathrm{Bk}^{2} \widehat{E}+\frac{3}{|G|}=2+\frac{3}{d(E)}$. We have $d(E)=4(k+2)$ and D consists of (-2)-curves, so $e(D)=s-\delta$. Computing the square of 6.1 .2 (iii) we get $-1-\epsilon=\mathcal{P}^{2}-e(D)-1$, so $\mathcal{P}^{2}=s-2-\delta$. Since $\mathcal{P}^{2}>0$, we obtain:

$$
0<s-2-\delta \leq \frac{3}{4(11-\# D)}=\frac{3}{4(k+2)}
$$

In particular, $s-2 \leq \delta+\frac{3}{8} \leq \frac{s}{2}+\frac{3}{8}$, so $s \leq 4$. Another condition is given by 2.1.3 (ix):

$$
\sqrt{-\frac{d(D)}{d(E)}}=\left|H_{1}\left(S^{\prime}, \mathbb{Z}\right)\right| \in \mathbb{N}
$$

We check by straight computations that up to permutation of maximal twigs there are only two pairs of weighted dual graphs of (D, \widehat{E}) satisfying both conditions (taking into account that D consists of (-2) curves one checks first that the first condition implies that $k \leq 1$ for $s=3$ and $k \leq 2$ for $s=4$):
(1) $s=3, T_{1}=[2,2], T_{2}=[2,2,2], T_{3}=[2,2,2], \widehat{E}=[3,3]$,
(2) $s=4, T_{1}=[2], T_{2}=[2], T_{3}=[2], T_{4}=[2,2,2], \widehat{E}=[3,3]$.

Notice that in case (2) $D-T_{1}-T_{2}-T_{3}-T_{4}$ has three components. In both cases $-d(D)=d(\widehat{E})=8$, so $H_{1}\left(S^{\prime}, \mathbb{Z}\right)=0$ by 2.1.3 ix).

To deal with these cases consider an affine ruling of S. Let $\pi:(\widetilde{S}, \widetilde{D}) \rightarrow \mathbb{P}^{1}$ be an extension of this ruling to some snc-completion of S. W can assume that \widetilde{D} is π-minimal. Let $F_{1}, F_{2}, \ldots, F_{r}$ be all the singular fibers of π. Each F_{i} has $\sigma\left(F_{i}\right)>0$, otherwise S_{0} would be affine ruled, which is impossible. Furthermore, each F_{i} contains come \widetilde{D}-component. Indeed, if some F_{i} has no \widetilde{D}-components, then $\sigma\left(F_{i}\right)=1$, because each S_{0}-component intersects \widetilde{D} by affiness of S^{\prime}. Then the S_{0}-component of F_{i} is the unique (-1)-curve of F_{i}, hence cannot intersect \widetilde{D}, because has multiplicity greater than one, a contradiction. Let μ_{i} be the greatest common divisor of multiplicities of S-components contained in F_{i}. Using van Kampen's theorem one shows that $\pi_{1}(S)=\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}: \sigma_{1}^{\mu_{1}}=\ldots=\sigma_{1}^{\mu_{r}}=\sigma_{1} \sigma_{2} \ldots \sigma_{r}=1\right\rangle$ (cf. Fuj82, 4.19]). We have also $\pi\left(S^{\prime}\right)=\pi_{1}(S)$ by 2.1.3 (viii).

Suppose $r>2$. Then $(S, \widetilde{D})=(\bar{S}, D)$ and since in both cases the branching curves of D have $\beta_{D} \leq 3$, we get $r=3$. If \widehat{E} is horizontal then $\Sigma_{S_{0}}=1$ and if not then $\Sigma_{S_{0}}=0$. In any case there are at least two of F_{i} 's, say F_{1} and F_{2}, without \widehat{E}-components and satisfying $\sigma\left(F_{i}\right)=1$ (here σ is the number of $S_{0^{-}}$ components). Since D is connected and each component of D is a (-2)-curve, each such a fiber F_{i} has two branches, the first equal to $[2,2,2]$, and the unique (-1)-curve of F_{i} is its tip. This implies that at least two maximal twigs of D are not its tips, which excludes (2), hence $s=3$ and F_{3} contains two D-components. If both components of \widehat{E} are horizontal then $\Sigma_{S_{0}}=1$, so $\sigma\left(F_{3}\right)=2$ and we see that at least one S_{0} component has multiplicity one, so $\mu_{3}=1$. We compute $\pi_{1}(S)=\left\langle\sigma_{1}, \sigma_{2}: \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{1} \sigma_{2}=1\right\rangle=\mathbb{Z}_{2}$, a contradiction with $H_{1}\left(S^{\prime}, \mathbb{Z}\right)=0$. Thus exactly one component of E is vertical. Now $\sigma\left(F_{3}\right)=1$, so $F_{3}=[3,1,2,2]$ and $\mu_{3}=3$. We compute $\pi_{1}(S)=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}: \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{3}=\sigma_{1} \sigma_{2} \sigma_{3}=1\right\rangle=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, a contradiction with $H_{1}\left(S^{\prime}, \mathbb{Z}\right)=0$. Therefore $r \leq 2$. It follows that $\pi_{1}(S)$ is abelian, hence vanishes, because $H_{1}\left(S^{\prime}, \mathbb{Z}\right)=0$. By 2.1 .3 (vii) and Whitehead's theorem it implies that S^{\prime} is contractible. In this case the proof of KR07, 5.7] works.

Corollary 6.2.2. If $\epsilon=0$ then $K E \in\{3,4,5\}$. If $\epsilon=1$ then $K E \in\{2,3\}$. If $\epsilon=2$ then either $K E=1$ or $\widehat{E}=[4]$.

Proposition 6.2.3.

(i) If $\epsilon=0$ then $\# \widehat{E}=1$ and D is a fork,
(ii) If \widehat{E} is a fork then $\epsilon=2$,
(iii) Δ does not contain a fork.

Proof. (i) For $\epsilon=0$ lemma 6.1.4(iii) gives $0 \leq s-3 \leq \mathrm{Bk}^{2} \widehat{E}+\frac{9}{|G|}$. If \widehat{E} is a fork then $\mathrm{Bk}^{2} \widehat{E}<-1$ by 1.3.5 (v), so $|G| \leq 8$. Since G is small, G is the quaternion group, for which the resolution consist of (-2)curves, a contradiction with 2.2 .3 viii). Thus \widehat{E} is a chain, so $d(\widehat{E})=|G|$ and we get $d^{\prime}(\widehat{E})+d^{\prime}\left(\widehat{E}^{t}\right) \leq 7$ (cf. 1.3 .2 (iv)). Suppose $\# \widehat{E}>1$. Taking into account 6.2 .2 there are two possibilities for $\widehat{E}:[3,4]$ and $[2,5]$. In both cases we obtain $\mathrm{Bk}^{2} \widehat{E}+\frac{9}{|G|}=0$, so $s=3$ and inequalities (i)-(iii) from 6.1.4 are replaced by equalities. We get $\widetilde{e}=\delta<1$, so $d(D)=d_{1} d_{2} d_{3}(b-\widetilde{e})<0$ gives $b \leq 0$, a contradiction with 6.1.2 (ix). Therefore $\# \widehat{E}=1$. If $s \neq 3$ then 6.1 .4 (iii) and 6.2 .2 give subsequently $(s-3)|G| \leq 5, s=4$ and $\widehat{E}=[5]$. In this case $e=\delta=\frac{4}{5}$, so inequality 6.1.4 (iv) fails, a contradiction.
(ii) Let \widehat{E} be a fork. By (i) $\epsilon \neq 0$. Suppose $\epsilon=1$. A not so long numerical analysis of possible forks and its properties described in [Bri68, Satz 2.9] implies that in order to satisfy 6.1.4 (iii) \widehat{E} has to satisfy $\# E=1$ and E has to be the branching curve of a fork, such that the determinants of its maximal twigs are $2,2, n$. (see [KR07, 6.17] for a detailed proof). Since $K E \geq 2$ for $\epsilon=1$ by 6.2 .2 , we have $E^{2} \leq-4$, so by 1.3 .5 (iv) $|G /[G, G]|=4 n\left(-E^{2}-2\right)+4 \geq 20$. Simultaneously 6.1 .4 (iii) gives $|G|<\frac{9}{e(\widehat{E})-\epsilon}=\frac{9}{1-\frac{1}{n}} \leq 18$, a contradiction.
(iii) Suppose Δ contains a fork. Then $\epsilon=2$ by (ii), so $\# E=1$ by 6.2.2. If $S \backslash \Delta$ is affine ruled then $\Sigma_{S_{0}}=0$ implies that each fiber has only one (-1)-curve, hence each connected component of Δ is a chain, which contradicts our assumption. Since $\bar{\kappa}(S \backslash \Delta)=-\infty$ by 1.6.7 $S \backslash \Delta$ contains a Platonic fibration U as an open subset (cf. 1.6.14). An snc-minimal boundary of a Platonic fibration is a disjoint union of two forks. The description of $S \backslash(\Delta \cup U)$ given in MT84b implies that $U=S \backslash(\Delta \cup L)$ for a (-1)-curve L,
such that $L D=1$. It can be shown that $L \widehat{E}=1$, i.e. L is simple on (\bar{S}, D), which contradicts 6.1.2 (see [KR07, 6.1] for a detailed proof).

Corollary 6.2.4. $S \backslash \Delta$ is affine ruled.
Proof. Since $\bar{\kappa}(S \backslash \Delta)=-\infty$ then $S \backslash \Delta$ is affine ruled or it contains a Platonic fibration as an open subset. The last case is impossible by 6.2 .3 (iii).

Corollary 6.2.5. \widehat{E} is of one of the following types:
(a) $[5],[6],[7]$
(b1) fork:

with (A, B) equal to one of: $([3],[2,2]),([3],[2,2,2]),([3],[2,2,2,2]),([2,3],[2,2])$ or $([(n), 3],[2])$, where $n \geq 0$, (recall that a tip of the maximal twig is its first component),
(b2) fork:

with (A, B) equal to one of: $([2,2],[2,2]),([2,2],[2,2,2]),([2,2],[2,2,2,2])$ or $([2],[(n)])$, where $n \geq 0$,
(b3) $[(r), 3,(x)]$ for $r, x \geq 0$,
(c1) $[(r), 4]$ or $[(r), 5]$ for $r \geq 0$,
$(c 2)[(x), 3,(y), 3]$ or $[(x), 3,(y), 4]$ or $[(x), 4,(y), 3]$ for $x, y \geq 0$,
(c3) $[(r), 3,(x), 3,(y), 3]$ for $r, x, y \geq 0$,
(c4) $[2,4,2],[2,5,2],[2,3,3,2],[2,3,4,2],[2,4,2,2],[2,5,2,2]$.
Proof. If \widehat{E} is a fork then $\epsilon=2$ by 6.2.3 (ii), so $E=[3]$ by 6.2.2. We know that Δ does not contain a fork, so all possible \widehat{E} 's satisfying 1.3 .5 (ii)-(iii) are listed in (b1) and (b2). Chains for $\epsilon=2$ other than [4] are in (b3) and \widehat{E} 's for $\epsilon=0$ are in (a) (cf. 6.2.2 and 6.2.3(i)). Now we can assume that \widehat{E} is a chain and $\epsilon=1$, so $K E \in\{2,3\}$ by 6.2.2. For $E \Delta \leq 1$ all possible \widehat{E} 's are listed in (c1), (c2) and (c3), so we can assume $E \Delta=2$. Using 6.1.4(iii) we get $d^{\prime}(\widehat{E})+d^{\prime}\left(\widehat{E}^{t}\right) \leq d(\widehat{E})+7$ and since $d(\widehat{E})=2 d^{\prime}(\widehat{E})-d^{\prime \prime}(\widehat{E})=2 d^{\prime}\left(\widehat{E}^{t}\right)-d^{\prime \prime}\left(\widehat{E}^{t}\right)$, we have $\frac{1}{2}\left(d(\widehat{E})+d^{\prime \prime}(\widehat{E})\right)+\frac{1}{2}\left(d(\widehat{E})+\bar{d}^{\prime \prime}\left(\widehat{E}^{t}\right)\right) \leq d(\widehat{E})+7$, so $d^{\prime \prime}(\widehat{E})+d^{\prime \prime}\left(\widehat{E}^{t}\right) \leq 14$. This gives six possibilities for $\widehat{E}:[2,4,2],[2,5,2],[2,3,3,2],[2,3,4,2],[2,4,2,2]$ and $[2,5,2,2]$, which are listed in (c4).

6.3 Pre-minimal rulings

We recall the notion of Hamburger-Noether pairs. For details see Rus80 and [KR99, Appendix].
Definition 6.3.1. Suppose we are given an irreducible germ of a singular analytic curve (χ_{1}, q_{1}) on a smooth algebraic surface and a curve C_{1} passing through q_{1}, smooth at q_{1}. Put $c_{1}=\left(C_{1} \cdot \chi_{1}\right)_{q_{1}}$ and choose a coordinate y_{1} in such a way that $\left\{y_{1}=0\right\}$ is transversal to C_{1} at q_{1} and for Y_{1}, defined as $Y_{1}=\left\{y_{1}=0\right\}$, c_{1} is not smaller than $p_{1}=\left(Y_{1} \cdot \chi_{1}\right)_{q_{1}}$. Blow up over q_{1} until the proper transform χ_{2} of χ_{1} meets the reduced inverse image F_{1} of C_{1} in a point q_{2}, which does not belong to components of F_{1} other than the exceptional component C_{2} of F_{1}. We then say that C_{2} (and F_{1}) is produced from C_{1} by the pair $\binom{c_{1}}{p_{1}}$. This does not depend on the choice of y_{1}. Put $c_{2}=\left(C_{2} \cdot \chi_{2}\right)_{q_{2}}$. Then $c_{2}=g c d\left(c_{1}, p_{1}\right)$. Notice that the
pairs $\binom{c_{1}}{p_{1}}$ and $\binom{c_{1} / c_{2}}{p_{1} / c_{2}}$ give the same sequence of blowups. We repeat this procedure and define successively $\left(\chi_{i}, q_{i}\right)$ and C_{i} until χ_{h+1} is smooth for some $h \geq 1$. Then we refer to the sequence $\binom{c_{1}}{p_{1}},\binom{c_{2}}{p_{2}}, \ldots,\binom{c_{h}}{p_{h}}$ as the sequence of Hamburger-Noether pairs (or characteristic pairs for short) of the resolution of (χ_{1}, q_{1}) or the sequence of characteristic pairs of F, where F is the reduced total transform of C_{1}.

Remark. We remind that since $\left(\chi_{1}, q_{1}\right)$ is singular and irreducible, there is a unique distinguished tangent direction at q_{1}, i.e. if z is a germ of a line in the distinguished direction then for any other germ of a line u one has $\left(\{u=0\} \cdot \chi_{1}\right)_{q_{1}}<\left(\{z=0\} \cdot \chi_{1}\right)_{q_{1}}$. Therefore, if there is no need to start with some given C_{1} then it is natural to choose C_{1} having distinguished tangent direction for $\left(\chi_{1}, q_{1}\right)$. However, making this choice one should remember that (assuming χ_{2} is singular) (C_{2}, q_{2}) does not have to have distinguished tangent direction for $\left(\chi_{2}, q_{2}\right)$.

Definition 6.3.2. Let F be a singular fiber of a \mathbb{P}^{1}-ruling of some surface, such that L is the unique exceptional curve of F. Suppose some component U of F with $\mu_{F}(U)=1$ is distinguished. Then there is precisely one way of contracting F to a smooth fiber without contracting U. For some $q \in L$ let (χ, q) be an irreducible germ of some analytical curve intersecting L transversally at q. Let ($\chi^{\prime}, q^{\prime}$) be the image of (χ, q) after the above contractions. We take the image of U as C_{1} (cf. 6.3.1. We then say that F is produced by the sequence of characteristic pairs of the resolution of $\left(\chi^{\prime}, q^{\prime}\right)$ and we refer to this sequence as the sequence of the characteristic pairs of F.
Example 6.3.3. Consider a \mathbb{P}^{1}-ruling of some complete surface. Let $F=A_{n}+\ldots+A_{1}+L+B_{1}+\ldots+B_{m}$ be some column fiber and let A_{n} be the distinguished component. Then F is produced by one characteristic pair $\binom{c}{p}$. Here are some examples. If $F=[k, 1,(k-1)]$ then $\binom{c}{p}=\binom{k}{1}$. If $\left.F=[(k-1), 1, k)\right]$ then $\binom{c}{p}=\binom{k}{k-1}$. If $F=[5,3,1,(3), 3,2]$ then $\binom{c}{p}=\binom{14}{3}$.
Notation 6.3.4. Assume that $\# E=1$. Let f be an affine ruling of $S \backslash \Delta$. Let F be some singular fiber of f and let H be the section contained in the boundary. Put $\gamma=-E^{2}, n=-H^{2}$ and $d=E \cdot F$. Let h be the number of characteristic pairs of F. If $\Delta \cap F=\Delta_{1}+\ldots+\Delta_{k}$ with Δ_{k} as a tip of F is the decomposition into irreducible components then the last pair of F is $\binom{c_{h}}{p_{h}}=\binom{k+1}{1}$. If $\Delta \neq \emptyset$ then $E \Delta_{i_{0}}=1$ for a unique $i_{0} \leq k$. Assume that F^{\prime}, defined as the fiber F with $\binom{c_{h}}{p_{h}}$ contracted, is produced by the pairs $\left(\underline{c}_{i}, \underline{p}_{i}\right)$ with $i=1, \ldots, h-1$ (hence $\operatorname{gcd}\left(\underline{c}_{i}, \underline{p}_{i}\right)=\underline{c}_{i+1}$ for $i=1, \ldots, h-1$ and $\operatorname{gcd}\left(\underline{c}_{h-1}, \underline{p}_{h-1}\right)=1$). Define $c_{h}^{\prime}=c_{h}-i_{0}$ and $\tau=c_{h} C E+c_{h}^{\prime}$. Then $d=\underline{c}_{1} \tau$. Notice that $c_{h}^{\prime}=0$ if and only if $c_{h}=1$.

If f has precisely two singular fibers, we write the analogous quantities with $\widetilde{()}: \widetilde{\tau}, \widetilde{C}, \widetilde{p}_{i}, \widetilde{c}_{h}$ etc. If f has more singular fibers then instead of $C, \underline{c}_{i}, \tau$, etc. we write $C_{F}, \underline{c}_{i}(F), \tau(F)$, etc.
Lemma 6.3.5. With the assumptions as in 6.3.4 the following equations hold:

$$
\begin{align*}
d(n+2)+\gamma-2 & =\sum_{F} \tau(F)\left(\underline{c}_{1}(F)+\sum_{i=1}^{h(F)-1} \underline{p}_{i}(F)\right), \tag{6.1}\\
n d^{2}+\gamma & =\sum_{F}\left(\tau^{2}(F) \sum_{i=1}^{h(F)-1} \underline{c}_{i}(F) \underline{p}_{i}(F)+\tau(F) C_{F} E+c_{h(F)}^{\prime}(F) C_{F} E+c_{h(F)}^{\prime}(F)\right), \tag{6.2}
\end{align*}
$$

where the sum is taken over all singular fibers of f.
Proof. It is enough to consider one singular fiber. We first give a proof in the case $\Delta=0$. We have $\Sigma_{S_{0}}=0$. We distinguish the component of F intersecting H and contract F to a smooth 0 -curve without touching H. We write this sequence of contractions as $\bar{S}=S^{(m)} \xrightarrow{\sigma_{m}} S^{(m-1)} \xrightarrow{\sigma_{m-1}} \ldots \xrightarrow{\sigma_{1}} S^{(0)}$, where $S^{(0)}$ is a Hirzebruch surface. Denote by $K^{(i)}$ and $E^{(i)}$ the canonical divisor and respectively the birational transform of E on $S^{(i)}$. For $i=0, \ldots, m-1$ we have $K^{(i+1)} E^{(i+1)}-K^{(i)} E^{(i)}=\mu_{i}$ and $\left(E^{(i)}\right)^{2}-\left(E^{(i+1)}\right)^{2}=\mu_{i}^{2}$, where μ_{i} is the multiplicity of the center of σ_{i+1} on $E^{(i)}$. We have $E^{(0)} \equiv d\left(n F^{(0)}+H\right)$, where $F^{(0)}$ is some fiber of the induced \mathbb{P}^{1}-ruling of $S^{(0)}$ and $d=E^{(0)} F^{(0)}=E F$. We compute $K^{(m)} E^{(m)}-K^{(0)} E^{(0)}=$ $K E+d(n+2)=\gamma-2+d(n+2)$ and $\left(E^{(0)}\right)^{2}-\left(E^{(m)}\right)^{2}=n d^{2}+\gamma$, which gives left sides of the above equations. We need to compute $\sum \mu_{i}$ and $\sum \mu_{i}^{2}$. Let $F^{\prime}, \underline{c}_{i}, \underline{p}_{i}, \tau$ be as defined above. Since $\Delta \cap F=0$, we have $\tau=C E$ and the sequence of characteristic pairs for F is $\binom{\underline{c}_{1}}{\underline{p}_{1}}, \ldots,\binom{\underline{c}_{h-1}}{\underline{p}_{h-1}},\binom{1}{1}$. Let $\binom{c}{p}$ be one of these characteristic pairs and let $I(c, p)$ consist of these indices, for which the blowup σ_{i} is the part of the
sequence of contractions determined by the characteristic pair $\binom{c}{p}$. If E intersects C transversally in one point (i.e. if $\tau=1$) then it is easy to prove by induction on c that

$$
\sum_{I(c, p)} \mu_{i}=c+p-g c d(c, p) \text { and } \sum_{I(c, p)} \mu_{i}^{2}=c p
$$

Now for $\tau>1$ the multiplicity of each center is τ times bigger, hence for $C E=\tau$ we get

$$
\sum_{I(c, p)} \mu_{i}=\tau(c+p-g c d(c, p)) \text { and } \sum_{I(c, p)} \mu_{i}^{2}=\tau^{2} c p
$$

We have $c_{h}^{\prime}=0$ and $c_{h}=1$, so this gives $\sum \mu_{i}=\tau \sum_{i=1}^{h}\left(\underline{c}_{i}+\underline{p}_{i}-g c d\left(\underline{c}_{i}, \underline{p}_{i}\right)\right)=\tau\left(\underline{c}_{1}+\sum_{i=1}^{h} \underline{p}_{i}-1\right)=$ $\tau\left(\underline{c}_{1}+\sum_{i=1}^{h-1} \underline{p}_{i}\right)$ and $\sum_{i} \mu_{i}^{2}=\tau^{2} \sum_{i=1}^{h} \underline{c}_{i} \underline{p}_{i}=\tau^{2}\left(\sum_{i=1}^{h-1} \underline{c}_{i} \underline{p}_{i}+1\right)$, as required.

We now consider the case $\Delta \neq 0$. Let E^{\prime} be the image of E after contracting F to F^{\prime}. It follows from the arguments given above that

$$
K^{(m)} E^{(m)}-K^{\prime} E^{\prime}=\tau\left(\underline{c}_{1}+\sum_{i=1}^{h-1} \underline{p}_{i}-1\right)
$$

and

$$
E^{\prime 2}-\left(E^{(m)}\right)^{2}=\tau^{2} \sum_{i=1}^{h-1} \underline{c}_{i} \underline{p}_{i}
$$

We only need to compute $K^{\prime} E^{\prime}-K E$ and $E^{2}-E^{\prime 2}$. We are now left with the last pair $\binom{c_{h}}{p_{h}}$. The proper transform of E^{\prime} after making first c_{h}^{\prime} blowups (there is one center at each step) is $E^{\left(i_{0}\right)}$, where i_{0} was defined by $E \Delta_{i_{0}} \neq 0$. The multiplicity of each of these centers is $C E+1$, so $K^{\prime} E^{\prime}-K^{\left(i_{0}\right)} E^{\left(i_{0}\right)}=c_{h}^{\prime}(C E+1)$ and $\left(E^{\left(i_{0}\right)}\right)^{2}-E^{\prime 2}=c_{h}^{\prime}(C E+1)^{2}$. Now one has to be more careful, because $E^{\left(i_{0}\right)}$ can intersect the fiber in more than one point (in fact it intersects it in one point only if $i_{0}=1$ and $\Delta_{1} \cap E \cap C \neq \emptyset$). One checks easily that $K^{\left(i_{0}\right)} E^{\left(i_{0}\right)}-K E=\left(c_{h}-c_{h}^{\prime}\right) C E$ and $E^{2}-\left(E^{\left(i_{0}\right)}\right)^{2}=\left(c_{h}-c_{h}^{\prime}\right) C E^{2}$. This gives 6.1 and 6.2.

Lemma 6.3.6. If the sequence of pairs of positive integers $\left(c_{1}, p_{1}\right),\left(c_{2}, p_{2}\right) \ldots\left(c_{h}, p_{h}\right)$, such that $c_{i} \geq p_{i}$ and $\operatorname{gcd}\left(c_{i}, p_{i}\right)=c_{i+1}$ for $i=1, \ldots, h-1$ satisfies the equations

$$
\begin{align*}
c_{1}(n+1)+1 & =\sum_{i=1}^{h} p_{i} \tag{6.3}\\
n c_{1}^{2} & =\sum_{i=1}^{h} c_{i} p_{i} \tag{6.4}
\end{align*}
$$

then either
(i) $n=1, h=8,\left(c_{1}, p_{1}\right)=(4,2),\left(c_{2}, p_{2}\right)=(2,1)$ or
(ii) $n=1, h=7,\left(c_{1}, p_{1}\right)=(3,1)$ or
(iii) $n=2, h=7,\left(c_{1}, p_{1}\right)=(2,1)$.

Proof. If the sequence $\left(c_{i}, p_{i}\right)_{i=1}^{h}$ satisfies (6.3) and 6.4 together with the divisibility conditions as above then we will say that it is of type $*_{n}$. Multiplying the first equation by c_{1} and subtracting the second one we obtain

$$
\begin{equation*}
c_{1}^{2}+c_{1}=\sum_{i=2}^{h} p_{i}\left(c_{1}-c_{i}\right) \tag{6.5}
\end{equation*}
$$

In particular $h \neq 1$. Put $c_{1}=k c_{2}$ and $p_{1}=k^{\prime} c_{2}$. First we prove that the sequence $\left(c_{i}, p_{i}\right)_{i=1}^{h}$ of type $*_{n}$ satisfies one of the following:
(a) $n=1,\left(c_{1}, p_{1}\right)=\left(k c_{2},(k-1) c_{2}\right)$ for some $k, c_{2}>1$ and $\left(c_{i}, p_{i}\right)_{i=2}^{h}$ is of type $*_{k}$,
(b) $n=2,\left(c_{1}, p_{1}\right)=(2,2)$ and $\left(c_{i}, p_{i}\right)_{i=2}^{h}$ is of type $*_{1}$,
(c) $n=2, h=7,\left(c_{1}, p_{1}\right)=(2,1)$,
(d) $n=3, h=7,\left(c_{1}, p_{1}\right)=(3,1)$.

Suppose $c_{2}=1$. Equation 6.5 gives $k(k+1)=(k-1)(h-1)$, so $k \neq 1$ and $(k-1) \mid k(k+1)=$ $(k-1)(k+2)+2$, hence $k \in\{2,3\}$ and $h=7$. It follows from 6.3) that we obtain case (c) or (d).

Suppose $c_{2}>1$. For $i \geq 2$ we have $c_{1}-c_{i} \geq(k-1) c_{2}$ and by 6.3) $\sum_{i=2}^{h} p_{i}=c_{1}(n+1)+1-p_{1}$, so equation (6.5) gives $1 \geq c_{2}\left(k^{2} n-k n-k^{\prime} k+k^{\prime}-k\right)$ and then $k^{2} n-k n-k^{\prime} k+k^{\prime}-k \leq 0$, because $c_{2}>1$. If $k=k^{\prime}$ then $k=c_{2}>1$ and since $h>1$, 6.4 implies $n>1$. In this case the inequality gives $(k-1)(n-1) \leq 1$, so $n=k=2$ and we get the case (b). We can therefore assume $k>k^{\prime} \geq 1$. Writing the above inequality as $n \leq \frac{k^{\prime}(k-1)+k}{k(k-1)}<1+\frac{1}{k-1}$ we see that $n=1$ and then $(k-1)\left(k-k^{\prime}-1\right) \leq 1$, hence $k^{\prime}=k-1$. One checks easily that this gives case (a).

Now it is easy to see that in fact case (b) cannot occur. Indeed, since in this case $\left(c_{i}, p_{i}\right)_{i=2}^{h}$ is of type $*_{1}$, then $\left(c_{2}, p_{2}\right)$ can be only as in (a) (with respective renumbering), i.e. $\left(c_{2}, p_{2}\right)=\left(k c_{3},(k-1) c_{3}\right)$ for some $k, c_{3}>1$, in particular $c_{2}=k c_{3} \geq 4$, a contradiction. Notice also that if (c_{1}, p_{1}) is as in (a) then $k>1$, so after renumbering $\left(c_{2}, p_{2}\right)$ is as in (b) or (c).

Lemma 6.3.7. If $\# E=1$ then any affine ruling of $S \backslash \Delta$ has more than one singular fiber.
Proof. Let $f:\left(\bar{S}^{\dagger}, D^{\dagger}\right) \rightarrow \mathbb{P}^{1}$ be some affine ruling of $S \backslash \Delta$ with one singular fiber F. Notice that $\tau>1$, otherwise the (-1)-curve of F, which is not touched when minimalizing D^{\dagger} to D, would be simple on (\bar{S}, D). Using 6.3.5 we get

$$
\begin{align*}
d(n+1)+\gamma-2 & =\tau \sum_{i=1}^{h-1} \underline{p}_{i} \tag{6.6}\\
n d^{2}+\gamma & =\tau^{2} \sum_{i=1}^{h-1} \underline{p}_{i} \underline{c}_{i}+\tau C E+c_{h}^{\prime} C E+c_{h}^{\prime} \tag{6.7}
\end{align*}
$$

Computing the difference of the above equations modulo τ we see that $\tau \mid c_{h}^{\prime} C E+c_{h}^{\prime}-2$. Notice that if $c_{h}^{\prime} \neq 0$ then $c_{h}^{\prime} C E+c_{h}^{\prime}=2$. Indeed, if $c_{h}^{\prime} \neq 0$ then $c_{h}^{\prime} C E+c_{h}^{\prime}-2 \geq 0$ and $c_{h}^{\prime} C E+c_{h}^{\prime}-2$ cannot be positive, otherwise $c_{h}^{\prime} C E+c_{h}^{\prime}-2 \geq \tau=c_{h} C E+c_{h}^{\prime} \geq c_{h}^{\prime} C E+c_{h}^{\prime}$, a contradiction. Therefore there are two cases to consider: (i) $c_{h}^{\prime} C E+c_{h}^{\prime}=2$ and (ii) $c_{h}^{\prime}=0$. We show that both lead to equations

$$
\begin{aligned}
\underline{c}_{1}(n+1)+1 & =\sum_{i=1}^{h-1} \underline{p}_{i} \\
n \underline{c}_{1}^{2} & =\sum_{i=1}^{h-1} \underline{p}_{i} \underline{c}_{i}
\end{aligned}
$$

Suppose $c_{h}^{\prime} C E+c_{h}^{\prime}=2$. Then $C E=c_{h}^{\prime}=1$, so $\tau=c_{h}+1$. Taking 6.7 modulo τ^{2} we have $\tau^{2} \mid \gamma-2-\tau$, hence $\tau \mid \gamma-2$. If $\tau \neq \gamma-2$ then $\tau^{2} \leq \gamma-2-\tau \leq 5-\tau$ by 6.2.2, which contradicts $\tau>1$. Thus $\tau=\gamma-2$ and we are done. Now suppose $\Delta=\emptyset$. We have $c_{h}=1$ and taking 6.6 modulo τ and 6.7 modulo τ^{2} we have $\tau \mid \gamma-2$ and $\tau^{2} \mid \gamma$, hence $\tau=2$ and $\gamma=4$ by 6.2.2. Thus again we get the above equations.

Using 6.3.6 we check that all three sequences of characteristic pairs satisfying these equations give rise to the same boundary D, which is a fork with branching (-2)-curve and maximal twigs $T_{1}=[2], T_{2}=[2,2]$ and $T_{3}=\left[c_{h}+1,(5)\right]$. We compute $d(D)=-1$, a contradiction with 2.1.3 (ix).
Remark. If f has only one singular fiber F then $S \backslash F \cong \mathbb{C}^{1} \times \mathbb{C}^{1}$, so $\pi_{1}\left(S^{\prime}\right)=\pi_{1}(S)=0$ and by 2.1.3(vii) and Whitehead's theorem S^{\prime} is contractible. Now the final result of KR07 excludes contractible S^{\prime} satisfying $\bar{\kappa}\left(S^{\prime}\right)=-\infty$ and $\bar{\kappa}\left(S_{0}\right)=2$, so by referring to it we could omit the proof of 6.3.7. However, the above independent arguments will allow us to obtain KR07, Theorem 1.1(i)] as a special case (cf. 6.6.5.

Definition 6.3.8. Let $\pi: X \rightarrow C$ be a dominating morphism of a smooth surface to a smooth complete curve C. We say that π is pre-minimal if for some snc-completion $(\bar{X}, \bar{X} \backslash X)$ it has an extension $\bar{\pi}: \bar{X} \rightarrow C$, such that the boundary divisor $\bar{X} \backslash X$ can be made snc-minimal using only subdivisional blowdowns. Then we will say also that $\bar{\pi}:(\bar{X}, \bar{X} \backslash X) \rightarrow C$ is pre-minimal.

We now proceed to show that in some situations the affine ruling of $S \backslash \Delta$ can be chosen pre-minimal. We adapt a lemma [KR99, 5.3] to our situation. We follow the original notation.
Notation 6.3.9. Assume $\# E=1$. Let $f:\left(\bar{S}^{\dagger}, D^{\dagger}+\Delta\right) \rightarrow \mathbb{P}^{1}$ be some affine ruling of $S \backslash \Delta$ with D^{\dagger} being f-minimal (good affine ruling of S, using the terminology of [KR99]). We have $\Sigma_{S_{0}}=0$ because $\# E=1$. Let $H^{2}=-n$, where H is the horizontal component of D^{\dagger}. If $\beta_{D^{\dagger}}(H)>2$ then $\left(\bar{S}^{\dagger}, D^{\dagger}\right)=(\bar{S}, D)$ and the ruling is pre-minimal. Assume $\beta_{D^{\dagger}}(H) \leq 2$. If $n=1$ then D^{\dagger} is not snc-minimal. In any case by successive contractions of exceptional curves in D^{\dagger} we obtain a morphism $\varphi_{f}: \bar{S}^{\dagger} \rightarrow \bar{S}$. Let F be a singular fiber of f, such that $F \cap D^{\dagger}$ is branched. Denote the component of F meeting H by G. Let $G+Z$ be the first branch of F and let Z_{1} be the unique curve of highest multiplicity in Z. Let Z_{u} and Z_{l} (upper, lower) be the connected components of $Z-Z_{1}$ with Z_{u} meeting G (see Fig. 6.1). Let $Z_{l u}$ be the component of Z_{l} meeting Z_{1} and C the unique (-1)-curve of F. Let h be the number of sprouting blowups needed to produce F from a smooth 0 -curve (number of characteristic pairs of F) and μ the multiplicity of C. If there is another singular fiber denote it by \widetilde{F}. Analogously for \widetilde{F} define $\widetilde{G}, \widetilde{Z}_{1}, \widetilde{h}$, etc. Put $H^{\dagger}=Z_{u}+G+H+\widetilde{G}+\widetilde{Z}_{u}$. Define $\Delta^{\prime}=\Delta \cap F$ and $\widetilde{\Delta}=\Delta \cap \widetilde{F}$. We introduce the following modification of definition [KR99, 5.1]:

Figure 6.1: pre-minimal ruling
Definition 6.3.10. In the situation as above f is almost minimal if D^{\dagger} is snc-minimal (i.e. $\varphi_{f}=i d$) or there are exactly two singular fibers and contractions in φ_{f} do not touch their (-1)-curves.

Remark. If f has more than two singular fibers then $\beta_{D^{\dagger}}(H)>2$ because each singular fiber contains some D^{\dagger}-components, hence $D^{\dagger}=D$ is snc-minimal and f is almost minimal. If f has only one singular fiber then it is almost minimal if and only if $n \neq 1$. Assume that f is almost minimal with two singular fibers. Then it follows from the definition that the contractions in φ_{f} take place within H^{\dagger}. Moreover, if $\widetilde{Z}_{1}=C_{1}$ (this could not happen in [KR99]) then they are subdivisional with respect to D^{\dagger}. It follows that an almost minimal ruling is pre-minimal.

Lemma 6.3.11. (Koras-Russell) Let C be a (-1)-curve in \bar{S}, such that $\kappa\left(K_{\bar{S}}+D+\Delta+C\right)=-\infty$. Then there exists a pre-minimal affine ruling of $S \backslash \Delta$ with C in a fiber, such that either
(i) f is almost minimal or
(ii) f has exactly two singular fibers, $\widetilde{\Delta}=0$ and φ_{f} contracts precisely $H^{\dagger}+\widetilde{Z}_{1}$. If Z_{1} is touched x times in this process then $x \geq 4$ and $V^{2}=2-x$, where $V \subseteq D$ is the birational transform of $\widetilde{Z}_{l u}$.
Remark. The lemma implies that we have a good control over the curves that are contracted when minimalizing the boundary. Notice that in case (ii) both fibers are branched and the second branch of \widetilde{F} contains a (-1)-curve only.

The above lemma is essentially the lemma KR99, 5.3]. We sketch the way the original arguments have to be modified if necessary. We write the references to numbering of [KR99] in square brackets.

Proof. The starting point is an affine ruling f of $S \backslash(\Delta \cup C)$. Notice that $C D>0$, hence non-existence of such a ruling would imply that Δ contains a fork, which contradicts 6.2.3 iii). We can assume that f is not almost minimal, in particular $D^{\dagger} \neq D$. Since every singular fiber contains some D^{\dagger}-component, f has at most two singular fibers, by 6.3 .7 it has precisely two. The idea is to improve f. As for the preliminary results used, the proofs of [4.2] and [5.2.2] go without modifications. The calculations in terms of characteristic pairs as [3.7] or [5.3.3](i) do not hold in our situation, but they can be ignored. If the improvement of f is found using [5.3.4] then it is almost minimal in the sense of 6.3.10. Therefore in [Case I] only the subcase (α), where the improvement is produced in other way, needs some care. Fortunately, the proof goes without modifications, giving part (ii) of the thesis. In cases [II(a),(b),(c)] the produced improvement has $D^{\dagger}=D$, so is almost minimal. Thus we are left with [Case $\left.\operatorname{II}(\mathrm{d})\right]$. If \widetilde{F} is branched then the original proof works. Suppose \widetilde{F} is a chain. Then $\widetilde{F}=D_{0}+C+\widetilde{\Delta}$ with $C^{2}=-1$ and $D_{0} \subset D^{\dagger}$. Since G is not contracted by φ_{f}, D_{0} cannot be contracted because T_{0} is not a tip of T by the assumptions [Case $\mathrm{II}(\mathrm{d})]$.

Corollary 6.3.12. If $\# E=1$ then the affine ruling of $S \backslash \Delta$ can be chosen pre-minimal, exactly as in 6.3.11.

Proof. Take an f-minimal completion of some affine ruling f of $S \backslash \Delta$. Since at least one of the branching components of D^{\dagger} remains branching in D, there exists a vertical (-1)-curve, it is an S_{0}-component. Take it as C and apply 6.3.11.

Corollary 6.3.13. Let $\# E=1$ and let f be a pre-minimal affine ruling of $S \backslash \Delta$ which has two singular fibers. One has:
(i) $h+\widetilde{h}=n+1+\epsilon+E K$,
(ii) $d(D)=-d(\widehat{E}) \cdot \operatorname{gcd}(\widetilde{\mu}, \mu)^{2}$.

Proof. (i) Since f is pre-minimal, contractions in φ_{f} are subdivisional with respect to D^{\dagger}, hence $K_{\bar{S}^{\dagger}}\left(K_{\bar{S}^{\dagger}}+\right.$ $\left.D^{\dagger}\right)=K(K+D)=3-\epsilon-E K$. Contract singular fibers to smooth fibers without touching H, denote the image of D by \widetilde{D} and the resulting surface by \bar{S}. Each sprouting blowdown in D^{\dagger} increases $K(K+D)$ by one. At the end we have $K_{\widetilde{S}}\left(K_{\widetilde{S}}+\widetilde{D}\right)=8-4+n-2=n+2$, so we get $K(K+D)+h-1+\widetilde{h}-1=n+2$, hence $h+\widetilde{h}=n+1+\epsilon+E K$.
(ii) We have $\pi_{1}\left(S^{\prime}\right)=\left\langle\sigma_{1}, \sigma_{2}: \sigma_{1}^{\mu}=\sigma_{2}^{\widetilde{\mu}}=\sigma_{1} \sigma_{2}=1\right\rangle=\mathbb{Z}_{g c d(\widetilde{\mu}, \mu)}$, so (ii) follows from 2.1.3(ix).

6.4 D is a fork

Lemma 6.4.1. If $\epsilon=2$ then $K E=1$.
Proof. Suppose $\epsilon=2$ and $K E \neq 1$, then $\widehat{E}=[4]$ by 6.2.2. Let $f:\left(\bar{S}^{\dagger}, D^{\dagger}\right) \rightarrow \mathbb{P}^{1}$ be a pre-minimal affine ruling (we use the notation of 6.3.9). Let $F_{1}, \ldots F_{N}$ be the singular fibers and let $U=D_{h}+\underline{F}_{1}+\ldots+\underline{F}_{N}$, where D_{h} is the horizontal component of D^{\dagger}. We have $\Sigma_{S}=0$ and by $6.3 .7 N \geq 2$. Suppose $N>2$. Then $D^{\dagger}=D$. Let h_{i} be the numbers of sprouting blowups needed to produce F_{i} from a smooth 0 -curve. If we contract all F_{i} 's to smooth fibers without touching D_{h} we make $h_{1}+h_{2}+\ldots+h_{N}$ sprouting blowdowns inside U. We have $K(K+U)=K(K+D)-N$, so we get that $-1-N+h_{1}+\ldots+h_{N}=8-2 N$, because $K^{2}=8$ for a Hirzebruch surface and $K D_{h}=0$ by 6.2.1. Notice that $h_{i} \neq 1$ because $\Delta=\emptyset$. We get $N=3$ and $h_{1}=h_{2}=h_{3}=2$, hence $s=3$ and since D consists of (-2)-curves by 6.2.1 maximal twigs of D are equal to $[2,2,2]$. We compute $\pi_{1}\left(S^{\prime}\right)=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}: \sigma_{1} \sigma_{2} \sigma_{3}=1, \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=1\right\rangle=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. However, $d(D)=-16$ and $d(\widehat{E})=4$, so $H_{1}\left(S^{\prime}, \mathbb{Z}\right)=\mathbb{Z}_{2}$ by 2.1.3(ix), a contradiction. Thus $N=2$. Put $F=F_{1}$, $\widetilde{F}=F_{2}$ and $h=h_{1}, \widetilde{h}=h_{2}$. We have $h+\widetilde{h}=5+n$ and $h, \widetilde{h} \neq 1$.

Suppose f is not almost minimal. Then $\widetilde{h}=2$, so $h=4$. By 6.3.11 $\varphi_{f}: \bar{S}^{\dagger} \rightarrow \bar{S}$ contracts precisely $H^{\dagger}+\widetilde{Z}_{1}$ and Z_{1} is touched exactly four times, hence $Z_{1}^{2}=-6$. D consists of (-2)-curves, so it follows that the second branch of F is $[(5)]$ and the third is $[2,1]$. We have also $Z_{l}=[(k)]$ and $\widetilde{Z}_{l}=[(m),-2-p]$ for some non-negative integers k, m and p, hence $G=[k+1]$ and $\widetilde{G}=[m+2]$. If $k \neq 1$ then the chain \widetilde{G} is contracted before G, so $m=0$ and we see that Z_{1} is touched at most once, a contradiction. Therefore
$k=1$ and we get $m=1$. We see that $Z_{l u}$ is touched once by φ_{f}, so $p=1$. Therefore D has two branching components, B_{1} and B_{2}, and $D-B_{1}-B_{2}=T_{1}+T_{2}+T_{3}+T_{4}$, where $T_{1} B_{1}=T_{2} B_{1}=1, T_{1}=[2,2]$, $T_{2}=[2], T_{3}=[2]$ and $T_{4}=[2,2,2,2]$. We compute $d(D)=-25$, which is a contradiction by 2.1.3(ix). Thus f is almost minimal.

We have now $Z_{l}=[(k)]$ and $\widetilde{Z}_{l}=[(p)]$ for some positive integers k, p, so $Z_{u}=\widetilde{Z}_{u}=\emptyset, \widetilde{G}=[p+1]$ and $G=[k+1]$. We can assume that $h \geq \widetilde{h}$. Suppose $n=1$. Then $(\widetilde{h}, h)=(2,4)$ or $(\widetilde{h}, h)=(3,3)$. Consider the case $(\widetilde{h}, h)=(2,4)$. Notice that $\widetilde{Z}_{1}^{2}=-2$, so \widetilde{G} is not contracted by φ_{f}, hence $p>1$. If $k \neq 1$ then φ_{f} contracts only H, so $p=k=2$ and the second branch of F is $[2,2,1]$. In this case $d(D)=-9$, a contradiction with 2.1.3(ix). Therefore $k=1$. We get $p=3$ and $Z_{1}^{2}=-3$ and we infer that the second branch of F is $[2,2]$ and the third is $[1,2]$. Thus D has two branching components, B_{1} and B_{2}, and $D-B_{1}-B_{2}=T_{1}+T_{2}+T_{3}+T_{4}$ with $T_{1}=[(5)], T_{2}=[2], T_{3}=[2]$ and $T_{4}=[2]$. We get $d(D)=-16$ and $\operatorname{gcd}(\widetilde{\mu}, \mu)=4$, a contradiction with 6.3 .13 (ii). Consider the case $(\widetilde{h}, h)=(3,3)$. We can assume $k \geq p$. If $p=1$ and $k=2$ then the second branch of \widetilde{F} is $[2,2,2]$ and the second branch of F is $[2,2], \operatorname{gcd}(\widetilde{\mu}, \mu)=6$ and $d(D)=-36$, a contradiction with 6.3 .13 (ii). If $p=1$ and $k=3$ then the second branch of \widetilde{F} is $[2,2]$ and the second branch of F is $[1,2], \operatorname{gcd}(\widetilde{\mu}, \mu)=4$ and $d(D)=-16$, a contradiction with 6.3.13(ii). It follows that $p=k=2$. Then the second branches of \widetilde{F} and F are equal to $[1,2]$, so $d(D)=-9$, again a contradiction with 6.3.13(ii).

We have now $n=2$, so $(\widetilde{h}, h)=(2,5)$ or $(\widetilde{h}, h)=(3,4)$. Now $Z_{l}, \widetilde{Z}_{l}, G$ and \widetilde{G} are irreducible (-2) curves. If $(\widetilde{h}, h)=(2,5)$ then $\operatorname{gcd}(\widetilde{\mu}, \mu)=2$ and the second branch of F is $[1,2,2,2]$, hence $d(D)=-4$. If $(\widetilde{h}, h)=(3,4)$ then $\operatorname{gcd}(\widetilde{\mu}, \mu)=2$, the second branch of \widetilde{F} is $[2,1]$ and the second branch of F is $[1,2,2]$, so $d(D)=-4$. In both cases we get a contradiction with 6.3.13(ii).

Lemma 6.4.2. If $\# E=1, \# \Delta \leq 1$ and no maximal twig of D containing more than one component contains a (-2)-tip then $(\bar{S}, D+\Delta)$ is affine ruled. If additionally $s=4$ then not all maximal twigs of D are tips.

Proof. Let $f:\left(\bar{S}^{\dagger}, D^{\dagger}+\Delta\right) \rightarrow \mathbb{P}^{1}$ be a pre-minimal affine ruling. Suppose $D^{\dagger} \neq D$. Then f has two singular fibers, F and \widetilde{F}, and $n=1$ (cf. 6.3.9). Clearly, Z_{l} and Z_{u} are adjoint admissible chains. The components of Z_{l} are not contracted by φ_{f} by 6.3.11(ii). If $Z_{l} \subseteq \Delta$ then Z_{l} is irreducible, because $\# \Delta \leq 1$. By our assumption about maximal twigs of D if $Z_{l} \subseteq D^{\dagger}$ and Z_{l} is not irreducible then it has a $\leq(-3)$ curve as a tip. In any case it implies that the component of F intersecting H is a (-2)-curve. Analogous argument holds for \widetilde{F}, hence H meets two (-2)-curves in D^{\dagger}. Therefore D contains a non-branching component with non-negative self-intersection, a contradiction with 6.1.2(ix).

Suppose that $s=4$ and all maximal twigs of D are tips. Then $D^{\dagger}=D$ by the first part of the above lemma. If $\beta_{D}(H) \leq 2$ then there are two branching components in D, otherwise the maximal twig containing H would not be a tip. Then by 3.1 .5 one of them is a (-1)-curve. However, branched (-1)-curve cannot be a component of a fiber, a contradiction. Thus H is a branching component of D and there are more than two singular fibers. At least two of them do not contain a branching component of D, hence contain unique D-components by our assumption. This implies that each of these two fibers contains a component of Δ, a contradiction with $\# \Delta \leq 1$.

Proposition 6.4.3. D is a fork.
Proof. Suppose D is not a fork. We will prove that $\widehat{E}=[5], \epsilon=1$ and $s=4$ and then we will eliminate this case in several steps. We prove successive statements.
(1) $\# E=1$ and $\epsilon \neq 0$.

Proof. We have $\epsilon \neq 0$ by 6.2.3(i). To prove $\# E=1$ we can assume $\epsilon \neq 2$ by 6.4.1. Thus $\epsilon=1, \widehat{E}$ is a chain by 6.2.3 (ii) and it satisfies $(s-4)|G| \leq 7-d^{\prime}(\widehat{E})-d^{\prime}\left(\widehat{E}^{t}\right)$ by 6.1.4 (iii). Using $2 \leq K E \leq 3$ this gives only two cases for which $\# E \neq 1: s=4$ and $\widehat{E}=[3,3]$ or $s=4$ and $\widehat{E}=[3,4]$. By 6.1.4(i) in both cases $e+\delta<3$, which contradicts 6.1.4 (iv).
(2) If $K(K+D) \neq 0$ then $\widehat{E}=[5], \epsilon=1$ and $s=4$.

Proof. Assume $K(K+D) \neq 0$. For $\epsilon=2$ we have $K(K+D)=3-\epsilon-E K=0$ by 6.4.1, so $\epsilon=1$ by (1). Then $K E=3$, so by 6.1.4 (iii) $s=4$ and $\widehat{E}=[2,5]$ or $s \leq 5$ and $\widehat{E}=[5]$. In the first case we have $e=\delta=\frac{4}{3}$ by 6.1.4 so maximal twigs of D are tips, a contradiction with 6.4.2 Suppose $s=5$ in the second case. Then $e+\delta=\frac{18}{5}<\frac{17}{4}$, which is impossible by 6.1.4(iv).

We choose a pre-minimal affine ruling $\pi:\left(\bar{S}^{\dagger}, D^{\dagger}\right) \rightarrow C$. Subdivisional modifications of D do not change $K(K+D)$, so $K^{\dagger}\left(K^{\dagger}+D^{\dagger}\right)=K(K+D)$, where $K^{\dagger}=K_{\bar{S}^{\dagger}}$. According to 6.3.7 π has at least two singular fibers. For some computations below it is useful to recall that if σ is a blowup of a smooth complete surface and $\sigma^{\prime}, \sigma^{*}$ denote respectively the proper and the full preimages then for any two divisors A, B one has $A \cdot B=\sigma^{\prime} A \cdot \sigma^{*} B$.
(3) If $D^{\dagger} \cap F$ is not a chain for some fiber F of π then $K(K+D) \neq 0$.

Proof. Suppose $F \cap D^{\dagger}$ is branched and $K(K+D)=0$. Write F as $F=F \cap D^{\dagger}+C+\Delta_{1}$, where C is a (-1)-curve, and $\Delta_{1} \subset \Delta$. We contract the chain $C+\Delta_{1}$ and successive (-1)-curves in F as long as they are subdivisional for D^{\dagger}. Denote the images of D^{\dagger}, E and F by $D^{(1)}, E^{(1)}$ and $F^{(1)}$. Let $K^{(1)}$ be the canonical divisor of the image of \bar{S}. In general, if after some sequence of contractions we define $D^{(i)}$ then we denote the appropriate images of E, F, etc. by $E^{(i)}, F^{(i)}$ etc. The contraction of $C+\Delta_{1}$ and contractions subdivisional with respect to the image of D^{\dagger} do not change $K^{\dagger}\left(K^{\dagger}+D^{\dagger}\right)$ and $E\left(K^{\dagger}+D^{\dagger}\right)$, i.e. $K^{(1)}\left(K^{(1)}+D^{(1)}\right)=K(K+D)=0$ and $E^{(1)}\left(K^{(1)}+D^{(1)}\right)=E(K+D)=E K$. Moreover, $D^{(1)}$ has the same number of branching components as D, so $D^{(1)}$ is branched.

Let $D_{\alpha}^{(1)}$ be the (-1)-tip of $D^{(1)}$, and let $D^{(2)}$ be the image of $D^{(1)}$ after the contraction of $D_{\alpha}^{(1)}$. Let $D_{\beta}^{(1)}$ be the unique $D^{(1)}$-component intersecting $D_{\alpha}^{(1)}$. We have $h^{0}\left(-K^{(2)}-D^{(2)}\right)+h^{0}\left(2 K^{(2)}+D^{(2)}\right) \geq$ $K^{(2)}\left(K^{(2)}+D^{(2)}\right)=1$, so $-K^{(2)}-D^{(2)} \geq 0$, otherwise $2\left(K^{(2)}+D^{(2)}\right) \geq 0$, which is impossible, since $\kappa\left(K^{(2)}+D^{(2)}\right)=-\infty$. For every component V of $D^{(2)}$ we have $V\left(-K^{(2)}-D^{(2)}\right)=2-\beta_{D^{(2)}}(V)$. Since $s \geq 4, D^{(2)}$ is branched and every branching curve of $D^{(2)}$, and hence every component of $D^{(2)}$ which is not a tip, is in the fixed part of $-K^{(2)}-D^{(2)}$. Suppose $D_{\beta}^{(2)}$ is not a tip of $D^{(2)}$, then $-K^{(2)}-D^{(2)}-D_{\beta}^{(2)} \geq 0$, so $-K^{(1)}-D^{(1)}-D_{\beta}^{(1)} \geq 0$. Clearly, $E^{(1)}$ is in the fixed part of $-K^{(1)}-D^{(1)}-D_{\beta}^{(1)}$, so $-K^{(1)}-D^{(1)}-E^{(1)} \geq 0$. It follows that $-\left(K^{\dagger}+D^{\dagger}+E\right) \geq 0$, a contradiction with $\kappa\left(K^{\dagger}+D^{\dagger}+E\right)=2$. Thus $D_{\beta}^{(2)}$ is a tip of of $D^{(2)}$.

Let $D^{(3)}$ be the image of $D^{(2)}$ after the contraction of $D_{\beta}^{(2)}$. Since $D_{\beta}^{(2)}$ is a tip, $D^{(2)}$ has the same number of branching components as $D^{(1)}$ (greater than one by our assumptions about D), hence $D^{(3)}$ is not a chain. Moreover, $F^{(3)}$ is not a 0 -curve, as the branching components of $D^{\dagger} \cap F$ have not been contracted. We made two sprouting blowdowns, so $K^{(3)}\left(K^{(3)}+D^{(3)}\right)=K^{(1)}\left(K^{(1)}+D^{(1)}\right)+2=K(K+D)+2=2$. Riemann-Roch's theorem gives $h^{0}\left(-K^{(3)}-D^{(3)}\right) \geq 2$. Since π has at least two singular fibers, we have $\beta_{D}(H)>1$. Since $D^{(3)}$ is connected and is not a chain, H is in a fixed part of $-K^{(3)}-D^{(3)}$. Let's write $-K^{(3)}-D^{(3)}=H+R+\sum_{i=1}^{f} A_{i}$, where $H+R$ is a fixed part, $f>0$ and $A_{i}^{2} \geq 0$ (cf. 5.1.2(2)). Intersecting with a generic fiber F^{\prime} we have $1=1+F^{\prime} R+F^{\prime} \sum_{i=1}^{f} A_{i}$, hence $F^{\prime} A_{i}=0$ and $F^{\prime} R=0$, so R is vertical and $A_{i} \sim F^{\prime}$ for each i. We get that $K^{(3)}+D^{(3)}+H+f F^{\prime}+R \sim 0$. Intersecting with $E^{(3)}$ we get $0 \geq E^{(3)}\left(K^{(3)}+D^{(3)}+F^{\prime}\right)=E^{(2)}\left(K^{(2)}+D^{(2)}-D_{\alpha}^{(2)}+F^{\prime}\right)=E^{(1)}\left(K^{(1)}+D^{(1)}\right)+E^{(1)}\left(F^{\prime}-2 D_{\alpha}^{(1)}-D_{\beta}^{(1)}\right)=$ $E K+E^{(1)}\left(F_{0}^{(1)}-2 D_{\alpha}^{(1)}-D_{\beta}^{(1)}\right)$, which implies $E^{(1)}\left(F^{(1)}-2 D_{\alpha}^{(1)}-D_{\beta}^{(1)}\right)<0$. This is a contradiction, because $F^{(1)}$ is branched, so the multiplicities of $D_{\alpha}^{(1)}$ and $D_{\beta}^{(1)}$ in it are greater than one.
(4) $\widehat{E}=[5], \epsilon=1$ and $s=4$.

Proof. Suppose (4) does not hold. Then by (2) and (3) H is the only branching curve in D^{\dagger}, so $D^{\dagger}=D$, every singular fiber F of π has at most one branching component and $F \cap D$ is a chain. In particular, there are exactly s singular fibers. Let c be the number of singular fibers which are chains. If F is such a fiber then $F \cap \Delta \neq \emptyset$ and $F \cap D$ is a tip, so $\widetilde{e}(F \cap D) \leq \frac{1}{2}$. Since $s \geq 4$ and Δ has at most three connected components, we see that $c<s$, so we have an inequality $\widetilde{e}(D)<(s-c)+\frac{c}{2}=s-\frac{c}{2}$. Let's contract all singular fibers to smooth 0 -curves without touching H. The contraction of chain fibers does not affect $K(K+D)$ and the contraction of any other singular fiber increases $K(K+D)$ by one, so if \widetilde{D} and \widetilde{S} are the images of D^{\dagger} and \bar{S}^{\dagger} after contraction then $\widetilde{D} \equiv H+s F^{\prime}$ for a generic fiber F^{\prime} and $K_{\widetilde{S}}\left(K_{\widetilde{S}}+\widetilde{D}\right)=s-c$. Putting $n=-H^{2}$ we get $s-c=K_{\widetilde{S}}\left(K_{\widetilde{S}}+\widetilde{D}\right)=8+n-2-2 s$, so $n=3 s-c-6$.

Since $0>d(D)=d_{1} \ldots d_{s}(n-\widetilde{e}(D))$ we get $s-\frac{c}{2}>\widetilde{e}(D)>3 s-c-6$, so $12 \geq 6 s-c>3 s$. Hence $s \leq 3$, a contradiction.

Denote the set of irreducible components of a divisor W by $\mathcal{C}(W)$. We notice the following fact (recall that T is the sum of maximal twigs of D, cf. 6.1.3):
(5) If $R \subseteq D$ is a $\leq(-4)$-tip of D then $\sum_{V \in \mathcal{C}(T)} V(2 K+R) \leq 1$ and each $V \in \mathcal{C}(T)$ satisfies $V(2 K+R) \geq 0$.
Proof. Let m be a maximal natural number, such that $E+m(K+D) \geq 0$. It is greater than one by (4) and 6.1 .2 vii). By (5) and (6) of 5.1 .2 we can write $E+m(K+D)=\sum C_{i}$, where $C_{i}^{2}<0$. Multiplying both sides by $E+2 K+R$ we have $E K-2+m(4-2 \epsilon-E K+R(D-R))=\sum_{i} C_{i}(E+2 K+R)$, so $\sum_{i} C_{i}(E+2 K+R)=1$ by (4). Suppose that $C_{j}(E+2 K+R)<0$ for some j. Then $C_{j} K \geq 0$. Indeed, if $C_{j} K<0$, then $C_{j}^{2}=-1$ and $C_{j}(E+R) \leq 1$. Simultaneously $\left|K+D+C_{j}\right|=\emptyset$ by the definition of m, so either C_{j} is simple or it is a non-branching component of D, a contradiction. We get that $C_{j}=R$ and $K R-2=R(2 K+R)<0$, which is impossible by our assumption on R. Therefore $C_{i}(E+2 K+R) \geq 0$ for each i. If V is a component of T then $V(E+n(K+D))=n\left(\beta_{D}(V)-2\right)$, so tips of D, and hence all components of T, appear among C_{i} 's and we are done.
(6) There are no $\leq(-4)$-tips in D.

Proof. Suppose T_{1} contains a ≤-4-tip of D, denote it by R. By (5) we have $1 \geq \sum_{V \in \mathcal{C}(T)} V(2 K+R)$. We have $0 \leq V(2 K+R) \leq 1$ for every $V \in \mathcal{C}(T)$, so $T-R$ consists of (-2)-curves and $-5 \leq R^{2} \leq-4$. Maximal twigs of D other than T_{1} are tips, otherwise $e \geq \frac{1}{5}+\frac{1}{2}+\frac{1}{2}+\frac{2}{3}>\frac{9}{5}$, a contradiction with 6.1.4 (i). If $R^{2}=-5$ then $V(2 K+R)=0$ for every $V \in \mathcal{C}(T-R)$, so R is a maximal twig, a contradiction with 6.4.2 Thus $T_{1}=[4,(k-1)]$ for some positive integer k, hence by 6.1.4 (i) $\frac{9}{5} \geq e=\frac{3}{2}+\frac{1}{3+1 / k}$, so $k \leq 3$. By 6.4.2 there is an affine ruling f of (\bar{S}, D). For every singular fiber F the divisor $F \cap D$ is branched, otherwise the maximal twig containing $D \cap F$ has more than three components, a contradiction. Thus by 6.3.7 f has two singular fibers and we have $h+\widetilde{h}=n+5$ by 6.3.13(i). This implies that one of h or \widetilde{h}, say h, is at least 4 , so the second branch of respective singular fiber F contains at least two D-components, hence includes T_{1}. Let L be the unique S_{0}-component of F. Now $T_{1}+L$ should contract to a point. This is possible only for $k>3$, a contradiction.
(7) Maximal twigs of D are [2], [2], [3] and [3, 2].

Proof. We assume that $d_{1} \leq d_{2} \leq d_{3} \leq d_{4}$. By 6.1 .4 (i) and (iv) we have $e \geq \frac{9}{5}$ and $\delta \geq \frac{13}{4}-e \geq \frac{13}{4}-\frac{9}{5}=\frac{29}{20}$, so $d_{1}=2$ and $2 \leq d_{2} \leq 3$. If $d_{2}=3$ then the lower bound on δ gives $d_{3}=d_{4}=3$, and since by 6.4 .2 not all maximal twigs are tips, $e \geq \frac{1}{2}+\frac{1}{3}+\frac{1}{3}+\frac{2}{3}>\frac{9}{5}$, a contradiction. Thus $d_{2}=2$ and we have $\frac{1}{d_{3}}+\frac{1}{d_{4}} \geq \frac{9}{20}$, so $d_{3} \leq 4$. Since there are no (-4)-tips in D by (6), for $d_{3}=4$ we have $e \geq 1+\frac{3}{4}+\frac{1}{4}>\frac{9}{5}$, which is impossible, hence $d_{3} \leq 3 . T_{3}$ is a (-3)-tip, otherwise $e \geq \frac{3}{2}+\frac{1}{3}>\frac{9}{5}$. We get $\bar{d}_{4} \leq 8$ and $e_{4} \leq \frac{9}{5}-\frac{4}{3}<\frac{1}{2}$, so T_{4} contains a (-3)-tip, hence $T_{4}=[3,3]$ or $T_{4}=[3,(k)]$ for some $k \in\{0,1,2\}$. Only $T_{4}=[3]$ and $T_{4}=[3,2]$ satisfy 6.1.4 (iv), so other cases are excluded. The case $T_{4}=[3]$ is excluded by 6.4.2

Now we see by 6.4 .2 that there is an affine ruling f of (\bar{S}, D). Exactly as in (6) we obtain that f has two singular fibers and the second branch of one of them consists of an S_{0}-component L and all components of T_{4}. Now again $T_{4}+L$ should contract to a point, and we obtain a contradiction by checking that for $T_{4}=[3,2]$ this is impossible.

Lemma 6.4.4. Let $\mathcal{P} \equiv(K+D+\widehat{E})^{+}$and let B be the branching component of D. Put $b=-B^{2}$. Then:
(i) $b \in\{1,2\}$ and $b<\widetilde{e}$,
(ii) $\delta<1$,
(iii) $\mathcal{P} \equiv \frac{1-\delta}{\widetilde{e}-b}\left(B+\sum_{i=1}^{3} \operatorname{Bk} T_{i}^{t}\right)$,
(iv) $\mathrm{Bk}^{2} \widehat{E}=-\frac{(1-\delta)^{2}}{\tilde{e}-b}+e-1-\epsilon$.

Proof. (i) $0>d(D)=d_{1} d_{2} d_{3}(b-\widetilde{e}) \geq b-\widetilde{e}$ by 1.1.1(i) and 2.2.3.(ii). Now $\widetilde{e}_{i}<1$, so $b<\widetilde{e}<3$ and we get $b \in\{1,2\}$ by 6.1.2 (ix).
(ii) $\mathcal{P} V=0$ for every component V of $T+\widehat{E}$, because $T+\widehat{E} \subset(B+D+\widehat{E})^{-}$. Components of $D+\widehat{E}$ generate $N S(\bar{S}) \otimes \mathbb{Q}$, so $\mathcal{P} B \neq 0$, otherwise $\mathcal{P} \equiv 0$ and hence $\bar{\kappa}\left(S_{0}\right)$ would be smaller than two. We infer that $0<B \mathcal{P}=B(K+D-\operatorname{Bk} D)=1-\delta$.
(iii) Both \mathcal{P} and $B+\sum_{i=1}^{3} \operatorname{Bk} T_{i}^{t}$ intersect trivially with all components of $T+\widehat{E}$, so they are linearly dependent in $N S(\bar{S}) \otimes \mathbb{Q}$, moreover $\mathcal{P} B=1-\delta$ and $\left(B+\sum_{i=1}^{3} \operatorname{Bk} T_{i}^{t}\right) B=\widetilde{e}-b$.
(iv) We compute $\mathcal{P}^{2}=(1-\delta)^{2} /(\widetilde{e}-b)^{2}\left(B^{2}+\sum_{i=1}^{3} \widetilde{e}_{i}\right)=(1-\delta)^{2} /(\widetilde{e}-b)$, so now (iv) follows from 6.1 .2 (iii).

Remark 6.4.5. If $K T$ is bounded (for example this is the case when we can bound the determinants d_{1}, d_{2}, d_{3}) then there is only finitely many possibilities for the dual graphs of D and \widehat{E}. Indeed, by 6.2.1 $K E+\epsilon \leq 5$ and by 6.4.4 (i) $b \in\{1,2\}$. Now it is enough to bound $\# \widehat{E}+\# D$, and this is done using 6.1 .2 (vi).

Lemma 6.4.6. If $b=\# E=1$ then any affine ruling of $S \backslash \Delta$ has two singular fibers.
Proof. Let $f:\left(\bar{S}^{\dagger}, D^{\dagger}+\Delta\right) \rightarrow \mathbb{P}^{1}$ be an affine ruling of $S \backslash \Delta$. We have $\Sigma_{S_{0}}=0$, because $\# E=1$. By 6.3.7 f has more than one singular fiber. Suppose it has more than two singular fibers. Clearly, each fiber contains some D-components, so we infer that $D^{\dagger}=D, B$ is horizontal and f has three singular fibers F_{1}, F_{2}, F_{3}. Let L_{i} and Δ_{i} for $i=1,2,3$ be respectively the S_{0}-component and the connected component of Δ contained in F_{i} (it is possible that $\Delta_{i}=0$). Let m be the greatest integer, such that $B+m(K+D) \geq 0$. By 5.1.2(5) $m>0$, because $B D=3-b>1$. Write $B+m(K+D)=\sum_{j} c_{j} C_{j}$ for $c_{j}>0$ and $C_{j}^{2}<0$. Multiplying by the generic fiber F^{\prime} we get $1-m=\sum_{j} c_{j} F^{\prime} C_{j}$, so $m=1$ and $F^{\prime} C_{j}=0$, hence all C_{j} 's are vertical. Let D^{\prime} be the divisor consisting of vertical components of D not intersecting B. For any component $D_{0} \subseteq D^{\prime}$ we have $D_{0}(K+D+B)=\beta_{D}\left(D_{0}\right)-2$. Since for each F_{i} the divisor $F_{i} \cap D$ is a chain, the components of D^{\prime} are in the fixed part of $K+D+B$. Each L_{i} intersects D^{\prime}, so it follows that L_{i} 's, and hence all components of Δ are in the fixed part of $K+D+B$. Now for each i we have $E\left(L_{i}+\Delta_{i}\right) \geq 2$, otherwise L_{i} would be simple. Thus we get $E K=E(K+D+B)=E\left(\sum_{j} c_{j} C_{j}\right) \geq \sum_{i} E\left(L_{i}+\Delta_{i}\right) \geq 6$, a contradiction with 6.2.2

Corollary 6.4.7. If Δ has three connected components then $b=\epsilon=2$.
Proof. If Δ has three connected components then \widehat{E} is a fork, so $\epsilon=2$ by 6.2 .3 (ii) and we get $\# E=1$. Since Δ does not contain a fork, $S \backslash \Delta$ is affine ruled. We have $\Sigma_{S_{0}}=0$, so singular fibers have unique (-1)-curves. It follows that each connected component of Δ is contained in a different fiber, hence $b=2$ by 6.4.6

6.5 Surface W.

We define $W=\bar{S}-(T+\widehat{E})(T=D-B$, where B is the branching component of $D)$. Clearly, $S_{0} \subset W \subset$ $S \subset \bar{S}$ and $\chi(W)=\chi\left(S_{0}\right)+\chi\left(\mathbb{C}^{* *}\right)=-1$. Our goal is to prove that $\bar{\kappa}(W)=2$. To achieve this we give couple of technical lemmas (combining arguments which are often subtle with respect to input data) and use the results of some computer programs we wrote.

Lemma 6.5.1. If R is an ordered admissible chain then the equation $\left(^{*}\right) e(R)+\alpha / d(R)=1$ has the following solutions:
(i) $R=[2, \ldots, 2,2]$ for $\alpha=1$,
(ii) $R=[2, \ldots, 2,3]$ for $\alpha=2$,
(iii) $R=[2, \ldots, 2,3,2]$ or $R=[2, \ldots, 2,4]$ for $\alpha=3$.

Proof. Using a recurrence formula for a determinant of a chain (cf. 1.1.1 (i)) it is easy to check that $R=\left[2, a_{1} \ldots, a_{k}\right]$ satisfies $\left(^{*}\right)$ if and only if $\left[a_{1}, \ldots, a_{k}\right]$ does, so we may assume that $R=\left[a_{1}, \ldots, a_{k}\right]$ with $a_{1} \geq 3$. We have $d^{\prime}(R)+\alpha=d(R)=a_{1} d^{\prime}(R)-d^{\prime \prime}(R)$, so then $2 d^{\prime}(R) \leq\left(a_{1}-1\right) d^{\prime}(R)=d^{\prime \prime}(R)+\alpha<$ $d^{\prime}(R)+\alpha$, hence $d^{\prime}(R)<\alpha \leq 3$ and $k \leq 2$. For $d^{\prime}(R)=2$ we get $R=[3,2]$, for $d^{\prime}(R)=1$ we get $R=[4]$ or $R=[3]$ and for $d^{\prime}(R)=0$ we get $R=\emptyset$.

Lemma 6.5.2. If $F=\left[(k), c+1, a_{1}, \ldots, a_{n}\right]$ is admissible then $e(F)<\frac{k c-(k-1)}{(k+1) c-k}$.
Proof. By induction using the fact that for a chain $T=[c, \ldots]$ the equality $e(T)=\frac{1}{c-e^{\prime}(T)}$ holds.

Lemma 6.5.3.

(i) W is almost minimal and $K+T+\widehat{E} \equiv \lambda \mathcal{P}+\operatorname{Bk} \widehat{E}+\mathrm{Bk}^{*} T$ (cf. 6.1.3), where $\lambda=1-\frac{\tilde{e}-b}{1-\delta}$.
(ii) If $\bar{\kappa}(W) \geq 0$ then $\lambda \mathcal{P} \equiv(K+T+\widehat{E})^{+}$.
(iii) If $\bar{\kappa}(W) \geq 0$ then $b+1 \geq \widetilde{e}+\delta, \delta+\frac{1}{|G|} \geq 1$ and $\epsilon \neq 0$. The inequalities are strict if $\bar{\kappa}(W)=2$.
(iv) If $\bar{\kappa}(W) \neq 2$ then $\bar{\kappa}(W) \leq 0, \widetilde{e}+\delta \geq 2$ and $b=1$.

Proof. (i) Recall that $\mathrm{Bk}^{*} T=\operatorname{Bk} T+\mathrm{Bk} T^{t}$. Using 6.4.4 (iii) we have $K+T+\widehat{E} \equiv \mathcal{P}-B+\mathrm{Bk} D+\mathrm{Bk} \widehat{E}=$ $\mathcal{P}-B-\sum_{i=1}^{3} \operatorname{Bk} T_{i}^{t}+\sum_{i=1}^{3} \mathrm{Bk}^{*} T_{i}+\operatorname{Bk} \widehat{E}=\left(1-\frac{\tilde{e}-b}{1-\delta}\right) \mathcal{P}+\mathrm{Bk}^{*} T+\mathrm{Bk} \widehat{E}$. Suppose W is not almost minimal. Then there exists a (-1)-curve C, such that $C+\mathrm{Bk} \widehat{E}+\mathrm{Bk}^{*} T$ is negative definite. Since $\operatorname{Supp}\left(\operatorname{Bk} \widehat{E}+\mathrm{Bk}^{*} T\right)=\operatorname{Supp}(\widehat{E}+T),(K+T+\widehat{E})^{-}$has at least $\# T+\# \widehat{E}+1=b_{2}(\bar{S})$ numerically independent components, a contradiction with the Hodge index theorem.
(ii) From (i) and from the definition of Bk we see that \mathcal{P} intersects trivially with every component of $T+\widehat{E}$. If $\bar{\kappa}(W) \geq 0$ then by the properties of Zariski decomposition the same is true for $(K+T+\widehat{E})^{+}$, so $(K+T+\widehat{E})^{+} \equiv \lambda P$ (cf. 2.2 .3 (i)).
(iii) We have $\chi(W)=-1$, so $\delta+\frac{1}{|G|} \geq 1+\frac{1}{3} \lambda^{2} \mathcal{P}^{2}$ by the Kobayashi inequality (see 1.6.13(ii)). By (ii) and $1.6 .8 \bar{\kappa}(W)>0(\bar{\kappa}(W)=0)$ if and only if $\lambda>0$ (respectively $\lambda=0$), which is equivalent to $b+1>\widetilde{e}+\delta$ (respectively $b+1=\widetilde{e}+\delta$). Suppose $\epsilon=0$. Then $\widehat{E}=[|G|]$ by 6.2.3 (i), so by 6.1.4 (i) $\delta+\frac{1}{|G|} \leq e+\frac{1}{|G|} \leq 1$. Together with the inequality above this implies $e=\delta$, so maximal twigs of D are tips, a contradiction with 6.1.2 (vi).
(iv) Suppose $\bar{\kappa}(W)=1$. Then by (ii) $\lambda^{2} \mathcal{P}^{2}=0$, so $\lambda=0$ and $(K+T+\widehat{E})^{+} \equiv 0$, a contradiction. Thus $\bar{\kappa}(W) \leq 0$ and we have $b+1 \leq \widetilde{e}+\delta$, because $\lambda \leq 0$ in this case. Suppose $b=2$. Since $\widetilde{e}_{i}+\frac{1}{d_{i}} \leq 1$, we get $\widetilde{e}_{i}+\frac{1}{d_{i}}=1$ for each i, so D consist of (-2)-curves by 6.5.1(i). By 6.4.4(iv) $\mathrm{Bk}^{2} \widehat{E}=1-\epsilon$, so $\epsilon=2, \widehat{E}$ is a chain by 1.3 .5 (v) and $d^{\prime}(\widehat{E})+d^{\prime}\left(\widehat{E}^{t}\right)+2=d(\widehat{E})$. One checks easily that this equation can be satisfied only if Δ is connected, hence by 6.4.1 $\widehat{E}=[3,(k)]$ for some $k \geq 0$. Then $d^{\prime}(\widehat{E})+d^{\prime}\left(\widehat{E}^{t}\right)+2>d(\widehat{E})$, a contradiction.

To make further considerations easier (or even possible) it is crucial to prove that D does not contain small 0 -divisors, namely the chains $[2,1,2]$ and $[3,1,2,2]$. We prove this under additional assumptions and in the second case we restrict ourselves to proving that if D contains $[3,1,2,2]$ then D and \widehat{E} are special. This will be sufficient for our later arguments to work.

Lemma 6.5.4.

(i) If $K T_{i}=0$ for some i then $h^{0}(2 K+T+\widehat{E}) \geq 3-b-\epsilon$.
(ii) Assume $\bar{\kappa}(W) \leq 0$. Then D does not contain the chain $[2,1,2]$ and if D contains a chain $[3,1,2,2]$ then $E=[3]$.
(iii) Assume $\# E=1$. Then D does not contain the chain $[2,1,2]$. If D contains a chain $[3,1,2,2]$ then $\Delta=0$ and some T_{i} satisfies $K T_{i}=0$ and $\# T_{i} \geq 5$. The (-3)-curve of $[3,1,2,2]$ is not a tip of D.

Proof. (i) Let T_{1} consist of (-2)-curves. Riemann-Roch's theorem gives $h^{0}\left(-K-T_{2}-T_{3}-\widehat{E}\right)+h^{0}(2 K+$ $\left.T_{2}+T_{3}+\widehat{E}\right) \geq \frac{1}{2}\left(K+T_{2}+T_{3}+\widehat{E}\right)\left(2 K+T_{2}+T_{3}+\widehat{E}\right)+1=K\left(K+D+\widehat{E}-T_{1}-B\right)-3+1=3-b-\epsilon$. If $-K-T_{2}-T_{3}-\widehat{E} \geq 0$ then B, and hence T_{1}, is in the fixed part, so $-K-D-\widehat{E} \geq 0$, which contradicts $\bar{\kappa}\left(S_{0}\right)=2$. Thus $h^{0}\left(2 K+T_{2}+T_{3}+\widehat{E}\right) \geq 3-b-\epsilon$.
(ii) Suppose D contains a 0 -divisor $F_{\infty}=[2,1,2]$ or $F_{\infty}=[3,1,2,2]$. Since D is snc-minimal, the (-1)-curve of F_{∞} is B, the branching component of D. The divisor F_{∞} gives a \mathbb{P}^{1}-ruling $p: \bar{S} \rightarrow \mathbb{P}^{1}$ with F_{∞} as a fiber. \widehat{E} is vertical because $F_{\infty} \widehat{E}=0$, so $\Sigma_{S_{0}}=h+\nu-2=h-1 \leq 2$. Denote the fiber of p containing \widehat{E} by F_{E}. We have $F_{E} D \leq 5$ because $\mu(B) \leq 3$.

We first need to prove that all S_{0}-components are exceptional. For any vertical S_{0}-component L we have $L\left(K+T^{\#}+\widehat{E}^{\#}\right)=\lambda \mathcal{P} L$. By 6.4 .4 we have also $L \mathcal{P}>0$ because $L D>0$. Suppose $L^{2} \leq-2$. Then $L\left(T^{\#}+\widehat{E}^{\#}\right) \leq \lambda L \mathcal{P}$, which is possible only if $\lambda=L T^{\#}=L \widehat{E}^{\#}=0$. It follows that $L \widehat{E}=L$, so by 6.1 .2 (ii) $L D>1$, say $L T_{1}, L T_{2}>0$. Then $L T^{\#}=0$ implies that T_{1} and T_{2} are (-2)-chains, so by 6.5.3 (iii) we get $\widetilde{e}_{3}+\frac{1}{d_{3}}=0$. This is a contradiction, so we are done.

Let D_{h} and D_{v} be respectively the divisor of horizontal components of D and the divisor of D components contained in F_{E}. Let D_{1} be the multiple section contained in D_{h}. Denote the (-1)-curves of F_{E} by $L_{1}, L_{2}, \ldots, L_{\sigma\left(F_{E}\right)}$. Clearly, D_{v} has at most three connected components and they are chains. We will prove that D_{h} contains a section and $D_{v} \neq 0$. Suppose D_{h} does not contain a section. In this case D_{v} is connected and D_{h} is either a 2 -section or a 3 -section, so $\Sigma_{S_{0}}=0$ and $\sigma\left(F_{E}\right)=1$. We have $F_{E} D \leq 3$ and since L_{1} is not simple, $\left|L_{1} \cap D\right| \geq 2$, so D_{h} intersects L_{1} in exactly one point and $D_{v} \neq 0$. This gives $\mu\left(L_{1}\right)+1 \leq F_{E} D_{h} \leq 3$, so $\mu\left(L_{1}\right)=2$ and we get $K \widehat{E}=0$, a contradiction. Suppose $D_{v}=0$. Since L_{i} are not simple, $\left|L_{i} \cap D_{h}\right| \geq 2$ for each i, so $\sigma\left(F_{E}\right) \leq 2$. Since D_{h} contains a section, the exceptional component intersecting this section, say L_{2}, has multiplicity one, hence $\sigma\left(F_{E}\right)=2$. The second exceptional component has also multiplicity one, otherwise it could intersect only D_{1}, which would imply $D_{1} F_{E} \geq \mu\left(L_{2}\right) D_{1} F_{E} \geq 4$. This shows that $F_{E}=[1,(k), 1]$ for some $k \geq 0$, a contradiction with $K \widehat{E} \neq 0$. Let α be the number of connected components of D_{v}. We can assume that L_{1} intersects \widehat{E} and D_{v}. Notice that each L_{i} meeting \widehat{E} intersects D_{h}, otherwise it would be simple. We consider two cases.

Suppose \widehat{E} intersects more than one L_{i}, say $L_{2} \widehat{E}>0$. We have $5 \geq F_{E} D_{h} \geq\left(D_{v}+\mu\left(L_{1}\right) L_{1}+\right.$ $\left.\mu\left(L_{2}\right) L_{2}\right) D_{h}$ and $\mu\left(L_{2}\right) L_{2} D_{h} \geq 2$, so $\alpha+\mu\left(L_{1}\right) L_{1} D_{h} \leq 3$, hence $\alpha=1$ and $\mu\left(L_{1}\right)=2$. This gives $F_{E} D=5$, so $F_{\infty}=[3,1,2,2]$ and D contains three horizontal components. In particular, no maximal twig of D is contained in F_{∞}. We have now $L_{2} D_{v}=0$, so some section from D_{h} intersects L_{2}, which gives $\mu\left(L_{2}\right)=1$. Moreover, there are no more (-1)-curves in F_{E}. Defining F_{E}^{\prime} as the fiber F_{E} with L_{1} (only L_{1}) contracted we find that the (-1 -curves, and hence all components of F_{E}^{\prime}, have multiplicity one, so $F_{E}^{\prime}=[1,(k), 1]$ for some $k \geq 0$. It follows that $F_{E}=[1,(k-1), 3,1,2]$, hence $E=[3]$ and we are done.

Now suppose $L_{i} \widehat{E}=0$ for $i \neq 1$, i.e. L_{1} is the only S_{0}-component intersecting \widehat{E}. Consider the contraction of (-1)-curves in F_{E} different than L_{1} (if there are any) until L_{1} is the unique exceptional component in the image F_{E}^{\prime} of the fiber. This contraction does not touch \widehat{E}, so \widehat{E} is one of the connected components of $\underline{F}_{E}^{\prime}-L_{1}$. Since $L_{1} D_{h}>0$, we have $\mu\left(L_{1}\right) \leq 3$ because D_{h} contains no n-sections with $n>3$. It follows that either $F_{E}^{\prime}=[2,1,2]$ or $F_{E}^{\prime}=[3,1,2,2]$, hence $\widehat{E}=[3]$ because $K E \neq 0$. We have also $\mu\left(L_{1}\right)=3$, so D_{h} contains a 3 -section, which implies $F_{\infty}=[3,1,2,2]$ and we are done.
(iii) Let p, F_{∞} and F_{E} be as in (ii). Here the argument is tricky. By 6.3 .12 there exist a pre-minimal affine ruling of $S \backslash \Delta$, let f be its extension as in 6.3.9. We use the notation of 6.3.9. Notice that in general f is not defined on \bar{S}. However, the components of $\underline{F}-Z_{1}-Z_{l}$ are not touched by φ_{f}. In particular, Z_{l} and the divisor of D-components of the second branch of F (F is the fiber of f, not of p) are maximal twigs of D. We denote them by T_{2} and T_{1} respectively. Similarly the unique (-1)-curve C contained in F is not touched by φ_{f}, so it is exceptional on \bar{S} and satisfies $C D=1, C B=0$ and $C(\Delta+E) \geq 2$, because it is not simple. Now let us look how does C behave with respect to p. Since \widehat{E} is connected, C is horizontal for p and $F_{\infty} C=F_{E} C \geq 2$. We have $C D=1$, so C intersects $F_{\infty}-B$ in a component $D_{0} \subseteq T_{1}$ of multiplicity greater than one, hence $F_{\infty}=[3,1,2,2]$ and D_{0} is the middle (-2)-curve. We now look back at the fiber F of f and we find that after contracting C the component D_{0} becomes a (-1)-curve, so $\Delta^{\prime}=0$ and T_{1} consists of (-2)-curves. Notice that if f is almost minimal then applying the above argument to \widetilde{C} instead of C we get that \widetilde{C} intersects D_{0}, which contradicts the fact that C and \widetilde{C} intersect different maximal twigs of D. Thus f is not almost minimal. The contraction of $T_{1}+C$ touches Z_{1} precisely $x=\# T_{1}$ times, so $Z_{1}^{2}=-x-1$, hence φ_{f} touches Z_{1} precisely k times. The proper transform of $\widetilde{Z}_{l u}$ on \bar{S} is not a (-2)-curve, otherwise D would contain the chain $[2,1,2]$, which was excluded above.

Therefore by 6.3.11 (ii) we get $x \geq 5$ and $\Delta=0$.
We need only to prove that the (-3)-curve of F_{∞} is not a tip of D. Suppose it is. If $T_{3}=[3]$ then \widetilde{Z}_{l} is a tip, so $\widetilde{G}+\widetilde{Z}_{u}+\widetilde{Z}_{1}$ consists of (-2)-curves, which implies that φ_{f} touches Z_{1} once, contradicting 6.3 .11 (ii). Thus $T_{2}=Z_{l}=[3]$ and we get $Z_{u}+G=[2,2]$. Then $\widetilde{G}=[4], \widetilde{Z}_{u}=[(s)]$ for some $s \geq 0$ and $\widetilde{Z}_{l}=[2,2, s+2]$. We have $Z_{1}^{2}=-k-1$ and now φ_{f} touches $Z_{1} s+3$ times, so $s=k-3$. Then $\widetilde{Z}_{l u}$ is touched once by φ_{f} and has self-intersection $-k+1$, hence its image on \bar{S} has self-intersection $-k$. By 6.3 .11 (ii) we get $-k=2-k$, a contradiction.

Lemma 6.5.5. If $\bar{\kappa}(W) \leq 0$ then $\epsilon=2$, one of the maximal twigs of D is a (-2 -chain and some other is $[(k), 3]$ for some $k \geq 0$. This (-2)-chain is a tip of D, unless D contains the chain $[3,1,2,2]$.

Proof. Notice that by 6.5 .4 if D contains the chain $[3,1,2,2]$ then we can assume that T_{1} is a (-2)-chain. We will now prove that if D does not contain the chain $[3,1,2,2]$ then $T_{1}=[2]$. We explore intensively the inequality 6.5 .3 (iv): $\widetilde{e}+\delta \geq 2$. Notice that $\widetilde{e}_{i}+\frac{1}{d_{i}} \leq 1$ for each i. Assume that $d_{1} \leq d_{2} \leq d_{3}$. We prove successive statements.
(1) $T_{1}=[3]$ or T_{1} ends with a (-2)-curve.

Proof. Suppose not. If T_{1} ends with a (-3)-curve then T_{2} and T_{3} cannot end with two (-2)-curves by 6.5.4 Moreover, if one of T_{2} or T_{3}, say T_{2} ends with a (-2)-curve, then T_{3} does not, so using 6.5 .2 we get $\widetilde{e}_{1}<\frac{1}{2}, \widetilde{e}_{2}<\frac{2}{3}$ and $\widetilde{e}_{3}<\frac{1}{2}$, so $\widetilde{e}<\frac{1}{2}+\frac{2}{3}+\frac{1}{2}=\frac{5}{3}$. We use continuously this type of argument below with less details. If T_{1} ends with a $\leq(-4)$-curve then in case some other T_{i} ends with a (-3)-curve we have $\widetilde{e}<\frac{1}{3}+\frac{1}{2}+\frac{2}{3}=\frac{3}{2}$ and $\widetilde{e}<\frac{1}{3}+\frac{1}{3}+1=\frac{5}{3}$ if not. This gives $\frac{3}{d_{1}} \geq \delta \geq 2-\widetilde{e}>2-\frac{5}{3}=\frac{1}{3}$, so $d_{1} \leq 8$. By 1.1 .2 we have to exclude the following possibilities for $T_{1}:[4],[5],[6],[7],[8],[2,3],[2,4],[2,2,3],[3,3]$.

Case 1. T_{1} is one of $[2,4],[5]$, [6], [7] or [8]. In each case $\widetilde{e}_{1}+\frac{1}{d_{1}} \leq \frac{3}{7}$. If T_{3} (or similarly T_{2}) ends with two (-2)-curves then $\widetilde{e}_{2}<\frac{1}{3}$ and we get $\frac{1}{d_{2}}<2-\frac{3}{7}-1-\frac{1}{3}$, so $d_{2} \leq 4$, a contradiction with $d_{2} \geq d_{1}$. In other case $\widetilde{e}<\frac{3}{7}+\frac{2}{3}+\frac{1}{2}$, so $\frac{2}{d_{2}} \geq \frac{1}{d_{2}}+\frac{1}{d_{3}}>2-\widetilde{e}>\frac{17}{42}$ and again $d_{2} \leq 4$, a contradiction.
Case 2. T_{1} is one of $[2,2,3]$ or $[3,3]$. Then $\widetilde{e_{1}}+\frac{1}{d_{1}} \leq \frac{4}{7}$ and $\widetilde{e_{2}}+\widetilde{e_{3}}<\frac{1}{2}+\frac{2}{3}$, so $\frac{2}{d_{2}} \geq 2-\widetilde{e}-\frac{1}{d_{1}}>\frac{1}{4}$ and $d_{2} \leq 7$. Since $d_{1} \leq d_{2}$ we get $T_{1}=[2,2,3]$ and $d_{1}=d_{2}=7$. By renaming T_{1} with T_{2} we can assume that T_{2} does not end with a (-2)-curve. In fact we can assume that $T_{2}=[2,2,3]$ because other cases ($[7]$ and $[2,4]$) were excluded above, hence $\widetilde{e}_{3}+\frac{1}{d_{3}} \geq \frac{6}{7}$. We have $\widetilde{e}_{3}<\frac{2}{3}$ because T_{3} does not end with two (-2)-curves, so $\frac{1}{d_{3}}>\frac{6}{7}-\frac{2}{3}$ and $d_{3} \leq 5<d_{1}$, a contradiction.
Case 3. $T_{1}=[4]$. We have $\widetilde{e}_{1}+\frac{1}{d_{1}}=\frac{1}{2}$, so $\frac{1}{d_{2}}+\frac{1}{d_{3}} \geq \frac{3}{2}-\widetilde{e}_{2}-\widetilde{e}_{3}$. If T_{2} or similarly T_{3} ends with a $\leq(-4)$-curve then $\frac{1}{d_{2}} \geq \frac{3}{2}-\widetilde{e}_{2}-1>\frac{1}{6}$, so $d_{2} \leq 5$. If T_{2} (or similarly T_{3}) ends with a (-3)-curve, then $\frac{2}{d_{2}}>\frac{3}{2}-\frac{2}{3}-\frac{1}{2}=\frac{1}{3}$, so again $d_{2} \leq 5$. Notice that $T_{2} \neq[5]$ (similarly $T_{3} \neq[5]$), otherwise $\frac{1}{d_{3}}+\widetilde{e}_{3} \geq \frac{11}{10}$, which is impossible. If T_{2} is one of $[2,3],[3,2]$ or $[2,2,2,2]$ then we have respectively $\widetilde{e}_{2}+\frac{1}{d_{2}}=\frac{3}{5}, \frac{4}{5}, 1$ and using 6.5.4 and 6.5.2 we bound \widetilde{e}_{3} from above respectively by $\frac{2}{3}, \frac{1}{2}$ and $\frac{1}{3}$, which gives $d_{3}=5$. However, we check easily that then the inequality $\frac{1}{d_{2}}+\widetilde{e}_{2}+\frac{1}{d_{3}}+\widetilde{e}_{3} \geq \frac{3}{2}$ cannot be satisfied. Thus $d_{2}=4$. By renaming T_{1} and T_{2} we can assume that $T_{2} \neq[2,2,2]$, so $T_{2}=[4]$. Then $\widetilde{e}_{3}+\frac{1}{d_{3}} \geq 1$ so $T_{3}=[2,2,2]$ by 6.5.1 and after renaming T_{1} and T_{3} we get a contradiction.
Case 4. $T_{1}=[2,3]$. We have $\widetilde{e}_{2}+\widetilde{e}_{3}+\frac{1}{d_{2}}+\frac{1}{d_{3}} \geq \frac{7}{5}$ and $\widetilde{e}_{2}+\widetilde{e}_{3}<\frac{2}{3}+\frac{1}{2}$, so $d_{2} \leq 8$. Suppose $d_{2}=5$. We can assume that $T_{2}=[2,3]$, because the case $T_{1}=[5], T_{2}=[2,3]$ was considered above and in other cases T_{2} ends with a (-2)-curve, so after renaming T_{1} and T_{2} we get a contradiction. If $d_{3} \neq 5$ then $\widetilde{e}_{3} \geq \frac{4}{5}-\frac{1}{d_{3}}>\frac{3}{5}$, hence T_{3} ends with two (-2 -curves, a contradiction. Therefore $d_{3}=5$ and again we can assume that $T_{3}=[2,3]$, so $\widetilde{e}_{2}+\widetilde{e}_{3}+\frac{1}{d_{2}}+\frac{1}{d_{3}}=\frac{6}{5}$, a contradiction. Thus $6 \leq d_{2} \leq 8$. If $T_{2}=\left[d_{2}\right]$ then $\frac{1}{d_{3}}+\tilde{e}_{3}>\frac{7}{5}-\frac{2}{5}=1$, a contradiction. In particular $d_{2} \neq 6$, so T_{2} is one of $[2,2,3],[3,2,2],[2,4],[3,3]$, $[4,2]$ or $[2,3,2] . T_{2}$ and T_{3} cannot end two (-2)-curves, so $T_{2}=[3,2,2]$ is excluded and $\widetilde{e}_{3}<\frac{2}{3}$. If T_{2} is $[4,2]$ or $[2,3,2]$ then we have a better upper bound $\widetilde{e}_{3}<\frac{1}{2}$, in any case we obtain $\widetilde{e}_{3}+\widetilde{e}_{2}+\frac{1}{d_{2}} \leq \frac{5}{4}$, hence $d_{3} \leq 6<d_{2}$, a contradiction.
(2) T_{1} is a tip.

Proof. Suppose not. We have $\widetilde{e}_{2}+\widetilde{e}_{3}+\frac{1}{d_{2}}+\frac{1}{d_{3}} \geq 1$. By (1) T_{1} ends with a (-2)-curve, so T_{2} and T_{3} do not end with (-2)-curves, hence $\widetilde{e}_{2}+\widetilde{e}_{3}<\frac{1}{2}+\frac{1}{2}=1$ and from the inequality $\widetilde{e}+\delta \geq 2$ we get $\widetilde{e}_{1}+\frac{3}{d}>1$. This gives $d^{\prime}\left(T_{1}^{t}\right)=d\left(T_{1}^{t}\right)-1$ or $d^{\prime}\left(T_{1}^{t}\right)=d\left(T_{1}^{t}\right)-2$, so $T_{1}=[(k)]$ or $[3,(k)]$ for some $k>0$ by 6.5.1.

Suppose $k \geq 2$. In this case T_{2} and T_{3} end with a $\leq(-4)$-curve, so $\widetilde{e}_{2}, \widetilde{e}_{3}<\frac{1}{3}$. Then $\frac{1}{d_{2}}+\frac{1}{d_{3}}>\frac{1}{3}$ and we get $d_{1} \leq d_{2} \leq 5$, which is possible only if T_{2} is a tip and $T_{1}=[(k)]$ for some $k \in\{2,3,4\}$. Since now $\frac{1}{d_{3}} \geq 1-\widetilde{e}_{3}-\frac{2}{d_{2}}>\frac{2}{3}-\frac{1}{2}$, we see that $d_{3} \leq 5$, so T_{3} is also a tip. Then $\widetilde{e}_{2}=\frac{1}{d_{2}}$ and $\widetilde{e}_{3}=\frac{1}{d_{3}}$, so $\frac{1}{d_{2}}+\frac{1}{d_{3}} \geq \frac{1}{2}$ and we conclude that $T_{2}=T_{3}=[4]$ and $T_{1}=[(k)]$ for some $k \in\{2,3\}$. Using 6.4.4 we compute $\mathrm{Bk}^{2} \widehat{E}=-\epsilon$. The matrix $Q(\widehat{E})$ is negative definite, so $\epsilon \neq 0$, and in fact $\epsilon=1$ by 1.3 .6 . hence \widehat{E} is a chain by 1.3.5 (v). By 2.1.3 (ix) $8(k-1) / d(\widehat{E})$ is a square and by 6.2.2 and 6.1.2 vi) we get $\# \widehat{E}=8+K E-k \geq 10-k$. This implies that $k=3$ and $d(\widehat{E})=16$. However, it is easy to check that no chain \widehat{E} with $d(\widehat{E})=16$ satisfies $\# \widehat{E}-K \widehat{E}=5$, a contradiction.

We are left with the case $T_{1}=[3,2]$, for which $\widetilde{e}_{2}+\frac{1}{d_{2}}+\widetilde{e}_{3}+\frac{1}{d_{3}} \geq \frac{6}{5}$. The twigs T_{2} and T_{3} cannot end with a (-2)-curve, so $\widetilde{e}_{2}, \widetilde{e}_{3}<\frac{1}{2}$. Suppose T_{2} or T_{3} ends with a $\leq(-4)$-curve. Then $\widetilde{e}_{2}+\widetilde{e}_{3}<\frac{1}{2}+\frac{1}{3}$, so $\frac{1}{d_{1}}+\frac{1}{d_{2}}>\frac{1}{3}$ and we get $d_{1}=d_{2}=5$, hence $T_{2}=[5]$ or $T_{2}=[2,3]$. If $T_{2}=[5]$ then $\frac{1}{d_{3}}>\frac{4}{5}-\frac{1}{2}$. If $T_{2}=[2,3]$ then by assumption T_{3} ends with a $\leq(-4)$-curve, so $\widetilde{e}_{3}<\frac{1}{3}$ and $\frac{1}{d_{3}}>\frac{3}{5}-\frac{1}{3}$. In both cases we get $d_{2} \leq 3$, a contradiction. Thus both T_{2} and T_{3} end with a (-3 -curve, so $\widetilde{e}_{2}+\widetilde{e}_{3}<1$ and we get $d_{2} \leq 9$. However, admissible chains with $d \leq 9$ ending with (-3)-curve satisfy $\widetilde{e}+\frac{1}{d} \leq \frac{3}{5}$ (cf. $\sqrt{1.1 .2}$), the equality occurs only for $[2,3]$. Hence $\frac{1}{d_{3}} \geq \frac{3}{5}-\widetilde{e}_{3}>\frac{1}{10}$, so $d_{3} \leq 9$ too. This implies $T_{2}=T_{3}=[2,3]$. Using 6.4.4 we compute $\mathrm{Bk}^{2} \widehat{E}=\frac{1}{5}-\epsilon$, hence $\epsilon \neq 0$. We compute $d(D)=-50$, so $d(\widehat{E}) \in\{2,50\}$ by 2.1.3(ix). By 6.1.4 (i) $|G| \leq 7$ and since $G<G L(2, \mathbb{C})$ is small, it is abelian, hence \widehat{E} is a chain and $d(\overparen{E})=2$, a contradiction with $K E \neq 0$.
(3) $T_{1} \neq[3]$.

Proof. Suppose $T_{1}=[3]$. We have $\widetilde{e}_{2}+\widetilde{e}_{3}+\frac{1}{d_{2}}+\frac{1}{d_{3}} \geq \frac{4}{3}$, so since $\widetilde{e}_{2}+\widetilde{e}_{3}<\frac{2}{3}+\frac{1}{2}$, we get $\frac{1}{d_{1}}+\frac{1}{d_{2}}>\frac{1}{6}$, which gives $d_{2} \leq 11$.
Case 1. Suppose $T_{2} \neq[3]$ or T_{3} does not end with [3, 2]. We prove that $d_{3} \leq 42$. For $d_{2}>6$ the inequality $\frac{1}{d_{1}}+\frac{1}{d_{2}}>\frac{1}{6}$ gives $d_{3} \leq 42$. We can therefore assume that $d_{2} \leq 6$. If $T_{2}=[3,2]$ then $\widetilde{e}_{2}+\frac{1}{d_{2}}=\frac{4}{5}$ and T_{3} does not end with a (-2)-curve, so $\frac{1}{d_{3}}>\frac{4}{3}-\frac{4}{5}-\frac{1}{2}$ and $d_{3}<30$. If $T_{2}=[4]$, [5], [6] or [2,3] then $\widetilde{e}_{2}+\frac{1}{d_{2}} \leq \frac{3}{5}$ and since T_{3} does not end with two (-2)-curves, $\widetilde{e}_{3}<\frac{2}{3}$, which gives $d_{3} \leq 14$. Thus we can assume that $T_{2}=[3]$, hence $\widetilde{e}_{3}+\frac{1}{d_{3}} \geq \frac{2}{3}$. If T_{3} ends with a $\leq(-3)$-curve then $\frac{1}{d_{3}}>\frac{2}{3}-\frac{1}{2}$, so $d_{3} \leq 5$. If T_{3} ends with $[v, 2]$ for some $v>3$ then $\frac{1}{d_{3}}>\frac{2}{3}-\frac{3}{5}$, so $d_{3} \leq 14$ and we are done. Now notice that whenever d_{3} is bounded, by 6.4.5 there are finitely many possibilities for the dual graphs of D and \widehat{E}. Using a computer program we checked that the conditions $d_{2} \leq 11,6.1 .2$ vi), 6.1.4 6.2.5 6.4.4 and 6.3.13(ii) (which implies that $-d(D) / d(\widehat{E})$ is a square of an integer) are satisfied only in two cases:
(i) $T_{1}=[3], T_{2}=[3], T_{3}=[3,(6)]$ and $\widehat{E}=[2,3,4]$,
(ii) $T_{1}=[3], T_{2}=[4], T_{3}=[2,2,2]$ and \widehat{E} is a fork with a (-2)-curve as a branching component and maximal twigs [2], [2], [2, 2, 3].

In both cases D contains the chain $[3,1,2,2]$, a contradiction.
Case 2. Suppose $T_{2}=[3]$ and $T_{3}=T_{0}+[3,2]$. We will determine T_{0}. Since for a chain beginning with a $(-c)$-curve one has $d=c d^{\prime}-d^{\prime \prime}$, we get from $\widetilde{e}+\frac{1}{d_{3}} \geq \frac{2}{3}$ that $d^{\prime}\left(T_{0}^{t}\right)+3 \geq d\left(T_{0}^{t}\right)$, so by 6.5.1 $T_{3}=[(k), 3,2]$, $[3,(k), 3,2],[4,(k), 3,2]$ or $[2,3,(k), 3,2]$ for some $k \geq 0$. We conclude that $K T \leq 5$, hence 6.4.5 again reduces the problem to checking finitely many cases (here Noether formula implies $k \leq 9$, which gives $\left.d_{3} \leq 102\right)$. We checked that each of them leads to a contradiction.

To finish the proof we have to show that $\epsilon=2$ and one of T_{2} or T_{3} is $[(k), 3]$ for some $k \geq 0$. Since D cannot contain a chain $[2,1,2], T_{2}$ and T_{3} end with $\leq(-3)$-curves. We have $\widetilde{e}_{2}+\frac{1}{d_{2}}+\widetilde{e}_{3}+\frac{1}{d_{3}} \geq 1$ and the inequality is strict for $\bar{\kappa}(W)=-\infty$. Using 6.5.1 it is easy to check that an admissible chain R ending with a $\leq(-3)$-curve and satisfying $\widetilde{e}(R)+\frac{1}{d(R)} \geq \frac{1}{2}$ is either [4] or $[3,(k), 3]$ or $[(k), 3]$ for some $k \geq 0$. Moreover, the inequality is strict only in the last case, hence if $\bar{\kappa}(W)=-\infty$ then T_{2} or T_{3} is of type [(k),3] and we are done, because by 6.5 .4 (i) $\epsilon=2$ then. We can therefore assume $\bar{\kappa}(W)=0$. For convenience we put formally $[3,(-1), 3]=[4]$, then we have $d([3,(k-2), 3])=4 k$ for any $k \geq 1$.

Suppose $\epsilon \leq 1$ or T_{2}, T_{3} are not of type $[(k), 3]$. In the second case we can write $T_{2}=[3,(x-2), 3]$, $T_{3}=[3,(y-2), 3]$ with $1 \leq x \leq y$. We argue that we can do the same in the first case. Indeed, if $\epsilon \leq 1$ then by 6.5.4 $2\left(K_{\bar{S}}+T+\widehat{E}\right) \geq 0$, so by 1.6 .7 (ii) $\left[2\left(K_{\bar{S}}+T^{\#}+\widehat{E}^{\#}\right)\right] \sim U$ for some effective U. Then $K_{\bar{S}}+T^{\#}+\widehat{E}^{\#} \equiv 0$ implies $U+\left\{2\left(K_{\bar{S}}+T^{\#}+\widehat{E}^{\#}\right)\right\} \equiv 0$, hence $2 \mathrm{Bk}^{*} T_{i}$ and $2 \mathrm{Bk} \widehat{E}$ are \mathbb{Z}-divisors.

Since T_{2}, T_{3} are not (-2)-chains, we obtain $2 \mathrm{Bk}^{*} T_{i}=T_{i}$ for $i=2,3$. It is easy to see that an admissible chain R satisfying $\mathrm{Bk}^{*} R=\frac{1}{2} R$ is $[3,(k), 3]$ for some $k \geq-1$, so we are done. Using 6.4.4 (iv) we compute $\mathrm{Bk}^{2} \widehat{E}=-\epsilon$, hence $\epsilon=1$ and the argument above shows that we can write $\widehat{E}=[3,(z-2), 3]$ with $z \geq 1$. By 6.1.2. (vi) $x+y+z+\# T_{1}=12$, hence $1 \leq x, y, \# T_{1} \leq 9$ and $\frac{1}{\# T_{1}}+\frac{1}{x}+\frac{1}{y}+\frac{1}{12-x-y-\# T_{1}} \geq 1$ by 6.5.3(iii). This inequality is satisfied only for $\left(\# T_{1}, x, y\right)=(1,1,9)$, hence $T_{2}=[4], T_{3}=[3,(7), 3]$ and $\widehat{E}=[4]$. By 6.4.2 (\bar{S}, D) is affine ruled and since $b=1, B$ is horizontal and the ruling has three singular fibers. This contradicts 6.4.6

Proposition 6.5.6. $\bar{\kappa}(W)=2$.
Proof. Suppose $\bar{\kappa}(W) \leq 0$. Then $b=1$, by $6.5 .5 \epsilon=2$ and one of the maximal twigs of D consists of (-2)-curves, so $\# E=1$. Denote the coefficient of E in $\mathrm{Bk} \widehat{E}$ by w_{E}. We prove successive statements.
(1) If $w_{E}>\frac{1}{2}$ then \widehat{E} is a chain and Δ is connected. If $w_{E}=\frac{1}{2}$ then either \widehat{E} is a fork with maximal twigs [3], [2], [2] or $\widehat{E}=[2,3,2]$.
Proof. Suppose \widehat{E} is a fork. By 6.2.3 (iii) we know that Δ does not contain a fork and by 6.4.7 E is not the branching component of \widehat{E}, so \widehat{E} is of type (b1) (cf. 6.2.5, hence the maximal twig of \widehat{E} containing E is equal to $[(k), 3]$ for some $k \geq 0$. Using 1.3 .2 (ii) and the definition of a bark of an admissible fork it is a straight computation to check that $w_{E} \leq \frac{1}{2}$ in each case and the equality occurs only for a fork with maximal twigs [3], [2], [2]. If \widehat{E} is a chain then $\widehat{E}=[(m-1), 3,(\widetilde{m}-1)]$ for some $m, \widetilde{m} \geq 1$ and $w_{E}=\frac{m+\widetilde{m}}{m \widetilde{m}+m+\widetilde{m}}=1-1 /\left(1+\frac{1}{m}+\frac{1}{\widetilde{m}}\right)$, so $w_{E} \geq \frac{1}{2}$ if and only if $\frac{1}{m}+\frac{1}{\widetilde{m}} \geq 1$, hence (1) follows.

By 6.3.12 we can consider a pre-minimal affine ruling $f:\left(\bar{S}^{\dagger}, D^{\dagger}+\Delta\right) \rightarrow \mathbb{P}^{1}$ of $S \backslash \Delta$. We have $\Sigma_{S_{0}}=0$, so each singular fiber of f has a unique S_{0}-component, which is exceptional. We use the notation 6.3.9. Since $b=1$ and $Z_{1}^{2} \leq-2, n=1$ and by $6.3 .13 h+\widetilde{h}=5$, so either $(h, \widetilde{h})=(3,2)$ or $(h, \widetilde{h})=(4,1)$. Write $\Delta^{\prime}=[(m-1)], \widetilde{\Delta}=[(\widetilde{m}-1)]$ for some $m, \widetilde{m} \geq 1$. The maximal twig of D^{\dagger} contained in the first branch of F, call it T_{2}, and the one contained in the second branch of F, call it T_{1}, are not touched by φ_{f}, hence they are maximal twigs of D.

Let $\pi: \bar{S} \rightarrow U$ be the contraction of $T_{1}+C+\Delta^{\prime}$ to a (smooth) point. Since $b=1$, the image of B has nonnegative self-intersection, because this contraction touches B at least once. Blow up B on the intersection with T_{3} until it decreases to zero. Denote the proper transform of B by \widetilde{B}, the resulting surface by \widetilde{U} and the morphism by $\rho: \widetilde{U} \rightarrow U$. The center of ρ lies outside $T_{1}+C+\Delta^{\prime}$, so these blowups can be done in different order, i.e. we can first blow up on the intersection of B and T_{3} and define a morphism $\widetilde{\rho}: \widetilde{S} \rightarrow \bar{S}$ and then contract the proper preimage of $T_{1}+C+\Delta^{\prime}$ by a morphism $\widetilde{\pi}: \widetilde{S} \rightarrow \widetilde{U}$.

Clearly, $\rho \circ \widetilde{\pi}=\pi \circ \widetilde{\rho}$. Consider the \mathbb{P}^{1}-ruling $\eta \sim \widetilde{U} \rightarrow \mathbb{P}^{1}$ induced by \widetilde{B}. Denote by $\widetilde{T}_{3}, \widetilde{E} \subseteq \widetilde{U}$ the reduced inverse images of $T_{\widetilde{D}}$ and E respectively. Put $\widetilde{D}=\widetilde{B}+T_{2}+\widetilde{T}_{3}$. Let $D_{2} \subseteq T_{2}$ and $D_{3} \subseteq \widetilde{T}_{3}$ be the sections of η contained in \widetilde{D} and let F^{\prime} be the generic fiber. Since $\Sigma_{S_{0}}=1$ for the ruling $\eta \circ \widetilde{\pi}$, there exists a unique singular fiber F_{1} with $\sigma\left(F_{1}\right)=2$. Let M_{1}, M_{2} be its S_{0}-components.
(2) M_{1} and M_{2} are (-1)-curves. If there exists another singular fiber of η then $F_{1}=[1,(\widetilde{m}-1), 1]$.

Proof. Suppose there is another singular fiber F_{0}. Notice that vertical (-1)-curves are S_{0}-components. We have $\sigma\left(F_{0}\right)=1$ and F_{0} is a column fiber by 5.1.8 (ii), hence it contains components of T_{2} and \widetilde{T}_{3}. Then F_{1} does not contain any \widetilde{D}-component. Each M_{i} intersects D_{2} or D_{3}, so has multiplicity one. It follows that both M_{i} 's are (-1)-curves and $F_{1}=[1,(\widetilde{m}-1), 1]$, so we are done. We can therefore assume that F_{1} is the unique singular fiber of η. Suppose F_{1} has only one (-1)-curve. Then D_{2} and D_{3} intersect tips of F_{1} belonging to the first branch, so when we contract F_{1} to a smooth fiber we touch $D_{2}+D_{3}$ at most once. This gives two disjoint sections of a \mathbb{P}^{1}-ruling of a Hirzebruch surface, one negative and one non-positive, which is a contradiction.

The morphism $\widetilde{\pi}$ contracts the fiber consisting of $T_{1}+C+\Delta^{\prime}$ and the proper transform of B to \widetilde{B}, so since $h \leq 4$, we can write $\widetilde{\pi}=p_{3} \circ p_{2} \circ \sigma_{2} \circ p_{1} \circ \sigma_{1}$, where p_{1}, p_{2} are sprouting (with respect to the image of the fiber), σ_{i} are compositions of sequences of subdivisional blowdowns and p_{3} is either sprouting if $h=4$ or identity if $h=3$. Notice that $p_{1} \circ \sigma_{1}$ is the contraction of $C+\Delta^{\prime}$. Put $\sigma=\sigma_{2} \circ p_{1} \circ \sigma_{1}$ and let R_{i} for $i=1,2,3$ be the exceptional divisors of p_{i}. We now analyze the contraction $\widetilde{\pi}$ and singular fibers of η more closely.
(3) $\widetilde{E}\left(K_{\widetilde{U}}+\widetilde{D}\right)+E \sigma^{*} R_{2}+(h-3) E F^{\prime}=1$.

Proof. Let us use the common letter E^{\prime} for the birational transforms of E. We compute how the quantity $E^{\prime}\left(K^{\prime}+D^{\prime}\right)$, where D^{\prime} is the reduced inverse image of \widetilde{D} and K^{\prime} the canonical divisor on a respective intermediate surface between \widetilde{S} and \widetilde{U}, changes under subsequent blowdowns. Clearly, it does not change under blowdowns subdivisional for D^{\prime}, hence it does not change under $\widetilde{\rho}$ too. However, if we make a contraction of an exceptional component V which is sprouting for D^{\prime} then it decreases by $E^{\prime} V$ (here E^{\prime} is contained in an intermediate surface between \widetilde{S} and \widetilde{U}, for which $V^{2}=-1$). At the beginning we have $E^{\prime}\left(K^{\prime}+D^{\prime}\right)=E\left(K+D+C+\Delta^{\prime}\right)$. Under σ it decreases by $E^{\prime} R_{1}=E \sigma_{1}^{*} R_{1}=E\left(C+\Delta^{\prime}\right)$. Under p_{i} it decreases by $E^{\prime} R_{i}$. If $h=4$ then $E^{\prime} R_{3}=E^{\prime} F^{\prime}=E F^{\prime}$ because p_{3} is preceded by a sprouting blowdown p_{2}, hence E^{\prime} intersects the fiber containing R_{3} only in R_{3}. We obtain $\widetilde{E}\left(K_{\widetilde{U}}+\widetilde{D}\right)=E K-E \sigma^{*} R_{2}-(h-$ 3) $E F^{\prime}$.
(4) There is a unique exceptional S_{0}-component L, such that $L \widetilde{D}>1$. It satisfies $K_{\widetilde{U}}+\widetilde{D}+L \equiv 0$.

Proof. By Riemann-Roch's theorem $h^{0}\left(-K_{\widetilde{U}}-\widetilde{D}\right)+h^{0}\left(2 K_{\widetilde{U}}+\widetilde{D}\right) \geq K_{\widetilde{U}}\left(K_{\widetilde{U}}+\widetilde{D}\right)$. The morphism $\rho: \widetilde{U} \rightarrow U$ is a composition of subdivisional blowdowns in \widetilde{D} and the morphism $\pi: \widetilde{S} \rightarrow U$ is a composition of blowdowns with at least one of them being sprouting for D, hence $K_{\widetilde{U}}\left(K_{\widetilde{U}}+\widetilde{D}\right)=K_{U}\left(K_{U}+\pi_{*} D\right)>$ $K(K+D)=0$. If $2 K_{\widetilde{U}}+\widetilde{D} \geq 0$ then $0 \leq \kappa\left(K_{\widetilde{U}}+\widetilde{D}\right)=\kappa\left(K_{U}+\pi_{*} D\right)=\kappa\left(K+D+C+\Delta^{\prime}\right)$, but $C+\Delta^{\prime}$ contracts to a point using D, so by 5.1.5 this contradicts $\kappa(K+D)=-\infty$. We get $-K_{\widetilde{U}}-\widetilde{D} \geq 0$. Write $-K_{\widetilde{U}}-\widetilde{D}=\sum C_{i}$ for irreducible C_{i} 's, such that $C_{i}^{2}<0($ cf. 5.1 .2 (6) $)$. We have $F^{\prime}\left(K_{\widetilde{U}}+\widetilde{D}\right)=0$, so C_{i} 's are vertical.

Each S_{0}-component L intersects \widetilde{D}. Suppose each satisfies $L \widetilde{D}=1$. Then F_{1} is the only singular fiber of η. Indeed, if $F^{\prime} \neq F_{1}$ is a singular fiber then $\sigma\left(F^{\prime}\right)=1$ and by 5.1.8 (ii) F^{\prime} is a column fiber, so its exceptional component does not satisfy our assumption. Let $R \subseteq M_{1}+\Delta+M_{2}$ be a chain of components of F_{1} connecting two connected components of $F_{1} \cap \widetilde{D}$ (these components can be points). By our assumption $R \neq M_{1}$ and $R \neq M_{2}$ and since $\widetilde{\Delta} \widetilde{D}=0$, we get $M_{1}+M_{2} \subseteq R$, hence R contains a 0 -divisor. It follows that $F_{1}=[1,(\widetilde{m}-1), 1]$, hence $T_{2}=D_{2}$ and $T_{3}=D_{3}$. If we now look at the pre-minimal ruling of $S \backslash \Delta$ then we see that \widetilde{Z}_{l} and Z_{l} are tips, so \widetilde{G} and G are (-2)-curves, which implies that D contains a component with non-negative self-intersection, a contradiction. Thus there is an exceptional S_{0}-component L, such that $L \widetilde{D}>1$.

Notice that if for some $i \in\{2,3\}$ the section D_{i} intersects L then D_{i} is a maximal twig of \widetilde{D}, because $D_{i} F=1$. It follows that $L \widetilde{D}=2$. Since $\left(-K_{\widetilde{U}}-\widetilde{D}\right) L=1-\widetilde{D} L<0, L$ appears among C_{i} 's. However, $-K_{\widetilde{U}}-\widetilde{D}-L$ is vertical and satisfies $\left(-K_{\widetilde{U}}-\widetilde{D}-L\right)^{2}=K_{\widetilde{U}}\left(K_{\widetilde{U}}+\widetilde{D}\right)-1 \geq 0$, so $-K_{\widetilde{U}}-\widetilde{D}-L \equiv \alpha F$ for some $\alpha \geq 0$. Multiplying by D_{i} for $i=2,3$ we get $\beta_{\widetilde{D}}\left(D_{i}\right)+L D_{i}=2-\alpha$. For $\alpha>0$ we would obtain $L D_{2}=L D_{3}=0$, which is impossible because $L \widetilde{D}>0$. Thus $K_{\widetilde{U}}+\widetilde{D}+L \equiv 0$. It follows that if another exceptional S_{0}-component L^{\prime} has $L^{\prime} \widetilde{D}>1$ then $L \equiv-K_{\widetilde{U}}-\widetilde{D} \equiv L^{\prime}$, so $L L^{\prime}=-1$, hence L is unique.
(5) $2 \leq E \sigma^{*} R_{2}=1+E L \leq 3$ and $h=3$.

Proof. Intersecting $K_{\widetilde{U}}+\widetilde{D}+L \equiv 0$ with components of $\widetilde{D}+\widetilde{\Delta}$ we see that $L \widetilde{\Delta}=0$ and L intersects \widetilde{D} only in tips, each tip once. It follows that ρ and π do not touch L. Intersecting $K+T+\widehat{E} \equiv \lambda \mathcal{P}+\operatorname{Bk}^{*} T+\operatorname{Bk} \widehat{E}$ with L we get $E L\left(1-w_{E}\right) \leq\left(\mathrm{Bk}^{*} T_{2}+\mathrm{Bk}^{*} T_{3}\right) L-1$. We have $\left(\mathrm{Bk}^{*} T_{1}+\mathrm{Bk}^{*} T_{3}\right) L<2$, otherwise T_{2} and T_{3} would be (-2)-chains, which is impossible by 6.5.4 (ii). Thus $E L<\frac{1}{1-w_{E}}$. By (3) we get $E \sigma^{*} R_{2}+(h-3) E F^{\prime}=1-\widetilde{E}\left(K_{\widetilde{U}}+\widetilde{D}\right)=1+E L<1+\frac{1}{1-w_{E}}$. By (2) either $w_{E} \leq \frac{1}{2}$ or $\widehat{E}=[3,(n-1)]$ for some $n \geq 1$ and then $\frac{1}{1-w_{E}}=2+\frac{1}{n} \leq 3$. In any case $E \sigma^{*} R_{2}+(h-3) E F^{\prime} \leq 3$.

Consider the ruling $\eta \circ \widetilde{\pi}: \widetilde{S} \rightarrow \mathbb{P}^{1}$. Let μ_{C} and μ_{Δ} be the coefficients in $\sigma^{*} R_{2}$ of C and respectively of a component of Δ^{\prime} intersecting E (put $\mu_{\Delta}=0$ for $\Delta^{\prime}=\emptyset$). Clearly, $\widetilde{\rho}$ does not touch $T_{1}+C+\Delta^{\prime}+E$. We have $E \sigma^{*} R_{2}=\mu_{C} E C+\mu_{\Delta}$ and $\mu_{\Delta}<\mu_{C}$. Notice that $E \sigma^{*} R_{2} \geq 2$, otherwise E is a section of
$\eta \circ \widetilde{\pi}$, which implies $C(E+\Delta) \leq 1$, a contradiction with 6.1 .2 (ii). Since $E \sigma^{*} R_{2} \leq E F^{\prime}$, from (3) we get $(h-2) E \sigma^{*} R_{2} \leq 3$, so $h=3$.
(6) If $T_{1}=[(k)]$ then $k=1$.

Proof. Recall that T_{1} is contained in the second branch of F (a fiber of a pre-minimal ruling f). Suppose $k>1$. Then by $6.5 .5 D$ contains a chain $[3,1,2,2]$. We are now able to eliminate this possibility. As in the proof of 6.5.4 we consider the \mathbb{P}^{1}-ruling p of \bar{S} with $F_{\infty}=[3,1,2,2]$ as a fiber. Since by 6.5.4 (ii) D does not contain a chain $[2,1,2]$, the two (-2)-curves of F_{∞} are components of T_{1}. Consider the curve L given by (4). It is disjoint from $B+T_{1}$ and intersects the tips of T_{2} and T_{3}. By 6.5.4 we know that the (-3)-curve of F_{∞} is not a tip of D, hence $L F_{\infty}=0$. By (5) $E L>0$, so L is contained in the fiber of p containing \widehat{E}. We have $L T_{1}=0$ and $L E>0$, so the 3 -section contained in \widetilde{D} intersects L because L cannot be simple. Hence the 3 -section is a maximal twig of D, say it is T_{2} (further arguments work for T_{3} as well). We can assume that $T_{2}^{2} \neq-3$, otherwise we could take T_{2} as a part of new F_{∞} and then get a contradiction with 6.5 .4 (iii). By 6.5.5 $T_{3}=[(l), 3]$ for some $l \geq 0$. By 6.5.4 we have $\widehat{E}=[3]$ and we can assume that $l \geq 1$. The inequality $\widetilde{e}+\delta \geq 2$ gives $T_{2}^{2} \in\{-4,-5\}$ for $l=1$ and $T_{2}^{2}=-4$ for $l>1$. Noether formula implies $T_{2}^{2}+k+l=4$. We check that $-\frac{d(D)}{d(\widehat{E})}=\frac{110}{3}$ for $T_{2}^{2}=-5$ and $-\frac{d(D)}{d(\widehat{E})}=17+13 l-2 l^{2}$ for $T_{2}^{2}=-4$ and this is never a square, a contradiction with 6.3.13 ii).
(7) $T_{1}=[(k), 3]$ for some $k \geq 1 . \widehat{E}=[3,2]$.

Proof. Since $h=3$ and $E \sigma^{*} R_{2}=\mu_{C} E C+\mu_{\Delta} \leq 3$, we have two possibilities depending on μ_{Δ}. If $\mu_{\Delta}>0$ then $\mu_{C}>1$, so $\mu_{C}=2$ and $E C=1$, hence T_{1} is $[3,(k)]$ or $[(k), 3]$ for some $k \geq 0$. Since one of the maximal twigs of D consists of (-2 -curves, by 6.5.4 (ii) the possibility that $T_{1}=[3,(k)]$ for some $k>0$ is excluded. If $\mu_{\Delta}=0$ then $\Delta^{\prime}=0$, so $E C \geq 2$ and $\mu_{C}=1$, hence $T_{1}=[(k)]$ for some $k \geq 0$. By (6) $T_{1}=[(k)]$ is possible only for $k=1$. We only need to prove that T_{1} is not a tip. Suppose T_{1} is a tip, i.e. $T_{1}=[2]$ or $T_{1}=[3]$. Then $E \sigma^{*} R_{2}=E F^{\prime}$ for a generic fiber F^{\prime}. By (5) we have $2 \leq E L+1=E F^{\prime}=\mu_{C} E C+\mu_{\Delta}$. Suppose $L \nsubseteq F_{1}$ (cf. (2)). Then $F_{1}=M_{1}+\widetilde{\Delta}+M_{2}$ by (2) because L is vertical. The fiber containing L has $\sigma=1$, so $\mu(L) \geq 2$ and since $\mu(L) E L \leq E F^{\prime} \leq 3$, we get $E F^{\prime}=E L+1=2$. This implies that either $\widetilde{\Delta} \neq \emptyset$ and $E M_{i}=0$ for some i or $\widetilde{\Delta}=\emptyset$ and $E M_{i} \leq 1$ for some i. By (4) $M_{1} \widetilde{D}, M_{2} \widetilde{D} \leq 1$, so in both cases M_{i} is simple, which is a contradiction. Therefore $L \subseteq F_{1}$, say $L=M_{1}$. We have $E\left(M_{2}+\widetilde{\Delta}\right) \leq E\left(\underline{F}_{1}-L\right)=1$ and $M_{2} \widetilde{D} \leq 1$ by (4). Since $\widetilde{\Delta} M_{2} \leq 1, M_{2}$ is simple, a contradiction. Thus $T_{1}=[(k), 3]$ for some $k \geq 1$. We conclude that $\Delta^{\prime}=[2]$ and $E \sigma^{*} R_{2}=3$, so $E L=2$. Since $E L<\frac{1}{1-w_{E}}$ (cf. (5)), we get $\widehat{E}=[3,2]$ because $\widetilde{\Delta}=\emptyset$ by (1).
(8) $T_{2}=[2]$.

Proof. Recall, that T_{2} is the maximal twig of D contained in the first branch of F. We have $\Delta^{\prime} \neq 0$, so by 6.5.4 D does not contain a chain $[3,1,2,2]$. Therefore by 6.5 .5 one of T_{2} or T_{3} is a (-2)-tip. Suppose this is T_{3}. Clearly, then f is not almost minimal. Thus by 6.3.11 the morphism $\varphi_{f}: \bar{S}^{\dagger} \rightarrow \bar{S}$ minimalizing D^{\dagger} contracts precisely $H^{\dagger}+\widetilde{Z}_{1}$. Since $T_{3}=[2]$, we can write $Z_{l}=[l+3]$ for some $l \geq 0$. Since $\widetilde{\Delta}=\emptyset$, $\widetilde{G}+\widetilde{Z}_{u}+\widetilde{Z}_{1}=[(l+3)]$. It follows that φ_{f} touches Z_{1} once. However, $Z_{1}^{2}=-2-k$ because Z_{1} becomes a (-1)-curve after contracting $\Delta^{\prime}+C+T_{1}$. We get $k=0$, a contradiction with (7).

From (8) we see that F is produced by the following sequence of characteristic pairs (cf. 6.3.1 and 6.3.4): $\binom{4 k}{2 k},\binom{2 k}{2},\binom{2}{1}$, so the pairs $\binom{c_{i}}{\underline{p}_{i}}$ are $\binom{2 k}{k},\binom{k}{1}$ and $\tau=2 C E+1=3$. The second fiber \widetilde{F} of the pre-minimal ruling is produced by the sequence $\binom{c}{p},\binom{1}{1}$ for some $c, p \geq 1$. We have $\widetilde{\tau} c=d=\tau \underline{c}_{1}=6 k$. By 6.8 $3 d+1=\tau(\underline{2} k+k+1)+\widetilde{\tau}(c+p)$, hence $\widetilde{\tau} p=3 k-2$. Then $\widetilde{\tau}=\operatorname{gcd}(\widetilde{\tau} c, \widetilde{\tau} p)=\operatorname{gcd}(6 k, 3 k-2)=\operatorname{gcd}(3 k-2,4)$, so $\widetilde{\tau} \in\{2,4\}(\widetilde{C}$ would be simple for $\widetilde{\tau}=1)$. Then 6.9 gives $d^{2}+3=\tau^{2}\left(2 k^{2}+k\right)+3 L E+L E+1+\widetilde{\tau}^{2}(c p)+\widetilde{\tau}^{2}$, hence $\widetilde{\tau}^{2}=3 k-2$. For $\widetilde{\tau}=2$ we get $k=2$, so $g c d(c, p)=2$, a contradiction. Thus $\widetilde{\tau}=4$ and we get $k=6$ and $(c, p)=(9,4)$, so $\widetilde{G}+\widetilde{Z}_{u}=[3,2,2,2]$ and $\widetilde{Z}_{l}=[5,2]$. It follows that Z_{1} is touched six times by φ_{f}, a contradiction with $Z_{1}^{2}=-8$, since $b=1$.

Corollary 6.5.7. \widehat{E} is one of: [2,3], [3], [4], [5].

Proof. Suppose $|G| \geq 7$. By 6.5.6 $\bar{\kappa}(W)=2$, so by 6.5.3(iii) we have $\epsilon \neq 0$ and $1>\delta>\frac{6}{7}$. For $d_{1} \geq 3$ we get $d_{2}=3$ and $d_{3} \leq 5$. For $d_{1}=2$ we have $d_{2} \geq 3$ and the inequality gives $d_{2} \leq 5$ and $\frac{1}{d_{3}} \geq \frac{6}{7}-\frac{1}{2}-\frac{1}{3}=\frac{1}{42}$, so $d_{3} \leq 42$. By 6.4.5 there are only finitely many possibilities for the dual graphs of \widehat{E} and D. Using a computer program we checked that the conditions 6.1 .2 vi), 6.2.5 6.4.4 and 6.3.13 (ii) can be satisfied only for $\widehat{E}=[4]$, which contradicts our assumption. We conclude that \widehat{E} is one of: [2, 3], [3], [4], [5], [6]. However, [6] is excluded, since $\epsilon \neq 0$.

6.6 Special cases

We have now to deal with the following cases: $\bar{\kappa}(W)=2$ and $\widehat{E} \in\{[2,3],[3],[4],[5]\}$. Let f be a preminimal affine ruling of $\left(\bar{S}^{\dagger}, D^{\dagger}\right)$. We use the notation of 6.3.9. Let (x, y, z) with $x \leq y \leq z$ be the ordering of $\left(d_{1}, d_{2}, d_{3}\right)$. By 6.5.3 we have $1>\delta>1-\frac{1}{|G|} \geq \frac{2}{3}$, so $x \leq 4$ and $y \leq 11$.

Lemma 6.6.1. One of the following cases occurs:
(1) $(x, y)=(3,3)$ and $\widehat{E}=[3]$,
(2) $(x, y)=(2,3)$,
(3) $(x, y)=(2,4)$ and \widehat{E} is either $[3]$ or $[4]$,
(4) $(x, y) \in\{(2,5),(2,6)\}$ and $\widehat{E}=[3]$.

In particular, dual graphs of two maximal twigs of D belong to the list $\mathcal{L}=\{[2],[2,2],[2,2,2],[2,2,2,2],[2,2,2,2,2],[3],[4],[5],[6],[2,3],[3,2]\}$.

Proof. Suppose $z \leq 42$. Given an upper bound for z there is only finite number of possible dual graphs of D. We used a computer program, which showed that for $x \leq 4, y \leq 11, z \leq 42$ conditions 6.1 .2 (vi), 6.2.5. 6.4 .46 .3 .13 (ii), 6.1.4 and 6.5.3 (iii) are satisfied only in three cases:
(i) $b=1, T_{1}=[2], T_{2}=[4], T_{3}=[(8), 4]$ and $\widehat{E}=[4]$,
(ii) $b=2, T_{1}=[2], T_{2}=[2,2], T_{3}=[4,(6)]$ and $\widehat{E}=[4]$,
(iii) $b=2, T_{1}=[2], T_{2}=[2,2,2], T_{3}=[3,3,(4)]$ and $\widehat{E}=[4]$,
hence we are done. Now suppose $z>42$. For $x \geq 4$ we get $\frac{1}{z}>1-\frac{1}{|G|}-\frac{1}{2} \geq \frac{1}{6}$, which is impossible. For $x=3$ we have $\frac{1}{y}+\frac{1}{|G|}>\frac{2}{3}-\frac{1}{42}$, which gives $|G|=y=3$. Since $\delta<1$, for $x=2$ we have $y \geq 3$ and $\frac{1}{y}+\frac{1}{|G|}>\frac{1}{2}-\frac{1}{42}$, hence $y \leq 6$ and the bounds on \widehat{E} follow.
Corollary 6.6.2. The ruling f has two singular fibers and $\widetilde{h}=2$.
Proof. By 6.3.7 f has more than one singular fiber and it has at most three because D is a fork. Suppose it has three. Then $D^{\dagger}=D$ and since $x \leq 3$, for one of the singular fibers, say $F_{1}, F_{1} \cap D$ has at most two components, hence F_{1} is a chain. Moreover, $\widehat{E}=[2,3]$ and $\Delta \subseteq F_{1}=[2,1,2]$. It follows that the maximal twigs contained in other singular fibers of f have more than two components, a contradiction with 6.6.1.

We have $1 \leq \widetilde{h} \leq 2$ because $\widetilde{F} \cap D$ is a chain (cf. 6.3.9. Suppose $\widetilde{h}=1$. Then $\widehat{E}=[2,3]$ and $\widetilde{F}=[2,1,2]$, so $n \geq 2$, otherwise \widetilde{G} would be contracted by φ_{f}, contradicting the pre-minimality of f. In particular, $\# T_{3}>2$. By $6.3 .13 h \geq 5$, so the second branch of F contains more than two D-components. Thus at least two maximal twigs of D have more than two components, a contradiction with 6.6.1

Let T_{1}, T_{2} be the maximal twigs of D contained respectively in the second and in the first branch of F. (Notice that we did not assume $d_{1} \leq d_{2} \leq d_{3}$, instead we have introduced x, y, z.) Clearly, they are also maximal twigs of D^{\dagger} and φ_{f} contracts the chain $H^{\dagger}+\widetilde{Z}_{1}+\widetilde{Z}_{u}$ to T_{3}.

We rewrite the equations of 6.3 .5 for two fibers. Put $\alpha=n+\epsilon+E K-4$, then $h=3+\alpha$ and $0 \leq \alpha \leq n$. $\operatorname{Put}\binom{\widetilde{\underline{c}}_{1}}{\underline{\underline{p}}_{1}}=\binom{\widetilde{c}}{\widetilde{p}},\binom{\underline{c}_{1}}{\underline{p}_{1}}=\binom{c}{p}$ and $\binom{\underline{c}_{h-1}}{\underline{p}_{h-1}}=\binom{c^{\prime}}{p^{\prime}}$. Since T_{1} is a chain, we have $\binom{\underline{c}_{2}}{\underline{p}_{2}}=\binom{\underline{c}_{3}}{\underline{p}_{3}}=\ldots=\binom{\underline{c}_{h-2}}{\underline{p}_{h-2}}=\binom{c^{\prime}}{c^{\prime}}$. Define $u=\tau C E+c_{h}^{\prime} C E+c_{h}^{\prime}-\tau^{2}$ and similarly $\widetilde{u}=\widetilde{\tau} \widetilde{C} E+\widetilde{c}_{h}^{\prime} \widetilde{C} E+\widetilde{c}_{h}^{\prime}-\widetilde{\tau}^{2}$. We have $u=0$ for $\Delta^{\prime}=0$ and $u=\frac{1}{2}\left(1-\tau^{2}\right)$ for $\Delta^{\prime}=[2]$, analogously for \widetilde{u}. Now we can write 6.1) as:

$$
\begin{equation*}
d n+\gamma-2=\tau\left(p+\alpha c^{\prime}+p^{\prime}\right)+\widetilde{\tau} \widetilde{p} \tag{6.8}
\end{equation*}
$$

We have $d=c \tau=\widetilde{c \tau}$, hence multiplying the above equation by d and subtracting 6.2 we obtain:

$$
\begin{equation*}
d(\gamma-2)-\gamma=\tau^{2}\left(\left(c-c^{\prime}\right)\left(\alpha c^{\prime}+p^{\prime}\right)-1\right)+u-\widetilde{\tau}^{2}+\widetilde{u} \tag{6.9}
\end{equation*}
$$

Remark. Knowing the dual graph of Z_{l} it is easy to determine c / c^{\prime} and p / c^{\prime}. One has $c / c^{\prime}=d\left(G+Z_{u}\right)=$ $d\left(Z_{l}\right)$ and $p / c^{\prime}=d\left(Z_{u}\right)=d\left(Z_{l}\right)-d\left(Z_{l}-Z_{l l}\right)$ (cf. Appendix of KR99]).

Remark 6.6.3. For a fixed dual graph of F there is only a finite number of possible dual graphs of $\widetilde{F}+H$.
Proof. If the graph of F is known then we know $c, p, c^{\prime}, p^{\prime}$, u. The equation 6.8 gives $n\left(c-c^{\prime}\right)+\frac{\gamma-2}{\tau}=$ $p+(\epsilon+E K-4) c^{\prime}+p^{\prime}+\frac{\widetilde{\tau} \widetilde{p}}{\tau}$, so $n\left(c-c^{\prime}\right)<p+p^{\prime}+c \leq 2 c$, hence $n<2+\frac{2 c^{\prime}}{c-c^{\prime}} \leq 4$. Since now α is bounded, it is enough to bound τ, because then d, and hence $\widetilde{c}, \widetilde{p}$ are bounded. We have $\widetilde{c} \widetilde{\tau}=c \tau$, so $\widetilde{\tau} \mid c \cdot g c d(\tau, \widetilde{\tau})$. By 6.8 $\operatorname{gcd}(\tau, \widetilde{\tau}) \mid \gamma-2$ and since $\gamma-2 \in\{1,2,3\}$, we get $\widetilde{\tau} \mid c(\gamma-2)$ and $\widetilde{\tau} \leq 3 c$. Therefore τ and \widetilde{u} are bounded and (6.9) is a nontrivial (the coefficient of τ does not vanish) equation for τ, so we are done.

Corollary 6.6.4. $T_{3} \in \mathcal{L}$ and $n=1$.
Proof. Suppose $T_{3} \notin \mathcal{L}$, then $T_{1}, T_{2} \in \mathcal{L}$. Clearly, having the dual graph of T_{1}, there is only finitely many possibilities for the dual graphs of $T_{1}+C+\Delta^{\prime}$, in each case Z_{1}^{2} is determined. On the other hand, $T_{2}=Z_{l}$) and $G+Z_{u}$ are adjoint chains (cf. 5.1.7), so the dual graph of $G+Z_{u}$ is determined by T_{2}. Then by 6.6.3 there is finitely many possibilities for the dual graphs of $\widetilde{F}+H$. We use a computer program which for given F (in terms of $\left(c, p, c^{\prime}, p^{\prime}\right)$) computes possible $(\gamma, n, \tau, u, \widetilde{\tau}, \widetilde{c}, \widetilde{p}, \widetilde{u})$ using the algorithm sketched in 6.6 .3 and checks if 6.8 and 6.9) can be satisfied. In each case (there are many solutions) the maximal twig T_{3} is determined and the program returns only these, for which conditions $\delta+\frac{1}{|G|}>1,6.1 .2$ (vi), 6.4.4 6.3.13(ii) and 6.1.4 hold, these are:
(i) $(n, \gamma, \tau, \widetilde{\tau})=(1,4,4,2),\binom{c}{p}=\binom{4}{1},\binom{c^{\prime}}{p^{\prime}}=\binom{1}{1},\binom{\widetilde{c}}{\widetilde{p}}=\binom{8}{5} ; b=2, T_{1}=[2], T_{2}=[(3)], T_{3}=[3,3,(4)]$,
(ii) $(n, \gamma, \tau, \widetilde{\tau})=(1,4,4,2),\binom{c}{p}=\binom{4}{3},\binom{c^{\prime}}{p^{\prime}}=\binom{1}{1},\binom{\widetilde{c}}{\widetilde{p}}=\binom{8}{1} ; b=1, T_{1}=[2], T_{2}=[4], T_{3}=[(8), 4]$,
(iii) $(n, \gamma, \tau, \widetilde{\tau})=(2,4,4,2),\binom{c}{p}=\binom{2}{1},\binom{c^{\prime}}{p^{\prime}}=\binom{1}{1},\binom{\widetilde{c}}{\widetilde{p}}=\binom{4}{3} ; b=2, T_{1}=[2,2], T_{2}=[2], T_{3}=[4,(6)]$.

In cases (i) and (ii) we have $-d(D) / d(\widehat{E})=4$ and $\operatorname{gcd}(\mu, \widetilde{\mu})=4$, in case (iii) $-d(D) / d(\widehat{E})=1$ and $\operatorname{gcd}(\mu, \widetilde{\mu})=2$. By 6.3 .13 (ii) this is a contradiction.

Suppose now that $n>1$. Since $D^{\dagger}=D$, we have $\# T_{3} \geq 5$, so $T_{1}=[(5)]$ and $\widehat{E}=[3]$. We get $\widetilde{G}+\widetilde{Z}_{u}=[2]$ and $G+Z_{u}=[2]$, so $\binom{c}{p}=\binom{2 c^{\prime}}{c^{\prime}}$ and $\binom{\widetilde{c}}{\widetilde{p}}=\binom{2}{1}$, hence $\widetilde{\tau}=\frac{d}{\widetilde{c}}=c^{\prime} \tau$. Since $\operatorname{gcd}(\tau, \widetilde{\tau}) \mid \gamma-2$, we get $\tau=1$, a contradiction.

We are ready to finish the proof of our main result:
Theorem 6.6.5. If S^{\prime} is a normal singular \mathbb{Q}-homology plane of negative Kodaira dimension with smooth locus S_{0} then $\bar{\kappa}\left(S_{0}\right)<2$.

Proof. Suppose $\bar{\kappa}\left(S_{0}\right)=2$. By $6.6 .4 T_{3} \in \mathcal{L}$. We prove successive statements to eliminate all possibilities.
(1) If T_{3} is a tip then $T_{1} \in \mathcal{L}$ and $\Delta=0$.

Proof. Write $T_{3}=\left[d_{3}\right]$. In this case φ_{f} contracts \widetilde{Z}_{1}, so f is not almost minimal and we get $\widetilde{u}=0$ because $\widetilde{\Delta}=\tilde{Z}^{0}$ by 6.3.11. We can write $\widetilde{Z}_{l}=[x+3]$ for some $x \geq 0$. Since φ_{f} contracts exactly H^{\dagger}, we obtain $\widetilde{G}+\widetilde{Z}_{u}=[(x+2)], G=[x+5], Z_{u}=\left[\left(x+1-d_{3}\right)\right]\left(\right.$ hence $\left.x \geq d_{3}-1\right), T_{2}=\left[(x+3), x+3-d_{3}\right]$ and $Z_{1}^{2}=-b-1$.

Suppose $T_{2} \in \mathcal{L}$. Since $\# T_{2}=x+4 \geq d_{3}+3 \geq 5$, this is possible only for $T_{2}=[(5)]$, which implies $x=1$ and $d_{3}=2$, hence $\binom{\widetilde{c}}{\widetilde{p}}=\binom{4}{3}$ and $\binom{c}{p}=\binom{6 c^{\prime}}{c^{\prime}}$. Moreover, by 6.6.1 $\widehat{E}=[3]$ and since $\operatorname{gcd}(\tau, \widetilde{\tau}) \mid \gamma-2$, we see that τ and $\widetilde{\tau}$ are coprime. We get $6 c^{\prime} \tau=d=4 \widetilde{\tau}$, so $\tau \mid 2 \widetilde{\tau}$, which implies $\tau=2$ and $\widetilde{\tau}=3 c^{\prime}$. Now 6.8 gives $p^{\prime}=\frac{1}{2}\left(c^{\prime}+1\right)$ and then by $6.9 c^{\prime 2}-2 c^{\prime}=1$, a contradiction. It follows that $T_{1} \in \mathcal{L}$.

Suppose $\Delta \neq 0$. Then $\Delta^{\prime}=[2]$ and $h=3$, so one checks easily that $T_{1} \in \mathcal{L}$ is possible only for $T_{1}=[3]$ or $T_{1}=[2,3]$. We get $\# T_{1}=b$ by 6.1.2 (vi). If $T_{1}=[2,3]$ then $T_{3}=[2]$ by 6.6.1 and we compute $d(D)=11 x^{2}+34 x-29>0\left(x \geq d_{3}-1=1\right)$, which is impossible by 2.2 .3 (ii). Thus $T_{1}=[3]$ and $b=1$. If $d_{3}=3$ then $x \geq 2$, so $-\frac{d(D)}{d(\widehat{E})}=9-\frac{3}{5} x^{2}$ is not a positive integer, contradicting 6.3.13. Therefore $d_{3}=2$ and we compute $-\frac{d(D)}{d(\widehat{E})}=\frac{23+2 x-x^{2}}{5}$, which is a square by 6.3.13. This is possible only for $x=3$. We get $\binom{\widetilde{c}}{\widetilde{p}}=\binom{6}{5}$ and $\binom{c}{p}=\binom{22}{3}$, so $22 \tau=d=6 \widetilde{\tau}$. Since $\operatorname{gcd}(\tau, \widetilde{\tau}) \gamma-2$, we get $\tau=3$ and $\widetilde{\tau}=11$. It follows that $u=-4$, so by (6.9) $\tau \mid \widetilde{\tau}^{2}+1$, a contradiction.
(2) T_{3} is not a tip.

Proof. Suppose T_{3} is a tip. It follows from (1) that $T_{1}=[(k)]$ for some $1 \leq k \leq 5$. By 6.1.2 (vi) $k=b+\alpha$, so $k \leq 3$. Suppose $k>1$. If $d_{3} \neq 2$ then by 6.6.1 $d_{3}=3$ and $x \geq 2$, so $b=k=2$ and then $d(D)=9\left(x^{2}+2 x-7\right)>0$, a contradiction with 2.2.3(ii). If $d_{3}=2$ then $x \geq 1, b=2$ by 6.5.4 and the condition $d(D)=x^{2}(k+3)+x(2 k+10)-(7 k+5)<0$ implies $k=3$ and $x=1$. However, $k=3$ implies $\alpha=1$ and then $-\frac{d(D)}{d(\mathbb{E})}=\frac{4}{5}$, a contradiction with 6.3.13. Thus $T_{1}=[2]$ and $d_{3} \geq 3$.

From $b+\alpha=1$, we get $b=1$ and $\alpha=0$. We have $x \geq d_{3}-1$ and $d(D)=x^{2}\left(d_{3}-2\right)-x\left(d_{3}^{2}-6 d_{3}+\right.$ $12)-\left(4 d_{3}^{2}-9 d_{3}+18\right)$. For $5 \leq d_{3} \leq 6$ we get $\widehat{E}=[3]$ by 6.6 .1 and then $-\frac{d(D)}{d(\widehat{E})}$ is not a square. Suppose $d_{3}=4$. We have $\widehat{E}=[3]$ or $\widehat{E}=[4]$, so $-\frac{d(D)}{d(\widehat{E})}$ is a square only for $\widehat{E}=[4]$ and $x=5$. Then $\binom{\widetilde{c}}{\widetilde{p}}=\binom{8}{7}$ and $\binom{c}{p}=\binom{28}{3}$, so $2 \widetilde{\tau}=7 \tau$ and then $\operatorname{gcd}(\tau, \widetilde{\tau}) \mid \gamma-2$ implies $\tau \in\{2,4\}$. For $\tau=2$ 6.8 gives a contradiction, hence $\tau=4$ and $\widetilde{\tau}=14$. We compute $\operatorname{gcd}(\mu, \widetilde{\mu})=4$ and $-d(D) / d(\widehat{E})=4$, a contradiction with 6.3.13.(ii). Now suppose $d_{3}=3$. Then $-\frac{d(D)}{d(\widehat{E})}$ is a square only for $\widehat{E}=[3]$ and $x=3$. We get $\binom{\widetilde{c}}{\widetilde{p}}=\binom{6}{5}$ and $\binom{c}{p}=\binom{15}{2}$, so $2 \widetilde{\tau}=5 \tau /$ and then $\operatorname{gcd}(\tau, \widetilde{\tau}) \mid \gamma-2$ implies $\tau=2$ and $\widetilde{\tau}=5$. We compute $\delta+\widetilde{e}=\frac{11}{5}$, a contradiction with 6.5.3(iii).
(3) If $\# T_{3}=2$ then $T_{2}=[2]$ and $T_{3}=[2,2]$.

Proof. Since $T_{3} \in \mathcal{L}$, we have $T_{3}=[2,3], T_{3}=[3,2]$ or $T_{3}=[2,2]$. If f is almost minimal then $\# \widetilde{Z}_{l}=1$, so $\widetilde{G}+\widetilde{Z}_{u}=0$ consists of (-2)-curves and we see that \widetilde{Z}_{1} is touched at least twice by φ_{f}, hence $\widetilde{Z}_{1}^{2} \leq-4$, which contradicts $\# \widetilde{\Delta} \leq 1$. Thus f is not almost minimal, so by $6.3 .11 \widetilde{\Delta}=0$ and φ_{f} contracts $\widetilde{Z}_{1}+H^{\dagger}$, hence $\# \widetilde{Z}_{l}=2$. Suppose $T_{3}=[3,2]$. Then $\widetilde{Z}_{l}=[3, x]$ for some $x \geq 3$, hence $\widetilde{G}=[2]$. It follows that $G \neq[2]$, hence $T_{2} \neq[2]$. Since $d_{3}=5$, by 6.6.1 we get $T_{1}=[2]$, which implies $Z_{1}^{2}=-2$. Since φ_{f} touches Z_{1}, we get $b=1$, a contradiction with 6.5.4 Therefore $T_{3}=[2, k]$ and $\widetilde{Z}_{u}=[2, x+3]$, where $k \in\{2,3\}$ and $x \geq 0$. We obtain $\widetilde{Z}_{u}=[(x+1)]$ and $\vec{G}=[3]$.

Suppose $Z_{u} \neq 0$. Then $G+Z_{u}=[2, x+5,(x-k+1)], Z_{1}^{2}=-b-1$ and $Z_{u}=T_{2}=[3,(x+2), x-k+3]$. Since $\# T_{2}>2$, by 6.6.1 we have either $T_{1}=[2]$ or $d_{1}=3$ and $\widehat{E}=[3]$. If $d_{1}=3$ then we have $k=2$, $h=3$ and $\Delta=0$, so $T_{1}=[2,2], b=2$ and we check that $-d(D) / d(\widehat{E})=-4 x^{2}-8 x+17$ is not a square. We infer that $T_{1}=[2]$, hence $Z_{1}^{2}=-2$ and we get $b=1$. By 6.5.4 it follows that $k=3$, hence $x \geq 1$ and $\widehat{E}=[3]$ by 6.6.1 Now we check that $-\frac{d(D)}{d(\widehat{E})}=25+5 x-\frac{2}{3} x^{2}$ is a square only for $x=9$ and then by $6.4 .4 \mathrm{Bk}^{2} \widehat{E}=-\frac{61}{12}<-2$, a contradiction. This proves $Z_{u}=0$, which gives $G=[2]$ and $T_{2}=Z_{l}=[2]$, as required.

We see that φ_{f} touches \widetilde{Z}_{l} once, so $x=k-2$. This implies $\binom{\widetilde{c}}{\widetilde{p}}=\binom{2 k+1}{k}$ and $\binom{c}{p}=\binom{2 c^{\prime}}{c^{\prime}}$. We only need to show that $k=2$. Suppose $k=3$. Then $\widehat{E}=[3]$ by 6.6.1. so we have $\tau \mid d=7 \widetilde{\tau}$ and $\operatorname{gcd}(\tau, \widetilde{\tau}) \mid \gamma-3$, hence $\tau=7$ and $\widetilde{\tau}=2 c^{\prime}$. However, 6.8 gives $7 p^{\prime}=c^{\prime}+1$ and then 6.9 implies $3\left(c^{\prime}\right)^{2}-7 c^{\prime}-46=0$, a contradiction.
(4) $\# T_{3}=[(k)]$ for some $3 \leq k \leq 5$.

Proof. By (2) and (3) we know that $T_{3}=[(k)]$ for some $k \in\{2,3,4,5\}$. Suppose $k=2$. By (3) $T_{2}=[2]$ and as in (3) we get $\widetilde{\Delta}=0$ and $\binom{\widetilde{c}}{\widetilde{p}}=\binom{5}{2}$ and $\binom{c}{p}=\binom{2 c^{\prime}}{c^{\prime}}$. Then $5 \widetilde{\tau}=d=2 c^{\prime} \tau$, so 6.8 can be written as $\frac{1}{5} c^{\prime} \tau(5 \alpha-1)=\gamma-2-\tau p^{\prime}$. It follows that $\alpha=0$, otherwise $\gamma-2-\tau p^{\prime} \geq 4$, which is impossible. Suppose $\gamma=3$. Then $\operatorname{gcd}(\tau, \widetilde{\tau})=1$, so $\tau=5$. We get $c^{\prime}=5 p^{\prime}-1$ and then 6.9 implies $\left(c^{\prime}\right)^{2}-5 c^{\prime}+u-22=0$. For $\tau=5$ we get $u=0$ or $u=-12$, a contradiction with $c^{\prime} \in \mathbb{Z}$. Thus $\gamma=4$ and now $\operatorname{gcd}(\tau, \widetilde{\tau}) \mid 2$, so $\tau \in\{2,5,10\}$. We check that 6.8 and 6.9 lead to a contradiction for $\tau \neq 2$ and for $\tau=2$ give $\binom{c^{\prime}}{p^{\prime}}=\binom{25}{6}$. Then $T_{1}=[(3), 7,(6)]$ and $b=2$, hence $d(D)=-25$, a contradiction with 6.3.13(ii).
(5) f is not almost minimal.

Proof. Notice that by (4) and 6.6.1 $\widehat{E}=[4]$ or $\widehat{E}=[3]$. In particular $\alpha=0$ and $\Delta=0$. Suppose f is almost minimal. Then \widetilde{Z}_{l} consists of (-2)-curves, so $\widetilde{Z}_{u}=0$. Let's write $\widetilde{Z}_{l}=[(s)]$ and $\widetilde{G}=[s+1]$ for some $s \geq 1$. Since $\Delta=0$, we get $\widetilde{Z}_{1}^{2}=-2$, hence φ_{f} does not contract \widetilde{G}, otherwise it would contract the whole chain $\widetilde{G}+\widetilde{Z}_{1}+\widetilde{Z}_{l}$. This gives $s \geq 2$ because $n=1$ by 6.6.4. If $G \neq[2]$ then $\# T_{3} \leq 5$ implies $s=2, Z_{u}=0$ and $G=[3]$, so $T_{2}=Z_{l}=[2,2]$ and then $T_{1}=[2]$, a contradiction with 6.4.4 (ii). Therefore $G=[2]$, so φ_{f} touches \widetilde{G} at least twice. Now $\# T_{3} \leq 5$ implies $s=3$ and $Z_{u}=0$. By 6.6.1 $\widehat{E}=[3]$. We have $\binom{\widetilde{c}}{\tilde{p}}=\binom{4}{1}$ and $\binom{c}{p}=\binom{2 c^{\prime}}{c^{\prime}}$. Then $4 \widetilde{\tau}=d=2 c^{\prime} \tau$ and $\operatorname{gcd}(\tau, \widetilde{\tau})=1$, so $\tau=2$. Then 6.8 gives $2 p^{\prime}=c^{\prime}+1$, hence by $6.9\left(c^{\prime}\right)^{2}-2 c^{\prime}=1$, a contradiction.

Notice that (4) and 6.6.1 imply that $b=2$, otherwise D would contain a chain $[2,1,2]$, which is impossible by 6.5.4 Since f is not almost minimal, φ_{f} contracts precisely H^{\dagger}, so it touches Z_{1}, hence $Z_{1}^{2} \leq-3$ and $T_{1} \neq[2]$. We get $Z_{l}=T_{2}=[2]$, which implies $G=[2]$ and $\widetilde{G}=[3]$. However, since $T_{3}=[(k)]$, we can write $\widetilde{Z}_{l}=[(k-1), x]$ for some $x \geq 3$. Then $\widetilde{G}=[k+1]$ and $k=2$, a contradiction with (4).

Bibliography

[Abh79] Shreeram S. Abhyankar, Quasirational singularities, Amer. J. Math. 101 (1979), no. 2, 267-300.
[Art66] Michael Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136.
[Bri68] Egbert Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1967/1968), 336-358.
[Dol80] Albrecht Dold, Lectures on algebraic topology, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 200, Springer-Verlag, Berlin, 1980.
[Fuj79] Takao Fujita, On Zariski problem, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 3, 106-110.
[Fuj82] , On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 3, 503-566.
[FZ03] Hubert Flenner and Mikhail Zaidenberg, Rational curves and rational singularities, Math. Z. 244 (2003), no. 3, 549-575.
[GM88] Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988.
[Goo69] Jacob Eli Goodman, Affine open subsets of algebraic varieties and ample divisors, Ann. of Math. (2) 89 (1969), 160-183.
[Gra62] Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368.
[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52.
[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
[Iit82] Shigeru Iitaka, Algebraic geometry, Graduate Texts in Mathematics, vol. 76, Springer-Verlag, New York, 1982, An introduction to birational geometry of algebraic varieties, North-Holland Mathematical Library, 24.
[Kaw78] Yujiro Kawamata, Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension one, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) (Tokyo), Kinokuniya Book Store, 1978, pp. 207-217.
[KM99] Seán Keel and James McKernan, Rational curves on quasi-projective surfaces, Mem. Amer. Math. Soc. 140 (1999), no. 669, viii +153.
[Kob90] Ryoichi Kobayashi, Uniformization of complex surfaces, Kähler metric and moduli spaces, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 313-394.
[Kor93] Mariusz Koras, A characterization of $\mathbf{A}^{2} / \mathbf{Z}_{a}$, Compositio Math. 87 (1993), no. 3, 241-267.
[KR99] Mariusz Koras and Peter Russell, \mathbf{C}^{*}-actions on \mathbf{C}^{3} : the smooth locus of the quotient is not of hyperbolic type, J. Algebraic Geom. 8 (1999), no. 4, 603-694.
[KR07] , Contractible affine surfaces with quotient singularities, Transform. Groups 12 (2007), no. 2, 293-340.
[Lan03] Adrian Langer, Logarithmic orbifold Euler numbers of surfaces with applications, Proc. London Math. Soc. (3) 86 (2003), no. 2, 358-396.
[Lau72] Henry B. Laufer, On rational singularities, Amer. J. Math. 94 (1972), 597-608.
[Laz04] Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, SpringerVerlag, Berlin, 2004, Classical setting: line bundles and linear series.
[Lip69] Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 195-279.
[Miy84] Yoichi Miyaoka, The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann. 268 (1984), no. 2, 159-171.
[Miy01] Masayoshi Miyanishi, Open algebraic surfaces, CRM Monograph Series, vol. 12, American Mathematical Society, Providence, RI, 2001.
[MS80] Masayoshi Miyanishi and Tohru Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), no. 1, 11-42.
[MS91] M. Miyanishi and T. Sugie, Homology planes with quotient singularities, J. Math. Kyoto Univ. 31 (1991), no. 3, 755-788.
[MT84a] Masayoshi Miyanishi and Shuichiro Tsunoda, Logarithmic del Pezzo surfaces of rank one with noncontractible boundaries, Japan. J. Math. (N.S.) 10 (1984), no. 2, 271-319.
[MT84b] , Noncomplete algebraic surfaces with logarithmic Kodaira dimension $-\infty$ and with nonconnected boundaries at infinity, Japan. J. Math. (N.S.) 10 (1984), no. 2, 195-242.
[Mum61] David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. (1961), no. 9, 5-22.
[Ore95] S. Yu. Orevkov, On singularities that are quasirational in the sense of Abhyankar, Uspekhi Mat. Nauk 50 (1995), no. 6(306), 201-202.
[OW71] Peter Orlik and Philip Wagreich, Isolated singularities of algebraic surfaces with C^{*} action, Ann. of Math. (2) 93 (1971), 205-228.
[PS97] C. R. Pradeep and Anant R. Shastri, On rationality of logarithmic Q-homology planes. I, Osaka J. Math. 34 (1997), no. 2, 429-456.
[Rei87] Miles Reid, Young person's guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345-414.
[Rus80] Peter Russell, Hamburger-Noether expansions and approximate roots of polynomials, Manuscripta Math. 31 (1980), no. 1-3, 25-95.
[Rus81] , On affine-ruled rational surfaces, Math. Ann. 255 (1981), no. 3, 287-302.

