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Abstract

The thesis is devoted to studying normal complex Q-acyclic algebraic
surfaces S ′. Let S0 be the smooth locus of such a surface. The following
results have been obtained. If S ′ has non-negative Kodaira dimension then
it is logarithmic, i.e. its singularities are of quotient type. We classify possible
S ′ with non-quotient singularities. S ′ can be nonrational. The completion
of the resolution of S ′ is birationally ruled, i.e. it is a a blowup of a P1-
bundle over some smooth complete curve. We classify possible S ′ for which
κ(S0) = 0 and S0 does not admit a C∗-fibration. The main result is the
theorem saying that if κ(S ′) = −∞ then κ(S0) 6= 2. The full description
of possible singular Q-homology planes S ′ of negative Kodaira dimension is
given.

Keywords: Q-homology plane, acyclic surface, Kodaira dimension,
quotient singularities;
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Streszczenie

Rozprawa poświęcona jest badaniu normalnych, zespolonych, Q-acyklicznych
powierzchni algebraicznych S ′. Niech S0 będzie częścią gładką takiej po-
wierzchni. Uzyskano następujące wyniki. Jeśli S ′ ma nieujemny wymiar Ko-
dairy, to S ′ jest logarytmiczna, tzn. jej osobliwości są ilorazowe. Sklasyfiko-
wano możliwe S ′ z osobliwościami nieilorazowymi. S ′ może być niewymierne.
Uzupełnienie rezolwenty S ′ jest jest rozdmuchaniem pewnej P1-wiązki nad
gładką krzywą zupełną. Sklasyfikowano możliwe S ′, dla których κ(S0) = 0
i S0 nie posiada C∗-rozwłóknienia. Głównym wynikiem jest twierdzenie mó-
wiące, że jeśli κ(S ′) = −∞, to κ(S0) 6= 2. Podano pełny opis możliwych
osobliwych płaszczyzn Q-homologicznych S ′ o ujemnym wymiarze Kodairy.

Słowa kluczowe: płaszczyzna Q-homologiczna, powierzchnia acykliczna,
wymiar Kodairy, osobliwości ilorazowe;
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Introduction

We consider the problem of classifying normal Q-acyclic singular surfaces defined over C, we call them
singular Q-homology planes. (For convenience we exclude the smooth case by definition). This generalizes
the notion of a logarithmic Q-homology plane by relaxing the assumption on the type of the singular
locus, i.e. we do not assume that it is of quotient type. Let S′ be such a surface and let S0 be its
smooth locus. Denote the desingularization of S′ by S. By definition we have κ(S′) = κ(S), we have also
κ(S) ≤ κ(S0). The main goal of this paper is to give the classification of singular Q-homology planes S′

satisfying κ(S′) = −∞.
In the logarithmic case, under the assumption that S′ (and hence S0) is C1- or C∗-ruled, a structure

theorem was obtained in [MS91]. The assumption that the singular locus of S′ is of quotient type simplifies
calculations and excludes some exotic situations one has to deal with in general. Some results known for
logarithmic Q-homology planes do not hold in general. In particular, the theorem [PS97, Theorem 1.1]
saying that logarithmic singular Q - homology planes are rational does not hold for general singular
Q-homology planes (cf. 5.4).

In chapter 1 we give basic definitions and recall well-known facts from the theory of open surfaces, we
state a lemma 1.7.1 which helps us later to obtain some singular Q-homology planes. Let Ê ⊂ S be the
exceptional divisor of the resolution. Let S be the completion of S, denote the boundary divisor of S ⊂ S
by D.

In chapter 2 we study the topology of the pair (S,D+ Ê). We show that S′ is affine and S is P1-ruled
(2.2.3), this generalizes [PS97, Theorem 1.1]. We prove also that if κ(S′) ≥ 0 then the singularities of S′

are of quotient type (2.2.4).
In chapter 3 by studying various P1-rulings of S induced by some 0-curves contained in D we prove

that if κ(S0) = 0 then with two exceptions (cf. 3.2.7) S0 is C∗-ruled. By general structure theorems it is
known that if κ(S0) = −∞ or 1 then S0 has a C1- or a C∗-ruling. Therefore our result complements these
theorems allowing to study S′’s with smooth locus of non-general type in a unified manner.

In the simplest case, when κ(S0) = −∞ (chapter 4) S′ has to be logarithmic, hence only well known
examples appear (cf. [MS91]).

If κ(S0) = 0, 1 and κ(S′) ≥ 0 then by the results of chapter 2 and 3 S′ is logarithmic and (again with
two exceptions) S0 is C∗-ruled, hence we reduce the analysis to the one done in [MS91]. Therefore the
analysis of the following cases is needed:

(A) κ(S0) = 0, 1, κ(S′) = −∞,

(B) κ(S0) = 2, any κ(S′).

In chapter 5 we study the case (A) by analyzing various C∗-rulings of S0. There are three possible
types: (1) gyoza - with one 2-section, which is contained in D, (2) sandwich of type II - with two 1-sections
contained in D and (3) sandwich of type I - with one 1-section in D and one 1-section in Ê. The type
(3) (for which almost by definition κ(S′) = −∞) was not studied before, up to now only C∗-rulings of
S0 induced by a C∗-ruling of S′ were considered (cf. [MS91]). We reduce the case (1) to the case (2)
by finding another C∗-ruling. In cases (2) and (3) we obtain a full description of possible S′’s. We show
how to construct them starting from a P1-ruled surfaces by blowing up, contracting some divisors and
throwing out others. In case (3) we obtain new examples of singular Q-homology planes with non-quotient
or non-rational singularities (cf. 5.4.6).

The case (B) is the most difficult, since there are no structure theorems for open surfaces of general
type. It is easy to show that then S′ has exactly one singular point and it is of quotient type (cf. 2.2.1).
For κ(S′) = −∞ (still case (B)) it is the main result of [KR07] that S′ cannot be topologically contractible.
Modifying the methods developed in [KR99] and [KR07] we deal with case (B) for κ(S′) = −∞ for general
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Q-homology planes in chapter 6 reproving the theorem of Koras and Russell as a special case (cf. 6.6.5).
The analysis of the case (B) for κ(S′) = 0 is possible. For κ(S′) = 1 this will be more difficult, and for
κ(S′) = 2 the problem of classification is rather hopeless.

For clarity we state the main result:
Theorem: Let S be a desingularization of a singular Q-homology plane S′. Let S0 = S′ − Sing S′.

(1) The completion of S is P1-ruled (cf. 2.2.3).

(2) If κ(S′) ≥ 0 then S′ is logarithmic (cf. 2.2.4).

(3) If κ(S0) = 0 then with two exceptions S0 is C∗-ruled (cf. 3.2.7 and 3.2.2).

(4) If κ(S′) = −∞ then κ(S0) 6= 2 (cf. 6.6.5).

(5) Assume κ(S′) = −∞ and κ(S0) < 2. All such surfaces S′ are classified (see 4.1.3, 4.2.1, 3.2.2,
5.2.1, 5.3.3 and 5.4.5). They can be obtained in a precisely described way by blowing up generalized
Hirzebruch surfaces and contracting some exceptional divisors to singular points. The boundary
divisors and the exceptional divisors are described. If κ(S0) ≥ 0 then SingS′ consist precisely of one
point, which does not have to be a rational singularity.

Acknowledgements. I would like to thank dr hab. Mariusz Koras for his patience, numerous helpful
discussions and for guiding me through my doctoral research. I am grateful for his willingness to help and
to share ideas. Writing this thesis was not only hard work but also fun. I owe much to discussions with
dr hab. Adrian Langer and prof. Jaros law Wisniewski. Special thanks to Maciej for giving me reasons to
work and also to make breaks.
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Chapter 1

Definitions and general results

We consider algebraic varieties defined over C. In this chapter we set up the notation and collect basic
facts from the theory of open surfaces we will use.

1.1 Generalities on divisors

Let T =
∑n
i=1miTi with Ti irreducible and mi ∈ Z \ {0} (or more generally mi ∈ Q \ {0}) be a simple

normal crossing divisor (snc-divisor) on a smooth complete surface, i.e. all its components are smooth,
intersect transversally, at most two in one point (nc-divisor). Notice that by a result of Zariski a smooth
complete surface is projective. By a component we always mean an irreducible component. Let

Q(T ) = (mimjTiTj)1≤i,j≤n

and let
d(T ) = det(−Q(T )).

We put d(∅) = 1. We define the reduction of T as T =
∑
Ti and denote the number of components of T

by #T . We say that T is rational if all its components are rational. If we refer to a divisor as a subset
of a surface, we refer really to its support. For example, writing T ⊆ T ′ we mean that T and T ′ satisfy
SuppT ⊆ SuppT ′. We will denote the free abelian group generated by irreducible components of T by
L(T ). The numerical equivalence of divisors will be denoted by ≡. We write T ≥ 0 for effective (Z- and
Q-) divisors and for Z-divisors linearly equivalent to effective Z-divisors. Two Q-divisors T,U are linearly
equivalent if rT and rU are linearly equivalent Z-divisors for some nonzero integer r. If T is a Q-divisor
linearly equivalent to some effective Q-divisor then we write T ≥Q 0.

Let DGraph(T ) be a dual graph of T , i.e. a weighted one-dimensional simplicial complex with one
vertex vi for each irreducible component Ti of T and one edge between vi and vj for each point of
intersection of Ti with Tj . The weight assigned to vi is −T 2

i . Let |DGraph(T )| be the geometric realization
of DGraph(T ). Consider T as a topological subspace of a surface with its analytical topology. The natural
map

∐n
i=1 Ti → T identifies some pairs of points, which homotopically is the same as adding a cone over

them. It is an exercise in homotopy theory to see that for a connected T this gives

T ≈
htp

n∨
i=1

Ti ∨ |DGraph(T )|.

In particular,
H̃j(T,Z) = ⊕ni=1H̃j(Ti,Z)⊕ H̃j(|DGraph(T )|,Z),

where H̃j(|DGraph(T )|,Z) = 0 for j 6= 1 (H̃j ’s are the reduced homology groups). We say that T is a tree
if each connected component of DGraph(T ) contains no loops, i.e π1(|DGraph(T )|) = 0.

We define the branching number of Ti as βT (Ti) = Ti (T−Ti). We say that Ti is a tip of T if βT (Ti) = 1.
It is a branching component if βT (Ti) ≥ 3. If T is connected and does not have any branching components
then it is a chain. An snc-chain T is admissible if it is rational and T 2

i ≤ −2 for every i. A curve L is a
(b)-curve if and only if L ∼= P1 and L2 = b.

7
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Lemma 1.1.1. ([KR07, 2.1.1]). Let T = T be a connected snc-tree. The following formulas hold:

(i) Let C be a component of T and let T1 . . . , Tβ be the connected components of T − C. If Ci is the
component of Ti meeting C then

d(T ) = −C2
∏
i

d(Ti)−
∑
i

d(Ti − Ci)
∏
i 6=j

d(Tj).

(ii) Let T = T1 +T2, where T1, T2 are connected and intersect in one point. Let C1, C2 be the intersecting
components, then

d(T ) = d(T1)d(T2)− d(T1 − C1)d(T2 − C2).

Suppose T is a chain and a tip T1 of T is fixed. This choice induces a unique linear order on the set of
irreducible components of T with T1 as a first component. We write T = T1 +T2 + . . .+Tn, where Ti’s are
irreducible components of T . We write also T = [−T 2

1 ,−T 2
2 , . . . ,−T 2

n ]. We denote a chain of (−2)-curves
of length k by [(k)]. For example, [3, (4)] is just [3, 2, 2, 2, 2].

Lemma 1.1.2. Let T be an admissible chain. For every d > 2 there exist at least two T ’s with d(T ) = d:
[d] and [(d− 1)]. This is a full list of all other T ’s for d ≤ 11:

d = 5 : [3, 2],

d = 7 : [4, 2], [3, (2)],

d = 8 : [3, 3], [2, 3, 2],

d = 9 : [5, 2], [3, (3)],

d = 10 : [4, (2)],

d = 11 : [6, 2], [4, 3], [3, (4)], [2, 3, (2)].

1.2 Pairs

An snc-pair (W,D) is a pair consisting of a smooth complete surface W and a reduced snc-divisor D on
W . D is snc-minimal if for every (−1)-curve in D the direct image of D after its contraction is not an
snc-divisor. The pair (W,D) is snc-minimal if D is. If D is a tree then this is equivalent to the property
that each (−1)-curve in D has βD > 2. The blowup and blowdown of an snc-pair (W,D) are defined as
appropriate transformation of W with the divisorial part defined as a full preimage and proper image of D
with reduced structure. The divisorial part is assumed to remain snc. We identify isomorphic pairs. We
have a natural partial order: (W ′, D′) ≺ (W,D) if and only if there exists a birational regular morphism
η : W ′ → W , such that η∗D′ = D. We say that the snc-pair (W,D) is minimal with respect to some
property if it is a minimal element of the set of snc-pairs satisfying this property. The modification of
an snc-pair is just a birational transformation of snc-pairs, i.e. a sequence of blowdowns and blowups. If
(W,D) is an snc-pair then we will write W −D for W \ SuppD.

Let X be a smooth surface. If X is not complete then by Nagata’s embedding theorem and Hironaka’s
theorem on resolution of singularities we can embed X into a smooth complete surface X, such that
D = X \X is an snc-divisor. Moreover, X is projective by Zariski’s theorem. We call the pair (X,D) an
snc-completion of X.

If p : Y → X is a dominating morphism of surfaces and D a divisor on X we write p−1(D) for the
reduced full preimage of D.

Example 1.2.1. C2 \ {0} does not have an snc-minimal completion.

Definition 1.2.2. The sequence of blowups is connected if for every i > 0 the center of the (i + 1)-th
blowup belongs to the exceptional locus of the i-th blowup. The sequence of blowdowns is connected if
the sequence of blowups reversing it is connected.

Let D be an snc-divisor. The blowup of D is sprouting if its center belongs to exactly one component
of D. In other case it is subdivisional.
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Corollary 1.2.3. Assume that X ′ is a normal affine surface. Let X0 = X ′ \SingX ′−D′ for some divisor
D′ on X ′. Then the snc-minimal completion of X0 exists.

Proof. Let p : X → X ′ be a desingularization of X ′, such that Ê = p−1(Sing X ′) is an snc-divisor. Let
X be a smooth completion of X. Let D be a reduced divisor with support p−1(D′) ∪ X \ X. We can
assume that D is an snc-divisor. It is connected, which follows from X ′ being affine. Let E be the sum of
components of Ê not contained in D. We see that (X,D+E) is an snc-completion of X0. Clearly, we can
assume that E is snc-minimal. Moreover, since there exists an ample divisor with support contained in D,
Q(D) is not negative definite, so in the process of snc-minimalization the divisor D cannot be contracted
to a point (cf. [Goo69, Gra62]).

1.3 Barks

We recall basic definitions from the theory of peeling (see [Miy01, §2.3] for a complete discussion). In this
paragraph we consider only reduced snc-divisors.

Assume that T is a chain with Q(T ) negative definite (this holds for example for admissible T ). Fix
an ordering of components of T induced by choosing some tip T1. We define some numbers describing
T = T1 + T2 + . . .+ Tn as follows:

d′(T ) = d(T − T1), d′(∅) = 0, e(T ) =
d′(T )
d(T )

, ẽ(T ) = e(T t),

where T t = Tn + . . .+ T1. Bark of T is a Q-divisor BkT =
∑
αiTi satisfying

T1 BkT = −1, Ti BkT = 0 for i > 0.

It is well defined, since d(T ) 6= 0. We put

Bk∗ T = BkT + BkT t.

Let’s fix a divisor T ′. Suppose that T is a rational chain contained in T ′, such that T does not
contain any branching component of T ′. If T is a connected component of T ′ and Q(T ) is negative
definite then we call T a rod of T ′. In this case let T1 + T2 . . . + Tn be any linear ordering of T , we put
BkT = Bk(T1 + . . . + Tn) + Bk(Tn + . . . + T1). Clearly, this does not depend on the ordering chosen. If
T contains exactly one tip U of T ′ then T is called a twig of T ′. If additionally Q(T ) is negative definite
then we write BkT for a bark of T considered with a linear ordering induced by U . A maximal twig of T ′

is a twig which is maximal with respect to T ⊆ T ′. Similarly, a maximal admissible twig is an admissible
twig, which is maximal (among admissible twigs of T ) with respect to T ⊆ T ′.

Assume that the divisor V is not a chain and let V1, . . . , Vk be all its maximal admissible twigs. We
define

δ(V ) =
k∑
i=1

1
d(Vi)

, e(V ) =
k∑
i=1

e(Vi) and ẽ(V ) =
k∑
i=1

ẽ(Vi).

We say that V is a fork (wide fork) if V is connected, has a unique branching component and three
(three or more) maximal twigs. The fork V is admissible if it is rational, with maximal twigs being
admissible, δ(V ) > 1 and the branching component B satisfies B2 ≤ −2. It is easy to check that,
assuming the remaining conditions, the condition B2 ≤ −2 is equivalent to negative definiteness of Q(V ).
Let F = B + T (1) + T (2) + T (3) be an admissible fork with maximal twigs T (i). We define

BkF =
δ(F )− 1
−B2 − ẽ(F )

(B +
3∑
i=1

BkT (i)t) +
3∑
i=1

BkT (i).

For a general reduced snc-divisor D let {Tα}, {Rβ} and {Fγ} be the sets of its maximal admissible
twigs that are not contained in some admissible forks of D, a set of admissible rods of D and a set of
admissible forks of D. Define

BkD =
∑
α

BkTα +
∑
β

BkRβ +
∑
γ

BkFγ ,

and set D# = D−BkD. The following propositions describe important properties of BkD ([Miy01, §2.3]).
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Proposition 1.3.1. Let D be a reduced snc-divisor, then:

(i) BkD is effective and either Q(BkD) is negative definite or BkD = 0,

(ii) (KX +D#)Z = 0 for every Z ⊆ BkD,

(iii) SuppD \SuppD# consists of (−2)-rods and (−2)-forks, i.e. rods and forks consisting of components
with self-intersection −2.

Proposition 1.3.2. Let T = T1 + . . .+Tn be an admissible ordered snc-chain, let BkT =
∑n
i=1miTi and

Bk∗ T =
∑n
i=1m

∗
i Ti, then:

(i) d′(T ) ≤ d(T )− 1, e(T ) = 1
−T 2

1−e(T−T1)
, 1
d(T ) ≤ e(T ) ≤ 1− 1

d(T ) ,

(ii) mi = d(Ti+1+...+Tn)
d(T ) ,

(iii) 0 < mi < 1 and 0 < m∗i ≤ 1 (in particular Supp BkT = Supp Bk∗ T = SuppT ). Moreover, if m∗i = 1
for some i then T = [2, 2, . . . , 2] and m∗i = 1 for each i,

(iv) Bk2 T = −e(T ), (Bk∗ T )2 = −e(T )− ẽ(T )− 2
d(T ) = −d

′(T )+d′(T t)+2
d(T ) ≥ −2.

Remark 1.3.3. The function e( ), called inductance or capacity, gives in terms of Hirzebruch-Jung
continued fractions (see 1.3.4) a one-to-one correspondence between weighted ordered dual graphs of
ordered admissible chains and points in Q∩ (0, 1) ([Miy01, 2.3.3(3)]). However, although e(T ) determines
the chain T , hence also d(T ) and ẽ(T ), there is no simple formula for d(T ) or ẽ(T ) as a function of e(T ).
In fact, the graph of ẽ(T ) as a function of e(T ) is dense in [0, 1]2.

Example 1.3.4. Let e = 11
19 . Then we can write e as 11

19 = 1
2− 1

4− 1
3

, and for T = [2, 4, 3] we have e(T ) = e.

We have also ẽ(T ) = 7
19 and d(T ) = 19.

Proposition 1.3.5. Let F = B + T (1) + T (2) + T (3) be a reduced, admissible fork with maximal twigs
T (i). Let BkF =

∑n
i=1miFi and di = d(Ti), then:

(i) 0 < mi ≤ 1 (in particular Supp BkF = SuppF ). Moreover, if mi = 1 for some i then F is a
(−2)-fork and mi = 1 for each i,

(ii) (d1, d2, d3) is one of the Platonic triples: (2, 3, 3), (2, 3, 4), (2, 3, 5) or (2, 2, k) for some k ≥ 2,

(iii) 1 < ẽ(F ) < 2 ≤ −B2,

(iv) d(F ) = d1d2d3(−B2 − ẽ(F )),

(v) Bk2 F = − (δ(F )−1)2

−B2−ee(F ) − e(F ) < −e(F ) < −1.

Remark 1.3.6. Notice that since e(T ) + δ(T ) ≤ 1 for an admissible chain T , we have (Bk∗ T )2 = −2 if
and only if T consists of (−2)-curves. For an admissible fork F we get also by 1.3.5(iii) that δ−1

−B2−ee ≤ 1,
so −Bk2 F ≤ δ − 1 + e ≤ 2 and again the equality occurs if and only if F consists of (−2)-curves.

1.4 Singularities

Let q be a singular point on a normal surface X. Let p : X̃ → X be a desingularization of q ∈ X. Put
Ê = p−1(q). The matrix Q(Ê) is negative definite (i.e Ê is algebraically contractible or contractible for
short). We will always assume that resolutions are good, i.e. Ê is an snc-divisor. We say that p is a
minimal good resolution if it is good and Ê is snc-minimal.

We say that q ∈ X is topologically rational if Ê is a rational tree. It is rational if R1p∗O eX = 0. It
is of quotient type if there exists an analytical neighborhood N of q and a small (i.e. not containing any
pseudo-reflections) finite subgroup G of GL(2,C), such that (N, q) is analytically isomorphic to (Ñ/G, 0)
for some ball Ñ around 0 in C2. It follows that G = π1(N \ {q}). All these notions are well-known to be
independent of the choice of a resolution.
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Proposition 1.4.1. Assume q ∈ X is of quotient type. Let G be as above. Assume that Ê is the
exceptional divisor of a minimal good resolution. Then ([Art66, Bri68]):

(i) G is cyclic if and only if Ê is an admissible chain, moreover then d(Ê) = |G|,

(ii) G is non-cyclic if and only if it is non-abelian if and only if Ê is an admissible fork, moreover then
d(Ê) = |G/[G,G]|,

(iii) if q ∈ X is of quotient type then it is rational,

(iv) if q ∈ X is rational then it is topologically rational.

Example 1.4.2. ([Abh79]). Let V ⊆ C3 be given by x2 + y3 + z7 = 0. Then the blowup of V in 0 has
an exceptional line contained in the singular locus, hence is not normal. Since the blowup of a normal
surface with rational singularity remains normal ([Lip69, 8.1]), 0 ∈ V is not a rational singularity. On the
other hand, it is topologically rational. More generally, let V (p1, p2, p3) ⊆ C3 be a Pham-Brieskorn surface
given by the equation xp11 + xp22 + xp33 = 0, where p1, p2, p3 ≥ 2. If one of p1, p2, p3 is relatively prime with
two others then 0 ∈ V (p1, p2, p3) is topologically rational (see [Ore95] for an easy proof). The rationality
of 0 ∈ V (p1, p2, p3) is equivalent to each of the following conditions ([FZ03, 2.21]): (i) 0 ∈ V (p1, p2, p3) is
of quotient type, (ii)

∑3
i=1

1
pi
> 1, (iii) κ(V \ {0}) = −∞.

1.5 Rulings

We say that the surface X is P1-ruled (respectively C1-ruled, C∗-ruled, C∗∗-ruled) if there exists a curve
B and a regular dominating map p : X → B, such that the generic fiber F of p is isomorphic to P1

(respectively to C1, C∗ and C∗∗). We call also the C1-ruling an affine ruling. We say that X is C∗∗∗-ruled
if for generic fiber there exists an isomorphism with C \ {p1, p2, p3}, where p1, p2, p3 are different points of
C (they can be different for different fibers). If X is normal then B has to be smooth.

Suppose that X is smooth and has a ruling as above. Then for some snc-completion (X,D) this ruling
can be extended to a P1-ruling p : X → B, where B is a smooth completion of B. Depending on the
type of the ruling of X we will say that (X,D) is is affine- (respectively C∗-, C∗∗-, etc.) ruled. Let F
denote a generic fiber of p. An irreducible curve C on X is called a D-component if C ⊆ D. It is called
an X-component if it is not a D-component. C is an n-section if FC = n. We will say just section for
a 1-section. C is horizontal if n > 0, otherwise it is vertical. The divisor is horizontal (vertical) if all its
components are such. The snc-completion (X,D) is p-minimal if it is minimal with respect to the property
that the extension of p from X to X exists. This is equivalent to the property that every (−1)-curve in D
with βD ≤ 2 is horizontal. If X has an snc-minimal completion then it has also a p-minimal completion.

Lemma 1.5.1. Let F be a singular fiber of a P1-ruling of a smooth complete surface. We denote by µ(C)
the multiplicity of an irreducible curve C in the fiber containing it. One has (cf. [Fuj82, §4]):

(i) F is a connected rational snc-tree containing a (−1)-curve,

(ii) each (−1)-curve of F intersects at most two other components of F ,

(iii) if a contraction of some (−1)-curve of F increases the number of (−1)-curves in the induced fiber
then F = [2, 1, 2],

(iv) F is produced from a smooth 0-curve by a sequence of blowups. If the (−1)-curve of F is unique then
the sequence is connected (cf. 1.2),

Suppose further that F as above has a unique (−1)-curve C. Let B1, . . . , Bn be the branching com-
ponents of F written in order in which they are produced in the sequence of blowups as in (iv) and
let Bn+1 = C. We can write F as F = T1 + T2 + . . . + Tn+1, where the divisors Ti are connected
chains consisting of all components of F − T1 − . . .− Ti−1 created not later than Bi. We call Ti the
i-th branch of F . We say that F is branched if n 6= 0.

(v) µ(C) > 1 and there are exactly two components of F with multiplicity one. They are tips of the fiber
and lie on the first branch,
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(vi) if µ(C) = 2 then either F = [2, 1, 2] or C is a tip of F and F − C is a (−2)-chain or a (−2)-fork of
type (2, 2, n)

(vii) if F is branched then the connected component of F −C not containing curves of multiplicity one is
a chain (possibly empty).

Definition 1.5.2. For an snc-pair (X,D) put X = X −D. Let π be a P1-ruling of X. Following [Fuj82]
we introduce some characteristic numbers of the triple τ = (X,D, π):

(i) hτ is the number of horizontal D-components,

(ii) στ (F ) is the number of X-components contained in F ,

(iii) Στ =
∑
F*D

(στ (F )− 1),

(iv) ντ is the number of fibers contained in D,

(v) we also define a rivet as an intersection point of at least two different horizontal components of D or
a connected component of F ∩D which meets horizontal component(s) of D at more than one point.

If there is no danger of confusion we omit indices writing h for hτ , σ(F ) for στ (F ), etc. If X and π are
fixed but more than one choice of D is possible we write ΣX−D instead of Σ(X,D,π).

Lemma 1.5.3. (cf. [Fuj82, 4.16]) If π : X → C is a P1-ruling as above then

Σ = h+ ν + b2(X)− b2(D)− 2.

Proof. If we contract a vertical (−1)-curve and change X and D for their images then one checks easily
that the numbers b2(X) − b2(D) − Σ + ν and h do not change, so we can assume that all fibers of π are
smooth. Then b2(D) = h+ ν, Σ = 0 and b2(X) = 2.

Definition 1.5.4. Let ϕ be a C∗-ruling from a smooth open surface X onto P1. It is a Platonic fibration
if and only if two conditions are satisfied:

(i) ϕ has precisely three singular fibers which are equal to µiFi, where Fi ∼= C∗ and (µ1, µ2, µ3) is a
Platonic triple (cf. 1.3.5(ii)),

(ii) there exists an snc-completion (X,D1 +D2) of X with D1 ∩D2 = ∅ and an extension ϕ : X → P1,
such that every fiber of ϕ is a chain and each Di contains a section of ϕ.

1.6 Minimal models

In this section X is a smooth open surface and (X,D) is its snc-completion.

Definition 1.6.1. A smooth open surface X is almost minimal if it has an snc-completion (X,D) for
which there does not exist a log-exceptional curve of the first kind on X, i.e. an irreducible curve C, such
that

(KX +D#)C < 0 and Q(BkD + C) is negative definite.

The pair (X,D) is then called almost minimal.

Remark. If κ(X) ≥ 0 then from the Zariski decomposition it follows that the condition for C can be
changed for (D# +KX)C < 0 and C2 < 0.

Lemma 1.6.2. ([Miy01, 2.3.8, 2.3.4]). Let C be a log-exceptional curve of the first kind, then:

(i) if C ⊆ D, then C is a (−1)-curve and βD(C) ≤ 2,

(ii) if C * D, then C is a (−1)-curve, intersects D transversally and the points of intersection belong to
different components of BkD. Moreover, either CD = 1 or CD = 2 and one of the connected com-
ponents of BkD intersecting C is a rod of D. In particular, C intersects each connected component
of D at most once.
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Proposition 1.6.3. ([Miy01, 2.3.11]). The construction of an almost minimal model (which does not
have to be unique) for a given snc-pair (X,D) goes by repeating operations (1) and (2) alternately:

(1) snc-minimalize D, i.e. contract subsequently all non-branching (−1)-curves in D,

(2) find and contract a log-exceptional curve of the first kind C, such that C * D.
After each step change D for its proper image. After finite number of steps the resulting pair is an

snc-pair and is almost minimal.

Definition 1.6.4. For a smooth open surface X let (X,D) be its snc-completion and let (Xm, Dm) be the
almost minimal model. The connected components of BkDm can be contracted to quotient singularities.
The resulting pair (Xr, Dr) is called a relatively minimal model of (X,D). We define the almost minimal
and the relatively minimal model of X to be respectively Xm−Dm and Xr −Dr. If κ(X) ≥ 0 then these
models are unique. Clearly, the almost minimal model of X is a smooth locus of the relatively minimal
model of X.

Example 1.6.5. An almost minimal model of C2 \ {0} is C2.

Let T be a Q-divisor on a smooth projective surface. T is nef if TC ≥ 0 for every irreducible curve C.
T is pseudoeffective if TH ≥ 0 for every nef divisor H. Effective and nef divisors are pseudoeffective.

Proposition 1.6.6. (Zariski-Fujita decomposition; cf. [Miy01, 2.1.19]). Let T be a pseudo-effective Q-
divisor on a smooth projective surface V . There exists a unique effective divisor T− =

∑r
i=1 aiNi with Ni

irreducible, such that:

(i) either Q(T−) is negative definite or T− = 0,

(ii) T+ := T − T− is nef (hence pseudoeffective),

(iii) T+Ni = 0 for every 1 ≤ i ≤ r.

Remark. It follows from the lemma stated below that if T is effective then T+ is effective.

Lemma 1.6.7.

(i) Let A and B be some (Z- or Q-) divisors, such that A+B is effective and Q(B) is negative definite.
If ABi = 0 for each irreducible component Bi of B then A is effective.

(ii) For every natural n one has h0(n(KX +D)) = h0([n(KX +D#)]), where [ ] denotes the integer part
of a Q-divisor.

Proof. (i) We can assume that A and B are Z-divisors and B is effective and nonzero. Write B =
∑
biBi

for some positive integers bi and irreducible components Bi of B. Choose b′i ∈ N, such that the sum
∑
b′i

is the smallest possible among divisors
∑
b′iBi, such that A+

∑
b′iBi is effective. If b′i > 0 for some i then

(A+
∑
b′iBi)(

∑
b′iBi) = (

∑
b′iBi)

2 < 0 by the assumptions. Hence Supp(A+
∑
b′iBi) contains some Bi,

a contradiction with the definition of b′i. Thus A is effective.
(ii) Let {T} denote the fractional part of a Q-divisor T , i.e. T = [T ] + {T}. Let T be some effective

divisor, such that n(KX+D) ∼ T . Then T−nBkD is effective by (i) and n(KX+D#) ∼ T−nBkD. This
gives [T −nBkD] ≥ −{T −nBkD}, and since [T −nBkD] is a Z-divisor and components of {T −nBkD}
appear in {T − nBkD} with proper fractional coefficients, we get that [T − nBkD] is effective.

Proposition 1.6.8. (Kawamata, cf. [Fuj82, 6.11]). Let (X,D) be an snc-completion of X, such that
κ(X) ≥ 0. For P = (KX +D)+ one has:

(i) P ≡ 0 if and only if κ(X) = 0,

(ii) P 6≡ 0 and P2 = 0 if and only if κ(X) = 1,

(iii) P2 > 0 if and only if κ(X) = 2.

Notice that by the remark after 1.6.6, in case (i) P ∼ 0 as a Q-divisor.

Lemma 1.6.9. Assume κ(KX +D) ≥ 0. One has:
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(i) The maximal twigs of D are contained in Supp (KX +D)−. If D is snc-minimal then the maximal
twigs of D are admissible ([Fuj82, 6.13]).

(ii) If (X,D) is almost minimal then (KX + D)+ = KX + D# and (KX + D)− = BkD (cf. [Miy01,
§2.3]).

Proof. (i) Let T = C1 + . . . + Cn be a maximal twig of D. We have Ci(KX + D) = βD(Ci) − 2 ≤ 0.
Clearly, C1 ⊆ D− and since CiCi+1 = 1, we get Ci ⊆ (KX +D)− by induction.

Proposition 1.6.10. (Iitaka, Kawamata). Let ϕ : X → Y be a fibration, i.e. a dominating morphism
with irreducible and reduced generic fiber. Assume that X is smooth. Then for a general y ∈ Y :

(i) κ(X) ≤ κ(ϕ−1(y)) + dimY ([Iit82, Theorem 10.4]),

(ii) if Y is smooth and dimX − dimY ≤ 1 then κ(ϕ−1(y)) + κ(Y ) ≤ κ(X) ([Kaw78]).

Remark. For dim Y = dim X (ii) implies κ(Y ) ≤ κ(X). For a proof of (ii) in case X is a surface see
[Miy01, 2.1.14].

Theorem 1.6.11. (Structure theorem).

(i) If κ(X) = −∞ and D is connected or X is not rational then X is affine-ruled ([Rus81], [Miy01,
2.2.1]).

(ii) Assume that κ(X) = −∞ and X is not affine-ruled. There exists a smooth surface X̃ dominating
X, which is affine-ruled ([KM99, Theorem 1.1]). If Q(D) is not negative definite then the almost
minimal model of X has a Platonic fibration, hence is isomorphic with (C2−{0})//G for some small
finite non-abelian subgroup of GL(2,C) (cf. [Miy01, 2.5.1] and [MT84a]).

(iii) If κ(X) = 0 and (X,D) is almost minimal then for every connected component J of D either J is a
smooth elliptic curve or it is rational and is one of the following ([Fuj82, 8.8]):

(I) an admissible chain or an admissible fork,

(O) a cycle, i.e. every component C of J satisfies βJ(C) = 2,

(Y) a fork F satisfying δ(F ) = 1,

(H) has dual graph
−2 · · · · · −2

−2 −2

(X) has dual graph
−2

−2 · −2

−2

(iv) If κ(X) = 1 then X is either C∗-ruled or elliptically ruled, i.e. it has a fibration with a generic fiber
isomorphic to an elliptic curve (cf. [Fuj82, 6.11]).

Remark. A surface, which is affine-ruled or is dominated by an affine-ruled surface has κ = −∞. Elliptically-
and C∗-ruled surfaces have κ < 2 by 1.6.10, but do not have to satisfy κ = 1. For a more detailed structure
theorems in cases (iii) and (iv) see [Miy01, §2.6].

We state a version of Bogomolov-Miyaoka-Yau inequality proved by Langer ([Lan03, Corollary 5.2]), which
generalizes the inequalities of Miyaoka [Miy84, Theorem 1.1] and Kobayashi [Kob90, Theorem 2]:
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Theorem 1.6.12. Let (X,D) be a normal projective surface together with a Q-divisor D =
∑
aiDi with

0 ≤ ai ≤ 1. Assume that the pair is log-canonical and a multiple of KX +D is effective. Then

3χorb(X,D) +
1
4

((KX +D)−)2 ≥ (KX +D)2,

where χorb(X,D) is the orbifold Euler number (see [Lan03, 3.4] for a general definition and [Lan03, §9]
for computations in special cases).

Corollary 1.6.13. Let (X,D) be an snc-pair with κ(KX +D) ≥ 0. Then:

(1)

3χ(X −D) +
1
4

((KX +D)−)2 ≥ (KX +D)2.

(2) Let D1, D2, . . . , Dn be all the connected components of D which are also connected components of
BkD. In particular, Di’s are contractible to quotient singularities (cf. [Miy01, 2.3.14]). Denote the
respective local fundamental groups by G1, . . . , Gn. Then

χ(X −D) +
n∑
i=1

1
|Gi|

≥ 1
3

(KX +D#)2.

Proof. According to [Lan03, 3.4, 7.6] if (X,D) is a pair as in 1.6.12 and D is reduced then for x ∈ D the
local orbifold numbers χorb(x;X,D) vanish, hence

χorb(X,D) = χ(X − SingX −D) +
∑

x∈SingX

χorb(x;X,D).

This already proves (1), where X is smooth. Let π : (X,D) → (X ′, D′) be a morphism contracting the
connected components of BkD to quotient points. Then KX +D# ≡ π∗(KX′ +D′) by [Miy01, 2.3.14.1].
We need to know χorb(x;X ′, D′). If x 6∈ D′ then the preimage of x is a connected component of D (and
of BkD), so by [Lan03, 3.7] we have χorb(x;X ′, D′) = 1

|G| , where G is the local fundamental group of x.
We have χ(X ′ − SingX ′ −D′) = χ(X −D). Since ((K ′X +D′)−)2 ≤ 0, (2) follows from 1.6.12 applied to
(X ′, D′).

Remark. Part (2) generalizes the Kobayashi inequality for the case κ(X −D) = 0, 1, it is stronger than
the original Miyaoka inequality (there is no 1

4N
2 term, using the notation of [Miy84, Theorem 1.1]). If

κ(X−D) = 2 then to get the original Kobayashi inequality one has to apply 1.6.12 to the strongly minimal
model of (X,D) (cf. [Miy01, 2.4.12, 2.6.6]).

Lemma 1.6.14. Let X0 be as in 1.2.3. Then there exists an open subset Xm ⊆ X0, such that χ(Xm) ≤
χ(X0) and Xm is isomorphic to an almost minimal model of X.

Proof. Let (X,D+E) be an snc-minimal completion of X0 as in the proof of 1.2.3. Consider the process
of producing an almost minimal model of (X,D + E). If we contract a curve as in 1.6.3(2), then the
lemma 1.6.2 implies that it causes a subtraction of a curve with χ = 1 or χ = 0 from X0. Contractions
of (−1)-curves contained in the boundary divisor do not affect X0, unless some connected component of
the boundary is eventually contracted to a smooth point which does not belong to the proper image of
the boundary divisor. Then this point adds to an almost minimal model of X0. This cannot happen for
D. Indeed, since X ′ is affine, there exists an ample divisor with support contained in D, so Q(D) is not
negative definite. Affiness of X ′ implies that each curve intersects D or its image. Thus the snc-minimality
of E implies that the above contraction to a smooth point cannot happen for E also.

Remark. If κ(X0) = 2 then analogously the smooth part of the strongly minimal model Xsm of X0 is an
open subset of Xm with χ(Xsm) ≤ χ(Xm).



16 CHAPTER 1. DEFINITIONS AND GENERAL RESULTS

1.7 Quotients

The following lemma will be used to construct some (singular) Q-homology planes. It is also useful in
considering the question of affiness of singular Q-homology planes.

Lemma 1.7.1. (Contraction lemma). Let A and B be effective snc-divisors on a smooth complete surface
X. Assume that A ∩ B = ∅ and that for every irreducible curve C * B on X one has AC > 0. Then for
sufficiently large and sufficiently divisible n one has:

(i) |nA| has no base points,

(ii) ϕ|nA| is birational and contracts exactly the curves in B,

(iii) Im ϕ|nA| is normal, projective and is isomorphic to Proj
⊕

n≥0H
0(OX(nA)).

The proof of (i) is a part of the proof of Nakai’s criterion in [Har77, V.1.10]. One shows thatOX(A)⊗OA
is ample on A and then using the exact sequence 0→ O(−A)→ OX → OA → 0 that O(nA) is generated
by global sections for n� 0.

Statements (ii) and (iii) are proved for example in [Rei87, 2.3, 2.4].

Definition 1.7.2. Let (X,D) be an snc-completion of a smooth surface X and let NS(X) be the Neron-
Severi group X. Define NS(X) as a cokernel of the natural map L(D)→ NS(X) (cf. 1.1). This does not
depend on an snc-completion of X (cf. [Fuj82, 1.19]). We denote NS(X)⊗Q by NSQ(X).

Remark. Assume X is complete. Since a homology class of a numerically trivial divisor on X is torsion
(cf. [Laz04, 1.1.21]), there is a natural map j : NS(X) → H2(X,Q). Since NS(X) is torsionless, j is a
monomorphism. On the other hand, if X is not complete then NS(X) can have torsion.

Corollary 1.7.3. Let A and B be effective snc-divisors on a smooth complete surface X. Assume that
A ∩ B = ∅, A is connected, Q(B) negative definite and NSQ(X − A − B) = 0. Then there exists a
normal affine surface Y and a morphism ζ : X − A → Y contracting connected components of B, such
that ζ : X −A−B → Y − ζ(B) is an isomorphism.

Proof. Since NSQ(X − A − B) = 0, there exists a divisor H = HA + HB with HA ⊆ A and HB ⊆ B,
which is numerically equivalent to an ample divisor on X. Then H is ample, because ampleness is a
numerical property by Nakai’s criterion. To use 1.7.1 we need to show that there exists a divisor F , such
that SuppF = SuppA and FC > 0 for all irreducible curves C * B. To deal with curves C ⊆ A we use
Fujita’s argument ([Fuj82, 2.4]). Let U consist of all effective divisors T , such that T ⊆ A and TTi > 0 for
any prime component Ti of T . Writing HA = H+−H−, where H+, H− are effective and have no common
component, we see that U is nonempty because H+ ∈ U . Suppose F is an element of U with maximal
number of components. For an irreducible curve C * F satisfying CF > 0 one would get tF + C ∈ U for
t > max(0,−C2), hence SuppF = SuppA by connectedness of A.

Suppose an irreducible curve C * B satisfies CF = 0. Since F ∈ U , we have C * F . We can choose
some reduced divisor F ′ ⊆ F , such that the irreducible components of F ′ + B give a basis of NSQ(X).
Let’s write C ≡

∑
i αiFi + B+ − B−, where Fi ⊆ F ′, the divisors B+, B− ⊆ B are effective and have no

common component. For each j we have CFj = 0, so (
∑
i αiFi)Fj = CFj = 0, hence

∑
i αiFi = 0 because

d(F ′) 6= 0. We have (B+)2 = B+C+B+B− ≥ 0, so B+ = 0. Thus the divisor C+B− is nonzero, effective
and numerically trivial, a contradiction. Let ζ = ϕ|nF | for n as in lemma 1.7.1. Then ζ : X − A→ Im ζ
contracts connected components of B. We have also nF = ζ∗H, where H is a very ample divisor on Im ζ,
which implies that Im ζ is affine.
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Topology of Q-homology planes

2.1 Homology groups

2.1.1. Notation. Let S′ be a singular Q-homology plane, i.e. an irreducible normal surface, which is
Q-acyclic and not smooth. We assume nothing more about the type of singularities. In particular, S′ does
not have to be a logarithmic Q-homology plane, i.e. its singularities do not have to be of quotient type. If
ε : S → S′ is a good resolution and (S,D) is an snc-completion of S then by definition κ(S′) = κ(S) =
κ(KS +D), where KS stands for a canonical divisor on S (see [Iit82] for the definition and properties of
Kodaira dimension of a divisor). Let {p1, . . . , pq} be the singular locus of S′ and let Êi = ε−1(pi). We
assume that Ê = Ê1 + Ê2 + . . .+ Êq is snc-minimal. The intersection matrix Q(Ê) is negative definite. We
put S0 = S \ Ê ∼= S′ \Sing S ′. We define Mi = ∂Tub(Êi), where Tub(Êi) is a tubular neighborhood of Êi
in S. There exists a deformation retraction Tub(Êi) → Êi. We can assume that Tub(Êi) ∩ Tub(Êj) = ∅
for i 6= j and that every Mi is a closed oriented 3-manifold. Put M =

⋃q
i=1Mi. The construction of

Tub(Êi) can be found in [Mum61].

Convention. We write Hi(X,A) for Hi(X,A; Q) and define bi(X,A) = dimHi(X,A).

Lemma 2.1.2. ([Mum61]). There exist exact sequences

0 −→ Ki −→ H1(Mi,Z)
j−−→ H1(Êi,Z) −→ 0,

where Ki are finite groups, |Ki| = |d(Êi)| and j is induced by a composition of inclusion Mi → cl(Tub(Êi))
with retraction onto Êi.

Remark. Since H1(Ê,Z) is free abelian, it follows that H1(Mi,Z) = H1(Êi,Z)⊕Ki. Clearly, Betti numbers
of M are: b0(M) = b3(M) = q and b2(M) = b1(M) = b1(Ê).

Proposition 2.1.3. Let j bE : Ê → S, jM : M → S0, iD : D → S and iD∪ bE : D ∪ Ê → S be the inclusion
maps. One has:

(i) Hk(j bE) is an isomorphism for positive k,

(ii) Hk(jM ) is an isomorphism for positive k,

(iii) D is connected,

(iv) H1(iD) is an isomorphism,

(v) H2(iD∪ bE) is an isomorphism,

(vi) b1(Ê) = b1(D) = b1(S),

(vii) Hk(S′,Z) = 0 for k ≥ 2,

(viii) π1(ε) : π1(S)→ π1(S′) is an epimorphism, it is an isomorphism if b1(Ê) = 0.

17
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(ix) if b1(Ê) = 0 then |d(D)| = |d(Ê)| · |H1(S′,Z)|2.

Proof. (i) We look at the homology exact sequence of a pair (S, Ê). The pairs (S, Ê) and (S′,SingS′)
are ’good CW-pairs’ (see [Hat02, Thm 2.13]), so for k > 1 we have Hk(S, Ê) = Hk(S′, Sing S′) = 0 and
then Hk(j bE) : Hk(Ê) → Hk(S) induced by inclusion j bE is an isomorphism for k > 1. Now b1(S, Ê) =
b1(S′,SingS′) = q − 1 = b0(Ê)− 1, so H1(j bE) is also an isomorphism.

(ii) Let k > 0. We know that Hk(j bE) is an epimorphism, so the Mayer-Vietories sequence for S =
S0 ∪

⋃q
i=1 Tub(Êi) splits into exact sequences:

0 −→ Hk(M) −→ Hk(S0)⊕Hk(Ê) −→ Hk(S) −→ 0.

Now by (i) Hk(jM ) is a homomorphism between spaces of the same dimension and it is injective, because
Hk(j bE) is.

(iii) S is connected, so by (ii) the Lefschetz duality (see [Dol80]) H0(D) = H4(S, S) gives a connect-
edness of D:

0 = H4(S) −→ H4(S) −→ H4(S, S) −→ H3(S) = 0.

(iv) The Neron-Severi group of a smooth complete surface X embeds into H2(X) ∼= H2(X). Since
d(Ê) 6= 0, we see that the inclusion j : Ê ↪→ S induces a monomorphism on H2. Using (i) we can write
the exact sequence of a pair (S, S) as:

. . . −→ H3(Ê) −→ H3(S) −→ H3(S, S) −→ H2(Ê) −→ H2(S)→ . . . .

Now H2(j) is a monomorphism, so H3(S) → H3(S, S) is an epimorphism. Hence it is an isomorphism,
because H3(Ê) = 0. By Poincare and Lefschetz duality we get b1(S) = b1(D). Now looking at the exact
sequence of the pair (S,D):

. . . −→ H1(D) −→ H1(S) −→ H1(S,D) −→ . . .

we see that H1(iD) is an epimorphism, because by (ii) and Lefschetz duality H1(S,D) = H3(S) = H3(Ê) =
0. It is therefore an isomorphism.

(v) Let γ = H2(iD∪ bE). Consider the exact sequence of a pair (S,D ∪ Ê):

0 −→ H3(S) α−−→ H3(S,D ∪ Ê)
β−−→ H2(D ∪ Ê)

γ−−→ H2(S) −→ H2(S,D ∪ Ê)

δ−−→ H1(D ∪ Ê) ε−−→ H1(S) −→ H1(S,D ∪ Ê)
ζ−−→ H̃0(D ∪ Ê) −→ 0.

Since b1(S,D ∪ Ê) = b3(S0) = q by (ii) and b0(D ∪ Ê) = q + 1 by (iii), we get that ζ is a monomorphism,
hence ε is an epimorphism. Therefore by (v) dim Im δ = dim Ker ε = b1(Ê)+ b1(D)− b1(S) = b1(Ê). How-
ever, b2(S,D∪Ê) = b2(S0) = b1(Ê) by (ii), so δ is a monomorphism. We infer that γ is an epimorphism. We
compute b2(S) = b2(D∪Ê)−dim Imβ and dim Imβ = b3(S,D∪Ê)−b3(S) = b1(S0)−b1(S) = b1(Ê)−b1(D)
by (ii) and (iv). Hence b2(S) = b2(D ∪ Ê) + b1(D)− b1(Ê).

We will now prove that γ is a monomorphism. By the above computation of b2(S) this is equivalent
to the equality b1(D) = b1(Ê). Consider the case when Ê is a rational tree. Then H3(S,D) = H1(S) = 0
by (i). The homology exact sequence of a pair (S,D) then gives H3(S) = 0. Since H2(S0) = 0 by (ii) and
2.1.2, the homology exact sequence of a pair (S, S0) gives H3(S, S0) = 0. By Lefschetz duality the last
group is isomorphic to H1(D), so the statement is proved. Now assume that Ê is not a rational tree. This
implies that κ(S0) ≤ 1 by 2.2.1. If κ(S0) = 1 then S0 is either elliptically ruled or C∗-ruled (cf. 1.6.11(iv)).
Since modifications of D+ Ê do not change b1(D) and b1(Ê), we can assume that this ruling extends to S.
In the case of elliptically ruled S0 the divisor D+ Ê is vertical, hence Q(D+ Ê) is semi-negative definite,
but since γ is an epimorphism, we know that NS(S) is generated by classes of irreducible components of
D + Ê, so this contradicts the Hodge index theorem. Thus S0 is C∗-ruled and there are unique sections
contained in Ê and in D, because Ê cannot be vertical, otherwise would be a rational tree. It follows that
b1(Ê) = b1(D) = b1(B), where B is the base curve of the ruling. Hence we can assume κ(S0) ≤ 0. First
we will obtain a contradiction in the case κ(S) = κ(S0) = 0 by showing that Ê is a rational tree. Indeed,
in the above case we can assume that S0 is almost minimal, because the minimalization does not effect the
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rationality of Ê. We have K +D# + Ê# ≡ 0 by 1.6.8 and K +D# ≥Q 0 by 1.6.7. Therefore in this case
Ê# = 0, so Ê is a rational tree by 1.3.1(iii), a contradiction. Thus we get κ(S) < 0, so S is affine-ruled
(cf. 1.6.11(i)). Let π be the extension of this ruling to S. Consider a divisor T =

∑
i diDi +

∑
j ejEj ≡ 0

with distinct irreducible components Di ⊆ D and Ej ⊆ Ê. To finish the proof that γ has no kernel it is
enough to show that T = 0. Using negative definiteness of Q(Ê) we see that each ej vanishes, otherwise
0 > (

∑
j ejEj)

2 = T (
∑
j ejEj). Intersecting T with a fiber we see that the horizontal component of D

does not occur in the sum T =
∑
j djDj with nonzero coefficient, therefore SuppT is contained in fibers

of the P1-ruling of S. If T 6= 0 then T , and hence D, has to contain at least one fiber, otherwise T 2 < 0.
However, this implies that Ê is vertical, hence is a rational tree, a contradiction.

(vi) It was shown in the proof of (v) that b2(S) = b2(D∪Ê)+b1(D)−b1(Ê), hence by (v) b1(Ê) = b1(D).

(vii) Let 3 ≤ k ≤ 4. Since Hk(j bE) is an isomorphism by (i), the groups Hk(S, Ê,Z) are torsion.
We have Hk(S, Ê,Z) ∼= Hk(S′,Z), so the exact sequence of a pair (S, Ê) with coefficients in Z gives
Hk(S′,Z) ∼= Hk(S, Ê,Z) ∼= Hk(S,Z). However, since Hk(S,Z) are torsion, by the universal coefficient
formula and Lefschetz duality we get Hk(S,Z) ∼= Hk+1(S,Z) ∼= H3−k(S,D,Z) = 0. The vanishing of
H2(S′,Z) is more subtle (it will not be used until chapter 6). The generalization of Andreotti-Frankel
theorem proved by Karchyauskas says that an affine variety X of complex dimension n has the homotopy
type of a CW -complex of real dimension not greater than n (see [GM88] for proofs and generalizations).
In particular, Hn(X,Z) is torsionless. Knowing that S′ is affine (cf. 2.2.3(iii)) we get that H2(S′,Z) is
torsionless, hence vanishes.

(viii) For simplicity we assume that Ê is connected. In general the proof is by induction on the number
of connected components of Ê. Let B ⊆ S′ be a contractible neighborhood of p1. We can assume that the
preimage of B under ε : S → S′ is Tub(Ê) and that the boundaries ∂Tub(Ê) and ∂B are homeomorphic.
Put G = π1(S′ \B) ∼= π1(S \ Tub(Ê)) and H = π1(∂B) ∼= π1(∂Tub(Ê)). Then by van Kampen’s theorem
π1(S) ∼= G ∗

H
π1(Ê) and π1(S′) ∼= G ∗

H
{1}. Clearly, π1(Ê) is in the kernel of π1(ε).

(ix) Let MD = ∂Tub(D) be the boundary of the tubular neighborhood of D. We can assume that
MD is a 3-manifold disjoint from M = ∂Tub(Ê). D is a rational tree and d(D) 6= 0, because by (v)
the components of D are independent in H2(S). Thus we can use Mumford’s result 2.1.2. Notice that
H2(MD,Z) and H2(M,Z) are free abelian groups by Poincare duality. We know also that H2(S0) is finite
in this case. Consider an exact sequence of a pair (K,MD), where K = S \ (Tub(D) ∪ Tub(Ê)):

0 −→ H2(K,Z) −→ H2(K,MD,Z) −→ H1(MD,Z) −→ H1(K,Z) −→ H1(K,MD,Z) −→ 0.

By Lefschetz duality (cf. [Hat02, 3.43]) Hi(K,MD,Z) ∼= H4−i(K,M,Z) = H4−i(S′, Sing S′,Z), and for
i > 1 we get Hi(K,MD,Z) ∼= H4−i(S′,Z) ∼= H3−i(S′,Z) by universal coefficient formula. This gives an
exact sequence:

0 −→ H2(K,Z) −→ H1(S′,Z) −→ H1(MD,Z) −→ H1(K,Z) −→ H2(S′,Z) −→ 0.

Consider the reduced exact sequence of a pair (K,M):

0 −→ H2(K,Z) −→ H2(K,M,Z) −→ H1(M,Z) −→ H1(K,Z) −→ H1(K,M,Z) −→ H̃0(M,Z) −→ 0.

Since Hi(K,M,Z) ∼= Hi(S′, Sing S′,Z) and H1(S′, Sing S′,Z) = H1(S′,Z)⊕ H̃0(SingS′,Z) we get:

0 −→ H2(K,Z) −→ H2(S′,Z) −→ H1(M,Z) −→ H1(K,Z) −→ H1(S′,Z) −→ 0.

Since H2(S′,Z) = 0 by (vii), we get H2(K,Z) = 0. Now |H1(M,Z)| = |d(Ê)| and |H1(MD,Z)| = |d(D)|
by 2.1.2, so we get the thesis easily.

Corollary 2.1.4.

(i) b1(S0) = b2(S0) = b1(Ê), b3(S0) = q, b4(S0) = 0,

(ii) χ(S0) = 1− q, χ(S) = #Ê + 1− b1(Ê), χ(S) = #D + #Ê + 2− 2b1(Ê),

(iii) ΣS0 = h+ ν − 2 and ν ≤ 1.
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Proof. (i) follows from 2.1.3(ii) and 2.1.2.
(ii) χ(S0) = χ(S′)− q = 1− q and other equalities are follow from (i) and 2.1.3(vi).
(iii) By 1.5.3 and 2.1.3(v) ΣS0 = h + ν − 2. Suppose ν > 1. Then the numerical equivalence of fibers

of a P1-ruling gives a numerical dependence of components of D + Ê, hence Q(D + Ê) is not of full rank
and we get d(D + Ê) = 0. This contradicts 2.1.3(v).

2.2 Algebraic properties

It is known ([PS97, Theorem 1.1]) that logarithmic Q-homology planes are rational. We will see that this
is not true for a general Q-homology plane S′, so the description of birational type of S′ is of interest. We
describe also general properties of the singularities of S′.

Lemma 2.2.1.

(i) if κ(S0) = 2 then S′ is logarithmic and # SingS′ = 1,

(ii) if κ(S0) = 0 or 1 then either # SingS′ = 1 or # SingS′ = 2 and Ê1 = Ê2 = [2].

Proof. We assume additionally that S′ is affine, this will be proved in 2.2.3(iii). Let (Sm, Dm) be the
almost minimal model of (S,D + Ê). By 1.6.14 the almost minimal model Sm −Dm of S0 is isomorphic
to an open subset of S0 satisfying χ(Sm − Dm) ≤ χ(S0) = 1 − q. By 1.6.13(2) 1

3 ((KSm + Dm)+)2 ≤
χ(Sm −Dm) +

∑
P∈Q

1
|GP | ≤ 1 − q + #Q

2 ≤ 1 − q
2 , where Q is the set of singular points of Sm −Dm. If

κ(S0) = 2 then we get q = 1 and 0 <
∑
P∈Q

1
|GP | , so there is a unique singular point on S′ and it is of

quotient type. If # SingS′ > 1 then we get q = 2 and 1 ≤ 1/|GP1 |+ 1/|GP2 |, so |GP1 | = |GP2 | = 2.

Remark 2.2.2. If κ(S) = −∞ then by modifying the pair (S,D) we can assume that there exists a
P1-ruling p : S → B, such that B is a smooth complete curve. It is easy to see that topologically B is
determined uniquely. Indeed, since blowup does not change the fundamental group of a surface, we can
assume that all fibers are smooth. Applying the exact sequence of a fibration we get π1(S) = π1(B). This
determines B. If S or S0 are C1- or C∗-ruled we can always assume that p extends the given ruling.

Proposition 2.2.3.

(i) NSQ(S0) = 0,

(ii) d(D) < 0, and Q(D) has signature (1+, (#D − 1)−),

(iii) S′ is affine,

(iv) S is P1-ruled over a curve of genus 1
2b1(D) = 1

2b1(Ê) (hence κ(S) = −∞),

(v) if κ(S′) ≥ 0 then S is rational and S′ has topologically rational singularities,

(vi) Ê and D are trees with at most one nonrational component,

(vii) π1(iD) : π1(D)→ π1(S) is an isomorphism,

(viii) if Ê consist only of (−2)-curves then κ(S′) = κ(S0).

Proof. (i) follows from 2.1.3(v) and the inclusion NS(S) ↪→ H2(S) ∼= H2(S).

(ii) Since by 2.1.3(v) the components of D + Ê form a basis of H2(S) we get d(D) 6= 0. By Hodge’s
index theorem we get that the signature of Q(D) is (1+, (#D − 1)−), because Q(Ê) is negative definite.
It follows that d(D) = det(Q(−D)) < 0.

(iii) 2.1.3(iii) and (i) imply that A = D and B = Ê satisfy the assumptions of 1.7.3, so S′ is affine.
Notice that by 1.7.1(ii) the boundary divisor D of S can be identified with the boundary divisor of S′ in
the image of appropriate ϕ|nD|.

(iv) Assume on the contrary that S is not P1-ruled, or equivalently that κ(S) ≥ 0. S cannot be rational,
so S′ is not logarithmic by [PS97, Theorem 1.1], hence 0 ≤ κ(S) ≤ κ(S) ≤ κ(S0) < 2 by 2.2.1. Affiness



2.2. ALGEBRAIC PROPERTIES 21

of S′ implies that S cannot contain complete curves not contained in Ê, hence S cannot be elliptically
ruled. It follows from 1.6.11(iv) that if κ(S) = 1 then S is C∗-ruled, so S is P1-ruled, a contradiction with
κ(S) ≥ 0. Therefore we have κ(S) = 0. We will prove that D is algebraically contractible. We can assume
that (S,D) is almost minimal, so (KS +D)+ = KS +D# ≡ 0 by 1.6.9(ii). Now KS ≥Q 0 implies D# = 0,
so D = BkD and Q(D) is negative definite, which contradicts (ii).

(v) By (iv) we can assume that there exists a P1-ruling p : S → B as in 2.2.2. We have b1(B) = b1(S) =
b1(Ê) by 2.1.3(vi), so S is rational if and only if b1(Ê) = 0. By 2.2.3 we can assume that κ(S0) ≤ 1.
If S0 is C∗-ruled then from κ(S) ≥ 0 we get that Ê has to be contained in some fibers of p, so it is a
rational tree. We have left with the case κ(S) = κ(S0) = 0. We can assume that S0 is relatively minimal,
because the minimalization does not effect the rationality of Ê. We have K +D# + Ê# ≡ 0 by 1.6.8 and
K +D# ≥Q 0 by 1.6.7. Therefore Ê# = 0, so Ê is a rational tree by 1.3.1(iii).

(vi) This is clear if S is rational (cf. 2.1.3(vi)), so by (v) we can assume that κ(S) = −∞, so S is affine-
ruled. Let p : S → B be the extension to a P1-ruling of S. Then D is a tree and has exactly one irreducible
component - the horizontal section. Now Ê is not a rational tree, so it has a horizontal component E0.
Then g(E0) ≥ g(B), so b1(E0) ≥ b1(B). However, b1(B) = b1(D) = b1(Ê), so b1(E0) = b1(Ê), hence Ê is
a tree by 1.1.

(vii) If κ(S) ≥ 0 then the statement follows from (v) and 2.1.3(iv). If κ(S) = −∞ then S is affine-
ruled by 2.1.3(iv). Let Dh be the horizontal component of D, then π1(D) = π1(Dh), so the composition
p ◦ iD : D → S → B induces an isomorphism on π1. The exact sequence of fibration gives that π1(p) is an
isomorphism.

(viii) We have to prove κ(S0) ≤ κ(S). If Ê consists of (−2)-curves then (K + D)Ei = 0 for each
irreducible component Ei of Ê. If T is an effective divisor linearly equivalent to n(K +D+ Ê) then, since
Q(Ê) is negative definite, T − nÊ is effective by 1.6.7 and we are done.

We now state a theorem strengthening the proposition 2.2.3(v). As we will see later it does not
generalize to the case κ(S′) = −∞.

Theorem 2.2.4. Singular Q-homology planes of non-negative Kodaira dimension are rational and loga-
rithmic, i.e. the singularities are of quotient type. If the singular locus is disconnected then it consists of
two points of type A1.

Proof. We only need to prove the logarithmicity of S′. By 2.2.1 we can assume that κ(S0) = 0 or 1 and
that Ê is connected. If κ(S0) = 1 then S0 is C∗-ruled by 1.6.11(iv). It will be proved in chapter 3 (cf. 3.2.2)
that with two exceptions (for which Ê is a (−2)-chain), if κ(S0) = 0 then S0 is C∗-ruled as well. Therefore,
we can assume that S0 is C∗-ruled. Consider an extension π : S → B of this ruling to an snc-completion
(S,D+ Ê) with D+ Ê being π-minimal. Denote the set of horizontal components of D+ Ê by Dh. Since
κ(S′) ≥ 0, Dh ⊆ D and Dh consists of at most two components. It consists either of two 1-sections or of
one 2-section, hence it can intersect only these fiber components which have multiplicity not greater than
two. Let F be a singular fiber containing Ê and let Dv be the divisor of D-components of F . We use 1.5.1
without comments. By 2.1.4(iii) we get ν ≤ 1 and ΣS0 = #Dh + ν − 2 ≤ 1, so σ ≤ 2 for every fiber of
π. Suppose Ê is not a resolution of a quotient singularity, in particular it is not an admissible chain (cf.
1.4.1). We obtain a successive restrictions on F eventually leading to a contradiction.

(1) (−1)-curves of F are S0-components.

Proof. Suppose F contains a (−1)-curve D0 ⊆ D. We have ΣS0 = 0. Indeed, if ΣS0 > 0 then #Dh = 2 and
ν = 1, so by simply connectedness of D at most one horizontal component of D intersects D0. However, in
this case µ(D0) = 1, so D0 is a tip of F , which contradicts the π-minimality of D. First we prove that Dv

contains components of multiplicity one. If #Dh = 2 then π-minimality of D implies that D0 intersects
both horizontal components of D, hence µ(D0) = 1. If #Dh = 1 then simply connectedness of D implies
that Dh∩F is a branching point of π|Dh and by π-minimality D0 intersects two other D-components of F ,
which have multiplicity one, because µ(D0) = 2. Thus we are done. Let C be the unique S0-component
of F . We see easily that D0 cannot be the unique (−1)-curve of F , hence C2 = −1 and there are no more
(−1)-curves in F . Let’s make a connected sequence of blowdowns starting from D0 until the number of
(−1)-curves decreases. Clearly, since Ê ∩D = ∅, in this process we do not touch C + Ê (first we would
touch C, and then C becomes a 0-curve). Let F ′ be the image of F , we can write F ′−C = D′+ Ê, where
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D′ is the image of Dv. Since C + Ê is not touched, D′ 6= 0. Notice that Dv contains a component of
multiplicity one, hence the same is true for D′. Since C is the unique (−1)-curve of F ′, it follows that Ê
is a chain, a contradiction.

(2) F contains two (−1)-curves.
Proof. Suppose F has a unique (−1)-curve C. Write F − C = A + B, where A and B are disjoint,
connected, and B is a chain (possibly empty). By our assumption on Ê we have Ê ⊆ A, hence B can
contain only S0- and D-components. Notice that by 2.2.3(iii) each S0-component intersects D. Since D
is connected, this implies that either BDh > 0 or B = 0. If B 6= 0 we get that B contains a curve with
µ ≤ 2, so then F consist of two branches with the first being equal to [2, k, 2] for some k > 1, hence Ê
is an admissible fork of type (2, 2, n), a contradiction. Thus B = 0. If µ(C) ≤ 2 then again Ê would
be an admissible fork, so we get µ(C) > 2. If follows that DhC = 0, so there is a unique D-component
D1 intersecting C. Since D is connected, there is a chain T ⊆ F of D-components containing D1 and
some D-component D2 with µ(D2) ≤ 2. If D2 lies on the first branch of F then T contains all branching
components of F , so Ê is a chain, a contradiction. If D2 lies on the second branch then Ê is an admissible
fork of type (2, 2, n), a contradiction.

(3) Both (−1)-curves of F intersect Ê.
Proof. Let C1 and C2 be the (−1)-curves of F . They are S0 components by (1). We get ΣS0 > 0, so
Dh consists of two 1-sections, which can intersect F only in components of multiplicity one. Suppose one
of Ci’s, say C2, does not intersect Ê. Then Dv 6= 0, because C2 has to intersect some component of F .
We make a connected sequence of blowdowns starting from C2 until there is only one (−1)-curve left, we
denote the image of F by F ′. In this process we do not touch C1 + Ê, so we can write F ′ −C1 = D′ + Ê,
where D′ is the image of Dv + C2. Since D′ intersects the image of Dh, it contains a component of
multiplicity one. It follows that Ê is a chain, a contradiction.

(4) There are no D-components in F .

Proof. We can write F − C1 − C2 = Ê + D′ + D′′, where Dv = D′ + D′′, D′ and D′′ are connected and
D′∩D′′ = ∅. Suppose Dv 6= 0, say D′ 6= 0. One of Ci’s, say C1, intersects D′. Contract C2 and subsequent
(−1)-curves until the number of (−1)-curves decreases. Clearly, C1 + D′ is not touched in this process.
Denote the image of F by F ′ and let U be the image of D′′ + C2 + Ê. Now F ′ is a fiber with a unique
(−1)-curve and since both C2 +D′′ and C1 +D′ intersect Dh, we infer that both U and D′ +C1 contain
components of multiplicity one. Thus F ′ is a chain. Consider the reverse sequence of blowups recovering
F from F ′. The fiber F is not a chain, so a branching curve is produced. It follows that D′′ 6= 0, otherwise
C2 is a tip of F with multiplicity greater than one, hence DC = DhC = 0, which is impossible. Now it is
easy to see that one of the connected components of F −C2 is a chain not containing curves of multiplicity
one, a contradiction.

Dv = 0 implies that Dh intersects both Ci’s, so they have multiplicity one, hence are tips of F . It
follows that F is a chain, a contradiction.



Chapter 3

S0 not C∗-ruled, κ(S0) = 0

In this chapter we assume that κ(S0) = 0, hence κ(S′) ≤ 0. We assume that Ê is snc-minimal and that S0

does not admit any C∗-ruling. We prove that there are exactly two surfaces S′ satisfying these conditions,
for this surfaces κ(S′) = 0 (cf. 3.2.7).

3.1 Description of the boundary

Lemma 3.1.1. The divisor D is rational.

Proof. Suppose D is not rational. Then Ê is not rational by 2.1.3(vi). Let (S,D+ Ê)→ (S̃, D̃+ Ẽ) be a
modification of (S,D + Ê), such that (S̃, D̃ + Ẽ) is almost minimal. By 1.6.11(iii) D̃ and Ẽ are disjoint
smooth elliptic curves. By 2.2.3(iv) we can assume that S is P1-ruled over a smooth elliptic curve, so
Lüroth theorem implies that every rational curve in S is vertical. In particular, (−1)-curves contracted in
the process of minimalization are vertical, hence the number of horizontal components of D+Ê and D̃+Ẽ
is the same. Thus by 1.6.8(i) and 1.6.9(ii) for a generic fiber F we get −2+F (D+Ê) = FKeS+FD̃+FẼ =
F Bk(D̃ + Ẽ) = 0, because all components contained in Supp Bk(D̃ + Ẽ) are rational, hence vertical. We
get F (D + Ê) = 2, so S0 is C∗-ruled, a contradiction.

From now on we assume that D is rational. In particular, S and Ê are rational by 2.2.3(iv).

Lemma 3.1.2. Every irreducible curve L, such that L * D ∪ Ê satisfies κ(S0 − L) = 2.

Proof. Suppose κ(S0−L) = 1. Since S0 does not contain complete curves, 1.6.11(iv) implies that S0−L is
C∗-ruled. S0 is not C∗-ruled, so it is affine-ruled, a contradiction with κ(S0) = 0. Suppose κ(S0 −L) = 0.
Since S is rational, we have Pic(S0)⊗Q ∼= NSQ(S0) = 0 by 2.2.3(i), so there exists a rational function f
such that (f) = kL for some k > 0. We get a morphism f : S0 − L → C∗. If S0 − L → B → C∗ is its
Stein factorization then κ(B) ≥ κ(C∗) = 0 and 0 ≥ κ(f−1(b)) + κ(B) for a generic b ∈ B by 1.6.10. Since
S0 − L is not affine ruled, we get κ(f−1(b)) = 0, i.e. f is a C∗-ruling, a contradiction.

Definition 3.1.3. Let (X,B) be an snc-pair. A smooth curve C on X is a simple curve on (X,B) if it
is rational and for any J , a connected component of B, satisfies |C ∩ J | ≤ 1. If C2 = −1 then we say that
it is exceptional.

Corollary 3.1.4. There is no simple curve on (S,D+ Ê). If D is snc-minimal then the pair (S,D+ Ê)
is almost minimal.

Proof. Let L be a simple curve on (S,D + Ê). By 2.2.3(iii) S′ is affine, so L ∩ D 6= ∅. By 1.6.14 the
almost minimal model Xm of S0 − L is an open subset of S0 − L satisfying χ(Xm) ≤ χ(S0 − L). By
1.6.13(2) and 3.1.2 it satisfies 0 < χ(Xm) +

∑
P∈Q

1
|GP | , where Q is the set of singular points of the

relatively minimal model Xr of S0 − L. Put s = |L ∩ Ê|. Observe that Q(D) is not negative definite, so
by the construction of Xr we have |Q| ≤ q − s. This gives

∑
P∈Q

1
|GP | ≤

q−s
2 , so χ(S0 − L) ≥ χ(Xm) >

−
∑
P∈Q

1
|GP | ≥

s−q
2 . We compute χ(S0−L) = χ(S0)−χ(L) + |L∩D|+ s = 1− q+ s− 2 + |L∩D|, hence

|L ∩D| = χ(S0 − L) + 1 + q − s > q−s
2 + 1, i.e. |L ∩D| > 1, a contradiction.

23
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If the pair (S,D + Ê) is not almost minimal then by 1.6.2 there exists an exceptional simple curve on
(S,D + Ê), a contradiction.

Let T1, . . . , Tn be the maximal twigs of D. The following technical lemma, which is a small generaliza-
tion of [Kor93, 6.2] allows to bound from below the self-intersection of one of the branching components
of D having four maximal twigs.

Lemma 3.1.5. Let T be an snc-divisor with two branching components B1, Bs with branching numbers
βT (B1) = βT (Bs) = 3. Let T1, T2 and T3, T4 be maximal twigs of T intersecting B1 and Bs respectively.
Write T − T1 − T2 − T3 − T4 = B1 + B2 + . . . + Bs. Assume that T − B1 − B2 is contractible, T is not
negative definite and d(T ) 6= 0. Then ẽ(T1) + ẽ(T2) > −B2

1 − 1 or ẽ(T3) + ẽ(T4) > −B2
s − 1.

Proof. Put bi = −B2
i . Assume that ẽ(T3) + ẽ(T4) ≤ bs − 1. Define D(i) = T3 + T4 +Bs +Bs−1 + . . .+Bi.

Put di = d(D(i)) and ∆i = di+1 − di. By 1.1.1(ii) applied to D(i) for i = 2, . . . , s − 2 we can write
di = di+1bi − di+2 (we put ds+2 = 0), so ∆i+1 = di+1(bi − 2) + ∆i. Put T0 = Bs−1 + . . . + B2. Since
ẽ(T0) < 1 we have d2 = d(T3)d(T4)d(T0)(bs − ẽ(T3) − ẽ(T4) − ẽ(T0)) > 0, so D(2) is negative definite. In
particular di > 0 for i = 2, . . . , s. Hence ∆2 ≤ ∆3 ≤ . . . ≤ ∆s−1. Since T is not negative definite, we
have d(T ) < 0 by Sylvester’s criterion. Applying 1.1.1(ii) for D we get 0 > d(D) = d2d(T1 + B1 + T2) −
d3d(T1 + T2), so ∆2d(T1 + T2) > d2(d(T1 +B1 + T2)− d(T1 + T2)) = d2d(T1)d(T2)(b1− 1− ẽ(T1)− ẽ(T3)).
Suppose b1 − 1 ≥ ẽ(T1) − ẽ(T2). Then ∆s−1 ≥ ∆2 > 0. By 1.1.1(i) applied to T3 + Bs + T4 we get
(bs−1 − 1)(bs − e(T3)− e(T4)) < 1, hence bs − 1 < ẽ(T3) + ẽ(T4), a contradiction.

From now on up to the end of this chapter we will assume that D is snc-minimal. Recall that the
connected components of D + Ê are described in 1.6.11(iii). We use the notation of 1.6.11(iii) below.

Lemma 3.1.6. D can be only of type (X) or (Y). If it is of type (X) then its branching component B is
either a 0-curve or a (−1)-curve. In case (Y) it is a (−1)-curve and the triple (d(T1), d(T2), d(T3)) is up
to permutation one of the following: (3, 3, 3), (2, 3, 6), (2, 4, 4).

Proof. By 2.2.3(ii) D is not negative definite, so the case (I) is impossible. Case (O) is excluded by
2.2.3(vi). In case (H) write D−T1−T2−T3−T4 = B1 + . . .+Bs. The chain B2 + . . .+Bs−1 is admissible,
otherwise after some modifications gives a C∗-ruling of S0 (cf. 5.1.2(4)). By 3.1.5 we can assume that
B2

1 > −2. Assume T1 and T2 meet B1. Blow up on the intersection of B1 with D − T1 − T2 − B1 until
B2

1 = −1. Then T1 + 2B1 + T2 gives a C∗-ruling of S0, a contradiction. Thus only (X) and (Y) remain.
We have d(D) < 0 by 2.2.3(ii), so by 1.1.1(i) B2 ≥ −1. In case (Y) we have δ(D) = 1 by definition,

so we need only to prove that B2 = −1. Suppose B2 > 0 in case (X) or B2 ≥ 0 in case (Y). Let
π : (S̃, D̃) → (S,D) be the modification obtained by blowing up the point of intersection of T1 with B

until B2 = 0. Consider the P1-ruling of S̃ given by B. We see that D̃ contains no vertical (−1)-curves.
Let Dh be the divisor of horizontal components of D̃ (these are disjoint sections of the ruling). Put
Dv = D̃ −Dh − B. Notice that if some component H of Dh intersects a vertical curve T then µ(T ) = 1
and H does not intersect any other component lying in the fiber containing T .

We prove that S0-components of singular fibers are (−1)-curves. Let C be an S0-component of some
fiber. We have KS +D+ Ê ≡ BkD+Bk Ê, so KeS +D̃+ Ê ≡ π∗ BkD+Bk Ê. We have L2 = −2−LKeS =
−2 + L(D̃ − π∗ BkD) + L(Ê − Bk Ê) ≥ −2 + L(D̃ − π∗ BkD). Since B * BkD and since π is obtained
by blowing up in the tips of the subsequent reduced full preimages of D − T1 − T2 − B, the components
in π∗ BkD ⊆ D̃ have multiplicities smaller than one (BkD 6= D because Q(D) is not negative definite).
Thus L2 > −2 and we are done.

Let F be a fiber containing some connected component of Ê. If F contains some D̃-components, then
there exists a chain of S0-components in F connecting Ê ∩ F with some D̃-component of F . In fact this
chain consists of a unique (−1)-curve L, since all S0-components are (−1)-curves and two of them cannot
meet. By 3.1.4 DhL > 0, so µ(L) = 1, a contradiction. Therefore there are no D̃-components in F , hence
each S0-component intersects Dh, so it has µ = 1. We have #Dh ≤ 4, so from 3.1.4 it follows that there
are exactly two S0-components, each intersecting two components of Dh. This eliminates the case (Y).
Notice that it follows also that these two (−1)-curves are tips of F and Ê ∩ F is a (−2)-chain.

Consider the case (X). We have Dv 6= 0, because B2 > 0. We can write Dv = D0 + D1 + . . . + Dn,
where D2

0 = −3, n ≥ 0 and D2
i = −2 for every 1 ≤ i ≤ n. Let F ′ be a fiber containing Dv. Connectedness

of Dv implies that each (−1)-curve of F ′ intersects Dh. In particular, the (−1)-curves, and hence all
components of F ′ have µ = 1. We have KDv = 1 and KF = −2, so there are exactly three (−1)-curves
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in F ′, call them L2, L3 and L4. We have σ(F ′) = 3, σ(F ) = 2 and ΣS0 = 3 by 1.5.3, so any other
singular fiber has σ = 1. However, the unique (−1)-curve of such a fiber has µ > 1, so cannot intersect
Dh, hence cannot intersect D̃, a contradiction. Thus F and F ′ are the only singular fibers, which implies
that Ê is connected. Since µ(Li) = 1 and F ′ cannot contain a 0-curve as a proper subdivisor, we get
that one of Li’s, say L4, intersects Dn and two others intersect D0 (it is possible that n = 0). Each
Li intersects exactly one Ti, so by renaming we can assume that for i = 2, 3, 4 we have T 2

i = −2 and
LiTi = 1. The remaining section contained in Dh, call it T ′1, is a (−1)-curve and intersects Dn. Let M2

be the (−1)-curve of F intersected by T4. Denote the second (−1)-curve of F by M1. If T ′1M2 > 0 then
the contraction of F −M2 + F ′ − L4 does not touch T4 and touches T ′1 once. Therefore the images of T4

and T ′1 are disjoint sections of a P1-ruling of a Hirzebruch surface and have self-intersections −2 and 0.
This is impossible. We infer that T ′1M2 = 0 and T ′1M1 = 1. Now by symmetry we can assume that T2

intersects M2 and T3 intersects M1. The contraction of F −M1 + F ′ −L3 does not touch T3 and touches
T ′1 exactly n+1 times. Thus as above we get a P1-ruling of a Hirzebruch surface with two disjoint sections
having self-intersections −2 and n. It follows from the properties of a Hirzebruch surface that n = 2. Now
observe that T4 + 2L4 +D2 and T3 + 2L3 +D0 +L2 are disjoint 0-divisors, so they are fibers of the same
P1-ruling of S̃. This contradicts the fact that T2 intersects the second one and not the first one.

3.2 Rulings of S0 with ν > 0

We need couple of remarks about rulings of special type on S. All the characteristic numbers used below
refer to the pair (S,D + Ê).

Lemma 3.2.1. With the assumptions as above, let p : S → P1 be a P1-ruling, such that ν > 0 (cf. 1.5).
Let F∞ be a fiber contained in D and Dh be the divisor of horizontal components of D. One has:

(i) Ê is vertical, ν = 1 and Σ = #Dh − 1,

(ii) components of Dh are disjoint and each ot them intersects F∞ in a point,

(iii) a component of a singular fiber is an S0-component if and only if it is a (−1)-curve.

Proof. (i) D ∩ Ê = ∅, so Ê is vertical. By 2.1.4(iii) ν = 1 and Σ = h− 1.
(ii) Since D does not contain any loops, this is obvious.

(iii) Since (S,D+ Ê) is almost minimal by 3.1.4, we have KS +D+ Ê ≡ BkD+ Bk Ê, i.e. KS +D# +
Ê# ≡ 0. D is connected and not negative definite, so SuppD = SuppD#. Hence for any S0-component
L we have L2 = −2−KSL = −2 + LD# + LÊ# ≥ −2 + LD# > −2, so L2 = −1, because L is contained
in some singular fiber. On the other hand, a vertical (−1)-curve is an S0-component, because D + Ê is
snc-minimal.

Theorem 3.2.2. Let S0 be the smooth locus of a singular Q-homology plane S′, such that κ(S0) = 0 and
S0 is not C∗-ruled. Then κ(S′) = 0 and S′ has a unique singular point. Moreover, either (i) S′ (hence
S0) is C∗∗-ruled, its singularity is of type A1 and its snc-minimal boundary D is a fork with branching
(−1)-curve and three maximal twigs: [2], [2, 2, 2] and [2, 2, 2] (cf. 3.2.4) or (ii) S′ (hence S0) is C∗∗∗-ruled,
its singularity is of type A2 and its snc-minimal boundary D is a fork with branching (−1)-curve and three
maximal twigs: [2, 2], [2, 2] and [2, 2]. (cf. 3.2.6).

Proof. Suppose S0 is not C∗-ruled. By 3.1.6 we have only 13 cases to consider:

(X0) T1 = T2 = T3 = T4 = [2] and B2 = 0,

(X1) T1 = T2 = T3 = T4 = [2] and B2 = −1,

D is of type (Y) with B2 = −1 and:

(Y1a) T1 = [3], T2 = [3], T3 = [3],

(Y1b) T1 = [3], T2 = [3], T3 = [2, 2],

(Y1c) T1 = [3], T2 = [2, 2], T3 = [2, 2],
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(Y1d) T1 = [2, 2], T2 = [2, 2], T3 = [2, 2],

(Y2a) T1 = [2], T2 = [4], T3 = [4],

(Y2b) T1 = [2], T2 = [4], T3 = [2, 2, 2],

(Y2c) T1 = [2], T2 = [2, 2, 2], T3 = [2, 2, 2],

(Y3a) T1 = [2], T2 = [3], T3 = [6],

(Y3b) T1 = [2], T2 = [3], T3 = [2, 2, 2, 2, 2],

(Y3c) T1 = [2], T2 = [2, 2], T3 = [6],

(Y3d) T1 = [2], T2 = [2, 2], T3 = [2, 2, 2, 2, 2].

Write each Ti as Ti = Ti,1 + Ti,2 + . . . + Ti,ki , where Ti,1 is a tip of D. In cases (Y1a), (Y2a) and
(Y3a) we compute d(D) = 0, so these are excluded by 2.2.3(ii). In each other case we specify a P1-ruling
π : S → P1 with ν > 0 defined by some 0-divisor (F∞) in D. Below we list appropriate quadruples
(F∞, FD,ΣS0 , Dv), where F is the generic fiber and Dv = D−F∞−Dh. In fact in case (Y2c) we consider
two rulings simultaneously.

(X0) (B, 4, 3, 0),

(X1) (T1 + 2B + T2, 4, 1, 0),

(Y1b) (T1 + 3B + 2T3,2 + T3,1, 3, 0, 0),

(Y1c) (T1 + 3B + 2T3,2 + T3,1, 3, 0, T2,1),

(Y1d) (T1,2 + 2B + T3,2, 4, 2, T2,1),

(Y2b) (T1 + 2B + T3,3, 3, 1, T3,1),

(Y2c) (T1 + 2B + T3,3, 3, 1, T3,1 + T2,1 + T2,2),

(Y2c)’ (T2,3 + 2B + T3,3, 4, 2, T3,1 + T2,1),

(Y3b) (T1 + 2B + T3,5, 3, 1, T3,1 + T3,2 + T3,3),

(Y3c) (T1 + 2B + T2,2, 3, 1, 0),

(Y3d) (T1 + 2B + T3,5, 3, 1, T2,1 + T3,1 + T3,2 + T3,3).

Notice that Dv has at most two connected components and each of them is a chain of (−2)-curves. Let
F be some singular fiber of π. The S0-components of F are (−1)-curves by 3.2.1(iii), denote them by Li,
i = 1, . . . , σ(F ). We prove successive statements. We use 3.1.4 repeatedly.

(1) Every S0-component intersects Dh.

Proof. If L is an S0-component then L2 = −1 by 3.2.1(iii). Suppose LDh = 0. Then L intersects two
D-components by 3.1.4, which are (−2)-curves, so F = [2, 1, 2]. Both these D-components must be tips
of D. Since LDh = 0 and ν > 0, we obtain FD = 2, otherwise D would contain a loop. This is a
contradiction.

(2) If µ(L) > 1 for some S0-component L of F then σ(F ) = 1 and µ(L) = 2.

Proof. Suppose σ(F ) ≥ 2. The curve L = L1 intersects some D-component of F , otherwise DhL1 ≥ 2
and DhF ≥ Dh(µ(L1)L1 + L2) > 4, which is impossible. Thus Dv ∩ F 6= ∅ and we get that 4 ≥ DhF ≥
Dh(µ(L1)L1 + Dv ∩ F + µ(L2)L2) ≥ 2 + Dh(Dv ∩ F ) + µ(L2)DhL2, so by (1) µ(L2) = DhL2 = 1 and
Dv ∩ F is connected. We get L2Dv > 0, because L2 cannot be simple. It follows that F = [1, (k), 1] for
some k > 0, a contradiction.

Suppose σ(F ) = 1 and µ(L1) > 2. Since DhL1 > 0, this is possible only for (Y1b) or (Y1c). Moreover,
then |Dh ∩ L1| = 1 and the point of intersection does not belong to any other component of F . However,
FD = 3 for (Y1b) and (Y1c), so there are no D-components in F . Thus L1 is simple, a contradiction.

(3) If σ(F ) > 1 then F = [1, (k), 1] for some k ≥ 0. If σ(F ) = 1 then in cases other than (X1)
F = [2, 1, 2] and F contains a D-component.
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Proof. If σ(F ) > 1 then all Li’s are tips of F by (2). Suppose σ(F ) > 2. Then there are some D-
components in F , otherwise FD ≥ 6 by 3.1.4. The divisor F −

∑
i Li is connected and contains a

D-component, so there are no Ê-components in F . Since Dv consists of (−2)-curves, we get −2 = KSF =∑
iKSLi = −σ(F ), a contradiction. Thus σ(F ) = 2 and both (−1)-curves have multiplicities one by (2),

so F = [1, (k), 1] for some k ≥ 0.
Assume now σ(F ) = 1 and consider cases different from (X1). We have µ(L1) = 2 by (2). There

are some D-components in F , otherwise by 3.1.4 L would meet two 2-sections contained in Dh, which
is possible in case (X1) only. Suppose F is branched. Then L1 is a tip of F and F − L1 is one of the
connected components of Dv, hence it must be [2, 2, 2], which is possible for (Y3b) only. In this case Dv

is connected, FD = 3 and ΣS0 = 1. In particular, there exists a fiber F ′ with σ(F ′) = 2 and it does not
have any D-components, so both S0-components of F ′ meet Dh at least twice, which contradicts FD = 3.
Thus F is a chain, so F = [2, 1, 2].

(4) κ(S) = 0 and KS +D# ≡ 0.

Proof. By (2), (3) and 1.5.1(vi) every singular fiber consists of (−1)- and (−2)-curves. Ê is vertical, so
2.2.3(viii) implies κ(S) = κ(S0) = 0. The pair (S,D + Ê) is almost minimal, so by 1.6.8(i) and 1.6.9(ii)
we get KS + D# + Ê# ≡ 0. Since by (2) and (3) Ê consists of (−2)-chains and admissible (−2)-forks,
Ê = Bk Ê, so Ê# = 0.

(5) Cases other than (X0), (X1), (Y1d) and (Y2c) are impossible. #Ê = 8−B2 −#D.

Proof. By (4) we have KS BkD = K2
S

+ KSD, so KS BkD ∈ Z. This excludes (Y1b), (Y1c), (Y2b),
(Y3b) and (Y3c). In the remaining cases (X0), (X1), (Y1d), (Y2c) and (Y3d) the maximal twigs of D are
(−2)-chains, so by (4) KS(KS + B) = 0. Noether’s formula and 2.1.4(ii) give 12 = K2

S
+ 2 + #D + #Ê,

so #Ê = 8−B2 −#D. For (Y3d) we get #Ê = 0, a contradiction.

(6) Case (X0) is impossible. Ê is connected.

Proof. By (5) we have #Ê = 3 − B2 ≥ 3 for (X1) and (X0), so by 2.2.1(ii) Ê is connected. Consider
the case (Y1d). Suppose there exists a singular fiber F with σ(F ) = 1, let L be its (−1)-curve. By (3)
F = [2, 1, 2] and there is a D-component in F , so Dv = T2,1 ⊆ F and F contains an Ê-component. It
follows that the sections T1,1 and T3,1 intersect L, a contradiction. By (3) there are only two singular
fibers and they are of type [1, (k), 1], so Ê is connected, since Dv 6= 0.

Suppose that the case (X0) occurs. Since ΣS0 = 3, there is a singular fiber F with σ(F ) > 1, hence by
(3) F = [1, (k), 1] for some k ≥ 0. It is easy to see that for every such fiber k > 0. In fact, if k = 0 then
take any (−1)-curve L ⊆ F and two components H1, H2 ⊆ Dh intersecting L. Since Dv = 0, H1 +2L+H2

gives a C∗-ruling of S0, a contradiction. Since Ê is connected, we see that there is only one fiber with
σ > 1. This contradicts ΣS0 = 3.

(7) Case (X1) is impossible.

Proof. Suppose the case (X1) occurs. We have ΣS0 = 1, so there is a fiber F1 = [1, (k), 1], where k ≥ 0.
Suppose k > 0. We have Dv = 0, so Ê ⊆ F1 by (6) and F∞ and F1 are the only singular fibers. By (5)
we can write F1 = L1 + E1 + E2 + E3 + E4 + L2. Notice that Dh consists of two 2-sections, T3 and T4,
and by 3.1.4 Dh intersects F1 − Ê in four points. If L1 intersects both 2-sections then the contraction
of F∞ − T2 + F1 − L1 touches T3 seven times, so the image of T3 is a smooth 2-section on a Hirzebruch
surface with self-intersection 5, a contradiction. Thus L1 intersects only one component of Dh, say T3,
hence L2 intersects T4. After the contraction of F∞ − T1 + F1 − L1 the surface becomes a Hirzebruch
surface and the images of the 2-sections, T ′3 and T ′4, satisfy T ′3T

′
4 = 2, T ′23 = 0 and T ′24 = 20. However,

T ′3−T ′4 ≡ αF for some α ∈ Z and a generic fiber F , because T ′3 and T ′4 are 2-sections. Thus (T ′3−T ′4)2 = 0,
which is a contradiction. Thus k = 0 and Ê ⊆ F0, where F0 is a singular fiber with σ(F0) = 1. By (5) and
1.5.1(vi) Ê is a (−2)-fork with four components. Let M be the (−1)-curve of F0. Denote the Ê-component
intersecting M by E0 and the branching component of Ê by E1. Consider a new P1-ruling of S given by
the 0-divisor T3 + 2M + T4. For this ruling we have ΣS0 = 0. Let F ′ be a fiber containing Ê −E0. There
is exactly one (−1)-curve U ⊆ F ′, which is the unique S0-component of F ′. Notice that T1 and T2 are
now the only possible vertical D-components and they are (−2)-curves. It follows that U cannot intersect
them, hence F ′ contains no D-components. Hence U intersects E1 and µ(E1) = µ(U) = 2. It follows that
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E0 intersects F ′ only in E1 and B intersects U in one point. Thus U is a simple curve on (S,D + Ê), a
contradiction.

Figure 3.1: (Y2c), ruling Figure 3.2: (Y2c), contraction

Lemma 3.2.3. In the case (Y2c) there are three singular fibers (see Fig. 3.1): F∞ = T1 + 2B + T3,3,
F1 = L1 + T2,2 + T2,1 + L2 and F0 = T3,1 + M + Ê, where Ê = [2] and L1, L2,M are (−1)-curves.
L1T3,2 = 1 and the 2-section T2,3 meets L2. The divisor D+L1 +L2 +M + Ê can be contracted to a sum
of three lines and a smooth conic in P2, where the lines intersect in one point and exactly two of them are
tangent to the conic (see Fig. 3.3).

Proof. We use the facts showed in the proof of 3.2.2. We have ΣS0 = 1, so by (3) there exists a fiber
F1 = [1, (k), 1] for some k ≥ 0 and this is the unique fiber with σ > 1. There exists also a singular fiber F0

with σ(F0) = 1. Indeed, otherwise F1 would contain Ê, hence would not contain any D-component and
this contradicts Dv 6= 0. We have F0 = [2, 1, 2] by (3). Since #Dv = 3 and #Ê = 1 by (5), F1 contains two
components of Dv and F0 contains Ê and one D-component. Besides F∞, F0 and F1 there are no singular
fibers. Notice that T2,3 is a 2-section intersecting the unique (−1)-curve of F0, call it M , in a branching
point of π|T2,3 . Let L1 ⊂ F1 be the (−1)-curve meeting T2,2. Suppose L1 meets the 2-section T2,3 also.
Then L2, the second (−1)-curve of F1, meets T2,1 and T3,2. Contraction of F∞−T3,3 +F1−T2,2 +F0−T3,1

touches T3,2 twice and T2,3 five times. Therefore we get a ruling of a Hirzebruch surface having a section
with self-intersection 0 and a disjoint 2-section with self-intersection 3. This is a contradiction, hence L1

meets the section T3,2. Contraction of F∞ − T3,3 + F1 − T2,2 + F0 − T3,1 touches T3,2 once, so its image is
a section of a P1-ruling of a Hirzebruch surface having self-intersection −1. Moreover, the image of T2,3 is
a smooth 2-section tangent to the images of T3,3 and T3,1 (see Fig. 3.2). Contracting the 1-section we get
a divisor as in the thesis.

We recover the situation of case (Y2c).

Figure 3.3: (Y2c), final configuration
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Example 3.2.4. Let x1, x2, y1 ∈ T2,3 be three points lying on a smooth conic in P2. This choice is unique
up to an automorphism of P2. (This can be seen as follows. Using an automorphism of P2 we can assume
that these points are ([1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]), hence the conic is {[x : y : z] ∈ P2 : axy+byz+czx = 0}
for some a, b, c ∈ C, such that abc 6= 0. Automorphisms of P2 which are diagonal in chosen coordinates fix
the chosen points and act transitively on the set of described conics.) Let T3,3, T3,1 be two lines tangent
to T2,3 at x1 and x2 respectively. Let T2,2 be a line through T3,3 ∩ T3,1 intersecting T2,3 in y1, denote
the second point of intersection by y2 (y2 6= y1, because T2,3 is non-degenerate). We use the same names
for divisors and their birational transforms. Blow once in each of T3,3 ∩ T3,1, x1, x2, y1 and denote the
respective exceptional curves by T3,2, T1, Ê and T2,1. Now blow once in each of T3,3 ∩ T1, T2,2 ∩ T3,2,
T2,1 ∩ T2,3 and T3,1 ∩ Ê and denote the respective exceptional curves by B, L1, L2 and M . Denote the
resulting complete surface by S. Define D = T3,1 + T3,2 + T3,3 + T2,1 + T2,2 + T2,3 + T1 + B, S = S −D
and S′ = S/Ê. Clearly, D is a fork with δ(D) = 1, B2 = −1 and other components of D are (−2)-curves.

Lemma 3.2.5. In the case (Y1d) there are three singular fibers (see Fig. 3.4): F∞ = T1,2+2B+T3,2, F1 =
L1 +E1 +E2 +L2 and F2 = M +T2,1 +L3, where Ê = E1 +E2 = [2, 2] and L1, L2, L3,M are (−1)-curves.
T3,1M = T3,1L1 = 1, T1,1L2 = T1,1M = 1, T2,2L1 = T2,2L2 = T2,2L3 = 1 and T2,2 ∩ T2,1 6= T2,2 ∩ L3.
There exists regular morphism θ : S → P2 contracting the divisor B +M + L1 + L2 + L′1 + L′2 + L′′1 + L′′2
consisting of disjoint (−1)-curves, such that the image of T1,2 +T2,2 +T3,2 is a triple of lines intersecting in
θ(B) and the image of T1,1 + T2,1 + T3,1 is a triple of lines intersecting in θ(M) (see Fig. 3.6). Moreover,
θ(T1,2)∩θ(T2,1), θ(T2,2)∩θ(T3,1), θ(T3,2)∩θ(T1,1) lie on a line θ(E1) and θ(T1,2)∩θ(T3,1), θ(T2,2)∩θ(T1,1),
θ(T3,2) ∩ θ(T2,1) lie on a line θ(E2).

Proof. We have ΣS0 = 2, so by (3) there exist fibers F1 = [1, (k1), 1] and F2 = [1, (k2), 1] and since by (6)
Ê is connected, (3) implies that F∞, F1 and F2 are the only singular fibers of π. We can assume that
T2,1 is contained in F2, so k2 = 1, Ê ⊆ F1 and k1 = 2 by (5). There is a (−1)-curve in F2, call it M ,
such that T2,2M = 0. By 3.1.4 T1,1 + T3,1 intersects M , so by symmetry we can assume that T3,1 does.
Let L1 be the (−1)-curve of F1 intersecting T3,1. The contraction of F∞ − T3,2 + F1 − L1 + F2 −M does
not touch T3,1 and the images of T3,1 and T1,1 are two disjoint sections on a Hirzebruch surface, hence
the image of T1,1 must have self-intersection 2 and we infer that the contraction touches T1,1 exactly four
times. Since k2 = 2, it follows that T1,1 does not intersect L1 and intersects M (see Fig. 3.4). Clearly,
the analogous rulings of S induced by F ′∞ = T1,2 + 2B + T2,2 or F ′′∞ = T2,2 + 2B + T3,2 have the same
structure of singular fibers. Denote the (−1)-curves of the fibers of these rulings containing Ê as L′1, L

′
2

and L′′1 , L
′′
2 respectively. It is easy to see that L1, L

′
1, L
′′
1 , L2, L

′
2, L
′′
2 are disjoint. For example, for i = 1, 2

we have LiF
′
∞ = 1, so Li(L′1 + L′2) = 0. Let ω : S → S̃ be the contraction of all these exceptional

curves. For any i, j, k ∈ {1, 2} we have ω(Ti,2)ω(Tj,1) = 1, ω(Ti,j)2 = 0 and ω(Ek)2 = 1. We see also that
ω(Ek) meets each Ti,j once and only in points being images of curves contracted by ω (see Fig. 3.5). Now
since b2(S̃) = b2(S) − 6 = 3, the P1-ruling p̃ : S̃ → P1 induced by ω(T1,2) has only one singular fiber F̃ .
Furthermore, FM = F ′M = F ′′M = 0 implies that F̃ = M +N , where N is the birational transform of
some S0-component (see Fig. 3.5). We have ω(Ti,j)N = 0 and BN = 1. If we define θ as the composition
of ω with the contraction of B +M , then the properties of θ stated in the thesis follow (see Fig. 3.6).

We recover the situation of case (Y1d).

Example 3.2.6. Let P1 = [0, 1, 1], P2 = [1, 1, 0], Q1 = [1, 0, 0], Q2 = [0, 0, 1] be points in P2
(x,y,z). The

lines Q1P1, Q1P2, Q2P1 and Q2P2 have equations y = z, z = 0, x = 0 and x = y. Put P3 = [1, ε, ε − 1],
where ε = −ζ3 for some primitive third root of unity ζ3. Then following condition is satisfied: the points
Q1P1 ∩Q2P2 = {[1, 1, 1]}, Q1P2 ∩Q2P3 = {[ε, ε− 1, 0]}, Q1P3 ∩Q2P1 = {[0, 1, ε]} lie on a common line E2

(having equation (1 − ε)x + εy = z) and the points Q1P1 ∩ Q2P3 = {[1, ε, ε]}, Q1P2 ∩ Q2P1 = {[0, 1, 0]},
Q1P3 ∩ Q2P2 = {[ε, ε, ε − 1]} lie on a common line E1 (having equation z = εx). Blow once in Q1 and
Q2 and denote the exceptional curve of the first blowup by B. Blow once in each of the six points of
intersection of lines Qi, Pj with E1 + E2. Let D be the divisor consisting of the proper transforms of B
and of lines QiPj . Denote the resulting surface by S and put S = S \D, S′ = S/Ê, where Ê = E1 + E2.
Clearly, D is a fork with δ(D) = 1, B2 = −1 and D −B + Ê consists of (−2)-curves.
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Figure 3.4: (Y1d), ruling Figure 3.5: (Y1d), contraction

Figure 3.6: (Y1d), final configuration

Corollary 3.2.7. There are exactly two non-isomorphic singular Q-homology planes S′, such that their
smooth parts have Kodaira dimension zero and do not admit C∗-rulings. These surfaces have Kodaira
dimension zero. Their construction is given in 3.2.4 and 3.2.6.

Proof. It follows from 3.2.2 that S′ as above can be only of type (Y2c) or (Y1d). If it is of type (Y2c) then
3.2.3 implies that it can be constructed as in 3.2.4. The construction was determined uniquely by a choice
of a smooth conic in P2 and a triple of different points on it, hence S′ with S0 of type (Y2c) is unique
up to isomorphism. Clearly, the surfaces S′ with S0 of type (Y2c) and of type (Y1d) are non-isomorphic,
because their singularities are of different type. We now prove that if S′ is of type (Y1d) then it can be
constructed as in 3.2.6. Let θ : S → P2 be as in 3.2.5, put Q1 = θ(B), Q2 = θ(M), P1 = θ(T1,2 ∩T1,1) and
P2 = θ(T3,2∩T3,1), we can assume that their coordinates are as in 3.2.5. Since P3 = θ(T2,2∩T2,1) 6∈ P1Q2,
we can write P3 = [1, ε, u] for some ε, u ∈ C. The condition of collinearity of θ(T1,2) ∩ θ(T2,1) = [1, ε, ε],
θ(T2,2) ∩ θ(T3,1) = [ε, ε, u], θ(T3,2) ∩ θ(T1,1) = [0, 1, 0] implies u = ε2 and the condition of collinearity of
θ(T1,2) ∩ θ(T3,1) = [1, 1, 1], θ(T2,2) ∩ θ(T1,1) = [0, ε, u], θ(T3,2) ∩ θ(T2,1) = [1, ε, 0] implies ε2 − ε + 1 = 0,
hence −ε is a primitive third root of unity. Therefore for fixed choice of points P1, P2, Q1, Q2 there are
two choices for P3, we call them P3 and P ′3. This implies that up to isomorphism there are at most two
surfaces S′ of type (Y1d) as above. Notice that the change of P1 with P2 gives rise to the same set of
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points {P3, P
′
3}. Now the automorphism σ ∈ Aut P2 given by1 −1 0

0 −1 0
0 −1 1


fixes Q1, Q2 and changes P1 with P2. Since σ changes P3 with P ′3 we conclude that the choices of P3 and
P ′3 are equivalent.

We now check that constructions 3.2.6 and 3.2.4 result with singular Q-homology planes with prescribed
properties. In each case we have b1(S) = 0, b2(S) = 9 and it is easy to check that the components of
D + Ê are independent in NS(S), hence H2(D + Ê)→ H2(S) is a monomorphism. The homology exact
sequence of a pair (S,D) and the Lefschetz duality give b1(S) = b3(S) = b4(S) = 0 and b2(S) = #Ê.
Then the homology exact sequence of a pair (S, Ê) gives that S′ is Q-acyclic. Since Ê’s are resolutions
of singular points of type A1 and A2 respectively, the constructed S′’s are normal. We get κ(S) = κ(S0)
by 2.2.3(viii). We check easily that KS + D# intersects trivially with all components of D + Ê, hence
KS +D# ≡ 0. Thus κ(S) = 0.

Suppose that for one of S′ as above the smooth locus S0 admits a C∗-ruling. There exists a modification
(S̃, D̃ + Ẽ) → (S,D + Ê), such that this ruling extends to a P1-ruling π : S̃ → P1. We can assume that
D̃ + Ẽ is π-minimal. Since κ(S′) 6= −∞, there are no sections contained in Ẽ, hence Ẽ = Ê. Since D
does not contain components with non-negative self-intersection, the same holds for D̃. Suppose h = 1,
let Dh be the horizontal section of D̃. We have ν = 1 by 2.1.4(iii), so there exists a fiber F∞ ⊆ D̃. Since
D̃ is simply connected, F∞ can intersect Dh only in a branching point of π|Dh , hence by π-minimality
F∞ = [2, 1, 2]. The contractions minimalizing D̃ cannot touch F∞, hence D contains two (−2)-tips as
maximal twigs, a contradiction. Therefore h = 2 and we get ΣS0 = ν ≤ 1 by 2.1.4(iii). Denote the
horizontal components of D̃ by D0 and D∞. If ν > 0 then D0 + D∞ intersects the fiber contained in D̃
in two different points, hence the fiber is smooth by the π-minimality of D̃, so D̃ contains a 0-curve, a
contradiction. Thus ΣS0 = ν = 0. Now κ(S0) = 0 implies that F (KS + D̃+ Ê)− = F (KeS + D̃+ Ê) = 0, so
D0 and D∞ cannot be contained in maximal twigs of D̃ by 1.6.9)(i). There is a unique singular fiber F0

containing a rivet, other fibers are chains intersected by D0 and D∞ in tips (i.e. they are column fibers,
cf. 5.1.7 and 5.1.8(ii)). It follows that there are at least two such fibers, otherwise D0 and D∞ would be
contained in maximal twigs of D̃. Thus D0 and D∞ are branching in D̃ and since (−1)-curves contained in
D̃ can appear only in F0, after minimalization of D̃ they images are branching in D, a contradiction.

Remark 3.2.8. Using the description 3.2.5 it is easy to compute AutS′. Let η be an automorphism
of a surface S′ of type (Y1d). Since D + Ê does not contain curves with non-negative self-intersection,
η|S0 extends to η ∈ Aut(S,D + Ê). We proved in 3.2.7 that one can assume that θ maps B,M to fixed
points Q1, Q2 ∈ P2 and maps the set of nodes of maximal twigs of D to the fixed set of three points
{P1, P2, P3} ⊆ P2 (P1, P2 can be fixed arbitrarily and then up to automorphism of P2 fixing Q1, Q2 and
{P1, P2} there is only one choice for P3). Notice that η fixes B and M and acts on {L1, L

′
1, L2, L

′
2, L3, L

′
3},

hence descends to η̃ ∈ Aut P2 = θ(S) fixing Q1, Q2 and {P1, P2, P3}. The automorphism of P2 is defined
uniquely by specifying the images of four points in general position, so AutS′ is isomorphic with a subgroup
of the group of permutations of three elements. However, σ defined in 3.2.7, which fixes Q1, Q2 and changes
P1 with P2, does not fix P3, hence AutS′ < Z3. We conclude that AutS′ ∼= Z3, where the generator in
the coordinates as before is given by 1 −1 0

0 −ε 0
0 −ε 1

 ,

where ε = −ζ3 for some primitive third root of unity ζ3.

Remark. Let S′ be of type (Y2c). Notice that using the ruling given by F∞ = T1 + 2B + T3,3 we
found an exceptional S0-component M intersecting T3,1 and T2,3. Similarly using the ruling given by
F ′∞ = T1 + 2B + T2,3 we find an exceptional S0-component M ′ intersecting T2,1 and T3,3. Now one can
check that the ruling of type (Y2c)’ given by T2,3 + 2B+T3,3 has precisely five exceptional S0-components
and precisely three of them, say L1, L2 and L3, are disjoint from M , M ′, T2,1, T3,1 and from each other.
After contracting the divisor B + M + M ′ + L1 + L2 + L3 the image of S has b2 = 3 and T2,1 and T3,1

became exceptional. Contracting them we get a morphism θ : S → P2, such that θ(Ê) is a conic and θ(D)
is a sum of five lines. Moreover, θ is AutS′-equivariant. Then one shows as above that AutS′ ∼= Z2.
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Chapter 4

κ(S0) = −∞

In this chapter we assume that κ(S0) = −∞, which implies that κ(S′) = −∞. This is the simplest case and
it was analyzed before (assuming affiness and logarithmicity) by Miyanishi and Sugie ([MS91, 2.5-2.8]).
For completeness we recover their results.

Remark. We warn that in [MS91] an unusual definition of the Kodaira dimension of a singular surface is
used, i.e. it is identified with the Kodaira dimension of the smooth locus, not with the Kodaira dimension
of the resolution.

By 1.6.11(i) there is an snc-completion (S,D) with a P1-ruling p : S → B onto some smooth complete
curve B with D being p-minimal. If S0 is C1- or C∗-ruled we assume that p extends this ruling and Ê is
p-minimal.

4.1 Affine-ruled S0

Lemma 4.1.1. If S0 is affine-ruled then S′ is rational and there exists exactly one fiber of p contained
in D. Each other singular fiber has a unique (−1)-curve, which is an S0-component. S′ has only cyclic
singularities.

Proof. Clearly, the section Dh of p contained in D+ Ê is in fact contained in D, otherwise D is contained
in some fiber and Q(D) is negative definite. Hence Ê is vertical, so it is a rational tree (not necessarily
connected). Then S, D and B are rational by 2.1.3(vi). We have ΣS0 = ν − 1 and ν ≤ 1 by 2.1.4(iii),
hence ΣS0 = 0 and there exists exactly one fiber F∞ contained in D, which is smooth by p-minimality of
D. Each singular fiber of p contains exactly one (−1)-curve. Indeed, if D0 ⊆ D is a (−1)-curve contained
in some fiber then by p-minimality of D it intersects Dh and two D-components contained in a fiber. But
then µ(D0) > 1, so for any fiber F we get FDh ≥ µ(D0)D0Dh > 1, a contradiction. Thus a singular
fiber F has exactly one (−1)-curve, say C, which is the unique S0-component, hence µ(C) > 1. There are
exactly two components of multiplicity one in F and they are tips of F . The section Dh intersects one of
them. If F − C is connected, then C is a tip of F and F is branched. If F − C is not connected, then its
connected component not contained in D is just some connected component of Ê. Hence Ê is a sum of
admissible chains, so S′ has only cyclic singularities.

Remark. In fact, singularities of any normal surface containing a cylinder (a product of a curve with C1)
are cyclic by [MS80].

To not to introduce additional symbols, for the needs of the construction and lemma below we cancel
the assumptions made about S, S0, etc.

Construction 4.1.2. Take S̃ = P(OP1 ⊕OP1(n)) for some n ∈ Z and denote the section of the projection
p̃ : S̃ → B, where B ∼= P1, corresponding to the inclusion of the second summand by Dh. Then D2

h = −n.
Let F∞ be a smooth fiber and D0 some section disjoint from D∞. Choose k distinct points x1, . . . , xk ∈
D0 \ F∞ and blow each of them once. For each i make a connected sequence of blowups subdivisional
for the respective fiber. This produces fibers F1, . . . , Fk with unique (−1)-curves Ci ⊆ Fi. Let Di be the
connected component of F i − Ci intersecting Dh. By renumbering we can assume there is m ≤ k, such
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that Ci is a tip of Fi if and only if i > m. Assume also that m ≥ 1 (for m = 0 we would get a smooth
surface). For i ≤ m put Êi = F i−Di−Ci. Clearly, each Êi is a chain. Let S be the preimage of S̃ under
all these blowups and p : S → B be the induced P1-ruling. Put D = F∞+Dh +

∑k
i=1Di, S = S−D and

Ê =
∑m
i=1 Êi. Let S → S′ be the morphism contracting Êi’s.

Lemma 4.1.3. The surface S′ constructed in 4.1.2 is a singular, normal Q-homology plane of negative
Kodaira dimension. Its smooth locus is affine-ruled. Conversely, each singular, normal Q-homology plane
with affine-ruled smooth locus (hence of negative Kodaira dimension) can be obtained by construction 4.1.2.

Proof. The last part of the statement is a consequence of lemma 4.1.1. By definition Êi’s are admissible
chains, so S′ is normal and has only cyclic singularities. We have κ(S′) = −∞, because S is affine ruled
(cf. 1.6.10). We have d(D) = −

∏
i d(Di) by 1.1.1(i), so d(D) 6= 0. This shows that the natural map

L(D+ Ê)⊗Q→ NS(S) (cf. 1.1) is injective. Hence the homomorphism H2(D ∪ Ê)→ H2(S) induced by
inclusion is injective. Since b2(S̃) = 2, we have b2(S) = #D+#Ê, so it is an isomorphism. It follows from
1.7.3 that S′ is affine. Since H2(Ê) → H2(S) and H2(D) → H2(S) induced by inclusions are injective,
from the exact sequence of the pair (S,D) we get b1(S) = b3(S) = b4(S) = 0 and b2(S) = #Ê. Using the
exact sequence of a pair (S, Ê) we conclude that bi(S′) = 0 for i > 0.

4.2 Non affine-ruled S0

Lemma 4.2.1. If κ(S0) = −∞ and S0 is not affine-ruled then S0 has a structure of a Platonic fibration.
Moreover, S′ ∼= C2//G for some small, noncyclic group G < GL(2,C).

Proof. We follow the arguments of [KR07, §3]. Assume that S0 is not affine-ruled. The boundary divisor
D + Ê is not connected and by 2.2.3(ii) not negative definite, so 1.6.11(ii) implies that it contains a
Platonically fibred open subset U , which is its almost minimal model. By 1.6.14 we have χ(U) ≤ χ(S0).
Furthermore, S0−U is a disjoint sum of s curves isomorphic to C and s′ curves isomorphic to C∗ for some
s, s′ ∈ N (cf. 1.6.2). It follows that 0 = χ(U) = χ(S0)− s = χ(S′)− q − s = 1− q − s, so s = 0 and q = 1.
Then s′ ≤ 1, so we get s′ = 0, otherwise S0 is affine-ruled, a contradiction. Thus S0 = U and by 1.6.11(ii)
S′ ∼= C2/G, where G is a small noncyclic subgroup of GL(2,C).

Remark. In the next chapter we give a general construction of S′’s with C∗-ruled smooth locus. In
particular, we will reconstruct all S′’s with Platonic fibration on S0 (see 5.4.5).



Chapter 5

C∗-rulings on S0, κ(S′) = −∞

5.1 Generalities on C∗-rulings on S0

In this chapter we assume that S0 is C∗-ruled, κ(S0) ≥ 0 and κ(S′) = −∞. By Iitaka’s easy addition
theorem 1.6.10(i) we have κ(S0) 6= 2. We describe such S′’s and show how to construct them. To give
a construction we describe singular fibers of the extension of the ruling to some completion S of S0 (cf.
5.2.1, 5.3.3, 5.4.5).

Remark 5.1.1. We comment on the assumption κ(S′) = −∞. Consider the problem of classification of
singular Q-homology planes S′ with smooth locus S0 of non-generic Kodaira dimension. By the results
of chapter 4 we can assume that κ(S0) ≥ 0. If κ(S0) = 1 then by the structure theorem 1.6.11(iv) S0 is
C∗-ruled. By the results of chapter 3, excluding two well described exceptions (cf. 3.2.7), this is also the
case if κ(S0) = 0 (cf. 3.2.2). Therefore without loss of generality we can assume that S0 is C∗-ruled. Let
p : S → B be an extension of this ruling. Since κ(S′) ≤ κ(S0), κ(S′) 6= 2. If κ(S′) ≥ 0 then Ê cannot be a
section of p, hence p|S gives a C∗-ruling of S′. Moreover, by 2.2.4 S′ is logarithmic in this case. These are
exactly the assumptions made in [MS91, 2.9 - 2.17], where the possible fibers of C∗-rulings are described
and a structure theorem (without construction) is given. Notice that in [MS91] κ(S′) is defined as κ(S0),
and not as κ(S).

First we collect some well-known results about linear systems of divisors.

Proposition 5.1.2. Let D be an effective divisor on a complete smooth surface X.

(1) Assume κ(KX + D) = −∞. If D is snc and reduced or X is rational then for every divisor F and
n� 0 one has κ(F + n(KX +D)) = −∞ ([Fuj79, 2.5], cf. [Miy01, 2.2.7]).

(2) If h0(D) ≥ 2 then the generic member of |D| can be written as R+A1 + . . .+An, where R is the fixed
part of |D|, Ai’s are irreducible and A2

i ≥ 0.

(3) If D is snc and C is a (−1)-curve, such that CD ≤ 1, then κ(KX +D + C) = κ(KX +D).

(4) If X is rational and D is a smooth 0-curve then there exists a P1-ruling of X, such that D is a fiber.

(5) If X is rational and |KX +D| = ∅ then pa(D) := 1
2D(KX +D) + 1 ≤ 0. In particular, D is a rational

snc-tree and if D = D1 +D2 for some reduced connected divisors D1, D2 then D1D2 ≤ 1 ([Rus80]).

(6) If X rational, not isomorphic to a Hirzebruch surface or P2 and D is a rational snc-divisor then there
exist smooth rational curves Ai, such that D ∼ A1 + . . .+An and A2

i < 0 for every i ([KR99, 4.1]).

Proof. (2) We can assume that |D| has no fixed components. Blow up in base points of |D| until |D′|,
where D′ is the proper inverse image of D, is base-point free. It is enough to prove the statement for D′,
because blowdown can only increase the self-intersection numbers of curves. Bertini’s theorem (cf. [Har77,
III.10.9]) implies that the generic member of |D′| is smooth. We can write D′ ∼ A1 + . . .+An for disjoint
Ai’s, so A2

i = 0.
(3) Since C(KX +D+C) ≤ −1, nC is contained in the fixed part of n(KX +D+C), so dim |n(KX +

D + C)| ≤ dim |n(KX +D)|. The opposite is obvious.
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(4) Since D2 = 0 and X is rational, the Riemann-Roch theorem gives h0(D) = h0(D)+h0(KX−D) ≥ 2.
Thus |D| contains a pencil {Ft : t ∈ P1} containing D and for this reason it does not have fixed components.
It follows from the equality Ft1Ft2 = 0 that it does not have fixed points too. Thus Ft’s are disjoint for
different t ∈ P1. Let F0 = D. If D − F∞ = (ϕ) then ϕ defines a morphism ϕ : X → P1. Its generic fiber
F is smooth by Bertini’s theorem, hence it is isomorphic to P1.

(6) We can assume that D is a smooth rational curve. Using induction the proof reduces easily to
the case A2 = 0. Then by (4) A gives a P1-ruling and there exists a singular fiber of this ruling linearly
equivalent to A.

Definition 5.1.3. Let V , W and W + V be connected snc-trees on a smooth complete surface X, such
that V and W have no common components. We say that W contracts to W ′ using V if and only if there
exists a birational morphism α : X → X ′, such that α∗W = W ′, W ′ is snc and all contractions in α take
place inside V +W . If W contracts to W ′ using V = 0 then we simply say that W contracts to W ′. If W
contracts to 0 we will say also that it contracts to a point.

Example 5.1.4. Let F be a fiber of a P1-ruling of a smooth complete surface. Then F contracts to a
smooth 0-curve (using 0). Assume that F has a unique (−1)-curve C. Then F − C = F0 + F1 where F0

and F1 are disjoint connected rational snc-trees. If F is branched let’s assume also that F0 is the part
containing curves with multiplicity µ = 1. Then F1 contracts to a point using F0 + C.

Remark. It is clear, that 5.1.2(4) works also for D which contracts to a smooth 0-curve.

Lemma 5.1.5. (Pac-man lemma). Let V,W be as in 5.1.3. Assume that W contracts to a point using
V . Then κ(KX + V +W ) = κ(KX + V ).

Proof. Contraction of W to a point is obtained by a sequence of contractions of (−1)-curves that are
non-branching in successive images of V + W , so κ(KX + V + W ) does not change in this process. By
5.1.2(3) κ(KX + V ) does not change too.

Let p : S → B be an extension of a C∗-ruling of S0. We assume that the boundary divisor D + Ê is
p-minimal (cf. 1.5). Let Dh and Eh be the divisors of horizontal components of D and Ê respectively. We
have Dh 6= 0, otherwise D would be contained in a fiber, which contradicts 2.2.3(ii).

Definition 5.1.6. After Fujita, we say that p is a gyoza if Dh is a 2-section, Eh = 0 in this case. If Dh+Eh
consists of two 1-sections we say that p is a sandwich. (Gyoza and sandwich are called respectively twisted
and untwisted C∗-fibrations in [MS91].) This second kind of a C∗-ruling can be of two types: type (I)
when Eh and Dh are 1-sections and type (II) with two sections in Dh. In case of a gyoza and sandwich (II)
Ê is vertical, so it is snc-minimal.

Definition 5.1.7. A singular fiber F of p will be called a column fiber if and only if it is a chain
F = An + . . . + A1 + C + B1 + . . . + Bm with a unique (−1)-curve C, such that Dh + Eh intersects
F exactly in An and Bm, in each once and transversally. A and B are called adjoint chains. Now
A = A1 + . . .+An and B = B1 + . . .+Bm are admissible chains, so from 1.1.1(i) and the fact that d(A)
and d′(A) are coprime we get easily that e(A) + e(B) = 1 and d(A) = d(B) = µF (C). In fact, we have
also ẽ(B) + ẽ(A) = 1 (see [Fuj82, 3.7]). We will say that F has weight w = ẽ(A) with respect to the the
component of Dh + Eh intersecting A. (It is therefore of weight ẽ(B) = 1− w with respect to the second
component of Dh + Eh).

Remark. In our considerations the middle (−1)-curve will be always an S0-component.

We state an easy lemma describing singular fibers with σ ≤ 1:

Lemma 5.1.8. ([Fuj82, 7.5, 7.6]). Let F be a singular fiber of p. One has:

(i) if σ(F ) = 0 then F = [2, 1, 2], p is a gyoza and p(F ) is a branching point of p|Dh ,

(ii) if σ(F ) = 1 and F does not contain a rivet (cf. 1.5.2) then either F is a column fiber or p is a gyoza
and p(F ) is a branching point of p|Dh .

(iii) if σ(F ) = 1 and F contains a rivet then Dh meets F in two different points.
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5.2 Gyoza

Theorem 5.2.1. If S′ is a singular, normal Q-homology plane of negative Kodaira dimension with C∗-
ruled smooth locus of non-negative Kodaira dimension then this ruling can be assumed to be of type sandwich
(I) or (II).

Proof. Assume that p : S → B is a gyoza. Then Ê is vertical, hence rational, so by 2.2.3 D is a rational
tree and S and B are rational. By 2.1.3(v) and 2.1.4(iii) ΣS0 = ν − 1 and ν ≤ 1, hence ΣS0 = 0 and
ν = 1. Let F∞ be the unique fiber contained in D. Let F1, . . . , Fn be all column fibers of p. Since no Fi
can contain components of Ê, there is another singular fiber, call it F0. We state and prove successive
statements.

(1) F∞ = [2, 1, 2], F0 is unique and contains Ê. Dh is not contained in any maximal twig of D.

Proof. By 5.1.8(i) F∞ = [2, 1, 2] and F∞ contains a branching point of p|Dh . By simply connectedness of
D, F0 does not contain a rivet, so by 5.1.8(ii) it contains a branching point of p|Dh too. Since p|Dh is a
2-covering, it has exactly two branching points by Hurwitz formula, so F0 is unique, hence contains Ê.

Since N = (KS +D+ Ê)− is effective and any fiber F of p satisfies FN = F (KS +D+ Ê)−F (KS +
D+ Ê)+ = −F (KS +D+ Ê)+ ≤ 0, we get FN = 0, so N is vertical. By 1.6.9(i) it follows that Dh is not
contained in any maximal twig of D.

(2) n = 0.

Proof. Let’s contract successively all (−1)-curves C in F0 satisfying CD ≤ 1 (if there are any). This
includes non-branching (−1)-curves in D. At each step of the contraction process the image of D remains
snc. Denote the images of D, F0 and S by D̃, F̃0 and S̃ respectively. Let p̃ be the ruling induced from p.
We have κ(KeS + D̃) = κ(KS +D) by 5.1.5. Let F be a smooth fiber of p̃. By 5.1.2(1) |F +k(KeS + D̃)| = ∅
for k � 0 and simultaneously |F + KeS + D̃| 6= ∅, because F + D̃ contains a loop (cf. 5.1.2(5)). Let m
be a maximal natural number, such that |F +m(KeS + D̃)| 6= ∅. There exist curves Al, l = 1, . . . , t, such
that F +m(KeS + D̃) ∼ A1 + . . .+At. Since |

∑t
i=1Ai +KeS + D̃| = ∅ by maximality of m, for each i we

get |Ai + KeS | = ∅ and |Ai + KeS + D̃| = ∅, so Ai are smooth rational curves and AiD̃ ≤ 1 by 5.1.2(5).
Now by 5.1.2(6) we can assume A2

i < 0. We have F (
∑t
i=1Ai) = F (F + m(KeS + D̃)) = 0, which implies

that every Ai is vertical. If KeS(KeS + D̃) ≤ 0 then −2 = KeSF ≥ KeS(F + m(KeS + D̃)) =
∑t
i=1KAi,

so for some Ai, say A1, KeSA1 < 0. Then A1 would be a vertical (−1)-curve and A1D̃ ≤ 1, which is
not possible for column fibers and F∞. By the definition of F̃0 this is in fact a contradiction, so we get
KeS(KeS + D̃) > 0. Since D̃ is a rational tree, Riemann-Roch’s theorem for a divisor −(KeS + D̃) implies
that h0(−(KeS + D̃)) + h0(2KeS + D̃) ≥ KeS(KeS + D̃) > 0. This gives −(KeS + D̃) ≥ 0. Suppose n 6= 0. Let
C be a (−1)-curve of some column fiber. Then from C(−(KeS + D̃)) = −1 we get −(KeS + D̃ + C) ≥ 0.
Now by 5.1.2(5) CD̃ = 2 implies |KeS + D̃ + C| 6= ∅, hence KeS + D̃ + C = 0. From Dh(KeS + D̃ + C) = 0
we obtain β eD(Dh) = 2. However, a contribution of a column fiber and of F∞ to β eD(Dh) is equal to two
and one appropriately, a contradiction.

(3) F0 is a chain.

Proof. Let T ⊆ F0 be a component intersecting Dh. Since F0 contains a branching point of p|Dh , T is
unique and has µ(T ) = 2. Moreover, T ⊆ D, otherwise Dh would be a tip of D, contradicting (1). Let L
be the unique S0-component of F0. We have L2 = −1, otherwise by p-minimality T would be the unique
(−1)-curve of F0, hence by 1.5.1(vi) Ê would consists of (−2)-curves in contradiction to 2.2.3(viii). Let φ
be the composition of contractions of (−1)-curves in F0 starting from L until T becomes the unique (−1)-
curve. Denote the images of F0 and T by F ′0 and T ′. If in the backward process φ−1 recovering F0 from
F ′0 some sprouting blowup is made then L + Ê contracts to a point using D, a contradiction with 5.1.5.
Suppose F ′0 is branched. Then by 1.5.1(vi) T ′ is a tip of F ′0. Since φ consists only of sprouting blowups,
T is a tip of F0 and D ∩ F0 is a chain, a contradiction with (1). Thus F0 is a chain and F ′0 = [2, 1, 2].

(4) D2
h = 0.
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Proof. Let D′h be the image of Dh after contraction of F0 and F∞ to smooth fibers. Since φ does not
touch Dh, D′2h = D2

h + 4. Now the image of S, call it S̃, is a Hirzebruch surface, thus K2eS = 8. Let F be a

fiber of the induced P1-ruling of S̃. Since D′hF = 2 and D′h is smooth and rational, we check easily that
KeS +D′h ≡ −F , so KeSD′h = −6 and we get D2

h = D′2h − 4 = 0.

Now 5.1.2(4) gives another P1-ruling of S with Dh as a fiber. This is a C∗-ruling (sandwich of type
(II)) of S0 with T and the (−1)-curve of F∞ as sections.

5.3 Sandwich II

Assume p : S → B is a sandwich of type (II) (cf. 5.1.6). Ê is vertical, so by 2.2.3(iv) D is a rational tree
and S and B are rational. Write Dh = D0 +D∞. By 2.1.3(v) and 2.1.4(iii) ΣS0 = ν ≤ 1.

Lemma 5.3.1. There is a unique smooth fiber F∞ contained in D and there are two singular fibers (see
Fig. 5.1), F0 and F1. F1 is a column fiber, F0 is a chain with two (−1) curves, none of which is a tip of
F0, and Ê is a chain between them. The sections D0 and D∞ are disjoint and intersect F0 in tips. At
least one of them has negative self-intersection.

Proof. Let F1, F2, . . . , Fn be all column fibers of p. They do not contain components of Ê, so there exists
another singular fiber F0. We state and prove successive statements.

(1) F0 is unique and contains Ê. D0 and D∞ are not contained in maximal twigs of D.
Proof. If ΣS0 = ν = 1 then F0 does not contain a rivet by simply connectedness of D, so σ(F0) = 2 by
5.1.8, hence F0 is unique. If ΣS0 = ν = 0 then F0 contains a rivet by 5.1.8, hence is unique by simply
connectedness of D.

Since FN = −F (K + D + Ê)+ ≤ 0 and N is effective, we get FN = 0, so N is vertical. By 1.6.9(i)
we get that D0 and D∞ cannot be contained in maximal twigs of D.

(2) ΣS0 = ν = 1. If n > 0 then n = 1, F̃0 (defined below) is smooth and does not contain a rivet.
Proof. Clearly, ΣS0 = ν = n = 0 is impossible by (1), so we can assume n > 0. Let φ be the composition
of subsequent contractions of (−1)-curves C in F0 satisfying CD ≤ 1 (if there are any). Let F̃0, D̃, S̃ be
the images of F0, D and S and p̃ the induced ruling of S̃. Then D̃ is p̃-minimal and F̃0 contains a rivet
if and only of F0 does. By the definition of F̃0 we have κ(KeS + D̃) = κ(KS + D). Since S is rational,
repeating word by word the arguments from 5.2.1(2) we get −KeS − D̃ > 0. Let C be a (−1)-curve of
some column fiber. From C(−(KeS + D̃)) = −1 we get −(KeS + D̃ + C) ≥ 0. Now CD̃ = 2 implies
|KeS + D̃ + C| 6= ∅, hence KeS + D̃ + C = 0. We obtain 0 = D0(KeS + D̃ + C) = D0(D̃ − D0) − 2, so
β eD(D0) = 2 (similarly β eD(D∞) = 2). We argue that F̃0 is smooth. If ν = 0 then n ≥ 2 by (1), so F̃0

cannot contain any D̃-components, hence F̃0 is smooth by 5.1.8. On the other hand, if ν = 1 then the
assumption n > 0 implies that again F̃0 contains no D̃-components, hence by the definition of F̃0 every
(−1)-curve contained in F̃0 intersects both sections contained in D̃. Therefore, if F0 is singular then it
contains exactly one (−1)-curve L, so µ(L) > 1 and L intersects 1-sections of p, which is impossible. Now
we need only to prove ΣS0 = ν = 1.

Suppose ΣS0 = ν = 0. Consider the image F ′0 of F0 before the last contraction of φ. Write F ′0 = U1+U1,
where U1 is a birational transform of F̃0. Since F ′0 contains a rivet, U2 is an image of some D-component.
Now instead of contracting U2 we can contract U1, which shows that L + Ê, where L is the unique
S0-component of F0, contracts to a point using D, a contradiction.

(3) n = 1. F0 is a chain with two (−1)-curves, they are S0-components and are not tips of F0.
Proof. Let T0 and T∞ be the components of F0 meeting D0 and D∞ respectively. They are both D-
components, otherwise D0 or D∞ would be contained in some maximal twig of D by (2). They have
µ(T0) = µ(T∞) = 1 and since F0 does not contain a rivet, they are contained in different connected
components of D ∩ F0, W0 and W∞ respectively. By p-minimality of D it follows that (−1)-curves in F0

are S0-components. Now if there is only one (−1)-curve in F0 then T0 and T∞ are tips of F0 and at least
one of W0 or W∞ is a chain, which contradicts (1). Denote the (−1)-curves of F0 by C0 and C∞, they are
not tips of F0, because F 0−C0−C∞ has exactly three connected components. F0 is simply connected, so
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one of the S0-components, say C0, satisfies C0D = 1, say C0W0 = 1. Let’s make a connected sequence of
contractions of (−1)-curves in F0 starting from C0 until the number of (−1)-curves in the fiber decreases.
This process is connected, so it cannot touch C∞, because W∞ 6= 0. Hence W∞ is not touched and we get
that all contracted curves have intersection with the proper image of D smaller than two, so the image of
F0, denote it by F ′0, does not contain a rivet. It follows that F ′0 is a column fiber, so T∞ is a tip of W∞,
which implies that n 6= 0 by (1).

Suppose F0 is not a chain. Consider the backward connected sequence of blowups recovering F0 from
F ′0. Let R be the last curve produced in this sequence, such that the respective preimage of F ′0, call it
F ′′0 , is not branched. Then µ(R) > 1, so the points of intersection of birational transforms of D0 and D∞
with F ′′0 do not belong to R. It follows that Ê and R are contained in different connected components of
F 0 − C0, so R ⊆ D and Ê + C0 contracts to a point using D, a contradiction.

(4) T0 and T∞ are tips of F0.

Proof. Since F0 is a chain, the backward sequence of blowups as above begins on a tip of F ′0. Moreover,
since C0 and C∞ are not tips of F0, the set Λ of components of multiplicity one contained in F0 has three
connected components, two of them are tips of F0. These are exactly T0 and T∞, otherwise Ê+C0 would
contract to a point using D.

(5) At least one of D0 or D∞ has negative self-intersection.

Proof. Assume D2
0 ≥ 0. We can contract F1 and F0 to smooth fibers without touching D0. Let D′∞ be

the proper image of D∞ after contractions. From (4) it follows that D0 and D′∞ are disjoint. We get on
the Hirzebruch surface D0 −D′∞ ≡ F , so D2

∞ < D′2∞ = −D2
0 ≤ 0.

Figure 5.1: sandwich II

We will show now that there are no more restrictions. As we did in chapter 4, for the needs of the
construction and lemma below we cancel the assumptions made about S, S0, etc.

Construction 5.3.2. Pick n ∈ N, s ∈ N+ and w1, w0, w∞ ∈ Q ∩ (0, 1). Let Fn = P(OP1 ⊕OP1(−n)) be
the Hirzebruch surface and p̃ : Fn → P1 the P1-ruling. Let D0 and D∞ be two sections corresponding to
the first and the second summand of the bundle. We have D2

0 = n and D2
∞ = −n. Choose three different

points on D0 and denote the fibers of p̃ containing them by F∞, F̃1 and F̃0. By a connected sequence of
blowups starting from D∩F̃1 produce a column fiber F1 which has weight w1 with respect to the birational
transform of D0. Let C1 be its (−1)-curve. Proceed analogously with F̃0 and produce a column fiber with
weight w∞ with respect to D∞, denote its (−1)-curve by C∞. Make a sequence of s sprouting blowups
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in the same fiber, each time on the point of intersection with the birational transform of D0. Denote the
produced curves subsequently by U1, . . . , Us. Finally, make a connected sequence of subdivisional blowups
in F ′0 starting from Us−1 ∩ Us, denote the resulting singular fiber by F0 and its second (−1)-curve (i.e.
different form C∞) by C0. By construction F 0 − C0 − C∞ has three connected components. Denote the
one intersecting C0 and C∞ by Ê, and the one intersecting Di by Wi (i ∈ {0,∞}). We give a natural
order to W0 and W∞, such that their components intersecting D0 and D∞ are the last ones. (Hence
ẽ(W∞) = w∞). Since we can obtain any positive non-integral proper fraction as ẽ(W0), we can assume
that ẽ(W0) = w0. We have D2

0 = n− 2− s.
Let S be the obtained surface and p : S → P1 the induced ruling. Let D = D0 + D∞ + F∞ + W0 +

W∞ + (F 1 − C1). Define S = S −D, S0 = S − Ê and S′ = S/Ê (as a topological space). We will show
below that NSQ(S0) = 0, hence by 1.7.3 S′ and the quotient morphism can be realized in the algebraic
category.

The order given to W0 and W∞ agrees with their order as twigs of D (cf. 1.3). Let’s fix a natural order
on Ê, such that C0 intersects the first curve of Ê. Define α = 1 − 1

µ1
− 1

min(µ0,µ∞) , where µi = µ(Ci) is
the multiplicity of a respective curve in a fiber. Of course, α is determined by w1, w0, e∞ and s and it can
be computed easily in each particular case.

Theorem 5.3.3. The surface S′ constructed in 5.3.2 is a singular, normal Q-homology plane of negative
Kodaira dimension. κ(S0) is 0 or 1 and it is determined by the sign of the number α = 1− 1

µ1
− 1
min(µ0,µ∞)

(i.e. κ(S0) = sgnα). Moreover, each singular, normal Q-homology plane S′ with κ(S′) = −∞ and
κ(S0) ≥ 0, which has a C∗-ruling of type sandwich (II) can be obtained by construction 5.3.2.

Proof. As for the last part of the statement notice that we can contract both F0 and F1 to smooth fibers
without touching the negative section. Then it is clear, that the construction 5.3.2 is forced by lemma
5.3.1.

By definition Ê is contained in a fiber, so Q(Ê) is negative definite. To apply 1.7.3 and infer that
S′ is normal and affine one needs to prove that NSQ(S0) = 0. Since b2(Fn) = 2, it follows from the
construction that b2(S) = #D+ #Ê, so it is enough to show that the classes of irreducible components of
D+Ê are independent in NS(S). If there exists a divisor T =

∑
i diDi+

∑
j ejEj for Di ⊆ D and Ej ⊆ Ê

which is numerically trivial, then T =
∑
i diDi, otherwise 0 = T

∑
j ejEj = (

∑
j ejEj)

2 < 0 by negative
definiteness of Q(Ê). Assume di 6= 0. None of the components of W0 + W∞ can be a component of T .
Indeed, for example let U ⊆ W0 be the smallest (with the respect to the natural ordering of a maximal
twig) component contained in T . If U is the first component of W0 we get a contradiction by multiplying
by C0, otherwise by a component of W0 smaller than U and intersecting U . Now multiplying T by the
last components of W0 and W∞ we see that T is vertical. From the properties of the intersection matrix
of a fiber it follows that T 2 = 0 implies T = fF∞ for some f ∈ Q, because F∞ is the only fiber contained
in D. Intersecting with D0 we get T = 0. We infer that H2(D ∪ Ê)→ H2(S) is a monomorphism, hence
an isomorphism.

We check that S′ is Q-acyclic. We know that H2(D) → H2(S) and H2(Ê) → H2(S) induced by
inclusions are monomorphisms. We see that b1(D) = b1(Ê) = 0 and b3(S) = b1(S) = 0, because S is
rational. The exact sequence of a pair (S,D) together with Lefschetz duality give b1(S) = b3(S) = b4(S) =
0 and b2(S) = #Ê. Then the exact sequence of a pair (Ê, S) gives b1(S′) = b2(S′) = b3(S′) = b4(S′) = 0.

We analyze the Kodaira dimension. For ξ ∈ Q define a divisor Xξ = (ξ+1) BkW0+ξC0+(ξ+1) Bk Ê+
(ρ+ 1) Bk Êt + ρC∞ + (ρ+ 1) BkW∞ (notice the ordering of Ê defined above), where ρ = (ξ + 1)µ∞µ0

− 1.

For all irreducible components T of F0 we have T (K + D + Ê) = TXξ = 0. This is clear for F0 and
follows from the definition of a bark for all non-exceptional curves in F0, so we only check it for C0: by
1.3.2(ii) we get C0Xξ = (ξ+1)e(W0)− ξ+(ξ+1)e(Ê)+(ρ+1) 1

d( bE)
. By 5.1.7 and 1.1.1(i) µ∞ = d(W∞) =

d(W0 +C0 + Ê) = µ0d(Ê)(1− e(W0)− e(Ê)), so C0Xξ = 1 = L(K +D+ Ê). We now define the effective
Q-divisor X as X = X µ0

µ∞−1 if µ0 ≥ µ∞ and as X = X0 if not. In this way SuppX ( SuppF0.

Let Y be the sum of barks of maximal twigs of D contained in F1. We define P = K+D+ Ê−Y −X,
then TP = 0 for all vertical curves. Since NS(S) is generated by fiber components together with D0 then
it follows that P − (PD0)F ≡ 0. We compute PD0 = 1 − D0(Y + X) = 1 − 1

µ1
− ξ+1

µ0
= α. Clearly,

α ≥ 0, so K + D + Ê ≡ αF + Y + X and in fact K + D + Ê ∼ αF + Y + X, because S is rational.
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Thus κ(S0) ≥ 0. Moreover, Y + X is effective and negative definite, so (K + D + Ê)+ = P from the
uniqueness of Zariski decomposition. We see that F̃0 defined in construction 5.3.2 is the same as defined
in 5.3.1(3) if we put C = C0. Let S̃ and D̃ be as in 5.3.1(3). If KeS + D̃ has a Zariski decomposition then
F∞ ⊆ Supp(KeS + D̃)− by 1.6.9(i), because D0 is non-branching in D̃. This gives a contradiction, because
F 2
∞ = 0. Thus κ(S) = κ(KS +D) = κ(KeS + D̃) = −∞.

Remark. Since Ê is a chain, the unique singular point of S′ is a cyclic singularity, i.e. it is of type C2//G

for a small cyclic group G < GL(2,C). We have |G| = d(Ê) by 1.4.1(i).

Remark. Our result expressing the κ(S0) in terms of α contradicts the result of Miyanishi and Sugie [MS91,
Lemma 2.15(2)]. This is because their formula computing the Kodaira dimension (κ(X) is our κ(S0)) is
wrong, it does not take into account the fiber F1 (their F0).

5.4 Sandwich I

5.4.1. Notice that if p : S → B is a sandwich of type (I), then p|S is a C1-ruling, so the assumption
κ(S′) = −∞ is satisfied automatically. Let E2

h = −N < 0. Let F1, F2, . . . , Fn be all the column fibers of
p. Denote their weights with respect to Eh (cf. 5.1.7) by w1, w2, . . . , wn. Let Ci be the unique (−1)-curve
of Fi, put µi = µ(Ci).

Notice that by 2.2.3(iv) the rationality of one of S, Ê, D or B implies the rationality of all others. We
remind that the rationality of Ê as a divisor does not imply that the singularities of S′ are rational (cf.
1.4.2).

Lemma 5.4.2. If the morphism p is a sandwich of type (I), then its singular fibers are column fibers with
weights satisfying

∑n
i=1 wi < N (see Fig. 5.2). There exists a linear bundle L over B with degL = −N < 0,

such that S is a blowup of P(OB ⊕ L) and p is the morphism induced by the projection onto B.

Proof. Since Ê ∩D = ∅, ν = 0 and there are no rivets in D + Ê. By 2.1.4(iii) ΣS0 = 0, hence every fiber
has exactly one S0-component. By 5.1.8(ii) every singular fiber is a column fiber. We contract all singular
fibers to smooth fibers (i.e. contract subsequently their (−1)-curves) without touching Eh. Denote the
image of S by S̃ and the image of Dh by D̃h. Then Eh is disjoint from D̃h. Since E2

h = −N < 0,
we can write S̃ = P(OB ⊕ L) for a line bundle L with deg L = −N < 0 (see [Har77, V.2]). Now D̃h

and Eh are sections coming from the linear summands of the bundle. Let Ei ⊆ Fi be the maximal
twig of Ê − Eh with its natural ordering as a twig of Ê. The matrix Q(Ê) is negative definite, so
0 < detQ(−Ê) = d(E1)d(E2) . . . d(En)(−E2

h −
∑n
i=1 ẽ(Ei)) (cf. 1.1.1(i)), hence

∑n
i=1 wi < N , because

wi = ẽ(Ei).

Corollary 5.4.3. If p is a sandwich of type (I) then S′ is contractible.

Proof. By 5.4.2 singular fibers are column fibers, so in each fiber there is a component of Ê of multiplicity
one, hence by [Fuj82, 4.19] π1(S) = π1(B). We can assume that the generators are contained in Eh, hence
they are contracted when creating S′, so π1(S′) = 0. Thus by 2.1.3(vii)-(viii) and Whitehead’s theorem
S′ is contractible.

Again, for the needs of the construction and lemma below we cancel the assumptions made about S,
S0, etc.

Construction 5.4.4. Pick n ∈ N and for each i = 1, . . . , n choose a number wi ∈ Q ∩ (0, 1). Choose
a positive integer N , such that

∑n
i=1 wi < N . Let B be a complete curve of genus g(B), such that

g(B) > 0 if n was chosen smaller than 3. Define S̃ = P(L⊕OB), where L is a line bundle over B of degree
degL = −N . Let p̃ : S̃ → B be the induced P1-fibration. Denote the sections induced by inclusions of
the direct summands OB and L by D̃h and Eh. Then D̃2

h = N and E2
h = −N . Choose n distinct points

x1, . . . , xn ∈ D̃h and blow up each point once. For each i make a connected sequence of subdivisional
blowups creating over xi a column fiber Fi, such that its weight with respect to Eh is wi. Denote the
birational transform of D̃h by Dh. Write F i = Ei + Ci + Di where C2

i = −1, Ei and Di are connected
chains and Di ∩ Eh = ∅. Let µi be the multiplicity of Ci in Fi. Fix a natural order on each Ei and Di
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Figure 5.2: sandwich I

treated as a twigs of Ê = E1 + . . . + En + Eh and D = D1 + . . . + Dn + Dh respectively. Denote the
obtained surface by S and the induced P1-ruling by p. Define S = S \D, S0 = S − Ê and S′ = S/Ê (as a
topological space). We will show below that NSQ(S0) = 0, hence by 1.7.3 S′ and the quotient morphism
can be realized in the algebraic category.

Remark. The additional assumption that g(B) > 0 if n < 3 is justified as follows. If g(B) = 0 and
n < 3, then Ê is a chain, so it contracts either to a smooth point or to a cyclic singularity. Moreover,
κ(S0) = −∞ in this case (see the proof of 5.4.5). But then S0 is affine ruled (see 4.2.1), and appropriate
S′’s were described in 4.1.1.

Theorem 5.4.5. The surface S′ constructed in 5.4.4 is a singular, normal, contractible surface of negative
Kodaira dimension. κ(S0) is determined by the sign of the number α = n− 2 + 2g(B)−

∑n
i=1

1
µi

(i.e. it
is −∞ for negative α, zero for α = 0 and one for α > 0). Moreover, each singular, normal Q-homology
plane of negative Kodaira dimension with smooth locus having a C∗-ruling of type sandwich (I) can be
obtained by construction 5.4.4.

Proof. The last part of the statement is a consequence of the lemma 5.4.2. (Notice that the assumption
κ(S0) ≥ 0 was not used there.)

The matrix Q(Ê −Eh) is negative definite and d(Ê) = d(E1)d(E2) · · · d(En)(N −
∑n
i=1 wi) > 0, so by

Sylvester’s theorem Q(Ê) is negative definite. We have d(D) = d(D1)d(D2) · · · d(Dn)(−N +n−
∑n
i=1(1−

wi)), so d(D) 6= 0. It follows that the classes of irreducible components of D + Ê are independent in
NS(S), hence are a basis, because b2(S) = #D + #E. We apply 1.7.3 and infer that S′ is normal and
affine. By Iitaka’s easy addition theorem 1.6.10 we have κ(S0) ≤ 1. Define an effective divisor X =∑n
i=1(BkDi + BkEi) and put P = KS +D+ Ê−X. For every irreducible curve T contained in the fibers

of p the divisor X satisfies T (KS +D+ Ê) = TX. For a general fiber F the divisor P− (PDh)F intersects
trivially with Dh and all fiber components, hence P ≡ αF , because PDh = n − 2 + 2g(Dh) −XDh = α

by 1.3.2(ii) and 5.1.7. We get KS +D+ Ê ≡ αF +X. Now if α ≥ 0 then KS +D+ Ê is pseudo-effective,
so κ(S0) ≥ 0 by [Miy01, 2.2.6]. Conversely, if κ(S0) ≥ 0 then from F (KS +D+ Ê) = 0 it follows that the
supports of (KS + D + Ê)− and (KS + D + Ê)+ are contained in the fibers of p. Since P2 ≥ 0, we get
(KS+D+Ê)+ ≡ βF for some β ≥ 0 and Supp(KS+D+Ê)− = SuppX by 1.6.9(i). Using the equivalence
P + X ≡ (KS + D + Ê) ≡ (KS + D + Ê)+ + (KS + D + Ê)− we get (α − β)F ≡ (KS + D + Ê)− −X.
The divisor on the right hand side is supported on SuppX and since F 2 = 0, its intersection matrix is not
negative definite. Thus (KS +D+ Ê)− = X and α = β ≥ 0. By 1.6.8 this proves that κ(S0) is determined
by the sign of α as stated.

Now we check that S′ is a Q-acyclic (then it is contractible by 5.4.3). We know from the above that
that the map H2(D+ Ê)→ H2(S) induced by inclusion is an isomorphism. Clearly, H1(D)→ H1(S) and
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H1(Ê)→ H1(S) are monomorphism, because they are monomorphisms after composing with H1(p). The
exact sequence of a pair (D,S) gives b4(S) = b3(S) = 0, b2(S) = #Ê and b1(S) = b1(S) = b1(B). Then
the exact sequence of a pair (Ê, S) gives b1(S′) = b2(S′) = b3(S′) = b4(S′) = 0. Since we assumed that
g(B) > 0 if n < 3, S′ is singular.

Corollary 5.4.6. Let P be the image of Ê under the contraction morphism S → S′ as above. It is a
topologically rational singularity if and only if B ∼= P1. Furthermore:

(i) κ(S0) = −∞ if and only if α < 0, g(B) = 0, n = 3 and (µ1, µ2, µ3) is up to order one of the Platonic
triples (cf. 1.3.5). Moreover, the smooth locus of S′ has a structure of a Platonic fibration and P is
a noncyclic singularity of quotient type. Conversely, each such S′ can be obtained by the construction
above. (This complements the description given in 4.2.1).

(ii) Assume κ(S0) ≥ 0. Then P is not of quotient type.

(iii) κ(S0) = 0 if and only if either

(a) g(B) = 1 and n = 0 or

(b) g(B) = 0, n = 4 and µ1 = µ2 = µ3 = µ4 = 2 or

(c) g(B) = 0, n = 3 and (µ1, µ2, µ3) is up to order one of (2, 3, 6), (2, 4, 4), (3, 3, 3).

Proof. (i) If α < 0 then n
2 ≤

∑n
i=1(1 − 1

µi
) < 2(1 − g(B)), so g(B) = 0 and n ≤ 3, hence n = 3 by the

assumptions of the construction. Then
∑3
i=1

1
µi

> 1, so (µ1, µ2, µ3) is up to order one of the Platonic

triples. Thus S0 has a structure of a Platonic fibration and Ê is an admissible rational fork, because
N >

∑3
i=1 wi ≥

∑3
i=1

1
µi
> 1. Conversely, a Platonic C∗-fibration of S0 can be extended to a P1-fibration

of some snc-completion of S0. The sections contained in the boundary have to be contained in different
connected components of the boundary, so the extension is of type sandwich (I). Moreover, g(B) = 0 by
the definition of a Platonic C∗-fibration, so α < 0.

(ii) If P is of quotient type then by 1.3.5(ii) α = 1−
∑3
i=1

1
µi
< 0, so κ(S0) = −∞.

(iii) Assume α = 0. For n = 0 we get g(B) = 1. Assume n > 0. We have n
2 ≤

∑n
i=1(1 − 1

µi
) =

2(1 − g(B)), so we get g(B) = 0 and n ≤ 4. We have n ≥ 3 by the assumptions of the construction.
For n = 3 and n = 4 we get

∑3
i=1

1
µi

= 1 and
∑4
i=1

1
µi

= 2, so we get the case (b) or (c) respectively.
Conversely, in each case α = 0.

From theorems 2.2.4, 5.4.5 and 5.3.3 we have the following

Corollary 5.4.7. If the singular Q-homology plane is nonrational or has singularities which are not of
quotient type, then it is contractible and has negative Kodaira dimension. Moreover, the singularity is
unique and the smooth locus is C∗-ruled.

For g(B) = 0 the singularity P ∈ S′ is topologically rational. It does not have to be rational, as follows
from the following example.

Example 5.4.8. Assume g(B) = 0. Then:

(i) if N > n then P is a rational singularity,

(ii) if N = 1, n = 3 and E1 = [a], E2 = [b] and E3 = [c] with 1
a + 1

b + 1
c > 1 then P ∈ S′ is a topologically

rational but not a rational singularity.

Proof. A criterion of Artin [Art66, Theorem 3] says that P ∈ S′ is a rational singularity if and only if
pa(Z) = 0 for a fundamental cycle Z of Ê. A fundamental cycle is the smallest nonzero effective divisor
Z ⊆ Ê, such that ZEi ≤ for each irreducible Ei ⊆ Ê. Now if N > n then the fundamental cycle is
reduced, and since Ê is a rational snc-tree, its arithmetic genus vanishes. In case (ii) the fundamental
cycle is Z = 3Eh + E1 + E2 + E3, hence pa(Z) = 1.

Remark. In more complicated cases the fundamental cycle can be computed easily using [Lau72, Propo-
sition 4.1].
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Remark 5.4.9. It is well known that a P1-bundle over a complete curve is a projectivization of a C2-
bundle. If s1, s2 are disjoint sections of this P1-bundle then the action of C∗ given by t ∗ [αs1 + βs2] =
[αs1 +tβs2] fixes precisely s1 and s2. Notice that if we have a smooth surface with a C∗-action and we blow
up in such a way that the center is contained in the fixed point locus then the action extends to the blowup.
It follows that all surfaces S′ appearing in 5.4.4 admit a C∗-action with SingS′ as the fixed point locus.
The weighted graphs of exceptional loci for the resolutions of normal surfaces with good C∗-action (i.e.
having positive weights for some equivariant embedding in some affine space) were described in [OW71].
It follows from 5.4.5 that all of them can be realized as graphs of exceptional loci for the resolutions of
singular contractible Q-homology planes.



Chapter 6

κ(S0) = 2 and κ(S′) = −∞

In this chapter we assume that κ(S0) = 2, κ(S′) = −∞ and that D + Ê is snc-minimal. Although we
do not assume that S′ is contractible, but only that it is Q-acyclic, still part of the methods from [KR07]
work. We adapt them to our situation. We do not hesitate to use computer programs if necessary. Finally,
by careful analysis of numerical and geometrical properties of S′ we show that κ(S0) = 2 is impossible.

6.1 Preliminary results

Definition 6.1.1. Decompose Ê as Ê = E + ∆, where ∆ is the divisor of external (−2)-curves in Ê, i.e.
∆ is a reduced divisor with the smallest support, such that E does not contain a (−2)-tip. By 2.2.3(viii)
∆ 6= Ê, so KÊ = KE > 0. Define ε by the equality (K + D + Ê)2 = −1 − ε. Since κ(S0) = 2 and S0 is
rational, the snc-minimal completion (S,D + Ê) is unique, hence ε is an invariant of S.

We begin with a lemma which mainly collects some results obtained in the previous chapters.

Lemma 6.1.2.

(i) S′ has exactly one singular point and it is of quotient type,

(ii) there is no simple curve on (S,D + Ê),

(iii) S0 and the pair (S,D + Ê) are almost minimal, in particular
K +D + Ê ≡ (K +D + Ê)+ + BkD + Bk Ê,

(iv) ε ≥ 0,

(v) Ê and D are rational trees and S is rational,

(vi) #Ê + #D = 7 + ε+KD +KE,

(vii) if ε < 2 then |2K +D + E| 6= ∅,

(viii) KE + ε ≥ 3,

(ix) if D has a component with nonnegative self-intersection
then this component is branching in D and D is not a fork.

Proof. (i) is just 2.2.1(i). The proof of (ii) is the same as in 3.1.4. (iii) follows from (ii) and 1.6.9(ii). (iv)
is a consequence of 1.6.13(1). (v) Since the unique singular point of S′ is of quotient type, Ê is a rational
tree, so we are done by 2.2.3(iv).

(vi) Since D and Ê are connected rational trees, we have K(K+D+Ê) = 3−ε, so K2 = 3−ε−KD−KE
and the formula follows from the Noether formula and 2.1.4(ii).

(vii) Riemann-Roch’s theorem for a divisor −K−D−E gives h0(−K−D−E)+h0(2K+D+E) ≥ 2−ε.
If −K −D−E ≥ 0 then −K −D− Ê ≥ 0, which contradicts κ(K +D+ Ê) = 2. Thus 2K +D+E ≥ 0.

45
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(viii) Suppose KE + ε ≤ 2. By Riemann-Roch’s theorem h0(−K −D) + h0(2K +D) ≥ K(K +D) =
3− ε−EK > 0, so −K −D ≥ 0, otherwise we would have κ(K +D) ≥ 0. By (vii) this gives K +E ≥ 0.
Maximal twigs of E are in the fixed part of K+E, so E cannot be a chain. Let’s write Ê = B+E1+E2+E3,
where B is the branching component of Ê, and Ei’s are its maximal twigs. Since E is not a chain,
d(Ei) ≥ 3 for all i, so δ(Ê) ≤ 1. This is a contradiction, because Ê is a resolution of a quotient singularity
(cf. 1.4.1(ii)).

(ix) Let D0 be a component of D with D2
0 = −b ≥ 0. After some connected modification (S̃, D̃) →

(S,D) we can assume that b = 0. In fact we can assume that this modification is subdivisional for D,
unless D = D0. In any case, if βD(D0) < 3 we get a C1- or C∗- ruling of S0. Then κ(S0) ≤ 1 by Iitaka’s
addition theorem (cf. 1.6.10(i)), a contradiction. Suppose now D0 is the branching component of a fork.
Now D0 gives a C∗∗- ruling of S̃. We have ΣS0 = 2, because Ê ⊆ F0 for some fiber F0. Notice that
since there are no vertical (−1)-curves in D̃, every vertical (−1)-curve is an S0-component. Let Dh be
the divisor of horizontal sections of D̃, it consists of three sections. Denote the divisor of D̃-components
contained in F0 by Dv. Suppose F is a singular fiber with the unique (−1)-curve L. Dh can intersect
F only in components of multiplicity one, which in this case are two tips of the first branch of F (cf.
1.5.1(v)). D̃ does not contain loops, so at most one of these tips is a D̃-component, hence L is simple, a
contradiction with (ii). Thus every singular fiber has at least two (−1)-curves. Since DhF < 4, by (ii) this
implies that Dv 6= 0. Notice that any exceptional S0-component intersecting Ê is a tip of F0, otherwise
it would have µ > 1 and it could not intersect Dh, which contradicts (ii). Hence some S0-component
M ⊆ F0 intersecting Ê is not exceptional and intersects Dv. We conclude that F0 contains precisely two
exceptional components, L1 and L2, and σ(F0) = 3, hence F0 is the only singular fiber.

Suppose F0 is branched. Then at least for one of L1 or L2, say for L1, after making successive
contractions of L1 (i.e. after making a connected sequence of contractions starting from L1) the number
of branching components in the fiber decreases. It follows that µ(L1) > 1. Indeed, if T is the maximal
twig of D̃ containing L1 and T intersects D̃ − T in T0 then we see that the equality µ(L1) = 1 would
imply that after contraction of T the component T0 becomes a non-exceptional component of a fiber with
unique (−1)-curve and satisfies β ≥ 2 and µ = 1, a contradiction with 1.5.1(v). We infer that DhL1 = 0,
so by (ii) L1 is not a tip of F0. Moreover, one of the connected components of F 0 − L1 does not contain
curves with multiplicity one, so it is not intersected by Dh, which implies that it does not contain any
D̃-component. Hence L1 is simple, a contradiction with (ii).

Since F0 is a chain, M is not branching, so (ii) implies that it intersects Dh, hence µ(M) = 1. Now
Dv 6= 0 implies Dh(L1 + L2) ≤ 1, so by (ii) L1Ê = L2Ê = 0. Therefore we can successively contract
L1 and L2 without touching Ê until M becomes the unique exceptional component of the fiber. This
contradicts µ(M) = 1.

Remark. In fact, S0 is not only almost minimal, but also strongly minimal (cf. [Miy01, 2.4.12]). From
(ix) we see that the maximal twigs of D are admissible, in particular D is not a chain by 2.2.3(ii).

Definition 6.1.3. We denote the local fundamental group of the unique singular point of S′ by G and
write K for KS . Let Ti for i = 1, . . . , s be all maximal twigs of D and let T = T1 + . . . + Ts. We put
di = d(Ti), ei = e(Ti) (recall that by our convention from 1.3 tip of a maximal twig is its first component),
ẽi = e(T ti ), δ = δ(D), e = e(D) and ẽ = ẽ(D). We write P for (KS +D+ Ê)+ and N for (KS +D+ Ê)−.

Lemma 6.1.4. (Koras-Russell, [KR07, 5.3, 5.15])

(i) δ ≤ e = −Bk2D ≤ 1 + ε+ Bk2 Ê + 3
|G| ,

(ii) If ε < 2 then s− 2− 6
|G| ≤ δ,

(iii) If ε < 2 then s− 3 ≤ ε+ Bk2 Ê + 9
|G| ,

(iv) If ε < 2 and ∆ = ∅ then e+ δ ≥ s+ ε− 5
2 + KE

4 .

Proof. (i) We have e = −Bk2D by 1.3.2(iv). Computing a square of 6.1.2(iii) gives −1−ε = P2 +Bk2D+
Bk2 Ê, so (i) follows from the Kobayashi inequality.
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(ii) By 6.1.2(vii) we have 0 ≤ P(2K+D+E) = 2P(K+D+E)−P(D+E) = 2P2−PR ≤ 6
|G|−PR, where

R = D−T . Now R is a rational connected tree, so PR = (K+D−BkD)R = −2+(T−BkD)R = −2+s−δ
by 1.3.2(ii).

(iii) is a consequence of (i) and (ii).
(iv) From the proof of [KR07, 5.15] it follows that if ∆ = ∅ then e+δ ≥ s− v

4 , where v = (E+2K)(E+
2(K +D)) = −2 +KE + 2(E + 2K)(K +D) = 10− 4ε− EK. This gives (iv).

6.2 Bounding the shape of Ê

The following theorem is the key result in case κ(S0) = 2. It is a modification of [KR07, 5.10].

Proposition 6.2.1. Either KE + 2ε ≤ 5 or ε = 2, Ê = [4] and D consists of (−2)-curves.

Proof. The idea is to use (1) and (4) of 5.1.2 to find and contract an exceptional simple curve on (S,D+Ê).
Notice that (2K+E)(K+D) = 6−2ε−EK. Suppose there exists a (−1)-curve A ⊆ S, such that AÊ ≤ 1.
Under this assumption it is proved in [KR07, 5.10, 5.11] that if S′ is contractible then the inequality
KE + 2ε > 5 would imply that the process of finding and contracting exceptional simple curves could be
iterated to infinity, which is impossible. The proof of [KR07, 5.10] does not require the contractibility, but
only the Q-acyclicity of S′, so it can be applied in our situation. However, the existence of the curve A,
which is assured by lemma [KR07, 5.7] in case S′ is topologically contractible, has to be reconsidered in
our situation.

Suppose KE + 2ε > 5. From the above remarks it follows that we can assume that there is no (−1)-
curve A ⊆ S, such that AÊ ≤ 1. It appears that the only point where the proof of existence of the curve
A given in [KR07, 5.7] does not work in our more general situation is the case [KR07, 5.7.4(ii)], where
KD = 0, K + Ê# ≡ 0 and Bk2 Ê is an integer. Then by 6.1.4(i) we get Bk Ê2 = −1, so Ê is a chain by
1.3.5(iii). We have D2 = −2−DK = −2, so −1− ε = (K+D+ Ê)2 = (D+ Bk Ê)2 = D2−1, hence ε = 2
and K(K + Ê) = 3 − ε − DK = 1. Moreover, any (−1)-curve contained in D could serve as the curve
A, so we get that D2

i ≤ −2 for every Di ⊆ D, hence D consists of (−2)-curves. Further arguments have
to be modified as follows. By Riemann-Roch’s theorem h0(Ê + 2K) + h0(−K − Ê) ≥ K(K + Ê) = 1. If
−K − Ê ∼ U for an effective divisor U then K + Ê# ≡ 0 implies U + Bk Ê ≡ 0, hence Bk Ê = 0, which
is impossible. We get 2(K + Ê) ≥ 0, which by 1.6.7(ii) implies that [2(K + Ê#)] ∼ U for some effective
divisor U . Now K + Ê# ≡ 0 implies that U + {2 Bk Ê} = 0, hence 2 Bk Ê is a Z-divisor. Since Ê is not a
(−2)-chain we obtain 2 Bk Ê = Ê and 2K + Ê = 0. It follows that ∆ = 0 and KE = 2. Moreover, since
Ei(2K +E) = 0 for each component Ei of E, we get that either Ê = [4] or Ê = [3, (k), 3] for some k ≥ 0.
To finish the proof we need to exclude cases other than Ê = [4].

Suppose Ê = [3, (k), 3] for some k ≥ 0. We have #D = 9 − k by 6.1.2(vi), so there are only finitely
many possibilities for the weighted dual graph of D. Notice that the inequality 6.1.4(i) gives e(D) ≤
1 + ε+ Bk2 Ê + 3

|G| = 2 + 3
d(E) . We have d(E) = 4(k+ 2) and D consists of (−2)-curves, so e(D) = s− δ.

Computing the square of 6.1.2(iii) we get −1 − ε = P2 − e(D) − 1, so P2 = s − 2 − δ. Since P2 > 0, we
obtain:

0 < s− 2− δ ≤ 3
4(11−#D)

=
3

4(k + 2)
.

In particular, s− 2 ≤ δ + 3
8 ≤

s
2 + 3

8 , so s ≤ 4. Another condition is given by 2.1.3(ix):√
−d(D)
d(E)

= |H1(S′,Z)| ∈ N.

We check by straight computations that up to permutation of maximal twigs there are only two pairs of
weighted dual graphs of (D,Ê) satisfying both conditions (taking into account that D consists of (−2)-
curves one checks first that the first condition implies that k ≤ 1 for s = 3 and k ≤ 2 for s = 4):

(1) s = 3, T1 = [2, 2], T2 = [2, 2, 2], T3 = [2, 2, 2], Ê = [3, 3],

(2) s = 4, T1 = [2], T2 = [2], T3 = [2], T4 = [2, 2, 2], Ê = [3, 3].
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Notice that in case (2) D− T1 − T2 − T3 − T4 has three components. In both cases −d(D) = d(Ê) = 8, so
H1(S′,Z) = 0 by 2.1.3(ix).

To deal with these cases consider an affine ruling of S. Let π : (S̃, D̃)→ P1 be an extension of this ruling
to some snc-completion of S. W can assume that D̃ is π-minimal. Let F1, F2, . . . , Fr be all the singular
fibers of π. Each Fi has σ(Fi) > 0, otherwise S0 would be affine ruled, which is impossible. Furthermore,
each Fi contains come D̃-component. Indeed, if some Fi has no D̃-components, then σ(Fi) = 1, because
each S0-component intersects D̃ by affiness of S′. Then the S0-component of Fi is the unique (−1)-curve
of Fi, hence cannot intersect D̃, because has multiplicity greater than one, a contradiction. Let µi be the
greatest common divisor of multiplicities of S-components contained in Fi. Using van Kampen’s theorem
one shows that π1(S) = 〈σ1, σ2, . . . , σr : σµ1

1 = . . . = σµr1 = σ1σ2 . . . σr = 1〉 (cf. [Fuj82, 4.19]). We have
also π(S′) = π1(S) by 2.1.3(viii).

Suppose r > 2. Then (S̃, D̃) = (S,D) and since in both cases the branching curves of D have βD ≤ 3,
we get r = 3. If Ê is horizontal then ΣS0 = 1 and if not then ΣS0 = 0. In any case there are at least
two of Fi’s, say F1 and F2, without Ê-components and satisfying σ(Fi) = 1 (here σ is the number of S0-
components). Since D is connected and each component of D is a (−2)-curve, each such a fiber Fi has two
branches, the first equal to [2, 2, 2], and the unique (−1)-curve of Fi is its tip. This implies that at least two
maximal twigs of D are not its tips, which excludes (2), hence s = 3 and F3 contains two D-components.
If both components of Ê are horizontal then ΣS0 = 1, so σ(F3) = 2 and we see that at least one S0-
component has multiplicity one, so µ3 = 1. We compute π1(S) = 〈σ1, σ2 : σ2

1 = σ2
2 = σ1σ2 = 1〉 = Z2,

a contradiction with H1(S′,Z) = 0. Thus exactly one component of E is vertical. Now σ(F3) = 1, so
F3 = [3, 1, 2, 2] and µ3 = 3. We compute π1(S) = 〈σ1, σ2, σ3 : σ2

1 = σ2
2 = σ3

3 = σ1σ2σ3 = 1〉 = Z2 ⊕ Z2,
a contradiction with H1(S′,Z) = 0. Therefore r ≤ 2. It follows that π1(S) is abelian, hence vanishes,
because H1(S′,Z) = 0. By 2.1.3(vii) and Whitehead’s theorem it implies that S′ is contractible. In this
case the proof of [KR07, 5.7] works.

Corollary 6.2.2. If ε = 0 then KE ∈ {3, 4, 5}. If ε = 1 then KE ∈ {2, 3}. If ε = 2 then either KE = 1
or Ê = [4].

Proposition 6.2.3.

(i) If ε = 0 then #Ê = 1 and D is a fork,

(ii) If Ê is a fork then ε = 2,

(iii) ∆ does not contain a fork.

Proof. (i) For ε = 0 lemma 6.1.4(iii) gives 0 ≤ s − 3 ≤ Bk2 Ê + 9
|G| . If Ê is a fork then Bk2 Ê < −1 by

1.3.5(v), so |G| ≤ 8. Since G is small, G is the quaternion group, for which the resolution consist of (−2)-
curves, a contradiction with 2.2.3(viii). Thus Ê is a chain, so d(Ê) = |G| and we get d′(Ê) + d′(Êt) ≤ 7
(cf. 1.3.2(iv)). Suppose #Ê > 1. Taking into account 6.2.2 there are two possibilities for Ê: [3, 4] and
[2, 5]. In both cases we obtain Bk2 Ê + 9

|G| = 0, so s = 3 and inequalities (i)-(iii) from 6.1.4 are replaced
by equalities. We get ẽ = δ < 1, so d(D) = d1d2d3(b − ẽ) < 0 gives b ≤ 0, a contradiction with 6.1.2(ix).
Therefore #Ê = 1. If s 6= 3 then 6.1.4(iii) and 6.2.2 give subsequently (s− 3)|G| ≤ 5, s = 4 and Ê = [5].
In this case e = δ = 4

5 , so inequality 6.1.4(iv) fails, a contradiction.

(ii) Let Ê be a fork. By (i) ε 6= 0. Suppose ε = 1. A not so long numerical analysis of possible forks
and its properties described in [Bri68, Satz 2.9] implies that in order to satisfy 6.1.4(iii) Ê has to satisfy
#E = 1 and E has to be the branching curve of a fork, such that the determinants of its maximal twigs
are 2, 2, n. (see [KR07, 6.17] for a detailed proof). Since KE ≥ 2 for ε = 1 by 6.2.2, we have E2 ≤ −4, so
by 1.3.5(iv) |G/[G,G]| = 4n(−E2− 2) + 4 ≥ 20. Simultaneously 6.1.4(iii) gives |G| < 9

e( bE)−ε
= 9

1− 1
n

≤ 18,
a contradiction.

(iii) Suppose ∆ contains a fork. Then ε = 2 by (ii), so #E = 1 by 6.2.2. If S \∆ is affine ruled then
ΣS0 = 0 implies that each fiber has only one (−1)-curve, hence each connected component of ∆ is a chain,
which contradicts our assumption. Since κ(S \∆) = −∞ by 1.6.7, S \∆ contains a Platonic fibration U
as an open subset (cf. 1.6.14). An snc-minimal boundary of a Platonic fibration is a disjoint union of two
forks. The description of S \ (∆ ∪ U) given in [MT84b] implies that U = S \ (∆ ∪ L) for a (−1)-curve L,
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such that LD = 1. It can be shown that LÊ = 1, i.e. L is simple on (S,D), which contradicts 6.1.2 (see
[KR07, 6.1] for a detailed proof).

Corollary 6.2.4. S \∆ is affine ruled.

Proof. Since κ(S \∆) = −∞ then S \∆ is affine ruled or it contains a Platonic fibration as an open subset.
The last case is impossible by 6.2.3(iii).

Corollary 6.2.5. Ê is of one of the following types:

(a) [5], [6], [7]

(b1) fork:
A −2 B

−2

with (A,B) equal to one of: ([3], [2, 2]), ([3], [2, 2, 2]), ([3], [2, 2, 2, 2]), ([2, 3], [2, 2]) or ([(n), 3], [2]),
where n ≥ 0, (recall that a tip of the maximal twig is its first component),

(b2) fork:
A −3 B

−2

with (A,B) equal to one of: ([2, 2], [2, 2]), ([2, 2], [2, 2, 2]), ([2, 2], [2, 2, 2, 2]) or ([2], [(n)]), where n ≥ 0,

(b3) [(r), 3, (x)] for r, x ≥ 0,

(c1) [(r), 4] or [(r), 5] for r ≥ 0,

(c2) [(x), 3, (y), 3] or [(x), 3, (y), 4] or [(x), 4, (y), 3] for x, y ≥ 0,

(c3) [(r), 3, (x), 3, (y), 3] for r, x, y ≥ 0,

(c4) [2, 4, 2], [2, 5, 2], [2, 3, 3, 2], [2, 3, 4, 2], [2, 4, 2, 2], [2, 5, 2, 2].

Proof. If Ê is a fork then ε = 2 by 6.2.3(ii), so E = [3] by 6.2.2. We know that ∆ does not contain
a fork, so all possible Ê’s satisfying 1.3.5(ii)-(iii) are listed in (b1) and (b2). Chains for ε = 2 other
than [4] are in (b3) and Ê’s for ε = 0 are in (a) (cf. 6.2.2 and 6.2.3(i)). Now we can assume that Ê
is a chain and ε = 1, so KE ∈ {2, 3} by 6.2.2. For E∆ ≤ 1 all possible Ê’s are listed in (c1), (c2)
and (c3), so we can assume E∆ = 2. Using 6.1.4(iii) we get d′(Ê) + d′(Êt) ≤ d(Ê) + 7 and since
d(Ê) = 2d′(Ê)− d′′(Ê) = 2d′(Êt)− d′′(Êt), we have 1

2 (d(Ê) + d′′(Ê)) + 1
2 (d(Ê) + d′′(Êt)) ≤ d(Ê) + 7, so

d′′(Ê) +d′′(Êt) ≤ 14. This gives six possibilities for Ê: [2, 4, 2], [2, 5, 2], [2, 3, 3, 2], [2, 3, 4, 2], [2, 4, 2, 2] and
[2, 5, 2, 2], which are listed in (c4).

6.3 Pre-minimal rulings

We recall the notion of Hamburger-Noether pairs. For details see [Rus80] and [KR99, Appendix].

Definition 6.3.1. Suppose we are given an irreducible germ of a singular analytic curve (χ1, q1) on a
smooth algebraic surface and a curve C1 passing through q1, smooth at q1. Put c1 = (C1 ·χ1)q1 and choose
a coordinate y1 in such a way that {y1 = 0} is transversal to C1 at q1 and for Y1, defined as Y1 = {y1 = 0},
c1 is not smaller than p1 = (Y1 · χ1)q1 . Blow up over q1 until the proper transform χ2 of χ1 meets the
reduced inverse image F1 of C1 in a point q2, which does not belong to components of F1 other than the
exceptional component C2 of F1. We then say that C2 (and F1) is produced from C1 by the pair

(
c1
p1

)
.

This does not depend on the choice of y1. Put c2 = (C2 · χ2)q2 . Then c2 = gcd(c1, p1). Notice that the
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pairs
(
c1
p1

)
and

(
c1/c2
p1/c2

)
give the same sequence of blowups. We repeat this procedure and define successively

(χi, qi) and Ci until χh+1 is smooth for some h ≥ 1. Then we refer to the sequence
(
c1
p1

)
,
(
c2
p2

)
, . . . ,

(
ch
ph

)
as

the sequence of Hamburger-Noether pairs (or characteristic pairs for short) of the resolution of (χ1, q1) or
the sequence of characteristic pairs of F , where F is the reduced total transform of C1.

Remark. We remind that since (χ1, q1) is singular and irreducible, there is a unique distinguished tangent
direction at q1, i.e. if z is a germ of a line in the distinguished direction then for any other germ of a line
u one has ({u = 0} · χ1)q1 < ({z = 0} · χ1)q1 . Therefore, if there is no need to start with some given C1

then it is natural to choose C1 having distinguished tangent direction for (χ1, q1). However, making this
choice one should remember that (assuming χ2 is singular) (C2, q2) does not have to have distinguished
tangent direction for (χ2, q2).

Definition 6.3.2. Let F be a singular fiber of a P1-ruling of some surface, such that L is the unique
exceptional curve of F . Suppose some component U of F with µF (U) = 1 is distinguished. Then there
is precisely one way of contracting F to a smooth fiber without contracting U . For some q ∈ L let (χ, q)
be an irreducible germ of some analytical curve intersecting L transversally at q. Let (χ′, q′) be the image
of (χ, q) after the above contractions. We take the image of U as C1 (cf. 6.3.1). We then say that F is
produced by the sequence of characteristic pairs of the resolution of (χ′, q′) and we refer to this sequence
as the sequence of the characteristic pairs of F .

Example 6.3.3. Consider a P1-ruling of some complete surface. Let F = An+. . .+A1+L+B1+. . .+Bm be
some column fiber and let An be the distinguished component. Then F is produced by one characteristic
pair

(
c
p

)
. Here are some examples. If F = [k, 1, (k − 1)] then

(
c
p

)
=
(
k
1

)
. If F = [(k − 1), 1, k)] then(

c
p

)
=
(
k
k−1

)
. If F = [5, 3, 1, (3), 3, 2] then

(
c
p

)
=
(

14
3

)
.

Notation 6.3.4. Assume that #E = 1. Let f be an affine ruling of S \∆. Let F be some singular fiber of
f and let H be the section contained in the boundary. Put γ = −E2, n = −H2 and d = E ·F . Let h be the
number of characteristic pairs of F . If ∆∩F = ∆1 + . . .+ ∆k with ∆k as a tip of F is the decomposition
into irreducible components then the last pair of F is

(
ch
ph

)
=
(
k+1

1

)
. If ∆ 6= ∅ then E∆i0 = 1 for a unique

i0 ≤ k. Assume that F ′, defined as the fiber F with
(
ch
ph

)
contracted, is produced by the pairs (ci, pi) with

i = 1, . . . , h− 1 (hence gcd(ci, pi) = ci+1 for i = 1, . . . , h− 1 and gcd(ch−1, ph−1
) = 1). Define c′h = ch− i0

and τ = chCE + c′h. Then d = c1τ . Notice that c′h = 0 if and only if ch = 1.
If f has precisely two singular fibers, we write the analogous quantities with (̃ ): τ̃ , C̃, p̃

i
, c̃′h etc. If f

has more singular fibers then instead of C, ci, τ , etc. we write CF , ci(F ), τ(F ), etc.

Lemma 6.3.5. With the assumptions as in 6.3.4 the following equations hold:

d(n+ 2) + γ − 2 =
∑
F

τ(F )(c1(F ) +
h(F )−1∑
i=1

p
i
(F )), (6.1)

nd2 + γ =
∑
F

(τ2(F )
h(F )−1∑
i=1

ci(F )p
i
(F ) + τ(F )CFE + c′h(F )(F )CFE + c′h(F )(F )), (6.2)

where the sum is taken over all singular fibers of f .

Proof. It is enough to consider one singular fiber. We first give a proof in the case ∆ = 0. We have ΣS0 = 0.
We distinguish the component of F intersecting H and contract F to a smooth 0-curve without touching
H. We write this sequence of contractions as S = S(m) σm−−→ S(m−1) σm−1−−−→ . . .

σ1−→ S(0), where S(0) is a
Hirzebruch surface. Denote by K(i) and E(i) the canonical divisor and respectively the birational transform
of E on S(i). For i = 0, . . . ,m − 1 we have K(i+1)E(i+1) −K(i)E(i) = µi and (E(i))2 − (E(i+1))2 = µ2

i ,
where µi is the multiplicity of the center of σi+1 on E(i). We have E(0) ≡ d(nF (0) + H), where F (0) is
some fiber of the induced P1-ruling of S(0) and d = E(0)F (0) = EF . We compute K(m)E(m)−K(0)E(0) =
KE + d(n + 2) = γ − 2 + d(n + 2) and (E(0))2 − (E(m))2 = nd2 + γ, which gives left sides of the above
equations. We need to compute

∑
µi and

∑
µ2
i . Let F ′, ci, pi, τ be as defined above. Since ∆ ∩ F = 0,

we have τ = CE and the sequence of characteristic pairs for F is
(
c1
p
1

)
, . . . ,

(
ch−1
p
h−1

)
,
(

1
1

)
. Let

(
c
p

)
be one of

these characteristic pairs and let I(c, p) consist of these indices, for which the blowup σi is the part of the
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sequence of contractions determined by the characteristic pair
(
c
p

)
. If E intersects C transversally in one

point (i.e. if τ = 1) then it is easy to prove by induction on c that∑
I(c,p)

µi = c+ p− gcd(c, p) and
∑
I(c,p)

µ2
i = cp.

Now for τ > 1 the multiplicity of each center is τ times bigger, hence for CE = τ we get∑
I(c,p)

µi = τ(c+ p− gcd(c, p)) and
∑
I(c,p)

µ2
i = τ2cp.

We have c′h = 0 and ch = 1, so this gives
∑
µi = τ

∑h
i=1(ci + p

i
− gcd(ci, pi)) = τ(c1 +

∑h
i=1 pi − 1) =

τ(c1 +
∑h−1
i=1 pi) and

∑
µ2
i = τ2

∑h
i=1 cipi = τ2(

∑h−1
i=1 cipi + 1), as required.

We now consider the case ∆ 6= 0. Let E′ be the image of E after contracting F to F ′. It follows from
the arguments given above that

K(m)E(m) −K ′E′ = τ(c1 +
h−1∑
i=1

p
i
− 1)

and

E′2 − (E(m))2 = τ2
h−1∑
i=1

cipi.

We only need to compute K ′E′ −KE and E2 −E′2. We are now left with the last pair
(
ch
ph

)
. The proper

transform of E′ after making first c′h blowups (there is one center at each step) is E(i0), where i0 was defined
by E∆i0 6= 0. The multiplicity of each of these centers is CE + 1, so K ′E′−K(i0)E(i0) = c′h(CE + 1) and
(E(i0))2 − E′2 = c′h(CE + 1)2. Now one has to be more careful, because E(i0) can intersect the fiber in
more than one point (in fact it intersects it in one point only if i0 = 1 and ∆1 ∩ E ∩ C 6= ∅). One checks
easily that K(i0)E(i0)−KE = (ch− c′h)CE and E2− (E(i0))2 = (ch− c′h)CE2. This gives (6.1) and (6.2).

Lemma 6.3.6. If the sequence of pairs of positive integers (c1, p1), (c2, p2), . . . (ch, ph), such that ci ≥ pi
and gcd(ci, pi) = ci+1 for i = 1, . . . , h− 1 satisfies the equations

c1(n+ 1) + 1 =
h∑
i=1

pi, (6.3)

nc21 =
h∑
i=1

cipi. (6.4)

then either

(i) n = 1, h = 8, (c1, p1) = (4, 2), (c2, p2) = (2, 1) or

(ii) n = 1, h = 7, (c1, p1) = (3, 1) or

(iii) n = 2, h = 7, (c1, p1) = (2, 1).

Proof. If the sequence (ci, pi)hi=1 satisfies (6.3) and (6.4) together with the divisibility conditions as above
then we will say that it is of type ∗n. Multiplying the first equation by c1 and subtracting the second one
we obtain

c21 + c1 =
h∑
i=2

pi(c1 − ci). (6.5)

In particular h 6= 1. Put c1 = kc2 and p1 = k′c2. First we prove that the sequence (ci, pi)hi=1 of type ∗n
satisfies one of the following:

(a) n = 1, (c1, p1) = (kc2, (k − 1)c2) for some k, c2 > 1 and (ci, pi)hi=2 is of type ∗k,
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(b) n = 2, (c1, p1) = (2, 2) and (ci, pi)hi=2 is of type ∗1,

(c) n = 2, h = 7, (c1, p1) = (2, 1),

(d) n = 3, h = 7, (c1, p1) = (3, 1).

Suppose c2 = 1. Equation (6.5) gives k(k + 1) = (k − 1)(h − 1), so k 6= 1 and (k − 1)|k(k + 1) =
(k − 1)(k + 2) + 2, hence k ∈ {2, 3} and h = 7. It follows from (6.3) that we obtain case (c) or (d).

Suppose c2 > 1. For i ≥ 2 we have c1 − ci ≥ (k − 1)c2 and by (6.3)
∑h
i=2 pi = c1(n + 1) + 1 − p1,

so equation (6.5) gives 1 ≥ c2(k2n − kn − k′k + k′ − k) and then k2n − kn − k′k + k′ − k ≤ 0, because
c2 > 1. If k = k′ then k = c2 > 1 and since h > 1, (6.4) implies n > 1. In this case the inequality gives
(k − 1)(n − 1) ≤ 1, so n = k = 2 and we get the case (b). We can therefore assume k > k′ ≥ 1. Writing
the above inequality as n ≤ k′(k−1)+k

k(k−1) < 1 + 1
k−1 we see that n = 1 and then (k− 1)(k− k′− 1) ≤ 1, hence

k′ = k − 1. One checks easily that this gives case (a).
Now it is easy to see that in fact case (b) cannot occur. Indeed, since in this case (ci, pi)hi=2 is of type

∗1, then (c2, p2) can be only as in (a) (with respective renumbering), i.e. (c2, p2) = (kc3, (k − 1)c3) for
some k, c3 > 1, in particular c2 = kc3 ≥ 4, a contradiction. Notice also that if (c1, p1) is as in (a) then
k > 1, so after renumbering (c2, p2) is as in (b) or (c).

Lemma 6.3.7. If #E = 1 then any affine ruling of S \∆ has more than one singular fiber.

Proof. Let f : (S
†
, D†)→ P1 be some affine ruling of S \∆ with one singular fiber F . Notice that τ > 1,

otherwise the (−1)-curve of F , which is not touched when minimalizing D† to D, would be simple on
(S,D). Using 6.3.5 we get

d(n+ 1) + γ − 2 = τ

h−1∑
i=1

p
i
, (6.6)

nd2 + γ = τ2
h−1∑
i=1

p
i
ci + τCE + c′hCE + c′h. (6.7)

Computing the difference of the above equations modulo τ we see that τ |c′hCE + c′h − 2. Notice that if
c′h 6= 0 then c′hCE + c′h = 2. Indeed, if c′h 6= 0 then c′hCE + c′h − 2 ≥ 0 and c′hCE + c′h − 2 cannot be
positive, otherwise c′hCE + c′h − 2 ≥ τ = chCE + c′h ≥ c′hCE + c′h, a contradiction. Therefore there are
two cases to consider: (i) c′hCE + c′h = 2 and (ii) c′h = 0. We show that both lead to equations

c1(n+ 1) + 1 =
h−1∑
i=1

p
i
,

nc21 =
h−1∑
i=1

p
i
ci.

Suppose c′hCE+ c′h = 2. Then CE = c′h = 1, so τ = ch + 1. Taking (6.7) modulo τ2 we have τ2|γ− 2− τ ,
hence τ |γ − 2. If τ 6= γ − 2 then τ2 ≤ γ − 2− τ ≤ 5− τ by 6.2.2, which contradicts τ > 1. Thus τ = γ − 2
and we are done. Now suppose ∆ = ∅. We have ch = 1 and taking (6.6) modulo τ and (6.7) modulo τ2

we have τ |γ − 2 and τ2|γ, hence τ = 2 and γ = 4 by 6.2.2. Thus again we get the above equations.
Using 6.3.6 we check that all three sequences of characteristic pairs satisfying these equations give rise

to the same boundary D, which is a fork with branching (−2)-curve and maximal twigs T1 = [2], T2 = [2, 2]
and T3 = [ch + 1, (5)]. We compute d(D) = −1, a contradiction with 2.1.3(ix).

Remark. If f has only one singular fiber F then S \F ∼= C1×C1, so π1(S′) = π1(S) = 0 and by 2.1.3(vii)
and Whitehead’s theorem S′ is contractible. Now the final result of [KR07] excludes contractible S′

satisfying κ(S′) = −∞ and κ(S0) = 2, so by referring to it we could omit the proof of 6.3.7. However, the
above independent arguments will allow us to obtain [KR07, Theorem 1.1(i)] as a special case (cf. 6.6.5).

Definition 6.3.8. Let π : X → C be a dominating morphism of a smooth surface to a smooth complete
curve C. We say that π is pre-minimal if for some snc-completion (X,X\X) it has an extension π : X → C,
such that the boundary divisor X \X can be made snc-minimal using only subdivisional blowdowns. Then
we will say also that π : (X,X \X)→ C is pre-minimal.
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We now proceed to show that in some situations the affine ruling of S \∆ can be chosen pre-minimal.
We adapt a lemma [KR99, 5.3] to our situation. We follow the original notation.

Notation 6.3.9. Assume #E = 1. Let f : (S
†
, D† + ∆) → P1 be some affine ruling of S \ ∆ with D†

being f -minimal (good affine ruling of S, using the terminology of [KR99]). We have ΣS0 = 0 because
#E = 1. Let H2 = −n, where H is the horizontal component of D†. If βD†(H) > 2 then (S

†
, D†) = (S,D)

and the ruling is pre-minimal. Assume βD†(H) ≤ 2. If n = 1 then D† is not snc-minimal. In any case
by successive contractions of exceptional curves in D† we obtain a morphism ϕf : S

† → S. Let F be
a singular fiber of f , such that F ∩ D† is branched. Denote the component of F meeting H by G. Let
G + Z be the first branch of F and let Z1 be the unique curve of highest multiplicity in Z. Let Zu and
Zl (upper, lower) be the connected components of Z − Z1 with Zu meeting G (see Fig. 6.1). Let Zlu be
the component of Zl meeting Z1 and C the unique (−1)-curve of F . Let h be the number of sprouting
blowups needed to produce F from a smooth 0-curve (number of characteristic pairs of F ) and µ the
multiplicity of C. If there is another singular fiber denote it by F̃ . Analogously for F̃ define G̃, Z̃1, h̃,
etc. Put H† = Zu + G + H + G̃ + Z̃u. Define ∆′ = ∆ ∩ F and ∆̃ = ∆ ∩ F̃ . We introduce the following
modification of definition [KR99, 5.1]:

Figure 6.1: pre-minimal ruling

Definition 6.3.10. In the situation as above f is almost minimal if D† is snc-minimal (i.e. ϕf = id) or
there are exactly two singular fibers and contractions in ϕf do not touch their (−1)-curves.

Remark. If f has more than two singular fibers then βD†(H) > 2 because each singular fiber contains
some D†-components, hence D† = D is snc-minimal and f is almost minimal. If f has only one singular
fiber then it is almost minimal if and only if n 6= 1. Assume that f is almost minimal with two singular
fibers. Then it follows from the definition that the contractions in ϕf take place within H†. Moreover, if
Z̃1 = C1 (this could not happen in [KR99]) then they are subdivisional with respect to D†. It follows that
an almost minimal ruling is pre-minimal.

Lemma 6.3.11. (Koras-Russell) Let C be a (−1)-curve in S, such that κ(KS +D+∆+C) = −∞. Then
there exists a pre-minimal affine ruling of S \∆ with C in a fiber, such that either

(i) f is almost minimal or

(ii) f has exactly two singular fibers, ∆̃ = 0 and ϕf contracts precisely H†+ Z̃1. If Z1 is touched x times
in this process then x ≥ 4 and V 2 = 2− x, where V ⊆ D is the birational transform of Z̃lu.

Remark. The lemma implies that we have a good control over the curves that are contracted when min-
imalizing the boundary. Notice that in case (ii) both fibers are branched and the second branch of F̃
contains a (−1)-curve only.

The above lemma is essentially the lemma [KR99, 5.3]. We sketch the way the original arguments have
to be modified if necessary. We write the references to numbering of [KR99] in square brackets.
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Proof. The starting point is an affine ruling f of S \ (∆ ∪ C). Notice that CD > 0, hence non-existence
of such a ruling would imply that ∆ contains a fork, which contradicts 6.2.3(iii). We can assume that f
is not almost minimal, in particular D† 6= D. Since every singular fiber contains some D†-component,
f has at most two singular fibers, by 6.3.7 it has precisely two. The idea is to improve f . As for the
preliminary results used, the proofs of [4.2] and [5.2.2] go without modifications. The calculations in terms
of characteristic pairs as [3.7] or [5.3.3](i) do not hold in our situation, but they can be ignored. If the
improvement of f is found using [5.3.4] then it is almost minimal in the sense of 6.3.10. Therefore in [Case
I] only the subcase (α), where the improvement is produced in other way, needs some care. Fortunately,
the proof goes without modifications, giving part (ii) of the thesis. In cases [II(a),(b),(c)] the produced
improvement has D† = D, so is almost minimal. Thus we are left with [Case II(d)]. If F̃ is branched then
the original proof works. Suppose F̃ is a chain. Then F̃ = D0 +C+ ∆̃ with C2 = −1 and D0 ⊂ D†. Since
G is not contracted by ϕf , D0 cannot be contracted because T0 is not a tip of T by the assumptions [Case
II(d)].

Corollary 6.3.12. If #E = 1 then the affine ruling of S \ ∆ can be chosen pre-minimal, exactly as in
6.3.11.

Proof. Take an f -minimal completion of some affine ruling f of S \∆. Since at least one of the branching
components of D† remains branching in D, there exists a vertical (−1)-curve, it is an S0-component. Take
it as C and apply 6.3.11.

Corollary 6.3.13. Let #E = 1 and let f be a pre-minimal affine ruling of S \∆ which has two singular
fibers. One has:

(i) h+ h̃ = n+ 1 + ε+ EK,

(ii) d(D) = −d(Ê) · gcd(µ̃, µ)2.

Proof. (i) Since f is pre-minimal, contractions in ϕf are subdivisional with respect to D†, hence K
S
†(K

S
†+

D†) = K(K+D) = 3− ε−EK. Contract singular fibers to smooth fibers without touching H, denote the
image of D by D̃ and the resulting surface by S. Each sprouting blowdown in D† increases K(K +D) by
one. At the end we have KeS(KeS + D̃) = 8−4 +n−2 = n+ 2, so we get K(K+D) +h−1 + h̃−1 = n+ 2,
hence h+ h̃ = n+ 1 + ε+ EK.

(ii) We have π1(S′) = 〈σ1, σ2 : σµ1 = σeµ
2 = σ1σ2 = 1〉 = Zgcd(eµ,µ), so (ii) follows from 2.1.3(ix).

6.4 D is a fork

Lemma 6.4.1. If ε = 2 then KE = 1.

Proof. Suppose ε = 2 and KE 6= 1, then Ê = [4] by 6.2.2. Let f : (S
†
, D†)→ P1 be a pre-minimal affine

ruling (we use the notation of 6.3.9). Let F1, . . . FN be the singular fibers and let U = Dh+F 1 + . . .+FN ,
where Dh is the horizontal component of D†. We have ΣS = 0 and by 6.3.7 N ≥ 2. Suppose N > 2. Then
D† = D. Let hi be the numbers of sprouting blowups needed to produce Fi from a smooth 0-curve. If we
contract all Fi’s to smooth fibers without touching Dh we make h1 + h2 + . . .+ hN sprouting blowdowns
inside U . We have K(K+U) = K(K+D)−N , so we get that −1−N +h1 + . . .+hN = 8− 2N , because
K2 = 8 for a Hirzebruch surface and KDh = 0 by 6.2.1. Notice that hi 6= 1 because ∆ = ∅. We get N = 3
and h1 = h2 = h3 = 2, hence s = 3 and since D consists of (−2)-curves by 6.2.1, maximal twigs of D are
equal to [2, 2, 2]. We compute π1(S′) = 〈σ1, σ2, σ3 : σ1σ2σ3 = 1, σ2

1 = σ2
2 = σ2

3 = 1〉 = Z2 ⊕ Z2. However,
d(D) = −16 and d(Ê) = 4, so H1(S′,Z) = Z2 by 2.1.3(ix), a contradiction. Thus N = 2. Put F = F1,
F̃ = F2 and h = h1, h̃ = h2. We have h+ h̃ = 5 + n and h, h̃ 6= 1.

Suppose f is not almost minimal. Then h̃ = 2, so h = 4. By 6.3.11 ϕf : S
† → S contracts precisely

H† + Z̃1 and Z1 is touched exactly four times, hence Z2
1 = −6. D consists of (−2)-curves, so it follows

that the second branch of F is [(5)] and the third is [2, 1]. We have also Zl = [(k)] and Z̃l = [(m),−2− p]
for some non-negative integers k,m and p, hence G = [k + 1] and G̃ = [m+ 2]. If k 6= 1 then the chain G̃
is contracted before G, so m = 0 and we see that Z1 is touched at most once, a contradiction. Therefore
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k = 1 and we get m = 1. We see that Zlu is touched once by ϕf , so p = 1. Therefore D has two branching
components, B1 and B2, and D − B1 − B2 = T1 + T2 + T3 + T4, where T1B1 = T2B1 = 1, T1 = [2, 2],
T2 = [2], T3 = [2] and T4 = [2, 2, 2, 2]. We compute d(D) = −25, which is a contradiction by 2.1.3(ix).
Thus f is almost minimal.

We have now Zl = [(k)] and Z̃l = [(p)] for some positive integers k, p, so Zu = Z̃u = ∅, G̃ = [p+ 1] and
G = [k + 1]. We can assume that h ≥ h̃. Suppose n = 1. Then (h̃, h) = (2, 4) or (h̃, h) = (3, 3). Consider
the case (h̃, h) = (2, 4). Notice that Z̃2

1 = −2, so G̃ is not contracted by ϕf , hence p > 1. If k 6= 1 then
ϕf contracts only H, so p = k = 2 and the second branch of F is [2, 2, 1]. In this case d(D) = −9, a
contradiction with 2.1.3(ix). Therefore k = 1. We get p = 3 and Z2

1 = −3 and we infer that the second
branch of F is [2, 2] and the third is [1, 2]. Thus D has two branching components, B1 and B2, and
D−B1−B2 = T1 +T2 +T3 +T4 with T1 = [(5)], T2 = [2], T3 = [2] and T4 = [2]. We get d(D) = −16 and
gcd(µ̃, µ) = 4, a contradiction with 6.3.13(ii). Consider the case (h̃, h) = (3, 3). We can assume k ≥ p. If
p = 1 and k = 2 then the second branch of F̃ is [2, 2, 2] and the second branch of F is [2, 2], gcd(µ̃, µ) = 6
and d(D) = −36, a contradiction with 6.3.13(ii). If p = 1 and k = 3 then the second branch of F̃ is [2, 2]
and the second branch of F is [1, 2], gcd(µ̃, µ) = 4 and d(D) = −16, a contradiction with 6.3.13(ii). It
follows that p = k = 2. Then the second branches of F̃ and F are equal to [1, 2], so d(D) = −9, again a
contradiction with 6.3.13(ii).

We have now n = 2, so (h̃, h) = (2, 5) or (h̃, h) = (3, 4). Now Zl, Z̃l, G and G̃ are irreducible (−2)-
curves. If (h̃, h) = (2, 5) then gcd(µ̃, µ) = 2 and the second branch of F is [1, 2, 2, 2], hence d(D) = −4. If
(h̃, h) = (3, 4) then gcd(µ̃, µ) = 2, the second branch of F̃ is [2, 1] and the second branch of F is [1, 2, 2],
so d(D) = −4. In both cases we get a contradiction with 6.3.13(ii).

Lemma 6.4.2. If #E = 1, #∆ ≤ 1 and no maximal twig of D containing more than one component
contains a (−2)-tip then (S,D + ∆) is affine ruled. If additionally s = 4 then not all maximal twigs of D
are tips.

Proof. Let f : (S
†
, D† + ∆) → P1 be a pre-minimal affine ruling. Suppose D† 6= D. Then f has two

singular fibers, F and F̃ , and n = 1 (cf. 6.3.9). Clearly, Zl and Zu are adjoint admissible chains. The
components of Zl are not contracted by ϕf by 6.3.11(ii). If Zl ⊆ ∆ then Zl is irreducible, because #∆ ≤ 1.
By our assumption about maximal twigs of D if Zl ⊆ D† and Zl is not irreducible then it has a ≤ (−3)-
curve as a tip. In any case it implies that the component of F intersecting H is a (−2)-curve. Analogous
argument holds for F̃ , hence H meets two (−2)-curves in D†. Therefore D contains a non-branching
component with non-negative self-intersection, a contradiction with 6.1.2(ix).

Suppose that s = 4 and all maximal twigs of D are tips. Then D† = D by the first part of the
above lemma. If βD(H) ≤ 2 then there are two branching components in D, otherwise the maximal
twig containing H would not be a tip. Then by 3.1.5 one of them is a (−1)-curve. However, branched
(−1)-curve cannot be a component of a fiber, a contradiction. Thus H is a branching component of D
and there are more than two singular fibers. At least two of them do not contain a branching component
of D, hence contain unique D-components by our assumption. This implies that each of these two fibers
contains a component of ∆, a contradiction with #∆ ≤ 1.

Proposition 6.4.3. D is a fork.

Proof. Suppose D is not a fork. We will prove that Ê = [5], ε = 1 and s = 4 and then we will eliminate
this case in several steps. We prove successive statements.

(1) #E = 1 and ε 6= 0.

Proof. We have ε 6= 0 by 6.2.3(i). To prove #E = 1 we can assume ε 6= 2 by 6.4.1. Thus ε = 1, Ê is a
chain by 6.2.3(ii) and it satisfies (s− 4)|G| ≤ 7−d′(Ê)−d′(Êt) by 6.1.4(iii). Using 2 ≤ KE ≤ 3 this gives
only two cases for which #E 6= 1: s = 4 and Ê = [3, 3] or s = 4 and Ê = [3, 4]. By 6.1.4(i) in both cases
e+ δ < 3, which contradicts 6.1.4(iv).

(2) If K(K +D) 6= 0 then Ê = [5], ε = 1 and s = 4.
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Proof. Assume K(K + D) 6= 0. For ε = 2 we have K(K + D) = 3 − ε − EK = 0 by 6.4.1, so ε = 1 by
(1). Then KE = 3, so by 6.1.4(iii) s = 4 and Ê = [2, 5] or s ≤ 5 and Ê = [5]. In the first case we have
e = δ = 4

3 by 6.1.4, so maximal twigs of D are tips, a contradiction with 6.4.2. Suppose s = 5 in the
second case. Then e+ δ = 18

5 < 17
4 , which is impossible by 6.1.4(iv).

We choose a pre-minimal affine ruling π : (S
†
, D†) → C. Subdivisional modifications of D do not

change K(K + D), so K†(K† + D†) = K(K + D), where K† = K
S
† . According to 6.3.7 π has at least

two singular fibers. For some computations below it is useful to recall that if σ is a blowup of a smooth
complete surface and σ′, σ∗ denote respectively the proper and the full preimages then for any two divisors
A,B one has A ·B = σ′A · σ∗B.

(3) If D† ∩ F is not a chain for some fiber F of π then K(K +D) 6= 0.

Proof. Suppose F ∩D† is branched and K(K + D) = 0. Write F as F = F ∩D† + C + ∆1, where C is
a (−1)-curve, and ∆1 ⊂ ∆. We contract the chain C + ∆1 and successive (−1)-curves in F as long as
they are subdivisional for D†. Denote the images of D†, E and F by D(1), E(1) and F (1). Let K(1) be
the canonical divisor of the image of S. In general, if after some sequence of contractions we define D(i)

then we denote the appropriate images of E, F , etc. by E(i), F (i) etc. The contraction of C + ∆1 and
contractions subdivisional with respect to the image of D† do not change K†(K† +D†) and E(K† +D†),
i.e. K(1)(K(1) +D(1)) = K(K +D) = 0 and E(1)(K(1) +D(1)) = E(K +D) = EK. Moreover, D(1) has
the same number of branching components as D, so D(1) is branched.

Let D(1)
α be the (−1)-tip of D(1), and let D(2) be the image of D(1) after the contraction of D(1)

α . Let
D

(1)
β be the unique D(1)-component intersecting D(1)

α . We have h0(−K(2) −D(2)) + h0(2K(2) + D(2)) ≥
K(2)(K(2) + D(2)) = 1, so −K(2) − D(2) ≥ 0, otherwise 2(K(2) + D(2)) ≥ 0, which is impossible, since
κ(K(2) + D(2)) = −∞. For every component V of D(2) we have V (−K(2) −D(2)) = 2 − βD(2)(V ). Since
s ≥ 4, D(2) is branched and every branching curve of D(2), and hence every component of D(2) which is not
a tip, is in the fixed part of −K(2)−D(2). Suppose D(2)

β is not a tip of D(2), then −K(2)−D(2)−D(2)
β ≥ 0, so

−K(1)−D(1)−D(1)
β ≥ 0. Clearly, E(1) is in the fixed part of −K(1)−D(1)−D(1)

β , so −K(1)−D(1)−E(1) ≥ 0.

It follows that −(K† + D† + E) ≥ 0, a contradiction with κ(K† + D† + E) = 2. Thus D(2)
β is a tip of of

D(2).
Let D(3) be the image of D(2) after the contraction of D(2)

β . Since D(2)
β is a tip, D(2) has the same

number of branching components as D(1) (greater than one by our assumptions about D), hence D(3) is not
a chain. Moreover, F (3) is not a 0-curve, as the branching components of D†∩F have not been contracted.
We made two sprouting blowdowns, so K(3)(K(3) +D(3)) = K(1)(K(1) +D(1)) + 2 = K(K +D) + 2 = 2.
Riemann-Roch’s theorem gives h0(−K(3) − D(3)) ≥ 2. Since π has at least two singular fibers, we have
βD(H) > 1. Since D(3) is connected and is not a chain, H is in a fixed part of −K(3) −D(3). Let’s write
−K(3)−D(3) = H+R+

∑f
i=1Ai, where H+R is a fixed part, f > 0 and A2

i ≥ 0 (cf. 5.1.2(2)). Intersecting
with a generic fiber F ′ we have 1 = 1 + F ′R+ F ′

∑f
i=1Ai, hence F ′Ai = 0 and F ′R = 0, so R is vertical

and Ai ∼ F ′ for each i. We get that K(3) + D(3) + H + fF ′ + R ∼ 0. Intersecting with E(3) we get
0 ≥ E(3)(K(3) +D(3) +F ′) = E(2)(K(2) +D(2)−D(2)

α +F ′) = E(1)(K(1) +D(1))+E(1)(F ′−2D(1)
α −D(1)

β ) =

EK + E(1)(F (1)
0 − 2D(1)

α − D(1)
β ), which implies E(1)(F (1) − 2D(1)

α − D(1)
β ) < 0. This is a contradiction,

because F (1) is branched, so the multiplicities of D(1)
α and D

(1)
β in it are greater than one.

(4) Ê = [5], ε = 1 and s = 4.

Proof. Suppose (4) does not hold. Then by (2) and (3) H is the only branching curve in D†, so D† = D,
every singular fiber F of π has at most one branching component and F ∩ D is a chain. In particular,
there are exactly s singular fibers. Let c be the number of singular fibers which are chains. If F is such
a fiber then F ∩ ∆ 6= ∅ and F ∩ D is a tip, so ẽ(F ∩ D) ≤ 1

2 . Since s ≥ 4 and ∆ has at most three
connected components, we see that c < s, so we have an inequality ẽ(D) < (s − c) + c

2 = s − c
2 . Let’s

contract all singular fibers to smooth 0-curves without touching H. The contraction of chain fibers does
not affect K(K + D) and the contraction of any other singular fiber increases K(K + D) by one, so if
D̃ and S̃ are the images of D† and S

†
after contraction then D̃ ≡ H + sF ′ for a generic fiber F ′ and

KeS(KeS + D̃) = s− c. Putting n = −H2 we get s− c = KeS(KeS + D̃) = 8 + n− 2− 2s, so n = 3s− c− 6.
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Since 0 > d(D) = d1 . . . ds(n− ẽ(D)) we get s− c
2 > ẽ(D) > 3s− c− 6, so 12 ≥ 6s− c > 3s. Hence s ≤ 3,

a contradiction.

Denote the set of irreducible components of a divisor W by C(W ). We notice the following fact (recall
that T is the sum of maximal twigs of D, cf. 6.1.3):

(5) If R ⊆ D is a ≤ (−4)-tip of D then
∑

V ∈C(T )

V (2K + R) ≤ 1 and each V ∈ C(T ) satisfies

V (2K +R) ≥ 0.

Proof. Let m be a maximal natural number, such that E +m(K +D) ≥ 0. It is greater than one by (4)
and 6.1.2(vii). By (5) and (6) of 5.1.2 we can write E + m(K + D) =

∑
Ci, where C2

i < 0. Multiplying
both sides by E + 2K + R we have EK − 2 + m(4 − 2ε − EK + R(D − R)) =

∑
i Ci(E + 2K + R), so∑

i Ci(E + 2K + R) = 1 by (4). Suppose that Cj(E + 2K + R) < 0 for some j. Then CjK ≥ 0. Indeed,
if CjK < 0, then C2

j = −1 and Cj(E +R) ≤ 1. Simultaneously |K +D + Cj | = ∅ by the definition of m,
so either Cj is simple or it is a non-branching component of D, a contradiction. We get that Cj = R and
KR − 2 = R(2K +R) < 0, which is impossible by our assumption on R. Therefore Ci(E + 2K +R) ≥ 0
for each i. If V is a component of T then V (E + n(K +D)) = n(βD(V )− 2), so tips of D, and hence all
components of T , appear among Ci’s and we are done.

(6) There are no ≤ (−4)-tips in D.

Proof. Suppose T1 contains a ≤ −4-tip of D, denote it by R. By (5) we have 1 ≥
∑
V ∈C(T ) V (2K +R).

We have 0 ≤ V (2K + R) ≤ 1 for every V ∈ C(T ), so T − R consists of (−2)-curves and −5 ≤ R2 ≤ −4.
Maximal twigs of D other than T1 are tips, otherwise e ≥ 1

5 + 1
2 + 1

2 + 2
3 >

9
5 , a contradiction with 6.1.4(i).

If R2 = −5 then V (2K + R) = 0 for every V ∈ C(T − R), so R is a maximal twig, a contradiction with
6.4.2. Thus T1 = [4, (k − 1)] for some positive integer k, hence by 6.1.4(i) 9

5 ≥ e = 3
2 + 1

3+1/k , so k ≤ 3.
By 6.4.2 there is an affine ruling f of (S,D). For every singular fiber F the divisor F ∩ D is branched,
otherwise the maximal twig containing D ∩F has more than three components, a contradiction. Thus by
6.3.7 f has two singular fibers and we have h+ h̃ = n+ 5 by 6.3.13(i). This implies that one of h or h̃, say
h, is at least 4, so the second branch of respective singular fiber F contains at least two D-components,
hence includes T1. Let L be the unique S0-component of F . Now T1 +L should contract to a point. This
is possible only for k > 3, a contradiction.

(7) Maximal twigs of D are [2], [2], [3] and [3, 2].

Proof. We assume that d1 ≤ d2 ≤ d3 ≤ d4. By 6.1.4(i) and (iv) we have e ≥ 9
5 and δ ≥ 13

4 −e ≥
13
4 −

9
5 = 29

20 ,
so d1 = 2 and 2 ≤ d2 ≤ 3. If d2 = 3 then the lower bound on δ gives d3 = d4 = 3, and since by 6.4.2 not
all maximal twigs are tips, e ≥ 1

2 + 1
3 + 1

3 + 2
3 >

9
5 , a contradiction. Thus d2 = 2 and we have 1

d3
+ 1
d4
≥ 9

20 ,
so d3 ≤ 4. Since there are no (−4)-tips in D by (6), for d3 = 4 we have e ≥ 1 + 3

4 + 1
4 > 9

5 , which is
impossible, hence d3 ≤ 3. T3 is a (−3)-tip, otherwise e ≥ 3

2 + 1
3 >

9
5 . We get d4 ≤ 8 and e4 ≤ 9

5 −
4
3 <

1
2 ,

so T4 contains a (−3)-tip, hence T4 = [3, 3] or T4 = [3, (k)] for some k ∈ {0, 1, 2}. Only T4 = [3] and
T4 = [3, 2] satisfy 6.1.4(iv), so other cases are excluded. The case T4 = [3] is excluded by 6.4.2.

Now we see by 6.4.2 that there is an affine ruling f of (S,D). Exactly as in (6) we obtain that f has two
singular fibers and the second branch of one of them consists of an S0-component L and all components
of T4. Now again T4 + L should contract to a point, and we obtain a contradiction by checking that for
T4 = [3, 2] this is impossible.

Lemma 6.4.4. Let P ≡ (K+D+ Ê)+ and let B be the branching component of D. Put b = −B2. Then:

(i) b ∈ {1, 2} and b < ẽ,

(ii) δ < 1,

(iii) P ≡ 1−δee−b (B +
∑3
i=1 BkT ti ),

(iv) Bk2 Ê = − (1−δ)2ee−b + e− 1− ε.



58 CHAPTER 6. κ(S0) = 2 AND κ(S′) = −∞

Proof. (i) 0 > d(D) = d1d2d3(b− ẽ) ≥ b− ẽ by 1.1.1(i) and 2.2.3(ii). Now ẽi < 1, so b < ẽ < 3 and we get
b ∈ {1, 2} by 6.1.2(ix).

(ii) PV = 0 for every component V of T + Ê, because T + Ê ⊂ (B +D+ Ê)−. Components of D+ Ê
generate NS(S)⊗Q, so PB 6= 0, otherwise P ≡ 0 and hence κ(S0) would be smaller than two. We infer
that 0 < BP = B(K +D − BkD) = 1− δ.

(iii) Both P and B +
∑3
i=1 BkT ti intersect trivially with all components of T + Ê, so they are linearly

dependent in NS(S)⊗Q, moreover PB = 1− δ and (B +
∑3
i=1 BkT ti )B = ẽ− b.

(iv) We compute P2 = (1 − δ)2/(ẽ − b)2(B2 +
∑3
i=1 ẽi) = (1 − δ)2/(ẽ − b), so now (iv) follows from

6.1.2(iii).

Remark 6.4.5. If KT is bounded (for example this is the case when we can bound the determinants
d1, d2, d3) then there is only finitely many possibilities for the dual graphs of D and Ê. Indeed, by 6.2.1
KE + ε ≤ 5 and by 6.4.4(i) b ∈ {1, 2}. Now it is enough to bound #Ê + #D, and this is done using
6.1.2(vi).

Lemma 6.4.6. If b = #E = 1 then any affine ruling of S \∆ has two singular fibers.

Proof. Let f : (S
†
, D† + ∆) → P1 be an affine ruling of S \∆. We have ΣS0 = 0, because #E = 1. By

6.3.7 f has more than one singular fiber. Suppose it has more than two singular fibers. Clearly, each fiber
contains some D-components, so we infer that D† = D, B is horizontal and f has three singular fibers
F1, F2, F3. Let Li and ∆i for i = 1, 2, 3 be respectively the S0-component and the connected component of
∆ contained in Fi (it is possible that ∆i = 0). Let m be the greatest integer, such that B+m(K+D) ≥ 0.
By 5.1.2(5) m > 0, because BD = 3 − b > 1. Write B + m(K + D) =

∑
j cjCj for cj > 0 and C2

j < 0.
Multiplying by the generic fiber F ′ we get 1 −m =

∑
j cjF

′Cj , so m = 1 and F ′Cj = 0, hence all Cj ’s
are vertical. Let D′ be the divisor consisting of vertical components of D not intersecting B. For any
component D0 ⊆ D′ we have D0(K+D+B) = βD(D0)−2. Since for each Fi the divisor Fi∩D is a chain,
the components of D′ are in the fixed part of K + D + B. Each Li intersects D′, so it follows that Li’s,
and hence all components of ∆ are in the fixed part of K+D+B. Now for each i we have E(Li+∆i) ≥ 2,
otherwise Li would be simple. Thus we get EK = E(K +D+B) = E(

∑
j cjCj) ≥

∑
iE(Li + ∆i) ≥ 6, a

contradiction with 6.2.2.

Corollary 6.4.7. If ∆ has three connected components then b = ε = 2.

Proof. If ∆ has three connected components then Ê is a fork, so ε = 2 by 6.2.3(ii) and we get #E = 1.
Since ∆ does not contain a fork, S \∆ is affine ruled. We have ΣS0 = 0, so singular fibers have unique
(−1)-curves. It follows that each connected component of ∆ is contained in a different fiber, hence b = 2
by 6.4.6.

6.5 Surface W .

We define W = S − (T + Ê) (T = D−B, where B is the branching component of D). Clearly, S0 ⊂W ⊂
S ⊂ S and χ(W ) = χ(S0) + χ(C∗∗) = −1. Our goal is to prove that κ(W ) = 2. To achieve this we give
couple of technical lemmas (combining arguments which are often subtle with respect to input data) and
use the results of some computer programs we wrote.

Lemma 6.5.1. If R is an ordered admissible chain then the equation (*) e(R) + α/d(R) = 1 has the
following solutions:

(i) R = [2, . . . , 2, 2] for α = 1,

(ii) R = [2, . . . , 2, 3] for α = 2,

(iii) R = [2, . . . , 2, 3, 2] or R = [2, . . . , 2, 4] for α = 3.
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Proof. Using a recurrence formula for a determinant of a chain (cf. 1.1.1(i)) it is easy to check that
R = [2, a1 . . . , ak] satisfies (*) if and only if [a1, . . . , ak] does, so we may assume that R = [a1, . . . , ak] with
a1 ≥ 3. We have d′(R) + α = d(R) = a1d

′(R) − d′′(R), so then 2d′(R) ≤ (a1 − 1)d′(R) = d′′(R) + α <
d′(R) + α, hence d′(R) < α ≤ 3 and k ≤ 2. For d′(R) = 2 we get R = [3, 2], for d′(R) = 1 we get R = [4]
or R = [3] and for d′(R) = 0 we get R = ∅.

Lemma 6.5.2. If F = [(k), c+ 1, a1, . . . , an] is admissible then e(F ) < kc−(k−1)
(k+1)c−k .

Proof. By induction using the fact that for a chain T = [c, . . .] the equality e(T ) = 1
c−e′(T ) holds.

Lemma 6.5.3.

(i) W is almost minimal and K + T + Ê ≡ λP + Bk Ê + Bk∗ T (cf. 6.1.3), where λ = 1− ee−b
1−δ .

(ii) If κ(W ) ≥ 0 then λP ≡ (K + T + Ê)+.

(iii) If κ(W ) ≥ 0 then b+ 1 ≥ ẽ+ δ, δ + 1
|G| ≥ 1 and ε 6= 0. The inequalities are strict if κ(W ) = 2.

(iv) If κ(W ) 6= 2 then κ(W ) ≤ 0, ẽ+ δ ≥ 2 and b = 1.

Proof. (i) Recall that Bk∗ T = BkT +BkT t. Using 6.4.4(iii) we have K+T + Ê ≡ P−B+BkD+Bk Ê =
P − B −

∑3
i=1 BkT ti +

∑3
i=1 Bk∗ Ti + Bk Ê = (1 − ee−b

1−δ )P + Bk∗ T + Bk Ê. Suppose W is not almost
minimal. Then there exists a (−1)-curve C, such that C + Bk Ê + Bk∗ T is negative definite. Since
Supp(Bk Ê + Bk∗ T ) = Supp(Ê + T ), (K + T + Ê)− has at least #T + #Ê + 1 = b2(S) numerically
independent components, a contradiction with the Hodge index theorem.

(ii) From (i) and from the definition of Bk we see that P intersects trivially with every component of
T + Ê. If κ(W ) ≥ 0 then by the properties of Zariski decomposition the same is true for (K + T + Ê)+,
so (K + T + Ê)+ ≡ λP (cf. 2.2.3(i)).

(iii) We have χ(W ) = −1, so δ + 1
|G| ≥ 1 + 1

3λ
2P2 by the Kobayashi inequality (see 1.6.13(ii)). By

(ii) and 1.6.8 κ(W ) > 0 (κ(W ) = 0) if and only if λ > 0 (respectively λ = 0), which is equivalent to
b + 1 > ẽ + δ (respectively b + 1 = ẽ + δ). Suppose ε = 0. Then Ê = [|G|] by 6.2.3(i), so by 6.1.4(i)
δ + 1

|G| ≤ e + 1
|G| ≤ 1. Together with the inequality above this implies e = δ, so maximal twigs of D are

tips, a contradiction with 6.1.2(vi).

(iv) Suppose κ(W ) = 1. Then by (ii) λ2P2 = 0, so λ = 0 and (K+T + Ê)+ ≡ 0, a contradiction. Thus
κ(W ) ≤ 0 and we have b+ 1 ≤ ẽ+ δ, because λ ≤ 0 in this case. Suppose b = 2. Since ẽi + 1

di
≤ 1, we get

ẽi + 1
di

= 1 for each i, so D consist of (−2)-curves by 6.5.1(i). By 6.4.4(iv) Bk2 Ê = 1− ε, so ε = 2, Ê is
a chain by 1.3.5(v) and d′(Ê) + d′(Êt) + 2 = d(Ê). One checks easily that this equation can be satisfied
only if ∆ is connected, hence by 6.4.1 Ê = [3, (k)] for some k ≥ 0. Then d′(Ê) + d′(Êt) + 2 > d(Ê), a
contradiction.

To make further considerations easier (or even possible) it is crucial to prove that D does not contain
small 0-divisors, namely the chains [2, 1, 2] and [3, 1, 2, 2]. We prove this under additional assumptions and
in the second case we restrict ourselves to proving that if D contains [3, 1, 2, 2] then D and Ê are special.
This will be sufficient for our later arguments to work.

Lemma 6.5.4.

(i) If KTi = 0 for some i then h0(2K + T + Ê) ≥ 3− b− ε.

(ii) Assume κ(W ) ≤ 0. Then D does not contain the chain [2, 1, 2] and if D contains a chain [3, 1, 2, 2]
then E = [3].

(iii) Assume #E = 1. Then D does not contain the chain [2, 1, 2]. If D contains a chain [3, 1, 2, 2] then
∆ = 0 and some Ti satisfies KTi = 0 and #Ti ≥ 5. The (−3)-curve of [3, 1, 2, 2] is not a tip of D.
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Proof. (i) Let T1 consist of (−2)-curves. Riemann-Roch’s theorem gives h0(−K−T2−T3− Ê) +h0(2K+
T2 +T3 + Ê) ≥ 1

2 (K+T2 +T3 + Ê)(2K+T2 +T3 + Ê) + 1 = K(K+D+ Ê−T1−B)−3 + 1 = 3− b− ε. If
−K − T2 − T3 − Ê ≥ 0 then B, and hence T1, is in the fixed part, so −K −D− Ê ≥ 0, which contradicts
κ(S0) = 2. Thus h0(2K + T2 + T3 + Ê) ≥ 3− b− ε.

(ii) Suppose D contains a 0-divisor F∞ = [2, 1, 2] or F∞ = [3, 1, 2, 2]. Since D is snc-minimal, the
(−1)-curve of F∞ is B, the branching component of D. The divisor F∞ gives a P1-ruling p : S → P1 with
F∞ as a fiber. Ê is vertical because F∞Ê = 0, so ΣS0 = h + ν − 2 = h − 1 ≤ 2. Denote the fiber of p
containing Ê by FE . We have FED ≤ 5 because µ(B) ≤ 3.

We first need to prove that all S0-components are exceptional. For any vertical S0-component L we
have L(K + T# + Ê#) = λPL. By 6.4.4 we have also LP > 0 because LD > 0. Suppose L2 ≤ −2. Then
L(T# + Ê#) ≤ λLP, which is possible only if λ = LT# = LÊ# = 0. It follows that LÊ = L, so by
6.1.2(ii) LD > 1, say LT1, LT2 > 0. Then LT# = 0 implies that T1 and T2 are (−2)-chains, so by 6.5.3(iii)
we get ẽ3 + 1

d3
= 0. This is a contradiction, so we are done.

Let Dh and Dv be respectively the divisor of horizontal components of D and the divisor of D-
components contained in FE . Let D1 be the multiple section contained in Dh. Denote the (−1)-curves
of FE by L1, L2, . . . , Lσ(FE). Clearly, Dv has at most three connected components and they are chains.
We will prove that Dh contains a section and Dv 6= 0. Suppose Dh does not contain a section. In
this case Dv is connected and Dh is either a 2-section or a 3-section, so ΣS0 = 0 and σ(FE) = 1. We
have FED ≤ 3 and since L1 is not simple, |L1 ∩ D| ≥ 2, so Dh intersects L1 in exactly one point and
Dv 6= 0. This gives µ(L1) + 1 ≤ FEDh ≤ 3, so µ(L1) = 2 and we get KÊ = 0, a contradiction. Suppose
Dv = 0. Since Li are not simple, |Li ∩ Dh| ≥ 2 for each i, so σ(FE) ≤ 2. Since Dh contains a section,
the exceptional component intersecting this section, say L2, has multiplicity one, hence σ(FE) = 2. The
second exceptional component has also multiplicity one, otherwise it could intersect only D1, which would
imply D1FE ≥ µ(L2)D1FE ≥ 4. This shows that FE = [1, (k), 1] for some k ≥ 0, a contradiction with
KÊ 6= 0. Let α be the number of connected components of Dv. We can assume that L1 intersects Ê and
Dv. Notice that each Li meeting Ê intersects Dh, otherwise it would be simple. We consider two cases.

Suppose Ê intersects more than one Li, say L2Ê > 0. We have 5 ≥ FEDh ≥ (Dv + µ(L1)L1 +
µ(L2)L2)Dh and µ(L2)L2Dh ≥ 2, so α + µ(L1)L1Dh ≤ 3, hence α = 1 and µ(L1) = 2. This gives
FED = 5, so F∞ = [3, 1, 2, 2] and D contains three horizontal components. In particular, no maximal twig
of D is contained in F∞. We have now L2Dv = 0, so some section from Dh intersects L2, which gives
µ(L2) = 1. Moreover, there are no more (−1)-curves in FE . Defining F ′E as the fiber FE with L1 (only
L1) contracted we find that the (−1)-curves, and hence all components of F ′E , have multiplicity one, so
F ′E = [1, (k), 1] for some k ≥ 0. It follows that FE = [1, (k − 1), 3, 1, 2], hence E = [3] and we are done.

Now suppose LiÊ = 0 for i 6= 1, i.e. L1 is the only S0-component intersecting Ê. Consider the
contraction of (−1)-curves in FE different than L1 (if there are any) until L1 is the unique exceptional
component in the image F ′E of the fiber. This contraction does not touch Ê, so Ê is one of the connected
components of F ′E − L1. Since L1Dh > 0, we have µ(L1) ≤ 3 because Dh contains no n-sections with
n > 3. It follows that either F ′E = [2, 1, 2] or F ′E = [3, 1, 2, 2], hence Ê = [3] because KE 6= 0. We have
also µ(L1) = 3, so Dh contains a 3-section, which implies F∞ = [3, 1, 2, 2] and we are done.

(iii) Let p, F∞ and FE be as in (ii). Here the argument is tricky. By 6.3.12 there exist a pre-minimal
affine ruling of S \∆, let f be its extension as in 6.3.9. We use the notation of 6.3.9. Notice that in general
f is not defined on S. However, the components of F − Z1 − Zl are not touched by ϕf . In particular, Zl
and the divisor of D-components of the second branch of F (F is the fiber of f , not of p) are maximal
twigs of D. We denote them by T2 and T1 respectively. Similarly the unique (−1)-curve C contained in
F is not touched by ϕf , so it is exceptional on S and satisfies CD = 1, CB = 0 and C(∆ + E) ≥ 2,
because it is not simple. Now let us look how does C behave with respect to p. Since Ê is connected,
C is horizontal for p and F∞C = FEC ≥ 2. We have CD = 1, so C intersects F∞ − B in a component
D0 ⊆ T1 of multiplicity greater than one, hence F∞ = [3, 1, 2, 2] and D0 is the middle (−2)-curve. We
now look back at the fiber F of f and we find that after contracting C the component D0 becomes a
(−1)-curve, so ∆′ = 0 and T1 consists of (−2)-curves. Notice that if f is almost minimal then applying the
above argument to C̃ instead of C we get that C̃ intersects D0, which contradicts the fact that C and C̃
intersect different maximal twigs of D. Thus f is not almost minimal. The contraction of T1 +C touches
Z1 precisely x = #T1 times, so Z2

1 = −x−1, hence ϕf touches Z1 precisely k times. The proper transform
of Z̃lu on S is not a (−2)-curve, otherwise D would contain the chain [2, 1, 2], which was excluded above.
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Therefore by 6.3.11(ii) we get x ≥ 5 and ∆ = 0.
We need only to prove that the (−3)-curve of F∞ is not a tip of D. Suppose it is. If T3 = [3] then

Z̃l is a tip, so G̃+ Z̃u + Z̃1 consists of (−2)-curves, which implies that ϕf touches Z1 once, contradicting
6.3.11(ii). Thus T2 = Zl = [3] and we get Zu + G = [2, 2]. Then G̃ = [4], Z̃u = [(s)] for some s ≥ 0 and
Z̃l = [2, 2, s + 2]. We have Z2

1 = −k − 1 and now ϕf touches Z1 s + 3 times, so s = k − 3. Then Z̃lu is
touched once by ϕf and has self-intersection −k + 1, hence its image on S has self-intersection −k. By
6.3.11(ii) we get −k = 2− k, a contradiction.

Lemma 6.5.5. If κ(W ) ≤ 0 then ε = 2, one of the maximal twigs of D is a (−2)-chain and some other
is [(k), 3] for some k ≥ 0. This (−2)-chain is a tip of D, unless D contains the chain [3, 1, 2, 2].

Proof. Notice that by 6.5.4 if D contains the chain [3, 1, 2, 2] then we can assume that T1 is a (−2)-chain.
We will now prove that if D does not contain the chain [3, 1, 2, 2] then T1 = [2]. We explore intensively
the inequality 6.5.3(iv): ẽ + δ ≥ 2. Notice that ẽi + 1

di
≤ 1 for each i. Assume that d1 ≤ d2 ≤ d3. We

prove successive statements.

(1) T1 = [3] or T1 ends with a (−2)-curve.

Proof. Suppose not. If T1 ends with a (−3)-curve then T2 and T3 cannot end with two (−2)-curves by
6.5.4. Moreover, if one of T2 or T3, say T2 ends with a (−2)-curve, then T3 does not, so using 6.5.2 we get
ẽ1 <

1
2 , ẽ2 <

2
3 and ẽ3 <

1
2 , so ẽ < 1

2 + 2
3 + 1

2 = 5
3 . We use continuously this type of argument below with

less details. If T1 ends with a ≤ (−4)-curve then in case some other Ti ends with a (−3)-curve we have
ẽ < 1

3 + 1
2 + 2

3 = 3
2 and ẽ < 1

3 + 1
3 + 1 = 5

3 if not. This gives 3
d1
≥ δ ≥ 2− ẽ > 2− 5

3 = 1
3 , so d1 ≤ 8. By

1.1.2 we have to exclude the following possibilities for T1: [4], [5], [6], [7], [8], [2, 3], [2, 4], [2, 2, 3], [3, 3].

Case 1. T1 is one of [2, 4], [5], [6], [7] or [8]. In each case ẽ1 + 1
d1
≤ 3

7 . If T3 (or similarly T2) ends with
two (−2)-curves then ẽ2 <

1
3 and we get 1

d2
< 2− 3

7 − 1− 1
3 , so d2 ≤ 4, a contradiction with d2 ≥ d1. In

other case ẽ < 3
7 + 2

3 + 1
2 , so 2

d2
≥ 1

d2
+ 1

d3
> 2− ẽ > 17

42 and again d2 ≤ 4, a contradiction.

Case 2. T1 is one of [2, 2, 3] or [3, 3]. Then ẽ1 + 1
d1
≤ 4

7 and ẽ2 + ẽ3 <
1
2 + 2

3 , so 2
d2
≥ 2 − ẽ − 1

d1
> 1

4
and d2 ≤ 7. Since d1 ≤ d2 we get T1 = [2, 2, 3] and d1 = d2 = 7. By renaming T1 with T2 we can assume
that T2 does not end with a (−2)-curve. In fact we can assume that T2 = [2, 2, 3] because other cases ([7]
and [2, 4]) were excluded above, hence ẽ3 + 1

d3
≥ 6

7 . We have ẽ3 <
2
3 because T3 does not end with two

(−2)-curves, so 1
d3
> 6

7 −
2
3 and d3 ≤ 5 < d1, a contradiction.

Case 3. T1 = [4]. We have ẽ1 + 1
d1

= 1
2 , so 1

d2
+ 1

d3
≥ 3

2 − ẽ2 − ẽ3. If T2 or similarly T3 ends with a
≤ (−4)-curve then 1

d2
≥ 3

2 − ẽ2 − 1 > 1
6 , so d2 ≤ 5. If T2 (or similarly T3) ends with a (−3)-curve, then

2
d2
> 3

2 −
2
3 −

1
2 = 1

3 , so again d2 ≤ 5. Notice that T2 6= [5] (similarly T3 6= [5]), otherwise 1
d3

+ ẽ3 ≥ 11
10 ,

which is impossible. If T2 is one of [2, 3], [3, 2] or [2, 2, 2, 2] then we have respectively ẽ2 + 1
d2

= 3
5 ,

4
5 , 1 and

using 6.5.4 and 6.5.2 we bound ẽ3 from above respectively by 2
3 ,

1
2 and 1

3 , which gives d3 = 5. However, we
check easily that then the inequality 1

d2
+ ẽ2 + 1

d3
+ ẽ3 ≥ 3

2 cannot be satisfied. Thus d2 = 4. By renaming
T1 and T2 we can assume that T2 6= [2, 2, 2], so T2 = [4]. Then ẽ3 + 1

d3
≥ 1 so T3 = [2, 2, 2] by 6.5.1 and

after renaming T1 and T3 we get a contradiction.

Case 4. T1 = [2, 3]. We have ẽ2 + ẽ3 + 1
d2

+ 1
d3
≥ 7

5 and ẽ2 + ẽ3 <
2
3 + 1

2 , so d2 ≤ 8. Suppose d2 = 5.
We can assume that T2 = [2, 3], because the case T1 = [5], T2 = [2, 3] was considered above and in other
cases T2 ends with a (−2)-curve, so after renaming T1 and T2 we get a contradiction. If d3 6= 5 then
ẽ3 ≥ 4

5 −
1
d3
> 3

5 , hence T3 ends with two (−2)-curves, a contradiction. Therefore d3 = 5 and again we
can assume that T3 = [2, 3], so ẽ2 + ẽ3 + 1

d2
+ 1

d3
= 6

5 , a contradiction. Thus 6 ≤ d2 ≤ 8. If T2 = [d2] then
1
d3

+ ẽ3 >
7
5 −

2
5 = 1, a contradiction. In particular d2 6= 6, so T2 is one of [2, 2, 3], [3, 2, 2], [2, 4], [3, 3],

[4, 2] or [2, 3, 2]. T2 and T3 cannot end two (−2)-curves, so T2 = [3, 2, 2] is excluded and ẽ3 <
2
3 . If T2 is

[4, 2] or [2, 3, 2] then we have a better upper bound ẽ3 <
1
2 , in any case we obtain ẽ3 + ẽ2 + 1

d2
≤ 5

4 , hence
d3 ≤ 6 < d2, a contradiction.

(2) T1 is a tip.

Proof. Suppose not. We have ẽ2 + ẽ3 + 1
d2

+ 1
d3
≥ 1. By (1) T1 ends with a (−2)-curve, so T2 and T3 do

not end with (−2)-curves, hence ẽ2 + ẽ3 <
1
2 + 1

2 = 1 and from the inequality ẽ+ δ ≥ 2 we get ẽ1 + 3
d1
> 1.

This gives d′(T t1) = d(T t1)− 1 or d′(T t1) = d(T t1)− 2, so T1 = [(k)] or [3, (k)] for some k > 0 by 6.5.1.
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Suppose k ≥ 2. In this case T2 and T3 end with a ≤ (−4)-curve, so ẽ2, ẽ3 <
1
3 . Then 1

d2
+ 1

d3
> 1

3
and we get d1 ≤ d2 ≤ 5, which is possible only if T2 is a tip and T1 = [(k)] for some k ∈ {2, 3, 4}. Since
now 1

d3
≥ 1 − ẽ3 − 2

d2
> 2

3 −
1
2 , we see that d3 ≤ 5, so T3 is also a tip. Then ẽ2 = 1

d2
and ẽ3 = 1

d3
,

so 1
d2

+ 1
d3
≥ 1

2 and we conclude that T2 = T3 = [4] and T1 = [(k)] for some k ∈ {2, 3}. Using 6.4.4
we compute Bk2 Ê = −ε. The matrix Q(Ê) is negative definite, so ε 6= 0, and in fact ε = 1 by 1.3.6,
hence Ê is a chain by 1.3.5(v). By 2.1.3(ix) 8(k − 1)/d(Ê) is a square and by 6.2.2 and 6.1.2(vi) we get
#Ê = 8 +KE − k ≥ 10− k. This implies that k = 3 and d(Ê) = 16. However, it is easy to check that no
chain Ê with d(Ê) = 16 satisfies #Ê −KÊ = 5, a contradiction.

We are left with the case T1 = [3, 2], for which ẽ2 + 1
d2

+ ẽ3 + 1
d3
≥ 6

5 . The twigs T2 and T3 cannot
end with a (−2)-curve, so ẽ2, ẽ3 <

1
2 . Suppose T2 or T3 ends with a ≤ (−4)-curve. Then ẽ2 + ẽ3 <

1
2 + 1

3 ,
so 1

d1
+ 1

d2
> 1

3 and we get d1 = d2 = 5, hence T2 = [5] or T2 = [2, 3]. If T2 = [5] then 1
d3
> 4

5 −
1
2 . If

T2 = [2, 3] then by assumption T3 ends with a ≤ (−4)-curve, so ẽ3 <
1
3 and 1

d3
> 3

5 −
1
3 . In both cases

we get d2 ≤ 3, a contradiction. Thus both T2 and T3 end with a (−3)-curve, so ẽ2 + ẽ3 < 1 and we get
d2 ≤ 9. However, admissible chains with d ≤ 9 ending with (−3)-curve satisfy ẽ + 1

d ≤
3
5 (cf. 1.1.2), the

equality occurs only for [2, 3]. Hence 1
d3
≥ 3

5 − ẽ3 >
1
10 , so d3 ≤ 9 too. This implies T2 = T3 = [2, 3]. Using

6.4.4 we compute Bk2 Ê = 1
5 − ε, hence ε 6= 0. We compute d(D) = −50, so d(Ê) ∈ {2, 50} by 2.1.3(ix).

By 6.1.4(i) |G| ≤ 7 and since G < GL(2,C) is small, it is abelian, hence Ê is a chain and d(Ê) = 2, a
contradiction with KE 6= 0.

(3) T1 6= [3].
Proof. Suppose T1 = [3]. We have ẽ2 + ẽ3 + 1

d2
+ 1

d3
≥ 4

3 , so since ẽ2 + ẽ3 <
2
3 + 1

2 , we get 1
d1

+ 1
d2
> 1

6 ,
which gives d2 ≤ 11.
Case 1. Suppose T2 6= [3] or T3 does not end with [3, 2]. We prove that d3 ≤ 42. For d2 > 6 the inequality
1
d1

+ 1
d2
> 1

6 gives d3 ≤ 42. We can therefore assume that d2 ≤ 6. If T2 = [3, 2] then ẽ2 + 1
d2

= 4
5 and T3

does not end with a (−2)-curve, so 1
d3
> 4

3−
4
5−

1
2 and d3 < 30. If T2 = [4], [5], [6] or [2, 3] then ẽ2 + 1

d2
≤ 3

5

and since T3 does not end with two (−2)-curves, ẽ3 <
2
3 , which gives d3 ≤ 14. Thus we can assume that

T2 = [3], hence ẽ3 + 1
d3
≥ 2

3 . If T3 ends with a ≤ (−3)-curve then 1
d3

> 2
3 −

1
2 , so d3 ≤ 5. If T3 ends

with [v, 2] for some v > 3 then 1
d3
> 2

3 −
3
5 , so d3 ≤ 14 and we are done. Now notice that whenever d3 is

bounded, by 6.4.5 there are finitely many possibilities for the dual graphs of D and Ê. Using a computer
program we checked that the conditions d2 ≤ 11, 6.1.2(vi), 6.1.4, 6.2.5, 6.4.4 and 6.3.13(ii) (which implies
that −d(D)/d(Ê) is a square of an integer) are satisfied only in two cases:

(i) T1 = [3], T2 = [3], T3 = [3, (6)] and Ê = [2, 3, 4],

(ii) T1 = [3], T2 = [4], T3 = [2, 2, 2] and Ê is a fork with a (−2)-curve as a branching component and
maximal twigs [2], [2], [2, 2, 3].

In both cases D contains the chain [3, 1, 2, 2], a contradiction.
Case 2. Suppose T2 = [3] and T3 = T0 + [3, 2]. We will determine T0. Since for a chain beginning with a
(−c)-curve one has d = cd′−d′′, we get from ẽ+ 1

d3
≥ 2

3 that d′(T t0)+3 ≥ d(T t0), so by 6.5.1 T3 = [(k), 3, 2],
[3, (k), 3, 2], [4, (k), 3, 2] or [2, 3, (k), 3, 2] for some k ≥ 0. We conclude that KT ≤ 5, hence 6.4.5 again
reduces the problem to checking finitely many cases (here Noether formula implies k ≤ 9, which gives
d3 ≤ 102). We checked that each of them leads to a contradiction.

To finish the proof we have to show that ε = 2 and one of T2 or T3 is [(k), 3] for some k ≥ 0. Since D
cannot contain a chain [2, 1, 2], T2 and T3 end with ≤ (−3)-curves. We have ẽ2 + 1

d2
+ ẽ3 + 1

d3
≥ 1 and

the inequality is strict for κ(W ) = −∞. Using 6.5.1 it is easy to check that an admissible chain R ending
with a ≤ (−3)-curve and satisfying ẽ(R) + 1

d(R) ≥
1
2 is either [4] or [3, (k), 3] or [(k), 3] for some k ≥ 0.

Moreover, the inequality is strict only in the last case, hence if κ(W ) = −∞ then T2 or T3 is of type [(k), 3]
and we are done, because by 6.5.4(i) ε = 2 then. We can therefore assume κ(W ) = 0. For convenience we
put formally [3, (−1), 3] = [4], then we have d([3, (k − 2), 3]) = 4k for any k ≥ 1.

Suppose ε ≤ 1 or T2, T3 are not of type [(k), 3]. In the second case we can write T2 = [3, (x − 2), 3],
T3 = [3, (y − 2), 3] with 1 ≤ x ≤ y. We argue that we can do the same in the first case. Indeed, if ε ≤ 1
then by 6.5.4 2(KS + T + Ê) ≥ 0, so by 1.6.7(ii) [2(KS + T# + Ê#)] ∼ U for some effective U . Then
KS + T# + Ê# ≡ 0 implies U + {2(KS + T# + Ê#)} ≡ 0, hence 2 Bk∗ Ti and 2 Bk Ê are Z-divisors.
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Since T2, T3 are not (−2)-chains, we obtain 2 Bk∗ Ti = Ti for i = 2, 3. It is easy to see that an admissible
chain R satisfying Bk∗R = 1

2R is [3, (k), 3] for some k ≥ −1, so we are done. Using 6.4.4(iv) we compute
Bk2 Ê = −ε, hence ε = 1 and the argument above shows that we can write Ê = [3, (z − 2), 3] with z ≥ 1.
By 6.1.2(vi) x+y+z+#T1 = 12, hence 1 ≤ x, y,#T1 ≤ 9 and 1

#T1
+ 1
x + 1

y + 1
12−x−y−#T1

≥ 1 by 6.5.3(iii).

This inequality is satisfied only for (#T1, x, y) = (1, 1, 9), hence T2 = [4], T3 = [3, (7), 3] and Ê = [4]. By
6.4.2 (S,D) is affine ruled and since b = 1, B is horizontal and the ruling has three singular fibers. This
contradicts 6.4.6.

Proposition 6.5.6. κ(W ) = 2.

Proof. Suppose κ(W ) ≤ 0. Then b = 1, by 6.5.5 ε = 2 and one of the maximal twigs of D consists of
(−2)-curves, so #E = 1. Denote the coefficient of E in Bk Ê by wE . We prove successive statements.

(1) If wE > 1
2 then Ê is a chain and ∆ is connected. If wE = 1

2 then either Ê is a fork with maximal
twigs [3], [2], [2] or Ê = [2, 3, 2].

Proof. Suppose Ê is a fork. By 6.2.3(iii) we know that ∆ does not contain a fork and by 6.4.7 E is not
the branching component of Ê, so Ê is of type (b1) (cf. 6.2.5), hence the maximal twig of Ê containing
E is equal to [(k), 3] for some k ≥ 0. Using 1.3.2(ii) and the definition of a bark of an admissible fork
it is a straight computation to check that wE ≤ 1

2 in each case and the equality occurs only for a fork
with maximal twigs [3], [2], [2]. If Ê is a chain then Ê = [(m − 1), 3, (m̃ − 1)] for some m, m̃ ≥ 1 and
wE = m+ em

mem+m+ em = 1− 1/(1 + 1
m + 1em ), so wE ≥ 1

2 if and only if 1
m + 1em ≥ 1, hence (1) follows.

By 6.3.12 we can consider a pre-minimal affine ruling f : (S
†
, D†+∆)→ P1 of S \∆. We have ΣS0 = 0,

so each singular fiber of f has a unique S0-component, which is exceptional. We use the notation 6.3.9.
Since b = 1 and Z2

1 ≤ −2, n = 1 and by 6.3.13 h+ h̃ = 5, so either (h, h̃) = (3, 2) or (h, h̃) = (4, 1). Write
∆′ = [(m− 1)], ∆̃ = [(m̃− 1)] for some m, m̃ ≥ 1. The maximal twig of D† contained in the first branch
of F , call it T2, and the one contained in the second branch of F , call it T1, are not touched by ϕf , hence
they are maximal twigs of D.

Let π : S → U be the contraction of T1 + C + ∆′ to a (smooth) point. Since b = 1, the image of
B has nonnegative self-intersection, because this contraction touches B at least once. Blow up B on the
intersection with T3 until it decreases to zero. Denote the proper transform of B by B̃, the resulting
surface by Ũ and the morphism by ρ : Ũ → U . The center of ρ lies outside T1 +C + ∆′, so these blowups
can be done in different order, i.e. we can first blow up on the intersection of B and T3 and define a
morphism ρ̃ : S̃ → S and then contract the proper preimage of T1 + C + ∆′ by a morphism π̃ : S̃ → Ũ .

S̃

eρ
��

eπ // Ũ

ρ

��

η // P1

S
π // U

Clearly, ρ ◦ π̃ = π ◦ ρ̃. Consider the P1-ruling η : Ũ → P1 induced by B̃. Denote by T̃3, Ẽ ⊆ Ũ the reduced
inverse images of T3 and E respectively. Put D̃ = B̃ + T2 + T̃3. Let D2 ⊆ T2 and D3 ⊆ T̃3 be the sections
of η contained in D̃ and let F ′ be the generic fiber. Since ΣS0 = 1 for the ruling η ◦ π̃, there exists a unique
singular fiber F1 with σ(F1) = 2. Let M1, M2 be its S0-components.

(2) M1 and M2 are (−1)-curves. If there exists another singular fiber of η then F1 = [1, (m̃− 1), 1].

Proof. Suppose there is another singular fiber F0. Notice that vertical (−1)-curves are S0-components.
We have σ(F0) = 1 and F0 is a column fiber by 5.1.8(ii), hence it contains components of T2 and T̃3. Then
F1 does not contain any D̃-component. Each Mi intersects D2 or D3, so has multiplicity one. It follows
that both Mi’s are (−1)-curves and F1 = [1, (m̃− 1), 1], so we are done. We can therefore assume that F1

is the unique singular fiber of η. Suppose F1 has only one (−1)-curve. Then D2 and D3 intersect tips of
F1 belonging to the first branch, so when we contract F1 to a smooth fiber we touch D2 +D3 at most once.
This gives two disjoint sections of a P1-ruling of a Hirzebruch surface, one negative and one non-positive,
which is a contradiction.
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The morphism π̃ contracts the fiber consisting of T1 +C + ∆′ and the proper transform of B to B̃, so
since h ≤ 4, we can write π̃ = p3 ◦ p2 ◦σ2 ◦ p1 ◦σ1, where p1, p2 are sprouting (with respect to the image of
the fiber), σi are compositions of sequences of subdivisional blowdowns and p3 is either sprouting if h = 4
or identity if h = 3. Notice that p1 ◦ σ1 is the contraction of C + ∆′. Put σ = σ2 ◦ p1 ◦ σ1 and let Ri
for i = 1, 2, 3 be the exceptional divisors of pi. We now analyze the contraction π̃ and singular fibers of η
more closely.

(3) Ẽ(KeU + D̃) + Eσ∗R2 + (h− 3)EF ′ = 1.

Proof. Let us use the common letter E′ for the birational transforms of E. We compute how the quantity
E′(K ′ + D′), where D′ is the reduced inverse image of D̃ and K ′ the canonical divisor on a respective
intermediate surface between S̃ and Ũ , changes under subsequent blowdowns. Clearly, it does not change
under blowdowns subdivisional for D′, hence it does not change under ρ̃ too. However, if we make a
contraction of an exceptional component V which is sprouting for D′ then it decreases by E′V (here E′

is contained in an intermediate surface between S̃ and Ũ , for which V 2 = −1). At the beginning we have
E′(K ′ + D′) = E(K + D + C + ∆′). Under σ it decreases by E′R1 = Eσ∗1R1 = E(C + ∆′). Under pi it
decreases by E′Ri. If h = 4 then E′R3 = E′F ′ = EF ′ because p3 is preceded by a sprouting blowdown
p2, hence E′ intersects the fiber containing R3 only in R3. We obtain Ẽ(KeU + D̃) = EK −Eσ∗R2 − (h−
3)EF ′.

(4) There is a unique exceptional S0-component L, such that LD̃ > 1. It satisfies KeU + D̃ + L ≡ 0.

Proof. By Riemann-Roch’s theorem h0(−KeU − D̃) + h0(2KeU + D̃) ≥ KeU (KeU + D̃). The morphism
ρ : Ũ → U is a composition of subdivisional blowdowns in D̃ and the morphism π : S → U is a composition
of blowdowns with at least one of them being sprouting for D, hence KeU (KeU + D̃) = KU (KU + π∗D) >
K(K +D) = 0. If 2KeU + D̃ ≥ 0 then 0 ≤ κ(KeU + D̃) = κ(KU + π∗D) = κ(K +D+C + ∆′), but C + ∆′

contracts to a point using D, so by 5.1.5 this contradicts κ(K +D) = −∞. We get −KeU − D̃ ≥ 0. Write
−KeU − D̃ =

∑
Ci for irreducible Ci’s, such that C2

i < 0 (cf. 5.1.2(6)). We have F ′(KeU + D̃) = 0, so Ci’s
are vertical.

Each S0-component L intersects D̃. Suppose each satisfies LD̃ = 1. Then F1 is the only singular fiber
of η. Indeed, if F ′ 6= F1 is a singular fiber then σ(F ′) = 1 and by 5.1.8(ii) F ′ is a column fiber, so its
exceptional component does not satisfy our assumption. Let R ⊆M1+∆̃+M2 be a chain of components of
F1 connecting two connected components of F1∩ D̃ (these components can be points). By our assumption
R 6= M1 and R 6= M2 and since ∆̃D̃ = 0, we get M1+M2 ⊆ R, hence R contains a 0-divisor. It follows that
F1 = [1, (m̃− 1), 1], hence T2 = D2 and T3 = D3. If we now look at the pre-minimal ruling of S \∆ then
we see that Z̃l and Zl are tips, so G̃ and G are (−2)-curves, which implies that D contains a component
with non-negative self-intersection, a contradiction. Thus there is an exceptional S0-component L, such
that LD̃ > 1.

Notice that if for some i ∈ {2, 3} the section Di intersects L then Di is a maximal twig of D̃, because
DiF = 1. It follows that LD̃ = 2. Since (−KeU − D̃)L = 1 − D̃L < 0, L appears among Ci’s. However,
−KeU − D̃ − L is vertical and satisfies (−KeU − D̃ − L)2 = KeU (KeU + D̃)− 1 ≥ 0, so −KeU − D̃ − L ≡ αF
for some α ≥ 0. Multiplying by Di for i = 2, 3 we get β eD(Di) + LDi = 2− α. For α > 0 we would obtain
LD2 = LD3 = 0, which is impossible because LD̃ > 0. Thus KeU + D̃ + L ≡ 0. It follows that if another
exceptional S0-component L′ has L′D̃ > 1 then L ≡ −KeU − D̃ ≡ L′, so LL′ = −1, hence L is unique.

(5) 2 ≤ Eσ∗R2 = 1 + EL ≤ 3 and h = 3.

Proof. IntersectingKeU+D̃+L ≡ 0 with components of D̃+∆̃ we see that L∆̃ = 0 and L intersects D̃ only in
tips, each tip once. It follows that ρ and π do not touch L. Intersecting K + T + Ê ≡ λP + Bk∗ T + Bk Ê
with L we get EL(1 − wE) ≤ (Bk∗ T2 + Bk∗ T3)L − 1. We have (Bk∗ T1 + Bk∗ T3)L < 2, otherwise
T2 and T3 would be (−2)-chains, which is impossible by 6.5.4(ii). Thus EL < 1

1−wE . By (3) we get
Eσ∗R2 + (h− 3)EF ′ = 1− Ẽ(KeU + D̃) = 1 + EL < 1 + 1

1−wE . By (2) either wE ≤ 1
2 or Ê = [3, (n− 1)]

for some n ≥ 1 and then 1
1−wE = 2 + 1

n ≤ 3. In any case Eσ∗R2 + (h− 3)EF ′ ≤ 3.

Consider the ruling η ◦ π̃ : S̃ → P1. Let µC and µ∆ be the coefficients in σ∗R2 of C and respectively
of a component of ∆′ intersecting E (put µ∆ = 0 for ∆′ = ∅). Clearly, ρ̃ does not touch T1 +C + ∆′ +E.
We have Eσ∗R2 = µCEC + µ∆ and µ∆ < µC . Notice that Eσ∗R2 ≥ 2, otherwise E is a section of
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η ◦ π̃, which implies C(E + ∆) ≤ 1, a contradiction with 6.1.2(ii). Since Eσ∗R2 ≤ EF ′, from (3) we get
(h− 2)Eσ∗R2 ≤ 3, so h = 3.

(6) If T1 = [(k)] then k = 1.

Proof. Recall that T1 is contained in the second branch of F (a fiber of a pre-minimal ruling f). Suppose
k > 1. Then by 6.5.5 D contains a chain [3, 1, 2, 2]. We are now able to eliminate this possibility. As in
the proof of 6.5.4 we consider the P1-ruling p of S with F∞ = [3, 1, 2, 2] as a fiber. Since by 6.5.4(ii) D
does not contain a chain [2, 1, 2], the two (−2)-curves of F∞ are components of T1. Consider the curve
L given by (4). It is disjoint from B + T1 and intersects the tips of T2 and T3. By 6.5.4 we know that
the (−3)-curve of F∞ is not a tip of D, hence LF∞ = 0. By (5) EL > 0, so L is contained in the fiber
of p containing Ê. We have LT1 = 0 and LE > 0, so the 3-section contained in D̃ intersects L because
L cannot be simple. Hence the 3-section is a maximal twig of D, say it is T2 (further arguments work for
T3 as well). We can assume that T 2

2 6= −3, otherwise we could take T2 as a part of new F∞ and then get
a contradiction with 6.5.4(iii). By 6.5.5 T3 = [(l), 3] for some l ≥ 0. By 6.5.4 we have Ê = [3] and we can
assume that l ≥ 1. The inequality ẽ+ δ ≥ 2 gives T 2

2 ∈ {−4,−5} for l = 1 and T 2
2 = −4 for l > 1. Noether

formula implies T 2
2 + k + l = 4. We check that −d(D)

d( bE)
= 110

3 for T 2
2 = −5 and −d(D)

d( bE)
= 17 + 13l − 2l2 for

T 2
2 = −4 and this is never a square, a contradiction with 6.3.13(ii).

(7) T1 = [(k), 3] for some k ≥ 1. Ê = [3, 2].

Proof. Since h = 3 and Eσ∗R2 = µCEC + µ∆ ≤ 3, we have two possibilities depending on µ∆. If µ∆ > 0
then µC > 1, so µC = 2 and EC = 1, hence T1 is [3, (k)] or [(k), 3] for some k ≥ 0. Since one of the maximal
twigs of D consists of (−2)-curves, by 6.5.4(ii) the possibility that T1 = [3, (k)] for some k > 0 is excluded.
If µ∆ = 0 then ∆′ = 0, so EC ≥ 2 and µC = 1, hence T1 = [(k)] for some k ≥ 0. By (6) T1 = [(k)] is
possible only for k = 1. We only need to prove that T1 is not a tip. Suppose T1 is a tip, i.e. T1 = [2] or
T1 = [3]. Then Eσ∗R2 = EF ′ for a generic fiber F ′. By (5) we have 2 ≤ EL + 1 = EF ′ = µCEC + µ∆.
Suppose L * F1 (cf. (2)). Then F1 = M1 + ∆̃ + M2 by (2) because L is vertical. The fiber containing
L has σ = 1, so µ(L) ≥ 2 and since µ(L)EL ≤ EF ′ ≤ 3, we get EF ′ = EL + 1 = 2. This implies that
either ∆̃ 6= ∅ and EMi = 0 for some i or ∆̃ = ∅ and EMi ≤ 1 for some i. By (4) M1D̃,M2D̃ ≤ 1,
so in both cases Mi is simple, which is a contradiction. Therefore L ⊆ F1, say L = M1. We have
E(M2 + ∆̃) ≤ E(F 1 − L) = 1 and M2D̃ ≤ 1 by (4). Since ∆̃M2 ≤ 1, M2 is simple, a contradiction. Thus
T1 = [(k), 3] for some k ≥ 1. We conclude that ∆′ = [2] and Eσ∗R2 = 3, so EL = 2. Since EL < 1

1−wE
(cf. (5)), we get Ê = [3, 2] because ∆̃ = ∅ by (1).

(8) T2 = [2].

Proof. Recall, that T2 is the maximal twig of D contained in the first branch of F . We have ∆′ 6= 0, so
by 6.5.4 D does not contain a chain [3, 1, 2, 2]. Therefore by 6.5.5 one of T2 or T3 is a (−2)-tip. Suppose
this is T3. Clearly, then f is not almost minimal. Thus by 6.3.11 the morphism ϕf : S

† → S minimalizing
D† contracts precisely H† + Z̃1. Since T3 = [2], we can write Z̃l = [l + 3] for some l ≥ 0. Since ∆̃ = ∅,
G̃+ Z̃u + Z̃1 = [(l + 3)]. It follows that ϕf touches Z1 once. However, Z2

1 = −2− k because Z1 becomes
a (−1)-curve after contracting ∆′ + C + T1. We get k = 0, a contradiction with (7).

From (8) we see that F is produced by the following sequence of characteristic pairs (cf. 6.3.1 and 6.3.4):(
4k
2k

)
,
(

2k
2

)
,
(

2
1

)
, so the pairs

(
ci
p
i

)
are

(
2k
k

)
,
(
k
1

)
and τ = 2CE+ 1 = 3. The second fiber F̃ of the pre-minimal

ruling is produced by the sequence
(
c
p

)
,
(

1
1

)
for some c, p ≥ 1. We have τ̃ c = d = τc1 = 6k. By (6.8)

3d+1 = τ(2k+k+1)+τ̃(c+p), hence τ̃ p = 3k−2. Then τ̃ = gcd(τ̃ c, τ̃p) = gcd(6k, 3k−2) = gcd(3k−2, 4), so
τ̃ ∈ {2, 4} (C̃ would be simple for τ̃ = 1). Then (6.9) gives d2+3 = τ2(2k2+k)+3LE+LE+1+τ̃2(cp)+τ̃2,
hence τ̃2 = 3k− 2. For τ̃ = 2 we get k = 2, so gcd(c, p) = 2, a contradiction. Thus τ̃ = 4 and we get k = 6
and (c, p) = (9, 4), so G̃+ Z̃u = [3, 2, 2, 2] and Z̃l = [5, 2]. It follows that Z1 is touched six times by ϕf , a
contradiction with Z2

1 = −8, since b = 1.

Corollary 6.5.7. Ê is one of: [2, 3], [3], [4], [5].
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Proof. Suppose |G| ≥ 7. By 6.5.6 κ(W ) = 2, so by 6.5.3(iii) we have ε 6= 0 and 1 > δ > 6
7 . For d1 ≥ 3 we

get d2 = 3 and d3 ≤ 5. For d1 = 2 we have d2 ≥ 3 and the inequality gives d2 ≤ 5 and 1
d3
≥ 6

7−
1
2−

1
3 = 1

42 ,
so d3 ≤ 42. By 6.4.5 there are only finitely many possibilities for the dual graphs of Ê and D. Using
a computer program we checked that the conditions 6.1.2(vi), 6.2.5, 6.4.4 and 6.3.13(ii) can be satisfied
only for Ê = [4], which contradicts our assumption. We conclude that Ê is one of: [2, 3], [3], [4], [5], [6].
However, [6] is excluded, since ε 6= 0.

6.6 Special cases

We have now to deal with the following cases: κ(W ) = 2 and Ê ∈ {[2, 3], [3], [4], [5]}. Let f be a pre-
minimal affine ruling of (S

†
, D†). We use the notation of 6.3.9. Let (x, y, z) with x ≤ y ≤ z be the ordering

of (d1, d2, d3). By 6.5.3 we have 1 > δ > 1− 1
|G| ≥

2
3 , so x ≤ 4 and y ≤ 11.

Lemma 6.6.1. One of the following cases occurs:

(1) (x, y) = (3, 3) and Ê = [3],

(2) (x, y) = (2, 3),

(3) (x, y) = (2, 4) and Ê is either [3] or [4],

(4) (x, y) ∈ {(2, 5), (2, 6)} and Ê = [3].

In particular, dual graphs of two maximal twigs of D belong to the list
L = {[2], [2, 2], [2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2, 2], [3], [4], [5], [6], [2, 3], [3, 2]}.

Proof. Suppose z ≤ 42. Given an upper bound for z there is only finite number of possible dual graphs of
D. We used a computer program, which showed that for x ≤ 4, y ≤ 11, z ≤ 42 conditions 6.1.2(vi), 6.2.5,
6.4.4, 6.3.13(ii), 6.1.4 and 6.5.3(iii) are satisfied only in three cases:

(i) b = 1, T1 = [2], T2 = [4], T3 = [(8), 4] and Ê = [4],

(ii) b = 2, T1 = [2], T2 = [2, 2], T3 = [4, (6)] and Ê = [4],

(iii) b = 2, T1 = [2], T2 = [2, 2, 2], T3 = [3, 3, (4)] and Ê = [4],

hence we are done. Now suppose z > 42. For x ≥ 4 we get 1
z > 1 − 1

|G| −
1
2 ≥

1
6 , which is impossible.

For x = 3 we have 1
y + 1

|G| >
2
3 −

1
42 , which gives |G| = y = 3. Since δ < 1, for x = 2 we have y ≥ 3 and

1
y + 1

|G| >
1
2 −

1
42 , hence y ≤ 6 and the bounds on Ê follow.

Corollary 6.6.2. The ruling f has two singular fibers and h̃ = 2.

Proof. By 6.3.7 f has more than one singular fiber and it has at most three because D is a fork. Suppose
it has three. Then D† = D and since x ≤ 3, for one of the singular fibers, say F1, F1 ∩D has at most two
components, hence F1 is a chain. Moreover, Ê = [2, 3] and ∆ ⊆ F1 = [2, 1, 2]. It follows that the maximal
twigs contained in other singular fibers of f have more than two components, a contradiction with 6.6.1.

We have 1 ≤ h̃ ≤ 2 because F̃ ∩ D is a chain (cf. 6.3.9). Suppose h̃ = 1. Then Ê = [2, 3] and
F̃ = [2, 1, 2], so n ≥ 2, otherwise G̃ would be contracted by ϕf , contradicting the pre-minimality of f . In
particular, #T3 > 2. By 6.3.13 h ≥ 5, so the second branch of F contains more than two D-components.
Thus at least two maximal twigs of D have more than two components, a contradiction with 6.6.1.

Let T1, T2 be the maximal twigs of D contained respectively in the second and in the first branch of
F . (Notice that we did not assume d1 ≤ d2 ≤ d3, instead we have introduced x, y, z.) Clearly, they are
also maximal twigs of D† and ϕf contracts the chain H† + Z̃1 + Z̃u to T3.

We rewrite the equations of 6.3.5 for two fibers. Put α = n+ε+EK−4, then h = 3+α and 0 ≤ α ≤ n.
Put

(ec1ep
1

)
=
(ecep), (c1p

1

)
=
(
c
p

)
and

(
ch−1
p
h−1

)
=
(
c′

p′

)
. Since T1 is a chain, we have

(
c2
p
2

)
=
(
c3
p
3

)
= . . . =

(
ch−2
p
h−2

)
=
(
c′

c′

)
.

Define u = τCE + c′hCE + c′h − τ2 and similarly ũ = τ̃ C̃E + c̃′hC̃E + c̃′h − τ̃2. We have u = 0 for ∆′ = 0
and u = 1

2 (1− τ2) for ∆′ = [2], analogously for ũ. Now we can write (6.1) as:
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dn+ γ − 2 = τ(p+ αc′ + p′) + τ̃ p̃. (6.8)

We have d = cτ = c̃τ̃ , hence multiplying the above equation by d and subtracting (6.2) we obtain:

d(γ − 2)− γ = τ2((c− c′)(αc′ + p′)− 1) + u− τ̃2 + ũ. (6.9)

Remark. Knowing the dual graph of Zl it is easy to determine c/c′ and p/c′. One has c/c′ = d(G+Zu) =
d(Zl) and p/c′ = d(Zu) = d(Zl)− d(Zl − Zll) (cf. Appendix of [KR99]).

Remark 6.6.3. For a fixed dual graph of F there is only a finite number of possible dual graphs of F̃ +H.

Proof. If the graph of F is known then we know c, p, c′, p′, u. The equation (6.8) gives n(c− c′) + γ−2
τ =

p+(ε+EK−4)c′+p′+ eτep
τ , so n(c−c′) < p+p′+c ≤ 2c, hence n < 2+ 2c′

c−c′ ≤ 4. Since now α is bounded,
it is enough to bound τ , because then d, and hence c̃, p̃ are bounded. We have c̃τ̃ = cτ , so τ̃ |c · gcd(τ, τ̃).
By (6.8) gcd(τ, τ̃)|γ − 2 and since γ − 2 ∈ {1, 2, 3}, we get τ̃ |c(γ − 2) and τ̃ ≤ 3c. Therefore τ and ũ are
bounded and (6.9) is a nontrivial (the coefficient of τ does not vanish) equation for τ , so we are done.

Corollary 6.6.4. T3 ∈ L and n = 1.

Proof. Suppose T3 6∈ L, then T1, T2 ∈ L. Clearly, having the dual graph of T1, there is only finitely many
possibilities for the dual graphs of T1 +C+∆′, in each case Z2

1 is determined. On the other hand, T2 = Zl)
and G + Zu are adjoint chains (cf. 5.1.7), so the dual graph of G + Zu is determined by T2. Then by
6.6.3 there is finitely many possibilities for the dual graphs of F̃ +H. We use a computer program which
for given F (in terms of (c, p, c′, p′)) computes possible (γ, n, τ, u, τ̃ , c̃, p̃, ũ) using the algorithm sketched in
6.6.3 and checks if (6.8) and (6.9) can be satisfied. In each case (there are many solutions) the maximal
twig T3 is determined and the program returns only these, for which conditions δ + 1

|G| > 1, 6.1.2(vi),
6.4.4, 6.3.13(ii) and 6.1.4 hold, these are:

(i) (n, γ, τ, τ̃) = (1, 4, 4, 2),
(
c
p

)
=
(

4
1

)
,
(
c′

p′

)
=
(

1
1

)
,
(ecep) =

(
8
5

)
; b = 2, T1 = [2], T2 = [(3)], T3 = [3, 3, (4)],

(ii) (n, γ, τ, τ̃) = (1, 4, 4, 2),
(
c
p

)
=
(

4
3

)
,
(
c′

p′

)
=
(

1
1

)
,
(ecep) =

(
8
1

)
; b = 1, T1 = [2], T2 = [4], T3 = [(8), 4],

(iii) (n, γ, τ, τ̃) = (2, 4, 4, 2),
(
c
p

)
=
(

2
1

)
,
(
c′

p′

)
=
(

1
1

)
,
(ecep) =

(
4
3

)
; b = 2, T1 = [2, 2], T2 = [2], T3 = [4, (6)].

In cases (i) and (ii) we have −d(D)/d(Ê) = 4 and gcd(µ, µ̃) = 4, in case (iii) −d(D)/d(Ê) = 1 and
gcd(µ, µ̃) = 2. By 6.3.13(ii) this is a contradiction.

Suppose now that n > 1. Since D† = D, we have #T3 ≥ 5, so T1 = [(5)] and Ê = [3]. We get
G̃+ Z̃u = [2] and G+ Zu = [2], so

(
c
p

)
=
(

2c′

c′

)
and

(ecep) =
(

2
1

)
, hence τ̃ = dec = c′τ . Since gcd(τ, τ̃)|γ − 2, we

get τ = 1, a contradiction.

We are ready to finish the proof of our main result:

Theorem 6.6.5. If S′ is a normal singular Q-homology plane of negative Kodaira dimension with smooth
locus S0 then κ(S0) < 2.

Proof. Suppose κ(S0) = 2. By 6.6.4 T3 ∈ L. We prove successive statements to eliminate all possibilities.

(1) If T3 is a tip then T1 ∈ L and ∆ = 0.
Proof. Write T3 = [d3]. In this case ϕf contracts Z̃1, so f is not almost minimal and we get ũ = 0 because
∆̃ = 0 by 6.3.11. We can write Z̃l = [x + 3] for some x ≥ 0. Since ϕf contracts exactly H†, we obtain
G̃ + Z̃u = [(x + 2)], G = [x + 5], Zu = [(x + 1 − d3)] (hence x ≥ d3 − 1), T2 = [(x + 3), x + 3 − d3] and
Z2

1 = −b− 1.
Suppose T2 ∈ L. Since #T2 = x + 4 ≥ d3 + 3 ≥ 5, this is possible only for T2 = [(5)], which implies

x = 1 and d3 = 2, hence
(ecep) =

(
4
3

)
and

(
c
p

)
=
(

6c′

c′

)
. Moreover, by 6.6.1 Ê = [3] and since gcd(τ, τ̃)|γ − 2,

we see that τ and τ̃ are coprime. We get 6c′τ = d = 4τ̃ , so τ |2τ̃ , which implies τ = 2 and τ̃ = 3c′. Now
(6.8) gives p′ = 1

2 (c′ + 1) and then by (6.9) c′2 − 2c′ = 1, a contradiction. It follows that T1 ∈ L.
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Suppose ∆ 6= 0. Then ∆′ = [2] and h = 3, so one checks easily that T1 ∈ L is possible only for
T1 = [3] or T1 = [2, 3]. We get #T1 = b by 6.1.2(vi). If T1 = [2, 3] then T3 = [2] by 6.6.1 and we compute
d(D) = 11x2 + 34x− 29 > 0 (x ≥ d3 − 1 = 1), which is impossible by 2.2.3(ii). Thus T1 = [3] and b = 1.
If d3 = 3 then x ≥ 2, so −d(D)

d( bE)
= 9− 3

5x
2 is not a positive integer, contradicting 6.3.13. Therefore d3 = 2

and we compute −d(D)

d( bE)
= 23+2x−x2

5 , which is a square by 6.3.13. This is possible only for x = 3. We get(ecep) =
(

6
5

)
and

(
c
p

)
=
(

22
3

)
, so 22τ = d = 6τ̃ . Since gcd(τ, τ̃)|γ − 2, we get τ = 3 and τ̃ = 11. It follows that

u = −4, so by (6.9) τ |τ̃2 + 1, a contradiction.

(2) T3 is not a tip.
Proof. Suppose T3 is a tip. It follows from (1) that T1 = [(k)] for some 1 ≤ k ≤ 5. By 6.1.2(vi)
k = b + α, so k ≤ 3. Suppose k > 1. If d3 6= 2 then by 6.6.1 d3 = 3 and x ≥ 2, so b = k = 2 and then
d(D) = 9(x2 + 2x − 7) > 0, a contradiction with 2.2.3(ii). If d3 = 2 then x ≥ 1, b = 2 by 6.5.4 and the
condition d(D) = x2(k + 3) + x(2k + 10)− (7k + 5) < 0 implies k = 3 and x = 1. However, k = 3 implies
α = 1 and then −d(D)

d( bE)
= 4

5 , a contradiction with 6.3.13. Thus T1 = [2] and d3 ≥ 3.

From b+ α = 1, we get b = 1 and α = 0. We have x ≥ d3 − 1 and d(D) = x2(d3 − 2)− x(d2
3 − 6d3 +

12)− (4d2
3 − 9d3 + 18). For 5 ≤ d3 ≤ 6 we get Ê = [3] by 6.6.1, and then −d(D)

d( bE)
is not a square. Suppose

d3 = 4. We have Ê = [3] or Ê = [4], so −d(D)

d( bE)
is a square only for Ê = [4] and x = 5. Then

(ecep) =
(

8
7

)
and(

c
p

)
=
(

28
3

)
, so 2τ̃ = 7τ and then gcd(τ, τ̃)|γ − 2 implies τ ∈ {2, 4}. For τ = 2 (6.8) gives a contradiction,

hence τ = 4 and τ̃ = 14. We compute gcd(µ, µ̃) = 4 and −d(D)/d(Ê) = 4, a contradiction with 6.3.13(ii).
Now suppose d3 = 3. Then −d(D)

d( bE)
is a square only for Ê = [3] and x = 3. We get

(ecep) =
(

6
5

)
and

(
c
p

)
=
(

15
2

)
,

so 2τ̃ = 5τ/ and then gcd(τ, τ̃)|γ − 2 implies τ = 2 and τ̃ = 5. We compute δ + ẽ = 11
5 , a contradiction

with 6.5.3(iii).

(3) If #T3 = 2 then T2 = [2] and T3 = [2, 2].

Proof. Since T3 ∈ L, we have T3 = [2, 3], T3 = [3, 2] or T3 = [2, 2]. If f is almost minimal then #Z̃l = 1,
so G̃+ Z̃u = 0 consists of (−2)-curves and we see that Z̃1 is touched at least twice by ϕf , hence Z̃2

1 ≤ −4,
which contradicts #∆̃ ≤ 1. Thus f is not almost minimal, so by 6.3.11 ∆̃ = 0 and ϕf contracts Z̃1 +H†,
hence #Z̃l = 2. Suppose T3 = [3, 2]. Then Z̃l = [3, x] for some x ≥ 3, hence G̃ = [2]. It follows that
G 6= [2], hence T2 6= [2]. Since d3 = 5, by 6.6.1 we get T1 = [2], which implies Z2

1 = −2. Since ϕf touches
Z1, we get b = 1, a contradiction with 6.5.4. Therefore T3 = [2, k] and Z̃u = [2, x + 3], where k ∈ {2, 3}
and x ≥ 0. We obtain Z̃u = [(x+ 1)] and G̃ = [3].

Suppose Zu 6= 0. Then G+Zu = [2, x+5, (x−k+1)], Z2
1 = −b−1 and Zu = T2 = [3, (x+2), x−k+3].

Since #T2 > 2, by 6.6.1 we have either T1 = [2] or d1 = 3 and Ê = [3]. If d1 = 3 then we have k = 2,
h = 3 and ∆ = 0, so T1 = [2, 2], b = 2 and we check that −d(D)/d(Ê) = −4x2 − 8x+ 17 is not a square.
We infer that T1 = [2], hence Z2

1 = −2 and we get b = 1. By 6.5.4 it follows that k = 3, hence x ≥ 1
and Ê = [3] by 6.6.1. Now we check that −d(D)

d( bE)
= 25 + 5x− 2

3x
2 is a square only for x = 9 and then by

6.4.4 Bk2 Ê = − 61
12 < −2, a contradiction. This proves Zu = 0, which gives G = [2] and T2 = Zl = [2], as

required.
We see that ϕf touches Z̃l once, so x = k − 2. This implies

(ecep) =
(

2k+1
k

)
and

(
c
p

)
=
(

2c′

c′

)
. We only

need to show that k = 2. Suppose k = 3. Then Ê = [3] by 6.6.1, so we have τ |d = 7τ̃ and gcd(τ, τ̃)|γ − 3,
hence τ = 7 and τ̃ = 2c′. However, (6.8) gives 7p′ = c′ + 1 and then (6.9) implies 3(c′)2 − 7c′ − 46 = 0, a
contradiction.

(4) #T3 = [(k)] for some 3 ≤ k ≤ 5.
Proof. By (2) and (3) we know that T3 = [(k)] for some k ∈ {2, 3, 4, 5}. Suppose k = 2. By (3) T2 = [2]
and as in (3) we get ∆̃ = 0 and

(ecep) =
(

5
2

)
and

(
c
p

)
=
(

2c′

c′

)
. Then 5τ̃ = d = 2c′τ , so (6.8) can be written as

1
5c
′τ(5α− 1) = γ − 2− τp′. It follows that α = 0, otherwise γ − 2− τp′ ≥ 4, which is impossible. Suppose

γ = 3. Then gcd(τ, τ̃) = 1, so τ = 5. We get c′ = 5p′ − 1 and then (6.9) implies (c′)2 − 5c′ + u− 22 = 0.
For τ = 5 we get u = 0 or u = −12, a contradiction with c′ ∈ Z. Thus γ = 4 and now gcd(τ, τ̃)|2,
so τ ∈ {2, 5, 10}. We check that (6.8) and (6.9) lead to a contradiction for τ 6= 2 and for τ = 2 give(
c′

p′

)
=
(

25
6

)
. Then T1 = [(3), 7, (6)] and b = 2, hence d(D) = −25, a contradiction with 6.3.13(ii).
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(5) f is not almost minimal.

Proof. Notice that by (4) and 6.6.1 Ê = [4] or Ê = [3]. In particular α = 0 and ∆ = 0. Suppose f is
almost minimal. Then Z̃l consists of (−2)-curves, so Z̃u = 0. Let’s write Z̃l = [(s)] and G̃ = [s + 1] for
some s ≥ 1. Since ∆ = 0, we get Z̃2

1 = −2, hence ϕf does not contract G̃, otherwise it would contract
the whole chain G̃ + Z̃1 + Z̃l. This gives s ≥ 2 because n = 1 by 6.6.4. If G 6= [2] then #T3 ≤ 5 implies
s = 2, Zu = 0 and G = [3], so T2 = Zl = [2, 2] and then T1 = [2], a contradiction with 6.4.4(ii). Therefore
G = [2], so ϕf touches G̃ at least twice. Now #T3 ≤ 5 implies s = 3 and Zu = 0. By 6.6.1 Ê = [3].
We have

(ecep) =
(

4
1

)
and

(
c
p

)
=
(

2c′

c′

)
. Then 4τ̃ = d = 2c′τ and gcd(τ, τ̃) = 1, so τ = 2. Then (6.8) gives

2p′ = c′ + 1, hence by (6.9) (c′)2 − 2c′ = 1, a contradiction.

Notice that (4) and 6.6.1 imply that b = 2, otherwise D would contain a chain [2, 1, 2], which is
impossible by 6.5.4. Since f is not almost minimal, ϕf contracts precisely H†, so it touches Z1, hence
Z2

1 ≤ −3 and T1 6= [2]. We get Zl = T2 = [2], which implies G = [2] and G̃ = [3]. However, since
T3 = [(k)], we can write Z̃l = [(k − 1), x] for some x ≥ 3. Then G̃ = [k + 1] and k = 2, a contradiction
with (4).
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