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"The wrok on both mathematical theory of communications
and the cryptology went forward concurrently from about 1941.
I worked on both of them together and I had some of the ideas
while working on the other. I wouldn’t say one come before
another - they were so close together you couldn’t separate them"
C. Shannon

"(...) Błogosławiony niech będzie chaos
albowiem z niego wyłoni się forma

niech będzie błogosławione swiatło
albowiem ono oddzieli nas
od ciemności"
R. Horodecki



Ogólny schemat
otrzymywania klucza kryptograficznego ze stanów

kwantowych - kwantowe splątanie i bezpieczeństwo1

Słowa kluczowe:
kwantowa kryptografia, stany bezpieczne, kwantowe splątanie, klucz destylowalny,
stany o związanym splątaniu

AMS Matematyczna Klasyfikacja Dziedzin 2000:
81P68, 8102 Kwantowe obliczanie i kwantowa kryptografia. Prezentacja badań

Jednym z istotnych problemów kryptografii, jest wytworzenie losowego ciągu
bitów tak, aby był znany jedynie zufanym nadawcy i odbiorcy, którzy są oddaleni od
siebie. Kwantowa kryptografia pozwala rozwiązać ten problem. Podstawową włas-
nością, która gwarantuje bezpieczeństwo kwantowej kryptografii, jest fakt, że jeśli
mierzymy kubit w nieznanym stanie, z dużym prawdopodobieństwem zaburzamy
jego stan, próbując go poznać. Niestety, praktyka wykazuje że, trudno wykorzys-
tać tą własność w dowodach bezpieczeństwa kwantowych protokołów rozdzielania
klucza. Na szczęście, znany jest inny fenomen - kwantowe korelacje zwane czystym
splątaniem - który jest użyteczny w dowodach kwantowego bezpieczeństwa. Są to
korelacje między dwoma podukładami układu współdzielonego przez osoby zaufane
(Alicję i Boba) który jest w tzw. stanie czystym. Jeśli korelacje te są maksymalne
miedzy dwoma kubitami, można je w wyniku pomiaru zamienić na jeden bit bez-
piecznego klucza, zwanego dalej również kluczem ’klasycznym’.

Teoria splątania rozwijała się równolegle, pozostając w widocznym związku z
kwantową kryptografią. W szczególności, znane są protokoły kwantowego rozdziela-
nia klucza bazujące na czystym splątaniu częściowo i lub wyłącznie bazujące na
czystych stanach splątanych. Z tego powodu oraz z uwagi na fakt, że czyste splą-
tanie jest często wykorzystywane w dowodach bezpeczeństwa, naturalnym mogło się
wydawać że czyste splątanie stanów kwantowych jest jedynym źródłem kwantowego
bezpeczeństwa.

Mamy jednak nie tylko czyste splątane, ale również mieszane splątane stany
kwantowe. Te ostatnie są probabilistycznymi mieszankami stanów czystych. Ich
rozkład prawdopodobieństwa może być interpretowany jako nasza niewiedza o tym,
w którym ze stanów czystych dwuukladowych znajduje się układ. Wiadomo, że aby
dwuukładowy stan zawierał bezpieczny klucz, musi być stanem splątanym. Wiadomo
także, że niektóre mieszane stany splątane nie mogą być przetransformowane w stany

1Praca powstała przy częściowym wsparciu Fundacji na rzecz Nauki Polskiej, oraz Europejskiego
Projektu Zintegrowanego SCALA 015714.



ii

czyste splątane, kiedy są współdzielone przez dwie osoby odległe od siebie (zwane
też stanami o związanym splątaniu).

Mimo że związek między czystym splątaniem i kwantowym bezpieczeństwem
jest całkiem dobrze znany, rozumienie relacji miedzy kwantowym bezpieczeństwem
i kwantowym splątaniem w ogólności mieszanych stanów kwantowych (które nie są
czyste) nie jest dostatecznie rozwinięte. Umotywowani tym faktem, w niniejszej
rozprawie rozważamy następujące problemy:

• Z jakich stanów bezpiecznych można otrzymać przez pomiar bezpośrednio dostępny,
klasyczny klucz ?
Charakteryzujemy dwuukładowe stany ρAB, które mają bezpośrednio dostępny
klasyczny klucz, w postaci stanów, które nazwaliśmy stanami bezpiecznymi.
Stany bezpieczne są splątane, ale w ogólności są stanami mieszanymi. Stany
czyste, maksymalnie splątane, stanowią przykład stanów bezpiecznych. Przez
bezpośrednią dostępność rozumiemy dostępność za pomocą pomiarów von Neu-
manna na podukładach A i B. Rozważamy również inne, równoważne formali-
zacje bezpośredniej dostępności. (Rozdział 3)

• Jak mierzyć zawartość bezpieczeństwa stanów kwantowych ?
Zawartość bezpieczeństwa stanu ρAB definiujemy na dwa sposoby (i) jako
klucz destylowalny KD, otrzymywany w formie stanów bezpiecznych za pomocą
lokalnych operacji i klasycznej komunikacji (LOKK) (ii) jako klasyczny klucz
destylowalny CD, otrzymywany w formie trójukładowych stanów reprezentują-
cych bezpieczny klucz za pomocą lokalnych operacji i publicznej (dostępnej dla
podsłuchiwacza) komunikacji. Pokazujemy, że CD(|ψρ〉〈ψρ|ABE) = KD(ρAB),
gdzie |ψρ〉〈ψρ|ABE jest puryfikacja dwuukładowego stanu ρAB. (Rozdział 4)

• Jakie są własności splątania stanów bezpiecznych ?
Niektóre stany bezpieczne mają więcej destylowalnego klucza KD niż desty-
lowalnego (czystego) splątania ED. Niektóre, w wyniku pomiaru pojedynczego
kubitu tracą znacząco tzw. koszt splątania, wykazując efekt zwany blokowaniem
splątania. (Rozdział 3, Sekcja 3.5)

• Czy można otrzymać bezpieczny klucz ze stanów o związanym splątaniu ?
Dajemy pozytywną odpowiedź na to pytanie podając przykłady stanów o
związanym splątaniu. Niektóre z nich są specyficzną miesznką dwóch ortogo-
nalnych stanów bezpiecznych. Rezultat ten implikuje, że w niektórych przypad-
kach można skomunikować się bezpiecznie używając kwantowego bezpeczeństwa
mimo, że nie można w sposób wierny komunikować kwantowaych danych.
(Rozdział 5)
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• Jak łatwo jest odróżnić stan bezpieczny od jego zaatakowanej wersji,
kiedy jeden z nich jest wspołdzielony przez odległe od siebie osoby ?
Wykazujemy, że niektóre stany bezpieczne są trudno odróżnialne za pomoca op-
eracji LOKK od stanów niebezpiecznych (niesplątanych). Liczba kopii potrzebna
do odróżnienia bezpiecznego bitu γ(2) od jego zaatakowanej wersji jest cona-
jmniej proporcjonalna do odwrotności logarytmicznej ujemności γ(2).
(Rozdział 6)

Oprócz powyższych rezultatów, przywołujemy pokrótce niektóre z rezultatów
badań ostatnich lat, otrzymanych w kontekście stanów bezpiecznych. Prezentujemy
również pewne problemy otwarte.
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General paradigm
for distilling classical key from quantum states

- on quantum entanglement and security2

The Keywords: quantum cryptography, private states, quantum entanglement,
distillable key, bound entangled states

AMS Mathematical Subject Classification 2000:

81P68, 8102 Quantum computing and quantum cryptography, Research exposition

Abstract
One of the important problems of cryptography is how to generate a random se-

quence of bits, so that it will be known only to the honest parties that are far apart
from each other. Quantum cryptography allows to resolve this problem. The fun-
damental property which guarantees security of the quantum cryptography is that
if one does not know the state of a qubit, then with a high probability one disturbs
the state while trying to get to know it. Unfortunately, this property appeared to be
not easy in use when proving security of quantum key distribution protocols. There
is however another phenomenon - quantum correlations called pure entanglement,
which are quite useful in proving security. These are correlations between two sub-
systems of a system shared by Alice and Bob, that is in a pure quantum state. If such
correlations are maximal, between two qubits, they can be changed via measurement
into one bit of a secret key (also called further ’classical’ key).

Theory of entanglement has been developed in parallel, and with apparent con-
nection to quantum cryptography. In particular, there are known protocols of quan-
tum key distribution based partially or solely on pure entangled states. This, together
with the fact that security proofs often base on pure entanglement, has made natu-
ral expectation, that pure entangled quantum states are the only source of quantum
security.

There are however not only pure entangled quantum states, but also mixed entan-
gled quantum states. The latter are certain probabilistic mixtures of pure quantum
states, where the mixing probability can be interpreted as our lack of knowledge in
which pure quantum state the bipartite system resides. It is known, that to contain
security, a bipartite state must be entangled. Moreover, there are some mixed entan-
gled quantum states can not be changed into pure entangled ones, if shared by two
distant parties (called bound entangled states).

2This PhD thesis has been partially supported by Foundation for Polish Science and EU grant
IP SCALA 015714.
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Although the link between pure entanglement and quantum security is quite
well developed, the understanding of the relation between quantum security and
entanglement of in general mixed (impure) quantum states is still in its infancy.
Therefore, natural questions arise, that we address in this thesis:

• What are the quantum bipartite states, which have directly accessible, classical
key ?
We characterize the bipartite states ρAB, that have directly accessible classi-
cal key, to be the one that we have called private states. The private states
are entangled, but in general mixed. The pure maximally entangled states are
examples of private states. By direct accessibility we mean the accessibility
via complete von Neumann measurements on subsystems of A and B. Equiv-
alence of this approach with other formalizations of direct accessibility is also
considered.

• How to quantify security content of a bipartite quantum state ?
We define the secure content of ρAB in two ways (i) as distillable keyKD obtain-
able in form of a private state via local operations and classical communication
(LOCC) and (ii) as classical distillable key CD, obtainable in form of tripar-
tite states representing secure key via local operations an public (listened to
by Eve) communication. We show that CD(|ψρ〉〈ψρ|ABE) = KD(ρAB), where
|ψρ〉〈ψρ|ABE is the purification of the bipartite state ρAB. This means that the
secure content of a bipartite quantum state is an entanglement measure. We
then show, that KD is upper bounded by an entanglement measure called the
relative entropy of entanglement. (Chapter 4)

• What are the properties of entanglement of the class of private states ?
Some private states have more distillable key KD, than distillable (pure) en-
tanglement ED. Some of them after measurement of a single qubit loose dras-
tically an entanglement cost, exhibiting effect called locking of entanglement.
(Chapter 3, Section 3.5)

• Can one obtain secure key from bound entangled states ?
We answer in positive to this question, providing examples of bipartite states
having ED = 0, and still KD > 0. This result implies, that in some cases, one
can communicate in private using quantum security, without having possibility
for communicating faithfully quantum data. (Chapter 5)

• How easy it is to distinguish the private state from it’s attacked copy, when
either of two is shared by the honest parties that are far apart?
Some private states are proved to be hardily distinguishable from insecure
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(disentangled) states via LOCC operations. The number of copies needed to
distinguish a private bit γ(2) from its attacked copy with probability close to
one, is shown to be at least proportional to the inverse of the log-negativity of
γ(2). (Chapter 6)

Apart from the above results, we invoke some of the further research that has
been conducted in context of private states in recent years. We collect also some
open problems.
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Chapter 1

Introduction

1.1 Motivation

One of the well known encryption algorithms is the one-time pad due to Vernam
and Mauborgne [Ver26, wik08a]. According to this algorithm, the cypher-text C is
just a random sequence R of bits added one by one to the bits of the message M .
Providing the sender and receiver share the same random sequence which is unknown
to anybody else, the message is provably secure, as it was shown by Shannon [Sha49].
Due to his proof, any encoding scheme to be secure must bring in a key R which has
at least that much of randomness as the message M itself . In other words in one-
time pad, the key R must be as long as the message M . This is the main drawback
of this cypher, summarized in the following problem:

• How to create at a distance a copy of a long random sequence, so that it will
be known only to the honest sender and receiver (traditionally called Alice and
Bob) ?

Quantum cryptography initiated by Wiesner [Wie83] and Bennett and Brassard
[BB84] allows to resolve the above problem. Bennett, and Brassard proposed the pro-
tocol based on sending qubits - the counterparts of classical bits. The task of such
a protocol (called quantum key distribution protocol) is exactly the generation of a
random bit string secretly shared between Alice and Bob. To this end, Alice and Bob
use a quantum communication channel for sending qubits and an authentic1 classical

1Assuming authentic communication channel we assure that Alice and Bob do talk to each
other, so that the so called man in the middle attack is excluded. Authentication of messages needs
relatively small, but nonzero amount of a secret key shared in advance by the honest parties. For
this reason, quantum key agreement is called sometimes a quantum key growing.
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communication channel for sending classical bits. Security of the quantum key dis-
tribution protocols can be derived from axioms of quantum mechanics - a physical
theory. In other words, quantum security bases on the fact that an eavesdropper
(Eve), has to obey the rules of quantum mechanics, which are widely accepted as
they are confirmed by many experiments.

The fundamental property which guarantees security of the quantum cryptogra-
phy is that if one does not know the state of a qubit, then with a high probability
one disturbs the state while trying to get to know it. Unfortunately, this property
appeared to be not easy in use when proving security of quantum key distribution
protocols. There is however another phenomenon - quantum correlations called pure
entanglement, which are quite useful in proving security. These are correlations be-
tween two subsystems of a system shared by Alice and Bob, that is in a pure quantum
state. If such correlations are maximal, between two qubits, they can be changed
via measurement into one bit of secret key, also called further ’classical’ key.

In recent years a kind of link between security and pure entanglement has been
established. In particular, there are known protocols of quantum key distribution
based partially or solely on pure entangled states. This, together with the fact that
security proofs often base on pure entanglement, has made natural expectation, that
pure entangled quantum states are the only source of quantum security.

There are however not only pure entangled quantum states, but also mixed entan-
gled quantum states. The latter are certain probabilistic mixtures of pure quantum
states, where the mixing probability can be interpreted as our lack of knowledge in
which pure quantum state the bipartite system resides. It is also known, that some
mixed entangled quantum states can not be change into pure ones, if shared by two
distant parties.

Although the link between pure entanglement and quantum security is quite well
developed, understanding of the relation between quantum security and entangle-
ment of in general mixed (impure) quantum states is still in its infancy. It is known,
that entanglement is necessary condition for security, and a protocol for obtaining
classical key from certain mixed states is known, however the characterization of
states from which secure key can be obtained is still an open problem. For this
reason, natural questions arise which we address in this thesis. The first is a conse-
quence of the fact, that the classical key can be obtained from quantum state in a
more or less involved way:

• What are the quantum bipartite states (called further private states) which
after measurement gives directly accessible, classical key ? (Chapters 3 and 4).

• What are the properties of entanglement of the class of private states ? (Chap-
ter 3, Section 3.5)
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• How to quantify security content of a bipartite quantum state ? (Chapter 4)

• Can one obtain secure key from entangled quantum states from which no pure
entanglement can be obtained [DW05, DW04]? (Chapter 5)

• How easy it is to distinguish the private state from it’s attacked copy, when
either of two is shared by the honest parties that are far apart? (Chapter 6)

In this thesis we will try to answer the above questions by characterizing class
of the quantum states that have secure key (the private states) and using the latter
class showing a direct, quantitative link between notions of security obtained from
quantum states and entanglement in general.

1.2 Quantum cryptography - the idea

Quantum cryptography is a domain of quantum information theory that is a fusion
of two domains: quantum mechanics and classical information theory. Quantum
mechanics, discovered by Planck, Schröedinger, Hiesenberg and Dirac and axioma-
tized by Landau and von Neumann [NC00] in 30’s of XXth century, is up to now
the best known physical description of the micro world, and has been confirmed in
many experiments. The classical information theory founded by Shannon [Sha48]
dates back to 40’s of XXth century. It provides a framework for quantification of
classical information content of data. Within quantum information theory one asks
about new possibilities and restrictions connected with processing and communicat-
ing information ’written’ on qubits - carriers which exhibits the inherent properties
of quantum mechanics.

The birth of the quantum cryptography in 70’s of XXth century is due to S. Wies-
ner [Wie83], who first proposed the use of a discrete quantum systems to store binary
information, taking advantages of the rules of quantum mechanics. Unfortunately,
Wiesner’s proposal was not appreciated that time. His seminal paper rejected by a
famous journal, has been published in SIGACT News only in 1983. Subsequently,
taking much of the spirit of his approach, C. H. Bennett and G. Brassard [BB84] dis-
covered the first quantum cryptographic protocol (called BB84 after its inventors).
The essence of the Wiesner’s and Bennett and Brassard’s idea can be summarized
in the following statement:

• In order to protect a private information one should encode it in such a way,
that reading it without additional a priori knowledge would be equivalent to
violation of the rules of quantum mechanics.
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The classical information is encoded in bits - systems, that can be in one of the
two states ’0’ or ’1’. The basic notion of quantum information theory is a quantum
bit (called a qubit). It is a two-level quantum system which can be not only in states
’0’ and ’1’, but also in some intermediate state, that is a superposition of these two
basis states. The possible states of qubit are then written using Dirac notation as
follows2:

a|0〉+ b|1〉, (1.1)

with a and b being the complex numbers that satisfy |a|2 + |b|2 = 1, and |0〉, |1〉
representing column vectors (1, 0)T and (0, 1)T respectively.

The BB84 protocol allows for generation of a random correlated bits, unknown
to Eve, between Alice and Bob linked by a quantum communication channel and
an authentic classical communication channel. It is based on single qubits, send via
the quantum channel (usually an optical fiber) from Alice to Bob. The clue is that
Alice sends the qubits set in a state represented by random basis vectors of one of two
(again randomly chosen) basis: {|0〉, |1〉} or {|+〉 = 1√

2
(|0〉+|1〉), |−〉 = 1√

2
(|0〉−|1〉)}.

According to quantum mechanics, a state measured in some basis is set to be
one of the state of this basis. Measurement in a basis, can be viewed, as “asking”
in which of basis state the system resides. For example, if a qubit was in state
a|0〉 + b|1〉, then when measured in basis {|0〉, |1〉} it will change its state to |0〉 or
|1〉 with probabilities |a|2 and |b|2 respectively.

If an eavesdropper Eve does not know how to measure a qubit, she is likely to
change its state which will be detected by Alice and Bob since they can cooperate
to compare the send and received data. Thus at the heart of the first protocol
of quantum cryptography lays the idea that is often phrased as “information gain
implies disturbance”.

In this thesis we deal with scenario connected to a different type of a quantum
key distribution protocols - the entanglement based ones. The first such protocol
was proposed by A. Ekert in 1991 [Eke91]. According to his idea, Alice and Bob
are provided with pairs of quantumly correlated qubits (entangled qubits) which via
measurement and appropriate post processing give a random, correlated, unknown
to anyone else string of bits - a secure key.

1.3 Quantum entanglement - general facts

The phenomenon that the two particles can be correlated in a “quantum” way has
been already observed by Schrödinger [Sch35]. In quantum information theory it is

2In fact, the state is represented by a 2× 2 matrix»
|a|2 ab∗

a∗b |b|2
–
, see Section 2.1.
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one of the central notions which allows for various quantum communication setups
[HHHH07]. The best known example of an entangled state3 is of the following form:

|ψ−〉 =
1√
2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B), (1.2)

and is called a singlet state 4. It is also called an EPR pair (of qubits), as it was
erroneously speculated by Einstain, Podolsky and Rosen that properties of this state
could prove inconsistency of quantum mechanics [EPR35].

The singlet state is an equal superposition of two bipartite states: |0〉 ⊗ |1〉 and
|1〉 ⊗ |0〉. The subscripts A,B reminds, that the first subsystem is with Alice and
the second with Bob. Now, after measuring the subsystems in {|0〉, |1〉}, leaves
Alice’s and Bob’s joined state with equal probability in one of these two states:
either |0〉A ⊗ |1〉B or |1〉A ⊗ |0〉B. According to quantum mechanics, since the initial
state (before measurement) was pure (represented by a single vector), nobody except
Alice and Bob could have been correlated with this state and know the result of the
measurement. It follows then, that a singlet state can be viewed as a source of one
bit of secure correlations. The notable manifestation of entanglement of this state is
the fact that sharing singlet and having possibility to send two bits of information,
Alice can ’transport’ a state of a qubit to Bob [BBC+93]. The protocol which realizes
this task is called a quantum teleportation.

It is worth noting, that the state (1.2) is represented by a single vector. For
this reason it is called a pure state, and its entanglement content is called a pure
entanglement. In fact, the singlet state contains maximal amount of entanglement,
and hence belongs to a larger class of states called maximally entangled states.

In reality however, one usually deals with imperfect sources of entanglement, and
in consequence with mixed entangled states (also ’noisy’ entangled states). This is
when one does not have certainty about the state of a quantum system. For example,
the state:

ρnoisy = p|ψ−〉〈ψ−|+ (1− p)|0〉A ⊗ |0〉B〈0|A ⊗ 〈0|B, (1.3)

is a mixture of two states: with probability p it is the singlet state defined above 5

and with probability (1− p) it is a product of two pure states: |0〉A with Alice and
|0〉B with Bob.

3Here and further in this chapter, for simplicity we sometimes say that some states are repre-
sented by vector |ψ〉, although formally, as it is explained in next chapter, they are represented by
projector onto this vector denoted as |ψ〉〈ψ|.

4For shortening notation, we will denote |i〉A ⊗ |j〉B often as |i〉A|j〉B or |ij〉AB or even |ij〉, if
the labels of subsystems are known from the context.

5The notation |ψ−〉〈ψ−| is up to irrelevant complex factor of modulus 1 an equivalent matrix
representation of a normalized vector |ψ〉 (see the next chapter)
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Entanglement is defined by saying which states are not entangled. According to
definition of Werner [Wer89] the state is not entangled if and only if it can be written
in a form

σ =
∑
i

piρ
(i)
A ⊗ ρ

(i)
B , (1.4)

where again ρ(i)
X is a quantum state localized at site X (A for Alice and B for Bob)

and the probabilities pi forms a distribution. In such a case, the state is called
separable. If a state is not separable, it is entangled.

Due to phenomenon of mixed entangled states, it was important to ask if one
can draw secure key from noisy singlets. The crucial idea of distillation of singlet
state was introduced by Bennett and coauthors in [BBP+96, BDSW96]. Namely,
from many pairs of mixed state ρAB, Alice and Bob should try to obtain some (usu-
ally smaller) number of pairs of qubits in a singlet state using (L)ocal quantum
(O)perations and (C)lassical (C)ommunication (LOCC) that is making quantum op-
erations in their laboratories and communicating e.g. via a mobile phone. The
amount of pure entanglement that can be extracted in this scenario, called LOCC
scenario (or equivalently the distant laboratories scenario), is called distillable en-
tanglement ED(ρ) of a state ρ. It is equal to the maximal ratio k

n of the number of
singlet states k that can be gained from n copies of a state ρ.

Establishing the paradigm of distant laboratories has led to development of theory
of entanglement in quantitative way through the notion of entanglement measure
[VPRK97, VP98, Vid00]. The first entanglement measure 6 was just the mentioned
distillable entanglement. An entanglement measure that accompanies ED is called
entanglement cost EC . It amounts to a minimal ratio of singlet states k that are
needed in order to create n copies of the state ρ by means of LOCC operations.

There are known examples of noisy entangled states that can be distilled, i.e.
have ED > 0 [BBP+96, BDSW96]. However due to M. Horodecki and coauthors
[HHH98], not all mixed entangled states can be transformed to a singlet state. Such
states which are entangled (one needs pure entanglement to create them by LOCC),
but from many copies of which one can not obtain a singlet state by means of LOCC
operations are called bound entangled states. Hence, the bound entangled states are
those which fulfill simultaneously EC > 0 and ED = 0. The set of states which are
bound entangled has not been fully characterized yet. It is known however, that it
includes the so called PPT entangled states, that is those entangled states which
remain positive under partial transposition7.

6Formally, entanglement measure (in bipartite case) is a function of a bipartite state that fulfills
certain axioms of entanglement measures, in particular a most constitutive one: not increasing
under LOCC operations.

7State is PPT if it has (P)ositive (P)artial (T)ransposition that is if (IA⊗T )ρAB ≥ 0 for T being
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1.4 Pure entanglement and quantum cryptography - his-
torical background

As it was already mentioned, the first who used entangled states in quantum cryptog-
raphy was A. Ekert [Eke91]. According to his proposal, Alice and Bob are provided
some number of singlet states. In ideal case, after measuring n singlets |ψ−〉⊗n each
in a basis {|0〉, |1〉}, Alice and Bob would obtain n-bit, anticorrelated random string.
However, since the provider may be in particular just Eve, Alice and Bob can not
trust that they were given what they expected to. According to the most general
attack called coherent, Eve can provide them a big entangled state of n systems ρ(n)

AB.
In order to rule out the coherent Eve’s attack, Ekert proposed that Alice and

Bob should sacrify some singlets, to verify if they are able to extract key. Another
protocol (BBM) based on singlet was proposed by Bennett, Brassard and Mermin
[BBM92]. According to BBM protocol, Alice and Bob measure some singlets in
{|0〉, |1〉} and {|+〉, |−〉} basis and compare if they have anti correlated results. If
there are too few of such results, they abort the protocol. It was the first protocol
which was based solely on the fundamental fact, that a quantum bipartite system
carries the information about its correlations with other systems. Yet, it based on
the fact that singlet is a pure state, i.e. the state of system that is fully uncorrelated
from other systems.

In both Ekert’s and BBM protocol, there was an unreal assumption that every
noise is introduced by Eve, so if only the honest parties detect her presence, they
abort the protocol. As a cure, in [DEJ+96] the process of distillation of singlets was
proposed and called a quantum privacy amplification: Alice and Bob should first
distill singlets and then generate the key via measurement on almost ideal singlet
states.

The pure entanglement-based protocols mentioned above assumed ideal Alice’s
and Bob’s operations, and were not proved to be secure. The first pure-entanglement
based protocol security of which was proved, was provided by Lo and Chau [LC99].

The protocol of Lo and Chau, after suitable modification was then used by Shor
and Preskill [SP00], to prove in a simply way the security of BB84 protocol. This
was the breakthrough which allowed to prove security of many other single-particle
based protocols.

The fact, that most of the techniques developed in order to prove security of
quantum key distribution protocols were based on obtaining of pure entangled states
(singlets), has supported the belief, that singlet and in general pure entangled states
are the only source of security.

operation of transposition of matrix of the state ρAB .
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1.5 Quantum security beyond pure entanglement

The usefulness for security of entanglement of mixed states that is not associated
with possibility of distillation of entanglement was first studied by Aschauer and
Breigel in [AB02]. They showed, that even if Alice and Bob perform their operations
imperfectly, which do not allow them to distill pure entanglement, they can have
secure correlations. The Authors introduce the notion of private entanglement, i.e.
such type of correlations that are shared only by the honest parties, although the
parties can not have full access to it.

The qualitative link between entanglement and security (of in general mixed
states) has been established by Curty et al. [CLL04a, CGLL05] who showed, that a
quantum state from which one obtains secure correlations must be entangled.

1.5.1 LOPC, classical key agreement, and collective attacks scenar-
ios

As it was mentioned, most of the security proofs for quantum key distribution pro-
tocols use reduction of security to the situation where either Alice or some external
provider distributes some entangled states between Alice and Bob while Eve can
manipulate with these states in arbitrary way, i.e. perform the coherent attack. The
generality of these attacks is the main reason for difficulty of any proof of security
of quantum key distribution protocols. In [BM97] a substantially restrictive attack
was introduced called the collective attack, against which security of some protocols
can be proved in much easier way [BBB+98].

Namely, Eve attacks each passing state using the same strategy: attaching an
’ancillary’ system individually to each of the state being distributed between Alice
and Bob, and performing some fixed unitary transformation between the state and
her system, and taking ancillary system with her, letting the state be distributed
between the parties. She then keeps all the additional systems in her lab, and listen
to the communication that Alice and Bob exchange via public authenticated channel.
Only then, she may decide to measure their systems. The measurement can involve
many systems, hence the name ’collective’ of this attack.

In the above scenario, which we will refer to as CAS, before Alice and Bob launch
their operations, in order to obtain key from shared states, the total state shared
by Alice, Bob and Eve is of the form |φ〉〈φ|⊗nABE , that is n copies of the same pure
state |φ〉〈φ|ABE , such that Alice and Bob have access to its A and B subsystems
respectively, and Eve to the subsystem E.

Originally, the security condition imposed on the output state of Alice and Bob
in this scenario was that Eve should have small classical correlations (measured by
Shannon’s mutual information) with the bits of final key, they have extracted. It is
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further replaced by the so called composable security conditions [BOHL+05a].
In [DW05, DW04], the so called LOPC scenario as the quantum analogue of clas-

sical cryptographic concept of secure key agreement (called also classical key agree-
ment [GW00]). The secure key agreement originating from the information-theoretic
approach of Shannon, was first studied by Wyner [Wyn75] and developed by Csiszár
and Körner, Maurer [Mau93] and Ahlswede and Csiszár in [CK78, AC93]. According
to secure key agreement, Alice Bob and Eve share triples of random variables with
some joint distribution P (A,B,E). Alice and Bob try to obtain from them the key
for one-time pad encryption, using public (listened to by Eve) discussion.

In LOPC scenario, Alice and Bob and Eve share n copies of a tripartite quantum
state ρABE , each having access to its subsystem A, B and E respectively. Alice and
Bob try to transform the bipartite subsystems AB that they share into states useful
for one-time pad encryption. To this end they perform Local operations (each on
its share) and communicate via public (insecure, but authenticated) channel, so that
Eve can listen to this communication. The state ρE represents total knowledge of
Eve, after the protocol of key distillation is finished.

The security condition imposed on the output states is that for every realization
of the key bit-string K = k on Alice’s and Bob’s subsystem, which should happen
with almost uniform probability, the state of Eve’s subsystem after the whole public
discussion is almost the same.

Within this scenario, it has been shown in [DW05, DW04], that on an input state
of the form

ρcqq =
∑
i

pi|i〉〈i|A ⊗ ρ(i)
BE , (1.5)

one can obtain distillable key denoted as KD at a rate analogous to the formula of
Csiszáar and Körner’s bound:

KD > I(A : B)ρ − I(A : E)ρ, (1.6)

with I(X : Y )ρ being the quantum mutual information 8 - a quantum analogue of
classical mutual information. The protocol which achieves the above rate of distill-
able key, we called further as the Devetak-Winter protocol.

The interrelation between classical key agreement and the quantum information
theory has been first explicitly stated by Gisin and Wolf [GW00]. In particular it
is observed there that this link can lead to better understanding of the classical
key agreement itself. (for further development see [CP02, AMG03, ACM04], and a
review of this subject [HHHH07]).

8Quantum mutual information is defined as follows: I(A : B)ρ = S(ρA)+S(ρB)−S(ρAB) where
S(ρX) denotes the von Neumann entropy (Shannon entropy of the eigenvalues) of the subsystem
X of the state ρAB
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The worst case of LOPC scenario

In classical key agreement, there is no a priori restriction on the Eve’s knowledge
about the Alice’s and Bob’s data. Indeed, given Alice and Bob share a realization
of a random variable A and B, respectively, with a joined probability distribution
P (A,B), Eve can be arbitrarily correlated with them: there is no restriction on
distribution P (A,B,E) apart from the fact, that its AB marginal should be P (A,B).
In particular Eve can have a copy of their data so that E = AB.

What is fundamental to all further investigation in this thesis is the fact, that the
above situation does not hold when we go to quantum. This is because an unknown
quantum state can not be perfectly copied [WZ82, BH98]. When Alice and Bob
share a bipartite state ρAB, the maximal access that Eve can have is up to irrelevant
transformation uniquely defined and is called the purification of the state ρAB (see
Section 2.3.2 and 2.9). We will refer to this scenario as to the (quantum) worst-case
senario.

Consequently, as it was noted in [DW05, DW04], the worst case in LOPC scenario
from cryptographic point of view is when ρABE is a pure state, so that the LOPC
scenario is then a special case of the worst-case senario as we described above. This
fact implies also, that the CAS as described in Section 1.5.1, is a special case9 of the
worst-case LOPC scenario: the three parties share many copies of pure states, and
process it via LOPC operations (see [DLH01]).

1.6 Related research - distinguishing via LOCC opera-
tions

The LOCC distinguishing scenario has been considered initially by Bennett et al.
in [BDF+99, BDM+99]. In the simples case, according to this scheme, Alice and
Bob are given a bipartite state which is one of the two ρ1 or ρ2. Their task is to
distinguish between them with the highest possible probability of success, by means
of LOCC operations.

In [BDF+99, BDM+99] it is shown, that there is a set of pure orthogonal states,
which can not be distinguished with certainty by means of LOCC operations (see
[WH02, WSHV00]). It was then shown by Leung, Terhal and DiVincenzo [TDL01,
DLT02], that there are pairs of mixed states which are (i) almost orthogonal (i.e.
distinguishable almost perfectly by quantum operations) but (ii) nearly indistin-
guishable by LOCC operations, hence called hiding states. Their result can be in-

9There only minor differences: (i) CAS was originally equipped with different security condition
imposed on the output states, that is not composable [BBB+98, BM97, KRBM05]. (ii) in CAS Eve
attacks preserving the dimension of the system send from Alice to Bob.
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terpreted as the first result on hiding entanglement. Then, Eggeling and Werner
[EW02], showed that the phenomenon of hiding bits holds even for separable states.
Similar results, in different context has been obtained earlier by Matthews and Win-
ter [MW07]. They show, that the symmetric and antisymmetric Werner states are
hardily distinguishable, providing optimal LOCC strategy for distinguishing between
them.

1.7 Contribution

The contribution of this thesis is generally of two kinds. On one hand it gives
insight into quantum cryptography, while on the other it exhibits new phenomena
in entanglement theory.

Chapter 2 contains basic concepts and definitions. In Chapter 3, we study the
structure of bipartite quantum states ρAB that contain directly accessible, classical
key. We assume, that the eavesdropper holds its purifying system in state ρE , so that
there is a pure state |ψρ〉ABE with TrE |ψρ〉〈ψρ|ABE = ρAB and TrAB|ψρ〉〈ψρ|ABE =
ρE . The classical key is represented by tripartite state

ρkey =

(
d−1∑
i=0

1
d
|ii〉〈ii|

)
⊗ ρE . (1.7)

By direct accessibility we mean the accessiblity via the complete von Neumann mea-
surements on subsystems of A and B. In that we focus on states ρ which have two
parts: main part and side part. We say, that ρ has directly accessible, classical key
if after complete von Neumann measurements on (two subsystems of) main part and
tracing out side part together with the purifying state ρE , it has the form of ρkey.

We then define the class of private states, that consists of the main part AB and
side part A′B′, that are called, key part, and shield respectively. They are of the
form:

γABA′B′ = U |Ψ+〉〈Ψ+|AB ⊗ ρA′B′U †, (1.8)

where unitary transformation U has the form

U =
∑
kl

|kl〉〈kl| ⊗ Ukl, (1.9)

with Ukl arbitrary unitary operations acting on a systemA′B′ and |Ψ+〉 =
∑

i
1√
d
|i〉A⊗

|i〉B is a maximally entangled state.
We show, that bipartite states that have directly accessible, classical key

are the private states. We consider also other interpretations of direct accessibility,
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including those used by other authors in context of private states [RS07, BHH+08].
All they turn out to yield states that are equivalent to private states. Precisely, these
states can be easily transformed (by local operations) into some private states, and
vice versa (cf. [RS07, BHH+08]).

Private state can be viewed a “twisted maximally entangled state”, as it is orig-
inally a maximally entangled state |Ψ+〉 on AB subsystem, that gets “twisted” by
the unitary transformation U into a system A′B′. For this reason, we refer to the
unitary transformation given in equation (1.9) as to twisting.

In Chapter 4, we give definition of distillable key KD in terms of private
states and definition of classical distillable key CD in terms of tripartite
quantum states representing secure key having the form of ρkey.

Definition of KD involves the LOCC scenario: Alice and Bob are supplied n
copies of the state ρAB. Alice and Bob can operate on the n copies of a state ρAB
with local quantum operations and communicate ’classically’ with each other. Their
task is to gain a (approximate) private state with the largest key part (say of k
qubits). KD is then the maximal ratio of k

n in asymptotic limit.
Definition of CD involves the LOPC scenario, with slightly weaker condition,

then that which was studied in [DW05, DW04]. Namely, we also require that Alice
and Bob transform many copies of tripartite state ρABE via LOPC operations into
some tripartite state ρout, yet in place of condition of Devetak and Winter, we impose
that ρout must be close to a state representing ideal secure key10:

||ρout − ρkeyABE || ≤ ε (1.10)

with ε arbitrarily small as a function of n. Hence, the task of Alice and Bob is to
obtain the approximate ρkeyABE with the largest possible amount of key-bits k (log d
according to (1.7). CD is then the maximal ratio of k

n in asymptotic limit.
We then focus on the worst case of LOPC scenario, that is the case of the input

state ρABE begin a pure state. We show, that:

CD(|ψρ〉ABE) = KD(ρAB) (1.11)

where |ψρ〉ABE is a purification of ρAB, that is after ignoring system E of |ψρ〉ABE ,
the remaining bipartite state on AB equals ρAB.

The function KD is an entanglement measure, because it does not increase under
LOCC operation. Thus, the classical distillable key in the worst case LOPC
scenario is equal to an entanglement measure, which provides quantitative
link between quantum cryptography and theory of entanglement.

10This security condition that is proved to be composable in [BOHL+05b].



Introduction 13

This result enabled us to study security content of bipartite states using approach
of entanglement theory. We show the upper bound on distillable key11:

KD ≤ E∞
r . (1.12)

where E∞
r is the regularized relative entropy of entanglement.

In Chapter 5 we show, that there are bipartite states ρ satisfying

KD(ρ) > 0 and ED(ρ) = 0, (1.13)

i.e. that some bound entangled states are key distillable. It means that
distillability of pure entanglement is only sufficient, but not necessary condition of
security. This result has important meaning, as it implies, that there are situations,
in which one can send bits in private, although one can not send faithfully
qubits. Some of the bound entangled key distillable states are special mixtures of
two private states.

In Chapter 6 we consider an LOCC distinguishing scenario. We mostly focus
on the case when Alice and Bob are given an input bipartite state which is one
of the two - a private state γ or the γ measured already on its key part by Eve
(a ’key-part-attacked’ private state) denoted as υγ . We then ask how many copies
of an input state they have to share in order to achieve the probability of success
approaching 1. We show, that there is family of private states, for which this number
scales exponentially with the number of qubits these states occupies.

In Chapter 7 we summarize, focusing on the role of private states in the above
results, and the fruitful interrelation between the quantum cryptography and theory
of entanglement. In Appendix we collect some useful facts that serves a background
to main considerations.

Most of these results is the outcome of collaboration with J. Oppenheim and M.
and P. Horodeccy, that can be found in [HHHO05c] (extended in [HHHO05a]), as
well as Ł. Pankowski and M. and P. Horodeccy presented in [HPHH05]. The content
of this thesis is based on the following manuscripts:

1. K. Horodecki, M. Horodecki, P. Horodecki and J. Oppenheim. Secure key
from bound entanglement. Physical Review Letters, 94:160502, 2005. quant-
ph/0309110 [HHHO05c]

2. K. Horodecki, M. Horodecki, P. Horodecki and J. Oppenheim. General paradigm
for distilling classical key from quantum states. after positive reports, resend
to IEEE Trans. Inf. Theor., 2005 quant-ph/0506189 [HHHO05a]

11This result was extended within theory of entanglement [CEH+07], to hold for all entangle-
ment measures satisfying some axioms ( asymptotic continuity, convexity, and sub-normalization
on private states).
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3. K. Horodecki, Ł. Pankowski, M. Horodecki and P. Horodecki. Low dimensional
bound entanglement with one-way distillable cryptographic key. to appear in
Vol 54, No. 6 IEEE Trans. Inf. Theor., Special Issue of the IEEE TIT on
Information Theoretic Security, June 2008. quant-ph/0506203 [HPHH05]

4. K. Horodecki, M. Horodecki, P. Horodecki and J. Oppenheim. Locking entan-
glement with a single qubit. Physical Review Letters, 94:200501, 2005. qunat-
ph/0404096.

5. K. Horodecki. On hiding entanglement using private states, 2008 [Hor08].

In comparison with [HHHO05a], there are two main differences in presentation:

1. The proof of Theorem 2 of [HHHO05a] (Theorem 3.2 of this thesis), which
gives characterization of states that have key, is changed so that it does not
use the notion of twisting. (Chapter 3)

2. We provide a more direct proof of the fact that there are PPT-KD states
(Theorem 10 of [HHHO05a], Theorem 5.7 of this thesis). The construction of
the states relevant for showing this fact, given in [HHHO05a], is presented in
Section 5.5. (Chapter 5)

In [HPHH05] explicit examples of bound entangled, key distillable states were showed.
Some of the results has not been made public yet. The content of Chapter 6 presents
some results, that will be extended in [Hor08]. Moreover, the Sections 3.6 and 4.4.2
and 5.5.4, as well as the Observation 5.15 appear originally in this thesis. As we indi-
cated in text, some of the remarked facts will be argued more explicitly in [PHHH08]
and [BHH+08]. The first motto of this thesis is cited after D. Kahn [Kah96]. The
second is the ending of my father’s poem Still life [Hor03].



Chapter 2

Preliminaries

In this Chapter we introduce basic notions, definitions and facts. Some mathematical
facts which are mostly independent of the formalism of quantum information theory,
we have moved to Appendix. If it is not explicitly stated we refer to the book by
Chuang and Nielsen [NC00]. Sometimes we also refer to particular papers (books),
which treat the subject in more detail. In particular, some basics of entanglement
theory, which we invoke here as well as the overview on the subject can be found in
book by Bengtsson and Życzkowski [BZ06], the PhD thesis of Matthias Christandl
[Chr06] and the review papers [PV06, HHHH07]. For the classical information theory
we refer to the book by Cover and Thomas [CT91].

2.1 Quantum states

According to quantum mechanics, with any physical system one associates some
Hilbert space H. It is a vector space over the field of complex numbers C, equipped
with a scalar product and complete with a norm based on this scalar product.

In this thesis we deal only with finite dimensional Hilbert spaces. More specifi-
cally, we focus on one representative of a Hilbert space, the Cartesian product of the
field of complex numbers:

H = C × . . .× C︸ ︷︷ ︸
d

= Cd. (2.1)

We will alter the notation H and Cd, using the latter to indicate the dimension
of the Hilbert space. The quantum system with associated d-dimensional Hilbert
space, is called a qudit. In special cases of d = 2, 3, 4 it is called a qubit, qutrit and
quforit respectively.

Before we present the notions of pure and mixed quantum states, we first in-
troduce the so called Dirac notation. The standard basis vectors of a Hilbert space
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v0 = [1, 0, ...0]T , v1 = [0, 1, ...0]T , ...vn = [0, ..., 1]T are written as |0〉, |1〉, ...|d − 1〉
respectively. The symbol |.〉 is called ’ket’ while 〈.| is called ’bra’, and denotes her-
mitian conjugation of ’ket’: 〈ψ| = (|ψ〉)†. The set {|k〉}d−1

i=0 (also denoted as {|k〉})
we will call the standard basis. The scalar product of two vectors |ψ〉 and |φ〉 reads:

〈ψ||φ〉 ≡ 〈ψ|φ〉. (2.2)

Any quantum state is represented by a so called density operator ρ that acts on
a Hilbert space H. The density operator is a matrix of dimension d × d (in case
H = Cd), with complex entries that is (i) positive (ii) of trace one. By positivity,
we mean that a matrix is diagonalisable and has real, non-negative eigenvalues. If a
matrix has all eigenvalues real and positive, we call it strictly positive. Unfortunately,
this common agreement in quantum information theory is not in accordance with
notation from linear algebra see e.g. [HJ85]. We will denote the properties of a state
in the following way:

ρ ≥ 0, (positive) (2.3)
Trρ = 1 (of trace one) (2.4)

ρ ∈ B(Cd) is positive if and only if

∀|ψ〉∈Cd 〈ψ|ρ|ψ〉 ≥ 0. (2.5)

From the above definition of density operator, it follows that it is also hermitian i.e.
ρ† = (ρT )∗ = ρ The set of all states acting on a Hilbert space H we will denote as
B(H).

We can define now an important notion, which is the projector onto a subspace
S ⊆ H of a Hilbert space H. If the orthonormal vectors {|si〉}ki=1 span the subspace
S, the projector onto S is defined as

PS =
k∑
i=1

|si〉〈si|. (2.6)

Any projector PS fulfills the two properties: P 2
S = PS and P †S = PS which

constitutes its alternative definition. When k = 1, PS projects onto a 1-dimensional
subspace spanned by the vector |s1〉, and we say that PS projects onto a vector |s1〉.
In this case we can denote it also as P|s1〉.

When a quantum state ρ has only one positive eigenvalue (equal to one), it is
called a pure state. In this case, ρ is equal to the projector onto some vector |ψ〉. In
literature, vector and projector onto vector are in some cases used interchangeably,
which we also would not avoid here. In particular we will say sometimes that |ψ〉 is
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a state (mostly in cases when |ψ〉 has large description), burying in mind that we
consider a projector1.

A linear combination of vectors is called a superposition. In particular a vector
ψ = [a0, ..., ad−1]T can be written in Dirac notation as:

|ψ〉 =
d−1∑
i=0

ai|i〉. (2.7)

The normalization condition implies that
∑

i |ai|2 = 1. The coefficients ai are called
amplitudes. We note here, that according to Dirac notation 〈ψ| denotes the following
operator:

〈ψ| = (|ψ〉)† =
d−1∑
i=0

a∗i 〈i|, (2.8)

where by a∗i we denote the complex conjugation of the amplitude ai.
If the state ρ is not pure, it is called a mixed state. This name reflects the fact,

that it is a probabilistic mixture of the projectors onto the eigenvectors |ψi〉〈ψi|,
which represents some pure states:

ρ =
m−1∑
i=0

pi|ψi〉〈ψi|. (2.9)

Note that any state can be diagonalized to the above form, with trivial distribution
in case of pure state.

The state ρ ∈ B(Cm) is called a maximally mixed state if it is of the form:

ρm =
1
m

I. (2.10)

with I =
∑

i |i〉〈i| being the identity matrix.
If ρ =

∑K
i=1 qiσi, we say that it is realized by an ensemble {(qi, σi)}Ki=1. In case

of σi being all pure states, the ensemble is called pure. The probabilities qi form a
distribution of the ensemble ~q = (q1, . . . , qK). If the number of members in ensemble
is not relevant, we will omit it, denoting ensemble just as {(qi, σi)}. Let us note here,
that the same mixed state ρ can be realized by many different ensembles.

Example 2.1 (different ensembles) The state ρ = 1
2(|00〉〈00|+ |11〉〈11|) can be writ-

ten as well as 1
2(|ψ+〉〈ψ+|+ |ψ−〉〈ψ−|) with |ψ±〉 = 1√

2
(|00〉 ± |11〉).

1A reason for this abuse of notation follows from the fact that vector |ψ〉 represents pure state
|ψ〉〈ψ| up to a complex coefficient of modulus 1. This coefficient can not be observed (see section
2.2).
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2.2 Quantum operations

Any quantum operation is linear. It is described by a linear superoperator Λ :
B(H1) → B(H2), with dimH1 = d and dimH2 = d′. It can be also described
(not uniquely) by the set of d′ × d matrices with complex entries {Mm}Km=1, called
operators. The operators satisfy relation

∑K
m=1M

†
mMm = Id where Id is d× d iden-

tity matrix. The operators Mm are also called Kraus operators. The superoperator
Λ acts on a state ρ as follows:

Λ(ρ) =
K∑
m=1

MmρM
†
m. (2.11)

Introducing a normalizing factor pm := Tr[MmρM
†
m] whenever it is nonzero, one can

interpret the action of Λ as changing state ρ into state σm :

ρ −→ σm :=
MmρM

†
m

Tr[MmρM
†
m]
, (2.12)

with probability pm. Instead of the name “quantum operation” or the “superoperator”
we say also a map.

2.2.1 Von Neumann measurements

In special case, when all Kraus operators Mm of a quantum operation Λ are projec-
tors, the operation Λ is called a von Neumann measurement. When in particular all
the projectors are of rank 1, i.e. project onto vectors Mm = |ψm〉〈ψm|, and {|ψm〉}
forms a basis, the operation is called a complete von Neumann measurement(and
else incomplete). Usually, instead of saying that the complete von Neuamann mea-
surement has been done, we say that the measurement in basis {|ψm〉} has been
performed.

Example 2.2 (measurement in standard basis of a pure state)
Let |ψ〉 =

∑d−1
i=0 ai|i〉. Let us measure |ψ〉〈ψ| in the standard basis {|i〉}. In this

case the projectors Pk are equal to |k〉〈k|, and constitutes the complete von Neumann
measurement. The state |ψ〉〈ψ| after this measurement will become a mixed state,
equal to a mixture of states |i〉〈i| each with corresponding probability |ai|2. Indeed:

Λ(P|ψ〉) =
d−1∑
k=0

PkP|ψ〉Pk =
d−1∑
k=0

|k〉〈k|
d−1∑
i,j=0

aia
∗
j |i〉〈j||k〉〈k| =

d−1∑
i,j,k=0

aia
∗
j |k〉〈k||i〉〈j||k〉〈k| =

d−1∑
i,j,k=0

aia
∗
jδk,iδj,k|k〉〈k| =

d−1∑
i=0

|ai|2|i〉〈i| (2.13)
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2.2.2 Reversible quantum operations - unitary operations

As we have already mentioned, quantum operation Λ = {Mm} can be viewed as map
which changes ρ into ρm with probability pm = TrMmρM

†
m. An exceptional case

is when there is only one Kraus operator M ′
m. Then, by normalization requirement

pm′ = 1. In this case, quantum operation is deterministic: it is just a rotation.
Indeed, the unique Kraus operator satisfies M †

m′Mm′ = I which (in finite dimension)
is equivalent to unitarity of Mm′ . That is, Mm′ ≡ U for some unitary transformation
U . Such operation is deterministic and can be viewed as a change of the eigenbasis
of the state ρ:

ρ −→ UρU †. (2.14)

Unitary operation is reversible: the inverse operation is U †, that transforms back
UρU † into ρ.

Example 2.3 The Hadamard transformation

H =
1√
2

[
1 1
1 −1

]
, (2.15)

is a unitary transformation operating on C2.

Example 2.4 An important example of a unitary transformation is the so called
swap operator (or just swap) denoted as V , that exchanges the states of two systems.
It is defined on spaces HX and HY of the same dimensionality d as

VXY :=
d−1,d−1∑
i=0,j=0

|i〉|j〉〈j|〈i|XY . (2.16)

The important class of the so called Pauli (unitary) operations is presented in
Section 2.4, Eq. (2.50).

2.2.3 From quantum operations to POVMs

If we are not interested in the form of the output state but just in the probabilities of
the outcomes, there is useful mathematical tool called POVM. As we have mentioned,
the probability of the result m after measurement Λ described by the set of operators
{Mm}, equals TrMmρM

†
m. By property of trace it is equal to TrM †

mMmρ. The d×d
matrix Em := M †

mMm define so called POVM elements. The set of such POVM
elements constitutes a POVM associated with the operation Λ, which we denote
as MΛ = {Em}. In fact, any set of positive operators which sum up to identity,
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contributes to a POVM for certain quantum operation. If we perform an operation
Λ but are just interested with a POVM, we say that we have performed a POVM.
With a POVM performed on a quantum state, ρ there is an associated classical
random variable M . Its probability distribution is defined by the probabilities of
particular outcomes (labels) of this POVM: P (M = m) = TrρEm.

2.3 Dealing with composite quantum systems

If the quantum system is composite i.e. has n subsystems, the Hilbert space which
is associated with it, is a tensor product of the Hilbert spaces associated with its
subsystems:

H = H1 ⊗H2 ⊗ . . .⊗Hn. (2.17)

In case of two subsystems, that are traditionally in hands of Alice and Bob respec-
tively, we will usually write:

HAB = HA ⊗HB. (2.18)

If the state of each subsystem is prepared as |ψi〉〈ψi| (i = 0, 1), then the joined
state of a system is given by a tensor product of the states of its subsystems

|ψ1〉〈ψ1|A ⊗ |ψ2〉〈ψ2|B. (2.19)

The letter subscripts reminds from which space is each vector. We will omit them
if the states themselves are labeled by the corresponding letters |ψA〉, |ψB〉 or if
the labels of subsystems are known from the context. The state with two (three)
subsystems is called a bipartite (tripartite) state (and multipartite in general). Any
multipartite mixed state is a mixture of pure multipartite states.

The tensor product of two matrices the m×n matrix A and p× q matrix B with
the corresponding entries aij and bij is an mp× nq matrix:

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
...

am1B am2B . . . amnB

 . (2.20)

In case of the tensor product of k the same matrices (vectors) we use shorten notation:
A⊗k and |ψ〉⊗k respectively.

A tensor product of the Hilbert spaces is also a Hilbert space. A natural basis of
the space HAB is just the set of tensor product of basis from each space:

|gij〉 := |ei〉 ⊗ |fj〉. (2.21)
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For brevity we often write either |ei〉|fj〉 or |eifj〉, or just |ij〉 - the latter in case of
the standard product basis.

The scalar product of the vectors of the space HAB is defined by:

〈ψ| ⊗ 〈φ||θ〉 ⊗ |δ〉 := 〈ψ|θ〉 · 〈φ|δ〉. (2.22)

A vector |ψ〉 ∈ HAB can be written with a use of only min(dimHA, dimHB)
vectors of the form |ei〉 ⊗ |fi〉, where |ei〉 ∈ HA and |fi〉 ∈ HB:

|ψ〉 =
∑
i

λi|ei〉|fi〉. (2.23)

The real, positive coefficients λi are called the Schmidt coefficients of the state |ψ〉〈ψ|,
and the above form of |ψ〉 is called a Schmidt decomposition of a pure state |ψ〉〈ψ|.

2.3.1 Formalizing the notion of a site

In this section we invoke in a formal way the notion of site, which is used informally
in literature. By site we mean the collection of systems, on which one is allowed
to perform any quantum operation. This notion reflects the intuition, that system
corresponds to some ’tool’, and the collection of ’tools’ gives rise to a ’laboratory’.
With the site there is naturally associated Hilbert space: a tensor product of Hilbert
spaces of the systems of this site. The number of systems is not fixed a priori, and
can vary according to operations that are performed on the systems of site.

In this thesis, we will have at most three sites. Traditionally, with each of them
we associate a person, that can perform quantum operations. These are: Alice, Bob
(the honest parties) and Eve (the eavesdropper). These three sites will be called SA,
SB and SE respectively. The systems that belong to site SX will be denoted by a
modification of label X, e.g. X ′, X ′′, X̂, etc.

2.3.2 Operation of partial trace, and purification of a quantum sys-
tem

We describe now the operation which acting on a state of a system, outputs the state
of its subsystem. It is called a partial trace.

Definition 2.1 For a bipartite state ρAB ∈ B(HAB), the state ρA ∈ B(HA) of its
subsystem A is given by:

ρA ≡ TrB(ρAB) =
dim(HB)−1∑

k=0

IA ⊗ 〈k|B ρAB IA ⊗ |k〉B, (2.24)
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The operation TrB is called a partial trace over system B.
A strict description of the above operation requires saying that after tracing out

a subsystem B of system AB in state ρAB, we obtain subsystem A in state ρA.
For brevity, we usually say more informally, that tracing out system B, we obtain
subsystem of ρAB in state ρA. Even more informally we say shortly that ρA is a
subsystem of a state ρAB. Perhaps more proper name should be “a substate”, but
neither this, nor other possible words are used in this case, in quantum information
theory.

This definition extends to any multipartite system H = HA ⊗ . . . ⊗HZ , so that
by the TrX we denote the partial trace over system X of a multipartite system H,
with subsystem X. In particular, the state of subsystem B of system AB in state
ρAB is given by the partial trace over system A, defined analogously to (2.1). Note,
that partial trace does not depend on the choice of basis in which we trace out the
system. That is, instead of the standard basis {|k〉} on system A in the definition of
partial trace over system A, there can be any orthonormal basis i.e. the set {U |k〉}
for any unitary operation U .

Extension and purification of a bipartite state

Definition 2.2 An extension of a quantum bipartite state ρAB to system E is any
tripartite state ρABE such that TrEρABE = ρAB. The state ρE = TrABρABE is called
extending state of ρAB. A system in extending state of ρAB is called extending system
of ρAB.

Any pure extension is called a purification of ρAB, and denoted as |ψρ〉ABE. The
state TrAB|ψρ〉〈ψρ|ABE is called a purifying state of ρAB. A system in purifying state
of ρAB is called a purifying system of ρAB.

If only dimE ≥ rank(ρAB), there exists a purification of ρAB to system E. In
particular, there is a standard purification, described in example below:

Example 2.5 The standard purification of a bipartite state ρAB ∈ B(C⊗d1 ⊗ C⊗d2)
with an eigen decomposition ρAB =

∑m−1
i=0 pi|ψi〉〈ψi|, is a tripartite pure state |ψ〉ABE ∈

C⊗d1 ⊗ C⊗d2 ⊗ C⊗m of the form

|ψ〉ABE =
m−1∑
i=0

√
pi|ψi〉AB ⊗ |i〉E . (2.25)

The purifying system according to this purification is called a standard purifying
system.

A purification of quantum state is in a sense its best extension, as it is formalized
in observation below. We first invoke the following lemma needed to prove the
observation:
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Lemma 2.6 (adapted from [NC00]) For any two purifications |ψ〉XEρ and |φ〉XE′ρ of
the state ρ ∈ B(HX), to systems E and E′ respectively, there exists an isometry (in
case dimE ≤ dimE′) or partial isometry (in case dimE > dimE′) U : E → E′ which
satisfies:

IX ⊗ U |ψρ〉XE = |φρ〉XE′ . (2.26)

We can state now desired observation:

Observation 2.7 Let |ψρ〉ABE be the standard purification of a bipartite state ρAB
to system E, for any extension ρABE′ of ρAB to system E′, there is an operation ΛE
such that I⊗ ΛE |ψρ〉〈ψρ|ABE = ρABE′.
Proof. Consider the following purification of ρABE′ to system E′′:

|φ〉ABE′E′′ =
∑
i

√
pi|ψi〉|i〉E′′ . (2.27)

The above state is also a purification of ρAB, to system E’E”. Indeed: tracing out
subsequently E’ and E” we obtain back the ρAB. Now by Lemma 2.6, there exists
an izometry W that switches between the purifications:

IAB ⊗WE |ψρ〉ABE = |φ〉ABEE′ . (2.28)

We can define ΛE as a composition of (i) implementing the isometry2 W to obtain
|φρ〉ABE′E′′ , (ii) tracing out the system E′′, obtaining desired state ρABE′ shared by
Alice and Bob.

The above observation has the following cryptographical meaning: sharing the
purifying system of a bipartite state ρAB that is held by the honest parties, eavesdrop-
per has the most power that is possible according to axioms of quantum information
theory, since he can perform an operation which transforms a purification |ψρ〉ABE
into some extension ρABE′ of ρABE . Such a cryptographic scenario will be referred to
as quantum worst case scenario, (for short presentation of other scenarios see Section
2.9). Important conclusion about this scenario is that if we prove some property of
|ψρ〉ABE for any quantum operation of Eve, we can work with some fixed purifica-
tion regardless of other extensions (with other purifications among them), without
loosing generality of the proof.

2.3.3 Quantum operations as completely positive trace preserving
(CPTP) maps and probabilistic quantum operations

Any quantum operation Λ is completely positive. That is, if ρ ≥ 0,

Λ⊗ IHB
(ρ) ≥ 0. (2.29)

2It is easy to check, that isometry can be implemented via basic quantum operations.
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Quantum operation Λ preserves trace of the operators. That is TrA = TrΛ(A) for an
operator A. For this reason, they are called trace preserving maps. If a superoperator
is completely positive, but does not preserve trace (is not trace preserving), it can
be performed (that is - physically implemented), but only with a probability given
by its trace:

ρ −→ ΛCP (ρ)/Tr(ΛCP (ρ)). (2.30)

We refer to such an operation as to probabilistic quantum operation or just a com-
pletely positive map, denoting it as CP. We refer also to the usual quantum operation
as to CPTP which means the completely positive, trace preserving map.

2.3.4 Quantum measurements

Quantum measurements are special quantum operations. Apart from the ’quantum’
result (a state) they give ’classical’ result, often called a ’flag’ that informs how quan-
tum operation was realized i.e. which Kraus operator was applied to the state. With
quantum measurements one can easily realize a POVM, if traces out the quantum
result of measurement. Formally it is defined as follows:

Definition 2.3 Quantum measurement Q is a quantum operation Q : B(HX) →
B(HY ⊗HZ), such, that for any state ρ ∈ B(HX),

Q(ρ) =
d−1∑
i=0

AiρA
†
i ⊗ |i〉〈i|Z , (2.31)

where
∑d−1

i=0 A
†
iAi = IX , and d = dimHZ . The states |i〉〈i| are called classical results

of the quantum measurement. For pi = Tr[AiρA
†
i ] > 0, the states 1

pi
AiρA

†
i are called

quantum results of the measurement.
Intuitively, by a local quantum measurement we will mean quantum measurement

performed on a subsystem of a bipartite state.

Remark 2.8 It is important, that the name ’quantum measurement’ should not be
confused with a similar name used in case of von Neumann measurements which
are quantum operations with Kraus being just projectors, acting on a state as ρ →∑

i PiρPi, with
∑

i Pi = I.

2.3.5 Representations of a pure bipartite states and its subsystems

We give here useful representation of a pure bipartite state [Rai97]. Any pure bipar-
tite state HA ⊗ HB 3 |ψ〉AB =

∑
ij aij |i〉A|j〉B can be represented in the following
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way:

|ψ〉 =
dB−1∑
i=0

[X|i〉]A|i〉B, (2.32)

where X is a matrix fully representing the state |ψ〉. It is expressed in the form
X =

∑dB−1,dA−1
l,k=0 akl|k〉〈l|. Alternatively, the state |ψ〉 can be written also with help

of a transposition of the matrix X:

|ψ〉 =
dA−1∑
i=0

|i〉A[XT |i〉]B. (2.33)

As an easy application of this representation we note, that the subsystems of |ψ〉 are
of the form ρA = XX† and ρB = XT (XT )†.

2.3.6 Basic quantum operations

In previous section we have introduced a formal description of quantum operations
i.e. using the Kraus operators. There is however a more operational approach to
this class of transformations, which shows, that they are built from conceptually easy
basic ones.

Theorem 2.9 Any quantum operation Λ on a quantum state ρ of some system S
can be performed using three elementary operations:

1. Adding an ancillary system A in a state ω:

ρ→ ρ⊗ ω. (2.34)

2. Performing some unitary transformation U on both ancillary system A and
system S:

ρ⊗ ω → Uρ⊗ ωU †. (2.35)

3. Tracing out some subsystem of the system SA.

We will refer to this implementation of an operation Λ as to the implementation
via basic quantum operations of a quantum operation Λ.

Observation 2.10 The ancillary state ω for implementing any quantum operation
via basic quantum operations, can be taken without loose of generality to be a pure
state |0〉 ∈ H.
Proof. Let ω =

∑m
i=1 pi|ψi〉〈ψi|. To obtain ω from a pure state, one takes |0〉〈0|AB ∈

Cm ⊗ Cm and rotate it by appropriate unitary transformation into state |φ〉 =
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∑m
i=1 pi|i〉A|i〉B. One then traces out the system A, and transforms the system

B which is now in state
∑

i pi|i〉〈i| into ω by appropriate change of its eigenbasis,
achieving the task.

Via basic quantum operations, one can make also embedding of a system into a
larger one, and a partial isometry (see Appendix A.1).

2.3.7 Coherent quantum operations

Using basic quantum operations one can perform every quantum operation via op-
erations which preserve von Neumann entropy of the input system. Such imple-
mentation of the quantum operation is called coherent. More specifically, for an
operation Λ there is an operation Λcoh, such that on input state ρX , Λcoh outputs an
extension σXR of ρX to system R, such that S(σXR) = S(ρX), where S is the von
Neumann entropy (see Section 2.7.1). Operation Λcoh is called coherent. This is eas-
ily achieved via basic quantum operations: the coherent quantum operation simply
does not trace out a system which should be traced out according to implementation
via basic quantum operations.

In this section we introduce in a formal way a widely used notion of coherent
quantum operations. In particular, we provide definition of coherent quantum oper-
ations, and their composition. We also introduce technical term of a trash bin. It is
then used to collect system R that would have been traced out when some quantum
operation were implemented via basic quantum operations. Another technical term
is operation on labels of systems called putting aside. It means that some system
became a subsystem of trash bin. Whenever we would like to treat some system R
as subsystem of trash bin, we say that this system has been put aside.

The notion of coherent quantum operation and putting aside, will be essential for
definition of coherent local operations and public communication (CLOPC) opera-
tions, which we provide in Chapter 4. These operations, yet without explicit formal
treatment, has been first used in [DW05, DW04].

Reversible part of quantum operation

In what follows, for clear presentation we assume without loose of generality, that
any implementation of any quantum operation via basic quantum operations, needs
the use of the partial trace operation3.

We begin with definition of reversible part of a quantum operation:

3If the operation does not need trace out we can force it artificially to use it by first adding
ancilla system in a pure state |0〉, that will be subsequently traced.



Chapter 2. Preliminaries 27

Definition 2.4 Let ρX ∈ B(HX). Consider quantum operation Λ : B(HX) →
B(HX′) implemented via basic quantum operations acting as follows:

Λ(ρX) = TrR(UρX ⊗ |0〉〈0|SU †)X′R, (2.36)

for some unitary transformation U , and system R with dimHX′R = dimHXS. The
reversible part of Λ is the operation Λrp : B(HX)→ B(HX′R) acting as

Λrp(ρX) = (Uρ⊗ |0〉〈0|SU †)X′R. (2.37)

We call X ′ the main system and R the trash system.

Convention of trash bins and putting aside

For consistency, and compact notation, we introduce now the following convention:

1. With any site SA, we associate a system RA called trash bin. Any operation
acting on system A of this site, will be understood to take input on ARA,
and act on RA as identity. When the system RA has associated 1-dimensional
Hilbert space (the empty trash bin), and whenever it does not lead to ambiguity,
we will omit RA in notation.

2. With an operation Λ transforming some input state ρARA on system ARA,
into output ρoutA′RAR′

on system A′RAR
′, we associate an operation on labels of

systems called putting system R′ aside, denoted as PAR′ , which appends R′ to
the list of subsystems of RA:

RA = XY → RA = XY R′, (2.38)

for some subsystems XY of RA (if RA has initially no subsystems, the opera-
tion PAR′ makes just substitution: RA := R′).

Definition, properties and examples of coherent quantum operations

Definition 2.5 For any quantum operation Λ : B(HX) → B(HX′), and its re-
versible part Λrp : B(HX) → B(HX′R), a coherent (version of) Λ is a quantum
operation of the form:

Λcoh = PAR(Λrp). (2.39)

Owing to the above definition, one can see, that instead of operation of partial
trace, we use the ’operation’ of putting aside, which means that the system is labeled,
that it should have been traced out: becomes a subsystem of trash bin.
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The ’operation’ of putting aside is specially designed for coherent operations,
as they gives output with two subsystems. We will use it for other operations (e.g.
LOCC) only when we want the latter in a sense to ’mimic’ some coherent operations.

We need now the observation, which follows directly from definition of partial
trace and extension of a quantum state (see Section 2.3.2):

Observation 2.11 For a state ρ ∈ B(HX), its any extension ρXY on HX ⊗ HY ,
and any quantum operation Λ there holds,

TrY (Λ⊗ IY (ρXY )) = Λ(ρ). (2.40)

Basing on this we provide important properties of the composition of coherent
operations:

Observation 2.12 For any two operations Λ1 : B(HX) → B(HX′R1) and Λ2 :
B(HX′)→ B(HX′′R2) the composition Λcoh2 ◦ Λcoh1 : B(HXRA)→ B(HX′′RA), satis-
fies for any state ρXRA

TrRAΛcoh2 ⊗ Λcoh1 (ρXRA) = Λ2 ⊗ Λ1(ρX). (2.41)

Moreover, if ρXRA is pure, then the state Λcoh2 ⊗ Λcoh1 (ρXRA) is also a pure state.
Proof. This observation follows from Def. 2.5 of coherent version of Λ, Observations
2.11 and 2.10, and the fact that partial trace over two subsystems is a composition
of partial traces over each subsystem separately.

It is important to note, that given Λ, its coherent operation is not uniquely
defined. Indeed, there are many ways (depending on choice of unitary transformation
and dimension of ancilla system) to obtain its reversible part Λrp. Some properties
of Λcoh, as shown above are still unique. Yet, in some cases, we will explicitly specify
the ancilla system, unitary transformation and the system which is put aside, since
otherwise the resulting operation might not have desired properties. We describe
this issue below:

Example 2.13 (Different sites) Consider two systems X and Y , belonging to dif-
ferent sites SX and SY respectively. One would like the coherent version of operation
of the form ΛX ⊗ IY act as identity operation on system Y of site SY , so that we
will specify (ΛX ⊗ IY )coh to be performed via adding |0〉〈0|S on site SX , perform-
ing UXS ⊗ IY on systems XSY and putting aside a subsystem of XS, where adding
|0〉〈0|S, performing UXS, and tracing out the subsystem, implements ΛX via basic
quantum operations.
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2.4 Entanglement of pure and mixed bipartite states

In this section we provide the definition of quantum entanglement and the notion of
separability. We also discuss the most important classes of bipartite states, such as
maximally entangled states, separable states and PPT states.

We define now bipartite quantum states contain interesting type of quantum
correlations called entanglement. We invoke here the definition of Werner [Wer89]:

Definition 2.6 A bipartite state ρAB is entangled if it can not be written as a convex
combination of tensor product of states:

∑K
i=1 piσ

(i)
A ⊗σ

(i)
B , where ~p = (p1, . . . , pK) is

a probability distribution and for each i, σ(i)
A (σiB) are some (in general mixed) states

on A (B) subsystem.
In other words, the state is entangled if it is not a probabilistic mixture of product

states, i.e. states of the form σA ⊗ σB.
The best known example of an entangled pure state is a state of two qubits called

singlet state |ψ−〉〈ψ−|:
|ψ−〉 =

1√
2
(|01〉 − |10〉). (2.42)

This state is the base for many quantum phenomena such as quantum teleportation
[BBP+96] (see example 2.18) and quantum dense coding [BW92].

There is a class of pure bipartite states called maximally entangled states. In
case of two qubit states, this class is an orbit of pure states generated from the singlet
state via local unitary operation:

MS(2) := {|ψ〉〈ψ| | |ψ〉 = U ⊗ I|ψ−〉}, (2.43)

where U is a unitary operation. We will use more often (and sometimes call it the
singlet state) the state of a form:

|Ψ(d)
+ 〉 =

d−1∑
i=0

1√
d
|i〉A ⊗ |i〉B. (2.44)

We will sometimes write also |Ψ+〉 if the dimension d is either irrelevant, or known
from the context. In general case of two qudit states, the set of maximally entangled
states is the following:

MS(d) := {|ψ〉〈ψ| | |ψ〉 = U ⊗ I|Ψ(d)
+ 〉}. (2.45)

In consequence, the state |Ψ(d)
B 〉〈Ψ

(d)
B | with |Ψ(d)

B 〉 =
∑d−1

i=0
1√
d
|eifi〉 (where B =

{|ei〉|fj〉}d−1
i,j=0 is an arbitrary product basis) is also an example of maximally entan-
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gled state4. The maximally entangled states are called in short the EPR states after
names of Einstein, Podolsky and Rosen.

There is also a distinguished set of four maximally entangled states, that forms
an orthonormal basis of C2⊗C2 (a basis of a two-qubit system). It is called the Bell
basis, and consists of a singlet and three other states:

|ψ−〉 =
1√
2
(|01〉 − |10〉) (2.46)

|ψ+〉 =
1√
2
(|01〉+ |10〉) (2.47)

|φ−〉 =
1√
2
(|00〉 − |11〉) (2.48)

|φ+〉 =
1√
2
(|00〉+ |11〉). (2.49)

The elements of Bell basis are called also the Bell states. We denote them as above
in accordance with literature, yet in an apparent contradiction with our notation of
|Ψ(d)

+ 〉. This is because the latter is the d-dimensional counterpart of |φ+〉 rather than
|ψ+〉. This is however also a common notation in literature. We note, that all the
Bell states are maximally entangled. This is because they can be generated from the
singlet state by the group of so called Pauli operations - the unitary transformations
acting on a one-qubit system. We present them below:

σ0 =
[

1 0
0 1

]
, σ1 =

[
0 1
1 0

]
,

σ2 =
[

1 0
0 −1

]
, −iσ3 =

[
0 −1
1 0

]
. (2.50)

Let us enumerate the Bell states as follows:

|ψ0〉 = |ψ−〉, |ψ1〉 = |φ−〉, |ψ2〉 = |ψ+〉, |ψ3〉 = |φ+〉. (2.51)

The singlet state rotated by σk on Alice’s qubit becomes (up to an irrelevant complex
phase factor in case k = 3) the corresponding |ψk〉 Bell state:

|ψk〉 = (σk ⊗ IB)|ψ−〉AB. (2.52)
4For d=2, the set given in eq. 2.45 equals that of given in eq. 2.43, since there is a unitary

transformation U , such that U ⊗ I|ψ−〉 = |Ψ(2)
+ 〉
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2.4.1 Separable states

In the light of Definition (2.6), if the state is not entangled, it is called separable
[Wer89]. It is then a convex combination of product states:

ρsep =
∑
i

piσ
(i)
A ⊗ σ

(i)
B , (2.53)

i.e. the coefficients pi form a probability distribution. The set of all separable states
in B(HAB) for some fixed HAB is denoted5 as SEP. Separable states are mixtures
of product states (those which are tensor product of two states σA ⊗ σB). The set
of separable states is convex and compact in any finite dimensional Hilbert space
[BZ06].

We remark here the following convention. If a state has more subsystems, and
we say that it is separable (or product), we have to indicate which tensor product
is under consideration. We say then, that it is separable (product) in some cut. To
give example, the state ρABA′B′ = σAA′ ⊗σBB′ is product in AA′ : BB′ cut. The set
of states on systems ABA′B′, separable in AA′ : BB′ cut where dimA = dimB = d
and dimA′ = dimB′ = d′ we denote as SEP (d,d′). Consequently, SEP (d) denotes
the set of separable states on AB with dimA = dimB = d.

We invoke here the important property of separable states [ABH+01], which
needs notion of classes SEP and LOCC operations, as well as the probabilistic SEP
and probabilistic LOCC operations, that can be found in Section 2.6.

Theorem 2.14 (see [ABH+01]) The set of separable states is closed under (proba-
bilistic) LOCC operations.
Proof. It follows from the fact, that (probabilistic) LOCC operations are in fact
(probabilistic) separable operations (see Section 2.6), and that separable operations
preserves separability of the state, that follows easily from Eq. (2.53) and Def. of
separable operations 2.13.

2.4.2 The operation of partial transposition and PPT states

Determining if a given state is separable or entangled is in general a difficult task.
There are however some criteria which work for certain classes of states. The first
such criterion is due to Peres [Per96], which we invoke below. To this end we need
an important notion of partial transposition

5The same name is used for the so called separable operations (see the next section), which should
not be mistaken.
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Definition 2.7 The partial transposition of a bipartite state ρAB ∈ B(HA ⊗ HB)
with respect to system B, is given by:

ρΓ
AB := (IA ⊗ TB)ρAB, (2.54)

where6 TB denotes the transposition of matrix from B(HB).
The Peres criterion reads:

Theorem 2.15 Any bipartite state ρAB ∈ B(HA ⊗ HB) which is separable, has
positive partial transposition, that is

ρΓ
AB = (IA ⊗ TB)ρAB ≥ 0, (2.55)

that is ρΓ
AB has non-negative eigenvalues.

The operation of partial transposition7 acts on matrix elements of a bipartite
state ρAB as follows:

ρAB =
∑
i,j,k,l

aijkl|i〉|j〉〈k|〈l| → ρΓ
AB =

∑
i,j,k,l

aijkl|i〉|l〉〈k|〈j|. (2.56)

Some useful properties of this operation we have collected in Section 2.5. We will
extend now the definition of the partial transposition of one bipartite system, to a
tensor product of bipartite systems.

Definition 2.8 For a tensor product of Hilbert spaces H = HA1B1 ⊗ . . . ⊗ HAnBn

and any state ρA1B1...AnBn ∈ B(H), by the partial transposition of this state along
A1 . . . An : B1 . . . Bn cut we mean

ρ
TB1...Bn

A1B1...AnBn
= [(IA1 ⊗ TB1)⊗ . . .⊗ (IAn ⊗ TBn)](ρA1B1...AnBn), (2.57)

where TX denotes the transposition on a matrix of state of system X.
For brevity, the partial transposition along some cut we will denote also as Γ. In

what follows we will deal usually with systems consisting of two bipartite systems,
and associated spaces HAB and HA′B′ . In this case, for ρABA′B′ ∈ B(HAB ⊗HA′B′)
the operator ρΓ

ABA′B′ denotes the state ρABA′B′ partially transposed along the AA′ :
BB′ cut. This useful notation may lead to ambiguity which needs a context-
dependent interpretation. Below, we give example of a mixed notation that will
occur.

6We denote the partial transposition as Γ following Rains [Rai98], as the symbol Γ can be seen
as a ’part’ of a letter T .

7One can define analogously partial transposition (p.t.) with respect to system A as (TA ⊗
IA)[ρAB ]. All facts which are true for Γ, that will be presented in this thesis, holds also for p.t.
with respect to system A. We then use only Γ without loosing generality.
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Example 2.16 Consider ρABA′B′ ∈ B(C2 ⊗ C2 ⊗ Cd ⊗ Cd). In block matrix form,
such a state has a bipartite structure of blocks, so that it reads:

ρABA′B′ =


A0000 A0001 A0010 A0011

A0100 A0101 A0110 A0111

A1000 A1001 A1010 A1011

A1100 A1101 A1110 A1111

 . (2.58)

This state after partial transposition with respect to system BB′ reads:

ρΓ
ABA′B′ =


AΓ

0000 AΓ
0100 AΓ

0010 AΓ
0110

AΓ
0001 AΓ

0101 AΓ
0011 AΓ

0111

AΓ
1000 AΓ

1100 AΓ
1010 AΓ

1110

AΓ
1001 AΓ

1101 AΓ
1011 AΓ

1111

 . (2.59)

In the above equation, the partial transposition on left hand side is with respect to
system BB′ and on the right hand side, only with respect to system B′, as the partial
transposition with respect to system B, which is a one qubit system, resulted already
in appropriate reordering of the block operators Aijkl.

The state with positive partial transposition ρΓ
AB is called a PPT state. The set

of all states with this property is denoted as PPT (it should not be confused with
the same name that is used for certain set of operations - see the next section). It is
easy to see, that this set is convex. What is more important, this set is closed under
tensor product:

ρΓ
AB ≥ 0 &σΓ

A′B′ ≥ 0⇒ (ρAB ⊗ σA′B′)Γ ≥ 0. (2.60)

The Peres criterion means that the set of separable states SEP is a subset of the
set of PPT states. Due to P. Horodecki [Hor97], it is known, that this inclusion is
proper i.e. that there are entangled PPT states. Other examples of entangled (not
separable) states that are PPT can be found e.g. in [BP00, BDM+99, WW01] (see
[BL07, Cla06] for a full list). The entangled PPT states belong to the class of bound
entangled states, for their entanglement is quite different from that of pure states.
The phenomenon of bound entangled states is in a sense central to this thesis, which
we clarify in Section (2.8). This is because the PPT states posses another important
property: they remain PPT under action of LOCC operations, which is stated in
theorem below [ABH+01], stated in a more general way that includes probabilistic
LOCC operations:

Theorem 2.17 (see [ABH+01]) The set of PPT states is closed under (probabilistic)
LOCC operations.
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The states which are not PPT (e.g. maximally entangled states), are called NPT.
The set of all such states is denoted as NPT. Till now, it is not known if there are
NPT bound entangled states [PPHH07]. In particular, the bound entangled states
which we provide in this thesis are also PPT.

2.5 Some properties of partial transposition of a matrix

In analogy to partial transposition of a state, one can take partial transposition of
a linear operator acting on a bipartite Hilbert space HAB [BZ06]. Such operator
has matrix form

∑
ijkl cijkl|ij〉〈kl|, and its partial transposed w.r.t to B form reads:∑

ijkl cijkl|il〉〈kj|. In what follows the action of partial transposition on an operator,
we will also denote as Γ. For any matrices A and B (assuming appropriate shapes if
needed from the context), the partial transposition Γ, satisfies:

(A⊗B)Γ = A⊗BT (2.61)
((A⊗B)⊗n)Γ = ((A⊗B)Γ)⊗n (2.62)

TrAB = TrAΓBΓ (2.63)
TrAΓB = TrABΓ (2.64)

TrAΓ = TrA (2.65)
Γ preserves hermiticity (2.66)

Γ is an involution (2.67)

These properties can be easily checked to be satisfied. E.g. To see (2.66), we note
that (AΓ)† = (A†)Γ for A =

∑d−1
ijkl=0 aijkl|ij〉〈kl|, which gives hermiticity of AΓ if A

is hermitian.

2.6 The paradigm of distant laboratories - the LOCC
scenario, SEP and PPT operations

In this section we describe an important scheme of processing of quantum data
called LOCC scenario. This scheme was introduced in [BBP+96, BDSW96]. It
involves two distant laboratories: one of - traditionally - Alice, and the other of
Bob. Alice and Bob are given some quantum data (quantum states). Their task
is to transform them to some other form, or extract some information. Usually in
distant laboratories scenario Alice and Bob are given many copies of the same state
ρ, so that the input state has form ρ⊗n for some natural number n. The operations
which they are allowed to perform are (L)ocal quantum (O)perations (each person
in her/his lab) assisted by (C)lassical (C)ommunication (e.g. talking by the phone).
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That is, they can perform some measurements locally and then communicate the
results of these measurements, so that they can perform then conditioning.

The formal definition of the LOCC operations, that has been worked out in
[DHR02] is quite difficult. In what follows we will use a simpler one8 basing on the
one given in [Chr06].

We first introduce the notion of ’locality’ of a quantum operation. We use here
the notion of site which is (in case of Alice) a collection of systems, that are in
her possession. With the site we associate a tensor product of the Hilbert spaces
associated with the systems. If it is needed, the site is denoted as SA, SB and SE for
Alice, Bob and Eve respectively. We define here the local operation on Alice’s site,
with definition of the same operation on Bob’s site along similar lines:

Definition 2.9 For any quantum operation Λ, the local operation Λ : B(HA) →
B(H′A) on Alice’s site is given by:

ΛA = Λ⊗ IB : B(HA ⊗HB)→ B(HÃ ⊗HB), (2.68)

for some pairs of Hilbert spaces HA and HÃ on Alice’s and HB on Bob’s site respec-
tively.

Sometimes, instead of saying that Alice has performed a local Λ, we say, that
she ’did Λ locally’. By just ’local Λ’ we mean local Λ on Alice’s or Bob’s site (i.e.
without specifying the party).

We also define the operation of classical communication from Alice to Bob, with
the same operation from Bob to Alice following similar lines:

Definition 2.10 Let Hin = Ha ⊗ HA ⊗ HB and Hout = Ha ⊗ HA ⊗ HB ⊗ Hb,
where HA,a and HB,b are some Hilbert spaces on Alice’s and Bob’s site respectively.
The operation of classical communication from Alice to Bob is a quantum operation
Λ(c)
A : B(Hin)→ B(Hout), such that on any state ρaAB ∈ B(Hin) it acts as follows:

Λ(c)
A (ρaAB) =

dimHa−1∑
i=0

PiρaABPi ⊗ |i〉〈i|b (2.69)

where Pi = P
(i)
a ⊗ IA ⊗ IB with {P (i)

a }dimHa−1
i=0 being a von Neumann measurement

on system a in standard basis.
By classical communication we mean the operation of classical communication

from Alice to Bob or vice versa.
With a help of the above definitions, we can define LOCC operations as follows:

8We acknowledge A. Szepietowski and M. Horodecki for inspiring discussion on this definition
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Definition 2.11 The LOCC operation is a composition of a finite number of the
following operations:

1. Local quantum operation,

2. Classical communication.

For a finite dimensional Hilbert spaces Hin and Hout, the set of LOCC operations act-
ing on states from B(Hin) with the output in B(Hout) is denoted as LOCCHin,Hout.

For brevity, in what follows we will often write LOCC instead of LOCCHin,Hout

if it does not lead to ambiguity.
Due to the above definition, the only actions which Alice and Bob are allowed to

perform are local quantum operation or communicating some classical information
which is an outcome of the von Neumann measurement.

We define now the so called one-way LOCC operations, which are - intuitively -
those where only one party uses classical communication.

Definition 2.12 The one-way LOCC operation is a composition of a finite number
of either

1. Local quantum operation,

2. Operation of classical communication from Alice to Bob,

or

1. Local quantum operation,

2. Operation of classical communication from Bob to Alice.

For a finite dimensional Hilbert spaces Hin and Hout, the set of one-way LOCC
operations acting on states from B(Hin) with the output in B(Hout) is denoted as
LOCCA→B

Hin,Hout
or LOCCB→A

Hin,Hout
respectively.

LOCC operations are quantum operations, hence preserve trace. A non-trace
preserving LOCC operation is called probabilistic LOCC operation. In analogy to
definition of LOCC operation, it is a composition of (i) Λ⊗ I where Λ is a probabilis-
tic quantum operation (see (2.3.3)) and (ii) a probabilistic classical communication
operation, which is described as the usual classical communication operation, only
with a weaker condition, that (see Def. 2.10) projectors Pi do not need to some up
to identity on system a.
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2.6.1 Quantum teleportation

We now give an example of a one-way protocol, which is one of the basic protocols
of quantum information theory. It aims at sending an unknown state |ψ〉 from one
site (say of Alice) to the other site, using the singlet state, and two bits of classical
communication. It is called quantum teleportation [BBC+93].

Example 2.18 Alice would like to send an unknown state of a qubit |ψ〉Ã = a|0〉+
b|1〉 to Bob. They share a system in the singlet state |ψ−〉AB = 1√

2
(|01〉 − |10〉). She

can also communicate some bits via a telephone to Bob. To achieve this task Alice
with cooperation of Bob performs the protocol of teleportation which we describe in
points:

1. Alice performs a measurement on system AÃ (of her subsystem of a singlet
state, and the system of a qubit which state will be transfered) in the Bell basis,
which is described by the set of projectors {P|ψi〉AÃ}3i=0 (recall the enumeration
of the Bell states |ψi〉 given in eq. (2.51)). The resulting state is as follows:

ρAÃB =
1
4
[P|ψ−〉AÃ

⊗ P(a|0〉B+b|1〉B)

+P|φ−〉AÃ
⊗ P(a|1〉B+b|0〉B)

+P|ψ+〉AÃ
⊗ P(b|1〉B−a|0〉B)

+P|φ+〉AÃ
⊗ P(a|1〉B−b|0〉B)]. (2.70)

2. Upon observing the |ψi〉 as an outcome of her measurement, Alice sends the
label i to Bob using two classical bits, that is performs the operation of classical
communication as follows:

Λ(c)
A (ρAÃB) =

3∑
i=0

1
4
P|ψi〉AÃ

⊗ P|φi〉B ⊗ |i〉〈i|b (2.71)

3. Having got the outcome i of Alice’s measurement, Bob performs on his subsys-
tem of a singlet state the corresponding Pauli operation σi, of eq. (2.50). That
is, acts on system bB with a control unitary operation UbB =

∑3
i=0 |i〉〈i|b⊗σBi .

After this operation, his qubit is in a state |ψ〉, which Alice wanted to transfer
i.e. the teleportation is completed.

To see this, we observe, that the initial total state of Alice and Bob’s systems

|ψÃAB〉 = |ψ〉Ã ⊗ |ψ
−〉AB, (2.72)

after changing the order of subsystems to AÃB can be rewritten as:
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|ψAÃB〉 =
1
2
[|ψ−〉AÃ ⊗ (a|0〉B + b|1〉B)

+|φ−〉AÃ ⊗ (a|1〉B + b|0〉B)
+|ψ+〉AÃ ⊗ (b|1〉B − a|0〉B)
+|φ+〉AÃ ⊗ (a|1〉B − b|0〉B)]. (2.73)

It is then easy to see, that after the Bell measurement (measurement in Bell
basis), Alice will obtain with probability (1

2)2 = 1
4 one of the four Bell states |ψi〉, and

Bob will have simultaneously a qubit in state |φi〉 which needs just the Pauli rotation
σi, to be the initial state of a qubit |ψ〉 = a|0〉+ b|1〉. The protocol of teleportation is
a one way LOCC, since there was only communication from Alice to Bob.

In general, the LOCC operations are not easy to deal with. There is however
another class of operations, broader then LOCC, which is often used in formal in-
vestigation to yield certain estimations about the LOCC class. This is a class of the
so called separable operations.

Definition 2.13 Let Hin = HA ⊗ HB and Hout = HÃ ⊗ HB̃ for some Hilbert
spaces HA,Ã and HB,B̃ on Alice’s and Bob’s site respectively. Separable operation
Λsep : B(Hin)→ B(Hout) is a quantum operation which on any bipartite state ρAB ∈
B(Hin) act as follows:

ΛsepAB(%) =
s∑
i=0

Ai ⊗Bi%ABA†i ⊗B
†
i , (2.74)

where
∑s

i=0A
†
iAi ⊗ B

†
iBi = IA ⊗ IB with s being a natural number [VP98, Rai97].

For a fixed Hin and Hout, the set of separable operations is denoted as SEPHin,Hout.
In general case when

∑s
i=0A

†
iAi ⊗ B

†
iBi ≤ IA ⊗ IB, the operation Λsep is called

a probabilistic separable operation. The set of probabilistic separable operations we
denote as Prob(SEP ).

It is known, that any LOCC operation is also a separable operation, but not vice
versa [VP98, Rai97, BDF+99]. That is, we have the following formal statement:

LOCCHin,Hout ⊂ SEPHin,Hout (2.75)

where Hin and Hout are any finite dimensional Hilbert spaces. We will write SEP
instead of SEPHin,Hout if it does not lead to ambiguity.

There is also another class of operations which is broader then SEP, called PPT
operations [Rai99, Rai00].
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Definition 2.14 A quantum operation Λ : B(H1) → B(H2) is a PPT operation if
conjugated by partial transposition remains completely positive i.e. the map (Λ[(·)Γ])Γ :
B(H1)→ B(H2) is quantum operation. For a fixed H1 and H2, the set of PPT op-
erations is denoted as PPTH1,H2 .

We will usually omit the input and output Hilbert space, denoting PPTH1,H2 as
PPT . It is known, that there holds SEP ⊂ PPT and the inclusion is proper, which
means:

SEPH1,H2 ⊂ PPTH1,H2 . (2.76)

2.7 Quantum distance measures

A basic distance measure which we will use is the trace norm distance

D(ρ, σ) =
1
2
Tr|ρ− σ|, (2.77)

where the modulus of the normal operator A equals the |A| =
√
A†A. This distance

is based on the trace norm ||A|| := Tr|A|, as it equals 1
2 ||ρ− σ|| (See also Appendix

A.1.1). Since the two quantities: D(ρ, σ) and ||ρ−σ|| are related only by a constant
factor independent of dimension, in Chapters 3-6, with a little abuse of language, we
will refer to ||ρ− σ|| as to the trace norm distance.

The most important property of the trace distance is that it is not increasing
under quantum operations.

Lemma 2.19 For any quantum operation Λ, and any two quantum states ρ and σ
there holds

D(ρ, σ) ≥ D(Λ(ρ),Λ(σ)). (2.78)

Another measure of how close are the states is the so called fidelity, which is dual
function to the distance measures.

For any ρ and σ from the set B(H) for some finite-dimensional Hilbert space H,
the fidelity between two states is defined as:

F (ρ, σ) := Tr
√
ρ

1
2σρ

1
2 . (2.79)

When two states are the same, fidelity equals 1, and zero when they are orthog-
onal. If one of the states is pure, the fidelity equals:

F (|ψ〉, σ) =
√
〈ψ|ρ|ψ〉 =

√
Trρ|ψ〉〈ψ|. (2.80)

The fidelity and trace norm distance are related by the following inequalities
[Fv97]:
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Lemma 2.20 For any finite dimensional Hilbert space H and any two states ρ, σ ∈
B(H) there holds:

1− F (ρ, σ) ≤ D(ρ, σ) ≤
√

1− F (ρ, σ)2. (2.81)

The above relation allows to use the fidelity and trace norm distance interchangeably.
This proves useful, because the fidelity can be expressed also in an alternative way
due to Ulman’s theorem [Uhl76] (see in this context [Joz94, NC00]):

Theorem 2.21 (adapted from [NC00])
For any finite-dimensional Hilbert space HQ and any two states ρ, σ ∈ B(HQ)

there holds:
F (ρ, σ) = max

|ψρ〉,|ψσ〉
|〈ψρ|ψσ〉|, (2.82)

where the maximization is taken over purifications ψρ ∈ HQ⊗HR and ψσ ∈ HQ⊗HR
of ρ and σ respectively, with dimHR ≥ dimHQ.

Moreover, for any fixed purification of one of the states (say |ψ′ρ〉), the fidelity
equals maximization over the second purification only, i.e. we have the following
lemma, which is direct generalization of analogous lemma from [NC00]:

Lemma 2.22 (adapted from [NC00])
For any finite-dimensional Hilbert space HQ and any two states ρ, σ ∈ B(HQ)

there holds:
F (ρ, σ) = max

|ψσ〉
|〈ψ′ρ|ψσ〉|. (2.83)

where |ψ′ρ〉 ∈ HQ ⊗ HR with dimHR ≥ dimHQ is any purification of ρ and the
maximization is taken over |ψσ〉 ∈ HQ ⊗HR denoting a purification of σ.

In duality to the trace norm distance, the fidelity is not decreasing under quantum
operations:

Lemma 2.23 For any quantum operation Λ, and any two quantum states ρ and σ
there holds

F (ρ, σ) ≤ F (Λ(ρ),Λ(σ)). (2.84)

2.7.1 The von Neumann entropy and entropic functions

For any state ρ its von Neumann entropy is defined as

S(ρ) = −Trρ log ρ. (2.85)
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The logA is an operator with log of eigenvalues of A instead of that of A. We will
use also notation Sρ. In other wrods, it is the Shannon entropy of its eigenvalues,
that is defined for a random variable X over an alphabet X , with a distribution
{P (X = x) = px} as H(X) :=

∑
x∈X px log 1

px
.

The von Neumann entropy of the state ρ ∈ B(Cd) fulfills the following properties:

1. S(ρ) is non-negative on all states, zero only on pure states.

2. S(ρ) is upper bounded by log d where d is the dimension of the Hilbert space
on which the state resides. This value is attained by the maximally mixed state

3. S(ρ) is a strictly concave function, that is

S(
∑
i

piρi) ≥
∑
i

piS(ρi), (2.86)

for all ensembles {(pi, ρi)}, and equality holds if and only if pi = 1 for some i,
or all the states ρi are equal to each other (comp. [Mor05]).

4. S(ρ) is a continuous function, as given by the so called Fannes inequality
[Fan73]:

Lemma 2.24 (Fannes inequality) For the states ρ and σ from B(H) with
dimH = d, that satisfies D(ρ, σ) ≤ e−1, there holds

|S(ρ)− S(σ)| ≤ D(ρ, σ) log d+ η(D(ρ, σ)), (2.87)

with η(x) = −x log x.

5. The von Neumann entropy of a pure state is zero.

6. The von Neumann entropies of subsystems of any bipartite pure state |ψ〉AB
are equal:

S(ρA) = S(ρB), (2.88)

with ρX = TrX |ψ〉〈ψ|AB, where X ∈ {A,B}.

7. (joint entropy theorem)

S(
∑
i

pi|i〉〈i| ⊗ ρi) = H(~p) +
∑
i

piS(ρi). (2.89)
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For a bipartite state ρAB its quantum mutual information is defined as

I(A : B)ρ := S(A)ρ + S(B)ρ − S(AB)ρ, (2.90)

where we use an alternative notation, also common in literature: S(X)ρ = S(ρX).
According to this notation, it is default, that entropy S is evaluated on respective
subsystems of the bipartite state ρ.

The states
ρ =

∑
ij

pij |eifj〉〈eifj |, (2.91)

are called classically correlated, since they are diagonal in a product basis B =
{|ei〉|fj〉}d−1

i,j=0. For these states I(A : B)ρ equals the Shannon’s mutual information of
the variables A and B with a joined probability distribution (pij). In particular, when
this distribution is homogeneous, we say that the state ρ is maximally correlated. This
is because its mutual information amounts to log d which is maximal for classical
mutual information. However, it should be also noted, that in general the quantum
mutual information can be larger than log d. In particular, I(A : B)|Ψ(d)

+ 〉 = 2 log d.
The analogue of the classical relative entropy distance is defined as:

S(ρ||σ) := Trρ log ρ− Trρ log σ, (2.92)

if only9 supp σ ⊂ supp ρ. As in classical case, quantum relative entropy is not a
distance in mathematical sense, as it is not symmetric. It is however related to the
trace norm distance by the following inequality [BZ06]:

S(ρ||σ) ≥ 2[D(ρ, σ)]2. (2.93)

The relative entropy fulfills also the condition of monotonicity.

Theorem 2.25 [Lin75, Uhl77] For any completely positive map Λ,

S(ρ||σ) ≥ S(Λ(ρ)||Λ(σ)). (2.94)

Analogously as in classical case, the quantum mutual information of a bipartite
state ρAB can be viewed as the relative entropy distance of ρAB from the tensor
product of its subsystems ρA and ρB:

I(A : B)ρ = S(ρAB||ρA ⊗ ρB). (2.95)
9By the supp(ρ) we mean the subspace spanned by the eigenvectors of ρ corresponding to its

nonzero eigenvalues.



Chapter 2. Preliminaries 43

Another important entropic function is the so called Holevo quantity χ. It is a
function of an ensemble:

χ({(pi, ρi)}Ki=1) = S(
K∑
i=1

piρi)−
K∑
i=1

piS(ρi). (2.96)

It is also known [OP93], that the Holevo quantity is bounded from above by the
Shannon entropy of the mixing probability distribution:

χ({(pi, ρi)}) ≤ H(~p). (2.97)

2.8 Entanglement measures and the phenomenon of bound
entanglement

In section (2.4) we have defined entanglement in a qualitative way. It is then tempting
to ask a quantitative question: “how much a given state is entangled ?”. The theory
of entanglement measures tries to answer this question. In case of pure states, the
situation is rather clear. Under reasonable assumptions, there is unique measure
of entanglement - a function which quantifies it. In case of mixed states however,
there seems to be a whole ZOO of different functions which measure how much the
state is entangled [Chr06]. The measures which we introduce here will quantify only
bipartite entanglement, as we deal here mostly with bipartite entangled states. We
also present the phenomenon of bound entanglement, which is central to this thesis.

We will invoke here two types of entanglement measures. Those of the first
type - distillable entanglement and entanglement cost are based directly on the so
called distant laboratories paradigm, that we have introduced in Section 2.6. They
are called operational entanglement measures, because they are defined via optimal
realization of certain tasks. The idea of operational entanglement measures was
introduced by Bennett and coauthors already in paper introducing the distant lab-
oratories paradigm [BBP+96, BDSW96].

The measures of second type are called axiomatic entanglement measures. Due
to idea of Vedral and coauthors [VPRK97, VP98], and Vidal [Vid00], they are build
up formally, so as to satisfy some reasonable axioms. There are quite many ax-
iomatic entanglement measures [PV06, HHHH07]. We will deal here only with few
of them, namely: the relative entropy of entanglement [VPRK97, VP98], the measure
called negativity [ZHSL98] (as well as logarithmic negativity [VW02]). We invoke also
the entanglement of formation [BBP+96, BDSW96], which is closely related to the
operational measure - entanglement cost.
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2.8.1 Monotonicity axiom and other properties of entanglement
measures

The most intuitive feature, that share all entanglement measures (both operational
and axiomatic) is the so called monotonicity condition [BDSW96, VPRK97, VP98].
In what follows, we consider Hin = HA ⊗HB and Hout = HA′ ⊗HB′ , for any finite
Hilbert spaces HA through HB′ .

• For a function E : B(Hin) → R≥0 of a bipartite state to be an entanglement
measure10, it is necessary that E can not be increased by any LOCC operation
LOCC 3 Λ : B(Hin) → B(Hout) performed on any bipartite state ρAB ∈
B(Hin), that is:

E(ρAB) ≥ E(Λ(ρAB)). (2.98)

This statement reflects the intuition that entanglement is a different type of corre-
lations than that which can be created via local quantum operations and classical
communication. More formally, there are two types of the above monotonicity. The
first is just called a monotonicity, and the second is called a strong monotonicity.

The strong monotonicity condition says, that entanglement measure should not
increase on average i.e.

E(ρ) ≥
∑
i

piE(σi), (2.99)

where ρ is transformed via an LOCC operation Λ into σi with probability pi.
Another important postulate, which is in fact indicated by the axiom of mono-

tonicity [HHHH07] is the axiom of vanishing on separable states:

• For a function E of a bipartite state to be an entanglement measure, it is
necessary that E(ρ) = 0 for any ρ ∈ SEP .

According to Vidal [Vid00], the monotonicity (the usual or strong), and vanish-
ing on separable states are the only mandatory postulates that any entanglement
measure has to satisfy. Vidal has also coined the name ’entanglement monotone’ for
those functions which are monotonic under LOCC, that is which are either only de-
creased or increased LOCC operation. We will also use this name. For the purpose of
this thesis, we collect the two axioms discussed above in a definition of entanglement
measure:

10To be more precise one should define entanglement measure E as a family of functions fn1,n2

each defined on C⊗n1 ⊗ C⊗n2 which is consistent, i.e. for natural k, l,m, n with k ≥ m and l ≥ n,
there exists an embedding V which is a product of two isometries, such that fk,l(V (ρ)) = fm,n(ρ).
In what follows, for a bipartite state ρ ∈ Cn1 ⊗ Cn2 by E(ρ) we mean fn1,n2(ρ). This convention is
an implicit one in algebra, as the same is assumed e.g. for the trace of a matrix
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Definition 2.15 A function of bipartite state which is monotonous under LOCC
operations in either usual or strong sense, and vanishes on separable states is called
an entanglement measure (or equivalently an entanglement monotone).

Also, we will use informally the notion of operational entanglement measure which
refers to those entanglement monotones which are defined via some task e.g. of
transforming n copies of a state ρ into some k copies of other state σ, by means of
LOCC operations (see Section 2.8.2).

There are however some additional postulates which are welcome. The postulates
correspond to some properties of entanglement measures, which proved useful in
quantitative approach to entanglement. They are satisfied by certain axiomatic
entanglement measures.

1. Normalization: E(|ψ−〉⊗n) = n

2. Asymptotic continuity:

||ρn − σn|| → 0⇒ |E(ρn)− E(σn)|
log dn

→ 0, (2.100)

where ρn, σn ∈ B(Hn) and dimHn = dn.

3. convexity:
E(
∑
i

piρi) ≤
∑
i

piE(ρi), (2.101)

for any ensemble of states {pi, ρi}.

Additionally, some entanglement measures may have another property called ad-
ditivity i.e. satisfy:

E(ρ⊗n) = nE(ρ). (2.102)

It is sometimes also called an additivity on tensor product, to distinguish it from
what we call full additivity, which is stated as follows:

E(ρ⊗ σ) = E(ρ) + E(σ), (2.103)

for any two states ρ and σ. If some entanglement measure is not additive, then one
can consider its regularization, defined as:

E∞(ρ) := lim
n→∞

E(ρ⊗n)
n

. (2.104)

We now illustrate the fact that axiomatic approach leads to the clarified view on
entanglement measures with the following theorem [HHH00].



Chapter 2. Preliminaries 46

Theorem 2.26 (Extremal measures theorem) For entanglement measure E which is
monotonic under LOCC, asymptotically continuous and satisfies E(|Ψ(d)

+ 〉) = log d
we have

ED ≤ E∞ ≤ EC . (2.105)

2.8.2 Distillable entanglement and entanglement cost

Informally, the distillable entanglement measures how much pure entanglement ( of
pure entangled states) can be obtained from many copies of a system in some state
ρ, via LOCC operations. That is, Alice and Bob share n copies of a system in some
(generally in a mixed) state ρ. Their task is to obtain a maximal possible number
of copies k of system in state |ψ−〉 = 1√

2
(|01〉 − |10〉) of eq. (2.42). To this end,

they can only perform quantum operations in their laboratories, and communicate
classically (e.g. via phone), that is perform LOCC operations. The maximal ratio k

n
is the distillable entanglement of the input state ρ.

Formally, one has to deal with inaccuracy of the operations. Instead of many
copies of the singlet state, they will obtain some state σn which should for high n
approach the desired outcome |ψ−〉⊗k, in trace norm distance. For this reason, the
definition of distillable entanglement reads11 [Hor01, PV06]:

Definition 2.16 For a bipartite state ρAB ∈ B(Cd1 ⊗ Cd2) consider a sequence Pn
of LOCC operations, such that Pn(ρ⊗nAB) = σn, where σn ∈ B([C2 ⊗ C2]⊗mn).

The set P ≡ ∪∞n=1{Pn} is called a protocol of distillation of the state ρAB if

lim
n→∞

||σn − |ψ−〉〈ψ−|⊗mn || = 0. (2.106)

For a given protocol of distillation P, its rate is given by

R(P) = lim sup
n→∞

mn

n
. (2.107)

The entanglement distillation of the state ρAB is then given as:

ED(ρAB) = sup
P
R(P), (2.108)

where supremum is taken over all distillation protocols P of ρAB.
If the state has zero ED we say, that it is not distillable. The second measure,

which we invoke in this section is called entanglement cost. It is dual to the distillable
11Other formal definitions are possible. They are however equivalent to the above one [Rai98].
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entanglement, as it measures how much pure entanglement one needs to invest in
order to create many copies of a given output state ρ. Again, only LOCC operations
are allowed - this time in process of creation. The minimal ratio of the number of
k of systems in a singlet state to the number of output state n equals entanglement
cost, and denoted as EC .

The formal definition of entanglement cost is the following [Hor01, PV06]:

Definition 2.17 For a bipartite state ρAB ∈ B(Cd1 ⊗ Cd2) consider a sequence Pn
of LOCC operations, such that Pn(|ψ−〉〈ψ−|⊗n) = σn, where σn ∈ B([C2 ⊗ C2]⊗mn).

The set P ≡ ∪∞n=1{Pn} is called a protocol of formation of the state ρAB if

lim
n→∞

||σn − ρ⊗mn
AB || = 0. (2.109)

For a given protocol of formation P, its rate is given by

R(P) = lim sup
n→∞

n

mn
. (2.110)

The entanglement cost of the state ρAB is then given as:

EC(ρAB) = sup
P
R(P), (2.111)

where supremum is taken over all protocols P of formation of ρAB.
Let us note, that the operational measures are by definition monotonic. The two,

which we have presented here, straightforwardly satisfy the normalization condition
ED(|ψ−〉〈ψ−|) = EC(|ψ−〉〈ψ−|) = 1, and vanish on separable states. ED and EC are
also asymptotically continuous [BZ06]. It is however quite hard to find exact values
of operational measures. Instead, there are known some upper and lower bounds
on them, in form of some axiomatic measures, which are more computable. An
axiomatic measure, which is directly related to entanglement cost is entanglement of
formation, defined as

Ef (ρAB) := inf
{pi,|ψi〉AB}

∑
i

piSA(|ψi〉AB), (2.112)

where the infimum is taken over all pure ensembles of ρAB (that is such that ρAB =∑
i pi|ψi〉〈ψi|AB), and SA denotes the entropy of subsystem A of bipartite pure state

|ψi〉. It is shown in [HHT01], that regularized Ef equals entanglement cost (see eq.
(2.104)):

EC = E∞
f . (2.113)

Note that if the entanglement of formation was an additive measure, we would have
the formula for entanglement cost. This is however one of the difficult open problems
(see Werner’s list [Wer99]).
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2.8.3 Relative entropy of entanglement

The relative entropy of entanglement is defined as follows:

Er(ρ) := inf
σ∈SEP

S(ρ||σ), (2.114)

where SEP denotes the set of separable states and S(ρ||σ) = Trρ log ρ − Trρ log σ
is the relative entropy distance. It is shown to be strongly monotonic. This measure
is usually associated with a kind of distance between the state ρ and the convex set
of separable states. However, the relative entropy of entanglement is not a distance
in mathematical sense, as e.g. it is not symmetric.

The relative entropy is not additive for some states [VW01], hence we sometimes
deal with its regularization:

E∞
r (ρ) := lim

n→∞

ER(ρ⊗n)
n

. (2.115)

Both the relative entropy and the regularized relative entropy of entanglement are
upper bounds on the distillable entanglement. The regularized relative entropy of
entanglement is also a lower bound on entanglement cost [HHH00]. As it is usual
in case of entanglement measures, acting on a bipartite state with a unitary trans-
formation which is a tensor product of two (local) unitary transformation on each
site does not change the relative entropy of entanglement. Formally we have the
following lemma:

Lemma 2.27 For any bipartite state ρAB ∈ B(HA⊗HB), and two arbitrary unitary
transformations UA and UB acting on a Hilbert spaces HA and HB respectively we
have:

Er(ρAB) = Er(UA ⊗ UBρABU †
A ⊗ U

†
B). (2.116)

Proof. This lemma follows easily from the fact that the von Numann entropy is not
changed under unitary rotation, the tensor product of unitary transformations maps
separable states into separable states, and the property of trace TrXY = TrY X for
square n× n matrices.

2.8.4 Negativity and logarithmic negativity

The other measure of entanglement was introduced in [ZHSL98]. It is a quantitative
version of the Peres criterion. Due to Peres criterion, for a state to be separable,
it should become positive operator after partial transposition. Hence, if a state
becomes negative operator (has negative eigenvalues) after partial transposition, it
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must be entangled. One can then ask “how much negative” the state becomes after
partial transposition. The entanglement measure which reports this, called negativity
is defined for a bipartite state ρ as

N (ρ) =
∑
λ<0

|λ|, (2.117)

where λ are eigenvalues of ρΓ (where Γ is partial transpose).
This measure has an advantage, that it is easily computable in comparison to

other measures of entanglement, even those axiomatic like relative entropy of entan-
glement.

In [VW02] it was shown, that the negativity fulfills the monotonicity condition (is
an entanglement monotone). There also a variation of this measure was introduced,
called logarithmic negativity (also log negativity). It is defined as

EN (ρ) := log ||ρΓ||, (2.118)

and it is related to N as follows: EN (ρ) = log(2N (ρ)+1
2 ). The log negativity is an

upper bound [VW02] on distillable entanglement, i.e. for any bipartite state ρ there
holds:

EN (ρ) ≥ ED(ρ). (2.119)

2.8.5 The phenomenon of bound entanglement

We provide now the definition of bound entangled states.

Definition 2.18 [HHH98] A bipartite state ρAB ∈ B(Cd1 ⊗ Cd2) is called bound
entangled if it is entangled and not distillable, i.e. if there holds ED(ρAB) = 0.

The first bound entangled states were already present in [Hor97], yet they were
shown to have this property in [HHH98]. This is because the states from [Hor97]
were entangled and PPT (see section 2.4), and in [HHH98] general result is shown,
which we state below:

Theorem 2.28 [HHH98] Any bipartite entangled PPT state is bound entangled.
Up to now, no algorithm is known which determines if a given state is bound

entangled. It is relatively easy, to provide example of a PPT state. Yet it is then
hard to determine, if such state is entangled. There are however some constructions
of the families of bound entangled states, [BP00, BDM+99, WW01] (see [Cla06] for
many other results in this filed).

In case of the first examples of bound entangled states, it was not clear if such
states has nonzero entanglement cost. Vidal and Cirac was the first to show, that
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certain bound entangled states (those introduced in [BDM+99]) has nonzero entan-
glement cost. Further such results were provided in [VWW04, HV00]. Due to the
recent result of Yang and coauthors, [YHHSR05], it is known, that any state which
is entangled, has nonzero entanglement cost, hence the above definition of bound
entangled states can be rephrased in the following manner:

Definition 2.19 (see [YHHSR05]) A bipartite state ρAB ∈ B(Cd1 ⊗ Cd2) is bound
entangled if and only if there holds:

0 = ED(ρAB) < EC(ρAB). (2.120)

This definition clarifies the name of this class of states. Their entanglement is
called bound, as it can not be turned into a form of entanglement of pure states. The
bound entangled states exemplifies extremal irreversibility of the creation-distillation
process in distant laboratories scenario. To create a bound entangled states one needs
pure entanglement, but having created, one can not regain this kind of entanglement
at all.

The phenomenon of existence of bound entangled states is in a sense central to
this thesis. The main result of this manuscript shows that there are states which,
though bound entangled, are at the same time key distillable (see Chapter 5).

2.9 bipartite and tripartite distant sites scenarios

Having described the formal background, we can formulate the entanglement as well
as cryptographic scenarios which we deal with in further chapters.

Chapter 3
The most basic scenario is called the quantum worst case scenario, discussed

informally in Section 1.5.1. It involves the sites of Alice, Bob and Eve. The three
parties share a pure tripartite quantum state |ψ〉ABE , so that each of the parties have
access to its corresponding subsystem A, B and E respectively. This scenario is
static, in a sense, that we do not consider yet any operations performed on the state.
We use it in order to study the structure of bipartite states ρAB, so that they are
secure with respect to Eve, who holds its purifying system E.

We will mostly focus on bipartite states of systems which satisfy:

dimA = d× dA′ and dimB = d× dB′ , (2.121)

for some natural d, where {0, . . . d − 1} will be the range of secret key (see also
Section 3.8) Thus we will consider bipartite states with four subsystems. For easier
notation we label the subsystems as them as A and A’ for Alice and B and B’ for
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Bob, so that they share a bipartite state: ρABA′B′ . It turns out that according to the
sequence of labels, the matrix of ρABA′B′ has easier description, and recalls the usual
bipartite matrix with only two subsystems A and B, but with blocks of matrices
instead of matrix elements (see e.g. Section 3.4). The system AB of a state ρABA′B′
will be sometimes called main part key part and the system A′B′ will be called side
part. When the state ρABA′B′ will be perfect for cryptography (the so called private
states) , instead of main part we will say the key part, (the part from the key can
be obtained) and instead of side part we will say shield (the part sharing of which
makes key part secure).

Chapter 4: the LOCC scenario, LOPC scenario, and the worst-case
LOPC scenario

In this chapter we consider two scenarios. The first is bipartite, second is tripar-
tite.

The bipartite scenario is the LOCC scenario scenario, which we have discussed
in Section 1.3. It involves the site of Alice and that of Bob. They share n systems in
the same state ρAB for some natural n. This scenario is ’dynamic’ in a sense, that
they can also perform the LOCC operations on the whole shared state ρ⊗nAB.

The tripartite scenario steaming from classical cryptography is the LOPC sce-
nario, discussed in Section 1.5.1 (see also [DW05, DW04]). In this scenario we
consider three sites: for Alice, Bob the eavesdropper Eve. Alice, Bob and Eve share
n systems in the same state ρABE for some natural n. They can perform the so called
LOPC operations (local operations and public communication) on the whole shared
state ρ⊗nABE . These operations are introduced in Section 4.2, with clear correspon-
dence to the LOCC operations. We focus on the special case of the LOPC scenario,
where ρABE is a pure state, so that Alice, Bob and Eve share |φ〉〈φ|⊗nABE for some
pure state |φ〉ABE . This is the worst case of LOPC scenario, since due to observation
2.7, it is the most generous to Eve, while giving to Alice and Bob n copies of the
state ρAB = TrEρABE .
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Private states

In this chapter we present a slightly improved and extended version of the material,
that can be found in [HHHO05a], Sections II-V, and [HPHH05]. We introduce here
the notion of private states. We then prove, that these are quantum states, that con-
tain directly accessible, ideally secure classical key. Till recent, only the maximally
entangled states were considered as those which have directly accessible key. The
class of private states is much broader than the class of maximally entangled states,
containing apart from the latter, also a wide class of mixed entangled states.

In Section 3.1 we provide a definition of quantum states that have secure key.
Subsequently, in Section 3.2 we define the class of so called private states and show,
that these are precisely those bipartite states which have a key. Private states have
easy description involving only three elements: a maximally entangled state |Ψ(d)

+ 〉
on d ⊗ d-dimensional system AB, an arbitrary state ρ on some additional bipartite
system A′B′ and a special unitary rotation U . The subsystem AB of the private
state γ is called a key part, as it provides a key when measured. The subsystem A′B′

is called a shield, as its role is just ’shielding’ the key part from Eve. The |Ψ(d)
+ 〉, and

ρ in the structure of the private state are together subjected to unitary operation
called twisting.

Basing on the notion of twisting, we introduce the operation of privacy squeezing,
which acts on a private state giving a more entangled state with similar security to
that of the original state (see Section 3.3.2). It serves as a mathematical tool that
allows for easy estimation of security content of a quantum state.

In Section 3.4 we explore variety of notations for the class of private bits and
private dits. We then pass to study entanglement properties of private states. We
also give two examples of the families of pbits (with special form of a ’shield’),
denoted as ρ(d)

flower and γV . In Section 3.5 we study entanglement properties of these
states. We prove, that for γV , the amount of key contained in the state is strictly
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greater than the distillable entanglement.
We then study how some entanglement measures evaluated on ρ

(d)
flower, change

if one traces out a qubit of its key part system. We show, that EN , EC (and Ef )
can decrease by arbitrarily large amount (as a function of dimension of its shield
d). This effect revealed by the family of (generalized) flower states we call locking of
entanglement, since holding a single qubit one can controll arbitrarily large amount
of entanglement. We also show that Er (E∞

r ) is not lockable.
In Section 3.6 we propose then the so called irreducible private states - the states

containing exactly log d bits of key, that can be associated with ’units’ of privacy
(see Section 3.6). We also discuss the states which approximate private bits in trace
norm distance. We argue that these are states with a special submatrix with trace
norm close to 1

2 . This result seems to be a generalization of an analogous property
of states approximating maximally entangled states in two qubits, where submatrix
is just a matrix element.

In Section 3.8 we discuss what happens if we change the interpretation of ’direct
accessibility’ of classical key. Two such interpretations leads to the two classes of
states C2 (cf. [RS07]) and C3. We show that they are equivalent in a sense that any
state from these classes can be changed into private states by adding locally (sep-
arately on Alice and Bob’s site) some ancilla states and performing locally unitary
transformations. Since such local operations do not change entanglement monotones
of bipartite states, we consider these definitions as equivalent to the one we have
chosen.

In Section 3.9.1 we consider some practical reasons which justify the choice of
definition of the states which have key (definition 3.1), and in consequence - dealing
with private states. At the very end of this chapter we also comment on the results
obtained further on this subject in literature.

3.1 Defining secure key

In this section we provide a definition of states that have ideal secure key. Since
other definitions of security are possible, we explain why we choose this one. In what
follows we first introduce the scenario that we are going to deal with in this chapter.

3.1.1 Scenario for definition of secure key - the worst case tripartite
scenario

In scenario we assume in this chapter, the honest parties traditionally called Alice
and Bob are given a bipartite state ρAB. The eavesdropper called Eve is given the
standard purifying system ρE of ρAB. In turn, the three parties share a (tripartite)
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pure state |ψρ〉ABE , which is the standard purification of state ρAB, each holding its
corresponding subsystem.

The above scenario we call the worst case tripartite scenario, since having the
purifying system of ρAB, Eve has the most power she can have while Alice and
Bob are sharing the state ρAB. This is because by local operation on the standard
purifying system, Eve can obtain any other extending system of ρAB, in particular,
any other purifying system (see Observation 2.7).

This scenario will be developed in Chapter 4, where we introduce the key distil-
lation protocol. There Alice and Bob will transform the state. Here we just study
the very structure of the state, so that it contain secure key.

As it will appear natural in context of secret key content, we consider the bipartite
systems of Alice and Bob that has two subsystems each. To avoid double prime
notation we call them A and A′ on Alice’s site and B and B′ on Bob’s. We will
consider hence a bipartite states ρABA′B′ , yet with four subsystems. We assume also
that systems A and B are of the same dimension d so that {0, . . . , d − 1} is the
range of key. We will sometimes refer to AB as to the main part and to A′B′ as
to the side part (see Section 3.2, where these systems are called key part and shield
respectively).

Considering the state ρABA′B′ , we will be actually interested in the subsystem
ABE of the purification |ψρ〉ABA′B′E of ρABA′B′ , after it was measured in basis
B = {|ei〉|fj〉}d−1

i,j=0 on AB. Such state has the form

ρccq =
d−1∑
i,j=0

pij |eifj〉AB〈eifj | ⊗ ρEij . (3.1)

A state of this form is called a ccq state1. To indicate the product basis B on AB
of the ccq state, we sometimes call it a B-ccq state. In the above context, when we
know the origin of such state, we will call it the ccq state of the state ρABA′B′ . For
states with only two subsystems: ρAB by its B-ccq state we mean the state obtained
via a purification of the state |ψρ〉ABE , measured on AB in basis B.

3.1.2 Definition of secure key

We begin with some intuitions which lead to the definition of states that have ideally
secure key (called also states from class C1). In particular, we consider the following
“predefinition”:

1The name ccq stands for ’classical-classical-quantum’, reflecting the intuition, that subsystems
of Alice and Bob are in a sense in ’more classical’ state being the output of measurement in basis
B, then the state of Eve’s subsystem, which is not measured. It was coined in [HHHO05a] after
similar name of cqq states in [DW05] (see also [Chr02]).
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• We say, that bipartite quantum state has key if it has directly accessible, clas-
sical key.

In what follows we will explain what we will mean by “classical key” and its “direct
accessibility”, which will lead to the definition of quantum states that have key.

classical key
Following [DW05, DW04] (see also [Chr02]), to formalize what we mean by

the classical key, we base on classical cryptography [Wyn75, CK78, Mau93, AC93,
Mau93]. There, ideally secure key is represented by the following distribution:

Pideal = P (KA,KB)P (E) (3.2)

where P (KA,KB) = 1
dδij with {i, j = 0, ..., d− 1}, and P (E) is some distribution of

Eve, which is independent from that of Alice and Bob.
Basing on this approach, one easily finds the quantum analogue of distribution

3.2 to have form: (
1
d

d−1∑
i=0

|ii〉〈ii|AB
)
⊗ ρE . (3.3)

Since change of the alphabet does not spoil the security of key, in general we can
have the following state:

ρidealccq :=
(

1
d

d−1∑
i=0

|eifi〉〈eifi|AB
)
⊗ ρE . (3.4)

In what follows, we will treat this state as representing the classical key. We will
refer to this state also as the ideal B-ccq state, or just an ideal ccq state in case of
standard product basis.

direct accessibility
To formalize the direct accessibility we base on example of a maximally entangled

state:

|Ψ(d)
+ 〉 =

1√
d

d−1∑
i=0

|eifi〉. (3.5)

According to Definition 2.2, and Lemma 2.6, any purification of this state has the
form |ψABE〉 = |Ψ(d)

+ 〉AB ⊗ |φ〉E for some pure state |φ〉E on system E. Hence one
gets a state ρidealccq after measurement of |ψABE〉 on system AB in a product basis
{|ei〉|fj〉}d−1,d−1

i,j=0 .
Our intuition is that the access via complete von Neumann measurements per-

formed on the systems A and B of bipartite state ρAB is an example of direct access.
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Following this intuition as a direct access we will mean in general the complete von
Neumann measurements on subsystems of systems A and B. This is because, we
understand that one ’has key’, when one ’knows’ (have a labeled system) where to
measure in order to get it.

Thus we arrived at the need for splitting systems A and B into two: A =
AkeyArest and B = BkeyBrest, where Akey and Bkey (of the same dimension d)
are distinguished as those, on which complete von Neumann measurement yields
key. For this reason we will consider states of four subsystems: two on Alice’s and
two on Bob’s site. In what follows, for simplicity, the Akey and Bkey we label as A
and B and are sometimes called the main part. The Arest and Brest will be denoted
as A′ and B′. These are additional systems together called sometimes a side part.
In case of the state which has ideally secure key, we will call main part as key part
and side part as a shield.

Definition of quantum states that have B-key.

Definition 3.1 (of states that have B-key) Let ρABA′B′ ∈ B(HA⊗HB⊗HA′⊗HB′)
with dimHA = dimHB = d. The state ρABA′B′ is called secure with respect to a
basis B = {|ei〉|fj〉}d−1

i,j=0 if the state obtained via measurement on AB subsystem of
its purification in basis B followed by tracing out A′B′ subsystem (i.e. its ccq state)
is of the form:  d−1∑

i,j=0

pij |eifj〉〈eifj |AB

⊗ ρE . (3.6)

Such a state ρABA′B′ will be also called "B secure". Moreover if the distribution
{pij} = {1

dδij} so that the ccq state is of the form(
d−1∑
i=0

1
d
|eifi〉〈eifi|AB

)
⊗ ρE , (3.7)

the state ρABA′B′ is said to have B-key.
If the basis B is known from a context, or just assumed to be a product of

computational basis, we say that a given state ρ has key.

Remark 3.1 Note, that if Alice or Bob wants to obtain key from the state ρABA′B′
that have B-key, she has to measure its subsystem A(B) in basis B. The resulting
state on system AB can be directly used to encrypt via the one-time pad cypher. The
system A′B′ they do not have to use, just keep it away from Eve. Thus the operation
of partial trace in definition above is not done by Alice and Bob, and serves here as
a mathematical tool of ignoring subsystems A′B′.
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The states which satisfy definition 3.1 will be referred to as from class C1. Of
course, there is no a priori reason why to choose such an interpretation of ’direct
accessibility’, as described in previous section. In particular, one can have objection,
that this approach distinguishes only special class of bipartite states - those which
have dimension of Alice’s and Bob’s subsystem dividable by common number d.
To cover the case of arbitrary bipartite state, one has to change the meaning of
’direct accessibility’. We address this problem in Section 3.8. We consider two other
meanings of ’direct accessibility’ which gives rise to the two different definitions of
quantum states that have ’directly accessible classical key’ (called states from classes
C2 (cf. [RS07]) and C3, respectively). We show however, that the states from class
C2 and C3 one can easily transform into some states from C1 (by adding locally pure
ancillary state and performing unitary transformation) and vice versa, they can be
easily obtained from some states of class C1. For this reason we can focus now just
on characterization of states from class C1.

3.2 Private states - characterizing the class of quantum
states that have key

In this section we define the class of private states. The main result of this Chapter
is theorem 3.2 which shows, that the states which have B-key, are exactly private
states.

3.2.1 Private states - definition

Definition 3.2 (of private states) A state ρABA′B′ of a Hilbert space HA ⊗ HA′ ⊗
HB ⊗HB′ with dimensions dA = dB ≡ d, dA′ and dB′ , of the form

γ(d) =
1
d

d−1∑
i,j=0

|eifi〉〈ejfj |AB ⊗ UiσA′B′U †
j , (3.8)

where the state σA′B′ is an arbitrary state of subsystem A′B′, Ui’s are arbitrary
unitary transformations, is called private state or pdit. In case of d = 2 the state
is called pbit. A pdit is denoted as γ(d)

B or γ(d) if the basis B = {|ei〉|fj〉}d−1
i,j=0 is

either irrelevant, or it is just a standard product basis. The set of all private states
with 4 ≥ dimAB ≤ d× d and dimA′B′ ≤ d′ × d′ will be denoted as PS(d,d′).

These states are also called γ-states. The part AB will be further called as the
key part of the pdit, while the subsystem A′B′ its shield. This is because from
the AB subsystem one directly has secure key, which is in general case secure due
to the fact, that A′B′ is kept by Alice and Bob - acting as a shield. This reflects the
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intuitive fact, that the less entangled is the key part, the more needed is the shield,
to keep the latter away from Eve.

Let us note, that the shield may reside also only on one site (say Alice’s) - this
is when dB′ = 1. It can be also absent (when dA′ = dB′ = 1) - in that case the
AB system is in maximally entangled state |Ψ(d)〉AB =

∑d−1
i=0

1
d |eifi〉 which does not

need any shield to be secure. Then, also, the unitary transformations Ui reduces to
some complex phases eφi . Thus the set of maximally entangled states is the subset
of the set of private states:

∀2≤d,d′<∞ MS(d) ⊂ PS(d,d′). (3.9)

To indicate both dimensions of the key part and shield, we denote the private
states from PS(d,d′) as γ(d,d′). We will sometimes denote as PS the set of all private
states, i.e. with arbitrary dimensions of key part and shield.

In special case, where the unitary transformations Ui are identity (perhaps with
some phases eφij on diagonal), we call the private state a basic pdit or basic pbit
depending on the dimension of its key part.

To express this formally, we introduce some notations. By P
(d),B
AB we mean the

projector onto the state
∑d−1

i=0
1√
d
|eifi〉. Sometimes, we will also denote this projector

as P (d)
B , omitting the information about system. If we omit also the basis B in super

or subscript, we mean that this basis is chosen to be a product of two standard basis.

Definition 3.3 (of a basic pdit) A state ρABA′B′ of a Hilbert space HA ⊗ HA′ ⊗
HB ⊗HB′ with dimensions dA = dB ≡ d, dA′ and dB′ , of the form

ρABA′B′ = P
(d),B
AB ⊗ σA′B′ , (3.10)

is called a basic pdit.
Let us note, that the definition of private states does not invoke the purifying

system, as it is in definition 3.1. Despite of this fact, the two definitions are equiva-
lent.

Theorem 3.2 Any state ρABA′B′ of a Hilbert space HA ⊗ HA′ ⊗ HB ⊗ HB′ with
dimensions dA = dB ≡ d, dA′ and dB′, has B-key if and only if it is of the form

ρABA′B′ =
1
d

d−1∑
i,j=0

|eifi〉〈ejfj |AB ⊗ UiσA′B′U †
j (3.11)

where the state σA′B′ is an arbitrary state of subsystem A′B′, Ui’s are arbitrary
unitary transformations and B = {|ei〉|fj〉}d−1

i,j=0.
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Proof. (⇐) Let us consider the following state:

|ψ〉ABA′B′E =
d−1∑
i=0

1√
d
|ei〉A ⊗ |fi〉B ⊗ |ψ(i)〉A′B′E , (3.12)

where |ψ(i)〉A′B′E = Ui ⊗ IE |ψ〉A′B′E with |ψ〉A′B′E being some fixed purification
of the state σA′B′ . It is easy to see that |ψ〉ABA′B′E is a purification of the pdit
ρABA′B′ (see Sec. 2.3.2). After measuring this purification on AB system in basis
B, we obtain the state:

σABA′B′E =
d−1∑
i=0

1
d
|eifi〉〈eifi|AB ⊗ Ui ⊗ IE |ψ〉〈ψ|U †

i ⊗ IE (3.13)

By linearity of the partial trace, we have

TrA′B′σABA′B′E =
d−1∑
i=0

1
d
TrA′B′(|eifi〉〈eifi|AB ⊗ Ui ⊗ IE |ψ〉〈ψ|U †

i ⊗ IE) (3.14)

Since partial trace does not depend on the choice of basis (see Section 2.3), for each
i we can trace the system A′B′ in different basis, namely in {Ui|k〉}

dA′dB′−1
k=0 . This

gives, that the subsystem ABE of the latter state has form:

d−1∑
i=0

1
d
|eifi〉〈eifi|AB ⊗ ρE (3.15)

where ρE = TrA′B′ |ψ〉〈ψ|A′B′E . The above state has desired form of the state ρidealccq ,
which ends the proof of this part of theorem.
Proof. (⇒)

In this part we assume, that the state ρABA′B′ has B-key i.e. that after measure-
ment on it’s AB part, one gets perfectly correlated state, uncorrelated with Eve:(

d−1∑
i=0

1
d
|eifi〉〈eifi|AB

)
⊗ ρE . (3.16)

Let us consider general pure state for which dimensions of A,B are d, dimensions
of A′, B′ are dA′ , dB′ respectively, and dimension of subsystem E is the smallest one
which allows for the whole state being a pure one.

|ψ〉 = |ψ〉ABA′B′E =
∑
ijklm

aijklm|eifjklm〉. (3.17)
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one can rewrite it as
|ψ〉 =

∑
ij

|eifj〉AB|ψ̃(ij)〉A′B′E . (3.18)

with |ψ̃(ij)〉A′B′E =
∑

klm aijklm|klm〉.
It is easy to see, that the scalar product 〈ψ̃(ij)|ψ̃(ij)〉 equals the probability of

obtaining the state |eifj〉〈eifj |AB on the system AB after measurement in basis B.
Now, since the subsystem ρABE (after measurement in B on AB) must be maximally
correlated, the vectors |ψ̃(ij)〉 should satisfy 〈ψ̃(ij)|ψ̃(ij)〉 = 1

dδij . We can normalize
these states (in case i = j) to have:

|ψ(ii)〉 :=
|ψ̃(ii)〉√
〈ψ̃(ii)|ψ̃(ii)〉

=
√
d|ψ̃(ii)〉 (3.19)

so that the total state has a form:

|ψ〉 =
d−1∑
i=0

1√
d
|eifi〉AB|ψ(ii)〉A′B′E . (3.20)

"Cryptographical" interpretation of this state is the following: if Alice and Bob gets
i−th result, then Eve gets subsystem ρEi of a state |ψ(ii)〉A′B′E . Indeed, its ccq state
is of the form

ρccq =
d−1∑
i=0

1
d
|eifi〉AB〈eifi| ⊗ ρEi , (3.21)

with ρEi = TrA′B′(|ψ(ii)〉〈ψ(ii)|A′B′E). Now the condition (3.16) implies that, ρEi
should be all equal to each other. In particular, it follows that rank of Eve’s total
density matrix is no greater than dimension of A′B′ system, hence we can assume
that dE = dA′ × dB′ = d′. Indeed: each |ψ(ii)〉A′B′E has rank of subsystems E and
A′B′ equal, since it is a pure state. Denote this rank as ri. By elementary algebra,
we have:

dimA′B′ ≥ rank(ρA′B′) ≥ max
j
rj ≥ ri (3.22)

where ρA′B′ = TrABE(|ψ〉〈ψ|). Now, since ρEi are equal for each i, they have also
equal ranks ri = rE , equal to rank of the total Eve’s density matrix. Then, the
assertion follows from the above inequality.

It is convenient to rewrite the pure state |ψ(ii)〉 in the form

|ψ(ii)〉A′B′E =
d′−1∑
k=0

|k〉A′B′Xi|k〉E , (3.23)
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(see discussion in Section 2.3.5), where {|k〉} is standard basis of A′B′ and of E
system, Xi is dE×dE matrix that fully represents this state. It is easy to check, that
ρEi = XiX

†
i . Consider now singular value decomposition2 of Xi given by Vi

√
ρiU

†
i

where ρi is now diagonal in basis {|k〉}. One then gets that ρEi = ViρiV
†
i . The state

(3.23) may be also rewritten as

|ψ(ii)〉A′B′E =
∑
k

XT
i |k〉A′B′ |k〉E , (3.24)

where T is transposition in basis {|k〉}. Thanks to this representation, the whole
state ρABA′B′ can be written as follows:

ρABA′B′ =
1
d

d−1∑
i,j=0

|eifi〉〈ejfj |AB ⊗XT
i (X†

j )
T . (3.25)

We can express this state using states ρEj , i.e. states accessible to Eve. Substituting
Xi = Vi

√
ρiU

†
i we obtain

ρABA′B′ =
1
d

d−1∑
i,j=0

|eifi〉〈ejfj |AB ⊗ (U∗
i

√
ρiV

T
i )(V ∗

j
√
ρj
∗UTj ). (3.26)

We insert now the identity matrices of the form V T
i V

∗
i and V T

j V
∗
j respectively (note,

that Vi are unitary transformations, and so are the V T
i ), to get:

ρABA′B′ =
1
d

d−1∑
i,j=0

|eifi〉〈ejfj |AB ⊗ (U∗
i V

T
i )[V ∗

i

√
ρi
TV T

i ][V ∗
j
√
ρj
∗V T

j ](V ∗
j U

T
j ).

Let us recall here, that √ρj is positive as emerging from the singular value decom-
position. Moreover it is diagonal in standard basis, hence we have √ρj∗ = √ρjT .
This allows us to write:

ρABA′B′ =
1
d

d−1∑
i,j=0

|eifi〉〈ejfj |AB ⊗

(U∗
i V

T
i )V ∗

i

√
ρi
TV T

i︸ ︷︷ ︸
=
√
ρE

i

T

V ∗
j
√
ρj
TV T

j︸ ︷︷ ︸
=

q
ρE

j

T

(V ∗
j U

T
j ). (3.27)

2For a formulation of the singular value decomposition see Section A.1.2 in Appendix.
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Denoting by Wi the unitary transformation U∗
i V

T
i one gets:

ρABA′B′ =
1
d

d−1∑
i,j=0

|eifi〉〈ejfj |AB ⊗Wi

√
ρEi

T

.
√
ρEj

T

W †
j .

However, as mentioned above, Eve’s density matrices are equal to each other, i.e.
ρEi = ρEj ≡ σ̃ for all i, j where σ̃ is an arbitrary state on system E. We then obtain

ρABA′B′ =
1
d

d−1∑
i,j=0

|eifi〉〈ejfj |AB ⊗WiσW
†
j A′B′

. (3.28)

with σ = σ̃T . This completes the proof of theorem 3.2.
Owing to this characterization of quantum states that have key, we have that the

notion of states that have B-key is equivalent to the notion of private state which is
secure in basis B. In what follows, with exception of Section 3.8, we will use only
the latter notion.

3.3 Private states as “twisted” EPR states

In this section we present the structure of private states. We show, that they consist
of maximally entangled states (called also an EPR state), tensored with some arbi-
trary state on the A′B′ system, rotated (together) by a suitable unitary operation
called twisting. We define below the notion of twisting, and show its property which
proves useful in further considerations.

Definition 3.4 Given a product basis B = {|ei〉|fj〉}d−1
i,j=0 of system AB, the unitary

operation acting on system ABA′B′ of the form

U =
d−1∑
k,l=0

|ekfl〉〈ekfl|AB ⊗ UklA′B′ , (3.29)

is called B-twisting, or shortly twisting.
Using operation of B-twisting, we can rewrite the private state of (3.8)

γ(d) =
1
d

d−1∑
i,j=0

|eifi〉〈ejfj |AB ⊗ UiσA′B′U †
j , (3.30)

in the following, more appealing form

γ(d) = UP
(d)
B ⊗ σA′B′U †. (3.31)
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The state P (d)
B has many matrix elements equal to zero. In turn, not all unitary

transformations from definition of twisting are used here. In fact, unitary transfor-
mations Ui in equation (3.30) are to be identified with transformations Ukk from
equation (3.29).

In special case, where private state has no shield, the twisting is in a sense
trivial, i.e. it acts on AB multiplying the states |eifi〉 by some complex phases eφi

respectively.
Note, that we can take σA′B′ to be classically correlated (see Eq. (2.91)) in the

sense that it is diagonal in some product basis. Indeed, twisting can change the
state σA′B′ into any other state having the same eigenvalues (simply, twisting can
incorporate a unitary transformation acting solely on A′B′).

It is clear now, that any private state can be viewed as maximally entangled state
“twisted” into system A’B’. Thanks to this, the states which have key, are closely
connected with the maximally entangled state, which has been so far a "symbol" of
quantum security. As we shall see, the maximally entangled state may get twisted
so much, that after measurement in many bases of the AB part the outcomes will be
correlated with Eve, which is not the case for the maximally entangled state itself.
Still, however the basis B will remain secure.

3.3.1 Invariance of ccq state under twisting

In this section, we show that twisting does not change the ccq state of a given
bipartite state. We have the following theorem.

Theorem 3.3 For any state ρAA′BB′ and any B-twisting operation U , the states
ρAA′BB′ and σABA′B′ = UρAA′BB′U

† have the same ccq states w.r.t B, i.e. after
measurement in basis B, the corresponding ccq states are equal: ρ̃ABE = σ̃ABE
Proof. To show that subsystem ρABE is not affected by B controlled unitary with
a target on A′B′ we will consider the whole pure state:

|ψ〉 = |ψ〉ABA′B′E =
∑
ijklm

aijklm|ijklm〉 (3.32)

(without loss of generality we take B to be standard basis). After von Neumann
measurement on B and tracing out the A′B′ part, the output state is the following:

ρ̃ABE =
∑
ijklmn

aijklmāijkln|ij〉〈ij| ⊗ |m〉〈n|. (3.33)

Let us now subject |ψ〉 to controlled unitary UABA′B′ ⊗ IE ,

|ψ̃〉 = UABA′B′ ⊗ IE |ψ〉 =
∑
ijklm

aijklm|ij〉U ij |kl〉|m〉, (3.34)
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and then on the output state |ψ̃〉 perform a complete measurement on B reading the
output:

Pij |ψ̃〉〈ψ̃|Pij =
∑

klmstn

aijklmāijstn

|ij〉〈ij|AB ⊗ U ij |kl〉〈st|(U ij)†A′B′ ⊗ |m〉〈n|E . (3.35)

Performing partial trace and summing over i, j we obtain the same density matrix
as in (3.33) which ends the proof.

The above theorem shows that two states which differ by some twisting U , have
the same ccq state obtained by measuring their main parts, and tracing out their
side parts.

3.3.2 Privacy squeezing

In the previous section we showed, that given a state ρABA′B′ , the B-twisting does
not affect its B-ccq state. It is then interesting to ask how the whole state ρABA′B′
changes when subjected to such an operation. We will show now a particularly
interesting example of twisting which proves useful in further considerations.

Remark 3.4 In this section, as well as in Sections 3.4-3.6, we will for simplicity
of notation use the standard product basis in place of B in definition of private state
and twisting, however the results holds for an arbitrary product basis.

Lemma 3.5 For any state σABA′B′ ∈ B(C2 ⊗ C2 ⊗ Cd ⊗ Cd′) expressed in the form
σABA′B′ =

∑1
ijkl=0 |ij〉〈kl|⊗Aijkl there exists twisting Ups such that ρAB = TrA′B′ [UpsσABA′B′U

†
ps]

has the form

ρAB =


× × × ||A0011||
× × × ×
× × × ×
× × × ×

 , (3.36)

where × stands for non-important elements of ρAB.
Proof. The proof is constructive. Twisting, is by definition (3.29) determined
by the set of unitary transformations. As we consider pbit, we have four unitary
transformations which determine it: {Ukl}1k,l=0. We take now the singular value
decomposition V RṼ of the operator A0011, where V, Ṽ are unitary transformations,
and R - nonnegative diagonal operator. By unitary invariance of the trace norm, we
obtain ||A0011|| = ||R|| = TrR. We then define a twisting Uτ by choosing U00 = V †,
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U11 = Ṽ , and U01 = U10 = I. The AB subsystem of state σABA′B′ twisted by Uτ
reads

ρAB =
1∑

ijkl=0

Tr(UijAijklU
†
kl)|ij〉〈kl|. (3.37)

Thus, by construction of Uτ we have indeed, that the element |00〉〈11| of the matrix
of ρAB is equal to TrU †

00V RṼ U
†
11 = TrR = ||A0011||, which proves the lemma.

Corollary 3.6 Consider a state with two qubit main part, i.e. of the form (where
blocks are operators acting on the side part):

σABA′B′ =


A0000 0 0 A0011

0 A0101 A0110 0
0 A1001 A1010 0

A1100 0 0 A1111

 , (3.38)

there exists twisting such that the state after partial trace over side part (the A′B′

system) has a form

ρAB =


||A0000|| 0 0 ||A0011||

0 ||A0101|| ||A0110|| 0
0 ||A1001|| ||A1010|| 0

||A1100|| 0 0 ||A1111||

 . (3.39)

Proof. The construction of the twisting is similar as in lemma above. This time one
has to consider also the singular value decomposition of the operator A0110 = WSW ′.

We can see now, that with any state ρABA′B′ , which has two qubit main part
AB, we can associate a state obtained in the following way:

1. For state ρABA′B′ find twisting Ups, such, that (according to lemma 3.5) it
changes upper-right element of AB subsystem of ρABA′B′ into ||A0011||.

2. Apply Ups to ρABA′B′ obtaining ρ′ABA′B′ = UpsρABA′B′U
†
ps.

3. Trace out the side part (A′B′ subsystem) of state ρ′ABA′B′ obtaining two-qubit
state

ρ′AB = TrA′B′ρ′ABA′B′ . (3.40)

This operation we will call privacy squeezing , or shortly p-squeezing , and the
state ρ′AB which is the output of such operation on the state ρABA′B′ ∈ B(C2⊗C2⊗
Cd ⊗ Cd′) the p-squeezed state of the state ρABA′B′ .
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The operation analogous to privacy squeezing with some twisting U 6= Ups in
place of Ups we call the approximate privacy squeezing, when it is optimal
enough for our purpose. E.g. when the twisting U makes the main part close to
maximally entangled state.

In Chapter 4, Theorem 4.25, we prove, that the ccq state of p-squeezed state
denoted as [ρps]ccq has no more secret correlations than that of the original state.
The intuition behind is as follows: it emerges from the operation of twisting which
preserves security in some sense, i.e. it does not change the ccq state which can be
obtained from the original state (see Theorem 3.3). The next operation performed
in definition of p-squeezed state is tracing out A′B′ part which means giving the
A′B′ subsystem to Eve. Such operation can not increase security of the state (see
Theorem 4.4).

We will be interested in applying p-squeezing in the case, where the main part of
the initial state was weakly entangled, or completely separable. Then the p-squeezing
operation will make it entangled.

We can say, that the operation of privacy squeezing pumps the entanglement of
the state which is distributed along subsystems AA′BB′ into its main part AB. The
entanglement once concentrated in the two qubit part, may be much more powerful
than the one spread over the whole system. Further in the manuscript, we will
see that from the bound entangled state, the operation of p-squeezing can produce
approximately a maximally entangled state of two qubits. Then the analysis of how
much key one can draw from the ccq state is much easier in case of the p-squeezed
states.

3.4 Private bits - representations

In this section we will present various forms of pdits and pbits. We will first write
the pbit in matrix form according to its original definition. We can write it in block
form

γ
(2)
ABA′B′ =

1
2


U0σA′B′U

†
0 0 0 U0σA′B′U

†
1

0 0 0 0
0 0 0 0

U1σA′B′U
†
0 0 0 U1σA′B′U

†
1

 , (3.41)

where σA′B′ is arbitrary state on A′B′ subsystem, and U0 and U1 are arbitrary
unitary transformations which act on A′B′.
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3.4.1 "Generalized EPR form" of pdit

Since by Theorem 3.2 pdits are the only states that contain B-key, they could be
called generalized EPR states (maximally entangled state). We have seen in Section
3.3 that they can be viewed as "twisted EPR states". One can notice an even closer
connection. Namely, a pdit can be viewed as an EPR states with operator amplitudes.
Indeed, one can rewrite equation (3.25) in a more appealing form

γ
(d)
A′B′AB = ΨΨ†, (3.42)

with

Ψ =
1√
d

d−1∑
i=0

Yi ⊗ |eifi〉. (3.43)

We have written here (unlike in the rest the of the manuscript) first the A′B′ system
and then the AB one, so that this form of pdit would recall a form of pure state.
Thus instead of complex numbers the amplitudes are now operators. Thus if d = 2,
the matrix form of γ(d)

A′B′AB is the following:

γ
(2)
ABA′B′ =

1
2


Y0Y

†
0 0 0 Y0Y

†
1

0 0 0 0
0 0 0 0

Y1Y
†
0 0 0 Y1Y

†
1

 . (3.44)

Let us consider the polar decomposition of operators Yi. From definition of pdit it
follows that

Yi = Ui
√
ρ, (3.45)

where Ui is unitary transformation and ρ is a normalized state as so is the σA′B′ state
in form (3.41). This reflects the fact, that pbit, like maximally entangled state of
two qubits has coefficients which can have different phase, but the same amplitudes.

There is yet another similarity to EPR states, namely the norm of upper-right
block Y0Y

†
1 is equal to 1

2 , like the modulus of the coherence of the EPR state.

3.4.2 "X-form" of pbit

In special case of pbits (d=2) one can have representation by just one normalized
operator:

γ
(2)
ABA′B′ =

1
2


√
XX† 0 0 X
0 0 0 0
0 0 0 0
X† 0 0

√
X†X

 , (3.46)
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for any operator X satisfying ||X|| = 1. If the normalization term 1
2 is included in

the operator X we will say, that the pbit is in normalized X-form, and consequently
||X|| = 1

2 .
Justification of equivalence of this form and standard form is the following. To

see that the state (3.46) is a pbit consider singular value decomposition UσW of
X, with U and W unitary transformations and σ being diagonal, positive matrix.
Since X has trace norm 1, the same is for σ (trace norm is unitarily invariant - see
Section A.1.1 of Appendix). Therefore X can be viewed as X = UρW with ρ being
a legitimate state. Identifying U0 = U and U1 = W † we obtain the standard form.

Conversely, any pbit can be presented in X-form, with X = Y0Y
†
1 , with Yi

satisfying equation (3.45). We have for example:√
Y0Y

†
1 (Y0Y

†
1 )† =

√
Y0Y

†
1 Y1Y

†
0 =√

U0
√
ρ
√
ρU †

1U1
√
ρ
√
ρU †

0 =
√
U0ρ2U †

0 = Y0Y
†
0 (3.47)

It is important, that in nontrivial cases X should be non-positive operator. Oth-
erwise the pbit is equal to basic pbit. Indeed, if it is positive, then since its trace
norm is 1, it is itself legitimate state, call it ρ. Then

√
XX† =

√
X†X = ρ, so that

ρABA′B′ =
1
2

1∑
i,j=0

|ii〉〈jj| ⊗ ρ = |φ+〉〈φ+| ⊗ ρ,

which is a basic pbit (3.10).
In higher dimension to have the X-form we need more than one operator, and

the operators depend on each other, which is not as simple representation as in case
of pbit. For example in d = 3 case we have:

γ
(3)
ABA′B′ =

1
3



√
XX† 0 0 0 X 0 0 0 XY
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
X† 0 0 0

√
X†X 0 0 0 Y

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(XY )† 0 0 0 Y † 0 0 0
√
Y †Y


,

where the operators X and Y satisfy: ||X|| = 1 and X = WY † for arbitrary unitary
transformation W .
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"Flags form": special case of X-form

If the operator X which represents pbit in X-form is hermitian, the pbit can be seen
as a mixture of two basic pbits :

γ
(2)
ABA′B′ = p|φ+〉〈φ+| ⊗ ρ+

A′B′ + (1− p)|φ−〉〈φ−| ⊗ ρ−A′B′ , (3.48)

where |φ±〉 = 1√
2
(|00〉 ± |11〉). Derivation of this form is straightforward, if we

consider decomposition of X into positive and negative part3:

X = X+ −X−, (3.49)

where X+ and X− are by definition orthogonal, and positive. Thus denoting p =
TrX+, together with assumption of X-form that ||X|| = Tr|X| = 1, we can rewrite
X as

X = pρ+ − (1− p)ρ−, (3.50)

where ρ± are normalized positive and negative parts of X. Moreover, since the states
ρ+ and ρ− are orthogonal: Trρ−ρ+ = 0, we obtain the form (3.48).

3.4.3 Private bits - examples

We will give now two examples of private bits, and study its entanglement distillation
properties.

1. Let us consider state γV ∈ B(C2 ⊗ C2 ⊗ Cd ⊗ Cd) of the following form:

γV =
1
2


I
d2

0 0 V
d2

0 0 0 0
0 0 0 0
V
d2

0 0 I
d2

 , (3.51)

where V is the swap unitary transformation: V =
∑d−1

i,j=0 |ij〉〈ji|. It is easy to
check, that γV is a pbit in X-form with X = V

d2
. Indeed, since trace norm is

unitarily invariant (see A.1.1), we have: || V
d2
|| = || V

d2
V || = || I

d2
|| = 1.

Since X is hermitian, we can represent γV in“flags form”. Considering the
positive and negative part of V , we observe that:

γV = p|φ+〉〈φ+| ⊗ ρs + (1− p)|φ−〉〈φ−| ⊗ ρa, (3.52)
3The positive part of the hermitian operator X is the operator X+ build out of X by setting its

negative eigenvalues to zero. The negative part of X is the operator X− build out of X by setting
nonnegative eigenvalues to zero and taking modulus of such obtained operator [Bha97].
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where
ρs =

2
d2 + d

Psym ρa =
2

d2 − d
Pasym, (3.53)

are so called symmetric and antisymmetric Werner states i.e. normalized pro-
jectors Psym = 1

2(I+V ) and Pasym = 1
2(I−V ) onto symmetric and antisymmet-

ric space respectively [Wer89]. The probability of mixing equals p = 1
2(1 + 1

d).
Since these Werner states are orthogonal, they correspond to “flag” states ρ+

A′B′

and ρ−A′B′ from Eq. 3.48 respectively.

2. The second example is the state known as "flower state", which was shown
[HHHO05b] to lock entanglement cost (we discuss this phenomenon in Section
3.5.2). We have that γ(2,d)

flower ∈ B(C2 ⊗ C2 ⊗ Cd2 ⊗ Cd2) is of the form:

γ
(2,d)
flower =

1
2


σ 0 0 1

dU
T

0 0 0 0
0 0 0 0

1
dU

∗ 0 0 σ

 , (3.54)

where σ is classical maximally correlated state: σ =
∑d−1

i=0
1
d |ii〉〈ii|, and U is

the embedding of unitary transformation W =
∑d−1

i,j=0wij |i〉〈j| = H⊗log d with
H being Hadamard transformation (see Eq. (2.15)) in the following way:

U =
d−1∑
i,j=0

wij |ii〉〈jj|.

This state is a pbit in X-form. In this case X = UT . To see this consider
unitary transformation S := U∗+

∑
i6=j |ij〉〈ij|. Composing S with UT does not

change the norm, which is unitarily invariant (see Section A.1.1 of Appendix),
so that

||1
d
UT || = ||1

d
UTS|| = ||1

d

d−1∑
i=0

|ii〉〈ii||| = 1. (3.55)

Thus we see, that ||X|| = 1. We have also
√
XX† = σ:√

1
d2
UTU∗ = [

1
d2

d−1∑
i=0

|ii〉〈ii|]
1
2 = σ. (3.56)
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3.5 On entanglement properties of private states and lock-
ing entanglement measures

In this section we will show some entanglement properties of the private bits pre-
sented in previous section. To this end we use here the notion of distillable key KD,
introduced in next chapter. We first show the gap between distillable entanglement
and distillable key for some pbits. Further we study the change of some entanglement
measures under tracing out a qubit from the key part system. This contributes to
the effect of locking of entanglement measure. Informally speaking, an entanglement
measure E is called lockable if evaluated on some state ρAA′B, it can decrease by
a lot after tracing out (or in general a quantum operation on) a system A of small
dimensionality in comparison with the change of E. In this section, we will show
that for the family of private states (3.54), the EN , EC (and Ef ) are lockable in this
sense. In Section 3.5.3 we show also that Er is not lockable, and use this fact to give
a bound on Er for private states.

3.5.1 Log negativity of some private states, and the gap between
ED and KD

The formal definition of the amount of security contained in bipartite quantum state,
called distillable key (KD) is given in Section 4.1. It is argued also in Section 4.4,
that KD is an entanglement measure. It is then tempting to compare its value to
other entanglement measures. In this section, we show that in case of γV given in Eq.
(3.51), the distillable entanglement ED is strictly smaller then the amount of secure
key KD gained from these states. To this end we will compute the log-negativity
EN (ρ) of the state, which is an upper bound on ED [VW02] (see Section 2.8.4).

Lemma 3.7 For any pbit γABA′B′ in X-form, if
√
XX†Γ ≥ 0 and

√
X†X

Γ
≥ 0,

its log negativity satisfies EN (γABA′B′) = log(1 + ||XΓ||), where Γ is transposition
performed on the system B′.
Proof. Due to example 2.16 (see Section 2.4.2), the pbit γ in X-form after partial
transposition on BB′ subsystem changes into

γΓ
ABA′B′ =

1
2


√
XX†Γ 0 0 0

0 0 XΓ 0
0 (X†)Γ 0 0

0 0 0
√
X†X

Γ

 . (3.57)

We have
||γΓ|| = 1

2
(||[
√
XX†]Γ||+ ||[

√
X†X]Γ||+ ||A||), (3.58)
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where

A =
[

0 (X)Γ

(X†)Γ 0

]
. (3.59)

The operators [XX†]Γ and [X†X]Γ are positive, so that

||[
√
XX†]Γ||+ ||[

√
X†X]Γ|| = Tr(

√
XX† +

√
X†X)Γ = 2TrγΓ = 2. (3.60)

The last equality comes from the fact that Γ preserves trace. To evaluate norm of A,
we note that due to unitary invariance of trace norm we have ||A|| = ||σ1⊗ IA′B′A||,
with σAB1 being a corresponding Pauli operation given in Eq. (2.50), that acts on
system AB. Consequently

||A|| = ||XΓ||+ ||(X†)Γ|| = 2||XΓ||. (3.61)

The last equality follows form the fact that Γ commutes with Hermitian conjugation,
and trace norm is invariant under Hermitian conjugation ||X|| = ||X†||. The log-
negativity entanglement measure is defined as EN (ρ) = log(||ρΓ||), thus we get

EN (γ) = log(1 + ||XΓ||), (3.62)

which proves the lemma.
Using the above lemma, one can check the negativity of the state γV . We have

in this case X = V
d2

, with d ≥ 2. Since V Γ = dP
(d)
+ , we obtain EN (γV ) = log(1 + 1

d).
It implies:

ED(γV ) ≤ EN (γV ) = log(1 +
1
d
) < 1 ≤ KD(γV ), (3.63)

which demonstrates a desired gap between distillable key and distillable entangle-
ment:

ED(γV ) < KD(γV ). (3.64)

3.5.2 Locking of EN , Ec and Ef with private states

Before we invoke a formal definition of locking of an entanglement measure, it is
instructive to present details of the result from which locking of entanglement origi-
nates.

unlocking classical correlations

In [DHL+04], it is shown, that a measure of classical correlations denoted as Ic can
increase arbitrarily after sending a single bit of information. More precisely, consider
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the following family of states:

ρclaAB =
1
2

[
|0〉〈0|a ⊗

(
d−1∑
i=0

1
d
|i〉〈i|A ⊗ |i〉〈i|B

)
+ |1〉〈1|a ⊗

(
|i〉〈i|A ⊗W |i〉〈i|BW †

)]
,

(3.65)
with W =

∑d−1
k,l=0wkl|k〉〈l| being any unimodular matrix i.e. satisfying |wkl| = 1√

d
.

Exemplary can be W =
∑

kl
1√
d
e

1
d
2πi(kl)modd|k〉〈l| [Wer01]. The classical correlations

measure Ic is defined in [DHL+04] as follows:

Ic(ρAB) = maxMA⊗MB
I(A : B), (3.66)

where maximum is taken over POVMs {M (i)
A }

KA−1
i=0 and {M (i)

B }
KB−1
i=0 on Alice’s and

Bob’s subsystem respectively, with I(A : B) begin the mutual information of the
random variable of pairs of outcomes of these POVMs:

P (A = i, B = j) = TrM
(i)
A ⊗M

(j)
B ρAB. (3.67)

It is shown in [DHL+04], that Ic(ρclaAB) ≤ 1
2 log d, but after communication of a single

bit (a state of system a) from Alice to Bob, Ic increases to log d. This result can be
seen as ’unlocking’ of classical correlations, since system a can be seen as a ’lock’ to
the quantity Ic, on the state. The properties of Ic on the state ρclaAB are collected in
the following theorem:

Theorem 3.8 (compare [DHL+04]) For the state ρclaAB defined by (3.65), there
holds:

1. Ic(ρclaAB) ≤ 1
2 log d

2. Ic(ρclaAB) = supΛB
χ({(pi, ρ(i)

aA)}), where ρ(i)
aA, are states on Alices’s site which

appears conditionally upon classical outcome |i〉〈i| of the quantum measurement
ΛB = {Bi ⊗ |i〉} on system B (see (2.96)).

3. Ic(ρclABb) = log d, where ρclABb is ρclaAB with system a on Bob’s site labelled as b.

4. Ic((ρclaAB)⊗n) = nIc(ρclaAB)

Locking of EC and EN with pbits

We first provide precise definition of lockability. The effect of locking of entanglement
measures described in [HHHO05b], via examples, was formalized in [Chr06] by means
of the converse property, with an acronym Non Lock:
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Definition 3.5 [Chr06] An entanglement measure E is said to be nonlockable (has
Non Lock property), if there is c ≥ 0 such that for all ρaAB,

E(ρaAB) ≤ E(ρAB) + c logRank(ρa), (3.68)

where ρAB = TraρaAB.
According to the above definition, E is lockable (has Lock property), if there is a

family of states {ρcaAB} with increasing parameter c, such that E(ρcaAB)−E(ρcAB) >
c logRank(ρa). If the difference E(ρcaAB)− E(ρcAB) is explicit function of c, we will
say, that E is (κ ↓ ∆)− Tr-lockable, with κ = logRank(ρa) and ∆(c) = E(ρcaAB)−
E(ρcAB). We then say also, that family {ρcaAB} reveals (κ ↓ ∆)−Tr-lockability of E.

We can pass now to show, that the family of flower states {γ(2,d)
flower}

∞
d=2 introduced

in (3.54) reveals lockability of EC . We have already argued, that these states are
pbits in X-form, defined as:

γ
(2,d)
flower =

1
2


σ 0 0 1

dU
T

0 0 0 0
0 0 0 0

1
dU

∗ 0 0 σ

 , (3.69)

where σ is classical maximally correlated state: σ =
∑d−1

i=0
1
d |ii〉〈ii|, and U is an

embedding of a unimodular unitary transformation W =
∑d−1

i,j=0wij |i〉〈j|, in the
following way:

U =
d−1∑
i,j=0

wij |ii〉〈jj|. (3.70)

(To be precise, in (3.54) we considered W = H⊗ log d, but this can be extended to
unimodular unitary transformations in context we are going to present). One can see
the connection between this state and the state ρclaAB which reveals ’unlocking’ of Ic
(3.65). We make this connection explicit now. Consider a purification |ψγ〉ABA′B′E
of the state γ(2,d)

flower of systems ABA′B′ to system E. It is straightforward to check,
that:

TrAA′ |ψγ〉〈ψγ |ABA′B′E = ρclBB′E , (3.71)

where in (3.65) one identifies a, A and B with B, B′ and E respectively.
We are ready to formulate the main theorem of this section:

Theorem 3.9 The family of private states {γ(2,d)
flower}

∞
d=2 reveals (1 ↓ 1

2 log d) − Tr-
lockability of EC .
Proof. Due to the so called duality relation [KW04], for any pure tripartite state
|ψ〉ABE , one can reformulate the entanglement of formation Ef of its bipartite sub-
system AB, as a function of subsystem BE: the difference between entropy of Bob’s
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system and maximal Holevo quantity of the ensamble of Bob’s matrix obtained af-
ter measurement on system E and communicating the classical results to system B.
Precisely we have:

Ef (ρAB) = S(B)|ψ〉ABE
− sup

ΛE

χBE (3.72)

with supΛE
χBE = supΛE

χ({(pi, ρ(i)
B )}), where ρ(i)

B , are states on Bob’s site which
appears conditionally on the classical outcome |i〉〈i| of a quantum measurement ΛE
with some Krause operators Ei ⊗ |i〉 on system E (see (2.96)).

In particular, we have:

Ef (γ
(2,d)
flower) = S(BB′)|ψγ〉ABA′B′E

− sup
ΛE

χBB′E . (3.73)

where |ψγ〉ABA′B′E is a purification of γ(2,d)
flower on systems ABA’B’ to system E. As

it follows from Eq. (3.71), the subsystem BB′E of |ψρ〉ABA′B′E equals just ρclBB′E .
We will employ now the properties of Ic(ρclBB′E), given in Theorem 3.8, providing

the change of labels a→ B, A→ B′, B → E and b→ e, respectively.
By properties (2) and (4), and due to the fact that EC = E∞

f (see (2.113) Section
2.8.2), the equality (3.73) reads:

EC(γ(2,d)
flower) = S(BB′)|ψγ〉ABA′B′E

− Ic(ρclBB′E). (3.74)

Let us now trace out system B (a single qubit) of the purification |ψγ〉ABA′B′E ,
and purify the resulting state on system e, on Eve’s site, obtaining new pure state
|ψ̃〉AA′B′Ee. Applying duality relation (3.72), to |ψ̃〉AA′B′Ee one gets:

EC(γ̃(2,d)
flower) = S(B′)|ψ̃〉AA′B′Ee

− Ic(ρ̃clB′Ee), (3.75)

where γ̃(2,d)
flower is the flower state after tracing out system B and ρ̃clB′Ee is just a state

ρ̃clBB′E with system B on Eve’s site, labelled by e. We have used here the fact, that
Ic((ρ̃clB′Ee)

⊗n) = nIc(ρ̃clB′Ee). This fact holds for the same reason as property (4).
We check now, how the values of EC and Ic change in parallel: in (3.74) we had

Ic(ρclBB′E) ≤ 1
2 log d (by property (1)) and S(BB′) = 1 + log d, hence EC(γ(2,d)

flower) ≥
1 + 1

2 log d. Passing4 to (3.75), due to property (3), there is Ic(ρ̃clB′Ee) = log d. Since
entropy of system B′ equals just log d, we have that EC(ρ̃clB′Ee) = 0.

Hence, after tracing out a single qubit (system B) of γ(2,d)
flower, EC has decreased

from 1 + 1
2 log d to zero. This ends the proof of Theorem 3.9.

Since EC = E∞
f , the above theorem proves also that Ef has Lock property.

We now state the result for locking of EN , again revealed by the flower states.
4In [CW05] it is argued, that in fact EC(γ

(2,d)
flower) = 1 + 1

2
log d in this case.
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Theorem 3.10 The family of private states {ρ(d)
flower} is (1 ↓ log(

√
d + 1)) − Tr-

lockability of EN .
Proof. By Lemma 3.7 EN (ρ(d)

flower) = log(1+ ||1d(U
T )Γ||), where U =

∑
ij wij |ii〉〈jj|

with W a unimodular unitary transformation. Repeating analogous considerations
to that given in example 3.54, we get that it equals log(1+

√
d). If we however trace

out one qubit of the key part of the private state ρ(d)
flower, we obtain a separable state,

with EN = 0.

3.5.3 Nonlockability of Er and the upper bound on KD for private
states

We now consider entanglement contents of a pbit in terms of the measure of entan-
glement called relative entropy of entanglement (see Section 2.8.3). In Section 4.5
we will show, that for any state, the relative entropy of entanglement is an upper
bound on distillable key, which is the amount of secure key KD, that can be distilled
from many copies of the state via LOCC operations (see Def. 4.1 for details). It
is then easy to see, that for any pbit γ, its relative entropy of entanglement Er(γ)
is greater than log d since KD(γ) ≥ log d by definition of pdits. The question we
address here, is an upper bound on the relative entropy of the pdit. We relate its
value to the states which appear on the shield of the pdits, when Alice and Bob get
key by measuring the key part of the pdit. To show this in a short way we first
provide a general fact, that Er is not lockable.

Er is not lockable

We provide in this section a proposition from which it follows easily that Er has
property Non Lock.

Proposition 3.11 For any bipartite state ρAA′:B ≡ ρ and any complete von Neu-
mann measurement ΛA on the one qubit system A there holds:

Er(ρ)− Er(ΛA ⊗ IA′B(ρ)) ≤ 1 (3.76)

Er(ρ)− Er(TrA(ρ)) ≤ 2. (3.77)

Proof. Both statements of this theorem are consequence of the following property
of relative entropy of entanglement [LPSW99] (see [EFP+00] in this context):∑

i

piEr(ρi)− Er(
∑
i

piρi) ≤ S(
∑
i

piρi)−
∑
i

piS(ρi) (3.78)
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where S stands for the von Neumann entropy of the state.
For the first part of the proof, it suffices to notice that any complete von Neu-

mann measurement can be implemented via applying randomly some unitary trans-
formations. Consider the following basic quantum operations: add on Alice’s site an
ancillary system in state τ = 1

2 [|0〉〈0| + |1〉〈1|] and perform the controlled unitary
operation U =

∑1
i=0 |i〉〈i|anc ⊗ σ

(i)
A with σ(0) = IA and σ(1) = σ2 - a Pauli operation

(see Eq. (2.50). This operation followed by tracing out the ancilla τ will have the
desired effect:

Tranc[U(τ ⊗ ρ)U †] =
∑
i

p̃iρ̃i = ΛA ⊗ IA′B(ρ) (3.79)

where ρ̃i = σi ⊗ IA′B(ρ) and pi = 1
2 . Taking now in (3.78) ρi = ρ̃i and pi = p̃i, one

gets:
Er(ρ)− Er(

∑
i

piρi) ≤ S(
∑
i

piρi)−
∑
i

piS(ρi), (3.80)

since local unitary transformations do not change Er (see Lemma 2.27). By (3.79)
it is equivalent to:

Er(ρ)− Er(ΛA ⊗ IA′B(ρ)) ≤ S(
∑
i

piρi)−
∑
i

piS(ρi) ≤ H(~p), (3.81)

where last inequality follows from (2.97) with H(~p) being the Shannon entropy of the
distribution ~p defined by probabilities pi. For our choice of pi this gives: S(

∑
i piρi)−∑

i piS(ρi) ≤ 1 which proves (3.76).
The property (3.77) can be proved in similar vain. Instead of tracing out, we

apply ’total’ dephasing, which is equivalent to transformation of ρAA′B into I
2⊗ρA′B.

To this end we a need bigger ancilla system in state τ⊗2 and the controlled unitary
composed from all four Pauli operations (Eq. (2.50): U =

∑3
i=0 |i〉〈i|anc ⊗ σ

(i)
A .

The unitary transformations σ(i) are well known examples of the ones which applied
randomly change any state of 1-qubit system into the maximally mixed state (see
for example, [BR03, MTd00]).

The above Proposition can be generalized as follows:

Corollary 3.12 For any ρAA′B ∈ HA ⊗HA′ ⊗HB, such that dimHA = d, and any
complete von Neumann measurement ΛA on the system A there holds:

Er(ρ)− Er(ΛA ⊗ IA′B(ρ)) ≤ log d (3.82)

Er(ρ)− Er(TrA(ρ)) ≤ 2 log d. (3.83)
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Proof. It follows the same arguments as Proposition 3.11, with Pauli transforma-
tions replaced by appropriate groups of unitary transformations. In (3.82) one uses a
special set of unimodular matrices, {WSjW

†}d−1
j=0 withW =

∑
kl

1√
d
e

1
d
2πi(kl)modd|k〉〈l|,

Sj =
∑d−1

k=0 |(k + j)mod d〉〈k| is the shift operation (see [Chr06]). In (3.83) one uses
the group of unitary transformations which turns any state into the maximally mixed
state on HA′ [Wer01].

Obviously, Proposition 3.11 and the above corollary hold as well for the regular-
ized relative entropy of entanglement: E∞

r = limn→∞
Er(ρ⊗n)

n .

Upper bound on relative entropy of entanglement of private states.

Having shown how Er behaves after von Neumann measurement, we are ready to
prove the following theorem:

Theorem 3.13 For any pdit γABA′B′ ∈ B(Cd ⊗ Cd ⊗ Cd′A ⊗ Cd′B ), written in a form
γABA′B′ =

∑d−1
i,j=0 |ij〉〈ij| ⊗ UiρA′B′U

†
j , we have

Er(γABA′B′) ≤ log d+
1
d

d−1∑
i=0

Er(ρ
(i)
A′B′) (3.84)

where ρ(i)
A′B′ = UiρA′B′U

†
i .

Proof. From Corollary 3.12, we have that:

Er(γABA′B′)− Er(γmeasABA′B′) ≤ log d (3.85)

with γmeasABA′B′ =
∑d−1

j=0
1
d |jj〉〈jj|AB ⊗ ρ

(j)
A′B′ being γABA′B′ measured by complete von

Neumann measurement in standard basis on system AB. By convexity of the relative
entropy of entanglement, we have:

Er(γABA′B′)−
d−1∑
j=0

1
d
Er(|jj〉〈jj|AB ⊗ ρ(j)

A′B′) ≤ log d. (3.86)

This, providing the fact that Er(|jj〉〈jj|AB ⊗ ρ(j)) = Er(ρ(j)), which is clearly true
for any entanglement measure, proves the thesis.

Remark 3.14 An analogous theorem to the above holds for E∞
r in place of Er, the

proof of which can be found in [HHHO05a].
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3.6 Irreducible private states - units of privacy

In Section 3.2 we have characterized states which contain ideal key, called pdits. A
pdit has AB subsystem called here the key part. The amount of log d of key can be
obtained from such pdit by just complete measurement in some basis performed on
this key part of pdit . However, as it follows from characterization given in Theorem
3.2, pdits have also the A′B′ subsystem, called here the shield. This part can also
serve as a source of key. Indeed there are plenty of such pdits that contain more
than log d key, due to their shield. Therefore not every pdit can serve as a unit of
privacy and we need the following definition:

Definition 3.6 Any pdit γ (with d-dimensional key part) for which KD(γ) = log d
is called irreducible.

Hence, irreducible pdits are those, for which measuring their key part is an opti-
mal protocol of drawing key. They are called irreducible in opposite to those, which
can be reduced by distillation protocol to some pdits which has more than log d
of key. The irreducible private bits are intuitively associated with units of privacy.
Indeed, a ’physical apparatus’, providing some irreducible pbit ’on demand’, can be
seen as a standard of unit of privacy, like there are standards of some physical units
such as meter and second.5

It appears to be difficult to characterize the class of irreducible pdits. However we
are able to show a subclass of pdits, which are irreducible. To this end we use a result,
which is proved in Section 4.5, namely that the relative entropy of entanglement is an
upper bound on distillable key. Having this we can state the following proposition:

Proposition 3.15 Any pdit γ, with Er(γ) = log d, is irreducible.
Proof. By definition of pdit we have KD(γ) ≥ log d and by Theorem 4.18 from
Section 4.5 we have KD(γ) ≤ Er(γ)

We can provide now a class of pdits which have Er = log d and by the above
proposition are irreducible.

Proposition 3.16 For any pdit γABA′B′ ∈ B(Cd⊗Cd⊗Cd′A⊗Cd′B ), written in a form
γABA′B′ =

∑d−1
i,j=0 |ij〉〈ij|⊗UiρA′B′U

†
j , if the states ρ(i)

A′B′ := UiρA′B′U
†
i are separable

for i ∈ {0, . . . , d− 1}, the pdit is irreducible.
Proof. Due to bound on relative entropy of pdit given in Theorem 3.13 we have that
Er(γ) ≤ log d since the states ρ(i)

A′B′ are separable and hence have relative entropy of

5Note, that the name ’pbit’ is a private bit, along with ’ebit’, that is short for entangled bit.
One can consider also just a single bit of privacy, that can be called ’sebit’ (secure bit). It is easy
to see, that most of the results presented in this chapter, up to suitable modifications, hold in this
case in similar vain [PHHH08].
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entanglement equal to zero. Er(γ) is also not less then log d, since it is greater than
the amount of distillable key.

Note, that examples (3.51), (3.54) given in Section 3.4.3 fulfill the assumptions
of this theorem, and are therefore irreducible pbits. They are also the first known
non trivial states (different than pure state) for which the amount of distillable key
has been calculated. Using the bound of relative entropy on distillable key, one can
also show, that the class of maximally correlated states has KD = ED = Er, since
for the latter ED ≤ Er.

Construction of a subfamily of KD = Er irreducible private states

Due to Proposition 3.16, it is clear that to construct pdits with KD = Er we need
to be sure that the states UiρA′B′U

†
i which appear on shield upon measuring the

key part in standard, basis have zero relative entropy of entanglement, i.e. that
they are separable. We do this basing on the notion of absolutely separable states
[KZ01, Hil05]. These are states, with the following property:

UσU † ∈ SEP, (3.87)

for any unitary U . The set of such states is a convex subset of separable states.
Take now a basic pdit: the maximally entangled state, tensored with an absolute

separable state:
P

(d),B
+ ⊗ σabs. (3.88)

By Proposition 3.16, it is a basic pdit with KD = Er. Apply now any B-twisting
U =

∑
ij |eifj〉〈eifj |⊗Uij . This will give a private state γ, which after measurement

in basis B has upon result |eifi〉〈eifi| on key part, state ρi = UiiσabsU
†
ii on the shield

(note that Proposition 3.16 holds also for any product basis B in place of standard
product basis). Since ρi are separable by definition of σabs, we have KD(γ) = Er(γ).

Since the above construction holds for any B-twisting for fixed B, we obtain an
orbit of irreducible private states with desired property. The orbit corresponds to
the group of B-twistings.

This construction has natural difficulty, since it is hard to provide an absolutely
separable state. Till now such states are constructed only for C⊗2⊗C⊗2 and C⊗2⊗C⊗3

(see [KZ01, Hil05] and the references provided in formulation of 15th Open problem
in Quantum Information Theory available at [Wer99]). In [Hil05], the absolutely
PPT states are characterized, and the characterization involves exponential number
of matrix inequalities, which does not give hope for easy providing explicitly some
new examples. Nevertheless, it shows that the class of irreducible private states with
a property KD = Er is quite reach.
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3.7 Approximate private bits

We dealt so far with states that have ideally secure key, which are private states.
In this section we consider states which approximates private bits, that is which are
close in trace norm distance to some private bit (see Section 2.7). In particular, we
present here a special property of such states. In Section 3.4, we saw that pbits have
similar form to the maximally entangled states of two qubits. In particular, the norm
of the upper-right block in standard form as well as in normalized X-form of pbit
is equal to 1

2 . We will show here, that for general state the norm of that block tells
how close the state is to a pbit: any state which is close in trace norm to pbit must
have the norm of this block close to 1

2 , and vice versa.
We will need the following lemma that relates the value of coherence to the

distance from the maximally entangled state of two qubits |φ+〉 = 1√
2
(|00〉 + |11〉).

The projector onto this state we denote here as P (2)
+ .

Lemma 3.17 For any bipartite state ρAB ∈ B(C2⊗C2) expressed on the form ρAB =∑1
ijkl=0 aijkl|ij〉〈kl| we have:

TrρABP
(2)
+ ≥ 1− ε⇒ Re(a0011) >

1
2
− ε (3.89)

and
Re(a0011) >

1
2
− ε⇒ TrρABP

(2)
+ ≥ 1− 2ε (3.90)

Proof. Assume first, that TrρABP
(2)
+ > 1− ε. We have:

TrρABP
(2)
+ =

1
2
(a0000 + a1111 + 2Re(a0011)) (3.91)

This is however less than or equal to 1
2(1 + 2Re(a0011)), and the assertion follows.

For the second part of the lemma, assume that Re(a0011) > 1
2 − ε. We then have

TrρABP
(2)
+ >

1
2
(a0000 + a1111 + 1− 2ε).

We now bound the term a0000 + a1111. By positivity of the state, we have that√
a0000a1111 ≥ |a0011| ≥ Re(a0011). Now, by arithmetic-geometric mean inequality,

we have that a0000 + a1111 ≥ 2
√
a0000a1111 which gives the proof.

We can prove now that approximate pbits have norm of an appropriate block
close to 1

2 .
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Proposition 3.18 If the state σABA′B′ ∈ B(C2⊗C2⊗Cd⊗Cd′) written in the form
σABA′B′ =

∑1
ijkl=0 |ij〉〈kl|AB ⊗Aijkl fulfills

||σABA′B′ − γABA′B′ || ≤ ε (3.92)

for some pbit γABA′B′ and 0 < ε < 1, then ||A0011|| ≥ 1
2 − ε.

Proof. The pbit γABA′B′ is a twisted EPR state, which means that there exists
twisting U which applied to basic pbit P (2)

+ ⊗ ρ gives γABA′B′ . We apply this U to
both states σABA′B′ and γABA′B′ and trace out the A′B′ subsystem of both of them.
Since these operations can not increase the norm distance between these states (see
Section 2.7), so that we have for σAB = TrA′B′UσABA′B′U †

||σAB − P (2)
+ || ≤ ε. (3.93)

It implies, by equivalence of norm and fidelity (lemma 2.20) that

F (σAB, P
(2)
+ ) ≥ 1− 1

2
ε. (3.94)

We have also that F (σAB, P
(2)
+ )2 = TrσABP

(2)
+ so that

TrσABP
(2)
+ > 1− ε. (3.95)

Now by lemma (3.17) this yields |a0011| ≥ Re(a0011) ≥ 1
2−ε, where a0011 is coherence

of the state ρAB =
∑1

ijkl=0 aijkl|ij〉〈kl|. However, we have

|a0011| = |TrU00A0011U
†
11| = |TrU †

11U00A0011| (3.96)

where U00 and U11 come from twisting, that we have applied. The last equality
follows from the property of trace: TrXY = TrY X, for matrices X and Y of
proper shape so that multiplication can be performed. Using now the fact that
‖A‖ = supU TrUA (see Appendix A.2), where supremum is taken over unitary trans-
formations we get

‖A0011‖ ≥ |a0011| ≥
1
2
− ε. (3.97)

This ends the proof.
Now we will formulate and prove the converse statement, saying that when the

norm of the right upper block is close to 1/2, then the state is close to some pbit.

Proposition 3.19 If the state σABA′B′ ∈ B(C2⊗C2⊗Cd⊗Cd′) with a form σABA′B′ =∑1
ijkl=0 |ij〉〈kl|AB ⊗ Aijkl fulfills ||A0011|| > 1

2 − ε for some 0 < ε < 1
8e2

, then there
exists pbit γ such, that

||σABA′B′ − γABA′B′ || ≤ δ(ε) (3.98)
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where
δ(ε) = 2

√
4
√

2ε+ η(2
√

2ε) + 2
√

2ε (3.99)

and η(x) = −x log x. Note, that δ(ε) vanishes, when ε approaches zero.
Proof. In this proof by ρX we denote respective subsystem of the state ρABA′B′ .
If it is not explicitly stated, the facts invoked in this proof can be found in Section
2.7.1. These are mostly the properties of the von Neumann entropy and quantum
mutual information. Let ρAB be the privacy-squeezed state of the state σABA′B′ i.e.
ρAB = TrA′B′ρABA′B′ where ρABA′B′ = UpsσABA′B′U

†
ps for certain twisting Ups. The

entry a0011 of ρAB is equal to ||A0011||. By assumption we have, a0011 = ||A0011|| >
1
2 − ε. By lemma 3.17 (equation (3.90)) we have that

TrρABP
(2)
+ > 1− 2ε. (3.100)

We have then
F (ρAB, P

(2)
+ )2 = TrρABP

(2)
+ (3.101)

which, by equivalence of norm and fidelity (lemma 2.20) gives

||ρAB − P (2)
+ || ≤ 2

√
2ε. (3.102)

Let us now consider the state ρABA′B′ = UpsσABA′B′U
†
ps and its purification to

Eve’s subsystem ψABA′B′E so that we have:

ρAB = TrA′B′E(ψABA′B′E) (3.103)

By the Fannes inequality (see Eq. (2.24) in Sec. 2.7.1) we have that

S(ρAB) = S(ρA′B′E) ≤ 2
√

2ε log dAB + η(2
√

2ε). (3.104)

From this we will get that ||ψABA′B′E − ρAB ⊗ ρA′B′E || vanishes with ε approaching
zero. We prove this as follows. Since norm distance is bounded by relative entropy
as follows (see Eq. (2.93), Section 2.7.1)

1
2
||ρ1 − ρ2||2 ≤ S(ρ1|ρ2) (3.105)

one gets:

||ψABA′B′E − ρAB ⊗ ρA′B′E || ≤
√

2S(ψABA′B′E ||ρAB ⊗ ρA′B′E).

We use now the fact, that the relative entropy distance of the state to its subsystems
is equal to quantum mutual information, which gives

||ψABA′B′E − ρAB ⊗ ρA′B′E || ≤
√

2I(AB : A′B′E)ψ.
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Since the entropies of subsystems of a pure bipartite state are equal, and the entropy
of the pure state is zero, we have:

I(AB : A′B′E)ψ = 2S(AB)ψ ≤ 2(2
√

2ε log dAB + η(2
√

2ε)), (3.106)

where last inequality comes from Eq. (3.104). Coming back to inequality (3.106) we
obtain

||ψABA′B′E − ρAB ⊗ ρA′B′E || ≤
√

2I(AB : A′B′E) ≤ 2
√

2
√

2ε log dAB + η(2
√

2ε).
(3.107)

If we trace out the subsystem E the inequality is preserved:

||ρABA′B′ − ρAB ⊗ ρA′B′ || ≤ 2
√

4
√
ε+ η(2

√
ε) (3.108)

where we have put dAB = 4, as we deal with pbits. Now by triangle inequality one
has:

||ρABA′B′−P
(2)
+ ⊗ρA′B′ || ≤ ||ρABA′B′−ρAB⊗ρA′B′ ||+ ||ρAB⊗ρA′B′−P

(2)
+ ⊗ρA′B′ ||.

(3.109)
We can apply now the bounds (3.102) and (3.108) to the above inequality obtaining

||ρABA′B′ − P
(2)
+ ⊗ ρA′B′ || ≤ 2

√
4
√

2ε+ η(2
√

2ε) + 2
√

2ε. (3.110)

Let us now apply the twisting U †
ps (transformation which is inverse to twisting Ups)

to both states on left-hand-side of the above inequality. Since ρABA′B′ is defined as
UpsσABA′B′U

†
ps we get that:

||σABA′B′ − U †
psP

(2)
+ ⊗ ρA′B′Ups|| ≤ 2

√
4
√

2ε+ η(2
√

2ε) + 2
√

2ε, (3.111)

i.e. our state is close to pbit γ = U †
psP

(2)
+ ⊗ρA′B′Ups. Then the theorem follows with

δ(ε) = 2
√

4
√

2ε+ η(2
√

2ε) + 2
√

2ε.

Remark 3.20 The above propositions establish the norm of upper-right block of ma-
trix (written in computational basis according to ABA’B’ order of subsystems), as a
parameter that measures closeness to pbit, and in this sense it measures security of
the bit obtained from the key part. The state of form (3.38) is close to a pbit if and
only if the norm of this block is close to 1

2 . This property has been recently shown to
have analogue for pdits with d ≥ 3 [Aug08].
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3.8 Other possible definitions of quantum states that have
secure key yields equivalent results.

In Section 3.1 we have studied security content of a bipartite quantum state. To this
end we first said, that a state ’have key’ if it has ’directly accessible’ (ideally secure)
’classical key’. Specifying in some way the ’direct accessibility’, we have provided
Definition 3.1 of states that have key (we will call them in this section states from
class C1). This definition is both simple, and restrictive. Due to simplicity, the states
from C1 are in relatively easy way characterized as the private states, so that C1=PS.
However, due to restriction, the states from C1 are bipartite states with subsystems
of dimensions dimAA′ and dimBB′ dividable by some number d = dimA = dimB.

In this Section we first ask about security content of an arbitrary bipartite state.
Since arbitrary bipartite state may have subsystems dimension of which do not have
common divisor ≥ 1, we have to consider other interpretations of ’direct accessibility’
than via measuring of some predefined subsystem (the AB subsystem called main
part), as in case of the C1. We also address the issue of which accessibility is the
most ’direct’. If the state is key distillable (KD > 0), it has in some sense accessible
key, but the very fact of key distillability does not implies, ’how easy’ it is to obtain
the key. In other words: how much the information about the key is encoded into
operation which gains it, versus how much it is encoded into explicit structure of the
state.

Motivated by this issues, we consider two other interpretations of direct acces-
sibility which give rise to definitions Def. 3.9 and Def. 3.10. The states that have
directly accessible key according to these definitions, are called states from class C2

and C3 respectively. We demonstrate, that they lead to similar results as we have
already obtained basing on class C1. More precisely, the states from class C2 and C3

can be transformed via local LOCC operations into states from PS, and vice versa.
The class C2, and the fact that it is equivalent to PS, we attribute to Renes and
Smith [RS07], since, although in different formulation, they first used this class, and
argued about its security, which clearly implies the equivalence.

To this end, we first say that two bipartite states ρ1 and ρ2 are locally equivalent
(ρ1 ∼ ρ2), when they are transformable one into another by means of the local
operations. Second, we define the relation of equivalence on the family of classes of
states. The two classes C and D are equivalent (C ∼ D), if and only if:

∀ρ∈C ∃σ∈D σ ∼ ρ & ∀σ∈D ∃ρ∈C ρ ∼ σ. (3.112)

Finally we show, that classes C2 and C3 are equivalent to the class of all private
states PS:

C2 ∼ C3 ∼ PS. (3.113)
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In Section 3.9.1 we observe, that this equivalence has a good property in context
of the so called distillable key, that will be presented in Chapter 4. Namely, replacing
classes PS, C2 and C3 in definition of distillable key gives the same quantity KD.

Finally in Section 3.9.1 we compare the classes PS, the C2 and C3.

3.8.1 Two other interpretations of ’direct accessibility’

Definition 3.7 Two bipartite states ρ and σ are locally equivalent (ρ ∼ σ) if there
exist two local LOCC operations Λ and Λ′, such that

Λ(ρ) = σ,

Λ′(σ) = ρ. (3.114)

We say then, that Λ′ is a local inverse of Λ, and vice versa.
It is easy to check, that the relation ∼ on states is an equivalence relation on the

set of states. Note, that there are obviously states which are not in this relation.
These are states which have different values of some entanglement monotone. Basing
on this relation we define the following relation on classes of states.

Definition 3.8 For any two nonempty classes of states C and D we say that D is
reachable from C (D ← C) iff there holds:

∀ρ∈C ∃σ∈D ρ ∼ σ. (3.115)

C and D are called locally equivalent (denoted as C ∼ D) iff D ← C andC ← D.

First alternative definition of quantum states that have key

In this section we provide the definition of the class C2 - the first alternative definition
of quantum states that have key. This definition involves the notion of a quantum
measurement (see Section 2.3.4).

Definition 3.9 (adapted from [RS07]) A quantum state ρAB ∈ B(HA ⊗ HB) is in
class C2 if there exist quantum measurements QA and QB on Alice’s and Bob’s sites
respectively, such that the state of their classical results on system ĀB̄, together with
the purifying system E of ρAB has form:(

d−1∑
i=0

1
d
|ii〉〈ii|ĀB̄

)
⊗ ρE . (3.116)

for some state ρE of E.
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According to the above definition we does not demand the state to have a struc-
ture of four subsystems: two on Alice’s and two on Bob’s site, as it is in case of
states from PS. Moreover, the key is obtained only in standard basis. Nevertheless,
we have the following theorem:

Proposition 3.21 (adapted from [RS07]) There holds C2∼ PS.
Proof.

(C2← PS). To prove this relation, consider a state ρABA′B′ from PS. It follows,
that after measuring the AB subsystem in a basis B of the purification of this state,
and tracing out A′B′ we obtain an ideal ccq state.

Basing on this fact, we define the local operations which output the locally equiv-
alent state ρ′, that will be from C2. By Theorem 3.2, we know, that the state ρABA′B′
is actually a private state. If we apply to this state on A (B) the operation which
copies A into Ā (B into B̄) which is initially taken in pure state |0〉Ā (|0〉B̄) defined
as:

∀ei,j |ei〉A|j〉Ā 7→ |ei〉A|(i+ j)modd〉Ā, (3.117)

with that for BB̄ defined analogously, the resulting state is:

ρ′ĀB̄ABA′B′ =
d−1∑
i,j=0

1
d
|ii〉〈jj|ĀB̄ ⊗ |eifi〉〈ejfj |AB ⊗ UiσA′B′U

†
j . (3.118)

To see, that the above state is from C2, consider the following quantum measurement
on ĀAA′ subsystem:

ΛA(ρ′) =
d−1∑
i=0

Piρ
′Pi (3.119)

with Pi = |i〉〈i|Ā ⊗ IAA′ . Take now the purification |ψ〉ĀB̄ABA′B′E of the state
ΛA ⊗ ΛB(ρ′) with ΛB defined analogously on B̄BB′. It is easy to see, that the ccq
state emerging on ĀB̄E is an ideal ccq state.

Note, that the only LOCC operations that we have used was adding locally an
ancilla system in pure state and performing locally a unitary transformation. Hence,
there exist also the LOCC operation which is an inverse of the latter on this particular
state. It is just performing the inverse unitary operation, and tracing out the ancilla
system. Moreover, the choice of basis B was arbitrary so that according to Definition
3.7 any private state is locally equivalent to some state from C2. This ends the first
part of the proof.

(PS← C2) Consider a state ρÃB̃ ∈ B(HÃ ⊗HB̃) from C2. There exist quantum
measurements QA and QB whose results are maximally correlated and are product
with the purifying system of ρÃB̃. Pair of these measurements results in a bipartite
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state of four systems ABĀB̄ (systems AB carries the ’quantum’ results of measure-
ments). Basing on this we easily give a locally equivalent state ρ′. The idea is to
apply instead of the quantum measurements QA and QB, their reversible parts (see
Sections 2.3.6, and 2.3.7). Such implementation may involve additional two ancil-
lary systems Â and B̂ that would have been traced out when QA and QB were
implemented via basic quantum operations. Resulting state ρ′ will be on systems
AĀÂBB̄B̂. We claim now, that it belongs to PS. Consider a purification |ψρ′〉 of ρ′,
to system E. It is clear, that if we measure it on ĀB̄ in standard product basis, and
trace out the system AÂBB̂, we obtain an ideal ccq state. Indeed, we see this by
performing partial trace over systems one by one. If we first trace out ÂB̂, we obtain
by construction a state which is from class C2 , already being measured on ĀB̄. By
definition of C2, if we trace out further systems AB, the state of ĀB̄ together with
the purifying system E of the state |ψρ′〉 is an ideal ccq state.

It follows then, that ρ′ is from C1. Hence by Theorem 3.2, the state ρ′ is a
private state. The operations that we have used to transform ρÃB̃ into ρ′ can be
easily inverted on ρ′, by means of LOCC operations as it follows from definition
of reversible part of operation (Def. 2.4), which is invertible on the image. Thus,
any state ρÃB̃ from C2 is in relation ∼ with some private state, hence the assertion
follows.

Second alternative definition of states that have key

We present now yet another alternative definition of states that have key. We call
them the states from class C3.

Definition 3.10 A quantum state ρAB ∈ B(HA⊗HB) is from C3 if it has subsystem
ab, such that the subsystem abE of its purification |ψρ〉ABE is a ccq state of the form:

(d−1∑
i=0

1
d
|ii〉〈ii|ab

)
⊗ ρE . (3.120)

We have now the theorem analogous to Theorem 3.21:

Proposition 3.22 There holds C3∼ PS.
Proof. (C3← PS) Consider a state ρABA′B′ from PS. We construct the locally
equivalent state, in similar way as in the proof (C2← PS), via adding appropriate
ancilla in state |0〉 on Ha and Hb and performing (local) control unitary operations,
which copies the state of system A into system a and system B into system b respec-
tively performing also appropriate change of basis. Such transformation on systems
A and a is defined as:

∀ei,j |ei〉A|j〉Ā 7→ |ei〉A|f(i+j)modd〉Ā. (3.121)
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with an analogous definition for a such unitary operation on system Bb.
By Theorem 3.2, we know, that the state ρABA′B′ is actually a private state.

Hence, after applying the above operations , the resulting state is:

ρ′ĀB̄ABA′B′ =
d−1,d−1∑
i,j=0

1
d
|eifi〉〈ejfj |ĀB̄ ⊗ |eifi〉〈ejfj |AB ⊗ UiσA′B′U

†
j . (3.122)

To see, that the above state is from C3, consider its purification:

|ψρ〉 =
∑
ij

|eifi〉ĀB̄|eifi〉AB ⊗ (UA
′B′

i ⊗ IE)|ψσ〉A
′B′E , (3.123)

where |ψσ〉 is any purification of the state σA′B′ . It is now easy to see, that if we
trace out the systems ABA′B′, the resulting state will have a form of an ideal B-ccq
state, hence the assertion follows.

(PS← C3) This part of the proof is straightforward. Consider a state ρAB ∈
B(HA⊗HB) such that there is a subsystem ab which is in an ideal B-ccq state with
a purifying system ρE of ρAB. Here B is a standard product basis. Analogously as
in proof C2→ PS, we can create via local operations that have local inverse a copy
of the system ab in arbitrary product basis. It is easy to see that resulting state is
from C1, and thanks to Theorem 3.2, it is a private state.

3.9 Comparison of definitions of quantum states that
have key

In this section we deliberate on to what extent the three proposed definitions are
equivalent, and further argue why the first is distinguished among the others.

3.9.1 On equivalence of definitions

It is a well known fact, that two states ρ and σ which are locally equivalent, have the
same amount of entanglement measured by any monotone E. To give example, let
us check this fact for E which does not increase under LOCC operations (see Section
2.8.1). Consider the operations giving Λ(ρ) = σ and Λ′(σ) = ρ. Neither of them can
decrease the value of E on its argument, for the other would then increase it, which
is impossible for E, hence E(ρ) = E(σ).

In particular, locally equivalent state have the same amount of key, which is
measured by the so called distillable key KD introduced in the next chapter. This is
the main reason, for which we consider the three proposed definition as essentially
equivalent. We will discuss this fact in detail in next chapter.
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This fact shows, that at the first sight there is no a priori reason to distinguish
one of these definitions, as they indicate quantitatively the same amount of secrecy in
quantum states. However in the following subsection we show that there are practical
reasons for distinguishing the first definition, which is via Theorem 3.2 equivalent to
definition of private states.

Comparing the classes C1 (consisting of private states), the C2 and C3

Having provided two other definitions of states that have key, we compare resulting
classes of states to the very first (Def 3.1) giving rise to C1, which due to character-
ization is just the class of private states.

As it is indicated by results of [RS07], class C2 can be useful for proving security
of some quantum key distribution protocols. However, the class C2 is in a sense less
’basic’ than the C1 in that it the ’access’ is ’less direct’ as involving a more general
operations of arbitrary quantum measurements than the complete von Neumann
measurement, on a previously specified subsystem. Such general operation can be
viewed as already a kind of distillation of key.

The most ’basic’ class of states that have key, in a sense, that the access to the
key is the most ’direct’ is given by the third definition 3.10 (of C3). It has yet an
apparent disadvantage in comparison to the C1 in that it excludes the maximally
entangled states. This is because the maximally entangled state does not have a
subsystem which is in the same state as the AB subsystem of an ideal ccq state. It
becomes so, after measurement in some product basis.

Remark 3.23 (natural definition based on local incomplete von Neumann measure-
ments) In a sense more intuitive than class C1 is the following, considered in [BHH+08].
Two incomplete von Nemuann measurements on the whole systems A and B respec-
tively are performed, with the security constrained imposed that the resulting state
can be transformed via controlled unitary operation into the state secure according to
Def. 3.9. By Theorem 3.21, the class of such states is also locally equivalent to the
class of private states6.

Remark 3.24 (on the states from C3) One can obtain a structure of states from C3

with a natural division into main part ab and side part A′B′ similarly as we have
’deriven’ it for C1 from the example of singlet states. To this end one can consider
states that have ideally secure classical key. They satisfy two conditions: (i) are
mixed, (ii) the state ρE represents all knowledge that is accessible to Eve. Due to (i)
there exist somewhere the system which purifies ρidealccq (call it here P), while due to
(ii), this system P can not be in power of Eve. Since we assumed at the beginning

6We acknowledge M. Horodecki for discussion on this definition.
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the worst-case senario, this system must be somewhat accessible to Alice and Bob.
The most general way it can be made accessible to them, is to split it into two parts:
P = A′B′, one of which is on Alice’s and the other on Bob’s site.

Remark 3.25 (subclass of private states) We note also, that one could perform a
modification of Def 3.1 basing on the simplification taken in original paper [HHHO05c].
Namely one could consider only the standard product basis in place of a general prod-
uct basis B = {|ei〉|fj〉}d−1

i,j=0. Such modified definition would be obviously equivalent
in the sense of the already presented equivalence, as it is in case of C2 and C3. How-
ever, in turn some of maximally entangled states would not be included, and hence
they would not be private states. For this reason, in [HHHO05a], we do not follow this
simplification. Instead we use this fact (as e.g. in previous sections) showing some
properties for private states with the use of standard product basis, just mentioning
that the same holds for arbitrary product basis B. It is relatively easy to check, but
we do not prove it so that taking this subclass of private states as the target states in
key distillation protocol in Def 4.1, gives the same quantity - KD.

The private states form a class of states that after complete von Neumann mea-
surement on the key part (which reads incomplete von Neumann measurement on
both the key part and shield), leads to an ideal ccq state i.e. maximally correlated
state which is uncorrelated from the eavesdropper. Thus these states gives us an
insight into the origin of quantum security that is realized by the ideal ccq states,
while the latter states in a sense ’do not remember’ this origin. For this reason, in-
stead of ideal ccq states (that have key according to definition 3.1 i.e. from C1) we
will use equivalent notion of private states. An advantage of this approach, opposite
to using the notion of C1 is that private states are bipartite, i.e. do not invoke explic-
itly the Eve’s subsystem of their purification. How useful is this fact, will appear in
next chapters. In particular, it allows for introducing the amount of key that can be
obtained from many copies of a quantum state shared between distant laboratories
as entanglement measure. This removes Eve from description of the protocol of key
distillation.

3.10 Further development and open problems

Private states were studied further in [HA06] in context of entanglement. It is shown
there, that all private states γ have ED(γ) > 0. One can find there also a simple
proof of the fact, that EC(γ) ≥ log d, by observing, that pure ensambles of private
states are of special form. Each member of such ensamble has the AB subsystem in a
pure maximally entangled state. The latter fact follows also already from [HHHO05c,
HHHO05a], yet one needs two strong results to show it: Theorem 4.18 presented in
Section 4.5, and Theorem 2.26 (see Section 2.8.1).
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In [RS07], the twisting operator with izometries in place of unitary transforma-
tions was used. We note, that such twisting can be performed via local embeddings
(adding locally pure states), and performing suitable unitary twisting on this new
state. In particular, the states whose privacy is proved via twisting operator, are
locally equivalent to private states.

3.10.1 Development on the subject of locking entanglement with
private states

In [CW05] it was shown, that the so called squashed entanglement Isq and quantity
called entanglement of purification EP are lockable. Also, the locking effect for flower
states has been strengthen there: a generalized family of flower states given there, for
any ε > 0 reveals (log(1+(log d)3) ↓ (1− ε) log d+3 log log d−3)−Tr-locking of EC ,
for d large enough. Special kind of entanglement locking in terms of an entanglement
measure satisfying some axioms has been studied in [Gou07]. Upper bound on the
amount of unlocked entanglement has been shown, excluding some states from that
which reveal locking of ED.

There is also the following interesting connection between private states and
locking, that has been to some extent a motivation for locking of entanglement, yet
was not made explicit in such generality in [HHHO05b]:

Theorem 3.26 [HH06] Existence of PPT states with KD > 0, is sufficient condition
for lockability of N and EN . Moreover, the lockability of N and EN is revealed by
some private bits which are approximated by PPT states. Since we show in Chapter
5, that there are PPT key distillable states, this theorem provides a way to construct
examples of states which reveal this effect.

In [HHH+05], it is noted, that Non Lock has the relative entropy of entanglement
from any set of bipartite states, which is closed under product unitary transforma-
tions UA ⊗ UB.

3.10.2 Private states and quantum key distribution protocols

As it will be shown in Theorem 4.11, any LOCC operation that leads to secure key
in terms of ideal ccq states can be performed in a way which results in private states
[HHHO05a]. This fact was used in context of coherent attacks in [RS07]. There,
although implicitly, Definition 3.9 was used for the first time. This approach re-
sulted in simple proof of security of the BB84 protocol at higher error level [RGK05],
similarly as the Shor-Preskill method gave proof for security of BB84 protocol at
certain (lower) error level. The link between private states and uncertainty principle
has been found in [Koa07] (see also [CW05]). It was then developed to full extent in
[RB07, RB08], where the system of shield is treated as a single one.
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3.10.3 Open problems

There are plenty of open problems concerning properties of private states. We give
below exemplary list:

1. Characterization of irreducible private states.

2. Characterization of KD = Er (or KD = E∞
r ) private states

3. (Entanglement properties of private states with constraints) Given a fixed value
of EC (or other entanglement measure), what are private states with this en-
tanglement measure ?

4. (General transformations within class of private states) Which private states
are transformable one into another via LOCC ?

5. (minimal private states) Given some constraints for private states, such as fixed
entropy, or entanglement measure what is minimal dimension of the shield ?
or in general what is the minimal dimension of private states satisfying the
constraints ?

There is still pending problem concerning the locking effect:

1. [Wer99] is ED lockable ? Partial results on this has been given in [Gou07, GH08]



Chapter 4

Distillable key as an entanglement
measure

In this Chapter we present a slightly improved and extended version of the material,
that can be found in [HHHO05a], Sections VIII-IX and XI, and [HPHH05]. We
provide a definition of the so called distillable key KD, - a function of a bipartite
state ρ that reports its security content. Similarly as distillable entanglement, KD

is an operational measure of entanglement, however instead of maximally entangled
states only, the private states are distilled by means of local operations and classical
communication. We introduce also the definition of classical distillable key CD, and
show that in the most important case of the worst case LOPC scenario, it is equal to
distillable key. The relative entropy of entanglement is shown to be an upper bound
on distillable key.

In Section 4.1, we define distillable key in terms of private states. In Section 4.2,
we define the classical distillable key. Following the results of [DW05, DW04] and
the scheme already known in classical cryptography called classical key agreement
[Mau93] we give a definition of the so called Local Operations and Public Commu-
nication (LOPC operations), introducing the LOPC scenario.

In Section 4.3, Theorem 4.12 we show that the two introduced quantities are
equal to each other:

KD(ρAB) = CD(ρAB). (4.1)

To show the equality (4.1), in Section 4.3.1 we introduce the so called coherent
LOPC (CLOPC) operations. More concretely, we use the CLOPC operations to
specify for a given LOPC operation which outputs ideal ccq state, the LOCC oper-
ation which outputs a private bit. The shield of this private state emerges out of
the CLOPC protocol as the joined state of Alice’s and Bob’s local trash bins. The
CLOPC operation is then easily turned into demanded LOCC operation.
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Since the case where an eavesdropper holds a purifying system of a bipartite state
is the worst from cryptographic point of view, we can safely focus on the distillable
key KD.

In Section 4.4, we argue that KD is an operational entanglement measure. We
invoke the axioms that KD might satisfy, that were collected or proved in [Chr06],
and present partial results on convexity and asymptotic continuity of KD.

In Section 4.5 we provide the second main result of this Chapter, which is an
application of the fact, that KD is entanglement measure. Namely, we show that the
relative entropy of entanglement is an upper bound on distillable key.

In Section 4.6 we show preliminaries results on key distillability of some bipartite
states. In particular, Section 4.6.2 is devoted to exploit the results of Devetak and
Winter on one-way distillable key. We show that their approach fits into our context,
so that the lower bounds on the one-way distillable key according to their definition, is
also a lower bound forKD. We then give various simplified lower bounds on distillable
key using notion of privacy squeezing introduced in Chapter 3. In particular it is
shown, that KD(ρABA′B′) ≥ CD([ρpsAB]ccq) where [ρpsAB]ccq is a ccq state of the privacy
squeezed state ρABA′B′ .

Finally in Section 4.7 we discuss further development of this paradigm. In partic-
ular the main result of [CEH+07] which is that an entanglement monotone satisfying
some reasonable axioms is an upper bound on distillable key. Its other properties,
has been investigated in context of other entanglement measure in [Chr06].

4.1 Distillation of private states - the LOCC scenario

In previous chapter we have established a family of states - pdits - which have the
following property: after measurement in some product basis B, they give a perfect
dit of key. As we have noted in Section 2.3.2, in entanglement theory one of the
important aims is to distill singlets (maximally entangled states) which leads to
operational measure of distillable entanglement [BBP+96]. We will pose now an
analogous task namely distilling pdits (private states) which are of the form (3.8):

γ(d) =
1
d

d−1∑
i,j=0

|eifi〉〈ejfj |AB ⊗ UiσA′B′U †
j . (4.2)

This will give rise to a definition of distillable key i.e. maximal achievable rate
of distillation of pdits. Similarly as in the case of distillation of singlet, it is usually
not possible to distill exact pdits. Therefore the formal definition of distillable key
KD will be a bit more involved.
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Definition 4.1 For any state ρAB ∈ B(HA ⊗ HB) let us consider sequence Pn of
LOCC operations such that Pn(ρ⊗nAB) = σn, where σn ∈ B(H(n)

A ⊗ H(n)
B ). A set of

operations P ≡ ∪∞n=1{Pn} is called pdit distillation protocol of state ρAB if there holds

lim
n→∞

||σn − γdn || = 0, (4.3)

where γdn is a pdit whose key part is of dimension dn × dn.
For a pdit distillation protocol P, its rate is given by

R(P) = lim sup
n→∞

log dn
n

(4.4)

The distillable key of state ρAB is given by

KD(ρAB) = sup
P
R(P). (4.5)

Due to this definition, Alice and Bob given n copies of state ρAB try to get a
state σn, which is close to some pdit γdn with d = dn. Their task is to maximize
dn with respect to n, over all possible LOCC operations. Thus the above definition
is an example of the well known scheme called an LOCC scenario. According to
this scenario, Alice and Bob transform many copies of an input state via LOCC
operations to obtain a state with special properties.

Remark 4.1 Unlike so far in entanglement theory, an effect of distillation of quan-
tum key depends not only on initial state, but also on the choice of the output state.
This is because private dits are not reversibly transformable with each other by means
of LOCC operations, as it is in case of maximally entangled states (see Eq. (2.45))
in LOCC entanglement distillation. It can be seen from the example given in Sec-
tion 3.4.3. There we showed a private state, which has a gap between distillable
entanglement and entanglement cost. It is obvious then, that such a pdit can not be
transformed reversibly via LOCC into a singlet state, who has these entanglement
measures equal. Thus the quantity KD is a rate of distillation to the large class of
states. (Of course, since the definition involves optimization, KD is well defined; in
particular the expensive pdits will be suppressed).

One can be interested now if this new parameter of states KD(ρ) has an op-
erational meaning for quantum cryptography. One connection is obvious: given n
copies of a quantum state ρAB, Alice and Bob may try to distill some pdit state,
and hence get (according to the above definition) bnKD(ρAB)c bits of classical key if
such distillation has nonzero rate. They can finally get rid of the shield and measure
the key part in an appropriate product basis to yield an ideal ccq state. However
the following question arises:
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• Is distillation of private states an optimal way of extraction of a classical key
from a quantum state?

To answer this question one needs a formal definition of classical distillable key,
which we provide in next section. Having done this, we will give a positive answer
to this question: distilling private dits is the best way of distilling classical key from
a quantum state.

4.2 Distillable classical key- LOPC scenario

In this section, we define the so called classical key, within the LOPC scenario. The
LOPC scenario scenario, being generalization of the classical cryptographic concept
of secure key agreement [CK78, Mau93, AC93] (see also [Chr02, CEH+07]) was first
used in [DW05, DW04]. In the form, which we introduce here, it is analogous to
the LOCC scenario shown in Chapter 2. This scenario, was first studied in [DW05,
DW04]. We impose simpler (although slightly weaker) security condition in this
scenario, from those considered there, and provide more detail description of the
LOPC operations (see also [Chr02]). We require secure states to be close in trace
norm to ideal ccq states. This condition is widely used as proved to be composable
in [BOHL+05b] (See [Ren05] for discussion of this issue, and Remark 4.2).

Let us introduce formally the LOPC scenario. In analogy to classical key agree-
ment scenario, Alice, Bob and Eve are given many systems in the same tripartite
state ρABE , so that each party holds its corresponding subsystem A, B and E respec-
tively. On the input states, Alice and Bob are able to perform certain operations.
They can process states via quantum operations each in her/his laboratory, and they
can communicate publicly, that is send ’classical’ messages, whose copies are send
also to the eavesdropper Eve. Formally these operations called LOPC are defined
as:

Definition 4.2 An operation Λ belongs to local operations and public communication
(LOPC) class if it is a composition of finite number of the following operations:

(i) Local Alice (Bob) operations, i.e. operations of the form ΛA ⊗ IBE (or ΛB ⊗
IAE).

(ii) Public communication from Alice to Bob (or from Bob to Alice). The process
of public communication from Alice to Bob is described by the following map

Λ(ρaABE) =
∑
i

PiρaABEPi ⊗ |i〉b〈i| ⊗ |i〉e〈i| (4.6)

where Pi = |i〉a〈i| ⊗ IABE, with that from Bob to Alice defined in analogous
way.
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In the above definition, the subsystem a carries the message to be sent, and the
subsystems b and e of Bob and Eve represent the received message. The state of AB
subsystem of an LOPC operation we call its bipartite output .

Having provided allowed class of operations, we can describe the goal of the
LOPC scenario. The task of Alice and Bob is to distill the maximal possible amount
of classical key. More formally, via LOPC operations they try to transform the input
state into ideal ccq states ρccqideal with the largest possible subsystem AB. Similarly
as it is in case of distillation of private states, we will tolerate inaccuracies in this
process. More concretely, we will allow to obtain instead of an ρccqideal state, the one
which is close in trace norm distance to the latter. Note, that the cryptographical
issue is hidden in definition of the LOPC operations: these are operations which
gives to Eve a copy of each classical communicate which is exchanged between the
honest parties.

Consequently, we adopt the following measure of distillable classical key from a
quantum tripartite state:

Definition 4.3 For any state ρABE ∈ B(HA ⊗HB ⊗HE) let us consider sequence
Pn of LOPC protocols such that Pn(ρ⊗nABE) = β′n, where β′n is ccq state

β′n =
dn−1∑
i,j=0

pij |ij〉〈ij|AB ⊗ ρEij (4.7)

from B(H(n)) = B(H(n)
A ⊗ H(n)

B ⊗ H(n)
E ) with dimH(n)

A = dimH(n)
B = dn. A set of

operations P ≡ ∪∞n=1{Pn} is called classical key distillation protocol of state ρABE if
there holds

lim
n→∞

||β′n − βdn || = 0, (4.8)

where βdn ∈ B(H(n)) is of the form

βdn =
1
dn

(
dn−1∑
i=0

|ii〉AB〈ii|

)
⊗ ρEn , (4.9)

ρEn are arbitrary states from B(H(n)
E ). The rate of a protocol P is given by

R(P) = lim sup
n→∞

log dn
n

(4.10)

Then the distillable classical key of state ρABE is defined as supremum of rates

CD(ρABE) = sup
P
R(P). (4.11)
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Remark 4.2 Let us note here, that the condition (4.8) which measures an inac-
curacy of the output of distillation protocol which we have adopted, is in principle
arbitrary. However it has to capture two issues. First, Alice and Bob should have
finally almost perfect correlations, that is Bob should have almost the same system as
Alice. Second, the final Eve’s state should have small correlations with state of Alice
and Bob systems so that they would hold a possibly inaccurate but ’almost’ secure
key. The first condition refers to uniformity, the second one to security. There are
several ways of quantifying the correlations between Alice’s and Bob’s final systems,
and some of them are equivalent. In particular, the uniformity condition can be of
the following form

||
d−1∑
i,j=0

pij |ij〉〈ij| −
1
d

d−1∑
i=0

|ii〉〈ii||| ≤ ε (4.12)

with vanishing ε. We focus in this remark on the possible security conditions.
To quantify security one can use Holevo function of distilled ccq state [BOHL+05a],

namely:

χ(ρccq) ≡ S(ρE)−
d−1∑
i,j=0

pijS(ρij) ≤ ε (4.13)

where S(ρ) = Trρ log ρ denotes von Neumann entropy, and ρE =
∑d−1

i,j=0 pijρij.
Alternatively, one can use similar condition based on norm

d−1∑
i,j=0

pij‖ρE − ρEij‖ ≤ ε (4.14)

Relations between the condition from definition above, and security criteria (4.13)
and (4.14) as well as with uniformity criterion (4.12) has been established in [HHHO05a],
which we will not invoke here.

4.2.1 The worst-case LOPC scenario

The Definition 4.3 works for any input tripartite state ρABE . However in what
follows we will mostly deal with the case were the state ρABE = |ψ〉ABE is pure,
according to the worst case scenario assumed for definition of secure key in Section
3.1.1. As noted in [DW05, DW04], this is the worst case, because having access to
the purifying system Eve can transform it into any other extension of Alice’s and
Bob’s state ρAB = TrEρABE , which they share for sure, since we assume, that Eve
can not have access to their sites. Hence, we call it worst-case LOPC scenario.

Being the most important scenario from cryptographic point of view, the worst-
case LOPC scenario is at the same time the simplest, as can be described by
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means of only bipartite states. Indeed, a pure state |ψ〉ABE is determined by state
ρAB = TrE |ψ〉ABE up to a partial isometry on Eve’s system (see Lemma 2.6). We
show below (Corollary 4.5), that implementation of partial isometry via quantum
operations (see Corollary A.2) does not change the quantity CD(ψ〉ABE), hence the
latter freedom is not an issue. That is, in context of key distillation, we can consider
the state ρAB as completely determining its purification |ψρ〉ABE . This allows us to
define distillable classical secure key from bipartite state ρAB:

Definition 4.4 For a bipartite state ρAB, the distillable classical key is given by

CD(ρAB) ≡ CD(|ψρ〉ABE), (4.15)

where |ψρ〉ABE is a purification of ρAB.
We show now a general result, that CD does not decrease under quantum opera-

tion on Eve’s subsystem. This property is one of the axioms of the so called secrecy
monotones defined in [CMS02]. We begin with a lemma, which shows that one can
in a sense ’commute’ the operation on Eve’s subsystem through an LOPC operation,
getting some new LOPC operation, and new operation on Eve’s subsystem.

Lemma 4.3 For any tripartite state ρABE, quantum operation ΛE, ρ′ABE′ = IAB ⊗
ΛE(ρABE), and any LOPC operation P : B(HABE)→ B(HÃB̃Ẽ), there is an LOPC
operation P ′ : B(HABE′)→ B(HÃB̃E′′) which staisfies:

P ′(ρ′ABE′) = IÃB̃e1...em
⊗ ΛE [P (ρABE)], (4.16)

where Ẽ = e1 . . . emE, and m is the number of operations of public communication
in some decomposition of P into basic LOPC operations.
Proof. We will define P ′ as the operation P , suitably adapted to system ABE′.
Operation P is a composition of some local operations and public communication
operations. Let K denote the total number of basic operations in its composition,
and m the number of operations of public communication. We naturally define P ′

as a composition of their counterparts defined as follows. Any local operation of P
which has form L ⊗ IAE or L ⊗ IBE becomes L′ = L ⊗ IAE′ and L′ = L ⊗ IBE′
respectively. The j-th operation of public communication becomes [L(c)]′(ρaABE′) =∑

i PiρaABE′Pi ⊗ |i〉〈i|bj ⊗ |i〉〈i|ej with Pi = |i〉〈i|a ⊗ IABE′e1...ej−1
.

To see, that the composition of these operations satisfy (4.16), we apply in parallel
basic operations of P and P ′. After composing first k of them, assuming that l of
these k were operations of public communication we see by induction, that:

IAkBke1...el
⊗ ΛE [Qk ◦ . . . ◦Q1(ρABE)] = Q′k ◦ . . . ◦Q′1[(IAB ⊗ ΛE(ρABE))] (4.17)
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where 0 ≤ l ≤ k and AkBk is the system of bipartite output of a composition of
Qk ◦ . . . ◦Q1. We obtain (4.16) for k = K.

Using the above lemma we can prove desired theorem which shows that acting
on Eve’s subsystem can not decrease classical distillable key.

Theorem 4.4 For any tripartite state ρABE, quantum operation ΛE and ρ′ABE′ =
IAB ⊗ ΛE(ρABE) there holds:

CD(ρABE) ≤ CD(ρ′ABE′). (4.18)

If additionally there exists Λ′E′ such that IAB⊗Λ′E′(ρ
′
ABE′) = ρABE, we have CD(ρABE) =

CD(ρ′ABE′).
Proof. The idea of the proof is as follows. For any protocol P of distilling classical
key from ρABE we find its counterpart P ′ that distills the same amount of classical
key from ρ′ABE′ . P

′ is an easy adaptation of P . It merely differs by the fact, that
acts as identity not on E but on system E′. Acting on the output ρout of P with
operation ΛE we observe, that such modified output ρout1 is still secure. Thanks to
the fact that operation ΛE commutes with any LOPC protocol, we observe that P ′

applied to ρ′ABE′ (when we first apply ΛE to ρABE) equals ρout1 (when we apply first
P, and then ΛE to ρout1 ). This will give the proof, since ρout1 is secure. In what follows,
we show the main arguments for operations, with that for protocols following the
same, yet with the input state ρ⊗n.

Consider any operation P which on ρABE gives some ρout
ÃB̃Ẽ

wich satisfies:

||ρout
ÃB̃Ẽ

− σccqideal|| ≤ ε, (4.19)

for some ideal ccq state σccqideal = 1
d

∑d−1
i=0 |ii〉〈ii| ⊗ ρẼ . By Lemma 4.3, there is an

operation P ′ which satisfies
P ′(ρ′) = Λ′(ρout). (4.20)

with Λ′ acting on ÃB̃ as identity operation. Let us apply then Λ′ to both states
in (4.19). Since trace norm does not increase under quantum operations, resulting
states satisfy:

||ρout1 − σ̂ccqideal|| ≤ ε. (4.21)

where ρout1 = Λ′(ρout) and σ̂ccqideal is some other ideal ccq state.
From (4.20), and the above inequality we have:

||P ′(ρ′)− σ̂ccqideal|| ≤ ε. (4.22)
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Now, since Λ′ does not change a state of ÃB̃ system, σ̂ccqideal = 1
d

∑d−1
i=0 |ii〉〈ii| ⊗ ρ′Ẽ

for some state ρ′
Ẽ

on Eve’s site. This means, that there is an LOPC operation P ′

which acting on ρ′ yields an output state with the same amount of security.
To summarise, for any operation P which on ρ outputs a state close to an ideal

ccq state with d × d dimensional AB subsystem, there is an operation P ′ which on
ρ′ outputs a state close to some other ideal ccq with AB subsystem of the same
dimension. Using this fact and the method shown in proof of Theorem 4.12, one
easily obtains the same for protocols of key distillation and in turn that CD(ρABE) ≤
CD(ρ′ABE′).

The second thesis of this theorem is now immediate. If there exists an inverse
operation IAB ⊗ Λ′E′ , we can repeat the above reasoning starting from ρ′ABE′ and
with Λ′E′ in place of ΛE . This gives CD(ρABE) ≥ CD(ρ′ABE′), which together with
the converse inequality that holds due to the above considerations, gives desired
equality.

From the above theorem we have immediate corollary, which justifies Definition
4.4.

Corollary 4.5 For any two purifications |ψρ〉 ∈ HABE and |φρ〉 ∈ HABE′ of a
bipartite state ρAB there is

CD(|ψρ〉) = CD(|φρ〉) (4.23)

Proof. By Lemma 2.6, there exist a partial isometry F : HE → H′E which transforms
|ψρ〉ABE into |φρ〉ABE′ . Let w.l.g. F be an isometry (assuming partial isometry uses
similar argument). There is then a partial isometry G : H′E → HE which transforms
|φρ〉ABE′ in to |ψρ〉ABE , hence we can apply Theorem 4.4 with F = Λ and G = Λ′.

4.3 Equality of key rates in LOCC and worst-case LOPC
scenarios

In this section we will show that Definitions 4.1 and 4.4 give rise to the same quan-
tities. In this way the problem of drawing key within worst-case LOPC scenario
is recast in terms of transition to a desired state by LOCC, that is within LOCC
scenario.

We show this proving two relations. First, if Alice and Bob can get via LOPC
operation an ideal ccq state, there is an LOCC operation which would give them a
private state with the same amount of security. Second, if Alice and Bob can obtain
via some LOCC operation a private state, there is an LOPC operation which would
give them an ideal ccq state with the same amount of security.



Chapter 4. Distillable key as an entanglement measure 103

As described in Section 4.3.2, it is relatively easy to achieve the first relation. To
achieve the second, in Section 4.3.1, we first need to consider coherent LOPC oper-
ations (CLOPC)(cf. [HHH01, DW05]). Basing on the coherent version of an LOPC
operation, we build a desired LOCC operation. The coherent LOPC operation will
be a composition of coherent basic LOPC operations. Whenever the LOPC opera-
tion would trace out some system when implemented via basic quantum operations,
its coherent counterpart just puts such system aside. All systems that are put aside
in such implementation of coherent LOPC operation, contribute to systems of local
trash bins. These local trash bins will form a shield of a private state, in desired
LOCC operation (Section 4.3.2).

The relations between the LOCC and LOPC operations induces natural relations
between the LOCC and LOPC key distillation protocols respectively. This enables
us to derive in Section 4.3.3 the equivalence in exact case (where protocols produce
as an output exactly ideal ccq states or exactly pdits). Subsequently, in Section
4.3.3 we will turn to the general case where inexact transformations are allowed. We
sketch here briefly the idea of the main result of this section.

4.3.1 Coherent LOPC operations

In what follows by RA and RB we mean the trash bin systems on Alice’s and Bob’s
site respectively. We recall also, that by convention (see Section 2.3.7), the CLOPC
operations will act on states ρABRARBE . Each basic LOPC operation will (instead
of tracing out) put some system aside enlarging the system RA or RB depending
on which site it is realized in case of local operations, or from which site the public
communication operation is performed.

We now define basic coherent LOPC operations.
Coherent local operations
For any input state ρABRARBE , a local operation ΛARA ⊗ IBRBE on Alice’s site,

the coherent local operation ΛARA , has form:

(ΛARA ⊗ IBRBE)coh, (4.24)

according to Example 2.13 and Definition 2.5. That is when ΛARA is implemented
via adding ancillary state |0〉〈0|S , performing UAS and tracing out subsystem R′ of
AR, the operation (4.24) acts on state ρ of systems ABRARBE as

PAR′ [UAS ⊗ I (ρ⊗ |0〉〈0|S)U †
AS ⊗ I], (4.25)

where PA means putting the system R′ aside, so that it becomes subsystem of RA,
and identity operation is performed on systems RABRBE.

Coherent public communication
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Coherent version of process of public communication from Alice to Bob is per-
forming special operation Λ and putting aside appropriate system: Λ acts on ρaABRARBE ∈
B(Ha ⊗HAB ⊗HRARB

⊗HE) as follows:

Λ(ρaARABRBE) = U(ρaABRARBE ⊗ |0〉〈0|Anc ⊗ |0〉b〈0| ⊗ |0〉e〈0|)U
† (4.26)

where
U = IABRARBE ⊗

∑
i

|i〉a〈i| ⊗ U (i)
Anc ⊗ U

(i)
b ⊗ U

(i)
e (4.27)

with unitary transformation U
(i)
x satisfying U (i)

x |0〉 = |i〉x for x ∈ {Anc, b, e}. The
system Anc is put aside, that is put to Alice’s trash bin RA. The coherent operation
of classical communication from Bob to Alice we define in analogous way.

Coherent LOPC operation
Similarly as for LOPC operations, the CLOPC operation is a composition of basic

coherent LOPC operations, according to the rule of composing coherent operations.
As for general operations, relating a CLOPC operation with the LOPC operation Λ
from which it originates, we will denote it as Λcoh. If the output of Λcoh is ρ′ABRARBE ,
then the state of the subsystem ABRARB we call the bipartite output of coherent
LOPC operation.

Applying now Observation 2.12 we have the following corollary:

Corollary 4.6 The CLOPC operation Λcoh : B(HAB ⊗HRARB ⊗HẼ)→ B(HÃB̃ ⊗
HRARB ⊗HE) has the following two features:

(i) On input pure state, outputs a pure state.

(ii) For any tripartite state ρABE, TrRARBΛcoh(ρABE) = Λ(ρABE), where by con-
vention (see Section 2.3.7), ρABE = ρABRARBE where systems RA and RB are
Alice’s and Bob’s trash bins initially empty.

4.3.2 Switching between LOCC and (coherent) LOPC operations

In this section, in Theorem 4.7 we show that for any CLOPC operation there is an
LOCC one with the same (bipartite) output. We then prove, also in Theorem 4.8,
that for any LOCC operation there is an LOPC operation with the same bipartite
output as that of LOCC.
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From coherent LOPC to LOCC operations

To link the LOCC operation with a given CLOPC one, we define the basic LOCC
operations that will correspond to coherent LOPC operations.

We first provide a general fact, that links basic coherent LOPC with LOCC
operations. Owing to this fact, the relation of LOCC operations with coherent
LOPC operations is straightforward.

Lemma 4.7 For any coherent basic LOPC operation ΛP : B(HAB⊗HRARB⊗HE)→
B(HÃB̃ ⊗ HRARB ⊗ HẼ), there is an LOCC operation ΛQ : B(HAB ⊗ HRARB) →
B(HÃB̃ ⊗ HRARB), such that for any state ρABRARB ∈ B(HAB ⊗ HRARB) and its
any purification |ψρ〉ABRARBE ∈ HAB ⊗HRARB ⊗HE, there holds:

TrẼΛP (|ψρ〉) = ΛQ(ρ). (4.28)

Proof. Consider the first coherent local operation, on Alice’s site. It is of the form:

ΛP = (ΛARA ⊗ IBRB ⊗ IE)coh, (4.29)

specified in (4.25). With this operation we associate the LOCC operation of the
form:

ΛQ = (ΛARA ⊗ IBRB)coh, (4.30)

which we specify in analogy to (4.25), according to rule given in Example (2.13).
Since ΛP acts on the system E as identity, by Observation 2.11, the dependence

(4.28) holds in this case, with the same for ΛQ on Bob’s site defined analogously.
Consider now the operation of coherent public communication from Alice to Bob

Λ(c)
P , which acts as:

Λ(c)
P (|ψρ〉aABRARBE) = U(|ψρ〉aABRARBE ⊗ |0〉〈0|Anc ⊗ |0〉b〈0| ⊗ |0〉e〈0|)U

† (4.31)

where

U = IABRARBE ⊗
dimHa−1∑

i=0

|i〉a〈i| ⊗ U (i)
Anc ⊗ U

(i)
b ⊗ U

(i)
e (4.32)

with unitary transformation U (i)
x satisfying U (i)

x |0〉 = |i〉x for x ∈ {Anc, e, b}, so that
U copies the state of system a into systems x. It also putts Anc aside, forming Alice’s
trash bin i.e. makes Anc to be subsystem of a trash bin RA. Hence, the output of
Λ(c)
P yields equivalently:

Λ(c)
P (|ψρ〉aABRARBE) = U(|ρ〉aABRARBE ⊗ |0〉〈0|RA ⊗ |0〉b〈0| ⊗ |0〉e〈0|)U

†. (4.33)



Chapter 4. Distillable key as an entanglement measure 106

For this operation, we define the LOCC operation Λ(c)
Q , which acts as:

Λ(c)
Q (ρaABRARB) =

dimHa−1∑
i=0

Pi(ρaABRARA)Pi ⊗ |i〉〈i|b ⊗ |i〉〈i|Anc, (4.34)

with Pi = |i〉〈i|a ⊗ IAB, where, by ρaABRARB we mean the TrE |ψρ〉〈ψρ|aABRARBE .
Following coherent operation, Λ(c)

Q puts the system Anc aside. Note, that Λ(c) is
operation of classical communication, composed with local operation which copies
the result of measurement performed on a to system Anc.

Taking general input state, and performing partial trace over Ẽ we easily obtain
that Λ(c)

P and Λ(c)
Q satisfy (4.28). Analogously we obtain the result for operation of

public communication from Bob to Alice, which proves the assertion
The above lemma allows us to state the following theorem:

Theorem 4.8 For any bipartite state ρ ∈ B(HABRARB), its any purification |ψρ〉 ∈
HABRARB ⊗HE, and any CLOPC operation P , with output in B(HÃB̃RARB ⊗HẼ)
there is an LOCC operation Q with the output in B(HÃB̃RARB), such that

Q(ρ) = TrEP (|ψρ〉). (4.35)

Proof. P is a composition of basic CLOPC operations. For each such operation ΛP
we know by Corollary 4.6 (i), that if applied to |ψρ〉 yields some tripartite pure state
|φ〉ÃB̃RARBẼ . By Lemma 4.7, this state has subsystem ÃB̃RARB equal to output
of the corresponding LOCC operation ΛQ(ρ). Hence |φ〉ÃB̃RARBẼ is a purification
of ΛQ(ρ), and we can apply to this pair of states recursively Lemma 4.7, to obtain
that for a composition of basic CLOPC operations, there is corresponding LOCC
operation which has the same bipartite output. By induction we obtain the thesis
for general CLOPC operation.

From LOCC operations to LOPC ones

We observe now, a similar statement, that with given LOCC operation connects an
LOPC one. In short, the result states, that for an LOCC operation which transforms
ρ into σ, there is an LOPC operation which transforms extension of ρ into some
extension of σ. For brevity, with a little abuse of notation, we will say that the
LOPC operation has the output in B(HA ⊗ HB ⊗ HA′ ⊗ HB ⊗ HE) instead of
B(HAA′ ⊗HBB′ ⊗HE), that actually takes place in accordance with Def. 4.2.

Theorem 4.9 For any LOCC operation Q : B(HA ⊗HB)→ B(HA ⊗HB ⊗HA′ ⊗
HB′), there is an LOPC operation P : B(HA ⊗HB ⊗HẼ)→ B(HA ⊗HB ⊗HA′ ⊗
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HB′⊗HE), such that for any bipartite state ρAB ∈ B(HA⊗HB) and its any extension
ρABẼ ∈ B(HA ⊗HB ⊗HẼ), there holds:

Q(ρ)ABA′B′ = TrEP (ρABẼ) (4.36)

Proof. We first show the thesis for basic operations. We consider the operations
performed by Alice, with that for Bob along similar lines. With a local LOCC
operation ΛA on Alice’s system we associate analogous one, but defined on tripartite
states via identity operation on system of Eve: ΛA ⊗ IB ⊗ IẼ . By Observation 2.11,
we have that the state on AB after applying ΛA is the same as bipartite output of
this LOPC operation.

Second, with an LOCC operation of classical communication Λ(c)
Q , we associate its

natural tripartite counterpart, which is acting on a state as quantum measurement
with classical results on Bob’s and Eve’s systems:

Λ(c)
P (ρaABẼ) =

∑
i

PiρaABẼPi ⊗ |i〉b〈i| ⊗ |i〉e〈i| (4.37)

where Pi = |i〉a〈i| ⊗ IABẼ . To see equality (4.36) it is straightforward to consider
matrix of an arbitrary input state ρaABẼ , compute Λ(c)

P (ρaABẼ) and tracing over
E = Ẽe to obtain desired state Λ(c)

Q (ρaABẼ).
Consider now general LOCC operation. It is a finite composition of basic opera-

tions. Due to the above reasoning, output of a basic LOPC operation is an extension
of the output of the corresponding basic LOCC operation. We can apply then recur-
sively the above reasoning to these states, and obtain that composition of two basic
operations also satisfy the thesis. Hence, the induction argument proves the theorem
for general LOCC operation.

4.3.3 Equality of key rates in LOCC and worst-case LOPC scenario

In this section we show that the distillable key of a quantum bipartite state ρAB
and classical distillable key of ρAB are equal. We do this in three steps. Just to
describe the idea, we prove this fact for special states which have exactly distillable
key, that is from which one can obtain exactly a private state via LOCC operations,
or exactly an ideal ccq-state via LOPC operations (Observation 4.10). We then show
that the non-exact operations yield equivalent results (Theorem 4.11), and basing
on this finally show in Theorem 4.12, that KD(ρAB) = CD(ρAB) for an arbitrary
bipartite quantum state.
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The case of exact key

Here we will consider the ideal case, where the distillation of the key gives exactly the
demanded output state. Formal definition of exactly distillable classical key, denoted
as CexactD , is just Definition 4.3, with β′n = βdn in place of limn→∞ ||β′n − βdn || = 0,
restricted to pure input state ρABE , as in Definition 4.4. Similarly, definition of
exactly distillable private states denoted as Kexact

D is just Definition 4.1 of distillable
private states with σn = γ(dn) in place of limn→∞ ||σn− γdn || = 0. We have then the
following observation:

Observation 4.10 For any ρAB ∈ B(HA ⊗HB) there holds:

Kexact
D (ρAB) = CexactD (ρAB) (4.38)

Proof. We give the proof for operations, with the one for protocols following directly
from the latter. If after LOPC operation Λ applied to purification of ρ, Alice and
Bob obtain exactly d× d ccq state (4.9):

βdn =

(
dn−1∑
i=0

1
dn
|ii〉AB〈ii|

)
⊗ ρEn , (4.39)

then the bipartite output of its coherent application Λcoh due to Corollary 4.6 (ii) and
Theorem 3.2 will be a pdit of the same dimension of its key part. Now, by Theorem
4.8, there is an LOCC operation Q with output equal to the bipartite output of
Λcoh. If we consider such operation acting on many copies of an input state, we
get analogous result for protocols of distilling classical key and pdits, which proves
CD(ρ)exact ≤ Kexact

D (ρ).
Conversely, let Alice and Bob can get from ρ via LOCC operation a pdit, that

is secure in some basis B. Then by Theorem 4.9 there is an LOPC operation which
applied to purification of ρ ends with some extension ρABA′B′E of the pdit. Let us
purify now this extension to some system E′. By Theorem 3.2, the state ρABEE′
after von Neumann measurement in basis B on AB is an ideal ccq state (4.9) of the
same dimension of AB as the shield of a pdit. If we trace out the system E′, we
get the state which is also an ideal ccq state. This state can be obtained by LOPC
operations, as we have just argued. Hence, possibility of distilling exact pdit implies
possibility of distilling a ccq state with the same dimension of the AB subsystem.
Applying this result for many copies we get Kexact

D (ρ) ≤ CexactD (ρ), which ends the
proof of this theorem.
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Distillation of classical key and distillation of pdits from bipartite states
- equivalence in general (asymptotically exact) case

We will prove in this section, that even in non exact case, distillation of pdits from
initial bipartite state via LOCC operations, is equivalent to distillation of key by
LOPC operations from initial pure state, which is purification of the bipartite state.
We first show a general fact for operations (Theorem 4.11) and in turn argue the
same for protocols in Theorem 4.12 which states that the maximal achievable rates
in both scenarios are equal.

Theorem 4.11 Let Alice and Bob share a bipartite state ρ and let Eve has it’s
purifying system. Then the following holds: if Alice and Bob can obtain by LOPC
operation a state such that with Eve’s subsystem it is of the form

ρccqABE =
d∑

i,j=1

pij |ij〉〈ij|AB ⊗ ρEij , (4.40)

with ||ρccqABE −ρ
ccq
ideal|| ≤ ε, then by some LOCC operation they can obtain a state ρout

which is close to some pdit state γ in trace norm:

||ρout − γ|| ≤ 2
√
ε, (4.41)

where the key part of a pdit γ is of dimension d× d.
Conversely, if by LOCC they can obtain state ρout satisfying ||ρout− γ|| ≤ ε, then by
LOPC operation they can obtain state ρccq satisfying ||ρccqABE − ρ

ccq
ideal|| ≤ 2

√
ε.

Proof. (⇒) By assumption Alice and Bob are able to get by some LOPC operation
ΛP a ccq state ρABE satisfying

||ρccqABE − ρ
ccq
ideal|| ≤ ε. (4.42)

Now by equivalence of norm and fidelity (Lemma (2.20)) we can rewrite this inequal-
ity as follows

F (ρccqABE , ρ
ccq
ideal) > 1− 1

2
ε. (4.43)

Consider now a purification |ψρ〉ABA′B′E of ρccqABE , which is the output of coherent
application of the operation ΛP , denoted as ΛcohP . In case there was dimA′B′ <
dimABE we assume without loose of generality, that the operation ΛcohP is followed
by adding a state |0〉 of proper dimension, to systems A′ and B′ to assure dimA′B′ ≥
dimABE. The composition of ΛcohP and enlarging A′B′ we also denote as ΛcohP . Now,
by Lemma 2.22, we have:

F (ρccqABE , ρ
ccq
ideal) = max

|φ〉
|〈ψρ|φ〉|, (4.44)
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where maximum is taken over purification |φ〉 of ρccqideal to system A′B′. By the above
equation and Eq. 4.43, there exists a purification |φideal〉ABA′B′E of ρccqideal such that
it’s fidelity with |ψρ〉 is greater than 1− 1

2ε. Since the fidelity can only increase after
partial trace applied to both the states, it will be still greater than 1 − 1

2ε once we
trace over Eve’s subsystem. Thus we have

F (ρψABA′B′ , σ
φ
ABA′B′) > 1− 1

2
ε. (4.45)

where σφABA′B′ and ρψABA′B′ are partial traces over system E of |φideal〉 and |ψρ〉
respectively.

The state σφABA′B′ comes from purification of an ideal state, and by the very
definition it is some pdit state with key part of dimension dimAB = d × d. At the
same time, the state ρψABA′B′ is the one which is the output of ΛcohP . Thus by a
CLOPC operation (ΛcohP composed with adding local pure states |0〉 if needed) Alice
and Bob can obtain state close to pdit.

Now, by Theorem 4.8, there exists an LOCC operation ΛQ which acting on ρ has
the same output as bipartite output of ΛcohP . In turn, by LOCC operation, Alice and
Bob can obtain a state which is close to pdit in terms of fidelity. This by Lemma
2.20, implies desired formula in terms of trace norm distance, which ends the proof
of the implication (⇒).

(⇐) This time we assume that there exists an LOCC operation which acting on
state ρ ends up with a state ρout with main part of d × d dimension which is close
to some pdit in trace norm:

||ρout − γ|| ≤ ε. (4.46)

Due to equivalence between fidelity and norm (2.20), we have

F (ρout, γ) ≥ 1− ε/2 (4.47)

By Theorem 4.9, there is an LOPC operation which acting on |ψρ〉 gives an extension
ρextout of ρout to system E. Let us purify this extension to system E′. We can assume
without loss of generality1, that dimEE′ ≥ dimAB. This purification is also a
purification of ρout, which we denote as |ψ〉. By Lemma 2.22, we can find such |φ〉, a
purification of γ to EE′, that F (|ψ〉, |φ〉) > 1− ε/2. Now if Alice and Bob measure
the key part and trace out the shield, out of |ψ〉 they get some ccq state ρccqout on
systems ABEE′. The same operation applied to |φ〉 gives the ideal ccq state ρccqideal
(4.9). Finally let us trace out system E′. This operation changes the state ρccqout into
a state σccqout that is achievable via LOPC operation, and yields from ρccqideal another

1This is because if it is not the case, we can enlarge E′ adding a pure state |0〉 from a properly
large Hilbert space.



Chapter 4. Distillable key as an entanglement measure 111

ideal ccq state σccqideal. All those operations (measurement and partial traces) can
only increase the fidelity, so that

F (σccqout, σ
ccq
ideal) ≥ 1− ε/2 (4.48)

Returning to trace norm distance we get

||σccqout − σ
ccq
ideal|| ≤ 2

√
ε. (4.49)

Owing to the above theorem we can finally state the main result of this section.

Theorem 4.12 For every ρ ∈ B(HA ⊗HB), there holds KD(ρ) = CD(ρ).
Proof. The proof amounts to straightforward application of Theorem 4.11. Similarly
as in case of exact distillation we need to prove two inequalities. We will show only
KD(ρ) ≥ CD(ρ) with the second inequality following along similar lines.

Let us consider the value CD(ρ). By Definition 4.3, for any fixed δ > 0 there is a
classical key distillation protocol Pr, with rate r such that CD(ρ)− δ < r. That is,
by definition of key distillation protocol, that for every ε > 0, for every sufficiently
high n > n0 there is some LOPC operation P δn such that:

||P δn(|ψρ〉⊗n)− βdn || ≤ ε. (4.50)

By Theorem 4.11, there is an LOCC operation Qδn such that

||Qδn(ρ⊗n)− γd
′
n || ≤ 2

√
ε, (4.51)

with d′n = dn. Hence, we obtain that Qrδ := {Qδn}∞n=1 where Qδn for n ≤ n0 are
choosen w.l.g. to be an identity operations, satisfies

lim
n→∞

||Qδn(ρ⊗n)− γd
′
n || = 0. (4.52)

From Definition 4.3, there is also a subsequence k(n), such that

lim
k(n)→∞

log dk(n)

k(n)
= r. (4.53)

Since d′n = dn, the same subsequence gives us lim supn→∞
log d′

k(n)

k(n) = r. Thus, by
Definition 4.1 the set Qrδ is a legitimate pdit distillation protocol, with rate r. Since
δ was fixed arbitrarily, we have

∀δ>0 ∃Qr
δ
r > CD(ρ)− δ. (4.54)

By definition of KD and the above inequality there is

∀δ>0KD(ρ) ≥ CD(ρ)− δ. (4.55)

Taking infimum over δ we obtain KD(ρ) ≥ CD(ρ) for every input state ρ. This ends
the proof of this theorem.



Chapter 4. Distillable key as an entanglement measure 112

4.4 Distillable key is an entanglement measure - advan-
tages of entanglement approach

It is easy to see, that KD is an operational entanglement measure. From Definition
of KD (Def. 4.1), it follows that KD is monotoneous in usual sense (can not be
increased by LOCC operations), as well as in strong sense (see Section 2.8.1). More
precisely KD can not be increased (even on average) by means of LOCC operations.
It is also easy to see that KD vanishes on separable states (see the properties of KD

below, and discussion in Section 4.6.1). These two features proves that according
to (Def. 2.15), KD is an entanglement measure. Recall, that KD is operational
entanglement measure, because it is defined by a task of reaching some target states
(private states in this case) by means of LOCC operations in parallel to definition of
ED (see introduction to Section 2.8, and in Section 2.8.2)

The main advantage for quantum cryptography which follows from the fact, that
KD is entanglement measure, is that to study its properties, one can employ tools
that have been worked out in domain of entanglement theory2. In particular, there
is a list of features which entanglement measures may satisfy. Some of them we have
presented in Section 2.8.1. Distillable key KD defined in [HHHO05a], it has been
studied as entanglement measure by Matthias Christandl in [Chr02]. For complete
presentation, we quote some of main axioms of entanglement measures which are (or
not) satisfied by KD. Some of them has been either proved, or just collected as easy
properties in [Chr02]. Some of the axioms are formulated for all bipartite states, but
till now are known to hold only for some of them. In Sections 4.4.2 and 4.4.2 we
enlarge the family of states on which KD is known to be asymptotically continuous
and convex.

4.4.1 Which axioms of entanglement measures are satisfied by dis-
tillable key ?

We quote now the list given in [Chr06]. By convention, we first quote the acronym,
with added ’Not’ if the property of entanglement measure does not hold, and a
question mark, if it is not known weather it holds. We also append the results of
[CEH+07, HHHO05c], and describe then original contribution to this subject.

1. (Norm): equals log d for maximally entangled states from MS(d).

2. (Van Sep): KD(σ) = 0 for σ ∈ SEP .
2Of course, the are at least that many, and seemingly even more advantages, which this fact

gives for entanglement theory. The interrelation between the two domains will be presented in
concluding Chapter 7.
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3. (strong LOCC Mon): KD(
∑

i piρi) ≤ KD(ρ) where ρ is transformed into ρi
with probability pi by Λ ∈ LOCC.

4. Not(PPT Mon): not monotoneous under PPT operations

5. ?(As Cont): asymptotic continuity: is there c, c′ ≥ 0, such that for all ρ, σ with
D(ρ, σ) ≤ ε,

|KD(ρ)−KD(σ)| ≤ cε log d+ c′ ? (4.56)

6. (As Cont Pure) [Chr06]: KD is asymptotically continuous on pure bipartite
states: there is c, c′ ≥ 0, such that if D(|ψ〉, |φ〉) ≤ ε, then

|KD(|ψ〉〈ψ|)−KD(|φ〉〈φ|)| ≤ cε log d+ c′. (4.57)

7. ?(Conv) Is it that for all ρ, σ and p ∈ [0, 1] there holds

pKD(ρ) + (1− p)KD(σ) ≥ KD(pρ+ (1− p)σ) ? (4.58)

8. (Conv Pure) [Chr06]: convex on pure states: for any pure ensamble (pi, |ψi〉)
of some bipartite state ρ,∑

i

piKD(|ψi〉〈ψi|) ≥ KD(ρ). (4.59)

9. (Strong Super Ad): is strongly super additive: for all ρABA′B′ ,

KD(ρABA′B′) ≥ KD(ρAB) +KD(ρA′B′) (4.60)

10. ?(Add): it is not known if KD is additive, that is if for all bipartite ρ and σ

KD(ρ⊗ σ) ≤ KD(ρ) +KD(σ) (4.61)

11. ?(Add i.i.d) KD(ρ⊗n) = nKD(ρ)

12. ?(Non Lock): is there c ≥ 0 such that for all ρAA′B,

E(ρAA′B) ≥ E(ρAB) + c logRank(ρ′A), ? (4.62)

13. Relation to other measures [HHHO05a] (see Section 4.5):

ED ≤ KD ≤ E∞
r ≤ EC . (4.63)

as well as [Chr06]
ED ≤ KD ≤ Esq ≤ EC (4.64)

where Esq is the squashed entanglement.
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We also invoke here the property that has been proved further in [CEH+07],
which is a generalization of property (13):

14 Theorem 4.13 [CEH+07] (Upper bound on key via entanglement measures) For
an entanglement measure E which has properties: Conv, As Cont, Mon LOCC,
SupNorm(γ) (i.e. E(γ) ≥ log d), there is

KD(ρ) ≤ E∞(ρ). (4.65)

4.4.2 Applications of the relative entropy bound - on the Conv and
As Cont properties on some states for KD and ED

In this section we explore the relative entropy of entanglement bound (4.65), for the
so called Werner states We first extend the property As Cont Pure of KD to some
mixed states.

Continuity on separable and some other states of distillable key

Since E∞
r (σ) = KD(σ) = 0 for separable σ, and Er is asymptotically continuous (see

Proposition 4.17), we have for ρ and σ, if ||ρ− σ|| ≤ ε, then

KD(ρ) ≤ Er(ρ) ≤ 4ε log d+ h(ε), (4.66)

which proves the continuity of KD on separable states. The same holds for ED, since
ED ≤ KD, by property (4.63).

It is tempting to generalize property As Cont Pure to the case of private states,
and in general to the pure states twisted in its Schmidt basis which seems to be gener-
alization of pure states called here Schmidt-twisted pure states (see [PHHH08]).
Note, that this class of states, includes some of irreducible private states, and
Schmidt-twisted pure states as well. This class includes in particular a subclass
of irreducible pdits constructed in Section 3.6.

We note also, that KD satisfies Cont, on states for which Devetak-Winter pro-
tocol is an optimal key distillation protocol, since its rate CDWD (ρ) is asymptotically
continuous (see Section 2.8.1).

Partial convexity of KD

Proposition 4.14 For an entanglement measure E satisfying Conv, As Cont, SupNorm(γ),
KD satisfies Conv on an ensamble {(pi, ρ(i))}, if KD(ρ(i)) = E(ρ(i)).
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Proof. Denote
∑

i piρi = ρ. We have the following chain of (in)equalities, which we
comment below:

KD(ρ) ≤ KD(
∑
i

piρi ⊗ |ii〉〈ii|) ≤ E(
∑
i

piρ
(i) ⊗ |ii〉〈ii|) ≤∑

i

piE(ρi ⊗ |ii〉〈ii|) =
∑
i

piE(ρi) =
∑
i

piKD(ρi). (4.67)

The first inequality is because for any ensamble {(pi, ρ(i))} of ρ, the first action of
any protocol of key distillation from

∑
i piρ

(i)
AB ⊗ |ii〉〈ii|A′B′ can be just tracing out

system A′B′, ending up with ρ. Next two inequalities follows from Theorem 4.13,
and convexity of E. The last but one is due to Mon LOCC property of E. The last
equality is by assumption.

Remark 4.15 The above results holds by the same argument for ED, and in fact
for all suitably defined operational measures (note, that we deal here with intuitive
notion of ’operationality’ of entanglement measure).

On KD of Werner states

The following example of application of the bound KD ≤ E∞
r has been provided

in [HHHO05c]. Consider the antisymmetric Werner state ρa = 2
(d2+d)

(I + V ) with
V the swap operator (see Section 2.2.2). It has been shown in [AEJ+01], that the
regularised relative entropy of entanglement is considerably small:

E∞
r (ρa) ≥ log(

d+ 2
d

) ≥ KD(ρa). (4.68)

Hence we have considerably small key in that case, even for relatively ’small’ Werner
states. It is also important to note, that EC(ρa) = 1 independent of the dimension
d [MY04].

We give now the upper bound on KD of arbitrary Werner state defined as:

ρW (p) = pρa + (1− p)ρs (4.69)

with p the probability of mixing, and ρs = 2
(d2−d)(I−V ) the symmetric Werner state.

Now, we have:

KD(ρW (p)) ≤ E∞
r (ρW (p)) ≤ pE∞

r (ρa) + (1− p)E∞
r (ρs) (4.70)

where the second inequality follows from convexity of Er. Since ρs is separable
[Wer89], from (4.68)

ρW (p) ≤ p log(1 +
2
d
). (4.71)
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4.5 Relative entropy of entanglement - an upper bound
on distillable key

In [CEH+07] it is shown, that an entanglement monotone satisfying some axioms
is an upper bound on distillable key, as described in Theorem 4.13. This general
result uses the fact, that - informally speaking - each operation Pn of key distillation
protocols in Defs. 4.1 and 4.3, can be w.l.g. assumed to use only m operations
of classical communication with m linear function of n. Prior to this result, in
[HHHO05a] it has been shown, that KD ≤ E∞

r , where E∞
r is regularized relative

entropy of entanglement (see Eq. (2.115)). Since the proof of the latter fact does not
use the linearity of communication, and provides methods useful in other contexts,
we show it in detail now.

We need first the following technical lemma:

Lemma 4.16 Consider a set SU := {UρABA′B′U † | ρABA′B′ ∈ SEP ∩ B(Cd ⊗ Cd ⊗
CdA′ ⊗ CdB′ )} where U =

∑d−1
i,j=0 |ij〉〈ij| ⊗ Uij is B-twisting with B being a standard

product basis in Cd ⊗ Cd. Let σABA′B′ ∈ SU and σAB = TrA′B′σABA′B′. We have
then

S(P (d)
+ ||σAB) ≥ log d, (4.72)

where P
(d)
+ = |Ψ(d)

+ 〉〈Ψ
(d)
+ | is a projector onto maximally entangled state |Ψ(d)

+ 〉 =∑d−1
i=0

1√
d
|i〉|i〉.

Proof. Let us first show, that

TrP (d)
+ σAB ≤

1
d

(4.73)

for any σAB ∈ SU . We first show this for σAB "derived" from some pure product
states |ψ〉AA′BB′ in AA′ : BB′ cut (see Section 2.4.1):

σAB = TrA′B′U †|ψ〉〈ψ|U. (4.74)

Because ψ is product, it can be written as

ψ = (
∑

ai|iA〉|ψi〉′A)⊗ (
∑

bi|iB〉|φi〉′B) (4.75)

with ai, bi normalized and |iA〉, |iB〉, |ψi〉, |φi〉 on subsystem A,B,A′, B′ respectively.
Now the condition (4.73) for σ originating from pure product state is∑

ij

aibia
∗
jb
∗
j 〈xi|xj〉 ≤ 1 (4.76)
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where xk are arbitrary vectors of norm one arising from the action of U on ψi and φi.
Since the xk are arbitrary they can incorporate the phases of ai, bi so that we require
now

∑
ij
√
piqipjqj〈xi|xj〉 ≤ 1. where pi and qi are probabilities. Now, the right

hand side will not decrease if we assume 〈xi|xj〉 = 1 so we require [
∑

i

√
piqi]2 ≤ 1

which is satisfied by any probability distribution, which gives the proof of (4.73) for
special σAB.

Now we observe, that since (4.73) holds for σAB derived from pure product state,
by averaging over probabilities, we will have (4.73) for an arbitrary σAB from the set
SU . Indeed we have:

TrP (d)
+ TrA′B′U †

∑
k

pk|ψk〉〈ψk|U =∑
k

pkTrP (d)
+ TrA′B′U †|ψk〉〈ψk|U. (4.77)

Now by concavity of logarithm, we have for any states ρ and σ:

S(ρ||σ) = −S(ρ)− Tr(ρ log σ) ≥
−S(ρ)− log(Trρσ) (4.78)

Applying inequality (4.73) we have that

− log(Trρσ) ≥ log d. (4.79)

Finally, using (4.78) we obtain

S(P (d)
+ ||σAB) ≥ log d, (4.80)

which is a desired bound.
We will also need the following proposition obtained in [DHR02, SRH06].

Proposition 4.17 [DHR02, SRH06] For any convex set of state S ⊂ B(Cd) that
contains the maximally mixed state, the relative entropy distance from this set given
by

ES
r (ρ) = inf

σ∈S
S(ρ||σ), (4.81)

is asymptotically continuous i.e. it satisfies

|ES
r (ρ1)− ES

r (ρ2)| < 4ε log d+ h(ε) (4.82)

for any states ρ1, ρ2 ∈ B(Cd) with ε = ‖ρ1−ρ2‖ ≤ 1, and the binary entropy function
h(ε) = −ε log ε− (1− ε) log(1− ε).

We are now in position to formulate and prove the main result of this section.
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Theorem 4.18 For any bipartite state ρAB ∈ B(CdA ⊗ CdB ) there holds

KD(ρAB) ≤ E∞
r (ρAB). (4.83)

Proof. Let us fix δ > 0. By definition of KD(ρAB) there exists protocol Pδ (i.e.
sequence of maps Λn), such that

Λn(ρ⊗n) = γ̃(d) (4.84)

where
lim sup
n→∞

log d
n

= KD(ρAB)− δ (4.85)

and
lim
n→∞

‖γ̃(d) − γ(d)‖ ≡ lim
n→∞

εn = 0 (4.86)

with γ(d) being pdit with d × d-dimensional key part (for simpler notation we omit
the dependence of d from n) on systems ABA′B′.

Let ˜σsep be a separable state on (CdA ⊗ CdB )⊗n. We will present now the chain
of (in)equalities, and comment it below.

S(ρ⊗nAB||σ̃sep) ≥ S(γ̃(d)
ABA′B′ ||σsep) = (4.87)

= S(Uγ γ̃
(d)
ABA′B′U

†
γ ||UγσsepU †

γ) ≥ (4.88)

≥ S(TrA′B′ [Uγ γ̃
(d)
ABA′B′U

†
γ ]||TrA′B′ [UγσsepU †

γ ]) (4.89)

=: S(P̃ (d)
+ ||σ) ≥ (4.90)

≥ inf
σ∈T

S(P̃ (d)
+ ||σ) =: ETr (P̃ (d)

+ ) ≥ (4.91)

≥ ETr (P (d)
+ )− 4||P̃ (d)

+ − P (d)
+ || log d− h(||P̃ (d)

+ − P (d)
+ ||) ≥ (4.92)

≥ (1− 4εn) log d− h(εn) (4.93)

Inequality (4.87) is due to the fact, that relative entropy does not increase under
completely positive maps; in particular it can not increase under LOCC action of
operation which distills key, applied to it’s both arguments. The second argument
becomes other separable state σsep, due to Theorem 2.14. Note, that subsystems
AB of γ̃(d)

ABA′B′ are not to be identified with that of ρ.
In Eq. (4.88) we perform twisting Uγ controlled by the basis in which γ(d)

ABA′B′ is
secure (without loss of generality we can assume it is standard basis). The equality
follows from the fact that unitary transformation does not change the relative entropy
when applied to its both arguments. Next (4.89) we trace out A′B′ subsystem of
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both states which only decreases the relative entropy. After this operation, the first
argument is P̃ (d)

+ , which is a state close to the EPR state P (d)
+ . (P̃ (d)

+ would be equal
to the EPR state if γ̃(d)

ABA′B′ were exactly pdit) while second argument becomes some
– not necessarily separable – state σ. The state belongs to the set T , constructed as
follows. We take set of separable states on system ABA′B′ subject to twisting Uγ
and subsequently trace out the A′B′ subsystem.

The inequality (4.90) holds, because we take infimum over all states from the set
T of the function S(P̃ (d)

+ ||σ). This minimised version is named there ETr (P̃ (d)
+ ) as it

is relative entropy distance of P ′+ from the set T .
Let us check now, that set T fulfills the conditions of proposition 4.17. Convexity

of this set is obvious, since (for fixed unitary Uγ) by linearity it is due to convexity
of the set of separable states. This set contains the identity state, since it contains
maximally mixed state which is separable, unitarily invariant (i.e. invariant under
Uγ ) and whose subsystem AB by definition is the maximally mixed state as well.
Thus by proposition 4.17 we have that ETr is asymptotically continuous

|ETr (P̃ (d)
+ )− ETr (P (d)

+ )| < ||P̃ (d)
+ − P (d)

+ ||4 log d+ h(||P̃ (d)
+ − P (d)

+ ||). (4.94)

Since P̃ (d)
+ and P (d)

+ come out of γ̃(d)
ABA′B′ and γ(d)

ABA′B′ by the same transformation
described above (twisting, and partial trace) which does not increase the trace norm
distance, by (4.86) we have that ||P̃ (d)

+ − P (d)
+ || ≤ εn. This, together with asymp-

totic continuity (4.94) implies (4.91) if only εn ≤ 1/2, which we can assume, as εn
approaches zero for large n by (4.86). Now by Lemma 4.16 we have

ETr (P (d)
+ ) ≥ log d, (4.95)

which by (4.94) gives the last inequality. Summarizing this chain of inequalities
(4.87)-(4.92), we have that for any separable state σ̃sep:

S(ρ⊗nAB||σ̃sep) ≥ (1− 4εn) log d− h(εn) (4.96)

Taking now infimum over all separable states σ̃sep we get

Er(ρ⊗nAB) ≥ (1− 4εn) log d− h(εn). (4.97)

Now we divide both sides by n and take the limit. Then the left-hand-side converges
to E∞

r . Thanks to (4.86), εn approaches zero for large n, and due to (4.85), log d/n
converges to KD(ρAB). Thus owing to the continuity of h, we obtain

E∞
r ≥ KD − δ. (4.98)

Since δ was fixed arbitrarily, this ends the proof of Theorem 4.18.
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4.6 Which states are key distillable ? - preliminaries

In this section we consider special cases of key (un)distillability of bipartite states
[HHHH07]. We first focus on two cases when it is easy to say if a given bipartite
state is key distillable. We present then the lower bound on distillable key given
by Devetak and Winter [DW05]. Their protocol of key distillation is formulated in
slightly different way, but can be used in our context, as it is shown below explicitly.
Thanks to this fact, we observe, that states which are close in trace norm to pdits
have nonzero distillable key. We also note, that PPT states are bounded away from
private states by a positive constant in trace norm distance, yet this constant can
vanish for some PPT states from properly large dimension.

4.6.1 Separable and distillable states

Observation 4.19 [GW00, GW99, CLL04b] For any bipartite state ρ there holds:

1. ED(ρ) > 0⇒ KD(ρ) > 0, in particular, if ρ is pure,

KD(ρAB) = ED(ρAB) = S(ρA). (4.99)

2. ρ ∈ SEP ⇒ KD(ρ) = 0.

The first fact has been noticed already in context of the so called unconditional
quantum key distribution in [DEJ+96]. There the protocol of distillation of entangle-
ment has been proposed in order to obtain secure bits and called quantum privacy
amplification. In present context, this fact follows from the very definition of pri-
vate states: maximally entangled states are also private states. Hence distillation of
entanglement is one of ways to distill key. Concerning equalities (4.99), the second
equality is a well known property of pure states [BDSW96], and the first follows from
Theorems 4.18 and 2.26 (cf. [Chr06]).

In particular, as it is noted in [AH06], all entangled states ρ ∈ B(C⊗2 ⊗ C⊗n) for
n = 2, 3 there is also KD(ρ) > 0 for these states, because these states have ED > 0
[HHH97].

The second fact can be found (in different formulation) in [GW00, GW99, CLL04b].
Another immediate proof of the latter, follows from Theorem 4.18. This is because
by definition of regularized relative entropy of entanglement, E∞

r (σ) = 0 for any
separable state σ, which is an upper bound on distillable key.

Observation 4.20 For every pair σ, γ with σ ∈ SEP (d,d′) and γ ∈ PS(d,d′), there
holds

||σ − γ|| ≥ 1− 1
d
. (4.100)
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where SEP (d,d′) denotes the set of separable states acting on HABA′B′ with dimA =
dimB = d and dimA′ = dimB′ = d′.
Proof. Applying the privacy squeezing of γ, to both γ and σ, we obtain:

||σ − γ|| ≥ ||ρ(ps) − P (d)
+ ||, (4.101)

as the norm does not increase under quantum operations (in this case the operation
of privacy squeezing). From the proof of Lemma 4.16, Eq. (4.73), we know that
fidelity of a privacy squeezed separable state with the maximally entangled state
|Ψ(d)

+ 〉 =
∑

i
1√
d
|ii〉 is bounded from above by 1

d . By equivalence of norm and fidelity
given in Lemma 2.20, we have that the trace norm distance between the two is
bounded from below by 1− 1

d .
Since the smallest d equals 2, we have that the set of separable states is bounded

away by 1
2 from the set of private states independently of the dimension.

4.6.2 Devetak and Winter approach - lower bound on one way dis-
tillable key

In this section we present the result of Devetak and Winter [DW05] in our context.
We invoke their definition of one-way protocol of key distillation, that is a protocol
which uses only communication from Alice to Bob. This protocol (in short DW)
can be easily turned into classical key distillation protocol, as we show below. This
enable us to use the lower bound on the rate of one-way distillable key that has been
worked out in [DW05]. In consequence, we show the main result of this section that
states close enough to pbit in trace norm, have nonzero distillable key.

The one-way key distillation protocol is defined for the following input states,
called cqq states ρ(cqq)

ABE of the form:

ρ
(cqq)
ABE =

dimA−1∑
i=0

pi|i〉〈i|A ⊗ ρ(i)
BE , (4.102)

where pi is the probability that system A is in state |i〉〈i|A. In what follows, the
symbol Y = y will denote, that system labeled as Y is in state |y〉〈y|. Consequently
we will write explicitly P (A = i) instead of pi. n copies of the cqq state can be
written as (

ρ
(cqq)
ABE

)⊗n
=
∑
in

P (A(n) = in)|in〉〈in|A(n) ⊗ ρinBE(n)
, (4.103)

with in = i
(1)
n . . . i

(n)
n and

|in〉 = |i1〉 ⊗ · · · ⊗ |in〉, (4.104)

ρinBE(n)
= ρi1BE ⊗ · · · ⊗ ρ

in
BE . (4.105)
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The subscript (n) recalls that system under consideration consists of the n systems
in identical state.

A one–way key distillation protocol consists of:

• An operation T defined as

T (ρA(n)
) =

∑
in

P (C = l,K = m|A(n) = in)|`〉〈`|C ⊗ |m〉〈m|K , (4.106)

with range ` ∈ {1, . . . , L} and m ∈ {1, . . . ,M}.

• A POVM
D(`) = {D(`)

m }Mm=1 (4.107)

on B(n) for every `.

The idea is that Alice performs T on her subsystem ρA(n)
of the state (4.103).

She then treats state of system K as the key, and sends C = ` to Bob.
Bob obtains his version of the key - K ′ by measuring his system B using {D(`)}:

P (K ′ = m|C = `, A(n) = in) = Tr
(
D(`)
m ρinB(n)

)
.

For technical reasons it is assumed that the number of possible messages send by
Alice is bounded from above: L ≤ 2nF , for some constant F .

The one-way key distillation protocol is called an (n, ε)–protocol if

1.
P (K 6= K ′) ≤ ε. (4.108)

2. ∥∥∥∥∥
K−1∑
m=0

P (K = m)|m〉〈m| −
K−1∑
m=0

1
K
|m〉〈m|

∥∥∥∥∥ ≤ ε. (4.109)

3. There is a state σ0 such that for all m,∥∥∥∥∥∥
∑
in,`

P (A(n) = in, C=`|K=m)|`〉〈`| ⊗ ρinE(n)
− σ0

∥∥∥∥∥∥ ≤ ε. (4.110)

Then, R is an achievable rate if for all n there exist (n, ε)–protocols with ε → 0
and 1

n log2M → R as n→∞. Finally define

K→(ρ) := sup{R : R achievable},
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the one–way (or forward) secret key capacity of ρ.
We will argue now, that K→ is a lower bound on distillable key KD given in

Definition 4.1. We first show that CD ≥ K→. The latter follows from the observation
below:

Observation 4.21 For any cqq state ρABE, if there exists an (n, ε)-protocol acting
on ρ⊗nABE, with ranges of key and communication M and L respectively, defined by
(4.106)-(4.110), there is an LOPC operation P(n,ε) which acting on ρ⊗nABE yields ρout
satisfying:

||ρout − βdn || ≤ 4ε, (4.111)

with βdn being an ideal ccq state, and dn = M .
Proof. We begin with constructing an LOPC operation P(n,ε). This will be a
composition of LOPC counterparts of operations used by (n, ε)-protocol, interlaced
with some partial trace operations, by which Alice and Bob will get rid of already
used systems. The correspondence between operations of (n, ε)-protocol and the
LOPC operations is quite direct.

1. Alice performs locally quantum operation which corresponds to channel T .
This operation transformes her subsystem of ρ⊗nABE into

∑
xn,m,l

P (K = m,C =
l,Xn = xn)|m〉〈m|A ⊗ |l〉〈l|a.

2. Alice communicates state of a system a to Bob via classical communication
operation and traces out system a.

3. Bob performs an operation controlled by system b which holds communicate
from Alice: upon receiving |l〉〈l|b Bob performs corresponding quantum mea-
surement with the Kraus operators {Am′} defined by the POVM {D(`)}:

Am′ :=
√
D(`) ⊗ |m′〉. (4.112)

4. Bob traces out system carrying quantum results of this measurement leaving
system which carries classical results. The latter is in state

∑
xn,m,l,m′

P (K ′ =
m′|K = m,C = l,Xn = xn)|m′〉〈m′|.

Composition of the above operations defines LOPC operation P(n,ε), which ap-
plied to input state ρ⊗nABE (4.103) yields a state of the form:

ρout =
∑

in,l,m,m′

P (C = l, A(n) = in,K = m,K ′ = m′)|mm′〉〈mm′|AB ⊗ ρinE(n)
⊗ |l〉〈l|e.

(4.113)
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We will argue now, that this state is close to some ideal ccq state. From (4.108), one
gets that ||ρout − ρ̃out|| ≤ ε, with

ρ̃out =
∑

xn,l,m,m′

δm,m′P (C = l, A(n) = in,K = m,K ′ = m′)|mm′〉〈mm′|AB⊗ρinE(n)
⊗|l〉〈l|e.

(4.114)
One then finds, that ||ρ̃out − ρ̂out|| ≤ ε for

ρ̂out =
∑
xn,l,m

P (C = l, A(n) = in,K = m)|mm〉〈mm|AB ⊗ ρinE(n)
⊗ |l〉〈l|e, (4.115)

again using (4.108). We can now make use of the assumption (4.110), to see that

∑
m

P (K = m)

∥∥∥∥∥∥
∑
in,`

P (A(n) = in, C=`|K=m)|`〉〈`| ⊗ ρinE(n)
− σ0

∥∥∥∥∥∥ , (4.116)

is not greater than ε and equals

||
∑
m

P (K = m)P (A(n) = in, C = l|K = m)|mm〉〈mm| ⊗ ρinE(n)
⊗ |l〉〈l|

−(
∑
m

P (K = m)|mm〉〈mm|)⊗ σ0||. (4.117)

Hence, we get, that ||ρ̂out− (
∑

m P (K = m)|mm〉〈mm|)⊗ σ0|| ≤ ε. Now, by as that
||ρout − ρccqideal|| ≤ 4ε, which ends the proof of this observation.

4.6.3 Lower bound on one-way distillable key from Devetak-Winter
protocol

Observation 4.21 let us use the lower bound provided by Devetak and Winter in
context of distillation of private states3. We quote here their result, and show its
counterpart in present context.

Theorem 4.22 [DW05] For every cqq–state ρ,

K→(ρ) ≥ I(A : B)− I(A : E).

Here I(A : B) is quantum mutual information of subsystem AB of the cqq state
(4.102).

From this theorem, we get the following corollary:
3In fact, as it is argued in [CEH+07], the security conditions (4.109)-(4.110) are strictly stronger

then our condition (4.8) of an output state to be close to an ideal ccq state in trace norm, yet the
difference in formulation of security condition does not affect the key rate [Win08]
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Corollary 4.23 For every ccq state ρABE,

CD(ρABE) ≥ CDWD (ρABE) := I(A : B)ρ − I(A : E)ρ, (4.118)

where I(X : Y )ρ denotes quantum mutual information of a bipartite state with sub-
systems X and Y respectively.
Proof. Since every ccq state, is also a cqq state, by Theorem 4.22 by Observation
4.21, one needs to show CD ≥ K→. The proof of this inequality involves elementary
technique already presented in proof of Theorem 4.12. Since adaptation of the latter
reasoning in present context needs only slight modifications, we just provide the idea.

The Observation 4.21 provides a correspondence: for any (n, ε)–protocol with key
range M and output secure according to Eqs. (4.108)-(4.110), there is an operation
P(n,ε) which outputs a state close by 4ε to an ideal ccq state with dn × dn AB part,
i.e. secure in light of Def. 4.3. Moreover, the correspondence is qualitative: dn = M .
We now argue that it can be extended to hold for protocols.

Let R be an achievable rate as given below Eq. (4.110). It follows that there
exists a family {(n, εn)}∞n=1 of (n, εn)–protocols such that

lim
n→∞

(εn,
logMn

n
) = (0, R), (4.119)

where we made explicit dependence of ε and M from n. The above mentioned corre-
spondence of operations naturally defines a set of LOPC operations P = {P(n,ε)}∞n=1

that constitutes classical key distillation protocol with the same rate R = limn→∞
dn
n .

Since construction of P does not depend on R, any rate achieved by family {(n, εn)}
protocols can be achieved by P, proving thereby CD ≥ K→, which ends the proof of
this Corollary.

The LOPC protocol P described in the proof of the above Corollary, with a rate
CDWD (ρABE) on a tripartite state ρABE we will call the DW key distillation protocol.
Below, we provide shortly the idea of this protocol following the formulation of
Devetak and Winter.

DW key distillation protocol
Alice and Bob share n copies of the cqq state. Hence, Alice’s state is described

by the string of n symbols from some alphabet I. In first step Alice checks if the
string in is from typical class i.e. if the occurrence of each symbol from I is close
to pi. If not, she aborts the protocol, or tells Bob the type otherwise. Knowing the
type, they use an a priori prepared code book {Cl}Ll=1(the set of codes4) where each
code allows for communicating approximately nI(A : B) bits from Alice to Bob.

4The ’classical’ code is a subset of bit-strings of length n C ∈ {0, 1}n called code words. Upon
iAn is send, and received is a bit string jB

n , receiver can conclude from jB
n what was iAn , knowing

that iAn ∈ C [CT91]
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Alice then selects a random number l such, that in is a codeword from a code
Cl from this code book, and sends l to Bob. Upon receiving l, Bob applies decoding
operation Dl. After this, which may fail, but only with small probability, they have
sequences iAn (jBn for Bob) of approximate length nI(A : B). The codes are chosen
in such a way, that Alice and Bob can treat approximately n(I(A : B) − I(A : E))
leading bits of iAn (jBn ) as the key: the strings iAn and jBn are with high probability
both perfectly correlated and uniformly random, hence can be used for one-time pad
encryption.

Moreover, according to security condition imposed on the output state, Eve’s
knowledge about the key bit-string after this protocol is represented by almost the
same state σE . Of course it may be that this protocol aborts in the middle. E.g.
the codes must be ε-good, so that with high probability 1 − ε Bob could perform
decoding operation.

4.6.4 Simple lower bound on distillable key via Devetak-Winter
protocol

The main result formulated in this subsection (Theorem 4.25) shows, that one can
find lower bound on distillable key of a bipartite state ρABA′B′ of four systems
ABA′B′, by calculating this rate for a ccq state (see Eq. (eq:ccq-def)) of a p-
squeezed state of ρABA′B′ (see Section 3.3.2). This is much easier, because the the
p-squeezed state is a two-qubit state.

Let us recall here, that the ccq state of a given state is in principle not uniquely
defined. It depends on a partial isometry on Eve’s subsystem, as emerging from a
purification |φρ〉 of a bipartite state which is unique up to this transformation. Thus,
in what follows we will denoted as ρccqφ . However, as we argue now, the amount of
classical distillable key of a ccq state is independent of the purification |φ〉 via which
this state was obtained. This is the statement of lemma below.

Lemma 4.24 For any two different ccq states ρccqφ and ρccqψ of a bipartite state ρAB,
obtained via purifications |φρ〉 and |ψρ〉 respectively there is CD(ρccqφ ) = CD(ρccqψ ) ≡
CD(ρccq) .
Proof. From Lemma 2.6, and Corollary A.2, we have that ccq states obtained via
two purifications differ only by such partial isometry on system E. Now, we can use
Theorem 4.4 to have: CD(ρccqψ ) = CD(ρccqφ ), and the assertion follows

Thanks to the above lemma, the quantity CD(ρccq) can be defined as CD(ρccqφ ) =
CD(ρccq) where φ is standard purification of ρccq. In particular in proofs that concerns
quantity CD(ρccq) we can use a ccq state of ρ obtained via the most convenient
purification. This enable us to formulate the following theorem:
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Theorem 4.25 For any bipartite state ρABA′B′ ∈ B(HA ⊗HB ⊗HA′ ⊗HB′), there
holds

KD(ρABA′B′) ≥ CD([ρps]ccqABE′) (4.120)

where [ρps]ccqABE′ is a ccq state of a privacy squeezed state of ρABA′B′ .
Proof. We first provide a chain of (in)equalities which shows the thesis, and com-
ment it below.

KD(ρABA′B′) = CD(ρABA′B′) ≥
CD(ρccqABE) = CD(TrA′B′ [ρ

ps
AB]ccqφ ) ≥ CD([ρpsAB]ccqφ ) = CD([ρpsAB]ccq). (4.121)

The first equality is by Theorem 4.12. The first inequality is due to the fact, that
in order to obtain a ccq state out of ρABA′B′ one needs to perform certain local
operations (measurement, tracing out systems A′ and B′).

To see the second equality we observe that ρccqABE and TrA′B′ [ρ
ps
AB]ccq can differ

only by some partial isometry on Eve’s system.
To this end we need to collect more facts. First, by invariance of ccq states under

twisting (Theorem 3.3) the state ρccq satisfies:

ρccq = TrA′B′(|φ〉〈φ|ABA′B′E) (4.122)

where |φ〉 = UABA′B′ ⊗ IE |ψρ〉 for any B-twisting UABA′B′ with B being standard
product basis.

Taking now U to be the twisting Ups defined by operation of p-squeezing of ρ,
we observe that |φ〉ABA′B′E is in fact a purification of the state ρpsAB with a purifying
system E′ = A′B′E. Let us denote denote now [ρpsAB]ccqφ as ccq state of ρpsAB obtained
via purification |φρps

AB
〉 to system E′. Then, the state TrA′B′ [ρ

ps
AB]ccqφ equals just

ρccqABE . Thus we have

CD(ρccqABE) = CD(TrA′B′ [ρ
ps
AB]ccqφ ). (4.123)

The second inequality follows directly from the fact that classical distillable key
does not decrease under action of Eve (see Theorem 4.4). Indeed, the two states
under consideration differs by a quantum operation (partial trace over A′B′) on
Eve’s system E′ = A′B′E.

Since by Lemma 4.24, one does not need to care from which purification the ccq
state was obtained, there is:

CD(TrA′B′ [ρ
ps
AB]ccqφ ) = CD(TrA′B′ [ρ

ps
AB]ccq), (4.124)

which proves the last equality.
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On any tripartite ccq state, CD is greater than the rate of any concrete protocol
applied to this state. Owing to this simple fact, in the above theorem we place DW
protocol key rate instead of CD to obtain the following corollary:

Corollary 4.26 For any bipartite state ρABA′B′ ∈ B(HA⊗HB ⊗HA′ ⊗HB′), there
holds

KD(ρABA′B′) ≥ CDWD ([ρps]ccqABE′) (4.125)

where [ρps]ccqABE′ is a ccq state of a privacy squeezed state of ρABA′B′ .

Remark 4.27 The Theorem 4.25, and the above corollary holds also for cqq state.
To this end one needs to employ the idea of local twisting (see [HLLO06]). It is
twisting controlled only on one site (say Alice) and has form:

∑1
i=0 |ei〉〈ei|A⊗U

(i)
A′B′.

It is then straightforward to see, that the analogues of Theorem 3.3 and Lemma 4.24
holds in this case. However, the local untwisting can apply only two different unitary
transformations on system A′B′. Hence it is useful when cqq of some state is close
to a cqq of some private state. Since the latter is equal to its ccq, the usefulness of
considering cqq instead of ccq in the above theorem is questionable.

4.6.5 The MPDW protocol

In general case, Alice and Bob can not perform the p-squeezing by LOCC operations
ρ⊗nABA′B′ , so that they could then measure the main parts of the p-sqeezed states and
launch the operation of DW protocol on ([ρps]ccq)⊗n. However, let us consider the
composition of first von Neumann measurements (on both sites) of the main parts,
with the DW protocol. By Theorem 4.12, there is also an LOCC version of this
protocol which in place of operations of DW protocol described in Observation 4.21,
has its LOCC counterpart PA1B1...AnBn

n,ε , and achieves the same rate as DW on the
state [ρps]ccq.

Now, what Alice and Bob are able to perform via LOCC operations on the
state ρ⊗nABA′B′ is modification of the above LOCC protocol achieved by substituting
PA1B1...AnBn
n,ε ⊗ IA′1B′1...A′nB′n in place of PA1B1...AnBn

n,ε . That is, they first measure the
main parts of the input states ρABA′B′ , and on resulting states apply the operation
PA1B1...AnBn
n,ε ⊗ IA′1B′1...A′nB′n . Operating as identity on the side parts is a counterpart

of tracing out this system, but only formally (see Observation 2.11), since actually
Alice and Bob can not trace out the side part as it act as a shield.

Together with measurement on the main part such naturally modified DW pro-
tocol will be called further a MPDW protocol, since it can be viewed as applying an
LOCC counterpart of DW protocol, but only to the main parts (AB subsystems) of
the input systems.



Chapter 4. Distillable key as an entanglement measure 129

Thus, the operation of p-suqueezing followed by applying operation of usual DW
protocol to the ccq state of a p-squeezed state, is merely a mathematical tool, that
provides a lower bound on the rate of the MPDW protocol. We use this tool, to
avoid calculating the ccq state of a given tripartite state as this is in principle more
difficult then the same for a p-squeezed state.

Note, however, that the operation of p-squeezing may decrease the rate of distilled
key. To prove a possibly higher value of distillable key rate one may consider the
rate obtained by MPDW protocol:

Corollary 4.28 For any bipartite state ρABA′B′ ∈ B(HA⊗HB ⊗HA′ ⊗HB′), there
holds

KD(ρABA′B′) ≥ CDWD (ρccqABE′), (4.126)

where ρccqABE′ is a ccq state of ρABA′B′ .
Proof. From Eqs. (4.121) we get KD(ρABA′B′) ≥ CD(ρccqABE), and CDWD (ρccqABE) ≥
CDWD (ρccqABE′), as DW is a specific protocol of classical key distillation.

Consequently, as in Remark 4.27, we have the above corollary for a cqq state in
place of a ccq one.

4.6.6 States enough close to private bits are key distillable

Before we formulate the main result of this section, we need a technical observation.

Observation 4.29 Let σABE be a ccq state of a bipartite state ρAB. Then I(A :
E)σ ≤ S(AB)ρ, with σAB = TrEσABE.

Proof. This fact is a consequence of the property 6 of the von Neumann entropy
and joint concavity theorem (property 7), given in Section 2.7.1.

We can now show the main result which states that if a given state is close enough
to pbit in trace norm, it has distillable key. This fact follows easily from Theorem
4.25, and the fact that the rate CDWD of Devetak-Winter protocol is continuous
function of ρ.

Theorem 4.30 ||ρ− γ(2)|| ≤ δ < 10−3 implies KD(ρ) > 0.

Proof. By Corollary 4.25, to prove the above theorem it is enough to show that
CDWD (ρ′) > 0 with ρ′ = [ρps]ccq, if only

||ρ− γ(2)|| ≤ δ < 10−3 (4.127)

We need to prove a lower bound on:

CDWD (ρ′) = I(A : B)ρ′ − I(A : E)ρ′ . (4.128)
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Let us fix δ > 0. By assumption (4.127), and the fact that trace norm does not
increases under quantum operations we have:

||ρps − P (2)
+ || ≤ δ. (4.129)

For ccq state of P (2)
+ we have by Observation 4.29:

I(A : E) ≤ S(AB) = 0 (4.130)

and I(A : B) = 1. Analogously, we have for ρ′:

I(A : E)ρ′ ≤ S(AB)ρps . (4.131)

By equivalence of the trace norm and fidelity (Lemma 2.20), there is:

||ρ′ − [P (2)
+ ]ccq|| ≤ 2

√
2δ (4.132)

Thanks to the above inequality we can use continuity of von Neumann entropy, to
bound the rate of DW protocol for ρ. From Fannes inequality (see Eq. (2.24)), we
get

I(A : B)ρ′ ≥ 1− ε log dAB − 3η(ε), (4.133)

I(A : E)ρ′ ≤ S(AB)ρps ≤ 1
2
ε log dAB − η(ε). (4.134)

with ε = 2
√
δ. Thus we obtain that

CDWD (ρ) ≥ I(A : B)− I(A : E) ≥ 1− 6
√
δ − 2η(2

√
δ). (4.135)

The above bound is nonzero if only δ > 10−3, as we have found using Mathematica
5.0. This ends the proof of this theorem.

Remark 4.31 Let us note, that the upper bound on δ of order 10−3 is rather rigor-
ous, and can be easily improved, by more careful estimations used in the proof above
[HHHO05a].

The above sufficient condition has been generalized in [CCK+07] to hold on states
which are transformable via LOCC into state that is close enough to private state.
Independently, the same result was noted and merged with necessary condition in
[AH06], giving the following necessary and sufficient condition of key distillability:

Theorem 4.32 ([AH06], see also [CCK+07]) For a bipartite state there holds KD(ρ) >
0 if and only if there is sufficiently small ε ≥ 0, a natural number m and an LOCC
operation Λm such that

||Λm(ρ)− γ(dm)|| < ε (4.136)

for some private state γ(dm) with dm ≥ 2.
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4.6.7 Lower bound on distillable key of mixtures of key-part-orthogonal
private bits

The result which are to present now, was obtained in [HPHH05], by direct arguments.
To show it now, we use a more general lemma:

Lemma 4.33 (reformulation of analogous lemma from [CCK+07]) Let ρAB be a
bipartite state, and ρps its ccq state. Then, CDWD ([ρps]ccq) = 1− S(AB)ρps .
Proof. Let σABE = [ρps]ccq. The result CDWD (σ) = 1 − S(E)σ can be found in
[CCK+07]. There is also S(AB)ρps = S(E)σ, because ρps is a bipartite state.

We can formulate now the following proposition:

Proposition 4.34 Consider two pbits γ1, γ2 and take any biased mixture of the
form:

% = p1γ1 + p2σ
A
x γ2σ

A
x (4.137)

with, say, p1 > p2 and σAx = [σ1]A ⊗ IA′BB′. The distillable key KD(%) fulfills
KD(%) ≥ 1−h(p1) where h(p1) is the binary entropy of distribution {p1, p2}, and σ1

is one of Pauli operations given in (2.50).
Proof. It is straightforward to check, that the p-squeezed state of the state % is a
mixture of two orthogonal maximally entangled states: pP|φ+〉 + (1− p)P|ψ+〉, where
|φ+〉 = 1√

2
(|00〉+ |11〉) and |ψ+〉 = 1√

2
(|01〉+ |10〉). Its von Neumann entropy equals

then 1 − h(p). Hence, by Lemma 4.33 we get CDWD ([(ρ)ps]ccq) ≥ 1 − h(p). This by
Theorem 4.25 proves the thesis.

4.7 Further development and open problems

As we have noted, the entanglement monotone approach initiated in [HHHO05c,
HHHO05a] was then developed in [CEH+07]. It is shown, that any bipartite mono-
tone E, which is continuous and normalized on private states (i.e. E(γd) ≥ log d),
is an upper bound on distillable key, as invoked in Theorem 4.13. In [Chr06] it
is shown, that entanglement measure called squashed entanglement [Tuc02, CW04]
is an upper bound on KD. This result has been recently generalized for multipar-
tite key distillation protocols defined, in recent paper [YHH+07]. In particular it
is shown that the multipartite squashed entanglement is also an upper bound on
distillable key. Although the latter result is much stronger than the one we have
presented, it uses independent result, that an optimal key distillation protocol uses
only communication which is linear in number of input copies.

As we have invoked in Section 4.4.1, some properties of KD as entanglement
measure, was in studied in [Chr06]. Some sufficient conditions for key distillability
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in terms of the p-squeezed state was provided in [CCK+07]. The link between key
distillability and uncertainty principle is shown in [Koa07].

In [MCL06] other upper bound on distillable key are developed for practical pro-
tocols of key extraction, the so called unconditionally secure quantum key distribution
protocols (see Section 5.6, for detail formulation). Although these new bound beats
the E∞

r , it is demonstrated, that providing better devices involved in realization of
the protocol, the E∞

r bound can be still competitive with the new one.

4.7.1 Open problems

These are exemplary open questions that rises in context of distillable key:

1. For which bipartite states ρ there are protocols which achieving KD achieves at
the same time ED ? (note, that exemplary are pure states for which protocols
realizing ED realize at the same time KD, since the two quantities are equal
to each other)

2. (Upper bound on the key) Better upper bounds on KD than E∞
r are welcome,

that hold for all states, or indication which axiomatic monotones can yield
better bound on which bipartite states.

3. Is KD monogamous, i.e. KD(ρAB) + KD(ρAE) ≤ logRank(ρA) for any pure
state |ψρ〉ABE with subsystems ρAB, ρBE and ρA respectively (note, that this
holds for key distilled with use of one-way communication only [KW04])?

4. Is KD asymptotically continuous (see Section 4.4.2) or convex (see Section
4.4.2)?

5. (Irreversibility) For which states there holds KD(ρ) = KC(ρ) [HHHO05c]?



Chapter 5

Secure key from certain PPT
states

In this Chapter we present a slightly improved and extended version of the material,
that can be found in [HHHO05a], in Section X, [HHHO05c] and [HPHH05]. We
show that there are states which remain positive after partial transposition (PPT
states) and have distillable key. We provide examples of bipartite states which are
key distillable via two-way and one-way key distillation protocols. Interestingly, the
only way we know that these states are entangled is that they are key distillable.
Since PPT states have zero distillable entanglement, these are the first examples of
bound entangled (entangled, with ED = 0), key distillable (with KD > 0) states
(BE-KD).

In Section 5.1 we introduce the family of states denoted as Frec. It is further
shown in Section 5.2, that some of states from this family, are PPT and key distillable
(PPT-KD). This proof uses two facts: (i) some states from Frec are PPT (ii) some
PPT states from Frec are close to private states. Since any state which is close
enough to private state is key distillable, these states are PPT-KD, and hence also
BE-KD (Theorem 5.7).

Subsequently, in Section 5.4, we introduce another family of states, denoted as
Fs, and show that all states from this family are PPT-KD. These states are unbiased
mixtures of two pbits that have key parts in states orthogonal to each other, which
assures their key distillability by Proposition 4.34. Moreover, by suitable choice of
mixing probabilities they are also invariant under partial transposition.

In Section 5.4.1, we present some properties of Fs. In particular, we show its
subfamily with the highest distillable key among Fs, and provide example of the
state with this property. We then show that states from Fs lays on the boundary of
(are extremal in) the set of PPT states.
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Section 5.5 is devoted to reveal the way the states from Frec were constructed
[HHHO05a]. It involves the so called hiding states [TDL01, DLT02, EW02], and the
so called R protocol. We sketch also the original way, some states from Frec were
shown to be PPT, presented in [HHHO05a].

In Section 5.3 we briefly comment on important consequences of existence of PPT-
KD states. In Section 5.6 we present briefly further results on this subject, especially
in context of the so called unconditionally secure quantum key distribution.

5.1 The family Frec
Definition 5.1 Consider states from B(C2 ⊗ C2 ⊗ (Cdk ⊗ Cdk

)⊗m), with a matrix
form

ρ
rec(m)
(d,k,p) =

1
Nm


[p( τ1+τ2

2 )]⊗m 0 0 [p( τ1−τ22 )]⊗m

0 [(1
2 − p)τ2]

⊗m 0 0
0 0 [(1

2 − p)τ2]
⊗m 0

[p( τ1−τ22 )]⊗m 0 0 [p( τ1+τ2
2 )]⊗m

 ,
(5.1)

where Nm is appropriate normalizing factor, τ1 = (ρa+ρs

2 )⊗k and τ2 = (ρs)⊗k, with
ρs and ρa the symmetric and antisymmetric Werner state in B(Cd ⊗ Cd).

The family Frec reads:

Frec = {ρrec(m)
(d,k,p) |d ≥ 2, k ≥ 1, p ∈ (0,

1
2
],m ≥ 1} (5.2)

The family of Frec restricted to states ρrec(m)
(d,k,p) with m = 1, is denoted as F (m=1)

rec .

5.2 Proving that some PPT-KD states are within Frec
We set out to search for the parameters (d, k, p) for which states from Frec are PPT.
The proof given here is direct, i.e. it does not base on the construction of the states
from Frec, that was presented in [HHHO05a]. We first need the following definition:

Definition 5.2 A positive matrix acting on HA ⊗ HB ⊗ HA′ ⊗ HB′ with dimA =
dimB = 2 and dimA′ = dimB′ ≥ 2 written in a form

A0000 0 0 A0011

0 A0101 0 0
0 0 A1010 0

A1100 0 0 A1111

 . (5.3)
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is simple-PPT if it satisfies (i) Aijij are PPT for i, j ∈ {0, 1}, that is are positive
itself and positive after partial transposition along A′ : B′ cut, (ii) A0011 is hermitian
and AΓ

0101 ≥ |AΓ
0011|, and Γ is partial transposition along A′ : B′ cut.

Observation 5.1 A simple-PPT matrix is a (possibly unnormalized) PPT state.
Proof. Follows directly from the form of matrix (5.3) when subjected to partial
transposition along AA’:BB’ cut (see Example 2.16), and Lemma A.3

Lemma 5.2 If a matrix (5.3) is simple-PPT, then this matrix with A⊗mijkl and m ≥ 2
in place of Aijkl is also simple-PPT.
Proof. To see that property (i) is preserved, we note that there is

(D⊗m)Γ = (DΓ)⊗m. (5.4)

for a positive matrix D acting on HA′ ⊗HB′ , where Γ is transposition along A′ : B′

cut (see Section 2.5, Eq. (2.62)). Moreover, AΓ
ijij are positive because the matrix

(5.3) is simple-PPT, and positivity is preserved under tensoring.
To see the property (ii) we first observe that hermiticity is preserved under

tensoring. Moreover we know, that Γ preserves hermiticity (see Section 2.5, Eq.
(2.66)). We can prove now the second part of (ii). To this end we observe that
for positive matrices, D ≥ A implies D⊗m ≥ A⊗m (see [Bha97]). This gives
(AΓ

0101)
⊗m ≥ |AΓ

0011|⊗m. Now, for hermitian matrices, there is |A|⊗m = |A⊗m|.
This implies (AΓ

0101)
⊗m ≥ |(AΓ

0011)
⊗m|. Finally, applying (5.4) on both sides of this

inequality, we get desired inequality of (ii).

Observation 5.3 If ρ(d,k,p) ∈F
(m=1)
rec is simple-PPT, then ρ

rec(m)
(d,k,p) ∈Frec is PPT.

Proof. It is immediate from definition of the families under consideration, that
the Lemma 5.2 applies, so that if ρ(d,k,p) is simple-PPT, the matrix Nmρ

rec(m)
(d,k,p) (an

unnormalized matrix of ρrec(m)
(d,k,p) ), is simple-PPT. This by Observation 5.1 implies that

it is also a PPT state after normalization, which gives finally that ρrec(m)
(d,k,p) is PPT.

Hence, to assure a state ρrec(m)
(d,k,p) from Frec to be PPT, it is enough to assure

ρ
rec(1)
(d,k,p) from F (m=1)

rec to be simple-PPT. We now show the parameters for which it
holds.

Lemma 5.4 For p ∈ (0, 1
3 ] and any k ≥ 1 there exists d such that ρrec(1)(d,k,p) is simple-

PPT. More specifically, the state ρrec(1)(d,k,p) is simple-PPT if and only if

0 < p ≤ 1
3

and (5.5)

1− p
p
≥
(

d

d− 1

)k
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Proof. The matrix of the state ρrec(1)
(d,k,p) after partial transposition has the form

ρΓ
ABA′B′ =


p( τ1+τ2

2 )Γ 0 0 0
0 (1

2 − p)τ
Γ
2 p( τ1−τ22 )Γ 0

0 p( τ1−τ22 )Γ (1
2 − p)τ

Γ
2 0

0 0 0 p( τ1+τ2
2 )Γ

 . (5.6)

Since τ1 and τ2 are separable (and hence PPT), so is their mixture. Thus extreme-
diagonal blocks of the above matrix are PPT, as well as the middle diagonal, pro-
portional to τ2. It remains to check when the condition

(
1
2
− p)τΓ

2 ≥ p|(
τ1 − τ2

2
)Γ| (5.7)

is satisfied, to obtain the parameters for which the state (5.6) is simple-PPT. Having
ρs = 1

d2+d
(I + V ) and ρa = 1

d2−d(I − V ) where V swaps d-dimensional spaces and

applying V Γ = dP+, (here exceptionally the projector onto state |Ψ(d)
+ 〉 = 1

d

∑d−1
i=0 |ii〉

we denote as P+), one easily gets that

τΓ
1 =

(
P⊥+
d2 − 1

)⊗k
(5.8)

τΓ
2 =

(
P⊥+
d2 + d

+
(1 + d)P+

d2 + d

)⊗k
(5.9)

where P⊥+ ≡ I − P+ is projector onto subspace orthogonal to the projector onto
maximally entangled state P+ = |ψ+〉〈ψ+|.

We check then the inequality

(
1
2
− p)

(
P⊥+
d2 + d

+
(1 + d)P+

d2 + d

)⊗k
≥

≥ p

2
×

∣∣∣∣∣∣
(

P⊥+
d2 − 1

)⊗k
−

(
P⊥+
d2 + d

+
(1 + d)P+

d2 + d

)⊗k∣∣∣∣∣∣
(5.10)

To solve this inequality it is useful to represent the term on LHS as a sum:(
P⊥+
d2 + d

+
(1 + d)P+

d2 + d

)⊗k
=

(
P⊥+
d2 + d

)⊗k
+R (5.11)
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where operator R is an unnormalised state which consists of all terms coming out of

k-fold tensor product of
(
P⊥+
d2+d

+ (1+d)P+

d2+d

)
apart from the first term

(
P⊥+
d2+d

)⊗k
. It

is good to note that R has support on subspace orthogonal to (P⊥+ )⊗k. This fact
allows to omit the modulus with appropriate change of sign, getting:

(
1
2
− p)

( P⊥+
d2 + d

)⊗k
+R

 ≥
≥ p

2

[
(P⊥+ )⊗k

(
1

(d2 − 1)k
− 1

(d2 + d)k

)
+R

]
, (5.12)

which is equivalent to (5.10). Since R and (P⊥+ )⊗k are orthogonal, this inequality is
equivalent to the following two inequalities

(
1
2
− 3

2
p)R ≥ 0 (5.13)

(
1
2
− p)

(
P⊥+
d2 + d

)⊗k
≥ p

2
(P⊥+ )⊗k ×

×
(

1
(d2 − 1)k

− 1
(d2 + d)k

)
(5.14)

To save first inequality one needs p ≤ 1
3 . Preserving the second one requires

1− p
p
≥
(

d

d− 1

)k
. (5.15)

This however is fulfilled for any p ∈ (0, 1
3 ] if d is taken properly large for some fixed

k. Indeed, the k-th root of 1−p
p (which converges to 1 with k) can be greater than

d
d−1 (which converges to 1 with d) for some large d.

We study now for which parameters (d, k, p) and m the state ρrec(m)
(d,k,p) from Frec

is key distillable.

Proposition 5.5 For 0 < ε < 1/(8e2) and p ∈ (1
4 , 1], there are k, d and m so, that

the sate ρrec(m)
(d,k,p) is close to a pbit:

||ρrec(m)
(d,k,p) − γ

(2)|| ≤ δ(ε) (5.16)

where δ(ε) = 2
√

4
√

2ε+ η(2
√

2ε) + 2
√

2ε.
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Proof. We consider ρrec(m)
(d,k,p) as is written in block form

∑1
ijkl=0 |ij〉〈kl|⊗Aijkl (5.42)

(see the convention introduced in Section 2.58). Let us focus on the upper-right
block of the matrix (5.42), without normalization factor Nm. We denote it Ã0011 to
distinguish from A0011. Norm of this block equals:

‖Ã0011‖ =
(p

2

)m
||((ρa − ρs

2
)⊗k − ρs⊗k)⊗m|| =(p

2

)m (
2(1− 2−k)

)m = pm(1− 2−k)m, (5.17)

where second equality is consequence of the fact, that ρa and ρs have orthogonal
supports which gives that ρ⊗ks is orthogonal to any term in expansion of (ρa−ρs

2 )⊗k

but the one 1
2k ρ

⊗k
s . Thus the result is equal to norm of [(ρa−ρs

2 )⊗k − 1
2k ρ

⊗k
s ] (which

is (1− 1
2k )) plus norm of the difference | 1

2k ρ
⊗k
s − ρ⊗ks | which gives the above formula.

Thus the norm of the upper-right block A0011 of the state (5.42) is given by

‖A0011‖ =
1
Nm
‖Ã0011‖ =

1
2
(1− 1

2k
)m

1
1 + (1−2p

2p )m
. (5.18)

We check now that one can increase this norm to be arbitrary close to 1/2. Since
p > 1

4 , we get that (1−2p
2p )m converges to 0 with m. Although increasing m diminishes

the term (1 − 1
2k )m, we can first fix k large enough, so that the whole expression

(5.18) will be arbitrarily close to 1
2 . Now, Theorem 3.19 assures that for any 0 <

ε1 < 1/(8e2), if only 1
2(1− 1

2k )m 1
1+( 1−2p

2p
)m

> 1/2− ε, there is:

||ρrec(m)
(d,k,p) − γ

(2)|| ≤ δ(ε), (5.19)

with δ(.) vanishing as ε→ 0, hence the assertion follows.
We now show, that for ceratin parameters (d, k, p), the states from Frec are both

PPT and key distillable (PPT-KD):

Theorem 5.6 There are PPT states, which approximate private states. More specif-
ically, For any ε > 0, and p ∈ (1

4 ,
1
3 ] there exist k, d and m such that ρrec(m)

(d,k,p) ∈ PPT

and ||(ρrec(m)
(d,k,p) )− γ

(2)|| ≤ ε, for some pbit γ(2).
Proof. Let us fix ε > 0, and p from interval (1/4, 1/3]. We choose now small enough
0 < ε1 < 1/(8e2) so that δ(ε1) < ε, where δ(.) is defined in thesis of Proposition 5.5.
It is possible, because δ vanishes whith ε1 approaching zero. By this proposition,
there is high m and for such m, high enough k, such, that the state ρrec(m)

(d,k,p) (5.42)
is close to pbit in trace norm distance up to δ(ε1) < ε. We can fix now also m and
k, and choose d so large that by Lemma 5.4 the state ρrec(1)(d,k,p) is PPT. This however
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assures by Observation 5.3 that simultaneously the state ρrec(m)
(d,k,p) is also PPT and the

assertion follows.
We now collect the facts that we know about states from Frec to obtain the

theorem which proves that some of them are bound entangled and key distillable.
Let us first note, that in general, states which are PPT and approximate private

states are entangled. This is because separable states can not approximate private
states (Observation 4.20). Now, since PPT states have ED = 0, PPT states which
approximate private states are bound entangled. We can now formulate a desired
result, which uses this fact in present context:

Theorem 5.7 There are bound entangled states that have nonzero distillable key.
Proof. From Theorem 5.6, it follows that for any ε > 0, there are parameters (d, k, p)
such that the states ρrec(m)

(d,k,p) from Frec are both PPT and within ε distance in trace
norm to some private bit. These states are entangled, since as we have shown in
Observation 4.20, it is impossible for separable states to approximate private states.
Since they are PPT and entangled, by Theorem 2.28, they are bound entangled.
Finally, by Theorem 4.30, the states close by δ < 10−3 in trace norm to private
bits are key distillable. Since ε > 0 can be taken arbitrarily small the latter can be
achieved, which ends the proof of this theorem.

The above theorem is one of the main results of this thesis. We discuss its major
consequences in the next section.

5.3 Interpretation of the existence of BE-KD states: pos-
sibility of teleportation and communicating in pri-
vate do not coincide in general

The fact, that there are BE-KD states has fundamental meaning for better under-
standing of both the privacy present in bipartite quantum states and their entangle-
ment. From example 2.6.1 (the phenomenon of teleportation), we know, that sharing
maximally entangled states allows for quantum communication. On the other hand,
it is shown in [HHH99], that sharing bound entangled states does not allow for such
possibility. Since PPT-KD states are bound entangled, their existence implies that
possibility of sending qubits, is only sufficient, but not necessary condition for pri-
vate communication. Moreover, from results of [HHH99], it follows that existence of
PPT-KD states receives the interpretation in terms of the so called channel capaci-
ties. Namely, it means that there are quantum channels with zero quantum capacity,
but non-zero private capacity. Another cryptographical formulation of this fact is
that pure entanglement is only the sufficient condition of privacy, but not necessary.
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The interpretation of this phenomenon from entanglement theory point of view,
is that bound entanglement can be useful for some task, which was not clear at
all (see [Mas05] for more general results in this subject). The PPT-KD states are
also the first bound entangled states for which the fact that they are entangled is
understood in operational way: they are key distillable.

5.4 One-way key distillable bound entangled states - con-
struction of the family Fs

We construct here the class Fs of bound entangled states of the form ρ = p1γ1+p2γ2,
where γ1 and γ2 are key-part-orthogonal private bits, i.e. such that their key parts
are orthogonal: Tr[TrA′B′γ

(2)
ABA′B′TrA′B′ γ̃

(2)
ABA′B′ ] = 0.

Recall first, that any private bit from B(C2 ⊗ C2 ⊗ Cd ⊗ Cd) on systems ABA’B’,
can be represented in its X-form by an operator X of trance norm 1, which uniquely
determines it (see Section 3.4.2), so that the mixture of two pbits represented by X1

and X2 that are key-part-orthogonal has matrix form:

ρ =
1
2


p1

√
X1X

†
1 0 0 p1X1

0 p2

√
X2X

†
2 p2X2 0

0 p2X
†
2 p2

√
X†

2X2 0

p1X
†
1 0 0 p1

√
X†

1X1

 . (5.20)

in some product basis, which we choose now to be a standard basis. The essential
part of the construction of Fs is the following substitution: X1 = 1

||WU ||WU where

WU =
∑
ij

uij |ij〉〈ji| (5.21)

and uij are matrix elements of some unitary matrix U on Cd. The second operator
we choose X2 = WΓ

U

||WΓ
U ||

with Γ being partial transposition on subsystem B′. The
corresponding mixing probabilities are

p1 =
||WU ||

||WU ||+ ||WΓ
U ||

p2 =
||WΓ

U ||
||WU ||+ ||WΓ

U ||
(5.22)

respectively.
In turn we obtain a desired family of states Fs. These are states on systems

ABA′B′ with dimA = dimB = 2 and dimA′ = dimB′ = d, that can be written in a
form
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ρU =
1
N


∑

ij |uij ||ij〉〈ij| 0 0
∑

ij uij |ij〉〈ji|
0

∑
i |ii〉〈ii|

∑
ij uij |ii〉〈jj| 0

0
∑

ij u
∗
ij |jj〉〈ii|

∑
i |ii〉〈ii| 0∑

ij u
∗
ij |ji〉〈ij| 0 0

∑
ij |uij ||ji〉〈ji|

 .(5.23)

with N = 2(
∑d−1

i,j=0 |uij ||ij〉〈ij| + d), the indices i, j ∈ {0, . . . , d − 1} in the summa-
tions, and U a unitary transformation with at least d + 1 nonzero matrix elements
when written in standard basis.

We can prove now the essential property of the states from Fs.

Proposition 5.8 For ρ = pγ1 + (1 − p)γ2 ∈Fs, where γ1 and γ2 are key-part-
orthogonal pbits, ρ is both PPT and key distillable. Moreover it is invariant under
partial transposition (PT-invariant), and has KD(ρ) ≥ 1− h(p1),
Proof. Let ρ = ρU ∈Fs with U a unitary transformation from definition of Fs. It is
easy to observe first that [WUW

†
U ]

1
2 =

∑
ij |uij ||ij〉〈ij| and [W †

UWU ]
1
2 =

∑
ij |uij ||ji〉〈ji|.

In both cases after normalisation by factor ||WU || we obtain separable, PT-invariant
state. Moreover [WΓ

U (WΓ
U )†]

1
2 = [(WΓ

U )†WΓ
U ]

1
2 =

∑
i |ii〉〈ii|, (again after normali-

sation giving PT-invariant separable state). From this we obtain that ρU with is
PT-invariant. At the same time we have desired security condition p1 > p2 if only

p1

p2
=
||WU ||
||WΓ

U ||
=

∑
ij |uij |
d

> 1. (5.24)

The above inequality is satisfied for a unitary U which written in {|ij〉} basis has
more than d nonzero entries. Indeed

∑
ij |uij |2 = d ≤

∑
ij |uij | by unitarity of U

(note, that for each i, the |uij |2 are probabilities). This inequality is strict, if only
there are d + 1 nonzero elements, since in this case there is a column with two
nonzero elements, that has the sum of their modulus strictly greater than the sum
of the squares of their modulus. The fact that KD(ρU ) ≥ 1 − h(p) follows from
Proposition 4.34, since ρU is a mixture of two key-part-orthogonal private states.
Hence, they are BE-KD states, because separable states are not key distillable (see
discussion in Section 4.6.1).

Thus, we have a large class of states that contain secure key and are bound
entangled.

Remark 5.9 The choice of X1 and the element
√
X2X

†
2 which assures positivity

of the matrix (5.20) with blocks of zeros in place of the two off-diagonal blocks: X2

and X†
2 has been found using numerical methods by Ł Pankowski [Pan05]. By now,
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no algorithm is known, that decides for which operator of the form p1X1 there is an

operator of the form (1−p1)
√
X2X

†
2 which assures ρ to be a PPT state. Interestingly,

the private bit determined by X2 in X-form is a flower state, that was presented in
Chapter 3.

5.4.1 Some properties of Fs
Observation 5.10 The ratio of p1 and p2 in (5.24) which is related to key rate
CDWD ≥ 1 − h(p1) achieves the highest value for unimodular unitaries U (ie. such
that |uij | = 1√

d
). Then it amounts to [p1p2 ]optimal =

√
d.

Proof. We use the Lagrange multipliers method for the following function: f : Rd
2 \

{0} → R>0, defined as f(~u) =
∑d−1

ij=0 |uij |2, with the constraint g : Rd
2 \ {0} → R>0

defined as g(~u) =
∑

ij |uij |2−d (see e.g. [wik08b]). It is easy to see, that this method
gives desired optimality of ratio p1

p2
= 1√

d
. We only have to argue, that the constraint

g is proper in our context. The constraint that follows from assumption is just a
unitarity condition: UU † = I, that reads:

d−1∑
ijk=0

uiju
∗
kj = δi,k. (5.25)

It follows then, that for each i, with k = i there is

d−1∑
j=0

|uij |2 = 1. (5.26)

This condition allows us for the constraint g, which is more general - can be satisfied
by non-unitary matrices as well. Fortunately, the maximum can be attained by
unitary matrices as well, e.g. by the unimodular unitary transformations presented
in proof of Corollary 3.12.

Example of 4⊗ 4 bound entangled states with KD > 0 from Fs

Setting d = 2 in (5.23) we obtain the smallest (4⊗4) PPT-KD states from family Fs.
An easy example is a state with U equal to 1-qubit Hadamard gate H (see Section
2.2.2). The state ρH can be written as a mixture of Bell states on AB subsystem
of state, that are ’classically’ correlated with some other states on A′B′. Namely we
have

%H =
∑
i

qi|ψi〉〈ψi|AB ⊗ %(i)
A′B′ (5.27)
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where the correlated states are the following:

%(0) =
1
2
[P00 + Pψ2 ]

%(1) =
1
2
[P11 + Pψ3 ]

%(2,3) = Pχ± (5.28)

with Pψi
being projectors onto corresponding maximally entangled states: |ψ0,1〉 =

1√
2
(|00〉 ± |11〉) and |ψ2,3〉 = 1√

2
(|01〉 ± |10〉) and Pχ± projectors onto pure states

χ =
1√

2±
√

2
(|00〉 ± |ψ0〉) (5.29)

respectively. The mixing distribution {qi}3i=0 is {p12 ,
p1
2 ,

p2
2 ,

p2
2 }. Since d = 2, one has

p1 =
√

2
1+
√

2
, so by proposition 4.34 a positive key rate can be gained from this 4-qubit

PPT state. It reads:

CDWD (%H) = 1− h(p1) = 0.0213399. (5.30)

We will show now, that state ρH is extremal in set of PPT states in B(C4 ⊗ C4).
To this end, we acquire topological definitions of the neighbourhood of a point and
the boundary of a set in metric space:

Definition 5.3 (see e.g. [wik08c]) In metric space a set V is neighbourhood of a
point p, if there is an open ball with center at p and radius r,

B(p, r) = {x : ||x− s|| < r},

which is contained in V .

Definition 5.4 (see e.g. [wik08d]) For a subset S of topological space X, the set of
points p of X such that every neighborhood of p contains at least one point of S and
at least one point not of S.

If a point p belongs to a boundary, we say, that it is extremal in S. In our context,
we identify X with B(Cd ⊗ Cd′), for some d, d′ ≥ 2 that will be fixed later, and S
with the set of PPT states (PPT) in B(Cd ⊗ Cd′). Since PPT is closed, we have
∂PPT ⊂ PPT . Using this terminology, we can formulate the following observation:

Observation 5.11 The state %H is extremal in PPT.
Proof. We show it by constructing a sequence of balls with center at ρH and
vanishing radius, which contains a point out of PPT (i.e. NPT). Recall that %H is
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a mixture of the form (5.20) with X1 = WH and X2 = XΓ
1 . It is straightforward

to check, that any such mixture with p1 6=
√

2
1+
√

2
gives an NPT state. Changing

weight of p1 we can interpolate between the two pbits and any point on a line
L = {ρ|ρ = p1γX1 + p2γX2} but ρH is NPT. Hence for every ball B with nonzero
radius with center at ρH , there is some NPT state in B ∩ L. Let us fix some
neighbourhood N(ρH) of ρH . By Definition 5.3, it contains a ball B(ρH , r) for
some r > 0. We have then, that N(ρH) contains ρH ∈ PPT and some state from
B(ρH , r) ∩ L which is NPT, hence the assertion follows.

Remark 5.12 The same argument as in the above observation proves extremity of
the state %U with X1 = WU , if only X1 is hermitian operator, and either X1 or XΓ

1

has some positive eigenvalue.

5.5 On the construction of bound entangled states with
nonzero distillable key

In previous sections we have presented PPT-KD states from family Frec. They are
of quite special form, which at first may appear strange. One can ask if it is just
a coincidence that states of such structure are PPT-KD. The original way in which
these states were constructed in [HHHO05a] gives the answer to this question. The
fact that the states are PPT-KD, can be understood from their structure. It is
therefor instructive to follow the way in which these states were designed. From
this, it will follow that the paradigm of private states presented in previous chapters
perfectly suits the goal of getting PPT-KD states, giving insightful view on the
existence of PPT-KD states in general. We sketch also briefly the original idea of
the proof that some states from Frec are PPT.

The construction of Frec (5.1) is divided into three steps:

1. Construct states ρde(d,k), which approximate pbits (for large enough k), but have
vanishing ED (for large enough d).

2. Admix special separable state ρnoise to get the family of states

F (m=1)
(d,k,p) = {ρ(d,k,p) = 2pρde(d,k) +(1−2p)ρnoise | d ≥ 2, k ≥ 1, p ∈ (0, 1]}, (5.31)

such that ρ(d,k,p) ∈ PPT , for certain d, k, p.

3. Apply the probabilistic LOCC transformation called R protocol to obtain from
ρ⊗m(d,k,p) for sufficiently high m the states from Frec, with nonzero probability.
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5.5.1 On hiding states and how to construct approximate pbits with
arbitrarily small ED

In this section we first invoke the scheme and main achievements of quantum data
hiding [TDL01, DLT02], and show its connection with the structure of private states
with hermitian X when written in X form. Basing on this we argue that ceratin
states approximate private states, yet have arbitrarily small distillable entangled
states (see Section 5.5.1).

Hiding states

In scenario of distinguishing states (see e.g. [HMM+06] and references therein) in case
of two states we are given one of two bipartite states ρ0 and ρ1 with probability p0 and
p1 respectively. We can perform quantum operations from some class of operations
OP, and at the end guess which state we were given. The guess is inconclusive, that is
we may be wrong. Our aim is to find an operation which maximises probability of a
good guess. Since what matters is just a probability of success, instead of optimizing
over operations we can optimize over corresponding POVMs. For OP being the set of
all quantum operations, it is easy to argue, that optimal POVM which distinguishes
between two states has only two elements E0 and E1, and the probability of success
is given by

ps(Q)(ρ0, ρ1) = p0TrE0ρ0 + p1TrE1ρ1. (5.32)

(A formula for ps(OP ) with OP a general class of operations see chapter 6). In this
case, the famous Helstrom formula holds, which for p0 = p1 = 1

2 gives:

ps(Q)(ρ0, ρ1) =
1
2

+
1
4
||ρ0 − ρ1||. (5.33)

One can expect, that if the class OP is restricted, e.g. equal to LOCC, the probability
becomes smaller. Surprisingly, the recent results shows that the difference between
the ps(LOCC) and ps(Q) can be extremal, i.e. almost 1

2 . This phenomenon was found
by DiVincenzo, Leung and Terhal in [TDL01, DLT02], and exploited to develop a so
called quantum data hiding scheme. According to the latter, one can hide one bit of
information by correlating the bit with a pair of states {ρhide1, ρhide2}, which are

(i) almost indistinguishable by means of LOCC operations: ps(LOCC)(ρhide1, ρhide2) ≈
1
2 ,

(ii) almost distinguishable by means of quantum operations ps(Q)(ρhide1, ρhide2) ≈
1.
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Any pair of states satisfying these two properties is called a pair of hiding states.
The resulting state with the hidden bit on system C is of the form:

ρhb =
1
2
|0〉〈0|C ⊗ ρhide1AB +

1
2
|1〉〈1|C ⊗ ρhide2AB . (5.34)

The bit on system C is inaccessible to the parties who perform LOCC operations on
system AB thanks to property (i), yet it can be reviled if they come together and
perform quantum operation, which is assured by property (ii).

This amusing phenomenon has been developed by Eggeling and Werner in [EW02].
They have found a pair of hiding states τ1 and τ2 (called further EW hiding states),
which are additionally both separable, which appears to be crucial in our further con-
siderations. Eggeling and Werner also derived a general upper bound (called further
EW bound) on probability of distinguishing by means of PPT operations (and hence
also LOCC operations), which can be seen as a counterpart of Helstrom formula (see
Proposition 6.1):

ps(PPT )(ρ1, ρ2) ≤
1
2

+
1
4
||ρΓ

1 − ρΓ
2 ||. (5.35)

where Γ denotes the operation of partial transposition (Def. 2.7). The EW hiding
states are

τ1 = (
ρs + ρa

2
)⊗k, τ2 = (ρs)⊗k, (5.36)

with ρs and ρa the symmetric and antisymmetric Werner states acting on d × d
dimensional Hilbert space (See Eq. (3.53)). To improve distinguishability via quan-
tum operations one needs to increase k. To make at the same time arbitrarily small
LOCC distinguishability, one needs to increase initial dimension d. It is shown in
[EW02], that for the pair {τ1, τ2}, the EW bound is small, hence they are hiding.

Approximate pbits with almost zero ED

We now adopt the idea of hiding bits to find states with arbitrarily small distillable
entanglement, yet with non vanishing amount of distillable key. In [HHHO05a], this
method was called ’hiding entanglement’, as in this way we have ’hide’ maximally
entangled states. We do not use this name in present context, as we preserve it for
the issue of distinguishing entangled states from separable states (see Chapter 6).

Instead of bits one can correlate two, orthogonal maximally entangled states with
the two hiding τ1, τ2 states to obtain:

ρde(d,k) =
1
2
|φ+〉〈φ+|AB ⊗ τA

′B′
1 +

1
2
|φ−〉〈φ−|AB ⊗ τA

′B′
2 (5.37)

Now, the two properties of hiding states which we have invoked, are connected the
two new properties of some states ρde(d,k), for sufficiently high d and k:
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(i) ED(ρde(d,k)) ≈ 0 (ED is decreased)

(ii) KD(ρde(d,k)) ≈ 1, (approximate pbit)

We will not use these properties directly, however it appears that the successful
construction of PPT-KD states within Frec is tightly connected to these two proper-
ties. Namely, it is easier to construct a PPT-KD state from state with a gap between
ED and KD, when ED is already small. To serve a background, but not to diverge
too much from the subject, we give only the idea of the proof of these two properties.

The idea of the proof of (i) is the following. Adapting Lemma 3.7, to states of
the form (5.37), one gets EN (ρde(d,k)) = log(1+ 1

2 ||τ
Γ
1 − τΓ

2 ||). The quantity ||τΓ
1 − τΓ

2 ||
appears in the Eggeling Werner bound (5.35), which is small for τ1 and τ2. Hence,
also EN is small, and small is finally the ED upper bounded by EN [VW02]. The
higher d, the smaller ED becomes.

The idea to see (ii) is to compare states ρde(d,k) to a pbit. Because τi are hiding,
they are orthogonal i.e. satisfy 1

2 ||τ1 − τ2|| > 1 − 2ε, for some ε. Now, writing
ρde(d,k) in block form

∑1
ijkl=0 |ij〉〈kl| ⊗ Aijkl one can see, that A0011 = 1

4(τ1 − τ2).
Hence, ||A0011|| > 1

2 − ε. This by Proposition 3.19 implies that ρde(d,k) is close to some
private bit in trace norm, providing sufficiently small ε, which can be achieved by
increasing parameter k. We know also by Theorem 4.30, that if ρde(d,k) is close enough
to pbit, then its distillable key tends to 1. The fact, that KD(ρde(d,k)) ≤ 1 follows from
Proposition 3.13.

It might be a good place to note, that choosing ρde(d,k) as a starting point, had
double advantage. First, because τ1 and τ2 are hiding, ρde(d,k) does not allow for
distillation of entanglement by just distinguishing them. Second, as it was mentioned,
this particular hiding states are separable, so they do not bring in any entanglement.

5.5.2 From approximate pbit with small ED, to PPT states...

Having constructed states ρde(d,k), that approximate pbits with small ED, we are ready
to make them PPT, i.e. with zero ED. This transformation fortunately does not
decrease distillable key too much. In this way we obtain the family F (m=1)

rec , which is
the second step to construct Frec. The parameters k and d of F (m=1)

rec are inherited
from ρde(d,k). We introduce now the parameter p.
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To this end, we first observe, that the state:

ρde(d,k) =


1
2( τ1+τ2

2 ) 0 0 1
2( τ1−τ22 )

0 0 0 0
0 0 0 0

1
2( τ1−τ22 ) 0 0 1

2( τ1+τ2
2 )

 ,
(5.38)

is obviously negative after partial transposition (is NPT). Indeed, consider partial
transposition over system BB′ (i.e. transposition on system BB′ only). It is a
composition of partial transpositions of B and B′ subsystems, transforming the state
(5.38) into:

ρΓ
ABA′B′ = (IA ⊗ TB ⊗ IA′ ⊗ TB′)(ρABA′B′) =

=


1
2( τ1+τ2

2 )Γ 0 0 0
0 0 1

2( τ1−τ22 )Γ 0
0 1

2( τ1−τ22 )Γ 0 0
0 0 0 1

2( τ1+τ2
2 )Γ


(5.39)

where Γ denotes partial transposition over subsystem B′ (as partial transposition
over B caused interchange of blocks of matrix of (5.38), see Example 2.16). This
matrix is obviously not positive for the lack of middle-diagonal blocks. To prevent
this we admix to ρde(d,k) a separable state 1

2(|01〉〈01|+ |10〉〈10|)⊗τ2 with a probability
(1− 2p), where p ∈ (0, 1

2 ]. It’s matrix reads then

ρ(d,k,p) =


p( τ1+τ2

2 ) 0 0 p( τ1−τ22 )
0 (1

2 − p)τ2 0 0
0 0 (1

2 − p)τ2 0
p( τ1+τ2

2 ) 0 0 p( τ1+τ2
2 )

 , (5.40)

In subscript we explicitly write the parameters on which this state depends implicitly:
d = dA′ = dB′ is the dimension of symmetric and antisymmetric Werner states used
for hiding states (5.36) and k is parameter of tensoring in their construction. Thus
we have the desired family of states:

F (m=1)
rec = {ρ(d,k,p) | d ≥ 2, k ≥ 1, p ∈ (0, 1]}, (5.41)

in accordance with Definition 5.1. As it was shown in Lemma 5.4, these states are
PPT for certain range of parameters (d, k, p).
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5.5.3 ... and back - to approximate pbits in higher dimensions,
using PPT states and recurrence protocol

In this section we finalize the construction of states from Frec. These are the states
from F (m=1)

rec but improved via the probabilistic LOCC operations performed on some
number m of the copies of the latter. The probabilistic operations, forming an R
protocol gives with nonzero probability state from Frec, which is much closer to a
pbit, than the states from F (m=1)

rec .
To this end, we first describe the following LOCC procedure, that will be central

for obtaining more and more secure states out of ρ⊗m(d,k,p).

Recurrence protocol for getting states close to pbits

In this section we introduce a protocol, called recurrence protocol (R). It allows
Alice and Bob sharing ρ⊗m(d,k,p) to obtain via two-way LOCC operation with nonzero
probability a state which is close to private state. This protocol is a direct analogue
of recurrence protocol introduced by Maurer in context of classical key agreement
[Mau93], in analogy to approach of [BDSW96].

Description of the R protocol
Let Alice and Bob share m copies of a state ρ. They take first system in the

state ρ as source system, and iterate the following procedure. In i-th step they take
the i-th system in state ρ, and treat it as a target system. Let us remind that both
systems have four subsystems A, B, A′ and B′. To distinguish the source and target
system, the corresponding subsystems of the target system we call Ã, B̃, Ã′, B̃′. On
the source and target system they both perform a Control-NOT unitary operation1

with the source at the A(B) part of the source system and target at Ã(B̃) part of
the target system for Alice (Bob) respectively. Then, they both measure the Ã and
B̃ subsystem of the target system in computational basis respectively, and compare
the results. If the results agree, they proceed the protocol, getting rid of the ÃB̃
subsystem. If they do not agree, they abort the protocol i.e. trace out the state, and
prepare (properly embedded) state |22〉〈22|. With nonzero probability of success
they can perform this procedure m − 1 times having each time the same source
system. That is they start with m systems in state ρ and in each step (upon success)
they use up one system and pass to the next step.

We will show now, that applying the R protocol to ρrec(1)(d,k,p) ∈Frec, one can obtain

1The Control-NOT operation (CNOT) is defined via acting on standard basis as follows:
CNOT |i〉s|j〉t := |i〉s|i⊕ j〉t, where s, t denotes the source and target system respectively.
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ρ
rec(m)
(d,k,p) ∈Frec for m > 1. Let us recall, that they are of the form:

ρ
rec(m)
(d,k,p) =

1
Nm


[p( τ1+τ2

2 )]⊗m 0 0 [p( τ1−τ22 )]⊗m

0 [(1
2 − p)τ2]

⊗m 0 0
0 0 [(1

2 − p)τ2]
⊗m 0

[p( τ1−τ22 )]⊗m 0 0 [p( τ1+τ2
2 )]⊗m

 ,
(5.42)

where Nm = 2[pm + (1
2 − p)

m]. We first need the following observation about
these states.

Observation 5.13 ρ
rec(m)
(d,k,p) written in block form

∑1
ijkl=0 |ij〉〈kl| ⊗ Zijkl satisfies

Zijkl = Zīj̄k̄l̄ = 1
Nm

W⊗m
ijkl , where W0000 = p( τ1+τ2

2 ), W0101 = (1
2 − p)τ2, W0011 =

p( τ1−τ22 ) and ī denotes binary negation of index i with the same for j, k, l.
Proof. Follows easily from definition of the family Frec.

In what follows we will refer to the property from the above observation, as to
the symmetry&tensor property. We can pass now to desired lemma.

Lemma 5.14 The output of R protocol applied to [ρrec(1)(d,k,p)]
⊗m has form ρ

(m)
out =

q
(m)
RP ρ

rec(m+1)
(d,k,p) + (1− q(m)

R )|22〉〈22|, with q(m)
RP > 0.

Proof. We focus on the first step of the procedure, in a form general enough to
show how the induction proves the result.

Let us consider the state ρABA′B′ = ρ
rec(1)
(d,k,p) and arbitrary state σÃB̃Ã′B̃′ from

B(HÃ ⊗ HB̃ ⊗ HÃ′ ⊗ HB̃′) with dimHÃ = dimHB̃ = 2. When both written in a
block form, their tensor product reads:

σÃB̃Ã′B̃′ ⊗ρABA′B′ =
1,1∑

ijkl=0,rstv=0

|i〉〈k|A⊗|j〉〈l|B⊗XA′B′
ijkl ⊗|r〉〈t|Ã⊗|s〉〈v|B̃⊗Y

Ã′B̃′
rstv

(5.43)
After applying the CNOT operations on systems AÃ and BB̃ respectively, the above
state reads:

ρCNOTs =
1,1∑

ijkl=0,rstv=0

|i〉〈k|A⊗|j〉〈l|B⊗XA′B′
ijkl ⊗|r⊕i〉〈t⊕k|Ã⊗|s⊕j〉〈v⊕l|B̃⊗Y

Ã′B̃′
rstv .

(5.44)
The form of the output state follows from the fact, that upon result |00〉〈00| on ÃB̃,
the resulting (unnormalized) state has form:

ρ00
CNOTs =

1∑
ijkl=0

|i〉〈k|A ⊗ |j〉〈l|B ⊗XA′B′
ijkl ⊗ |0〉〈0|Ã ⊗ |0〉〈0|B̃ ⊗ Y

Ã′B̃′
ijkl , (5.45)
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and upon result |11〉〈11|, the state reads:

ρ11
CNOTs =

1∑
ijkl=0

|i〉〈k|A ⊗ |j〉〈l|B ⊗XA′B′
ijkl ⊗ |1〉〈1|Ã ⊗ |1〉〈1|B̃ ⊗ Y

Ã′B̃′

īj̄k̄l̄ . (5.46)

In first iteration, according to R, we have σÃB̃Ã′B̃′ = ρABA′B′ . By Observation 5.13,
and equations (5.45) and (5.46), after this iteration there is:

ρ
(2)
out =

TrÃB̃[ρ00
CNOTs + ρ11

CNOTs]
Tr[ρ00

CNOTs + ρ11
CNOTs]

= ρ
rec(2)
(d,k,p). (5.47)

It is also straightforward to check that

q
(1)
RP = Tr[ρ00

CNOTs + ρ11
CNOTs], (5.48)

which gives:

q
(1)
RP = (TrX0000TrY0000 + TrX0101TrY0101 + TrX1010TrY1010 + TrX1111TrY1111) +

(TrX0000TrY1111 + TrX0101TrY1010 + TrX1010TrY0101 + TrX1111TrY0000).(5.49)

This probability is nonzero since the entries TrXijij sum up to 1, and Xijij = Yijij
in this case.

If we assume now the thesis for ρrec(m)
(d,k,p) , we can substitute this matrix in place of

σÃB̃Ã′B̃′ to get analogues of the formulas (5.45) and (5.46). Now, again by Observa-
tion 5.13, both the matrix ρrec(1)

(d,k,p) and ρrec(m)
(d,k,p) satisfy the symmetry&tensor property.

From this facts, in analogy to (5.47), ρ(m)
out = ρ

rec(m+1)
(d,k,p) . The probability of obtain-

ing this matrix is nonzero from the assumption that q(m)
RP is nonzero, and from the

formula analogous to (5.49). This proves the assertion.

PPT states within Frec - sketch of the original proof

Having described the construction, we are able to invoke the original argumentation
for that some states from Frec are PPT, given in [HHHO05a]. It can be called
operational, since it follows from the fact, that:

• the probabilistic LOCC operations (such as R protocol) transforms PPT states
into PPT states (see Theorem 2.17)

Hence, if we have assured the states from F (m=1)
rec to be PPT, so must be the corre-

sponding states from Frec, obtained by the R protocol, and the assertion follows. It
is different from that we have presented in Section 5.2, in that it uses more general
notions: of probabilistic LOCC operations, and the R protocol.
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5.5.4 Remarks on general approach to distill key from biparite
states

The choice of R protocol in construction of Frec is not accidental. The original idea
of [HHHO05a] was just to distill key from the states ρ(d,k,p), for which the R protocol
was used. This fact did not receive clear enough statement in [HHHO05c, HHHO05a].
The fact, that some states from F (m=1)

rec are also distillable, was noted explicitly in
[CCK+07]. We comment now on the use of the R protocol to distill key from these
states.

The R protocol on input ρ ∈F (m=1)
rec outputs an approximate private state ρout ∈Frec

only with nonzero probability qR of success. Thus, the R protocol can be called a
probabilistic key distillation protocol, while Def. 4.1 of key distillation involves pro-
tocols which outputs approximate private states with certainty. It is however easy to
make from the R protocol an LOCC operation which outputs state that is close to
ρout in trace norm, by amplifying probability qR. One achieves this applying repeti-
tively the probabilistic LOCC operation, and make appropriate postselection of the
results. Success of this approach follows from the well known Chernoff bound. Since
ρout is an approximate private state, and reachable from ρ via LOCC operation,
such modified R protocol is legitimate key distillation protocol for ρ, which proves
KD(ρ) > 0.

It is easy to see that in fact, any probabilistic key distillation protocol can be
turned into key distillation protocol via modification presented above. This approach:
first distillation via some LOCC operation followed by the application of the MPDW
protocol has been noted as necessary [CCK+07], and in fact necessary and sufficient
condition [AH06] for key distillability of any state (see Theorem 4.32).

In particular, not only the states which approximate private states such as PPT-
KD states from Frec are key distillable. Indeed: the PPT-KD states from Fs as well
as F (m=1)

rec are clearly far from private states in trace norm, as their p-squeezed states
are so. It is the protocol of key distillation which transforms (many copies of) them
into some (large) states that are close to private states.

On one and two-way key distillability

An interesting issue is the use of classical communication in the key distillation
protocol. The MPDW protocol (see Section 4.6.5 and Sections 4.6.3,4.6.2) which
we base on here, uses only one-way communication. This protocol gives key from
the states ρrec(m)

(d,k,p) and from Fs. In [CCK+07] it is argued, that the one-way key

distillation MPDW can not be launched directly on states from F (m=1)
rec , as they

have negative CDWD . Hence, the only way they are known to be key distillable
is via use of the modified R protocol described above, which clearly uses two-way
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communication, as the R does so. It seems thus, that the PPT-KD states from
F (m=1)
rec are distillable only by two-way key distillation protocols. One could think,

that two-way communication may be needed here, because states from F (m=1)
rec are

far in trace norm from private states, and that this is general reason for two-way
communication. As it is the main surprise of [HPHH05], this is not the case: the
states from Fs are distillable via one-way MPDW protocol, despite of the fact, that
they are far from private states.

Searching for minimal dimension of BE-KD states in F (m=1)
rec

To check the key distillability of the states from ρ ∈F (m=1)
rec , we will check if it is

indicated by the sufficient condition, based on the R followed by Devetak-Winter
protocol.

Observation 5.15 Some numerical investigations suggests that minimal dimension
d, and parameter k for which there is p ∈ (1

4 ,
1
3 ], such that CDWD ([(ρrec(m)

(d,k,p) )
ps]ccq) > 0

is nonzero for some m, and ρ(d,k,p) is PPT , equals d = 5 and k = 4. In this case,
minimal m is m = 6. In particular there is

CDWD ([(ρrec(6)

(5,3, 1
3
)
)ps]ccq) = 0.0336181. (5.50)

Proof. To see this we use Lemma 4.33, which calculates the DW key rate for p-
squeezed states of certain form. In our case, this rate reads:

CDWD ([(ρrec(m)
(d,k,p) )

ps]ccq) = 1−H((x+ y, x− y, z, z)), (5.51)

where x = pm/(2pm+2(1/2−p)m), y = (1
2)(1−2(−k))m(1/(1+(1−2p

2p )m)), z = 1
2−x.

The investigation of minimal parameters d, k,m is as follows.
A simple search using For loop in Mathematica 5.0 with 2D plot of the above

rate function (5.51), yields that minimal k for which it is positive for some range of
p ∈ (1

4 ,
1
3 ] is k = 3. In this case minimal is m = 6, and p is close to 1/3. For example:

CDWD ([(ρrec(6)

(5,3, 1
3
)
)ps]ccq) = 0.0336181. (5.52)

Increasing m for smaller k doeas not give hope for getting some CDWD positive for
k < 3, yet we did not perform an analytical proof of this fact.

Analogously, we do a brute-force test to find the minimal d for which the function

fPPT (p, d, k) :=
1− p
p
− (

d

d− 1
)k, (5.53)
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is not negative, assuring that ρrec(m)
(d,k,p) is PPT. To this end we fix k = 3 and search for

the smallest d for which the plot of p in range (1
4 ,

1
3 ] shows the fPPT to be positive.

We have found that minimal d for which fPPT ≥ 0 with probability p for which
quantity (5.51) is positive, equals 5. Exemplary p for which positivity of both (5.51)
and (5.53) is satisfied with k = 3, d = 5,m = 6 equals 1

3 .
Thus we have numerical suggestion, that the smallest state ρ(d,k,p) which has

positive distillable key occupies dlog(22 × (dk00 )2)e = dlog(4× (53)2)e = 16 qubits.

On key distillability of 2⊗ n states

In this section we consider states from B(C⊗2⊗C⊗n) for n ≥ 4. In this case, there can
be also some PPT entangled states, which have ED = 0, yet may be key distillable.
No such state is known so far.

Let us note, that all PPT-KD states constructed in this Chapter have the prop-
erty, that their p-squeezed states are key distillable. We observe, that the states
in B(C⊗2 ⊗ C⊗n) for n ≥ 4 does not have this property. In the proposition below,
without loss of generality we show this for n = n′ × n′′ (other cases can be covered
by proper embedding of an n-dimensional system).

Proposition 5.16 For a bipartite PPT state ρABB′ ∈ B(C⊗2 ⊗ C⊗n′ ⊗ C⊗n′′) the
p-squeezed state of ρABB′ is not key distillable.
Proof. It is easy to see, that for ρABB′ , the operation of p-suqeezeing can be per-
formed on Bob’s site. This is because instead of untwisting Ups, which is ingredient of
p-squeezing2, Bob can perform the local twisting, which has form

∑1
i=0 |ei〉〈ei|B⊗U

(i)
B′

and subsequently trace out the B′ system. Now, if the state ρps was key distillable
it would be entangled, i.e. would have ED > 0, as all two-qubit entangled states are
distillable [HHH97]. Hence, Bob could transform a PPT state which has ED = 0,
into state with ED > 0 by local operations, which is impossible, by Theorem 2.28.

For this reason, we conjecture, that if there are entangled states which are not
key distillable, it can be some PPT states in B(C⊗2 ⊗ C⊗n) for n ≥ 4 [BHH+08].

5.6 Further developement and open problems

It might by a good place to note, the abstract of [HHHO05c] is unfortunately too
sound in saying that "‘It is shown that one can distill arbitrarily secure key from
bound entangled states"’. The sentence should be: "‘It is shown that one can distill

2For consistency with definition of privacy squeezing (see Section 3.3.2), one should assume
existence of system A′ with associated 1-dimensional Hilbert space, which we omit here as technical
detail.
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arbitrarily secure key from certain bound entangled states"’, which we have noticed,
while writing this thesis.

Key distillability, and PPT-KD states

In [CCK+07] it has been observed, that states from F (m=1)
rec has negative CDWD for

law d and k, so that a two-way protocol is needed. Also, other key distillable states
based on those presented in this Chapter has been found there. As it was already
stated, the necessary [CCK+07] and necessary and sufficient condition [AH06] for
key distillability has been explicitly stated. In [CCK+07] it is noted, that there are
PPT-KD states in F (m=1)

rec . Moreover, in [AH06], new PPT-KD states in C⊗6 ⊗ C⊗6

has been found.

Multipartite PPT-KD states

The mulitpartite PPT-KD states have been found [Aug08]. The main Theorems of
this thesis are shown to be true also in multipartite setting. In this setting some
different (multiparite) phenomena comes into play: there are PPT-KD states which
have twisted a so called noisy W state, (not just a GHZ which is a multipartite
counterpart of the maximally entangled state).

Unconditionally secure quantum key distribution and private states

So far in this thesis we have explored the LOCC scenario (see Sections 2.6, and 2.14).
In this scenario Alice and Bob are promised to be given n copies of a quantum state
ρ, while Eve is given their purifying systems. This is a fundamental scenario, yet not
fully realistic. In reality, Alice and Bob would like to trust only themselves, while
the LOCC scenario implicitly assumes one of the two: (i) existence of a person who
provides the states (ii) Alice sends ’parts’ of the states to Bob via channel.

To avoid trusting the person in case (i) or assuming that the channel is not
tampered with in case (ii), Alice and Bob have to verify if they are given good
states, before they try to extract secure key. If they did not check the quality of
input, Eve who can be in principle the provider, or (in case (ii)) who can operate
during transmision via the channel, could manipulate them providing states from
which they will never obtain a secure output.

For the sake of verification they perform certain LOCC operations, and if the
input is acceptable, they proceed to transform it into state which represents secure
key. If the input is not acceptable, they reject it, and close the protocol. These oper-
ations ( including verification followed by privacy extraction or rejection) establishes
what is called unconditionally secure quantum key distribution protocol.
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In [HLLO06] and [HHH+07, HHH+08], the following questions are studied re-
spectively, and answered in positive:

• Are (i) private bits, ((ii) approximate private bits) verifiable via LOCC oper-
ations ?

In [RS07] the simple proof for security of the protocols based on noisy prepro-
cessing has been found. It bases on the fact, that a coherent version of any quantum
key distribution protocol, to be unconditionally secure need to produce private states
(see also [RB08, RB07]).

5.6.1 Open problems

The most widely open problem (see also [Wer99, AH06]) is the following:

1 Are all entangled states key distillable ?

This fundamental issue weather privacy and entanglement are qualitatively equiv-
alent, has variety of simplified sub-questions. Exemplary can be the following:

2 Are some previously known PPT entangled states key distillable ?

3 What is the maximal value of key obtained from PPT entangled states in
C⊗d ⊗ C⊗d. Is it reached only by the states from the boundary of PPT?

4 Characterization of the states belonging to boundary of PPT, which are key
distillable.

5 Are there bound entangled key distillable states in C⊗3 ⊗ C⊗3 and C⊗2 ⊗ C⊗4

(see [AH06] and Section 5.5.4)?

6 Is there a criterion that reports entanglement of PPT-KD states presented here,
which does not base on the fact that they are key distillable ?



Chapter 6

Distinguishing private states from
attacked private states - hiding
entanglement scheme

In this Chapter we discuss the subject of discriminating between two states via
LOCC operations [Hor08]. We consider distinguishing k copies of a private bit from
k copies of its attacked version, which is the pbit with key part already measured
by Eve, who makes a copy of the key bits. This attack can be performed by Eve
either during performance of quantum key distribution protocols, or via hacking into
Alice’s or Bob’s site.

We consider the family of pbits presented in Section 3.4.3 (Eq (3.51)), with
increasing dimension d of shield. For this family, attacked versions of γd are separable.
We show that one needs exponentially k = Ω(d) many (as a function of occupied
space O(log d)) number of γd to distinguish them from separable states. We refer to
this phenomenon as to hiding of entanglement.

In Section 6.1 we consider the Eggeling-Werner bound on probability of success of
discriminating between two states ρ0 and ρ1 via LOCC operations in case ρ0 = ρ⊗k

and ρ1 = σ⊗k, when at least one of them is in PPT. We provide a lower bound on
the number k of pbits needed in order to distinguish them approximately from their
attacked versions, which scales proportionally to the inverse of log-negativity EN of
the pbit.
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6.1 Distinguishing between two states provided in many
copies with restricted class of operations

In what follows, we assume distinguishing scenario introduced in Section 5.5.1 focus-
ing on distinguishing by means of restricted class of operations OP . According to
this scenario, we want to maximize the probability of success of inconclusive distin-
guishing between two states provided with equal proabability, which is

ps(OP )(ρ0, ρ1) = sup
{E(i)

j }

1
2
(Tr

∑
i

E
(i)
0 ρ0 + Tr

∑
i

E
(i)
1 ρ1), (6.1)

where {E(i)
j } is a POVM with elements E(i)

j originating from some operation from
OP (note, that in case OP being all quantum operations the formula for probability
of success ps(OP ) is simpler, but it can not be so for e.g. LOCC operations).

We will use in this chapter three classes of operations: LOCC, PPT and quantum
operations Q (see Section 2.6). The probability of success for each of them we denote
as ps(LOCC), ps(PPT ) and ps(Q) respectively. Note, that since we have LOCC ⊂
PPT ⊂ Q, there is :

ps(LOCC)(ρ0, ρ1) ≤ ps(PPT )(ρ0, ρ1) ≤ ps(Q)(ρ0, ρ1). (6.2)

Moreover, by Eq. (6.1) the probability of success is monotonous under allowed
operations:

ps(OP )(ρ0, ρ1) ≥ ps(OP )(Λ(ρ0),Λ(ρ1)). (6.3)

for any Λ ∈ OP , and OP ∈ {PPT,LOCC,Q}.
Note also, that ps(OP )(ρ0, ρ1) ≥ 1

2 , since we can always decide randomly, inde-
pendent of a given state. We are ready to reformulate the Eggeling-Werner bound
in Helstrom like way:

Proposition 6.1 (adapted from [EW02]) If ρ0 and ρ1 are provided with equal prob-
abilities, there is

ps(PPT )(ρ0, ρ1) ≤
1
2

+
1
4
||ρΓ

0 − ρΓ
1 || (6.4)

Proof. This proposition is an immediate consequence of the fact, that POVM
elements which originates from LOCC operations are PPT operators (have positive
partial transposition) and elementary properties of partial transposition (Eq. 2.67),
trace norm and hermitian operators (see Sections A.1.1 and 2.5).

In what follows we will deal with the case ρ0 = ρ⊗k and ρ1 = σ⊗k. Consequently,
we denote ps(OP )(ρ⊗k, σ⊗k) as p(k)

s(OP )(ρ, σ).
In spirit of [VW02] we make the following observation:
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Observation 6.2 The function ||(ρ)Γ − (σ)Γ|| is a metric on B(H), for ρ, σ ∈
B(H).
Proof. It follows directly from the fact that ||ρΓ|| is generalized matrix norm [VW02,
HJ85].

Consequently, we will denote ||ρΓ − σΓ|| as ||ρ− σ||Γ.

Remark 6.3 This notation is consistent with the fact that ||ρΓ−σΓ|| = ||(ρ−σ)Γ||,
which follows from linearity of Γ.

Lemma 6.4 For bipartite states ρ and σ from B(HA ⊗HB) there holds:

1. If ρ ∈ NPT and σ ∈ PPT , then

||ρ⊗k − σ⊗k||Γ ≤ [
||ρ||kΓ − 1
||ρ||Γ − 1

] ||ρ− σ||Γ (6.5)

2. If ρ, σ ∈ PPT , then

||ρ⊗k − σ⊗k||Γ ≤ k||ρ− σ||Γ, (6.6)

where NPT = B(HA ⊗HB)− PPT .

Proof. Let us invoke elementary algebra of norms of tensor products of matrices
[Bha97]. Since A⊗k − B⊗k =

∑k
j=1A

⊗k−j ⊗ (A − B) ⊗ B⊗j−1 for any matrices A
and B, by the triangle inequality we have:

||A⊗k −B⊗k|| ≤ (
k∑
j=1

||A||k−j ||B||j−1)||A−B||. (6.7)

In general the above inequality reads

||A⊗k −B⊗k|| ≤ kMk−1||A−B||. (6.8)

with M = max(||A||, ||B||). However in special cases we can have one of the norm
equal to 1. Namley, if B = σ ∈ PPT (with no assumption about A), we have
||σ||Γ = 1. Providing the fact that [ρ⊗k]Γ = [ρΓ]⊗k, we obtain the first part of this
lemma. The second follows the same argument, as in this case also ||ρ||Γ = 1.
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6.1.1 Distinguishing some pbits from key-part-attacked pbits

Consider a private state γ =
∑d−1

ij=0
1
d |ii〉〈jj|AB ⊗ UiρA′B′U

†
j . The state

υdγ :=
d−1∑
i=0

1
d
|ii〉〈ii|AB ⊗ UiρA′B′U †

i , (6.9)

is called key-part-attacked private state, as it is private state which has been measured
on its key part. We denote it υγ when dimension is clear from the context. We also
refer to υγ as to key-part-attacked version of γ.

We give now a lower bound on the number of k copies of a private bit γ(2) from
certain class, needed in order to distinguish it with high probability from that many
copies of υ2

γ .

Theorem 6.5 Let γ ∈ B(C⊗2⊗C⊗2⊗C⊗dA′ ⊗C⊗dB′ ) be a private bit represented in
X-form, such that

√
XX† and

√
X†X are positive under partial transposition, there

holds

k ≥ d log(4p(k)
s − 1)

log(||X||Γ + 1)
e = d log(4p(k)

s − 1)
EN (γ)

e. (6.10)

with p(k)
s = p

(k)
s(PPT )(γ, υ

2
γ), and EN (γ) = log ||γΓ|| the log-negativity, where υ2

γ

Remark 6.6 Note, that log-negativity of any private bit is greater than zero. It
follows immediately from the fact that 0 < ED(γ) ≤ EN (γ) [HA06, VW02].
Proof. Consider a private bit in X form:

γ
(2)
ABA′B′ =

1
2


√
XX† 0 0 X
0 0 0 0
0 0 0 0
X† 0 0

√
X†X

 , (6.11)

where ||X|| = 1. By Lemma 3.7, there is

||γ||Γ = 1 + ||X||Γ. (6.12)

Then, by (6.5)

||γ⊗k − σ⊗k||Γ ≤ [
(||X||Γ + 1)k − 1

||X||Γ
]||ρ− σ||Γ. (6.13)

It is easy to see, that ||γ − υγ ||Γ = ||X||Γ, so

||γ⊗k − σ⊗k||Γ ≤ (||X||Γ + 1)k − 1. (6.14)
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We can turn now to the probability of success p(k)
s ≡ ps(γ⊗k, υγ⊗k) of distinguishing

k copies of γ from k copies of its dephased version, when provided with equal proba-
bility. Applying Proposition (6.1), and the above inequality, we obtain the following
bound:

p(k)
s ≤

1
2

+
1
4
((||X||Γ + 1)k − 1), (6.15)

which gives after inserting (6.12)

k ≥ log(4p(k)
s − 1)

log(1 + ||X||Γ)
=

log(4p(k)
s − 1)

EN (γ)
, (6.16)

where EN (γ) = log ||γ||Γ stands for log-negativity, which we set out to prove.

6.1.2 Family of private states which are exponentially hard in dis-
tinguishing from their attacked versions

Consider again the private bit of the form (3.53):

γV = p|ψ+〉〈ψ+| ⊗ ρs + (1− p)|ψ−〉〈ψ−| ⊗ ρa, (6.17)

with ρa/s being normalized projectors onto symmetric and antisymmetric subspaces,
and the probability p = 1

2(1 + 1
d). Recall, that the log negativity of this state is

EN (γV ) = log(1 + 1
d) (see Section 3.4.3).

Observation 6.7 For p(k)
s = p

(k)
s(PPT )(γ

V , υγ) there is

k ≥ dd log(4p(k)
s − 1)e. (6.18)

In particular, for p(k)
s(PPT ) = 3

4 , there is k ≥ 1
2d, where d× d is the dimention of the

shield of γV give in Eq. (6.17).
Proof. Indeed, any k that allows for distinguishing with a fixed probability ps has
to satisfy the bound (6.10). Now, since there is log(1 + x) ≤ x for x ≥ 0, we have

that log(1 + 1
d) ≤

1
d , so that d log(4p(k)

s − 1) ≤ log(4p
(k)
s −1)

log(1+ 1
d
)
≤ k For probability of

success p(k)
s(PPT ) = 3/4 one needs k ≥ d log 3

2 ≥
1
2d. This is exponential number as a

function of number of qubits that one copy of the state occupies, which is 2 log d.
We have shown a pbit on O(log d) qubits, such that distingiushing it from its key-

part-attacked version needs Ω(d) copies. We have now the following observation:

Observation 6.8 There holds:

1. γV is irreducible, that is KD(γV ) = 1.
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2. υ2
γ is a separable state.

Proof. It follows from definition of the private state γV and υ2
γ .

By these properties, the demonstrated phenomenon receives an interpretation of
hiding entanglement. Namely, we have a state of say k = bd/2c copies of γV which
is clearly entangled, having KD((γV )⊗bd/2c) = bd/2c, yet it can not be distinguished
by means of LOCC operations with arbitrarily high probability of success from a
separable (disentangled) state υγ⊗k. More formal definition of this phenomenon will
be presented in [Hor08].

Remark 6.9 The phrase "hiding entanglement" has been used in [HHHO05c]. How-
ever, what it meant there, was the fact that distillable entanglement rapidly de-
creases after twisting a state. That is, that k copies of maximally entangled 2-qubit
states have ED = k and after twisting them, one gets k copies of γV , which has
ED ≤ N ≤ k log(1 + 1

d). Here, we strengthen the meaning of this phrase, by show-
ing, that twisting can decrease all kinds of entanglement, so that the probability of
saying that the state is not separable (that is not a state υγ), is exponentially small
in number of qubits which it occupies.

Remark 6.10 In Section 5.6, we have briefly introduced the unconditionally secure
quantum key distribution. In that scheme, one considers in principle arbitrary num-
ber of qubits exchanged between (or send to both) Alice and Bob. In practice, they
exchange some finite number n of qubits, and want to establish key which is ε-secure,
for some small ε > 0 parameter of security. The minimal number of n for some
fixed ε for which security can be obtained has been studied recently (see [SR07] and
references therein, as well as review papers [GRTZ01, DLH01, SBPC+08]).

Exemplary origin for the lower bound for quantum communication in quantum
key distribution protocol as connected with the length of the verification procedure1

was provided in [CLL04a] (see also Section 5.6). Intuitively, this length (in terms of
number of checked input systems) has to be large enough so that Alice and Bob were
sure that the rest of systems are good for obtaining secure key. In particular, as it has
been shown in [CLL04a], they have to exclude possibility of sharing separable states,
which are insecure (see Section 4.6.1). Our speculation in this remark explores this
fact, indicating the lower bound on the length of verification procedure when some
private states are under consideration.

The scenario
We assume, that Alice and Bob share a certain number n of systems in unknown

quantum state, which are expected to be in a state ρ⊗n with ρ belonging to some
1By the length of the verification procedure of unconditionally secure quantum key distribution

protocol we will mean the number of states that are processed in this procedure.
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acceptable set of states A ⊂ B(Cd ⊗ Cd) (in our case ρ will be a private state). They
then pass to verify if they are able to distill secure key from the state which they are
given. We do not specify how they happened to share these systems, so that definition
of quantum key distribution protocol that uses finite resources which we are going to
provide, works for both the case when systems are distributed by Alice, and in case
where they are given to Alice and Bob by some provider.

Necessary condition for security
As discussed above, from [CLL04a], it follows that to assure unconditional se-

curity of quantum key distribution protocol, Alice and Bob having performed the
verification procedure, have to be sure with probability close to 1, that they do not
share separable

Eve’s attacks
Eve measures the Bob’s subsystem of the key part of each of the private states in

basis in which it is secure, either (i) while they are being distributed (eavesdropping)
or (ii) while they are stored in their lab (hacking). We refer to these attacks as to
key-part attacks.

We present now intuitive claim, whose rigorous proof we provide in [Hor08], along
with rigorous definition of finite quantum key distribution protocols based on private
states.

Claim
Any unconditionally secure quantum key distribution protocol, which accepts pri-

vate state γV residing on more than 30 qubits, requires verification procedure of length
k ≥ 104.

Let us note here, that with increasing dimension of the shield, the density of key
measured in the number of key bits per the number of qubits the private state occupies,
goes down. Hence, the private states with so large shield, that the above effect enters
may not be welcome at all in quantum cryptographic protocols. It is however not
known what is the minimal dimension of the shield, increasing significantly the length
of verification procedure.

Note added: The results on distinguishing of private states from separable
states presented in section 6.1, has been announced on the seminar of the Insti-
tute of Physics of Polish Academy of Science in Warsaw, Poland, as well as on the
XXI Forum of Theoretical Informatics in Zakopane, Poland, in the time interval
[April,May] of year 2007. After completing final version of these results for the pur-
pose of this thesis, we have encountered a paper by W. Matthews and A. Winter
[MW07]. There, in spirit of quantum Chernoff bound, the minimal probability of
error with respect to class of operation is defined. The minimal error is calculated
for the states ρa and ρs in asymptotic case. The result concerning this states seems
to be directly related to the fact that γd is written in form of a mixture of ρa and
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ρs, yet correlated to two maximally entangled states.



Chapter 7

Conclusions

In this thesis, we have studied the presence of secure correlations in bipartite quantum
states. We based on the fact, that quantum information theory provides natural
formalism for describing states of closed systems, called pure states. They are closed
in a sense, that any operation which is performed outside of the system has outcome
statistically independent from the state of the system. This fact, enabled us to
characterize the states which have ’directly accessible’ ’classical key’. We have shown
various ways of interpretation of ’direct accessibility’, and proved that all they lead
to states which are up to irrelevant transformations equivalent to the so called private
states which are of the form:

γ
(d)
ABA′B′ =

∑
ij

1
d
|ii〉〈jj| ⊗ UiρA′B′Uj . (7.1)

They are entangled for their privacy, but are in general mixed states. As we conclude
in this section, the notion of private states, is central to investigations presented in
this thesis. We show also, how these results receive parallel interpretations from
perspective of quantum cryptography and theory of entanglement.

7.0.3 Insights from the private states

Treating the set of private states, as the target class in LOCC scenario, we have
defined the distillable key KD, which is an operational entanglement measure. It is
defined via transformation of bipartite states into bipartite states: the input states
into private states, via LOCC operations. We have considered also a natural cryp-
tographic scenario, called LOPC scenario, in which there are three parties: Alice,
Bob (the honest) and Eve (a dishonest one). We focused on its worst case, where
the honest parties share many copies of tripartite pure state. The classical distillable
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key in this scenario is defined via transformation of tripartite states into tripartite
states: the input pure states into states representing classical key:

β
(d)
ABE =

(
d−1∑
i=0

1
d
|ii〉〈ii|

)
⊗ ρE , (7.2)

by means of LOPC operations.
The link between the LOCC and LOPC operations we provide is that whenever

Alice and Bob can obtain from ρAB an (approximate) ideal ccq state, they can
obtain, an (approximate) private state. And vice versa: whenever, they can obtain
an (approximate) private state, they can measure it on key part sharing in result an
(approximate) ideal ccq state. This fact, applied to the LOCC and LOPC scenarios
gave us another link between quantum security and entanglement theory, as described
in a table below:

relevant objects worst-case LOPC LOCC

scenario Alice, Bob and Eve Alice and Bob

input state tripartite |ψ〉⊗nABE bipartite ρ⊗nAB = TrE |ψ〉〈ψ|⊗nABE
allowed operations LOPC LOCC

output state ideally secure ccq β(dn)
ABE private γ(dn)

ABA′B′

quantity classical distillable key CD(|ψ〉ABE) = KD(ρAB) distillable key

Table 7.1: Recasting of the worst-case LOPC scenario as LOCC scenario

In other words, the LOCC scenario, is not weaker as far as security is concerned:
the Eve is taken into account. All the knowledge about the Eve, is already included
in bipartite state of Alice and Bob. For this reason we may omit her in notation,
while keeping her in the calculations of the key content, etc.

The notion of private states is central also to other results presented in this thesis.
The private state consist of three basic elements: the pure maximally entangled state
on the key part, the state which is in general mixed on the shield, and the operation
of twisting, which correlates (’twists’) the pure entangled and the mixed state. With
each of the three elements we associate some phenomenas presented in this thesis.

First, because private state contains in construction the pure entanglement, and
operation of twisting does not spoil its security, this state contains ideal privacy. In
other words, its privacy is reminiscent of a pure entanglement that the state has been
built from.

Second, because the pure entangled state present in private state is subjected to
twisting, its entanglement may change. In particular, there may not exist inverse
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operation to twisting within LOCC operations, and in result, the pure maximally
entangled state on the key part may irreversibly loose its original pure form. This
shows why some private states have ED < KD. The pure entanglement in them is
twisted so much, that it can not be made pure by LOCC again.

Third, the private state can be mixed due to its shield, where whole its von
Neumann entropy is located. Hence, some private states can be close in trace norm
to some mixed states. In particular, we proved that there are even bound entangled
states (having ED = 0), with KD > 0. That is the states whose entanglement can
not be made pure by LOCC, and are still key distillable (BE-KD). At first, this
result seems to be clear, providing there are private states with small distillable
entanglement - just admix some noise, and try to get rid of it via key distillation.
Such was the idea of the construction of some BE-KD states, however it has not been
shown, that mere existence of private states with a gap between KD and ED implies
existence of BE-KD states. The reason for existence of BE-KD states, although
structurally understood to some extent, should receive deeper study. In particular it
would be interesting to find BE-KD states among the states that were constructed
in the past.

The above ’operational’ structure of private states is not the only way, we got
the insight into origin of some entanglement and security phenomena. In case of
private bits we obtain it in a more algebraic way, using the X-form. Recall, that
any pbit is uniquely represented in terms of a single operator X of trace norm 1, in
the so called X-form. The results that we list now, base merely on the fact, that
||XΓ|| < ||X||: (i) KD > ED for some pbit, (ii) construction of some BE-KD states,
(iii) the locking of (log-) negativity and (iv) the distinguishability of the pbit from
its key-part attacked version can be small.

7.0.4 The interrelation between quantum cryptography and theory
of entanglement

The following table organizes in parallel the interpretations of some of the objects
and facts presented in this thesis: first from quantum cryptography point of view,
second from the position of entanglement theory. Its aim is to give a flavour of the
nice correspondence between the two theories.

What is a direct consequence of the results summarized in the Table 7.1, can be
phrased in the following sentence:

• Privacy, is one of the manifestations of quantum correlations called entangle-
ment.

It is now tempting to ask again the main open question which is complementary to
the above outlined sentence:
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Introduced objects Quantum cryptography Entanglement theory
and proved facts perspective perspective

states exhibiting
bipartite states with (1) locking of ent.

measures (EM) (2) sharp
Private states γ ideally secure key inequalities between

EMs: ED < KD, Er, EC

Some private states are some private states are some entangled states
hardily distinguishable hardily distinguishable are hardily distinguishable
from separable states from insecure states from disentangled states

Distillable key KD quantifies security content another operational EM
of bipartite states

another inequality for
KD ≤ E∞

r upper bound on KD ordering some EMs,
via entering the sequence:
ED ≤ KD ≤ E∞

r ≤ EC .

security content of one of natural EMs
KD(ρ) = CD(|ψρ〉) a bipartite state (extension of ED

is an EM. to private states)
quantifies security content

Examples of security without pure The states whose bound
bound entangled entangled states ent. is understood,
key distillable states is possible as ’too much twisted

and noisy’ to be distilled

Table 7.2: Interplay between quantum cryptography (QC) and entanglement theory
(ET). The objects and facts are interpreted subsequently from QC and ET perspec-
tive. We use ’ent.’ as the acronym for entanglement.

• Does privacy always assist entanglement ? More formally: are all bipartite
entangled states key distillable ?

As we have invoked, the above results has been partially developed in recent years
(see for example [CEH+07, Aug08, RS07, Chr06, CCK+07, HHH+07]). It seems,
that the people working on both the entanglement theory and quantum cryptography
may experience analogous feelings to those experienced by C. Shannon as expressed
in the phrase quoted in the first motto of this thesis. To paraphrase his words,
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"entanglement theory and quantum cryptography do not come one before another:
they are so close together, one can not separate them".



Chapter 8

Notation

Notation introduced in Chapter 2.

• Cd - d-fold cartesian product of the field of Complex numbers - an example of
a Hilbert space.

• HX symbol for a Hilbert space associated with a system X. Usually, X ∈
{A,B,A′, B′, E}.

• dimH - the dimension of a Hilbert space H.

• B(H) - the set of density matrices (positive and of trace one), that act on a
Hilbert space H.

• |.〉 - vector in a Hilbert space with label “.”.

• 〈.| - the transposed, and complex-conjugated vector |.〉.

• |.〉〈.| - “outer product” of |.〉 and 〈.|, or the projector onto the subspace spanned
by |.〉.

• P|ψ〉 a projector onto vector |ψ〉

• {(qi, ρi)} or {(qi, ρi)}Ki=1 - the ensamble of states ρi with corresponding proba-
bilities qi.

• Λ - a quantum operation.

• {Mm} - a quantum operation with Kraus operators Mm.

• {Em} - a POVM with elements Em.
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• MΛ - a POVM associated with an operation Λ.

• {|k〉} - the standard basis in some Hilbert space H, which is understood to be
known from the context. The index k ranges from 0 to dimH− 1.

• U - generic symbol for unitary operation.

• V - the swap unitary transformation.

• H - Hadamard unitary transformation

• ρ - generic symbol for a density matrix.

• ρAB - a density matrix of the the state of a bipartite system (a bipartite state)
with two subsystems A and B.

• ⊗ - the operation of tensor product.

• HXY symbol for a tensor product of Hilbert spaces HX and HY .

• ⊕ - the operation of direct sum.

• Tr(.) - the trace.

• TrX(.) - the partial trace over system X.

• (.)†- composition of element wise complex conjugation and matrix transposition
of matrix labeled “.”

• (.)T - transposition of a matrix labeled by “.” If it is not explicitly stated, it is
assumed that transposition is taken in standard basis {|k〉}.

• (.)∗ - complex conjugation of a matrix labeled by “.”

• ā - complex conjugation of the number a.

• |ψ〉 - a generic symbol for a pure state (vector).

• |ψ〉AB - the pure state of a bipartite system (a bipartite pure state) with two
subsystems A and B.

• |ψρ〉 - the purification of the state ρ.

• |ψρ〉ABA′B′E - the purification of the state ρ, on systems ABA′B′E.

• I - the identity matrix.
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• |Ψ(d)
+ 〉 - the maximally entangled state of the form

∑d−1
i=0

1√
d
|i〉 ⊗ |i〉.

• MS(d) - the set of maximally entangled states in two qudits.

• {|ψ−〉, |ψ+〉, |φ−〉, |φ+〉} - a Bell basis in C2 ⊗ C2.

• |ψ−〉 - the singlet state (a two qubit maximally entangled state of the form
1√
2
(|01〉 − |10〉)).

• σi with i ∈ {0, 1, 2, 3} - the Pauli operators. They form a group of one-qubit
unitary matrices.

• Γ - operation of partial transposition.

• PPT - the set of so called “PPT operations”, or the set of states with positive
partial transposition.

• LOCCH1,H2 - the set of Local Operations and Classical Communication that
transform the states from B(H1) into states from B(H2).

• LOCC - generic symbol for the set of LOCC operations (without explicitly
marked input and output Hilbert space).

• SEPH1,H2 - the set of separable operations transforming states from B(H1)
into states from B(H2).

• SEP - either the generic symbol for a set of separable operations (without
explicitly marked input and output Hilbert space) or the set of separable states.

• ΛA - local quantum operation on Alice’s site.

• ΛB - local quantum operation on Bob’s site.

• Λ(c)
A - operation of classical communication from Alice to Bob.

• Λ(c)
B - operation of classical communication from Bob to Alice.

• Λsep - a separable operation.

• D(ρ, σ) - quantum distance measure between ρ and σ.

• ||.|| - the trace norm.

• F (ρ, σ) - quantum fidelity of ρ and σ.

• log - a binary logarithm function.
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• H(X) - classical (Shannon) entropy of a random variable X.

• I(A : B) - classical mutual information of a joint distribution of random vari-
ables A and B.

• S(P ||Q) - the classical relative entropy of variables Q and P .

• S(ρ) - quantum von Neumann entropy of a state ρ.

• η(x) a function defined on (0, 1] as η(x) = −x log x.

• S(A)ρ - the entropy of subsystem A of the compound system in state ρ.

• I(A : B)ρ - the quantum mutual information of the subsystem AB of the
system in state ρ.

• S(ρ||σ) - the quantum relative entropy of ρ and σ.

• χ({(qi, ρi)}) - the Holevo quantity of an ensamble {(qi, ρi)} defined as S(
∑

i qiρi)−∑
i qiS(ρi).

• H(~p) - the Shannon entropy of a distribution ~p = (p1, . . . , pK) for some natural
number K.

• R≥0 - the set of nonnegative real numbers.

• E(ρ) - a generic symbol for an entanglement measure E.

• E∞ - regularization of an entanglement measure E.

• ED - distillable entanglement.

• Er - the relative entropy of entanglement.

• Ef - the entanglement of formation.

• EC - entanglement cost.

• N - the negativity.

• EN - the logarithmic negativity.

• Q(Λ) - quantum channel capacity.

• ρΛ - the state ρ related to an operation Λ via the Choi-Jamiołkowski isomor-
phism.
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notation introduced in Chapter 3.

• ρidealccq - the ideal ccq state i.e. the state representing an ideal secure key.

• a cqq state - a state of the form
∑

i |i〉〈i|A ⊗ ρ
(i)
BE

• [ρABA′B′ ]ccq - a ccq state of a bipartite state ρ, obtained via tracing out system
A′B′ of any purification |ψρ〉ABA′B′E .

• γ(d) - a private state with d-dimensional key part.

• γ(d,d′) a private state with d-dimensional key part and d′-dimensional shield.

• Re(.) - the real part of an imaginary number labeled as “.”

• Psym = 1
2(I + V ) and Pasym = 1

2(I − V ) - the projectors onto symmetric and
antisymmetric subspaces respectively where V is the swap unitary transforma-
tion.

• ρs and ρa - the symmetric and antisymmetric Werner states, that is normalized
projectors Psym and Pasym.

• ρ(d)
flower - a member of the family of flower states with d-dimensional key part

(recall that it is a private state).

• PS(d,d′) - the set of private states with 4 ≥ k ≤ d×d-dimensional key part and
l ≤ d′ × d′ dimensional shield.

• PS the set of all private states (with arbitrary dimensional key part and shield).

• {|i〉|j〉}Ki,j=1 - a standard product basis (a basis of product of the Hilbert
spaces), both of dimension K.

• X± - the positive (negative) part of the hermitian operator X.

• KD(ρAB) - the entanglement measure called distillable key of ρAB.

• Ic - the function of classical correaltions of a bipartite quantum state.

• ρclaAB - a state which exhibits locking of Ic.

• Non Lock - a property of entanglement measures, called non-lockability

• E is (κ ↓ ∆) − Tr-lockable - a property of entanglement measure. Informally
speaking, reports that E decreases by ∆ after operation on system of dimension
2κ.
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• The family {ρcaAB} reveals (κ ↓ ∆) − Tr-lockability of E- when ∆ is explicit
function of parameter c, reprots that E is (κ ↓ ∆(c))− Tr-lockable.

• σabs - an absolutely separable state.

notation introduced in Chapter 4.

• CD(ρABE) - distillable classical key of a tripartite state ρABE

• CD(ρAB) - distillable classical key of tripartite pure state |ψρ〉ABE which is a
purification of ρAB to system E. where ψABEρ is a purification of ρAB.

• LOPC - the set of Local Operations and Public Communication

• CLOPC operation - the coherent LOPC operation

• Λcoh - a coherent (version of) operation Λ

• ΛQ - an LOPC operation

• P δ,εn - an LOPC operation acting on n copies of input state ρ, that outputs a
state which is ε close in trace norm to some ideal ccq-state, that belongs to a
distillation protocol with a rate greater than CD(ρ)− δ.

• Qδ,εn - similarly as P δ,εn but for LOCC operation.

• Sτ - the set of separable states to which a fixed twisting U was applied.

• ESr - the relative entropy entanglement with a compact, convex set S in place
of that of separable states in definition of relative entropy of entanglement Er.

• CDWD the key rate of the protocol of Devetak and Winter.

• SEP (d,d′) - The set of states on systems ABA′B′, separable in AA′ : BB′ cut
where dimA = dimB = d and dimA′ = dimB′ = d′

• ρps - a p-squeezed state of state ρ

notation introduced in Chapter 5.

• τ1 = (ρs+ρa

2 )⊗k and τ2 = (ρs)⊗k - the Eggeling-Werner hiding states, with ρa
and ρs the antisymmetric and symmteric Werner states.

• ρde(d,k) = 1
2 |φ+〉〈φ+|AB ⊗ τA

′B′
1 + 1

2 |φ−〉〈φ−|AB ⊗ τ
A′B′
2

• ρ(d,k,p) = pρde(d,k) + (1− 2p)1
2(|01〉〈01|+ |10〉〈10|)⊗ τ2



• F (m=1)
rec - the set of states {ρrec(1)(p,k,d)} parametrized by triples (p, k, d) with p ∈

(0, 1
2 ], k ≥ 1 natural, d ≥ 2 natural.

• Fs - the family of states that are mixture of two private states one represented
in X-form by X1 = 1

||WU ||
∑

ij uij |ii〉〈jj| with uij the elements of some unitary

U , and X2 = 1
||WΓ

U ||
WΓ
U with probability p = ||WU ||

||WU ||+||WΓ
U ||

and 1−p respectively.

notation introduced in Chapter 6.

• Q - the class of quantum operations.

• ps(ρ0, ρ1) - the probability of inconclusive distinguishing between states ρ0 and
ρ1, supplied with equal probabilities by means of quantum operations.

• ps(OP )(ρ0, ρ1) with OP ∈ {Q,LOCC,PPT} the probability of inconclusive
distinguishing between states ρ0 and ρ1, supplied with equal probabilities by
means of operations from class OP .

• p(k)
s(OP )(ρ, σ) withOP ∈ {Q,LOCC,PPT} - shorthand notation for ps(LOCC)(ρ⊗k, σ⊗k).

• ||A||Γ - shorthand for ||(A)Γ|| with Γ the partial transposition.

• υdγ - a private state γ after complete von Neumann measurement on its key
part (also called key-part-attacked private state, or attacked version of γ).



Appendix A

Useful facts

In this Chapter we provide some facts from linear algebra, which are mostly inde-
pendent of the formalism of quantum information theory. In particular we recall a
definition of the operation of tensor product of Hilbert spaces. Most of these facts
are collected in [NC00].

A.1 Implementing partial isometry via quantum opera-
tions

To see, that an isometry can be implemented via quantum operations, we first show
that one can perform the embadding and partial projection operations, that can be
called together an exchanging operation.

Lemma A.1 (exchanging operation) Any state ρ ∈ B(H1) can be transformed into
ρ ∈ B(H2), by means of quantum operations, providing dimH2 ≥ Rank(ρ). The
operation which does this task, we call exchanging operation.
Proof. To see this, consider first adding an ancillary system in state |0〉 ∈ H2

composed with the izometry:

∀|i〉∈H1
V (|i〉1 ⊗ |0〉2) := (|0〉1 ⊗ |i〉2). (A.1)

It is easy to see, that there exists an extension of this izometry to the unitary
transformation V ′ : H1⊗H2 → H1⊗H2 (see Exercise 2.6 of [NC00]). Hence, adding
|0〉 ∈ H2, performing V ′ and tracing out system H1 transforms the state |i〉 from H1

to H2, and the assertion follows. By linearity of this operation, we have the assertion
for ρ under assumptions about the dimension of H2.

We can make now desired corollary:
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Corollary A.2 (partial isometry via basic quantum operations) Consider two sys-
tems E with dimE′ ≥ dimE. Any isometry W : HE → HE′ and partial isometry
W ′ : HE′ → HE can be performed by means of quantum operations.
Proof. To see the two facts from this corollary, we will use the operations of em-
badding and partial projection. We first give the idea how to use them, and then
argue, that they can be implemented by quantum operations.

To implement W via quantum operations we consider two cases: (1) dimE′ =
dimE (2) dimE′ > dimE In first case, W is just a unitary transformation, which
is a quantum operation. In case (2), a quantum operation implementing W is a
composition of (i) embadding of the Hilbert space HE into HE′ (ii) applying unitary
transformation which is an extension of W : HE ⊂ HE′ → HE′ (see Exercise 2.6 of
[NC00]).

To implement W ′ via quantum operations one composes similar operations, in
inversed order: (i) the unitary U operation which extends W ′ to space HE′ (U con-
structed similarly as for the proof of Exercise 2.6 of [NC00]). (ii) a partial projection,
acting from E′ to E.

Both embadding and partial projection can be made by the exhanging operation
described in Lemma A.1.

A.1.1 Some properties of the trace norm

The trace norm ||A|| = Tr|
√
A†A|, fulfills:

||A|| = sup
U
TrUA, (A.2)

where supremum is taken over unitary transformations U and

||A|| = sup
0≤P≤I

TrPA, (A.3)

where P is a projector laying between 0 and the identity matrix, in operator order.
The trace norm is unitarily invariant [HJ85], that is, for any unitary transforma-

tions U and W from B(H), and any operator A ∈ B(H), there holds:

||UAW || = ||A||. (A.4)

A.1.2 Polar and Singular Value matrix decomposition

Any matrix A can be decomposed into the so called polar decomposition of the form

A = Uρ = σU, (A.5)
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where ρ =
√
A†A and σ =

√
AA† are unique positive operators, and U is a unitary

matrix.
Any matrix A can be decomposed into the so called singular value decomposition

which has the form
A = UΣW, (A.6)

with Σ diagonal, positive operator and U and W unitary. The eigenvalues of Σ are
called the singular values of an operator A.

A.1.3 Sufficient condition for positivity of a block matrix

Lemma A.3 If A and B are hermitian and A ≥ |B|, the block matrix[
A B
B A

]
, (A.7)

is positive.
Proof. The matrix (A.7) is positive if it is diagonalizable, and has non-negative
eigenvalues. It can be diagonalized by transforming first with unitary operation
H ⊗ I into a block diagonal form[

A+B
A−B

]
. (A.8)

and then diagonalizing the blocks A + B and A − B. Hence, the matrix (A.7) is
positive if these blocks are so. Since for hermitian B, |B| ≥ B and |B| ≥ −B, from
assumption we have A ≥ |B|, which implies A ≥ B and A ≥ −B.
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SEP set of, 31
separable, 6

absolutely, 80
undistillable, 46
Werner, 70

subsystem of a state, 22
subsystems, 20
superoperator, 18
superposition, 4, 17
swap, 19
system, 15

extending, 22
multipartite, 22
purifying, 22

standard, 22

tensor product, 20
trace norm, 39, 178
trace norm distance, 39
trash bin, 26
twisting, 62, 63

local, 128

unitary transformation, 19


