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Abstract

In this thesis a model of the dynamics of size-structured population subject to selective
predation is built and analyzed. The study is motivated by biological phenomena concern-
ing limnology and oceanography, and in particular diversity of first consumers in aquatic
ecosystems. An individual-based model of size-selective visual predator-harvester based
on the concept of optimal foraging is proposed. Farther, a simplification of the model,
described in terms of operators on the space of measures, is derived based on Holling
IT-type functional response to eliminate inherent difficulties of individual-based approach.
The results are compared against experimental evidence. Considerations involving popu-
lations dynamics, namely growth, birth and mortality, are examined in the framework of
measure-valued solutions to transport equation and various distances arising from optimal
transportation theory. To this end, efficient algorithms for solving transportation prob-
lem on a real line are found and finally, numerical schemes based on particle methods for
structured population models are improved. Moreover, approximation theory for Radon
measures is developed.
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Notation
In this thesis the following notation is used:
e R=0 is the set of non-negative real numbers,
e RT is the set of positive real numbers,
e Lip(f) is the Lipschitz constant of function f,
e 11 is the non-negative measure arising from Jordan decomposition of ,
e D, u is the Radon-Nikodym derivative of measure u with respect to v,
e L[ is the Lebesgue measure,
e 0,0,Q is the standard Landau notation for limiting behavior,
e 1 is an indicator function of set F,
® /i| is the restriction of measure p to the set E,

e (1, (), ... are absolute constants that may differ between occurrences.
For normed spaces X and Y we shall use following notation:

e C(X;Y) is the space of continuous functions,

e Cy(X;Y) is the space of bounded continuous functions,

o C%(X;Y) is the space of Lipschitz continuous functions,
Co(X;Y) is the space of continuous function vanishing at infinity,
e C.(X;Y) is the space of compactly supported continuous function,
LP(X;Y) is the usual Lebesgue space,

e B(X) is the Borel g-algebra on X,

e (X)) is the space of finite, Radon measures,

e M, (X) is a subset of M(X) consisting of discrete measures with finite number of

o My n(X) is a subset of M,(X) consisting of discrete measures with N atoms,
o (i, f) for measure p € 9M(X) and function f € C(X;R) is the value [, fdu,
o Bx(x,r)istheset {y € X : ||z -yl <r}

For simplicity notation 9[a, b] and LP[a, b] is often used instead of M ([a, b]) and LP([a, b]).
Similarly, notation C'(X) is used instead of C'(X;R).

If v € M(X x X) then for a given set A C X we define measure (A4, ) € M(X) by
v(A,)(E) = v(A x E) for every measurable set £ C X.
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Introduction

The goal of this thesis is to build and analyze a model of size-structured population sub-
ject to selective predation. The study is motivated by biological phenomena concerning
limnology and oceanography, and in particular diversity of first consumers in aquatic
ecosystems. An individual-based model of size-selective visual predator-harvester based
on the concept of optimal foraging is proposed [41]|. It incorporates models of underly-
ing physical processes and makes predictions based on the assumption that the forager
maximizes its rate of energy intake [81, 71, 65, 59, 52, 8, 84|. Farther, a simplification
of the model is derived to eliminate inherent difficulties of individual-based approach.
A generalization of Holling II-type model [38] is proposed and the results are compared
against experimental evidence collected by a team of hydrobiologists affiliated with the
University of Warsaw [28, 29, 53, 30]. Considerations involving populations dynamics,
namely growth, birth and mortality, are examined in the framework of measure-valued
solutions [35, 36| to transport equation [2] and optimal transportation theory [76]. To this
end, the theory of approximation on the space of finite Radon measures equipped with
bounded Lipschitz distance is developed, efficient algorithms for solving transportation
problem on a real line are found [40] and finally, numerical schemes based on particle
methods for structured population models are improved.

The dissertation is divided into three almost independent parts treating theory of
metrics on the space of measures, theory of measure-valued McKendrick-von Foerster
equations and optimal foraging models. This order has been chosen for the convenience
of a reader with mathematical background. The main results of the first chapter consist
of an algorithm for computing bounded Lipschitz distance between two discrete measures
supported on an N-element subset of R. Computational complexity of this algorithm is
proved to be O(N log N). Moreover, a number of theorems characterizing optimal approx-
imations of different classes of measures by discrete measures supported on an N-element
set are proved [39]. In the second chapter well-established numerical schemes based on
particle methods [15], such as split-up algorithm, original escalator box-car train and
its modification are compared [34] and three improvements basing on the results of the
previous chapter are described. Moreover, it is demonstrated that a certain generaliza-
tion of Holling IT-type model of foraging can be translated into the language of operators
on spaces of measures, and since appropriate regularity conditions hold it can be used
in McKendrick-von Foerster population dynamics equations. The last chapter describes
three novel models of size-selective visual predator-harvester feeding on a prey popula-
tion homogeneously distributed in space based on the concept of optimal foraging [41].
Optimization of the rate of net energy intake occurs at the level of forager’s decisions,
which include cruising speed [79, 78, 66|, attack velocity and active selection of prey items
[49, 26, 20]. The greatest advantage of models proposed in this chapter is that all param-
eters are physically measurable and no fitting to experimental data is required. Finally,
the outcome of model simulations is compared against experimental data, collected by the
hydrobiologists, and critically discussed. The thesis and the proposed models improves
comprehension of many aspects of foraging in an aquatic environment.






Chapter 1

Metrics on the spaces of Radon
measures

The space of finite Radon measures on X, (X)), is naturally equipped with a norm
induced by the total variation, which makes 9t(X) a Banach space. However, the metric
induced by this norm is so strong that it does not provide a reasonable measure of error
for most applications. For instance, it is often desired that two Dirac masses with atoms
close to each other in X are also close in some metric on 9t(.X). For this reason a different
notion of distance has to be developed.

In many applications such as transportation problems [44, 76|, crowd dynamics [54, 55|,
structured population dynamics [11, 35, 36, 73] or gradient flows [5, 82| it is natural to
consider the output of mathematical modeling in terms of Radon measures, rather than
densities. One reason is that very basic phenomena (e.g. growth of individuals in struc-
tured population models) may lead to singularities in density functions. What seems to be
even more important is that mathematical tools used for the analysis of function-valued
solutions (as opposed to measure-valued solutions) imply an inherently inappropriate
sense of distance between solutions (see Example 10). The desired properties of such
distance depend on the structure of the considered problem [36]. Recent years witnessed
large developments in the kinetic theory methods applied to mathematical physics and
more recently also to mathematical biology. Among important branches of the kinetic
theory are optimal transportation problems and related to them Wasserstein metrics or
Monge-Kantorovich metrics [5, 76]. These, however, are only applicable to processes with
mass conservation. To cope with variable mass, several modifications have been proposed,
including flat metric, centralized Wasserstein metric and normalized Wasserstein distance.
For comparison of different metrics, their interpretation and examples we refer to Section
1.4.

Metrics based on the concept of optimal transportation have been used in different
fields such as image recognition [24], alignment of surfaces [50], fluid dynamics [32], asymp-
totics of nonlinear diffusion equations [13], semi-supervised learning [69]. This chapter is
mainly devoted to the flat metric, which is a natural choice for population models studied
in chapter 2.



1.1. Preliminaries

Throughout this chapter we assume that X is a finite-dimensional Banach space. Some
definitions and results can be generalized to locally compact metric spaces. It is, however,
beyond the scope of this chapter.

Definition 1. Mapping p : B(X) — R U {—o0,00} is called a Radon measure if the
following conditions hold

L p(0)=0

2. for any countable collection, {E;};~, C B(X), of pairwise disjoint sets

[0 (UE) = ZM(ED,

3. p takes at most one of the values —oo and oc.
Definition 2. Let x be a Radon measure on X. By total variation of ;1 we mean
el = 1 (X) = = (X).

Existence and unique decomposition of arbitrary Radon measure p into a difference
of two non-negative measures ut and p~ follows from Jordan decomposition theorem.
Measures with finite total variation are called finite. The set of all finite Radon measures
on X are be denoted by M (X).

Definition 3. We define the space of bounded Lipschitz functions as
Gyl (X:Y) = CM(X;Y) N Gy(X;Y)

equipped with the following norm

Hfucg,l(x;y):max(u [ — Hf<x>—f<y>uy)_

ryex Iz —yllx

The norm ||-||C£,1(X;Y) is known as the Fortet-Mourier norm (see [23]).

Theorem 4. (Riesz-Markov representation theorem) Let ¢ € Co(X)* then there exists a
unique 1 € M(X) such that for every f € Cy(X)

vir) = [ fu

Theorem 5. (Riesz-Markov-Kakutani representation theorem) Let 1 € C.(X)* then there
erists a unique Radon measure, i, on X such that for every f € C.(X)

Mﬂzéﬂm
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Definition 6. We define the following norms on some subspaces of 9(X):

il = sup{ [ gan: feBc<X><o,1>},
Il = sup{ [ san: f€C°’1<X)7Lip(f)§1},
lille = s { [ gaus 1 € B0}

Proposition 7. Let Q C X be a compact set and let p € IM(X), then ||u|| = |pllz > lull z
and ||l = {1l -

Definition 8. For each of the defined norms we define corresponding metrics: Radon
distance, 1-Wasserstein distance and flat distance

p(,v) = |lp—vlg,
W, v) = |lp—vly.
pr(p,v) = [u—vp.

Proposition 9. Let Q C X be a compact set, and let u,v € MT(X). Then, W(u,v) < oo
if and only if ]| = |11

Proof. Let K = sup,cx ||z||x. Choose a sequence {f,} C C%!(X), such that Lip(f,) <1
and

/X Ful@) (1 — v)(dz) — W (i ).

If ||| = ||v|| then for any constant C' € R it follows that [, C'(u — v)(dx) = 0. Thus,

oo > K ([lpll + lvll) = /X ]l | = vl(dz) = /X fn(@) = Fu(0) (i — v)(dx) — W (p, v).

Conversely, if W(u,v) < oo, then [, C(u— v)(dz) = 0 for any C' € R. Consequently,
(- v) (R) = 0. 0

Example 10. Metrics on 9(X) defined in this section are inherently different from
standard metrics on LP spaces, even if considered on the space of absolutely continuous
measures. Consider the following two examples:

1. Let n. be a standard mollifier and let p,, v, € C*°(R) be defined as p, = +dy * 1.
and v, = 8,2 xn.. For a fixed ¢ > 0 we have ||u, — Vn|| oy — 0 for any p € [1, 00},

n

but also ||, — vp |y, — oc.

2. Let pn, v, € C®(R) be defined as p, = ndy * ny--» and v, = né% * T)o—n, then

[ten = Vol powy — o0 for any p € [1, 00], but also ||p, — vl — 0.
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1.1.1. 1-Wasserstein distance

The following characterization of W (u, v) was derived in [75] for the the case u, v € IM(R).

Theorem 11. 1-Wasserstein distance between measures p and v on R equals

1Vmw%=[§Mmeﬂ—w—wwWw

o0

In other words W (u,v) is the L'(R) distance between cumulative distribution functions
for pu and v.

From the definition of W (u, v) the following propositions follow.
Proposition 12. 1-Wasserstein distance is scale-invariant, namely
WA, A-v) =AW (u,v).
Definition 13. Let x € X and p € 9" (X). Define translation of p by x as
Tou(E) = u(E + {~a}).
Proposition 14. 1-Wasserstein distance is translation-invariant, namely

W(Top, Tyv) = W, v).

1.1.2. Normalized Wasserstein distance

By Proposition 9 the 1-Wasserstein distance is not a suitable tool for comparing two
measures of different masses. It may seem that the simplest solution is to normalize the

el vl
the following concept, used for example in [61], may be applied.

measures beforehand. It turns out, however, that W (L v ) is not a metric. Instead,

Definition 15. We define normalized 1-Wasserstein distance between two measures
v € M(X) as

Wwwzmm@m+wmmm—wm+w(ﬁwﬁ@). (1.1)

Lemma 16. The distance defined by (1.1) is a metric.
Proof. Let u, v and n be Radon measures. Then, it holds

o W(,u, v) =0 if and only if 1 = v. Indeed, either ||| + ||v| =0 or
[l = vl |+ W (5. 725) = 0 imply that jz = v.

o W(:u’ V) = W(V’N)a

12



e Since

W)+ W) = min (11l = o 197 (1))

. n v
+min (HnH I il = vl + W (W W)) :

to show the triangle inequality, we consider four possibilities

W(pv) + Wvn) = Nl + v+ Il + 2l =l + Il = W (),

W(p,v)+ W) = |lpl - v |||+W(||MII ||V||)

il - wm+WQWHW) > W),

Www+wwm:=WMHMHMW—WM+WQWHW)>MHWW
> W(n,n),

Wmm+wmm=rw+wwwwwww+wgmww)wwumu
> W(nv).

O

This metric lacks the scaling property (namely in general W(AM, Av) = AW(M, v) does
not hold). Nonetheless, the following weaker property holds.

Proposition 17. Let uy and vy be two sequences of Radon measures and ||ugl| — 0,
lvgl] — O then W (g, vx) — 0.

Note that W (”“’“ = ) does not satisfy the weaker property, since for u;, = %50,

Bl vl
15 L5 )
lim W k) =1.
koo <H<% el

1.1.3. Centralized Wasserstein metric

Vv, = %51 we have

For applications that require scale-invariance and comparing measures of unequal masses
neither 1-Wasserstein nor Normalized Wasserstein distance is suitable.

Definition 18. Centralized 1-Wasserstein distance between two measures u, v € 9(X)
reads

WW%WImm{AfﬂM—W:fECm@%LWU)SLUmﬂﬁl}

13



This metric was introduced in [36] for analysis of the measure-valued structured pop-
ulation models.

This metric is scale-invariant, but in contrast to Wasserstein metric, it is not translation-
invariant. Applications of centralized 1-Wasserstein metric are therefore restricted to
modeling of specific phenomena, for which the dependence of error on location in X is
justifiable.

Consider the following example: p, = 26,, v, = 36,. If measures 1 and v represent
structure distribution of a population (e.g. p, is a model prediction of size-distribution
of a population and v, is an empirical size-distribution computed based on experimental
data) and moreover new individuals are always born with a fixed structural variable
xo € X one may argue that the error, e(fi, ), should depend on z. The difference of
masses at © € X is a result of both the difference in the number newborns (with structural
variable zg) and the individual growth process from xy to x. Consequently, one would
expect that for two structural points x,y € X condition ||z — || > ||y — 20|y implies

e(fty, Vy) > €(fty, vy). Centralized Wasserstein metric meets this expectation since in that

case Wz, vy) > W(py,vy). On the other hand, the above argumentation is hard to
defend if mortality, and therefore mass annihilation at every point of X, is involved. In
the next section, a more versatile and translation-invariant metric is introduced.

1.1.4. Bounded Lipschitz distance

The flat metric, known also as a bounded Lipschitz distance [60], is scale- and translation-
invariant. It has proven to be useful in analysis of structured population models and, in
particular, Lipschitz dependence of solutions on the model parameters and initial data
[35, 11]. The flat metric has been recently used for the proof of convergence and stability
of EBT numerical scheme (see [9, 11]).

The following three lemmas provide tools for estimating pr from above. The first
estimate arises from Proposition 7 and its proof can be found in Section 7 in [34].

Lemma 19. Let p,v € M5 (X) and p= N mib,,, v = S ;0 then

N N
pr(p,v) < Z [mi — ni| + Z 12 = yill x -
i=1 i=1

Proof. Let i1 = Zf\il n;0,,. From triangle inequality we obtain

pr(11, ) < pre(yis 1) + pr(iis v) = |l — fll + W (i, ).
Directly from the definitions of appropriate metrics it follows that

N

| — fil| = Z [m; — nyl

i=1

and

WmW:ZmUm%ﬂw%

14



for some f € COY(X) satisfying | f(z;) — f(vi)] < ||#; — yil| . Finally, we obtain

fly
N
Z i — yill x 7,

which completes the proof. O

The second lemma is a straightforward corollary resulting from definition of flat dis-
tance.

Lemma 20. Let y and v be two non-negative Radon measures on X = X; U Xy with
X1 N X2 = @ Then

pr(p,v) < pr(plx vix) + pr(plx,, vix,)
The following fact follows directly from the definition of flat distance.
Lemma 21. For every p,v € M(X) and f € C¥(X) it holds that
fX fd(p—fi)
Hf”cg’l(x) .

An easy, yet important, conclusion from Lemma 19 can be made.

pr(p, 1) >

Corollary 22. For u,v € My(X) we have

pr(pov) < int = jll + W)

AEM 4(X)

Proof. Lemma 19 can be reformulated as pp(p,v) < |ju—gl + W(g,v) for any

v € My(X) and & being supported on a subset of suppp U suppr with ||| = ||v|.
Since there are no assumptions on N, and also m;, n; are not necessarily strictly positive
measure /i can be supported on an arbitrary discrete subset of X. O

A farther generalization of Corollary 22 is provided by Theorem 25.

1.2. Dual representation

The following two theorems connect Wasserstein metric with transportation theory and
provide a dual representation for W (u,v). Proofs can be found in [76].

Theorem 23. (Kantorovich and Rubinstein) Wasserstein distance between probability
measures |1 and v on a metric space (X,d) equals

W(p,v)= inf {/ d(:c,y)dv}
vel(p,v) XxX

where T'(p, v) denotes a subset of M (X x X) of all measures with marginals equal to p
and v on the first and second factors respectively. T'(u,v) is often referred to as the set of
transference plans.

15



Theorem 24. For every pair of measures p and v on a metric space (X, d) there ezists
an optimal transference plan v* such that

W(:ua V) = / d(l’,y)Xd’}/*
XxX

An analogue of Theorem 23 for flat metric was first noticed in [40] and proved in [62]
for the case of X = R%.

Theorem 25. Bounded Lipschitz distance between finite Radon measures u and v on R?
equals
inf g = pl| + |lv =l + W(a ).
fi,pEM (RE)
llall=lZ|
In fact, intermediate measures i and 7 for which the infimum is attained are always

no greater than p and v respectively. The following result was proved in Section 2.1 in
[62]:

Corollary 26. Let u,v € MM(RY) then

pr(p,v) = inf g —pll+ v =l + W(v).
fi,7EM (RY)
A<p,<v
=121
Dual representations allows for easier reasoning about upper bounds of distances.
For instance Corollary 22, which generalizes Lemma 19 follows immediately from dual
representation of flat metric. Similarly does Theorem 11. Another profit arising from the
dual representations is that an approach based on flow networks can be used to compute

the value of the distance (see Section 1.3.1).

1.3. Computational complexity

In this section algorithmic aspects of numerical computation of distances between two non-
negative discrete Radon measures are discussed. The set of discrete measures, My(X), is
dense in M(X) hence the distance between arbitrary two measures can be computed by
approximating each of them with a discrete measure (see Theorem 41).

Each of the considered distances can be determined by linear programming. Compu-
tational complexity of this approach is often too large for applications. For the case of
arbitrary space X we present how the problem can be reduced to finding a maximum-flow
minimum-cost for a bipartite graph. For the case of X = R, Theorem 11 provides an
alternative approach which leads to a linear algorithm for 1-Wasserstein distance. More-
over, an analogue of Theorem 11 is presented and an algorithm for computing flat metric
is derived.

Unless stated otherwise, by the input length of a problem, N, we mean the number
of Dirac masses in both of the compared measures. The aim of this section is to present
efficient algorithms for Wasserstein-type metrics described in Section 1.1. In particular, a
novel algorithm for computing the flat metric on R with computational cost O(N log N)
is proposed.

16



1.3.1. Transference plan as a flow network

—

Given two discrete measures u, v € My y(X) the problem of computing W (u, v), W(u,v)
and pg(u,v) can be reduced to an instance of linear programming. Indeed, let

N
h—v= E M0z, s
i=1

then W (u,v) maximizes linear objective function

N
c(fi, for - In) = Zmz‘fz

subject to the following linear inequality constraints:

fi - fi-i—l
fi+1 - fz

foreveryi € {1,2,..., N—1}. Similarly, the distance W(u, v) maximizes the same objective
function, ¢, subject to additional constraint given by

fir1 < 14z —a;
fir1 = =1 —(@ip1 — )
ficr < 14x—2i
fici = =1 — (2 —xi1)

forx; 1 < 0 < z;41. Finally, flat distance pg(u, v) also maximizes ¢ and requires additional
constraints given by

IV IA

for every i € {1,2,..., N}.

Despite the fact that linear programming has been studied intensively since the begin-
ning of 20" century, a question whether there exists a sub-exponential algorithm solving
the linear programming problem remained open until 1979. The current opinion is that
the efficiency of good implementations of exponential simplex-based methods and poly-
nomial interior point methods are similar [31]. In this section we present a method of
reducing the problem of computing W (u, ) to an instance of a maximum-flow minimum-
cost problem. It is beneficial since efficient algorithms for solving this problem for the case
of bipartite graphs are known [58, 19]. Finally, a generalization of this method, inspired
by [45], to the case of flat metric, pp(u, ) is presented.

Definition 27. Flow network is a finite directed graph (V) E) with a capacity function
w:V xV —RU{oco} and a cost function ¢: V x V — R.
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In this section we show that Wasserstein distance between two discrete probabilistic

measures and bounded Lipschitz distance between two discrete Radon measures on a

metric space X, with a finite number of atoms (p = 21111 m;d,, and v = Zj\il n;0,,) can

be computed using maximum-flow minimum-cost approach.

Definition 28. For given probabilistic measures g = S0 m;0,, v = Zjﬂilnjéw we
define a Wasserstein flow network Ny, = (Viy, Ew) by

VW = {Saxlax%"'7$Nay1ay27""yM’t}
EW = {S} X {xlv"'ax]\/} U {y17 7yM} X {t} U {x17"'7xN} X {y17-"7yM}

with a capacity function

m; ifu=sandv=uz;
w(u,v)=<¢n; fu=y, andv=t

oo otherwise

and cost function

d(z;,y;) ifu=x;and v=1y;
c(u,v) = )
0 otherwise
Network Ny is depicted on Figure 1.1.

Definition 29. A flow in a flow network N = (V, E) is a mapping f : E — R=% | subject
to the following constraints:

1. for every (u,v) € E' it holds that f(u,v) < w(u,v), where w is the capacity function
2. for every v € V' \ {s,t} it holds that 3, ., cm f(u,0) =3 0 puyer [0, 1)

Definition 30. A maximum-flow in a flow network N = (V| E) is a flow, f, that maxi-
mizes Z{U:(M)GE} f(s,v).

Definition 31. A maximum-flow minimum-cost is the minimal value of

Z c(u,v) f(u,v)

(u,v)ER
for f being a maximum flow.
Theorem 32. The mazimum-flow minimum-cost of network Ny equals W (u, v).

Proof. Every transference plan v € I'(u, v) defines a maximum flow in network Ny, by

w(u, v) ifu=sorv=t

Sl v) = {fy({u}, {v}) otherwise ’

18



Figure 1.1: Wasserstein flow network Ny, for measures 3"V | m;0,. and ij‘il n;Yj.

N M
=1 j=1

and every maximum flow defines a transference plan. Moreover the cost associated with
flow f., equals

S0 clwu)f ) = / Az, y)dy

u€{z1,..., N} vE{Y1,- Yy} XXX

Consequently, by Theorem 23, the maximum-flow minimum-cost of network Ny, equals
W, v). O

Definition 33. For given measures y1 = Y.~  m0,,, v =Y.

i1 njéyj we define a flat flow
network NF = (VF, EF) by

VF = {87x17x27"'7xN7y17y27"'7yM7t}
Er = {s} x (Ve\{s,t}) U(Vr\ {s,t}) x {t} U{z1, ..., an} X {y1, ., ynmr}
with a capacity function

m; ifu=sandv=ux
w(uav): n; ifu:yi and v =1t
oo otherwise
and cost function
d(x;,y;) ifu=z; and v =y,
ifu=x,and v =1t
c(u,v) = _
ifu=sandv=y;

0 otherwise
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Network Ny is depicted on Figure 1.2.
Theorem 34. The mazimum flow minimum cost of network Ng equals pp(u,v).

Proof. Every choice of (fi, 7,7) € Ma(X)xMa(X) x (i, 7) such that S b, = i <
and S 71,0, = 7 < v defines a maximum flow in network Ny by

(

IU(U,’U) ifu:SandU:g;i
w(u,v) lfu:yZ and v =t

fin(u,v) = § mi =1 ifu=x;,andv =1,
n; — n; if u=sandv=uy;
\f}/({u}u {U}> otherwise

and every maximum flow defines a triple (fi,7,v) € 94(X) x M4 (X) x (@, 7). Moreover
the cost associated with a flow fj ;. equals

M

= /X Xd(a:,y)d7+ Z (mi — ;) + Z (ni — 15)

i=1
Consequently, by Corollary 26, the maximum flow minimum cost of network Ny equals
pr(p,v). O

Since network N is a bipartite graph (excluding s and ¢ vertices) the Hungarian al-
gorithm [58, 45, 19| can be applied to compute 1-Wasserstein and Bounded Lipschitz
distances. This approach proves to be significantly more efficient than general linear
programming.

Example 35. Let us consider the following expression: pg(26,,36,) for some z,y € X.
The value of this distance can be computed by following methods:

o Let Np = (V,E) be the flat flow network for measures 26, and 36,, hence V' =
{s,z,y,t}. By definition the maximum-flow in N is a flow, f, which maximizes
f(s,x) + f(s,y). Since f(s,x) < w(s,x) =2 and f(y,t) < w(y,t) = 3 we infer that
for the maximum-flow f(s,z) = 2 and f(y,t) = 3. Since f(s,z) = f(z,y) + f(x,1)
and f(z,y)+ f(s,y) = f(y,t), we conclude that the cost of a maximum-flow equals

flz,t) +d(z,y)f(z,y) + f(s,9) =
= (2+3) + (d(z,y) — 2) f(=,y).

It is easy to check that for any value f(z,y) € [0, 2] a maximum-flow can be built.
Finally, by Theorem 34 we obtain

5 if d(z,y) > 2
1 +2d(z,y) otherwise

pF(25I, 353/) == {
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Figure 1.2: Flat flow network Ny for measures .~  m;d,, and Zj‘il n;y;. Edges from
the set Er \ Ey are shown in blue.

N M
=1 7j=1
c=d(z1,91) < 00
P

e By the definition of pr(u,v) we have that

pF(25:ca35y) = sup {Q.f:c - 3fy : |.f:c - .fyl S d(x,y), |fz| S 17 |.fy| S 1} .
Fix f, € [-1,1], then
fy € [fo — d(z,y), fo + d(z,y)] N [-1,1].
Since —3f, is decreasing with f, it attains maximum value at

fy = max (.f:c - d(x,y), _1) .

Consequently,
pr(20;,30,) = sup ]{Qfa: —3max (f; —d(z,y), —1)} =
fe€l-1,1
= sup m1n(3d(x,y) _.f:c73+2f:c)
fz€[—1,1]

If d(xz,y) > 2 then 3+ 2f, < 3d(z,y) — f, for every f, € [—1,1], thus

pr(20,,30,) = sup 3+2f, =5.
fz€[—1,1]

Otherwise, if d(z,y) < 2 then 3 4+ 2f, = 3d(x,y) — f, for f, = d(z,y) — 1. Since
3+ 2f, is increasing and 3d(z,y) — f, is decreasing we obtain

pr(20z,30y) = 3d(z,y) — (d(z,y) — 1) = 1+ 2d(z,y).
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1.3.2. 1-Wasserstein distance on 9} (R)

Theorem 11 provides tools for computing Wasserstein distance as an integral which in
the case of discrete measures is simply a finite sum of N elements. In this section we
derive this algorithm again, from a different perspective in a seemingly overcomplicated
way. The purpose of this is to make an introduction to this approach, which is farther
applied for more involved algorithms for other distances.

Let p1,v € MI(R), |ull = V|, and p— v = 33 mgbs,. Since [, Cd(u—v) =0
we can add an arbitrary constant to the test function in the definition of 1-Wasserstein
distance and hence

W (s, v) = sup {kafm) [ € O(R). () = 0, Lip(f) < 1} .

Regularity conditions can be represented as linear programming bounds. Hence, comput-
ing of W (u,v) is equivalent to finding maximum of

N
> mifi
h=1

with the following restrictions

fN = 07

|fe — fec1l < |ze — xp-a] -

Although this problem can clearly be solved by linear programming, a more efficient
algorithm can be found. Define

W™ (f) = sup {Z myfe: {fitilo CR, fo = [ Veeqt,oNy [ fie = Jooa| <ok — «Tk1|} .
k=1

Obviously W (u,v) = W¥(0). Denote dy = zp,1 — 7%, and observe that the value of
W™(f) can be computed recursively as follows

Wl(f) =TT,

W2(f) = mof + sup Wl(f):m2f+m1f+m1-sgn(m1)d1:
fElf—dr,f+di1]

= (m1 + mg)ZL‘ + |m1|d1.

It can be shown by induction that

WN(f) = (Zmz> f+zdi ij

Notice that the value my is not used in the formula for W (0). Tt is, however, involved
indirectly, because my = — S~ " m;.

. (1.2)
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1.3.2.1. Pseudocode

Equation (1.2) gives an explicit formula for W (u, v), which is trivial to compute. Nonethe-

less, in this section we provide a pseudocode for computing iterated sum Zf\sl d; ‘22:1 m;
in linear time to make sure the reader is familiar with pseudocode notation before moving
forward to more involved examples.

In this algorithm we initially assign 0 value to variables ’distance’ and 'partial Sum’
and then process the array of positions, x, and the array of masses, m, sequentially. In each
iteration one, consecutive, index idx is processed. After indices {1,2,3,...,k} were pro-

cessed the variable partial Sum contains > °_, m; and distance contains ", d; |y ._, mj|.

Consequently, after all indices smaller than N are processed the returned variable distance
contains W (u, v).

Input:
e non-decreasing table of positions, z € RV,

e table of masses, m € RV.

1-WASSERSTEIN-DISTANCE (z € RV, m e RV):
distance < 0

partial Sum «— 0

for idr<— 1 to N —1 do

partial Sum <« partial Sum + m;q,
distance — distance + (Tigp11 — Tige) - |partial Sum)|

return distance

1.3.2.2. Complexity of the algorithm

It is clear from the pseudocode that the computational complexity of the algorithm is
O(N), while memory complexity (the volume of memory used by the algorithm) is ©(1).

1.3.3. Centralized Wasserstein distance on I} (R)
Let
M N
n—v = Zmzéxl + mM+150 + Z mléml

1=1 1=M+2

W/(f) = sup {Z mife : {30 CR, £ = f Ve, | — fro1] < o — ll?k1|} :
pt

WE

mife : {3 CR, £ = f Ve e — froa] <o — Jfk1|} -

J

W (f) = suwp {

T
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As already proven

WHH(f) = (Zm)Hde

)

2 m
=

e N —(M+1) N
W+(f):<z >f+ Z dN—k Zmi-
i=M+1 =N+1-k

From the definition it can be deduced that

—~

W)= sup (W) + () = mara f).

fel=1.1]

so the distance is given by the formula

M k N—(M+1) N
V)= di |y mil+ Z Ay Z
k=1 i=1 =N+1-k

1.3.3.1. Pseudocode

Similarly as in the case of 1-Wasserstein distance the algorithm is straightforward. It
consists of three loops. In the first two while loops terms

M k
> di| Y mi
k=1 i=1
and
N—(M+1) N
E dn_k E m;
k=1 i=N+1—k

are computed exactly as in 1-WASSERSTEIN-DISTANCE. Finally, in the third loop re-
maining masses (corresponding to position 0) are added to variable partial SumFront, to
ensure that partial SumFront + partial SumBack = Zfil m;.

Input:
e non-decreasing table of positions, z € RY,

e table of masses, m € RV.

WASSERSTEIN-CENTRALIZED-DISTANCE(x € RN, m € RN):
distance «— 0

(partial SumFront, partial SumBack) «— (0, 0)
(tdxFront, ideBack) < (1, N)

while Z;g.rromt < 0 do

partial SumFEront «— partial SumFEront + Mgz rront
distance — distance + (Tigzrront+1 — TideFront) * |partial SumFront|
ideFront < ideFront + 1

24



while Z;4.Beck > 0 do

partialSumBack «— partialSumBack + Migepng
distance «— distance + (TigeBack — TideBack—1) - |partial SumBack|
idxBack «— idxBack — 1

for idx <+ idxFront to idxBack do
partial SumEFront < partial SumFront + m;q,

return distance + |partial SumFront + partial SumBack|

1.3.3.2. Complexity of the algorithm

Each iteration of each loop takes a constant time. The total number of iterations in all
three loops is equal to M +1+ (N — M — 1). Computational complexity of this algorithm
is therefore ©(N), while the memory complexity is ©(1).

1.3.4. Flat distance on M} (R)

In this section the main result from [40], namely the algorithm for computing flat distance
in O(N log N), is presented.

Computing flat distance requires storing the shape of functions analogous to W™ as
they get more complicated when m increases. We provide a recursive formula for the
sequence of these functions. The pseudocode in Section 1.3.4.1 implements the algorithm
using an abstract data structure, without specifying its exact implementation, to store
previously defined functions. However, the computational complexity depends on the
particular choice of this structure. In further sections we provide two solutions that
require respectively O(N?) and O(N log N) operations.

Let

N
h—v= Z M0y, .
i=1

Computing of F'(u,v) is equivalent to finding maximum of

N
> mifi
k=1

with the following restrictions

| Sl 1

<
|fk_fk—1| < |$k—$k_1.

)

Define

F™(f) =sup {Z mfi : {fitiso C [=1,1), foo = f,Vieqr..ny | e — frm1| < |z — !Ek—1|} :

k=1
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By the definition of flat metric

F(u,v)= sup F¥(z).

z€[—1,1]
Observe that
Fl(f) = ml.fa
F2(f) = mof + sup Fl(fl) =maf +min(|m1|,m1f + \m1|d1),
frelf—di,f+di]N[—1,1]
F™(f) = munf+ sup F™ Y fn)- (1.3)

fmfle[f_dmfl7f+dm71]m[_171]

Computing of F™ based on F™~! is more complex than computing W™ based on W™,
because F™~! is not necessarily monotonic. The following two lemmas and Figure 1.3
explain the relation between I and F™~ 1.

Lemma 36. Function F™ is concave for each m.

Proof. To prove the lemma we use induction with respect to m. F'(f) is given as a; f, so
it is indeed concave. Assume F™ is concave. Define

Fr(f) = sup F(y)
yElf—d,f+d]N[-1,1]
Choose x,y € [—1,1]. Then, there exist 2’ € B(z,d) N [-1,1], ¥’ € B(y,d) N [-1,1] such
that
aFt(z) + (1= a)Fii(y) = aF™(2) + (1 — a) F™(y).

max max

Because F™ is concave, it holds

aF™(a') + (1= a)F"(y') < F™ (a2’ + (1 = a)y) < Frig(az + (1 - a)y)

max

The last inequality follows from az’ + (1 — a)y’ € B(az + (1 — a)y, d). It is now proven
that ™! is concave, as it is a sum of a linear function and a concave function F¢

mazx-*

O

Lemma 37. For each m € {1,2,..., N} function F™ is piecewise linear on m intervals.
Moreover, for some point [ it holds that

F(f +dm) on[=1, fr, — dm 1]
Fm(f) = mmf + mel(f;;) on [f;@ - dm—la f:m + dm—l] (14)
F YN f —dpy) on[ff +dn1,1]

Proof. The proof is conducted by induction over m. F' is a linear function, so it can
be described by its values in {—1,1}. Assume that F™ can be described by at most
m + 1 points and is linear between these points. As F™ is concave, there exists a point
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Figure 1.3: The method of constructing £ from F™

Fm,d

max

[

fr € [—1,1] such that F™(f) < F™(f) for every f. The maximum of F™ on an interval
whose both ends are smaller than f is attained at its right end. Similarly, if both ends
of the intervals are larger than f, the maximum is attained at its left end. Finally, if the
interval contains f, the maximum is exactly at point z,,. These considerations prove
the formula for F*!. Consequently, F*! is piecewise linear and it can be described by
as many points as /™ plus 1. O

1.3.4.1. Pseudocode

The algorithm presented in this section constructs function £’V and finds its maximum.
A set of pairs, called funcDescription, and a real variable le ftV alue are used to represent
F for idx € {1,2, ..., N}. The structure has following interpretation:

1. Fide(—1) = leftValue,

2. if (v,p) € funcDescription then -L ' (z) = p for all z larger than v and smaller
than the next value, ¢/, in the structure.

For a given value v we define #v as min {v" : (v/,p) € funcDescription Av' > v}. By this

definition %Fidx(:c) = pon (v, #v) if (v,p) € funcDescription.
Representation of F? is initialized to F'° = 0, namely

leftValue =0
funcDescription = {(—1,0), (1, —oc0)}
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In each iteration of the main loop function F* is transformed into function F*+1 ag
specified by equation (1.4). The transformation is achieved in three steps. Firstly, the
maximum argument f?, is found, all nodes on the left from f7, are shifted to left, all
nodes on the right from [}, are shifted to the right, and a new node is added to represent
the interval [ £}, —dpm_1, [, +dm_1]. Secondly, value of F"4*(—1) is computed and assigned

to leftValue. Finally, the representation of F¥ is restricted to the interval [—1,1] and
linear function m,, f is added.

Input:
e non-decreasing table of positions, z € RY,
e table of masses, m € RV.

FLAT-DISTANCE (z € RY, m € RY):
leftValue « 0

funcDescription «— {(—1,0), (1, —c0)}
for idx «— 1 to N do

d — Tide — Tide—1

funcLeft «— {(v—d,p) : (v,p) € funcDescription N\p > 0}
funcRight — {(v+d,p) : (v,p) € funcDescription A p < 0}
U < min{v : (v,p) € funcRight}

funcDescription «— funcLeft U {(v,, —2d,0)} U funcRight

leftValue «— leftValue + Z (min(#v, —1) —v) p

(v,p) € funcDescription
v<—1

(Umin, Pmin) < max{(v,p) : (v,p) € funcDescription Nv < —1}
(Umazs Pmaz) < max {(v,p) : (v,p) € funcDescription Nv € [—1,1]}
funcDescription «— funcDescription N {(v,p) : v € (—1,1)}
funcDescription < funcDescription U {(max(vmin, —1), Pmin) }
funcDescription <« funcDescription U {(1, —oc0)}
funcDescription «— {(z,p + mjqe) : (x,p) € funcDescription}

return leftValue + 3, e tuncpescription,pso (#V — V) = P
Notice that the last instruction in the main loop, namely
funcDescription «— {(z,p + mja.) : (x,p) € funcDescription} ,

makes it inefficient to implement funcDescription as a simple BST tree.
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1.3.4.2. FLAT-DISTANCE in O(N?)

As mentioned before, the complexity of this algorithm depends on the implementation of
funcDescription data structure.

The simplest implementation of funcDescription uses an array of pairs (v, p) sorted
by v in ascending order and by p in the reverse order in the same time. This is possible
as a consequence of Lemma 36.

The first block of instructions can be performed in O(# funcDescription) by simply
shifting all elements such that p < 0 to the right, and modifying v by iterating over all
elements of funcDescription. The next block (computing of le ftV alue) can be computed
with the same complexity, as

/

min {v' : (v', ) € funcDescription Av' > v}

is simply the next element after v in the ordered array. Finally, every instruction in the

last block can be performed in ©(# funcDescription) by iterating over all its elements.
In each iteration of the main loop at most 1 element is added to funcDescription.

Therefore, the computational complexity of the algorithm is O(N?) while the memory

complexity is O(N).

1.3.4.3. FLAT-DISTANCE in O(N log N)

The previous result can be improved to O(N log N) by using balanced binary search trees
data structure.

In this implementation funcDescription is represented by global variable py,od; fier and
a balanced binary search tree, T, of key-value pairs (Awv, p) where p is the key. Let #p be
the largest key in 7" smaller than p. The defined data structure funcDescription specifies
a function " in the following sense:

1. Fide(—1) = leftValue

2. if pis a key in T then %Fidx(x) = P+ Dmodifier for z such that

Z AV —1<zx< Z Av' —1

(Av',p")€ funcDescription (Av',p")€ funcDescription
p'>p p/ >#p
Notice that obtaining a single element of funcDescription (a pair (v, p) defining derivative
in a given point) may take linear time.

The advantages of this structure can be easily seen when analyzing the first block of
the code. The division of funcDescription by the value of p (at first 0) can be achieved
in O(log N). Shifting all elements of those subsets can then be done in a constant time
by modifying first elements of these sets. Adding the extra node also requires O(log N)
operations.

Setting leftValue may require linear time, but all (apart from one) visited nodes
in this process will be removed in the third block. Consequently the amortized cost of
resetting leftValue is O(N).
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Removing nodes with the first coordinate v < —1 is obviously done in amortized
O(N). Identifying nodes with the first coordinate v > 1 might seem problematic. It is,
however, known that for the smallest p the respective v-value is equal to 1 + d. Relevant
nodes can be, therefore, removed in the reversed order (from right to left) O(N). Adding
m,, to the second coordinate of each node is done simply by adding it to global variable
pmodifier-

Alliterations of the main loop require O(N log N) operations. The memory complexity
is also O(N log N).

1.3.4.4. Performance of FLAT-DISTANCE implementations

Performance of the algorithm depends on the choice of funcDescription data structure.
Theoretic bounds for computational complexity are, however, not sufficient to argue about
performance of these two options. The first reason is that the each operation in O(N?)
algorithm is much faster than in O(/N log N) in terms of number of instructions. Secondly,
hardware architectures provide solutions in which iterating over large tables is vastly ac-
celerated. Finally, the algorithm does reach its theoretical bound only if many points con-
centrate on a small interval. A gap of size 2 between two points cleans funcDescription
data structure completely. Numerical results presented in this section answer compare
these two algorithms for different data input patterns. Performance was measured on a
single core of AMD Athlon II X4 605e processor clocked at 2.3Ghz with 8GB of memory.
The results are presented in Figures 1.4 and 1.5.

1.4. Comparison of metrics on MM"(X)

The following table presents a concise comparison of the distances defined in Section 1.1.
For each metric basic properties, dual representation, compute complexity in the case of
X =R and the distance between 24, and 34, are shown.

Metric Example: Scale- Translation- Dual representation of Compute
d(264,30y) invariance| invariance d(p,v) complex-
ity
Wasserstein 00 YES YES The cost of optimal O(N)

transference of
distribution p to v,
assuming that moving

mass m by x requires mx

energy.
Wasserstein min(2 + 3, weak YES Minimum of the sum of O(N)
normalized | (3—2)+ |z —y]) masses of 4 and v; and of

the difference in masses
between p and v plus the
cost of transporting ﬁ

to L
(A1
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Wasserstein 2|z —y| + |y YES NO The difference in masses O(N)
centralized in point 0 in space added
to the cost of
transporting
g (vl = Il 6o to v
Flat 1+ YES YES The cost of optimal O(Nlog N))
2min (2, |z —yl|) transporting AND/OR
generating AND/OR

annihilating mass to form

v from p.
Radon 243 YES YES The cost of generating O(N)
AND/OR annihilating

mass to form v from p

Figure 1.4: Comparison of the performance of the two proposed algorithms for the flat
distance between 0 € 9(R) and an N-point discrete measure with atoms randomly
distributed over [—1,1]. The plot shows how the time of computation depends on N.
For each input size 100 independent tests were executed to demonstrate how sensitive the
algorithms are to input data distribution. Results of O(NlogN) algorithm are depicted
as red dots, and results of O(N?) algorithm as blue dots.
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Figure 1.5: Comparison of the performance of the two proposed algorithms for the flat
distance between 0 € 9¥(R) and a N-point discrete measure with atoms distributed over
a large domain, i.e. distance between each two masses is larger than 2. In this case both
algorithms are in fact linear, as the funcDescription structure has at most two elements.
The plot demonstrates the overhead of using BST structures. Results of O(NlogN)
algorithm are depicted as red dots, and results of O(N?) algorithm as blue dots.
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1.5. Approximation theory for Radon measures

In this section the following problem is considered: given a measure p € 9*[0, 1] find its
approximation pV € EITZ(J{,N[O, 1] supported on a N-element set which minimizes pp(u, p'v).
Similar study has been presented in [68] and [63] for Wasserstein distance and the case
of absolutely continuous measure p. Theorem 23 allows to understand the approximation
problems for Wasserstein distance as real-life questions about optimal choice of concen-
tration points such as shops, warehouses and polling stations. Analogously, optimal flat
distance approximation can be interpreted, following the lines of Corollary 26, as the op-
timal choice of concentration points of goods whose demand can be, at some additional
cost, satisfied alternatively. Applications of this theory include the problem of locating
parcel lockers and wireless access-points providing Internet services in metropolitan areas.

The results of this section are primarily motivated by the study of particle methods
for solving partial differential equations (see Section 2.2). They prove to be useful for
solving McKendrick-von Foerster equation numerically as they allow the following three
improvements:

1. birth process can be implemented more efficiently,
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2. number of particles, and hence the computational cost, can be reduced,
3. error of the scheme can be reduced by optimizing initial data approximation.

For details see Section 2.2. This section is divided into three subsections which cover
general theory, approximations of discrete measures and approximations of absolutely
continuous measures.

Remark 38. The choice of interval X = [0, 1], often made in this section, is not arbitrary.
Although, most of the results presented in this section can be generalized to the case
of arbitrary interval [a,b], it is not immediate. In many proofs (e.g. Theorem 44) it is
necessary that the diameter of X does not exceed the Lipschitz constant of test functions
in the definition of flat metric. Population dynamics equations considered in Section 2.2
can be rescaled to the interval [0, 1], and hence results of this section can be applied
without loss of generality.

1.5.1. Relation between 1-Wassersten and flat approximations

In many applications, where discrete measures are processed, it is desired to keep the
number of atoms to the minimum while being sure that the introduced error is reason-
able. This may require a compression step, where a measure consisting of N atoms is
approximated by a M-point measure with M < N. In this section we investigate the
bounds and asymptotics of the error induced by compressing discrete measures on [0, 1].
Firstly, we define an equidistant N-point approximation. This method of approx-
imation is efficient, easy to implement, and for some input measures it gives optimal
results. Moreover it can be generalized to any totally bounded metric space. For certain
applications, however, approximations of a better order can be constructed.

Lemma 39. Let 1 and v be two non-negative measures on [0, 1] with equal total variation,
[l = llvll, then pp(p,v) =W (u,v).

Proof. Let f, € Lip(1) be a sequence for which the following supremum is attained in the

limit .
/O F(—v)

then f,(x) = fu(z) — f(0) is also a maximizing sequence, because

W(p,v) = Sup{

1 fe Lip(l)},

1
/0 FO)d(p = v) = f(0) - ([l = [v]) = O.
Conditions f € Lip(1) and f(0) = 0 imply that | f(z)| < 1 on [0, 1] and hence

W(p,v) = pr(p,v).
O

Definition 40. An equidistant N-point approximation, u”, of a non-negative Radon
measure j on [a, b is defined as
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Theorem 41. Let iV € My[a, b] be an equidistant N -point approzimation of p € M a, ],
then the following estimate holds

N) < /,L[a,b]
~ 2N

Proof. Measures i and p¥ have equal total variation since

pr(,

WWH:;;Mp+@_abga+@_aﬂ;f>+Ma+@—aﬂﬂ;3&=mehﬂmw

By Proposition 7 and Theorem 11

/|u0x W0, ol)d =

N-1 a+(b—a)% i 7
- / ot (0 a) e 0]~ at (b~ 0) e, allde =

i=0 Jat-a)% N
N-1 a+(b—a)$ i a+(b—a)% i+1
-/ jla+ (0~ ) alldo + [ plwa+ 6 —a) )] do <
i—0 \Jat(b-a)5 N a+(b—a) 05 N
N—-1 . .
b— 1
fzﬁo(m$Ma+@—@§pw+@—@Z;>m)=
pila, 0]
< (b— .
(-5

Corollary 42. The subspace My(R) is dense in M(R).

Proof. Let pn € 9MT(R) and let € > 0. There exists M € N, such that

ul=M, M) 2 u(R) - =,

Let N = 2Mu(R)e~! and let u”¥ be an N-point equidistant approximation of measure
1 (s ps- Then

pr (s 1) < pr (s il _ypan) + ol g 1) <e.

Since every finite Radon measure can be decomposed into a difference of two non-negative
measures it completes the proof. O
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Since we already know that any measure can be approximated arbitrarily well, we
focus on the problem of optimal approximation. Lemma 39 and Theorem 44 guarantee
that an optimal approximation in flat metric always exists and that it coincides with the
optimal approximation in Wasserstein metric.

Definition 43. An optimal M-point discrete approximation, p™ = Zf‘il m;0z,, to a

Radon measure p is a discrete measure with A atoms minimizing

pr(p, ™)

Theorem 44. Let p € M (R) and supppu = X. There exists an optimal M-point
discrete approzimation, ™, of p in flat metric; it is supported on a subset of conv X, it
is non-negative and moreover if X C [0, 1] then
el = [| ] -
Proof. The proof consists of five steps. In the first step we show existence of an optimal
M-point, approximation. In the next three steps we focus on the case discrete measures
. In the second step we show that any M-point approximation of y with atoms outside
conv X. In the third step we show that any M-point approximation of x whose total
variation is different than the total variation of 1 can be improved if i is supported on a
subset of (0,1). In the fourth step we show that any M-point approximation of p with
negative masses can be improved. In the fourth step we generalize the results from steps
2-4 to the whole domain of non-negative Radon measures.
Step 1. Let {uM}°, be a sequence of M-point approximations such that

pr(p, 1) — inf {p(p,v) : v € M[0,1] and vis an M-point discrete measure}

Each measure 1] can be described by sequences {m’}1, and {«}}}L, representing masses
of Dirac deltas and their positions respectively. Namely,

M
=1

By the compactness of [0, 1]** € R*M one can choose a subsequence {i;}°2, C {1,2,3,...}
such that A A
Viegio,.ay mi — m; and 27 — ;.

By Lemma 19 the convergence of {m. 2, and {7 22, implies that

M

M M :

plt = " mid,, = p™ i pp,
=1

Consequently, u* is an optimal M-point approximation.

Step 2. In this step we assume that p is a non-negative N-point discrete measure.
We shall show that if ! is an M-point approximation of z, not necessarily non-negative,
then a better approximation, i can be found provided that ;* has atoms on R\ supp p.
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Firstly, we introduce some tools used in [40] for computing flat distance. Let

M+N
p—pM =" mi,,

i=1

and 71 < 1y < ... < zp74n. Define functions F* : [~1,1] — R and 7 [—1,1] — R by

k
F*(f) = sup {Z mifi : {fitie™ C L1, fr = f, Vieq, ol fi — fioa] <o — $i—1|} ,
=1

N+M

—k

F'(f) = sup { S omafi  {fFEM C (=110, fo = f Viepovanlfi — fiotl <z — 2]
i=k

Obviously

F(f)]. (1.5)

pr(p, ™) = sup |[EMTN(f)| = sup
fe[_lvl} fe[_lvl]

7o)

Functions F* and " are concave and piecewise linear (Lemma 36 and Lemma 37). From
(1.3) it follows that

EFFY(f) = mif + sup F*(fr). (1.6)
Te€[-1L1N[f—(zk+1—2k), fH(Tht1—2k)]

We shall show that if ™ has k atoms outside supp u then a different approximation,
|, at least as good as ™, consisting of at most & — 1 atoms outside supp p can be
constructed.

Let conv(supp pt)) = [xr, zr]. Suppose that u* has atoms outside [z, r] and hence
either 1 < zp or zyyy > xr. Without loss of generality we can assume zyyy > Tg.
Let g = o™ — mariNOay o n + Marsn0sy - We have

plp, i) = sup |[ENTM(f)] =

fel-1,1]
= sup mNJer—l— sup EN+M_1<fN+M*1> >
fel-1,1] fNsM—1€[-1L1NB(f.aNyM—TNfM—1)
> ; S[uli)l] }mN-‘,—Mf + ENjLM*l(f)’ = p(ﬂaﬂljy—l)-
G — 4

The first non-trivial equality results from (1.6) and the estimate stems from the fact that
f € B(f,zn+m — xn+m—1). The last /equality follows from (1.5) and (1.6). Indeed,
applying (1.6) to the case of measure g — p™ — mp N0y, + Mar1NOzy, . instead of
p — ™ would result in formula

FNM = o f + ENTYEL(E.

Step 3. In this step we assume that p is a non-negative N-point discrete measure
supported on a subset of (0,1). We shall show that if z* is an M-point approximation
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of 41, not necessarily non-negative, then iy’ = p™ + (||pl| — H/,LMH) d., approximates u at

least as good as ™ for any k € {1,2,..., N + M}. To this end we introduce tools based

on functions F* and ' for computing pp(p, p™ + Zf\SM m;ilz, )-

Firstly, we will prove by induction the following statement: if u — p* is supported

on a subset of (0,1) then functions F* and F" are linear on [—1 4 2,1 — %] and their

derivatives at 0 are equal to Zle m; and Z@AS;M m; respectively. Let us focus on F* as

the case of F is fully analogical. F'(f) = myf is linear on [~1 + 21,1 — ;] and its
derivative is equal to m;. Suppose that F'* is linear on [—1+ z, 1 — x;] and its derivative
at 0 equals 32 m;. From (1.6) we have

FMF) = muf + sup F*(fi)-
fke[*l,l]lﬁlB(f,xkﬁ,l*xk)
Since E*(f;,) is linear on [—1 4 x5, 1 — 2] it follows that for all € [—1 4 211, 1 — 2341
we have either

sup FE(fi) = E5(f + (wie1 — 2))

frel=L1NB(f,xk11—2k)
or

sup F*(fi) = E*(f — (@141 — 7).

frel=L1NB(f,xk11—2k)

Hence, F*T*(f) is linear on [—1 4 x4, 1 — 2341] and %EHI(O) = my, + L F*(0). This
proves the inductive step.
For k€ {1,2,..., N + M} we define

Gk, [) = sup FFHy) +muf + sup Foy) = (17

ye[*l,l}ﬂB(f,{L'kkafl) ye[*l,l]r\lB(f,xk+17£Bk)
—k
= E*(y) — mwf + F (y).
Notice that for any = € [0,1] and m € R we have

p(p, k™ +md,, ) = sup |G(xx, f) —mf]|.
fel-1,1]

Since both functions F* and F" are concave on [—1, 1] and linear on (—¢,¢) we conclude
that so is G(z,-). Finally,

d A gy D ky o |
EG(%,O) = dfF (0) + de (0) = my, = ; m;. (1.8)
From ||p|| # ||| we have
d N+M
om0 = 3 mi £ 0
Observe that
N+M
Il = || + (Z mi) O || = [|2" |-
i=1
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Using the fact that G(xy,-) — <ZZ]\§M mi> f attains its maximum at f = 0 and conse-

quently that G(zy, ) attains its maximum outside [—&, £] we obtain

pr(p, fiy') = pr (u,uMJr <Z rm) 5:vk> = sup [G(xk,f) - (Z mz-) f] =

i—1 fel-11]
= G(ay,0) < sup Glay, f) = p(p, p™).
fel-1.1]
This completes the proof of the third step.
Step 4. In this step we assume that p is a non-negative N-point discrete measure with

no atoms in {0,1}. We shall show that if z* is an M-point approximation of j, not nec-

essarily non-negative, satisfying ||u| = H,uMH then a better, non-negative approximation,
fi™, can be found and also ||u| = ||2]].
Let

N
Moo= Zmzaxm
=1 p
(MM)_ = - Z mi(srw

i=N+1
N+M

(,uM)+ = Z M0y, -

i=K+1

From Lemma 39

Lety* el (,u — (uM) ", (MM)+> be the optimal transference plan. For k € {N+1, ..., K}

let
mg

Vi = m’y*({%}a)
Define K
~M_ (,LLM)+ B Z Vg,

Newly defined i is an M-point approximation since

suppvy = suppy*({zx}, -) € suppy*([0,1], ) = suppp™.

and it is non-negative because my < [[v*({zx}, )|l Also ||ul| = ||#]| . Since v* =7 # 0

and (v* —74) € T'(u, ™) we obtain
- - . . - +
pi(p ™) = W (u, i) < /[ =l < /[ Ll =W (e () ()7,
0,1 0,1
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which completes the proof.

Step 5. In the last step of the proof we shall generalize the reasoning from Step 2 and
Step 3 from the case of y being a non-negative discrete measure supported on a subset of
[e,1—¢] to the case of an arbitrary measure p € 9=[0, 1]. By Theorem 41 for every € > 0
there exists a discrete measure p. with no atoms in {0, 1} such that pp(u,pe) < e ||ul|
and ||p|] = ||pe||. Denote the optimal M-point approximation of p. by 2. We have

pr(pes 12') < pr(pe, ™) < pr(pie, i) + pr(p, p™) < e |lull + prp(p, 1),

There exists a sequence ¢,, — 0 for which ,ué‘f is convergent. Let ,u?;[ — M. Finally from

pr (e, 12") < pr (s pe) + pr(pe, pt') < 2¢ |ull + prp, 1)
we obtain
pr (s i) < pr(p, ") + pr(pl', 1) — prp, 1),
hence i is the optimal N-point approximation of . O
Theorem 44 provides a strong tool for dealing with optimal approximation problems.

It is used in the Lemma below for constructing an optimal 1-point approximation of an
arbitrary measure.

Definition 45. Let p be a non-negative measure on [a, b] C [0, 1]. We define the central
point of measure pu as

T = sup{z € [a,b] : pla,z) < p(z,b]}.

Lemma 46. Let u be a non-negative measure on [a,b] C [0, 1], then Var, ) = el O,y 08
an optimal 1-point approrimation of v in flat metric and

1

(o]
pr(f, foa’b]):/ u[O,x]dw+/ pilz, 1]dz.
0 T

[0.1]

Proof. By Theorem 44 the mass of the optimal approximation of p equals ||u||. Let
vy = ||pe|| 9. be the optimal approximation of u, then by Lemma 39 and Theorem 11

;wmmzwmuwzénmﬂ—%Mﬂmzﬂﬂmﬂm+/uhum

Suppose to the contrary without loss of generality that x > Tl 1) Consequently,

T

;mmw—wwwz/'uMﬂﬂmww (1.9)

Zo,1)

By the definition of a:’[ka 0] the integrant in (1.9) is a strictly positive function, which con-
tradicts optimality of v,. O

Proposition 47. The estimate pp(p, vy

. 1]) < %M[O, 1] holds. Equality is satisfied for
on = 50 + 51.
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Proof. The estimate follows immediately from Theorem 41. Consider u = dg + 61, then
x’ﬁm =1 and

1
pF(”’vxTo,1]) = W(50 + 51,251) = 5[1[0, 1] =1.

O

The previous result may seem a little disappointing because in the worst case the error
of a 1-point optimal approximation is exactly equal to the error of a 1-point equidistant
approximation. In the next section we focus on the problem of finding an N — 1-point
approximation to a given N-point discrete measure on [0, 1]. It turns out that there exists
a linear algorithm for finding optimal approximation in this case and that the upper bound
for the error is of order N 2.

1.5.2. Reduction of the number of atoms in a discrete measure

Lemma 48. Let = Y~ m;0,, be a non-negative measure on [0,1], then there exists an
optimal M-point approzimation supported on a subset of {x;},.

Proof. Let pM = Zf‘il n;0,, be an optimal M-point approximation that is not supported
on a subset of {z;}Y,. By Theorem 44 u™ is supported on a subset of [z;,7y] and
Zij\il n; = vazl m;. Suppose that for some indices a, b, ¢ it holds

To <Yb < Ypt1 < oo < Ypge < Tgt1-
By Theorem 39 and Theorem 11

pr(, 1) = ¢+ ({yi}o5),

where
o= | 1[0, 2] — [0, 4] d,
[0,z4]U[zq+1,1]

Ta+1
vl = [ lulo.a) - (0,2l
Because u™ is a discrete measure we have

w({yz}fi{f) = / 1[0, 4] — p™]0, 2,]|dx +/ h |1[0, 24] — ™[0, yp)|dx + ...+

Yo

Ta+1
T / 1100, 2] — 1[0, gpr.] |

Yb+c

or simply
D({y}e) = (y — 2a) |10, 7a] — (M0, ]| 4 oo+ (Tags — Yoye) |10, 0] — 1[0, gl
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which implies

b+c

VY }E) > (Tagr — T4) - min {\Zmz an} . (1.10)

d=b—1
Suppose the minimum is attained at index d = D. Define measure i

b—1 D btc M

i=1 i=b i=D+1 i=btc+1

Notice that 1™ is concentrated on a set of cardinality at most M. The error of approxi-
mation is given by

Tat1 a D
pr (i) :¢+/ 1> mi =Y nalda,
Za i=1 i=1

which by inequality (1.10) can be estimated from above by ¢+1/1({yl}fi,f) and consequently

pr(p, ™) > ppp, @).

It proves that there exists an optimal M-point approximation to p that is supported on
a set with no points in (JN " (i, Zi11)- O

On the basis of Theorem 44 and Lemma 48 a brute-force algorithm for finding optimal
N — 1-point approximation can be built. The idea is to compute minimal error in flat
metric for each possible support.

Definition 49. Given a discrete, non-negative measure p = vazl m;0,, with N atoms
on [0, 1] we define N — 1-point approximation algorithm as follows:

1. Foreach j =1,2,..., N consider the set 2; = {1, 22, ..., x;_1, Zj11, ...,y } and define

Zmlé +m;0y, | + Z LTI

= ]+1

Zmlé +m]x+1+zmzx7

i=j+1
2. For each side s € {L, R} compute
pr (s p17).

3. Return the measure pf which accounts for the lowest error pp(u, 413).

Proposition 50. The N — 1-point approximation algorithm has linear computational
complexity.
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Proof. By Lemma 39 and Theorem 11
Ly _ Ly _
pr (s ;) = W, ;') = mi(xi — i),
pr (s 1) = Wty ) = mi(zi0 — a5).

Consequently, the value of pp(u, ) can be computed in constant time for any i €
{1,...,N} and s € {L, R} and thus the algorithm requires O(n) operations. O

Theorem 51. For a non-negative N-point measure j the N — 1-point approximation

algorithm returns an optimal N —1-point approzimation, u™ =, and the following estimate
holds
2|l
pr(p, pin—1) < N (1.11)

Proof. Tet =Y m;d,, be a non-negative measure on [0, 1] and let

k—1 N
pVt = Z N0z, + anﬁxi
i=1

k+1

be its NV — 1-point optimal approximation. Denote A; = n; — m; for all ¢ # k and
A = —my. It’s easy to show that A; > 0 for ¢ # k. Consequently from Lemma 44 and
Theorem 11 we derive a formula for pr and from non-negativity of A, we can deduce the
sign of Z}Zl A; and therefore omit the absolute value:

pr(p, ™) = ‘_ ((ﬂfz‘ﬂ — ;) ZAJ> + Z <—(~Tz’+1 — ;) ZAJ> :

By changing the order of summation we obtain

N
pr(p, p™ ) = ZAJ% — il
i=1

This value is minimal when A; = 0 hold for all 7 except for i = k — 1 or i = k + 1.
The N — 1-point approximation algorithm indeed considers all measures concentrated on
{x;}, that satisfy this condition and ||p™ || = ||"||-

To prove the estimate 1.11 let us denote d; = x;,; — x;. The distance between p and
-1 is equal to the cost of moving some mass m; from one of the neighboring nodes

pr(p, pv—1) = W(p, py—1) = min {m1d1, 'e{zmi%q}mi -min(d;, di—1), mNdN—l}

and consequently

— < i i 7" di7 dn— .
pr(H, iv—1) mln{ie{lf{}{%_l}m mydy 1}
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N
. . . p N .
Using Schwarz inequality for sequences { | |} 1 and {, / Arnin(, N_l)}i: | we obtain

|1 i
L I 2 N N-1
i NOUN-1 i
+ < di+dy-1| <2,
(Z ] \/ lul ) (Z HuH) (Z )
since
N-1 N-1
m; < |l and Y d; <1
=1 i=1
and
N-1
Z Vmid; + v/mydy_1 < /2.
i=1

It implies that there exists ¢ such that

and consequently

0

Theorem 51 guarantees that removing a single atom from an N-point measure and
readjusting masses does not induce a large error. Consequently removing a fixed number
k of atoms induces an error of order N=2 as well. Obviously, if &k is proportional to N
then the estimate from the Theorem 51 only guarantees the error of order N=!. The
examples below show that in such case (k ~ N) no better estimate of the error of optimal
approximation can be found and that applying N — 1-point approximation algorithm
iteratively k-times does not lead to good results.

Remark 52. Algorithm for finding M-point approximation of N-point discrete measure by
removing optimally one mass at a time (greedy algorithm) is suboptimal. Indeed, let us

consider measure p = 25:1 %51/,1 then a 1-point approximation constructed by removing

N o1
n=1n

one mass at a time is given by p! = (Z ) 01 while the optimal 1-point approximation

n=1n

tends to <ZN 1) 09 with N — oo. The error of the greedy algorithm therefore can be
higher then the error of the equidistant approximation.

Theorem 53. For every M < N there exists an N-point discrete measure on [0, 1] whose
optimal M-point approrimation yields error equal to

-
MINN -1y
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Proof. Let
N-1
N
= C _52 -1,
2 ,Z; N 0i/N-1

where C' > 0 is any constant, and p™ be its optimal M-point approximation. By
Lemma 44, Lemma 39 and Theorem 23 the error of the approximation equals

pr (™, pM) = W (", M) = inf {/[ ]Q\w—y|d’y}-
0,1

e (1, uM)

By Lemma 48 the set supp u™¥ \supp u™ consists of exactly N—M points: zj,, Ty, oo Tjn_ ;-
Obviously for every k € {1,2,..., N — M} and = € supp ™ the distance |z — z;,| > 5.
On the other hand for every transference plan v € I'(¢", ™) the mass transported from
the point x; equals
C
7({xjk}7 [07 1]) = N

As there are N — M Dirac deltas with masses & each that have to be shifted by the

N
distance at least ﬁ we can conclude that
M N-M
N oMy > inf Ti — T z: } xA{x; >
e )z inf 43S e = by (o) 2
N-M N-M
C C 1 N-—-M
> | > = >C
—Nkzl‘x“ x"N;N—l_ NN —1)

O

Remark 54. If M be proportional to /N then the error of an optimal M-point approxima-
tion to a N-point measure can be of the same order as the error of an M-point equidistant
approximation.

1.5.3. Approximation of absolutely continuous measures on |0, 1]

For any absolutely continuous measure an equidistant M-point approximation can be
built. It induces an error of order M ~! and it is optimal in the case of a constant
function. Nonetheless, for many other applications (such as multi-hump functions) this
approximation can be improved by a large factor. In this section we investigate methods
of improving discrete approximations of absolutely continuous measures.

In the beginning of this section we shall recall some observations from [68], which con-
stitute an excellent tool for improving the error of approximation. Farther, we introduce
two new methods and compare the results against the algorithm investigated in [68].

Definition 55. Let .# : L'(X) — M(X) be an inclusion map given by

A(f)(E) = /E fdc,
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where L is the Lebesgue measure.

The flat distance between a Radon measure 4 on a normed space X and a function
f € LY(X) is defined as pp(u, f) = pr(p, #(f)). Similarly for f,g € L*(z) we define
pr(f,9) = pr(A(f), #(g)).

Let us consider a discrete M-point approximation pu* of a positive continuous function
f € C[0,1]. The domain [0, 1] can be divided into M sets corresponding to the areas to
which each of Dirac mass of u* is transported. It turns out that if u™ is the optimal
approximation of f then this division is a partition of [0, 1]. The following definition and
Proposition 57 provide precise formulation of this intuition.

Definition 56. Let f € C[0,1] and let ™ = Zf‘il m;d,, be any M-point approximation
such that || || = ||.# (f)|. Let v* € D(u™, . (f)) be the optimal transference plan (see
Theorem 24). We define the transport domain division of interval [0, 1] as a sequence of
sets X; such that

Xi = supp (v"({z7}, )
fori=1,2,.., M.

Proposition 57. Let {X;}M, be the transport domain division of interval [0,1] for
M

f € C[0,1] and its optimal M-point approzimation p* = 7.7, m;i0,s. Suppose that
the sequence {x}M, is increasing. The following statements hold

1. x7 € X; for every1=1,2,..., M,

2. for every i =1,2,.... M it holds X; = [a;, a;11] with a; =0 and ap41 = 1,

3. Qi1 — X = X7 — a1 for everyi=1,2,..., M — 1.

Proof. Let v* be the optimal transference plan of u™ to .Z(f). Since
supp(y°([0, 1], -)) = supp(A4(f)) = [0, 1]

and
supp(v*([0,1],-)) = U supp(v*({z7},-)) = U X;
we conclude that MZ .
UJxi=101] (1.12)

Next, we prove that condition |x —z}| < |z —x}| implies z ¢ X}.. Suppose to the contrary
that z € X} and there exists a neighborhood N, > z such that for every y € N, we have

ly — 23] <ly — 2zl (1.13)
Let us define an alternative approximation, i, of f by
ﬂM = Z mi5x;f + (m; +4A) 5x;f + (my, — A) 535;;,
ie{l,2,.., M}
iF g iFk

A= ’7*({xk}7 Nar)a
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and a transference plan, 7, by

v*(A, B) if z;,2, ¢ Aor z;,x, € A
YA, B) = v (A, B) —v* ({xx},BNN,) ifx; ¢ Az, €A
v(A,B)+~v ({z}, BNN,) ifx, ¢ A x; € A

Notice that ¥ € T'(a™,.#(f)). Using 1.13 we obtain

pAMwaWWMijz/‘\x—Md@ﬁ~w=

[0,1]?

= [ o=l 07 ) = 3ash N + [l = 0ld 07 Q) = 30, ) =

> [l =yl G nd) = 3 ) =

which contradicts optimality of .

Statement (1) easily follows from the fact that condition 0 = |2} — x}| < |z} — 7]
implies z; ¢ X}, which is holds for every k # j.

To prove statement (2) suppose X, is not an interval; equivalently there exist
zj,2; € Xj and 7, € (x4,7}) such that z, € Xj. These assumptions imply following
inequalities: |z; —x%| < |z; — x|, [2) —2}| < |2} — %] and |zp — 27 > |25, — 2%|. From the
first two inequalities we have x} ¢ [z, 2], which contradicts the third inequality. Since
Uﬁ\il X; =10,1] and =} € X;, then indeed a; = 0 and ap1 = 1.

Statement (3) follows from the fact that a;1; € X; and a;41; € X1 hence neither
lai1 — x| < |aip1 — o}y | nor a1 — 27| > |ai — 27| holds. O

Definition 58. Let {X;}M, be the transport domain division of interval [0, 1] correspond-
ing to an M-point discrete measure p™. If {X;}M, = {[a;, a; 1]}, and

0:(11<CL2<...<(1M<CLM+1:]_,

then the sequence {ai,as,...,ap+1} is called a transport partition of interval [0, 1] corre-
sponding to pM.

The following fact follows immediately from Lemma 46.

Corollary 59. For a given sequence {a;}121 C [0, 1] and a positive continuous function f

the M-point approzimation of f which is optimal in the class of measures whose transport

partition coincides with {a;}X " is given by

M
M _ o
h ; /[aivai+1] f<x>dx 5x[“iv“i+1]’

where xf, , is the central point of measure A (f)|jap), see Definition 45.
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Proof. Let puM = ZZ 1 M0, be the aforementioned M-point approximation and let
vt € T(u™, #(f)) be the optimal transference plan. We have

M
o, f) = / eyl =Y / 2 — aldy (fa}, ) =
[0,1]2 i—1 [0,1]

_Z/ |z — x;|dy* ({x:}, Z/ |z — @]dy"([0,1],-) =
a17a1+1] a17a1+1]
= Z/ |:L‘ - l‘l|dl‘ = ZPF az,az’+1}’ f|[ai7ai+1})'
a27a1+1

Since each term can be optimized 1ndependently, m;0,, is the optimal 1-point approxima-
tion of A (f)las,ais,) and therefore, according to Lemma 46, z; = ] is the central
point of measure .Z(f)|; O

aiy@it1]

[aiait1]
Definition 60. Let M € N be a fixed natural number, and let {[a;, a;11]}}, be a par-
tition of the interval [0,1]. Given a positive function f € C|0, 1], we define an operator
[0, 1Mt — [0, 1M

X(a27 EY CLM) = (IFO7GQ]7 xraz,a:ﬂ? Tt xrathaM]’ xFanl])

and an operator ¥ : [0, 1] — [0, 1]}M~!

A(l‘l, o, ...

r1+ T To+ T3 Tym-1+Tm
axM) = 9 ) 9 JEEES] 9 .

It is clear that the optimal approximation of .Z (f) is uniquely defined by a partition of
[0,1] and that each partition uniquely defines a candidate for an optimal approximation
by Corollary 59. The problem of finding optimal approximation is therefore reduced
to finding an optimal partition a € R¥~!. The main tool used in [68] is based on
the observation that A(X (a)) provides a better approximation than a, and consequently
necessary and sufficient conditions for the sequence ((A o X)"(a)) ", to converge to the
optimal partition are found. In the next part of this section we introduce a method for
improving the convergence rate of the optimization process.

Definition 61. Let f € C[0,1] and let operator w : [0, 1]+ — [0, 1] transforms any
partition, {a;}2X7!, of the interval [0, 1] into the optimal M-point approximation in the
class of measures whose transport partition coincides with {a;}2 . We shall often write
piysy instead of w({a;}) for simplicity.

Definition 62. Let {a;}2. ! be a fixed partition of the interval [0, 1]. We define a mapping
pe{2,3,..., M} x[0,1] — EITZ[O, 1] by

,uj,a = w(al, as, ..., aj,l, a, aj+1, ..Qpr, CLM+1).

In other words pj, is the value of w at the point {a;}2 ' with a; substituted with
a € [aj-1,a;41].
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Figure 1.6: An example of continuous function, a four-point discrete approximation de-
picted as black dots, the corresponding transport partition, {a;}?_; of interval [0, 1] and
optimal transference plan depicted as horizontal arrows.
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|
|
|
|
|
|

* * *
a1 =0 T as Lo as L3

Notice that

M
7,0
Miq = E mj 5:5;)‘1’
Jj=1

where
| faij“ f(x)dx for j ¢ {i—1,i} | Tlyiasey  forj & {i— 1,4}
m;® =4 [* flx)de forj=1i—1 and  xi"=quap, o forj=i-1
[0 fe)de for j = i s forj=i

Theorem 63. Let {a;}2 " be any increasing sequence on [0, 1] with a; = 0 and aprq = 1.
Let f € C[0,1] be a positive function then for every i = 2,3, ..., M it holds

L i $| = Fa 00— 12) — - ]

Proof. Define p: (a;_1,a;11) — R as
pa) = pr(ttia; ).

To prove the theorem we show that p is differentiable by computing the limit

/(@) = lim pla+ h})L —rla)

Let p;q = Z]Nil m;“(Sx;,a. From Theorem 11 we obtain

p(a)z/o1

/0 f(r)dr — p;4[0,t]| dt =
4
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= / / t f(r)drdt + / / af(T)detJr / / tf(T)det—l— / + /t o f(r)drdt+

"—/ / f dT—Nza[O t]'d
[0,a;—1]U[ai+1,1]

From Corollary 59 and the definition of central point of measure we obtain

xifl a J::ffh a+h
/ F(t)dt = / f(H)dt and / F(t)dt = / Fb)dt,
a;—1 xﬁfl Fi—1 Iéf;rh

so by subtracting the left-hand side equation from the right-hand side one we get

i,a+h ’L a+h

/ F(t)dt = / dt+/ F(1)

i—1

Consequently,

/ f(t)dt:/x; f(t)dt:%/anrhf(T)dT

i,a+h ia SUP¢e[0,1) {f<t>}
— | < b _
2infiepy {f()}

Hence,

We compute

t,a+h i a+h

pla+h)— // flr det+/fz/ flr detJr/ / F(r)drdt+

a; 41 a;41 szl t a a
4 / h / F(r)drdt — / / F(r)drdt — / / F(7)drdt+
Z‘z’a-’_ t a;—1 a;—1 Z‘zfl t
x;a t ait+1 ajt+1
—/ / f(r)drdt — / / f(r)drdt =
a a xz’a t

:[1+[2+[3+[4_[5_[6_[7_[8:

i,a+h

/ o / f(r)drdt— / / F(r)drdt+ / / f(r)drdt— / / T prydrant
/a+h/ det—/a+h/ f(ryrdt + [(a =) - (557 — o) /aa f(r)dr =

=(L—Is)+Uo—Ie)1+(Us—1I5)o+(La—Is)+ (Lo — 1)+ (Is—15) o+ ((Io — Is) + (I3 — I5))5 -
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Notice that all the terms apart from ((I — I) + (I3 — I5)); are of order O(h?) since
|25t — 29 = O(h). On the other hand,

)

li 1
hlir(l)h

a+h
/ f(r)dr = f(a),

hence, , A
pa) = fa) [(a —27%)) — (27" —a)] .
O

Corollary 64. Let {ai}f\f{l be the transport partition corresponding to an optimal M-
point approzimation, ™M = Zf\il m;0yx, of a positive continuous function f & o, 1].
Then for every i = 2,3, ..., M it holds that

~ Sy @)

Proof. Theorem 63 guarantees that a — pp(u®?, f) is a differentiable function and

L4, ) = 1(0) (0 ) — (4~ )]

By proposition 57 we have (a; — xﬁfl) — (azza — a;) = 0 and hence

d? < i+ h ' a, i a,
2 | = O (o) - ()]
a a=a; -
Since — '
Ao a1 ()
da h—0 h 2 f(z2)
we obtain

d? .
@PF(MW, f)

= [(a) [2—_

a=a;

Since {ai}f\f{l corresponds to the optimal approximation of f we have

d
%pF(ﬂi,aa f) =0
and
d? ,
ﬁpF(M%a) f) Z 07
which proves the corollary. O

The following Corollary follows directly from Theorem 63.
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Corollary 65. Let f € C'[0,1] be a positive function and M be a fized natural number,

then
2
Jar il §) = 1) [(@ = @) = (i — @) +
+ fla) |2 - Qf{ x<[>]) 2f{<[c:>+ ol
ﬁ;lw(“%i}?ﬁ“ f) = ];(;f](l—jfl(j;)
dajl;aka(’u{a e, ) =0 fork ¢ {j—1,5,7 +1}.

Remark 66. Theorem 63 and Corollary 65 allow application of Newton’s optimization
algorithm for finding the optimal partition. Starting from any a® € [0, 1] ~! sufficiently
close to a local minimum, the Newton’s method provides a sequence {a"}>° ; converging
to the minimum with quadratic rate.

The following proposition shows that the fixed point of Ao X is not necessarily unique.
Consequently, in the general case, neither the Newton’s method nor the iterative method
has to converge to a global minimum.

Proposition 67. There exists a positive continuous function f for which function

{a27 as, ..., a’M} = pF(M%,ag,..,aM,l}7 f)

has more than one local minimum.

Proof. Consider a positive function f € C1[0,1], denote f 1)/N f = fi; and suppose that

for N = 7 we have (f;)_; = (2,1,1,2,3,1,4). It is easy to check that in the class of
2-point approximations both partitions {a;}?_; = {0,2,1} and {a}}}_, = {0, 3,1} satisfy

* ok o
a2 = Lg),a0] = Tlag,az] — 425

which by Theorem 63 implies that both partitions are the extremum points of error
function. Since f is an arbitrary function it can be chosen so that the Hessian, defined as
65, is positive defined. O

Corollary 68. Let f be a positive continuous function. A local minimum, a € RM=1 of
function {as, ag, ..., ap} — pF(,u%,aQMaM’l}, f) is a fized-point of operator Ao X.

Proof. Let x = X(a). Since a is a local minimum, then all partial derivatives are equal
to 0. Theorem 63 guarantees that (a; — z;_1) — (z; — a;), hence a = A(x). O

Together with Theorem 53 the following Proposition shows that very smooth functions
with low oscillation and measures with uniformly distributed atoms are those that are the
hardest to approximate with discrete measures.
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Proposition 69. The optimal approzimation of a constant function f(x) = C on [a,b]
has the error equal to

C(b—a)?
4N

Proof. Let {a;};= M*1 be the partition corresponding to the optimal approximation of f.
Since x[ai aina] = J;““ from Theorem 11 we conclude that the contribution to the error
from each interval [a;, a;,1] equals

(aitai+1)/2 pt (aitaiy1)/2—a; C )
2/ / Cdrdt = 2C - / tdt = Z (a'i—i—l - (li) s
a; a; 0

so the total error of approximation is given by

N
% Z az-i—l
=1

This value is minimized for equidistant partition points a;, for which the error of the
approximation equals
C(b—a)’
4N '
O

Discrete approximations in general cannot guarantee an error of better order than
N~ For some applications it is desirable to approximate functions with a different
class measure to obtain lower error. The following theorems demonstrate advantages of
approximation by N-step functions (linear combinations of N indicator functions).

Theorem 70. For every Lipschitz continuous function f there exists an N-step approxi-
mation fN such that
Lip(f)

6

N2

p(f. /) <

Proof. Let f be given by

then by Lemma 20 and Lemma 39

N-1

pr(frg™) <D W(f

1=

/ff(t)dt—/ffN(t)dt

02

N
i S

By Theorem 11

N-1 nitl
=y |
i=0 7/ N

dxgg/i%/:c}f(t)—f]v(t)}dtdx.



By the mean value theorem for each i € {0,1,.., N — 1} there exists ¢;, such that f(t;) =
N (t;), hence

STENE ' - N3 Li
pr(f, V) < ;/N . Lip(f) - (t - %) dtdz < ;Lip(f)' — = Zzé(f)N—z.
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Chapter 2

McKendrick-von Foerster equation

In the original McKendrick-von Foerster model the evolution of an age-structured
population is described by a hyperbolic partial differential equation in which time and age
are the independent variables, see [56]. McKendrick-von Foerster equation with nonlinear
growth, reproduction and mortality rates was studied in the framework of L? spaces in [2],
where convergence of a finite-difference scheme was proved. In this approach, however,
it was necessary to make strong assumptions on parameters (e.g. growth rate needs to
be twice continuously differentiable with respect to structural variable) and the finite-
difference scheme has some undesired properties, such as a wrong propagation speed.
In [48] a numerical scheme, based on discontinuous Galerkin method, was proposed to
address problems in which parameters are only piecewise regular.

In this chapter we consider measure-valued solutions to a McKendrick-von Foerster
system [56], which describes the dynamics of a size-structured populations with nonlinear
growth, reproduction and mortality rates. The framework of measure-valued solutions is
natural and beneficial for the following main reasons:

1. Singularities in a size-structured population dynamics system are inherent. Under
low predation, for instance, individuals reach their maximum size with positive
probability, which in terms of population size-distribution can be expressed as a
Dirac mass at the upper end point of the size range.

2. Measurements in experimental setups are always discrete, hence any comparison
between mathematical models and empirical evidence requires tools for comparing
general distributions. Metrics from function spaces, such as LP norms, may induce
misleading results in the case of high population concentration and low accuracy of
measurements.

3. The notion of a cohort of individuals and its development in time can be formalized.

4. The ability of solving the system for discrete measures is a basis for efficient and
highly parallelizable algorithms such as EBT (see Section 2.2).
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2.1. Preliminaries

In order to generalize McKendrick-von Foerster model and define measure-valued solutions
it is necessary to find an appropriate metric space. In the case of function-valued solution
the obvious choice, namely LP(X), is a complete Banach space, which allows a range
of methods to be used for the analysis. In contrast, the natural choice for measure-
valued solutions, namely (9(X), pr) is not complete and its Banach completion consists
of objects that are difficult to interpret in terms of population distributions. In the
following considerations we focus on the case of X C R? and present facts that support
the choice of (MM (X), pr) as the space of states for the model.

Proposition 71. Norms ||-|| and ||-|| are not equivalent on 2 (X).

Proof. Consider sequence p,, = d,,-1. We have that

1

2 = [ptn = doll = [[tn = ol p =" — 0.
Consequently, p, — do in ||-|| z, but not in ||-||. O
Proposition 72. The space (IMM(X), pr) is not complete.
Proof. Since (9M(X),||-||) is complete and ||-|| is not equivalent to |[|-||, the space
(M(X), pr) cannot be complete. O

Example 73. An example of an object from Banach completion of (9(X), pr) that is
not in M(X) can be constructed as follows:
Let fi, = Y p_y 0p-x — ndy. For n < m we have that

pr (fn, i) = W ( Z do-r, (M —n) 50> = Z 27k <97,

k=n-+1

Therefore, p, is a Cauchy sequence. It’s easy to check that no measure p € MM(X) is a
limit of p,,.

For the proof of the following proposition we refer to [80].
Proposition 74. The space (MM (X), pr) is complete and separable.

The measure-valued model of McKendrick-von Foerster is considered in the space
(OMM+(X), pr). Hence, the prediction of population dynamics in time is considered as a
function of time, [0, 7], with values in 91" (X). Model parameters, which define growth,
mortality and birth processes, are given by functions g,m, 3 : [0, 7] x MT(X) — C*(X)
respectively. Values g(t, u)(s), m(t,p)(s) and B(t,u)(s) are interpreted as individual
growth rate, mortality rate and reproduction rate of an individual of size s, belonging
to a population with structure p at a time point ¢.

We restrict our farther considerations to X = [Syin, Smaz]. Without loss of generality
we assume S,,;, = 0. Presented results can be generalized to the case of X = [s,,in, 00).
It is, however, beyond the scope of this thesis.
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Definition 75. By McKendrick-von Foerster model of size-structured population we un-
derstand the system

Oru + 0s(g(t, u)u) + m(t,u)u =0 forteT
g(t,u)(0) (Drzul(t) (0) = f7™ B(t, u)(s)u(ds) (2.1)
u(0) = ug € M0, Syaz] :

where D, denotes Radon-Nikodym derivative with respect to Lebesgue measure on R.

We investigate solutions w : [0, 7] — 9]0, $;ae] under following conditions on pa-
rameters:

Condition 76. Assume

1. g,m, B € CY ([0,T] x MT[0, smaz); C*0, Smaz]),

2. for every s € [0, Syuqe) it holds that g(t,u)(s) > 0 and g(¢, u)(Smaez) = 0.
Notation 77. For a given function f € C"" ([0, T] x 9F[0, Spmaa); C¥1[0, Smaz]) denote

1flp="sup  Nft)llorgos,.. + sup Lip(f(t,))+  sup  Lip(f(-, p))
HEIMT[0,8maz] t€[0,T] HEMT[0,8maz]
te[0,T)

Following [35] we introduce the notion of weak solution.

Definition 78. By the weak solution to system 2.1 we mean a weak-* continuous mapping
w : [0,T] — 9MT[0, $mae] such that for every test function ¢ € C([0,7] % [0, Spmaz)) it
holds that

(u(T), (T’ -)) = (uo, 9(0,-)) = /0 (u(t), o(t,0)5(t, u(t))) di+

+/0 (u(t), Oup(t,-) + g(t, u(t))dsp(t, -) — m(t, u(t))p(t, -)) dt.

Theorem 79. Suppose functions g,m, 3 : [0,T] X M0, Syax] — ([0, Smaz] — R) satisfy
Condition 76, then there exists a unique weak solution, u € Cy* ([0, T]; IMF[0, Sppaz]) to
system (2.1). Moreover,

1. For every 0 < t; <ty <T there exist constants C1, Cy such that

pr(u(ty), ults)) < Cre™ = |ug|| (1 — ta).
2. Let ug, g € MT(0, Syaz] and g,3,m,m, 3,0 satisfy Condition 76. Let u(t) and u(t)
solve system (2.1) for parameters (g, m,[3) and (g, m,3) respectively. There exist
constants Cy, Cq, C3 such that for every t € [0,T) it holds that

pr(u(t), a(t)) < epp(ug, i) + Coe™

(9:m, 8) = (3,77, )

cotfo,]
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For the proof we refer to Theorem 2.13 in [74].

Definition 80. Let (E,p) be a metric space. A bounded operator
S : E x[0,0] x[0,7] — FE is called a Lipschitz semiflow if the following conditions
are satisfied:

1. S(0,7) = Id for 7 € [0, T7,
2. S(t+s,7)=S(t, 7+ s)S(s, 1) for 7,s,t € [0,T] such that 7+ s+t < T,
3. p(S(t, ), S(s, 7)v) < L-(p(p,v) + |t — s|) for s,t € [0, T] and some constant L.

The Lipschitz constant of S, Lip(.S), is the smallest value of L for which the third condition
holds.

The following corollary results from Theorem 79.

Corollary 81. Suppose functions g,m, 3 : [0,T] X M0, Syaz] — ([0, Simaz] — R) satisfy
Condition 76, and u(t) is the weak solution to system (2.1). There exists a Lipschitz
semiflow S : MT]0, Spaz] X [0,T] x [0, T] — IMT[0, Spnae| such that

S(tQ — tl,tl)u(tl) = u(tg)
for every ty,ty € [0,T].

The following proposition, provides a generalization of the characteristic method, for
measure-valued solutions. The result is not surprising, but seems to be absent in the
literature.

Theorem 82. Suppose functions g,m, 3 : [0,T] X M0, S$yax] — ([0, Smaz] — R) satisfy
Condition 76, and u(t) is the weak solution to system (2.1). Let u(to)([ao,bo]) = no for
some 0 < ag < by < Sppaz, then

t rb(t)
wu(t) ([alt), b(B))) = o — / / M) - ut) )i

a(t) = a0+/ g(7,u(7))(a(T))dr, (2.2)

to

b(t) = bo+/ g(7,u(T))(b(7))dr.

to

Proof. For 1> & > 0 choose 95 € C'[0, Sn4z) such that

1/}8(;(;) _ {1 if v € [ao,bo]

0 ifr<ag—coraz>by+¢e
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Let ¢ € C' ([to, t1] X [0, Smaz]) be a solution to

G0 (tx) + gt ult) () v (tx) =0 on [to, t1] X [0, $ynaq]
V=(to, ) = ¥ : (2.3)
1/}8<'7 O) =0

and for every x € [0, Synaz) let 1,(¢) satisfy

{%lm) — g(t, u(®)(L())

lx(tO) =X

From the usual characteristic method for classical solutions to (2.3) we obtain

V(L 1 () = ¥ (to, 7).

Finally let »° € C' ([0, 7] X [0, Symaz)), be an extension of ¢° satisfying

Q/JE(t,SL’) ift € [to,tl]
o (t,x) =<0 ift<tg—cort>t +¢
0 if @ <loy—c(t) or @ > lp,4c(t)

We also require that |2¢°(¢,z)| < 27! and |2 ¢°(t,z)| = 0 for

t € [to—e,to] U [t1,t1 + £].
Additionally, we choose 2¢°(t,x) to be equal 1 and =L on [lu), lh(te)] X Uo and
lao(t1)» lbo(t1)) % U respectively, where Uy C [tg — €,to] and Uy C [t1,t; + €] are some
intervals such that |Up| < e(1 —¢), |Uy| <e(1l —e¢).
For every t € [to, t1] function ¢°(¢, ) is supported on [lo, (), lp,+c(t)]. Since

Dl ®) = (1) = 9t 0(0) (selt)) — 908, u(t)) (1)) <

dt
< Lip (g(t,u(t))) - (log+e(t) — Ly (1))
we have that
[lao—a(t)a lb0+8(t)] C [lao (t) - 016, lbo (t) + 016]

for

Cy =exp (T— sup Lip(g(t,u(t)))) :

t€(to,t1]

Choose € > 0 such that 0 <ty —e < t; + e < T. By the definition of weak solution to
(2.1) for test function ¢ we have that

0 = /O (u(t), Orpe(t, ) + g(t, u(t))dspe(t, -)) — (ult), m(t, u(t))pe(t, -)) dt,
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hence

[t mie et nd = [ 00,0000 + alt u@)dplt, )t +

0—¢€ to
t1+e€
b [ ). 806 + gltu(®)due (e, ) de.
t1
By the dominated convergence theorem

lim (u(t), m(t, u(t))pe(t, -)) = / () L 0, o711 (),

e—0

thus

t1+¢€ lbO
lim (u(t), m(t,u(t)) ) dt = / / m(t,u(t))(x) - u(t)(dz)dt.
=0 1 lag (1)
On the other hand,

t14+€

t1+e€
/ (ult), Dupa(t, ) + gt ul(t)Duipe(t, ) dt = / (ult), Drpu(t, ) dt

t1 t1

and
t14+€

iy [ {u(®). Ot ) dt = limy [ ule) dupule, s [ (u(t), et )} dt =

=0y ~0Ju, [t1,t1+e]\U

t1t+e lbo
= lim — / / )(dzx)dt + / (u(t), Orpe(t, -)) dt.
e—0 € [t1,t1+e]\U1L

Since

/[t beel\v (u(t), Oype(t, .)>dt' <e2 sup  (u(t),dhpe(t,)) < €22 sup u(t)([0, Smas))

te[t1,t1+e] te[0,T)

we have that

t14e tite  plyy(0)
lim (u(t), Oppe(t, ) + g(t, u(t))Ospe(t, -)) dt = — hm / dx)dt.

e—0 4 e—0 & ao(t)

From weak-* continuity of u with respect to time variable, we obtain

[ w0060 + ot u @ty — [ ute) ),

1 lag(t1)

and by the same arguments

to+e I (to)
/ (ult), Dupalt, ) + glt, u(t)Dupe(t, ) dt — / u(to) (d).

to Lag (tg)

Since x(t) = l,,(t) we obtain that for every ¢ty < t; < T it holds that

t1 lbg (¢
w(tr) (g (1) T (£1)]) = a(to) ([0, bo]) — / / Yt u())(z) - u(t) (@),
which completes the proof. O
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Proposition 83. Suppose functions g,m, 3 : [0,T] x M0, S$ymaz] — ([0, Smaz] — R) sat-
isfy Condition 76, and u(t) is the weak solution to system (2.1). If I'(t) is the solution

of
S(t)
{zl(()) -

0
then u(ty) is absolutely continuous on (0,1 (t1)] with respect to the Lebesgue measure.

g(t,u(t)) (I(1))

9

Proof. Tt is sufficient to prove that for some constant C' and every pair a,b € [0,1'(t;)] it
holds that
u(ty)(la,b]) < C-[b—al.

Let I4(t) be the solution of

{%uo=awm»mm>
ls<t1) =S

Since for every x € [0, S;qz) the value of g(t,u(t))(x) is strictly positive, then for every
s € [0,1(t,)] there exists an instant of time, 0 < #y(s) < t1, such that I,(t(s)) = 0.
For 1 > ¢ > 0 choose ¢§ € C'[0,T] such that

GE(E) {1 if ¢ € [to(a), to(b)]

0 ift <ty(a) —cort>ty(b)+e

Let ¢ € C' ([to, t1] X [0, Smaz]) be a solution to

Let o° € C* ([0, T] x [0, Simaz]), be an extension of ¢ satisfying

S(t,x) iftelot
ity = ) e lbnl

0 if ¢ Z tl + e
Similarly as in the proof of 82 we require that |2¢°(t, 2)| < 2e7! and |2¢°(t,z)] = 0
for t € [to — &,t0] U [t1,t1 + €]. Additionally, we choose 2¢°(t,x) to be equal 1 and
=L on [Lag(to)» lbo(te)) X Uo and [lag(e,): luo(er)] X Ur respectively, where Uy C [to — e, %] and
Uy C [t1,t1 + €] are some intervals such that |Uy| < (1 — ¢), |Uy| < e(1 —€). By the
definition of weak solution to (2.1) for test function ¢ we have that

0 = A<wm@¢m»+ﬂuwm@wm»—m@wmw@»MH
T A<mmwwmmu@»w
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and consequently

to (b)+€

0 < / (ult), B (£, ) + glt, u(t)Dug™ (£, ) dt + 5] - / w(t)([0, $pmas])dt.

o(a)—e
Passing with £ — 0 we obtain

u(ty)(la, b)) < 1B1lp - sup u(@)([0, smaa]) - [to(b) — to(a)],

t€[0,T]
which completes the proof since ty(-) is a Lipschitz continuous function. O

Definition 84. By a stationary state we mean the value, pu, of a solution
u : [0,T] — M0, Synae] which is not dependent on time, namely p = u(t) for every
t €10,7].

The following lemma states that even in the general framework of measure-valued
solutions all possible stationary states are absolutely continuous under some reasonably
weak conditions.

Lemma 85. Suppose functions g,m, [ : [0,T] x MY[0, Sinae] — ([0, Smaz] — R) satisfy
Condition 76, and p € MT|0, Syuae] 1S a stationary state of system (2.1). If

m(t, 1) (Smaz) > 0
for some t € [0,T], then u is absolutely continuous with respect to Lebesgue measure.

Proof. Let p be a stationary state of equation (2.1) and let I*(t) : RZ% — [0, $;nee) be
defined as in Theorem 83. Since g(t, u)(z) > 0 for every & < sp,4, We obtain that

tlim INt) = Smae-
By Theorem 83 solution u(t) to (2.1) is absolutely continuous on [0,1*(¢)]. Consequently,
the stationary state, p = w(t), is absolutely continuous on interval [0, S;q,). It implies

that u = pge + ms, .. 0s,..., where i, is absolutely continuous with respect to Lebesgue
measure. By Theorem 82 we obtain that

t2
msmaac - msmaac (]‘ _/ m(T’ /j’)(smax)dT) :

t1

Therefore either mg,, .. = 0 or m(t, 1) (Smaz) = 0 for all ¢. O

The following lemma provides a characterization of demographic trends in stationary
state.

Lemma 86. Suppose functions g,m, 3 : [0,T] X MY[0, Spaz] — ([0, Smaz) — R) satisfy
Condition 76, and p € IMT0, Syuaz] i a stationary state of system (2.1) then for every
t € [0,T] it holds that (u,m(t, pn)) = (u, B(L, ).
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Proof. Let u be a weak solution to (2.1). For a test function, being a standard regular-

ization of
1t € [to, t]
o(t,s) = {

0 otherwise ’
the definition of weak solution implies

t1

u(t) (10, $umas]) — 1(to) ([0, $yma]) = / (u(t), Bt u(t)) di — / (ult), m(t, u(t)) dt.

to to

Regularization and passing to the limit is explained in detail in the proof of Theorem 82.
Since u(t;) = u(ty) = u we have that for any ty,t; € R=0

/ (s Bt u(t))) dt = / (e, u(t))) dt,

to to

hence, (u, B(t,u(t))) = (1, m(t, u(t))) for every t. O

2.2. Particle methods

Particle methods is an umbrella term for a wide class of numerical schemes for first order
hyperbolic equations. The concept is to approximate the initial conditions by a large
number of particles and track each of the particles separately. In this section we focus on
Escalator Boxcar Train (EBT) algorithm for solving McKendrick-von Foerster equation
with non-local terms reflecting the impact of the whole population on individual birth,
growth and death processes. EBT was first introduced in [15] where it was used as a
heuristic approach based on the intuition that a continuously distributed population can
be studied as a collection of cohorts. Rigorous proof of convergence of this scheme [9] and
the analysis of the order of convergence (see [34]|) was possible after developing certain
tools for the space of measures and Lipschitz semiflows.

In Section 2.2.1 a summary of results from [34] is presented. Author’s contribution
to this joint paper was limited to simplifying the proofs, implementing the schemes and
running numerical tests. Notice that numerical comparison of results requires an imple-
mentation of the algorithm described in Section 1.3.4. Three improvements to standard
EBT algorithm, which arise from the considerations of Section 1.5, are presented in Sec-
tion 2.2.3.

2.2.1. EBT algorithm

Particle methods in their principle are based on approximating a solution to partial dif-
ferential equation by a sum of Dirac masses and tracking each mass in time. The main
challenge, as it will become clear after reading this section, is handling the boundary
conditions. A number of methods for tracking boundary cohorts has already been devel-
oped, and three of them (original EBT, EBT with simplified boundary conditions and
Split-Up algorithm) are compared in [34], where no significant differences in the rate of
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Figure 2.1: Visualization of the sEBT algorithm
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convergence were found. In this section we summarize methods and results used in the
analysis of particle algorithms for transport equations with non-local terms.

We restrict our considerations to equation (2.1) with
g:m, B € G ([0,T] x MF(0, $maa)s C' 0, $maa])

and uy € M0, Syaz] With possibly infinite s,,4,. We shall also focus on one of the algo-
rithms analyzed in [34], namely on the EBT algorithm with simplified boundary condi-
tions, abbreviated to sEBT. Analysis of other algorithms is very similar and the order
of convergence is identical. Numerical results for all three methods are compared in
Section 2.2.2.

The main idea of the sEBT method is to approximate the initial conditions
ug € MY[0, S;maz] by a discrete measure pg = Zfil m;(0)04,0) and “track” position and
mass of each Dirac delta (see Figure 2.1). In the case of (2.1) the following ODE system
is used for the tracking

{%m(t) = gl e 1), ) (1) 25)
sima(0) = —m(t, Sy mi(t)00) (1)) - ml)

with I being the set of indices. Boundary conditions are dealt with separately. A new
boundary cohort is created every At > 0 of time, and the previous boundary cohort
becomes an internal cohort tracked by (2.5). Boundary cohorts, on the other hand, are
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tracked by the following equation

7B(t) = g(t. Xy mi(t)de,) (5(t))
amp(t) = —m(t, Y mi(t)du,w) (@s(t) - malt) + Xier B, Xy ma(t)du, o) (wi(t))mi(t)
rp(kAt) = mp(kAt) =0
(2.6)
The set of indices, I, initially consists of the boundary cohort index, B, and N indices of
atoms in the initial approximations, see Figure 2.1. Therefore at time t € [kAt, (k + 1)At]

we have
I={B, 1,2, ...k,k+1,k+2,...k+ N}.

For a given pu € M0, S;naz) and ty € R20 let v be a weak solution of (2.1) with initial
conditions posed by p at time ¢y, namely

0w + 0s(g(t,v)v) +m(t,v)v =0
g(t,v)(0) (Daw(t)) (0) = [y B(t,v)(s)v(ds)
v(to) =

By Corollary 81 operator
# M0, Spaz] X [0, T] % [0, T] — M0, $1maz)
defined as
/’L#to - 'U( )
is a Lipschitz semiflow.

Remark 87. Lipschitz constant of semiflow # depends on T'.

Notation 88. We denote the outcome of the SEBT algorithm at ¢; starting from initial
conditions p at ty is denoted by u*ﬁé.

Lemma 89. The outcome of the sEBT algorithm is a Lipschitz continuous measure-valued
function, namely for any pu € MI|0, Synax] and ty € RZ0 it holds that

ke, € Lip ([O,T]; om0, sm,w]) )

Proof. Lipschitz continuity of functions z;(t), m;(t) fori € {B, 1,2, ..., N} stems from the
boundedness of parameters g, m, 3. Let t1,ty € (to, T], then

N

(,u*tm M*ig) < Z pF<mi(t1)5zi(t1)a ml<t2)5{[‘z(t2)) + e

=B

where 7 is the total amount of newborn individuals added to the boundary cohorts between
t; and t5. Consequently, by Lemma 19

N N
pr (kg k) < Z Imi(t) — ms(t2)] + Z |2i(t1) — @i(t2)|mi(t2) + v <
i=B i=B
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Figure 2.2: Corollary 91 provides a method of estimating the error of sSEBT scheme on
0, 7], namely pr(ugkd, uo#L ), by studying the error on arbitrary small intervals [1, 7+h].

T
uo#y upk

N
S\tl—w!max<172mz~<t2>>< sup  [[mi(llconye) - Sup \\wi<->\\co,l[t0,tl]>+w.
i1=B

i€{B,1,...,N} i€{B,1,...,N}

Finally, by equation (2.6), v can be estimated by C(T') - ||5||p [t1 — t2. O
Accuracy of the SEBT algorithm in flat metric, namely pr(uo#l, uo%k3 ), can be es-
timated from the following theorem (proof can be conducted analogously to the proof of

Theorem 2.9 in [10]).

Theorem 90. Let S : E x[0,6] x[0,T] — E be a Lipschitz semiflow. For every Lipschitz
continuous map T : [0,T] — E the following estimate holds

dr.

p(T(t), S(t;0)T(0)) < Lip(S) - /0 li?jgf p(T(r+ h),hs(h, )T(7))

Since # is a Lipschitz semiflow, Theorem 90 can be applied to the process of population
dynamics, #, and the sEBT algorithm, %. The idea hidden behind the following Corollary
is depicted on Figure 2.2.

Corollary 91. Let ug € M} [0, S;nee] and t € [0,T] then

T+h T T+h
(o, uottl) < tLip(#) sup liming 27 (0K (k) #77)
refo,r] h—0 h
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Theorem 92. Let ugk] = p1 € M [0, Synax) e the outcome of SEBT algorithm with time
step At, then for some constant Cy(T) it holds that

T+h T+h
lim inf PF (M*T Lkl )
h—0 h

= Cy(T)At.

Proof. Let p1=",.; mi(7T)0s,(r). By Proposition 83 measure p#7™" decomposes to a dis-
crete part » ., 1;(7 4 h)dy,(-1n) and an absolutely continuous measure, .# (f(7 + h)(-)).
Moreover, for every ¢ function f(t)(-) € L'[0, Syaz] is supported on [0,7'(¢)]. By Lemma 20
and Lemma 19 there holds

pF (N*?Lha M#?Lh) < Z |mz(T + h) - ni<7' + h)‘ + (27)
ieI\{B}

+ Z |2i(7 + h) — yi(T + h)|ni(7 + ) + (2.8)
ieI\{B}

+ pr(mpdey, npdy, + .4 (f(T+h)())). (2.9)

The first two terms correspond to the error resulting from non-local coefficients b and c.
The last term stems from the approximation of a continuous function near the boundary
by a 1-point discrete measure. Since the asymptotic behavior of I* for h — 0 is given by
['(h) = ©(h) and xp,ys may range in [0, ||g||» At], it follows that the contribution of the
last term in (2.7) to the total error cannot be estimated from below by a smaller value
©(hAt). Indeed, the central point (see Definition 45) of measure ngd,, +.# (f(T+h)(-))
tends to yp with h — 0, and consequently the error of optimal approximation tends to

At [P f(T + h)(s)ds. It can be then shown that remaining terms in (2.7) are of order
0

h? (see [34] for details). Consequently we obtain

pr (AT u# ) = O(hAL).

Theorem 93. Let uy € MT(0, Spmaz] then for any pg € MI[0, Simaz] it holds that

pr(Ho¥kg  uotty ) < CL(T)At + Co(T)pr (o, wo)-

Proof. Let pg € OMF0, Synae] be an initial approximation of ug. By Theorem 79 and
Corollary 91 we deduce that

pr(pokd  wo#ts ) < prpokd, to#s ) + prpo#ts , uo#ts ) < C1i(T)At + Co(T) pr(po, o).

Constant Cy depends on T since Lip(#) depends on T'. O

2.2.2. Numerical tests

In this section numerical tests of convergence and efficiency of three algorithms described
in [34] are presented. The schemes: Escalator Boxcar Train algorithm with simplified

67



Figure 2.3: CPU time required to achieve given accuracy.
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[-log2 (error in flat metric)]

boundary conditions (SEBT), original Escalator Boxcar Train algorithm (EBT) and split-
up algorithm (SU) are very similar in essence but differ from each other in the method
of handling the boundary cohorts. The results presented in Section 2.2.1 for the sEBT
algorithm are easily transferable to the case of SU and EBT.

The numerical simulations show that no major differences in accuracy nor perfor-
mance are apparent. The tests also confirm the theoretical order of convergence proved
in Theorem 93.

The tests were conducted on the following datasets on X = [0, 1]:

1. In the first test case we consider a problem with the initial condition taken at a stable
stationary state. The aim of the test is to check accuracy of the approximation of the
influx modeled by the boundary cohort. We choose the following model parameters:

g(s) = 02(1—ys)
m(s) = 0.2
B(s) = 24(s°—5%).

The exact solution is u(t) = Lo 1.

2. The second example is taken from the reference [46]. The aim of this test is to study
influence of non-local terms on the results for the three algorithms. We take model
parameters given by the following functions

g(s) = e’ -
ms) = Lo g
- 3 0.5+ (14 0.5sin(1))e™"
Blu)(s) = 2+ cos(s) 0.5+ (u, 1)
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The exact solution of the model is u(t) = e *(1 + 0.5 cos(z)) Lo 1-

The error of numerical scheme was computed using the algorithm described in Sec-
tion 1.3.4 as

—log, (pF(,u(l)? u(l))) )

where p(t) is the output of the scheme and w(t) is the exact solution.

Figure 2.3 shows the efficiency of EBT algorithms (amount of time required by the
central processing unit to obtain desired accuracy). Each point at the plot represents a
simulation for a 2’-point equidistant approximation of initial conditions and At = 27
with i,k € {2,3,...,19}. The points farthest to the right (high accuracy) correspond to
those simulations for which k was close to 7. No significant difference in efficiency between
algorithms could be found.

Figure 2.4 presents the accuracy of EBT algorithms as a function of the number of
initial nodes, I, and boundary cohorts, K. It is clear from the plots that the ratio 1: 1
of initial nodes and boundary cohorts provides the smallest error.

Tables 2.1 and 2.2 provide detailed results and confirm linear order of convergence of
the algorithms with respect to At. The empirical order of convergence is defined as

€1

2

10g2 DR
€r

where e; is the error of the numerical scheme for [ initial nodes and i boundary cohorts.

Table 2.1: Test Case 1. Numerical error and order of convergence measured in flat metric. Number of

boundary cohorts equals I/4.

sEBT EBT SU
I Error Order | Error Order | Error Order
16 1.53e-02  1.03 1.31e-02 1.02 1.49¢-02 1.04
32 7.56e-03  1.02 6.56e-03  1.00 7.96e-03  0.90
64 3.76e-03  1.01 3.28¢-03  1.00 4.14e-03  0.94
128 1.88¢-03  1.00 1.64e-03  1.00 2.11e-03  0.97
256 9.36e-04  1.00 8.20e-04  1.00 1.07e-03  0.99
512 4.68¢-04 1.00 4.10e-04  1.00 5.36e-04  0.99
1024 2.34e-04  1.00 2.05e-04  1.00 2.68e-04  1.00
2048 1.17e-04  1.00 1.03e-04  1.00 1.34e-04  1.00
4096 5.84e-05  1.00 5.13e-05  1.00 6.73e-05  1.00
8192 2.92e-05 1.00 2.56e-05  1.00 3.36e-05  1.00
16384 1.46e-05  1.00 1.28¢-05  1.00 1.68e-05  1.00
32768 7.30e-06  1.00 6.41e-06  1.00 8.41e-06  1.00
65536 3.65e-06  1.00 3.20e-06  1.00 4.21e-06  1.00
131072 1.83e-06  1.00 1.60e-06  1.00 2.10e-06  1.00
262144 9.13e-07  1.00 8.01e-07  1.00 1.05e-06  1.00
524288 4.56e-07  1.00 4.01e-07  1.00 5.26e-07  1.00
1048576 | 2.28¢-07  1.00 2.00e-07  1.00 2.63e-07  1.00

69



K

1

The solid line represents the accuracy of I-point equidistant approximation of

Figure 2.4: Full map of errors for test case 1 (left) and test case 2 (right) and algorithm

sEBT (top), EBT (center), SU (bottom). The plots show the dependence of numerical
error in flat metric (Y axis) upon number of initial nodes I (X axis) and the ratio

(color).
the exact solution.
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Table 2.2: Test Case 2. Numerical error and order of convergence measured by flat metric. Number of
boundary cohorts equals I/4.

sEBT EBT SU
I Error Order | Error Order | Error Order
16 6.09e-02  1.12 6.25e-02  1.12 1.29e-01  0.82
32 3.67e-02  0.73 3.92e-02  0.67 5.72e-02 1.17
64 1.63e-02 1.17 1.72e-02  1.19 3.06e-02  0.90
128 9.32e-03 0.81 1.01e-02 0.77 1.40e-02 1.13
256 5.02e-03  0.89 5.41e-03  0.90 6.78e-03  1.04
512 2.27e-03 1.15 2.46e-03 1.14 3.52e-03  0.95

1024 1.19e-03  0.93 1.29¢-03  0.94 1.72e-03  1.03
2048 6.37e-04  0.90 6.87e-04 091 8.42e-04 1.03
4096 2.92e-04 1.12 3.18¢-04 1.11 4.33e-04  0.96
8192 1.56e-04  0.91 1.69e-04 091 2.12e-04 1.03
16384 6.97e-05 1.16 7.59e-05 1.15 1.11e-04  0.94
32768 3.54e-05  0.98 3.85e-05  0.98 5.48e-05 1.01
65536 1.83e-05 0.95 1.99e-05 0.96 2.70e-05  1.02
131072 | 9.74e-06  0.91 1.05e-05 091 1.32e-05 1.03
262144 | 4.35e-06  1.16 4.74e-06  1.15 6.91e-06  0.94

2.2.3. Improvements of sEBT algorithm

In this section three improvements to SEBT algorithm, analyzed in Section 2.2.1 and Sec-
tion 2.2.2, are presented. The first improvement is an application of the theory developed
in Section 1.5.3 to reduce the error of initial condition approximation. The second modifi-
cation makes use of the result of Theorem 51 to reduce complexity of the scheme. Finally,
motivated by the result of Theorem 70 we show how the rate of convergence of the sEBT
algorithm can be improved if the birth process is approximated by step functions instead
of Dirac masses.

2.2.3.1. Initial conditions

Since by Theorem 93 the accuracy of sSEBT algorithm is restricted by the time step At
and the error of the approximation of initial conditions, namely

pr(podes , wot ) < CL(T)AL + Co(T) pr(po, uo),

it is natural to apply the results of Section 1.5.3 to reduce the latter factor. From Propo-
sition 69 it is clear, that in the worst case

Capr(fto, uo) = O(Ax),

where Az is the maximum distance between two atoms of the initial approximation, puy.
Yet considerable improvement can be achieved if uq is a muliti-hump function.
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Figure 2.5: a) function f(z) and its optimal transport partition, b) phase portrait of
transport, partitions in Newton’s method, ¢) pgr(f, u%) as a function of the first non-zero

point of transport partition, as.
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In the farther considerations we will use the following function, f : [0,1] — R*, as an
illustration for the analyzed tools:

f(z) = (1 —x)*sin (10\/5)6 + 1072,

Function f and its optimal transport partition for N = 3 are depicted on Figure 2.5a (see
Section 1.5.3).

Theorem 63 and Corollary 65 provide sufficient characterization of the error function
for Netwon’s method to be implemented. Since a; = 0 and ay,; = 1 are fixed, the
algorithm finds the minimum argument of the error in N—1 dimensional space. For a given
point a” € [0, 1]¥~! Newton method provides a supposedly better point a”! € [0, 1]V 1,
defined as )

a"tt =a" — [HPF(M?(/)[,a",l)a f)} \Y [pF(Mé\(/][,a”,l)a f)} )

where H denotes the Hessian matrix. Figure 2.5b shows the directions of Netwon steps
from different starting points for N = 3. Lengths of the arrows, namely |a"! — a"|, were
reduced by a factor of 0.2 for clarity.

Another method of finding the optimal approximation is presented on Figure 2.5c.
Given as € (0,1) there exists a unique candidate for the optimal approximation, whose
second point of transport partition equals a;. Indeed, by Corollary 59 the value x7 is
uniquely defined by a; and ay. Similarly, by Proposition 57 the value ag is uniquely
defined by 2% and ay. Consequently, given a value a, a transport partition {a;}2' such
that a; = a and a corresponding discrete measure, %, can be reconstructed. Figure 2.5¢
shows the dependence of pg(f, u*) upon a.

The optimal 3-point approximation of function f equals

1" = 0.02990 027 + 0.055d0.221 + 0.02350.601
and the equidistant 3-point approximation of f equals
u = 0.08461 + 0.01931 + 0.0034s.
Thus,

pr(p*, f) = 0.003023,
pr(p?, f) = 0.026841.

2.2.3.2. Reduction of complexity

In sEBT algorithm a new boundary cohort is added every At-long period of time. Con-
sequently the number of cohorts grows linearly with time. Assuming that “tracking” a
single cohort on an At-long interval requires constant computational cost, the algorithm
is quadratic with respect to 7. Theorem 51 from Section 1.5.2 provides results that allows
to reduce a number of cohorts after each time step, and therefore keep it constant.

Proposition 94. For fized parameter At and fized approximation of initial condition, uo,
the computational complexity of SEBT is O(T?).
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Proof. Let po € M7 1/[0, 8max] and let N = (At)™'. The set of indices, I, defined in
Section 2.2.1, at time to has cardinality M + [toN]|. Since tracking a single atom on a
time interval [to, to + At] requires a constant computational time, it follows that tracking
all particles on the same interval (performing %{°"2") requires O(M +t, - N) operations.
Consequently, finding approximate solution at time 7', namely po%, has computational
complexity

NT
@ (Z (k+ M)) = O (MNT + N*T?) = O(T?),
k=1
since
*) = *0 *2At -0 *T At — QZ ]Y*I(gkAﬁ
O

In this section we propose a modification of sSEBT which guarantees O(T') complexity.
Throughout the section we assume that s,,,, < 1.

Definition 95. Let ¥ : M7 (X) — 91 (X) be a reduction operator which assigns to a
measure p € ?)ﬁ;;k(X) its optimal k — 1-point approximation, uV.

We propose a modification of sEBT algorithm in which after each At period of time
adding new boundary cohort is compensated by optimal reduction by V.

Definition 96. By EBT algorithm with simplified boundary conditions and constant
number of cohorts (SEBTc) we mean the following composition:

Y (K2 ai0 V) = %5 o Vo kA o ¥o. oKy,

where N = (At)™".

Proposition 97. For fized parameter At and fized approrimation of initial conditions,
o, the computational complexity of SEBTec is O(T).

Proof. Let g € My /[0, Simaz) and let N = (At)~". In sEBTc algorithm cardinality of

the set of indices, I, is constantly equal M + 1. Therefore performing *t”m requires

O(M) operations and by Proposition 50 so does ¥. Consequently the complexity of the

algorithm is given by
NT
O <Z M) = O(MNT) = O(T).
k=1

O

Theorem 98. Let ug € MT(0, Synaz| then for any po € EJJIIM[O, Smaz) and any At = N~1
it holds

pr (uo#ts o OpY (F(i2har o ¥)) < Ci(T) (At + NM2) + Co(T) - pr(po, o)

for some constants C,Cy dependent on T'.
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Proof. Since # is a Lipschitz semiflow (see Corollary 81) we immediately obtain by triangle
inequality

pr (uotts 1o OFN (F(i2haco ¥)) < Lip(#)pr (o, uo) +
+ PF (Mo#ga o OrY (¥ ( I(gkAﬁ At ° V))

It is therefore sufficient to show that the error of sEBTc is of order O(At + NM~2) if
initial condition is a discrete measure. From Theorem 92 and Corollary 91 we have that

pr (ke OTAL o T AN < Oy (AL)? (2.10)
On the other hand, from Theorem 51 it follows that if € im;r’M[O, Smaz| then
pr (s p¥) < lpf M2 (2.11)

The idea of the following estimate is illustrated on Figure 2.6. Using triangle inequality
and the semiflow estimate we obtain

pr (Ro#s , 1o (*’“ﬁi 20 V) < pr (o, ok VH#L,) +
+pF (Mo*o '#Ata Ko (*]kaﬁ V)) < L’ip(#)PF (NO#()M’ NO*ONV) +
+pr (oY) #ap (kG V) O (F(i2haco ¥)) -

By inequalities (2.11) and (2.10) applied to the ﬁrst term we conclude that

PF (Mo#g, po O < A iYVE V)) < 04(T) (NP M)+
or (kb W) 45, 1ok W) OF (%2450 7))

Notice that the upper bound consists of the term which is of order O(N~2 + M~2) and a
term, which is equal to the error of sSEBTc algorithm for a shorter time period, T"— At.
Therefore, by induction we obtain

(2.12)

pr (o6, o OF (Fe(i2ar 0 V) < Cs5(T) (N'+ NM~?).
O
Corollary 99. sEBT and sEBTc algorithms have the same rate of convergence if N = M.
Proof. It N = M then N7 + NM~2 = O(N~!) = O(At). O

Numerical tests aiming at the comparison of sEBT and sEBTc in terms of accuracy
and efficiency have been conducted on the following parameters:

g(s) = 10(1—s),

m(s) = s

Bls) = s.
with the initial conditions equal to the Dirac mass at 0, namely ug = dy.
Table 2.3 presents results of the numerical analysis. The empirical order of convergence

is close to 1, which confirms Theorem 98. sEBTc algorithm turns out to be significantly
faster, though for given parameters N, M it induces larger error than sEBT.
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Figure 2.6: Visualization of the proof of Theorem 98.

T-N
po#S ok pokSVEL, 1m0 O (K2 a0Y)

Table 2.3: Comparison of accuracy and efficiency of sEBT and sEBTc algorithms.

Parameters sEBT sEBTc
N ‘ M error ‘ order ‘ CPU time error ‘ order ‘ CPU time
2 8 4.74e-02 0.00s 6.02e-02 0.00s

4 16 | 2.60e-02 | 0.86 0.00s 3.19e-02 | 0.91 0.00s

8 32 | 1.35e-02 | 0.94 0.01s 1.64e-02 | 0.95 0.00s

16 64 | 7.10e-03 | 0.92 0.02s 8.65e-03 | 0.92 0.00s

32 128 | 3.64e-03 | 0.96 0.04s 4.51e-03 | 0.93 0.01s

64 256 | 1.83e-03 | 0.99 0.07s 2.27e-03 | 0.99 0.02s

128 | 512 | 9.05e-04 | 1.01 0.15s 1.13e-03 | 1.00 0.05s

256 | 1024 | 4.38e-04 | 1.04 0.30s 0.54e-04 | 1.02 0.09s

512 | 2048 | 2.21e-04 | 0.98 0.58s 2.80e-04 | 0.98 0.19s

1024 | 4096 | 1.14e-04 | 0.95 1.20s 1.45e-04 | 0.94 0.39s
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2.2.3.3. Step functions

As shown in the Section 2.2.1 the bottleneck, in terms of accuracy, of the sEBT algorithm
is the method of handling boundary conditions. By Proposition 83 birth process generates
an absolutely continuous measure on the boundary, which by Proposition 69 cannot be
approximated with a 1-point discrete measure with a smaller error than O ((At)g). The
concept of this section, arising from Theorem 70, is to approximate the distribution of
“young” individuals by an indicator function of the interval [0, [*(¢)].

In the algorithm introduced in this section, EBT?, the initial condition, ug € 90, Siaz],
is approximated by a sum of a discrete measure and a step function, ug. Let function
mi,n; : [0,T] — R= and x;,y; : [0, 7] — [0, Smaz] for i € {1,...,N} and j € {B,1,..., M}
be some function specified later, and let

N
po =Y mi(0)dz,) +Z
i-1

zlyl yzl

0) L1y, 1(0),4:(0)] (2.13)

see Figure 2.7Throughout this section by yo (¢ ) we always mean yp(t), and by y_1(t) we
mean (. Supports of the discrete part and the absolutely continuous part of py may
overlap. Each atom of pg is tracked by the system of equations analogous to (2.5)

L) = g(t, S ma()dn) + Xier 7t Ly (.00 (@ (1)
ami(t) = —m(t, 30 mi(00) + Xier g Ly @) (@) - ma(t)

(2.14)
while each of the indicator functions is tracked by equation
N i
avi(t) = 9(t, I mi(de) + Cier gy Mveor 0 0) (1)) (2.15)
N n; .
%ni(t) =m(t, > i mi()0a,t) + D e yi(t)—ggf)_l(t) Ly s ) Wi(£)) - ma(t)

By the generalized boundary cohort, used in EBT?, we mean indicator function ng(t) 1oy, )-
Similarly as in sEBT, a new generalized boundary cohort is created every At > 0 of time,
and the previous generalized boundary cohort becomes an internal cohort, tracked by
(2.15). Functions ng(t) and yp(t) follow

(Gun(t) = g(t, 30, ma(t),, +Zze1 e Lo o)) (UB(2)

anp(t) = —m(t, L mi(0)8a0) + Xier jirarm Lo o) U5 (1) - mi(t)+
+ 30 B I ma()S, +zﬁﬂ ) (@ (0)ma()
+ s B iy M)ty + Sier s Ly (,0000) (W) (1)

Lyp(kAt) = np(kAt) =0

(2.16)

Remark 100. Existence and uniqueness of solution to the ODE system defined by equa-
tions (2.14), (2.15) and (2.16) stems from boundedness and Lipschitz continuity of pa-
rameters g, m, 3 upon arguments and from Lipschitz dependence of measure

<Z M0z, + Z — i ﬂ[yz 1 yz’}) S m+[07 Smar] (2'17)

ZEI
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Figure 2.7: Visualization of the EBT? algorithm
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Indeed, Lipschitz dependence of (2.17) upon a single parameter z; or y; can be easily
checked using Theorem 11. Lipschitz dependence of (2.17) upon a single parameter m; or
n; stems directly from Proposition 7. Finally, triangle inequality for flat metric guarantees
that (2.17) is also Lipschitz continuous with respect to the whole vector of parameters

(ml,xl,mQ,xQ, ey MMpN, TN, TV, Y1, ) .

Similarly as in the case of SEBT, the set of indices, I, initially consists of the boundary
cohort index, B, and some number, M, (possibly zero) indices of indicator functions in
the initial approximations. Therefore at time ¢ € [kAt, (k + 1)At] we have

I={B,1,2,...k;k+1,k+2,...k+ M}.

We shall denote the outcome of the EBT? algorithm at ¢; starting from initial conditions
w at ty by ul%.

Table 2.4 presents results of the numerical analysis conducted for the Test Case 2
described in Section 2.2.2. The empirical order of convergence of EBT? algorithm is close
to 2, suggesting that

pr (o, poMy) < Cy(T) (A1) + Cs(T) pr(uo, o)

EBT? induces significantly smaller error, compared to sEBT, even for large At since it
allows to use step functions as approximation of initial conditions. In the tests presented in
Table 2.4 initial condition was approximated by 8192-step function in the EBT? algorithm,
resulting with error equal to 1.36e—8, and with 8192-point measure in the sEBT algorithm,
resulting with error equal to 4.33e — 5.
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Table 2.4: Comparison of accuracy and empirical order of convergence of sSEBT and EBT?
algorithms.

EBT? sEBT
At~V M Error ‘ Order At1 N Error ‘ Order
1 8192 | 1.86e — 3 1 192 | 1.64e — 1
2 8192 | 4.36e —4 | 2.09 2 8192 | 1.09¢ — 1 | 0.58
4 8192 | 898e¢ —5 | 2.29 4 8192 | 6.43¢ —2 | 0.76
8 8192 | 2.27¢e — 5| 1.98 8 8192 | 3.50e — 2 | 0.87
16 | 8192 | 5.13e—6 | 2.14 16 | 8192 | 1.83e—2 | 0.93

2.3. Optimal foraging model in population dynamics

In this section we apply theory described in Section 2.1 and Section 2.2 to study equation
(2.1) with a specific choice of parameters reflecting growth, reproduction and mortality
of Daphnia population under predation of a size-selective planktivorous fish in an aquatic
ecosystem. It is allowed to consider a single equation for the total population without
making the distinction between female and male individuals, since Daphnia species have
a life cycle based on cyclical parthenogenesis, alternating between asexual and sexual
reproduction.

In the general theory dependence of all three parameters upon time and population
structure can be taken into account. Since in aquatic ecosystems where predators are
present prey density levels never reach carrying capacity we shall consider a simpli-
fied model in which growth rate, g, and reproduction rate, 3, are constant as func-
tions on [0, 7] x 9MT(0, S;nqee) With values in C*1[0, $,,4.] (independent on time and size-
distribution). The argument is elaborated in Section 3.4.

It is worth mentioning the paper [33] in which an age-structure population model
describing fish predation on Daphnia was introduced. The approach presented in this
thesis allows to investigate the population in the context of arbitrary structure and not
necessarily the age. In many cases, this enables to model quantities that easy to measure
experimentally. In the case of Daphnia it is the size of an individual rather then its age
that can be directly obtained from the experimental data. Moreover, the size (not age)
of an individual indicates the likelihood of being detected by a forager.

A different approach to the modeling of size-structured population is described in [17],
where the authors couple an ordinary differential equation for the population of roach
(predators) with a McKendrick-van Foerster equation for a size-structured population
of Daphnia (consumers), and yet another ordinary equation for algae (resources). The
complex structure of this model is, however, undermined by the fact that mortality of
the consumers does not take into account size-selectivity of the predator. In the model
presented in this thesis predators’ numerical response is neglected for the reasons discussed
in detail in Section 3.1.
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2.3.1. Capture rate operator

Predator-induced mortality is one of the main building blocks in the modeling of prey
population dynamics. In Section 3.3 a mortality operator C'row, applicable for the case
of low prey density, is derived based on the optimization of net rate of energy intake. The
model of energy balance consists of:

1. the model of predator respiration rate, R(v), as a function of velocity, v,

2. the model of predator post-capture acceleration costs, A(v), as a function of velocity,
,U7

3. the model of predator reactive distance (maximum distance at which prey item can
be noticed), r(s), as a function of prey size,

4. the model of prey energy value, e(s), as a function of prey size.
The following definition summarizes the considerations presented in detail in Section 3.3.

Definition 101. Consider a capture rate operator Crow : MT[0, Spmae] — MT[0, Smaz]
defined by
molu]riu

1y Tyrolu] [ r2(o)u(do)’

Crow [u]

where v : ([0, $02) — R=ZY is implicitly defined as a the maximizer of P : 90, $,40] X
R0 -5 R

P(u, v) = v /0 " 2(0) (e(0) — A(v)) uldo) — R(v), (2.18)

where 7 is the ratio of a circle’s circumference to its diameter.

Acceleration cost, A, respiration rate, R, reactive distance, r, and energy value, e, are
some fixed mappings of R=? to R=". In this section we make weak assumptions on the
shape of these functions, which is necessary to prove well-posedness of the population
dynamics equation. Concrete examples of such functions, that stem from experimental
data and physical considerations, can be found in Chapter 3. Moreover, in Section 2.3.2
it is checked that these examples satisfy necessary conditions.

Condition 102. Functions A, R, r and e satisfy the following properties:
1. functions 7? and e are Lipschitz continuous on [0, $;.e.] and A, R € C?(R=° R),
2. derivatives A’(v) and R'(v) are non-negative and strictly increasing,
3. A(0) =0, R(0) > 0,
4. limy—00 A(v) = lim, oo R(v) = 00,
5. e(s) > 0and r(s) >0 for s > 0.

We also make the following assumptions on the models of growth and birth processes:
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Condition 103. Functions g, § satisfy the following properties:

1. function g is the Bertalanffy growth rate (|64]), namely g(s) = v (Syaz — s) for some
constant vy,

2. B(s) = a(s — s0)® for some constants a, b, sy (compare [7]).

Since according to Condition 103 functions g and § do not depend on time, ¢, no
population distribution, u, we shall often write g(s) and (3(s) instead of g(¢,u)(s) and
B(t,u)(s) whenever Condition 103 is assumed.

2.3.2. Assumptions on parameters

Some of the assumptions in Condition 102 on functions A, R, r and e are trivially sat-
isfied for the specific choice of parameters made in chapter 3. For example A(v) = ’”2”2,
assumed in Section 3.2.6, is obviously differentiable, A’(v) = muv is non-negative and
increasing, A(0) = 0 and lim, mT”2 = oo. Similarly functions R, = m + qv? and
Ry = 0.003916 - 10~0-92424+0.8494W+0.01420+0.0189T i troduced in Section 3.2.1 are differen-
tiable, satisfy R;(0) = m > 0 and Ry(0) > 0, their limit at v — oo is infinity and their
derivatives R (v) = 2qu, Ry(v) = C1e“2T%? are non-negative and increasing. Energy
value, e(s) = 0.655 - s%5% introduced in Section 3.2.2 is obviously Lipschitz-continuous
and positive for s > 0. Verifying conditions on reactive distance, r, is more complex.
Reactive distance, r(s), defined in Section 3.2.3, is given implicitly by the non-negative

root, of the equation

Cys% = r2e®r

for some positive constants C; and Cs. Consequently r(s) = 0 if and only if s = 0. By
implicit function theorem

d J—
d_r =2C,s (27“60” + 027«26027’) 1
S
hence
0< ﬁ = 018 _ 018 B
B o C2,.2\ ,Cor —
B T (f9g 4 pGgyeor
018 C
- - <vC(i.
(s Cle%r + 3201%) (s\/ + 52616 0102

We have proved that r(s) is Lipschitz continuous on R=° and therefore r2(s) is Lipschitz
continuous on [0, S;,q.]. In applications for a realistic model of reactive distance in low
turbidity constant C does not exceed 80.

2.3.3. Velocity functional

Since v : M0, Synaz] — RZ? models predator velocity certain regularity can be expected.
In particular for small changes of prey population u predator’s velocity should exhibit
only small fluctuations. It is also natural to expect there exists some maximal velocity

81



Umaz Which cannot be exceeded. In this section we prove that v]u| is correctly defined as
a maximizer of P(u,v) introduced in (2.18), namely we show that there exists a unique
maximum of function P(u,v) on RZ% and that v € CPH(IMT[0, Spmae); RZ?). An explicit
formula for v is also found for the case of R(v) being a cubic function.

Theorem 104. Under Condition 102 functional v is correctly defined and

v € Cy (M0, Smas); RZO)

Proof. By simple computation we obtain

oP

5y =" (u,er?) —m (u,r*) (vA(v)) — R'(v) (2.19)
and therefore 9P
—|  =n{u,er’*y — R'(0)
| =
3 op : 2 / 2 !
%101900 ol = %101900 (7 (u,er®) — R'(v) — m (u,r*) (A(v) + vA'(v))] = —o0.

Since R'(v), A(v), A'(v) are increasing functions P is concave with respect to v. Conse-
quently, its maximum, v[u], exists, is unique and always attained in the critical point or
at the boundary. Moreover v[u] = 0 if 7 (u, er?) < R'(v) and v € (0, 00) otherwise.

Let us consider function

F<U7 57 §) = § - C (UA<U>>/ - R/<U>7

which corresponds to (2.19) with & = (u,er?) and ¢ = (u,7?). We shall prove that
v = V((), defined by F(V(£,(),&,¢) = 0, is differentiable with respect to both ar-
guments. By the implicit function theorem V(¢,() is differentiable on R=° x R=% with
respect to both variables if %—f # 0 for all v > 0. Since

or
o
and R"(v) > 0 we conclude that %&£ < 0.

Both functions 72 and er? are Lipschitz continuous on [0, S0, and by Lemma 21 for
any u, & € M0, Smaz)

—C (vA(v))" = R'(v).

pF(u7Ia) = Sllp {(U - ,a7 f) : f € C[Ou Smaz]a ”fHCg’I[O,Smaz] S 1} Z

and similarly

prl i) 2 o T L
Y Terlog e + Linler?) — G



From the above inequalities we obtain

lv[u] —vla]| = ‘V (<u, er2> , <u, r2>) -V (<ﬁ, er2> , <’L~L, r2>)} <
< LiplV) ([ er®) (@,er?)] + ) — (i) <
< Lip(V) (Cy + Cs) pp(u, @). (2.20)

It is now proved that v € C%1(OMT(0, s,nex); RZY).
To prove boundedness of v we consider

oP
S <7 (lellctoape = CA@)) (w7%) = B ©) < 7 (llellog o — @A) ) (u7?).
Since %—I; is monotonously decreasing its zero is always smaller than a zero of a greater

function. Therefore v[u] < U4, for some constant v, satisfying

(VA o= = N€llcpo,5,m0e -
0
Proposition 105. Under Condition 102 with a particular choice of
R(v) = ro + 110 + rov* + r30®
and A(v) = m2”2 it holds that
(- (T <)
0 if ry > 7 (u,er?)
Proof. The formula follows from the fact that v[u] is the root of equation
Cfl—f =T <u, e7’2> — 3; <u, r2> mu? — ry — 2rov — 3rgv?.
]

Remark 106. The condition that R”(0) > 0 translates to r, > 0 which guarantees that
the argument of the square root in formula (2.21) is always strictly positive and hence
the derivative is finite.

2.3.4. Regularity of Crow

Operator Crow : M0, Spaz] — M0, Spaz] can be viewed as a multiplier
Crow(u) = m(u) - u defined by a given function m : M0, Syl — C*1([0, Spaz), RZ?).
A natural question of key importance is the regularity of m.

Theorem 107. Under Condition 102 it holds that m € C}"* (MT[0, Smax); CVL([0, Spmaz); RZY)).
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Proof. Function m can be decomposed into a functional m : IMT(0, s,4.] — RZ? an

function 72 € C% ([0, Syas); RZ) as

Let u, @ € M0, Synaz] then by a similar arguments as in 2.20 we obtain

mulu] B o]

1+ Tpmolu] f;7 r2(o)u(do) 1+ Thpwola] [ r2(o)a(do)

] - m il - |

m (v[u] —v[a]) + 7> Tyolujv[a] [y r?(o) (i@ — u) (do) -
(1 + Tymolu] [ r2(0)u(do)) (14 Tpmvla] [, r2(o)u(do)) | —
shmxwwﬂwmwmmmwmmm+Mp | pr(u
On the other hand
mu] <7 ”UHC(zm+ [0,5maz])
hence m € C' (M0, Symac); RZC). It is now easy to show that
m € Cypt (M0, Smaz); CO' ([0, Smaal, RZY)) .
Indeed,
||m [u] -—m [ﬂ] ||CO71([0,smax},]R20) = |m [u] —-m ['ZLH HTZHCOvl([O75max]7RZO) <
< LZp HT2HCO 1([0,8maz],RZ0) pF(u u)
and

[l [ulll oo 10,5 et 20y < 0000 0 0,61001,220) H"’QHCOM[O,SW],RZ% '

2.3.5. Existence and uniqueness

Existence and uniqueness of weak solutions to system (2.1) under Conditions 102 and 103
stems directly from Theorem 79. Assumptions on g and (3 are trivially satisfied. Required

regularity of m, on the other hand, results from Theorem 107.

2.3.6. Stationary state

d

In general, a non-trivial stationary state of (2.1) does not necessarily exist. It turns out,

however, that under Conditions 102 and 103 necessary and sufficient conditions can be
found. Moreover, finding the exact shape of stationary measure only requires solving two

algebraic equations.

Lemma 85 provides a characterization of stationary states in the case of positive mor-
tality of the largest individuals. Let us now suppose the contrary (lack of mortality of
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the largest individuals). In a vast majority of foraging models, such as CLow, no mor-
tality of the largest prey items (m(t, ut)(Smaz) = 0) implies no mortality of smaller items
(m(t,n) = 0). Consequently, by Lemma 86 null mortality in a stationary state implies
null reproduction. Finally, null reproduction and a positive individual growth rate imply
the lack of individuals of sizes in the range [0, Syqz)-

Stable existence of population consisting of individuals of a single, maximal size is
not surprising under no mortality and no reproduction. In the remainder of this section
we focus on the case of positive mortality and hence absolutely continuous stationary
size-distributions. The density function, u, of such state satisfies

. —molulriu
{(gu)s T 1+Tpmolu] 57 r2(0)u(do)
9(0)u(0) = [ B(s)u(s)ds

and therefore u can be written in the following implicit form

1 Smazx ;rv[u] fs r (o)d
u(s) = 7 (/0 ﬁ(a)u(da)) : (e L Tpmolul oo ri(@)u(de) 10 9() ) : (2.22)

Let us define .
o)
T(s) = —— =~ g(o) da)’
)= 0 (

then clearly u(s) = AT,(s) for some choice of A, p € R=.
Lemma 108. Let g satisfy Condition 103 then T, € L0, Sz if and only if p > 0.

Proof. For p > 0 we obtain
1 1

T, <
- s (o ’
9(3) L+p [, 3(0) do
since e™® < 1+ for every # > 0. Consequently, 7, is integrable on [0,s'] for every
5" < Symaz. On the other hand
Smax Smax 1 1
T,(s)ds < / . ds <
[ s [ e e e S

A\

Smaz 1 1 Smaz — s'
< . —ds < .
s’ /Y(Smax - 5) 1+ £T2(S,) —sm,fx—s p’I“Q(SI)S,
O

Theorem 109. There exists a non-trivial stationary state of equation (2.1) with m =

Crow under Conditions 102 and 103 if and only if fsm‘“” B( S)ds > 1 and the following
system of equations has a solution

/0 T ()T (0)do = 1

P+ XN o[ AT (o) /Osmax r*(0)T,(0)do = mv[\T,(0)]
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Proof. Finding the stationary state can be viewed as finding the fixed point of an operator
that takes u as the argument and returns the right-hand side of equation (2.22). We have

A= /O " BT (0)do (2.23)

Equation 2.23 implies that either A = 0 (and consequently u = 0) or

/ " Bls) (e"f5 Zéf’fd”) ds = 1. (2.24)
0

9(s)

The left-hand side monotonically decreases with p and tends to 0 as p tends to infin-

ity. Consequently, equation 2.24 uniquely defines p > 0 if and only if fos'”“” 5 8 ds > 1

(otherwise no such p exists, hence the only stationary state is u = 0).
Let p* satisfy 2.24. Since u(s) = AT}, the implicit formula 2.22 implies that

mulu]

T 14 Ty [u] [57 2 (0)u(do)

*

p (2.25)

and consequently
P+ N T AT+ (0)] / r*(0) T (0)do = 7v[AT,(7)).
0

Therefore, the conditions are indeed necessary. Conversely, it is easy to check that

s 12 (o) do

(g)\Tp*)s = —)\p* (ep* Jo g(o) ) 7 — ()‘Tp*) X ,0*7“2(5),

hence equation (gu)s = mu reduces to (2.25). From the definition of p* it is also clear

that the second equation, namely g(0)u(0) = [;™** B(s)u(s)ds is satisfied. O

2.4. Numerical verification of the model

In this section we investigate numerical results of McKendrick-von Foerster model with
parameters satisfying Condition 102 and Condition 103, which we refer to as the model
of zooplankton population.

2.4.1. Choice of parameters

Numerical results on population dynamics presented in this section are restricted to the
following particular choice of parameters:

) 2
1. Mortality operator m is proportional Cpow with: A(v) = W (compare Section

3.2.6), R(v) = ro + riv + rev? + r3v® (compare Section 3.3), r given by equation
(3.7) (compare Section 3.2.3), e(s) = e - s°* (compare Section 3.2.2),
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2. Growth rate given by ¢(s) = v+ (Simaz — s) for v = 0.06 (compare [67]),

3. Birth rate given by

5(3):{0 5 < 5

Tm(s —sj)% s> s;.

Values of constants used in the simulations are presented in Table 2.5.

Table 2.5: Model parameters used in Section 2.4.3.
Parameter ‘ Value ‘ Unit

A P t Val
" 05 da’_’;‘img arameter ‘ a ue_3
” K, L To 6.8-10
. J 5'2 p— 1 1.24-1073
p— 15 ry 6-107°
Lelahd : ) s 25-10°
h
7 10 ) Cexp 1.56
0 2 Crmul 0.655
v 0.06 oo

2.4.2. Stationary state

Figure 2.8 compares theoretical result given by Theorem 109 with experimental data from
[30]. The model line was computed based on the result characterizing the density of sta-
tionary state for parameters satisfying Condition 102 and Condition 103 in Section 2.3.1.
Light intensity, 9%031’ and predator’s body length, 6 — 8cm, were assumed to reflect the
experimental setup described in [30]. Birth rate and growth rate parameters were chosen
to match the species used in the experiment. Remaining parameters, including maximal
prey size, birth rate and water turbidity, were fitted to the data. Evident inaccuracy in
the range of small body sizes (0.4 — 0.6mm) and the mid-range (0.8 — lmm) is likely to
be caused by slower growth of the newborns and faster growth of the individuals dur-
ing reproduction age, which is not taken into account in the Bertalanffy law (compare
Condition 103).

The error between the size-structure measured on the 52"¢ day of the experiment, 1z,
and the theoretically derived stationary state, pr, is given by

pr(pe, pr) = 0.0536,
M 0.0139.
] M0, 5mac]

and the total number of individuals in the population, ||uE||§m[ , equals 8.160%.

Ovsmax}

2.4.3. Size-distribution dynamics

In this section numerical study of the evolution in time of the size-distribution of plank-
ton population is conducted. Simulations were performed for parameters specified in
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Figure 2.8: Comparison of stationary state density of type AT, (blue line) and experi-
mental data concerning size-distribution of Daphnia population subject to predation (red
bars representing Dirac masses), see [30]. Plots depict the distribution of experimental
Daphnia hyalina on the 8" day (left) and 52" day (right) of the experiment.
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Table 2.5. Mortality was chosen to be equal %C’LOW, which reflects an average of one
predator per 1m? foraging during dusk and dawn, which constitute 10% of the day.

Figure 2.9 presents how the size-structure of the prey population develops in time,
starting at day 1 from a single cohort of newborns. Absolutely continuous measures are
depicted as plots of density functions with values on the left y-scale. Dirac deltas are shown
as narrow bars whose height reflects the mass of the atom on the right y-scale. It turns
out that the distribution converges to the stationary state computed using the methods
from Theorem 109. Density of the stationary state is given by AT}, where A = 0.12 and
p = 0.31. Figure 2.10 shows the numerical results for the same set of parameters, but
starting from a uniform initial condition. The sharp peak visible at day 8 results from the
birth process, which is significantly higher at the beginning, before the density of adult
individuals is reduced by predation.

Figure 2.11 presents the evolution of a three-point distribution. It can clearly be seen
that predator, and therefore mortality, is size-selective with high preference for larger prey
items.

2.4.4. Dynamics of the total number of individuals

Numerical simulations suggest that the stationary state, characterized by Theorem 109
is not a global attractor. Figure 2.12 presents how the total number of prey individuals,
namely u(t) ([0, Simaz]), develops in time when starting from a single cohort of newborns.
It turns out that for initial densities between 0 and 9.8 individuals per dm? the solution
converges to the non-trivial stationary state. For density equal to 0 it remains in the

unstable stationary state u = 0, and for densities higher than 9.8;%?; it grows unlimited.
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Figure 2.9: Evolution in time of the size-structure of prey population starting from a single
cohort of newborns. Solution to the zooplankton population model (blue line) compared
to the stationary state (brown line).
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Figure 2.10: Evolution in time of the size-structure of prey population starting from a
uniform distribution. Solution to the zooplankton population model (blue line) compared
to the stationary state (brown line).
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Figure 2.11: Evolution in time of the size-structure of prey population starting from
a three-point distribution. Solution to the zooplankton population model (blue line)
compared to the stationary state (brown line).
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Figure 2.12: Evolution of the total number of prey individuals in the the zooplankton
population model. Stable dynamics for low density initial conditions (left); instability for
high densities larger (right).
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Chapter 3

Foraging of a size-selective
predator-harvester

The main goal of this chapter is to derive a model of predator functional response,
a concept introduced by Holling in [38] to characterize different patterns of predation.
The functional response is a function which assigns to the density of prey a number of
prey items captured per a time unit. Some ideas developed in this dissertation were
inspired by the collaboration with a team of hydrobiologists of University of Warsaw and,
in particular, by the results described in [29]. Experimental evidence, obtained by the
biologists, became a starting point of the study of foraging strategies.

In Section 3.2 two novel simulation models of size-selective predation in ecology of
freshwater ecosystems are presented. Both models are based on a bottom-up approach,
in which a complex process of foraging is viewed as a composition of simpler phenomena
such as predator’s visual perception capability, motility and net energy balance. The
models can be applied to the study of population dynamics, but are also a valuable tool
for testing various hypothesis about foraging.

To give a better understanding of the matter to a reader with mathematical back-
ground Section 3.1 describes the premises on which the models were built and demon-
strates the empirical data collected during author’s collaboration with a team of hydro-
biologists.

3.1. Experimental data

The biodiversity of an ecosystem depends on abundance of first consumers which in the
case of aquatic ecosystems are mainly various species of zooplankton feeding mostly on
algae. Typical species belonging to zooplankton are that of crustaceans e.g Daphnia. In
the case of fish-free habitats where main predator feeding on zooplankton is not present
the diversity of phyto- and zooplankton is more frequently attributed to resource parti-
tioning, and resource competition . This explanation fits fish-free habitats and laboratory
cultures in which a competitively-superior large-bodied Daphnia monopolizes resources
at carrying-capacity level. However, this scenario does not match typical freshwater habi-
tats where Daphnia species coexist at population densities much below those at which
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Figure 3.1: The experimental system - cross-section of tanks.

L

L/

resource competition would cause exclusion of competitively-inferior small-bodied taxa.
This chapter is an attempt to describe quantitatively the impact of predation on the
population of zooplankton.

In the experimental setup behavior of a typical freshwater planktivorous predator, 1-2
year-old roach (Rutilus rutilus L.) of 50-75 mm in length foraging on Daphnia hyalina
(0.5 - 6 mm in diameter) was studied.

Prey-predator interactions between these two species are limited in scope to elimina-
tion of prey items, which allows neglecting the impact of prey population on predators.
The first reason is the greatly different spatial scales of the predator and its prey. The
predator, such as sardine or roach, forages kilometers each day in search of its tiny prey,
while the movements of the prey are restricted to decimeters per day. The disproportion
is greatest when the interactions are examined along the horizontal plane, as predation
risk for a zooplankton prey depends on the light intensity and in consequence depth. The
second reason is in the time scale difference due to the contrasting lifespan of the ver-
tebrate predator and its invertebrate prey. This causes great disproportion between the
reproductive numerical responses in time, which are quick in a prey population but slow
in a predator population. Moreover roach and sardine individuals feed on Daphnia only
at juvenile stage, switching to larger prey before first reproduction.

An experimental system of 4 or 8 interconnected 1m? tanks, described in [29], allowed
free movement of planktivorous fish between locations with different densities of Daphnia
prey in natural mixtures of juveniles and adults (see Figure 3.1). Changes in density of
Daphnia prey were then followed for 2-6 days. To imitate a natural field situation, fish
predation was constrained by both the number of fish added to the system and how long
they were allowed to feed on the Daphnia prey. Both parameters were adjusted to be
similar to those observed in natural lake habitats where feeding by planktivorous fish is
usually restricted to anti-predation windows at dusk and dawn , when the underwater
light level allows them to locate their prey without being seen by piscivores.

For each feeding session, the fish were transferred to each tank in a steel bowl consti-
tuting the central part of the bottom of a cage made of nylon netting. Fish movements in
one high- and one low- Daphnia-density tank were registered using two submerged infrared
video cameras per tank, each directed at one of the two connecting windows. Analysis
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Figure 3.2: Experimental data on foraging strategies published in [29]. Functional re-
sponse (left) and rate of prey elimination (right). Notice the lin-log scale.
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Figure 3.3: Experimental data on predator velocity published in [29]. Notice the lin-log
scale.

60'A o 1] o)
]
8e
o
B }
=
s
z QL
Q 3
R N
S 20f
2
=
0.01 0.1 1 10 100

of the resulting recordings was used to estimate fish velocity and to compute the num-
ber of fish in each of the tanks. Following the removal of fish at the end of a feeding
session, the water in each experimental tank was thoroughly mixed by five upward move-
ments of a perforated Secchi disk and samples were taken using a quantitative plankton
net (6 vertical hauls removing Daphnia from 301, i.e., 3% of the tank volume) and fixed
with formalin-sugar solution. Daphnia juveniles, adults and eggs in brood cavities were
enumerated in each sample by counts made using a dissecting microscope.

Results of the experiment in a concise form of dependencies of rate of prey elimination,
capture rate and predator velocity upon prey densities are presented on Figures 3.2 and
3.3. The plots do not reveal the full complexity of the results, since for instance prey
elimination rate at tank A depends not only on prey density in A but also on differences
in abundance between tanks. The results are, however, a starting point for a farther
theoretical study.
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3.2. Functional response resulting from an optimal for-
aging model

Since pioneering works of [51] and [21] the foraging theory was used in a vast amount of
literature as a powerful tool for understanding many aspects of predator-prey interactions.
It comprised the investigations of predator’s optimal diet, optimal time spent foraging [1]
optimal patch exploitation [51], and optimal pattern and speed of movement of a foraging
predator [66]. In this theoretical study, based on the classical concept of maximization
of the rate of net energy intake, we construct a model of size selective foraging. Rate of
net energy intake is often used as the link between habitat use and fitness: based on the
assumption that the measure of net energy intake ultimately translates into the measure
of fitness (e.g., an increase or decrease in growth or reproductive output). The optimiza-
tion model operating on "microecological scale” [65] describes decisions of an individual
predator-harvester concerning the prey choice and speed of movement in space filled with
prey items of different size and energy value. Such a framework may refer to the situation
of birds (e.g. siskin or swan dive) feeding in the air on insects or a pelagic fish or an
invertebrate predator feeding on zooplankton. In the case of a planktivorous fish feeding
on Cladocera (Daphnia) prey remains relatively stationary and therefore its motility and
defense during a predator’s attack may be neglected. Moreover nearly all freshwater fish
are plankton harvesters during the early stages of life and most remain planktivorous for
a year or two before switching to either piscivory or to airborne and benthic resources.
Due to an anti-predation window effect, juvenile predators rarely become satiated and as
a consequence it seems to be justified to assume that optimization of the net energy intake
is a fundamental factor determining individual fitness. The novelty of our approach is the
optimization of the rate of net energy intake as a function of predators velocity and prey
selectivity contrary to the most of earlier works in which it is assumed that encounter rate
and search costs are fixed constraints independent on how quickly the predator moves.
The role of choice of optimal velocity as a part of foraging strategy was argued in the
case of foraging birds [37], pelagic plantktivorous fish [78] as well as in [66] in more gen-
eral context. Our approach enables taking into account post-capture acceleration costs,
depending indirectly on water viscosity and temperature, which seem to be a crucial con-
straint imposed on the predator’s behavior in a low density habitat. The acceleration
costs are reported as the main factor explaining differences in predator selectivity pattern
in the case of small-scale homogeneous prey distribution and that of large-scale systems
with heterogeneous prey distribution, as indicated recently in [53|. Our study also casts a
new light on the macro ecological population level analyzing the stationary size structure
of prey population.

The best known model of optimal foraging, developed by [14] and described in the
monograph by [70], concerns the predator foraging on a number of prey categories whose
encounter rates are given a priori as parameters. Moreover, prey items from each category
have their energy values and handling times assigned. Searching for prey is assumed to
cause a constant energy loss per unit of time, so despite being based on optimal foraging
theory, the model does not take into account the contribution of the predator’s energy
expenditure due to the movement towards attacked prey items. This cost depends, in
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particular, on the prey distribution in space and affects the total energy balance and
optimal prey choice. In our approach a particular attention is paid to the choice of
optimal velocity as a key factor contributing to predator’s total energy loss. To our best
knowledge the only works which account on the velocity as a crucial component of the
optimal strategy are [37, 78, 18|. The latter study is based on the multi-prey functional
response and similarly to Section 3.2.1 average velocity optimization is analyzed.

This section contains results described in [41]. In particular a novel, low-level, simula-
tional model is proposed. It predicts individual forager’s decision-making process includ-
ing both velocity and prey choice. In this approach functional response, prey selectivity
and the predator’s trajectory arise from these basic decisions.

3.2.1. The case of unstructured prey population

Before introducing the main model of this part we consider a simplistic situation wherein
a predator forages on an unstructured prey population. It illustrates how optimal foraging
stabilizes prey-predator interactions. The classical Holling disk equation [38] can be used
to derive a predator’s rate of net energy intake - a quantity which can be maximized as
a function of predator’s velocity. Consequently the optimal predator’s velocity may be
expressed as a function of prey density. The optimal velocity inserted into the Holling
Disk equation yields a functional response which reflects prey consumption per unit of
time for an optimally foraging predator. This approach was already applied in [18] where
Holling type III functional response was argued to be a consequence of optimization of
predator’s velocity in search. We go farther in this direction assuming a wider range of
possible swimming costs and taking into account that some amount of predator’s energy
is spent on post-capture acceleration. Moreover we assume a more precise division of
foraging time into the part devoted to searching and that devoted to prey consumption.
Contrary to the aforementioned paper, we perform numerical simulations which show how
the functional response is shaped depending on the particular assumptions on the cost
functions.

According to the classical foraging theory, the rate at which a cruising predator en-
counters immobile and indistinguishable prey items is

mr2oN

where r is the reactive distance, v is the predator’s velocity and N > 0 is the prey
density. By the reactive distance we mean the maximum distance at which a prey item of
a given size is perceivable by the predator under typical light intensity and water turbidity
conditions. Assuming the handling time 7}, and the attack probability a the capture rate
reads

arr?vN
F(v,N) = 3.1
(v, N) 1+ anr?2vNT, (3-1)
which is known as Holling type II functional response. Notice that when a = 1 all

prey are captured upon encounter. Then owing (3.1) and assuming the rate of velocity-
dependent metabolic cost R;(v), the average energy content of prey item e and post-
capture acceleration cost A(v) we obtain the rate of net energy gain
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P(v,N) = (e = A(v)) F(v, N) = Ri(v)y = R;(0)(1 — 7) (3-2)

where v = 1 — T},F (v, N) is a fraction of the foraging time spent on searching with
velocity v while 1 — v is the remaining fraction of time, which is spent consuming prey.
Formula (3.2) for the rate of net energy intake is based on the same reasoning as in [18],
but the effects of stopping and accelerating are incorporated into the equation. Notice
that for T, = 0 formula (3.2) agrees with the simplified model introduced in (2.18) in
Section 2.3.

The energy loss R;(v) denotes a basic metabolic cost and a swimming cost. In [78, 66,
77] it was proposed

Ri(v) = m + qv* (3.3)

which is also assumed (in a slightly more general form) in [18] while [52] assume
RQ(U) — 0003916 A 10—0.9242+0.8494W+0.0142U+0.0189T (34)

where T is the temperature in Celsius, v is the velocity in meters per hour and W =
log((0.001 - w), where w is the body weight in kilograms. Having no experimental data
on values of parameters m and ¢ we calibrate them so that R;(0) = R2(0) and the
difference between the models is minimal. We assume the post-capture acceleration cost
is equal to the physical value of the predator’s kinetic energy, “’71’2 Now we are in a
position to apply the concept of optimal foraging. To this end given prey density, N,
we find optimal velocity, vept(/V), for which the rate of net energy gain, P, attains its
maximum. It is easy to check analytically that such a maximum is uniquely determined
for both cases (3.3) and (3.4), see Section 2.3.3. Optimal predator’s functional response
is obtained by setting v, in the place of v in (3.1).

The dependence of optimal velocity v, upon prey density for two different formulas
describing metabolic costs of swimming, (3.4) and (3.3), was computed numerically and
depicted in Figure 3.4a. In the case of (3.4) there exists a range of low prey densities
where v,y = 0, which may be interpreted as the situation in which the predator chooses
to stop foraging because of low light level, low prey abundance, or high water turbidity.
The effect of vanishing v,,; also implies existence of a marginal density below which no
prey items are captured. Correspondingly, the rate of net energy gain P (v, V) and the
capture rate F'(v,, N) at depicted on Figures 3.4b and Figure 3.4c.

The stabilizing effect of prey refuges is a well known phenomenon since the experiment
reported by [25] and theoretical study of the Lotka-Volterra model by [59] and [72|. Fur-
ther studies of prey-predator-interaction stabilization in the context of optimal foraging
were recently described in [47]. The meaning of prey refuges can be observed even in the
simplest model of prey population dynamics:

d
N =N = F (v, N) - M

where b is the rate of birth coefficient and M is the number of predators. Such a model
may be applied in the case when the life span of predator is much longer than that of the
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prey and predators’ numerical response is neglected. All of these assumption are justified
in the case of planktivorous fish feeding on Cladocera [33|. Clearly, if M is larger than
some critical value of predator density M., then there is a stable steady state at low
density level Ny > N, . It was checked numerically that N, weakly changes with increase
of M > M. (see Figure 3.5b). It results from the steep growth of function F'(v,u, N) for
N close to density threshold N, from the right-hand-side (see Figure 3.4c).

We conclude that in this simplistic example the density level of prey in the steady
state is mostly determined by the averaged size of prey item rather then abundance of
predator c.f. [33]. It also confirms the hypothesis proposed in [28] that in the presence
of planktivorous fish in lake the density levels of zooplankton are species specific and
correspond to the average body size. The lower the species specific prey size the higher
the corresponding threshold density level. From the results depicted in Figure 3.5a we
obtained a power law N, ~ 0.0063-s718¢. Figure 3.5b shows that the density of predators,
unless extremely low, influences the steady state insubstantially.

Figure 3.4: Numerically computed dependence of predation characteristics upon prey
density with basic metabolic cost (3.4) - (solid line)- and (3.3)- dashed line - ): (a) optimal
velocity - vout(IN), (b) rate of net energy intake P(vy,, N), (¢) capture rate F(vgy, N)
versus prey density (logarithmic scale).
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Figure 3.5: Numerically computed dependence of N, (prey density below which predation
is unprofitable) (logarithmic scale) upon prey size (a). The number of predators per 1m? -
M for which Ny (prey density in the steady state) is larger than N, by 5% (red line), 50%
(green line), 100% (blue line) (b). Energy of a single prey item assumed as in Section 3.2.2.

10 3 1 E
—_ 1 — r
m m
€ £ 0.1 :
o 3 E
3 0.1 g E
£ =
— >
> =
g 0.01 2 0.01 E
% s I =
> o [
= 0.001 = L ]
2 °
S @ 0.001 E E|
2 0.0001 = : ]

le-05 0.0001
0.2 0.5 1 2 345 0.2 0.5 1 2 345
Size of prey (real values 0.2-5) [mm] Prey size [mm]

99



3.2.2. Energy balance of a foraging predator

In order to introduce a size structure we need to find dependence of variables such as
energy intake or reactive distance upon prey size. We assume that the predator, far from
being satiated, searches for prey by being in a constant motion as long as it is potentially
beneficial. For each encountered prey of size s at distance d < r(s) approached with
velocity v a possible net energy intake, F, is given by

E = E(s,v,d) = ap(s)e(s) — A(v) — R(v)g — R(0)Ty, (3.5)
where e(s) is the energy value of prey item of size s, a is the assimilable portion of energy,
p(s) is the consumption success, A(v) is the amount of energy needed to accelerate to
velocity v just after capture, and R(v) is the respiration rate when swimming with velocity
v. In this paper, following [52] we assume that the energy value of a prey item (Daphnia)
in Joules equals

e(s) = 0.655 - s'°°,

where s is expressed in millimeters. The rate of net energy intake assigned to the prey of
size s being at distance d from the predator equals

E(s,v,d)

(3.6)
where T}, (s) is the handling time. Note that this three-parameter function P has a different
meaning than the two-parameter P defined in 3.2. For each prey in the visual field volume
(VFV) an optimal velocity v, which maximizes P, can be found. Provided realistic
assumptions on R and A such maximum always exists and is unique.

The impact of consumption success rate, p(s), was studied extensively in [84]. Tt is
an important factor in the cases when prey items are either very small or have an ability
to escape when under attack (e.g. copepods for planktivorous fish). In what follows we
assume p(s) = 1, for simplicity. Such an assumption reflects the case of Daphnia, whose
relative immotility ensures high capture success. It seems that due to the difficulties in
precise parametrization of defense strategies the optimal foraging theory is expected to
give good predictions in the case of immobile prey, (c.f. [71]) and in the case of predator
not modulating its prey-capture behavior (c.f. [8]).

3.2.3. Reactive distance in an aquatic environment

In general, the predator’s reactive distance r depends on light conditions, water turbidity,
as well as features of perceivable object, in particular its contrast and size dependent cross-
sectional area. It follows from theoretical considerations of ([52]) that r is the smallest
number such that

a 2

where Z is the depth of foraging, K is the light extinction coefficient, C' is the beam
attenuation coefficient, Cj is the inherent contrast of the prey, f is the focal length of fish
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Figure 3.6: Dependence of reaction distance (color intensity) at the level of 5m under
water surface upon size (x-axis) and contrast (y-axis). Curves with constant reaction
distance (2cm, 3cm, 4cm) marked in black.
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eye, a is the prey area, k is the ratio between radiances at retina and lens, [ is the light
intensity under the surface and S; is the sensitivity threshold for the detection.

The dependence of reactive distance on such factors as size, contrast of prey items,
depth and turbidity implies many interesting consequences that make equation (3.7) a
good starting point for many models. In this section we would like to present two examples
of models addressing known ecological questions that could be built on this equation.

Firstly, it is worth noticing that vertical dimension plays a special role in aquatic
environment because of variable light intensity. For zooplankton the layer closest to
the surface is the richest in food, but also the most dangerous due to the presence of
visually foraging predator. The trade-off between abundance and risk which leads to
vertical distribution of copepods is studied in [27]. These considerations can be enriched
by assuming realistic reactive distance model (see Figure 3.7) and abundance-dependent
predator speed. Using methods described in following sections, it is also possible to take
into account the size structure of copepods to obtain results on their vertical distribution
based on optimal foraging theory.

Secondly, in many models variable contrast of prey items is neglected when modeling
dynamics of a size-structure of a single species. It is, however, known that eggs in a brood
chamber significantly increase contrast and expose individuals to a greater risk. Figure
3.6 shows the sensitivity of reaction distance with respect to the prey contrast. Using
methods developed in this paper, the impact of contrast change can be assessed.

3.2.4. Expected net rate of energy intake

At low prey density when, at a given moment, there are no prey items in the predator’s
VFV its strategy depends on its ability of sensing prey abundance. If it’s profitable to
continue searching for prey then the optimal cruising speed needs to be chosen based on
information about global prey distribution. We assume that the predator is capable of
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Figure 3.7: Dependence of reaction distance (y-axis in logarithmic scale) upon depth (x-
axis) in water of turbidity 5JTU and prey sizes: 0.5mm (red), 1.5mm (green), 2.5mm
(blue), 4.5mm (pink).
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assessing (or simply remembers) the overall abundance of prey in the neighborhood and
chooses an appropriate optimized cruising speed. In this section we present a method
of determining the optimal cruising speed that maximizes the expected value of the rate
of net energy intake, P, defined in (3.6) assuming prey of size structure u(s) distributed
uniformly in space.

Computing the expected value of P(o,v,d) for a given v directly requires finding the
joint distribution of the couple (o, ) of random variables, namely the size and distance
to the first encountered prey. Instead of doing it in one step we use conditional expected
value in order to deal with only one problem at a time.

Firstly, the distance § to the first encountered prey of size larger than sy turns out to
be a random variable with exponential distribution with density given by

gso(0) = Usoe’USO‘S, 0>0, (3.8)

where

Usy = W/Smaz r?(o)u(do).

S0

Secondly, notice that size distribution, o, of the encountered prey larger than sq is
given by the probability measure ¢ = ULTQu, which is analogous to (3.12) .
50

Given prey size-distribution u the expected value of net energy intake (depending on
predator’s velocity v as well as on sg) can be written in the general form EP(o,v,d0+r(0)),
where 0 is the distance the predator has to cover in order to notice the first prey larger
than sg, visible at distance r(0), and o is the size of this prey. As mentioned before we
use a conditional expectation to compute this value:
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E(v,s9) = EP(o,v,0+71(0)) =E(EP(0,v,6 +1r(0))]|d) =
= E(/ T (cr)2 (o,v,0 +r(c ))-u(da)):

_ / /’" V¥ ()2 (0,0, 6 + (o)) - u(do)ds. (3.9)

The parameter sq indicates a possible smallest size of the prey that could be captured.
Taking the supremum over sg € [0, S;q.] from 3.9represents selection of optimal marginal
prey size. The optimal cruising speed is the argument for which 3.9 is maximal. Finally,
our optimization procedure leads to the optimal couple

(Veruiss Smin) = max gy, s0)€[0,00] X [0,5maz] E(v, 50).

In our simulation we introduce an equidistant grid on [0, S;4.] and compute ve.is as a
maximizer of (v, sy) for each value of sy of the mesh using golden section search on
v € [0, V], where the upper limit V' is chosen heuristically.

Note that the cruising speed computed in this section is a different notion than the
optimal speed computed in Section 3.2.1 and introduced in [18]. Indeed, v.;s guarantees
the best expected net energy gain whenever no prey items are in VFV and therefore
it should be acquired in the searching strategy. On the other hand the optimal speed
obtained in Section 3.2.1 is defined as the most profitable mean velocity in a very rough
averaged Holling-type model.

The cruising speed in the average model defined as the most profitable velocity max-
imizing the value of P(s,v,[Ed) coincides , as we argue below, with the optimal speed
defined in Section 3.2.1 in the case of low encounter rate and unstructured population.
Nonetheless, our intention is taking into account predator’s behavior when no prey items
are visible, rather than the behavior when the next item is precisely at an average distance.

In this paragraph we shall write 7, v and e instead of r( ), u(s), e(s) as we only
con31der unstructured populations. Let us put d = E§ = — 2 (notice that unit of w is

3 ) to the rate of net energy intake P(s,v,d) obtained in (3. 6) For low encounter rate
When it is allowed to assume that 7}, is negligible compared to ¢ /v the rate of net energy
intake P (v, u) as computed in (3.2) is approximately equal to that of (3.6). Indeed in this
case it follows from (3.8) that

e — A() — Ri(v)=— — R;(0)T},

P(S,U,Eé) — T4 mruy
Triuv
1
~ mriuv (e —A(v) — Ri(v)—; — Ri(O)Th) =L
mr<u - v

and, on the other hand, using (3.2) and assuming a = 1 we find
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Finally, these considerations lead to the conclusion that when neglecting 7}, we have
P(v,u) = P(s,v,Ef).

Both presented approaches lead to the same net rates of energy intake in the limit
(with prey density tending to 0) and consequently to the same optimal velocity. The
argument presented for the case of unstructured population can be generalized and it can
be shown that P(v,u) = EP(s,v,Ed) if T}, = 0 also when w is a structured population
and P(v,u) is given by 2.18. In the next chapter, an individual based, mechanistic model
of predation on a structured population is introduced. The notions of optimal cruising
speed and expected net energy intake are used to model the predator’s decision process.

3.2.5. Individual based model

In this section we introduce an optimal foraging model with two variants. In both of them
the predator patrols a 3D environment continuously seeking for prey. When some prey
items appear in VEFV it then assesses the distance to each of them, and optimal velocity at
which the prey item may be reached maximizing the rate of net energy intake (see Section
3.2.2). Finally the predator chooses the prey item which ensures the highest rate of the
net energy intake. The appearance of prey in VFV depends on the position of predator
and on the reactive distance attributed to a given prey. The geometry of VFV is taken
to be a half ball around the predator’s head of radius equal to the reactive distance.

In the Basic Optimal Foraging Model (BOFM), the predator’s choice of particular prey
item and attack velocity are based both on the information from VFV and an assessed
global prey density and corresponding expected rate of net energy intake (see Section
3.2.4). Whenever there is at least one individual in VFV, either the most profitable of
them is chosen for the attack or (based on global information) all of them are ignored and
the more profitable ones are sought outside the VFV. We also introduce a modification
of this model MOFM (long-term Memory-driven Optimal Foraging Model) which applies
for heterogeneous patchy prey distribution in space. In this version the predator exhibits
a transient behavior moving to a more profitable region (in terms of higher food level).
In such a case, capturing prey can be considered as a side-effect and the predator decides
to stop and capture a prey only if the gain compensates the additional time spent in the
transient region with the reduced availability of food. Therefore we introduce the notion
of anticipated energy gain, which is an energy equivalent of all the profits resulting from
finding a desired place. It can be used to evaluate the loss caused by prolonging the search
in region with relatively low food availability, cf. [29].
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Results of simulations depicted on Figure 3.8 exhibit that the range of area patrolled
by the predator as well as its average velocity increase significantly with the decrease in
prey density.

Basic model for the case of homogeneous prey distribution The model of preda-
tor’s behavior can be described in one sentence: the predator selects a prey (from all visible
prey items) which gives the highest rate of net energy uptake. A simulation algorithm for
the case of homogeneous prey distribution can be decomposed to the following steps:

1. perceive all prey items that are in predator’s VFV and are larger than s, (see
Section 3.2.4),

2. for each prey item, individually find optimal velocity v,,; and compute maximal rate
of net energy gain P(s, Uy, d) using (3.6),

3. choose such a prey item from VFV that guarantees maximal rate of net energy gain
P,

4. move the predator to the prey with velocity v,, and attack the prey,

5. keep moving the predator with velocity v..,;s until a point where at least one prey
appears in the VFV.,

In the case of lack of prey items in the VFV patrolling can still be profitable (provided
EP(0,Veruis, 0 + 1r(0)) > R;(0)). In such a case step 6 should be executed (the predator
should choose to search for prey with cruising speed ve.i5). Otherwise, the predator may
decide to rest or to continue to forage due to different reasons than instantaneous energy
intake (e.g. moving to a more profitable area).

Long-term memory-driven foraging model for heterogeneous prey distribution
In BOFM predator makes use of the 'knowledge’ about global prey density in order to
choose the optimal speed when ignoring all prey items in the VFV is profitable. In MOFM
we assume, that the predator’s motivation to keep moving doesn’t result from the need to
forage in the current location, but that there is an external reason pushing the predator to
motion. An example of such scenario is a patchy environment, where the main motivation
for predator’s movement in low prey density comes from the need to relocate in order to
find a food patch.

This variant of the model takes two additional parameters: anticipated energy gain
in the searched habitat P, and cruising speed v,, which represent information about the
heterogeneous environment available to the predator. The foraging algorithm is modified
so that these two parameters are used instead of EP(0, veryis, 0 +7(0)) and vep;s. Namely,
we obtain the modified model by substituting v...;s by v, in all steps of Section 3.2.5, as
those two parameters play exactly the same role, and changing the comparison in step 1
to the following:

A(va
P(s,0,0) — # against P,
h
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Figure 3.8: Predator’s trajectory (presented as a 2D projection) according to BOFM in
prey density of a) 3 ind/l, b) 0.05 ind/l, ¢) 0.01 ind/l during 3 hours of constant foraging.
For comparison of spacial scales the trajectory of high density a) is also contained in a
small rectangle in left-bottom corner of b) and analogously trajectory b) is rescaled to fit
in c).
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Figure 3.9: Conceptual diagram of the model
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The latter formulation represents the choice between capturing a given prey item,
which delays the arrival to a patch and prolongs the search, or ignoring it, which doesn’t
yield instantaneous gain but increases the expected profit of patch exploitation.

The main reason for introducing MOFM is to evaluate realistically and distinguish
between the predator’s selectivity in homogeneous and in heterogeneous prey distribution.
The comparison is postponed to Section 3.2.9.2.

3.2.6. Post-acceleration costs

The energy costs due to the post-capture acceleration seem to be an underestimated factor
in forager’s energy budget. In fact post-capture acceleration costs have recently been
taken into account in [29], where the impact of the aggregational response of predators on
shaping the space distribution of prey population has been studied. Our model confirms
that neglecting the acceleration costs leads to unrealistic predictions of predator’s optimal
velocity. Even in the simple case of optimizing foraging on unstructured population,
considered in Section 3.2.1, assuming A(v) = 0 causes the predictions of the predator’s
velocity to be an order of magnitude higher then in the case of experimental data. As
we were unable to find credible empirical data on the post-acceleration costs, we decided
to neglect inefficiency in predator’s movement and assume physically simplistic model in
which energy cost of acceleration is equal to the difference of predator’s kinetic energy:



Table 3.1: Optimal cruising speed (ve..is) and expected rate of net energy gain (EP) for

varying post-capture acceleration costs
| A [ N=001] N=01 | N=1. [ N=10. | N=100 |
U}’U2/2 Vg = 0 Vo = 3.13 Vo = 2.77 Vo = 2.51 Vo = 2.46
EP=0 |EP=0.07 | EP =023 | EP=0.31 | EP =0.34
2 Vg = 0 Vo = 2.79 Vo — 2.49 Vg = 2.27 Vo = 2.22
wv/2430% 1 pp o | EP =005 | EP =020 | EP = 028 | EP = 0.31

By this assumption we also neglect any hydrodynamical effects that may influence the
cost. In fact we expect the value of A(v) to depend on water viscosity and, in consequence,
on its temperature. To assess possible impact of temperature on predator’s strategy we
investigated the dependence of optimal cruising speed and the rate of net energy gain
upon post-capture acceleration costs.

The results of simulations show that the increase of post-acceleration costs by 30%
yield at most 5% decline of the optimal cruising speed; compare table 3.1. The choice
of 30% difference in acceleration costs presented in table 3.1 is arbitrary, but we find it
relevant as the upper bound for the influence of water temperature ranging from 12°C' to

23°C.

3.2.7. Variable handling time

In the Holling model variable handling time depending on the prey size and prey cate-
gory Ty(s) is often considered. In our model the need to introduce this dependence is
considerably reduced, because contrary to the case of Holling model, T}, only consists of
the time necessary to capture (attack) the prey. The time needed for the predator to
approach a chosen prey always depends on the size and category of the item (reactive
distance depends on prey size and contrast) but is not a component of T}, in our model.
On the contrary, handling time in Holling model consists of both: time needed for the
predator to approach a spotted prey item and the time to capture it.

For the aforementioned reasons and the fact that body size of zooplankton is signif-
icantly smaller than predator’s snout we decided to assume a constant handling time in
the remaining part of the article. Described methods, however, are general enough to
allow for size-dependent handling time.

3.2.8. Prey selectivity in structured population

In this section two types of selectivity of the predator are investigated: passive, resulting
from the immanent selectivity of predator’s sight; and active, resulting from predator’s
choice as depicted in Figure 3.10. These two modes of feeding refer to that distinguished
in the literature as the reactive-field-volume model and the apparent size model respec-
tively, [81, 20, 83|. To achieve this we use Jacobs selectivity index and also introduce its
modification in order to investigate active and passive selectivity independently. We also
checked that the Manly index yields qualitatively same results.
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Figure 3.10: Passive selectivity resulting from vision limitations on the left, active selec-
tivity resulting from optimal choice on the right

As a tool to measure total selectivity we use: Jacobs selectivity index, [42], defined as

i — Di

T r(l=p)+p(1—ri) (3.10)

where r; is the probability that randomly chosen prey item selected by the predator is in 7"
category, and p; is the probability that randomly chosen prey item from the environment
is in i"* category. Probabilities 7; and p; may be approximated by empirical proportions.

As a measure of active selectivity we introduce Jacobs active selectivity index, defined
as

i — di
D = 3.11
ol —g) (1 —1y) ( )

where ¢; is the probability that a randomly chosen encountered prey item is in i** category.

3.2.8.1. Passive selectivity

Following [20] by passive selectivity, we mean the phenomenon of encounter rate being
prey size-dependent, and prey being captured at the rate proportional to the encounter.
This phenomenon can be fully described by simple formulas derived in this section.

The encounter rate of prey items of size between s and s’ in a structured population
with a given distribution u(s) can be written as v f;/ r?(o)u(do). Therefore probability
distribution of the encountered prey sizes, and consequently size distribution of captured
prey is given by the normalization of this value, namely

_ fE r(s)%u(ds)
Jorem r(s)?u(ds)”

Similarly, the size distribution of a randomly chosen prey item in the environment is given

by

qu(E) (3.12)

u(E)
u[0, Spmaz]

pu(E) =

Jacobs index D; of passive selectivity may be computed by inserting p; = u(£2;)/u[0, Simaq]
and r; = [, 7(s)*u(ds)/ [;™*" r(s)*u(ds) into (3.10) where €; is a range of sizes which
belong to the investigated category.
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3.2.8.2. Active selectivity in the case of low encounter rate

In low prey abundance or high turbidity, the optimal foraging model becomes much sim-
pler, as the number of prey items in the predators visual volume is larger than 1, with
only a very small probability. This is the case frequently met in turbid pools [26]. Under
these circumstances the predator selects its victim actively only in the sense that it can
ignore a certain prey item.

Holling functional response was originally formulated for a single prey type and may
be extended to the case of arbitrarily many prey categories [20, 3]. Assuming common
handling time for all prey items the capture rate of prey of type 7 reads

OéiEZ'
1+ Th Z OziEi ’

(3.13)

where F; is the encounter rate of prey of type ¢ and «; is the attack probability upon
encounter. This result can be reconsidered in the framework of measure theory as a
definition of a capture rate operator, C' : MT — IM*, characterizing predation. Such
an operator takes a population size-distribution as an arguments and returns a size-
distribution of eliminated items in a time unit. Formula (3.13) can be rewritten as

0 E(s5,m;)d,,
C [; mz(s&;] - 1 + Th ZZ OZZ‘E(SZ', mz) 9

where FE(s;,m;) is the encounter rate of prey of size s; whose density in the environment
is equal m;. This formula can be generalized to any input measure u € 9+

C'[u]

Toariu

1y Tyro [ a(o)r?(o)u(do)’

(3.14)

for a given piecewise continuous attack probability function « : [0, S$pes] — [0,1]. If u is
absolutely continuous with respect to Lebesgue measure then the density of C'(u) is given
by

ac _ Toa(o)ri(o) 2 (o)
dC 1+ Tymo [ afo)r?(o)u(o)do’

In the models introduced in this paper, the fish attacks encountered prey of size s if
and only if s > s,,,;,, in the case of BOFM or P(s,0,0)— %1:) > P, in the case of MOFM.
The simulation of BOFM is therefore expected to give very similar results as Holing-type
model (3.14) with v = V45 and

1, s> Smin,
a(s) = - (3.15)
0, otherwise.
for low encounter rates. Notice that in this case parameter

a : M0, Smaz] X [0, Smaz] — [0, 1] implicitly depends on prey density and its size struc-
ture u. Analogously, MOFM is expected to yield similar results as the Holling-type model
with v = v, and
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Figure 3.11: Low encounter rate scenario
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For the comparison we refer to Figure 3.16.

In Holling-type models T}, includes both the time necessary for the attack and the time
needed to swim through the reactive distance (compare Figure 3.11), while in BOFM
and MOFM T}, only consists of the attack time. This difference can be mitigated by
introducing size-dependent handling time to the Holling model.

Note that in the case of low encounter rate, both BOFM and MOFM obey the classical
Zero-One Rule [70], which states that a type of prey is either always taken upon encounter
or never taken upon encounter.

3.2.8.3. Active selectivity in the case of high encounter rate

Active selectivity becomes a much more complex phenomenon when high encounter rate
occurs. Identically as in the case of low encounter rate, prey items smaller than some
critical value are never attacked. Large enough prey, on the other hand, are only attacked
if there is nothing even more profitable in VF'V.

Active choice based on local in space information on prey distribution violates the
classical Zero-One Rule. Prey items above the critical value are generally profitable, but
are attacked only with some probability smaller than 1. This result can be clearly seen
on Figure 3.12 - when the population consists of many small items and only few large
ones, it is profitable to forage on both prey types. The frequency at which a small item
is found attractive is, however, declining with increasing encounter rate.

3.2.9. Effect of predator’s memory
3.2.9.1. Impact of short-term memory on foraging efficiency

The model can also be used to investigate the importance of predator’s memory in the
context of remembering location of prey items. We can address this problem by two
quantitative methods. Firstly, assuming the predator has perfect memory, we may check
in simulations how often it is profitable to turn back to capture a prey item currently
outside of VFV. Secondly, by comparing possible net energy intake rates when foraging
with perfect memory and with no memory about positions of encountered prey items, we
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Figure 3.12: BOFM active selectivity index (3.11) of large prey category (2.5mm) in the
population at density level N (z-axis) with p percent of small items - 1.5mm (y-axis).
Yellow dots represent situations when capturing small prey items is profitable; black dots
- situations when small prey are ignored.
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Figure 3.13: Significance of predator’s memory: red line - percentage of captured prey
items that wouldn’t have been approached if predator didn’t remember their locations;
green line - improvement of net energy intake rate that was achieved thanks to perfect
memory.
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may assess by how much the onset of short-term memory increases predators evolutionary
fitness, measured by the increase of the rate of net energy intake.

As can be seen in Figure 3.13 predators refer to their memory relatively often (up
to 20% times) in the middle range of prey densities. It is intuitively clear that in low
densities prey items outside of VF'V are statistically too far to be profitable, while in high
densities there is always a good choice of prey within VE'V. However, it turns out that
fitness improvement, understood as an average rate of net energy gain, resulting from the
perfect memory of locations of all encountered prey items is negligible (at most 0.5%).
We can therefore speculate, that there is no evolutionary pressure on aquatic predators
to develop short-term memory even in the case where prey are immotile and hence short-
term memory would precisely reflect their actual positions. In Section 3.2.9.2 we argue
that long-term memory, concerning mean abundance of environment and structure of
patches, can greatly affect foraging strategies as well as foraging efficiency in terms of
energy intake.

3.2.9.2. Long-term memory and its impact on selectivity

A question of whether the predator is more size-selective in higher or in lower prey density
appears in many different contexts. We believe that the answer greatly depends on the
predator’s long-term strategy, which can be either harvesting (optimizing efforts within
a given prey abundance) or searching (moving through space in order to find a better
habitat). Local information is insufficient for the decision-making process so we infer that
the strategy is chosen based on long-term memory regarding heterogeneity of space. We
have built two models to reflect both strategies: BOFM which is based solely on local
information and predicts behavior in harvesting strategy while MOFM is a simplistic
model of searching strategy.
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In both models the selectivity index can be easily computed by inserting

o ul)
P D, s
- Jo, a(s)r(s) u(ds)
i fOSmaw @(S>T<3)2U<d8)

into (3.10), where attack probability «(s) is either given by (3.15) in BOFM or (3.16)
in MOFM. Notice that if a(s) = 0 for the investigated size range €2; then D; = —1 and
also if ; is the whole interval on which a equals 1, namely ; = {s : a(s) = 1}, then
D; = 1. As an immediate consequence of these equations we infer that the selectivity is
higher in the searching strategy than in the harvesting provided v, > vy. Indeed all the
prey categories that are captured upon encounter in BOFM are also captured in MOFM
as the condition

P(3,Vopt, 0) = EP(0, Uy, 6 + 7(0))
implies
A
P(s,0,0)— A - p.
Ty

The later follows from the fact that P, being the anticipated rate of energy gain in a patch
is bigger then that elsewhere thus

P, > EP(0,vt,0 +1(0)).

In homogeneous environment (e.g. restricted in space) predators learn that harvesting
is the optimal strategy. The comparison of selectivity in low and high densities within
this strategy is presented in Figure 3.12.

In heterogeneous (e.g. patchy environment) predator forages using harvesting strategy
in high density (within patches) and searching strategy in low density (elsewhere). In
this case selectivity in low density does not depend on local abundance nor prey size-
distribution. It results from the anticipated abundance of a patch reflected by the values
of parameters v, and P, (compare Section 3.4). These parameters cannot be assessed
based on local information and have to be sensed by the predator and kept in its memory.
As fitness greatly depends on global foraging strategy, including searching for patches, it
is allowed to infer that evolutionary changes favor development of long-term memory of
patchy environment characteristics.

3.2.9.3. The shape of functional response

In Section 3.2.8.2 we obtained an approximation (3.14) of the capture rate in the case
of low prey encounter rate. If v were a constant parameter and «(s) were a given func-
tion (independent of u(-)) the functional response formula would exactly be the Holling
type II function. However, in our optimal foraging model both o and v depend on prey
size-distribution and overall food abundance, namely a(s) = 1, s....](5) and U = Vepyss,
where 1 (s) is a characteristic function equal to 1 if s € [Syin, Smaz] and 0 else-
where.

Smin,Smax)
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From Figure 3.12 we infer that, in the general case (for possibly high prey encounter
rate), attack probability a ranges from 0 to 1 (assuming values not necessarily equal to 0 or
1) depending on both density and structure of prey population. High prey encounter rate
also induces strong effect of variable distance to chosen prey items. This phenomenon
is neglected in Holling model and thus the approximation of our model shows higher
inaccuracy for high prey encounter rates (compare Figure 3.14). Asymptotic behavior
of the functional response for high prey density is, however, easy to express in terms of
formula (3.14). In the limit, all but the largest prey are ignored and the distance between
consecutive chosen prey items is infinitesimal, allowing the predator to capture nearly one
item per T} time.

Functional responses computed with BOFM simulation and it’s approximation by
formula (3.14) for a prey population consisting of two size categories equal in number
are depicted in Figure 3.14. The point of discontinuity corresponds to switching strategy
between capturing both types of prey (lower prey densities) and capturing only the larger
ones (higher prey densities). Despite that, the plot of the rate of net energy gain is
continuous.

As noticed in Section 3.2.9.2, BOFM and, in consequence, the simulation results de-
picted in Figure 3.14 apply to situations in which the predator senses the homogeneity of
the environment and optimizes its efforts within the habitat. Such situations include envi-
ronments limited in space (small ponds), experimental systems, and patches. The model
predicts existence of low-density refuge and, more precisely, a marginal prey density (0.01

%) below which no items are captured.

The predictions are different in heterogeneous systems and homogeneous systems,
where the space is so large that the predator is unaware of their homogeneity. In such
cases, the predator’s searching strategy in low density is be modeled by MOFM and har-
vesting strategy within patches by BOFM. The behavior in searching mode depends on
the predator’s long-term memory (reflecting ’knowledge’ about the patchiness, density
and structure of prey population), and thus experimental systems need to be carefully
designed to ensure that the predator had enough time to train to forage in the tested en-
vironment. Predictions of functional response resulting from both strategies for a single
predator BOFM and MOFM are shown in Figure 3.16. The predator decreases its capture
rate in low densities (compared to optimal foraging - red line) in order to relocate to the
patch faster. The velocity and expectations about the patch may vary from one individ-
ual predator to another, but each of them follows the searching strategy (MOFM) until
the density meets its expectations, and switches to harvesting in higher abundance. We
conclude that the marginal density, apparent in BOFM, does not exist in MOFM and, in
consequence, in heterogeneous nor large-scale environments. The sigmoidal shape of func-
tional response, however, results from the switch in strategies rather than unprofitability
of foraging.

3.2.10. Implementation of the model

The model was implemented in C++11 language and all simulations were performed on
x86 64 architecture, each running on a single core.
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Figure 3.14: Functional response in BOFM in the case of two size categories equally
distributed (red points) approximated by formula (3.14) with no selectivity (green line)
and with selectivity for large prey (blue line). Dependence of net energy intake upon prey
density (pink line) was shown on the right scale. Notice the log-scale on x-axis. The jumps
in approximations (green and blue lines) result from discontinuity in velocity function.

0.9 B
0.8 - A 15
= 0
) L =
= 0.7 -;
= ~
= 06 1w
i) c
© 05 -
g 2
5 04r 05 ¢
a 5]
8 0.3 o
=
0.2 0
0.1 -
0 el el 05
0.01 0.1 1 10
Prey density [ind/dm3] 2

Reactive distance is computed using the Newton—Raphson method. Computing cruis-
ing speed (Section 3.2.4) and optimal velocity (Section 3.2.5) is found by golden section
search. In every time step of the simulation a finite section of the space around the
predator is modeled (prey sizes and locations are stored in a data structure that contains
information about a large ball around the predator). In order to eliminate boundary
effects, every time when the virtual predator gets close to the border of its 'universe,” a
set, of new prey items is generated in the empty field that has not been visited before.
The number of new prey items is drawn from Poisson distribution and their positions are
drawn from uniform distribution (using random number generators from standard C+-+11
library).

3.3. Foraging in the framework of measure theory

In Section 3.2 foraging is characterized as a sequential process of capturing individual prey
items. Such an approach allows incorporating most realistic assumptions and obtaining
numerical results. For the purpose of farther modeling (e.g. model ling of prey population
dynamics or its space distribution), however, it is more convenient to represent functional
response as an  operator on the space of size-distributions (i.e.

C M0, Spaz] — M0, Spnae)), similarly as it was done in Section 3.2.8.2.
For a given process of capturing individual prey items it is natural to define a capture
rate operator C' : MT[0, S1pae] — M0, Spnaz] as

. #{prey items of sizes restricted to Ecaptured in BOFM in time T'}
Cporar[u] (B) = lim T |

General models such as individual-based BOFM or MOFM introduced in Section 3.2.5
are quite complex and difficult to analyze in the framework of operators on the space of
measures. In particular, it is not clear whether the definition above is correct and the
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Figure 3.15: Functional response in BOFM (red points) for uniformly distributed four
size categories of prey (a) and 16 size categories (b) respectively. Dependence of net
energy intake upon prey density (green) was shown on the right scale on both pictures.

Dependence of s,,;, upon prey density in the case of 16 size categories (¢). Notice the
log-scale on x-axis.
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Figure 3.16: Functional responses in BOFM (red line) and MOFM (green line) for uni-
formly distributed continuous range of prey sizes between 1mm and 2mm, and v, = 3‘%’“,
and P, reflecting expected rate of net energy gain in patch with abundance 1;%. The
minimal size of captured prey items in MOFM is equal 1.73mm.
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conditions under which the limit exists are unknown. Basic properties of the processes

such as decreased selectivity in higher densities or increased velocity in higher temper-

atures can be easily proved. On the contrary, natural questions arising from measure

theory approach, such as Lipschitz continuity of Cgorys, are almost impossible to solve.

Nonetheless, in such cases a numerical study can be conducted and it proves to be useful

for constructing simpler, yet accurate enough, models suitable for population dynamics.
The aim of this section is to define capture rate operator

CYLOW : m+ [0, Smam] - m-l— [07 Smax]a

which is easier to analyze than C'gorys and still capable of grasping all the important phe-
nomena such as stable prey-predator interactions, variable predator velocity and passive
selectivity. At this point we abandon the bottom-up approach of building more complex
models on top of simpler ones following evident causal relations. Instead, we shall restrict
our considerations to the domain of low population densities and following the lines of
Section 3.2.8.2 we enhance the classical Holling formula to incorporate desired depen-
dence on the whole size-structure of the population. The new model is justified by the
comparison against BOFM.
Let

molu]riu

C pu—
row [u] 1+ Tymolu] [7™ r2(0)u(do)’

for v : M0, Symae] — R being the maximizer of expected rate of net energy intake. Instead
of employing the most general form of expected rate of net energy intake introduced in
3.2.4, namely E, s P(0,v,d +1(0)), we assume that § >> r(o) and § >> T}, and for given
u we derive

E,sP(0,v,9) = E,P(0,v,Ed) =~ P(u,v) =

= TV /Osmax 7“2(0) (6(0’) — A(v) — R(v) ! ) u(do) =

T f;’”“ r2(o)u(do)

= mj/ (o) (e(o) — A(v)) u(do) — R(v).
0
We also make a particular choice of functions A and R, namely let A(v) = m2”2 (compare
Section 3.2.6) and let R(v) = ro + riv + rov? 4+ r3v®. Function R(v) gives a good approxi-
mation of the respiration rate introduced in (3.4) for v € [0, 13] if v is measured in meters
per second provided that 7o = 6.8-1073, r; =1.24-1073, r, = 6.0-107%, 3 = 2.5-107°.
The range of velocity is based on the experimental data.

3.4. Discussion

In this chapter a new, mechanistic, individual-based approach to modeling of visually
foraging predators constantly searching for and capturing prey items in a prey population
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with prescribed size structure. Prey items are assumed to be immobile and homoge-
neously distributed in 3-dimensional space. The model is based on the classical concept
of optimal foraging but contrary to previous works, all aspects of predator’s decisions are
being subjected to optimization. Underlying assumptions on aquatic habitats and the
limitations of predator’s perception, described in Section 3.2.3, are somewhat idealized
and may serve as a reference point for more particularized studies.

One of our main assumptions is inspired by results of experiments described in [29].
It concerns the ability of planktivorous fish to make decisions on capturing or ignoring
individual prey basing on locally perceivable information as well as on globally assessed
prey abundance. We claim that these two factors along with the prey’s energy value, the
predator’s respiration rate and the amount of energy, A(v), needed to accelerate after
prey capture to velocity v determines the final choice of prey item. Empirical assessment
of A(v) is a challenging task indicating the direction of further studies.

Identifying the circumstances under which it is profitable for the predator to ignore a
perceived individual prey is an important component of our model. Intuitively speaking,
it precisely defines when a prey item is too small or the distance to a prey item is too
large. The terms ’too small’ and ’'too large’ always need a reference point and in our
models it’s either the average rate of net energy income characterizing given habitat (in
harvesting strategy) or the anticipated energy (in searching strategy). The predator’s
ability to sense prey population density is assumed in BOFM (which applies to habitats
with homogeneous in space prey distribution and patches). MOFM predicts the predator’s
behavior in an intermediate position between patches provided two parameters: searching
velocity, v,, and the anticipated net energy intake, P,. In this paper we do not consider
theoretical methods of evaluating the choice of parameters v, and P,. It is, however,
intuitively clear that P, should reflect the net energy intake achievable in the patch by
harvesting strategy provided that there is no risk of starvation. We believe the optimal
velocity v, for a patchy environment can be computed using similar methods as in Section
3.2.4 when applied to the distribution of patches instead of prey items. In the long time-
scale, the predator’s fitness is usually measured by the number of offspring or exhaustion
time (the time until satiety falls to zero for the first time) rather than average net energy
intake (eg. [6]). The difference between these models of fitness is particularly important
when the danger of starvation is considerable and optimization of energy involves high
risk. Such ideas give an alternative method of determining values v, and P,.

While in classical models of predation (such as Holling-type functional response) both
predator’s speed and selectivity are assumed, the approach used in this chapter allows for
predicting these values. The comparison of results for BOFM and MOFM indicates that
in the heterogeneous environment selectivity in high density stems from a different cause
than selectivity does in low density. It is therefore important to distinguish ’relatively
low density’ and ’low density’ when speaking of selectivity - the first term relates to
heterogeneous environment while the latter to a homogeneous one.

The optimal foraging model developed in this article can be extended in many di-
rections to take into account various processes related to foraging. Several factors have
potentially high impact on foraging strategies: predator’s degree of satiation, risk toler-
ance, dependence of risk upon light conditions, and sensitivity on light conditions coupled
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with corresponding changes in prey recognition. The subject of this study is restricted
to foraging of an individual predator, nonetheless conclusions can be used as a building
block for further studies of phenomena such as population dynamics, vertical distribution
of prey or patch exploitation. Our study is focused on predation itself and on its impact
on the structure of prey population leaving aside other factors which affect its size and
structure. Notice that the processes of predation and population growth are of different
time scale and in the case of planktivorous fish, active foraging is restricted to a short
time at dawn and dusk. The changes in population structure due to birth and natural
death in this time may be neglected. Thus, per capita mortality predicted by our optimal
foraging models can be used in more general structured population models to describe
full population dynamics. We also believe that patch exploitation studies can be enriched
by the observation arising from Figure 3.8 that higher abundance deters predators from
patrolling larger areas.

In Section 3.2.1 the classical Holling disk equation is viewed from the perspective of
optimal foraging theory. This approach allows us to predict the occurrence of low prey
density refuge resulting from predator’s negative rate of energy intake. An empirically
testable conjecture, stating that in the presence of visually foraging predator a power law
determines the relation between the density of a prey population and average prey size
was formulated.

Two different types of predator’s selectivity (passive, resulting from the immanent
selectivity of predator’s sight, and active, resulting from predator’s choice) are often dis-
cussed in literature (see eg. [83]). The structure BOFM and MOFM enabled us to
incorporate both ideas in one framework and therefore obtain realistic predictions for
both low encounter rate (when passive selectivity plays a crucial role) and high encounter
rate (when active selectivity becomes an important factor). Accuracy of predictions is
additionally supported by the resemblance of functional response predicted by the model
(Figure 3.16) and the experimental data (Figure 3.2).

Finally, a model based on Holling disk equation, enriched by reactive distance and
energy balance models was introduced in Section 3.3 to reflect the functional response
of a visual predator optimizing its cruising speed in low encounter rate. As observed in
[29] aggregation of plankton in open ecosystems imposes higher risk of being captured
on each prey item and in consequence is maladaptive. Also aggregational response of
the predators is strong enough to eliminate patches on zooplankton. We infer that the
model may be inaccurate in the general case of possibly high encounter rate, but for the
aforementioned reasons is sufficient for modeling population dynamics in real habitats.
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Final remarks

As a final note we present some unresolved issues and open problems related to this
dissertation, that the author found particularly interesting.

Algorithms for computing flat distance

In Section 1.3.4 an algorithm for computing flat distance between two measures from
M v (R) was presented. The complexity of this algorithm was proved to be O(N log N).
Can this result be improved?

1. Does there exist an algorithm for computing flat distance between two measures
from M (R) with linear complexity, O(N)?

2. Does there exist a linear algorithm which, given two measures p,v € 9} \(R),
computes an upper bound for the flat metric, pg(u, ), satisfying

pr(p,v) < pr(p,v) < C - pp(p,v)

for some constant C7 What is the smallest constant C' for which such algorithm
exists?

Approximation theory for Radon measures

Theorem 70 provides an estimate of the flat distance between a Lipschitz continuous
function, f € C%!0,1], and its optimal N-step approximation, f¥. Tt turns out that
pr(f, f¥) < C- N72 for some constant C. How does this result generalize to other classes
of functions and their approximations?

1. Assume f € C[0, 1] is only a continuous function and let f% be its optimal N-step
approximation. Does the following asymptotic behavior hold

pF(fa fN) = O(N_Z)?

2. Fix f € C%10,1], and let fV be its optimal linear spline. Does pr(f, fV) = O(N73),
if V is the number of intervals on which f% is linear?

Section 1.5.3 provides a method for approximating continuous functions, f € C|0, 1], by
discrete N-point measures. The length of the interval [0, 1] plays a crucial role in the
reasoning, see Remark 38. How can this result be generalized to the case of arbitrary
interval [a, b] instead of [0, 1].
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Transport equation

The tools used for the study of McKendrick-von Foerster equation can be general-
ized to transport equations. In this dissertation solutions are considered in the space of
(IMM+(X), pr), which is not a linear space. The linear space (9M(X), pr), on the other
hand is not complete.

1. How can elements of the Banach completion, (M(X), pr), be characterized?
2. Can Theorem 79 be generalized to the space (M(X), pr)?

3. How can the methods of computing distances between measures be generalized to
compute distances between elements of (9(X), pr)?

Model of zooplankton population Theorem 109 characterizes stationary state to
the McKendrick-von Foerster equation with mortality resulting from the optimal foraging
model.

1. Is the stationary state, characterized by Theorem 109, stable?
2. What is the rate of convergence to the stationary state?

3. What is the basin of attraction of the stationary state?

Optimal foraging model

In Chapter 3 a post-capture acceleration cost function, A(v), was introduced to reflect
the energy expense of predator when accelerating from a motionless state to velocity v. In
this dissertation it was assumed that A(v) is equal to predator’s kinetic energy at velocity
v, namely mTUQ How accurate is this estimation? An experimental study of predator’s
respiration rate during acceleration could answer this question and provide basis for more
precise optimal foraging models.
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