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AbstratIn this thesis a model of the dynamis of size-strutured population subjet to seletivepredation is built and analyzed. The study is motivated by biologial phenomena onern-ing limnology and oeanography, and in partiular diversity of �rst onsumers in aquatieosystems. An individual-based model of size-seletive visual predator-harvester basedon the onept of optimal foraging is proposed. Farther, a simpli�ation of the model,desribed in terms of operators on the spae of measures, is derived based on HollingII-type funtional response to eliminate inherent di�ulties of individual-based approah.The results are ompared against experimental evidene. Considerations involving popu-lations dynamis, namely growth, birth and mortality, are examined in the framework ofmeasure-valued solutions to transport equation and various distanes arising from optimaltransportation theory. To this end, e�ient algorithms for solving transportation prob-lem on a real line are found and �nally, numerial shemes based on partile methods forstrutured population models are improved. Moreover, approximation theory for Radonmeasures is developed.AknowledgmentsI would like to thank my supervisor, prof. Dariusz Wrzosek from the Institute of AppliedMathematis and Mehanis at University of Warsaw, for ollaboration, inspiring disus-sions, and many valuable omments. I am also grateful for the opportunity of workingwith prof. Anna Mariniak-Czohra from Heidelberg University.In addition, I have been privileged to ollaborate with prof. Piotr Gwiazda,dr. Agnieszka Ulikowska from the Institute of Applied Mathematis and Mehanis andprof. Z. Maiej Gliwiz, and mgr. Piotr Maszzyk from the Department of Hydrobiologyat University of Warsaw. Long disussions with you have signi�antly improved my workand inspired many new researh diretions.I was supported by the International Ph.D. Projets Programme of Foundation forPolish Siene operated within the Innovative Eonomy Operational Programme 2007-2013 funded by European Regional Development Fund (Ph.D. Programme: MathematialMethods in Natural Sienes).
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NotationIn this thesis the following notation is used:
• R

≥0 is the set of non-negative real numbers,
• R

+ is the set of positive real numbers,
• Lip(f) is the Lipshitz onstant of funtion f ,
• µ+ is the non-negative measure arising from Jordan deomposition of µ,
• Dνµ is the Radon-Nikodym derivative of measure µ with respet to ν,
• L is the Lebesgue measure,
• O,Θ,Ω is the standard Landau notation for limiting behavior,
• 1E is an indiator funtion of set E,
• µ|E is the restrition of measure µ to the set E,
• C1, C2, ... are absolute onstants that may di�er between ourrenes.For normed spaes X and Y we shall use following notation:
• C(X;Y ) is the spae of ontinuous funtions,
• Cb(X;Y ) is the spae of bounded ontinuous funtions,
• C0,1(X;Y ) is the spae of Lipshitz ontinuous funtions,
• C0(X;Y ) is the spae of ontinuous funtion vanishing at in�nity,
• Cc(X;Y ) is the spae of ompatly supported ontinuous funtion,
• Lp(X;Y ) is the usual Lebesgue spae,
• B(X) is the Borel σ-algebra on X,
• M(X) is the spae of �nite, Radon measures,
• Md(X) is a subset of M(X) onsisting of disrete measures with �nite number ofatoms,
• Md,N(X) is a subset of Md(X) onsisting of disrete measures with N atoms,
• 〈µ, f〉 for measure µ ∈M(X) and funtion f ∈ C(X; R) is the value �

X
fdµ,

• BX(x, r) is the set {y ∈ X : ‖x− y‖X ≤ r}.For simpliity notation M[a, b] and Lp[a, b] is often used instead of M([a, b]) and Lp([a, b]).Similarly, notation C(X) is used instead of C(X; R).If γ ∈ M(X × X) then for a given set A ⊆ X we de�ne measure γ(A, ·) ∈ M(X) by
γ(A, ·)(E) = γ(A× E) for every measurable set E ⊆ X.6



IntrodutionThe goal of this thesis is to build and analyze a model of size-strutured population sub-jet to seletive predation. The study is motivated by biologial phenomena onerninglimnology and oeanography, and in partiular diversity of �rst onsumers in aquatieosystems. An individual-based model of size-seletive visual predator-harvester basedon the onept of optimal foraging is proposed [41℄. It inorporates models of underly-ing physial proesses and makes preditions based on the assumption that the foragermaximizes its rate of energy intake [81, 71, 65, 59, 52, 8, 84℄. Farther, a simpli�ationof the model is derived to eliminate inherent di�ulties of individual-based approah.A generalization of Holling II-type model [38℄ is proposed and the results are omparedagainst experimental evidene olleted by a team of hydrobiologists a�liated with theUniversity of Warsaw [28, 29, 53, 30℄. Considerations involving populations dynamis,namely growth, birth and mortality, are examined in the framework of measure-valuedsolutions [35, 36℄ to transport equation [2℄ and optimal transportation theory [76℄. To thisend, the theory of approximation on the spae of �nite Radon measures equipped withbounded Lipshitz distane is developed, e�ient algorithms for solving transportationproblem on a real line are found [40℄ and �nally, numerial shemes based on partilemethods for strutured population models are improved.The dissertation is divided into three almost independent parts treating theory ofmetris on the spae of measures, theory of measure-valued MKendrik-von Foersterequations and optimal foraging models. This order has been hosen for the onvenieneof a reader with mathematial bakground. The main results of the �rst hapter onsistof an algorithm for omputing bounded Lipshitz distane between two disrete measuressupported on an N-element subset of R. Computational omplexity of this algorithm isproved to be O(N logN). Moreover, a number of theorems haraterizing optimal approx-imations of di�erent lasses of measures by disrete measures supported on an N-elementset are proved [39℄. In the seond hapter well-established numerial shemes based onpartile methods [15℄, suh as split-up algorithm, original esalator box-ar train andits modi�ation are ompared [34℄ and three improvements basing on the results of theprevious hapter are desribed. Moreover, it is demonstrated that a ertain generaliza-tion of Holling II-type model of foraging an be translated into the language of operatorson spaes of measures, and sine appropriate regularity onditions hold it an be usedin MKendrik-von Foerster population dynamis equations. The last hapter desribesthree novel models of size-seletive visual predator-harvester feeding on a prey popula-tion homogeneously distributed in spae based on the onept of optimal foraging [41℄.Optimization of the rate of net energy intake ours at the level of forager's deisions,whih inlude ruising speed [79, 78, 66℄, attak veloity and ative seletion of prey items[49, 26, 20℄. The greatest advantage of models proposed in this hapter is that all param-eters are physially measurable and no �tting to experimental data is required. Finally,the outome of model simulations is ompared against experimental data, olleted by thehydrobiologists, and ritially disussed. The thesis and the proposed models improvesomprehension of many aspets of foraging in an aquati environment.7
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Chapter 1Metris on the spaes of RadonmeasuresThe spae of �nite Radon measures on X, M(X), is naturally equipped with a normindued by the total variation, whih makes M(X) a Banah spae. However, the metriindued by this norm is so strong that it does not provide a reasonable measure of errorfor most appliations. For instane, it is often desired that two Dira masses with atomslose to eah other in X are also lose in some metri on M(X). For this reason a di�erentnotion of distane has to be developed.In many appliations suh as transportation problems [44, 76℄, rowd dynamis [54, 55℄,strutured population dynamis [11, 35, 36, 73℄ or gradient �ows [5, 82℄ it is natural toonsider the output of mathematial modeling in terms of Radon measures, rather thandensities. One reason is that very basi phenomena (e.g. growth of individuals in stru-tured population models) may lead to singularities in density funtions. What seems to beeven more important is that mathematial tools used for the analysis of funtion-valuedsolutions (as opposed to measure-valued solutions) imply an inherently inappropriatesense of distane between solutions (see Example 10). The desired properties of suhdistane depend on the struture of the onsidered problem [36℄. Reent years witnessedlarge developments in the kineti theory methods applied to mathematial physis andmore reently also to mathematial biology. Among important branhes of the kinetitheory are optimal transportation problems and related to them Wasserstein metris orMonge-Kantorovih metris [5, 76℄. These, however, are only appliable to proesses withmass onservation. To ope with variable mass, several modi�ations have been proposed,inluding �at metri, entralized Wasserstein metri and normalized Wasserstein distane.For omparison of di�erent metris, their interpretation and examples we refer to Setion1.4.Metris based on the onept of optimal transportation have been used in di�erent�elds suh as image reognition [24℄, alignment of surfaes [50℄, �uid dynamis [32℄, asymp-totis of nonlinear di�usion equations [13℄, semi-supervised learning [69℄. This hapter ismainly devoted to the �at metri, whih is a natural hoie for population models studiedin hapter 2. 9



1.1. PreliminariesThroughout this hapter we assume that X is a �nite-dimensional Banah spae. Somede�nitions and results an be generalized to loally ompat metri spaes. It is, however,beyond the sope of this hapter.De�nition 1. Mapping µ : B(X) → R ∪ {−∞,∞} is alled a Radon measure if thefollowing onditions hold1. µ(∅) = 02. for any ountable olletion, {Ei}∞i=1 ⊂ B(X), of pairwise disjoint sets
µ

(
∞⋃

i=1

Ei

)
=

∞∑

i=1

µ (Ei) ,3. µ takes at most one of the values −∞ and ∞.De�nition 2. Let µ be a Radon measure on X. By total variation of µ we mean
‖µ‖ = µ+(X)− µ−(X).Existene and unique deomposition of arbitrary Radon measure µ into a di�ereneof two non-negative measures µ+ and µ− follows from Jordan deomposition theorem.Measures with �nite total variation are alled �nite. The set of all �nite Radon measureson X are be denoted by M(X).De�nition 3. We de�ne the spae of bounded Lipshitz funtions as

C0,1
b (X;Y ) = C0,1(X;Y ) ∩ Cb(X;Y )equipped with the following norm

‖f‖C0,1
b

(X;Y ) = max

(
‖f‖C(X;Y ) , sup

x,y∈X

‖f(x)− f(y)‖Y
‖x− y‖X

)
.The norm ‖·‖C0,1

b
(X;Y ) is known as the Fortet-Mourier norm (see [23℄).Theorem 4. (Riesz-Markov representation theorem) Let ψ ∈ C0(X)∗ then there exists aunique µ ∈M(X) suh that for every f ∈ C0(X)

ψ(f) =

�
X

fdµ.Theorem 5. (Riesz-Markov-Kakutani representation theorem) Let ψ ∈ Cc(X)∗ then thereexists a unique Radon measure, µ, on X suh that for every f ∈ Cc(X)

ψ(f) =

�
X

fdµ.10



De�nition 6. We de�ne the following norms on some subspaes of M(X):
‖µ‖R = sup

{�
X

fdµ : f ∈ BC(X)(0, 1)

}
,

‖µ‖W = sup

{�
X

fdµ : f ∈ C0,1(X), Lip(f) ≤ 1

}
,

‖µ‖F = sup

{�
X

fdµ : f ∈ BC0,1
b

(X)(0, 1)

}
.Proposition 7. Let Ω ⊂ X be a ompat set and let µ ∈M(X), then ‖µ‖ = ‖µ‖R ≥ ‖µ‖Fand ‖µ‖W ≥ ‖µ‖F .De�nition 8. For eah of the de�ned norms we de�ne orresponding metris: Radondistane, 1-Wasserstein distane and �at distane

ρ(µ, ν) = ‖µ− ν‖R ,
W (µ, ν) = ‖µ− ν‖W ,

ρF (µ, ν) = ‖µ− ν‖F .Proposition 9. Let Ω ⊂ X be a ompat set, and let µ, ν ∈M
+(X). Then, W (µ, ν) <∞if and only if ‖µ‖ = ‖ν‖.Proof. Let K = supx∈X ‖x‖X . Choose a sequene {fn} ⊂ C0,1(X), suh that Lip(fn) ≤ 1and �

X

fn(x)(µ− ν)(dx)→W (µ, ν).If ‖µ‖ = ‖ν‖ then for any onstant C ∈ R it follows that �
X
C(µ− ν)(dx) = 0. Thus,

∞ > K (‖µ‖+ ‖ν‖) ≥
�

X

‖x‖X |µ− ν|(dx) ≥
�

X

fn(x)− fn(0)(µ− ν)(dx)→W (µ, ν).Conversely, if W (µ, ν) < ∞, then �
X
C(µ − ν)(dx) = 0 for any C ∈ R. Consequently,

(µ− ν) (R) = 0.Example 10. Metris on M(X) de�ned in this setion are inherently di�erent fromstandard metris on Lp spaes, even if onsidered on the spae of absolutely ontinuousmeasures. Consider the following two examples:1. Let ηε be a standard molli�er and let µn, νn ∈ C∞(R) be de�ned as µn = 1
n
δ0 ∗ ηεand νn = 1

n
δn2 ∗ηε. For a �xed ε > 0 we have ‖µn − νn‖Lp(R) → 0 for any p ∈ [1,∞],but also ‖µn − νn‖W →∞.2. Let µn, νn ∈ C∞(R) be de�ned as µn = nδ0 ∗ η2−n and vn = nδ 1

n2
∗ η2−n , then

‖µn − νn‖Lp(R) →∞ for any p ∈ [1,∞], but also ‖µn − νn‖W → 0.11



1.1.1. 1-Wasserstein distaneThe following haraterization ofW (µ, ν) was derived in [75℄ for the the ase µ, ν ∈M(R).Theorem 11. 1-Wasserstein distane between measures µ and ν on R equals
W (µ, ν) =

� ∞

−∞

|µ[−∞, x]− ν[−∞, x]|dx.In other words W (µ, ν) is the L1(R) distane between umulative distribution funtionsfor µ and ν.From the de�nition of W (µ, ν) the following propositions follow.Proposition 12. 1-Wasserstein distane is sale-invariant, namely
W (λ · µ, λ · ν) = λW (µ, ν).De�nition 13. Let x ∈ X and µ ∈M

+(X). De�ne translation of µ by x as
Txµ(E) = µ(E + {−x}).Proposition 14. 1-Wasserstein distane is translation-invariant, namely
W (Txµ, Txν) = W (µ, ν).1.1.2. Normalized Wasserstein distaneBy Proposition 9 the 1-Wasserstein distane is not a suitable tool for omparing twomeasures of di�erent masses. It may seem that the simplest solution is to normalize themeasures beforehand. It turns out, however, that W (

µ
‖µ‖
, ν
‖ν‖

) is not a metri. Instead,the following onept, used for example in [61℄, may be applied.De�nition 15. We de�ne normalized 1-Wasserstein distane between two measures
µ, ν ∈M(X) as̃

W (µ, ν) = min

(
‖µ‖+ ‖ν‖ , | ‖µ‖ − ‖ν‖ |+W

(
µ

‖µ‖ ,
ν

‖ν‖

))
. (1.1)Lemma 16. The distane de�ned by (1.1) is a metri.Proof. Let µ, ν and η be Radon measures. Then, it holds

• W̃ (µ, ν) = 0 if and only if µ = ν. Indeed, either ‖µ‖+ ‖ν‖ = 0 or
| ‖µ‖ − ‖ν‖ |+W

(
µ

‖µ‖
, ν
‖ν‖

)
= 0 imply that µ = ν.

• W̃ (µ, ν) = W̃ (ν, µ), 12



• Sinẽ
W (µ, ν) + W̃ (ν, η) = min

(
‖µ‖+ ‖ν‖ , | ‖µ‖ − ‖ν‖ |+W

(
µ

‖µ‖ ,
ν

‖ν‖

))

+ min

(
‖η‖+ ‖ν‖ , | ‖η‖ − ‖ν‖ |+W

(
η

‖η‖ ,
ν

‖ν‖

))
,to show the triangle inequality, we onsider four possibilities

W̃ (µ, ν) + W̃ (ν, η) = ‖µ‖+ ‖ν‖ + ‖η‖+ ‖ν‖ > ‖µ‖+ ‖η‖ > W̃ (µ, η),

W̃ (µ, ν) + W̃ (ν, η) = | ‖µ‖ − ‖ν‖ |+W

(
µ

‖µ‖ ,
ν

‖ν‖

)

+| ‖η‖ − ‖ν‖ |+W

(
η

‖η‖ ,
ν

‖ν‖

)
> W̃ (µ, η),

W̃ (µ, ν) + W̃ (ν, η) = ‖µ‖+ ‖ν‖ + | ‖η‖ − ‖ν‖ |+W

(
η

‖η‖ ,
ν

‖ν‖

)
> ‖µ‖+ ‖η‖

> W̃ (µ, η),

W̃ (µ, ν) + W̃ (ν, η) = ‖η‖+ ‖ν‖ + | ‖µ‖ − ‖ν‖ |+W

(
µ

‖µ‖ ,
ν

‖ν‖

)
> ‖µ‖+ ‖η‖

> W̃ (µ, ν).This metri laks the saling property (namely in general W̃ (λµ, λν) = λW̃ (µ, ν) doesnot hold). Nonetheless, the following weaker property holds.Proposition 17. Let µk and νk be two sequenes of Radon measures and ‖µk‖ → 0,
‖νk‖ → 0 then W̃ (µk, νk)→ 0.Note that W (

µk

‖µk‖
, νk

‖νk‖

) does not satisfy the weaker property, sine for µk = 1
k
δ0,

νk = 1
k
δ1 we have

lim
k→∞

W

(
1
k
δ0∥∥ 1

k
δ0
∥∥ ,

1
k
δ1∥∥ 1

k
δ1
∥∥

)
= 1.1.1.3. Centralized Wasserstein metriFor appliations that require sale-invariane and omparing measures of unequal massesneither 1-Wasserstein nor Normalized Wasserstein distane is suitable.De�nition 18. Centralized 1-Wasserstein distane between two measures µ, ν ∈ M(X)reads

Ŵ (µ, ν) = sup

{�
X

fd(µ− ν) : f ∈ C0,1(X), Lip(f) ≤ 1, |f(0)| ≤ 1

}
.13



This metri was introdued in [36℄ for analysis of the measure-valued strutured pop-ulation models.This metri is sale-invariant, but in ontrast toWasserstein metri, it is not translation-invariant. Appliations of entralized 1-Wasserstein metri are therefore restrited tomodeling of spei� phenomena, for whih the dependene of error on loation in X isjusti�able.Consider the following example: µx = 2δx, νx = 3δx. If measures µ and ν representstruture distribution of a population (e.g. µx is a model predition of size-distributionof a population and νx is an empirial size-distribution omputed based on experimentaldata) and moreover new individuals are always born with a �xed strutural variable
x0 ∈ X one may argue that the error, e(µx, νx), should depend on x. The di�erene ofmasses at x ∈ X is a result of both the di�erene in the number newborns (with struturalvariable x0) and the individual growth proess from x0 to x. Consequently, one wouldexpet that for two strutural points x, y ∈ X ondition ‖x− x0‖X ≥ ‖y − x0‖X implies
e(µx, νx) ≥ e(µy, νy). Centralized Wasserstein metri meets this expetation sine in thatase Ŵ (µx, νx) ≥ Ŵ (µy, νy). On the other hand, the above argumentation is hard todefend if mortality, and therefore mass annihilation at every point of X, is involved. Inthe next setion, a more versatile and translation-invariant metri is introdued.1.1.4. Bounded Lipshitz distaneThe �at metri, known also as a bounded Lipshitz distane [60℄, is sale- and translation-invariant. It has proven to be useful in analysis of strutured population models and, inpartiular, Lipshitz dependene of solutions on the model parameters and initial data[35, 11℄. The �at metri has been reently used for the proof of onvergene and stabilityof EBT numerial sheme (see [9, 11℄).The following three lemmas provide tools for estimating ρF from above. The �rstestimate arises from Proposition 7 and its proof an be found in Setion 7 in [34℄.Lemma 19. Let µ, ν ∈M

+
d (X) and µ =

∑N
i=1miδxi

, ν =
∑N

i=1 niδyi
then

ρF (µ, ν) ≤
N∑

i=1

|mi − ni|+
N∑

i=1

‖xi − yi‖X ni.Proof. Let µ̃ =
∑N

i=1 niδxi
. From triangle inequality we obtain

ρF (µ, ν) ≤ ρF (µ, µ̃) + ρF (µ̃, ν) = ‖µ− µ̃‖+W (µ̃, ν).Diretly from the de�nitions of appropriate metris it follows that
‖µ− µ̃‖ =

N∑

i=1

|mi − ni|and
W (µ̃, ν) =

N∑

i=1

ni (f(xi)− f(yi)) ,14



for some f ∈ C0,1(X) satisfying |f(xi)− f(yi)| ≤ ‖xi − yi‖X . Finally, we obtain
W (µ̃, ν) ≤

N∑

i=1

‖xi − yi‖X ni,whih ompletes the proof.The seond lemma is a straightforward orollary resulting from de�nition of �at dis-tane.Lemma 20. Let µ and ν be two non-negative Radon measures on X = X1 ∪ X2 with
X1 ∩X2 = ∅. Then

ρF (µ, ν) ≤ ρF (µ|X1, ν|X1) + ρF (µ|X2, ν|X2)The following fat follows diretly from the de�nition of �at distane.Lemma 21. For every µ, ν ∈M(X) and f ∈ C0,1(X) it holds that
ρF (µ, µ̃) ≥

�
X
fd (µ− µ̃)

‖f‖C0,1
b

(X)

.An easy, yet important, onlusion from Lemma 19 an be made.Corollary 22. For µ, ν ∈Md(X) we have
ρF (µ, ν) ≤ inf

‖µ̃‖=‖ν‖
µ̃∈Md(X)

‖µ− µ̃‖+W (µ̃, ν).Proof. Lemma 19 an be reformulated as ρF (µ, ν) ≤ ‖µ− µ̃‖ + W (µ̃, ν) for any
µ, ν ∈ Md(X) and µ̃ being supported on a subset of suppµ ∪ suppν with ‖µ̃‖ = ‖ν‖.Sine there are no assumptions on N , and also mi, ni are not neessarily stritly positivemeasure µ̃ an be supported on an arbitrary disrete subset of X.A farther generalization of Corollary 22 is provided by Theorem 25.1.2. Dual representationThe following two theorems onnet Wasserstein metri with transportation theory andprovide a dual representation for W (µ, ν). Proofs an be found in [76℄.Theorem 23. (Kantorovih and Rubinstein) Wasserstein distane between probabilitymeasures µ and ν on a metri spae (X, d) equals

W (µ, ν) = inf
γ∈Γ(µ,ν)

{�
X×X

d(x, y)dγ

}where Γ(µ, ν) denotes a subset of M
+(X ×X) of all measures with marginals equal to µand ν on the �rst and seond fators respetively. Γ(µ, ν) is often referred to as the set oftransferene plans. 15



Theorem 24. For every pair of measures µ and ν on a metri spae (X, d) there existsan optimal transferene plan γ∗ suh that
W (µ, ν) =

�
X×X

d(x, y)Xdγ
∗An analogue of Theorem 23 for �at metri was �rst notied in [40℄ and proved in [62℄for the ase of X = R

d.Theorem 25. Bounded Lipshitz distane between �nite Radon measures µ and ν on R
dequals

inf
µ̃,ν̃∈M(Rd)

‖µ̃‖=‖ν̃‖

‖µ− µ̃‖+ ‖ν − ν̃‖+W (µ̃, ν̃).In fat, intermediate measures µ̃ and ν̃ for whih the in�mum is attained are alwaysno greater than µ and ν respetively. The following result was proved in Setion 2.1 in[62℄:Corollary 26. Let µ, ν ∈M(Rd) then
ρF (µ, ν) = inf

µ̃,ν̃∈M(Rd)

µ̃≤µ,ν̃≤ν
‖µ̃‖=‖ν̃‖

‖µ− µ̃‖+ ‖ν − ν̃‖+W (µ̃, ν̃).Dual representations allows for easier reasoning about upper bounds of distanes.For instane Corollary 22, whih generalizes Lemma 19 follows immediately from dualrepresentation of �at metri. Similarly does Theorem 11. Another pro�t arising from thedual representations is that an approah based on �ow networks an be used to omputethe value of the distane (see Setion 1.3.1).1.3. Computational omplexityIn this setion algorithmi aspets of numerial omputation of distanes between two non-negative disrete Radon measures are disussed. The set of disrete measures, Md(X), isdense in M(X) hene the distane between arbitrary two measures an be omputed byapproximating eah of them with a disrete measure (see Theorem 41).Eah of the onsidered distanes an be determined by linear programming. Compu-tational omplexity of this approah is often too large for appliations. For the ase ofarbitrary spae X we present how the problem an be redued to �nding a maximum-�owminimum-ost for a bipartite graph. For the ase of X = R, Theorem 11 provides analternative approah whih leads to a linear algorithm for 1-Wasserstein distane. More-over, an analogue of Theorem 11 is presented and an algorithm for omputing �at metriis derived.Unless stated otherwise, by the input length of a problem, N , we mean the numberof Dira masses in both of the ompared measures. The aim of this setion is to presente�ient algorithms for Wasserstein-type metris desribed in Setion 1.1. In partiular, anovel algorithm for omputing the �at metri on R with omputational ost O(N logN)is proposed. 16



1.3.1. Transferene plan as a �ow networkGiven two disrete measures µ, ν ∈Md,N(X) the problem of omputingW (µ, ν), Ŵ (µ, ν)and ρF (µ, ν) an be redued to an instane of linear programming. Indeed, let
µ− ν =

N∑

i=1

miδxi
,then W (µ, ν) maximizes linear objetive funtion

c(f1, f2, ..., fN) =

N∑

i=1

mifisubjet to the following linear inequality onstraints:
fi − fi+1 ≤ xi+1 − xi

fi+1 − fi ≤ xi+1 − xifor every i ∈ {1, 2, ..., N−1}. Similarly, the distane Ŵ (µ, ν)maximizes the same objetivefuntion, c, subjet to additional onstraint given by
fi+1 ≤ 1 + xi+1 − xi

fi+1 ≥ −1− (xi+1 − xi)

fi−1 ≤ 1 + xi − xi−1

fi−1 ≥ −1− (xi − xi−1)for xi−1 < 0 < xi+1. Finally, �at distane ρF (µ, ν) also maximizes c and requires additionalonstraints given by
f(xi) ≤ 1

f(xi) ≥ −1for every i ∈ {1, 2, ..., N}.Despite the fat that linear programming has been studied intensively sine the begin-ning of 20th entury, a question whether there exists a sub-exponential algorithm solvingthe linear programming problem remained open until 1979. The urrent opinion is thatthe e�ieny of good implementations of exponential simplex-based methods and poly-nomial interior point methods are similar [31℄. In this setion we present a method ofreduing the problem of omputingW (µ, ν) to an instane of a maximum-�ow minimum-ost problem. It is bene�ial sine e�ient algorithms for solving this problem for the aseof bipartite graphs are known [58, 19℄. Finally, a generalization of this method, inspiredby [45℄, to the ase of �at metri, ρF (µ, ν) is presented.De�nition 27. Flow network is a �nite direted graph (V,E) with a apaity funtion
w : V × V → R ∪ {∞} and a ost funtion c : V × V → R.17



In this setion we show that Wasserstein distane between two disrete probabilistimeasures and bounded Lipshitz distane between two disrete Radon measures on ametri spae X, with a �nite number of atoms (µ =
∑N

i=1miδxi
and ν =

∑M
j=1 njδyj

) anbe omputed using maximum-�ow minimum-ost approah.De�nition 28. For given probabilisti measures µ =
∑N

i=1miδxi
, ν =

∑M
j=1 njδyj

wede�ne a Wasserstein �ow network NW = (VW , EW ) by
VW = {s, x1, x2, ..., xN , y1, y2, ..., yM , t}
EW = {s} × {x1, ..., xN} ∪ {y1, ..., yM} × {t} ∪ {x1, ..., xN} × {y1, ..., yM}with a apaity funtion

w(u, v) =





mi if u = s and v = xi

ni if u = yi and v = t

∞ otherwiseand ost funtion
c(u, v) =

{
d(xi, yi) if u = xi and v = yi

0 otherwiseNetwork NW is depited on Figure 1.1.De�nition 29. A �ow in a �ow network N = (V,E) is a mapping f : E → R
≥0 , subjetto the following onstraints:1. for every (u, v) ∈ E it holds that f(u, v) ≤ w(u, v), where w is the apaity funtion2. for every v ∈ V \ {s, t} it holds that ∑{u:(u,v)∈E} f(u, v) =

∑
{u:(v,u)∈E} f(v, u)De�nition 30. A maximum-�ow in a �ow network N = (V,E) is a �ow, f , that maxi-mizes ∑{v:(s,v)∈E} f(s, v).De�nition 31. A maximum-�ow minimum-ost is the minimal value of

∑

(u,v)∈E

c(u, v)f(u, v)for f being a maximum �ow.Theorem 32. The maximum-�ow minimum-ost of network NW equals W (µ, ν).Proof. Every transferene plan γ ∈ Γ(µ, ν) de�nes a maximum �ow in network NW by
fγ(u, v) =

{
w(u, v) if u = s or v = t

γ({u}, {v}) otherwise ,18



Figure 1.1: Wasserstein �ow network NW for measures ∑N
i=1miδxi

and ∑M
j=1 njyj.

and every maximum �ow de�nes a transferene plan. Moreover the ost assoiated with�ow fγ equals
∑

u∈{x1,...,xN}

∑

v∈{y1,...,yM}

c(u, v)fγ(u, v) =

�
X×X

d(x, y)dγConsequently, by Theorem 23, the maximum-�ow minimum-ost of network NW equals
W (µ, ν).De�nition 33. For given measures µ =

∑N
i=1miδxi

, ν =
∑M

j=1 njδyj
we de�ne a �at �ownetwork NF = (VF , EF ) by

VF = {s, x1, x2, ..., xN , y1, y2, ..., yM , t}
EF = {s} × (VF \ {s, t}) ∪ (VF \ {s, t})× {t} ∪ {x1, ..., xN} × {y1, ..., yM}with a apaity funtion

w(u, v) =





mi if u = s and v = xi

ni if u = yi and v = t

∞ otherwiseand ost funtion
c(u, v) =





d(xi, yi) if u = xi and v = yi

1 if u = xi and v = t

1 if u = s and v = yi

0 otherwise19



Network NW is depited on Figure 1.2.Theorem 34. The maximum �ow minimum ost of network NF equals ρF (µ, ν).Proof. Every hoie of (µ̃, ν̃, γ) ∈Md(X)×Md(X)×Γ(µ̃, ν̃) suh that∑N
i=1 m̃iδxi

= µ̃ ≤ µand ∑M
i=1 ñiδyi

= ν̃ ≤ ν de�nes a maximum �ow in network NF by
fµ̃,ν̃,γ(u, v) =





w(u, v) if u = s and v = xi

w(u, v) if u = yi and v = t

mi − m̃i if u = xi and v = t

ni − ñi if u = s and v = yi

γ({u}, {v}) otherwise ,and every maximum �ow de�nes a triple (µ̃, ν̃, γ) ∈Md(X)×Md(X)×Γ(µ̃, ν̃). Moreoverthe ost assoiated with a �ow fµ̃,ν̃,γ equals
∑

u∈{x1,...,xN ,s}

∑

v∈{y1,...,yM ,t}

c(u, v)fµ̃,ν̃,γ(u, v) =

=

�
X×X

d(x, y)dγ +

N∑

i=1

(mi − m̃i) +

M∑

i=1

(ni − ñi)Consequently, by Corollary 26, the maximum �ow minimum ost of network NF equals
ρF (µ, ν).Sine network N is a bipartite graph (exluding s and t verties) the Hungarian al-gorithm [58, 45, 19℄ an be applied to ompute 1-Wasserstein and Bounded Lipshitzdistanes. This approah proves to be signi�antly more e�ient than general linearprogramming.Example 35. Let us onsider the following expression: ρF (2δx, 3δy) for some x, y ∈ X.The value of this distane an be omputed by following methods:
• Let NF = (V,E) be the �at �ow network for measures 2δx and 3δy, hene V =
{s, x, y, t}. By de�nition the maximum-�ow in NF is a �ow, f , whih maximizes
f(s, x) + f(s, y). Sine f(s, x) ≤ w(s, x) = 2 and f(y, t) ≤ w(y, t) = 3 we infer thatfor the maximum-�ow f(s, x) = 2 and f(y, t) = 3. Sine f(s, x) = f(x, y) + f(x, t)and f(x, y) + f(s, y) = f(y, t), we onlude that the ost of a maximum-�ow equals

f(x, t) + d(x, y)f(x, y) + f(s, y) =

= (2 + 3) + (d(x, y)− 2) f(x, y).It is easy to hek that for any value f(x, y) ∈ [0, 2] a maximum-�ow an be built.Finally, by Theorem 34 we obtain
ρF (2δx, 3δy) =

{
5 if d(x, y) ≥ 2

1 + 2d(x, y) otherwise .20



Figure 1.2: Flat �ow network NW for measures ∑N
i=1miδxi

and ∑M
j=1 njyj. Edges fromthe set EF \ EW are shown in blue.

• By the de�nition of ρF (µ, ν) we have that
ρF (2δx, 3δy) = sup {2fx − 3fy : |fx − fy| ≤ d(x, y), |fx| ≤ 1, |fy| ≤ 1} .Fix fx ∈ [−1, 1], then

fy ∈ [fx − d(x, y), fx + d(x, y)] ∩ [−1, 1].Sine −3fy is dereasing with fy it attains maximum value at
fy = max (fx − d(x, y),−1) .Consequently,

ρF (2δx, 3δy) = sup
fx∈[−1,1]

{2fx − 3 max (fx − d(x, y),−1)} =

= sup
fx∈[−1,1]

min (3d(x, y)− fx, 3 + 2fx) .If d(x, y) ≥ 2 then 3 + 2fx ≤ 3d(x, y)− fx for every fx ∈ [−1, 1], thus
ρF (2δx, 3δy) = sup

fx∈[−1,1]

3 + 2fx = 5.Otherwise, if d(x, y) < 2 then 3 + 2fx = 3d(x, y) − fx for fx = d(x, y) − 1. Sine
3 + 2fx is inreasing and 3d(x, y)− fx is dereasing we obtain

ρF (2δx, 3δy) = 3d(x, y)− (d(x, y)− 1) = 1 + 2d(x, y).21



1.3.2. 1-Wasserstein distane on M
+
d (R)Theorem 11 provides tools for omputing Wasserstein distane as an integral whih inthe ase of disrete measures is simply a �nite sum of N elements. In this setion wederive this algorithm again, from a di�erent perspetive in a seemingly overompliatedway. The purpose of this is to make an introdution to this approah, whih is fartherapplied for more involved algorithms for other distanes.Let µ, ν ∈ M

+
d (R), ‖µ‖ = ‖ν‖, and µ − ν =

∑N
k=1mkδxk

. Sine �
X
Cd (µ− ν) = 0we an add an arbitrary onstant to the test funtion in the de�nition of 1-Wassersteindistane and hene

W (µ, ν) = sup

{
N∑

k=1

mkf(xk) : f ∈ C(R), f(xN) = 0, Lip(f) 6 1

}
.Regularity onditions an be represented as linear programming bounds. Hene, omput-ing of W (µ, ν) is equivalent to �nding maximum of

∣∣∣∣∣

N∑

k=1

mkfk

∣∣∣∣∣with the following restritions
fN = 0,

|fk − fk−1| 6 |xk − xk−1| .Although this problem an learly be solved by linear programming, a more e�ientalgorithm an be found. De�ne
Wm(f) = sup

{
m∑

k=1

mkfk : {fi}Ni=0 ⊂ R, fm = f, ∀k∈{1,...,N} |fk − fk−1| 6 |xk − xk−1|
}
.Obviously W (µ, ν) = WN(0). Denote dk = xk+1 − xk, and observe that the value of

Wm(f) an be omputed reursively as follows
W 1(f) = m1x,

W 2(f) = m2f + sup
f1∈[f−d1,f+d1]

W 1(f) = m2f +m1f +m1 · sgn(m1)d1 =

= (m1 +m2)x+ |m1|d1.It an be shown by indution that
WN(f) =

(
N∑

i=1

mi

)
f +

N−1∑

i=1

di

∣∣∣∣∣

i∑

j=1

mj

∣∣∣∣∣ . (1.2)Notie that the value mN is not used in the formula for WN(0). It is, however, involvedindiretly, beause mN = −∑N−1
i=1 mi. 22



1.3.2.1. PseudoodeEquation (1.2) gives an expliit formula forW (µ, ν), whih is trivial to ompute. Nonethe-less, in this setion we provide a pseudoode for omputing iterated sum∑N−1
i=1 di

∣∣∣
∑i

j=1mj

∣∣∣in linear time to make sure the reader is familiar with pseudoode notation before movingforward to more involved examples.In this algorithm we initially assign 0 value to variables 'distance' and 'partialSum'and then proess the array of positions, x, and the array of masses,m, sequentially. In eahiteration one, onseutive, index idx is proessed. After indies {1, 2, 3, ..., k} were pro-essed the variable partialSum ontains∑k
j=1mj and distance ontains∑k

i=1 di

∣∣∣
∑i

j=1mj

∣∣∣.Consequently, after all indies smaller thanN are proessed the returned variable distanceontains W (µ, ν).Input:
• non-dereasing table of positions, x ∈ R

N,
• table of masses, m ∈ R

N.1-Wasserstein-Distane (x ∈ R
N, m ∈ R

N):
distance ← 0
partialSum ← 0for idx← 1 to N − 1 do

partialSum ← partialSum+midx

distance ← distance + (xidx+1 − xidx) · |partialSum|return distance1.3.2.2. Complexity of the algorithmIt is lear from the pseudoode that the omputational omplexity of the algorithm is
Θ(N), while memory omplexity (the volume of memory used by the algorithm) is Θ(1).1.3.3. Centralized Wasserstein distane on M

+
d (R)Let

µ− ν =
M∑

i=1

miδxi
+mM+1δ0 +

N∑

i=M+2

miδxi
.De�ne

W j(f) = sup

{
j∑

k=1

mkfk : {fi}Ni=0 ⊂ R, fj = f, ∀k∈{1,..,j} |fk − fk−1| 6 |xk − xk−1|
}
,

W
j
(f) = sup

{
N∑

k=j

mkfk : {fi}Ni=0 ⊂ R, fj = f, ∀k∈{1,..,j} |fk − fk−1| 6 |xk − xk−1|
}
.23



As already proven
WM+1(f) =

(
M+1∑

i=1

mi

)
f +

M∑

k=1

dk

∣∣∣∣∣

k∑

i=1

mi

∣∣∣∣∣ ,

W
M+1

(f) =

(
N∑

i=M+1

mi

)
f +

N−(M+1)∑

k=1

dN−k

∣∣∣∣∣

N∑

i=N+1−k

mi

∣∣∣∣∣ .From the de�nition it an be dedued that
Ŵ (µ, ν) = sup

f∈[−1,1]

(
WM+1(f) +W

M+1
(f)−mM+1f

)
,so the distane is given by the formula

Ŵ (µ, ν) =

M∑

k=1

dk

∣∣∣∣∣

k∑

i=1

mi

∣∣∣∣∣+
N−(M+1)∑

k=1

dN−k

∣∣∣∣∣

N∑

i=N+1−k

mi

∣∣∣∣∣ +
∣∣∣∣∣

N∑

i=1

mi

∣∣∣∣∣ .1.3.3.1. PseudoodeSimilarly as in the ase of 1-Wasserstein distane the algorithm is straightforward. Itonsists of three loops. In the �rst two while loops terms
M∑

k=1

dk

∣∣∣∣∣

k∑

i=1

mi

∣∣∣∣∣and
N−(M+1)∑

k=1

dN−k

∣∣∣∣∣

N∑

i=N+1−k

mi

∣∣∣∣∣are omputed exatly as in 1-Wasserstein-Distane. Finally, in the third loop re-maining masses (orresponding to position 0) are added to variable partialSumFront, toensure that partialSumFront+ partialSumBack =
∑N

i=1mi.Input:
• non-dereasing table of positions, x ∈ R

N,
• table of masses, m ∈ R

N.Wasserstein-Centralized-Distane(x ∈ R
N, m ∈ R

N):
distance ← 0
(partialSumFront, partialSumBack) ← (0, 0)
(idxFront, idxBack)← (1, N)while xidxFront < 0 do

partialSumFront ← partialSumFront+midxFront

distance ← distance + (xidxFront+1 − xidxFront) · |partialSumFront|
idxFront← idxFront+ 1 24



while xidxBack > 0 do
partialSumBack ← partialSumBack +midxEnd

distance ← distance + (xidxBack − xidxBack−1) · |partialSumBack|
idxBack ← idxBack − 1for idx← idxFront to idxBack do
partialSumFront← partialSumFront+midxreturn distance + |partialSumFront+ partialSumBack|1.3.3.2. Complexity of the algorithmEah iteration of eah loop takes a onstant time. The total number of iterations in allthree loops is equal toM+1+(N −M − 1). Computational omplexity of this algorithmis therefore Θ(N), while the memory omplexity is Θ(1).1.3.4. Flat distane on M

+
d (R)In this setion the main result from [40℄, namely the algorithm for omputing �at distanein O(N logN), is presented.Computing �at distane requires storing the shape of funtions analogous to Wm asthey get more ompliated when m inreases. We provide a reursive formula for thesequene of these funtions. The pseudoode in Setion 1.3.4.1 implements the algorithmusing an abstrat data struture, without speifying its exat implementation, to storepreviously de�ned funtions. However, the omputational omplexity depends on thepartiular hoie of this struture. In further setions we provide two solutions thatrequire respetively O(N2) and O(N logN) operations.Let
µ− ν =

N∑

i=1

miδxi
.Computing of F (µ, ν) is equivalent to �nding maximum of

∣∣∣∣∣

N∑

k=1

mkfk

∣∣∣∣∣with the following restritions
|fk| 6 1,

|fk − fk−1| 6 |xk − xk−1| .De�ne
Fm(f) = sup

{
m∑

k=1

mkfk : {fi}Ni=0 ⊂ [−1, 1], fm = f, ∀i∈{1,..,N} |fk − fk−1| 6 |xk − xk−1|
}
.25



By the de�nition of �at metri
F (µ, ν) = sup

x∈[−1,1]

FN(x).Observe that
F 1(f) = m1f,

F 2(f) = m2f + sup
f1∈[f−d1,f+d1]∩[−1,1]

F 1(f1) = m2f + min(|m1|, m1f + |m1|d1),

... .. ...

Fm(f) = mmf + sup
fm−1∈[f−dm−1,f+dm−1]∩[−1,1]

Fm−1(fm−1). (1.3)Computing of Fm based on Fm−1 is more omplex than omputing Wm based on Wm−1,beause Fm−1 is not neessarily monotoni. The following two lemmas and Figure 1.3explain the relation between Fm and Fm−1.Lemma 36. Funtion Fm is onave for eah m.Proof. To prove the lemma we use indution with respet to m. F 1(f) is given as a1f , soit is indeed onave. Assume Fm is onave. De�ne
F n,d

max(f) = sup
y∈[f−d,f+d]∩[−1,1]

F n(y).Choose x, y ∈ [−1, 1]. Then, there exist x′ ∈ B(x, d) ∩ [−1, 1], y′ ∈ B(y, d) ∩ [−1, 1] suhthat
αFm,d

max(x) + (1− α)Fm,d
max(y) = αFm(x′) + (1− α)Fm(y′).Beause Fm is onave, it holds

αFm(x′) + (1− α)Fm(y′) 6 Fm (αx′ + (1− α)y′) 6 Fm,d
max(αx+ (1− α)y)The last inequality follows from αx′ + (1− α)y′ ∈ B(αx+ (1− α)y, d). It is now proventhat Fm+1 is onave, as it is a sum of a linear funtion and a onave funtion Fm,d

max.Lemma 37. For eah m ∈ {1, 2, ..., N} funtion Fm is pieewise linear on m intervals.Moreover, for some point f ∗
m it holds that

Fm(f) = mmf +





Fm−1(f + dm−1) on [−1, f ∗
m − dm−1]

Fm−1(f ∗
m) on [f ∗

m − dm−1, f
∗
m + dm−1]

Fm−1(f − dm−1) on [f ∗
m + dm−1, 1]

(1.4)Proof. The proof is onduted by indution over m. F 1 is a linear funtion, so it anbe desribed by its values in {−1, 1}. Assume that Fm an be desribed by at most
m + 1 points and is linear between these points. As Fm is onave, there exists a point26



Figure 1.3: The method of onstruting Fm+1 from Fm

f ∗
m ∈ [−1, 1] suh that Fm(f) ≤ Fm(f ∗

m) for every f . The maximum of Fm on an intervalwhose both ends are smaller than f ∗
m is attained at its right end. Similarly, if both endsof the intervals are larger than f ∗

m, the maximum is attained at its left end. Finally, if theinterval ontains f ∗
m, the maximum is exatly at point xm. These onsiderations provethe formula for Fm+1. Consequently, Fm+1 is pieewise linear and it an be desribed byas many points as Fm plus 1.1.3.4.1. PseudoodeThe algorithm presented in this setion onstruts funtion FN and �nds its maximum.A set of pairs, alled funcDescription, and a real variable leftV alue are used to represent

F idx for idx ∈ {1, 2, ..., N}. The struture has following interpretation:1. F idx(−1) = leftV alue,2. if (v, p) ∈ funcDescription then d
dx
F idx(x) = p for all x larger than v and smallerthan the next value, v′, in the struture.For a given value v we de�ne #v as min {v′ : (v′, p) ∈ funcDescription ∧ v′ > v}. By thisde�nition d

dx
F idx(x) = p on (v,#v) if (v, p) ∈ funcDescription.Representation of F 0 is initialized to F 0 ≡ 0, namely

{
leftV alue = 0

funcDescription = {(−1, 0), (1,−∞)} .27



In eah iteration of the main loop funtion F idx is transformed into funtion F idx+1 asspei�ed by equation (1.4). The transformation is ahieved in three steps. Firstly, themaximum argument f ∗
idx is found, all nodes on the left from f ∗

idx are shifted to left, allnodes on the right from f ∗
idx are shifted to the right, and a new node is added to representthe interval [f ∗

idx−dm−1, f
∗
idx+dm−1]. Seondly, value of F idx(−1) is omputed and assignedto leftV alue. Finally, the representation of F idx is restrited to the interval [−1, 1] andlinear funtion mmf is added.Input:

• non-dereasing table of positions, x ∈ R
N,

• table of masses, m ∈ R
N.Flat-Distane (x ∈ R

N, m ∈ R
N):

leftV alue← 0
funcDescription← {(−1, 0), (1,−∞)}for idx← 1 to N do

d← xidx − xidx−1

funcLeft← {(v − d, p) : (v, p) ∈ funcDescription ∧ p > 0}
funcRight← {(v + d, p) : (v, p) ∈ funcDescription ∧ p < 0}
vm ← min {v : (v, p) ∈ funcRight}
funcDescription← funcLeft ∪ {(vm − 2d, 0)} ∪ funcRight

leftV alue← leftV alue+
∑

(v,p)∈funcDescription

v<−1

(min(#v,−1)− v) p

(vmin, pmin)← max {(v, p) : (v, p) ∈ funcDescription ∧ v ≤ −1}
(vmax, pmax)← max {(v, p) : (v, p) ∈ funcDescription ∧ v ∈ [−1, 1]}
funcDescription← funcDescription ∩ {(v, p) : v ∈ (−1, 1)}
funcDescription← funcDescription ∪ {(max(vmin,−1), pmin)}
funcDescription← funcDescription ∪ {(1,−∞)}
funcDescription← {(x, p+midx) : (x, p) ∈ funcDescription}return leftV alue+

∑
(v,p)∈funcDescription, p>0 (#v − v) · pNotie that the last instrution in the main loop, namely

funcDescription← {(x, p+midx) : (x, p) ∈ funcDescription} ,makes it ine�ient to implement funcDescription as a simple BST tree.28



1.3.4.2. Flat-Distane in O(N2)As mentioned before, the omplexity of this algorithm depends on the implementation of
funcDescription data struture.The simplest implementation of funcDescription uses an array of pairs (v, p) sortedby v in asending order and by p in the reverse order in the same time. This is possibleas a onsequene of Lemma 36.The �rst blok of instrutions an be performed in Θ(#funcDescription) by simplyshifting all elements suh that p < 0 to the right, and modifying v by iterating over allelements of funcDescription. The next blok (omputing of leftV alue) an be omputedwith the same omplexity, as

min {v′ : (v′,_) ∈ funcDescription ∧ v′ > v}is simply the next element after v in the ordered array. Finally, every instrution in thelast blok an be performed in Θ(#funcDescription) by iterating over all its elements.In eah iteration of the main loop at most 1 element is added to funcDescription.Therefore, the omputational omplexity of the algorithm is O(N2) while the memoryomplexity is O(N).1.3.4.3. Flat-Distane in O(N logN)The previous result an be improved to O(N logN) by using balaned binary searh treesdata struture.In this implementation funcDescription is represented by global variable pmodifier anda balaned binary searh tree, T , of key-value pairs (∆v, p) where p is the key. Let #p bethe largest key in T smaller than p. The de�ned data struture funcDescription spei�esa funtion F idx in the following sense:1. F idx(−1) = leftV alue2. if p is a key in T then d
dx
F idx(x) = p+ pmodifier for x suh that

∑

(∆v′,p′)∈funcDescription
p′≥p

∆v′ − 1 ≤ x ≤
∑

(∆v′,p′)∈funcDescription
p′≥#p

∆v′ − 1Notie that obtaining a single element of funcDescription (a pair (v, p) de�ning derivativein a given point) may take linear time.The advantages of this struture an be easily seen when analyzing the �rst blok ofthe ode. The division of funcDescription by the value of p (at �rst 0) an be ahievedin O(logN). Shifting all elements of those subsets an then be done in a onstant timeby modifying �rst elements of these sets. Adding the extra node also requires O(logN)operations.Setting leftV alue may require linear time, but all (apart from one) visited nodesin this proess will be removed in the third blok. Consequently the amortized ost ofresetting leftV alue is O(N). 29



Removing nodes with the �rst oordinate v < −1 is obviously done in amortized
O(N). Identifying nodes with the �rst oordinate v > 1 might seem problemati. It is,however, known that for the smallest p the respetive v-value is equal to 1 + d. Relevantnodes an be, therefore, removed in the reversed order (from right to left) O(N). Adding
mn to the seond oordinate of eah node is done simply by adding it to global variable
pmodifier.All iterations of the main loop requireO(N logN) operations. The memory omplexityis also O(N logN).1.3.4.4. Performane of Flat-Distane implementationsPerformane of the algorithm depends on the hoie of funcDescription data struture.Theoreti bounds for omputational omplexity are, however, not su�ient to argue aboutperformane of these two options. The �rst reason is that the eah operation in O(N2)algorithm is muh faster than in O(N logN) in terms of number of instrutions. Seondly,hardware arhitetures provide solutions in whih iterating over large tables is vastly a-elerated. Finally, the algorithm does reah its theoretial bound only if many points on-entrate on a small interval. A gap of size 2 between two points leans funcDescriptiondata struture ompletely. Numerial results presented in this setion answer omparethese two algorithms for di�erent data input patterns. Performane was measured on asingle ore of AMD Athlon II X4 605e proessor loked at 2.3Ghz with 8GB of memory.The results are presented in Figures 1.4 and 1.5.1.4. Comparison of metris on M

+(X)The following table presents a onise omparison of the distanes de�ned in Setion 1.1.For eah metri basi properties, dual representation, ompute omplexity in the ase of
X = R and the distane between 2δx and 3δy are shown.Metri Example:

d(2δx, 3δy)

Sale-invariane Translation-invariane Dual representation of
d(µ, ν)

Computeomplex-ityWasserstein ∞ YES YES The ost of optimaltransferene ofdistribution µ to ν,assuming that movingmass m by x requires mxenergy.
O(N)

Wassersteinnormalized min(2 + 3,

(3− 2)+ |x− y|)
weak YES Minimum of the sum ofmasses of µ and ν; and ofthe di�erene in massesbetween µ and ν plus theost of transporting µ

‖ν‖to ν
‖ν‖

O(N)

30



Wassersteinentralized 2|x− y|+ |y| YES NO The di�erene in massesin point 0 in spae addedto the ost oftransporting
µ + (‖ν‖ − ‖µ‖) δ0 to ν. O(N)

Flat 1 +

2 min (2, |x− y|)
YES YES The ost of optimaltransporting AND/ORgenerating AND/ORannihilating mass to form

ν from µ. O(N log N)

Radon 2 + 3 YES YES The ost of generatingAND/OR annihilatingmass to form ν from µ

O(N)

Figure 1.4: Comparison of the performane of the two proposed algorithms for the �atdistane between 0 ∈ M(R) and an N-point disrete measure with atoms randomlydistributed over [−1, 1]. The plot shows how the time of omputation depends on N .For eah input size 100 independent tests were exeuted to demonstrate how sensitive thealgorithms are to input data distribution. Results of O(NlogN) algorithm are depitedas red dots, and results of O(N2) algorithm as blue dots.
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Figure 1.5: Comparison of the performane of the two proposed algorithms for the �atdistane between 0 ∈M(R) and a N-point disrete measure with atoms distributed overa large domain, i.e. distane between eah two masses is larger than 2. In this ase bothalgorithms are in fat linear, as the funDesription struture has at most two elements.The plot demonstrates the overhead of using BST strutures. Results of O(NlogN)algorithm are depited as red dots, and results of O(N2) algorithm as blue dots.
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1.5. Approximation theory for Radon measuresIn this setion the following problem is onsidered: given a measure µ ∈M
+[0, 1] �nd itsapproximation µN ∈M

+
d,N [0, 1] supported on a N-element set whih minimizes ρF (µ, µN).Similar study has been presented in [68℄ and [63℄ for Wasserstein distane and the aseof absolutely ontinuous measure µ. Theorem 23 allows to understand the approximationproblems for Wasserstein distane as real-life questions about optimal hoie of onen-tration points suh as shops, warehouses and polling stations. Analogously, optimal �atdistane approximation an be interpreted, following the lines of Corollary 26, as the op-timal hoie of onentration points of goods whose demand an be, at some additionalost, satis�ed alternatively. Appliations of this theory inlude the problem of loatingparel lokers and wireless aess-points providing Internet servies in metropolitan areas.The results of this setion are primarily motivated by the study of partile methodsfor solving partial di�erential equations (see Setion 2.2). They prove to be useful forsolving MKendrik-von Foerster equation numerially as they allow the following threeimprovements:1. birth proess an be implemented more e�iently,32



2. number of partiles, and hene the omputational ost, an be redued,3. error of the sheme an be redued by optimizing initial data approximation.For details see Setion 2.2. This setion is divided into three subsetions whih overgeneral theory, approximations of disrete measures and approximations of absolutelyontinuous measures.Remark 38. The hoie of interval X = [0, 1], often made in this setion, is not arbitrary.Although, most of the results presented in this setion an be generalized to the aseof arbitrary interval [a, b], it is not immediate. In many proofs (e.g. Theorem 44) it isneessary that the diameter of X does not exeed the Lipshitz onstant of test funtionsin the de�nition of �at metri. Population dynamis equations onsidered in Setion 2.2an be resaled to the interval [0, 1], and hene results of this setion an be appliedwithout loss of generality.1.5.1. Relation between 1-Wassersten and �at approximationsIn many appliations, where disrete measures are proessed, it is desired to keep thenumber of atoms to the minimum while being sure that the introdued error is reason-able. This may require a ompression step, where a measure onsisting of N atoms isapproximated by a M-point measure with M < N . In this setion we investigate thebounds and asymptotis of the error indued by ompressing disrete measures on [0, 1].Firstly, we de�ne an equidistant N-point approximation. This method of approx-imation is e�ient, easy to implement, and for some input measures it gives optimalresults. Moreover it an be generalized to any totally bounded metri spae. For ertainappliations, however, approximations of a better order an be onstruted.Lemma 39. Let µ and ν be two non-negative measures on [0, 1] with equal total variation,
‖µ‖ = ‖ν‖, then ρF (µ, ν) = W (µ, ν).Proof. Let fn ∈ Lip(1) be a sequene for whih the following supremum is attained in thelimit

W (µ, ν) = sup

{∣∣∣∣
� 1

0

fd(µ− ν)
∣∣∣∣ : f ∈ Lip(1)

}
,then f̃n(x) = fn(x)− f(0) is also a maximizing sequene, beause� 1

0

f(0)d(µ− ν) = f(0) · (‖µ‖ − ‖ν‖) = 0.Conditions f̃ ∈ Lip(1) and f̃(0) = 0 imply that |f̃(x)| ≤ 1 on [0, 1] and hene
W (µ, ν) = ρF (µ, ν).De�nition 40. An equidistant N-point approximation, µN , of a non-negative Radonmeasure µ on [a, b] is de�ned as 33



µN =

N−2∑

i=0

µ[a + (b − a)
i

N
, a + (b− a)

i + 1

N
)δa+(b−a) i+0.5

N

+ µ[a + (b − a)
N − 1

N
, b]δb−(b−a) 0.5

N

.Theorem 41. Let µN ∈Md[a, b] be an equidistant N-point approximation of µ ∈M
+[a, b],then the following estimate holds

ρF (µ, µN) ≤ µ[a, b]

2NProof. Measures µ and µN have equal total variation sine
∥∥µN

∥∥ =

N−2∑

i=0

µ[a+ (b− a) i
N
, a+ (b− a) i+ 1

N
) + µ[a+ (b− a)N − 1

N
, b] = µ[a, b] = ‖µ‖ .By Proposition 7 and Theorem 11

ρF (µ, µN) ≤
� b

a

|µ[0, x]− µN [0, x]|dx =

=
N−1∑

i=0

� a+(b−a) i+1
N

a+(b−a) i
N

|µ[a+ (b− a) i
N
, x]− µN [a+ (b− a) i

N
, x]|dx =

=

N−1∑

i=0

(� a+(b−a) i+0.5
N

a+(b−a) i
N

|µ[a+ (b− a) i
N
, x]|dx+

� a+(b−a) i+1
N

a+(b−a) i+0.5
N

|µ[x, a+ (b− a) i+ 1

N
]|
)
dx ≤

≤
N−1∑

i=0

(
b− a
2N

µ[a + (b− a) i
N
, a+ (b− a) i+ 1

N
)dx

)
=

≤ (b− a)µ[a, b]

2N
.Corollary 42. The subspae Md(R) is dense in M(R).Proof. Let µ ∈M

+(R) and let ε > 0. There exists M ∈ N, suh that
µ[−M,M ] ≥ µ(R)− ε

2
.Let N = 2Mµ(R)ε−1 and let µN be an N-point equidistant approximation of measure

µ|[−M,M ]. Then
ρF (µ, µN) ≤ ρF (µ, µ|[−M,M ]) + ρF (µ|[−M,M ] , µ

N) ≤ ε.Sine every �nite Radon measure an be deomposed into a di�erene of two non-negativemeasures it ompletes the proof. 34



Sine we already know that any measure an be approximated arbitrarily well, wefous on the problem of optimal approximation. Lemma 39 and Theorem 44 guaranteethat an optimal approximation in �at metri always exists and that it oinides with theoptimal approximation in Wasserstein metri.De�nition 43. An optimal M-point disrete approximation, µM =
∑M

i=1miδxi
, to aRadon measure µ is a disrete measure with M atoms minimizing

ρF (µ, µM)Theorem 44. Let µ ∈ M
+(R) and supp µ = X. There exists an optimal M-pointdisrete approximation, µM , of µ in �at metri; it is supported on a subset of conv X, itis non-negative and moreover if X ⊆ [0, 1] then

‖µ‖ =
∥∥µM

∥∥ .Proof. The proof onsists of �ve steps. In the �rst step we show existene of an optimal
M-point approximation. In the next three steps we fous on the ase disrete measures
µ. In the seond step we show that any M-point approximation of µ with atoms outside
conv X. In the third step we show that any M-point approximation of µ whose totalvariation is di�erent than the total variation of µ an be improved if µ is supported on asubset of (0, 1). In the fourth step we show that any M-point approximation of µ withnegative masses an be improved. In the fourth step we generalize the results from steps2-4 to the whole domain of non-negative Radon measures.Step 1. Let {µM

i }∞i=1 be a sequene of M-point approximations suh that
ρF (µ, µM

i )→ inf {ρ(µ, ν) : ν ∈M[0, 1] and νis an M-point disrete measure}Eah measure µM
i an be desribed by sequenes {mi

j}Mj=1 and {xi
j}Mj=1 representing massesof Dira deltas and their positions respetively. Namely,

µM
i =

M∑

i=1

mi
jδxi

jBy the ompatness of [0, 1]2M ⊂ R
2M one an hoose a subsequene {ij}∞j=1 ⊆ {1, 2, 3, ...}suh that

∀i∈{1,2,...,M} m
ij
i → mi and xij

i → xi.By Lemma 19 the onvergene of {mij
i }∞j=1 and {xij

i }∞j=1 implies that
µM

ij
→

M∑

i=1

miδxi
= µM in ρF .Consequently, µM is an optimal M-point approximation.Step 2. In this step we assume that µ is a non-negative N-point disrete measure.We shall show that if µM is anM-point approximation of µ, not neessarily non-negative,then a better approximation, µ̃M an be found provided that µM has atoms on R\supp µ.35



Firstly, we introdue some tools used in [40℄ for omputing �at distane. Let
µ− µM =

M+N∑

i=1

miδxiand x1 < x2 < ... < xM+N . De�ne funtions F k : [−1, 1]→ R and F k
: [−1, 1]→ R by

F k(f) = sup

{
k∑

i=1

mifi : {fi}N+M
i=0 ⊂ [−1, 1], fk = f, ∀i∈{1,..,k}|fi − fi−1| ≤ |xi − xi−1|

}
,

F
k
(f) = sup

{
N+M∑

i=k

mifi : {fi}N+M
i=1 ⊂ [−1, 1], fk = f, ∀i∈{k,...,N+M}|fi − fi−1| ≤ |xi − xi−1|

}
.Obviously

ρF (µ, µM) = sup
f∈[−1,1]

∣∣FM+N(f)
∣∣ = sup

f∈[−1,1]

∣∣∣F 1
(f)
∣∣∣ . (1.5)Funtions F k and F k are onave and pieewise linear (Lemma 36 and Lemma 37). From(1.3) it follows that

F k+1(f) = mkf + sup
fk∈[−1,1]∩[f−(xk+1−xk),f+(xk+1−xk)]

F k(fk). (1.6)We shall show that if µM has k atoms outside supp µ then a di�erent approximation,
µ̃M

k−1, at least as good as µM , onsisting of at most k − 1 atoms outside supp µ an beonstruted.Let conv(supp µ)) = [xL, xR]. Suppose that µM has atoms outside [xL, xR] and heneeither x1 < xL or xN+M > xR. Without loss of generality we an assume xN+M > xR.Let µ̃M
k−1 = µM −mM+NδxM+N

+mM+NδxM+N−1
. We have

ρ(µ, µM) = sup
f∈[−1,1]

∣∣FN+M(f)
∣∣ =

= sup
f∈[−1,1]

∣∣∣∣∣mN+Mf + sup
fN+M−1∈[−1,1]∩B(f,xN+M−xN+M−1)

FN+M−1(fN+M−1)

∣∣∣∣∣ ≥

≥ sup
f∈[−1,1]

∣∣mN+Mf + FN+M−1(f)
∣∣ = ρ(µ, µ̃M

k−1).The �rst non-trivial equality results from (1.6) and the estimate stems from the fat that
f ∈ B(f, xN+M − xN+M−1). The last /equality follows from (1.5) and (1.6). Indeed,applying (1.6) to the ase of measure µ− µM −mM+NδxM+N

+mM+NδxM+N−1
instead of

µ− µM would result in formula
FN+M = mN+Mf + FN+M−1(f).Step 3. In this step we assume that µ is a non-negative N-point disrete measuresupported on a subset of (0, 1). We shall show that if µM is an M-point approximation36



of µ, not neessarily non-negative, then µ̃M
k = µM +

(
‖µ‖ −

∥∥µM
∥∥) δxk

approximates µ atleast as good as µM for any k ∈ {1, 2, ..., N +M}. To this end we introdue tools basedon funtions F k and F k for omputing ρF (µ, µM +
∑N+M

i=1 miδxk
).Firstly, we will prove by indution the following statement: if µ − µM is supportedon a subset of (0, 1) then funtions F k and F k are linear on [−1 + xk, 1 − xk] and theirderivatives at 0 are equal to ∑k

i=1mi and ∑N+M
i=k mi respetively. Let us fous on F k asthe ase of F k is fully analogial. F 1(f) = m1f is linear on [−1 + x1, 1 − x1] and itsderivative is equal to m1. Suppose that F k is linear on [−1+xk , 1−xk] and its derivativeat 0 equals ∑k

i=1mi. From (1.6) we have
F k+1(f) = mkf + sup

fk∈[−1,1]∩B(f,xk+1−xk)

F k(fk).Sine F k(fk) is linear on [−1 + xk, 1− xk] it follows that for all x ∈ [−1 + xk+1, 1− xk+1]we have either
sup

fk∈[−1,1]∩B(f,xk+1−xk)

F k(fk) = F k(f + (xk+1 − xk))or
sup

fk∈[−1,1]∩B(f,xk+1−xk)

F k(fk) = F k(f − (xk+1 − xk)).Hene, F k+1(f) is linear on [−1 + xk+1, 1 − xk+1] and d
df
F k+1(0) = mk + d

df
F k(0). Thisproves the indutive step.For k ∈ {1, 2, ..., N +M} we de�ne

G(xk, f) = sup
y∈[−1,1]∩B(f,xk−xk−1)

F k−1(y) +mkf + sup
y∈[−1,1]∩B(f,xk+1−xk)

F
k+1

(y) = (1.7)
= F k(y)−mkf + F

k
(y).Notie that for any x ∈ [0, 1] and m ∈ R we have

ρ(µ, µM +mδxk
) = sup

f∈[−1,1]

|G(xk, f)−mf | .Sine both funtions F k and F k are onave on [−1, 1] and linear on (−ε, ε) we onludethat so is G(x, ·). Finally,
d

df
G(xk, 0) =

d

df
F

k
(0) +

d

df
F k(0)−mk =

N+M∑

i=1

mi. (1.8)From ‖µ‖ 6= ∥∥µM
∥∥ we have

d

df
G(xk, 0) =

N+M∑

i=1

mi 6= 0.Observe that
‖µ‖ =

∥∥∥∥∥µ
M +

(
N+M∑

i=1

mi

)
δxk

∥∥∥∥∥ =
∥∥µ̃M

k

∥∥ .37



Using the fat that G(xk, ·) −
(∑N+M

i=1 mi

)
f attains its maximum at f = 0 and onse-quently that G(xk, ·) attains its maximum outside [−ε, ε] we obtain

ρF (µ, µ̃M
k ) = ρF

(
µ, µM +

(
N+M∑

i=1

mi

)
δxk

)
= sup

f∈[−1,1]

[
G(xk, f)−

(
N+M∑

i=1

mi

)
f

]
=

= G(xk, 0) < sup
f∈[−1,1]

G(xk, f) = ρ(µ, µM).This ompletes the proof of the third step.Step 4. In this step we assume that µ is a non-negative N-point disrete measure withno atoms in {0, 1}. We shall show that if µM is an M-point approximation of µ, not ne-essarily non-negative, satisfying ‖µ‖ =
∥∥µM

∥∥ then a better, non-negative approximation,
µ̃M , an be found and also ‖µ‖ =

∥∥µ̃M
∥∥.Let

µ =
N∑

i=1

miδxi
,

(
µM
)−

= −
K∑

i=N+1

miδxi
,

(
µM
)+

=

N+M∑

i=K+1

miδxi
.From Lemma 39

ρF (µ, µM) = W
(
µ−

(
µM
)−
,
(
µM
)+)

.Let γ∗ ∈ Γ
(
µ−

(
µM
)−
,
(
µM
)+) be the optimal transferene plan. For k ∈ {N+1, ..., K}let
νk =

mk

‖γ∗({xk}, ·)‖
γ∗({xk}, ·).De�ne

µ̃M =
(
µM
)+ −

K∑

i=N+1

νk,

γ̃(E, ·) = γ∗(E, ·)−
∑

i ∈ {N + 1, ..., K}
xi ∈ E

νk.Newly de�ned µ̃M is an M-point approximation sine
suppνk = suppγ∗({xk}, ·) ⊂ suppγ∗([0, 1], ·) = suppµM .and it is non-negative beause mk ≤ ‖γ∗({xk}, ·)‖. Also ‖µ‖ =

∥∥µ̃M
∥∥ . Sine γ∗ − γ̃ 6= 0and (γ∗ − γ̃) ∈ Γ(µ, µ̃M) we obtain

ρF (µ, µ̃M) = W (µ, µ̃M) ≤
�

[0,1]2
|x− y|dγ̃ <

�
[0,1]2
|x− y|dγ∗ = W

(
µ−

(
µM
)−
,
(
µM
)+)

,38



whih ompletes the proof.Step 5. In the last step of the proof we shall generalize the reasoning from Step 2 andStep 3 from the ase of µ being a non-negative disrete measure supported on a subset of
[ε, 1−ε] to the ase of an arbitrary measure µ ∈M

≥[0, 1]. By Theorem 41 for every ε > 0there exists a disrete measure µε with no atoms in {0, 1} suh that ρF (µ, µε) ≤ ε ‖µ‖and ‖µ‖ = ‖µε‖. Denote the optimal M-point approximation of µε by µM
ε . We have

ρF (µε, µ
M
ε ) ≤ ρF (µε, µ

M) ≤ ρF (µε, µ) + ρF (µ, µM) ≤ ε ‖µ‖+ ρF (µ, µM).There exists a sequene εn → 0 for whih µM
εn

is onvergent. Let µM
εn
→ µ̃M . Finally from

ρF (µ, µM
ε ) ≤ ρF (µ, µε) + ρF (µε, µ

M
ε ) ≤ 2ε ‖µ‖+ ρF (µ, µM)we obtain

ρF (µ, µ̃M) ≤ ρF (µ, µM
ε ) + ρF (µM

ε , µ̃
M)→ ρF (µ, µM),hene µ̃M is the optimal N-point approximation of µ.Theorem 44 provides a strong tool for dealing with optimal approximation problems.It is used in the Lemma below for onstruting an optimal 1-point approximation of anarbitrary measure.De�nition 45. Let µ be a non-negative measure on [a, b] ⊆ [0, 1]. We de�ne the entralpoint of measure µ as

x∗[a,b] = sup{x ∈ [a, b] : µ[a, x) 6 µ(x, b]}.Lemma 46. Let µ be a non-negative measure on [a, b] ⊆ [0, 1], then νx∗
[a,b]

= ‖µ‖ δx∗
[a,b]

isan optimal 1-point approximation of µ in �at metri and
ρF (µ, νx∗

[a,b]
) =

� x∗
[0,1]

0

µ[0, x]dx+

� 1

x∗
[0,1]

µ[x, 1]dx.Proof. By Theorem 44 the mass of the optimal approximation of µ equals ‖µ‖. Let
νx = ‖µ‖ δx be the optimal approximation of µ, then by Lemma 39 and Theorem 11

ρF (µ, νx) = W (µ, νx) =

� 1

0

|µ[0, τ ]− νx[0, τ ]|dτ =

� x

0

µ[0, τ ]dτ +

� 1

x

µ[τ, 1]dτ.Suppose to the ontrary without loss of generality that x > x∗[0,1]. Consequently,
ρF (µ, νx)− ρF (µ, ν) =

� x

x∗
[0,1]

µ[0, τ ]− µ[τ, 1]dτ. (1.9)By the de�nition of x∗[a,b] the integrant in (1.9) is a stritly positive funtion, whih on-tradits optimality of νx.Proposition 47. The estimate ρF (µ, νx∗
[0,1]

) 6 1
2
µ[0, 1] holds. Equality is satis�ed for

µ = δ0 + δ1. 39



Proof. The estimate follows immediately from Theorem 41. Consider µ = δ0 + δ1, then
x∗[0,1] = 1 and

ρF (µ, vx∗
[0,1]

) = W (δ0 + δ1, 2δ1) =
1

2
µ[0, 1] = 1.The previous result may seem a little disappointing beause in the worst ase the errorof a 1-point optimal approximation is exatly equal to the error of a 1-point equidistantapproximation. In the next setion we fous on the problem of �nding an N − 1-pointapproximation to a given N-point disrete measure on [0, 1]. It turns out that there existsa linear algorithm for �nding optimal approximation in this ase and that the upper boundfor the error is of order N−2.1.5.2. Redution of the number of atoms in a disrete measureLemma 48. Let µ =

∑N
i=1miδxi

be a non-negative measure on [0, 1], then there exists anoptimal M-point approximation supported on a subset of {xi}Ni=1.Proof. Let µM =
∑M

i=1 niδyi
be an optimalM-point approximation that is not supportedon a subset of {xi}Ni=1. By Theorem 44 µM is supported on a subset of [x1, xN ] and∑M

i=1 ni =
∑N

i=1mi. Suppose that for some indies a, b, c it holds
xa < yb < yb+1 < ... < yb+c < xa+1.By Theorem 39 and Theorem 11

ρF (µ, µM) = φ+ ψ({yi}b+c
i=b),where

φ =

�
[0,xa]∪[xa+1,1]

|µ[0, x]− µM [0, x]|dx,

ψ({yi}b+c
i=b) =

� xa+1

xa

|µ[0, x]− µM [0, x]|dx.Beause µM is a disrete measure we have
ψ({yi}b+c

i=b) =

� yb

xa

|µ[0, xa]− µM [0, xa]|dx+

� yb+1

yb

|µ[0, xa]− µM [0, yb]|dx+ ...+

+

� xa+1

yb+c

|µ[0, xa]− µM [0, yb+c]|dxor simply
ψ({yi}b+c

i=b) = (yb − xa)|µ[0, xa]− µM [0, xa]|+ ...+ (xa+1 − yb+c)|µ[0, xa]− µM [0, yb+c]|,40



whih implies
ψ({yi}b+c

i=b) ≥ (xa+1 − xa) ·min



{
|

a∑

i=1

mi −
d∑

i=1

ni|
}b+c

d=b−1


 . (1.10)Suppose the minimum is attained at index d = D. De�ne measure µ̃M as

µ̃M =
b−1∑

i=1

niδyi
+

(
D∑

i=b

ni

)
δxa

+

(
b+c∑

i=D+1

ni

)
δxa+1 +

M∑

i=b+c+1

niδyi
.Notie that µ̃M is onentrated on a set of ardinality at most M . The error of approxi-mation is given by

ρF (µ, µ̃M) = φ+

� xa+1

xa

|
a∑

i=1

mi −
D∑

i=1

ni|dx,whih by inequality (1.10) an be estimated from above by φ+ψ({yi}b+c
i=b) and onsequently

ρF (µ, µM) ≥ ρF (µ, µ̃M).It proves that there exists an optimal M-point approximation to µ that is supported ona set with no points in ⋃N−1
i=1 (xi, xi+1).On the basis of Theorem 44 and Lemma 48 a brute-fore algorithm for �nding optimal

N − 1-point approximation an be built. The idea is to ompute minimal error in �atmetri for eah possible support.De�nition 49. Given a disrete, non-negative measure µ =
∑N

i=1miδxi
with N atomson [0, 1] we de�ne N − 1-point approximation algorithm as follows:1. For eah j = 1, 2, ..., N onsider the set x̂j = {x1, x2, ..., xj−1, xj+1, ..., xN} and de�ne

µL
j =

j−1∑

i=1

miδxi
+mjδxj−1

+

N∑

i=j+1

miδxi
,

µR
j =

j−1∑

i=1

miδxi
+mjδxj+1

+

N∑

i=j+1

miδxi
,2. For eah side s ∈ {L,R} ompute

ρF (µ, µs
i ).3. Return the measure µs

i whih aounts for the lowest error ρF (µ, µs
i ).Proposition 50. The N − 1-point approximation algorithm has linear omputationalomplexity. 41



Proof. By Lemma 39 and Theorem 11
ρF (µ, µL

i ) = W (µ, µL
i ) = mi(xi − xi−1),

ρF (µ, µR
i ) = W (µ, µR

i ) = mi(xi+1 − xi).Consequently, the value of ρF (µ, µs
i ) an be omputed in onstant time for any i ∈

{1, ..., N} and s ∈ {L,R} and thus the algorithm requires O(n) operations.Theorem 51. For a non-negative N-point measure µ the N − 1-point approximationalgorithm returns an optimal N−1-point approximation, µN−1, and the following estimateholds
ρF (µ, µN−1) ≤

2 ‖µ‖
N2

. (1.11)Proof. Let µ =
∑N

i=1miδxi
be a non-negative measure on [0, 1] and let
µN−1 =

k−1∑

i=1

niδxi
+

N∑

k+1

niδxibe its N − 1-point optimal approximation. Denote ∆i = ni − mi for all i 6= k and
∆k = −mk. It's easy to show that ∆i ≥ 0 for i 6= k. Consequently from Lemma 44 andTheorem 11 we derive a formula for ρF and from non-negativity of ∆k we an dedue thesign of ∑i

j=1 ∆i and therefore omit the absolute value:
ρF (µ, µN−1) =

k−1∑

i=1

(
(xi+1 − xi)

i∑

j=1

∆j

)
+

N∑

i=k

(
−(xi+1 − xi)

i∑

j=1

∆j

)
.By hanging the order of summation we obtain

ρF (µ, µN−1) =
N∑

i=1

∆i|xk − xi|.This value is minimal when ∆i = 0 hold for all i exept for i = k − 1 or i = k + 1.The N − 1-point approximation algorithm indeed onsiders all measures onentrated on
{xi}Ni=1 that satisfy this ondition and ∥∥µN−1

∥∥ =
∥∥µN

∥∥.To prove the estimate 1.11 let us denote di = xi+1 − xi. The distane between µ and
µN−1 is equal to the ost of moving some mass mi from one of the neighboring nodes

ρF (µ, µN−1) = W (µ, µN−1) = min

{
m1d1, min

i∈{2,...,N−1}
mi ·min(di, di−1), mNdN−1

}and onsequently
ρF (µ, µN−1) 6 min

{
min

i∈{1,...,N−1}
mi · di, mNdN−1

}
.42



Using Shwarz inequality for sequenes {√ mi

‖µ‖

}N

i=1

and {√dmin(i,N−1)

}N

i=1
we obtain

(
N−1∑

i=1

√
midi

‖µ‖ +

√
mNdN−1

‖µ‖

)2

≤
(

N∑

i=1

mi

‖µ‖

)(
N−1∑

i=1

di + dN−1

)
≤ 2,sine

N−1∑

i=1

mi 6 ‖µ‖ and N−1∑

i=1

di 6 1and
N−1∑

i=1

√
midi +

√
mNdN−1 ≤

√
2 ‖µ‖.It implies that there exists i suh that

√
midi ≤

√
2 ‖µ‖
N

or √
mNdN−1 ≤

√
2 ‖µ‖
Nand onsequently

midi ≤
2 ‖µ‖
N2

or mNdN−1 ≤
2 ‖µ‖
N2

.Theorem 51 guarantees that removing a single atom from an N-point measure andreadjusting masses does not indue a large error. Consequently removing a �xed number
k of atoms indues an error of order N−2 as well. Obviously, if k is proportional to Nthen the estimate from the Theorem 51 only guarantees the error of order N−1. Theexamples below show that in suh ase (k ∼ N) no better estimate of the error of optimalapproximation an be found and that applying N − 1-point approximation algorithmiteratively k-times does not lead to good results.Remark 52. Algorithm for �ndingM-point approximation of N-point disrete measure byremoving optimally one mass at a time (greedy algorithm) is suboptimal. Indeed, let usonsider measure µ =

∑N
n=1

1
n
δ1/n then a 1-point approximation onstruted by removingone mass at a time is given by µ1 =

(∑N
n=1

1
n

)
δ1 while the optimal 1-point approximationtends to (∑N

n=1
1
n

)
δ0 with N → ∞. The error of the greedy algorithm therefore an behigher then the error of the equidistant approximation.Theorem 53. For every M < N there exists an N-point disrete measure on [0, 1] whoseoptimal M-point approximation yields error equal to

‖µ‖ N −M
N(N − 1)

.43



Proof. Let
µN = C

N−1∑

i=0

1

N
δi/N−1,where C > 0 is any onstant, and µM be its optimal M-point approximation. ByLemma 44, Lemma 39 and Theorem 23 the error of the approximation equals

ρF (µN , µM) = W (µN , µM) = inf
γ∈Γ(µN ,µM )

{�
[0,1]2
|x− y|dγ

}
.By Lemma 48 the set supp µN\supp µM onsists of exatlyN−M points: xj1, xj2 , ..., xjN−M

.Obviously for every k ∈ {1, 2, ..., N −M} and x ∈ supp µM the distane |x− xjk
| ≥ 1

N−1
.On the other hand for every transferene plan γ ∈ Γ(µN , µM) the mass transported fromthe point xk equals

γ({xjk
}, [0, 1]) =

C

N
.As there are N − M Dira deltas with masses C

N
eah that have to be shifted by thedistane at least 1

N−1
we an onlude that

ρF (µN , µM) ≥ inf
γ∈Γ(µN ,µM )

{
M∑

i=1

N−M∑

k=1

|xjk
− xi|γ ({xjk

} × {xi})
}
≥

≥ C

N

N−M∑

k=1

|xjk
− xi| ≥

C

N

N−M∑

k=1

1

N − 1
≥ C

N −M
N(N − 1)Remark 54. If M be proportional to N then the error of an optimalM-point approxima-tion to a N-point measure an be of the same order as the error of anM-point equidistantapproximation.1.5.3. Approximation of absolutely ontinuous measures on [0, 1]For any absolutely ontinuous measure an equidistant M-point approximation an bebuilt. It indues an error of order M−1 and it is optimal in the ase of a onstantfuntion. Nonetheless, for many other appliations (suh as multi-hump funtions) thisapproximation an be improved by a large fator. In this setion we investigate methodsof improving disrete approximations of absolutely ontinuous measures.In the beginning of this setion we shall reall some observations from [68℄, whih on-stitute an exellent tool for improving the error of approximation. Farther, we introduetwo new methods and ompare the results against the algorithm investigated in [68℄.De�nition 55. Let M : L1(X)→M(X) be an inlusion map given by

M (f)(E) =

�
E

fdL,44



where L is the Lebesgue measure.The �at distane between a Radon measure µ on a normed spae X and a funtion
f ∈ L1(X) is de�ned as ρF (µ, f) = ρF (µ,M (f)). Similarly for f, g ∈ L1(x) we de�ne
ρF (f, g) = ρF (M (f),M (g)).Let us onsider a disreteM-point approximation µM of a positive ontinuous funtion
f ∈ C[0, 1]. The domain [0, 1] an be divided into M sets orresponding to the areas towhih eah of Dira mass of µM is transported. It turns out that if µM is the optimalapproximation of f then this division is a partition of [0, 1]. The following de�nition andProposition 57 provide preise formulation of this intuition.De�nition 56. Let f ∈ C[0, 1] and let µM =

∑M
i=1miδxi

be any M-point approximationsuh that ∥∥µM
∥∥ = ‖M (f)‖. Let γ∗ ∈ Γ(µM ,M (f)) be the optimal transferene plan (seeTheorem 24). We de�ne the transport domain division of interval [0, 1] as a sequene ofsets Xi suh that

Xi = supp (γ∗({x∗i }, ·))for i = 1, 2, ...,M .Proposition 57. Let {Xi}Mi=1 be the transport domain division of interval [0, 1] for
f ∈ C[0, 1] and its optimal M-point approximation µM =

∑M
i=1miδx∗

i
. Suppose thatthe sequene {x∗i }Mi=1 is inreasing. The following statements hold1. x∗i ∈ Xi for every i = 1, 2, ...,M ,2. for every i = 1, 2, ...,M it holds Xi = [ai, ai+1] with a1 = 0 and aM+1 = 1,3. ai+1 − x∗i = x∗i+1 − ai+1 for every i = 1, 2, ...,M − 1.Proof. Let γ∗ be the optimal transferene plan of µM to M (f). Sine

supp(γ∗([0, 1], ·)) = supp(M (f)) = [0, 1]and
supp(γ∗([0, 1], ·)) =

M⋃

i=1

supp(γ∗({x∗i }, ·)) =
M⋃

i=1

Xiwe onlude that
M⋃

i=1

Xi = [0, 1]. (1.12)Next, we prove that ondition |x−x∗j | < |x−x∗k| implies x /∈ Xk. Suppose to the ontrarythat x ∈ Xk and there exists a neighborhood Nx ∋ x suh that for every y ∈ Nx we have
|y − x∗j | < |y − x∗k|. (1.13)Let us de�ne an alternative approximation, µ̃M , of f by

µ̃M =
∑

i ∈ {1, 2, ...,M}
i 6= j, i 6= k

miδx∗
i
+ (mj + ∆) δx∗

j
+ (mk −∆) δx∗

k
,

∆ = γ∗({xk}, Nx), 45



and a transferene plan, γ̃, by
γ̃(A,B) =





γ∗(A,B) if xj , xk /∈ A or xj , xk ∈ A
γ∗(A,B)− γ∗ ({xk}, B ∩Nx) if xj /∈ A, xk ∈ A
γ∗(A,B) + γ∗ ({xk}, B ∩Nx) if xk /∈ A, xj ∈ A.Notie that γ̃ ∈ Γ(µ̃M ,M (f)). Using 1.13 we obtain

ρF (µM , f)− ρF (µ̃M , f) ≥
�

[0,1]2
|x− y|d (γ∗ − γ̃) =

=

�
Nx

|xj − y|d (γ∗({xj}, ·)− γ̃({xj}, ·)) +

�
Nx

|xk − y|d (γ∗({xk}, ·)− γ̃({xk}, ·)) =

>

�
Nx

|xj − y|d (γ∗({xj , xk}, ·)− γ̃({xj , xk}, ·)) = 0,whih ontradits optimality of µM .Statement (1) easily follows from the fat that ondition 0 = |x∗j − x∗j | < |x∗j − x∗k|implies xj /∈ Xk, whih is holds for every k 6= j.To prove statement (2) suppose Xj is not an interval; equivalently there exist
xj , x

′
j ∈ Xj and xk ∈ (xj , x

′
j) suh that xk ∈ Xk. These assumptions imply followinginequalities: |xj−x∗j | < |xj−x∗k|, |x′j−x∗j | < |x′j−x∗k| and |xk−x∗j | > |xk−x∗k|. From the�rst two inequalities we have x∗k /∈ [xj , x

′
j ], whih ontradits the third inequality. Sine⋃M

i=1Xi = [0, 1] and x∗i ∈ Xi, then indeed a1 = 0 and aM+1 = 1.Statement (3) follows from the fat that ai+1 ∈ Xi and ai+1 ∈ Xi+1 hene neither
|ai+1 − x∗i | < |ai+1 − x∗i+1| nor |ai+1 − x∗i | > |ai+1 − x∗i+1| holds.De�nition 58. Let {Xi}Mi=1 be the transport domain division of interval [0, 1] orrespond-ing to an M-point disrete measure µM . If {Xi}Mi=1 = {[ai, ai+1]}Mi=1 and

0 = a1 < a2 < ... < aM < aM+1 = 1,then the sequene {a1, a2, ..., aM+1} is alled a transport partition of interval [0, 1] orre-sponding to µM .The following fat follows immediately from Lemma 46.Corollary 59. For a given sequene {ai}M+1
i=1 ⊂ [0, 1] and a positive ontinuous funtion fthe M-point approximation of f whih is optimal in the lass of measures whose transportpartition oinides with {ai}M+1

i=1 is given by
µM =

M∑

i=1

�
[ai,ai+1]

f(x)dx · δx∗
[ai,ai+1]

,where x∗[a,b] is the entral point of measure M (f)|[a,b], see De�nition 45.46



Proof. Let µM =
∑M

i=1miδxi
be the aforementioned M-point approximation and let

γ∗ ∈ Γ(µM ,M (f)) be the optimal transferene plan. We have
ρF (µM , f) =

�
[0,1]2
|x− y|dγ∗ =

M∑

i=1

�
[0,1]

|x− xi|dγ∗({xi}, ·) =

=

M∑

i=1

�
[ai,ai+1]

|x− xi|dγ∗({xi}, ·) =

M∑

i=1

�
[ai,ai+1]

|x− xi|dγ∗([0, 1], ·) =

=

M∑

i=1

�
[ai,ai+1]

f(x)|x− xi|dx =

M∑

i=1

ρF (µM |[ai,ai+1], f |[ai,ai+1]).Sine eah term an be optimized independently, miδxi
is the optimal 1-point approxima-tion of M (f)|[ai,ai+1] and therefore, aording to Lemma 46, xi = x∗[ai,ai+1]

is the entralpoint of measure M (f)|[ai,ai+1].De�nition 60. Let M ∈ N be a �xed natural number, and let {[ai, ai+1]}Mi=1 be a par-tition of the interval [0, 1]. Given a positive funtion f ∈ C[0, 1], we de�ne an operator
Φ : [0, 1]M−1 → [0, 1]M

X(a2, ..., aM) = (x∗[0,a2], x
∗
[a2,a3], ..., x

∗
[aM−1,aM ], x

∗
[aM ,1])and an operator Ψ : [0, 1]M → [0, 1]M−1

A(x1, x2, ..., xM) =

(
x1 + x2

2
,
x2 + x3

2
, ...,

xM−1 + xM

2

)
.It is lear that the optimal approximation of M (f) is uniquely de�ned by a partition of

[0, 1] and that eah partition uniquely de�nes a andidate for an optimal approximationby Corollary 59. The problem of �nding optimal approximation is therefore reduedto �nding an optimal partition a ∈ R
M−1. The main tool used in [68℄ is based onthe observation that A(X(a)) provides a better approximation than a, and onsequentlyneessary and su�ient onditions for the sequene ((A ◦X)n(a))∞n=1 to onverge to theoptimal partition are found. In the next part of this setion we introdue a method forimproving the onvergene rate of the optimization proess.De�nition 61. Let f ∈ C[0, 1] and let operator ω : [0, 1]M+1 → M[0, 1] transforms anypartition, {ai}M+1

i=1 , of the interval [0, 1] into the optimal M-point approximation in thelass of measures whose transport partition oinides with {ai}M+1
i=1 . We shall often write

µM
{ai}

instead of ω({ai}) for simpliity.De�nition 62. Let {ai}M+1
i=1 be a �xed partition of the interval [0, 1]. We de�ne a mapping

µ : {2, 3, ...,M} × [0, 1]→M[0, 1] by
µj,a = ω(a1, a2, ..., aj−1, a, aj+1, ...aM , aM+1).In other words µj,a is the value of ω at the point {ai}M+1

i=1 with aj substituted with
a ∈ [aj−1, aj+1]. 47



Figure 1.6: An example of ontinuous funtion, a four-point disrete approximation de-pited as blak dots, the orresponding transport partition, {ai}5i=1 of interval [0, 1] andoptimal transferene plan depited as horizontal arrows.

Notie that
µi,a =

M∑

j=1

mi,a
j δxi,a

j
,where

mi,a
j =





� aj+1

aj
f(x)dx for j /∈ {i− 1, i}� a

ai−1
f(x)dx for j = i− 1� ai+1

a
f(x)dx for j = i

and xi,a
j =





x∗[aj ,aj+1] for j /∈ {i− 1, i}
x∗[ai−1,a] for j = i− 1

x∗[a,ai+1] for j = i

.Theorem 63. Let {ai}M+1
i=1 be any inreasing sequene on [0, 1] with a1 = 0 and aM+1 = 1.Let f ∈ C[0, 1] be a positive funtion then for every i = 2, 3, ...,M it holds

d

da
ρF (µi,a, f)

∣∣∣∣
a=ai

= f(ai) [(ai − xi−1)− (xi − ai)] .Proof. De�ne ρ : (ai−1, ai+1)→ R as
ρ(a) = ρF (µi,a, f).To prove the theorem we show that ρ is di�erentiable by omputing the limit

ρ′(a) = lim
h→0

ρ(a+ h)− ρ(a)
h

.Let µi,a =
∑M

j=1m
i,a
j δxi,a

j
. From Theorem 11 we obtain
ρ(a) =

� 1

0

∣∣∣∣
� t

0

f(τ)dτ − µi,a[0, t]

∣∣∣∣ dt =48



=

� xi,a
i−1

ai−1

� t

ai−1

f(τ)dτdt+

� a

xi,a
i−1

� a

t

f(τ)dτdt+

� xi,a
i

a

� t

a

f(τ)dτdt+

� ai+1

xi,a
i

� ai+1

t

f(τ)dτdt+

+

�
[0,ai−1]∪[ai+1,1]

∣∣∣∣
� t

0

f(τ)dτ − µi,a[0, t]

∣∣∣∣ dt.From Corollary 59 and the de�nition of entral point of measure we obtain� xi,a
i−1

ai−1

f(t)dt =

� a

xi,a
i−1

f(t)dt and � xi,a+h
i−1

ai−1

f(t)dt =

� a+h

xi,a+h
i−1

f(t)dt,so by subtrating the left-hand side equation from the right-hand side one we get� xi,a+h
i−1

xi,a
i−1

f(t)dt =

� xi,a+h
i−1

xi,a
i−1

f(t)dt+

� a+h

a

f(t)dt.Consequently, � xi,a+h
i−1

xi,a
i−1

f(t)dt =

� xi,a+h
i

xi,a
i

f(t)dt =
1

2

� a+h

a

f(τ)dτ.Hene,
|xi,a+h

i − xi,a
i | ≤ h

supt∈[0,1] {f(t)}
2 inft∈[0,1] {f(t)} .We ompute

ρ(a+h)−ρ(a) =

� xi,a+h
i−1

ai−1

� t

ai−1

f(τ)dτdt+

� a+h

xi,a+h
i−1

� a+h

t

f(τ)dτdt+

� xi,a+h
i

a+h

� t

a+h

f(τ)dτdt+

+

� ai+1

xi,a+h
i

� ai+1

t

f(τ)dτdt−
� xi,a

i−1

ai−1

� t

ai−1

f(τ)dτdt−
� a

xi,a
i−1

� a

t

f(τ)dτdt+

−
� xi,a

i

a

� t

a

f(τ)dτdt−
� ai+1

xi,a
i

� ai+1

t

f(τ)dτdt =

= I1 + I2 + I3 + I4 − I5 − I6 − I7 − I8 =

=

� xi,a+h
i−1

xi,a
i−1

� t

ai−1

f(τ)dτdt−
� xi,a+h

i−1

xi,a
i−1

� a

t
f(τ)dτdt+

� xi,a+h
i

xi,a
i

� t

a+h
f(τ)dτdt−

� xi,a+h
i

xi,a
i

� ai+1

t
f(τ)dτdt+

+

� a+h

a

� a+h

t
f(τ)dτdt −

� a+h

a

� t

a
f(τ)dτdt +

[(
a− xi,a+h

i−1

)
−
(
xi,a

i − a
)]� a+h

a
f(τ)dτ =

= (I1−I5)+(I2−I6)1+(I3−I5)2+(I4−I8)+(I2−I6)2+(I3−I5)2+((I2 − I6) + (I3 − I5))3 .49



Notie that all the terms apart from ((I2 − I6) + (I3 − I5))3 are of order O(h2) sine
|xi,a+h

i − xi,a
i | = O(h). On the other hand,

lim
h→0

1

h

� a+h

a

f(τ)dτ = f(a),hene,
ρ′(a) = f(a)

[(
a− xi,a

i−1

)
−
(
xi,a

i − a
)]
.Corollary 64. Let {ai}M+1

i=1 be the transport partition orresponding to an optimal M-point approximation, µM =
∑M

i=1miδx∗
i
, of a positive ontinuous funtion f ∈ C[0, 1].Then for every i = 2, 3, ...,M it holds that

4 ≥ f(ai)

f(x∗i−1)
+
f(ai)

f(x∗i )
. (1.14)Proof. Theorem 63 guarantees that a 7→ ρF (µi,a, f) is a di�erentiable funtion and

d

da
ρF (µi,a, f) = f(a)

[(
a− xi,a

i−1

)
−
(
xi,a

i − a
)]
.By proposition 57 we have (ai − xi,ai

i−1

)
−
(
xi,ai

i − ai

)
= 0 and hene

d2

da2
ρF (µi,a, f)

∣∣∣∣
a=ai

= lim
h→0

f(ai + h)

h

[(
ai + h− xi,ai+h

i−1

)
−
(
xi,ai+h

i − ai − h
)]
.Sine

d

da
xi,a

i = lim
h→0

xi,a+h
i − xi,a

i

h
=

1

2

f(x)

f(xi,a
i )we obtain

d2

da2
ρF (µi,a, f)

∣∣∣∣
a=ai

= f(ai)

[
2− 1

2

f(ai)

f(xi,ai

i )
− 1

2

f(ai)

f(xi,ai

i−1)

]
.Sine {ai}M+1

i=1 orresponds to the optimal approximation of f we have
d

da
ρF (µi,a, f)

∣∣∣∣
a=ai

= 0and
d2

da2
ρF (µi,a, f)

∣∣∣∣
a=ai

≥ 0,whih proves the orollary.The following Corollary follows diretly from Theorem 63.50



Corollary 65. Let f ∈ C1[0, 1] be a positive funtion and M be a �xed natural number,then
d2

da2
i

ρF (µM
{ai}

M+1
i=1

, f) = f ′(ai)
[(
ai − x∗[i−1,i]

)
−
(
x∗[i,i+1] − ai

)]
+

+ f(ai)

[
2− f(ai)

2f(x∗[i−1,i])
− f(ai)

2f(x∗[i,i+1])

]
,

d2

dajdaj−1
ρF (µM

{ai}
M+1
i=1

, f) = −f(aj−1)f(aj)

2f(x∗[j−1,j])
,

d2

dajdak
ρF (µM

{ai}
M+1
i=1

, f) = 0 for k /∈ {j − 1, j, j + 1}.Remark 66. Theorem 63 and Corollary 65 allow appliation of Newton's optimizationalgorithm for �nding the optimal partition. Starting from any a
0 ∈ [0, 1]M−1 su�ientlylose to a loal minimum, the Newton's method provides a sequene {an}∞n=1 onvergingto the minimum with quadrati rate.The following proposition shows that the �xed point of A◦X is not neessarily unique.Consequently, in the general ase, neither the Newton's method nor the iterative methodhas to onverge to a global minimum.Proposition 67. There exists a positive ontinuous funtion f for whih funtion

{a2, a3, ..., aM} 7→ ρF (µM
{0,a2,..,aM ,1}, f)has more than one loal minimum.Proof. Consider a positive funtion f ∈ C1[0, 1], denote � i/N

(i−1)/N
f = fi and suppose thatfor N = 7 we have (fi)

7
i=1 = (2, 1, 1, 2, 3, 1, 4). It is easy to hek that in the lass of

2-point approximations both partitions {ai}3i=1 = {0, 3
7
, 1} and {a′i}3i=1 = {0, 4

7
, 1} satisfy

a2 − x∗[a1,a2] = x∗[a2,a3]
− a2,whih by Theorem 63 implies that both partitions are the extremum points of errorfuntion. Sine f is an arbitrary funtion it an be hosen so that the Hessian, de�ned as65, is positive de�ned.Corollary 68. Let f be a positive ontinuous funtion. A loal minimum, a ∈ R

M−1 offuntion {a2, a3, ..., aM} 7→ ρF (µM
{0,a2,..,aM ,1}, f) is a �xed-point of operator A ◦X.Proof. Let x = X(a). Sine a is a loal minimum, then all partial derivatives are equalto 0. Theorem 63 guarantees that (ai − xi−1)− (xi − ai), hene a = A(x).Together with Theorem 53 the following Proposition shows that very smooth funtionswith low osillation and measures with uniformly distributed atoms are those that are thehardest to approximate with disrete measures.51



Proposition 69. The optimal approximation of a onstant funtion f(x) = C on [a, b]has the error equal to
C(b− a)2

4N
.Proof. Let {ai}M+1

i=1 be the partition orresponding to the optimal approximation of f .Sine x∗[ai,ai+1]
= ai+ai1

2
from Theorem 11 we onlude that the ontribution to the errorfrom eah interval [ai, ai+1] equals

2

� (ai+ai+1)/2

ai

� t

ai

Cdτdt = 2C ·
� (ai+ai+1)/2−ai

0

tdt =
C

4
(ai+1 − ai)

2 ,so the total error of approximation is given by
C

4

N∑

i=1

(ai+1 − ai)
2.This value is minimized for equidistant partition points ai, for whih the error of theapproximation equals

C (b− a)
4N

2

.Disrete approximations in general annot guarantee an error of better order than
N−1. For some appliations it is desirable to approximate funtions with a di�erentlass measure to obtain lower error. The following theorems demonstrate advantages ofapproximation by N-step funtions (linear ombinations of N indiator funtions).Theorem 70. For every Lipshitz ontinuous funtion f there exists an N-step approxi-mation fN suh that

ρ(f, fN) ≤ Lip(f)

6
·N−2.Proof. Let fN be given by

fN =
N−1∑

i=0

(� i+1
N

i
N

f(x)dx

)1[ i
N

, i+1
N

],then by Lemma 20 and Lemma 39
ρF (f, gN) ≤

N−1∑

i=0

W (f |[ i
N

, i+1
N

] , f
N
∣∣
[ i
N

, i+1
N

]
).By Theorem 11

ρF (f, fN) ≤
N−1∑

i=0

� i+1
N

i
N

∣∣∣∣∣

� x

i
N

f(t)dt−
� x

i
N

fN(t)dt

∣∣∣∣∣ dx ≤
N−1∑

i=0

� i+1
N

i
N

� x

i
N

∣∣f(t)− fN(t)
∣∣ dtdx.52



By the mean value theorem for eah i ∈ {0, 1, .., N − 1} there exists ti, suh that f(ti) =
fN(ti), hene
ρF (f, fN) ≤

N−1∑

i=0

� i+1
N

i
N

� x

i
N

Lip(f) ·
(
t− i

N

)
dtdx ≤

N−1∑

i=0

Lip(f) · N
−3

6
=
Lip(f)

6
N−2.
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Chapter 2MKendrik-von Foerster equationIn the original MKendrik-von Foerster model the evolution of an age-struturedpopulation is desribed by a hyperboli partial di�erential equation in whih time and ageare the independent variables, see [56℄. MKendrik-von Foerster equation with nonlineargrowth, reprodution and mortality rates was studied in the framework of Lp spaes in [2℄,where onvergene of a �nite-di�erene sheme was proved. In this approah, however,it was neessary to make strong assumptions on parameters (e.g. growth rate needs tobe twie ontinuously di�erentiable with respet to strutural variable) and the �nite-di�erene sheme has some undesired properties, suh as a wrong propagation speed.In [48℄ a numerial sheme, based on disontinuous Galerkin method, was proposed toaddress problems in whih parameters are only pieewise regular.In this hapter we onsider measure-valued solutions to a MKendrik-von Foerstersystem [56℄, whih desribes the dynamis of a size-strutured populations with nonlineargrowth, reprodution and mortality rates. The framework of measure-valued solutions isnatural and bene�ial for the following main reasons:1. Singularities in a size-strutured population dynamis system are inherent. Underlow predation, for instane, individuals reah their maximum size with positiveprobability, whih in terms of population size-distribution an be expressed as aDira mass at the upper end point of the size range.2. Measurements in experimental setups are always disrete, hene any omparisonbetween mathematial models and empirial evidene requires tools for omparinggeneral distributions. Metris from funtion spaes, suh as Lp norms, may induemisleading results in the ase of high population onentration and low auray ofmeasurements.3. The notion of a ohort of individuals and its development in time an be formalized.4. The ability of solving the system for disrete measures is a basis for e�ient andhighly parallelizable algorithms suh as EBT (see Setion 2.2).55



2.1. PreliminariesIn order to generalize MKendrik-von Foerster model and de�ne measure-valued solutionsit is neessary to �nd an appropriate metri spae. In the ase of funtion-valued solutionthe obvious hoie, namely Lp(X), is a omplete Banah spae, whih allows a rangeof methods to be used for the analysis. In ontrast, the natural hoie for measure-valued solutions, namely (M(X), ρF ) is not omplete and its Banah ompletion onsistsof objets that are di�ult to interpret in terms of population distributions. In thefollowing onsiderations we fous on the ase of X ⊆ R
d and present fats that supportthe hoie of (M+(X), ρF ) as the spae of states for the model.Proposition 71. Norms ‖·‖ and ‖·‖F are not equivalent on M(X).Proof. Consider sequene µn = δn−1. We have that

2 = ‖µn − δ0‖ ≥ ‖µn − δ0‖F = n−1 → 0.Consequently, µn → δ0 in ‖·‖F , but not in ‖·‖.Proposition 72. The spae (M(X), ρF ) is not omplete.Proof. Sine (M(X), ‖·‖) is omplete and ‖·‖F is not equivalent to ‖·‖, the spae
(M(X), ρF ) annot be omplete.Example 73. An example of an objet from Banah ompletion of (M(X), ρF ) that isnot in M(X) an be onstruted as follows:Let µn =

∑n
k=1 δ2−k − nδ0. For n ≤ m we have that

ρF (µn, µm) = W

(
m∑

k=n+1

δ2−k , (m− n) δ0

)
=

m∑

k=n+1

2−k ≤ 2−n.Therefore, µn is a Cauhy sequene. It's easy to hek that no measure µ ∈ M(X) is alimit of µn.For the proof of the following proposition we refer to [80℄.Proposition 74. The spae (M+(X), ρF ) is omplete and separable.The measure-valued model of MKendrik-von Foerster is onsidered in the spae
(M+(X), ρF ). Hene, the predition of population dynamis in time is onsidered as afuntion of time, [0, T ], with values in M

+(X). Model parameters, whih de�ne growth,mortality and birth proesses, are given by funtions g,m, β : [0, T ]×M
+(X)→ C0,1(X)respetively. Values g(t, µ)(s), m(t, µ)(s) and β(t, µ)(s) are interpreted as individualgrowth rate, mortality rate and reprodution rate of an individual of size s, belongingto a population with struture µ at a time point t.We restrit our farther onsiderations to X = [smin, smax]. Without loss of generalitywe assume smin = 0. Presented results an be generalized to the ase of X = [smin,∞).It is, however, beyond the sope of this thesis.56



De�nition 75. By MKendrik-von Foerster model of size-strutured population we un-derstand the system




∂tu+ ∂s(g(t, u)u) +m(t, u)u = 0 for t ∈ T
g(t, u)(0) (DLR

u(t)) (0) =
� smax

0
β(t, u)(s)u(ds)

u(0) = u0 ∈M
+[0, smax] ,

(2.1)where DLR
denotes Radon-Nikodym derivative with respet to Lebesgue measure on R.We investigate solutions u : [0, T ] → M

+[0, smax] under following onditions on pa-rameters:Condition 76. Assume1. g,m, β ∈ C0,1
b ([0, T ]×M

+[0, smax];C
0,1[0, smax]),2. for every s ∈ [0, smax) it holds that g(t, u)(s) > 0 and g(t, u)(smax) = 0.Notation 77. For a given funtion f ∈ C0,1

b ([0, T ]×M
+[0, smax];C

0,1[0, smax]) denote
‖f‖P = sup

µ∈M+[0,smax]
t∈[0,T ]

‖f(t, µ)‖C0,1[0,smax] + sup
t∈[0,T ]

Lip (f(t, ·)) + sup
µ∈M+[0,smax]

Lip (f(·, µ))Following [35℄ we introdue the notion of weak solution.De�nition 78. By the weak solution to system 2.1 we mean a weak-* ontinuous mapping
u : [0, T ] → M

+[0, smax] suh that for every test funtion ϕ ∈ C1 ([0, T ]× [0, smax]) itholds that
〈u(T ), ϕ(T, ·)〉 − 〈u0, ϕ(0, ·)〉 =

� T

0

〈u(t), ϕ(t, 0)β(t, u(t))〉dt+

+

� T

0

〈u(t), ∂tϕ(t, ·) + g(t, u(t))∂sϕ(t, ·)−m(t, u(t))ϕ(t, ·)〉 dt.Theorem 79. Suppose funtions g,m, β : [0, T ]×M
+[0, smax] → ([0, smax]→ R) satisfyCondition 76, then there exists a unique weak solution, u ∈ C0,1

b ([0, T ]; M+[0, smax]) tosystem (2.1). Moreover,1. For every 0 ≤ t1 ≤ t2 ≤ T there exist onstants C1, C2 suh that
ρF (u(t1), u(t2)) ≤ C1e

C1(t2−t1) ‖u0‖ (t1 − t2).2. Let u0, ũ0 ∈M
+[0, smax] and g, g̃,m, m̃, β, β̃ satisfy Condition 76. Let u(t) and ũ(t)solve system (2.1) for parameters (g,m, β) and (g̃, m̃, β̃) respetively. There existonstants C1, C2, C3 suh that for every t ∈ [0, T ] it holds that

ρF (u(t), ũ(t)) ≤ eC1tρF (u0, ũ0) + C2e
C3t
∥∥∥(g,m, β)− (g̃, m̃, β̃)

∥∥∥
C0,1[0,1]

.57



For the proof we refer to Theorem 2.13 in [74℄.De�nition 80. Let (E, ρ) be a metri spae. A bounded operator
S : E × [0, δ] × [0, T ] → E is alled a Lipshitz semi�ow if the following onditionsare satis�ed:1. S(0, τ) = Id for τ ∈ [0, T ],2. S(t+ s, τ) = S(t, τ + s)S(s, τ) for τ, s, t ∈ [0, T ] suh that τ + s + t ≤ T ,3. ρ(S(t, τ)µ, S(s, τ)ν) ≤ L · (ρ(µ, ν) + |t− s|) for s, t ∈ [0, T ] and some onstant L.The Lipshitz onstant of S, Lip(S), is the smallest value of L for whih the third onditionholds.The following orollary results from Theorem 79.Corollary 81. Suppose funtions g,m, β : [0, T ]×M

+[0, smax]→ ([0, smax]→ R) satisfyCondition 76, and u(t) is the weak solution to system (2.1). There exists a Lipshitzsemi�ow S : M
+[0, smax]× [0, T ]× [0, T ]→M

+[0, smax] suh that
S(t2 − t1, t1)u(t1) = u(t2)for every t1, t2 ∈ [0, T ].The following proposition, provides a generalization of the harateristi method, formeasure-valued solutions. The result is not surprising, but seems to be absent in theliterature.Theorem 82. Suppose funtions g,m, β : [0, T ]×M

+[0, smax] → ([0, smax]→ R) satisfyCondition 76, and u(t) is the weak solution to system (2.1). Let u(t0)([a0, b0]) = n0 forsome 0 ≤ a0 ≤ b0 ≤ smax, then
u(t)([a(t), b(t)]) = n0 −

� t

t0

� b(t)

a(t)

m(τ, u(τ))(x) · u(τ)(dx)dτfor
a(t) = a0 +

� t

t0

g(τ, u(τ))(a(τ))dτ, (2.2)
b(t) = b0 +

� t

t0

g(τ, u(τ))(b(τ))dτ.Proof. For 1≫ ε > 0 hoose ψε
0 ∈ C1[0, smax] suh that

ψε
0(x) =

{
1 if x ∈ [a0, b0]

0 if x ≤ a0 − ε or x ≥ b0 + ε
.58



Let ψε ∈ C1 ([t0, t1]× [0, smax]) be a solution to




∂
∂t
ψε(t, x) + g(t, u(t))(x) ∂

∂x
ψε(t, x) = 0 on [t0, t1]× [0, smax]

ψε(t0, ·) = ψε
0

ψε(·, 0) = 0

. (2.3)and for every x ∈ [0, smax] let lx(t) satisfy
{

d
dt
lx(t) = g(t, u(t))(lx(t))

lx(t0) = x .From the usual harateristi method for lassial solutions to (2.3) we obtain
ψε(t, lx(t)) = ψε(t0, x).Finally let ϕε ∈ C1 ([0, T ]× [0, smax]), be an extension of ψε satisfying

ϕε(t, x) =





ψε(t, x) if t ∈ [t0, t1]

0 if t ≤ t0 − ε or t ≥ t1 + ε

0 if x ≤ la0−ε(t) or x ≥ lb0+ε(t)

.We also require that | ∂
∂t
ϕε(t, x)| ≤ 2ε−1 and | ∂

∂x
ϕε(t, x)| = 0 for

t ∈ [t0 − ε, t0] ∪ [t1, t1 + ε].Additionally, we hoose ∂
∂t
ϕε(t, x) to be equal 1

ε
and −1

ε
on [la0(t0), lb0(t0)] × U0 and

[la0(t1), lb0(t1)] × U1 respetively, where U0 ⊂ [t0 − ε, t0] and U1 ⊂ [t1, t1 + ε] are someintervals suh that |U0| ≤ ε(1− ε), |U1| ≤ ε(1− ε).For every t ∈ [t0, t1] funtion ϕε(t, ·) is supported on [la0−ε(t), lb0+ε(t)]. Sine
d

dt
(lb0+ε(t)− lb0(t)) = g(t, u(t)) (lb0+ε(t))− g(t, u(t)) (lb0(t)) ≤

≤ Lip (g(t, u(t))) · (lb0+ε(t)− lb0(t))we have that
[la0−ε(t), lb0+ε(t)] ⊆ [la0(t)− C1ε, lb0(t) + C1ε]for

C1 = exp

(
T · sup

t∈[t0,t1]

Lip(g(t, u(t)))

)
.Choose ε > 0 suh that 0 ≤ t0 − ε ≤ t1 + ε ≤ T . By the de�nition of weak solution to(2.1) for test funtion ϕε we have that

0 =

� T

0

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 − 〈u(t), m(t, u(t))ϕε(t, ·)〉 dt,59



hene� t1+ε

t0−ε

〈u(t), m(t, u(t))ϕε(t, ·)〉 dt =

� t0+ε

t0

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt+

+

� t1+ε

t1

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt.By the dominated onvergene theorem
lim
ε→0
〈u(t), m(t, u(t))ϕε(t, ·)〉 =

� smax

0

m(t, u(t))1[la0(t),lb0 (t)]u(t)(dx),thus
lim
ε→0

� t1+ε

t0−ε

〈u(t), m(t, u(t))ϕε(t, ·)〉 dt =

� t1

t0

� lb0(t)

la0(t)

m(t, u(t))(x) · u(t)(dx)dt.On the other hand,� t1+ε

t1

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt =

� t1+ε

t1

〈u(t), ∂tϕε(t, ·)〉 dtand
lim
ε→0

� t1+ε

t1

〈u(t), ∂tϕε(t, ·)〉 dt = lim
ε→0

�
U1

〈u(t), ∂tϕε(t, ·)〉 dt+
�

[t1,t1+ε]\U1

〈u(t), ∂tϕε(t, ·)〉 dt =

= lim
ε→0

−1

ε

� t1+ε

t1

� lb0 (t)

la0(t)

u(t)(dx)dt+

�
[t1,t1+ε]\U1

〈u(t), ∂tϕε(t, ·)〉 dt.Sine∣∣∣∣
�

[t1,t1+ε]\U1

〈u(t), ∂tϕε(t, ·)〉 dt
∣∣∣∣ ≤ ε2· sup

t∈[t1,t1+ε]

〈u(t), ∂tϕε(t, ·)〉 ≤ ε2·2ε−1· sup
t∈[0,T ]

u(t)([0, smax])we have that
lim
ε→0

� t1+ε

t1

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt = − lim
ε→0

1

ε

� t1+ε

t1

� lb0 (t)

la0(t)

u(t)(dx)dt.From weak-∗ ontinuity of u with respet to time variable, we obtain� t1+ε

t1

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt→ −
� lb0 (t1)

la0(t1)

u(t1) (dx) ,and by the same arguments� t0+ε

t0

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt→
� lb0 (t0)

la0(t0)

u(t0) (dx) .Sine x(t) = lx0(t) we obtain that for every t0 ≤ t1 < T it holds that
u(t1) ([la0(t1), lb0(t1)]) = u(t0) ([a0, b0])−

� t1

t0

� lb0(t)

la0(t)

m(t, u(t))(x) · u(t)(dx)dt,whih ompletes the proof. 60



Proposition 83. Suppose funtions g,m, β : [0, T ]×M
+[0, smax]→ ([0, smax]→ R) sat-isfy Condition 76, and u(t) is the weak solution to system (2.1). If l1(t) is the solutionof {

d
dt
l1(t) = g(t, u(t)) (l1(t))

l1(0) = 0 ,then u(t1) is absolutely ontinuous on [0, l1(t1)] with respet to the Lebesgue measure.Proof. It is su�ient to prove that for some onstant C and every pair a, b ∈ [0, l1(t1)] itholds that
u(t1)([a, b]) ≤ C · |b− a|.Let ls(t) be the solution of

{
d
dt
ls(t) = g(t, u(t)) (ls(t))

ls(t1) = s
.Sine for every x ∈ [0, smax) the value of g(t, u(t))(x) is stritly positive, then for every

s ∈ [0, l1(t1)] there exists an instant of time, 0 ≤ t0(s) ≤ t1, suh that ls(t0(s)) = 0.For 1≫ ε > 0 hoose ψε
0 ∈ C1[0, T ] suh that

ψε
0(t) =

{
1 if t ∈ [t0(a), t0(b)]

0 if t ≤ t0(a)− ε or t ≥ t0(b) + ε
.Let ψε ∈ C1 ([t0, t1]× [0, smax]) be a solution to





∂
∂t
ψε(t, x) + g(t, u(t))(x) ∂

∂x
ψε(t, x) = 0 on [0, t1]× [0, smax]

ψε(·, 0) = ψε
0

ψε(0, ·) = 0

. (2.4)Let ϕε ∈ C1 ([0, T ]× [0, smax]), be an extension of ψε satisfying
ϕε(t, x) =

{
ψε(t, x) if t ∈ [0, t1]

0 if t ≥ t1 + ε
.Similarly as in the proof of 82 we require that | ∂

∂t
ϕε(t, x)| ≤ 2ε−1 and | ∂

∂x
ϕε(t, x)| = 0for t ∈ [t0 − ε, t0] ∪ [t1, t1 + ε]. Additionally, we hoose ∂

∂t
ϕε(t, x) to be equal 1

ε
and

−1
ε
on [la0(t0), lb0(t0)] × U0 and [la0(t1), lb0(t1)] × U1 respetively, where U0 ⊂ [t0 − ε, t0] and

U1 ⊂ [t1, t1 + ε] are some intervals suh that |U0| ≤ ε(1 − ε), |U1| ≤ ε(1 − ε). By thede�nition of weak solution to (2.1) for test funtion ϕε we have that
0 =

� T

0

〈u(t), ∂tϕ
ε(t, ·) + g(t, u(t))∂sϕ

ε(t, ·)−m(t, u(t))ϕε(t, ·)〉 dt+

+

� T

0

〈u(t), ψε
0(t)β(t, u(t))〉 dt.61



and onsequently
0 ≤

� T

0

〈u(t), ∂tϕ
ε(t, ·) + g(t, u(t))∂sϕ

ε(t, ·)〉 dt+ ‖β‖P ·
� t0(b)+ε

t0(a)−ε

u(t)([0, smax])dt.Passing with ε→ 0 we obtain
u(t1)([a, b]) ≤ ‖β‖P · sup

t∈[0,T ]

u(t)([0, smax]) · |t0(b)− t0(a)|,whih ompletes the proof sine t0(·) is a Lipshitz ontinuous funtion.De�nition 84. By a stationary state we mean the value, µ, of a solution
u : [0, T ] → M

+[0, smax] whih is not dependent on time, namely µ = u(t) for every
t ∈ [0, T ].The following lemma states that even in the general framework of measure-valuedsolutions all possible stationary states are absolutely ontinuous under some reasonablyweak onditions.Lemma 85. Suppose funtions g,m, β : [0, T ] ×M

+[0, smax] → ([0, smax]→ R) satisfyCondition 76, and µ ∈M
+[0, smax] is a stationary state of system (2.1). If

m(t, µ)(smax) > 0for some t ∈ [0, T ], then µ is absolutely ontinuous with respet to Lebesgue measure.Proof. Let µ be a stationary state of equation (2.1) and let l1(t) : R
≥0 → [0, smax] bede�ned as in Theorem 83. Sine g(t, µ)(x) > 0 for every x < smax we obtain that

lim
t→∞

l1(t) = smax.By Theorem 83 solution u(t) to (2.1) is absolutely ontinuous on [0, l1(t)]. Consequently,the stationary state, µ = u(t), is absolutely ontinuous on interval [0, smax). It impliesthat µ = µac + msmax
δsmax

, where µac is absolutely ontinuous with respet to Lebesguemeasure. By Theorem 82 we obtain that
msmax

= msmax

(
1−

� t2

t1

m(τ, µ)(smax)dτ

)
.Therefore either msmax

= 0 or m(t, µ) (smax) = 0 for all t.The following lemma provides a haraterization of demographi trends in stationarystate.Lemma 86. Suppose funtions g,m, β : [0, T ] ×M
+[0, smax] → ([0, smax]→ R) satisfyCondition 76, and µ ∈ M

+[0, smax] is a stationary state of system (2.1) then for every
t ∈ [0, T ] it holds that 〈µ,m(t, µ)〉 = 〈µ, β(t, µ)〉.62



Proof. Let u be a weak solution to (2.1). For a test funtion, being a standard regular-ization of
ϕ(t, s) =

{
1 t ∈ [t0, t1]

0 otherwise ,the de�nition of weak solution implies
u(t1)([0, smax])− u(t0)([0, smax]) =

� t1

t0

〈u(t), β(t, u(t))〉 dt−
� t1

t0

〈u(t), m(t, u(t))〉 dt.Regularization and passing to the limit is explained in detail in the proof of Theorem 82.Sine u(t1) = u(t0) = µ we have that for any t0, t1 ∈ R
≥0� t1

t0

〈µ, β(t, u(t))〉 dt =

� t1

t0

〈µ,m(t, u(t))〉 dt,hene, 〈µ, β(t, u(t))〉 = 〈µ,m(t, u(t))〉 for every t.2.2. Partile methodsPartile methods is an umbrella term for a wide lass of numerial shemes for �rst orderhyperboli equations. The onept is to approximate the initial onditions by a largenumber of partiles and trak eah of the partiles separately. In this setion we fous onEsalator Boxar Train (EBT) algorithm for solving MKendrik-von Foerster equationwith non-loal terms re�eting the impat of the whole population on individual birth,growth and death proesses. EBT was �rst introdued in [15℄ where it was used as aheuristi approah based on the intuition that a ontinuously distributed population anbe studied as a olletion of ohorts. Rigorous proof of onvergene of this sheme [9℄ andthe analysis of the order of onvergene (see [34℄) was possible after developing ertaintools for the spae of measures and Lipshitz semi�ows.In Setion 2.2.1 a summary of results from [34℄ is presented. Author's ontributionto this joint paper was limited to simplifying the proofs, implementing the shemes andrunning numerial tests. Notie that numerial omparison of results requires an imple-mentation of the algorithm desribed in Setion 1.3.4. Three improvements to standardEBT algorithm, whih arise from the onsiderations of Setion 1.5, are presented in Se-tion 2.2.3.2.2.1. EBT algorithmPartile methods in their priniple are based on approximating a solution to partial dif-ferential equation by a sum of Dira masses and traking eah mass in time. The mainhallenge, as it will beome lear after reading this setion, is handling the boundaryonditions. A number of methods for traking boundary ohorts has already been devel-oped, and three of them (original EBT, EBT with simpli�ed boundary onditions andSplit-Up algorithm) are ompared in [34℄, where no signi�ant di�erenes in the rate of63



Figure 2.1: Visualization of the sEBT algorithm

onvergene were found. In this setion we summarize methods and results used in theanalysis of partile algorithms for transport equations with non-loal terms.We restrit our onsiderations to equation (2.1) with
g,m, β ∈ C0,1

b

(
[0, T ]×M+[0, smax];C

0,1[0, smax]
)and u0 ∈ M[0, smax] with possibly in�nite smax. We shall also fous on one of the algo-rithms analyzed in [34℄, namely on the EBT algorithm with simpli�ed boundary ondi-tions, abbreviated to sEBT. Analysis of other algorithms is very similar and the orderof onvergene is idential. Numerial results for all three methods are ompared inSetion 2.2.2.The main idea of the sEBT method is to approximate the initial onditions

u0 ∈ M
+[0, smax] by a disrete measure µ0 =

∑N
i=1mi(0)δxi(0) and �trak� position andmass of eah Dira delta (see Figure 2.1). In the ase of (2.1) the following ODE systemis used for the traking

{
d
dt
xi(t) = g(t,

∑
i∈I mi(t)δxi(t))(xi(t))

d
dt
mi(t) = −m(t,

∑
i∈I mi(t)δxi(t))(xi(t)) ·mi(t)

(2.5)with I being the set of indies. Boundary onditions are dealt with separately. A newboundary ohort is reated every ∆t > 0 of time, and the previous boundary ohortbeomes an internal ohort traked by (2.5). Boundary ohorts, on the other hand, are64



traked by the following equation




d
dt
xB(t) = g(t,

∑
i∈I mi(t)δxi(t))(xB(t))

d
dt
mB(t) = −m(t,

∑
i∈I mi(t)δxi(t))(xB(t)) ·mi(t) +

∑
i∈I β(t,

∑
i∈I mi(t)δxi(t))(xi(t))mi(t)

xB(k∆t) = mB(k∆t) = 0 .(2.6)The set of indies, I, initially onsists of the boundary ohort index, B, and N indies ofatoms in the initial approximations, see Figure 2.1. Therefore at time t ∈ [k∆t, (k + 1)∆t]we have
I = {B, 1, 2, ..., k, k + 1, k + 2, ..., k +N}.For a given µ ∈M[0, smax] and t0 ∈ R

≥0 let v be a weak solution of (2.1) with initialonditions posed by µ at time t0, namely




∂tv + ∂s(g(t, v)v) +m(t, v)v = 0

g(t, v)(0) (Dλv(t)) (0) =
� smax

0
β(t, v)(s)v(ds)

v(t0) = µ .By Corollary 81 operator
# : M

+[0, smax]× [0, T ]× [0, T ]→M
+[0, smax]de�ned as

µ#t1
t0 = v(t1)is a Lipshitz semi�ow.Remark 87. Lipshitz onstant of semi�ow # depends on T .Notation 88. We denote the outome of the sEBT algorithm at t1 starting from initialonditions µ at t0 is denoted by µ⋆

t1
t0 .Lemma 89. The outome of the sEBT algorithm is a Lipshitz ontinuous measure-valuedfuntion, namely for any µ ∈M

+
d [0, smax] and t0 ∈ R

≥0 it holds that
µ⋆·

t0 ∈ Lip
(
[0, T ]; M

+[0, smax]
)
.Proof. Lipshitz ontinuity of funtions xi(t), mi(t) for i ∈ {B, 1, 2, ..., N} stems from theboundedness of parameters g,m, β. Let t1, t2 ∈ (t0, T ], then

ρF

(
µ⋆

t1
t0 , µ⋆

t2
t0

)
≤

N∑

i=B

ρF (mi(t1)δxi(t1), mi(t2)δxi(t2)) + γ,where γ is the total amount of newborn individuals added to the boundary ohorts between
t1 and t2. Consequently, by Lemma 19

ρF

(
µ⋆

t1
t0 , µ⋆

t2
t0

)
≤

N∑

i=B

|mi(t1)−mi(t2)|+
N∑

i=B

|xi(t1)− xi(t2)|mi(t2) + γ ≤65



Figure 2.2: Corollary 91 provides a method of estimating the error of sEBT sheme on
[0, T ], namely ρF (u0⋆

T
0 , u0#

T
0 ), by studying the error on arbitrary small intervals [τ, τ+h].

≤ |t1 − t2|max

(
1,

N∑

i=B

mi(t2)

)(
sup

i∈{B,1,...,N}
‖mi(·)‖C0,1[t0,t1] + sup

i∈{B,1,...,N}
‖xi(·)‖C0,1[t0,t1]

)
+ γ.Finally, by equation (2.6), γ an be estimated by C(T ) · ‖β‖P |t1 − t2|.Auray of the sEBT algorithm in �at metri, namely ρF (u0#

T
0 , u0⋆

T
0 ), an be es-timated from the following theorem (proof an be onduted analogously to the proof ofTheorem 2.9 in [10℄).Theorem 90. Let S : E× [0, δ]× [0, T ]→ E be a Lipshitz semi�ow. For every Lipshitzontinuous map T : [0, T ]→ E the following estimate holds

ρ (T (t), S(t; 0)T (0)) ≤ Lip(S) ·
� t

0

lim inf
h→0

ρ (T (τ + h), S(h, τ)T (τ))

h
dτ.Sine # is a Lipshitz semi�ow, Theorem 90 an be applied to the proess of populationdynamis, #, and the sEBT algorithm, ⋆. The idea hidden behind the following Corollaryis depited on Figure 2.2.Corollary 91. Let u0 ∈M

+
d [0, smax] and t ∈ [0, T ] then

ρF (u0⋆
t
0, u0#

t
0) ≤ tLip(#) sup

τ∈[0,T ]

lim inf
h→0

ρF

(
u0⋆

τ+h
0 , (u0⋆

τ
0)#τ+h

τ

)

h
.66



Theorem 92. Let u0⋆
τ
0 = µ ∈M

+
d [0, smax] be the outome of sEBT algorithm with timestep ∆t, then for some onstant C1(T ) it holds that

lim inf
h→0

ρF

(
µ⋆τ+h

τ , µ#τ+h
τ

)

h
= C1(T )∆t.Proof. Let µ =

∑
i∈I mi(τ)δxi(τ). By Proposition 83 measure µ#τ+h

τ deomposes to a dis-rete part∑i∈I ni(τ + h)δyi(τ+h) and an absolutely ontinuous measure, M (f(τ + h)(·)).Moreover, for every t funtion f(t)(·) ∈ L1[0, smax] is supported on [0, l1(t)]. By Lemma 20and Lemma 19 there holds
ρF

(
µ⋆τ+h

τ , µ#τ+h
τ

)
≤

∑

i∈I\{B}

|mi(τ + h)− ni(τ + h)|+ (2.7)
+

∑

i∈I\{B}

|xi(τ + h)− yi(τ + h)|ni(τ + h) + (2.8)
+ ρF (mBδxB

, nBδyB
+ M (f(τ + h)(·))). (2.9)The �rst two terms orrespond to the error resulting from non-loal oe�ients b and c.The last term stems from the approximation of a ontinuous funtion near the boundaryby a 1-point disrete measure. Sine the asymptoti behavior of l1 for h→ 0 is given by

l1(h) = Θ(h) and xB, yB may range in [0, ‖g‖P ∆t], it follows that the ontribution of thelast term in (2.7) to the total error annot be estimated from below by a smaller value
Θ(h∆t). Indeed, the entral point (see De�nition 45) of measure nBδyB

+M (f(τ +h)(·))tends to yB with h → 0, and onsequently the error of optimal approximation tends to
∆t

� smax

0
f(τ + h)(s)ds. It an be then shown that remaining terms in (2.7) are of order

h2 (see [34℄ for details). Consequently we obtain
ρF

(
µ⋆τ+h

τ , µ#τ+h
τ

)
= O(h∆t).Theorem 93. Let u0 ∈M

+[0, smax] then for any µ0 ∈M
+
d [0, smax] it holds that

ρF (µ0⋆
T
0 , u0#

T
0 ) ≤ C1(T )∆t+ C2(T )ρF (µ0, u0).Proof. Let µ0 ∈ M

+
d [0, smax] be an initial approximation of u0. By Theorem 79 andCorollary 91 we dedue that

ρF (µ0⋆
T
0 , u0#

T
0 ) ≤ ρF (µ0⋆

T
0 , µ0#

T
0 ) + ρF (µ0#

T
0 , u0#

T
0 ) ≤ C1(T )∆t+ C2(T )ρF (µ0, u0).Constant C2 depends on T sine Lip(#) depends on T .2.2.2. Numerial testsIn this setion numerial tests of onvergene and e�ieny of three algorithms desribedin [34℄ are presented. The shemes: Esalator Boxar Train algorithm with simpli�ed67



Figure 2.3: CPU time required to ahieve given auray.
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boundary onditions (sEBT), original Esalator Boxar Train algorithm (EBT) and split-up algorithm (SU) are very similar in essene but di�er from eah other in the methodof handling the boundary ohorts. The results presented in Setion 2.2.1 for the sEBTalgorithm are easily transferable to the ase of SU and EBT.The numerial simulations show that no major di�erenes in auray nor perfor-mane are apparent. The tests also on�rm the theoretial order of onvergene provedin Theorem 93.The tests were onduted on the following datasets on X = [0, 1]:1. In the �rst test ase we onsider a problem with the initial ondition taken at a stablestationary state. The aim of the test is to hek auray of the approximation of thein�ux modeled by the boundary ohort. We hoose the following model parameters:
g(s) = 0.2 (1− s)
m(s) = 0.2

β(s) = 2.4
(
s2 − s3

)
.The exat solution is u(t) = L[0,1].2. The seond example is taken from the referene [46℄. The aim of this test is to studyin�uene of non-loal terms on the results for the three algorithms. We take modelparameters given by the following funtions

g(s) = e−s

m(s) = 1 + e−s +
e−s sin(s)

2 + cos(s)

β(u)(s) =
3

2 + cos(s)
· 0.5 + (1 + 0.5 sin(1))e−t

0.5 + 〈u, 1〉68



The exat solution of the model is u(t) = e−t(1 + 0.5 cos(x))L[0,1].The error of numerial sheme was omputed using the algorithm desribed in Se-tion 1.3.4 as
− log2 (ρF (µ(1), u(1))) ,where µ(t) is the output of the sheme and u(t) is the exat solution.Figure 2.3 shows the e�ieny of EBT algorithms (amount of time required by theentral proessing unit to obtain desired auray). Eah point at the plot represents asimulation for a 2i-point equidistant approximation of initial onditions and ∆t = 2−kwith i, k ∈ {2, 3, ..., 19}. The points farthest to the right (high auray) orrespond tothose simulations for whih k was lose to i. No signi�ant di�erene in e�ieny betweenalgorithms ould be found.Figure 2.4 presents the auray of EBT algorithms as a funtion of the number ofinitial nodes, I, and boundary ohorts, K. It is lear from the plots that the ratio 1 : 1of initial nodes and boundary ohorts provides the smallest error.Tables 2.1 and 2.2 provide detailed results and on�rm linear order of onvergene ofthe algorithms with respet to ∆t. The empirial order of onvergene is de�ned as

log2

e I
2

eI
,where eI is the error of the numerial sheme for I initial nodes and I

4
boundary ohorts.Table 2.1: Test Case 1. Numerial error and order of onvergene measured in �at metri. Number ofboundary ohorts equals I/4.sEBT EBT SUI Error Order Error Order Error Order16 1.53e-02 1.03 1.31e-02 1.02 1.49e-02 1.0432 7.56e-03 1.02 6.56e-03 1.00 7.96e-03 0.9064 3.76e-03 1.01 3.28e-03 1.00 4.14e-03 0.94128 1.88e-03 1.00 1.64e-03 1.00 2.11e-03 0.97256 9.36e-04 1.00 8.20e-04 1.00 1.07e-03 0.99512 4.68e-04 1.00 4.10e-04 1.00 5.36e-04 0.991024 2.34e-04 1.00 2.05e-04 1.00 2.68e-04 1.002048 1.17e-04 1.00 1.03e-04 1.00 1.34e-04 1.004096 5.84e-05 1.00 5.13e-05 1.00 6.73e-05 1.008192 2.92e-05 1.00 2.56e-05 1.00 3.36e-05 1.0016384 1.46e-05 1.00 1.28e-05 1.00 1.68e-05 1.0032768 7.30e-06 1.00 6.41e-06 1.00 8.41e-06 1.0065536 3.65e-06 1.00 3.20e-06 1.00 4.21e-06 1.00131072 1.83e-06 1.00 1.60e-06 1.00 2.10e-06 1.00262144 9.13e-07 1.00 8.01e-07 1.00 1.05e-06 1.00524288 4.56e-07 1.00 4.01e-07 1.00 5.26e-07 1.001048576 2.28e-07 1.00 2.00e-07 1.00 2.63e-07 1.0069



Figure 2.4: Full map of errors for test ase 1 (left) and test ase 2 (right) and algorithmsEBT (top), EBT (enter), SU (bottom). The plots show the dependene of numerialerror in �at metri (Y axis) upon number of initial nodes I (X axis) and the ratio K
I(olor). The solid line represents the auray of I-point equidistant approximation ofthe exat solution.
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Table 2.2: Test Case 2. Numerial error and order of onvergene measured by �at metri. Number ofboundary ohorts equals I/4.sEBT EBT SUI Error Order Error Order Error Order16 6.09e-02 1.12 6.25e-02 1.12 1.29e-01 0.8232 3.67e-02 0.73 3.92e-02 0.67 5.72e-02 1.1764 1.63e-02 1.17 1.72e-02 1.19 3.06e-02 0.90128 9.32e-03 0.81 1.01e-02 0.77 1.40e-02 1.13256 5.02e-03 0.89 5.41e-03 0.90 6.78e-03 1.04512 2.27e-03 1.15 2.46e-03 1.14 3.52e-03 0.951024 1.19e-03 0.93 1.29e-03 0.94 1.72e-03 1.032048 6.37e-04 0.90 6.87e-04 0.91 8.42e-04 1.034096 2.92e-04 1.12 3.18e-04 1.11 4.33e-04 0.968192 1.56e-04 0.91 1.69e-04 0.91 2.12e-04 1.0316384 6.97e-05 1.16 7.59e-05 1.15 1.11e-04 0.9432768 3.54e-05 0.98 3.85e-05 0.98 5.48e-05 1.0165536 1.83e-05 0.95 1.99e-05 0.96 2.70e-05 1.02131072 9.74e-06 0.91 1.05e-05 0.91 1.32e-05 1.03262144 4.35e-06 1.16 4.74e-06 1.15 6.91e-06 0.942.2.3. Improvements of sEBT algorithmIn this setion three improvements to sEBT algorithm, analyzed in Setion 2.2.1 and Se-tion 2.2.2, are presented. The �rst improvement is an appliation of the theory developedin Setion 1.5.3 to redue the error of initial ondition approximation. The seond modi�-ation makes use of the result of Theorem 51 to redue omplexity of the sheme. Finally,motivated by the result of Theorem 70 we show how the rate of onvergene of the sEBTalgorithm an be improved if the birth proess is approximated by step funtions insteadof Dira masses.2.2.3.1. Initial onditionsSine by Theorem 93 the auray of sEBT algorithm is restrited by the time step ∆tand the error of the approximation of initial onditions, namely
ρF (µ0⋆

T
0 , u0#

T
0 ) ≤ C1(T )∆t+ C2(T )ρF (µ0, u0),it is natural to apply the results of Setion 1.5.3 to redue the latter fator. From Propo-sition 69 it is lear, that in the worst ase

C2ρF (µ0, u0) = O(∆x),where ∆x is the maximum distane between two atoms of the initial approximation, µ0.Yet onsiderable improvement an be ahieved if u0 is a muliti-hump funtion.71



Figure 2.5: a) funtion f(x) and its optimal transport partition, b) phase portrait oftransport partitions in Newton's method, ) ρF (f, µa) as a funtion of the �rst non-zeropoint of transport partition, a2.
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In the farther onsiderations we will use the following funtion, f : [0, 1]→ R
+, as anillustration for the analyzed tools:

f(x) = (1− x)2 sin
(
10
√
x
)6

+ 10−3.Funtion f and its optimal transport partition for N = 3 are depited on Figure 2.5a (seeSetion 1.5.3).Theorem 63 and Corollary 65 provide su�ient haraterization of the error funtionfor Netwon's method to be implemented. Sine a1 = 0 and aN+1 = 1 are �xed, thealgorithm �nds the minimum argument of the error inN−1 dimensional spae. For a givenpoint a
n ∈ [0, 1]N−1 Newton method provides a supposedly better point a

n+1 ∈ [0, 1]N−1,de�ned as
a

n+1 = a
n −

[
HρF (µM

(0,an,1), f)
]−1∇

[
ρF (µM

(0,an,1), f)
]
,where H denotes the Hessian matrix. Figure 2.5b shows the diretions of Netwon stepsfrom di�erent starting points for N = 3. Lengths of the arrows, namely |an+1− a

n|, wereredued by a fator of 0.2 for larity.Another method of �nding the optimal approximation is presented on Figure 2.5.Given a2 ∈ (0, 1) there exists a unique andidate for the optimal approximation, whoseseond point of transport partition equals a2. Indeed, by Corollary 59 the value x∗1 isuniquely de�ned by a1 and a2. Similarly, by Proposition 57 the value a3 is uniquelyde�ned by x∗1 and a2. Consequently, given a value a, a transport partition {ai}N+1
i=1 suhthat a2 = a and a orresponding disrete measure, µa, an be reonstruted. Figure 2.5shows the dependene of ρF (f, µa) upon a.The optimal 3-point approximation of funtion f equals

µ∗ = 0.029δ0.027 + 0.055δ0.221 + 0.023δ0.601and the equidistant 3-point approximation of f equals
µ3 = 0.084δ 1

6
+ 0.019δ 1

2
+ 0.003δ 5

6
.Thus,

ρF (µ∗, f) = 0.003023,

ρF (µ3, f) = 0.026841.2.2.3.2. Redution of omplexityIn sEBT algorithm a new boundary ohort is added every ∆t-long period of time. Con-sequently the number of ohorts grows linearly with time. Assuming that �traking� asingle ohort on an ∆t-long interval requires onstant omputational ost, the algorithmis quadrati with respet to T . Theorem 51 from Setion 1.5.2 provides results that allowsto redue a number of ohorts after eah time step, and therefore keep it onstant.Proposition 94. For �xed parameter ∆t and �xed approximation of initial ondition, µ0,the omputational omplexity of sEBT is O(T 2).73



Proof. Let µ0 ∈ M
+
d,M [0, smax] and let N = (∆t)−1. The set of indies, I, de�ned inSetion 2.2.1, at time t0 has ardinality M + ⌊t0N⌋. Sine traking a single atom on atime interval [t0, t0 + ∆t] requires a onstant omputational time, it follows that trakingall partiles on the same interval (performing ⋆

t0+∆t
t0 ) requires O(M + t0 ·N) operations.Consequently, �nding approximate solution at time T , namely µ0⋆

T
0 , has omputationalomplexity

O
(

NT∑

k=1

(k +M)

)
= O

(
MNT +N2T 2

)
= O(T 2),sine

⋆T
0 = ⋆∆t

0 ◦⋆2∆t
∆t ◦ ... ◦⋆T

T−∆t =©T ·N
k=1⋆

k·∆t
(k−1)∆t.In this setion we propose a modi�ation of sEBT whih guarantees O(T ) omplexity.Throughout the setion we assume that smax ≤ 1.De�nition 95. Let H : M

+
d (X) → M

+
d (X) be a redution operator whih assigns to ameasure µ ∈M

+
d,k(X) its optimal k − 1-point approximation, µH.We propose a modi�ation of sEBT algorithm in whih after eah ∆t period of timeadding new boundary ohort is ompensated by optimal redution by H.De�nition 96. By EBT algorithm with simpli�ed boundary onditions and onstantnumber of ohorts (sEBT) we mean the following omposition:
©T ·N

k=1

(
⋆k·∆t

(k−1)∆t ◦ H
)

= ⋆∆t
0 ◦ H ◦⋆2∆t

∆t ◦ H ◦ ... ◦⋆T
T−∆t,where N = (∆t)−1.Proposition 97. For �xed parameter ∆t and �xed approximation of initial onditions,

µ0, the omputational omplexity of sEBT is O(T ).Proof. Let µ0 ∈ M
+
d,M [0, smax] and let N = (∆t)−1. In sEBT algorithm ardinality ofthe set of indies, I, is onstantly equal M + 1. Therefore performing ⋆

t0+∆t
t0 requires

O(M) operations and by Proposition 50 so does H. Consequently the omplexity of thealgorithm is given by
O
(

NT∑

k=1

M

)
= O(MNT ) = O(T ).Theorem 98. Let u0 ∈M

+[0, smax] then for any µ0 ∈M
+
d,M [0, smax] and any ∆t = N−1it holds

ρF

(
u0#

T
0 , µ0©T ·N

k=1

(
⋆k·∆t

(k−1)∆t ◦ H
))
≤ C1(T )

(
∆t+NM−2

)
+ C2(T ) · ρF (µ0, u0)for some onstants C1, C2 dependent on T .74



Proof. Sine # is a Lipshitz semi�ow (see Corollary 81) we immediately obtain by triangleinequality
ρF

(
u0#

T
0 , µ0©T ·N

k=1

(
⋆

k·∆t
(k−1)∆t ◦ H

))
≤ Lip(#)ρF (µ0, u0) +

+ ρF

(
µ0#

T
0 , µ0©T ·N

k=1

(
⋆k·∆t

(k−1)∆t ◦ H
))
.It is therefore su�ient to show that the error of sEBT is of order O(∆t + NM−2) ifinitial ondition is a disrete measure. From Theorem 92 and Corollary 91 we have that

ρF (µ⋆
t0+∆t
t0 , µ#t0+∆t

t0 ) ≤ C3 (∆t)2 . (2.10)On the other hand, from Theorem 51 it follows that if µ ∈M
+
d,M [0, smax] then

ρF (µ, µH) ≤ ‖µ‖M−2. (2.11)The idea of the following estimate is illustrated on Figure 2.6. Using triangle inequalityand the semi�ow estimate we obtain
ρF

(
µ0#

T
0 , µ0©T ·N

k=1

(
⋆

k·∆t
(k−1)∆t ◦ H

))
≤ ρF

(
µ0#

T
0 , µ0⋆

∆t
0 H#T

∆t

)
+

+ρF

(
µ0⋆

∆t
0 H#T

∆t, µ0©T ·N
k=1

(
⋆k·∆t

(k−1)∆t ◦ H
))
≤ Lip(#)ρF

(
µ0#

∆t
0 , µ0⋆

∆t
0 H

)
+

+ρF

((
µ0⋆

∆t
0 H

)
#T

∆t,
(
µ0⋆

∆t
0 H

)
©T ·N

k=2

(
⋆k·∆t

(k−1)∆t ◦ H
))
.By inequalities (2.11) and (2.10) applied to the �rst term we onlude that

ρF

(
µ0#

T
0 , µ0©T ·N

k=1

(
⋆k·∆t

(k−1)∆t ◦ H

))
≤ C4(T ) · (N−2 +M−2) +

+ρF

((
µ0⋆

∆t
0 H

)
#T

∆t,
(
µ0⋆

∆t
0 H

)
©T ·N

k=2

(
⋆k·∆t

(k−1)∆t ◦ H

))
.

(2.12)Notie that the upper bound onsists of the term whih is of order O(N−2 +M−2) and aterm, whih is equal to the error of sEBT algorithm for a shorter time period, T − ∆t.Therefore, by indution we obtain
ρF

(
µ0#

T
0 , µ0©T ·N

k=1

(
⋆k·∆t

(k−1)∆t ◦ H
))
≤ C5(T )

(
N−1 +NM−2

)
.Corollary 99. sEBT and sEBT algorithms have the same rate of onvergene if N = M .Proof. If N = M then N−1 +NM−2 = O(N−1) = O(∆t).Numerial tests aiming at the omparison of sEBT and sEBT in terms of aurayand e�ieny have been onduted on the following parameters:

g(s) = 10 (1− s) ,
m(s) = s2,

β(s) = s.with the initial onditions equal to the Dira mass at 0, namely u0 = δ0.Table 2.3 presents results of the numerial analysis. The empirial order of onvergeneis lose to 1, whih on�rms Theorem 98. sEBT algorithm turns out to be signi�antlyfaster, though for given parameters N,M it indues larger error than sEBT.75



Figure 2.6: Visualization of the proof of Theorem 98.

Table 2.3: Comparison of auray and e�ieny of sEBT and sEBT algorithms.Parameters sEBT sEBTN M error order CPU time error order CPU time2 8 4.74e-02 0.00s 6.02e-02 0.00s4 16 2.60e-02 0.86 0.00s 3.19e-02 0.91 0.00s8 32 1.35e-02 0.94 0.01s 1.64e-02 0.95 0.00s16 64 7.10e-03 0.92 0.02s 8.65e-03 0.92 0.00s32 128 3.64e-03 0.96 0.04s 4.51e-03 0.93 0.01s64 256 1.83e-03 0.99 0.07s 2.27e-03 0.99 0.02s128 512 9.05e-04 1.01 0.15s 1.13e-03 1.00 0.05s256 1024 4.38e-04 1.04 0.30s 5.54e-04 1.02 0.09s512 2048 2.21e-04 0.98 0.58s 2.80e-04 0.98 0.19s1024 4096 1.14e-04 0.95 1.20s 1.45e-04 0.94 0.39s
76



2.2.3.3. Step funtionsAs shown in the Setion 2.2.1 the bottlenek, in terms of auray, of the sEBT algorithmis the method of handling boundary onditions. By Proposition 83 birth proess generatesan absolutely ontinuous measure on the boundary, whih by Proposition 69 annot beapproximated with a 1-point disrete measure with a smaller error than O ((∆t)2). Theonept of this setion, arising from Theorem 70, is to approximate the distribution of�young� individuals by an indiator funtion of the interval [0, l1(t)].In the algorithm introdued in this setion, EBT2, the initial ondition, u0 ∈M
+[0, smax],is approximated by a sum of a disrete measure and a step funtion, µ0. Let funtion

mi, nj : [0, T ]→ R
≥0 and xi, yj : [0, T ]→ [0, smax] for i ∈ {1, ..., N} and j ∈ {B, 1, ...,M}be some funtion spei�ed later, and let
µ0 =

N∑

i=1

mi(0)δxi(0) +

M∑

i=1

ni(0)

yi(0)− yi−1(0)
1[yi−1(0),yi(0)], (2.13)see Figure 2.7Throughout this setion by y0(t) we always mean yB(t), and by y−1(t) wemean 0. Supports of the disrete part and the absolutely ontinuous part of µ0 mayoverlap. Eah atom of µ0 is traked by the system of equations analogous to (2.5)

{
d
dt
xi(t) = g(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(xi(t))
d
dt
mi(t) = −m(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(xi(t)) ·mi(t) ,(2.14)while eah of the indiator funtions is traked by equation
{

d
dt
yi(t) = g(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(yi(t))
d
dt
ni(t) = m(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(yi(t)) · ni(t) .
(2.15)By the generalized boundary ohort, used in EBT2, we mean indiator funtion nB(t)1[0,yB(t)].Similarly as in sEBT, a new generalized boundary ohort is reated every ∆t > 0 of time,and the previous generalized boundary ohort beomes an internal ohort, traked by(2.15). Funtions nB(t) and yB(t) follow





d
dt
yB(t) = g(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(yB(t))
d
dt
nB(t) = −m(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(yB(t)) ·mi(t)+

+
∑N

i=1 β(t,
∑N

i=1mi(t)δxi(t) +
∑

i∈I
ni(t)

yi(t)−yi−1(t)
1[yi−1(t),yi(t)])(xi(t))mi(t)

+
∑

i∈I β(t,
∑N

i=1mi(t)δxi(t) +
∑

i∈I
ni(t)

yi(t)−yi−1(t)
1[yi−1(t),yi(t)])(yi(t))ni(t)

yB(k∆t) = nB(k∆t) = 0 .(2.16)Remark 100. Existene and uniqueness of solution to the ODE system de�ned by equa-tions (2.14), (2.15) and (2.16) stems from boundedness and Lipshitz ontinuity of pa-rameters g,m, β upon arguments and from Lipshitz dependene of measure
(

N∑

i=1

miδxi
+
∑

i∈I

ni

yi − yi−1
1[yi−1,yi]

)
∈M

+[0, smax] (2.17)77



Figure 2.7: Visualization of the EBT2 algorithm

on mi, xi, ni, yi.Indeed, Lipshitz dependene of (2.17) upon a single parameter xi or yi an be easilyheked using Theorem 11. Lipshitz dependene of (2.17) upon a single parameter mi or
ni stems diretly from Proposition 7. Finally, triangle inequality for �at metri guaranteesthat (2.17) is also Lipshitz ontinuous with respet to the whole vetor of parameters

(m1, x1, m2, x2, ..., mN , xN , n1, y1, ...) .Similarly as in the ase of sEBT, the set of indies, I, initially onsists of the boundaryohort index, B, and some number, M , (possibly zero) indies of indiator funtions inthe initial approximations. Therefore at time t ∈ [k∆t, (k + 1)∆t] we have
I = {B, 1, 2, ..., k, k + 1, k + 2, ..., k +M}.We shall denote the outome of the EBT2 algorithm at t1 starting from initial onditions

µ at t0 by µ�
t1
t0 .Table 2.4 presents results of the numerial analysis onduted for the Test Case 2desribed in Setion 2.2.2. The empirial order of onvergene of EBT2 algorithm is loseto 2, suggesting that

ρF (u0#
T
0 , µ0�

T
0 ) ≤ C1(T ) (∆t)2 + C2(T )ρF (u0, µ0).EBT2 indues signi�antly smaller error, ompared to sEBT, even for large ∆t sine itallows to use step funtions as approximation of initial onditions. In the tests presented inTable 2.4 initial ondition was approximated by 8192-step funtion in the EBT2 algorithm,resulting with error equal to 1.36e−8, and with 8192-point measure in the sEBT algorithm,resulting with error equal to 4.33e− 5. 78



Table 2.4: Comparison of auray and empirial order of onvergene of sEBT and EBT2algorithms. EBT2

∆t−1 M Error Order1 8192 1.86e− 3
2 8192 4.36e− 4 2.09
4 8192 8.98e− 5 2.29
8 8192 2.27e− 5 1.98
16 8192 5.13e− 6 2.14

sEBT
∆t−1 N Error Order

1 8192 1.64e− 1
2 8192 1.09e− 1 0.58
4 8192 6.43e− 2 0.76
8 8192 3.50e− 2 0.87
16 8192 1.83e− 2 0.932.3. Optimal foraging model in population dynamisIn this setion we apply theory desribed in Setion 2.1 and Setion 2.2 to study equation(2.1) with a spei� hoie of parameters re�eting growth, reprodution and mortalityof Daphnia population under predation of a size-seletive planktivorous �sh in an aquatieosystem. It is allowed to onsider a single equation for the total population withoutmaking the distintion between female and male individuals, sine Daphnia speies havea life yle based on ylial parthenogenesis, alternating between asexual and sexualreprodution.In the general theory dependene of all three parameters upon time and populationstruture an be taken into aount. Sine in aquati eosystems where predators arepresent prey density levels never reah arrying apaity we shall onsider a simpli-�ed model in whih growth rate, g, and reprodution rate, β, are onstant as fun-tions on [0, T ] ×M

+[0, smax] with values in C0,1[0, smax] (independent on time and size-distribution). The argument is elaborated in Setion 3.4.It is worth mentioning the paper [33℄ in whih an age-struture population modeldesribing �sh predation on Daphnia was introdued. The approah presented in thisthesis allows to investigate the population in the ontext of arbitrary struture and notneessarily the age. In many ases, this enables to model quantities that easy to measureexperimentally. In the ase of Daphnia it is the size of an individual rather then its agethat an be diretly obtained from the experimental data. Moreover, the size (not age)of an individual indiates the likelihood of being deteted by a forager.A di�erent approah to the modeling of size-strutured population is desribed in [17℄,where the authors ouple an ordinary di�erential equation for the population of roah(predators) with a MKendrik-van Foerster equation for a size-strutured populationof Daphnia (onsumers), and yet another ordinary equation for algae (resoures). Theomplex struture of this model is, however, undermined by the fat that mortality ofthe onsumers does not take into aount size-seletivity of the predator. In the modelpresented in this thesis predators' numerial response is negleted for the reasons disussedin detail in Setion 3.1. 79



2.3.1. Capture rate operatorPredator-indued mortality is one of the main building bloks in the modeling of preypopulation dynamis. In Setion 3.3 a mortality operator CLOW , appliable for the aseof low prey density, is derived based on the optimization of net rate of energy intake. Themodel of energy balane onsists of:1. the model of predator respiration rate, R(v), as a funtion of veloity, v,2. the model of predator post-apture aeleration osts, A(v), as a funtion of veloity,
v,3. the model of predator reative distane (maximum distane at whih prey item anbe notied), r(s), as a funtion of prey size,4. the model of prey energy value, e(s), as a funtion of prey size.The following de�nition summarizes the onsiderations presented in detail in Setion 3.3.De�nition 101. Consider a apture rate operator CLOW : M

+[0, smax] → M
+[0, smax]de�ned by

CLOW [u] =
πv[u]r2u

1 + Thπv[u]
� smax

0
r2(σ)u(dσ)

,where v : M
+[0, smax]→ R

≥0 is impliitly de�ned as a the maximizer of P : M
+[0, smax]×

R
≥0 → R

P (u, v) = πv

� smax

0

r2(σ) (e(σ)− A(v))u(dσ)− R(v), (2.18)where π is the ratio of a irle's irumferene to its diameter.Aeleration ost, A, respiration rate, R, reative distane, r, and energy value, e, aresome �xed mappings of R
≥0 to R

≥0. In this setion we make weak assumptions on theshape of these funtions, whih is neessary to prove well-posedness of the populationdynamis equation. Conrete examples of suh funtions, that stem from experimentaldata and physial onsiderations, an be found in Chapter 3. Moreover, in Setion 2.3.2it is heked that these examples satisfy neessary onditions.Condition 102. Funtions A, R, r and e satisfy the following properties:1. funtions r2 and e are Lipshitz ontinuous on [0, smax] and A,R ∈ C2(R≥0,R),2. derivatives A′(v) and R′(v) are non-negative and stritly inreasing,3. A(0) = 0, R(0) > 0,4. limv→∞A(v) = limv→∞R(v) =∞,5. e(s) > 0 and r(s) > 0 for s > 0.We also make the following assumptions on the models of growth and birth proesses:80



Condition 103. Funtions g, β satisfy the following properties:1. funtion g is the Bertalan�y growth rate ([64℄), namely g(s) = γ (smax − s) for someonstant γ,2. β(s) = a(s− s0)
b for some onstants a, b, s0 (ompare [7℄).Sine aording to Condition 103 funtions g and β do not depend on time, t, nopopulation distribution, u, we shall often write g(s) and β(s) instead of g(t, u)(s) and

β(t, u)(s) whenever Condition 103 is assumed.2.3.2. Assumptions on parametersSome of the assumptions in Condition 102 on funtions A, R, r and e are trivially sat-is�ed for the spei� hoie of parameters made in hapter 3. For example A(v) = mv2

2
,assumed in Setion 3.2.6, is obviously di�erentiable, A′(v) = mv is non-negative andinreasing, A(0) = 0 and limv→∞

mv2

2
= ∞. Similarly funtions R1 = m + qv2 and

R2 = 0.003916 · 10−0.9242+0.8494W+0.0142v+0.0189T introdued in Setion 3.2.1 are di�eren-tiable, satisfy R1(0) = m > 0 and R2(0) > 0, their limit at v → ∞ is in�nity and theirderivatives R′
1(v) = 2qv, R′

2(v) = C1e
C2+C3v are non-negative and inreasing. Energyvalue, e(s) = 0.655 · s1.56, introdued in Setion 3.2.2 is obviously Lipshitz-ontinuousand positive for s > 0. Verifying onditions on reative distane, r, is more omplex.Reative distane, r(s), de�ned in Setion 3.2.3, is given impliitly by the non-negativeroot of the equation

C1s
2 = r2eC2rfor some positive onstants C1 and C2. Consequently r(s) = 0 if and only if s = 0. Byimpliit funtion theorem

dr

ds
= 2C1s

(
2reC2r + C2r

2eC2r
)−1hene

0 ≤ dr

ds
=

C1s(
r + C2

2
r2
)
eC2r

=
C1s

(
√

C1s2

eC2r + C2

2
C1s2

eC2r )eC2r

=

=
C1s

(s
√
C1e

C2
2

r + s2C1
C2

2
)
≤ C1s

(s
√
C1 + s2 C1C2

2
)
≤
√
C1.We have proved that r(s) is Lipshitz ontinuous on R

≥0 and therefore r2(s) is Lipshitzontinuous on [0, smax]. In appliations for a realisti model of reative distane in lowturbidity onstant C1 does not exeed 80.2.3.3. Veloity funtionalSine v : M
+[0, smax]→ R

≥0 models predator veloity ertain regularity an be expeted.In partiular for small hanges of prey population u predator's veloity should exhibitonly small �utuations. It is also natural to expet there exists some maximal veloity81



vmax whih annot be exeeded. In this setion we prove that v[u] is orretly de�ned asa maximizer of P (u, v) introdued in (2.18), namely we show that there exists a uniquemaximum of funtion P (u, v) on R
≥0, and that v ∈ C0,1

b (M+[0, smax]; R
≥0). An expliitformula for v is also found for the ase of R(v) being a ubi funtion.Theorem 104. Under Condition 102 funtional v is orretly de�ned and

v ∈ C0,1
b (M+[0, smax]; R

≥0).Proof. By simple omputation we obtain
∂P

∂v
= π

〈
u, er2

〉
− π

〈
u, r2

〉
(vA(v))′ −R′(v) (2.19)and therefore

∂P

∂v

∣∣∣∣
v=0

= π
〈
u, er2

〉
− R′(0)

lim
v∞→∞

∂P

∂v

∣∣∣∣
v=v∞

= lim
v∞→∞

[
π
〈
u, er2

〉
− R′(v)− π

〈
u, r2

〉
(A(v) + vA′(v))

]
= −∞.Sine R′(v), A(v), A′(v) are inreasing funtions P is onave with respet to v. Conse-quently, its maximum, v[u], exists, is unique and always attained in the ritial point orat the boundary. Moreover v[u] = 0 if π 〈u, er2〉 ≤ R′(v) and v ∈ (0,∞) otherwise.Let us onsider funtion

F (v, ξ, ς) = ξ − ζ (vA(v))′ −R′(v),whih orresponds to (2.19) with ξ = 〈u, er2〉 and ζ = 〈u, r2〉. We shall prove that
v = V (ξ, ζ), de�ned by F (V (ξ, ζ), ξ, ζ) = 0, is di�erentiable with respet to both ar-guments. By the impliit funtion theorem V (ξ, ζ) is di�erentiable on R

≥0 × R
≥0 withrespet to both variables if ∂F

∂v
6= 0 for all v ≥ 0. Sine
∂F

∂v
= −ζ (vA(v))′′ −R′′(v).and R′′(v) > 0 we onlude that ∂F

∂v
< 0.Both funtions r2 and er2 are Lipshitz ontinuous on [0, smax] and by Lemma 21 forany u, ũ ∈M

+[0, smax]

ρF (u, ũ) = sup
{
〈u− ũ, f〉 : f ∈ C[0, smax], ‖f‖C0,1

b
[0,smax] ≤ 1

}
≥

〈u− ũ, r2〉
‖r2‖C[0,smax] + Lip(r2)

=
1

C1

〈
u− ũ, r2

〉and similarly
ρF (u, ũ) ≥ 〈u− ũ, er2〉

‖er2‖C[0,smax] + Lip(er2)
=

1

C2

〈
u− ũ, er2

〉
.82



From the above inequalities we obtain
|v[u]− v[ũ]| =

∣∣V
(〈
u, er2

〉
,
〈
u, r2

〉)
− V

(〈
ũ, er2

〉
,
〈
ũ, r2

〉)∣∣ ≤
≤ Lip(V )

(∣∣〈u, er2
〉
−
〈
ũ, er2

〉∣∣+
∣∣〈u, r2

〉
−
〈
ũ, r2

〉∣∣) ≤
≤ Lip(V ) (C1 + C2) ρF (u, ũ). (2.20)It is now proved that v ∈ C0,1(M+[0, smax]; R

≥0).To prove boundedness of v we onsider
∂P

∂v
≤ π

(
‖e‖C[0,smax] − (vA(v))′

) 〈
u, r2

〉
− R′(v) ≤ π

(
‖e‖C[0,smax] − (vA(v))′

) 〈
u, r2

〉
.Sine ∂P

∂v
is monotonously dereasing its zero is always smaller than a zero of a greaterfuntion. Therefore v[u] ≤ vmax, for some onstant vmax satisfying

(vA(v))′|v=vmax
= ‖e‖C[0,smax] .Proposition 105. Under Condition 102 with a partiular hoie of

R(v) = r0 + r1v + r2v
2 + r3v

3and A(v) = mv2

2
it holds that

v =

{√
4r2

2+6(π〈u,r2〉m+2r3)(π〈u,er2〉−r1)−2r2

3(π〈u,r2〉m+2r3)
if r1 ≤ π 〈u, er2〉

0 if r1 ≥ π 〈u, er2〉
. (2.21)Proof. The formula follows from the fat that v[u] is the root of equation

dP

dv
= π

〈
u, er2

〉
− 3π

2

〈
u, r2

〉
mv2 − r1 − 2r2v − 3r3v

2.Remark 106. The ondition that R′′(0) > 0 translates to r2 > 0 whih guarantees thatthe argument of the square root in formula (2.21) is always stritly positive and henethe derivative is �nite.2.3.4. Regularity of CLOWOperator CLOW : M
+[0, smax] → M

+[0, smax] an be viewed as a multiplier
CLOW (u) = m(u) · u de�ned by a given funtion m : M

+[0, smax] → C0,1([0, smax],R
≥0).A natural question of key importane is the regularity of m.Theorem 107. Under Condition 102 it holds thatm ∈ C0,1

b

(
M

+[0, smax];C
0,1([0, smax]; R

≥0)
).83



Proof. Funtion m an be deomposed into a funtional m : M
+[0, smax] → R

≥0 andfuntion r2 ∈ C0,1
(
[0, smax]; R

≥0
) as
m [u] (s) = m [u] · r2(s)Let u, ũ ∈M

+[0, smax] then by a similar arguments as in 2.20 we obtain
|m [u]−m [ũ]| =

∣∣∣∣
πv[u]

1 + Thπv[u]
� smax

0
r2(σ)u(dσ)

− πv[ũ]

1 + Thπv[ũ]
� smax

0
r2(σ)ũ(dσ)

∣∣∣∣ =

=

∣∣∣∣∣
π (v[u]− v[ũ]) + π2Thv[u]v[ũ]

� smax

0
r2(σ) (ũ− u) (dσ)(

1 + Thπv[u]
� smax

0
r2(σ)u(dσ)

) (
1 + Thπv[ũ]

� smax

0
r2(σ)ũ(dσ)

)
∣∣∣∣∣ ≤

≤
[
πLip(v) + π2Th ‖v‖C(M+[0,smax])

(∥∥r2
∥∥

C[0,smax]
+ Lip(r2)

)]
ρF (u, ũ).On the other hand

m [u] ≤ π ‖v‖C(M+[0,smax])hene m ∈ C0,1
b (M+[0, smax]; R

≥0). It is now easy to show that
m ∈ C0,1

b

(
M

+[0, smax];C
0,1([0, smax],R

≥0)
)
.Indeed,

‖m [u]−m [ũ]‖C0,1([0,smax],R≥0) = |m [u]−m [ũ]|
∥∥r2
∥∥

C0,1([0,smax],R≥0)
≤

≤ Lip(m)
∥∥r2
∥∥

C0,1([0,smax],R≥0)
ρF (u, ũ)and

‖m [u]‖C0,1([0,smax],R≥0) ≤ ‖m‖C0,1(M+[0,smax],R≥0)

∥∥r2
∥∥

C0,1([0,smax],R≥0)
.2.3.5. Existene and uniquenessExistene and uniqueness of weak solutions to system (2.1) under Conditions 102 and 103stems diretly from Theorem 79. Assumptions on g and β are trivially satis�ed. Requiredregularity of m, on the other hand, results from Theorem 107.2.3.6. Stationary stateIn general, a non-trivial stationary state of (2.1) does not neessarily exist. It turns out,however, that under Conditions 102 and 103 neessary and su�ient onditions an befound. Moreover, �nding the exat shape of stationary measure only requires solving twoalgebrai equations.Lemma 85 provides a haraterization of stationary states in the ase of positive mor-tality of the largest individuals. Let us now suppose the ontrary (lak of mortality of84



the largest individuals). In a vast majority of foraging models, suh as CLOW , no mor-tality of the largest prey items (m(t, µ)(smax) = 0) implies no mortality of smaller items(m(t, µ) ≡ 0). Consequently, by Lemma 86 null mortality in a stationary state impliesnull reprodution. Finally, null reprodution and a positive individual growth rate implythe lak of individuals of sizes in the range [0, smax).Stable existene of population onsisting of individuals of a single, maximal size isnot surprising under no mortality and no reprodution. In the remainder of this setionwe fous on the ase of positive mortality and hene absolutely ontinuous stationarysize-distributions. The density funtion, u, of suh state satis�es
{

(gu)s = −πv[u]r2u
1+Thπv[u]

� smax
0 r2(σ)u(dσ)

g(0)u(0) =
� smax

0
β(s)u(s)dsand therefore u an be written in the following impliit form

u(s) =
1

g(s)

(� smax

0

β(σ)u(dσ)

)
·
(
e
−

πv[u]

1+Thπv[u]
� smax
0 r2(σ)u(dσ)

� s
0

r2(σ)
g(σ)

dσ
)
. (2.22)Let us de�ne

Tρ(s) =
1

g(s)

(
e−ρ

� s

0
r2(σ)
g(σ)

dσ

)
,then learly u(s) = λTρ(s) for some hoie of λ, ρ ∈ R

≥0.Lemma 108. Let g satisfy Condition 103 then Tρ ∈ L1[0, smax] if and only if ρ > 0.Proof. For ρ > 0 we obtain
Tρ ≤

1

g(s)
· 1

1 + ρ
� s

0
r2(σ)
g(σ)

dσ
,sine e−x ≤ 1

1+x
for every x ≥ 0. Consequently, Tρ is integrable on [0, s′] for every

s′ < smax. On the other hand� smax

s′
Tρ(s)ds ≤

� smax

s′

1

γ(smax − s)
· 1

1 + ρr2(s′)
� s

s′
dσ

γ(smax−σ)

ds ≤

≤
� smax

s′

1

γ(smax − s)
· 1

1 + ρ
γ
r2(s′) s′

smax−s

ds ≤ smax − s′
ρr2(s′)s′

.Theorem 109. There exists a non-trivial stationary state of equation (2.1) with m =

CLOW under Conditions 102 and 103 if and only if � smax

0
β(s)
g(s)

ds > 1 and the followingsystem of equations has a solution � smax

0

β(σ)Tρ∗(σ)dσ = 1

ρ∗ + λρ∗Thπv[λTρ∗(σ)]

� smax

0

r2(σ)Tρ∗(σ)dσ = πv[λTρ∗(σ)]85



Proof. Finding the stationary state an be viewed as �nding the �xed point of an operatorthat takes u as the argument and returns the right-hand side of equation (2.22). We have
λ =

� smax

0

β(σ)λTρ(σ)dσ. (2.23)Equation 2.23 implies that either λ = 0 (and onsequently u ≡ 0) or� smax

0

β(s)

g(s)

(
e
−ρ

� s

0
r2(σ)
g(σ)

dσ

)
ds = 1. (2.24)The left-hand side monotonially dereases with ρ and tends to 0 as ρ tends to in�n-ity. Consequently, equation 2.24 uniquely de�nes ρ > 0 if and only if � smax

0
β(s)
g(s)

ds > 1(otherwise no suh ρ exists, hene the only stationary state is u ≡ 0).Let ρ∗ satisfy 2.24. Sine u(s) = λTρ∗ , the impliit formula 2.22 implies that
ρ∗ =

πv[u]

1 + Thπv[u]
� smax

0
r2(σ)u(dσ)

(2.25)and onsequently
ρ∗ + λρ∗Thπv[λTρ∗(σ)]

� smax

0

r2(σ)Tρ∗(σ)dσ = πv[λTρ∗(σ)].Therefore, the onditions are indeed neessary. Conversely, it is easy to hek that
(gλTρ∗)s = −λρ∗

(
e
−ρ∗

� s

0
r2(σ)
g(σ)

dσ

)
r2(s)

g(s)
= (λTρ∗) · ρ∗r2(s),hene equation (gu)s = mu redues to (2.25). From the de�nition of ρ∗ it is also learthat the seond equation, namely g(0)u(0) =

� smax

0
β(s)u(s)ds is satis�ed.2.4. Numerial veri�ation of the modelIn this setion we investigate numerial results of MKendrik-von Foerster model withparameters satisfying Condition 102 and Condition 103, whih we refer to as the modelof zooplankton population.2.4.1. Choie of parametersNumerial results on population dynamis presented in this setion are restrited to thefollowing partiular hoie of parameters:1. Mortality operator m is proportional CLOW with: A(v) =

mweightv
2

2
(ompare Setion3.2.6), R(v) = r0 + r1v + r2v

2 + r3v
3 (ompare Setion 3.3), r given by equation(3.7) (ompare Setion 3.2.3), e(s) = emul · seexp (ompare Setion 3.2.2),86



2. Growth rate given by g(s) = γ · (smax − s) for γ = 0.06 (ompare [67℄),3. Birth rate given by
β(s) =

{
0 s < sj

rm(s− sj)
2 s > sj.Values of onstants used in the simulations are presented in Table 2.5.Table 2.5: Model parameters used in Setion 2.4.3.Parameter Value Unit

rm 0.5 ind.
day·mm2

sj 1.7 mm
smax 5.2 mm
mweight 12 g
Th 1 s

I0 10 µmol
m2s

γ 0.06 mm
day

Parameter Value
r0 6.8 · 10−3

r1 1.24 · 10−3

r2 6 · 10−5

r3 2.5 · 10−5

eexp 1.56
emul 0.6552.4.2. Stationary stateFigure 2.8 ompares theoretial result given by Theorem 109 with experimental data from[30℄. The model line was omputed based on the result haraterizing the density of sta-tionary state for parameters satisfying Condition 102 and Condition 103 in Setion 2.3.1.Light intensity, 9µmol

m2s
, and predator's body length, 6− 8cm, were assumed to re�et theexperimental setup desribed in [30℄. Birth rate and growth rate parameters were hosento math the speies used in the experiment. Remaining parameters, inluding maximalprey size, birth rate and water turbidity, were �tted to the data. Evident inauray inthe range of small body sizes (0.4 − 0.6mm) and the mid-range (0.8 − 1mm) is likely tobe aused by slower growth of the newborns and faster growth of the individuals dur-ing reprodution age, whih is not taken into aount in the Bertalan�y law (ompareCondition 103).The error between the size-struture measured on the 52nd day of the experiment, µE,and the theoretially derived stationary state, µT , is given by

ρF (µE, µT ) = 0.0536,

ρF (µE, µT )

‖µE‖M[0,smax]

= 0.0139.and the total number of individuals in the population, ‖µE‖M[0,smax], equals 8.160 ind.
m3 .2.4.3. Size-distribution dynamisIn this setion numerial study of the evolution in time of the size-distribution of plank-ton population is onduted. Simulations were performed for parameters spei�ed in87



Figure 2.8: Comparison of stationary state density of type λTρ (blue line) and experi-mental data onerning size-distribution of Daphnia population subjet to predation (redbars representing Dira masses), see [30℄. Plots depit the distribution of experimentalDaphnia hyalina on the 8th day (left) and 52nd day (right) of the experiment.
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10
CLOW , whih re�ets an average of onepredator per 1m3 foraging during dusk and dawn, whih onstitute 10% of the day.Figure 2.9 presents how the size-struture of the prey population develops in time,starting at day 1 from a single ohort of newborns. Absolutely ontinuous measures aredepited as plots of density funtions with values on the left y-sale. Dira deltas are shownas narrow bars whose height re�ets the mass of the atom on the right y-sale. It turnsout that the distribution onverges to the stationary state omputed using the methodsfrom Theorem 109. Density of the stationary state is given by λTρ, where λ = 0.12 and

ρ = 0.31. Figure 2.10 shows the numerial results for the same set of parameters, butstarting from a uniform initial ondition. The sharp peak visible at day 8 results from thebirth proess, whih is signi�antly higher at the beginning, before the density of adultindividuals is redued by predation.Figure 2.11 presents the evolution of a three-point distribution. It an learly be seenthat predator, and therefore mortality, is size-seletive with high preferene for larger preyitems.
2.4.4. Dynamis of the total number of individualsNumerial simulations suggest that the stationary state, haraterized by Theorem 109is not a global attrator. Figure 2.12 presents how the total number of prey individuals,namely u(t) ([0, smax]), develops in time when starting from a single ohort of newborns.It turns out that for initial densities between 0 and 9.8 individuals per dm3 the solutiononverges to the non-trivial stationary state. For density equal to 0 it remains in theunstable stationary state u = 0, and for densities higher than 9.8 ind.

dm3 it grows unlimited.88



Figure 2.9: Evolution in time of the size-struture of prey population starting from a singleohort of newborns. Solution to the zooplankton population model (blue line) omparedto the stationary state (brown line).
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Figure 2.10: Evolution in time of the size-struture of prey population starting from auniform distribution. Solution to the zooplankton population model (blue line) omparedto the stationary state (brown line).
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Figure 2.11: Evolution in time of the size-struture of prey population starting froma three-point distribution. Solution to the zooplankton population model (blue line)ompared to the stationary state (brown line).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6
 0

 0.2

 0.4

 0.6

 0.8

 1

D
is

tr
ib

u
ti

o
n
 d

e
n
s
it

y

M
a
s
s
 o

f 
a
to

m
s

Body length [mm]

day 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6
 0

 0.2

 0.4

 0.6

 0.8

 1

M
a
s
s
 o

f 
a
to

m
s

Body length [mm]

day 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6
 0

 0.2

 0.4

 0.6

 0.8

 1

D
is

tr
ib

u
ti

o
n
 d

e
n
s
it

y

M
a
s
s
 o

f 
a
to

m
s

Body length [mm]

day 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6
 0

 0.2

 0.4

 0.6

 0.8

 1

M
a
s
s
 o

f 
a
to

m
s

Body length [mm]

day 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6
 0

 0.2

 0.4

 0.6

 0.8

 1

D
is

tr
ib

u
ti

o
n
 d

e
n
s
it

y

M
a
s
s
 o

f 
a
to

m
s

Body length [mm]

day 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6
 0

 0.2

 0.4

 0.6

 0.8

 1

M
a
s
s
 o

f 
a
to

m
s

Body length [mm]

day 52

91



Figure 2.12: Evolution of the total number of prey individuals in the the zooplanktonpopulation model. Stable dynamis for low density initial onditions (left); instability forhigh densities larger (right).
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Chapter 3Foraging of a size-seletivepredator-harvesterThe main goal of this hapter is to derive a model of predator funtional response,a onept introdued by Holling in [38℄ to haraterize di�erent patterns of predation.The funtional response is a funtion whih assigns to the density of prey a number ofprey items aptured per a time unit. Some ideas developed in this dissertation wereinspired by the ollaboration with a team of hydrobiologists of University of Warsaw and,in partiular, by the results desribed in [29℄. Experimental evidene, obtained by thebiologists, beame a starting point of the study of foraging strategies.In Setion 3.2 two novel simulation models of size-seletive predation in eology offreshwater eosystems are presented. Both models are based on a bottom-up approah,in whih a omplex proess of foraging is viewed as a omposition of simpler phenomenasuh as predator's visual pereption apability, motility and net energy balane. Themodels an be applied to the study of population dynamis, but are also a valuable toolfor testing various hypothesis about foraging.To give a better understanding of the matter to a reader with mathematial bak-ground Setion 3.1 desribes the premises on whih the models were built and demon-strates the empirial data olleted during author's ollaboration with a team of hydro-biologists.3.1. Experimental dataThe biodiversity of an eosystem depends on abundane of �rst onsumers whih in thease of aquati eosystems are mainly various speies of zooplankton feeding mostly onalgae. Typial speies belonging to zooplankton are that of rustaeans e.g Daphnia. Inthe ase of �sh-free habitats where main predator feeding on zooplankton is not presentthe diversity of phyto- and zooplankton is more frequently attributed to resoure parti-tioning, and resoure ompetition . This explanation �ts �sh-free habitats and laboratoryultures in whih a ompetitively-superior large-bodied Daphnia monopolizes resouresat arrying-apaity level. However, this senario does not math typial freshwater habi-tats where Daphnia speies oexist at population densities muh below those at whih93



Figure 3.1: The experimental system - ross-setion of tanks.

resoure ompetition would ause exlusion of ompetitively-inferior small-bodied taxa.This hapter is an attempt to desribe quantitatively the impat of predation on thepopulation of zooplankton.In the experimental setup behavior of a typial freshwater planktivorous predator, 1-2year-old roah (Rutilus rutilus L.) of 50-75 mm in length foraging on Daphnia hyalina(0.5 - 6 mm in diameter) was studied.Prey-predator interations between these two speies are limited in sope to elimina-tion of prey items, whih allows negleting the impat of prey population on predators.The �rst reason is the greatly di�erent spatial sales of the predator and its prey. Thepredator, suh as sardine or roah, forages kilometers eah day in searh of its tiny prey,while the movements of the prey are restrited to deimeters per day. The disproportionis greatest when the interations are examined along the horizontal plane, as predationrisk for a zooplankton prey depends on the light intensity and in onsequene depth. Theseond reason is in the time sale di�erene due to the ontrasting lifespan of the ver-tebrate predator and its invertebrate prey. This auses great disproportion between thereprodutive numerial responses in time, whih are quik in a prey population but slowin a predator population. Moreover roah and sardine individuals feed on Daphnia onlyat juvenile stage, swithing to larger prey before �rst reprodution.An experimental system of 4 or 8 interonneted 1m3 tanks, desribed in [29℄, allowedfree movement of planktivorous �sh between loations with di�erent densities of Daphniaprey in natural mixtures of juveniles and adults (see Figure 3.1). Changes in density ofDaphnia prey were then followed for 2-6 days. To imitate a natural �eld situation, �shpredation was onstrained by both the number of �sh added to the system and how longthey were allowed to feed on the Daphnia prey. Both parameters were adjusted to besimilar to those observed in natural lake habitats where feeding by planktivorous �sh isusually restrited to anti-predation windows at dusk and dawn , when the underwaterlight level allows them to loate their prey without being seen by pisivores.For eah feeding session, the �sh were transferred to eah tank in a steel bowl onsti-tuting the entral part of the bottom of a age made of nylon netting. Fish movements inone high- and one low-Daphnia-density tank were registered using two submerged infraredvideo ameras per tank, eah direted at one of the two onneting windows. Analysis94



Figure 3.2: Experimental data on foraging strategies published in [29℄. Funtional re-sponse (left) and rate of prey elimination (right). Notie the lin-log sale.

Figure 3.3: Experimental data on predator veloity published in [29℄. Notie the lin-logsale.

of the resulting reordings was used to estimate �sh veloity and to ompute the num-ber of �sh in eah of the tanks. Following the removal of �sh at the end of a feedingsession, the water in eah experimental tank was thoroughly mixed by �ve upward move-ments of a perforated Sehi disk and samples were taken using a quantitative planktonnet (6 vertial hauls removing Daphnia from 30l, i.e., 3% of the tank volume) and �xedwith formalin-sugar solution. Daphnia juveniles, adults and eggs in brood avities wereenumerated in eah sample by ounts made using a disseting mirosope.Results of the experiment in a onise form of dependenies of rate of prey elimination,apture rate and predator veloity upon prey densities are presented on Figures 3.2 and3.3. The plots do not reveal the full omplexity of the results, sine for instane preyelimination rate at tank A depends not only on prey density in A but also on di�erenesin abundane between tanks. The results are, however, a starting point for a farthertheoretial study. 95



3.2. Funtional response resulting from an optimal for-aging modelSine pioneering works of [51℄ and [21℄ the foraging theory was used in a vast amount ofliterature as a powerful tool for understanding many aspets of predator-prey interations.It omprised the investigations of predator's optimal diet, optimal time spent foraging [1℄optimal path exploitation [51℄, and optimal pattern and speed of movement of a foragingpredator [66℄. In this theoretial study, based on the lassial onept of maximizationof the rate of net energy intake, we onstrut a model of size seletive foraging. Rate ofnet energy intake is often used as the link between habitat use and �tness: based on theassumption that the measure of net energy intake ultimately translates into the measureof �tness (e.g., an inrease or derease in growth or reprodutive output). The optimiza-tion model operating on �miroeologial sale� [65℄ desribes deisions of an individualpredator-harvester onerning the prey hoie and speed of movement in spae �lled withprey items of di�erent size and energy value. Suh a framework may refer to the situationof birds (e.g. siskin or swan dive) feeding in the air on insets or a pelagi �sh or aninvertebrate predator feeding on zooplankton. In the ase of a planktivorous �sh feedingon Cladoera (Daphnia) prey remains relatively stationary and therefore its motility anddefense during a predator's attak may be negleted. Moreover nearly all freshwater �share plankton harvesters during the early stages of life and most remain planktivorous fora year or two before swithing to either pisivory or to airborne and benthi resoures.Due to an anti-predation window e�et, juvenile predators rarely beome satiated and asa onsequene it seems to be justi�ed to assume that optimization of the net energy intakeis a fundamental fator determining individual �tness. The novelty of our approah is theoptimization of the rate of net energy intake as a funtion of predators veloity and preyseletivity ontrary to the most of earlier works in whih it is assumed that enounter rateand searh osts are �xed onstraints independent on how quikly the predator moves.The role of hoie of optimal veloity as a part of foraging strategy was argued in thease of foraging birds [37℄, pelagi plantktivorous �sh [78℄ as well as in [66℄ in more gen-eral ontext. Our approah enables taking into aount post-apture aeleration osts,depending indiretly on water visosity and temperature, whih seem to be a ruial on-straint imposed on the predator's behavior in a low density habitat. The aelerationosts are reported as the main fator explaining di�erenes in predator seletivity patternin the ase of small-sale homogeneous prey distribution and that of large-sale systemswith heterogeneous prey distribution, as indiated reently in [53℄. Our study also asts anew light on the maro eologial population level analyzing the stationary size strutureof prey population.The best known model of optimal foraging, developed by [14℄ and desribed in themonograph by [70℄, onerns the predator foraging on a number of prey ategories whoseenounter rates are given a priori as parameters. Moreover, prey items from eah ategoryhave their energy values and handling times assigned. Searhing for prey is assumed toause a onstant energy loss per unit of time, so despite being based on optimal foragingtheory, the model does not take into aount the ontribution of the predator's energyexpenditure due to the movement towards attaked prey items. This ost depends, in96



partiular, on the prey distribution in spae and a�ets the total energy balane andoptimal prey hoie. In our approah a partiular attention is paid to the hoie ofoptimal veloity as a key fator ontributing to predator's total energy loss. To our bestknowledge the only works whih aount on the veloity as a ruial omponent of theoptimal strategy are [37, 78, 18℄. The latter study is based on the multi-prey funtionalresponse and similarly to Setion 3.2.1 average veloity optimization is analyzed.This setion ontains results desribed in [41℄. In partiular a novel, low-level, simula-tional model is proposed. It predits individual forager's deision-making proess inlud-ing both veloity and prey hoie. In this approah funtional response, prey seletivityand the predator's trajetory arise from these basi deisions.3.2.1. The ase of unstrutured prey populationBefore introduing the main model of this part we onsider a simplisti situation whereina predator forages on an unstrutured prey population. It illustrates how optimal foragingstabilizes prey-predator interations. The lassial Holling disk equation [38℄ an be usedto derive a predator's rate of net energy intake - a quantity whih an be maximized asa funtion of predator's veloity. Consequently the optimal predator's veloity may beexpressed as a funtion of prey density. The optimal veloity inserted into the HollingDisk equation yields a funtional response whih re�ets prey onsumption per unit oftime for an optimally foraging predator. This approah was already applied in [18℄ whereHolling type III funtional response was argued to be a onsequene of optimization ofpredator's veloity in searh. We go farther in this diretion assuming a wider range ofpossible swimming osts and taking into aount that some amount of predator's energyis spent on post-apture aeleration. Moreover we assume a more preise division offoraging time into the part devoted to searhing and that devoted to prey onsumption.Contrary to the aforementioned paper, we perform numerial simulations whih show howthe funtional response is shaped depending on the partiular assumptions on the ostfuntions.Aording to the lassial foraging theory, the rate at whih a ruising predator en-ounters immobile and indistinguishable prey items is
πr2vNwhere r is the reative distane, v is the predator's veloity and N ≥ 0 is the preydensity. By the reative distane we mean the maximum distane at whih a prey item ofa given size is pereivable by the predator under typial light intensity and water turbidityonditions. Assuming the handling time Th and the attak probability a the apture ratereads

F (v,N) =
aπr2vN

1 + aπr2vNTh

(3.1)whih is known as Holling type II funtional response. Notie that when a = 1 allprey are aptured upon enounter. Then owing (3.1) and assuming the rate of veloity-dependent metaboli ost Ri(v), the average energy ontent of prey item e and post-apture aeleration ost A(v) we obtain the rate of net energy gain97



P (v,N) = (e− A(v))F (v,N)− Ri(v)γ −Ri(0)(1− γ) (3.2)where γ = 1 − ThF (v,N) is a fration of the foraging time spent on searhing withveloity v while 1 − γ is the remaining fration of time, whih is spent onsuming prey.Formula (3.2) for the rate of net energy intake is based on the same reasoning as in [18℄,but the e�ets of stopping and aelerating are inorporated into the equation. Notiethat for Th = 0 formula (3.2) agrees with the simpli�ed model introdued in (2.18) inSetion 2.3.The energy loss Ri(v) denotes a basi metaboli ost and a swimming ost. In [78, 66,77℄ it was proposed
R1(v) = m+ qv2 (3.3)whih is also assumed (in a slightly more general form) in [18℄ while [52℄ assume

R2(v) = 0.003916 · 10−0.9242+0.8494W+0.0142v+0.0189T (3.4)where T is the temperature in Celsius, v is the veloity in meters per hour and W =
log10(0.001 · w), where w is the body weight in kilograms. Having no experimental dataon values of parameters m and q we alibrate them so that R1(0) = R2(0) and thedi�erene between the models is minimal. We assume the post-apture aeleration ostis equal to the physial value of the predator's kineti energy, wv2

2
. Now we are in aposition to apply the onept of optimal foraging. To this end given prey density, N ,we �nd optimal veloity, vopt(N), for whih the rate of net energy gain, P , attains itsmaximum. It is easy to hek analytially that suh a maximum is uniquely determinedfor both ases (3.3) and (3.4), see Setion 2.3.3. Optimal predator's funtional responseis obtained by setting vopt in the plae of v in (3.1).The dependene of optimal veloity vopt upon prey density for two di�erent formulasdesribing metaboli osts of swimming, (3.4) and (3.3), was omputed numerially anddepited in Figure 3.4a. In the ase of (3.4) there exists a range of low prey densitieswhere vopt = 0, whih may be interpreted as the situation in whih the predator hoosesto stop foraging beause of low light level, low prey abundane, or high water turbidity.The e�et of vanishing vopt also implies existene of a marginal density below whih noprey items are aptured. Correspondingly, the rate of net energy gain P (vopt, N) and theapture rate F (vopt, N) at depited on Figures 3.4b and Figure 3.4.The stabilizing e�et of prey refuges is a well known phenomenon sine the experimentreported by [25℄ and theoretial study of the Lotka-Volterra model by [59℄ and [72℄. Fur-ther studies of prey-predator-interation stabilization in the ontext of optimal foragingwere reently desribed in [47℄. The meaning of prey refuges an be observed even in thesimplest model of prey population dynamis:

d

dt
N = bN − F (vopt, N) ·Mwhere b is the rate of birth oe�ient and M is the number of predators. Suh a modelmay be applied in the ase when the life span of predator is muh longer than that of the98



prey and predators' numerial response is negleted. All of these assumption are justi�edin the ase of planktivorous �sh feeding on Cladoera [33℄. Clearly, if M is larger thansome ritial value of predator density Mc, then there is a stable steady state at lowdensity level Ns > Nr . It was heked numerially that Ns weakly hanges with inreaseof M > Mc (see Figure 3.5b). It results from the steep growth of funtion F (vopt, N) for
N lose to density threshold Nr from the right-hand-side (see Figure 3.4).We onlude that in this simplisti example the density level of prey in the steadystate is mostly determined by the averaged size of prey item rather then abundane ofpredator .f. [33℄. It also on�rms the hypothesis proposed in [28℄ that in the preseneof planktivorous �sh in lake the density levels of zooplankton are speies spei� andorrespond to the average body size. The lower the speies spei� prey size the higherthe orresponding threshold density level. From the results depited in Figure 3.5a weobtained a power law Nr ≈ 0.0063·s−1.86. Figure 3.5b shows that the density of predators,unless extremely low, in�uenes the steady state insubstantially.Figure 3.4: Numerially omputed dependene of predation harateristis upon preydensity with basi metaboli ost (3.4) - (solid line)- and (3.3)- dashed line - ): (a) optimalveloity - vopt(N), (b) rate of net energy intake P (vopt, N), () apture rate F (vopt, N)versus prey density (logarithmi sale).
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3.2.2. Energy balane of a foraging predatorIn order to introdue a size struture we need to �nd dependene of variables suh asenergy intake or reative distane upon prey size. We assume that the predator, far frombeing satiated, searhes for prey by being in a onstant motion as long as it is potentiallybene�ial. For eah enountered prey of size s at distane d ≤ r(s) approahed withveloity v a possible net energy intake, E, is given by
E = E(s, v, d) = ap(s)e(s)− A(v)−R(v)

d

v
− R(0)Th, (3.5)where e(s) is the energy value of prey item of size s, a is the assimilable portion of energy,

p(s) is the onsumption suess, A(v) is the amount of energy needed to aelerate toveloity v just after apture, and R(v) is the respiration rate when swimming with veloity
v. In this paper, following [52℄ we assume that the energy value of a prey item (Daphnia)in Joules equals

e(s) = 0.655 · s1.56,where s is expressed in millimeters. The rate of net energy intake assigned to the prey ofsize s being at distane d from the predator equals
P (s, v, d) =

E(s, v, d)

Th(s) + d
v

, (3.6)where Th(s) is the handling time. Note that this three-parameter funtion P has a di�erentmeaning than the two-parameter P de�ned in 3.2. For eah prey in the visual �eld volume(VFV) an optimal veloity vopt, whih maximizes P , an be found. Provided realistiassumptions on R and A suh maximum always exists and is unique.The impat of onsumption suess rate, p(s), was studied extensively in [84℄. It isan important fator in the ases when prey items are either very small or have an abilityto esape when under attak (e.g. opepods for planktivorous �sh). In what follows weassume p(s) = 1, for simpliity. Suh an assumption re�ets the ase of Daphnia, whoserelative immotility ensures high apture suess. It seems that due to the di�ulties inpreise parametrization of defense strategies the optimal foraging theory is expeted togive good preditions in the ase of immobile prey, (.f. [71℄) and in the ase of predatornot modulating its prey-apture behavior (.f. [8℄).3.2.3. Reative distane in an aquati environmentIn general, the predator's reative distane r depends on light onditions, water turbidity,as well as features of pereivable objet, in partiular its ontrast and size dependent ross-setional area. It follows from theoretial onsiderations of ([52℄) that r is the smallestnumber suh that
(|C0| · exp(−Cr)) (kI0 exp(−KZ))

af 2

r2
≥ St (3.7)where Z is the depth of foraging, K is the light extintion oe�ient, C is the beamattenuation oe�ient, C0 is the inherent ontrast of the prey, f is the foal length of �sh100



Figure 3.6: Dependene of reation distane (olor intensity) at the level of 5m underwater surfae upon size (x-axis) and ontrast (y-axis). Curves with onstant reationdistane (2m, 3m, 4m) marked in blak.
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eye, a is the prey area, k is the ratio between radianes at retina and lens, I0 is the lightintensity under the surfae and St is the sensitivity threshold for the detetion.The dependene of reative distane on suh fators as size, ontrast of prey items,depth and turbidity implies many interesting onsequenes that make equation (3.7) agood starting point for many models. In this setion we would like to present two examplesof models addressing known eologial questions that ould be built on this equation.Firstly, it is worth notiing that vertial dimension plays a speial role in aquatienvironment beause of variable light intensity. For zooplankton the layer losest tothe surfae is the rihest in food, but also the most dangerous due to the presene ofvisually foraging predator. The trade-o� between abundane and risk whih leads tovertial distribution of opepods is studied in [27℄. These onsiderations an be enrihedby assuming realisti reative distane model (see Figure 3.7) and abundane-dependentpredator speed. Using methods desribed in following setions, it is also possible to takeinto aount the size struture of opepods to obtain results on their vertial distributionbased on optimal foraging theory.Seondly, in many models variable ontrast of prey items is negleted when modelingdynamis of a size-struture of a single speies. It is, however, known that eggs in a broodhamber signi�antly inrease ontrast and expose individuals to a greater risk. Figure3.6 shows the sensitivity of reation distane with respet to the prey ontrast. Usingmethods developed in this paper, the impat of ontrast hange an be assessed.3.2.4. Expeted net rate of energy intakeAt low prey density when, at a given moment, there are no prey items in the predator'sVFV its strategy depends on its ability of sensing prey abundane. If it's pro�table toontinue searhing for prey then the optimal ruising speed needs to be hosen based oninformation about global prey distribution. We assume that the predator is apable of101



Figure 3.7: Dependene of reation distane (y-axis in logarithmi sale) upon depth (x-axis) in water of turbidity 5JTU and prey sizes: 0.5mm (red), 1.5mm (green), 2.5mm(blue), 4.5mm (pink).
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Depth [m]assessing (or simply remembers) the overall abundane of prey in the neighborhood andhooses an appropriate optimized ruising speed. In this setion we present a methodof determining the optimal ruising speed that maximizes the expeted value of the rateof net energy intake, P , de�ned in (3.6) assuming prey of size struture u(s) distributeduniformly in spae.Computing the expeted value of P (σ, v, δ) for a given v diretly requires �nding thejoint distribution of the ouple (σ, δ) of random variables, namely the size and distaneto the �rst enountered prey. Instead of doing it in one step we use onditional expetedvalue in order to deal with only one problem at a time.Firstly, the distane δ to the �rst enountered prey of size larger than s0 turns out tobe a random variable with exponential distribution with density given by
gs0(δ) = Us0e

−Us0δ , δ ≥ 0 , (3.8)where
Us0 = π

� smax

s0

r2(σ)u(dσ).Seondly, notie that size distribution, σ, of the enountered prey larger than s0 isgiven by the probability measure q = π
Us0
r2u, whih is analogous to (3.12) .Given prey size-distribution u the expeted value of net energy intake (depending onpredator's veloity v as well as on s0) an be written in the general form EP (σ, v, δ+r(σ)),where δ is the distane the predator has to over in order to notie the �rst prey largerthan s0, visible at distane r(σ), and σ is the size of this prey. As mentioned before weuse a onditional expetation to ompute this value:102



E(v, s0) = EP (σ, v, δ + r(σ)) = E (EP (σ, v, δ + r(σ))|δ) =

= E

(� smax

s0

π

Us0

r(σ)2P (σ, v, δ + r(σ)) · u(dσ)

)
=

= π

� ∞

0

� smax

s0

e−Us0δr(σ)2P (σ, v, δ + r(σ)) · u(dσ)dδ. (3.9)The parameter s0 indiates a possible smallest size of the prey that ould be aptured.Taking the supremum over s0 ∈ [0, smax] from 3.9represents seletion of optimal marginalprey size. The optimal ruising speed is the argument for whih 3.9 is maximal. Finally,our optimization proedure leads to the optimal ouple
(vcruis, smin) = max arg(v,s0)∈[0,∞]×[0,smax] E(v, s0).In our simulation we introdue an equidistant grid on [0, smax] and ompute vcruis as amaximizer of E(v, s0) for eah value of s0 of the mesh using golden setion searh on

v ∈ [0, V ], where the upper limit V is hosen heuristially.Note that the ruising speed omputed in this setion is a di�erent notion than theoptimal speed omputed in Setion 3.2.1 and introdued in [18℄. Indeed, vcruis guaranteesthe best expeted net energy gain whenever no prey items are in VFV and thereforeit should be aquired in the searhing strategy. On the other hand the optimal speedobtained in Setion 3.2.1 is de�ned as the most pro�table mean veloity in a very roughaveraged Holling-type model.The ruising speed in the average model de�ned as the most pro�table veloity max-imizing the value of P (s, v,Eδ) oinides , as we argue below, with the optimal speedde�ned in Setion 3.2.1 in the ase of low enounter rate and unstrutured population.Nonetheless, our intention is taking into aount predator's behavior when no prey itemsare visible, rather than the behavior when the next item is preisely at an average distane.In this paragraph we shall write r, u and e instead of r(s), u(s), e(s) as we onlyonsider unstrutured populations. Let us put d = Eδ = 1
πr2u

(notie that unit of u is
m−3 ) to the rate of net energy intake P (s, v, d) obtained in (3.6). For low enounter ratewhen it is allowed to assume that Th is negligible ompared to δ/v the rate of net energyintake P (v, u) as omputed in (3.2) is approximately equal to that of (3.6). Indeed in thisase it follows from (3.8) that

P (s, v,Eδ) =
e−A(v)− Ri(v)

1
πr2uv

−Ri(0)Th

Th + 1
πr2uv

≈ πr2uv

(
e−A(v)− Ri(v)

1

πr2u · v − Ri(0)Th

)
= Land, on the other hand, using (3.2) and assuming a = 1 we �nd103



P (v, u) = (e−A(v))
aπvr2u

1 + aπvr2u · Th

− Ri(v)(1− Th
aπvr2u

1 + aπvr2uTh

) +

−Ri(0)Th
aπvr2u

1 + aπvr2uTh

≈

≈ πr2uv

(
e− A(v)−Ri(v)

(
1

πr2uv
− Th

)
−Ri(0)Th

)
≈ L.Finally, these onsiderations lead to the onlusion that when negleting Th we have

P (v, u) = P (s, v,Eδ).Both presented approahes lead to the same net rates of energy intake in the limit(with prey density tending to 0) and onsequently to the same optimal veloity. Theargument presented for the ase of unstrutured population an be generalized and it anbe shown that P (v, u) = EP (s, v,Eδ) if Th = 0 also when u is a strutured populationand P (v, u) is given by 2.18. In the next hapter, an individual based, mehanisti modelof predation on a strutured population is introdued. The notions of optimal ruisingspeed and expeted net energy intake are used to model the predator's deision proess.3.2.5. Individual based modelIn this setion we introdue an optimal foraging model with two variants. In both of themthe predator patrols a 3D environment ontinuously seeking for prey. When some preyitems appear in VFV it then assesses the distane to eah of them, and optimal veloity atwhih the prey item may be reahed maximizing the rate of net energy intake (see Setion3.2.2). Finally the predator hooses the prey item whih ensures the highest rate of thenet energy intake. The appearane of prey in VFV depends on the position of predatorand on the reative distane attributed to a given prey. The geometry of VFV is takento be a half ball around the predator's head of radius equal to the reative distane.In the Basi Optimal Foraging Model (BOFM), the predator's hoie of partiular preyitem and attak veloity are based both on the information from VFV and an assessedglobal prey density and orresponding expeted rate of net energy intake (see Setion3.2.4). Whenever there is at least one individual in VFV, either the most pro�table ofthem is hosen for the attak or (based on global information) all of them are ignored andthe more pro�table ones are sought outside the VFV. We also introdue a modi�ationof this model MOFM (long-term Memory-driven Optimal Foraging Model) whih appliesfor heterogeneous pathy prey distribution in spae. In this version the predator exhibitsa transient behavior moving to a more pro�table region (in terms of higher food level).In suh a ase, apturing prey an be onsidered as a side-e�et and the predator deidesto stop and apture a prey only if the gain ompensates the additional time spent in thetransient region with the redued availability of food. Therefore we introdue the notionof antiipated energy gain, whih is an energy equivalent of all the pro�ts resulting from�nding a desired plae. It an be used to evaluate the loss aused by prolonging the searhin region with relatively low food availability, f. [29℄.104



Results of simulations depited on Figure 3.8 exhibit that the range of area patrolledby the predator as well as its average veloity inrease signi�antly with the derease inprey density.Basi model for the ase of homogeneous prey distribution The model of preda-tor's behavior an be desribed in one sentene: the predator selets a prey (from all visibleprey items) whih gives the highest rate of net energy uptake. A simulation algorithm forthe ase of homogeneous prey distribution an be deomposed to the following steps:1. pereive all prey items that are in predator's VFV and are larger than smin (seeSetion 3.2.4),2. for eah prey item, individually �nd optimal veloity vopt and ompute maximal rateof net energy gain P (s, vopt, δ) using (3.6),3. hoose suh a prey item from VFV that guarantees maximal rate of net energy gain
P ,4. move the predator to the prey with veloity vopt and attak the prey,5. keep moving the predator with veloity vcruis until a point where at least one preyappears in the VFV.In the ase of lak of prey items in the VFV patrolling an still be pro�table (provided

EP (σ, vcruis, δ + r(σ)) > Ri(0)). In suh a ase step 6 should be exeuted (the predatorshould hoose to searh for prey with ruising speed vcruis). Otherwise, the predator maydeide to rest or to ontinue to forage due to di�erent reasons than instantaneous energyintake (e.g. moving to a more pro�table area).Long-term memory-driven foraging model for heterogeneous prey distributionIn BOFM predator makes use of the 'knowledge' about global prey density in order tohoose the optimal speed when ignoring all prey items in the VFV is pro�table. In MOFMwe assume, that the predator's motivation to keep moving doesn't result from the need toforage in the urrent loation, but that there is an external reason pushing the predator tomotion. An example of suh senario is a pathy environment, where the main motivationfor predator's movement in low prey density omes from the need to reloate in order to�nd a food path.This variant of the model takes two additional parameters: antiipated energy gainin the searhed habitat Pa and ruising speed va, whih represent information about theheterogeneous environment available to the predator. The foraging algorithm is modi�edso that these two parameters are used instead of EP (σ, vcruis, δ+r(σ)) and vcruis. Namely,we obtain the modi�ed model by substituting vcruis by va in all steps of Setion 3.2.5, asthose two parameters play exatly the same role, and hanging the omparison in step 1to the following:
P (s, 0, 0)− A(va)

Th

against Pa105



Figure 3.8: Predator's trajetory (presented as a 2D projetion) aording to BOFM inprey density of a) 3 ind/l, b) 0.05 ind/l, ) 0.01 ind/l during 3 hours of onstant foraging.For omparison of spaial sales the trajetory of high density a) is also ontained in asmall retangle in left-bottom orner of b) and analogously trajetory b) is resaled to �tin ).
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Figure 3.9: Coneptual diagram of the model
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The latter formulation represents the hoie between apturing a given prey item,whih delays the arrival to a path and prolongs the searh, or ignoring it, whih doesn'tyield instantaneous gain but inreases the expeted pro�t of path exploitation.The main reason for introduing MOFM is to evaluate realistially and distinguishbetween the predator's seletivity in homogeneous and in heterogeneous prey distribution.The omparison is postponed to Setion 3.2.9.2.3.2.6. Post-aeleration ostsThe energy osts due to the post-apture aeleration seem to be an underestimated fatorin forager's energy budget. In fat post-apture aeleration osts have reently beentaken into aount in [29℄, where the impat of the aggregational response of predators onshaping the spae distribution of prey population has been studied. Our model on�rmsthat negleting the aeleration osts leads to unrealisti preditions of predator's optimalveloity. Even in the simple ase of optimizing foraging on unstrutured population,onsidered in Setion 3.2.1, assuming A(v) = 0 auses the preditions of the predator'sveloity to be an order of magnitude higher then in the ase of experimental data. Aswe were unable to �nd redible empirial data on the post-aeleration osts, we deidedto neglet ine�ieny in predator's movement and assume physially simplisti model inwhih energy ost of aeleration is equal to the di�erene of predator's kineti energy:
A(v) =

wv2

2107



Table 3.1: Optimal ruising speed (vcruis) and expeted rate of net energy gain (EP ) forvarying post-apture aeleration osts
A(v) N = 0.01 N = 0.1 N = 1. N = 10. N = 100

wv2/2
v0 = 0 v0 = 3.13 v0 = 2.77 v0 = 2.51 v0 = 2.46
EP = 0 EP = 0.07 EP = 0.23 EP = 0.31 EP = 0.34

wv2/2 + 30%
v0 = 0 v0 = 2.79 v0 = 2.49 v0 = 2.27 v0 = 2.22
EP = 0 EP = 0.05 EP = 0.20 EP = 0.28 EP = 0.31By this assumption we also neglet any hydrodynamial e�ets that may in�uene theost. In fat we expet the value of A(v) to depend on water visosity and, in onsequene,on its temperature. To assess possible impat of temperature on predator's strategy weinvestigated the dependene of optimal ruising speed and the rate of net energy gainupon post-apture aeleration osts.The results of simulations show that the inrease of post-aeleration osts by 30%yield at most 5% deline of the optimal ruising speed; ompare table 3.1. The hoieof 30% di�erene in aeleration osts presented in table 3.1 is arbitrary, but we �nd itrelevant as the upper bound for the in�uene of water temperature ranging from 12oC to

23oC.3.2.7. Variable handling timeIn the Holling model variable handling time depending on the prey size and prey ate-gory Th(s) is often onsidered. In our model the need to introdue this dependene isonsiderably redued, beause ontrary to the ase of Holling model, Th only onsists ofthe time neessary to apture (attak) the prey. The time needed for the predator toapproah a hosen prey always depends on the size and ategory of the item (reativedistane depends on prey size and ontrast) but is not a omponent of Th in our model.On the ontrary, handling time in Holling model onsists of both: time needed for thepredator to approah a spotted prey item and the time to apture it.For the aforementioned reasons and the fat that body size of zooplankton is signif-iantly smaller than predator's snout we deided to assume a onstant handling time inthe remaining part of the artile. Desribed methods, however, are general enough toallow for size-dependent handling time.3.2.8. Prey seletivity in strutured populationIn this setion two types of seletivity of the predator are investigated: passive, resultingfrom the immanent seletivity of predator's sight; and ative, resulting from predator'shoie as depited in Figure 3.10. These two modes of feeding refer to that distinguishedin the literature as the reative-�eld-volume model and the apparent size model respe-tively, [81, 20, 83℄. To ahieve this we use Jaobs seletivity index and also introdue itsmodi�ation in order to investigate ative and passive seletivity independently. We alsoheked that the Manly index yields qualitatively same results.108



Figure 3.10: Passive seletivity resulting from vision limitations on the left, ative sele-tivity resulting from optimal hoie on the right
v1

v2
e2

As a tool to measure total seletivity we use: Jaobs seletivity index, [42℄, de�ned as
Di =

ri − pi

ri(1− pi) + pi(1− ri)
(3.10)where ri is the probability that randomly hosen prey item seleted by the predator is in ithategory, and pi is the probability that randomly hosen prey item from the environmentis in ith ategory. Probabilities ri and pi may be approximated by empirial proportions.As a measure of ative seletivity we introdue Jaobs ative seletivity index, de�nedas

D′
i =

ri − qi
ri(1− qi) + qi(1− ri)

(3.11)where qi is the probability that a randomly hosen enountered prey item is in ith ategory.3.2.8.1. Passive seletivityFollowing [20℄ by passive seletivity, we mean the phenomenon of enounter rate beingprey size-dependent, and prey being aptured at the rate proportional to the enounter.This phenomenon an be fully desribed by simple formulas derived in this setion.The enounter rate of prey items of size between s and s′ in a strutured populationwith a given distribution u(s) an be written as πv � s′

s
r2(σ)u(dσ). Therefore probabilitydistribution of the enountered prey sizes, and onsequently size distribution of apturedprey is given by the normalization of this value, namely

qu(E) =

�
E
r(s)2u(ds)� smax

0
r(s)2u(ds)

. (3.12)Similarly, the size distribution of a randomly hosen prey item in the environment is givenby
pu(E) =

u(E)

u[0, smax]
.Jaobs index Di of passive seletivity may be omputed by inserting pi = u(Ωi)/u[0, smax]and ri =

�
Ωi
r(s)2u(ds)/

� smax

0
r(s)2u(ds) into (3.10) where Ωi is a range of sizes whihbelong to the investigated ategory. 109



3.2.8.2. Ative seletivity in the ase of low enounter rateIn low prey abundane or high turbidity, the optimal foraging model beomes muh sim-pler, as the number of prey items in the predators visual volume is larger than 1, withonly a very small probability. This is the ase frequently met in turbid pools [26℄. Underthese irumstanes the predator selets its vitim atively only in the sense that it anignore a ertain prey item.Holling funtional response was originally formulated for a single prey type and maybe extended to the ase of arbitrarily many prey ategories [20, 3℄. Assuming ommonhandling time for all prey items the apture rate of prey of type i reads
αiEi

1 + Th

∑

i

αiEi

, (3.13)where Ei is the enounter rate of prey of type i and αi is the attak probability uponenounter. This result an be reonsidered in the framework of measure theory as ade�nition of a apture rate operator, C : M
+ → M

+, haraterizing predation. Suhan operator takes a population size-distribution as an arguments and returns a size-distribution of eliminated items in a time unit. Formula (3.13) an be rewritten as
C

[
∑

i

miδsi

]
=

∑
i αiE(si, mi)δsi

1 + Th

∑
i αiE(si, mi)

,where E(si, mi) is the enounter rate of prey of size si whose density in the environmentis equal mi. This formula an be generalized to any input measure u ∈M
+

C [u] =
πvαr2u

1 + Thπv
� smax

0
α(σ)r2(σ)u(dσ)

. (3.14)for a given pieewise ontinuous attak probability funtion α : [0, smax] → [0, 1]. If u isabsolutely ontinuous with respet to Lebesgue measure then the density of C(u) is givenby
dC

dL =
πvα(σ)r2(σ) du

dL
(σ)

1 + Thπv
� smax

0
α(σ)r2(σ)u(σ)dσ

.In the models introdued in this paper, the �sh attaks enountered prey of size s ifand only if s ≥ smin in the ase of BOFM or P (s, 0, 0)− A(va)
Th
≥ Pa in the ase of MOFM.The simulation of BOFM is therefore expeted to give very similar results as Holing-typemodel (3.14) with v = vcruis and

α(s) =

{
1, s ≥ smin,

0, otherwise. (3.15)for low enounter rates. Notie that in this ase parameter
α : M

+[0, smax] × [0, smax] → [0, 1] impliitly depends on prey density and its size stru-ture u. Analogously, MOFM is expeted to yield similar results as the Holling-type modelwith v = va and 110



Figure 3.11: Low enounter rate senario
v0

v0

Tsearch' Tsearch''Th
' Th

''

α(s) =

{
1, P (s, 0, 0)− A(va)

Th
≥ Pa,

0, otherwise. (3.16)For the omparison we refer to Figure 3.16.In Holling-type models Th inludes both the time neessary for the attak and the timeneeded to swim through the reative distane (ompare Figure 3.11), while in BOFMand MOFM Th only onsists of the attak time. This di�erene an be mitigated byintroduing size-dependent handling time to the Holling model.Note that in the ase of low enounter rate, both BOFM and MOFM obey the lassialZero-One Rule [70℄, whih states that a type of prey is either always taken upon enounteror never taken upon enounter.3.2.8.3. Ative seletivity in the ase of high enounter rateAtive seletivity beomes a muh more omplex phenomenon when high enounter rateours. Identially as in the ase of low enounter rate, prey items smaller than someritial value are never attaked. Large enough prey, on the other hand, are only attakedif there is nothing even more pro�table in VFV.Ative hoie based on loal in spae information on prey distribution violates thelassial Zero-One Rule. Prey items above the ritial value are generally pro�table, butare attaked only with some probability smaller than 1. This result an be learly seenon Figure 3.12 - when the population onsists of many small items and only few largeones, it is pro�table to forage on both prey types. The frequeny at whih a small itemis found attrative is, however, delining with inreasing enounter rate.3.2.9. E�et of predator's memory3.2.9.1. Impat of short-term memory on foraging e�ienyThe model an also be used to investigate the importane of predator's memory in theontext of remembering loation of prey items. We an address this problem by twoquantitative methods. Firstly, assuming the predator has perfet memory, we may hekin simulations how often it is pro�table to turn bak to apture a prey item urrentlyoutside of VFV. Seondly, by omparing possible net energy intake rates when foragingwith perfet memory and with no memory about positions of enountered prey items, we111



Figure 3.12: BOFM ative seletivity index (3.11) of large prey ategory (2.5mm) in thepopulation at density level N (x-axis) with p perent of small items - 1.5mm (y-axis).Yellow dots represent situations when apturing small prey items is pro�table; blak dots- situations when small prey are ignored.
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Figure 3.13: Signi�ane of predator's memory: red line - perentage of aptured preyitems that wouldn't have been approahed if predator didn't remember their loations;green line - improvement of net energy intake rate that was ahieved thanks to perfetmemory.
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Prey density [ind/dm3]may assess by how muh the onset of short-term memory inreases predators evolutionary�tness, measured by the inrease of the rate of net energy intake.As an be seen in Figure 3.13 predators refer to their memory relatively often (upto 20% times) in the middle range of prey densities. It is intuitively lear that in lowdensities prey items outside of VFV are statistially too far to be pro�table, while in highdensities there is always a good hoie of prey within VFV. However, it turns out that�tness improvement, understood as an average rate of net energy gain, resulting from theperfet memory of loations of all enountered prey items is negligible (at most 0.5%).We an therefore speulate, that there is no evolutionary pressure on aquati predatorsto develop short-term memory even in the ase where prey are immotile and hene short-term memory would preisely re�et their atual positions. In Setion 3.2.9.2 we arguethat long-term memory, onerning mean abundane of environment and struture ofpathes, an greatly a�et foraging strategies as well as foraging e�ieny in terms ofenergy intake.3.2.9.2. Long-term memory and its impat on seletivityA question of whether the predator is more size-seletive in higher or in lower prey densityappears in many di�erent ontexts. We believe that the answer greatly depends on thepredator's long-term strategy, whih an be either harvesting (optimizing e�orts withina given prey abundane) or searhing (moving through spae in order to �nd a betterhabitat). Loal information is insu�ient for the deision-making proess so we infer thatthe strategy is hosen based on long-term memory regarding heterogeneity of spae. Wehave built two models to re�et both strategies: BOFM whih is based solely on loalinformation and predits behavior in harvesting strategy while MOFM is a simplistimodel of searhing strategy. 113



In both models the seletivity index an be easily omputed by inserting
pi =

u(Ωi)

u[0, smax]
,

ri =

�
Ωi
α(s)r(s)2u(ds)� smax

0
α(s)r(s)2u(ds)into (3.10), where attak probability α(s) is either given by (3.15) in BOFM or (3.16)in MOFM. Notie that if α(s) = 0 for the investigated size range Ωi then Di = −1 andalso if Ωi is the whole interval on whih α equals 1, namely Ωi = {s : α(s) = 1}, then

Di = 1. As an immediate onsequene of these equations we infer that the seletivity ishigher in the searhing strategy than in the harvesting provided va > v0. Indeed all theprey ategories that are aptured upon enounter in BOFM are also aptured in MOFMas the ondition
P (s, vopt, 0) ≥ EP (σ, vopt, δ + r(σ))implies

P (s, 0, 0)− A(va)

Th
≥ Pa.The later follows from the fat that Pa being the antiipated rate of energy gain in a pathis bigger then that elsewhere thus

Pa ≥ EP (σ, vopt, δ + r(σ)).In homogeneous environment (e.g. restrited in spae) predators learn that harvestingis the optimal strategy. The omparison of seletivity in low and high densities withinthis strategy is presented in Figure 3.12.In heterogeneous (e.g. pathy environment) predator forages using harvesting strategyin high density (within pathes) and searhing strategy in low density (elsewhere). Inthis ase seletivity in low density does not depend on loal abundane nor prey size-distribution. It results from the antiipated abundane of a path re�eted by the valuesof parameters va and Pa (ompare Setion 3.4). These parameters annot be assessedbased on loal information and have to be sensed by the predator and kept in its memory.As �tness greatly depends on global foraging strategy, inluding searhing for pathes, itis allowed to infer that evolutionary hanges favor development of long-term memory ofpathy environment harateristis.3.2.9.3. The shape of funtional responseIn Setion 3.2.8.2 we obtained an approximation (3.14) of the apture rate in the aseof low prey enounter rate. If v were a onstant parameter and α(s) were a given fun-tion (independent of u(·)) the funtional response formula would exatly be the Hollingtype II funtion. However, in our optimal foraging model both α and v depend on preysize-distribution and overall food abundane, namely α(s) = 1[smin,smax](s) and v = vcruis,where 1[smin,smax]
(s) is a harateristi funtion equal to 1 if s ∈ [smin, smax] and 0 else-where. 114



From Figure 3.12 we infer that, in the general ase (for possibly high prey enounterrate), attak probability α ranges from 0 to 1 (assuming values not neessarily equal to 0 or
1) depending on both density and struture of prey population. High prey enounter ratealso indues strong e�et of variable distane to hosen prey items. This phenomenonis negleted in Holling model and thus the approximation of our model shows higherinauray for high prey enounter rates (ompare Figure 3.14). Asymptoti behaviorof the funtional response for high prey density is, however, easy to express in terms offormula (3.14). In the limit, all but the largest prey are ignored and the distane betweenonseutive hosen prey items is in�nitesimal, allowing the predator to apture nearly oneitem per Th time.Funtional responses omputed with BOFM simulation and it's approximation byformula (3.14) for a prey population onsisting of two size ategories equal in numberare depited in Figure 3.14. The point of disontinuity orresponds to swithing strategybetween apturing both types of prey (lower prey densities) and apturing only the largerones (higher prey densities). Despite that, the plot of the rate of net energy gain isontinuous.As notied in Setion 3.2.9.2, BOFM and, in onsequene, the simulation results de-pited in Figure 3.14 apply to situations in whih the predator senses the homogeneity ofthe environment and optimizes its e�orts within the habitat. Suh situations inlude envi-ronments limited in spae (small ponds), experimental systems, and pathes. The modelpredits existene of low-density refuge and, more preisely, a marginal prey density (0.01ind.dm3 ) below whih no items are aptured.The preditions are di�erent in heterogeneous systems and homogeneous systems,where the spae is so large that the predator is unaware of their homogeneity. In suhases, the predator's searhing strategy in low density is be modeled by MOFM and har-vesting strategy within pathes by BOFM. The behavior in searhing mode depends onthe predator's long-term memory (re�eting 'knowledge' about the pathiness, densityand struture of prey population), and thus experimental systems need to be arefullydesigned to ensure that the predator had enough time to train to forage in the tested en-vironment. Preditions of funtional response resulting from both strategies for a singlepredator BOFM and MOFM are shown in Figure 3.16. The predator dereases its apturerate in low densities (ompared to optimal foraging - red line) in order to reloate to thepath faster. The veloity and expetations about the path may vary from one individ-ual predator to another, but eah of them follows the searhing strategy (MOFM) untilthe density meets its expetations, and swithes to harvesting in higher abundane. Weonlude that the marginal density, apparent in BOFM, does not exist in MOFM and, inonsequene, in heterogeneous nor large-sale environments. The sigmoidal shape of fun-tional response, however, results from the swith in strategies rather than unpro�tabilityof foraging.3.2.10. Implementation of the modelThe model was implemented in C++11 language and all simulations were performed onx86_64 arhiteture, eah running on a single ore.115



Figure 3.14: Funtional response in BOFM in the ase of two size ategories equallydistributed (red points) approximated by formula (3.14) with no seletivity (green line)and with seletivity for large prey (blue line). Dependene of net energy intake upon preydensity (pink line) was shown on the right sale. Notie the log-sale on x-axis. The jumpsin approximations (green and blue lines) result from disontinuity in veloity funtion.
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Prey density [ind/dm3] 2Reative distane is omputed using the Newton�Raphson method. Computing ruis-ing speed (Setion 3.2.4) and optimal veloity (Setion 3.2.5) is found by golden setionsearh. In every time step of the simulation a �nite setion of the spae around thepredator is modeled (prey sizes and loations are stored in a data struture that ontainsinformation about a large ball around the predator). In order to eliminate boundarye�ets, every time when the virtual predator gets lose to the border of its 'universe,' aset of new prey items is generated in the empty �eld that has not been visited before.The number of new prey items is drawn from Poisson distribution and their positions aredrawn from uniform distribution (using random number generators from standard C++11library).3.3. Foraging in the framework of measure theoryIn Setion 3.2 foraging is haraterized as a sequential proess of apturing individual preyitems. Suh an approah allows inorporating most realisti assumptions and obtainingnumerial results. For the purpose of farther modeling (e.g. model ling of prey populationdynamis or its spae distribution), however, it is more onvenient to represent funtionalresponse as an operator on the spae of size-distributions (i.e.
C : M

+[0, smax]→M
+[0, smax]), similarly as it was done in Setion 3.2.8.2.For a given proess of apturing individual prey items it is natural to de�ne a apturerate operator C : M

+[0, smax]→M
+[0, smax] as

CBOFM [u] (E) = lim
T→∞

#{prey items of sizes restrited to Eaptured in BOFM in time T}
T

.General models suh as individual-based BOFM or MOFM introdued in Setion 3.2.5are quite omplex and di�ult to analyze in the framework of operators on the spae ofmeasures. In partiular, it is not lear whether the de�nition above is orret and the116



Figure 3.15: Funtional response in BOFM (red points) for uniformly distributed foursize ategories of prey (a) and 16 size ategories (b) respetively. Dependene of netenergy intake upon prey density (green) was shown on the right sale on both pitures.Dependene of smin upon prey density in the ase of 16 size ategories (). Notie thelog-sale on x-axis.
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Prey density [ind/dm3]Figure 3.16: Funtional responses in BOFM (red line) and MOFM (green line) for uni-formly distributed ontinuous range of prey sizes between 1mm and 2mm, and va = 3dm
s
,and Pa re�eting expeted rate of net energy gain in path with abundane 1 ind

dm3 . Theminimal size of aptured prey items in MOFM is equal 1.73mm.
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onditions under whih the limit exists are unknown. Basi properties of the proessessuh as dereased seletivity in higher densities or inreased veloity in higher temper-atures an be easily proved. On the ontrary, natural questions arising from measuretheory approah, suh as Lipshitz ontinuity of CBOFM , are almost impossible to solve.Nonetheless, in suh ases a numerial study an be onduted and it proves to be usefulfor onstruting simpler, yet aurate enough, models suitable for population dynamis.The aim of this setion is to de�ne apture rate operator
CLOW : M

+[0, smax]→M
+[0, smax],whih is easier to analyze than CBOFM and still apable of grasping all the important phe-nomena suh as stable prey-predator interations, variable predator veloity and passiveseletivity. At this point we abandon the bottom-up approah of building more omplexmodels on top of simpler ones following evident ausal relations. Instead, we shall restritour onsiderations to the domain of low population densities and following the lines ofSetion 3.2.8.2 we enhane the lassial Holling formula to inorporate desired depen-dene on the whole size-struture of the population. The new model is justi�ed by theomparison against BOFM.Let

CLOW [u] =
πv[u]r2u

1 + Thπv[u]
� smax

0
r2(σ)u(dσ)

,for v : M
+[0, smax]→ R being the maximizer of expeted rate of net energy intake. Insteadof employing the most general form of expeted rate of net energy intake introdued in3.2.4, namely Eσ,δP (σ, v, δ+ r(σ)), we assume that δ >> r(σ) and v

δ
>> Th and for given

u we derive
Eσ,δP (σ, v, δ) ≈ EσP (σ, v,Eδ) ≈ P (u, v) =

= πv

� smax

0

r2(σ)

(
e(σ)− A(v)− R(v)

1

vπ
� smax

s0
r2(σ)u(dσ)

)
u(dσ) =

= πv

� smax

0

r2(σ) (e(σ)− A(v))u(dσ)− R(v).We also make a partiular hoie of funtions A and R, namely let A(v) = mv2

2
(ompareSetion 3.2.6) and let R(v) = r0 + r1v+ r2v

2 + r3v
3. Funtion R(v) gives a good approxi-mation of the respiration rate introdued in (3.4) for v ∈ [0, 13] if v is measured in metersper seond provided that r0 = 6.8 · 10−3, r1 = 1.24 · 10−3, r2 = 6.0 · 10−5, r3 = 2.5 · 10−5.The range of veloity is based on the experimental data.3.4. DisussionIn this hapter a new, mehanisti, individual-based approah to modeling of visuallyforaging predators onstantly searhing for and apturing prey items in a prey population118



with presribed size struture. Prey items are assumed to be immobile and homoge-neously distributed in 3-dimensional spae. The model is based on the lassial oneptof optimal foraging but ontrary to previous works, all aspets of predator's deisions arebeing subjeted to optimization. Underlying assumptions on aquati habitats and thelimitations of predator's pereption, desribed in Setion 3.2.3, are somewhat idealizedand may serve as a referene point for more partiularized studies.One of our main assumptions is inspired by results of experiments desribed in [29℄.It onerns the ability of planktivorous �sh to make deisions on apturing or ignoringindividual prey basing on loally pereivable information as well as on globally assessedprey abundane. We laim that these two fators along with the prey's energy value, thepredator's respiration rate and the amount of energy, A(v), needed to aelerate afterprey apture to veloity v determines the �nal hoie of prey item. Empirial assessmentof A(v) is a hallenging task indiating the diretion of further studies.Identifying the irumstanes under whih it is pro�table for the predator to ignore apereived individual prey is an important omponent of our model. Intuitively speaking,it preisely de�nes when a prey item is too small or the distane to a prey item is toolarge. The terms 'too small' and 'too large' always need a referene point and in ourmodels it's either the average rate of net energy inome haraterizing given habitat (inharvesting strategy) or the antiipated energy (in searhing strategy). The predator'sability to sense prey population density is assumed in BOFM (whih applies to habitatswith homogeneous in spae prey distribution and pathes). MOFM predits the predator'sbehavior in an intermediate position between pathes provided two parameters: searhingveloity, va, and the antiipated net energy intake, Pa. In this paper we do not onsidertheoretial methods of evaluating the hoie of parameters va and Pa. It is, however,intuitively lear that Pa should re�et the net energy intake ahievable in the path byharvesting strategy provided that there is no risk of starvation. We believe the optimalveloity va for a pathy environment an be omputed using similar methods as in Setion3.2.4 when applied to the distribution of pathes instead of prey items. In the long time-sale, the predator's �tness is usually measured by the number of o�spring or exhaustiontime (the time until satiety falls to zero for the �rst time) rather than average net energyintake (eg. [6℄). The di�erene between these models of �tness is partiularly importantwhen the danger of starvation is onsiderable and optimization of energy involves highrisk. Suh ideas give an alternative method of determining values va and Pa.While in lassial models of predation (suh as Holling-type funtional response) bothpredator's speed and seletivity are assumed, the approah used in this hapter allows forprediting these values. The omparison of results for BOFM and MOFM indiates thatin the heterogeneous environment seletivity in high density stems from a di�erent ausethan seletivity does in low density. It is therefore important to distinguish 'relativelylow density' and 'low density' when speaking of seletivity - the �rst term relates toheterogeneous environment while the latter to a homogeneous one.The optimal foraging model developed in this artile an be extended in many di-retions to take into aount various proesses related to foraging. Several fators havepotentially high impat on foraging strategies: predator's degree of satiation, risk toler-ane, dependene of risk upon light onditions, and sensitivity on light onditions oupled119



with orresponding hanges in prey reognition. The subjet of this study is restritedto foraging of an individual predator, nonetheless onlusions an be used as a buildingblok for further studies of phenomena suh as population dynamis, vertial distributionof prey or path exploitation. Our study is foused on predation itself and on its impaton the struture of prey population leaving aside other fators whih a�et its size andstruture. Notie that the proesses of predation and population growth are of di�erenttime sale and in the ase of planktivorous �sh, ative foraging is restrited to a shorttime at dawn and dusk. The hanges in population struture due to birth and naturaldeath in this time may be negleted. Thus, per apita mortality predited by our optimalforaging models an be used in more general strutured population models to desribefull population dynamis. We also believe that path exploitation studies an be enrihedby the observation arising from Figure 3.8 that higher abundane deters predators frompatrolling larger areas.In Setion 3.2.1 the lassial Holling disk equation is viewed from the perspetive ofoptimal foraging theory. This approah allows us to predit the ourrene of low preydensity refuge resulting from predator's negative rate of energy intake. An empiriallytestable onjeture, stating that in the presene of visually foraging predator a power lawdetermines the relation between the density of a prey population and average prey sizewas formulated.Two di�erent types of predator's seletivity (passive, resulting from the immanentseletivity of predator's sight, and ative, resulting from predator's hoie) are often dis-ussed in literature (see eg. [83℄). The struture BOFM and MOFM enabled us toinorporate both ideas in one framework and therefore obtain realisti preditions forboth low enounter rate (when passive seletivity plays a ruial role) and high enounterrate (when ative seletivity beomes an important fator). Auray of preditions isadditionally supported by the resemblane of funtional response predited by the model(Figure 3.16) and the experimental data (Figure 3.2).Finally, a model based on Holling disk equation, enrihed by reative distane andenergy balane models was introdued in Setion 3.3 to re�et the funtional responseof a visual predator optimizing its ruising speed in low enounter rate. As observed in[29℄ aggregation of plankton in open eosystems imposes higher risk of being apturedon eah prey item and in onsequene is maladaptive. Also aggregational response ofthe predators is strong enough to eliminate pathes on zooplankton. We infer that themodel may be inaurate in the general ase of possibly high enounter rate, but for theaforementioned reasons is su�ient for modeling population dynamis in real habitats.
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Final remarksAs a �nal note we present some unresolved issues and open problems related to thisdissertation, that the author found partiularly interesting.Algorithms for omputing �at distaneIn Setion 1.3.4 an algorithm for omputing �at distane between two measures from
M

+
d,N(R) was presented. The omplexity of this algorithm was proved to be O(N logN).Can this result be improved?1. Does there exist an algorithm for omputing �at distane between two measuresfrom M

+
d,N(R) with linear omplexity, O(N)?2. Does there exist a linear algorithm whih, given two measures µ, ν ∈ M

+
d,N(R),omputes an upper bound for the �at metri, ρF (µ, ν), satisfying

ρF (µ, ν) ≤ ρF (µ, ν) ≤ C · ρF (µ, ν)for some onstant C? What is the smallest onstant C for whih suh algorithmexists?Approximation theory for Radon measuresTheorem 70 provides an estimate of the �at distane between a Lipshitz ontinuousfuntion, f ∈ C0,1[0, 1], and its optimal N-step approximation, fN . It turns out that
ρF (f, fN) ≤ C ·N−2 for some onstant C. How does this result generalize to other lassesof funtions and their approximations?1. Assume f ∈ C[0, 1] is only a ontinuous funtion and let fN be its optimal N-stepapproximation. Does the following asymptoti behavior hold

ρF (f, fN) = O(N−2)?2. Fix f ∈ C0,1[0, 1], and let fN be its optimal linear spline. Does ρF (f, fN) = O(N−3),if N is the number of intervals on whih fN is linear?Setion 1.5.3 provides a method for approximating ontinuous funtions, f ∈ C[0, 1], bydisrete N-point measures. The length of the interval [0, 1] plays a ruial role in thereasoning, see Remark 38. How an this result be generalized to the ase of arbitraryinterval [a, b] instead of [0, 1]. 121



Transport equationThe tools used for the study of MKendrik-von Foerster equation an be general-ized to transport equations. In this dissertation solutions are onsidered in the spae of
(M+(X), ρF ), whih is not a linear spae. The linear spae (M(X), ρF ), on the otherhand is not omplete.1. How an elements of the Banah ompletion, (M(X), ρF ), be haraterized?2. Can Theorem 79 be generalized to the spae (M(X), ρF )?3. How an the methods of omputing distanes between measures be generalized toompute distanes between elements of (M(X), ρF )?Model of zooplankton population Theorem 109 haraterizes stationary state tothe MKendrik-von Foerster equation with mortality resulting from the optimal foragingmodel.1. Is the stationary state, haraterized by Theorem 109, stable?2. What is the rate of onvergene to the stationary state?3. What is the basin of attration of the stationary state?Optimal foraging modelIn Chapter 3 a post-apture aeleration ost funtion, A(v), was introdued to re�etthe energy expense of predator when aelerating from a motionless state to veloity v. Inthis dissertation it was assumed that A(v) is equal to predator's kineti energy at veloity
v, namely mv2

2
. How aurate is this estimation? An experimental study of predator'srespiration rate during aeleration ould answer this question and provide basis for morepreise optimal foraging models.
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