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Abstra
tIn this thesis a model of the dynami
s of size-stru
tured population subje
t to sele
tivepredation is built and analyzed. The study is motivated by biologi
al phenomena 
on
ern-ing limnology and o
eanography, and in parti
ular diversity of �rst 
onsumers in aquati
e
osystems. An individual-based model of size-sele
tive visual predator-harvester basedon the 
on
ept of optimal foraging is proposed. Farther, a simpli�
ation of the model,des
ribed in terms of operators on the spa
e of measures, is derived based on HollingII-type fun
tional response to eliminate inherent di�
ulties of individual-based approa
h.The results are 
ompared against experimental eviden
e. Considerations involving popu-lations dynami
s, namely growth, birth and mortality, are examined in the framework ofmeasure-valued solutions to transport equation and various distan
es arising from optimaltransportation theory. To this end, e�
ient algorithms for solving transportation prob-lem on a real line are found and �nally, numeri
al s
hemes based on parti
le methods forstru
tured population models are improved. Moreover, approximation theory for Radonmeasures is developed.A
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NotationIn this thesis the following notation is used:
• R

≥0 is the set of non-negative real numbers,
• R

+ is the set of positive real numbers,
• Lip(f) is the Lips
hitz 
onstant of fun
tion f ,
• µ+ is the non-negative measure arising from Jordan de
omposition of µ,
• Dνµ is the Radon-Nikodym derivative of measure µ with respe
t to ν,
• L is the Lebesgue measure,
• O,Θ,Ω is the standard Landau notation for limiting behavior,
• 1E is an indi
ator fun
tion of set E,
• µ|E is the restri
tion of measure µ to the set E,
• C1, C2, ... are absolute 
onstants that may di�er between o

urren
es.For normed spa
es X and Y we shall use following notation:
• C(X;Y ) is the spa
e of 
ontinuous fun
tions,
• Cb(X;Y ) is the spa
e of bounded 
ontinuous fun
tions,
• C0,1(X;Y ) is the spa
e of Lips
hitz 
ontinuous fun
tions,
• C0(X;Y ) is the spa
e of 
ontinuous fun
tion vanishing at in�nity,
• Cc(X;Y ) is the spa
e of 
ompa
tly supported 
ontinuous fun
tion,
• Lp(X;Y ) is the usual Lebesgue spa
e,
• B(X) is the Borel σ-algebra on X,
• M(X) is the spa
e of �nite, Radon measures,
• Md(X) is a subset of M(X) 
onsisting of dis
rete measures with �nite number ofatoms,
• Md,N(X) is a subset of Md(X) 
onsisting of dis
rete measures with N atoms,
• 〈µ, f〉 for measure µ ∈M(X) and fun
tion f ∈ C(X; R) is the value �

X
fdµ,

• BX(x, r) is the set {y ∈ X : ‖x− y‖X ≤ r}.For simpli
ity notation M[a, b] and Lp[a, b] is often used instead of M([a, b]) and Lp([a, b]).Similarly, notation C(X) is used instead of C(X; R).If γ ∈ M(X × X) then for a given set A ⊆ X we de�ne measure γ(A, ·) ∈ M(X) by
γ(A, ·)(E) = γ(A× E) for every measurable set E ⊆ X.6



Introdu
tionThe goal of this thesis is to build and analyze a model of size-stru
tured population sub-je
t to sele
tive predation. The study is motivated by biologi
al phenomena 
on
erninglimnology and o
eanography, and in parti
ular diversity of �rst 
onsumers in aquati
e
osystems. An individual-based model of size-sele
tive visual predator-harvester basedon the 
on
ept of optimal foraging is proposed [41℄. It in
orporates models of underly-ing physi
al pro
esses and makes predi
tions based on the assumption that the foragermaximizes its rate of energy intake [81, 71, 65, 59, 52, 8, 84℄. Farther, a simpli�
ationof the model is derived to eliminate inherent di�
ulties of individual-based approa
h.A generalization of Holling II-type model [38℄ is proposed and the results are 
omparedagainst experimental eviden
e 
olle
ted by a team of hydrobiologists a�liated with theUniversity of Warsaw [28, 29, 53, 30℄. Considerations involving populations dynami
s,namely growth, birth and mortality, are examined in the framework of measure-valuedsolutions [35, 36℄ to transport equation [2℄ and optimal transportation theory [76℄. To thisend, the theory of approximation on the spa
e of �nite Radon measures equipped withbounded Lips
hitz distan
e is developed, e�
ient algorithms for solving transportationproblem on a real line are found [40℄ and �nally, numeri
al s
hemes based on parti
lemethods for stru
tured population models are improved.The dissertation is divided into three almost independent parts treating theory ofmetri
s on the spa
e of measures, theory of measure-valued M
Kendri
k-von Foersterequations and optimal foraging models. This order has been 
hosen for the 
onvenien
eof a reader with mathemati
al ba
kground. The main results of the �rst 
hapter 
onsistof an algorithm for 
omputing bounded Lips
hitz distan
e between two dis
rete measuressupported on an N-element subset of R. Computational 
omplexity of this algorithm isproved to be O(N logN). Moreover, a number of theorems 
hara
terizing optimal approx-imations of di�erent 
lasses of measures by dis
rete measures supported on an N-elementset are proved [39℄. In the se
ond 
hapter well-established numeri
al s
hemes based onparti
le methods [15℄, su
h as split-up algorithm, original es
alator box-
ar train andits modi�
ation are 
ompared [34℄ and three improvements basing on the results of theprevious 
hapter are des
ribed. Moreover, it is demonstrated that a 
ertain generaliza-tion of Holling II-type model of foraging 
an be translated into the language of operatorson spa
es of measures, and sin
e appropriate regularity 
onditions hold it 
an be usedin M
Kendri
k-von Foerster population dynami
s equations. The last 
hapter des
ribesthree novel models of size-sele
tive visual predator-harvester feeding on a prey popula-tion homogeneously distributed in spa
e based on the 
on
ept of optimal foraging [41℄.Optimization of the rate of net energy intake o

urs at the level of forager's de
isions,whi
h in
lude 
ruising speed [79, 78, 66℄, atta
k velo
ity and a
tive sele
tion of prey items[49, 26, 20℄. The greatest advantage of models proposed in this 
hapter is that all param-eters are physi
ally measurable and no �tting to experimental data is required. Finally,the out
ome of model simulations is 
ompared against experimental data, 
olle
ted by thehydrobiologists, and 
riti
ally dis
ussed. The thesis and the proposed models improves
omprehension of many aspe
ts of foraging in an aquati
 environment.7
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Chapter 1Metri
s on the spa
es of RadonmeasuresThe spa
e of �nite Radon measures on X, M(X), is naturally equipped with a normindu
ed by the total variation, whi
h makes M(X) a Bana
h spa
e. However, the metri
indu
ed by this norm is so strong that it does not provide a reasonable measure of errorfor most appli
ations. For instan
e, it is often desired that two Dira
 masses with atoms
lose to ea
h other in X are also 
lose in some metri
 on M(X). For this reason a di�erentnotion of distan
e has to be developed.In many appli
ations su
h as transportation problems [44, 76℄, 
rowd dynami
s [54, 55℄,stru
tured population dynami
s [11, 35, 36, 73℄ or gradient �ows [5, 82℄ it is natural to
onsider the output of mathemati
al modeling in terms of Radon measures, rather thandensities. One reason is that very basi
 phenomena (e.g. growth of individuals in stru
-tured population models) may lead to singularities in density fun
tions. What seems to beeven more important is that mathemati
al tools used for the analysis of fun
tion-valuedsolutions (as opposed to measure-valued solutions) imply an inherently inappropriatesense of distan
e between solutions (see Example 10). The desired properties of su
hdistan
e depend on the stru
ture of the 
onsidered problem [36℄. Re
ent years witnessedlarge developments in the kineti
 theory methods applied to mathemati
al physi
s andmore re
ently also to mathemati
al biology. Among important bran
hes of the kineti
theory are optimal transportation problems and related to them Wasserstein metri
s orMonge-Kantorovi
h metri
s [5, 76℄. These, however, are only appli
able to pro
esses withmass 
onservation. To 
ope with variable mass, several modi�
ations have been proposed,in
luding �at metri
, 
entralized Wasserstein metri
 and normalized Wasserstein distan
e.For 
omparison of di�erent metri
s, their interpretation and examples we refer to Se
tion1.4.Metri
s based on the 
on
ept of optimal transportation have been used in di�erent�elds su
h as image re
ognition [24℄, alignment of surfa
es [50℄, �uid dynami
s [32℄, asymp-toti
s of nonlinear di�usion equations [13℄, semi-supervised learning [69℄. This 
hapter ismainly devoted to the �at metri
, whi
h is a natural 
hoi
e for population models studiedin 
hapter 2. 9



1.1. PreliminariesThroughout this 
hapter we assume that X is a �nite-dimensional Bana
h spa
e. Somede�nitions and results 
an be generalized to lo
ally 
ompa
t metri
 spa
es. It is, however,beyond the s
ope of this 
hapter.De�nition 1. Mapping µ : B(X) → R ∪ {−∞,∞} is 
alled a Radon measure if thefollowing 
onditions hold1. µ(∅) = 02. for any 
ountable 
olle
tion, {Ei}∞i=1 ⊂ B(X), of pairwise disjoint sets
µ

(
∞⋃

i=1

Ei

)
=

∞∑

i=1

µ (Ei) ,3. µ takes at most one of the values −∞ and ∞.De�nition 2. Let µ be a Radon measure on X. By total variation of µ we mean
‖µ‖ = µ+(X)− µ−(X).Existen
e and unique de
omposition of arbitrary Radon measure µ into a di�eren
eof two non-negative measures µ+ and µ− follows from Jordan de
omposition theorem.Measures with �nite total variation are 
alled �nite. The set of all �nite Radon measureson X are be denoted by M(X).De�nition 3. We de�ne the spa
e of bounded Lips
hitz fun
tions as

C0,1
b (X;Y ) = C0,1(X;Y ) ∩ Cb(X;Y )equipped with the following norm

‖f‖C0,1
b

(X;Y ) = max

(
‖f‖C(X;Y ) , sup

x,y∈X

‖f(x)− f(y)‖Y
‖x− y‖X

)
.The norm ‖·‖C0,1

b
(X;Y ) is known as the Fortet-Mourier norm (see [23℄).Theorem 4. (Riesz-Markov representation theorem) Let ψ ∈ C0(X)∗ then there exists aunique µ ∈M(X) su
h that for every f ∈ C0(X)

ψ(f) =

�
X

fdµ.Theorem 5. (Riesz-Markov-Kakutani representation theorem) Let ψ ∈ Cc(X)∗ then thereexists a unique Radon measure, µ, on X su
h that for every f ∈ Cc(X)

ψ(f) =

�
X

fdµ.10



De�nition 6. We de�ne the following norms on some subspa
es of M(X):
‖µ‖R = sup

{�
X

fdµ : f ∈ BC(X)(0, 1)

}
,

‖µ‖W = sup

{�
X

fdµ : f ∈ C0,1(X), Lip(f) ≤ 1

}
,

‖µ‖F = sup

{�
X

fdµ : f ∈ BC0,1
b

(X)(0, 1)

}
.Proposition 7. Let Ω ⊂ X be a 
ompa
t set and let µ ∈M(X), then ‖µ‖ = ‖µ‖R ≥ ‖µ‖Fand ‖µ‖W ≥ ‖µ‖F .De�nition 8. For ea
h of the de�ned norms we de�ne 
orresponding metri
s: Radondistan
e, 1-Wasserstein distan
e and �at distan
e

ρ(µ, ν) = ‖µ− ν‖R ,
W (µ, ν) = ‖µ− ν‖W ,

ρF (µ, ν) = ‖µ− ν‖F .Proposition 9. Let Ω ⊂ X be a 
ompa
t set, and let µ, ν ∈M
+(X). Then, W (µ, ν) <∞if and only if ‖µ‖ = ‖ν‖.Proof. Let K = supx∈X ‖x‖X . Choose a sequen
e {fn} ⊂ C0,1(X), su
h that Lip(fn) ≤ 1and �

X

fn(x)(µ− ν)(dx)→W (µ, ν).If ‖µ‖ = ‖ν‖ then for any 
onstant C ∈ R it follows that �
X
C(µ− ν)(dx) = 0. Thus,

∞ > K (‖µ‖+ ‖ν‖) ≥
�

X

‖x‖X |µ− ν|(dx) ≥
�

X

fn(x)− fn(0)(µ− ν)(dx)→W (µ, ν).Conversely, if W (µ, ν) < ∞, then �
X
C(µ − ν)(dx) = 0 for any C ∈ R. Consequently,

(µ− ν) (R) = 0.Example 10. Metri
s on M(X) de�ned in this se
tion are inherently di�erent fromstandard metri
s on Lp spa
es, even if 
onsidered on the spa
e of absolutely 
ontinuousmeasures. Consider the following two examples:1. Let ηε be a standard molli�er and let µn, νn ∈ C∞(R) be de�ned as µn = 1
n
δ0 ∗ ηεand νn = 1

n
δn2 ∗ηε. For a �xed ε > 0 we have ‖µn − νn‖Lp(R) → 0 for any p ∈ [1,∞],but also ‖µn − νn‖W →∞.2. Let µn, νn ∈ C∞(R) be de�ned as µn = nδ0 ∗ η2−n and vn = nδ 1

n2
∗ η2−n , then

‖µn − νn‖Lp(R) →∞ for any p ∈ [1,∞], but also ‖µn − νn‖W → 0.11



1.1.1. 1-Wasserstein distan
eThe following 
hara
terization ofW (µ, ν) was derived in [75℄ for the the 
ase µ, ν ∈M(R).Theorem 11. 1-Wasserstein distan
e between measures µ and ν on R equals
W (µ, ν) =

� ∞

−∞

|µ[−∞, x]− ν[−∞, x]|dx.In other words W (µ, ν) is the L1(R) distan
e between 
umulative distribution fun
tionsfor µ and ν.From the de�nition of W (µ, ν) the following propositions follow.Proposition 12. 1-Wasserstein distan
e is s
ale-invariant, namely
W (λ · µ, λ · ν) = λW (µ, ν).De�nition 13. Let x ∈ X and µ ∈M

+(X). De�ne translation of µ by x as
Txµ(E) = µ(E + {−x}).Proposition 14. 1-Wasserstein distan
e is translation-invariant, namely
W (Txµ, Txν) = W (µ, ν).1.1.2. Normalized Wasserstein distan
eBy Proposition 9 the 1-Wasserstein distan
e is not a suitable tool for 
omparing twomeasures of di�erent masses. It may seem that the simplest solution is to normalize themeasures beforehand. It turns out, however, that W (

µ
‖µ‖
, ν
‖ν‖

) is not a metri
. Instead,the following 
on
ept, used for example in [61℄, may be applied.De�nition 15. We de�ne normalized 1-Wasserstein distan
e between two measures
µ, ν ∈M(X) as̃

W (µ, ν) = min

(
‖µ‖+ ‖ν‖ , | ‖µ‖ − ‖ν‖ |+W

(
µ

‖µ‖ ,
ν

‖ν‖

))
. (1.1)Lemma 16. The distan
e de�ned by (1.1) is a metri
.Proof. Let µ, ν and η be Radon measures. Then, it holds

• W̃ (µ, ν) = 0 if and only if µ = ν. Indeed, either ‖µ‖+ ‖ν‖ = 0 or
| ‖µ‖ − ‖ν‖ |+W

(
µ

‖µ‖
, ν
‖ν‖

)
= 0 imply that µ = ν.

• W̃ (µ, ν) = W̃ (ν, µ), 12



• Sin
ẽ
W (µ, ν) + W̃ (ν, η) = min

(
‖µ‖+ ‖ν‖ , | ‖µ‖ − ‖ν‖ |+W

(
µ

‖µ‖ ,
ν

‖ν‖

))

+ min

(
‖η‖+ ‖ν‖ , | ‖η‖ − ‖ν‖ |+W

(
η

‖η‖ ,
ν

‖ν‖

))
,to show the triangle inequality, we 
onsider four possibilities

W̃ (µ, ν) + W̃ (ν, η) = ‖µ‖+ ‖ν‖ + ‖η‖+ ‖ν‖ > ‖µ‖+ ‖η‖ > W̃ (µ, η),

W̃ (µ, ν) + W̃ (ν, η) = | ‖µ‖ − ‖ν‖ |+W

(
µ

‖µ‖ ,
ν

‖ν‖

)

+| ‖η‖ − ‖ν‖ |+W

(
η

‖η‖ ,
ν

‖ν‖

)
> W̃ (µ, η),

W̃ (µ, ν) + W̃ (ν, η) = ‖µ‖+ ‖ν‖ + | ‖η‖ − ‖ν‖ |+W

(
η

‖η‖ ,
ν

‖ν‖

)
> ‖µ‖+ ‖η‖

> W̃ (µ, η),

W̃ (µ, ν) + W̃ (ν, η) = ‖η‖+ ‖ν‖ + | ‖µ‖ − ‖ν‖ |+W

(
µ

‖µ‖ ,
ν

‖ν‖

)
> ‖µ‖+ ‖η‖

> W̃ (µ, ν).This metri
 la
ks the s
aling property (namely in general W̃ (λµ, λν) = λW̃ (µ, ν) doesnot hold). Nonetheless, the following weaker property holds.Proposition 17. Let µk and νk be two sequen
es of Radon measures and ‖µk‖ → 0,
‖νk‖ → 0 then W̃ (µk, νk)→ 0.Note that W (

µk

‖µk‖
, νk

‖νk‖

) does not satisfy the weaker property, sin
e for µk = 1
k
δ0,

νk = 1
k
δ1 we have

lim
k→∞

W

(
1
k
δ0∥∥ 1

k
δ0
∥∥ ,

1
k
δ1∥∥ 1

k
δ1
∥∥

)
= 1.1.1.3. Centralized Wasserstein metri
For appli
ations that require s
ale-invarian
e and 
omparing measures of unequal massesneither 1-Wasserstein nor Normalized Wasserstein distan
e is suitable.De�nition 18. Centralized 1-Wasserstein distan
e between two measures µ, ν ∈ M(X)reads

Ŵ (µ, ν) = sup

{�
X

fd(µ− ν) : f ∈ C0,1(X), Lip(f) ≤ 1, |f(0)| ≤ 1

}
.13



This metri
 was introdu
ed in [36℄ for analysis of the measure-valued stru
tured pop-ulation models.This metri
 is s
ale-invariant, but in 
ontrast toWasserstein metri
, it is not translation-invariant. Appli
ations of 
entralized 1-Wasserstein metri
 are therefore restri
ted tomodeling of spe
i�
 phenomena, for whi
h the dependen
e of error on lo
ation in X isjusti�able.Consider the following example: µx = 2δx, νx = 3δx. If measures µ and ν representstru
ture distribution of a population (e.g. µx is a model predi
tion of size-distributionof a population and νx is an empiri
al size-distribution 
omputed based on experimentaldata) and moreover new individuals are always born with a �xed stru
tural variable
x0 ∈ X one may argue that the error, e(µx, νx), should depend on x. The di�eren
e ofmasses at x ∈ X is a result of both the di�eren
e in the number newborns (with stru
turalvariable x0) and the individual growth pro
ess from x0 to x. Consequently, one wouldexpe
t that for two stru
tural points x, y ∈ X 
ondition ‖x− x0‖X ≥ ‖y − x0‖X implies
e(µx, νx) ≥ e(µy, νy). Centralized Wasserstein metri
 meets this expe
tation sin
e in that
ase Ŵ (µx, νx) ≥ Ŵ (µy, νy). On the other hand, the above argumentation is hard todefend if mortality, and therefore mass annihilation at every point of X, is involved. Inthe next se
tion, a more versatile and translation-invariant metri
 is introdu
ed.1.1.4. Bounded Lips
hitz distan
eThe �at metri
, known also as a bounded Lips
hitz distan
e [60℄, is s
ale- and translation-invariant. It has proven to be useful in analysis of stru
tured population models and, inparti
ular, Lips
hitz dependen
e of solutions on the model parameters and initial data[35, 11℄. The �at metri
 has been re
ently used for the proof of 
onvergen
e and stabilityof EBT numeri
al s
heme (see [9, 11℄).The following three lemmas provide tools for estimating ρF from above. The �rstestimate arises from Proposition 7 and its proof 
an be found in Se
tion 7 in [34℄.Lemma 19. Let µ, ν ∈M

+
d (X) and µ =

∑N
i=1miδxi

, ν =
∑N

i=1 niδyi
then

ρF (µ, ν) ≤
N∑

i=1

|mi − ni|+
N∑

i=1

‖xi − yi‖X ni.Proof. Let µ̃ =
∑N

i=1 niδxi
. From triangle inequality we obtain

ρF (µ, ν) ≤ ρF (µ, µ̃) + ρF (µ̃, ν) = ‖µ− µ̃‖+W (µ̃, ν).Dire
tly from the de�nitions of appropriate metri
s it follows that
‖µ− µ̃‖ =

N∑

i=1

|mi − ni|and
W (µ̃, ν) =

N∑

i=1

ni (f(xi)− f(yi)) ,14



for some f ∈ C0,1(X) satisfying |f(xi)− f(yi)| ≤ ‖xi − yi‖X . Finally, we obtain
W (µ̃, ν) ≤

N∑

i=1

‖xi − yi‖X ni,whi
h 
ompletes the proof.The se
ond lemma is a straightforward 
orollary resulting from de�nition of �at dis-tan
e.Lemma 20. Let µ and ν be two non-negative Radon measures on X = X1 ∪ X2 with
X1 ∩X2 = ∅. Then

ρF (µ, ν) ≤ ρF (µ|X1, ν|X1) + ρF (µ|X2, ν|X2)The following fa
t follows dire
tly from the de�nition of �at distan
e.Lemma 21. For every µ, ν ∈M(X) and f ∈ C0,1(X) it holds that
ρF (µ, µ̃) ≥

�
X
fd (µ− µ̃)

‖f‖C0,1
b

(X)

.An easy, yet important, 
on
lusion from Lemma 19 
an be made.Corollary 22. For µ, ν ∈Md(X) we have
ρF (µ, ν) ≤ inf

‖µ̃‖=‖ν‖
µ̃∈Md(X)

‖µ− µ̃‖+W (µ̃, ν).Proof. Lemma 19 
an be reformulated as ρF (µ, ν) ≤ ‖µ− µ̃‖ + W (µ̃, ν) for any
µ, ν ∈ Md(X) and µ̃ being supported on a subset of suppµ ∪ suppν with ‖µ̃‖ = ‖ν‖.Sin
e there are no assumptions on N , and also mi, ni are not ne
essarily stri
tly positivemeasure µ̃ 
an be supported on an arbitrary dis
rete subset of X.A farther generalization of Corollary 22 is provided by Theorem 25.1.2. Dual representationThe following two theorems 
onne
t Wasserstein metri
 with transportation theory andprovide a dual representation for W (µ, ν). Proofs 
an be found in [76℄.Theorem 23. (Kantorovi
h and Rubinstein) Wasserstein distan
e between probabilitymeasures µ and ν on a metri
 spa
e (X, d) equals

W (µ, ν) = inf
γ∈Γ(µ,ν)

{�
X×X

d(x, y)dγ

}where Γ(µ, ν) denotes a subset of M
+(X ×X) of all measures with marginals equal to µand ν on the �rst and se
ond fa
tors respe
tively. Γ(µ, ν) is often referred to as the set oftransferen
e plans. 15



Theorem 24. For every pair of measures µ and ν on a metri
 spa
e (X, d) there existsan optimal transferen
e plan γ∗ su
h that
W (µ, ν) =

�
X×X

d(x, y)Xdγ
∗An analogue of Theorem 23 for �at metri
 was �rst noti
ed in [40℄ and proved in [62℄for the 
ase of X = R

d.Theorem 25. Bounded Lips
hitz distan
e between �nite Radon measures µ and ν on R
dequals

inf
µ̃,ν̃∈M(Rd)

‖µ̃‖=‖ν̃‖

‖µ− µ̃‖+ ‖ν − ν̃‖+W (µ̃, ν̃).In fa
t, intermediate measures µ̃ and ν̃ for whi
h the in�mum is attained are alwaysno greater than µ and ν respe
tively. The following result was proved in Se
tion 2.1 in[62℄:Corollary 26. Let µ, ν ∈M(Rd) then
ρF (µ, ν) = inf

µ̃,ν̃∈M(Rd)

µ̃≤µ,ν̃≤ν
‖µ̃‖=‖ν̃‖

‖µ− µ̃‖+ ‖ν − ν̃‖+W (µ̃, ν̃).Dual representations allows for easier reasoning about upper bounds of distan
es.For instan
e Corollary 22, whi
h generalizes Lemma 19 follows immediately from dualrepresentation of �at metri
. Similarly does Theorem 11. Another pro�t arising from thedual representations is that an approa
h based on �ow networks 
an be used to 
omputethe value of the distan
e (see Se
tion 1.3.1).1.3. Computational 
omplexityIn this se
tion algorithmi
 aspe
ts of numeri
al 
omputation of distan
es between two non-negative dis
rete Radon measures are dis
ussed. The set of dis
rete measures, Md(X), isdense in M(X) hen
e the distan
e between arbitrary two measures 
an be 
omputed byapproximating ea
h of them with a dis
rete measure (see Theorem 41).Ea
h of the 
onsidered distan
es 
an be determined by linear programming. Compu-tational 
omplexity of this approa
h is often too large for appli
ations. For the 
ase ofarbitrary spa
e X we present how the problem 
an be redu
ed to �nding a maximum-�owminimum-
ost for a bipartite graph. For the 
ase of X = R, Theorem 11 provides analternative approa
h whi
h leads to a linear algorithm for 1-Wasserstein distan
e. More-over, an analogue of Theorem 11 is presented and an algorithm for 
omputing �at metri
is derived.Unless stated otherwise, by the input length of a problem, N , we mean the numberof Dira
 masses in both of the 
ompared measures. The aim of this se
tion is to presente�
ient algorithms for Wasserstein-type metri
s des
ribed in Se
tion 1.1. In parti
ular, anovel algorithm for 
omputing the �at metri
 on R with 
omputational 
ost O(N logN)is proposed. 16



1.3.1. Transferen
e plan as a �ow networkGiven two dis
rete measures µ, ν ∈Md,N(X) the problem of 
omputingW (µ, ν), Ŵ (µ, ν)and ρF (µ, ν) 
an be redu
ed to an instan
e of linear programming. Indeed, let
µ− ν =

N∑

i=1

miδxi
,then W (µ, ν) maximizes linear obje
tive fun
tion

c(f1, f2, ..., fN) =

N∑

i=1

mifisubje
t to the following linear inequality 
onstraints:
fi − fi+1 ≤ xi+1 − xi

fi+1 − fi ≤ xi+1 − xifor every i ∈ {1, 2, ..., N−1}. Similarly, the distan
e Ŵ (µ, ν)maximizes the same obje
tivefun
tion, c, subje
t to additional 
onstraint given by
fi+1 ≤ 1 + xi+1 − xi

fi+1 ≥ −1− (xi+1 − xi)

fi−1 ≤ 1 + xi − xi−1

fi−1 ≥ −1− (xi − xi−1)for xi−1 < 0 < xi+1. Finally, �at distan
e ρF (µ, ν) also maximizes c and requires additional
onstraints given by
f(xi) ≤ 1

f(xi) ≥ −1for every i ∈ {1, 2, ..., N}.Despite the fa
t that linear programming has been studied intensively sin
e the begin-ning of 20th 
entury, a question whether there exists a sub-exponential algorithm solvingthe linear programming problem remained open until 1979. The 
urrent opinion is thatthe e�
ien
y of good implementations of exponential simplex-based methods and poly-nomial interior point methods are similar [31℄. In this se
tion we present a method ofredu
ing the problem of 
omputingW (µ, ν) to an instan
e of a maximum-�ow minimum-
ost problem. It is bene�
ial sin
e e�
ient algorithms for solving this problem for the 
aseof bipartite graphs are known [58, 19℄. Finally, a generalization of this method, inspiredby [45℄, to the 
ase of �at metri
, ρF (µ, ν) is presented.De�nition 27. Flow network is a �nite dire
ted graph (V,E) with a 
apa
ity fun
tion
w : V × V → R ∪ {∞} and a 
ost fun
tion c : V × V → R.17



In this se
tion we show that Wasserstein distan
e between two dis
rete probabilisti
measures and bounded Lips
hitz distan
e between two dis
rete Radon measures on ametri
 spa
e X, with a �nite number of atoms (µ =
∑N

i=1miδxi
and ν =

∑M
j=1 njδyj

) 
anbe 
omputed using maximum-�ow minimum-
ost approa
h.De�nition 28. For given probabilisti
 measures µ =
∑N

i=1miδxi
, ν =

∑M
j=1 njδyj

wede�ne a Wasserstein �ow network NW = (VW , EW ) by
VW = {s, x1, x2, ..., xN , y1, y2, ..., yM , t}
EW = {s} × {x1, ..., xN} ∪ {y1, ..., yM} × {t} ∪ {x1, ..., xN} × {y1, ..., yM}with a 
apa
ity fun
tion

w(u, v) =





mi if u = s and v = xi

ni if u = yi and v = t

∞ otherwiseand 
ost fun
tion
c(u, v) =

{
d(xi, yi) if u = xi and v = yi

0 otherwiseNetwork NW is depi
ted on Figure 1.1.De�nition 29. A �ow in a �ow network N = (V,E) is a mapping f : E → R
≥0 , subje
tto the following 
onstraints:1. for every (u, v) ∈ E it holds that f(u, v) ≤ w(u, v), where w is the 
apa
ity fun
tion2. for every v ∈ V \ {s, t} it holds that ∑{u:(u,v)∈E} f(u, v) =

∑
{u:(v,u)∈E} f(v, u)De�nition 30. A maximum-�ow in a �ow network N = (V,E) is a �ow, f , that maxi-mizes ∑{v:(s,v)∈E} f(s, v).De�nition 31. A maximum-�ow minimum-
ost is the minimal value of

∑

(u,v)∈E

c(u, v)f(u, v)for f being a maximum �ow.Theorem 32. The maximum-�ow minimum-
ost of network NW equals W (µ, ν).Proof. Every transferen
e plan γ ∈ Γ(µ, ν) de�nes a maximum �ow in network NW by
fγ(u, v) =

{
w(u, v) if u = s or v = t

γ({u}, {v}) otherwise ,18



Figure 1.1: Wasserstein �ow network NW for measures ∑N
i=1miδxi

and ∑M
j=1 njyj.

and every maximum �ow de�nes a transferen
e plan. Moreover the 
ost asso
iated with�ow fγ equals
∑

u∈{x1,...,xN}

∑

v∈{y1,...,yM}

c(u, v)fγ(u, v) =

�
X×X

d(x, y)dγConsequently, by Theorem 23, the maximum-�ow minimum-
ost of network NW equals
W (µ, ν).De�nition 33. For given measures µ =

∑N
i=1miδxi

, ν =
∑M

j=1 njδyj
we de�ne a �at �ownetwork NF = (VF , EF ) by

VF = {s, x1, x2, ..., xN , y1, y2, ..., yM , t}
EF = {s} × (VF \ {s, t}) ∪ (VF \ {s, t})× {t} ∪ {x1, ..., xN} × {y1, ..., yM}with a 
apa
ity fun
tion

w(u, v) =





mi if u = s and v = xi

ni if u = yi and v = t

∞ otherwiseand 
ost fun
tion
c(u, v) =





d(xi, yi) if u = xi and v = yi

1 if u = xi and v = t

1 if u = s and v = yi

0 otherwise19



Network NW is depi
ted on Figure 1.2.Theorem 34. The maximum �ow minimum 
ost of network NF equals ρF (µ, ν).Proof. Every 
hoi
e of (µ̃, ν̃, γ) ∈Md(X)×Md(X)×Γ(µ̃, ν̃) su
h that∑N
i=1 m̃iδxi

= µ̃ ≤ µand ∑M
i=1 ñiδyi

= ν̃ ≤ ν de�nes a maximum �ow in network NF by
fµ̃,ν̃,γ(u, v) =





w(u, v) if u = s and v = xi

w(u, v) if u = yi and v = t

mi − m̃i if u = xi and v = t

ni − ñi if u = s and v = yi

γ({u}, {v}) otherwise ,and every maximum �ow de�nes a triple (µ̃, ν̃, γ) ∈Md(X)×Md(X)×Γ(µ̃, ν̃). Moreoverthe 
ost asso
iated with a �ow fµ̃,ν̃,γ equals
∑

u∈{x1,...,xN ,s}

∑

v∈{y1,...,yM ,t}

c(u, v)fµ̃,ν̃,γ(u, v) =

=

�
X×X

d(x, y)dγ +

N∑

i=1

(mi − m̃i) +

M∑

i=1

(ni − ñi)Consequently, by Corollary 26, the maximum �ow minimum 
ost of network NF equals
ρF (µ, ν).Sin
e network N is a bipartite graph (ex
luding s and t verti
es) the Hungarian al-gorithm [58, 45, 19℄ 
an be applied to 
ompute 1-Wasserstein and Bounded Lips
hitzdistan
es. This approa
h proves to be signi�
antly more e�
ient than general linearprogramming.Example 35. Let us 
onsider the following expression: ρF (2δx, 3δy) for some x, y ∈ X.The value of this distan
e 
an be 
omputed by following methods:
• Let NF = (V,E) be the �at �ow network for measures 2δx and 3δy, hen
e V =
{s, x, y, t}. By de�nition the maximum-�ow in NF is a �ow, f , whi
h maximizes
f(s, x) + f(s, y). Sin
e f(s, x) ≤ w(s, x) = 2 and f(y, t) ≤ w(y, t) = 3 we infer thatfor the maximum-�ow f(s, x) = 2 and f(y, t) = 3. Sin
e f(s, x) = f(x, y) + f(x, t)and f(x, y) + f(s, y) = f(y, t), we 
on
lude that the 
ost of a maximum-�ow equals

f(x, t) + d(x, y)f(x, y) + f(s, y) =

= (2 + 3) + (d(x, y)− 2) f(x, y).It is easy to 
he
k that for any value f(x, y) ∈ [0, 2] a maximum-�ow 
an be built.Finally, by Theorem 34 we obtain
ρF (2δx, 3δy) =

{
5 if d(x, y) ≥ 2

1 + 2d(x, y) otherwise .20



Figure 1.2: Flat �ow network NW for measures ∑N
i=1miδxi

and ∑M
j=1 njyj. Edges fromthe set EF \ EW are shown in blue.

• By the de�nition of ρF (µ, ν) we have that
ρF (2δx, 3δy) = sup {2fx − 3fy : |fx − fy| ≤ d(x, y), |fx| ≤ 1, |fy| ≤ 1} .Fix fx ∈ [−1, 1], then

fy ∈ [fx − d(x, y), fx + d(x, y)] ∩ [−1, 1].Sin
e −3fy is de
reasing with fy it attains maximum value at
fy = max (fx − d(x, y),−1) .Consequently,

ρF (2δx, 3δy) = sup
fx∈[−1,1]

{2fx − 3 max (fx − d(x, y),−1)} =

= sup
fx∈[−1,1]

min (3d(x, y)− fx, 3 + 2fx) .If d(x, y) ≥ 2 then 3 + 2fx ≤ 3d(x, y)− fx for every fx ∈ [−1, 1], thus
ρF (2δx, 3δy) = sup

fx∈[−1,1]

3 + 2fx = 5.Otherwise, if d(x, y) < 2 then 3 + 2fx = 3d(x, y) − fx for fx = d(x, y) − 1. Sin
e
3 + 2fx is in
reasing and 3d(x, y)− fx is de
reasing we obtain

ρF (2δx, 3δy) = 3d(x, y)− (d(x, y)− 1) = 1 + 2d(x, y).21



1.3.2. 1-Wasserstein distan
e on M
+
d (R)Theorem 11 provides tools for 
omputing Wasserstein distan
e as an integral whi
h inthe 
ase of dis
rete measures is simply a �nite sum of N elements. In this se
tion wederive this algorithm again, from a di�erent perspe
tive in a seemingly over
ompli
atedway. The purpose of this is to make an introdu
tion to this approa
h, whi
h is fartherapplied for more involved algorithms for other distan
es.Let µ, ν ∈ M

+
d (R), ‖µ‖ = ‖ν‖, and µ − ν =

∑N
k=1mkδxk

. Sin
e �
X
Cd (µ− ν) = 0we 
an add an arbitrary 
onstant to the test fun
tion in the de�nition of 1-Wassersteindistan
e and hen
e

W (µ, ν) = sup

{
N∑

k=1

mkf(xk) : f ∈ C(R), f(xN) = 0, Lip(f) 6 1

}
.Regularity 
onditions 
an be represented as linear programming bounds. Hen
e, 
omput-ing of W (µ, ν) is equivalent to �nding maximum of

∣∣∣∣∣

N∑

k=1

mkfk

∣∣∣∣∣with the following restri
tions
fN = 0,

|fk − fk−1| 6 |xk − xk−1| .Although this problem 
an 
learly be solved by linear programming, a more e�
ientalgorithm 
an be found. De�ne
Wm(f) = sup

{
m∑

k=1

mkfk : {fi}Ni=0 ⊂ R, fm = f, ∀k∈{1,...,N} |fk − fk−1| 6 |xk − xk−1|
}
.Obviously W (µ, ν) = WN(0). Denote dk = xk+1 − xk, and observe that the value of

Wm(f) 
an be 
omputed re
ursively as follows
W 1(f) = m1x,

W 2(f) = m2f + sup
f1∈[f−d1,f+d1]

W 1(f) = m2f +m1f +m1 · sgn(m1)d1 =

= (m1 +m2)x+ |m1|d1.It 
an be shown by indu
tion that
WN(f) =

(
N∑

i=1

mi

)
f +

N−1∑

i=1

di

∣∣∣∣∣

i∑

j=1

mj

∣∣∣∣∣ . (1.2)Noti
e that the value mN is not used in the formula for WN(0). It is, however, involvedindire
tly, be
ause mN = −∑N−1
i=1 mi. 22



1.3.2.1. Pseudo
odeEquation (1.2) gives an expli
it formula forW (µ, ν), whi
h is trivial to 
ompute. Nonethe-less, in this se
tion we provide a pseudo
ode for 
omputing iterated sum∑N−1
i=1 di

∣∣∣
∑i

j=1mj

∣∣∣in linear time to make sure the reader is familiar with pseudo
ode notation before movingforward to more involved examples.In this algorithm we initially assign 0 value to variables 'distance' and 'partialSum'and then pro
ess the array of positions, x, and the array of masses,m, sequentially. In ea
hiteration one, 
onse
utive, index idx is pro
essed. After indi
es {1, 2, 3, ..., k} were pro-
essed the variable partialSum 
ontains∑k
j=1mj and distance 
ontains∑k

i=1 di

∣∣∣
∑i

j=1mj

∣∣∣.Consequently, after all indi
es smaller thanN are pro
essed the returned variable distance
ontains W (µ, ν).Input:
• non-de
reasing table of positions, x ∈ R

N,
• table of masses, m ∈ R

N.1-Wasserstein-Distan
e (x ∈ R
N, m ∈ R

N):
distance ← 0
partialSum ← 0for idx← 1 to N − 1 do

partialSum ← partialSum+midx

distance ← distance + (xidx+1 − xidx) · |partialSum|return distance1.3.2.2. Complexity of the algorithmIt is 
lear from the pseudo
ode that the 
omputational 
omplexity of the algorithm is
Θ(N), while memory 
omplexity (the volume of memory used by the algorithm) is Θ(1).1.3.3. Centralized Wasserstein distan
e on M

+
d (R)Let

µ− ν =
M∑

i=1

miδxi
+mM+1δ0 +

N∑

i=M+2

miδxi
.De�ne

W j(f) = sup

{
j∑

k=1

mkfk : {fi}Ni=0 ⊂ R, fj = f, ∀k∈{1,..,j} |fk − fk−1| 6 |xk − xk−1|
}
,

W
j
(f) = sup

{
N∑

k=j

mkfk : {fi}Ni=0 ⊂ R, fj = f, ∀k∈{1,..,j} |fk − fk−1| 6 |xk − xk−1|
}
.23



As already proven
WM+1(f) =

(
M+1∑

i=1

mi

)
f +

M∑

k=1

dk

∣∣∣∣∣

k∑

i=1

mi

∣∣∣∣∣ ,

W
M+1

(f) =

(
N∑

i=M+1

mi

)
f +

N−(M+1)∑

k=1

dN−k

∣∣∣∣∣

N∑

i=N+1−k

mi

∣∣∣∣∣ .From the de�nition it 
an be dedu
ed that
Ŵ (µ, ν) = sup

f∈[−1,1]

(
WM+1(f) +W

M+1
(f)−mM+1f

)
,so the distan
e is given by the formula

Ŵ (µ, ν) =

M∑

k=1

dk

∣∣∣∣∣

k∑

i=1

mi

∣∣∣∣∣+
N−(M+1)∑

k=1

dN−k

∣∣∣∣∣

N∑

i=N+1−k

mi

∣∣∣∣∣ +
∣∣∣∣∣

N∑

i=1

mi

∣∣∣∣∣ .1.3.3.1. Pseudo
odeSimilarly as in the 
ase of 1-Wasserstein distan
e the algorithm is straightforward. It
onsists of three loops. In the �rst two while loops terms
M∑

k=1

dk

∣∣∣∣∣

k∑

i=1

mi

∣∣∣∣∣and
N−(M+1)∑

k=1

dN−k

∣∣∣∣∣

N∑

i=N+1−k

mi

∣∣∣∣∣are 
omputed exa
tly as in 1-Wasserstein-Distan
e. Finally, in the third loop re-maining masses (
orresponding to position 0) are added to variable partialSumFront, toensure that partialSumFront+ partialSumBack =
∑N

i=1mi.Input:
• non-de
reasing table of positions, x ∈ R

N,
• table of masses, m ∈ R

N.Wasserstein-Centralized-Distan
e(x ∈ R
N, m ∈ R

N):
distance ← 0
(partialSumFront, partialSumBack) ← (0, 0)
(idxFront, idxBack)← (1, N)while xidxFront < 0 do

partialSumFront ← partialSumFront+midxFront

distance ← distance + (xidxFront+1 − xidxFront) · |partialSumFront|
idxFront← idxFront+ 1 24



while xidxBack > 0 do
partialSumBack ← partialSumBack +midxEnd

distance ← distance + (xidxBack − xidxBack−1) · |partialSumBack|
idxBack ← idxBack − 1for idx← idxFront to idxBack do
partialSumFront← partialSumFront+midxreturn distance + |partialSumFront+ partialSumBack|1.3.3.2. Complexity of the algorithmEa
h iteration of ea
h loop takes a 
onstant time. The total number of iterations in allthree loops is equal toM+1+(N −M − 1). Computational 
omplexity of this algorithmis therefore Θ(N), while the memory 
omplexity is Θ(1).1.3.4. Flat distan
e on M

+
d (R)In this se
tion the main result from [40℄, namely the algorithm for 
omputing �at distan
ein O(N logN), is presented.Computing �at distan
e requires storing the shape of fun
tions analogous to Wm asthey get more 
ompli
ated when m in
reases. We provide a re
ursive formula for thesequen
e of these fun
tions. The pseudo
ode in Se
tion 1.3.4.1 implements the algorithmusing an abstra
t data stru
ture, without spe
ifying its exa
t implementation, to storepreviously de�ned fun
tions. However, the 
omputational 
omplexity depends on theparti
ular 
hoi
e of this stru
ture. In further se
tions we provide two solutions thatrequire respe
tively O(N2) and O(N logN) operations.Let
µ− ν =

N∑

i=1

miδxi
.Computing of F (µ, ν) is equivalent to �nding maximum of

∣∣∣∣∣

N∑

k=1

mkfk

∣∣∣∣∣with the following restri
tions
|fk| 6 1,

|fk − fk−1| 6 |xk − xk−1| .De�ne
Fm(f) = sup

{
m∑

k=1

mkfk : {fi}Ni=0 ⊂ [−1, 1], fm = f, ∀i∈{1,..,N} |fk − fk−1| 6 |xk − xk−1|
}
.25



By the de�nition of �at metri

F (µ, ν) = sup

x∈[−1,1]

FN(x).Observe that
F 1(f) = m1f,

F 2(f) = m2f + sup
f1∈[f−d1,f+d1]∩[−1,1]

F 1(f1) = m2f + min(|m1|, m1f + |m1|d1),

... .. ...

Fm(f) = mmf + sup
fm−1∈[f−dm−1,f+dm−1]∩[−1,1]

Fm−1(fm−1). (1.3)Computing of Fm based on Fm−1 is more 
omplex than 
omputing Wm based on Wm−1,be
ause Fm−1 is not ne
essarily monotoni
. The following two lemmas and Figure 1.3explain the relation between Fm and Fm−1.Lemma 36. Fun
tion Fm is 
on
ave for ea
h m.Proof. To prove the lemma we use indu
tion with respe
t to m. F 1(f) is given as a1f , soit is indeed 
on
ave. Assume Fm is 
on
ave. De�ne
F n,d

max(f) = sup
y∈[f−d,f+d]∩[−1,1]

F n(y).Choose x, y ∈ [−1, 1]. Then, there exist x′ ∈ B(x, d) ∩ [−1, 1], y′ ∈ B(y, d) ∩ [−1, 1] su
hthat
αFm,d

max(x) + (1− α)Fm,d
max(y) = αFm(x′) + (1− α)Fm(y′).Be
ause Fm is 
on
ave, it holds

αFm(x′) + (1− α)Fm(y′) 6 Fm (αx′ + (1− α)y′) 6 Fm,d
max(αx+ (1− α)y)The last inequality follows from αx′ + (1− α)y′ ∈ B(αx+ (1− α)y, d). It is now proventhat Fm+1 is 
on
ave, as it is a sum of a linear fun
tion and a 
on
ave fun
tion Fm,d

max.Lemma 37. For ea
h m ∈ {1, 2, ..., N} fun
tion Fm is pie
ewise linear on m intervals.Moreover, for some point f ∗
m it holds that

Fm(f) = mmf +





Fm−1(f + dm−1) on [−1, f ∗
m − dm−1]

Fm−1(f ∗
m) on [f ∗

m − dm−1, f
∗
m + dm−1]

Fm−1(f − dm−1) on [f ∗
m + dm−1, 1]

(1.4)Proof. The proof is 
ondu
ted by indu
tion over m. F 1 is a linear fun
tion, so it 
anbe des
ribed by its values in {−1, 1}. Assume that Fm 
an be des
ribed by at most
m + 1 points and is linear between these points. As Fm is 
on
ave, there exists a point26



Figure 1.3: The method of 
onstru
ting Fm+1 from Fm

f ∗
m ∈ [−1, 1] su
h that Fm(f) ≤ Fm(f ∗

m) for every f . The maximum of Fm on an intervalwhose both ends are smaller than f ∗
m is attained at its right end. Similarly, if both endsof the intervals are larger than f ∗

m, the maximum is attained at its left end. Finally, if theinterval 
ontains f ∗
m, the maximum is exa
tly at point xm. These 
onsiderations provethe formula for Fm+1. Consequently, Fm+1 is pie
ewise linear and it 
an be des
ribed byas many points as Fm plus 1.1.3.4.1. Pseudo
odeThe algorithm presented in this se
tion 
onstru
ts fun
tion FN and �nds its maximum.A set of pairs, 
alled funcDescription, and a real variable leftV alue are used to represent

F idx for idx ∈ {1, 2, ..., N}. The stru
ture has following interpretation:1. F idx(−1) = leftV alue,2. if (v, p) ∈ funcDescription then d
dx
F idx(x) = p for all x larger than v and smallerthan the next value, v′, in the stru
ture.For a given value v we de�ne #v as min {v′ : (v′, p) ∈ funcDescription ∧ v′ > v}. By thisde�nition d

dx
F idx(x) = p on (v,#v) if (v, p) ∈ funcDescription.Representation of F 0 is initialized to F 0 ≡ 0, namely

{
leftV alue = 0

funcDescription = {(−1, 0), (1,−∞)} .27



In ea
h iteration of the main loop fun
tion F idx is transformed into fun
tion F idx+1 asspe
i�ed by equation (1.4). The transformation is a
hieved in three steps. Firstly, themaximum argument f ∗
idx is found, all nodes on the left from f ∗

idx are shifted to left, allnodes on the right from f ∗
idx are shifted to the right, and a new node is added to representthe interval [f ∗

idx−dm−1, f
∗
idx+dm−1]. Se
ondly, value of F idx(−1) is 
omputed and assignedto leftV alue. Finally, the representation of F idx is restri
ted to the interval [−1, 1] andlinear fun
tion mmf is added.Input:

• non-de
reasing table of positions, x ∈ R
N,

• table of masses, m ∈ R
N.Flat-Distan
e (x ∈ R

N, m ∈ R
N):

leftV alue← 0
funcDescription← {(−1, 0), (1,−∞)}for idx← 1 to N do

d← xidx − xidx−1

funcLeft← {(v − d, p) : (v, p) ∈ funcDescription ∧ p > 0}
funcRight← {(v + d, p) : (v, p) ∈ funcDescription ∧ p < 0}
vm ← min {v : (v, p) ∈ funcRight}
funcDescription← funcLeft ∪ {(vm − 2d, 0)} ∪ funcRight

leftV alue← leftV alue+
∑

(v,p)∈funcDescription

v<−1

(min(#v,−1)− v) p

(vmin, pmin)← max {(v, p) : (v, p) ∈ funcDescription ∧ v ≤ −1}
(vmax, pmax)← max {(v, p) : (v, p) ∈ funcDescription ∧ v ∈ [−1, 1]}
funcDescription← funcDescription ∩ {(v, p) : v ∈ (−1, 1)}
funcDescription← funcDescription ∪ {(max(vmin,−1), pmin)}
funcDescription← funcDescription ∪ {(1,−∞)}
funcDescription← {(x, p+midx) : (x, p) ∈ funcDescription}return leftV alue+

∑
(v,p)∈funcDescription, p>0 (#v − v) · pNoti
e that the last instru
tion in the main loop, namely

funcDescription← {(x, p+midx) : (x, p) ∈ funcDescription} ,makes it ine�
ient to implement funcDescription as a simple BST tree.28



1.3.4.2. Flat-Distan
e in O(N2)As mentioned before, the 
omplexity of this algorithm depends on the implementation of
funcDescription data stru
ture.The simplest implementation of funcDescription uses an array of pairs (v, p) sortedby v in as
ending order and by p in the reverse order in the same time. This is possibleas a 
onsequen
e of Lemma 36.The �rst blo
k of instru
tions 
an be performed in Θ(#funcDescription) by simplyshifting all elements su
h that p < 0 to the right, and modifying v by iterating over allelements of funcDescription. The next blo
k (
omputing of leftV alue) 
an be 
omputedwith the same 
omplexity, as

min {v′ : (v′,_) ∈ funcDescription ∧ v′ > v}is simply the next element after v in the ordered array. Finally, every instru
tion in thelast blo
k 
an be performed in Θ(#funcDescription) by iterating over all its elements.In ea
h iteration of the main loop at most 1 element is added to funcDescription.Therefore, the 
omputational 
omplexity of the algorithm is O(N2) while the memory
omplexity is O(N).1.3.4.3. Flat-Distan
e in O(N logN)The previous result 
an be improved to O(N logN) by using balan
ed binary sear
h treesdata stru
ture.In this implementation funcDescription is represented by global variable pmodifier anda balan
ed binary sear
h tree, T , of key-value pairs (∆v, p) where p is the key. Let #p bethe largest key in T smaller than p. The de�ned data stru
ture funcDescription spe
i�esa fun
tion F idx in the following sense:1. F idx(−1) = leftV alue2. if p is a key in T then d
dx
F idx(x) = p+ pmodifier for x su
h that

∑

(∆v′,p′)∈funcDescription
p′≥p

∆v′ − 1 ≤ x ≤
∑

(∆v′,p′)∈funcDescription
p′≥#p

∆v′ − 1Noti
e that obtaining a single element of funcDescription (a pair (v, p) de�ning derivativein a given point) may take linear time.The advantages of this stru
ture 
an be easily seen when analyzing the �rst blo
k ofthe 
ode. The division of funcDescription by the value of p (at �rst 0) 
an be a
hievedin O(logN). Shifting all elements of those subsets 
an then be done in a 
onstant timeby modifying �rst elements of these sets. Adding the extra node also requires O(logN)operations.Setting leftV alue may require linear time, but all (apart from one) visited nodesin this pro
ess will be removed in the third blo
k. Consequently the amortized 
ost ofresetting leftV alue is O(N). 29



Removing nodes with the �rst 
oordinate v < −1 is obviously done in amortized
O(N). Identifying nodes with the �rst 
oordinate v > 1 might seem problemati
. It is,however, known that for the smallest p the respe
tive v-value is equal to 1 + d. Relevantnodes 
an be, therefore, removed in the reversed order (from right to left) O(N). Adding
mn to the se
ond 
oordinate of ea
h node is done simply by adding it to global variable
pmodifier.All iterations of the main loop requireO(N logN) operations. The memory 
omplexityis also O(N logN).1.3.4.4. Performan
e of Flat-Distan
e implementationsPerforman
e of the algorithm depends on the 
hoi
e of funcDescription data stru
ture.Theoreti
 bounds for 
omputational 
omplexity are, however, not su�
ient to argue aboutperforman
e of these two options. The �rst reason is that the ea
h operation in O(N2)algorithm is mu
h faster than in O(N logN) in terms of number of instru
tions. Se
ondly,hardware ar
hite
tures provide solutions in whi
h iterating over large tables is vastly a
-
elerated. Finally, the algorithm does rea
h its theoreti
al bound only if many points 
on-
entrate on a small interval. A gap of size 2 between two points 
leans funcDescriptiondata stru
ture 
ompletely. Numeri
al results presented in this se
tion answer 
omparethese two algorithms for di�erent data input patterns. Performan
e was measured on asingle 
ore of AMD Athlon II X4 605e pro
essor 
lo
ked at 2.3Ghz with 8GB of memory.The results are presented in Figures 1.4 and 1.5.1.4. Comparison of metri
s on M

+(X)The following table presents a 
on
ise 
omparison of the distan
es de�ned in Se
tion 1.1.For ea
h metri
 basi
 properties, dual representation, 
ompute 
omplexity in the 
ase of
X = R and the distan
e between 2δx and 3δy are shown.Metri
 Example:

d(2δx, 3δy)

S
ale-invarian
e Translation-invarian
e Dual representation of
d(µ, ν)

Compute
omplex-ityWasserstein ∞ YES YES The 
ost of optimaltransferen
e ofdistribution µ to ν,assuming that movingmass m by x requires mxenergy.
O(N)

Wassersteinnormalized min(2 + 3,

(3− 2)+ |x− y|)
weak YES Minimum of the sum ofmasses of µ and ν; and ofthe di�eren
e in massesbetween µ and ν plus the
ost of transporting µ

‖ν‖to ν
‖ν‖

O(N)

30



Wasserstein
entralized 2|x− y|+ |y| YES NO The di�eren
e in massesin point 0 in spa
e addedto the 
ost oftransporting
µ + (‖ν‖ − ‖µ‖) δ0 to ν. O(N)

Flat 1 +

2 min (2, |x− y|)
YES YES The 
ost of optimaltransporting AND/ORgenerating AND/ORannihilating mass to form

ν from µ. O(N log N)

Radon 2 + 3 YES YES The 
ost of generatingAND/OR annihilatingmass to form ν from µ

O(N)

Figure 1.4: Comparison of the performan
e of the two proposed algorithms for the �atdistan
e between 0 ∈ M(R) and an N-point dis
rete measure with atoms randomlydistributed over [−1, 1]. The plot shows how the time of 
omputation depends on N .For ea
h input size 100 independent tests were exe
uted to demonstrate how sensitive thealgorithms are to input data distribution. Results of O(NlogN) algorithm are depi
tedas red dots, and results of O(N2) algorithm as blue dots.
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Figure 1.5: Comparison of the performan
e of the two proposed algorithms for the �atdistan
e between 0 ∈M(R) and a N-point dis
rete measure with atoms distributed overa large domain, i.e. distan
e between ea
h two masses is larger than 2. In this 
ase bothalgorithms are in fa
t linear, as the fun
Des
ription stru
ture has at most two elements.The plot demonstrates the overhead of using BST stru
tures. Results of O(NlogN)algorithm are depi
ted as red dots, and results of O(N2) algorithm as blue dots.
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1.5. Approximation theory for Radon measuresIn this se
tion the following problem is 
onsidered: given a measure µ ∈M
+[0, 1] �nd itsapproximation µN ∈M

+
d,N [0, 1] supported on a N-element set whi
h minimizes ρF (µ, µN).Similar study has been presented in [68℄ and [63℄ for Wasserstein distan
e and the 
aseof absolutely 
ontinuous measure µ. Theorem 23 allows to understand the approximationproblems for Wasserstein distan
e as real-life questions about optimal 
hoi
e of 
on
en-tration points su
h as shops, warehouses and polling stations. Analogously, optimal �atdistan
e approximation 
an be interpreted, following the lines of Corollary 26, as the op-timal 
hoi
e of 
on
entration points of goods whose demand 
an be, at some additional
ost, satis�ed alternatively. Appli
ations of this theory in
lude the problem of lo
atingpar
el lo
kers and wireless a

ess-points providing Internet servi
es in metropolitan areas.The results of this se
tion are primarily motivated by the study of parti
le methodsfor solving partial di�erential equations (see Se
tion 2.2). They prove to be useful forsolving M
Kendri
k-von Foerster equation numeri
ally as they allow the following threeimprovements:1. birth pro
ess 
an be implemented more e�
iently,32



2. number of parti
les, and hen
e the 
omputational 
ost, 
an be redu
ed,3. error of the s
heme 
an be redu
ed by optimizing initial data approximation.For details see Se
tion 2.2. This se
tion is divided into three subse
tions whi
h 
overgeneral theory, approximations of dis
rete measures and approximations of absolutely
ontinuous measures.Remark 38. The 
hoi
e of interval X = [0, 1], often made in this se
tion, is not arbitrary.Although, most of the results presented in this se
tion 
an be generalized to the 
aseof arbitrary interval [a, b], it is not immediate. In many proofs (e.g. Theorem 44) it isne
essary that the diameter of X does not ex
eed the Lips
hitz 
onstant of test fun
tionsin the de�nition of �at metri
. Population dynami
s equations 
onsidered in Se
tion 2.2
an be res
aled to the interval [0, 1], and hen
e results of this se
tion 
an be appliedwithout loss of generality.1.5.1. Relation between 1-Wassersten and �at approximationsIn many appli
ations, where dis
rete measures are pro
essed, it is desired to keep thenumber of atoms to the minimum while being sure that the introdu
ed error is reason-able. This may require a 
ompression step, where a measure 
onsisting of N atoms isapproximated by a M-point measure with M < N . In this se
tion we investigate thebounds and asymptoti
s of the error indu
ed by 
ompressing dis
rete measures on [0, 1].Firstly, we de�ne an equidistant N-point approximation. This method of approx-imation is e�
ient, easy to implement, and for some input measures it gives optimalresults. Moreover it 
an be generalized to any totally bounded metri
 spa
e. For 
ertainappli
ations, however, approximations of a better order 
an be 
onstru
ted.Lemma 39. Let µ and ν be two non-negative measures on [0, 1] with equal total variation,
‖µ‖ = ‖ν‖, then ρF (µ, ν) = W (µ, ν).Proof. Let fn ∈ Lip(1) be a sequen
e for whi
h the following supremum is attained in thelimit

W (µ, ν) = sup

{∣∣∣∣
� 1

0

fd(µ− ν)
∣∣∣∣ : f ∈ Lip(1)

}
,then f̃n(x) = fn(x)− f(0) is also a maximizing sequen
e, be
ause� 1

0

f(0)d(µ− ν) = f(0) · (‖µ‖ − ‖ν‖) = 0.Conditions f̃ ∈ Lip(1) and f̃(0) = 0 imply that |f̃(x)| ≤ 1 on [0, 1] and hen
e
W (µ, ν) = ρF (µ, ν).De�nition 40. An equidistant N-point approximation, µN , of a non-negative Radonmeasure µ on [a, b] is de�ned as 33



µN =

N−2∑

i=0

µ[a + (b − a)
i

N
, a + (b− a)

i + 1

N
)δa+(b−a) i+0.5

N

+ µ[a + (b − a)
N − 1

N
, b]δb−(b−a) 0.5

N

.Theorem 41. Let µN ∈Md[a, b] be an equidistant N-point approximation of µ ∈M
+[a, b],then the following estimate holds

ρF (µ, µN) ≤ µ[a, b]

2NProof. Measures µ and µN have equal total variation sin
e
∥∥µN

∥∥ =

N−2∑

i=0

µ[a+ (b− a) i
N
, a+ (b− a) i+ 1

N
) + µ[a+ (b− a)N − 1

N
, b] = µ[a, b] = ‖µ‖ .By Proposition 7 and Theorem 11

ρF (µ, µN) ≤
� b

a

|µ[0, x]− µN [0, x]|dx =

=
N−1∑

i=0

� a+(b−a) i+1
N

a+(b−a) i
N

|µ[a+ (b− a) i
N
, x]− µN [a+ (b− a) i

N
, x]|dx =

=

N−1∑

i=0

(� a+(b−a) i+0.5
N

a+(b−a) i
N

|µ[a+ (b− a) i
N
, x]|dx+

� a+(b−a) i+1
N

a+(b−a) i+0.5
N

|µ[x, a+ (b− a) i+ 1

N
]|
)
dx ≤

≤
N−1∑

i=0

(
b− a
2N

µ[a + (b− a) i
N
, a+ (b− a) i+ 1

N
)dx

)
=

≤ (b− a)µ[a, b]

2N
.Corollary 42. The subspa
e Md(R) is dense in M(R).Proof. Let µ ∈M

+(R) and let ε > 0. There exists M ∈ N, su
h that
µ[−M,M ] ≥ µ(R)− ε

2
.Let N = 2Mµ(R)ε−1 and let µN be an N-point equidistant approximation of measure

µ|[−M,M ]. Then
ρF (µ, µN) ≤ ρF (µ, µ|[−M,M ]) + ρF (µ|[−M,M ] , µ

N) ≤ ε.Sin
e every �nite Radon measure 
an be de
omposed into a di�eren
e of two non-negativemeasures it 
ompletes the proof. 34



Sin
e we already know that any measure 
an be approximated arbitrarily well, wefo
us on the problem of optimal approximation. Lemma 39 and Theorem 44 guaranteethat an optimal approximation in �at metri
 always exists and that it 
oin
ides with theoptimal approximation in Wasserstein metri
.De�nition 43. An optimal M-point dis
rete approximation, µM =
∑M

i=1miδxi
, to aRadon measure µ is a dis
rete measure with M atoms minimizing

ρF (µ, µM)Theorem 44. Let µ ∈ M
+(R) and supp µ = X. There exists an optimal M-pointdis
rete approximation, µM , of µ in �at metri
; it is supported on a subset of conv X, itis non-negative and moreover if X ⊆ [0, 1] then

‖µ‖ =
∥∥µM

∥∥ .Proof. The proof 
onsists of �ve steps. In the �rst step we show existen
e of an optimal
M-point approximation. In the next three steps we fo
us on the 
ase dis
rete measures
µ. In the se
ond step we show that any M-point approximation of µ with atoms outside
conv X. In the third step we show that any M-point approximation of µ whose totalvariation is di�erent than the total variation of µ 
an be improved if µ is supported on asubset of (0, 1). In the fourth step we show that any M-point approximation of µ withnegative masses 
an be improved. In the fourth step we generalize the results from steps2-4 to the whole domain of non-negative Radon measures.Step 1. Let {µM

i }∞i=1 be a sequen
e of M-point approximations su
h that
ρF (µ, µM

i )→ inf {ρ(µ, ν) : ν ∈M[0, 1] and νis an M-point dis
rete measure}Ea
h measure µM
i 
an be des
ribed by sequen
es {mi

j}Mj=1 and {xi
j}Mj=1 representing massesof Dira
 deltas and their positions respe
tively. Namely,

µM
i =

M∑

i=1

mi
jδxi

jBy the 
ompa
tness of [0, 1]2M ⊂ R
2M one 
an 
hoose a subsequen
e {ij}∞j=1 ⊆ {1, 2, 3, ...}su
h that

∀i∈{1,2,...,M} m
ij
i → mi and xij

i → xi.By Lemma 19 the 
onvergen
e of {mij
i }∞j=1 and {xij

i }∞j=1 implies that
µM

ij
→

M∑

i=1

miδxi
= µM in ρF .Consequently, µM is an optimal M-point approximation.Step 2. In this step we assume that µ is a non-negative N-point dis
rete measure.We shall show that if µM is anM-point approximation of µ, not ne
essarily non-negative,then a better approximation, µ̃M 
an be found provided that µM has atoms on R\supp µ.35



Firstly, we introdu
e some tools used in [40℄ for 
omputing �at distan
e. Let
µ− µM =

M+N∑

i=1

miδxiand x1 < x2 < ... < xM+N . De�ne fun
tions F k : [−1, 1]→ R and F k
: [−1, 1]→ R by

F k(f) = sup

{
k∑

i=1

mifi : {fi}N+M
i=0 ⊂ [−1, 1], fk = f, ∀i∈{1,..,k}|fi − fi−1| ≤ |xi − xi−1|

}
,

F
k
(f) = sup

{
N+M∑

i=k

mifi : {fi}N+M
i=1 ⊂ [−1, 1], fk = f, ∀i∈{k,...,N+M}|fi − fi−1| ≤ |xi − xi−1|

}
.Obviously

ρF (µ, µM) = sup
f∈[−1,1]

∣∣FM+N(f)
∣∣ = sup

f∈[−1,1]

∣∣∣F 1
(f)
∣∣∣ . (1.5)Fun
tions F k and F k are 
on
ave and pie
ewise linear (Lemma 36 and Lemma 37). From(1.3) it follows that

F k+1(f) = mkf + sup
fk∈[−1,1]∩[f−(xk+1−xk),f+(xk+1−xk)]

F k(fk). (1.6)We shall show that if µM has k atoms outside supp µ then a di�erent approximation,
µ̃M

k−1, at least as good as µM , 
onsisting of at most k − 1 atoms outside supp µ 
an be
onstru
ted.Let conv(supp µ)) = [xL, xR]. Suppose that µM has atoms outside [xL, xR] and hen
eeither x1 < xL or xN+M > xR. Without loss of generality we 
an assume xN+M > xR.Let µ̃M
k−1 = µM −mM+NδxM+N

+mM+NδxM+N−1
. We have

ρ(µ, µM) = sup
f∈[−1,1]

∣∣FN+M(f)
∣∣ =

= sup
f∈[−1,1]

∣∣∣∣∣mN+Mf + sup
fN+M−1∈[−1,1]∩B(f,xN+M−xN+M−1)

FN+M−1(fN+M−1)

∣∣∣∣∣ ≥

≥ sup
f∈[−1,1]

∣∣mN+Mf + FN+M−1(f)
∣∣ = ρ(µ, µ̃M

k−1).The �rst non-trivial equality results from (1.6) and the estimate stems from the fa
t that
f ∈ B(f, xN+M − xN+M−1). The last /equality follows from (1.5) and (1.6). Indeed,applying (1.6) to the 
ase of measure µ− µM −mM+NδxM+N

+mM+NδxM+N−1
instead of

µ− µM would result in formula
FN+M = mN+Mf + FN+M−1(f).Step 3. In this step we assume that µ is a non-negative N-point dis
rete measuresupported on a subset of (0, 1). We shall show that if µM is an M-point approximation36



of µ, not ne
essarily non-negative, then µ̃M
k = µM +

(
‖µ‖ −

∥∥µM
∥∥) δxk

approximates µ atleast as good as µM for any k ∈ {1, 2, ..., N +M}. To this end we introdu
e tools basedon fun
tions F k and F k for 
omputing ρF (µ, µM +
∑N+M

i=1 miδxk
).Firstly, we will prove by indu
tion the following statement: if µ − µM is supportedon a subset of (0, 1) then fun
tions F k and F k are linear on [−1 + xk, 1 − xk] and theirderivatives at 0 are equal to ∑k

i=1mi and ∑N+M
i=k mi respe
tively. Let us fo
us on F k asthe 
ase of F k is fully analogi
al. F 1(f) = m1f is linear on [−1 + x1, 1 − x1] and itsderivative is equal to m1. Suppose that F k is linear on [−1+xk , 1−xk] and its derivativeat 0 equals ∑k

i=1mi. From (1.6) we have
F k+1(f) = mkf + sup

fk∈[−1,1]∩B(f,xk+1−xk)

F k(fk).Sin
e F k(fk) is linear on [−1 + xk, 1− xk] it follows that for all x ∈ [−1 + xk+1, 1− xk+1]we have either
sup

fk∈[−1,1]∩B(f,xk+1−xk)

F k(fk) = F k(f + (xk+1 − xk))or
sup

fk∈[−1,1]∩B(f,xk+1−xk)

F k(fk) = F k(f − (xk+1 − xk)).Hen
e, F k+1(f) is linear on [−1 + xk+1, 1 − xk+1] and d
df
F k+1(0) = mk + d

df
F k(0). Thisproves the indu
tive step.For k ∈ {1, 2, ..., N +M} we de�ne

G(xk, f) = sup
y∈[−1,1]∩B(f,xk−xk−1)

F k−1(y) +mkf + sup
y∈[−1,1]∩B(f,xk+1−xk)

F
k+1

(y) = (1.7)
= F k(y)−mkf + F

k
(y).Noti
e that for any x ∈ [0, 1] and m ∈ R we have

ρ(µ, µM +mδxk
) = sup

f∈[−1,1]

|G(xk, f)−mf | .Sin
e both fun
tions F k and F k are 
on
ave on [−1, 1] and linear on (−ε, ε) we 
on
ludethat so is G(x, ·). Finally,
d

df
G(xk, 0) =

d

df
F

k
(0) +

d

df
F k(0)−mk =

N+M∑

i=1

mi. (1.8)From ‖µ‖ 6= ∥∥µM
∥∥ we have

d

df
G(xk, 0) =

N+M∑

i=1

mi 6= 0.Observe that
‖µ‖ =

∥∥∥∥∥µ
M +

(
N+M∑

i=1

mi

)
δxk

∥∥∥∥∥ =
∥∥µ̃M

k

∥∥ .37



Using the fa
t that G(xk, ·) −
(∑N+M

i=1 mi

)
f attains its maximum at f = 0 and 
onse-quently that G(xk, ·) attains its maximum outside [−ε, ε] we obtain

ρF (µ, µ̃M
k ) = ρF

(
µ, µM +

(
N+M∑

i=1

mi

)
δxk

)
= sup

f∈[−1,1]

[
G(xk, f)−

(
N+M∑

i=1

mi

)
f

]
=

= G(xk, 0) < sup
f∈[−1,1]

G(xk, f) = ρ(µ, µM).This 
ompletes the proof of the third step.Step 4. In this step we assume that µ is a non-negative N-point dis
rete measure withno atoms in {0, 1}. We shall show that if µM is an M-point approximation of µ, not ne
-essarily non-negative, satisfying ‖µ‖ =
∥∥µM

∥∥ then a better, non-negative approximation,
µ̃M , 
an be found and also ‖µ‖ =

∥∥µ̃M
∥∥.Let

µ =
N∑

i=1

miδxi
,

(
µM
)−

= −
K∑

i=N+1

miδxi
,

(
µM
)+

=

N+M∑

i=K+1

miδxi
.From Lemma 39

ρF (µ, µM) = W
(
µ−

(
µM
)−
,
(
µM
)+)

.Let γ∗ ∈ Γ
(
µ−

(
µM
)−
,
(
µM
)+) be the optimal transferen
e plan. For k ∈ {N+1, ..., K}let
νk =

mk

‖γ∗({xk}, ·)‖
γ∗({xk}, ·).De�ne

µ̃M =
(
µM
)+ −

K∑

i=N+1

νk,

γ̃(E, ·) = γ∗(E, ·)−
∑

i ∈ {N + 1, ..., K}
xi ∈ E

νk.Newly de�ned µ̃M is an M-point approximation sin
e
suppνk = suppγ∗({xk}, ·) ⊂ suppγ∗([0, 1], ·) = suppµM .and it is non-negative be
ause mk ≤ ‖γ∗({xk}, ·)‖. Also ‖µ‖ =

∥∥µ̃M
∥∥ . Sin
e γ∗ − γ̃ 6= 0and (γ∗ − γ̃) ∈ Γ(µ, µ̃M) we obtain

ρF (µ, µ̃M) = W (µ, µ̃M) ≤
�

[0,1]2
|x− y|dγ̃ <

�
[0,1]2
|x− y|dγ∗ = W

(
µ−

(
µM
)−
,
(
µM
)+)

,38



whi
h 
ompletes the proof.Step 5. In the last step of the proof we shall generalize the reasoning from Step 2 andStep 3 from the 
ase of µ being a non-negative dis
rete measure supported on a subset of
[ε, 1−ε] to the 
ase of an arbitrary measure µ ∈M

≥[0, 1]. By Theorem 41 for every ε > 0there exists a dis
rete measure µε with no atoms in {0, 1} su
h that ρF (µ, µε) ≤ ε ‖µ‖and ‖µ‖ = ‖µε‖. Denote the optimal M-point approximation of µε by µM
ε . We have

ρF (µε, µ
M
ε ) ≤ ρF (µε, µ

M) ≤ ρF (µε, µ) + ρF (µ, µM) ≤ ε ‖µ‖+ ρF (µ, µM).There exists a sequen
e εn → 0 for whi
h µM
εn

is 
onvergent. Let µM
εn
→ µ̃M . Finally from

ρF (µ, µM
ε ) ≤ ρF (µ, µε) + ρF (µε, µ

M
ε ) ≤ 2ε ‖µ‖+ ρF (µ, µM)we obtain

ρF (µ, µ̃M) ≤ ρF (µ, µM
ε ) + ρF (µM

ε , µ̃
M)→ ρF (µ, µM),hen
e µ̃M is the optimal N-point approximation of µ.Theorem 44 provides a strong tool for dealing with optimal approximation problems.It is used in the Lemma below for 
onstru
ting an optimal 1-point approximation of anarbitrary measure.De�nition 45. Let µ be a non-negative measure on [a, b] ⊆ [0, 1]. We de�ne the 
entralpoint of measure µ as

x∗[a,b] = sup{x ∈ [a, b] : µ[a, x) 6 µ(x, b]}.Lemma 46. Let µ be a non-negative measure on [a, b] ⊆ [0, 1], then νx∗
[a,b]

= ‖µ‖ δx∗
[a,b]

isan optimal 1-point approximation of µ in �at metri
 and
ρF (µ, νx∗

[a,b]
) =

� x∗
[0,1]

0

µ[0, x]dx+

� 1

x∗
[0,1]

µ[x, 1]dx.Proof. By Theorem 44 the mass of the optimal approximation of µ equals ‖µ‖. Let
νx = ‖µ‖ δx be the optimal approximation of µ, then by Lemma 39 and Theorem 11

ρF (µ, νx) = W (µ, νx) =

� 1

0

|µ[0, τ ]− νx[0, τ ]|dτ =

� x

0

µ[0, τ ]dτ +

� 1

x

µ[τ, 1]dτ.Suppose to the 
ontrary without loss of generality that x > x∗[0,1]. Consequently,
ρF (µ, νx)− ρF (µ, ν) =

� x

x∗
[0,1]

µ[0, τ ]− µ[τ, 1]dτ. (1.9)By the de�nition of x∗[a,b] the integrant in (1.9) is a stri
tly positive fun
tion, whi
h 
on-tradi
ts optimality of νx.Proposition 47. The estimate ρF (µ, νx∗
[0,1]

) 6 1
2
µ[0, 1] holds. Equality is satis�ed for

µ = δ0 + δ1. 39



Proof. The estimate follows immediately from Theorem 41. Consider µ = δ0 + δ1, then
x∗[0,1] = 1 and

ρF (µ, vx∗
[0,1]

) = W (δ0 + δ1, 2δ1) =
1

2
µ[0, 1] = 1.The previous result may seem a little disappointing be
ause in the worst 
ase the errorof a 1-point optimal approximation is exa
tly equal to the error of a 1-point equidistantapproximation. In the next se
tion we fo
us on the problem of �nding an N − 1-pointapproximation to a given N-point dis
rete measure on [0, 1]. It turns out that there existsa linear algorithm for �nding optimal approximation in this 
ase and that the upper boundfor the error is of order N−2.1.5.2. Redu
tion of the number of atoms in a dis
rete measureLemma 48. Let µ =

∑N
i=1miδxi

be a non-negative measure on [0, 1], then there exists anoptimal M-point approximation supported on a subset of {xi}Ni=1.Proof. Let µM =
∑M

i=1 niδyi
be an optimalM-point approximation that is not supportedon a subset of {xi}Ni=1. By Theorem 44 µM is supported on a subset of [x1, xN ] and∑M

i=1 ni =
∑N

i=1mi. Suppose that for some indi
es a, b, c it holds
xa < yb < yb+1 < ... < yb+c < xa+1.By Theorem 39 and Theorem 11

ρF (µ, µM) = φ+ ψ({yi}b+c
i=b),where

φ =

�
[0,xa]∪[xa+1,1]

|µ[0, x]− µM [0, x]|dx,

ψ({yi}b+c
i=b) =

� xa+1

xa

|µ[0, x]− µM [0, x]|dx.Be
ause µM is a dis
rete measure we have
ψ({yi}b+c

i=b) =

� yb

xa

|µ[0, xa]− µM [0, xa]|dx+

� yb+1

yb

|µ[0, xa]− µM [0, yb]|dx+ ...+

+

� xa+1

yb+c

|µ[0, xa]− µM [0, yb+c]|dxor simply
ψ({yi}b+c

i=b) = (yb − xa)|µ[0, xa]− µM [0, xa]|+ ...+ (xa+1 − yb+c)|µ[0, xa]− µM [0, yb+c]|,40



whi
h implies
ψ({yi}b+c

i=b) ≥ (xa+1 − xa) ·min



{
|

a∑

i=1

mi −
d∑

i=1

ni|
}b+c

d=b−1


 . (1.10)Suppose the minimum is attained at index d = D. De�ne measure µ̃M as

µ̃M =
b−1∑

i=1

niδyi
+

(
D∑

i=b

ni

)
δxa

+

(
b+c∑

i=D+1

ni

)
δxa+1 +

M∑

i=b+c+1

niδyi
.Noti
e that µ̃M is 
on
entrated on a set of 
ardinality at most M . The error of approxi-mation is given by

ρF (µ, µ̃M) = φ+

� xa+1

xa

|
a∑

i=1

mi −
D∑

i=1

ni|dx,whi
h by inequality (1.10) 
an be estimated from above by φ+ψ({yi}b+c
i=b) and 
onsequently

ρF (µ, µM) ≥ ρF (µ, µ̃M).It proves that there exists an optimal M-point approximation to µ that is supported ona set with no points in ⋃N−1
i=1 (xi, xi+1).On the basis of Theorem 44 and Lemma 48 a brute-for
e algorithm for �nding optimal

N − 1-point approximation 
an be built. The idea is to 
ompute minimal error in �atmetri
 for ea
h possible support.De�nition 49. Given a dis
rete, non-negative measure µ =
∑N

i=1miδxi
with N atomson [0, 1] we de�ne N − 1-point approximation algorithm as follows:1. For ea
h j = 1, 2, ..., N 
onsider the set x̂j = {x1, x2, ..., xj−1, xj+1, ..., xN} and de�ne

µL
j =

j−1∑

i=1

miδxi
+mjδxj−1

+

N∑

i=j+1

miδxi
,

µR
j =

j−1∑

i=1

miδxi
+mjδxj+1

+

N∑

i=j+1

miδxi
,2. For ea
h side s ∈ {L,R} 
ompute

ρF (µ, µs
i ).3. Return the measure µs

i whi
h a

ounts for the lowest error ρF (µ, µs
i ).Proposition 50. The N − 1-point approximation algorithm has linear 
omputational
omplexity. 41



Proof. By Lemma 39 and Theorem 11
ρF (µ, µL

i ) = W (µ, µL
i ) = mi(xi − xi−1),

ρF (µ, µR
i ) = W (µ, µR

i ) = mi(xi+1 − xi).Consequently, the value of ρF (µ, µs
i ) 
an be 
omputed in 
onstant time for any i ∈

{1, ..., N} and s ∈ {L,R} and thus the algorithm requires O(n) operations.Theorem 51. For a non-negative N-point measure µ the N − 1-point approximationalgorithm returns an optimal N−1-point approximation, µN−1, and the following estimateholds
ρF (µ, µN−1) ≤

2 ‖µ‖
N2

. (1.11)Proof. Let µ =
∑N

i=1miδxi
be a non-negative measure on [0, 1] and let
µN−1 =

k−1∑

i=1

niδxi
+

N∑

k+1

niδxibe its N − 1-point optimal approximation. Denote ∆i = ni − mi for all i 6= k and
∆k = −mk. It's easy to show that ∆i ≥ 0 for i 6= k. Consequently from Lemma 44 andTheorem 11 we derive a formula for ρF and from non-negativity of ∆k we 
an dedu
e thesign of ∑i

j=1 ∆i and therefore omit the absolute value:
ρF (µ, µN−1) =

k−1∑

i=1

(
(xi+1 − xi)

i∑

j=1

∆j

)
+

N∑

i=k

(
−(xi+1 − xi)

i∑

j=1

∆j

)
.By 
hanging the order of summation we obtain

ρF (µ, µN−1) =
N∑

i=1

∆i|xk − xi|.This value is minimal when ∆i = 0 hold for all i ex
ept for i = k − 1 or i = k + 1.The N − 1-point approximation algorithm indeed 
onsiders all measures 
on
entrated on
{xi}Ni=1 that satisfy this 
ondition and ∥∥µN−1

∥∥ =
∥∥µN

∥∥.To prove the estimate 1.11 let us denote di = xi+1 − xi. The distan
e between µ and
µN−1 is equal to the 
ost of moving some mass mi from one of the neighboring nodes

ρF (µ, µN−1) = W (µ, µN−1) = min

{
m1d1, min

i∈{2,...,N−1}
mi ·min(di, di−1), mNdN−1

}and 
onsequently
ρF (µ, µN−1) 6 min

{
min

i∈{1,...,N−1}
mi · di, mNdN−1

}
.42



Using S
hwarz inequality for sequen
es {√ mi

‖µ‖

}N

i=1

and {√dmin(i,N−1)

}N

i=1
we obtain

(
N−1∑

i=1

√
midi

‖µ‖ +

√
mNdN−1

‖µ‖

)2

≤
(

N∑

i=1

mi

‖µ‖

)(
N−1∑

i=1

di + dN−1

)
≤ 2,sin
e

N−1∑

i=1

mi 6 ‖µ‖ and N−1∑

i=1

di 6 1and
N−1∑

i=1

√
midi +

√
mNdN−1 ≤

√
2 ‖µ‖.It implies that there exists i su
h that

√
midi ≤

√
2 ‖µ‖
N

or √
mNdN−1 ≤

√
2 ‖µ‖
Nand 
onsequently

midi ≤
2 ‖µ‖
N2

or mNdN−1 ≤
2 ‖µ‖
N2

.Theorem 51 guarantees that removing a single atom from an N-point measure andreadjusting masses does not indu
e a large error. Consequently removing a �xed number
k of atoms indu
es an error of order N−2 as well. Obviously, if k is proportional to Nthen the estimate from the Theorem 51 only guarantees the error of order N−1. Theexamples below show that in su
h 
ase (k ∼ N) no better estimate of the error of optimalapproximation 
an be found and that applying N − 1-point approximation algorithmiteratively k-times does not lead to good results.Remark 52. Algorithm for �ndingM-point approximation of N-point dis
rete measure byremoving optimally one mass at a time (greedy algorithm) is suboptimal. Indeed, let us
onsider measure µ =

∑N
n=1

1
n
δ1/n then a 1-point approximation 
onstru
ted by removingone mass at a time is given by µ1 =

(∑N
n=1

1
n

)
δ1 while the optimal 1-point approximationtends to (∑N

n=1
1
n

)
δ0 with N → ∞. The error of the greedy algorithm therefore 
an behigher then the error of the equidistant approximation.Theorem 53. For every M < N there exists an N-point dis
rete measure on [0, 1] whoseoptimal M-point approximation yields error equal to

‖µ‖ N −M
N(N − 1)

.43



Proof. Let
µN = C

N−1∑

i=0

1

N
δi/N−1,where C > 0 is any 
onstant, and µM be its optimal M-point approximation. ByLemma 44, Lemma 39 and Theorem 23 the error of the approximation equals

ρF (µN , µM) = W (µN , µM) = inf
γ∈Γ(µN ,µM )

{�
[0,1]2
|x− y|dγ

}
.By Lemma 48 the set supp µN\supp µM 
onsists of exa
tlyN−M points: xj1, xj2 , ..., xjN−M

.Obviously for every k ∈ {1, 2, ..., N −M} and x ∈ supp µM the distan
e |x− xjk
| ≥ 1

N−1
.On the other hand for every transferen
e plan γ ∈ Γ(µN , µM) the mass transported fromthe point xk equals

γ({xjk
}, [0, 1]) =

C

N
.As there are N − M Dira
 deltas with masses C

N
ea
h that have to be shifted by thedistan
e at least 1

N−1
we 
an 
on
lude that

ρF (µN , µM) ≥ inf
γ∈Γ(µN ,µM )

{
M∑

i=1

N−M∑

k=1

|xjk
− xi|γ ({xjk

} × {xi})
}
≥

≥ C

N

N−M∑

k=1

|xjk
− xi| ≥

C

N

N−M∑

k=1

1

N − 1
≥ C

N −M
N(N − 1)Remark 54. If M be proportional to N then the error of an optimalM-point approxima-tion to a N-point measure 
an be of the same order as the error of anM-point equidistantapproximation.1.5.3. Approximation of absolutely 
ontinuous measures on [0, 1]For any absolutely 
ontinuous measure an equidistant M-point approximation 
an bebuilt. It indu
es an error of order M−1 and it is optimal in the 
ase of a 
onstantfun
tion. Nonetheless, for many other appli
ations (su
h as multi-hump fun
tions) thisapproximation 
an be improved by a large fa
tor. In this se
tion we investigate methodsof improving dis
rete approximations of absolutely 
ontinuous measures.In the beginning of this se
tion we shall re
all some observations from [68℄, whi
h 
on-stitute an ex
ellent tool for improving the error of approximation. Farther, we introdu
etwo new methods and 
ompare the results against the algorithm investigated in [68℄.De�nition 55. Let M : L1(X)→M(X) be an in
lusion map given by

M (f)(E) =

�
E

fdL,44



where L is the Lebesgue measure.The �at distan
e between a Radon measure µ on a normed spa
e X and a fun
tion
f ∈ L1(X) is de�ned as ρF (µ, f) = ρF (µ,M (f)). Similarly for f, g ∈ L1(x) we de�ne
ρF (f, g) = ρF (M (f),M (g)).Let us 
onsider a dis
reteM-point approximation µM of a positive 
ontinuous fun
tion
f ∈ C[0, 1]. The domain [0, 1] 
an be divided into M sets 
orresponding to the areas towhi
h ea
h of Dira
 mass of µM is transported. It turns out that if µM is the optimalapproximation of f then this division is a partition of [0, 1]. The following de�nition andProposition 57 provide pre
ise formulation of this intuition.De�nition 56. Let f ∈ C[0, 1] and let µM =

∑M
i=1miδxi

be any M-point approximationsu
h that ∥∥µM
∥∥ = ‖M (f)‖. Let γ∗ ∈ Γ(µM ,M (f)) be the optimal transferen
e plan (seeTheorem 24). We de�ne the transport domain division of interval [0, 1] as a sequen
e ofsets Xi su
h that

Xi = supp (γ∗({x∗i }, ·))for i = 1, 2, ...,M .Proposition 57. Let {Xi}Mi=1 be the transport domain division of interval [0, 1] for
f ∈ C[0, 1] and its optimal M-point approximation µM =

∑M
i=1miδx∗

i
. Suppose thatthe sequen
e {x∗i }Mi=1 is in
reasing. The following statements hold1. x∗i ∈ Xi for every i = 1, 2, ...,M ,2. for every i = 1, 2, ...,M it holds Xi = [ai, ai+1] with a1 = 0 and aM+1 = 1,3. ai+1 − x∗i = x∗i+1 − ai+1 for every i = 1, 2, ...,M − 1.Proof. Let γ∗ be the optimal transferen
e plan of µM to M (f). Sin
e

supp(γ∗([0, 1], ·)) = supp(M (f)) = [0, 1]and
supp(γ∗([0, 1], ·)) =

M⋃

i=1

supp(γ∗({x∗i }, ·)) =
M⋃

i=1

Xiwe 
on
lude that
M⋃

i=1

Xi = [0, 1]. (1.12)Next, we prove that 
ondition |x−x∗j | < |x−x∗k| implies x /∈ Xk. Suppose to the 
ontrarythat x ∈ Xk and there exists a neighborhood Nx ∋ x su
h that for every y ∈ Nx we have
|y − x∗j | < |y − x∗k|. (1.13)Let us de�ne an alternative approximation, µ̃M , of f by

µ̃M =
∑

i ∈ {1, 2, ...,M}
i 6= j, i 6= k

miδx∗
i
+ (mj + ∆) δx∗

j
+ (mk −∆) δx∗

k
,

∆ = γ∗({xk}, Nx), 45



and a transferen
e plan, γ̃, by
γ̃(A,B) =





γ∗(A,B) if xj , xk /∈ A or xj , xk ∈ A
γ∗(A,B)− γ∗ ({xk}, B ∩Nx) if xj /∈ A, xk ∈ A
γ∗(A,B) + γ∗ ({xk}, B ∩Nx) if xk /∈ A, xj ∈ A.Noti
e that γ̃ ∈ Γ(µ̃M ,M (f)). Using 1.13 we obtain

ρF (µM , f)− ρF (µ̃M , f) ≥
�

[0,1]2
|x− y|d (γ∗ − γ̃) =

=

�
Nx

|xj − y|d (γ∗({xj}, ·)− γ̃({xj}, ·)) +

�
Nx

|xk − y|d (γ∗({xk}, ·)− γ̃({xk}, ·)) =

>

�
Nx

|xj − y|d (γ∗({xj , xk}, ·)− γ̃({xj , xk}, ·)) = 0,whi
h 
ontradi
ts optimality of µM .Statement (1) easily follows from the fa
t that 
ondition 0 = |x∗j − x∗j | < |x∗j − x∗k|implies xj /∈ Xk, whi
h is holds for every k 6= j.To prove statement (2) suppose Xj is not an interval; equivalently there exist
xj , x

′
j ∈ Xj and xk ∈ (xj , x

′
j) su
h that xk ∈ Xk. These assumptions imply followinginequalities: |xj−x∗j | < |xj−x∗k|, |x′j−x∗j | < |x′j−x∗k| and |xk−x∗j | > |xk−x∗k|. From the�rst two inequalities we have x∗k /∈ [xj , x

′
j ], whi
h 
ontradi
ts the third inequality. Sin
e⋃M

i=1Xi = [0, 1] and x∗i ∈ Xi, then indeed a1 = 0 and aM+1 = 1.Statement (3) follows from the fa
t that ai+1 ∈ Xi and ai+1 ∈ Xi+1 hen
e neither
|ai+1 − x∗i | < |ai+1 − x∗i+1| nor |ai+1 − x∗i | > |ai+1 − x∗i+1| holds.De�nition 58. Let {Xi}Mi=1 be the transport domain division of interval [0, 1] 
orrespond-ing to an M-point dis
rete measure µM . If {Xi}Mi=1 = {[ai, ai+1]}Mi=1 and

0 = a1 < a2 < ... < aM < aM+1 = 1,then the sequen
e {a1, a2, ..., aM+1} is 
alled a transport partition of interval [0, 1] 
orre-sponding to µM .The following fa
t follows immediately from Lemma 46.Corollary 59. For a given sequen
e {ai}M+1
i=1 ⊂ [0, 1] and a positive 
ontinuous fun
tion fthe M-point approximation of f whi
h is optimal in the 
lass of measures whose transportpartition 
oin
ides with {ai}M+1

i=1 is given by
µM =

M∑

i=1

�
[ai,ai+1]

f(x)dx · δx∗
[ai,ai+1]

,where x∗[a,b] is the 
entral point of measure M (f)|[a,b], see De�nition 45.46



Proof. Let µM =
∑M

i=1miδxi
be the aforementioned M-point approximation and let

γ∗ ∈ Γ(µM ,M (f)) be the optimal transferen
e plan. We have
ρF (µM , f) =

�
[0,1]2
|x− y|dγ∗ =

M∑

i=1

�
[0,1]

|x− xi|dγ∗({xi}, ·) =

=

M∑

i=1

�
[ai,ai+1]

|x− xi|dγ∗({xi}, ·) =

M∑

i=1

�
[ai,ai+1]

|x− xi|dγ∗([0, 1], ·) =

=

M∑

i=1

�
[ai,ai+1]

f(x)|x− xi|dx =

M∑

i=1

ρF (µM |[ai,ai+1], f |[ai,ai+1]).Sin
e ea
h term 
an be optimized independently, miδxi
is the optimal 1-point approxima-tion of M (f)|[ai,ai+1] and therefore, a

ording to Lemma 46, xi = x∗[ai,ai+1]

is the 
entralpoint of measure M (f)|[ai,ai+1].De�nition 60. Let M ∈ N be a �xed natural number, and let {[ai, ai+1]}Mi=1 be a par-tition of the interval [0, 1]. Given a positive fun
tion f ∈ C[0, 1], we de�ne an operator
Φ : [0, 1]M−1 → [0, 1]M

X(a2, ..., aM) = (x∗[0,a2], x
∗
[a2,a3], ..., x

∗
[aM−1,aM ], x

∗
[aM ,1])and an operator Ψ : [0, 1]M → [0, 1]M−1

A(x1, x2, ..., xM) =

(
x1 + x2

2
,
x2 + x3

2
, ...,

xM−1 + xM

2

)
.It is 
lear that the optimal approximation of M (f) is uniquely de�ned by a partition of

[0, 1] and that ea
h partition uniquely de�nes a 
andidate for an optimal approximationby Corollary 59. The problem of �nding optimal approximation is therefore redu
edto �nding an optimal partition a ∈ R
M−1. The main tool used in [68℄ is based onthe observation that A(X(a)) provides a better approximation than a, and 
onsequentlyne
essary and su�
ient 
onditions for the sequen
e ((A ◦X)n(a))∞n=1 to 
onverge to theoptimal partition are found. In the next part of this se
tion we introdu
e a method forimproving the 
onvergen
e rate of the optimization pro
ess.De�nition 61. Let f ∈ C[0, 1] and let operator ω : [0, 1]M+1 → M[0, 1] transforms anypartition, {ai}M+1

i=1 , of the interval [0, 1] into the optimal M-point approximation in the
lass of measures whose transport partition 
oin
ides with {ai}M+1
i=1 . We shall often write

µM
{ai}

instead of ω({ai}) for simpli
ity.De�nition 62. Let {ai}M+1
i=1 be a �xed partition of the interval [0, 1]. We de�ne a mapping

µ : {2, 3, ...,M} × [0, 1]→M[0, 1] by
µj,a = ω(a1, a2, ..., aj−1, a, aj+1, ...aM , aM+1).In other words µj,a is the value of ω at the point {ai}M+1

i=1 with aj substituted with
a ∈ [aj−1, aj+1]. 47



Figure 1.6: An example of 
ontinuous fun
tion, a four-point dis
rete approximation de-pi
ted as bla
k dots, the 
orresponding transport partition, {ai}5i=1 of interval [0, 1] andoptimal transferen
e plan depi
ted as horizontal arrows.

Noti
e that
µi,a =

M∑

j=1

mi,a
j δxi,a

j
,where

mi,a
j =





� aj+1

aj
f(x)dx for j /∈ {i− 1, i}� a

ai−1
f(x)dx for j = i− 1� ai+1

a
f(x)dx for j = i

and xi,a
j =





x∗[aj ,aj+1] for j /∈ {i− 1, i}
x∗[ai−1,a] for j = i− 1

x∗[a,ai+1] for j = i

.Theorem 63. Let {ai}M+1
i=1 be any in
reasing sequen
e on [0, 1] with a1 = 0 and aM+1 = 1.Let f ∈ C[0, 1] be a positive fun
tion then for every i = 2, 3, ...,M it holds

d

da
ρF (µi,a, f)

∣∣∣∣
a=ai

= f(ai) [(ai − xi−1)− (xi − ai)] .Proof. De�ne ρ : (ai−1, ai+1)→ R as
ρ(a) = ρF (µi,a, f).To prove the theorem we show that ρ is di�erentiable by 
omputing the limit

ρ′(a) = lim
h→0

ρ(a+ h)− ρ(a)
h

.Let µi,a =
∑M

j=1m
i,a
j δxi,a

j
. From Theorem 11 we obtain
ρ(a) =

� 1

0

∣∣∣∣
� t

0

f(τ)dτ − µi,a[0, t]

∣∣∣∣ dt =48



=

� xi,a
i−1

ai−1

� t

ai−1

f(τ)dτdt+

� a

xi,a
i−1

� a

t

f(τ)dτdt+

� xi,a
i

a

� t

a

f(τ)dτdt+

� ai+1

xi,a
i

� ai+1

t

f(τ)dτdt+

+

�
[0,ai−1]∪[ai+1,1]

∣∣∣∣
� t

0

f(τ)dτ − µi,a[0, t]

∣∣∣∣ dt.From Corollary 59 and the de�nition of 
entral point of measure we obtain� xi,a
i−1

ai−1

f(t)dt =

� a

xi,a
i−1

f(t)dt and � xi,a+h
i−1

ai−1

f(t)dt =

� a+h

xi,a+h
i−1

f(t)dt,so by subtra
ting the left-hand side equation from the right-hand side one we get� xi,a+h
i−1

xi,a
i−1

f(t)dt =

� xi,a+h
i−1

xi,a
i−1

f(t)dt+

� a+h

a

f(t)dt.Consequently, � xi,a+h
i−1

xi,a
i−1

f(t)dt =

� xi,a+h
i

xi,a
i

f(t)dt =
1

2

� a+h

a

f(τ)dτ.Hen
e,
|xi,a+h

i − xi,a
i | ≤ h

supt∈[0,1] {f(t)}
2 inft∈[0,1] {f(t)} .We 
ompute

ρ(a+h)−ρ(a) =

� xi,a+h
i−1

ai−1

� t

ai−1

f(τ)dτdt+

� a+h

xi,a+h
i−1

� a+h

t

f(τ)dτdt+

� xi,a+h
i

a+h

� t

a+h

f(τ)dτdt+

+

� ai+1

xi,a+h
i

� ai+1

t

f(τ)dτdt−
� xi,a

i−1

ai−1

� t

ai−1

f(τ)dτdt−
� a

xi,a
i−1

� a

t

f(τ)dτdt+

−
� xi,a

i

a

� t

a

f(τ)dτdt−
� ai+1

xi,a
i

� ai+1

t

f(τ)dτdt =

= I1 + I2 + I3 + I4 − I5 − I6 − I7 − I8 =

=

� xi,a+h
i−1

xi,a
i−1

� t

ai−1

f(τ)dτdt−
� xi,a+h

i−1

xi,a
i−1

� a

t
f(τ)dτdt+

� xi,a+h
i

xi,a
i

� t

a+h
f(τ)dτdt−

� xi,a+h
i

xi,a
i

� ai+1

t
f(τ)dτdt+

+

� a+h

a

� a+h

t
f(τ)dτdt −

� a+h

a

� t

a
f(τ)dτdt +

[(
a− xi,a+h

i−1

)
−
(
xi,a

i − a
)]� a+h

a
f(τ)dτ =

= (I1−I5)+(I2−I6)1+(I3−I5)2+(I4−I8)+(I2−I6)2+(I3−I5)2+((I2 − I6) + (I3 − I5))3 .49



Noti
e that all the terms apart from ((I2 − I6) + (I3 − I5))3 are of order O(h2) sin
e
|xi,a+h

i − xi,a
i | = O(h). On the other hand,

lim
h→0

1

h

� a+h

a

f(τ)dτ = f(a),hen
e,
ρ′(a) = f(a)

[(
a− xi,a

i−1

)
−
(
xi,a

i − a
)]
.Corollary 64. Let {ai}M+1

i=1 be the transport partition 
orresponding to an optimal M-point approximation, µM =
∑M

i=1miδx∗
i
, of a positive 
ontinuous fun
tion f ∈ C[0, 1].Then for every i = 2, 3, ...,M it holds that

4 ≥ f(ai)

f(x∗i−1)
+
f(ai)

f(x∗i )
. (1.14)Proof. Theorem 63 guarantees that a 7→ ρF (µi,a, f) is a di�erentiable fun
tion and

d

da
ρF (µi,a, f) = f(a)

[(
a− xi,a

i−1

)
−
(
xi,a

i − a
)]
.By proposition 57 we have (ai − xi,ai

i−1

)
−
(
xi,ai

i − ai

)
= 0 and hen
e

d2

da2
ρF (µi,a, f)

∣∣∣∣
a=ai

= lim
h→0

f(ai + h)

h

[(
ai + h− xi,ai+h

i−1

)
−
(
xi,ai+h

i − ai − h
)]
.Sin
e

d

da
xi,a

i = lim
h→0

xi,a+h
i − xi,a

i

h
=

1

2

f(x)

f(xi,a
i )we obtain

d2

da2
ρF (µi,a, f)

∣∣∣∣
a=ai

= f(ai)

[
2− 1

2

f(ai)

f(xi,ai

i )
− 1

2

f(ai)

f(xi,ai

i−1)

]
.Sin
e {ai}M+1

i=1 
orresponds to the optimal approximation of f we have
d

da
ρF (µi,a, f)

∣∣∣∣
a=ai

= 0and
d2

da2
ρF (µi,a, f)

∣∣∣∣
a=ai

≥ 0,whi
h proves the 
orollary.The following Corollary follows dire
tly from Theorem 63.50



Corollary 65. Let f ∈ C1[0, 1] be a positive fun
tion and M be a �xed natural number,then
d2

da2
i

ρF (µM
{ai}

M+1
i=1

, f) = f ′(ai)
[(
ai − x∗[i−1,i]

)
−
(
x∗[i,i+1] − ai

)]
+

+ f(ai)

[
2− f(ai)

2f(x∗[i−1,i])
− f(ai)

2f(x∗[i,i+1])

]
,

d2

dajdaj−1
ρF (µM

{ai}
M+1
i=1

, f) = −f(aj−1)f(aj)

2f(x∗[j−1,j])
,

d2

dajdak
ρF (µM

{ai}
M+1
i=1

, f) = 0 for k /∈ {j − 1, j, j + 1}.Remark 66. Theorem 63 and Corollary 65 allow appli
ation of Newton's optimizationalgorithm for �nding the optimal partition. Starting from any a
0 ∈ [0, 1]M−1 su�
iently
lose to a lo
al minimum, the Newton's method provides a sequen
e {an}∞n=1 
onvergingto the minimum with quadrati
 rate.The following proposition shows that the �xed point of A◦X is not ne
essarily unique.Consequently, in the general 
ase, neither the Newton's method nor the iterative methodhas to 
onverge to a global minimum.Proposition 67. There exists a positive 
ontinuous fun
tion f for whi
h fun
tion

{a2, a3, ..., aM} 7→ ρF (µM
{0,a2,..,aM ,1}, f)has more than one lo
al minimum.Proof. Consider a positive fun
tion f ∈ C1[0, 1], denote � i/N

(i−1)/N
f = fi and suppose thatfor N = 7 we have (fi)

7
i=1 = (2, 1, 1, 2, 3, 1, 4). It is easy to 
he
k that in the 
lass of

2-point approximations both partitions {ai}3i=1 = {0, 3
7
, 1} and {a′i}3i=1 = {0, 4

7
, 1} satisfy

a2 − x∗[a1,a2] = x∗[a2,a3]
− a2,whi
h by Theorem 63 implies that both partitions are the extremum points of errorfun
tion. Sin
e f is an arbitrary fun
tion it 
an be 
hosen so that the Hessian, de�ned as65, is positive de�ned.Corollary 68. Let f be a positive 
ontinuous fun
tion. A lo
al minimum, a ∈ R

M−1 offun
tion {a2, a3, ..., aM} 7→ ρF (µM
{0,a2,..,aM ,1}, f) is a �xed-point of operator A ◦X.Proof. Let x = X(a). Sin
e a is a lo
al minimum, then all partial derivatives are equalto 0. Theorem 63 guarantees that (ai − xi−1)− (xi − ai), hen
e a = A(x).Together with Theorem 53 the following Proposition shows that very smooth fun
tionswith low os
illation and measures with uniformly distributed atoms are those that are thehardest to approximate with dis
rete measures.51



Proposition 69. The optimal approximation of a 
onstant fun
tion f(x) = C on [a, b]has the error equal to
C(b− a)2

4N
.Proof. Let {ai}M+1

i=1 be the partition 
orresponding to the optimal approximation of f .Sin
e x∗[ai,ai+1]
= ai+ai1

2
from Theorem 11 we 
on
lude that the 
ontribution to the errorfrom ea
h interval [ai, ai+1] equals

2

� (ai+ai+1)/2

ai

� t

ai

Cdτdt = 2C ·
� (ai+ai+1)/2−ai

0

tdt =
C

4
(ai+1 − ai)

2 ,so the total error of approximation is given by
C

4

N∑

i=1

(ai+1 − ai)
2.This value is minimized for equidistant partition points ai, for whi
h the error of theapproximation equals

C (b− a)
4N

2

.Dis
rete approximations in general 
annot guarantee an error of better order than
N−1. For some appli
ations it is desirable to approximate fun
tions with a di�erent
lass measure to obtain lower error. The following theorems demonstrate advantages ofapproximation by N-step fun
tions (linear 
ombinations of N indi
ator fun
tions).Theorem 70. For every Lips
hitz 
ontinuous fun
tion f there exists an N-step approxi-mation fN su
h that

ρ(f, fN) ≤ Lip(f)

6
·N−2.Proof. Let fN be given by

fN =
N−1∑

i=0

(� i+1
N

i
N

f(x)dx

)1[ i
N

, i+1
N

],then by Lemma 20 and Lemma 39
ρF (f, gN) ≤

N−1∑

i=0

W (f |[ i
N

, i+1
N

] , f
N
∣∣
[ i
N

, i+1
N

]
).By Theorem 11

ρF (f, fN) ≤
N−1∑

i=0

� i+1
N

i
N

∣∣∣∣∣

� x

i
N

f(t)dt−
� x

i
N

fN(t)dt

∣∣∣∣∣ dx ≤
N−1∑

i=0

� i+1
N

i
N

� x

i
N

∣∣f(t)− fN(t)
∣∣ dtdx.52



By the mean value theorem for ea
h i ∈ {0, 1, .., N − 1} there exists ti, su
h that f(ti) =
fN(ti), hen
e
ρF (f, fN) ≤

N−1∑

i=0

� i+1
N

i
N

� x

i
N

Lip(f) ·
(
t− i

N

)
dtdx ≤

N−1∑

i=0

Lip(f) · N
−3

6
=
Lip(f)

6
N−2.
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Chapter 2M
Kendri
k-von Foerster equationIn the original M
Kendri
k-von Foerster model the evolution of an age-stru
turedpopulation is des
ribed by a hyperboli
 partial di�erential equation in whi
h time and ageare the independent variables, see [56℄. M
Kendri
k-von Foerster equation with nonlineargrowth, reprodu
tion and mortality rates was studied in the framework of Lp spa
es in [2℄,where 
onvergen
e of a �nite-di�eren
e s
heme was proved. In this approa
h, however,it was ne
essary to make strong assumptions on parameters (e.g. growth rate needs tobe twi
e 
ontinuously di�erentiable with respe
t to stru
tural variable) and the �nite-di�eren
e s
heme has some undesired properties, su
h as a wrong propagation speed.In [48℄ a numeri
al s
heme, based on dis
ontinuous Galerkin method, was proposed toaddress problems in whi
h parameters are only pie
ewise regular.In this 
hapter we 
onsider measure-valued solutions to a M
Kendri
k-von Foerstersystem [56℄, whi
h des
ribes the dynami
s of a size-stru
tured populations with nonlineargrowth, reprodu
tion and mortality rates. The framework of measure-valued solutions isnatural and bene�
ial for the following main reasons:1. Singularities in a size-stru
tured population dynami
s system are inherent. Underlow predation, for instan
e, individuals rea
h their maximum size with positiveprobability, whi
h in terms of population size-distribution 
an be expressed as aDira
 mass at the upper end point of the size range.2. Measurements in experimental setups are always dis
rete, hen
e any 
omparisonbetween mathemati
al models and empiri
al eviden
e requires tools for 
omparinggeneral distributions. Metri
s from fun
tion spa
es, su
h as Lp norms, may indu
emisleading results in the 
ase of high population 
on
entration and low a

ura
y ofmeasurements.3. The notion of a 
ohort of individuals and its development in time 
an be formalized.4. The ability of solving the system for dis
rete measures is a basis for e�
ient andhighly parallelizable algorithms su
h as EBT (see Se
tion 2.2).55



2.1. PreliminariesIn order to generalize M
Kendri
k-von Foerster model and de�ne measure-valued solutionsit is ne
essary to �nd an appropriate metri
 spa
e. In the 
ase of fun
tion-valued solutionthe obvious 
hoi
e, namely Lp(X), is a 
omplete Bana
h spa
e, whi
h allows a rangeof methods to be used for the analysis. In 
ontrast, the natural 
hoi
e for measure-valued solutions, namely (M(X), ρF ) is not 
omplete and its Bana
h 
ompletion 
onsistsof obje
ts that are di�
ult to interpret in terms of population distributions. In thefollowing 
onsiderations we fo
us on the 
ase of X ⊆ R
d and present fa
ts that supportthe 
hoi
e of (M+(X), ρF ) as the spa
e of states for the model.Proposition 71. Norms ‖·‖ and ‖·‖F are not equivalent on M(X).Proof. Consider sequen
e µn = δn−1. We have that

2 = ‖µn − δ0‖ ≥ ‖µn − δ0‖F = n−1 → 0.Consequently, µn → δ0 in ‖·‖F , but not in ‖·‖.Proposition 72. The spa
e (M(X), ρF ) is not 
omplete.Proof. Sin
e (M(X), ‖·‖) is 
omplete and ‖·‖F is not equivalent to ‖·‖, the spa
e
(M(X), ρF ) 
annot be 
omplete.Example 73. An example of an obje
t from Bana
h 
ompletion of (M(X), ρF ) that isnot in M(X) 
an be 
onstru
ted as follows:Let µn =

∑n
k=1 δ2−k − nδ0. For n ≤ m we have that

ρF (µn, µm) = W

(
m∑

k=n+1

δ2−k , (m− n) δ0

)
=

m∑

k=n+1

2−k ≤ 2−n.Therefore, µn is a Cau
hy sequen
e. It's easy to 
he
k that no measure µ ∈ M(X) is alimit of µn.For the proof of the following proposition we refer to [80℄.Proposition 74. The spa
e (M+(X), ρF ) is 
omplete and separable.The measure-valued model of M
Kendri
k-von Foerster is 
onsidered in the spa
e
(M+(X), ρF ). Hen
e, the predi
tion of population dynami
s in time is 
onsidered as afun
tion of time, [0, T ], with values in M

+(X). Model parameters, whi
h de�ne growth,mortality and birth pro
esses, are given by fun
tions g,m, β : [0, T ]×M
+(X)→ C0,1(X)respe
tively. Values g(t, µ)(s), m(t, µ)(s) and β(t, µ)(s) are interpreted as individualgrowth rate, mortality rate and reprodu
tion rate of an individual of size s, belongingto a population with stru
ture µ at a time point t.We restri
t our farther 
onsiderations to X = [smin, smax]. Without loss of generalitywe assume smin = 0. Presented results 
an be generalized to the 
ase of X = [smin,∞).It is, however, beyond the s
ope of this thesis.56



De�nition 75. By M
Kendri
k-von Foerster model of size-stru
tured population we un-derstand the system




∂tu+ ∂s(g(t, u)u) +m(t, u)u = 0 for t ∈ T
g(t, u)(0) (DLR

u(t)) (0) =
� smax

0
β(t, u)(s)u(ds)

u(0) = u0 ∈M
+[0, smax] ,

(2.1)where DLR
denotes Radon-Nikodym derivative with respe
t to Lebesgue measure on R.We investigate solutions u : [0, T ] → M

+[0, smax] under following 
onditions on pa-rameters:Condition 76. Assume1. g,m, β ∈ C0,1
b ([0, T ]×M

+[0, smax];C
0,1[0, smax]),2. for every s ∈ [0, smax) it holds that g(t, u)(s) > 0 and g(t, u)(smax) = 0.Notation 77. For a given fun
tion f ∈ C0,1

b ([0, T ]×M
+[0, smax];C

0,1[0, smax]) denote
‖f‖P = sup

µ∈M+[0,smax]
t∈[0,T ]

‖f(t, µ)‖C0,1[0,smax] + sup
t∈[0,T ]

Lip (f(t, ·)) + sup
µ∈M+[0,smax]

Lip (f(·, µ))Following [35℄ we introdu
e the notion of weak solution.De�nition 78. By the weak solution to system 2.1 we mean a weak-* 
ontinuous mapping
u : [0, T ] → M

+[0, smax] su
h that for every test fun
tion ϕ ∈ C1 ([0, T ]× [0, smax]) itholds that
〈u(T ), ϕ(T, ·)〉 − 〈u0, ϕ(0, ·)〉 =

� T

0

〈u(t), ϕ(t, 0)β(t, u(t))〉dt+

+

� T

0

〈u(t), ∂tϕ(t, ·) + g(t, u(t))∂sϕ(t, ·)−m(t, u(t))ϕ(t, ·)〉 dt.Theorem 79. Suppose fun
tions g,m, β : [0, T ]×M
+[0, smax] → ([0, smax]→ R) satisfyCondition 76, then there exists a unique weak solution, u ∈ C0,1

b ([0, T ]; M+[0, smax]) tosystem (2.1). Moreover,1. For every 0 ≤ t1 ≤ t2 ≤ T there exist 
onstants C1, C2 su
h that
ρF (u(t1), u(t2)) ≤ C1e

C1(t2−t1) ‖u0‖ (t1 − t2).2. Let u0, ũ0 ∈M
+[0, smax] and g, g̃,m, m̃, β, β̃ satisfy Condition 76. Let u(t) and ũ(t)solve system (2.1) for parameters (g,m, β) and (g̃, m̃, β̃) respe
tively. There exist
onstants C1, C2, C3 su
h that for every t ∈ [0, T ] it holds that

ρF (u(t), ũ(t)) ≤ eC1tρF (u0, ũ0) + C2e
C3t
∥∥∥(g,m, β)− (g̃, m̃, β̃)

∥∥∥
C0,1[0,1]

.57



For the proof we refer to Theorem 2.13 in [74℄.De�nition 80. Let (E, ρ) be a metri
 spa
e. A bounded operator
S : E × [0, δ] × [0, T ] → E is 
alled a Lips
hitz semi�ow if the following 
onditionsare satis�ed:1. S(0, τ) = Id for τ ∈ [0, T ],2. S(t+ s, τ) = S(t, τ + s)S(s, τ) for τ, s, t ∈ [0, T ] su
h that τ + s + t ≤ T ,3. ρ(S(t, τ)µ, S(s, τ)ν) ≤ L · (ρ(µ, ν) + |t− s|) for s, t ∈ [0, T ] and some 
onstant L.The Lips
hitz 
onstant of S, Lip(S), is the smallest value of L for whi
h the third 
onditionholds.The following 
orollary results from Theorem 79.Corollary 81. Suppose fun
tions g,m, β : [0, T ]×M

+[0, smax]→ ([0, smax]→ R) satisfyCondition 76, and u(t) is the weak solution to system (2.1). There exists a Lips
hitzsemi�ow S : M
+[0, smax]× [0, T ]× [0, T ]→M

+[0, smax] su
h that
S(t2 − t1, t1)u(t1) = u(t2)for every t1, t2 ∈ [0, T ].The following proposition, provides a generalization of the 
hara
teristi
 method, formeasure-valued solutions. The result is not surprising, but seems to be absent in theliterature.Theorem 82. Suppose fun
tions g,m, β : [0, T ]×M

+[0, smax] → ([0, smax]→ R) satisfyCondition 76, and u(t) is the weak solution to system (2.1). Let u(t0)([a0, b0]) = n0 forsome 0 ≤ a0 ≤ b0 ≤ smax, then
u(t)([a(t), b(t)]) = n0 −

� t

t0

� b(t)

a(t)

m(τ, u(τ))(x) · u(τ)(dx)dτfor
a(t) = a0 +

� t

t0

g(τ, u(τ))(a(τ))dτ, (2.2)
b(t) = b0 +

� t

t0

g(τ, u(τ))(b(τ))dτ.Proof. For 1≫ ε > 0 
hoose ψε
0 ∈ C1[0, smax] su
h that

ψε
0(x) =

{
1 if x ∈ [a0, b0]

0 if x ≤ a0 − ε or x ≥ b0 + ε
.58



Let ψε ∈ C1 ([t0, t1]× [0, smax]) be a solution to




∂
∂t
ψε(t, x) + g(t, u(t))(x) ∂

∂x
ψε(t, x) = 0 on [t0, t1]× [0, smax]

ψε(t0, ·) = ψε
0

ψε(·, 0) = 0

. (2.3)and for every x ∈ [0, smax] let lx(t) satisfy
{

d
dt
lx(t) = g(t, u(t))(lx(t))

lx(t0) = x .From the usual 
hara
teristi
 method for 
lassi
al solutions to (2.3) we obtain
ψε(t, lx(t)) = ψε(t0, x).Finally let ϕε ∈ C1 ([0, T ]× [0, smax]), be an extension of ψε satisfying

ϕε(t, x) =





ψε(t, x) if t ∈ [t0, t1]

0 if t ≤ t0 − ε or t ≥ t1 + ε

0 if x ≤ la0−ε(t) or x ≥ lb0+ε(t)

.We also require that | ∂
∂t
ϕε(t, x)| ≤ 2ε−1 and | ∂

∂x
ϕε(t, x)| = 0 for

t ∈ [t0 − ε, t0] ∪ [t1, t1 + ε].Additionally, we 
hoose ∂
∂t
ϕε(t, x) to be equal 1

ε
and −1

ε
on [la0(t0), lb0(t0)] × U0 and

[la0(t1), lb0(t1)] × U1 respe
tively, where U0 ⊂ [t0 − ε, t0] and U1 ⊂ [t1, t1 + ε] are someintervals su
h that |U0| ≤ ε(1− ε), |U1| ≤ ε(1− ε).For every t ∈ [t0, t1] fun
tion ϕε(t, ·) is supported on [la0−ε(t), lb0+ε(t)]. Sin
e
d

dt
(lb0+ε(t)− lb0(t)) = g(t, u(t)) (lb0+ε(t))− g(t, u(t)) (lb0(t)) ≤

≤ Lip (g(t, u(t))) · (lb0+ε(t)− lb0(t))we have that
[la0−ε(t), lb0+ε(t)] ⊆ [la0(t)− C1ε, lb0(t) + C1ε]for

C1 = exp

(
T · sup

t∈[t0,t1]

Lip(g(t, u(t)))

)
.Choose ε > 0 su
h that 0 ≤ t0 − ε ≤ t1 + ε ≤ T . By the de�nition of weak solution to(2.1) for test fun
tion ϕε we have that

0 =

� T

0

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 − 〈u(t), m(t, u(t))ϕε(t, ·)〉 dt,59



hen
e� t1+ε

t0−ε

〈u(t), m(t, u(t))ϕε(t, ·)〉 dt =

� t0+ε

t0

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt+

+

� t1+ε

t1

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt.By the dominated 
onvergen
e theorem
lim
ε→0
〈u(t), m(t, u(t))ϕε(t, ·)〉 =

� smax

0

m(t, u(t))1[la0(t),lb0 (t)]u(t)(dx),thus
lim
ε→0

� t1+ε

t0−ε

〈u(t), m(t, u(t))ϕε(t, ·)〉 dt =

� t1

t0

� lb0(t)

la0(t)

m(t, u(t))(x) · u(t)(dx)dt.On the other hand,� t1+ε

t1

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt =

� t1+ε

t1

〈u(t), ∂tϕε(t, ·)〉 dtand
lim
ε→0

� t1+ε

t1

〈u(t), ∂tϕε(t, ·)〉 dt = lim
ε→0

�
U1

〈u(t), ∂tϕε(t, ·)〉 dt+
�

[t1,t1+ε]\U1

〈u(t), ∂tϕε(t, ·)〉 dt =

= lim
ε→0

−1

ε

� t1+ε

t1

� lb0 (t)

la0(t)

u(t)(dx)dt+

�
[t1,t1+ε]\U1

〈u(t), ∂tϕε(t, ·)〉 dt.Sin
e∣∣∣∣
�

[t1,t1+ε]\U1

〈u(t), ∂tϕε(t, ·)〉 dt
∣∣∣∣ ≤ ε2· sup

t∈[t1,t1+ε]

〈u(t), ∂tϕε(t, ·)〉 ≤ ε2·2ε−1· sup
t∈[0,T ]

u(t)([0, smax])we have that
lim
ε→0

� t1+ε

t1

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt = − lim
ε→0

1

ε

� t1+ε

t1

� lb0 (t)

la0(t)

u(t)(dx)dt.From weak-∗ 
ontinuity of u with respe
t to time variable, we obtain� t1+ε

t1

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt→ −
� lb0 (t1)

la0(t1)

u(t1) (dx) ,and by the same arguments� t0+ε

t0

〈u(t), ∂tϕε(t, ·) + g(t, u(t))∂sϕε(t, ·)〉 dt→
� lb0 (t0)

la0(t0)

u(t0) (dx) .Sin
e x(t) = lx0(t) we obtain that for every t0 ≤ t1 < T it holds that
u(t1) ([la0(t1), lb0(t1)]) = u(t0) ([a0, b0])−

� t1

t0

� lb0(t)

la0(t)

m(t, u(t))(x) · u(t)(dx)dt,whi
h 
ompletes the proof. 60



Proposition 83. Suppose fun
tions g,m, β : [0, T ]×M
+[0, smax]→ ([0, smax]→ R) sat-isfy Condition 76, and u(t) is the weak solution to system (2.1). If l1(t) is the solutionof {

d
dt
l1(t) = g(t, u(t)) (l1(t))

l1(0) = 0 ,then u(t1) is absolutely 
ontinuous on [0, l1(t1)] with respe
t to the Lebesgue measure.Proof. It is su�
ient to prove that for some 
onstant C and every pair a, b ∈ [0, l1(t1)] itholds that
u(t1)([a, b]) ≤ C · |b− a|.Let ls(t) be the solution of

{
d
dt
ls(t) = g(t, u(t)) (ls(t))

ls(t1) = s
.Sin
e for every x ∈ [0, smax) the value of g(t, u(t))(x) is stri
tly positive, then for every

s ∈ [0, l1(t1)] there exists an instant of time, 0 ≤ t0(s) ≤ t1, su
h that ls(t0(s)) = 0.For 1≫ ε > 0 
hoose ψε
0 ∈ C1[0, T ] su
h that

ψε
0(t) =

{
1 if t ∈ [t0(a), t0(b)]

0 if t ≤ t0(a)− ε or t ≥ t0(b) + ε
.Let ψε ∈ C1 ([t0, t1]× [0, smax]) be a solution to





∂
∂t
ψε(t, x) + g(t, u(t))(x) ∂

∂x
ψε(t, x) = 0 on [0, t1]× [0, smax]

ψε(·, 0) = ψε
0

ψε(0, ·) = 0

. (2.4)Let ϕε ∈ C1 ([0, T ]× [0, smax]), be an extension of ψε satisfying
ϕε(t, x) =

{
ψε(t, x) if t ∈ [0, t1]

0 if t ≥ t1 + ε
.Similarly as in the proof of 82 we require that | ∂

∂t
ϕε(t, x)| ≤ 2ε−1 and | ∂

∂x
ϕε(t, x)| = 0for t ∈ [t0 − ε, t0] ∪ [t1, t1 + ε]. Additionally, we 
hoose ∂

∂t
ϕε(t, x) to be equal 1

ε
and

−1
ε
on [la0(t0), lb0(t0)] × U0 and [la0(t1), lb0(t1)] × U1 respe
tively, where U0 ⊂ [t0 − ε, t0] and

U1 ⊂ [t1, t1 + ε] are some intervals su
h that |U0| ≤ ε(1 − ε), |U1| ≤ ε(1 − ε). By thede�nition of weak solution to (2.1) for test fun
tion ϕε we have that
0 =

� T

0

〈u(t), ∂tϕ
ε(t, ·) + g(t, u(t))∂sϕ

ε(t, ·)−m(t, u(t))ϕε(t, ·)〉 dt+

+

� T

0

〈u(t), ψε
0(t)β(t, u(t))〉 dt.61



and 
onsequently
0 ≤

� T

0

〈u(t), ∂tϕ
ε(t, ·) + g(t, u(t))∂sϕ

ε(t, ·)〉 dt+ ‖β‖P ·
� t0(b)+ε

t0(a)−ε

u(t)([0, smax])dt.Passing with ε→ 0 we obtain
u(t1)([a, b]) ≤ ‖β‖P · sup

t∈[0,T ]

u(t)([0, smax]) · |t0(b)− t0(a)|,whi
h 
ompletes the proof sin
e t0(·) is a Lips
hitz 
ontinuous fun
tion.De�nition 84. By a stationary state we mean the value, µ, of a solution
u : [0, T ] → M

+[0, smax] whi
h is not dependent on time, namely µ = u(t) for every
t ∈ [0, T ].The following lemma states that even in the general framework of measure-valuedsolutions all possible stationary states are absolutely 
ontinuous under some reasonablyweak 
onditions.Lemma 85. Suppose fun
tions g,m, β : [0, T ] ×M

+[0, smax] → ([0, smax]→ R) satisfyCondition 76, and µ ∈M
+[0, smax] is a stationary state of system (2.1). If

m(t, µ)(smax) > 0for some t ∈ [0, T ], then µ is absolutely 
ontinuous with respe
t to Lebesgue measure.Proof. Let µ be a stationary state of equation (2.1) and let l1(t) : R
≥0 → [0, smax] bede�ned as in Theorem 83. Sin
e g(t, µ)(x) > 0 for every x < smax we obtain that

lim
t→∞

l1(t) = smax.By Theorem 83 solution u(t) to (2.1) is absolutely 
ontinuous on [0, l1(t)]. Consequently,the stationary state, µ = u(t), is absolutely 
ontinuous on interval [0, smax). It impliesthat µ = µac + msmax
δsmax

, where µac is absolutely 
ontinuous with respe
t to Lebesguemeasure. By Theorem 82 we obtain that
msmax

= msmax

(
1−

� t2

t1

m(τ, µ)(smax)dτ

)
.Therefore either msmax

= 0 or m(t, µ) (smax) = 0 for all t.The following lemma provides a 
hara
terization of demographi
 trends in stationarystate.Lemma 86. Suppose fun
tions g,m, β : [0, T ] ×M
+[0, smax] → ([0, smax]→ R) satisfyCondition 76, and µ ∈ M

+[0, smax] is a stationary state of system (2.1) then for every
t ∈ [0, T ] it holds that 〈µ,m(t, µ)〉 = 〈µ, β(t, µ)〉.62



Proof. Let u be a weak solution to (2.1). For a test fun
tion, being a standard regular-ization of
ϕ(t, s) =

{
1 t ∈ [t0, t1]

0 otherwise ,the de�nition of weak solution implies
u(t1)([0, smax])− u(t0)([0, smax]) =

� t1

t0

〈u(t), β(t, u(t))〉 dt−
� t1

t0

〈u(t), m(t, u(t))〉 dt.Regularization and passing to the limit is explained in detail in the proof of Theorem 82.Sin
e u(t1) = u(t0) = µ we have that for any t0, t1 ∈ R
≥0� t1

t0

〈µ, β(t, u(t))〉 dt =

� t1

t0

〈µ,m(t, u(t))〉 dt,hen
e, 〈µ, β(t, u(t))〉 = 〈µ,m(t, u(t))〉 for every t.2.2. Parti
le methodsParti
le methods is an umbrella term for a wide 
lass of numeri
al s
hemes for �rst orderhyperboli
 equations. The 
on
ept is to approximate the initial 
onditions by a largenumber of parti
les and tra
k ea
h of the parti
les separately. In this se
tion we fo
us onEs
alator Box
ar Train (EBT) algorithm for solving M
Kendri
k-von Foerster equationwith non-lo
al terms re�e
ting the impa
t of the whole population on individual birth,growth and death pro
esses. EBT was �rst introdu
ed in [15℄ where it was used as aheuristi
 approa
h based on the intuition that a 
ontinuously distributed population 
anbe studied as a 
olle
tion of 
ohorts. Rigorous proof of 
onvergen
e of this s
heme [9℄ andthe analysis of the order of 
onvergen
e (see [34℄) was possible after developing 
ertaintools for the spa
e of measures and Lips
hitz semi�ows.In Se
tion 2.2.1 a summary of results from [34℄ is presented. Author's 
ontributionto this joint paper was limited to simplifying the proofs, implementing the s
hemes andrunning numeri
al tests. Noti
e that numeri
al 
omparison of results requires an imple-mentation of the algorithm des
ribed in Se
tion 1.3.4. Three improvements to standardEBT algorithm, whi
h arise from the 
onsiderations of Se
tion 1.5, are presented in Se
-tion 2.2.3.2.2.1. EBT algorithmParti
le methods in their prin
iple are based on approximating a solution to partial dif-ferential equation by a sum of Dira
 masses and tra
king ea
h mass in time. The main
hallenge, as it will be
ome 
lear after reading this se
tion, is handling the boundary
onditions. A number of methods for tra
king boundary 
ohorts has already been devel-oped, and three of them (original EBT, EBT with simpli�ed boundary 
onditions andSplit-Up algorithm) are 
ompared in [34℄, where no signi�
ant di�eren
es in the rate of63



Figure 2.1: Visualization of the sEBT algorithm


onvergen
e were found. In this se
tion we summarize methods and results used in theanalysis of parti
le algorithms for transport equations with non-lo
al terms.We restri
t our 
onsiderations to equation (2.1) with
g,m, β ∈ C0,1

b

(
[0, T ]×M+[0, smax];C

0,1[0, smax]
)and u0 ∈ M[0, smax] with possibly in�nite smax. We shall also fo
us on one of the algo-rithms analyzed in [34℄, namely on the EBT algorithm with simpli�ed boundary 
ondi-tions, abbreviated to sEBT. Analysis of other algorithms is very similar and the orderof 
onvergen
e is identi
al. Numeri
al results for all three methods are 
ompared inSe
tion 2.2.2.The main idea of the sEBT method is to approximate the initial 
onditions

u0 ∈ M
+[0, smax] by a dis
rete measure µ0 =

∑N
i=1mi(0)δxi(0) and �tra
k� position andmass of ea
h Dira
 delta (see Figure 2.1). In the 
ase of (2.1) the following ODE systemis used for the tra
king

{
d
dt
xi(t) = g(t,

∑
i∈I mi(t)δxi(t))(xi(t))

d
dt
mi(t) = −m(t,

∑
i∈I mi(t)δxi(t))(xi(t)) ·mi(t)

(2.5)with I being the set of indi
es. Boundary 
onditions are dealt with separately. A newboundary 
ohort is 
reated every ∆t > 0 of time, and the previous boundary 
ohortbe
omes an internal 
ohort tra
ked by (2.5). Boundary 
ohorts, on the other hand, are64



tra
ked by the following equation




d
dt
xB(t) = g(t,

∑
i∈I mi(t)δxi(t))(xB(t))

d
dt
mB(t) = −m(t,

∑
i∈I mi(t)δxi(t))(xB(t)) ·mi(t) +

∑
i∈I β(t,

∑
i∈I mi(t)δxi(t))(xi(t))mi(t)

xB(k∆t) = mB(k∆t) = 0 .(2.6)The set of indi
es, I, initially 
onsists of the boundary 
ohort index, B, and N indi
es ofatoms in the initial approximations, see Figure 2.1. Therefore at time t ∈ [k∆t, (k + 1)∆t]we have
I = {B, 1, 2, ..., k, k + 1, k + 2, ..., k +N}.For a given µ ∈M[0, smax] and t0 ∈ R

≥0 let v be a weak solution of (2.1) with initial
onditions posed by µ at time t0, namely




∂tv + ∂s(g(t, v)v) +m(t, v)v = 0

g(t, v)(0) (Dλv(t)) (0) =
� smax

0
β(t, v)(s)v(ds)

v(t0) = µ .By Corollary 81 operator
# : M

+[0, smax]× [0, T ]× [0, T ]→M
+[0, smax]de�ned as

µ#t1
t0 = v(t1)is a Lips
hitz semi�ow.Remark 87. Lips
hitz 
onstant of semi�ow # depends on T .Notation 88. We denote the out
ome of the sEBT algorithm at t1 starting from initial
onditions µ at t0 is denoted by µ⋆

t1
t0 .Lemma 89. The out
ome of the sEBT algorithm is a Lips
hitz 
ontinuous measure-valuedfun
tion, namely for any µ ∈M

+
d [0, smax] and t0 ∈ R

≥0 it holds that
µ⋆·

t0 ∈ Lip
(
[0, T ]; M

+[0, smax]
)
.Proof. Lips
hitz 
ontinuity of fun
tions xi(t), mi(t) for i ∈ {B, 1, 2, ..., N} stems from theboundedness of parameters g,m, β. Let t1, t2 ∈ (t0, T ], then

ρF

(
µ⋆

t1
t0 , µ⋆

t2
t0

)
≤

N∑

i=B

ρF (mi(t1)δxi(t1), mi(t2)δxi(t2)) + γ,where γ is the total amount of newborn individuals added to the boundary 
ohorts between
t1 and t2. Consequently, by Lemma 19

ρF

(
µ⋆

t1
t0 , µ⋆

t2
t0

)
≤

N∑

i=B

|mi(t1)−mi(t2)|+
N∑

i=B

|xi(t1)− xi(t2)|mi(t2) + γ ≤65



Figure 2.2: Corollary 91 provides a method of estimating the error of sEBT s
heme on
[0, T ], namely ρF (u0⋆

T
0 , u0#

T
0 ), by studying the error on arbitrary small intervals [τ, τ+h].

≤ |t1 − t2|max

(
1,

N∑

i=B

mi(t2)

)(
sup

i∈{B,1,...,N}
‖mi(·)‖C0,1[t0,t1] + sup

i∈{B,1,...,N}
‖xi(·)‖C0,1[t0,t1]

)
+ γ.Finally, by equation (2.6), γ 
an be estimated by C(T ) · ‖β‖P |t1 − t2|.A

ura
y of the sEBT algorithm in �at metri
, namely ρF (u0#

T
0 , u0⋆

T
0 ), 
an be es-timated from the following theorem (proof 
an be 
ondu
ted analogously to the proof ofTheorem 2.9 in [10℄).Theorem 90. Let S : E× [0, δ]× [0, T ]→ E be a Lips
hitz semi�ow. For every Lips
hitz
ontinuous map T : [0, T ]→ E the following estimate holds

ρ (T (t), S(t; 0)T (0)) ≤ Lip(S) ·
� t

0

lim inf
h→0

ρ (T (τ + h), S(h, τ)T (τ))

h
dτ.Sin
e # is a Lips
hitz semi�ow, Theorem 90 
an be applied to the pro
ess of populationdynami
s, #, and the sEBT algorithm, ⋆. The idea hidden behind the following Corollaryis depi
ted on Figure 2.2.Corollary 91. Let u0 ∈M

+
d [0, smax] and t ∈ [0, T ] then

ρF (u0⋆
t
0, u0#

t
0) ≤ tLip(#) sup

τ∈[0,T ]

lim inf
h→0

ρF

(
u0⋆

τ+h
0 , (u0⋆

τ
0)#τ+h

τ

)

h
.66



Theorem 92. Let u0⋆
τ
0 = µ ∈M

+
d [0, smax] be the out
ome of sEBT algorithm with timestep ∆t, then for some 
onstant C1(T ) it holds that

lim inf
h→0

ρF

(
µ⋆τ+h

τ , µ#τ+h
τ

)

h
= C1(T )∆t.Proof. Let µ =

∑
i∈I mi(τ)δxi(τ). By Proposition 83 measure µ#τ+h

τ de
omposes to a dis-
rete part∑i∈I ni(τ + h)δyi(τ+h) and an absolutely 
ontinuous measure, M (f(τ + h)(·)).Moreover, for every t fun
tion f(t)(·) ∈ L1[0, smax] is supported on [0, l1(t)]. By Lemma 20and Lemma 19 there holds
ρF

(
µ⋆τ+h

τ , µ#τ+h
τ

)
≤

∑

i∈I\{B}

|mi(τ + h)− ni(τ + h)|+ (2.7)
+

∑

i∈I\{B}

|xi(τ + h)− yi(τ + h)|ni(τ + h) + (2.8)
+ ρF (mBδxB

, nBδyB
+ M (f(τ + h)(·))). (2.9)The �rst two terms 
orrespond to the error resulting from non-lo
al 
oe�
ients b and c.The last term stems from the approximation of a 
ontinuous fun
tion near the boundaryby a 1-point dis
rete measure. Sin
e the asymptoti
 behavior of l1 for h→ 0 is given by

l1(h) = Θ(h) and xB, yB may range in [0, ‖g‖P ∆t], it follows that the 
ontribution of thelast term in (2.7) to the total error 
annot be estimated from below by a smaller value
Θ(h∆t). Indeed, the 
entral point (see De�nition 45) of measure nBδyB

+M (f(τ +h)(·))tends to yB with h → 0, and 
onsequently the error of optimal approximation tends to
∆t

� smax

0
f(τ + h)(s)ds. It 
an be then shown that remaining terms in (2.7) are of order

h2 (see [34℄ for details). Consequently we obtain
ρF

(
µ⋆τ+h

τ , µ#τ+h
τ

)
= O(h∆t).Theorem 93. Let u0 ∈M

+[0, smax] then for any µ0 ∈M
+
d [0, smax] it holds that

ρF (µ0⋆
T
0 , u0#

T
0 ) ≤ C1(T )∆t+ C2(T )ρF (µ0, u0).Proof. Let µ0 ∈ M

+
d [0, smax] be an initial approximation of u0. By Theorem 79 andCorollary 91 we dedu
e that

ρF (µ0⋆
T
0 , u0#

T
0 ) ≤ ρF (µ0⋆

T
0 , µ0#

T
0 ) + ρF (µ0#

T
0 , u0#

T
0 ) ≤ C1(T )∆t+ C2(T )ρF (µ0, u0).Constant C2 depends on T sin
e Lip(#) depends on T .2.2.2. Numeri
al testsIn this se
tion numeri
al tests of 
onvergen
e and e�
ien
y of three algorithms des
ribedin [34℄ are presented. The s
hemes: Es
alator Box
ar Train algorithm with simpli�ed67



Figure 2.3: CPU time required to a
hieve given a

ura
y.
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boundary 
onditions (sEBT), original Es
alator Box
ar Train algorithm (EBT) and split-up algorithm (SU) are very similar in essen
e but di�er from ea
h other in the methodof handling the boundary 
ohorts. The results presented in Se
tion 2.2.1 for the sEBTalgorithm are easily transferable to the 
ase of SU and EBT.The numeri
al simulations show that no major di�eren
es in a

ura
y nor perfor-man
e are apparent. The tests also 
on�rm the theoreti
al order of 
onvergen
e provedin Theorem 93.The tests were 
ondu
ted on the following datasets on X = [0, 1]:1. In the �rst test 
ase we 
onsider a problem with the initial 
ondition taken at a stablestationary state. The aim of the test is to 
he
k a

ura
y of the approximation of thein�ux modeled by the boundary 
ohort. We 
hoose the following model parameters:
g(s) = 0.2 (1− s)
m(s) = 0.2

β(s) = 2.4
(
s2 − s3

)
.The exa
t solution is u(t) = L[0,1].2. The se
ond example is taken from the referen
e [46℄. The aim of this test is to studyin�uen
e of non-lo
al terms on the results for the three algorithms. We take modelparameters given by the following fun
tions

g(s) = e−s

m(s) = 1 + e−s +
e−s sin(s)

2 + cos(s)

β(u)(s) =
3

2 + cos(s)
· 0.5 + (1 + 0.5 sin(1))e−t

0.5 + 〈u, 1〉68



The exa
t solution of the model is u(t) = e−t(1 + 0.5 cos(x))L[0,1].The error of numeri
al s
heme was 
omputed using the algorithm des
ribed in Se
-tion 1.3.4 as
− log2 (ρF (µ(1), u(1))) ,where µ(t) is the output of the s
heme and u(t) is the exa
t solution.Figure 2.3 shows the e�
ien
y of EBT algorithms (amount of time required by the
entral pro
essing unit to obtain desired a

ura
y). Ea
h point at the plot represents asimulation for a 2i-point equidistant approximation of initial 
onditions and ∆t = 2−kwith i, k ∈ {2, 3, ..., 19}. The points farthest to the right (high a

ura
y) 
orrespond tothose simulations for whi
h k was 
lose to i. No signi�
ant di�eren
e in e�
ien
y betweenalgorithms 
ould be found.Figure 2.4 presents the a

ura
y of EBT algorithms as a fun
tion of the number ofinitial nodes, I, and boundary 
ohorts, K. It is 
lear from the plots that the ratio 1 : 1of initial nodes and boundary 
ohorts provides the smallest error.Tables 2.1 and 2.2 provide detailed results and 
on�rm linear order of 
onvergen
e ofthe algorithms with respe
t to ∆t. The empiri
al order of 
onvergen
e is de�ned as

log2

e I
2

eI
,where eI is the error of the numeri
al s
heme for I initial nodes and I

4
boundary 
ohorts.Table 2.1: Test Case 1. Numeri
al error and order of 
onvergen
e measured in �at metri
. Number ofboundary 
ohorts equals I/4.sEBT EBT SUI Error Order Error Order Error Order16 1.53e-02 1.03 1.31e-02 1.02 1.49e-02 1.0432 7.56e-03 1.02 6.56e-03 1.00 7.96e-03 0.9064 3.76e-03 1.01 3.28e-03 1.00 4.14e-03 0.94128 1.88e-03 1.00 1.64e-03 1.00 2.11e-03 0.97256 9.36e-04 1.00 8.20e-04 1.00 1.07e-03 0.99512 4.68e-04 1.00 4.10e-04 1.00 5.36e-04 0.991024 2.34e-04 1.00 2.05e-04 1.00 2.68e-04 1.002048 1.17e-04 1.00 1.03e-04 1.00 1.34e-04 1.004096 5.84e-05 1.00 5.13e-05 1.00 6.73e-05 1.008192 2.92e-05 1.00 2.56e-05 1.00 3.36e-05 1.0016384 1.46e-05 1.00 1.28e-05 1.00 1.68e-05 1.0032768 7.30e-06 1.00 6.41e-06 1.00 8.41e-06 1.0065536 3.65e-06 1.00 3.20e-06 1.00 4.21e-06 1.00131072 1.83e-06 1.00 1.60e-06 1.00 2.10e-06 1.00262144 9.13e-07 1.00 8.01e-07 1.00 1.05e-06 1.00524288 4.56e-07 1.00 4.01e-07 1.00 5.26e-07 1.001048576 2.28e-07 1.00 2.00e-07 1.00 2.63e-07 1.0069



Figure 2.4: Full map of errors for test 
ase 1 (left) and test 
ase 2 (right) and algorithmsEBT (top), EBT (
enter), SU (bottom). The plots show the dependen
e of numeri
alerror in �at metri
 (Y axis) upon number of initial nodes I (X axis) and the ratio K
I(
olor). The solid line represents the a

ura
y of I-point equidistant approximation ofthe exa
t solution.

��

��

��

��

��

��

��	

���

��


���

���

���


 � � �� �
 �� �
� 
�� ��
 �� 
� �� �� ��� �
� ����
��
�����
� �


��
��
�


��
�
��
�
��
��
��
�
��
�
�
��
��
��

� �!����"�����������#�$%�&

�'�


�'��

�'�

�'�

�'


�

"�
�
(
 
�
�
�
)
��
"�
�
#
#
��
�
�!
�
 
�
#
�
�)
��
�
*
�
��
$
%�
�
'&

��

��

��

��

��

��

��

�	

�
�

�



�
�

�
�

� � � 
� �� �� 
�� ��� �
� 
� �� �� �� 
�� ��� ���
��������
�� 



��
��
�
�
��
�
��
�
��
��
��
�
��
�
�
��
��
��

� �!����"�����������#�$%�&


'��


'
�


'�


'�


'�




"�
�
(
 
�
�
�
)
��
"�
�
#
#
��
�
�!
�
 
�
#
�
�)
��
�
*
�
��
$
%�
�
'&

��

��

��

��

��

��

��	

���

��


���

���

���


 � � �� �
 �� �
� 
�� ��
 �� 
� �� �� ��� �
� ����
��
�����
� �


��
��
�


��
�
��
�
��
��
��
�
��
�
�
��
��
��

� �!����"�����������#�$%�&

�'�


�'��

�'�

�'�

�'


�

"�
�
(
 
�
�
�
)
��
"�
�
#
#
��
�
�!
�
 
�
#
�
�)
��
�
*
�
��
$
%�
�
'&

��

��

��

��

��

��

��

�	

�
�

�



�
�

�
�

� � � 
� �� �� 
�� ��� �
� 
� �� �� �� 
�� ��� ���
��������
�� 



��
��
�
�
��
�
��
�
��
��
��
�
��
�
�
��
��
��

� �!����"�����������#�$%�&


'��


'
�


'�


'�


'�




"�
�
(
 
�
�
�
)
��
"�
�
#
#
��
�
�!
�
 
�
#
�
�)
��
�
*
�
��
$
%�
�
'&

��

��

��

��

��

��

��

�	


�		

�	�

�	�

�	�

�	�

� � � 	� �� �� 	�� ��� �	� 	� �� �� �� 	�� ��� ���	��������	�� 	


��
��
�
�
��
�
��
�
��
��
��
�
��
�
�
��
��
��

� �!����"�����������#�$%�&

	'��

	'	�

	'�

	'�

	'�

	

"�
�
(
 
�
�
�
)
��
"�
�
#
#
��
�
�!
�
 
�
#
�
�)
��
�
*
�
��
$
%�
�
'&

��

��

��

��

��

��

��

�	

�
�

�



�
�

�
�

� � � 
� �� �� 
�� ��� �
� 
� �� �� �� 
�� ��� ���
��������
�� 



��
��
�
�
��
�
��
�
��
��
��
�
��
�
�
��
��
��

� �!����"�����������#�$%�&


'��


'
�


'�


'�


'�



"�
�
(
 
�
�
�
)
��
"�
�
#
#
��
�
�!
�
 
�
#
�
�)
��
�
*
�
��
$
%�
�
'&

70



Table 2.2: Test Case 2. Numeri
al error and order of 
onvergen
e measured by �at metri
. Number ofboundary 
ohorts equals I/4.sEBT EBT SUI Error Order Error Order Error Order16 6.09e-02 1.12 6.25e-02 1.12 1.29e-01 0.8232 3.67e-02 0.73 3.92e-02 0.67 5.72e-02 1.1764 1.63e-02 1.17 1.72e-02 1.19 3.06e-02 0.90128 9.32e-03 0.81 1.01e-02 0.77 1.40e-02 1.13256 5.02e-03 0.89 5.41e-03 0.90 6.78e-03 1.04512 2.27e-03 1.15 2.46e-03 1.14 3.52e-03 0.951024 1.19e-03 0.93 1.29e-03 0.94 1.72e-03 1.032048 6.37e-04 0.90 6.87e-04 0.91 8.42e-04 1.034096 2.92e-04 1.12 3.18e-04 1.11 4.33e-04 0.968192 1.56e-04 0.91 1.69e-04 0.91 2.12e-04 1.0316384 6.97e-05 1.16 7.59e-05 1.15 1.11e-04 0.9432768 3.54e-05 0.98 3.85e-05 0.98 5.48e-05 1.0165536 1.83e-05 0.95 1.99e-05 0.96 2.70e-05 1.02131072 9.74e-06 0.91 1.05e-05 0.91 1.32e-05 1.03262144 4.35e-06 1.16 4.74e-06 1.15 6.91e-06 0.942.2.3. Improvements of sEBT algorithmIn this se
tion three improvements to sEBT algorithm, analyzed in Se
tion 2.2.1 and Se
-tion 2.2.2, are presented. The �rst improvement is an appli
ation of the theory developedin Se
tion 1.5.3 to redu
e the error of initial 
ondition approximation. The se
ond modi�-
ation makes use of the result of Theorem 51 to redu
e 
omplexity of the s
heme. Finally,motivated by the result of Theorem 70 we show how the rate of 
onvergen
e of the sEBTalgorithm 
an be improved if the birth pro
ess is approximated by step fun
tions insteadof Dira
 masses.2.2.3.1. Initial 
onditionsSin
e by Theorem 93 the a

ura
y of sEBT algorithm is restri
ted by the time step ∆tand the error of the approximation of initial 
onditions, namely
ρF (µ0⋆

T
0 , u0#

T
0 ) ≤ C1(T )∆t+ C2(T )ρF (µ0, u0),it is natural to apply the results of Se
tion 1.5.3 to redu
e the latter fa
tor. From Propo-sition 69 it is 
lear, that in the worst 
ase

C2ρF (µ0, u0) = O(∆x),where ∆x is the maximum distan
e between two atoms of the initial approximation, µ0.Yet 
onsiderable improvement 
an be a
hieved if u0 is a muliti-hump fun
tion.71



Figure 2.5: a) fun
tion f(x) and its optimal transport partition, b) phase portrait oftransport partitions in Newton's method, 
) ρF (f, µa) as a fun
tion of the �rst non-zeropoint of transport partition, a2.
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In the farther 
onsiderations we will use the following fun
tion, f : [0, 1]→ R
+, as anillustration for the analyzed tools:

f(x) = (1− x)2 sin
(
10
√
x
)6

+ 10−3.Fun
tion f and its optimal transport partition for N = 3 are depi
ted on Figure 2.5a (seeSe
tion 1.5.3).Theorem 63 and Corollary 65 provide su�
ient 
hara
terization of the error fun
tionfor Netwon's method to be implemented. Sin
e a1 = 0 and aN+1 = 1 are �xed, thealgorithm �nds the minimum argument of the error inN−1 dimensional spa
e. For a givenpoint a
n ∈ [0, 1]N−1 Newton method provides a supposedly better point a

n+1 ∈ [0, 1]N−1,de�ned as
a

n+1 = a
n −

[
HρF (µM

(0,an,1), f)
]−1∇

[
ρF (µM

(0,an,1), f)
]
,where H denotes the Hessian matrix. Figure 2.5b shows the dire
tions of Netwon stepsfrom di�erent starting points for N = 3. Lengths of the arrows, namely |an+1− a

n|, wereredu
ed by a fa
tor of 0.2 for 
larity.Another method of �nding the optimal approximation is presented on Figure 2.5
.Given a2 ∈ (0, 1) there exists a unique 
andidate for the optimal approximation, whosese
ond point of transport partition equals a2. Indeed, by Corollary 59 the value x∗1 isuniquely de�ned by a1 and a2. Similarly, by Proposition 57 the value a3 is uniquelyde�ned by x∗1 and a2. Consequently, given a value a, a transport partition {ai}N+1
i=1 su
hthat a2 = a and a 
orresponding dis
rete measure, µa, 
an be re
onstru
ted. Figure 2.5
shows the dependen
e of ρF (f, µa) upon a.The optimal 3-point approximation of fun
tion f equals

µ∗ = 0.029δ0.027 + 0.055δ0.221 + 0.023δ0.601and the equidistant 3-point approximation of f equals
µ3 = 0.084δ 1

6
+ 0.019δ 1

2
+ 0.003δ 5

6
.Thus,

ρF (µ∗, f) = 0.003023,

ρF (µ3, f) = 0.026841.2.2.3.2. Redu
tion of 
omplexityIn sEBT algorithm a new boundary 
ohort is added every ∆t-long period of time. Con-sequently the number of 
ohorts grows linearly with time. Assuming that �tra
king� asingle 
ohort on an ∆t-long interval requires 
onstant 
omputational 
ost, the algorithmis quadrati
 with respe
t to T . Theorem 51 from Se
tion 1.5.2 provides results that allowsto redu
e a number of 
ohorts after ea
h time step, and therefore keep it 
onstant.Proposition 94. For �xed parameter ∆t and �xed approximation of initial 
ondition, µ0,the 
omputational 
omplexity of sEBT is O(T 2).73



Proof. Let µ0 ∈ M
+
d,M [0, smax] and let N = (∆t)−1. The set of indi
es, I, de�ned inSe
tion 2.2.1, at time t0 has 
ardinality M + ⌊t0N⌋. Sin
e tra
king a single atom on atime interval [t0, t0 + ∆t] requires a 
onstant 
omputational time, it follows that tra
kingall parti
les on the same interval (performing ⋆

t0+∆t
t0 ) requires O(M + t0 ·N) operations.Consequently, �nding approximate solution at time T , namely µ0⋆

T
0 , has 
omputational
omplexity

O
(

NT∑

k=1

(k +M)

)
= O

(
MNT +N2T 2

)
= O(T 2),sin
e

⋆T
0 = ⋆∆t

0 ◦⋆2∆t
∆t ◦ ... ◦⋆T

T−∆t =©T ·N
k=1⋆

k·∆t
(k−1)∆t.In this se
tion we propose a modi�
ation of sEBT whi
h guarantees O(T ) 
omplexity.Throughout the se
tion we assume that smax ≤ 1.De�nition 95. Let H : M

+
d (X) → M

+
d (X) be a redu
tion operator whi
h assigns to ameasure µ ∈M

+
d,k(X) its optimal k − 1-point approximation, µH.We propose a modi�
ation of sEBT algorithm in whi
h after ea
h ∆t period of timeadding new boundary 
ohort is 
ompensated by optimal redu
tion by H.De�nition 96. By EBT algorithm with simpli�ed boundary 
onditions and 
onstantnumber of 
ohorts (sEBT
) we mean the following 
omposition:
©T ·N

k=1

(
⋆k·∆t

(k−1)∆t ◦ H
)

= ⋆∆t
0 ◦ H ◦⋆2∆t

∆t ◦ H ◦ ... ◦⋆T
T−∆t,where N = (∆t)−1.Proposition 97. For �xed parameter ∆t and �xed approximation of initial 
onditions,

µ0, the 
omputational 
omplexity of sEBT
 is O(T ).Proof. Let µ0 ∈ M
+
d,M [0, smax] and let N = (∆t)−1. In sEBT
 algorithm 
ardinality ofthe set of indi
es, I, is 
onstantly equal M + 1. Therefore performing ⋆

t0+∆t
t0 requires

O(M) operations and by Proposition 50 so does H. Consequently the 
omplexity of thealgorithm is given by
O
(

NT∑

k=1

M

)
= O(MNT ) = O(T ).Theorem 98. Let u0 ∈M

+[0, smax] then for any µ0 ∈M
+
d,M [0, smax] and any ∆t = N−1it holds

ρF

(
u0#

T
0 , µ0©T ·N

k=1

(
⋆k·∆t

(k−1)∆t ◦ H
))
≤ C1(T )

(
∆t+NM−2

)
+ C2(T ) · ρF (µ0, u0)for some 
onstants C1, C2 dependent on T .74



Proof. Sin
e # is a Lips
hitz semi�ow (see Corollary 81) we immediately obtain by triangleinequality
ρF

(
u0#

T
0 , µ0©T ·N

k=1

(
⋆

k·∆t
(k−1)∆t ◦ H

))
≤ Lip(#)ρF (µ0, u0) +

+ ρF

(
µ0#

T
0 , µ0©T ·N

k=1

(
⋆k·∆t

(k−1)∆t ◦ H
))
.It is therefore su�
ient to show that the error of sEBT
 is of order O(∆t + NM−2) ifinitial 
ondition is a dis
rete measure. From Theorem 92 and Corollary 91 we have that

ρF (µ⋆
t0+∆t
t0 , µ#t0+∆t

t0 ) ≤ C3 (∆t)2 . (2.10)On the other hand, from Theorem 51 it follows that if µ ∈M
+
d,M [0, smax] then

ρF (µ, µH) ≤ ‖µ‖M−2. (2.11)The idea of the following estimate is illustrated on Figure 2.6. Using triangle inequalityand the semi�ow estimate we obtain
ρF

(
µ0#

T
0 , µ0©T ·N

k=1

(
⋆

k·∆t
(k−1)∆t ◦ H

))
≤ ρF

(
µ0#

T
0 , µ0⋆

∆t
0 H#T

∆t

)
+

+ρF

(
µ0⋆

∆t
0 H#T

∆t, µ0©T ·N
k=1

(
⋆k·∆t

(k−1)∆t ◦ H
))
≤ Lip(#)ρF

(
µ0#

∆t
0 , µ0⋆

∆t
0 H

)
+

+ρF

((
µ0⋆

∆t
0 H

)
#T

∆t,
(
µ0⋆

∆t
0 H

)
©T ·N

k=2

(
⋆k·∆t

(k−1)∆t ◦ H
))
.By inequalities (2.11) and (2.10) applied to the �rst term we 
on
lude that

ρF

(
µ0#

T
0 , µ0©T ·N

k=1

(
⋆k·∆t

(k−1)∆t ◦ H

))
≤ C4(T ) · (N−2 +M−2) +

+ρF

((
µ0⋆

∆t
0 H

)
#T

∆t,
(
µ0⋆

∆t
0 H

)
©T ·N

k=2

(
⋆k·∆t

(k−1)∆t ◦ H

))
.

(2.12)Noti
e that the upper bound 
onsists of the term whi
h is of order O(N−2 +M−2) and aterm, whi
h is equal to the error of sEBT
 algorithm for a shorter time period, T − ∆t.Therefore, by indu
tion we obtain
ρF

(
µ0#

T
0 , µ0©T ·N

k=1

(
⋆k·∆t

(k−1)∆t ◦ H
))
≤ C5(T )

(
N−1 +NM−2

)
.Corollary 99. sEBT and sEBT
 algorithms have the same rate of 
onvergen
e if N = M .Proof. If N = M then N−1 +NM−2 = O(N−1) = O(∆t).Numeri
al tests aiming at the 
omparison of sEBT and sEBT
 in terms of a

ura
yand e�
ien
y have been 
ondu
ted on the following parameters:

g(s) = 10 (1− s) ,
m(s) = s2,

β(s) = s.with the initial 
onditions equal to the Dira
 mass at 0, namely u0 = δ0.Table 2.3 presents results of the numeri
al analysis. The empiri
al order of 
onvergen
eis 
lose to 1, whi
h 
on�rms Theorem 98. sEBT
 algorithm turns out to be signi�
antlyfaster, though for given parameters N,M it indu
es larger error than sEBT.75



Figure 2.6: Visualization of the proof of Theorem 98.

Table 2.3: Comparison of a

ura
y and e�
ien
y of sEBT and sEBT
 algorithms.Parameters sEBT sEBT
N M error order CPU time error order CPU time2 8 4.74e-02 0.00s 6.02e-02 0.00s4 16 2.60e-02 0.86 0.00s 3.19e-02 0.91 0.00s8 32 1.35e-02 0.94 0.01s 1.64e-02 0.95 0.00s16 64 7.10e-03 0.92 0.02s 8.65e-03 0.92 0.00s32 128 3.64e-03 0.96 0.04s 4.51e-03 0.93 0.01s64 256 1.83e-03 0.99 0.07s 2.27e-03 0.99 0.02s128 512 9.05e-04 1.01 0.15s 1.13e-03 1.00 0.05s256 1024 4.38e-04 1.04 0.30s 5.54e-04 1.02 0.09s512 2048 2.21e-04 0.98 0.58s 2.80e-04 0.98 0.19s1024 4096 1.14e-04 0.95 1.20s 1.45e-04 0.94 0.39s
76



2.2.3.3. Step fun
tionsAs shown in the Se
tion 2.2.1 the bottlene
k, in terms of a

ura
y, of the sEBT algorithmis the method of handling boundary 
onditions. By Proposition 83 birth pro
ess generatesan absolutely 
ontinuous measure on the boundary, whi
h by Proposition 69 
annot beapproximated with a 1-point dis
rete measure with a smaller error than O ((∆t)2). The
on
ept of this se
tion, arising from Theorem 70, is to approximate the distribution of�young� individuals by an indi
ator fun
tion of the interval [0, l1(t)].In the algorithm introdu
ed in this se
tion, EBT2, the initial 
ondition, u0 ∈M
+[0, smax],is approximated by a sum of a dis
rete measure and a step fun
tion, µ0. Let fun
tion

mi, nj : [0, T ]→ R
≥0 and xi, yj : [0, T ]→ [0, smax] for i ∈ {1, ..., N} and j ∈ {B, 1, ...,M}be some fun
tion spe
i�ed later, and let
µ0 =

N∑

i=1

mi(0)δxi(0) +

M∑

i=1

ni(0)

yi(0)− yi−1(0)
1[yi−1(0),yi(0)], (2.13)see Figure 2.7Throughout this se
tion by y0(t) we always mean yB(t), and by y−1(t) wemean 0. Supports of the dis
rete part and the absolutely 
ontinuous part of µ0 mayoverlap. Ea
h atom of µ0 is tra
ked by the system of equations analogous to (2.5)

{
d
dt
xi(t) = g(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(xi(t))
d
dt
mi(t) = −m(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(xi(t)) ·mi(t) ,(2.14)while ea
h of the indi
ator fun
tions is tra
ked by equation
{

d
dt
yi(t) = g(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(yi(t))
d
dt
ni(t) = m(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(yi(t)) · ni(t) .
(2.15)By the generalized boundary 
ohort, used in EBT2, we mean indi
ator fun
tion nB(t)1[0,yB(t)].Similarly as in sEBT, a new generalized boundary 
ohort is 
reated every ∆t > 0 of time,and the previous generalized boundary 
ohort be
omes an internal 
ohort, tra
ked by(2.15). Fun
tions nB(t) and yB(t) follow





d
dt
yB(t) = g(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(yB(t))
d
dt
nB(t) = −m(t,

∑N
i=1mi(t)δxi(t) +

∑
i∈I

ni(t)
yi(t)−yi−1(t)

1[yi−1(t),yi(t)])(yB(t)) ·mi(t)+

+
∑N

i=1 β(t,
∑N

i=1mi(t)δxi(t) +
∑

i∈I
ni(t)

yi(t)−yi−1(t)
1[yi−1(t),yi(t)])(xi(t))mi(t)

+
∑

i∈I β(t,
∑N

i=1mi(t)δxi(t) +
∑

i∈I
ni(t)

yi(t)−yi−1(t)
1[yi−1(t),yi(t)])(yi(t))ni(t)

yB(k∆t) = nB(k∆t) = 0 .(2.16)Remark 100. Existen
e and uniqueness of solution to the ODE system de�ned by equa-tions (2.14), (2.15) and (2.16) stems from boundedness and Lips
hitz 
ontinuity of pa-rameters g,m, β upon arguments and from Lips
hitz dependen
e of measure
(

N∑

i=1

miδxi
+
∑

i∈I

ni

yi − yi−1
1[yi−1,yi]

)
∈M

+[0, smax] (2.17)77



Figure 2.7: Visualization of the EBT2 algorithm

on mi, xi, ni, yi.Indeed, Lips
hitz dependen
e of (2.17) upon a single parameter xi or yi 
an be easily
he
ked using Theorem 11. Lips
hitz dependen
e of (2.17) upon a single parameter mi or
ni stems dire
tly from Proposition 7. Finally, triangle inequality for �at metri
 guaranteesthat (2.17) is also Lips
hitz 
ontinuous with respe
t to the whole ve
tor of parameters

(m1, x1, m2, x2, ..., mN , xN , n1, y1, ...) .Similarly as in the 
ase of sEBT, the set of indi
es, I, initially 
onsists of the boundary
ohort index, B, and some number, M , (possibly zero) indi
es of indi
ator fun
tions inthe initial approximations. Therefore at time t ∈ [k∆t, (k + 1)∆t] we have
I = {B, 1, 2, ..., k, k + 1, k + 2, ..., k +M}.We shall denote the out
ome of the EBT2 algorithm at t1 starting from initial 
onditions

µ at t0 by µ�
t1
t0 .Table 2.4 presents results of the numeri
al analysis 
ondu
ted for the Test Case 2des
ribed in Se
tion 2.2.2. The empiri
al order of 
onvergen
e of EBT2 algorithm is 
loseto 2, suggesting that

ρF (u0#
T
0 , µ0�

T
0 ) ≤ C1(T ) (∆t)2 + C2(T )ρF (u0, µ0).EBT2 indu
es signi�
antly smaller error, 
ompared to sEBT, even for large ∆t sin
e itallows to use step fun
tions as approximation of initial 
onditions. In the tests presented inTable 2.4 initial 
ondition was approximated by 8192-step fun
tion in the EBT2 algorithm,resulting with error equal to 1.36e−8, and with 8192-point measure in the sEBT algorithm,resulting with error equal to 4.33e− 5. 78



Table 2.4: Comparison of a

ura
y and empiri
al order of 
onvergen
e of sEBT and EBT2algorithms. EBT2

∆t−1 M Error Order1 8192 1.86e− 3
2 8192 4.36e− 4 2.09
4 8192 8.98e− 5 2.29
8 8192 2.27e− 5 1.98
16 8192 5.13e− 6 2.14

sEBT
∆t−1 N Error Order

1 8192 1.64e− 1
2 8192 1.09e− 1 0.58
4 8192 6.43e− 2 0.76
8 8192 3.50e− 2 0.87
16 8192 1.83e− 2 0.932.3. Optimal foraging model in population dynami
sIn this se
tion we apply theory des
ribed in Se
tion 2.1 and Se
tion 2.2 to study equation(2.1) with a spe
i�
 
hoi
e of parameters re�e
ting growth, reprodu
tion and mortalityof Daphnia population under predation of a size-sele
tive planktivorous �sh in an aquati
e
osystem. It is allowed to 
onsider a single equation for the total population withoutmaking the distin
tion between female and male individuals, sin
e Daphnia spe
ies havea life 
y
le based on 
y
li
al parthenogenesis, alternating between asexual and sexualreprodu
tion.In the general theory dependen
e of all three parameters upon time and populationstru
ture 
an be taken into a

ount. Sin
e in aquati
 e
osystems where predators arepresent prey density levels never rea
h 
arrying 
apa
ity we shall 
onsider a simpli-�ed model in whi
h growth rate, g, and reprodu
tion rate, β, are 
onstant as fun
-tions on [0, T ] ×M

+[0, smax] with values in C0,1[0, smax] (independent on time and size-distribution). The argument is elaborated in Se
tion 3.4.It is worth mentioning the paper [33℄ in whi
h an age-stru
ture population modeldes
ribing �sh predation on Daphnia was introdu
ed. The approa
h presented in thisthesis allows to investigate the population in the 
ontext of arbitrary stru
ture and notne
essarily the age. In many 
ases, this enables to model quantities that easy to measureexperimentally. In the 
ase of Daphnia it is the size of an individual rather then its agethat 
an be dire
tly obtained from the experimental data. Moreover, the size (not age)of an individual indi
ates the likelihood of being dete
ted by a forager.A di�erent approa
h to the modeling of size-stru
tured population is des
ribed in [17℄,where the authors 
ouple an ordinary di�erential equation for the population of roa
h(predators) with a M
Kendri
k-van Foerster equation for a size-stru
tured populationof Daphnia (
onsumers), and yet another ordinary equation for algae (resour
es). The
omplex stru
ture of this model is, however, undermined by the fa
t that mortality ofthe 
onsumers does not take into a

ount size-sele
tivity of the predator. In the modelpresented in this thesis predators' numeri
al response is negle
ted for the reasons dis
ussedin detail in Se
tion 3.1. 79



2.3.1. Capture rate operatorPredator-indu
ed mortality is one of the main building blo
ks in the modeling of preypopulation dynami
s. In Se
tion 3.3 a mortality operator CLOW , appli
able for the 
aseof low prey density, is derived based on the optimization of net rate of energy intake. Themodel of energy balan
e 
onsists of:1. the model of predator respiration rate, R(v), as a fun
tion of velo
ity, v,2. the model of predator post-
apture a

eleration 
osts, A(v), as a fun
tion of velo
ity,
v,3. the model of predator rea
tive distan
e (maximum distan
e at whi
h prey item 
anbe noti
ed), r(s), as a fun
tion of prey size,4. the model of prey energy value, e(s), as a fun
tion of prey size.The following de�nition summarizes the 
onsiderations presented in detail in Se
tion 3.3.De�nition 101. Consider a 
apture rate operator CLOW : M

+[0, smax] → M
+[0, smax]de�ned by

CLOW [u] =
πv[u]r2u

1 + Thπv[u]
� smax

0
r2(σ)u(dσ)

,where v : M
+[0, smax]→ R

≥0 is impli
itly de�ned as a the maximizer of P : M
+[0, smax]×

R
≥0 → R

P (u, v) = πv

� smax

0

r2(σ) (e(σ)− A(v))u(dσ)− R(v), (2.18)where π is the ratio of a 
ir
le's 
ir
umferen
e to its diameter.A

eleration 
ost, A, respiration rate, R, rea
tive distan
e, r, and energy value, e, aresome �xed mappings of R
≥0 to R

≥0. In this se
tion we make weak assumptions on theshape of these fun
tions, whi
h is ne
essary to prove well-posedness of the populationdynami
s equation. Con
rete examples of su
h fun
tions, that stem from experimentaldata and physi
al 
onsiderations, 
an be found in Chapter 3. Moreover, in Se
tion 2.3.2it is 
he
ked that these examples satisfy ne
essary 
onditions.Condition 102. Fun
tions A, R, r and e satisfy the following properties:1. fun
tions r2 and e are Lips
hitz 
ontinuous on [0, smax] and A,R ∈ C2(R≥0,R),2. derivatives A′(v) and R′(v) are non-negative and stri
tly in
reasing,3. A(0) = 0, R(0) > 0,4. limv→∞A(v) = limv→∞R(v) =∞,5. e(s) > 0 and r(s) > 0 for s > 0.We also make the following assumptions on the models of growth and birth pro
esses:80



Condition 103. Fun
tions g, β satisfy the following properties:1. fun
tion g is the Bertalan�y growth rate ([64℄), namely g(s) = γ (smax − s) for some
onstant γ,2. β(s) = a(s− s0)
b for some 
onstants a, b, s0 (
ompare [7℄).Sin
e a

ording to Condition 103 fun
tions g and β do not depend on time, t, nopopulation distribution, u, we shall often write g(s) and β(s) instead of g(t, u)(s) and

β(t, u)(s) whenever Condition 103 is assumed.2.3.2. Assumptions on parametersSome of the assumptions in Condition 102 on fun
tions A, R, r and e are trivially sat-is�ed for the spe
i�
 
hoi
e of parameters made in 
hapter 3. For example A(v) = mv2

2
,assumed in Se
tion 3.2.6, is obviously di�erentiable, A′(v) = mv is non-negative andin
reasing, A(0) = 0 and limv→∞

mv2

2
= ∞. Similarly fun
tions R1 = m + qv2 and

R2 = 0.003916 · 10−0.9242+0.8494W+0.0142v+0.0189T introdu
ed in Se
tion 3.2.1 are di�eren-tiable, satisfy R1(0) = m > 0 and R2(0) > 0, their limit at v → ∞ is in�nity and theirderivatives R′
1(v) = 2qv, R′

2(v) = C1e
C2+C3v are non-negative and in
reasing. Energyvalue, e(s) = 0.655 · s1.56, introdu
ed in Se
tion 3.2.2 is obviously Lips
hitz-
ontinuousand positive for s > 0. Verifying 
onditions on rea
tive distan
e, r, is more 
omplex.Rea
tive distan
e, r(s), de�ned in Se
tion 3.2.3, is given impli
itly by the non-negativeroot of the equation

C1s
2 = r2eC2rfor some positive 
onstants C1 and C2. Consequently r(s) = 0 if and only if s = 0. Byimpli
it fun
tion theorem

dr

ds
= 2C1s

(
2reC2r + C2r

2eC2r
)−1hen
e

0 ≤ dr

ds
=

C1s(
r + C2

2
r2
)
eC2r

=
C1s

(
√

C1s2

eC2r + C2

2
C1s2

eC2r )eC2r

=

=
C1s

(s
√
C1e

C2
2

r + s2C1
C2

2
)
≤ C1s

(s
√
C1 + s2 C1C2

2
)
≤
√
C1.We have proved that r(s) is Lips
hitz 
ontinuous on R

≥0 and therefore r2(s) is Lips
hitz
ontinuous on [0, smax]. In appli
ations for a realisti
 model of rea
tive distan
e in lowturbidity 
onstant C1 does not ex
eed 80.2.3.3. Velo
ity fun
tionalSin
e v : M
+[0, smax]→ R

≥0 models predator velo
ity 
ertain regularity 
an be expe
ted.In parti
ular for small 
hanges of prey population u predator's velo
ity should exhibitonly small �u
tuations. It is also natural to expe
t there exists some maximal velo
ity81



vmax whi
h 
annot be ex
eeded. In this se
tion we prove that v[u] is 
orre
tly de�ned asa maximizer of P (u, v) introdu
ed in (2.18), namely we show that there exists a uniquemaximum of fun
tion P (u, v) on R
≥0, and that v ∈ C0,1

b (M+[0, smax]; R
≥0). An expli
itformula for v is also found for the 
ase of R(v) being a 
ubi
 fun
tion.Theorem 104. Under Condition 102 fun
tional v is 
orre
tly de�ned and

v ∈ C0,1
b (M+[0, smax]; R

≥0).Proof. By simple 
omputation we obtain
∂P

∂v
= π

〈
u, er2

〉
− π

〈
u, r2

〉
(vA(v))′ −R′(v) (2.19)and therefore

∂P

∂v

∣∣∣∣
v=0

= π
〈
u, er2

〉
− R′(0)

lim
v∞→∞

∂P

∂v

∣∣∣∣
v=v∞

= lim
v∞→∞

[
π
〈
u, er2

〉
− R′(v)− π

〈
u, r2

〉
(A(v) + vA′(v))

]
= −∞.Sin
e R′(v), A(v), A′(v) are in
reasing fun
tions P is 
on
ave with respe
t to v. Conse-quently, its maximum, v[u], exists, is unique and always attained in the 
riti
al point orat the boundary. Moreover v[u] = 0 if π 〈u, er2〉 ≤ R′(v) and v ∈ (0,∞) otherwise.Let us 
onsider fun
tion

F (v, ξ, ς) = ξ − ζ (vA(v))′ −R′(v),whi
h 
orresponds to (2.19) with ξ = 〈u, er2〉 and ζ = 〈u, r2〉. We shall prove that
v = V (ξ, ζ), de�ned by F (V (ξ, ζ), ξ, ζ) = 0, is di�erentiable with respe
t to both ar-guments. By the impli
it fun
tion theorem V (ξ, ζ) is di�erentiable on R

≥0 × R
≥0 withrespe
t to both variables if ∂F

∂v
6= 0 for all v ≥ 0. Sin
e
∂F

∂v
= −ζ (vA(v))′′ −R′′(v).and R′′(v) > 0 we 
on
lude that ∂F

∂v
< 0.Both fun
tions r2 and er2 are Lips
hitz 
ontinuous on [0, smax] and by Lemma 21 forany u, ũ ∈M

+[0, smax]

ρF (u, ũ) = sup
{
〈u− ũ, f〉 : f ∈ C[0, smax], ‖f‖C0,1

b
[0,smax] ≤ 1

}
≥

〈u− ũ, r2〉
‖r2‖C[0,smax] + Lip(r2)

=
1

C1

〈
u− ũ, r2

〉and similarly
ρF (u, ũ) ≥ 〈u− ũ, er2〉

‖er2‖C[0,smax] + Lip(er2)
=

1

C2

〈
u− ũ, er2

〉
.82



From the above inequalities we obtain
|v[u]− v[ũ]| =

∣∣V
(〈
u, er2

〉
,
〈
u, r2

〉)
− V

(〈
ũ, er2

〉
,
〈
ũ, r2

〉)∣∣ ≤
≤ Lip(V )

(∣∣〈u, er2
〉
−
〈
ũ, er2

〉∣∣+
∣∣〈u, r2

〉
−
〈
ũ, r2

〉∣∣) ≤
≤ Lip(V ) (C1 + C2) ρF (u, ũ). (2.20)It is now proved that v ∈ C0,1(M+[0, smax]; R

≥0).To prove boundedness of v we 
onsider
∂P

∂v
≤ π

(
‖e‖C[0,smax] − (vA(v))′

) 〈
u, r2

〉
− R′(v) ≤ π

(
‖e‖C[0,smax] − (vA(v))′

) 〈
u, r2

〉
.Sin
e ∂P

∂v
is monotonously de
reasing its zero is always smaller than a zero of a greaterfun
tion. Therefore v[u] ≤ vmax, for some 
onstant vmax satisfying

(vA(v))′|v=vmax
= ‖e‖C[0,smax] .Proposition 105. Under Condition 102 with a parti
ular 
hoi
e of

R(v) = r0 + r1v + r2v
2 + r3v

3and A(v) = mv2

2
it holds that

v =

{√
4r2

2+6(π〈u,r2〉m+2r3)(π〈u,er2〉−r1)−2r2

3(π〈u,r2〉m+2r3)
if r1 ≤ π 〈u, er2〉

0 if r1 ≥ π 〈u, er2〉
. (2.21)Proof. The formula follows from the fa
t that v[u] is the root of equation

dP

dv
= π

〈
u, er2

〉
− 3π

2

〈
u, r2

〉
mv2 − r1 − 2r2v − 3r3v

2.Remark 106. The 
ondition that R′′(0) > 0 translates to r2 > 0 whi
h guarantees thatthe argument of the square root in formula (2.21) is always stri
tly positive and hen
ethe derivative is �nite.2.3.4. Regularity of CLOWOperator CLOW : M
+[0, smax] → M

+[0, smax] 
an be viewed as a multiplier
CLOW (u) = m(u) · u de�ned by a given fun
tion m : M

+[0, smax] → C0,1([0, smax],R
≥0).A natural question of key importan
e is the regularity of m.Theorem 107. Under Condition 102 it holds thatm ∈ C0,1

b

(
M

+[0, smax];C
0,1([0, smax]; R

≥0)
).83



Proof. Fun
tion m 
an be de
omposed into a fun
tional m : M
+[0, smax] → R

≥0 andfun
tion r2 ∈ C0,1
(
[0, smax]; R

≥0
) as
m [u] (s) = m [u] · r2(s)Let u, ũ ∈M

+[0, smax] then by a similar arguments as in 2.20 we obtain
|m [u]−m [ũ]| =

∣∣∣∣
πv[u]

1 + Thπv[u]
� smax

0
r2(σ)u(dσ)

− πv[ũ]

1 + Thπv[ũ]
� smax

0
r2(σ)ũ(dσ)

∣∣∣∣ =

=

∣∣∣∣∣
π (v[u]− v[ũ]) + π2Thv[u]v[ũ]

� smax

0
r2(σ) (ũ− u) (dσ)(

1 + Thπv[u]
� smax

0
r2(σ)u(dσ)

) (
1 + Thπv[ũ]

� smax

0
r2(σ)ũ(dσ)

)
∣∣∣∣∣ ≤

≤
[
πLip(v) + π2Th ‖v‖C(M+[0,smax])

(∥∥r2
∥∥

C[0,smax]
+ Lip(r2)

)]
ρF (u, ũ).On the other hand

m [u] ≤ π ‖v‖C(M+[0,smax])hen
e m ∈ C0,1
b (M+[0, smax]; R

≥0). It is now easy to show that
m ∈ C0,1

b

(
M

+[0, smax];C
0,1([0, smax],R

≥0)
)
.Indeed,

‖m [u]−m [ũ]‖C0,1([0,smax],R≥0) = |m [u]−m [ũ]|
∥∥r2
∥∥

C0,1([0,smax],R≥0)
≤

≤ Lip(m)
∥∥r2
∥∥

C0,1([0,smax],R≥0)
ρF (u, ũ)and

‖m [u]‖C0,1([0,smax],R≥0) ≤ ‖m‖C0,1(M+[0,smax],R≥0)

∥∥r2
∥∥

C0,1([0,smax],R≥0)
.2.3.5. Existen
e and uniquenessExisten
e and uniqueness of weak solutions to system (2.1) under Conditions 102 and 103stems dire
tly from Theorem 79. Assumptions on g and β are trivially satis�ed. Requiredregularity of m, on the other hand, results from Theorem 107.2.3.6. Stationary stateIn general, a non-trivial stationary state of (2.1) does not ne
essarily exist. It turns out,however, that under Conditions 102 and 103 ne
essary and su�
ient 
onditions 
an befound. Moreover, �nding the exa
t shape of stationary measure only requires solving twoalgebrai
 equations.Lemma 85 provides a 
hara
terization of stationary states in the 
ase of positive mor-tality of the largest individuals. Let us now suppose the 
ontrary (la
k of mortality of84



the largest individuals). In a vast majority of foraging models, su
h as CLOW , no mor-tality of the largest prey items (m(t, µ)(smax) = 0) implies no mortality of smaller items(m(t, µ) ≡ 0). Consequently, by Lemma 86 null mortality in a stationary state impliesnull reprodu
tion. Finally, null reprodu
tion and a positive individual growth rate implythe la
k of individuals of sizes in the range [0, smax).Stable existen
e of population 
onsisting of individuals of a single, maximal size isnot surprising under no mortality and no reprodu
tion. In the remainder of this se
tionwe fo
us on the 
ase of positive mortality and hen
e absolutely 
ontinuous stationarysize-distributions. The density fun
tion, u, of su
h state satis�es
{

(gu)s = −πv[u]r2u
1+Thπv[u]

� smax
0 r2(σ)u(dσ)

g(0)u(0) =
� smax

0
β(s)u(s)dsand therefore u 
an be written in the following impli
it form

u(s) =
1

g(s)

(� smax

0

β(σ)u(dσ)

)
·
(
e
−

πv[u]

1+Thπv[u]
� smax
0 r2(σ)u(dσ)

� s
0

r2(σ)
g(σ)

dσ
)
. (2.22)Let us de�ne

Tρ(s) =
1

g(s)

(
e−ρ

� s

0
r2(σ)
g(σ)

dσ

)
,then 
learly u(s) = λTρ(s) for some 
hoi
e of λ, ρ ∈ R

≥0.Lemma 108. Let g satisfy Condition 103 then Tρ ∈ L1[0, smax] if and only if ρ > 0.Proof. For ρ > 0 we obtain
Tρ ≤

1

g(s)
· 1

1 + ρ
� s

0
r2(σ)
g(σ)

dσ
,sin
e e−x ≤ 1

1+x
for every x ≥ 0. Consequently, Tρ is integrable on [0, s′] for every

s′ < smax. On the other hand� smax

s′
Tρ(s)ds ≤

� smax

s′

1

γ(smax − s)
· 1

1 + ρr2(s′)
� s

s′
dσ

γ(smax−σ)

ds ≤

≤
� smax

s′

1

γ(smax − s)
· 1

1 + ρ
γ
r2(s′) s′

smax−s

ds ≤ smax − s′
ρr2(s′)s′

.Theorem 109. There exists a non-trivial stationary state of equation (2.1) with m =

CLOW under Conditions 102 and 103 if and only if � smax

0
β(s)
g(s)

ds > 1 and the followingsystem of equations has a solution � smax

0

β(σ)Tρ∗(σ)dσ = 1

ρ∗ + λρ∗Thπv[λTρ∗(σ)]

� smax

0

r2(σ)Tρ∗(σ)dσ = πv[λTρ∗(σ)]85



Proof. Finding the stationary state 
an be viewed as �nding the �xed point of an operatorthat takes u as the argument and returns the right-hand side of equation (2.22). We have
λ =

� smax

0

β(σ)λTρ(σ)dσ. (2.23)Equation 2.23 implies that either λ = 0 (and 
onsequently u ≡ 0) or� smax

0

β(s)

g(s)

(
e
−ρ

� s

0
r2(σ)
g(σ)

dσ

)
ds = 1. (2.24)The left-hand side monotoni
ally de
reases with ρ and tends to 0 as ρ tends to in�n-ity. Consequently, equation 2.24 uniquely de�nes ρ > 0 if and only if � smax

0
β(s)
g(s)

ds > 1(otherwise no su
h ρ exists, hen
e the only stationary state is u ≡ 0).Let ρ∗ satisfy 2.24. Sin
e u(s) = λTρ∗ , the impli
it formula 2.22 implies that
ρ∗ =

πv[u]

1 + Thπv[u]
� smax

0
r2(σ)u(dσ)

(2.25)and 
onsequently
ρ∗ + λρ∗Thπv[λTρ∗(σ)]

� smax

0

r2(σ)Tρ∗(σ)dσ = πv[λTρ∗(σ)].Therefore, the 
onditions are indeed ne
essary. Conversely, it is easy to 
he
k that
(gλTρ∗)s = −λρ∗

(
e
−ρ∗

� s

0
r2(σ)
g(σ)

dσ

)
r2(s)

g(s)
= (λTρ∗) · ρ∗r2(s),hen
e equation (gu)s = mu redu
es to (2.25). From the de�nition of ρ∗ it is also 
learthat the se
ond equation, namely g(0)u(0) =

� smax

0
β(s)u(s)ds is satis�ed.2.4. Numeri
al veri�
ation of the modelIn this se
tion we investigate numeri
al results of M
Kendri
k-von Foerster model withparameters satisfying Condition 102 and Condition 103, whi
h we refer to as the modelof zooplankton population.2.4.1. Choi
e of parametersNumeri
al results on population dynami
s presented in this se
tion are restri
ted to thefollowing parti
ular 
hoi
e of parameters:1. Mortality operator m is proportional CLOW with: A(v) =

mweightv
2

2
(
ompare Se
tion3.2.6), R(v) = r0 + r1v + r2v

2 + r3v
3 (
ompare Se
tion 3.3), r given by equation(3.7) (
ompare Se
tion 3.2.3), e(s) = emul · seexp (
ompare Se
tion 3.2.2),86



2. Growth rate given by g(s) = γ · (smax − s) for γ = 0.06 (
ompare [67℄),3. Birth rate given by
β(s) =

{
0 s < sj

rm(s− sj)
2 s > sj.Values of 
onstants used in the simulations are presented in Table 2.5.Table 2.5: Model parameters used in Se
tion 2.4.3.Parameter Value Unit

rm 0.5 ind.
day·mm2

sj 1.7 mm
smax 5.2 mm
mweight 12 g
Th 1 s

I0 10 µmol
m2s

γ 0.06 mm
day

Parameter Value
r0 6.8 · 10−3

r1 1.24 · 10−3

r2 6 · 10−5

r3 2.5 · 10−5

eexp 1.56
emul 0.6552.4.2. Stationary stateFigure 2.8 
ompares theoreti
al result given by Theorem 109 with experimental data from[30℄. The model line was 
omputed based on the result 
hara
terizing the density of sta-tionary state for parameters satisfying Condition 102 and Condition 103 in Se
tion 2.3.1.Light intensity, 9µmol

m2s
, and predator's body length, 6− 8cm, were assumed to re�e
t theexperimental setup des
ribed in [30℄. Birth rate and growth rate parameters were 
hosento mat
h the spe
ies used in the experiment. Remaining parameters, in
luding maximalprey size, birth rate and water turbidity, were �tted to the data. Evident ina

ura
y inthe range of small body sizes (0.4 − 0.6mm) and the mid-range (0.8 − 1mm) is likely tobe 
aused by slower growth of the newborns and faster growth of the individuals dur-ing reprodu
tion age, whi
h is not taken into a

ount in the Bertalan�y law (
ompareCondition 103).The error between the size-stru
ture measured on the 52nd day of the experiment, µE,and the theoreti
ally derived stationary state, µT , is given by

ρF (µE, µT ) = 0.0536,

ρF (µE, µT )

‖µE‖M[0,smax]

= 0.0139.and the total number of individuals in the population, ‖µE‖M[0,smax], equals 8.160 ind.
m3 .2.4.3. Size-distribution dynami
sIn this se
tion numeri
al study of the evolution in time of the size-distribution of plank-ton population is 
ondu
ted. Simulations were performed for parameters spe
i�ed in87



Figure 2.8: Comparison of stationary state density of type λTρ (blue line) and experi-mental data 
on
erning size-distribution of Daphnia population subje
t to predation (redbars representing Dira
 masses), see [30℄. Plots depi
t the distribution of experimentalDaphnia hyalina on the 8th day (left) and 52nd day (right) of the experiment.
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Body length [mm]Table 2.5. Mortality was 
hosen to be equal 1
10
CLOW , whi
h re�e
ts an average of onepredator per 1m3 foraging during dusk and dawn, whi
h 
onstitute 10% of the day.Figure 2.9 presents how the size-stru
ture of the prey population develops in time,starting at day 1 from a single 
ohort of newborns. Absolutely 
ontinuous measures aredepi
ted as plots of density fun
tions with values on the left y-s
ale. Dira
 deltas are shownas narrow bars whose height re�e
ts the mass of the atom on the right y-s
ale. It turnsout that the distribution 
onverges to the stationary state 
omputed using the methodsfrom Theorem 109. Density of the stationary state is given by λTρ, where λ = 0.12 and

ρ = 0.31. Figure 2.10 shows the numeri
al results for the same set of parameters, butstarting from a uniform initial 
ondition. The sharp peak visible at day 8 results from thebirth pro
ess, whi
h is signi�
antly higher at the beginning, before the density of adultindividuals is redu
ed by predation.Figure 2.11 presents the evolution of a three-point distribution. It 
an 
learly be seenthat predator, and therefore mortality, is size-sele
tive with high preferen
e for larger preyitems.
2.4.4. Dynami
s of the total number of individualsNumeri
al simulations suggest that the stationary state, 
hara
terized by Theorem 109is not a global attra
tor. Figure 2.12 presents how the total number of prey individuals,namely u(t) ([0, smax]), develops in time when starting from a single 
ohort of newborns.It turns out that for initial densities between 0 and 9.8 individuals per dm3 the solution
onverges to the non-trivial stationary state. For density equal to 0 it remains in theunstable stationary state u = 0, and for densities higher than 9.8 ind.

dm3 it grows unlimited.88



Figure 2.9: Evolution in time of the size-stru
ture of prey population starting from a single
ohort of newborns. Solution to the zooplankton population model (blue line) 
omparedto the stationary state (brown line).
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Figure 2.10: Evolution in time of the size-stru
ture of prey population starting from auniform distribution. Solution to the zooplankton population model (blue line) 
omparedto the stationary state (brown line).
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Figure 2.11: Evolution in time of the size-stru
ture of prey population starting froma three-point distribution. Solution to the zooplankton population model (blue line)
ompared to the stationary state (brown line).
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Figure 2.12: Evolution of the total number of prey individuals in the the zooplanktonpopulation model. Stable dynami
s for low density initial 
onditions (left); instability forhigh densities larger (right).
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Chapter 3Foraging of a size-sele
tivepredator-harvesterThe main goal of this 
hapter is to derive a model of predator fun
tional response,a 
on
ept introdu
ed by Holling in [38℄ to 
hara
terize di�erent patterns of predation.The fun
tional response is a fun
tion whi
h assigns to the density of prey a number ofprey items 
aptured per a time unit. Some ideas developed in this dissertation wereinspired by the 
ollaboration with a team of hydrobiologists of University of Warsaw and,in parti
ular, by the results des
ribed in [29℄. Experimental eviden
e, obtained by thebiologists, be
ame a starting point of the study of foraging strategies.In Se
tion 3.2 two novel simulation models of size-sele
tive predation in e
ology offreshwater e
osystems are presented. Both models are based on a bottom-up approa
h,in whi
h a 
omplex pro
ess of foraging is viewed as a 
omposition of simpler phenomenasu
h as predator's visual per
eption 
apability, motility and net energy balan
e. Themodels 
an be applied to the study of population dynami
s, but are also a valuable toolfor testing various hypothesis about foraging.To give a better understanding of the matter to a reader with mathemati
al ba
k-ground Se
tion 3.1 des
ribes the premises on whi
h the models were built and demon-strates the empiri
al data 
olle
ted during author's 
ollaboration with a team of hydro-biologists.3.1. Experimental dataThe biodiversity of an e
osystem depends on abundan
e of �rst 
onsumers whi
h in the
ase of aquati
 e
osystems are mainly various spe
ies of zooplankton feeding mostly onalgae. Typi
al spe
ies belonging to zooplankton are that of 
rusta
eans e.g Daphnia. Inthe 
ase of �sh-free habitats where main predator feeding on zooplankton is not presentthe diversity of phyto- and zooplankton is more frequently attributed to resour
e parti-tioning, and resour
e 
ompetition . This explanation �ts �sh-free habitats and laboratory
ultures in whi
h a 
ompetitively-superior large-bodied Daphnia monopolizes resour
esat 
arrying-
apa
ity level. However, this s
enario does not mat
h typi
al freshwater habi-tats where Daphnia spe
ies 
oexist at population densities mu
h below those at whi
h93



Figure 3.1: The experimental system - 
ross-se
tion of tanks.

resour
e 
ompetition would 
ause ex
lusion of 
ompetitively-inferior small-bodied taxa.This 
hapter is an attempt to des
ribe quantitatively the impa
t of predation on thepopulation of zooplankton.In the experimental setup behavior of a typi
al freshwater planktivorous predator, 1-2year-old roa
h (Rutilus rutilus L.) of 50-75 mm in length foraging on Daphnia hyalina(0.5 - 6 mm in diameter) was studied.Prey-predator intera
tions between these two spe
ies are limited in s
ope to elimina-tion of prey items, whi
h allows negle
ting the impa
t of prey population on predators.The �rst reason is the greatly di�erent spatial s
ales of the predator and its prey. Thepredator, su
h as sardine or roa
h, forages kilometers ea
h day in sear
h of its tiny prey,while the movements of the prey are restri
ted to de
imeters per day. The disproportionis greatest when the intera
tions are examined along the horizontal plane, as predationrisk for a zooplankton prey depends on the light intensity and in 
onsequen
e depth. These
ond reason is in the time s
ale di�eren
e due to the 
ontrasting lifespan of the ver-tebrate predator and its invertebrate prey. This 
auses great disproportion between thereprodu
tive numeri
al responses in time, whi
h are qui
k in a prey population but slowin a predator population. Moreover roa
h and sardine individuals feed on Daphnia onlyat juvenile stage, swit
hing to larger prey before �rst reprodu
tion.An experimental system of 4 or 8 inter
onne
ted 1m3 tanks, des
ribed in [29℄, allowedfree movement of planktivorous �sh between lo
ations with di�erent densities of Daphniaprey in natural mixtures of juveniles and adults (see Figure 3.1). Changes in density ofDaphnia prey were then followed for 2-6 days. To imitate a natural �eld situation, �shpredation was 
onstrained by both the number of �sh added to the system and how longthey were allowed to feed on the Daphnia prey. Both parameters were adjusted to besimilar to those observed in natural lake habitats where feeding by planktivorous �sh isusually restri
ted to anti-predation windows at dusk and dawn , when the underwaterlight level allows them to lo
ate their prey without being seen by pis
ivores.For ea
h feeding session, the �sh were transferred to ea
h tank in a steel bowl 
onsti-tuting the 
entral part of the bottom of a 
age made of nylon netting. Fish movements inone high- and one low-Daphnia-density tank were registered using two submerged infraredvideo 
ameras per tank, ea
h dire
ted at one of the two 
onne
ting windows. Analysis94



Figure 3.2: Experimental data on foraging strategies published in [29℄. Fun
tional re-sponse (left) and rate of prey elimination (right). Noti
e the lin-log s
ale.

Figure 3.3: Experimental data on predator velo
ity published in [29℄. Noti
e the lin-logs
ale.

of the resulting re
ordings was used to estimate �sh velo
ity and to 
ompute the num-ber of �sh in ea
h of the tanks. Following the removal of �sh at the end of a feedingsession, the water in ea
h experimental tank was thoroughly mixed by �ve upward move-ments of a perforated Se

hi disk and samples were taken using a quantitative planktonnet (6 verti
al hauls removing Daphnia from 30l, i.e., 3% of the tank volume) and �xedwith formalin-sugar solution. Daphnia juveniles, adults and eggs in brood 
avities wereenumerated in ea
h sample by 
ounts made using a disse
ting mi
ros
ope.Results of the experiment in a 
on
ise form of dependen
ies of rate of prey elimination,
apture rate and predator velo
ity upon prey densities are presented on Figures 3.2 and3.3. The plots do not reveal the full 
omplexity of the results, sin
e for instan
e preyelimination rate at tank A depends not only on prey density in A but also on di�eren
esin abundan
e between tanks. The results are, however, a starting point for a farthertheoreti
al study. 95



3.2. Fun
tional response resulting from an optimal for-aging modelSin
e pioneering works of [51℄ and [21℄ the foraging theory was used in a vast amount ofliterature as a powerful tool for understanding many aspe
ts of predator-prey intera
tions.It 
omprised the investigations of predator's optimal diet, optimal time spent foraging [1℄optimal pat
h exploitation [51℄, and optimal pattern and speed of movement of a foragingpredator [66℄. In this theoreti
al study, based on the 
lassi
al 
on
ept of maximizationof the rate of net energy intake, we 
onstru
t a model of size sele
tive foraging. Rate ofnet energy intake is often used as the link between habitat use and �tness: based on theassumption that the measure of net energy intake ultimately translates into the measureof �tness (e.g., an in
rease or de
rease in growth or reprodu
tive output). The optimiza-tion model operating on �mi
roe
ologi
al s
ale� [65℄ des
ribes de
isions of an individualpredator-harvester 
on
erning the prey 
hoi
e and speed of movement in spa
e �lled withprey items of di�erent size and energy value. Su
h a framework may refer to the situationof birds (e.g. siskin or swan dive) feeding in the air on inse
ts or a pelagi
 �sh or aninvertebrate predator feeding on zooplankton. In the 
ase of a planktivorous �sh feedingon Clado
era (Daphnia) prey remains relatively stationary and therefore its motility anddefense during a predator's atta
k may be negle
ted. Moreover nearly all freshwater �share plankton harvesters during the early stages of life and most remain planktivorous fora year or two before swit
hing to either pis
ivory or to airborne and benthi
 resour
es.Due to an anti-predation window e�e
t, juvenile predators rarely be
ome satiated and asa 
onsequen
e it seems to be justi�ed to assume that optimization of the net energy intakeis a fundamental fa
tor determining individual �tness. The novelty of our approa
h is theoptimization of the rate of net energy intake as a fun
tion of predators velo
ity and preysele
tivity 
ontrary to the most of earlier works in whi
h it is assumed that en
ounter rateand sear
h 
osts are �xed 
onstraints independent on how qui
kly the predator moves.The role of 
hoi
e of optimal velo
ity as a part of foraging strategy was argued in the
ase of foraging birds [37℄, pelagi
 plantktivorous �sh [78℄ as well as in [66℄ in more gen-eral 
ontext. Our approa
h enables taking into a

ount post-
apture a

eleration 
osts,depending indire
tly on water vis
osity and temperature, whi
h seem to be a 
ru
ial 
on-straint imposed on the predator's behavior in a low density habitat. The a

eleration
osts are reported as the main fa
tor explaining di�eren
es in predator sele
tivity patternin the 
ase of small-s
ale homogeneous prey distribution and that of large-s
ale systemswith heterogeneous prey distribution, as indi
ated re
ently in [53℄. Our study also 
asts anew light on the ma
ro e
ologi
al population level analyzing the stationary size stru
tureof prey population.The best known model of optimal foraging, developed by [14℄ and des
ribed in themonograph by [70℄, 
on
erns the predator foraging on a number of prey 
ategories whoseen
ounter rates are given a priori as parameters. Moreover, prey items from ea
h 
ategoryhave their energy values and handling times assigned. Sear
hing for prey is assumed to
ause a 
onstant energy loss per unit of time, so despite being based on optimal foragingtheory, the model does not take into a

ount the 
ontribution of the predator's energyexpenditure due to the movement towards atta
ked prey items. This 
ost depends, in96



parti
ular, on the prey distribution in spa
e and a�e
ts the total energy balan
e andoptimal prey 
hoi
e. In our approa
h a parti
ular attention is paid to the 
hoi
e ofoptimal velo
ity as a key fa
tor 
ontributing to predator's total energy loss. To our bestknowledge the only works whi
h a

ount on the velo
ity as a 
ru
ial 
omponent of theoptimal strategy are [37, 78, 18℄. The latter study is based on the multi-prey fun
tionalresponse and similarly to Se
tion 3.2.1 average velo
ity optimization is analyzed.This se
tion 
ontains results des
ribed in [41℄. In parti
ular a novel, low-level, simula-tional model is proposed. It predi
ts individual forager's de
ision-making pro
ess in
lud-ing both velo
ity and prey 
hoi
e. In this approa
h fun
tional response, prey sele
tivityand the predator's traje
tory arise from these basi
 de
isions.3.2.1. The 
ase of unstru
tured prey populationBefore introdu
ing the main model of this part we 
onsider a simplisti
 situation whereina predator forages on an unstru
tured prey population. It illustrates how optimal foragingstabilizes prey-predator intera
tions. The 
lassi
al Holling disk equation [38℄ 
an be usedto derive a predator's rate of net energy intake - a quantity whi
h 
an be maximized asa fun
tion of predator's velo
ity. Consequently the optimal predator's velo
ity may beexpressed as a fun
tion of prey density. The optimal velo
ity inserted into the HollingDisk equation yields a fun
tional response whi
h re�e
ts prey 
onsumption per unit oftime for an optimally foraging predator. This approa
h was already applied in [18℄ whereHolling type III fun
tional response was argued to be a 
onsequen
e of optimization ofpredator's velo
ity in sear
h. We go farther in this dire
tion assuming a wider range ofpossible swimming 
osts and taking into a

ount that some amount of predator's energyis spent on post-
apture a

eleration. Moreover we assume a more pre
ise division offoraging time into the part devoted to sear
hing and that devoted to prey 
onsumption.Contrary to the aforementioned paper, we perform numeri
al simulations whi
h show howthe fun
tional response is shaped depending on the parti
ular assumptions on the 
ostfun
tions.A

ording to the 
lassi
al foraging theory, the rate at whi
h a 
ruising predator en-
ounters immobile and indistinguishable prey items is
πr2vNwhere r is the rea
tive distan
e, v is the predator's velo
ity and N ≥ 0 is the preydensity. By the rea
tive distan
e we mean the maximum distan
e at whi
h a prey item ofa given size is per
eivable by the predator under typi
al light intensity and water turbidity
onditions. Assuming the handling time Th and the atta
k probability a the 
apture ratereads

F (v,N) =
aπr2vN

1 + aπr2vNTh

(3.1)whi
h is known as Holling type II fun
tional response. Noti
e that when a = 1 allprey are 
aptured upon en
ounter. Then owing (3.1) and assuming the rate of velo
ity-dependent metaboli
 
ost Ri(v), the average energy 
ontent of prey item e and post-
apture a

eleration 
ost A(v) we obtain the rate of net energy gain97



P (v,N) = (e− A(v))F (v,N)− Ri(v)γ −Ri(0)(1− γ) (3.2)where γ = 1 − ThF (v,N) is a fra
tion of the foraging time spent on sear
hing withvelo
ity v while 1 − γ is the remaining fra
tion of time, whi
h is spent 
onsuming prey.Formula (3.2) for the rate of net energy intake is based on the same reasoning as in [18℄,but the e�e
ts of stopping and a

elerating are in
orporated into the equation. Noti
ethat for Th = 0 formula (3.2) agrees with the simpli�ed model introdu
ed in (2.18) inSe
tion 2.3.The energy loss Ri(v) denotes a basi
 metaboli
 
ost and a swimming 
ost. In [78, 66,77℄ it was proposed
R1(v) = m+ qv2 (3.3)whi
h is also assumed (in a slightly more general form) in [18℄ while [52℄ assume

R2(v) = 0.003916 · 10−0.9242+0.8494W+0.0142v+0.0189T (3.4)where T is the temperature in Celsius, v is the velo
ity in meters per hour and W =
log10(0.001 · w), where w is the body weight in kilograms. Having no experimental dataon values of parameters m and q we 
alibrate them so that R1(0) = R2(0) and thedi�eren
e between the models is minimal. We assume the post-
apture a

eleration 
ostis equal to the physi
al value of the predator's kineti
 energy, wv2

2
. Now we are in aposition to apply the 
on
ept of optimal foraging. To this end given prey density, N ,we �nd optimal velo
ity, vopt(N), for whi
h the rate of net energy gain, P , attains itsmaximum. It is easy to 
he
k analyti
ally that su
h a maximum is uniquely determinedfor both 
ases (3.3) and (3.4), see Se
tion 2.3.3. Optimal predator's fun
tional responseis obtained by setting vopt in the pla
e of v in (3.1).The dependen
e of optimal velo
ity vopt upon prey density for two di�erent formulasdes
ribing metaboli
 
osts of swimming, (3.4) and (3.3), was 
omputed numeri
ally anddepi
ted in Figure 3.4a. In the 
ase of (3.4) there exists a range of low prey densitieswhere vopt = 0, whi
h may be interpreted as the situation in whi
h the predator 
hoosesto stop foraging be
ause of low light level, low prey abundan
e, or high water turbidity.The e�e
t of vanishing vopt also implies existen
e of a marginal density below whi
h noprey items are 
aptured. Correspondingly, the rate of net energy gain P (vopt, N) and the
apture rate F (vopt, N) at depi
ted on Figures 3.4b and Figure 3.4
.The stabilizing e�e
t of prey refuges is a well known phenomenon sin
e the experimentreported by [25℄ and theoreti
al study of the Lotka-Volterra model by [59℄ and [72℄. Fur-ther studies of prey-predator-intera
tion stabilization in the 
ontext of optimal foragingwere re
ently des
ribed in [47℄. The meaning of prey refuges 
an be observed even in thesimplest model of prey population dynami
s:

d

dt
N = bN − F (vopt, N) ·Mwhere b is the rate of birth 
oe�
ient and M is the number of predators. Su
h a modelmay be applied in the 
ase when the life span of predator is mu
h longer than that of the98



prey and predators' numeri
al response is negle
ted. All of these assumption are justi�edin the 
ase of planktivorous �sh feeding on Clado
era [33℄. Clearly, if M is larger thansome 
riti
al value of predator density Mc, then there is a stable steady state at lowdensity level Ns > Nr . It was 
he
ked numeri
ally that Ns weakly 
hanges with in
reaseof M > Mc (see Figure 3.5b). It results from the steep growth of fun
tion F (vopt, N) for
N 
lose to density threshold Nr from the right-hand-side (see Figure 3.4
).We 
on
lude that in this simplisti
 example the density level of prey in the steadystate is mostly determined by the averaged size of prey item rather then abundan
e ofpredator 
.f. [33℄. It also 
on�rms the hypothesis proposed in [28℄ that in the presen
eof planktivorous �sh in lake the density levels of zooplankton are spe
ies spe
i�
 and
orrespond to the average body size. The lower the spe
ies spe
i�
 prey size the higherthe 
orresponding threshold density level. From the results depi
ted in Figure 3.5a weobtained a power law Nr ≈ 0.0063·s−1.86. Figure 3.5b shows that the density of predators,unless extremely low, in�uen
es the steady state insubstantially.Figure 3.4: Numeri
ally 
omputed dependen
e of predation 
hara
teristi
s upon preydensity with basi
 metaboli
 
ost (3.4) - (solid line)- and (3.3)- dashed line - ): (a) optimalvelo
ity - vopt(N), (b) rate of net energy intake P (vopt, N), (
) 
apture rate F (vopt, N)versus prey density (logarithmi
 s
ale).
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3.2.2. Energy balan
e of a foraging predatorIn order to introdu
e a size stru
ture we need to �nd dependen
e of variables su
h asenergy intake or rea
tive distan
e upon prey size. We assume that the predator, far frombeing satiated, sear
hes for prey by being in a 
onstant motion as long as it is potentiallybene�
ial. For ea
h en
ountered prey of size s at distan
e d ≤ r(s) approa
hed withvelo
ity v a possible net energy intake, E, is given by
E = E(s, v, d) = ap(s)e(s)− A(v)−R(v)

d

v
− R(0)Th, (3.5)where e(s) is the energy value of prey item of size s, a is the assimilable portion of energy,

p(s) is the 
onsumption su

ess, A(v) is the amount of energy needed to a

elerate tovelo
ity v just after 
apture, and R(v) is the respiration rate when swimming with velo
ity
v. In this paper, following [52℄ we assume that the energy value of a prey item (Daphnia)in Joules equals

e(s) = 0.655 · s1.56,where s is expressed in millimeters. The rate of net energy intake assigned to the prey ofsize s being at distan
e d from the predator equals
P (s, v, d) =

E(s, v, d)

Th(s) + d
v

, (3.6)where Th(s) is the handling time. Note that this three-parameter fun
tion P has a di�erentmeaning than the two-parameter P de�ned in 3.2. For ea
h prey in the visual �eld volume(VFV) an optimal velo
ity vopt, whi
h maximizes P , 
an be found. Provided realisti
assumptions on R and A su
h maximum always exists and is unique.The impa
t of 
onsumption su

ess rate, p(s), was studied extensively in [84℄. It isan important fa
tor in the 
ases when prey items are either very small or have an abilityto es
ape when under atta
k (e.g. 
opepods for planktivorous �sh). In what follows weassume p(s) = 1, for simpli
ity. Su
h an assumption re�e
ts the 
ase of Daphnia, whoserelative immotility ensures high 
apture su

ess. It seems that due to the di�
ulties inpre
ise parametrization of defense strategies the optimal foraging theory is expe
ted togive good predi
tions in the 
ase of immobile prey, (
.f. [71℄) and in the 
ase of predatornot modulating its prey-
apture behavior (
.f. [8℄).3.2.3. Rea
tive distan
e in an aquati
 environmentIn general, the predator's rea
tive distan
e r depends on light 
onditions, water turbidity,as well as features of per
eivable obje
t, in parti
ular its 
ontrast and size dependent 
ross-se
tional area. It follows from theoreti
al 
onsiderations of ([52℄) that r is the smallestnumber su
h that
(|C0| · exp(−Cr)) (kI0 exp(−KZ))

af 2

r2
≥ St (3.7)where Z is the depth of foraging, K is the light extin
tion 
oe�
ient, C is the beamattenuation 
oe�
ient, C0 is the inherent 
ontrast of the prey, f is the fo
al length of �sh100



Figure 3.6: Dependen
e of rea
tion distan
e (
olor intensity) at the level of 5m underwater surfa
e upon size (x-axis) and 
ontrast (y-axis). Curves with 
onstant rea
tiondistan
e (2
m, 3
m, 4
m) marked in bla
k.
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eye, a is the prey area, k is the ratio between radian
es at retina and lens, I0 is the lightintensity under the surfa
e and St is the sensitivity threshold for the dete
tion.The dependen
e of rea
tive distan
e on su
h fa
tors as size, 
ontrast of prey items,depth and turbidity implies many interesting 
onsequen
es that make equation (3.7) agood starting point for many models. In this se
tion we would like to present two examplesof models addressing known e
ologi
al questions that 
ould be built on this equation.Firstly, it is worth noti
ing that verti
al dimension plays a spe
ial role in aquati
environment be
ause of variable light intensity. For zooplankton the layer 
losest tothe surfa
e is the ri
hest in food, but also the most dangerous due to the presen
e ofvisually foraging predator. The trade-o� between abundan
e and risk whi
h leads toverti
al distribution of 
opepods is studied in [27℄. These 
onsiderations 
an be enri
hedby assuming realisti
 rea
tive distan
e model (see Figure 3.7) and abundan
e-dependentpredator speed. Using methods des
ribed in following se
tions, it is also possible to takeinto a

ount the size stru
ture of 
opepods to obtain results on their verti
al distributionbased on optimal foraging theory.Se
ondly, in many models variable 
ontrast of prey items is negle
ted when modelingdynami
s of a size-stru
ture of a single spe
ies. It is, however, known that eggs in a brood
hamber signi�
antly in
rease 
ontrast and expose individuals to a greater risk. Figure3.6 shows the sensitivity of rea
tion distan
e with respe
t to the prey 
ontrast. Usingmethods developed in this paper, the impa
t of 
ontrast 
hange 
an be assessed.3.2.4. Expe
ted net rate of energy intakeAt low prey density when, at a given moment, there are no prey items in the predator'sVFV its strategy depends on its ability of sensing prey abundan
e. If it's pro�table to
ontinue sear
hing for prey then the optimal 
ruising speed needs to be 
hosen based oninformation about global prey distribution. We assume that the predator is 
apable of101



Figure 3.7: Dependen
e of rea
tion distan
e (y-axis in logarithmi
 s
ale) upon depth (x-axis) in water of turbidity 5JTU and prey sizes: 0.5mm (red), 1.5mm (green), 2.5mm(blue), 4.5mm (pink).
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Depth [m]assessing (or simply remembers) the overall abundan
e of prey in the neighborhood and
hooses an appropriate optimized 
ruising speed. In this se
tion we present a methodof determining the optimal 
ruising speed that maximizes the expe
ted value of the rateof net energy intake, P , de�ned in (3.6) assuming prey of size stru
ture u(s) distributeduniformly in spa
e.Computing the expe
ted value of P (σ, v, δ) for a given v dire
tly requires �nding thejoint distribution of the 
ouple (σ, δ) of random variables, namely the size and distan
eto the �rst en
ountered prey. Instead of doing it in one step we use 
onditional expe
tedvalue in order to deal with only one problem at a time.Firstly, the distan
e δ to the �rst en
ountered prey of size larger than s0 turns out tobe a random variable with exponential distribution with density given by
gs0(δ) = Us0e

−Us0δ , δ ≥ 0 , (3.8)where
Us0 = π

� smax

s0

r2(σ)u(dσ).Se
ondly, noti
e that size distribution, σ, of the en
ountered prey larger than s0 isgiven by the probability measure q = π
Us0
r2u, whi
h is analogous to (3.12) .Given prey size-distribution u the expe
ted value of net energy intake (depending onpredator's velo
ity v as well as on s0) 
an be written in the general form EP (σ, v, δ+r(σ)),where δ is the distan
e the predator has to 
over in order to noti
e the �rst prey largerthan s0, visible at distan
e r(σ), and σ is the size of this prey. As mentioned before weuse a 
onditional expe
tation to 
ompute this value:102



E(v, s0) = EP (σ, v, δ + r(σ)) = E (EP (σ, v, δ + r(σ))|δ) =

= E

(� smax

s0

π

Us0

r(σ)2P (σ, v, δ + r(σ)) · u(dσ)

)
=

= π

� ∞

0

� smax

s0

e−Us0δr(σ)2P (σ, v, δ + r(σ)) · u(dσ)dδ. (3.9)The parameter s0 indi
ates a possible smallest size of the prey that 
ould be 
aptured.Taking the supremum over s0 ∈ [0, smax] from 3.9represents sele
tion of optimal marginalprey size. The optimal 
ruising speed is the argument for whi
h 3.9 is maximal. Finally,our optimization pro
edure leads to the optimal 
ouple
(vcruis, smin) = max arg(v,s0)∈[0,∞]×[0,smax] E(v, s0).In our simulation we introdu
e an equidistant grid on [0, smax] and 
ompute vcruis as amaximizer of E(v, s0) for ea
h value of s0 of the mesh using golden se
tion sear
h on

v ∈ [0, V ], where the upper limit V is 
hosen heuristi
ally.Note that the 
ruising speed 
omputed in this se
tion is a di�erent notion than theoptimal speed 
omputed in Se
tion 3.2.1 and introdu
ed in [18℄. Indeed, vcruis guaranteesthe best expe
ted net energy gain whenever no prey items are in VFV and thereforeit should be a
quired in the sear
hing strategy. On the other hand the optimal speedobtained in Se
tion 3.2.1 is de�ned as the most pro�table mean velo
ity in a very roughaveraged Holling-type model.The 
ruising speed in the average model de�ned as the most pro�table velo
ity max-imizing the value of P (s, v,Eδ) 
oin
ides , as we argue below, with the optimal speedde�ned in Se
tion 3.2.1 in the 
ase of low en
ounter rate and unstru
tured population.Nonetheless, our intention is taking into a

ount predator's behavior when no prey itemsare visible, rather than the behavior when the next item is pre
isely at an average distan
e.In this paragraph we shall write r, u and e instead of r(s), u(s), e(s) as we only
onsider unstru
tured populations. Let us put d = Eδ = 1
πr2u

(noti
e that unit of u is
m−3 ) to the rate of net energy intake P (s, v, d) obtained in (3.6). For low en
ounter ratewhen it is allowed to assume that Th is negligible 
ompared to δ/v the rate of net energyintake P (v, u) as 
omputed in (3.2) is approximately equal to that of (3.6). Indeed in this
ase it follows from (3.8) that

P (s, v,Eδ) =
e−A(v)− Ri(v)

1
πr2uv

−Ri(0)Th

Th + 1
πr2uv

≈ πr2uv

(
e−A(v)− Ri(v)

1

πr2u · v − Ri(0)Th

)
= Land, on the other hand, using (3.2) and assuming a = 1 we �nd103



P (v, u) = (e−A(v))
aπvr2u

1 + aπvr2u · Th

− Ri(v)(1− Th
aπvr2u

1 + aπvr2uTh

) +

−Ri(0)Th
aπvr2u

1 + aπvr2uTh

≈

≈ πr2uv

(
e− A(v)−Ri(v)

(
1

πr2uv
− Th

)
−Ri(0)Th

)
≈ L.Finally, these 
onsiderations lead to the 
on
lusion that when negle
ting Th we have

P (v, u) = P (s, v,Eδ).Both presented approa
hes lead to the same net rates of energy intake in the limit(with prey density tending to 0) and 
onsequently to the same optimal velo
ity. Theargument presented for the 
ase of unstru
tured population 
an be generalized and it 
anbe shown that P (v, u) = EP (s, v,Eδ) if Th = 0 also when u is a stru
tured populationand P (v, u) is given by 2.18. In the next 
hapter, an individual based, me
hanisti
 modelof predation on a stru
tured population is introdu
ed. The notions of optimal 
ruisingspeed and expe
ted net energy intake are used to model the predator's de
ision pro
ess.3.2.5. Individual based modelIn this se
tion we introdu
e an optimal foraging model with two variants. In both of themthe predator patrols a 3D environment 
ontinuously seeking for prey. When some preyitems appear in VFV it then assesses the distan
e to ea
h of them, and optimal velo
ity atwhi
h the prey item may be rea
hed maximizing the rate of net energy intake (see Se
tion3.2.2). Finally the predator 
hooses the prey item whi
h ensures the highest rate of thenet energy intake. The appearan
e of prey in VFV depends on the position of predatorand on the rea
tive distan
e attributed to a given prey. The geometry of VFV is takento be a half ball around the predator's head of radius equal to the rea
tive distan
e.In the Basi
 Optimal Foraging Model (BOFM), the predator's 
hoi
e of parti
ular preyitem and atta
k velo
ity are based both on the information from VFV and an assessedglobal prey density and 
orresponding expe
ted rate of net energy intake (see Se
tion3.2.4). Whenever there is at least one individual in VFV, either the most pro�table ofthem is 
hosen for the atta
k or (based on global information) all of them are ignored andthe more pro�table ones are sought outside the VFV. We also introdu
e a modi�
ationof this model MOFM (long-term Memory-driven Optimal Foraging Model) whi
h appliesfor heterogeneous pat
hy prey distribution in spa
e. In this version the predator exhibitsa transient behavior moving to a more pro�table region (in terms of higher food level).In su
h a 
ase, 
apturing prey 
an be 
onsidered as a side-e�e
t and the predator de
idesto stop and 
apture a prey only if the gain 
ompensates the additional time spent in thetransient region with the redu
ed availability of food. Therefore we introdu
e the notionof anti
ipated energy gain, whi
h is an energy equivalent of all the pro�ts resulting from�nding a desired pla
e. It 
an be used to evaluate the loss 
aused by prolonging the sear
hin region with relatively low food availability, 
f. [29℄.104



Results of simulations depi
ted on Figure 3.8 exhibit that the range of area patrolledby the predator as well as its average velo
ity in
rease signi�
antly with the de
rease inprey density.Basi
 model for the 
ase of homogeneous prey distribution The model of preda-tor's behavior 
an be des
ribed in one senten
e: the predator sele
ts a prey (from all visibleprey items) whi
h gives the highest rate of net energy uptake. A simulation algorithm forthe 
ase of homogeneous prey distribution 
an be de
omposed to the following steps:1. per
eive all prey items that are in predator's VFV and are larger than smin (seeSe
tion 3.2.4),2. for ea
h prey item, individually �nd optimal velo
ity vopt and 
ompute maximal rateof net energy gain P (s, vopt, δ) using (3.6),3. 
hoose su
h a prey item from VFV that guarantees maximal rate of net energy gain
P ,4. move the predator to the prey with velo
ity vopt and atta
k the prey,5. keep moving the predator with velo
ity vcruis until a point where at least one preyappears in the VFV.In the 
ase of la
k of prey items in the VFV patrolling 
an still be pro�table (provided

EP (σ, vcruis, δ + r(σ)) > Ri(0)). In su
h a 
ase step 6 should be exe
uted (the predatorshould 
hoose to sear
h for prey with 
ruising speed vcruis). Otherwise, the predator mayde
ide to rest or to 
ontinue to forage due to di�erent reasons than instantaneous energyintake (e.g. moving to a more pro�table area).Long-term memory-driven foraging model for heterogeneous prey distributionIn BOFM predator makes use of the 'knowledge' about global prey density in order to
hoose the optimal speed when ignoring all prey items in the VFV is pro�table. In MOFMwe assume, that the predator's motivation to keep moving doesn't result from the need toforage in the 
urrent lo
ation, but that there is an external reason pushing the predator tomotion. An example of su
h s
enario is a pat
hy environment, where the main motivationfor predator's movement in low prey density 
omes from the need to relo
ate in order to�nd a food pat
h.This variant of the model takes two additional parameters: anti
ipated energy gainin the sear
hed habitat Pa and 
ruising speed va, whi
h represent information about theheterogeneous environment available to the predator. The foraging algorithm is modi�edso that these two parameters are used instead of EP (σ, vcruis, δ+r(σ)) and vcruis. Namely,we obtain the modi�ed model by substituting vcruis by va in all steps of Se
tion 3.2.5, asthose two parameters play exa
tly the same role, and 
hanging the 
omparison in step 1to the following:
P (s, 0, 0)− A(va)

Th

against Pa105



Figure 3.8: Predator's traje
tory (presented as a 2D proje
tion) a

ording to BOFM inprey density of a) 3 ind/l, b) 0.05 ind/l, 
) 0.01 ind/l during 3 hours of 
onstant foraging.For 
omparison of spa
ial s
ales the traje
tory of high density a) is also 
ontained in asmall re
tangle in left-bottom 
orner of b) and analogously traje
tory b) is res
aled to �tin 
).
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Figure 3.9: Con
eptual diagram of the model
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The latter formulation represents the 
hoi
e between 
apturing a given prey item,whi
h delays the arrival to a pat
h and prolongs the sear
h, or ignoring it, whi
h doesn'tyield instantaneous gain but in
reases the expe
ted pro�t of pat
h exploitation.The main reason for introdu
ing MOFM is to evaluate realisti
ally and distinguishbetween the predator's sele
tivity in homogeneous and in heterogeneous prey distribution.The 
omparison is postponed to Se
tion 3.2.9.2.3.2.6. Post-a

eleration 
ostsThe energy 
osts due to the post-
apture a

eleration seem to be an underestimated fa
torin forager's energy budget. In fa
t post-
apture a

eleration 
osts have re
ently beentaken into a

ount in [29℄, where the impa
t of the aggregational response of predators onshaping the spa
e distribution of prey population has been studied. Our model 
on�rmsthat negle
ting the a

eleration 
osts leads to unrealisti
 predi
tions of predator's optimalvelo
ity. Even in the simple 
ase of optimizing foraging on unstru
tured population,
onsidered in Se
tion 3.2.1, assuming A(v) = 0 
auses the predi
tions of the predator'svelo
ity to be an order of magnitude higher then in the 
ase of experimental data. Aswe were unable to �nd 
redible empiri
al data on the post-a

eleration 
osts, we de
idedto negle
t ine�
ien
y in predator's movement and assume physi
ally simplisti
 model inwhi
h energy 
ost of a

eleration is equal to the di�eren
e of predator's kineti
 energy:
A(v) =

wv2

2107



Table 3.1: Optimal 
ruising speed (vcruis) and expe
ted rate of net energy gain (EP ) forvarying post-
apture a

eleration 
osts
A(v) N = 0.01 N = 0.1 N = 1. N = 10. N = 100

wv2/2
v0 = 0 v0 = 3.13 v0 = 2.77 v0 = 2.51 v0 = 2.46
EP = 0 EP = 0.07 EP = 0.23 EP = 0.31 EP = 0.34

wv2/2 + 30%
v0 = 0 v0 = 2.79 v0 = 2.49 v0 = 2.27 v0 = 2.22
EP = 0 EP = 0.05 EP = 0.20 EP = 0.28 EP = 0.31By this assumption we also negle
t any hydrodynami
al e�e
ts that may in�uen
e the
ost. In fa
t we expe
t the value of A(v) to depend on water vis
osity and, in 
onsequen
e,on its temperature. To assess possible impa
t of temperature on predator's strategy weinvestigated the dependen
e of optimal 
ruising speed and the rate of net energy gainupon post-
apture a

eleration 
osts.The results of simulations show that the in
rease of post-a

eleration 
osts by 30%yield at most 5% de
line of the optimal 
ruising speed; 
ompare table 3.1. The 
hoi
eof 30% di�eren
e in a

eleration 
osts presented in table 3.1 is arbitrary, but we �nd itrelevant as the upper bound for the in�uen
e of water temperature ranging from 12oC to

23oC.3.2.7. Variable handling timeIn the Holling model variable handling time depending on the prey size and prey 
ate-gory Th(s) is often 
onsidered. In our model the need to introdu
e this dependen
e is
onsiderably redu
ed, be
ause 
ontrary to the 
ase of Holling model, Th only 
onsists ofthe time ne
essary to 
apture (atta
k) the prey. The time needed for the predator toapproa
h a 
hosen prey always depends on the size and 
ategory of the item (rea
tivedistan
e depends on prey size and 
ontrast) but is not a 
omponent of Th in our model.On the 
ontrary, handling time in Holling model 
onsists of both: time needed for thepredator to approa
h a spotted prey item and the time to 
apture it.For the aforementioned reasons and the fa
t that body size of zooplankton is signif-i
antly smaller than predator's snout we de
ided to assume a 
onstant handling time inthe remaining part of the arti
le. Des
ribed methods, however, are general enough toallow for size-dependent handling time.3.2.8. Prey sele
tivity in stru
tured populationIn this se
tion two types of sele
tivity of the predator are investigated: passive, resultingfrom the immanent sele
tivity of predator's sight; and a
tive, resulting from predator's
hoi
e as depi
ted in Figure 3.10. These two modes of feeding refer to that distinguishedin the literature as the rea
tive-�eld-volume model and the apparent size model respe
-tively, [81, 20, 83℄. To a
hieve this we use Ja
obs sele
tivity index and also introdu
e itsmodi�
ation in order to investigate a
tive and passive sele
tivity independently. We also
he
ked that the Manly index yields qualitatively same results.108



Figure 3.10: Passive sele
tivity resulting from vision limitations on the left, a
tive sele
-tivity resulting from optimal 
hoi
e on the right
v1

v2
e2

As a tool to measure total sele
tivity we use: Ja
obs sele
tivity index, [42℄, de�ned as
Di =

ri − pi

ri(1− pi) + pi(1− ri)
(3.10)where ri is the probability that randomly 
hosen prey item sele
ted by the predator is in ith
ategory, and pi is the probability that randomly 
hosen prey item from the environmentis in ith 
ategory. Probabilities ri and pi may be approximated by empiri
al proportions.As a measure of a
tive sele
tivity we introdu
e Ja
obs a
tive sele
tivity index, de�nedas

D′
i =

ri − qi
ri(1− qi) + qi(1− ri)

(3.11)where qi is the probability that a randomly 
hosen en
ountered prey item is in ith 
ategory.3.2.8.1. Passive sele
tivityFollowing [20℄ by passive sele
tivity, we mean the phenomenon of en
ounter rate beingprey size-dependent, and prey being 
aptured at the rate proportional to the en
ounter.This phenomenon 
an be fully des
ribed by simple formulas derived in this se
tion.The en
ounter rate of prey items of size between s and s′ in a stru
tured populationwith a given distribution u(s) 
an be written as πv � s′

s
r2(σ)u(dσ). Therefore probabilitydistribution of the en
ountered prey sizes, and 
onsequently size distribution of 
apturedprey is given by the normalization of this value, namely

qu(E) =

�
E
r(s)2u(ds)� smax

0
r(s)2u(ds)

. (3.12)Similarly, the size distribution of a randomly 
hosen prey item in the environment is givenby
pu(E) =

u(E)

u[0, smax]
.Ja
obs index Di of passive sele
tivity may be 
omputed by inserting pi = u(Ωi)/u[0, smax]and ri =

�
Ωi
r(s)2u(ds)/

� smax

0
r(s)2u(ds) into (3.10) where Ωi is a range of sizes whi
hbelong to the investigated 
ategory. 109



3.2.8.2. A
tive sele
tivity in the 
ase of low en
ounter rateIn low prey abundan
e or high turbidity, the optimal foraging model be
omes mu
h sim-pler, as the number of prey items in the predators visual volume is larger than 1, withonly a very small probability. This is the 
ase frequently met in turbid pools [26℄. Underthese 
ir
umstan
es the predator sele
ts its vi
tim a
tively only in the sense that it 
anignore a 
ertain prey item.Holling fun
tional response was originally formulated for a single prey type and maybe extended to the 
ase of arbitrarily many prey 
ategories [20, 3℄. Assuming 
ommonhandling time for all prey items the 
apture rate of prey of type i reads
αiEi

1 + Th

∑

i

αiEi

, (3.13)where Ei is the en
ounter rate of prey of type i and αi is the atta
k probability uponen
ounter. This result 
an be re
onsidered in the framework of measure theory as ade�nition of a 
apture rate operator, C : M
+ → M

+, 
hara
terizing predation. Su
han operator takes a population size-distribution as an arguments and returns a size-distribution of eliminated items in a time unit. Formula (3.13) 
an be rewritten as
C

[
∑

i

miδsi

]
=

∑
i αiE(si, mi)δsi

1 + Th

∑
i αiE(si, mi)

,where E(si, mi) is the en
ounter rate of prey of size si whose density in the environmentis equal mi. This formula 
an be generalized to any input measure u ∈M
+

C [u] =
πvαr2u

1 + Thπv
� smax

0
α(σ)r2(σ)u(dσ)

. (3.14)for a given pie
ewise 
ontinuous atta
k probability fun
tion α : [0, smax] → [0, 1]. If u isabsolutely 
ontinuous with respe
t to Lebesgue measure then the density of C(u) is givenby
dC

dL =
πvα(σ)r2(σ) du

dL
(σ)

1 + Thπv
� smax

0
α(σ)r2(σ)u(σ)dσ

.In the models introdu
ed in this paper, the �sh atta
ks en
ountered prey of size s ifand only if s ≥ smin in the 
ase of BOFM or P (s, 0, 0)− A(va)
Th
≥ Pa in the 
ase of MOFM.The simulation of BOFM is therefore expe
ted to give very similar results as Holing-typemodel (3.14) with v = vcruis and

α(s) =

{
1, s ≥ smin,

0, otherwise. (3.15)for low en
ounter rates. Noti
e that in this 
ase parameter
α : M

+[0, smax] × [0, smax] → [0, 1] impli
itly depends on prey density and its size stru
-ture u. Analogously, MOFM is expe
ted to yield similar results as the Holling-type modelwith v = va and 110



Figure 3.11: Low en
ounter rate s
enario
v0

v0

Tsearch' Tsearch''Th
' Th

''

α(s) =

{
1, P (s, 0, 0)− A(va)

Th
≥ Pa,

0, otherwise. (3.16)For the 
omparison we refer to Figure 3.16.In Holling-type models Th in
ludes both the time ne
essary for the atta
k and the timeneeded to swim through the rea
tive distan
e (
ompare Figure 3.11), while in BOFMand MOFM Th only 
onsists of the atta
k time. This di�eren
e 
an be mitigated byintrodu
ing size-dependent handling time to the Holling model.Note that in the 
ase of low en
ounter rate, both BOFM and MOFM obey the 
lassi
alZero-One Rule [70℄, whi
h states that a type of prey is either always taken upon en
ounteror never taken upon en
ounter.3.2.8.3. A
tive sele
tivity in the 
ase of high en
ounter rateA
tive sele
tivity be
omes a mu
h more 
omplex phenomenon when high en
ounter rateo

urs. Identi
ally as in the 
ase of low en
ounter rate, prey items smaller than some
riti
al value are never atta
ked. Large enough prey, on the other hand, are only atta
kedif there is nothing even more pro�table in VFV.A
tive 
hoi
e based on lo
al in spa
e information on prey distribution violates the
lassi
al Zero-One Rule. Prey items above the 
riti
al value are generally pro�table, butare atta
ked only with some probability smaller than 1. This result 
an be 
learly seenon Figure 3.12 - when the population 
onsists of many small items and only few largeones, it is pro�table to forage on both prey types. The frequen
y at whi
h a small itemis found attra
tive is, however, de
lining with in
reasing en
ounter rate.3.2.9. E�e
t of predator's memory3.2.9.1. Impa
t of short-term memory on foraging e�
ien
yThe model 
an also be used to investigate the importan
e of predator's memory in the
ontext of remembering lo
ation of prey items. We 
an address this problem by twoquantitative methods. Firstly, assuming the predator has perfe
t memory, we may 
he
kin simulations how often it is pro�table to turn ba
k to 
apture a prey item 
urrentlyoutside of VFV. Se
ondly, by 
omparing possible net energy intake rates when foragingwith perfe
t memory and with no memory about positions of en
ountered prey items, we111



Figure 3.12: BOFM a
tive sele
tivity index (3.11) of large prey 
ategory (2.5mm) in thepopulation at density level N (x-axis) with p per
ent of small items - 1.5mm (y-axis).Yellow dots represent situations when 
apturing small prey items is pro�table; bla
k dots- situations when small prey are ignored.
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Figure 3.13: Signi�
an
e of predator's memory: red line - per
entage of 
aptured preyitems that wouldn't have been approa
hed if predator didn't remember their lo
ations;green line - improvement of net energy intake rate that was a
hieved thanks to perfe
tmemory.
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Prey density [ind/dm3]may assess by how mu
h the onset of short-term memory in
reases predators evolutionary�tness, measured by the in
rease of the rate of net energy intake.As 
an be seen in Figure 3.13 predators refer to their memory relatively often (upto 20% times) in the middle range of prey densities. It is intuitively 
lear that in lowdensities prey items outside of VFV are statisti
ally too far to be pro�table, while in highdensities there is always a good 
hoi
e of prey within VFV. However, it turns out that�tness improvement, understood as an average rate of net energy gain, resulting from theperfe
t memory of lo
ations of all en
ountered prey items is negligible (at most 0.5%).We 
an therefore spe
ulate, that there is no evolutionary pressure on aquati
 predatorsto develop short-term memory even in the 
ase where prey are immotile and hen
e short-term memory would pre
isely re�e
t their a
tual positions. In Se
tion 3.2.9.2 we arguethat long-term memory, 
on
erning mean abundan
e of environment and stru
ture ofpat
hes, 
an greatly a�e
t foraging strategies as well as foraging e�
ien
y in terms ofenergy intake.3.2.9.2. Long-term memory and its impa
t on sele
tivityA question of whether the predator is more size-sele
tive in higher or in lower prey densityappears in many di�erent 
ontexts. We believe that the answer greatly depends on thepredator's long-term strategy, whi
h 
an be either harvesting (optimizing e�orts withina given prey abundan
e) or sear
hing (moving through spa
e in order to �nd a betterhabitat). Lo
al information is insu�
ient for the de
ision-making pro
ess so we infer thatthe strategy is 
hosen based on long-term memory regarding heterogeneity of spa
e. Wehave built two models to re�e
t both strategies: BOFM whi
h is based solely on lo
alinformation and predi
ts behavior in harvesting strategy while MOFM is a simplisti
model of sear
hing strategy. 113



In both models the sele
tivity index 
an be easily 
omputed by inserting
pi =

u(Ωi)

u[0, smax]
,

ri =

�
Ωi
α(s)r(s)2u(ds)� smax

0
α(s)r(s)2u(ds)into (3.10), where atta
k probability α(s) is either given by (3.15) in BOFM or (3.16)in MOFM. Noti
e that if α(s) = 0 for the investigated size range Ωi then Di = −1 andalso if Ωi is the whole interval on whi
h α equals 1, namely Ωi = {s : α(s) = 1}, then

Di = 1. As an immediate 
onsequen
e of these equations we infer that the sele
tivity ishigher in the sear
hing strategy than in the harvesting provided va > v0. Indeed all theprey 
ategories that are 
aptured upon en
ounter in BOFM are also 
aptured in MOFMas the 
ondition
P (s, vopt, 0) ≥ EP (σ, vopt, δ + r(σ))implies

P (s, 0, 0)− A(va)

Th
≥ Pa.The later follows from the fa
t that Pa being the anti
ipated rate of energy gain in a pat
his bigger then that elsewhere thus

Pa ≥ EP (σ, vopt, δ + r(σ)).In homogeneous environment (e.g. restri
ted in spa
e) predators learn that harvestingis the optimal strategy. The 
omparison of sele
tivity in low and high densities withinthis strategy is presented in Figure 3.12.In heterogeneous (e.g. pat
hy environment) predator forages using harvesting strategyin high density (within pat
hes) and sear
hing strategy in low density (elsewhere). Inthis 
ase sele
tivity in low density does not depend on lo
al abundan
e nor prey size-distribution. It results from the anti
ipated abundan
e of a pat
h re�e
ted by the valuesof parameters va and Pa (
ompare Se
tion 3.4). These parameters 
annot be assessedbased on lo
al information and have to be sensed by the predator and kept in its memory.As �tness greatly depends on global foraging strategy, in
luding sear
hing for pat
hes, itis allowed to infer that evolutionary 
hanges favor development of long-term memory ofpat
hy environment 
hara
teristi
s.3.2.9.3. The shape of fun
tional responseIn Se
tion 3.2.8.2 we obtained an approximation (3.14) of the 
apture rate in the 
aseof low prey en
ounter rate. If v were a 
onstant parameter and α(s) were a given fun
-tion (independent of u(·)) the fun
tional response formula would exa
tly be the Hollingtype II fun
tion. However, in our optimal foraging model both α and v depend on preysize-distribution and overall food abundan
e, namely α(s) = 1[smin,smax](s) and v = vcruis,where 1[smin,smax]
(s) is a 
hara
teristi
 fun
tion equal to 1 if s ∈ [smin, smax] and 0 else-where. 114



From Figure 3.12 we infer that, in the general 
ase (for possibly high prey en
ounterrate), atta
k probability α ranges from 0 to 1 (assuming values not ne
essarily equal to 0 or
1) depending on both density and stru
ture of prey population. High prey en
ounter ratealso indu
es strong e�e
t of variable distan
e to 
hosen prey items. This phenomenonis negle
ted in Holling model and thus the approximation of our model shows higherina

ura
y for high prey en
ounter rates (
ompare Figure 3.14). Asymptoti
 behaviorof the fun
tional response for high prey density is, however, easy to express in terms offormula (3.14). In the limit, all but the largest prey are ignored and the distan
e between
onse
utive 
hosen prey items is in�nitesimal, allowing the predator to 
apture nearly oneitem per Th time.Fun
tional responses 
omputed with BOFM simulation and it's approximation byformula (3.14) for a prey population 
onsisting of two size 
ategories equal in numberare depi
ted in Figure 3.14. The point of dis
ontinuity 
orresponds to swit
hing strategybetween 
apturing both types of prey (lower prey densities) and 
apturing only the largerones (higher prey densities). Despite that, the plot of the rate of net energy gain is
ontinuous.As noti
ed in Se
tion 3.2.9.2, BOFM and, in 
onsequen
e, the simulation results de-pi
ted in Figure 3.14 apply to situations in whi
h the predator senses the homogeneity ofthe environment and optimizes its e�orts within the habitat. Su
h situations in
lude envi-ronments limited in spa
e (small ponds), experimental systems, and pat
hes. The modelpredi
ts existen
e of low-density refuge and, more pre
isely, a marginal prey density (0.01ind.dm3 ) below whi
h no items are 
aptured.The predi
tions are di�erent in heterogeneous systems and homogeneous systems,where the spa
e is so large that the predator is unaware of their homogeneity. In su
h
ases, the predator's sear
hing strategy in low density is be modeled by MOFM and har-vesting strategy within pat
hes by BOFM. The behavior in sear
hing mode depends onthe predator's long-term memory (re�e
ting 'knowledge' about the pat
hiness, densityand stru
ture of prey population), and thus experimental systems need to be 
arefullydesigned to ensure that the predator had enough time to train to forage in the tested en-vironment. Predi
tions of fun
tional response resulting from both strategies for a singlepredator BOFM and MOFM are shown in Figure 3.16. The predator de
reases its 
apturerate in low densities (
ompared to optimal foraging - red line) in order to relo
ate to thepat
h faster. The velo
ity and expe
tations about the pat
h may vary from one individ-ual predator to another, but ea
h of them follows the sear
hing strategy (MOFM) untilthe density meets its expe
tations, and swit
hes to harvesting in higher abundan
e. We
on
lude that the marginal density, apparent in BOFM, does not exist in MOFM and, in
onsequen
e, in heterogeneous nor large-s
ale environments. The sigmoidal shape of fun
-tional response, however, results from the swit
h in strategies rather than unpro�tabilityof foraging.3.2.10. Implementation of the modelThe model was implemented in C++11 language and all simulations were performed onx86_64 ar
hite
ture, ea
h running on a single 
ore.115



Figure 3.14: Fun
tional response in BOFM in the 
ase of two size 
ategories equallydistributed (red points) approximated by formula (3.14) with no sele
tivity (green line)and with sele
tivity for large prey (blue line). Dependen
e of net energy intake upon preydensity (pink line) was shown on the right s
ale. Noti
e the log-s
ale on x-axis. The jumpsin approximations (green and blue lines) result from dis
ontinuity in velo
ity fun
tion.
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tive distan
e is 
omputed using the Newton�Raphson method. Computing 
ruis-ing speed (Se
tion 3.2.4) and optimal velo
ity (Se
tion 3.2.5) is found by golden se
tionsear
h. In every time step of the simulation a �nite se
tion of the spa
e around thepredator is modeled (prey sizes and lo
ations are stored in a data stru
ture that 
ontainsinformation about a large ball around the predator). In order to eliminate boundarye�e
ts, every time when the virtual predator gets 
lose to the border of its 'universe,' aset of new prey items is generated in the empty �eld that has not been visited before.The number of new prey items is drawn from Poisson distribution and their positions aredrawn from uniform distribution (using random number generators from standard C++11library).3.3. Foraging in the framework of measure theoryIn Se
tion 3.2 foraging is 
hara
terized as a sequential pro
ess of 
apturing individual preyitems. Su
h an approa
h allows in
orporating most realisti
 assumptions and obtainingnumeri
al results. For the purpose of farther modeling (e.g. model ling of prey populationdynami
s or its spa
e distribution), however, it is more 
onvenient to represent fun
tionalresponse as an operator on the spa
e of size-distributions (i.e.
C : M

+[0, smax]→M
+[0, smax]), similarly as it was done in Se
tion 3.2.8.2.For a given pro
ess of 
apturing individual prey items it is natural to de�ne a 
apturerate operator C : M

+[0, smax]→M
+[0, smax] as

CBOFM [u] (E) = lim
T→∞

#{prey items of sizes restri
ted to E
aptured in BOFM in time T}
T

.General models su
h as individual-based BOFM or MOFM introdu
ed in Se
tion 3.2.5are quite 
omplex and di�
ult to analyze in the framework of operators on the spa
e ofmeasures. In parti
ular, it is not 
lear whether the de�nition above is 
orre
t and the116



Figure 3.15: Fun
tional response in BOFM (red points) for uniformly distributed foursize 
ategories of prey (a) and 16 size 
ategories (b) respe
tively. Dependen
e of netenergy intake upon prey density (green) was shown on the right s
ale on both pi
tures.Dependen
e of smin upon prey density in the 
ase of 16 size 
ategories (
). Noti
e thelog-s
ale on x-axis.
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tional responses in BOFM (red line) and MOFM (green line) for uni-formly distributed 
ontinuous range of prey sizes between 1mm and 2mm, and va = 3dm
s
,and Pa re�e
ting expe
ted rate of net energy gain in pat
h with abundan
e 1 ind

dm3 . Theminimal size of 
aptured prey items in MOFM is equal 1.73mm.
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onditions under whi
h the limit exists are unknown. Basi
 properties of the pro
essessu
h as de
reased sele
tivity in higher densities or in
reased velo
ity in higher temper-atures 
an be easily proved. On the 
ontrary, natural questions arising from measuretheory approa
h, su
h as Lips
hitz 
ontinuity of CBOFM , are almost impossible to solve.Nonetheless, in su
h 
ases a numeri
al study 
an be 
ondu
ted and it proves to be usefulfor 
onstru
ting simpler, yet a

urate enough, models suitable for population dynami
s.The aim of this se
tion is to de�ne 
apture rate operator
CLOW : M

+[0, smax]→M
+[0, smax],whi
h is easier to analyze than CBOFM and still 
apable of grasping all the important phe-nomena su
h as stable prey-predator intera
tions, variable predator velo
ity and passivesele
tivity. At this point we abandon the bottom-up approa
h of building more 
omplexmodels on top of simpler ones following evident 
ausal relations. Instead, we shall restri
tour 
onsiderations to the domain of low population densities and following the lines ofSe
tion 3.2.8.2 we enhan
e the 
lassi
al Holling formula to in
orporate desired depen-den
e on the whole size-stru
ture of the population. The new model is justi�ed by the
omparison against BOFM.Let

CLOW [u] =
πv[u]r2u

1 + Thπv[u]
� smax

0
r2(σ)u(dσ)

,for v : M
+[0, smax]→ R being the maximizer of expe
ted rate of net energy intake. Insteadof employing the most general form of expe
ted rate of net energy intake introdu
ed in3.2.4, namely Eσ,δP (σ, v, δ+ r(σ)), we assume that δ >> r(σ) and v

δ
>> Th and for given

u we derive
Eσ,δP (σ, v, δ) ≈ EσP (σ, v,Eδ) ≈ P (u, v) =

= πv

� smax

0

r2(σ)

(
e(σ)− A(v)− R(v)

1

vπ
� smax

s0
r2(σ)u(dσ)

)
u(dσ) =

= πv

� smax

0

r2(σ) (e(σ)− A(v))u(dσ)− R(v).We also make a parti
ular 
hoi
e of fun
tions A and R, namely let A(v) = mv2

2
(
ompareSe
tion 3.2.6) and let R(v) = r0 + r1v+ r2v

2 + r3v
3. Fun
tion R(v) gives a good approxi-mation of the respiration rate introdu
ed in (3.4) for v ∈ [0, 13] if v is measured in metersper se
ond provided that r0 = 6.8 · 10−3, r1 = 1.24 · 10−3, r2 = 6.0 · 10−5, r3 = 2.5 · 10−5.The range of velo
ity is based on the experimental data.3.4. Dis
ussionIn this 
hapter a new, me
hanisti
, individual-based approa
h to modeling of visuallyforaging predators 
onstantly sear
hing for and 
apturing prey items in a prey population118



with pres
ribed size stru
ture. Prey items are assumed to be immobile and homoge-neously distributed in 3-dimensional spa
e. The model is based on the 
lassi
al 
on
eptof optimal foraging but 
ontrary to previous works, all aspe
ts of predator's de
isions arebeing subje
ted to optimization. Underlying assumptions on aquati
 habitats and thelimitations of predator's per
eption, des
ribed in Se
tion 3.2.3, are somewhat idealizedand may serve as a referen
e point for more parti
ularized studies.One of our main assumptions is inspired by results of experiments des
ribed in [29℄.It 
on
erns the ability of planktivorous �sh to make de
isions on 
apturing or ignoringindividual prey basing on lo
ally per
eivable information as well as on globally assessedprey abundan
e. We 
laim that these two fa
tors along with the prey's energy value, thepredator's respiration rate and the amount of energy, A(v), needed to a

elerate afterprey 
apture to velo
ity v determines the �nal 
hoi
e of prey item. Empiri
al assessmentof A(v) is a 
hallenging task indi
ating the dire
tion of further studies.Identifying the 
ir
umstan
es under whi
h it is pro�table for the predator to ignore aper
eived individual prey is an important 
omponent of our model. Intuitively speaking,it pre
isely de�nes when a prey item is too small or the distan
e to a prey item is toolarge. The terms 'too small' and 'too large' always need a referen
e point and in ourmodels it's either the average rate of net energy in
ome 
hara
terizing given habitat (inharvesting strategy) or the anti
ipated energy (in sear
hing strategy). The predator'sability to sense prey population density is assumed in BOFM (whi
h applies to habitatswith homogeneous in spa
e prey distribution and pat
hes). MOFM predi
ts the predator'sbehavior in an intermediate position between pat
hes provided two parameters: sear
hingvelo
ity, va, and the anti
ipated net energy intake, Pa. In this paper we do not 
onsidertheoreti
al methods of evaluating the 
hoi
e of parameters va and Pa. It is, however,intuitively 
lear that Pa should re�e
t the net energy intake a
hievable in the pat
h byharvesting strategy provided that there is no risk of starvation. We believe the optimalvelo
ity va for a pat
hy environment 
an be 
omputed using similar methods as in Se
tion3.2.4 when applied to the distribution of pat
hes instead of prey items. In the long time-s
ale, the predator's �tness is usually measured by the number of o�spring or exhaustiontime (the time until satiety falls to zero for the �rst time) rather than average net energyintake (eg. [6℄). The di�eren
e between these models of �tness is parti
ularly importantwhen the danger of starvation is 
onsiderable and optimization of energy involves highrisk. Su
h ideas give an alternative method of determining values va and Pa.While in 
lassi
al models of predation (su
h as Holling-type fun
tional response) bothpredator's speed and sele
tivity are assumed, the approa
h used in this 
hapter allows forpredi
ting these values. The 
omparison of results for BOFM and MOFM indi
ates thatin the heterogeneous environment sele
tivity in high density stems from a di�erent 
ausethan sele
tivity does in low density. It is therefore important to distinguish 'relativelylow density' and 'low density' when speaking of sele
tivity - the �rst term relates toheterogeneous environment while the latter to a homogeneous one.The optimal foraging model developed in this arti
le 
an be extended in many di-re
tions to take into a

ount various pro
esses related to foraging. Several fa
tors havepotentially high impa
t on foraging strategies: predator's degree of satiation, risk toler-an
e, dependen
e of risk upon light 
onditions, and sensitivity on light 
onditions 
oupled119



with 
orresponding 
hanges in prey re
ognition. The subje
t of this study is restri
tedto foraging of an individual predator, nonetheless 
on
lusions 
an be used as a buildingblo
k for further studies of phenomena su
h as population dynami
s, verti
al distributionof prey or pat
h exploitation. Our study is fo
used on predation itself and on its impa
ton the stru
ture of prey population leaving aside other fa
tors whi
h a�e
t its size andstru
ture. Noti
e that the pro
esses of predation and population growth are of di�erenttime s
ale and in the 
ase of planktivorous �sh, a
tive foraging is restri
ted to a shorttime at dawn and dusk. The 
hanges in population stru
ture due to birth and naturaldeath in this time may be negle
ted. Thus, per 
apita mortality predi
ted by our optimalforaging models 
an be used in more general stru
tured population models to des
ribefull population dynami
s. We also believe that pat
h exploitation studies 
an be enri
hedby the observation arising from Figure 3.8 that higher abundan
e deters predators frompatrolling larger areas.In Se
tion 3.2.1 the 
lassi
al Holling disk equation is viewed from the perspe
tive ofoptimal foraging theory. This approa
h allows us to predi
t the o

urren
e of low preydensity refuge resulting from predator's negative rate of energy intake. An empiri
allytestable 
onje
ture, stating that in the presen
e of visually foraging predator a power lawdetermines the relation between the density of a prey population and average prey sizewas formulated.Two di�erent types of predator's sele
tivity (passive, resulting from the immanentsele
tivity of predator's sight, and a
tive, resulting from predator's 
hoi
e) are often dis-
ussed in literature (see eg. [83℄). The stru
ture BOFM and MOFM enabled us toin
orporate both ideas in one framework and therefore obtain realisti
 predi
tions forboth low en
ounter rate (when passive sele
tivity plays a 
ru
ial role) and high en
ounterrate (when a
tive sele
tivity be
omes an important fa
tor). A

ura
y of predi
tions isadditionally supported by the resemblan
e of fun
tional response predi
ted by the model(Figure 3.16) and the experimental data (Figure 3.2).Finally, a model based on Holling disk equation, enri
hed by rea
tive distan
e andenergy balan
e models was introdu
ed in Se
tion 3.3 to re�e
t the fun
tional responseof a visual predator optimizing its 
ruising speed in low en
ounter rate. As observed in[29℄ aggregation of plankton in open e
osystems imposes higher risk of being 
apturedon ea
h prey item and in 
onsequen
e is maladaptive. Also aggregational response ofthe predators is strong enough to eliminate pat
hes on zooplankton. We infer that themodel may be ina

urate in the general 
ase of possibly high en
ounter rate, but for theaforementioned reasons is su�
ient for modeling population dynami
s in real habitats.
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Final remarksAs a �nal note we present some unresolved issues and open problems related to thisdissertation, that the author found parti
ularly interesting.Algorithms for 
omputing �at distan
eIn Se
tion 1.3.4 an algorithm for 
omputing �at distan
e between two measures from
M

+
d,N(R) was presented. The 
omplexity of this algorithm was proved to be O(N logN).Can this result be improved?1. Does there exist an algorithm for 
omputing �at distan
e between two measuresfrom M

+
d,N(R) with linear 
omplexity, O(N)?2. Does there exist a linear algorithm whi
h, given two measures µ, ν ∈ M

+
d,N(R),
omputes an upper bound for the �at metri
, ρF (µ, ν), satisfying

ρF (µ, ν) ≤ ρF (µ, ν) ≤ C · ρF (µ, ν)for some 
onstant C? What is the smallest 
onstant C for whi
h su
h algorithmexists?Approximation theory for Radon measuresTheorem 70 provides an estimate of the �at distan
e between a Lips
hitz 
ontinuousfun
tion, f ∈ C0,1[0, 1], and its optimal N-step approximation, fN . It turns out that
ρF (f, fN) ≤ C ·N−2 for some 
onstant C. How does this result generalize to other 
lassesof fun
tions and their approximations?1. Assume f ∈ C[0, 1] is only a 
ontinuous fun
tion and let fN be its optimal N-stepapproximation. Does the following asymptoti
 behavior hold

ρF (f, fN) = O(N−2)?2. Fix f ∈ C0,1[0, 1], and let fN be its optimal linear spline. Does ρF (f, fN) = O(N−3),if N is the number of intervals on whi
h fN is linear?Se
tion 1.5.3 provides a method for approximating 
ontinuous fun
tions, f ∈ C[0, 1], bydis
rete N-point measures. The length of the interval [0, 1] plays a 
ru
ial role in thereasoning, see Remark 38. How 
an this result be generalized to the 
ase of arbitraryinterval [a, b] instead of [0, 1]. 121



Transport equationThe tools used for the study of M
Kendri
k-von Foerster equation 
an be general-ized to transport equations. In this dissertation solutions are 
onsidered in the spa
e of
(M+(X), ρF ), whi
h is not a linear spa
e. The linear spa
e (M(X), ρF ), on the otherhand is not 
omplete.1. How 
an elements of the Bana
h 
ompletion, (M(X), ρF ), be 
hara
terized?2. Can Theorem 79 be generalized to the spa
e (M(X), ρF )?3. How 
an the methods of 
omputing distan
es between measures be generalized to
ompute distan
es between elements of (M(X), ρF )?Model of zooplankton population Theorem 109 
hara
terizes stationary state tothe M
Kendri
k-von Foerster equation with mortality resulting from the optimal foragingmodel.1. Is the stationary state, 
hara
terized by Theorem 109, stable?2. What is the rate of 
onvergen
e to the stationary state?3. What is the basin of attra
tion of the stationary state?Optimal foraging modelIn Chapter 3 a post-
apture a

eleration 
ost fun
tion, A(v), was introdu
ed to re�e
tthe energy expense of predator when a

elerating from a motionless state to velo
ity v. Inthis dissertation it was assumed that A(v) is equal to predator's kineti
 energy at velo
ity
v, namely mv2

2
. How a

urate is this estimation? An experimental study of predator'srespiration rate during a

eleration 
ould answer this question and provide basis for morepre
ise optimal foraging models.

122



Bibliography[1℄ Abrams, P.A. 1982. Fun
tional Responses of Optimal Foragers. Ameri
anNaturalist, 120, 382-390.[2℄ A
kleh A. S., Banks H. T., Deng K., 2001, A �nite di�eren
e approximationfor a 
oupled system of non-linear size-stru
tured populations, NonlinearAnalysis 50 727-748.[3℄ Aljetlawi, A.A., Sparrevik, E., Leonardsson, K., 2004. Prey-predator size-dependent fun
tional response: derivation and res
aling to the real world. J.Animal E
ology. 73, 239-252.[4℄ Ambrosio L., Crippa G., 2008, Existen
e, Uniqueness, Stability and Di�er-entiability Properties of the Flow Asso
iated to Weakly Di�erentiable Ve
torFields in Transport Equations and Multi-D Hyperboli
 Conservation Laws,Le
t. Notes Unione Mat. Ital., Springer 5: 3-57.[5℄ Ambrosio L., Gigli N., Savaré. G., 2005, Gradient Flows in Metri
 Spa
esand in the Spa
e of Probability Measures, Birkhäuser, ETH Le
ture Notesin Mathemati
s.[6℄ Barton, K., Hovestadt T., 2013. Prey density, value, and spatial distributiona�e
t the e�
ien
y of area-
on
entrated sear
h. J. Theo. Biol. 316, 61-69.[7℄ Bartosiewi
z M., Jabªo«ski J., Kozªowski J., Masz
zyk P., Brood spa
e limi-tation of reprodu
tion may explain growth after maturity in di�erently sizedzooplankton, in preparation.[8℄ Bolni
k, D.I. and Ferry-Graham, L. A. 2002. Optimizing prey-
apture be-haviour to maximize expe
ted net bene�t. Evol. E
ology Resear
h, 4, 843-855.[9℄ Brannstrom A., Carlsson L., Simpson D., On the 
onvergen
e of the es
alatorbox
ar train, arXiv:1210.1444v1.[10℄ Bressan A., 2000, Hyperboli
 systems of 
onservation laws, Oxford Le
tureSeries in Mathemati
s and its Appli
ations, vol. 20, Oxford University Press,Oxford, 2000. 123



[11℄ Carrillo J.A., Colombo R.M, Gwiazda P., Ulikowska A., 2012, Stru
turedpopulations, 
ell growth and measure valued balan
e laws, J. Di�. Eq. 252:3245�3277.[12℄ Carrillo J.A, Fran
es
o M. Di., Tos
ani G., 2007, Stri
t 
ontra
tivity of the2-Wasserstein distan
e for the porous medium equation by mass-
entering,Pro
. Amer. Math. So
. 135: 353�363.[13℄ Carrillo J. A., M
Cann R. J., Villani C., 2006, Contra
tions in the 2�Wasser-stein length spa
e and thermalization of granular media, Ar
h. RationalMe
h. Anal., 179:217�264.[14℄ Charnov, E.L., 1976. Optimal Foraging, the marginal Value Theorem.Theor.Popul. Biol.. 9, 141-151.[15℄ De Roos A. D., 1989, Daphnids on a Train, Development and Appli
ation ofA New Numeri
al Method for Physiologi
ally Stru
tured Population Models,Rijksuniversiteit te Leiden.[16℄ De Roos A. D., 1997, A Gentle Introdu
tion to Physiologi
ally Stru
turedPopulation Models, Stru
tured-Population Models in Marine, Terrestrial,and Freshwater Systems Population and Community Biology Series Volume18, pp 119-204.[17℄ De Roos A. D., Persson L., 2002, Size-dependent life-history traits promote
atastrophi
 
ollapses of top predators, PNAS, Vol. 99, No. 20.[18℄ Dunbra
k, R.L. and Giguere, L.A. 1987. Adaptive Responses to A

elerat-ing Costs of Movement: A Bioenergeti
 Basis for the Type-III Fun
tionalResponse. Ameri
an Naturalist, 130, 147-160.[19℄ Edmonds J., Karp R. M., 1972, Theoreti
al Improvements in Algorithmi
E�
ien
y for Network Flow Problems, Journal of the ACM, Vol. 19, No. 2.[20℄ Eggers, D. M., 1982. Planktivore preferen
e by prey size. E
ology 63(2),381-390.[21℄ Emlen, J.M. 1966. The role of time and energy in food preferen
e. Ameri
anNaturalist 100: 611-617.[22℄ Evans L.C., Gariepy R.F, 1992, Measure Theory and Fine Properties ofFun
tions, CRC Press.[23℄ Fortet R., Mourier B., 1953, Convergen
e de la repartition empirique vers larepartition theoretique, Ann. S
i. E
ole Norm. Sup. 70 , 267.[24℄ Gangbo W., M

ann R. J., 1999, Shape re
ognition via Wasserstein distan
e,Applied Mathemati
s. 124



[25℄ Gause G.F., Smaragdova N.P., Witt A.A., 1936, Further studies of intera
-tion between predators and prey, The Journal of Animal E
ology 5, 1�18.[26℄ Gardner, M.B. 1981. Me
hanisms of size sele
tivity by planktivorous �sh: Atest of hypotheses.. E
ology. 63(3), 571-578.[27℄ Giske, J., Rosland, R., Berntsen, J., Fiksen Ø., 1997. Ideal free distributionof 
opepods under predation risk, E
ologi
al modelling 95 45-59.[28℄ Gliwi
z, Z. M. 2001. Spe
ies-spe
i�
 population-density thresholds in 
lado-
erans? Hydrobiologia 442:291�300.[29℄ Gliwi
z Z. M., Masz
zyk P., Jabªo«ski J., Wrzosek D., 2013, Pat
h exploita-tion by planktivorous �sh and the 
on
ept of aggregation as an antipredationdefense in zooplankton, Limnol. O
eanogr. 58: 1621�1639.[30℄ Gliwi
z Z. M., Szyma«ska E., Wrzosek D., 2010, Body size distribution inDaphnia populations as an e�e
t of prey sele
tivity by planktivorous �sh,Hydrobiologia, Volume 643, Issue 1, pp 5-19.[31℄ Gondzio J., Terlaky T., 1996, A 
omputational view of interior point meth-ods, Advan
es in linear and integer programming, pp. 103�144.[32℄ Gour
y M., 2007, A large deviation prin
iple for 2D sto
hasti
 Navier�Stokesequation, Sto
hasti
 Pro
esses and their Appli
ations, Vol. 117, No. 7.[33℄ Gliwi
z Z. M., Wrzosek D., 2008, Predation-mediated 
oexisten
e of large-and small-bodied Daphnia at di�erent food levels. Ameri
an Naturalist 172,358-374.[34℄ Gwiazda P, Jablonski J, Mar
iniak-Czo
hra A, Ulikowska A, Analysis ofparti
le methods for stru
tured population models with nonlo
al boundaryterm in the framework of bounded Lips
hitz distan
e, arXiv:1309.2408.[35℄ Gwiazda P., Lorenz T., Mar
iniak-Czo
hra A., 2010, A nonlinear stru
turedpopulation model: Lips
hitz 
ontinuity of measure valued solutions withrespe
t to model ingredients, J. Di�. Eq. 248: 2703�2735.[36℄ Gwiazda P., Mar
iniak-Czo
hra A., 2010, Stru
tured population models inmetri
 spa
es, J. Hyper. Di�. Eq. 7: 733�773.[37℄ Hedenstrom, A., Alerstam, T.1995. Optimal Flight Speed of Birds. Phil.Trans. R. So
. Lond. B 29. 348,471-487.[38℄ Holling, C.S., 1959. Some 
hara
teristi
s of simple tpes of predation andparasitism, Canad. Entomol. 91.[39℄ Jabªo«ski J., Approximation of Radon Measures in Flat Metri
 and Appli-
ations in Modelling, in preparation.125



[40℄ Jablonski J., Mar
iniak-Czo
hra A., E�
ient algorithms 
omputing dis-tan
es between Radon measures on R, arXiv:1304.3501.[41℄ Jabªo«ski J., Wrzosek D., Fun
tional response resulting from an optimalforaging model of a size-sele
tive predator-harvester, submitted.[42℄ Ja
obs, J. 1974. Quantitative measurements of food sele
tion; a modi�
ationof the forage ratio and Ivlev's sele
tivity index. Oe
ologia 14: 413�417.[43℄ Jordan R., Kinderlehrer D., Otto F., 1998, The variational formulation ofthe Fokker-Plan
k equation, SIAM J. Math. Anal. 29: 1�17.[44℄ Kinderlehrer D., Walkington N.J., 1999, Approximation of paraboli
 equa-tions using the Wasserstein metri
, Math. Mod. Num. Anal. 33: 837�852.[45℄ Klein M., 1967, A Primal Method for Minimal Cost Flows with Appli
ationsto the Assignment and Transportation Problems, Management S
ien
e, Vol.14, No. 3.[46℄ Kostova T., 2003, An expli
it third-order numeri
al method for size-stru
tured population equations, Numer. Methods Partial Di�erential Equa-tions 19(1): 1�21.[47℄ Krivan, V., 2013, Behavioral refuges and predator-prey 
oexisten
e., J.Theor. Biol. in press.[48℄ Krzy»anowski P., Wrzosek D., Wit D., 2006, Dis
ontinuous Galerkin methodfor pie
ewise regular solutions to the nonlinear age-stru
tured populationmodel,Mathemati
al Bios
ien
es, Vol. 203, No. 2.[49℄ Lazarro, X., 1987. A review of planktivorous �shes: Their evolution, feedingbehaviours, sel
tivities, and impa
ts. Hydrobiologia 146, 97-167.[50℄ Lipman Y., Daube
hies I., 2011, Conformal Wasserstein distan
es: Compar-ing surfa
es in polynomial time, Advan
es in Mathemati
s, Vol. 227, No.3.[51℄ Ma
Artur, R.H. and Pianka., 1966. On optimal use of a pat
hy environment.Ameri
an Naturalist 100: 603-609.[52℄ Manatunge, J., Asaeda, T.,1990. Optimal foraging as the 
riteria of preysele
tion by two 
entrar
hid �shes, Hydrobiologia 391, 223-240.[53℄ Masz
zyk, P., Gliwi
z, M.Z., 2014. Sele
tivity by planktivorous �sh at dif-ferent prey densities, heterogeneities, and spatial s
ales, Limnol. O
eanogr.59(1), 68-78.[54℄ Maury B., Roudne�-Chupin A., Santambrogio F., 2010, A ma
ros
opi

rowd motion model of gradient �ow type, Mathemati
al Models and Meth-ods in Applied S
ien
es. 126



[55℄ Maury B., Roudne�-Chupin A., Santambrogio F., Venel J., 2011, Handling
ongestion in 
rowd motion modeling, Networks and Heterogeneous Media.[56℄ M
Kendri
k A. G., 1926, Appli
ation of mathemati
s to medi
al problems,Pro. Edinburgh Math. So
., 44, pp. 98-130.[57℄ Mittelba
h, G.G. and Osenberg C.W.,1994. Using foraging theory to studytrophi
 intera
tions. in D.J. Stouder, K.L.Fresh and R.J. Feller (eds.) Theoryand Appli
ation in Fish Feeding E
ology. 45-59.[58℄ Mueller-Merba
k H., 1966, An Improved Starting Algorithm for the Ford-Fulkerson Approa
h to the Transportation Problem, Management S
ien
e,Vol. 13, No. 1.[59℄ Murdo
h W. W., Oaten H., 1975, Predation and population stability. Adv.E
ol. Res. 9: 2- 125.[60℄ Neunzert H., 1981, An introdu
tion to the nonlinear Boltzmann-Vlasov equa-tion, in Kineti
 Theories and the Boltzmann Equation, Springer, Berlin,Le
ture Notes in Math. 1048: 60�110.[61℄ Oudre L., Jakubowi
z, J., Bian
hi P., Simon C., 2012, Classi�
ation of Pe-riodi
 A
tivities Using the Wasserstein Distan
e, Biomedi
al Engineering,IEEE Transa
tions, Vol. 59, No. 6.[62℄ Pi

oli B., Rossi F., On properties of the Generalized Wasserstein distan
e,arXiv:1304.7014.[63℄ P�ug G. Ch., Pi
hler A., 2011, Approximations for Probability Distributionsand Sto
hasti
 Optimization Problems, International Series in OperationsResear
h & Management S
ien
e Volume 163, pp 343-387.[64℄ Pütter A., 1920, Studien über physiologis
he Ähnli
hkeit VI. Wa
hstum-sähnli
hkeiten, Physiologie des Mens
hen und der Tiere, Vol. 180, No. 1.[65℄ Pyke, G.H., Pulliam, H.R. Charnov, E.L. ,1977. Optimal foraging: a sele
tivereview of theory and tests. The Quarterly Rev. of Biology 52, 138-154.[66℄ Pyke, G.H., 1981.Optimal travel speeds of animals. Am.Nat. 118, 475-487.[67℄ Ranta E., Bengtsson J., M
Manus J., 1993, Growth, size and shape of Daph-nia longispina, D. magna and D. pulex, Ann. Zool. Fenni
i 30:299-311.[68℄ Rapoport E. O., Dis
erte Approximation of Continuous Measures and SomeAppli
ations, 2012, Journal of Applied and Industrial Mathemati
s, Vol. 6,No. 4, pp. 469-479.[69℄ Solomon J., Rustamov R., Guibas L., Buts
her A., 2014, Wasserstein Prop-agation for Semi-Supervised Learning, ICML 2014, Beijing.127



[70℄ Stephens, D.W., Krebs, J.R., 1986. Foraging Theory, Prin
ton UniversiyPress, Prin
ton, New Jersey.[71℄ Sih, A. and Christensen, B. 2001. Optimal diet theory: when it works, andwhen and why does it fail?, Animal Behaviour 61, 379-390.[72℄ Smith J. N. M., 1974, The food sear
hing behavior of two European thrushes.I. Des
ription and analysis of the sear
h paths, Behavior 48, 276-302; II. Theadaptiveness of the sear
h patterns, Behavior 49, 1-61.[73℄ Ulikowska A., 2012, An age-stru
tured, two-sex model in the spa
e of Radonmeasures: Well posedness, Kineti
 and Related Models, 5: 873�900.[74℄ Ulikowska A., 2013, PhD dissertation, http://www.mimuw.edu.pl/wiadomos
i/aktualnos
i/doktoraty/pliki/agnieszka_ulikowska/au-dok.pdf.[75℄ Vallender S., Cal
ulation of the Wasserstein Distan
e Between ProbabilityDistributions on the Line, 1974, Theory of Probability & Its Appli
ations,Vol. 18, No. 4 : pp. 784-786.[76℄ Villani C., 2009, Optimal transport: old and new, Springer-Verlag, Berlin.[77℄ Visser A.W., 2007.Motility of Zooplankton: �tness, foraging and predation.J. Plankton Res. 29, 447-461.[78℄ Ware, D.M. 1975. Growth, methabolism and optimal swimming speed of apelagi
 �sh. J.Fish..Res. Board.Can. 32, 33-41.[79℄ Ware, D.M.,1978. Bioenegeti
s of pelagi
 �sh: theoreti
al 
hange in swim-ming speed and ration with body size. J. Fish. Res. Board Can. 35, 220-228.[80℄ Weaver N., 1999, Lips
hitz Algebras , World S
ienti
 Publishing Co. Pte.Ltd.[81℄ Werner, E.E., Hall, D.J.,1974. Optimal foraging and the size sele
tion of preyby the bluegill sun�sh ( Lepomis Ma
ro
hirus). E
ology 52, 1042-1052.[82℄ Westdi
kenberg M., Wilkening J., 2010, Variational parti
le s
hemes for theporous medium equation and for the system of isentropi
 Euler equationsMath. Mod. Num. Anal. 44: 133�166.[83℄ Wetterer, J.K, Bishop, C. J., 1985. Planktivore prey sele
tion: The rea
tive�eld volume model vs. the apparent size model. E
ology 66(2) 457-464.[84℄ Yi-Te, L., Jiun-Hong C., Ling-Ling L., 2011, Prey sele
tion of a shell-invadinglee
h as predi
ted by optimal foraging theory with 
onsumption su

ess in-
orporated into estimation of prey pro�tability.128


