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A B S T R A C T

This thesis presents new techniques of static program analysis by
abstract interpretation.

In the first part of the thesis we focus on numerical abstract domains
that can be used to automatically discover certain numerical properties
of programs. We introduce two new abstract domains: the domain of
weighted hexagons, and its enriched version, the domain of strict weighted
hexagons. These domains capture constraints of the form x 6 a · y and
x < a · y, where x and y are program variables and a is a non-negative
constant. They lie between the existing domains of pentagons and
TVPI in terms of both expressiveness and efficiency.

The second part of the thesis concerns analysis of programs that use
containers of scalar values. Existing techniques can be used only to
analyse arrays of numerical values. We propose a novel technique that
can be used to reason about the content of dictionaries and arrays of
arbitrary scalar types. The flexibility of our approach is illustrated on
various examples, including analysis of numerical arrays and string-
keyed dictionaries.

ACM classification D.2.4, D.3.1, F.3.1
Keywords Static analysis, abstract interpretation, abstract domains

S T R E S Z C Z E N I E

Niniejsza rozprawa poświęcona jest nowym technikom statycznej ana-
lizy programów, z wykorzystaniem abstrakcyjnej interpretacji.

W pierwszej części rozprawy, skupiamy się na numerycznych dziedz-
inach abstrakcyjnych, które służą do automatycznego wykrywania za-
leżności między zmiennymi numerycznymi. Przedstawiamy dwie
nowe dziedziny abstrakcyjne ważonych sześciokątów i ścisłych ważonych
sześciokątów, służące do wykrywania powiązań postaci x 6 a · y oraz
x < a · y, gdzie x oraz y oznaczają zmienne w programie, a a jest
pewną nieujemną stałą. Dziedziny te plasują się pomiędzy dziedziną
pięciokątów i dziedziną TVPI, zarówno pod względem siły wyrazu
jak i wydajności.

Druga część rozprawy omawia abstrakcyjną analizę programów
używających niektórych struktur danych. Istniejące techniki pozwalają
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jedynie na wnioskowanie na temat zawartości tablic numerycznych.
My proponujemy nową technikę, która może być użyta do mode-
lowania zawartości tablic oraz słowników zawierających elementy
dowolnych typów. Elastyczność naszego rozwiązania została zilus-
trowana na przykładach analizy tablic numerycznych oraz słowników
z kluczami napisowymi.

Klasyfikacja ACM D.2.4, D.3.1, F.3.1
Słowa kluczowe Analiza statyczna, abstrakcyjna interpretacja, dziedziny
abstrakcyjne
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1
I N T R O D U C T I O N

Computer software, its quality and reliability is of a great importance
for every sector of modern economy. A shop, a bank, a factory or public
administration could not work properly without reliable computer sys-
tems. A crash of a computer game causes some inconvenience for the
player. An insecure banking system exposes the client to possible loss
of money. An error in an automatic flight control system of an aircraft
may even endanger human lives.

Software companies understand how important the reliability of
their products is. The quality assurance in the software development
process is considered to be as important as the design and implement-
ation. Many companies have dedicated teams of testers, whose goal is
to find all possible errors and vulnerabilities in an application before
delivering it to the customer. The approach to quality assurance based
on testing is very popular, as it can reveal many problems that are most
likely to happen in practice. However, it has one major drawback. Test-
ing is just observing the behaviour of a system in some (possibly tricky)
scenarios, but it does not give any information about scenarios that
were not tested. The better the tests are, the bigger scope of scenarios
they cover, but is is usually impossible to check all possible executions.
Thus, testing cannot ensure that all problems are detected and that the
system will not fail in any case: Program testing can be a very effective
way to show the presence of bugs, but it is hopelessly inadequate for showing
their absence. — Edsger W. Dijkstra [20].

There exist methods that can be used to ensure certain correctness
properties of an application, that is to prove that no error may occur
in any execution. These techniques are, unlike testing, performed stat-
ically, i.e. they do not rely on observing results of a program execution.
They reason about properties of the program using its text and struc-
ture. Such methods can be applied to prove the absence of some types
of errors or, more general, to ensure that a program complies with
some specification. It is important that these techniques can guarantee
that a program is correct, that is they can reason about every program
execution that could potentially happen. On the other hand, such ana-
lysis may signal false alarms. It can report a potential error even when
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2 introduction

the program is correct. These techniques are known as static program
analysis and are part of formal methods.

Static program analysis is most widely used for systems that concern
human security. It was for instance successfully applied to verify avion-
ics software in the Airbus corporation [11, 63] and by the European
Space Agency, to automatically prove the absence of some type of
programming errors in control software of an Automated Transport
Vehicle [7]. Such formal techniques were also used to verify control
software in nuclear power plants [66]. Currently there are attempts to
use formal methods also in ordinary applications. The European re-
search project MOBIUS [4] aimed to create a framework for generating
correctness certificates for software for mobile devices. Microsoft Re-
search develops a general-purpose static analyser for programs written
in languages from the .NET platform [2].

Static analysis is a very challenging research area. In general it is not
possible to automatically determine whether a given program may or
may not exhibit a runtime error (this question is undecidable). One can
only attempt to find some approximate solutions. The static analysis
should be sound, i.e. if it reports that a program is correct, the program
must not raise an error in any possible execution. However, the analysis
can claim that a correct program may contain some error. It is a great
challenge to design a precise analysis, which signals only few such
false alarms.

In this thesis we focus on one particular approach to static analysis,
called abstract interpretation.

1.1 orders, functions and fixpoints

Before we introduce the abstract interpretation, we shall briefly recall
basic facts about orders, functions and fixpoints.

orders Given a set X, a binary relation v ⊆ X×X is a partial order,
when for all x,y, z ∈ X:

1. x v x (reflexivity),

2. if x v y and y v x then x = y (antisymmetry),

3. if x v y and y v z then x v z (transitivity).

Such a pair 〈X,v〉 is called a partially ordered set (or a poset). A subset
Y ⊆ X is directed, if for every x,y ∈ Y there exists z ∈ Y such that x v z
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and y v z. A poset 〈X,v〉 is complete, if each of its directed subsets
Y ⊆ X has a supremum (denoted tY).

A set X with two binary operations t,u : X×X→ X (referred to as
join and meet) is called a lattice, if for every x,y, z ∈ X the following
conditions hold:

1. xt y = yt x and xu y = yu x (commutativity),

2. (xt y)t z = xt (yt z) and (xu y)u z = xu (yu z) (associativ-
ity),

3. (xt y)u x = x and (xu y)t x = x (absorption).

The binary meet and join operations induce a partial order v over X
given by x v y⇔ xt y = y.

In a lattice, each non-empty finite subset of X has a supremum and
infimum. A lattice is complete, if every subset of X has a supremum and
infimum. A complete lattice has always the least and the greatest ele-
ment that are usually denoted as ⊥ (bottom) and > (top), respectively.

If 〈D,t,u〉 is a (complete) lattice and X is a set, then 〈X→ D,g,f〉
(where X→ D denotes the set of functions from X to D), such that

f1 g f2 , λx.f1(x)t f2(x) f1 f f2 , λx.f1(x)u f2(x)

is also a (complete) lattice and is called a point-wise lifting of 〈D,t,u〉.

functions We start with introducing some notation that we use
throughout this thesis. We write f : X → Y and g : X ⇀ Y to denote
a total and partial function from X to Y, respectively.

Given two functions f : X → Y and g : Y → Z, g ◦ f : X → Z denotes
the composition of f and g, i.e. for each x ∈ X, (g ◦ f)(x) , g(f(x)).

Given a function f : X → Y and a set Z ⊆ X, f|Z : Z → Y denotes
a function g : Z→ Y such that for each z ∈ Z, g(z) , f(z).

For a function f : X→ Y we denote its image function by f→ : P(X)→
P(Y), where f→(P) , {y | ∃x∈P f(x) = y}.

We define functions either using lambda notation, or by explicit
enumeration of their arguments and values. For instance a (partial)
mapping in X→ Y would be written as [x1 7→ y1, x2 7→ y2, . . . ], where
xi ∈ X and yi ∈ Y (and all x1, . . . , xn are mutually distinct). A similar
notation will be used to define a function that is equal to some given
f : X→ Y except for a finite set of arguments, e.g. f[z 7→ y] will denote
function g : X→ Y such that g(x) , f(x) for all x ∈ X other than z, and
g(z) , y.
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Given two posets 〈X,v〉 and 〈Y,�〉, a function f : X→ Y is monotone
(or order preserving), if x v y ⇒ f(x) � f(y) for all x,y ∈ X. It is anti-
monotone, if x v y⇒ f(y) � f(x).

A function g : X → Y is continuous, if it preserves all directed su-
prema, in other words for each directed subset P ⊆ X, tg→(P) = g(tP).
Each continuous function is monotone.

galois connections Let 〈X,v〉 and 〈Y,�〉 be two posets and
α : X→ Y and γ : Y → X be monotone functions. We say that α and γ
form a Galois connection:

〈X,v〉 −−−→←−−−α
γ
〈Y,�〉

if for all x ∈ X and y ∈ Y it holds that α(x) � y ⇔ x v γ(y). This
condition is sometimes (equivalently) formulated as x v (γ ◦α)(x) and
(α ◦ γ)(y) � y for all x ∈ X and y ∈ Y [52]. The functions α and γ are
called lower and upper adjoints, respectively.

Given two complete lattices 〈X,t,u〉 and 〈Y,∨,∧〉, a monotone func-
tion α : X→ Y that preserves all least upper bounds always uniquely
defines γ : Y → X such that 〈X,t,u〉 −−−→←−−−α

γ
〈Y,∨,∧〉 is a Galois connec-

tion; such γ is given by:

γ(y) ,
⊔

{x | α(x) � y} .

Likewise, given the monotone upper adjoint γ that preserves all
greatest lower bounds, there always exist and is uniquely defined
a lower adjoint α:

α(x) ,
∧

{y | x v γ(y)} .

Given a Galois connection 〈X,v〉 −−−→←−−−α
γ
〈Y,�〉 and a function f : X→

X, a function g : Y → Y is called a sound abstraction of f if

∀x∈X f(x) v (γ ◦ g ◦α)(x) . (1.1)

Galois connections can be composed. Given two Galois connections
〈X,v〉 −−−→←−−−α1

γ1 〈Y,�〉 and 〈Y,�〉 −−−→←−−−α2

γ2 〈Z,E〉, (α2 ◦α1,γ1 ◦γ2) is a Galois
connection as well:

〈X,v〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 〈Z,E〉 .

The notion of sound abstraction is preserved by the composition of
Galois connections, i.e. for Galois connections as above and functions
f : X→ X, g : Y → Y and h : Z→ Z, if g is a sound abstraction of f and
h is a sound abstraction of g, then h is a sound abstraction of f.
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fixpoints An element x ∈ X is called a fixpoint of a function f : X→
X if f(x) = x.

Theorem 1.2 (Tarski). If 〈X,t,u〉 is a complete lattice and f : X → X is
a monotone function, then the set of fixpoints of f is also a complete lattice [65].

This theorem immediately implies that f has at least one fixpoint.
The least fixpoint of f is denoted as lfp(f), while the greatest fixpoint of f
is written as gfp(f).

Theorem 1.3 (Kleene). If 〈X,v〉 is a complete partial order and f : X→ X

is a continuous (and therefore monotone) function, then the least fixpoint of f
is equal to t{fn(⊥) | n ∈N}, where f0(⊥) , ⊥ and fi+1(⊥) , f(fi(⊥)) for
i ∈N.

The sequence ⊥, f(⊥), f(f(⊥)), . . . is called Kleene’s sequence. Kleene’s
theorem requires the function f to be continuous, while in program
analysis we often deal with functions that are only monotone. We
present now an alternative version of Tarski’s theorem that gives
a characterisation of the least fixpoint of a monotone function.

Let 〈X,t,u〉 be a complete lattice and f : X → X be a monotone
function. Additionally, let µ be the smallest ordinal of cardinality
greater than the cardinality of X. For an element d ∈ X, we define
the iteration sequence of f starting from d 〈fδ(d) : δ ∈ µ〉 by transfinite
induction:

1. f0(d) , d,

2. fδ+1(d) , f(fδ(d)) for δ ∈ µ,

3. fδ(d) ,
⊔
α<δ f

α(d) for any limit ordinal δ ∈ µ.

We say that fε(d) is a limit of 〈fδ(d) : δ ∈ µ〉, if for each β ∈ µ, β > ε
implies fβ(d) = fε(d). This limit is denoted by t〈fδ(d) : δ ∈ µ〉.

We present now the following version of Tarski’s theorem that gives
a characterisation of the least fixpoint of a monotone function [14]:

Theorem 1.4 (Tarski, "constructive" version). If 〈X,t,u〉 is a complete
lattice of cardinality smaller than the cardinality of an ordinal µ and f : X→ X

is a monotone function, then the set of fixpoints of f is also a complete lattice
and the least fixpoint of f is equal to t〈fδ(⊥) : δ ∈ µ〉.

Given two complete lattices linked by a Galois connection, there
exists a correspondence between least fixpoints of a monotone function
and of its monotone sound abstraction [10]:
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Theorem 1.5 (Tarski’s fixpoint transfer). Let 〈X,t,u〉 and 〈Y,∨,∧〉 be
complete lattices linked with a Galois connection 〈X,t,u〉 −−−→←−−−α

γ
〈Y,∨,∧〉. If

f : X→ X is a monotone function and g : Y → Y is monotone function that is
a sound abstraction of f (with respect to the Galois connection as above), then

lfp(f) v γ(lfp(g)) .

Least fixpoints of monotone functions play an important role in pro-
gram analysis. We will see that the set of all possible states reached by
any execution of a program can be characterised as the least fixpoint of
a (monotone) transfer function, that is of a function that gives meaning
to all types of instructions in the program. The abstract interpreta-
tion will compute the least fixpoint of some sound abstraction of the
transfer function.

1.2 abstract interpretation

Abstract interpretation is a static analysis technique introduced by
Patrick and Radhia Cousot [12] in late seventies. As we have already
mentioned, it is in general not possible to automatically decide if any
execution of a given program may exhibit some non-trivial property.
The idea of abstract interpretation is to find some over-approximation
of all possible program executions, that is to compute at each program
point some superset of the set of program states that may occur at this
point. If the over-approximation does not contain any forbidden state
(such as e.g. a state in which a null variable was de-referenced), then
the program is for sure safe.

1.2.1 Language Definition

Abstract Interpretation has been most thoroughly studied for programs
that manipulate some scalar variables, thus we formalise it first for
a tiny language that operates only over scalars. We do not elaborate
here on the details of the programming language. We fix only the most
important notation. Thus, we introduce a finite set of variables Var
and a set of their values V. The set of booleans will be denoted by
Bool = {True, False}. The language includes at least the following:

1. simple statements Stmt , such as:

• empty instruction pass,

• constant to variable assignment: v← c, where v ∈ Var and
c ∈ V,
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• variable to variable assignment: vr ← v, where vr, v ∈ Var ,

• assignment of a result of a unary operation unop:
vr ← unop v,

• assignment of a result of a binary operation binop:
vr ← v1 binop v2,

2. boolean predicates Pred that include constants true and false,
unary and binary predicates φ(v1) and ψ(v1, v2), for v1, v2 ∈ Var ,

3. control statements Ctrl , including:

• conditional statement: test P Label1 Label2, where P is
a boolean predicate and Label1 and Label2 are labels of
simple statements,

• unconditional jump statement: goto Label that can be used
to implement a loop or sequence of simple statements,

In this language, unary and binary operations may occur only in an as-
signment, thus, slightly abusing the terminology, we call the whole
assignment (e.g. vr ← v1 binop v2) a binary (or unary) operation.

We assume that all simple statements are uniquely labelled with
labels from a set Label . The entry point of the program is labelled with
a special label Start, while the (unique) exit point is labelled with End.
We assume that Start never occurs as a target of any control statement
(in other words, there is no cycle in the program that contains Start).
We also assume that the entry and exit points are distinct. A program
prog ∈ Prog is a collection of triples (label, simple statement, control
statement). At the exit point End there are some special, empty simple
and control statements (the execution does not move beyond the exit
point). The set State of program states consists of valuations ρ : Var → V

of the scalar variables. The set InitState ⊆ State denotes possible input
states.

The transfer function t : Stmt × State → State for the simple statements,
p : Pred × State → Bool for boolean predicates and tc : Ctrl × State →
Label for the control statements are given in a standard way (see Fig-
ure 1.1). We assume here that we are given a function funop : V→ V

for each unary operator unop and fbinop : V×V→ V for each binary
operator binop. Likewise, we require ϕU : V → Bool for each unary
predicate U and ϕB : V×V→ Bool for each binary predicate B.

We define the semantics ts : Prog × Label × State → Label × State of
a single step of the execution of a program, a relation t∗s ⊆ Prog ×
Label × State × Label × State (which is a transitive closure of ts) and
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t(pass, ρ) = ρ t(v← c, ρ) = ρ[v 7→ c] t(vr ← v, ρ) = ρ[vr 7→ ρ(v)]

t(vr ← unop v, ρ) = ρ[vr 7→ funop(ρ(v))]

t(vr ← v1 binop v2, ρ) = ρ[vr 7→ fbinop(ρ(v1), ρ(v2))]

p(true, ρ) = True p(false, ρ) = False
p(U(v), ρ) = ϕU(ρ(v)) p(B(v1, v2), ρ) = ϕB(ρ(v1), ρ(v2))

tc(goto L, ρ) = L tc(test P L1 L2, ρ) =

L1 p(P, ρ) = True

L2 p(P, ρ) = False

Figure 1.1: Semantics of statements and predicates

(L, stmt, ctrl) ∈ Prog t(stmt, ρ) = ρ ′ tc(ctrl, ρ ′) = L ′

ts(Prog,L, ρ) = (L ′, ρ ′)

ts(Prog,L, ρ) = (L ′, ρ ′)
t∗s (Prog,L, ρ,L ′, ρ ′)

t∗s (Prog,L1, ρ,L ′, ρ ′) t∗s (Prog,L ′, ρ ′,L2, ρ ′′)
t∗s (Prog,L1, ρ,L2, ρ ′′)

t∗s (Prog, Start, ρ, End, ρ ′)
tp(Prog, ρ) = ρ ′

Figure 1.2: Semantics of a single step of program execution (ts), its closure t∗s
and program semantics tp

finally the semantics of a program tp : Prog × State ⇀ State as shown in
Figure 1.2 (since for no ρ ′,L ′, t∗s (Prog, End, ρ,L ′, ρ ′), it is easy to see
that tp is a partial function indeed).

We will extend this simple language in further chapters, for instance
adding arrays and dictionaries.

1.2.2 Static Semantics

To prove some properties of programs, it is often sufficient to consider
sets of states which may occur at a program point in any execution,
instead of analysing each execution separately [25]. Instead of indi-
vidual states ρ : Var → V we consider now contexts (sets of states)
c ∈ Ctx = P(State). We are particularly interested in contexts that
consist of states reachable by the program. We define a program sum-
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mary context sL ∈ Ctx associated with a program point labelled with
L ∈ Label as:

sL , {ρ | ∃ρs∈InitState t∗s (Start, ρs,L, ρ)} .

A context vector~c ∈ −→Ctx is a mapping Label → Ctx that assigns a context
to each program point. The context vector that consists of all program
summary contexts, i.e.

~s , λL.sL (1.6)

describes all states that may occur in any program execution at any
program point and will be called the static program summary.

The set
−→
Ctx of all context vectors forms a complete lattice under

the join −→t such that ~c1
−→t ~c2 , λL.~c1(L)∪~c2(L). The transfer function ts

can be extended to contexts. We define T : Label ×−→Ctx → Ctx by:

T (L,~c) ,

InitState L = Start,⋃
{ρ | L ′ ∈ Label , ρ ′ ∈ ~c(L ′), ts(L ′, ρ ′) = (L, ρ)} otherwise.

Intuitively, T (L,~c) is a context that consists of all states that may be
reached at the program point L in a single step of the execution,
starting from some state in ~c.

For each label L ∈ Label the static program summary ~s given by (1.6)
satisfies ~s(L) = T (L,~s). We may define the static transfer function
−→
T :
−→
Ctx → −→Ctx by

−→
T (~c) = λL.T (L,~c). It is easy to see that the static trans-

fer function
−→
T for a given program is order preserving (with respect to

the order on context vectors given by ~c1 v ~c2 ⇔ ∀L∈Label~c1(L)
−→v ~c2(L)),

thus it has fixpoints [65] and the static program summary ~s ∈ −→Ctx is
it’s least fixpoint.

The static program summary (the context vector ~s) may be not
feasibly computable. The idea of abstract interpretation is to (soundly)
over-approximate this vector.

1.2.3 Framework Definition

The core of the abstract interpretation is an abstract domain that is
formalised as a tuple

A = 〈A ,ta,ua,>a,⊥a,γa,αa, δa,πa〉 .

In this setting A denotes some set. We refer to its elements as abstract
states (or, sometimes, as abstract contexts). It forms a lattice under
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the join (ta) and meet (ua) operators. The lattice 〈A ,ta,ua〉 is called
the carrier of the domain. Constants >a ∈ A and ⊥a ∈ A denote the
top and bottom in this lattice, i.e. for each a ∈ A , a ta >a = >a and
a ua ⊥a = ⊥a. Sometimes we use also the order va on A uniquely
defined as a va b ⇔ a ta b = b.

The concretisation γa : A → Ctx and abstraction αa : Ctx → A func-
tions must be order-preserving and fulfil the following consistency
conditions:

• ∀c∈Ctx c ⊆ γa(αa(c)),

• ∀a∈A ,αa(γa(a)) va a.

It is now easy to see that γa and αa form a Galois connection

〈Ctx ,∪,∩〉 −−−→←−−−αa

γa 〈A ,ta,ua〉

thus, if 〈Ctx ,∪,∩〉 and 〈A ,ta,ua〉 are complete lattices, then it is suffi-
cient to define explicitly only one of the concretisation and abstraction
functions.

We also additionally assume that γa(⊥a) = ∅. This requirement is
easy to fulfil, as one can always add an "artificial" bottom element to
A so that 〈A ,ua,ta〉 remains complete.

The function δa : Stmt × A → A is an abstract transfer function, while
πa : Pred × A → A × A is the abstract predicate semantics. Unlike in a con-
crete execution, a boolean predicate does not evaluate in the abstract
domain to a single boolean value. Instead, it returns a pair of abstract
states. Intuitively the first one describes a part of the input abstract
state for which the predicate holds, while the second — the part of the
abstract state for which it does not hold. Both δa and πa are monotone,
i.e. for each statement stmt ∈ Stmt , predicate P ∈ Pred and for every
two abstract contexts a1, a2 ∈ A if a1 va a2 then:

1. δa(stmt, a1) va δa(stmt, a2),

2. if πa(P, a1) = (at1, af1) and πa(P, a2) = (at2, af2) then at1 va at2 and
af1 va af2.

The abstract control function δca : Ctrl × A → (Label ⇀ A) does not need
to be provided as a part of the abstract interpretation A. One can
define it in a generic way using only πa and A . The abstract control
function, unlike the concrete one, does not return a single label, but
a partial mapping from labels to abstract contexts. This is caused by
the definition of the abstract predicate semantics. The abstract control
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function δca for the simple language introduced in Section 1.2.1 is given
by two rules:

πa(P, a) = (at, af)

δca(test P L1 L2, a) = [L1 7→ at,L2 7→ af]

and
δca(goto L, a) = [L 7→ a] .

We may define now the semantics δsa : Label × A → (Label ⇀ A) of
a single step of an abstract execution as

(L, stmt, ctrl) ∈ Prog δa(stmt, a) = a ′

δsa(L, a) = δca(ctrl, a ′)
.

Similarly as in the static semantics, we introduce abstract context
vectors −→A = Label → A that assign an abstract context to each program
point. The lattice operations over A can be extended to

−→
A point-wise.

We denote the order on
−→
A by

−→va. Below we identify any partial
mapping f : Label ⇀ A with an abstract context vector ~cf ∈

−→
A that

extends f by assigning ⊥a to all labels not in the domain of f. We
extend now δsa to

−→
δa :
−→
A → −→A by defining

−→
δa(~a) for ~a ∈ −→A as

λL.

αa(InitState) L = Start,⊔
a {a | L ′ ∈ Label , a ′ = ~a(L ′), a = δsa(a

′,L ′)(L)} L 6= Start
(1.7)

It is now easy to see that
−→
δa is order preserving, hence it has fixpoints.

In the abstract interpretation we are interested in finding the abstract
program summary ~sa ∈

−→
A , which is the least fixpoint of

−→
δa .

We may lift the abstraction and concretisation functions to context
vectors:

• −→αa :
−→
Ctx → −→A defined as −→αa(~c) , λL.αa(~c(L)),

• −→γa :
−→
A → −→Ctx given by −→γa(~a) , λL.γa(~a(L)).

The consistency conditions of αa and γa are also lifted to −→αa and −→γa,
hence −→αa and −→γa form a Galois connection

〈−→Ctx ,v〉 −−−→←−−−−→αa

−→γa 〈−→A ,
−→va〉 .

The abstract transfer function
−→
δa must be a sound abstraction of the

static transfer function
−→
T (with respect to the Galois connection as

above). Recall that according to (1.1) this is formalised as:

∀
~c∈−→Ctx

−→
T (~c) v (−→γa ◦

−→
δa ◦ −→αa)(~c) .
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c c1 ⊆ c2

a a1

αa

t

δa

γa

Figure 1.3: Abstraction, concretisation and transfer function

This global condition can be restated locally, using t , p, δa and
πa. Let c ∈ Ctx , stmt ∈ Stmt and pred ∈ Pred denote arbitrary con-
text, simple statement and predicate, respectively. Let (aTrue, aFalse) =

πa(αa(c),pred). The above global sound abstraction condition follows
from (and in fact is equivalent to) the conjunction of the following
conditions:

1. {σ | ρ ∈ c, t(stmt, ρ) = σ} ⊆ γa(δa(stmt,αa(c))),

2. {ρ | ρ ∈ c, p(pred, ρ) = True} ⊆ γa(aTrue),

3. {ρ | ρ ∈ c, p(pred, ρ) = False} ⊆ γa(aFalse).

The correlation between the transfer, concretisation and abstraction
functions expressed in the first condition above is informally depicted
in Figure 1.3.

By Theorem 1.5, the least fixpoint of the abstract transfer function
−→
δa

(the abstract program summary ~sa ∈
−→
A ) is a safe over-approximation of

the least fixpoint of the static transfer function
−→
T (the static program

summary ~s ∈ −→Ctx ) i.e. ~s v −→γa(~sa). Moreover, each ~a ∈ −→A such that
~sa
−→va ~a is also a safe over-approximation of ~s (however, ~sa is its best

over-approximation).

1.2.4 Computing the Abstract Interpretation

We have defined the result of the abstract interpretation (the abstract
program summary ~sa ∈

−→
A ) as the least fixpoint of

−→
δa , which (by The-

orem 1.4) is equal to −→ta〈
−→
δa
i(λL.⊥a), i ∈ µ〉, where µ is an ordinal of

cardinality greater than the cardinality of
−→
A . If the height of the lattice

〈A ,ta,ua〉 is finite, then the fixpoint is feasibly computable. How-
ever, when the lattice is of infinite height, then the iteration sequence
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〈
−→
δa
i(λL.⊥a), i ∈ µ〉 does not need to stabilise in finitely many steps. In

this case, one has to find some efficiently computable ~a ∈ −→A such that
~sa
−→va ~a.

widening A common approach to find ~a ∈ −→A such that ~sa
−→va ~a, is

to replace the abstract transfer function
−→
δa with some

−̂→
δa , which:

• has efficiently computable fixpoints,

• each fixpoint of
−̂→
δa is a post-fixpoint of

−→
δa .

An approach to construct the modified abstract transfer function
−̂→
δa ,

is to equip the abstract domain with a widening operator Oa : A × A →
A [12] that obeys the following properties:

1. ∀a,b∈A a ta b va a Oa b (the widening over-approximates the join),

2. for every infinite sequence c0, c1, . . . of abstract contexts, the in-
finite sequence b0, b1, . . . given byb0 = c0,

bn = bn−1 Oa cn

is not strictly increasing.

If the height of the lattice 〈A ,ua,ta〉 is finite, then the widening is
presumed to coincide with ta (unless otherwise explicitly defined).

The number of program points (labels) in a program is finite. Hence
in every infinite strictly increasing sequence of abstract context vectors
~a0,~a1, . . . there must be some label L ∈ Label for which the sequence of
abstract contexts ~a0(L),~a1(L), . . . never stabilises. In case of sequences
obtained as a result of iteration of the abstract transfer function

−→
δa

(which are considered in the abstract analysis), this means that in the
control flow graph of the program there must be a cycle and either L
belongs to this cycle or the abstract context associated with L depends
on some ~a(L ′) such that L ′ belongs to the cycle and the sequence
~a0(L ′),~a1(L ′), . . . never stabilises either. Using the widening operator
we may ensure that all abstract contexts on each cycle stabilise.

This is achieved by defining a set of widening program points W .
It should be chosen as such subset of the labels that each cycle in the
control flow graph of the program contains at least one widening point.
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Now, the abstract transfer function
−→
δa is replaced with

−̂→
δa that is given

by

−̂→
δa(~a) , λL.

~a(L)Oa
−→
δa(~a)(L) if L ∈ W ,

−→
δa(~a)(L) otherwise.

Kleene’s sequence ~a0,~a1, . . . such that ~ai = (
−̂→
δa)

i(⊥a) cannot be strictly
increasing.

Suppose that Kleene’s sequence is strictly increasing and let Lw ∈ W
be chosen such that ~a0(Lw),~a1(Lw), . . . is strictly increasing as well.
Consider the sequence of abstract context vectors~a ′0 , ~a0,

~a ′i+1 ,
−→
δa(~ai).

The widening sequence b0 , ~a ′0(Lw), bi+1 , bi Oa ~a ′i (Lw) would be
strictly increasing as well (as bi = ~ai(Lw) for i ∈ N), which would
contradict the definition of a widening operator.

1.2.5 Variable Introduction and Elimination

Sometimes, instead of assuming that the set of variables Var is fixed, it
is more convenient to allow adding new variables and removing exist-
ing ones during program execution. In many programming languages
one can define variables in arbitrary places in the code. Variables
defined within blocks are not visible and cannot be accessed outside
these blocks.

In static analysis we can first identify all variables used by the
program and then assume that all of them are present during the
whole execution. However, for efficiency reasons it is often better to
add new variables when they are used for the first time and remove
old ones, when they cannot be accessed.

We parametrise the abstract domain with the set of variables that
it models. We write A(V) to indicate that the abstract domain models
the variables from set V (the set of abstract elements of A(V) will be
denoted as A(V)). We also often say that the domain A is over the set V .
We omit the set V (and write just A), when it is clear from the context.

We introduce now two additional operations on the abstract do-
main, namely variable introduction ↑v : A(V) → A(V ∪ {v}) and variable
elimination ↓v : A(V)→ A(V \ {v}) that fulfil the following conditions:



1.2 abstract interpretation 15

1. for each a ∈ A(V), ρ|V ∈ γa(a) ⇒ ρ ∈ γa(a↑v). If additionally
ρ ∈ γa(a↑v)⇒ ρ|V ∈ γa(a), then the introduction is exact.

2. for each a ∈ A(V), ρ ∈ γa(a)⇒ ρ|V\{v} ∈ γa(a↓v). The elimination
is exact, if additionally σ ∈ γa(a↓v)⇒ σ ∈ {ρ|V\{v} | ρ ∈ γa(a)}.

The variable elimination ↓v and introduction ↑v define a forget operator
lvA(V) → A(V) such that alv , a↓v↑v. It is easy to see that γa(a) ⊆
γa(alv).

1.2.6 Domain Conversion

Given two abstract domains A and B, a monotone function κA→B : A →
B is called a conversion between the domains A and B if for each
a ∈ A , γa(a) ⊆ γb(κA→B(a)). The conversion κA→B is exact if γa(a) =
γb(κA→B(a)). Note that αb ◦ γa is a conversion between A and B.

The domain conversion is often used to define the transfer function.
Let us assume that we are given some abstract domain A. For a newly
developed domain B the transfer function δb(i, b) can be defined as

δb(i, b) , κA→B
(
δa(i, κB→A(b))

)
.

This definition of δb is correct, i.e. it is a sound transfer function for
the domain B, whenever δa is sound.

The variable introduction ↑v and elimination ↓v defined above are
conversions between A(V) and A(V ∪ {v}) and between A(V) and
A(V \ {v}), respectively.

1.2.7 Notation

We continue using the abstract domain naming convention introduced
in this section. And so, an abstract domain is denoted by a capital Latin
letter (for example D). The set of abstract elements will be written in
italic font (e.g. D) and each domain operation will be subscripted with
the corresponding lowercase letter (for instance td for the join and δd

for the transfer function).

1.2.8 Alternative Framework Definition

The definition of the abstract interpretation framework presented above
requires existence of the abstraction and concretisation functions that
form a Galois connection. In this setting each concrete context has
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its best abstraction. In some cases the requirements imposed so far,
are too strong, e.g. it often happens that the abstract domain forms
a lattice that is not complete.

There exist alternative, weaker formalisations of the abstract inter-
pretation framework [15] that can be used when no Galois connection
can be established between the concrete and abstract domains. One
of the approaches is to work only with the concretisation function γa

(concretisation-based abstraction). In this case, an abstract element a ∈ A
is an abstraction of a concrete context c ∈ Ctx , if c ⊆ γa(a).

The notion of a sound abstraction needs to be reformulated. For
two lattices 〈X,v〉 and 〈Y �〉, a monotone function γ : Y → X and
a function f : X→ X, we say that g : Y → Y is a sound abstraction of f
if for each y ∈ Y:

(f ◦ γ)(y) v (γ ◦ g)(y) .

If the abstract transfer function
−→
δa is a sound approximation (in

the sense as above) of the static transfer function
−→
T , then the least

fixpoint of
−̂→
δa (i.e. of the abstract transfer function with widening)

over-approximates the static program summary, i.e. ~s v −→γa(lfp
−̂→
δa) [16].

1.2.9 Example

We illustrate now the formal background of the abstract interpretation
using a very simple example. We present an abstraction of numerical
variables using only their signs [62].

The domain of signs is a tuple S = 〈S ,ts,us,>s,⊥s,γs,αs, δs,πs〉. The
set of abstract states is chosen as S = Var → P({−, 0,+}). The join ts

and meet us are just point-wise set union and intersection, respectively.
The top >s admits for each variable any value, i.e. >s = λv.{−, 0,+},
while the bottom is given by ⊥s = λv.∅.

Let sign : V→ {−, 0,+} be the obvious function that returns the sign
of numerical values. The concretisation function γs is given by

γs(s) , {ρ | ∀v∈Var sign(ρ(v)) ∈ s(v)} .

The abstraction of a context c admits for each variable all signs of this
variable in any valuation ρ ∈ c:

αs(c) , λv.
{
sign(ρ(v)) | ρ ∈ c

}
.

To give some intuitions about the transfer function we show the transfer
rule for an assignment v ← x+ y. We start with defining an auxili-
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ary operation PLUS : {−, 0,+}× {−, 0,+} → P({−, 0,+}), given by the
following matrix:

PLUS − 0 +

− {−} {−} {−, 0,+}

0 {−} {0} {+}

+ {−, 0,+} {+} {+}

The abstract transfer rule for v← x+ y is now given by:

δs(s , v← x+ y) , s[v 7→
⋃
i∈s(x),j∈s(y)

PLUS(i, j)] .

The transfer rules for all other basic arithmetic operations can be
defined in the same fashion.

We illustrate πs on a predicate v < 0, i.e. we show the definition of
πs(s , v < 0) , (sTrue, sFalse). The two abstract states sTrue and sFalse are
given by:

sTrue , s[v 7→ s(v)∩ {−}] and sFalse , s[v 7→ s(v)∩ {0,+}] .

The domain is finite, hence no widening is required.
The variable introduction and variable elimination are trivial, i.e.

if s ∈ S(V), then s↓v , s|V\{v}, while s↑v(x) , s(x) for x ∈ V and
s↑v(v) , {−, 0,+} (note that both the elimination and introduction are
exact).

We may demonstrate now how the abstract interpretation using signs
works on a simple code fragment. The example shown in Figure 1.4
is written in a pseudocode that includes if and while statements,
however it can be rewritten in the standard way in the language from
Section 1.2.1. We favour the pseudocode syntax, as it may be more
convenient for the reader.

The static context c ∈ Ctx attached to each program point is a set
of variable valuations. For simplicity, we use in the example only two
variables x and y. The corresponding abstract context s ∈ S maps each
variable to the set of its possible signs.

Let us assume that in the program in Figure 1.4 there are two possible
input states ρ1 = [x 7→ 0,y 7→ −4] and ρ2 = [x 7→ 2,y 7→ 7] (which
gives a context c1 = InitState = {ρ1, ρ2}). According to the abstraction
αs in the domain of signs, the corresponding initial abstract context
is s1 = [x 7→ {0,+},y 7→ {−,+}]. The subsequent assignment x← x+ 1

results in the abstract domain in an abstract context s2 = [x 7→ {+},y 7→
{−,+}]. The predicate y < 0 evaluates in the abstract state s2 to the pair

πs(s2,y < 0) = (sTrue = [x 7→ {+},y 7→ {−}], sFalse = [x 7→ {+},y 7→ {+}]) .
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c1 = {[x 7→ 0,y 7→ −4], [x 7→ 2,y 7→ 7]}, s1 = [x 7→ {0,+},y 7→ {−,+}]

x← x+ 1

c2 = {[x 7→ 1,y 7→ −4], [x 7→ 3,y 7→ 7]}, s2 = [x 7→ {+},y 7→ {−,+}]

if y < 0 then
c3 = {[x 7→ 1,y 7→ −4]}, s3 = [x 7→ {+},y 7→ {−}]

y← −y

c4 = {[x 7→ 1,y 7→ 4]}, s4 = [x 7→ {+},y 7→ {+}]

end if
c5 = {[x 7→ 1,y 7→ 4], [x 7→ 3,y 7→ 7]}, s5 = [x 7→ {+},y 7→ {+}]

while someCondition do
c6 = {ρk | k ∈N,ρk = [x 7→ 1+k,y 7→ 4+ 2k] or ρk = [x 7→ 3+k,y 7→ 7+ 2k]},

s6 = [x 7→ {+},y 7→ {+}]

x← x+ 1

y← y+ 2

end while
x← y− x

c7 = {ρk | k ∈N,ρk = [x 7→ 3+k,y 7→ 4+ 2k] or ρk = [x 7→ 4+k,y 7→ 7+ 2k]},

s7 = [x 7→ {−,0,+},y 7→ {+}]

Figure 1.4: Analysis using the domain of signs

Let us now focus on the abstract context s5, which is right after the if

statement. According to the definition of
−→
δa given by (1.7), it is a join

of the outputs of all preceding statements, i.e. it is s5 = sFalse ts s4.
The while loop iterates arbitrarily many times (we assume that

the loop guard someCondition is environment-dependent, thus not
statically analysable). However, in the abstract domain the simulation
stabilises after the first iteration, with a fixpoint [x 7→ {+},y 7→ {+}].
The corresponding static context at the loop entry

c6 = {ρk | k ∈N, ρk = [x 7→ 1+ k,y 7→ 4+ 2k] or
ρk = [x 7→ 3+ k,y 7→ 7+ 2k]}

cannot be computed using a simple iteration. Finally, at the end of the
procedure, the abstract context s7 = [x 7→ {−, 0,+},y 7→ {+}] correctly
captures that y must be positive in all possible executions. However,
the property that x must also be positive (which holds in every state
from the output context c7), is lost (but it is safely over-approximated).
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1.3 state of the art

Abstract interpretation has been applied to verify various program
properties and multiple abstract domain have been proposed. The most
thoroughly studied area is the analysis of numerical variables. One
of the most often mentioned numerical domains is the basic, yet very
efficient domain of intervals [13]. It is non-relational, which means
that it does not capture any relationships among variables (just as the
above domain of signs). The most popular relational domains include
the domain of pentagons [49], octagons [54] and TVPI [61]. These
numerical domains are presented in more detail (as a background for
our approach) in Chapter 2.

Although there is already a wide range of numerical abstract do-
mains, certain program properties still cannot be efficiently represen-
ted. In Chapter 3 we present our new numerical domain of weighted
hexagons that was designed to efficiently model relationships between
numerical variables of the form x 6 a · y and x ∈ [b, c], where
x,y ∈ Var are variables and a ∈ V is a non-negative and b, c ∈ V

are arbitrary constants. We extend this domain to strict variants of the
constraints (e.g. x < a · y) in Chapter 4.

The abstract interpretation may be also used to model content of
data containers such as arrays or dictionaries. There exist techniques
for array analysis [17, 21, 32] (which are surveyed in Chapter 5 to give
the background for our technique), but as far as we are aware, the
problem of modelling arbitrary dictionaries has not been studied so
far. To fill this gap, we have defined a generic abstract domain for
modelling arrays and dictionaries. It is presented in Chapter 6.

Abstract interpretation can be also applied in many other contexts,
such as for instance analysis of string variables [44, 48, 67], heap
pointer structures [19, 57, 58], or program transformation [42].





Part I

A B S T R A C T I O N O F N U M E R I C A L
VA R I A B L E S
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O V E RV I E W

Abstract interpretation was originally introduced to analyse properties
of programs that use numerical variables. One of the most important
tasks is to check the safety properties, i.e. that no error may occur
during any program execution. For example, abstract interpretation
can be used to verify the correctness of array accesses (that no array
may be accessed out of its bounds) or to ensure that no numerical
overflows may happen. To successfully reason about such properties,
one needs an abstract domain in which it is possible to approximate
the set of possible values of numerical expressions.

Multiple abstract domains capable of representing numerical values
have been proposed. They differ in types of constraints that they
discover as well as in the computational complexity. In this section we
present the domains used most often and discuss their advantages and
limitations.

We are interested in analysing properties of programs that use only
numerical values, thus we impose the following restrictions on the
simple language from the previous chapter :

1. each domain is formalised for V = R (real numbers). At the
end of each section we make it clear whether the domain can be
used also to track properties within Z (integers) and Q (rational
numbers),

2. the binary operations are just the arithmetic operators −,+, ·,

3. we admit one unary operator — the unary minus,

4. the only boolean predicate is the inequality test x 6 y.

We use letters v, x,y, z to denote variables and a,b, c, . . . as numerical
values.

Note that in the language introduced in Section 1.2.1 all operations
are total, thus we have restricted the binary operations to addition,
subtraction and multiplication, deliberately skipping the division, as
it is a partial function that does not fit in our language. In the second
part of this thesis we show to extend both the language and abstract
interpretation framework to support also partial functions.

23
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Figure 2.1: An element of the domain of intervals

For each domain presented below we precisely define the set of
abstract states, the join and meet operators, as well as the widening
(whenever applicable) and concretisation function. For readability, we
usually only sketch the abstract transfer function, showing a couple of
examples.

2.1 intervals

One of the most basic and most often used numerical abstract do-
main is the domain of intervals [13]. In this domain each variable is
represented by an interval that over-approximates the set of possible
values of this variable at a given program point. When only two vari-
ables are considered, their values can be approximated by a rectangle
(Figure 2.1).

The abstract domain of intervals is a tuple:

I = 〈I ,ti,ui,>i,⊥i,γi,αi, δi,πi,Oi〉 .

Let i : Var → V∪ {−∞}×V∪ {+∞} be a function that assigns to each
variable a pair of numerical (or infinite) values. The order in V is
extended so that the negative (respectively positive) infinity is smaller
(resp. greater) than any element in V.

We introduce for i two auxiliary mappings i↓ : Var → V∪ {−∞} and
i↑ : Var → V∪ {+∞} such that

∀x∈Var (i
↓(x), i↑(x)) , i(x) .

We say that a function i as above is a correct interval environment, if
∀x∈Var i

↓(x) 6 i↑(x).
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The set of abstract states I consists of all correct interval environ-
ments and a special element ⊥i. The concretisation function γi of an ab-
stract state i ∈ I admits for each variable x any value v ∈ [i↓(x), i↑(x)]:

γi(i) ,

∅ if i = ⊥i,

{ρ : Var → V | ∀x∈Var i
↓(x) 6 ρ(x) 6 i↑(x)} otherwise.

The abstraction αi of a context c ∈ Ctx admits for each variable x ∈ Var
the smallest interval containing all values ρ(x) for all ρ ∈ c:

αi(c) ,

⊥i if c = ∅,

λx.(infρ∈c ρ(x), supρ∈c ρ(x)) otherwise.

We proceed now with the definition of the meet (ui) and join (ti)
operators. The join i1 ti i2 admits for each variable x the smallest
interval containing the corresponding intervals i1(x) and i2(x) from
the two arguments:

i1 ti i2 ,


i1 if i2 = ⊥i

i2 if i1 = ⊥i

λx.(min(i↓1(x), i
↓
2(x)), max(i↑1(x), i

↑
2(x))) otherwise .

The join is always well defined, i.e. i1 ti i2 is always a correct interval
environment. The meet is defined as the intersection of the correspond-
ing intervals:

i1 ui i2 ,

ĩ if i1 6= ⊥i, i2 6= ⊥i and ĩ ∈ I

⊥i otherwise,

where ĩ(x) = (max(i↓1(x), i
↓
2(x)), min(i↑1(x), i

↑
2(x))).

The set of abstract states I , together with ti and ui forms a lattice
(with a bottom ⊥i and a top >i = λx.(−∞,+∞)). The lattice is of
infinite height (it is easy to see that e.g. a sequence of abstract states
〈i0, ii, ..., in, ...〉 defined as in = λx.(0,n) is strictly increasing), thus
we define a widening operator Oi. Roughly, whenever the interval
for some variable x ∈ Var in the second argument of Oi extends the
corresponding interval in the first argument, then the left and/or right
endpoint is set to ±∞:

i1 Oi i2 ,


ĩ if i1 6= ⊥i, i2 6= ⊥i,

i1 if i2 = ⊥i,

i2 otherwise
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i1 = [x 7→ (−5,5)]

y← x

i2 = [x 7→ (−5,5),y 7→ (−5,5)]

if x > 0 then
i3 = [x 7→ (0,5),y 7→ (−5,5)]

. . .

end if
Figure 2.2: Weakness of the domain of intervals

where

ĩ↓(x) =

i↓1(x) if i↓1(x) 6 i
↓
2(x),

−∞ otherwise
and ĩ↑(x) =

i↑1(x) if i↑1(x) > i
↑
2(x),

+∞ otherwise .

The transfer function δi is quite straightforward. We present it for
the case of a binary plus v← y+ z:

δi(v← y+ z, i) , i[v 7→ (i↓(y) + i↓(z), i↑(y) + i↑(z))] .

Finally, we demonstrate the abstract predicate semantics πi of the
inequality test x 6 y: πi(x 6 y, i) = (iTrue, iFalse) where iTrue is given by

iTrue , i
[
x 7→

(
i↓(x), min(i↑(x), i↑(y))

)
,y 7→

(
max(i↓(x), i↓(y)), i↑(y)

)]
.

Dually, iFalse is defined as

iFalse , i
[
x 7→

(
max(i↓(x), i↓(y)), i↑(x)

)
,y 7→

(
i↓(y), min(i↑(x), i↑(y))

)]
.

If iTrue (or iFalse) defined as above is not a correct interval environment,
it is replaced by ⊥i.

The main advantage of this domain is its simplicity and efficiency.
The meet, join and widening operations can be performed in a linear
(with respect to the number of variables) time and memory cost. It can
be also used for real numbers, rationals or integers. On the other hand,
it is not very precise — it cannot express any relationships among
variables. In the code snippet presented in Figure 2.2, it will not
detect that the variable y is non-negative inside the True branch of the
if statement. To address this problem one needs a more powerful,
relational domain.

2.2 octagons

The most popular relational abstract domain is the domain of octagons [3,
54]. It can represent sets of inequalities between pairs of variables x and
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y

x

Figure 2.3: An octagon in the two-dimensional case

y of the form ±x± y 6 c (where c ∈ V is a constant). This allows one
to encode also numerical intervals, e.g. x ∈ [a,b] can be represented as
{−x− x 6 −2a, x+ x 6 2b}. Any inequality of the form ±x± y 6 c is
called an octagonal constraint. In the two-dimensional case, octagonal
constraints describe a polygon with at most eight edges (Figure 2.3).

preliminaries The design of the domain of octagons follows the
ideas of Difference Bound Matrices (DBMs) [53]. A DBM is a mapping
m : Var × Var → V ∪ {+∞} that encodes a system of inequalities I of
the form x− y 6 c (called potential constraints) so that for all variables
x,y ∈ Var , m(x,y) = c ∈ V (consequently, when m(x,y) = +∞, then
no constraint of the form x− y 6 c is in I).

We say that a valuation ρ : Var → V satisfies a DBM, if for all x,y ∈
Var , ρ(x) − ρ(y) 6 m(x,y).

The fundamental concept of the octagons is that each octagonal
constraint ±x± y 6 c can be encoded as some potential constraint
x ′−y ′ 6 c, where x ′ is either x or −x (and similarly for y). For example
x + y 6 c is equivalent to x − (−y) 6 c. To encode the octagonal
constraints as potential constraints, the set of variables Var is replaced
by Var±, such that for each x ∈ Var two variables x+ and x− are put
into Var±. Intuitively, x+ and x− represent x and −x, respectively.

We call a DBM over Var± an octagon. We say that a valuation
ρ : Var → V satisfies the octagon m, if there exists an extended valu-
ation ρ± : Var± → V that fulfils the following conditions:

1. for x ∈ Var , ρ(x) = ρ±(x+) and ρ(x) = −ρ±(x−),

2. for u, v ∈ Var±, ρ±(u) − ρ±(v) 6 m(u, v).

An octagon is satisfiable if there exists at least one valuation that satisfies
it.
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the domain of octagons We may define now the domain of oc-
tagons O = 〈O,to,uo,>o,⊥o,γo,αo, δo,πo,Oo〉. The set of abstract states
O consists of all satisfiable octagons and one special element ⊥o. The
concretisation function γo is given by

γo(a) ,

∅ if a = ⊥o,

{ρ | ρ satisfies a} otherwise.

The least upper bound to is defined as a point-wise maximum:

• a to ⊥o = ⊥o to a , a,

• [a to b](x,y) , max(a(x,y), b(x,y)) for all x,y ∈ Var±.

The join is well defined, i.e. for all a, b ∈ O, a to b ∈ O. The meet uo is
defined as point-wise minimum:

• a uo ⊥o , ⊥o uo a , ⊥o,

• Otherwise, let c be defined as c(x,y) , min(a(x,y), b(x,y)) for
all x,y ∈ Var±. If c is satisfiable, then a uo b , c. Otherwise
a uo b = ⊥o.

The set O together with meet uo and join to forms a lattice. The least
element in this lattice is ⊥o, while the greatest one is >o = λx,y. +∞.

Given two octagons a, b ∈ O, their meet is always exact, i.e. the
context abstracted by a uo b is equal to the intersection of contexts
abstracted by a and b:

γo(a uo b) = γo(a)∩ γo(b) .

The join is not exact, i.e. a to b may be an abstraction of a bigger context
than just the union of the contexts abstracted by a and b:

γo(a to b) ⊇ γo(a)∪ γo(b) .

A system of inequalities may entail some constraints that are not
explicitly given. For example from two inequalities x − y 6 c and
y− z 6 d one can derive x− z 6 c+ d. It may happen that a derived
constraint is tighter than one explicitly given in the system. The octagon
abstract domain is equipped with a graph-based closure algorithm that
finds the tightest possible constraints between all pairs of variables.
It follows the idea of the well-known Floyd-Warshall shortest paths
algorithm [9] (it treats the octagon as an adjacency matrix of a weighted
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and directed graph, where the nodes correspond to variables and
edges represent inequalities). It can detect whether the corresponding
octagon is satisfiable or not. If it is satisfiable, it can be shown that the
computed closure a• ∈ O of an octagon a ∈ O can be used as a normal
form for all abstract states with the same concrete meaning:

a• =
l

o

{
b ∈ O | γo(b) = γo(a)

}
.

The closure can be used while computing the join a to b to achieve
the best over-approximation of the union of the contexts γo(a) and
γo(b):

a• to b• =
l

o

{
c ∈ O | γo(c) ⊇ γo(a)∪ γo(b)

}
.

Finally, the widening operator Oo just drops all constraints that are
weaker in the second argument:

• if a = ⊥o, then a Oo b , b,

• else if b = ⊥o, then a Oo b , a,

• else [a Oo b](x,y) ,

a(x,y) if b(x,y) 6 a(x,y),

+∞ otherwise.

The transfer function δo was originally defined using a conversion
to the domain of polyhedra [18]. We develop here some sample defini-
tions directly in the domain of octagons. These definitions do not tend
to be as precise as possible, they are rather meant to be simple.

We start with the simplest example of an assignment v← c, where
v ∈ Var and c ∈ V:

δo(v← c, a)(x,y) ,



2c if x = v+ and y = v−,

−2c if x = v− and y = v+,

0 if x = y = v+ or x = y = v−,

a(x,y) if x,y 6∈ {v+, v−},

+∞ otherwise.
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The abstract transfer rule for an assignment u← v+w, where u, v,w ∈
Var is much more complicated, i.e. δo(u← v+w, a)(x,y) is given by

a(w+,w−)/2 (x,y) ∈ {(u+, v+), (v−,u−)},

a(w−,w+)/2 (x,y) ∈ {(u−, v−), (v+,u+)},

a(v+, v−)/2 (x,y) ∈ {(u+,w+), (w−,u−)},

a(v−, v+)/2 (x,y) ∈ {(u−,w−), (w+,u+)},

a(v+, v−) + a(w+,w−) (x,y) = (u+,u−),

a(v−, v+) + a(w−,w+) (x,y) = (u−,u+),

a(x,y) x,y 6∈ {u+,u−},

+∞ elsewhere .

Let us explain the above definition in the case when (x,y) = (u+,u−).
Note that u+ − u− = 2 · u = 2 · (v+w) = (v+ − v−) + (w+ −w−) 6
a(v+, v−) + a(w+,w−). On the other hand, this case could be alternat-
ively defined as 2 · a(v+,w−), because u+ − u− = 2 · u = 2 · (v+w) =
2 · (v+ − w−) 6 2 · a(v+,w−). None of these definitions is in gen-
eral better, thus to obtain a more precise one, the minimum min

(
2 ·

a(v+,w−), a(v+, v−) + a(w+,w−)
)

could be taken. It often happens that
the transfer function may be defined in many different ways and the
chosen definition is always a trade-off between precision and simpli-
city.

We illustrate the abstract semantics of boolean predicates only on
a test v 6 c, where v ∈ Var and c ∈ V, i.e. we define πo(v 6 c, a) =
(at, af), where

at , a[(v+, v−) 7→ min(2 · c, a(v+, v−)],

af , a[(v−, v+) 7→ min(−2 · c, a(v−, v+)] .

When at (resp. af) is not satisfiable (which can be checked using a graph-
based satisfiability checking algorithm), it is replaced by ⊥o.

The computational complexity of all operations in the domain of
octagons is greater than in the case of intervals. The dominating oper-
ation is the closure, which can be implemented using Floyd-Warshall
algorithm [9] and works in O(N3) time, with respect to the number
of variables. As the number of program variables is usually small,
there is usually no need for using more complicated algorithms with
slightly better worst-time complexity (such as e.g. algorithms based
on fast matrix multiplication [64]). The memory cost is O(N2). The
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x ∈ [−5,5]

y← x

x ∈ [−5,5]∧x−y 6 0∧y−x 6 0∧y ∈ [−5,5]

if x > 0 then
x ∈ [0,5]∧x−y 6 0∧y−x 6 0∧y ∈ [0,5]

. . .

end if
Figure 2.4: Example from Figure 2.2 analysed using the domain of octagons

domain is precise enough to correctly handle the example presenting
the weakness of the interval domain, as shown in Figure 2.4. For clarity
we show only the important constraints on x and y. The fact that x = y
is represented as two octagonal constraints x− y 6 0 and y− x 6 0.
This equality, combined with x ∈ [0, 5] guarantees that y ∈ [0, 5] in the
then branch of the if statement.

The domain of octagons may be used when the set V is chosen as real
or rational numbers. It needs major changes to be applicable when V is
chosen as integers — for instance given a constraint x+ − x− 6 2 · c+ 1,
the closure algorithm should deduce x+−x− 6 2 · c. Such problem may
arise e.g. when computing the closure of an octagon that represents
the following system: y− x = 0,y+ x = 1 .

2.3 pentagons

Another important relational domain is the domain of pentagons [49].
It can maintain constraints that combine intervals x ∈ [a,b] and basic
symbolic relationships of the form x < y (where x,y ∈ Var and a,b ∈
V). If only two variables are considered, the possible solutions of
such inequalities form a pentagonal shape, as presented in Figure 2.5.
The domain of pentagons was primarily designed to be used in an
abstract interpreter for the bytecode language for Microsoft .NET
platform (MSIL) as a lightweight technique to verify correctness of
array accesses.

The domain of pentagons combines two basic analyses: the domain
of intervals with the most basic symbolic analysis in the domain of
strict upper bounds S = 〈S ,ts,us,>s,⊥s,γs,αs, δs,πs〉. The strict upper
bounds encode relationships between pairs of variables x,y ∈ Var of
the form x < y. An abstract element in this domain is a mapping
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y

x

Figure 2.5: A pentagon in the two-dimensional case.

s : Var → P(Var ), where s(x) = {y1, . . . ,yk} means {x < y1, . . . , x < yk}.
The join ts of two abstract states s1, s2 ∈ S selects bounds that are
present both in s1 and s2, i.e.

s1 ts s2 , λx.s1(x)∩ s2(x).

Dually the meet us of s1, s2 ∈ S is defined as the union of the sets of
bounds from the two abstract states s1 and s2:

s1 us s2 , λx.s1(x)∪ s2(x) .

The domain is finite (since the set of variables Var is finite), hence no
widening is necessary. The concretisation γs of an abstract state s ∈ S
is a context that consists of all variable valuations that respect the
constraints from s:

γs(s) , {ρ : Var → V | ∀x∈Var∀y∈s(x) ρ(x) < ρ(y)} .

The abstraction αs is defined in a natural way:

αs(c) = λx.{y | ∀ρ∈c ρ(x) < ρ(y)} .

The set S together with the meet and join operators forms a lattice, with
the top element >s = λx.∅ and the bottom ⊥s = λx.Var . The transfer
function δs for assignment x← y is given by

δs(x← y, s) , λv.


s(y) if v = x,

s(v)∪ {x} if v 6= x and y ∈ s(v),

s(v) \ {x} otherwise.

In more complicated cases, e.g. x← y+ z the information about upper
bounds for x is lost.
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The domain of pentagons P = 〈P ,tp,up,>p,⊥p,γp,αp, δp,πp,Op〉 com-
bines the interval analysis I and the strict upper bounds S (however,
it is not just a simple product of these two analyses). The set of ab-
stract states P = I × S consists of pairs of interval environments and
strict upper bounds. The concretisation function γp of p = (i, s) ∈ P is
given by γp

(
(i, s)

)
= γi(i)∩ γs(s), while the abstraction is performed

separately for each component, i.e. αp(c) = (αi(c),αs(c)).
The meet up is given point-wise:

(i1, s1)up (i2, s2) , (i1 ui i2, s1 us s2) .

The join for the relational part is more complicated. It preserves the
constraints that are either present in both operands or are present in
one operand and are a consequence of the interval part of the other
operand1:

(i1, s1)tp (i2, s2) , (i1 ti i2, s̃),

where s̃ is defined as follows:

s̃(x) ,
(
s1(x)∩ s2(x)

)
∪ {y ∈ s1(x) | i↑2(x) < i

↓
2(y)}

∪ {y ∈ s2(x) | i↑1(y) < i
↓
1(y)} .

Thanks to this modification, the strict upper bounds may benefit from
the information gathered by the intervals.

In the domain of pentagons there are multiple abstract elements
that represent the empty context. To avoid this issue, one would need
to define and compute the closure, which would however void the
performance advantage of the pentagons over the octagons. Experi-
ments have shown that the loss of precision when no closure is used
is negligible in practice [49], hence it is not desired to use this costly
operation.

It is easy to check that the bottom element is ⊥p = (⊥i,⊥s), while
the top is >p = (>i,>s). The widening Op is performed point-wise:

(i1, s1)Op (i2, s2) , (i1 Oi i2, s1 ts s2) .

We demonstrate the transfer function δp on an assignment stmt =
x← y− z:

δp

(
stmt, (i, s)

)
, λv.


(
δi(stmt, i)(v), δs(stmt, s)(v)

)
if v 6= x,(

δi(stmt, i)(x), s̃
)

if v = x,

1 It is possible to give a more precise definition, but we present here the original
one [49]
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Figure 2.6: An element of the TVPI domain

where s̃ defines the new upper bounds for x, depending on the numer-
ical interval for the subtracted variable z:

s̃ ,


(
{y}∪ s(y)

)
\ {x} if i↓(z) > 0,

s(y) \ {x} if i↓(z) = 0,

∅ otherwise.

If we subtract a strictly positive value from y, then the result is smaller
than y and any of variables greater than y.

The domain of pentagons lies between the domains of intervals and
octagons, both in terms of expressiveness and computational complex-
ity. The time and memory cost of domain operations is O(|Var |2). It
can be applied when V is chosen as reals, rationals or integers. The
domain behaves very well in practical applications and is used in
a commercial static analyser developed by Microsoft Research [49].

2.4 two variables per inequality

The domain of octagons puts a serious limitation on the coefficients
in the constraints, i.e. only unitary values +1 and −1 are allowed. The
domain of two variables per inequality (TVPI) [61] addresses this problem.
It can represent constraints of the form ax+ by 6 c, where x,y ∈ Var
and a,b, c ∈ V. In a two dimensional case, TVPI describes the convex
hull of a given set of concrete points (Fig. 2.6).

Let us recall some basic definitions from the topology. A metric space
is a pair (M,d), where M is a (non-empty) set and d is a function d :

M×M→ R that for every x,y, z ∈M fulfils the following conditions:

• d(x,y) > 0,

• d(x,y) = 0 if and only if x = y,
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• d(x,y) = d(y, x),

• d(x, z) 6 d(x,y) + d(y, z).

A ball of radius r > 0 centred at point p ∈ M is defined as Br(p) ,
{x ∈M | d(x,p) < r}. A subset P of M is called open, if for every x ∈ P,
there exists ε > 0 such that Bε(x) ⊆ P. A set P ⊆M is closed, if M \ P

is open. Any intersection of closed sets is closed too. A closure of a set
P ⊆M is defined as

cl(P) ,
⋂

{P ′ ⊆M | P ⊆ P ′ and P ′ is closed} .

In this section the vector space Rn with the Euclidean metrics d(x,y) ,√∑n
i=1(xi − yi)

2 is considered. We say that a set P ∈ Rn is convex, if for
all x,y ∈ P and each k ∈ [0, 1] the superposition kx+ (1− k)y is also in
P. Any intersection of convex sets is convex. For a given set P ∈ Rn we
define its convex hull as conv(P) ,

⋂
{A ∈ Rn | P ⊆ A and A is convex}.

It can be also alternatively characterised as

conv(P) = {k · x+ (1− k) · y | x,y ∈ P∧ 0 6 k 6 1} .

We can now proceed with the definition of the TVPI domain. Let S
denote a set of systems of linear inequalities of the form ax+ by 6 c,
where x,y ∈ Var and a,b, c ∈ R. Let γs : S → P(RVar ) be a mapping
that assigns to a system all satisfying valuations, i.e.

γs(s) , {ρ : RVar | ∀{ax+by6c}∈s a · ρ(x) + b · ρ(y) 6 c} .

This mapping induces an ordering over S: s1 vs s2 if and only if
γs(s1) ⊆ γs(s2). It yields also a natural equivalence s1 ≡ s2 iff γs(s1) =

γs(s2). We may formalise now the TVPI domain as:

T = 〈T ,tt,ut,>t,⊥t,γt,αt, δt,πt,Ot〉 .

The set of abstract elements T is chosen as the quotient S/≡. The
concretisation function γt is given by γt([s]≡) , γs(s). The meet ut of
[s1]≡ and [s2]≡ is quite straightforward. It is defined as a system that
contains all inequalities from s1 and s2:

[s1]≡ ut [s2]≡ , [s1 ∪ s2]≡ .

The join tt of [s1]≡ and [s2]≡ computes an equivalence class of a system
s ∈ S, such that γs(s1)∪ γs(s2) ⊆ γs(s):

[s1]≡ tt [s2]≡ , [s]≡ where γs(s) = cl
(
conv(γs(s1)∪ γs(s2))

)
.
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The set γs(s1)∪ γs(s2) does not need to be convex, hence there may be
no s ∈ S, such that γs(s) = γs(s1)∪ γs(s2). In this case we compute its
convex hull conv(γs(s1) ∪ γs(s2)). However, such a convex hull may
be an open set [61], which cannot be described using only non-strict
inequalities. To solve this problem, the closure cl(conv(γs(s1)∪γs(s2)))

is taken.
The definition of the join seems not very practical, as it relies on

the concretisation of an abstract element s. We discuss now how to
compute the join (find the system s) performing only symbolic oper-
ations on s1 and s2. In the symbolic computations, we assume that
the inequalities are put in some normal form, e.g. by ordering the
variables and transforming the constraints so that the first non-zero
constant in each constraint is unitary.

For systems of linear inequalities with arbitrary number of dimen-
sions, only exponential (with respect to the size of the system) convex
hull algorithms (e.g. Chernikova’s algorithm [8]) are known. In a planar
case, one can use the O(m logm) Graham [34] algorithm (where m
denotes the number of constraints). The key idea in the TVPI domain is
to compute the convex hull for each planar surface separately, instead
of finding one hull. This approach requires an auxiliary completion
operation [55] for systems of inequalities s ∈ S.

We say that an inequality i = axi + byi 6 c is entailed by a system
s ∈ S, if γs(s∪ {i}) = γs(s). A system of inequalities s ∈ S is complete if
each inequality i of the form axi + byi 6 c that is entailed by s is also
entailed by these inequalities from s that use only the variables xi and
yi. The completion function transforms s into s ′ ∈ S that is complete
and equivalent to s (i.e. s ≡ s ′). Technically, it performs in a loop two
steps:

• remove redundant constraints: if there are i1, i2, i3 ∈ s such that
{i1, i2} vs {i3}, then i3 can be discarded (this step is linear in the
number of constraints),

• for each pair of inequalities that have a common variable, gen-
erate an inequality that eliminates this variable, e.g. for two
constraints x+ 2y 6 3 and −x+ 3

2z 6
1
2 , generate y+ 3

4z 6
7
4 .

If the given system s ∈ S contains n variables, then it is sufficient to
iterate the loop log2(n) times to achieve a complete system s ′.

We can describe now how to compute the join tt avoiding the
expensive computation of an n-dimensional convex hull. Let px,y : S→
S be a function such that px,y(s) contains these inequalities from s

that use only the variables x and y. We introduce a binary operator



2.4 two variables per inequality 37

g : S× S → S that computes a convex hull of γs(s1) ∪ γs(s2) for each
surface separately:

s1 g s2 ,
⋃

{sx,y | x,y ∈ Var }

where γs(sx,y) = cl(conv(γs(px,y(s1))∪ γs(px,y(s2)))). If both s1 and s2
are complete, then

γs(s1 g s2) = cl(conv(γs(s1)∪ γs(s2))) .

Hence, to efficiently compute the join, one should complete both
arguments and then find convex hull for each two-dimensional surface
separately.

The crucial part of the algorithm is the completion operation that
works in time O(k2n3 logn(logk+ logn)), where n denotes the num-
ber of variables and k is equal to the maximal number of inequalities
between any pair of variables. In general k can be arbitrarily large, but
experimental results show that one can remove (without significant
loss of precision) inequalities that contribute least to the shape, that
is, remove the inequality that represents the shortest edge of the poly-
hedron. Using this technique k can be bounded by a constant and the
running time of the completion operation is O(n3(logn)2).

There is no best abstraction function αt for the TVPI domain. For
example, for the set {〈x,y〉 | x2+ y2 6 1} there is no best abstraction, as
one can always construct a regular polygon that contains more edges
and better approximates the given set.

It is easy to check that the least ⊥t element in T is equal to [s∅]≡,
where γs(s∅) = ∅, while the top is >t = [s>]≡, where γs(s>) = RVar .

We show only one example of the abstract transfer function δt,
namely the transfer rule for an assignment x← y. One has to discard
all inequalities that involve x and add new ones ax+ bz 6 c for each
inequality ay+ bz 6 c:

δt(x← y, [s]≡) , [(s \ sx)∪ sx←y]≡

where sx consists of all inequalities from s that involve x and sx←y =
{ax+ bz 6 c | {ay+ bz 6 c} ∈ s \ sx}.

The widening Ot can be adapted from the convex polyhedra [18]. In
this approach in a widening step [s1]≡ Ot [s2]≡ only these inequalities
from s1 are kept that are satisfied by all points from γs(s2):

[s1]≡ Ot [s2]≡ , [{i | i ∈ s1 and γs(s2 ∪ {i}) = γs(s2)}]≡ .

The domain of TVPI can be applied when V is chosen as R or Q. In
the integer case the problem of satisfiability of a system of constraints
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of the form a · x + b · y 6 c, where x,y ∈ Var and a,b, c ∈ V is
NP-complete [47].

2.5 other domains

We have described only a few of many existing numerical domains. We
mention now some other interesting approaches. Using the constant
propagation [43] it is possible to identify variables, the value of which
must be equal at some program point to the same constant in all
possible program executions. The domain of convex polyhedra [18]
can express arbitrary linear constraints over the variables. It is more
powerful than any of the domains presented in this chapter, but the
complexity of the domain operations is exponential. The domain of
congruences [35] can discover systems of linear congruence equations
of the form Σiai · xi ≡ c mod n, where xi ∈ Var and ai, c,n ∈ Z.

The domains described in this chapter can represent only convex
sets. This limitation can be dropped by using powerset domains [30] that
maintain at each program point a set of abstract elements, instead of
a single element. This approach was studied mostly for the domain of
intervals [37, 41].



3
W E I G H T E D H E X A G O N S

In this chapter we present our domain of weighted hexagons that was
originally sketched in a conference article [27]. It is designed to be more
precise than the domain of pentagons (see Section 2.3), but simpler
and computationally easier than TVPI (Section 2.4). In this domain one
can represent invariants that combine interval constraints x ∈ [a,b]
with hexagonal constraints x 6 a · y, where x,y ∈ Var and a is some
non-negative constant. We say that a is a coefficient of this constraint.
In a two-dimensional case such constraints describe a polygon with at
most six edges (Figure 3.1). The angles in the polygon are determined
by coefficients of the hexagonal constraints. This motivates the name
weighted hexagons. In Chapter 4 we extend this domain to strict variants
of the constraints such as x < a · y or x ∈ (a,b).

The domain of weighted hexagons can be used instead of the domain
of pentagons to slightly more precisely analyse numerical properties
of programs that use multiplication. For instance a program that
implements a dynamic array (an array, whose size can be changed)
adjusts the capacity of the array (by increasing or decreasing it by
a factor of two), depending on the current ratio of used elements. Each
time when the capacity is changed, new array is allocated and the
array content must be copied. The domain of weighted hexagons can
be used to verify the correctness of array accesses during the copying
phase.

y

x

x

y

Figure 3.1: Weighted hexagons in a two-dimensional case.
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Require array In
Out← new array(2 · In.len)
1 6Out.len 6 2 · In.len∧ 1 6 In.len 6 1

2 ·Out.len

i← 1

while i 6 In.len do
. . . 1 6 i 6 1

2 ·Out.len . . .

Out[2 · i − 1]← In[i]
Out[2 · i]← In[i]
i← i + 1

end while
Figure 3.2: Duplicating the content of the array In

In Figure Figure 3.2 we present an even simpler example that demon-
strates the advantage of the domain of weighted hexagons over the
domain of pentagons. The crucial invariant i 6 1

2 ·Out.len (that is
needed to prove that the array Out is not accessed out of its bounds
within the loop) can be expressed (and will be automatically inferred)
in our domain, but it can be represented neither in the domain of
pentagons nor in the domain of octagons. It can be of course expressed
in TVPI.

The elements of the domain of weighted hexagons represent finite
systems of hexagonal constraints, thus before we formally develop the
domain, we focus on some properties of such systems.

systems of hexagonal constraints Let I be a finite set of
hexagonal constraints. We say that a valuation ρ : Var → V is a solution
of I, when it satisfies all constraints from I, i.e. ρ(x) 6 a · ρ(y) for
each x 6 a · y in I. We call I a system of hexagonal constraints. Given
two systems I and J, the system C is a conjunction of I and J, when
a solution ρ is a solution of C if and only if it is a solution of I and
of J. The conjunction of I and J always exists (and is equivalent to
I∪ J). Dually, one could try to define an alternative A of I and J such
that ρ is a solution of A if and only if it is a solution either of I or of
J. However, the set of such solutions does not need to be convex (as
shown in Figure 3.3), thus A need not exist (as a system of hexagonal
constraints always has a convex set of solutions).

It may happen that a system I contains some redundant information,
i.e. there exists a system I ′ ( I with the same set of solutions as I.
We are particularly interested in constraints binding the same two
variables, e.g. y 6 2x and y 6 1

2x for V = R. Unless we have an extra
knowledge about x and y (for instance that x and y are limited to
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x

y

(a)

x

y

(b)

x

y

(c)

Figure 3.3: Solutions of two two-dimensional systems ((a) and (b)) and solu-
tions of their alternative (c)

positive values) we have to keep track of both inequalities. However, if
we additionally had that y 6 x then this constraint would be superflu-
ous as can be seen in Figure 3.4, thus it can be safely discarded. This
justifies the approach of representing systems of hexagonal constraints
using for each pair of variables only the two extreme constraints.

Numerical intervals can be encoded as hexagonal constraints using
a simple trick. We extend the set of variables Var by introducing three
artificial variables denoted by c−, c0 and c+ that are equal (in all possible
valuations) to −1, 0 and 1, respectively. Each interval x ∈ [a,b] can now
be represented as two hexagonal constraints (that involve x and one
of the artificial variables), e.g. x ∈ [−5, 3] is expressed as a conjunction
of c− 6 1

5x and x 6 3c+. In the rest of this chapter we assume that
c−, c0, c+ ∈ Var and that I contains the following trivial inequalities
relating these artificial variables:

{x 6 0 · y | x ∈ {c−, c0},y ∈ {c−, c0, c+}}
∪ {x 6 +∞ · y | x ∈ {c−, c0},y ∈ {c0, c+}}
∪ {x 6 1 · x | x ∈ {c−, c+}}∪ {c+ 6 +∞ · c+} .

(3.1)

The (obvious) extension of the multiplication in V to V∪ {+∞} will be
formalised below. The set of non-negative elements of V is denoted by
V>0, i.e. V>0 , {a | a ∈ V ∧ 0 6 a}. A special constant Nil will be used
to indicate that there is no constraint between some pair of variables.

Following the discussion above, we introduce a representation of
a system I as a pair of functions s, l : Var × Var → V>0 ∪ {+∞, Nil} (s
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x

y
y 6 2x

y 6 1
2x

y 6 x

Figure 3.4: Region of possible solutions limited by inequalities y 6 2x and
y 6 1

2x

stores the smallest and l the largest coefficient in constraints between
a pair of variables) defined as follows:

s(x,y) , min
{
a ∈ V>0 ∪ {+∞} | inequality x 6 a · y is in I

}
l(x,y) , max

{
a ∈ V>0 ∪ {+∞} | inequality x 6 a · y is in I

}
.

(3.2)

We additionally define s(x,y) , l(x,y) , Nil if and only if I contains
no constraint x 6 a · y. This definition ensures that either s(x,y) =

l(x,y) = Nil or s(x,y) 6 l(x,y), where neither s(x,y) nor l(x,y) is
equal to Nil.

We have allowed also +∞ as a valid value of the functions s and l. It
will be used in the normalisation algorithm (see Section 3.3) for paired
functions (s, l). Roughly, when for some pair of variables x,y ∈ Var
the system I entails a constraint x 6 M · y for each M greater than
some M0, we will put l(x,y) = +∞.

The pair of functions (s, l) representing some system I will be called
a weighted hexagon.

We formalise now the meaning of s and l, i.e. we say when a vari-
able valuation ρ satisfies (s, l). We start with extending the standard
multiplication to V∪ {Nil,±∞}:

• a ·Nil = Nil · a = Nil,

• +∞ · a = a ·+∞ = +∞ if a > 0,

• +∞ · a = a ·+∞ = −∞ if a < 0,

• 0 ·+∞ = +∞ · 0 = 0.
• −∞ · a = a ·−∞ = −∞ if a > 0,
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• −∞ · a = a ·−∞ = +∞ if a < 0,

• 0 ·+∞ = +∞ · 0 = 0.
We introduce two order relations in V>0 ∪ {±∞, Nil}:

a 6? b iff a 6 b or b = Nil a 6? b iff a 6 b or a = Nil .

Obviously, we can also introduce operators (that are denoted by min6?

and max6? ; similarly for 6?) for computing minimum and maximum
of an arbitrary, yet finite, number of elements with respect to 6? and
6? orders. We write a <? b to denote a 6? b and a 6= b (and similarly
for <?).

A valuation ρ : Var → V satisfies the weighted hexagon (s, l) if it
fulfils the following conditions:

1. ρ(c−) = −1, ρ(c0) = 0 and ρ(c+) = 1,

2. ∀x,y∈Var ρ(x) 6
? s(x,y) · ρ(y),

3. ∀x,y∈Var ρ(x) 6
? l(x,y) · ρ(y).

A valuation that satisfies (s, l) will be also called a solution of (s, l).
Now one can treat s(x,y) = l(x,y) = Nil as a representation of

an artificial constraint x 6 Nil · y, which is satisfied by each variable
valuation ρ (as ρ(x) 6? Nil · ρ(y) always holds). It is worth mentioning
that we could not use +∞ instead of Nil. For example the constraint
c+ 6 Nil · c− holds in each valuation, while c+ 6 +∞ · c− is not satis-
fiable.

Clearly, a valuation ρ satisfies (s, l) if and only if it is a solution of
the system I represented by (s, l) as above.

We say that (s, l) is satisfiable if there exists at least one valuation ρ
that satisfies it.

3.1 the domain

We may formalise now the domain of weighted hexagons as a tuple
H = 〈H ,th,uh,>h,⊥h,γh,αh, δh,πh,Oh〉. The set of abstract states H
consists of all satisfiable weighted hexagons and a special element ⊥h.
The concretisation function γh is just given by

γh(a) ,

∅ if a = ⊥h,

{ρ | ρ satisfies a} otherwise .
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3.1.1 Domain Operations

The meet a uh b of two weighted hexagons a, b ∈ H corresponds to
a conjunction of systems of constraints Ia and Ib encoded as a and b,
respectively. The system Iauhb entails all inequalities from Ia and Ib .
Thus, as in our representation we keep only constraints with smallest
and largest coefficients, for each pair of variables x,y ∈ Var , sauhb(x,y)
is defined as the minimum of sa(x,y) and sb(x,y). Dually, lauhb(x,y)
is defined as a maximum of la(x,y) and lb(x,y):

sauhb(x,y) , min6?

(
sa(x,y), sb(x,y)

)
and

lauhb(x,y) , max6?

(
la(x,y), lb(x,y)

)
.

(3.3)

Finally, the meet a uh b is defined as (sauhb , lauhb), whenever it is satis-
fiable, and ⊥h otherwise:

a uh b ,


(sauhb , lauhb) if a = (sa , la) and b = (sb , lb)

and γh((sauhb , lauhb)) 6= ∅

⊥h otherwise.

It is not evident how to efficiently check whether γh((sauhb , lauhb)) is
empty. We discuss this problem in detail in Section 3.3.

join The join a th b should encode an alternative of the systems Ia
and Ib , but, as we have already discussed, the exact alternative may, in
general, not exist.

We define the join a th b as a representation of some system I ′ such
that each solution of any of the systems Ia or Ib is also a solution
of I ′ (but we do not require the converse). If a = ⊥h then a th b , b,
symmetrically, if b , ⊥h, then a th b = a. In other cases we define:

ŝ(x,y) , max6?

(
sa(x,y), sb(x,y)

)
and

l̂(x,y) , min6?

(
la(x,y), lb(x,y)

)
.

The pair (ŝ, l̂) may be not a valid weighted hexagon, as it may violate
the property that for every x,y ∈ Var , ŝ(x,y) 6? l̂(x,y). We fix this
problem by putting s(x,y) = l(x,y) , Nil in this case (below we write
(s, l)(x,y) to denote (s(x,y), l(x,y)):

(sathb , lathb)(x,y) ,

(ŝ, l̂)(x,y) if ŝ(x,y) 6? l̂(x,y),

(Nil, Nil) otherwise.
(3.4)
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Note that (sathb , lathb) is always satisfiable. Summing up:

a th b ,


a if b = ⊥h,

b if a = ⊥h,

(sathb , lathb) otherwise.

We have already mentioned that a uh b exactly represents the conjunc-
tion of systems Ia and Ib , while a th b only over-approximates their
alternative. This can be formalised by the following lemma:

Lemma 3.5. For all a, b ∈ H we have that:

1. γh(a uh b) = γh(a)∩ γh(b),

2. γh(a th b) ⊇ γh(a)∪ γh(b).

Proof. A standard case analysis, see Section 3.5.1.

From this lemma it also immediately follows that γh is monotone.

Theorem 3.6. Set H forms a lattice under uh and th operators.

Proof. Direct examination of the associativity, commutativity and ab-
sorption. Details can be found in Section 3.5.2.

It is easy to see that ⊥h is the least element in this lattice. The greatest
element (denoted by >h) is a pair (s>, l>) such that for each x,y ∈ Var ,
if x 6∈ {c−, c0, c+} or y 6∈ {c−, c0, c+}, then (s>, l>)(x,y) = (Nil, Nil).

If V is chosen as R then the lattice 〈H ,th,uh〉 is complete and the
abstraction function αh is uniquely defined as the lower adjoint of the
Galois connection 〈Ctx ,∪,∩〉 −−−→←−−−αh

γh 〈H ,th,uh〉. When V is chosen as
Q, the lattice 〈H ,th,uh〉 is not complete and, in general, there is no
best abstraction αh, but we can still work in the concretisation-based
variant of abstract interpretation (see Section 1.2.8).

widening The widening a Oh b preserves only these constraints
from a that are not relaxed in b:

a Oh b ,


(saOhb , laOhb) if a = (sa , la) and b = (sb , lb)

a if b = ⊥h,

b otherwise,

where for every x,y ∈ Var :
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• if sb(x,y) 6? sa(x,y) and la(x,y) 6? lb(x,y) then:

saOhb(x,y) , sa(x,y) and laOhb(x,y) , la(x,y) .

• saOhb(x,y) , laOhb(x,y) , Nil otherwise.

Theorem 3.7. The Oh operator defined above meets the definition of a widen-
ing operator presented in Section 1.2.4.

Proof. For the proof, refer to Section 3.5.3.

3.1.2 Transfer Function

We present now the transfer function δh for all types of instructions. To
define δh(I, a) we use the following (self-explanatory, we hope) syntax

def FI
δh(I, a) = FI(a)

where def FI denotes a definition of an auxiliary function FI.
The definition for a constant-to-variable assignment (Figure 3.5)

consists of three cases, depending on the sign of the constant. Basically,
when processing an assignment w← a, all constraints that mention w
are invalidated and two new constraints (binding w with one of the
artificial variables c−, c0 or c+) are added.

In the transfer rule for a variable-to-variable assignment w ← u

(Figure 3.6) we add for each variable x ∈ Var constraints w 6 a · x and
x 6 b ·w, whenever there was u 6 a · x and x 6 b · u.

In the case of the unary minus w ← −u, where u,w ∈ Var , (Fig-
ure 3.7) only constraints binding w with the artificial variables c−, c0

and c+ can be deduced. We do not admit negative coefficients, hence
no constraint binding w and u can be inferred.

The key observation in the definition of a transfer rule for the binary
plus w ← u+ v (Figure 3.8) is that for each variable x ∈ Var , if there
are constraints u 6 a · x and v 6 b · x, then a new constraint w 6
(a+ b) · x can be added. Moreover, if there are inequalities x 6 a · u
and x 6 b · v, then (assuming a · b > 0) 1

a · x 6 u and 1
b · x 6 v, thus

w = u+ v > ( 1a +
1
b) · x =

a+b
ab · x, which is equivalent to x 6 ab

a+b ·w.
The definition of the rule for the binary minus can be justified in

a very similar manner. If we have two inequalities u 6 a · x and
x 6 b · v (which is equivalent to v > 1

b · x, if b > 0) we have that
w 6 a · x− 1

b · x =
ab−1
b · x.
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(
F(f)

)
(x,y) ,



f(x,y) if w 6∈ {x,y},

a if x = w,y = c+,

1/a if x = c+,y = w,

Nil otherwise
δh

(
w← a, (s, l)

)
=
(
F(s), F(l)

) a > 0

(a)

(
F(f)

)
(x,y) ,



f(x,y) if w 6∈ {x,y},

|a| if x = w,y = c−,

|1/a| if x = c−,y = w,

Nil otherwise
δh

(
w← a, (s, l)

)
=
(
F(s), F(l)

) a < 0

(b)

(
F(f)

)
(x,y) ,



f(x,y) if w 6∈ {x,y},

1 if x = w,y = c0,

1 if x = c0,y = w,

Nil otherwise
δh

(
w← a, (s, l)

)
=
(
F(s), F(l)

) a = 0

(c)

Figure 3.5: Transfer rule for a constant-to-variable assignment

(
F(f)

)
(x,y) ,



f(x,y) if w 6∈ {x,y},

f(u,y) if x = w,y 6= u,

f(x,u) if y = w, x 6= u,

1 if (x,y) ∈ {(w,u), (u,w), (w,w)}
δh

(
w← u, (s, l)

)
=
(
F(s), F(l)

)
Figure 3.6: Transfer rule for variable-to-variable assignment
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(
F(f)

)
(x,y) ,



f(x,y) if w 6∈ {x,y},
1

l(c−,u) if x = w,y = c+, 0 <? l(c−,u),
1

l(u,c−) if x = c+,y = w, 0 <? l(u, c−),
1

s(u,c+) if x = c−,y = w, 0 <? s(u, c+),
1

s(c+,u) if x = w,y = c−, 0 <? s(c+,u),

f(u, c0) if x = c0,y = w,

f(c0,u) if x = w,y = c0,

Nil otherwise
δh

(
w← −u, (s, l)

)
=
(
F(s), F(l)

)
Figure 3.7: Transfer rule for unary minus

(
F(f)

)
(x,y) ,



f(x,y) if w 6∈ {x,y},

1 if x = y = w,

f(u,y) + f(v,y) if x = w, Nil 6∈ {f(u,y), f(v,y)},
f(x,u)·f(x,v)
f(x,u)+f(x,v) if y = w∧Nil 6∈ {f(x,u), f(v, x)}

∧ f(x,u) · f(x, v) 6= 0,

Nil otherwise
δh

(
w← u+ v, (s, l)

)
=
(
F(s), F(l)

)

(
F(f)

)
(x,y) ,



f(x,y) w 6∈ {x,y},

1 x = y = w,
f(u,y)·f(y,v)−1

f(y,v) x = w∧Nil 6∈ {f(u,y), f(y, v)}

∧ f(u,y) · f(y, v) > 1,
f(x,u)

1−f(x,u)·f(v,x) y = w∧Nil 6∈ {f(x,u), f(v, x)}

∧ f(x,u) · f(v, x) < 1,

Nil otherwise
δh

(
w← u− v, (s, l)

)
=
(
F(s), F(l)

)
Figure 3.8: Transfer rules for binary plus and minus
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sTrue(x,y) =

s(x,y) if x 6= u,y 6= w,

min6?(s(u,w), 1) otherwise

lTrue(x,y) =

l(x,y) if x 6= u,y 6= w,

max6?(l(u,w), 1) otherwise

sFalse(x,y) =

s(x,y) if x 6= w,y 6= u,

min6?(s(w,u), 1) otherwise

lFalse(x,y) =

l(x,y) if x 6= w,y 6= u,

max6?(l(w,u), 1) otherwise

πh

(
u 6 w, (s, l)

)
=
(
(sTrue, lTrue), (sFalse, lFalse)

)
Figure 3.10: Abstract semantics of a boolean predicate u 6 w

Let us explain the transfer rule for multiplicationw← u ·v presented
in Figure 3.9. For the given weighted hexagon (s, l) and a variable
x ∈ Var , m(x, s) (respectively m(x, l)) denotes the lower bound of
the interval constraints for x encoded in s (respectively in l). Dually
M(x, s) (resp. M(x, l)) denotes the upper bound of the interval for x
in s (resp. in l).

Using these auxiliary functions we compute the interval constraints
for w (denoted by mw(s), Mw(s), mw(l) and Mw(l)).

In the definition of (F(f))(x,y) the first three cases encode the previ-
ously computed lower interval bound for w. Similarly, the next three
cases encode the upper interval bound for w.

If at least one of the variables (say u) is positive, then w = u · v is
equivalent to v = 1

u ·w, which yields hexagonal constraints on (v,w)
and (w, v), i.e. if 0 < m(u, s) 6 u 6M(u, s), then w 6M(u, s) · v and
v 6 1

m(u,s) ·w (and the same for m(u, l) and M(u, l)). Additionally,
if v 6 c · z, then w 6 M(u, s) · c · z, which explains the seventh and
eighth cases of the definition of F(f).

All other constraints that involve w are invalidated and replaced by
constraints inferred as a transitive closure of constraints not affected
by the multiplication and those described above. The algorithm for
computing the transitive closure is presented in detail in Section 3.3.
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Figure 3.11: Weighted hexagon before (a) and after (b) assignmentw← w+k;
the dashed shape represents the exact result of the assignment.

3.1.3 Abstract Semantics of Boolean Predicates

We show now how the boolean predicate u 6 w (where u,w ∈ Var ) is
interpreted in the domain of weighted hexagons, i.e. we provide the
definition of πh(u 6 w, (s, l)) =

(
(sTrue, lTrue), (sFalse, lFalse)

)
. Intuitively,

(sTrue, lTrue) represents the hexagon (s, l) with an additional constraint
u 6 w. If there was no constraint on (u,w) in (s, l), then u 6 w is
just added. In the other case the stronger of the existing constraint
and u 6 w is kept. Similarly, (sFalse, lFalse) represents (s, l) with w 6 u
added (which over-approximates ¬(u 6 w)). The detailed definition is
presented in Figure 3.10.

If (sTrue, lTrue) (or (sFalse, lFalse)) is not satisfiable, it is replaced by ⊥h

(and the respective branch of the execution is discarded). An algorithm
to determine the satisfiability of a pair of functions (s, l) is presented
in Section 3.3.

The above arguments can be summarised by the following theorem:

Theorem 3.8. The transfer function δh and abstract semantics of boolean
predicates πh are a sound abstraction of the static transfer function

−→
T defined

in Section 1.2.2.

3.1.4 Precision of the Transfer Function

In the domain of weighted hexagons it is often not possible to provide
exact transfer rules. We demonstrate this issue on a (degenerated)
example of a binary plus, namely onw← w+k, wherew ∈ Var , k ∈ V

and k 6= 0 (which is equivalent to w ← w+ x, where w, x ∈ Var and
x 6 k and k 6 x— the two inequalities can be encoded as constraints
between x and one of the special variables c−, c0, c+). The exact result of
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Figure 3.12: Weighted hexagon before (a) and after (b) assignment w← k ·w

such an assignment (marked in Figure 3.11 as a dashed shape) cannot
be represented as a weighed hexagon. Thus, δh(w ← w + k, (s, l))
only over-approximates the exact result, as it is shown in Figure 3.11

using the grey polygon. Indeed, after the assignment, the constraint on
(w,u) is described as s ′(w,u) = s(w,u) + s(x,u) (where x denotes the
variable constantly equal to k). It is now easy to check that s ′(w,u) =
s(w,u) + k

d (where d is the maximum value of the variable u, as in
Figure 3.11), hence it is equal to the one depicted in Figure 3.11 (b).
In the same manner one could justify all other constraints after this
assignment.

Similar problems arise in all abstract domains. For example, in the
domain of octagons, even the simplest multiplication w ← k ·w for
w ∈ Var and k ∈ V>0 cannot be handled exactly, while in the weighted
hexagons the transfer function δh defined as in Figure 3.9 introduces
no loss of precision (Figure 3.12). This fact follows directly from the
seventh and eighth cases of the definition of F(f) in Figure 3.9.

3.1.5 Variable Introduction and Elimination

Both the variable introduction and elimination are straightforward. Let
(s, l) ∈ H (V). The elimination is defined as

(s, l)↓v , (s|(V\{v})×(V\{v}), l|(V\{v})×(V\{v})) .

Elimination defined in this way may loose some information that
is entailed by (s, l). Using the transitive closure algorithm for (s, l)
presented in Section 3.3 one can define the exact elimination. Let
(s∗, l∗) denote the closure of (s, l):

(s, l)↓v , ((s∗)|(V\{v})×(V\{v}), (l
∗)|(V\{v})×(V\{v})) .
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The introduction puts Nil on s(x,y) and l(x,y) whenever x or y is
equal to the introduced variable v:

(s, l)↑v(x,y) ,

(s(x,y), l(x,y)) if v 6∈ {x,y},

(Nil, Nil) otherwise.

We do not allow the elimination of any of the special variables c−, c0

or c+.

3.2 graph model

We have defined a weighted hexagon as a pair of functions (s, l) ∈ H
that represent a system of hexagonal constraints I. It is not clear how to
efficiently implement the domain using such representation of abstract
states.

We present now another convenient way to represent hexagonal
constraints which uses (weighted and directed) graphs. In this case,
each vertex corresponds to a variable, while each edge represents a con-
straint between the two corresponding variables. A weight attached to
an edge is equal to the coefficient in the constraint.

3.2.1 Graphs

We start by introducing some basic graph terminology. A directed graph
(a digraph) is a pair G = (V,E), where V is some finite set and E ⊆ V×V.
The elements of V are called vertices, while elements of E are referred
to as edges. We assume that the set V is linearly ordered. A non-empty
sequence of vertices p = 〈v0, . . . , vk〉 for k > 0 is called a path if for
each i ∈ {0, . . . ,k− 1} (vi, vi+1) ∈ E. A path p has type u v (we write
p : u v), if p = 〈u, . . . , v〉. A path p : u  v is simple if each vertex
appears in p at most once. A path c : u  u is called a cycle. A cycle
c : u  u is simple, if the only repeated vertex is u (and it occurs
only as the first and last vertex in c). Simple paths and circles will be
denoted as p : u •

 v and c : u •
 u, respectively.

Let S be some set. We say that an algebraic structure 〈S,+,000〉 is
a monoid if

1. for each a,b ∈ S a+ b ∈ S,

2. + is associative, i.e. for each a,b, c ∈ S, (a+ b) + c = a+ (b+ c),

3. a+000 = 000+ a = a.
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We say that 〈S,+, ·,000,111〉 is a semiring if

1. 〈S,+,000〉 and 〈S, ·,111〉 are monoids,

2. a · 000 = 000 · a = 000 for each a ∈ S,

3. the + operation is commutative and idempotent,

4. · distributes over +, i.e. a · (b+ c) = a · b+ a · c and (a+ b) · c =
a · c+ b · c.

We say that 〈S,+, ·,000,111,Σ〉 is a closed semiring if 〈S,+, ·,000,111〉 is a semir-
ing and the summation operation Σ : P(S) → S obeys the following
properties:

• Σ∅ = 000,

• Σ{a} = a for each a ∈ S,

• ΣS1 + ΣS2 = Σ(S1 ∪ S2),

• Σ{ΣSi | i ∈ I} = Σ(
⋃
i∈I Si),

• ΣS1 · ΣS2 = Σ{a1 · a2 | a1 ∈ S1,a2 ∈ S2}.

Let 〈S,+, ·,000,111,Σ〉 be a closed semiring. A closure of a ∈ S (denoted by
a∗) is defined as Σ{ai | i ∈N}, where a0 , 111 and ai , a · ai−1.

A weighted digraph is a triple 〈V,E,ω〉 such that V and E are vertices
and edges as above and ω : V× V → S is a weight function. A weight
ΠG of a (finite) path p = 〈v0, v1 . . . , vk〉 is given by

ΠG(p) ,


111 if k = 0,

ω(v0, v1) if k = 1,

ω(v0, v1) ·ΠG(〈v1, . . . vk〉) if k > 1.

A standard way to represent a weighted graph, is to keep its adjacency
matrix, that is a two-dimensional array with the number of rows and
columns equal to the number of vertices. The entry in the i-th row and
j-th column is equal to the weight of the edge between vi and vj (and
Nil when no such edge exists).

We present now the generalised transitive closure algorithm [1]. It is
a generalisation of the well-known Floyd-Warshall algorithm [9] for
finding shortest paths between all pairs of vertices and follows the
ideas of Kleene [45] and McNaughton-Yamada [51] algorithms.

Execute the following steps:
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1. Ω0(vi, vj) ,

111+ω(vi, vj) if vi = vj,

ω(vi, vj) otherwise.

2. for each k ∈ {1, . . . , |V|}, let Ωk(vi, vj) be

Ωk−1(vi, vj) +Ωk−1(vi, vk) ·
(
Ωk−1(vk, vk)

)∗ ·Ωk−1(vk, vj),

3. Ω , Ω|V|.

It is easy to see that this algorithm performs O(|V|3) steps (assuming
that the +, ·, ∗ operations can be performed in the semiring in a constant
time). We will refer to this algorithm as generalised transitive closure
algorithm.

The computed output Ω : V × V → S of the algorithm is equal
to Ω(u, v) , Σ{ΠG(p) | p : u v}. Depending on the choice of the
semiring, Ω can represent for instance transitive closure of the graph
(i.e. Ω(u, v) = True if and only if there is a path p : u  v), or the
shortest paths between each two vertices.

3.2.2 Graph Encoding of a Weighted Hexagon

A weighted hexagon (s, l) can be encoded as a pair of weighted di-
graphs. We choose the set of vertices V as the set of variables Var (we
will use the notions of variables and vertices interchangeably). A pair
(x,y) ∈ Var × Var is in E if and only if s(x,y) 6= Nil.

The weighted hexagon (s, l) is now represented as weighted di-
graphs Gs = (V,E, s) and Gl = (V,E, l). In the former we use a closed
semiring Ss = 〈V>0 ∪ {Nil,+∞}, inf6? , ·, Nil, 1, inf6?〉. In the latter we
use Sl = 〈V>0 ∪ {Nil,+∞}, sup6?

, ·, Nil, 1, sup6?
〉. The closure a∗ in Ss

and b∗ in Sl are equal to

a∗ =

1 if 1 6? a,

0 otherwise
b∗ =

1 if b 6? 1

+∞ otherwise.

Now, the result Ωs of the generalised transitive closure algorithm
applied to graph Gs for u, v ∈ V is equal to the infimum of weights
of all paths p : u v. Dually, the result Ωl(u, v) of the algorithm for
graph Gl is equal to the supremum of weights of all paths p : u v.

We often call the weight of a path in Gs (or in Gl) the product length
of this path.

A typical pair of graphs Gs and Gl is depicted in Figure 3.13 (the
inequalities among c−, c0 and c+ are omitted for clarity).



56 weighted hexagons



x 6 1
2y

x 6 2y

x 6 5

−3 6 x

0 6 z

(a)

x

y

c+c−

z

c0

1
2 5

1
3

1

(b)

x

y

c+c−

z

c0

2
5

1
3

1

(c)

Figure 3.13: A system of inequalities (a) and its graph representation Gs (b)
and Gl (c).

In graph Gs (or, equivalently, in Gl) a variable u is positive if there
exists in E a path p : c+  u with weight ΠGs(p) > 0. Similarly u is
called negative if there is a path p : u c− with weight ΠGl(p) > 0.
Intuitively, if a variable u ∈ V is positive, all valuations that satisfy
the weighted hexagon (s, l) must assign to the variable u a positive
value. Likewise, all such valuations must assign a negative value to
each negative variable.

3.3 satisfiability testing and normal form

It may happen that multiple weighted hexagons have the same set
of satisfying valuations. We present an algorithm that computes their
normal form defined as the smallest (with respect to the lattice order
in 〈H ,uh,th〉) weighted hexagon that has the same set of solutions
as the given one. The algorithm also determines whether the given
weighted hexagon is satisfiable or not. We have already observed that
the satisfiability test has to be performed while computing the meet as
well as during the interpretation of boolean predicates.

The algorithm, for a weighted hexagon a = (s, l) and the correspond-
ing digraphs Gs,Gl as above, finds the tightest possible constraints
between all pairs of variables. In the graph model, this is achieved by
finding in Gs and Gl paths between all pairs of vertices with smallest
and largest product weights, respectively. This algorithm is based on
the generalised transitive closure algorithm.

If the weighted hexagon (s, l) is not satisfiable, the algorithm re-
turns False. Otherwise it computes a normal form a∗ , (s∗, l∗) that
contains for each two variables x,y ∈ Var the most extreme hexagonal
constraints that are entailed by a.
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Algorithm 1. Execute the following steps:

1. Add to (s, l) trivial constraints (such as c0 6 0 · x or x 6 +∞ · c+)
binding program variables to the artificial c−, c0, c+. To achieve
this, we define (s ′, l ′)(x,y) as:

(
0, max6?(0, l(x,y))

)
if x ∈ {c−, c0}, y 6∈ {c−, c0, c+}(

min6?(+∞, s(x,y)), +∞) if y = c+, x 6∈ {c−, c0, c+}

(s, l)(x,y) otherwise.

2. Find the tightest possible constraints entailed by s and l, using
the generalised transitive closure algorithm in Gs ′ and Gl ′ . Let s ′′

and l ′′ denote the respective outputs.

3. Identify all positive variables P , {x | 0 < s ′′(c+, x)} and negative
variables N , {y | 0 < l ′′(y, c−)}. If P ∩N 6= ∅ or c0 ∈ P or c0 ∈ N,
return False.

4. Find all vertices on cycles c and c̃ with product length ΠGs ′′
(c) <

1 and 1 < ΠGl ′′
(c̃) characterised by: X , {v ∈ Var | s ′′(v, v) = 0}

and Y , {v ∈ Var | l ′′(v, v) = +∞}. If X contains positive variables
or Y contains negative ones, return False.

5. For x such that s ′′(x,y) = 0 for some y, let (s, l)(x, c0) , (0,+∞).

6. Apply the generalised transitive closure algorithm to Gs and
Gl. Let s∗ and l∗ denote the respective outputs. If there exist
s∗(c+, v) = 0 (which corresponds to an inequality 1 6 0 · v) or
l∗(v, c−) = +∞ (that represents v 6 −∞), return False. Otherwise
return True.

In step 1 of Algorithm 1 we add some trivial constraints that must
be included in the normal form, but cannot be found while computing
the standard transitive closure, as they need not be a consequence of
the original inequalities. In step 2 the generalised transitive closure
algorithm is used to infer tightest possible constraints between each
two variables. This step will generate also the diagonal constraints
x 6 1 · x (when no tighter are found). Step 3 allows us to find variables
the value of which must be positive (or negative). In step 4 we check
if there exists a positive variable x and an inequality x 6 a · x where
a < 1 or a negative y and an inequality y 6 b · y where b > 1. Such
inequalities cannot be satisfied. As for the step 5, if the generalised
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transitive closure algorithm yields s ′′(x,y) = 0, then it follows that
x 6 0, hence we add the (tightest possible) constraints on (x, c0). Finally
we propagate the modifications, using the transitive closure algorithm
once more in step 6.

The theorems stated below express the main properties of Algorithm 1.
We start by showing that the computed output (s∗, l∗) is equivalent to
the input (s, l).

Theorem 3.9 (Correctness). If Algorithm 1 returns True, then the computed
output (s∗, l∗) has the same set of satisfying valuations as the input (s, l), i.e
γh((s, l)) = γh((s

∗, l∗)).

Proof. We show that each satisfying valuation of the input (s, l) is also
a satisfying valuation of the normal form and that each solution of the
normal form satisfies the input. Details are postponed to Section 3.5.4

The following theorem shows that Algorithm 1 can be used as
a satisfiability test.

Theorem 3.10 (Satisfiability Test). System I of hexagonal constraints is
satisfiable if and only if Algorithm 1 returns True for the corresponding
weighted hexagon (s, l).

Proof. If I is satisfiable, then no step of Algorithm 1 can return False.
If the algorithm returns True, we construct a valuation ρ using the
computed normal form (s∗, l∗) that satisfies (s, l) by Theorem 3.9.
Details can be found in Section 3.5.5.

Now we can show that the output of Algorithm 1 is indeed a normal
form of all domain elements that have the same set of solutions.

Theorem 3.11 (Normal Form). If (s, l) is satisfiable then
l

h
{c ∈ H | γh(c) = γh((s, l))}

is well defined and equal to (s∗, l∗).

Proof. We show that the constraints in (s∗, l∗) cannot be tightened,
hence (s∗, l∗) vh (s̃, l̃) for each (s̃, l̃) such that γh((s̃, l̃)) = γh((s, l)).
Details can be found in Section 3.5.6.

As we have stated in Lemma 3.5, for each two weighted hexagons
a, b ∈ H , it holds that γh(a)∪γh(b) ⊆ γh(a th b). The following theorem
shows that normalising a and b before performing the join, results in
a smallest weighted hexagon, whose set of solutions over-approximates
γh(a)∪ γh(b):
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Figure 3.14: Normalisation of the result of widening may give a strictly in-
creasing infinite sequence.

Theorem 3.12 (Best Approximation). Normal forms a∗ and b∗ computed
by Algorithm 1 can be used to find the smallest weighted hexagon, whose set
of solutions over-approximates γh(a)∪ γh(b):

γh(a∗ th b∗) = inf⊆{γh(c) | c ∈ H ∧ γh(c) ⊇ γh(a)∪ γh(b)} .

Proof. Given c ∈ H such that γh(c) ⊇ γh(a) ∪ γh(b), we find for each
pair of variables x,y two valuations ρa ∈ γh(a∗) and ρb ∈ γh(b∗) which
ensure that sa∗thb∗(x,y) 6? sc(x,y) (and lc(x,y) 6? la∗thb∗(x,y)). This
means that a∗ th b∗ vh c. Details can be found in Section 3.5.7.

The normalisation should not be applied in the widening, i.e. one
should not replace (saOhb , laOhb) with (saOhb , laOhb)

∗. Figure 3.14 presents
a sequence c0, c1, . . . that generates an infinite increasing sequence
a0, a1, . . . given by a0 , c0 and ai+1 , (ai Oh ai+1)∗. For simplicity, only
a part of the Gs graph is presented (the variables c− and c0 are not
shown). Note that using the widening operator without normalisation,
the sequence a ′ stabilises after the first step (Figure 3.14(e)).

3.4 further remarks

The domain of weighted hexagons is well defined when the set of
numerical values V is chosen as real numbers R. One can use also the
rationals Q, but in this case the lattice 〈H ,th,uh〉 is not complete (as
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〈Q,6〉 is not complete) and the concretisation γh does not determine
a best abstraction. However, we can still work in a weaker formalisation
of the abstract interpretation framework, as discussed in Section 1.2.8.

The domain cannot be used when V is chosen as integers Z. The en-
coding of interval constraints (e.g. x ∈ [5, 10]) immediately results in
a hexagonal constraint with a non-integer coefficient (c+ 6 1

5 · x in our
example). Further, the normalisation algorithm would promote the
non-integer coefficients to other constraints. The proofs of main theor-
ems are not valid when V = Z. For instance, the proof of Theorem 3.10

would not ensure that any existing solution assigns an integer to each
variable.

computational complexity The representation of a system of
hexagonal constraints consists of two two-dimensional matrices, thus
it is quadratic in the number of variables. The most computationally
complex operation is the normalisation. It relies on the generalised
transitive closure algorithm and works in O(|Var |3) time.

negative coefficients We have restricted the possible values
of coefficients to non-negative numbers. The solution we have de-
veloped cannot be applied to arbitrary (possibly negative coefficients).
The crucial observation that it is enough to keep only the two extreme
constraints is not valid in such a case. A more complicated repres-
entation that consists of four constraints (two extreme non-negative
and two extreme negative) for each pair of variables would be ne-
cessary. It is also not possible to run two independent analyses that
use our solution, one for non-negative and the other for non-positive
coefficients. Non-positive coefficients are not closed under the mul-
tiplication (which is essential in the normalisation algorithm). We
have performed some experiments, using a tool to gather statistics on
Java programs [28], which have shown that positive coefficients are
much more often used in real-life programs, thus we have decided
to formally develop the domain only in the form presented in this
chapter.

3.5 proofs

We recall here all theorems and lemmas stated throughout this chapter
and present their proofs.
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3.5.1 Proof of Lemma 3.5

Let us recall the lemma:

Lemma (3.5; recalled). For all a, b ∈ H we have that:

1. γh(a uh b) = γh(a)∩ γh(b),

2. γh(a th b) ⊇ γh(a)∪ γh(b).

Proof. Let us start with the proof of property 1. We first show the in-
clusion γh(a uh b) ⊆ γh(a) ∩ γh(b). This is trivial when a uh b = ⊥h,
so assume that a = (sa , la), b = (sa , lb) with γh((sauhb , lauhb)) 6= ∅,
where sauhb and lauhb are given by (3.3). We take ρ ∈ γh((sauhb , lauhb))

and consider arbitrary x,y ∈ Var . Suppose that sa(x,y) and la(x,y)
are not equal to Nil (the other case is trivial). Then sauhb(x,y) 6= Nil
and lauhb(x,y) 6= Nil. Hence both inequalities ρ(x) 6 sauhb(x,y) · ρ(y)
and ρ(x) 6 lauhb(x,y) · ρ(y) hold. We are to show that also ρ(x) 6
sa(x,y) · ρ(y) and ρ(x) 6 la(x,y) · ρ(y) must be true. Indeed, in case
where 0 6 ρ(y) we have that

ρ(x) 6 sauhb(x,y) · ρ(y) = min6?

(
sa(x,y), sb(x,y)

)
· ρ(y)

6 sa(x,y) · ρ(y) 6 la(x,y) · ρ(y) .

Similarly when ρ(y) 6 0 we conclude that

ρ(x) 6 lauhb(x,y) · ρ(y) = max6?

(
la(x,y), lb(x,y)

)
· ρ(y)

6 la(x,y) · ρ(y) 6 sa(x,y) · ρ(y) .

Therefore ρ ∈ γh(a). By symmetry, we get that ρ ∈ γh(b) as well.
We proceed now with the inclusion γh(a)∩ γh(b) ⊆ γh(a uh b). Sup-

pose that a = (sa , la), b = (sa , lb) (again, the case with a = ⊥h or b = ⊥h

is trivial) and take ρ ∈ γh(a) ∩ γh(b). For a given pair of variables
x,y ∈ Var we consider values of sa(x,y) and sb(x,y). If they are both
Nil then there is no constraint on (x,y) in (sauhb , lauhb).

When sa(x,y) 6= Nil and sb(x,y) = Nil (the case sb(x,y) 6= Nil and
sa(x,y) = Nil is symmetric) then we know that ρ(x) 6 sa(x,y) · ρ(y)
holds. The inequality ρ(x) 6 min6?

(
sa(x,y), sb(x,y)

)
· ρ(y) holds as

well, as min6?(sa(x,y), Nil) = sa(x,y), so ρ satisfies x 6 sauhb(x,y) · y.
If sa(x,y) 6= Nil and sb(x,y) 6= Nil then both ρ(x) 6 sa(x,y) · ρ(y) and

ρ(x) 6 sb(x,y) · ρ(y) hold, hence ρ(x) 6 min6?(sa(x,y), sb(x,y)
)
· ρ(y)

holds as well. Again, this means that ρ satisfies x 6 sauhb(x,y) · y.
Using virtually the same argument we can justify the corresponding

inequalities for lauhb . This completes the proof of γh(a uh b) ⊇ γh(a)∩
γh(b).
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Now we proceed with the proof of property 2. The inclusion is
obvious when one of a or b is ⊥h, so assume that a = (sa , la) and
b = (sb , lb). Let ρ be an arbitrary valuation from γh(a). When for
some x,y ∈ Var we have that max6?

(
sa(x,y), sb(x,y)

)
is greater than

min6?

(
la(x,y), lb(x,y)

)
then sathb(x,y) = lathb(x,y) = Nil (by the

definition (3.4)) and so (sathb , lathb) introduces no constraint on vari-
ables x and y. The same happens when sa and la (or sb and lb) are
equal to Nil on (x,y).

So, assume otherwise: sa(x,y) and la(x,y) are not equal to Nil and
the inequalities

ρ(x) 6 sa(x,y) · ρ(y) and ρ(x) 6 la(x,y) · ρ(y) (3.13)

simultaneously hold. In case where 0 6 ρ(y) we simply have

ρ(x) 6 sa(x,y) · ρ(y) 6 max6?

(
sa(x,y), sb(x,y)

)
· ρ(y)

= sathb(x,y) · ρ(y)

using the first inequality from (3.13). For ρ(y) 6 0 we first note that
sathb(x,y) = max6?

(
sa(x,y), sb(x,y)

)
6 la(x,y) and obtain

ρ(x) 6 la(x,y) · ρ(y) 6 sathb(x,y) · ρ(y)

taking the latter inequality of (3.13). Similar argument settles the
inequality ρ(x) 6 lathb(x,y) · ρ(y) thus proving that ρ ∈ γh(a th b),
hence γh(a) ⊆ γh(a th b).

The same reasoning can be used to justify γh(b) ⊆ γh(a th b).

3.5.2 Proof of Theorem 3.6

We start by recalling the theorem:

Theorem (3.6; recalled). Set H forms a lattice under uh and th operators.

Proof. Clearly, uh and th are uniquely defined and commutative. We
now establish the associativity, beginning with

a uh (b uh c) = (a uh b)uh c for all a, b, c ∈ H . (3.14)

By Lemma 3.5 we have that

γh

(
a uh (b uh c)

)
= γh(a)∩ γh(b uh c) = γh(a)∩ γh(b)∩ γh(c)

= γh(a uh b) ∩ γh(c) = γh

(
(a uh b)uh c

)
.
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Therefore the left-hand side of (3.14) is ⊥h iff the right-hand side is
equal to ⊥h. At this point we can assume that a uh (b uh c) 6= ⊥h and
(a uh b)uh c 6= ⊥h (which implies a uh b 6= ⊥h and b uh c 6= ⊥h). So
neither a, b nor c is ⊥h and we can assume that a = (sa , la), b = (sb , lb)
and c = (sc , lc). With these settings we have the following identity
(we omit variables x,y ∈ Var and write s instead of s(x,y) for sake of
brevity):

sauh(buhc) = min6?

(
sa , sbuhc

)
= min6?

(
sa , min6?(sb , sc)

)
= min6?

(
sa , sb , sc

)
= min6?

(
min6?(sa , sb), sc

)
= s(auhb)uhc .

In the same manner, but using max6? in place of min6? , we can derive
that lauh(buhc) = l(auhb)uhc , completing the proof of (3.14).

Now we are to demonstrate that

a th (b th c) = (a th b)th c for all a, b, c ∈ H . (3.15)

When at least one of a, b, c is ⊥h then the equality is evident. Otherwise,
we have the usual setting a = (sa , la), b = (sb , lb) and c = (sc , lc). If
for some x,y ∈ Var s(x,y) = l(x,y) = Nil for any (s, l) ∈ {a, b, c}, then
also sath(bthc)(x,y) = s(athb)thc(x,y) = Nil by the definition of max6?

and min6? . If none of the above is equal to Nil, consider the the right-
hand side of (3.15). Values of sathb and lathb are given by (3.4) only
if max6?

(
sa , sb

)
6 min6?

(
la , lb) (we omit the obvious applications to

variables x,y here and below for brevity). If additionally

max6?

(
max6?(sa , sb), sc

)
6 min6?

(
min6?(la , lb), lc

)
(3.16)

then

sath(bthc) = max6?

(
max6?(sa , sb), sc

)
= max6?

(
sa , max6?(sb , sc)

)
= s(athb)thc

and similarly lath(bthc) = l(athb)thc . This is because

max6?(sb , sc) 6 max6?

(
sa , max6?(sb , sc)

)
= max6?

(
max6?(sa , sb), sc

)
6 min6?

(
min6?(la , lb), lc

)
= min6?

(
la , min6?(lb , lc)

)
6 min6?(lb , lc) .

Thus sbthc and sath(bthc) are not Nil, but they are given by formulæ
derived from (3.4). This completes the proof when (3.16) holds. Sup-
pose that this is not the case. Then s(athb)thc = Nil. If we had that
sath(bthc) 6= Nil then it would be

max6?(sa , sb , sc) 6 min6?(la , lb , lc) (3.17)
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which immediately implies (3.16) if max6?

(
sa , sb

)
6 min6?

(
la , lb).

A contradiction. The only remaining case is when max6?

(
sa , sb

)
is

greater than min6?

(
la , lb). Then we also have s(athb)thc = Nil and

sath(bthc) 6= Nil would again imply (3.17) — contradiction as well.
We are left with showing the absorption laws, namely

a th (a uh b) = a (3.18)
a uh (a th b) = a (3.19)

for all a, b ∈ H .
If a = ⊥h then both sides of (3.18) are equal to ⊥h as required. If

a uh b = ⊥h, then both sides of (3.18) are equal to a. Similarly for
a = ⊥h or a th b = ⊥h and property (3.19). Thus we can consider
the case where a = (sa , la), b = (sb , lb) and, additionally for (3.18),
a uh b 6= ⊥h. Then for arbitrary variables x and y (again, we do not
write them explicitly)

sath(auhb) = max6?

(
sa , min6?(sa , sb)

)
= sa

and similarly lath(auhb) = min6?

(
la , max6?(la , lb)

)
= la so sath(auhb) 6

lath(auhb) as sa 6 la . This proves (3.18).
It remains to establish (3.19) when a th b 6= ⊥h. If sathb = lathb =

Nil (for some x,y ∈ Var ) then sauh(athb) = min6?(sa , Nil) = sa and
lauh(athb) = la . When sathb and lathb are not Nil then

sauh(athb) = min6?

(
sa , max6?(sa , sb)

)
= sa .

Much the same for lauh(athb). This completes the proof of (3.19).

3.5.3 Proof of Theorem 3.7

Theorem (3.7; recalled). The operator Oh given by

a Oh b ,


(saOhb , laOhb) if a = (sa , la) and b = (sb , lb)

a if b = ⊥h,

b otherwise,

where for any x,y ∈ Var :

• if sb(x,y) 6? sa(x,y) and la(x,y) 6? lb(x,y) then:

saOhb(x,y) = sa(x,y) and laOhb(x,y) = la(x,y) .
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• saOhb(x,y) = laOhb(x,y) = Nil otherwise

meets the requirements imposed on a widening operator in Section 1.2.4.

Proof. First we prove the over-approximation property. For all a, b ∈ H :

a th b vh a Oh b . (3.20)

If a = ⊥h, then both a th b = b and a Oh b = b, thus (3.20) holds.
Similarly, if b = ⊥h then a th b = a Oh b = a. The only case left is when
a 6= ⊥h and b 6= ⊥h. By the definition of th and Lemma 3.5 we also
have a th b 6= ⊥h.

We establish
(a th b)uh (a Oh b) = a th b,

which is equivalent to (3.20). Further analysis of a Oh b for any pair
of variables x and y leads to following cases (we omit the obvious
applications to variables x,y here and below for brevity):

• sa = la = Nil. Then also saOhb = laOhb = Nil so s(athb)uh(aOhb) = sathb
and l(athb)uh(aOhb) = lathb .

• sb = lb = Nil. Then (3.20) follows as in the previous case.

• sa 6= Nil, sb 6= Nil with sb 6 sa and la 6 lb . Thus we can see
that sathb = max6?(sa , sb) = sa and lathb = min6?(la , lb) = la
so sathb 6 lathb . The definition of widening yields saOhb = sa .
Merging these observations together we get

s(athb)uh(aOhb) = min6?(sathb , saOhb)

= min6?(sa , sa) = sa = sathb

and similarly l(athb)uh(aOhb) = la = lathb .

• sa 6= Nil and sb 6= Nil, but either sb 66 sa or la 66 lb . In this case
saOhb = laOhb = Nil, which immediately gives s(athb)uh(aOhb) = sathb
and similarly for l(athb)uh(aOhb).

This proves that Oh over-approximates th.
Now we prove the finite sequence property for Oh. Let us take

an arbitrary infinite sequence of abstract states c0, c1, . . .. We prove that
the sequence a0, a1, . . . defined by a0 , c0 and ai+1 , ai Oh ci+1 is not
strictly increasing. Let us consider the following cases:

• there exists i > 0 such that ci = ⊥h. In this case, by the definition
of Oh we immediately get ai−1 Oh ci = ai−1
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• otherwise, for all i > 0, ci 6= ⊥h. Then, for i > 0, ai 6= ⊥h (ai = ⊥h

iff both ai−1 = ⊥h and ci = ⊥h). Let us consider the pair of
constraints sai(x,y) and lai(x,y) in the step i+ 1 of the widening.
By the definition of Oh there are two possibilities:

– both are replaced by Nil,

– both remain unchanged.

Note that a pair of constraints sai(x,y) = lai(x,y) = Nil is always
preserved by Oh: saiOhci+1(x,y) = laiOhci+1(x,y) = Nil.

This means that for every pair of variables x,y ∈ Var the con-
straints between them may be modified at most once in the whole
widening sequence. As the number of variables is finite (say n),
the total number of constraint modifications is not greater then
n2 and the sequence 〈ai〉 stabilises after at most n2 steps, i.e. there
exists 1 6 i 6 n2 such that ai Oh ci+1 = ai.

We have shown that the finite sequence property holds for Oh. This
completes the proof of Theorem 3.7.

3.5.4 Proof of Theorem 3.9

We prove now Theorem 3.9 that formalises the correctness of Al-
gorithm 1:

Theorem (3.9; recalled). If Algorithm 1 returns True, then the computed
output (s∗, l∗) has the same set of satisfying valuations as the input (s, l), i.e
γh((s, l)) = γh((s

∗, l∗)).

Proof. We show that no step of the algorithm changes the set of solu-
tions of the given weighted hexagon (s, l).

In the first step a new weighted hexagon (s ′, l ′) is constructed, by
adding some trivial constraints to (s, l). Each of the newly added
constraints must be satisfied by each solution of (s, l), thus γh((s, l)) ⊆
γh((s

′, l ′)). For each x,y ∈ Var , (s ′, l ′) satisfies s ′(x,y) 6? s(x,y) and
l(x,y) 6? l

′(x,y). Thus (s ′, l ′) vh (s, l) and using monotonicity of γh

we get γh((s
′, l ′)) ⊆ γh((s, l)).

In step 2 the shortest paths algorithm is used to generate (s ′′, l ′′).
From the correctness of this algorithm, we immediately get that for
each x,y ∈ Var , s ′′(x,y) 6? s ′(x,y) and l ′(x,y) 6? l

′′(x,y), hence
(s ′′, l ′′) vh (s

′, l ′). As γh is monotone, we get γh((s
′′, l ′′)) ⊆ γh((s

′, l ′)).
We are left with showing the inclusion γh((s

′, l ′)) ⊆ γh((s
′′, l ′′)).

Assume that ρ ∈ γh((s
′, l ′)). Consider any pair of variables x,y ∈ Var .
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We show that ρ fulfils the constraint x 6? s ′(x,y) · y. If s ′′(x,y) = Nil,
then there is no constraint in (s ′′, l ′′) on (x,y), hence the property
trivially holds.

Otherwise, ρ fulfils ρ(x) 6? ΠGs(p) · ρ(y) for each p : x y. Thus

ρ(x) 6? inf6?{ΠGs(p) · ρ(y) | p :  y}

which is equivalent to

ρ(x) 6?
(
Σ{ΠGs(p) | p : x y}

)
· ρ(y) .

However, by the definition of s ′′, we get s ′′(x,y) = Σ{ΠGs(p) | p : x 
y}, which finally gives ρ(x) 6? s ′′(x,y) · ρ(y). In the same way one can
show that ρ(x) 6 l ′′(x,y) · ρ(y), thus γh((s

′, l ′)) ⊆ γh(s
′′, l ′′)).

Steps 3 and 4 do not modify (s ′′, l ′′). In step 5 (s, l) is obtained
from (s ′′, l ′′) by defining (s, l)(x, c0) , (0,+∞), if s ′′(x,y) = 0 for
some y ∈ Var . As each valuation ρ of (s ′′, l ′′) satisfies x 6 0 · y, then
ρ(x) 6 0, hence the new constraints on (x, c0) are satisfied as well.
This justifies that γh((s

′′, l ′′)) ⊆ γh((s, l)). Again, it is easy to see that
(s, l) vh (s

′′, l ′′), hence γh((s, l)) ⊆ γh((s
′′, l ′′)) and, in consequence,

γh((s, l)) = γh((s
′′, l ′′)).

Finally, in the last step (s∗, l∗) is obtained as a result of the general-
ised transitive closure algorithm applied to (s, l). The argument used
to establish the correctness of step 2 can be repeated to show that
γh((s, l)) = γh((s

∗, l∗)). This completes the proof of Theorem 3.9.

3.5.5 Proof of Theorem 3.10

Again, let us first restate the theorem:

Theorem (3.10; recalled). I is satisfiable if and only if Algorithm 1 returns
True for the corresponding weighted hexagon (s, l).

Proof. If the algorithm returns True, we can construct a valuation
σ : Var → V that satisfies I in the following way:

• if u was marked in the third step of the algorithm as positive
then σ(u) , 1

s∗(c+,u) (note that s∗(c+,u) > 0),

• if u was marked in the third step of the algorithm as negative
then σ(u) , −l∗(u, c−) (note that l∗(u, c−) < +∞),

• σ(u) , 0 in other cases.
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Each inequality x 6 a · y from the original system I matches one of
the following cases:

• x,y are positive. In this case σ(x) = 1/s∗(c+, x) and σ(y) =

1/s∗(c+,y). Because s∗(c+,y) denotes the smallest product length
of all paths of type c+  y, we have that

s∗(c+,y) 6 a · s∗(c+, x) .

Both s∗(c+, x) > 0 and s∗(c+,y) > 0 (because x,y are positive).
Dividing both sides by s∗(c+, x) · s∗(c+,y) we get:

1

s∗(c+, x)
6 a · 1

s∗(c+,y)
.

Hence σ satisfies the inequality x 6 a · y, that is σ(x) 6 a · σ(y).

• x,y are both negative. Hence σ(x) = −l∗(x, c−) and σ(y) =

−l∗(y, c−). Because l∗(x, c−) denotes the greatest product length
of all paths between x and c−, it holds that

a · l∗(y, c−) 6 l∗(x, c−) .

Multiplying both sides by −1 we get

−l∗(x, c−) 6 a ·
(
−l∗(y, c−)

)
.

and therefore the valuation σ satisfies x 6 a · y.

• In other cases x was not marked as positive and y was not
marked as negative (the case when x is positive and y is negative
is impossible, due to the properties of Algorithm 1). According
to the definition of σ, σ(x) 6 0 and σ(y) > 0. All coefficients
in all inequalities are nonnegative and so valuation σ satisfies
x 6 a · y.

We argue now that if the algorithm returns False, then γh((s, l)) = ∅.
As shown in the proof of Theorem 3.9 in Section 3.5.4, no step of
the algorithm modifies the set of solutions of the considered weighed
hexagon.

The algorithm returns False in the following cases:

• when c0 is marked as positive (step 3). This corresponds to
c+ 6 a · c0, which cannot be satisfied,

• when c0 is marked as negative (step 3). This represents c0 6 a · c−
(for a > 0), which cannot be satisfied,



3.5 proofs 69

• when a variable is positive and negative at once,

• when there exists a cycle c with a product length ΠGs ′
(c) < 1 that

contains a positive variable x— from the properties of the shortest
paths algorithm, it is enough to check s ′′(x, x) = 0 (in step 4).
For each variable x marked as positive and each valuation ρ that
satisfies (s, l), it must hold that ρ(x) > 0. Then the inequality
ρ(x) 6 s ′′(x, x) · ρ(x) cannot be satisfied for s ′′(x, x) < 1, therefore
γh((s

′′, l ′′)) = γh((s
′, l ′)) = γh((s, l)) = ∅,

• when there exists a cycle c̃ with a product length 1 < ΠGl ′
(c̃) that

contains a negative variable. Similar argument as above can be
used to justify γh((s, l)) = ∅.

• The last case, when Algorithm 1 returns False, is when computed
output (s∗, l∗) contains either s∗(c+, v) = 0 (which cannot be satis-
fied, as it encodes c+ 6 0 · v) or l∗(v, c−) = +∞ (which represents
unsatisfiable v 6 −∞).

This completes the proof that if the algorithm returns False, then the
input (s, l) is not satisfiable.

3.5.6 Proof of Theorem 3.11

We start with the following lemma which ensures that the constraints
in the normal form (s∗, l∗) cannot be tightened:

Lemma 3.21. For an output (s∗, l∗) of Algorithm 1 and a pair of variables
x,y ∈ Var one of the following conditions hold:

1. if s∗(x,y) 6= Nil and l∗(x,y) 6= Nil, then

a) for each b < s∗(x,y) there exists a solution of (s∗, l∗) that violates
x 6 b · y and

b) for each c > l∗(x,y) there exists a solution of (s∗, l∗) that violates
x 6 c · y.

2. if s∗(x,y) = l∗(x,y) = Nil, then for each c ∈ V>0 there is a solution
of (s∗, l∗) that violates x 6 c · y.

Proof. Let us start with the first case. We prove only the case 1a, as
the proof of 1b is almost identical. To begin with, observe that if
s∗(x,y) = 0, then 1a is trivial, as there is no b ∈ V>0 such that
b < s∗(x,y). Thus we assume that s∗(x,y) > 0.

Considering the possible markings of x done in Algorithm 1 we
have the following cases:
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i x is marked as negative. In this case s∗(x,y) = 0 for each y ∈ Var ,
(since in step 1 of the algorithm we add s ′(c−,y) = 0) hence there
is no b ∈ V>0 such that b < s∗(x,y), hence 1a holds,

ii x is marked neither as negative nor as positive,

iii x is marked as positive. In this case, let (ŝ, l̂) , (s∗, l∗).

In case of (ii) we transform (s∗, l∗) so that x must be positive, i.e we
construct a weighted hexagon (ŝ, l̂) that is equal to (s∗, l∗) except for
the pair (c+, x). Let M =

s∗(x,y)
s∗(c+,y) , when s∗(c+,y) 6= Nil and M = 1

otherwise (note that thanks to step 6 in Algorithm 1, s∗(c+,y) 6= 0).
If s∗(x, c+) = Nil, then we define

ŝ(c+, x) , max(1,M) and l̂(c+, x) , +∞ .

Otherwise, if s∗(x, c+) = 0, then the situation is identical as in (i)
(thanks to step 5 of Algorithm 1 and the constraint s(c0,y) = 0 added
in step 1). Thus we assume that s∗(x, c+) > 0 and we define

ŝ(c+, x) , max(
1

s∗(x, c+)
,M) and l̂(c+, x) , +∞ .

We have only added some new constraints, hence (ŝ, l̂) vh (s
∗, l∗). It

is easy to see that (ŝ, l̂) is satisfiable. All newly introduced cycles must
contain x and c+, hence their product length cannot be smaller than
ŝ(x, c+) · ŝ(c+, x) > 1 (note that new cycles may occur only if there was
a path p : x c+, thus s∗(x, c+) 6= Nil).

It is also important that the smallest product length of all paths
p : x y in the graph Gŝ is still equal to s∗(x,y). Any path p : x  y

that uses the only one added edge ŝ(c+, x) must clearly contain a cycle
〈x, . . . c+, x〉. But the weight of each such cycle is greater or equal to 1,
by the definition of ŝ(c+, x). Thus, ΠGŝ

(p) > s∗(x,y).
The rest of the proof for cases (ii) and (iii) is identical. We construct

another weighted hexagon (s̃, l̃) that is equal to (ŝ, l̂), except for the
pair (y, x), for which we define

s̃(y, x) ,
1

ŝ(x,y)
and l̃(y, x) , +∞ .

As s̃(y, x) 6? ŝ(y, x) and l̂(y, x) 6? l̃(y, x) and no other constraints
were modified, it holds that (s̃, l̃) vh (ŝ, l̂), thus each solution of (s̃, l̃)
is also a solution of (ŝ, l̂), and in consequence of (s∗, l∗).

All new cycles added in (s̃, l̃) must contain x and y. The product
length of each path p : x y is greater or equal than ŝ(x,y), hence no
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added cycle may have a product length less than 1. This means that
(s̃, l̃) is satisfiable.

We have defined (s̃, l̃) so that each its solution ρ satisfies the equality
x = s̃(x,y) · y (since x 6 s̃(x,y) · y and y 6 1

s̃(x,y) · x) and ρ(x) > 0

and ρ(y) > 0 (because we have added a constraint on (c+, x)). Such ρ
would violate each constraint x 6 b · y for b < s̃(x,y).

This observation, together with the fact that s̃(x,y) = s∗(x,y) and
γh((s̃, l̃)) ⊆ γh((s

∗, l∗)) completes the proof of 1a. An almost identical
reasoning can be used to show 1b.

We are left with the case s∗(x,y) = l∗(x,y) = Nil. Let us assume that
a constraint x 6 c ·y can be added to (s∗, l∗) without modifying the set
of solutions. We proceed in the same way as in the proof of 1a. Only
in the last step, in the definition of (s̃, l̃) we put:

s̃(y, x) ,
1

c+ 1
and l̃(y, x) , +∞ .

We conclude that each solution ρ of (s̃, l̃) satisfies x > (c+ 1) ·y, which
cannot be satisfied together with x 6 c · y (as ρ(x) > 0 and ρ(y) > 0),
hence x 6 c · y cannot be added to (s∗, l∗).

This completes the proof of Lemma 3.21.
Theorem 3.11 is a straightforward consequence of Lemma 3.21:

Theorem (3.11; recalled). If (s, l) is satisfiable then
l

h
{c ∈ H | γh(c) = γh((s, l))}

is well defined and equal to (s∗, l∗).

Let (s ′, l ′) be a weighted hexagon such that γh((s
′, l ′)) = γh((s

∗, l∗)).
Using Lemma 3.21 for each pair of variables x,y ∈ Var we get

• s∗(x,y) 6? s ′(x,y),

• l ′(x,y) 6? l
∗(x,y).

This immediately gives (s∗, l∗)th (s
′, l ′) = (s ′, l ′), i.e. (s∗, l∗) vh (s

′, l ′).
This holds for every element of the set X , {a | γh(a) = γh((s

∗, l∗))}, so
in consequence we get that (s∗, l∗) is the least element of X.

3.5.7 Proof of Theorem 3.12

Let us first recall Theorem 3.12:
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Theorem (3.12; recalled). Normal forms a∗ and b∗ computed by Algorithm 1
can be used to find the smallest weighted hexagon, whose set of solutions
over-approximates γh(a)∪ γh(b):

γh(a∗ th b∗) = inf⊆{γh(c) | c ∈ H ∧ γh(c) ⊇ γh(a)∪ γh(b)} .

Proof. We start with showing the following property:

a∗ th b∗ =
l

h
{c | c ∈ H ∧ γh(c) ⊇ γh(a)∪ γh(b)} . (3.22)

If a∗ = ⊥h or b∗ = ⊥h then the above property is evident. So suppose
that a∗ = (s∗a , l∗a) and b∗ = (s∗b , l∗b). Consider any c ∈ H such that
γh(c) ⊇ γh(a) ∪ γh(b). Clearly c 6= ⊥h, hence we may write c = (sc , lc).
We show now that a∗ th b∗ vh c.

For each pair of variables x,y ∈ Var one of the following cases holds:

• s∗a(x,y) = l∗a(x,y) = Nil or s∗b(x,y) = l∗b(x,y) = Nil. Using a tech-
nique almost identical as in the proof of Lemma 3.21(2), it can be
shown that sc(x,y) = lc(x,y) = Nil,

• s∗a(x,y) > 0 and s∗b(x,y) > 0. Let ρa ∈ γh(a∗) and ρb ∈ γh(b∗) be
chosen so that ρa(x) > 0 and ρa(x) = s

∗
a(x,y) · ρa(y), and dually

ρb(x) > 0 and ρb(x) = s
∗
b(x,y) ·ρb(y) (existence of such valuations

can be shown in the same way as in the proof of Lemma 3.21(1a)).
Note that ρa , ρb ∈ γh(a) ∪ γh(b), hence ρa , ρb ∈ γh(c). It is now
easy to see that sa∗thb∗(x,y) = max(s∗a(x,y), s∗b(x,y)) 6 sc(x,y)
(otherwise either ρa or ρb would violate x 6 sc(x,y) · y),

• exactly one of s∗a(x,y) and s∗b(x,y) is equal to 0 (say s∗a(x,y) = 0).
Using the same argument as above we show that sa∗thb∗(x,y) =
max(0, s∗b(x,y)) 6 sc(x,y),

• s∗a(x,y) = s∗b(x,y) = 0. In this case sa∗thb∗(x,y) = 0 and clearly
0 6 sc(x,y).

Using the same type of reasoning we justify that lc(x,y) 6? la∗thb∗(x,y).
This means that a∗ th b∗ vh c and completes the proof of (3.22).

As γh is monotone, using Theorem 3.9 we have γh(a) ∪ γh(b) =

γh(a∗) ∪ γh(b∗) and consequently, from Lemma 3.5 we get γh(a) ∪
γh(b) ⊆ γh(a∗ th b∗) which together with (3.22) immediately implies
Theorem 3.12.



4
S T R I C T W E I G H T E D H E X A G O N S

The domain of weighted hexagons developed in the previous chapter,
can be used only to model systems of non-strict hexagonal constraints,
such as x 6 a · y, where x,y ∈ Var and a ∈ V>0. However, strict
constraints are in some contexts more likely to be used. For instance,
in many programming languages arrays are indexed starting from
zero. In this case, loops iterating over an array use typically a strict
constraint in the guard, as shown in Figure 4.1.

To prove correctness of the array accesses in the loop body, an invari-
ant i 6 1

2 ·Out.len− 1 is needed. Because both i and Out.len are in-
tegers, the inequality is equivalent to a strict constraint i < 1

2 ·Out.len.
In this chapter we extend the domain of weighted hexagons so that

it can be used to model systems that contain both strict and non-strict
variants of hexagonal constraints.

4.1 systems with strict constraints

We have already observed that to represent systems of standard (i.e.
non-strict) hexagonal constraints, it is sufficient to keep only two
extreme inequalities for each pair of variables. Let us now study some
properties of systems that may contain also strict constraints.

Require array In
Out← new array(2 · In.len)
1 6Out.len 6 2 · In.len∧ 1 6 In.len 6 1

2 ·Out.len

i← 0

while i < In.len do
. . . 0 6 i < 1

2 ·Out.len . . .

Out[2 · i]← In[i]
Out[2 · i + 1]← In[i]
i← i + 1

end while
Figure 4.1: Duplication of an array

73
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x

y
y 6 2x

y 6 1
2x

y < x

Figure 4.2: Keeping only extreme constraints may not be sufficient for systems
containing strict inequalities.

If the system I contains x 6 a · y and x < a · y then the strict
constraint always entails the non-strict one. Hence for the following
system 

x 6 1
2 · y

x < 1
2 · y

x 6 5 · y

x < 5 · y

is equivalent to {x < 1
2 · y, x < 5 · y}. We may say that a strict constraint

is always more "extreme" than a non-strict one with the same coeffi-
cient.

However, in some cases it is not enough to store for each pair of
variables only the extreme constraints. In the example presented in
Figure 4.2 the inequality x < y carries information that cannot be
deduced using only y 6 1

2 · x and y 6 2 · x. In this case the extreme
constraints are non-strict, hence they admit a valuation ρ such that
ρ(x) = ρ(y) = 0, which is not a correct solution for the original system
(as ρ does not fulfil x < y). This problem can be solved by keeping for
each pair of variables x,y ∈ Var , in addition to the extreme constraints,
also information if there exists a strict inequality x < a · y for some
a ∈ V>0.

Each of the extreme constraints can be represented as a pair (a, t) ∈
Constr , (V>0 ∪ {+∞})× Bool , where a is equal to the corresponding
coefficient, while t ∈ Bool is a strictness indicator: t = True if and only
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if the constraint is strict. We equip Constr with the order relations �,
�• and �• defined as:

(a1, t1) �• (a2, t2) iff a1 < a2 or (a1 = a2 and t1 ⇒ t2)

(a1, t1) �• (a2, t2) iff a1 < a2 or (a1 = a2 and t2 ⇒ t1)

a � b iff a �• b and a �• b .

Intuitively, a bullet below the order symbol indicates that a strict
constraint is in this order smaller than a non-strict with the same
coefficient (i.e. (a, True) �• (a, False)). Dually, a bullet above the symbol
means that the order treats strict constraints as greater than their non-
strict counterparts, that is (a, False) �• (a, True).

Each valuation ρ that satisfies two inequalities x 6 a · y and y <
b · z satisfies also their transitive closure x < a · b · z. The resulting
constraint is strict whenever either of the two inequalities was strict.
This motivates the following definition of a multiplication ⊗ : Constr ×
Constr → Constr :

(a1, t1)⊗ (a2, t2) , (a1 · a2, t1 ∨ t2) .

We can encode numerical intervals (both strict and non-strict) as
hexagonal constraints in the same manner as we did in the previ-
ous chapter. Thus, we assume that the three special variables c−, c0

and c+ are contained in Var and that I contains the following trivial
inequalities:{

c− < 0 · x | x ∈ {c−, c0, c+}
}

∪
{
c− < +∞ · x | x ∈ {c0, c+}

}
∪
{
c− 6 1 · c−

}
∪
{
c0 6 0 · x | x ∈ {c−, c0, c+}

}
∪
{
c0 6 +∞ · c0, c0 < +∞ · c+}

∪
{
c+ 6 1 · c+, c+ < +∞ · c+} .

We can now represent the extreme (smallest and largest) constraints
as two functions s, l : Var × Var → Constr ∪ {Nil} that are defined as:

s(x,y) , min�•
{
(a, strict(C)) | x C a · y is in I

}
l(x,y) , max�•

{
(a, strict(C)) | x C a · y is in I

} (4.1)

where C denotes < or 6 and strict(C) is True if and only if C is <.
We introduce also an additional function e : Var × Var → Bool ∪ {Nil}

(e stands for "evidence") to mark that there exists a strict inequality
between a pair of variables:

e(x,y) , True iff inequality x < a · y is in I for some a ∈ V>0 .
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As in the standard weighted hexagons, when there is no constraint
between variables x and y, all s, l and e are equal to Nil.

For each order v ∈ {�,�•,�•} we define the following orders on
Constr ∪ {Nil}:

a v? b iff a = Nil or a 6= Nil, b 6= Nil, a v b

a v? b iff b = Nil or a 6= Nil, b 6= Nil, a v b .

Additionally, the orders �, �• and �• are lifted to Constr ∪ {Nil}, by
putting Nil v Nil for each v ∈ {�,�•,�•} .

The operators for computing minimum and maximum for arbitrary,
yet finite, number of elements, with respect to these orders are defined
in a standard way.

The multiplication⊗ is extended to Constr ∪ {Nil} by a⊗Nil = Nil⊗ a =

Nil.
If for some pair of variables x,y ∈ Var (at least) one of the extreme

constraints is strict, then clearly e(x,y) = True. Additionally, for each
x,y ∈ Var it holds s(x,y) � l(x,y). Any triple (s, l, e) that encodes
some system I (thus, satisfies the above well-formedness conditions) will
be called a strict weighted hexagon.

As we admit both booleans and Nil as valid values of the function e,
we extend the standard boolean operators � ∈ {∧,∨} to �?, �? : (Bool ∪
{Nil})2 → Bool ∪ {Nil} by:

t1 �? t2 ,

Nil if t1 = Nil or t2 = Nil

t1 � t2 otherwise

and dually

t1 �? t2 ,


t1 if t2 = Nil

t2 if t1 = Nil

t1 � t2 otherwise .

We can formalise now when a valuation ρ satisfies the strict weighted
hexagon (s, l, e). We say that ρ satisfies a function f ∈ {s, l} if it fulfils
the following conditions:

1. ρ(c−) = −1, ρ(c0) = 0, ρ(c+) = 1 and

2. for each x,y ∈ Var one of the following cases holds:

• f(x,y) = Nil or

• f(x,y) = (a, True) and ρ(x) < a · ρ(y) or
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• f(x,y) = (a, False) and ρ(x) 6 a · ρ(y).

Similarly, we say that ρ satisfies e : Var × Var → Bool ∪ {Nil} if

1. ρ(c−) = −1, ρ(c0) = 0, ρ(c+) = 1 and

2. for each x,y ∈ Var , if e(x,y) = True then ρ(x) 6= 0 or ρ(y) 6= 0.

Finally, ρ satisfies (s, l, e) if and only if it simultaneously satisfies s,
l and e.

The correctness of representation defined in such a way is expressed
by the following fact:

Fact. A valuation ρ satisfies (s, l, e) if and only if it is a solution of the
system I represented by (s, l, e).

4.2 domain definition

The compact representation of systems of (strict and non-strict) hexagonal
constraints described above will be used now to build the abstract do-
main of strict weighted hexagons

SH = 〈SH ,tsh,ush,>sh,⊥sh,γsh,αsh, δsh,πsh,Osh〉 .

The set of abstract states SH consists of all satisfiable strict weighted
hexagons and one special element ⊥sh with the concretisation γsh

defined in the standard way:

γsh(a) ,

∅ if a = ⊥sh,

{ρ | ρ satisfies a} otherwise.

meet The meet a ush b corresponds to the conjunction Iaushb of
the systems Ia and Ib encoded as a and b (recall that a conjunction is
just a union Ia ∪ Ib), thus it should satisfy all constraints from a and
b. In the components s and l we select the more extreme constraints.
The conjunction Iaushb contains some strict inequality between a pair
of variables, whenever any of Ia or Ib contained. Clearly, if a = ⊥sh or
b = ⊥sh, also the meet a ush b is equal to ⊥sh. Otherwise we can define
a triple (s̃, l̃, ẽ):

s̃(x,y) , min�?
•

(
sa(x,y), sb(x,y)

)
,

l̃(x,y) , max�•?
(
la(x,y), lb(x,y)

)
and

ẽ(x,y) , ea(x,y)∨? eb(x,y) .
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Finally, we define the meet as

a ush b ,

(s̃, l̃, ẽ) if a 6= ⊥sh, b 6= ⊥sh,γsh((s̃, l̃, ẽ)) 6= ∅,

⊥sh otherwise .

We can state now the following lemma about the meet:

Lemma 4.2. For all a, b ∈ SH , γsh(a)∩ γsh(b) = γsh(a ush b).

Proof. The proof is essentially the same as in case of Lemma 3.5(1). We
omit the details.

join The join a tsh b is designed as an over-approximation of the
alternative of Ia and Ib . If a = ⊥sh then a tsh b , b; dually if b = ⊥sh,
then a tsh b , a. Otherwise, we may assume that a = (sa , la , ea) and
b = (sb , lb , eb) and define a triple (s̃, l̃, ẽ) as the weaker constraints from
a and b, for every x,y ∈ Var :

s̃(x,y) , max�?
•

(
sa(x,y), sb(x,y)

)
,

l̃(x,y) , min�•?
(
la(x,y), lb(x,y)

)
and

ẽ(x,y) , eb(x,y)∧? eb(x,y) .

However, (s̃, l̃, ẽ) need not be a valid strict weighted hexagon, as it
may violate the well-formedness conditions. It may happen that for
some x,y ∈ Var the requirement s̃(x,y) � l̃(x,y) is violated. In this
case all constraints on (x,y) must be dropped. It may also happen
that one of the extreme constraints (say s̃(x,y)) is strict (i.e. it is equal
to (a, True)), while ẽ(x,y) = False. In this case, we restore the well-
formedness property by relaxing the strict constraint (a, True) to its
non-strict counterpart (a, False):

(s, l, e)(x,y) ,



(Nil, Nil, Nil) if ¬s̃(x,y) � l̃(x,y),(
(a, t1 ∧ t), (b, t2 ∧ t), t

)
if (s̃, l̃, ẽ)(x,y) =

=
(
(a, t1), (b, t2), t

)
,

(s̃, l̃, ẽ)(x,y) otherwise.
(4.3)

It is now easy to check that (s, l, e) is a valid strict weighted hexagon
and that γsh((s, l, e)) 6= ∅ (we have assumed that both a and b are
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satisfiable and (s, l, e) is defined by taking less restrictive constraints
from a and b). This allows us to define the join a tsh b as

a tsh b ,


a if b = ⊥sh,

b if a = ⊥sh,

(s, l, e) otherwise.

The join a tsh b over-approximates the alternative of systems Ia and Ib .
This fact is formalised by the following lemma:

Lemma 4.4. For all a, b ∈ SH , γsh(a)∪ γsh(b) ⊆ γsh(a tsh b).

Proof. The proof is essentially the same as in the case of Lemma 3.5(2).
We skip here the details.

Theorem 4.5. Set SH forms a lattice under ush and tsh operators.

Proof. Direct examination of the required properties. Details can be
found in Section 4.4.1.

The special element ⊥sh is the least element in this lattice, while >sh

equal to λx,y.(Nil, Nil, Nil) is the top. The lattice is complete, whenever
〈V>0,6〉 is complete. In this case the abstraction function αsh is uniquely
defined by γsh as the lower adjoint of the Galois connection 〈Ctx ,∪,∩〉 −−−−→←−−−−

αsh

γsh

〈SH ,tsh,ush〉.

widening The domain of standard weighed hexagons has infinite
height. Since each standard weighted hexagon can be monotonically
encoded as a strict weighted hexagon, it immediately means that
the domain of strict weighted hexagons also contains infinite strictly
increasing sequences. Thus, a widening operator Osh : SH × SH → SH
must be introduced. It is defined in the same manner as in the standard
weighted hexagons, namely we preserve only the weaker constraints
from the first argument:

a Osh b ,


(s̃, l̃, ẽ) if a = (sa , la , ea) and b = (sb , lb , eb),

a if b = ⊥sh,

b otherwise,

where for any x,y ∈ Var :

• if sb(x,y) �?
• sa(x,y), la(x,y) �•? lb(x,y) and ea(x,y) ⇒ eb(x,y),

then s̃(x,y) , sa(x,y), l̃(x,y) , la(x,y) and ẽ(x,y) , ea(x,y),
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ẽ(x,y) =



e(x,y) if x 6= w,y 6= w,

False if x = y = w,

e(u,y)∨? e(v,y) if x = w,

e(x,u)∨? e(x, v) if y = w.

F(f)(x,y) =



f(x,y) if x 6= w,y 6= w,

(1, False) if x = y = w,

(a+ b, t1 ∨ t2) if x = w, f(u,y) = (a, t1),

f(v,y) = (b, t2),

( a·ba+b , t1 ∨ t2) if y = w, f(x,u) = (a, t1),

f(x, v) = (b, t2),a+ b 6= 0,

Nil otherwise

δ
(
w← u+ v, (s, l, e)

)
= (F(s), F(l), ẽ)

Figure 4.3: Transfer function for a binary plus w← u+ v

• s̃(x,y) = l̃(x,y) = ẽ(x,y) = Nil otherwise.

Theorem 4.6. The operator Osh is a widening operator for the domain SH.

Proof. The proof is almost identical as for the corresponding The-
orem 3.7 in the standard weighted hexagons; we omit the details.

4.2.1 Abstract Transfer Function

The abstract transfer function δsh for the strict weighted hexagons
is a straightforward extension of the transfer function for standard
weighted hexagons presented in Section 3.1.2. We present here (see
Figure 4.3) only the transfer rule for a binary plus: the detailed defin-
ition of δ(w ← u + v, (s, l, e)). The abstract transfer rules for other
statements and the abstract semantics of boolean predicates πsh are
obtained in a similar way from δh and πh given in Section 3.1.2.

4.3 graph representation & normalisation

The lattice operations presented above require a feasible procedure to
check the emptiness of γsh. In this section we present a graph-based
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representation of domain elements that is used in the satisfiability test
and normalisation algorithm.

We represent a strict weighted hexagon (s, l, e) using weighted and
directed graphs. As in the standard domain of weighted hexagons, the
set of vertices V is chosen just as the set of variables Var . The set of
edges E ⊆ V× V consists of these pairs of vertices (u, v), for which
s(u, v) 6= Nil.

A strict weighted hexagon (s, l, e) can be represented as a triple of
graphs Gs = (V,E, s), Gl = (V,E, l) and Ge = (V,E, e). To apply the
generalised transitive closure algorithm introduced in Section 3.2, we
define the following closed semirings:

1. 〈Constr ∪ {Nil}, inf�?
• ,⊗, Nil, (1, False), inf�?

•〉 for the graph Gs. In this
case the closure a∗ can be computed as:

a∗ =

(0, t) if a = (a, t) and a < 1,

inf�?
•{a, (1, False)} otherwise.

2. 〈Constr ∪ {Nil}, sup�•? ,⊗, Nil, (1, False), sup�•?〉 for the graph Gl, with
a closure a∗ equal to

a∗ =

(+∞, t) if a = (a, t) and 1 < a,

sup�•?{a, (1, False)} otherwise.

3. 〈Bool ∪ {Nil},∨?,∨?, Nil, False,∨?〉 for the graph Ge, where the clos-
ure t∗ is equal to

t∗ = False∨? t .

Using these semirings, the generalised transitive closure algorithm
applied to the graph Gs will compute for each pair of vertices v1, v2 ∈ V

the infimum (with respect to the �?
• order) of weights of all paths

of type v1  v2. Dually, it finds in Gl the supremum (with respect
to �•?) of weights of paths p : v1  v2, for each v1, v2 ∈ V. In case
of Ge the algorithm determines for v1, v2 ∈ V whether there exists
a path p : v1  v2 that contains at least one edge (vi, vj) such that
e(vi, vj) = True.

We say that a path p = 〈v1, v2, ..., vk〉 in E is strict, if I contains some
strict inequality vj < a · vj+1 for any j ∈ {1, ...,k− 1}. In other words, p
is strict if and only if e(vj, vj+1) = True for some j.

We say that a vertex u ∈ V is positive, if in E there exists either a path
p : c+  u or a strict path p : c0  u both such that ΠGs(p) = (a, t) for
0 < a. Similarly, u is negative if there is in E either a path p : u c−

such that ΠGl(p) = (a, t) for 0 < a or a strict path p : u c0.
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4.3.1 Satisfiability Testing and Normal Form

In this section we address the problem of finding one common rep-
resentation for all strict weighted hexagons with the same set of sat-
isfying valuations. The presented normalisation algorithm determ-
ines also whether the given input system (s, l, e) is satisfiable, i.e
if γsh((s, l, e)) 6= ∅. If yes, the algorithm computes the normal form
a∗ = (s∗, l∗, e∗). The principles of this algorithm are similar as in the
standard weighted hexagons, however they differ in some technical
aspects.

Algorithm 2. Execute the following steps:

1. Add to the input system I = (s, l, e) trivial constraints relating
program variables with the three artificial c−, c0 and c+:

I ′ , I∪
{
c− < 0 · x | x ∈ Var \ {c0, c−, c+}

}
∪
{
c0 6 0 · x | x ∈ Var \ {c0, c−, c+}

}
∪
{
x < +∞ · c+ | x ∈ Var \ {c0, c−, c+}

}
Now let (s ′, l ′, e ′) denote the encoding of I ′; (s ′, l ′, e ′) can be
computed from (s, l, e) in an obvious way, similarly as in the first
step of Algorithm 1.

2. Apply the generalised transitive closure algorithm from Sec-
tion 3.2 to the graphs Gs ′ , Gl ′ and Ge ′ . Let s ′′, l ′′ and e ′′ denote
the respective outputs.

3. Find all positive and negative variables, let P , {x | e ′′(c0, x) =
True, s ′′(c0, x) = (a, t),a > 0} and N , {y | e ′′(y, c0) = True}. If
P ∩N 6= ∅ or c0 ∈ P ∪N, return False.

4. Find cycles in (s ′′, l ′′, e ′′) that cannot be satisfied. Let

• X , {v ∈ Var | s ′′(v, v) = (a, t) and (a, t) �?
• (1, True)},

• Y , {v ∈ Var | l ′′(v, v) = (a, t) and (1, True) �•? (a, t)},

If X contains positive variables or Y contains negative ones, return
False.

5. Let Z , {z ∈ Var | ∃y s ′′(z,y) = (0,b)}. For every z ∈ Z let
bz ,

∨
{b | s ′′(z,y) = (0,b)}. We define (s, l, e):

• s(z, c0) , (0,bz),

• l(z, c0) , (+∞,bz)
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• e(z, c0) , bz ∨? e
′′(z, c0)

and (s, l, e)(x,y) , (s ′′, l ′′, e ′′)(x,y) in all other cases.

6. Apply the transitive closure algorithm to Gs, Gl, and Ge and
denote the outputs as s∗, l∗ and e∗, respectively. If any of the
following cases holds:

• s∗(c+, v) = (0, t) (corresponds to 1 6 0 · v or 1 < 0 · v),
• s∗(c0, v) = (0, True) (stands for 0 < 0 · v),
• s∗(v, v) = (1, True) or l∗(v, v) = (1, True) (is equivalent to
v < v),

• l∗(v, c−) = (+∞, t) (represents v 6 −∞ or v < −∞),

• e∗(c0, c0) = True (meaning 0 < 0)

return False. Otherwise return True.

Intuitively, in the first step some trivial constraints (such as c− < 0 · x)
are added. These constraints are always fulfilled, but they would not
be found as a transitive closure of the existing ones. In step 2 we
find the transitive closure of the constraints encoded in graphs Gs ′ ,
Gl ′ and Ge ′ using the generalised transitive closure algorithm. In the
next step we identify variables the value of which must be positive (or
negative) in each solution of the input system. Clearly, if some variable
must be positive and negative at once, the system is not satisfiable.
In step 4 we check if there exists a cycle with weight (a, t) such that
a < 1 (or a strict cycle with weight (a, True) such that a 6 1) that
contains a positive vertex. A satisfiable strict weighted hexagon cannot
contain such a cycle. Similarly, we check if there is an unsatisfiable
cycle with a negative variable. If the transitive closure contains for
some x,y ∈ Var an inequality x 6 0 · y (or x < 0 · y) a constraint x 6 c0

(or x < c0) must be added (step 5). Finally, in step 6 the changes are
propagated (using the generalised transitive closure algorithm again).
If the computed output does not contain an unsatisfiable constraint,
the algorithm returns True.

The correctness of this algorithm is expressed by the following
theorem:

Theorem 4.7. If Algorithm 2 returns True, then the computed normal form
(s∗, l∗, e∗) has the same set of solutions as the input (s, l, e).

Proof. No step of the algorithm modifies the set of solutions of the
input. The argument is essentially the same as for Theorem 3.9 for the
standard weighted hexagons, thus we omit here the details.
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We need to show that the algorithm is a valid satisfiability test for
strict weighted hexagons.

Theorem 4.8. The set of solutions of the given input system (s, l, e) is not
empty if and only if Algorithm 2 returns True.

Proof. We transform the computed Strict Weighted Hexagon (s∗, l∗, e∗)
into a standard Weighted Hexagon (s̃, l̃) that is enclosed in (s∗, l∗, e∗)
and we argue that the satisfiability test defined for standard Weighted
Hexagons returns True for (s̃, l̃). Details can be found in Section 4.4.2.

Theorem 4.9 (Normal Form). If a = (s, l, e) is satisfiable, then (s∗, l∗, e∗)
is equal to l

sh
{c | γsh(c) = γsh(a)} .

Proof. (Sketch) We show that no constraint in the normal form can be
tightened without modifying the set of solutions. In case of non-strict
constraints the proof is identical as in the standard weighed hexagons
(Theorem 3.11).

The proof can be also easily adapted to strict inequalities. The idea is
to show that for a constraint x < a · y and arbitrary constant 0 6 c < a
the inequality x < a · y cannot be replaced by x 6 c · y. We proceed
as in the proof of Lemma 3.21, except of the last step, where we add
a constraint y 6 1

c+ε · x (where c+ ε < a) and argue that the system is
still satisfiable. The added constraint ensures that for each solution ρ
of the system ρ(x) > (c+ ε) · ρ(y), hence ρ would violate x 6 c · y (as
we first ensure that ρ(x) > 0 and ρ(y) > 0).

remarks The discussion concerning possible choices of V for the
standard weighted hexagons (see Section 3.4) holds also for their strict
version. Also the computational complexity is identical. An abstract
state is represented as three matrices of size O(|Var |2) and the domin-
ating normalisation operation is computed in O(|Var |3) time.

4.4 proofs

In this section we present proofs of theorems formulated in this
chapter.

4.4.1 Proof of Theorem 4.5

Let us first recall the theorem:
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Theorem (4.5; recalled). Set SH forms a lattice under ush and tsh operators.

Proof. Both ush and tsh are symmetrical, so their commutativity is
trivial. We show now the associativity of the join, i.e.

(a tsh b)tsh c = a tsh (b tsh c) . (4.10)

If a = ⊥sh, then (a tsh b)tsh c = (⊥sh tsh b)tsh c = b tsh c and also
a tsh (b tsh c) = ⊥sh tsh (b tsh c) = b tsh c, so (4.10) holds. In the same
way one can justify the case b = ⊥sh and c = ⊥sh.

Let us assume that a = (sa , la , ea), b = (sb , lb , eb) and c = (sc , lc , ec).
Let us consider any pair x,y ∈ Var . If sa(x,y) = Nil, then satshb(x,y) =
Nil, thus also s(atshb)tshc(x,y) = Nil. We also immediately get that
satsh(btshc)(x,y) = Nil, hence (4.10) holds. In the same manner we
proceed in the case when sb(x,y) = Nil or sc(x,y) = Nil.

We assume now that Nil 6∈ {sa(x,y), sb(x,y), sc(x,y)}. Consider the
case when satshb(x,y) = Nil. By the definition of the join, this happens
when ¬(max�?

•(sa , sb) � min�•?(la , lb)) (for brevity, we omit the vari-
ables (x,y)). We immediately get s(atshb)tshc = Nil. We show that also
satsh(btshc) = Nil. If sbtshc = Nil, then the property trivially holds. Other-
wise sb �?

• max�?
•(sb , sc) and min�•?(lb , lc) �•? lb and we immediately

get

¬(max�?
•(sa , max�?

•(sb , sc)) � min�•?(la , min�•?(lb , lc))) .

This means that satsh(btshc) = Nil.
Consider now the case when satshb 6= Nil. Assume also that sbtshc 6=

Nil (the other case is symmetrical to the one presented above). Let
us recall that each constraint is a pair (a, t) where a ∈ V>0 is the
coefficient, while t ∈ Bool is a strictness indicator. We focus first on the
coefficients. Let aa , ab and ac denote the coefficients in sa(x,y), sb(x,y)
and sc(x,y), respectively. By the definition of the join, the coefficient
a(atshb)tshc is given by max6?(max6?(aa ,ab),ac). We may use here max
with respect the standard order in V>0. In this case we immediately
get

a(atshb)tshc = max6(max6(aa ,ab),ac)

= max6(aa , max6(ab ,ac)) = aatsh(btshc) .

We show now the equality of the strictness indicators t(atshb)tshc and
tatsh(btshc). If False ∈ {ea , eb , ec}, then using (4.3) we immediately get
t(atshb)tshc = tatsh(btshc) = False. In the other case (4.3) is just an identity
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and s(atshb)tshc = max�?
•(max�?

•(sa , sb), sc). When max�?
•(sa , sb) = sb ,

we get

s(atshb)tshc = max�?
•(max�?

•(sa , sb), sc)

= max�?
•(sb , sc)

= max�?
•(sa , max�?

•(sb , sc)) = satsh(btshc) .

We are left with the case when max�?
•(sa , sb) = sa . If max�?

•(sb , sc) = sb ,
then

s(atshb)tshc = max�?
•(max�?

•(sa , sb), sc)

= max�?
•(sa , sc)

= max�?
•(sa , max�?

•(sb , sc)) = satsh(btshc) .

In the last case, when max�?
•(sb , sc) = sc we also immediately get

s(atshb)tshc = satsh(btshc).
This completes the proof that s(atshb)tshc = satsh(btshc). In the same

fashion we can justify the equality l(atshb)tshc = latsh(btshc). The proof
for e(atshb)tshc = eatsh(btshc) is trivial. This completes the proof of (4.10).

We show now the associativity of the meet, that is

(a ush b)ush c = a ush (b ush c) . (4.11)

Note that γsh((a ush b) ush c) = γsh(a) ∩ γsh(b) ∩ γsh(c) (by Lemma 4.2).
If ⊥sh ∈ {a, b, c, a ush b, b ush c}, then both sides of (4.11) are equal to ⊥sh.
Assume now that ⊥sh 6∈ {a, b, c, a ush b, b ush c}. For every x,y ∈ Var we
have s(aushb)ushc = min�?

•(min�?
•(sa , sb), sc) (again, we do not write the

variables explicitly).
If min�?

•(sa , sb) = sb , then s(aushb)ushc = min�?
•(sb , sc). But in this case

min�?
•(sb , sc) �?

• sa , thus

saush(sbushsc) = min�?
•(sa , min�?

•(sb , sc)) = min�?
•(sb , sc)

and (4.11) holds.
We are left with the case when min�?

•(sa , sb) = sa . This gives us
s(aushb)ushc = min�?

•(sa , sc). We have two cases: min�?
•(sb , sc) = sb

and min�?
•(sb , sc) = sc . In the first case we get s(aushb)ushc = sa and

saush(bushc) = min�?
•(sa , min�?

•(sb , sa)) = min�?
•(sa , sb) = sa , hence (4.11)

holds.
If min�?

•(sb , sc) = sc , then saush(bushc) = min�?
•(sa , min�?

•(sb , sa)) =

min�?
•(sa , sc) and again (4.11) holds.

A very similar argument can be used for the functions l and e. This
ends the proof of the associativity of the meet.
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It remains to prove the absorption properties. We start with

a tsh (a ush b) = a (4.12)

If a = ⊥sh then both sides of (4.12) are equal to ⊥sh. If a ush b = ⊥sh,
then both sides of (4.12) are equal to a.

Assume now that (a ush b) 6= ⊥sh. Again, we present a proof of (4.12)
only for the function s. We consider an arbitrary pair of variables x,y ∈
Var (we do not write them explicitly). If sa = Nil, then satsh(aushb)) = Nil.
If sb = Nil, then satsh(aushb)) = sa . Let sa = (aa , ta) and sb = (ab , tb).

By the definitions of the meet and join we have that aatsh(aushb) =

max(aa , min(aa ,ab)). If min(aa ,ab) = aa , then we immediately get
aatsh(aushb) = max(aa ,aa) = aa . If min(aa ,ab) = ab , then aatsh(aushb) =

max(aa ,ab) = aa .
If ea = False, then ta = False (well-formedness) and tatsh(aushb) = False

by (4.3). If ea = True then eaushb = True and eatsh(aushb) = True, thus
satsh(aushb) = max�?

•(sa , min�?
•(sa , sb)) and the reasoning presented for

the coefficients aa and ab can be extended to constraints sa and sb .
This gives us satsh(saushsb) = sa .

The same argument works for the function l. The argument for the
evidence function e is trivial. This ends the proof of (4.12).

Finally we show the absorption for the meet, that is

a ush (a tsh b) = a . (4.13)

If a = ⊥sh, then both sides of (4.13) are equal to ⊥sh. If b = ⊥sh, then
both sides of (4.13) are equal to a. Let us assume that a 6= ⊥sh and
b 6= ⊥sh. Consider arbitrary x,y ∈ Var (again, they will not be written).
If sa = Nil then satshb = Nil and saush(atshb) = Nil. If sb = Nil then
satshb = Nil and saush(atshb) = sa . Assume now sa 6= Nil, sb 6= Nil and
satshb 6= Nil. First observe that sa �?

• satshb . This is caused by the
fact that satshb �?

• max�?
•(sa , sb). By the definition of the meet we get

saush(atshb) = min�?
•(sa , satshb) = sa .

Again, similar arguments can be used for the two other parts l and
e of a strict weighted hexagon.

This completes the proof of Theorem 4.5.

4.4.2 Proof of Theorem 4.8

Let us first restate the theorem:

Theorem (4.8; recalled). The set of solutions of the given input system
(s, l, e) is not empty if and only if Algorithm 2 returns True.



88 strict weighted hexagons

Proof. Algorithm 2 returns False in the following situations:

• if c0 is marked as positive. This may happen either if there is
a path p : c+  c0 or if there is a strict cycle p : c0  c0. In the
first case an inequality c+ 6 a · c0 can be deduced from the given
input system. This constraint may never be satisfied (since we
require c+ to be always equal to one and c0 to zero). In the second
case an inequality c0 < a · c0, which corresponds to 0 < a · 0 is
entailed,

• if c0 or a positive node was marked as negative. In this case there
is either a path p : c+  c− or a strict path p : c0  c−. The first
case corresponds to an inequality c+ 6 a · c− which cannot be
satisfied for any positive a (as we require that ρ(c+) = 1 and
ρ(c−) = −1 for all valuations ρ). In the second case the system
entails an unsatisfiable constraint c0 < a · c−,

• there is a cycle over positive variables with weight less than 1.
Each valuation ρ must assign to a positive variable v a positive
value. But a cycle with weight less than 1 represents a constraint
v 6 a · v, where a < 1. This may be satisfied only if ρ(v) 6 0,

• there is a cycle over negative variables with weight greater than 1.
The corresponding constraint v 6 b · v for b > 1 may be satisfied
only if ρ(v) > 0.,

• there is a strict cycle with weight equal to 1. The underlying
inequality v < v never holds,

• the computed normal form (s∗, l∗, e∗) contains an unsatisfiable
edge, such as c+ 6 0 · v, c0 < 0 · v, v 6 +∞ · c− or c0 < a · c0.

None of the conditions presented above may be satisfied, hence if
Algorithm 2 returns False, then γsh((s

∗, l∗, e∗)) = ∅.
In all other cases the algorithm returns True. The idea of the proof is

to construct a standard weighted hexagon (s̃, l̃) such that γh((s̃, l̃)) ⊆
γsh((s

∗, l∗, e∗)) (Fig. 4.4) and show that γh((s̃, l̃)) 6= ∅.
Given the output (s∗, l∗, e∗) of Algorithm 2, we construct a weighted

hexagon (s̃, l̃) by replacing each strict inequality by a slightly more
extreme non-strict constraint, e.g. if s∗(x,y) = (a, True) then s̃(x,y) =
ξ · a for some ξ < 1. Similarly, if l∗(x,y) = (b, True), then l̃(x,y) = δ · b
where δ > 1.

We choose the parameters ξ and δ so that the standard Algorithm 1

returns True for (s, l). Let us focus on the smallest constraints stored in
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y

x

Figure 4.4: Weighted Hexagon enclosed in the given Strict Weighted Hexagon

s∗. All cycles s∗(v, v) that are admissible (pass the test in step 4) must
be transformed into admissible cycles in s̃. Let A denote the set of all
strict simple cycles in s∗ with weight greater than 1:

A , {p | p : x
•
 x,ΠGs∗ (p) = (a, True) and a > 1} .

If A is empty, no cycles must be transformed. Otherwise, let b be the
smallest weight of all cycles in A (note that A is finite):

b , inf6{a | p ∈ A and ΠGs∗ (p) = (a, True)} .

Clearly, b > 1. Each cycle in A contains at most n = |Var | strict edges,
hence weight of each such cycle after the transformation cannot be
smaller than ξn · b. This justifies the choice of ξ:

ξ =
n

√
1

b
.

Note that ξ < 1. The transformation does not introduce in s̃ any cycle
over positive variables with weight less than 1:

• no new edges were added, hence no new cycles were introduced,

• cycles without strict edges were not modified,

• each strict simple cycle over positive variables in s∗ is in A. Its

weight is not smaller than ξn · b = ( n
√

1
b)
n · b = 1,

• each strict cycle consists of a finite number of simple cycles (each
of them repeated arbitrary many times), thus its weight is equal
to c = cn11 · c

n2
2 . . . c

nk
k , where each ci denotes a weight of some

simple cycle and ni ∈N. As each ci > 1, thus c > 1.
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It is not enough to replace all strict inequalities from s∗ with their
stronger non-strict counterparts. A non-strict inequality x 6 ξ · a · y
would be satisfied by a pair (0, 0), which is not a correct solution for
x < a · y. If there is no constraint stating that y 6 0, we may transform
it into a positive variable. This is achieved by adding an edge between
c+ and y.

More formally, let us define the set of variables that are greater than
some positive constant:

Pc+ , {y | s̃(c+,y) 6= Nil}.

Let U be a set of variables that are not negative, do not belong to Pc+

and are strictly greater than some other variable:

U , {x | ∃ye∗(y, x) = True, s∗(x, c0) = Nil and x 6∈ Pc+} .

Let m denote the length of the shortest path in s̃ between any
variable from U and Pc+ :

m , inf6?

{{
s̃(x,w) · s̃(w, v) · s̃(v,y) |

x,w ∈ U and v,y ∈ Pc+ and (w,y) ∈ E
}
∪
{
1
}}

.

Note that all s̃(x,w) 6= 0, s̃(w, v) 6= 0 and s̃(v,y) 6= 0 (otherwise x 6 0,
w 6 0 or v 6 0, what cannot happen), thus m > 0. Clearly, m 6 1.

We may add now for each x ∈ U an edge between c+ and x as
follows:

s̃(c+, x) ,
1

m
and l̃(c+, x) , +∞.

These edges may introduce new cycles. But each cycle that uses
a newly added edge s̃(c+, x) must contain also a backward path
p : x c+. Of course c+ ∈ Pc+ , hence ΠGs̃(p) > m. Therefore the
weight of such cycle may never be smaller than 1:

s̃(c+, x) · πGs(p) >
1

m
·m = 1.

Now s∗ is fully transformed into s̃ that contains only more extreme
and non-strict constraints. We have also shown that all cycles in s̃ are
admissible, that is Algorithm 1 will not return False in step 4.

We shall now briefly discuss other situations, in which Algorithm 1

may return False and conclude that none of them may happen for the
function s̃ obtained by the transformation described above:
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1. step 3: variables that became positive do not have paths to c0 and
were not marked as negative. The set of negative variables is not
modified,

2. step 6: weight of each added edge s̃(c+, x) is greater than 0.
Similarly weight s̃(x,y) = ξ · a of each transformed strict edge
s∗(x,y) = (a, True) may equal to zero, only if the original weight
a = 0. Therefore Algorithm 1 applied to (s̃, l̃) cannot introduce
s̃∗(c+, v) = 0 for any v.

The transformation of the function l∗ is very similar. We replace each
strict edge l∗(x,y) = (b, True) with l̃(x,y) = δ · b for some δ > 1. Let B
denote the set of all strict simple cycles in l∗ with weight less than 1:

B , {p | p : x
•
 x,ΠGl∗ (p) = (b, True) and b < 1} .

Let d be the largest weight of all cycles in B:

d , sup6{b | p ∈ B and πGl∗ (p) = (b, True)} .

As the set B is finite, it is easy to see that d < 1. Each cycle in B contains
at most n strict edges, hence its weight after the transformation is at
most δn · d. We may choose δ safely as:

δ , n

√
1

d
.

Similar reasoning as for s∗ may be applied to show that the trans-
formation does not introduce new cycles in l̃ with weight greater
than 1.

In the second step of the transformation, we ensure that for each
x,y ∈ Var , if the input system contained some strict inequality on (x,y)
(i.e, e∗(x,y) = True), then no valuation of the output (s̃, l̃) may admit
ρ(x) = ρ(y) = 0.

We say that a variable x ∈ Var is non-negative in a system I = (s, l, e)
if I entails 0 6 x. As (s̃, l̃) is obtained from a transitive closure (s∗, l∗, e∗)
of (s, l, e), it is easy to see that the set of non-negative variables can be
characterised as:

Q , {x | l̃(c0, x) = +∞} .

Let x,y ∈ Var be arbitrary variables such that e∗(x,y) = True. If x is
non-negative, then y is non-negative as well. It is easy to see that y ∈ U,
hence, while transforming s∗, we have already added a 6 y for some
positive a (thus, for each solution ρ of (s̃, l̃), 0 < a 6 ρ(y)).
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In the other case x is not non-negative. Let Nc− denote the set of
variables smaller than some negative constant, i.e.:

Nc− , {x | l̃(x, c−) 6= Nil} .

If x is not non-negative (i.e. x 6∈ Q) and it is not smaller than a negat-
ive constant (i.e. x 6∈ Nc−), then we add to (s̃, l̃) a constraint x 6 b · c−.
Let T denote the set of variables, for which such a constraint must be
added:

T , {x | ∃ye∗(x,y) = True, x 6∈ Q, x 6∈ Nc−} .

Let M denote the greatest weight of a path in l̃ between any two
variables from Nc− and T:

M , sup6?

{{
l̃(x,w) · l̃(w, v) · l̃(v,y) |

x,w ∈ Nc− , v,y ∈ T, (w, v) ∈ E
}
∪ {1}

}
.

Note that M < +∞ (as c− ∈ Nc− , M = +∞ could only happen if some
of the variables in T was non-negative). Obviously, m > 1. This allows
us to add constraints between each variable x ∈ T and c− as follows:

s̃(x, c−) = 0 and l̃(x, c−) =
1

M
.

The edges in Gl̃ representing the new constraints may introduce
some cycles c = 〈c−, ..., x, c−〉, but each such cycle must contain a back-
ward path p : c−  x. As c− ∈ Nc− and ΠGl̃

(p) 6M, we immediately
get that the weight of such cycle cannot be greater than 1:

ΠGl̃
(c) 6M · 1

M
= 1 .

This ends the definition of the transformation of l∗. The proof that Al-
gorithm 1 may never return False for l̃ obtained by this transformation
is almost identical as for s∗.

We have shown how to obtain a standard weighted hexagon (s̃, l̃)
for the given strict weighted hexagon (s∗, l∗, e∗) so that each constraint
from (s̃, l̃) is not weaker than the corresponding one from (s∗, l∗, e∗),
i.e. each solution of (s̃, l̃) is also a solution of (s∗, l∗, e∗). We have
also proved that Algorithm 1 returns True for (s̃, l̃). This means that
γh((s̃, l̃)) 6= ∅, hence γsh((s

∗, l∗, e∗)) 6= ∅.
This completes the proof of Theorem 4.8.
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O V E RV I E W

We have discussed so far abstract interpretation of programs that
use only numerical variables. However, a majority of applications
use, along with scalar variables, also data structures that can store
collections of objects. In many programming languages containers
such as dictionaries or arrays are available as predefined building
blocks, used by programmers to implement complex systems. This
part of the thesis is devoted to abstract analysis of programs that use
a particular type of such containers, namely dictionaries.

We extend our simple language introduced in Section 1.2.1 so that
it contains dictionaries of scalar values. We introduce a finite set of
container variables Varc that is disjoint with the set of scalar variables
Var . A dictionary is a partial mapping d : K ⇀ E, where K ⊆ V denotes
the set of valid dictionary keys, while E ⊆ V denotes the possible
values of dictionary elements. Dictionaries are assumed to be finite.
The set of scalar values V is, unlike in previous chapters, not restricted
to numerical values. The set of concrete states State is now defined as

State = (Var → V)×
(

Varc → (K ⇀ E)
)
∪ {Error} .

The special state Error is used to indicate that a dictionary access error
occurred. We add the following types of dictionary simple statements
DictStmt to the language:

1. dictionary creation T ← new dict, where T ∈ Varc ,

2. dictionary updates T [v1] ← v2 and T [v1] ← c, where T ∈ Varc ,
v1, v2 ∈ Var and c ∈ E,

3. a read access v2 ← T [v1] (where T ∈ Varc and v1, v2 ∈ Var ).

For each type of simple statements we define t(stmt, Error) , Error.
The transfer function for simple statements is re-defined in the obvious
manner.

Dictionary accesses may occur also as arguments of predicates, i.e.
the language contains unary and binary dictionary predicates DictPred
φ(T [v1]) and ψ(T [v1], v2), where T ∈ Varc and v1, v2 ∈ Var . The transfer
function for boolean predicates p : Pred × State → Bool (see Section 1.2.1)

95
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is extended to p : (Pred ∪DictPred )× State → Bool in the straightforward
way.

We assume also that we are given a function l : (DictStmt ∪DictPred )×
State → Bool (l stands for "legal") that determines whether the state-
ment (or dictionary predicate) can be executed in this state. The defin-
ition of this function depends on the used kind of dictionaries. For
instance, when considering arrays (that are a special type of dictionar-
ies discussed later in this section), the function l may return True for
the statement T [v1]← v2 in state (ρ, τ) only when ρ(v1) is a valid index
for the array T . For immutable dictionaries l

(
T [v1]← v2, (ρ, τ)

)
= True

only when the statement will not overwrite an existing element in
the dictionary, etc. As nothing can be executed in an error state, we
assume that l (s, Error) = False for each s ∈ DictStmt ∪DictPred .

Additionally, with each instance of a dictionary, there may be a scalar
variable associated. For instance, we represent the length of an array T
using a scalar T .length. Each type of dictionaries can handle its special
scalar variables differently. We assume that we are given some function
f : DictStmt → Stmt that for each dictionary statement determines an as-
sociated simple scalar statement which handles the corresponding
special scalar variable.

A dictionary statement s ∈ DictStmt may be successfully executed
only if l

(
s, (ρ, τ)

)
= True (otherwise it results in an Error state). After

the dictionary statement s, we perform the associated scalar instruction
f (s). For each s ∈ DictStmt we define its semantic t : DictStmt × State →
State as

t
(
s, (ρ, τ)

)
,

t
(

f (s), t̂
(
s, (ρ, τ)

))
l
(
s, (ρ, τ)

)
= True,

Error otherwise,

where t̂ describes the meaning of each dictionary statement in the case,
when it can be executed:

t̂
(
T ← new dict, (ρ, τ)

)
,
(
ρ, τ[T 7→ ε]

)
where ε denotes an empty partial function K ⇀ E. The meaning of
the update is defined by:

t̂
(
T [v1]← v2, (ρ, τ)

)
,
(
ρ, τ
[
T 7→ τ(T)[ρ(v1) 7→ ρ(v2)]

])
.

Finally, the read access is interpreted as:

t̂
(
v2 ← T [v1], (ρ, τ)

)
,
(
ρ[v2 7→ τ(T)(ρ(v1))], τ

)
.
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As we can read only elements that were previously put into the dic-
tionary, l

(
v2 ← T [v1], (ρ, τ)

)
must check if ρ(v1) ∈ Dom

(
τ(T)

)
.

The transfer rules for all existing simple statements are extended in
the straightforward way.

If an instruction caused an error, the program should terminate,
without executing the next instruction. Similarly, if an illegal diction-
ary access occurs in a test, the program should stop with an error.
We extend the control transfer function tc : Ctrl × State → Label (see
Section 1.2.1) to tc : Ctrl × State → Label × State in the following way:

1. tc(c, Error) , (End, Error) for each c ∈ Ctrl ,

2. tc
(
gotoL, (ρ, τ)

)
,
(
L, (ρ, τ)

)
,

3. for each (standard) boolean predicate φ ∈ Pred ,

tc
(
test φL1L2, (ρ, τ)

)
,


(
L1, (ρ, τ)

)
if p
(
φ, (ρ, τ)

)
= True,(

L2, (ρ, τ)
)

if p
(
φ, (ρ, τ)

)
= False,

4. for each dictionary boolean predicate ψ ∈ DictPred :

tc
(
test ψL1L2, (ρ, τ)

)
,


(End, Error) if l

(
ψ, (ρ, τ)

)
= False,(

L1, (ρ, τ)
)

if p
(
ψ, (ρ, τ)

)
= True,(

L2, (ρ, τ)
)

if p
(
ψ, (ρ, τ)

)
= False.

Now, as a control statement may change the state, the semantics ts of
a single step of a program execution (see Figure 1.2 in Section 1.2.1) is
modified so that

(L, stmt, ctrl) ∈ Prog t(stmt, ρ, ) = ρ ′ tc(ctrl, ρ ′) = (L ′, ρ ′′)

ts(Prog,L, ρ) = (L ′, ρ ′′)
.

The rest of the program semantics is defined in the same manner as in
Section 1.2.1.

dictionary analysis We are interested in statically analysing
the content of a dictionary. This problem is challenging, since the
size of a dictionary is often unbound. In the most trivial approach,
a dictionary is treated as |K| scalar variables, i.e. one abstract value
is introduced for each possible key in the dictionary. This approach,
known as expansion [6], although very precise, can be applied only to
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dictionaries of bounded (and small) size. Another extreme solution,
called smashing [6], uses a single abstract value to represent all ele-
ments in the dictionary. This technique cannot capture at which key
a particular value was stored. Smashing can be applied to arbitrary
dictionaries, yet it is very imprecise.

The majority of practically used container analysis techniques lie
between the expansion and smashing in terms of both expressiveness
and required memory. They divide the unbounded data structure into
a bounded number of parts, where each part is represented using
a single abstract value. In this approach, the most difficult operation
(except of finding a good way to partition the data structure) is the
interpretation of an update T [v1] ← v2. If the modified element is in
the partition in a separate singleton group, then after the update, the
old value of the corresponding abstract element can be discarded and
only the new value must be kept. This case is called a strong update.
When the modified element is grouped together with other elements,
the old value of the abstract element representing this group cannot be
forgotten (as it represents not only the modified element but also other
elements in the group). Instead, the old value and the freshly added
one should be joined. This kind of an update is known as a weak update.
Strong updates are more precise, thus, whenever possible, one should
try to isolate the modified element to perform the strong update.

arrays Many static analysis techniques can deal only with a special
type of dictionaries, namely arrays. An array is a dictionary whose keys
belong to some predefined initial range of natural numbers N. Keys in
arrays are commonly called indices. Various programming languages
differently treat uninitialised array elements (that is elements at indices
from the predefined range that have not been written to). They may
be implicitly initialised to some default value (as it is done in Java)
or may have a random value (as it is done in some cases in C++).
We treat uninitialised array elements uniformly with uninitialised
elements in arbitrary dictionaries, i.e. an array is a partial mapping
f : {0, . . . ,n} ⇀ E for some n > 0. The set of array variables will be
denoted by Vara .

Unlike an arbitrary dictionary, an array has a fixed size (determined
when the array is defined). Thus, for each array T ∈ Vara , we assume
that a special variable T .length is in Var . Moreover, T .length must be
a natural number (in this case we require that N ⊆ V).
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A new array is created using a statement T ← new array(v1), where
T ∈ Vara . It is a special case of dictionary creation that sets the value of
the scalar variable T .length to ρ(v1), i.e. we define

t̂
(
T ← new array, (ρ, τ)

)
,
(
ρ, τ[T 7→ ε]

)
and

f
(
T ← new array(v1)

)
, T .length← v1 .

The length of an array must be a natural number greater than zero, thus
l
(
T ← new array(v1), (ρ, τ)

)
must verify whether ρ(v1) ∈N ∧ ρ(v1) >

0. As the size of an array is fixed, the value of T .length is not modified
by any other statement, thus f

(
stmt, (ρ, τ)

)
, skip for all other array

statements.
An array cannot be accessed (read or written to) outside of the

defined index range. The function l returns True for the statement
T [v1]← v2 if and only if

0 6 ρ(v1) < ρ(T .length)∧ ρ(v1) ∈N .

A read v2 ← T [v1] (or a dictionary predicate that includes T [v1]) is
valid in the state (ρ, τ) if T [v1] is initialised in this state.

Static analysis of array content is significantly easier than in the case
of arbitrary dictionaries. The set of indices is restricted to a subset of
natural numbers thus it is totally ordered and it is easier to divide
the array elements in a bounded number of groups. In the subsequent
sections we survey some existing techniques of array content analysis.
Our own technique for analysis of arbitrary dictionaries is presented
in Chapter 6.

5.1 partitioning

In the approach of Gopan et al. [32] an unbounded number of concrete
array elements (i.e. pairs index, value stored at this index) is parti-
tioned into a bounded number of groups. Each group of concrete array
elements is represented by a single abstract array element. Concrete
array elements that are assigned to should be isolated in separate
groups (so that a strong update can be performed); concrete array
elements grouped together should have similar properties, so that the
loss of precision induced by the grouping is minimal.

An abstract array element that represents multiple concrete elements
is called a summary element. An abstract array element is called non-
summary, when it represents a single concrete array element.
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A partition PA of the array A is a set of abstract array elements.
Each abstract array element a ∈ PA represents a group of concrete
array elements. The number of abstract array elements in a partition
and the meaning of each such element (i.e. which concrete elements
it represents) is determined by numeric relationships among array
indices and values of numeric variables. This idea is formalised by the
notion of partition functions.

partition functions For an array variable A ∈ Vara and a scalar
v ∈ Var we define a partition function

πA,v : {0, . . . ,A.length− 1}→ {−1, 0, 1} .

This function is evaluated in a concrete state (ρ, τ) ∈ State as follows:

πA,v(i) ,


−1 if i < ρ(v),

0 if i = ρ(v),

1 if i > ρ(v).

The set of all partition functions for an array variable A ∈ Vara is
denoted by ΠA = {πA,v | v ∈ Var }.

A single partition function πA,v divides the array A into three groups:
elements at indices smaller than the value of v (this group will be
denoted by a<v), element whose index is equal to the value of v
(denoted by a=v) and elements at indices greater than the value of v
(a>v).

The set of all partition functions ΠA yields a partition PA such
that for each partition function π ∈ ΠA, each abstract array element
a ∈ PA and every two concrete array elements A[i] and A[j] grouped
together in a, π(i) = π(j). A partition defined in this way consists
of at most 3|ΠA| abstract array elements. For example, if Var = {v,w}
then an abstract array element a<v,>w ∈ PA represents the elements
of A whose indices are smaller than v and greater than w. The whole
partition PA would be

PA = {a<v,<w,a<v,=w,a<v,>w,a=v,<w,a=v,=w,
a=v,>w,a>v,<w,a>v,=w,a>v,>w} .

An abstract array element may represent different sets of concrete
array elements at various program points.

If at least one πA,v evaluates to zero, then the abstract array element
represents at most one concrete element and it is called a non-summary
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element. Otherwise it can potentially represent multiple concrete ele-
ments and it is called then a summary element.

A map that assigns to each array variable A ∈ Vara its partition PA
will be denoted by P.

choice of partition functions Defining a partition function
for each array and each scalar in the program leads to partitions
containing as many as 3|Var | abstract array elements. To avoid this
problem, for an array A ∈ Vara , we use only partition functions πA,v
parametrised with the scalars v ∈ Var that occur in some (read, write
or test) access to this array (i.e. there is A[v] somewhere in the program
text).

abstraction of scalars Each abstract array element a ∈ PA
consists of two scalar values a.value and a.index that capture prop-
erties of array element indices and values, respectively. The scalar
variables Var together with the scalars a.value and a.index from each
abstract array element in partition of any array are modelled within
a summarising numerical abstract domain D [31] constructed as an exten-
sion of some standard numerical abstract domain. Let d ∈ D denote
an abstract state in this domain.

abstract predicates The summary abstract elements can be
used to express collective properties of concrete elements modelled
by such an abstract element (e.g. that values of all these concrete
elements are positive). However, relationships among the concrete
elements that are abstracted together, are lost. For example, it is not
possible to express the property that the values of concrete elements
abstracted by one summary element are sorted. To deal with this
problem, a set of auxiliary predicates ∆ is introduced. A predicate
δA : {0, . . . ,A.length − 1} → {0, 1} in the concrete state (ρ, τ) ∈ State
holds for an index k ∈ {0, . . . ,A.length − 1} (that is δA(k) = 1), if
(informally) A[k] obeys the property of interest. The predicates are
here implicitly parametrised by the program state.

A concrete predicate δA is abstracted in the 3-valued logic [58] by
δ#
A : PA → {0, 1, 1/2}. Intuitively, δ#

A(a) = 0 means that δA does not hold
for any concrete array element abstracted by a, δ#

A(a) = 1 means that
δA holds for all, while δ#

A(a) = 1/2 indicates that δA may hold for
some of the concrete array elements. The set of all abstract predicates
is denoted by ∆#.
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1: procedure ArrayCopy(A)
2: B← new array(A.length)
3: j← 0

4: while j < A.length do
5: B[j]← A[j]

6: j← j+ 1

7: end while

Figure 5.1: A routine that copies the content of array A into B

It is a challenging problem to identify the useful predicates ∆. They
must be supplied by the user, as there is no mechanism to discover
them automatically.

abstract domain An abstract memory configuration is a triple
〈P,d,∆#〉, where P describes partitioning of arrays, d ∈ D is an abstract
state of the scalars and ∆# is an abstraction of predicates. The set of
all valid abstract memory configurations can be equipped with the
lattice operations and concretisation and abstraction functions so that
it forms a proper abstract domain [32].

We do not develop here these operations, instead we demonstrate the
analysis on an example, where an array A is copied into B, as shown
in Figure 5.1. In this example we assume that the used numerical
domain is a relational domain such as the domain of octagons or
polyhedra. Assume that the analysis has previously captured that all
elements of A range from −5 to 5. The analysis should detect that at the
end of the procedure all values stored in B also belong to [−5, 5] and
that B[j] = A[j] for each j ∈ [0,A.length−1] (note that the arraysA and
B have the same size, i.e. A.length = B.length). The only scalar used
to access the arrays is j, thus the set of partition functions contains
πA,j and πB,j. Below we write PA and PB to denote partitioning of
arrays A and B, respectively. We introduce also an auxiliary predicate
δB : {0, . . . ,B.length − 1} → {0, 1} that in any concrete state (ρ, τ) is
evaluated as:

δB(k) , [τ(A)(k) = τ(B)(k)] .

At the first loop iteration j = 0, hence both a<j ∈ PA and b<j ∈
PB represent empty sets. The non-summary elements a=j ∈ PA and
b=j ∈ PB represent A[0] and B[0], while a>j ∈ PA and b>j ∈ PB
correspond to the remaining elements. The assignment B[j] ← A[j]

causes bj.value = [−5, 5] (as we know that each element from A is in
this range) and δ#

B(b=j) = 1. Note that we perform here a strong update.
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When j is increased, the current value of b=j is merged with b<j, which
results in b<j.value = [−5, 5], 0 6 b<j.index < j and δ#

B(b<j) = 1. The
new value of b=j is extracted from b>j. In the k’th loop iteration the
summary element b<j represents the already initialised elements (and
b<j.value is equal to [−5, 5]). The updated element b=j is then merged
into b<j.

After the loop the summary element b<j represents all elements in
the array (as b<j.index = [0,B.length)), therefore the analysis may
conclude that all elements were initialised to values from the range
[−5, 5]. Since δ#

B(b<j) = 1, the analysis captured that each element of
the array B is equal to the corresponding element in A.

The partition-based approach has some serious drawbacks. It is
impossible to express properties of non-contiguous array elements
(e.g. to say that all elements at odd indices are equal to 1). The par-
tition functions are chosen using only a syntactic heuristic and the
predicates must be supplied by a human. Halbwachs and Péron [38]
improved this technique by increasing the level of automation. Marron
et al. [50] presented a partition-based approach to represent iterators
over collections. Elements in a container are grouped according to
their relation to the iterator (before, currently pointed by and after
the iterator). This approach does not support dictionaries, since it is
not possible to group elements depending on properties of the keys
other than their numeric value. The partition-based techniques were
reported inefficient in practice [17, 21].

5.2 funarray

Cousot et al. [17] presented a technique for analysing array content,
where each array is automatically divided into a sequence of segments
with symbolic bounds. Each segment bound consists of a set of sym-
bolic expressions over the scalar variables that describe the possible
indices of elements within this segment. All expressions within one
bound are equal (in the concrete domain). The segments are consecut-
ive, without "holes".

The first bound for an array A ∈ Vara always contains a constant
expression 0, while the last one contains A.length. In this analysis, it
is assumed that all elements at indices [0,A.length) are pre-initialised
to some default value. Segment bounds are in increasing order, i.e.
all expressions from a bound have values smaller than (or equal to)
the expressions from the next bound. If some expressions from two
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consecutive bounds are equal, then the segment between these bounds
is empty.

A segment consists of all array elements whose indices lie between
the values of expressions of the lower and upper segment bound.
A segment includes its lower bound, but not the upper bound.

An array segmentation is a sequence of segments separated by seg-
ment bounds. An abstract segmentation is a sequence of abstract segments
separated by abstract bounds.

intuition Intuitively, an abstract segment is an element of some
abstract domain that represents the possible values of array elements
within a concrete segment. An abstract bound is a set of symbolic
expressions over the scalar variables, restricted to some canonical form.
We illustrate this concept by fixing the segment abstraction as the
domain of intervals and abstract bounds as expressions of the form
v+ c where v ∈ Var and c is a constant. Let us explain the notation on
the following abstract segmentation of an array A:

{0} [1, 5] {j} [3, 7] {k, l+ 3}?>i {A.length} .

The fragments in curly brackets, i.e. {0}, {j}, {k, l+ 3}? and {A.length},
denote the abstract bounds, while [1, 5], [3, 7] and >i are abstract seg-
ments (in the domain of intervals). In this example, array elements
at indices from [0, j) and [j,k) range over [1, 5] and [3, 7], respectively,
while the remaining elements at indices i ∈ [k,A.length) may have
an arbitrary value. Note that the segment bound {k, l+ 3} contains
two expressions. This means that k = l+ 3 must hold at a program
point described by the considered abstract segmentation (since all
expression in a bound are equal). The question mark following this
bound indicates that the preceding segment may be empty (when
j = k = l+ 3).

Below we discuss in more detail the construction of abstract bounds
and abstract segments. We introduce also the FunArray abstract do-
main and describe how to perform in this model the array updates.

5.2.1 Building Blocks

We discuss now all building blocks needed to define the segmentation-
based array abstraction.
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scalars Some abstract domain D (as usual, we write D to denote
the set of abstract elements in D) is used to represent properties of the
scalar variables Var .

expressions The expressions that appear in symbolic bounds are
restricted to some canonical form (that is fixed when the analysis is
instantiated). The set E of symbolic expressions must be equipped
with equality and inequality tests. For instance for expressions of
the form v + c, where v ∈ Var and c ∈ V one could define a very
simple syntactical equality test, whereby v1 + c1 = v2 + c2 if and only
if v1 is syntactically equal to v2 and c1 = c2. Similarly, inequality test
v1 + c1 6 v2 + c2 may be check if v1 = v2 and c1 6 c2. Of course more
sophisticated tests can be defined, e.g. taking into account relationships
between variables captured by the numeric analysis. We say that
e1 < e2, if e1 6 e2 and ¬(e1 = e2).

Given a concrete valuation of scalars ρ, we denote the value of
a symbolic expression e ∈ E as JeKρ.

For presentation purposes, we fix the canonical form of expressions
as v+ c, where v ∈ Var and c ∈ V.

bounds As we have already stated, a bound is a non-empty set
of equivalent symbolic expressions. Thus, for a set E of symbolic
expressions, an abstract domain of bounds B(E) is constructed, with
B ⊆ P(E). The concretisation in the domain of bounds is defined
with respect to an abstract state d ∈ D of the numerical variables and
consists of these valuations ρ ∈ γd(d), in which all expressions from
the bound b have the same value:

γb(b,d) , {ρ ∈ γd(d) | ∀e1,e2∈bJe1Kρ = Je2Kρ} .

For a valuation ρ ∈ γb(b,d), JbKρ is defined as JeKρ for e ∈ b.
The expression comparison in E is extended to B(E). For b1,b2 ∈ B,

we say that b1 = b2, if there exists e1 ∈ b1 and e2 ∈ b2 such that
e1 = e2 (and similarly for the inequality test). Note that we rely here
on the fact that all expressions in one bound are assumed to be equal.

abstract segments An abstract segment is an element of some
abstract domain A that represents pairs of indices and values of array
elements in the segment (the concretisation function γa is of type
A → P(Z×E)).
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One could abstract just the values of array elements, but in this case
it would not be possible to model any relationships between the value
of an element and its index.

5.2.1.1 FunArray

The whole array is abstracted using the array segmentation abstract
domain S(B(E),A,D). The set S of abstract elements is defined as:

S ,
{
(B × A × B × {_, ?})× (A × B × {_, ?})k | k > 0

}
∪ {⊥s} .

For each sequence b1 a1 b2[?]a2 . . . bm[?] the bounds are in an increas-
ing order, that is or each 1 6 i < n, bi < bi+1. If for some 1 6 j < n,
bj+1 is followed by a question mark, then we admit bj = bj+1 (which
means that the segment represented by aj is empty).

concretisation The concretisation of a segmentation s ∈ S of
an array A with respect to an abstract state of scalars d ∈ D, consists
of these scalar states ρ ∈ γd(d) and arrays f : N ⇀ E such that

• ρ ∈ γb(b,d) for each bound b in the segmentation s,

• the first and last bound are equal to zero and array length re-
spectively, i.e. Jb0Kρ = 0 and JbnKρ = ρ(A.length),

• ρ preserves the ordering of bounds, i.e. for each i ∈ {0,n− 1},
JbiKρ <?Jbi+1Kρ (<? denotes 6, when bi+1 is followed by ? and
< otherwise),

• for each index j ∈ [0, ρ(A.length)) there exists an abstract seg-
ment bi ai bi+1[?] in the segmentation s such that JbiKρ 6 j <

Jbi+1Kρ and (j, f(j)) ∈ γa(ai).

domain operations The domain operations are defined directly
only for sequences s1, s2 ∈ S that have the same bounds. Thus, when
computing any of the join, meet or widening of s1, s2 ∈ S , one has to
perform a segmentation unification first.

Given two arbitrary s1, s2 ∈ S , the segmentation unification com-
putes s ′1 and s ′2 that have the same sequence of bounds and γs(s1) ⊆
γs(s

′
1) as well as γs(s2) ⊆ γs(s

′
2). One could obtain s ′1 and s ′2 by joining

all segments in s1 and s2, respectively (thus both s ′1 and s ′2 would
contain only one segment). Clearly, such unification would lead to
a significant loss of precision. So, intuitively, the unification should
join as few segments as possible.
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Consider the following array segmentations (with bound expressions
in the canonical form as before):

s1 = {0}a11 {i}a
2
1 {j}a

3
1 {k},

s2 = {0}a12 {j}a
2
2 {i}a

3
2 {k} .

Given no extra knowledge concerning the relationships between i and
j, one can unify s1 and s2 either to

s ′1 = {0}a11 {i}a
2
1 ta a

3
1 {k},

s ′2 = {0}a12 ta a
2
2 {i}a

3
2 {k}

or to

s ′′1 = {0}a11 ta a
2
1 {j}a

3
1 {k},

s ′′2 = {0}a12 {j}a
2
2 ta a

3
2 {k} .

Both these unifications have the same (maximal) number of segments,
but they are not comparable (none of them is more precise).

The unification algorithm presented for FunArray does not give any
guarantee that the computed result will have the maximal possible
number of segments, but it is deterministic and always terminates.
The algorithm proceeds recursively from left to right, maintaining the
invariant that the processed parts of segmentations are already unified.

We present here only the sketch of the algorithm, without going into
all technical details. Let sk1 = b11 a

1
1 b

2
1 . . . b

m
1 and sk2 = b12 a

1
2 b

2
2 . . . b

n
2

denote the parts of s1 and s2 that remain to be processed before

the k-th iteration of the algorithm and let s̃1 = b̃1 ã11 b̃
2 . . . ãl1 and

s̃2 = b̃1 ã
1
2 b̃

2 . . . ãl2 denote the already unified prefixes.
Roughly, the algorithm computes the set of expressions b̃ = b11 ∩ b22

common for b11 and b12. If b̃ = ∅, then abstract segments ãl1 and ãl2 are

replaced with ãl1 ta a
1
1 and ãl2 ta a

1
2, respectively, and the algorithm

proceeds with unifying b21 a
2
1 . . . b

m
1 with b22 a

2
2 . . . b

n
2 .

Otherwise, i.e. when b̃ is not empty, b̃ a11 and b̃ a12 are appended
to s̃1 and s̃2, respectively. In the next step expressions common in
b11 \ b̃ and b22 (denoted as b1) and those appearing in b12 \ b̃ and b21
(denoted as b2) are identified. The algorithm proceeds with unifying
〈b1?a11〉b21 . . . bm1 with 〈b2?a12〉b22 . . . bn2 (the notation 〈ba〉means here
that the prefix ba is present in the segmentation to unify only when
b 6= ∅). The algorithm proceeds until it reaches the last bounds of both
input segmentations. The details of the algorithm can be found in the
article in which FunArray was introduced [17].
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Now, when performing a join, meet or widening, first the segment
unification is computed and then the desired operation is performed
segment-wise. It is easy to check that the meet and join defined in
this way do not form a lattice, as they do not obey the absorption
laws. Consider the segmentations s1 = {0} [1, 1] {i} [2, 2] {T .length} and
s2 = {0}>i {T .length}. As i does not appear in any bound in s2, it
is removed during the unification and s1 is transformed into s ′ =
{0} [1, 2] {T .length}. Now it is easy to see that (s1 ts s2)us s1 = s2 us

s1 = s ′ 6= s1. This point seems to be missed by Cousot et al. [17].
This violates the standard abstract interpretation model introduced in
Section 1.2.3. Many properties may be lost (such as existence of the
least fixpoint in S , the concretisation and abstraction functions do not
form a Galois connection etc.). However the analysis remains sound
(any justification of this fact is beyond the scope of this thesis).

array updates Let us discuss an array update T [v1] ← v2. The
canonical expression e ∈ E for v1 is just e , v1 + 0. Let av ∈ A
be a representation of (v1, v2) in the domain A (which is computed
using a conversion κD→A from the scalar domain D to the domain
A). Let s = b1 a1 b2[?2] . . . bn[?n] be the abstract segmentation of T .
Let bl be the largest bound, for which bl 6 {e} (if there is no such
bound, we take bl , b1). Dually, let bh be the smallest bound, for
which {e} < bh (again, if there is no such bound, we take bh , bn).
All segments between bl and bh are smashed, i.e. we compute s ′ =
b1 a1 . . . bl[?l]

⊔
l6k<h ak bh[?

h] . . . bn[?n]. Now, the smashed segment
is split into (up to) three segments resulting in s ′′ given by

b1 a1 . . . bl[?l]
( ⊔
l6k<h

ak

)
{e}[?]av {e+ 1}

( ⊔
l6k<h

ak

)
bh[?h] . . . bn[?n] .

The updated element is isolated in a separate segment, hence its value
can be overwritten (like in a strong update). However, all segments
between the bounds bl and bh are smashed, causing a loss of precision
in the abstraction of other array elements.

If the language was richer, so that some more complex expressions e
can be used to access an array (instead of just variables), then it could
turn out that e or e+ 1 cannot be put in the chosen canonical form.
In this case the modified element cannot be isolated into a separate
segment and a weak update on the smashed segment between the
bounds bl and bh is performed.

The FunArray technique has been implemented in Clousot [23],
a tool for static analysis of programs in the .NET intermediate lan-
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guage and was reported efficient and precise in practice. One of its
main advantages is the high level of customisation, i.e. one can choose
the domains for abstraction of scalars, bound expressions and array
elements. The segmentation-based approach has also its disadvant-
ages. It is impossible to represent properties of non-contiguous array
elements (as a segment always describes a coherent fragment of the
array). It also strongly relies on the linear ordering of indices, hence
it is not applicable to other data structures, such as dictionaries with
arbitrary keys.

5.3 other approaches

We mention now some other container analysis techniques. The major-
ity of them is defined only in terms of arrays and cannot be used to
model dictionaries.

Dillig et al. [21] introduced fluid updates that relax the dichotomy
between strong and weak updates. This is a heap analysis technique,
in which each reference between locations is qualified with paired
constraints over- and under-approximating the set of concrete states,
in which this reference is established. The constraints can be expressed
only in theory of linear integer arithmetic. This approach is easily
applicable to arrays (as the indices are natural numbers). Recently
it was applied also to other containers [22]. For dictionaries keyed
by arbitrary values, the keys are first converted to integers using
an invertible uninterpreted function pos. The only assumption made
about pos is that no two different keys may be mapped to the same
value. After the conversion, the standard fluid update technique is
used. This approach has a major drawback. It is impossible to express
any non-trivial properties of the keys. Let us assume that we want
to model a dictionary keyed by strings. As the only axiom about the
pos function states that two different keys cannot be mapped to the
same index, we cannot express any partial knowledge about the keys,
such as "a key starts with a given prefix". Another problem with this
technique is that it is not much customisable. The precision and cost of
the analysis strongly depend on the theory of linear integer arithmetic
and uninterpreted functions used to express the bracketing constraints,
and it cannot be adjusted to the requirements of a specific analysis.
There is an ongoing research to adapt the fluid updates technique to
the abstract interpretation framework [29].

Flanagan and Quadeer [24] use predicate abstraction [33] to infer
universally quantified loop invariants that describe properties of ar-
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rays. The necessary predicates are generated using syntactic heuristics.
Ramalingam et al. [56] apply predicate abstraction to check if a client
program conforms to the constraints for correct usage of a collection,
e.g. that a program does not modify the collection while iterating over
it. Blanc et al. [5] use a similar technique to verify the usage of STL
containers in C++ programs. They check if all preconditions of STL
methods are fulfilled. Neither of these two techniques can be used to
reason about container content.

Seghir et al. [60] propose a counterexample-guided abstraction tech-
nique for verifying quantified assertions over arrays. Henzinger et
al. [39] present a method for an automatic inference of quantified
invariants for multidimensional arrays. The powerful, yet expensive
technique of Gulwani et al. [36] uses user-provided templates for array
invariants. Kovács and Voronkov [46] use a theorem prover to generate
loop invariants in programs using arrays.

Each of these analyses is useful in some context, but they are not
suitable for analysis of dictionary content. In the next chapter we
propose our own technique that can be applied to analyse both array
and dictionary content.
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G E N E R I C A B S T R A C T I O N O F C O N TA I N E R S

In this chapter we present our abstract domain which can be used to
uniformly represent arbitrary dictionaries [26]. This technique does
not rely on numerical properties of scalar variables, thus it can be
instantiated using various existing abstract domains, including non-
numerical ones (such as domains for analysis of properties of string
variables). Our approach is powerful enough to model relationships
between scalar variables and dictionary keys and between scalars and
dictionary elements.

The analysis is fully automatic. The container is partitioned ac-
cording to properties of the keys, captured by the underlying key
abstraction. The precision and cost of the analysis are customisable
and depend on the choice of the abstractions of keys, dictionary ele-
ments and scalar variables.

We show examples in which the technique is used to reason about
arrays as well as string-keyed dictionaries.

6.1 generic dictionary abstraction

In our approach a dictionary T ∈ Varc is modelled as a set of abstract
segments. Each abstract segment represents some set of (concrete) keys
and corresponding dictionary elements. Let K and V be two scalar
abstract domains (with carriers 〈K ,tk,uk〉 and 〈V ,tv,uv〉, respectively).
An abstract segment is a pair (k, v) ∈ K × V , where k models a set of
concrete keys (together with their relations to scalars) and is called
an abstract key, while v abstracts dictionary elements (and their relations
to scalars) and is called an abstract value. A (concrete) dictionary is
abstracted as a finite set of abstract segments.

Let us start with some auxiliary terminology. In a complete lattice
〈A ,ta,ua,>a,⊥a〉, we say that a ∈ A is empty, if a = ⊥a. We say that
a ∈ A overlaps with b ∈ A , when a ua b 6= ⊥a.

We define now a lattice 〈D,td,ud〉, where D ⊆ Pfin(K ×V ) and each
d ∈ D fulfils the following additional conditions:

1. for each (k1, v1) ∈ d and (k2, v2) ∈ d either (k1, v1) = (k2, v2) or
k1 uk k2 = ⊥k,
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2. for each (k, v) ∈ d , k 6= ⊥k and v 6= ⊥v.

The first condition states that every two abstract segments represent
disjoint sets of concrete elements. The second condition forbids abstract
segments with empty abstract keys or abstract values. An abstract
segment (⊥k, v) would represent an empty fragment of the dictionary,
while (k,⊥v) would model a set of elements that could not have been
initialised to any value. Such abstract segments are superfluous in our
representation.

For each (concrete) dictionary d : K ⇀ E represented by an abstract
dictionary d ∈ D and for each (concrete) key n ∈ Dom(d), we will
ensure that there exists an abstract segment (k, v) ∈ d such that n and
d(n) are abstracted by k and v, respectively. This will be formalised
later in this chapter.

meet The greatest lower bound a ud b of a, b ∈ D consists of abstract
segments obtained as a point-wise meet of some abstract segments
from a and b:

a ud b , {(ka uk kb , va uv vb) | (ka , va) ∈ a, (kb , vb) ∈ b,
ka uk kb 6= ⊥k, va uv vb 6= ⊥v} . (6.1)

Lemma 6.2. The meet operator is well defined, i.e. a ud b ∈ D.

Proof. The property that each two abstract segments are disjoint fol-
lows from the well-formedness of a and b and from the properties
of uk. The second well-formedness property is trivial. Details can be
found in Section 6.5.1.

join The join a td b of a, b ∈ D should represent all concrete diction-
aries abstracted by a or b, thus one could imagine defining the join as
a union a ∪ b. However, in presence of our well-formedness conditions,
such simple definition is not valid, as an abstract key ka in a segment
(ka , va) ∈ a may overlap with a key kb in some segment (kb , vb) ∈ b.

We show now how to deal with this problem, i.e. how to transform
an arbitrary set of abstract keys into a set in which no two keys overlap.
The idea is to identify groups of overlapping keys and replace each
group with its least upper bound.

Let 〈A ,ua,ta,>a,⊥a〉 be a complete lattice and let S be a finite subset
of A .

Definition 6.3. We say that a (finite) family of sets X = {X1,X2, . . . ,Xk},
where each Xi ⊆ S, is a disjoint partition of S, if and only if:
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Figure 6.1: A set of elements of the domain of intervals (grey rectangles) and
all its disjoint partitions (the least disjoint partition is marked with
a thick dashed line)

• X is a partition of S (i.e. S =
⋃
X and Xi ∩Xj = ∅ for i 6= j),

• each X ∈ X is non-empty,

• for every Xi,Xj ∈ X, where i 6= j, it holds that (
⊔

a Xi)ua (
⊔

a Xj) =

⊥a.

A disjoint partition of S always exists — if S = ∅, then X , ∅, other-
wise one can take X , {S}. It may happen that S has multiple disjoint
partitions. We are particularly interested in a partition X of S that does
not perform any unnecessary grouping:

Definition 6.4. We say that a disjoint partition C of S is least, if for any
disjoint partition X of S it holds that ∀C∈C∃X∈XC ⊆ X.

Intuitively, the least disjoint partition groups (i.e. puts into the same
Xi) only these elements of S, which must be grouped together in each
disjoint partition of S.

Lemma 6.5. The least disjoint partition of S exists and is uniquely defined.

Proof. We show how to construct the least disjoint partition starting
from a (not necessarily disjoint) partition, in which each element of S
is in a separate group. Details can be found in Section 6.5.2.
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A sample set of elements of the domain of intervals (in a two-
dimensional case) and all its disjoint partitions are shown in Figure 6.1.
It is easy to see that no two elements from one group in the least
disjoint partition (marked with a thick dashed line) can belong to
different groups in any disjoint partition.

We use the concept of the least disjoint partition to transform arbit-
rary c ∈ Pfin(K × V ) into an abstract dictionary d ∈ D. Let S denote
the set of abstract keys of "non-empty" abstract segments (k, v) ∈ c:

S ,
{
k | (k, v) ∈ c,k 6= ⊥k, v 6= ⊥v

}
.

Let C denote the least disjoint partition of S. We define a disjoint
normalisation function dNorm : Pfin(K × V )→ D as:

dNorm(c) ,
{
(k1 tk k2 · · · tk km, v1 tv v2 · · · tv vm) |

{k1, . . . ,km} ∈ C, (kj, vj) ∈ c, j ∈ {1, . . . ,m}
}

.

This normalisation can be computed in O(|c |3) time, including the
computation of the least disjoint partition C. Now the join a td b can
be defined just as the normalised union a ∪ b:

a td b , dNorm(a ∪ b) . (6.6)

Theorem 6.7. Set D together with the meet and join operators given by (6.1)
and (6.6) forms a lattice.

Proof. Standard examination of the commutativity, associativity and
absorption properties, see Section 6.5.3.

bottom and top It is now easy to check that the bottom ⊥d is
an empty set, while the top >d is equal to

{
(>k,>v)

}
.

widening When the domains K and V are finite, then the widening
is just equal to the join. Otherwise we define Od as:

⊥d Od a , a a Od ⊥d , a a Od b , dNorm(aÕb),

where aÕb consists of three types of abstract segments:

1. for two abstract segments (k, v) ∈ a and (l,w) ∈ b with overlap-
ping keys, aÕb contains their point-wise widening (kOk l, vOv w),

2. each abstract segment (k, v) ∈ a such that k is disjoint with all
keys from all segments (l,w) ∈ b is put into aÕb,
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3. each abstract segment (l,w) ∈ b such that l is disjoint with all
keys from segments (k, v) ∈ a is widened to (>k,w):

aÕb ,
{
(kOk l, vOv w) | (k, v) ∈ a, (l,w) ∈ b,kuk l 6= ⊥k

}
∪
{
(k, v) | (k, v) ∈ a, ∀(l,w)∈b kuk l = ⊥k

}
∪
{
(>k,w) | (l,w) ∈ b,∀(k,v)∈a kuk l = ⊥k

}
.

(6.8)

Theorem 6.9. The operator Od defined above is a widening operator.

Proof. See Section 6.5.4.

In the definition above, the last case, where a segment is widened to
(>k,w), causes the most significant loss of precision (as the dNorm
function will smash the whole dictionary into a single abstract seg-
ment). It is possible to define a more precise (yet more complicated)
widening.

Instead of widening (l,w) to (>k,w) in the third part of (6.8), one
can choose arbitrary abstract segment (k, v) ∈ a and widen (l,w) to
(k Ok l, v Ov w). However, in general there is no best (most precise)
choice of (k, v). Thus, we propose here only some heuristic. Let W(k,v)
denote the set of abstract segments from a ∪ b, whose keys overlap
with kOk l:

W(k,v) ,
{
(m,u) | (m,u) ∈ a ∪ b,muk (kOk l) 6= ⊥k

}
.

Now we choose (k, v) ∈ a such that W(k,v) has the smallest cardinality
among all (k ′, v ′) ∈ a (if there are multiple such elements, any of them
may be chosen).

Note that we define the widening whenever K or V is infinite (not
necessarily of infinite height). This is necessary, as even for K and V
of finite height there may exist strictly increasing infinite sequences in
D: let K and V be defined so that their carriers are equal to N∪ {⊥,>}
and with an order where the natural numbers are not comparable.
The sequence d0,d1, . . . in D given by di , {(j, 0) | j 6 i} is strictly
increasing.

Note also that the lattice 〈D,ud,td〉 is in general not complete, but
as discussed in Section 1.2.8, the abstract interpretation framework can
still be applied.

6.1.1 Variable Introduction and Elimination

For an abstract dictionary d ∈ D(K , V ) the elimination ↓x of a variable
x ∈ Var (see Section 1.2.5) is defined as:

d ↓x , dNorm
(
{(k↓x, v↓x) | (k, v) ∈ d }

)
.
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Similarly, variable introduction ↑x is defined as:

d ↑x , dNorm
{
(k↑x, v↑x) | (k, v) ∈ d

}
.

Additionally, when the introduction ↑x in the domain K is exact, then
the application of the disjoint normalisation is superfluous.

The variable introduction and elimination define a forget operator
lx such that d lx , (d ↓x)↑x, as explained in Section 1.2.5.

6.2 the domain

We utilise now the lattice defined in the previous section to define
an abstract domain.

Let us start with the container part of the concrete state. The content
of each dictionary will be over-approximated using an element of the
lattice 〈D,td,ud〉 defined above. Roughly, given an abstract segment
(k, v), k over-approximates a set of keys of concrete elements and v
over-approximates the set of their possible values. If a concrete key
is not abstracted at all, then the corresponding element cannot be
initialised.

The abstract keys are modelled within an abstract domain K over
the set Var ∪ {k }, where k is an artificial key variable (similar to the
index variable used by Dillig et al. [21]) used to represent the value of
a key. Similarly, the abstract values are represented using an abstract
domain V over the set Var ∪ {t }, where t is a value-tracking variable
that represents the value of a dictionary element. In this approach it
is possible to express relations between scalars and keys as well as
scalars and dictionary elements.

The structure D(K , V ) can be used to over-approximate the content
of a dictionary, but it does not give any information about which
elements must be initialised. We resolve this problem by associating
with each dictionary also an element i ∈ D(K , Bool ) that is used to over-
approximate the set of uninitialised dictionary elements. An abstract
segment (k, True) ∈ i means that the dictionary elements at keys
abstracted by k may be uninitialised. On the other hand, if some key
is not abstracted by any segment in i, then the element at this key
must be initialised. As False is the bottom in the lattice of booleans,
segments (l, False) are automatically removed.

The scalar part of the state is abstracted in some abstract domain
A over the set of variables Var . We require also conversion functions
κA→K and κK→A between the domains A and K as well as κA→V and
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κV→A between A and V . When A = K (or A = V), then the respect-
ive conversions are just introduction and elimination of the special
variables k and t (see Section 1.2.8).

Now we may define the domain C = 〈C ,tc,uc,>c,⊥c,γc,αc, δc,πc,Oc〉.
The set of abstract states C is given by

C , A ×
(

Varc → D(K , V )
)
×
(

Varc → D(K , Bool )
)
∪ {AError} .

A special abstract error state AError is put into C ; intuitively, it is used
to indicate that a dictionary access error may have occurred.

domain operations The special abstract error state is treated as
the greatest element in C , thus for c ∈ C we define c uc AError , c and
c tc AError , AError. In other cases the meet and join operations are
given point-wise (with a little abuse of notation we lift the meet and
join ud and td in D to Varc → D):

(a1,d1, i1)uc (a2,d2, i2) , (a1 ua a2,d1 ud d2, i1 ud i2)

and

(a1,d1, i1)tc (a2,d2, i2) , (a1 ta a2,d1 td d2, i1 td i2) .

The widening Oc can also be defined point-wise. However, we propose
a slightly different approach. In our analysis, the only types of state-
ments that modify a dictionary are T [v1] ← v2 and T [v1] ← c, where
T ∈ Varc , v1, v2 ∈ Var and c ∈ V. Thus, the dictionary modifications
get stable when the abstract state a ∈ A of scalar variables stabilises.
Following this observation, we define the widening Oc as :

(a1,d1, i1)Oc (a2,d2, i2) ,

(a1 Oa a2,d1 td d2, i1 td i2) a1 Oa a2 6= a1
(a1 Oa a2,d1 Od d2, i1 Od i2) otherwise.

concretisation The abstract error state AError represents the set
of all possible concrete states, i.e. γc(AError) , State. In particular
Error ∈ γc(AError).

In a non-error abstract state (a,d, i), the concretisation of scalars
is defined using the concretisation γa in the domain A, as defined
in Section 1.2.3. Let us consider a concrete valuation ρ : Var → V of
scalar variables, a dictionary T ∈ Varc . and a concrete key n ∈ K. If
there is an abstract segment (k, True) ∈ i(T) such that n is abstracted
by k, then T [n] may be uninitialised. If there is an abstract segment
(l,w) ∈ d(T) such that n is abstracted by l, then T [n] may have some
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value abstracted by w. Eventually, if there is neither (k, True) ∈ i(T) nor
(l,w) ∈ d(T) such that n is abstracted by k or l, then T [n] can be neither
initialised nor uninitialised, which means that for the chosen valuation
ρ : Var → V of scalars, there is no valuation τ : Varc → (K ⇀ E) of
dictionaries.

Following these observations, we define a predicate I(ρ, T ,n, i) for
ρ : Var → V, T ∈ Varc , n ∈ K and the initialisation part of the abstract
state i that holds if and only if T [n] may be uninitialised:

I(ρ, T ,n, i) , True iff ∃(k,True)∈i(T) ∃σ∈γk(k) σ|Var = ρ,σ(k ) = n .
(6.10)

Similarly, we define a predicate V(ρ, T ,n,m,d) for ρ : Var → V, T ∈
Varc , n ∈ K, m ∈ E that holds when T [n] may be equal to m:

V(ρ, T ,n,m,d) , True iff ∃(k,v)∈d(T) ∃σk ∈ γk(k) ∃σv ∈ γv(v)

σk|Var = σv|Var = ρ,σk(k ) = n,σv(t) = m . (6.11)

This allows us to define the concretisation γc as:

γc

(
(a,d, i)

)
,
{
(ρ,τ) | ρ ∈ γa(a),∀T∈Varc ∀n∈K(

n 6∈ Dom(τ(T)) and I(ρ, T ,n, i)
)

or(
n ∈ Dom(τ(T)) and V(ρ, T ,n, τ(T)(n),d)

)}
.

We may now state the following lemmas about the meet and join in C:

Lemma 6.12. If the domains A, K and V have exact meets, i.e.

• γa(a1)∩ γa(a2) = γa(a1 ua a2),

• γk(k1)∩ γk(k2) = γk(k1 uk k2) and

• γv(v1)∩ γv(v2) = γv(v1 uv v2)

then the meet uc in the domain C is also exact:

γc

(
(a1,d1, i1)

)
∩ γc

(
(a2,d2, i2)

)
= γc

(
(a1,d1, i1)uc (a2,d2, i2)

)
.

Proof. For arbitrary dictionary T ∈ Varc and arbitrary concrete key
n ∈ K we show both inclusions of the proved equality. We distinguish
the cases when T [n] is initialised and uninitialised. Details can be
found in Section 6.5.5.
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The same property holds for over-approximating meets, i.e. one can
replace all equalities with set inclusion. A similar lemma can be also
formulated about the join (we omit the variant for exact joins as they
are very rare in practice):

Lemma 6.13. If the domains A, K and V have over-approximating joins, i.e.

• γa(a1)∪ γa(a2) ⊆ γa(a1 ta a2),

• γk(k1)∪ γk(k2) ⊆ γk(k1 tk k2) and

• γv(v1)∪ γv(v2) ⊆ γv(v1 tv v2)

then the join tc in the domain C is also over-approximating:

γc

(
(a1,d1, i1)

)
∪ γc

(
(a2,d2, i2)

)
⊆ γc

(
(a1,d1, i1)tc (a2,d2, i2)

)
.

Proof. Direct examination of the inclusion, see Section 6.5.6.

variable introduction and elimination The introduction
and elimination of scalar variables are defined point-wise, i.e.

(a,d, i)↓x , (a↓x, λT .d(T)↓x, λT .i(T)↓x) and

(a,d, i)↑x , (a↑x, λT .d(T)↑x, λT .i(T)↑x) .

Recall that the variable elimination and introduction define the forget
operator, i.e. (a,d, i)lx ,

(
(a,d, i)↓x

)
↑x.

6.2.1 Abstract Transfer Function

The error state AError is "preserved" by the abstract transfer function,
i.e. for each simple statement s ∈ Stmt , we define δc(s, AError) , AError.
Similarly, for each predicate p ∈ Pred , πc(p, AError) , (AError, AError).
The abstract control function δcc : Ctrl × C → (Label ⇀ C) introduced in
Section 1.2.3 is also extended so that after a possible error the execution
may jump directly to the End label:

δcc (test P L1 L2, AError) , [L1 7→ AError,L2 7→ AError, End 7→ AError]

and
δcc (goto L, AError) , [L 7→ AError, End 7→ AError] .

In all definitions of the abstract transfer function presented below,
we assume that the input abstract state is (a,d, i). We illustrate the
definitions on simple examples, where all A, K and V are chosen
as the domain of intervals, with the set of scalar values V, keys K

and dictionary elements E chosen as integers Z. For clarity, in each
abstract segment we show only the values of the key and value-tracking
variables k and t .
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d ′ , λT .dNorm
(
{(δk(I,k), δv(I, v)) | (k, v) ∈ d(T)}

)
i ′ , λT .dNorm

(
{(δk(I,k), True) | (k, True) ∈ i(T)}

)
δc

(
I, (a,d, i)

)
,
(
δa(I,a),d ′, i ′

)
Figure 6.2: Abstract transfer function for a scalar instruction I

scalar statements Scalar simple statements are interpreted not
only in the scalar domain A, but also in all abstract segments in all
containers, as shown in Figure 6.2. This is necessary, since the abstract
keys and abstract values model also relationships with scalar variables.
Thus, when a scalar variable is modified, all its relations to abstract
keys and abstract dictionary elements must be updated.

dictionary statements We proceed now with the dictionary
statements. First, recall that we have defined a function l : (DictStmt ∪
DictPred )× State → Bool that decides whether the dictionary statement
may be executed in the given concrete state. The function l can be
lifted to L : (DictStmt ∪DictPred )× Ctx → Bool by defining

L(s, c) , True iff ∀(ρ,τ)∈cl (s, (ρ, τ)) .

Finally, L is be abstracted in the domain C as Λc : (DictStmt ∪DictPred )×
C → Bool such that

Λc(s, a)⇒ L(s,γc(a)) .

The above implication does not define Λc unambiguously, thus it must
be provided for each type of statements.

Recall also that we have defined a function f : DictStmt → Stmt that
for a dictionary statement outputs a simple scalar statement which
may modify the special scalar variable associated with the accessed
dictionary.

Similarly as in the concrete domain, the abstract transfer function δc

for dictionary statements depends in the domain C on Λc and f . For
each dictionary statement s ∈ DictStmt and for each a ∈ C we define

δc(s, a) ,

δc

(
f (s), δ̂c(s, a)

)
Λc(s, a) = True

AError otherwise.

The auxiliary function δ̂c is the "real" abstract transfer function for
the dictionary statements and is defined in the subsequent paragraphs.
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Similarly, the abstract semantics of boolean predicates is given with
respect to the function Λc:

πc(φ, a) ,

π̂c(φ, a) Λc(s, a) = True

(AError, AError) otherwise.

The function π̂c is defined below.

initialisation The instruction T ← new dict that defines a new
(empty) dictionary:

δ̂c

(
T ← new dict, (a,d, i)

)
,
(
a,d[T 7→ ∅], i

[
T 7→ {(>k, True)}

])
.

The dictionary creation instruction can be always executed, i.e.

Λc

(
T ← new dict(a,d, i)

)
, True .

read We proceed now with a dictionary read v2 ← T [v1], where
T ∈ Varc and v1, v2 ∈ Var (see Figure 6.3). Intuitively, we retrieve
from d(T) all abstract segments (there may be more than one) whose
keys overlap with the key for the access T [v1]. Formally, we compute
k ∈ K by adding to a the artificial key variable k , assigning k ← v1 and
converting the result into the domain K, i.e. k , κA→K

(
δa(k ← v1,a↑k )

)
.

We take the join of all values in all abstract segments (l,w) ∈ d(T)
whose keys overlap with k, i.e. v ,

⊔
v
{
w | (l,w) ∈ d(T), luk k 6= ⊥k

}
,

convert v back to the domain A, assign v2 ← t and eliminate the special
value-tracking variable t . At the end we invalidate the old value of v2
in all abstract segments.

The function Λc returns True for the statement v2 ← T [v1] and
abstract state (a,d, i) only if the retrieved element must be initialised.
Let k be as above (i.e. k , κA→K

(
δa(k ← v1,a↑k )

)
). We define

Λc

(
v2 ← T [v1], (a,d, i)

)
, True iff{
l | (l, True) ∈ i(T),k uk l 6= ⊥k

}
= ∅ .

The transfer rule is a sound abstraction of the concrete dictionary read
access. This follows from the fact that δa is sound and the join tv is
over-approximating.

Example 6.14. Let us consider a scalar variable v1 ∈ Var with a(v1) =
[1, 4] and a container T ∈ Varc modelled as i(T) =

{
([8,∞], True)

}
and

d(T) =
{
([0, 2], [−2, 1]), ([3, 5], [4, 4]), ([6, 9], [2, 7])

}
. The read v2 ← T [v1]

results in a(v2) = [−2, 1]ti [4, 4] = [−2, 4].
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k , κA→K
(
δa(k ← v1,a↑k )

)
v ,

⊔
v

{
w | (l,w) ∈ d(T),kuk l 6= ⊥k

}
a ′ , δa(v2 ← t , κV→A(v)ua a↑t)

(_,d ′, i ′) , (a,d, i)lv2
δ̂c

(
v2 ← T [v1], (a,d, i)

)
, (a ′↓t ,d ′, i ′)

Figure 6.3: Transfer rule for v2 ← T [v1]

k , κA→K
(
δa(k ← v1,a↑k )

)
v , κA→V

(
δa(t ← v2,a↑t)

)
x , dNorm

(
d(T)∪ {(k, v)}

)
δ̂c

(
T [v1]← v2, (a,d, i)

)
, (a,d[T 7→ x], i)

¬Sk(k)

Figure 6.4: Weak update T [v1]← v2

updates We define both weak and strong dictionary updates. The
strong update can be performed only when the update may modify
only one element. We formalise this by defining the following unary
predicate S on the domain K:

S(k) , True iff ∀σ1,σ2∈γk(k)(σ1|Var = σ2|Var ⇒ σ1 = σ2) .

This definition is not very practical, thus we require that the domain
K is equipped with a domain-specific predicate Sk that implies S, i.e.
∀k∈K Sk(k)⇒ S(k). If Sk(k) = True, then we say that k is a singleton.

Let us consider now an update T [v1]← v2. We compute the abstract
key k ∈ K in the same way as in the read. In a similar way we obtain
the abstract value v ∈ V .

If k is not a singleton (i.e. ¬Sk(k)) then a weak update is performed
as defined in Figure 6.4. We add the new abstract segment (k, v) to
d(T) and compute dNorm

(
d(T)∪ {(k, v)}

)
. The information about un-

initialised elements is not altered, as for no specific key the dictionary
must have been initialised by this update.

A weak update clearly over-approximates a concrete update, as it
admits both the old and the new value for the modified element.

If k is a singleton, a strong update can be performed. The container
d(T) may already contain an abstract segment (l,w) that describes the
updated element, i.e. kuk l 6= ⊥k. The new value should be assigned
only to the modified element, all other elements associated with keys
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k , κA→K
(
δa(k ← v1,a↑k )

)
v , κA→V

(
δa(t ← v2,a↑t)

)
x , d(T)] (k, v)
y , i(T)] (k, False)

δ̂c

(
T [v1]← v2, (a,d, i)

)
,
(
a,d[T 7→ x], i[T 7→ y]

) Sk(k)

Figure 6.5: Strong update T [v1]← v2

abstracted by l should remain unchanged. Intuitively, we need to split
the abstract key l into a collection of smaller keys k,m1,m2, . . .mj

which represent together the same concrete keys as l. We say that
a function ζ : K ×K → P(K ) is a decomposition of an abstract key l ∈ K
with respect to a singleton k ∈ K if:

• ∀m1,m2∈ζ(l,k)∪{k}m1 6= m2 ⇒ m1 ukm2 = ⊥k,

• k 6∈ ζ(l,k),

• γk(k)∪
(⋃

m∈ζ(l,k) γk(m)
)
= γk(l).

The definition of ζ(l,k) must be provided together with the domain
K. It is sufficient to define the decomposition of the top element >k, as
then the decomposition of an arbitrary l ∈ K can be defined as:

ζ(l,k) , {n ∈ K | m ∈ ζ(>k,k),muk l = n,n 6= ⊥k} .

We define an operation ] : D(K , V )× (K × V ) ⇀ D(K , V ) so that
d ] (k, v) overwrites in d the elements at keys abstracted by k:

d ] (k, v) ,
(

d \
{
(l,w) | (l,w) ∈ d , luk k 6= ⊥k

})
∪
{
(k, v)

}
∪
{
(m,w) | (l,w) ∈ d , luk k 6= ⊥k,m ∈ ζ(l,k)

}
.

The operation d ] (k, v) is defined only if k is a singleton.
We are ready to define the strong update T [v1] ← v2. Let k and v

be as in the weak update and let k be a singleton. The strong update
overwrites in d(T) the old value associated with the abstract key k
and marks in i(T) that the element at key abstracted by k must be
initialised (see Figure 6.5).

For standard dictionaries that do not impose any restrictions on
the keys or dictionary elements, the function Λc(T [v1]← v2, a) returns
always True. For special types of dictionaries some specific checks may
be necessary. For instance, an array cannot be written to outside of
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its bounds, which could be expressed (using the abstract semantics of
boolean predicates πa in the scalar domain A) as:

Λc

(
T [v1]← v2, (a,d, i)

)
, True iff πa(0 6 v1,a) = (a,⊥a)

∧ πa(v1 < T .length,a) = (a,⊥a) .

The strong update forgets only the old value of the updated element
(by the definition of the decomposition) and replaces it with an ab-
stract value that over-approximates the inserted concrete value (as δa

is a sound over-approximation), thus is a sound abstraction of the
concrete update.

Example 6.15 (Weak update). Consider the same container T ∈ Varc
and scalar v1 ∈ Var as in Example 6.14, with an additional scalar
v2 ∈ Var such that a(v2) = [6, 8]. After the update T [v1] ← v2, d(T)
becomes

{
([0, 5], [−2, 8]), ([6, 9], [2, 7])

}
.

Example 6.16 (Strong update). Consider scalars v1, v2 ∈ Var , such that
a(v1) = [2, 2] and a(v2) = [7, 9] and a container T ∈ Varc with d(T) ={
([0, 5], [1, 3])

}
, i(T) =

{
([0,∞], True)

}
. The strong update T [v1]← v2

modifies T so that d(T) =
{
([0, 1], [1, 3]), ([2, 2], [7, 9]), ([3, 5], [1, 3])

}
.

It also marks that the updated element must be initialised, setting
i(T) =

{
([0, 1], True), ([3,∞], True)

}
(the superfluous abstract segment

([2, 2], False) is removed).

6.2.2 Abstract Semantics of Boolean Predicates

We admit boolean predicates that operate over a scalar variable and
a dictionary access, such as φ(T [v1], v2), where T ∈ Varc and v1, v2 ∈ Var .
This allows us to restrict the possible values of T [v1] as shown in
Figure 6.6. As usual, k denotes the abstract key for the access T [v1]
and v is the corresponding abstract value. If k is a singleton, then we
can restrict v according to φ(t , v2). The soundness of πc follows from
the soundness of the strong update, as in fact we perform two strong
updates, one in the True and one in the False branch.

The function Λc is defined for φ(T [v1], v2) in the same manner as for
the read access, i.e.

Λc

(
φ(T [v1], v2), (a,d, i)

)
, True iff{
l | (l, True) ∈ i(T),k uk l 6= ⊥k

}
= ∅ .

Example 6.17. Consider scalars v1, v2 ∈ Var such that a(v1) = [4, 4] and
a(v2) = [0, 0] and a container T ∈ Varc with d(T) =

{
([0, 4], [−2, 5])

}
.
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k , κA→K
(
δa(k ← v1,a↑k )

)
v ,

⊔
v

{
w | (l,w) ∈ d(T),kuk l 6= ⊥k

}
(vt, vf) , πv

(
φ(t , v2), v

)
xt , d(T)] (k, vt)
xf , d(T)] (k, vf)

π̂c

(
φ(T [v1], v2), (a,d, i)

)
, (a,d[T 7→ xt], i), (a,d[T 7→ xf], i)

Sk(k)

Figure 6.6: Boolean predicate φ(T [v1], v2)

A test T [v1] 6 v2 evaluates to two abstract states (cTrue, cFalse). In the
True branch, the content of the container is given by

dTrue(T) =
{
([0, 3], [−2, 5]), ([4, 4], [−2, 0])

}
while in the False branch it is

dFalse(T) =
{
([0, 3], [−2, 5]), ([4, 4], [1, 5])

}
.

Theorem 6.18. The functions δc and πc are sound abstractions of the concrete
transfer functions t and p.

Proof. This theorem is justified by the arguments presented for each of
the transfer rules above.

6.3 examples

We present now some sample instances of the generic domain de-
scribed above.

6.3.1 Arrays: Non-relational Abstraction

We start with a very simple example, in which the domain is used to
model arrays. We use here the domain of intervals I (see Section 2.1)
and abstraction by parity P that is sketched below.

The abstraction by parity is a simple abstract domain P(X) (over
a finite set of variables X) with the set of abstract elements P equal to
X→ P({0, 1}), join tp and meet up given as point-wise set union and
intersection (hence >p = λx.{0, 1} and ⊥p = λx.∅) and concretisation γp

defined as

γp(p) , {ρ | ∀x∈X ∃c∈p(x) ρ(x) ≡ c mod 2} .
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Thus, {0} and {1} abstract even and odd integers, respectively.
We instantiate the domain C by fixing A = P(Var ), K = P(Var ∪ {k })

and V = I(Var ∪ {t }).
There are no singletons in the abstraction by parity, thus Sp(p) =

False for each p ∈ P and the decomposition is an empty partial func-
tion.

Example 6.19. Let us focus on a code snippet, where only each fourth
element of an array is initialised:

1: j← 0

2: T ← new array(n)
3: while j < n do
4: T [j]← 5, j← j+ 4

5: end while

Before the first loop iteration, no element of the array is initialised, j is
even and n is either odd or even, i.e. d(T) = ∅, i(T) = {({0, 1}, True)}1,
a(j) = {0} and a(n) = {0, 1}. Inside the loop, 5 is assigned to an even
element T [j]. This is a weak update, hence the initialisation information
i is not modified. The instruction j← j+4 does not change the parity of
j. After the loop we get d(T) = {({0}, [5, 5])}, i(t) = {({0, 1}, True)}, a(j) =
{0} and a(n) = {0, 1}. This invariant guarantees that no odd element in
T is initialised (as d(T) does not contain any abstract segment with key
k such that 1 ∈ k(k )). On the other hand, i(T) states that each element
of T may still be uninitialised. Note also that the only one abstract key
in d(T) describes a set of non-contiguous concrete array elements.

6.3.2 Arrays: Relational Abstraction

We instantiate now the generic domain C using a very simple relational
domain of upper bounds, which is an enriched version of the domain
of strict upper bounds described in Section 2.3.

We demonstrate the analysis on examples of partial array initialisa-
tion (Figure 6.7) and quicksort partition procedure (Figure 6.8).

In the domain of upper bounds B over a finite set of variables X,
the set of abstract states B is a map X → P(X× {<,6}). Intuitively,
each variable x is mapped to a set of variables greater than x (with
an indicator, whether the constraint is strict). The concretisation γb is
given by:

γb(b) , {ρ | ∀x,y∈X (y,C) ∈ b(x)⇒ ρ(x) C ρ(y)} .

1 In the abstract segments we show only the abstract values of the key and value-
tracking variables
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The meet ub can be defined just as a point-wise set union. The result
of a join b1 tb b2 contains for each variable x the less restrictive (in the
obvious sense) constraints from b1(x) and b2(x). The domain of upper
bounds B is finite, hence the widening can be defined as the join.

We instantiate now the domain C by fixing A = B(Var ), K = B(Var ∪
{k }) and V = B(Var ∪ {t }). We additionally assume that there is a special
variable v0 ∈ Var that is always equal to zero.

singleton and decomposition The abstract key is a singleton,
if the key variable k is equal to some numerical variable x:

Sb(k) = True iff ∃x∈Var (x,6) ∈ k(k )∧ (k ,6) ∈ k(x) .

We define now a decomposition function ζb of the top element >b. Each
element of ζb(>b,k) originates from k by negating any (non-empty)
subset of constraints:

ζb(>b,k) ,
{
b ∈ K | (y,C) ∈ b(x)⇔

(
(y,C) ∈ k(x)

∨
(
(x,J) ∈ k(y)∧ {C,J} = {<,6}

))}
\ {k} .

Fact. ζb(>b,k) is a decomposition of the top element >b and it can be
used to instantiate the generic definition of ζ.

transfer function We demonstrate only one example of the
transfer function δb, namely δb(j← j+ 1,b). We choose this statement,
as it occurs in the examples presented later in this section. Let us
assume that the set of scalar values V is fixed as Z. Basically, if there
is in b an inequality x 6 j, then after the increment j ← j+ 1, it is
transformed to x < j. Similarly, j < y is transformed to j 6 y. On the
other hand, an inequality j 6 z is lost. More formally, δb(j← j+ 1,b)
is given by:

λv.


{
(x,6) | (x,<) ∈ b(j)

}
if v = j,(

b(v)∪
{
(j,<) | (j,6) ∈ b(v)

})
\
{
(j,6)

}
otherwise.

(6.20)

examples In the examples below we do not write all bounds ex-
plicitly. Instead, for each abstract key k we show only constraints that
involve the key variable k . And so, if (x,C) ∈ k(k ), we write "Cx". If
(k ,C) ∈ k(y), then we write "By". If (z,6) ∈ k(k ) and (k ,6) ∈ k(z),
then we use an abbreviation "=z". Similarly, for each abstract value v
we show only the constraints involving the value-tracking variable t .
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1: x← 0, j← 0, T ← new array(n)
2: while x < n do
3: x← x+ 1

4: if φ(x) then
5: T [j]← x, j← j+ 1

6: end if
7: end while

Figure 6.7: Partial array initialisation

Example 6.21 (Array Initialisation). Let us start with a standard partial
array initialisation code presented in Figure 6.7. Our analysis suc-
cessfully detects that after this code fragment first j elements of T are
initialised to values smaller or equal to x. The analysis also ensures
that all array accesses are correct.

The statement T ← new array(n) creates a new, empty array. The
possible indices of T range over [0,n). Note that at this program point
j = 0 and T .length = n, thus the range of indices i of uninitialised
array elements can be written as v0 = j 6 i < n = T .length. This
observation justifies the abstract state just before the loop, which is
d(T) = ∅ and i(T) = {({<n,<T .length,>j,>v0}, True)}.

We assume that nothing can be statically determined about the
test φ(x), thus πc(φ(x), c) = (c, c). Let us focus now on the array
modification T [j]← x in line 4. First observe that the access is correct,
i.e. the analysis of scalars captures that the tests 0 6 j and j < T .length
are fulfilled (see the definition of Λc for an array update). The abstract
key k ∈ K for the array access T [j] contains the constraints k 6 j

and j 6 k , thus k is a singleton and the strong update is performed.
The inserted abstract segment is (k, v) = ({=j,<n,>v0}, {=x}) (we drop
here constraints not important in the analysis). After this update, the
content of the array is modelled as d(T) = {({=j,<n,>v0}, {=x})}. The
initialisation information is i(T) = {({<n,>j}, True)}.

The increment of the scalar j← j+ 1 modifies the array so that

d(T) =
{(

{<j,<n,>v0}, {=x}
)}

i(T) =
{(

{<n,>j}, True
)}

.

Let us explain the above equalities in more detail. We focus on i(T),
as the case of d(T) is similar. Recall that each scalar statement is
interpreted in all abstract segments in d(T) and i(T). Let us focus on
the statement j← j+ 1 and the abstract segment ({>j,<n}, True) ∈ i(T)
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in the state before this increment. The shown (fragment of the) abstract
key encodes the following inequalities: j < k and k < n. As we have
discussed when presenting the transfer function δb(j ← j+ 1,b), the
inequality j < k is transformed into j 6 k . The remaining inequalities
are unaffected. This explains the abstract segment ({<n,>j}, True).

To understand the example even better, one could imagine modifying
the code snippet by replacing j← j+1with j← j+2. In the considered
abstract segment ({>j,<n}, True) the constraint j < k is lost, resulting
in an abstract segment ({<n}, True). In this case the information about
initialised elements is lost.

During the second loop iteration, the increment x ← x+ 1 mod-
ifies d(T) so that d(T) = {({<j,<n,>v0}, {<x})} (while i(T) remains
unchanged). The assignment T [j]← x results in

d(T) =
{(

{<j,<n,>v0}, {<x}
)
,
(
{=j,<n,>v0}, {=x}

)}
and

i(T) =
{(

{<n,>j}, True
)}

.

Additionally, Λc(T [j]← x, (a,d, i)) evaluates to True, as the analysis of
scalars ensures that 0 = v0 6 j and j < T .length. Finally, using the
same arguments as in the first loop iteration, after j← j+ 1 we get:

d(T) =
{(

{<j,<n,>v0}, {6x}
)}

i(T) =
{(

{<n,>j}, True
)}

.

When analysing the next loop iteration, it turns out that this is
already the loop invariant. The first abstract segment in i(T) guarantees
that all elements at indices smaller than j were initialised, while d(T)
ensures that all values of these elements are smaller or equal than x.

Example 6.22 (Partition). In the next example, we analyse the partition
procedure from Figure 6.8. The array T is modified so that elements
not greater than x are moved to the front, i.e. there exists an index j
such that ∀06m<jT [m] 6 x and ∀j<n<T .lengthT [n] > x (we assume that
the array is fully initialised). For brevity, we omit the initialisation
analysis i and focus on the array content d. We omit the discussion
about Λc, as the correctness of all array accesses in this example
can be shown in a straightforward way: we have assumed that the
array is fully initialised and at each time when an array is accessed
0 6 l < T .length and 0 6 r < T .length.

At the beginning of the procedure the array T may contain arbitrary
values, i.e. d1(T) = {({<T .length,>v0},>b)}.
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1: procedure Partition(T , x)
2: l← 0, r← T .length− 1

3: while l < r do
4: if T [l] 6 x then
5: l← l+ 1

6: else if T [r] > x then
7: r← r− 1

8: else
9: y← T [r], z← T [l], T [r]← z, T [l]← y

10: end if
11: end while

Figure 6.8: Partition procedure

After the two assignments to scalars l and r in line 2, we get
d2(T) = {({6r,<T .length,>l,>v0},>b)}. Below we omit the obvious
constraints ">v0" and "<T .length". Consider the program point before
the instruction in line 5. As we have l < r, the test T [l] 6 x ensures

d5(T) =
{(

{=l,<r}, {6x}
)
,
(
{6r,>l},>b

)}
.

After l← l+ 1 the array gets d ′5(T) =
{(

{<l,<r}, {6x}
)
,
(
{6r,>l},>b

)}
,

which can be justified in the same fashion as we have done it in
Example 6.21. In the second branch of the if statement both T [l] > x
and T [r] > x:

d7(T) =
{(

{=l,<r}, {>x}
)
,
(
{<r,>l},>b

)
,
(
{=r,>l}, {>x}

)}
and after decreasing the scalar r:

d ′7(T) =
{(

{=l,6r}, {>x}
)
,
(
{6r,>l},>b

)
,
(
{>r,>l}, {>x}

)}
.

In line 9, T [l] > x and T [r] < x. After the two strong updates T [l]← y

and T [r]← z we get:

d ′9(T) =
{(

{=l,<r}, {<x}
)
,
(
{<r,>l},>b

)
,
(
{=r,>l}, {>x}

)}
.

After joining the states d ′5, d
′
7 and d ′9, at the end of the first iteration

we get

d11(T) =
{(

{<l,<r}, {6x}
)
,
(
{6r,>l},>b

)
,
(
{>r,>l}, {>x}

)}
.

The domain of bounds is finite, hence we apply the join instead of the
widening before the next loop iteration. Note that d2(T)td d11(T) =
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1: j← 0, T ← new array(n)
2: while j < n do
3: if j ≡ 0 mod 2 then
4: T [j]← 0

5: else
6: T [j]← 1

7: end if
8: j← j+ 1

9: end while

Figure 6.9: Array initialisation depending on index parity

d11(T) (d2(T) is a subset of d11(T)). It turns out that d11(T) is a loop in-
variant. After the loop, l > r, hence the invariant describes the desired
property (note that the abstract segment

(
{6r,>l},>b

)
combined with

l > r is equivalent to
(
{=r,=l},>b

)
and contains at most one element),

i.e. for 0 6 m < j, T [m] 6 x and for j < n < T .length, T [n] > x.

6.3.3 Arrays: Abstraction Using a Product

We use now both the non-relational and relational analysis in one
example, i.e. we instantiate the domain C by fixing abstraction of
scalars and keys as the product of abstractions by parity and upper
bounds, i.e. A = P×B, K = P×B and V = I (the domain of intervals)
over the sets of variables as usual. In the product domain P × B all
domain operations are given point-wise. An element (p,b) ∈ P × B
is a singleton if either p ∈ P is a singleton (which never happens) or
b ∈ B is a singleton. The decomposition ζ

(
(lb, lp), (kb,kp)

)
is given by{

(m,>p) | m ∈ ζb(lb,kb)
}

.

Using such abstraction we can show that in the code in Figure 6.9,
all array elements at odd indices are initialised to 0, while all elements
at even indices are equal to 1.

In the first loop iteration a1(j) = ({>v0,<n}, e). Let c = (a,d, i)
denote the state before the loop. The test j = 0 mod 2 results in ct = c
and cf = ⊥c, thus the array before the increment j← j+ 1 is abstracted
as:

d8(T) =
{(

({=j}, e), [0, 0]
)}

and i8(T) =
{(

({>j,<n},>p), True
)}

.
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As the analysis of scalars captures that 0 6 j and j < n, Λc returns
True for the array access. After the increment j ← j+ 1 the array is
abstracted by:

d9(T) =
{(

({<j}, e), [0, 0]
)}

and i9(T) =
{(

({>j,<n},>p), True
)}

while the scalar j is a9(j) = ({>v0,6n},o).
In the next loop iteration j is either odd or even (as we join a1 with

a9). It is easy to see that Λc returns True for array accesses in both
branches of the if statement. After the whole if statement we get:

d8(T) =
{(

({<j}, e), [0, 0]
)
,
(
({=j}, e), [0, 0]

)
,
(
({=j},o), [1, 1]

)}
and

i8(T) =
{(

({>j,<n},>p), True
)}

.

After incrementing j← j+ 1 we obtain

d9(T) =
{(

({<j}, e), [0, 0]
)
,
(
({<j},o), [1, 1]

)}
and

i9(T) =
{(

({>j,<n},>p), True
)}

.

It is now easy to check that the state (a9,d9, i9) is already a loop
fixpoint. After the loop j > n and i9 ′(T) = ∅ (as the abstract key would
contain contradictory constraints k > n and k < n), hence all array
elements at even and odd indices smaller than j are initialised to zero
and one, respectively.

6.3.4 Dictionaries

In the next example our technique is used to model a string-keyed
dictionary. This example is inspired by the way in which objects are
represented in dynamic programming languages (such as Python).

In dynamic languages an object is stored as a dictionary, where
each entry represents an object attribute. Attributes can be added
and removed during program execution. Moreover, different types of
values may be assigned to the same attribute at different points of
the program execution. For instance obj.attr may be at some point
an integer, at another point a string, while somewhere else it may refer
to a function. This flexibility, although sometimes useful and conveni-
ent, leads often to serious errors. When a missing attribute is accessed,
the program fails with an AttributeError. When an attribute does



6.3 examples 133

not match the expected type (for example a string is encountered in
an arithmetic operation), a runtime TypeError is raised. In statically
typed languages these types of errors are eliminated during compila-
tion. In dynamic languages they may arise during program execution,
thus to avoid them, a significant testing effort is required.

We use now our dictionary analysis technique to statically detect
these types of problems.

string analysis An object is represented as a string-keyed dic-
tionary, thus we need to develop an abstract domain for modelling
string values. There already exist such domains, both non-relational [48]
and relational [44, 67].

We present here our own tiny abstract domain, in which each string
variable is represented using a generalised regular expression [59].
A regular expression r ∈ r (Σ) over a finite alphabet Σ is defined by the
following grammar:

r ::= ∅ | ε | a ∈ Σ | r1 · r2 | r1 ∨ r2 | r1 ∧ r2 | r∗ | ¬r .

Note that in addition to the standard concatenation, alternative and
Kleene star, we allow conjunction and complement operations. These
extensions are purely syntactical, i.e. each such generalised regular ex-
pression can be rewritten using only the standard operations. We write
L(r) to denote the language recognised by the regular expression r.

Given some set of variables X, in the domain R(X) each variable
v ∈ X is mapped to a regular expression, i.e. R = X→ r (Σ). The meet
ur and join tr are given as point-wise conjunction and alternative. The
concretisation is given by:

γr(a) , {ρ : X→ String | ∀v∈Xρ(v) ∈ L(a(v))} .

The top >r is equal to λv.Σ∗, while the bottom ⊥r is λv.∅.

widening The most complicated operation is the widening. It is
defined in terms of non-deterministic finite state automata (which are
equivalent to regular expressions [40]). Roughly, given two regular
expressions r1, r2 ∈ r (Σ) and the corresponding automata A(r1) and
A(r2), we construct an automaton A ′ by adding transitions to A(r1) so
that L(r1)∪ L(r2) ⊆ L(A ′). As we never add new states and the size of
the alphabet Σ is finite, our widening is guaranteed to stabilise.

In the algorithm for computing the widening of two automata A1
and A2 we map states of A2 to states of A1 in the following way:
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a

a

b

(a)

a c

b

d

(b)

a

a c

b
d

(c)

Figure 6.10: Two automata (a) and (b) and their widening (c). Input and
accepting states are marked as circles with dots and filled circles,
respectively.

1. the (unique) input state of A2 is mapped to the input state of A1,

2. consider a state s2 ∈ States(A2) that is already mapped to some
s1 ∈ States(A1). Consider a transition (in A2) from s2 to some s ′2
labelled with a letter l ∈ Σ. There are three possibilities:

• s ′2 is already mapped to some s ′1 ∈ States(A1). In this case,
we add (in A1) a transition from s1 to s ′1 labelled with l (if
this transition already exists, nothing is added),

• s ′2 is not mapped and there exits in A1 a transition from s1
to some s ′1 labelled with l. In this case s ′2 is mapped to s ′1 (if
there are many such transitions in A1, any of them can be
taken),

• s ′2 is not mapped and there is no transition form s1 labelled
with l in A1. In this case we map s ′2 to s1 and add a loop on
s1 with label l,

3. it may happen that we map an accepting state s2 ∈ States(A2)
to a non-accepting state s1 ∈ States(A1). In this case, we turn s1
into an accepting state as well.

We proceed with steps 2 and 3 until all states in A2 are mapped.
The modified automaton A1 obtained at the end of the procedure is
considered as the result of the widening.

Finally, the widening a Or b is for each variable v ∈ Var defined as
the regular expression equivalent to the automaton constructed by the
above algorithm applied to a(v) and b(v).

transfer function The only operation on strings that we need,
is the string concatenation. The transfer function δr(z← x+y, a) is just
given by

δr(z← x+ y, a) , a[z 7→ a(x) · a(y)] .
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1: at← "b"
2: repeat
3: setattr(obj, at, 6)
4: at← at + "c"
5: until random() = False
6: if random() = True then
7: obj.x← 8

8: else
9: obj.x← "text"

10: end if
11: print obj.b - 1
12: print obj.bcc - 1
13: print obj.x - 1

Figure 6.11: Dynamically added attributes

attribute analysis In our example, we will abstract each attrib-
ute of an object by its possible type. For simplicity, we consider only
integer and string attributes. The types can be abstracted in a tiny
domain T(X), where the set of abstract states is T = X→ P({Int,Str}),
with the domain operations given as point-wise set union and inter-
section.

object abstraction As already mentioned, we use our diction-
ary analysis technique to model possible attributes of an object. We
instantiate the generic domain C by fixing the abstraction of scalars A
as R(Var ), key abstraction as K = R(Var ∪ {k }) and value abstraction as
V = T(Var ∪ {t }).

An abstract key k ∈ K is a singleton, if the regular expression k(k )
can be generated using only the productions r ::= ε | a ∈ Σ | r1 · r2.
The decomposition is given by ζr(l,k) = {¬k∧ l}.

Example 6.23. We may now demonstrate the analysis on the code
fragment shown in Figure 6.11. We write attribute accesses in a Python-
like style, however in fact they are just dictionary accesses. And so
obj.x is equivalent to obj[’x’] and setattr(obj,v,u) can be written
as obj[v] ← u.

For brevity, in the abstract segments we show only the abstract
values of the key and value-tracking variables k and t . In the first
loop iteration, the scalar variable at is abstracted as a(at) = b. Thus,
after setting the attribute in line 3, the object is modelled as d3(obj) ={
(b, {Int})

}
and i3(obj) =

{
(¬b, True)

}
. In the next loop iteration at is
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widened (using our widening on automata for regular expressions) to
a(at) = bc∗. Since bc∗ is not a singleton, the setattr in line 3 results
in a weak update and after the loop we get d5(obj) =

{
(bc∗, {Int})

}
and i5(obj) =

{
(¬b, True)

}
. After the (strong) update in line 7, the

object is modelled as

d7(obj) =
{
(bc∗, {Int}), (x, {Int})

}
i7(obj) =

{
(¬b∧¬x, True)

}
.

Similarly, after the assignment in the second branch we get:

d9(obj) =
{
(bc∗, {Int}), (x, {Str})

}
i9(obj) =

{
(¬b∧¬x, True)

}
.

Thus, joining the above two states gives

d10(obj) =
{
(bc∗, {Int}), (x, {Int,Str})

}
i10(obj) =

{
(¬b∧¬x, True)

}
.

We can now prove that the attribute usage in line 11 is correct. The
attribute b must be present in obj and it is an integer. The access
obj.bcc is detected as unsafe (possible AttributeError). The analysis
captured that obj may contain any attribute bc∗, each of them of type
Int, but it does not guarantee that bcc (or any bc+) is present in obj.
Finally, the last instruction is signalled as unsafe, because obj.x does
not need to be an integer at this program point (possible TypeError).

Our technique is flexible enough to capture non-trivial properties
of both dictionary keys and values. The abstract segment (bc∗, {Int})
means that elements at keys matching the regular expression bc∗ may
be only of type Int. This type of properties cannot be modelled by any
of the approaches sketched in the previous chapter.

6.4 possible extensions

In our domain it is possible to express constraints between dictionary
keys and scalars and between dictionary values and scalars, but it
is not possible to model relationships between dictionary keys and
dictionary values. However, our domain can be easily modified to
capture also this kind of relationships. This can be achieved by ab-
stracting dictionary values in a domain V over the set of variables
Var ∪ {k , t }, where k and t are the key and value-tracking variables,
respectively. Clearly, such extension would require also some (rather
straightforward) modifications to the concretisation and transfer func-
tion. After this extension the domain would be powerful enough to
express properties such as "each value in the dictionary is equal to the
corresponding key".
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After the proposed extension, the dictionary keys are modelled
both by abstract keys and abstract dictionary values. One could try
to eliminate this redundancy by removing the key abstraction from
the abstract segments. In this case an abstract dictionary would just be
defined as a finite set of abstract values. However, we prefer to keep
the abstract keys, as this allows us to maintain the property that each
abstract segment models disjoint sets of concrete dictionary elements.

Another possible modification is to get rid of the abstraction of
scalars. As we keep the relations to scalars within the abstract segments,
the additional element a ∈ A is sometimes superfluous. However, we
have decided to keep it for two reasons:

• it makes the presentation clearer,

• it is useful when the domain is instantiated with non-relational
domains: the abstraction of keys and dictionary values can be
chosen to model only the special variables k and t , respectively.

6.5 proofs

In this section we present proofs of theorems and lemmas stated in
this chapter.

6.5.1 Proof of Lemma 6.2

Let us recall the proved lemma:

Lemma (6.2; recalled). The meet operator ud in the lattice 〈D,td,ud〉 is
well defined, i.e. a ud b ∈ D.

Proof. Clearly a ud b ∈ Pfin(K × V ). Directly from the definition it also
follows that for each (k, v) ∈ a ud b, k 6= ⊥k and v 6= ⊥v.

Now we show that no two distinct abstract keys in a ud b may overlap.
Let (ka1 uk kb1 , v), (ka2 uk kb2 ,w) ∈ a ud b where (ka1 , va1), (ka2 , va2) ∈ a
and (kb1 , vb1), (kb2 , vb2) ∈ b. Since a, b ∈ D, we have following possibil-
ities:

1. (ka1 , va1) = (ka2 , va2) and (kb1 , vb1) = (kb2 , vb2). In this case we
immediately get (ka1 uk kb1 , v) = (ka2 uk kb2 ,w),

2. kb1 uk kb2 = ⊥k (the case when ka1 uk ka2 = ⊥k is symmetric). We
are to show that

(ka1 uk kb1)uk (ka2 uk kb2) = ⊥k .
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Using the commutativity and associativity of uk we get

(ka1 uk kb1)uk (ka2 uk kb2) = (ka1 uk kb1)uk (kb2 uk ka2)

= ka1 uk

(
(kb1 uk kb2)uk ka2

)
= ka1 uk (⊥k uk ka2) = ⊥k .

6.5.2 Proof of Lemma 6.5

Again, we start with recalling the statement:

Lemma (6.5; recalled). Let 〈A ,ta,⊥a,>a〉 be a complete lattice and let S be
a finite subset of A . The least disjoint partition of S exists and is uniquely
defined.

Proof. We define a sequence of minimally defined partial functions
fi : P(S) ⇀ S such that

• f0({a}) = a for each a ∈ S,

• fi(
⋃
Y) =

⊔
aY∈Y fi−1(Y), for every maximal family of sets Y (with

respect to inclusion of family sets) such that for each Y0, Yk ∈ Y

there exist Y1, . . . Yk−1 ∈ Y such that fi−1(Yj)ua fi−1(Yj+1) 6= ⊥a,

• for i > 0, fi is undefined on arguments other than mentioned
above.

We show that the domain of f|S| is equal to the least disjoint partition
of S. We start with the following auxiliary property:

Lemma 6.24. For each i > 0 and for each Y ∈ Dom(fi), all a ∈ Y must
belong to the same set in any disjoint partition of S.

We prove this property by induction over i:

1. i = 0: each Y ∈ Dom(f0) is a singleton. As the least disjoint
partition is a partition, each element of S must belong to some
set. So Lemma 6.24 holds,

2. assume that Lemma 6.24 holds for i− 1. Let us consider Y as in
the definition of fi:

• if Y = {Y}, then fi(
⋃
Y) = fi−1(Y), so the property holds
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• otherwise consider any two Yj, Yk ∈ Y and a sequence
Yj, Yj+1, . . . , Yk such that fi−1(Yr)ua fi−1(Yr+1) 6= ⊥a. We show
that all elements from Yj and Yk must belong to the same
set in any disjoint partition. We prove this by induction over
the length of sequence Yj, . . . , Yk:

a) if the length is 2, then fi−1(Yj) ua fi−1(Yk) 6= ⊥a. Using
the inductive hypothesis for i− 1 and the definition of
a disjoint partition, we immediately get that all elements
from Yj and Yk must belong to the same set in the
disjoint partition.

b) assume that the length of the path between Yj and Yk
is n and that the examined property holds for paths of
length n− 1. Consider the element Yk−1 (which is just
before Yk in the sequence). The distance between Yj and
Yk−1 is n− 1, so all elements from Yj and Yk−1 must be-
long to the same set in any disjoint partition (inductive
hypothesis). But fi−1(Yk−1)ua fi−1(Yk) 6= ⊥a, so as in the
previous case, from the inductive hypothesis for i− 1
and definition of a disjoint partition, all elements from
Yk−1 and Yk must belong to one set, which implies that
also elements from Yj and Yk belong to the same set in
each disjoint partition.

This ends the proof of Lemma 6.24.
The sequence 〈fi〉 stabilises after at most |S| steps. Note that in each

iteration, either fi = fi−1 or |Dom(fi)| < |Dom(fi−1)|. Since |Dom(f0)| =

|S|, f|S| must be a fixpoint of the sequence.
Let us consider now f|S|. For each X, Y ∈ Dom(f|S|), either X = Y

or f|S|(X) ua f|S|(Y) = ⊥a. Since f|S|(X) =
⊔

a X, Dom(f|S|) is a disjoint
partition of S. This, together with Lemma 6.24, means that Dom(f|S|) is
the least disjoint partition of S.

The least disjoint partition is clearly unique. Suppose that there exist
two distinct least disjoint partitions X and Y. From the minimality of X
it follows that for each X ∈ X there exists Y ∈ Y such that X ⊆ Y. Since
X and Y are distinct, for some X0 ∈ X we have Y0 ∈ Y such that X0 ( Y0.
But, from the minimality of Y, Y0 ⊆ X1 ∈ X. This cannot happen (since
X is a partition). This completes the proof that a least disjoint partition
is unique.
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6.5.3 Proof of Theorem 6.7

As always, let us first restate the theorem:

Theorem (6.7; recalled). Set D together with the meet and join operators
given by (6.1) and (6.6) forms a lattice.

Proof. We start with an auxiliary lemma:

Lemma 6.25. Let A ⊆ B be two finite subsets of L . The least disjoint
partition Y of the superset B preserves the least disjoint partition X of A, i.e.

∀X∈X∃Y∈YX ⊆ Y (6.26)

Proof. By contradiction: assume that there exists X ∈ X which is not
a subset of some Y ∈ Y. Let Z be obtained from Y by removing all
elements from B \A. Z is a disjoint partition of A, but X is not a subset
of any Z ∈ Z. This would mean that X is not the least disjoint partition
of A. Contradiction.

We proceed now with the proof of Theorem 6.7. The commutativity
of ud and td is straightforward. The associativity of the meet follows
directly from the associativity of uk.

We focus now on the associativity of the join. We have to show that
for any a, b, c

dNorm(dNorm(a ∪ b)∪ c) = dNorm(a ∪ dNorm(b ∪ c)) .

We start by showing that

dNorm(dNorm(a ∪ b)∪ c) = dNorm(a ∪ b ∪ c) . (6.27)

Let X,Y denote the least disjoint partitions of keys from a ∪ b and a ∪ b ∪
c respectively. Let Z be obtained from Y by replacing in each Yj ∈ Y each
key i from a ∪ b with the corresponding key from dNorm(a ∪ b), i.e.
with

⊔
k X, where i ∈ X for some X ∈ X. Thanks to (6.26), X ⊆ Yj, hence⊔

k Zj =
⊔

k Yj and Z is a correct disjoint partition of dNorm(a ∪ b)∪ c.
Each disjoint partition W of dNorm(a ∪ b)∪ c can be obtained from

some disjoint partition of a ∪ b ∪ c in the same way as we have defined Z.
Since Z was obtained from the least partition, it must be preserved by
all W, hence it is a least disjoint partition of dNorm(a ∪ b)∪ c. From the
definition of dNorm and the fact that

⊔
k Z =

⊔
k Y for corresponding

Z and Y, we immediately get (6.27).
The same arguments can be used to show the equality dNorm(a ∪

dNorm(b ∪ c)) = dNorm(a ∪ b ∪ c). These two facts together end the
proof of the associativity of the join.
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It remains to prove the absorption laws. Let us start with show-
ing that a ud (a td b) = a. Consider any abstract segment (i, v) ∈ a.
There exists an abstract segment (j,w) ∈ a td b such that iuk j = i

and vuv w = v, hence (i, v) ∈ a ua (a ta b). Moreover, for any other
(j ′,w ′) ∈ a td b, iuk j

′ = ⊥k, therefore if (i ′, v ′) 6∈ a, then (i ′, v ′) 6∈
a ud (a td b).

We focus now on the absorption law for td, i.e. a td (a ud b) = a.
For any (i, v) ∈ a, let (j1,w1), . . . , (jk,wk) ∈ a ud b denote elements, for
which iuk jl 6= ⊥k (note that in this means iuk jl = jl). All i, j1, . . . , jk
must belong to the same set in the least disjoint partition of the keys
from the union a ∪ (a ud b). Note that si = itk j1 · · · tk jk is equal
to i. This means that si uk si ′ = ⊥k for i 6= i ′ and finally gives us
(i, v) ∈ a td (a ud b). Note also that (by the definition of ud) for each
(j,w) ∈ a ud b there exists (i, v) ∈ a such that juk i = j. This means that
in the discussion above we have considered all elements from a ud b,
hence no more elements can belong to a td (a ud b).

This ends the proof that D together with ud and td forms a lattice
structure.

6.5.4 Proof of Theorem 6.9

Let us restate the theorem:

Theorem (6.9; recalled). The operator Od given by:

⊥d Od a , a a Od ⊥d , a a Od b , dNorm(aÕb),

where Õ is defined as:

aÕb ,
{
(kOk l, vOv w) | (k, v) ∈ a, (l,w) ∈ b,kuk l 6= ⊥k

}
∪
{
(k, v) | (k, v) ∈ a,∀(l,w)∈b kuk l = ⊥k

}
∪
{
(>k,w) | (l,w) ∈ b,∀(k,v)∈a kuk l = ⊥k

}
.

is a widening operator.

Proof. Recall that we say that Od is a widening if and only if

1. for all a, b ∈ D, a td b vd a Od b

2. for every infinite sequence co, c1, . . . , sequence s0, s1, . . . defined
as s0 = c0

si = si−1 Od ci for i > 0

is not strictly increasing.
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We start with showing that our widening operator always over-
approximates the join. First note that each pair (i, v) ∈ a ∪ b is replaced
in aÕb by some greater pair (i ′, v ′), i.e. iuk i

′ = i and vuv v
′ = v. Now,

if some keys i1, i2, . . . , ik belong to the same set in the least disjoint
partition of keys from a ∪ b, then i ′1, i

′
2, . . . , i

′
k must be in one set in the

partition of keys from aÕb.
The condition a td b vd a Od b can be rewritten as (a td b)ud (a Od b) =

a td b. Consider any segment (i1 tk i2 tk · · · tk ik, v1 tv v2 tv · · · tv vk) ∈
a td b. First we focus on the keys. Using the observation above, we
conclude that in a Od b there is a key i ′1 tk i

′
2 tk · · · tk i

′
k tk j1 · · · tk jm

(as i ′1, . . . , i
′
k must be in the same set in the partition). We need to show

that

(i1 tk i2 tk · · · tk ik)uk (i
′
1 tk i

′
2 tk · · · tk i

′
k tk j1 · · · tk jm)

= i1 tk i2 tk · · · tk ik

but this is clear, since il uk i
′
l = il. Identical reasoning can be repeated

for the values. This means that each pair (i, v) ∈ a td b belongs also
to (a td b)ud (a Od b), which completes the proof that the widening
always over-approximates the join.

Now we focus on the finite sequence property. If s1 = ⊥d, then the
sequence is already stabilised. If s1 6= ⊥d, we proceed with the proof
by contradiction.

Note that the cardinality of the sequence elements may never in-
crease, i.e. |si+1| 6 |si|. To see this, consider the three parts of the
definition of aÕb. Only the last part potentially adds a new segment
(>k,w). However, if it was added, the normalisation dNorm would
smash everything to just one segment (as >k overlaps with all other
keys).

Assume now that the sequence s0, s1, . . . is strictly increasing. This
means that there must exist an infinite sub-sequence starting at some si,
such that all elements have the same cardinality: |si| = |si+1| = |si+2| =
. . . . As |si| is finite, some pair (k, v) ∈ si must be modified infinitely
many times.

This pair can be replaced only by (k ′, v ′) such that k ′ and v ′ over-
approximate kOk l and vOv w for some pair (l,w). If either of the
sequences k,k ′, . . . or v, v ′, . . . was strictly increasing, then one of the
operators Ok or Ov would not satisfy the finite sequence property. But
these are correct widening operators.
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6.5.5 Proof of Lemma 6.12

Let us start with recalling the lemma:

Lemma (6.12; recalled). If the domains A, K and V have exact meets, i.e.

• γa(a1)∩ γa(a2) = γa(a1 ua a2),

• γk(k1)∩ γk(k2) = γk(k1 uk k2) and

• γv(v1)∩ γv(v2) = γv(v1 uv v2)

then the meet uc in the domain C is also exact:

γc

(
(a1,d1, i1)

)
∩ γc

(
(a2,d2, i2)

)
= γc

(
(a1,d1, i1)uc (a2,d2, i2)

)
.

Proof. Let us start with the inclusion

γc

(
(a1,d1, i1)

)
∩ γc

(
(a2,d2, i2)

)
⊆ γc

(
(a1,d1, i1)uc (a2,d2, i2)

)
.

Let (ρ, τ) ∈ γc

(
(a1,d1, i1)

)
∩ γc

(
(a2,d2, i2)

)
. We will show that (ρ, τ) ∈

γc

(
(a1,d1, i1)uc (a2,d2, i2)

)
. As the meet in A is exact, it is easy to see

that ρ ∈ γa(a1 ua a2).
Let T ∈ Varc and n ∈ K be arbitrary container and concrete key,

respectively. In the concrete state (ρ, τ), T [n] may be either uninitialised
or equal to some m ∈ E. We present the proof only in the first case.

By the definition of predicate I, given by (6.10), we have for some
(k1, True) ∈ i1(T) and σ1 ∈ γk(k1)

σ1|Var = ρ,σ1(k ) = n

and for some (k2, True) ∈ i2(T) and σ2 ∈ γk(k2):

σ2|Var = ρ,σ2(k ) = n .

This immediately gives that σ1 = σ2. By the properties of the meet
uk in the domain K, we get σ1 ∈ γk(k1 uk k2). By the definition of the
meed ud given by (6.1) in the generic dictionary abstraction, we get
that (k1 uk k2, True) ∈ (i1 ud i2)(T), thus T [n] may be uninitialised in
(a1,d1, i1)uc (a2,d2, i2).

In the same way (but using the predicate V given by (6.11) instead
of I), we can show the case when τ(T)(n) = m. This completes the
proof that (ρ, τ) ∈ γc

(
(a1,d1, i1)uc (a2,d2, i2)

)
.

We focus now on the opposite inclusion:

γc

(
(a1,d1, i1)

)
∩ γc

(
(a2,d2, i2)

)
⊇ γc

(
(a1,d1, i1)uc (a2,d2, i2)

)
.
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Let us assume that (ρ, τ) ∈ γc

(
(a1,d1, i1) uc (a2,d2, i2)

)
. This means

that ρ ∈ γa(a1 ua a2). As ua is exact, it follows that ρ ∈ γa(a1) and
ρ ∈ γa(a2).

Consider an arbitrary container T ∈ Varc and an arbitrary concrete
key n ∈ K. We show in detail only the case, when T [n] is uninitialised
in (ρ, τ), as the other case is similar.

Using the definition of the predicate I we get for some (k, True) ∈
(i1 ud i2)(T) and σ1 ∈ γk(k)

σ1|Var = ρ,σ1(k ) = n .

From the definition of ud given by (6.1) it follows that (k, True) was
computed as (k1 uk k2, True), where (k1, True) ∈ i1(T) and (k2, True) ∈
i2(T). This means that σ ∈ γk(k1 uk k2) and, using the exactness of uk,
σ ∈ γk(k1) and σ ∈ γk(k2), hence, given the scalar valuation ρ, T [n]
may be uninitialised both in (a1,d1, i1) and (a2,d2, i2).

In the same way (but using V instead of I), we can show the case
when τ(T)(n) = m. This completes the proof that (ρ, τ) ∈ γc((a1,d1, i1))
and (ρ, τ) ∈ γc((a2,d2, i2)), as well as the whole proof of Lemma 6.12.

6.5.6 Proof of Lemma 6.13

As usual, let us first recall the lemma:

Lemma (6.13; recalled). If the domainsA, K and V have over-approximating
joins, i.e.

• γa(a1)∪ γa(a2) ⊆ γa(a1 ta a2),

• γk(k1)∪ γk(k2) ⊆ γk(k1 tk k2) and

• γv(v1)∪ γv(v2) ⊆ γv(v1 tv v2)

then the join tc in the domain C is also over-approximating:

γc

(
(a1,d1, i1)

)
∪ γc

(
(a2,d2, i2)

)
⊆ γc

(
(a1,d1, i1)tc (a2,d2, i2)

)
.

Proof. Let (ρ, τ) ∈ γc

(
(a1,d1, i1)

)
∪ γc

(
(a2,d2, i2)

)
. Without loss of gen-

erality we may assume that (ρ, τ) ∈ γc

(
(a1,d1, i1)

)
. This means that

ρ ∈ γa(a1). As the join ta in A is over-approximating, we get that
ρ ∈ γa(a1 ta a2).

Now we consider an arbitrary container T ∈ Varc and an arbitrary
concrete key n ∈ K. In the concrete state (ρ, τ), T [n] may be either
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uninitialised or equal to some m ∈ E. We show here only the first case.
Using the definition of the predicate I we get for some (k1, True) ∈
(i1)(T) and σ1 ∈ γk(k1)

σ1|Var = ρ,σ1(k ) = n .

From the definition of the join td given by (6.6), it follows that there
exists (k, True) ∈ (i1 td i2)(T) such that k = k1 tk l1 tk . . . tk lm for
some m > 0 and (lj, True) ∈ i1(T) ∪ i2(T). As σ1 ∈ γk(k1) and tk is
over-approximating, we get σ1 ∈ γk(k). This means that the predicate
I(ρ, T ,n, i1 td i2) holds.

In the same way we justify the case, when τ(T)(n) = m. As T and
n were chosen arbitrarily, this ends the proof that (ρ, τ) ∈ γc

(
a1 ta

a2,d1 td d2i1 td i2)
)
= γc

(
(a1,d1, i1)tc (a2,d2, i2)

)
.





7
S U M M A RY

In this thesis we have described our contribution to the static analysis
by abstract interpretation of programs that manipulate over numerical
and container variables.

The first contribution is a design of two new relational numerical
domains. The domain of weighted hexagons (Chapter 3) is capable
of representing systems of hexagonal constraints of the form x 6
a · y, where x and y are program variables and a denotes a non-
negative constant. The domain elements have been formalised as pairs
of functions that represent the smallest and the largest, respectively,
coefficient among all constraints x 6 a · y in the system. We have
also shown that a domain element can be represented using a pair
of graphs, and thus it can be efficiently encoded using adjacency
matrices. We have developed a cubic time satisfiability checking and
normalisation algorithm that infers the tightest constraints entailed by
the given weighted hexagon.

We have defined (and formally proved the correctness of) all domain
operations, including meet, join, widening and satisfiability test. We
have also provided the transfer function for a simple programming
language.

The second domain proposed in this thesis is the domain of strict
weighted hexagons (Chapter 4). It is more expressive than the weighted
hexagons, as it can maintain both strict and non-strict hexagonal con-
straints, such as x 6 a · y and u < b · v, where x, y, u and v are
program variables and a, b denote non-negative constants. The ad-
ditional expressiveness of the domain is achieved without increasing
the computational complexity. In case of both standard and strict
weighted hexagons, the most complicated operation is the normal-
isation, which works in a cubic time (with respect to the number of
variables). Elements of both these domains can be encoded in a quad-
ratic memory. The domain of strict weighted hexagons lies between
pentagons (Section 2.3) and TVPI (Section 2.4) in terms of expressive-
ness and efficiency.

The major contribution of this thesis is an abstract domain for ana-
lysis of programs that use scalar variables together with dictionaries
or arrays of scalar values (Chapter 6). The domain is fully generic and
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can be parametrised with abstractions of dictionary keys, dictionary
values and scalar variables. It is also relational, i.e. it can automatically
discover relationships between scalars and dictionary keys and values.

Domain elements are constructed in a way that makes it possible
to simultaneously find the over-approximation of the set of possible
values stored in a dictionary at any key and to determine the set of
potentially uninitialised dictionary elements. The domain is equipped
with strong and weak dictionary updates, making the analysis as
precise as possible.

Our technique can be applied for instance to analysis of arrays and
dictionaries. As it is parametrised by the abstractions of keys and
dictionary values, it is not limited to analysis of containers containing
only numerical values. We have presented examples in which the
domain is used to analyse numerical arrays (both in relational and
non-relational manner) and string-keyed dictionaries. For purposes of
the last example, we have also developed a simple domain for analysis
of string variables, with domain elements represented using regular
expressions and an automata-based widening.

To the best of our knowledge, this is the first abstract domain that
can be used to model arbitrary dictionaries.

As a part of the work on the dictionary abstraction, we have de-
veloped a simple prototype of an abstract interpreter for Java source
code. The goal of the experiment was to roughly check the perform-
ance impact of our approach applied to array analysis. We did not
perform any analysis of string-keyed dictionaries.

The prototype works on inter-procedural level. It does not analyse
method calls. Instead, we assume that each method may return an ar-
bitrary value and that it can modify all variables available in this
call.

In the experiment we have instantiated our technique by fixing the
abstractions of scalars, dictionary keys and values as the domain of
pentagons.

We have launched the analyser on various open-source projects,
including image processing application (ImageJ), ssh client for mobile
devices (MidpSSH), Apache Commons Math library and the Oracle
Berkeley DB database implementation. In the first stage of the experi-
ment (denoted in Table 7.1 as "off"), the array analysis was turned off,
i.e. only analysis of numeric variables in the domain of pentagons was
performed. In the second phase, we switched the array analysis on
and checked the number of detected non-trivial array invariants at the
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project size # meth. off on # inv.

ImageJ 84 4 372 2:08 2:29 265

Apache Commons Math 42 2 896 1:53 1:57 176

MidpSSH 12 561 0:10 0:11 56

Berkeley DB 103 6 196 5:08 5:12 45

Table 7.1: Array analysis statistics on open-source projects

method exit points. We treat an array invariant as non-trivial, if it is
more precise than "arbitrary value may be at arbitrary index".

For each project, we report in Table 7.1 its size (in Kilo Lines Of
Code), the number of methods, execution times (in minutes) of the
analyser when running with and without array analysis as well as the
number of detected array invariants.

The measured slowdown turned out to be negligible (about 5%).
The results of our experiment are similar to those reported for Fun-
Array [17], in terms of both performance impact and number of new
invariants.

The partition procedure analysed in Example 6.22, together with the
computed invariant, was found (in a slightly more complicated form)
in the Apache Commons Math project.
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