
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Jarosªaw Dominik Ku±mierek

A Mixin Based Object-Oriented Calculus:

True Modularity in Object-Oriented Programming
PhD dissertation

Supervisors

prof. dr. Viviana Bono prof. dr. hab. Paweª Urzyczyn

Department of Informatics Institute of Informatics
Torino University University of Warsaw

April 2010



Author's declaration:
Aware of legal responsibility I hereby declare that I have written this dissertation myself and
all the contents of the dissertation have been obtained by legal means.

April 20, 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date Jarosªaw Dominik Ku±mierek

Supervisors' declaration:
the dissertation is ready to be reviewed

April 20, 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date prof. dr. Viviana Bono

April 20, 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date prof. dr. hab. Paweª Urzyczyn



Abstract

Nowadays, most of the commonly used imperative programming languages fall into the
category named object-oriented languages (or OO shortly). The domination of the OO lan-
guages is especially visible in the area of commercial projects. OO languages have evolved
during last 20 years and, while becoming an industry standard, reached a mature state.

However, the mainstream OO languages (like Java [39], C] [40] and C++ [63]) still
show some common limitations. The main problems one can meet using these languages
are: (i) lack of expressiveness requiring additional programming during the declaration of
new classes; (ii) limitations of possible reuse scenarios caused by the single inheritance
mechanism (and the complications of semantics of the multiple inheritance); (iii) danger of
random con�icts of class members.

When programmers develop bigger and bigger products (especially the ones combining
code coming from di�erent providers) these limitations are becoming more and more visible.
Additionally, while some tools are being designed to �ght these di�culties, those tools are
becoming very cumbersome. We believe that most of programmers using C++ [63], Java [39]
and C] [40] have di�culties with the understanding of some subtleties of the semantics of the
language they use. As an e�ect, it implies more errors and less e�ective use of the language
features.

To solve those problems, we present a new OO, mixin-based language called Magda,
which is more expressive with respect to reuse than the above mentioned languages, by
allowing much stronger and more �exible reuse of existing components. At the same time,
the language is safer, because it completely protects the programmer from con�icts of class
members, during the design and writing of the software, as well as during its further evolution.

To show that this language is safe, we formally de�ne its semantics and type system, and
then we prove its soundness.
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Chapter 1

Introduction

Many software systems produced nowadays are implemented using the OO programming
languages. Those languages have numerous advantages, which makes them so successful.
However, even though many of them include sophisticated constructs (thus having also
a complicated semantics), they still have some limitations, which restrict the modularity
and composability of di�erent components1 of the program. In the rest of the thesis we
assume that the reader is familiar with OO programming.

1.1 Problems we are concerned with

The limitations which we are particularly concerned with, and which have been the motiva-
tion for the design of our new language, are the following:

Non modular initialization protocol. In most OO languages newly created objects are
initialized according to the speci�cation present in constructors. Constructors are re-
sponsible for initialization of many di�erent features coming from di�erent places in
the class hierarchy, yet they are monolithic, which means that they have to perform
all this job in one block of code. While a constructor can call a super class' construc-
tor to delegate some parts of the work, it still needs to keep all its parameters in its
own signature. This increases the amount of work which has to be performed when
the initialization process needs to be modi�ed. Additionally, by creating unnecessary
dependencies, it limits the possible combinations of otherwise independent parts of the
code.

Clashes of method names. When classes are composed from di�erent components, like
in cases when they inherit from other classes, or implement some interfaces, it may
occur that the same method name has di�erent meanings in the components we want
to use. This causes di�erent kinds of problems, from non-compilation to an unexpected
behavior during the program execution.

1We do not assume any speci�c meaning of �component�. We use this notion to refer to any entity being
a reusable part of the program.
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Limitations of composition mechanisms. The most widely applied reuse and composi-
tion mechanism is inheritance. In its classical (single inheritance) setting this mech-
anism is simple and understood by many people, however often not su�cient. On
the other hand, there were other solutions developed, like multiple inheritance, mix-
ins [56, 22, 11, 36] and traits [60, 33] (in the order of appearance). The �rst of those
is widely percepted as too complicated and too dangerous [30]. The two other solu-
tions (mixins and traits) have been designed to solve this problem and managed to
improve the reusability in many aspects. However, in their current implementations,
some con�icts and non-predicted behavior can still occur.

All those limitations together with their consequences in di�erent languages are described
in more detail in Chapter 2.

1.2 General idea of our solutions

In order to solve the problems mentioned above, we have designed and implemented a new
language called Magda. The core notion in Magda is the mixin, which de�nes a building
block from which objects are created. Our mixin construct has many things in common with
its previous revisions [56, 22, 11, 36] with one noticeable di�erence: In Magda there is no
concept of class, so mixins are not interpreted as functions from classes to classes. Mixins
are �rst-class entities, which are used to create new objects from, and also induce types in
the nominal static type system of our language.

Additionally, to completely take advantage of mixin reusability, Magda contains two
additional unique features. Thanks to those features, Magda avoids the problems with mixins,
which we introduced in Section 1.1 (and studied in more details later).

The �rst of those features is the modularization of constructors. This approach allows one
to de�ne the initialization process of objects in a modular fashion, in such a way that part of
the constructors which is responsible for the initialization of the state related to some feature
is declared together with that feature. Then many mixins with independent de�nitions of
constructors can be combined without the need to copying any code and without the risk of
any clashes.

The second distinctive feature of Magda is the way of uniquely declaring and referenc-
ing identi�ers. This approach modi�es the way declarations of new methods, overriding of
existing methods, and method calls are speci�ed. Those modi�cations result in the property
that no combinations of methods coming from di�erent mixins and called by other mixins
will cause any name clashes, accidental overridings or any other problems of that kind.

In this thesis, we present the syntax and the core features of Magda together with its
semantics and formal properties. In order to keep this presentation as simple as possible we
have focused on a subset of the language which contains most of the unique features, while
avoiding features which are common to many other languages and are mostly orthogonal
to other features. From now on, unless stated otherwise, when we use the word Magda, we
mean this selected core subset of Magda.
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1.3 Contributions of the thesis

The main contributions of this thesis are:

1. The introduction of a newly designed purely mixin-based language, which integrates
the following features:

• Modular constructors approach, which introduces the notion of initialization mod-
ule, that corresponds to a piece of a constructor in classical OO languages. This
approach allows arbitrary compositions of initialization modules coming from
di�erent mixins without the risk of accidental con�icts. A limited version of
this feature have been previously published as a part of a Java extension called
JavaMIP [18, 17, 55].

• Hygienic identi�cation of methods and �elds, which guarantees that no clashes
will occur when multiple mixins are combined. A version of this feature have been
previously published as a foundation of the HygJava language [48].

• Clean, purely mixin-based design. This design, thanks to its features, does not
su�er from the ambiguity problems perceived as those which stop mixins from
being more widely popularized (see the description of those problems in Section
2.4.4).

2. The formal semantics and the type system of the language.

3. A new approach of proving the type soundness of a language. This approach allows one
to prove the strong type soundness property basing solely on the big-step semantics
(where normally it requires a more tedious small-step formalization).

1.4 Outline of the thesis

This thesis is structured as follows. In Chapter 2 we discuss the problems present in existing
OO languages, which we tried to solve. In Chapter 3 we introduce Magda by presenting
di�erent examples of code � starting from the simple �hello world� example, and then
continuing with more sophisticated ones. In Chapter 4 we present in detail all syntactic
constructs of Magda. In Chapter 5 we present a formal BNF de�nition of Magda. In Chapter 6
we introduce some de�nitions which formalize the contents of each program and allow us to
formally de�ne di�erent properties of Magda. In Chapter 7 we present the formal big-step
semantics of our language. In Chapter 8 we de�ne the type checking system of Magda. In
Chapter 9 we present a formal model of the computation steps performed by the programs
written in Magda. This model relies heavily on the big-step semantics and allows us to state
properties referring to the type soundness and subject reduction. In Chapter 10 we present
a formulation and a proof of the subject reduction theorem for Magda. This proof uses the
model of computation in order to obtain a stronger subject reduction property than the
usual one when big-step semantics is exploited. In Chapter 11 we formulate and prove the
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type soundness property of Magda's semantics and type checking system. In Chapter 12 we
brie�y describe the actual implementation of Magda. In Chapter 13 we compare Magda's
features to those available in other languages. In Chapter 14 we conclude our work.
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Chapter 2

Weak points in the existing OO

languages

Below we present an overview of three kinds of problems from which most of the current OO
languages su�er. The problems listed motivated us to design from scratch the new language
called Magda.

2.1 Non-modular initialization protocol

Most OO class-based languages are equipped with some form of speci�cations for the object
initialization protocol. This protocol describes two aspects of the initialization:

• The kind of information that must be supplied to a class, to create and initialize
an object. A class may support more than one variant of object initialization, which
means that there may be more than one accepted set of such information;

• The code to be executed during this initialization. The sequence of instructions which
should be executed depends on the kind of information supplied. Therefore, if the class
supports distinct sets of information to be supplied during initialization, then for any
such a set a di�erent sequence of instructions should be executed.

Usually, the initialization protocol of a class is speci�ed by a list of constructors. Each
constructor corresponds to one accepted set of information and consists of:

• a list of parameters (names and types), specifying a set of information required to
initialize an object;

• a body, containing a list of instructions which must be executed in order to initialize
an object.

Such approach is present in most of the contemporary OO languages like, for instance,
C++ [63], C] [40], Delphi [3], Java [39], and Visual Basic [2].
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Unfortunately, this traditional initialization protocol (abbreviated TIP from now on) has
some drawbacks, studied in details below. The main limitation of such an approach and the
source of all the mentioned problems is the following: Every time a programmer wants to
reference an initialization protocol of a class, he/she must de�ne or reference explicitly the
whole list of parameters, or, in the case of inheritance, sometimes even repeat the whole list
of constructors. However, in many cases his/her actual intent may be di�erent. The actual
idea behind the code might be much simpler than the actual work which has to be done
in the code, which causes various �aws. Below we present di�erent scenarios in which TIP
requires unnecessary additional code and creates additional dependencies. We perform the
analysis by presenting some Java examples, however, most of the mentioned problems occur
also in any other mainstream object oriented language.

2.1.1 Optional parameters

Unfortunately, traditional initialization protocol leads to an exponential number of construc-
tors with respect to the number of optional parameters.

In Java, in classes like java.awt.TextArea, there is often one �complete� constructor
declared, containing the largest set of parameters. However, when some of those parameters
are optional, then additional constructors, with less parameters than the �complete� one,
must be declared.

Moreover, most of the time, all desired constructors cannot be introduced. It happens
so because it is not allowed to place, in one class, two constructors with parameter lists of
the same length and compatible types of the corresponding parameters. Even though such
two constructors can represent two di�erent subsets of parameters of the complete one, the
compiler will not recognize which constructor to call at object creation time (because the
constructor is chosen via the types of its arguments). However, if the compiler could make
such a choice, then most probably a lot of classes would contain all possible constructors,
leading to an exponential number of constructors. This can be partially solved in languages
containing named parameters (like Python [13]) and default parameter values (like Delphi [3],
Python [13], C++ [63] and others).

2.1.2 Multiple initialization options

TIP leads also to an exponential number of constructors with respect to the number of object
properties with di�erent initialization options.

If a class contains some properties, where each of them can be initialized in more than
one way, then the possible number of initialization options of a given class (thus the number
of constructors) is a multiplication of the numbers of options of object properties. An exam-
ple could be the combination of a property color (with two options, RGB and CMYK) with
a property position (with three options, cartesian, polar, and complex) in a class ColorPoint,
which induces six constructors (see Figure 2.1). The Java class java.net.Socket is a more so-
phisticated example, which due to this and the previous described problem contains presently
nine constructors.
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// Class of points definable by three different coordinate systems

class Point

{ float x, y; //object state variables

Point (float x, float y)

{ this.x = x; this.y = y; }

Point (Complex comp)

{ x = comp.x; y = comp.y; }

//the third parameter is required only for the compiler

//to distinguish between this one and the (x,y) constructor

Point (float angle, float rad, boolean PolarDef)

{ x:=cos(angle)*rad; y:=sin(angle)*rad; }

}

// Class of colored points whose color is definable by two different

// color palettes

class ColorPoint extends Point

{ float r, g, b; //object state variable

// There are the constructors (for three different coord. systems) with RGB

ColorPoint (float x, float y, float r, float g, float b)

{ super(x,y);

this.r = r; this.g = g; this.b = b;}

ColorPoint (Complex comp, float r, float g, float b)

{ super(comp);

this.r = r; this.g = g; this.b = b;}

ColorPoint (float angle, float rad, boolean PolarDef,

float r, float g, float b)

{ super(angle, rad, PolarDef);

this.r = r; this.g = g; this.b = b;}

// While there are the constructors with CMYK arguments.

ColorPoint (float x, float y, float c, float m, float yc, float k)

{ super(x,y);

r = somefun1(c,m,yc,k); g = somefun2(c,m,yc,k); b = somefun3(c,m,yc,k);}

ColorPoint (Complex comp, float c, float m, float yc, float k)

{ super(comp);

r = somefun1(c,m,yc,k); g = somefun2(c,m,yc,k); b = somefun3(c,m,yc,k);}

ColorPoint (float angle, float rad, boolean PolarDef,

float c, float m, float yc, float k)

{ super(angle, rad, PolarDef);

r = somefun1(c,m,yc,k); g = somefun2(c,m,yc,k); b = somefun3(c,m,yc,k);}

}

Figure 2.1: Point and ColorPoint Java classes � presenting exponential growth of the
number of constructors
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2.1.3 Code duplication

Further problem with TIP is that excessive amount of constructors (as described in Section
2.1.1 and 2.1.2) very often contain duplicated code. To see what parts of code get duplicated,
let us consider an example in which we have two attributes characterizing the state of an ob-
ject, for example the mentioned position and color from a class ColorPoint (see Figure 2.1).
If those attributes can be initialized in multiple ways (the position can by supplied by three
di�erent coordinate systems and the color by two di�erent palettes), then we would need
six constructors where most of pairs of those constructors share some common code. An
example of such code duplication can be seen in the constructor bodies of ColorPoint class
on Figure 2.1.

2.1.4 Work consuming subclassing

TIP makes the extension of a class by a new subclass cumbersome. In most cases, the
designer of a subclass just wants to modify the initialization protocol of a parent class,
not to rede�ne the parent's protocol completely. However, using the TIP approach, he/she
must declare the whole resulting protocol in a subclass. Let us consider, for example, a class
of blinking buttons, which blink for some time after clicking. It is possible to declare it
by extending the class of ordinary buttons, for example javax.swing.JButton, which has
�ve constructors. Some information is needed for such a button, for instance the frequency
of blinking and the time for which the button must blink. Therefore, the subclass must
contain �ve constructors, as the parent class. Additionally, the declaration of each of those
constructors will begin with the identical parameters of the corresponding constructor in the
parent class, but it will contain two additional parameters, time and frequency. This may
lead also to code duplication.

2.1.5 Unnecessary constructor dependencies

In languages using the traditional initialization protocol, modi�cations of existing classes
force unnecessary changes in subclasses. To present this problem in more detail, let us con-
sider such a scenario:

• there exists a class C1 with some set of constructors;

• another class C2 is declared by another developer as a subclass of C1. Class C2 needs
some additional initialization information, so it has all parent constructors redeclared
by adding one parameter Par', which is needed by subclass C2. Then, all those con-
structors will most probably call the corresponding constructors in the base class C1

and execute some sequence of code regarding Par' ;

• another constructor is added to C1. Unfortunately, the class C2 will not inherit auto-
matically the corresponding constructor. This class, depending on the language design,
will either retain the constructor added in C1 without the additional parameter Par',
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or just will not inherit it at all (as it is in case of Java). We think that neither of these
options is good enough.

2.1.6 Fragile overloaded constructors

Additionally, overloaded constructors in TIP make safe-looking changes non-conservative.
When a Java (or C++ or C]) class contains many di�erent options of initialization imple-
mented as many di�erent constructors, the choice of the constructor actually called during
object creation is done in the same way as the choice of an overloaded method variant. Thus,
it su�ers the same problems, as this example shows:

interface I1 {...}

interface I2 {...}

class C1 implements I1, I2 {...}

class C2 implements I2 {...}

class ClassWithOptions

{ ClassWithOptions (I1 a, I2 b);

ClassWithOptions (I2 a, I1 b);

}

...

new ClassWithOptions( new C1(), new C2() );

This code will compile, because only one of constructors of class ClassWithOptions

matches the last new expression. But if the class C2 is enriched in order to make it implement
also the interface I1, then this �safe-looking� change will make the previous code not working
(because the last new will be ambiguous). Notice that this is not a problem in languages in
which it is possible to name constructors (e.g., in Delphi [3]), therefore the overloading can
be avoided.

2.1.7 Unnecessary redeclarations of checked exceptions

In Java, if a constructor of a parent class is declared to throw some exceptions and is
called by a constructor of a subclass, the subclass constructor must repeat the whole list
of exception declarations. While the repetition of such declarations in normal methods is
important, because methods have choices (to catch the exceptions, or throw them further),
the situation with constructors is di�erent. A constructor cannot catch the exceptions thrown
be a superclass' constructors, therefore the repetition of the declarations is an additional work
for the programmer which cannot be justi�ed.

Additionally, when a superclass constructor is re�ned by replacing one exception with
two sub-exceptions of the original one (which is a conservative, thus a safe, extension), the
subclasses will still contain the information about the original exception. As a result, clients
of the subclass will not get as complete type information about the thrown exceptions as
they could.
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2.1.8 Problems with traditional mixins

A mixin is a class parameterized over a superclass, that was introduced to model some forms
of multiple inheritance and improve code modularization and reusability, [56, 22, 20, 11, 36,
10, 15]. There are usually two operations we can perform over mixins: (i) application, which
applies a mixin to a class to obtain a fully-�edged subclass (the class argument plays the role
of the parent); (ii) composition, which makes a more specialized mixin by composing two
existing ones. Notice that an indirect form of composition is possible even in the presence
of application only, via the application of a chain of mixins to a class (which is the way
a linearized multiple inheritance is obtained). A mixin declaration, like any other subclass
declaration, may contain declarations of new constructors1, which, in turn, may reference
the superclass constructors.

There are cases in which it would be desirable to compose independently designed mixins.
Let us consider the following example: A class Button and two mixins Blinking and Ringing,
that when applied separately to Button will result in, respectively, a class of blinking buttons
and a class of ringing buttons. Then, it would be good to be able to compose them (the order
should not matter), in order to obtain a class of blinking and ringing buttons. Unfortunately,
if those mixins modify the interface of an initialization protocol (that is, the parameters of
a constructor) of the parent class (e.g., Button), then they are non-composable.

To better understand why, let us detail our example. Let us assume that Button class
has a constructor with x parameters. Let us assume also that a properly initialized object
of the class BlinkingButton must know its blinking color. Therefore, in the TIP approach,
the mixin Blinking must de�ne a new constructor (that replaces the old one), having x+ 1
parameters (the additional one is the color) and calling the superclass constructor inside by
passing the other x parameters. Similarly, the Ringing mixin may need, for example, some
information about the frequency of the sound, therefore it will have an x + 1-parameter
constructor as well, containing an additional frequency parameter and calling the superclass
constructor inside by passing the other x parameters. Now, if we apply one of those mixins
to the Button class, then the resulting class will have a constructor with x+ 1 parameters,
and it will not be an appropriate argument for the other mixin.

Those problems have, in fact, a similar nature as those occurring with classical sub-
classing. However, mixins are designed for a wider reuse than subclasses, therefore those
problems may occur more often and are more di�cult to foresee. Notice that also the de-
signers of Jam [10] have noticed this problem. In order to simplify the matter, they decided
to disallow the declarations of constructors in mixins, thus forcing programmers to write
constructors manually in all classes resulting from a mixin application.

2.2 Risk of accidental name clashes in di�erent scenarios

The base object-oriented concept of �method� is realized by three di�erent actions:

(i) the introduction of a new method;

1In fact, many mixin-related proposals do not allow any form of constructors (see for example [10]).
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(ii) the implementation/override of an existing method;

(iii) the method call.

The bindings between (ii) and (i), as well as between (iii) and (i) are typically made
using a method name, which is not guaranteed to be unique, thus such bindings might cause
some ambiguities. Additionally, in many popular languages (like Java, C] and C++), the
distinction between (i) and (ii) is also based upon names.

Therefore, modi�cations of existing classes (even modi�cations designed as conservative
extensions of some functionality) may cause errors in some other parts of the code referencing
such classes. Such problems can occur even more frequently, and are more di�cult to predict,
when the modi�cation of a class is performed in a library written by some third party
developer, and used by other parties. In general, a programmer cannot predict the moment
in the execution when such ambiguities may occur.

Moreover, in languages containing the mixin construct (�rst introduced in a dynamically
type checked language called Flavors [56], then developed in a statically typed language by
Gilad Bracha and others � see [22, 20, 36, 19, 10, 15]), the set of allowed combinations of
modules is much bigger, thus all these ambiguity problems are more probable to occur.

Recall that a mixin is a subclass parameterized with respect to a superclass, and mixin
inheritance is obtained by applying a mixin (or a �chain� of mixins) to a class. A mixin
can introduce new methods, request some methods to be supplied by its superclass, and
override some of the superclass methods as well. Therefore, during mixin application, name
clashes can occur. Problems regarding name clashes during mixin application has already
been pointed out in the literature, e.g. by Schärli et al., in their work on traits [60], followed
by Ducasse et al. in [33] and also by the designers of MixedJava language [36], as well as
Eric Allen et al. in his work on �rst class genericity and the MixGen language [6].

In this section we present three kinds of ambiguity problems which can occur when
programming in a Java-like language, and which we have hopefully solved when designing
the Magda language. The �rst two of these problems occur within the Java language (and
also, with some di�erences, in other languages, see Section 13), while the last one occurs
only in statically-typed languages containing the mixin construct.

A I

int m() int m()

B

int m()

ffMMMMMM
88

Figure 2.2: Name clash during interface implementation

2.2.1 Name clash caused by the implementation of an interface

Let us assume that class A and interface I are de�ned independently in di�erent libraries
(see Figure 2.2). Assume also that both of these contain a declaration of the method m.
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.........
upgrade of library

///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o String m()

library L ver. 1 library L ver. 2

B B

void m() void m()
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this declaration will no

longer compile with

new version of library
..\\\\\\

Figure 2.3: Upgrade of the library causing the code not to compile

Now, let us imagine that a developer needs to create class B as a subclass of class A, and
also as an implementation of the interface I. Then it might happen that, in order to match
the interface I, the implementation of method m must be completely di�erent from the one
inherited from A. Therefore, the change of the implementation of method m in order to have
the behavior expected by I might make the functionalities inherited from class A behave
unexpectedly. When class A also has a few ancestors, it might be the case that method m

was introduced in an ancestor, and the developer is not aware of the existence of method m

in class A. Then this override can even be unnoticed.

On the other hand, if the result types of the methods introduced in A and interface I are
incompatible, then the class B will not even compile.

2.2.2 Name clash caused by the addition of a new method

Let us assume that there exists a library L containing a class A (see Figure 2.3). Assume also
that there exists a class B created by a di�erent developer as a subclass of class A, containing
a declaration of the method m. Additionally, let us assume that the developer of library L

knows nothing about class B. Now let us assume that the developer of L decides to modify
the functionality of A by adding the method m (for example, by implementing a refactoring-
based method extraction supported by a tool), and referencing it from existing methods.
Then, unfortunately, class B used with the new version of L can su�er from two kinds of
problems:

• If the result type of method m in B is not compatible with the one declared in A, then
B will not compile anymore.

• If the result type is compatible, then method m in B will unexpectedly override method m

from A, changing the behavior of the class B in a potentially undesired way. Consider
a more detailed example, where class A is upgraded in the way presented on Figure 2.4
and class B is declared as in the Figure 2.3.

Here, the newly added method m is referenced from the existing method oldmet. There-
fore, an accidental overriding of m will not only make class B not have the functionality
expected from m, but also will change the behavior of another method (oldmet, in this

20



class A

{ void oldmet()

{
−→
I1;

if (...)

{
−→
I2;}

}

}

upgrade of library
///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o

class A

{ void oldmet()

{
−→
I1;

if (...)

m();

}

void m()

{
−→
I2; }

}

Figure 2.4: Upgrade of the library causing accidental override

case). Moreover, this dependency between m and oldmet is not visible in the external
interface of any class.

One common situation in which those problems may occur is the one when a core system is
sold to many customers and modi�ed on the customer site, as well as upgraded during its
lifetime.

Such problems are, in fact, the result of con�icting speci�cations of newly added and
inherited implementations of method m. Therefore, those can be checked (dynamically or
statically), if the speci�cations are formally de�ned as assertions and veri�ed. This can be
done, for example, in the Java environment with the use of the tool JML [25], or in Ei�el via
the Design by Contract [52]. Both warn the programmer with a �speci�cation-not-ful�lled�
error, Ei�el at run time, JML both at veri�cation time and at run time. Such approach allows
the detection of con�icts that must be �xed in order to make the program work properly
(and therefore eliminate the warnings). However still, a safe looking change in one library
might enforce many changes in other libraries. This can be problematic when such method
(like m in class B from Figure 2.3) is used in many places.

2.2.3 Name clash caused by mixin application

Let us assume that there exist two independently developed mixins M and N, both adding
method m1 with the same name and types of parameters and result. Assume also that there
exists class A to which both of these mixins can be applied. Next, if we will build the class
M(N(A)), then, depending on the implementation of mixins in the language, we will have
either:

1. a con�ict raised by the compiler, or

2. a class where an implementation from M overrides the one from N (such an approach is
the one of Jam, see [10]), or

3. a class with both methods available, but only with one of them at a certain moment,
depending on the context, given by the type of an object expression. If the variable has
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a type containing M, then method from that mixin will be accessible, and analogously
for N. Such approach can be found in the MixedJava language [36] and MixGen [6].

We think that the third solution is the best of the above, however it is still not completely
satisfactory, because: (i) in contexts where the receiving object expression has both types
M and N, the choice of the method is still ambiguous; (ii) in some situations a programmer
might need the access to both methods in one single place.

Also designers of traits [60] present this �accidental override� problem as the main draw-
back of mixin approach (see [33] for the detailed motivation). In order to solve this, they
invented traits. Traits are similar to mixins in the sense that they are reusable sets of meth-
ods. However, traits are more loosely coupled than mixins, and instead of being directly used
as mixins to obtain a new class from existing ones, traits are combined with existing classes
using additional �glue code� which speci�es which method of the given trait overrides which
method in class. A deeper analysis of traits approach is present in Section 2.4.5 and some
comparison to our approach in Section 13.3.3.

2.2.4 Name clashes of �eld declarations

Note that some of the described problems can also occur with regard to public and protected
�eld declarations. However, �elds are less often declared with a public visibility, and cause
ambiguity problems less often. Additionally, problems with �elds are generally easier to
solve (because �elds cannot be rede�ned), hence these can be solved with basically the same
techniques exploited to solve ambiguity problems concerning methods. On the other hand,
our solution to this problem is general enough to cover also ambiguities of �eld references.

2.3 Problems in the Java base library

In order to give some evidence for the relevance of the ambiguity-caused problems, we present
an analysis of the source code of Java APIs (ver. 1.5). This analysis shows name con�icts
that might lead to the problems described in the previous section, when using Java's API.
The Java API's of course compile and work; thus, the ambiguity problems which possibly
occurred during the development of the Java API's themselves were dealt with traditional
techniques, such as the renaming of some methods and by discarding some changes, which
would be unnecessary if Java had hygienic identi�ers (see Sections 1.3 and 3.1). However,
still di�erent combinations of Java's API classes and interfaces can cause the mentioned
problems.

First, on Figure 2.5, we show some numbers representing the occurrences of the intro-
duction of the same method name in di�erent classes and interfaces (notice that we did
not count overridden de�nitions, or implementations of methods declared in the interfaces).
Then we present some simple but representative examples to underline the nature of the
problems caused by the lack of hygiene in Java API.

Below we present three examples of possible problems deriving from the presence of the
ambiguities described above:
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occurrences in
method interf. classes total

getName() 59 148 207
getType() 36 71 107
close() 30 38 68
getLength() 28 33 61
getValue() 24 45 69
item(int) 19 12 31
getId() 20 32 52
reset() 14 95 109

occurrences in
method interf. classes total

setName(String) 15 7 22
getAttributes() 13 33 46
remove(int) 6 19 25
setValue(String) 9 2 11
setType() 10 1 11
getWidth() 13 17 30
clear() 8 61 69
isEmpty() 8 32 40

Figure 2.5: List of names of methods used repeatedly in di�erent contexts

• The Set interface contains the method isEmpty with the obvious meaning. The class
Hashtable (which is a class of partial function objects that assign a value to a value)
contains a method isEmpty which checks if the dictionary contains any assignment.
Unfortunately, if one wants to implement a class of subsets of some set X as a charac-
teristic function of this subset (which means function from X to bool), by subclassing
the Hashtable class, then it cannot be done. This happens, because the meaning of
isEmpty from the point of view of Set must mean that the Dictionary assigns false
to everything, which does not mean that the Dictionary itself is empty.

• The Map interface (which represents the concept of a partial mapping or function from
one set to another) contains a method clear, which empties the mapping. The typical
graphical component List (available in the java.awt package) represents a list of
items, and contains a method clear, which makes this list empty. Now, let us assume
we want to represent a mapping from some small domain, such that all of its elements
�t on the screen. In other words we want to write a visual component which implements
the interface Map. Assume also that this component lists all the mappings of the form
X -> Y for each value X in our domain and displays X -> ? if no value is assigned to X

in this particular mapping. We might then choose to make our component a subclass
of List. Then, the meaning of the method clear which will behave accordingly to the
�contract� of interface Map should not delete all the items on the visible list, but just
replace them with X -> ?. This, unfortunately, is completely incompatible with the
notion of clearing the visual list.

• The java.sql.Connection interface, which represents the concept of connection to
an SQL database, contains a method close. Similarly, the class java.net.Socket,
representing network communication sockets, contains a method close. Now, let us
assume that someone would like to create a subclass of class Socket representing
a socket designed especially for communication with some speci�c SQL database. Then
we might want to implement the interface Connection. Unfortunately, closing the
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actual logical connection with the database does not have to imply closing the physical
connection with the database. This might happen, when an application wants to keep
a pool of open physical connections, which can be used at any time when the logical
communication with the database is needed, to make the connection quicker. This can
also happen when closing of logical connection requires some additional operations like
asynchronous �ushing of some internal cache into the physical connection, and the
physical connection itself will be closed after those operations �nish.

An alternative to inheritance which can be used to solve such problems is to keep the class
containing the desired implementation as an internal component, and in some cases it might
be a better design decision. However, it is bad if the lack of hygiene itself limits the possible
uses of the inheritance mechanism in a language.

2.4 Limitations of reuse mechanisms

Another problem with existing OO languages lies in their ability to decompose components
in small, reusable pieces and then compose them arbitrarily when creating a class. This
problem manifests itself in various ways depending on the way new classes are build in a
given language, however in each language it still persists in some form.

We will present what form this problem takes in many languages using a simple example
consisting of several classes. Those classes represent the hierarchy of di�erent variants of
streams, namely:

• BaseStream - an abstract class (or interface as it is called in other languages), which
contains abstract methods read and write.

• FileStream - a class representing streams which read and write contents to and from
�le.

• NetworkStream - a class representing streams which read and write the data across
the network.

• BufferedStream - a class representing streams which bu�er data before sending them
in a one big batch.

• CompressedStream - a class representing streams which compress and decompress data
on the �y.

• StatsStream - a class representing streams which calculate di�erent statistics like:
total amount of data read and written, maximal and average throughput, etc.

• EncryptedStream - a class representing streams which encrypt data when those are
written and decrypt during reading.

• DatabaseStream - a class representing streams, which write and read data from some
speci�c table in some database.
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Let us assume that class BufferedStream has a method SetBufferSize, which sets the
amount of data which is kept in memory before being sent to the underlying communi-
cation device. At the same time, class CompressedStream uses the method named also
SetBufferSize to decide about the amount of data which is compressed at the time (the
bigger this number, the more CPU-intensive the process is, however it also increases the
compression ratio).

Additionally, we expect to be able to obtain many combinations of the above features, like:
compressed and encrypted network stream, or bu�ered �le stream with statistics enabled.
Unfortunately, as we discuss it below, this is di�cult to achieve with languages used currently.

2.4.1 Simple inheritance

In simple inheritance languages, every class can have no more than one ancestor. As a result
it can reuse only one set of features. When we have a case when some class needs features
declared in two or more distinct classes, then the only way is to perform the following
operation: inherit from the class which contains the most of what is needed and then obtain
the rest of needed functionality by either:

• copying manually the code from the remaining classes. Thus, in our example, we would
have FileStream and NetworkStream as classes inheriting directly from BaseStream.
Then CompressedFileStream would be declared as a subclass of FileStream. How-
ever, to obtain CompressedNetworkStream we would need to inherit from the class
NetworkStream and copy all parts of the code speci�ed in CompressedFileStream;

• using object-composition, by declaring local �elds of the types of remaining classes
and then implementing remaining methods by delegating them to appropriate delegate
objects. This approach can however cause additional problems, when all those classes
we need to reuse share some common ancestor with some state. Then every change of
the common state of the main object needs to be propagated to the delegate objects
also. This results in behavior which is in many aspects similar to the virtual multiple
inheritance in C++ (see Section 2.4.3).

2.4.2 Object composition/Decorator design pattern

As mentioned above, one of the mechanisms used to modularize the code is object com-
position. One of the approaches which heavily exploit the object composition is the one
de�ned as Decorator pattern by Gamma et al. in their book on Design Patterns [37]. In this
approach, when programmer needs to create an EncryptedStream, he or she creates a new
class, which contains a reference to another stream object (called delegate). Then, this class
has declared all the methods of the BaseStream class. In case of methods whose behavior
needs to be modi�ed (like read and write in stream hierarchy mentioned above), they per-
form their tasks and then call the corresponding methods in the delegate. All other methods
are implemented to just call their counterparts in the delegate object.
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This approach very often allows one to obtain the required compositional �exibility, and
is sometimes preferred over inheritance. It is especially useful when additional features of
objects should be enabled and disabled dynamically during the life of an object. However it
has numerous disadvantages when used instead of inheritance:

• Requires declarations of many methods which will only repeat the same method calls
to the delegate object, which means more coding.

• Creates more unwanted dependencies in the code, because now any modi�cation or
addition of a method in the delegate object's class requires repetition of the same
operation in other classes.

• When a class A is composed with a class B and rede�nes some of the methods from
B by providing a new implementation in its declaration (what corresponds to method
overriding in inheritance), then this form of overriding is visible only from the point of
view of external clients. Unfortunately, other methods in the same object calling this
method will call the original implementation and not see the overridden one. Therefore
it works the same way as the inheritance mechanism used without the virtual method
construct.

The virtual method construct can be simulated in this pattern by passing the decorator
object A as the additional parameter to all the methods in B and using A as a target of
all the method calls performed by B (rather than the decorated object B). However it
makes the code more complicated and requires modi�cations in every decorated class
in order to allow composition with decorators.

2.4.3 Multiple inheritance

Multiple inheritance, whose most widely known implementation is the one in C++, is a much
more powerful feature, however its complicated semantics make it di�cult and dangerous to
use on a wider scale, as summarized by Cook [30]:

�Multiple inheritance is good, but there is no good way to do it.�

The main problem people �nd with multiple inheritance is the way it deals with ambigu-
ous and con�icting features, which happens when a class inherits from superclasses which
have �elds or methods with the same name. In the example mentioned on the beginning of
Section 2.4, such problems will occur in a class inheriting from both CompressedStream and
BufferedStream, because both of those classes have method SetBufferSize. Multiple in-
heritance has a complicated semantics and still cannot o�er satisfying results in some cases.
In particular, it does not allow the user to keep in the resulting class both of the methods
with the same name. Moreover, when the same method is de�ned or overridden in multi-
ple superclasses which share a common ancestor, then the actual order in which overridden
variants of the method are called is not always obvious.
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There exists a few other languages which adopted di�erent �avors of multiple inheritance,
like Loglan [45] and Python [13]. Those languages use linearization algorithms to change the
graph of ancestors into a list over which dynamic dispatch is performed. However, every such
linearization leads to cases when the ordering of the feature overriding is: (i) non-trivial to
understand; (ii) fragile to innocent-looking changes in the hierarchy.

As a result of all the mentioned problems, many mainstream languages developed after
C++ (like Java and C]), borrowed numerous features of that language, however not the
multiple inheritance.

2.4.4 Mixin inheritance

Mixins [56, 22, 11, 36] allow the program to decompose features into many pieces, which can
then be composed in di�erent ways to obtain required combinations of features. Thanks to
the linear composition used to obtain the resulting class, the mixin inheritance avoids the
problem of the ambiguous multiple inheritance semantics.

However, in the case of many methods of the same name occurring in di�erent mixins (like
the aforementioned SetBufferSize), even though mixins allow direct control of the order
in which those methods will override each other, they might not allow the resulting class
to have both variants of the inherited methods with the same name. The approach which
allows the class to have both variants is presented in the work on MixGen by Eric Allen
et al. [6] and in the MixedJava language [36]. In the MixGen language, the class obtained
from applying both CompressedStream and BufferedStream mixins will keep both of those
methods, while giving access to one of them at one moment, depending on the static type
of the variable keeping the actual object. However, this approach does not allow the user
to access both of them at the same time and in some cases it is not obvious for the user
which implementation will be called in the given expression. We have analyzed this problem
in more detail in Section 13.2.8.

In general this problem, occurring also in classical inheritance but especially often in
the presence of mixins, is called �fragile class hierarchies�, as pointed also by Ducasse et al.
[33, 60]. The actual problem can be summarized as follows: The addition of a new method in
some superclass or some mixin might accidentally break other subclasses or classes obtained
using that mixin because of name con�icts. And since classes obtained from a mixin or a
superclass can be in fact present in the source code of some other party reusing the original
superclass, this problem cannot be foreseen at the moment of new method declaration. More
detailed description of the problems which can occur in such cases is given in Section 2.2.3.

2.4.5 Traits

Traits [60, 33] have been designed as an alternative mechanism of code reuse. Their �rst
design as well as the �rst implementation has been developed to extend a Smalltalk dialect
called Squeak. One of the design goals of this approach was to overcome problems with
mixins mentioned above. Each trait is a minimal unit of reuse, and it:
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• contains some set of methods,

• requires another set of methods to be supplied, in order to work properly. The methods
required by some trait are those which are used inside the methods added by the trait,
however not contained within this trait.

Then, a class can be build basing on some existing class, by composing traits. However, in
contrast to the mixins approach, when a programmer uses a trait to create a new class,
he/she can use an additional operator to arbitrarily choose which methods from this trait
he or she wants to add to this newly created class (by hiding some of them). Additionally
the programmer can also use additional constructs to make methods coming from traits
accessible under new names. When a trait speci�es that it needs some methods to work,
then the programmer can specify during the composition which methods from the base
class will be used to ful�ll those requirements. If the base class does not contain methods
which can be used as the ones required by the trait, then the programmer can supply an
implementation of such methods during this composition. Such additional code supplied to
make this composition work is called �glue code�.

Then, in our example, one can specify traits CompressedStream, EncryptedStream,
where each of those traits would require methods read and write and contain their overrid-
ing variants supporting compressed and encrypted data. Finally, using those traits, classes
like CompressedFileStream, or EncryptedNetworkStream can be created.

Thanks to this �exible method manipulation mechanism, the programmer has the choice
of how to deal with the con�icts of methods with the same name coming from di�erent
places (from di�erent traits in this case). The traits approach was �rst developed in the
untyped languages like Smalltalk, however later on it was studied in typed settings (see
Section 13.3.3).

However, those features do not come without the price. First of all, traits cannot contain
public or protected �eld declarations, while private �elds has been added recently in [14], and
are not yet available in most implementations. Similarly, traits cannot contain constructors,
which are often useful when combined with �elds. All the constructors of the created classes
need to be speci�ed in their declaration, not in traits.

Additionally, the mentioned �exibility has the following consequence: The fact that
a given class was build from a given trait, does not imply any guarantees about the methods
of objects created from this class. It happens so because even if we know that the class
was constructed using the trait containing a method m, then the method might have been
renamed, removed or replaced by other method with the same name.

This lack of guarantee has also some more direct implications (present regardless of any
type system in the language) on the design of bigger libraries. Let us imagine a situation
where traits are used to design a library which contains some speci�c functionality spanning
multiple collaborating objects created from di�erent classes and traits. For example method
m1 in trait T1 calls method m2 of some other object declared in some other trait T2. Notice that
such dependency is not re�ected in the speci�cation of methods required by a given trait,
because the latter lists methods required to be present in the same object. Then consider
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an application of such library functionality in some existing system, which means applying
those traits to a set of existing classes. Unfortunately, when during this application, the
programmer will perform method renaming or hiding on methods from T2, then the code in
m1 will stop working in this scenario, because it will still expect method m2 of the collaborating
object to exist under the original name. To better understand this problem let us analyze
the below scenario.

Consider the trait EncryptedStream on Figure 2.6, which encrypts the data using some
certi�cate, and which comes together with some CertificateManager trait or class. This
manager, depending on the user currently logged to the system, automatically sets certi�cates
on some or all created encrypted streams. To do this, the CertificateManager calls method
setCertificate on the EncryptedStream and also some getters to choose the certi�cate
needed for speci�c stream. Unfortunately, when the new CryptFileStream class will be
de�ned using the EncryptedStream trait, and the setCertificate method will be renamed,
then the certi�cate manager will stop working with such a stream.

In general, when traits are used to create functionalities spanning many collaborating
objects, it might be hard to predict which dependency will be broken, when any method
supplied in the trait will be renamed or hidden.

This problem has already been spotted (and worked-around in a various ways) by a few
independent groups using di�erent solutions. The �rst solution was developed by Charles
Smith et al., when designing Chai, an extension of statically typed Java with traits [62],
and independently by Allen et al. when designing the Fortress language [9, 7, 8]. The second
solution was developed by Oscar Niestrasz et al., when they worked on adapting traits to
statically typed languages [57]. Finally it was also spotted by Ducasse et al. in their work
on Freezable Traits [34].

In the �rst mentioned solution, the authors decided to restrict hiding and renaming of
methods in a way in which when a method is removed, then another implementation of the
method with the same signature must be added to the same class. This way the compiler
ensures that the class build from trait X will always have all the methods of names and types
speci�ed in X. However, those methods can be sometimes completely di�erent methods, not
those introduced in X. Additionally, this restriction implies that con�icts of two di�erent
methods with the same name and di�erent result type cannot be resolved. Similarly, in the
Fortress language, traits also induce types. Furthermore, Fortress language is even more
restrictive than Chai. The designers of this language, to avoid the mentioned problems with
typing of traits, decided not to allow method renaming and hiding. As a consequence, they
also decided that, when two traits with methods of the same name are composed, then one
method overrides the other one (in the order reverse to the one of declarations of composed
traits).

In the second of the mentioned solutions, the authors decided that traits themselves
will not be visible in the nominal type system of a statically type checked language like
Java. Therefore, to be able to implement the functionality which refers to some method of
objects created using some given trait, a programmer needs to declare an additional interface
containing some of the methods of that trait, and make sure that all classes using that mixin
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// A library containing trait EncryptedConnection, and some helper class

// called CertificateManager

trait named: #EncryptedStream

instanceVariableNames: 'aCertificate'

setCertificate: certificate

...do checks on the certificate...

aCertificate := certificate.

autoFindCertificate

| manager |

manager = getGlobalCertificateManager.

manager findCertificateFor: self.

Object subclass: #CertificateManager

findCertificateFor: encrypted_connection

| some_certificate |

some_certificate := ... do something to establish certificate....

encrypted_connection setCertificate: some_certificate.

// Some client code written by other programmer, basing the above library.

// This code contains declaration of class CryptFileStream and its usage.

FileStream subclass: #CryptFileStream

uses: {EncryptedStream @ {#setCertificate: -> #setEncryptCert:} -

{#setCertificate:}} + otherTrait

... some class declaration ....

// Usage of the above declared CryptFileStream class.

// The call to method autoFindCertificate fails, because the renamed method

// setCertificate is used by internally created CertificateManager object.

// However, programmer writing this client code could not predict it, since

// this dependency is not visible outside in the signature.

stream := CryptFileStream new.

stream autoFindCertificate.

Figure 2.6: Broken dependency during trait method renaming (using Smalltalk-like syntax)
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implement that interface. This means additional work for the programmer. Moreover, when
some method is renamed in the declaration of some class, then it either requires the class to
stop implementing that interface or requires some additional changes in the code.

In the third solution based on the notion of method freezing [34], the authors allowed the
programmer to keep two versions of con�icting methods: one as private, and other one as pub-
lic. The private version is executed when so called self call is performed, which means a call
from the trait in which this private, or frozen method has been declared. On the other hand,
the public version of method can be called externally - through the so called object calls.
However, this approach can only be used to solve the problem when the con�icting method
is called internally, by another method declared in the same trait. Unfortunately, it cannot
be used when this method is required by code present in another class/trait, as the method
setCertificate: called in method findCertificateFor: of class CertificateManager

visible on Figure 2.6.
Additionally, such problems show that the trait approach breaks encapsulation in some

sense. It breaks encapsulation in the sense that the programmer using the trait not only has
to know what methods it provides, but also needs to know their actual implementation to
be aware of such dependencies between the methods and thus of consequences of method
renaming or hiding.
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Chapter 3

The Magda language

In this chapter we present a statically typed, OO language called Magda. Magda, thanks to
its unique constructs, enjoys the property of the expressive and safe modularity discussed
in Section 1.2. We introduce this language by presenting a series of examples, each with a
set of comments. We start from a simple �Hello-world� example, then we follow with more
complicated examples in order to make the reader familiar with most of the features of the
language. In Chapter 4 we provide a complete description of the syntax. In Chapter 7 we
formalize the semantics of Magda and in Section 8 we present all the type checking rules of
Magda.

3.1 The structure of a program

Every program in Magda consists of two parts. The �rst part (and in most cases the biggest
one) is the list of mixin declarations. The second part is a list of instructions, called main
instructions. These instructions are the ones which will be executed when the program is
started. Each mixin declaration placed in the �rst part of a program contains declarations
of methods, �elds and additional members responsible for the initialization of new objects.
In most cases the main instructions use the mixin declarations to perform the task of the
whole program.

The execution process of every program written in Magda is performed by the execution
of all main instruction. When the last main instruction �nishes, then the whole program also
�nishes. Every main instruction can be one of the following:

• The creation of a new object. Each object in Magda is created from a non-empty
sequence of mixins. In this sense, the sequence of mixins plays a role similar to the one
of class in other OO languages like Java [39], C++ [63] and C] [40];

• Execution of a method on behalf of an existing object (called also method call or
message sending). In Magda, as in most OO languages, the set of methods �understood�
by the object depends on the �template� from which it was created. Therefore, the set
of understood methods depends on the sequence of mixins used to create the object.
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The whole further execution of the program (including the execution of instructions placed
within the bodies of methods) follows the same pattern. The only di�erence is that instruc-
tions placed within the method bodies can also use local variables to store values within,
and can also modify the state of an object (see Section 3.2 and Section 3.3). All the values
used in Magda programs are either null values or objects created from mixins. Each not
initialized variable and �eld has the value null.

The simple example of a program printing �Hello World� written in Magda can be seen
on Figure 3.1.

mixin HelloWorld of Object =

new Object MainMatter()

begin

"Hello world".String.print();

end;

end;

//

(new HelloWorld []).HelloWorld.MainMatter();

Figure 3.1: A simple �Hello World� example in Magda

The above program consists of the declaration of one mixin named HelloWorld and one
main instruction.

The declaration of mixin HelloWorld contains a declaration of one method named
MainMatter. The declaration of the MainMatter method begins with the keyword new which
indicates the introduction of a new method identi�er, as opposed to method rede�nition
described in Section 3.6, and abstract methods described in Section 3.7. Then the declara-
tion of the method contains the type of a value returned by the method. The MainMatter

method does not explicitly return any value (which means that it implicitly returns null

value), therefore it uses the Object return type � which is a type of all values. The above
presented header of the method is followed by the body of the method. The body of each
method consists of a list of instructions, in case of this method it means one instruction only.

Additionally, this program contains one main instruction. This instruction starts from the
creation of an object from the above declared mixin HelloWorld, using the new HelloWorld[]

expression. Then this instruction calls the method MainMatter of the newly created object.
The only job performed by the MainMatter method is the call of the method print (declared
in mixin String) on the string literal "Hello world". In Magda, String is a built-in mixin
used by text literals. The String mixin contains a few methods, like print which prints
the value on the screen, or add which concatenates two string values. Similarly, the Magda
language contains a few other built-in mixins like Integer and Boolean (see Section 3.10).

As it can be seen in the above example, in each method call, the method name is pre�xed
with the name of the mixin in which it was introduced. In this example MainMatter is
pre�xed with the HelloWorld mixin name. Similarly the print method call is pre�xed with
the String mixin name. We have developed the above approach to identi�er referencing
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called Hygienic identi�ers in order to resolve ambiguities, and to avoid any accidental name
clashes. We �rst introduced this approach and studied carefully in separation of other Magda
features in [48].

In the current version of Magda all methods are visible to calls from all classes. This
results in a similar behavior as the one of public methods in Java. In the future versions of
Magda we plan to allow one to include additional information about the visibility of methods
in a way similar to other languages. This aspect is however orthogonal to Magda's speci�c
features presented below, therefore it is not discussed in this thesis.

3.2 Object �elds

Similarly to other OO languages, in Magda an object can have a mutable state, which can
change during the life of the object. The current state of an object is stored in the object's
�elds. The list of all �elds used by an object is declared in the mixin/mixins from which the
given object has been created. The value of each �eld of an object can be either null value
or an object. The initial value of each �eld is null.

Each �eld declaration consists of a �eld name followed by its type. The type of the �eld
(as well as any other type in a Magda program) is a sequence of names of mixins. See
Section 3.9 for further comments on the types, subtyping and the type checking.

For simplicity we have chosen that each �eld in Magda can be only accessed by methods of
that object. This access is performed using the following syntax: this.FieldId. As a result we
obtain the behavior similar to the one of protected �elds in other languages. Furthermore,
similarly to references to method identi�ers, all references to �elds are pre�xed with the
name of the mixin in which the referenced �elds have been declared.

In Figure 3.2 one can see a declaration of mixin Point2D containing two �eld declara-
tions: x and y. In this example, the mixin Point2D is used to create objects representing
mutable, two-dimensional points. Method setCoords allows other objects to modify the
state of objects created from mixin Point2D. This method modi�es the state of an object
by setting values of x and y �elds of the local object. This modi�cation is performed using
the �eld assignment instruction this.Point2D.x := ax. Similarly, using this.Point2D.x

syntax, method getX allows other objects to query the state of the given object.

3.3 Local variables

Similarly to other languages, each method in Magda can contain declarations of local vari-
ables. As one can see in the MainClass.MainMatter method on Figure 3.2, variable dec-
larations are placed in the header of the method, after the name of the method and the
declaration of parameters, before the keyword begin, denoting the start of method body
(similarly to the way in which variables are declared in Pascal [12]). Each such declaration
consists of a variable name followed by a colon and the type of the variable. The type of
the variable is a sequence of mixin names. In our example one can see the declaration of
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mixin Point2D of Object =

x:Integer;

y:Integer;

new Object setCoords( ax:Integer; ay:Integer)

begin

this.Point2D.x := ax;

this.Point2D.y := ay;

end;

new Integer getX()

begin

return this.Point2D.x;

end;

end;

//

mixin MainClass of Object =

new Object MainMatter()

p1:Point2D;

p2:Point2D;

begin

p1 := new Point2D[];

p2 := p1;

p1.Point2D.setCoords( 11, 10);

p2.Point2D.getX().Integer.print(); //this line prints out 11

end;

end;

//

(new MainClass []).MainClass.MainMatter();

Figure 3.2: Fields and variables in Magda
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the variable p1 with type Point2D present within method MainMatter in mixin MainClass.
Similarly to �elds, local variables initially contain null value, and can be assigned with
object values.

As in many other languages (like Java and C]), the value of each �eld and variable is
a reference to an object. The value of a �eld cannot be an object itself (as it can for example
in C++ [63]). In Java there is one exception from this rule: Fields of primitive types like
int and float are not references, however in Magda, for simplicity, we decided that simple
numerical types are objects too.

As a result, in Magda, the assignment instruction does not copy the object, only copies
the reference to it. Therefore, when two variables (or �elds) contain references to the same
object, and the state of the object accessed through one of the variables is modi�ed, then
the state of the object accessed through the second one re�ects all the changes. The example
of such behavior can be seen in the last instruction of method MainClass.MainMatter on
Figure 3.2.

3.4 Inheritance

The inheritance mechanism in Magda works in a slightly di�erent way than in typical single-
inheritance OO languages (like Java, C]) or multiple-inheritance ones (like C++).

In traditional OO languages, a new class which is declared to extend an existing class or
classes, automatically includes all of their members (like �elds and methods). In Magda, a
mixin C can be declared in a way in which it speci�es that it �uses� (or �requires�) another
mixin A. In this case we say that mixin A is a base mixin of the mixin C. Then, every object
created from mixin C must be also created from mixin A.

As a result, all the code referring to an object created from mixin C can also safely use
methods declared in mixin A. This applies also to the code of the methods declared within
mixin C itself.

However, unlike in classical OO languages, mixin A as well as all the methods and the
�elds declared in that mixin, are not implicitly included in mixin C. All the members (�elds
and methods) declared within mixin A are not visible in the same way as if they had been
declared in mixin C. In particular it means that:

• every expression creating a new object using mixin C needs also to explicitly mention
mixin A in order to create a working object. Moreover, in the sequence of mixins used
to create an object from, A needs to occur at an earlier position than mixin C.

• every method call (and �eld dereference as well) targeting an object created from the
set of mixins {A, C} is pre�xed with the name of the mixin from which the chosen
method originates. If the method was declared originally within the mixin A then the
method call needs to specify it.

On Figure 3.3 one can see a simple example of a program containing declarations of two
mixins: Point2D, and Point3D. In this case the base mixin of Point3D is Point2D. In other
words: Point3D extends Point2D.
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mixin Point2D of Object =

x:Integer;

y:Integer;

new Object setCoords2D( ax:Integer; ay:Integer)

begin

this.Point2D.x := ax;

this.Point2D.y := ay;

end;

new Integer getX()

begin

return this.Point2D.x;

end;

end;

mixin Point3D of Point2D =

z:Integer;

new Object setCoords3D( ax:Integer; ay:Integer; az:Integer)

begin

this.Point2D.setCoords2D(ax, ay); //a call to the method coming from

this.Point3D.z := az; //another mixin is prefixed with its name

end;

end;

mixin MainClass of Object =

new Object MainMatter()

x:Point3D;

begin

x := new Point2D, Point3D[];

x.Point3D.setCoords3D( 10, 11, 12); //this method comes from Point3D

x.Point2D.getX().Integer.print(); //while that one from Point2D

end;

end;

(new MainClass []).MainClass.MainMatter();

Figure 3.3: Inheritance example in Magda
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The �rst instruction of the method MainClass.MainMatter() assigns the object created
from mixins Point2D and Point3D to the variable x. Then, as one can see in further in-
structions of the method MainClass.MainMatter(), each method call targeting the value
of variable x is pre�xed with the name of a mixin in which the referenced method was de-
clared. For example, the call to setCoords3D is pre�xed with Point3D mixin name, while
the call to getX is pre�xed with Point2D. Similarly, method setCoords3D setting the state
of the object itself needs to specify whether it references some member declared locally (like
this.Point3D.z) or inherited from the base mixin (like this.Point2D.setCoords2D).

Each mixin which is not declared to explicitly extend any speci�c mixin, implicitly extends
mixin Object which is a base mixin of every mixin.

3.5 Multiple inheritance

In this section we present how mixins declared in a Magda program can be combined to obtain
results comparable to those which, in classical OO languages, require multiple inheritance.
Magda has two features which allow the programmer to modularize the code in a �exible
way and compose components from other existing components:

• The declaration of base mixins of a mixin can contain multiple names of mixins. In
this way the mixin can extend multiple mixins. As a result, in each object creation
expression using the given mixin, all of its base mixins have to be included explicitly
to create an object. Consider a mixin A containing B and C as its base mixins. Then
each new ... A ... [...] expression must also include B and C mixins. Those mixins
need to occur earlier than A in the given sequence, however their relative ordering is
arbitrary (see Figure 3.6 for example which presents di�erent results depending on such
relative ordering).

• The declaration of base mixins of some mixin A represents only the minimal set of
mixins required for given mixin to be combined with. Therefore, the actual object
creation expression can combine more mixins with the mixin A than speci�ed in its
base mixin expression, obtaining even more functionality in one object. As a result,
the programmer can combine features of distinct mixins, even when they are declared
to extend one mixin only (therefore looking like a �single inheritance hierarchy�) and
have been declared independently.

The example visible on Figures 3.4 and 3.5 contains a program which uses the multiple
inheritance. In this program there are declarations of �ve mixins. The �rst two mixins
(DisplayableObject, Point2D) are built from scratch (not inheriting from any other mixin).
Next two mixins (Point3D, ColorPoint) extend mixin Point2D in a single inheritance way.
Then, the example contains a declaration of a mixin Displayable3DColorPoint, which ex-
tends three independent mixins. Finally, the example contains an object creating expression,
which uses three independent mixins to create an object from.
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// Declarations of two mixins (DisplayableObject, Point2D) built from scratch

mixin DisplayableObject of Object = ...

end;

mixin Point2D of Object = ...

end;

// Two other mixins extending the Point2D mixin

mixin Point3D of Point2D = ...

end;

mixin ColorPoint of Point2D = ...

end;

// One mixin extending three independent mixins

mixin Displayable3DColorPoint of DisplayableObject, Point3D, ColorPoint = ...

end;

// Composition of independent mixins in object creation

new Point2D, Point3D, ColorPoint [...]

Figure 3.4: Multiple inheritance in Magda: Code snippets

Figure 3.5: Multiple inheritance in Magda: mixin hierarchy graph example
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3.6 Virtual methods

In this section we describe how methods declared in base mixins can be rede�ned in extending
mixins. As a result of the below described mechanism, all methods in Magda work like virtual
methods in other languages [63].

We have already presented how new methods can be declared in mixins � in Section
3.1. We have also presented how new mixins can be build using existing ones, using the
inheritance presented in Section 3.4. However, a declaration of a mixin extending other
mixins can also contain rede�nitions of methods introduced in the base mixins. Then, when
the object created from a mixin containing the method rede�nition is requested to execute
the method introduced in the base mixin, the body of the rede�ned method is used. Then,
as a part of its implementation, the body of the rede�ned method can contain a call to the
original implementation of the method.

However, unlike in Java language, the method rede�nition uses the syntax di�erent from
the method introduction. The rede�nition begins with override keyword instead of new

keyword used by the introduction. Additionally, each declaration of a method rede�nition
contains the name of the mixin in which the rede�ned method was �rst introduced.

The body of a method rede�nition can use super(...) expression to call the �previous�
implementation of the rede�ned method. When super(...) expression is evaluated in the

method mt of the object created from mixins
−→
M , the mentioned �previous� implementation

of mt is chosen from the bodies of mt occurring within the declarations of mixins
−→
M . The

body called by a super(...) expression present in the mixin Mc, is picked from the last

mixin in
−→
M preceding Mc, which contains a de�nition/rede�nition of the method mt.

As a result of the above de�ned mechanism, one super(...) call expression placed within
a given method rede�nition used in di�erent objects can call di�erent method implementa-
tions. The actual method body called by the super(...) expression depends on the mixins
(and their order) which have been used to create the current object.

An example of a program using method rede�nitions in which the behavior of super(...)
call changes depending on the ordering of mixins can be seen on Figure 3.6.

This example begins with the declaration of mixin BaseMixin with one introduced
method GetActualName, which returns string value "Base ". Then the example contains
declarations of two mixins: Extension1 and Extension2. Each of those mixins extends
mixin BaseMixin and contains a rede�nition of the method introduced within the declara-
tion of the mixin BaseMixin. The implementation of each of those rede�nitions contains one
instruction, which �rst calls the original implementation of the method and then adds some
su�x ("Extension1 " and "Extension2 ") to the obtained string.

Finally, after all these three mixin declarations, the program contains two analogous
instructions (separated by the instruction printing end of the line). Each of them: (i) creates
an object from all three declared mixins, (ii) calls the method BaseMixin.GetActualName,
(iii) prints the results of that method call. The only di�erence between those two instructions
is in the order of mixins used to create an object. As a result of di�erent ordering of mixins,
the bodies of rede�ned methods are also executed in di�erent order. As a consequence, the

40



mixin BaseMixin of Object=

new String GetActualName()

begin

return "Base ";

end;

end;

mixin Extension1 of BaseMixin =

override String BaseMixin.GetActualName()

begin

return super().String.add("Extension1 ");

end;

end;

mixin Extension2 of BaseMixin =

override String BaseMixin.GetActualName()

begin

return super().String.add("Extension2 ");

end;

end;

(new BaseMixin, Extension1, Extension2[]).BaseMixin.GetActualName().String.print();

"\n".String.print(); // this prints the "end of line" character

(new BaseMixin, Extension2, Extension1[]).BaseMixin.GetActualName().String.print();

// Program generates output of the form:

// Base Extension1 Extension2

// Base Extension2 Extension1

Figure 3.6: Virtual method rede�nitions in Magda

strings printed by those instructions di�er (as mentioned in the comments at the end of the
program).

Notice that, as a result of the above syntax of the method rede�nition, there are no
problems in cases when two base mixins of a given mixin contain introductions of methods
with the same name. The programmer declaring a method rede�nition in a mixin explicitly
chooses which method from which mixins he/she wants to rede�ne. Additionally, when a new
method introduction is added to the existing mixin extended by other mixins, there is no
risk of accidental name clashes. Such a risk of accidental name clashes and con�icts exists
in most other OO languages, as described in Section 2.2. We have analyzed this problem
in detail, and presented numbers of possible name ambiguities in the standard Java library
in [48].
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3.7 Abstract methods

As presented in the previous section, a declaration of a mixin can contain declaration of new
methods (marked with new directive) together with their implementations, as well as redef-
initions of methods declared in base mixins of the mixin (marked with override directive).
As we have also seen, rede�ned bodies can use a super(...) expression to call previous
implementations of methods.

However, a mixin declaration can also contain a declaration of a new method identi�er
without the body, by marking the method declaration with the keyword abstract (similarly
to abstract methods in Java). Then, other mixins can supply an implementation of that
method, by marking the declaration with the keyword implement. If a mixin containing a
declaration of a method marked as abstract is used in the object creation expression, then
at the same time another mixin with the implement version of the same method is required.
As a result, each object created using a mixin with an abstract method must contain at
least one body of that method.

The declaration of a method marked with the implement keyword di�ers from the one
marked with as override in two aspects:

• the body of an implement method cannot contain super(...) call;

• in contrast to implement versions, a mixin with an override version of the method can
only be used in the sequence of mixins of an object creation expression if, before that
mixin, there is another mixin with a new or an implement version of the same method.
This restriction is necessary in order to ensure that each time super(...) expression
placed in the override version of method is executed, there is some implementation
to be called.

One might note that, in classical single-inheritance OO languages, the explicit distinction in
syntax between implement and override variant is not required. This happens so because,
in such languages, by using the �xed inheritance hierarchy the compiler can verify if there
is another implementation of the method in the superclasses of the class. On other hand, in
Magda, a mixin can be used in di�erent scenarios of object creation and Magda supports
separate unit compilation, thus the compiler cannot verify all possible usages of the mixin
at the moment of the compilation of its declaration.

The example on Figure 3.7 shows the mixin M1 with the declaration of the abstract
method Met1 as well as the mixin M2 with the declaration of implementation of the method
Met1 and mixin M3 with a rede�nition of that method.

Finally the program contains three main instructions: one containing a proper object
creation from three mixins and two other which are incorrect (and need to be removed from
the program in order to make it compile). One of the erroneous instructions contains an
object creation in which the override method does not have any other implementation to
rede�ne (and reference using super(...) call), while the second one contains a mixin with
abstract method without any actual implementation.
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mixin M1 of Object =

abstract String Met1();

end;

mixin M2 of M1 =

implement String M1.Met1()

begin

return "Implementation from M2";

end;

end;

mixin M3 of M1 =

override String M1.Met1()

begin

return super().String.add(" with redefinition from M3");

end;

end;

// The below line is OK and prints:

"Implementation from M2 with redefinition from M3"

(new M1, M2, M3 []).M1.Met1().String.print();

// The below line will not compile since the override method

// in M3, has no implementation to redefine

(new M1, M3, M2 []);

// This will not compile due to lack of implementation of M1.Met1

(new M1 []);

Figure 3.7: Abstract methods in Magda

3.8 Object initialization

In this section we describe how the initialization process of newly created objects is performed
in Magda.

We decided not to integrate in Magda the classical constructors approach, which causes
some problems, especially in the presence of mixins, as discussed in Section 2.1. Instead we
developed a �modular initialization protocol� approach which allows one to split declarations
of the initialization protocol into smaller, composable pieces called initialization modules (or
ini modules). Each such ini module contains a declaration of a list of input parameters, which
can be supplied to a mixin during object creation, together with a set of instructions which
will be executed when the values of input parameters are supplied. The signature of an ini
module also carries information whether its usage is optional or mandatory (then its input
parameters need to be supplied). It also speci�es a list of output parameters (referring to
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input parameters declared in other modules). This list speci�es input parameters of other
modules, which will be computed by the given ini module and supplied to the modules from
which those parameters originate.

Additionally, the body of each ini module contains at some place the super[...] instruc-
tion. This instruction is responsible for calling further ini modules and for supplying values
of the input parameters of other modules, which have been declared as output parameters of
the given ini module. Therefore, inside the square brackets there is one assignment for each
declaration of output parameter of the ini module in which this instruction occurred.

On the other hand, every object creation expression is accompanied with the list (possibly
empty) of initialization parameters, together with their values. When such an expression is
evaluated, the list of ini modules within the mixins used is traversed. Each module for which
we have input parameters supplied is executed and, when the execution of a given module
reaches the super[...] instruction, the traversal procedure is resumed. A module is executed
when its input parameters are supplied either directly in the object creation expression, or
are supplied indirectly by some other module, which was executed before.

In Figure 3.8 we present an example of two mixins containing simple ini module decla-
rations.

The �rst mixin in this example (Point2D) contains the declaration of one ini module
mod1. This ini module begins with the keyword required and then contains the name of
the mixin in which it is declared (we include the name of the mixin in the declaration of ini
module, in order to make ini modules look similar to constructors in Java [39] and C] [40]).
Then, inside the parentheses, it contains the list of two input parameters: x and y together
with their types. It means that this ini module requires parameters x and y. Then, after
the keyword initializes there is a list of output parameters, which in this case is empty.
Finally, the ini module declaration ends with its body containing the list of instructions
which will be executed when the input parameters are supplied. The last instruction of the
ini module is super[]. This instruction does not contain any parameter assignments inside
the brackets because the module has no output parameters declared. The only task of this
instruction is to call the next ini modules (if they exist and are used in the given object
creation expression) at the end of the body of that module. If there are no other modules to
execute, the super[] instruction does nothing.

The second mixin (Point3D) contains declarations of two more ini modules. The �rst one
(mod2) expects one input parameter, which is used internally to initialize �elds of the object.
Then, the second ini module marked as mod3 contains the declaration of one input parameter
named other and three output parameters. Those output parameters refer to input parame-
ters of the module mod2 declared in the same mixin, as well to the parameters of the module
mod1 declared in the base mixin. At the same time, the body of that ini module contains the
super[...] instruction, which computes the values of those three output parameters.

Finally, the MainClass.MainMatter method contains two object creation expressions.
The �rst expression supplies values of three initialization parameters: z of mixin Point3D

and x and y of mixin Point2D. The �rst parameter Point3D.z is supplied to module mod2,
and that module is the �rst one executed. When the execution of that module reaches
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mixin Point2D of Object =

fx:Integer; fy:Integer;

required Point2D(x:Integer; y:Integer) initializes () //module mod1

begin

this.Point2D.fx := x;

this.Point2D.fy := y;

super[];

end;

new Integer getX() ....;

new Integer getY() ....;

end;

mixin Point3D of Point2D =

fz:Integer;

required Point3D(z:Integer) initializes () //module mod2

begin

this.Point3D.fz := z;

super[];

end;

optional Point3D(other:Point3D) initializes

(Point2D.x, Point2D.y, Point3D.z) //module mod3

begin

super[Point2D.x:= other.Point2D.getX(), Point2D.y:= other.Point2D.getY(),

Point3D.z:= other.Point3D.getZ()];

end;

new Integer getZ() ....;

end;

mixin MainClass of Object =

new Object MainMatter()

p1:Point3D; p2:Point2D;

begin

p1:= new Point2D, Point3D[ Point3D.z:= 12, Point2D.x:=10, Point2D.y:=11 ];

p2:= new Point2D, Point3D[ Point3D.other := p1 ];

end;

end;

(new MainClass []).MainClass.MainMatter();

Figure 3.8: Object initialization in Magda
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super[] instruction, the program searches for the next module to be executed. The next
module to be executed means a module (occurring in this mixin, or in other mixins from
which the object have been created) for which we have values of input parameters supplied
or computed. In this case, the next module to be executed means mod1, because parameters
x and y are still not consumed. We say that some parameter par is not consumed at a given
point of initialization if it was either supplied in the object creation expression itself, or
calculated as an output parameter of some already executed ini module, while no module
has been executed which takes par as an input parameter.

When the execution of the module mod1 reaches the last instruction (which is the super[]
call), then this instruction checks if there are some ini modules to execute and does nothing,
since there are no modules to execute. Then module mod1 �nishes and the control returns
to the module mod2 at the point after the super[] call. There are no further instructions
in the module mod2, therefore the whole initialization process �nishes with all the required
modules executed and the initialized object is returned in order to be assigned to variable p1.
In such cases we say that modules mod1 and mod2 are activated by those three parameters.

The second object creation expression supplies the value of one initialization parameter:
Point3D.other. That parameter is supplied to the optional module mod3. When this module
is executed, it computes the set of three parameters x,y,z. The third parameter is passed
to the module mod2 and then, when the execution reaches super[...] call within it, the
remaining two parameters are supplied to module mod1. As a result all the ini modules
declared in the program are executed during creation of that object, in the �bottom-up�
order which in this case means: mod3, mod2, mod1. Notice that in case when two or more ini
modules declared in one mixin are used during one object creation (like modules mod2 and
mod3 in the last object creation from our example), their respective ordering decides. The
one which is textually below (like mod3) is executed �rst and those placed textually above
(like mod2) afterwards. As a consequence, in every mixin declared in a Magda program, if
some module outputs a parameter which is then consumed by another module in the same
mixin (as Point3D.z produced by mod3 and consumed by mod2), then the consuming module
(like mod2) needs to be placed textually above the one which outputs it (like mod3). This
condition is veri�ed by the type checker.

The motivation for such an unusual approach (di�erent from declaring lists of constructors
with parameters) is the following. We want each mixin to be as composable with other mixins
as possible and we want to minimize the amount of the code a programmer has to write
(thus also to minimize the code copying). In traditional OO approach, each constructor is a
monolithic entity which completely describes one variant of the initialization process. When
the designer of some subclass of an existing class (or mixin) wants to extend the initialization
protocol of the superclass (for example, wants to add one additional parameter) it needs to
copy the whole list of constructors with all their parameters. Furthermore, such a mixin
explicitly refers to the list of constructors of the parent class, which limits the possibilities of
future mixin combinations. See section 2.1 for a more detailed description of the traditional
approach.

On the other hand, in our approach of initialization modules, if one needs to add to some
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mixin ColorPoint of Point2D =

fcr:Integer;

fcg:Integer;

fcb:Integer;

required ColorPoint(cr:Integer, cg:Integer, cb:Integer) initializes ()

begin

this.Point3D.fcr := cr;

this.Point3D.fcg := cg;

this.Point3D.fcb := cb;

super[];

end;

end;

new Point2D, Point3D, ColorPoint[Point2D.x := 1, Point2D.y := 2, Point3D.z := 10,

ColorPoint.cr := 255, ....];

Figure 3.9: ColorPoint mixin - continuation of the example from Figure 3.8

mixin some additional initialization information, he/she adds new initialization module with
that input parameter and does not need to refer to any other parameters. Such a declaration
is independent from the list and types of constructors/initialization modules of base mixins,
as the initialization module in mixin ColorPoint on Figure 3.9 which is independent from
the parameters of the mixin Point2D. A module contains references to other parameters
only when it replaces them, as the initialization module from Figure 3.8 with the parameter
other:Point3D, which refers to replaced parameters x, y, and z. Also, when the new object
is created from multiple independent mixins, their initialization parameters and modules do
not interfere one with each other. For example, one can create a new object from mixins
ColorPoint and Point3D, which do not share common ancestor yet add new initialization
parameters. As a result the programmer has greater �exibility of combining the mixins than
in the constructor-based approach.

We have introduced this approach in [18], where we presented the results of an addition
of the modular initialization protocol to Java, together with possible implementation tech-
niques for such Java extension. Later on, in [17], we have proved the type soundness of the
Featherweight Java [42] (which is a functional subset of Java) extended with the modular
initialization protocol.

3.9 Types and type expressions

In this section we describe how the type system works in Magda.

First of all, Magda is a statically typed language. It means that the types of all the
elements in the program are checked during the compilation (statically). As a result, if
the program successfully passes the type checking procedure, we have the guarantee that
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program will not fail due to type errors. This property of Magda is called type soundness
and is precisely de�ned and proved in Section 11. In particular, the type soundness of Magda
ensures the following: Whenever the execution of a type checked program reaches a point
of some method call on a particular object value o (di�erent from null), it is guaranteed
that the object o was created from mixins which contain at least one implementation of the
method invoked in that call. In other words, �message not understood� errors will never occur
during the program execution (in contrast to dynamically typed languages like Smalltalk [38]
or Python [13, 27]).

Secondly, Magda uses a Church-style type system [28], which means that types of method
results, variables, �elds and parameters are explicitly written in a program. Both of the above
properties are similar to most industry-standard OO languages, like C++, Java and C]. What
distinguishes Magda from other languages is the way the type expressions are formed and
the way the subtyping is veri�ed.

Each type in a Magda program is a set of mixin names, written as a sequence of mixin
names separated by commas. The ordering of mixin names in a type expression is insigni�-
cant. In the simplest case the type of variable is a single mixin name. When some variable or
�eld is declared of type T it means that the actual value of the variable can be either null
or an object created from a sequence of mixins, which contains at least the mixin names
present in T (even though it can contain more), except the mixin Object which is always
used implicitly during each object creation. Similarly, if the formal method parameter is
declared with the type T , it means that in each method call the actual value must be an
object created from all the mixins in T (and maybe more).

For example, consider the program on Figure 3.8. The declared type of variable p1

in method MainClass.MainMatter is Point2D, while the declared type of variable p2 is
Point2D. The second declaration means that the variable p2 can hold only null value, or
a reference to an object created using some sequence of mixins containing Point2D. However,
notice that Point3D mixin has Point2D as its base mixins. As a result, every object created
from Point3D is also created from Point2D. Therefore the type Point2D, Point3D is equiv-
alent to the type Point3D as well as to the type Point3D, Point2D. Notice that the type
expressions di�er in this matter from the sequences of mixins used within the object creation
expressions. In an object creation expression, the base mixins cannot be skipped because the
order in which they are placed within the object creation expression is signi�cant. See Figure
3.6 for an example in which the order matters. On the other hand, in declarations of formal
types, the ordering is insigni�cant, as well as the removal of base mixins.

We say that type T2 is a fully expanded form of type T1 if T2 is the biggest type equivalent
to T1. In other words, it is a type obtained by starting from T1 and adding all the base
mixins of mixins present in the T1, base mixins of base mixins etc. In the example present on
Figures 3.4 and 3.5, the fully expanded form of type Displayable3DColorPoint is: Object,
Point2D, DisplayableObject, Point3D, ColorPoint, Displayable3DColorPoint.

Now consider the program from Figure 3.4, extended with the mixin present on Fig-
ure 3.10. In the method SomeMethod there are two variables: v1, v2. The requirements
enforced by the type of variable v2 are more strict than the requirements enforced by the
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mixin test of Object =

new Object SomeMethod ()

v1: Point3D;

v2: Point3D, ColorPoint;

begin

...

v1 := v2; //OK

v2 := v1; //not OK

end;

end

Figure 3.10: An example of subtyping in Magda

type of variable v1. As a result, each value of variable v2 can be also a value of variable v1.
However, the opposite does not hold. As a result, the �rst assignment present in this method
is type correct, however the second one is not. Thus this program will not compile.

In general, we say that type T2 is a subtype of type T1 when the fully expanded form of T1

is a subset of the fully expanded form of T2. The fact that type T2 is subtype of type T1 will
be denoted as T2 � T1.

As a consequence of this de�nition, we de�ne the type of null value as the set of all
mixin names used within the program.

3.10 Control instructions and built-in Boolean type

Boolean values are also object values in Magda. There exists a Boolean mixin which is the
type of each boolean value. The only speci�c property of Boolean mixin is that it cannot
be used directly in object creation expressions. Consequently, this mixin cannot be used as
a base mixin of a user-de�ned mixin. The only way to obtain a fresh Boolean value is to
use one of the Boolean constants: true and false. On the other hand, since booleans are
object values, null is also a proper Boolean value. Moreover, null is also an initial value of
each variable and object �eld of the type Boolean.

Additionally, each program in Magda can contain two control instructions: conditional
instruction if and loop instruction while. Those instructions, as in other languages, begin
with a condition expression. In Magda, this expression is required to be of the built-in type
Boolean. Moreover, those instructions require the condition expression to evaluate to true

or false. If this condition evaluates to null value, the program stops with �null pointer
exception�.

The syntax of those instructions can be seen on the example in Figure 3.11.
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mixin test of Object =

// negation implemented using if condition

new Boolean Not(a:Boolean)

begin

if (a) then

return false;

else

return true;

end;

end;

new Boolean Xor(a:Boolean; b:Boolean)

begin

if (a) then

return test.Not(b);

else

return b;

end;

end;

new Object SomeMethodWithLoop ()

x:Boolean;

begin

x := true;

while (x)

...

...

end;

end;

end

Figure 3.11: Boolean type and control instructions
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3.11 Summary of Magda's features

After going through this short introduction, the reader should notice that the design of Magda
language, while sometimes using a little more lengthy syntax than classical OO languages,
has a few unique properties, which (we hope) signi�cantly improve the programming process:

• constructors can be composed from many independent initialization modules, coming
from di�erent mixins, thus avoiding all the problems described in Section 2.1;

• all identi�er references are performed using fully quali�ed names, which guarantee that
programs will never behave unexpectedly, or fail to compile as a result of some random
change causing some name clash. This way we avoid all the problems described in
Section 2.2;

• the language has a simple mechanism for reuse basing on mixin inheritance, while
avoiding all the known problems of other implementations of the mixin construct (see
Section 2.4.4).

• the reuse mechanism, in conjunction with the hygienic identi�ers approach and the
modular constructors, allows the programmer to compose almost any two mixins. This
property is expressed precisely in Section 3.11.1.

An in-depth comparison of Magda's features with solutions present in other languages can
be found in Chapter 13.

3.11.1 Safety of mixin combination

In this section we state a property of Magda, which captures the safety of composition
mechanisms in Magda.

We say that the parameter p is an e�ective output of the module m, when p occurs in
the output parameters of module m, or module m has some output parameter p' declared as
input parameter in some module which has p as its e�ective output.

We say that two mixins are explicitly exclusive, when they both contain declarations of
an initialization module, which is required and both have the same initialization parameter
as their e�ective output, thus both modules replace the same parameter. It is important to
notice that all declarations of optional initialization modules are always safe, and never make
any mixins explicitly exclusive.

We say that mixins M1 and M2 can be combined together, when the following holds: For

any sequence
−→
M of mixins from which an object can be created, and which does not contain

those two mixins, there exists a sequence
−→
M ′, which contains

−→
M ,M1,M2 (and possibly other

mixins required to supply implementations of abstract methods in M1 and M2), such that
−→
M ′ can be used to create new objects from.

We say that a mixin is correct if there exists a sequence of mixins
−→
M ′ containing this

mixin, such that
−→
M ′ can be used to create new objects from. And example of mixin which
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is not correct would be a mixin which contains as its base mixins, two explicitly exclusive
mixins.

Finally, we state one of the most important properties of Magda:

Property 1 (Safety of mixin combination) Any two correct mixins, which are not ex-
plicitly exclusive, can be combined together.

This property is a direct consequence of the three properties mentioned in Section 3.11:

3.12 A note on the modularization of mixin declarations

In practice, for a better code organization, the declarations of mixins should be split into
di�erent modules. All those modules should create their own namespaces. Access to a dec-
laration of a mixin from other modules should be available by pre�xing a mixin name with
a module name. The modules should be structured into a tree hierarchy and name quali-
�cation also should follow this path. However, this is a pattern similar to the one used in
many existing languages (like Java and C]). Therefore, for simplicity, we skip this aspect of
the language, just assuming that every name of mixin is unique (by proper quali�cation of
module names).
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Chapter 4

Detailed syntax description

In this section we present detailed syntax of all parts of the language. We do this by listing
and describing the main syntactic domains of Magda. For an easier understanding, the
syntax description of each language construct is accompanied by an explanation of its actual
meaning.

4.1 Syntactic domains

The syntax of Magda consists of the following categories:

• programs, as described in Section 4.2,

• mixin declarations, as described in Section 4.3,

• mixin member declarations, as described in Section 4.3.1,

• instructions (for example: assignment, if, and while statements), as described in Sec-
tion 4.4,

• object expressions (for example: method call, variable evaluation, object construction
from a sequence of mixins, etc), as described in Section 4.5,

• mixin/type expressions, as described in Section 4.6.

4.2 Syntax of a program

Every program in Magda consists of a list of mixin declarations separated by semicolons,
followed by a list of instructions, called main instructions, also separated by semicolons. Both
of these constructs are described below.
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4.3 Syntax of a mixin declaration

A mixin declaration consists of:

• the keyword mixin followed by the name of the declared mixin;

• the keyword of followed by a mixin expression;

This mixin expression denotes a minimal sequence of mixins, with which this mixin
must be composed during an object creation. As a result, it plays a role similar to the
one of superclass in classical OO languages. A mixin expression used in this speci�c
context in the declaration of mixin M is called a base mixin expression of mixin M ;

• an equals sign followed by the list of mixin member declarations, separated by semi-
colons;

• the keyword end.

4.3.1 A mixin member declaration

A mixin member declaration is one of the following:

• A declaration of an object �eld. Each such declaration consists of two parts (separated
by a colon): (i) �eld name, (ii) the mixin expression, which represents the declared
type of the given �eld (called also formal type, as opposed to the runtime type);

• A declaration of a method as described in Section 4.3.2;

• A declaration of an initialization module as described in Section 4.3.3.

Summarizing, the formal syntax of a mixin declaration is the following:

mixin MixinName of MixinExpression
�eld:MixinExpression; ...

MethodDeclaration; ...

IniModuleDeclaration; ...

end;

An example is given on Figure 3.3. In this example, mixin Point3D has a base mixin
expression Point2D and a �eld declaration, as well as a method declaration.

Notice also that the ordering of most of the members in mixin is not signi�cant except
for initialization modules, because the textual ordering of them in mixin in�uences the order
in which those are executed (see Section 3.8).
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4.3.2 Syntax of a method declaration

Every method declaration consists of:

• The signature of the method, which in turn consists of:

� One of the four keywords: new, abstract, implement or override. Those key-
words are called from now on method speci�ers.

� The return type of the given method denoted by a mixin expression.

� The method name identi�er (in case of new and abstract methods), or: (i) the
mixin name, (ii) dot character, (iii) method name (in case of implement and
override). In the second case the mixin name denotes the name of a mixin in
which the given method was originally introduced. This means that within the
referenced mixin declaration there must be a declaration of the given method with
a new or abstract annotation.

� The list of the method's parameter declarations enclosed in parentheses and sep-
arated with semicolons. Each parameter declaration consists of a parameter name
followed by a colon and by the mixin expression representing its type.

• The body of the method. This part is present in declarations of methods, whose header
begins with a keyword other than abstract. The body of a method consists of:

� a list of local variable declarations separated by semicolons. Each variable decla-
ration consists of the name of the variable, followed by the colon character, and
the mixin expression which denotes the formal type of the given local variable;

� the begin keyword;

� a list of instructions to be executed when the method is called. Method rede�ni-
tions can use special expression super(...), which calls the previous implemen-
tation of this method;

� the keyword end.

Thus the syntax of the method declaration is as follows:

new ResultType MethodName

( param :Type ; ...; param :Type )

VarName:Type ; ...; VarName:Type ;
begin

Instr ;

...

Instr ;

end;

or
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abstract ResultType MethodName

( param :Type ; ...; param :Type );

or

( implement | override) ResultType Mixin.Method

( param :Type ; ...; param :Type )

VarName:Type ; ...; VarName:Type ;
begin

Instr ;

...

Instr ;

end;

The keywords occurring on the very beginning of every method declaration have the following
meaning: The keyword new denotes that the given method declaration is an introduction of
a new method identi�er together with its implementation, in the form of the method body.
The keyword abstract denotes that the given method declaration is an introduction of a
fresh method identi�er, however without supplying its body.

Keywords implement and override denote that this method declaration only supplies a
new implementation of method declared in another mixin. The mixin containing the intro-
duction of the implemented method identi�er needs to be one of the mixins present in the
base mixin expression of the given mixin. Such a declaration of a method does not introduce
a new identi�er, and therefore does not change the �interface� of an object.

We use the keyword implement when the method implementation is intended to be an
independent implementation of the given method. It can be used to supply the implementa-
tion of an abstract method declared in one of the base mixins. As a result, the body of such a
method declaration cannot refer to the �previous� method implementation using super(...)
call, because it is not guaranteed that such implementation exists.

On the other hand, we use the keyword override to denote that the given implemen-
tation is intended as an extension of the existing implementation of the given method. As
a result, the body of such a method declaration starting with override can use the special
super(...) call expression (see Section 4.5.4), which refers to existing overridden imple-
mentations. On the other side, a mixin containing an override method declaration can only
be combined with mixins containing other implementations of the given method.

4.3.3 Syntax of an initialization module declaration

Each initialization module declaration consists of:

• keyword required or keyword optional;

• the name of the mixin within which the initialization module has been declared;
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• a list of the input parameter declarations contained within parentheses and separated
by semicolons. Each such input parameter declaration consists of a parameter name,
a colon and a mixin expression representing the formal type of given input parameter.

• keyword initializes;

• the list of output parameter declarations contained within parentheses and separated
by semicolons. Each output parameter declaration consists of: the name of mixin, dot
character and the name of the output parameter.

The output parameter declaration of the form M1.P1 refers to an input parameter P1
declared within some ini module of mixin M1.

• the body of the initialization module. Each such body is similar to a method body and
consists of: (i) a list of local variable declarations; (ii) the keyword begin; (iii) a list
of instructions separated by semicolons, containing exactly one super[par1 := exp1,

...] instruction (see below); (iv) keyword end.

The super[par1 := exp1, ...] instruction used within the body of an initialization
module cannot be contained within some nested instruction like if or while. It must
be one of the top-level instructions. Thus, it is guaranteed that: if the module �nishes,
this instruction was executed exactly once.

This instruction consists of the super keyword and the square brackets containing a list
of parameter assignments separated by the semicolon. The parameter assignments list
contains exactly one parameter assignment for each output parameter declaration of
the ini module within which it occurs. Each parameter assignment corresponding to the
output parameter declaration p consists of three parts: (i) mixin name, dot character
and the parameter name of the output parameter p; (ii) assignment symbol ( := );
(iii) an expression.

Thus the formal syntax of an initialization module is as follows:

( required | optional ) Mixin (Iparam1:TypeI1; ...; IparamN:TypeIN)
initializes (Mixin1.Oparam1; ...; MixinM.OparamM)

VarName:Type ; ... VarName:Type ;
begin

Instr;...
super[Mixin1.Oparam1 := exp; ...; MixinM.OparamM := exp];
Instr;..

end;

Each declaration of an initialization module describes two aspects (see also Section 3.8 for
description with examples):

• whether the given module is mandatory to be executed when the object is created from
the given mixin (then it begins with the required keyword) or is optional (optional);
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• what set of information needs to be supplied to a mixin during the object creation in
order to execute the given initialization module. The set of information to be supplied
is declared in the form of input parameters. We say that a given set of parameters is
supplied in the given object creation expression if each parameter m1.p1 in this set is
either: (i) supplied directly in the expression, which means that m1.p1 := exp occurs
in the expression, or (ii) supplied indirectly, which means that it occurs within the
declarations of the output parameters of another module whose parameters have been
supplied;

• what further initialization information are computed by the given module when it is
executed. When a new object is initialized using that module, those informations are
supplied to other modules in the form of the values of their input parameters. The
list of input parameters of other modules computed by the given module is declared
in the form of output parameters of the given module. Type system enforces that
for each object creation expression, and each initialization module used during that
object creation, if the input parameters of that module are supplied, then it supplies its
output parameters to input parameters of other modules and those input parameters
cannot be supplied by any other means. Those parameters cannot be supplied neither
by output parameters of other executed modules, nor directly in the object creation
expression;

• what instructions are executed when the input parameters of module are supplied.
Those instructions are declared in the form of the body of initialization module.

The execution of the super[Mixin1.Oparam1 := exp; ...] instruction calls the next acti-
vated initialization module (see below for a detailed de�nition). Furthermore, the execution
of that instruction supplies values of output parameters (Mixin1.Oparam1...) of that mod-
ule, by evaluating expressions assigned to them. Those expressions are evaluated just before
the control is passed to next initialization modules in order to supply their values of input
parameters.

One of the things that distinguishes the super[...] instruction in an ini module from the
super(...) expression used within overriding method bodies is the fact that the parameters
supplied in super[...] do not have to be the parameters which will be passed to the module
executed by this super[...] instruction. Those parameters can be in fact passed to other
modules which will be executed later on. To understand this phenomenon better, consider
the example on Figure 3.8. The super[...] instruction placed in the module mod3 supplied
values of three initialization parameters and calls the module mod2. However only one of
these parameters (z) is supplied to the called module mod2, while the remaining parameters
(x, y) are kept to be supplied to next modules. On the other hand, super[...] instruction
placed within the module mod2 does not contain any parameters, however it calls module
mod1 which takes 2 parameters which have been computed by module mod3. The detailed
semantics of those instructions is described in Section 7.

According to the procedure introduced in Section 3.8, the next activated ini module called
by super[...] is a module chosen in the following way: The execution of the super[...]
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instruction starts from evaluating the values of expressions present within the instruction.
Then the values of those expressions (together with identi�ers of their corresponding param-
eters) are added to the set of all initialization parameters supplied for the initialization of the
current object. Note that, at this point, the set can also contain some other parameters, when
not all parameters supplied so far have been consumed by the current initialization module.
Then, the next activated module is chosen by traversing the list of ini module declarations
present within the mixin in which the current ini module is declared, occurring textually
above the declaration of the current ini module (see Section 3.8). The module to be executed
is chosen as the �rst one such that all of its input parameters are contained in the extended
set of parameters. If we cannot �nd such module in the current mixin, then the search con-
tinues amongst the ini modules declared in the next mixin. The next mixin is chosen from
those mixins in the sequence of mixins from which the object is created, which precede the
currently analyzed mixin. The mixins are scanned bottom-up for matching modules and if
there is no such module found then the super[...] instruction does not call any module.

4.4 Syntax of instructions

We have the following kinds of instructions, similar to analogous instructions in mainstream
object oriented languages. Those instructions correspond to nonterminal INSTRUCTION in the
BNF grammar in Section 5.

• assignment of a value of an expression to a local identi�er. It has the following syntax:
VarName:= exp

• assignment of a value of an expression to a �eld of a target object. It has the following
syntax:
this.Mixin.Field := exp

• return instruction, having the following syntax:
return exp

• loop instruction, having the following syntax:
while (exp) Instr end

• conditional instruction, having the following syntax:
If (exp) then Instr else Instr end

• expression evaluation instruction, having the following syntax:
exp

• call to next initialization module (occurring within some initialization module), having
the following syntax:
super[ Mix.par := exp, ...]

This instruction is described in details in Section 4.3.3.

59



4.5 Syntax of object expressions

Each object expression1 has one of the below forms. All those expressions correspond to
nonterminal EXPRESSION in the BNF grammar in Section 5.

• one of the three constants: null, true or false;

• local identi�er, which is either:

� a local variable name,

� a method parameter name,

� an input parameter in the ini module declaration;

� or identi�er this;

• �eld dereference, as described in Section 4.5.1;

• object creation, as described in Section 4.5.2.

• ordinary method call, as described in Section 4.5.3;

• super(exp, ..., exp) method call, as described in Section 4.5.4.

4.5.1 Syntax of a �eld dereference

Each �eld dereference expression consists of:

• expression, denoting the target object, followed by the dot character;

• the name of the mixin, followed by the dot character;

• the name of the �eld to be picked from the target object.

4.5.2 Syntax of an object creation

Each object creation expression consists of:

• the keyword new;

• a mixin expression, which denotes a sequence of mixins from which the object will be
created;

• a sequence of parameter assignments (see below) included in square brackets and sep-
arated by commas. Each parameter assignment consists of a mixin name, a parameter
name and an expression. It has the following form: Mix.Par := Expr.

1We use the notion �object expression� for all expressions which denote �rst class values, to distinguish
them from mixin expressions.
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Therefore, a formal syntax of an object creation expression is the following:

new MixinExpr [Mixin1.parName1 := exp1, ..., MixinN.parNameN := expn]

Within each parameter assignment, the expression denotes the value of the input parameter,
which will be supplied to an initialization module within which the given input parameter
was declared (see Section 3.8).

The evaluation of such an object creation expression proceeds as follows. First, the mem-
ory is allocated for a new object created from the sequence of mixins MixinExpr. In other
words, the allocated memory holds the state of an object, which means non-initialized (null)
values of all �elds declared in mixins MixinExpr, together with its runtime type (being a se-
quence of mixin names from which the object was created). Then, the expressions exp1... expN

are evaluated. Next, depending on the set of parameters supplied directly (Mixin1.parName1,
..., MixinN.parNameN ) the sequence of the initialization modules to execute is chosen. Fi-
nally the initialization modules are executed, taking their input parameter values from the
results of evaluation of exp1... expn.

The algorithm of the choice and execution of initialization modules works in the following
way:

• It picks the set X of all parameters supplied directly within the object creation expres-
sion.

• The sequence of mixins MixinExpr is processed from the right to the left.

• For each processed mixin, its declaration is searched for the initialization modules.
Initialization modules found are traversed from the bottom to the top of the mixin
declaration (i.e., from the last declaration to the �rst one).

• Each found module is executed if and only if all its input parameters occur in the
set X.

• If the module is executed, then its set of input parameters is removed from X, and
all the output parameters of that module are added to X, together with their values
evaluated by super[...] expression.

For every such object creation expression, the set of parameters supplied within this expres-
sion is veri�ed during the compilation, to check if:

• During the execution of the given expression, all the modules marked as required will
be executed. This condition refers to required modules of mixins used in the given
object creation expression.

• At the end of the execution of that process no not-consumed parameters will be left.
In other words, it is veri�ed if at the end of execution of the above algorithm the set
X will be empty.
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4.5.3 Syntax of a method call

Each ordinary method call expression consists of:

• An object expression (as de�ned in Section 4.5), which denotes the object which is
the target of the method call. In other words, this expression represents the object on
behalf of which the method will be executed. This expression is followed by the dot
character;

• Mixin name, followed by the dot character;

• Method name.

• A sequence of object expressions separated by commas and enclosed in parentheses.
Those expressions denote values of the actual parameters of the method. Therefore
the number of those expressions is equal to the number of formal parameters of the
method.

Therefore the formal syntax of an ordinary method call is the following:
exp.Mix.mt (exp1, ..., expn)

We use the notion ordinary method call to refer to the above de�ned method call as opposed
to the super(...) method call (see Section 4.5.4). For every such expression to be type
correct, three conditions must be ful�lled:

• It needs to be guaranteed that the value of a �method target� (denoted by exp ) was
created from a sequence of mixins containing mixin Mix.

• The declaration of mixin Mix needs to contain an introduction of the method named
mt , which means a declaration which begins with the keyword new or abstract.

• This method declaration needs to contain a declaration of a list of parameters with
number and types matching the types of expressions exp1, ..., expn.

4.5.4 Syntax of a super method call

Each super method call expression consists of:

• A super keyword.

• A sequence of object expressions separated by commas and enclosed in parentheses.
Those expressions are used to evaluate values of the actual parameters of the method.
Their number is equal to the number of formal parameters of the method.

Therefore the formal syntax of a super method call is the following:
super( exp1, ..., expn)

For every such expression to be type correct, two conditions must be ful�lled:

• It needs to be placed within the body of the method declaration marked with the
override keyword.

62



• This method declaration needs to contain a declaration of a list of parameters with
number and types matching the types of expressions exp1, ..., expn.

4.6 Mixin expression syntax

Each mixin expression is a nonempty sequence of mixin names separated by commas.
Mixin expressions are used in two di�erent roles:

• As type expressions, denoting types of declared �elds, variables, return types of meth-
ods, types of method parameters etc.

• As expression denoting mixins from which the new object is created. In this context
mixin expressions play the role of classes in classical OO languages.
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Chapter 5

Formal de�nition of the syntax

Below we present the formal syntax of Magda in the Backus-Naur form. To increase the
readability, all keywords (terminal symbols) in grammar are written in non-capital letters
and in quotes, like: 'implements'. One general non-terminal symbol (denoting all acceptable
identi�ers) is denoted as <ID>. Two additional non-terminals are <STRING_LITERAL> and
<NUMBER_LITERAL>, which denote any constant values which can be used in a program,
representing strings and numbers respectively. All nonterminals are written in capital letters
with underscores.

PROGRAM ::= ( MIXIN_DECLARATION )* INSTRUCTIONS

Figure 5.1: Formal grammar of program

FIELD ::= 'this' '.' <ID> '.' <ID>

VARIABLE ::= <ID>

LVALUE ::= FIELD | VARIABLE

WHILE_LOOP ::= 'while' '(' EXPRESSION ')' INSTRUCTIONS 'end'

IF_COND ::= 'if' '(' EXPRESSION ')' 'then' INSTRUCTIONS

[ 'else' INSTRUCTIONS ] 'end'

INSTRUCTION ::= LVALUE ':=' EXPRESSION |

'return' EXPRESSION |

WHILE_LOOP |

IF_COND |

EXPRESSION |

INSTRUCTION ';' INSTRUCTION

INSTRUCTIONS ::= INSTRUCTION | ε

Figure 5.2: Formal grammar of instructions
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ACTUAL_PARAMETERS ::= '(' [ EXPRESSION (',' EXPRESSION )* ] ')'

METHOD_CALL ::= EXPRESSION '.' <ID> '.' <ID> ACTUAL_PARAMETERS

FIELD_SELECT ::= EXPRESSION '.' <ID> '.' <ID>

EXPRESSION ::= 'this' | 'null' | 'false' | 'true ' |

<STRING_LITERAL> |

<NUMBER_LITERAL> |

<ID> |

FIELD_SELECT |

OBJECT_CREATION |

METHOD_CALL |

'super' ACTUAL_PARAMETERS |

'(' EXPRESSION ')'

PARAM_ASSIGNMENT ::= <ID> '.' <ID> ':=' EXPRESSION

PARAM_ASSIGNMENTS ::= [ PARAM_ASSIGNMENT (',' PARAM_ASSIGNMENT )*]

OBJECT_CREATION ::= 'new' MIXIN_EXPRESSION '[' PARAM_ASSIGNMENTS ']'

MIXIN_EXPRESSION ::= '(' MIXIN_EXPRESSION ')' |

<ID> (',' ( <ID> | '(' MIXIN_EXPRESSION ')' ) )*

Figure 5.3: Formal grammar of expressions
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OUTPUT_PARAMETER ::= <ID> '.' <ID>

OUTPUT_PARAMETERS ::= '('[ OUTPUT_PARAMETER (',' OUTPUT_PARAMETER)* ] ')'

PARAMETER_DECL ::= <ID> ':' MIXIN_EXPRESSION

PARAMETER_DECLS ::= '(' [ PARAMETER_DECL (';' PARAMETER_DECL )* ] ')'

VARIABLE_DECLARATIONS ::= ( <ID> ':' MIXIN_EXPRESSION ';' )*

MODULE_SUPER_CALL ::= 'super' '[' PARAMS_ASSIGNMENTS ']' ';'

INI_MODULE_BODY ::= VARIABLE_DECLARATIONS

'begin'

INSTRUCTIONS

MODULE_SUPER_CALL

INSTRUCTIONS

'end'

INI_MODULE_DECLARATION ::=

( 'required' | 'optional' ) <ID>

PARAMETER_DECLS 'initializes' OUTPUT_PARAMETERS

INI_MODULE_BODY

METHOD_BODY ::= VARIABLE_DECLARATIONS

'begin'

INSTRUCTIONS

'end'

METHOD_DECLARATION ::=

'abstract' MIXIN_EXPRESSION <ID> PARAMETER_DECLS |

'new' MIXIN_EXPRESSION <ID> PARAMETER_DECLS METHOD_BODY |

'override' MIXIN_EXPRESSION <ID> '.' <ID> PARAMETER_DECLS METHOD_BODY |

'implement' MIXIN_EXPRESSION <ID> '.' <ID> PARAMETER_DECLS METHOD_BODY

FIELD_DECLARATION ::= <ID> ':' MIXIN_EXPRESSION

MIXIN_DECLARATION ::= 'mixin' <ID> 'of' MIXIN_EXPRESSION '='

( FIELD_DECLARATION ';' |

METHOD_DECLARATION ';' |

INI_MODULE_DECLARATION';'

)* 'END'

Figure 5.4: Formal grammar of mixin declarations

66



Chapter 6

Syntax-related de�nitions

In this section we introduce some syntax related notions which will make the forthcoming
de�nitions of semantics and type checking rules easier to specify and understand.

To do this, we �x some program P consisting of a sequence of mixin declarations and a
sequence of main instructions. From now on, if not stated otherwise, when we refer to the
set of declarations it will mean the set of declarations occurring in program P .

6.1 Notation

Here we introduce some notational conventions which will be used through the remainder of
this thesis.

For each pair p we use p|1 to denote the �rst element of p, and p|2 to denote the second
element of p. In general, for an arbitrary tuple t we use t|n to denote the n-th element of t.

We say that f returns b when applied to a, when f(a) = b. For each function or partial
function f we use f{a 7→ b} to denote a function which when applied to x has value b when
x = a and f(x) otherwise. In other words f{a 7→ b} is a function which di�ers from f only
on position a. We also use f{a1 7→ b1; ...; an 7→ bn} to denote f{a1 7→ b1}...{an 7→ bn}, when
all a1 ... an are di�erent elements.

We use also the convention that every function f is a set of all pairs (a, b), such that
f(a) = b.

For any two sets A and B, such that A ⊆ B, we will use Ar∗B to denote ArB. However
Ar∗B is not de�ned when B ⊆ A does not hold.

A set of elements {p1, ..., pn} is often denoted as p. Additionally, a sequence of elements

(p1, ..., pn) is occasionally abbreviated as −→p . We use notation a ·
−→
b to denote a sequence

−→
b with element a added at the beginning. Similarly, we use notation

−→
b · a to denote a

sequence
−→
b with element a added at the end.

For simplicity, we often treat a sequence as the set of its values.
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6.2 Identi�ers

We use the below notions for the sets of names and identi�ers occurring in program P :

• MixNames � the set of names of all mixins declared in the program plus the names of
the built-in mixins (at the moment we assume that there exists only one built-in mixin
� Boolean). We use symbol Mix , M or m, with some optional indices, to denote an
element of this set.

• FieldNames � the set of all names of object �elds declared within the program. We
use symbol fl , with some optional indices, to denote an element of this set.

• FieldIDs � the set of all identi�ers of object �elds declared in the program. Each
identi�er of an object �eld is a pair: the mixin name and the �eld name, where the
mixin name is the name of the mixin within which the �eld is declared.

• ParamIDs � the set of all identi�ers of input parameters declared in the program. Each
input parameter identi�er is a pair: a mixin name and an input parameter name. In
every such identi�er, the mixin name is the name of the mixin containing the declaration
of the ini module with the given input parameter.

• MethodNames � the set of all names of the methods declared in the program. We use
the symbol mt, with some optional indices, to denote an element of this set.

• MethodIDs � the set of all method identi�ers of the program. Each method identi�er
is a pair consisting of a mixin name and a method name. Each pair (Mix ,mt) in this
set corresponds to a declaration of method mt present in mixin Mix , such that this
declaration begins with the keyword new or abstract.

• LocalIdenti�ers � the set of all locally visible identi�ers (inside the bodies of methods
and modules). This set contains this identi�er, local variables declared at the begin-
ning of the bodies and all names of parameters of methods and initialization modules.
We use v with some indices to denote a local variable, and p or par with some optional
indices to denote a parameter name.

6.3 Mixin declarations

For each m ∈ MixNames we use:

• MixinDm to denote the declaration of the mixin m within the program P .

• Methodsm to denote the set of all method declarations present within MixinDm.

• IModulesm to denote the set of all ini module declarations present within MixinDm.

• Fieldsm to denote the set of all �eld declarations present within MixinDm.
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• MethodIDsm to denote the set of all method identi�ers of the method declarations
present within MixinDm.

• IntrMethodsm to denote the set of all names of methods introduced in mixin m. In
other words, it is a set of names of method declarations present in Methodsm, such
that the declaration of the method begins with the keyword new or abstract.

• ImplMethodIDsm to denote the set of all method identi�ers of the declarations present
within Methodsm, which do not begin with the keyword abstract.

For each m ∈ MixNames and (m2,mt) ∈ MethodIDsm we use:

• MetDecl (m2,mt)
m to denote the declaration of the method (m2,mt) in mixin m.

• RetType(m2,mt)
m to denote the return type occurring in MetDecl

(m2,mt)
m .

• MetParams(m2,mt)
m to denote the sequence of declarations of method parameters in

MetDecl (m2,mt)
m . Each element of this sequence is a parameter name followed by a colon

and a mixin expression denoting the type of the given parameter.

• MetSpec(m2,mt)
m to denote the method speci�er (see Section 4.3.2) occurring in the dec-

laration MetDecl (m2,mt)
m , i.e., one of the four keywords: new, abstract, override, or

implement.

For each m ∈ MixNames and (m2,mt) ∈ ImplMethodIDsm we use:

• MetLocals(m2,mt)
m to denote the sequence of local variable declarations in MetDecl (m2,mt)

m .

• MetInstr(m2,mt)
m to denote the sequence of instructions within MetDecl (m2,mt)

m with one
instruction added at the end: return null;. This instruction is added to ensure that
every method returns null if it happens not to execute any return instruction (as
described in Section 3.1).

To explain better the meaning of the above notions, we present below their values for the
program used as an example on Figure 3.2 in Section 3:

MethodsPoint2D = {new Object setCoords ...end, new Integer getX ...end}
IModulesPoint2D = ∅

FieldsPoint2D = {x:Integer, y:Integer}
MethodIDsPoint2D = {(Point2D, setCoords), (Point2D, getX)}

IntrMethodsPoint2D = {setCoords, getX}
ImplMethodIDsPoint2D = {(Point2D, setCoords), (Point2D, getX)}

69



MetDecl
(Point2D, setCoords)
Point2D = new Object setCoords... end

RetType
(Point2D, setCoords)
Point2D = Object

MetParams
(Point2D, setCoords)
Point2D = (ax:Integer, ay:Integer)

MetSpec
(Point2D, getX)
Point2D = new

MetLocals
(Point2D, getX)
Point2D = ()

MetInstr
(Point2D, getX)
Point2D = return this.Point2D.x; return null;

6.4 Function IniModules

The function IniModules takes as an argument a sequence of mixin names. When applied

to a sequence
−→
M , this function returns a sequence with one element for each initialization

module declaration mod occurring in mixins whose names are in
−→
M . Each such element of

IniModules(
−→
M) is a tuple consisting of:

1. The sequence of input parameter identi�ers occurring in mod. Each parameter name
within this sequence is pre�xed with the name of mixin in which the module was
declared.

2. The sequence of output parameter identi�ers occurring inmod, accompanied with their
types. Each element of this sequence is a pair of: (i) a parameter name pre�xed with
the target mixin name (as declared in the module) and (ii) its type. The type of the
output parameter comes from the declaration of the module in which this parameter
was introduced as its input parameter (not from the module declaration in which it
was used as an output parameter).

3. The body of the ini module mod.

4. The name of the mixin within which mod has been declared.

Therefore, each such tuple is an element of the set ModDecls (see the de�nition below).

The elements of the sequence IniModules(
−→
M) occur in the order of mixins in

−→
M , and

within modules from one mixin, in the order of textual ordering of the modules within this
mixins (see Section 3.8).

This implies that all the ini modules from the �rst mixin within the sequence
−→
M will have

its representants placed before the ones of the second mixin, and when one mixin declaration
contains two module declarations, the representant of the ini module placed lower within the

mixin declaration, will be placed later in the sequence IniModules(
−→
M).

Therefore, we have:
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IniModules : MixNames∗ → ModDecls∗

ModDecls = ParamIDs∗ × TypedParamIDs∗ ×ModuleBodies×MixNames

TypedParamIDs = ParamIDs× Types

whereModuleBodies is the set of all possible bodies of bodies of initialization modules, which
means, all sequences of terminal symbols derivable from the INI_MODULE_BODY nonterminal
(see Section 5).

6.5 Functions base and baseExt

The function base takes as a argument a non-empty sequence of mixin names and returns a
set of mixin names. This function, when applied to a sequence consisting of one mixin name,
returns the set of mixins included in the base mixin expression used in the declaration of the
given mixin. Therefore, in the example on Figure 3.4 we have:

base((Point3D)) = {Point2D}
base((Displayable3DColorPoint)) = {DisplayableObject, Point3D, ColorPoint}

The function base when applied to a sequence
−→
X of mixin names returns the set containing

all the base mixins of all mixins in
−→
X except the names of mixins occurring in

−→
X . In other

words, the base function can be de�ned recursively in the following way:

base(Mix ·
−→
tail) = base((Mix )) ∪ base(

−→
tail)− ({Mix} ∪ tail)

In the example on Figure 3.4 we have:

base((Displayable3DColorPoint, Point3D)) = {DisplayableObject, ColorPoint, Point2D}

For every set of mixin names mixins we also de�ne function baseExt as follows:

baseExt(mixins) = X ∪
⋃

Mix∈mixins

base((Mix ))

6.6 Mixin sequence manipulation: LastMix, LastMixBef

Below we de�ne two partial functions: LastMix and LastMixBef. Those functions take as
their parameters a sequence of distinct mixin names and an identi�er of a method. The
second function has one additional parameter: a mixin name.

Each of those functions, when applied to a sequence of mixins
−−−−→
mixins and method identi-

�er mtID , returns a mixin name occurring in
−−−−→
mixins such that the declaration of that mixin

contains an implementation of method mtID. As a result, those functions are de�ned only

for such values of
−−−−→
mixins which do contain an implementation of method mtID.
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The functions are de�ned in the following way:

• LastMix � takes as parameters a sequence of distinct mixin names
−−−−→
mixins and the

method identi�er mtID. As value of LastMixBef (
−−−−→
mixins ,mtID ,mix) is the last mixin

name in the sequence
−−−−→
mixins , such that the declaration of this mixin contains an

implementation of the method mtID.

• LastMixBef (
−−−−→
mixins ,mtID ,mix) � similarly to the above function takes as parameters

the sequence
−−−−→
mixins , and the method identi�er mtID. However it takes one additional

parameter: mixin name mix. A value of LastMixBef (
−−−−→
mixins ,mtID ,mix) is the last

mixin name in
−−−−→
mixins preceding mix, such that the declaration of returned mixin

contains an implementation of the method mtID.

Therefore, for these functions we have:

LastMix : MixNames∗ ×MethodIDs⇀ MixNames

LastMixBef : MixNames∗ ×MethodIDs×MixNames⇀ MixNames

These functions are de�ned in order to choose the implementation of method mtID during
the dynamic dispatch of the method call. The �rst one is used during the ordinary method
call, while the second is used in the super(...) method call, as de�ned in the operational
semantics rules in Section 7.2.5.

6.7 A consistent mixin sequence

We say that the sequence of mixin names Mix 1, ..., Mix n is consistent when the following
conditions are met:

• For each method declared as abstract in a mixin within the sequence, there exists an-
other mixin in the sequence, which contains the implementation of the method marked
as abstract.

This condition can be expressed in the following way:

⋃
i

MethodIDsMix i
=
⋃
i

ImplMethodIDsMix i

• For each override declaration of a method in a mixin occurring in the sequence, there
exists another mixin placed earlier in this sequence, which contains the declaration of
the same method marked with new or implement keyword. As a result this guarantees
that a super(...) call placed in such override method will have another implemen-
tation to call. This is formalized as the below condition:
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∀mtID ,i (MetSpecmtID
Mixi

= override ⇒ ∃j<i MetSpecmtID
Mixj

∈ {new, implement})

• this sequence does not contain any name of a built-in mixin (like Boolean).

In short, the fact that a sequence of mixins is consistent means that this sequence can be
safely used in an object creation expressions to create an object from (see Section 8.6). The
above de�nition guarantees the following property.

Property 2 (Consistent mixin sequence) For each consistent mixin sequence Mix 1, ...,
Mix n two conditions hold:

• LastMix( (Mix 1, ...,Mix n),mtID) is de�ned for each mtID ∈
⋃

i MethodIDsMix i
, and

• LastMixBef( (Mix 1, ...,Mix n),mtID ,Mix j) is de�ned for each mtID ∈
⋃

i MethodIDsMixi

and for each j, such that MetSpecmtID
Mix j

= override
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Chapter 7

Formal semantics

In this section we present the formal semantics of Magda. To do this, we use the big-step op-
erational semantics formulation (as presented by Kahn in [43]), which as many people believe
is a more intuitive choice than small-step semantics [51, 41, 5, 4]. The superiority of such
formulation is especially visible in imperative languages with recursion, nested expressions
etc. Moreover, a small-step semantics formulation (as introduced by Plotkin [59]) of such a
language in many cases requires one to de�ne: (i) a second language used internally in the
reduction process; (ii) some additional rules which enforce a speci�c order of the evaluation.
An example of such small-step formulation of the semantics of an OO language can be found
in [36].

Therefore we have chosen to describe Magda semantics in a more intuitive human-
readable way. We believe that readability is an important aspect of the formal de�nition
of semantics. This choice of big-step semantics shows its drawbacks when we state the type
soundness theorem, in Section 9.1. Luckily those problems can be dealt with, as explained
in Section 9.2 and Section 11.

The below de�nitions describe only successful executions. Therefore, those rules do not
model any errors. In particular there are no rules which express null-pointer dereference
errors. For each program which runs into such an error, in our semantics there is no derivation
for any judgment saying that such program evaluates to some state. Similarly, there is no
derivation for a program which runs into the point in which there is an attempt to execute
a method on the object which does not support this method. There is also no derivation
for programs which attempt to dereference a �eld of object which does not have such �eld.
However, the programs which would su�er from the last two cases, will not pass the type
checking procedure. On the other hand, similarly as with other languages, type checking
does not prevent null-pointer dereference errors.

We assume also an in�nite amount of memory available. Every object allocated stays in
the memory forever. The implementation of Magda uses some form of garbage collection,
however such garbage collection, under the assumption of an in�nite amount of memory
should be transparent, except for some form of �nalization of external resources, as present
in Java, however not in our core part of Magda. Recall also that we assume a �xed program
P (see Section 6) and we implicitly refer to its elements where needed.
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We believe that all the above choices will make the semantics easy to understand and
make it easy to analyze its formal properies.

7.1 Preliminary de�nitions

7.1.1 Representation of the memory state

We begin describing the semantics of Magda, by presenting how the dynamic memory state
and the object values are represented in this semantics.

To do this we use the below de�ned sets:

• Addresses' is a �xed, in�nite, linearly ordered set of memory addresses. Each address
is used later on (in the de�nition of the set States) to point to an object value. There
are two distinguished addresses: tt , ff which will be later used to point to boolean
values. This set does not contain a null address. We may assume that this set is the
set of all natural numbers, ff = 0 and tt = 1.

• Addresses is the set of all possible values of expressions. The value of each expression
can be either an address of an object or a null value. As a result we de�ne this set
by extending Addresses' set with one element: null. We will use the symbol adr with
optional indices to denote an element of this set.

• Objects is the set of all possible object values. Every object is a pair of:

� The sequence of names of mixins from which it was build. This sequence is also
called the runtime type of the object. Notice that in the context of the type
system the ordering of mixins is insigni�cant and we interpret types as sets (see
Section 3.9). On the other hand, the result of the execution of a program can be
in�uenced by the reordering of mixins in the runtime types of objects, as described
in Section 3.6).

� The current state of the object, which means the values of all its local �elds. This
state is a partial function associating �eld identi�ers with addresses.

One special object value ((Boolean), ∅) will be denoted later on as BoolVal.

• States is the set of all possible states of the memory. Each state is a partial function,
which associates addresses with some object values. Every element of this set represents
a global memory state (called sometimes heap). We will use the symbol st with optional
indices to denote an element of this set.

Additionally, the rules of our semantics enforce that all states occurring in the during
the actual execution of a type correct program are always de�ned for two special
addresses: tt and ff . Moreover, the value of each state at these addresses is BoolVal.
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• Environments is the set, in which each element represents the state of all local identi-
�ers visible in the current scope: the current method or current initialization module.
Therefore, each element of the set Environments takes one of two below forms:

- Either an association of local identi�er names with addresses in memory. It has,
as its domain, names of identi�ers de�ned in the given scope, therefore it is a
partial function.

- Or a pair of the form (>, adr), where adr is an element of Addresses set. This
means that the execution of the current method is �nished, as a result of a return
statement. Address adr is the result of a method evaluated by this return state-
ment. This form is never used during the execution of an initialization module.

We will use the symbol env with optional indices to denote an element of this set.

• ParamValues is the set, in which each element represents the set of values of initial-
ization parameters supplied during the creation of an object, and processed during the
object initialization. Therefore, each element of this set is a partial function assigning
addresses to identi�ers of parameters.

Therefore, formally, the above sets are de�ned as follows:

Addresses' = N
Addresses = Addresses′ ∪ {null}
Objects = MixNames∗ × (FieldIDs⇀ Addresses)

States = Addresses′ ⇀ Objects

Environments = (LocalIdenti�ers⇀ Addresses) ∪ ({>} × Addresses)

ParamValues = ParamIDs⇀ Addresses

7.1.2 Representation of the static execution context

To model the general state of execution, apart from de�ning the state of objects, variables
etc (as we did in the above section), we need also to de�ne how to represent static context of
execution. By static context we mean the information about the part of the static program
structure, within which the actually executed instruction or expression is placed. In other
words, this information represents a �pointer� pointing to some block of instructions like a
method declaration or an initialization module declaration.

In order to describe the static context of execution we will use an element of set Contexts,
as de�ned below:

• Contexts � the set contains all available static contexts used during the execution of
instructions or expressions. Each static context refers to a method or an initialization
module which is currently executed. Therefore it takes one of the following forms:

� a pair: a name of a mixin and an identi�er of a method, or
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� an element of ModDecls set, as de�ned in Section 6.4, or

� the special symbol (>), denoting that the current execution occurs outside any
method or module. This symbol is used during the execution of the main instruc-
tions of the program, placed after all the mixin declarations (see Section 3.1).

Therefore this set is formally de�ned in the following way:

Contexts = (MixNames×MethodIDs) ∪ ModDecls ∪ {>}

From now on, we use the symbol ctx with optional indices to denote elements of this set.

7.1.3 Additional Functions

In this section we de�ne some additional functions which will be needed later on in the rules
of semantics and the type checking of Magda.

The FirstEmpty function is used to �nd the �rst (smallest) empty address in the given
state. We say that the address is empty in state S if no object is associated with this address
in state S. This function is used to obtain an address for the newly created object in the
object creation expression.

The EmptyObject function takes as a parameter a sequence M of mixin names and re-
turns a non-initialized object created from a given sequence of mixins. This object is a pair
consisting of:

• a sequence of mixins M , and

• a partial function de�ned on �eld identi�ers declared in mixinsM . This partial function
has value null for every such a �eld.

The EmptyObject function is used during evaluation of the object creation expression to
obtain a non-initialized object.

For every context ctx, we use IdTypes(ctx) to denote a partial function de�ned for all
identi�ers declared in ctx. For every local identi�er id declared in ctx, IdTypes(ctx)(id)
denotes the declared type of identi�er id. Therefore, IdTypes(>) = ∅.

In the two other cases (in which the context ctx refers to a method or an initialization
module), the partial function IdTypes(ctx) is de�ned as follows:

• When applied to the identi�er this, it returns the name of the mixin in which the
method / ini module is declared.

• When applied to a local variable declared within the body of a method / initialization
module referred by ctx, the function returns its type present in the declaration.

• When applied to a parameter names of the method referred by ctx, it returns its
declared type (when ctx refers to a method).
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• When applied to the name of an input parameter of the ini module referred by ctx, it
returns its declared type (when ctx refers to the initialization module).

Therefore, for the above de�ned functions we have:

FirstEmpty : States→ Addresses

FirstEmpty(mem) = min{adr ∈ Addresses | adr /∈ Dom(mem)}
EmptyObject : MixNames∗ ⇀ Objects

EmptyObject(M) = (M, {(� 7→ null) | ∃T,Mix∈M(fl : T ) ∈ FieldsMix})
IdTypes : Contexts→ (LocalIdenti�ers⇀ MixNames∗)

7.2 Execution rules

In this formalization of the semantics we use three forms of �evaluates to� judgments:

Instruction evaluation judgments. Such judgments specify that, given:

• a local environment (denoting values of local variables), represented by the ele-
ment of Environments set;

• a static context, represented by the element of the set Contexts ;

• a state of heap, represented by an element of the set States ;

instruction instr evaluates to a new environment env′ and a new state st′. This models
changes in values of local variables and in the global heap:

env, ctx, st |= instr ⇒I (env′, st′)

Object expression evaluation judgments. Since all values in Magda are addresses of
objects in memory, the returned value is an address (an element of the set Addresses).
On the other side, the evaluation of an expression does not in�uence local variables,
so an expression will evaluate only to a new state and an address:

env, ctx, st |= exp⇒ex (st′, adr)

Object initialization judgments. Such judgments are used to determine how the initial-
ization modules are executed, and how they consume and produce the initialization
parameters. Such judgments specify that, given:

• an address adr at which the object to be initialized is stored,

• a current state st (containing the object to be initialized at adr),

• a sequence mods of modules to be analyzed,
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• a set pars of values of parameters remaining to be consumed by modules mods,

the initialization process ends in a state st′ in which the object is initialized (and which
also re�ects other possible side-e�ects of the initialization process).

adr, st |= (mods, pars)⇒ini st′

The sequence mods is an element of ModDecls∗ set (see Section 6.4). The set pars is
an element of the set ParamValues . Every element of the set pars is a pair build from
a parameter identi�er and its value.

When we refer to any of the three kinds of judgments we use the symbol⇒. Therefore⇒ rep-
resents one of the three symbols: ⇒I ,⇒ex,⇒ini.

Later on we will use the notion of a partial judgment to denote a judgment in which the
value on the right hand side of⇒ is unknown. A partial judgment has the form ... |= ...⇒?.

7.2.1 The model of the program execution in big-step semantics

The above three kinds of judgments have been designed in order to allow us to express and
prove properties of the following form:

The program P terminates its execution in a state st.

More precisely, we will say that the program P consisting of a sequence of mixin declarations
and instructions I terminates in state st if and only if the below judgment, called �nal
judgment, can be derived using the rules de�ned in next sections.

∅,>, { tt 7→BoolVal , ff 7→BoolVal} |= I ⇒I (∅, st)

7.2.2 Naming convention

We use two di�erent names for all the assumptions occurring in the below de�ned rules. We
use the name premise for each judgment of the form ... |= ...⇒ .... All the other assumptions
are called side-conditions.

Moreover, when we use a sequence of assumptions of dynamic length of the form:

env1, ctx1, st1 |=I1 ⇒I (env1, st1) ... envn, ctxn, stn |=In ⇒I (envn, stn)

we will often refer to it as one assumption.
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7.2.3 The structure of rules: the sequential ordering of premises

Each rule in our semantics has a speci�c structure expressing the sequential character of the
language. Each premise of the rule can be veri�ed (if it is derivable) in the context of all the
preceding premises of that rule. More precisely the sequential ordering of premises property
is formulated as follows.

Property 3 (Sequential ordering of premises) Within each rule, the state and the en-
vironment on the left side of the |= symbol in each premise is determined by states and
environments from all the premises occurring earlier within the same rule.

As a result, our semantics is sequential. To illustrate this sequentiality let us consider the
below rule (which is a simpli�ed version of the compound instruction rule):

env, ctx, st |= I1 ⇒I (env′, st′) env′, ctx, st′ |= I2 ⇒I (env′′, st′′)

env, ctx, st |= I1;I2 ⇒I (env′′, st′′)

The sequential ordering of premises and the dependency of the states and the environments
in this rule re�ects the following sequential intuition behind this rule:

In order to execute an instruction of the form I1;I2 in env, ctx, st we �rst need
to execute I1 and then, in the obtained env′ and st′, we need to execute I2 to
obtain the env′′ and st′′ which are the result of the execution of I1;I2.

This property is very similar to the one de�ned as L-attributed grammar by Ibraheem
and Schmidt in [41] and explored deeper by Ager in [5].

Moreover, our semantics is also deterministic, in the sense that there do not exist two
di�erent derivation trees for one judgment. This happens because of the following fact. For
each form of a judgment there is either only one rule, or there is more than one rule for some
kind of judgment, however their form (together with their side-conditions) ensures that those
rules are mutually exclusive. For example, consider the three rules for while statement in
Section 7.2.4. All those share the same premise, which is evaluation of the boolean condition.
And after that common premise, they di�er in side-conditions which depend on the result
of the evaluation of the premise. The �rst rule is applicable only if the boolean condition
evaluates to ff , while two other rules only if the boolean condition evaluates to tt .

7.2.4 Instruction rules

The rules for the execution of instructions are rather straightforward. The only non-trivial
case is the return statement, which ends the execution of the whole method body. This
termination of execution is performed by putting the special value > in the environment.
As a result, all the instructions containing some nested instructions (like compound, if and
while statements), after the execution of any of their component instructions must verify
if the component has executed a return instruction. Then, depending on this veri�cation,
this compound instruction either �nishes its execution, or continues with the execution of
subsequent component instructions.
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Assignment to a local variable. The execution of the variable assignment instruction
VarName := exp does not change the global state (apart from the side-e�ects of the evalua-
tion of exp), only a value of one variable in the environment. Therefore, on the right-hand side
of the judgment we have the state st′ returned by the evaluation of exp, and an environment
env modi�ed with the new value.

env, ctx, st |= exp⇒ex (st′, adr)

env, ctx, st |= VarName := exp⇒I (env{VarName 7→ adr}, st′)

Assignment to an object �eld. The execution of the �eld assignment instruction of the
form exp1.Mix.fl := exp2 begins with the evaluation of the expression exp1, representing
the target object, thus obtaining address adr′. Then, the expression exp2 to be assigned to
this �eld is evaluated in order to obtain address adr′′. At the end, the instruction returns the
new state in which the object to be modi�ed is replaced with the new version of this object
(represented by newObj). The new version is constructed from the old version of the same
object with the second element of the pair (containing values of �elds) modi�ed.

env, ctx, st |= exp1 ⇒ex (st′, adr′)
env, ctx, st′ |= exp2 ⇒ex (st′′, adr′′)

newObj = ( st′′(adr′)|1, st′′(adr′)|2{Mix .fl 7→ adr′′} )

env, ctx, st |= exp1.Mix.fl := exp2 ⇒I (env, st′′{adr′ 7→ newObj})

Conditional instruction. The execution of a conditional instruction having the form
if exp1 then I1 else I2 end begins with the evaluation of the condition expression exp1.
Then, depending on the value of exp1, the �rst or the second rule is used. Those in turn
continue by executing I1 or I2 respectively (starting from the state st′ returned by the
evaluation of exp1) and return the state st′′ modi�ed during the execution of the appropriate
instruction.

env, ctx, st |= exp1 ⇒ex (st′, tt )
env, ctx, st′ |= I1 ⇒I (env′′, st′′)

env, ctx, st |= if exp1 then I1 else I2 end⇒I (env′′, st′′)

env, ctx, st |= exp1 ⇒ex (st′, ff )
env, ctx, st′ |= I2 ⇒I (env′′, st′′)

env, ctx, st |= if exp1 then I1 else I2 end⇒I (env′′, st′′)

The return statement. The execution of return exp instruction �rst evaluates the ex-
pression exp, and then returns the state modi�ed by the expression together with a special
form of the environment. The returned environment contains the special > element and the
address adr′ representing the returned value.

Notice that the old environment is completely discarded. It is safe because the execution
of a local method is �nished, thus local variables will not be referenced anymore.
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The form of environment used here enforces skipping of all further instructions within
the same method (see below rules for while and compound instructions).

env, ctx, st |= exp⇒ex (st′, adr′)

env, ctx, st |= return exp⇒I ((>, adr′), st′)

The compound instruction. The execution of the compound instruction of the form
I1;I2 begins with the execution of the instruction I1, yielding an environment env′. The
further execution depends on the from of env′.

If env′ is not of the form (>, ...) then instruction I2 is executed (see the �rst rule).
If env′ is of the form (>, ...) (what means that a return statement has been executed)

then, according to the second rule, the instruction I2 is skipped and the same environment
env′ is returned. In this way, such a special environment propagates upwards in the program
tree up to the point of the call to the current method. As a result it prevents all the subsequent
instructions occurring in the same method from being executed.

env, ctx, st |= I1 ⇒I (env′, st′) env′ 6= (>, ...)
env′, ctx, st′ |= I2 ⇒I (env′′, st′′)

env, ctx, st |= I1;I2 ⇒I (env′′, st′′)

env, ctx, st |= I1 ⇒I (env′, st′) env′ = (>, ...)
env, ctx, st |= I1;I2 ⇒I (env′, st′)

The empty instruction. An empty instruction evaluates to the same state in which
it started the execution. Such empty instruction represents an empty body of a loop, an
initialization module, or a method.

env, ctx, st |= ε⇒I (env, st)

The expression evaluation instruction. An expression can be used as a special form of
instruction, the execution of which amounts to the evaluation of the expression. The result
is the original environment (since expressions cannot modify local variables) and the new
state st′. Notice that the evaluated address adr is not used.

env, ctx, st |= exp⇒ex (st′, adr)

env, ctx, st |= exp⇒I (env, st′)

The loop statement. The execution of a loop statement of the form while (exp1) I1
end is described by the three below rules.

Its execution begins with the evaluation of the condition expression exp1, as speci�ed in
the �rst premise of each rule. If the value of exp1 is ff then, according to the �rst rule, the
whole while statement ends.

If the value of exp1 is tt then (according to the second premise of the second and the
third rule) the instruction I1 is executed. When the instruction I1 �nishes and the resulting
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environment is a pair (>, x) then the whole while statement �nishes (see the third rule).
Otherwise, according to the second rule, the whole while statement is executed once again
in the new state and the new environment.

env, ctx, st |= exp1 ⇒ex (st′, ff )

env, ctx, st |= while (exp1) I1 end ⇒I (env, st′)

env, ctx, st |= exp1 ⇒ex (st′, tt )
env, ctx, st′ |= I1 ⇒I (env′′, st′′) env′′ 6= (>, x)
env′′, ctx, st′′ |= while (exp1) I1 end ⇒I (env′′′, st′′′)

env, ctx, st |= while (exp1) I1 end ⇒I (env′′′, st′′′)

env, ctx, st |= exp1 ⇒ex (st′, tt )
env, ctx, st′ |= I1 ⇒I (env′′, st′′) env′′ = (>, x)
env, ctx, st |= while (exp1) I1 end ⇒I (env′′, st′′)

7.2.5 Expression evaluation rules

Constants evaluation. Three constants existing in Magda evaluate to their corresponding
addresses following the below axioms.

env, ctx, st |= true⇒ex (st, tt )

env, ctx, st |= false⇒ex (st, ff )

env, ctx, st |= null⇒ex (st, null)

Local identi�er evaluation. The evaluation of a local identi�er (for example, a variable or
a method parameter) returns the value of the given identi�er in the present environment env.

adr = env(VarName)

env, ctx, st |= VarName ⇒ex (st, adr)

Field value evaluation. The evaluation of an object �eld expression exp.Mix.fl consists
of two steps. First, the expression exp, denoting the target object, is evaluated to obtain
address adr. Then the evaluation of the whole expression returns the state modi�ed by the
evaluation of exp, and the value picked from the second element of the target object st′(adr).

env, ctx, st |= exp⇒ex (st′, adr)

env, ctx, st |= exp.Mix.�⇒ex (st′, st′(adr)|2(Mix .�) )
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Call to a method. The evaluation of the method call expression is somewhat compli-
cated. According to the below rule, the evaluation process of an expression of the form
exp.Mix.mt(exp1, ... , expn) proceeds as follows:

1. The expression denoting the target of the call (exp) is evaluated (according to the �rst
assumption).

2. According to the second assumption, the actual parameters exp1, ..., expn are evaluated
to values adr1, ..., adrn.

3. According to the third assumption, the mixin Mix ′ containing the last de�nition of
method Mix .mt is evaluated. The mixin Mix ′ is chosen from the sequence of mixins
stn(adr0)|1 from which the target object was created.

4. Then, the new environment env′ in which the body of the method will be evaluated
is de�ned (according to the fourth, �fth and sixth assumption). The environment env′

contains values assigned to three di�erent kinds of local identi�ers:

• names of method parameters (p1, ..., pn) are determined basing on the method
declaration (using MetParams de�nition), and mapped into the actual values
(adr1, ..., adrn) of the parameters;

• names of local variables declared within the method body local1, ..., localk (deter-

mined using MetLocals
(Mix ,mt)

Mix ′
) are all mapped into null value (representing the

non-initialized variable);

• this variable is mapped into the address adr0 of the target object of this call.

5. Finally (according to the last assumption), in environment env′ and in the context con-
taining the information about the executed method implementation (Mix ′, (Mix ,mt))

the body of the given implementation (MetInstr
(Mix ,mt)

Mix ′
) is evaluated to the state st′

and the environment (>, adr).
Notice that it is safe to assume that the resulting environment has the form (>, adr),
which means that a return ... instruction has been executed (see Section 7.4 for
more details).

The obtained state st′ and address adr are the result of the execution of the whole method
call expression.

env, ctx, st |= exp⇒ex (st0, adr0)
env, ctx, st0 |= exp1 ⇒ex (st1, adr1) ... env, ctx, stn−1 |= expn ⇒ex (stn, adrn)

Mix ′ = LastMix(stn(adr0)|1, (Mix ,mt))

(p1 : T1, ... , pn : Tn) = MetParams
(Mix ,mt)

Mix ′
(local1, ... , localk) = MetLocals

(Mix ,mt)

Mix ′

env′ = {p1 7→ adr1; ...; pn 7→ adrn; local1 7→ null; ...; localk 7→ null; this 7→ adr0}
env′, (Mix ′, (Mix ,mt)), stn |= MetInstr

(Mix ,mt)

Mix ′
⇒I ((>, adr), st′)

env, ctx, st |= exp.Mix.mt(exp1, ... , expn)⇒ex (st′, adr)
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A super(...) method call. Semantics of super(...) method call is in many respects
similar to the one of an ordinary method call and thus the rule is similar. This rule di�ers
only in two respects:

• The way the mixin Mix ′ containing the called implementation is computed. In a
super(...) method call the mixin Mix ′ is computed according to on the current static
context, using the function LastMixBef instead of LastMix. As a result, the implemen-
tation to be executed is picked from the declaration of the mixin which precedes the
current mixin in the sequence of mixins st(env(this))|1, from which the current object
has been created. The current mixin is, in turn, picked from the static context.

• The way the object being the target of the method call is de�ned. In the ordinary
method call, the expression denoting the target object is a part of the method call
expression. In super() method call, the target of the call is the value of the variable
this in the current environment.

env, (Mix ,mtID), st0 |= exp1 ⇒ex (st1, adr1) ... env, (Mix ,mtID), stn−1 |= expn ⇒ex (stn, adrn)
Mix ′ = LastMixBef(stn(env(this))|1,mtID ,Mix )

(p1 : T1, ..., pn : Tn) = MetParamsmtID
Mix ′ (local1, ..., localk) = MetLocalsmtID

Mix ′

env′ = {p1 7→ adr1; ...; pn 7→ adrn; local1 7→ null; ...; localk 7→ null; this 7→ env(this)}
env′, (Mix ′,mtID), stn |= MetInstrmtID

Mix ′ ⇒I ((>, adr), st′)
env, (Mix ,mtID), st0 |= super (exp1, ... , expn)⇒ex (st′, adr)

A new object creation. The evaluation of a new object creation expression of the form
new Mixins[ParID1:=exp1, ...,ParIDk:=expk] is de�ned by the below rule, and proceeds as
follows:

1. First, the actual initialization parameters exp1, ..., expk, are evaluated to adr1, ... adrk.
Below we use ParID 7→ adr to denote the set of parameter names with their values
evaluated in this step. Notice that from this point the actual ordering of parameters is
ignored.

2. Then, the fresh not initialized, object value objV al is computed using the EmptyObject
function (see Section 7.1.3).

3. Then (according to the third assumption), an address not used in stk is computed
using FirstEmpty function (see Section 7.1.3) and denoted as adr′.

4. Finally (according to the last premise), initialization modules are evaluated in the
state which contains objV al at address adr′. The process of execution of those modules
results in the new state st′′ in which the object at address adr′ is completely initialized.
The sequence of all modules to be evaluated is denoted as IniModules(mixins) (see
Section 6.4).
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The result of this whole process is the state st′′ returned by the evaluation of initialization
modules and the address adr′ pointing to the newly created object.

env, ctx, st0 |= exp1 ⇒ex (st1, adr1) ... env, ctx, stk−1 |= expk ⇒ex (stk, adrk)
objV al = EmptyObject(mixins) adr′ = FirstEmpty(stk)

adr′, stk{adr′ 7→ objV al} |= (IniModules(mixins),ParID 7→ adr)⇒ini st′′

env, ctx, st0 |= new Mixins[ParID1:=exp1, ...,ParIDk:=expk]⇒ex (st′′, adr′)

7.2.6 Object initialization rules

The three below rules specify how the initialization process is being performed. The whole
process is driven by the sequence of initialization modules. Each module (starting from the
last) in this sequence is checked. If the input parameters of the module are in the set of
currently supplied parameters then the module is executed, otherwise it is skipped.

Object initialization end. The �rst rule (which is an axiom in fact), says that when
the sequence of initialization modules is empty, then the whole process ends. Notice that
this rule requires also the set of parameters to be empty in order to �nish the process. The
fact that the set of parameters will be always empty at the end of the process (therefore all
parameters will be consumed) is enforced by the type checking rules de�ned in Section 8.6.

adr, st |= ((), ())⇒ini st

Initialization module skip. The second rule is used in the case when the last module
mod in the sequence has some input parameters mod|1, and for those parameters there are
no values available in the function pars , as stated by the �rst side-condition of this rule. In
such a case, the initialization process continues for the sequence of modules with the given
module removed. In other words, the module is skipped.

mod|1 ∩ dom(pars) = ∅ 6= mod|1
adr, st |= (

−−−→
mods, pars)⇒ini st′

adr, st |= (
−−−→
mods ·mod, pars)⇒ini st′

Initialization module execution. The below rule describes the case when all the input
parameters (ipar1, ..., ipark) of the last module (mod) are contained within pars . This
conditions is expressed by the �rst and the second assumption of the rule. In such a case
we say, that this module is activated by the object creation expression which started the
initialization process. When a module is activated, then the instructions in the body of the
module are executed. We recall that mod here is an element of ModDecls set (see Section
6.4), thus it is a four-element tuple consisting of: (i) input parameters sequence, (ii) output
parameters sequence (with their types), (iii) module body, (iv) the mixin name.
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The execution of the initialization module proceeds as follows:

1. First (according to the second assumption), input parameters of the module are de-
ducted from the list of not-consumed parameters (denoted as pars) to obtain the set
pars ′.

2. According to the third assumption, identi�ers
−−−−−→
local : T , I1,

−−−→
opID, exp and I2 denote

elements of the body of the ini module (mod|3).

3. Then (according to the fourth assumption), the new environment (env) is built from
three parts:

• input parameter names (ip1, ..., ipk) mapped into values picked from pars ;

• local variables (
−−→
local) mapped into null value;

• this variable mapped into the current object (adr).

4. Then, according to the �fth assumption, the instructions I1 placed with ini module
before the super[...] call are executed in the new environment env.

5. Then, according to the sixth assumption, the values of output parameters exp1, ...,
expl are computed.

6. Then, according to the seventh assumption (and indirectly using the second assump-
tion), a new set of parameter values assigned to their identi�ers (denoted as pars ′′) is
de�ned in the following way: We begin with the original set of parameters (pars), then
the input parameters of the given module (Mix.ip1, ..., Mix.ipk) are removed, and the
output parameters of the given module opID1, ..., opIDl, with their values computed
in the previous step, are added.

7. Then, according to the eighth assumption, ini modules remaining in the
−−−→
mods sequence

are executed with the set of initialization parameters pars ′′ de�ned in the previous
point.

8. Finally, according to the last assumption, instructions I2 (occuring after the super[...]
call in the body of the module) are executed.
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mod|1 = (Mix .ip1, ...,Mix .ipk)
pars ′ = pars r∗{Mix .ip1 7→adrI

1; ...; Mix .ipk 7→adrI
k}−−−−−→

local : T begin I1; super[
−−−−−−−−→
opID := exp]; I2 end; = mod|3

env = {ip1 7→ adrI
1; ...; ipn 7→ adrI

k; local1 7→ null; ...; localm 7→ null; this 7→ adr}
env,mod, st |= I1 ⇒I (env′, st0)

env′,mod, st0 |= exp1 ⇒ex (st1, adr
O
1 ) ... env′,mod, stl−1 |= expl ⇒ex (stl, adr

O
l )

pars� = pars'{opID1 7→adrO
1 ; ...; opIDl 7→adrO

l }
adr, stl |= (

−−−→
mods, pars�)⇒ini st′′

env′,mod, st′′ |= I2 ⇒I (env′′, st′′′)

adr, st |= (
−−−→
mods ·mod, pars)⇒ini st′′′

7.3 The structure of a big-step derivation

In this section we state a property enjoyed by the semantics of Magda. This property re�ects
the way the context is manipulated by the rules.

First of all, notice that most of big-step semantics rules have the following shape: The
evaluation of a term t (an instruction or an expression) of a given form is de�ned by means of
the evaluation of subterms of the term t. Moreover, each evaluation of a subterm is performed
in the same context in which term t is evaluated. More precisely, within each rule used to
derive the judgment ...ctx... |= t ⇒ ..., in each premise of form ...ctx′... |= t′ ⇒ ..., if t′ is a
subterm of t then ctx′ = ctx.

The only rules in which the premises contain a term which is not a subterm of the term
present in conclusions are: method call, super() call, and the execution of an initialization
module. It is easy to see that, within those three rules, each premise containing a term which
is not a subterm uses a di�erent context than the one which is used in the conclusion of the
rule. Moreover, those are the only rules which �generate� new contexts as well as new terms.
Therefore, we have the following property:

Property 4 (Structure of derivation) For each program P and the derivation tree of its
�nal judgment (see Section 7.2.1) of the form

∅,>, { tt 7→BoolVal , ff 7→BoolVal} |= I ⇒I (∅, st)

and for each occurrence of a judgment ...ctx... |= t⇒ ... (*) in the derivation tree, such that
t is an instruction or expression, we have the following situation:

The judgment (*) occurs in a subtree, which starts from a node having the form
...ctx... |= t′ ⇒I ..., such that t′ is:

• either the body of the method in which t occurs,

• or the body of the initialization module in which t occurs,
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• or the sequence of main instructions of the program in which t occurs.

Less formally: Evaluation of every instruction and expression occurs in the subtree which
was started by the evaluation of the body of a method, an ini module, or the block of main
program instructions which this instruction/expression is part of. Moreover this expression
is evaluated in the context of that speci�c method, ini module or main instructions.

7.4 The method body evaluation

In this section we state a property of the semantics which informally says, that if the evalu-
ation of the method body �nishes, then it �nishes with an environment containing a value.

Property 5 (Method body evaluation) For each environment env, context ctx, and state
st, each mixin name Mix and method identi�er mtID , if we have:

env, ctx, st |= MetInstrmtID
Mix ⇒I (env′, st′)

for some (env′, st′), then env′ is a pair of the form (>, adr) for some address adr.

In order to prove this property, it is enough to see how a derivation tree for MetInstrmtID
Mix

looks like. First recall that MetInstrmtID
Mix (see Section 6.3) is a compound instruction of the

form I; return null. Recall also that the semantics of the compound instruction has two
cases. In the �rst case, when the execution of I returns an environment of the form (>, adr),
the same environment is the result of the whole body. In the second case, when the result
of execution of I is an �ordinary� environment, then the result of the whole method body is
equal to the result of the execution of return null, which is (>, null).
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Chapter 8

Type checking rules

In this section we specify rules which are used to verify the type safety of a program. In
other words, those rules ensure that the execution of a program will not get stuck because of
a message-not-understood error, or attempts to access a non-existent �eld or initialization
parameter. Without the type checking, such errors could occur when the runtime type of the
target object is not a subtype of the static type of the expression.

Recall, that we assume a �xed program P (see Section 6), so we implicitly refer to its
elements where needed.

8.1 Type correctness judgments

The type checking rules in Magda are used to derive judgments of the following kinds.

A program is type correct. This judgment states that the program consisting of a series
of mixin declarations M1, ...,Mn and the instruction I is type correct.

P̀ M1;M2; ...Mn; I : OK

A declaration of a mixin is type correct.

D̀ Mi : OK

A declaration of a method is type correct. This judgment states that a given method
declaration MetDecl is type correct within the declaration of the mixin Mix.

Mix m̀et MetDecl : OK

A declaration of an ini module is type correct. This judgment states that an ini mod-
ule is correct within the declaration of mixin named Mix and in the context of ini
modules PrecModules, which have been declared textually above within the mixin Mix.
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The list of ini modules PrecModules is needed during type checking, because their input
parameters can be referenced by the given module in its output parameter declarations.

Mix ,PrecModules ìni inimoduleDeclaration : OK

An instruction is type correct. This judgment states that an instruction is type correct
within the context ctx of the method or ini module in which it occurs.

ctx Ì I : OK

In judgments of that kind, the context ctx is used to denote the static information
about the block of code within which the instruction I is placed and executed. Every
value of ctx is an element of the set Contexts as de�ned in Section 7.1.2. We remind
that, according to the de�nition in Section 7.1.2, it carries information about one of
the below things:

• for instructions placed within a body of a method declaration: the identi�er of
that method;

• for instructions placed within an ini module: the sequences of input and output
parameters of that module, together with its body and the name of the mixin in
which the given module was declared;

• for the main program instructions placed after all mixin declarations: an empty
context denoted as >.

Moreover, notice that, by knowing the context, we have the information about the types
of local variables and other identi�ers, which are de�ned by the function IdTypes(ctx)
(see Section 7.1.3).

An expression is type correct and has a type T . The below judgment states that within
the given local context ctx of a method or a module, an expression exp is type correct
and has type T .

ctx èx exp : T

Every type used in such judgments, as well as any other type in Magda, is a set of
mixin names � as stated before in Section 3.9 and Section 4.6. Every context used
in the judgment of the above kind is an element of the set Contexts as de�ned in
Section 7.1.2.

All the above judgments are used in derivations of judgments of the form:

P̀ M1;M2; ...Mn; I : OK
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A judgment of this form means that the whole program is type correct, which guarantees the
type safety of the execution of the program, as de�ned in Section 10.2 and in Section 11.1.

Similarly as with the big-step semantics rules, we use two di�erent names for all the
assumptions occurring in the type checking rules. We use the name premise for each judg-
ment of the form ... `∗ ..., where `∗ is one of the symbols Ì , D̀ , èx, m̀et, ìni. All the other
assumptions are called side-conditions.

8.2 Additional functions

Additionally, within the premises of the type checking rules, we use the following additional
functions:

• Function Rmodules, which takes as an argument a set of mixin names, and returns a
set of ini modules required, which are declared within those mixins. The complete
de�nition of this function can be found in Section 8.2.2.

• Function activated , which takes two parameters: a sequence of mixin names and a set of
initialization parameter identi�ers. This function returns a set of ini modules declared
within the given mixins, which are activated by the given initialization parameters.
The complete de�nition of this function can be found in Section 8.2.1.

• Function InputPars , which takes two parameters: a set of mixin names and a sequence
of ini modules. This function returns a set of initialization parameters (with their types)
declared in the supplied mixins and ini modules.

Each element of the set InputPars(mixins ,mods) consists of a parameter identi�er,
and its type. This set consists of input parameters declared in: (i) modules present in
mixins mixins ; (ii) modules present in mods.

According to the above, we have:

Rmodules : 2MixNames → 2ModDecls

activated : (MixNames∗ × 2paramIDs)→ 2ModDecls

InputPars : (MixNames∗ ×ModDecls)→ 2ParamIDs×MixNames∗

8.2.1 The function activated

The function activated takes as arguments a sequence of mixin names and a set of initializa-
tion parameter identi�ers. This function returns a sequence of ini module declarations chosen
from the declarations of mixins supplied as the �rst parameter. The function chooses mod-
ules which are activated by the given set of parameters (see Section 3.8 and Section 4.3.3).
This function is de�ned below using two additional functions: IniModules and activated ′.
The function IniModules (as de�ned in Section 6.4) takes as a parameter a sequence of
mixins, and returns the set of all initialization modules declared within the given modules.
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activated(
−−→
Mix , p) = activated ′(IniModules(

−−→
Mix ), p)

The function activated′, as de�ned below, takes as its parameters: (i) a sequence of ini
modules and (ii) a set of parameters. This function returns a sequence of ini modules, which
is a subsequence of the one passed as the �rst argument.

activated ′(ε, ∅) = ∅
aIM |1 ∩ p = ∅ 6= aIM |1

activated ′(
−−→
IM · aIM, p) = activated ′(

−−→
IM, p)

aIM |2 =
−−→
r : T aIM |1 ∩ p = aIM |1

activated ′(
−−→
IM · aIM, p) = activated ′(

−−→
IM, (p− aIM |1) ] −→r ) ∪ {aIM}

The set of parameters p triggers the lookup that searches the sequence
−−→
IM for the last ini

module aIM whose input parameters are included within p. It also assumes that either all
parameters of some module are included or none. Once such a module is found, the lookup
proceeds recursively by looking for the ini modules that are activated by the set of parameter
calculated as p minus the input parameters of aIM , plus the output parameters of aIM .

Notice also that, this function performs two correctness checks (otherwise it is not de-
�ned): First, it checks that all parameters, starting from p, are consumed by some ini modules
declared in the given mixins. Secondly, it checks that we do not have a case where only part
of the parameters of some module is supplied.

The side-condition aIM |1 ∩ p = ∅ 6= aIM |1 ensures that in no situation two of the above
rules can be applied, therefore activated′ is indeed a function.

8.2.2 The function Rmodules

The function Rmodules, when applied to a set of mixins names M , returns a set of dec-
larations of ini modules. The returned set contains all the ini modules occurring in the
declarations of mixins baseExt(M), which are marked with required keyword. Each ini
module in the returned set is an element of ModDecls set � see the de�nition in Section 6.4.

We remind that the set baseExt(M) (see Section 6.5) contains all mixins in M as well
as their direct and indirect base mixins.

8.3 Type checking of a program and mixin declarations

In this and in the following sections we present the typing rules. Whenever the premises
of a rule are described by itemized sentences, such description is presented in the order of
appearance of the premises within that rule.
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Type checking of a program. According to the below rule, a program is type correct if
all mixin declarations occurring in it are type correct, as well as its main instructions.

D̀ M1 : OK ... D̀ Mn : OK ... > Ì I : OK

P̀ M1;M2; ...Mn; I : OK

Type checking of a mixin declaration. According to the below rule, the declaration of
a mixin is type correct if the following conditions are met:

• The base mixin expression BaseExp contains only names of mixins declared in the
program.

• All method declarations met1 ... metn in the mixin declaration are type correct.

• All ini module declarations mod1 ... modk occurring in the mixin declaration are type
correct with respect to the modules textually occurring above them.

• The type of each �eld declaration consists of valid mixin names.

• All �eld names used in �eld declarations are distinct.

BaseExp ⊆ MixNames
Mix m̀et met1 : OK ... Mix m̀et metn : OK

Mix , ∅ ìni mod1 : OK ... Mix , {mod1, ...,modK−1} ìni modk : OK
T1 ∪ ... ∪ Tl ⊆ MixNames ∀i,j((i 6= j)⇒ (fl i 6= fl j))

D̀ mixin Mix of BaseExp = met1;...;metn;mod1;...;modk;fl1:T1;...;fl l:Tl; end : OK

8.4 Type checking of mixin members

8.4.1 Type checking of method declarations

The declaration of a method marked as new. According to the below rule, a declara-
tion of method mt marked as new is type correct if the following conditions are met:

• The return type, the parameter types (T1, ..., Tn), and the types of variables (S1,...,
Sn) contain names of mixins which are declared in the program.

• In the context of the declared method, instructions placed in the body of method are
type correct.

• The names of method parameters are di�erent from the special name this.

• The names of local variables in the body of the method are di�erent from the special
name this.

• The names of method parameters are distinct from the names of local variables.
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T 1 ∪ T1∪...∪Tn ∪ S1∪...∪Sk ⊆ MixNames
(Mixc, (Mixc,mt)) Ì I : OK

this /∈ {p1, ..., pn} this /∈ {v1, ..., vk} {v1, ..., vk} ∩ {p1, ..., pn} = ∅
Mixc m̀et new T 1 mt (p1:T1; ...; pn:Tn) var v1:S1..., vk:Sk begin I end : OK

The declaration of a method marked as override or implement. According to the
below rule, a declaration of method Mix .mt marked as override or implement, occurring
within a declaration of a mixin Mixc, is type correct if following conditions are met:

• The mixin name Mix is contained within the base mixin expression of the mixin Mixc.

• The method mt was introduced in the declaration of the mixin Mix .

• The return type, parameter types, and types of variables contain only names of mixins
which are declared in the program.

• The return type of the current method declaration is equal to the one present in the
introduction of the implemented method.

• The list of declared method parameters is equal to the list of parameter declarations
present in the introduction of the implemented method.

• In the context of the declared method, instructions placed in the body of the method
are type correct.

• The names of method parameters are di�erent from the special name this.

• The names of local variables in the body of the method are di�erent from the special
name this.

• The names of method parameters are distinct from the names of local variables.

speci�er ∈ {override, implement}
Mix ∈ base(Mixc) mt ∈ IntrMethodsMix

T 1 ∪ T1∪...∪Tn ∪ S1∪...∪Sk ⊆ MixNames

T 1 = RetType
(Mix ,mt)
Mix (p1 : T1, ..., pn : Tn) = MetParams

(Mix ,mt)
Mix

(Mixc, (Mix ,mt)) Ì I : OK
this /∈ {p1, ..., pn} this /∈ {v1, ..., vk} {v1, ..., vk} ∩ {p1, ..., pn} = ∅

Mixc m̀et speci�er T
1 Mix.mt(p1:T1; ...;pn:Tn) var v1:S1...vk:Sk begin I end : OK
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8.4.2 Type checking of an initialization module

According to the below rule, the declaration of an initialization module present in the mixin
Mixc, occurring below the declarations of modules mods, is type correct if the following
conditions are ful�lled:

• Each output parameter (Mix 1.op1, ..., Mix m.opm) of the initialization module refers to
an existing parameter declaration occurring in some other module. The other module
must be declared above in the same mixin, or in one of the base mixins. All those
parameters are denoted as InputPars(base(Mixc),mods) (see Section 8.2). Moreover,
these output parameters are declared with some types T 1, ..., Tm.

• The names of input parameters di�er from all the names of input parameters declared
in other modules occurring in the same mixin.

• The types of input parameter (T1, ..., Tn) and the types of variables (S1, ..., Sn) contain
only names of mixins which are declared in the program.

• In the context of the current initialization module, the instructions placed in the body
are type correct.

• The names of input parameters of the initialization module are di�erent from the
special name this.

• The names of local variables in the body of the initialization module are di�erent from
the special name this.

• The names of input parameters are distinct from the names of local variables.

speci�er ∈ {required, optional}
{Mix 1.op1 : T 1, ...,Mix m.opm : Tm} ⊆ InputPars(base(Mixc),mods)

∀i∈{1..n},TMixc.ipi /∈ InputPars(∅,mods)
T1 ∪ ... ∪ Tn ∪ S1 ∪ ... ∪ Sk ⊆ MixNames

({Mixc.ip1, ...}, {Mix 1.op1 : T 1, ...}, var ... I end,Mix ) Ì I : OK
this /∈ {v1, ..., vk} this /∈ {ip1, ..., ipn} {v1, ..., vk} ∩ {ip1, ..., ipn} = ∅

Mixc,mods ìni

( speci�er Mixc(ip1:T1; ...ipn:Tn) initializes
)

: OK
(Mix 1.op1...Mix m.opm) var v1:S1...vk:Sk begin I end

8.5 Type checking of instructions

In this section we present the rules which are used to verify if instructions are type correct.
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Type checking of a compound instruction. A compound instruction I1;I2 is type
correct in a given context ctx if both I1 and I2 are type correct in context ctx.

ctx Ì I1 : OK ctx Ì I2 : OK

ctx Ì I1;I2 : OK

Type checking of an empty instruction. An empty instruction is always type correct.

ctx Ì ε : OK

Type checking of a variable assignment. An assignment instruction of the form
VarName:=exp is type correct if the variable VarName is distinct from this and the assigned
expression exp has the type IdTypes(ctx)(VarName). We recall that IdTypes(ctx)(VarName)
(see Section 7.1.3) denotes the type occurring in the declaration of variable VarName in the
context ctx.

VarName 6= this ctx èx exp : IdTypes(ctx)(VarName)

ctx Ì VarName := exp : OK

Type checking of a �eld assignment instruction. The �eld assignment instruction
exp1.Mix.fl:=exp2 is type correct if the following conditions are met:

• The expression exp1 (denoting the target object) has the type {Mix}.

• The declaration of the mixin Mix contains the �eld declaration fl : T for some T .

• The expression exp2 (denoting the value to be assigned) has the type T .

ctx èx exp1 : {Mix} fl:T ∈ FieldsMix ctx èx exp2 : T

ctx Ì exp1.Mix.fl := exp2 : OK

Type checking of an expression instruction. The instruction being an expression is
type correct, if in the current context the expression has some type.

ctx èx exp : T

ctx Ì exp : OK

Type checking of a conditional instruction. A conditional instruction of the form
if exp1 then I1 else I2 end is type correct in context ctx if the following conditions
are met:

• The expression exp1 (denoting the logical condition) has the type {Boolean}.

• Instructions I1 and I2 are both type correct.
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ctx èx exp1 : {Boolean} ctx Ì I1 : OK ctx Ì I2 : OK

ctx Ì if exp1 then I1 else I2 end : OK

Type checking of a loop instruction. A loop instruction while (exp1) I1 end is type
correct if the condition exp1 has type {Boolean}, and the instruction I1 is type correct .

ctx èx exp1 : {Boolean} ctx Ì I1 : OK

ctx Ì while (exp1) I1 end : OK

Type checking of a return instruction. The return exp instruction placed in the
context of a method is type correct if the expression exp has the return type of the method
speci�ed by the context.

(Mix ,mtID) èx exp : RetTypemtID
Mix

(Mix ,mtID) Ì return exp : OK

Type checking of super[...] instruction placed in an ini module. The super[...]
instruction placed in the context of an ini module is type correct if:

• The names par1, ..., parn of the parameters used in the expression match the declara-
tions of output parameters present in the context.

• The actual parameters exp1...expn have the same types as the output parameters spec-
i�ed by the context.

ctx|2 = (par1 : T1, ..., parn : Tn)
ctx èx exp1 : T1 ... ctx èx expn : Tn

ctx Ì super [par1:=exp1, ..., parn:=expn] : OK

8.6 Type checking of object expressions

The type of an identi�er.

ctx èx VarName : IdTypes(ctx)(VarName)

Types of constants.
ctx èx true : {Boolean}

ctx èx false : {Boolean}
The value null is a proper value for each type, therefore the type of null must be

a subtype of all types. Thus, it is the set of all names of mixins declared in the program.

ctx èx null : MixNames
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Type of a �eld value dereference. A �eld dereference expression of the form exp.Mix.fl
has the type T if:

• The expression exp has some type T2, which contains the mixin name Mix .

• The declaration of the mixin Mix contains the �eld declaration fl : T .

ctx èx exp : T2 Mix ∈ T2 (fl : T ) ∈ FieldsMix

ctx èx exp.Mix.fl : T

Type of a method call expression. According to the below rule, a method call ex-
pression of the form exp.Mix.mt(exp1, ..., expn) has type RetType

(Mix ,mt)
Mix if the following

conditions are met:

• The expression exp denoting the target object has type {Mix}.

• The declaration of the method Mix.mt contains the declaration of parameters with
types T 1, ..., T n.

• Each of the actual method parameters exp1, ..., expn, has the corresponding type in
T 1, ..., T n.

ctx èx exp : {Mix}
(p1:T

1, ..., pn:T
n) = MetParams

(Mix ,mt)
Mix

ctx èx exp1 : T 1 ... ctx èx expn : T n

ctx èx exp.Mix.mt(exp1, ..., expn) : RetType
(Mix ,mt)
Mix

Type of a super call expression. The super(...) call expression placed in context
(Mix ,mtID) has type RetTypemtID

Mix if and only if method mtID declared in mixin Mix is
marked with the keyword override, and the actual parameters of super(...) call have the
same types as formal parameters in the method declaration.

MetSpecmtID
Mix = override (p1 : T1, ..., pn : Tn) = MetParamsmtID

Mix

(Mix ,mtID) èx exp1 : T1 ... (Mix ,mtID) èx expn : Tn

(Mix ,mtID) èx super (exp1, ..., expn) : RetTypemtID
Mix

Type of a new object creation expression. An expression creating an object from
mixins Mix 1, ...,Mix n is type correct if and only if the following conditions are met:

• The sequence Mix 1, ...,Mix n is consistent (see Section 6.7).

• For each k = 1...n, all base mixins mixin Mix k are included in {Mix 1, ...,Mix k−1}.

• All the ini modules declared in mixins as required are activated by the supplied set
of input parameters.
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• The actual initialization parameters exp1, ..., expi have types T 1, ..., T i matching the
declarations of the corresponding formal parameters.

• Each initialization parameter Mix k.park (for k ∈ 1...i) used in the expression is present
in the declaration of some initialization module occuring in the declaration of a mixin
named Mix k, and the declared type of this parameter is T k.

(Mix 1, ...,Mix n) is consistent
∀k=1...n base(Mix k) ⊆ {Mix 1, ...,Mix k−1}

Rmodules({Mix 1, ...,Mix n}) ⊆ activated({Mix 1, ...,Mix n}, {Mix 1.par1, ...,Mix i.pari})
ctx èx exp

1 : T 1 ... ctx èx exp
i : T i

∀k=1...i ... Mix k ( ... park : T k ... ) begin ... end ∈ IModulesMixk

ctx èx new Mix 1, ..., Mix n [Mix 1.par1:= exp1, ...,Mix i.pari:= expi] : {Mix 1, ...,Mix n}

8.6.1 Subtyping

The below subtyping rule states that an expression E has type T2, if it has type T1, and type
T1 is a subtype of T2,

ctx èx E : T1 T1 � T2

ctx èx E : T2

where the subtyping relation is de�ned as follows (see Section 6.5 for the de�nition of baseExt
function):

T1 = T2

T1 � T2

T2 ⊆ T1

T1 � T2

T2 = baseExt(T1)

T1 � T2

8.7 The structure of a type checking derivation

In this section we present two properties of the type system of Magda.

8.7.1 The type checking system is syntax driven

Notice that, each rule used to derive the judgment of the form the term t has some type (or
�is OK�), is syntax driven, which means that:

• each premise has the form the term t′ has some type, where t′ is a subterm of t;

• all premises contain disjoint subterms of t. This means that a term used in some premise
is never a subterm of the term occurring in another premise;

• each subterm of t occurs in exactly one premise.
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Thanks to such construction of rules, we have the following property.

Property 6 (Syntax driven type checking) For each program P such that P̀ P : OK,
and each instruction I in P , the derivation tree of P̀ P : OK contains exactly one judgment
of the form ctx Ì I : OK for some ctx. Similarly, for each expression exp in the program,
the derivation tree of P̀ P : OK contains exactly one judgment of the form ctx èx exp : T
for some ctx.

8.7.2 The type checking context

From now on, we use the notion of type checking context of an expression exp or an instruc-
tion I to denote the context ctx in the judgment of the from ctx Ì I : OK or ctx Ì exp : T
occurring within the derivation of P̀ P : OK. Since all type checking rules are syntax driven,
we know that there is exactly one such judgment for each subterm of the program.

Additionally, notice that each rule used to derive a judgment of the form ctx Ì I : OK,
or ctx èx exp : T uses in all its premises the same context ctx. As a result, we know that
each such judgment for instruction I or expression exp contains the same context as the
one present in the judgment stating that the method or the initialization module containing
I/exp is type correct. Therefore, the following property holds:

Property 7 (Type checking context of instruction/expression) For every judgment
j of the form ctx èx exp : T or ctx Ì I : OK in the derivation tree of the judgment P̀ P : OK,
we have:

• either judgment j is contained within the subtree rooted at a judgment of the form

m̀et mt : OK or ìni mod : OK, and:

� exp or I occurs within the body of mt or mod, and

� ctx occurs in the premise of the judgment m̀et mt : OK or ìni mod : OK (notice
that rule for each of those judgments contains only one premise);

• or exp / I occurs within a main instruction of P and ctx = >.

Less formally: the type checking context of an instruction and an expression is always a
context of the surrounding method or the surrounding initialization module. Notice also
that, the semantics of Magda enjoys a similar property, as stated in Section 7.3.

8.8 The notion of the biggest type

Notice that, in the presence of subtyping, many expressions in Magda can be assigned with
multiple types, which means that for a given exp and ctx, the judgment ctx èx exp : T
holds for many di�erent T , and each such judgment has also many di�erent derivation trees.
Therefore, to de�ne the subject reduction property (and some others) we introduce the notion
of biggest type.
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We say that T is the biggest type of expression exp in the context ctx when it is the
biggest (wrt. the inclusion) element of the set:

{T ′ | ctx èx exp : T ′}.

The biggest element here is chosen with respect to inclusion, since each type in Magda
is a set of mixin names (see Section 3.9 and Section 4.6). Notice that, in Magda, the notion
of biggest type coincides with the notion of principal type (see for example: Joe Wells [64]).
Informally: the biggest type is the �maximal type information� we can have about the given
expression in the given context. Notice that the biggest type of an expression is a subtype
of every type of this expression.

To understand how the biggest type of a speci�c expression is formed, let us analyze
how do all the derivations of a judgment ctx èx exp : T ′ look like. Notice that if we remove
from the derivation all the occurrences of the subtyping rule, then all the remaining rules are
deterministically chosen by the syntactic form of the expression. Moreover, in each rule used
to derive the judgment ctx èx exp : T ′, type T ′ does not depend on types of subterms of exp.
Thus the subtyping rules inside the tree are only used to verify whether the subterms have
matching types and do not in�uence the resulting type of the whole expression. Therefore,
all derivations of all types of an expression exp have the same shape and di�er only in the
usage of the subtyping rules for exp.

As a result it is easy to see that the type of the expression only depends on the subtyping
rules applied �after the last structural rule�, which means on top of all other rules.

Therefore, having any derivation of any type of an expression, we obtain a derivation
of the biggest type (and the biggest type itself) in the following way: we remove all the
occurrences of the subtyping rule used �after the last structural rule�, and add one subtyping
rule, which replaces the type T generated by the �structural rule� with baseExt(T ) (for
de�nition of baseExt see Section 6.5). As a result, it is easy to see that if the set of all types
of an expression has at least one element, then it also has the biggest one.

Furthermore, as a result of the above construction of the biggest type, it is also easy to
see that the following property holds.

Property 8 (The biggest types of expressions) The biggest types of expressions have
the following forms:

• The biggest type of a variable var is equal to baseExt(T1), where T1 is the type present
in the declaration of the variable var.

• The biggest type of a �eld dereference expression e.Mix.fl is baseExt(T1), where T1 is
the type present in the declaration of �eld fl in mixin Mix .

• The biggest type of a method call expression e.Mix.mt(−→e ) is baseExt(T1), where T1

is the result type of method Mix .mt � denoted as RetType
(Mix ,mt)
mt (see Section 6.3) .

• The biggest type of an object creation expression new T1[...] is T1.
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Notice that in case of object creation expression the biggest type is T1, because the type
checking rule for the new object creation expressions (see Section 8.6) ensures that T1 =
baseExt(T1).
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Chapter 9

Computation steps

9.1 Traditional approach to type safety

The semantics of Magda de�ned in Section 7 is a big-step semantics [43] (or natural semantics
as it is sometimes called). This is a very useful and natural tool for expressing the behavior
of recursive programs.

A big-step semantics can be naturally used to prove statements of the form: �A program
P1 terminates correctly and �nishes in state S1� (see for example [32]). However, since all
the derivation trees built using such semantics represent only terminating programs, such
semantics cannot be used to formulate and analyze the non-termination of programs (as
the small-step semantics can [59]). Additionally, it is di�cult to state that the execution of
program P1 gets stuck in a point X, or to prove that the execution of the program will not get
stuck. As a result, it is more di�cult to express the subject reduction and the type soundness
of a language. This problem can be solved partially by adding special values representing the
notion of getting stuck (like in [32]) and by adding rules which propagate such special values
from the evaluation of some subterms to the whole terms. As a result of such modi�cations
the fact of getting stuck is modeled by the reduction of a program to such a special value.
However, this approach requires many additional arti�cial rules, which often means doubling
the number of rules in semantics. Moreover, it cannot be easily veri�ed if such special values
and additional rules cover all the cases of the actual �getting stuck� of the program execution.

These problems have already been pointed out in literature. Moreover, there also exist
some solutions in [51, 41, 5]. The �rst two of those solutions use the coinductive interpre-
tation of the big-step style semantics in order to formalize the notion of non-termination
of a program. However, this solution also requires additional rules and uses a less intuitive
interpretation of semantics.

9.2 Our approach to type safety

To solve the mentioned problems we have decided to develop a new approach to modeling
type safety in the big-step semantics. This approach allows us to formalize the notion of
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intermediate steps of the program execution, and then to formulate statements concerning
non-termination, getting stuck etc. Our approach, presented below, allows one to de�ne
the notion of intermediate steps of the computation using only the above de�ned big-step
semantics.

Our solution is in many respects similar to the one presented by Ager in [5]. We present
the similarities and di�erences in Section 9.10.

Our solution (as well as Ager's one) exploits the sequentiality of the big-step semantics
rules (see Section 7.2.3) to discover the sequence of intermediate steps of the execution inside
the derivation tree for the program as well as to model in�nite execution.

9.3 The evaluation by the derivation-search

If we take a closer look at the shape of derivation trees built using our semantics, and the
shape of the rules (and sequentiality as well as determinism, as introduced in Section 7.2.3)
it is easy to see that there exists a greedy derivation-search partial algorithm for the Magda
language. By derivation-search algorithm we understand the algorithm which:

Given a partial judgment (see Section 7.2) of the form env, ctx, st |= I ⇒I?,
where ? is unknown, the algorithm checks if there exist env′, ctx′, such that
env, ctx, st |= I ⇒I env′, ctx′ is derivable. Apart from checking if such env′, ctx′

exist, the algorithm computes their values, together with the derivation tree for
such a judgment.

The fact that the algorithm is partial means that if the program terminates (i.e., there exists
a derivation tree for a judgment of the form ... |= I ⇒I (∅, st)), then the algorithm will �nd
the derivation tree and the value of st. Otherwise the algorithm will loop.

Furthermore the execution of this algorithm (and the building of the derivation tree)
computes all the intermediate states and environments and as a result it mimics the execution
process of the program. Hence, if the execution of an analyzed program is in�nite, the
execution of the derivation-search algorithm is also in�nite. Therefore this algorithm allows
us to build a sequence of program con�gurations which represent all the intermediate states
of the execution of a program.

As a result, the analysis of sequences of program con�gurations (called later traces � see
Section 9.6) will allow us to state and prove properties concerning program non-termination
and to analyze the process of getting stuck. We will be also able to formulate statements of
the form: �a given program gets stuck in the given con�guration�.

In next sections we describe the details of the algorithm (see Section 9.4), then (using this
algorithm) we formalize the notion of a sequence of program con�gurations (see Section 9.6).
Next in Chapter 10, using the notion of a sequence of program con�gurations, we state and
prove the subject reduction theorem saying that all the con�gurations in a trace of a type
correct program are type safe. Finally in Chapter 11 we state and prove the type soundness
of Magda by stating that a type correct program will not get stuck in any case except null
pointer dereference (see Section 9.8).
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9.4 The greedy derivation-search algorithm

The question one answers using big-step operational semantics is the following one: does the
program P terminate and if it does then in what state? In other words, the semantics is used
to build a derivation for a partial judgment of the form: ... |= instructions⇒I (∅, ?) and to
�nd the value of ? in that derivation.

For our derivation system, there exists a partial deterministic greedy algorithm which
�nds the answer to the above question. This algorithm, given a program which terminates,
builds a derivation tree for such a judgment by recursively constructing subtrees and then
combining them into a �nal tree. The algorithm is implemented as a recursive procedure.
The procedure takes as a parameter a partial judgment of the form X |= Y ⇒ ?, where⇒ is
one of the following symbols: {⇒I ,⇒ex,⇒ini} and X, Y are �xed values. We use the notion
of a partial judgment here, since the result of evaluation is unknown (marked with ? above).
If there exists Z such that X |= Y ⇒ Z has a derivation tree, then the procedure �nds
this Z, together with the derivation tree for that judgment.

9.4.1 The base logic of the algorithm

The algorithm works in the following way. It applies the recursive procedure to the �nal
goal (which is a partial judgment saying that the whole program evaluates to some unknown
environment and state). The recursive procedure in turn implements the following logic:
For each supplied partial judgment, the procedure starts from picking the applicable rule
(or set of rules), which can be used to derive that kind of judgment. Notice that for most
kinds of judgments there exist only one rule which can be used to derive such a judgment,
which makes this choice obvious. Then, if one rule is available, the procedure traverses all the
premises of that rule (which are ordered sequentially, as mentioned in Section 7.2.3). For each
premise, a partial judgment is calculated and for each such partial judgment the procedure
recursively calls itself in order to �nd the value of ? occurring in the partial judgment and
to build the derivation tree for that premise. Recall that we use the word �premise� for each
assumption of the form ... |= ...⇒ ..., as opposed to the �side-condition� (see Section 7.2.2).

The partial judgments for the premises of the rule are build in the following way: Let
us assume that the actual parameter of a procedure is a partial judgment of the form
S |= ... ⇒ ?. Recall from Section 7.2.3 that in each rule the �rst premise of the form
...S1... |= t ⇒ (..., S2, ...) is the one in which S1 = S. Moreover, each premise following the
�rst one, on the left side of the |= symbol, uses a state which is determined by the state used
on the right side of the previous premise. Moreover, the resulting state of the conclusion
judgment of the rule is determined by the resulting state of the last premise.

Once we have the premises ordered we recursively execute the procedure for those premises.
If the recursive execution of the procedure returns with the derivation tree and the �nishing
state of a given premise, then we use this state to execute the procedure for the next premise.
If the procedure �nds the derivation tree and the resulting state for the last premise of the
given target, then it returns the whole tree for the target rule, with the resulting state of the
last premise used as the resulting state of the conclusion of the rule. The algorithm termi-
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nates thanks to rules which have no premises, even though those can contain some conditions.
Those rules are in fact axioms and therefore serve the role of leafs in the derivation trees.

9.4.2 Multiple rules for one judgment

The only case left which needs additional treatment is the one in which the procedure is
executed for a judgment that can be derived using more than one rule. There exist four
di�erent forms of judgments derivable using more than one rule: initialization process, com-
pound instruction, if and while instructions. The procedure deals with that four cases in
the following way (depending on the form of the supplied judgment):

• Judgments of the form (..., ...) |= (
−−−→
mods , pars) ⇒ini ? can be derived using three

di�erent rules. However, by knowing only the actual values of
−−−→
mods and pars , the

procedure automatically chooses the correct rule, using the following logic:

When
−−−→
mods is an empty sequence, then the �rst rule is applied. When

−−−→
mods contains at

least one module then only the second and the third one can be applied. In the second

case, we analyze the value of pars and compare it to the last element of
−−−→
mods (which

is the initialization module being analyzed). In case when all the input parameters of
the last module have their values in pars , then the third rule is used, which is ensured
by two �rst side-conditions of that rule. Otherwise, when no input parameter of the
last module is in pars (when the module has at least one input parameter), then the
second rule is used, which is ensured by the �rst condition of that rule.

Moreover, the above mentioned side-conditions of the second and the third rule are
mutually exclusive, therefore the procedure can deterministically choose which rule to
use.

• Judgments of the form (..., ..., ...) |= I1 ; I2 ⇒I? can be derived using two rules.
However, when we order the premises of both of those rules, then we can see that they
begin with an identical premise, concerning the execution of I1 instruction. Therefore,
the procedure is executed recursively for that �rst premise, postponing the actual choice
of the rule. Then, when this recursive call for I1 returns with the value of the global state
and the value of local environment, the procedure chooses the appropriate rule using
the value of the returned environment. This choice can be performed deterministically
using the mutually exclusive conditions occurring within those rules (checking whether
env′ = (>, x) or not).

• In the case of judgments (..., ..., ...) |= if (exp) then ...⇒I? there are also two rules
and the procedure deals with them similarly as with a compound instruction. Both of
the applicable rules begin with the same premise, concerning the condition expression
exp. Therefore, the procedure executes itself recursively for the �rst premise. Once this
recursive call �nishes, depending on the returned value (whether it is tt or ff ) and
the mutually exclusive conditions, the procedure chooses the appropriate rule.
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• In the case of judgment (..., ..., ...) |= while (exp) I1 end⇒I?, there are three rules,
however we can deal with them as in the previous cases. Using twice the technique of
delaying the choice of the rule until one premise is evaluated, the procedure can limit
the set of applicable rules until only one rule is left.

First of all, notice that all three rules applicable begin with the same premise, concern-
ing the evaluation of the logical expression exp. Therefore, the procedure begins with
the recursive call evaluating the expression exp. When the recursive call �nishes and
this expression evaluated to ff , then the �rst rule is applied. If the expression evalu-
ated to tt , then we still have the second and third rule to choose from. However, those
two rules also share the second premise. Therefore the procedure further delays the
choice between those two rules and executes itself recursively for the second (common)
premise to evaluate the instruction. Then, when the recursive call �nishes and returns
the value of the state and the environment, the procedure chooses the appropriate rule
using the condition referring to the value of the environment (whether env′′ = (>, x)
or not).

Hence, we have shown that, for each judgment, the procedure can deterministically choose
one rule to be applied, and calculates the values of state and environment used on the left
side of all the premises in the rules (thanks to the sequential ordering of premises � see
Section 7.2.3).

9.4.3 A pseudo-code de�nition of the derivation-search procedure

In this section we present a more detailed de�nition of the search procedure using pseudo-
code. For simplicity, in this de�nition we have removed all the instructions which build the
derivation tree itself. This procedure just checks whether such derivation exists, and if a
derivation for some partial judgment exists, then what the result of the evaluation of that
judgment is. In other words, it calculates the value of ? in the partial judgment .... |= t⇒?.
All the judgments manipulated within this de�nition are in fact partial judgments, therefore
we have decided to skip the ? symbol.

Additionally, notice that the form of a partial judgment determines whether it describes
an evaluation process of an expression, an instruction or an object initialization (depending
on whether ⇒ is equal to ⇒ex, ⇒I , ⇒ini). Therefore, to obtain a more intuitive and read-
able presentation, we have split the derivation procedure into three procedures � SearchE,
SearchI, SearchInit, responsible for expressions, instructions and object initialization re-
spectively. Moreover, each occurrence of the recursive call to the derivation-search procedure
has been replaced with a call to one of the mentioned procedures. The procedure to be
called at each point depends on the form of the argument of such recursive call. Finally,
the execution of the whole program is de�ned by the execution of the following procedure:
SearchI(∅,>, { tt 7→BoolVal , ff 7→BoolVal} |= I ⇒I)

A full de�nition of the derivation-search procedure written in pseudo-code is given on
Figures 9.1, 9.2, 9.3. This code contains keywords which are parts of the derivation-search
procedure in pseudo-code, and also keywords and operators which are parts of the terms
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written in Magda (which serve as values in the program in pseudo-code, and as patterns
in pattern-matching). Therefore, to distinguish those two worlds we use underline to denote
keywords in the pseudo-code (like procedure, case) and normal text for the code in Magda.
In most of the pseudo-code we exploit the pattern matching technique. We use it in the case
statements, as well as in the assignments :=. As usual (like in SML[54]) we assume that if
the value does not match any pattern, then the program fails with an error.

The implementation of procedures SearchE, SearchI and SearchInit follows the pattern
described in Section 9.4.1 and in Section 9.4.2. This means that each of those procedures
works in the following way:

• First, the pattern matching by the syntactical form of the partial judgment is performed
(via the main case switch of each procedure).

• Then, for each form of judgment, the premises of the rule responsible for the derivation
of the given judgment are processed from left to right. As we mentioned before, this
left to right processing is possible thanks to the sequential ordering of premises � see
Section 7.2.3.

• In most cases (when there is only one rule for a judgment) the sequence of the in-
structions within the given branch of case statement contains one instruction per each
premise in a rule responsible for the given form of judgment.

• In case of the four kinds of judgments described in Section 9.4.2 we apply the men-
tioned treatment. This means that the procedures �rst evaluate the premises which
can be evaluated without the choice of the rule, and then the procedures choose the
appropriate rule and continue with the evaluation of further premises.

9.4.4 Soundness and completeness of the algorithm

The above de�ned algorithm is sound and complete in the following sense:

Property 9 (Soundness and completeness of the algorithm) For each program P the
following are equivalent:

• The program P terminates in a state S, which means that there exists a derivation tree
for the �nal judgment ∅,>, { tt 7→BoolVal , ff 7→BoolVal} |= I ⇒I (∅, S).

• The derivation-search procedure SearchI(∅,>, { tt 7→BoolVal , ff 7→BoolVal} |= I ⇒I )
�nishes and returns the pair (∅, S).

This property can be easily veri�ed, because the derivation tree can be transformed into the
structure of the recursive calls of the derivation-search procedure and vice versa.

Similarly, for each program P which has an in�nite execution (in the sense of the intuitive
meaning described in Section 3), this procedure will also execute forever.
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procedure searchI(j)

case j of

env, ctx, st |= VarName:=exp⇒I:

(st′, adr) := SearchE(env, ctx, st |= exp⇒ex);

res := (env{VarName 7→ adr}, st′);
env, ctx, st |= exp1.Mix.fl:=exp2 ⇒I:

(st′, adr′) := SearchE(env, ctx, st |= exp1 ⇒ex);

(st′′, adr′′) := SearchE(env, ctx, st′ |= exp2 ⇒ex);

newObj := ( st′′(adr′)|1, st′′(adr′)|2{Mix.fl 7→ adr′′});
res := (env, st′′{adr′ 7→ newObj});

env, ctx, st |= if exp1 then I1 else I2 end ⇒I:

(st′, v) := SearchE(env, ctx, st |= exp1 ⇒ex);

case v of tt :(env′′, st′′) := SearchI(env, ctx, st′ |= I1 ⇒I);

ff : (env′′, st′′) := SearchI(env, ctx, st′ |= I2 ⇒I);

endcase;

res := (env′′, st′′);
env, ctx, st |= return exp⇒I:

(st′, adr′) := SearchE(env, ctx, st |= exp⇒ex);

res := ((>, adr′), st′);
env, ctx, st |= I1;I2 ⇒I:

(env′, st′) := SearchI(env, ctx, st |= I1 ⇒I);

case env′ of (>, x):res := (env′, st′);
else: res := SearchI(env′, ctx, st′ |= I2 ⇒I);

endcase;

env, ctx, st |= ε⇒I:

res := (env, st);
env, ctx, st |= exp⇒I:

(st′, adr) := SearchE(env, ctx, st |= exp⇒ex);

res := (env, st′);
env, ctx, st |= while (exp1) I1 end ⇒I:

(st′, v) := SearchE(env, ctx, st |= exp1 ⇒ex);

case v of ff :res := (env, st′);
tt : (env′′, st′′) := SearchI(env, ctx, st′ |= I1 ⇒I);

case env′′ of (>, x):res := (env′′, st′′);
else: res := SearchI(env′′, ctx, st′′ |= while (exp1) I1 end ⇒I);

endcase;

endcase;

endcase;

return res;

endprocedure

Figure 9.1: The derivation-search procedure for instructions
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procedure searchE(j)

case j of

env, ctx, st |= true ⇒ex: res := (st, tt );
env, ctx, st |= false ⇒ex: res := (st, ff );
env, ctx, st |= null ⇒ex: res := (st, null);
env, ctx, st |= VarName ⇒ex: res := (st, env(VarName));
env, ctx, st |= exp.Mix.fl ⇒ex:

(st′, adr) := SearchE(env, ctx, st |= exp⇒ex);

res := (st′, st′(adr)|2(Mix.fl));
env, ctx, st |= exp.Mix.mt(exp1, ..., expn)⇒ex:

(st0, adr0) := SearchE(env, ctx, st |= exp⇒ex);

for i := 1 to n do

(sti, adri) := SearchE(env, ctx, sti−1 |= expi ⇒ex);

Mix′ := LastMix( stn(adr0)|1, (Mix,mt) );

(p1 : T1, ..., pn : Tn) := MetParams(Mix,mt)
Mix′ ;

(local1, ..., localk) := MetLocals(Mix,mt)
Mix′ ;

env′ := {p1 7→ adr1; ...; pn 7→ adrn; local1 7→ null; ...; localk 7→ null; this 7→ adr0};
((>, adr), st′) := SearchI(env′, (Mix′, (Mix,mt)), stn |= MetInstr (Mix,mt)

Mix′ ⇒I);

res := (st′, adr);
env, (Mix ,mtID), st |= super (exp1, ... , expn)⇒ex:

for i := 1 to n do

(sti, adri) := SearchE(env, (Mix ,mtID), sti−1 |= expi ⇒ex);

Mix′ := LastMixBef (st(env(this))|1,mtID ,Mix );
(p1 : T1, ... , pn : Tn) := MetParamsmtID

Mix′ ;

(local1, ... , localk) := MetLocalsmtID
Mix′ ;

env′ := {p1 7→ adr1; ...; pn 7→ adrn; local1 7→ null; ...; localk 7→ null; this 7→ env(this)};
((>, adr), st′) := SearchI(env′, (Mix′,mtID), stn |= MetInstr (Mix,mt)

Mix′ ⇒I);

res := (st′, adr);
env, ctx, st0 |= new Mixins[ParID1:=exp1, ..., ParIDk:=expk]⇒ex:

for i := 1 to k do (sti, adri):= SearchE(env, ctx, sti−1 |= expi ⇒ex);

objV al := EmptyObject(mixins);
adr′ := FirstEmpty(stk);
st′′ := SearchInit(adr′, stk{adr′ 7→ objV al} |= (IniModules(mixins), ParID 7→ adr)⇒ini);

res := (st′′, adr′);
endcase;

return res;

endprocedure

Figure 9.2: The derivation-search procedure for expressions
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procedure searchInit(j)

case j of

adr, st |= ((), ())⇒ini: res := st;

adr, st |= (
−−−→
mods ·mod, pars)⇒ini:

if mod|1 ⊆ dom(pars) then

(Mix .ip1, ...,Mix .ipk) := mod|1;
for i := 1 to k do

adrI
i := pars(Mix .ipi);

pars ′ = pars r∗{Mix .ip1 7→adrI
1; ...; Mix .ipk 7→adrI

k};−−−−−→
local : T begin I1; super[

−−−−−−−−→
opID := exp]I2 end; := mod|3;

env := {ip1 7→ adrI
1; ...; ipn 7→ adrI

k; local1 7→ null; ...; localm 7→ null; this 7→ adr};
(env′, st0) := SearchI(env,mod, st |= I1 ⇒I);

for i := 1 to k do

(sti, adrO
i ):= SearchE(env′,mod, sti−1 |= expi ⇒ex);

pars ′′ = pars ′{opID1 7→adrO
1 ; ...; opID l 7→adrO

l };
st′′ := SearchInit(adr, stl |= (

−−−→
mods, pars ′′)⇒ini);

(env′′, st′′′) := SearchI(env′,mod, st′′ |= I2 ⇒I);

res := st′′′;

elseif

res:= SearchInit(adr, st |= (
−−−→
mods, pars)⇒ini);

endif;

endcase;

return res;

endprocedure

Figure 9.3: The derivation-search procedure for initialization
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9.4.5 The model of the program execution

The above de�ned greedy derivation-search algorithm, models the process of the execution of
a given program P , together with its intermediate steps. This process consists of subsequent
recursive calls to the above de�ned procedure. Therefore we will say that the instruction I1
executes the instruction I2, if during the activation of the procedure for a partial judgment
of the form ... |= I1 ⇒I? the procedure was activated for a partial judgment ... |= I2 ⇒I?.
Similarly we will say that during the execution of program P , instruction I was executed in
state st, if during the execution of this algorithm the procedure was activated for the partial
judgment ..., st |= I ⇒I?.

The detailed de�nition of the execution process based on this algorithm is present in
Section 9.6.

9.5 Context consistency

In this section we state a property enjoyed by the semantics and the type system of Magda.
This property re�ects the correspondence between: (i) the context in which an expression or
an instruction is evaluated and (ii) the context in which the type checking of an instruction is
performed. This property informally says: An instruction or an expression in a type checked
program is executed always in the type checking context of that expression or instruction
(see Section 8.7.2). Formally, this property is stated as follows.

Property 10 (Context consistency) Let P be a type correct program. Let ...ctx... |= t⇒,
where ⇒∈ {⇒I ,⇒ex}, be a partial judgment occuring as a parameter of an activation of the
derivation-search procedure occurring during the execution of derivation-search (see Section
9.4) for the program P .

Then the context ctx is a type checking context of the given expression or instruction t
(see de�nition in Section 8.7.2).

To show this property, we �rst recall the structure of derivation property presented in
Section 7.3. This property translated into terms of the derivation-search procedure can be for-
mulated as follows: When the derivation-search procedure is executed for a partial judgment
containing an instruction or expression, it is called (directly or indirectly) by the execution
of that procedure for the body of a method/module or main instruction in which this ex-
pression/instruction occurs and this partial judgment contains the same context in which
the whole body was evaluated.

Then consider Property 7 (see Section 8.7.2), which says that the type checking context
of an instruction and expression is a type checking context of the method/module body in
which it occurs. Notice also that the context used to type check the body of the method
(see Section 8.4.1) is the context used to execute the body of that method. Similarly, the
context used to type check the body of an ini module (see Section 8.4.2) is the context used
to execute the body of this module.

All the three above facts conclude the proof of the context consistency property.
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9.6 Execution trace

Using the above de�nition of the derivation-search algorithm we de�ne the notion of the
execution trace, or shortly trace. The trace is a sequence (�nite or in�nite) of program con-
�gurations, which represents the execution of the program. Below, in Section 9.6.1 we de�ne
what exactly is a program con�guration, and in Section 9.6.2 we de�ne how a program trace
is constructed for a given program.

9.6.1 Program con�guration

Each program con�guration represents a state of the program execution. Each con�guration
contains two kinds of information. First of all, it contains the information about the current
dynamic state, which means the global memory state and the states of local variables of the
currently executed method/ini module, or the values of parameters to be consumed during
the object initialization. Secondly, it contains information representing the current point of
execution in the static structure of the program. In other words, for each local dynamic
information in the con�guration, we also have the static information denoting the part of
the program to which this information refers. Therefore, each con�guration has one of the
following forms:

• a tuple of an environment, a static context, and a state.

• a tuple of an environment, a static context, a state, an address, and an expression.

• a tuple of an address, a state, a sequence of ini modules, and a sequence of initialization
parameters.

• a state.

For every con�guration C, we write state(C) to denote the state element of every such
a con�guration. Notice that each form of con�guration contains exactly one state element,
therefore state(C) is de�ned for every con�guration C.

We will say that con�guration C1 is a subcon�guration of con�guration C2 when the
con�guration C1 has the form (env, ctx, st) and C2 has the form (env, ctx, st, adr, exp).

9.6.2 The construction of the execution trace

For a given program P , the execution trace of program P is a sequence of program con�gu-
rations built according to the below described algorithm.

We extend the derivation-search algorithm in the following way: At the beginning of
the whole derivation-search algorithm (not at the beginning of the recursive procedure) we
declare a variable tr, initially equal to an empty list of program con�guration. Furthermore,
each derivation-search procedure is extended by adding two sequences of instructions in the
pseudo-code: one which is to be executed at the very beginning and the second to be executed
at the end of the execution of each such procedure.
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Each of the two new pieces of pseudo-code is responsible for an addition of one con�gu-
ration to the tail of a sequence being a value of the variable tr (using the tr.add(...) in
the pseudo-code). One con�guration (called opening con�guration) is added to the value of
tr at the beginning of the execution of that call. This con�guration contains the information
about the state of the program before the rule is applied and therefore is constructed from
the information present on the left side of the partial judgment supplied to the procedure
call. The second con�guration (called closing con�guration) is added to the value of tr at the
end of the call, i.e., at the moment when the procedure �nds the value of ? in X |= Y ⇒ ?.
Such a closing con�guration contains the information about the state, environment etc, after
that rule was executed. Therefore the closing con�guration is built from the evaluated value
of ? and from some components of X. We use in the closing con�guration these components
of X, which have not been modi�ed by the evaluation of the judgment, thus are not part of
?. For example, the expression evaluation judgment X |= exp⇒ex ? does not contain a new
environment on the right side of ⇒ex, therefore the closing con�guration for this expression
uses the environment occurring in X. Notice that this environment also occurs in the opening
con�guration added by this call.

As a result, in the generated sequence, between opening and closing con�gurations added
by some activation of the recursive, procedure there are con�gurations generated by the
nested activations of procedures originating from the given activation. An example of such
sequence and its construction method is shown on Figure 9.6.

The actual forms of opening and closing con�gurations depend on the judgment which was
the argument of the derivation-search procedure. Figure 9.4 shows which form of program
con�guration is used as an opening and closing con�guration for each form of a partial
judgment.

The extended version of the derivation-search algorithm is shown on Figure 9.5.

Judgment opening con�guration closing con�guration

env, ctx, st |= instr ⇒I (env′, st′) (env, ctx, st) (env′, ctx, st′)
env, ctx, st |= exp⇒ex (st′, adr) (env, ctx, st) (env, ctx, st′, adr, exp)
adr, st |= (mods, pars)exp⇒ini st′ (adr, st,mods, pars) st′

Figure 9.4: Program con�gurations

We will often use the notion of opening con�guration of the term t or closing con�guration
of the term t to denote the opening or closing con�guration added to the trace by the recursive
call which had as its argument a partial judgment containing t. We use this notion in cases
when it is clear from the context what is the exact form of the judgment. Therefore, in
all those cases it is clear what the form of a given opening or closing con�guration is (see
Figure 9.4).
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9.6.3 Properties of a program trace

Finally, depending on the behavior of the derivation-search algorithm, we have one of the
below situations:

• When the algorithm �nishes its execution (either successfully, or because of some error),
then the value of variable tr at the end of its execution is the trace of the program.

• When the algorithm has an in�nite execution, then the program trace is an in�nite
sequence understood as the lowest upper bound of the growing sequence tr.

9.6.4 Notion of enclosing activation

Suppose an activation X of the recursive procedure called an activation Y . If now activation
Y adds con�guration C to the trace, then we say that X is an enclosing activation (or,
interchangeably, the enclosing call) of C.

We also say that judgment j is an enclosing judgment of con�guration C if it the judgment
being a parameter of the enclosing call X.

9.7 Successful program termination

Informally, we say that a program terminated successfully, when the execution of the main
instructions I of the program �nished and no error occurred.

Formally there are three de�nitions of the notion: a program terminated successfully (it
is easy to see that they are equivalent):

1. The trace contains the closing con�guration generated by the �rst call of the derivation-
search procedure, which is the one responsible for the execution of the main instructions
of the program. In such a case, this closing con�guration is the last one in the trace.

2. A �nal judgment ∅,>, { tt 7→BoolVal , ff 7→BoolVal} |= I ⇒I (∅, st) can be derived for
some state st.

3. The numbers of closing and opening con�gurations in the trace are equal.

9.8 Null pointer dereference

Informally, we say that null pointer dereference occurred during the program execution if
the expression being a target of the method call, a target of the �eld dereference or used as
a boolean condition evaluates to null. Such a situation is an error during the execution of the
program. In our formulation of program execution trace it means that the derivation-search
algorithm reached a con�guration in which no rule can be applied, so the procedure fails,
because of failing pattern-matching.
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Using the above de�nition of trace, we de�ne the notion in the following way: The
null pointer dereference occurred during the program execution, if one of the below re-
cursive calls of the derivation-search procedure generates a closing con�guration of the form
(..., ..., ..., null, ...).

1. The only recursive call for a judgment containing a �eld value dereference.

2. The �rst recursive call for a judgment containing an object �eld assignment.

3. The �rst recursive call for a judgment containing an if instruction.

4. The �rst recursive call for a judgment containing a while instruction.

5. The �rst recursive call for a judgment containing a method call.

It is easy to see that if the trace contains such a con�guration with null value then it is one of
the last con�gurations in the trace (it might not be the last one � see the next paragraph).
It happens so, because in every of the �ve above cases, if such a con�guration is added by
the given recursive call, then the main activation of the derivation-search procedure (of the
one of the above �ve forms) will need to check the value of the state at the given address,
which is null in this case. And the value of any state is not de�ned on null, so the procedure
cannot �nish its execution. This means that the given parent activation of the procedure will
not be able to add its closing con�guration.

In cases of some rules (like object �eld assignment and method call), some con�gurations
can be added after such closing con�guration containing null value. Those are the con�g-
urations added by the independent recursive calls coming from the same activation of the
procedure, before it refers to the address which is null. However, as said above, the parent
call will never be able to �nish and add its closing con�guration.

9.9 State preservation property

According to the above de�nition, each program execution trace enjoys the below formulated
state preservation property.

Property 11 (State preservation) For every two con�guration C1 and C2 in the given
trace, such that C1 occurs before C2 and for each adr ∈ Dom(state(C1)) we have:

state(C1)(adr)|1 = state(C2)(adr)|1

In other words, if at some point during the program execution, some object is stored at
some address in the memory, then this object is stored at this address forever and it does
not change its runtime type.

To prove the state preservation property it is enough to analyze all the rules of our
big-step operation semantics. For each rule we have to see how the state occurring on the
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right side of ⇒ is de�ned. Most of the rules do not modify the state themselves, they only
use the state values returned by some recursive call, or supplied on the left side of ⇒. The
only exceptions which perform modi�cations of the state (that is: generate new state values
distinct from the ones previously used) are the following two rules: (i) new object creation
rule, and (ii) �eld assignment rule. The new object creation rule uses existing state and
modi�es its value on an address on which the state was not de�ned before. As a result, it
does not change the value of the state at any address de�ned before. The �eld assignment
rule does modi�cations of existing objects, however it does not modify their runtime type,
which concludes the proof.

One of the consequences of the above property is the following fact: Every state in every
con�guration in a program trace is a superset of the set { tt 7→BoolVal , ff 7→BoolVal}.

9.10 Comparison with previous work

Our solution is in many respects similar to that of Ager [5], which presents how to translate
any big-step semantics into a stack machine. Our solution does not use a stack machine,
however it uses similar concepts.

The main di�erence is that Ager's general approach generates a non-deterministic ma-
chine for each language, containing some form of judgment, for which there exists more than
one rule in semantics. On the other hand, even though Magda's semantics contains a few
judgments derivable using more than one rule, like if, while and object initialization, it is
still deterministic. This is due to the strategy of delaying the choice of the appropriate rule
after some parts of it are evaluated. For example, in the case of if we �rst evaluate the
premise which is common to both of those rules, and choose the appropriate rule basing on
the result of that evaluation.

Even though sharing of common premises does not occur in each semantics, we believe
that most of the semantics having multiple rules for one judgment can be reformulated into
a form, when rules for one judgment share common premises. It happens so, because such
form re�ects the fact that the language described by the semantics is deterministic in its
nature (which is the case for the vast majority of languages).
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tr := list();

procedure searchI(j)

env, ctx, st |= instr ⇒I := j;

tr.add( (env, ctx, st)); /* the opening configuration is added to the trace */

case j of

....

endcase;

tr.add( (res|1, ctx, res|2)); /* the closing configuration is added to the trace */

return res;

endprocedure

procedure searchE(j)

env, ctx, st |= exp⇒ex := j;

tr.add( (env, ctx, st));
case j of

....

endcase;

tr.add( (env, ctx, st′, res|1, res|2) );

return res;

endprocedure

procedure searchInit(j)

adr, st |= (mods, pars)exp⇒ini := j;

tr.add( (adr, st, mods, pars) );

case j of

....

endcase;

return res;

tr.add( res );

endprocedure

Figure 9.5: Program trace construction using the derivation-search procedure
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Figure 9.6: An example of a program trace
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Chapter 10

Subject reduction

Using the above de�nitions of the derivation-search algorithm (see Section 9.4) and the
execution trace (see Section 9.6) we can formulate and prove the subject reduction property
for Magda.

10.1 Preliminary de�nitions

The subject reduction theorem of the Magda language states that each con�guration in a
trace of a type correct program is type safe in some sense. Before we formally state this
theorem we need to de�ne a few notions, which will be used in its formulation, in order to
describe properties of con�gurations.

10.1.1 Type safety of the state

We say that state st is type safe, if for each obj ∈ Rng(st) two conditions are met:

1. for each Mix ∈ obj|1 and for each fl:T1 ∈ FieldsMix , we have Mix .fl ∈ Dom(obj|2);

2. and for each Mix .fl ∈ Dom(obj|2) we have either:

• obj|2(Mix .fl) = null, or

• st(obj|2(Mix .fl)) = (T2, ...), and (fl :T1) ∈ FieldsMix , for T1 such that T2 � T1.

Informally, the state st is type safe if (i) each object in st has de�ned values of all the �elds
declared in mixins from which it has been created, and (ii) the value of each �eld of each
object in st is either null, or an address pointing to an object of a type compatible with the
declaration of the given �eld.

10.1.2 Type safety of the environment

We say that an environment env is type safe with respect to the state st and the context ctx,
if one of the following conditions holds:
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• env is a function from identi�er names to addresses, its domain is equal to the domain
of IdTypes(ctx) and for each var ∈ Dom(env) we have one of the two cases:

� env(var) = null, or

� st(env(var)) = (T2, ...), such that T2 � IdTypes(ctx)(var);

• env is a pair of the form (>, adr), such that one of the below conditions holds:

� adr = null, or

� st(adr) = (T2, ...), ctx = (Mix, (Mix′,mt)) and RetType
(Mix′,mt)
Mix = T1, such that

T2 � T1. In that case we say that the runtime type of st(adr) is a subtype of the
current method result type.

10.1.3 Type safety of initialization parameters

For each partial function pars ∈ ParamV alues of assigned parameter values to their identi-
�ers, we say that pars is type safe with respect to the state st, if for each Mix .par ∈ dom(pars)
we have one of the following situations:

• pars(Mix .par) = null, or

• st(pars(Mix .par)) = (T2, ...) and within the declaration of the mixin Mix there exists
exactly one1 declaration of the input parameter par , and this declaration has the form
par : T1, for some T1 such that T2 � T1.

We say that the set of initialization parameters pars is consistent with the sequence of modules
mods if activated′(mods, dom(pars)) is de�ned.

In other words, the set pars is consistent with mods, if all parameters in the set pars will
be consumed by modules in mods and at the end of that process no parameters will be left.

10.1.4 Consistency of an address and a sequence of initialization
modules

For a sequence of modules
−−−→
mods and state st we say that the address adr is type consistent

with
−−−→
mods and st, if for each (..., ..., ...,m) ∈

−−−→
mods we have m ∈ st(adr)|1.

Informally: an address is consistent with the sequence of modules, if the runtime type
of the object pointed by the address contains all the mixins in which those initialization
modules have been declared.

1Notice that the uniqueness of declaration of an input parameter is guaranteed in type correct programs
� see the rule for ini module declaration in Section 8.4.2
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10.1.5 Type safety of the con�guration

We say that the con�guration C is type safe if one of the following conditions holds:

• The con�guration C has the form (env, ctx, st) and:

� the environment env is type safe with respect to the state st and the context ctx;

� the state st is type safe.

• The con�guration C has the form (env, ctx, st, adr, exp) and:

� the environment env is type safe with respect to the state st and the context ctx;

� the state st is type safe;

� the address adr is type safe with respect to exp, ctx, and st, which means that:
adr = null or st(adr) = (T2, ...) and T2 � T1 where T1 is the biggest type of exp
in ctx (see Section 8.8).

• The con�guration C has the form (adr, st,mods, pars) and:

� the state st is type safe;

� the set of parameters pars is type safe with respect to st;

� the set of parameters pars is consistent with mods;

� the address adr is type consistent with mods and st;

• The con�guration C has the form st and:

� the state st is type safe.

It is easy to see that if C2 is type safe and C1 is a subcon�guration of C2 (see Section 9.6.1),
then C1 is also type safe.

10.2 Subject reduction formulation

Finally, the subject reduction property for Magda is formulated as follows:

Property 12 (Subject reduction) For each type correct program (see Section 8.3), and
a trace built by the derivation-search algorithm for that program, each con�guration occurring
in that trace is type safe.

In other words, the subject reduction theorem says that during the whole execution pro-
cess of the program (which is equivalent to the execution of the derivation-search algorithm),
the state of the heap and all the values computed are type safe.
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10.3 Subject reduction proof

The subject reduction property for Magda is proven by induction with respect to the order
of con�gurations within the execution trace.

For each con�guration, we pick the judgment and the rule which determined this con�g-
uration.

Notice that each opening con�guration is completely determined by the components
(state, environment...) of the partial judgment supplied to the call of the recursive procedure,
and does not depend on that execution of that procedure. As a result, the proof of the safety
of every opening con�guration depends on the enclosing activation of the procedure (see
Section 9.6.4).

Each closing con�guration C, added by the activation a of the procedure, is calculated
and determined by a, or partially calculated by some recursive call performed by a, before
this con�guration is added.

Therefore, the proof of the induction step is organized in the following way. For each
judgment and each rule used for the evaluation of that judgment we prove that:

• opening con�gurations added by all the recursive call performed by this rule are type
safe, and

• closing con�guration (if any) added by that call is type safe;

under the assumption that all the con�gurations added to the trace before are type safe.
Additionally, since the opening con�guration added by the top level call has no enclosing

call (so will not be covered by such case analysis), we cover the proof of this case separately
in Section 10.3.1.

10.3.1 No enclosing judgment.

There is one opening con�guration in each trace for which there is no enclosing judgment.
This con�guration is the one added to the trace by the �rst call to the procedure, which has
the whole program as its parameter (see Section 7.2.1). It is always the �rst con�guration
in each trace and has the form: ∅,>, { tt 7→BoolVal , ff 7→BoolVal}.

To prove that this con�guration is type safe, we have to verify if the environment is type
safe, and if the state is type safe as well. The domain of an empty environment is empty,
while IdTypes(>) is also an empty set, therefore those domains coincide. Furthermore, the
environment has no elements to be veri�ed so it is type safe with respect to the state and the
context. The domain of state st contains two elements: ff , tt , and those two addresses are
both assigned with BoolVal object which does not have any �elds, therefore state st is also
type safe, which concludes the proof of type safety of this opening con�guration.

10.3.2 Assignment to a local variable.

Evaluation of a variable assignment of the form var:=exp performs one recursive call (re-
sponsible for the evaluation of the expression exp) and the opening con�guration of this
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judgment is the same as the opening con�guration of the enclosing judgment. Therefore by
induction this con�guration is type safe.

This rule generates a closing con�guration, which is constructed from a subcon�guration
of the closing con�guration generated by the evaluation of the expression exp, by performing
one modi�cation: the environment is modi�ed at position VarName. Therefore, since the
closing con�guration of the recursive call is type safe, we only have to show that assignment
of adr to VarName in the new environment will not spoil the type safety of that con�guration.

Since the closing con�guration of the recursive call (evaluating adr from exp) is type safe
by induction, we know that the runtime type of st′(adr) is a subtype of the biggest type of
exp (or adr = null). On the other hand, since the assignment instruction is type correct (see
the rule for variable assignment in Section 8.5), we know that exp : IdTypes(ctx)(VarName).
Therefore we know that the runtime type of st′(adr) is a subtype of IdTypes(ctx)(VarName).

10.3.3 Assignment to an object �eld.

This rule contains two recursive calls:

• the �rst one, responsible for the evaluation of the target object, uses an opening con-
�guration which is equal to the opening con�guration of the enclosing call. Therefore
by induction this con�guration is type safe;

• the second one, responsible for the evaluation of the value to be assigned, uses an
opening con�guration which is a subcon�guration of the closing con�guration of the
�rst call. Therefore by induction this con�guration is also type safe.

The closing con�guration of this judgment is constructed from the subcon�guration of
the closing con�guration generated by the call evaluating exp2 with one modi�cation: st is
modi�ed in a way that the value of one �eld of one objects is modi�ed and we have to show
that new state is type safe. All the remaining �elds of that object are non-modi�ed so we
only have to show that the new value of modi�ed �eld ful�lls the requirements of the type
safety of state.

This �eld is assigned with adr′′. By the type safety of the closing con�guration evaluat-
ing exp2, we know that the runtime type of st′′(adr′′) is a subtype of the biggest type of exp2

(or null). By the type correctness of this assignment (see the rule for �eld assignment in
Section 8.5), we know that exp2 : T , where T is type of the �eld according to its declaration.
As a result, we know that the runtime type of st′′(adr′′) is a subtype of T (or null), thus the
new state is type safe.

10.3.4 An if statement.

This judgment has two rules. Each of them has two premises/recursive calls:

• the �rst one is responsible for the evaluation of the boolean condition. This call adds
the same opening con�guration as the opening con�guration of the whole if statement,
therefore it is type safe by induction.
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• the second one in both rules is responsible for the execution of the instructions in then

or else branch. The opening con�guration of the second call is a subcon�guration of
the closing one of the �rst recursive call (which is earlier in the trace), so by induction
it is type safe also.

Each of the rules uses as its closing con�guration the closing con�guration of their second
recursive call. Therefore by induction such con�guration is already type safe.

10.3.5 A return statement

The evaluation of return statement has one recursive call, which has an opening con�gu-
ration equal to the opening con�guration of the enclosing judgment, so it is type safe by
induction.

A closing con�guration generated by the rule for return statement is constructed from
two elements of the closing con�guration (denoted as C) of the only recursive call (responsible
for evaluation of the expression to be returned). The closing con�guration of a return

statement consists of: (i) the state occurring in C (which is type safe by induction) and (ii)
a new environment of the form (>, adr). Therefore we have to prove that the address adr
used in the environment ful�lls all the necessary conditions. The address adr occurs in the
con�guration C. Therefore by the type safety of this con�guration we know that either adr
is equal to null (which su�ces for our con�guration to be type safe), or the runtime type
of st′(adr) is a subtype of the biggest type of exp. On the other hand, by the fact that this
return instruction is type correct (see the rule for return statement in Section 8.5) we know

that exp : RetType
ctx|2
ctx|1 . As a result we know that the runtime type of st′(adr) is a subtype

of RetType
ctx|2
ctx|1 , which concludes the proof.

10.3.6 A compound instruction

The evaluation of a compound instruction performs up to two recursive calls. The �rst one
has the same opening con�guration as the enclosing judgment, which is at an earlier position
in the trace, so it is type safe by induction. The second recursive call (if exists) supplies the
opening con�guration, which is equal to the closing con�guration of the �rst call, which is
also present in the trace at an earlier position, so is type safe by induction.

This kind of judgment has two rules. The �rst one uses the closing con�guration of the
second recursive call, while the second one use the closing con�guration of the �rst recursive
call. However in both cases this is a closing con�guration which already has been added to
the trace so it is type safe by induction.

10.3.7 An expression evaluation.

This kind of judgment has one rule, which has one recursive call with the same opening
con�guration as enclosing judgment. As a result this opening con�guration is type safe by
induction.
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This rule, generates a closing con�guration which is a subcon�guration of the closing
con�guration of the recursive call, therefore this one is also type safe by induction.

10.3.8 A while statement.

The evaluation of while statement performs one, two or three recursive calls, where the
execution of each recursive call depends on the result of the previous one. The �rst recursive
call evaluates the boolean expression and uses the same opening con�guration as the enclosing
judgment, so is type safe by induction. Then, if that expression evaluated to tt then the
second recursive call, responsible for the instructions of the loop, is executed. This second
recursive call uses as its opening con�guration the one which is a subcon�guration of the
closing con�guration of the �rst call so is also type safe by induction. Then, if that instruction
has not executed return (so the environment does not contain the symbol >), then the third
recursive call is executed, which repeats the execution of the whole loop. That call, however,
also has an opening con�guration which is equal to the closing con�guration of the second
call, so this con�guration is type safe by induction.

The while judgment has three rules, however all of them share a common property: they
return the closing con�guration, or the subcon�guration of a closing con�guration of the last
recursive call. Therefore in each case such generated closing con�guration is also type safe.

10.3.9 An empty instruction.

An empty instruction does not perform any recursive calls.

The closing con�guration added by the evaluation of such a statement is always a sub-
con�guration of the opening one, so it is always type safe by induction.

10.3.10 Constant evaluation.

There are three constants: null, true and false.

The evaluation of a constant does not perform any recursive calls, therefore it never plays
the role of the enclosing judgment.

The evaluation of each of those constants generates a closing con�guration which is built
from the opening con�guration of the same call (which is type safe by induction), with the
addition of an address adr and expression exp as the fourth and the �fth element of the
tuple. Therefore we just have to show that adr is type safe with respect to st, ctx and exp.
However, it is easy to see that during the evaluation of the �rst constant, the address adr is
equal to null, which ful�lls the conditions required for the con�guration to be type safe.

In the second and the third case, adr ∈ { tt , ff }, and st( tt ) = st( ff ) = BoolVal =
((Boolean), ∅). Moreover, the type checking axioms for constants are: true : {Boolean} and
false : {Boolean}, so the types match.
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10.3.11 A local identi�er.

The evaluation of a local identi�er does not perform any recursive calls,

The closing con�guration generated for a local identi�er contains the state, and the en-
vironment of the opening con�guration, therefore those are type safe by induction. The only
thing which needs a veri�cation is the returned adr, which is looked up in the environ-
ment env. By the type safety of the opening con�guration we know that runtime type of
st(env(VarName)) is a subtype of IdTypes(ctx)(VarName) (or env(VarName) is equal to
null).

On the other hand, the biggest type of the variable evaluation expression is equal to
baseExt(IdTypes(ctx)(VarName)), see Property 8. Therefore by the de�nition of subtyping
(wrt. baseExt function, see Section 8.6.1) we know that the runtime type of the value of adr
is subtype of the biggest type of VarName expression.

10.3.12 Field dereference.

The evaluation of �eld dereference performs one recursive call which uses the same opening
con�guration as the �eld dereference, thus is type safe by induction.

The closing con�guration generated for such judgment contains the state and the envi-
ronment of the closing con�guration of the recursive call, which evaluated the target object
expression. Therefore, we only need to show that the address adr is either equal to null
or object st(adr) has the runtime type being a subtype of the biggest of the expression.
However, we know the address adr is a value of a �eld of an object. Therefore, by the type
safety of the state st, we know that this value of the �eld is either null (which ends the
proof) or is a value with the runtime type being a subtype of the declared type of the �eld.
As a result, the runtime type of the expression is also a subtype of the biggest type of the
�eld dereference (which is equal to the baseExt of the declared type � see Section 8.8).

10.3.13 The ordinary method call.

The evaluation of a method call performs the following recursive calls: one responsible for
the evaluation of the target object, a sequence of calls responsible for the evaluation of
parameters, and the �nal call evaluating the body of the method.

The recursive call responsible for the evaluation of the target object uses the opening
con�guration of the enclosing judgment, while each call responsible for the evaluation of
a parameter value uses an opening con�guration which is a subcon�guration of the closing
con�guration of the preceding call. As a result those con�gurations are type safe by induction.

The only non-trivial case here is the last recursive call, which evaluates the instructions
of the method body in the new environment env′. This is non-trivial since the environment
env′ is a function constructed from scratch, therefore we have to prove that env′ is type safe
with respect to stn. In order to prove that env′ (which is a function, not pair of the form
(>, adr)) is type safe with respect to stn and the context (Mix , (Mix ,mt)) we have to �rst
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show that its domain matches the de�nition of environment type safety, and then, that its
values ful�ll all the requirements.

The domain of the environment env′ is constructed from three parts: MetParams
(Mix ,mt)

Mix ′
,

MetLocals
(Mix ,mt)

Mix ′
and this. Therefore, the domain of environment env′ is equal to the domain

of IdTypes((Mix ′, (Mix ,mt))) (see the de�nition of IdTypes in Section 7.1.3). As a result the
domain ful�lls the requirements of the type safety.

The values of variables in env′ also ful�ll the conditions of type safety, because:

• The local variables are assigned the null value, therefore are trivially correct,

• Identi�er this is assigned adr0 value. The mixin Mix ′ is de�ned as a value of LastMix
function, therefore it is equal to one of the mixins in the runtime type of object
stn(adr0)|1. Therefore we know that the runtime type of stn(adr0)|1 is a subtype of
type IdTypes(Mix′, (Mix,mt))(this) = Mix′.

• Method parameters are assigned with adr1, ..., adrn, which are the respective values
of the expressions exp1, ..., expn calculated by recursive calls to the procedure. For
each such adri, we have to prove that it is null or it has the type which is a subtype
of the T i (where T i is a declared type of a method parameter).

Assuming that adri 6= null we know that stn(adri)=(TA
i , ...). Then, since the closing

con�guration of the call evaluating adri is type safe, we know that TA
i is a subtype

of the biggest type of expi. On the other side, thanks to the fact that this method
call expression is type correct (see rule for method call in Section 8.6), we know that
expi : T i. Thus, by the de�nition of the biggest type (see Section 8.8) we know that
the biggest type of expi is a subtype of T i. Therefore, by the transitivity of subtyping
we have that TA

i is a subtype of T i, which concludes this proof.

The closing con�guration generated by the evaluation of a method call has the form
(env, ctx, st′, adr, exp.Mix.mt(...) ). This con�guration is type safe for the following
reasons:

• The state st′ is type safe, because it is a part of the closing con�guration generated
by the evaluation of the method instructions, and this con�guration is type safe by
induction.

• The environment env is type safe with respect to st′ and ctx, because env is type safe
with respect to st and ctx (which are part of the opening con�guration, which is type
safe by induction) and by the state preservation property (see Section 9.9).

• The address adr is type safe with respect to exp, ctx and st, for the following reasons:
The closing con�guration generated by the evaluation of the method's instructions
is type safe (by induction), therefore we know that adr is equal to null (which con-

cludes this proof) or the runtime type of st′(adr) is a subtype of RetType
(Mix ,mt)
Mix .

By the de�nition of subtyping, the runtime type of st′(adr) is also a subtype of

baseExt(RetType
(Mix ,mt)
Mix ), which in turn is a biggest type of exp.Mix.mt(...).
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10.3.14 A super method call

In this case the justi�cation is the same as above. The only signi�cant di�erence in this
rule is that Mix′ is constructed using a di�erent function LastMixBef, but this function also
returns a mixin, which is an element of the runtime type of st0(env(this)). Therefore, the
justi�cation used in the case of method call is also valid here.

The closing con�guration generated by this judgment is the same as in the case of an
ordinary method call, and the proof is identical.

10.3.15 A new object creation.

For such a judgment there is a sequence of recursive calls responsible for the evaluation
of parameter values, and one recursive call responsible for the execution of initialization
modules.

The recursive calls responsible for the evaluation of the parameter values are type safe
by induction, because: (i) the opening con�guration of the �rst recursive call is equal to
the opening con�guration of the enclosing call, and (ii) the opening con�guration of each
subsequent call is a subcon�guration of the closing con�guration of the preceding judgment.

The only non-trivial thing is the last recursive call which evaluates the partial judgment

adr, st |= (
−−−→
mods, pars) ⇒ini?, because the opening con�guration of this recursive call is

constructed from scratch. To see that the new state stk{adr′ 7→ objV al} is type safe, notice
that it is constructed from stk (which is type safe by induction) with just objV al added at
the position not used before (adr′ = FirstEmpty(stk)). Moreover, objV al is an object having
all the �elds declared in mixins initialized with a null value (see de�nition of EmptyObject
in Section 7.1.3). Therefore the new state is type safe by de�nition.

The set of parameters pars is type safe with mods, because the object creation expression
is type correct and the type checking rule for a new object creation (see Section 8.6) ensures
the condition of the type safety of the set of parameters (see Section 10.1.3).

The address adr is type consistent with the sequence of modulesmods (see Section 10.1.4),
because the sequence mods in the object creation rule is constructed from the runtime type
of adr.

The last thing remaining to do in order to prove that this opening con�guration is type
safe is to show that pars is type safe with respect to st′′ (see Section 10.1.3). Consider the
parameter {pari 7→ adri} ∈ pars , where adri is a result of the evaluation of expi in some
preceding recursive call. The closing con�guration of the evaluation of adri is type safe by
induction, therefore we know that the adri = null (which concludes the proof) or the runtime
type of st′′(adri) is a subtype of the biggest type of expi. On the other hand, the fact that
the new object creation is type correct ensures that expi : Ti, where Ti is a declared type of
the initialization parameter pi. Therefore, because the biggest type of expi is a subtype of
each type of expi, we know that the runtime type of st′′(adri) is a subtype of Ti.

The closing con�guration generated by a new object creation judgment has the form
(env, ctx, st′′, adr′, exp). Such a con�guration is type safe for the following reasons:

• The state st′′ is type safe because it is a part of the closing con�guration generated by
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the last recursive call (responsible for the execution of initialization modules), which
in turn is type safe by induction;

• The environment env is type safe with respect to st′′ and ctx, because it is type safe
with respect to st and ctx (which are components of the opening con�guration of the
current call) and by the state preservation property;

• The address adr′ is not null, and we know (by the way objV al is de�ned and by the
state preservation property), that st′′(adr′)|1 = Mixins. On other hand we know that
the biggest type of this object creation expression is equal to Mixins, which concludes
the proof.

10.3.16 Object initialization.

The object initialization judgment has three rules which can be used to derive it. The �rst
rule does not contain any recursive call, therefore it never plays the role of an enclosing
judgment. The second rule has one and the third rule has four kinds of recursive calls, whose
opening con�gurations are type safe for the following reasons:

• The only recursive call of the second initialization rule has a type safe opening con-
�guration, because most of the opening con�guration is the same as the enclosing
con�guration of the enclosing judgment. The only di�erence is that the last element of
the sequence of initialization modules (mods) is dropped.

This element of the con�guration is used in two conditions of the con�guration type
safety. The last condition however (stating that the address is type consistent with
mods) is still valid since we have removed one element of the state mods, so it is even
easier now.

The less obvious thing is to prove that pars is still consistent with mods. In or-
der to prove that, we have to keep in mind that mod|1 ∩ dom(pars) = ∅ 6= mod|1,
which is a side-condition of the second object initialization rule. Furthermore, by

induction, we know that pars is consistent with
−−−−−−−−−→
modules;mod, which means that

activated′(
−−−−−−−−−→
modules;mod, dom(pars)) is de�ned. When we look at the de�nition of the

function activated′, keeping in mind the above side-condition we see that the only

way a value of activated′(
−−−−−−−−−→
modules;mod, dom(pars)) is de�ned is using the value of

activated′(
−−−−−→
modules, dom(pars)), which concludes the proof of this case.

• The �rst recursive call of the third initialization rule is responsible for the execution
of I1. This call is supplied with state st which comes from the opening con�guration of
the enclosing judgment, therefore is type safe by induction. However, env and ctx are
constructed within this rule, so we have to analyze the type safety of env. It is type
safe for the following reasons:
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� The domain of env contains local variables, input parameters of the initialization
module, and this variable, therefore it ful�lls the requirements of the environment
type safety.

� The local variables are assigned with null values, so they trivially ful�ll the con-
ditions of type safety.

� The identi�er this is assigned with adr, however, by induction we know that the
opening con�guration of the enclosing rule was type safe. As a result we know that

adr is consistent with the whole sequence
−−−−−−−−−→
modules;mod, therefore in particular

the runtime type of adr contains also the mixin in which mod was declared, which
in turn is equal to IdTypes(ctx)(this).

� Identi�ers ip1, ..., ipk are assigned with adrI
1, ..., adr

I
k. However, by induction

we know that pars is type safe with respect to st, therefore we know that the
runtime types of st(adrI

1), ..., st(adr
I
k) are subtypes of IdTypes(ctx)(ip1), ...,

IdTypes(ctx)(ipk).

• The second assumption, being a set of recursive calls (one per each output parameter
of the given module), has the opening con�gurations of the form (env′,mod, sti) for
i ∈ {0, ..., l − 1}. Each of these con�gurations is a subcon�guration of the closing
con�guration of the preceding call, therefore is type safe by induction.

• The third recursive call (responsible for the execution of next modules) has the opening

con�guration of the following form: (adr, stl,
−−−−−→
modules , pars′′). This con�guration is type

safe for the following reasons:

� State stl is type safe because it is a part of the closing con�guration of the previous
call, which in turn is type safe by induction.

� The initialization parameters pars′′ are type safe with respect to stl because:

1. By induction we know that the opening con�guration of the enclosing call is
type safe, therefore we know that pars is type safe with respect to st.

2. By 1. and the state preservation property (see Section 9.9) we know that pars
is type safe with respect to stl.

3. By 2. and the de�nition of the type safety of the set of parameters we know
that pars′ = pars r∗{...} is also type safe with respect to stl.

4. By the type safety of the closing con�gurations of the calls in the second
set, combined with the state preservation property, we know that each adrO

i

is either equal to null or the runtime type of stl(adr
O
i ) is a subtype of the

biggest type of expi.

5. By the fact that this super[...] instruction is type correct (see Section 8.5),
we know that exp1, ..., expl have types used in declarations of opID1, ..., opIDl.

6. By 4. and 5. and by the transitivity of the subtyping relation we know that
the runtime types of stl(adr

O
1 ), ..., stl(adr

O
l ) are subtypes of the declared types

opID1, ..., opIDl (or they are null values).
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7. Therefore, by 6. and 3. we know that pars′′ obtained from pars′ by addition
of {opID1 7→ adrO

1 ; ...; opIDl 7→ adrO
l } is type safe with respect to stl

� By induction, pars′′ is consistent with
−−−−−→
modules because:

1. pars is consistent with
−−−−−−−−−→
modules ; mod , therefore we know that the value of

activated′(
−−−−−−−−−→
modules ; mod , dom(pars)) is de�ned.

2. the fact that this initialization rule (executing mod) was applied implies that

the value of activated′(
−−−−−−−−−→
modules ; mod , dom(pars)) was derived using the last

rule (see Section 8.2.1);

3. therefore, looking at the derivation of activated′(
−−−−−−−−−→
modules ; mod , dom(pars))

we know that activated′(
−−−−−→
modules , dom(pars′′)) is de�ned.

� The address adr is type consistent with
−−−−−→
modules and stl for the following reasons:

(i) adr is type consistent with
−−−−−−−−−→
modules ; mod and st, because the opening con-

�guration of the considered judgment is type safe (by induction); (ii) therefore,
by the state preservation property (see Section 9.9), we know that adr is type

consistent with
−−−−−−−−−→
modules ; mod and stl; (iii) therefore adr is also type consistent

−−−−−→
modules and stl, because

−−−−−→
modules is a shorter sequence.

• The fourth recursive call (responsible for the execution of I2) generates the following
opening con�guration: (env′,mod, st′′). By the fact the (env′,mod, st0) is a closing
con�guration of the �rst recursive call (thus is type safe by induction) we know that
env′ is type safe with respect to mod and st0. By the state preservation we know that
env′ is type safe with respect to mod and st′′. On other hand, we know that st′′ is
type safe, because st′′ is a part of the closing con�guration of the third recursive call,
therefore is type safe by induction. Therefore con�guration (env′,mod, st′′) is type safe.

The object initialization process generates closing con�gurations consisting of the state
only. The initialization process uses three di�erent rules, and each of them returns the state st
which is used in some preceding con�gurations. The �rst rule (responsible for the termination
of initialization process) generates the closing con�guration from the state coming from the
opening con�guration. Both, the second and the third rules, use the state which is a closing
con�guration of the last recursive call of that rule. As a result the state is type safe by
induction in all those cases.

The above case-analysis of all rules and all con�gurations generated by them, concludes
the subject reduction proof.
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Chapter 11

Type soundness

In this section we formulate and prove the type soundness theorem. We state it using the no-
tion of the program execution trace (see Section 9.6) and prove it using the subject reduction
property (see Section 10).

11.1 Type soundness formulation

Informally, the type soundness property states that if the program is type correct (see Sec-
tion 8.3), then during its execution nothing can �go wrong�. In other words, every type correct
program will not get stuck because of an object which does not support a requested method
or does not contain a requested �eld. The only accepted reason for the program to fail is the
null pointer dereference (see Section 9.8).

Formally, the type soundness property is de�ned in the following way:

Property 13 (Type soundness) For every type correct program we have one of the fol-
lowing three situations:

• The program terminates successfully (see Section 9.7).

• The program gets stuck on a null pointer dereference (see Section 9.8).

• The program execution diverges, which means an in�nite trace (see Section 9.6.3).

11.2 Type soundness proof

We prove the below property which is equivalent to the type soundness de�ned above:

Property 14 (Type soundness reformulated) If the trace of the type correct program
is �nite, and a null pointer dereference has not occurred during the program execution, then
its last con�guration is a successful program termination.
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We prove this property by contradiction. This means that we analyze every �nite trace
and each con�guration in such a trace and, for each such con�guration, we prove that after
it there will always be another con�guration (which means that the execution does not get
stuck), except for the two cases: of a successful termination and of a null pointer dereference.

In this proof we will say that con�guration has been added unconditionally, or that some
recursive call is performed unconditionally, when it is performed: (i) without checking further
conditions, and (ii) without performing additional calculations which could fail for some
reasons. For example, we say that some recursive call is performed unconditionally when a
partial judgment (see Section 7.2), being its parameter, consists of a state, an environment
and a context calculated before by other recursive calls or supplied as a parameter.

Notice that, for a given con�guration C, in order to prove that C is not the last con�gu-
ration in the trace, it is enough to show that the next con�guration is added unconditionally.
Whenever the next con�guration after C is not added unconditionally, we prove that C is
not the last one in the following way:

• If there is some additional condition which is checked in the semantics and thus in
the derivation-search procedure, then we prove that this condition is ful�lled and the
execution can proceed and add next con�gurations to the trace.

• If the state, environment or context being a part of the partial judgment or returned
is calculated by some functions, then we show that such state/environment/context is
always de�ned.

For every form of the judgment j and every rule we prove that:

• opening con�guration C added by the call for the judgment j is not the last one (so
there will be other added afterwards)

• closing con�guration C added by every recursive call performed by the call for j is not
the last one. It means that when the recursive call adds the closing con�guration and
returns, there will be some con�guration added afterwards. The only case when closing
con�guration can be the last one is the null pointer dereference.

To prove that the execution cannot get stuck in the given con�guration we utilize the type
safety of all the con�gurations in the trace (using Property 12 in Section 10.2).

This way we cover all con�gurations in the trace, except for the closing one added by
the top-level activation of the derivation-search procedure (which is not a recursive call
performed by other call). However, such closing con�guration is indeed a last one, and it
represents a successful program termination (see Section 9.7).

In all the below cases, we will use C to refer to the con�guration for which we prove that
it is not the last one.

11.2.1 Assignment to a local variable.

The execution of the derivation-search procedure for a variable assignment starts from per-
forming unconditionally the recursive call to evaluate the assigned expression (which in turn
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adds the subsequent opening con�guration), therefore its opening con�guration cannot be
the last con�guration.

Closing con�guration added by recursive call When the recursive call responsible for
the evaluation of the assigned expression ends, then it always does so with the value of the de-
sired form. Therefore in this case the new environment of the form (env{VarName 7→ adr})
is always de�ned. As a result, there will always be a next con�guration in the form of a closing
con�guration of this assignment.

11.2.2 Assignment to an object �eld.

The execution of the procedure for a �eld assignment also starts from performing uncondi-
tionally the recursive call to evaluate the target object. Therefore, its opening con�guration
cannot be the last one.

The call for a target object. When the recursive call responsible for the evaluation of the
target object �nishes, then the second recursive call is unconditionally executed. Therefore,
after C there always be the con�guration added by the second recursive call.

The call for assigned value. When the recursive call for assigned value �nishes by adding
con�guration C, the activation of the procedure for the assignment �nishes also, so it will
also add its own closing con�guration to the trace after C.

To see that this closing con�guration is always de�ned, we have to show that the state
st′′{adr′ 7→ newObj} is de�ned. For this it is enough that st′′(adr′) is de�ned. By the
subject reduction we know that, the closing con�guration added by the �rst call is type safe
(see Section 10.1.5). This in turn, in conjunction with the assumption that no null pointer
dereference occurred means that st′(adr′) = (T2, ...), which in conjunction with the state
preservation (see Section 9.9) guarantees that st′′(adr′) = (T2, ...). Therefore st

′′(adr′) is
de�ned.

11.2.3 An if statement.

In case of if statement, the execution of the procedure starts unconditionally from the exe-
cution of the recursive call to evaluate the boolean expression, so the opening con�guration
added by if statement cannot be the last con�guration.

The call for boolean condition. The recursive call for an expression evaluation returns
a pair consisting of a state st and an address adr. By the assumption that no null pointer
exception occurred, we know that adr is di�erent from null. The fact that the closing con-
�guration generated by that call is type safe ensures that the runtime type of st(adr) is a
subtype of the biggest type of the expression. Moreover, by the fact that the conditional in-
struction is type correct (see Section 8.5), we know that this expression has type {Boolean}.
Therefore we know that the runtime type of st(adr) is subtype of {Boolean}.

On the other hand, the fact that the program is type correct ensures that no object of
a type containing Boolean mixin can be created (see Section 8.6 and Section 6.7). Thus,
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by the state preservation we know that only ff and tt addresses point to values of type
{Boolean}.

Therefore we know that one of the two rules can be applied, so there always is a next con-
�guration which is the opening con�guration added by the recursive call for the instruction
I1 or I2 (depending on the value of adr).

The call for instruction. When the recursive call for instruction in the if statement adds
its closing con�guration and �nishes, then the whole if instruction also �nishes uncondi-
tionally and adds its own closing con�guration.

11.2.4 A return statement.

Similarly as in the case of if statement, the procedure starts unconditionally from the
evaluation of the returned expression, so C cannot be the last con�guration.

The call for returned expression. When the recursive call for the expression to be
returned adds its closing con�guration and �nishes, the call for the return statement also
unconditionally adds its closing con�guration and �nishes.

11.2.5 Compound instruction.

The execution of a compound instruction starts unconditionally from the execution of the
�rst instruction, so the opening con�guration of the compound instruction is never the last
one in the trace.

The call for the �rst instruction. When the recursive call for the �rst instruction �nishes,
we can have one of the two cases. In the �rst case the environment returned by the evaluation
of the �rst instruction is a pair, and then the execution of the whole compound instruction
unconditionally �nishes, adding to the trace the closing con�guration identical to the one of
the �rst instruction.

In the second case (when the environment is not a pair, but a function), the second
concatenated instruction is executed, so the con�guration which follows is an opening con-
�guration added by the recursive call responsible for the execution of the second instruction.

The call for the second instruction. When the execution of the second instruction �n-
ishes by adding its closing con�guration, then the whole compound instruction also �nishes,
adding the identical closing con�guration to the trace.

11.2.6 Expression evaluation instruction.

The execution of expression evaluation instruction unconditionally starts from the evaluation
of expression, therefore the con�guration C cannot be the last con�guration in the trace.

The call for the expression. When the expression evaluation instruction �nishes, then
the whole instruction unconditionally �nishes adding its own closing con�guration.
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11.2.7 A while statement.

The execution of while loop instruction unconditionally starts from the evaluation of the
boolean condition, which in turn starts from adding its opening con�guration to the trace,
therefore C cannot be the last one.

The call for the boolean condition expression. When the evaluation of the boolean
condition �nishes, we know that it �nished with a tt or ff value (as in the case of if

instruction). Then, depending on that value we have one of the two cases. In case of the
value ff , the whole while statement �nishes, which means that the closing con�guration
for the whole while statement is added.

In case of the tt value, the next step is the execution of the loop body, which uncondi-
tionally starts from the addition of its opening con�guration.

The call for the body of the loop instruction. When the body of the loop �nishes,
then we have one of the two cases.

In the �rst case, when the returned environment is a pair (representing the fact of the
execution of return statement), the whole while statement unconditionally �nishes and
adds its closing con�guration to the trace.

Otherwise, the whole loop is unconditionally executed once again, thus it adds its opening
con�guration to the trace after C.

The recursive execution of the while loop. When the recursive execution of the whole
loop adds its closing con�guration, then the current execution also �nishes and also uncon-
ditionally adds its closing con�guration.

11.2.8 Constant evaluation.

All three constants unconditionally evaluate to a closing con�guration, so the opening con-
�guration for such judgment cannot be the last one.

The evaluation of a constant does not perform any recursive calls.

11.2.9 Local identi�er evaluation.

The opening con�guration of a variable evaluation is always followed by the closing con�gu-
ration. To see that the closing con�guration is always de�ned it is enough to show that the
returned address env(VarName) is always de�ned. This, in turn, happens for the following
reasons: The fact that the expression is type correct (see Section 8.6) ensures that VarName
is in the domain of IdTypes(ctx). The subject reduction ensures the fact that the opening
con�guration is type safe, which in turn ensures that the domain of env is equal to the
domain of IdTypes(ctx) which �nally ensures that env(VarName) is de�ned.

Similarly as with constant evaluation, the evaluation of a local identi�er also does not
perform any recursive calls.
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11.2.10 Field evaluation.

The evaluation of a �eld evaluation expression unconditionally starts from the evaluation of
the target object, which in turns adds its opening con�guration, thus there is always a next
con�guration after C.

Recursive call: the evaluation of the target object. When the evaluation of the
target object �nishes with a con�guration C, then the evaluation of the whole expression
�nishes also, with a con�guration which di�ers from C in the returned address, having the
form st′(adr)|2(Mix .f l). To see that this address is always de�ned and thus the closing
con�guration of the whole expression will always be added, observe that:

1. The address adr is di�erent from null (because of the assumption that no null pointer
exception occurred during the recursive call).

2. The type safety of the closing con�guration added by the recursive call ensures that the
runtime type of st′(adr) is a subtype of the biggest type of the target object expression.
Thus we know that st′(adr)|2 is de�ned.

3. Furthermore, the fact that the expression is type correct ensures us that the target
object expression has a type containing Mix . Thus the runtime type of st′(adr) also
contains Mix .

4. By the type correctness of the whole expression we know that fl ∈ FieldsMix .

5. Thus, by the type safety of the closing con�guration, in particular by the safety of st′

we know that st′(adr)|2(Mix .fl) is de�ned

11.2.11 Call to a method.

The evaluation of a method call unconditionally starts from the evaluation of the target
object, therefore the opening con�guration of method call is always followed by the opening
con�guration of the evaluation of the target object.

The call for evaluation of the target object. When the evaluation of the target of
the method call �nishes by adding its closing con�guration, we can have two di�erent cases
depending on whether the method has parameters.

If the method has parameters, then the expression representing the value of the �rst
actual parameter is unconditionally evaluated. Thus its evaluation always adds its opening
con�guration to the trace after C.

In case of no method parameters, the body of the method is executed, however in a newly
constructed environment and in a new context. To see that it is always executed, we have
to show that the following partial judgment (responsible for the execution of that body) is
always de�ned:

env′, (Mix ′, (Mix ,mt)), stn |= MetInstr
(Mix ,mt)

Mix ′
⇒I?
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To do this we have to show (similarly as we did before when dealing with the opening
con�guration of the super method call) that the following four expressions are de�ned:

• Mix ′ = LastMix(stn(adr0)|1, (Mix ,mt)).

• MetParams
(Mix ,mt)

Mix ′

• MetLocals
(Mix ,mt)

Mix ′

• MetInstrmtID
Mix ′

Since we assumed the program is type correct, it follows that all object creation instruc-
tions are type correct. Therefore all the objects are created from consistent mixin sequences
(see Section 6.7) which, in conjunction with the state preservation property (see Section 9.9),
ensures that the runtime type of stn(adr0) is also a consistent sequence, knowing that adr0
is not null. Finally, thanks to the type safety of the last closing con�guration and type cor-
rectness of this method call expression, we know that the runtime type of stn(adr0) contains
Mix , thus by the consistency we know that Mix ′ is de�ned.

The next two points are just a consequence of the fact that the function LastMix always
returns a mixin which contains a declaration of the supplied method.

The call for evaluation of a parameter value. When the evaluation process of a method
parameter �nishes, then we have two cases, depending on whether the parameter was the
last one or not.

If this is not the last parameter, then the next parameter is unconditionally evaluated
and adds its opening con�guration after C.

In case of the last parameter, the next con�guration is the opening con�guration added
by the evaluation of the method body in a new environment. This evaluation of the method
body will always start by adding its opening con�guration, because the partial judgment
responsible for that call is always de�ned. The justi�cation for that fact is identical as in the
previous point.

The call for evaluation of the method body. When the process of the execution of the
method body �nishes, the whole execution of the method call also �nishes, assuming that
those instructions evaluate to a value of the form ((>, adr), st′). However, this is a direct
consequence of Property 5 (see Section 7.4). Therefore the next con�guration will always be
the closing one added by the method call expression.

11.2.12 A super method call.

The evaluation of a super method call unconditionally starts from the evaluation of the �rst
actual parameter expression (if there is such), so the opening con�guration of that call is the
next con�guration.
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In case of no parameters the �rst recursive call will be the one responsible for the evalu-
ation of the rede�ned method body. Then to prove that the recursive call can be performed,
and thus C is not the last con�guration in the trace, we have to show the following:

1. Mixin Mix ′ = LastMixBef(stn(env(this))|1,mtID ,Mix ) is de�ned.

2. Initialization parameters MetParamsmtID
Mix ′ and MetLocalsmtID

Mix ′ are de�ned, so −→par and
local are de�ned.

3. Instructions MetInstrmtID
Mix ′ are de�ned.

To see that (1) holds, observe that in a type correct program each object is created from a
consistent mixin sequence (see Section 6.7), thus thanks to the state preservation property
(see Section 9.9) we know that the runtime type of the current object (env(this)) is also a
consistent mixin sequence, thus Mix′ is de�ned.

Then, (2) and (3) are just a consequence of the fact that LastMixBef function always
returns a mixin which contains a declaration of the supplied method.

Recursive call for evaluation of a parameter value. When the evaluation of a param-
eter �nishes, then we have one of the two cases.

If the evaluated parameter is not the last one, the evaluation of next parameter is un-
conditionally executed, adding new opening con�guration to the trace after C.

Otherwise, the body of the method is executed. In this case, we need to show that the
new environment and the body are de�ned. This proof is similar to the proof for the opening
con�guration of the super call without parameters (see Section 11.2.12).

The call for evaluation of a method body. When the execution of the method body
�nishes, then the whole execution of the super call also �nishes, assuming that the body
evaluated to a tuple of the form ((>, adr), st′), which is however ensured by the Property 5
(see Section 7.4).

11.2.13 A new object creation.

The �rst step of the evaluation of a new object creation expression depends on whether there
are some initialization parameters used in this expression. If there are such parameters, then
the situation is trivial, since then we unconditionally evaluate the �rst parameter. So there
is for sure a next con�guration after C.

In case of no initialization parameters, the next con�guration to be added to the trace
is the one added by the recursive call responsible for the execution of the initialization
modules. However, knowing that the object creation expression is type correct, we know
that base(mixins) is de�ned, thus all the names used in this sequence are in fact intro-
duced by the existing mixin declarations. Therefore IniModules(mixins) is de�ned as well
as EmptyObject(mixins). As a result, the recursive call can always be performed and there
is always the con�guration added by this recursive call, thus the con�guration C is not the
last one.
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Recursive call for evaluation of an initialization parameter. When the evaluation
of an initialization parameter �nishes, then we can have one of two cases.

If the evaluated parameter was not the last one, then the next parameters is evaluated
unconditionally and its evaluation adds an opening con�guration after C.

If the evaluated parameter was the last one, then the next con�guration in the trace
will be the opening con�guration added by the execution of the sequence of initialization
modules. However, to see that evaluation of those modules can be successfully started we
have to show that the partial judgment

adr′, stk{adr′ 7→ objV al} |= (IniModules(mixins), ParID 7→ adr)⇒ini?

representing those modules is always de�ned. This holds because:

• Address adr′ = FirstEmpty(stk) is always de�ned since we assume an in�nite set of
addresses, and the domain of each state is �nite.

• Object objV al = EmptyObject(mixins) is always de�ned (see Section 7.1.3), since the
type correctness of the object creation expressions ensures that mixins is a consistent
sequence, therefore mixins is a sequence of names of mixins declared in the program.

• Set of ini modules IniModules(mixins) is always de�ned since the type correctness of
the new object creation expression ensures the fact that activated(mixins , ...) is de�ned.
The de�nition of activated requires in turn the IniModules(mixins) to be de�ned.

Recursive call for execution of initialization modules. When the execution of the
sequence of initialization modules �nishes, then the execution of the whole object creation
expression unconditionally �nishes, adding its closing con�guration to the trace.

11.2.14 An object initialization.

In this case we �rst check if the list of modules is empty. If this list is empty, then the set of
parameters also needs to be empty, which is ensured by the fact that the set of parameters
is consistent with the empty sequence of modules (as a part of the type safety of the opening
con�guration). Therefore, when the list of modules and the set of parameters are empty,
there is no recursive call, and the closing con�guration is always added by the call which
added the opening con�guration C.

In the case when the list is non-empty and additionally, input parameters of the last
module in the list coincide with the supplied parameters, then the module is executed and the
next con�guration in the trace is the opening con�guration of the recursive call responsible
for the execution of the sequence of instructions I1, occurring within the ini module.

In the last case, when the list is not empty, and the input parameters of the last module
are not in the supplied set of parameters then we unconditionally execute the procedure for
the list with the last module removed. This, in turn, means that this recursive call always
adds next opening con�guration to the trace.
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Recursive call: execution of the rest of ini modules during module skip.
When the rule for the module skip is used, the remaining initialization modules are executed.
When the execution of that list of modules �nishes by adding its closing con�guration, then
the execution of the whole list �nishes unconditionally, adding its closing con�guration to
the trace.

Recursive call: execution of the �rst part of the module. When the execution of
the �rst part of the module denoted as I1 (containing instructions which occur before the
super[...] instruction) �nishes, then we have one of the two following cases.

In the �rst case, when the currently executed module has some output parameters de-
clared, the �rst parameter is evaluated unconditionally. Therefore the evaluation of the �rst
parameter adds its opening con�guration to the trace.

In the second case, when the current module does not have any output parameters, the
remaining modules are executed unconditionally in the previously calculated state, environ-
ment and context, thus adding a new opening con�guration.

Recursive call: evaluation of the initialization parameter in super[...].
When the initialization parameter �nishes, then similarly as in the above case of �the exe-
cution of the �rst part of the module� we have two cases, and those cases are dealt in the
same way. Either there exists a next parameter to be evaluated and its evaluation adds an
opening con�guration, or the sequence of the remaining modules is executed which also adds
a new opening con�guration.

Recursive call: execution of the tail of modules after module execution.
When the rest of the sequence of modules �nishes its execution, then second part of the ini
module denoted as I2 (containing instructions which occur after the super[...] instruction)
is unconditionally executed and adds an opening con�guration to the trace.

Recursive call: execution of the second part of the module. When the second part
of the ini module �nishes its execution, then the execution of the whole module (with all
next modules) �nishes unconditionally and adds its closing con�guration.
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Chapter 12

Implementation

The Magda language, together with the formal speci�cation described in this thesis, has also
a working proof-of-concept implementation [47]. This implementation, apart from all the
above mentioned features, contains also additional ones like:

• generics in the Java style (see [24, 23]),

• support for Java code snippets, required for accessing external libraries and performing
system calls,

• more built-in types.

However, we will not discuss those features here. The compiler works by performing the
following steps:

• It performs the lexical analysis of Magda code, with a parser built using the JavaCC
framework [1]. The result of this analysis is a semantic tree of the whole program.

• It performs all the static type checks on the generated tree. The type checks are per-
formed according to the description in Chapter 8.

• It generates Java code, from the semantic tree of the Magda program.

• It executes the Java compiler to compile the generated Java code.

However, notice that Magda's model of inheritance as well as the model of methods rede�ni-
tion and referencing is signi�cantly di�erent from the one of Java. Therefore, the Java code
generated from our code is not a one-to-one translation. In particular, a method in Magda is
not translated into a method in Java (it is instead translated into a class). Below we outline
the key features of the translation we perform:

• Each method, ini module, �eld, mixin, and also each object in Magda is represented
by a separate Java object.
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• For each of those Magda constructs, there is a one corresponding base class in Java:
CMagdaMethod (with one method, Execute), CMagdaMixin, CMagdaObject, etc.

• Each object in Magda is represented by an object of class CMagdaObject, which con-
tains an array of objects representing all methods from all mixins from which this
object has been created. Analogously, each object contains also an array of objects
representing all �elds.

• Each declaration of a method is translated into a declaration of a subclass of the class
CMagdaMethod. This class has one method implemented, called Execute. This method
contains a translation of the instructions of the Magda method.

The method Execute, in order to be general enough, takes two arguments. The �rst
one is the CMagdaObject representing the target of the method call, i.e., this. The
second one is an array of CMagdaObject-s representing all the arguments of the actual
Magda method. The result type is also of type CMagdaObject. This way, the generated
Java code does not use types used in the source Magda program. Therefore, the Java
compiler does not verify, if the CMagdaObject supplied to a method contains methods
or �elds which will be used in the method.

However, since our compiler �rst performs all type checks on the Magda code, and the
type system of Magda is sound (see Section 11), we know that all such type errors are
caught at this stage.

• Each call of a method on a given object performs a search in this array according to
the semantics of LastMix function (see Section 6.6).

Despite the fact that the code is not generated in the most e�cient way, this compiler
demonstrates that the presented language design gives rise to a real language. Additionally,
it allows users to experiment with the syntax and the semantics of the language and to
verify how the language works in practice (this compiler comes together with a set of simple
examples).

145



Chapter 13

Related work

In this chapter we present other existing solutions designed to solve the problems we are
concerned with (or at least problems similar to ours). This chapter is divided into �ve sec-
tions. Section 13.1 discusses di�erent approaches to modularization of initialization process.
Section 13.2 presents di�erent approaches to solve the problem of clashes of non-hygienic
method identi�ers. Section 13.3 compares our solution with other approaches extending the
reusability of components. Section 13.4 discusses how encapsulation works in Magda. Sec-
tion 13.5 presents a few language constructs, which are present in other languages but not
in Magda, and discusses how those can be represented in Magda.

13.1 Modularization of constructors

There are at least eight techniques used by designers to solve some of the problems concerning
object initialization:

1. by avoiding explicit initialization protocols,

2. by declaring a constructor with one parameter of type �container� containing all the
initialization parameters (such as, for example, of type Vector or of type Dictionary),

3. by using the container classes design pattern,

4. by using default parameter values,

5. by referencing parameters by name,

6. by using the constructor propagation mechanism of Java Layers [26],

7. by using object factories [29],

8. and by using solution proposed by Eisenecker et al. [35] for mixin-based programming
in C++.
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The �rst three solutions are, in fact, programming techniques which can be used in most
object-oriented languages, while the last �ve are actual language features (implemented in
existing languages or languages extensions). In the following section, we will discuss those
solutions in more detail.

13.1.1 Avoiding the initialization protocol

A class written using the approach of avoiding explicit initialization protocols contains one
parameterless constructor (or none), while the real initialization process is implemented in
a list of ordinary methods. Those methods must be called on objects explicitly after their
creation. Here is an example. Instead of declaring the following class (as in Figure 2.1):

class ColorPoint {

ColorPoint(int x, int y, int R, int G, int B) {...}

ColorPoint(int x, int y, int C, int M, int YC, int K) {...}

}

...

x= new ColorPoint (100, 100, 255, 0, 255);

one might declare a class with a parameterless constructor, and a set of methods responsible
for initialization:

class ColorPoint

{ ColorPoint();

void setPosition(int x, int y)

void setColRGB(int R, int G, int B)

void setColCMYK(int C, int M, int YC, int K)

}

...

x = new ColorPoint();

x.setPosition(100, 100);

x.setColorRGB(255, 0, 255);

In a program written in such a manner, a class may contain many small methods, each
of them responsible for di�erent options of a di�erent layer of the initialization, so that
a su�cient level of modularity is achieved. However, a programmer using this class does not
have any form of veri�cation whether the object is properly initialized. The programmer may
create an object from the class and make any of the following errors (without being warned
by the compiler): (i) forget to call some of the methods responsible for the initialization;
(ii) call too many of them; (iii) call them in an incorrect order.

Existing formal speci�cation languages, like JML [49] and the Design by Contract in
Ei�el [52], can allow some veri�cation of this protocol. However, such approaches require
to specify additional assertions, which is, in general, a di�cult and time-consuming task.
Additionally, due to the general nature of assertions and to a great freedom of possible
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class ColorPoint

{ ColorPoint (Dictionary d)

{ if ((d.get("R")<>null) && ...)

{... /* process RGB data */ ...}

else if ((d.get("C")<>null) && ...)

{... /* process CMYK data */...}

else

throw new Exception ("Wrong parameters!!");

}

}

Figure 13.1: A Constructor with container-like parameter

combinations, those assertions can be checked during the execution of the program, but they
cannot be veri�ed statically. A static veri�cation is sometimes possible with the support of
theorem provers, but usually such tools require some manual support from the programmer.

13.1.2 Container parameters

Constructors may have one parameter of a �container� type, such as Vector or Dictionary.
The container structure will contain values of all the initialization parameters, for instance
indexed by their names. Then, a constructor may perform a dynamic veri�cation inside, like
in the example visible on Figure 13.1.
This approach has the following disadvantages:

• The class contains one constructor which must perform a lot of checks for many cases
of the initialization process.

• It does not allow any static checking of the set of chosen parameters. As a result, when
a programmer chooses an inappropriate subset of parameters, or even a non-existing
parameter, then he/she will not be warned during the compilation.

13.1.3 Container classes

The idea behind the container classes design pattern is to use a separate class for passing
the set of parameters used to initialize a given general property (as the position or the color
of ColorPoint on Figure 2.1). Each of those classes must have a set of constructors (with
their respective parameters) equal to the set of the possible options of initialization for the
given property. The ColorPoint example (see Figure 2.1) written using this design pattern
would look as follows:

class Color

{ Color (float r, float g, float b);

Color (float c, float m, float y, float k);
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}

class Position {...}

class ColorPoint

{ ColorPoint (Color c, Position p)

}

The use of such approach allows one to avoid the problems of: (i) exponential growth of the
number of constructors; (ii) unnecessary code duplication. However, this approach has the
following drawbacks:

• When the �rst version of some class has only one option of initialization of some
property, then it looks like there is not need to use the container class. However, if we
do not predict that some property can have multiple options in the future (by packing
it into a container class) then future conservative class modi�cations which add some
new options will not be able to use this design pattern.

• It only works in the cases when the set of options of initialization for a whole class
is a cartesian product of sets of options for some base properties. It cannot be used
in more complicated cases, like those when: (i) we add an option which, by supplying
one value, initializes distinct properties (using distinct container classes); (ii) we add
a new option for initialization of some subset of �elds, which are packaged into one
container class;

• It makes object creation expressions more complicated and less e�cient: One �rst has
to create the container objects, and then pass them to the actual constructor of the
class, from which an object is to be created.

13.1.4 Optional parameters

There is another mechanism which, in principle, was not designed to solve those problems,
but can be used to solve one of them: methods and constructors with default parameter values
(which is present, for example, in Delphi [3] and C++ [63]). Thanks to this mechanism, it is
possible to declare fewer constructors, being able to treat some parameters of existing ones
as optional. Then, when one of the parameters is not supplied in the given call, its default
value is used. This mechanism does not help, though, when it is necessary to have a mutually
exclusive choice among di�erent parameters (of di�erent types), because one cannot limit
which combinations of optional parameters are allowed.

This solution works well used together with referencing parameters by their names (see
section below).

13.1.5 Referencing by name

Another feature which can be found in some languages (but not in any of the main-stream
ones like Java and C]), which may help, is referencing parameters of methods and con-
structors by their names (that is, not necessarily passing the actual parameter values in
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class Point

{ propagate Class1(String s) {I_1;}

propagate Class1(int i) {I_2;}

}

class Class2<T> extends T

{ propagate Class2(double j) {I_3;}

propagate Class2(boolean k) {I_4;}

}

Figure 13.2: Java Layers example

the order in which they are declared). Such approach, present for example, in Flavors [56],
Objective-C [44], and Ocaml [50], solves two problems:

• it discards some of ambiguities (caused by constructor overloading), because parame-
ters with the same (or compatible) type can have di�erent names;

• it allows a wider use of default parameter values because normally we can use default
values only for a sequence of parameters being a su�x of the sequence of all parameters,
while in this approach it is possible to use defaults for any subset of the set of available
parameters.

However, this feature only solves problems of optional parameters and discards some ambi-
guities, but does not prevent an exponential number of constructors and code duplication in
the case of multiple options of initialization of orthogonal object properties.

13.1.6 Constructor propagation in Java Layers

The Java Layers language [26] has a feature called �constructor propagation�, which can be
illustrated by the example1 present on Figure 13.2.

With such declarations the class Class2<Class1> will have all the combinations of the
�propagated constructors� of both combined classes. In this case it will in fact mean to have
the same list of constructors as the class visible on Figure 13.3.

This approach solves the problem of the exponential number of constructors if the sets of
options of parameters are in di�erent classes. However, this can only do a cartesian product of
sets of constructors from di�erent classes. One of the things that cannot be done in the Java
Layers approach is the addition of new options of initialization of some properties de�ned
in the original class. Therefore, if we want to write a subclass of a class C with the purpose
of adding another option for initializing the existing set of properties declared in C, then we
cannot do this using Java Layers.

1The example is a modi�ed version of an example taken from the web page of the Java Layers
http://www.cs.utexas.edu/∼richcar/cardoneDefense.ppt. Also the syntax is slightly modi�ed to
look more Java-like.
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class Class3

{ Class3 (String s, double j) {I_1; I_3;}

Class3 (int i , double j) {I_2; I_3;}

Class3 (String s, boolean k) {I_1; I_4;}

Class3 (int i , boolean k) {I_2; I_4;}

}

Figure 13.3: Java Layers class translated into Java

mixin HSBColorPoint of ColorPoint =

optional HSBColorPoint(h:float, s:float, b:float)

initializes (ColorPoint.r, ColorPoint.g, ColorPoint.b)

begin

...

end;

end;

Figure 13.4: Magda code not representable in Java Layers approach

To better understand this, let us consider the example on Figure 13.4 written in Magda.
This is an extension of classes shown in Figure 2.1, however rewritten in Magda.

Such code, in the Java Layers approach, would require copying all combinations of the
propagated constructors.

13.1.7 Object factories

A recent work concerning initialization protocols is [29]. It shows how object factories can
be integrated in a language like Java in such a way that they use the same syntax as normal
object creation. Using this approach, it is possible to override the constructors of a class, and
even to write an object creation expression of the form new I(...), where I is an interface,
thus giving more �exibility in the management of the initialization code. As an e�ect, in
some situations this reduces the amount of code which needs to be written. For example,
when a designer needs to add one initialization option to an existing class, he can just extend
the list of the constructors of that class.

However, in this approach, each allowed set of initialization parameters must correspond
to one constructor, therefore, in general, it does not avoid the problem of the exponential
growth.

The more important bene�ts of that approach are: (i) the separation of the initialization
from the class itself, so that a client instantiating an interface can even not know the imple-
menting class; (ii) the possibility of modifying an initialization protocol in a way in which,
for instance, the object returned by new expression is an already existing one (not a newly
created one).
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13.1.8 Mixin-based programming in C++

The work [35] is a study on constructors for a mixin-based programming style in C++ (where
mixins are implemented by using templates). This paper describes some of the problems we
have also pointed out, and proposes a solution for the problem of the non-composability
of mixins (see Section 2.1.8). Nevertheless, the proposal solves only the problem of non-
composability and it requires automatic generation of additional C++ code (which in fact
can be exponential in the size of all mixin code). It also requires that the programmer
declares additional type parameters in each mixins, which must be passed to constructors of
its ancestor classes. This may cause signi�cant overhead when programming large libraries
of mixins.

13.2 Identi�er clashes and parallel development safety

Thanks to its hygienic identi�er approach, Magda solves all the problems referring to identi-
�er clashes presented in Section 2.2. Some of those problems have also already been spotted
by other researchers. As an e�ect, in many practical languages and theoretical calculi, some
mechanisms have been implemented to solve those problems at least partially.

This section below contains description of other solutions to this problem.

13.2.1 Delphi

In the Delphi language [3], which is currently the most popular implementation of Object
Pascal, there is a direct distinction between the method implementation which introduces a
new method and the one that rede�nes a method (via the keyword override). Nevertheless,
all the references to methods are by name, therefore ambiguities at this point can still occur.

13.2.2 C]

The designers of C] [40] have already seen the problems of possible accidental con�icts
between di�erent versions of the libraries. Therefore, in C] some features were implemented
to address some of the problems we are concerned with.

First of all, C] allows one to distinguish an overriding method implementation from an
introducing method implementation, via the use of the keywords new and override. However,
similarly to Delphi, it allows the programmer to have more than one introduction, therefore a
method implementation marked with override can override a method introduction di�erent
from the one intended.

Additionally, C] syntax distinguishes between: (i) virtual (dynamically dispatched)
methods and (ii) statically dispatched methods, and as default behavior it chooses the stati-
cally dispatched ones. The approach chosen by the C] designers is that most of the methods
cannot be overridden, therefore for methods not intended to be overridden at all, accidental
overriding cannot occur. However, for virtual methods we can still have a problem: when
introducing a method for the second time in a subclass, the implementation intended to
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override the �rst one now rede�nes the second one. Also, a method call expression can still
su�er from ambiguous binding.

Finally, in a class implementing a method introduced in an interface, a programmer may
declare explicitly from which interface this method comes. This is useful when a method of
the same name is declared in two di�erent interfaces. The syntax is, in some respects, similar
to ours:

interface I { void mt(); };

interface J { void mt(); };

class C : I, J

{ void I.mt() {...}

void J.mt() {...}

}

However, this is only possible for methods introduced in interfaces and only with respect
to the implementation of the method (not with respect to the method call), therefore it solves
only some of the problems. Additionally, it has also some awkward behavior: the method
mt() cannot be executed on objects of type C without casting on the interface.

13.2.3 Java 1.5

In Java 1.5 there has been added an optional annotation @Override, which instructs the
compiler to verify if the superclass contains a declaration of the same method. And if not,
then the compiler raises an error. However, if the method is not annotated as @Override

and it happens to be an overriding implementation (as a result of accidental name clash),
then the compiler will not raise an error, which is because the compiler needs to be backward
compatible with the old code.

Additionally, there still cannot be two di�erent methods of the same name, so when
accidental override occurs, the only choice is to rename the method.

13.2.4 Ei�el

The Ei�el language [52] features some of the above described mechanisms.

First of all, a distinction in the syntax between method introduction and override also
exists here, via the usage of the keyword redefines. However, while Delphi and C] allow
one to have a few distinct introductions of a method with the same name, Ei�el raises an
error when a new introduction of a method with an old name is found.

Additionally, Ei�el allows one to supply a distinct implementations for di�erent meth-
ods with the same name inherited from di�erent abstract classes (which play the role of
interfaces in Ei�el). This can be achieved via the rename operation on the methods coming
from di�erent ancestor classes (notice also that Ei�el supports multiple inheritance) and the
subsequent rede�nition of each of the renamed methods.
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mixin M \{void mt() \{...\} \};

mixin N \{void mt() \{...\} \};

class A = M(N(Object));

...

M a = new A(); // type M indicates a view

N b = new A(); // N indicates another view

a.mt(); // mt() from M is called

b.mt(); // mt() from N is called

Figure 13.5: The concept of view in MixedJava

13.2.5 C++

In C++, in particular in the presence of templates, the problem of non-hygienic identi�er
binding was pointed out by Smaragdakis and Batory in [61]. The solution proposed to solve
ambiguities during method calls was to use the pre�xing of the method name with the class
name all the time (which is a feature of C++: <class>::<method>(...)). However, the
hygienic programming is not enforced by the language, and, additionally, problems with
ambiguities concerning the override are not addressed by this solution.

13.2.6 Traits

Schärli et al., in their work on traits [60], have also tackled the problem of accidental override.
In order to solve this problem, they decided to: (i) not accept trait composition when acci-
dental clashes between two traits used to build a class occur; and (ii) allow manual renaming
of methods coming from traits. Thanks to that, in a language with traits, program will never
su�er from the accidental override of methods from di�erent traits, since this problem will
be spotted during the trait composition.

However, the traits approach requires manual modi�cations of di�erent parts of the code,
whenever a method is added to a trait which causes con�ict in other parts of code. Addition-
ally, resolving of such con�ict might break some dependencies as presented in Section 2.4.5.
Moreover, a method implementation coming from a trait can still override accidentally one
present in a superclass.

13.2.7 MixedJava

In the MixedJava language [36], the problem of having multiple implementations of methods
with same name (but coming from separate mixins) is dealt with the concept of view of an
object. If an object contains two methods with the same name, the one to be called at a
given point is the ones declared in the mixin, which is the static type (called also view) of
the target of the given method call. The example of such behavior is present on Figure 13.5.
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However, in a context where both methods are visible we still have a problem, as the
chosen method might not be the one we expect.

13.2.8 MixGen

In the work on �rst class genericity for Java by Eric Allen et al. [6] a mixin is implemented by
a generic class using its parameter as its ancestor. They introduced the notion of �hygienic
mixin� to describe the semantics introduced by Flatt et al. and adapted it successfully to
the world of generics. In contrast to MixedJava, MixGen has a compiler generating Java VM
compatible bytecode, which uses the fully �edged name of the class in which a method is
introduced to pre�x the method name itself.

However, this pre�xing is not visible in the source code because it is done implicitly
during each compilation and class-loading, therefore the binding of methods in some class
may change accidentally after modi�cations in other classes.

13.2.9 Fragile base-class problem formulation

The study on the �fragile base-class problem� by L. Mikhajlov and E. Sekerinski [53] shows
many di�erent problems which can occur in unknown descendant classes, following the mod-
i�cation of an ancestor class. However, those problems are �semantical clashes� (concerning
accidental incompatibility of behavior of modi�ed methods), while in this thesis we tackle
�syntactical clashes� (concerning accidental compatibility of declarations of added methods).

13.2.10 Summary of the comparison

In our opinion, none of the solutions presented above solve the problem of identi�er clashes
as completely as our solution does. What our methodology of hygienic identi�ers o�ers can
be summarized in the following sentence. Implementation of new functionality performed
by addition of new method identi�ers and new �elds in an existing class (or in an existing
mixin) will never change the behavior of existing code (except, of course, for code using
re�ection mechanisms for �nding methods by their names, which avoid static veri�cation).
This property might be seen as a special case of the general Flexibility Theorem, formalized
in [53]. It can be also rephrased as: �the code is safe for the past and for the future�. We mean
by that, that the code does not break any existing code, neither will be accidentally broken
by any further safe-looking changes in other parts of the program on which it depends.

On a �rst thought somebody might argue that our approach makes the code less readable.
However, since more and more components from di�erent vendors of di�erent versions are
used to build software nowadays, it is becoming important to develop mechanisms which
decrease the chances of inter-component incompatibility problems. Therefore we believe that
such modi�cation is not a big cost for the guarantees of safety we provide. Additionally,
the problem of a little longer source code can be also solve with the help of development
tools designed speci�cally to work with Magda. Such tools could hide the annotations with
mixin names in normal program browsing (and show them only on demand). Additionally,
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when programer writes a short form of identi�er reference, like obj.m1(), they could also
automatically expand (using default visibility rules) to the expanded one, like obj.M_1.m1().

13.3 Code reuse mechanisms

The reusability of software components has been in the scope of research for many years al-
ready. Many researchers found single inheritance mechanisms not satisfactory and developed
numerous solutions to enable more extensive reuse. We have discussed shortcomings of those
in Section 2.4, however in this section we brie�y summarize di�erences between most of the
widely known existing solutions and the approach we used in Magda.

13.3.1 Multiple inheritance

The most popular implementation of multiple inheritance paradigm is present in C++ [63].
Other versions of that paradigm are present also in Dylan [31], Python [13] and Loglan [45].
However, those solutions have complicated semantics and are subject to speci�c con�icts as
mentioned before in Section 2.4.3. Additionally, all of them also su�er from the con�icts of
identi�ers presented in Section 2.2.

One of the features present in C++ multiple inheritance is private inheritance. Apart
from removing from the type the information about all the methods and state of its private
superclass, this feature also in�uences multiple inheritance. When a class A inherits from
two classes B1 and B2, where each of those privately inherit from a class C, then class A will
in fact contain two instances of class C which are not visible via the public interface. One of
those instances will be visible by the B1 part of A, while the other one through the B2 part
of A.

Such feature is not directly available in Magda. This could be however simulated by
placing in mixins B1 and B2 a �eld of type C and use it in the same way. This way any
object built using mixins B1 and B2 will contain two �elds of type C. Moreover, since in C++
this inheritance relation was not externally visible, it is a functionally equivalent solution.
Additionally, as often stated (see the GOF book [37]), in many such cases it is more suitable
to use composition than inheritance.

13.3.2 Mixins

Mixins are a well-known solution to the reuse and modularization problem which is sim-
pler than multiple inheritance. Mixins have been �rst informally introduced in the Flavors
language [56], and then applied by Bracha more widely in JIGSAW [20] and formalized by
Bracha and Cook in [22]. Later on, mixins had many more formal models as the one presented
by Ancona et al. in [11] and in work on MixedJava by Flat et al. in [36]. Those have also
been implemented as part of JAM language [10], as well as MixGen [6], and more recently
in Scala [58] and NewSpeak [21].
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However, mixins have not yet achieved very wide acceptance. It is believed that one of
the main problems is the �fragile class hierarchies� problem, as described in Section 2.4.4.
The concept of mixin is also a base building block in Magda language, however thanks
to our hygienic approach, mixins do not su�er from the above mentioned problem. And
our understanding is this is a �rst mixin-based solution which is completely free from that
problem.

Another di�erence between Magda and most of the other mixin-based solutions is that
in the latter ones the mixin is a construct which is used to transform one class into another.
And classes as well as interfaces still play signi�cant role in such languages. For example, the
requirement for the class which is a parametric superclass of a mixin in MixGen language [6]
is speci�ed in the following way: this class needs to implement an interface or to be a subclass
of some given class. A similar solution is also present in MixedJava [36]. On the other hand,
in Magda the mixin is the only entity used to create objects from, to reuse code, and de�ne
nominal types at the same time. As a result, conditions placed on the �parametric superclass�
in Magda (called base mixin expression) are also speci�ed using a sequence of mixin names.
Thus, Magda has a simpler and easier to understand semantics.

13.3.3 Traits

The trait construct is a solution which was developed as a successor of the mixin-based
approach which allows the programmer to work around problems of accidental name clashes.
Initially it was �rst introduced in a untyped setting as an extension of Smalltalk (which has
a working implementation) [33, 60]. However, later on it was studied also in a typed (thus
often restricted) setting by Smith et al. as an extension of Java [62] and by Oscar Nierstrasz
et al. [57] as well as Bono et al. in a calculus called FRJ [16]. Finally it was implemented in
the statically type checked language Fortress [9, 7, 8]. However, the typed setting of Fortress
enforced many limitations, in particular, method renaming is not allowed in Fortress. The
advantage of the composition mechanism available in trait-based solutions is that they warn
the programmer when name clashes occur and allow her/him to solve them by modifying
the way traits are composed in the class de�nitions (which is not available in most mixin
solutions). This modi�cation is performed using operators like method hiding and aliasing.

However, it is important to notice that traits do not inherently protect the user from
the problems caused by name clashes. The change in one part of the code might require
modi�cation in other parts of the code (possibly written by another programmer). Addition-
ally, renaming of one method might make some trait incompatible with other collaborating
components, e�ectively breaking some hidden dependencies. All those problems have been
described in detail in Section 2.4.5.

Finally, we think that traits grown into a complicated solution, having many di�erent
operators to built new classes from while renaming, aliasing, hiding, freezing and unfreezing
existing methods. With respect to that, we believe that our solution might appear more
attractive to programmers because it seems to have a simpler semantics with only one mod-
ularization unit and only one operator to combine such units into a new sequence. The fact
that all the code is in mixins, makes the reuse also simpler, while in case of trait-based
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solutions, there are di�erent rules to reuse code present in traits and di�erent for reusing of
code present in classes as glue-code etc.

13.4 Encapsulation

An additional characteristic which makes our approach di�erent from most of other ap-
proaches to component reuse (as multiple, as well as mixin and trait based inheritance) is
the approach to encapsulation. In this section by encapsulation we understand the property
of hiding from the user of a class the implementation details such as mixins/traits which
have been used to create the class, or its superclasses.

In Magda, the set of mixins from which the object has been created is always externally
visible, since all the references to methods and �elds need to be pre�xed with the name of
the mixin from which the method comes.

On the other hand, most of the existing solutions try to hide this knowledge from the
user, so this can be seen as an advantage over the Magda approach. However, it is important
to notice that most of the solutions fail to completely hide this knowledge from the user.
This means that it is not completely transparent for the user, because the user which is not
aware of such �internal structure� of the class, might, from time to time, run into di�erent
kinds of problems. Below we shortly describe in what cases such internal structure is visible
to the clients, thus the encapsulation is violated.

First of all, in C++, when one declares a class inheriting from two other classes, one
should know if there are some common superclasses of those two classes. This is needed in
order to properly choose at that point one of the semantics of inheritance (private, public or
virtual one).

In the case of a mixin-based solutions like MixGen [6], or MixedJava [36], a class can have
many distinct implementations of one method. Then to call a method declared in a speci�c
superclass or mixin, one has to cast the type of an object to that speci�c type. If he or she
is not aware of that fact, then assigning the same object to another variable might suddenly
change the semantics of the call of some method, because the method is of some more speci�c
or more general type.

In the case of freezable traits [34], to properly unfreeze a method in some trait or class
one needs to know in which supertrait this method has been declared. Additionally, the user
needs to be aware of which methods are called in which other methods (as described in
Section 2.4.5), therefore the encapsulation is also violated even at the level of methods.

Therefore, in all those cases the user needs to be aware of the internal structure of the
class to use it properly.

Thus, since in general we believe that the solutions with clear rules are the best and
easiest to use, we decided to keep the structure of object (presenting a list of mixins from
which it has been created) visible all the time.
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13.5 Constructs not present in Magda

Magda is a language with only one base notion which is the mixin and one operator, which
concatenates sequences of mixins to create an object from. However, the mixins construct is
general enough to simulate many other notions. The mixin construct at the same time plays
the role of a type, an interface and a supplier of implementation and a unit of reuse.

As a result, the interface concept can be represented in Magda by a mixin which has all
methods marked as �abstract�. Then a class implementing such an interface is represented
by a mixin which refers to this �interface-mixin� in its base mixin expression, and contains the
declaration of methods which implement methods introduced in the given �interface-mixin�.
Similarly, an abstract class can be represented in Magda in a similar way as an interface,
namely by a mixin in which some subset of methods is marked as �abstract�.

Method renaming and hiding as present in Ei�el [52] and traits [60, 33] are also not
available in Magda. However, it is important to notice that those mechanisms have been
developed mainly to work around problems with the identi�er clashes. On the other hand, in
Magda there is no chance of name clash of two di�erent introductions of the same identi�er.
Therefore there is no signi�cant need to use such mechanisms as renaming and hiding in
Magda, thus we decided to skip it for simplicity. One might imagine other scenarios, where
method renaming is used to change the interface of the class, and those cannot be simulated
in Magda. However, we believe that such scenarios are rare and we have not found signi�cant
references to them in the literature.

In Magda there is also no distinction between units of reuse (traits) and generators of
instances (classes) as in the traits approach. This distinction is used mainly to allow the user
to control manually the process of combination of many traits. The main reason to introduce
this approach was to allow the user to manually resolve name clashes, and, as mentioned
above, this problem does not exist in Magda.
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Chapter 14

Conclusions

14.1 Summary

In this thesis we tried to solve a few problems, described in Section 2, which restrict freedom
and safety of modularization and composition in OO languages. After studying many existing
options (as described in Section 13) we have introduced three new features in our language
(see Section 1.3), namely: modular initialization protocol, hygienic identi�ers and purely
mixin-based design. As a result we were able to design the Magda language, which helps the
programmers to write highly modular, customizable code, which will not break accidentally.
The principles of the language were �rst informally introduced the big-step semantics have
been introduced (see Section 7) as well as the type system (see Section 8). Then, the type
soundness has been proven (see Section 10). As an additional result, the thesis contains a
new way of proving type soundness of languages de�ned by a big-step semantics.

The two key and unique properties, which are guaranteed by the design of the Magda
language are the following:

• An addition of a new identi�er will never break the existing code (see Section 3.11.1).

• Any two independent mixins, which are not explicitly exclusive (see Section 3.11.1)
can be safely combined together (see Section 13.2.10 for more details).

The only price of all those features is, as we believe, a little less concise syntax caused by
longer identi�er references.

However, considering that contemporary software has a longer and longer life cycles, and
the costs of maintenance of existing software systems are becoming larger and larger (also
when compared to the costs of development of new systems), we believe that safety and
modularity of languages will play a more and more crucial role in the future.

Thus, we believe that the approach presented in this thesis forms a useful contribution
to the design of OO languages.
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14.2 Future work

14.2.1 Implicit Genericity

A recent result of our research is the mechanism called implicit genericity. This mechanism
allows the programmer to pick an existing library, and reuse it at some point with some
speci�c modi�cations, while retaining other existing uses of it in the same application in
their original form. The modi�cation enabled by this approach is a replacement of one class
with another compatible one. The replacement of one class with another means that all
object which would originally be created from one class will instead be created from the
new one. Such a replacement should be possible on any code, without anticipation of this
modi�cation by its author. Notice that such a tool allows one to rede�ne almost any part of
code of some existing library implemented by means of any method. It happens so because
one can always replace the class in which the method was declared with another one, which
has this speci�c method overridden. We have �rst presented this idea by adding it to Java,
thus obtaining the language called ImpliJava [46].

One of the critical aspects of the static veri�cation of type safety of such replacements is
the veri�cation whether some class can be safely used to replace another one. To ensure that
a class can be used to replace another one, the compiler has to make sure that it supports
all the constructors of the other class (more details in [46]). Unfortunately in Java this often
requires a signi�cant amount of work to be done in order to make some class compatible with
another (like copying of all the signatures of constructors etc.). However, in Magda it seems
much easier, or not requiring any work at all. In Magda, assuming that a mixin does not add
any required initialization modules, such a mixin can be safely added to any other sequence
of mixins, and will not cause any object creation expressions to fail because of incompatible
initialization.

This means that Magda is a language which should work seamlessly with the implicit
genericity solution. Thus, we plan to analyze such an extension of Magda in the near future.

14.2.2 First-class genericity

Typical genericity in the style of Java Generics is called second-class genericity, because type
arguments can be used only in type expressions. In such an approach, type arguments cannot
be used in any object expressions (as for example object creation expressions), which is in
turn possible in �rst-class genericity. One of the reasons for that, is the fact that generics has
been added to Java as a backward compatible solution, which means that the code written
using generics can be compiled into a bytecode which runs on an older virtual machine,
thanks to the so called erasure mechanism. However this is not the case in C]. Another,
more fundamental, problem with generics in Java as well as in C] is that the upper bound
of some type parameter, which enforces the actual parameter value to be a subtype of some
boundary type, does not guarantee anything about the list of constructors present in such
actual parameter class. Therefore, one cannot use the value of such parameter to create a new
object from.

161



Then, to overcome this problem, the designers of MixGen [6] (which is an extension
of Java with the �rst class genericity) decided to specify bounds for parameters of generic
classes by writing (i) a supertype, together with (ii) a list of signatures of constructors which
need to be supported by the class being the actual parameter.

When we consider adding such a �rst class genericity to Magda it seems obvious, that
such additional requirements referring to the initialization protocol would not be needed.
It happens so, because when a sequence of mixins M1 is a subtype of sequence M2, then
it just means that M1 is a larger set of mixins (see Section 3.9 and Section 8.6). Thus,
the sequence M1 being a subtype of M2 guarantees that the set of initialization parameters
supported by M1 will also be a superset of such a set in M2. The only thing that might limit
the usage of M1 in contexts where M2 was used would be an addition of a required module
with a non-empty set of input parameters. Then, any object creation from M1 requires
supplying those additional parameters.

Therefore, it seems that the addition of �rst-class genericity to Magda should be more
natural than in Java and would create a useful and expressive mechanism. We believe that
this is a worthy direction of further research.
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