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Abstract

Large-scale protein-protein interaction (PPI) networks are now available
for human and many model organisms. The arising challenge is to analyze
these data to reveal the basic components and organization of the cellular
machinery. Pioneering studies have shown that cross-species comparison is
an effective approach for uncovering key modules in PPI networks. Early
successes have in turn stimulated the research for new methods, with a
more solid grounding in mathematical models, and better scalability, to
allow multiple network comparison.

We develop a novel framework for comparing PPI networks across species,
providing new insights into the evolution of these systems. Our approach is
based on the reconstruction of a hypothetical PPI network of the common
ancestor of the considered species. The reconstruction algorithm is built
upon a proposed model of protein network evolution, which takes into ac-
count phylogenetic history of the proteins and the rewiring of their interac-
tions. Initial application of our procedure to networks of D. melanogaster,
C. elegans and S. cerevisiae reveals that the most probable ancestral inter-
actions often correspond to known protein complexes. Further, we extend
our phylogeny-based framework to provide a method for transferring and
integrating PPI evidence from multiple datasets and species. The method
is used to predict unknown protein associations and provide interaction-
level confidence scores for seven eukaryotic networks, including the human
interactome. We also develop an EM-based procedure for estimating the
parameters of our model from data and apply it to derive rates of con-
serving and neutral PPI evolution. Based on the evolutionary rates, we
construct a network of the most conserved co-functioning protein families.

Keywords: protein-protein interactions, biological networks, network evo-

lution, network alignment, Bayesian networks, inference, message passing,

expectation maximization.

ACM Classification: J.3 Biology and genetics.
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Chapter 1

Introduction

With the completion of the Human Genome Project (Venter et al., 2001; Inter-

national Human Genome Sequencing Consortium, 2001) researchers have gained

a comprehensive catalogue of genes coding for functional molecules in our cells.

These molecules, including primarily proteins, but also non-translated RNA se-

quences, constitute a set of parts available in each cell under certain conditions.

Numerous studies have shown that these components almost never work alone.

It has become evident that it is not just the set of parts, but rather the complex

system of interactions between them which determines specific cellular functions

and ultimately gives rise to life. The cellular system is controlled on many lev-

els, each governed by different types of molecular interactions. For example,

transcriptional regulation, managed by a network of inter-dependencies between

genes, regulatory regions, promoters and suppressors, allows some genes to be

expressed while keeping others silent – depending on the type of the cell, the

stage in the cell cycle and other conditions. The availability of gene products is

one of the factors predetermining possible physical and biochemical interactions,

which themselves form interconnected system-level networks.

Molecular systems biology is an area of research which focuses on assem-

bling and analyzing biological networks as models of cell machinery. It is a

rapidly growing multidisciplinary field which benefits from developments in bi-

ology, physics, mathematics and computer science. Systems approach is often

considered a paradigm alternative to the classical reductionist approach. While

the latter has been successful in identifying components and many individual
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1.1 Large-scale PPI networks

interactions, it fails to provide means to understand how these components re-

late with each other and function cooperatively in biological systems. Systems

biology tries to address these problems through measuring multiple components

simultaneously and by integrating data with mathematical models (Ideker et al.,

2001; Sauer et al., 2007).

Proteins play a key role in biological systems. They participate in practically

every process taking place in the cell. They carry out essential tasks in cell cycle,

signalling and immune response. They act as enzymes catalyzing biochemical

reactions during metabolism. Some proteins also have mechanical functions (e.g.

in muscle contraction) and structural roles (e.g. in the cytoskeleton). Proteins

carry out their functions through physical interactions with other proteins in com-

plexes and pathways. These interactions are diverse and abundant. Some of them

are remarkably robust while others are transient, occurring occasionally, under

specific conditions. The number of interaction partners varies greatly among pro-

teins. While most have only a few interactions, there are some which have even

hundreds. Different complexes and pathways are inter-connected forming larger

networks involved in achieving complicated tasks. Protein-protein interactions

(PPIs) are of great interest due to their fundamental role in cellular processes, as

well as their significance for theoretical studies on the emergence of complex sys-

tems. PPI networks constitute invaluable models for interrogating developmental

and disease mechanisms, as well as elucidating individual protein function (Cu-

sick et al., 2005). During the last decade they have been established as one of

the primary levels at which cellular systems can be studied.

1.1 Large-scale PPI networks

The investigations of protein-protein interactions at systems level have been in-

duced by the development of high-throughput experimental systems. Since the

pioneering studies by Uetz et al. (2000) and Ito et al. (2001), which provided the

first large-scale snapshots of the interactome of S. cerevisiae (baker’s yeast), the

yeast-two-hybrid (Y2H) system has been applied to map PPIs in many model

organisms, as well as in human (Rual et al., 2005; Stelzl et al., 2005). Other

techniques, such as tandem affinity purification coupled with mass spectrometry

2



1.1 Large-scale PPI networks

Figure 1.1: Experimental techniques for identifying protein-protein interactions. The
Y2H system (A) is based on a two-domain transcription factor Gal4 which activates
the expression of a reporter gene His3. The transcription factor is split and the DNA-
binding domain (BD) is fused to protein X, while the activation domain (AD) is fused
to protein Y. If X and Y interact then His3 is expressed and the cells can grow under
histidine-deficient conditions. Tandem affinity purification (B) is used to purify protein
complexes. A protein of interest X is fused with two affinity tags (black boxes) separated
by a protease cleavage site (white box). After washing through two affinity columns, the
remaining binding partners of protein X can be detected by mass spectrometry (C)
which converts protein peptide molecules into ions and identifies them by measuring
their mass-to-charge ratios. Figure adapted from Shoemaker & Panchenko (2007b).

3



1.1 Large-scale PPI networks

Figure 1.2: Experimentally derived PPI network of baker’s yeast (S. cerevisiae). The
nodes of the graph represent proteins and edges represent physical protein-protein in-
teractions. Network diagrams in this thesis were prepared using the Cytoscape software
platform (Shannon et al., 2003).

(TAP-MS) (Gavin et al., 2006; Krogan et al., 2006), have been successful in iden-

tifying co-complex associations (i.e. proteins co-occurring within the same com-

plex). We provide a short overview of Y2H and TAP-MS in Fig. 1.1. For more

details on these and other experimental methods see Shoemaker & Panchenko

(2007b) and Uetz et al. (2008). We will assume that the output of a single exper-

iment can be represented in the form of an undirected graph corresponding to a

PPI network (see Fig. 1.2).

Unfortunately, the available experimental techniques are far from perfect, both

in terms of their accuracy, as well as coverage. For instance, the yeast interactome

has recently been estimated to contain from around 37000 up to even 75500

protein interactions between approximately 6000 proteins. Although already over

80000 yeast PPIs have been reported, given the estimated false positive rates of

the experiments, the yeast interactome is suggested to be roughly 50% complete

4
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(Hart et al., 2006). Using a more conservative definition and omitting indirect co-

complex associations, Yu et al. (2008) estimate the number of yeast interactions to

be ∼18000 and conclude that three idependent Y2H assays cover only around 20%

of this amount. In case of human, the entire interacome is estimated to contain

from approximately 130000 (Venkatesan et al., 2009) up to 650000 (Stumpf et al.,

2008) PPIs and is covered in roughly 10% (Hart et al., 2006; Venkatesan et al.,

2009).

Since the publications of the first large-scale studies, many doubts and crit-

icism have been expressed in the literature, regarding the low overlap between

independent screens. The Y2H screens of Uetz et al. (2000) and Ito et al. (2001)

identified 1519 and 4549 PPIs, respectively, with an overlap of less than 20% of

the smaller set. Initial investigations have pointed to a high false positive rate of

the Y2H system (Mrowka et al., 2001; von Mering et al., 2002; Bader & Hogue,

2002). More recent studies (e.g. Yu et al., 2008) suggest that the low overlap can

largely be explained by low sampling sensitivity (low coverage) and differences

in assay types. Most authors agree that all metioned factors contribute to the

observed situation to some extent. Even a very small false positive rate might

dramatically impact the result, due to the dominating number of non-interacting

pairs. Given the average current estimates, the expected number of true yeast in-

teractions is approximately 0.2% of all possible protein pairs (∼18 million). This

implies that an experiment with a false positive rate of 1% would identify about

5 false interactions for every true one. If all pairs were tested, the result would

contain ∼179640 false positives. Factoring in accuracy and sampling sensitivity

of available methods, it would require tens of proteome-scale screens to identify

each mappable interaction with high confidence (Schwartz et al., 2008). Some

transient PPIs might not be recovered by any presently available technique. In

summary, none of the existing methods can provide a complete and error-proof

interaction map of an organism, within reasonable time and respecting budget

limitations. Therefore it is crucial to develop systematic approaches that integrate

evidence from complementary experiments and provide quantitative confidence

scores for each possible interaction.

A separate problem, also calling for computational approaches, concerns the

analysis of complex PPI networks and organising them into models of cellular

5
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machinery (see Panchenko & Przytycka, 2008, for a recent review). A priori

there is little knowledge of the role of individual network components and their

assignment into complexes and pathways. In certain situations it is possible to

map onto the network previously established information on individual proteins

and interactions, adding a new perspective to the available data. This type of

analysis has proven very useful in associating selected subnetworks with various

phenotypic traits including diseases (for a review see Ideker & Sharan, 2008). In

the vast majority of cases, however, the role of individual network components

and their ensembles is unknown.

One of the ways of identifying functional network components is via cross-

species analysis. As in the case of biological sequence data, the comparative

approach demonstrates high potential. The basic motivation behind it is the

principle of evolutionary conservation of functional units of the cell. Just like

individual genes and protein sequences are retained in many species, the com-

mon patterns of protein interactions, fulfilling essential functions, are expectedly

retained as well. Cross-species comparison of PPI networks enables functional

annotation of proteins, prediction and verification of protein interactions and,

ultimately, identification of essential cellular units.

In this thesis we concentrate on two problems important to the understanding

of protein-protein interaction networks. The first one is related to the identifi-

cation of subnetworks (or network modules) performing distinct functions. The

second is the overall improvement of PPI networks through the prediction of miss-

ing protein interactions and identification of false positives. We consider both of

these problems from the evolutionary angle and address them using systematic

comparative analysis. In the following sections we review relevant computational

frameworks proposed previously and describe the basic motivations behind our

approach.

6



1.2 Network alignment: identifying conserved subnetworks

1.2 Network alignment: identifying conserved

subnetworks

One of the key approaches to the analysis of large PPI networks is through net-

work alignment, or comparison of two or more networks to uncover similar regions

(see Sharan & Ideker, 2006; Yosef et al., 2008, for reviews). Intuitively, we are

interested in identifying subnetworks (network modules) which are conserved in

the compared species (see Fig. 1.3). The conservation is assessed both on the

level of nodes (respective protein sequences should be similar) and on the level

of edges (corresponding nodes should have similar patterns of interactions). The

precise formulation of alignment depends on the particular approach.

In a pioneering study Kelley et al. (2003) construct an alignment graph in

which nodes represent pairs of homologous proteins (one from each of the two

compared networks) and edges represent conserved interactions. In practice, ho-

mology is established based on sequence similarity. The authors use a randomized

dynamic programming algorithm to search through the alignment graph for con-

served interaction pathways (simple paths). This approach is extended in Sharan

et al. (2005a) to enable the search for conserved complexes. A new scoring func-

tion is developed and high-scoring dense subgraphs of the alignment graph are

identified by greedily expanding small subgraph seeds. A similar procedure, but

with a different evolutionary motivated scoring of nodes and edges, is presented by

Koyuturk et al. (2006). Sharan et al. (2005b) propose a modified version of their

previous method which aligns three (rather than two) networks simultaneously.

A drawback of the alignment graph is that it includes a node for every tuple

of similar proteins (one from each input network). The commonly used similarity

functions (e.g. based on BLAST E-value) generally impose a many-to-many

correspondence between proteins, which causes the size of the alignment graph

to grow exponentially with the number of aligned networks. Flannick et al. (2006)

present a different approach to network alignment, which addresses this problem

by greedily assigning the aligned proteins to non-overlapping homology classes

and progressively aligning multiple input networks. The algorithm also allows

searching for a wider range of subnetworks (not limited to pathways or dense

clusters) defined by the user.

7



1.2 Network alignment: identifying conserved subnetworks

Figure 1.3: A conceptual illustration of conserved network modules identified by net-
work alignment. PPI networks of three different species (blue, yellow and green) are
shown in (A). Three examples of connected subnetworks conserved in the considered
interactomes are shown in (B). Each row in (B) presents an instance of one network
module for each of the three species. Node colors in (B) denote homology relationships
(sequence similarity) and establish correspondence between nodes. A protein may have
many homologs in its own species, as well as in other species. In a conserved module,
nodes of the same color should have a similar profile of interactions. Ideally, an in-
teraction between nodes of two given colors should be always present or always absent
(the latter situation is usually not interesting). In practice, perfect conservation is rare.
Interactions of a given type might be absent completely in some species or carried out
only by selected proteins.

8



1.2 Network alignment: identifying conserved subnetworks

Other approaches to network alignment and modifications of the previous

procedures have been devised more recently. Hirsh & Sharan (2006) update the

scoring function of their aligner, assigning probabilities to interaction loss and

emergence in a single evolutionary step leading from an ancestral module (protein

complex) to the observed interaction patterns. Berg & Lassig (2006b) develop a

new approach in which the evolutionary conservation of nodes and edges is treated

on equal basis. They heuristically solve a quadratic assignment problem to iden-

tify the highest-scoring mapping between nodes of two networks. Li et al. (2007)

phrase the network alignment problem in terms of integer quadratic program-

ming, preselecting the aligned subgraphs and aligning them globally. Narayanan

& Karp (2007) apply a top-down approach to detect maximal matching subnet-

works. They iterate the match step which removes all proteins without coun-

terpart in the other network, and the split step which partitions the networks

into connected components. Owing to a local and monotonic match function, the

algorithm finds the optimal solution in polynomial time. In some cases, however,

it has to be coupled with a heuristic clustering procedure, in order to identify

biologically meaningful results. Among the most recently developed methods is

an approach by Singh et al. (2007), inspired by Google’s PageRank algorithm

(Brin & Page, 1998). It solves an eigen value problem, corresponding to random

walks in the alignment graph, to recover a global mapping of nodes between two

networks. Also very recently new updates of previous procedures have been pro-

posed by Kalaev et al. (2008) and Flannick et al. (2008). The former provides a

new representation of the alignment graph and restricts it only to certain types of

homology relationships, enabling fast multiple network alignment. In the latter

work, the authors enhance their previous solution with a more elaborate scoring

function and an iterative procedure based on subgradient descent for learning the

function’s free parameters from data.

It is worth explaining that each of the mentioned methods formulates and

solves a quite different mathematical problem. The notion of an evolutionar-

ily conserved subnetwork is not precisely defined. The best one can do is to

postulate desirable characteristics based on previously described examples and

relevant biological knowledge. In general, many mathematical formulations of
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network alignment result in NP-hard problems, related to the subgraph isomor-

phism problem. Thus various types heuristics and simplifying assumptions often

have to be applied. Another important issue is the evolutionary relevance of the

identified alignments. As suggested by Sharan & Ideker (2006), network align-

ment should progress towards methods more strongly rooted in models of network

evolution. This aspect was not fully explored by previous studies. Specifically,

while evolutionary motivated alignment scores were considered (Koyuturk et al.,

2006; Flannick et al., 2006; Hirsh & Sharan, 2006; Berg & Lassig, 2006b), none

of the previous methods modeled the process of network growth and divergence

in time, taking into account the possible states of the network at subsequent

evolutionary stages. Our approach presented in Dutkowski & Tiuryn (2007) and

further extended in this thesis attempts to address this goal. Instead of devel-

oping a scoring function which would capture the postulated characteristics of

conserved modules, we attempt to reconstruct the evolutionary history of protein

networks and, ultimately, discover ancestral network components best supported

by the input data. The reconstruction process is guided by phylogenetic trees,

representing the evolution of network nodes, and assumes a probabilistic model

of interaction dynamics.

1.3 Computational methods for predicting pro-

tein interactions

The second type of methods considered here are computational approaches for

predicting PPIs. These approaches complement experimental methods and can

be used to validate noisy data and select new targets for screening experiments

(Shoemaker & Panchenko, 2007a). Over the past few years many such techniques

have been proposed (see Valencia & Pazos, 2002; Shoemaker & Panchenko, 2007a;

Valencia & Pazos, 2008, for reviews). The available algorithms explore various

types of experimental sources and apply different modeling frameworks. As an ex-

ample, Enright et al. (1999) and Marcotte et al. (1999) infer PPIs from sequence

data by identifying distinct proteins in the species of interest which are fused

together into one protein in another species. Pellegrini et al. (1999) construct

10
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phylogenetic profiles based on the presence or absence of homologous proteins

in many species. These profiles are clustered to determine functionally related

and potentially interacting proteins. Various classification-based approaches have

also been applied to predict PPIs (Bader et al., 2004; Chen & Liu, 2005; Bleakley

et al., 2007). Heterogeneous data sources, including mRNA co-expression, co-

essentiality and co-localization, have been integrated in a Bayesian framework by

Jansen et al. (2003). Other authors explore the premise that interacting proteins

often co-evolve and use similarity of phylogenetic trees as evidence of protein in-

teractions (Pazos & Valencia, 2001; Jothi et al., 2005; Juan et al., 2008). Another

popular framework uses maximum likelihood estimation (MLE) for inferring the

probability of domain-domain interactions from PPI data (Deng et al., 2002; Liu

et al., 2005; Lee et al., 2006). Methods most relevant to our analysis, which iden-

tify highly probable PPIs through integration and transfer of interaction evidence

between species, are described next.

1.3.1 Transferring interaction evidence across species

The comparative approach, useful for identifying conserved functional modules,

also provides a powerful basis for inferring the most reliable interactions and

transferring them to other organisms. In its simplest form, this idea is im-

plemented in the interolog (the term interlog is also used) mapping method

(Matthews et al., 2001). The method predicts an interaction between a pair

of proteins (a,b) if in another species there exists a known interaction between

a pair (a’,b’), where a’ and b’ are orthologs of a and b, respectively. In prac-

tice, orthology is concluded based on high sequence similarity. Integration of PPI

evidence across species can also be achieved at the level of conserved domains

(independently stable protein parts). Liu et al. (2005) devise a maximum like-

lihood method, similar to the one by Deng et al. (2002), but using data from

multiple organisms. In summary, they estimate the probability of interactions

between each pair of considered domains, based on the PPI evidence from multi-

ple species. Inferred domain-domain interactions constitute integrated evidence,

which is in turn used to predict protein-protein interactions. A similar method,

11
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but using heterogeneous data sources (including protein fusion and Gene Ontol-

ogy annotations), is used by (Lee et al., 2006). In general, combining interaction

evidence from different species makes PPI predictions more robust to experi-

mental noise. False positive observations are unlikely to be reproduced across

multiple species (Sharan & Ideker, 2006). Furthermore, evolutionarily conserved

interactions are expectedly biologically significant. Evolutionary pressures are

more likely to constrain functional units, such as protein complexes, than single

interactions (Beltrao & Serrano, 2007). Hence, if an interaction has experimental

support in datasets from diverse species, it is likely to be part of a significant

functional unit. Highly probable interactions identified in a subset of species can

also be transferred to other species (Bork et al., 2004), as was done by (Sharan

et al., 2005b) to predict missing interactions within conserved protein modules.

1.4 Our approach

The methods used for aligning PPI networks and methods for predicting inter-

actions are quite diverse, both at the level of input data, as well as the applied

modeling frameworks. As often the case in computational biology and other ap-

plied sciences, we are given some general characteristics of the desired output,

but the ways of achieving it are left open. The precise mathematical formula-

tion of the problem, motivated by biological considerations, is already part of the

solution.

In this thesis we develop a unified approach for comparing PPI networks. It

addresses the two challenges described in the previous sections: network align-

ment and interaction inference. We now explain the specific motivations behind

our approach which made it different from methods proposed previously.

We attempted to develop a method that would be well grounded in a mathe-

matical model of network evolution. Considerable amount of research has already

been devoted to random graph models, including ones which aim to describe the

evolution of PPI networks. The networks observed today were not created in-

dependently from scratch, but instead evolved from a smaller ancestral network.

During the evolution, many proteins of the original network were duplicated (some

of them multiple times), forming families of homologous proteins. Many of the

12
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interactions were conserved in the new proteins, while others were lost in one or

both of the duplicates. New interactions could also have formed to accommodate

new functions. Finally, some of the proteins might have been lost. At distinct

time points spaciation events took place, enabling two copies of the network (one

for each resulting species) to evolve independently from each other. We model

the discrete steps of this growth process using a version of a duplication and

divergence model. It allows us to account for possible changes in the protein

space, as well as network rewiring events, i.e. interaction emergence and loss.

In our model the rewiring events are associated with protein duplications and

speciations, which are recovered from protein sequence data based on phyloge-

netic analysis. The reconstructed protein evolution serves as a backbone to study

the evolution of protein interactions. We believe that this approach coincides

well with the concepts of evolutionary systems biology as described by Medina

(2005) and addresses the needs for a model-based network comparison framework

postulated by Sharan & Ideker (2006).

We address the network alignment problem by reconstructing a hypothetical

ancestral network, based on the protein sequences and interactions found in the

input data. Nodes of this network represent ancestral proteins, descendants of

which have been conserved in the observed input networks. Edges of the network

are assigned weights which denote the probability of interaction between adjacent

ancestral proteins. These probabilities are calculated as the posterior probabilities

given the interaction data in the input networks and the evolutionary model,

by which the input networks are assumed to have evolved from their common

ancestor. The regions of the ancestral network with high interaction probability

can therefore be regarded as a merged representation of the common proteins

and interaction patterns that have been conserved in the input networks. An

additional layer in our model enables the integration of PPI datasets from multiple

experiments and across species. This provides us with an evolutionary-based

approach for identifying the most reliable interactions and transferring them to

relevant proteins in other organisms.

Additional important considerations include the ability to compare multiple

networks and identify conserved subgraphs of unconstrained topology. The for-

mer is achieved through the direct use of protein families, which group the nodes

13
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of the compared networks. The number of protein families does not significantly

increase with the number of species, allowing a tractable solution to the align-

ment problem. The inherent ability to recover subnetworks of arbitrary topology

is due to a very selective search for the most conserved pairwise associations,

which considers the evolution of each protein family. This selectivity results in

decomposition of the network into specific, functionally related, connected com-

ponents. One final advantage of the presented framework is that it provides the

basis to distinguish the modes of network evolution and infer the relative weights

of neutral and selective dynamics – challenges put forward by Berg & Lassig

(2006a). At the end of this thesis, we describe a procedure for learning the pa-

rameters of our model from data, providing a way to infer rates of neutral and

conserving PPI evolution.

1.5 How this thesis is organized

In Chapter 2 we discuss popular methods for comparing biological sequences,

identifying protein families and reconstructing phylogenetic trees. In Chapter 3

we review selected developments in the theory of random graph models, which lay

the foundations for characterizing and understanding the evolution of large net-

work systems. In Chapter 4 we review the Bayesian network modeling framework,

define the inference problem and describe Pearl’s message passing algorithm for

exact inference in polytrees. Chapters 2, 3 and 4 contain preliminary material.

They are presented for completeness, in an attempt to make the discussion self-

contained. The reader familiar with these topics can move straight to Chapter 5

and reference the preceding chapters if necessary.

In Chapter 5 we describe our network alignment framework and apply it to

recover conserved functional modules in yeast, worm and fly. The material of this

chapter was originally presented in Dutkowski & Tiuryn (2007). In Chapter 6 we

address the problem of integrating and reconciling PPI datasets within and across

species, in order to infer missing associations and filter out false positive ones.

We extend our framework and apply it to reconcile seven eukaryotic networks, in-

cluding the human interactome. In Chapter 7 we develop a procedure to learn the

parameters from data using the expectation maximization (EM) scheme. We also

14



1.5 How this thesis is organized

provide preliminary experimental results on detection of conserving interaction

evolution among selected pairs of protein families. Chapters 5, 6 and 7 should

best be read in the presented order. Each of them successively builds on the

preceding material. In Chapter 8 we summarize our results and mention possible

ways of enhancing our framework. We also describe new research perspectives

related to biological network analysis and discuss the possible application of our

results towards the comparison of regulatory networks and networks of genetic

interactions.
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Chapter 2

Protein sequence alignments,

families and phylogenies

In this chapter we review basic methods used in protein sequence analysis, which

we will later apply to identify protein families and reconstruct their phylogenetic

history. We note that this overview is by no means exhaustive, neither in the

depth of provided description, nor in the collection of covered methods. For each

of the problems mentioned here many different algorithms have been developed.

We use protein sequence analysis only to prepare the input data for our algorithm.

Thus the choice of the particular methods is not central to the topic of our study.

In some cases, in particular for multiple sequence alignment and phylogenetic

tree building, we selected the methods based on their efficiency. Due to the scale

of the analysis and limited computational resources, we had to resign from using

some algorithms which are considered more accurate, but are also considerably

slower. Some of these alternative choices are mentioned in the text below. For

a broader coverage of biological sequence analysis see Durbin et al. (1998) or

Pevzner (2000) on which the following short review was partially based. Part

of the material on sequence alignment and the neighbor joining algorithm also

follows Tiuryn (2006).
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2.1 Pairwise sequence alignment

Let σ be an alphabet not containing the symbol ′−′ and let σ′ = σ ∪ {′−′}. Let

S1, S2 be two sequences over σ, where n = |S1| and m = |S2| are lengths of these

sequences, respectively. In our application the alphabet σ is the set of aminoacids

which proteins are composed of.

2.1.1 Global alignment (Needleman-Wunsch)

A global alignment of sequences S1, S2 is given by two sequences SA1 , S
A
2 of length

k (k ≤ n,m) over the alphabet σ′. SA1 is the sequence S1 with the symbol ′−′

inserted in k − n positions. Similarly SA2 is the sequence S2 with the symbol ′−′

inserted in k −m positions.

Our goal is to find the highest-scoring alignment, where the score of the align-

ment is defined as: ∑
i=1...k

s(SA1 (i), SA2 (i)),

where SA1 (i) (SA2 (i)) is the i-th letter in sequence SA1 (SA2 ) and s : σ′ × σ′ → R is

a scoring function corresponding to the similarity of a pair of letters. It is easy

to see that we can compute the optimal alignment score by means of dynamic

programming based on the recurrence (Needleman & Wunsch, 1970):

vi,j = max


vi−1,j−1 + s(S1(i), S2(j))

vi−1,j + s(S1(i),′−′)
vi,j−1 + s(′−′, S2(j))

,

where vi,j is the maximal alignment score for the prefixes S1[1..i] and S2[1..j].

We assume that v0,0 = 0. To find the actual alignment, we can keep pointers

backwards, and reconstruct the path by backtracking.

In practice the scoring function s is given by a substitution matrix which

reflects the frequency at which a given letter of the alphabet substitutes another

one. Many such matrices for various types of biological sequences (protein, DNA,

RNA) have been proposed in the literature (see Durbin et al., 1998).
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2.1.2 Local alignment (Smith-Waterman)

It is often the case that only fragments of genes or proteins are similar to each

other. Thus in biological applications we are often more interested in finding two

most similar substrings of given sequences than the global alignment. Formally,

in local alignment we want to find the maximum score

v∗ = max{wi,j|i ≤ n, j ≤ m},

where wi,j is the maximum global alignment score between some suffix of the

sequence S1[1..i] and some suffix of the sequence S2[1..j]. It is easy to see that to

compute wi,j we can consider global alignments of the sequences S1[1..i], S2[1..j]

with the special option of a ”fresh start” at any point in the alignment (meaning

that we do not count the alignment up to that point in the sequences). The

following recurrence expresses this idea (Smith & Waterman, 1981):

wi,j = max


0

vi−1,j−1 + s(S1(i), S2(j))

vi−1,j + s(S1(i),′−′)
vi,j−1 + s(′−′, S2(j))

.

2.1.3 BLAST

In application where large databases are queried or when we need to exhaus-

tively compute pairwise distances for a large number of proteins, fast alignment

heuristics are especially useful. One particularly popular choice is the BLAST

algorithm (Altschul et al., 1990), designed to find high-scoring local alignments

quickly, without guaranteeing the optimality of the result. The basic idea behind

the algorithm is to start with short intervals of very high-scoring alignments of

length l, referred to as seeds. Each of these seeds is expanded and alignments

with scores above a threshold T are identified. The statistical significance of each

of these alignments is assessed based on the Gumbel extreme value distribution

(EVD). An E-value corresponding to the expected number of sequences from a

given set which score higher than the given alignment is computed (see Altschul

et al., 1990; Durbin et al., 1998).
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2.2 Multiple sequence alignment

Multiple sequence alignment, i.e. alignment of three or more sequences, is a com-

mon strategy used to find conserved sequence regions, represent protein families

and prepare data for reconstructing phylogenetic trees. We consider the following

formulation of the multiple alignment problem.

For a pairwise sequence alignment SA1 , S
B
2 we define the alignment score by:

δ(SA1 , S
A
2 ) =

∑
i=1...n

δ(SA1 (i), SA2 (i)),

where δ now denotes the distance between two letters of the alignment instead of

their similarity. We define the score of a multiple alignment of l sequences by:

δ(SA1 , . . . , S
A
l ) =

∑
i<j

δ(SAi , S
A
j ),

the so called sum-of-pairs distance.

The problem of finding a multiple sequence alignment (SA1 , . . . , S
A
l ) minimiz-

ing the sum-of-pairs score has been shown to be NP-hard (Wang & Jiang, 1994;

Just, 2001). A practical approach to the problem is to align the sequences progres-

sively. CLUSTALW is one of the most popular programs based on this concept.

2.2.1 CLUSTALW

The CLUSTALW algorithm (Higgins et al., 1994) for multiple sequence alignment

is based on the following scheme:

1. Align each pair of sequences Si, Sj (i < j) either approximately (faster)

or exactly by using dynamic programming. The number of matches in the

alignment is divided by the length of the alignment and subtracted from

1 to get the percent of mismatches. The percent of mismatches (number

of mismatches per site) is used to approximate the evolutionary distance

between the two sequences.

2. Based on the computed distances, construct a phylogenetic tree using the

neighbor joining algorithm (see next section). The root of this tree is se-

lected in a way such that the mean distances between the root and the

leaves on each side of the tree are approximately equal.
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3. The sequences are aligned progressively at each node (starting from the

leaves and going up the tree), using sequence-to-sequence, sequence-to-

profile and profile-to-profile alignments. The profiles represent alignments

from previous stages of the algorithm. At each node the aligned instances

are weighted according to their distance from this node in a way such that

the most distant ones have the highest impact on the alignment score.

For aligning profiles, the generalized score of aligning a column of symbols

x1, . . . xr1 with the column y1, . . . yr2 takes the form:∑
i=1..r1

∑
j=1..r2

s(xi, yj)wsi
wsj

,

where xi (yj) comes from the sequence Si (Sj) and wsi
(wsj

) is the weight

of the sequence Si (Sj).

CLUSTALW performs alignments heuristically and includes many additional

steps that improve its performance – see Durbin et al. (1998) for an overview and

Higgins et al. (1994) for details. Other popular methods for multiple sequence

alignment include T-coffee (Notredame et al., 2000) and Muscle (Edgar, 2004).

2.3 Sequence clustering

Sequence clustering is a primary tool for the identification of protein families. It

many cases, it is desirable to cluster proteins from the entire proteomes of many

species. These datasets typically contain hundreds of thousands of sequences.

Thus again, the efficiency of the algorithm is crucial to its applicability. Another

problem, which diminishes the performance of some more standard methods, is

the presence of multi-domain and fragmented proteins. One of the recently de-

veloped algorithms that has gained significant recognition in the community is

the Markov Cluster (MCL) algorithm by Enright et al. (2002). It has been suc-

cessfully applied to cluster large databases of protein sequences (Enright et al.,

2002; Li et al., 2003; Dujon & Sherman, 2004). Among other applications, MCL

has also shown its effectiveness in detecting dense clusters in protein-protein in-

teraction networks (Brohee & van Helden, 2006).
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2.3.1 Markov Cluster

The MCL algorithm is designed to identify dense subgraphs (clusters) in large

weighted graphs (Enright et al., 2002). Intuitively, a graph cluster should have

many edges between its members and relatively few to nodes outside. The weights

of edges inside the cluster should generally be higher than those between clusters.

Speaking in terms of random walks on graphs, we should rarely exit a natural

cluster ones we are inside it.

MCL represents the similarity graph in the form of a column stochastic matrix,

i.e. a non-negative matrix in which every column sums up to 1. The algorithm

simulates random walks in the graph by alternating two matrix operations called

expansion and inflation. Expansion coincides with matrix squaring (using normal

matrix product). The inflation step involves taking the I-th power of every entry

(Hadamard power) of the matrix and scaling the matrix to make it stochastic

again. Expansion corresponds to computing random walks and is responsible for

spreading out the stochastic flow in the graph. Longer paths should be more

common within natural clusters, so the probabilities associated with transition

to nodes within the same cluster should, in general, become higher. The inflation

step further increases the higher probabilities and thus should have the effect of

depressing the transitions between natural clusters. The parameter I controls

the granularity of the clustering – larger I results in tighter clusters. Iterating

the expansion and inflation steps results in a separation of the graph into sepa-

rate connected components, identified as clusters. The global convergence of the

algorithm has not been proven. In general convergence is noticeable after 3 to 10

iterations (Enright et al., 2002).

The similarity relationships between proteins can be naturally represented in

the form of a graph. Following Enright et al. (2002) we assign the weights in

the graph based on the BLAST E-values. Specifically, since E-values are not

necessarily symmetric, we take the average of the scores − log10(E-value) for the

two proteins. This results in a symmetric matrix which is scaled to transform

the weights to transition probabilities. MCL is applied to this matrix to identify

protein families.
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2.4 Phylogenetic trees

Phylogenetic trees are used to represent evolutionary history of species and bi-

ological sequences (genes and proteins). Trees which represent the evolution of

species, referred to as species trees, are usually constructed from representative

sequences (one from each species). To represent the evolution of sequences from

a certain gene/protein family, a gene family tree (also called a gene tree) can be

constructed. Gene trees may contain multiple sequences from one species – a

result of possible gene duplication events. Phylogenetic tree reconstruction from

sequence data is a fundamental problem in computational biology. Here we de-

scribe the neighbor joining algorithm which is efficient and provides a correct tree

under certain conditions. Other popular methods have been developed based on

optimization principles such as maximum likelihood and maximum parsimony

(for a review see Nei, 1996). In section 2.4.2, we consider the task of reconciling a

gene family tree with a species tree, consequently identifying protein speciation,

duplication and loss events.

2.4.1 Neighbor joining

The neighbor joining (NJ) algorithm is a metric-based method for tree recon-

struction. Suppose we are given a distance matrix {dij}i,j=1..n, containing pair-

wise distances between n sequences – leaves of a tree T which is not provided.

We assume that the distances are from a proper metric function, i.e. all of the

following conditions are met for all i, j, k:

• dij ≥ 0 and dij = 0 if and only if i = j,

• dij = dji,

• dij ≤ dik + dkj.

Let us further assume that the distances {dij}i,j=1..n are additive with respect

to T , i.e. for every i and j, dij is equal to the sum of edge lengths on the path

from i to j in T . Take two leaves i, j that are neighbors in T having (the same)

parent p. Due to additivity, we have for each m 6= i, j:

dpm =
dim + djm − dij

2
, (2.1)
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where dvm is the distance from a node v to m in T . Notice that we can now replace

the two leaves by their parent p and consider a smaller problem. Following this

way we can iteratively identify all distances in the tree. We only need to show

how to identify the neighbors in the tree T from the distance matrix alone.

Notice that the choice of leaves with minimal distance to each other does not

guarantee that they have the same parent – for an example see Durbin et al.

(1998), p. 170. Instead, we define:

Dij = dij − (ri + rj), (2.2)

where ri is defined as

ri =
1

n− 2

∑
k∈L

dik, (2.3)

where L is the set of all leaves.

Theorem 2.1 If a tree T has at least three leaves and {dij} is additive with

respect to T then each pair of leaves i, j which minimizes Dij (2.2) is a pair of

neighbors in T (Studier & Keppler, 1988).

We can now write down the algorithm for reconstructing T from the matrix {dij}
(the NJ algorithm).

• Initialize L to be the set of leaves.

• Iterate:

1. Select i, j ∈ L with the minimal Dij and remove them from L.

2. Define a node p and set dpm =
dim+djm−dij

2
, for all m ∈ L \ {i, j}.

3. The tree rooted at p is constructed from trees rooted at i and j

by adding edges from p to i (j) with lengths dip =
dij+ri−rj

2
(djp =

dij+rj−ri
2

).

• Stop when L has only two nodes u, v with the corresponding trees Tu and

Tv and add the remaining edge with length duv. This way we receive an

unrooted tree T .
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Theorem 2.1 and equation (2.1) imply that the definition of dip gives the

correct lengths. The theorem by Buneman (1971) provides a test to determine if

the metric {dij} is additive.

Theorem 2.2 There exists a tree T for which the metric {dij} is additive if and

only if for every four leaves i, j, k and l, two of the distances dij + dkl, dik + djl,

dil + djk are equal and larger than the third (the four-point condition).

In practice the NJ algorithm is often used when the distances are not additive,

but without the guaranteed correctness.

2.4.2 Reconciliation with a species tree

We now consider the problem of reconciling a gene family tree with a given

species tree. An intuitive illustration of the problem and motivations are given

in Fig. 2.1. Below we formally define the reconciliation tree following Górecki &

Tiuryn (2006a) and comment on the related problems and available algorithms.

Let S be a rooted species tree, i.e. a binary rooted tree whose leaves are

uniquely labeled with species names from a set L. Let G be a rooted gene tree,

i.e. a binary rooted tree whose leaves are uniquely labeled with gene names where

each gene comes from one of the species in L (note that we can have multiple

genes from the same species). In case of a species tree, the leaves are naturally

associated with species. For gene trees we will associate each leaf with the species

from which the gene comes from. For any tree T we denote by T (v) the tree rooted

at node v and by L(T ) the set of species associated with the leaves of T . We

assume that the considered gene and species trees are non-empty.

For each node g ∈ G let M(g) be the node s ∈ S for which

L(S(s)) =
⋂
{L(S(w))|w ∈ S and L(G(g)) ⊆ L(S(w))}.

In other words, each node g of the gene tree G is mapped by M to the least

common ancestor in S of all the species associated with its leaves. In particular,

each leaf of the gene tree is mapped to the leaf in S representing the same species

from which the gene in the leaf comes from.

We now define the reconciled tree R(G,S) (see Page & Charleston, 1997;

Górecki & Tiuryn, 2006a). Let s be the root of S and g be the root of G. If G
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Figure 2.1: Modeling evolutionary scenarios using embedded gene family trees. Part
(A) illustrates a species tree (left) and a gene tree (right) representing the evolution of
a family of genes, where each gene is labeled by the species from which the sequence
was obtained. The evolution of the gene family is inherently tied with the evolution of
the species – represented by the embedding of gene tree within the species tree (center).
In (B) given a species tree (S) and a gene tree (G) reconstructed from sequence data,
we aim to find evolutionary scenarios which explain the differences between them in
terms of gene duplications and losses. One of such scenarios is represented by the
reconciled gene tree (R) shown in the middle. It presents a biologically plausible case
(preserving the original gene relationships) and is optimal in terms of gene duplications
and losses. The internal nodes of the reconciled tree are related either to speciations,
gene duplications or losses. Figure adapted from Górecki & Tiuryn (2006a).
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and S are both trees with only one leaf then R(G,S) = G. Else let p, q be the

children of g. Then we have

R(G,S) =



(R(G(p), S), R(G(q), S)) if M(g) = s = M(q)

(R(G(p), S), R(G(q), S)) if M(g) = s = M(p)

(R(G(p), S(a)), R(G(q), S(b))) if M(g) = s and M(p) ∈ S(a)

and M(q) ∈ S(b)

(R(G,S(a)), S(b)) if M(g) ∈ S(a) b 6= a

where a and b are each children of s.

R(G,S) represents an embedding of the tree G in the tree S (see Fig. 2.1).

It is obvious that it can be computed in time O(|G| ∗ |S|). The tree R(G,S)

minimizes the number of duplication and speciation events over all scenarios that

are feasible given the tree G and S (see Górecki & Tiuryn, 2006a). We will be

interested in the case when the gene tree is unrooted (the NJ algorithm produces

such trees). In this situation we can consider the number of duplication and

speciation events as a criterion for choosing the correct root assignment. This

kind of a parsimonious approach is often considered biologically relevant. Chen

& Durand (2000) sketch a dynamic programming algorithm for identifying the

rootings (possibly not unique) which minimize the sum of the number of dupli-

cation and speciation events. Górecki & Tiuryn (2006b) provide an algorithm

(an prove its correctness) for the same problem, additionally taking into account

positive weights for losses and duplications.
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Chapter 3

Random graph models of

network evolution

Properties of complex systems have always interested researchers, especially physi-

cists and mathematicians. In the past years many efforts have been devoted to

the study of large networks, in particular from the areas of computer science, en-

gineering, economics and sociology. Recently, the development of efficient exper-

imental techniques for identifying PPIs has opened a new domain for theoretical

network studies. Large protein-protein interaction maps are analyzed to charac-

terize their topological features and organisation. Through the construction and

analysis of mathematical models one can hopefully gain understanding of how

some the observed network properties might have emerged.

Networks are naturally modeled by graphs. Depending on the network do-

main, these graphs may be directed or have weighted edges. When modeling

PPI networks, we will be mostly interested in undirected and unweighted graphs,

possibly containing loops (edges which join nodes to themselves). We start this

chapter with a review of some of the observed properties of protein interaction

networks. Afterwards, we survey selected random graph models with respect to

their applicability towards modeling the interactome.
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3.1 Properties of PPI networks

3.1 Properties of PPI networks

Given two observed networks, a natural question to ask is if the networks are sim-

ilar or if they contain isomorphic subnetworks. This question cannot be addressed

effectively due to the hardness of the subgraph isomorphism problem. Instead,

topological graph properties are commonly used to characterise and compare ob-

served networks.

3.1.1 Degree distribution

One of the main, often characterised, network traits is the degree distribution.

In many naturally occurring networks, in particular those of protein interactions,

this distribution has been observed to closely resemble the power-law (see Yook

et al., 2004):

P (k) ∝ k−α,

where P (k) is the fraction of nodes of degree k and α is a parameter (often

taking value between 2 and 3). Networks having a power-law degree distribution

are called scale-free.

3.1.2 Clustering coefficient

The clustering coefficient is often used to quantify the tendency for local cliques

in the network. The clustering coefficient for a node v in the graph G is expressed

as (Watts & Strogatz, 1998):

Cv(G) =
number of edges between neighbors of v(

dG(v)
2

) ,

where dG(v) is the degree of the node v. The denominator denotes the number of

pairs of edges incident to v. There are two alternative definitions for the clustering

coefficient of the entire graph G. The one most often used corresponds to the

mean clustering coefficient over all nodes:

C(1)(G) =
n∑
v=1

Cv(G)/n.
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In the alternative definition Bollobás (2003) takes a weighted mean considering

the degree of each node:

C(2)(G) =

( n∑
v=1

(
dG(v)

2

)
Cv(G)

)
/

n∑
v=1

(
dG(v)

2

)
.

This definition is equivalent to:

C(2)(G) =
number of pairs of adjacent edges ab, ac, for which bc is an edge

number of pairs of adjacent edges ab, ac
.

It has been postulated that PPI networks have a constant positive clustering coef-

ficient which is independent of the number of nodes. Often it is simply described

as larger than in random graphs (in the sense of Gilbert’s model, see Section

3.2.1).

3.1.3 Diameter

The distance between two nodes in the network is defined as the shortest path

between them. The diameter of a network is the longest distance between any two

nodes. Observed PPI networks are usually composed of a number of connected

components of which one is dominating in size and is referred to as the giant

component. The diameter of the observed giant components is usually of the

order of log nc, where nc is the number of nodes.

3.2 Selected models of random graphs

3.2.1 Gilbert’s model

The model of Gilbert (1959) (see also Bollobás, 2001; Bollobás, 2003) is the space

Gn,p of random graphs with n vertices, in which each edge vivj (i 6= j) occurs

with probability p. In other words, if G is a graph from this space with m edges

then the probability of G is

P (G) = pm(1− p)N−m,

where N =
(
n
2

)
. Gilbert’s model is the most widely studied and characterised

random graph model. In many cases it is interchangeable with a slightly different
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3.2 Selected models of random graphs

model studied by Erdös & Rényi (1959). Below we list some of the known results

for n −→ ∞ and p = c/n, where c > 0 is a constant.

Degree distribution The degree distribution in this model is approximated

by the Poisson distribution (see Bollobás, 2003):

Pr

(
(1− ε)c

ke−c

k!
≤ P (k) ≤ (1 + ε)

cke−c

k!

)
−→ 1,

for ε > 0.

Clustering coefficient The expected value of the clustering coefficient isO(n−1)

for both definitions in Section 3.1.2.

Expected number of subgraphs isomorphic to a given graph Let H be a

graph with k vertices and l ≥ 2 edges. By Aut(H) we denote the automorphism

group of H. Denote by X the number of subgraphs isomorphic to H in the

random graph G from the space Gn,p. Then the expected value of X is given by:

E(X) =

(
n

k

)
k!

|Aut(H)|
pl ∼ nk

|Aut(H)|
pl.

It is also possible to show that the distribution of subgraphs isomorphic to H

converges to Poisson distribution, if H is a graph which is strictly balanced (see

Bollobás, 2001).

Unfortunately, due to its degree distribution and the declining clustering coeffi-

cient, this simple model is not appropriate for PPI networks.

3.2.2 Preferential attachment

In recent years many models have been proposed to explain the scale-free nature

of naturally occurring networks. Often these models were stated in natural lan-

guage, not very formally, and the postulated properties were supported only by

simulations. One of the most popular “scale-free” models is a model by Barabasi

& Albert (1999) which is based on the principle of preferential attachment. Bol-

lobás et al. formalized the definition of the model and provided rigorous analysis
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3.2 Selected models of random graphs

of some of its properties (Bollobás et al., 2001; Bollobás, 2003; Bollobás & Rior-

dan, 2004). They use the linearized chord diagrams in the model analysis, hence

the model name LCD.

LCD model Let v1, v2, . . . be a sequence of vertices. We define by induction

a random graph process (G
(t)
m )t≥0, such that G

(t)
m is a graph with vertices {vi :

1 ≤ i ≤ t} and m edges exiting each vertex. Note that the edges are described

as directed, although this is in fact not essential to the model and the proven

properties. Each edge contributes to the degree of both adjacent nodes (adds one

to both degrees). We first analyze the case when m = 1:

• We start with G
(0)
1 (an empty graph) or G

(1)
1 (a graph with one vertex and

one edge).

• The graph G
(t)
1 is constructed from the graph G

(t−1)
1 by adding vertex vt

and one edge between vt and vi where i is selected such that

Pr(i = s) =

{
d
G

(t−1)
1

(vs)/(2t− 1) 1 ≤ s ≤ t− 1,

1/(2t− 1) s = t.

Thus vertex vs is selected with probability proportional to its degree, according

to the preferential attachment principle. We assume that a new edge exiting vt

adds 1 to its degree. For m > 1, we add m edges exiting vt, one by one, each

time updating the degrees of the vertices.

Degree distribution Bollobás et al. (2001) show that in the limit the degree

distribution follows a power-law with parameter α = 3.

The expected number of triangles Bollobás (2003) shows that the expected

number of triangles ( 3 - element cliques) in random graph from this model is

asymptotically equal to

E(#4) ∼ m(m− 1)(m+ 1)

48
(log n)3,

when n −→∞.
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3.2 Selected models of random graphs

Clustering coefficient Based on the above result, Bollobás (2003) shows that

the expected value of the clustering coefficient (by the second definition in Section

3.1.2) is asymptotically equal to

E(C(2)(G(n)
m )) ∼ m− 1

8

(log n)2

n
,

for n −→∞.

Diameter Bollobás & Riordan (2004) show that for m ≥ 2 and a constant

ε > 0, with probability tending to 1, G
(n)
m is connected and has the diameter

(diam(G
(n)
m )) satisfying

(1− ε) log n/ log log n ≤ diam(G(n)
m ) ≤ (1 + ε) log n/ log log n.

The model’s most significant limitations with respect to modeling PPI net-

works lie in the incapability to fit the degree distribution to data (the power-law

parameter α = 3) and the diminishing clustering coefficient. Furthermore, the

preferential attachment rule cannot be easily interpreted in terms biological pro-

cesses driving PPI network evolution.

3.2.3 Duplication and divergence

We now draw attention to some biological considerations. These are important if

we want to interpret the model in terms of the underlying mechanisms which are

responsible for producing network topologies observed in nature. The most im-

portant high-level events which impact the PPI network are: protein duplication,

protein deletion, interaction emergence and interaction deletion.

Protein duplications are a crucial factor responsible for the growth of the

network. Furthermore, duplications provide an opportunity for emergence of new

functionality, since the system does not usually need two proteins with exactly the

same function (Ohno, 1970). It is often assumed that protein deletion events are

rare and so their impact is less considerable. Given the above, we now describe

a model proposed by Sole et al. (2002) (see also Pastor-Satorras et al., 2003).
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3.2 Selected models of random graphs

Model definition We define a random graph process (G
(t)
n0,p,r)t≥0, such that

G
(t)
n0,p,r is an undirected graph with n0 + t vertices.

• Start with an undirected connected graph with n0 vertices.

• Iterate the following steps:

– Duplication: At time t a vertex w is drawn uniformly at random

from the set of vertices in the graph G
(t−1)
n0,p,r and copied forming the

vertex vt (vt is initially connected to all neighbors of w).

– Divergence: Next, we modify the edges incident to vt:

1. each edge incident to vt is considered independently and removed

with probability q = (1− p),

2. each node u which was not connected to vt (before the last step)

is considered independently and an edge vtu is added with proba-

bility r.

Degree distribution Bebek et al. (2006) postulate that for r > 0 and k ≥ 1

the fraction of vertices of degree k obeys

P (k) = (1 +O(1/k))ck−b,

where b is the solution of the equation 1 = pb− p+ pb−1.

Experimental results of Bebek et al. (2005) suggest that the clustering coef-

ficient is close to the one in the observed PPI networks. The parameters of the

model provide the possibility of fitting the degree distribution to the observed

data. The duplication and divergence model has a definite advantage – it is bi-

ologically motivated. Similar models have been proposed and analysed by other

authors. Ispolatov et al. (2005b) analyse the case in which no new links are intro-

duced (r = 0) and nodes without any interactions are removed. They find that

the model generates graphs which are very similar to the ones observed in nature.

They study the average vertex degree depending on the conservation of links in

the newly duplicated protein. They conclude that the average degree increases

very slowly or tends to a constant when the link conservation is low. In contrast,
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3.2 Selected models of random graphs

when the conservation is high, the network growth is not self-averaging and re-

sults in a diversity between grown networks. Ispolatov et al. (2005a) study a

version of the model which includes heterodimerization links between duplicates.

They postulate that the model correctly describes the clique statistic observed in

natural PPI networks. They also consider symmetric models in which the diver-

gence can occur in both copies of the duplicated protein – the previously present

and the newly added one. This scenario is supported by the findings of Kon-

drashov et al. (2002) who show that duplicate proteins typically evolve at similar

rates and both copies are subject to purifying selection. Symmetric version of the

duplication and divergence model has also been investigated by Vazquez et al.

(2003).

3.2.4 Final remarks

Other models for PPI networks have also been considered. Przulj et al. (2004)

suggest that a geometric random graph model (see Penrose, 2003) better fits the

observed networks than the preferential attachment scale-free models. The au-

thors use a new measure of local network structure which is based on counting the

occurrences of small subgraphs (graphlets). More recently, the graphlet distribu-

tion, among other characteristics, was used to show that the networks grown by

the duplication and divergence scale-free model (in contrast to the preferential-

attachment model) correspond well to the observed PPI data when the growth

process is initiated from dense seed graphs (Hormozdiari et al., 2007).

An interesting and decisive example of how careful one must be when claim-

ing that a given model fits the observed data and produces graphs with desired

properties was given by Bollobás (2003). Bollobás demonstrated that the impre-

cise definition of Barabasi & Albert (1999) leads to graphs of very diverse nature,

depending on the small graph from which the growth process is initiated. Similar

observations were recently made by Hormozdiari et al. (2007). It is also worth to

remember that while most formally analyzed properties of random graph models

are proven asymptotically for the number of nodes going to infinity, the naturally

occurring networks are of finite size (captured in a given stage of evolution). Thus

their characteristics might not be directly comparable. Finally, it is also possible
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3.2 Selected models of random graphs

that many rather different models may provide graphs matching some or all of

the topological characteristics of interest (once the model parameters are fitted

to the data).

In our analysis, we assume that PPI networks evolve under a model simi-

lar in spirit to the duplication and divergence models of Sole et al. (2002), as

it is biologically relevant and provides plausible explanations for the traits ob-

served in natural networks. Our model, presented in Chapter 5, assumes that the

duplication events (and also speciations) are determined by pre-computed phy-

logenies. We assume symmetric divergence of duplicates and consider possible

interactions between them. Based on this model we develop an inference frame-

work that employs available experimental data to reconstruct ancestral states of

the interactome and predict missing interactions in present-day species.
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Chapter 4

Bayesian network models and

inference

In this chapter we review Bayesian network (BN) models and discuss one of the

primary problems addressed using this framework, namely Bayesian inference.

4.1 Bayesian networks

We start by defining the Markov condition, following Neapolitan (2003). Let V

be a set of random variables. Let P be the joint probability distribution of these

random variables. Finally, let G = (V,E) be a directed acyclic graph (DAG) in

which the nodes are identified by the random variables in V . For a pair of nodes

X, Y ∈ V (X 6= Y ), X is called a parent of Y if there is an edge in E from

X to Y . Y is called a descendant of X if there exists a path from X to Y in

G. Otherwise Y is a nondescendant of X. The pair (G,P) satisfies the Markov

condition if for each variable X ∈ V , {X} is conditionally independent of the

set of all its nondescendants given the set of all its parents. A pair (G,P) which

satisfies the Markov condition is called a Bayesian network. The joint distribution

P is represented in a Bayesian network by the set of conditional distributions of

each node given the values of its parents. The following theorem provides means

for easy computation of the joint probability from the conditional probabilities

between neighbors in G (see Neapolitan, 2003, p. 39):
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4.1 Bayesian networks

Theorem 4.1 If (G,P ) satisfies the Markov condition (i.e. is a Bayesian net-

work), then P is equal to the product of its conditional distributions of all nodes

given values of their parents, whenever these conditional distributions exist.

The next theorem establishes the basis for easy construction of Bayesian net-

works (see Neapolitan, 2003, p. 42):

Theorem 4.2 Let G be a DAG in which each node is a random variable and let

a discrete conditional probability distribution of each node given the values of its

parents be specified. Then the product of these distributions yields a joint proba-

bility distribution (let us call it P ), and (G,P ) satisfies the Markov condition.

As we will work only with discrete distributions, the above theorem is sufficient

for us. We note however, that many continuous conditional distribution specified

for G also yield a Bayesian network (see Neapolitan, 2003).

An important concept in Bayesian networks is that of d-separation which im-

plies conditional independence of separated nodes. We introduce useful definitions

and state the theorem, again following Neapolitan (2003).

A chain is a sequence of edges from the set E which defines a path in the

undirected graph underlying the DAG G. We consider three types of meetings of

edges on a chain ρ:

• A head-to-tail meeting at Z is a meeting of type X → Z → Y , where

X → Z,Z → Y ∈ E are edges on the chain ρ.

• A tail-to-tail meeting at Z is a meeting of type X ← Z → Y , where

X ← Z,Z → Y ∈ E are edges on the chain ρ.

• A head-to-head meeting at Z is a meeting of type X → Z ← Y , where

X → Z,Z ← Y ∈ E are edges on the chain ρ.

Let A ⊆ V be a subset of nodes of a DAG G and X, Y ∈ V \ A be distinct

nodes. Let ρ be a chain between X and Y . We say ρ is blocked by A if one of the

following holds:

• There is a node Z ∈ A on the chain ρ, at which the edges on ρ meet

head-to-tail.
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• There is a node Z ∈ A on the chain ρ, at which the edges on ρ meet

tail-to-tail.

• There is a node Z on the chain ρ, at which the edges on ρ meet head-to-head

and Z is not in A and none of Z’s descendants are in A.

Note that the third condition may hold also if A = ∅. We say that X and

Y are d-separated by A ⊆ V if every chain between X and Y is blocked by

A. Given three mutually disjoint subsets of nodes A,B,C ⊆ V , we say that

A and B are d-separated by C if for every X ∈ A and every Y ∈ B, X and

Y are d-separated by C. Note again that C may also be an empty set. The

following theorem establishes the implication of conditional independence from

d-separation in Bayesian networks (see Neapolitan, 2003, p. 77):

Theorem 4.3 Let P be a probability distribution of the variables in V and G =

(V,E) be a DAG. Then (G,P ) satisfies the Markov condition if and only if, for

every three mutually disjoint subsets A,B,C ⊆ V , whenever A and B are d-

separated by C, A and B are conditionally independent in P given C.

If C = ∅ then A and B are independent in P .

4.2 Inference

We now consider the problem of probabilistic inference, i.e. computing the condi-

tional probability distribution of a random variable given the observed values of

one or more other random variables. We assume that the joint probability distri-

bution is provided by a Bayesian network, which will enable us to take advantage

of the entailed conditional independencies. In general, we will be interested in

computing all posterior marginals of non-instantiated variables given the instanti-

ated variables (evidence). We start with a few examples of inferences in a discrete

Bayesian network shown in Figure 4.1. We assume that each variable can take

value either 1 or 0 (i.e. is a binary random variable). The joint distribution P is

given by the local conditional probability tables and by the prior probability at

node X.
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�

�

�

�

Figure 4.1: An example of a Bayesian network with four binary random variables.
The local conditional probability tables specify the probability distribution of a node given
its parent. For the node X the prior probability distribution is given.
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4.2 Inference

Let’s start by computing the prior probabilities (i.e. without assuming any

values of other variables):

P (W = 1) = P (W = 1|X = 1)P (X = 1) + P (W = 1|X = 0)P (X = 0)

P (Y = 1) = P (Y = 1|X = 1)P (X = 1) + P (Y = 1|X = 0)P (X = 0)

P (Z = 1) = P (Z = 1|Y = 1)P (Y = 1) + P (Z = 1|Y = 0)P (Y = 0),

where in the last equation we can reuse the probability distribution P (Y ) com-

puted in the second equation. Let us know consider simple inferences using the

Bayes’ theorem:

P (X = 1|W = 1) =
P (W = 1|X = 1)P (X = 1)

P (W = 1)

P (X = 1|Y = 1) =
P (Y = 1|X = 1)P (X = 1)

P (Y = 1)

P (Y = 1|Z = 1) =
P (Z = 1|Y = 1)P (Y = 1)

P (Z = 1)
,

where we can again use the previously computed values of the prior probabilities.

Let us do one final inference in this network and compute the probability P (W =

1|Z = 1):

P (W = 1|Z = 1) =
∑

x∈{0,1}

P (W = 1, X = x|Z = 1) (4.1)

=
∑

x,∈{0,1}

P (W = 1|X = x, Z = 1)P (X = x|Z = 1) (4.2)

=
∑

x,∈{0,1}

P (W = 1|X = x)
∑

y∈{0,1}

P (X = x, Y = y|Z = 1)

(4.3)

=
∑

x∈{0,1}

P (W = 1|X = x)
∑

y∈{0,1}

P (X = x|Y = y, Z = 1)

· P (Y = y|Z = 1) (4.4)

=
∑

x∈{0,1}

P (W = 1|X = x)
∑

y∈{0,1}

P (X = x|Y = y)

· P (Y = y|Z = 1). (4.5)
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In (4.1) and (4.2) we introduced variable X and summed it out to break the

dependency between W and Z. In (4.3) we took advantage of the conditional

independence entailed by the Markov condition and we introduced and summed

over the variable Y . In (4.4) and (4.5), due to d-separation, we were able to ex-

press P (X = x, Y = y|Z = 1) using two local conditional probabilities (between

neighbors) which can be computed using the Bayes’ theorem and the previously

derived prior probabilities. Similarly as before when we computed the prior prob-

abilities incrementally and stored them for each node, here we can compute the

conditional distribution P (X|Z) using the conditional distribution P (Y |Z) of the

child. These ideas are used in the forward-backward algorithm (operating in the

context of Hidden Markov Models) and by its generalization, Pearl’s message

passing algorithm, which we describe next.

4.3 Pearl’s message passing algorithm

For general Bayesian networks the inference problem has been shown to be NP-

hard (Cooper, 1990). We now derive Pearl’s message passing (MP) algorithm

(Pearl, 1988) for inference in singly connected discrete Bayesian networks. In

singly connected graphs (also called polytrees) there is at most one undirected

path between any two nodes. A Bayesian network is singly connected if its un-

derlying graph is singly connected. Our notation and reasoning in this section

follows Murphy (1999) and in parts also Neapolitan (2003).

Let (G,P ) be a singly connected Bayesian network. Without the loss of

generality, we assume that the underlying undirected graph is connected. Let

A ⊆ V be a set of evidence nodes i.e. variables for which we observe values

encoded by a vector a. We are interested in computing the posterior probability

distribution (given the data) P (X = x|A = a) for every node X. Let NX ⊆ A

contain all evidence nodes that are above X, i.e. in the subgraph connected to

X via one of its incoming edges (excluding X). Let DX = A − NX contain all

other evidence nodes, i.e. those that are below X (in the subgraph connected to

X via one of its outgoing edges) and also X if X ∈ A. We write nX and dX

for the particular instances of the observed random variables from NX and DX

respectively. We also use a shorter notation writing P (z) for P (Z = z) where z
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4.3 Pearl’s message passing algorithm

is one of the possible values taken by the random variable Z. Using the Bayes’

theorem and the d-separation rule we have:

P (x|a) = P (x|dX ,nX) =

=
P (dX ,nX |x)P (x)

P (dX ,nX)
=

=
P (dX |x)P (nX |x)P (x)

P (dX ,nX)
=

=
P (dX |x)P (x|nX)P (nX)P (x)

P (dX ,nX)P (x)
=

= αP (dX |x)P (x|nX), (4.6)

where α is a constant independent of the value x.

4.3.1 λ and π values

We denote the two probabilities in (4.6) by:

λX(x)
def
= P (dX |x) (4.7)

πX(x)
def
= P (x|nX). (4.8)

Our goal is to compute (4.7) and (4.8) efficiently for each X. Notice that to

compute the unnormalized distribution of the form (4.6) it is enough to know

βλX(x) and γπX(x), where β and γ are constants independent of x. These

constants cancel out when we normalize the distribution. Let us consider the

situation in Fig. 4.2. The figure shows a random variable X together with its

parents (U1 . . . Uk) and children (Y1 . . . Yl) in the graph. We write nUi→X for the

evidence in nodes above the edge Ui → X (including Ui if Ui ∈ A), and dX→Y i

for the evidence below the edge from X to Yi (including Yi if Yi ∈ A). We denote

the possible evidence in X by eX . We define local λ messages that will be sent

from a node X to a parent node Ui as follows:

λX→Ui
(ui)

def
= P (dUi→X |ui).

The evidence nodes in each subtree rooted in Yi and the possible evidence in X

are conditionally independent given X. Thus we can write:

λX(x) =
∏
i=1...l

P (dX→Y i|x) =
∏
i=1...l

λYi→X(x),
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4.3 Pearl’s message passing algorithm

Figure 4.2: Part of a Bayesian network centered around node X. The evidence below
and in X is denoted by dX . The evidence above X is denoted by nX . The evidence
above each edge going from a parent Ui to X is denoted by nUi→X for i = 1 . . . k.
The evidence below each edge going from X to a child node Yi is given by dX→Yi for
i = 1 . . . l.
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4.3 Pearl’s message passing algorithm

if X /∈ A, and

λX(x) = P (eX |x)
∏
i=1...l

P (dX→Y i|x) = P (eX |x)
∏
i=1...l

λYi→X(x),

if X ∈ A. If X is a leaf (i.e. has no children) and is not an evidence node then

we assume that λX(x) = 1 for each x.

To compute πX(x) we consider the nodes upstream of X. Let u = u1 . . . uk

denote a particular instance of the parent nodes U1 . . . Uk. Summing over all

possible values u and considering the conditional independencies we have:

P (x|nX) =
∑
u

P (x,u|nX) =
∑
u

P (x|u)P (u|nX) =
∑
u

[
P (x|u)

∏
i

P (ui|nUi→X)

]
.

We define local π messages sent from a node X to each of its children as follows:

πX→Yi
(x)

def
= P (x|nX→Y i).

Using the defined messages and we can write:

πX(x) =
∑
u

[
P (x|u)

∏
i

πUi→X(ui)

]
.

If X is a root (i.e. has no parents) we assume that πX(x) = P (x), the prior

probability of x.

4.3.2 λ and π messages

Now computing λX(x) and πX(x) boils down to computing the λ and π messages.

We start with the λ message passed from a node X to one of its parents Ui. In

this case we have to consider all the evidence except the evidence nUi→X (see Fig.

4.3 for an example).

λX→Ui
(ui) = P (dX ,nU1→X , . . . ,nUi−1→X ,nUi+1→X ,nUk→X |ui).
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4.3 Pearl’s message passing algorithm

Figure 4.3: An example of a λ message (left) and a π message message (right). The
λ message from X to U1 considers all evidence except the evidence above the edge from
U1 to X. The π message from X to Y1 considers all evidence except the evidence below
the edge from X to Y1.

We sum over all possible instances x and u−ui
def
= (u1, . . . , ui−1, ui+1, uk) to break

the dependencies:

λX→Ui
(ui) =

∑
x

∑
u−ui

P (dX ,nU1→X , . . . ,nUi−1→X ,nUi+1→X ,nUk→X |u1, . . . , uk, x)

· P (u1, . . . , ui−1, ui+1, . . . , uk, x|ui)

=
∑
x

∑
u−ui

P (dX |x)P (nU1→X |u1) · · ·P (nUi−1→X |ui−1)·

· P (nUi+1→X |ui+1) · · ·P (nUk→X |uk)P (u1, . . . , ui−1, ui+1, . . . , uk, x|ui).

Applying the Bayes’ theorem for every j 6= i we obtain:

P (nUj→X |uj) =
P (uj|nUj→X)P (nUj→X)

P (uj)
= βj

P (uj|nUj→X)

P (uj)
,

where βj is a constant. We can also write

P (u1, . . . , ui−1, ui+1, . . . , uk, x|ui) =

= P (x|u1, . . . , ui−1, ui+1, . . . , uk, ui)P (u1, . . . , ui−1, ui+1, . . . , uk|ui)

= P (x|u1, . . . , ui−1, ui+1, . . . , uk, ui)P (u1, . . . , ui−1, ui+1, . . . , uk)

= P (x|u1, . . . , ui−1, ui+1, . . . , uk, ui)P (u1) · · ·P (ui−1)P (ui+1) · · ·P (uk)
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since all Uj (j = 1 . . . k) are marginally independent (head-to-head meeting at X

of the respective chains implies d-separation). Putting it all together, we have:

λX→Ui
(ui) = β

∑
x

P (dX |x)

[∑
u−ui

P (x|u1, . . . , ui−1, ui+1, . . . , uk, ui)
∏
j 6=i

P (uj|nUj→X)

]
,

where β = β1 · · · βi−1βi+1 · · · βk is a constant. We can express this in terms of the

λ values and π messages as follows:

β
∑
x

λX(x)

[∑
u−ui

P (x|u1, . . . , ui−1, ui+1, . . . , uk, ui)
∏
j 6=i

πUj→X(uj)

]
.

A special case, which we will be of interest to us, occurs when the underlying

DAG is a rooted tree. Then node X has at most one parent U and we have

λX→U(u) =
∑
x

λX(x)P (x|u).

To compute the π message sent from node X to its child Yi we have to consider

all evidence except the evidence below the edge from X to Yi (see Fig. 4.3). We

can express this in terms of the value πX and the λ messages coming from all

children of X except Yi:

πX→Yi
(x) = P (x|nX→Yi

) =
P (nX→Yi

|x)P (x)

P (nX→Yi
)

=
P (nX |x)P (eX |x)

∏
j 6=i P (dX→Yj

|x)P (x)

P (nX→Yi
)

=
P (x|nX)P (nX)P (eX |x)

∏
j 6=i P (dX→Yj

|x)P (x)

P (x)P (nX→Yi
)

= γP (x|nX)P (eX |x)
∏
j 6=i

P (dX→Yj
|x) = γπX(x)P (eX |x)

∏
j 6=i

λYj→X(x),

if X ∈ A, and otherwise

πX→Yi
(x) = γπX(x)

∏
j 6=i

λYj→X(x),

where γ is a constant.

46



4.3 Pearl’s message passing algorithm

4.3.3 Message propagation order

The simplest case occurs when the underlying DAG is a rooted tree. Each node

can send its λ message to its single parent once it gets the incoming λ messages

from all its children. It is easy to see that we can start by passing λ messages from

the leaves and go up the tree (visiting children before parents) until we reach the

root. Once we reach the root, we can begin sending π messages starting from the

root and moving in preorder (visiting the parents before we reach the children).

In a more general case, when the DAG is a polytree, we can select any node as

the root of the tree in the undirected sense. The selection of the root determines

a single parent for each node in the undirected graph (the only neighbor that is

on the path from this node to the root). We can again start by sending messages

from the leaves of such a tree towards the selected root. This time however,

depending on the direction of the original edges, we might have to alternate the

messages. We will send a λ message when we move against the direction of the

original edge, and a π message when we move with the direction of the original

edge. To send either a λ or a π message from a node X to a node U we need the

information from all other neighbors (see Fig. 4.3). We traverse the undirected

tree in postorder so each node will get the incoming messages from all its children

(either λ or π messages) before it has to send an outgoing message either (λ or

π) to its single parent. Again, once we get to the root, we switch to preorder

tree traversal and send the opposite messages starting from the root and going

towards the leaves.

4.3.4 Complexity of the MP algorithm

The running time of the described algorithm is linear in the number of nodes of

the polytree, polynomial in the maximum number of values a node can take, and

exponential in the maximum number of parents of a node. Let n be the number

of nodes in the polytree, k – the maximum number of values a node can take, p

– the maximum number of parents of each node, and c – the maximum number

of children of each node. For each node, we have at most kp+1p2 multiplications

needed to compute all λ messages, kc(c + 1) multiplications to compute all π

messages, k(c+1) multiplications to compute the λ value, kp+1(p+1) to compute
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4.3 Pearl’s message passing algorithm

the π value, and k multiplications to compute the posterior probability at the

node. The total number of multiplications is thus O(nkp+1(p2 + p+ 1) + nkc2 +

n2kc+ n2k).
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Chapter 5

Network alignment: identifying

conserved subnetworks

In this chapter we develop our network comparison framework. It is based on

the reconstruction of a conserved ancestral protein-protein interaction (CAPPI)

network, which lends the name to our method. First, we reconstruct hypotheti-

cal sequences of evolutionary events (duplications, speciations and deletions), by

which the proteins of the input PPI networks evolved from their counterparts in

the common ancestral network. In the next step, we determine the posterior prob-

abilities of interaction between proteins at each stage of evolution. The probabil-

ity of each protein-protein interaction is calculated under a proposed stochastic

model of network growth and divergence. The topology of the ancestral network

(and each intermediate network) is determined by the most probable interactions.

Finally, we identify modules in the ancestral network and project them back onto

the input interactomes to determine the alignment. We apply the CAPPI pro-

cedure to align PPI networks of yeast (S. cerevisiae), fly (D. melanogaster), and

worm (C. elegans), which are among the largest interactomes available to date.

We now discuss the details of our approach. The subsequent steps of the

analysis are outlined in Fig. 5.1. The original version of the material of this

chapter was presented at the ISMB/ECCB 2007 conference and published in

Dutkowski & Tiuryn (2007). The sequence comparison and tree building methods

used here are described in Chapter 2.
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5.1 Reconstructing phylogenetic history

We assume that we are given a number of PPI networks, each coming from a

different species. The first step towards aligning the networks is to determine the

homology relationship between all proteins. We choose to split the proteins into

non-overlapping families of (putatively) homologous proteins (a similar approach

was presented in Flannick et al., 2006). The proteins in each cluster are believed

to have descended from a common ancestral protein. In contrast to the approach

taken by Flannick et al. (2006), where proteins are greedily assigned to families

during the iterative alignment process (so as to maximize the scoring function), we

determine the homology relationships directly, by previously established methods

for identification of protein families. To allow the application to arbitrary species

on genome-scale, we identify the homologous clusters using the MCL algorithm

by Enright et al. (2002) with BLAST E-values as pairwise distances between

proteins.

In the next step, we reconstruct the evolutionary history of each protein family

by means of phylogenetic analysis. To this end, we perform multiple alignment

of protein sequences using the CLUSTALW method (Higgins et al., 1994). Next,

we calculate the distance matrix using the PROTDIST procedure and construct

phylogenetic trees using the neighbor joining algorithm implemented in the Phylip

package (Felsenstein, 2005).

For consistency with the evolutionary history, it is necessary to reconcile the

gene tree of each protein group with the species tree of the aligned organisms

(Page & Charleston, 1997). The reconciliation algorithm minimizing the duplica-

tion and loss score function is implemented in NOTUNG (Durand et al., 2006).

Given the sequence of evolutionary events extracted from the reconciled trees

and the interactions observed in the input networks, we proceed to determine

the posterior probability of interactions between proteins at previous stages of

evolution. The reconstructed phylogenies of protein families serve as a backbone

for reconstructing protein interactions. Below we present a formal description of

the network reconstruction procedure, the proposed model of network evolution,

and the details of calculating the posterior probability of ancestral interactions.
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5.1 Reconstructing phylogenetic history

Figure 5.1: Overview of the analysis performed by CAPPI. Color-coded fragments
of three input PPI networks are shown in (A). First, we determine non-overlapping
homologous protein groups via sequence clustering (B). Next, we build gene trees for
each protein group and reconcile the trees with a common species tree – reconciled trees
for three protein groups with outgoing arrows are shown in (C). Finally, we determine
the probability of each ancestral protein interaction (dotted lines) given the interactions
observed in the input networks (mapped to the leaves of the trees) and the sequence of
evolutionary events (duplications, speciations and deletions) from the reconciled gene
trees.
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5.2 Reconstructing the ancestral network

Let SO be the set of species for which we observe input protein-protein interaction

networks. We assume that we are given a phylogenetic tree of the considered

species in which leaves are labeled with the species from SO and inner nodes are

labeled with unknown (hidden) predecessor species. The tree is determined by

the indexed set of nodes S = {s1, s2, . . . , sn} of all the species (observed and

hidden) and three functions LS,RS, F : {1, . . . n} → {null, 1, . . . n}. We assume

that the common ancestor (the root of the tree) is s1. LS(i) and RS(i) return

the index of the left and right child of species si, respectively (or null if the right

(left) child does not exist), and F (i) returns the index of the father node (or

null if i = 1). We also assume that the set of proteins from all observed species

is split into non-overlapping protein families (equivalence classes) and for each

family we are given a gene tree, reconciled with the above-mentioned species tree.

From the reconciled gene trees we are able to extract the set of duplication events

taking place in species si – that is after the speciation event which established

si and before the speciation event in which si evolved into two distinct species.

For the purpose of this discussion we assume that we can impose an ordering on

duplication events in each species (corresponding to the chronological order). In

practice, the reconciled trees provide only a partial order of events – the order

between duplications occurring within the same species, but in different branches

of the tree or in different trees, is not established. To deal with this problem, we

sample the space of possible orderings and average out the results. We have also

found, that the particular way that the partial order is extended to a total order

has negligible effect on the final outcome of our analysis. Based on this finding, we

can speed up the computations by arbitrarily selecting an ordering which agrees

with the partial one. A natural strategy is based on the assumption that each

path in the reconciled tree between one speciation and the next (corresponding

to the evolution of proteins of one species) has the same length. If we further

assume that the duplications along each such path in the tree occur in constant

time intervals, we can impose a more “balanced” ordering. For simplicity, we

also do not discuss the protein deletion events present in the reconciled trees.
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5.3 Duplication and divergence model of protein network evolution

Deletions do not complicate the model, but only prune the set of possible protein

pairs that have to be considered.

Let Gi,j = (Vi,j, Ei,j) denote the graph representing the protein network of

species si after the j-th duplication event occurring in this species. The ancestral

graph is denoted by G1,0. Graph G1,0 has exactly one protein from each protein

family – the protein placed at the root of the appropriate gene tree. The sequence

of duplication events in species si is given by Di = (d
(i)
1 , . . . , d

(i)
mi), where d

(i)
j =

(np, na, nb) denotes a duplication of protein np ∈ Vi,j−1 into two proteins na, nb ∈
Vi,j. The problem we consider is to determine the probability of interaction

between nodes in the graph G1,0 and, similarly, in all its descendants. This is done

based on the observed graphs of the species in SO and assuming the sequences of

evolutionary events by which each of the observed networks evolved from G1,0.

5.3 Duplication and divergence model of pro-

tein network evolution

The following model of network evolution, motivated by the general duplication

model (Sole et al., 2002; Pastor-Satorras et al., 2003), is used to determine the

probability of observing graph Gi,j under the assumption of the sequence of spe-

ciations and duplications, by which Gi,j evolved from the ancestral network G1,0

(see Fig. 5.2 (A) for an example).

The model has four parameters: pd, δd, ps, and δs.

• We start with the ancestral graph G1,0, and perform a defined sequence

of duplications and speciations. For simplicity, we assume that the initial

graph G1,0 does not contain self-loops. However, they are easily incorpo-

rated into our model and correspond to the evolutionary predecessors of

interactions between homologous proteins.

• In case of a duplication d
(i)
j = (np, na, nb) graph Gi,j is constructed on the

basis of Gi,j−1 in the following way:

D1. All vertices besides np and edges which are not incident to np are

copied from Vi,j−1 to Vi,j.
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5.3 Duplication and divergence model of protein network evolution

Figure 5.2: A toy example of the Bayesian tree model of evolution of interactions
between members of two protein families for three species: blue, yellow and red. Part
(A) shows two reconciled trees for the considered families together with putative protein
interactions at each level of evolution. The proteins in the trees are represented by
ellipses (colored accordingly to their species). The speciation events are marked by
horizontal lines and the duplication events are marked by filled squares. The evolution
of the putative ancestral interaction between the root proteins (purple) can be traced
down the trees to the extant interactions. In (B) a random variable is associated with
each putative interaction. A solid arrow indicates a dependence between two random
variables which comes from a speciation event. Similarly, a dashed arrow indicates a
dependence for a duplication event. The four parameters (ps, δs, pd and δd) determine
the probability of retaining or gaining an interaction in each case. Arrows colored blue,
yellow, red and green represent messages corresponding to interaction evidence coming
from each of the species. These messages are passed up the tree in the first phase of
the MP algorithm. In the second phase, messages containing aggregated evidence from
one side of the tree are passed down to the other side (orange arrows).
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5.3 Duplication and divergence model of protein network evolution

D2. Vertices na and nb are added to Vi,j.

D3. For each edge npnx ∈ Ei,j−1 we add to Ei,j edges nanx and nbnx inde-

pendently, each with probability pd.

D4. For each vertex ny ∈ Vi,j such that npny /∈ Ei,j−1 we add to Ei,j edges

nany and nbny independently, each with probability δd.

• In case of speciation of species si graph GLS(i),0 is constructed on the basis

of Gi,mi
in the following way1:

S1. All vertices are copied from Vi,mi
to VLS(i),0.

S2. Each edge nxny ∈ Ei,mi
is added to ELS(i),0 independently with prob-

ability ps.

S3. Each edge nxny /∈ Ei,mi
is added to ELS(i),0 independently with prob-

ability δs.

Steps D3. and D4. associated with duplication events are referred to as local

or correlated divergence because they only effect the edges of the newly added

vertices. The steps following speciation can be referred to as global divergence, as

they can effect any edge in the network. Wagner (2001) points out that duplicate

gene products usually diverge quickly and loose common interactions. One reason

for this is that there is greater tolerance for mutations of the newly duplicated

proteins because of functional and structural redundancy of the duplicates. This

would suggest that pd (the probability of edge conservation following duplication)

should generally be much lower than ps (the probability of edge conservation after

speciation).

Under the proposed model, the probability of interaction between proteins

in the network Gi,j is determined by the interactions in the ancestral network

G1,0 and the assumed sequence of speciations and duplications which led to the

formation of Gi,j. In the following, we use the above model to infer the posterior

probabilities of ancestral interactions given the observed input networks.

1Graph GRS(i),0 is constructed independently in the same manner.
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5.4 The most probable ancestral interactions

For each graph Gi,j and each pair of vertices nx, ny ∈ Vi,j we denote by X
Gi,j
nx,ny

the binary random variable equal 1 when there exists an edge nxny ∈ Ei,j, and 0

otherwise.

Assuming the duplication and divergence model described earlier the proba-

bility P (X
Gi,j
nx,ny = 1) of interaction between between vertices nx, ny in the graph

Gi,j depends on the existence or lack of an edge between the protein pair being

the direct predecessor of the pair (nx, ny). Let us consider the last evolutionary

event which could effect the pair (nx, ny). Three cases are possible:

1. Vertex nx ∈ Vi,j was created by duplication d
(i)
k from vertex np ∈ Vi,k−1,

where k ≤ j (1). Then we have P (X
Gi,j
nx,ny = 1|XGi,k−1

np,ny = 1) = pd, and

P (X
Gi,j
nx,ny = 1|XGi,k−1

np,ny = 0) = δd.

2. Vertex ny ∈ Vi,j duplicated from vertex nq ∈ Vi,k−1, where k ≤ j (symmet-

rical to 1).

3. Vertices nx, ny ∈ Vi,j emerged by means of speciation from vertices nx, ny ∈
VF (i),mF (i)

. We then have P (X
Gi,j
nx,ny = 1|X

GF (i),mF (i)
nx,ny = 1) = ps, and P (X

Gi,j
nx,ny =

1|X
GF (i),mF (i)
nx,ny = 0) = δs.

The above dependencies can be represented using a Bayesian network (BN)

model (see Fig. 5.2 (B) for an example). We start the construction of the BN

from the instantiated random variables which represent the edges or non-edges in

the observed graphs of the species in SO. By considering the last duplication or

speciation event, we recursively determine the direct predecessor of each possible

edge (random variable) and assign the conditional probabilities, as described

above, until we reach the corresponding possible edge in the ancestral graph.

Each random variable corresponding to a possible edge nxny depends on ex-

actly one random variable denoting the edge (or non-edge) in the direct prede-

cessor graph. Therefore the considered BN is a set of trees. Each tree models the

1If k < j then there were other duplication events d(i)
k+1, . . . , d

(i)
j in species si, which did not

effect the protein pair (nx, ny).

56



5.5 Identifying conserved ancestral modules

joint distribution of the random variables corresponding to interactions which are

descendants of one of the interactions in the ancestral graph.

We can formulate the problem of finding the ancestral graph as a Bayesian

inference problem. Precisely, we would like to determine for every i, j, x and y

the posterior probability

P (XGi,j
nx,ny

= 1|E)

of interaction between a protein pair (nx, ny) in species i after the j-th du-

plication, given the set of instantiated variables E, which are the interactions

and non-interactions between nodes in the networks of present-day species. We

assume that the prior probability p1 of interaction between proteins in the an-

cestral network G1,0 is given. The evolutionary model provides the conditional

probabilities linking each child node in the BN to its father. The problem solved

here is the classical problem of inference in Bayesian networks. The tree structure

of our BN model enables an efficient solution using the message passing (MP)

algorithm due to Pearl (1988) (see Chapter 4).

5.5 Identifying conserved ancestral modules

Our ultimate goal is to determine the conserved functional modules in the ob-

served networks. Most of the previously proposed network alignment procedures

assumed a specific topology of functional modules. The candidate network re-

gions were scored for fulfilling the desired structure. In contrast to the previous

methods, we do not impose a predefined topology when searching for conserved

modules. Instead, we identify highly probable connected subnetworks in the an-

cestral graph, and project them onto extant networks.

The ancestral network G1,0, reconstructed according to the procedure de-

scribed in previous sections, is a complete graph in which each edge nxny is

assigned a weight corresponding to the probability of interaction between the ad-

jacent proteins nx and ny. The subsets of vertices connected by highly weighted

edges are likely to constitute functional modules. To identify the modules of the

ancestral network, we set an edge threshold value t and eliminate from the graph

G1,0 all edges with weights below that threshold. Note that alternatively, we

57



5.5 Identifying conserved ancestral modules

could use a clustering procedure or a search heuristic to identify dense clusters

or pathways in the ancestral network.

As shown in the next section, the threshold value can be determined by ob-

serving the gradual decomposition of the largest component. At low values of t

the nodes of the ancestral network form one giant component. As we raise the

value of the threshold t, the giant component decomposes and many components

with heavy edges are revealed. The cut-off value can further be refined by de-

termining the level at which the probability of interaction between two vertices

in the ancestral graph is statistically significant, compared to the background

model. To estimate the level of edge significance, we repeatedly run our algo-

rithm on randomized versions of the input data, maintaining the original homol-

ogy relationships of the proteins and their phylogenetic history, and permuting

the protein interaction data. The original PPIs are randomized by redistributing

the edges of the input networks, while maintaining their node degree sequences

(a similar technique was applied by Kelley et al., 2003; Koyuturk et al., 2006;

Sharan et al., 2005a). For each set of randomized networks we reconstruct the

ancestral PPI network and count the number of edges with weights exceeding a

given threshold. Next, we compute a q-value based on the false discovery rate

(FDR) for multiple hypothesis testing. The FDR q-value for a given edge weight

w is estimated as:

q(w) =

∑N
i=iCi(w)/N

Creal(w)
,

where Creal(w) is the number of edges with weights equal to or higher than w

in the reconstructed ancestral network and Ci(w) (i = 1 . . . N) is the number of

such edges in the i-th randomized network.We determine the threshold value t at

which the edge weights are significant (e.g. q-value < 0.05). We then decompose

the graph G1,0 by deleting the edges with weights lower than t and remove all

nodes without any interactions. The remaining connected components of the

network constitute the ancestral network modules.

With the putative ancestral modules at hand, we proceed to identify the

respective descendant modules in each of the considered species. To this end we

project the ancestral modules onto the input networks by mapping the nodes of
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the ancestral network (ancestral proteins) to their descendants (proteins) in the

input networks and identify the conserved descendant interactions.

5.6 Experiments and discussion

We apply our method to search for conserved functional modules in the networks

of S. cerevisiae, C. elegans and D. melanogaster. In the following we present our

results and comparison with previously proposed methods. All algorithms are

used with their default parameters, except were noted.

5.6.1 Ancestral network reconstruction

We downloaded PPI and protein sequence data from the Database of Interacting

Proteins (DIP) (Salwinski et al., 2004, April 2006 download). In order to identify

protein families, we performed MCL clustering (I = 1.2) of all the sequences

available in the DIP database (including sequences from species other that the

three species of interest), taking BLAST E-values as the pairwise distances. We

found that better clustering results are achieved when protein sequences from a

larger number of species are included. This is intuitively correct: as homologous

proteins should be more similar to each other than to other proteins, a larger

and more diverse protein universe serves as a better background for homology

identification. The clustering identified 6971 non-overlapping protein groups,

460 of which included protein representatives from all three species (yeast, fly

and worm). We decided to limit further analysis to only these 460 clusters.

This implies that our protein groups have support in at least 3 species, which is

consistent with the major requirement assumed in the construction of orthologous

groups in the COG database (Tatusov et al., 2003).

Next, for each of the 460 protein clusters separately, we performed multiple

sequence alignment by CLUSTALW, calculated the distance matrix using PROT-

DIST and constructed a family gene tree using the neighbor joining algorithm.

This resulted in an unrooted tree for each family, which was rooted and reconciled

with the species tree of yeast, fly and worm using the procedures implemented in

NOTUNG.
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For each pair of protein families we calculated the posterior probability of

interaction between the respective ancestral proteins according to the model de-

scribed earlier. The choice of model parameters is discussed in the next section. In

an analogous way, we computed the probability of each ancestral self loop (rep-

resenting the interactions of proteins with themselves), based on the observed

interactions within one protein family. The resulting ancestral network consisted

of 460 nodes and 460 ∗ 459/2 + 460 = 106030 edges weighted by the probability

of interaction of adjacent nodes.

5.6.1.1 Estimating parameters of edge dynamics

Here we discuss the choice of parameters pd, δd, ps, δs and the prior probabil-

ity p1 of interaction between any two ancestral proteins. The model of network

evolution presented in Section 5.3 is motivated by and related to the proteome

growth model of Sole et al. (2002), often referred to as the general duplication

and divergence model. The original model included only the parameters of link

conservation or emergence following the duplication event (corresponding to pd

and δd in our model). Sole et al. (2002) denoted the probability of edge deletion

following duplication event by δ and set its value to 0.53, which was influenced

by estimations of rates of link addition and deletion made by Wagner (2001).

The model of Sole et al. (2002) assumes, however, that after a duplication event

one of the duplicates remains unchanged. Our model is symmetrical in the sense

that both of the duplicates are subject to deletion and emergence of edges. Our

first estimate of the probability of edge conservation pd was therefore 0.7, which

(assuming independence) gives almost the same joint probability of edge con-

servation in both duplicates as in Sole et al. (2002). The probability that a

new edge is introduced was estimated by Sole et al. (2002) as 0.06 divided by

the number of nodes in the network. For the purpose of the experiments, we

used a constant value δd = 0.01, without normalizing it further by the size of

the network at each stage. The probability of edge conservation after the spe-

ciation event was set to ps = 0.95. This parameter is related to the overall

divergence of the network over time and should be more conservative than the

probability pd related to the fast divergence of interactions of newly duplicated
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proteins. The probability of edge emergence after speciation was set to δs = 0.01.

We set the probability p1 of each possible ancestral interaction at 0.01, which

is motivated by the observation that PPI networks are generally sparse, with a

small average node degree. As shown in the following section, these parame-

ters yielded satisfactory results in terms of the identified modules. We further

studied the effect of individual parameters (additional results are available on

our web page: http://bioputer.mimuw.edu.pl/papers/cappi) on the recon-

structed alignment and chose a more conservative setting, raising the probability

of edge conservation and lowering the probability of edge emergence. Precisely

we set pd = 0.85, ps = 0.99 and δd = δs = 0.001. This allowed us to identify more

modules that were well conserved across the considered species.

5.6.2 Decomposition of the giant component

As stated above, the reconstructed ancestral network is a complete weighted

graph with 460 nodes. However, the weights of the edges (probabilities of inter-

action) vary considerably depending on the evolutionary history and the evidence

supporting a given interaction in the input networks. As we gradually eliminate

the edges with the lowest weights, the initially connected graph decomposes into

a large number of small components – suggesting the existence of network mod-

ules. This is consistent for a wide range of parameters we have tested. The exact

transition point and speed of decomposition varies with the choice of model pa-

rameters (especially the choice of the prior probability of interaction); however

the general phenomenon is always observed. The decomposition of the ancestral

network constructed with the model parameters discussed earlier is presented in

Fig. 5.3.

5.6.3 Edge weight threshold selection

The connected components of the ancestral graph, identified at a sufficiently high

edge threshold level, determine the ancestral modules of conserved interactions.

To determine the significance level we calculated the FDR edge weight q-values

using randomized networks. We then deleted all edges with weights below thresh-

old 0.48 (q-value of 0.049). We also eliminated all nodes without any interactions.
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Figure 5.3: Decomposition of the largest component (A and C) and change in the
number of modules and identified MIPS complexes (B and D) with increasing edge
threshold. The results for the less conservative parameters are presented in panels A
and B, and for the more conservative parameters (preferred) in panels C and D. In
case of both settings, as the giant component decomposes, many pure modules and, in
consequence, many MIPS complex categories are identified. The nodes of the ancestral
network not involved in any interactions are eliminated from the graph, which explains
why the fraction of nodes in the largest component (plot A) increases suddenly at high
threshold values. The optimal threshold values (in terms of identified pure modules) are
indicated in A and C with blue circles.
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Figure 5.4: The ancestral network modules identified at edge threshold value of 0.48.
Pure modules (colored yellow), matching known protein complexes, are described in
Table 5.1. The projection of the largest module (top left) onto the input PPI networks
is presented in Fig. 5.5.

5.6.4 Conserved modules and quality assessment

The ancestral network, decomposed by eliminating edges below the threshold

value of 0.48, contains 40 modules (visualized in Fig. 5.4). Overall 75 nodes

representing ancestors of conserved protein families are present in the identified

modules. By projecting the ancestral nodes onto their present-day descendants,

we obtain an alignment consisting of 40 respective network regions (modules) in

the three input networks. We have found that a large part of the detected con-

served modules match well to the known protein complexes collected in the MIPS

database (Mewes et al., 2006). To formally evaluate the quality of this finding we

compute the purity score for each identified module as proposed by Sharan et al.

(2005a). The purity score of a module with respect to a given MIPS category is
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defined as the number of module’s proteins annotated to that category divided

by the number of all annotated proteins contained in that module. The module is

defined to be pure if it contains at least 3 annotated proteins and at least half of

these share the same annotation (purity ≥ 0.5). The module is impure if it con-

tains at least 3 annotated proteins and its purity with respect to any considered

MIPS category is less than 0.5. All other modules are treated as not sufficiently

annotated (unknown). Following previous studies (Sharan et al., 2005a,b), we

only consider the annotations at MIPS level 3 and exclude annotations based

on high-throughput experiments (category 550). Overall out of the 40 identified

modules 14 are pure and 1 is impure. The 14 pure modules match to 16 MIPS

categories summarized in Table 5.1. The largest ancestral module is found to be

pure with respect to the MIPS category 360.10.20 (proteasome). This module,

projected onto the three PPI networks of the considered species, is presented in

Fig. 5.5. The only one impure module we have found is composed of the ancestral

nodes 109 and 54. Closer examination of this module yields interesting results. It

contains 15 annotated proteins assigned to five level 3 MIPS categories: 260.20.10

(4 proteins), 260.20.30 (4 proteins), 260.20.20 (4 proteins), 260.30.10 (2 proteins),

260.20.99 (1 protein). The module is thus pure with respect to level 2 category

260.20 (intracellular transport) and the interactions between the members of the

respective level 3 categories are perhaps not unexpected.

The effect of edge threshold selection (discussed in the previous section) on the

identified modules is visualized in Fig. 5.3. The results for the chosen parameter

values are presented in the bottom right panel (D). We observe that immediately

after the decomposition of the giant component, the number of pure modules

increases to 14 and the number of impure modules drops to 1. Pure modules

matching known protein complexes are connected to other pure modules by lighter

edges, which disappear as the threshold is raised. It can also be seen that by

choosing a sufficiently high threshold (0.96) we can eliminate the one impure

module from our solution and still identify 7 pure modules. For comparison, we

also plot the results for less restrictive parameters, which were perhaps better

motivated by previous studies. Similar observations can be made with respect to

these results. In fact, in this case, even at small threshold values we do not find

any impure modules.
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Module Annotated Purity MIPS Description

proteins category

193 - 266 - 134 -
7 1 360.10.20 Proteasome

- 219 - 84

28 14 1 360.10.10 Proteasome

257 - 42 6 0.83 410.40.30 Replication

311 - 174 5 1 500.40.10 Translation

331 - 280 3 1 500.20.10 Translation

176 - 439 4 1 510.190.110 Transcription

176 - 439 4 1 510.190.40 Transcription

41 3 0.67 510.190.130 Transcription

199 - 256 - 261 4 0.5 510.70.20 Transcription

199 - 256 - 261 4 0.5 510.190.10 Transcription

153 - 125 4 1 260.50.20 Intracellular transport

117 3 1 260.30.20 Intracellular transport

91 - 49 4 1 440.30.10 RNA processing

338 - 29 - 359 5 0.6 440.30.10 RNA processing

143 - 226 3 1 140.20.20 Cytoskeleton

106 3 0.67 510.180.20 DNA repair

199 - 256 - 261 4 0.5 230.20.20 Histone acetyltransferase

Table 5.1: MIPS categories matched by pure modules identified by CAPPI. Pure con-
served modules are identified by projecting each ancestral module onto the input PPI
networks and assigning the annotations from the MIPS database to the respective yeast
proteins. The identifier of the ancestral module (see also Fig. 5.4), the number of an-
notated yeast proteins, and purity with respect to the matching MIPS category is shown.
Note that some proteins (members of modules 176-439 and 199-256-261) are annotated
to more than one MIPS category.

5.6.5 Comparison with previous methods

Our approach implemented in the CAPPI framework addresses two main goals.

First, it is rooted in an evolutionary network growth model, based on edge dy-

namics and phylogenetic information about the history of network constituents.

Second, it is able to simultaneously align multiple networks. Of the previously
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Method Database Modules Pure Impure Unknown MIPS
in pure

NetworkBLAST DIP 2004 183 80 4 99 5

CAPPI q-value < 0.05 DIP 2004 39 10 1 28 13

CAPPI q-value < 0.03 DIP 2004 22 7 0 15 7

CAPPI q-value < 0.05 DIP 2006 40 14 1 25 16

CAPPI q-value < 0.03 DIP 2006 22 7 0 15 7

Table 5.2: Comparison of CAPPI and NetworkBLAST results. With the original
settings NetworkBLAST returns more modules altogether and a higher fraction of pure
modules. In contrast to NetworkBLAST, CAPPI returns non-overlapping results. Thus
less modules are returned, but among them more distinctive MIPS categories and less
impure modules are identified.

available network alignment methods, only NetworkBLAST (Sharan et al., 2005b)

and Graemlin (Flannick et al., 2006) have demonstrated the ability to align mul-

tiple (> 2) networks. Graemlin’s implementation is publicly available, however,

the algorithm has many network dependent parameters which have only been

estimated for the SRINI networks used by the authors. The estimation of these

parameters for other networks was not supported by the original implementation.

NetworkBLAST was previously used to align the DIP networks of yeast, worm

and fly (Sharan et al., 2005b) and the results provided by the authors enabled a

straightforward preliminary comparison of the methods. NetworkBLAST, being

one of the first methods developed, became a benchmark used by many authors

of new network aligners. Thus comparing against it may provide a relative as-

sessment of whether our algorithm is competitive to other methods in the field.

Below we compare the results of the two algorithms using the MIPS complex

database as a reference set of true functional modules.

NetworkBLAST experiments were performed on an earlier version of the DIP

database (February 2004), which contained fewer interactions and protein se-

quences. In order to allow a fair comparison, we have repeated our experiments

on the same version of the database. The results are summarized in Table 5.2.

Overall NetworkBLAST returned a much larger number of aligned modules. Also,
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a larger fraction of the returned modules were pure. However, the identified mod-

ules overlap considerably (up to 80% overlap was allowed by the authors) and

among the 80 pure modules only 5 different MIPS categories are matched. In

contrast, the alignments returned by CAPPI are non-overlapping. We provide

CAPPI results for two edge weight thresholds. With a less restrictive edge thresh-

old (corresponding to q-value < 0.05) our method returned 39 modules among

which 10 were pure. The 10 pure modules matched 13 MIPS complex categories

altogether. The only one impure module returned was the same as the impure

module identified in case of the 2006 DIP version described earlier.

Raising the edge threshold to a more stringent level (corresponding to q-

value < 0.03), resulted in a smaller number of pure modules and less identified

MIPS categories. However, with this setting no impure modules were returned by

CAPPI. At the same time CAPPI still identified two more MIPS categories than

NetworkBLAST. We note that in case of both methods a considerable number

of identified modules contain less than 3 annotated proteins (thus they are not

classified as being pure or impure). These modules may represent yet unknown

protein complexes. Note that we intentionally do not formally define a sensitiv-

ity measure here because the total number of conserved complexes is unknown.

Instead, we rely on the absolute number of matched MIPS complexes to compare

the ability of the methods to identify true complexes. The assessment of the

specificity of both methods is based on the number of impure modules divided

by the number of all identified modules and subtracted from one. With the more

restrictive edge threshold CAPPI achieves a perfect specificity score.

Overall, although not exhaustive, the presented comparison demonstrates

CAPPI’s competitiveness and provides evidence for its relatively high sensitivity

and specificity. Interestingly, an independent study by Chagoyen et al. (2008)

has recently shown that practically all modules identified by CAPPI are func-

tionally coherent and statistically significant with respect to biological process

annotations from Gene Ontology (Ashburner et al., 2000). CAPPI was the only

network alignment method evaluated, and it achieved the highest specificity, at

the cost of identifying fewer modules than methods searching for coherent sub-

graphs only in the yeast network. Other scoring frameworks can be applied to
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S. cerevisiae D. melanogaster C.elegans

Figure 5.5: The conserved modules identified by projecting ancestral module 193-266-
134-219-84 (see also Fig. 5.4) onto the networks of yeast, fly and worm. Seven of the
nine yeast proteins are assigned to the MIPS category 360.10.20 (proteasome). The
families corresponding to ancestral nodes 193, 266, 134, 219 and 84 are colored red,
yellow, blue, purple and green respectively. All 3 species contain representatives of each
protein family, but only interacting proteins are visualized to present truly conserved
PPI regions. The overall small coverage of C. elegans protein interactions in DIP may
explain the apparent weak conservation of this module in case of this species.

further assess the performance of our approach. We will explore them in a differ-

ent context in the following chapters.

For completeness we also provide the results for the DIP 2006 version discussed

in the previous section. We observe that at the lower edge threshold (correspond-

ing to q-value < 0.05) CAPPI identifies more pure modules and MIPS categories

on the more complete 2006 DIP database than on the 2004 edition. The results

obtained with the more restrictive threshold remain unchanged with the intro-

duction of new proteins and interactions, indicating that the group of alignments

with the best support in the data is the same for both database versions.

We note that following the publication of our analysis (Dutkowski & Tiuryn,

2007), a similar model was independently used by Pinney et al. (2007) to recover

ancestral states of PPIs within a single family of the bZIP transcription factors.
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Chapter 6

Phylogeny-guided interaction

mapping in seven eukaryotes

In this chapter we extend our modeling framework and apply it to a different

task. We develop a comprehensive method for integrating PPI evidence from

different datasets and transferring it across species. It is designed towards three

basic goals. First, interactomes from different species should be compared and

integrated in the context of their evolution. Therefore the processes by which

protein interaction networks grow and diverge over time should be accounted for

in the framework. Second, when predicting the interactions of a given protein we

should take into account the PPI evidence from all similar proteins (homologs),

because the role of an individual protein in one species may be distributed over

several proteins in another species. This strategy is also motivated by the scarce-

ness of the source datasets from which new interactions can be inferred. Thus

it is better to take advantage of all relevant information. Third, the impact of

each data source on our final result should be based on its inherent reliability and

coverage. A dataset from a small scale study is certain not to contain the vast

majority of interactions. On the other hand the interactions it contains are often

more reliable than interactions from large high-throughput screens.

Our framework computes the probability of interaction between two proteins

by considering all evidence for interaction between members of the respective

protein families to which the proteins belong to. The evidence is accounted for in

the context of the families’ phylogenetic trees and under the described model of
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network evolution, which assigns probability scores to events of interaction loss or

gain, following a duplication or a speciation event. Intuitively, the closer a given

pair of proteins is to another pair, the more impact the evidence for one pair has

on predicting the interaction of the other pair. Our Bayesian model naturally

takes into account the inherent reliability and coverage of each input dataset.

The amount and reliability of the evidence, as well as the evolutionary proximity

of the observed interactions to the pair of proteins in question, determines the

posterior probability of interaction computed by our framework.

Our approach combines and extends the concepts of interlog mapping and

Bayesian data integration. First, as opposed to the interlog approach, we employ

information from all homologs in each family (relative to their proximity in the

tree), instead of using only the single best ortholog for each protein. Second, we

use a Bayesian modeling framework to integrate PPI evidence from many exper-

imental sources, taking into account their reliabilities and coverage. As opposed

to the Naive Bayes approach for data integration (which assumes independence

of data sources), our approach computes the posterior probability of interaction

for every pair of proteins under an established duplication and divergence model

of network evolution.

We use our framework to integrate and infer new PPIs in seven eukaryotes:

H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. cere-

visiae, and A. thaliana. We perform a comprehensive validation of our predictions

using two independent scoring schemes: GO-based functional similarity and an

assessment based on reference datasets of binary and co-complex PPIs. The ob-

tained results demonstrate the ability of our method to identify a large percentage

of known interactions in a blind test and provide new hypothesis for experimental

verification when all known data is integrated. We show that CAPPI performs

better than two previous approaches which map interactions across species. We

also analyze specific examples of valid PPI predictions in well-characterized com-

plexes in yeast and human (proteasome, endosome and exosome), and show that

core subcomplexes can be accurately recovered based solely on the data from the

other species (i.e. without any use of the experimental data from the species

of interest). Many of the between-module interactions (possibly species-specific)

are harder to transfer from distant organisms. Finally, based on our predictions,
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we present hypothesis on new proteins interacting with the putative SWI/SNF

chromatin remodeling complex in A. thaliana. Our results are freely available at

http://bioputer.mimuw.edu.pl/cappi.

The material of this chapter was presented at the 2009 Systems Biology:

Networks conference at Cold Spring Harbor and was submitted for publication.

6.1 Methods

6.1.1 Integrating diverse experimental data

The model presented in Chapter 5 captures the basic notions of protein network

evolution. We previously assumed that the PPI data is free of error and complete

and we used the model to make inferences about the ancestral interaction net-

works. However, due to experimental errors and incomplete sampling, the real

interactions and non-interacting protein pairs are not certain. This implies that

the experimental data should only be used as supporting evidence of putative

interactions. To model this accurately in our framework we keep the random

variables corresponding to extant interactions unknown and add another level of

random variables corresponding to experimental evidence (see Fig. 6.1 (A)). The

evidence in each experimental dataset is weighted by the dataset’s reliability.

Let Gi,mi
= (Vi,mi

, Ei,mi
) be the extant protein interaction network of a

present-day species si (we assume that mi is the final duplication occurring in si).

Let Oi = {o(i)
1 , . . . , o

(i)
ki
} be the set of experimental datasets for species si, where

each o
(i)
h is the set of protein pairs confirmed to interact in the h-th experiment.

Let Rel(o
(i)
h ) be the fraction of elements in o

(i)
h believed to be true positives. Let

E ′i,mi
= {(nx, ny) : nx, ny ∈ Vi,mi

∧ (nx, ny) /∈ Ei,mi
} be the set of non-interacting

protein pairs in the graph Gi,mi
. For each experimental dataset o

(i)
h we denote by

X
o
(i)
h
nx,ny a random variable which takes value 1 if interaction (nx, ny) is present in

this dataset and 0 otherwise. For each pair of proteins (nx, ny) and each dataset

o
(i)
h , we set the probability of observing a true interaction to be equal the true

positive rate of the experiment, and the probability of observing a false positive
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Figure 6.1: A toy example of the extended Bayesian tree model of evolution of inter-
actions between members of two protein families for three species: blue, yellow and red.
This time for each species a certain number of experimental datasets is given: two for
blue and red and one for yellow. Part (A) shows two reconciled trees for the considered
families together with putative protein interactions at each level of evolution. The evo-
lution of the ancestral interaction between the root proteins (purple) can be traced down
the trees to the extant interactions. Evidence for the extant interactions can be found
in the experimental datasets. In (B) a random variable is associated with each putative
interaction. A solid arrow indicates a dependence between two random variables which
comes from a speciation event. Similarly, a dashed arrow indicates a dependence for a
duplication event. Finally, dotted arrows represent an interface between the true inter-
actions in extant species and the observed experimental evidence. The parameters ps,
δs, pd and δd determine the probability of retaining or gaining an interaction during
evolution, while the reliability of each dataset (Rel(o(i)

h )) determines the probability of
identifying a true interaction or a false positive one. As before, arrows colored blue,
yellow, red and green represent messages, corresponding to interaction evidence, which
are passed up the tree in the first phase of the MP algorithm. In the second phase,
messages containing aggregated evidence from one side of the tree are passed down to
the other side (orange arrows).
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interaction equal the false positive rate of the experiment, as follows:

Pr(X
o
(i)
h
nx,ny = 1|XGi,mi

nx,ny = 1) =
Rel(o

(i)
h )|o(i)

h |
|Ei,mi

|

Pr(X
o
(i)
h
nx,ny = 1|XGi,mi

nx,ny = 0) =
(1−Rel(o(i)

h ))|o(i)
h |

|E ′i,mi
|

,

where by |A| we denote the number of elements in the set A. Now each experi-

mentally observed interaction can be naturally incorporated into the BN frame-

work. Similarly each pair not observed to interact in the considered experiment

((nx, ny) /∈ o(i)
h ) can be incorporated into the model with conditional probabilities

corresponding to the false negative rate and true negative rate of the experi-

ment (see Appendix A for details). The model can also be easily generalized to

incorporate distinct reliability values for each single interaction.

6.1.2 Inferring extant protein interactions via message

passing

The integrated BN model, comprising all PPI edges from every level of evolution

and from the experimental datasets, is used to infer protein interactions in the

input species. Each random variable corresponding either to a possible interac-

tion, or to a single experiment outcome, depends on exactly one random variable

which denotes an edge (or non-edge) in the direct evolutionary predecessor in

the first case, and in the network of an extant species in the second case. The

considered BN model is a set of Bayesian trees, where each tree represents the

joint distribution of the random variables corresponding to putative interactions

(which descended from a single edge in the ancestral graph) and the associated

experimental evidence (an example of such tree is shown in Fig. 6.1 (B)). As in

Chapter 5, the tree structure allows us to apply Pearl’s message passing (MP)

algorithm to compute the exact posterior probability of interaction between pro-

teins in extant species, in time linear to the number of random variables (see

Fig. 6.1 (B) for an example and Chapter 4 for details). Specifically we determine

the posterior probability of interaction P (X
Gi,mi
nx,ny = 1|O) for each pair of nodes

(nx, ny) in each extant network Gi,mi
, where O denotes all experimental datasets

for all species.
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6.2 Experimental setup

We apply CAPPI to infer protein-protein interactions in seven eukaryotic species:

human (H. sapiens), mouse (M. musculus), rat (R. norvegicus), worm (C. ele-

gans), fly (D. melanogaster), yeast (S. cerevisiae), and thale cress (A. thaliana).

The initial steps of our analysis preprocess the data and gather experimental

evidence for interaction between members of distinct protein families. To this

end, we identify groups of homologous proteins by clustering all non-redundant

protein sequences downloaded from the Integr8 database (Kersey et al., 2005)

and pull relevant PPI data from IntAct (Hermjakob et al., 2004), MINT (Chatr-

aryamontri et al., 2007) and DIP (Salwinski et al., 2004) databases (see Appendix

A for details). The family-oriented view of the overlap of available PPI evidence

for four best-represented interactomes is shown in Fig. 6.2.

We consider two modes of application of our framework. First, the integration

mode which gathers all available input data to provide a reconciled interactome

view for each species. Second, the prediction mode which predicts the interac-

tions for each species based only on the evidence from the other species (blind

test). To demonstrate the different aspects of our method and enable a straight-

forward comparison to the previous approaches, we use different combinations of

the input datasets and different reliability values (see also Appendix A), yielding

the following sets of inferred interactions:

CAPPI-Integ: interactions for all seven species inferred using all available ex-

perimental datasets.

CAPPI-Integ-3sp: yeast, fly and worm interactions inferred based on experi-

mental datasets of Ito et al. (2001), Uetz et al. (2000), Giot et al. (2003) and Li

et al. (2004), with reliability parameters set according to Liu et al. (2005).

CAPPI-Pred: interactions inferred for each species using experimental datasets

only from the other six species.

We compare the results of CAPPI with the following methods:

Domain-ML: a maximum likelihood domain-oriented method by Liu et al.

(2005). Yeast interaction predictions, based on experimental datasets of Ito,

Uetz, Giot and Li, were provided by the authors.
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Figure 6.2: A 4-way Venn diagram illustrating the overlap of PPI evidence between
four of the considered seven species: human, yeast, fly and worm. Each cell in the dia-
gram is labeled with the number of pairs of protein families for which members interact
in the corresponding species. For example, there are 742 pairs of protein families such
that in both yeast and human there exists at least one interaction between members of
the two families and no such interactions exist for fly and worm. Only about 0.5%
(42514 of 8280415) of possible family pairs we consider have any evidence for inter-
action in any of the four species. Of these only 0.1% (45 of 42514) have evidence in
all four species, which seems small, given that all considered families are evolutionarily
conserved. However, the size of the overlap presumably corresponds to the fraction of
the interactomes sampled experimentally, rather than to the actual level of conserva-
tion. For example, while there is a significant size difference between the overlap of
the relatively best sampled yeast and human interactomes (742+175+45+42 = 1004
family pairs) and the overlap between yeast and worm interactomes (23+45+42+78
= 188 family pairs), the fraction of family pairs with PPI evidence from human and
worm overlapping with such pairs in yeast is of the same magnitude (8% and 9%, re-
spectively). It is highly probable that many of the homologous interactions in yeast and
human have, yet unidentified, counterparts in worm and similarly in the other species.
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Interlog: an interlog-based method implemented by Michaut et al. (2008). The

program was downloaded from the InteroPorc website http://biodev.extra.

cea.fr/interoporc/Default.aspx and ran for each species using experimental

datasets only from the other six species (same datasets as in CAPPI-Pred).

In the following, we investigate the performance of our method on large-scale

data, as well as in small-scale experiments, focused on specific functional modules.

We start with a brief description of the quality assessment procedures applied in

each case.

6.2.1 Assessing PPI predictions in large-scale studies

In general, the assessment of PPI predictions posses problems due to the limited

number of ’gold standard’ interactions and the lack of negative test cases. Moti-

vated by previous studies, we employ two scoring schemes to assess the quality

of predicted PPIs, as well as those from the input datasets. The first one com-

pares Gene Ontology (GO) annotations (Ashburner et al., 2000) of adjacent gene

products and measures their functional similarity. Functional similarity is used

as an indirect measure of interaction: the more similar the annotations of the two

proteins are, the more confident we are in deeming an interaction between them.

We apply a recent information content method of Schlicker et al. (2006), imple-

mented in the SemSim R package by Xiao Gou: http://www.bioconductor.

org/packages/2.0/bioc/html/SemSim.html, which extends the measures pre-

viously proposed by Resnik (1995) and Lin (1998). For each pair of proteins we

individually measure the similarity of annotations in each of the three ontologies:

biological process (BP), molecular function (MF) and cellular component (CC).

This results in a BP score, MF score and CC score, respectively, each ranging

from 0 (no similarity) to 1 (maximum similarity). When the context allows, we

refer to each of these scores as a GO score of a pair of proteins.

Our second kind of quality assessment is based on a comparison with a ref-

erence dataset. We estimate the ratio of true positive interactions (predictions

which are confirmed in a reference dataset) and false positive interactions (uncon-

firmed predictions for which the two proteins have disjoint cellular localizations).
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A similar procedure was applied by Jansen et al. (2003). We use separate refer-

ence datasets for binary PPIs (direct physical interactions) and for co-complex

PPIs (pairs of proteins co-occurring within the same complex). For details on the

reference datasets and the localization data see Appendix A. Note that the proper

sensitivity and specificity measures are hard to estimate because the reference sets

of positive interactions and negative protein pairs are not comprehensive. Due

to interdependencies between interactions, implied by our model, cross-validation

cannot be easily applied. Instead, in the second part of the analysis, we perform a

blind test in which we leave out the data of one species and predict its interactions

only based on the data from the other species.

6.2.2 Assessing predictions in functional module case-studies

For small-scale functional module case studies, presented further in this chap-

ter, we report all interactions predicted among a determined set of proteins for

a selected threshold value. To assess the statistical significance of interaction

predictions, we compute a p-value based on the cumulative distribution function

of the hypergeometric distribution, where confirmed interactions are regarded as

successes and unconfirmed interactions are regarded as failures. As the predic-

tions are made by CAPPI-Pred which is trained without the use of the input

datasets for the predicted species, we use the held out input data as a reference.

Note that it is possible that some of the reference interactions are in fact false-

positives – an inherent risk of using high-throughput data. In this particular

test, however, we are interested in assessing the possibility to predict a signifi-

cant portion of known PPIs (of which many are from high-throughput studies)

by a mapping from other organisms. The reference set is further extended in

each case by PPIs curated from specific publications characterizing interactions

within the studied complexes. These are as follows: Cagney et al. (2001) and

Chen et al. (2008) for the 26S proteasome PPIs; Hurley & Emr (2006) and Shim

et al. (2008) for the endosome-related PPIs; Lehner & Sanderson (2004) for the

exosome-related PPIs; Sarnowski et al. (2002), Farrona et al. (2004), Sarnowski

et al. (2005), Hurtado et al. (2006) and Bezhani et al. (2007) for the SWI/SNF-

related PPIs. Note that for A. thaliana there are no high-throughput datasets
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Species
CAPPI-Integ CAPPI-Integ-3sp

Data Input Output Data Input Output

Size Score Score Size Score Score

Yeast 28590 0.377 0.412 1890 0.320 0.381

Fly 12107 0.295 0.425 4049 0.255 0.303

Worm 2604 0.364 0.469 856 0.374 0.485

Arabidopsis 1349 0.596 0.623 NA

Rat 1271 0.296 0.384 NA

Mouse 2456 0.417 0.463 NA

Human 17672 0.353 0.395 NA

Table 6.1: Improvement in BP scores over the input datasets. For both CAPPI ver-
sions (CAPPI-Integ and CAPPI-Integ-3sp) the number of interactions in each species
and the mean BP scores for the input dataset and for the inferred CAPPI dataset of
the same size are given. In all cases the inferred interaction set receives a significantly
higher score than its input counterpart.

available, so all reference data for this species come from small-scale studies.

6.3 Integration of interactions in seven eukary-

otes

CAPPI-Integ provides an integrated and reconciled view of seven eukaryotic in-

teractomes. Our ultimate goal is to provide a higher quality interactome for each

input species. To assess whether this is the case, we perform two separate evalu-

ations using the GO-based scoring scheme and gold standard reference datasets.

6.3.1 GO-based scoring

We first consider the biological process (BP) annotations and score our predic-

tions, as well as the interactions from the input datasets, using the functional

similarity measure from Schlicker et al. (2006). Mean BP scores for the input

datasets and for the equal in size prediction datasets are summarized in Table 6.1.
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6.3 Integration of interactions in seven eukaryotes

Figure 6.3: Histogram of BP scores for the fly input datasets (combined) and the cor-
responding inferred datasets of the same size (4049 PPIs in case of Input-3sp and
CAPPI-Integ-3sp, and 12107 PPIs in case of Input-7sp and CAPPI-Integ). Both
CAPPI-Integ and CAPPI-Integ-3sp provide higher-scoring interactomes compared to
their input datasets, demonstrating the method’s ability to increase interactome quality
by integrating data from other species.

We do not consider the scores of self interactions (present both in the input and

in the inferred datasets) as they could introduce bias to the results (the GO an-

notations are identical in this case). Also, to avoid possible bias caused by the

specific choice of proteins, input datasets were limited to interactions between

members of conserved protein families used by CAPPI (see Appendix A). For

each CAPPI version in Table 6.1 we indicate the mean BP scores for the input

dataset and the inferred output dataset of equal size. For example, in case of

CAPPI-Integ the input yeast dataset contains 28590 interactions, for which the

average BP score is 0.377. The corresponding CAPPI-Integ score of 0.412 was

computed by taking the mean BP score of the 28590 best predictions in yeast

(i.e. interactions with the highest probability). For each of the species CAPPI

predictions receive significantly higher mean BP scores than the datasets used for

training. The most significant improvement over the input datasets is achieved

in case of the fly, worm and rat predictions. The mean BP score for the entire fly
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6.3 Integration of interactions in seven eukaryotes

Figure 6.4: Assessment of inferred yeast interactions using three GO scores. The sim-
ilarity of GO annotations of each pair of interacting proteins is measured in each on-
tology: biological process (BP), molecular function (MF) and cellular component (MF).
CAPPI and Domain-ML predictions are ranked by their probabilities and the average
GO score for a given number of top predictions is shown. CAPPI-Integ-3sp outper-
forms Domain-ML trained on the same experimental data. CAPPI-Integ integrates all
available data from the seven species and further improves the prediction score.

input dataset is 0.295, while the CAPPI-Integ dataset of the same size achieves

a mean scores of 0.425 (44% higher). In case of worm and rat prediction we

observe a 29% and 30% increase in the BP score, respectively. These results

show that CAPPI is able to produce reconciled interactomes which score signif-

icantly higher than the input interactomes. A detailed view of the distributions

of BP scores for experimental and predicted datasets of protein interactions in

D. melanogaster is presented in Fig. 6.3. The predicted datasets (both CAPPI-

Integ and CAPPI-Integ-3sp) contain a lot more high-scoring interactions than

the input datasets. Interestingly, while the Input-3sp dataset for fly is almost as

good as the Input-7sp dataset, CAPPI-Integ-3sp is significantly outperformed by

CAPPI-Integ. This is largely due to the integration of additional high quality

datasets from other species, from which CAPPI-Integ can transfer new evidence

when inferring the fly interactome.
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The improvement in mean BP score described above is achieved for relatively

large predicted datasets (as large as the initial inputs). As we show in Fig. 6.4,

BP scores are actually higher for our top predictions. Figure 6.4 plots mean

similarity scores according to all tree ontologies: biological process (BP), molec-

ular function (MF) and cellular component (CC), as functions of the number of

predicted interactions. The mean scores for both CAPPI versions are negatively

correlated with the size of the output dataset. This enables the user to trade size

for quality, obtaining a smaller dataset, but of greater reliability.

6.3.2 Testing against gold standard datasets

We further survey the performance of our method using a set of gold standard

binary PPIs pulled from (Reguly et al., 2006) and (Yu et al., 2008), as well as

co-complex data from the MIPS (Mewes et al., 2006) and CYC2008 (Pu et al.,

2009) complex catalogues (see Appendix A for details). Once again, we score

CAPPI predictions and compare them to the scores of the input datasets.

The results are presented in Fig. 6.5. The figure plots the ratio of true positive

and false positive interactions present among a subset of a given size. The true

positive interactions are either confirmed by binary PPIs or known to participate

in a characterized complex. The false positives are pairs of proteins with different

subcellular localization and thus their interaction is unlikely. Note that in general

true interactions constitute only a very small fraction of all possible protein pairs

– at most 0.5% in yeast based on recent estimates by Hart et al. (2006). This

is reflected in our reference datasets. The positive reference used in this case

contains 22480 PPIs and co-complex pairs while the negative set contains 4857065

differencially localized pairs (see also Appendix A). It is unlikely to identify a

true interaction by pure chance alone. Results presented in Fig. 6.5 confirm

the previous observation that reliable interactions are generally ranked high by

our method. It is comforting that both CAPPI datasets contain more confirmed

interactions than differentially localized pairs among the top ranked predictions

(TP/FP >> 1). CAPPI-Integ-3sp has a much higher TP/FP ratio than the input

yeast datasets (Ito and Uetz) used for its training. CAPPI-Integ integrates four

more high-throughput yeast datasets and consistently scores higher than three
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Figure 6.5: The ratio of true positives (TP) and false positives (FP) as a function
of the number of yeast interactions in the CAPPI-Integ dataset. An interaction is
deemed true positive, if it is found in the reference dataset comprising co-complex and
binary PPIs, and false positive, if the two proteins are assigned different localizations
in the MIPS sub-cellular localization catalog. The TP/FP ratios for the CAPPI-Integ,
CAPPI-Integ-3sp and Domain-ML predictions are compared with the scores of the input
experimental datasets. The gray dashed line marks the level at which the number of true
positive predictions is equal to the number of false positive predictions.

out of four of these inputs – Gavin (2002) dataset has a higher score, but for a

smaller number of interactions.

6.4 Prediction of interactions in a blind test

We continue the performance evaluation by testing CAPPI’s ability to predict

interactions in a blind test. To this end, we compute the CAPPI-Pred dataset

by iteratively leaving out PPI data of one of the seven species and predicting its

interactions based only on the data from the other six species. We discuss the

assessment of yeast and human predicted interactomes based on the two scoring

frameworks.
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6.4 Prediction of interactions in a blind test

Figure 6.6: Histogram of BP scores for the predicted yeast (A) and human (B) PPI
datasets of the same size (1576 yeast PPIs and 17105 human PPIs) from the Interlog
method, CAPPI-Pred and CAPPI-Integ.
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6.4 Prediction of interactions in a blind test

6.4.1 GO-based assessment of yeast and human predic-

tions

Figure 6.6 shows multiple histograms summarizing the BP score distribution

among yeast and human predictions, respectively. The sizes of the predicted

dataset (1576 for yeast and 17105 for human) have been selected to allow com-

parison with the interlog mapping predictions (see next section for details). In-

terestingly, we observe that while the performance of CAPPI-Pred is lower than

CAPPI-Integ in case of yeast predictions, the opposite is true for the predicted

human interactome. This suggests that while the yeast input interactions are

necessary for good prediction results, human input datasets, on average, bring a

less notable contribution.

6.4.2 Validation based on reference datasets

In Fig. 6.7 (A) we plot the ratio of true positives and false positives as a func-

tion of the number of yeast PPIs returned by CAPPI-Pred. We evaluate the

predictions separately using co-complex datasets (CAPPI-Pred Complex), gold

standard binary PPI datasets (CAPPI-Pred PPI), as well as all available refer-

ence data (CAPPI-Pred All) – see Appendix A for details. An analogous study is

performed for the predicted human interactome using the HPRD (complex and

binary PPI) catalogues as reference (see Fig. 6.7 (B)). Note that similarly as

for yeast, also for human the positive reference set is significantly smaller than

the negative reference set. The joint human reference set (All) contains 57,093

protein pairs, which is less than 0.2% of the number of differentially localized

pairs – consistent with the expected ratio of true interactions to all protein pairs

in human, as estimated by Stumpf et al. (2008). The results show that CAPPI is

able to infer high-scoring PPIs also in the case when no interactions from the pre-

dicted interactome are included in the training set. Most of the top predictions

are confirmed by experimental data. We observe that while more yeast predic-

tions are confirmed by co-complex pairs than by binary PPI data, the opposite is

true in case of the human predictions. This can be explained by the differences

in size of the respective reference datasets for the two species (see Appendix A).

When all available reference data is considered (CAPPI-Pred-All), the TP/FP
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6.4 Prediction of interactions in a blind test

Figure 6.7: The ratio of true positives and false positives as a function of the number of
interactions in the CAPPI-Pred dataset for yeast (A) and human (B). An interaction
is deemed true positive, if it is found in the reference dataset of either co-complex
interactions (Complex) or binary PPIs (PPI), or in any available reference set (All).
Otherwise it is considered false positive if the proteins are assigned to different cellular
localization (see text and Appendix A). Plots labeled as “Filtered Complex” and “Filtered
PPI” show the results of selected CAPPI predictions which are part of dense clusters
– tested against either the co-complex reference (Complex) or binary reference (PPI).
The gray dashed line marks the level at which the number of true positive predictions
is equal to the number of false positive predictions.

85
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approaches

ratios for the top 5000 interactions in yeast and human are comparable (∼ 0.8).

Filtering co-complex predictions Evolutionary pressures are more likely to

constrain essential functional complexes than individual interactions (Beltrao &

Serrano, 2007). Thus co-complex PPIs should be easier to map accurately across

species. This premise was previously explored by Sharan et al. (2005b), who

showed that screening PPI predictions against conserved clusters improves pre-

diction specificity. In an attempt to increase the percentage of co-complex PPIs

in our predictions, we filtered the CAPPI-Pred output dataset, leaving only the

predicted PPIs placed within conserved dense network regions. To this end, an

ancestral interaction network was computed as in Chapter 5, and clustered using

the MCL algorithm to identify dense clusters. Each cluster was projected onto

the network of the extant species (yeast or human) and CAPPI-Pred predictions

within the projected regions were identified as a result. As shown in Fig. 6.7,

this procedure significantly boosts the TP/FP ratio for both yeast and human

data (see “Filtered Complex” plots in Fig. 6.7). Interestingly, while the fraction

of co-complex PPIs was increased, the fraction of confirmed binary PPIs was in

general lowered by the filtering (except for the top ranked human predictions),

suggesting that many binary PPIs placed outside or between protein complexes

are filtered out in this case. This is in line with the observations made by Yu

et al. (2008) that binary and co-complex datasets are of complementary nature

and often have small overlap.

6.5 Comparison with previous high-throughput

multi-species approaches

As we acknowledged in the beginning, in the last few years different groups de-

veloped a number of interaction inference methods, very diverse in their inherent

assumptions and working principles. These approaches often rely on different

input data, limiting the possibility for a direct comparison. Although it is tech-

nically possible to integrate heterogeneous information in our framework, it is

beyond the scope of this study. Here we select two methods which, like CAPPI,

86



6.5 Comparison with previous high-throughput multi-species
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rely purely on PPI datasets and integrate and transfer interaction evidence across

species. We compare our results with the interactions inferred by a domain-based

maximum likelihood procedure (Liu et al., 2005) and an interlog-based PPI map-

ping framework (Michaut et al., 2008). Both of these general approaches have

been implemented in numerous studies and applied to many different datasets.

Comparison with the domain-based maximum likelihood approach Liu

et al. (2005) generalized the domain-domain interaction prediction method to

multiple species and applied it to infer interactions in yeast, worm and fly (we re-

fer to this method as the Domain-ML approach). As a final output, this approach

predicts protein-protein interactions based on inferred interactions between con-

served domains. Liu et al. trained their method using Ito, Uetz, Giot and Li

experimental datasets, so the their results can be directly compared to CAPPI-

Integ-3sp. Note that only the yeast interaction predictions were provided by the

authors. The mean GO scores for Domain-ML and CAPPI are shown in Fig. 6.4.

CAPPI-Integ-3sp significantly outperforms Domain-ML in terms of all three GO

scores. The performance evaluation using gold standard data (Fig. 6.5) also

indicates a higher accuracy of CAPPI compared to the domain-based approach.

Comparison with the interlog-based approach Next, we compare our re-

sults with a popular method of interlog mapping. This approach, similarly to

CAPPI, relies on protein sequence similarity to transfer the interaction evidence

across species. We choose for comparison the interlog mapping implementation

of Michaut et al. (2008) and use the same input data in predicting our CAPPI-

Pred dataset (for details see Appendix A). Figure 6.6 provides the distributions

of GO scores for the Interlog and CAPPI datasets of the same size: 1576 (yeast)

and 17105 (human), respectively. CAPPI predictions contain a larger fraction of

high-scoring interactions (those with GO score > 0.8) and obtain a higher aver-

age score. The mean score for the CAPPI-predicted yeast dataset is significantly

higher than that of the Interlog method (0.57 vs. 0.39). CAPPI’s advantage is

also apparent in case of the human predictions (mean score 0.42 vs. 0.33). Figure

6.7 shows the mean scores for the Interlog output (in blue circles), which can be

compared with the CAPPI rankings. In all cases CAPPI achieves a higher fraction
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6.5 Comparison with previous high-throughput multi-species
approaches

Figure 6.8: The number of confirmed predictions, unconfirmed predictions and corre-
sponding p-values (in logarithmic scale), as a function of the threshold, for interactions
among the 26S proteasome proteins from yeast (A) and human (B). The p-values are
computed based on the hypergeometric distribution where confirmed interactions are
considered as successes and unconfirmed interactions are considered as failures. For
both species CAPPI predictions are significant over a wide range of thresholds. The ap-
parent threshold with the minimum p-value may serve as a point of reference at which
predictions can be analyzed.
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of true positive interactions: 0.88 vs. 0.47 for the yeast co-complex predictions,

0.72 vs. 0.40 for the yeast binary PPI prediction, 0.16 vs. 0.14 for the human

co-complex predictions, and 0.38 vs. 0.28 for the human binary PPI predictions.

These results provide evidence that phylogeny-based mapping of PPI data from

multiple homologs performs favorably to the classical interlog mapping approach.

CAPPI’s additional advantage lies in the provided ranking (induced by the pos-

terior probabilities), which enables the user to easily identify the most reliable

interactions. As an example, for the purpose of selecting human PPI targets for

verification, one could make a heuristic decision to consider only around 3500 top

predictions for which the TP/FP ratio is greater than 1 (see Fig. 6.7 (B)).

6.6 Case studies: mapping interactions within

conserved functional modules

We now zoom-in on specific examples of functional units in the interactomes of

human, yeast and thale cress, and analyze co-complex interactions inferred by

CAPPI-Pred. In all described cases we demonstrate that the general topologi-

cal features and organization of these complexes, as well as many known pairwise

PPIs, can be recovered by our method based solely on data from the other species.

We verify the inferred interactions against previously reported experimental data

and compute a hypergeometric p-value to assess the significance of our predic-

tions. For an example of how the threshold selection impacts the number of

interactions and the resulting p-value see Fig. 6.8. Note that in the following

discussion gene names are used to denote corresponding proteins.

6.6.1 Human and yeast proteasome subnetworks

The ubiquitin-proteasome pathway is essential for eliminating damaged proteins

and for regulation of intra-cellular level of proteins involved in wide spectrum of

cellular functions (Glickman & Ciechanover, 2002). It is conserved in eukaryotes,

from yeast to human. The 26S proteasome complex contains a 20S catalytic

core particle (CP), which is capped on each side by a 19S regulatory particle

(RP). The structure of the 20S proteasome from yeast has been resolved (Groll
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& Huber, 2005). It consists of 28 protein subunits: two α-rings (α1, . . . , α7)

and two β-rings (β1, . . . , β7). The 19S proteasome can be further decomposed

into two subcomplexes: the base (Rpt1-Rpt6, Rpn1, Rpn2, Rpn10 and Rpn13

– the last one probably not present in human) that binds directly to the 20S

proteasome, and the lid (Rpn3, Rpn5-Rpn9, Rpn11, Rpn12 and Sem1), which is

a peripheral subcomplex. In addition there is a number of transiently associated

factors like p27 and S5b (the latter is apparently not present in yeast). We discuss

our predictions of the 26S proteasome interactions from yeast and from human

separately.

Yeast proteasome Predicted interactions in the yeast 26S proteasome are

depicted in Fig. 6.9. The presented graph is split into four parts that correspond

to the four subcomplexes of the proteasome: α-ring, β-ring, lid and base. The

α-ring and the β-ring have a dense set of interactions. Both of them together

form a clique (i.e. every two proteins are predicted to interact), with most of the

interactions being supported by experimental data. The lid and base are also very

well represented and connected by 16 interactions, all of which are confirmed by

previous experiments. We observe also the central role of Rpn7, which is predicted

to interact with every subunit in the α- and and in the β-ring, as well as with

six proteins in the lid subcomplex and eight in the base. Another hub protein

identified is Rpn1, which has twelve interaction partners among the alpha and

beta proteins (four of which are confirmed), seven partners in the base and seven

in the lid (all having experimental support). The transiently associated NAS2

(p27) is predicted to interact only with the AAA-ATPase subunits (Rpt1-Rpt6) of

the base subcomplex. In general, interactions within the core subcomplexes of the

yeast 26S interactome are accurately recovered based solely on data from other

six species, demonstrating a high level of conservation of these PPIs. The vast

majority of the 66 unconfirmed prediction are localized between the characterized

subcomplexes. In fact only 7 of the 44 predicted interactions between the 20S

catalytic core and and the 19S regulatory particles are backed by experimental

evidence in yeast. The absence of experimental data for these PPIs in S. cerevisiae

might be explained by insufficient coverage of the yeast interactome or by possible
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Figure 6.9: Interaction network of the yeast 26S proteasome complex as inferred by
CAPPI-Pred. Nodes represent gene products and node colors represent protein families
identified by sequence clustering. 177 of the predicted interactions which have been
previously detected experimentally are denoted by green edges. 66 other PPI predictions
are denoted by gray edges. The p-value of the predicted network is 4.348 ∗ 10−16.
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rewiring events which changed the topology of interactions between the conserved

core subunits across species.

Human proteasome The result of our predictions of subunit-subunit interac-

tions in the human proteasome is depicted in Fig. 6.10. Compared to the yeast

proteasome map, the human subnetwork contains more previously unreported

interactions, possibly due to the incompleteness of the human data. Again, the

resulting graph is split into four parts, each corresponding to a distinct subcom-

plex. The α- and β-rings clique representation is very similar to that of the yeast

proteasome. The base subcomplex also has a very dense set of interactions. Some

of these PPIs, namely PSMC2–PSMC6 (Rpt1–Rpt4), PSMC2–PSMC5 (Rpt1–

Rpt6) and PSMC4–PSMC4 (Rpt3–Rpt3) have only recently been reported (Chen

et al., 2008). Like in the case of the yeast proteasome, we notice a central po-

sition of PSMD9 (p27) with respect to AAA-ATPase subunits PSMC1-PSMC6

(Rpt1-Rpt6), which has also been reported by Chen et al. (2008). Due to these

confirmed interactions we decided to merge this protein into the base subnetwork.

We also observe that PSMD8 (Rpn12) of the lid is predicted to densely interact

with the base proteins. PSMD1 (Rpn2) and PSMD2 (Rpn1) each have five pre-

dicted interactions with other lid members and none with the base. Therefore we

decided to move them into the lid subnetwork. In fact PSMD1 is described as the

largest non-ATPase subunit of the 19S regulator lid by the Entrez Gene database,

somewhat differently from its Rpn2 homolog in yeast (usually attributed to the

base subcomplex). PSMD2, like its yeast homolog Rpn1, has many predicted

interactions with both subcomplexes (α and β) of the 20S proteasome, however

in human they are not confirmed. We also notice a dense set of interactions

between the six AAA-ATPase subunits (PSMC1-PSMC6) and the 20S catalytic

core. Many of these interactions have not been previously reported in the liter-

ature and could be used as hypothesis in verifying experiments. Compared to

our result for yeast, our representation of the lid subcomplex of the human 19S

proteasome lacks PSMD13 (Rpn9), which we did not find in the initial Integr8

dataset. In human, we find an additional transiently associated protein PSMD5

(S5b), which binds to PSMC2.
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Figure 6.10: Interaction network of the human 26S proteasome complex as inferred by
CAPPI-Pred. Nodes represent gene products and node colors represent protein families
identified by sequence clustering. 144 of the predicted interactions which have been
previously detected experimentally are denoted by green edges. 155 other PPI predictions
are denoted by gray edges. The p-value of the predicted network is 1.614 ∗ 10−6.
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6.6.2 Human and yeast endosome subnetworks

The ESCRT complexes comprise a major pathway for the lysosomal degradation

of transmembrane proteins (see Hurley & Emr, 2006). We investigate the pre-

dicted interactions for the ESCRT complexes in human and yeast and compare

the obtained results with the interactions reported in the literature. The list of

proteins involved in these complexes was taken from Hurley & Emr (2006).

Human ESCRT Complexes Human ESCRT co-complex interactions as pre-

dicted by our method are depicted in Fig. 6.11. CAPPI-Pred was able to re-

cover all five complexes discussed in Hurley & Emr (2006). These complexes are:

ESCRT-3 (well represented as a dense connected component with most edges

reported in previous experiments), ESCRT-1, ESCRT-0, the Vps4 complex, and

the ESCRT-2 complex. Interestingly, our results suggest that proteins CHMP1B

and CHMP5 should be assigned to the ESCRT-3 complex. This association of

CHMP1B and CHMP5 (consistent with the so called ’CHMP nomenclature’) has

been recently proposed by Shim et al. (2008). Moving on to the right side of

the graph, we notice that the VPS4 proteins together with protein VTA1 form a

triangle comprising of three reported interactions. A similar observation can be

made for the ESCRT-0 complex (HGS, STAM1 and STAM2), except that the in-

teraction STAM–STAM2 is not supported by previous experimental data. Also,

the topology of interactions presented in Fig. 6.11 suggests an important role

of the TSG101 (mammalian VPS23) protein, which joins ESCRT-1 with three

other complexes (ESCRT-3, ESCRT-0 and Vps4). TSG101 also takes part in five

identified interactions within the ESCRT-1 complex, all of which have backing

experimental evidence in human.

Yeast ESCRT Complexes These complexes, as a result of our method, are

depicted in Fig. 6.12. We find that almost all predicted interactions (except for

five self loops) are supported by experimental studies. Similarly as in the human

network, all five complexes discussed by Hurley & Emr (2006) can be naturally

retrieved from the presented graph. Like in the human ESCRT complexes, the

yeast homologs of CHMP1B (DID2) and of CHMP5 (VPS60) well fit (graph-

theoretically) to ESCRT-3. This again confirms the observation stated in Shim
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Figure 6.11: Interaction network of the human endosome complexes as inferred by
CAPPI-Pred. Nodes represent gene products and node colors represent protein families
identified by sequence clustering. 49 predicted interactions which have been previously
detected experimentally are denoted by green edges. 49 other PPI predictions are de-
noted by gray edges. The p-value of the predicted network is 3.977 ∗ 10−9.
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Figure 6.12: Interaction network of the yeast endosome complexes as inferred by
CAPPI-Pred. Nodes represent gene products and node colors represent protein families
identified by sequence clustering. 22 of the predicted interactions which have been pre-
viously detected experimentally are denoted by green edges. 5 other PPI predictions are
denoted by gray edges. The p-value of the predicted network is 9.571 ∗ 10−11.

et al. (2008), where the authors call these two proteins ’proposed regulatory

members’ of ESCRT-3. Similarly to the human endosome network, the topology

of the identified interaction network suggests that VPS23 (STP22) may play an

important role mediating the interactions between complexes, although at the

selected threshold we did not identify its interactions with the ESCRT-3 and

Vps4 complexes (as we did in the human example).

6.6.3 Human mRNA decay complexes

Next we investigated CAPPI’s interaction predictions between proteins involved

in human mRNA degradation (see Lehner & Sanderson, 2004). The subgraph of

predicted interactions is presented in Fig. 6.13. We have a very good coverage of

the human exosome complex represented by six RNase PH domain subunits (EX-

OSC4 (Rrp41), EXOSC5 (Rrp46), EXOSC6 (Mtr3), EXOSC7 (Rrp42), EXOSC8

(Oip2), EXOSC9 (PMScl-75)), three S1 RNA-binding domain subunits (EXOSC1

(Csl4), EXOSC2 (Rrp4), EXOSC3 (Rrp40)), and an RNase D-like subunit EX-

OSC10 (PMScl-100). This complex comes out as a complete subgraph (a clique)
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Figure 6.13: Interaction network of the human mRNA decay complexes as inferred
by CAPPI-Pred. Nodes represent gene products and node colors represent protein fam-
ilies identified by sequence clustering. 53 of the predicted interactions which have been
previously detected experimentally are denoted by green edges. 76 other PPI predictions
are denoted by gray edges. The p-value of the predicted network is 1.868 ∗ 10−15.
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with no interactions with the other two complexes. The role of most of the sub-

units of the complex, in terms of interacting partners, is quite comparable. One

of the exceptions is the EXOSC9 (PMScl-75) protein which is the only RNase PH

domain subunit predicted to interact with DIS3 and two helicases (SKI2W and

SKIV2L2). Other exosome complex members interacting with DIS3 are S1 RNA-

binding subunits EXOSC1 (Csl4) and EXOSC3 (Rrp40), as well as EXOSC10.

EXOSC1 and EXOSC10 also have predicted interactions with helicases SKI2W

and SKIV2L2. In general, data on interactions of the peripheral subunits with

the exosome complex are scarce, as reported in Lehner & Sanderson (2004), which

makes our predictions a potentially valuable target for experimental verification.

The second complex which comes out as a dense subgraph in our network

is the LSM complex. It consists of eight proteins (LSM1-8), forming a clique of

predicted interactions, many of which are confirmed experimentally (see Lehner &

Sanderson, 2004, Fig. 3A). The two proteins with the largest number of confirmed

interactions within the complex are LSM3 and LSM7. Both of these proteins

have confirmed PPIs with six out of seven other LSM members (additional PPIs

predicted by our method are LSM3–LSM4 and LSM7–LSM1).

The third complex which can be retrieved from the network in Fig. 6.13 con-

sists of two AU-rich element ARE-binding proteins (ELAVL1 (Hur) and HNRPD

(Auf1)). All three interactions predicted inside this complex are confirmed by

recent experimental data (see David et al., 2007). Among the unverified predic-

tions is an interaction of this complex with the LSM complex (via LSM2) and

with another mRNA decay factor XRN2.

6.6.4 A. thaliana SWI/SNF chromatin remodeling com-

plex

In yeast and mammals, ATP-dependent chromatin remodeling complexes belong-

ing to the SWI/SNF family play an essential role in the regulation of transcription.

In Arabidopsis chromatin remodeling complexes are known to a much smaller ex-

tent. No plant SWI/SNF complex has been established and characterized to date,

but it is highly probable that such complexes exist in plants (see Jerzmanowski,

2007). For this reason it seems desirable to employ a computational approach
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Figure 6.14: Interaction network of the putative SWI/SNF complex in Arabidopsis
as inferred by CAPPI-Pred. Nodes represent gene products and node colors represent
protein families identified by sequence clustering. 13 of the predicted interactions which
have been previously detected experimentally are denoted by green edges. 83 other PPI
predictions are denoted by gray edges. The p-value of the predicted network is 6.381 ∗
10−10.
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for predicting interactions in the plant SWI/SNF putative complex and generate

plausible working hypothesis. We present a zoom-in view of the SWI/SNF puta-

tive complex in Fig. 6.14. A larger zoom-out view containing other homologs of

the putative SWI/SNF complex members is presented in Fig. 6.15.

The graph in Fig. 6.14 contains the core SWI/SNF proteins – the SWI3-type

proteins: At2g47620 (SWI3A), At2g33610 (SWI3B), At1g21700

(SWI3C), At4g34430 (SWI3D), together with the SNF5-type protein At3g17590

(BSH). This core is presented at the bottom of the graph. In addition to the above

proteins we considered four groups of Arabidopsis proteins which are reported to

play a putative role in chromatin remodeling in this plant (see Jerzmanowski,

2007). These are: four ATPases which are reported by Jerzmanowski (2007)

as potential members of the SWI/SNF complex (At2g46020 (BRM), At2g28290

(SYD), At3g06010 (Chr 12), At5g19310 (Chr 23)); two SWP73-type proteins

(At3g01890 (SWP73A), and At5g14170 (SWP73B)); nine actin-related proteins

(At3g27000 (ARP2), At1g13180 (ARP3), At1g18450 (ARP4), At1g73910 (ARP4A),

At3g12380 (ARP5), At3g33520 (ARP6), At3g60830 (ARP7), At5g56180 (ARP8)

and At5g43500 (ARP9)); and three OSA-type proteins (At1g04880, At1g76110,

and At3g13350). We excluded from the graph proteins which did not show any

predicted interactions. Altogether we identified 13 of 14 known interactions

between the proteins visualized in Fig. 6.14 – the missing one is At3g01890–

At1g21700 (see Jerzmanowski, 2007). We notice some interesting peculiarities of

the presented network. All SWI3-type proteins, with the exception of At4g34430

(SWI3D), are predicted to interact with the four ATPases. Only one actin-type

protein (At1g18450) has a predicted interaction with the SWI/SNF core and

only two more (At3g60830 and At5g56180) can be associated with the complex

through member ATPases. The ability to make distinctions within family mem-

bers is an important indicator of the performance of our approach. A method

like CAPPI, which bases its prediction on evidence from all homologs, is likely

to always assign the same interactions to all family members in one species. The

above examples demonstrate that this is not the case, and that the phylogenetic

information used by our method allows it to distinguish between family members

when distributing the interaction evidence.
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Figure 6.15: An extended view of the interaction network of the putative SWI/SNF
complex in Arabidopsis as inferred by CAPPI-Pred. Nodes represent gene products
and node colors represent protein families identified by sequence clustering. 13 of the
predicted interactions which have been previously detected experimentally are denoted
by green edges. 319 other PPI predictions are denoted by gray edges. The p-value of
the predicted network is 3.411 ∗ 10−9.
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These observations are strengthened when we consider the larger family-

oriented view of the SWI/SNF-related network in Fig. 6.15. This graph was

obtained from the one in Fig. 6.14 by expanding the set of proteins to all mem-

bers of the considered protein families (once again, proteins without any inter-

actions were removed). Interestingly, the four peripheral families represented in

the graph can be divided into smaller subfamilies based on the interactions part-

ners of their members. Specifically, of the 14 ATPases presented in the larger

graph only the four above described are predicted to interact directly with the

core of the SWI/SNF complex. Two of them (At2g46020 (BRM) and At2g28290

(SYD)) have confirmed interactions while for the other two (At3g06010 (Chr 12),

At5g19310 (Chr 23)) interaction hypothesis based on sequence similarity were

formulated (Jerzmanowski, 2007). In fact the entire ATPase family, as detected

by our method, contains 48 Arabidopsis proteins (a vast majority not having

any predicted interactions to other proteins in the SWI/SNF subnetwork), which

makes the presented predictions even more significant. These specific cases of

confirmed predictions let us suggest that some of the distinctive members of the

other protein families predicted to interact with the putative SWI/SNF com-

plex (At1g18450 and six OSA family members interacting with At3g17590, five

SWP73 family members interacting either with At3g17590 or at least one of the

SWI3-type proteins, as well as five other actin family members interacting with

ATPases At2g46020 and At2g28290), may pose valuable targets for future exper-

imental validation.

Figure 6.15 may also serve as a handy device which qualitatively visualizes

interaction profiles between sub-families of proteins. We notice many interac-

tions between part of the actin family and some of the ATPases, as well as three

SWP73-type proteins. Also part of the OSA family interacts with the ATPases

and with the SWP73-type group. Finally, the SWI3-type proteins also inter-

act with selected ATPases and proteins from the SWP73 family. Interestingly

SWP73-type proteins interact with the same ATPases as the SWI3-type proteins.

Interactions between other family pairs are not predicted. Another interesting

feature of the presented network is a clique-like structure of the actin family of

proteins, which may indicate a separate protein complex formed by its members.
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Chapter 7

Parameter estimation via

expectation maximization

In the previous chapters we assumed that the parameters Θ = (ps, δs, pd, δd, p1)

of our model are known. In practice they were derived based on previous studies

and adjusted empirically. In this chapter we present a procedure for learning

(or estimating) the parameters from data. The method follows the expectation

maximization (EM) scheme (Dempster et al., 1977). It is designed towards de-

termining parameter values that maximize the probability of the observed data

when values of some of the random variables are unknown (hidden). We first de-

scribe the basic principles of the maximum likelihood (ML) paradigm and discuss

the EM scheme for an abstract statistical model. Next we derive the steps of the

EM procedure specifically for our model and show how they can be efficiently

computed.

7.1 Maximum likelihood parameter estimation

Suppose we observe a set of n data points x = {x1, . . . , xn} drawn from a given

statistical model. Suppose also that the model is determined by a set of param-

eters Θ. Assuming that the data points are drawn independently, we can write
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the probability of the dataset given Θ as:

P (x|Θ) =
n∏
i=1

P (xi|Θ)

The above probability is also referred to as the likelihood L(Θ|x) ≡ P (x|Θ) of

the parameters Θ given the data x. It is often the case that Θ is unknown and we

want to deduce it from a given dataset. A natural criterion one may assume when

deciding on the best estimate of the parameters is to choose Θ∗ which achieves

the maximum likelihood:

Θ∗ = argmax
Θ

L(Θ|x) = argmax
Θ

n∏
i=1

P (xi|Θ).

In practice it is often more convenient to maximize the log-likelihood function:

Θ∗ = argmax
Θ

logL(Θ|x) = argmax
Θ

n∑
i=1

logP (xi|Θ).

In certain cases obtaining the maximum likelihood estimate might be straight-

forward by analytical means (for examples see Bertsekas & Tsitsiklis, 2008, p.

462), whereas for some models it might turnout difficult. One often encountered

complication considered here is the case when the observed data contain hidden

values. The EM procedure described below is a popular approach for estimating

parameters in such situations.

7.2 EM basics

The EM approach is used to estimate the maximum likelihood parameters of

some statistical model in case of incomplete data. Let’s assume that besides the

observed data x ∈ X we also have some hidden data y ∈ Y. We assume a joint

density function of the complete data (observed and hidden):

P (x,y|Θ) = P (y|x,Θ)P (x|Θ). (7.1)
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To find the log-likelihood of the observed data x, we integrate over all possible

instances of y ∈ Y:

logP (x|Θ) =

∫
Y

logP (x,y|Θ)dy. (7.2)

Our aim is to find Θ that maximizes (7.2), i.e. a maximum likelihood estimate

for Θ. Suppose now that we are given a (presumably suboptimal) set of param-

eters Θ0. We derive an iterative procedure which aims at providing a better set

of parameters Θt+1, given the parameter set Θt.

Using (7.1), we can write the log-likelihood function as

logP (x|Θ) = logP (x,y|Θ)− logP (y|x,Θ)

for any given instance of y. By integrating over y ∈ Y and weighting by the

probability P (y|x,Θt) we obtain

logP (x|Θ) =

∫
Y

P (y|x,Θt) logP (x,y|Θ)dy −
∫

Y

P (y|x,Θt) logP (y|x,Θ)dy.

Notice that the first term on the right side of the equation is the expected value of

the log-likelihood of the complete data (both observed and hidden), with respect

to the unknown data y, conditional on the observed data x, and the current

parameter estimates Θt. We will refer to this expectation as Q(Θ|Θt):

Q(Θ|Θt) =E[logP (x,y|Θ)|x,Θt] =

∫
Y

P (y|x,Θt) logP (x,y|Θ)dy. (7.3)

We want to maximize logP (x|Θ), so we should find Θ with a greater likelihood

than Θt. We can write the change in likelihood as

logP (x|Θ)− logP (x|Θt) =

=

∫
Y

P (y|x,Θt) logP (x,y|Θ)dy −
∫

Y

P (y|x,Θt) logP (x,y|Θt)dy

−
∫

Y

P (y|x,Θt) logP (y|x,Θ)dy +

∫
Y

P (y|x,Θt) logP (y|x,Θt)dy

= Q(Θ|Θt)− Q(Θt|Θt) +

∫
Y

P (y|x,Θt) log
P (y|x,Θt)

P (y|x,Θ)
dy. (7.4)
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Notice that the last term is the Kullback-Leibler (K-L) divergence, also known

as the relative entropy of P (y|x,Θt) and P (y|x,Θ). It is easy to show that it is

always non-negative (follows directly from Jensen’s inequality). For a real-valued

φ that is twice differentiable and convex, and a random variable Z, we have (see

Bertsekas & Tsitsiklis, 2008)

E[φ(Z)] ≥ φ(EZ).

To show that the K-L divergence is non-negative, let us take two probability

distributions p(y) and q(y) for y. Let the random variable Z = Z(y) = q(y)/p(y)

and φ(Z) = − log(Z). We obtain∫
Y

p(y) log
p(y)

q(y)
dy ≥ − log

∫
Y

p(y)
q(y)

p(y)
dy

=⇒
∫

Y

p(y) log
p(y)

q(y)
dy ≥ 0.

Thus, for (7.4) to be positive, it is sufficient to choose Θt+1 for which Q(Θt+1|Θt) >

Q(Θt|Θt). Here we consider the classical formulation of EM and find Θt+1 that

maximizes Q:

Θt+1 = argmax
Θ

Q(Θ|Θt).

In general, the EM procedure iterates the following two steps:

E-step: Calculate the Q function (7.3).

M-step: Find Θt+1 that maximizes Q(Θ|Θt) with respect to Θ.

The likelihood will increase in each iteration until it reaches some local or

possibly global maximum. In practice, to increase the chances of finding the

globally optimal solution, one often repeats the procedure starting from different

values of Θ0.

The E-step and the M-step have to be worked out specifically for a given

problem. In some cases they have an analytically tractable form and can be

efficiently computed. The classic literature examples of specific EM procedures
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include an algorithm for estimating the parameters of a mixture of densities

(Dempster et al., 1977) and the Baum-Welch algorithm (Baum et al., 1970) for

learning the parameters of a Hidden Markov Model (HMM).

In the next section we show how the EM scheme can be performed for our

model. We derive the E and M steps which are similar to those of the Baum-

Welch algorithm as formulated in Durbin et al. (1998). Pearl’s message passing

algorithm is used in place of the forward-backward procedure for HMMs. We

have later learned of the work of Lauritzen (1995), which applies the Lauritzen-

Spiegelhalter message passing algorithm to estimate parameters in general Bayesian

network models (we thank Dr. Piotr Pokarowski for bringing this reference to our

attention). However, in the context of the present study, the simple application

of the original MP algorithm developed by Pearl is sufficient.

7.3 EM for the CAPPI model

Recall that in our model we have three conceptual types of random variables:

those corresponding to experimental outcomes (detected PPIs and pairs not ob-

served to interact), those corresponding to extant interactions, and those cor-

responding to predecessor interactions. Only the experimental outcomes are

assumed to be known and instantiated to either 1 (when the interaction was

observed in a given experiment) or 0 (a potential interaction was not observed in

a given experiment). All extant and ancestral interactions are unknown and thus

the corresponding random variables are not instantiated (hidden).

Let us denote by X the set of all possible states of experimental outcomes,

and by x = {x1, . . . , xn} ∈ X the particular instance observed in the data, where

xi is equal to 1 when the i-th experimental reading (a particular experimental

observation for a given protein pair) was positive and 0 otherwise. Similarly

denote by y = {y1, . . . , ym} ∈ Y one particular instance of all hidden interactions

chosen from the set Y of all possible states of these random variables. In this case

yi equals 1 if the i-th pair of proteins interact with each other and 0 otherwise.

Let us now consider all direct parent-child pairs in our Bayesian network

model, i.e. all pairs of random variables (p, c) where p is the unique direct pre-

decessor of c. There are three general categories of these pairs corresponding
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either to speciations, duplications or to experimental outcomes. Formally each

pair (p, c) ∈ S ∪ D ∪ E, where S,D and E are mutually exclusive. S is the set

of pairs (a, b) such that b was formed by speciation from a. D is the set of pairs

(a, b) such that b was formed by duplication from a. Finally E is the set of pairs

(a, b) such that b denotes an experimental outcome for a. Considering these cat-

egories and possible values for the random variable pairs, we distinguish 12 types

of parent-child transition events. Formally an event type e is an ordered triplet

e ∈ {spec, dup, exp} × {0, 1} × {0, 1}. The first coordinate denotes the general

category of the event – either speciation, duplication, or experimental outcome,

respectively. The second and third coordinates denote the value of the parent (p)

and the child (c), respectively. We write e[i] for the i-th coordinate of e. It will

be convenient to associate with each type of transition events a set of all pairs of

random variables in the model which can be of this type. We denote this set by

C(e). Depending on the first coordinate e[1] of e we have:

C(e) =


S, if e[1] = spec

D, if e[1] = dup

E, if e[1] = exp

Let us also define the event 1− e complementary to e: 1− e def
= (e[1], e[2], 1−

e[3]). We denote the probability of transition of type e by pe = P (c = e[3]|p =

e[2]), for a pair of random variables (p, c) ∈ C(e). We can denote each of the

parameters of our model using the new notation. For example, ps – the probability

of retaining an interaction during speciation – can be written as: ps ≡ p(s,1,1) ≡
P (c = 1|p = 1), for (c, p) ∈ S. The transition event complementary to (s, 1, 1)

would be (s, 1, 0) (interaction loss during speciation) with the probability 1−ps ≡
p(s,1,0) ≡ P (c = 0|p = 1), for (p, c) ∈ S. As previously in this chapter we denote

the vector of parameters by Θ. We write Θt and Θt+1 for the current and the next

estimates of parameters within the EM procedure, respectively. Note that the

probability of observing an existent interaction in an experiment, as well as the

probability of observing a false interaction, are treated on the same basis as the

evolutionary parameters – they can also be estimated in the EM procedure. It is

also possible to introduce separate parameters for each input dataset to denote

its specific reliability.
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Depending on the value of the hidden interactions, we may have a different

number of transition events of each type. We denote by Ae(y) the number of

transition events of type e given the state of the hidden variables y. Note that

formally, for events corresponding to experimental outcomes, Ae also depends on

the values x of the observed variables. We do not write it explicitly since x is

known. Let us also denote by A1(y) the number of interactions in the ancestral

network G1,0 and by A0(y) the number of non-interacting pairs in the ancestral

network.

7.3.1 The Q function

We now derive the Q function for our model:

Q(Θ|Θt) =
∑
y

P (y|x,Θt) logP (x,y|Θ). (7.5)

The probability of the data given the parameters Θ can be expressed as the prod-

uct of the probabilities of the initial interactions and the transition probabilities:

P (x,y|Θ) = p
A1(y)
1 p

A0(y)
0

∏
e

pAe(y)
e

Taking the logarithm we obtain:

logP (x,y|Θ) =
∑
e

Ae(y) log pe + A1(y) log p1 + A0(y) log p0

which we can plug into (7.5):

Q(Θ|Θt) =
∑
y

P (y|x,Θt)

[∑
e

Ae(y) log pe + A1(y) log p1 + A0(y) log p0

]
=
∑
y

∑
e

P (y|x,Θt)Ae(y) log pe +
∑
y

P (y|x,Θt)A1(y) log p1

+
∑
y

P (y|x,Θt)A0(y) log p0

=
∑
e

log pe
∑
y

P (y|x,Θt)Ae(y) + log p1

∑
y

P (y|x,Θt)A1(y)

+ log p0

∑
y

P (y|x,Θt)A0(y). (7.6)
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Each term of the Q function is expressed in terms of one of the expectations which

we calculate in the E-step of the algorithm.

7.3.2 The E-step

The E-step of the algorithm consists of calculating the following expectations:

∑
y

P (y|x,Θt)Ae(y) = E(Ae), for each transition type e (7.7)∑
y

P (y|x,Θt)A1(y) = E(A1) (7.8)∑
y

P (y|x,Θt)A0(y) = E(A0) (7.9)

Let’s start with (7.7). Summing over all pairs of random variables (p, c) for which

transition e can take place we have:

E(Ae) =
∑

(p′,c′)∈{(p=e[2],c=e[3]):(p,c)∈C(e)}

P (p′, c′|x,Θt)

=
∑

(p′,c′)

P (p′, c′,x|Θt)

P (x|Θt)

=
∑

(p′,c′)

P (c′,x|p′,Θt)P (p′|Θt)

P (x|Θt)

=
∑

(p′,c′)

P (c′,x|p′,Θt)P (p′|Θt)P (p′,x|Θt)

P (x|Θt)P (p′,x|Θt)

=
∑

(p′,c′)

P (c′,x|p′,Θt)P (p′|Θt)P (p′|x,Θt)P (x|Θt)

P (x|Θt)P (x|p′,Θt)P (p′|Θt)

=
∑

(p′,c′)

P (p′|x,Θt)P (x, c′|p′,Θt)

P (x|p′,Θt)
= (∗).

As before in Chapter 4, we split the evidence x into the evidence below p′ (dp′)

and the evidence above p′ (np′) and take advantage of the implied conditional
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independencies:

(∗) =
∑

(p′,c′)

P (p′|x,Θt)P (dp′ ,np′ , c
′|p′,Θt)

P (dp′ ,np′ |p′,Θt)

=
∑

(p′,c′)

P (p′|x,Θt)P (dp′ , c
′|p′,Θt)P (np′ |p′,Θt)

P (dp′|p′,Θt)P (np′|p′,Θt)

=
∑

(p′,c′)

P (p′|x,Θt)P (dp′ , c
′|p′,Θt)

P (dp′|p′,Θt)
, (7.10)

where P (dp′ , c
′|p′,Θt) can be written as:

P (dp′ , c
′|p′,Θt) =P (dc′ ,dp′−c′ , c

′|p′,Θt) = P (dp′−c′|p′,Θt)P (dc′ , c
′|p′,Θt)

=P (dp′−c′ |p′,Θt)P (dc′ |c′,Θt)P (c′|p′,Θt),

where dc′ is the observed evidence below c′ and dp′−c′ is the evidence below p′

which is not below c′. We observe that each of the probabilities in (7.10) can

be easily computed as part of the Pearl’s message passing algorithm, either as

the posterior probabilities or from the appropriate λ messages and λ values (see

Chapter 4). Expression (7.8) and the complementary expression (7.9) can also

be written as sums of expectations which are easily calculated using the MP

algorithm.

7.3.3 The M-step

The M-step of the algorithm determines new parameter values that maximize the

Q function. The terms of the expression (7.6) can be maximized separately with

respect to one of the model parameters:{
E(Ae(y)) log(pe) + E(A1−e(y)) log(1− pe), for each pair (e, 1− e)
E(A1(y)) log(p1) + E(A0(y)) log(p0)

For a given e, we find p∗e for which the derivative is equal to 0:

∂Q

∂pe
=

E(Ae)

p∗e
− E(A1−e)

1− p∗e
= 0

p∗e =
E(Ae)

E(Ae) + E(A1−e)
.

111



7.4 Distinguishing conserving and neutral evolution

Notice that ∂Q
∂pe

> 0 for pe < p∗e and ∂Q
∂pe

< 0 for pe > p∗e. Thus p∗e is the optimal

value and is selected as pe in the new set of parameters Θt+1. Similarly we find

the next value of p1.

7.4 Distinguishing conserving and neutral evo-

lution

We now present a proof of concept study in which we demonstrate one potential

application of the parameter estimation framework. Based on available data, we

try to estimate two sets of parameters for our model of network evolution. The

first set of parameters will be estimated based on examples of functional modules,

which should evolve under a more stringent (conserving) evolutionary scenario.

The second set of parameters will be estimated based on randomly selected parts

of the network. If we are successful, our two sets of parameters should be differ-

ent, reflecting the difference in conservation rates among functional modules and

background evolutionary rates.

Previously, we carried out all preprocessing steps ourselves using available

software packages. In this study we take advantage of the TreeFam database (Li

et al., 2006) of protein families and phylogenies. TreeFam contains over 18000

gene family trees of which 1314 (in TreeFam A) were manually curated and are

attributed greater confidence. From TreeFam A (November 2007 download) we

selected 573 families which have a representative from each of the seven species

studied in the previous chapter: H. sapiens, M. musculus, R. norvegicus, D.

melanogaster, C. elegans, S. cerevisiae, and A. thaliana. Protein-protein interac-

tions were pulled, as before, from the IntAct, DIP and MINT databases.

Our working hypothesis is that subnetworks corresponding to known func-

tional pathways and complexes should exhibit more stringent evolutionary rates

than random parts of the network. While this hypothesis is generally accepted

and many positive examples were identified, it is not certain a priori that the

difference would be sufficiently portrayed in the available data and picked up by

our framework. A toy example of the experiment scheme is available in Fig. 7.1.
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7.4 Distinguishing conserving and neutral evolution

Conserving evolution Neutral evolution

Θconserving = argmaxΘ logP (xc|Θ) = Θneutral = argmaxΘ logP (xr|Θ) =

argmaxΘ log
∑

yc
P (xc,yc|Θ) argmaxΘ log

∑
yr
P (xr,yr|Θ)

Figure 7.1: Estimating the parameters of conserving and neutral evolution of protein
interaction networks. Two examples of conserved network modules for three species
(blue, yellow and red) are shown on the left in (A) & (B). Two examples of subnetworks
chosen at random are shown on the right in (C) & (D). Homologous proteins are aligned
horizontally in each case. The model parameters for the conserving evolution scenario
are derived based on the evidence for interactions within known network modules (from
KEGG or MIPS). The parameters for the neutral evolution scenario are derived based
on evidence for interactions within randomly chosen subnetworks. The two estimated
sets of model parameters can be used to classify a new subnetwork as either conserved
or evolving under the neutral scenario.
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7.4 Distinguishing conserving and neutral evolution

The experiment was set up as follows. Known protein pathways were down-

loaded from the KEGG database (Kanehisa et al., 2007). We extracted pairs of

different yeast proteins which were together members of the same pathway. For

each such pair of proteins, we added the corresponding pair of protein families

(to which the proteins belonged to) to our set of conserved examples, but only

if there was at least one protein-protein interaction observed between members

of these families (in the input PPI databases). We refer to such family pairs as

conserved. We identified 553 conserved pairs all together. Next we generated an

equal in size random set, taking only pairs of protein families for which there

was at least one interaction observed between their members. Thus both the

conserved and the random set contain pairs of protein families for which some

evidence for interaction between their members exist. Pairs in the conserved set

fulfill an additional condition – they have at least one protein member in the

same KEGG pathway. Note that in both cases a protein family can form a pair

with itself.

We estimated the model parameters separately on pairs of protein families

from the conserved set and on those from the random set. Note that we only

estimated the parameters of the evolutionary model (ps, δs, pd, δd, p1). The relia-

bilities of the input datasets were set as in the previous chapter (see Appendix A).

Subsequently, we ran an additional experiment in which the conserved set was

selected based on MIPS co-complex membership (347 family pairs altogether)

instead of KEGG co-membership.

The parameter values estimated based on the three data subsets are collected

in Table 7.1. The presented estimates were consistent over multiple runs of the

EM procedure for different random datasets and starting from different initial

parameter values. We first observe that the conservation of interactions during

speciation (ps) is greater for the conserved KEGG-based set than the random

data subset. This coincides with the idea of greater conservation of essential

protein interactions between species. The lesser conservation of pathway-related

interactions during duplication (pd) is perhaps less expected. One plausible ex-

planation is that it allows duplicate pathway members to change function more

easily. While the conservation of essential pathway interactions is critical, once

a protein duplicates one of the copies is no longer essential. Thus it can diverge
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7.4 Distinguishing conserving and neutral evolution

Data ps δs pd δd p1

Random 0.85 0.02 0.59 0.001 0.999

KEGG 0.93 0.04 0.55 3.1e-6 0.999

MIPS 0.98 0.05 0.49 3.8e-5 0.999

Table 7.1: Parameter estimates obtained for three different data subsets (Random,
KEGG and MIPS) using the EM procedure.

and gain new functionality. Essential proteins and complex members often have

many interaction partners. This provides potential both for interaction loss and

for formation of new interactions by adapting old interfaces. Important pathway

members, which have proven useful in the cell, can thus be reused by evolution

for different tasks. It is also interesting to observe that the parameters estimated

on KEGG-based data are, to some degree, a mild version of the parameters es-

timated on MIPS data. While both sets can be used as examples of conserving

evolution, the MIPS dataset clearly presents a more extreme case. This can be

due to the fact that pathways correspond to a broader category of functional

modules – some of them are composed of several protein complexes. Evolution

may be on average more conserving for core subunits and less so for pathway

interactions. Further, we notice that in all three cases the prior probability of

interaction is very close to 1, suggesting that the vast majority of present interac-

tions have their evolutionary predecessors in ancestral species. We note that the

overall prior probability of interaction between ancestral proteins is expected to

be much smaller (somewhere of the order of 0.001). However, here we only con-

sider a small subspace of pairs of protein families for which at least one interaction

is observed experimentally.

We consider the resulting parameter estimates reasonable, however, it is hard

to rule out all possible biases in the input data and the experimental setup. For

this reason any discussion of the parameter values may only have a speculative

character. What is most important and encouraging for us is that there is a

considerable difference between the conserved and the random models. It enables

us to score the relative interaction conservation between members of arbitrary

protein families.
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7.4 Distinguishing conserving and neutral evolution

Figure 7.2: Distribution of LLR scores among pairs of TreeFam families containing
proteins belonging to common KEGG pathways (left) or MIPS complexes (right).

For a given pair of protein families (f1, f2) we define the log-likelihood ratio

(LLR score) as:

LLR(f1, f2) = log
P (xf1,f2|Θconserving)

P (xf1,f2|Θneutral)
,

where xf1,f2 denotes all experimental readings for interactions between the mem-

bers of families f1 and f2. The LLR is the logarithm of the ratio of the likelihood

of the data under the model of conserving evolution and under the model of neu-

tral evolution. If LLR > 0 then the data are more likely under the conserving

model (either based on KEGG or MIPS). We will use this score to rank arbitrary

pairs of protein families. First, we analyze the scores among pairs of families used

for training the conserved models.

The distribution of LLR scores for pairs of families derived based on KEGG

and MIPS data are plotted in Fig. 7.2. In case of the KEGG-based pairs, the

conserving model used to calculate the LLR scores was based on the KEGG

database. The MIPS-based pairs were scored using the MIPS-based conserving

model. Thus each pair (either KEGG-based or MIPS-based) was scored in the

model for which it was used in training, and also in the neutral model. As can

be expected, in both cases most protein pairs score higher under the conserving
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7.4 Distinguishing conserving and neutral evolution

Figure 7.3: Overview of evolutionary conserved interactions between members of
TreeFam A families. Each node corresponds to a protein family. An edge denotes
conservation of protein interactions between two families with LLR > 0.4. Thick edges
correspond to known associations either based on MIPS (blue), KEGG (yellow) or both
(green).
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7.4 Distinguishing conserving and neutral evolution

model (LLR > 0). However, there is also a considerable fraction of pairs which

are more likely under the neutral evolution scenario (255 KEGG and 140 MIPS)

. Interestingly, the histogram for the KEGG data seems to suggest a bimodal

distribution of LLR scores among the co-pathway pairs. A similar observation

can be made in case of the MIPS co-complex pairs. It is possible that some of

the KEGG- and MIPS-based family pairs might be significantly more conserved

than others – we might be observing a mixture of two or more conservation rates.

These observations provide a hint for selecting a stringent LLR threshold value,

at which other highly conserved pairs can be identified.

Next we compute the LLR score for every pair of protein families using the

MIPS-based conserving model and the neutral model. We construct a graph of

protein families in which the edges are weighted by the LLR score. Intuitively, the

edges in the graph represent the level of conservation of interactions between the

members of adjacent protein families. Based on the above-described observations,

we select a threshold value of 0.4 and retain only the edges in the graph with

weights above this threshold. Family pairs (nodes) with no edges above the

selected threshold are also discarded. Overall 251 protein families and 358 edges

are retained. The resulting graph is visualized in Fig. 7.3.

The graph in Fig. 7.3 has a giant component composed of 192 nodes and

316 edges. Additionally there are 29 considerably smaller components in the

network. The thick edges in the diagram correspond to protein family pairs

which were previously known to be associated with functional modules and are

assumed to be conserved. The 23 blue edges and 82 green edges correspond to

pairs present in the MIPS-based dataset used for training (green edges were also

identified in the KEGG-based dataset). Additionally 38 pairs marked by yellow

edges are present only in the KEGG-based dataset and were not used for training

the model in this case. We further investigate the decomposition of the giant

component while raising of the LLR threshold value. When only pairs of families

with LLR above 0.7 are retained, the network is comprised of 26 components –

the largest of them has 18 nodes. The resulting network is presented in Fig. 7.4.

As in Chapter 5, we can assess whether the most conserved components form

functionally coherent subnetworks. Overall 11 of the 26 subnetworks have a sig-
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7.4 Distinguishing conserving and neutral evolution

Figure 7.4: The most conserved components of the TreeFam A family graph. An
edge denotes conservation of protein interactions between two families with LLR > 0.7.
Thick edges correspond to known associations either based on MIPS (blue), KEGG
(yellow) or both (green).
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7.4 Distinguishing conserving and neutral evolution

nificant portion of family associations supported by KEGG and/or MIPS data.

Perhaps the most interesting are the yellow edges corresponding to associations

present only in the KEGG-based dataset, which was not used for training. Other

conserved family associations, identified de novo by our method, may point to

unknown functional modules. To assess the potential relevance of each module,

we performed a GO enrichment analysis using the Ontologizer software (Bauer

et al., 2008). The results are summarized in Table 7.2. Due to space considera-

tions, p-values are reported for five of the seven species and at most one significant

term is considered for each module. We find that 24 of the 26 modules are signif-

icantly enriched for a biological process term (p-value < 0.01 after correcting for

multiple testing). The first two modules correspond to the proteasome complex

involved in protein catabolism, which was studied in Chapter 6. Other modules

are responsible for essential and highly conserved biological processes including

translation, cell cycle regulation, protein folding and phosphorylation. Most of

the modules have enriched annotations to the same term in multiple species. Our

analysis also uncovers possibly missing annotations (denoted by NA in Table 7.2)

and suggests candidate GO terms. For example, based on the evidence from four

other species, Arabidopsis proteins in component number 20 might be considered

for annotation to the cell division term, while rat proteins belonging to the 7-th

module are suspected to take part in DNA replication.

Selecting a high threshold enables us to identify coherent and strongly con-

served modules. However, we loose potentially valuable information on weaker

connections. To overcome this problem and still identify closely cooperating

protein families, we cluster the family graph shown in Fig. 7.3 using the affinity

propagation algorithm (Frey & Dueck, 2007). The algorithm was implemented as

a plug-in for the Cytoscape framework (Shannon et al., 2003) by Micha l Woźniak,

a master’s student in our group. The method identified 83 clusters, represented

in different colors in Fig. 7.5, which are organized into a map of cooperating

functional modules. Repeating the GO enrichment analysis for these clusters, we

find that 76 of them have statistically significant biological process annotations

in at least one species (p-value < 0.01 after correcting for multiple testing) and

52 have significant annotations to the same term in at least two of the seven
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7.4 Distinguishing conserving and neutral evolution

species. In Appendix B we list the annotations of 39 clusters which have signifi-

cant annotations to the same term in at least two of the seven species, at a more

stringent p-value < 0.001. The presented map provides a bird’s-eye view of the

most conserved PPI associations between members of the TreeFam A families. It

can be further extended by including in the analysis the less reliable TreeFam B

families. It is also possible to consider family associations with lower LLR values.

Our initial analysis was directed towards exploring the parameter space and

identifying unknown conserved family associations. We used all known MIPS-

based family pairs to learn the conserving model and identify novel associations

which evolve as restrictively as the known functional components. An impor-

tant question to ask is if our method is able to identify MIPS associations held

out from training. It is also worth to investigate the robustness of our method to

perturbations in the training set. To this end we applied the cross-validation pro-

cedure, iteratively learning the evolutionary parameters on 4 of 5 (approximately

equal in size) partitions of the data and classifying the pairs in the partition that

was held out from training. The held out portion of the data was subsequently

used to validate the method’s predictions. Note that each of the five partitions

contained ∼ 1/5 of the 347 MIPS-based pairs and ∼ 1/5 of the 347 pairs se-

lected at random. We found that our method, having only 5 parameters, does

not overfit to training data. Parameters learned on subsets of the dataset (of size

4/5 of the original) were consistent with the ones learned on the entire dataset

(reported in Table 7.1). As a result, we recovered 95 MIPS pairs above the 0.4

LLR threshold – each pair was identified based on the training data which did

not include this particular pair. At the chosen threshold only 18 pairs from the

random set were identified. Of the 95 confirmed pairs, 91 were among the 105

MIPS pairs identified by the original method trained on all available data.
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Chapter 8

Conclusions

In this thesis we have developed a new framework for comparing large protein-

protein interaction networks across species. The framework has the advantage

of being grounded in a stochastic network growth model, which accounts for

interaction conservation, loss and emergence during the course of evolution. Our

approach considers the relationships between proteins and uses protein family

phylogenies to guide the transfer of PPI evidence within and between species.

The reconstruction of predecessor networks by our method lends considerable

new insight into the PPI network evolution.

We have shown how our general framework can be applied towards the prob-

lem of identifying evolutionarily conserved subnetworks. The reconstructed net-

work of the common ancestor of the species of interest provides an implicit align-

ment of the most conserved parts of the observed interactomes. We identified

regions with the most probable interactions and projected them back onto the

input networks. We have shown that this strategy can successfully recover known

complexes and provide hypothesis about novel functional units.

We have also demonstrated how an extended version of our framework can be

used to integrate and map interactions across species. Our method naturally in-

corporates interaction evidence from different sources and computes the posterior

probability for every possible interaction. It considers the reliability of each data

source and the phylogenetic relationships between protein pairs. The approach

was applied to compute integrated interactomes for seven eukaryotic species, pro-

viding confidence scores for each possible edge in the network. Experimental
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evidence suggests that the method can accurately recover a significant part of

known interactions within well-characterized protein complexes which we have

studied. We have also provided many interaction predictions that await exper-

imental verification. Interestingly, detailed analysis of CAPPI results uncovered

distinct PPI profiles among homologous proteins, establishing interaction-based

partitioning of large protein families.

Finally, we have derived an EM-based procedure to estimate the parameters

of our model directly from data. This procedure was employed to derive rates

of rewiring events within known functional modules, as well as the background

rates in randomly selected subnetworks. As a result, we were able to identify

two considerably different sets of parameters for conserving and neutral PPI evo-

lution. The two parameter sets can be used to identify instances of conserved

cooperation between protein families in arbitrary parts of the interactome. In

a preliminary application to a number of manually-curated protein families, we

were able to recover a significant number of known functional associations, as

well as identify novel ones supported by GO annotations. The computed fam-

ily associations were used to construct a draft version of a map of co-functioning

network units. In addition to these applications, our parameter estimates provide

data for theoretical considerations on the rate of network growth and divergence.

The field of biological network analysis is young and developing rapidly. New

computational approaches are presented every year and advances in experimental

techniques are being made. As the field matures and acquires better validation

frameworks and new data, the strengths and weaknesses of each approach should

become more clear. As for our method, we are also thinking of possible improve-

ments. Enhancements that can be readily applied include deriving specific PPI

conservation rates for each species, taking into account evolutionary distances.

We should also be able to infer the reliability of each input dataset directly from

data using the EM framework. Another good strategy, in our opinion, is to

use precomputed and curated sources of protein families and phylogenies, which

should make our results both more accurate and better annotated. Preliminary

steps towards this goal were carried out in Chapter 7 using the TreeFam database.

We are also considering other applications of the proposed framework. As

we mentioned in the introduction, biological networks are not limited to protein-
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protein interactions. Other kinds of associations such as regulatory or genetic

(e.g. epistasic) might also be conserved – perhaps to a smaller extent, as ev-

idenced by recent investigations. The applicability of our framework, or other

network comparison methods, to these data is yet to be evaluated. Construction

of multi-level interaction maps and their subsequent analysis should result in bet-

ter understanding of the architecture and functioning of cellular machinery. As

new studies indicate, biological network analysis can also contribute to unraveling

the mechanisms of complex diseases, including various cancer types, by providing

system-level information inherently valuable for prognosis and treatment.
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Appendix A

Datasets and parameter settings

used for mapping seven

eukaryotic interactomes

A.1 Input datasets and data preprocessing

We have downloaded the protein sequence and annotation data from the Integr8

database (Kersey et al., 2005) (December, 2007 download). The input PPI data

for the seven species was the same as in the InteroPorc implementation (interlog

approach). The dataset included merged PPI data from the latest releases of

three major databases: IntAct (Hermjakob et al., 2004) (2008-08-22 version),

MINT (Chatr-aryamontri et al., 2007) (2008-05-16 version) and DIP (Salwinski

et al., 2004) (2008-07-08 version). We downloaded the input dataset for each

species separately from the InteroPorc website http://biodev.extra.cea.fr/

interoporc/Default.aspx.

Protein sequences were preprocessed leaving only the longest splice variants

for each gene and clustered using the MCL algorithm (Enright et al., 2002),

which identified 21759 disjoint protein families. We further filtered out the fami-
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A.2 Parameter settings

lies which contained sequences from less than three species leaving 4083 conserved

families. Additional 10 largest families were removed due to poor sequence over-

lap. For each of the remaining 4073 families we constructed a phylogenetic tree

and reconciled it with the species tree of the seven organisms. For the purpose

of small-scale case studies we made minor corrections in six families (adding pro-

teins missed by the automated preprocessing of the Integr8 sequence database).

All other steps of the analysis were performed automatically without manual

curation.

A.2 Parameter settings

The downloaded PPI data was split by species and source experiments (accord-

ing to PubMed ID). Reliability parameters for large-scale input dataset used in

CAPPI-Integ and CAPPI-Pred were based on the estimates from Hart et al.

(2006), Deng et al. (2003) and Patil & Nakamura (2005):

First author Year Reliability
Gavin 2006 0.28
Giot 2003 0.2

Krogan 2006 0.27
Ewing 2007 0.7

Ito 2001 0.18
Li 2004 0.29

Gavin 2002 0.67
Ho 2002 0.27

Steltz 2005 0.15
Rual 2005 0.32

Hazbun 2003 0.31
Stanyon 2004 0.7

Formstecher 2005 0.45
Bouwmeester 2004 0.72

Uetz 2000 0.53

Smaller datasets were merged into one single dataset with reliability 0.9. Dur-

ing initial tests, the method showed that it was robust to variation in reliability
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parameters over a wide range of values. Thus no special optimization was neces-

sary. The number of true interactions in each species was estimated as in Stumpf

et al. (2008).

In case of CAPPI-Integ-3sp, in order to enable direct comparison with the

Domain-ML approach, we set the false positive rate of each experiment to 0.0003

and the false negative rate of each experiment to 0.85, as was done by Liu et al.

(2005).

The parameters of the model of network evolution were set (in all cases) to the

following conservative values: pd = 0.95, δd = 0.001, ps = 0.99 and δs = 0.001.

A.3 Integrating datasets with different reliabil-

ities and coverage

The conditional probabilities corresponding to true positive rate, false positive

rate, false negative rate, and true negative rate of each experiment were computed

as follows:

Pr(X
o
(i)
h
nx,ny = 1|XGi,mi

nx,ny = 1) =
Rel(o

(i)
h )|o(i)

h |
|Ei,mi

|
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A.4 Reference datasets

The GO annotations for considered proteins and background protein populations

were downloaded from the Integr8 database (December 2008 download). The

functional similarity scores were computed separately for each protein pair using

the SemSim Bioconductor package http://www.bioconductor.org/packages/
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A.4 Reference datasets

2.0/bioc/html/SemSim.html and averaged over the number of predicted inter-

actions or interactions in the input datasets.

Our second kind of quality assessment was based on estimating the ratio of

true positive and false positive interactions. We used separate reference datasets

to determine binary and co-complex true positive PPIs. Protein pairs which where

not found in the reference dataset and had differential sub-cellular localizations

were counted as false positives. Below we list the reference datasets used in each

case.

Yeast reference datasets A set of 3388 gold-standard yeast binary PPIs was

prepared by merging the LC-multiple set from Reguly et al. (2006) and gold

standard dataset Binary-GS from Yu et al. (2008), both downloaded from http:

//interactome.dfci.harvard.edu/S_cerevisiae/host.php?page=download.

The co-complex reference dataset of 21069 protein pairs was comprised by extract-

ing pairs of proteins from yeast complexes listed in the MIPS complex catalog of

Mewes et al. (2006) (ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/)

and in the CYC2008 Complex dataset of Pu et al. (2009) (http://wodaklab.

org/cyc2008/downloads). We discarded the complexes identified in high-through-

put experiments (MIPS category 550). For CAPPI-Integ validation the complex

and binary reference datasets were merged. For CAPPI-Pred experiments the

binary and co-complex reference datasets were used separately and an additional

dataset of experimental PPIs (binary and co-complex) was comprised from all

previous reference datasets and from the left-out yeast input data, as well as

a recent Y2H experiment CCSB-YI1 (Yu et al., 2008) (totaling 73252 PPIs al-

together). Sub-cellular localization for yeast proteins were extracted from the

MIPS sub-cellular catalog. Altogether there were 4857065 differentially localized

protein pairs. All datasets were most recent as of December 2008.

Human reference datasets A reference set of 36244 binary PPIs was com-

prised from interactions downloaded from the HPRD database (Prasad et al.,

2008), which stores curated interactions, mostly from small-scale studies. Co-

complex pairs were extracted from HPRD complexes (9669 pairs). For CAPPI-

Pred experiments the binary and co-complex reference datasets were used sep-
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arately and an additional dataset (All) of experimental PPIs (binary and co-

complex) was comprised from all previous reference datasets and from the left-out

human input data (totaling 57093 PPIs altogether). Sub-cellular localization for

human proteins were extracted from the HPRD sub-cellular catalog. Altogether

there were 41647579 differentially localized protein pairs. Most recent HPRD

datasets were downloaded in August 2008.
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Appendix B

GO enrichment analysis for

clusters of TreeFam families

Table B.1: GO term enrichment analysis for clusters of co-functioning protein families

identified with affinity propagation. Listed are clusters with significant biological process

annotations to a given term in at least two species (p-value < 0.001 after correcting for

multiple testing).

ID GO term Description
1 GO:0043285 biopolymer catabolic process
1 GO:0030163 protein catabolic process
1 GO:0044267 cellular protein metabolic process
1 GO:0044265 cellular macromolecule catabolic process
1 GO:0044260 cellular macromolecule metabolic process
1 GO:0006511 ubiquitin-dependent protein catabolic process
1 GO:0044248 cellular catabolic process
1 GO:0006508 proteolysis
1 GO:0051603 proteolysis involved in cellular protein catabolic process
1 GO:0019941 modification-dependent protein catabolic process
1 GO:0044257 cellular protein catabolic process
1 GO:0043632 modification-dependent macromolecule catabolic process
1 GO:0009056 catabolic process

Continued on next page
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Table B.1 – continued from previous page
ID GO term Description
1 GO:0009057 macromolecule catabolic process
1 GO:0008152 metabolic process
1 GO:0009987 cellular process
1 GO:0043283 biopolymer metabolic process
1 GO:0019538 protein metabolic process
1 GO:0043170 macromolecule metabolic process
1 GO:0044238 primary metabolic process
1 GO:0044237 cellular metabolic process
3 GO:0019538 protein metabolic process
3 GO:0044267 cellular protein metabolic process
3 GO:0044260 cellular macromolecule metabolic process
3 GO:0006508 proteolysis
3 GO:0043285 biopolymer catabolic process
3 GO:0030163 protein catabolic process
3 GO:0009056 catabolic process
3 GO:0009057 macromolecule catabolic process
7 GO:0042493 response to drug
10 GO:0007165 signal transduction
10 GO:0007154 cell communication
11 GO:0016311 dephosphorylation
12 GO:0006464 protein modification process
12 GO:0043283 biopolymer metabolic process
12 GO:0000398 nuclear mRNA splicing, via spliceosome
12 GO:0043170 macromolecule metabolic process
12 GO:0000375 RNA splicing, via transesterification reactions
12 GO:0008380 RNA splicing

12 GO:0000377
RNA splicing, via transesterification reactions
with bulged adenosine as nucleophile

12 GO:0044238 primary metabolic process
12 GO:0044237 cellular metabolic process
12 GO:0006397 mRNA processing
12 GO:0016310 phosphorylation
12 GO:0043687 post-translational protein modification
12 GO:0006468 protein amino acid phosphorylation
12 GO:0006796 phosphate metabolic process
12 GO:0006793 phosphorus metabolic process
13 GO:0007283 spermatogenesis
13 GO:0048232 male gamete generation

Continued on next page
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Table B.1 – continued from previous page
ID GO term Description
14 GO:0007091 mitotic metaphase/anaphase transition
16 GO:0006457 protein folding
17 GO:0000165 MAPKKK cascade
17 GO:0045454 cell redox homeostasis
17 GO:0045859 regulation of protein kinase activity
17 GO:0051347 positive regulation of transferase activity
17 GO:0050790 regulation of catalytic activity
17 GO:0051338 regulation of transferase activity
17 GO:0043406 positive regulation of MAPK activity
17 GO:0043405 regulation of MAPK activity
17 GO:0043549 regulation of kinase activity
17 GO:0065009 regulation of a molecular function
17 GO:0043085 positive regulation of enzyme activity
17 GO:0045860 positive regulation of protein kinase activity
17 GO:0000187 activation of MAPK activity
18 GO:0009161 ribonucleoside monophosphate metabolic process
18 GO:0009156 ribonucleoside monophosphate biosynthetic process
18 GO:0009260 ribonucleotide biosynthetic process
18 GO:0009123 nucleoside monophosphate metabolic process
18 GO:0009259 ribonucleotide metabolic process
18 GO:0009124 nucleoside monophosphate biosynthetic process
18 GO:0009116 nucleoside metabolic process
22 GO:0007059 chromosome segregation
23 GO:0051169 nuclear transport
23 GO:0008104 protein localization
23 GO:0033036 macromolecule localization
23 GO:0006606 protein import into nucleus
23 GO:0006605 protein targeting
23 GO:0045184 establishment of protein localization
23 GO:0006886 intracellular protein transport
23 GO:0046907 intracellular transport
23 GO:0006913 nucleocytoplasmic transport
23 GO:0017038 protein import
23 GO:0051170 nuclear import
23 GO:0051649 establishment of cellular localization
23 GO:0051641 cellular localization
23 GO:0015031 protein transport
23 GO:0016043 cellular component organization and biogenesis

Continued on next page
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Table B.1 – continued from previous page
ID GO term Description
23 GO:0006810 transport
23 GO:0051234 establishment of localization
23 GO:0051179 localization
26 GO:0006413 translational initiation
26 GO:0022618 protein-RNA complex assembly
26 GO:0022613 ribonucleoprotein complex biogenesis and assembly
26 GO:0022607 cellular component assembly
26 GO:0065003 macromolecular complex assembly
26 GO:0009058 biosynthetic process
26 GO:0006412 translation
26 GO:0009059 macromolecule biosynthetic process
27 GO:0006413 translational initiation
29 GO:0006457 protein folding
30 GO:0006468 protein amino acid phosphorylation
30 GO:0044267 cellular protein metabolic process
30 GO:0016310 phosphorylation
30 GO:0007165 signal transduction
30 GO:0007154 cell communication
30 GO:0019538 protein metabolic process
30 GO:0043412 biopolymer modification
30 GO:0043687 post-translational protein modification
30 GO:0006464 protein modification process
30 GO:0006796 phosphate metabolic process
30 GO:0006793 phosphorus metabolic process
30 GO:0044260 cellular macromolecule metabolic process
30 GO:0043170 macromolecule metabolic process
30 GO:0007242 intracellular signaling cascade
31 GO:0019320 hexose catabolic process
31 GO:0006007 glucose catabolic process
31 GO:0046365 monosaccharide catabolic process
31 GO:0006096 glycolysis
32 GO:0016310 phosphorylation
33 GO:0007001 chromosome organization and biogenesis (sensu Eukaryota)
33 GO:0016569 covalent chromatin modification
33 GO:0016570 histone modification
33 GO:0051276 chromosome organization and biogenesis
33 GO:0016575 histone deacetylation
33 GO:0006355 regulation of transcription, DNA-dependent

Continued on next page
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Table B.1 – continued from previous page
ID GO term Description
33 GO:0032774 RNA biosynthetic process
33 GO:0006351 transcription, DNA-dependent
33 GO:0006350 transcription
33 GO:0045449 regulation of transcription
33 GO:0006476 protein amino acid deacetylation
33 GO:0006323 DNA packaging
33 GO:0006325 establishment and/or maintenance of chromatin architecture
33 GO:0016568 chromatin modification
34 GO:0006259 DNA metabolic process
34 GO:0007001 chromosome organization and biogenesis (sensu Eukaryota)
34 GO:0016568 chromatin modification
34 GO:0051276 chromosome organization and biogenesis
34 GO:0006325 establishment and/or maintenance of chromatin architecture
34 GO:0006323 DNA packaging
35 GO:0016575 histone deacetylation
35 GO:0016570 histone modification
35 GO:0016569 covalent chromatin modification
35 GO:0006476 protein amino acid deacetylation
35 GO:0016568 chromatin modification
37 GO:0051301 cell division
37 GO:0000087 M phase of mitotic cell cycle
37 GO:0043283 biopolymer metabolic process
37 GO:0007067 mitosis
37 GO:0000279 M phase
37 GO:0044238 primary metabolic process
37 GO:0000278 mitotic cell cycle
37 GO:0007049 cell cycle
37 GO:0022403 cell cycle phase
37 GO:0022402 cell cycle process
42 GO:0000074 regulation of progression through cell cycle
42 GO:0051726 regulation of cell cycle
42 GO:0022403 cell cycle phase
42 GO:0000279 M phase
42 GO:0022402 cell cycle process
42 GO:0051301 cell division
42 GO:0007049 cell cycle
45 GO:0051301 cell division
46 GO:0006512 ubiquitin cycle

Continued on next page
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Table B.1 – continued from previous page
ID GO term Description
47 GO:0043412 biopolymer modification
47 GO:0006464 protein modification process
47 GO:0043687 post-translational protein modification
47 GO:0006793 phosphorus metabolic process
47 GO:0006796 phosphate metabolic process
47 GO:0016310 phosphorylation
47 GO:0006468 protein amino acid phosphorylation
48 GO:0006950 response to stress
48 GO:0050896 response to stimulus
49 GO:0006886 intracellular protein transport
49 GO:0045039 protein import into mitochondrial inner membrane
49 GO:0007007 inner mitochondrial membrane organization and biogenesis
49 GO:0006626 protein targeting to mitochondrion
49 GO:0043681 protein import into mitochondrion
49 GO:0065002 intracellular protein transport across a membrane
49 GO:0007006 mitochondrial membrane organization and biogenesis
49 GO:0007005 mitochondrion organization and biogenesis
55 GO:0006457 protein folding
57 GO:0022618 protein-RNA complex assembly
57 GO:0022613 ribonucleoprotein complex biogenesis and assembly
57 GO:0006413 translational initiation
61 GO:0016071 mRNA metabolic process
61 GO:0006397 mRNA processing
61 GO:0006396 RNA processing
61 GO:0008380 RNA splicing
62 GO:0006261 DNA-dependent DNA replication
65 GO:0006289 nucleotide-excision repair
65 GO:0000737 DNA catabolic process, endonucleolytic
68 GO:0007031 peroxisome organization and biogenesis
71 GO:0007001 chromosome organization and biogenesis (sensu Eukaryota)
71 GO:0051276 chromosome organization and biogenesis
75 GO:0007264 small GTPase mediated signal transduction
75 GO:0007242 intracellular signaling cascade
75 GO:0007165 signal transduction
75 GO:0000902 cell morphogenesis
75 GO:0030030 cell projection organization and biogenesis
75 GO:0030036 actin cytoskeleton organization and biogenesis
75 GO:0048858 cell projection morphogenesis

Continued on next page
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Table B.1 – continued from previous page
ID GO term Description
75 GO:0048856 anatomical structure development
75 GO:0030029 actin filament-based process
75 GO:0032989 cellular structure morphogenesis
75 GO:0009653 anatomical structure morphogenesis
75 GO:0007010 cytoskeleton organization and biogenesis
75 GO:0032990 cell part morphogenesis
75 GO:0030031 cell projection biogenesis
77 GO:0051301 cell division
77 GO:0007049 cell cycle
83 GO:0006561 proline biosynthetic process
83 GO:0006560 proline metabolic process
83 GO:0009084 glutamine family amino acid biosynthetic process
83 GO:0009064 glutamine family amino acid metabolic process
83 GO:0006520 amino acid metabolic process
83 GO:0008652 amino acid biosynthetic process
83 GO:0009309 amine biosynthetic process
83 GO:0044271 nitrogen compound biosynthetic process
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