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Abstract

The models that describe a collective dynamics of interacting particles belong to a wide
class of kinetic models with non-local interaction. A notable example of such model is the
classical Vlasov equation. One of the model-defining factors is the kernel of the potential
generating the motion. The purpose of this thesis is to analyse one of such models i.e.
the Cucker–Smale flocking model with a singular kernel; to approach the problem of well–
posedness for this model and to understand the impact of the singularity on its qualitative
and quantitative properties.

For the Cucker–Smale particle system with singular kernel ψ(s) = s−α for α ∈ (0, 1)
we prove that the trajectories of the particles can collide and stick together (the latter phe-
nomenon does not occur in case of the model with regular kernel). Moreover we provide the
first proof of weak existence and uniqueness of solutions for this range of singularity.

After reducing the range of singularity to α ∈ (0, 1
2 ) we prove existence and uniqueness of

strong solutions. Further we apply this result to obtain existence and conditional uniqueness
for the singular Cucker–Smale kinetic equation with compactly supported Radon measure as
the initial data. This part is achieved by a modified version of the mean–field limit approach
resulting in a framework that translates uniform regularity of the particle system to the exis-
tence of the measure solution to the kinetic equation. In particular the usual assumption that
the solutions of the particle system are stable with respect to the perturbations of the initial
data can be omitted.

In the second part we analyse the kinetic Cucker–Smale equation with regular kernel
coupled with equations of non-Newtonian shear thickening fluid. We obtain existence and
uniqueness of strong solutions in space dimension d = 3.

Keywords: alignment, flocking, singular kernel, singular potential, kinetic equation,
non-Newtonian fluid.
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Chapter 1

Introduction

Flocking, swarming, aggregation - there is a multitude of actual real-life phenomena that
from the mathematical point of view can be interpreted as one of these concepts. The mathe-
matical description of collective dynamics of self-propelled agents with nonlocal interaction
originates from one of the basic equations of kinetic theory – Vlasov’s equation from 1938.
Recently it was noted that such models provide a way to describe a wide range of phenom-
ena that involve interacting agents with a tendency to aggregate their certain qualities. This
approach proved to be useful and the language of aggregation now appears not only in the
models of groups of animals but also in the description of seemingly unrelated phenomena
such as the emergence of common languages in primitive societies, distribution of goods
or reaching a consensus among individuals [3, 37, 40, 51]. The general form of equations
associated with aggregation models reads as follows:

∂t f + v · ∇ f + divv[(k ∗ f ) f ] = 0, (1.1)

where f = f (x, v, t) is usually interpreted as the density/distribution of particles at the time
t with position x and velocity v. Function k is the kernel of the potential generating the
motion. It is responsible for the non-local interaction between particles and depending on
it the particles may exhibit various tendencies like to flock, aggregate or to disperse. The
common properties required from kernel k in most models include Lipschitz continuity and
boundedness and it is the case due to the fact that many standard methods work well with
such assumptions. For instance if k is Lipschitz continuous and bounded then the particle
system associated with (1.1) is well–posed, the characteristic method can be performed for
(1.1) and one can usually pass from the particle system to the kinetic equation by mean-field
limit. The main goal of this thesis is to consider k that is singular and refine the mean-field
limit approach to be applicable in such scenario. We study this problem in a particular case
of the Cucker-Smale (C–S) flocking model.
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1.1 Cucker–Smale flocking model
In [17] from 2007, Cucker and Smale introduced a model for the flocking of birds associated
with the following system of ODEs:

d
dt

xi = vi,

d
dt

vi =

N∑
j=1

m j(v j − vi)ψ(|x j − xi|),
(1.2)

where N is the number of the particles while xi(t), vi(t) and mi denote the position and
velocity of ith particle at the time t and it’s mass, respectively. Function ψ : [0,∞)→ [0,∞)
usually referred to as the communication weight is nonnegative and nonincreasing and can
be vaguely interpreted as the perception of the particles. The communication weight plays a
crucial role in our investigations and we will focus on it more in a while. We refer to system
(1.2) as the C–S particle system or the discrete C–S model (sometimes we omit ’C–S’).

As N → ∞ the particle system is replaced by the following Vlasov-type equation:

∂t f + v · ∇ f + divv[F( f ) f ] = 0, x ∈ Rd, v ∈ Rd, (1.3)

F( f )(x, v, t) :=
∫
R2d
ψ(|y − x|)(w − v) f (y,w, t)dwdy,

which can be written as (1.1) with k(x, v) = vψ(|x|). As mentioned before we are considering
(1.3) with a singular kernel

ψ(s) =

{
s−α for s > 0,
∞ for s = 0, α > 0. (1.4)

We refer to equation (1.3) as the kinetic C–S equation, the Vlasov-type C–S equation or the
continuous C–S model (sometimes we omit ’C–S’).

Before we proceed with a more detailed statement of our goals let us briefly introduce
state of the art for models of flocking and the motivations behind studying such models
with singular kernels. The literature on aggregation models associated with Vlasov-type
equations of the form (1.1) is very rich thus we will only mention a few examples on some
of the more popular branches of the research. Those branches include the analysis of time
asymptotics (see e.g. [29]) and pattern formation (see e.g. [28,50]) or analysis of the models
with additional forces that simulate various natural factors (see e.g. [12, 21] - deterministic
forces or [16] - stochastic forces). The other variations of the model include forcing particles
to avoid collisions (see e.g. [14]) or to aggregate under the leadership of certain individuals
(see e.g. [15]). A good example of a paper in which a well rounded analysis of a model
that includes effects of attraction, repulsion and alignment is [8]. The story of C–S model
should probably begin with [52] by Vicsek et al., where a model of flocking with nonlocal
interactions was introduced and it is widely recognized to be up to some degree an inspiration
for [17]. Since 2007 the C–S model with a regular communication weight of the form

ψcs(s) =
K

(1 + s2)
β
2

, β ≥ 0, K > 0 (1.5)
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was extensively studied in the directions similar to those of more general aggregation models
(i.e. collision avoiding, flocking under leadership, asymptotics and pattern formation as
well as additional deterministic or stochastic forces - see [2, 11, 27, 30, 42, 47]). Particularly
interesting from our point of view is the case of passage from the particle system (1.2) to
the kinetic equation (1.3), which in case of the regular communication weight was done for
example in [31] or [32]. For a more general overview of the passage from microscopic to
mesoscopic and macroscopic descriptions in aggregation models of the form (1.1) we refer
to [9, 18, 19].

1.2 C–S model with a singular communication weight

In the paper [31] from 2009 the authors considered C–S model with singular weight (1.4)
obtaining asymptotics for the particle system but even the basic question of existence of so-
lutions remained open till later years. The main goal of this thesis is to answer this question.
More precisely the goal is to approach the problem of well-posedness for kinetic equations of
the type (1.1) with a focus on the C–S model with a singular weight. This problem required
a complex approach ranging from quantitative and qualitative analysis of the C–S particle
system to applying such analysis in the passage to the kinetic case.

It turned out that system (1.2) possesses drastically different qualitative properties de-
pending on whether α ∈ (0, 1) or α ∈ [1,∞). In [1] the authors observed that for α ≥ 1 the
trajectories of the particles exhibit a tendency to avoid collisions, which they used to prove
conditional existence and uniqueness of smooth solutions to the particle system.

On the other hand in [43] (which results are included in this thesis) we proved existence
of what we called piecewise–weak solutions to the particle system with α ∈ (0, 1) and gave
an example of solution that experienced not only collisions of the trajectories but also stick-
ing (i.e. two different trajectories could start to coincide at some point). This dichotomy is
an effect of integrability (or of the lack of thereof) of ψ in a neighbourhood of 0. It is also
the reason why the approach to C–S model should vary depending on α. One of the latest
contributions to this topic is [10] where the authors showed local in-time well–posedness
for the kinetic equation (1.3) with a singular communication weight (1.4) and with an op-
tional non-linear dependence on the velocity in the definition of F( f ). They also presented a
thorough analysis of the asymptotics for this model. The other more recent addition is [44],
where we proved existence and uniqueness of W1,p strong solutions to the particle system
(1.2) with a singular weight (1.4) and α ∈ (0, 1

2 ). The paper [44] is a part of this thesis.
There are a few reasons for considering C-S model with a singular weight. Aside from

the fact that it appears to be an interesting mathematical problem in itself (as in most models
involving singular potentials), there are also some more involved motivations. To understand
one of these motivations one needs first to take a closer look at the model with regular weight.
In (1.2), the purpose of a regular ψ of the form (1.5) is to suppress the interactions between
distant particles. It is only natural to expect that particles that represent members of a flock
interact mostly with their closest neighbours However in some instances such effect can be
insufficient. Suppose that we have two groups of particles separated by a very large distance.
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The first group (A) consists of two particles while the second (B) consists of the remaining
N − 2 particles. In such situations it is often reasonable to expect that from the point of
view of the model, the interactions between the groups are insignificant compared to the
interactions within each group. However if N is large enough, assuming that all particles
have the same mass (i.e. mi = 1

N ) then the factor m j = 1
N in (1.2)2 makes it so that the

interaction between any two particles (including those from group A) is negligible compared
to the impact that B has on A. Often such phenomenon is undesirable. There is a couple of
ways to deal with this situation (perhaps the most natural can be found in [39]) and one of
them is taking ψ of the form (1.4) which not only suppresses the distant interactions but also
emphasises the local interactions. The other motivations include the rich dynamics of C-S
model with singular communication weight that depending on α allows for the trajectories
of the particles to stick together or makes it more difficult for them to even collide. Both of
these qualitative phenomena are absent in the case of regular weight. They are on the other
hand quite welcome from the modelling point of view. The first indicating a stronger than
usual tendency for pattern formation and emergent phenomena, and the second taking into
the account that in typical physical scenarios the particles avoid collisions (e.g. birds or fish).

1.3 Models of flocking for fluid-embedded particles
One of other directions of research is the analysis of the motion of agents (described by a
kinetic model of the type (1.1)) in their natural habitat. Hence, parallely to the analysis of
the kinetic models themselves, research in coupling models of kinetic theory with models
of hydrodynamics was performed (see [5–7, 13, 23–25]). From the point of view of this
thesis the most important examples of such research is the paper [7] in which the coupling of
Navier-Stokes system (N–S) with Vlasov equation is considered and the paper [5] in which
the approach of [7] is applied to N–S coupled with C–S (since C–S equation is actually a
Vlasov-type equation). The secondary goal of this dissertation is to modify the approach
used in [7] and [5] and couple C–S model with models of non-Newtonian fluids, which up
to this point was not done.

Our goal is to consider particles embedded in an incompressible, viscous, non-Newtonian
shear thickening fluid, i.e. we aim to couple (1.2) with the system{

∂tu + (u · ∇)u + ∇π − div(τ) = fext,
divu = 0, (1.6)

which describes a motion of such fluid in Rd. The function

u = u(t, x) = (u1(t, x), u2(t, x), ..., ud(t, x))

represents velocity of the fluid at the position x and time t. Equation (1.6)2 expresses the
conservation of mass, while (1.6)1 expresses the conservation of momentum. The term τ
in (1.6)1 denotes a symmetric stress tensor that depends on Du – the symmetric part of the
gradient of u i.e. τ = τ(Du), where Du = 1

2 [∇u + (∇u)T ]. In our considerations we assume
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that τ is derived from some scalar potential ϑ and through some specified later properties
of ϑ we actually impose various other assumptions on τ including polynomial growth or
coercivity. Lastly function fext represents an external force.
The coupling of (1.2) with (1.6) is done via the drag force

Fd(t, x, v) := u(t, x) − v,

that influence the motion of the particles and the fluid. This way of coupling and such drag
force is adopted from [7] and [5] and originally it was used for the modelling of thin spray
and fluid (see also [6, 7, 23–25]). Explicitly, the coupled system reads as follows:

∂t f + v∇ f + divv[(F( f ) + Fd) f ] = 0,
∂tu + (u · ∇)u + ∇π − div(τ) = −d

∫
Rd Fd f dv,

divu = 0.
(1.7)

Let us briefly discuss the difference between coupling of the C–S model with Newtonian
and non-Newtonian fluids. In [7] and [5], the authors obtained weak existence for their
coupled systems and on top of that in [5], the authors obtained asymptotic flocking. In
particular there was little hope to obtain regularity or uniqueness for coupled N-S-Vlasov
or N-S-C-S systems without previously obtaining it for N-S system. However in case of
coupling with a non-Newtonian fluid, existence, regularity and possibly uniqueness depend
on the value of the exponent p and regularity of the external function fext. For uncoupled
non-Newtonian system (1.6) weak existence is known for p > 2d

d+2 and fext ∈ (W1,p)∗ and it
is obtained by Lipschitz truncation method (see [20, 22]). On the other hand if p ≥ 3d+2

d+2 and
fext ∈ L2(0,T ; L2(Td)), not only do we have existence of strong solutions but also uniqueness
(see [46]). Therefore, on top of the interesting asymptotics similar to those from the paper
[5], we may expect the possibility of better regularity and of uniqueness for the coupled
system. However it depends on p and the structure of the external force, which in our case
equals

fext = −d
∫
Rd

(u − v) f dv.

Moreover for p ∈ ( 2d
d+2 ,

3d+2
d+2 ) in case of the coupled system it appears that a combination of

our approach with the Lipschitz truncation method should make obtaining existence of weak
solutions possible but it is outside of our scope.

1.4 Main results
The following thesis presents my contribution in the development of the existence theory for
the C–S model with a singular communication weight. It should be viewed as a step towards
well-posedness for this system. Since 2014 we have managed to make a first successful
attempt on proving:
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• existence of piecewise-weak solutions to the C–S particle system for the range of sin-
gularities α ∈ (0, 1), published in [43];

• existence and uniqueness of strong solutions to the C–S particle system for the range
of singularities α ∈ (0, 1

2 ), published in [44];

• existence and conditional uniqueness of solutions to the C–S kinetic equation for the
range of singularities α ∈ (0, 1

2 ), included in the preprint [41];

• possibility of sticking of the trajectories of the particles, published also [43].

To our best knowledge these are the first results on existence for the C–S model with sin-
gular weight with α ∈ (0, 1) and one of the first steps in the direction of well-posedness for
this model, which is important from the point of view of applications and numeric analy-
sis. Due to the lack of existing theory we had to develop relatively new (often elementary)
techniques or to significantly modify the existing ones. The analysis of the particle system
was performed with the methods that originated from elementary techniques of the theory
of systems of ODE’s. On the other hand the analysis of the kinetic equation was done by
passing from the particle to kinetic description. Such passage was performed using much
more sophisticated methods: originating from the stochastic analysis of complex many-body
systems, mean-field limit method, was used to establish the kinetic equation as a limiting
case of the particle system. The topology in which the limiting process was performed was
generated by the Wasserstein W1 metrics (sometimes referred to as Kantorovich-Rubinstein
metric or bounded–Lipschitz distance). In order to apply this method in the case of singular
communication weight we had to significantly modify it. We explain the methodology more
thoroughly at the beginning of Part I.

Additionally we obtained

• existence and uniqueness of strong solutions to the C–S kinetic equation with a regu-
lar communication weight coupled with equations of non-Newtonian shear thickening
fluids. This work is based on the modified methods from [7] and [5] coupled with
results from [46] and [38] and is included in the preprint [45].

This goal is achieved throughout Part II.
The dissertation is organised as follows. It is divided in two major parts: Part I in which

we present the results concerning the existence theory for the C–S model with a singular
communication weight and Part II in which we present the coupled kinetic-fluid system.
These parts are somewhat independent and thus at the beginning of each of them there is a
section dedicated to introducing the part-specific notation and presenting a precise statement
of the results. The general overview of the strategy of the proofs is also part-specific and is
introduced at the beginning of each part. At the end of the dissertation we included Part II
with appendices into which we moved the more self-contained and/or tedious proofs.
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Part I

Cucker–Smale model with a singular
communication weight
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Chapter 2

Part I: Introduction

The main goal of the dissertation is realized in the next three chapters. We aim to prove that
for any initial Radon measure f0 and T > 0 the Vlasov-type C–S equation

∂t f + v · ∇ f + divv[F( f ) f ] = 0, x ∈ Rd, v ∈ Rd, (2.1)

F( f )(x, v, t) :=
∫
R2d
ψ(|y − x|)(w − v) f (y,w, t)dwdy,

with singular weight

ψ(s) =

{
s−α for s > 0,
∞ for s = 0, α > 0 (2.2)

admits solutions in the interval [0,T ], provided that the range of singularity of ψ is less than
1 (i.e. α ∈ (0, 1)).

The general strategy is standard and can be summarized as follows. It is natural to expect
that the analysis (be it qualitative or quantitative) of the particle system associated with the
C–S model


d
dt

xi = vi,

d
dt

vi =

N∑
j=1

m j(v j − vi)ψ(|x j − xi|),
(2.3)

is more approachable than in the continuous case. Here again N is the number of particles
while xi(t), vi(t) and mi(t) are the ith particles’ position velocity and mass, respectively. We
define the solutions to (2.1) by approximation with the solutions of (2.3) with the number of
particles N going to infinity. We use the mean-field limit approach. Given a Radon measure
f0 = f0(x, v), where x ∈ Rd and v ∈ Rd as an initial datum, we divide it’s support into
congruent cubes Qi,ε ⊂ R

d × Rd of diameter ε > 0 (the centres of the cubes, denoted by
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(xi,ε , vi,ε), form a lattice-shaped ε-net on the support of f0). In the centre of each of the cubes
we place a Dirac’s delta of a mass mi,ε equal to the total mass of f0 restricted to the cube i.e.

mi,ε :=
∫

Qi,ε

f0(x, v)dxdv.

This way, denoting the number of cubes by Nε , we obtain

f0,ε :=
Nε∑
i=1

mi,εδxi,ε ⊗ δvi,ε

which we prove that converges1 to f0 as ε → 0. However, alternatively we may look at
the Dirac’s deltas mi,εδxi,ε ⊗ δvi,ε as a description of starting points of the particles in the sys-
tem (2.3), where xi,ε , vi,ε and mi,ε denote the initial position and velocity and the mass of
ith particle, respectively. Then the solution of the particle system (denote it by (xε , vε)) can
be again interpreted as measure valued function fε from the time interval [0,T ]. Then we
converge with ε → 0 and hopefully extract a subsequence that converges to some measure
valued function f , which serves as a candidate for the solution to (2.1). This general strat-
egy is utilised for example in [31], where the authors prove well-posedness for the kinetic
equation (2.1) with a regular communication weight. However they strongly relay on the
Lipschitz continuity and boundedness of ψ, which allows them to obtain well-posedness for
the particle system, which makes the convergence with the approximate solutions fε straight-
forward. On the other hand in case of singular communication weight there is little hope for
the well-posedness for the particle system, which in turn makes extraction of the convergent
subsequence much more difficult.

We follow the presented above strategy in the next 3 chapters:

• In Chapter 3 we focus on the case of existence for the particle system (2.3) with the
range of singularity α ∈ (0, 1). We prove that for any initial data in the form of finite
number of particles there exists piecewise–weak solution with various useful struc-
tural properties. We also provide an example of a solution with trajectories that stick
together in a finite time (such phenomenon cannot occur in the case of regular com-
munication weight).

• In Chapter 4 we strengthen the results from Chapter 3 proving that by restricting the
range of admissible α to (0, 1

2 ) we obtain existence and uniqueness of strong solutions
to the particle system (2.3). This is the closest result to the well-posedness for the C–S
particle system with a singular communication weight.

• In Chapter 5 we use the results from Chapter 4 to obtain existence for the kinetic
equation (2.1) with a singular weight with α ∈ (0, 1

2 ). We adopt the mean-field limit
method that we sketched at the beginning of this section. The restriction of admissible
α to the interval (0, 1

2 ) comes directly from Chapter 4 and should be understood in

1We define the appropriate topology later.
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the following way: in order to obtain existence for the kinetic equation by mean-
field limit one needs sufficient regularity of solutions to the particle system that grant
compactness of the sequences of approximate solutions. In other words, our technique
works if only the solutions to the particle system are regular enough.

2.1 Part I: Preliminaries and notation
Throughout Part I x = (x1, ..., xN) ∈ RNd, where xi = (xi,1, ..., xi,d) denotes the position of
the particles, v = ẋ is their velocity, while N and d are the number of the particles and the
dimension of the space respectively. Moreover by Bi(t) we denote the set of all indices j,
such that up to the time t, the trajectory of x j does not coincide with the trajectory of xi.
Assuming that the trajectories, once coinciding cannot separate, we define it as

Bi(t) := {k = 1, ...,N : xk(t) , xi(t) or vk(t) , vi(t)}, (2.4)

since any two particles with sufficiently smooth trajectories have the same position and ve-
locity at the time t, if and only if they move on the same trajectory. Further, let Ω ⊂ Rd be
an arbitrary domain with d ∈ N. By Wk,p(Ω) we denote the Sobolev’s space of the functions
with up to kth weak derivative belonging to the space Lp(Ω), while by C(Ω) and C1(Ω) we
denote the space of continuous and continuously differentiable functions, respectively. Here-
inafter, B((x0, v0),R) denotes a ball in R2d centred in (x0, v0) with radius R. On the other hand
Bx(x0,R) and Bv(v0,R) denote balls in Rd with radius R centred in x0 and v0, respectively.
For any positive a, by aBv(v0,R) we understand a homothetic transformation of Bv(v0,R),
i.e., Bv(v0a,Ra).

Definition 2.1.1. We say that ith and jth particles collide at the time t if and only if
xi(t) = x j(t) and we say that they stick together at the time t if and only if xi(t) = x j(t)
and vi(t) = v j(t).

Throughout the dissertation C denotes a generic positive constant that may change from
line to line even in the same inequality.

2.1.1 Piecewise-weak solutions of the particle system
Before we present the definition of the piecewise–weak solutions let us mention one very
reasonable characteristic that we would like to make sure that they possess. Namely, that
the trajectories of the particles cannot separate if they stick together at some point. This is
somewhat related to uniqueness of solutions to the particle system with regular communi-
cation weight since (even though in such case sticking of the trajectories is impossible) if
two particles have the same position and velocity to begin with, then they cannot separate.
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However, since ψ is singular at 0 it may happen that the solutions of the C-S model with ψ
are not unique and that the trajectories may split as in the case of the well known example
ẏ = cx

1
3 . In fact a loss of uniqueness may happen at each time t, such that there exist i and j,

such that xi(t) = x j(t). It is problematic because such times t include not only each time of
collision but also each time at which some particles are stuck together. Thus if for example
two particles xi and x j start with the same position and velocity, then we may lose uniqueness
at an arbitrary time t > 0. Therefore we will enforce that the once stuck trajectories cannot
separate, by replacing equation (2.3) with (2.5), which does not distinguish trajectories that
once stuck together. Therefore in Chapter 3 and to some extent in Chapter 4 we consider
C-S model defined by (2.5). For this model we still do not necessarily have uniqueness but
the times at which we lose it are restricted only to the times of collisions, which as we will
prove occur in some sense rarely.

Definition 2.1.2. Let 0 = T0 ≤ T1 ≤ ... ≤ TNs , be the set of all times of sticking and
TNs+1 := T be a given positive number. For n ∈ {0, ...,Ns}, on each interval [Tn,Tn+1], we
consider the problem 

dxi

dt
= vi,

dvi

dt
=

1
N

∑
k∈Bi(Tn)

(vk − vi)ψn(|xk − xi|),

xi ≡ x j if j < Bi(Tn)

(2.5)

for t ∈ [Tn,Tn+1], with initial data x(Tn), v(Tn).
We say that (x, v) solves (2.5) on the time interval [0,T ], with weight given by (2.2) and
arbitrary initial data x(0) = x0, v(0) = v0 if and only if, for all n = 0, ...,Ns and arbitrarily
small ε > 0, the function x ∈ (C1([0,T ]))Nd is a weak in (W2,1([Tn,Tn+1 − ε]))Nd solution
of (2.5).

Remark 2.1.1. In the above definition and throughout the thesis we sometimes say that a
pair such as (x, v) satisfies some equation weakly in W2,1. In reality we mean that x ∈ W2,1

satisfies the equation and that v = ẋ ∈ W1,1 (and not necessarily does v belong to W2,1).

Remark 2.1.2. Definition 2.1.2 may seem not clear at the first glance. Between any two
times of sticking Tn and Tn+1 the solution exists in a W2,1 sense. However as we approach
Tn+1 we lose absolute continuity of v and thus we have to separate ourselves from Tn+1 by
some arbitrary ε > 0. In general, such separation rises a question of how the piecewise–weak
solution on [Tn,Tn+1] influences itself on the next interval [Tn+1,Tn+2]. In particular is it really
influenced by the initial data beyond the time t = T1 at which the first separation occurs? The
answer lies within the continuity of both x and v, which enables us to continuously prolong
the solution up to Tn+1 and in such a way to establish a unique initial data for the solution
on [Tn+1,Tn+2]. This way we obtain a continuous function (x, v) defined on [0,T ], that truly
corresponds to the initial data and solves (2.5) weakly on each interval [Tn,Tn+1 − ε] .
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Remark 2.1.3. As mentioned before, in Definition 2.1.2 the purpose of redefining the system
(2.5) at each time of sticking Tn (by including the set Bi(Tn)) is to ensure that once stuck
together trajectories cannot separate. However, in Chapter 4 under the assumption that α ∈
(0, 1

2 ) we prove existence and uniqueness of W2,1 solutions to (2.3) and for such solutions
trajectories cannot separate anyway and thus there is no need to redefine the system as in
Definition 2.1.2. However we prove that in case of α ∈ (0, 1), the solutions in the sense of
Definition 2.1.2 are also unique (whether they belong to W2,1 or not – see Theorem 2.2.3)
and in this case sets Bi(Tn) are crucial.

2.1.2 Bounded-Lipschitz distance
In Chapter 5 we frequently use the bounded-Lipschitz distance (also known as the flat met-
ric), which in the sense explained in [48] p. 26 is a version of Kantorovich-Rubinstein
distance (or Wasserstein-1 distance).

Definition 2.1.3 (Bounded-Lipschitz distance). For any probabilistic measures µ and ν
we define

d(µ, ν) := sup
g

∣∣∣∣∣∫
Ω

gdµ −
∫

Ω

gdν
∣∣∣∣∣ ,

where the supremum is taken over all bounded and Lipschitz continuous functions g,
such that ‖g‖∞ ≤ 1 and Lip(g) ≤ 1.

In the above definition ‖g‖∞ and Lip(g) represent L∞ norm and Lipschitz constant of g.
This also leads to a need of distinction between spaces of measures with different topologies
i.e. we denote M = M(Ω) = (M,TV) as the space of finite Radon measures defined on
Ω with total variation topology and we denote (M, d) as the space of finite Radon measures
defined on Ω with bounded-Lipschitz distance topology. The importance of the space (M, d)
comes from the prime difference between the bounded-Lipschitz distance and the total vari-
ation. Namely for x1 , x2, we have TV(δx1 − δx2) = 2 , while d(δx1 , δx2) ≤ C|x1 − x2|. In
particular, if xn → x in Ω then δxn → δx in d, which is not the case in TV .

In our considerations a crucial role is played by

M+ := {µ ∈ M : µ is nonnegative}

both with TV and d(·, ·) topology. If Ω is a compact subset of Rd, thenM is isomorphic to
(Cb(Ω))∗2. There is a very convenient relation between the weak * topology in (Cb(Ω))∗ and
the topology generated by bounded-Lipschitz distance onM that we present below.

2This nice property does not hold in general. For example if Ω = Rd then (Cb(Ω))∗ is isomorphic to the
space of regular bounded finitely additive measures, while (C0(Ω))∗ is isomorphic toM.
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Definition 2.1.4. We say that a sequence {µn}n∈N ⊂ M converges narrowly to a measure
µ ∈ M if

lim
n→∞

∫
Ω

φ(x)dµn(x) =

∫
Ω

φ(x)dµ(x)

for all φ ∈ Cb(Ω).

Remark 2.1.4. The narrow convergence is exactly the weak * convergence in (Cb(Ω))∗ which
is equivalent to the weak convergence of measures (which should not be confused with the
weak convergence in the sense of functional analysis). It may seem redundant to introduce a
new notion for weak * convergence of measures but it is justified if we consider the spaces of
measures defined on whole Rd. Assuming that Ω = Rd the space of all Radon measuresM
with TV topology is isomorphic to (C0(Ω))∗ which is by no means isomorphic to (Cb(Ω))∗.
Then the weak * convergence in (C0(Ω))∗ (which plays the role of weak convergence of
measures inM) is different than the narrow convergence.

Remark 2.1.5. In our framework we usually assume that Ω is compact in which case, as
mentioned before, the narrow convergence is exactly the weak convergence for measures
in M. Alternatively, since the C–S model has the property of conservation of mass we
could consider probabilistic measures and for them the narrow convergence is also equivalent
to weak convergence. Either way, throughout Part I, the narrow convergence, the weak *
convergence in (Cb(Ω))∗ and the weak convergence inM are equivalent.

Definition 2.1.5. We say that a sequence {µn}n∈N ⊂ M is tight if for all ε > 0 there exists a
compact Kε ⊂⊂ Ω such that for all n ∈ N we have

|µn|(Ω \ Kε) < ε,

where |µ| is the total variation measure of µ.

For compact Ω, the relation between the narrow convergence inM and the convergence
in (M, d) is as follows.

Proposition 2.1.1. Suppose that Ω is compact and let {µn}n∈N be a tight sequence inM and
let µ ∈ M. Then µn → µ narrowly if and only if d(µn, µ)→ 0 and {µn}n∈N is bounded inM.

The proof of Proposition 2.1.1 is a modification of the proof of Theorem 2.7 from [26].

Proof of Proposition 2.1.1. (⇒) Suppose that µn converges weakly * to µ ∈ M Then by
Banach-Steinhaus theorem we have supn∈N |µn|(Ω) < ∞ i.e. {µn}n∈N is bounded inM. Using
the definition of d(·, ·), we obtain

d(µn, µ) ≤ sup
{∫

K
g(dµn − dµ) : ‖g‖∞ ≤, Lip(g) ≤ 1

}
+

∫
Ω\K

1d(|µn| + |µ|)
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for any compact K ⊂ Ω. Thus by tightness of {µn}n∈N for any ε > 0 there exists Kε ⊂⊂ Ω

such that

sup
n

(|µn| + |µ|)(Ω \ Kε) ≤
ε

3
.

Let

Aε :=
{
g : ‖g‖∞ ≤ 1, Lip(g) ≤ 1, suppg ⊂ K

′

ε

}
,

where Kε ⊂⊂ K
′

ε ⊂⊂ Ω. Then by Arzela–Ascoli Theorem (Theorem A.4.1) set Aε is compact
in Cb(Ω). Therefore there exists a finite set of Lipschitz functions {gi}

kε
i=1 in Aε such that(

sup
n∈N
|µn|(Ω) + |µ|(Ω)

)
sup
g∈Aε

{∫
i=1,...,kε

‖g − gi‖∞

}
≤
ε

3

and thus

d(µn, µ) ≤ max
i=1,...,kε

∫
Kε

gid(µn − µ) +
ε

3
+
ε

3
.

Due to the narrow convergence of {µn}n∈N, there exists mε ∈ N such that

max
i=1,...,kε

∣∣∣∣∣∣
∫

Kε

gid(µn − µ)

∣∣∣∣∣∣ ≤ ε

3

for every n ≥ mε . This implies that d(µn, µ) ≤ ε for every n ≥ mε and thus d(µn, µ) → 0 as
n→ ∞.
(⇐) Let d(µn, µ) → 0 and let supn∈N |µn|(Ω) < ∞. We will show that µn → µ narrowly. Fix
φ ∈ Cb(Ω). Then for any ε > 0 there exists a Lipschitz continuous and bounded φε such that
‖φ − φε‖∞ ≤ ε. Moreover∣∣∣∣∣∫

Ω

φdµn −

∫
Ω

φdµ
∣∣∣∣∣ ≤ ∣∣∣∣∣∫

Ω

(φ − φε)dµn −

∫
Ω

(φ − φε)dµ
∣∣∣∣∣ +

∣∣∣∣∣∫
Ω

φεdµn −

∫
Ω

φεdµ
∣∣∣∣∣ ,

where the last term converges to 0 since d(µn, µ) → 0. For the first term on the right-hand
side of the above inequality we have∣∣∣∣∣∫

Ω

(φ − φε)dµn −

∫
Ω

(φ − φε)dµ
∣∣∣∣∣ ≤ (

sup
n∈N
|µn|(Ω) + |µ|(Ω)

)
‖φ − φε‖∞ ≤ Cε,

which by arbitrarity of ε proves that µn → µ narrowly. �

In our considerations we will deal only with nonnegative measures, which equipped with
the bounded-Lipschitz distance are a complete metric space.

Proposition 2.1.2. The space (M+, d) is a complete metric space.
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The following corollary is the very reason for which we use the bounded-Lipschitz dis-
tance. It serves us as a topology with pointwise sequential compactness for measure valued
functions. What we mean is that if fn : [0,T ] 7→ (M, d) and fn are uniformly bounded in
L∞(0,T ; (M,TV)) then for each t ∈ [0,T ] the sequence fn(t) is relatively compact in (M, d),
which is one of the assumptions of the Arzela-Ascoli theorem (Theorem A.4.1).

Corollary 2.1.1. Let {µn}n∈N be a sequence bounded in (M+,TV) with supports con-
tained in some given ball. Then µn has a subsequence convergent in (M+, d).

Proof. Since the supports of µn are uniformly bounded then there exist compact sets K ⊂⊂
Ω ⊂⊂ Rd such that ⋃

n

suppµn ⊂ K.

Thus we may treat {µn}n∈N as a sequence of measures defined on a compact Ω. Since
then (M,TV) is isomorphic to (Cb(Ω))∗, which is a separable normed vector space then
by Banach-Alaoglu theorem (or Theorem A.4.2) the set {µn : n = 1, 2, ...} is sequentially
weakly * compact in (Cb(Ω))∗. Therefore there exists a measure µ ∈ (Cb(Ω))∗ such that up
to a subsequence µn converges to µ weakly * in (Cb(Ω))∗. Proposition 2.1.1 implies that the
weak * (Cb(Ω))∗ convergence i.e. the narrow convergence is equivalent to the convergence
in d(·, ·) if only {µn}n∈N is tight (which is true since µn vanish on Ω \K). Thus µn converges to
µ in d(·, ·). Finally since by Proposition 2.1.2 (M+, d) is a complete space we conclude that
actually µ ∈ (M+, d) and the proof is finished. �

Lastly we present a useful lemma related to the bounded-Lipschitz distance.

Lemma 2.1.1. Let d(·, ·) be the bounded-Lipschitz distance. Then for any µ, ν ∈ M and
any bounded and Lipschitz continuous function g, we have∣∣∣∣∣∫

Ω

gdµ −
∫

Ω

gdν
∣∣∣∣∣ ≤ max{‖g‖∞, Lip(g)}d(µ, ν).

Proof. The proof of this lemma belongs to the standard theory and can be found, for example,
in [31]. �

2.1.3 Measure solutions of the kinetic equation
We introduce the following weak formulation for (1.3) that will play the major role in Chap-
ter 5:
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Definition 2.1.6. Let T > 0. We say that f is a weak solution to (1.3) with the initial
data f0 ∈ M+, such that supp f0 ⊂ B(R0) with R0 > 0 if

1. f ∈ L∞(0,T ;M+) and ∂t f ∈ Lp(0,T ; (C1
b(B(R)))∗) for some p > 1;

2. supp f (t) ⊂ B(R) for t ∈ (0,T ] for some positive constant R;

3. The following identity holds:∫ T

0

∫
R2d

f [∂tφ + v∇φ]dxdvdt +

∫ T

0

∫
R2d

F( f ) f∇vφdxdvdt = (2.6)

= −

∫
R2d

f0φ(·, ·, 0)dxdv (2.7)

for all φ ∈ G, where

G := {φ ∈ C1([0,T ) × R2d) : ∂tφ,∇φ,∇vφ are bounded
and Lipschitz continuous and φ has a compact support in t};

4. The function g(x, y, v,w, t) := (w − v)ψ(|x − y|) is integrable with respect to the
measure f (x, v, t) ⊗ f (y,w, t), i.e. term F( f ) is defined as a measure with respect
to the measure f . In particular by Fubini’s theorem the integral∫ T

0

∫
R2d

F( f ) f∇vφdxdvdt =

∫ T

0

∫
R4d

g∇vφ f ⊗ f dxdvdydwdt

is bounded and the term divv[F( f ) f ] is well defined as a distribution;

5. For each pair of concentric balls B((x0, v0), r) ⊂ B((x0, v0),R), the following state-
ment holds: if

supp f0 ∩ B((x0, v0),R) ⊂ B((x0, v0), r) (2.8)

then there exists T ∗ ∈ [0,T ], such that

supp f (t) ∩ B
(
(x0, v0),

3R + r
4

)
⊂ B

(
(x0, v0),

r + R
2

)
(2.9)

for all t ∈ [0,T ∗].

Remark 2.1.6. There is a natural question of the correspondence between solutions to (2.1)
in the sense of Definition 2.1.6 and solutions to (2.3). The answer to this question is to some
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merit positive, which we explain below. Let

f0(x, v) :=
N∑

i=1

miδxi,0(x) ⊗ δvi,0(v) (2.10)

with
∑N

i=1 mi = 1. Then f0 defines an initial data x0 = (x1,0, ..., xN,0), v0 = (v1,0, ..., vN,0) for the
system of ODE’s (2.3). For this system let (x, v) be a sufficiently smooth 3 solution. Then
the function

f (x, v, t) :=
N∑

i=1

miδxi(t)(x) ⊗ δvi(t)(v) (2.11)

is a solution of (2.1) in the sense of Definition 2.1.6 with the initial data f0. Indeed, if we
plug f defined in (2.11) into (2.6), by a simple use of a chain rule, we obtain∫ T

0

N∑
i=1

mi

(
(∂tφ)(xi, vi, t) + vi(∇φ)(xi, vi, t)

)
+

N∑
i, j=1

mim jψ(|xi − x j|)(v j − vi)(∇vφ)(xi, vi, t)dt

=

∫ T

0

N∑
i=1

mi
d
dt
φ(xi, vi, t)dt = −

N∑
i=1

miφ(xi,0, vi,0, t) = −

∫
R2d

f0φ(·, ·, 0)dxdv

for all φ ∈ G.
The converse assertion that a solution to (2.1) in the sense of Definition 2.1.6 corresponds to
a solution of (2.3) is also true provided that the initial data are of the form (2.10). However,
the proof is much more involved and it is in fact the second part of Chapter 5.

Definition 2.1.7. We say that f is an atomic solution if it has the form (2.11).

Remark 2.1.7. Point 5 of Definition 2.1.6 requires some explanation. Its purpose is to
establish a local control over the propagation of the support of f . Basically if we can divide
the support of f0 into two parts of distance R− r, then in some small time interval [0,T ∗] the
distances between those parts is no lesser than R−r

4 .

Remark 2.1.8. In Chapter 5 and especially Section 5.2 we frequently test our weak solution
by various test functions that at the first glance may seem not admissible. In particular we
test with functions with derivatives in x and v not necessarily Lipschitz continuous. This
is however correct since by simple density argument we may test (2.6) with C1 functions.

3By ”sufficiently smooth” we mean for instance that (x, v) ∈ W1,1([0,T ]), which is a reasonable assumption
in view of Proposition 5.0.3.
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Moreover we test (2.6) with functions that are not compactly supported in time. In such case
we get a version of (2.6) with both endpoints of the time interval, i.e. by testing in the time
interval [0, t] we get∫ T

0

∫
R2d

f [∂tφ + v∇φ]dxdvdt +

∫ T

0

∫
R2d

F( f ) f∇vφdxdvdt =

=

∫
R2d

f (t)φ(·, ·, t)dxdv −
∫
R2d

f0φ(·, ·, 0)dxdv.

The justification of the above equation is standard but we present it anyway in the proof of
Proposition 5.0.3,(v) in Appendix A.

2.2 Part I: Main results
Having all the necessary preliminary definitions and remarks we are finally in position to
present the main results of the first part of the thesis. The first one states that the C–S
particle system (2.3) with singular weight with α ∈ (0, 1) admits at least one piecewise-weak
solution.

Theorem 2.2.1. Let α ∈ (0, 1). For all T > 0 there exists a (C1([0,T ]))Nd solution of
(2.3) with arbitrary initial data. This solution is in the sense of Definition 2.1.2

The second result concerns the existence and uniqueness of classical solutions to the C–S
particle system with singular communication weight provided that the range of singularity is
reduced to α ∈ (0, 1

2 ).

Theorem 2.2.2. Let α ∈ (0, 1
2 ) be given. Then for all T > 0 and arbitrary initial data

there exists a unique x ∈ W2,1([0,T ]) ⊂ C1([0,T ]) that solves (2.3) with communication
weight given by (2.2) weakly in W2,1([0,T ]).

The third result is complementary to Theorem 2.2.1 stating that any piecewise–weak
solution to the C–S particle system with singular weight with α ∈ (0, 1) is unique. Thus it
could be expected to appear in Chapter 3, however since the methodology of the proof is
developed in Chapter 4, we decided to introduce it separately in that chapter.

Theorem 2.2.3. Let α ∈ ( 1
2 , 1) be given. Then the solution in the sense of Definition

2.1.2, which existence is ensured by Theorem 2.2.1 is unique.
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The last result answers the main question of existence and uniqueness of solutions to
the C–S kinetic equation with singular communication weight completing at the same time
the analysis of the C–S model with singular weight with α ∈ (0, 1). It states that for any
compactly supported initial Radon measure there exists a solution and if the initial measure
is atomic then the solution is also atomic and unique.

Theorem 2.2.4. Let 0 < α < 1
2 . For any compactly supported initial data f0 ∈ M+ and

any T > 0, the Cucker-Smale’s kinetic equation (2.1) admits at least one solution in the
sense of Definition 2.1.6. Moreover if f0 is atomic (is of the form (2.10)) then f is atomic
(is of the form (2.11)) and it is unique.

Additionally we present proposition of minor importance from the point of view of this
thesis but is an interesting addition to the qualitative analysis of C–S model. It’s proof can
be found at the end of Chapter 3 (in Section 3.6).

Proposition 2.2.1. The C–S particle system (2.3) with singular communication weight
(2.2) with α ∈ (0, 1) allows sticking of the trajectories of the particles.

Remark 2.2.1. The above proposition is important from the point of view of applications as
explained in Section 1.2. From the modelling point of view it is good to understand what
repertoire of qualitative behaviour does the model exhibit. It may be the lack of sticking
of the trajectories typical for the C–S model with regular weight or the lack of collisions
whatsoever that is generally expected for the model with singular weight with α ≥ 1. In case
of the C–S model with singular weight and α ∈ (0, 1) there is a possibility of sticking of the
trajectories that we discovered in paper [43] and included in this dissertation.
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Chapter 3

Cucker–Smale model with singular
weight: piecewise-weak solutions

Our first goal is to obtain existence of piecewise-weak solutions to (2.3) with singular weight
(2.2) and α ∈ (0, 1). Let us briefly present difficulties and ideas how to overcome them. When
dealing with the C-S model with bounded weight one makes use of it’s Lipschitz continuity
as well as the structure of the model itself. As an example we present a simple application
of the properties of the structure of our model. Namely, we prove that the average velocity
of the particles

v̄(t) :=
1
N

N∑
i=1

vi(t)

is constant in time. Assuming that x = (x1, ..., xN) and v = (v1, ..., vN) is a sufficiently smooth
solution of (2.3), we calculate the derivative of v̄ to get

d
dt

N∑
i=1

vi =
1
N

N∑
i,k=1

(vk − vi)ψ(|xi − xk|) = (3.1)

1
2N

N∑
i,k=1

(vk − vi)ψ(|xi − xk|) +
1

2N

N∑
i,k=1

(vi − vk)ψ(|xi − xk|) = 0,

where the latter summand in the second line is obtained by substituting i and k. Clearly
each such structure based property of the C-S model will remain true regardless of the com-
munication weight ψ as long as it is nonnegative. This is the first piece of information on
which we base our hope to obtain some existence for C-S model with singular weight ψ.
The second piece of information is that in case of singular weight given by (2.2) Lipschitz
continuity and boundedness of ψ fails only at 0, which means that our main problem will
be to prove existence in a neighbourhood of each time t0 at which some particles collide.
However, roughly speaking, in a neighbourhood of each such point we have

xi(t) − x j(t) ≈ t(vi(t0) − v j(t0)) ≈ t(vi(t) − v j(t))
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and since in (2.3)2 the function t 7→ ψ(|xi(t)− x j(t)|) comes always multiplied by vi(t)− v j(t),
we have

(
Ψ(|xi(t) − x j(t)|)

)′
= ψ(|xi(t) − x j(t)|)

(xi(t) − x j(t)) · (vi(t) − v j(t))
|xi(t) − x j(t)|

≈ ψ(|xi(t) − x j(t)|)|vi(t) − v j(t)|

with Ψ(s) := 1
1−α s1−α being a primitive of ψ, which is a Hölder continuous function, thus

there is hope for some better regularity of v.
These two observations were already used in [31] to obtain asymptotic flocking for C-S

model with weight ψ. Occurrence of asymptotic flocking is a further clue that a C-S model
with singular weight inherits some nice properties from the model with a smooth weight.

In the following sections we prove existence for the discrete C-S model (2.3) with a
singular communication weight given by (2.2) for α ∈ (0, 1) (Theorem 2.2.1). Our strategy
is based on the observation that the function t 7→ ψ(|xi(t) − x j(t)|) is Lipschitz continuous in
a neighbourhood of each time t0, such that for all i, j, we have xi(t0) , x j(t0), which makes
local existence in such points trivial. The idea is that if we prove that the particles collide
in some sense rarely, then the only difficulty is to establish existence in a neighbourhood of
each point of collision of some particles. Technically we obtain existence of solutions by
approximating them with solutions of C-S model with bounded weights.

3.1 Approximate solutions
First, let us define the approximate solutions and present some of their most important prop-
erties. For each n let

ψn(s) =


ψ(s) if s ≥ (n − 1)−

1
α ,

smooth and monotone if n−
1
α ≤ s ≤ (n − 1)−

1
α ,

n if s ≤ n−
1
α

for all s ∈ [0,∞) with ψ given by (2.2). For all n, functions ψn are smooth and bounded, thus
C-S systems associated with these weights have unique solutions. This can be expressed by
the following proposition.

Proposition 3.1.1. For each positive integer n and for arbitrary initial data, the system
ẋn

i = vn
i ,

v̇n
i =

1
N

N∑
k=1

(vn
k − vn

i )ψn(|xn
i − xn

k |)
(3.2)

has a unique global classical solution xn belonging to the class (C2([0,T ]))Nd.

The proof of this proposition is standard and we omit it. The following properties of the
solutions will play an important role throughout the chapter.
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Proposition 3.1.2. Let xn be a solution of the C-S model associated with weight ψn. Then
xn has the following properties:

1. It belongs to the class C∞ in a neighbourhood of every such point t, that

|xn
i (t) − xn

j(t)| > 0

for all i, j = 1, ...,N.

2. The average velocity of the particles is constant:

1
N

N∑
i=1

vn
i (t) = const.

3. Velocity vn is bounded: there exists a constant M(n) such that for all i = 1, ...,N,
we have

‖vn
i ‖L∞([0,T ]) ≤ M(n).

4. If the initial data xn(0), vn(0) are uniformly bounded, then also vn is uniformly
bounded: there exists a constant M such that for all i = 1, ...,N and all n = 1, 2, ...,
we have

‖vn
i ‖L∞([0,T ]) ≤ M.

5. Acceleration v̇n is bounded:

‖v̇n
i ‖L∞([0,T ]) ≤ 2M(n)n.

6. If at some point t we have xn
i (t) = xn

j(t) and vn
i (t) = vn

j(t) for any i, j = 1, ...,N, then
xn

i ≡ xn
j on [t,T ].

7. If at some point t we have vn
i (t) = vn

j(t) for all i, j = 1, ...,N, then vn is constant on
[t,T ].

Proof. 1. Since xn is continuous, if at some point t all the particles have different positions
i.e. |xn

i (t)− xn
j(t)| > 0 for all i, j = 1, ...,N then it is also true in some neighbourhood of

t. Moreover in this neighbourhood of t the right-hand side of (3.2)2 is differentiable,
which by iteration implies that xn is smooth at t.

2. This part was already done at the beginning of this chapter (in particular in (3.1)).
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3. Let rn(t) :=
∑N

i, j=1(vn
i (t) − vn

j(t))
2. By (3.2)2, we have

ṙn = 2
N∑

i, j=1

(vn
i − vn

j)

 1
N

N∑
k=1

(vn
k − vn

i )ψn(|xn
i − xn

k |) −
1
N

N∑
k=1

(vn
k − vn

j)ψn(|xn
j − xn

k |)


=

2
N

N∑
i, j,k=1

(vn
i − vn

j)(v
n
k − vn

i )ψn(|xn
i − xn

k |) −
2
N

N∑
i, j,k=1

(vn
i − vn

j)(v
n
k − vn

j)ψn(|xn
j − xn

k |).

Again, we substitute i and k in the first summand and j and k in the second summand
to obtain

ṙn =
1
N

N∑
i, j,k=1

(vn
i − vn

j)(v
n
k − vn

i )ψn(|xn
i − xn

k |) +
1
N

N∑
i, j,k=1

(vn
k − vn

j)(v
n
i − vn

k)ψn(|xn
i − xn

k |)

−
1
N

N∑
i, j,k=1

(vn
i − vn

j)(v
n
k − vn

j)ψn(|xn
j − xn

k |) −
1
N

N∑
i, j,k=1

(vn
i − vn

k)(vn
j − vn

k)ψn(|xn
j − xn

k |)

= −
1
N

N∑
i, j,k=1

(vn
i − vn

k)2ψn(|xn
i − xn

k |) −
1
N

N∑
i, j,k=1

(vn
j − vn

k)2ψn(|xn
j − xn

k |)

= −2
N∑

i, j=1

(vn
i − vn

j)
2ψn(|xn

i − xn
j |) ≤ 0.

Thus for each n, function rn is nonincreasing with it’s maximum at 0 i.e. rn(t) ≤ rn(0).
Now let v̄n be the average velocity, which as we know from property 2 is a constant.
We have

N∑
i=1

(v̄n − vn
i )2 =

N∑
i=1

 1
N

N∑
j=1

vn
j − vn

i


2

=
1

N2

N∑
i=1

 N∑
j=1

(vn
j − vn

i )


2

≤
1
N

N∑
i, j=1

(vn
j − vn

i )2 ≤
1
N

rn(0).

Lastly

|vn
i | ≤ |v

n
i − v̄n| + |v̄n| ≤

√√
N∑

i=1

(v̄n − vn
i )2 + |v̄n| ≤ C(N)

√
rn(0) + |v̄n|

≤ C(N)
√

rn(0) =: M(n),

where C(N) is a generic constant depending on N.

4. We simply note that if initial velocity is uniformly bounded, then M(n) ≤ M for some
M independent of n.

Point 5 follows immediately from property 3 and equation (3.2)2, while points 6 and 7 are
obvious consequences of uniqueness of the solutions. �
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Remark 3.1.1. Property 6 from the above proposition implies that the acceleration equation
(3.2)2 can be replaced by:

v̇n
i =

1
N

∑
k∈Bi(t)

(vn
k − vn

i )ψn(|xn
k − xn

i |), (3.3)

where Bi(t) is defined by (2.4), with v̇n
i = 0 should set Bi(t) be empty. Indeed, by (3.1.1) we

have

v̇n
i (t) =

1
N

∑
k∈Bi(t)

(vn
k(t) − vn

i (t))ψn(|xn
k(t) − xn

i (t)|) +
1
N

∑
k<Bi(t)

(vn
k(t) − vn

i (t))ψn(|xn
k(t) − xn

i (t)|)

and by the definition of Bi(t) the second term above disappears at t (as for all k < Bi(t),
vn

k(t) = vn
i (t)). Property 6 from Proposition 3.1.2 implies that this is true also for all s > t,

thus we may actually ignore the second term altogether, which leaves us with (3.3). This
technical observation will be useful later on.

Until the end of the chapter we use M(n) and M in the same roles as in Proposition 3.1.2.
We end this section with an important lemma that is in fact our way to deal with existence in
a right sided neighbourhood of a point of collision.

Lemma 3.1.1. Let xn be a solution of C-S system on the time interval [0,T ] with weight ψn

and initial data x(0), v(0) – independent of n. Then there exists an interval [0, t], such that
all velocities vn are uniformly Hölder continuous on [0, t].

To prove this lemma we need yet another, technical lemma.

Lemma 3.1.2. If xi(0) = x j(0) and vi(0) , v j(0), then for all n, there exists an interval (0, tn],
such that

|vn
i (s) − vn

j(s)| ≤ 4
|(vn

i (s) − vn
j(s)) · (xn

i (s) − xn
j(s))|

|xn
i (s) − xn

j(s)|
(3.4)

for s ∈ (0, tn].

Proof. By property 5 from Proposition 3.1.2, we have

vn
i (s) − vn

j(s) = vn
i (0) − vn

j(0) + φn(s), |φn(s)| ≤ 2|s|Mn. (3.5)

Moreover as xn
i − xn

j is a C2 function, by Taylor’s formula

xn
i (s) − xn

j(s) = s ·
(
vn

i (0) − vn
j(0)

)
+ on(s) = s

(
vn

i (s) − vn
j(s) − φn(s)

)
+ on(s), (3.6)

where

on(s) :=
∫ s

0
(v̇n

i − v̇n
j)(s − θ)dθ, |on(s)| ≤ 2|s|2Mn.
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Thus

|(vn
i (s) − vn

j(s))(xn
i (s) − xn

j (s))| =

= |s(vn
i (s) − vn

j(s))2 − s(vn
i (s) − vn

j(s))φn(s) + (vn
i (s) − vn

j(s))on(s)|

≥ s(vn
i (s) − vn

j(s))2 − s|(vn
i (s) − vn

j(s))φn(s)| − |(vn
i (s) − vn

j(s))on(s)| ≥
s
2

(vn
i (s) − vn

j(s))2 (3.7)

assuming that s ∈ (0, tn], where tn is the supremum of all times sn, such that for all s ∈ (t, sn],
we have

|φn(s)| ≤
1
4
|vn

i (s) − vn
j(s)|, |on(s)| ≤

s
4
|vn

i (s) − vn
j(s)|. (3.8)

To check that tn > 0, we notice that for

sn :=
|vn

i (0) − vn
j(0)|

10Mn
(3.9)

and s ∈ [0, sn], we have

|φn(s)| ≤
1
5
|vn

i (0) − vn
j(0)|, |on(s)| ≤

s
5
|vn

i (0) − vn
j(0)|, (3.10)

which together with (3.5) implies that

4
5
|vn

i (0) − vn
j(0)| ≤ |vn

i (s) − vn
j(s)| (3.11)

and condition (3.8) is satisfied. Therefore by taking sn given by (3.9) we get (3.7). Now by
(3.5) and (3.6) on (0, sn] we also have

|xn
i (s) − xn

j(s)| ≤ 2s|vn
i (s) − vn

j(s)|, (3.12)

which together with (3.7) proves that there exists sn > 0 such that on (0, sn] inequality (3.4)
holds. Now we define tn as the supremum of all such times sn. This finishes the proof. �

Next we proceed with the proof of Lemma 3.1.1.

Proof of Lemma 3.1.1. The proof will follow by 2 steps. In step 1 we prove that for each n
there exists an interval [0, tn] on which vn is Hölder continuous with a constant independent
of n, while in step 2 we establish a lower bound on tn that is independent of n.

Step 1. It suffices to show (3.4) separately for all particles, thus let us fix i = 1, ...,N and
consider xi. By Remark 3.1.1 for all s, we have

|vn
i (s) − vn

i (0)| =
∣∣∣∣∣∫ s

0
v̇n

i (θ)dθ
∣∣∣∣∣ ≤ 1

N

∑
k∈Bi(0)

∫ s

0
|vn

k − vn
i |ψn(|xn

k − xn
i |)dθ

=
1
N

∑
k∈B0

i

∫ s

0
|vn

k − vn
i |ψn(|xn

k − xn
i |)dθ +

1
N

∑
k∈B+

i

∫ s

0
|vn

k − vn
i |ψn(|xn

k − xn
i |)dθ

=: I + II,
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where

B0
i := { j ∈ Bi(0) : |x j(0) − xi(0)| = 0}, B+

i := { j ∈ Bi(0) : |x j(0) − xi(0)| > 0}

and Bi(0) is the defined by (2.4) set of all particles that have different trajectories than xi

(we assume that B0
i and B+

i are nonempty since otherwise I = 0 or II = 0 and the estima-
tion is even easier). We estimate I and II separately starting with I. For j ∈ B0

i , we have
|vn

j(0) − vn
i (0)| > 0 and by it’s continuity there exists tn such that |xn

j(s)− xn
i (s)| > 0 and conse-

quently ψn(|xn
j(s)− xn

i (s)|) ≤ ψ(|xn
j(s)− xn

i (s)|) in (0, tn]. Together with Lemma 3.1.2 it implies
that

I ≤
4
N

∑
j∈B0

i

∫ s

0

|(vn
j − vn

i ) · (xn
j − xn

i )|

|xn
j − xn

i |
ψ(|xn

j − xn
i |)dθ.

We claim that, since Ψ(|xn
i (0) − xn

j(0)|) = 0 for all j ∈ B0
i , then∫ s

0

|(vn
j − vn

i ) · (xn
j − xn

i )|

|xn
j − xn

i |
ψ(|xn

j − xn
i |)dθ = Ψ(|xn

j(s) − xn
i (s)|),

where Ψ(s) = 1
1−α s1−α is a primitive of ψ. Indeed, we have

Ψ(|xn
j(s) − xn

i (s)|) =

∫ s

0

(
Ψ(|xn

j − xn
i |)

)′
dθ

≤

∫ s

0
ψ(|xn

j − xn
i |)
|(xn

j − xn
i )(vn

j − vn
i )|

|xn
j − xn

i |
dθ

and since ψ ≥ 0 we can substitute the above inequality with an equality provided that on
(0, tn] the function ξ(s) := (xn

j(s)− xn
i (s))(vn

j(s)−vn
i (s)) has a constant sign. It suffices to show

that |ξ| > 0 in (0, tn], which is an immediate consequence of Lemma 3.1.2 and (3.11). Thus
we proved that

I ≤
4
N

∑
j∈B0

i

Ψ(|xn
j(s) − xn

i (s)|) =
4

N(1 − α)

∑
j∈B0

i

∣∣∣(xn
j(s) − xn

i (s))
∣∣∣1−α

≤
4M1−α

N(1 − α)

∑
j∈B0

i

|s|1−α ≤
4M1−α

1 − α
|s|1−α,

where we use inequality |xn
j(s)− xn

i (s)| ≤ M|s| that follows from property 4 from Proposition
3.1.2. To estimate II we first notice that since for all j ∈ B+

i , we have |xn
j(0) − xn

i (0)| > 0
then there exists δ > 0 such that |xn

j(0) − xn
i (0)| > δ for all j ∈ B+

i . Then, by property 4 from
Proposition 3.1.2 there exists an n independent interval [0, t0] on which |xn

j − xn
i | > δ for all

j ∈ B+
i . On this interval

ψn(|xn
j(s) − xn

i (s)|) ≤ δ−α.
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Therefore

II ≤
1
N

∑
j∈B+

i

2|s|Mδ−α ≤ 2tα0 Mδ−α|s|1−α

and adding our estimations of I and II we get

|vn
i (s) − vn

i (0)| ≤ L|s|1−α

with L = 4M1−α

1−α + 2tα0 Mδ−α on interval [0, tn] ∩ [0, t0]. For simplicity let us denote min{tn, t0}

again by tn. This finishes step 1.
Step 2. In step 1 we proved that for each n there exists an interval [0, tn] in which vn

i is Hölder
continuous with a constant independent of n. Now we prove that there exists t > 0, such that
for all n, we have t ≤ tn and thus in [0, t] all functions vn

i are uniformly Hölder continuous.
There are exactly 3 instances, when we bound tn from the above:

1. In the proof of Lemma 3.1.2.

2. While ensuring that for all k ∈ B0
i we have |vn

k − vn
i | > 0 in [0, tn].

3. While ensuring that for all k ∈ B0
i the function ξ is positive in (0, tn].

If each of these bounds from above can be bounded from below by a constant independent
of n, then so can be tn for all n.

1. In Lemma 3.1.2, tn was the supremum of all times sn, such that for all s ∈ (0, tn]
conditions (3.8) and (3.12) are satisfied. However from step 1 we may estimate tn

better than we could in the proof of Lemma 3.1.2. We have

|φn(s)| ≤ 2L|s|1−α and |on(s)| ≤ 2L|s|2−α,

thus by taking

t̃ :=
(

1
10L
|vn

k(0) − vn
i (0)|

) 1
1−α

, (3.13)

we ensure that (3.10) and consequently (3.8) is satisfied. With the same t̃ we obtain
also condition (3.12).

2. For k ∈ B0
i we have |vn

k(0) − vn
i (0)| > 0, thus

|vn
k(s) − vn

i (s)| ≥ |vn
k(0) − vn

i (0)| − 2L|s|1−α,

which is positive for s ≤ t̃.

3. To prove that ξ has a constant sign in [0, tn] we applied Lemma 3.1.2 concluding that
|ξ(s)| is positive, provided that s belongs to the interval on which the thesis of Lemma
3.1.2 holds and we proved above that this interval includes (0, t̃].

Therefore all bounds from points 1,2 and 3 are satisfied for t0 defined by (3.13) and it is
clearly n-independent. Thus we proved that there exists an interval [0, t] with t ≥ t̃ in which
all functions vn

i are uniformly Hölder continuous. �
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3.2 From approximate solutions to the piecewise-weak so-
lutions

Before we proceed with passing to the limit with the approximate solutions (xn, vn) we have
to introduce some of the basic notions of piecewise-weak solutions in the language of ap-
proximate solutions. In Definition 2.1.2 a crucial role is played by the times at which one or
more particles stick together. However, as mentioned in Remark 3.6.1, sticking of the trajec-
tories cannot happen in case of regular weight and the approximate solutions are associated
with regularised communication weights. Thus we need to redefine the times of sticking
(and for technical reasons also the times of collisions) in terms of the approximate solutions.

Remark 3.2.1. Property 4 from Proposition 3.1.2 implies equicontinuity of xn, thus by
Arzela-Ascoli theorem there exists a (C([0,T ]))Nd convergent subsequence xnk . From this
point we pick one of such convergent subsequences and for simplicity of notation assume
that xn = xnk .

Having the above remark in mind we present an alternative definition of the times of colli-
sions by the following recursive formula:

t1 := inf{t > 0 : min
i=1,...,N
j∈Bi(0)

lim
n→∞
|xn

i − xn
j | = 0},

tn := inf{t > tn−1 : min
i=1,...,N

j∈Bi(tn−1)

lim
n→∞
|xn

i − xn
j | = 0} for n = 2, 3, ...

assuming that tn = ∞ provided that there is no t > tn−1, such that

min
i=1,...,N

j∈Bi(tn−1)

lim
n→∞
|xn

i − xn
j | = 0.

Remark 3.2.2. Clearly if t < t1 then there exists δ > 0, such that

min
i=1,...,N
j∈Bi(0)

lim
n→∞
|xn

i (t) − xn
j(t)| > δ,

which further implies that for all i, j, there exists n0 such that for all n > n0, we have
|xn

i (t) − xn
j(t)| > δ. On the other hand

lim
n→∞
|xn

i (t1) − xn
j(t1)| = 0, for some i = 1, ...,N and j ∈ Bi(0)

and assuming that x is a (C([0, t1]))Nd limit of xn, we have

xi(t1) = x j(t1),

which means that t1 is indeed the first time of collision for x. Similarly tn is the nth time of
collision for x.
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Remark 3.2.3. The natural question arises whether tn → ∞ with n → ∞, as it is otherwise
not clear if [0,T ] ⊂ [0, t1]∪

⋃∞
n=1[tn, tn+1]. The answer to this question is in some sense ’yes’,

but to specify it and prove it, some careful analysis is required. In fact we will prove it at the
very end of this section in the proof of Theorem 2.2.1.

3.3 Existence up to the time of collision
In this section we prove that the approximate solutions converge in every interval

[0, t] ⊂ [0, t1)

, where t1 is the time of the first collision of the particles. Additionally we will prove that
their limit is a weak solution in (W2,1([0, t]))Nd. We begin with the following proposition.

Proposition 3.3.1. For n = 1, 2, ... let xn be a solution to the C–S system on interval
[0,T ] with weight ψn and an independent of n initial data x(0) and v(0). There exists
an interval [0, t1) such that for any [0, t] ∈ [0, t1) solutions xn have a subsequence that
converges to x in (C1([0, t]))Nd.

Proof. If for all i, j = 1, ...,N we have vi(0) = v j(0) then by property 7 from Proposition
3.1.2, we have vn ≡ v(0) for all n and the assertion holds with t1 = T . Thus assuming that
there exist i, j = 1, ...,N such that vi(0) , v j(0), we have two possibilities:

(A) For all i and j ∈ Bi(0) we have x j(0) , xi(0).

(B) There exist i and j ∈ Bi(0) such that x j(0) = xi(0).

(A) In this case for all t < t1, there exists δt > 0 such that for all i, j and all n we have
|xn

i − xn
j | > δt and ψ(|xn

i − xn
j |) ≤ δ

−α
t on [0, t]. Thus all velocities vn are uniformly Lipschitz

continuous on [0, t] and by Arzela-Ascoli theorem there exists a (C1([0, t]))Nd convergent
subsequence of xn.

(B) In the second case, there exist i and j, such that xi(0) = x j(0) and vi(0) , v j(0) and we
may not proceed as in case (A). However for this situation we have prepared Lemma 3.1.1,
which implies uniform Hölder continuity of vn in some neighbourhood of 0. Therefore for
sufficiently small s0 and j ∈ Bi(0), such that x j(0) = xi(0), we have

|xn
i (s) − xn

j(s)| ≥ s
(
|vi(0) − v j(0)| − 2Ls1−α

)
≥ s

1
2
|vi(0) − v j(0)| =: δs > 0

for s ∈ [0, s0]. On the other hand, for all j ∈ Bi(0) such that x j(0) , xi(0), from property 4 of
Proposition 3.1.2, we have

|xn
i (s) − xn

j(s)| ≥ |xi(0) − x j(0)| − 2Ms ≥ δs
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for all n = 1, 2, ... and all s ∈ [0, s1] with 0 < s1 < 1 possibly smaller than s0. Thus in s1 we
end up in a situation from case (A) with

|xn
i (s1) − xn

j(s1)| ≥ δs1

and all velocities vn are uniformly Hölder continuous on [0, s1] and uniformly Lipschitz con-
tinuous on [s1, t] for all t < t1. Again by Arzela-Ascoli theorem, there exists a (C1([0, t]))Nd

convergent subsequence of xn. �

Remark 3.3.1. As in Remark 3.2.1, even though x from Proposition 3.3.1 is a limit of some
subsequence of xn, we will assume that it is in fact a limit of the whole sequence xn (by
restricting the approximate solutions to only those, which approximate x). Such assumption
will pose no threat to our reasoning as long as they will not involve uniqueness of x.

Corollary 3.3.1. Let x be as in Remark 3.3.1. Then x is a local classical solution to C-S
system in the interval (0, t1). Moreover

1. For all i, j = 1, ...,N, we have |x j − xi| > 0 in (0, t1).

2. The function x is smooth in (0, t1).

Proof. By the definition of t1 we get assertion 1, which on the other hand implies that in a
neighbourhood of each t ∈ (0, t1) all the derivatives of xn are uniformly bounded, which by
Arzela–Ascoli theorem implies that x is smooth in (0, t1). With this, to prove that x solves
C-S system with weight ψ, it suffices to take a (C2([t−ε, t+ε]))Nd limit of systems associated
with weights ψn, with [t − ε, t + ε] ⊂ (0, t1). �

Our next step is to show that the function x actually satisfies our problem in a weak sense
in every interval [0, t] ⊂ [0, t1) (though to prove that it satisfies Definition 2.1.2 we still need
continuity of v at t1).

Proposition 3.3.2. For all t ∈ [0, t1] the function x is a weak (W2,1([0, t]))Nd solution of
(2.5).

Proof. From Proposition 3.3.1 and Corollary 3.3.1 it follows that x ∈ (C1([0, t1)))Nd and that
t1 is the time of the first collision of the particles. It suffices to show that x satisfies (2.3)
weakly in intervals [0, t] for t ↗ t1. Since xn satisfy (2.3)1 and xn → x in (C1([0, t]))Nd, then
x satisfies (2.3)1 with v = limn→∞ vn. Now for φ ∈ (C∞c ([0, t]))d, we have∫ t

0
vn

i φ̇ds = −

∫ t

0
v̇n

i φds = −

∫ t

0

1
N

N∑
k=1

(vn
k − vn

i )ψn(|xn
i − xn

k |)φds
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and the left-hand side converges to
∫ t

0
vφ̇ds. Thus it remains to show that the right-hand side

converges to [−
∫ t

0
v̇φds], where

v̇ :=
1
N

N∑
k=1

(vk − vi)ψ(|xi − xk|). (3.14)

To this end we require for example that v̇n ⇀ v̇ in (L1([0, t]))Nd, which follows from Lemma
A.1.1 applied to functions fn = vn

k − vn
i , f = vk − vi, gn = ψ(|xn

i − xn
k |), g = ψ(|xi − xk|). �

Remark 3.3.2. In the above proof, we actually have v̇n → v̇ in (L1([0, t]))Nd, which can be
proved using Vitali’s convergence theorem.

As our last effort in this section let us make an obvious remark involving properties stated in
Proposition 3.1.2.

Corollary 3.3.2. Properties 1,2,6,7 from Proposition 3.1.2 remain true also for the so-
lution x on [0, t1). Moreover the following version of properties 3 and 4 holds:

(4
′

) For all initial data x(0) and v(0) and all i = 1, ...,N, we have

‖vi‖L∞([0,t1)) ≤ M,

where M is the constant from property 4 from Proposition 3.1.2.

Proof. Properties 1,2,4
′

follow by similar argumentation as in the proof of Proposition 3.1.2.
Property 6 follows by the definition of our system (namely by substituting equation (2.3)2

with (2.5)2) and property 7 follows by calculating the derivative of r(t) :=
∑

i, j(vi − v j)2. �

Remark 3.3.3. In general, property 5 from Proposition 3.1.2 does not hold on [0, t1) even
though it holds on [0, t] for t ↗ t1 due to the blowup of ψ(|xi − x j|) at the time of collision of
ith and jth particles.

3.4 Clustering at the time of collision
In the previous section we established existence of solutions on the interval [0, t1), where t1

is time of the first collision of some pair of particles. The solution x belongs to

(W2,1([0, t]))Nd ∩ (C1([0, t1)))Nd ∩ (C([0,T0]))Nd

for all 0 < t < t1 and satisfies (2.3) in a classical sense in (0, t1) and weakly in (W2,1([0, t]))Nd.
Therefore we know that v is a Lipschitz continuous function in each interval [0, t] ⊂ [0, t1),
however we do not know anything about it’s behaviour in a neighbourhood of t1 – with our
current knowledge the limit of v(t) as t → t1 may even not exist. In this section we provide a
proof of continuity of v on whole interval [0, t1].
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Definition 3.4.1. For each i, j = 1, ...,N we define a relation i∼̇ j if and only if j < Bi(0)
or for all t < t1, we have ∫ t1

t
ψ(|xi − x j|)ds = ∞.

This relation is clearly symmetric and reflexive but not necessarily transitive. This leads us
to another definition.

Definition 3.4.2. For each i, j = 1, ...,N we define a relation ∼ with the following two
statements:

1. If i∼̇ j, then i ∼ j.

2. For i/̇ j, we have i ∼ j if and only if there exists k, such that i ∼ k and k ∼ j.

Remark 3.4.1. Relation ∼ is an equivalence relation. Since ∼̇ is symmetric and reflexive
then so is ∼. Transitivity of ∼ follows directly from the definition. Equivalence classes [i]
of ∼ provide us with a partition of the set of indexes {1, ...,N} with the following property:
given i, j = 1, ...,N if j < [i], then ψ(|xi − x j|) is integrable in every interval [t, t1].

Now let us for each i = 1, ...,N define wi = wt0
i by the system of ODE’s

ẇi =
1
N

∑
k∈[i]

(wk − wi)ψ(|xi − xk|),

wi ≡ w j if j < Bi(0)

in [t0, t1) with the initial data wi(t0) = vi(t0) for all i = 1, ...,N. All structure based
properties 1, 2 and 4

′

from Corollary 3.3.2 hold also for the functions wi as in their proof we
never make use of the fact that ẋ = v. We introduce the functions wi as a tool to study the
evolution of v in a neighbourhood of t1. First we ensure that wi and vi are in some sense close
to each other and behave in a similar way.

Lemma 3.4.1. For t ∈ [t0, t1), we have

|vi(t) − wi(t)| ≤ ω(t1 − t0),

for some nonnegative continuous function ω with ω(0) = 0.
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Proof. Let r(t) =
∑

i∈[i](vi(t) − wi(t))2. We have

ṙ =
2
N

∑
i, j∈[i]

(vi − wi)
(
(v j − vi) − (w j − wi)

)
ψ(|xi − x j|)

+
2
N

∑
i, j<[i]

(vi − wi)(v j − vi)ψ(|xi − x j|) =: I + II.

By a similar to the proof of property 3 form Proposition 3.1.2 application of the symmetry
we conclude that

I =
2
N

∑
i, j∈[i]

(
(vi − wi)(v j − w j) − (vi − wi)2

)
ψ(|xi − x j|)

= −
1
N

∑
i, j∈[i]

(
(vi − wi) − (v j − w j)

)2
ψ(|xi − x j|) ≤ 0.

On the other hand II is integrable by Remark 3.4.1. Therefore, since r(t0) = 0, for t ∈ [t0, t1),
we have

r(t) ≤
∫ t1

t0
|II|ds =: ω2(t1 − t0),

where ω is a nonnegative continuous function with ω(0) = 0. �

Our next goal is to prove that if i ∼ j then |wi(t) − w j(t)| → 0 as t → t1. However before we
begin let us make another purely technical assumption that∑

i∈[i]

wi = 0. (3.15)

This does not make our reasoning any less general since by the same argumentation as in
property 2 from Corollary 3.3.2 this sum is constant in time – thus we may as well assume
that it equals 0. Thus our goal can be rewritten in a equivalent form: prove that

lim
t→t1

wi(t) = 0 for all i ∈ [i]. (3.16)

The first step of the proof is to show the following slightly weaker assertion.

Lemma 3.4.2. If i∼̇ j, then there exists a sequence sn → t1, such that |wi(sn) − w j(sn)| → 0.

Proof. If j < Bi(0) then xi ≡ x j and wi ≡ w j and the assertion holds. If j ∈ Bi(0) then the
proof follows by contradiction. Let us assume that i∼̇ j and there is no such sequence sn i.e.
there exists δ > 0, such that |wi(s) − w j(s)| > δ for s ∈ [t0, t1). Since i∼̇ j both i and j belong
to [i] and thus for all s ∈ [t0, t1) and for r(s) :=

∑
k,l∈[i](wk(s) − wl(s))2, we have

ṙ =
2
N

∑
k,l,m∈[i]

(wk − wl) ((wm − wk)ψ(|xk − xm|) − (wm − wl)ψ(|xl − xm|)) .
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By the usual symmetry argument

ṙ = −2
∑
k,l∈[i]

(wk − wl)2ψ(|xk − xl|).

Now since |wi − w j| > δ and by property 4
′

from Corollary 3.3.2 also δ2 < r(s) ≤ NM2 and
we have

(ln r)
′

≤ −2
(wi − w j)2

r
ψ(|xi − x j|) ≤ −

2δ2

NM2ψ(|xi − x j|)

and consequently

δ2 < r ≤ e−
2δ2

NM2

∫ s
t0
ψ(|xi−x j |)dθr(t0),

which is impossible since
∫ s

t0
ψ(|xi − x j|) → ∞ as s → t1. Therefore no such δ exists and the

proof is complete. �

Our next step is a technical lemma which is vaguely based on the fact that velocities of the
particles only "pull" each other but never push away (which for example means that wi which
is the furthest from 0 may not go any further away from 0 because there is no other velocity
to pull it there).

Lemma 3.4.3. For each k = 1, ..., d we denote wk
i – the kth coordinate of wi and assume that

up to permutations wk
1(t) ≤ ... ≤ wk

N(t). Then the sums

l∑
i=1

wk
i (t), and

N∑
i=l

wk
i (t), l = 1, ...,N

are respectively nondecreasing and nonincreasing.

Proof. We prove the assertion only for the first sum as the other differs only by sign. For all
l = 1, ...,N, we have l∑

i=1

wk
i


′

=

l∑
i, j=1

(wk
j − wk

i )ψ(|xi − x j|) +

l∑
i=1

N∑
j=l+1

(wk
j − wk

i )ψ(|xi − x j|) =: I + II.

By symmetry I = 0. On the other hand for j > l as long as wk
j − wk

i > 0, we have II ≥ 0 and
the sum

∑l
i=1 w j

i is nondecreasing. �

Now we may proceed with our goal which is the following proposition.

Proposition 3.4.1. If i ∼ j then

lim
t→T0
|wi(t) − w j(t)| = 0. (3.17)
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Proof. It suffices to show that the assertion holds if we substitute wi with wk
i – it’s kth co-

ordinate, thus let us assume for simplicity of notation that wi = wk
i . Therefore wi are real

functions and their sum equals to 0 by (3.15). The proof follows by 3 steps.

Step 1. For t ∈ [t0, t1), let R(t) := max j∈[i] w j(t). First we prove that if at some point
t ∈ [t0, t1) we have

wi(t) = R(t) − δ, (3.18)

then

sup
s∈[t,t1)

wi ≤ R(t) −
δ

N!
. (3.19)

The proof follows by induction with respect to the number of velocities w j that are bigger
than wi at the time t. For n = 1 we are in a situation when there is only one w j, such that
R(t) = w j(t) > wi(t) and (3.18) implies that R(t) − wi(t) = δ. Now let

p(s) := max{wk(s) : wk(s) < R(s)}, for s ∈ [t,T0)

Clearly p(t) = wi(t) but it is possible that some other velocity may become bigger than wi at
some point in time and this is the only reason to introduce the function p, which will serve us
by pointing the right-hand edge of the set of velocities smaller than R. Clearly wi ≤ p ≤ R
in [t,T0). Moreover Lemma 3.4.3 implies that the sum p + R is nonincreasing. Therefore

R(t) ≥ R(s) + p(s) − p(t) ≥ 2wi(s) − wi(t) = 2wi(s) − R(t) + δ,

which implies that

sup
s∈[t,t1)

wi ≤ R(t) −
δ

2
.

Now let us assume that condition (3.18) implies that

sup
s∈[t,t1)

wi ≤ R(t) −
δ

(n + 1)!
(3.20)

in case when at the time t there are exactly n velocities bigger than wi. We will prove that
this implies that if (3.18) holds, then

sup
s∈[t,t1)

wi ≤ R(t) −
δ

(n + 2)!
(3.21)

if only there are exactly n + 1 velocities bigger than wi at the time t. In such case we define

p(s) := max{wk(s) : k < G}, for s ∈ [t, t1),
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where G is the set of indexes of the n + 1 biggest velocities at the time t. Denoting S (s) :=∑
k∈G wk(s), by Lemma 3.4.3, the function S + p is nonincreasing as long as

p(s) < min
k∈G

wk(s), (3.22)

thus

(n + 2)p(s) < S (s) + p(s) ≤ S (t) + p(t) = S (t) + R(t) − δ ≤ (n + 2)R(t) − δ, (3.23)

p(s) < R(t) −
δ

n + 2

as long as (3.22) holds. However if at some time s0, we have p(s0) = R(t) − δ
n+2 then all of

the inequalities in (3.23) become an equality which means that also p(s0) ≥ mink∈G wk(s0).
At that point there are at most n velocities bigger than p and the distance between p(s0) and
R(s0) is no less than δ

′

:= δ
n+2 . Therefore by (3.20), we have

p(s) ≤ R(s0) −
δ
′

(n + 1)!
≤ R(t) −

δ

(n + 2)!
for s ∈ [s0, t1).

This proves (3.21). Noticing that n ≤ N − 1 we get (3.19) and finish step 1.

Step 2. Our next step is the following simple observation.

Lemma 3.4.4. If Proposition 3.4.1 does not hold, then there exists a class of relation ∼
denoted by [i], ε > 0 and a sequence sn → t1, such that for all i ∈ [i] there exists j ∈ [i], such
that

|wi(snk) − w j(snk)| → 0 and |wi(snl) − w j(snl)| > ε

for some subsequences {snk}, {snl} ⊂ {sn}.

Proof. Stating that Proposition 3.4.1 does not hold is equivalent to stating that there exists a
class [i] that does not ’collapse’ at t1 i.e. it is not true that for all i, j ∈ [i] we have

lim
t→t1
|wi(t) − w j(t)| = 0.

Now suppose that Lemma 3.4.4 also does not hold. Then by Lemma 3.4.2 there exists i ∈ [i]
such that for all j ∈ [i] we have

lim
t→t1
|wi(t) − w j(t)| = 0

and it immediately implies the ’collapse’ of [i]. �

Step 3. We finish the proof by contradiction assuming that Proposition 3.4.1 does not hold.
Let [i] be the ’non-collapsing’ class of indices and let us fix t ∈ [t0, t1) and assume that wi (for
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i ∈ [i]) is one of the biggest velocities at the time t i.e. R(t) = wi(t). Lemma 3.4.4 ensures
existence of j ∈ [i], such that

|wi − w j| → 0 (3.24)

on one subsequence converging to t1 and

|wi − w j| > ε (3.25)

on some other subsequence converging to t1 for ε independent of i and j. Thus (3.25) implies
that at some time s ∈ [t, t1) either wi or w j (say w j) is farther from R(t) than ε. Then step 1
implies that

sup
θ∈[s,t1)

w j ≤ R(t) −
ε

N!
.

Moreover (3.24) implies that at some other time r ∈ [s, t1), we have

wi(r) ≤ R(t) −
ε

2N!

and after that point (again by step 1)

sup
θ∈[r,t1)

wi ≤ R(t) −
ε

(2N!)2 .

This procedure can be performed with any velocity wi that at some time equals to R as many
times as we want. Therefore we may make sure that R(t) is arbitrarily small at some time
t < t1. The same can be done with L(t) := min j∈[i] w j(t) to conclude that the diameter of
velocities converges to 0 as t → t1 and this contradicts (3.25) and by Lemma 3.4.4 implies
that Proposition 3.4.1 holds. This finishes the proof. �

Remark 3.4.2. In Proposition 3.4.1 we proved that for all i ∈ [i] we have wi → 0. However
this was under our assumption (3.15). Now it is time to drop this assumption and conclude
that in general there exists a constant v̄ :=

∑
i∈[i] wi, such that for all i ∈ [i], we have wi → v̄.

Our last goal in this subsection is to clarify what does Proposition 3.4.1 imply to the motion
of v.

Corollary 3.4.1. For all i ∈ [i], we have

lim
t→t−1

vi(t) = v̄.

Proof. From Lemma 3.4.1 and Proposition 3.4.1, given ε > 0, we have

|vi(s) − v̄| ≤ |vi(s) − wt0
i (s)| + |wt0

i (s) − v̄| < ω(t1 − t0) + |wt0
i (s) − v̄| < ε

for t0 and s sufficiently close to t1. �
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This finally proves that the function v has a limit at t−1 and we may extend it continuously to
[0, t1].

We finish this section by a corollary that enables us to extend our solutions up to the first
time of collision as long as it is not the first time of sticking as well.

Corollary 3.4.2. Let x be as in Proposition 3.3.2. Then if t1 is not a time of sticking for
x then x is a weak (W2,1([0, t1]))Nd solution of (2.5).

Proof. By Corollary 3.4.1 if i ∼ j then ith and jth particles stick together at t1. Conversely
if no particles stick together at t1 then for all i, j = 1, ...,N we have i / j and in particular for
all i, j = 1, ...,N the function t 7→ ψ(|xi(t)− x j(t)|) is integrable in a left-sided neighbourhood
of t1. Therefore v is absolutely continuous on [0, t1] and x is a weak (W2,1([0, t1]))Nd solution
of (2.5). �

3.5 Global existence
In this section we combine our efforts from Sections 3.3 and 3.4 to obtain global existence
in the sense of Definition 2.1.2. Proposition 3.3.2 ensures existence of weak solutions in
[0, t] ⊂ [0, t1) with a continuous velocity v. On top of that Corollary 3.4.2 ensures existence
of solutions up to any time of collision as long as none of them is a time of sticking. As-
suming that t1 is a new initial point with initial data equal to x(t1) and v(t1) and applying
the same reasoning again we conclude that the solution exists on [0, tn], where tn is nth time
at which some particles collide. Therefore for arbitrary initial data there exists a solution
x ∈ C1([0,T ∗])dN satisfying (2.5) weakly in W2,1([0,T ∗]), for any T ∗ satisfying the following
conditions:

1. T ∗ < T1, where T1 is (as in Definition 2.1.2) the first time of sticking of the particles;

2. ∃ tn such that T ∗ ≤ tn, which ensures that [0,T ∗] is included in [0, t1] ∪
⋃n

i=1[ti, ti+1].

The above conditions ensure the existence of W2,1([0, T̃ − ε]) weak solutions, where 0 < ε <
T̃ is arbitrary and T̃ is either the first time of sticking of the particles (and then beyond that
point condition 1 fails) or the first density point of the times of collisions (and then beyond
that point condition 2 fails), whichever comes first. Thus our remaining goal is to ensure that
we may extend the solution beyond T̃ .

Proof of Theorem 2.2.1. It suffices to show that we may extend our solution up to an arbitrary
T > 0, knowing that it exists in [0, T̃ − ε] ⊂ [0, T̃ ], where

(a) T̃ is the first density point of the times of collisions (and no particles did stick together
before T̃ ), or
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(b) T̃ is the first time of sticking of the particles (and there was no density points of the times
of collisions before T̃ ).

Ad. (a). We will show that if T̃ is a density point of the times of collisions then it is a
time of sticking, which will reduce case (a) to case (b). Let tn be a sequence of the points of
collision and tn → T̃ . We will prove that T̃ is a point of sticking for some particles xi and x j.
Clearly there exist i and j ∈ Bi(0) and a subsequence tnk , such that xi(tnk)− x j(tnk) = 0, which
by Lipschitz continuity of x (property 4

′

from Corollary 3.3.2) implies that

xi(t) − x j(t)→ 0 (3.26)

as t → T̃ and T̃ is a point of collision of xi and x j. Now it remains to show that for some i, j
satisfying (3.26), we have vi(t) − v j(t)→ 0 as t → T̃ . If there exist i, j, such that∫ T̃

t
ψ(|xi − x j|)ds = ∞ (3.27)

for all t < T̃ , then by Corollary 3.4.1, we are done. On the other hand if for all i, j the
function t 7→ ψ(|xi(t) − x j(t)|) is integrable in a left sided neighbourhood of T̃ then velocity v
is in fact uniformly continuous at T̃− and in particular has a limit at T̃ . Therefore there exists
a limit of vi − v j at T̃ . If this limit equals 0 then, again, we are done. If on the other hand
it equals to some ξ , 0, then in a left-sided neighbourhood of T̃ we have vi − v j ∈ B(ξ, |ξ|2 ),
where B(ξ, |ξ|2 ) is a ball centred at ξ radius |ξ|2 . This implies a clearly false statement that

0 = xi(tnk+1) − x j(tnk+1) ∈ (tnk+1 − tnk)B
(
ξ,
|ξ|

2

)
with tnk and tnk+1 sufficiently close to T̃ . This contradicts the assumption that ξ , 0.

Ad. (b). We have shown that in both cases (a) and (b) we actually know that T̃ = T1,
which is the first time of sticking of any particles. Corollary 3.4.1 implies that there exists a
left sided limit of v at T1. Thus it may be extended continuously up to [0,T1]. Moreover T1

can be treated as a well defined initial time for (2.5) on [T1,T ] Then we may further extend
our solution beyond T1. Finally, since there can be at most N − 1 times of sticking, then for
all T > 0 either we find Tn such that Tn > T or all the particles stick together before time T
and travel with constant velocity for as long as needed. Such extended solution is not weak
in W2,1([0,T ]) but it satisfies Definition 2.1.2 nevertheless. �

3.6 On the case of two particles – flocking in a finite time
In this section our goal is to discuss the possibility of a finite in time alignment in case of
two particles (N = 2). First let us recall that asymptotic flocking was studied before in most
papers mentioned in the introduction, see e.g. [31] and we refer to those papers to see general
definitions and results. Here, we consider the most strict form of flocking, which is sticking

42



of the trajectories of the particles in a finite time. By property 2 from Corollary 3.3.2 the
average velocity of the particles is constant, which means that

v1 ≡ −v2 + v̄

for some constant v̄. Without a loss of generality we may assume that v̄ = 0. The above
observation implies that

x1(t) = −x2(t) + tv̄ + (x1(0) + x2(0))

and assuming without a loss of generality that also x1(0) = −x2(0), we get x1 ≡ −x2. Thus
both, average velocity and the centre of mass of the particles are equal to 0. Therefore the
particles move parallely to each other, either on two separate parallel lines or on the same
line. In the former case, the distance between particles is always no less than the distance of
respective lines, thus there is no possibility of a finite in time alignment. In the latter case
the distance between particles can by arbitrarily small, thus hypothetically a finite in time
alignment may occur.

In order to simplify our calculations, since particles move on the same line, then by a
simple change of variables we may assume that d = 1. Altogether we have two particles
x1 and x2, with x1 ≡ −x2 and v1 ≡ −v2. Therefore they are unequivocally defined by the
function φ(t) := x2(t) − x1(t). Then the C–S model (2.3) (or (2.5), since in this case they are
the same) can be rewritten equivalently as

φ̈(t) = −2φ̇(t)ψ(|φ(t)|), (3.28)

with φ(0) = x2(0) − x1(0) ≥ 0 and φ̇(0) = v2(0) − v1(0) ∈ R. Moreover Lemma 3.4.3 implies
that if at some time t we have φ̇(t) = 0 then it will be constantly equal to 0 from that point
in time. This implies that φ̇ may not change sign and this farther implies that there may be
at most one collision of the particles. Finally let us notice that by Theorem 2.2.1 there exists
a solution to (3.28) with arbitrary initial data and we can easily prove that if φ(0) > 0, then
this solutions is unique. Now we are ready to state our main result of this section.

Proposition 3.6.1. Let φ be a solution of (3.28) with φ(0) > 0. Then the following
statements are equivalent:

1. There exists a time t0 < ∞ such that φ(t0) = φ̇(t0) = 0.

2. Initial data satisfy:

φ̇(0) = −2Ψ(φ(0)), (3.29)

where Ψ(s) := 1
1−α s1−α is a primitive of ψ.
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Proof. Since there is at most one collision of the particles and we know that they stick
together, thus φ = |φ| and by simple integration of (3.28) we conclude that the function
φ satisfies:

φ̇(t) = −2Ψ(φ(t)) + 2Ψ(φ(0)) + φ̇(0) (3.30)

Substituting t with t0 in (3.30) we obtain

0 = 2Ψ(φ(0)) + φ̇(0),

which is exactly condition (3.29). Now let as assume that (3.29) is satisfied. We are going to
prove existence of t0. First note that in our case (3.30) is satisfied on the set {t : φ(t) ≥ 0} and
it has the following form:

φ̇(t) = −2Ψ(φ(t)). (3.31)

From (3.31) and by the definition of ψ we obtain

φ̇(t) = −
2

1 − α
φ(t)ψ(φ(t))

and

φ(t) = e−
2

1−α

∫ t
0 ψ(φ(s))dsφ(0).

Thus, since maxt∈[0,t0] φ(t) = φ(0), we have

φ(t) ≤ e−
2

1−α tψ(φ(0))φ(0),

which can become arbitrarily small in a finite time. Now for n = 2, 3, ... let

tn := inf{t > tn−1 : φ(t) ≤ 2−n},

with t1 := 0. We have

φ(tn) = e−
2

1−α

∫ tn
tn−1

ψ(φ(s))ds
φ(tn−1),

2−1 = e−
2

1−α

∫ tn
tn−1

ψ(φ(s))ds
,

ln 2 =
2

1 − α

∫ tn

tn−1

ψ(φ(s))ds ≥
2

1 − α
(tn − tn−1)2α(n−1).

Therefore

(tn − tn−1) ≤
(1 − α) ln 2

2
2α(1−n)

and tn is a partial sum of a convergent series. Thus tn converges to a finite limit t0 such that
φ(t0) = φ̇(t0) = 0. �
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Remark 3.6.1. Let us mention that a finite in time alignment may not happen in the case of
regular weight ψcs defined for example by (1.5) since (3.28) implies that

|φ̇(t)| = e−2
∫ t

0 ψcs(|φ(t)|)dsφ̇(0) ≥ e−2t‖ψcs‖∞ |φ̇(0)| > 0,

as long as φ̇(0) , 0. Similarly we may prove that in case of singular weight ψ a finite in time
alignment of velocities is equivalent to sticking of the trajectories of the particles. Finally we
may just as easily prove that with unintegrable singular weight ψ, e.g. when ψ(s) = s−α for
α > 1 in one dimensional setting not only particles cannot stick but they cannot even collide.

Remark 3.6.2. Conditions described in Proposition 3.6.1 refer to the function φ and in a
simplified case of one dimension. However they can be modified to cover more general
cases and refer directly to x1 and x2. Thus the example of Proposition 3.6.1 serves as a
proof of Proposition 2.2.1.
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Chapter 4

Cucker–Smale model with singular
weight: strong solutions

In this chapter we improve the results of Chapter 3 for α ∈ (0, 1
2 ). We show that in such

case for any initial data, the piecewise–weak solution has an absolutely continuous velocity
component, is unique and satisfies (2.3) in a W2,1 weak sense (and in particular a.e.), which
is significantly better than what we were able to prove in case of α ∈ (0, 1). The improve-
ment comes mostly from an inequality originating from [33], that enables us to show a better
regularity of the solutions. This inequality is also the reason behind our restriction of the set
of admissible α to (0, 1

2 ) as for α ∈ ( 1
2 , 1) it fails to hold and for α = 1

2 it does not suffice.

First let us rewrite the results of Chapter 3 in a more suitable and compact manner.

Corollary 4.0.1 (Summary). Let α ∈ (0, 1). For all initial data x0, v0, there exists at least
one solution of Cucker-Smale’s flocking model with a singular communication weight
given by (2.2). This solution exists in the sense of Definition 2.1.2. Moreover the follow-
ing properties hold:

1. For all ε > 0, the function v is absolutely continuous on each time interval
[Tn,Tn+1 − ε].

2. The set of times of collision is at most countable, while the set of times of sticking
has at most N elements. Moreover if there exists a point of density of the times of
collision1 then this point itself is a time of sticking. Thus there are at most N points
of density of the times of collision.

3. Both x and v are uniformly bounded i.e. there exists an N independent constant
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C1, such that

max
i=1,...,N

sup
t∈[0,T ]

|xi(t)| ≤ TC1,

max
i=1,...,N

sup
t∈[0,T ]

|vi(t)| ≤ C1.

Proof. The proof can be found in Chapter 3. Existence of solutions in the sense of Definition
2.1.2 is the subject of Theorem 2.2.1 while points 1. and 2. were proved along with Theorem
2.2.1. Point 3. is a part of Corollary 3.3.2. �

Our goal in this chapter is to prove Theorems 2.2.2 and 2.2.3. These theorems come
from the natural question of how much worse the piecewise–weak solutions are compared
to classical, regular solutions. In the effort to answer this question we found out that if we
discriminate two cases of α ∈ (0, 1

2 ) and α ∈ [1
2 , 1), we obtain significantly different results.

In the first situation with α ∈ (0, 1
2 ) we are actually able to prove that the piecewise–weak

solution has an absolutely continuous velocity component (and thus it is in fact a classical
solution) and that it is unique. On the other hand if α ∈ [1

2 , 1) our method is not sufficient to
show regularity of the piecewise–weak solutions, however we are still able to obtain unique-
ness thanks to the use of the sets Bi(t) in the construction of the solutions (as we mentioned
in Remark 2.1.3). In case of α ∈ (0, 1

2 ), by Corollary 4.0.1 it suffices to prove uniqueness and
that v ∈ W1,1([0,T ]) (i.e. that v is absolutely continuous). In case of α ∈ (0, 1) we only need
to prove uniqueness. We do it in the subsequent sections.

4.1 Absolute continuity of the velocity
In this section we prove the absolute continuity of v. First let us state it in an explicit way.

Proposition 4.1.1. Let α ∈ (0, 1
2 ) and let (x, v) be a solution of (2.3) in the sense of

Definition 2.1.2. Then there exists a constant M, dependent on α,T and the initial data
but independent of N, such that

1
N

N∑
i=1

∫ T

0
|v̇i(t)|dt ≤ M.

Thus v belongs to the space W1,1([0,T ]) and is absolutely continuous.

To prove the above proposition we require the following technical lemmas.
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Lemma 4.1.1. Let α ∈ (0, 1
2 ) and let (x, v) be a solution of (2.3) in the sense of Definition

2.1.2. Then the function

R(t) :=
N∑

i, j=1

|vi(t) − v j(t)|2ψ(|xi(t) − x j(t)|)

is integrable and ∫ T

0
R(t)dt ≤ N2C2

1,

where C1 is the constant from Corollary 4.0.1.3.

Lemma 4.1.2. Let α ∈ (0, 1
2 ) and let (x, v) be a solution of (2.3) in the sense of Definition

2.1.2. Suppose further that there occurs no sticking in the time interval [s1, s2]. Then for all
i, j = 1, ...,N and all θ ∈ (0, 1), we have∫ s2

s1

|x j − xi|
−θdt < ∞.

Lemma 4.1.3. Let f = ( f1, ..., fd) : [0,T ]→ Rd be a C1([0,T ]) ∩W2,1
loc ((0,T )) vector valued

function that is nonzero a.e.. Moreover let h : [0,∞)→ [0,∞) be defined as

h(λ) = λ−θ,

for some 0 < θ < 1. Then there exists a constant C2 > 0 depending on ‖ f ‖∞ and θ, such that
we have ∫ T

0
| f
′

|2h(| f |)dt ≤ C2

∫ T

0
| f
′′

|dt + R( f ,T ) − R( f , 0), (4.1)

provided that ∫ T−ε

ε

h(| f |)dt < ∞ (4.2)

for all ε > 0. Here, for H(λ) = 1
1−θλ

1−θ – a primitive of h, we denote

R( f , t) :=

 f (t) f
′
(t)

| f (t)| H(| f (t)|) for f (t) , 0,
0 for f (t) = 0.

(4.3)

The proofs of Lemmas 4.1.1 and 4.1.2 can be found in Appendix A. On the other hand
Lemma 4.1.3 along with it’s proof comes in almost unchanged form from paper [33]. Equa-
tions similar to (4.1) with multiple examples and applications can be found in [33] or [34].

Now we proceed with the proof of Proposition 4.1.1
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Proof of Proposition 4.1.1 Let Tk and Ns ≤ N be like in Definition 2.1.2. Then, by Corol-
lary 4.0.1.1, velocity v is absolutely continuous on each interval [Tk,Tk+1 − ε] for arbitrarily
small ε > 0. Therefore, given k = 0, ...,Ns by (2.3)2, we have

1
N

N∑
i=1

∫ Tk+1−ε

Tk

|v̇i(t)|dt =
1
N

N∑
i=1

∫ Tk+1−ε

Tk

∣∣∣∣∣∣∣ 1
N

N∑
j=1

(v j − vi)ψ(|x j − xi|)

∣∣∣∣∣∣∣ dt

≤
1

N2

N∑
i, j=1

∫ Tk+1−ε

Tk

|v j − vi|ψ(|x j − xi|)dt.

Let us denote

Lεi jk :=
∫ Tk+1−ε

Tk

|v j − vi|ψ(|x j − xi|)dt.

Then, we have

Lεi jk =

∫ Tk+1−ε

Tk

|v j − vi|
2δ(ψ(|x j − xi|))δ · |v j − vi|

1−2δ(ψ(|x j − xi|))1−δdt,

where 0 < δ << 1 is some very small number. We then apply Young’s inequality with η > 0
and exponent q = 2

1−2δ ∈ (1,∞) (then it’s conjugate q
′

= 2
1+2δ ) to get

Lεi jk ≤ C(η)
∫ Tk+1−ε

Tk

|v j − vi|
4δ

1+2δ (ψ(|x j − xi|))
2δ

1+2δ dt

+ ηC
∫ Tk+1−ε

Tk

|v j − vi|
2(ψ(|x j − xi|))

2−2δ
1−2δ dt =: Iεi jk + IIεi jk.

By Hölder’s inequality with q = 1+2δ
2δ , q

′

= 1 + 2δ, we have

Iεi jk ≤ C(η)
(∫ Tk+1−ε

Tk

|v j − vi|
2ψ(|x j − xi|)dt

) 2δ
1+2δ

· (Tk+1 − ε − Tk)
1

1+2δ . (4.4)

To deal with the estimation of IIεi jk we use Lemma 4.1.3. First let us check whether, the as-
sumptions are satisfied. However we will check if the assumptions are satisfied on [Tk,Tk+1]
instead of [Tk,Tk+1 − ε] since we need estimates to be uniform with respect to ε anyway. We
take f = x j − xi, which by Corollary 4.0.1 is a vector valued C1([Tk,Tk+1])∩W2,1

loc ((Tk,Tk+1))
function that is equal to 0 in at most countable subset of [Tk,Tk+1]. Moreover we take
h(λ) = (ψ(λ))

2−2δ
1−2δ = λ−θ, for θ = 2−2δ

1−2δα ∈ (0, 1), provided that δ is sufficiently small. Fi-
nally Lemma 4.1.2 implies that assumption (4.2) is also satisfied. Therefore, for R defined
by (4.3) and C2 > 0 (note that C2 depends on α, δ and C1), we have

IIεi jk ≤ ηC
(
C2

∫ Tk+1−ε

Tk

|v̇ j − v̇i|dt + R(x j − xi,Tk+1 − ε) − R(x j − xi,Tk)
)

≤ ηC
(
C2

∫ Tk+1−ε

Tk

|v̇ j|dt + C2

∫ Tk+1−ε

Tk

|v̇i|dt

+ R(x j − xi,Tk+1 − ε) − R(x j − xi,Tk)
)

(4.5)
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and by combining (4.4) with (4.5) we end up with the estimate

1
N

N∑
i=1

∫ Tk+1−ε

Tk

|v̇i|dt ≤
C(η)
N2

N∑
i, j=1

(∫ Tk+1−ε

Tk

|v j − vi|
2ψ(|x j − xi|)dt

) 2δ
1+2δ

(Tk+1 − ε − Tk)
1

1+2δ

+ 2ηCC2
1
N

N∑
i=1

∫ Tk+1−ε

Tk

|v̇i|dt +
ηC
N2

N∑
i, j=1

(
R(x j − xi,Tk+1 − ε) − R(x j − xi,Tk)

)
,

which with a suitably chosen η leads to the inequality presented below. However before we state the
inequality let us mention that at this point for the sake of the simplicity of notation we give up on
controlling the constants – we will present them as soon as we finish the prove.

1
N

N∑
i=1

∫ Tk+1−ε

Tk

|v̇i|dt ≤
C
N2

N∑
i, j=1

(∫ Tk+1−ε

Tk

|v j − vi|
2ψ(|x j − xi|)dt

) 2δ
1+2δ

· (Tk+1 − ε − Tk)
1

1+2δ

+
C(C2)

N2

N∑
i, j=1

(
R(x j − xi,Tk+1 − ε) − R(x j − xi,Tk)

)
.

By the monotone convergence theorem and continuity of R (see the end of the proof of Lemma
4.1.3), we may pass with ε to 0 obtaining

1
N

N∑
i=1

∫ Tk+1

Tk

|v̇i|dt ≤
C
N2

N∑
i, j=1

(∫ Tk+1

Tk

|v j − vi|
2ψ(|x j − xi|)dt

) 2δ
1+2δ

· (Tk+1 − Tk)
1

1+2δ

+
C(C2)

N2

N∑
i, j=1

(
R(x j − xi,Tk+1) − R(x j − xi,Tk)

)
and finally sum over k = 0, ...,Ns to get

1
N

N∑
i=1

∫ T

0
|v̇i|dt ≤

C
N2

N∑
i, j=1

Ns∑
k=1

(∫ Tk+1

Tk

|v j − vi|
2ψ(|x j − xi|)dt

) 2δ
1+2δ

· (Tk+1 − Tk)
1

1+2δ

+
C(C2)

N2

N∑
i, j=1

(
R(x j − xi,T ) − R(x j − xi, 0)

)
=: I + II. (4.6)

We yet again apply Hölder’s inequality (this time for sums) with exponents q = 1+2δ
2δ and q

′

= 1 + 2δ
along with Lemma 4.1.1 to get

I ≤
C
N2

N∑
i, j=1

(∫ T

0
|v j − vi|

2ψ(|x j − xi|)dt
) 2δ

1+2δ

· T
1

1+2δ ≤ C(C1,T, δ). (4.7)

Moreover by the definition of R and Corollary 4.0.1.3, we have

II ≤
C(C2)

N2

N∑
i, j=1

(
|v j(T ) − vi(T )||H(|x j(T ) − xi(T )|)|

+|v j(0) − vi(0)||H(|x j(0) − xi(0)|)|
)

≤ C(C1,C2,T, α). (4.8)
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After combining inequalities (4.6), (4.7) and (4.8), we obtain

1
N

N∑
i=1

∫ T

0
|v̇i|dt ≤ C(C1,T, δ) + C(C1,C2,T, α) =: M,

which finishes the proof.

Remark 4.1.1. Careful control over the constants in the above proof leads to the following estimation
of M:

M ≤ 2CC2
1 · T

1
1+2δ +

2
(1 − α)C2

C2−α
1 T 1−α.

.

4.1.1 Uniqueness of solutions
Our goal in this section is to prove uniqueness of solutions to (2.3) for α ∈ (0, 1

2 ) and uniqueness of
the piecewise–weak solutions for α ∈ ( 1

2 , 1).

Proposition 4.1.2. Let α ∈ (0, 1
2 ). Then the W2,1 weak solution of (2.3) is unique.

Proof. Suppose that (x1, v1) and (x2, v2) are two W2,1 weak solutions of (2.3), with weight ψ given
by (2.2) and α ∈ (0, 1

2 ) on the time interval [0,T ], subjected to the initial data (x0, v0). We will show
that in fact (x1, v1) ≡ (x2, v2). The proof will follow by four steps. In steps 1-3 we prove uniqueness
in a small neighbourhood of the initial time t = 0 considering three cases: non-collision initial data,
non-sticking initial data and initial data with particles that are stuck together. In step 4 we combine
our efforts from previous steps and conclude the proof.
Step 1. If there are no collisions at the initial time, which means that for all i , j, we have x0,i ,

x0, j, then by the fact that x1, x2 ∈ C1([0,T ]), there exists δ > 0, such that for all i , j, we have
|xm

i (s) − xm
j (s)| > δ with m = 1, 2 for s ∈ [0, δ]. The communication weight ψ is smooth on the

domain [δ,+∞) and thus, on the time interval [0, δ] system (2.3) is a non-linear ODE with a Lipschitz
continuous nonlinearity and uniqueness is standard.
Step 2. In the case of non-sticking initial data (which means that for all i , j if x0,i = x0, j then
v0,i , v0, j) let us consider

r(t) :=
N∑

i=1

(v1
i (t) − v2

i (t))2.

By the assumptions, r is an absolutely continuous function, thus it has a bounded variation and can
be represented as a sum of two functions, respectively nonincreasing and nondecreasing. Noting that
r(0) = 0, let

rinc(t) :=
∫ t

0
(ṙ(s))+ds,
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where by (ṙ)+ we denote the positive part of the function ṙ. Then if we prove that rinc ≡ 0 then we
will also know that r ≡ 0 and that actually x1 ≡ x2. By (2.3)2, we have

d
dt

rinc =
2
N

 N∑
i, j=1

(v1
i − v2

i )
(
(v1

j − v1
i )ψ(|x1

j − x1
i |) − (v2

j − v2
i )ψ(|x2

j − x2
i |)

)
+

.

After substituting i and j in the above equation we obtain

d
dt

rinc =
1
N

 N∑
i, j=1

(
(v1

i − v2
i ) − (v1

j − v2
j)
) (

(v1
j − v1

i )ψ(|x1
j − x1

i |) − (v2
j − v2

i )ψ(|x2
j − x2

i |)
)

+

=
1
N

 N∑
i, j=1

(
(v1

i − v2
i ) − (v1

j − v2
j)
) (

(v1
j − v1

i ) − (v2
j − v2

i )
)
ψ(|x1

j − x1
i |)

+

N∑
i, j=1

(
(v1

i − v2
i ) − (v1

j − v2
j)
)

(v2
j − v2

i )
(
ψ(|x1

j − x1
i |) − ψ(|x2

j − x2
i |)

)
+

=
1
N

− N∑
i, j=1

(
(v1

i − v2
i ) − (v1

j − v2
j)
)2
ψ(|x1

j − x1
i |)

+

N∑
i, j=1

(
(v1

i − v2
i ) − (v1

j − v2
j)
)

(v2
j − v2

i )
(
ψ(|x1

j − x1
i |) − ψ(|x2

j − x2
i |)

)
+

≤
1
N

N∑
i, j=1

∣∣∣(v1
i − v2

i ) − (v1
j − v2

j)
∣∣∣ |v2

j − v2
i |

∣∣∣ψ(|x1
j − x1

i |) − ψ(|x2
j − x2

i |)
∣∣∣ . (4.9)

By Corollary 4.0.1.3 the factor |v2
j − v2

i | is bounded uniformly with respect to i, j and t. Next, we fix i
and j and consider two cases:

Case 1: xi(0) , x j(0). This is in fact the situation from step 1, i.e. there exists δ > 0, such that for all
i, j with xi(0) , x j(0), we have

|xm
i − xm

j | ≥ δ, m = 1, 2

on [0, δ]. Then ∣∣∣ψ(|x1
j − x1

i |) − ψ(|x2
j − x2

i |)
∣∣∣ ≤ L(δ)

∣∣∣(x1
j − x1

i ) − (x2
j − x2

i )
∣∣∣ (4.10)

for some Lipschitz constant L(δ).

Case 2: xi(0) = x j(0). Let us recall that in this step we assume that if xi(0) = x j(0) then vi(0) , v j(0).
Therefore for our i and j we have v j(0) − vi(0) =: v ji , 0 and by continuity of v1 and v2 there
exist δ > 0, such that

|vm
i − vm

j | ≥ δ, m = 1, 2,

which implies that

|xm
i (s) − xm

j (s)| ≥
1
2
δs
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on [0, δ] for all i, j and m = 1, 2. Thus, by mean value theorem∣∣∣ψ(|x1
j − x1

i |) − ψ(|x2
j − x2

i |)
∣∣∣ ≤

≤ C
∣∣∣(x1

j − x1
i ) − (x2

j − x2
i )
∣∣∣ ∫ 1

0

∣∣∣θ|x1
j − x1

i | + (1 − θ)|x2
j − x2

i |
∣∣∣−1−α

dθ

≤ C
∣∣∣(x1

j − x1
i ) − (x2

j − x2
i )
∣∣∣ ∣∣∣∣∣δ2 t

∣∣∣∣∣−1−α

≤ C(δ)

∣∣∣∣(x1
j − x1

i ) − (x2
j − x2

i )
∣∣∣∣

t
|t|−α . (4.11)

Moreover in either Case 1 or Case 2∣∣∣(x1
j (t) − x1

i (t)) − (x2
j (t) − x2

i (t))
∣∣∣ ≤ t sup

s∈[0,t]

∣∣∣(v1
j(s) − v1

i (s)) − (v2
j(s) − v2

i (s))
∣∣∣

≤ 2t sup
s∈[0,t]

√
r(s) ≤ 2t sup

s∈[0,t]

√
rinc(s)

≤ 2t
√

rinc(t) (4.12)

and thus by combining inequalities (4.9), (4.10), (4.11) and (4.12) with Hölder’s inequality one ob-
tains

d
dt

rinc ≤ Crinc · f ,

where

f (t) := max{2L(δ)t, 2C(δ)|t|−α},

which is an integrable function. Therefore Gronwall’s lemma implies that the solution is unique at
least on [0, δ] for a sufficiently small, positive δ.
Step 3. The purpose of this step is to prove uniqueness in case, when at least two particles are stuck
together at the initial time, i.e. x0,i = x0, j and v0,i = v0, j for some i, j = 1, ...,N. We present this step
as a consequence of the following lemma, which proof, based on reasoning similar to step 2, can be
found in Appendix A.

Lemma 4.1.4. Suppose that at some time t0 ∈ [0,T ] and some i, j = 1, ...,N, we have xi(t0) = x j(t0)
and vi(t0) = v j(t0). Then xi ≡ x j on [t0, t0 + δ] for some positive δ.

The above lemma in particular implies that on [0, δ] any particles that are stuck together can be
treated as a single particle. From the point of view of uniqueness it means that we do not have to
consider the case, when two or more particles are stuck together, since they cannot separate anyway.
Thus if only the trajectory on which they move is unique then their respective trajectories are unique
too (since in fact they are the same).

Step 4. In this step we finish the proof of uniqueness by putting together all the information
obtained in previous steps. Suppose that we have two distinct solutions (x1, v1) and (x2, v2) originating
in (x0, v0). Then, regardless of the initial data, by all three previous steps, there exists an interval [0, δ]
on which x1 ≡ x2 =: x. Without a loss of generality we may assume that for t = δwe have xi(t) , x j(t)
or xi ≡ x j on [0, δ] for all i, j = 1, ...,N. Therefore, by step 1 and step 3 we may prolong the interval
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on which x1 ≡ x2. In fact we may prolong it as long as there is no collision between any particles.
Let t0 be the first time of collision. Then by step 1 and step 3, the uniqueness is ensured up to t0 − ε
for arbitrarily small ε > 0. Now, by Corollary 4.0.1, (x, v) is continuous on whole [0,T ], thus it has
a unique left sided limit at t0, which prolongs uniqueness up to t0. Finally we may treat t0 as the
new starting point and obtain uniqueness on [t0, t1]. Therefore the solution is unique between any two
times of collision and the (possibly infinite) sum of such intervals include all [0,T ]. �

We end this section with the proof of uniqueness of piecewise–weak solutions.
Proof of Theorem 2.2.3. The proof is almost exactly the same as of Proposition 4.1.2. The first

difference is that the function r from step 2 was absolutely continuous by the fact that the solutions
were W2,1 weak on [0,T ], while this time they are W2,1 weak on each interval [Tk,Tk+1 − ε] as stated
in Corollary 4.0.1.1. This however is of no difference since we need r to be absolutely continuous
only on [0, δ] for some small δ > 0. The second difference is that this time we actually do not need
Lemma 4.1.4 since by Definition 2.1.2 and in particular by the use of sets Bi(t) (defined in (2.4)) we
already ensured that the trajectories remain stuck together indefinitely.
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Chapter 5

Cucker–Smale model with singular
weight: kinetic equation

We aim to solve the issue of well–posedness for (2.1) with the singular weight (2.2) and initial data
from the class of Radon measures i.e. we aim to prove Theorem 2.2.4. The goal is twofold:

– We prove existence and analyse continuous dependence on the initial data. The existence is
obtained by approximating measure solutions to (2.1) by solutions to particle system (2.3) using the
mean-field limit, similarly to [31]. The key obstacle is the lack of sufficient information about the
continuous dependence with respect to perturbations of initial data for solutions to particle system
(2.3), thus we are not allowed to apply standard approach. To our best knowledge the most that can
be assumed is solvability of (2.3) in the W1,p- class that has been proved in Chapter 4 (or in [44]).
Therefore by results from Chapter 4 we restrict our considerations to α ∈ (0, 1

2 ) and modify the
mean-field limit procedure to that regularity.

– Concerning the second goal, we prove the property of weak-atomic uniqueness to system (2.1).
It means that any weak solution is unique and corresponds to a solution to the particle system (2.3)
provided it initiates from a finite sum of Dirac’s deltas miδxi(t) ⊗ δvi(t). Thus, any atomic solution is
preserved by kinetic equation (2.1), and since it is generated by particle system (2.3), by Theorem
2.2.3 it is unique.

The part of the proof concerning the issue of existence follows from analysis of approximation by
atomic solutions originating from sums of Dirac’s deltas, which correspond in the sense of Remark
2.1.6 to solutions of (2.3). The main idea behind this approach is twofold. Firstly, there is the very
reason why this approach is successful and why only for α < 1

2 , namely the better (and reasonable)
regularity of solutions of (2.3) for α < 1

2 . It was in some sense hinted in Chapter 4, where we proved
that for 0 < α < 1

2 , system (2.3) admits a unique W1,1([0,T ]) solution (x, v), which by Remark 2.1.6
corresponds to a solution of (2.1) in the sense of Definition 2.1.6. However, since in fact α ∈ (0, α0)
for some α0 <

1
2 , we can push even further and prove that (x, v) is bounded in W1,p([0,T ]) for some

p > 1. Such boundedness will provide us with equicontinuity of sequences of solutions of (2.3),
which on the other hand will serve us to extract a convergent subsequence. The second idea behind
the proof is to change the way we look at the alignment force term∫ T

0

∫
R2d

F( fn) fn∇vφdxdvdt, (5.1)

where if fn ⇀ f then it is not clear whether F( fn) fn ⇀ F( f ) f . It happens so, that it is useful to see
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(5.1) as ∫ T

0

∫
R4d

ψ(|x − y|)(w − v)∇vφdµndt

for dµn := fn(t, x, v) ⊗ fn(t, y,w).
The uniqueness part of Theorem 2.2.4 is explained and proved in section 5.2.
We begin with an overview of the proof of existence. Suppose that f0 is a given, compactly

supported measure belonging toM+ and assume without a loss of generality that

supp f0 ⊂ B(R0), (5.2)∫
R2d

f0dxdv = 1, (5.3)

where B(R) is a ball centred at 0 with radius R. For such f0 we take f0,ε ∈ M+ of the form

f0,ε =

N∑
i=1

miδxε0,i ⊗ δvε0,i , (5.4)

which corresponds to the initial data (x0,ε , v0,ε) to particle system (2.3). Moreover we assume that

d( f0,ε , f0)
ε→0
−→ 0

and that the support of f0,ε is contained in B(2R0). The existence of such approximation is standard
(we refer for example to the beginning of Section 6.1 in [31] for the details). Now suppose that (xn

ε , v
n
ε )

is a solution to (2.3) with the communication weight

ψn(s) := min{ψ(s), n}, (5.5)

subjected to the initial data (x0,ε , v0,ε), which by Remark 2.1.6 means that

f n
ε =

N∑
i=1

miδxn
ε,i
⊗ δvn

ε,i
(5.6)

is a solution of (2.1) with the initial data f0,ε . Our goal is to converge with ε to 0 and with n to ∞ to
obtain a solution f of equation (2.1) subjected to the initial data f0.

The proof can be summarized in the following steps:

Step 1. Given T > 0, for each ε and n, we prove existence of a solution f n
ε corresponding to the

initial data f0,ε and satisfying various regularity properties.

Step 2. We take a sequence fn = f n
ε for ε = 1

n . Due to the conservation of mass and the regularity
proved in step 1 we extract a subsequence fnk converging in L∞(0,T ; (M+, d)) to some f ∈
L∞(0,T ;M+).

Step 3. We converge with each term in the weak formulation for fnk to the respective term in the
weak formulation for f . This can be easily done for each term except the alignment force term
i.e. the term ∫ T

0

∫
R2d

Fnk ( fnk ) fnk∇vφdxdvdt.
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Step 4. In the case of the alignment force term we cannot simply converge. Instead, we replace it
with an nk-independently regular substitute of the form∫ T

0

∫
R2d

Fm( fnk ) fnk∇vφdxdvdt.

We estimate the error between the alignment force term and it’s substitute proving that it can
be controlled in terms of m and uniformly with respect to nk.

Step 5. For such subsequence we converge with the substitute alignment force term to∫ T

0

∫
R2d

Fm( f ) f∇vφdxdvdt.

Step 6. We are then left with converging with the substitute alignment force term to the original
alignment force term i.e. with m → ∞. We show that F( f ) is an L1 function with respect to
the measure f .

Step 7. We finish the proof by making sure that each and every point of Definition 2.1.6 is satisfied
by our candidate for the solution.

Remark 5.0.2. As stated in (5.3) we assume that the total mass of the particles is equal to 1. This
assumption is purely for notational simplicity’s sake and will hold until the end of the chapter.

Let us state some various properties of the approximate solutions f n
ε . It is in fact the first step of the

proof (as presented above) but since it is self-contained, quite lengthy and very similar to the proof
of Proposition 4.1.1 from Chapter 4 we will present it in a form of a separate proposition the proof of
which can be found in Appendix A.

Proposition 5.0.3. Given T > 0 let f0,ε be of the form (2.10). Then for each n = 1, 2, ..., there
exists a unique solution f n

ε to kinetic equation (2.1) that corresponds1 to a smooth and classical
solution (xn, vn) of particle system (2.3). Moreover there exists an n and ε independent constant
M > 0 and constants p, q > 1, such that the following conditions are satisfied:

(i) For all t ∈ [0,T ] and all n and ε the total mass of f n
ε i.e. the value

∫
R2d f n

ε dxdv is equal to 1.

(ii) The support of f n
ε is contained in a ball B(R), where R := 2R0(T + 1).

(iii) We have∫ T

0

Nn∑
i=1

mn
i,ε

∣∣∣v̇n
i,ε

∣∣∣p dt +

∫ T

0

Nn∑
i, j=1

mim jψ
p
n (|xn

i,ε − xn
j,ε |)|v

n
i,ε − vn

j,ε |
pdt ≤ M(R).
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(iv) We have ∫ T

0

Nn∑
i, j=1

mim jψ
q
n(|xn

i,ε − xn
j,ε |)|v

n
i,ε − vn

j,ε |dt ≤ M(R).

(v) For each Lipschitz continuous and bounded g : R2d → R, we have∥∥∥∥∥ d
dt

∫
R2d

g f n
ε dxdv

∥∥∥∥∥
Lp([0,T ])

≤ Mg(Lip(g),R).

Remark 5.0.3. Point (iii) of Proposition 5.0.3 implies in particular that the sequence (xn
ε , v

n
ε ) is uni-

formly bounded in W1,p([0,T ]). We mention this to keep the continuity with the idea of the proof
presented at the beginning of this section.

Remark 5.0.4. It is worthwhile to note that since by (iii) from Proposition 5.0.3 the derivative of
velocity v̇ is uniformly integrable, then

|vn
i,ε(t) − vn

i,ε(0)| ≤
∫ t

0
|v̇n

i,ε |ds ≤ ω(t)→ 0 as t → 0.

Moreover the function ω is independent of i, n and ε. This remark will be recalled later on.

5.1 Proof of Theorem 2.2.4 (existence)
In this section we follow the steps presented in the previous section and finish the proof of the exis-
tence part of Theorem 2.2.4.

Step 1. Proposition 5.0.3 and Remark 2.1.6 ensure the existence of f n
ε with properties (i)-(v)

from Proposition 5.0.3. We solve particle system (2.3) with initial data (5.4) in the time interval [0,T ]
under assumption that the communication weight is in form (3.1.1). By Proposition 5.0.3 we are
ensured that

‖ f n
ε ‖L∞(0,T ;M) = 1,

‖Fn( f n
ε ) f n

ε ‖Lp(0,T ;M) ≤ M(T ).

Step 2. We take ε = 1
n and denote fn := f n

1
n
. Since fn is of the form (5.6) it is clear that

∫
Rd×Rd

fndxdv =

Nn∑
i=1

mi,n = 1.

For each n the function fn may be treated as a mapping from [0,T ] into the metric space (M+, d).
For the purpose of showing that fn has a convergent subsequence we will use Arzela-Ascoli theo-
rem. We have to make sure that fn is a bounded and equicontinuous sequence of functions with a
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relatively compact pointwise sequences fn(t). Uniform boundedness of fn is implied by the conser-
vation of mass, while relative compactness of fn(t) follows from the uniform boundedness of fn(t)
in TV topology and Corollary 2.1.1. Finally in order to prove equicontinuity of fn we take arbitrary
s, t ∈ [0,T ] and arbitrary Lipschitz continuous, bounded function g with Lip(g) ≤ 1 and ‖g‖∞ ≤ 1
and use estimation (v) from Proposition 5.0.3 to write∣∣∣∣∣∫

R2d
g( fn(s) − fn(t))dxdv

∣∣∣∣∣ =

∣∣∣∣∣∫ s

t

d
dr

∫
R2d

g fndxdvdr
∣∣∣∣∣ =: ω(|s − t|). (5.7)

Point (v) of Proposition 5.0.3 states that functions t 7→ d
dt

∫
R2d g fn(t)dxdv are uniformly bounded in

Lp([0,T ]) for some p > 1, which in particular means that they are uniformly integrable. This on the
other hand implies that the function ω is a good modulus of uniform continuity for the left-hand side
of (5.7). Now since this estimation does not depend on the choice of g (only on the choice of Lip(g)),
it is also valid for the supremum over all g, which implies that

d( fn(s), fn(t)) ≤ ω(|s − t|).

The above inequality proves that the sequence of functions t 7→ fn(t) is equicontinuous as a mapping
from [0,T ] to (M, d) (recall the bounded–Lipschitz distance defined in (2.1.3)). Thus the sequence
fn satisfies the assumptions of Arzela-Ascoli theorem. Therefore there exists f ∈ L∞(0,T ;M+), such
that

‖d( fn, f )‖∞ → 0.

By (ii) from Proposition 5.0.3 it implies that the support of f is included in B(R). Therefore with
∂t f ∈ Lp(0,T ; (C1(B(R)))∗).

Step 3. After a brief look at the weak formulation for fn i.e. (2.6), we understand that since
fn → f in L∞(0,T ; (M+, d)), then in particular for φ ∈ G, we have∫ T

0

∫
R2d

fn[∂tφ + v∇φ]dxdvdt →
∫ T

0

∫
R2d

f [∂tφ + v∇φ]dxdvdt

and ∫
R2d

f0, 1
n
φ(·, ·, 0)dxdv→

∫
R2d

f0φ(·, ·, 0)dxdv

and the only problem is with the second term on the left-hand side of (2.6) i.e. the alignment force
term ∫ T

0

∫
R2d

Fn( fn) fn∇vφdxdvdt. (5.8)

Step 4. To deal with the problem of convergence with the alignment force term we replace it in
the following manner∫ T

0

∫
R2d

fn[∂tφ + v∇φ]dxdvdt +

∫ T

0

∫
R2d

Fm( fn) fn∇vφdxdvdt

= −

∫
R2d

f0, 1
n
φ(·, ·, 0)dxdv +J ,
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where

J :=
∫ T

0

∫
R2d

(Fm( fn) − Fn( fn)) fn∇vφdxdvdt

for

Fm( fn)(x, v, t) :=
∫
Rd×Rd

ψm(|x − y|)(w − v) fn(y,w, t)dydw.

However, as mentioned at the beginning of this chapter, instead of looking at (5.8) as an integral of a
product of Fn( fn) with fn, we are going to see it as an integral of

gn(x, y,w, v) := ψn(|x − y|)(w − v)∇vφ(t, x, v) (5.9)

with respect to the measure

dµn(t, x, y,w, v) := fn(t, x, v) ⊗ fn(t, y,w).

By Fubini’s theorem we have∫ T

0

∫
R2d

Fn( fn) fn∇vφdxdvdt =

=

∫ T

0

∫
R2d

(∫
R2d

ψn(|x − y|)(w − v) f (t,w, y)dydw
)
∇vφ(t, x, v) f (t, x, v)dxdvdt

=

∫ T

0

∫
R4d

gndµndt

and a similar identity holds for
∫ T

0

∫
R2d Fm( fn) fn∇vφdxdvdt. Therefore

J =

∫ T

0

∫
R4d

(gm − gn)dµndt.

Moreover we have

gm − gn = 0

in the set {(x, y,w, v) : |x − y| > max{m−
1
α , n−

1
α }}, which provided that2 n > m implies that

|gm − gn| ≤ |gn|χ
{(x,y,w,v):|x−y|≤m−

1
α }
. (5.10)

Therefore for

A(m, n) :=
{

t :
∫

B(m,n)
|w − v|dµn > m−

1
2

}
,

B(m, n) :=
{
(x, y,w, v) : |x − y| ≤ m−

1
α

}
2Which we may assume since we are going to converge with n→ ∞ for each fixed m.
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we have

|J| ≤ C
(∫

A(m,n)

∫
B(m,n)

|gn|dµndt +

∫
(A(m,n))c

∫
B(m,n)

|gn|dµndt
)

=: I + II.

Now if |x − y| ≤ m−
1
α then ψn(|x − y|) ≥ min{m, n} = m and for all t ∈ A(m, n) we have

Ln(t) :=
∫
R4d

ψn(|x − y|)|w − v|dµn

≥

∫
B(m,n)

ψn(|x − y|)|w − v|dµn

≥ m ·
∫

B(m,n)
|w − v|dµn > m

1
2 .

Furthermore, integrating with respect to dµn reveals that

Ln(t) =

N∑
i, j=1

ψ(|xn
i (t) − xn

j (t)|)|v
n
i (t) − vn

j(t)|

which by Proposition 5.0.3,(iv) implies that the sequence Ln is uniformly bounded in Lp([0,T ]) for
some p > 1 and thus – it is uniformly integrable which further implies that

I ≤ C‖∇vφ‖∞

∫
{t:Ln(t)>m

1
2 }

Ln(t)dt ≤ C(m)‖∇vφ‖∞
m→∞
−→ 0, (5.11)

since |Ln(t) > m
1
2 | ≤

‖Ln‖L1

m
1
2
→ 0 as m→ ∞.

To estimate II we introduce the set Bt(m, n) of those pairs (i, j) such that |xn
i (t) − xn

j (t)| ≤ m−
1
α .

Then by Hölder’s inequality with exponent q = 1
θ , for some arbitrarily small θ > 0, we have

II ≤ ‖∇vφ‖∞

∫
(A(m,n))c

∑
i, j∈Bt(m,n)

mi,nm j,nψn(|xn
i − xn

j |)|v
n
i − vn

j |dt

= ‖∇vφ‖∞

∫
(A(m,n))c

∑
i, j∈Bt(m,n)

(mi,nm j,n)1−θψn(|xn
i − xn

j |)|v
n
i − vn

j |
1−θ · (mi,nm j,n)θ|vn

i − vn
j |
θdt

≤ ‖∇vφ‖∞

∫(A(m,n))c

∑
i, j∈Bt(m,n)

mi,nm j,nψ
1

1−θ
n (|xn

i − xn
j |)|v

n
i − vn

j |dt


1−θ

·

∫(A(m,n))c

∑
i, j∈Bt(m,n)

mi,nm j,n|vn
i − vn

j |dt


θ

≤ ‖∇vφ‖∞

∫ T

0

Nn∑
i, j=1

mi,nm j,nψ
1

1−θ
n (|xn

i − xn
j |)|v

n
i − vn

j |dt


1−θ

·

(∫
(A(m,n))c

∫
B(m,n)

|w − v|dµn

)θ

≤ ‖∇vφ‖∞

∫ T

0

Nn∑
i, j=1

mi,nm j,nψ
1

1−θ
n (|xn

i − xn
j |)|v

n
i − vn

j |dt


1−θ

·

(
Tm−

1
2

)θ
. (5.12)
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By Proposition 5.0.3,(iv) the first multiplicand on the right-hand side of (5.12) is uniformly bounded,
which implies that

II ≤ C‖∇vφ‖∞

(
Tm−

1
2

)θ m→∞
−→ 0. (5.13)

Estimations (5.11) and (5.13) imply that

|J| ≤ C(m)‖∇vφ‖∞

for some n-independent positive constant C(m) such that C(m)→ 0 as m→ ∞.

Step 5. Our next goal is to ensure that the convergence∫ T

0

∫
R2d

Fm( fn) fn∇vφdxdvdt →
∫ T

0

∫
R2d

Fm( f ) f∇vφdxdvdt (5.14)

holds for each m and each φ ∈ G. Let us fix φ ∈ G and m = 1, 2, .... For gm defined in (5.9), we have∣∣∣∣∣∣
∫ T

0

∫
R2d

Fm( fn) fn∇vφdxdvdt −
∫ T

0

∫
R2d

Fm( f ) f∇vφdxdvdt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ T

0

∫
R4d

gm(dµn − dµ)dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ T

0

∫
R4d

gm[d( fn ⊗ fn) − d( fn ⊗ f )]dt

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫ T

0

∫
R4d

gm[d( fn ⊗ f ) − d( f ⊗ f )]dt

∣∣∣∣∣∣ =: I + II. (5.15)

Furthermore, again by Fubini’s theorem

I =

∣∣∣∣∣∣
∫ T

0

∫
R2d

(∫
R2d

gm(d fn − d f )
)

d fndt

∣∣∣∣∣∣
and since for each x, v the function (y,w) 7→ gm(x, y, v,w) is Lipschitz continuous and bounded with
Lip(gm) + ‖gm‖∞ ≤ C1 for some C1 = C1(m, ‖∇vφ‖∞, Lip(∇vφ)) then by Lemma 2.1.1 we have

I ≤ C1

∫ T

0

∫
R2d

d( fn, f )d fn ≤ C1T‖d( fn, f )‖∞ → 0 as n→ ∞.

Similarly also II → 0 with n→ ∞. This concludes the proof of convergence (5.14).

Step 6. At this point after converging with n to infinity we are left with the weak formulation for
f that reads as follows:∫ T

0

∫
R2d

f [∂tφ + v∇φ]dxdvdt +

∫ T

0

∫
R2d

Fm( f ) f∇vφdxdvdt

= −

∫
R2d

f0φ(·, ·, 0)dxdv +J(m)

for all m = 1, 2, ... and all φ ∈ G with

J(m)→ 0 as m→ ∞.
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Therefore it suffices to show that∫ T

0

∫
R2d

Fm( f ) f∇vφdxdvdt →
∫ T

0

∫
R2d

F( f ) f∇vφdxdvdt. (5.16)

By Fubini’s theorem for

dµ = ( f ⊗ f )(x, v, y,w, t),

gm = ψm(|x − y|)(w − v)∇vφ,

g = ψ(|x − y|)(w − v)∇vφ,

we have ∫ T

0

∫
R2d

Fm( f ) f∇vφdxdvdt =

∫ T

0

∫
R2d

gmdµdt,∫ T

0

∫
R2d

F( f ) f∇vφdxdvdt =

∫ T

0

∫
R2d

gdµdt (5.17)

provided that the integral on the right-hand side of (5.17) is well defined. Therefore to show (5.16) it
suffices to prove that

gm → g

in L1 with respect to the measure dµ. To prove this we first show that

gm → g

a.e. with respect to the measure µ. Clearly the convergence holds on

A := {(x, v, y,w, t) : x , y} ∪ {(x, v, y,w, t) : x = y, v = w}

and it suffices to show that the set Ac = {(x, v, y,w, t) : x = y, v , w} is of measure µ zero. We have
ψm ≡ m on Ac and thus

Im :=
∫ T

0

∫
R4d
|gm|dµdt =

∫ T

0

∫
R4d

ψm(|x − y|)|w − v||∇vφ|dµdt

≥

∫
Ac
ψm(|x − y|)|w − v||∇vφ|dµdt =

∫
Ac

m|w − v||∇vφ|dµdt = m
∫

Ac
|w − v||∇vφ|dµdt.

Thus either

Im → ∞ or
∫

Ac
|w − v||∇vφ|dµ = 0. (5.18)

The proofs of Step 4 and Step 5 remain true if we substitute gm and gn with |gm| and |gn| respectively3.
Therefore also the respective convergences hold for |gm| and |gn|, yielding∣∣∣∣∣∣

∫ T

0

∫
R4d
|gm|dµndt −

∫ T

0

∫
R4d
|gn|dµndt

∣∣∣∣∣∣ ≤ C(m)‖∇vφ‖∞
m→∞
−→ 0 (5.19)

3Indeed, since ||gm| − |gn|| ≤ |gm − gn| we may replace in (5.10) gm and gn with |gm| and |gn| and proceed with
the proof in the same way as in Step 4. On the other hand in Step 5, the convergence of I and II from (5.15)
was a result of that ‖d( fn, f )‖∞ → 0 and that gm is a Lipschitz continuous function, which remains true for |gm|.
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and ∣∣∣∣∣∣
∫ T

0

∫
R4d
|gm|dµndt −

∫ T

0

∫
R4d
|gm|dµdt

∣∣∣∣∣∣ n→∞
−→ 0. (5.20)

Moreover for each m and n, we have

Im ≤

∣∣∣∣∣∣
∫ T

0

∫
R4d
|gm|dµdt −

∫ T

0

∫
R4d
|gm|dµndt

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ T

0

∫
R4d
|gm|dµndt −

∫ T

0

∫
R4d
|gn|dµndt

∣∣∣∣∣∣ +

∫ T

0

∫
R4d
|gn|dµndt.

Now, (5.20) implies that for each m we may choose n big enough, so that∣∣∣∣∣∣
∫ T

0

∫
R4d
|gm|dµdt −

∫ T

0

∫
R4d
|gm|dµndt

∣∣∣∣∣∣ ≤ 1.

Furthermore, by (5.19) for such n we have∣∣∣∣∣∣
∫ T

0

∫
R4d
|gm|dµndt −

∫ T

0

∫
R4d
|gn|dµndt

∣∣∣∣∣∣ ≤ |J(m)|

and finally by estimation (iii) from Proposition 5.0.3∫ T

0

∫
R4d
|gn|dµndt ≤ ‖∇vφ‖∞

∫ T

0

∫
R4d

ψn(|x − y|)|w − v|dµndt

= ‖∇vφ‖∞

∫ T

0

Nn∑
i, j=1

mn
i mn

jψn(|xn
i − xn

j |)|v
n
j − vn

i |dt ≤ M

and thus

Im ≤ 1 + |J(m)| + M ≤ C2 (5.21)

for some positive constant C2. Therefore (5.18) and (5.21) imply that
∫

Ac |w− v||∇vφ|dµ = 0 and since
the function |w− v| is positive on Ac, then by a standard density argument Ac is of measure µ zero and
we have proved that

ψm(|x − y|)(w − v)∇vφ→ ψ(|x − y|)(w − v)∇vφ,

ψm(|x − y|)|w − v||∇vφ| → ψ(|x − y|)|w − v||∇vφ|

µ-a.e. Moreover by Fatou’s lemma∫ T

0

∫
R2d

ψ(|x − y|)|w − v||∇vφ|dµdt ≤ lim inf
m→∞

∫ T

0

∫
R2d

ψm(|x − y|)|w − v||∇vφ|dµdt

= lim inf
m→∞

Im ≤ C2. (5.22)

Therefore the function (x, y, v,w, t) 7→ ψ(|x−y|)|w−v||∇vφ| belongs to L1(µ). This function is a proper
dominating function for ψm(|x − y|)(w− v)∇vφ and by dominated convergence we have (5.16) and the
proof of step 6 is finished.

64



Step 7. Let us now wrap up the proof and compare Definition 2.1.6 with what we were able to
prove about f . We took an arbitrary initial data f0 ∈ M+ and proved existence of f ∈ L∞(0,T ;M+).
Moreover in step 2 using estimates (ii) and (v) from Proposition 5.0.3 we proved that actually supp f ⊂
B(R) and ∂t f ∈ Lp(0,T ; (C1(B(R)))∗) (point 1 of Definition 2.1.6). Point 2 of Definition 2.1.6 is an
immediate consequence of (ii) from Proposition 5.0.3, while point 3 was the main focus of all the
steps of the proof and it was finally proved in step 6. Point 4 of Definition 2.1.6 follows from (5.22)
and Fubini’s theorem. We are left with point 5 of Definition 2.1.6. Suppose that B(R) and B(r) are
two concentric balls, such that (2.8) is satisfied. Then the construction of f0,n ensures that

supp f0,n ∩ B
(
R −

1
n

)
⊂ B

(
r +

1
n

)
and for sufficiently large n we have r + 1

n < r + R−r
8 < R − R−r

8 . Translating it according to (5.6) we
write that in the set I of those i that (xn

0,i, v
n
0,i) ∈ B(R − R−r

8 ) we actually have (xn
0,i, v

n
0,i) ∈ B(r + R−r

8 )
and By (ii) and (iii) from Proposition 5.0.3 (and in particular by Remark 5.0.4), for each i ∈ I and for
each sufficiently big n, we have the n independent bounds:

|xn
i (t)| ≤ |xn

0,i| + tR
t→0
−→ |xn

0,i|,

|vn
i (t)| ≤ |vn

0,i| + ω(t)
t→0
−→ |vn

0,i|.

The above bounds, for sufficiently small t imply that (xn
i (t), vn

i (t)) ∈ B(r + R−r
6 ) as long as i ∈ I.

Similarly for i < I in a sufficiently small neighbourhood of t = 0, we have (xn
i (t), vn

i (t)) < B(R − R−r
6 ).

Therefore

supp fn(t) ∩ B
(
R −

R − r
6

)
⊂ B

(
r +

R − r
6

)
for sufficiently large n and sufficiently small t. Thus we may pass to the limit with n → ∞ to obtain
(2.9). This finishes the proof of the existence part of Theorem 2.2.4.

5.2 Proof of Theorem 2.2.4 (weak-atomic uniqueness)
In what follows we aim to prove that if initial configuration f0 is an atomic measure, i.e. it satisfies
(2.10), then solution f in the sense of Definition 2.1.6 is of the form (2.11), and it is unique. We will
base the proof on a very careful analysis of the local propagation of the support of f that comes from
point 5 of Definition 2.1.6. What, we basically need, is that any amount of the mass f that is separated
from the rest of the mass remains separated at least for some time. It is required to refine this property
by adding a control over the shape in which the support in the x and v coordinates propagates. The
difficulty comes from the fact that in the case of the particle system the position xi of ith particle
changes with its own unique velocity vi. However in the case of the kinetic equation characteristics
are not well defined.

Step 1. By point 1 in Definition 2.1.6 it is sufficient to prove the proposition only in an arbitrarily
small neighbourhood of t = 0. Let f0 be of the form (2.10). Our first task is to restrict f0 to small balls
with one particle (say ith particle). Then we will use the local propagation of the support to prove that
the mass that initially formed the ith particles remains atomic in some right-sided neighbourhood of
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t = 0. Since

f0 =

N∑
i=1

miδx0,i ⊗ δv0,i (5.23)

for number of atoms N, we have a finite number of initial positions and velocities of the particles
(x0,i, v0,i) for i = 1, ...,N, which implies that there exists R1 > 0 such that for all r0 < R1, we have

f0|Bi(r0) = miδx0,i ⊗ δv0,i (5.24)

for Bi(R) := Bx,v((x0,i, v0,i), r0).
At this point let us concentrate on one atom, we fix i. We aim at showing that there exists T ∗ such

that

f D := f (t)|Bi(
r0
4 ) = miδxi(t) ⊗ δvi(t) (5.25)

in [0,T ∗] for some Rd valued functions xi and vi. We emphasize that r0 and T ∗(r0) can be chosen to
be arbitrarily small. Identity (5.24) implies that for any 0 < r < r0, we have

supp f0 ∩ Bi(r0) ⊂ Bi(r)

which by point 5 of Definition 2.1.6 ensures that there exists T ∗ such that

dist{supp f D(t), supp f C(t)} >
r0

8
(5.26)

for all t ∈ [0,T ∗], where f C(t) := f (t)− f D(t). Then one can find a smooth function η : R2d×[0,T∗]→
[0, 1] such that η ≡ 1 over the support of f D and η ≡ 0 over the support of f C . We have then f Dη = f D.
All these properties allow us to state the following equation satisfied by f D on [0,T ∗]:

∂t f D + v · ∇x f D + divv[(F( f C) + F( f D)) f D] = 0. (5.27)

This equation is satisfied in the same sense that (2.6) from Definition 2.1.6. To prove that f D is indeed
of form (5.25) we introduce

d
dt xa(t) = va(t)
d
dt va(t) =

∫
R2d

ψ(|xa(t) − y|)(w − va(t)) f C dydw
(5.28)

with the initial data (xa(0), va(0)) = (x0,i, v0,i). Condition (5.26) ensures that the right-hand side of
(5.28)2 is smooth and thus (5.28) has exactly one smooth solution in [0,T ∗]. Our goal is to show that
f D is supported on the curve (xa(t), va(t)) and that in fact (5.25) holds with (xi(t), vi(t)) ≡ (xa, va).
Since this feature will hold for all atoms, the whole f will be then atomic.

Step 2. In the next step we characterize possible evolution of the support of the weak solution to
(5.27).

Lemma 5.2.1. Let f be a weak solution to (2.1) in the sense of Definition 2.1.6. Assume further f
has the structure of f = f D + f C and fulfils the weak formulation of (5.27), and

supp f D
0 = (x0, v0)
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for some given (x0, v0). Then for any R > 0 there exists T ∗, such that

supp f D(t) ⊂ (x0, v0) + (tBx(v0, ε)) × Bv(0,R)

for all t ∈ [0,T ∗], with ε :=
√

2R(R + |v0|), which can be arbitrarily small depending on smallness of
R.

To prove Lemma 5.2.1 it is required to show the following result.

Lemma 5.2.2. Let f D be a weak solution to (5.27) in the sense of Definition 2.1.6. Assume further
that there exists T ∗, such that

supp f D(t) ⊂ B((x0, v0),R) (5.29)

for some given (x0, v0) and R > 0 and all t ∈ [0,T ∗]. Then

supp f D(t) ⊂ supp f D
0 +

⋃
s∈(0,t)

(sBx(v0,R)) × Bv(0,R). (5.30)

It means that the support in the x-coordinates propagates in a cone defined by the ball Bx(v0,R) in
direction v0.

Proof of Lemma 5.2.2. Without a loss of generality we assume that (x0, v0) = (0, 0). The boundedness
of the support in the v-coordinates is trivial and thus we focus on the support in the x-coordinates.
Suppose that x1 ∈ R

d and ρ > 0 are such that

supp f D
0 ∩ Bx(x1, ρ) × Rd = ∅

and let

φ(x, t) := ((ρ − Rt)2 − |x − x1|
2)+.

Hence

supp φ(·, t) = {|x − x1| ≤ |ρ − Rt|}. (5.31)

We test (5.27) by φ2 and integrate over the time interval [0,T ∗], obtaining∫
R2d

f D(T ∗)φ(T ∗)2dxdv + 4
∫ T ∗

0

∫
R2d

f Dφ[(ρ − Rt)R − (x − x1)v]dxdvdt =

∫
R2d

f d
0 φ(0)2dxdv = 0.

Since the first term on the left-hand side of the above equality is nonnegative, we have∫ T ∗

0

∫
R2d

f Dφ[(ρ − Rt)R − (x − x1)v]dxdvdt ≤ 0.

But for the interior of support of φ, we have ρ − Rt > |x − x1| and by (5.29) R > |v|. It implies

0 < (ρ − Rt)R − (x − x1)v, hence fφ ≡ 0.

This way we proved that in the complement of the support in x of f (t) lay all the balls centred outside
of supp f0 and with a radius equals to ρ − Rt, which implies (5.30). �
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Proof of Lemma 5.2.1. We base on Lemma 5.2.2. First we establish proper R and T ∗. Since f D
0 is

concentrated in one point (x0, v0) then for arbitrarily small ρ

supp f0 ⊂ B((x0, v0), ρ).

Now, Definition 2.1.6 point 5 ensures that there exist R(ρ) and T ∗(ρ) such that

supp f D(t) ⊂ B((x0, v0),R)

in [0,T ∗] and R can be chosen arbitrarily small (then also T ∗ is small but still positive). We fix such R
and T ∗ and note that we may apply Lemma 5.2.2 on [0,T ∗]. Without a loss of generality we assume
that x0 = 0 and test (5.27) with the function φ2, where

φ(x, t) := ((x − v0t)2 − (tε)2)+

and
supp φ(·, t) = {x ∈ Rd : |x − v0t| ≥ tε}. (5.32)

We have

0 =

∫
R2d

f D(t)φ2(t)dxdv − 4
∫ t

0

∫
R2d

f Dφ[−v0(x − v0t) − tε2 + v(x − v0t)]dxdvdt

≥ 4
∫ t

0

∫
R2d

f Dφ[tε2 − (v − v0)(x − v0t)]dxdvdt. (5.33)

On the support of f D, we have |v − v0| ≤ R and by Lemma 5.2.2 it holds

|x − v0t| ≤ |x − x0︸︷︷︸
=0

| + |v0|t ≤ t(|v0| + R) + t|v0| ≤ t(2|v0| + R).

Hence, in view of definition of ε, we conclude

(v − v0)(x − v0t) ≤ (2|v0| + R)R t < tε2.

Therefore the integrand on the right-hand side of (5.33) is nonnegative, which means that it has to be
equal to 0, which further implies that

f Dφ ≡ 0 in [0,T ∗].

By the definition of φ it follows that f D(t) vanishes outside of the cone balls tBx(v0, ε) × Rd. The
lemma is proved.

�

Step 3. In this part we show that f initiated by a state of (5.23) stays indeed an atomic solutions
for all times.

Proposition 5.2.1. Let f be a solution to (5.27) in the sense of Definition 2.1.6. Then if f0 is of the
form (2.10) then f is an atomic solution (of the form (2.11)) and it is unique.
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Proof. We show separately for each of atoms that each initial particle generates a mono-atomic so-
lution (at least locally in time). Finiteness of number of atoms allows to conclude that the whole
solutions will be atomic. Hence we study (5.27) with a mono-atomic initial data located in (x0, v0).

We test (5.27) by (v − va(t))2 getting

d
dt

∫
R2d

f D(v − va(t))2dxdv = −2
∫
R2d

f D(v − va(t))v̇a(t)dxdv

+2
∫
R2d

F( f C) f D(v − va(t))dxdv + 2
∫
R2d

F( f D) f D(v − va(t))dxdv = −2I + 2II + 2III. (5.34)

First we deal with III. By symmetry of f D ⊗ f D with respect to (x, v) and (y,w), we have

III =

∫
R4d

ψ(|x − y|)(w − v) f D f D(v − va(t))dxdvdydw

=

∫
R4d

ψ(|x − y|)(v − w) f D f D(w − va(t))dxdvdydw

=
1
2

∫
R4d

ψ(|x − y|)(w − v) f D f D(v − w)dxdvdydw

= −
1
2

∫
R4d

ψ(|x − y|)(w − v)2 f D f Ddxdvdydw ≤ 0.

Next let us take a closer look at II. By the definition of F( f C)

II =

∫
R4d

ψ(|x − y|)(w − v) f D f C(v − va(t))dxdvdydw

=

∫
R4d

ψ(|x − y|)(w − va(t) + va(t) − v) f D f C(v − va(t))dxdvdydw

=

∫
R4d

ψ(|x − y|)(w − va(t)) f D f C(v − va(t))dxdvdydw

−

∫
R4d

ψ(|x − y|) f D f C(v − va(t))2dxdvdydw︸                                                    ︷︷                                                    ︸
≤0

≤

∫
R4d

ψ(|x − y|)(w − va(t)) f D f C(v − va(t))dxdvdydw =: II2.

Now we compare II2 with I:

|II2 − I| =
∣∣∣∣∣∫
R4d

(ψ(|xa(t) − y|) − ψ(|x − y|))(w − va(t)) f D f C(v − va(t))dxdvdydw
∣∣∣∣∣

≤

∫
R4d

∣∣∣ψ(|xa(t) − y|) − ψ(|x − y|)
∣∣∣|w − va(t)| f D f C |v − va(t)|dxdvdydw. (5.35)

The main problem with estimating the right-hand side of the above inequality lays in the estimation
of ∣∣∣ψ(|xa(t) − y|) − ψ(|x − y|)

∣∣∣.
This is the place where the separation of supports explained by Lemma 5.2.1 comes into play. Both
(xa(t), va(t)) and (x, v) are in the support of f D, while (y,w) is in the support of f C . Thus (5.26)
implies that either
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|x − y| >
r0

8
and |xa(t) − y| >

r0

8
(5.36)

or

|v − w| >
r0

8
and |va(t) − w| >

r0

8
. (5.37)

We handle above two cases separately.
In case (5.36) it is clear that

|ψ(|xa(t) − y|) − ψ(|x − y|)| ≤ L|x − xa(t)| = Lt
1
2
|x − xa(t)|

t
1
2

. (5.38)

for some constant L = L(r0) > 0, since ψ is smooth outside of any neighbourhood of 0.
In case of (5.37) we are actually in a situation when at t = 0 multiple particles are situated in the

same spot with different velocities i.e. f C is divided into two parts f C1 and f C2 . The first part submits
to the same bounds as (5.36) while for the second, f C2 , we have

f C2(0) =
∑

j

m jδx0,i ⊗ δv0, j =:
∑

j

f C2
j (0).

Thus, initially f C2 is concentrated in the same position as f D but with different velocities. In this case
we apply Lemma 5.2.1 multiple times (once for f D and multiple times for each f C2

j ). Even though

Lemma 5.2.1 is written for solutions of (2.6) we may still apply it for f D and each of f C2
j , since the

proof does not involve directly the dependence on v. Therefore, by Lemma 5.2.1, we have

supp f D(t) ⊂ (x0,i, v0,i) + tBx(v0,i, ε)

and

supp f C2
j (t) ⊂ (x0,i, v0, j) + tBx(v0, j, ε).

At this point we fix R > 0 and T ∗ from Lemma 5.2.1, so that ε is small enough that

Bx(v0,i, ε) ∩ Bx(v0, j, ε) = ∅ for i , j.

Moreover

dist(Bx(v0,i, ε), Bx(v0, j, ε)) > C(r0) > 0.

Again, we used that the number of all atoms is finite. If so, then also

|x − y| > tC(R) and |xa(t) − y| > tC(R)

for x ∈ supp f D and y ∈ supp f C2 . Therefore in such case (ψ(|s|) = s−α and ψ′(|s|) ∼ s−1−α)∣∣∣ψ(|xa(t) − y|) − ψ(|x − y|)
∣∣∣ ≤ C(R)t−1−α|x − xa(t)| = C(R)t−

1
2−α
|x − xa(t)|

t
1
2

. (5.39)
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We combine inequalities (5.35), (5.38)4 and (5.39) with the global bounds on the support of f obtain-
ing

|II2 − I| ≤ A(t)
∫
R2d

t−
1
2 |x − xa(t)| |v − va(t)| f Ddxdv

for A := Lt
1
2 + C(R)t−

1
2−α, which thanks to the fact that α < 1

2 is integrable with respect to t over
[0,T ∗]. Taking into the account our estimations of I, II and III we come back to (5.34) and claim
that

d
dt

∫
R2d

f D|v − va(t)|2dxdv ≤ A(t)
∫
R2d

t−
1
2 |x − xa(t)| |v − va(t)| f Ddxdv

≤ A(t)
(∫
R2d

f Dt−1|x − xa(t)|2dxdv + f D|v − va(t)|2
)
. (5.40)

To finish the proof there is a need to estimate the second integrand on the right-hand side of (5.40).
We test5 (5.27) with |x − xa(t)|2t−1 getting

d
dt

∫
R2d

t−1 f D|x − xa(t)|2dxdv +

∫
R2d

t−2 f D|x − xa(t)|2dxdv

+ 2
∫
R2d

t−1 f D(x − xa(t))ẋa(t)dxdv − 2
∫
R2d

t−1 f D(x − xa(t))vdxdv.

and apply Young’s inequality with δ > 0 to obtain

d
dt

∫
R2d

t−1 f D|x − xa(t)|2dxdv +

∫
R2d

t−2 f D|x − xa(t)|2dxdv

≤ 2
∫
R2d

t−1 f D|x − xa(t)||v − va(t)|dxdv

≤ δ

∫
R2d

t−2 f D|x − xa(t)|2dxdv + C
∫
R2d

f D|v − va(t)|2dxdv. (5.41)

Finally we fix a suitable δ > 0 and combine inequalities (5.40) and (5.41), which leaves with

d
dt

(∫
R2d

(t−1 f D|x − xa(t)| + f D|v − va(t)|2)dxdv
)

+
1
2

∫
R2d

t−2 f D|x − xa(t)|2dxdv

≤ A(t)
∫
R2d

(t−1 f D|x − xa(t)|2 + f D|v − va(t)|2)dxdv,

which by Gronwall’s lemma and the fact that A(t) ∼ t−1/2−α is integrable in a neighbourhood of t = 0
imply ∫

R2d
(t−1 f D|x − xa(t)|2 + f D|v − va(t)|2)dxdv ≡ 0 on [0,T ∗].

Thus on [0,T ∗] we have x ≡ xa and v ≡ va on the support of f , which is exactly equivalent to (5.25).
We have proved f D is mono-atomic. Then repeating the procedure for all atoms (the number

is finite) we conclude that f is atomic on a time interval [0,T ∗] with possibly smaller, but positive
T ∗ > 0. As a conclusion, since the solution exits globally it must be atomic all the time. �

4Here is the entire estimation in case (5.36) and the estimation of f C1 in case (5.37).
5Even though |x − xa(t)|2t−1 is not a good test function for (5.27), we can approximate the singularity at

t = 0 by modification (t + l)−1 and then let l→ 0.
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Part II

Flocking particles in a non-Newtonian
fluid
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Chapter 6

Part II: Introduction

The secondary goal of the dissertation is to obtain existence and uniqueness of solutions to the
Cucker–Smale flocking model coupled with equations of motion of non-Newtonian fluids. The nota-
tion is slightly different than in Part I. We consider the system

∂t f + v∇ f + divv[(Fa( f ) + Fd) f ] = 0, x ∈ Td, v ∈ Rd,

∂tu + (u · ∇)u + ∇π − div(τ(Du)) = −d
∫
Rd

Fd f dv, x ∈ Td,

divu = 0.

(6.1)

In (6.1) function f = f (t, x, v) is the density of those particles that at the time t ∈ [0,T ] have position
x and velocity v. The alignment force term Fa

1 is given by

Fa( f )(t, x, v) :=
∫
Td×Rd

ψ(|x − y|)(w − v) f (t, y,w)dwdy,

where ψ ∈ C1([0,∞)) is a given positive, nonincreasing function, called the communication weight.
This force is responsible for the emergent phenomena that in our case takes the form of flocking of
the particles, which we understand as the alignment of particles’ velocities. A good example of ψ is
ψcs from (1.5). The drag force Fd is given by

Fd(t, x, v) := u(t, x) − v

and throughout Part II we will use the notation

F( f ) := Fa( f ) + Fd.

The function u = u(t, x) = (u1(t, x), u2(t, x), ..., ud(t, x)) represents velocity of the fluid at the position
x and time t. The term τ in (6.1)2 denotes a symmetric stress tensor that depends on Du – the
symmetric part of the gradient of u i.e. τ = τ(Du), where Du = 1

2 [∇u + (∇u)T ]. In our considerations
we assume that τ is derived from some scalar potential ϑ and through some specified later properties
of ϑ we actually impose various other assumptions on τ including p-growth (where p > 1 is given)
or coercivity.

The general strategy of the proof is taken from [7]. First we regularise the system, then to obtain
existence for the regularised system we introduce a inductive scheme solving C–S and fluid parts of

1Note that in Part I it was denoted by F.
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(6.1) alternating with every step. Thus we solve (6.1)1 and put it’s solution into (6.1)2 as a given
function then solve again obtaining a solution which we again put into (6.1)1, solve and so on. Then
the convergence of the approximations is obtained through a careful technical estimation and analysis.

This strategy is followed in Chapter 7 but before we begin let us introduce the basic notation for
Part II and present the main result.

6.1 Part II: Preliminaries and notation
Hereinafter Wk,p(Ω) denotes the Sobolev space of the functions with up to kth weak derivative belong-
ing to the space Lp(Ω). Moreover D

′

denotes the space of distributions and Ck(Ω) – the space of the
functions with up to kth derivative belonging to the space of continuous functions, which itself will
be denoted as C(Ω). Next we present the definition and assumptions on the stress tensor τ, which is a
crucial part of the definition of the problem. To establish the set of admissible τ we assume that there
exists a scalar potential of τ that we denote ϑ ∈ C2(Rd2

), such that for some p ∈ (1,∞), c1, c2 > 0 we
have for all η, ξ ∈ Rd2

sym and i, j, k, l = 1, ..., d:

∂ϑ(η)
∂ηi j

= τi j(η), (6.2)

ϑ(0) =
∂ϑ(0)
∂ηi j

= 0, (6.3)

∂2ϑ(η)
∂ηi j∂ηkl

ξi jξkl ≥ c1(1 + |η|)p−2|ξ|2, (6.4)∣∣∣∣∣∣ ∂ϑ(η)
∂ηi j∂ηkl

∣∣∣∣∣∣ ≤ c2(1 + |η|)p−2. (6.5)

The above assumptions on ϑ impose various properties of τ, that we include in the following lemma.

Lemma 6.1.1. Let p ≥ 2 and τ : Rd2

sym → R
d2

sym, ϑ : Rd2

sym → R satisfy (6.2)-(6.5). Then there exist
positive constants c3, c4, c5, such that for all ξ, η ∈ Rd2

sym we have

τi j(ξ)ξi j ≥ c3(|ξ|p + |ξ|2), (6.6)

|τi j(ξ)| ≤ c4(1 + |ξ|)p−1, (6.7)

(τi j(ξ) − τi j(η))(ξ − η) ≥ c5(|ξ − η|2 + |ξ − η|p). (6.8)

Proof. The proof of the above lemma can be found in [38] page 195. �

Regarding the Cucker-Smale part of the system we assume that ψ is nonnegative, nonincreasing
and smooth, with

‖ψ‖C1 ≤ c6.

Hereinafter we shall denote for nonnegative and integrable functions f :

Mα f (t) :=
∫
Td×Rd

|v|α f (t, x, v)dxdv,

mα f (t, x) :=
∫
Rd
|v|α f (t, x, v)dv,
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with an obvious remark that M0 f = ‖ f ‖L1 and that for 1 ≤ q ≤ ∞,

mα f (t, x) ≤ C(R)‖ f (t, x, ·)‖q, (6.9)

provided that supp f (t, x, ·) ⊂ B(R), where B(R) is a ball centred at 0 with radius R. Moreover,
occasionally we will split Fa( f ) into two parts in the following manner:

Fa( f )(t, x, v) = a(t, x) − b(t, x)v,

where

a(t, x) :=
∫
T3×R3

ψ(|x − y|)w f (t, y,w)dydw, with ‖a‖∞ + ‖∇a‖∞ ≤ c6M1 f , (6.10)

b(t, x) :=
∫
T3×R3

ψ(|x − y|) f (t, y,w)dydw, with ‖b‖∞ + ‖∇b‖∞ ≤ c6M0 f . (6.11)

Thus, we clearly have

|Fa( f )(t, x, v)| ≤ ‖a‖∞ + |v| ‖b‖∞ ≤ c6(M1 f + |v|M0 f ), (6.12)

and

divvFa( f )(t, x, v) = −db(t, x).

Throughout Part II we use the arbitrary ’harmless’ constant C that may change it’s actual value de-
pending on it’s appearances even in the same line. We will also write

A
H(q)
≤ B

to emphasise that the estimation A ≤ B follows by Hölder’s inequality with exponent q. We will also
use a similar notation for Young’s inequality replacing H with Y .

6.1.1 Weak formulation
We assume that the physical dimension d = 3. Let us introduce the basic notation regarding the
function spaces.

L2
div,0(T3) :={ω ∈ L2(T3) : divω = 0},

Ẇ1,p
div,0(T3) :={ω ∈ D

′

(T3) : ∇φ ∈ Lp(T3), divω = 0},

H :=L∞(0,T ; Ẇ1,p
div,0(T3)) ∩C(0,T ; L2

div,0(T3)) ∩ L2(0,T ; W2,2(T3)) ∩ L∞(0,T ; W1,2(T3))

X :=L∞([0,T ] × T3 × R3) ∩ L∞(0,T ; L1(T3 × R3)) ∩C(0,T ; L2(T3 × R3))∩

∩ L∞(0,T ; W1,2(T3 × R3)).

We present the definition of a weak solution.
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Definition 6.1.1. Let p ≥ 11
5 and T > 0. The couple ( f , u) is a weak solution of (6.1) on the time

interval [0,T ) if and only if the following conditions are satisfied:

1. f ≥ 0, f ∈ X, ∂t f ∈ L2(0,T ; L2(T3 × R3)), ∇v f ∈ L∞(0,T ; L3(T3 × R3)) and Mα f ∈
L∞([0,T ]) for 0 ≤ α ≤ 21

4 ; the function v 7→ f (t, x, ·) is compactly supported for a.a.
t ∈ [0,T ] and x ∈ T3.

2. u ∈ H and ∂tu ∈ L2(0,T ; L2(T3)).

3. For all φ ∈ C1([0,T ) × T3 × R3) with compact support in t∫ T

0

∫
T3×R3

f [∂tφ + v · ∇φ + F( f ) · ∇vφ]dxdvdt = −

∫
T3×R3

f0φ(0, ·, ·)dxdv.

4. For all ϕ ∈ W1,2(T3) ∩ Ẇ1,p
div,0(T3)∫

T3

[
∂u
∂t
ϕ + (u · ∇)uϕ + τ(Du)D(ϕ)

]
dx = −3

∫
T3×R3

(u − v) · ψ f dxdv

is satisfied a.e. in [0,T].

Remark 6.1.1. The moment Mα f has various physical interpretations depending on α. For example
for α = 0 it is the total mass of the particles, for α = 1, the total momentum and for α = 2, the total
kinetic energy of the particles. We realise that the upper bound on α in point 1 of the above definition
(i.e. 21

4 ) can be both unexpected and difficult to interpret from the physical point of view. The reason
we include α > 2 is that estimation of M5 f plays a crucial role in the proof of W2,2 regularity of u. As
a matter of fact we would be satisfied by taking only 0 ≤ α ≤ 5 but our method enables us to estimate
moments up to 21

4 .

Remark 6.1.2. In Definition 6.1.1, regularity of f and boundedness of the support of f in v enable
us to rewrite point 3. in an equivalent form:
3
′

. For all φ ∈ L∞(T3 × R3) ∩ L1(T3 × R3), we have∫
T3×R3

[
∂t f + v∇ f + divv[F( f ) f ]

]
φdxdv = 0.

In particular since for a.a. t ∈ [0,T ] we have f (t) ∈ L∞(T3×R3)∩L1(T3×R3) then f is an admissible
test function for it’s weak formulation. Similarly also |v|α for α ≥ 0 is a good test function since it
belongs to L∞(T3 × R3) ∩ L1(T3 × R3) on the support of f .

6.2 Part II: Main result
We present the main result of Part II which is global strong existence and uniqueness of solutions to
(6.1) in the domain [0,∞) × Td × Rd with d = 3, with the assumption that p ≥ 11

5 . We present the
main result in the form of the following theorem.
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Theorem 6.2.1. Let p ≥ 11
5 and T > 0 and suppose that the initial data ( f0, u0) satisfy

1. 0 ≤ f0 ∈ (L1 ∩ L∞)(T3 × R3), supp f0(x, ·) ⊂ B(R) for some R > 0 and a.a. x ∈ T3, where
B(R) is a ball centred at 0 with radius R,

2. u0 ∈ W1,2(T3) ∩ L2
div,0(T3),

3. ∇v f0 ∈ L3(T3 × R3).

Then there exists a unique solution of (6.1) in the sense of Definition (6.1.1) for regular commu-
nication weight ψ.

Remark 6.2.1. Assumption 1 in the above theorem immediately implies that

Mα f0 ≤ C

for some positive constant C and all α ≥ 0.
Moreover boundedness of the support of f0 and assumption 3 are needed only for the uniqueness. In
order to obtain existence alone we could skip assumption 3 and replace boundedness of the support
of f0 with the assumption that

Mα f0 ≤ C

for all 0 ≤ α ≤ 21
4 .
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Chapter 7

Proof of Theorem 6.2.1

The proof is divided into two parts. The first, much longer part is directed towards proving the
existence part of Theorem 6.2.1 while the second towards proving uniqueness.

7.1 Existence of solutions
Our first goal is to prove the existence part of Theorem 6.2.1. The proof follows closely the ideas
of [7] and can be sketched as follows:

1. First we regularise the system (6.1). For the particle part we regularise the initial data f0 as well
as Fd in (6.1)1. It is done to enable the use of the standard method of characteristics, which
needs sufficient regularity of the trajectories. For the fluid part, we include a cutoff function in
v to the external force in (6.1)2.

2. Then to solve the regularised system, we introduce an iterative scheme that serves as a way to
obtain existence for the coupled system. We alternate between solving (6.1)1 with Fd taken
from previous iterations and (6.1)2 with the external force defined by previous iterations.

3. For each iteration, we establish existence of solutions through standard techniques originating
from [5] and [46] or [38].

4. Next, we converge with the iterations to the solution of the regularised system. The conver-
gence is done by a technique introduced in [7]. Most modifications come from nonlinearity of
the stress tensor τ as well as the fact that we aim to prove uniqueness too. Thus we need to
uniformly control the support in v of the iterative solutions.

5. We converge with the solutions of the regularised system to a solution of (6.1) locally in time.
We estimate the regularised solutions inX andH and apply the Aubin–Lions lemma (Theorem
B.4.1) to extract a convergent subsequence. The crucial role in these estimations is played
by the estimation of M5 fε – the 5th velocity moment of the C–S part of the solution to the
regularised system.

6. Lastly, we extend the local solution up to an arbitrary interval [0,T ], thus finishing the proof of
existence. The extension comes from the global estimate for M2 f – the 2nd velocity moment
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of the C–S part of the solution, which enables us to restart the local-in-time estimates from step
5.

Steps 1-4 of the above sketch are more or less similar to the proof of existence for the coupled
Navier-Stokes-Vlasov and Navier-Stokes-Cucker-Smale systems presented in [7] and [5]. Most of
the differences and problems with the non-linear viscosity become apparent in steps 5 and 6 and force
us to take a different approach.

7.1.1 Step 1: A regularized system
The main difference between our approach and the approach presented in [7] or [5] is that we do not
regularise the convective term in (6.1)2, as we are able to obtain better regularity of u anyway, which
is very expected for p ≥ 11

5 . Aside from this difference the general idea of the proof is similar to those
of [7] and [5]. One of main problems comes from the external force

fext(t, x) =

∫
R3

(u(t, x) − v) f (t, x, v)dv,

which needs to be controlled by addition of the cutoff function γε : R3 → R that restricts the support
in v of f to a ball of radius 1

ε , i.e. we replace fext with

fext,ε(t, x) =

∫
R3

(u(t, x) − v)γε(v) f (t, x, v)dv,

where γε ∈ C∞(R3):

suppγε ⊂ B
(
1
ε

)
, 0 ≤ γε ≤ 1, γε = 1 on B

(
1
2ε

)
, γε → 1 as ε → 0.

The second problem is caused by the drag force term in the C–S part of the system, which also needs
to be regularised. For ε > 0 we define θε as the standard mollifier i.e.

θε(x) :=
1
ε3 θ

( x
ε

)
,

for some 0 ≤ θ ∈ C∞0 (T3) with
∫
T3 θdx = 1. With such θε let Fε( fε) be the regularised force given by

Fε( fε) := Fa( fε) + θε ∗ uε − v.

Now we define the regularized system. For (t, x, v) ∈ [0,T ] × T3 × R3, let
∂t fε + v∇ fε + divv[Fε( fε) fε] = 0,

∂tuε + (uε · ∇)uε + ∇πε − div(τ(Duε)) = −3
∫
Rd fε(uε − v)γεdv,

divuε = 0,
(7.1)

with a smooth, compactly supported initial data f0,ε , where

1. 0 ≤ f0,ε → f0 strongly in Lq(T3 × R3), for all 1 < q < ∞ and weakly * in L∞(T3 × R3) and has
a compact support in v contained in B(2R).

2. u0,ε = u0.

Remark 7.1.1. Note that even though we will refer to the solution of (7.1) as a solution in the sense
of Definition 6.1.1, due to it’s high regularity f is in fact a classical solution of (7.1)1.
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Step 2: Iterative scheme

To solve the regularized problem we further approximate the solutions using the following iterative
scheme. Denoting for notational simplicity

f n := f n
ε , un := un

ε ,

we introduce the following scheme:
Initial step n = 1.
We set

u1(t, x) := u0(x).

Next we solve the Cucker-Smale’s part of (6.1) with fixed u1:

∂t f 1 + v · ∇ f 1 + divv[(Fa( f 1) + Fd) f 1] = 0,

with the initial data

f 1(0, x, v) = f0,ε(x, v)

and

Fd = θε ∗ u1 − v.

Inductive step.
Suppose we have a well defined nth solution ( f n, un). Then we define un+1 as the solution of the
system {

∂tun+1 + (un+1 · ∇)un+1 + ∇πn+1 − τ(un+1) = −3
∫
Rd f n(un − v)γεdv,

divun+1 = 0,
(7.2)

with the initial data

un+1(0, x) = u0(x)

noting that in such system, the right-hand side depends on f n and un, which are at this point given
functions. Thus what we in fact do, is solving (1.6) with a given external force. Then, we define

Fn+1
d = θε ∗ un+1 − v,

which at this point is a given function. Finally we solve the Vlasov-type equation:

∂t f n+1 + v · ∇ f n+1 + divv[(Fa( f n+1) + Fn+1
d ) f n+1] = 0, (7.3)

with initial data

f n+1(0, x, v) = f0,ε(x, v).

7.1.2 Step 3: Existence of the iterations
Existence of f n and un is guaranteed by the following propositions.
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Proposition 7.1.1. Let p ≥ 11
5 and T > 0. There exists a solution in the sense of Definition 6.1.1

to the problem

∂tu + (u · ∇)u + ∇π − div(τ(Du)) = fext,

as long as u0 ∈ W1,2(T3) ∩ L2
div,0(T3) and the external force fext belongs to the space

L2(0,T ; L2(T3)). Moreover

‖u‖H ≤ C,

‖∂tu‖L2(0,T ;L2(T3)) ≤ C,

where C is a positive constant depending on ‖u0‖W1,2(T3), ‖ fext‖L2(0,T ;L2(T3)), p and T .

Proof. The proof can be found in [38], page 246 (Theorem 4.5). �

Proposition 7.1.2. Let T > 0. There exists a solution in the sense of Definition 2.1.2 to the
problem

∂t f + v · ∇ f + divv[(Fa( f ) + (θε ∗ u − v)) f ] = 0, (7.4)

as long as 0 ≤ f0 ∈ C∞(T3 × R3) is compactly supported in v and u ∈ L∞(0,T ; L2
div,0(T3)). This

solution f belongs to the space C2([0,T ] × T3 × R3). Moreover

‖ f ‖L∞(0,T ;(L∞∩L1)(T3×R3)) ≤ C, (7.5)

‖ f ‖C2 ≤ C(ε),

where C is a positive constant depending on ‖ f0‖L1(T3×R3) and ‖ f0‖L∞(T3×R3), while C(ε) depends
also on ε and ‖u‖L∞(0,T ;L2(T3)) (both constants depend also on T).

Proof. This proposition along with it’s proof can be found in [5] Appendix A. However there is
one seemingly substantial difference, namely in [5] it is only shown that f ∈ C1. However it can
be obtained by an easy modification of the proof from [5] since both Fa( f ) and Fd in (7.4) are
smooth. �

Let us return to our sequence of approximate solutions. Assume that un and f n exist in the
sense of Definition 6.1.1 (or in case of f n – with better regularity by Proposition 7.1.2). Then
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un ∈ L∞(0,T ; L2
div,0(T3)) and f n ∈ C2([0,T ] × T3 × R3). In such case we have

∫ T

0
‖ f n+1

ext ‖
2
2 = d2

∫ T

0

∫
T3

∣∣∣∣∣∫
R3

(un − v)γε f ndv
∣∣∣∣∣2 dxdt

= d2
∫ T

0

∫
T3

∣∣∣∣∣∣∣
∫

B( 1
ε )

(un − v)γε f ndv

∣∣∣∣∣∣∣
2

dxdt

≤ C(T, ε)
∫ T

0

∫
T3

∫
B( 1

ε )
|un − v|2| f n|2dvdxdt

≤ C(T, ε)‖ f n‖2∞(‖un‖22 + 1). (7.6)

Therefore f n+1
ext belongs to L2(0,T ; L2(T3)) with it’s norm depending on T, ε, ‖ f n‖∞ and ‖u‖L∞(0,T ;L2(T3)).

Therefore by Proposition 7.1.1, there exists a unique un+1 – a solution to (7.2) in the sense of Def-
inition 6.1.1. Existence of a unique f n+1 – a solution to (7.3) belonging additionally to the space
C2([0,T ] × T3 × R3) follows then by Proposition 7.1.2. This argument may be iterated indefinitely
and thus, the sequence ( f n, un) is well defined.

7.1.3 Step 4: Convergence of the iterations
Our next step is to prove that with n → ∞, the weak formulations for ( f n, un) converge to a weak
formulation of (7.1)1. We begin by estimating un and f n inH and X, respectively. First let us denote
for simplicity

‖ f ‖∞ := ‖ f ‖L∞([0,T ]×T3×R3),

‖u‖q := ‖u(t)‖q := ‖u(t)‖Lq(T3), for 1 ≤ q ≤ ∞.

Proposition 7.1.3. The sequence un of the approximate solutions satisfies the following bounds:

(i) ‖un‖H ≤ C(ε),

(ii) ‖∂tun‖L2(0,T ;L2(T3)) ≤ C(ε),

where C(ε) is independent of n but depends on ε.

Proof. By Proposition 7.1.1 and the definition of un it is clear that to obtain estimation of un in H it
suffices to estimate ‖ f n−1

ext ‖L2(0,T ;L2(T3)) uniformly with respect to n. By testing the weak formulation
for un with un (which by Proposition 7.1.1 is a suitable test function) applying Korn’s inequality B.4.1
and (6.6) we obtain

1
2

d
dt
‖un‖22 + c3κ‖∇un‖

p
p ≤ ‖u

n‖22 + ‖ fext‖
2
2,

1Keep in mind that we skip the epsilon in ( f n, un) = ( f n
ε , u

n
ε ).
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which by inequality (7.6) and (7.5) implies that

1
2

d
dt
‖un‖22 ≤ ‖u

n‖22 + C(T, ε)‖un−1‖22.

Therefore by Lemma B.1.4 we have

‖un‖L2(T3) ≤ C(T, ε),

which together with (7.6) proves (by induction) that f n−1
ext is uniformly bounded in L2(0,T ; L2(T3))

and this concludes the proof of (i).
The proof of (ii) follows similarly to the proof of (i) by testing the weak formulation for un with

∂tun and using the previously proved estimations �

We follow with the estimation of f n.

Proposition 7.1.4. The sequence f n of the approximate solutions satisfies the following bounds:

(iii) ‖∇v f n‖L∞(0,T ;L3(T3×R3)) ≤ C

(iv) ‖ f n‖X ≤ C(ε),

(v) ‖∂t f n‖L2(0,T ;L2(T3×R3)) ≤ C(ε)

where C(ε) is independent of n but depends on ε, while C depends on neither. Moreover there
exists a nondecreasing function Rε : [0,T ]→ [0,∞) such that

supp f n(t, x, ·) ⊂ B(Rε(t)), for all t and a.a x. (7.7)

The function Rε is independent of n but depends on ε and R2.

Proof. Proof of the propagation of the support.
The estimate of the support of f n is proved in Lemmas B.3.1 and B.3.2 in Appendix B. Lemma B.3.1
shows that Rε(t) depends on ‖un‖L2(0,T ;W2,2(T3)) and ‖M1 f n‖∞. On the other hand in Lemma B.3.2 we
prove that ‖M1 f n‖∞ is uniformly bounded by a constant depending on ‖un‖L2(0,T ;W2,2(T3)). Therefore
by (i) from Proposition 7.1.3 function Rε is independent of n but depends on ε. This observation
concludes the proof of (7.7).

Remark 7.1.2. In the proof of (iii) and (iv) we estimate a and b from (6.10) and (6.11) in W1,∞. It
follows by the fact M1 f n and M0 f n are by (7.5) uniformly bounded with respect to n (in fact M0 f n is
uniformly bounded also with respect to ε).

Proof of (iii).
We apply ∇v to both sides of (7.4), multiply by |∇v f n|∇v f n and integrate, obtaining

−
1
3

d
dt
‖∇v f n‖33 =

∫
T3×R3

∇v
[
divvFa( f n) f n + Fa( f n)∇v f n − 3 f n + (θε ∗ un − v)∇v f n ] |∇v f n|∇v f ndxdv

(6.10),(6.11)
=

∫
T3×R3

∇v
[
−3b f n + (a − vb)∇v f n − 3 f n + (θε ∗ un − v)∇v f n ] |∇v f n|∇v f ndxdv

=

∫
T3×R3

(−6b − 6)|∇v f n|3dxdv +

∫
T3×R3

[(a − vb) + (θε ∗ un − v)]∇(2)
v f n|∇v f n|∇v f ndxdv =: L.
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The second integral appearing in the above definition of L can be rewritten as∫
T3×R3

[(a − vb) + (θε ∗ un − v)]
1
3
∇v|∇v f n|3dxdv,

which after integrating by parts3 is equal to∫
T3×R3

(b + 1)|∇v f n|3dxdv.

Thus

L = −5
∫
T3×R3

(b + 1)|∇v f n|3dxdv
(6.11)
≤ (c6 + 1)‖∇v f n‖33

Altogether we get

1
3

d
dt
‖∇v f n‖33 ≤ (c6 + 1)‖∇v f n‖33,

thus by Gronwall’s lemma for t ∈ [0,T ], we have

1
3
· ‖∇v f n(t)‖33 ≤ C · ‖∇v f0‖33,

which together with assumption 3 from Theorem 6.2.1 finishes the proof of estimation (iii).

Proof of (iv).
Taking to account estimation (7.5) and (iii) in order to estimate f n in X we only need to estimate ∇ f n

in L∞(0,T ; L2(T3 × R3)). Note that in the following estimation we do not use the mollifying effect
of θε ; we do not need this effect at this point and on top of that ultimately we need ε independent
estimates. To estimate ∇ f n, we apply ∇ to both sides of (7.4), multiply by ∇ f n and integrate to obtain
(similarly to the previous step)

−
1
2

d
dt
‖∇ f n‖22 =

∫
T3×R3

∇
[
−3b f n + (a − vb)∇v f n − 3 f n + (θε ∗ un − v)∇v f n ]∇ f ndxdv

=

∫
T3×R3

−3∇b f n∇ f ndxdv +

∫
T3×R3

[
∇a − v∇b + θε ∗ ∇un]∇v f n∇ f ndxdv

+

∫
T3×R3

[
a − vb + θε ∗ un − v

]
∇∇v f n∇ f ndxdv +

∫
T3×R3

(−3 − 3b)|∇ f n|2dxdv

=: I + II + III + IV.

Then by (6.11), (7.5) and Young’s inequality we have

|I| ≤ C(1 + ‖∇ f n‖22).

To estimate II we use Young’s inequality together with (6.10), (6.11) and the estimation of the support
in v of f to get

|II| ≤ C(T, ε)
(
‖∇v f n‖22 + ‖∇ f n‖22 + ‖∇v f n‖33 + ‖θε ∗ ∇un∇ f n‖

3
2
3
2

)
.

3Keeping in mind that supp f (x, ·, t) ⊂ B(Rε(T )).
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By Hölder’s inequality with exponent 4
3 and Young’s inequality for convolution we have

|II| ≤ C(T, ε)
(
‖∇v f n‖22 + ‖∇ f n‖22 + ‖∇v f n‖33 + ‖∇un‖

3
2
6 ‖∇ f n‖

3
2
2

)
which together with (iii) and the boundedness of the support of f n implies that

|II| ≤ C(T, ε)
(
1 + ‖∇ f n‖22 + ‖∇un‖

3
2
6 ‖∇ f n‖

3
2
2

)
.

Finally for III we integrate by parts to obtain

III =
1
2

∫
T3×R3

(b + 1)|∇ f n|2dxdv ≤ c6‖∇ f n‖22

and altogether

1
2

d
dt
‖∇ f n‖22 ≤ C(T, ε)

(
1 + ‖∇ f n‖22 + ‖∇un‖

3
2
6

(
‖∇ f n‖22

) 3
4

)
,

which by non-linear Gronwall’s lemma (Lemma B.2.1) and estimate (i) proves (iv) (note that t 7→

‖∇un‖
3
2
6 is integrable in [0,T ] since L2(0,T ; W2,2(T3)) ↪→ L1(0,T ; W1,6(T3))).

Proof of (v).
We multiply both sides of (7.4) by ∂t f n and integrate. Then the proof follows by the use of estimates
(i) − (iv) and Young’s inequality. �

With the estimates provided by Propositions 7.1.3 and 7.1.4 we are ready to prove convergence
of ( f n, un) to a solution of the regularised system (7.1). First let us denote

χn(t) := (xn(t), vn(t)),

ωn+1 := un+1 − un, n = 1, 2, ...

where (xn(t), vn(t)) is a solution of the following characteristics ODE:{ dxn

dt (t) = vn(t), xn(0) = x,
dvn

dt (t) = Fa( f n)(xn(t), vn(t), t) + (θε ∗ un)(xn(t), t) − vn(t), vn(0) = v.

The following proposition proves the existence of the solution to the regularised system (7.1) and
summarises Steps 1–4 of the proof of Theorem 6.2.1.

Proposition 7.1.5. For each n = 1, 2, ..., there exists a unique solution ( f n, un) of (7.2) and (7.3)
in the sense of Definition 6.1.1. The sequence ( f n, un) converges strongly in L∞([0,T ] × Td ×

Rd) × L∞(0,T ; W1,2(Td)) towards the weak formulation of (7.1). Such solution of (7.1) satisfies
additionally inequality (7.5) and estimates (i) − (v) and (7.7) from Propositions 7.1.3 and 7.1.4.

Proof. Existence of ( f n, un) belonging to appropriate spaces was already explained with the help
of Proposition 7.1.1 and Proposition 7.1.2. It remains to show that ( f n, un) strongly converges in
L∞([0,T ]×Td ×Rd)× L∞(0,T ; W1,2(Td)) to the weak formulation of (7.1). To achieve this goal, first
let us prove the following lemma.
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Lemma 7.1.1. For given positive T and ε, let ( f n, un) be the nth solution of (7.2) and (7.3). Then for
t ∈ [0,T ), we have

1.

‖ f n(t) − f n−1(t)‖∞ + ‖χn(t) − χn−1(t)‖∞ ≤ C(ε)
∫ T

0
‖ωn(s)‖2ds,

2.

‖ωn+1(t)‖22 +

∫ t

0
‖∇ωn+1(t)‖22ds ≤ C(ε)

(∫ t

0
‖ωn(s)‖22ds +

∫ t

0
‖ωn+1(s)‖22ds

)
,

where C(ε) is a positive constant independent of n.

Proof. Since the Cucker–Smale part of the system is exactly the same as in [5] and the mollifier θε
makes up for any differences that could appear due to different fluid part of the system, the proof of 1
is the same as in [5], which leaves us with only point 2 to prove. By Proposition 7.1.1, for a.a. t the
function ωn+1 belongs to W1,2(T3) ∩ Ẇ1,p

div,0(T3), thus it is a good test function for a week formulation
for ωn+1, i.e.∫
T3
∂tω

n+1 · ωn+1dx +

∫
T3

(ωn+1 · ∇)un+1 · ωn+1dx +

∫
T3

(un · ∇)ωn+1 · ωn+1dx

+

∫
T3

[τ(Dun+1) − τ(Dun)] · Dωn+1dx

= −3
∫
T3×R3

γε f n(un − v) · ωn+1dxdv − 3
∫
T3×R3

γε f n−1(un−1 − v) · ωn+1dxdv.

Let us denote the convective term by

T1 :=
∫
T3

(ωn+1 · ∇)un+1 · ωn+1dx +

∫
T3

(un · ∇)ωn+1 · ωn+1dx,

the viscosity term by

T2 :=
∫
T3

[τ(Dun+1) − τ(Dun)] · Dωn+1dx

and the drag force term by

T3 := −3
∫
T3×R3

γε f n(un − v) · ωn+1dxdv − 3
∫
T3×R3

γε f n−1(un−1 − v) · ωn+1dxdv.

First let us note that by inequality (6.8) and Korn’s inequality B.4.1, we have

T2 =

∫
T3

[τ(Dun+1) − τ(Dun)] · Dωn+1dx ≥ c5κ‖∇ω‖
2
2. (7.8)

Next, we focus on T1. By space periodicity and equation (7.2)2 the second summand in T1 equals 0.
Hence

|T1| =

∣∣∣∣∣∫
Td

(ωn+1 · ∇)un+1 · ωn+1dx
∣∣∣∣∣ H(2)
≤ ‖ωn+1‖24‖∇un+1‖2
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which by interpolation inequality (B.1) and embedding inequality (B.2) implies that

|T1| ≤ ‖ω
n+1‖

1
2
2 ‖ω

n+1‖
3
2
6 ‖∇un+1‖2

Y(4)
≤ C(ε)‖ωn+1‖22 +

c5κ

2
‖∇ωn+1‖22. (7.9)

Here, we also used the fact that by estimation (ii) from Proposition 7.1.5, ‖∇un+1(t)‖2 ≤ C(ε) for all
n. Lastly for T3, we have

T3 = −3
∫
T3×R3

γε( f n − f n−1)(un − v)ωn+1dxdv − 3
∫
T3×R3

γε f n−1(un − un−1)ωn+1dxdv

=: T31 + T32,

where

1
3
|T31|

Y(2)
≤

1
2

∫
T3×B( 1

ε )
| f n − f n−1|2|un − v|2dxdv +

1
2

∫
T3×B( 1

ε )
|ωn+1|2dxdv

≤ C(ε)‖ f n − f n−1‖2∞(‖un‖22 + 1) + C(ε)‖ωn+1‖22,

1
3
|T32|

Y(2)
≤ C(ε)‖ f n−1‖∞(‖ωn‖22 + ‖ωn+1‖22),

which together with (7.5) and (i) from Proposition 7.1.3 implies that

|T3| ≤ C(ε)
(
‖ f n − f n−1‖2∞ + ‖ωn+1‖22 + ‖ωn‖22

)
. (7.10)

Combining together estimations (7.8), (7.9), (7.10) and estimation from point 1 we obtain

1
2

d
dt
‖ωn+1‖22 +

c5κ

2
‖∇ωn+1‖22 ≤ C(ε)

(∫ t

0
‖ωn‖22(s)ds + ‖ωn+1‖22 + ‖ωn‖22

)
and by integration of the previous inequality, having in mind that∫ t

0

∫ s

0
‖ωn(r)‖22drds ≤ T

∫ t

0
‖ωn(r)‖22dr,

we obtain point 2. �

Now we are sufficiently equipped to finish the proof of Proposition 7.1.5. By Lemma B.1.4 and
Lemma 7.1.1.2 there exists K, such that

‖un(t) − un−1(t)‖22 = ‖ωn(t)‖22 ≤
Kntn

n!
,

Thus

un → u in L∞(0,T ; L2(T3)) (7.11)

for some u ∈ L∞(0,T ; L2(T3)) and thanks to Lemma 7.1.1.2

∇un → ∇u in L2(0,T ; L2(T3)). (7.12)

Moreover by Lemma 7.1.1.1 it follows that

f n → f in L∞([0,T ] × T3 × R3) (7.13)
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for some f ∈ L∞([0,T ] × T3 × R3).
To finalise the proof we need to show that ( f , u) satisfies (7.1) in the sense of Definition 6.1.1. By

(7.11) ∫ T

0

∫
T3
−un∂tφdxdvdt →

∫ T

0

∫
T3
−u∂tφdxdvdt, (7.14)

for all divergence free φ ∈ C∞ with compact support in t. Thus ∂tun → ∂tu in the distributional sense,
where ∂tu is the distributional derivative of u. However, since ∂tun is bounded in L2(0,T ; L2(T3)), by
Banach–Alaoglu Theorem A.4.2 it has a weakly * convergent subsequence, which actually implies
that ∂tun → ∂tu weakly * in L2(0,T ; L2(T3)). Further, by weak * lower semicontinuity of a norm
∂tu ∈ L2(0,T ; L2(T3)).

By (7.11) and (7.12) un → u and ∇un → ∇u a.e., which implies that also the convective term
(un · ∇)un → (u · ∇)u a.e. Moreover for sufficiently small ε > 0 we have

‖(un · ∇)un‖L1+ε (0,T ;L1+ε (T3)) ≤ ‖u‖2‖∇u‖p ≤ ‖u‖2H ,

which means that (un · ∇)un is uniformly bounded in L1+ε and thus it is uniformly integrable. Thus by
Vitali theorem B.4.2 (un · ∇)un → (u · ∇)u in L1(0,T ; L1(T3)) and in particular∫ T

0

∫
T3

(un · ∇)unφdxdvdt →
∫ T

0

∫
T3

(u · ∇)uφdxdvdt, (7.15)

for all divergence free φ ∈ C1 with compact support in t.
Similarly also τ(Dun) → τ(Du) a.e. and by (6.7) it is bounded in Lp

′

(0,T ; Lp
′

(T3)). Vitali’s
convergence theorem (Theorem B.4.2) implies that τ(Dun)→ τ(Du) strongly in Lp

′
−ε(0,T ; Lp

′
−ε) for

some ε > 0. On the other hand by Banach–Alaoglu Theorem (Theorem A.4.2) by its Lp
′

(0,T ; Lp
′

(T3))
boundedness sequence {τ(Dun)}n∈N converges weakly in Lp

′

(0,T ; Lp
′

(T3)) to τ(Du) and by weak se-
quential lower semicontinuity of the norm τ(Du) ∈ Lp

′

(0,T ; Lp
′

(T3)). We also have∫ T

0

∫
T3
τ(Dun)Dφdxdvdt →

∫ T

0

∫
T3
τ(Du)Dφdxdvdt (7.16)

for all divergence free φ ∈ C∞ with compact support in t. Convergence and boundedness of the
external force follows by similar arguments. Altogether (7.14)-(7.16) imply that for all φ ∈ C∞ with
compact support in t, we have∫ T

0

∫
T3
−u∂tφ + (u · ∇)uφ + τ(Du)Dφdxdvdt = −

∫
T3

∫
R3

(u − v) · φ f dxdv. (7.17)

By previously applied argumentation (using Banach–Alaoglu theorem) we obtain that

u ∈ L∞(0,T ; Ẇ1,p(T3)) ∩ L∞(0,T ; W1,2(T3)) ∩ L2(0,T ; W2,2(T3))

and since ∂tu ∈ L2(0,T ; L2(T3)), by Lemma B.4.2 we conclude that u ∈ C(0,T ; L2(T3)) and thus
u ∈ H .

Finally due to the sufficient regularity of u we may replace (7.17) with equation from point 4 of
Definition 6.1.1 and by a density argument extend the class of admissible test functions to W1,2(T3)∩
Ẇ1,p

div,0(T3).
The proof of the fact that f ∈ X and that f satisfies point 3 of Definition 6.1.1 is straightforward

since at this point f is still regularised (i.e. f = fε ∈ C2([0,T ] × T3 × R3)).
�
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7.1.4 Step 5: Local convergence with the regularised solutions
Until now we have managed to prove existence of solutions to the regularized system (7.1). Our
next goal is to converge with ε to 0 and obtain local existence for (6.1). We begin with the moment
estimates for the regularised system. These estimates are in fact the main difference between the C–S
model coupled with N–S and the C–S model coupled with non-Newtonian fluids. This difference
originates from the fact that according to Proposition 7.2 in order to obtain higher regularity of the
solutions (compared to the solution of NS system) we need L2 estimates for the external force. We
obtain such estimates using some better estimates of the moments of f , which were not needed in [7]
and [5].

Proposition 7.1.6. Let p ≥ 11
5 and ( fε , uε) be a solution to the system (7.1) constructed as a limit

of the approximate solutions as proved in Proposition 7.1.5. Then there exists T ∗ ∈ (0,T ], such
that ( fε , uε) satisfies the following estimates

‖Mα fε‖L∞[0,T ∗] ≤ C, for 0 ≤ α ≤
21
4

(7.18)

‖u‖L∞(0,T ∗;L2
div,0(T3))∩Lp(0,T ∗;Ẇ1,p

div,0(T3)) ≤ C, (7.19)∥∥∥∥∥∫
R3

(uε − v)γε fεdv
∥∥∥∥∥

L2(0,T ∗;L2(T3))
≤ C, (7.20)

where C is a positive constant depending only on the initial data.

Proof. For notational simplicity, we assume that f = fε and u = uε . The proof follows by four steps.
In step 1 we estimate d

dt Mα f , in step 2 we estimate the external force by terms depending on u and
Mα f and in step 3 we estimate d

dt ‖u‖
2
2. Finally in step 4 we put the estimations from previous steps

together and use the non-linear version of Gronwall’s lemma (Lemma B.2.1).

Step 1. First let us note that if 0 ≤ β ≤ α then by Hölder’s inequality we can interpolate Mβ f
between Mα f and M0 f = ‖ f ‖1 and thus by (7.5) it is sufficient to prove (7.18) only for α ≥ 2.
Therefore let us fix α ≥ 2, multiply (7.1)1 by |v|α (which by Remark 6.1.2 is an admissible test
function) and integrate to get

d
dt

Mα f =

∫
T6×R6

|v|α−2vψ(|x − y|)(w − v) f dydwdxdv +

∫
T3×R3

|v|α−2v(θε ∗ u − v) f dxdv

=: S1 + S2.

By substituting x with y and w with v we conclude that

S1 =

∫
T6×R6

(|v|α−2v − |w|α−2w)(w − v)ψ(|x − y|) f dydwdxdv

≤ −

∫
T6×R6

|w − v|αψ(|x − y|) f dydwdxdv ≤ 0
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and this leaves us with

S2 = −

∫
T3×R3

|v|α f dxdv +

∫
T3×R3

|v|α−2v(θε ∗ u) f dxdv ≤
∫
T3
|θε ∗ u|mα−1 f dx.

Now since according to (7.5) function f is bounded, we may apply Lemma B.1.3 and Young’s in-
equality for convolutions to get

S2 ≤ C
∫
T3
|θε ∗ u|(mα f )

α+2
α+3 dx

H( α+3
α+2 )
≤ C

(∫
T3
|θε ∗ u|α+3dx

) 1
α+3

(Mα f )
α+2
α+3

= C‖θε ∗ u‖α+3 (Mα f )
α+2
α+3

(B.2)
≤ C

(
‖∇u‖p + ‖u‖2

)
(Mα f )

α+2
α+3 ,

as long as α+3 ≤ p∗ := 3p
3−p , which is the case for p ≥ 11

5 exactly when α ≤ 21
4 . Therefore by Young’s

inequality with exponent p we obtain

d
dt

Mα f ≤ C(‖∇u‖p + ‖u‖2) (Mα f )
α+2
α+3 (7.21)

≤ δ‖∇u‖pp + δ‖u‖p2 + C(δ)(Mα f )
p(α+2)

(p−1)(α+3) ,

with arbitrary δ > 0 and a δ dependent constant C(δ).

Step 2. Next we focus on (7.20). We have

‖ fext‖
2
L2(T3) ≤ C

∥∥∥∥∥∫
R3
|u| f dv

∥∥∥∥∥2

L2(T3)
+ C

∥∥∥∥∥∫
R3
|v| f dv

∥∥∥∥∥2

L2(T3)
=: A2 + B2,

where we immediately skipped the cutoff function γε ≤ 1. Furthermore, by Lemma B.1.3

A2 =

∫
T3
|u|2|m0 f |2dx ≤ C

∫
T3
|u|2|m5|

3
4 dx

H(4)
≤ C

(∫
T3
|u|8dx

) 1
4

(M5 f )
3
4

≤ C‖u‖2L8(T3) (M5 f )
3
4

and by inequality (B.2) (we easily check that 8 ≤ 3p
3−p for p ≥ 11

5 ) and again by Young’s inequality
with exponent p

2 we conclude that

A2 ≤ C(‖∇u‖2p + ‖u‖22) (M5 f )
3
4 ≤ δ‖∇u‖pp + δ‖u‖p2 + C(δ)M5 f

3p
4p−8

On the other hand, by Lemma B.1.3

B2 =

∫
T3
|m1 f |2dx ≤ CM5 f .

Altogether, we have

‖ fext‖
2
2 ≤ δ‖∇u‖pp + δ‖u‖p2 + C(δ)(M5 f )

3p
4p−8 + CM5 f . (7.22)

Step 3. To obtain estimates of ‖u‖22, we test the weak formulation for u with u, (which by Propo-
sition 7.2 is a good test function), which with the help of Korn inequality B.4.1 leads to

d
dt
‖u‖22 + 2c3κ‖∇u‖pp ≤ ‖ fext‖

2
2 + ‖u‖22, (7.23)
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since the convective and pressure terms vanish thanks to the fact that divu = 0.

Step 4. We combine inequalities (7.21)-(7.23), with a suitably chosen δ (actually δ =
c3κ
2 ) to get

d
dt

(
Mα f + ‖u‖22

)
+ c3κ‖∇u‖pp ≤ C

(
(Mα f )

p(α+2)
(p−1)(α+3) + (M5 f )

3p
4p−8 + M5 f + ‖u‖22 + ‖u‖p2

)
,

which after fixing α = 5 leads to

d
dt

(
M5 f + ‖u‖22

)
+ c3κ‖∇u‖pp ≤ C

(
(M5 f )

7p
(8p−8) + (M5 f )

3p
4p−8 + M5 f + ‖u‖22 + ‖u‖p2

)
≤ C̃

(
1 +

(
M5 f + ‖u‖22

)q1
)
, (7.24)

where C̃ is a positive constant which we fix at this moment and

q1 := max
{

7p
(8p − 8)

,
3p

4p − 8
,

p
2

}
.

We denote

r(t) = M5 f (t) + ‖u(t)‖22

and integrate inequality (7.24) with respect to time obtaining

r(t) ≤ C̃t + r(0) + C̃
∫ t

0
(r(s))q1ds.

Since q1 > 1, we use the non-linear Gronwall’s lemma i.e. Lemma B.2.1 (with c = C̃T + r(0), t0 = 0
and a ≡ 0, b ≡ C̃), which implies that

r(t) ≤ (C̃T + r(0))
[
1 −

C̃t(q1 − 1)
C̃T + r(0)

] 1
q1−1

≤ C̃T + r(0) (7.25)

for all t ∈ [0,T ∗], where T ∗ is small enough to ensure that

C̃T + r(0) <
[
(q1 − 1)C̃T ∗

] 1
1−q1 , (7.26)

i.e.

T ∗ <
(C̃T + r(0))1−q1

C̃(q1 − 1)
.

Consequently M5 f and ‖u‖22 are uniformly bounded in L∞([0,T ∗]) and by (7.24) we have∫ T ∗

0
‖∇u‖ppdt ≤ C(M5 f , ‖u‖2,T ), (7.27)

which in consequence proves (7.18) for α = 5 and (7.19). To prove (7.18) for α , 5 we use inequality
(7.21) and Lemma B.2.1 (this time with q2 = α+2

α+3 < 1), obtaining

Mα f (t) ≤
[
(Mα f (0))1−q2 + (1 − q2)

∫ t

0
‖∇u(s)‖p + ‖u(s)‖2ds

] 1
1−q2

, (7.28)

which again is uniformly bounded since ∇u ∈ Lp(0,T ∗; Lp(T3)) ↪→ L1(0,T ∗; Lp(T3)). This finishes
the proof of (7.18). Finally (7.20) follows by inequality (7.22) from (7.18) and (7.19).

�
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The following corollary combines all the necessary local in time uniform estimations of uε and fε
proved throughout this section.

Corollary 7.1.1. The solution ( fε , uε) satisfies Propositions 7.1.3 and 7.1.4 uniformly with respect
to ε > 0 on the time interval [0,T ∗]. Moreover estimation (iii) holds also on whole [0,T ]. These
estimates depend on T rather than T ∗.

Proof. To prove estimation (i) we notice that by Proposition 7.2 the ‖ · ‖H norm of uεn depends only on
‖u0‖W1,2(T3), which is fixed and on ‖ fext‖L2(0,T ;L2(T3)) which by Proposition 7.1.6 is uniformly bounded
with respect to both n and ε on the time interval [0,T ∗]. Therefore also ‖uε‖H is uniformly bounded
on [0,T ∗]. The exact same argument is valid for an ε independent estimation (ii). Estimation (iii) was
already proved in Proposition 7.1.4, while estimations (iv) and (v) were shown to hold with constants
depending on the constants from (now proved to be ε independent) estimations (i) − (iii) and the
estimation of the support of f n

ε from Proposition 7.1.4. Therefore (iv) and (v) hold with ε (and T ∗)
independent constants on the time interval [0,T ∗] if only the support of fε is uniformly bounded.

It remains to show that fε satisfies (7.7) with ε-independent R. By Lemmas B.3.1 and B.3.2
each iterative solution f n

ε has a support contained in a ball of radius Rε with Rε(t) depending on
‖un
ε ‖L2(0,T ;W2,2(T3)) and ‖M1 f n

ε ‖∞ (and R, which depends only on the initial data). However by Propo-
sition 7.1.6 these quantities are uniformly bounded on [0,T ∗] thus so is Rε . Finally fε inherits the
uniform boundedness of the support from f n

ε as an L∞ limit. �

Proof of Theorem 6.2.1 – local existence. With the uniform bounds from Corollary 7.1.1, what re-
mains is to converge with ε to 0. By virtue of those uniform bounds it follows that uε is uniformly
bounded inH ↪→ L2(0,T ; W2,2(T3)) and ∂tun is uniformly bounded in L2(0,T ; L2(T3)) and since

W2,2(T3) ↪→↪→ W1,2(T3) ↪→ L2(T3),

by Aubin–Lions lemma (or Theorem B.4.1), we may extract from uε a strongly convergent subse-
quence in L2(0,T ∗; W1.2(T3)). Then we converge with every term in Definition 6.1.1,4 (similarly to
the proof of Proposition 7.1.5) obtaining the weak formulation for u. The convergence of fε is done
in the same way as in [5]. To prove that u ∈ C(0,T ; L2

div,0(T3)) and f ∈ C(0,T ; L2(T3 × R3)) we use
estimates (i) and (ii) from Corollary 7.1.1 together with Lemma B.4.2. This finishes the proof of local
existence of solutions in the sense of Definition 6.1.1. �

7.1.5 Step 6: Global existence
In this section we continue the proof of Theorem 6.2.1 by extending the local solutions up to [0,T ].

Proof of Theorem 6.2.1 – global existence. To obtain global existence we need to ensure that we can
extend the interval [0,T ∗] up to [0,T ]. First let us note that all bounds presented in Proposition 7.1.6
and Corollary 7.1.1 are not only independent of ε but also of T ∗ (even though they hold only on
[0,T ∗]). Moreover the bounds from Corollary 7.1.1 are a direct consequence of the bounds from
Proposition 7.1.6 in the sense that as long as we have (7.20), then we may make all the bounds from
Propositions 7.1.3 and 7.1.4 ε-independent on [0,T ∗]. Therefore in order to extend the solution ( f , u)
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up to [0,T ] we only need to prove that the bounds from Proposition 7.1.6 can be extended up to [0,T ].
We multiply equation (7.1)1 by v2 and integrate to obtain

0 =
d
dt

M2 fε +

∫
T3×R3

v2v · ∇ fεdxdv +

∫
T3×R3

v2divv[Fa( fε) fε + (θε ∗ uε − v) fε]dxdv

=
d
dt

M2 fε − 2
∫
T3×R3

vFa( fε) fεdxdv − 2
∫
T3×R3

v(θε ∗ uε − v) fεdxdv

and since by substituting x with y and v with w (just like when we were estimating S1 in the proof of
Proposition 7.1.6) we have∫

T3×R3
vFa( fε) fεdxdv = −

∫
T3×R3

|w − v|2ψ(|x − y|) fεdydwdxdv ≤ 0,

which implies the inequality

d
dt

M2 fε ≤ 2
∫
T3×R3

v(uε − v) fεdxdv + 2
∫
T3×R3

v(θε ∗ uε − uε) fεdxdv. (7.29)

Next we test the weak formulation for uε with uε to get

1
3

d
dt
‖uε‖22 +

2
3

c3κ‖∇uε‖
p
p ≤ −2

∫
T3×R3

uε(uε − v) fεdxdv (7.30)

+ 2
∫
T3×R3

|uε |2(1 − γε) fεdxdv − 2
∫
T3×R3

uε · v(1 − γε) fεdxdv.

We add (7.29) and (7.30) obtaining

d
dt

(
M2 fε +

1
3
‖uε‖22

)
+

2
3

c3κ‖∇uε‖
p
p + 2

∫
T3×R3

|uε − v|2 fεdxdv ≤ J ,

where

J := 2
∫
T3×R3

v(θε ∗ uε − uε) fεdxdv − 2
∫
T3×R3

|uε |2(1 − γε) fεdxdv

−2
∫
T3×R3

uε · v(1 − γε) fεdxdv =: J1 +J2 +J3

still require estimating. Regarding J2 for hε := (1 − γε) fε we have

0 ≤ J2
H(3)
≤ ‖m0hε‖ 3

2
‖uε‖26.

By Lemma B.1.3

‖m0hε‖ 3
2
≤ C(M 3

2
hε)

2
3 ,

where

M 3
2
hε =

∫
T3×R3

|v|
3
2 fε(1 − γε)

≤

∫
T3×{|v|≥ 1

2ε }

|v|
3
2 fε

≤
√

2εM2 fε .
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Therefore, since uε is uniformly bounded in L∞(0,T ∗; W1,2(T3)) ↪→ L∞(0,T ∗; L6(T3)), we have

0 ≤ J2
H(3)
≤ (2ε)

1
3 (M2 fε)

2
3

Y(3)
≤ 2ε + M2 fε . (7.31)

Similarly

0 ≤ |J3|
H(6)
≤ ‖m1hε‖ 6

5
‖uε‖26

and again by Lemma B.1.3

‖m1hε‖ 6
5
≤ C(M 9

5
hε)

5
6 .

Moreover

M 9
5
hε =

∫
T3×R3

|v|
9
5 fε(1 − γε)

≤

∫
T3×{|v|≥ 1

2ε }

|v|
9
5 fε

≤ (2ε)
1
5 M2 fε

and thus like in the case of J2 we obtain

0 ≤ J3 ≤ 2ε + M2 fε . (7.32)

Finally to estimate J1 for all µ > 0 we consider

J1 = 2
∫
T3×R3

v(θε ∗ uε − uε) fε(1 − γµ)dxdv + 2
∫
T3×R3

v(θε ∗ uε − uε) fεγµdxdv =: J1,1 +J1,2.

To estimate J1,1 we simply note that for hµ,ε := (1 − γµ) fε , we have

J1,1 = 2
∫
T3

(θε ∗ uε − uε)m1hµ,εdx

H(6)
≤ 2‖θε ∗ uε − uε‖6‖m1hµ,ε‖ 6

5
.

Lemma B.1.3 implies that

‖m1hµ,ε‖ 6
5
≤ C

(
M 9

5
hµ,ε

) 5
6

and

M 9
5
hµ,ε =

∫
T3×R3

|v|
9
5 fε(1 − γµ)dxdv

≤

∫
T3×{|v|≥ 1

2µ}
|v|

9
5 fεdxdv

≤ Cµ
1
5 M2 fε .
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Therefore, as before, since uε is uniformly bounded in L∞(0,T ∗; W1,2(T3)) ↪→ L∞(0,T ∗; L6(T3)), we
have

J1,1 ≤ Cµ
1
6 (M2 fε)

5
6

Y(6)
≤ Cµ + CM2 fε . (7.33)

On the other hand fε is uniformly bounded in L∞([0,T ∗] × T3 × R3), and thus

J1,2 = J1,2(t) ≤ C(µ)‖θε ∗ uε − uε‖2
ε→0
→ 0 (7.34)

for a.a t ∈ [0,T ∗]. From (7.31)-(7.34) we conclude that after converging4 with ε → 0, we have

d
dt

(
M2 f +

1
3
‖u‖22

)
+

2
3

c3κ‖∇u‖pp + 2
∫
T3×R3

|u − v|2 f dxdv ≤ Cµ + CM2 fε

for a.a. t ∈ [0,T ∗]. Therefore by Gronwall’s lemma for a.a t ∈ [0,T ∗] it holds

M2 f (t) +
1
3
‖u(t)‖22 +

2
3

c3κ

∫ t

0
‖∇u(s)‖ppds ≤ eCt

(
M2 f0 +

1
3
‖u0‖

2
2 + µt

)
and by arbitrarity of µ > 0

M2 f (t) +
1
3
‖u(t)‖22 +

2
3

c3κ

∫ t

0
‖∇u(s)‖ppds ≤ eCT

(
M2 f0 +

1
3
‖u0‖

2
2

)
. (7.35)

This is indeed a better estimate than the one from Proposition 7.1.6 and it will suffice to extend the
estimation to [0,T ]. Assume that K is such constant that for r from the proof of Proposition 7.1.6,
we have

L :=

(M5 f0)
1
8 +

T
p−1

p

8

(
3eCT

2c3κ
M2 f0 +

eCT

2c3κ
‖u0‖

2
2

) 1
p

+
T
8

(
3eCT M2 f0 + eCT ‖u0‖

2
2

) 1
2


8

+6M2 f0 + 2r(0) + C̃T ≤ K . (7.36)

Such constant exists since L is a fixed number. Assume further that h ∈ (0,T ∗] is such that

K <
[
(q1 − 1)C̃h

] 1
1−q1 ,

where q1 and C̃ are constants defined in step 4 of the proof of Proposition 7.1.6. Note that in order to
use Lemma B.2.1 it was necessary (and sufficient) to have inequality (7.26) that served as an upper

bound on T ∗. However now, since C̃T +r(0) ≤ K ≤
[
(q1 − 1)C̃h

] 1
1−q1 , inequality (7.27) and all bounds

from Corollary 7.1.1 hold on [0, h] and as a consequence also inequality (7.35) holds on [0, h] and
implies that ∫ t

0
‖∇u(s)‖pds ≤ T

p−1
p

(∫ t

0
‖∇u(s)‖ppds

) 1
p

≤ T
p−1

p

(
3eCT

2c3κ
M2 f0 +

eCT

2c3κ
‖u0‖

2
2

) 1
p

4Which we may already do in [0,T ∗].
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and

‖u(t)‖22 ≤ 3eCT M2 f0 + eCT ‖u0‖
2
2 (7.37)

for a.a. t ∈ [0, h]. Applying the above inequalities to (7.28) we get

M5 f (t) ≤

(M5 f0)
1
8 +

T
p−1

p

8

(
3eCT

2c3κ
M2 f0 +

eCT

2c3κ
‖u0‖

2
2

) 1
p

+
T
8

(
3eCT M2 f0 + eCT ‖u0‖

2
2

) 1
2


8

(7.38)

on [0, h], which together with (7.37), (7.36) and the definition of r implies that

C̃T + r(h) ≤ L ≤ K

and we can extend inequality (7.27) and all other estimations from Corollary 7.1.1 up to [0, 2h]. Then
again (7.35) and (7.28) hold on [0, 2h], which as before implies that (7.38) also holds on [0, 2h] and
consequently

C̃T + r(2h) ≤ K

and by repeating this procedure we may extend our estimates indefinitely up to [0,T ]. Therefore the
solution ( f , u) may be extended to [0,T ] and it satisfies all the bounds from Proposition 7.1.6 and
Corollary 7.1.1 on [0,T ]. Hence the proof of existence part of Theorem 7.20 is concluded. �

7.2 Uniqueness of solutions
In the previous section we proved the existence part of Theorem 6.2.1. In this section we prove the
uniqueness of the solutions.

Proof of Theorem 6.2.1 – uniqueness. To prove uniqueness let us denote

ω := u1 − u2,

g := f 1 − f 2,

where ( f1, u1) and ( f2, u2) are two supposedly different solutions to (6.1) subjected to the same initial
data ( f0, u0).

First we deal with the fluid part of the problem. We subtract weak formulation of u2 from the
weak formulation of u1 obtaining the weak formulation for ω, which then, we test with ψ = ω (which
is a good test function by Definition 6.1.1), thus obtaining

1
2

d
dt
‖ω‖22 + c3κ‖∇ω‖

2
2 ≤ 3

∫
T3×R3

|ω|2 f 1dxdv + 3
∫
T3×R3

ω|u2 − v|| f 1 − f 2|dxdv

+

∫
T3
|ω|2|∇u1|dx =: I1 + II1 + III1, (7.39)

where we used (6.8) and (B.4) to deal with the stress term. We estimate I1, II1 and III1 separately.
By Lemma B.1.3, we have

I1 =

∫
T3
|ω|2m0 f 1dx ≤

∫
T3
|ω|2(m3 f 1)

1
2 dx ≤ ‖ω‖24

(
M3 f 1

) 1
2 .
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Since M3 f 1 ≤ C, it follows that

I1
(B.1)
≤ C‖ω‖

1
2
2 ‖ω‖

3
2
6

(B.2)
≤ C‖ω‖

1
2
2 ‖∇ω‖

3
2
2 + ‖ω‖22

Y(4)
≤ C(δ)‖ω‖22 + δ‖∇ω‖22. (7.40)

Furthermore

II1 ≤

∫
T3
|ω||u2|m0|g|dx +

∫
T3
|ω|m1|g|dxdv

Y(2)
≤

1
2

(‖u2‖2∞ + 1)‖ω‖22 +
1
2
‖m0|g|‖22 +

1
2
‖m1|g|‖22

and by the fact that by Definition 6.1.1.1 supp f (x, ·, t) ⊂ B(R(T ))

‖mα|g|‖22 =

∫
T3

(∫
R3
|v|α|g|dv

)2

dx ≤ CR(T )2α+6‖g‖22,

which implies that

II1 ≤
1
2

(‖u2‖2∞ + 1)‖ω‖22 + C‖g‖22 (7.41)

Finally we estimate III1:

III1
H(2)
≤ ‖ω‖24‖∇u1‖2

(B.1)(B.2)
≤ C‖ω‖

1
2
2 ‖∇ω‖

3
2
2 + C‖ω‖22

Y(4)
≤ C(δ)‖ω‖22 + δ‖∇ω‖22, (7.42)

where we used the fact that u1 ∈ L∞(0,T ; W1,2(T3)) to get rid of ‖∇u1‖2. Inequality (7.39) and
estimations (7.40)-(7.42) imply that

1
2

d
dt
‖ω‖22 +

1
2

c3κ‖∇ω‖
2
2 ≤ C(‖u2‖2∞ + 1)‖ω‖22 + C‖g‖22. (7.43)

This finishes the estimations of the fluid part of the system.
Next we estimate the particle part in L∞(0,T ; L2(T3 ×R3)). We subtract the weak formulation for

f 2 from the weak formulation for f 1 obtaining the weak formulation for g, which then we test with
g5 to get

1
2

d
dt
‖g‖22 =

∫
T3×R3

[
Fa(g) f 2 + Fa( f 1)g + ω f 1 + (u2 − v)g

]
∇vgdxdv

=: I2 + II2 + III2 + IV2. (7.44)

Next we estimate I2, II2, III2, IV2. We have

I2 =

∫
T3×R3

Fa(g) f 2∇vgdxdv = −

∫
T3×R3

divvFa(g) f 2gdxdv −
∫
T3×R3

F(g)∇v f 2gdxdv =: I21 + I22,

for

|I21|
H(2)
≤ ‖ f 2‖2‖F(g)‖∞‖g‖2

(6.12)
≤ C‖g‖22,

|I22|
H(2)
≤ ‖∇v f 2‖2‖F(g)‖∞‖g‖2

(6.12)
≤ C‖g‖22.

5Let us note that thanks to the effort we put into estimations of ∇v f and ∇ f we made sure that f is a good
test function in point 3 of Definition 6.1.1.
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Furthermore

II2 =

∫
T3×R3

Fa( f 1)∇v(g2)dxdv = −

∫
T3×R3

divvFa( f 1)|g|2dxdv,

thus by (6.11)

|II2| ≤ C‖g‖22.

Moreover

III2 =

∫
T3×R3

ω f 1∇vgdxdv = −

∫
T3×R3

ω∇v f 1gdxdv,

thus

|III2|
H(2)
≤ ‖g‖∞‖∇v f 1‖2

∫
T3×R3

ω2gdxdv

Y(2)
≤ ‖g‖∞‖∇v f 1‖2

(
1
2
‖ω‖24 +

1
2
‖m0|g|‖22

)
and by (B.1), (B.2) and the fact that f 1 ∈ X, using Young’s inequality with arbitrary constant δ, we
get

III2 ≤ δ‖∇ω‖
2
2 + C(δ)‖ω‖22 + C‖g‖22.

For IV2, we integrate by parts obtaining

IV2 =

∫
T3×R3

(u2 − v)∇v(g2)dxdv = 3
∫
T3×R3

|g2|dxdv.

Finally we combine (7.43), (7.44) with the estimations of I2 − IV2 to obtain

1
2

d
dt

(‖ω‖22 + ‖g‖22) +
1
4

c3κ‖∇ω‖
2
2 ≤ C(‖u2‖2∞ + 1)‖ω‖22 + C‖g‖22.

We aim to use Gronwall’s lemma to conclude that ω = 0 and g = 0, which means that the solution
is unique. To do it we need to ensure that t 7→ ‖u2‖2∞ is integrable. However by Definition 6.1.1
u2 ∈ H and thus u ∈ L2(0,T ; W2,2(T3)) ↪→ L2(0,T ; L∞(T3)), which implies the integrability of
t 7→ ‖u2‖2∞. �
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Part III

Appendices
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Appendix A

In Appendix A we present various lemmas and theorems applied throughout Part I. We also present
proofs of other lemmas.

A.1 Weak-strong convergence
The following lemma plays a role in Chapter 3.

Lemma A.1.1. Let Ω ⊂ Rd and fn, f , gn, g : Ω→ R be measurable functions. If fn → f a.e. in Ω, fn
is uniformly bounded in L∞(Ω) and gn ⇀ g in L1(Ω), then

fngn ⇀ f g in L1(Ω).

A.2 Proofs of technical lemmas from Chapter 4
Proof of Lemma 4.1.1 We have ∫ T

0
R(t)dt =

Ns∑
k=0

∫ Tk+1

Tk

R(t)dt,

with Tk and Ns from Definition 2.1.2. By Corollary 4.0.1.1, the function

r(t) :=
N∑

i, j=1

(vi(t) − v j(t))2

is absolutely continuous on each interval [Tk,Tk+1 − ε] with arbitrarily small ε > 0. Then, by (2.3)2
on each such interval, we have

d
dt

r = 2
N∑

i, j=1

(vi − v j)

 1
N

N∑
k=1

(vk − vi)ψ(|xi − xk|) −
1
N

N∑
k=1

(vk − v j)ψ(|x j − xk|)


=

2
N

N∑
i, j,k=1

(vi − v j)(vk − vi)ψ(|xi − xk|) −
2
N

N∑
i, j,k=1

(vi − v j)(vk − v j)ψ(|x j − xk|).
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We substitute i and k in the first summand and j and k in the second summand to obtain

d
dt

r =
1
N

N∑
i, j,k=1

(vi − v j)(vk − vi)ψ(|xi − xk|) +
1
N

N∑
i, j,k=1

(vk − v j)(vi − vk)ψ(|xi − xk|)

−
1
N

N∑
i, j,k=1

(vi − v j)(vk − v j)ψ(|x j − xk|) −
1
N

N∑
i, j,k=1

(vi − vk)(v j − vk)ψ(|x j − xk|)

= −
1
N

N∑
i, j,k=1

(vi − vk)2ψ(|xi − xk|) −
1
N

N∑
i, j,k=1

(v j − vk)2ψ(|x j − xk|)

= −2
N∑

i, j=1

(vi − v j)2ψ(|xi − x j|) = −2R.

Therefore ∫ Tk+1−ε

Tk

Rdt =
1
2

(r(Tk) − r(Tk+1 − ε))

and thus, by the monotone convergence theorem and continuity of r, we pass to the limit with ε → 0
obtaining ∫ Tk+1

Tk

Rdt =
1
2

(r(Tk) − r(Tk+1)) . (A.1)

Finally, we take a sum over all k = 0, ...,Ns of the equations of the form (A.1) to get∫ T

0
R(t)dt =

1
2

(r(0) − r(T )) ≤ C1N2,

where the final estimation is justified by Corollary 4.0.1.3.

Proof of Lemma 4.1.2 Given i, j = 1, ...,N, we have∫ s2

s1

|x j − xi|
−θdt =

∑
k

∫ tk

tk−1

|x j − xi|
−θdt, (A.2)

where tk denote the times of collision of x j and xi that happen in the time interval [s1, s2]. By Corollary
4.0.1.3, the only density points of the times of collision are times of sticking and since there are no
times of sticking in [s1, s2] – the sum on the right-hand side of (A.2) is finite. Thus it is sufficient to
show that each summand is finite (even if it is arbitrarily large), hence from this point we fix k. Now,
if the particles do not stick together in [s1, s2], then for t ∈ [s1, s2] either xi(t) , x j(t) or vi(t) , v j(t).
In particular v j(tk−1) − vi(tk−1) =: vk−1 , 0 and v j(tk) − vi(tk) =: vk , 0 and by continuity of v (see
Corollary 4.0.1), there exist positive ρ and δ, such that

v j − vi ∈ B(vk−1, ρ) in [tk−1, tk−1 + δ] and

v j − vi ∈ B(vk, ρ) in [tk − δ, tk]
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and 0 does not belong to neither B(vk−1, ρ) nor B(vk, ρ). Let us split the integral from the right-hand
side of (A.2) in the following manner:∫ tk

tk−1

|x j − xi|
−θdt =

(∫ tk−1+δ

tk−1

+

∫ tk−δ

tk−1+δ
+

∫ tk

tk−δ

)
|x j − xi|

−θdt =: I + II + III.

Then there exists an arbitrarily large constant C(δ), that bounds II from the above since |x j − xi| is
continuous and nonzero on [tk−1 +δ, tk−δ]. To estimate I we notice that for t ∈ [tk−1, tk−1 +δ] it holds:

|x j(t) − xi(t)| =

∣∣∣∣∣∣
∫ t

tk−1

v j − vids

∣∣∣∣∣∣ ≥ inf
ξ∈B(vk−1,ρ)

|ξ|(t − tk−1) ≥ c(t − tk−1)

for some small constant c > 0. Thus∫ tk−1+δ

tk−1

|x j − xi|
−θdt ≤ c−θ

∫ tk−1+δ

tk−1

(t − tk−1)−θdt < ∞,

since θ < 1. Estimation of III proceeds similarly to the estimation of I.

Proof of Lemma 4.1.4 The proof follows similarly to that of step 2. Let

r(t) :=
∑

i, j∈[i]

(vi(t) − v j(t))2,

where [i] denotes the set of those j that x j(t0) = xi(t0) and v j(t0) = vi(t0). Therefore if we show that
r ≡ 0 then the thesis of Lemma 4.1.4 will be satisfied. We have

d
dt

rinc ≤
2
N

∑
i, j∈[i]

N∑
k=1

[
(vi − v j)

(
(vk − vi)ψ(|xk − xi|) − (vk − v j)ψ(|xk − x j|)

)]
+

≤
2
N


∑

i, j,k∈[i]

+
∑
i, j∈[i]
k<[i]

 [− as above −]+

see below
≤

2
N

∑
i, j∈[i]
k<[i]

[
(vi − v j)

(
(vk − vi)ψ(|xk − xi|) − (vk − v j)ψ(|xk − x j|)

)]
+

(A.3)

≤
2
N

∑
i, j∈[i]
k<[i]

[
−(vi − v j)2ψ(|xk − xi|)

]
+

+
2
N

∑
i, j∈[i]
k<[i]

[
(vi − v j)(vk − v j)(ψ(|xk − xi|) − ψ(|xk − x j|))

]
+

≤
C
N

∑
i, j∈[i]
k<[i]

|vi − v j||ψ(|xk − xi|) − ψ(|xk − x j|)|.

Inequality (A.3) follows by the fact that in the triple sum over the set [i] the indexes may be substituted
in the same fashion as in the proof of Lemma 4.1.1. Since at this point k < [i] and i, j ∈ [i], the kth
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particle cannot stick to neither ith nor jth particle (even though it may collide with them). We are
already familiar with this situation and thus, we estimate

|ψ(|xk − xi|) − ψ(|xk − x j|)|

similarly to the estimations from Case 1 and Case 2 in the previous step obtaining altogether

d
dt

rinc ≤ Crinc · f

for some integrable function f . Then by Gronwall’s lemma rinc ≡ 0 on [0, δ], which means that also
r ≡ 0 on [0, δ] and that for all i, j ∈ [i] we have xi ≡ x j on [0, δ].

A.3 Proof of Proposition 5.0.3

We present the proof of Proposition 5.0.3 from Chapter 5. It is similar and yet quite different than
the proof of Proposition 4.1.1 from Chapter 4. In Proposition 4.1.1 we prove absolute continuity of
solution to the C–S model with singular weight for α ∈ (0, 1

2 ). On the other hand in Proposition
5.0.3 the most important part of the proof revolves around showing the uniform absolute continuity
of a sequence of approximate solutions that are supposed to converge to a solution associated with a
singular weight with α ∈ (0, 1

2 ). These two conjectures are very similar and in fact the first part of
the proof of Proposition 5.0.3 could be almost exactly the same as the proof of Proposition 4.1.1. In
other words we could use Lemmas 4.1.1, 4.1.2 and 4.1.3 in a more convoluted proof of Proposition
4.1.1. Alternatively we could also prove Proposition 4.1.1 in a much simpler way using the approach
of Proposition 5.0.3. Ultimately we decided to include both proofs to illustrate how the first attempt
to solve a mathematical problem can differ from the subsequent more refined attempts.

Proof of Proposition 5.0.3. The existence and uniqueness part as well as points (i) and (ii) are no
different than in the case of regular weight and we will not prove them here. Their proofs can be
found in the literature (see for instance [31] or [43]). Thus it remains to prove (iii)-(v).
(iii) − (v)
First, assuming for notational simplicity that (xn, vn,Nn,mn

i ) = (x, v,N,mi) let us prove a particularly
useful estimate. Let 1 < p < q be given numbers satisfying additional conditions that will be specified
later. For each n = 1, 2, ..., velocity vn (denoted by v) is absolutely continuous on [0,T ] and thus by
(2.3)2, we have
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mi

∫ T

0
|v̇i|

pdt = mi

∫ T

0

∣∣∣∣∣∣∣∣
N∑

j=1

m j(v j − vi)ψn(|xi − x j|)

∣∣∣∣∣∣∣∣
p

dt

≤

N∑
j=1

mim j

∫ T

0
|v j − vi|

pψ
p
n (|xi − x j|)dt

=

N∑
j=1

∫ T

0

(
mim j

) p
q
|v j − vi|

p· pqψ
p
n (|xi − x j|) ·

(
mim j|v j − vi|

p
)(1− p

q )
dt

≤

N∑
j=1

mim j

∫ T

0
|v j − vi|

pψ
q
n(|xi − x j|)dt +

N∑
j=1

mim j

∫ T

0
|v j − vi|

pdt (A.4)

≤ ε

N∑
j=1

mim j

∫ T

0
|v j − vi|

2ψ
2q
p

n (|xi − x j|)dt︸                              ︷︷                              ︸
=:A

+C(ε)Tmi +

N∑
j=1

mim j

∫ T

0
|v j − vi|

pdt.

(A.5)

Inequality (A.4) is obtained by Young’s inequality with exponent q
p while (A.5) follows by Young’s

inequality with exponent 2
p . In both of the above inequalities we also use the assumption that∑N

i=1 mi = 1.

Furthermore recalling that ψ
2q
p

n (s) ≤ ψ
2q
p (s) = |s|−λ, where λ := 2qα

p , integral A can be estimated
as follows:

A ≤
d∑

k=1

∫ T

0
(vk

j − vk
i ) · (vk

j − vk
i )|xk

i − xk
j |
−λdt =

d∑
k=1

∫ T

0
(vk

j − vk
i ) ·

(
(xk

j − xk
i )|xk

i − xk
j |
−λ

)′
dt

= −

d∑
k=1

∫ T

0
(v̇k

j − v̇k
i ) · (xk

j − xk
i )|xk

i − xk
j |
−λdt +

d∑
k=1

(vk
j − vk

i ) · (xk
j − xk

i )|xk
i − xk

j |
−λ

∣∣∣∣∣T
0

≤ C
∫ T

0
|v̇i||xi − x j|

1−λdt + C
∫ T

0
|v̇ j||xi − x j|

1−λdt + 2C sup
t∈[0,T ]

|v j − vi||xi − x j|
1−λ.

However, the above estimation is valid only if λ < 1, which means that q
p · 2α < 1 and such condition

can be easily satisfied if α < 1
2 and 1 < p < q are small enough. By point (ii) we have |v| ≤ R and

|x| ≤ R. This leads to the concluding estimation of A, which reads:

A ≤ C(R)1−λ
∫ T

0
|v̇i|dt + C(R)1−λ

∫ T

0
|v̇ j|dt + C(R)2−λ. (A.6)

Now we will apply the above calculation (particularly estimations (A.5) and (A.6)) in the effort to
prove (iii) and (iv). For (iii) let us assume that p = q = 11. We sum (A.5) over i = 1, ...,N to get

N∑
i=1

mi

∫ T

0
|v̇i|dt ≤ ε

N∑
i, j=1

mim jA + C(ε)T + 2RT

1Note that (A.4) remains true also for p = q = 1.
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and plug in (A.6) to obtain

N∑
i=1

mi

∫ T

0
|v̇i|dt ≤ 2εC(R)1−λ

N∑
i=1

mi

∫ T

0
|v̇i|dt + εC(R)2−λ + C(ε)T + 2RT,

which after fixing sufficiently small ε and rearranging yields

N∑
i=1

mi

∫ T

0
|v̇i|dt ≤ C(R)2−λ + CT + CRT, (A.7)

which proves (iii) for p = 1. Then for 1 < p = q using (A.5), (A.6) and (A.7), we have

N∑
i=1

mi

∫ T

0
|v̇i|

pdt ≤ 2C(R)1−λ
N∑

i=1

mi

∫ T

0
|v̇i|dt + C(R)2−λ + CT + CRpT ≤ C(R, p,T, λ) (A.8)

and (iii) is proved for some sufficiently small p > 1. In order to prove (iv) we take 1 = p < q in (A.5),
which leads us to a very similar result to (A.8) and to the end of the proof of (iv).
(v)
Let us fix n = 1, 2, ... and a bounded, Lipschitz continuous function g = g(x, v). Then according to
Definition 2.1.6, for t ∈ [0,T ), ε > 0 and

χε,t(s) :=


1 for 0 ≤ s ≤ t − ε

− 1
2ε (s − t − ε) for t − ε < s ≤ t + ε

0 for tε < s

the function φ(s, x, v) := χε,t(s)g(x, v) ∈ G is a good test function in the weak formulation for each fn.
Thus we plug φ into (2.6) obtaining

1
2ε

∫ t+ε

t−ε

∫
R2d

fngdxdvdt =

= −

∫ T

0

∫
R2d

fnχε,tv∇gdxdvdt −
∫ T

0

∫
R2d

Fn( fn) fnχε,t∇vgdxdvdt −
∫
R2d

f0gdxdv.

Since t 7→
∫
R2d fngdxdv, t 7→

∫
R2d fnχε,tv∇gdxdv and t 7→

∫
R2d Fn( fn) fnχε,t∇vgdxdv are integrable

functions (for fixed n and g), then converging with ε → 0 leads to the following equation holding for
a.a t ∈ [0,T ):∫

R2d
fn(t)gdxdvdt =

∫ t

0

∫
R2d

fnv∇gdxdvdt +

∫ t

0

∫
R2d

Fn( fn) fn∇vgdxdvdt −
∫
R2d

f0gdxdv

=

∫ t

0
G(t)dt −

∫
R2d

f0gdxdv,

where

G(t) :=
∫
R2d

fn(t)v∇gdxdv +

∫
R2d

Fn( fn)(t) fn(t)∇vgdxdv

=

N∑
i=1

mivn
i (t)∇g(xn

i (t), vn
i (t)) +

N∑
i, j=1

mim j(vn
j(t) − vn

i (t))ψ(|xn
i (t) − xn

j (t)|)∇vg(xn
i (t), vn

i (t)).
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By virtue of points (ii) and (iii) of this proposition, we have∫ T

0
|G(t)|pdt ≤

∫ T

0

∣∣∣∣∣∣∣
N∑

i=1

mivn
i (t)(∇g)(xn

i (t), vn
i (t))

∣∣∣∣∣∣∣
p

dt

+

∫ T

0

∣∣∣∣∣∣∣∣
N∑

i, j=1

mim jψn(|xn
i (t) − xn

j (t)|)(v
n
j(t) − vn

i (t))(∇vg)(xn
i (t), vn

i (t))

∣∣∣∣∣∣∣∣
p

dt

≤ Lip(g)pT (R)p + Lip(g)pM(R) =: Mg(Lip(g),R)

which finishes the proof of (v). �

A.4 Compactness
The main tools used in Chapter 5 to obtain compactness are Arzela–Ascoli Theorem and Banach–
Alaoglu Theorem.

Theorem A.4.1 (Arzela–Ascoli Theorem). Let T > 0 and let Y be a metric space. Assume further
that { fn}n∈N is a sequence of continuous mappings between [0,T ] and Y. Then if fn are equicontinuous
and pointwise relatively compact then { fn}n∈N has a uniformly convergent subsequence.

Proof. Our version of Arzela–Ascoli theorem is a direct consequence of a more general version
from [35], Chapter 7. �

Remark A.4.1. Pointwise relative compactness means that for all t ∈ [0,T ] the sequence { fn(t)}n∈N
is relatively compact in Y .

Theorem A.4.2 (Banach–Alaoglu Theorem). Let X be a (separable) normed vector space. Then the
closed ball in X∗ is (sequentially) weakly * compact.

Remark A.4.2. In our applications (in the proof of Corollary 2.1.1) we take X = Cb(Ω) for compact
Ω. Then X is a separable normed vector space and any sequence bounded in X∗ belongs to some
closed ball in X∗, which by Theorem A.4.2 implies that it has a weakly * convergent subsequence.

106



Appendix B

We present the basic tools that we use throughout Part II.

B.1 Miscellaneous inequalities
Lemma B.1.1. For u ∈ L6(0,T ; L6(T3)), we have

‖u‖4 ≤ C(‖u‖36‖u‖2)
1
4 . (B.1)

Lemma B.1.2. For u ∈ Lp(0,T ; Ẇ1,p
div,0(T3)), we have

‖u‖q ≤ C(‖∇u‖p + ‖u‖2) (B.2)

for all q ≤ p∗ := dp
d−p .

Proof. Sobolev’s inequality implies that

‖u‖q ≤ C‖u‖p + ‖∇u‖p,

while Poincare’s inequality implies that

‖u −
?

u‖p ≤ C‖∇u‖p

and thus

‖u‖p ≤ ‖
?

u‖p + ‖u −
?

u‖p ≤ C(‖u‖2 + ‖∇u‖p).

�

We present two crucial lemmas from [7].

Lemma B.1.3. Let β > 0 and g be a nonnegative function in L∞([0,T ] × T3 × R3). The following
estimate holds for any α < β:

mαg(t, x) ≤
(
4
3
π‖g(t, x, ·)‖∞ + 1

)
mβg(t, x)

α+3
β+3 ,

for a.a. (t, x).
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Proof. The proof can be found in [7], page 9 (Lemma 1). �

Lemma B.1.4. For T > 0, let {an} be a sequence of nonnegative continuous functions defined on
[0,T ] satisfying the relation:

an+1(t) ≤ A + B
∫ t

0
an(s)ds + C

∫ t

0
an+1(s)ds,0 ≤ t ≤ T,

where A, B and C are nonnegative constants, Then there exists a positive constant K, such that for all
n ∈ N

an(t) ≤
{ Kntn

n! , A = 0,
KeKt, A > 0.

Proof. The proof can be found in [7], page 15 (Lemma 3). �

B.2 Nonlinear Gronwall’s lemma
We include the formulation of the classical Gronwall’s lemma with it’s less popular non-linear vari-
eties.

Lemma B.2.1 (Gronwall’s lemma). Let f be a nonnegative function satisfying inequality

f (t) ≤ c +

∫ t

t0
(a(s) f (s) + b(s) f q(s))ds, c ≥ 0, q ≥ 0,

where a and b are nonnegative, integrable functions for t ≥ t0. Then we have

for 0 ≤ q < 1

f (t) ≤
[
c1−qe(1−q)

∫ t
t0

a(s)ds
+ (1 − q)

∫ t

t0
b(s)e(1−q)

∫ t
s a(r)drds

] 1
1−q

;

for q = 1

f (t) ≤ ce
∫ t

t0
a(s)+b(s)ds;

for q > 1

f (t) ≤ c
[
e(1−q)

∫ t
t0

a(s)ds
− c−1(q − 1)

∫ t

t0
b(s)e(1−q)

∫ t
s a(r)drds

] 1
q−1

for t ∈ [t0, h] for h > 0 provided that

c <
[
e(1−q)

∫ t0+h
t0

a(s)ds
] 1

q−1
[
(q − 1)

∫ t0+h

t0
b(s)ds

] 1
1−q
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B.3 Propagation of the support
Finally we present the proof of propagation of the support of f .

Lemma B.3.1 (Propagation of the support of velocity). Let f be a solution to (7.4) subjected to the
initial data with the support in v contained in the ball B(R). Then there exists a nondecreasing function
R : [0,T ]→ [0,∞) such that for all t ∈ [0,T ] and almost all x ∈ T3, the support of f (t, x, ·) : R3 → R

is contained in a ball of radius R(t). Moreover for each t ∈ [0,T ] the value R(t) depends only on t,
‖u‖L2(0,t;W2,2(T3)), ‖M1 f ‖∞ and R.

Proof. Let f be a solution to (7.4). Consider the solution of the system of ODE’s:{ dx
dt (t) = v(t), x(0) = x0,
dv
dt (t) = Fa( f )(t, x(t), v(t)) + (θε ∗ u)(t, x(t)) − v(t), v(0) = v0.

(B.3)

Then the function f̃ (t, x0, v0) := f (t, x(t), v(t)) satisfies the equation

∂t f̃ = (−divvFa( f ) + 3) f̃ = 3(b + 1) f̃

(recall b defined in (6.11)) and thus

f̃ (t, x0, v0) = e3
∫ t

0 (b+1)ds f0(x0, v0).

Therefore f̃ (t, x0, v0) = 0 whenever f0(x0, v0) = 0, which implies that f (t, x, v) = 0 whenever the
characteristic that contains point (x, v) starts at (x0, v0) such that f0(x0, v0) = 0. We solve (B.3)2, to
get

v(t) = e−
∫ t

0 b(s,x(s))+1ds
(
v0 +

∫ t

0
e
∫ t

s b(r,x(r))+1dra(s, x(s)) + (θε ∗ u)(s, x(s))ds
)
,

which, since by (6.11) 1 ≤ b + 1 ≤ c6M0 f + 1 and by (7.5) M0 f ≤ C, implies that

|v(t)| ≤ CeCt
(
|v0| +

∫ t

0
|a(x(s), s)|ds +

∫ t

0
‖u(s)‖∞ds

)
(6.10)
≤ CeCt

(
|v0| + t‖M1 f ‖∞ + ‖u‖L2(0,t;W2,2(T3))

)
≤ CeCt

(
R + t‖M1 f ‖∞ + ‖u‖L2(0,T ;W2,2(T3))

)
=: R(t),

where we also used the embedding L2(0, t; W2,2(T3)) ↪→ L1(0, t; L∞(T3)). �

Lemma B.3.2. Let f be a solution to (7.4) subjected to the initial data with the support in v contained
in the ball B(R). Then

M1 f ≤ C(ε),

for some positive ε dependent constant C(ε).
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Proof. First we integrate (7.4) to see that M0 f = const. Next we multiply (7.4) by |v| and integrate to
get

d
dt

M1 f +

∫
T3×R3

|v|v∇ f dxdv︸                 ︷︷                 ︸
=0

+

∫
T3×R3

|v|divv[(Fa( f ) + (θε ∗ u − v)) f ]dxdv

=
d
dt

M1 f −
∫
T3×R3

v
|v|

(Fa( f ) + (θε ∗ u − v)) f dxdv.

Thus

d
dt

M1 f =

∫
T3×R3

v
|v|

Fa( f ) f dxdv +

∫
T3×R3

sgn(v)θε ∗ u f dxdv −
∫
T3×R3

|v| f dxdv

≤

∫
T3×R3

|Fa( f )| f dxdv +

∫
T3×R3

|θε ∗ u| f dxdv

(6.12)
≤ 2M1 f M0 f + C‖u‖L2(0,T ;W2,2(T3))M0 f .

Since M0 f = const., Gronwall’s lemma implies that M1 f is bounded on [0,T ] as long as M1 f0 is
finite, which is the case by Remark 6.2.1. �

B.4 Korn, Aubin–Lions, Vitali
The following theorems can be found in [46] or [38].

Lemma B.4.1 (Korn’s inequality). Let 1 < p < ∞. Then for all u ∈ W1,p(Td), we have

κ‖∇u‖p ≤ ‖Du‖p (B.4)

for some positive constant κ.

Theorem B.4.1 (Aubin–Lions lemma). Let 1 < p, q < ∞. Let X be a Banach space and let X0, X1 be
separable and reflexive Banach spaces. Provided that X0 ↪→↪→ X ↪→ X1 we have{

u ∈ Lp(0,T ; X0); ∂tu ∈ Lq(0,T ; X1)
}
↪→↪→ Lp(0,T ; X).

Proof. The proof can be found in [36], Section 1.5. �

Lemma B.4.2. Let V ⊂ H ⊂ V∗ be three Hilbert spaces. Moreover let u ∈ L2(0,T ; V) and ∂tu ∈
L2(0,T ; V∗). Then u ∈ C(0,T ; H).

Proof. The proof can be found in [49], page 261 (Lemma 1.2). �

Remark B.4.1. In our case we have V = H = V∗ = L2(T3), which of course is a Hilbert space.

Theorem B.4.2 (Vitali Convergence Theorem). Let Ω be a bounded domain in Rd and f n : Ω → R

be integrable for every n ∈ N. Assume that

• limn→∞ f n(x) exists and is finite for a.a. x ∈ Ω;
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• for every ε > 0 there exists δ > 0 such that

sup
n∈N

∫
H
| f n(x)|dx < ε ∀H ⊂ Ω, |H| < δ. (B.5)

Then

lim
n→∞

∫
Ω

f n(x)dx =

∫
Ω

lim
n→∞

f n(x)dx.

Proof. The proof can be found in [4], page 63. �

Remark B.4.2. Condition (B.5) is called the uniform integrability condition. In our applications we
usually use the fact that if a sequence is bounded in L1+ε for any ε > 0 then it is uniformly integrable.

111



Bibliography

[1] S. M. Ahn, H. Choi, S.-Y. Ha, and H. Lee. On collision-avoiding initial configurations to
Cucker-Smale type flocking models. Commun. Math. Sci., 10(2):625–643, 2012.

[2] S. M. Ahn and S.-Y. Ha. Stochastic flocking dynamics of the Cucker-Smale model with multi-
plicative white noises. J. Math. Phys., 51(10):103301, 17, 2010.

[3] G. Albi, M. Herty, and L. Pareschi. Kinetic description of optimal control problems and appli-
cations to opinion consensus. Commun. Math. Sci., 13(6):1407–1429, 2015.

[4] H. Alt. Lineare Funktionalanalysis. Springer-Lehrbuch Masterclass. Springer Berlin Heidel-
berg, 2006.

[5] H.-O. Bae, Y.-P. Choi, S.-Y. Ha, and M.-J. Kang. Time-asymptotic interaction of flocking parti-
cles and an incompressible viscous fluid. Nonlinearity, 25(4):1155–1177, 2012.

[6] C. Baranger and L. Desvillettes. Coupling Euler and Vlasov equations in the context of sprays:
the local-in-time, classical solutions. J. Hyperbolic Differ. Equ., 3(1):1–26, 2006.

[7] L. Boudin, L. Desvillettes, C. Grandmont, and A. Moussa. Global existence of solutions for the
coupled Vlasov and Navier-Stokes equations. Differential Integral Equations, 22(11-12):1247–
1271, 2009.

[8] J. A. Cañizo, J. A. Carrillo, and J. Rosado. A well-posedness theory in measures for some
kinetic models of collective motion. Math. Models Methods Appl. Sci., 21(3):515–539, 2011.

[9] J. A. Carrillo, Y.-P. Choi, and M. Hauray. The derivation of swarming models: Mean-field limit
and wasserstein distances. arXiv:1304.5776, preprint, 2013.

[10] J. A. Carrillo, Y.-P. Choi, and H. M. Local well-posedness of the generalized Cucker-Smale
model. preprint, arXiv:1406.1792, 2014.

[11] J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani. Asymptotic flocking dynamics for the
kinetic Cucker-Smale model. SIAM J. Math. Anal., 42(1):218–236, 2010.

[12] J. A. Carrillo, A. Klar, S. Martin, and S. Tiwari. Self-propelled interacting particle systems with
roosting force. Math. Models Methods Appl. Sci., 20(suppl. 1):1533–1552, 2010.

[13] P. Constantin and G. Seregin. Global regularity of solutions of coupled Navier-Stokes equations
and nonlinear Fokker Planck equations. Discrete Contin. Dyn. Syst., 26(4):1185–1196, 2010.

112



[14] F. Cucker and J.-G. Dong. Avoiding collisions in flocks. IEEE Trans. Automat. Control,
55(5):1238–1243, 2010.

[15] F. Cucker and C. Huepe. Flocking with informed agents. MathS in Action, 1(1):1–25, 2008.

[16] F. Cucker and E. Mordecki. Flocking in noisy environments. J. Math. Pures Appl. (9),
89(3):278–296, 2008.

[17] F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans. Automat. Control,
52(5):852–862, 2007.

[18] P. Degond and S. Motsch. Macroscopic limit of self-driven particles with orientation interaction.
C. R. Math. Acad. Sci. Paris, 345(10):555–560, 2007.

[19] P. Degond and S. Motsch. Continuum limit of self-driven particles with orientation interaction.
Math. Models Methods Appl. Sci., 18(suppl.):1193–1215, 2008.

[20] L. Diening, J. Málek, and M. Steinhauer. On Lipschitz truncations of Sobolev functions
(with variable exponent) and their selected applications. ESAIM Control Optim. Calc. Var.,
14(2):211–232, 2008.

[21] R. Duan, M. Fornasier, and G. Toscani. A kinetic flocking model with diffusion. Comm. Math.
Phys., 300(1):95–145, 2010.

[22] J. Frehse, J. Málek, and M. Steinhauer. On analysis of steady flows of fluids with shear-
dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal.,
34(5):1064–1083 (electronic), 2003.

[23] T. Goudon, L. He, A. Moussa, and P. Zhang. The Navier-Stokes-Vlasov-Fokker-Planck system
near equilibrium. SIAM J. Math. Anal., 42(5):2177–2202, 2010.

[24] T. Goudon, P.-E. Jabin, and A. Vasseur. Hydrodynamic limit for the Vlasov-Navier-Stokes
equations. I. Light particles regime. Indiana Univ. Math. J., 53(6):1495–1515, 2004.

[25] T. Goudon, P.-E. Jabin, and A. Vasseur. Hydrodynamic limit for the Vlasov-Navier-Stokes
equations. II. Fine particles regime. Indiana Univ. Math. J., 53(6):1517–1536, 2004.

[26] P. Gwiazda, T. Lorenz, and A. Marciniak-Czochra. A nonlinear structured population model:
Lipschitz continuity of measure-valued solutions with respect to model ingredients. J. Differen-
tial Equations, 248(11):2703–2735, 2010.

[27] S.-Y. Ha, T. Ha, and J.-H. Kim. Asymptotic dynamics for the Cucker-Smale-type model with
the Rayleigh friction. J. Phys. A, 43(31):315201, 19, 2010.

[28] S.-Y. Ha, E. Jeong, J.-H. Kang, and K. Kang. Emergence of multi-cluster configurations from
attractive and repulsive interactions. Math. Models Methods Appl. Sci., 22(8):1250013, 42,
2012.

[29] S.-Y. Ha, M.-J. Kang, C. Lattanzio, and B. Rubino. A class of interacting particle systems on the
infinite cylinder with flocking phenomena. Math. Models Methods Appl. Sci., 22(7):1250008,
25, 2012.

113



[30] S.-Y. Ha, K. Lee, and D. Levy. Emergence of time-asymptotic flocking in a stochastic Cucker-
Smale system. Commun. Math. Sci., 7(2):453–469, 2009.

[31] S.-Y. Ha and J.-G. Liu. A simple proof of the Cucker-Smale flocking dynamics and mean-field
limit. Commun. Math. Sci., 7(2):297–325, 2009.

[32] S.-Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking.
Kinet. Relat. Models, 1(3):415–435, 2008.

[33] A. Kałamajska and J. Peszek. On some nonlinear extensions of the Gagliardo-Nirenberg in-
equality with applications to nonlinear eigenvalue problems. Asymptot. Anal., 77(3-4):169–
196, 2012.

[34] A. Kałamajska and J. Peszek. On certain generalizations of the Gagliardo-Nirenberg inequality
and their applications to capacitary estimates and isoperimetric inequalities. J. Fixed Point
Theory Appl., 13(1):271–290, 2013.

[35] J. L. Kelley. General topology. Springer-Verlag, New York-Berlin, 1975. Reprint of the 1955
edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27.

[36] P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 1, volume 3 of Oxford Lecture Series
in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York,
1996. Incompressible models, Oxford Science Publications.

[37] V. Loreto and L. Steels. Social dynamics: Emergence of language. Nature Physics, 3:758–760,
2007.
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