
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Jakub Radoszewski

Algorithmic and Combinatorial Problems

Related to Enumeration of Repetitions

in Words
PhD dissertation

Supervisor

prof. dr hab. Wojciech Rytter

Institute of Informatics
University of Warsaw

January 2012



Author’s declaration:
aware of legal responsibility I hereby declare that I have written this disser-
tation myself and all the contents of the dissertation have been obtained by
legal means.

January, 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date mgr Jakub Radoszewski

Supervisor’s declaration:
the dissertation is ready to be reviewed

January, 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date prof. dr hab. Wojciech Rytter



Abstract

We present several new combinatorial and algorithmic results related to the
repetitive structure of words. The main components of this structure are
squares (factors of the type zz), higher powers and runs (called also maximal
repetitions). The combinatorics of repetitions is quite difficult and not well
understood despite a long research on the subject (the works of Thue date to
the beginning of previous century), especially in case of squares. Here we con-
centrate on the strongly repetitive structure: factors which are higher powers
or highly repetitive nonextendible segments (called cubic runs). We obtain
simpler and more accurate bounds than for repetitions with long periods.
The tools that we develop are used to provide an improved characterization
of general runs.
Denote by squares(n) and cubes(n) the maximal number of different square

factors and different cubic factors in a word of length n. By runs(n) and
cubic-runs(n) we denote the maximal number of runs and cubic runs in a
word of length n, and by exp-runs(n) and exp-cubic-runs(n) we denote the
maximal sum of exponents of runs and cubic runs in such a word. All
these functions are linear in terms of n, however the exact asymptotics
are still unknown. We provide new bounds for highly periodic repetitions,
that is, for cubes: 0.5n − 2√n ¬ cubes(n) ¬ 0.8n and for cubic runs:
0.41n < cubic-runs(n) < 0.5n. Improved bounds for the sum of exponents
of runs that we show, 2.035n < exp-runs(n) < 4.1n, contradict a conjecture
by Kolpakov and Kucherov (1999) that exp-runs(n) ¬ 2n. We also give a
better upper bound of 2.5n on the function exp-cubic-runs(n). Multiple lower
bounds were obtained using extensive computer experiments.
New linear time algorithms for enumeration of repetitions are presented.

The structure of runs in a word implies an algorithm finding the number of
squares, cubes and powers with higher exponent, and also reporting all differ-
ent powers. Another algorithm is linear time computation of local periods in
a word. Our methods are considerably simpler than previously known linear
time algorithms and show new structural relations between the notions of
periodicity.
The results of this dissertation were presented in [17, 18, 21, 52]. Research

supported by grant No. N206 568540 of the National Science Centre.

Key words: square in a word, cube in a word, run, cubic run, Lyndon word,
local period, suffix array
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Streszczenie

W rozprawie przedstawiamy nowe wyniki kombinatoryczne i algorytmiczne
dotyczące struktury powtórzeń w słowach. Głównymi elementami tej struk-
tury są kwadraty (podsłowa typu zz), wyższe potęgi oraz maksymalne powtó-
rzenia. Kombinatoryczne własności powtórzeń w słowach nie zostały jeszcze
dokładnie opisane pomimo wieloletnich badań w tej dziedzinie (prace prekur-
sora dziedziny, A. Thuego, pochodzą z początków ubiegłego wieku), jest to
prawdziwe zwłaszcza w przypadku kwadratów. W rozprawie koncentrujemy
się na strukturze powtórzeń silnie okresowych: podsłów będących wyższymi
potęgami oraz maksymalnych powtórzeń sześciennych. Uzyskujemy łatwiej-
sze i dokładniejsze oszacowania niż w przypadku powtórzeń o długich okre-
sach. Otrzymane narzędzia pozwalają sformułować nowe własności ogólnych
maksymalnych powtórzeń.
Przez squares(n) oraz cubes(n) oznaczamy odpowiednio maksymalną licz-

bę różnych kwadratów oraz maksymalną liczbę różnych sześcianów w sło-
wie długości n. Przez runs(n) oraz cubic-runs(n) oznaczamy maksymalną
liczbę maksymalnych powtórzeń i, odpowiednio, maksymalnych powtórzeń
sześciennych w słowie długości n, a przez exp-runs(n) oraz exp-cubic-runs(n)
– maksymalną sumę wykładników odpowiednich powtórzeń. Wiadomo, że
wszystkie podane funkcje są liniowe względem n, jednakże dokładne osza-
cowania asymptotyczne nie są jeszcze znane. W rozprawie otrzymaliśmy
nowe oszacowania dotyczące powtórzeń silnie okresowych, tzn. sześcianów:
0,5n − 2√n ¬ cubes(n) ¬ 0,8n oraz maksymalnych powtórzeń sześcien-
nych: 0,41n < cubic-runs(n) < 0,5n. Przedstawione przez nas ulepszone
oszacowania na maksymalną sumę wykładników maksymalnych powtórzeń,
tj. 2,035n < exp-runs(n) < 4,1n, obalają hipotezę postawioną przez Kolpa-
kova i Kucherova w 1999 roku, orzekającą, że exp-runs(n) ¬ 2n. Uzyskaliśmy
także lepsze ograniczenie górne 2,5n na funkcję exp-cubic-runs(n). Większość
podanych w pracy ograniczeń dolnych została otrzymana w wyniku ekspery-
mentów z wykorzystaniem programów komputerowych.
Przedstawiamy także nowe liniowe algorytmy związane ze zliczaniem po-

wtórzeń. Korzystając ze struktury maksymalnych powtórzeń w słowie, otrzy-
mujemy algorytm znajdujący liczbę kwadratów, sześcianów i wyższych po-
tęg oraz wyszukujący wszystkie różne potęgi. Kolejny algorytm pozwala na
wyznaczanie wszystkich okresów lokalnych w słowie w czasie liniowym. Na-
sze metody są istotnie prostsze od znanych wcześniej liniowych algorytmów
rozwiązujących podane problemy i pokazują nowe związki strukturalne po-
między różnymi typami powtórzeń.
Wyniki zawarte w rozprawie zostały wcześniej opublikowane w pracach

[17, 18, 21, 52]. Projekt został sfinansowany ze środków Narodowego Centrum
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Chapter 1

Introduction

Repetitions and periodicities in words are two of the fundamental topics in
combinatorics on words [5, 23, 57] initiated by A. Thue [72]. These notions are
widely used in many fields, such as combinatorics on words, pattern match-
ing, automata theory, formal language theory, data compression, molecular
biology etc. A deeper description of the motivation and related topics can be
found in a survey by Crochemore et al. [14].

We consider several types of repetitions in a word: powers (squares, cubes
etc.), runs and cubic runs. The k-th power of a word u, uk, is composed of k
juxtaposed occurrences of this word. The square and the cube are obviously
the second and the third power. A word u is called periodic with the period
p if ui = ui+p holds for all i. A run, also called a maximal repetition, is a
periodic factor of the word u in which the shortest period repeats at least
twice. A run must be maximal, i.e., if extend it by one letter its period
increases. A cubic run is similar, but is has to contain at least 3 occurrences
of the period.

We study repetitions from a combinatorial point of view— finding bounds
on the number of repetitions of a given type that a word may contain — and
an algorithmic point of view — efficiently identifying factors being repetitions
of different types.

1.1 Words and Repetitions

We consider words u over a finite alphabet Σ, u ∈ Σ∗. The empty word is
denoted by ε. The positions in u are numbered from 1 to |u|. By Σn we denote
the set of all words of length n from Σ∗. For u = u1u2 . . . un, let us denote
by u[i . . j] a factor of u equal to ui . . . uj (in particular u[i] = u[i . . i]). We
denote by u(i) a prefix u[1 . . i] and by u

(i) a suffix u[i . . n].

13



We say that an integer p is the (shortest) period of a word u = u1u2 . . . un
(notation: p = per(u)) if p is the smallest positive integer such that ui = ui+p
holds for all 1 ¬ i ¬ n− p.
If u = wk (k is a non-negative integer), that is u = ww . . . w (k times),

then we say that u is the k-th power of the word w. A square is a second
power of a non-empty word, and a cube is a third power of a non-empty
word. By squares(u) we denote the number of different square factors of the
word u, and by cubes(u) we denote the number of different cubic factors of
u. For integer n  1, by squares(n) and cubes(n) we denote the maximum of
squares(u) and cubes(u) over all u ∈ Σn, see also Fig. 1.1.

a a a a a a b b a b b a b b a b a b b a b a b b a b a b a b

Figure 1.1: Example of a word with 11 different cubes. This is a word of
length 30 with the maximum number of cubes among all binary words of the
same length

A run (also called a maximal repetition) in a word u is an interval [i, j]
such that:

• the period p of the associated factor u[i . . j] satisfies 2p ¬ j − i+ 1,

• the interval cannot be extended to the left nor to the right, without
violating the previous property, that is, u[i − 1] 6= u[i + p − 1] and
u[j − p+ 1] 6= u[j + 1], provided that the respective letters exist.

Each run can be represented as a triple (i, j, p). The (fractional) exponent of
a run v, denoted exp(v), is defined as (j − i + 1)/p. A run is called a cubic
run if exp(v)  3. For simplicity, in the rest of the text we sometimes refer
to runs or cubic runs as to occurrences of the corresponding factors of u.

By R(u) we denote the set of runs in u and by CR(u) we denote the set
of cubic runs in u. We also introduce the following notation:

• runs(u) = |R(u)| and cubic-runs(u) = |CR(u)| are the number of runs
and cubic runs in u respectively,

14



• exp-runs(u) and exp-cubic-runs(u) are the sum of exponents of runs and
cubic runs in u respectively.

For a positive integer n, we use the same notations runs(n), cubic-runs(n),
exp-runs(n) and exp-cubic-runs(n) to denote the maximal value of the re-
spective function for a word of length n. By cubic-runs2(n) we denote the
maximum over all such binary words.

b a a a b a a b a a a b a a b a a a b a a b a a b

Figure 1.2: All runs present in the word baaabaabaaabaabaaabaabaab are
indicated by wavy curves

Example 1.1. Consider the word from Fig. 1.2. This word contains a run
v = (1, 24, 7), corresponding to the factor baaabaabaaabaabaaabaabaa. The
exponent of this run is exp(v) = 33

7
, hence v is a cubic run. On the other

hand, the run v′ = (3, 10, 3), corresponding to the factor aabaabaa, is not
cubic, exp(v′) = 22

3
.

1.2 Previous Work on Squares and Powers

1.2.1 Combinatorial Results

The function squares(n) is known to satisfy squares(n) = O(n), this means
that all the different squares in a word can be represented in linear space.
Particular bounds on this function were given in [31]: n−o(n) ¬ squares(n) ¬
2n. The upper bound is obtained by showing that each position in a word may
hold at most two rightmost occurrences of squares in the word. Afterwards
this bound was slightly improved [39, 40] to squares(n) ¬ 2n − Θ(log n).
Recent attempts to reduce the gap between the bounds, basing on different
approaches [25, 27], have not proved successful yet.
Obviously, the maximal number of occurrences of squares in a word of

length n can be Θ(n2), simply consider the word an. Several authors studied
the maximal number of occurrences of primitively rooted squares [8] and

15



primitively rooted k-th powers for any k  2 [10] and in both cases Θ(n log n)
bounds have been obtained.
The maximal number of squares was also considered for special families

of words: Fibonacci words [32, 42] and, more generally, Sturmian words [24,
62, 63].

1.2.2 Algorithmic Results

Multiple algorithms for finding powers in a word have been presented. The
largest part of the related literature deals with different approaches to search-
ing for squares in a word. Most of the existing algorithms are rather complex.
The first approach is to check if a word contains any square factor at all,
or, otherwise, is square-free. Denote by n the length of the considered word.
O(n log n) time algorithms for square-free testing are presented in [16, 60, 66]
(the algorithm in [66] is randomized). The optimal O(n) time algorithms are
given in [9, 60].
For the problem of finding all different squares, there is a very complex

linear time algorithm using suffix trees [37].
Another approach is to find all occurrences of primitively rooted squares

in a word, that is, factors of the word in which the shortest period occurs
exactly twice. A number of O(n log n) time algorithms reporting all such
occurrences can be found in [3, 8, 51, 59, 71]. Due to the lower bound from
[10] these algorithms are time optimal.
Yet another approach is to report simply all occurrences of squares in a

word. Denote the number of such occurrences by z, recall that z could be
Θ(n2). Both O(n log n + z) time algorithms [54, 59, 71] and O(n + z) time
algorithms [37, 49] are known for this problem.
Finally, there are more recent results related to on-line square detection

(that is, when the letters of the word are given one by one), improving the
time complexity from O(n log2 n) [56] to O(n log n) [44] and O(n) [7].

1.3 Previous Work on Runs

1.3.1 Combinatorial Results

The concept of runs (also called maximal repetitions) has been introduced to
represent all repetitions in a word in a succinct manner. The crucial property
of runs is that their maximal number in a word of length n is O(n), see
Kolpakov and Kucherov [48]. This fact is the cornerstone of any algorithm
computing all repetitions in a word of length n in O(n) time.
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Due to the work of many authors, tighter bounds on runs(n) have been ob-
tained. The lower bound of 0.927n was first proved by Franek and Yang [34].
Afterwards, it was improved by Kusano et al. [53] to 0.944565n employing
computer experiments, and recently by Simpson [70] to 0.944575712n. On the
other hand, the first explicit upper bound of 5n was settled by Rytter [67],
afterwards it was systematically improved to 3.48n by Puglisi et al. [65],
3.44n by Rytter [69], 1.6n by Crochemore and Ilie [12, 13] and 1.52n by
Giraud [36]. The best known result runs(n) ¬ 1.029n is due to Crochemore
et al. [15], but it is conjectured [48] that runs(n) < n. The maximal number
of runs was also studied for special types of words and tight bounds were
established for Fibonacci words [42, 48, 68] and Sturmian words [4, 33, 62].
Cubic runs were also studied in the context of Sturmian words [64].
A stronger property of runs is that the maximal sum of their exponents

in a word of length n is linear in terms of n, exp-runs(n) = O(n), see the final
remarks in Kolpakov and Kucherov [50]. This fact has applications to the
analysis of various algorithms, such as computing branching tandem repeats:
the linearity of the sum of exponents solves a conjecture [37, 71] concerning
the linearity of the number of maximal tandem repeats and implies that all
can be found in linear time. The proof that exp-runs(n) < cn in Kolpakov and
Kucherov’s paper [50] is very complex and does not provide any particular
value for the constant c. A bound can be derived from the proof of Rytter [67]
but the paper mentions only that the obtained bound is “unsatisfactory” (it
seems to be 25n). The first explicit bound of 5.6n for exp-runs(n) was given
by Crochemore and Ilie [13], who claim that it could be improved to 2.9n
employing computer experiments. As for the lower bound on exp-runs(n),
no exact values were previously known and it was conjectured [49, 50] that
exp-runs(n) < 2n.
More recently, some work has been done on “maximal repetitions” with

exponent less than two [47].

1.3.2 Algorithmic Results

O(n log n) time algorithms computing all the runs in a word are present
explicitly or implicitly in [3, 8, 16, 59, 71]. A first approach to linear time runs
computation was made by Main [58], who showed how to compute leftmost
occurrences of all runs in O(n) time. A linear time algorithm computing the
runs in Fibonacci words was proposed in [42]. Finally, a linear time algorithm
computing all the runs in any word, basing on Main’s algorithm, was given
by Kolpakov and Kucherov [48, 49, 50].
The algorithm of Kolpakov and Kucherov uses Farach’s linear time al-

gorithm for suffix tree construction [28] to perform a Lempel-Ziv factor-
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ization [9, 55] of the word. More practical algorithms compute the LZ-
factorization directly from suffix arrays [1]. Several linear time algorithms
finding all the runs in a word with efficient implementations are also given
in [6].

1.4 Our Results

We present several new results related both to combinatorics and to algo-
rithmics of repetitions in words. We investigate highly periodic repetitions:
cubes and cubic runs. We show that one can obtain tighter estimations for
cubes(n) than for squares(n):

0.5n− 2√n ¬ cubes(n) ¬ 0.8n. (1.1)

For the lower bound we construct an infinite family of binary words, whereas
the upper bound follows from several periodic properties of cubes. The anal-
ysis of cubes can be found in Chapter 3.
We give the following general bounds on the function cubic-runs(n):

0.41n < cubic-runs(n) < 0.5n. (1.2)

Here we show that cubic-runs(n) = O(n) in a much simpler way than this
property is proved for the function runs(n). For this we introduce so called
handle functions, basing on properties of Lyndon words (this is described in
Chapter 2). As for the lower bound, we again give an infinite family of binary
words, this family was constructed using extensive computer experiments.
We also set an improved 0.48n upper bound in the case of binary alphabet.
Results related to cubic runs are presented in Chapter 4.
The handle function tool can also be used to improve the known proven

upper bound on the maximal sum of exponents of runs in a word. We also
bring down a conjecture by Kolpakov and Kucherov [49, 50] stating that
exp-runs(n) < 2n by showing a family of binary words for which the sum of
exponents of runs is greater than 2.035n. We obtain the following bounds:

2.035n < exp-runs(n) < 4.1n. (1.3)

Additionally we provide an improved upper bound of 2.5n for the function
exp-cubic-runs(n). Details can be found in Chapter 5.
On the algorithmic side, we show how to take advantage of linear upper

bounds for the maximal number of different types of repetitions in a word to
obtain efficient algorithms enumerating and counting repetitions. We provide
linear time algorithms which, knowing all the runs in a word, find all different
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squares or cubes in a word, count the number of all occurrences of squares
and cubes, and find all local periods in a word. These algorithms are con-
siderably simpler than the previously known linear time algorithms for these
problems [37, 26], use data structures with smaller space demands (e.g., suf-
fix arrays instead of suffix trees) and show new structural relations between
the corresponding notions of periodicity. The algorithms are described in
Chapter 6.
Most parts of this dissertation come from the following papers:

• On the Maximal Number of Cubic Subwords in a String, joint work with
M. Kubica, W. Rytter and T. Waleń, preliminary version in Proceedings
of International Workshop on Combinatorial Algorithms IWOCA 2009
[52], final version under review at European Journal of Combinatorics

• On the Maximal Number of Cubic Runs in a String, joint work with
M. Crochemore, C. S. Iliopoulos, M. Kubica, W. Rytter and T. Waleń,
preliminary version in Proceedings of Language and Automata Theory
and Application LATA 2010 [18], final version in Journal of Computer
and System Sciences [19]

• On the Maximal Sum of Exponents of Runs in a String, joint work
with M. Crochemore, M. Kubica, W. Rytter and T. Waleń, prelimi-
nary version in Proceedings of International Workshop on Combinato-
rial Algorithms IWOCA 2010 [21], final version in Journal of Discrete
Algorithms [22]

• Extracting Powers and Periods in a String from Its Runs Structure,
joint work with M. Crochemore, C. S. Iliopoulos, M. Kubica, W. Rytter
and T. Waleń, preliminary version in Proceedings of String Processing
and Information Retrieval SPIRE 2010 [17].
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Chapter 2

Combinatorial-Algorithmic

Toolbox

In this chapter we present several crucial tools related to text processing and
combinatorics on words that we use throughout the dissertation. We start by
recalling important data structures related to text processing: suffix arrays
with basic applications of Range Minimum Query data structure. Afterwards
we recall the notions of primitive words and Lyndon words and introduce a
relation between runs and Lyndon words. This relation, called the Lyndon
representation of a run, is used both to improve the upper bounds on the
quantity of repetitions in a word and to construct efficient algorithms for
enumerating repetitions.

2.1 Suffix Arrays

The suffix array of a word u consists in three tables: SUF, LCP and RANK,
see Table 2.1. The SUF array stores the list of positions in u sorted according
to the increasing lexicographic order of suffixes starting at these positions,
i.e.:

u[SUF[1] . . n] < u[SUF[2] . . n] < . . . < u[SUF[n] . . n].

Thus, indices of SUF are ranks of the respective suffixes in the increasing
lexicographic order. The LCP array is also indexed by the ranks of the suffixes,
and stores the lengths of the longest common prefixes of consecutive suffixes
in SUF. Denote by lcp(i, j) the length of the longest common prefix between
u[i . . n] and u[j . . n] (for 1 ¬ i, j ¬ n). Then, we set LCP[1] = −1 and, for
1 < i ¬ n, we have:

LCP[i] = lcp(SUF[i− 1], SUF[i]).
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Finally, the RANK table is an inverse of the SUF array:

SUF[RANK[i]] = i for i = 1, 2, . . . , n.

All tables comprising the suffix array can be constructed in O(n) time [11,
45, 46].

b a a a b a a b a a a b a a b a a a b a a b a a b

index i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

RANK[i] 19 1 8 15 23 5 12 20 2 9 16 24 6 13 21 3 10 17 25 7 14 22 4 11 18

rank r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SUF[r] 2 9 16 23 6 13 20 3 10 17 24 7 14 21 4 11 18 25 1 8 15 22 5 12 19
LCP[r] -1 16 9 2 3 12 5 6 15 8 1 2 11 4 5 14 7 0 1 17 10 3 4 13 6

Table 2.1: The suffix array of the word baaabaabaaabaabaaabaabaab

2.2 Range Minimum Queries

Define the range minimum query data structure (RMQ, in short) as follows.
Assume that we are given an array A[1 . . n] of integers. This array is prepro-
cessed to answer the following form of queries: for an interval [i, j] (where
1 ¬ i ¬ j ¬ n), find the minimum value A[k] for i ¬ k ¬ j. The best known
RMQ data structures have O(n) preprocessing time and O(1) query time
[30, 38].
A common example of using RMQ data structure in text algorithms is

computing the longest common extensions, i.e., longest common prefixes be-
tween any two suffixes of a word in O(1) time, with O(n) preprocessing
time. In order to compute lcp(i, j) we observe that the suffixes starting
at the positions i and j are somehow located in the SUF array. Let x be
min(RANK[i],RANK[j]) and y be max(RANK[i],RANK[j]). Then:

lcp(i, j) = min{LCP[x+ 1], LCP[x+ 2], . . . , LCP[y]},
provided that i 6= j, see [11, 20, 41]. However, this is exactly the RMQ query
over the LCP array which can be answered in O(1) time.

2.3 Primitive Words and Lyndon Words

We start this section with a fundamental fact related to the notion of a
period.
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Lemma 2.1 (Periodicity lemma [29, 57]). If a word of length n has two
periods p and q, such that p + q ¬ n + gcd(p, q), then gcd(p, q) is also a
period of the word.

Often it suffices to use a so called weak version of this lemma, where we only
assume that p+ q ¬ n.
The primitive root of a word u, denoted root(u), is the shortest word w

such that wk = u for some positive integer k. We call a word u primitive if
root(u) = u, otherwise it is called non-primitive.
By rot(u, c) let us denote a cyclic rotation of the word u ∈ Σn, obtained

by moving (c mod n) first letters of u to its end (preserving the order of
the letters). We say that the words u and rot(u, c) are cyclically equivalent.
Assume that Σ is totally ordered by ¬, which induces a lexicographical order
on Σ∗, also denoted by ¬. We say that λ ∈ Σ∗ is a minimal Lyndon word if it
is primitive and minimal in the class of words that are cyclically equivalent
to it. Similarly, we define a maximal Lyndon word as a word that is maximal
among all its cyclic rotations. By Lyndon words we mean both minimal and
maximal Lyndon words.
Lyndon words admit several useful properties, see [57]. We will use the

fact that a Lyndon word has no non-trivial prefix that is also its suffix.

Example 2.2. The words a, b, abbbb and abababb are minimal Lyndon
words, the words a, ba and bbabbaa are maximal Lyndon words, whereas the
words aabaab and abaabb are not Lyndon words.

It is a simple and well-known fact [5] that if u and v are cyclically equiv-
alent then |root(u)| = |root(v)|. Hence, we can define the Lyndon root of a
word u, L-root(u), as the (only) minimal Lyndon word cyclically equivalent
to root(u), and the maximal Lyndon root of u, LM -root(u), as the (only)
maximal Lyndon word cyclically equivalent to root(u).

2.4 Lyndon Representations

Now we extend the notions of Lyndon roots of words to runs. Let u ∈ Σn.
Let v = (i, j, p) be a run in u. We define the Lyndon root of v, denoted
L-root(v), as L-root(u[i . . i + p − 1]), and the maximal Lyndon root of v,
denoted LM -root(v), as LM -root(u[i . . i+ p− 1]). Note that these notions are
slightly different from the corresponding notions for words.

Example 2.3. Consider the word from Fig. 1.2. This word contains a run
v = (1, 24, 7), corresponding to the factor baaabaabaaabaabaaabaabaa. We
have L-root(v) = aaabaab and LM -root(v) = baabaaa.
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Each run v can be uniquely represented (Lyndon representation) in the
following form:

v
.
= λ(a) · λm · λ(b) (2.1)

where λ = L-root(v) and 0 ¬ a, b < per(v), see Fig. 2.1. We say that v is a
λ-run.

λ = L-root(v) λ λ
λ(b)λ

(a)

m ourrenes

suf (v)

Figure 2.1: A graphical view of the Lyndon representation of a run v =
λ(a) · λm · λ(b)

Example 2.4. For the run v from Example 2.3, we have λ = aaabaab and
the following Lyndon representation: v

.
= λ(1) · λ3 · λ(2).

In this section we describe a linear time algorithm that groups all runs
within u according to their Lyndon roots (Theorem 2.7).
For a run v = (i, j, p), define suf (v) = k, where k  i is the smallest

index for which:
u[k . . k + p− 1] = λ,

see Fig. 2.1. This parameter, together with the period per(v) = |λ|, pro-
vides a unique indication of the Lyndon root of the run. Additionally, define
rank(v) = RANK[suf (v)]. In the following two lemmas we show how to com-
pute the values of suf (v) and rank(v) and how to use these values to compare
Lyndon roots of runs.

Lemma 2.5. After O(n) time preprocessing, for any run v in u the values
of suf (v) and rank(v) can be computed in constant time.

Proof. Let v = (i, j, p) and let λ = L-root(v). The value of rank(v) can be
computed using Range Minimum Query on the interval I = [i, i + p − 1] of
the table RANK. Indeed, note that the prefixes of length p of the suffixes
from the set S = {u[d . . n] : d ∈ I} are exactly all cyclic rotations of λ,
more formally:

{s(p) : s ∈ S} = {rot(λ, c) : c = 0, 1, . . . , p− 1}.
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b a a a b a a b a a a b a a b a a a b a a b a a b

19 1 8 15 23 5 12 20 2 9 16 24 6 13 21 3 10 17 25 7 14 22 4 11 18

Figure 2.2: The word baaabaabaaabaabaaabaabaab with its RANK table, see
also Table 2.1. The Lyndon root of the run v = (baaabaa)3baa is indicated by
the suffix of rank min{19, 1, 8, 15, 23, 5, 12} = 1, hence L-root(v) = aaabaab

Hence, the lexicographically minimal element of the set S starts with the
prefix λ. And this element can be identified using the aforementioned RMQ
query, see also Fig. 2.2.

Recall that the suffix array of u can be computed in O(n) time (see Sec-
tion 2.1). Also recall that RMQ for an array of length n can be implemented
with O(n) preprocessing time and O(1) query time (see Section 2.2). This
concludes the computation of rank(v) in the desired time complexity. Finally,
suf (v) = SUF[rank(v)], which can be computed in constant time.

Lemma 2.6. After O(n) time preprocessing, equality of Lyndon roots of runs
in u can be tested in O(1) time.

Proof. The Lyndon roots of two runs v1 and v2 are equal if and only if
per(v1) = per(v2) and the longest common prefix of the suffixes of u at
positions suf (v1) and suf (v2) is at least per(v1). Recall from Section 2.2 that
longest common prefixes of arbitrary suffixes can be computed using RMQ on
the LCP array, which can be performed in O(n) preprocessing time and O(1)
query time. Hence, the conclusion of the lemma follows from Lemma 2.5.

We now show how to partition R(u) into subsets corresponding to differ-
ent Lyndon roots of runs λ1, λ2, . . . , λt.

Theorem 2.7. The set R(u) of all runs within u ∈ Σn can be partitioned
in O(n) time into pairwise disjoint classes R1,R2, . . . ,Rt corresponding to
runs with Lyndon roots λ1, λ2, . . . , λt, where λi 6= λj for i 6= j.

Proof. We start the proof of the theorem with the following claim.

Claim 2.8. Let L = v1, v2, . . . , va be a list of all runs in u with period p
ordered according to their ranks: rank(v1) < rank(v2) < . . . < rank(va). For
a given minimal Lyndon word λ, |λ| = p, all runs in u with the Lyndon root
λ form a sublist of L composed of a number of consecutive elements.
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Proof. Let us consider three runs vi1 , vi2 and vi3 , 1 ¬ i1 < i2 < i3 ¬ a.
Assume that L-root(vi1) = L-root(vi3) = λ. Then

lcp(suf (vi1), suf (vi3))  p.

Due to the rank inequalities we have

lcp(suf (vi1), suf (vi3)) = min(lcp(suf (vi1), suf (vi2)), lcp(suf (vi2), suf (vi3))).

Therefore
lcp(suf (vi1), suf (vi2))  p

and consequently L-root(vi2) = L-root(vi1) = λ.

Using Claim 2.8, the requested partition of R(u) can be obtained in O(n)
time in the following three steps, recall that |R(u)| = O(n).
1. Compute the values of suf (v) and rank(v) for all runs in R(u) — O(n)
time in total due to Lemma 2.5.

2. Represent all runs v in u as pairs (per(v), rank(v)), sort all such pairs
lexicographically — O(n) time using Radix Sort.

3. Group runs with equal Lyndon roots — due to Claim 2.8, the groups
consist in consecutive elements of the sorted list of pairs, and due to
Lemma 2.6, equality of Lyndon roots of runs can be tested in O(1)
time with O(n) preprocessing time. This yields O(n) time complexity
of this step.

Define the compact Lyndon representation of a run v = (i, j, p) as a tuple:

v ⊜ (i, j, p, a,m, b, ℓ) (2.2)

where ℓ is the length of v and a, m, b are defined as in the (ordinary) Lyndon
representation (2.1).

Example 2.9. For the run v from Example 2.4, v ⊜ (1, 24, 7, 1, 3, 2, 24).

Due to the following lemma, compact Lyndon representations of runs can be
computed efficiently.

Lemma 2.10. Let u be a word of length n. After O(n) time preprocessing,
compact Lyndon representations of runs in u, each run given as a triple
(i, j, p), can be computed in constant time.

Proof. For a run v = (i, j, p), knowing the value of suf (v) the compact Lyn-
don representation of v can be computed using the following additional for-
mulas:

ℓ = j − i+ 1, a = suf (v)− i, m = ⌊(ℓ− a)/p⌋ , b = ℓ− a−mp.
Hence, the statement is a consequence of Lemma 2.5.
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2.5 Handles of Runs

For u ∈ Σn, we denote by P = {p1, p2, . . . , pn−1} the set of inter-positions in
u that are located between pairs of consecutive letters of u. We show how to
use combinatorial properties of Lyndon roots of runs to assign to each run a
set of inter-positions from P called a handle of the run so that these sets for
different runs are disjoint.

Definition 2.11. We say that F : R(u)→ subsets(P) is a handle function
for the runs in word u if the following condition holds:

F (v1) ∩ F (v2) = ∅ for any v1 6= v2. (2.3)

We say that F (v) is the set of handles of the run v.

We define a function H : R(u) → subsets(P). Let λ = L-root(v) and λ′ =
LM -root(v). H(v) is defined as follows, see Fig. 2.3 and 2.4:

(a) if λ 6= λ′ then H(v) contains all inter-positions in the middle of any
occurrence of λ2 in v, and in the middle of any occurrence of (λ′)2 in v,

(b) if λ = λ′ then H(v) contains all inter-positions within v.

b a a a b a a b a a a b a a b a a a b a a b a a b
* * * * * * * * * *

* * *

∅

* *

* *

* * *

∅

Figure 2.3: Handle sets H(v) of all runs in the word from Fig. 1.2, handles
denoted by stars. Note that each cubic run has at least 2 handles. For two
runs with period 4 the handle set is empty

Case (b) of the above definition requires an additional explanation, stated in
the following simple lemma.

Lemma 2.12. If λ = λ′ then |λ| = |λ′| = 1.

Proof. Assume, to the contrary, that |λ|  2. The word λ is a (minimal)
Lyndon word, therefore it must contain at least two distinct letters, let us
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say: a = λ[1] and b = λ[i] 6= a. If b < a (b > a) then the cyclic rotation of
λ by i − 1 letters is lexicographically smaller than λ (greater than λ) and
therefore λ 6= λ′ — a contradiction. Hence, the above assumption is false and
|λ| = |λ′| = 1.

b a a a b a a b a a a b a a b a a a b a a b a a

λ λ λ

* *

λ
′

λ
′

*

(a) run v1

b b b b

* * *

(b) run v2

Figure 2.4: (a) For the run v1 with period greater than 1 we have λ 6= λ′.
(b) For the run v2 we have λ = λ′ = b (a single-letter word). The inter-
positions belonging to the sets H(v1) and H(v2) are indicated by stars, we
have |H(v1)| = |H(v2)| = 3

A crucial property of the function H is that it is a handle function.

Theorem 2.13. For any word u ∈ Σ∗, H is a handle function.

Proof. We need to show that H(v1) ∩ H(v2) = ∅ for any two different runs
v1 and v2 in u. Assume, to the contrary, that pi ∈ H(v1)∩H(v2) is a handle
of two different runs v1 and v2. By the definition of H and Lemma 2.12, pi
is located in the middle of two squares of Lyndon words: λ21 and λ

2
2, where

|λ1| = per(v1) and |λ2| = per(v2). Note that λ1 6= λ2, since otherwise runs
v1 and v2 would be the same. Without the loss of generality, we can assume
that |λ1| < |λ2|. Thus the word λ1 is both a prefix and a suffix of λ2 which
contradicts the fact that λ2 is a Lyndon word [57], see also Section 2.4.

Additional properties of handles of runs are given in the next chapters:
in Chapter 4 we show that each cubic run has at least 2 handles, and in
Chapter 5 we show how |H(v)| corresponds to exp(v) for v ∈ R(u).
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Chapter 3

Number of Cubes

We consider asymptotic bounds for the function cubes(n), denoting the max-
imal number of different cubic factors in a word of length n. Note that we
only consider different cubes, since the total number of occurrences of cubes
can be Θ(n2).
A trivial lower bound on the number of different cubic factors is the word

an with
⌊
n
3

⌋

different cubes, hence cubes(n)  n
3
for infinitely many n.

As for the upper bound, for a given word u and real k > 1, take all
repetitions of exponent k (i.e., powers with fractional exponent k) within u,
and for each such repetition pick the starting position of its last occurrence
within u. In the final remarks in the survey by Crochemore et al. [14] there is a

proof that for every k  1+ 1+
√
5
2
, each position of u contains at most one such

last occurrence of a repetition of exponent k. In particular, this conclusion
holds for cubes with k = 3, which implies the bound cubes(n) ¬ n− 2.
We improve both these bounds. Notably, the difference between our upper

bound 0.8n and lower bound 0.5n − o(n) for cubes(n) is more than three
times smaller than the corresponding difference of known bounds for squares,
i.e., 2n−Θ(log n) and n− o(n).

3.1 Structure of Cubic Occurrences

Let us start with two combinatorial facts related to cubes. The following
Lemma 3.1 is an auxiliary fact used to prove Lemma 3.2. Fig. 3.1 illustrates
the situation from Lemma 3.1.

Lemma 3.1. Assume that x = w3 and y = z3, and x is a factor of y starting
at position i and ending at position j such that

i ¬
⌈

|root(z)|
2

⌉

+ 1 and j > |z2|.
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z z z

x

i j

beginning of y

Figure 3.1: The situation from Lemma 3.1

Then, |root(x)| = |root(y)|.

Proof. Using the inequalities on i and j from the lemma, we obtain:

|x| = j − i+ 1  |z2|+ 1−
⌈

|root(z)|
2

⌉

− 1 + 1 

 2 · |z| −
⌈

|z|
2

⌉

+ 1  2 · |z| − |z|
2
=
3

2
· |z|.

Let us also observe that |root(x)| and |root(y)| are both periods of x. More-
over:

|x| = |w3| = |w|+ 2
3
· |x|  |w|+ |z|  |root(x)|+ |root(y)|.

From this, by the Periodicity Lemma, we obtain that gcd(|root(x)|, |root(y)|)
is also a period of x. However, root(x) and root(y) are factors of x, so
|root(x)| = |root(y)|, since in the opposite case one of the words root(x),
root(y) would not be primitive.

Lemma 3.2. Let v3 and w3 be two cubes with last occurrences in a word u
at positions k and i respectively, such that:

k < i ¬ k +

⌈

|root(v)|
2

⌉

.

Then:

|root(w)| = |root(v)| or |root(w)|  2 · |root(v)| − (i− k − 1).

Proof. Let us denote p = |root(v)|, q = |root(w)|, and let j be the position
of the last letter of w3. We consider two cases.
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Case 1.

Assume that the last occurrence of w3 is totally inside v3. Observe that j
must then be within the last of the three v’s, since otherwise w3 would occur
in u at position i+p or further (see also Fig. 3.1). Hence, due to Lemma 3.1,
we obtain q = p.

Case 2.

In the opposite case, let x be the maximal prefix of w3 that lays inside v3.
If p 6= q then p + q must be greater than |x|. Indeed, if p + q ¬ |x| then
both root(v) and root(w) would be factors of x, so if p 6= q, then one of them
would not be primitive due to the Periodicity Lemma. Therefore:

p+ q > |x| = |v3| − (i− k)  3p− (i− k).

Consequently q  2p− (i− k) + 1.

3.2 Upper Bound

As we have observed in the beginning of the chapter, each position within
u contains at most one last occurrence of a cube. The following notion of a
p-occurrence provides a characterization of such a cube.

Definition 3.3. Let u ∈ Σn. We say that there is a p-occurrence at position
i of u if there exists a cube v3 with primitive root of length p which occurs at
position i in u and does not occur at any further position in u.

It turns out that the primitive roots of cubes appearing close to each
other cannot be arbitrary. It is formally expressed by the following lemma.

Lemma 3.4. Let a1, a2, . . . , ap+1 be an increasing sequence of positions in a
word u, such that aj+1 ¬ aj + p for j = 1, 2, . . . , p. It is not possible for all
these positions to contain p-occurrences.

Proof. Let us assume, to the contrary, that each of the positions a1, . . . , ap+1
holds a p-occurrence. Observe that the inequalities from the hypothesis of the
lemma imply that the primitive roots of cubes occurring at these positions
are all cyclic rotations of each other. There are only p different rotations of
such primitive roots; therefore, due to the pigeonhole principle, some two of
them must be equal.
It suffices to show that all these cubes have the same length, because then

some two of them are equal, and consequently one of them is not the last
occurrence of the cube.
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Assume to the contrary that not all of the considered cubes have equal
length. Let aj and aj+1 be two considered positions, such that cubes (v

3

and w3 respectively) occurring at these positions have different lengths (3kp
and 3lp respectively, for k 6= l). Let us consider two cases. If l < k, then
3kp− 3lp  3p, and w3 occurs in u at position aj+1 + p or further. If k < l,
then 3lp−3kp  3p and v3 appears in u at position aj+p or further. In both
cases we obtain a contradiction. Hence, it is not possible that the lengths of
the cubes differ.

From now on, instead of dealing with words, we will be working with
sequences of cubic occurrences within words. For a word u, we introduce a
sequence Cu = (ci)

|u|
i=1 defined as: ci = 0 if there are no last cubic occurrences

in position ui, and ci = q if there is a q-occurrence in position ui. For an
integer sequence c, by

R(c) =
positive(c)

|c|
we denote the number of positive elements of c divided by the length of c.
Now the desired upper bound (1.1) can be expressed as: for any word u,
R(Cu) ¬ 45 .
A position i in a sequence c is zeros-rich if ci > 0 and there is a block of

at least
⌈
ci
2

⌉

zeros following immediately this position in c.

Definition 3.5. A nonempty finite sequence c composed of non-negative in-
tegers is called a special sequence if it satisfies all the following conditions:

(a) If ci and cj are two consecutive nonzero elements of c (i.e., i < j, ci, cj >

0 and ci+1 = . . . = cj−1 = 0) then j − i ¬
⌈
ci
2

⌉

.

(b) If ci and cj are two consecutive nonzero elements of c, then either ci = cj
or cj  2ci − (j − i− 1).

(c) No q + 1 consecutive nonzero elements of c are equal to q.

(d) The last nonzero position in c, if exists, is zeros-rich.

Example 3.6. The following sequences are special:

1224444888888880000, 2404044006000, 000, 100.

The following sequences are not special:

1202200, 33000300, 3330, 122444470000.
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Lemma 3.7. For any word u, the sequence Cu admits a prefix which is a
special sequence.

Proof. Let Cu = (ci)
|u|
i=1. If c1 = 0 then the prefix of Cu of length 1 is a special

sequence. From now on we assume that c1 > 0.
First of all, let us prove that there exists a zeros-rich position within Cu.

Let q be the maximum element of the sequence Cu and let i be the rightmost
position in Cu such that ci = q. From Lemma 3.2,

⌈
q

2

⌉

positions following i
contain elements equal to zero. Thus, the position i is a zeros-rich position.
Let k be the first zeros-rich position within Cu and let ck = q. We prove

that the prefix of Cu of length l = k+
⌈
q

2

⌉

, which we denote by c′, is a special

sequence. It suffices to prove that the sequence c′ satisfies the conditions
(a)-(d) from the above definition.
The condition (d) follows immediately from the choice of the position

k. As for the condition (a), if j − i >
⌈
c′
i

2

⌉

, then the position i would be a

zeros-rich position within c′, hence also within Cu, preceding the position k,
which is not possible. The fact that c′ satisfies the condition (b) is implied by
Lemma 3.2 and the condition (a). Finally, by Lemma 3.4 and due to (a) we
have that no q + 1 consecutive positive elements of c′ are equal to q, which
implies point (c) of the definition of a special sequence. This concludes the
proof that c′ is a special sequence which is a prefix of Cu.

Now we introduce a notion of a pessimistic sequence, which we claim
maximizes the value of R(c) among all special sequences (see the following
Lemma 3.9).

Definition 3.8. A nonempty sequence c composed of non-negative integers is
called a pessimistic sequence if it is a special sequence admitting the following
additional property: for any q > 0, either the element q does not occur in c
or it occurs exactly q times, in q consecutive elements of c.

c1 = 3 3 3 0 5 . . . 5
︸ ︷︷ ︸

5 times

0 0 20 . . . 20
︸ ︷︷ ︸

20 times

0 . . . 0
︸ ︷︷ ︸

6 times

34 . . . 34
︸ ︷︷ ︸

34 times

0 . . . 0
︸ ︷︷ ︸

17 times

c2 = 1 2 2 4 4 4 4 8 . . . 8
︸ ︷︷ ︸

8 times

. . . 2k . . . 2k
︸ ︷︷ ︸

2k times

0 . . . 0
︸ ︷︷ ︸

2k−1 times

Figure 3.2: Examples of pessimistic sequences. The length of the sequence
c1 is 88 and it contains 62 positive elements. The ratio is R(c1) = 62/88 ≈
0.70 < 4/5. For c2, we have |c2| = 5 · 2k−1 − 1 and positive(c2) = 2k+1 − 1,
hence R(c2) tends to

4
5
when k →∞
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Lemma 3.9. If c is a special sequence then there exists a pessimistic sequence
c′ for which R(c′)  R(c).

Proof. Let c be a special sequence. Observe that if c contains such a pair of
equal elements ci = cj > 0, that all the elements between them are equal
zero, then all the elements between ci and cj can be removed from c without
decreasing R(c). Also, if c contains a subsequence of consecutive elements
equal to q (q > 0) of length less than q then this subsequence can be ex-
tended to the length q without decreasing R(c). Observe that none of these
steps violates the properties (a)–(d) of a special sequence. By performing
the described modification steps a sufficient number of times, we obtain a
pessimistic sequence.

Now we proceed with a proof of the key property of pessimistic sequences,
which will enable us to prove the 4

5
n upper bound on the number of different

cubes in a word.

Lemma 3.10. If c is a pessimistic sequence then R(c) ¬ 4
5
.

Proof. If c contains only zeros then the conclusion trivially holds. From now
on we assume that c contains at least one positive element.
Define a trimmed pessimistic sequence as a prefix of a pessimistic sequence

ending at its last zeros-rich position. For a trimmed pessimistic sequence c
ending with an element p (p > 0), we define

R′(c) =
positive(c)

|c|+ p
2

.

We will show by induction on the number of different positive elements of a
trimmed pessimistic sequence c that R′(c) ¬ 4

5
. This will imply that in each

(ordinary) pessimistic sequence the ratio of positive elements is at most 4
5
.

If there is exactly one such positive element p then c is a sequence of p
elements equal to p preceded by r elements equal to zero (possibly r = 0).
Thus:

R′(c) =
p

r + p+ p
2

¬ 13
2

=
2

3
<
4

5
.

Now assume that there are at least two different positive elements in c.
Let p be the last element in c. Then c ends with: q elements equal to q, for
some q > 0, l elements equal to 0, for some 0 ¬ l <

⌈
q

2

⌉

, and p elements
equal to p:

c = . . . q . . . q
︸ ︷︷ ︸

q times

0 . . . 0
︸ ︷︷ ︸

l times

p . . . p
︸ ︷︷ ︸

p times

.
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Let c′ be a prefix of c ending at the last element equal to q. Hence, |c| =
|c′| + l + p and positive(c) = positive(c′) + p. Note that c′ is a trimmed
pessimistic sequence. Hence, by the inductive hypothesis, we have:

R′(c′) =
positive(c′)

|c′|+ q
2

¬ 4
5
,

equivalently:

5 · positive(c′) ¬ 4 · |c′|+ 2q. (3.1)

Note that, by the condition (a) of the definition of a special sequence, we
have p  2q − l. Now from (3.1) we conclude that:

5 · positive(c′) ¬ 4 · |c′|+ p+ l

which implies that:

5(positive(c′) + p) ¬ 4
(

|c′|+ l + 3
2
p
)

.

From the latter inequality we conclude that:

4

5
 positive(c

′) + p

|c′|+ l + p+ p
2

=
positive(c)

|c|+ p
2

.

This inequality is equivalent to R′(c) ¬ 4
5
, which concludes the inductive

proof.

Thus we have proved that for any pessimistic sequence c, we have R(c) ¬
4
5
, hence, by Lemma 3.9, for any special sequence this ratio is bounded by
4
5
. Combining this observation with the fact that Cu starts with a special
sequence for any word u, we obtain the aforementioned upper bound (1.1)
on the maximal number of cubes in a word, as stated in the following theorem.

Theorem 3.11 (Upper Bound).

The number of different nonempty cubes that occur in a word of length n is
not greater than 4

5
n.

Proof. Due to Lemma 3.7, each sequence Cu is a concatenation of special
sequences. Consequently R(u) ¬ 4/5, since the frequency ratio in each com-
ponent (special sequence) is at most 4/5.
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3.3 Lower Bound

Table 3.1 contains examples of several words with higher density of cubic
factors. These words have been found using extensive computer experiments.
We show a family of binary words which yields a lower bound of 1

2
n − 2√n

for the number of different cubic factors.
For i  1, let qi be the word 0i10i+11. Let rm be the concatenation

q1q2 . . . qm, i.e.

rm =
m∏

i=1

0i10i+11.

E.g., r4 = 01001001000100010000100001000001.

n word #cubes ratio

20 01110101011011011000 7 0.35

30 000000110110110101101011010101 11 0.36

40 1101101101110111011100010001000100100100 16 0.40

50 11111111110010010010100101001010100101010010101000 20 0.40

60 10100101001010010101001010010101001010010101001010

1001010100

25 0.41

70 00000011011011010110101101010110101101010110101101

01011010101101010111

30 0.42

80 11011011010110110101101101011010110101011010110101

011010110101011010101101010111

34 0.42

90 11101101101110110110111011011011101101110110110111

0110111011011011101101110110111011101110

40 0.44

100 10001010100101010010101001010010101001010010101001

01001010010101001010010100101010010100101001010111

44 0.44

Table 3.1: Examples of words with high density of different cubic factors

Lemma 3.12. The length of rm is m
2 + 4m.

Proof. Clearly qi contains 2i+ 3 bits, so

|rm| =
m∑

i=1

2i+ 3 = m2 + 4m.

Lemma 3.13. The word rm contains exactly

m2

2
+
m

2
− 1 +

⌊
m+ 1

3

⌋

different cubes.
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Proof. Note that the concatenation qiqi+1 = 0
i10i+110i+110i+21 contains the

following i+ 1 cubes:

(

0i10
)3
,
(

0i−1102
)3
, . . . ,

(

010i
)3
,
(

10i+1
)3
.

Apart from that, in rm there are
⌊
m+1
3

⌋

cubes of the form 03, 06, 09, . . . Thus
far we obtained

m−1∑

i=1

(i+ 1) +
⌊
m+ 1

3

⌋

=
m2

2
+
m

2
− 1 +

⌊
m+ 1

3

⌋

cubes.

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

Figure 3.3: For i = 3 the word qiqi+1 contains 4 cubes of length 3i+6 = 15

It remains to show that there are no more cubes in rm. Note that we have
considered all cubes u3 for which the number of 1’s in u equals 0 or 1. On the
other hand, if this number exceeds 1 then u would contain the factor 10i1 for
some i  1 and this is impossible, since for a given i such a factor appears
within rm at most twice.

Theorem 3.14 (Lower Bound).
For infinitely many positive integers n there exists a word of length n for
which the number of cubes is greater than n

2
− 2√n.

Proof. Due to Lemmas 3.12 and 3.13, for any word rm we have:

|rm|
2
− cubes(rm) =

m2

2
+ 2m− m2

2
− m

2
+ 1−

⌊
m+ 1

3

⌋

=

=
3

2
m−

⌊
m+ 1

3

⌋

+ 1 ¬ 3
2
m− m− 1

3
+ 1 =

7

6
m+
4

3
.

(3.2)

Note that the value of the expression (3.2) does not exceed 2
√

|rm| for any
m  1:

(
7

6
m+
4

3

)2

=
49

36
m2 +

28

9
m+
16

9
< 4m2 + 16m = 4 · |rm|.
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We conclude that:

|rm|
2
− cubes(rm) < 2

√

|rm| ⇒ cubes(rm) >
|rm|
2
− 2

√

|rm|.

Interestingly, the example of Fraenkel and Simpson [31] of a family of words
that contain n− o(n) squares is quite similar to our example, but instead of
qi it uses words of the form q′i = 0

i+110i10i+11.
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Chapter 4

Number of Cubic Runs

In this section we prove an upper bound 0.5n and a lower bound 0.41n
on the function cubic-runs(n). In the special case of a binary alphabet we
improve the upper bound to 0.48n. Both upper bounds require the notion of
handles of runs, defined in Section 2.5. We start by describing the structure
of cubic runs in Fibonacci words which will be useful in the construction of
the aforementioned lower bound.

4.1 Cubic Runs in Fibonacci Words

Let us analyze the behavior of function cubic-runs for a very common bench-
mark in text algorithms, i.e., the Fibonacci words, defined recursively as:

F0 = a, F1 = ab, Fn = Fn−1Fn−2 for n  2.

Denote by Φn = |Fn|, the n-th Fibonacci number (we assume that for n < 0,
Φn = 1) and by gn the word Fn with the last two letters removed.

Lemma 4.1. [61, 68] Each run in Fn is of the form Fk ·Fk ·gk−1 (short runs)
or Fk · Fk · Fk · gk−1 (long runs), and has a period Φk.

Obviously, in Lemma 4.1 only runs of the form F 3k · gk−1 are cubic runs.
Denote by #occ(u, v) the number of occurrences (as a factor) of a word

u in a word v.

Lemma 4.2. For every k, n  0:

#occ(F 3k · gk−1, Fn) = #occ(F 3k , Fn).

Proof. Each occurrence of F 3k within Fn must be followed by gk−1, since
otherwise it would form a run different from those specified in Lemma 4.1.
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Lemma 4.3. For every k  2 and m  0:

(a) #occ(F 3k , Fm+k) = #occ(aaba, Fm),

(b) #occ(aaba, Fm) = Φm−3 − 1.

Proof. Recall the Fibonacci morphism ϕ:

ϕ(a) = ab, ϕ(b) = a.

Recall that Fn = ϕn(a). The following claim provides a useful tool for the
proof of items (a) and (b).

Claim 4.4. Assume Fn = uvw, where u, v, w ∈ {a, b}∗, v[1] = a and either
w[1] = a or w = ε. Then there exist unique words u′, v′, w′ such that:

u = ϕ(u′), v = ϕ(v′), w = ϕ(w′), Fn−1 = u
′v′w′.

And conversely, if v′ is a factor of some Fn−1 and v = ϕ(v
′) then v is a factor

of Fn.

Proof. It is a straightforward consequence of the definition of ϕ and the fact
that Fn = ϕ(Fn−1).

Now we proceed to the actual proof of the lemma. We prove item (a) by
induction on k. For k = 2 we show the following equalities:

#occ(abaabaaba, Fm+2) = #occ(ababaa, Fm+1) = #occ(aaba, Fm). (4.1)

As for the first of the equalities (4.1), the occurrence of F 32 within Fm+2
cannot be followed by the letter a (since this would imply a longer run,
contradicting Lemma 4.1) and cannot be a suffix of Fm+2 (since either F4 or
F5 is a suffix of Fm+2). Thus:

#occ(abaabaaba, Fm+2) = #occ(abaabaabab, Fm+2) = #occ(ababaa, Fm+1).

The latter of the above equalities holds due to Claim 4.4, which applies here
since no occurrence of abaabaabab in Fm+2 can be followed by the letter b
(bb is not a factor of any Fibonacci word).
To prove the second equality (4.1), we apply a very similar approach:

ababaa is not a suffix of Fm+1 and its occurrence cannot be followed by the
letter a, since no Fibonacci word contains the factor aaa. Hence, by Claim 4.4:

#occ(ababaa, Fm+1) = #occ(ababaab, Fm+1) = #occ(aaba, Fm).
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Finally, the inductive step for k  3 also follows from Claim 4.4. Indeed,
F 3k starts with the letter a and any of its occurrences in Fm+k is followed by
the letter a, since, by Lemma 4.1, it is a part of a longer run F 3k · gk−1. Thus:

#occ(F 3k , Fm+k) = #occ(F
3
k−1, Fm+k−1).

The proof of item (b) goes by induction on m. For m ¬ 3 one can easily
check that #occ(aaba, Fm) = 0, and there is exactly one occurrence of aaba
in F4. The inductive step is a conclusion of the fact that for m  5 the word
Fm contains all occurrences of aaba from Fm−1 and Fm−2 and one additional
occurrence overlapping their concatenation:

. . . ab a | aba
︸ ︷︷ ︸

ab . . .

The case of 2 ∤ m.

. . . ab aab | a
︸ ︷︷ ︸

ba . . .

The case of 2 | m.
This concludes the proof of the lemma.

Lemma 4.5. For n > 5, the word Fn contains (see Fig. 4.1):

• Φn−5 − 1 cubic runs F 32 · g1
• Φn−6 − 1 cubic runs F 33 · g2
...

• Φ1 − 1 cubic runs F 3n−4 · gn−5.
Words F0, F1, . . . , F5 do not contain any cubic runs.

Proof. It is easy to check that words Fn for n ¬ 5 do not contain any cubic
runs. Let n > 5 and k ∈ {2, 3, . . . , n− 4}. Denote m = n− k. Combining the
formulas from Lemmas 4.2 and 4.3, we obtain that:

#occ(F 3k · gk−1, Fn) = #occ(F 3k · gk−1, Fm+k) = #occ(F 3k , Fm+k)
= #occ(aaba, Fm) = Φm−3 − 1
= Φn−k−3 − 1.

We are now ready to describe the behaviour of the function cubic-runs(Fn).
The following theorem not only provides an exact formula for it, but also
shows a relationship between the number of cubic runs and the number of
different cubes in Fibonacci words. This relationship is similar to the corre-
sponding relationship between the number of (ordinary) runs and the number
of (different) squares in Fibonacci words, which always differ exactly by 1,
see [61, 68].
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abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaabaababaababaabaababaabaab

Figure 4.1: The structure of cubic runs in the Fibonacci word F9. The cubic
runs are distributed as follows: 1 run F 35 · g4, 2 runs F 34 · g3, 4 runs F 33 · g2,
and 7 runs F 32

Theorem 4.6.

(a) cubic-runs(Fn) = Φn−3 − n+ 2.

(b) limn→∞
cubic-runs(Fn)

|Fn| = 1
φ3
≈ 0.2361, where φ = 1+

√
5
2
is the golden ratio.

(c) cubic-runs(Fn) = cubes(Fn).

Proof. (a) From Lemma 4.5 we obtain:

cubic-runs(Fn) =
n−5∑

i=1

(Φi − 1) = Φn−3 − 3− (n− 5) = Φn−3 − n+ 2.

(b) It is a straightforward application of the formula from (a):

lim
n→∞
cubic-runs(Fn)

|Fn|
= lim
n→∞
Φn−3 − n+ 2
Φn

=
1

φ3
.

(c) It suffices to note that the number of different cubes of length 3Φk+1 in
F 3k+1 · gk is |gk|+ 1 = Φk − 1. Therefore:

cubes(Fn) =
n−5∑

k=1

(Φk − 1) = Φn−3 − n+ 2 = cubic-runs(Fn).
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4.2 Upper Bound

The general 0.5n upper bound on the maximal number of cubic runs in a
word of length n is based on the handle function H, defined in Section 2.5.
It suffices to note that each cubic run is guaranteed to have at least two
handles.

Lemma 4.7. If v ∈ CR(u) then |H(v)|  2.

Proof. Let λ = L-root(v) and λ′ = LM -root(v). If λ 6= λ′ then v contains
both λ2 and (λ′)2 as factors, hence |H(v)|  2. Otherwise (λ = λ′) each
inter-position in v is a handle of v, and since the length of v is at least 3, we
also have |H(v)|  2. In both cases the conclusion holds.

Theorem 4.8 (General Upper Bound).
For any n, cubic-runs(n) < 0.5n.

Proof. We use the fact that H is a handle function (Theorem 2.13). By
Lemma 4.7, |H(v)|  2 for any cubic run v. Thus we obtain:

n− 1 
∑

v∈CR(u)
|H(v)|  2 · |CR(u)| = 2 · cubic-runs(u).

The conclusion of the theorem follows.

n 3 4 5 6 7 8 9 10 11
cubic-runs2(n) 1 1 1 2 2 2 3 3 3

n 12 13 14 15 16 17 18 19 20
cubic-runs2(n) 4 4 5 5 5 6 7 7 7

n 21 22 23 24 25 26 27 28 29
cubic-runs2(n) 8 8 8 9 9 10 10 10 11

Table 4.1: The maximum number cubic-runs2(n) of cubic runs in a binary
word of length n for n = 3, . . . , 29. Example binary words for which the
maximal number of cubic runs is attained are shown in the following Table 4.2

In the case of a binary alphabet, a better upper bound can be stated (see
also see Tables 4.1 and 4.2). Let u ∈ {0, 1}n. Recall that P = {p1, p2, . . . , pn−1}
is the set of all inter-positions of u. These are all candidates for handles of
cubic runs from CR(u). As in the proof of Theorem 4.8, the maximal num-
ber of cubic runs would be obtained when there are n−1

2
cubic runs, and H

assigns to each of them exactly two handles.
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n cubic-runs2(n) u
3 1 aaa

6 2 aaabbb

9 3 aaabbbaaa

12 4 aaabaaabaaab

14 5 aaabaaabaaabbb

17 6 aaabaaabaaabbbaaa

18 7 aaabbbaaabbbaaabbb

21 8 aaabbbaaabbbaaabbbaaa

24 9 aaabbbaaabbbaaabbbaaabbb

26 10 aaabaaabaaabbbaaabbbaaabbb

29 11 aaabaaabaaabbbaaabbbaaabbbaaa

Table 4.2: Lexicographically smallest binary words u ∈ {a, b}n, for which
cubic-runs(u) = cubic-runs2(n) (see also Table 4.1)

Some cubic runs can have more than two handles. Some inter-positions
can be not a handle of any cubic runs, such inter-positions are called here
free inter-positions. The key to the improvement of the upper bound is the
localizations of free inter-positions and cubic runs with more than two han-
dles.
Denote:

Y = { 0, 01, 0001, 0111, 000111, 1, 10, 1000, 1110, 111000 }.

By an internal factor of a word w we mean any factor of w having an occur-
rence which is neither a prefix nor a suffix of w. An internal factor can also
have an occurrence at the beginning or at the end of w. For example, ab is
an internal factor of ababa, but not of abab.
Let X be the set of binary words w which satisfy at least one of the

properties:

(1) w has an internal factor which is a non-cubic run containing a square of
a word from Y ,

(2) w has a factor which is a cube of a word from Y \ {0, 1},

(3) w has a factor 0000 or 1111.

The words x ∈ X have several useful properties. For example, if x =
110001000101 then the center of the square 00010001 is a free inter-position
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in x, since it could only be a handle of a cubic run with period 4, but the
run with period 4 containing this square is not cubic. The word 1000100010
is a non-cubic run which is an internal factor of x.
On the other hand, if x contains a factor 000100010001 then it implies

a cubic run with 3 handles — the centers of the squares 00010001 and
10001000 (0001 is the minimal rotation and 1000 is the maximal rotation of
the period of the run).
The words in X can be checked to satisfy the following simple fact.

Observation 4.9. Let u ∈ {0, 1}n.

(a) If a factor u[i . . j] contains any factor satisfying point (1) of the defi-
nition of X then there is at least one free inter-position in u amongst
pi, pi+1, . . . , pj−1.

(b) If a factor u[i . . j] contains any factor satisfying point (2) or (3) then
there are at least 3 inter-positions in u amongst pi, pi+1, . . . , pj−1 which
are handles of the same cubic run.

This implies the following result.

Theorem 4.10 (Improved Upper Bound).
For any n, cubic-runs 2(n) ¬ 0.48 n.

Proof. Each binary word of length 25 contains a factor from X. It has been
shown experimentally by checking all binary words of size 25.
Let u ∈ {0, 1}n. Let us partition the word u into factors of length 25:

u[1 . . 25], u[26 . . 50], . . . (possibly discarding at most 24 last letters of u). By
Observation 4.9, it is possible to remove one inter-position from every one of
these factors so that each cubic run in u has at least two handles in the set
of remaining inter-positions.
The total number of inter-positions in u is n− 1 and we have shown that

at least
⌊
n−1
25

⌋

of them can be removed and each cubic run will have at least
two handles among remaining inter-positions. Hence:

cubic-runs(u) ¬ 1
2
·
(

n− 1−
⌊
n− 1
25

⌋)

=
1

2
·
(

24 · (n− 1)
25

+
n− 1
25
−
⌊
n− 1
25

⌋)

¬ 1
2
·
(

24 · (n− 1)
25

+
24

25

)

= 0.48n.

This completes the proof.
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4.3 Lower Bound

We start this section with a simple family of ternary words which yields a
0.4n lower bound on the function cubic-runs(n). Afterwards we improve the
bound with a family of binary words.

Theorem 4.11 (Weak Lower Bound).
For infinitely many n we have: 0.4n ¬ cubic-runs(n).
Proof. As for the lower bound, define:

u = 0313, v = 1323, w = 2303, xk = ( u
2 03 v2 13 w2 23 )k.

Observe that for any k  1, the word xk contains at least 18k − 1 cubic
runs. Indeed, we have 15k cubic runs with period 1, of the form 03, 13 or 23.
Moreover, there are 3k−1 cubic runs with period 6: 2k cubic runs of the form
(0313)

3
or (1323)

3
, fully contained within each occurrence of x1 in xk = (x1)

k,
and k − 1 cubic runs of the form (2303)3, overlapping the concatenations of
consecutive x1’s.
Note that for k  3, the whole word xk forms an additional cubic run.

Hence, in this case the word xk has length 45k and contains at least 18k
cubic runs. Thus:

cubic-runs(xk)  0.4 |xk| for k  3.

The lower bound can be improved in two ways: restricting words to be
over binary alphabet and improving the coefficient from 0.4 to 0.41. For
this, we use the following morphism, which was found experimentally using
a genetic algorithm:

ψ(a) = 001110, ψ(b) = 0001110.

Recall that Fn is the n-th Fibonacci word.
It appears that a sequence defined as wn = ψ(Fn) consists of cubic-run-

rich words, see also Table 4.3. In particular, it can be checked experimentally
that the word w20 (further denoted as w) of length 113 031 contains 46 348
cubic runs, hence cubic-runs(w) > 0.41 |w|. Below we show that for infinitely
many words of the form wk, the density of cubic runs is more than 0.41.

Theorem 4.12 (Improved Lower Bound).
There are infinitely many binary words wk, where w = w20, such that:

rk
ℓk
> 0.41,

where rk = cubic-runs(w
k), ℓk = |wk|.
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n |wn| cubic-runs(wn)/|wn| wn

0 1 0.16667 02130
1 3 0.23077 021304130
2 5 0.26316 0213041303130
3 10 0.31250 021304130313031304130
4 17 0.33333 021304130313031304130313041303130
5 30 0.36145 . . .
6 49 0.36567
7 83 0.38249

Table 4.3: Characteristics of a few first elements of the sequence (wn)

Proof. We start the proof with the following claim, a similar property of the
runs function (with different constants) was proved in [53].

Claim 4.13. For any k  3, rk = Ak − B, where A = r4 − r3 and B =
3r4 − 4r3.

Proof. We will first show that rk+1−rk = r4−r3, i.e., that the increase of the
number of cubic runs when concatenating wk and w equals the corresponding
increase when concatenating w3 and w. Let [i . . j] be a cubic run in wk+1

ending within the last occurrence of w, that is, j > k · |w|. In [53] it is proved
(as Lemma 2) that the only run in wk+1 of length at least 2 · |w| is the run
equal to the word wk+1. Hence, the cubic run [i . . j] either corresponds to
the whole word wk+1 or satisfies i > (k − 2) · |w|. In both cases the cubic
runs yield the same increase as when concatenating w to w3. (Note that in
the first case the cubic run forms only an extension of a cubic run already
present in wk, therefore it does not increase the number of cubic runs for any
k  3.)
This concludes that rk+1−rk = r4−r3. From this formula we obtain that,

for k  4:

rk = rk−1 + r4 − r3 = rk−2 + 2 · (r4 − r3) = . . .
= r3 + (k − 3) · (r4 − r3) = k · (r4 − r3)− (3r4 − 4r3).

One can easily check that the same formula holds also for k = 3.

Now we complete the proof of Theorem 4.12. Using an extensive computer
experiment one can obtain that:

r3 = 139 083 and r4 = 185 450, and recall that |w| = 113 031.
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By Claim 4.13, for k > 104·B
|w| we have:

rk
ℓk
=

A · k
|wk| −

B

|wk| =
r4 − r3
|w| −

B

|w| · k
>
185 450− 139 083
113 031

− 0.0001 > 0.41.

This concludes the proof of the theorem.
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Chapter 5

Sum of Exponents of Runs

In this chapter we provide an upper bound of 4.1n on the maximal sum of
exponents of runs in a word of length n and also a stronger upper bound of
2.5n on the maximal sum of exponents of cubic runs in a word of length n.
Thus we improve the best known proven upper bound of 5.6n on exp-runs(n)
from [13]. Again, the main combinatorial tool used to obtain the upper bound
are handles of runs (see Section 2.5). As for the lower bound, we bring down
a conjecture by Kolpakov and Kucherov [49, 50], that exp-runs(n) < 2n, by
showing an infinite family of binary words for which the sum of exponents of
runs is greater than 2.035n.

5.1 Upper Bound for Runs and Cubic Runs

The proof of the upper bound for exp-runs(n) uses the properties of the handle
function H. For u ∈ Σ∗, let R1(u) and R2(u) be the sets of runs in u with
period 1 and at least 2, respectively.

Lemma 5.1.

(1) If v ∈ R1(u) then |H(v)| = exp(v)− 1.
(2) If v ∈ R2(u) then |H(v)|  2 · (⌈exp(v)⌉ − 3).
Proof. Part (1) follows from Lemma 2.12. Assume now that v ∈ R2(u) and
let w be a prefix of v of length per(v). The run v starts with a prefix being
a k-th power wk for k = ⌊exp(v)⌋, where |w| = per(v). Hence, both words
λk−1 and (λ′)k−1 are factors of v. Each of the words provides k − 2 distinct
handles for v. Consequently:

|H(v)|  2 · (⌊exp(v)⌋ − 2)  2 · (⌈exp(v)⌉ − 3),
which gives part (2) of the lemma.
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In the proof of the upper bound we use the bound runs(n) ¬ 1.029n on the
number of runs from Crochemore et al. [15].

Theorem 5.2 (Upper Bound for Runs).

The sum of exponents of runs in a word of length n is less than 4.1n.

Proof. Let u be a word of length n. Using parts (1) and (2) of Lemma 5.1,
we obtain:

exp-runs(u) =
∑

v∈R1(u)
exp(v) +

∑

v∈R2(u)
exp(v) ¬

¬
∑

v∈R1(u)
(|H(v)|+ 1) +

∑

v∈R2(u)

(

|H(v)|
2
+ 3

)

=

=
∑

v∈R1(u)
|H(v)|+ |R1(u)|+

∑

v∈R2(u)

|H(v)|
2
+ 3 · |R2(u)| ¬

¬ 3 · |R(u)|+
∑

v∈R1(u)
|H(v)|+

∑

v∈R2(u)

|H(v)|
2

¬

¬ 3 · |R(u)|+
∑

v∈R(u)
|H(v)|. (5.1)

By Theorem 2.13, H is a handle function, therefore
∑

v∈R(u) |H(v)| < n.
Combining this with (5.1), we obtain:

exp-runs(u) < 3 · |R(u)|+ n ¬ 3 · runs(n) + n ¬ 3 · 1.029n+ n < 4.1n.

A similar approach for cubic runs, this time using the upper bound of 0.5n
for cubic-runs(n) from Theorem 4.8, enables us to immediately provide a
stronger upper bound for the function exp-cubic-runs(n). For a word u, by
CR1(u) and CR2(u) we denote the sets of cubic runs in u with period 1 and
at least 2, respectively.

Theorem 5.3 (Upper Bound for Cubic Runs).

The sum of exponents of cubic runs in a word of length n is less than 2.5n.

Proof. Let u be a word of length n. From Lemma 5.1, we obtain:

exp-cubic-runs(u) =
∑

v∈CR1(u)
exp(v) +

∑

v∈CR2(u)
exp(v) ¬
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¬
∑

v∈CR1(u)
(|H(v)|+ 1) +

∑

v∈CR2(u)

(

|H(v)|
2
+ 3

)

=

=
∑

v∈CR1(u)
|H(v)|+ |CR1(u)|+

+
∑

v∈CR2(u)

|H(v)|
2
+ 3 · |CR2(u)| ¬

¬ 3 · |CR(u)|+
∑

v∈CR1(u)
|H(v)|+

∑

v∈CR2(u)

|H(v)|
2

¬

¬ 3 · |CR(u)|+
∑

v∈CR(u)
|H(v)|. (5.2)

Again we may use the fact that H is a handle function, which implies
∑

v∈CR(u) |H(v)| < n. Combining it with (5.2), we obtain:

exp-cubic-runs(u) < 3·|CR(u)|+n ¬ 3·cubic-runs(n)+n < 3n
2
+n = 2.5n.

5.2 Lower Bound

Let us start the analysis of the lower bound for exp-runs(n) by investigating
the sum of exponents of runs of words from two known families that contain
a large number of runs. We consider first the words defined by Franek and
Yang [34], then the Padovan words defined by Simpson [70]. They give large
sums of exponents, however below 2n. Then we construct a new family of
words which breaks the barrier of 2n.

i |xi| runs(xi)/|xi| exp-runs(xi) exp-runs(xi)/|xi|
1 6 0.3333 4.00 0.6667
2 27 0.7037 39.18 1.4510
3 116 0.8534 209.70 1.8078
4 493 0.9047 954.27 1.9356
5 2 090 0.9206 4 130.66 1.9764
6 8 855 0.9252 17 608.48 1.9885
7 37 512 0.9266 74 723.85 1.9920
8 158 905 0.9269 316 690.85 1.9930
9 673 134 0.9270 1 341 701.95 1.9932

Table 5.1: Number of runs and sum of exponents of runs in Franek and Yang’s
[34] words (xi)
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Let ◦ be a special concatenation operator defined as:

x[1 . . n]◦y[1 . .m] =
{

x[1 . . n]y[2 . .m] = x[1 . . n− 1]y[1 . .m] if x[n] = y[1],
x[1 . . n− 1]y[2 . .m] if x[n] 6= y[1].

Also let g be a morphism defined as:

g(x) =







010010 if x = 0,
101101 if x = 1,
g(x[1 . . n]) = g(x[1]) ◦ g(x[2]) ◦ . . . ◦ g(x[n]) if |x| > 1.

Then xi = gi(0) is the family of words described by Franek and Yang [34],
which gives the lower bound runs(n)  0.927n, conjectured for some time
to be optimal. The sums of exponents of runs of several first terms of the
sequence xi are listed in Table 5.1.

i |yi| runs(yi)/|yi| exp-runs(yi) exp-runs(yi)/|yi|
1 13 0.6154 16.00 1.2308
6 69 0.7971 114.49 1.6593
11 287 0.8990 542.72 1.8910
16 1 172 0.9309 2 303.21 1.9652
21 4 781 0.9406 9 504.38 1.9879
26 19 504 0.9434 38 903.64 1.9946
31 79 568 0.9443 158 862.94 1.9966
36 324 605 0.9445 648 270.74 1.9971
41 1 324 257 0.9446 2 644 879.01 1.9973

Table 5.2: Number of runs and sum of exponents of runs in Simpson’s [70]
modified Padovan words (yi)

Define a mapping δ(x) = R(f(x)), where R(x) is the reverse of x and f
is the morphism

f(a) = aacab, f(b) = acab, f(c) = ac.

Let y′i be a sequence of words defined for i > 5 recursively using y
′
i+5 = δ(y

′
i).

The first 5 elements of the sequence y′i are:

b, a, ac, ba, aca.

The words y′i are called modified Padovan words. If we apply the following
morphism h:

h(a) = 101001011001010010110100,
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h(b) = 1010010110100, h(c) = 10100101

to y′i, we obtain a sequence of run-rich words yi defined by Simpson [70],
which gives the best known lower bound runs(n)  0.944575712n. Table 5.2
lists the sums of exponents of runs of selected words from the sequence yi.
The values in Tables 5.1 and 5.2 have been computed experimentally.

They suggest that for the families of words xi and yi the maximal sum
of exponents could be less than 2n. We show, however, a lower bound for
exp-runs(n) that is greater than 2n.

i |wi| exp-runs(wi) exp-runs(wi)/|wi|
1 31 47.10 1.5194
2 119 222.26 1.8677
3 461 911.68 1.9776
4 1 751 3 533.34 2.0179
5 6 647 13 498.20 2.0307
6 25 205 51 264.37 2.0339
7 95 567 194 470.30 2.0349
8 362 327 737 393.11 2.0352
9 1 373 693 2 795 792.39 2.0352
10 5 208 071 10 599 765.15 2.0353

Table 5.3: Sums of exponents of runs in words (wi)

Figure 5.1: The sum of exponents of runs in selected families of words
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Theorem 5.4 (Lower Bound).
There are infinitely many binary words w such that:

exp-runs(w)

|w| > 2.035.

Proof. Let us define two morphisms φ : {a, b, c}∗ 7→ {a, b, c}∗ and ψ :
{a, b, c}∗ 7→ {0, 1}∗ as follows:

φ(a) = baaba, φ(b) = ca, φ(c) = bca

ψ(a) = 01011, ψ(b) = ψ(c) = 01001011.

We set wi = ψ(φi(a)). Table 5.3 and Fig. 5.1 show the sum of exponents of
runs in the words w1, . . . , w10, computed experimentally.
In particular, the word w8 has the length 362 327 and its sum of exponents

of runs is 737 393.11 (which has been verified using a computer program).
Hence, for any word w = (w8)

k, k  1, we have:

exp-runs(w)

|w| > 2.035.
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Chapter 6

Algorithmic Applications

of Runs

Recall that the number of runs in a word of length n is O(n), more precisely,
runs(n) ¬ 1.029n [15]. Additionally, all the runs can be computed in O(n)
time [48, 49, 50] and practical and efficient implementations of this algorithm
are known [6]. Applications of runs, despite their importance, were under-
represented in the existing literature (approximately one page in [48, 49]). In
this chapter we show how to efficiently extract selected notions of periodicity:
powers and local periods, from the runs structure of a word.

6.1 Extracting Powers

Denote by #powersk(u) the total number of different k-th powers in a word
u ∈ Σn. We present a linear time algorithm for computing this function as
well as reporting the corresponding powers: for each different k-th power we
provide a pair of indices denoting a corresponding factor within u. Recall that
the total number of different squares, hence of powers of arbitrary exponent
k, is O(n) — the known upper bound for squares is roughly 2n [31, 39, 40]
and, as we show in Chapter 3, for powers with larger exponent this number
is even smaller. Afterwards, at the end of this section we give a formula for
the number of all occurrences of all k-th powers in a word. We extensively
use the Lyndon representations of runs, a notion developed in Section 2.4.

Each k-th power wk (for k  2) occurring in u extends to a run v contain-
ing this occurrence for which per(v) = |root(w)|, we say that wk is induced
by the run v. If L-root(w) = λ then we call wk λ-compatible. Then, obviously,
L-root(v) = λ and v is a λ-run. Hence, two runs may induce the same power
of a word only if their Lyndon roots are equal.
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For a λ-run v define maxpowerk(v) as the maximal natural β such that
some cyclic rotation of λkβ is induced by v. There exists an obvious formula
for this value, as stated in the following observation.

Observation 6.1. If v is a run of length ℓ with period p then maxpowerk(v) =
⌊ℓ/(kp)⌋.

The following lemma shows a correspondence between the Lyndon rep-
resentation of a run and the set of induced different k-th powers, see also
Fig. 6.1.

Lemma 6.2. Let v be a λ-run with period p and let β = maxpowerk(v).
Then all powers induced by v are:

(a) all cyclic rotations of λkα for α < β,

(b) cyclic rotations rot(λkβ, c) for c ∈ Ik(v), where Ik(v) ⊆ [0, p − 1] is a
union of at most two intervals.

The interval Ik(v) can be computed in O(1) time.

Proof. Let v
.
= λ(a) · λm · λ(b) be a run of length ℓ with period p.

Let us first note that, for a given natural α, the run v induces all cyclic
rotations

rot(λkα, c) for c ∈ [p− a, p− a+ ℓ− kpα]. (6.1)

Indeed, the first of these rotations is the prefix w of v of length kpα, which
satisfies rot(w, a) = λkα, hence

w = rot(λkα,−a) = rot(λkα, p− a).

The run v contains ℓ − kpα + 1 consecutive cyclic rotations of w: rot(w, c)
for c ∈ [0, ℓ−kpα], which correspond exactly to the rotations of λkα as given
in the formula (6.1).
As a consequence of (6.1), for α < β we obtain all different cyclic rotations

of λkα, since

ℓ− kpα  ℓ− kp
(⌊

ℓ

(kp)

⌋

− 1
)

 kp  p.

For α = β, the interval [p − a, p − a + ℓ − kpα] must be treated modulo p
and forms either a single subinterval of [0, p − 1] or a sum of at most two
intervals Ik(v). For α > β, no cyclic rotation of the word λkα occurs in v,
since |λkα| > |v|.

56



  a b b     a b b     a b b     a b b     a b

λ λ λ λ

rot(λ2, 5)

Figure 6.1: The run λ(2)λ4λ(2) with the Lyndon root λ = abbcccc induces all
possible different squares cyclically equivalent to λ2 and 5 squares cyclically
equivalent to λ4, that is, maxpower 2(v) = 2 and Ik(v) = [0, 2] ∪ [5, 6]

Let λ be a minimal Lyndon word and let Rg be the set of λ-runs, assume
that Rg 6= ∅. Let maxrunsk(u, λ) be the set of runs v ∈ Rg with maximal
value of maxpowerk(v). Denote by #powersk(u, λ) the number of different
λ-compatible k-th powers in u. The following lemma is a consequence of
Lemma 6.2.

Lemma 6.3. Let βk(λ) = max{maxpowerk(v) : v ∈ Rg}. Then

#powersk(u, λ) = (βk(λ)− 1) · |λ|+
∣
∣
∣
∣
∣
∣

⋃

v∈maxrunsk(u,λ)
Ik(v)

∣
∣
∣
∣
∣
∣

#powersk(u) =
∑

λ

#powersk(u, λ).

Theorem 6.4. For a given word u ∈ Σn, the value #powersk(u) can be
computed and all different k-th powers in u can be reported in O(n) time.

Proof. The value #powersk(u) can be computed using the formulas from
Lemma 6.3. The main difficulty is to find the size of the union of the sets
Ik(v) for a given group of λ-runs v ∈ Rg in O(|Rg|) time. We perform the
following steps:

1. Compute the partition of R(u) from Theorem 2.7.

2. Compute the compact Lyndon representations of all the runs using
Lemma 2.10.

3. For each group Rg of λ-runs, compute βk(λ) and the intervals from
Ik(v) for all v ∈ maxrunsk(u, λ) (using the formulas from the proof of
Lemma 6.2).

4. Sort all intervals from Ik(v) across all the groups Rg using Radix Sort
— we sort the intervals, treated as pairs, in non-descending order, stor-
ing the corresponding group numbers (O(n) time).
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5. Now the unions of the sets Ik(v) from a given group Rg can be com-
puted by a simple left-to-right traversal in O(|Rg|) time.

Algorithm ReportPowers(u, k)
{R1,R2, . . . ,Rt} ← Lyndon partition of R(u)
J ← ∅;
for g ← 1 to t do
β ← max{maxpowerk(v) : v ∈ Rg}
v0 ← maxarg{maxpowerk(v) : v ∈ Rg}
let v0 ⊜ (i, j, p, a,m, b, ℓ)
for α← 1 to β − 1 do
for z ← i to i+ p− 1 do
report(z, z + kp · α− 1)

for all v in Rg do
if maxpowerk(v) = β then
for all I in Compute-I(v, k) do
J .insert((I, v, g))

RadixSort(J )
for all (I, v, g) ∈ J do Jg.insert((I, v))
for g ← 1 to t do
pos ← 0
for all ([left , right ], v) ∈ Jg do
let v ⊜ (i, j, p, a,m, b, ℓ)
for z ← max(left , pos) to right do
if z  p− a then start ← i+ z − p+ a
else start ← i+ a+ z
report(start , start + kp ·maxpowerk(v)− 1)
pos ← max(pos, right + 1)

The algorithm reporting all different powers is a natural extension of the
algorithm computing #powersk(u) using the exact formulas from Lemma 6.2,
see also the pseudocode of the ReportPowers(u, k) procedure. The structure
of the pseudocode is as follows. For a given group of λ-runs, we first find any
element v0 ∈ maxrunsk(u, λ), and using this element we report all powers
being cyclic rotations of λkα for α < maxpowerk(v0), that is, the powers cor-
responding to part (a) of Lemma 6.2. Afterwards we examine all the elements
v ∈ maxrunsk(u, λ), for each of them compute the intervals forming the set
Ik(v) (using an auxiliary Compute-I(v, k) routine given in the following pseu-
docode). We populate all the intervals, together with the corresponding runs
and group numbers, in a list J . The list is then sorted using Radix Sort, as
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Algorithm Compute-I(v, k)
let v ⊜ (i, j, p, a,m, b, ℓ)
left ← p− a; right ← left + ℓ− kp · β {formula (6.1)}
if right − left  p− 1 then
I.insert(([0, p− 1], v, g))
else if right < p then

I.insert(([left , right ], v, g))
else

if left < p then

I.insert(([left , p− 1], v, g))
I.insert(([0, right − p], v, g))
return I

described above, and divided into parts Jg corresponding to different groups
of λ-runs. Finally, intervals in each list Jg are summed from left to right,
and different powers are reported each time the current union is extended
with new elements. For this, simple formulas for the starting positions of the
powers (the variable start) are derived from the formula (6.1).

Denote by #occ-powersk(u) the total number of occurrences of k-th powers
in a word u. We end this section presenting a formula for #occ-powersk(u)
which can be evaluated in a straightforward manner to obtain an O(n) time
algorithm, where n = |u|. Note that the result of the formula can be Θ(n2).
Theorem 6.5.

#occ-powersk(u) =

=
∑

v=(i,j,p)∈R(u), ℓ=j−i+1

(

βk(v) · (ℓ+ 1− kp/2)− βk(v)2 · kp/2
)

where βk(v) denotes maxpowerk(v).

Proof. Let v = (i, j, p) be a run of length ℓ in u and let λ = L-root(v). For
each position z = 1, 2, . . . , ℓ of v we count the number of occurrences of k-th
powers induced by the run and ending at this position, see also Fig. 6.2:

• for z ¬ kp− 1 there are no such powers,

• for kp ¬ z ¬ 2kp − 1 there is one such power cyclically equivalent to
λk,

• for 2kp ¬ z ¬ 3kp− 1 two such powers cyclically equivalent to λk and
λ2k respectively,
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• . . .

• for (β − 1) · kp ¬ z ¬ β · kp − 1 there are β − 1 such powers, where
β =

⌊
ℓ
kp

⌋

= maxpowerk(v),

• finally, for β · kp ¬ z ¬ ℓ there are β such powers.

a b a b a b a b a b a b a b a b a b a

0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3

Figure 6.2: The number of cubes with primitive root cyclically equivalent to
λ = ab ending at respective positions of the run v = (ab)9a. Here ℓ = 19,
k = 3, p = 2, hence βk(v) = 3. By Theorem 6.5, this run induces 3 · (20 −
3)− 32 · 3 = 3 · 8 = 24 cubes

Hence, the total number of occurrences equals:

β−1
∑

z=1

(z · kp) + β · (ℓ− β · kp+ 1) = kp · (β − 1)β
2

+ β(ℓ+ 1)− β2 · kp

= β · (ℓ+ 1− kp/2)− β2 · kp/2.

Example 6.6. Consider the word from Fig. 1.2 and k = 2 (counting squares).
Here each run has exponent less than 4, i.e., ℓ ¬ 4p, therefore β2(v) = 1 for
each run. The formula from Theorem 6.5 reduces to:

∑

(i,j,p)∈R(u), ℓ=j−i+1
(ℓ+ 1− 2p) .

6.2 Extracting Local Periods

Another application of the runs structure is the computation of local periods
which are related to critical factorization of a word [23]. The known O(n) time
algorithm computing all local periods by Duval et al. [26] employs several
different techniques modified in a non-trivial way. We present an equally
efficient but simpler algorithm using the structure of runs and the solution
of the Manhattan Skyline Problem. We start by recalling the definition of a
local period.
Let u ∈ Σn. Recall that by P = {p1, p2, . . . , pn−1} we denote the set of

inter-positions in u. We say that a square ww is centered at inter-position pi
of u if both of the following conditions hold, for x = u(i) and y = u

(n−i):
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• w is a suffix of x or x is a suffix of w,

• w is a prefix of y or y is a prefix of w.

We define the local period at inter-position pi (notation: localper[i]) as |w|,
where ww is the shortest square centered at this inter-position, see also
Fig. 6.3.

a b a a b a b a a b a a b a b a a b a b a

a run

2 3 1 5 2 2 8 1 3 3 1 13 2 2 5 1 5 2 2 2

Figure 6.3: A Fibonacci word with local periods at all its inter-positions.
Local period at inter-position p9 of the word is 3, since the smallest period
q of a run which completely covers the factor of the word corresponding to
the interval [9− q + 1 . . 9 + q] equals 3

Clearly, for any pi there are three possible cases:

Case A: |w| ¬ min(|x|, |y|), i.e., ww is an internal square of u.
Case B: min(|x|, |y|) < |w| ¬ max(|x|, |y|), i.e., ww is a left-external square
(if |w| > |x|) or a right-external square (if |w| > |y|).
Case C: max(|x|, |y|) < |w|, i.e., ww is a doubly-external square.
We handle Cases A-C separately. In Case A we make use of the structure
of runs in u and perform a reduction to the Manhattan Skyline Problem.
In Cases B and C we use the border array from the Morris-Pratt algorithm,
which is a simple alternative for a modified Boyer-Moore shift function used
for this purpose in [26].

6.2.1 Internal Local Periods

The problem of finding internal minimal squares can be reduced in O(n) time
to a min-version of the well known Manhattan Skyline Problem, see Fig. 6.4.

Min-Variant of Manhattan Skyline Problem

Input:

a set S of O(n) subintervals of [1, n−1] with natural heights of size O(n);
Output:

the table f [t] = min{height([i, j]) : t ∈ [i, j], [i, j] ∈ S}, t ∈ [1, n− 1].
Indeed, note that any internal minimal square in u corresponds to one of
the runs of u, see also Fig. 6.3. Each run v = (i, j, q) in u induces such

61



b a a a b a a b a a a b a a b a a a b a a b a a b
1 1 3 1 3 7 1 1 7 3 1 3 7 1 1 3 1 3 3 1

Figure 6.4: The word from Fig. 1.2 with all internal local periods (inter-
positions are indicated with small black circles). Below the word is the runs
structure. Above the word is the corresponding instance of the Min-Variant
of the Manhattan Skyline Problem

squares with root q at inter-positions pi+q−1, pi+q, . . . , pj−q. Thus for each
inter-position pi we need to find the shortest period of a run (i.e., the smallest
height of an interval from the Manhattan Skyline Problem) inducing a square
at this inter-position.
Due to the following lemma, this reduction yields a linear time algorithm

for computing internal minimal squares.

Lemma 6.7. The Min-Variant of the Manhattan Skyline Problem can be
solved in linear time.

Proof. The solution works as follows.

Sort intervals from S according to their heights (in non-decreasing order)
Initialize X = ∅
for each interval [i, j] ∈ S (in the sorted order) do
for each t ∈ list-all-elements([i, j] \X) do

f [t]← height([i, j])
X ← X ∪ [i, j]

The key elementary operations in the above routine are listing elements in
the set [i, j] \X and finding a union of sets X ∪ [i, j]. In the following claim
we show that these operations on sets can be implemented efficiently, so that
the whole routine works in O(n) time.
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Claim 6.8. Assume initially X = ∅. Let I be a family of O(m) intervals
[i, j] from the universe [1,m]. Then the sequence of pairs of operations:

{ list-all-elements([i, j] \X); X ← X ∪ [i, j]; } (6.2)

for all [i, j] ∈ I can be implemented in O(m) time.
Proof. The implementation uses a restricted version of the find/union data
structure, in which we are allowed to union only adjacent subintervals. Thus
the structure of union operations forms a static tree (here it is a path
graph) and therefore O(m) find/union operations can be performed in O(m)
time [35] (see also [43]).
In the algorithm the universe [1,m + 1] (extended to the right by a sen-

tinel) is partitioned into maximal segments of elements of X followed by a
single element which is not in X: all elements in such a segment form a single
find/union component which stores the index of its rightmost position. The
operations (6.2) are implemented by traversing the components intersecting
the interval [i, j], reporting their rightmost elements and summing them one
by one.

This concludes the proof of the lemma.

A pseudocode od the InternalLocalPeriods algorithm summarizes linear time
computation of internal local periods.

Algorithm InternalLocalPeriods
for all (i, j, q) ∈ R(u) do
L.insert((q, i+ q − 1, j − q))
RadixSort(L)
for i← 1 to n do
MakeSet(i); Last[i]← i
localper[i]←∞
for all (hi, li, ri) ∈ L do
k ← Last[Find(li)]
while k ¬ ri do
localper[k]← hi
Last[Find(k)]← Last[Find(k + 1)]
Union(k, k + 1)
k ← Last[Find(k)]

Lemma 6.9. Internal minimal squares can be computed in O(n) time.
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6.2.2 Left and Right-External Local Periods

Recall that a word that is both a prefix and a suffix of a word u is called
a border of the word u; a border of u is called proper if it is shorter than
u. Denote by border[i], for i = 1, 2, . . . , n, the length of the longest proper
border of u[1 . . i]. Recall that the border array can be computed in O(n) time,
as in the Morris-Pratt algorithm [23].

b a a a b a a b a a a b a a b a a a b a a b a a b
4 1 1 7 3 1 3 7 1 1 7 3 1 3 7 1 1 3 1 3 3 1 3

Figure 6.5: The word from Fig. 6.4 with two left-external minimal squares and
one right-external minimal square. We have border[5] = 1 and localper[1] = 4,
similarly border[11] = 4 and localper[4] = 7

The following lemma shows how the border array can be used to compute
left-external minimal squares, see also Fig. 6.5. The case of right-external
minimal squares is symmetric and can be treated similarly by considering
the reversed word u.

u
1 i j

ww

(a)

u
1 i jb

w
′

w
′

(b)

u
1 i jb

w
′

w
′

()

Figure 6.6: Illustration of the proof of Lemma 6.10

Lemma 6.10.

(1) If the shortest left-external minimal square at inter-position pi is ww
then there exists j > i such that border[j] = i and |w| = j − i.
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(2) If border[j] = i for any j = 2, 3, . . . , n and i > 0 then localper[i] ¬ j − i.

Proof. (1) Let ww be a left-external minimal square at inter-position pi and
let j = i + |w|. Note that there exists a border of u[1 . . j] of length i, see
Fig. 6.6a. It remains to show that border[j] = i, i.e., that i is the longest
proper border of u[1 . . j].
Assume to the contrary that b = border[j] > i. Then the word u[1 . . i]

would be a border of u[1 . . b], what implies a square w′w′ centered at pi with
the root b − i < j − i = localper[i], which is either left-external or internal
(see Fig. 6.6bc), a contradiction.
(2) It is a consequence of the fact that the condition border[j] = i implies

a square centered at pi with root j − i, either internal or left-external.
Algorithm LeftExternalLocalPeriods updates the localper array constructed
using internal minimal squares by considering left-external minimal squares.
It performs a left-to-right traversal, basing on the properties (1) and (2)
stated in Lemma 6.10. Clearly, it works in O(n) time.

Algorithm LeftExternalLocalPeriods
for j ← 1 to n do
i← border[j]
if i > 0 then localper[i]← min(localper[i], j − i)

6.2.3 Doubly-External Local Periods

Consider a doubly-external minimal square ww at inter-position pi of u. Let
b be the longest overlap between u(n−i) and u(i), i.e., the longest suffix of the
former word which is also a prefix of the latter word. Then, clearly, |w| = n−b,
see Fig. 6.7. Note that b is the length of the longest border of u which is not
longer than min(i, n− i).
Example 6.11. Consider the word baaabaabaaabaabaaabaabaab for which
almost all local periods are given in Fig. 6.5. Only one inter-position, p18,
lacks an internal or a one-side-external minimal square centered at it. The
longest overlap between u(7) = baabaab and u(18) = baaabaabaaabaabaaa
equals 1 (a single letter b). Hence, localper[18] = 24.

Recall that the lengths of all proper borders of u are iterations of the
form border(j)[n]. This concludes an O(n) time algorithm DoublyExternal-
LocalPeriods which updates the localper array obtained after the previous
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Figure 6.7: Doubly-external minimal squares and borders

cases considering all doubly-external minimal squares, filling the array from
its middle to its sides.

Algorithm DoublyExternalLocalPeriods
b← border[n]
i← n div 2
while i > 0 do
while i  b do
localper[i]← min(localper[i], n− b)
localper[n− i+ 1]← min(localper[n− i+ 1], n− b)
i← i− 1
if b > 0 then b← border[b]

Combining the solutions to the internal, left- and right-external, and
doubly-external minimal squares problems, we obtain the following result.

Theorem 6.12. All local periods of a word u of length n can be computed in
O(n) time using the runs structure of u and the border array.
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Chapter 7

Conclusions

We presented several new or improved lower and upper bounds on the maxi-
mal number of repetitions in a word of a given length or the sum of exponents
of such repetitions. Particularly tight bounds were given for highly periodic
repetitions: cubes and cubic runs, for which the proof of linearity of the max-
imal number of repetitions turned out much easier than in the general case
of squares and runs respectively.
The work on improving the bounds on the number of repetitions goes

towards a better understanding of the structure of repetitions that any word
may contain. Thanks to such bounds we can represent the repetitive structure
of a word in a succinct way. This gives an idea why progress in this area is so
important. Improving the upper bounds often requires an analysis of a large
number of cases, which may be computer-assisted, as for the binary upper
bound on cubic-runs(n) in this dissertation, and the best known lower bounds
for most types of repetitions involved extensive computer experiments using
heuristics of artificial intelligence.
A significant amount of work still needs to be done to verify several hy-

potheses related to the bounds on repetitions. In particular, the “squares”
conjecture, that squares(n) < n, and the “runs” conjecture, that runs(n) < n,
are the most urgent to verify. As a result of this dissertation, we formulate
a “cubes” conjecture that cubes(n) < 0.5n. Computer experiments of many
authors, including ours, suggest validity of these conjectures, combinatorial
arguments still need to be found.
We also proposed efficient algorithms for enumeration of repetitions bas-

ing on the linear upper bounds. Using the structure of runs in a word novel
linear time algorithms for reporting distinct powers and computing local pe-
riods in a word were obtained. For the purpose of these algorithms, new
structural relations between the notions of periodicity were developed. We
believe that other algorithmic applications of runs are still to be discovered.
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