
DOCTORAL DISSERTATION
IN THE FIELD OF NATURAL SCIENCES
IN THE DISCIPLINE OF MATHEMATICS

Equivariant Khovanov homotopy types

Jakub Paliga

May 2024

University of Warsaw
Warsaw Doctoral School of Mathematics and Computer Science



Author’s declaration

I declare that I have composed this dissertation myself.

Date Signature

Supervisor’s declaration

The dissertation is ready for review.

Date Signature

i



Contents

Streszczenie w języku polskim iii

Abstract iv

1 Prerequisites 1
1.1 The cube category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 G-cell complexes and the equivariant Spanier-Whitehead category . . . . . . . . 1

2 Homotopy coherent diagrams 3
2.1 Homotopy coherent diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Homotopy coherent diagrams as topological diagrams . . . . . . . . . . . . . . . 4
2.3 External actions on homotopy coherent diagrams . . . . . . . . . . . . . . . . . . 6
2.4 Fixed point diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Flow categories 8
3.1 〈n〉-manifolds and flow categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Permutohedra and group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 The cube flow category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Equivariant cubical neat embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Geometric realization of an equivariant cubical flow category . . . . . . . . . . . 16

4 Burnside functors 18
4.1 The Burnside 2-category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 External actions on Burnside functors . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Spatial refinements 22
5.1 Stars and star maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Equivariant spatial refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 G-cubical categories are external actions on Burnside functors 26
6.1 Musyt’s formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Musyt and SZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Musyt and BPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Equivalence of realizations 32
7.1 Homotopy coherent diagrams from neat embeddings . . . . . . . . . . . . . . . . 32
7.2 Equivalence between BPS- and SZ-realizations . . . . . . . . . . . . . . . . . . . 34

8 Khovanov spectra of periodic links 36
8.1 Khovanov spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 Periodic links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography 39

ii



Streszczenie w języku polskim

Homologie Khovanova zostały wprowadzone jako kategoryfikacja wielomianu Jonesa. Z użyciem
kategorii spływowych, Lipshitz-Sarkar zdefiniowali spektra przestrzeni topologicznych ("spektra
Khovanova"), których homologie równają się homologiom Khovanova; stabilny typ homotopijny
tych spektrów jest niezmiennikiem splotów. Konstrukcja spektrów Khovanova jest realizowana
w oparciu o kostkę rezolwent diagramu danego splotu.

W przypadku splotów periodycznych, można zdefiniować działania grupy na spektrach
Khovanova, które stają się ekwiwariantnymi spektrami. Głównym celem tej pracy jest udowod-
nienie równoważności dwóch takich konstrukcji: jednej opartej na ekwiwariantnych kategoriach
spływowych, drugiej używających pojęcia działania zewnętrznego na diagramie homotopijnie
koherentnym.

Pierwsze rozdziały pracy służą wprowadzeniu tych dwóch pojęć w sposób korzystny dla
sformułowania ich równoważności. Opisując diagramy homotopijnie koherentne, skupiamy się
na konstrukcji ich realizacji przez kogranice po przestrzeniach morfizmów nerwu homotopi-
jnie koherentnego. Działania zewnętrzne na tych diagramach odpowiadają wtedy rodzinom
homomorfizmów, zgodnym z działaniem grupy na kategorii indeksującej, i indukują działanie
grupy na wybranych realizacjach. Z drugiej strony, pokazujemy, jak przestrzenie moduli w
ekwiwariantnej kostkowej kategorii spływowej powstają jako te same przestrzenie morfizmów
nerwu homotopijnie koherentnego dla działania grupy na kostce {0,1}n.

W dalszej kolejności omawiamy funktory Burnside’a i ich realizacje geometryczne przez
diagramy homotopijnie koherentne. Procedurę realizacji definiujemy przez wersję kolapsu
Pontrjagina-Thoma dla zbiorów gwieździstych. Porównujemy pojęcia ekwiwariantnej kategorii
kostkowej oraz dwóch różnych definicji pojęcia działania zewnętrznego na funktorze Burnside’a,
dowodząc równoważności wszystkich trzech. Wreszcie pokazujemy, że odpowiadające real-
izacje geometryczne tych obiektów również definiują ekwiwariantnie stabilnie homotopijnie
równoważne spektra.

W ostatniej części pracy przywołujemy motywujący nas przypadek spektrów Khovanova
splotów periodycznych i wyciągamy wniosek o równoważności dwóch występujących w liter-
aturze definicji tych spektrów.

słowa kluczowe: homologie Khovanova, spektra Khovanova, homotopijnie koherentny, ekwi-
wariantny, splot periodyczny
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Abstract

Khovanov homology was introduced in [Kho00] as a categorification of the Jones polynomial,
with decategorification by way of graded Euler characteristic. Building on the work of Cohen-
Jones-Segal in [CJS95a], Lipshitz and Sarkar defined in [LS14a] a space-level refinement of
Khovanov homology. This takes the form of a CW spectrum XKh(L) =

∨
j X

j
Kh(L), such that for

any j, the cellular cochain complex of X jKh(L) is isomorphic to the Khovanov complex CKh•,j (L)
in quantum grading j. Among its uses, it allows for the definition of a stronger s-invariant.
[LS14b]

In the case of links equipped with symmetries, it is expected that the spectra X (L) carry
additional data. For periodic links, an equivariant Khovanov homotopy type was defined by
[BPS21], who introduced equivariant cubical flow categories for the purpose. At the same time,
[SZ18] proposed a different notion of equivariant Khovanov homotopy type of a periodic link,
using external actions on Burnside functors. Both approaches furnish localization results relating
the Khovanov homotopy type of a periodic link to the annular Khovanov homotopy type of
its quotient, resulting in periodicity criteria. A difference persists in that [BPS21] identified
the Borel cohomology of their spectrum with equivariant Khovanov homology as defined by
Politarczyk in [Pol19]. It has been an open question whether the equivariant spectra defined in
[BPS21] and [SZ18] are equivalent.

This paper answers the question in the affirmative. Namely, given a periodic link diagram D,
consider the equivariant spectraXSZ (D) andXBP S (D) defined by [SZ18] and [BPS21], respectively.
We show the following.

Theorem 1. There is an equivariant stable homotopy equivalence

XSZ (D)→XBP S (D).

The paper’s structure is as follows. Chapter 1 introduces the cube category and the prerequi-
sites on equivariant topology. In Chapter 2 we recall several definitions of homotopy coherent
diagrams and relate to them the concept of external action introduced in [SZ18]. Chapter 3
serves to describe equivariant cubical flow categories. In particular, in Section 3.3 we identify
the equivariant cube flow category as the free topological category on the equivariant cube (2n)m.
Burnside functors together with a notion of external action appropriate to them are introduced
in Chapter 4. In Chapter 5 we introduce configurations of stars and via a Pontrjagin-Thom-type
construction associate to them equivariant maps of spheres. Those configurations are used
to define geometric realizations of external actions on Burnside functors. This follows the
constructions of [SZ18], albeit allowing for more general shapes.

In Chapter 6 we compare the definitions of external action on Burnside functors due to
[Mus19] and [SZ18]. In a series of comparison results, we relate those to the notion of an
equivariant cubical flow category, culminating in

Theorem 2. The data of an equivariant cubical flow category (C, f : ΣV C → Cσ (n)) is equivalent
to that of a stable Burnside functor (V ,F : 2n→B) with external action.

Passing to geometric realizations, Chapter 7 uses the results of the two previous sections to
prove
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Abstract

Theorem 3. Let (C, f : C → Cσ (n)) be an equivariant cubical flow category and let F : 2n→B be
the corresponding Burnside functor with an external action. Then there is an equivariant stable
homotopy equivalence ||C|| � |F|.

We finish in Chapter 8 by describing the knot-theoretic context to which we apply the paper’s
results. Namely, we recall the definition of Khovanov homology by way of the Burnside functor
associated to a link diagram; in the context of actions induced on a periodic diagram, Theorem 1
is exhibited as a formal consequence of Theorem 3.
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1 Prerequisites

1.1 The cube category

Let 2 = 21 denote the poset {0 > 1}, or the category with objects 0 and 1 and a single non-identity
morphism 1→ 0. For n ∈Z, n > 1, we let 2n = 21×2n−1. If u ≥ v,we will denote the single element
of hom2n(u,v) by φu,v . For u ∈ 2n, we denote by |u| the L1-norm of u, so that |u| = u1 + · · ·+ un.
If u ≥ v and |v| − |u| = k, we write u ≥k v. The category 2n will sometimes be considered as a
2-category with no non-identity 2-morphisms.

A group G can be understood as a category with one object ∗ and morphisms homG(∗,∗) = G
with composition defined by the group law of G. Then, an action of a group G on a small category
C is a functor γ : G→ Cat with γ(∗) = C.

Although we state some results in greater generality, in application to Khovanov homology of
periodic links the setting is that of a particular action of a cyclic group on a cube category. Given
integers n and m, the identification 2nm � (2n)m establishes a left action of Zm on 2nm by cyclic
permutation of the 2n-factors; so that the generator 1 ∈Zm acts by

1.(x1, . . . ,xm) = (xm,x1, . . . ,xm−1), x1, . . . ,xm ∈ 2n.

In the setting of a group G acting on a poset C, one can speak of the fixed-point category CH
(for any subgrop H ⊆ G). The fixed points of the action of Zm on 2nm as above, the fixed-point
category (2nm)Zm is identified with 2n itself. Likewise, if H ⊆Zm is the single subgroup of index
k, we fix an identification (2nm)H � 2nk .

1.2 G-cell complexes and the equivariant Spanier-Whitehead
category

The definitions are classical, and in notation we follow [BPS21, Sections 3.1, 3.2, 3.3].
An orthogonal representation of a finite group G is a homomorphism ρ : G→O(V ), with V

a real linear space equipped with an inner product. We will only consider finite-dimensional
orthogonal representations and will call them “representations” for short. A morphism of
representations (ρV : G→O(V ))→ (ρW : G→O(W )) is a linear map f : V →W such that ∀g ∈
G ρW (g)◦ f = f ◦ρV (g). Representations of G make up a monoid under the direct sum operation
⊕. We will often consider virtual representations, which arise by applying the Grothendieck
construction to the monoid of representations of G. Namely, let

RO(G) = {V −W | V and W are representations of G}/∼,

where V1 −W1 ∼ V2 −W2 whenever V1 ⊕W2 and V2 ⊕W1 are isomorphic representations of G.
Together with multiplication induced by ⊗, RO(G) becomes a ring.

Definition 1.2.1. Let H ⊆ G be a subgroup, V an H-representation. Denote by BR(V ) the ball of
radius R in V , which inherits the group action. A G-cell of type (H,V ) is a topological space

E(H,V ) = G ×H BR(V ) = G ×BR(V )/[(gh,x) ∼ (g,hx)]

1



1 Prerequisites

(for some R > 0), considered as a G-space via g ′ .[g,x] = [g ′g,x]. A G-cell complex is a topological
space with filtation X0 ⊆ X1 ⊆ · · · such that:

• X0 is a disjoint union of orbits G/H ,

• Xn = Xn−1 ∪f E(Hn,Vn), where f : ∂E(Hn,Vn)→ Xn−1 is G-equivariant,

• X = colimnXn.

Note that, should V already be a G-representation, the cell E(H,V |H ) is equivariantly homeo-
morphic to G/H ×BR(V ).

A G-cell complex in which all cells are modeled on trivial representations, meaning that all
cells are of the form G/H ×Dn+1, is called a G-CW complex. Any G-cell complex is G-homotopy
equivalent to a G-CW complex (see [BPS21, Proposition 3.3]).

2



2 Homotopy coherent diagrams

Homotopy coherent diagrams represent a relaxed notion of a diagram of topological spaces, one
that is required to commute only up to coherent homotopies. In this section we present one
approach of introducing group actions on homotopy coherent diagrams.

2.1 Homotopy coherent diagrams

In the following, every indexing category C will have the property that for any two objects
c,d ∈ ob(C), there are only finitely many chains of morphisms starting at c and ending at d. In
particular, the category C does not have any non-identity isomorphisms. This last condition
simplifies the formulas defining homotopy coherent diagrams and their homotopy colimits,
allowing us to consider only non-identity morphisms (see [LLS20, Observation 4.12]).

The formalism for homotopy coherent diagrams that we use has been described by [Vog73],
already in the case of an arbitrary small indexing category. A slightly different realization, in the
case of strictly commutative diagrams, can be found in [Seg68], and a different approach was
introduced by [BK72].

Definition 2.1.1. Let C denote a small category and assume that C does not have non-identity
isomorphisms. A homotopy coherent diagram F : C → Top∗ consists of assignments: to each x ∈ C, a

pointed topological space F(x) ∈ Top∗, and to each sequence x0
f1−−→ x1

f2−−→ ·· ·
fn−−→ xn of composable

non-identity morphisms in C, of a pointed continuous map

F(fn, . . . , f1) : [0,1]n−1 ×F(x0)→ F(xn).

These maps are required to satisfy the following conditions:

• F(fn, . . . , fi+1)(ti+1, . . . , tn−1) ◦F(fi , . . . , f1)(t1, . . . , ti−1) = F(fn, . . . , f1)(t1, . . . , ti−1,0, ti+1, . . . , tn−1),

• F(fn, . . . , fi+1 ◦ fi , . . . , f1)(t1, . . . , ti−1, ti , . . . , tn−1) = F(fn, . . . , f1)(t1, . . . , ti−1,1, ti+1, . . . , tn−1).

We will sometimes say that a homotopy coherent diagram F : C → Top∗ is of shape C.
Denote by Cn+1(x0,xn) the set of composable chains of non-identity morphisms in C of length

n, starting at x0 and ending at xn:

Cn+1(x0,xn)B {x0
f1−−→ ·· ·

fn−−→ xn | ∀i fi , idxi }.

Definition 2.1.2. Given a homotopy coherent diagram F : C → Top∗, the homotopy colimit of F
is the pointed topological space

hocolimF = {∗}t
∐
n≥0

∐
x0,xn∈ob(C)

Cn+1(x0,xn)× [0,1]n ×F(x0)/∼, (2.1)

with ∼ defined as follows, for fi : xi−1→ xi , ti ∈ [0,1], p ∈ F(x0):

• (fn, . . . , f1; t1, . . . , tn;∗) ∼ ∗,

3



2 Homotopy coherent diagrams

• (fn, . . . , fi+1; ti+1, . . . , tn;F(fi , . . . , f1)(t1, . . . , ti−1;p)) ∼ (fn, . . . , f1; t1, . . . , ti−1,0, ti+1, . . . , tn;p),

• (fn, . . . , fi+1 ◦ fi , . . . , f1; t1, . . . , ti−1, ti+1, . . . , tn;p) ∼ (fn, . . . , f1; t1, . . . , ti−1,1, . . . , ti+1, . . . , tn;p), i < n,

• (fn−1, . . . , f1; t1, . . . , tn−1;p) ∼ (fn, . . . , f1; t1, . . . , tn−1,1;p).

Definition 2.1.3. A homomorphism of homotopy coherent diagrams F1,F0 : C → Top∗ is a collec-
tion of (pointed, continuous) maps φx : F1(x)→ F0(x) for each x ∈ ob(C) such that

F0(fn, . . . , f1)(t1, . . . , tn−1) ◦φx = φy ◦F1(fn, . . . , f1)(t1, . . . , tn−1)

for all sequences x
f1−−→ ·· ·

fn−−→ y of morphisms in C and all (t1, . . . , tn−1) ∈ [0,1]n−1.

A homomorphism of homotopy coherent diagrams ϕ : F1 → F2 induces a continuous map
hocolimϕ : hocolimF1→ hocolimF2 in Equation (2.1), via

(fn, . . . , f1; t1, . . . , tn;p) 7→ (fn, . . . , f1; t1, . . . , tn;ϕx0
(p)),

where p ∈ F(x0) and x0 is the target of fn.
A more relaxed notion of map between homotopy coherent diagrams takes the form of a larger

homotopy coherent diagram, as in the definition below.

Definition 2.1.4. A natural transformation of homotopy coherent diagrams F1,F0 : C → Top∗ is a
homotopy coherent diagram η : 2 ×C → Top∗ with η|{i}×C = Fi for i = 0,1.

The data of a natural transformation also contains maps ηx : F1(x)→ F0(x) for x ∈ C. If they are
all weak homotopy equivalences, we call η a weak equivalence (of homotopy coherent diagrams).
However, the ηx do not immediately commute with the identifications in Equation (2.1); rather,
the comparison map on homotopy colimits is defined up to homotopy, and the following holds.

Proposition 2.1.5. ([Vog73]) Let F0,F1 : C → Top∗ be homotopy coherent diagrams and η : F1→
F0 a natural transformation. Then there is a map hocolimη : hocolimF1→ hocolimF0, well de-
fined up to homotopy. If the components ηx : F1(x)→ F0(x) are all weak homotopy equivalences,
so is hocolimη.

2.2 Homotopy coherent diagrams as topological diagrams

[Vog73] provides another description of homotopy coherent diagrams, which is of use to us. The
following again supposes that C has no non-identity isomorphisms. We work in the category
Top∗ of compactly generated topological spaces.

A topological category is a topologically enriched small category; that is, one in which the
morphism sets carry a topology and composition is a continuous map. If D is a topological
category, a topological diagram F : D→ Top∗ consists of a function

F0 : ob(D)→ ob(Top∗)

along with continuous maps

FA,B : D(A,B)+ ∧F0(A)→ F0(B)

satisfying

• FA,B(idA;−) = idF0(A),

4



2 Homotopy coherent diagrams

• for all pairs of composable morphisms A
f
−→ C

g
−→ B,

FA,B(g ◦ f ;−) = FC,B(g;FA,C(f ;−)).

Given an ordinary small category C, one can treat its morphism sets as discrete spaces, whereby
topological diagrams are the same as commutative diagrams C → Top∗. A more interesting
construction is the following.

Definition 2.2.1. The free topological category associated to C is the topological category F C wih
ob(F C) = ob(C) and morphism spaces

F C(A,B) = tn≥0Cn+1(A,B)× In/∼

where ∼ is generated by

(fn, . . . , f0; t1, . . . , ti−1,1, ti , . . . , tn) ∼ (fn, . . . , fi ◦ fi−1, . . . , f0; t1, . . . , ti−1, ti+1, . . . , tn).

Composition in F C is defined by the formula

(fn, . . . , f0; t1, . . . , tn) ◦ (gm, . . . , g0;u1, . . . ,um) = (gn, . . . , f0, gm, . . . , g0;u1, . . . ,um,0, t1, . . . , tn).

The assignment is functorial; given a functor of small categories η : C →D, there is an induced
continuous functor F η : F C → F D given by

F η(fn, . . . , f0; t1, . . . , tn) = (ηfn, . . . ,ηf0, t1, . . . , tn).

The free topological category construction allows us to redefine homotopy coherent diagrams
as follows.

Definition 2.2.2. A homotopy coherent diagram F : C → Top∗ is defined as a topological diagram
F : F C → Top∗.

Given a category C, let C̃ denote the ’cone category over C’, that is the category with objects
ob(C̃) = ob(C)∪{∗}, ∗ being made a terminal object of C. Define the topological functor φ• : F C →
Top∗ by

φ•(c) = F C̃(c,∗).
Then the formula for the homotopy colimit in Equation (2.1) can be restated as follows:

hocolimF = coeq

∐
c,d∈C

φ•(d)∧F C(c,d)∧F(c)⇒
∐

c∈ob(C)

φ•(c)∧F(c)

 . (2.2)

This description has been pointed out by [Ste11], who also defines homotopy colimits using a
universal property. Namely, suppose we are given a homotopy coherent diagram F : C → Top∗
and its extension to a homotopy coherent diagram G : C̃ → Top∗. Then, any pointed continuous
map ϕ : G(∗)→ Z induces another extension of F to a homotopy coherent diagram G′ : C̃ → Top∗
with G′(∗) = Z. Consider then the category with objects extensions of F to a coherent diagram
G : C̃ → Top∗, and morphisms G→ G′ the maps ϕ : G(∗)→ G′(∗) such that G′ is induced from
G by ϕ. The homotopy colimit of F can be defined as an initial object in this category; indeed,
[Ste11, Proposition 3.2] verifies that Equation (2.2) satisfies this universal property.

A natural transformation of homotopy coherent diagrams η : F1 ⇒ F0 of shape C is then
a topological functor η : F (2 × C) → Top∗ with Fi = η ◦ F (ιi), where ιi : C → 2 × C denotes
the inclusions for i = 1,0. Respectively, a homomorphism F1 → F2 is a topological functor
θ : 2 ×F C → Top∗.

5



2 Homotopy coherent diagrams

2.3 External actions on homotopy coherent diagrams

Equivariant diagrams of spaces have been studied i.e. in [JS01], [Vil23], who consider the notion
of an action of a group G on a diagram X : I →C in the case that I carries an action by G; [DM16]
and [Dot16] have further considered properties of homotopy colimits of such functors. We
instead require a notion of a “G-homotopy coherent diagram”, and one such has been proposed
in [SZ18].

Recall that we consider a group G as a category with one object and morphisms the elements
of G, and an action of G on a category C is a functor γ : G→ Cat with γ(∗) = C. Likewise, if C is a
topological category, an action of G on C is a functor γ : G→ CatTop that picks out C.

Observe that in the presence of a group action of a group G on a small category C, the free
topological category F C carries an induced action of G which on objects agrees with the action
on C and on morphism spaces is defined by

g.(fn, . . . , f0; t1, . . . , tn) = (g.fn, . . . , g.f0; t1, . . . , tn).

The following definition extends [JS01, Definition 2.2].

Definition 2.3.1. Let C be a category with an action γ : G → Cat and let F : C → Top∗ be a
homotopy coherent diagram.

An external action of G on F compatible with γ consists of a family of homomorphisms of
homotopy coherent diagrams

{ψg : F⇒ F ◦γg | g ∈ G}

satisfying:

1. ψe = idF ,

2. for any g,h ∈ G, ψhg = (ψh, idg ) ◦ψg .

An equivalent definition is [SZ18, Definition 5.1], which calls for a homomorphism ψ : G→
Homeo(∨c∈ob(C)F(c)) compatible with γ and such that

g.F(fn, . . . , f0; t1, . . . , tn;p) = F(g.fn, . . . , g.f0; t1, . . . , tn;g.p).

In the presence of an external action, the homotopy colimit realized as the coequalizer of
Equation (2.2) carries an action ofG by g.(t,x) = (gt,gx), as the two defining maps are equivariant.
In terms of Equation (2.1), the action reads

g.(fn, . . . , f1; t1, . . . , tn;p) = (g.fn, . . . , g.f1; t1, . . . , tn;ψg (p)). (2.3)

Definition 2.3.2. (see [SZ18, Definition 5.5]) Suppose that a small category C carries an action of
group G. Given two homotopy coherent diagrams F1,F0 : C → Top∗ with external actions ϕ1,ϕ0

respectively, we call F1 and F0 externally weakly equivalent if there exists another homotopy
coherent diagram η : 2 ×C → Top∗ with external action of G by ϕ̃ such that (Fi ,ϕi) = (η|{i}×C , ϕ̃|Fi )
for i = 1,0 and that the maps η(1→ 0, idx) : F1(x)→ F0(x) are weak homotopy equivalences.

2.4 Fixed point diagrams

Suppose that G acts on a small category C and H ⊆ G is a subgroup. The fixed-point category
CH has objects and morphisms those fixed by H , and the fixed-point category of the topological
category F C is defined analogously. The two topological categories F (CH ) and (F C)H are then

6



2 Homotopy coherent diagrams

isomorphic, and given a homotopy coherent diagram F : C → Top∗ with external action of G, the
fixed-point diagram FH is the homotopy coherent diagram FH : CH → Top∗ with FH (c) = F(c)H

and
FH (fn, . . . , f0; t1, . . . , tn) = F(fn, . . . , f0; t1, . . . , tn)|F(c)H .

Moreover, the fixed point set (hocolimF)H can be identified as the homotopy colimit of the
diagram FH .

Proposition 2.4.1. ([SZ18, Lemma 5.6]) For any subgroup H ⊆ G and any h.c. diagram F : C →
Top∗ with external action of G there is a homeomorphism

hocolim(FH ) ' (hocolimF)H .

7



3 Flow categories

Flow categories have been introduced by Cohen, Jones and Segal as a way to define stable
homotopy types associated to Floer homology (see [CJS95a], [CJS95b], [Coh20]). They were
used by Lipshitz and Sarkar [LS14a] to construct a spatial refinement of Khovanov homology.
In this section we describe equivariant cubical flow categories after [BPS21] while supplying
an alternative description of the (equivariant) cube flow category using the ’free topological
category’ construction of the previous section.

3.1 〈n〉-manifolds and flow categories

We reproduce relevant definitions after [LLS20, Section 3.1].

Definition 3.1.1. (see [LLS20, Definition 3.1]) A k-dimensional manifold with corners is a topolog-
ical space X equipped with an atlas

{Uα , φα : Uα→ (R+)k}

modeled on open subsets of (R+)k , with smooth transition functions. For a point x in a chart
(U,φ), let c(x) be the number of coordinates of φ(x) which are 0; c(x) is independent of the
choice of chart. The codimension-i boundary of X is {x ∈ X | c(x) = i}. By a Riemannian metric on a
k-dimensional manifold with corners X we mean a Riemannian metric on TX.

Definition 3.1.2. A facet of X is the closure of a connected component of the codimension-1
boundary of X. A multifacet is a union of disjoint facets of X. A manifold with corners X is
a multifaceted manifold if every x ∈ X belongs to exactly c(x) facets of X. An 〈n〉-manifold is a
multifaceted manifold along with an ordered n-tuple (∂1X, . . . ,∂nX) of multifacets of X such
that:

• ∪i ∂iX = ∂X,

• ∀i , j ∂iX ∩∂jX is a multifacet of both ∂iX and ∂jX.

For an 〈n〉-manifold X and an 〈m〉-manifold Y , the product space X ×Y becomes an 〈n+m〉-
manifold by letting

∂i(X ×Y ) =

(∂iX)×Y , 1 ≤ i ≤ n,
X × (∂i−nY ), n+ 1 ≤ i ≤ n+m.

If X is an 〈n〉-manifold and v ∈ {0,1}n, we write

X(v) =
⋂

i : vi=0

∂iX, X(~1) = X.

Definition 3.1.3. Let X and Y be 〈n〉-manifolds; fix a Riemannian metric on Y . A neat embedding
of X into Y is a smooth map f : X→ Y satisfying:

8



3 Flow categories

• ∀v ∈ {0,1}n f −1(Y (v)) = X(v),

• ∀v ∈ {0,1}n f |X(v) : X(v)→ Y (v) is an embedding,

• for any pairw < v ∈ {0,1}n, f (X(v)) is perpendicular to Y (w) with respect to the Riemannian
metric on Y .

Definition 3.1.4. A flow category is a topological category C whose objects ob(C) form a discrete
space, equipped with a grading function gr : ob(C)→Z, and whose morphism spaces satisfy the
following conditions:

(FC-1) for any x ∈ ob(C), Hom(x,x) = {id},

(FC-2) for any x,y ∈ ob(C) with gr(x)− gr(y) = k, Hom(x,y) is a (possibly empty) compact (k − 1)-
dimensional 〈k − 1〉-manifold,

(FC-3) the composition maps combine to produce diffeomorphisms of 〈k − 2〉-manifolds:∐
gr(x)≥gr(z)=gr(y)+i

Hom(z,y)×Hom(x,z) ≡ ∂i Hom(x,y).

For x,y ∈ C, the moduli space from x to y is defined by

MC(x,y) =

Hom(x,y), x , y,

∅, x = y.

Following [BPS21, Chapter 3], we now define equivariant flow categories.

Definition 3.1.5. ([BPS21, Definition 3.5]) For G a finite group, a G-equivariant flow category
is a flow category (C,gr) equipped with the following data:

• for g ∈ G, a grading-preserving functor Gg : C → C,

• a function grG : ob(C)→
⊔
H⊆GRO(H),

required to satisfy the following compatibility conditions:

(EFC-1) Ge is the identity functor,

(EFC-2) Gg ◦Gh = Ggh for all g,h ∈ G,

(EFC-3) (Gg )x,y : MC(x,y)→MC(Gg (x),Gg (y)) is a diffeomorphism of 〈gr(x)− gr(y)− 1〉-manifolds
such that

(Gg )x,y |MC(z,y)×MC(x,z) = (Gg )z,y × (Gg )x,z

whenever z ∈ ob(C), gr(y) < gr(z) < gr(x),

(EFC-4) grG(x) ∈ RO(Gx), where Gx = {g ∈ G | Gg (x) = x},

(EFC-5) dim
R

grG(x) = gr(x),

(EFC-6) for g ∈ G, let vg : RO(Gx)→ RO(Gg.x) be induced by a map

Gx 3 h 7→ ghg−1 ∈ gGxg−1 = Gg.x.

Then we require that for g ∈ G, x1,x2 ∈ ob(C) such that Gg (x1) = x2, there be grG(x2) =
vg (grG(x1)) and in particular vg ◦ vh = vgh,

9



3 Flow categories

(EFC-7) for x,y ∈ ob(C) define

Gx,y = {g ∈ G : Gg (MC(x,y)) ⊆MC(x,y)};

then the moduli spaceMC(x,y) is required to be a compact Gx,y-manifold of dimension

grG(x)|Gx,y − grG(y)|Gx,y −R.

Definition 3.1.6. ([BPS21, Definition 3.6]) A functor f : C1→C2 is a G-equivariant functor if:

• f commutes with group actions on C1 and C2,

• for any object x ∈ ob(C1) there is a Gx-equivariant map

fgrG(x) : grG(x)→ grG(f (x))

such that for any g ∈ G we have

vg ◦ fgrG(x) = fgrG(Gg (x)) ◦ vg .

Definition 3.1.7. (cf. discussion above [BPS21, Definition 3.6]) Let C be a G-equivariant flow
category and V ∈ RO(G) a virtual representation. The suspension of C by V is the G-equivariant
flow category ΣV C whose objects and morphisms sets, as well as the functors Gg are identical to
those of C, equipped with the grading function

grΣV C
G (x) = grCG(x) +V |Gx ∈ RO(Gx).

Definition 3.1.8. ([BPS21, Definition 3.8]) AG-equivariant functor f : C1→C2 is called a (trivial)
G-cover if for any x,y ∈ ob(C1) the map

fx,y : MC1
(x,y)→MC2

(f (x), f (y))

is topologically a (trivial) cover and for any object x ∈ ob(C1), fgrG(x) is an isomorphism of
Gx-representations.

Proposition 3.1.9. ([BPS21, Lemma 3.9]) If C2 is a G-equivariant flow category, C1 is a flow
category, f : C1 → C2 is a trivial cover, and there is an action of G on C1 satisfying conditions
(EFC-1), (EFC-2), (EFC-3), such that f commutes with the action, then there is a unique structure
of a G-equivariant flow category on C1 such that f is a trivial G-cover.

3.2 Permutohedra and group actions

Let n ≥ 1 be a natural number. The symmetric group Σn acts on R
n by

σ.(x1, . . . ,xn) = (xσ−1(1), . . . ,xσ−1(n)).

Suppose S = (s1, . . . , sn) ∈Rn is an increasing sequence of real numbers. The S-permutohedron
ΠS is the convex hull of Σn-translations of S; if [n] = (1, . . . ,n), we write Πn−1 = Π[n].

For i = 1, . . . ,n, let τi =
∑i
j=1 sj . If P ⊆ S is a non-empty subset, consider the half-space

HP =

(x1, . . . ,xn) ∈Rn |
∑
i∈P

xi ≥ τ#P

 .
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3 Flow categories

Then the permutohedron ΠS can equivalently be defined as

ΠS = (
⋂
∅,P(S

HP )∩∂HS

(see e.g. [BP15, Theorem 1.5.7]). In fact, for any ordered partition P1 ∪ · · · ∪ Pr of S, the subset

ΠP1,...,Pr = ΠS ∩
⋂

i=1,...,r−1

∂HP1∪···∪Pi

is an (n − r + 1)-dimensional face of ΠS . In particular, each ΠP ,S\P is a facet in the sense of
Section 3.1. Moreover, ΠP1,...,Pr is a facet of each of the facets ΠP1,...,Pi−1∪Pi ,Pi+1,...,Pr , i = 1, . . . , r − 1. It
is the intersection of any two of them; indeed all intersections of the sets ΠP1,...,Pr arise in this
way, and the following holds.

Proposition 3.2.1. ([LLS20, Lemma 3.14]) The polyhedron ΠS becomes an (n− 1)-dimensional
〈n〉-manifold by letting

∂iΠS =
∐
#P=i

ΠP ,S\P .

For any face ΠP1,...,Pk+1
, there are 2k faces that contain it, all of the form ΠP1,...,Pi∪···∪Pj ,...,Pk+1

; for
the sake of this statement, we treat ΠS as the ’face’ corresponding to the trivial partition. Denote
by CP1,...,Pk+1

the convex hull of barycentra of all the faces containing ΠP1,...,Pk+1

Lemma 3.2.2. [LLS20, cf. Lemma 3.15] Each of the CP1,...,Pk+1
is combinatorially equivalent to a

k-dimensional cube, and these cubes form a cubical subdivision of ΠS .

The poset of faces of ΠS is isomorphic to the poset of internal chains in {0,1}n: to the face
ΠP1,...,Pk+1

one associates the chain u1 > · · · > uk with

u
j
i =

1, si ∈ P1 ∪ · · · ∪ Pj ,
0, si ∈ Pj+1 ∪ · · · ∪ Pk+1.

Consider now the action of a cyclic subgroup 〈σ〉 ⊆ Σn on R
n. The sets ΠS and {0,1}n are

invariant, and so carry the induced action. The poset of faces of ΠS also carries this action, via
the corresponding action on the poset of internal chains in {0,1}n:

g.(u1 > · · · > uk) = (g.u1 > · · · > g.uk).

Now, the fixed point poset of the latter action is isomorphic to the poset of internal chains in
some other {0,1}n′ . As the 〈σ〉-action descends also to the set of barycentra of faces of ΠS , the
following holds.

Proposition 3.2.3. The fixed-point set Π〈σ〉S is a cubical subcomplex, combinatorially equivalent
to a lower-dimensional permutohedron.

Indeed, [BPS21, Proposition B.18] establishes that this can be realized as a diffeomorphism of
(n′ − 1)-dimensional 〈n′ − 1〉-manifolds.
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3 Flow categories

Figure 3.1: A projection of the permutohedron Π3. Shaded red is the cube around the vertex
(4,2,3,1) = Π{4},{2},{3},{1}, corresponding in the cubical subdivision of Π3 to the chain
(0,0,0,1) > (0,1,0,1) > (0,1,1,1). Shaded gray, the fixed-point set of the action of Z2
by σ.(x1,x2,x3,x4) = (x2,x1,x3,x4), combinatorially equivalent to the permutohedron
Π2, together with its cubical subdivision induced from the one on Π3.
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3 Flow categories

3.3 The cube flow category

The free topological category construction applied to a poset C yields a topological category
F C whose morphism spaces are naturally decomposed as cubical complexes. Abouzaid and
Blumberg [AB21, Section 2.1] used this in the case that C = P is a finite-dimensional poset in the
sense that between for any two elements p,q ∈ P , lengths of chains in P starting at p and ending
at q form a finite set. The upshot is that moduli spaces of F P are finite-dimensional and have a
well-defined boundary.

Consider the topological category C(n) B F 2n as defined in Section 2.3. We require a de-
scription of morphisms spaces of C(n); one such description appears as early as [Lei74], see also
[Blo11].

Following the definitions in Section 2.3, given u,v ∈ 2n, the space of morphisms C(n)(u,v) is

tm≥0 2n(u,v)m × [0,1]m/∼,

where 2n(u,v)m is the set of chains in 2n of length m, lying entirely between u and v. Here, for
P ⊆ S two chains between u and v, ∼ identifies the cube [0,1]P corresponding to P to the subset
of [0,1]S obtained by inserting 1s at S \ P -coordinates. Thus, C(n)(u,v) is isomorphic as a cubical
complex to the permutohedron Πu∆v as described in Lemma 3.2.2; here,

u∆v = {i ∈ {1, . . . ,n} | ui = 1,vi = 0}.

Likewise, the composition maps in C(n) recover the multifacets ∂C(n)(u,v) making up the
boundary of C(n)(u,v) via

∂iC(n)(u,w) =
∐
|v|−|w|=i

◦(C(n)(v,w)×C(n)(u,v)) ⊆ ∂C(n)(u,v).

Definition 3.3.1. The cube flow category is the topological category C(n) = F 2n equipped with
the grading function ob(C(n)) = 2n→Z defined by (u1, . . . ,un) 7→ |u| = u1 + · · ·+un.

Consider again the Zm-action on the category 2n
′

= 2nm � (2n)m, as in Section 1.1. The
topological category C(nm) carries an action of Zm, by functors γg : C(nm)→ C(nm), g ∈ Zm,
and the maps of moduli spaces (γg )u,v are isomorphisms of cubical complexes. For u ∈ C(nm),
denote by (Zm)u the isotropy group of u and consider the (Zm)u-representation Vu = R

u∆0.

Proposition 3.3.2. ([BPS21, Proposition 3.10]) The Zm-action defines a structure of Zm-flow
category on C(n), equipped with the grading function gr

Zm
(u) = Vu .

In keeping with the conventions of [BPS21], we denote this category by Cσ (n′), σ referring to
the permutation of [nm] of order m which defines the action.

Definition 3.3.3. ([BPS21, Definition 3.11]) A Zm-equivariant cubical flow category is a Zm-
equivariant flow category equipped with a Zm-cover f : ΣV C → Cσ (n′), for σ of order m in Σn′ ,
and for some Zm-virtual representation V .

3.4 Equivariant cubical neat embeddings

Fix an action of G = Zm on 2n and denote the induced equivariant flow category by Cσ (n).
Let V ∈ Rep(G) be an orthogonal G-representation, u,v ∈ ob(Cσ (n)), u > v. Denote by Vu,v the
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restriction of the representation V to the subgroupGu,v = Gu∩Gv . Let moreoever e• = (e0, . . . , en−1)
be a sequence of non-negative integers. Define

E(V )u,v =
|u|−1∏
i=|v|

BR(Vu,v)ei ×Cσ (u,v).

For any g ∈ G, there is a map

g · (−) : E(V )f (x),f (y)→ E(V )f (x),f (y)

taking Cσ (n)(u,v) to Cσ (n)(gu,gv) and Vu,v to Vgu,gv .

Definition 3.4.1. ([BPS21, Definition 3.14]; cf. [LLS20, Definition 3.25]) Let (C, f : ΣVC →
Cσ (n)) be an equivariant cubical flow category. An equivariant cubical neat embedding of C,
relative representation V ∈ Rep(G) and relative sequence e• = (e0, . . . , en−1) ∈Nn is a collection of
Gx,y-equivariant neat embeddings ιx,y : M(x,y)→ E(V )f (x),f (y) such that:

(CNE-1) for all x,y ∈ ob(C(n)), the following diagram commutes:

MC(x,y) E(V )f (x),f (y)

Cσ (n)(f (x), f (y)),

ιx,y

f
π2

(CNE-2) for all u,v ∈ ob(Cσ (n)), the map∐
x,y∈ob(C)

f (x)=u,f (y)=v

ιx,y :
∐

x,y∈ob(C)
f (x)=u,f (y)=v

MC(x,y)→ E(V )u,v

is a neat embedding,

(CNE-3) for all x,y,z ∈ ob(C), the following diagram commutes:

MC(y,z)×MC(x,y) MC(x,z)

E(V )f (y),f (z) ×E(V )f (x),f (y) E(V )f (x),f (z).

◦

ιy,z×ιx,y ιx,z

◦

(CNE-4) for all x,y ∈ ob(C) and all g ∈ G, the following diagram commutes:

MC(x,y) E(V )f (x),f (y)

MC(gx,gy) E(V )f (gx),f (gy)

ιx,y

(Gg )x,y (g,γg )
ιgx,gy

Proposition 3.4.2. ([BPS21, Proposition 3.16]) Any equivariant cubical flow category admits an
equivariant cubical neat embedding.
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In order to define the geometric realization of an equivariant cubical flow category, we need
certain extensions of neat embeddings.

Definition 3.4.3. (see [BPS21, Section 3.6], [LLS20, Definition 3.25], [LLS20, Convention 3.27])
An equivariant framed cubical neat embedding consists of extensions of the maps ιx,y to Gx,y-

equivariant maps

ῑx,y :
|f (x)|−1∏
i=|f (y)|

Bε(Vf (x),f (y))
ei ×MC(x,y)→ E(V )f (x),f (y)

satisfying the conditions analogous to those of Definition 3.4.1:

(FNE1) for all x,y ∈ ob(C(n)), the following diagram commutes:

∏|f (x)|−1
i=|f (y)| Bε(V )ei ×MC(x,y) E(V )f (x),f (y)

MC(x,y) C(n)(u,v),

ι̃x,y

π2 π2

f

(FNE2) for all u > v ∈ C(n) the induced map

∐
f (x)=u,f (y)=v

ῑx,y :
∐

f (x)=u,f (y)=v

|u|−1∏
i=|v|

Bε(V )ei

×MC(x,y)→ E(V )u,v

is an embedding,

(FNE3) for all x,y,z ∈ ob(C), the following diagram commutes:

∏|f (z)|−1
i=|f (y)| Bε(V )ei ×MC(y,z)×

∏|f (y)|−1
i=|f (x)| Bε(V )ei ×MC(x,y)

∏|f (z)|−1
i=|f (x)| Bε(V )ei ×MC(x,z)

E(V )f (y),f (z) ×E(V )f (x),f (y) E(V )f (x),f (z),

Υ

ι̃y,z×ι̃x,y ι̃x,z

◦

where Υ merges the ε-terms and applies the composition map in C to the moduli spaces.

(FNE4) The following diagram commutes:

∏|f (x)|−1
i=|f (y)| Bε(V )ei ×MC(x,y) E(V )f (x),f (y)

∏|f (x)|−1
i=|f (y)| Bε(V )ei ×MC(gx,gy) E(V )f (gx),f (gy)

ι̃x,y

(g,(Gg )x,y ) (g,γg )

ι̃gx,gy

Proposition 3.4.4. Any equivariant cubical neat embedding can be framed, granted ε small
enough.
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Proof. One choice is

ῑx,y : (t,p) 7→ (t +πRf (x),f (v)(ιx,y(p)),πMf (x),f (v)(ιx,y(p))),

where πRu,v : E(V )u,v →
[∏|u|−1

i=|v| BR(V )di
]
, πMu,v : E(V )u,v → Cσ (n)(u,v) are the projections. The ι̃

thus constructed are equivariant because the ιx,y , πRu,v and πMu,v are. The conditions (FNE1),
(FNE3), (FNE4) also follow from the analogous conditoins (CNE-1), (CNE-3), Item (CNE-4)
placed on ιx,y . Condition (FNE2) follows from (CNE-2) together with (CNE-1): for (CNE-1) as-
sures that for all p ∈MC(x,y), (πRf (x),f (y))

−1(f (p)) and ιx,y(MC(x,y)) are transverse in E(V )f (x),f (y).
Hence, for ε small enough, the map in (FNE2) is still injective.

3.5 Geometric realization of an equivariant cubical flow
category

Let (C, f : ΣV C → Cσ (n), ι) be an equivariant cubical flow category. Suppose that ι has been
extended to an equivariant framed cubical embedding. Given x ∈ ob(C), write u = f (x) ∈ 2n and

EX(x) =
|u|−1∏
i=0

BR(V )ei ×
n−1∏
i=|u|

Bε(V )ei ×Cσ (n)+(u,~0).

Here, Cσ (n)+ is the topological category F (2n+), so that the morphism spaces are

Cσ (n)+(u,~0) =

Cσ (n)+(u,~0)× [0,1], u , 0,
{0}, u = 0.

(3.1)

For any x,y ∈ ob(C) with f (x) = u > v = f (y), the map ι̃x,y furnishes a Gx,y-equivariant embedding

EXx,y : EX(y)×Cσ (n)(x,y) ↪→ ∂EX(x).

EX(y)×MC(x,y)

�

|v|−1∏
i=0

BR(V )ei ×
n−1∏
i=|u|

Bε(V )ei ×Cσ (n)+(v,~0)×

|u|−1∏
i=|v|

Bε(V )ei ×MC(x,y)


ιx,y
↪−−→

|v|−1∏
i=0

BR(V )ei ×
n−1∏
i=|u|

Bε(V )ei ×Cσ (n)+(v,~0)×

|u|−1∏
i=|v|

BR(V )ei ×Cσ (n)(x,y)


↪→∂EX(x).

(3.2)

The realization ||C|| is the CW complex obtained by starting with the basepoint ∗ and attaching
cells of increasing gradings |x| = |f (x)|. The attaching map for EX(x) sends the image of the map
EXx,y to EX(y) (via the inverse of EXx,y composed with projection EX(y)×MC(x,y)→ EX(y)) and
the complement ∂EX(x) \∪|y|<|x| im(EXx,y) to ∗.

By [BPS21, Proposition 3.18], this produces a G-cell complex, with cell

C(x1)tC(x2)t· · ·tC(xk) � G ×Gx1

|u|−1∏
i=0

BR(V )ei ×
n−1∏
i=|u|

Bε(V )ei ×BR(grG(x1))


of type (Gx,V e1+···+en−1 ⊕ grG(x1)) for {x1, . . . ,xk} an orbit of x1 ∈ ob(C) by the G-action.
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Definition 3.5.1. ([BPS21, Definition 3.19]) If (C, f : ΣW C → Cσ (n)) is an equivariant cubical
flow category with an equivariant cubical neat embedding relative orthogonal G-representation
V and (e1, . . . , en−1), then the stable equivariant homotopy type of C is the formal desuspension

X (C) = Σ−W−V
e0+···+en−1 ||C||,

where ||C|| is the G-cell complex described above.

This is considered as an object of the equivariant Spanier-Whitehead category, and the proof
of [BPS21, Theorem 1.2] includes its independence of the choices of R,ε,V , (e1, . . . , en−1,V ).
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4 Burnside functors

A Burnside functor is a functor into the Burnside 2-category. After [SZ18], we define a way in
which a particular type of homotopy coherent diagram can be described as subordinate to a
Burnside functor, in the presence of external group actions on both.

4.1 The Burnside 2-category

We reproduce definitions from [LLS20, Section 4.1].

Definition 4.1.1. Let X and Y be sets. A correspondence from X to Y is a set A together with
maps s : A→ X, t : A→ Y . X is then called the source and Y the target of the correspondence,
and s and t the source- and target-maps thereof.

Given correspondences (A,sA, tA) from X to Y and (B,sB, tB) from Y to Z, the composition
(B,sB, tB) ◦ (A,sA, tA) is the correspondence (C,s, t) from X to Z given by

C = B×Y A = {(b,a) ∈ B×A | t(a) = s(b)}, s(b,a) = sA(a), t(b,a) = tB(b).

Given correspondences (A,sA, tA) and (B,sA, tB) fromX to Y , a morphism of correspondences from
(A,sA, tA) to (B,sB, tB) is a bijection of sets f : A→ B that commutes with source- and target-maps:

sA = sB ◦ f , tA = tB ◦ f .

Composition of morphisms of correspondences is then the usual composition of set maps.

Definition 4.1.2. The Burnside category is the weak 2-category B of finite sets as objects, corre-
spondences as 1-morphisms and morphisms of correspondences as 2-morphisms.

That B is a weak 2-category means that the identity and associativity axioms hold only up to
2-isomorphism.

We will be working with weak 2-functors from the 1-category 2n to the Burnside category.
These functors are examples of lax 2-functors between weak 2-categories; for a more general
definition, see e.g. [LLS20, Definition 4.2].

Definition 4.1.3. (see [LLS20, Lemma 4.4], [SZ18, Definition 3.3]) Let C denote a small1-category.
A strictly unitary Burnside functor (Burnside functor for short in the remainder) F : C → B consists
of the following data:

• for each object v ∈ ob(C), a set F(v),

• for each morphism u
A−→ v in C, a correspondence F(A) from F(u) to F(v),

• for each pair of morphisms u
A−→ v

B−→ w in C, a map of correspondences

F(A,B) : F(B)×F(v) F(A)→ F(B ◦A).
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4 Burnside functors

This data is required to satisfy the following condition: for a triple of morphisms u
A−→ v

B−→ w
C−→ x

in C, the diagram

F(C)×F(w) F(B)×F(v) F(A) F(C)×F(w) F(B ◦A)

F(C ◦B)×F(v) F(A) F(C ◦B ◦A)

id×F(A,B)

F(B,C)×id F(B◦A,C)

F(A,C◦B)

commutes.

Definition 4.1.4. A natural transformation of Burnside functors F1,F0 : C → B consists of another
Burnside functor J : C × 2→B such that

J |C×{1} = F1, J |C×{0} = F0.

If moreover for every x ∈ C, the 1-morphism J(idx×(1→ 0)) is an isomorphism, we call J a natural
isomorphism.

In the case of indexing category C = 2n, the data of a Burnside functor 2n→B can be simplified
as follows.

Lemma 4.1.5. ([SZ18, Lemma 3.4]) Suppose that for any u,v,v′ ,w in 2n with u ≥1 v,v
′ ≥1 w

there are given: finite sets F(v), finite correspondences F(u,v), as well as isomorphisms of
correspondences Fu,v,v′ ,w : F(v,w) ◦F(u,v)→ F(v′ ,w) ◦F(u,v′) are given in such a way that:

(1) Fu,v,v′ ,w = F−1
u,v′ ,v,w

(2) a cube in 2n on the left yields a commutative hexagon of 2-morphisms in B on the right.

w z

v′ w′′

v′′ w′

u v

◦ ◦

◦ ◦

◦ ◦

Fv,w′′ ,w′ ,z × id

id×Fu,v,v′′ ,w′

Fv′ ,w,w′′ ,z × id

id×Fu,v′ ,v,w′′

id×Fu,v′′ ,v′ ,w

Fv′′ ,w′ ,w,z × id

Then the data can be extended to a Burnside functor F : 2n→B, uniquely up to natural isomor-
phism, so that Fu,v,v′ ,w = F−1

u,v′ ,w ◦Fu,v,w.

4.2 External actions on Burnside functors

Definition 4.2.1. ([SZ18, Definition 3.7]) Fix a Burnside functor F : C→B. Say there exists an
action of G by ψ on C. An external action on F compatible with ψ consists of the following data:
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4 Burnside functors

1. a collection of 1-isomorphisms

{ψg,v : F(v)→ F(gv) | g ∈ G, v ∈ C},

2. a collection of 2-isomorphisms

ψg,h,v : ψgh,v → ψg,hv ◦ψh,v

(note: should such exist, they are unique),

3. for every morphism A : x→ y in C and every g ∈ G, a 2-morphism

ψg,A : ψg,y ◦F(A)→ F(gA) ◦ψg,x.

These data are subject to the following conditions:

(EB-1) for objects u,v ∈ C and a morphism A : u → v, the 2-morphism ψgh,A is equal to the
composite

ψgh,v ◦F(A)
ψg,h,v◦1id
−−−−−−−−→ ψg,hv ◦ψh,v ◦F(A)

id◦1ψh,A−−−−−−−→ ψg,hv ◦F(hA) ◦ψh,u
ψg,hA◦1id
−−−−−−−−→ F(ghA) ◦ψg,hu ◦ψh,u

id◦1ψg,h,u
−−−−−−−−→ F(ghA) ◦ψgh,u .

(EB-2) given a composable pair u
A−→ v

B−→ w in C, the 2-morphisms

ψg,w ◦F(B) ◦F(A)
ψg,B◦1id
−−−−−−−→ F(gB) ◦ψg,v ◦F(A)

id◦1ψg,A
−−−−−−−→ F(gB) ◦F(gA) ◦ψg,u

FgA,gB◦1id
−−−−−−−−−→ F(gB ◦ gA) ◦ψg,u

and

ψg,w ◦F(B) ◦F(A)
id◦1FA,B−−−−−−−→ ψg,w ◦F(B ◦A)

ψg,B◦A
−−−−−→ F(gB ◦ gA) ◦ψg,u

are equal.

Suppose C carries a G-action and G is understood to be acting trivially on 2. Then C × {i},
i = 1,0, are G-invariant subcategories of C × 2. Given a Burnside functor J : C × 2→B with an
external G-action by ψ, the subfunctors Fi : C × {i} → B carry external actions induced from ψ by
restriction. This informs the following.

Definition 4.2.2. Let C be a small category, acted upon by a group G, and let F1,F0 : C → B be
functors equipped with external actions of G by ψ1,ψ0. We say that F1 and F0 are equivariantly
naturally isomorphic if there is a natural isomorphism J : C × 2→B between F1 and F0, equipped
with an external action of G extending ψ1 and ψ0, respectively.

Example 4.2.3. Let F : 2 → B be a Burnside functor and G a group, understood to be acting
trivially on 2; denote the single correspondence in F(1,0) by (A, s : A→ X = F(1), t : A→ Y =
F(0)). Then an external action of G on F consists of:

1. invertible correspondences ψg,1 : X→ X, ψg,0 : Y → Y , for all g ∈ G,

2. isomorphisms of correspondences ψg,h,v : ψgh,v → ψg,v ◦ ψh,v for v = 1,0 and g,h ∈ G,
carrying no additional information beyond their existence,
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4 Burnside functors

3. isomorphisms of correspondences ψg,A : ψg,0 ◦A→ A ◦ψg,1 for all g ∈ G.

These are required to satisfy, for all g,h ∈ G,

ψgh,A = ψg,h,0 ◦ψg,A ◦ψh,A ◦ψg,h,1.

By an extension of the Lemma 4.1.5, external actions on Burnside functors from the cube are
determined by lower-dimensional data.

Lemma 4.2.4. ([SZ18, Lemma 3.10]) Consider the cyclic action of Zm on (2n)m. Suppose
F : (2n)m→B is defined as in Lemma 4.1.5, and that in addition we are given:

(1) for v ∈ (2n)m, a 1-isomorphism ψg,v : F(v)→ F(gv),

(2) for g,h ∈ G and v ∈ (2n)m, a 2-morphism

αg,h,v : ψg,h,v → ψg,hv ◦ψh,v ,

(3) for each g ∈Zp and u ≥1 v ∈ (2n)m, a 2-morphism

ψg,u,v : ψg,v ◦F(u,v)→ F(gu,gv) ◦ψg,u .

Suppose moreover that this data satisfies the following:

(E-1)’ For any u ≥1 v and all g,h ∈ G,

ψgh,u,v = α−1
g,h,u ◦2 (ψg,hu,hv ◦ id) ◦2 (id ◦ψh,u,v) ◦2 αg,h,v ,

(E-2)’ for any u ≥1 v,v
′ ≥1 w and any g ∈ G, there is a commutativity hexagon yielding

(F(gu,gv,gv′ , gw)◦2id)◦(id◦ψg,u,v)◦(ψg,v,w◦id) = (id◦ψg,u,v′ )◦(ψg,v′ ,w◦id)◦(id◦F(u,v,v′ ,w)).

Then there exists a Burnside functor F : (2n)m→B admitting an external Zm-action, uniquely
up to Zm-equivariant isomorphism.
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5 Spatial refinements

The aim of this chapter is to, given a Burnside functor (with external action), produce homotopy
coherent diagrams with the property that in the homotopy colimit, vertices of the diagram
correspond to cells and the Burnside functor describes degrees of attaching maps.

5.1 Stars and star maps

The constructions presented in this sections realise a version of the “charge map”, associating to
a configuration of points in R

n a map of spheres Sn→ Sn (see [Seg73, Section 1]). The approach
taken here (after [LLS20]) allows for composing such maps between (wedges of) spheres along a
Burnside functor, in the end furnishing a homotopy coherent diagram. This was already done
equivariantly in [SZ18, Section 4.4], using spaces of little disks; for our purposes, a wider family
of shapes must be used, contatining both disks and products of disks.

In the scope of this section, V will denote an orthogonal representation of a group G.
For X a finite G-set, the configuration space of points of X in a G-space Y is the space

ConfX(Y ) = {{px}x∈X ∈ Y k | ∀x , y ∈ X px , py}.

Equivalently, a configuration can be seen as an embedding f : X→ Y , whereby ConfX(Y ) carries
an action of G by

(g.f )(x) = g.f (g−1.x).

We aim to describe one of the possible equivariant versions of the Pontryagin-Thom collapse
map, associating a map between spheres to a configuration. This entails replacing the points of a
configuration by “little stars”, as expanded upon below.

Let S(V ) denote the unit sphere in V . Let f : S(V )→R+ be a continuous map. By a star in V
we will mean the set

B(p,f ) = p+ {α · v ∈ V | v ∈ V , |α| ≤ (v)} ⊆ V

for some f as above and p ∈ V . The point p is then called the center point of B(p,f ), and a star
is understood to come with a distinguished center point. If f is G-invariant, we call B(0, f ) an
invariant star in V . Any star is a star-shaped subset of V ; an invariant star in V is a G-invariant
subset of V , and as such becomes a G-space.

Let A : 2→B be a Burnside functor with external action by G, subordinate to the trivial action

of G on 2. Per Definition 6.1.1, this consists of a correspondence X
s←− A t−→ Y along with actions

φg,X : X→ X, φg,Y : Y → Y and φg,A : A→ A, which commute with the source- and target-maps.
Suppose {Bx}x∈X is a set of G-invariant stars in V . We fix the radial homeomorphisms

ϕx,y : Bx→ By for all x,y; these satisfy ϕx,z = ϕy,z ◦ϕx,y . The space B(X,V )B tx∈X Bx carries an
action of G by g.(x,v) = (g.x,g.φx,g.x(v)). The space Conf({Bx}, s) is defined as the space of embed-
dings γ : A→ B(X,V ) satisfying γ(a) ∈ Bs(a). Topologically, this is the same as tx∈X Confs−1(x)(Bx).
The space Conf({Bx}, s) carries an action of G by

(g.γ)(a) = g.ϕg,g.xγ(g−1.a).
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5 Spatial refinements

Replacing the points of A by little stars, we consider the space Stars({Bx}, s) of embed-
dings of A-labeled stars in B(X,V ), again with Ba ⊆ Bs(a). This is topologized as a subset of
Conf({Bx}, s)×Map(X × S(V ),R+), and again carries an action by

(g.γ)(a,v) = g.ϕg,g.xγ(g−1.a,v).

A configuration of stars with centers {px}x∈X can be deformed to one whose stars are all spheres
with radius

1
3

min
x,y∈X

(d(px,py),d(px,V \B)).

This establishes a strong equivariant deformation retraction from Stars({Bx}, s) to a bundle of
points over Conf({Bx}, s). The map is also equivariant and induces homotopy equivalences of
fixed-point sets, implying the following.

Lemma 5.1.1. The spaces Stars({Bx}, s) and Conf({Bx}, s) are G-homotopy equivalent.

Note that the target map of the correspondence played no role in the definition of
Stars({Bx}X , s); rather, it becomes relevant in the definition of the associated map of spheres. Let
SV denote the one-point compactification V ∪ {∞}, considered as a G-space.

Definition 5.1.2. ([LLS20, Definition 5.8]) Let A = (A,s : A→ X,t : A→ Y ) be a correspondence
and

e = {Ba ⊆ Bs(a) | a ∈ A} ∈ Stars({Bx}, s)

a collection of substars in V . Define a map Φ(e,A) : ∨x∈X SV →∨y∈Y SV on the summand SVx
corresponding to x ∈ X to be the map of spheres

Φ(e,A)|
SVx

: SVx = Bx/∂Bx→ Bx/(Bx \ (
⋃
a∈A
s(a)=x

B̊a)) =
∨
a∈A
s(a)=x

Ba/∂Ba =
∨
a∈A
s(a)=x

SVa →
∨
y∈Y

SVy ,

the last map sending SVa by the identity map to SVt(a). Any map ∨x∈XSV → ∨y∈Y SV that is of
the form Φ(e,A) for some e ∈ Stars({Bx}, s), is called a (V -dimensional) star map refining the
correspondence A.

We end this section by stating some facts about star maps without proof.

Lemma 5.1.3. The map

Φ(−,A) : Stars({Bx}, s)→Map(∨x∈XSk ,∨y∈Y SV )

is continuous.

Lemma 5.1.4. ([SZ18, Lemma 4.12]) The star map Φ(e,A) associated to an element e ∈
Stars({Bx}, s)H fixed by subgroup H ⊆ G, is H-equivariant.

Lemma 5.1.5. Given a correspondence A : X → Y as above, G-representations V and W , a
family of invariant stars in {Bx}x∈X ⊆ V and an invariant star B′ ⊆ W , consider the map
ψB′ : Stars({Bx}, s)→ Stars({Bx ×B′}X , s) obtained by taking products of all stars with B′ . Then for
any e ∈ Stars({Bx}, s), the assignment

Φ(e,A) ◦ψB′ ∈Map(∨x∈XSV⊕W ,∨y∈Y SV⊕W )

is a (V ⊕W )-dimensional star map refining the correspondence A.
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5 Spatial refinements

Lemma 5.1.6. ([SZ18, Lemma 4.8]) Let X
A−−→ Y

B−→ Z be finite correspondences. Given e ∈
Stars({Bx}, sA) and f ∈ Stars({By}, sB), there is a unique arrangement of stars

f ◦ e ∈ Stars({Bx}, sB◦A,B ◦A,X) = Stars({Bx}, sB◦A)

such that there is an equality of star maps Φ(f ◦ e,B ◦A) = Φ(f ,B) ◦Φ(e,A). Moreover, the
assignment

◦ : Stars({By}, sB)× Stars({Bx}, sA)→ Stars({Bx}, sB◦A,B ◦A,X)

is continuous and surjective.

Proof. For (b,a) ∈ B×Y A, b ∈ B, a ∈ A, consider the corresponding stars eb : Bb→ BsB(b), ea : Ba =
BsB(b)→ BsA(a). The substar eb,a : Bb→ BsA(a) = BsB◦A(b) is ea ◦ eb.

5.2 Equivariant spatial refinements

Definition 5.2.1. For any finite-dimensional real G-representation V , consider the set Stars(V )
of stars in V invariant under the G-action; write

Stars(G) =
∐

V ∈Rep(G)

Stars(V ).

Lemma 5.2.2. ([SZ18, Lemma 4.11]) Let V be a G-representation, s : A→ X a function, and
H ⊆ G a subgroup. Then, for any integer N > 0, there exists a finite-dimensional representation
VN such that if V is another finite-dimensional representation admitting an embedding VN ↪→ V ,
then for any family {Bx}x∈X of stars in V , the fixed-point set of Stars({Bx}, s) under the action of
H , denoted by Stars({Bx}, s)H , is N -connected (and nonempty).

Definition 5.2.3. Let C be a poset, F : C → B a Burnside functor, F̃ : C → Top∗ a homotopy
coherent diagram, and V an inner product space. We say that F̃ is a spatial refinement of F modeled
on V if its components are of the form:

• for u ∈ ob(C), there are stars {Bx}x∈F(u) ⊆ Stars(V ) with

F̃(u) = ∨x∈F(u)S
V = tx∈F(u)Bx/∂,

• for u,v ∈ ob(C), the component

F̃(u,v) : F C(u,v)→ Top∗(∨x∈F(u)S
V ,∨x∈F(v)S

V )

equals Φ(−,F(u,v)) ◦ F̃u,v , where F̃u,v : F C(u,v)→ Stars({Bx}x∈F(u), sF(u,v)) is a continuous
family of star arrangements.

Definition 5.2.4. Let F : C → B be a Burnside functor equipped with an external action of G by
ψ. Let V be a G-representation and F̃ : C → Top∗ a spatial refinement modeled on V . The spatial
refinement F̃ of F is called a G-coherent refinement modeled on V if for all g ∈ G, u,v ∈ ob(C),
x ∈ F(u), t ∈ F C(u,v) and p ∈ Bx/∂Bx the equality

g.F̃(u,v)(t)(p) = F̃(g.u,g.v)(t)(g.p) (5.1)

holds (here, g.p ∈ Bg.x/∂Bg.x).
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Proposition 5.2.5. ([SZ18, Proposition 5.11]) Let C be a small category of length n, equipped
with a G-action. Let F : C → B be a Burnside functor, equipped with an external action of G.

1. There exists a finite-dimensional G-representation W such that for all finite-dimensional
G-representations V which admit an embedding ofW , there exists aG-coherent refinement
of F modeled on V .

2. There exists a finite-dimensional G-representation W such that for all finite-dimensional
G-representations V which admit an embedding of W , any two G-coherent refinements of
F modeled on V are weakly equivalent.

3. If F̃V is a G-coherent refinement of F modeled on V , then for any G-representation V ′,
the result of suspending each F̃V (u) and F̃V (fn, . . . , f1) by V ′ gives a G-coherent spatial
refinement of F modeled on V ⊕V ′ .

The preceding proposition allows us finally to define stable Burnside functors and their
geometric realizations. The construction uses homotopy colimits over a slightly larger category.

Definition 5.2.6. The category 2n+ has objects ob(2n+) = ob(2n)∪ {∗} and morphisms

Hom2n+(u,v) =


Hom2n , v ∈ ob(2n)
{∗}, v = ∗,u ∈ ob(2n),
∅, v = ∗,u = ~0.

That is, 2n+ can be seen as a 2n with the terminal object ~0 “doubled”.

Definition 5.2.7. A stable Burnside functor with external action of a group G is a triple

(F : 2n→B,ψ.F,V ∈ RO(G))

of Burnside functor F, external action ψ of G on F compatible with an action of G on C, and a
virtual representation V .

The stable homotopy type of (F,ψ,V ) is the equivariant suspension spectrum (seen as an element
of the G-Spanier-Whitehead category)

|F|B ΣV−W Σ∞hocolim F̃+
W ,

where W is an orthogonal representation of G for which Item 2 of Proposition 5.2.5 holds, F̃W is
a spatial refinement of F modeled onW , and F̃+

W is its extension to a homotopy coherent diagram

F̃+
W : 2n+→ Top∗

obtained by letting F̃+
W (∗) be the basepoint.
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6 G-cubical categories are external actions
on Burnside functors

Independently of [SZ18], a notion of external action on a Burnside functor was introduced by
Musyt [Mus19]. We use this as a stepping stone in order to pronounce the comparison map
establishing equivalence between the notions of equivariant cubical flow categories and external
actions on Burnside functors (in the sense of [SZ18]).

6.1 Musyt’s formalism

Definition 6.1.1. Fix a Burnside functor F : 2n→B. Say there exists an action of G by φ on 2n.
An external action on F compatible with φ consists of the following data:

1. a collection of bijections

{φg,v : F(v)→ F(gv) | g ∈ G, v ∈ 2n},

2. for every pair u ≥ v in 2n and every g ∈ G, a bijection

φg,u,v : F(u,v)→ F(gu,gv).

These data are subject to the following conditions:

(MD-1) for any u ≥ v ∈ 2n, the maps φe,u : F(u)→ F(u) and φe,u,v : F(u,v)→ F(u,v) are the identity,

(MD-2) φgh,u = φg,hu ◦φh,u ,

(MD-3) φgh,u,v = φg,hu,hv ◦φh,u,v ,

(MD-4) φg,u ◦ s = s ◦φg,u,v , φg,v ◦ t = t ◦φg,u,v ,

(MD-5) φg,u,w ◦ F(u,v,w) = F(gu,gv,gw) ◦
(
φg,v,w ×φg,u,v

)
is an equality of functions

F(u,v)×F(v) F(v,w)→ F(gu,gw).

We will refer to the functions φg,v and φg,u,v satisfying (MD-1)–(MD-5) as Musyt data (of external
action on F).

6.2 Musyt and SZ

Essentially, Musyt’s formalism corresponds to that of Stoffregen-Zhang by exchanging 1-
isomorphisms in B for bijections of sets, and some of the 2-isomorphisms for equalities of
functions. We write out the comparison more explicitly.

Construction 6.2.1. From Musyt data of external action we produce Stoffregen-Zhang external
action as follows.
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6 G-cubical categories are external actions on Burnside functors

1. From a bijection φg,u : F(u)→ F(gu), we produce a correspondence ψg,u : F(u)→ F(gu) by

ψg,u B F(u)
id←−− F(u)

φg,u
−−−−→ F(gu).

2. The 2-morphisms ψg,h,u : ψgh,u → ψg,hu ◦ψh,u are given by the map

F(u)→ F(u)×F(hu) F(hu), a 7→
(
a,φh,u(a)

)
.

They are 2-morphisms because φgh,u = φg,hu ◦φh,u .

3. From bijection φg,u,v : F(u,v)→ F(gu,gv) we produce a 2-morphism ψg,u,v : ψg,v ◦F(u,v)→
F(gu,gv) ◦ψg,u by the following formula:

[a, tF(u,v)(a)] 7→ [φ−1
g,u(sF(gu,gv)(φg,u,v(a))),φg,u,v(a)] = [sF(u,v)(φg,u,v(a)),φg,u,v(a)],

where a ∈ F(u,v) uniquely determines an element of the correspondence F(u,v)×F(v) ψg,v ,
and analogously φg,u,v(a) for ψg,u ×F(gu) F(gu,gv). The conditions for this ψg,u,v to be a
2-morphism are

• sF(u,v) = φ−1
g,u ◦ sF(gu,gv) ◦ψg,u,v , or equivalently φg,u ◦ sF(u,v) = sF(gu,gv) ◦ψg,u,v ,

• φg,v ◦ tF(u,v) = tF(gu,gv) ◦ψg,u,v ,
which is exactly the condition (MD-4) in Definition 6.1.1.

Lemma 6.2.2. The 1-morphisms ψg ,u and the 2-morphims ψg,h,u and ψg,u,v satisfy compatibility
conditions (EB-1) and (EB-2) of Definition 4.2.1.

Proof. For (EB-1), take an element (a, tF(u,v)(a)) ∈ F(u,v) ×F(v) ψgh,v . The sequence of maps in
(EB-1) then takes the form(

a, tF(u,v)(a)
)
7→

(
a, tF(u,v)(a),φh,v(tF(u,v)(a))

)
7→

(
sF(u,v)(a),φh,u,v(a),φh,v(tF(u,v)(a))

)
7→

(
sF(u,v)(a), sF(hu,hv)(φh,u,v(a)),φg,hu,hv(φh,u,v(a))

)
=

(
sF(u,v)(a), sF(hu,hv)(φh,u,v(a)),φgh,u,v(a)

)
7→

(
sF(u,v)(a),φgh,u,v(a)

)
,

which is the same as φgh,u,v , as required.
For (EB-2), we get the following diagram:(

a,sF(v,w)(b),φg,u,w(b)
)

(a,b, t(b))
(
sF(u,v)(a),φg,u,v(a),φg,u,w

)
(
Fu,v,w(a,b), t(b)

) (
sF(u,v)(a),Fgu,gv,gw(φg,u,v(a),φg,v,w(b))

)
(
sF(u,v)(a),φg,u,w(Fu,v,w(a,b)))

)
with the lower right equality arrow stated by (MD-5).
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6 G-cubical categories are external actions on Burnside functors

Construction 6.2.3. Given an external action on a Burnside functor as in Definition 4.2.1, we
produce a Musyt version of external action as follows.

1. From 1-isomorphism F(u)
sg,u
←−−− ψg,u

tg,u
−−−→ F(gu) produce bijection

φg,u = tg,u ◦ s−1
g,u .

2. There is a 2-morphism

ψg,u,v : ψg,v ◦F(u,v)→ F(gu,gv) ◦ψg,u ,

meaning a function F(u,v)×F(v) ψg,v → ψg,u ×F(gu) F(gu,gv).

Establish a bijection α : F(u,v)→ F(u,v)×F(v) ψg,v by

F(u,v) 3 a 7→ [a,s−1
ψg,v

(tF(u,v)(a))] ∈ F(u,v)×F(v) ψg,v

and similarly β : F(gu,gv)→ ψg,u ×F(gu) F(gu,gv) by

F(gu,gv) 3 b 7→ [t−1
ψg,u

(sF(gu,gv)(b)),b] ∈ ψg,u ×F(gu) F(gu,gv).

Then, φg,u,v equals β−1 ◦ψg,u,v ◦α.

Lemma 6.2.4. The functions φg,u and φg,u,v satisfy conditions of Definition 6.1.1.

Proof. The existence of the 2-morphism ψg,h,u : ψgh,u → ψg,hu ◦ ψh,u (as per Item 2 of Defini-
tion 4.2.1) implies that φgh,u = φg,hu ◦ φh,u , thus satisfying (MD-2) of Definition 6.1.1. In
particular, the function φe,v satisfies φe,v ◦ φe,v = φe,v . As it is a bijection, this implies that
φe,v = idF(v). Thus, (MD-1) of Definition 6.1.1 holds for φe,v .
Similarly, (EB-1) of Definition 4.2.1 implies (MD-3) and further (MD-1) for the φe,u,v .
To check (MD-4), note that because ψg,u,v is a 2-morphism, we have

sψg,v◦F(u,v) = sF(gu,gv)◦ψg,u ◦ψg,u,v .

Together with the equalities

sF(gu,gv) = φg,u ◦ sF(gu,gv)◦ψg,u ◦ β, sF(u,v) = sψg,v◦F(u,v) ◦α,

this yields
φg,u ◦ sF(u,v) = φg,u ◦ sψg,v◦F(u,v) ◦α

= φg,u ◦ sF(gu,gv)◦ψg,u ◦ψg,u,v ◦α

= (φg,u ◦ sF(gu,gv)◦ψg,u ◦ β) ◦ (β−1 ◦ψg,u,v ◦α)

= sF(gu,gv) ◦φg,u,v .

This proves the first part of (MD-4), and the statement about target maps is shown analogously.
Finally, (MD-5) follows from (EB-2) of Definition 6.1.1 in a similar manner.

Proposition 6.2.5. (Musyt → SZ → Musyt) If Musyt data {φ̃g,v}g∈G,v∈2n , {φ̃g,u,v}g∈G,u,v∈2n is
obtained from Musyt data {φg,v}g∈G,v∈2n , {φg,u,v}g∈G,u,v∈2n by performing Construction 6.2.1 and
then Construction 6.2.3, then φ̃g,v = φg,v and φ̃g,u,v = φg,u,v for all g ∈ G, u,v ∈ 2n.
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6 G-cubical categories are external actions on Burnside functors

Proof. We write out the identities in full.

(1) φg,u 7→ (F(u)
id←−− F(u)

φg,u
−−−−→ F(gu)) 7→ φg,u ◦ id = φg,u .

(2) φ̃g,u,v maps a ∈ F(u,v) as follows:

a
α7−→ [a,s−1

ψg,v
(tF(u,v)(a))] = [a, tF(u,v)]

ψg,u,v
7−−−−−→ [φ−1

g,u(sF(gu,gv)(φg,u,v(a))),φg,u,v(a)] = [t−1
ψg,u

(sF(gu,gv)(φg,u,v(a))),φg,u,v(a)]

β−1

7−−−→ φg,u,v(a).

Analogous considerations exhibit the other equivalence.

Proposition 6.2.6. (SZ → Musyt → SZ) If the Stoffregen-Zhang external action ψ̃g,v , ψ̃g,h,v ,
ψ̃g,u,v is obtained from external action ψg,v , ψ̃g,h,v , ψ̃g,u,v by applying Construction 6.2.3 and
Construction 6.2.1, the two are equivariantly naturally isomorphic.

6.3 Musyt and BPS

We reproduce first the (non-equivariant) comparison maps of [LLS20], and augment them to an
equivariant equivalence of equivariant cubical flow categories and Musyt’s version of external
actions on Burnside functors.

Note that our definition of an equivariant cubical flow category (Definition 3.3.3) consists of a
flow category C along with a covering f : ΣV C → Cσ (n). The virtual representation V plays a
role in defining the geometric realization of this flow category. However, for the duration of this
section this is irrelevant, and we will assume V = {0}, writing f : C → Cσ (n).

Construction 6.3.1. ([LLS20, Construction 4.17]) Given a cubical flow category f : C → C(n),
construct a Burnside functor F : 2n→B as follows:

• for v ∈ {0,1}n, F(v) = f −1(v),

• for v > w, F(v,w) is the set of path components of∐
x∈f −1(v), y∈f −1(w)

hom(x,y),

with the source map F(v,w)→ F(v) sending the components coming from hom(x,y) to
x ∈ F(v), target map F(v,w)→ F(w) sending those to y ∈ F(w),

• F(u,v,w) for u > v > w is induced by the continuous composition map in C.

Construction 6.3.2. ([LLS20, Construction 4.19]) Given a Burnside functor F : 2n→B, construct
a cubical flow category f : C → C(n) as follows:

• ob(C) =
⊔
v∈{0,1}n F(v), the functor f sending an object x ∈ F(v) to v,

• for any x ∈ C, hom(x,x) consists only of the identity morphism,
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6 G-cubical categories are external actions on Burnside functors

• for x,y ∈ C with v = f (x) > f (y) = w, consider

Bx,y = s−1(x)∩ t−1(y) ⊆ F(v,w)

(“the set of arrows x→ y”) and let

Hom(x,y) = Bx,y ×C(n)(v,w),

with map f : Hom(x,y)→Hom(f (x), f (y)) the projection,

• the composition in C is the map

F(u,v,w)×◦ : (By,x ×C(n)(v,w))× (Bx,y ×C(n)(u,v))→ (Bx,z ×C(n)(u,w));

that is to say, F(u→ v→ w) is applied in the Bx,y factor and the product map of permuto-
hedra ◦ is applied to the C(n)(u,v) factor.

The following Construction 6.3.3 and Construction 6.3.4 should be seen as extensions of
Construction 6.3.1 and Construction 6.3.2, respectively.

Construction 6.3.3. Apply Construction 6.3.1 to obtain a Burnside functor F : 2n→B from data
of a cubical flow category (C, f : C → Cσ (n)). Given aG-equivariant structure on (C, f : C → Cσ (n)),
consisting of functors Gg : C → C, we construct Musyt data of an external action on F. In the
following we adapt naming conventions from Construction 6.3.1 and Definition 3.1.5.

• Given Gg : C → C commuting with the action on Cσ (n), we let

φg,v B Gg |f −1(v) : F(v)→ F(g.v)

• Since (Gg )x,y B Gg |HomC(x,y) are diffeomorphisms, they induce a map of sets

φg,v,w B π0 ◦Gg |∐
f (x)=v,f (y)=wHomC(x,y) : F(v,w)→ F(g.v,g.w).

Because Gg has inverse Gg−1 , all the maps φg,v and φg,v,w are bijections. The other Musyt data
axioms follow, briefly:

• (MD-1) from (EFC-1),

• (MD-2) and (MD-3) from (EFC-2),

• (MD-4) trivially from the definition of target- and source maps in 6.3.1,

• (MD-5) from (EFC-3).

Construction 6.3.4. Given a Burnside functor with an external action, we take Construction 6.3.2
as the definition of the cube flow category, and then define functors Gg : C → C. We do this in
such a way that conditions of Proposition 3.1.9 are satisfied, and so only a few conditions in
Definition 3.1.5 need to be checked.

First, the Musyt definition contains an acion of G on 2n. This extends to a G-equivariant flow
category structure on Cσ (n), as per Proposition 3.3.2.

We continue by defining Gg :

1. Consider tv∈2n φg,v : ob(C) = tv∈2n F(v)→ tv∈2n F(gv) = ob(C). This we take to define Gg
on objects.

30



6 G-cubical categories are external actions on Burnside functors

2. φg,v,w restrict to bijections Bx,y → Bφg,v (x),φg,w(y), and this we extend to

hom(x,y) = Bx,y ×MC(n)(v,w)→ Bφg,v (x),φg,w(y) ×MCσ (n)(gv,gw)

by taking maps of permutohedra from the fixed G-equivariant flow category structure on
the cube Cσ (n).

These are functors of flow categories because G̃g : C(n)→ C(n) are as well and because of (MD-5)
in Definition 6.1.1.

Proposition 6.3.5. (Musyt→ BPS→Musyt) Applying Construction 6.3.4 and then Construc-
tion 6.3.3 yields the identity on Musyt data of external action on the Burnside functor.

We omit the proof which is similar to that of Proposition 6.2.5.

Proposition 6.3.6. (BPS→Musyt→ BPS) Let C be a cubical flow category. Let D be the cubical
flow category obtained from C by applying Construction 6.3.3 and then Construction 6.3.4. Then
C and D are equivariantly naturally isomorphic.

Proof. The cubical flow categories C and D have the same sets of objects and actions of G on
ob(C) and ob(D) agree.

The action maps on morphism spaces take the form(
G̃
)
x,y

= φg,w |Bx,y × Pg : Bx,y ×MC(n)(v,w)→ Bφg,v (x),φg,w(y) ×MCσ (n)(gv,gw),

where Pg : MCσ (n)(v,w)→MCσ (n)(gv,gw) is the map of morphism spaces contained in the equiv-
ariant flow category structure on the cube flow category C(n).

The equivariant natural equivalence F : C →D is given as follows.

• On objects, it is the identity.

• On morphism spaces, it maps the moduli space MC(x,y) to MD(x,y) = Bx,y ×
MCσ (n)(f (x), f (y)) via f : C → Cσ (n). Formally,

(F)x,y = π0 × (f )x,y .

This F admits a uniquely defined inverse, since (f )x,y are trivial covering maps.
The functors are equivariant because C(n) has the equivariant flow category structure and the

functions φg,v satisfy the group law.

6.4 Proof of Theorem 2

We are now ready to prove

Theorem 2. The data of an equivariant cubical flow category (C, f : ΣV C → Cσ (n)) is equivalent
to that of a stable Burnside functor (V ,F : 2n→B) with external action.

Proof. Proposition 6.2.5 and Proposition 6.2.6 show that Musyt’s and Stoffregen-Zhang’s notions
of external action on a Burnside functor are equivalent. Likewise, Proposition 6.3.5 and Proposi-
tion 6.3.6 give an equivalence of Musyt’s external action on a Burnside functor with the notion
of an equivariant cubical flow category (C, f : C → Cσ (n)).

The equivalence is extended trivially: (F : 2n → B,ψ) is the Burnside functor with external
action associated to (C, f : C → Cσ (n)), then to (C, f : ΣV C → Cσ (n)) we associate (V ,F : 2n→B,ψ).
Since the shift by V plays no role in Construction 6.3.3 and Construction 6.3.4, the full result
follows.

31



7 Equivalence of realizations

Building on the comparison map of the previous section, the aim of the following is to prove
that the geometric realizations of an equivariant cubical flow category and that of its associated
Burnside functor with external action are equivariantly stably homotopy equivalent.

7.1 Homotopy coherent diagrams from neat embeddings

We now show how framing a cubical flow category defines a homotopy coherent diagram over
the cube, and follow up by showing how the structure of a framed equivariant cubical neat
embedding yields an external action on this diagram. The results of this section can be seen as
an extension of those contained in the proof of [LLS20, Theorem 8.] to the equivariant setting.

Suppose we are given an equivariant framed cubical flow category (f : ΣV C → Cσ (n), ι), where
Cσ (n) is the topological category with group action by Zm, induced from the Zm-action on
2n = 2n

′m. The extended equivariant cubical neat embedding ι̃ (as in Definition 3.4.3) furnishes
a topological diagram Cσ (n)→ Top∗, meaning a homotopy coherent diagram 2n→ Top∗, along
with an external action by Zm. Namely, we let

Bx =
|u|−1∏
i=0

BR(V )di ×
n−1∏
i=|u|

Bε(V )di and F(u) =
∐
f (x)=u

Bx/∂
∐
f (x)=u

Bx.

In order to define a star map associated to a morphism u→ v in 2n, we consider the equivariant
map

ῑx,v B
∐
f (y)=v

ῑx,y :
∐

f (x)=u,f (y)=v

|u|−1∏
i=|v|

Bε(V )di

×MC(x,y)→ E(V )u,v =
|u|−1∏
i=|v|

BR(V )di ×Cσ (n)(u,v).

As fx,y : MC(x,y)→ C(n)(u,v) is a finite, trivial covering, there is a diffeomorphismMC(x,y) �
(Cσ (n)(u,v))π0(MC(x,y)). Granted this, we can rewrite ῑx,v as

ῑx,v :
∐
f (y)=v

γ∈π0(MC(x,y))

|u|−1∏
i=|v|

Bε(V )di

×C(n)(u,v)→ E(V )u,v ,

while (FNE1) of Definition 3.4.3 assures that this map is the identity on the C(n)(u,v)-
components; hence, by abuse of notation we describe it as a continuous assignment

ι̃x,v : Cσ (n)(u,v)→ Top


∐
f (y)=v

γ∈π0(MC(x,y))

|u|−1∏
i=|v|

Bε(V )di ,
|u|−1∏
i=|v|

BR(V )di
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which also respects composition in C(n)(u,v) (essentially due to (FNE3) of Definition 3.4.3);
preserving the notation, we extend by identity to

ῑx,v : Cσ (n)(u,v)→ Top


∐
f (y)=v

γ∈π0(MC(x,y))

By , Bx

 .
Summing over x with f (x) = u, we write

ῑu,v =: Cσ (n)(u,v)→ Top


∐

f (x)=u,f (y)=v
γ∈π0(MC(x,y))

By ,
∐
f (x)=u

Bx

 .
Recall the Burnside functor F : 2n → B associated to C in Construction 6.3.1; this takes value
F(u) = f −1(u) on vertices and associates to an edge u ≥ v in 2n a correspondence

F(u,v) =

F(u)← π0

 ∐
f (x)=u,f (y)=v

MC(x,y)

→ F(v)

 : F(u)→ F(v).

By (FNE2) of Definition 3.4.3, each of the maps ῑu,v(p), p ∈ C(n)(u,v) represents an element of
Stars({Bx}, sF(u,v)), defining a continuous map ῑu,v : C(n)(u,v)→ Stars({Bx}, sF(u,v)). Thus, there is
an induced continuous family of maps of spheres (of the same dimension

∑
di):

F̃(u,v) = Φ(−,F(u,v)) ◦ ῑu,v : Cσ (n)(u,v)→ Top∗


∨
f (x)=u

Sx,
∨

f (x)=u,f (y)=v
γ∈π0(MC(x,y))

Sy

 .
By composing with the fold map induced by canonical identification By /∂By � Sy , we obtain
F(u,v) : Cσ (n)(u,v)→ Top∗ (F(u),F(v)). Essentially by (FNE3) of Definition 3.4.3, the assignments
F(u,v) respect composition in Cσ (n), and thus describe a homotopy coherent diagram 2n→ Top∗.

Moreover, condition (FNE4) on the ι̃x,y furnishes commutative diagrams

Cσ (u,v) Top(
∐
By ,tBx)

Cσ (g.u,g.v) Top(
∐
Bg.y ,

∐
Bg.x)

ῑu,v

ῑgu,gv

in which the right hand vertical arrow is induced by the external action on the Burnside functor
F, as associated to C in Construction 6.3.3. Applying Φ(−,F(u,v)) recovers Equation (5.1), and so
F̃ is a G-coherent refinement of F. We have thus shown the following.

Proposition 7.1.1. Let (F : 2n→B,ψ) be the Burnside functor with external action associated to
an equivariant cubical flow category (C, f : C → Cσ (n)) by applying Construction 6.3.3 followed
by Construction 6.2.1. Then the homotopy coherent diagram F̃V : 2n→ Top∗ is a Zm-coherent
spatial refinement of F.
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7 Equivalence of realizations

7.2 Equivalence between BPS- and SZ-realizations

Building on the results of Section 7.1 an equivariant analog of [LLS20, Theorem 8] is proved
here.

Theorem 3. Let (C, f : C → Cσ (n)) be an equivariant cubical flow category and let F : 2n→B be
the corresponding Burnside functor with an external action. Then there is an equivariant stable
homotopy equivalence ||C|| � |F|.

Proof. Choose a framed equivariant cubical neat embeddding ῑ of C. Consider the homotopy
coherent diagram F̃V : 2n→ Top∗ associated to ῑ in Section 7.1. Extend F̃V to F̃+

V : 2n+ : 2n+→ Top∗
by letting F̃+

V (∗) equal the basepoint. The external action of Zm on F̃V induces one on F̃+
V whereby

hocolim F̃+
V (rather, its model defined in Equation (2.1)) becomes a G-cell complex with cells

{C′(x)}x∈F(u),u∈2n of the form

C′(x) =

MCσ (n)(u,~0)× [0,2]×Bx, u , ~0,
{0} ×Bx, u = ~0.

The non-equivariant identification is proven in [LLS20, Proposition 6.1]. Taking into account
the external action, the cell C′(x) becomes a Gf (x)-space with action split over:

• MCσ (n)(u,~0) as in Section 3.2,

• Bx =
∏|u|−1
i=0 BR(V )di ×

∏n−1
i=|u|Bε(V )di carrying the product action induced from the G-

representation V ,

• [0,2], where it is trivial.

Similarly, [BPS21, Proposition 3.18] show that ||C|| has a G-cell complex structure with cells

C(x) = EX(x) = Cσ (n)+(u,~0)×
|u|−1∏
i=0

BR(V )ei ×
n−1∏
i=|u|

Bε(V )ei

=

MCσ (n)(u,~0)× [0,1]×Bx, u , ~0,
{0} ×Bx, u = ~0.

Our comparison map Ψ : hocolim F̃+
V → ||C|| is carries C′(x)→ C(x) by quotienting [0,2]→

[0,2]/[1,2] � [0,1]. As per the proof of [LLS20, Theorem 8], this constitutes a well-defined
map of CW-complexes. Since it has degree ±1 on each cell, the homology Whitehead theorem
implies that it is a (non-equivariant) stable homotopy equivalence. It is also equivariant; the
point is that the boxes Bx are identical in both C′(x) and C(x), as F̃V is obtained from ι̃ in
Section 7.1. It remains to verify that for every subgroup H ⊆ G, the induced map of H-fixed
points Ψ H : (hocolim F̃+

V )H → ||C||H is also a stable homotopy equivalence.
To see that, note that for anyH ⊆ G, C(x)H and C′(x)H both have the formMCσ (n)H ×[0, k]×BHx

for k = 1,2 respectively. SinceMCσ (n)H is again a permutohedronMCσ (n′) for some n′ ∈N (by
Proposition 3.2.3; cf. [BPS21, Appendix B]), the cells C(x)H and C′(x)H (withH∩Gx , ∅) describe
CW decompositions of ||C||H , hocolim(F̃+

V )H , respectively. Thereby Ψ H is a stable homotopy
equivalence by the same argument as cited for Ψ = Ψ (0).
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7 Equivalence of realizations

As a consequence of [BPS21, Proposition 3.27] and [SZ18, Lemma 5.6], the maps Ψ H can be
seen as actually realizing the map Ψ in the above proof for fixed-point cubical flow category CH
and the homotopy coherent diagram of fixed points F̃HV , i.e. a stable homotopy equivalence

Ψ : ||CH || → hocolim(F̃HV )+.
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8 Khovanov spectra of periodic links

We recall the constructions of Khovanov homology and Khovanov spectra, as well as their
equivariant extensions due to [Pol19], respectively [SZ18] and [BPS21]. We present an application
of Theorem 3 to this case.

8.1 Khovanov spectra

Given a link diagram D with N crossings (numbered 1 to N ), the Kauffman cube of resolutions
is defined as follows. For v = (v1, . . . , vn) ∈ ob(2N ), change the i-th crossing ( ) to ( ) if vi = 0
and to ( ) if vi = 1.

Consider now the Frobenius algebra A = Z[X]/(X2) with comultiplication ∆ : A → A⊗A
defined by ∆(1) = 1⊗ x + x⊗ 1, ∆(x) = x⊗ x. The Khovanov-Burnside functor F = FKh : 2N →B is
defined as follows:

• for v ∈ ob(2N ), F(v) = {1,x}circles in the v-resolution of D,

• a morphism u→ v in 2N corresponds to a circle being split into two or two circles being
merged into one; F(u,v) is the correspondence applying the comultiplication, respectively
multiplication, rule of A to the labellings,

• for any two chains u→ v→ w, u→ v′→ w with u ≥2 w, the 2-morphism

Fu,v,v′ ,w : F(v,w) ◦F(u,v)→ F(v′ ,w) ◦F(u,v′)

consists of bijections

Aa,b B s−1
F(v,w)◦F(u,v)(x)∩ t−1

F(v,w)◦F(u,v)(z)→ s−1
F(v′ ,w)◦F(u,v′)(x)∩ t−1

F(v′ ,w)◦F(u,v′)(z)C A′a,b

for a ∈ F(u), b ∈ F(w). The sets Aa,b and A′a,b both have 1 or 0 elements in all but one case.
If #Ax,z = 2, then the resolutions along u→ v→ w split one circle (labeled 1 by a) into two
and then merge it back to one (labeled x by b); and necessarily, the same can be said about
u→ v′→ w. Namely, the morphisms u→ w correspond to surgery along two edges with
endpoints alternating on a single circle Cu . The endpoints cut Cu into four arcs, among
which we distinguish two by the following property: you walk onto them by traveling
along one of the surgery edges and turning right. The two distinghuished arcs are labeled
arbitrarily by 1 and 2, and then the two relevant circles in the v- and v′-resolutions are
labeled C1,C2, respectively C′1,C

′
2. The elements of Aa,b and A′a,b can then be identified as

α = (Cu 7→ 1) 7→ ((C1,C2) 7→ (1,x)) 7→ (Cw 7→ x),

β = (Cu 7→ 1) 7→ ((C1,C2) 7→ (x,1)) 7→ (Cw 7→ x),

α′ = (Cu 7→ 1) 7→ ((C′1,C
′
2) 7→ (1,x)) 7→ (Cw 7→ x),

β′ = (Cu 7→ 1) 7→ ((C′1,C
′
2) 7→ (x,1)) 7→ (Cw 7→ x),

so that Fu,v,v′ ,w |Aa,b can be defined by α 7→ α′ , β 7→ β′ .
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8 Khovanov spectra of periodic links

A

B

A

B

A

B

Figure 8.1: A ladybug configuration and its two length-one resolutions; note that in both, the
distinguished arcs A and B lie in distinct circles, defining the pairing.

By Lemma 4.1.5, the remaining values of F are determined up to natural isomorphism. For
proof that (2) of Lemma 4.1.5 holds, see [LLS17, Proposition 6.1].

There is a functor Z〈−〉 : B → Ab, defined as follows: to a set X ∈ B associate the free abelian
group Z〈X〉, and to a correspondence (A,s, t) : X→ Y the map Z〈X〉 →Z〈Y 〉 :

x 7→
∑
x∈X

#{a ∈ A | s(a) = x, t(a) = y} · y.

The classical Khovanov homology functor Kh: (2n)op → Ab is the composition Kh(D) =
Z〈−〉 ◦ FKh; note that the ladybug matching data encoded by 2-morphisms is forgotten in
this composition.

The Khovanov chain complex CKh(D)∗ is defined as the shift of the totalization of the functor;
namely,

CKhn =
⊕
|v|=n

Kh(v)[n−].

The differential carries the component Kh(u) to Kh(v) by the map (−1)su,v Kh(u,v) if u ≥1 v, and
by the zero map otherwise. The integer su,v is defined as

∑k−1
i=1 ui , where uk is the single element

in {1, . . . ,n} with uk = 0 and vk = 1.
The complex CKh(D) is doubly graded. In addition to the homological grading |v| − n−, a

summand coming from Kh(v) carries also the quantum grading

n− 3n− + |v|+ #{circles labeled by 1} −#{circles labeled by x}.

Just the same, the Burnside functor F can be seen as the sum of direct summands Fj correspond-
ing to quantum gradings.

A result of [LLS20] is that the stable Burnside functor Σn− F has a well-defined realization
as a spectrum X (D), whose homology is the Khovanov homology. This is the same as our
Definition 5.2.7 with G the trivial group.

8.2 Periodic links

An m-periodic link is one invariant under a rotation of the sphere of order m, and disjoint from
the axis of that rotation. We will give a digest of the constructions of equivariant Khovanov
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homotopy types due to [SZ18] and [BPS21]. For a given link, there may be more than one such
rotation, defining to distinct equivariant spectra; hence, the rotation is fixed at the outset.

For the following, let D be a link diagram with N = nm crossings, invariant under a rotation
of the plane ρ of order m, such that ρ(D) = D. Consequently, there is an action on the cube of
resolutions, which upon numbering the crossings takes the form of the natural Zm-action on
(2n)m � 2nm as in Section 1.1.

[SZ18, Proposition 6.2] construct an external action of Zm on the Khovanov-Burnside functor
FKh : 2n → B using Lemma 4.2.4. The construction is forced in almost all cases by the group
action on (2n)m and the non-equivariant F itself. The exceptional case is that of ladybug configu-
rations, and the well-definedness of the action follows from the fact that ladybug configurations
are invariant under planar isotopy. In parallel, [BPS21, Proposition 4.6] use a simplification
result [BPS21, Lemma 3.8] and construct moduli spaces inductively, with all steps but the one
pertaining ladybug configurations already forced.

It is clear that the two constructions are related by the equivalences presented here in Chapter 6.
The results of Chapter 7 imply the following.

Theorem 4. The equivariant stable homotopy types ||C|| and hocolim F̃+
V associated to a periodic

link by [BPS21] and [SZ18], respectively, are equivariantly stably homotopy equivalent. The
equivalence can be realised as Σ∞Ψ , where Ψ is a cellular map depending on a choice of extended
equivariant cubical framed embedding ι̃ of C.

Let F be a field. Up to chain homotopy, the Khovanov complex CKh(D;F ) can be equipped
with an action of Zm, whereby it can be seen as a F [Zm]-module. In [Pol19], Politarczyk defined
equivariant Khovanov homology with coefficients in a F [Zm]-module M by

EKhj,q(D;M) = Extj
F [Zm](M;CKh•,q(D;F )).

In [BPS21, Theorem 8.3] it is proved that ||C|| realizes this notion of equivariant Khovanov
homology via Borel cohomology.

Corollary 8.2.1. Let D be an m-periodic link diagram and F : (2n)m→B the associated Burnside
functor with external group action of Zm, admitting an equivariant spatial refinement with
respect to representation V . For any F [Zm]-module M, the equivariant Khovanov homology
EKhj,q(D;M) is isomorphic to the reduced Borel cohomology of hocolim F̃+

V :

EKhj,q(D;M) �H∗
Zm

(hocolim F̃V+,Hom
F

(M,F )).
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