University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Jakub FLacki

Dynamic Graph Algorithms

for Connectivity Problems
PhD dissertation

Supervisor

dr hab. Piotr Sankowski prof. UW

Institute of Informatics
University of Warsaw

January 2015

Author’s declaration:

aware of legal responsibility I hereby declare that I have written this disser-
tation myself and all the contents of the dissertation have been obtained by
legal means.

January 22, 2015
date Jakub Lqcki

Supervisor’s declaration:
the dissertation is ready to be reviewed

January 22, 2015
date dr hab. Piotr Sankowsk: prof. UW

Abstract

In this thesis we present several new algorithms for dynamic graph problems.
The common theme of the problems we consider is connectivity. In particular,
we study the maintenance of connected components in a dynamic graph, and
the Steiner tree problem over a dynamic set of terminals.

First, we present an algorithm for decremental connectivity in planar
graphs. It processes any sequence of edge deletions intermixed with a set of
connectivity queries. Each connectivity query asks whether two given vertices
belong to the same connected component. The running time of this algorithm
is optimal, that is, it handles any sequence of updates in linear time, and
answers queries in constant time. This improves over the best previously
known algorithm, whose total update time is O(nlogn).

Then, we study the dynamic Steiner tree problem. In this problem, given
a weighted graph G on a vertex set V' and a dynamic set S C V of termi-
nals, subject to insertions and deletions, the goal is to maintain a constant-
approximate Steiner tree spanning S in G. For general graphs and every
integer k > 2, we show an (8k — 4)-approximate algorithm, which pro-
cesses updates in O(kn'/*log*n) amortized expected time. In the case of
planar graphs we show a different solution, whose amortized update time is
O(c '1og® n) and the approximation ratio is 4 + ¢.

Finally, we study graph connectivity in a semi-offline model. We con-
sider a problem, in which the input is a sequence of graphs Gy, ..., Gy, such
that G, is obtained from G; by adding or removing a single edge. In the
beginning, this sequence is given to the algorithm for preprocessing. After
that, the algorithm should efficiently answer queries of one of two kinds. A
forall(a,b,u,w) query, where 1 < a < b < t and u, w are vertices, asks
whether v and w are connected with a path in each of G4, Gy, ..., Gy. Sim-
ilarly, an exists(a, b, u, w) query asks if the given vertices are connected in
any of G,, Gy, ...,Gy. For forall queries, we show an algorithm that after
preprocessing in O(tlogt(logn + loglogt)) expected time answers queries in
O(lognloglogt) time. In the case of exists queries, the preprocessing time
is O(m + nt) and the query time is constant.

Key words: dynamic graph algorithms, dynamic connectivity, decremental
connectivity, Steiner tree

AMS Classification: 05C85 Graph algorithms, 68P05 Data structures, 68Q25
Analysis of algorithms and problem complexity, 68W40 Analysis of algo-
rithms

Streszczenie

W niniejszej pracy przedstawiamy nowe algorytmy dla dynamicznych pro-
bleméw grafowych. Wszystkie omawiane problemy dotycza zagadnienia spoj-
nosci. W szczegoélnosci zajmujemy sie utrzymywaniem spéjnych sktadowych
w zmieniajacym sie grafie oraz utrzymywaniem drzewa Steinera rozpinaja-
cego zmieniajacy si¢ zbior terminali.

Po pierwsze pokazujemy algorytm dla dekrementalnej spojnosci w grafach
planarnych. Algorytm ten przetwarza ciag operacji sktadajacy sie z usunieé
krawedzi oraz zapytan o spéjnoéé¢. Kazde zapytanie sprawdza, czy dwa po-
dane wierzchotki naleza do tej samej spéjnej sktadowej. Czas dziatania tego
algorytmu jest optymalny: przetwarza on dowolny ciag aktualizacji w czasie
liniowym i odpowiada na zapytania w czasie statym. Poprawia to wczesniej-
szy algorytm, ktérego taczny czas aktualizacji to O(nlogn).

Nastepnie prezentujemy algorytm, ktory dla wazonego grafu G na zbio-
rze wierzchotkéw V' i dla zmieniajacego sie zbioru terminali S C V' (wierz-
chotki sa do niego dodawane i z niego usuwane) utrzymuje stata aproksymacje
drzewa Steinera rozpinajacego zbior S w G. Dla graféw dowolnych i kazdego
k > 2 pokazujemy algorytm (8k — 4)-aproksymacyjny, ktéry przetwarza ak-
tualizacje w oczekiwanym czasie zamortyzowanym O(kn'/*log*n). W przy-
padku grafow planarnych pokazujemy szybszy algorytm o zamortyzowanym
czasie aktualizacji O(e " log® n) i wspétezynniku aproksymacji 4 + ¢.

Ponadto badamy spdéjnosé¢ graféw w modelu czesciowo offline. Rozwa-
zamy problem, w ktorym wejéciem jest ciag graféow Gy, ..., Gy, taki ze G,
otrzymuje sie z G; przez dodanie lub usuniecie jednej krawedzi. Algorytm
poznaje ten cigg na poczatku swego dziatania i moze wykonaé preprocessing.
Nastepnie powinien efektywnie odpowiada¢ na nadchodzace zapytania jed-
nego z dwéch rodzajéw. Zapytanie forall(a,b,u,w), gdzie 1 <a < b<t, a
u, w sg wierzchotkami, sprawdza, czy u i w sg potaczone Sciezka w kazdym z
graféw G, Gy, ..., Gy. Podobnie zapytanie exists(a, b, u, w) sprawdza, czy
podane wierzchotki sa potaczone w ktorymkolwiek z grafow G,, Gy, ..., Gy.
Dla zapytan forall pokazujemy algorytm, ktory po preprocessingu w ocze-
kiwanym czasie O(tlogt(logn + loglogt)) odpowiada na zapytania w cza-
sie O(lognloglogt). W przypadku zapytan exists czas preprocessingu to
O(m + nt), za$ czas zapytan jest staly.

Stowa kluczowe: dynamiczne algorytmy grafowe, dynamiczna sp6jnosé, de-
krementalna spéjnosé, drzewo Steinera

Klasyfikacja tematyczna AMS: 05C85 Graph algorithms, 68P05 Data struc-
tures, 6825 Analysis of algorithms and problem complexity, 68W40 Analysis
of algorithms

Judytce

Contents

1 Introduction
1.1 Dynamic Connectivity
1.1.1 General Graphs
1.1.2 Planar Graphs and Trees
1.1.3 Dynamic MST
1.14 OurResults oo
1.2 Dynamic Steiner Tree
1.21 Our Results
1.3 Organization of This Thesis
1.4 Articles Comprising This Thesis
1.5 Acknowledgmentso
2 Preliminaries
2.1 Graphs
2.1.1 Basic Definitionso
2.1.2 Connectivity
2.1.3 Weighted Graphs
214 Trees
2.1.5 Planar Graphs
2.2 Segment Trees
2.3 Algorithms.
2.3.1 Approximation Algorithms
2.3.2 Dynamic Graph Algorithms
2.3.3 Connectivity o
2.3.4 String Hashing
2.4 Other Remarks
3 Decremental Connectivity in Planar Graphs
3.1 Preliminarieso
3.2 O(nlogn) Time Algorithm
3.3 O(nlog logn) Time Algorithm

8

10
13
13
14
14
15
18
19
20
20
20

22
22
22
23
23
24
25
26
29
29
30
30
32
33

3.4 O(nlog log logn) Time Algorithm
3.5 O(n) Time Algorithm

4 Dynamic Steiner Tree
4.1 Bipartite Emulators
4.2 Constructing Bipartite Emulators
4.2.1 General Graphs o000
4.2.2 Planar Graphs
4.3 Related Results o000

5 Connectivity in Graph Timelines
5.1 Connectivity History Tree
5.2 exists Querieso
5.2.1 Answering Queries
5.3 forall Queries
5.3.1 Answering Queries
5.3.2 Deterministic Algorithm
5.4 Subsequent Results L.

6 Open Problems

47
47
93
93
95
59

60
61
64
67
70
76
7
78

79

Chapter 1

Introduction

What makes us think that an algorithm is efficient? In the theoretical ap-
proach, we consider an algorithm efficient if the number of instructions it
executes is linear in the size of its input data. This is justified by the fact
that usually the algorithm has to read the entire input, or at least a big frac-
tion of it. In fact, once we show that a linear time algorithm has to access a
constant fraction of its input data, we may infer that it is optimal.

At the same time, the theoretical optimality of an algorithm may not
mean much in real life applications. If we implement a linear time algorithm
and run it on data, whose size is measured in terabytes, it may take long to
complete. While the running time of a single run may be reasonable, if the
algorithm is used repeatedly, our requirements for its running time may be
much stricter.

However, it is a common scenario that if the data is being processed
repeatedly, between two consecutive computations it only changes slightly.
This fact can be exploited to obtain faster algorithms, which, instead of
processing the data from scratch after each change, would only process the
changes that are made. Such algorithms are called dynamic and are the main
topic of this thesis.

We focus on dynamic graph algorithms, that is dynamic algorithms that
can be used to process graphs. A graph algorithm is dynamic if it main-
tains information about a graph subject to its modifications. Typically the
modifications alter the set of vertices or edges in the graph. The sequence of
modifications, henceforth called updates, is intermixed with a set of queries.
There are various dynamic graph problems, which differ in the allowed types
of queries. For example, the queries may ask about the existence of a path
between two given vertices or the weight of the minimum spanning tree of
the graph. The algorithm should utilize the maintained information to an-
swer each query faster than in the time needed to recompute the solution

10

from scratch.

There are three kinds of dynamic graph problems, which differ in the types
of updates that can happen. Let us focus on the problems, where the updates
alter the set of edges. In an incremental problem, edges may only be added,
whereas in a decremental one, edges can only be deleted. A fully dynamic
problem is more general than the previous two, as both edge insertions and
deletions can take place.

The central problem in the area of dynamic graph algorithm is the dy-
namic connectivity problem. In this problem, we are given a graph subject
to edge insertions and deletions, and our goal is to answer queries about
the existence of a path connecting two given vertices. Since connectivity is a
fundamental graph property, the study of dynamic connectivity is important
both from theoretical and practical points of view.

The dynamic connectivity problem is also a benchmark of the known
techniques for tackling dynamic graph problems. While it has a simple for-
mulation and has received much attention, the first algorithm with polylog-
arithmic update time was given in 1995 [20], and it has taken over 15 more
years to develop the first solution with polylogarithmic worst-case update
time [26]. However, many questions regarding dynamic connectivity have not
been answered yet. The running time of the best algorithm of fully dynamic
connectivity is still higher than the lower bound. Similarly, for decremental
connectivity in general graphs, no lower bound is known.

Only in few special cases we know that the existing solutions are optimal.
In particular, there exists an incremental connectivity algorithm [40], whose
running time matches an existing lower bound [16]. In the case of trees there
exists a decremental connectivity algorithm that processes all updates in
linear time, and answers each query in constant time [3]. Also, for plane
graphs! there exists a fully dynamic algorithm with amortized update time
of O(logn), which matches the lower bound.

In this thesis we finally settle the connectivity problem in one more
setting. We show a decremental connectivity algorithm for planar graphs,
which processes updates in linear total time and answers queries in constant
time. This improves over an existing algorithm, whose total update time is
O(nlogn) and matches the time bound of decremental connectivity in trees.

Moreover, we introduce and solve a new dynamic problem that deals with
connectivity in a semi-offline model. We develop algorithms that process a
graph timeline, that is a sequence of graphs G,..., Gy, such that G, is
obtained from G; by adding or removing a single edge. In this model, an

LA graph is plane if it is planar, and its embedding remains fixed in the course of the
operations.

11

algorithm may preprocess the entire timeline at the beginning, and after that
it should answer queries arriving in online fashion. We consider timelines of
undirected graphs and two types of queries.

An exists(u,w, a,b) query, where v and w are verticesand 1 < a < b < ¢,
asks whether vertices v and w are connected in any of G,, Gyy1,...,Gp. On
the other hand, a forall(u,w,a,b) query asks whether vertices u and w are
connected in each of Gy, Goyi1, ..., Gp.

This thesis also deals with another dynamic graph problem, namely dy-
namic Steiner tree. Let G = (V, E,dg) be a weighted graph and S C V' be
a set of terminals. The Steiner tree spanning S in G is a minimum-weight
subgraph of G, in which every pair of vertices of S is connected. In the dy-
namic Steiner tree problem, the set S is dynamic, that is, its elements are
inserted and deleted. The goal is to maintain a constant-approximate Steiner
tree spanning S in G.

The dynamic variant of the Steiner tree problem was introduced by Imase
and Waxman [25] in 1991, and while it has been studied since then, no
solution with sublinear update time has been given. The existing algorithms
for dynamic Steiner tree focus on minimizing the number of changes to the
tree, or use a heuristic approach to minimize the running time.

We show the first solution for dynamic Steiner tree with sublinear update
time. For any k > 2 it processes updates in O(kn'/*log" n) expected amor-
tized algorithm, and maintains a (8k—4)-approximate Steiner tree. Moreover,
for planar graphs we show a (4 + ¢)-approximate algorithm, which processes
each update in O(e~"'log® n) amortized time.

The Steiner tree problem is closely related to the minimum spanning tree
(MST) problem. First, the MST problem is a special case of the Steiner tree
problem, where every vertex of the graph is a terminal. More importantly,
there also exists a reverse relation. We may use an algorithm for computing
MST to compute an approximate Steiner tree. This is achieved by building
a complete graph on the set of terminals, where the edge weight of an edge
uw is the distance between u and w in the original graph. It is well-known
that the MST of this complete graph corresponds to a 2-approximate Steiner
tree.

The Steiner tree problem and MST are also related in the dynamic setting.
The 2-approximate algorithm can be made dynamic, using an algorithm for
dynamic MST, which gives an algorithm for dynamic Steiner tree with an
update time of O(n) The sublinear time algorithm for dynamic Steiner tree,
that we give in this thesis, also uses dynamic MST as a subroutine.

In the following part of this chapter, we describe our results and their
relation to the previously obtained algorithm in the area.

12

Update time Query time Type Authors

O(logn(loglogn)3) | O(logn/loglogn) | Monte Carlo, amrt. Thorup [42]
O(log®n/loglogn) | O(logn/loglogn) | deterministic, amrt. | Wulff-Nilsen [47]
O(log® n) O(logn/loglogn) | Monte Carlo, w-c Kapron et al. [26]
O(y/n) 0(1) deterministic, w-c¢ | Eppstein et al. [12]

Figure 1.1: Algorithms for fully dynamic connectivity in general graphs. W-c
stands for worst-case, whereas amrt. means amortized.

1.1 Dynamic Connectivity

In the dynamic connectivity problem, given a graph subject to edge updates,
the goal is to answer queries about the existence of a path connecting two
vertices. We first review the previously obtained algorithms for this problem,
both for general graphs and some restricted graph classes. Then, we show
our results in this area and present their relation to the existing results.

1.1.1 General Graphs

Fully Dynamic Connectivity

There has been a long line of research considering the fully dynamic connec-
tivity in general graphs [15, 12, 20, 23, 42, 26, 47]. The study of this problem
was initiated by Frederickson [15] about 30 years ago, but the first polylog-
arithmic time algorithm has been given over 10 years later [20]. The first
algorithm with polylogarithmic worst-case update time was shown in 2013
by Kapron and King [26], but the algorithm is randomized. A deterministic
algorithm with polylogarithmic worst-case update time is not known, and ob-
taining such an algorithm is a major open problem. The best currently known
algorithms for fully dynamic connectivity are summarized in Figure 1.1.

Concerning lower bounds, Henzinger and Fredman [21] obtained a lower
bound of Q(logn/loglogn) in the RAM model. This was improved by De-
maine and Pétragcu [38] to a lower bound of Q(logn) in cell-probe model.
Both these lower bounds hold also for plane graphs.

Incremental Connectivity

Incremental graph connectivity can be solved using an algorithm for the
union-find problem. It follows from the result of Tarjan [40] that a sequence

13

of ¢ edge insertions and t queries can be handled in O(ta(t)) time, where
a(t) is the extremely slowly growing inverse Ackermann function. A matching
lower bound (2(a(n)) time per operation) has been shown by Fredman and
Saks [16] in the cell probe model.

Decremental Connectivity

For the decremental variant, Thorup [41] has shown a randomized algo-
rithm, which processes any sequence of edge deletions in O(mlog(n?/m) +
n(logn)3(loglogn)?) time and answers queries in constant time. Here, m is
the initial number of edges in the graph. If m = ©(n?), the update time is
O(m), whereas for m = Q(n(lognloglogn)?) it is O(mlogn).

1.1.2 Planar Graphs and Trees

The situation is much simpler in the case of planar graphs. Eppstein et.
al [14] gave a fully dynamic algorithm, which handles updates and queries
in O(logn) amortized time, but it works only for plane graphs, that is, it
requires that the graph embedding remains fixed. For the general case (i.e.,
when the embedding may change) Eppstein et. al [13] gave an algorithm with
O(log® n) worst-case update time and O(logn) query time.

In planar graphs, the best known solution for the incremental connectiv-
ity problem is the union-find algorithm. On the other hand, for the decre-
mental problem nothing better than a direct application of the fully dy-
namic algorithm is known. This is different from both general graphs and
trees, where the decremental connectivity problems have better solutions
than what could be achieved by a simple application of their fully dynamic
counterparts. In the case of general graphs, the best total update time is
O(mlogn) [41] (except for very sparse graphs, including planar graphs), com-
pared to O(mlogn(loglogn)?) time for the fully dynamic variant. For trees,
only O(n) time is necessary to perform all updates in the decremental sce-
nario [3], while in the fully dynamic case one can use dynamic trees that may
handle each update in O(logn) worst-case time.

1.1.3 Dynamic MST

In the dynamic MST problem, the input is a weighted undirected graph G =
(V, E,dg), subject to edge insertions and removals. The goal is to maintain
the weight of the MST of GG, as the set of edges is modified. The only efficiency
parameter is the time needed to process a single update.

14

Update time Type Authors
O(y/m) worst-case | Frederickson [15]
O(y/n) worst-case Eppstein [12]

O(¥/nlogn) | amortized | Henzinger, King [22]
O(log* n) amortized Holm et al. [23]

Figure 1.2: The history of algorithms for dynamic MST. All the algorithms
listed here are deterministic.

This problem is closely related with the dynamic connectivity problem,
and some techniques are common for both these problems. While the algo-
rithms for dynamic connectivity maintain a spanning tree of a graph, the
algorithms for dynamic MST maintain a minimum spanning tree. In some
cases, new techniques for dynamic connectivity also implied better algorithms
for dynamic MST [15, 23].

The algorithms for dynamic MST are listed in Figure 1.2. The fastest
known algorithm processes updates in O(log* n) amortized time [23]. Con-
trary to dynamic connectivity, no algorithm with polylogarithmic worst-case
update time is known. In fact even finding an algorithm with o(y/n) worst-
case update time is an open problem [26]. In addition to that, even though
the best dynamic algorithms for connectivity are randomized, this is not the
case for dynamic MST.

Dynamic MST has also been considered in the offline model. In this model,
the input is a sequence of weighted graphs Gi,...,G;, such that G, is
obtained from G; by changing the weight of a single edge. Eppstein [11] has
shown an algorithm, which computes the weight of the MST of every G; in
O(tlogn) total time. We use the techniques developed by Eppstein in our
algorithms for answering exists and forall queries.

1.1.4 Our Results

Decremental Connectivity in Planar Graphs

We show an algorithm for the decremental connectivity problem in planar
graphs, which processes any sequence of edge deletions in O(n) time and
answers queries in constant time. This improves over the previous bound of
O(nlogn), which can be obtained by applying the fully dynamic algorithm
by Eppstein [14], and matches the running time of decremental connectivity

15

on trees [3].

In fact, we present a O(n) time reduction from the decremental connec-
tivity problem to a collection of incremental problems in graphs of total size
O(n). These incremental problems have a specific structure: the set of allowed
union operations forms a planar graph and is given in advance. As shown by
Gustedt [19], such a problem can be solved in linear time.

Our result shows that in terms of total update time, the decremental
connectivity problem in planar graphs is definitely not harder than the in-
cremental one. Though, it should be noted that the union-find algorithm
can process any sequence of k query or update operations in O(ka(n)) time,
while in our algorithm we are only able to bound the time to process any
sequence of edge deletions.

Moreover, since fully dynamic connectivity has a lower bound of {2(logn)
(even in plane graphs) shown by Demaine and Patragcu [38], our results
imply that in planar graphs decremental connectivity is strictly easier than
the fully dynamic one. We suspect that the same holds for general graphs,
and we conjecture that it is possible to break the Q(logn) bound for a single
operation of a decremental connectivity algorithm, or the Q(mlogn) bound
for processing a sequence of m edge deletions.

Our algorithm, unlike the majority of algorithms for maintaining con-
nectivity, does not maintain the spanning tree of the current graph. As a
result, it does not have to search for a replacement edge when an edge from
the spanning tree is deleted. Our approach is based on a novel and very
simple approach for detecting bridges, which alone gives O(nlogn) total up-
date time. We use the fact that a deletion of edge uw in the graph causes
some connected component to split if both sides of uw belong to the same
face. This condition can in turn be verified by solving an incremental con-
nectivity problem in the dual graph. When we detect a deletion that splits a
connected component, we start two parallel DFS searches from v and w to
identify the smaller of the two new components. Once the first search fin-
ishes, the other one is stopped. A simple argument shows that this algorithm
runs in O(nlogn) time.

We then show that the DFS searches can be speeded up using an 7-
division, that is a decomposition of a planar graph into subgraphs of size
at most r = log? n. This gives an algorithm running in O(nloglogn) time.
For further illustration of this idea we show how to apply it twice in order
to obtain an O(nlogloglogn) time algorithm. Then, we observe that the
O(nlogloglogn) time algorithm reduces the problem of maintaining connec-
tivity in the input graph to maintaining connectivity in a number of graphs
of size at most O(log?logn). The number of all graphs on so few vertices is
so small that we can simply precompute the answers for all of them and use

16

these precomputed answers to obtain the linear-time algorithm. The prepro-
cessing of all graphs of bounded size is again an idea that, to the best of
our knowledge, has never been previously used for designing dynamic graph
algorithms.

Connectivity in Graph Timelines

We also study graph connectivity in a semi-offline model. We develop algo-
rithms that process a graph timeline, that is a sequence of graphs G, ..., Gy,
such that G, is obtained from G; by adding or removing a single edge. In
this model, an algorithm may preprocess the entire timeline at the begin-
ning, and after that it should answer queries arriving in online fashion. We
consider timelines of undirected graphs and two types of queries.

An exists(u,w, a,b) query, where u and w are verticesand 1 < a < b < ¢,
asks whether vertices u and v are connected in any of G4, Gai1,...,Gp. We
show an algorithm that after preprocessing in O(m + nt) time may answer
such queries in O(1) time (assuming ¢t = O(n°)). Moreover, it may compute
all indices of the graphs, in which u and w are connected, returning them
one by one with constant delay.

We also consider forall(u,w,a,b) query, which asks whether vertices
u and w are connected in each of G,,G,y1,...,Gy. For this problem, we
show an algorithm whose expected preprocessing time is O(m+tlogt(logn-+
loglogt)) (m denotes the number of edges in G) and the query time is
O(lognloglogt). The algorithm is randomized and answers queries correctly
with high probability.

The algorithms for both types of queries are based on a segment tree over
the entire sequence Gy, ...,G;. We call this tree a connectivity history tree
(CHT). Assume that ¢ is a power of 2. Then, the CHT can be computed
recursively as follows. The parameter of the recursion is a fragment of the
sequence (31, ..., Gy, which can be represented as a discrete interval. For an
interval [a,b] (we begin with an interval [1,?]) we consider a graph G,y
obtained by keeping only the edges that are present in every graph among
Gy, ..., Gy and compute its connected components. Then, if a < b, we recurse
on the first and second halves of the interval [a, b]. We say that every interval,
which is at some point the parameter of the recursion, is an elementary
interval. It is a well-known fact that the number of elementary intervals is
O(t) and every interval [a,b], where 1 < a < b < t can be partitioned into
O(logt) elementary intervals.

In the case of exists queries, for every elementary interval [a, b] we pre-
compute the answer to every possible exists(u, w, a, b) query. We make some
observations that allow us to precompute the answers in only O(m+nt) time

17

(instead of O(n?t)). Using this information, we could answer an arbitrary
query by partitioning the query interval into O(logt) elementary intervals.
However, we show a more involved query algorithm, which answers queries
in constant time. Our ideas for speeding up the preprocessing phase follow
the techniques used by Eppstein [11].

The algorithm for answering forall queries is more involved. For every
vertex v we define a sequence C, = ¢!, ..., cl, where ¢! is the identifier of the
connected component of v in G;. In order to answer a query forall(u,w,a,b),
we compute and compare the hashes of sequences ¢?,...,c% and ¢%,...,c.
The computation of hashes requires an initial preprocessing. We use the
connectivity history tree to compute connectivity information about every
graph Gy, ..., Gy in near linear time. Using this information we precompute
hashes of some prefixes of C',, which are then used to efficiently compute the
desired hashes. It should be noted that our results in this area have been
recently speeded up and simplified by Karczmarz [27].

1.2 Dynamic Steiner Tree

The next dynamic graph problem that we consider is the dynamic Steiner tree
problem. The static variant of the Steiner tree problem is NP-complete, and,
unless P = NP, does not admit a PTAS, even in complete graphs with edge
weights restricted to 1 and 2. In general graphs, only a 1.39-approximate
algorithm is known [8]. On the other hand, the problem admits a PTAS
in geometric graphs, i.e., when the edge weights are the Euclidean distances
between the points in finite dimensional geometric space [4, 37] and in planar
graphs [7]. The PTAS for planar graphs is asymptotically very efficient, i.e.,
we can construct an (1 + ¢)-approximate Steiner tree in O(nlogn) time.

The dynamic Steiner tree problem was first introduced in the pioneer-
ing paper by Imase and Waxman [25] and its study was later continued
in [34, 17, 18]. However, all these papers focus on minimizing the number
of changes to the tree that are necessary to maintain a good approximation,
and ignore the problem of efficiently finding these changes. The efficiency of
these online algorithms is measured in terms of the number of replacements
that are performed after every terminal insertion or deletion. The algorithms
for dynamic Steiner tree usually represent the Steiner tree as a set of shortest
paths between pairs of vertices, and a replacement is every change made to
this set of paths.

The original algorithm of Imase and Waxman [25] made O(n*?) replace-
ments during the processing of a sequence of n update operations. This was
improved in the incremental case to O(log n) per terminal insertion by Megow

18

et al. [34]. Later, Gu, Gupta and Kumar [17, 18] have shown that after ev-
ery update only O(1) replacements are needed in amortized sense. Moreover,
they showed that if terminals are only deleted, it is possible to maintain a
constant approximate Steiner tree making only a single change after every
terminal deletion.

The problem of maintaining the Steiner tree is also an important problem
in the network community [9], and while it has been studied for many years,
the research resulted only in several heuristic approaches [5, 1, 24, 39] none
of which has been formally proven to have sublinear running time.

1.2.1 Our Results

We show the first sublinear time algorithm for the dynamic Steiner tree
problem. For general graphs and any k > 2, we give a O(kn'/*log" n) time
algorithm, which maintains a (8k — 4)-approximate Steiner tree. The time
bound is expected and amortized. Moreover, we show a (4 + ¢)-approximate
algorithm for planar graphs, which processes updates in 0(8_1 log® n) amor-
tized time.

To the best of our knowledge, previously only a simple O(n) time al-
gorithm was known. This algorithm first computes the metric closure G of
the graph G, and then maintains the MST of G[S] using a polylogarithmic
dynamic MSF (minimum spanning forest) algorithm [23]. It is a well-known
fact that this yields a 2-approximate Steiner tree. In order to update G[S] we
need to insert and remove terminals together with their incident edges, what
requires ©(n) calls to the dynamic MSF structure. However, such a linear
bound is far from being satisfactory, as it does not lead to any improvement
in the running time for sparse networks, where m = O(n).? In such networks
after each update we can actually compute a 2-approximate Steiner tree in
O(nlogn) time from scratch [35].

Our algorithm for dynamic Steiner tree uses an auxiliary graph called
a bipartite emulator. It is a low-degree bipartite graph, which can be used
to approximate distances in the original graph. Roughly speaking, in our
algorithm we maintain a subgraph H of the bipartite emulator, which changes
with every change to the set of terminals. We show that the MSF of H
approximates the Steiner tree spanning the set of terminals in the original
graph. To obtain the algorithm for dynamic Steiner tree, we run dynamic
MSF algorithm on the graph H.

We construct different bipartite emulators for general and planar graphs,
which results in different running times. While our emulators are constructed

2It is widely observed that most real-world networks are sparse [10].

19

using previously known distance oracles [44, 43], our contribution lies in the
introduction of the concept of bipartite emulators, whose properties make it
possible to solve the dynamic Steiner tree problem in sublinear time using
dynamic MSF algorithm.

1.3 Organization of This Thesis

This thesis is organized as follows. In Chapter 2 we review basic concepts
related to graph algorithms, introduce notation and review some existing
results that we use. In the following three chapters we describe our results.
Chapter 3 shows the algorithm for decremental connectivity in planar graphs.
In Chapter 4 we describe our algorithms for dynamic Steiner tree problem in
general and planar graphs. Then, in Chapter 5 we deal with the algorithms
for processing graph timelines. Finally, in Chapter 6 we list some interesting
open problems related to the problems we consider.

1.4 Articles Comprising This Thesis

The contents of this thesis have been included in the following papers:

e Dynamic Steiner tree and subgraph TSP, joint work with Jakub Oc¢wie-
ja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych, preliminary
version available in [31].

e Optimal decremental connectivity in planar graphs, joint work with
Piotr Sankowski, to appear at STACS 2015, preliminary version avail-
able in [33].

e Reachability in graph timelines, joint work with Piotr Sankowski, pub-

lished at ITCS 2013 [32].

This thesis contains only some of the results of the papers listed above.
Only the results whose main contributor is the author of this thesis are
included here.

1.5 Acknowledgments

I would like to thank my supervisor, Piotr Sankowski, for his motivation,
numerous fruitful discussions, and patience with answering lots of my ques-
tions. I would also like to thank Krzysztof Diks, who helped me whenever it

20

was needed. I am very grateful to all co-authors of my publications on theo-
retical computer science: Krishnendu Chatterjee, Tomasz Idziaszek, Tomasz
Kulczynski, Yahav Nussbaum, Jakub Oc¢wieja, Marcin Pilipczuk, Jakub Ra-
doszewski, Christian Wulff-Nilsen and Anna Zych, as well as my friends
Lukasz Bieniasz-Krzywiec and Dariusz Leniowski. I would like to express
my gratitude to my great teachers: Krzysztof Benedyczak, who taught me
programming, and Ryszard Szubartowski, who taught me algorithmics. Fi-
nally, I would like to thank my closest relatives, especially my fiancée and
my parents for their endless and ongoing support.

During three years of my studies, my research was supported by Google
European Doctoral Fellowship in Graph Algorithms, which provided me fi-
nancial support and saved tons of paperwork.

21

Chapter 2

Preliminaries

2.1 Graphs

2.1.1 Basic Definitions

An undirected graph is a pair G = (V, E), where V is a finite set of vertices
and E is a set of edges. Each edge is an unordered pair of elements of V,
that is £ C {{u,w} | u,w € V}. A directed graph is also a pair G = (V, E),
where V' is a finite set of vertices and E is a set of edges. However, edges of
a directed graph are ordered pairs of elements of V. Unless stated otherwise,
when referring to a graph we mean an undirected graph. We typically use
the letter n to denote the number of vertices in a graph, and m to denote
the number of edges. Moreover, we use V(G) and E(G) to denote the sets
of, respectively, vertices and edges of a graph G.

Let e = {u,w} be an edge of an undirected graph. We call u and w the
endpoints of an edge e. In the following, for simplicity, we use uw to denote
an edge, whose endpoints are v and w. We say that e is incident to v and
w, u and w are adjacent to e, and v and w are adjacent to each other. The
degree of a vertex is the number of edges incident to it. The neighborhood of
a vertex v, denoted I'(v) is the set of vertices adjacent to v.

A walk in a graph G = (V, E) is a sequence of vertices vy, v, . . ., Uy, where
k> 1, and for 1 <1 < k, v;u;,1 is an edge of G. The same definition applies
to directed graphs. The endpoints of a walk vy, vs,..., v, are vy and vy and
the length of this walk is k — 1. A path is a walk vy, v, ..., v, where all v;
are distinct.

A subgraph of a graph G = (V, E) is a graph G’ = (V' E’), where V' C V
and E' C E. Note that since G’ is required to be a graph, for every ¢’ € E,
both endpoints of ¢’ belong to V/. With a slight abuse of notation, if S C V/,
we denote by G\ S a subgraph of GG obtained by removing vertices of S and

22

all their incident edges. Similarly, if v € V', we use G \ v to denote G \ {v}.

Let V' C V be a set of vertices. A subgraph of G induced by V', denoted
G[V'] is a subgraph G’ = (V', E') of G, where E’ is the set of all edges of
E., whose both endpoints are in V’. Similarly, for a set £’ C E of edges, we
define G' = (V' E’) to be an edge-induced subgraph of G, if V' is the set of
all endpoints of £.

A graph G = (V, E) is a bipartite graph if the set V' can be partitioned
into two sets V1, Vs, such that V = VUV, VNV, = 0, and each edge of G has
exactly one endpoint in each of V; and V5. When describing a bipartite graph
we sometimes write G = (V; U Va, F) to give the aforementioned partition of
its vertex set. A complete graph is a graph that contains an edge connecting
every pair of its vertices. If G' is a complete graph over a set of vertices V,
we write G = (V (‘2/)) Finally, we say that G = (V, E) is a multigraph if V
is the set of vertices and E is a multiset of pairs of vertices, that is G may
have multiple edges between a pair of vertices. The definitions that apply to
graphs can be extended to multigraphs in a natural way.

2.1.2 Connectivity

Two vertices u, w of a graph G = (V, E) are connected if there is a path in
GG, whose endpoints are uv and w. We say that G is connected, if every two
vertices of G are connected. A connected component of G is a subset C' C V,
such that every two vertices of C' are connected and C' is maximal (with
respect to inclusion).

Proposition 2.1.1. Connected components of a graph G = (V, E) form a
partition of V.

Let G = (V, E) be a graph. An edge e € E is a bridge, if (V, E\ {e}) has
more connected components than G. A graph G = (V| F) is biconnected if it
is connected and for every v € V', G \ v is connected.

A separator of a graph G = (V,E) is a set S C V, such that G \ S
has more connected components than GG. A separator is balanced if the size
of every connected component of G'\ S is at most «|V| for some universal
constant « (in this thesis we can assume o = 3/4).

2.1.3 Weighted Graphs

A graph G is weighted if G = (V,E,dg), and dg : E — R is a function
assigning weights to edges of GG. Throughout this thesis, we assume that the
weights are nonnegative. A subgraph of a weighted graph G = (V, E,dg) is a
weighted graph G' = (V', E', d¢), such that (V' E') is a subgraph of (V| E)

23

and dg is a restriction of dg to E’. Other definitions for unweighted graphs
can be extended to weighted graphs in a similar manner. On the other hand,
the definitions for weighted graphs can be used with unweighted ones. In
such a case, we assume that the weight of every edge is equal to 1.

Let G' = (V', E',d¢/) be a subgraph of a weighed graph G = (V, E,d¢).
We slightly abuse notation and use dg(G’) to denote Y. cpr der(€'). We call
this value the weight of G'. Similarly, for a walk P = vy, vy,..., v in G we
use dg(P) to denote the weight of this walk equal to ¥ ! dg(vivii1).

Let u, w be two vertices of a weighted graph G. The shortest path con-
necting v and w is a minimum weight path whose endpoints are v and w. If
u and w are connected, the distance between u and w is the weight of the
shortest path connecting u and w. Otherwise, the distance between u and w
is assumed to be co. We denote the distance between v and w by d¢(u, w).
A metric closure of a weighted graph G = (V, E,dg), denoted G, is a com-

plete graph G = (V, (‘2/), dg), where the length of an edge uw is the distance

between u and w in G, that is dg(uw) = da(u, w).

2.1.4 Trees

A graph G = (V, E) is a tree if for every two vertices u,w € V there is a
unique path connecting u and w. A graph G = (V, E) is a forest if for every
two vertices u,w € V there is at most one path connecting u and w.

A vertex v of a tree or forest is called a leaf if its degree is equal to
1. A spanning tree of a graph G = (V| F) is any subgraph T' = (V, E7) of
G which is a tree. A spanning forest of a graph G = (V, E) is any sub-
graph F' = (V, Ep) of G which is a forest and has the same number of
connected components as G. A minimum spanning tree (MST) of a weighted
graph G = (V, E,dg), denoted MST(G), is a spanning tree of G of minimal
weight. Similarly, a minimum spanning forest (MSF) of a weighted graph
G = (V,E,dg), is a spanning forest of G of minimal weight. For every set
S CV, we say that a tree T' = (V, E) spans S.

Let G = (V, E,dg) be a weighted graph and S C V' be a subset of vertices.
A Steiner tree of G, denoted ST(G) is a subgraph T' = (Vp, Ep,dr) of G,
such that S C Vi, every two vertices of S are connected in 1" and T has
minimal possible weight. We call S the set of terminal vertices or terminals.

A rooted tree is a tree with a distinguished vertex called the root. If v € V
is not a root, we define the parent of v, denoted PARENT(v) to be the first
vertex on the unique path from v to the root. If a vertex u is adjacent to a
vertex w and w is not a parent of w, we say that w is a child of w. If u and w
are two vertices of a rooted tree and u lies on the path from w to the root,

24

we say that u is an ancestor of w and w is a descendant of u.

A binary tree is a rooted tree, in which every non-leaf vertex has exactly
two children. Moreover, we assume that the children of every vertex v are
ordered, that is there is a distinguished left child (denoted LEFT(v)) and a
right child (denoted RIGHT(v)). A complete binary tree is a binary tree, in
which the distance between the root and every leaf is the same. We call this
distance the height of the tree.

2.1.5 Planar Graphs

A plane embedding of a graph G = (V, E) is a mapping of G into R?, which
maps vertices of GG into points and edges of GG into simple arcs. Each vertex
v is mapped to a distinct point m(v) of a plane. An edge uw is mapped to an
arc connecting 7(u) and 7(w). The arcs corresponding to two distinct edges
do not intersect except, possibly, at endpoints. A graph is called planar if it
admits a plane embedding.

Consider a plane embedding of a planar graph G = (V| E). The arcs of
the embedding partition the plane into regions that we call faces. Exactly
one face is unbounded. We call it the outer face. We say that a face f is
adjacent to the edges corresponding to the arcs bounding f.

Theorem 2.1.2 (Euler’s formula). Let G = (V, E) be a plane embedded
graph. Let v be the number of vertices of G, e be the number of edges, f be
the number of faces and ¢ be the number of connected components. Then

v—e+ f=c+ 1

We say that a planar graph is triangulated if every face is adjacent to
exactly three edges.

A dual graph of a planar graph G is a multigraph G* obtained by em-
bedding a single vertex in every face of G. Let e be an edge of G, which is
adjacent to faces f; and f5. For each such edge, we add to G* the dual edge
of e, which connects vertices embedded in f; and f.

Proposition 2.1.3. A dual graph of a planar graph is planar.

Note that although we have not defined planar multigraphs (only planar
graphs), our definition of planarity can be naturally extended to multigraphs.
A region R is an edge-induced subgraph of G. A boundary vertexr of a
region R is a vertex v € V(R) that is adjacent to an edge e ¢ E(R). We
denote the set of boundary vertices of a region R by 9(R). An r-division
P of G is a partition of G into O(n/r) edge-disjoint regions (which might

25

share vertices), such that each region contains at most r vertices and O(+/7)
boundary vertices. The set of boundary vertices of a division P, denoted
J(P) is the union of the sets d(R) over all regions R of P. Note that [0(P)| =

O(n/\/r).

Lemma 2.1.4 ([29, 45]). Let G = (V, E) be an n-vertex biconnected trian-
gulated planar graph and 1 < r < n. An r-division of G can be constructed
in O(n) time.

2.2 Segment Trees

Throughout this section we consider discrete intervals, that is intervals of
integers. The length of such an interval is the number of its elements. Let ¢
be a power of 2. We define the set of elementary intervals over 1,...,t as
follows. First, [1,t] is an elementary interval. Second, if [a,b] is an elemen-
tary interval and a < b, then also [a,(a + b — 1)/2] and [(a + b+ 1)/2,b]
are elementary intervals. For example, the set of elementary intervals over
1,...,8is {[1,8], [1,4], [5,8], [1,2], [3,4], [5,6], [7,8], [1,1], [2,2], [3, 3], [4,4],
5,5], [6,6], [7,7], [8,8]}. Observe that the elementary intervals can be or-
ganized into a complete binary tree, in which the root is [1,¢], and for an
elementary interval [a,b], where a < b, LEFT([a,b]) = [a, (a + b — 1)/2] and
RicHT([a,b]) = [(a+b+1)/2,b]. This tree is called a segment tree. In the rest
of this section we implicitly assume that elementary intervals we refer to are
over 1,...,t and a segment tree is a segment tree over this set of elementary
intervals.

Proposition 2.2.1. The height of the segment tree is O(logt).

Proof. Consider a path that starts in the root and goes to the left child until
a leaf is reached. The height of this tree is the length of this path. Each edge
on this path connects an interval with an interval that is half shorter. Since
we start in [1,¢], the path has length O(logt). O

Proposition 2.2.2. There are 2t — 1 elementary intervals.

Proof. For i = 0,...,log,t, The segment tree has exactly 2¢ vertices, whose
distance from the root is :. O

From the construction we easily obtain the following.

Proposition 2.2.3. If [a1, b1] and [ag, by are elementary intervals, then ei-
ther [ay, b1] N [az, be] = O or one of the intervals is fully contained in the other
one.

26

The set of elementary intervals can be also characterized as follows.

Lemma 2.2.4. Let 1 <a <t and 1 < b < t. There exists an elementary
interval of length 2° whose right end is b if and only if b is divisible by 2°.
Similarly, there exists an interval of length 2¢ whose left end is a if and only
if a — 1 is divisible by 2°.

Proof. Let t = 2¢. We first show that the set of elementary intervals over
L...,tis A=Ay UA; U... Ay, where A; = {[k-2"+1,(k+1)-27]]0 <
k < 2974}, We have that A; has exactly 2¢7% elements, each being an interval
of 2¢ elements. In particular, A; = {[1,t]}. Moreover, since the sets A; are
disjoint, |A| = 2t — 1. By Proposition 2.2.2 there are also 2¢t — 1 elementary
intervals. Thus the set A and the set of elementary intervals both have size
2t — 1. To complete the first part of the proof, it suffices to show that every
elementary interval is contained in A.

In order to do that we show that for ¢ > 0 and any [a,b] € A;, both
LEFT([a,b]) and RI1GHT([a,b]) belong to A;—;. For simplicity, we only show
LEFT([a,b]) € A;—1. The second claim is similar.

Since [a,b] € A;, we have that a = k-2"+ 1 and b = (k + 1) - 2° for
0 < k < 297 Recall that LEFT([a,b]) = [a, (a +b—1)/2] = [k -2}, (2k + 1) -
2071 = [2k - 2071 (2k + 1) - 2071, We set &’ = 2k. Since 0 < k < 2¢97%, we have
0 < K < 2770=Y_ Moreover, LEFT([a,b]) = [k - 271, (K’ + 1) - 2°~1]. Hence,
LEFT([a,b]) € A;—1, so we conclude that A is exactly the set of elementary
intervals.

Now, fix a value of b < 1. We have that an interval [b — 2" + 1,b] € A,
if and only if b = (k + 1)2¢ for some 0 < k < 297, Since 1 < b < ¢, we can
find a matching k if and only if b is divisible by 2¢. Now, consider a > 1. An
interval [a,a +2'— 1] € A; if and only if a = k- 2! + 1 for some 0 < k < 277%,
Since 1 < a < t, we can find a matching k if and only if @ — 1 is divisible by
2¢. The lemma follows. [

We now show that each interval can be partitioned into O(logt) elemen-
tary intervals. Algorithm 1 shows a procedure, which computes such parti-
tion.

First, let us note the following property, which follows directly from the
pseudocode.

Proposition 2.2.5. Assume we are computing a decomposition of [c,d] into
elementary intervals. In each recursive call DECOMPOSE([c, d'], [a,b]) we
have that [, d'] = [c,d] N [a, b].

Lemma 2.2.6. Algorithm 1 produces a decomposition of [c,d] into elemen-
tary intervals.

27

Algorithm 1

1: function DECOMPOSE(]c, d], [a,b]) > Decompose [c,d] into elementary
intervals, which are sub-intervals of [a, b]
Require: [a,b] is an elementary interval and [c, d] C [a, b]

if [c,d] = [a,b] then return {[a,]}

ret := ()

if [c,d] N LEFT([a,b]) # 0 then

ret := ret U DECOMPOSE(|[c, d] N LEFT([a, b]), LEFT([a, b]))
if [c,d] N RiGHT([a,b]) # 0 then

ret := ret U DECOMPOSE(|c, d| N RIGHT([a, b]), RIGHT([a, b]))
return ret

Proof. Consider the first parameter [c,d] of DECOMPOSE. In every call we
either return a decomposition that contains solely of [, d] or call DECOMPOSE
recursively. The first parameters of the recursive calls form a partition of [c, d].
Thus, every element of [c, d] is either returned in a decomposition or passed
to a further recursive call. Consequently, the decomposition we return is a
partition of [c, d].

Observe that the algorithm terminates, as in every recursive call the
length of the second parameter of DECOMPOSE halves. Once we reach an
interval of length 1, that is we call DECOMPOSE([c, d'], [a, a]), we know that
[, d'] C [a,a] and [, d'] is nonempty (this is a necessary condition to execute
the call). Thus, the call terminates returning an interval [a,a]. The lemma
follows. O

Lemma 2.2.7. A call to DECOMPOSE(][c, d], [a, b]), where d = b or ¢ = a,
requires O(log(b — a + 1)) time and returns O(log(b — a + 1)) elementary
intervals.

Proof. We assume d = b, the other case is analogous. If LEFT([a, b]) N [c, d] #
(0, then RicHT([a,b]) C [e,d]. Thus, both LEFT([a,b]) and RiGHT([a,b])
intersect [c, d], so DECOMPOSE(][c, d], [a, b]) makes two recursive calls. The
second one is DECOMPOSE(][c, d] N R1GHT([a, b])), RIGHT([a, b])), but since
RIGHT([a,b]) C [c,d], the first parameter is simply RIGHT([a,b]). Hence,
this call terminates immediately and returns a single interval, so only the
other recursive call may trigger further recursive calls.

On the other hand, if LEFT([a,b]) N ¢, d] = 0 we only make one recursive
call. In both cases, we spend O(1) time and execute a single recursive call.
The second parameter of this recursive call is an interval which is half the size
of [a, b]. Hence, altogether we spend O(log(b—a+1)) time. Consequently, the
length of the produced decomposition is bounded by O(log(b —a +1)). O

28

Lemma 2.2.8. Let 1 < a < b < t. The interval [a,b] can be partitioned into
O(logt) elementary intervals over 1,...,t in O(logt) time.

Proof. We use Algorithm 1. By Lemma 2.2.6 the algorithm is correct. It
remains to bound the running time. From this, it would follow that the
returned decomposition has length O(logt).

Consider the first recursive call to DECOMPOSE which calls DECOMPOSE
twice. We call it a branching call. Note that there are at most O(logt) calls
before a branching call (or O(logt) calls in total, if there is no branching
call), as in each call the second parameter is an interval that is two times
shorter.

In a branching call we have [c,d] N LEFT([a,b]) # 0 as well as [¢,d] N
RIGHT([a, b]) # (). Hence, we may apply Lemma 2.2.7 to both recursive calls
that are made and bound their total running time by O(log(b —a + 1)) =
O(logt). The lemma follows. O

Note that an interval has multiple possible decompositions into elemen-
tary intervals. However, in the following we assume that we use a decompo-
sition produced according to Lemma 2.2.8.

Lemma 2.2.9. Let [a,b] be an elementary interval, such that [a,b] C [c,d].
Then the decomposition of [c,d] into elementary intervals contains either
[a,b] or one of its ancestors.

Proof. Observe that for every z € [a, b] the intervals containing = are ances-
tors of [a, b], [a,b] itself and (a subset of) descendants of [a, b]. It suffices to
show that no descendants of [a, b] belong to the decomposition.

Consider a recursive call DECOMPOSE([¢/, d'], [a, b]). By Proposition 2.2.5,
[, d'] = [e,d] N [a,b]). Since [a,b] C [c,d], we have [¢,d| = [a,b], so the
call returns immediately. Consequently, DECOMPOSE is never called for any
descendant of [a, b] (as a second argument). The lemma follows. O

2.3 Algorithms

2.3.1 Approximation Algorithms

Consider an optimization problem, in which the goal is to compute an object,
which satisfies certain properties and has minimal possible weight. An algo-
rithm is called a-approximate (for o > 1), if it computes a feasible object,
whose weight is at most « times the optimal weight.

The following Lemma gives a 2-approximate algorithm for computing the
Steiner tree.

29

Lemma 2.3.1. Let G = (V, E,dg) be a weighted graph and S C V. Then,

da(ST(G)) < MST(Q[S)) < 2d6(ST(G)).

Although no polynomial-time algorithm is known for the Steiner tree
problem, both the metric closure and its minimum spanning tree can be
computed in polynomial time.

2.3.2 Dynamic Graph Algorithms

A dynamic graph algorithm is an algorithm that maintains some information
about a graph G, which is undergoing modifications. Typically the modifi-
cations, in the following called updates, are edge additions or removals. The
sequence of updates is intermixed with a set of queries, e.g., about the ex-
istence of a path between two vertices or about the weight of the minimum
spanning tree. The algorithm is supposed to answer queries faster than by
computing the answer from scratch.

In this thesis we work with dynamic graph problems, in which the up-
dates change the set of edges in the graph. There are three types of dynamic
graph problems, depending on the allowed modifications. In an incremental
problem, edges may only be added, whereas in a decremental one, edges can
only be deleted. Finally, a fully dynamic problem allows both edge insertions
and deletions.

In our algorithms we use fully dynamic algorithm that maintains a mini-
mum spanning forest of a graph. In the following, we call it a dynamic MSF
algorithm.

Theorem 2.3.2 ([23]). There exists a fully dynamic MSF algorithm, that for
a graph on n vertices supports m edge additions and removals in O(mlog*n)
total time.

2.3.3 Connectivity

Let G = (V, E) be a graph with n vertices and m edges. It is well known
that, using depth-first search or breadth-first search algorithms we may find
the connected components of G.

Proposition 2.3.3. Connected components of G can be found in O(n + m)
time.

Formally, the algorithm computes for each vertex the unique identifier of
its connected component. Two vertices belong to the same connected com-
ponents if and only if their identifiers are equal.

30

Disjoint-Set Data Structure

A disjoint-set data structure (further denoted by DSDS, also called an union-
find data structure) maintains a partition of a set of elements into disjoint
subsets. In each subset one element is selected as a representative. The data
structure supports two operations. First, given any element x, it can return
the representative of the subset containing x (this is called the find opera-
tion). It can be used to test whether some two elements belong to the same
set of the partition. Moreover, the data structure supports a union opera-
tion, which, given two elements z and y, merges the subsets containing x and
y. A famous result by Tarjan [40] bounds the running time of a previously
known union-find algorithm.

Theorem 2.3.4 ([40]). There exists a disjoint-set data structure that sup-
ports any sequence of m operations on an universe of size n in O((n+m)a(n))
time, where « is the inverse of Ackerman’s function.

In this thesis however, we need an DSDS, in which the running time of
every individual operation is bounded. Hence, we use a simple data structure
that we now describe. Each subset in the data structure is represented as a
rooted tree. The root of the tree is a representative of a subset, and every
other element of a subset maintains a pointer to its parent in the tree. We
assume that the parent pointer of a representative points to itself. Moreover,
each representative maintains the size of its subset.

In order to perform the find operation, it suffices to follow the parent
pointers, until the representative is reached. To union two subsets we first
find its representatives x and y. If x = y, nothing has to be done. Otherwise,
we compare the sizes of their sets. Assume that the subset of x is not greater
than the subset of y. In such a case we merge the sets by making y the parent
of z.

Let us list some simple properties of the described DSDS.

Proposition 2.3.5. The algorithm takes O(n) time to initialize and performs
every operation in O(logn) worst-case time.

Proposition 2.3.6. The find operation does not change the data structure.
Every union operation can change at most one parent pointer in the data
structure. When a change is performed, one representative of the merged
subsets becomes a parent of the other representative.

The DSDS is closely related to incremental connectivity problem, that is
a problem in which we work with a dynamic graph, subject to edge inser-
tions. The sequence of insertions is intermixed with queries of the form ‘Are

31

vertices v and w connected?’. It is easy to see that we may use DSDS to solve
incremental connectivity problem: a query can be solved by a find operation,
whereas an update maps naturally to a union operation. Let G = (V| F) be a
graph. We say that a DSDS D is a DSDS of G if D is obtained by performing
a union operation for the endpoints of each edge of G.

Proposition 2.3.7. Let G = (V, E) be a graph, and n = |V|. Given a DSDS
of a graph G, we can find the connected components of G in O(n) time.

Proof. We view the forest maintained by the DSDS as an undirected graph
F. Observe that the connected components of F' are the same as the con-
nected components of GG. Thus, by Proposition 2.3.3, we can find connected
components of F'in O(n) time. O

2.3.4 String Hashing

We use a string hashing scheme based on the fingerprinting technique of Ra-
bin and Karp [28]. This scheme can be used to compute hash values (hence-
forth called hashes) of strings, that may be used for probabilistic equality
testing. Throughout this section, let us assume that we work with sequences
of length at most n, that consist of positive integers not greater than M.
Let p > max(M,n) be a prime number and B € {0,...,p — 1} be chosen
uniformly at random. The hash value of a sequence S = sy, ..., s is

H(S) = (kzol B’“_l_isi> mod p. (2.1)

While the scheme described in [28] chooses p randomly, we modify the
scheme slightly, as done, e.g., in [30]. We fix p and then randomly pick B.
As shown in [30], this assures that the probability of two distinct sequences
having the same hash value is at most n/p. Thus, by choosing a value of p
that is suitably large, yet polynomial in n, distinct sequences have distinct
hash values with high probability.

We now derive useful properties of this hashing scheme. Note that in
order to use these properties, together with each hash we need to store the
length of the sequence represented by the hash.

Proposition 2.3.8. The hash of a sequence si,...,s, can be computed in
O(k) time.
Proof. We use Horner’s rule to evaluate Formula 2.1. O

32

Let S; = ay,...,a; and Sy = by,...,b; be two sequences, hy = H(S)
and hy = H(S;). We denote by hy @ hsy the hash of a sequence obtained by
appending S5 to S;. Moreover, if Sy be a prefix of Sy, we denote by hy © hy
the hash of a;y1,a;19,...a;

Lemma 2.3.9. Let Sy and Sy be two sequences. Given H(Sy) and H(Ss), we
may compute H(S1)@® H(Sy) in O(1) time. This requires initial preprocessing
in O(n) time.

Proof. Let S1 = ay,...,ar and Sy = by, ..., b. We have that H(S1)®H (Ss) =
(H(S,)B'+ H(S3)) mod p. This can be evaluated in O(1) time, if we prepro-
cess B mod p, for all 1 < i < n.]

Lemma 2.3.10. Let Sy be a sequence, and Sy be a prefiz of S1. Given H(S})
and H(S,), we may compute H(Sy) © H(S2) in O(1) time. This requires
initial preprocessing in O(n) time.

Proof. Let S1 = ay,...,a; and Sy = aq,...,q; for | < k. We have that
H(S)) © H(Sy) = (H(S;) — B*¥'H(S,)) mod p. This can be evaluated in
O(1) time, if we preprocess B’ mod p, for all 1 <i < n.]

Lemma 2.3.11. Let S = aq, ..., a, where for each1 <1 < k, a; = ay. Then,
we may compute H(S) in constant time. This requires initial preprocessing
in O(n) time.

Proof. We have that H(S) = (51 S Bi) mod p. This can be evaluated in

constant time, if we preprocess Zf;ol Biforalll1 <i<n.]

2.4 Other Remarks

Throughout this thesis we use logx to denote the binary logarithm of x.
Moreover, we use log™n to denote the iterated logarithm function. We have
log"n =0 for n < 1, and log®n = 1 + log*(logn) for n > 1. We also use the
soft-O notation and write O(f(n)) to denote O(f(n)polylog(n)). Note that
f may have multiple arguments, and the soft-O notation hides factors which
are polylogarithmic in each of them.

We assume word-RAM model with standard instructions. This means
that the machine word has size w > log n. Here, n denotes the size of the input
data. All basic arithmetic and logical operations (including multiplication
and bit shifts) on integers of at most w bits take unit time.

33

Chapter 3

Decremental Connectivity in
Planar Graphs

In this chapter we show an algorithm for decremental connectivity in planar
graphs. The algorithm, at any point, given two vertices of the graph may
answer whether they belong to the same connected component. The total
running time of this algorithm is linear in the size of the graph. By the total
running time we denote the total time of handling any sequence of deletions
of edges. Each query is answered in constant time.

In the following part of this chapter we first introduce some definitions
and deal with minor technical issues (in Section 3.1). Then, we present the
algorithm, by introducing our ideas one by one. Each each idea results in a
faster algorithm. We describe a simple O(nlogn) algorithm in Section 3.2,
and then, in Section 3.3, present how to speed it up to O(nloglogn) time
using r-division. Next, in Section 3.4, we show that our idea can be used
recursively, which results in the running time of O(nlogloglogn). Finally,
in Section 3.5 we make the algorithm linear by precomputing connectivity
information of all graphs of bounded size.

3.1 Preliminaries

In this chapter we describe multiple distinct connectivity algorithms. Some of
them maintain identifiers of connected components. These identifiers (hence-
forth denoted cc-identifiers) are values assigned to vertices, which uniquely
identify the connected components. Two vertices have the same cc-identifiers
if and only if they belong to the same connected component. We say that
an algorithm maintains cc-identifiers explicitly if after every deletion it re-
turns the list of changes to the cc-identifiers. We assume that cc-identifiers

34

are integers that require logn + O(1) bits.

Proposition 3.1.1. A dynamic graph algorithm which explicitly maintains
cc-identifiers implies a dynamic connectivity algorithm with the same update
time and constant query time.

Let G be a planar graph. In the preprocessing phase of our algorithms,
we build an r-division of G (see Section 2.1.5). This r-division is updated in
a natural way, as edges are deleted from GG. Namely, when an edge is deleted
from the graph, we update its r-division by deleting the corresponding edge.
However, if we strictly follow the definition, what we obtain may no longer
be an r-division.

For that reason, we loosen the definition of an r-division, so that it in-
cludes the divisions obtained by deleting edges. Consider an r-division P
built for a graph G. Moreover, let G’ be a graph obtained from G by deleting
edges, and let P’ be the r-division P updated in the following way. Let R
be a region of P. Then, we define the graph R’ in P obtained by removing
edges from R to be a region of P’ although it may no longer be an edge-
induced subgraph of G’, e.g., it may contain isolated vertices. Similarly, we
define the set of boundary vertices of P’ to be the set of boundary vertices
of P. Again, according to this definition, a boundary vertex v of P’ may
be incident to edges of a single region (because the edges incident to v that
belonged to other regions have been deleted). In the following, we say that
P’ is an r-division of G.

In order to compute an r-division, we use Lemma 2.1.4. Since the Lemma
requires the graph to be biconnected and triangulated, in order to obtain an
r-division for a graph which does not have these properties, we first add edges
to G to make it biconnected and triangulated, then compute the r-division
of G, and finally delete the added edges both from G and its division.

Without loss of generality, we can assume that each vertex v € V has
degree at most 3. This can be assured by triangulating the dual graph in
the very beginning. In particular, this assures that each vertex belongs to a
constant number of regions in an r-division.

3.2 O(nlogn) Time Algorithm

Let G be a planar graph subject to edge deletions. We call an edge deletion
critical if and only if it increases the number of components of G, i.e., the
deleted edge is a bridge in G. We first show a dynamic algorithm that for
every edge deletion decides, whether it is critical. It is based on a simple
relation between the graph G and its dual.

35

0 O g,
[Jeeeenannsens O [m]
s\j

Figure 3.1: The graphs that illustrate the proof of Lemma 3.2.2. Edges of
G are drawn with solid black lines, whereas the gray lines depict edges that
have been deleted from G. The small squares are vertices of D¢, and the
dotted lines are edges of Dg.

Lemma 3.2.1. Let G be a planar graph subject to edge deletions. There
exists an algorithm that for each edge deletion decides whether it is critical.
It runs in O(n) total time.

Proof. The intuition behind the proof is as follows. We maintain the number
of faces in G. In order to do that, when an edge e is deleted, we simply
merge faces on both sides of e (if they are different from each other). This
can be implemented using union-find data structure on the vertices of the
dual graph G*.

More formally, we build and maintain a graph Dg. Initially, this is a graph
consisting of vertices of G* (faces of G). When an edge is deleted from G, we
add its dual edge to D¢ (see Figure 3.1). Clearly, the connected components
of D¢ are exactly the faces of GG. Since edges are only added to D¢, we can
easily maintain the number of connected components in D¢ with a union-find
data structure.

This allows us to detect critical deletions in G. We use Euler’s formula
(see Theorem 2.1.2). After every edge deletion, we know the number of edges
and vertices of G. Moreover, we know that the number of faces of G is equal
to the number of connected components of Dg, which we also maintain. As
a result, by Euler’s formula, we get the number of connected components
of G, so in particular we may check if the deletion causes the number of
connected components to increase. The algorithm executes O(n) find and
union operations on the union-find data structure.

In addition to that, the sequence of union operations has a certain struc-
ture. Let 1 be the initial version of the graph G (before any edge deletion).
Observe that each union operation takes as arguments the endpoints of an

36

edge of G7. The variant of the union-find problem, in which the set of allowed
union operations forms a planar graph given during initialization, was con-
sidered by Gustedt [19]. He showed that for this special case of the union-find
problem there exists an algorithm that may execute any sequence of O(n)
operations in O(n) time (for an n-vertex planar graph). Thus, we infer that
our algorithm runs in O(n) time. O

We can now use Lemma 3.2.1 to show a simple decremental connectivity
algorithm that runs in O(nlogn) total time.

Lemma 3.2.2. Let G be a planar graph subject to edge deletions. There exists
a decremental connectivity algorithm that for every vertex of G maintains its
ce-identifier explicitly. It runs in O(nlogn) total time.

Proof. We use Lemma 3.2.1 to detect critical deletions. When an edge uw is
deleted, and the deletion is not critical, nothing has to be done. Otherwise,
after a critical deletion, some connected component C' breaks into two com-
ponents C, and Cy, (v € C,, w € () and we start two parallel depth-first
searches from u and w. We stop both searches once the first of them finishes.
W.lo.g. assume that it is the search started from w. Thus, we know that
the size of C, is at most half of the size of C.! We can now iterate through
all vertices of (', and change their cc-identifiers to a new unique number.
All these steps require O(|C,|) time. The running time of the algorithm is
proportional to the total number of changes of the cc-identifiers. Since every
vertex changes its identifier only when the size of its connected component
halves, we infer that the total running time is O(nlogn). O

3.3 O(nloglogn) Time Algorithm

In order to speed up the O(nlogn) algorithm, we need to speed up the linear
depth-first searches that are run after a critical edge deletion. We build an
r-division P of G for r = log®n and use a separate decremental connectivity
algorithm to maintain the connectivity information inside each region. On top
of that, we maintain a skeleton graph that represents connectivity information
between the set of boundary vertices (and possibly some other vertices that
we consider important). Loosely speaking, since the number of boundary
vertices is O(n/logn) we can pay a cost of O(logn) for maintaining each
cc-identifier.

1Since the graph has constant degree, we may assure that both searches are synchro-
nized in terms of number of vertices visited.

37

L

(b)

SNESHE

(a)

~
() (d)

Figure 3.2: Panels 3.2a and 3.2b show a sample graph G and its r-division into
three regions (boundary vertices are marked with small circles). In panel 3.2¢
there is graph G’ obtained from G by a sequence of edge deletions. Panel 3.2d
shows its r-division obtained from the r-division of G (again, boundary ver-
tices are marked with small circles). Finally, panel 3.2e contains the skeleton
graph of G’ (for Vi = O(P)). Auxiliary vertices are marked with squares.

38

Definition 3.3.1. Consider an r-division P of a planar graph G = (V, E)
and a set Vi (called a skeleton set), such that O(P) C V, C V. The skeleton
graph for P and V; is a graph over the skeleton set Vs and some additional
auziliary vertices. Consider a region R of P. Group vertices of Vs N V(R)
into sets Vi, ..., Vi, such that two vertices belong to the same set if and only
if there is a path in R that connects them. For each set V; add a new auziliary
vertex w; and add an edge w;x for every x € V;.

For illustration, see Figure 3.2.
Proposition 3.3.2. The skeleton graph has O(|Vs|) vertices and edges.

Proof. For a region R, we add to the skeleton graph at most one vertex and
edge per each vertex of V; N V(R). Since each vertex belongs to a constant
number of regions, we get the desired bound.]

Proposition 3.3.3. If u,w € V, then u and w are connected in the skeleton
graph if and only if they are connected in G.

Proof. Consider a region R of the r-division. From the construction it follows
that two vertices of V; N V(R) are connected in G with a path inside R if
and only if they are connected in the part of the skeleton graph built for this
region.

(=) Follows directly from the above observation.

(<=) Consider a path P in G between u and w. Break this path into sub-
paths at each element of V;. Since 9(P) C V; C V, each resulting subpath
is fully contained in one region of the r-division. Clearly, from the property
given at the beginning of the proof, for each subpath there exists a corre-
sponding path in the skeleton graph. O

The skeleton graph is also planar, but our algorithms do not use this
property.

In our algorithm we update the skeleton graph of GG, as edges are deleted.
As in the O(nlogn) time algorithm, we need a way of detecting whether
an edge deletion in GG increases the number of connected components in the
skeleton graph.

Lemma 3.3.4. Let G be a dynamic planar graph, subject to edge deletions.
Assume that we maintain its skeleton graph G4 computed for an r-division
P and a skeleton set Vs. An edge deletion in G causes an increase in the
number of connected components in Gy if and only if the deletion is critical
in G and there exists a region of P, in which the deletion disconnects some
two vertices of V.

39

Before we proceed with the proof, let us note that all its conditions are
necessary. In particular, a critical deletion in G may not disconnect some
two vertices of a skeleton set in a region (e.g., edge uw in Figure 3.2c, whose
deletion does not affect the skeleton graph at all). It may also happen that
the deletion is not critical in G, but inside some region it disconnects some
two vertices of V; (e.g., edge xy in Figure 3.2¢).

Proof. By Proposition 3.3.3, two vertices of V; are connected in G if and only
if they are connected in G.

(=) If two vertices of V; become disconnected in G, they also become
disconnected in G, so the edge deletion is critical. The deletion has to dis-
connect some two vertices in a region, because otherwise the graph G, would
not change at all.

(<) Assume that the deletion disconnected vertices u,w € V in a region
R. Thus, the deleted edge was on some path from u to w. Since the edge
deletion is critical in GG, the deleted edge was a bridge in G. After the deletion
there is no path from u to w in G and consequently also in G. m

Lemma 3.3.5. Let G = (V, E) be a planar graph and let X C V. Assume
there exists a decremental connectivity algorithm that maintains cc-identifiers
of a set X C'V explicitly and processes updates in Q(n) total time. Then, we
can extend the algorithm, so that:

e after every edge deletion, if the deletion disconnects some two vertices
of X, it reports a pair of vertices that become disconnected,

e given a cc-identifier, it returns a vertex v € X with the same cc-
identifier (or reports that such a vertex does not exist).

The extended algorithm has the same asymptotic running time.

Proof. Since each cc-identifier can be encoded in logn 4+ O(1) bits, there are
O(n) possible cc-identifiers. Thus, for each possible cc-identifier ¢, we main-
tain a list L. of vertices of X with this cc-identifier. Observe that maintaining
these lists takes time that is linear in the number of changes of cc-identifiers.
Moreover, we need O(n) time to initialize the lists L..

Observe that the lists allow us to find a vertex of X of given cc-identifier
in constant time, so the second claim follows. To show the first claim, consider
a case when after an edge deletion some (but not all) elements from a list L,
are removed. All this elements have to be added to a single list L., and Ly
must have been empty before the new elements were added (because an edge
deletion may not cause two vertices to become connected). This means that
the number of distinct cc-identifiers has increased, and some elements of X

40

became disconnected. We can now take any v € L. and w € L. and report
that u and w became disconnected. [

We are ready to show the main building block of our O(nloglogn) time
algorithm.

Lemma 3.3.6. Let G be a planar graph. Assume there exists a decremental
connectivity algorithm that runs in f(n) time, where f is a nondecreasing
function, and maintains cc-identifiers explicitly. Then, there exists a decre-
mental connectivity algorithm that runs in O(n +n - f(log*n)/log®n) time
and answers queries in O(1) time.

Proof. We build an r-division P of G for r = log?n. By Lemma 2.1.4, this
takes O(n) time. For each region R of the division, we run the assumed
decremental algorithm to handle edge deletions. We use Agr to denote the
algorithm run for region R. Ag maintains cc-identifiers of V' (R) explicitly. We
call these cc-identifiers local cc-identifiers. We also extend each A according
to Lemma 3.3.5, taking X = 9(P) N V(R). Moreover, we use Lemma 3.2.1
to detect critical deletions in G.

We build the skeleton graph G, of GG, for an r-division P and a skeleton set
Vs = O(P). We maintain G as edges are deleted, that is the deletions in G are
reflected in Gg. This can be done using the algorithms Ag. By Lemma 3.3.5,
Apr can report that some two vertices of Vi become disconnected inside R.
This means that G needs to be updated. Observe that the part of G inside a
region R can be implicitly represented as a partition of V;NV (R), where two
vertices belong to the same element of the partition, if they are connected in
R. Thus, if a deletion causes t local cc-identifiers to change, we may update
G, in O(t) time. As a result, the time for updating G is linear in the number
of local cc-identifiers that are changed.

For every vertex of G5, we maintain its cc-identifier (called a global cc-
identifier). Once G is updated after an edge deletion, we use Lemma 3.3.4
to check whether the number of connected components of GG, increased. Ac-
cording to the lemma, it suffices to check whether the deletion is critical in
G (this is reported by the algorithm of Lemma 3.2.1), and whether some two
elements of the skeleton set became disconnected within some region (using
Lemma 3.3.5).

When we detect that the number of connected components of the skele-
ton graph G has increased, similarly to the O(nlogn) algorithm, we run
two parallel DFS searches to identify the smaller of the two new connected
components, and update the global cc-identifiers.

In order to answer a query regarding two vertices u and w, we perform
two checks. First, if the vertices belong to the same region, we check whether

41

there exists a path connecting them that does not contain any boundary
vertices. This can be done by querying algorithm Ag for the appropriate
region.

Then, we check whether there is a path from u to w that contains some
boundary vertex. For each of the two vertices, we find two arbitrary boundary
vertices b, and b,, that u and w are connected to (using Lemma 3.3.5). Then,
we check whether b, and b,, have the same global cc-identifier.

Let us now analyze the running time. The algorithm of Lemma 3.2.1
requires O(n) time. The total running time of algorithms Ag is O(n-f(r)/r) =
O(n-f(log®n)/log® n). Lastly, we bound the running time of the DFS searches
performed to update the global cc-identifiers. We use an argument similar
to the one in the proof of Lemma 3.2.2. The skeleton graph has O(n/logn)
vertices, and each global cc-identifier can change at most O(log(n/logn)) =
O(logn) times. Hence, the DFS searches require O((n/logn)logn) = O(n)
time. The lemma follows. O]

By applying Lemma 3.3.6 to Lemma 3.2.2, we obtain the following.

Lemma 3.3.7. There exists a decremental connectivity algorithm for planar
graphs that runs in O(nloglogn) total time.

Proof. The total update time of the algorithm of Lemma 3.2.2 is f(n)
O(nlogn). Thus, the running time is O(n + n - f(log®n)/log’n) = O(n
nlog®nloglogn/log*n) = O(nloglogn).

O+

3.4 O(nlog log logn) Time Algorithm

In order to obtain an even faster algorithm, we would like to use Lemma 3.3.6
multiple times, starting from the O(nlogn) algorithm, and each time apply-
ing the lemma to the algorithm obtained in the previous step. This, however,
cannot be done directly. While the lemma requires an algorithm that main-
tains all cc-identifiers explicitly, it does not produce an algorithm with this
property. We deal with this problem in this section.

Observe that in the proof of Lemma 3.3.6 we only needed the assumed
decremental algorithm to maintain the cc-identifiers of the vertices of the
skeleton set. This fact can be exploited in the following way. We show that if
we have an algorithm that maintains cc-identifiers of some vertices, we may
construct another (possibly faster) algorithm with the same property.

Lemma 3.4.1. Assume there exists a decremental connectivity algorithm for
planar graphs that, given a graph G = (V,E) and a set V, C V (called an
explicit set):

42

e maintains cc-identifiers of the vertices of V. explicitly,
e processes updates in f(n) 4+ O(|Ve|logn) time,
e may return the cc-identifier of any vertex in g(n) time,

where f(n) and g(n) are nondecreasing functions.
Then, there exists a decremental connectivity algorithm for planar graphs,
which, given a graph G = (V, E) and a set V, CV:

e maintains cc-identifiers of the vertices of V, explicitly,
e processes updates in O(n + |V.|logn +n - f(log”n)/log®n) time,
o may return the cc-identifier of any vertez in g(log®n) 4+ O(1) time.

Proof. We build an r-division P of G for r = log*n. By Lemma 2.1.4, this
takes O(n) time. We also build a skeleton graph G, by taking a skeleton set
Vs := V. UO(P). Hence, |Vi| = |V.| + O(n/logn).

For each region R of P, we run a copy Agr of the assumed decremental
connectivity algorithm, extended according to Lemma 3.3.5. Observe that
in the proof of Lemma 3.3.6, we only need Agr to explicitly maintain cc-
identifiers of VNV (R). Thus, the set of explicit vertices for algorithm Ag is
Vs NV (R). Hence, Ar maintains local cc-identifiers of these vertices.

We maintain the graph G4 and its global cc-identifiers in the same way as
in the proof of Lemma 3.3.6. The only difference is that now the skeleton set
V, is bigger. Let us bound the running time. Algorithm Ag uses f(log®n) +
O(|[VaNV(R)|logn) time. Summing this over all regions, we obtain

3" f(log*n) + O([V, N V(R)|logn)
ReP

= O(n - f(log”n)/log® n + |V;|log n)
= O(n - f(log’n)/log’n + |V.|logn +n/logn - logn)
= O(n - f(log*n)/log*n + |V.|logn + n).
Note that we use the fact that each vertex is contained in a constant number

of regions. The running time of depth-first searches used to update the global
cc-identifiers is

O(|Vi]logn) = O(n/logn -logn + |V.|logn) = O(n + |Ve|logn).

Thus, the total update time is O(n + |V.|logn + n - f(log?n)/log® n).
Since the cc-identifiers of vertices of G5 are maintained explicitly, in par-
ticular we explicitly maintain the cc-identifiers of vertices of V,. It remains

43

to describe the process of computing the global cc-identifier of an arbitrary
vertex v € V. Assume that v belongs to a region R (if v is a boundary vertex,
we may use an arbitrary region containing it). We first query Ag to obtain
the local cc-identifier of v. We use Lemma 3.3.5 to check whether there exists
a vertex b, in V; N V(R) that has the same local cc-identifier as v. If this is
the case, since b, belongs to the skeleton set, we return its global cc-identifier
(maintained explicitly). Otherwise, we return a new cc-identifier by encoding
as an integer a pair consisting of the identifier of the region containing v
(this requires log O(n/log®n) = logn + O(1) — 2loglogn bits) and the local
cc-identifier of v (which requires loglog®n + O(1) = 2loglogn + O(1) bits).
Overall, the resulting cc-identifier requires logn + O(1) bits. Thus, obtaining
a cc-identifier of an arbitrary vertex requires g(log”n) + O(1) time. O

The main advantage of Lemma 3.4.1 over Lemma 3.3.6 is that we may
apply Lemma 3.4.1 recursively to obtain better algorithms. We can view
applying Lemma 3.4.1 as reducing connectivity in a graph of size n to con-
nectivity in a collection of graphs of size log? n. If we apply Lemma 3.4.1 to
itself, we obtain the following.

Lemma 3.4.2. Assume there exists a decremental connectivity algorithm for
planar graphs that, given a graph G = (V, E) and a set V, C V:

e maintains cc-identifiers of the vertices of V. explicitly,

o processes updates in f(n) + O(|Ve|logn) time,

e may return the cc-identifier of any vertez in g(n) time,
where f(n) and g(n) are nondecreasing functions.

Then, there exists a decremental connectivity algorithm for planar graphs,
which, given a graph G = (V. E) and a set V, C V:

e maintains cc-identifiers of the vertices of V. explicitly,

e processes updates in O(n+|V,|logn-+n- f(log*log® n)/log®log® n) time,

o may return the cc-identifier of any vertezx in g(log”log n) + O(1) time.
Proof. We apply Lemma 3.4.1 to the assumed algorithm and obtain an algo-
rithm with total update time fi(n) + O(|V;|logn), where fi(n) = O(n+n -

f(log*n)/log®n) and query time g,(n) = g(log®n) + O(1). Then, we apply

44

the lemma to the obtained algorithm and get a new algorithm, whose total
update time is

O(n + |Ve|logn +n - fi(log>n)/log®n) =
= O(n + |V,|logn + n(log®n + log> n - f(log®log®n)/log®log®n)/log® n)
= O(n+ |V.|logn + n - f(log®log®n)/log®log® n).

It answers queries in g(log?log?n) + O(1) time.]

We may now apply Lemma 3.4.2 to the simple O(nlogn) algorithm (see
Lemma 3.2.2) to obtain the following.

Lemma 3.4.3. There exists a decremental connectivity algorithm, which pro-
cesses any sequence of updates in O(nlogloglogn) time.

Proof. We have f(n) = O(nlogn) and g(n) = O(1). Thus, f(log®log®n) =
O((log®log® n) log(log®log®n)) = O((log®log®n)logloglogn). Thus, the to-
tal update time is O(nlogloglogn), and the query time is constant.]

3.5 O(n) Time Algorithm

In this section we finally show an algorithm that runs in O(n) time. Observe
that in Lemma 3.4.2, we run the assumed decremental algorithm on graphs
of size log®log? n. However, the number of all such graphs is so small, that
we may precompute all necessary connectivity information for all of them.

Lemma 3.5.1. Let w be the word size and logn < w. After preprocessing in
o(n) time, we may repeatedly initialize and run algorithms for decremental
maintenance of connected components in graphs of size t = O(log®logn).
These algorithms may be given a set of vertices V., and maintain the cc-
identifiers of vertices of V., explicitly. An algorithm for a graph of size t Tuns
in O(t + |Ve|logt) time and may return the cc-identifier of every vertex in
O(1) time.

Proof. As in the previous sections, we say that V, is an explicit set. The
state of the algorithm is uniquely described by the current set of edges in
the graph and the explicit set. There are 2/(=1)/2 labeled undirected graphs
on t vertices (including non-planar graphs) and O(2") possible explicit sets.
Thus, there are O(2°) possible states, which, for ¢ = O(log*logn) gives
90(og" logn) — o(logn) — o(n). In particular, each state can be encoded as a
binary string of length O(log4 logn) which fits in a single machine word.

45

For each state, we precompute the cc-identifiers. Moreover, for each pair of
state and an edge to be deleted, we compute the changes to the cc-identifiers
of vertices in the explicit set. Observe that if the edge deletion is critical,
we simply need to compute the set of vertices in the smaller out of the two
connected components that are created and store the intersection of this set
and V. These vertices should be assigned new, unique cc-identifiers.

We encode the graph by a binary word of length O(log*log n), where each
bit represents an edge between some pair of vertices. Thus, when an edge is
deleted, we may compute the new state of the algorithm in constant time by
switching off a single bit. For any planar graph and any sequence of deletions,
the total number of changes of cc-identifiers of vertices of V. is O(|V,|logt)
(using the analysis similar to the one from the proof of Lemma 3.2.2). The
query time is constant, since the cc-identifiers are precomputed. For each of
the 20(log" logn) states, we require O(log*logn) preprocessing time. Thus, the
preprocessing time is o(n).]

We may now apply Lemma 3.4.2 to the algorithm of Lemma 3.5.1 to
obtain the main result of this chapter.

Theorem 3.5.2. There exists a decremental connectivity algorithm for pla-
nar graphs that supports updates in O(n) total time and answers queries in
constant time.

46

Chapter 4

Dynamic Steiner Tree

In this chapter we consider the dynamic Steiner tree problem. We are given
a graph G = (V, E, dg) with positive edge weights dg : E — R,.. The goal is
to maintain information about constant approximate Steiner tree in G for a
dynamically changing set S C V' of terminals.

Our construction is based on the notion of bipartite emulator. The bipar-
tite emulator of a graph G is a low-degree bipartite graph, which can be used
to approximate distances in GG. Moreover, it has some additional properties
which assure that, roughly speaking, maintaining the MST of some subgraph
of the emulator corresponds to maintaining an approximate Steiner tree in
G. Once we know the (approximate) distances in G, we use Lemma 2.3.1 to
approximate the Steiner tree.

The algorithm we give has a modular construction. In Section 4.1, we
show how to maintain a Steiner tree spanning a dynamic set of vertices in a
graph G, given a bipartite emulator of G. Then, in Section 4.2, we present
the constructions of bipartite emulators for general and planar graphs. Since
these two bipartite emulators have distinct characteristics (maximum degree
and approximation ratio) we obtain two different algorithms for planar and
general graphs. Finally, in Section 4.3 we mention other algorithms for dy-
namic Steiner tree that where given in [31], but are not described in this
thesis.

4.1 Bipartite Emulators

We introduce the notion of bipartite emulator, which is essential for our dy-
namic Steiner tree algorithms, and show how to use it to maintain a good
approximation of a Steiner tree in G.

Definition 4.1.1. Let G = (V, E,dg) be a graph and o« > 1. A bipartite

47

V(G) N

Figure 4.1: An illustration of a bipartite emulator. The thick dashed path
corresponds to the distance dg(u,v) = dg(uz) + dg(zv).

48

emulator of G is a bipartite graph B = (V U N, Ep,dp,p) that satisfies the
following properties:

e for everyu,w € V, there exists a vertex x € N in B, such that dg(uz)+
dp(zw) < a - dg(u, w),

e pis a function p : N — V', such that for every edge uw € Eg, where
u e V,w e N, there is a walk in G from u to p(w) of length dp(uw).

We say that « is the stretch of emulator B.

Let us first discuss the definition. For illustration, see Figure 4.1. We later
formally prove the observations we make here. The bipartite emulator is a
graph over the set of vertices of GG, and the set of auxiliary vertices, denoted
N. The first condition states, that the distance between vertices v and w
in G' can be approximated with a two-edge path connecting v and w in B.
The second condition says that the auxiliary vertices actually correspond to
vertices of GG, and each edge of the emulator corresponds to a walk, which
exists in G. This implies that the bipartite emulator cannot underestimate
the distances. Throughout this section we consider a graph G and its bipartite
emulator B of stretch a.

Let T be a subgraph of B. Since every edge uw of the bipartite emulator
corresponds to a path from u to p(w) in G, we can construct a subgraph T”
of G by adding to T" paths corresponding to edges of T'. We say that T" maps
to T".

Proposition 4.1.2. Let u,w € V and let P be a path connecting u and w
in B. Then P maps to a walk in G, which connects u and w and has weight
dg(P).

We show that B can be used to obtain approximate distances in G.
Proposition 4.1.3. For every u,w € V, d¢(u, w) < dp(u, w) < a-dg(u, w),

Proof. The first inequality follows directly from Proposition 4.1.2. By the
first property of a bipartite emulator, there exists x € N, such that dg(ux)+
dp(zw) < a - dg(u,w). Thus, dp(u, w) < a - dg(u, w). O

Our goal is to maintain some tree in the bipartite emulator that spans
the set of terminals. The following lemma says that a tree in B that spans
S C V corresponds to a tree spanning S in G.

Lemma 4.1.4. Let T be a tree in B that spans (a superset of) a set S C
V. Then, T maps to a subgraph T" in G, such that T' that spans S, and
de(T") < dp(T).

49

V(G) N S (s

Figure 4.2: An example bipartite emulator of a graph G = (V, E,dg) (on the
left) and its corresponding graph Bg for S = V(G) (on the right).

Proof. Fix u,w € S. Every edge zy of T maps to a walk in G of weight
dp(zy). Since T" is a union of all edges of these walks, do(T") < dg(T).
Moreover, by Proposition 4.1.2, every path P in B connecting u and w maps
to a walk between u and w in G. Thus, 7" spans S. [

We define G = (V, (‘2/),53), where &(u,w) = mingey dp(uz) + dg(zw)
to be the approximation of the metric closure of G given by the bipartite
emulator. Observe that GG is an a-approximation of (G, that is:

Proposition 4.1.5. For every u,w € V, d¢(u, w) < dp(u, w) < a-dg(u, w).

This immediately gives the following.

Proposition 4.1.6. For every S CV, q(MST(G[S])) < dg(MST(G[S])) <

a - 6c(MST(GIS))).

Let S C V be a set of terminals. In order to approximate ST(G, S), we
use Lemma 2.3.1 and approximate MST(G|[S]). By Proposition 4.1.6, this
can be achieved by approximating MST(G[S]). However, maintaining G[S]
under changes to S would require too much time. Instead of that, we use an
auxiliary graph based on B and maintain its MST.

We define a graph Bs = (Vs, Es,dp,) as follows (see Figure 4.2). Let
['(S) € N be the neighborhood of S in B. The edge and vertex set of Bg is the
same as in B[SUT'(S)]. Formally, Vs = SUT'(S), Es = {uw € E |u € S,w €
['(S)}. The edge weights in Bg, however, are different from the corresponding
weights in B. Fix v € N. Let vwy, ..., vwy be the edges incident to v in B
sorted in nondecreasing order of weight, that is dp(vw;) < ... < dp(vwy).

Set dpg(vwy) = 0 and dpg (vw;) = 2dg(vw;) for i =2,... k.

50

Let us now provide some intuition behind this construction. As we later
show, this choice of edge weights assures that the distances between vertices
of S in Bg are at most twice the distances in B, and at the same time, they
are not smaller than the distances in B. Moreover, in Bg, every vertex of
['(S) is connected to a vertex of S with an edge of weight 0. This means
that any tree spanning S in Bg can be extended to a spanning tree of Bg
of the same weight. Thus, MST(Bg) and ST(Bg, S) have the same weight,
and because the distances in Bg approximate distances in GG, we may use
MST(Bg) to approximate ST(G, 5).

In our algorithm we maintain the MST of Bg. Our entire construction can
be described by the following sequence of trees. Each object in the sequence

is used to approximate the previous one: Steiner tree in G, MST(G[S]),

MST(G]S)]), tree spanning S in B, MST(Bg). We first show how to relate
weight of MST(Bgs) to a weight of a tree spanning S in B.

Lemma 4.1.7. Let T be a tree in Bs, which does not contain any leaves in
I'(S). Then dg(T) < dpy(T).

Proof. Let us group the edges of T by their endpoints in N and show the
inequality for each group. Fix v € I'(S), such that v belongs to T. Let
vwy, . .., vwy be the edges of T" incident to v, ordered such that dpg(vw,;) <
... < dpg(vwy). We assume that if T contains the edge that is assigned
zero weight during the construction of Gy, it comes first in this order. Thus,
dpg(vw;) = 2dg(vw;) for all 2 < < k. In addition, since no vertex of N is a
leaf, £ > 2. Hence,

dps(vwy) + ... +dp,(vwyg) = dpg(vws) + ... + dp, (vwy)
= 2(dg(vwy) + ... + dg(vwy))
> (dg(vwy) + dg(vws)) + 2(dg(vws) + ... + dg(vwy))
> dg(vwy) + ...+ dg(vwy).

Lemma 4.1.8. dp (MST(Bs)) < 205(MST(G[S))).

Proof. We map each edge of MST(G[S]) to a corresponding two-edge path
in Bg, thus obtaining a tree T),. Note that dg(T,) < d5(MST(G[S])), as
multiple paths can contain the same edge of B. Observe that vertices of T,
are contained in SUI'(S), so T,, is also a tree in Bg. Since for any uw € E(Bs),
dpg(uw) < 2dp(uw), we have that dp,(T},) < 2dp(T,) < 20p(MST(G[S])).
Moreover, every v € N in Bg is connected to a vertex of S with a zero-
weight edge, so by adding zero-weight edges to T, we can obtain a tree
T such that dpy(T) = dpy(T,) and T is a spanning tree of Bg. We have
A (MST(Bs)) < dpy(T) = iy (T,) < 205 MST(GIS])) 0

51

The following lemma shows that the MST of Bg can be used to approxi-
mate ST(G, S). The weight of MST(Bs) is low and it maps to a tree spanning
S in G of weight at most dp,(MST(Bg)).

Lemma 4.1.9. Let T be a tree obtained from MST(Bg) by removing all
leaves that are vertices of I'(S). Then, T maps to a subgraph T' spanning S
m G, and dg(T/) < dBS(MST(Bs)> < 4o - dg(ST(G, S))

Proof. Let v € T'(S) be a leaf of MST(Bg). Since every vertex of I'(S) is
connected to a vertex of S with an edge of weight 0, the weight of the only
edge incident to v is also 0. Thus, dp,(T") = dp,(MST(Bg)). Clearly, T is a
tree that spans S in Bg and in B. By Lemma 4.1.4, T" maps to a subgraph
T’ of G spanning S. We have

dps(MST(Bs)) = dps(T)
> dp(T by Lemma 4.1.7
> dg(T") by Lemma 4.1.4

It remains to show the last inequality:

< 2a - 6g(MST(G[S])) by Proposition 4.1.6
<da-dg(ST(G,S)) by Lemma 2.3.1

]

Lemma 4.1.10. Let G = (V, E,dg) be a graph and let B = (VUN, Eg,dg,p)
be its bipartite emulator with stretch o. Denote by A the maximum degree of
a vertex from V in B. Let S be a set subject to insertions and deletions, such
that at any time S C V. Then, we can maintain a 4a-approzimate Steiner
tree of G that spans S, handling each update to S in O(Alog*n) time.

Proof. From Lemma 4.1.9 it follows that it suffices to maintain MST(Bg).
In order to do that, as the elements are inserted to or removed from S,
we maintain the graph Bg and run the decremental MSF algorithm (see
Theorem 2.3.2) on top of it. This algorithm requires O(log*n) amortized
time for any edge addition or removal.

Recall that the edge and vertex sets of Bg are the same as in B[S U
I'(S)]. Thus, each time a vertex is added to/removed from S, we need to

52

insert /remove a single vertex from Bg and all its incident edges. For simplic-
ity, instead of adding/removing a vertex, we may add/remove all its incident
edges.

It remains to describe how to maintain the edge weights of Bg. Recall that
for each v € N, the edge incident to v in Bg that has the smallest weight in
B, has weight 0 in Bg. Other edges incident to v have weight which is two
times bigger than their weight in B. It is easy to see that adding/removing
a single edge to Bg may trigger one edge weight update. In order to detect
these updates, for every v € N we maintain a heap containing the weights of
all its incident edges.

It follows that handling an update to S requires O(A) edge updates in the
graph Bg that we maintain. Thus, updating MST(Gg) requires O(A log* n)
amortized time. We also need O(logn) per each change to detect edge weight
updates, but this time is dominated by the time needed to maintain the
MST. O

4.2 Constructing Bipartite Emulators

In this section we show how to construct emulators that can be plugged into
Lemma 4.1.10 to obtain dynamic algorithms for maintaining the Steiner tree.

4.2.1 General Graphs

Our bipartite emulator for general graphs is based on an approximate dis-
tance oracle by Thorup and Zwick [44]. Let G = (V, E, ds) be an undirected,
weighted graph, and k£ > 1 be an integer. The algorithm first constructs a
sequence of sets Ag D A1 D ... D Ap_1 D Ap. Weset Ag=V.Forl<i<k,
A; is obtained by taking each element of A; independently with probabil-
ity n=V* and A, = (. We assume that A,_; # (). This happens with big
probability, so we can assure it by repeating the sampling, if necessary.

For a v € V, we define a bunch of v to be a set B(v) = UiZf{w €
Ai \ Aiz1 | 0g(w,v) < dg(Air1,v)}. Here, dg(Air1,v) denotes the distance
between v and the nearest vertex in A;, 1. Moreover, forv € V,and 0 < i < k,
we define p;(v) to be the vertex in A;, which is nearest to v.

The initialization of the oracle consists in computing;:

e the sets Ag, ..., A,
e the bunch B(v) for every v € V|

e p;(v) for every v € V and 0 < i < k,

53

e the distance dg(v, p;(v), for every v € V and 0 < i < k,
e the distance d¢(u, w) for every w € B(u).
Let us now list some properties of the oracle that we use.

Lemma 4.2.1 ([44]). Let G = (V, E,d) be a graph, n = |V|, m = |E|, and
k > 1 be an integer. Then, the approrimate distance oracle can be initialized
in O(kmn'/*) expected time.

Lemma 4.2.2 ([44]). Let vi,vy € V. For some s € {1,2}, there exists a
vertex x € B(vy), such that x = p;(vs_s) for some 0 < j < k and é¢(v1, x) +
dg(x,v9) < (2k — 1)dg(v1, v2).

Lemma 4.2.3 ([44]). For everyv € V, the expected size of B(v) is O(kn'/*).

Observe that the distances dg(vi, z) and dg(x,ve) are computed during
the initialization of the oracle.

Lemma 4.2.4. Let G = (V, E,d) be a graph, n = |V|, m = |E|, and k > 1
be an integer. We can compute a bipartite emulator B = (VU N, Eg,dg, p)
of G of stretch 2k —1 in O(kmn'/*) expected time. The degree of every vertex
of V in B is O(n'/%).

Proof. By Lemma 4.2.1, we build a TZ oracle for G in O(kmn'/*) expected
time. Let V’ be a copy of V. For each vertex v € V, V' contains its copy v'.
We set the vertex set of B to be V.U V.

Now, for every u,w, such that u € V and w € B(u), we add to B an edge
uw’ of weight dg(u,w). Moreover, for every u € V and 0 < i < k, we add to
B an edge up;(u)" of weight ¢ (u, p;(u)). Note that the distances we need are
computed during the initialization of the oracle.

We now prove that we obtain a bipartite emulator. Consider u,w € V. By
Lemma 4.2.2, there exists « € B(w), such that (possibly after we swap u and
w) x = pj(u) for some 0 < j < k and d¢(u, x) + dg(z, w) < (2k —1)0¢(u, w).
Observe that B contains edges uz’ and wa’ of lengths d¢(u, z) and dg(w, x),
respectively. Thus, there is a two-edge path in B between u and w of length
at most (2k — 1)dg(u,w). It is easy to see that for every v/ € V' we set
p(v") = v, to obtain the desired mapping between V' and V.

The expected degree of every v € V in B is O(|B(v)| + k), which, by
Lemma 4.2.3 is O(kn'/*) The initialization time is clearly dominated by the
time needed to construct the TZ oracle. O

By combining the above Lemma with Lemma 4.1.10 we obtain the fol-
lowing result.

o4

Theorem 4.2.5. Let G = (V, E,d) be a graph, n = |V |, m = |E| and k > 1
be an integer. Let S C V be a dynamic set, subject to verter insertions and
removals (initially S = (). Then, after preprocessing in O(kmn'/*) expected
time, we may maintain a (8k — 4)-approximate Steiner tree that spans S,
handling each update to S in O(lml/ klog? n) expected amortized time.

4.2.2 Planar Graphs

In this section we show a construction of a bipartite emulator for planar
graphs. As a result we obtain an algorithm which maintains a (4 + ¢)-
approximate Steiner tree in polylogarithmic time per update. In order to
reach this goal, we use a construction by Thorup (Section 3.8 in [43]) that
we extend in order to construct a bipartite emulator (see Lemma 4.2.7).

Let G = (V, E,dg) be an undirected weighted planar graph. The overall
idea uses recursive division of GG using balanced separators. We find a bal-
anced separator of GG that consists of a constant number of shortest paths
Py, ..., P, (the separator consists of vertices contained in these paths). For
a shortest path P;, we build an emulator that approximates all the short-
est paths in GG that intersect P;. Then, we recurse on each of the connected
components of G \ (P, U...U Fy). Hence, we now focus on the following
problem. Given a planar graph G and a shortest path P, build an emulator
that approximates all shortest paths intersecting P.

We define a connection to be an edge that connects a vertex v € V
with a vertex a € P and has length dg(va), which is at least dg(v,a) (it
would be convenient to assume that dg(va) = dg(v,a), but the algorithm we
use may sometimes give longer connections). A connection vb e-covers x if
dg(vb) + dg(b,x) < (1 + €)dg(v,x). Observe that the distance dg(b,) can
be measured along the path P. A set of connections C'(v, P) between v € V
and P is e-covering if it e-covers every x € P.

Lemma 4.2.6. Let G = (V, E,dg) be a planar graph, n = |V|, and 0 < € <
1. Let P be a shortest path in G. For each v € V(G) we can construct an
e-covering set C(v, P) of size O(e™') in O(e~'nlogn) total time.

A very similar fact is shown in [43], but the definition of e-covering used
there is slightly different, so, for the sake of completeness, we rewrite the
proof.

Proof. Let g = £/2. We say that a connection vb strongly-e-covers a if

dg(vb) + (14 €)og(b,a) < (14 €)dg(v,a). By Lemma 3.18 in [43], for each
v € V(G) we can construct a strongly-(¢/2)-covering set D(v, P) of size

95

O(ggtlogn) in O(gy'nlogn) time.! We now show that we can use it to
construct an e-covering set C(v, P) C D(v, P) of size O(e™1).

Let vc be the shortest connection from D(v, P) and s be one of the two
endpoints of P. We add ve to C'(v, P). Now, iterate through connections in
D(v, P) starting from vc and going towards s. Let vb be the connection that
was most recently added to C'(v, P). If for the current connection va we have
de(vb) + 0¢(b,a) > (1 + €g)dg(va), we add va to C(v, P). Then, we run a
similar procedure using the other endpoint of P.

To prove that C'(v, P) covers every vertex between ¢ and s, consider some
vertex © € P. There exists a connection va € D(v, P) that strongly-(go/2)-
covers vx, so dg(va)+(1+e9/2)dg(a, x) < (14€0/2)0¢ (v,). If this connection
is in C(v, P) then vz is strongly-g¢/2-covered and obviously also e-covered.
Otherwise, there exists a connection vb such that dg(vbh) 4+ dg(b,a) < (1 +
£0)dc(va). We have

dg(vb) + dg(b,z) < dg(vd) + d¢(b, a) + d¢(a, x)
(1+ e9)dg(va) + da(a,)
(14 eg)da(va) + (1 + £0)(1 + £0/2)dc(a, x)
= (1+¢9)(dg(va) + (1 +&0/2)0c(a, x))
(14 e0)(1+€0/2)dc(v, x)
(

1+¢)dg(v, z).

The last inequality follows from gy = /2 < 1. It remains to bound the size of
C(v, P). Let f(vb) = dg(vh) + dc(b, s). As connections are added to C(v, P)
we trace the value of f(vb), where vb is the last connection that we have
added. Every time we add a connection va we reduce the value of f by

f(wb) — f(va) = dg(vb) + 0¢(b, s) — dg(va) — dc(a, s)
= dg(vb) — dg(va) + d¢(b, a)
> 50dc(va)
> e00a(v, €).

However, the total change equals

f(ve) — f(vs) = dg(ve) + da(e, s) — da(vs)
< (14 ¢€0)dg(v,¢) + da(c, s) — dg(v, s)
< (24 €9)dg(v,).

LStrictly speaking, the strongly-e-covering set according to our definition is an /(e +1)-
covering set according to the definition used in the statement of Lemma 3.18 of [43].

56

Thus, at most O(g5') = O(e™!) connections are added to C(v, P).
The same procedure is then repeated for the other endpoint of P, so we
get a total of O(s™!) connections. O

Lemma 4.2.7. Let G = (V, E,dg) be a planar graph, n = |V|, 0 < e < 1.
Let P be a shortest path in G. For each v € V we can construct a set of
connections C'(v, P) of size O(e~ logn), which satisfies the following prop-
erty. For any two vertices u,w € V', if the shortest path between u and w
intersects P, then for some x € P there exist connections ux € C'(u, P) and
wz € C'(w, P), such that 6(u,w) < dg(ux) + dg(wx) < (1 +¢€)é(u,w). The
sets C'(v, P) can be constructed in O(e™'nlogn) time.

Proof. First, using Lemma 4.2.6, for every v € V we construct an e-covering
sets of connections C'(v, P). Consider a shortest path @ between u and w,
which intersects P in x € P. There exists a path Q" between u and w which
consists of a connection, subpath of P, denoted henceforth @)%, and another
connection. Moreover, dg(Q') < (14¢)dg(Q). We call each path of this form
an approximating path. Our goal is to substitute every approximating path
with an approximating path that consists solely of two connections from
C'(v, P).

The construction is done recursively. The parameter of the recursion is a
subpath P’ of P. Consider a single step, with a parameter P’ = pips...ps.
Let p,, = plx/2) be the middle vertex of P'. For any v € V and p; € P/,
if there is an connection vp; € C(v, P), we add a connection vp,, of length
dg(vp;) + 0(ps, pm) to C'(v, P). Then, we recurse on P, = p1py...p,_1 and
Py = ppy1 ... pi. Lastly, for each p;, € P we add a connection p;p; of length
0.

To prove the correctness of the procedure, consider now the aforemen-
tioned approximating path ', and recall that Q% = P N Q'. Let p be the
vertex that is taken as p,, in the closest to root node in the recursion tree of
the algorithm, among all vertices of Q5. Observe that in the single recursive
step when p,,, = p, we add to C’(v, P) the connections up and wp of length
exactly equal to the length of the part of () between u and p, and the part
of Q" between p and w, respectively. Also, the connections we add clearly do
not cause any distances to be underestimated.

The running time of each step is proportional to the length of the sub-
path we consider and the number of connections incident to this subpath.
Moreover, every connection may be considered in at most O(logn) recursive
calls, so we we add to C’(v, P) at most O(¢~!logn) connections. It follows
that the total running time of the procedure is O(e~'nlogn). O

57

Lemma 4.2.8. Let G = (V, E,d) be a planar graph, n = |V|, 0 < e < 1.
We can construct a bipartite emulator B = (VUN, Eg,dg,p) of G of stretch
1 +¢e. The degree of every v € V in B is O(s *log*n). The graph B can be
constructed in O(e~'nlog*n) time.

Proof. We begin with B being a graph with vertex set V' and no edges. The
construction is done recursively. As it is shown, e.g., in [43], each planar
graph admits a balanced separator that consists of a constant number of
shortest paths P, ..., P, and, moreover, such a separator can be found in
O(n) time. For each path P; we use Lemma 4.2.7 to construct a set of con-
nections C'(v, P;) for every v € V. Next, we iterate through the vertices of
the paths P;. For each vertex w € P; we add a new auxiliary vertex w’ to B
and add an edge uw’ for each connection ww from G (the length of the edge
is the length of the connection). After that, we recurse on each connected
component of G\ (P, U...U Fy).

Let us now prove the correctness of the construction. Consider any two
v1,v9 € V and the shortest path () between them. At some step of the
recursion, some vertex of () belongs to the separator that we have found.
From the construction, it follows that in this step we have added to B a vertex
w’ and edges vyw’ and vyw’ to B of total length at most (1 + €)dg (v, v2). It
remains to prove that B has the second property of the bipartite emulator.
It follows from the fact that each time we add a vertex w’ and connection
uw’, w' corresponds to some vertex of V' and the connection has length equal
to the length of some walk between u and the corresponding vertex of w’.

Since every vertex v € V takes part in O(logn) recursive steps and in
every step we add O(e~!logn) edges incident to any v € V, we have that the
degree of any vertex of V in B is O(¢ ™' log®n). As shown in [43], finding the
separators requires O(n logn) total time. The running time of every recursive
step is dominated by the time from Lemma 4.2.7. Summing this over all
recursive steps, we get that the construction can be done in O(e~'nlog®n)
time. O

By constructing B according to Lemma 4.2.8 and applying Lemma 4.1.10
we obtain the following.

Theorem 4.2.9. Let G = (V, E,d) be a planar graph and 0 < ¢ < 1. Let
S CV be a dynamic set, subject to vertex insertions and removals (initially
S =0). Then, after preprocessing in O(s *nlog®n) time, we may maintain
a (4 + €)-approximate Steiner tree that spans S, handling each update to S
in O(s 1 log®n) amortized time.

58

4.3 Related Results

In the paper by Lacki et al. [31], in addition to the algorithm for dynamic
Steiner tree, which we present in this chapter, other results are obtained.
Namely, the paper shows that it is possible to obtain better approximation
ratios, if we allow higher running time. In particular, it presents a (6 + ¢)-
approximate algorithm, which for a weighted graph G = (V, E, d¢) processes
updates in O(e~%y/nlog D) amortized time. Here, D is the stretch of G, that
is the ratio between the weights of edges with maximal and minimal weights.
Moreover, for planar graphs, two (2 + ¢)-approximate algorithms are shown.
The first one processes updates in O(e=>%/nlog D) amortized time. The
second one handles each update in O(e~2log® nlog D) amortized time, but
it only supports adding terminals. While this approximation ratios are two
times smaller than the ones we have obtained in this chapter, they are still
far from what can be computed in polynomial time in static case. In general
graphs, a 1.39-approximate algorithm is known [8], whereas for planar graphs
there exists a PTAS [7]. We believe that there exist dynamic algorithms
with lower approximation ratios, and designing them is an interesting open
problem.

59

Chapter 5

Connectivity in Graph
Timelines

In this section we consider dynamic connectivity in undirected graphs in a
semi-offline model. We develop algorithms that process a graph timeline, that
is a sequence of graphs Gy,..., Gy, such that G, is obtained from G; by
adding or removing a single edge. In this model, an algorithm may preprocess
the entire timeline at the beginning, and after that it should answer queries
arriving in online fashion. We consider timelines of undirected graphs and two
types of queries. Moreover, in order to obtain simpler running time bounds
we assume t = O(n°).

An exists(u,w, a,b) query, where u and w are verticesand 1 < a < b <,
asks whether vertices u and v are connected in any of G, Goy1,...,Gy. We
show an algorithm that after preprocessing in O(m + nt) time may answer
such queries in O(1) time.

We also consider a forall(u,w,a,b) query, which asks whether vertices u
and v are connected in all graphs among G, G411, - . ., Gp. For this problem,
we show an algorithm whose preprocessing time is O(m + tlogtloglogt) (m
denotes the number of edges in GG1) and the query time is O(lognloglogt).
The algorithm is randomized and answers queries correctly with high prob-
ability.

In the following part of this chapter, we first introduce a data structure,
which is common to the algorithms handling both types of queries (Sec-
tion 5.1). In Section 5.2 we present an algorithm answering exists queries.
Then, in Section 5.3 we deal with forall queries. Finally, in Section 5.4,
we discuss the recent improvements to our algorithms that were made by
Karczmarz [27].

60

5.1 Connectivity History Tree

In this section we introduce a data structure, which represents connectiv-
ity information of the entire timeline. We begin by introducing some basic
notation related to graph timelines.

Let G; = (V, Ey), Gy = (V, Ey) be two undirected graphs on the same
vertex set. We define their intersection Gy N Gy to be a graph G’ obtained
by intersecting the sets of their edges, that is G’ = (V, By N Es). Let G* be a
graph timeline. For an interval' [a,b], we define Glap = GaNGap1N...NGy.
We say that an edge is permanent if it is an edge of G|y, that is, it is
present in every graph in the timeline. Other edges of the timeline are called
temporary. If an edge connecting two vertices is removed from the timeline,
and then added again, we consider these two edges different. This allows us
to define a lifetime of an edge to be the maximal (w.r.t. inclusion) interval
[a, b], such that the edge is present in all graphs G, ..., G.

We assume that the input timeline is represented in O(m + t) space,
where m denotes the number of edges of G;. The representation consists of
the representation of G, and, for each 2 < i < ¢, the information about the
edge that is added or removed to obtain G;.

Proposition 5.1.1. There are at most m permanent edges and t temporary
edges. We can compute the lists of permanent and temporary edges in O(m+t)
time.

We first show that we may reduce our problems to the case when the
graph timeline does not contain any permanent edges. The reduction takes
only linear time.

Lemma 5.1.2. Assume there exists an algorithm that, given a graph time-
line G* with no permanent edges, after preprocessing in f(n,t) time an-
swers ezists / forall queries in g(n,t) time, where g(n,t) and f(n,t)
are nondecreasing in both parameters. Then, there exists an algorithm that,
given a graph timeline that may contain permanent edges, after preprocess-
ing in f(min(n,2t),t) + O(m +t) time answers exists / forall queries in
g(min(n, 2t),t) + O(1) time.

Proof. We build a graph timeline G*, which does not contain permanent
edges and can be used to answer queries regarding G*. Observe that two
vertices u and w connected with a path consisting of permanent edges are
equivalent from the point of view of exists and forall queries. Thus, we
can contract all permanent edges.

!Throughout this chapter we assume that the intervals are intervals of integers.

61

By Proposition 5.1.1, we can find all permanent edges in O(m + t) time.
Let V' be the set of vertices of the graphs in the timeline. We build a graph
H consisting a vertex set V' and all permanent edges. Then, we compute
connected components of H in O(m+t) time. Denote by cc[v] the connected
component of a vertex v € V.

Consider a connected component C' of H. We say that C' is volatile, if
some temporary edge is incident to a vertex of C'. Assume v is a vertex of
a non-volatile component C. Then, v is connected to other vertices of C' in
all graphs in the timeline, and is not connected to the remaining vertices
in every graph in the timeline. Thus answering queries about the timeline,
where at least one of the parameters is a vertex of a non-volatile component
is simple, if we store the non-volatile components of H

To answer the remaining queries, we build a new timeline G*. Each vertex
of each graph of G* is a volatile connected component of H. For every tem-
porary edge uw of G*, whose both endpoints belong to volatile components,
we add an edge cc[u]cc[w] to G*. In order to answer a query regarding two
vertices v and w in G*, that both belong to volatile components, we issue the
same query about vertices cc[u] and cc[w] in G*.

It remains to show that G* consists of graphs on at most 2t vertices. This
follows from the fact that each volatile component contains an endpoint of a
temporary edge, and the temporary edges have 2¢ endpoints in total. O]

Hence, in the following part of this chapter, we assume that we work with
a timeline with no permanent edges, and ¢t = 2(n). Both these properties can
be assured in linear time, by applying Lemma 5.1.2.

We now define a data structure, which is used in the algorithms for both
exists and forall queries. Throughout the following part of this chapter we
heavily use the properties of segment trees (see Section 2.2) and disjoint-set
data structures (see Section 2.3.3).

Definition 5.1.3. Let t be a power of 2 and let G' be graph timeline. A
connectivity history tree (CHT) for G' is a is a segment tree with t leaves.
For each elementary interval [a,b] of the segment tree, it contains a DSDS
Clap of the graph Giqy).

Figure 5.1 shows an example of graphs G|, for all elementary intervals.
In Figure 5.2, there is the corresponding CHT containing a DSDS Cl,) for
every elementary interval [a,b]. For an elementary interval [a,], we define
Dyop to be the list of edges such that G,y is obtained from Gparenr(ja) Py
adding edges of Dj,y). If [a, b] has no parent, we let Dy, be the list of edges
of G [a,b]-

62

gg @ %%

Figure 5.1: The timeline Gy, G, G'3, G4 and the corresponding graphs G,
for all elementary intervals [a,b], arranged into a tree. Note that for i =
1, 2, 3, 4, Gl = G[z,z]

TS

0[1;1’1 """" C[z o COpa Cug

Figure 5.2: The CHT corresponding to the timeline from Figure 5.1. With
each elementary interval we associate a DSDS. The arrows in each node point
from a vertex to its parent in the DSDS. Parent pointers of the representatives
have been omitted.

63

In the example from Figure 5.1, we have Dy o) = vw, Djpg) = v, Di3 4 =
vr,wy, Dz g = vw. The remaining lists, Dy 4, D11) and Dy 47, are empty.

Lemma 5.1.4. Let G' be a graph timeline with no permanent edges. We can
compute the lists Dy, y for all elementary intervals [a,b] in O(tlogt) time.
The total length of the lists is O(tlogt).

Proof. The algorithm is very simple. Consider a temporary edge e, whose
lifetime is [c, d]. We use Lemma 2.2.8 to decompose [c,d] into k = O(logt)
elementary intervals [a1,bi], ..., [ag, bk] and add e to Di,) for 1 < i < k.
Since the number of temporary edges is O(t), this takes O(tlogt) time and
the total length of the resulting lists is O(tlogt). It remains to show the
correctness of our construction.

First, we need to show that every edge belonging to the list D, com-
puted this way is an edge of Glay = Go N Gy N ... N Gy This follows
directly from the construction. An edge is added to D,y only if its lifetime
is an interval [c,d] 2 [a, b]. Second, we need to show that every edge of Gy
is contained either in Digp) or Gpagene(jap)- Consider an edge e € E(Glap)-
Let the lifetime of e be [¢,d]. Clearly [a,b] C [c,d]. By Lemma 2.2.9, the
decomposition of [¢, d] into elementary intervals either contains [a,b] or one
of its ancestors. In the first case, e is added to Dy,), whereas in the second
case PARENT([a,b]) C [c, d], 50 € € Gparpnr(ap))- The lemma follows. O

5.2 exists Queries

We now describe an algorithm for answering exists queries. We first com-
pute an explicit representation of the CHT.

Lemma 5.2.1. Let G' be a graph timeline with no permanent edges. The
CHT of G' can be computed in O(nt) time. It uses O(nt) space.

Proof. We first use Lemma 5.1.4 to compute lists D,y for all elementary
intervals [a, b] in O(tlogt) time. Then, we can compute the DSDSes Cl, 4 in
a top-down fashion. Since there are no permanent edges, G, consists solely
of isolated vertices, so computing Cjyy is trivial.

Then, we compute Cl,y by first creating a copy of Cpyrent((a,s)) and then
adding edges of Dy, 5 to it. It takes O(n) time to create each of the O(t) copies.
Moreover, we add O(tlogt) edges from lists Dj,), each in time O(logn). This
gives O(tlogtlogn) total time, which is O(nt), since we assume t = O(n°).
The lemma follows. 0

64

In order to answer queries, our algorithm precomputes, for all elemen-
tary intervals [a,b], and all pairs of vertices u and v, the answer to an
exists(u,v,a,b) query. Thus, by Lemma 2.2.8, the answer to a query re-
garding an arbitrary interval [p, g] can be computed in O(logt) time by de-
composing [p, q] into O(logt) elementary intervals and combining the answers
for these intervals. However, as we later show, this can be improved to con-
stant time.

For each elementary interval [a, b], we compute a two-dimensional Boolean
matrix M, which contains answers to exists(u,v,a,b) queries for all pairs
of vertices u,v. The matrix is indexed by vertices of the graph. We set
[Migp))up = 1 if and only if v and v are connected in any of G,...,Gb.
Additionally, for each node in the CHT, we define matrices Fj,y and Lijgy).
If [Mjq4)]u,0 = 1, then [Figy]u,0 is equal to the index of the first graph among
G, . ..,Gy, in which v and v are connected. Otherwise, [F[a,b}]u,v is set to oo.
The matrix L,y is defined similarly, but it contains indices of the last graph,
in which the vertices are connected (thus, we use —oo instead of co).

We now show that these matrices can be computed and stored efficiently
in a way that allows constant-time access to each of their cells.

Lemma 5.2.2. Let G' be a graph timeline with no permanent edges. We can
compute implicit representations of the matrices Map, Flap) and Ligy for
all elementary intervals [a,b] in O(nt) time. The representations use O(nt)
space.

Proof. For each elementary interval [a,b], CHT contains Cj, 4, which is a
DSDS representing G, . By Proposition 2.3.7, given a DSDS of an n-vertex
graph G, we may compute its connected components in O(n) time. This
allows us to compute, for every elementary interval [a, b], the connected com-
ponents of G, in O(nt) total time.

We now describe the implicit representation of matrices M, . If b—a > n,
M,y is stored explicitly as a n x n matrix. However, if b — a < n, then the
matrix has a more compact implicit representation, as some of its rows or
columns are equal to each other. Consider a connected component C' of G| .
Vertices belonging to C' are connected in each of G,,Gyy1,...,Gy. Hence,
it suffices only to store one row and column of M, for each connected
component C'.

Furthermore, within G, ..., G}, at most b — a edges are added or deleted.
The endpoints of these edges are contained in at most 2(b — a) = O(b — a)
components of G|, y. We call these components volatile. Denote the number
of volatile components by s and choose a single representative vertex from
each of them, thus obtaining a list vy,..., v;.

Thus, it suffices to store:

65

e an s X s submatrix of M|, containing only rows and columns corre-
sponding to vy, ..., vs,

for each v € V, the identifier of its connected component in G|,

for each v € V| whether it belongs to a volatile component,

for each v € V belonging to a volatile component, the representative
vertex from this component.

Using this representation, we may obtain the value of any cell of M,
in the following way. Consider two vertices u and w. First, assume that at
least one of them (say u) does not belong to a volatile component. Let C' be
the connected component of u in G, 4. Since C' is not volatile, the connected
component of u is equal to C' in every element of G, . . ., G;. Hence, it suffices
to check whether v and w are connected in G|y

Otherwise, if u and w both belong to volatile components, we find the
representative vertices v; and v; of v and w. Then, we simply check the value
of [Mq)]v;.0;, which is stored explicitly. Overall, the implicit representation
of Mgy takes O(min((b— a)?,n*) + n) space.

The implicit representation of all matrices M, can be simply computed
in time that is linear in their size. We proceed in a bottom-up fashion on the
segment tree. For a leaf interval [a, a], there are no volatile components, so
we simply store identifiers of connected components, which we have already
computed. Now consider a non-leaf interval [a,b], and b — a < n. First,
note that we have computed the identifiers of connected components of G|)
before. In order to find volatile components, we simply iterate through all
edges that are added or deleted in the interval [a, b], which takes O(b—a) =
O(n) time. Then, we compute representative vertices in O(n) time. Finally,
we compute the s X s submatrix of M, ;. Observe that

[M[a,b]]z,y - ma‘X([MLEFT([a,b])]QJ,y7 [MRIGHT([a,b])]r,y)a (51)

and this expression can be evaluated in constant time (since the implicit rep-
resentations of My per(ja,)) and Mgigur((a,s)), Which allow constant-time access,
have already been computed). Thus, the implicit representation of M,y is
computed in O(min((b — a)? n?) + n) time. It remains to consider the case
when b — a > n, but then we simply compute an n X n matrix using For-
mula 5.1.

Observe that the implicit representations of Fj,y and L,y can be com-
puted in an analogous way. Let us focus on F,p. If two vertices v and w
are connected in Gy, we set [Figpluw = a. If they stay disconnected in

66

every graph among Gy, ..., Gy, we set [Fig]y, = 00. Otherwise we can use
a formula [ﬂa,b]]x,y = min([FLEFT([a,b])]m,y; [FRIGHT([a,b])]r,y)-

It remains to bound the total running time and space usage. Assume that
t = 2%, There are 27~ elementary intervals containing 2' elements. For each
such interval, the running time is O(min(2%',n?) + n). Thus, we have

d d [log] d
Z 2d7i(min(22i’ n?) T n) — Z 2d7in + Z 2d7’£22’i 4+ Z 2d7’in2
1=0 =0 1=0 [logn]+1
logn) i
=nt+ »_ 27 +29* Y 27
i=0 [logn]+1

=nt + 2°0(n) + 2n*0(1/n) = O(nt).

Note that we have used an assumption that logn < d, which follows from
n < t, but this was for convenience only. We can derive the same bound in
the case when t = Q(n). O

5.2.1 Answering Queries

After the preprocessing phase, a query regarding an interval [a,b] can be
answered by decomposing it into O(logt) elementary intervals. The matrices
Miap) allow us to obtain the answer for every elementary interval in O(1)
time, so each query requires O(logt) total time. However, this can be also
done faster. We show how to use matrices Fj,p and L,y to improve the
query time to O(1).

Moreover, it is possible to extend the algorithm, so that it reports the
graphs in which the two given vertices are connected. This can be done
optimally, i.e., the graphs can be returned one by one, each with constant
delay.

Let PARITY(z) := max; 2° | x and MAXPARITY(a, b) be the number from
the interval [a, b] that maximizes the value of PARITY.

Proposition 5.2.3. For any 1 < a < b, the value of MAXPARITY(a,b) is
uniquely defined.

Proof. Assume that PARITY(z) = PARITY(y) and a < = < y < b. Let
z = x + 2PA™@) | Clearly, PARITY(z) > PARITY(x). Moreover, z is the
smallest element greater than x, such that PARITY(z) > PARITY(z). Thus,
z <y,s0a< z<b. Hence, if PARITY(z) = PARITY(y), there exists z, such
that © < z < y and PARITY(2) > PARITY(z). O

67

Lemma 5.2.4. Let k be a positive integer. After preprocessing in O(k) time,
it is possible to compute MAXPARITY (a, b) for any 1 < a < b < k in constant
time.

Proof. The pseudocode of an algorithm for computing MAXPARITY is given
as Algorithm 2. We use xor, and and not to denote the standard bitwise
operations, whereas MAXPOWER(x) is the largest power of 2 that is not
greater than z. In other words, MAXPOWER(z) returns the most significant
bit of x.

Algorithm 2 MAXPARITY(a,b)
Require: 1 <a<b
1. if a = b then
return a
else if a < MAXPOWER(b) then
return MAXPOWER(b)
else
d := MAXPOWER(a xor b)
c:=b and (not (d—1))
if PARITY(c) > PARITY(a) then
return c
else
return a

—_ =
= O

We now prove its correctness. Let us denote the correct result of the
function by M. There are three cases to consider, one for every branch of the
if statement from the first line. The correctness of the first case is trivial.
Consider the second case. Observe that MAXPARITY(b) is the number with
the largest value of PARITY in the interval [1,b]. Moreover, in this case, this
number lies in the interval [a, b], from which we infer the desired.

Let us move to the third case. We have that MAXPOWER(b) < a < b, so
the binary representations of a and b have the same length. In the first step,
d is computed. It is a number with just one bit — the most significant bit of
all the bits that are different in @ and b. Assume that d = 2P~!, that is only
p-th bit is on in d. Because a is smaller than b, p-th bit is on in b, but not in
a. It remains to show that M € {a,c}. There are now two cases to consider.

1. M is divisible by 2d = 2P. Then p trailing bits of M are equal to 0.
However, in [a,b] there can be at most one number with p trailing
zeroes, as other bits are common to a and b. It follows easily, that
M = a.

68

2. M is not divisible by 2d. In this case, we show that there exists a
number in [a,b] that is divisible by d, which clearly maximizes the
value of MAXPARITY. We claim that it is a number obtained from b
by setting its p — 1 trailing bits to zeroes. Observe that this value is
computed and assigned to ¢ in the 7/ line (d — 1 is a number consisting
of p consecutive ones). Obviously c is divisible by 2P~! = d. Moreover
a < ¢, as the most significant bit, in which they differ is the p-th one,
which is on in c.

Since our algorithm chooses the better from among a and ¢, it correctly
computes M. All operations can be performed in constant time after O(k)
preprocessing, as the values of PARITY and MAXPARITY can be precom-
puted. O

Observe that it is possible to obtain the result of the above lemma, by
using a data structure that performs range minimum queries in constant
time [6]. However, such approach leads to a much more complicated algo-
rithm.

Lemma 5.2.5. Let 1 < a < b < t. After preprocessing in O(t) time, in
O(1) time we can compute two elementary intervals [r,p|, [p + 1,s], such
that p € [a,b] and [a,b] C [r,s] C [1,t], or a single interval [r,s], such that
1<r<aands==b.

Proof. 1f b = t, we simply return [1,¢]. Let us now assume b < t.

We use Lemma 5.2.4, which results in O(t) preprocessing time. We first
compute p = MAXPARITY(a, b). Then, we find elementary intervals [r, p|] and
[p+ 1, s] with the minimal possible r and maximal possible s. Such intervals
can be precomputed for all values of p in the beginning in O(t) time.

Clearly, p € [a,b]. We claim that the interval [a, b] is contained in [r, s]. It
suffices to show that neither » —1 nor s is contained in [a, b]. By Lemma 2.2.4,
r = p—2PARTY0P) 1 1 We have PARITY(r — 1) = PARITY(p — 2PAR™Y(P)) >
PARITY(p). Since p maximizes the value of PARITY among elements of [a, b],
r —1 ¢ [a,b]. Similarly, by Lemma 2.2.4, s = p + 2P"™®) 50 a similar
argument shows that s & [a, b]. Observe that 1 < r (trivially) and s < ¢, as
PARITY(t) > PARITY(p) and s is the smallest number, such that p < s and
PARITY(s) > PARITY(p). The lemma follows. O

Theorem 5.2.6. There exists an O(nt) size data structure that, given a
graph timeline G, consisting of graphs on n vertices, after preprocessing in
O(m + nt) time can answer exists queries in constant time, assuming that
t = O(n®). Moreover, the data structure can report indices of the graphs, in
which u and v are connected, each with constant delay.

69

Figure 5.3: The in-order traversal of the CHT. The black circles denote the
steps of the traversal when new graphs G, are created. Their indices are
marked next to each circle. Note that during both the first and last visits of
a node [a, b, we create | D,y | new graphs.

Proof. We first use Lemma 5.1.2 to reduce the problem to a timeline with no
permanent edges in O(m + t) time. Then, we use Lemma 5.2.2 to compute
matrices Mqp), Flap) and Ligp) for all elementary intervals [a, b] in O(nt) time.

Consider an exists(u,v,a,b) query. We use Lemma 5.2.5 to find two
elementary intervals [r, p| and [p + 1, s], such that p € [a,b] and [a,b] C [r, 5
(the case when the lemma computes a single interval is only easier). Using
matrices Flo 5 and L,y we can find the largest « € [r, p|, such that u and w
are connected in G, as well as the smallest y € [p+ 1, s], such that v and w
are connected in G,,. If either x or y (say z) belongs to [a, b], we know that u
and w are connected in G, and a < x < b. We can then recurse on [a, x — 1]
and [z + 1, b] to report further values. Otherwise, u and w are not connected
in any of G, ..., Gp. O

5.3 forall Queries

In this section we show our algorithm for answering forall queries. Let G be
a graph timeline consisting of graphs, whose vertex set is V. Assume we have
computed lists Dy, for each elementary interval [a,b] (see Lemma 5.1.4).
Consider an inorder traversal of the CHT. We first traverse the root, then

70

recursively traverse its left subtree, visit the root again, recursively traverse
the right subtree and finish in the root. We use the traversal to build a
sequence of T graphs. As we traverse the tree, we maintain a graph G’ on the
vertex set V. The graph G’ is modified as follows during the traversal. When
we first visit an elementary interval [a,b], we add all elements of Dy, one
by one to G'. Moreover, after we last visit an elementary interval [a, b], we
remove all elements of D,y from G in reverse order (i.e., we first delete the
last edge on the list). Now, we create a sequence of graphs, in which every
time we modify G’, we append the updated graph to the sequence. Denote
the resulting sequence by G1, Gy, ..., Gr.

The entire process is illustrated in Figure 5.3. We have T' = 12, G5 =
Gl, Gg = GQ, G7 = Gg and Gg = G4.

Proposition 5.3.1. During the first visit to an elementary interval, once we
add to G" all edges of Dia), we have G' = Gl p.

Proof. This follows from the following fact, which can be easily proven induc-
tively. Assume the traversal is currently in elementary interval [a,b]. Then
the edges of G’ are the union of Dy 4 for all ancestors [c, d] of [a, b] and some
prefix of Dy, . [l

Corollary 5.3.2. For every elementary interval [a,b], at some point G’ is
equal to Giap).

For our algorithm, the following property is crucial.
Proposition 5.3.3. Gy, ..., Gy is a subsequence of G1,Gs, ..., Gr.

Moreover, we can bound the length of Gy, Go, ..., Gr.
Proposition 5.3.4. T'= O(tlogt).

Proof. By Lemma 5.1.4, the total length of all lists Dy, is O(tlogt). Each
edge of each list Dy, is added to G’ and removed from it only once. Thus,
T = O(tlogt). O

~In our algorithm, we actually do not need to compute the sequence
G1,...,Gr. Instead we would work with a DSDS.

Lemma 5.3.5. We can maintain a DSDS C' of G' during the traversal in
O(tlogtlogn) time. In total, O(tlogt) changes are made to C' during the
traversal.

Proof. The traversal algorithm works as follows:

71

1. Add to G" all edges of Dja).
2. Recursively traverse LEFT([a, b]) (if it exists).
3. Recursively traverse RIGHT([a, b]) (if it exists).

4. Remove from G’ all edges of Dy, in reverse order.

Thus, in order to maintain a DSDS of G’, it suffices to use a DSDS which
supports two operations: adding an edge, or undoing the last performed edge
addition. We modify the DSDS we use, so that it records every change made
to the data structure, which enables us to undo them. By Proposition 2.3.6,
every union operation makes only O(1) changes to the data structure, so
each undo operation requires only O(1) time. Every union operation requires
O(logn) time. By Proposition 5.3.4, the traversal consists of O(tlogt), so
performing all operations requires O(tlogtlogn) time. O]

Thus, after the i-th step of the traversal, C’ is a DSDS of G;. Denote this
version of C’ by C;. Each C; has a corresponding parent array. By p(v); we
denote the parent of a vertex v in C; and by #(z); — the representative of z in
C;. We use p(v) to denote the entire sequence p(v)1,...,5(v)r (and similarly
for 7(v)). Moreover, if A = ay,...,a; is a sequence, we define Alc...d] to be
the sequence a, aci1, - .., Gq.

In our algorithm, we trace how the parent of a vertex changes, as C” is
modified. In the first step of the preprocessing phase of our algorithm the
ultimate goal is to compute the sequences p(v). For efficiency, we use run-
length encoding (RLE) to store each sequence.

Run-length encoding is used to store sequences, in which many consec-
utive elements are the same. In run-length encoding of a sequence s, every
fragment of a sequence s consisting of equal elements is replaced by just one
pair. The fragment consisting of k£ repetitions of an element x is replaced
with a pair (x, k).

Proposition 5.3.6. Let s = s1,...,8, be a sequence, such that n is an
integer, which fits in a machine word. Assume there are exvactly k indices
2 < i < n, such that s; # s;_1. Then, run-length encoding of sequence s
requires O(k) space.

Thus, to produce the encodings, we need to detect the pairs of consecutive
elements, which are different. In the following, we say that i is a critical
moment for x if p(x); # p(x);41 or i = 0.

Lemma 5.3.7. Let G be a graph timeline without permanent edges. Then,
we can compute RLE encoding of all sequences p(v) in O(n + tlogtlogn)
time. The representation uses O(tlogt) space.

72

Proof. We use Lemma 5.3.5 to maintain C” during the traversal. In order
to produce the RLE encodings of a sequence p(v), we need to compute the
indices 4, such that p(v); # p(v);+1. We obtain exactly one such index for
every change made to C’. By Lemma 5.3.5, in total O(tlogt) changes are
made. In addition, if some sequence is never modified during the traversal,
we can produce its encoding in O(1) time. Handling all such sequences takes
O(n) = O(t) time and space. O

Note that the sequences p(v) carry all connectivity information about
all graphs Gy, ...,Gr. In particular, for each 1 < i < T, we can find the
representatives of every vertex v, that is the value of 7(v);, which gives the
connected components of G;. In particular, we have the following.

Proposition 5.3.8. [iet u,w €€V oandl <a<b<<T. Then u and w are
connected in each of Gla...b] if and only if the sequences 7(u)[a...b] and
r(w)a...b] are equal.

However, our ultimate goal is to answer connectivity queries regarding the
timeline Gy, . .., Gy, which is a subsequence of G, Ga, ..., Gr. Let s1,..., s
be the sequence such that G5, = G;. Our goal is to use the following property.

Proposition 5.3.9. Let u,w € V and 1 < a < b < t. Then, u and w
are connected in each of Gla...b| if and only if the sequences r(u)[a...Db|
and r(w)la...b] are equal. This is is turn equivalent to checking whether
the sequences 7(u)s,, 7(u) S T(u)s, and F(w)s,, 7(w) T (w)s, are
equal.

Sa+4+17 " * Sa419 "

From now on, the only information of our algorithm about the timeline
are the RLE encoding of the sequences p(v) and the sequence sq,...,s;. In
order to answer query regarding vertices v and v, we need to compare some
fragments of sequences r(u) and r(v). We achieve that by computing and
comparing their hashes. However, we first describe how to compute hashes
of fragments of sequences 7(v), and then show a simple modification to the
algorithm, which would yield the desired hashes.

Let us now describe the process of computing hashes. Let = and y be
two sequences. We use the hashing scheme described in Section 2.3.4. Recall
that we denote by H(z) the hash of sequence z and by H(x) @ H(y) the a
hash of a sequence obtained by appending y to x. If y is a prefix of x, we use
H(z)© H(y) to denote the hash of the sequence obtained from z by removing
the prefix equal to y.

In order to be able to obtain hashes of some fragments of 7(z); ... 7(z)r,
we precompute selected prefix hashes. A prefiz hash of vertex = of length k,
denoted by ph(z, k), is equal to H(7(z)[1...k]).

73

The prefix hashes ph(z, k) are computed only for each critical moment &
of vertex x. To perform the computation, we use the following lemmas.

Lemma 5.3.10. Let k > 0 be a critical moment for a vertex x. Then p(x)y
15 a representative in C’k Moreover, x is a representative in C’k if and only
if it is not a representative in C1.

Proof. Our goal is to prove that x is either a representative in Cy, or a child
(direct descendant) of the representative. In the sequence Ci,...,Cr, Ciiy
is obtained from C; by performing or undoing a single union operatlon. By
Proposition 2.3.6 an union operation changes at most one parent pointer in
a DSDS, and if some pointer does change, it is the parent pointer of one a
representatives of one of the merged subsets. We consider two cases. First,
assume that Cy.; is obtained form C) by performing an union operation.
Then, since j(2), # P(2)y1, we infer that z is a representative in Cj, (which
implies that p(z),; = is also a representative), and it is a child of a represen-
tative in Ck—H On the other hand, if C’k+1 is obtained form C}, by undoing an
union operation, by a reverse reasoning we infer that x is a not representative
in C’k, but it is a representative in ékﬂ.]

In the next lemma we use the fact that if &’ is the largest critical moment
for x such that k' < k then the elements p(x)p 11, p(T)g42, ..., p(z); are all
equal.

Lemma 5.3.11. Let x be a representative in Cy, k > 0, and k' be the
largest critical moment of x lower than x. Then, x is a representative in

Crity-os Ch

Proof. From the definition of &' it follows that all elements of p(x)[A'+1... k]
are equal. Since x is a representative in C}, they are all equal to p(z), = x.
The lemma follows. 0

We now show a formula, which is used to prove the following lemmas. It
is an easy consequence of the definition of prefix hashes.

Proposition 5.3.12. Let x be a vertex, k > 0 and let k" be the largest critical
moment of x lower than k. Then, ph(x, k) = ph(x, k") & H(F(x)[k' +1...k])

Lemma 5.3.13. If © is a representative in C, then the value of ph(z, k) can
be computed in O(loglogt) time, given ph(y, k') for all pairs (y, k') such that
k' < k and k' is a critical moment for y. This requires initial preprocessing
in O(tlogtloglogt) expected time.

74

Proof. We first show how to compute ph(x, k) in O(logt) time and then we
speed the algorithm up. Let &’ be the largest critical moment of z lower than
k. The value of k£’ can be found in O(logt) time using binary search. By
Proposition 5.3.12, ph(z, k) = ph(z, k') & H(7(z)[K' + 1...k]).

Since x is a representative in C‘k, by Lemma 5.3.11, it is a representative
in all of Cyy1,...,C, so all elements of 7(z)[k' + 1...k] are equal to z.
Thus, we can simply compute the hash of z¥~* (2 repeated k — &’ times) and
combine it with ph(z,k’). In this way we obtain ph(z, k).

We can speed up the computation of &/, by using Y-fast tries [46]. It is
a data structure, which can be initialized in O(nloglog M) expected time
for a set of n integers belonging to {0,..., M — 1}, and afterwards supports
predecessor queries in deterministic O(log log M) worst-case time. In our case,
for each vertex v we can build an Y-fast trie containing its critical moments.
There are O(tlogt) critical moments, and each of them is an integer less than
or equal to t. Thus, building all Y-fast tries takes O(tlogtloglogt) expected
time. Once we do that, given a vertex v and an integer k, we can find the
largest critical moment &’ lower than &k in O(loglogt) worst-case time. [

By joining together the above two lemmas one can obtain the following
lemma.

Lemma 5.3.14. For any vertex x and any critical moment k, the value of
ph(z, k) can be computed in O(loglogt) time, given ph(p(x)y, k) and ph(y, k')
for all pairs (y, k') such that k' < k and k' is a critical moment for y. This
requires initial preprocessing in O(tlogtloglogt) expected time.

Proof. 1f p(x); = x, we can simply use Lemma 5.3.13, so from now on we
assume that p(z)x # .

Let £’ be the largest critical moment lower than k. By Proposition 5.3.12,
ph(xz, k) = ph(z, k') & H(S), where S = 7(z)[k' + 1...k]. By the defi-
nition of the parent and representative, S = 7(p(x)r1)p41---T(D(T)k)k-
Since there are no critical moments between k' and k, we infer that ele-
ments p(x) g1, P(T) 12, - - -, p(z)x are all equal to p(z)g. Thus S is equal to
7(p(z)x) [k + 1...k]. This means that H(S) = ph(p(x), k) © ph(p(x)g, k).
By our assumption ph(p(z)g, k) is given, so it remains to obtain ph(p(z)g, k).

Since x is not a representative in Cf, it is also not a representative in Cr41
(because p(z)x # = and p(x), = p(z)w41), but 2 is a representative in Cj
(by Lemma 5.3.10). Thus, by Proposition 2.3.6, p(x)x41 is a representative
in Cjs. This means that ph(j(z)w,1, k') can be computed in O(loglogt) time,
by Lemma 5.3.13. From p(z)p41 = p(x)y it follows that ph(p(z)gi1, k) =
ph(p(x)g, k'), so we obtain ph(p(z), k'), as needed. O

5

Lemma 5.3.15. Computing all prefix hashes takes O(t logt(log n+loglogt))
expected time.

Proof. We first use O(tlogtlogn) time to compute the sequences p(v). We
compute ph(x, k) in the order of increasing values of k. For £ = 0 and for
each x, ph(x,0) is a hash of an empty sequence, so all of such hashes can be
computed in O(n) time. For k > 0, by Lemma 5.3.14, to compute ph(x, k),
we need to know ph(p(x)y, k). As k is a critical moment, p(z)y is a repre-
sentative in Cj, (by Lemma 5.3.10), so we can use Lemma 5.3.13 to compute
ph(p(x)k, k) in O(loglogt) time. As a result, every ph(z, k), where k is a criti-
cal moment for x, can be computed in O(loglogt) time. Therefore, computing
all O(tlogt) prefix hashes requires O(n + tlogtloglogt) expected time. The
total expected time is O(tlogt(logn + loglogt)). The time bound is in ex-
pectation, because the preprocessing of Lemma 5.3.13 takes O(t log t log log t)
expected time. O

5.3.1 Answering Queries

We now show how to use the preprocessed information to compute hashes of
arbitrary fragments of 7(z); ... 7(z)r.

Lemma 5.3.16. Once we preprocess prefiz hashes as in Lemma 5.3.15, for
each vertex v the hash of an arbitrary fragment of 7#(v)1 ...7(v)r can be com-
puted in O(lognloglogt) time.

Proof. Observe that it suffices to describe how to compute ph(z, k) for arbi-
trary k, since H(7(x)[a...b]) = ph(x,b)Sph(z,a—1). We use Lemma 5.3.14,
that reduces our problem to the problem to computing h(z, p(x)) (with an
O(loglogt) overhead). In other words, computing a hash for x can be reduced
to computing some hash for a parent of x. This value is then computed recur-
sively. Since the depth of all trees in Cj, is bounded by O(log n), the recursion
has O(log n) levels. On each level of the recursion we use Lemma 5.3.14, which
requires O(loglogt) time. Thus, computing an arbitrary prefix hash requires
O(log nloglogt) time. O

This allows us to hash arbitrary fragment of 7(z) for every vertex x.
However, as mentioned before, what we need are the hashes of fragments of
r(z). We now describe how to modify the algorithm, so that it computes the
right hashes.

The only moment when we actually hash a fragment of a sequence is in
the proof of Lemma 5.3.13, when we hash a word of the form z'. In such
case we only want to include the elements that are present in r(x). Hence,

76

given some fragment of 7(x), we need to know how many of its elements
belong to r(x). Denote by s; the indices of 7(v), which correspond to r(v),
i.e., r(z); = 7(x)s. Thus, to count the number of elements in 7(z)[a. .. b] that
correspond to elements in r(z), it suffices to count the number of elements
of s; that are between a and b. As s; is an increasing sequence, whose values
are bounded by T" = O(tlogt), we simply compute an array that for each j
stores the number of elements of s; that are smaller than j. This array allows
to count the number of elements of s; in any interval in constant time. As a
result we obtain the following theorem. Note that the running time depends
on m, as we use Lemma 5.1.2.

Theorem 5.3.17. There exists a randomized Monte Carlo data structure
that, given a graph timeline G*, after preprocessing in O(m + tlogt(logn +
loglogt)) time can answer forall queries in O(lognloglogt) time. It re-
quires O(n + tlogt) space.

5.3.2 Deterministic Algorithm

In this section we show a deterministic variant of the algorithm for answering
forall queries. It uses a data structure for maintaining a family of dynamic
sequences. This problem has been first solved by Mehlhorn et al [36], and
later the solution has been improved in [2]. Let us now describe this data
structure briefly.

The operations performed on the data structure involve a pair of se-
quences. Let [be the length of the sequences involved in a single operation.
Two sequences in the family can be joined or split in O(logllog®l) time,
tested for equality in O(1) time, and for any letter a and integer k > 0 the
sequence a® can be created in O(1) time. The data structure can be used in
place of prefix hashes. It allows us to maintain each desired prefix in the data
structure.

During the process of computing the prefixes for all critical moments, an
existing prefix is joined with a sequence in which all elements are equal. This
is performed O(tlogt) times and the length of the sequences involved in one
operation is O(t). Hence, by using the data structure it takes O(logtlog" t)
time to compute a single prefix, which gives O(tlog®tlog*t) time overhead
for the whole process of computing hashes. This dominates the running time
of the preprocessing phase.

However, the data structure allows us to answer queries in a simpler and
more effective way. After computing all prefixes, the data structure contains
a representation of sequences r(v)q,...,7(v); for each v. To answer a query,
we need to compare r(v), ... 7(v), to r(u), . .. 7(u)p, but both these sequences

7

can be created with two split operations, each involving sequences of length
O(t). This requires O(logtlog™ t) time.

Moreover, we may use a simpler version of Lemma 5.3.13, which achieves
a running time of O(logt), but does not require preprocessing (see the proof
for details). We obtain the following theorem.

Theorem 5.3.18. There exists a deterministic data structure that, given a
graph timeline G, after preprocessing in O(m+tlog® tlog*t) time can answer
forall queries in O(logtlog*t) time. It requires O(tlog®tlog*t) space.

5.4 Subsequent Results

The results of this chapter have been improved and simplified by Karcz-
marz [27]. One of the observation he makes, is that we may compute a
data structure similar to the connectivity history tree using observations
of Lemma 5.1.2 at every level. Moreover, he slightly improves Lemma 5.1.4
and bounds the length of all lists by O(tlogn).

As a result, he obtained a deterministic algorithm that after preprocessing
in O(tlogn) time may answer forall queries in O(logn) time. Moreover, he
has removed the requirement that ¢ = O(n) from the algorithm for exists
queries. Finally, he showed a lower bound for answering exists queries of the
following form. Assume there exists a data structure for answering exists
queries, which uses O(t"*'~polylog(t)) time to preprocess and answer O(t)
queries. Then, there exists an algorithm for finding triangles in an t-edge
graph, which runs in O(t"*'~*polylog(t)) time.

78

Chapter 6

Open Problems

We have presented new dynamic graph algorithms for maintaining approxi-
mate Steiner tree over a dynamic set of terminals, decremental connectivity
in planar graphs, and connectivity in graph timelines. In each of these areas
there are some interesting open problems to consider.

1. Is it possible to make our time bounds for the maintenance of dynamic
Steiner tree worst-case? This could be achieved, e.g., by showing a
polylogarithmic worst-case time algorithm for dynamic MST.

2. Is it possible to improve the approximation ratios of our algorithms
for dynamic Steiner tree? In [31], a (6 + ¢)-approximate algorithm for
general graphs, and a (2 4+ ¢)-approximate algorithm for planar graphs
is shown. However, in static case it is known how to obtain 1.39 ap-
proximation for general graphs and a PTAS for planar graphs. Can we
improve the dynamic algorithms, so that they come closer to the static
case?

3. Concerning decremental connectivity, is it possible to solve decremental
connectivity in general graphs in o(nlogn) time? Our result shows
that decremental connectivity in planar graphs is strictly easier than
fully dynamic one. Moreover, the existing lower bound for dynamic
connectivity in general graphs is only for the fully dynamic variant. In
the case of decremental connectivity in general graphs no lower bounds
have been shown.

4. Finally, a lower bound of (n'4) (conditional on triangle detection)
for answering n exists queries on a timeline consisting of n graphs on
n vertices have been shown in [27]. At the same time the preprocessing
time of our algorithm in this case is O(n?). Is it possible to reduce the
running time to O(n*~¢)?

79

Bibliography

1]

Ehud Aharoni and Reuven Cohen. Restricted dynamic Steiner trees
for scalable multicast in datagram networks. IEEE/ACM Trans. Netw.,
6(3):286-297, 1998.

Stephen Alstrup, Gerth Stelting Brodal, and Theis Rauhe. Pattern
matching in dynamic texts. In Proceedings of the eleventh annual ACM-
SIAM symposium on Discrete algorithms, SODA 00, pages 819-828,
Philadelphia, PA, USA, 2000. Society for Industrial and Applied Math-

ematics.

Stephen Alstrup, Jens P. Secher, and Maz Spork. Optimal on-line decre-
mental connectivity in trees. Inf. Process. Lett., 64(4):161-164, 1997.

Sanjeev Arora. Polynomial time approximation schemes for Euclidean
traveling salesman and other geometric problems. J. ACM, 45(5):753~
782, 1998.

Fred Bauer and Anujan Varma. ARIES: A rearrangeable inexpensive
edge-based on-line Steiner algorithm. IEEE Journal of Selected Areas
in Communications, 15:382-397, 1995.

Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven
Skiena, and Pavel Sumazin. Lowest common ancestors in trees and
directed acyclic graphs. J. Algorithms, 57(2):75-94, 2005.

Glencora Borradaile, Philip N. Klein, and Claire Mathieu. An O(n log
n) approximation scheme for Steiner tree in planar graphs. ACM Trans-
actions on Algorithms, 5(3), 2009.

Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvof3, and Laura Sanita.
An improved LP-based approximation for Steiner tree. In Leonard J.
Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June
2010, pages 583-592. ACM, 2010.

80

[9]

[10]

[11]

[12]

[13]

[14]

[17]

Xiuzhen Cheng, Yingshu Li, Ding-Zhu Du, and HungQ. Ngo. Steiner
trees in industry. In Ding-Zhu Du and PanosM. Pardalos, editors, Hand-
book of Combinatorial Optimization, pages 193-216. Springer US, 2005.

Fan Chung. Graph theory in the information age. Notices of the Amer-
ican Mathematrical Society, 57(06):726.

David Eppstein. Offline algorithms for dynamic minimum spanning tree
problems. J. Algorithms, 17(2):237-250, 1994.

David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nis-
senzweig. Sparsification - a technique for speeding up dynamic graph
algorithms. J. ACM, 44:669-696, 1997.

David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H.
Spencer. Separator based sparsification: I. Planarity testing and mini-
mum spanning trees. J. Comput. Syst. Sci., 52(1):3-27, 1996.

David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre
Tarjan, Jeffery Westbrook, and Moti Yung. Maintenance of a minimum
spanning forest in a dynamic plane graph. J. Algorithms, 13(1):33-54,
1992.

Greg N. Frederickson. Data structures for on-line updating of minimum
spanning trees, with applications. SIAM J. Comput., 14(4):781-798,
1985.

Michael L. Fredman and Michael E. Saks. The cell probe complexity
of dynamic data structures. In David S. Johnson, editor, Proceedings of
the 21st Annual ACM Symposium on Theory of Computing, May 14-17,
1989, Seattle, Washigton, USA, pages 345-354. ACM, 1989.

Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral:
maintaining a constant-competitive steiner tree online. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on The-
ory of Computing Conference, STOC’13, Palo Alto, CA, USA, June
1-4, 2013, pages 525-534. ACM, 2013.

Anupam Gupta and Amit Kumar. Online steiner tree with deletions.
In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 455-467. SIAM, 2014.

81

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Jens Gustedt. Efficient union-find for planar graphs and other sparse
graph classes. Theoretical Computer Science, 203(1):123 — 141, 1998.

Monika R. Henzinger and Valerie King. Randomized fully dynamic
graph algorithms with polylogarithmic time per operation. J. ACM,
46(4):502-516, July 1999.

Monika Rauch Henzinger and Michael L. Fredman. Lower bounds for
fully dynamic connectivity problems in graphs. Algorithmica, 22(3):351—
362, 1998.

Monika Rauch Henzinger and Valerie King. Maintaining minimum span-
ning forests in dynamic graphs. SIAM J. Comput., 31(2):364-374, 2001.

Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms for connectivity,
minimum spanning tree, 2-edge, and biconnectivity. J. ACM, 48(4):723~
760, 2001.

Sung-Pil Hong, Heesang Lee, and Bum Hwan Park. An efficient mul-
ticast routing algorithm for delay-sensitive applications with dynamic
membership. In INFOCOM °98. Seventeenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEF,
volume 3, pages 1433-1440 vol.3, Mar 1998.

Makoto Imase and Bernard M. Waxman. Dynamic Steiner tree problem.
SIAM J. Discrete Math., 4(3):369-384, 1991.

Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph
connectivity in polylogarithmic worst case time. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 13, pages 1131-1142. STIAM, 2013.

Adam Karczmarz. Algorytmy dla probleméw spdjnosci w grafach
nieskierowanych z historig. Master’s thesis, University of Warsaw, War-
saw, Poland, 2014.

Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Development,
31(2):249-260, 1987.

Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recur-
sive separator decompositions for planar graphs in linear time. In Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium

82

[30]

[31]

[32]

[33]

[34]

[38]

on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 505-514. ACM, 2013.

Tomasz Kociumaka, Jakub Radoszewski, and Wojciech Rytter. Fast
algorithms for abelian periods in words and greatest common divisor
queries. In Natacha Portier and Thomas Wilke, editors, 30th Interna-
tional Symposium on Theoretical Aspects of Computer Science, STACS
2013, February 27 - March 2, 2013, Kiel, Germany, volume 20 of LIPIcs,
pages 245-256. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2013.

Jakub tacki and Jakub Oc¢wieja and Marcin Pilipczuk and Piotr
Sankowski and Anna Zych. Dynamic Steiner tree and subgraph TSP.
CoRR, abs/1308.3336, 2013.

Jakub tacki and Piotr Sankowski. Reachability in graph timelines. In
Robert D. Kleinberg, editor, Innovations in Theoretical Computer Sci-
ence, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 257—268.
ACM, 2013.

Jakub bLacki and Piotr Sankowski. Optimal decremental connectivity in
planar graphs. CoRR, abs/1409.7240, 2014.

Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The
power of recourse for online MST and TSP. In Artur Czumaj, Kurt
Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata,
Languages, and Programming - 89th International Colloquium, ICALP
2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391
of Lecture Notes in Computer Science, pages 689-700. Springer, 2012.

Kurt Mehlhorn. A faster approximation algorithm for the Steiner prob-
lem in graphs. Inf. Process. Lett., 27(3):125-128, 1988.

Kurt Mehlhorn, R. Sundar, and Christian Uhrig. Maintaining Dynamic
Sequences under Equality Tests in Polylogarithmic Time. Algorithmica,
17(2):183-198, 1997.

Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal
subdivisions: A simple polynomial-time approximation scheme for geo-
metric TSP, k-MST, and related problems. SIAM J. Comput, 28:402—
408, 1996.

Mihai Patragcu and Erik D. Demaine. Logarithmic lower bounds in the
cell-probe model. SIAM J. Comput., 35(4):932-963, 2006.

83

[39]

[41]

[42]

[43]

[44]

Sriram Raghavan, G. Manimaran, C. Siva, and Ram Murthy. A rear-
rangeable algorithm for the construction of delay-constrained dynamic
multicast trees. [IEEE/ACM Transactions on Networking, 7:514-529,
1999.

Robert Endre Tarjan. Efficiency of a good but not linear set union
algorithm. J. ACM, 22(2):215-225, 1975.

Mikkel Thorup. Decremental dynamic connectivity. J. Algorithms,
33(2):229-243, 1999.

Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In
F. Frances Yao and Eugene M. Luks, editors, Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, May 21-23,
2000, Portland, OR, USA, pages 343-350. ACM, 2000.

Mikkel Thorup. Compact oracles for reachability and approximate dis-
tances in planar digraphs. J. ACM, 51:993-1024, 2004.

Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM,
52(1):1-24, 2005.

Freek van Walderveen, Norbert Zeh, and Lars Arge. Multiway simple
cycle separators and 1/O-efficient algorithms for planar graphs. In San-
jeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans,
Louisiana, USA, January 6-8, 2013, pages 901-918. STAM, 2013.

Dan E. Willard. Log-logarithmic worst-case range queries are possible
in space ©(n). Inf. Process. Lett., 17(2):81-84, 1983.

Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph con-
nectivity. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1757-17609.
STAM, 2013.

84

