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Abstract

In many sciences, like ecology, geology, chemistry, astronomy and especially
bioinformatics, structured data is analyzed with the use of collection-oriented
scientific workflow (COSW) systems. Such systems allow to describe the
experiments with a kind of network, through which the data flows and is
processed, and where the nodes of the network carry out domain specific
operations.

Many specialized COSW workbenches exist and are based on simple yet
expressive graphical notations, integrate most important tools, services and
databases from a given domain, and include various additional useful fea-
tures like data provenance tracking or service discovery. The models, lan-
guages and techniques used in COSW modeling have become an interesting
topic of study themselves and are the focus of this thesis. They have many
relationships with workflow modeling, business process modeling, databases,
computational grids and many more established research areas.

The main contributions of this thesis are: (1) investigation and formal-
ization of the semantics of Scufl — the COSW specification language of a
popular Taverna workbench, and (2) the creation of a new formal model
for specification of COSWs, that combines both the control flow and data
manipulation aspects and is as close as possible to the existing models from
workflow and database domains allowing to reuse available theoretical results.
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Chapter 1

Introduction

1.1 Collection-oriented scientific workflows

Information technology techniques and results developed for business appli-
cations are constantly challenged by new needs emerging from dynamically
growing applied sciences. This is especially true for the domains of database
systems and workflow processing, since even larger volumes of data have to
be analyzed and the analysis processes become even more complex. Where
those two domains coincide a new interesting field of research on collection-
oriented scientific workflows (COSWs) emerges.

In many sciences, like ecology, geology, chemistry, astronomy and espe-
cially bioinformatics, structured data is analyzed by a software system orga-
nized into a kind of network, through which the data flows and is processed,
and where the nodes of the network carry out domain specific operations.
This is similar to doing workflow processing in business, but here more em-
phasis is put on the processing of collections of data values and less on the
control flow issues, hence we propose the term collection-oriented scientific
workflow (COSW).

The basic operations in such workflows are mainly specialized, domain-
specific data analysis algorithms. Their efficient implementations are avail-
able as open source tools or are made freely accessible on dedicated Internet
servers maintained by scientific institutions. The results produced by the
workflows are used to form scientific hypotheses and to justify or invalidate
them. The way a COSW is organized, i.e., which operations are executed
and how they depend on each others results, is important and is usually
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published in some form together with the results of the data processing ex-
periment. This is necessary for the reviewers and readers to understand what
was done in the experiment, to effectively and objectively assess its merit, to
repeat and verify it, and finally to adapt it for their own research projects.

Traditionally such data processing experiments, have been performed by
copying and pasting data between local programs, e.g., the components of
the EMBOSS package [52], and web accessible processing servers with WWW
forms type user interfaces, like FASTA Sequence Comparison at the Univer-
sity of Virginia [61] and the Basic Local Alignment Search Tool at NCBI [42].
This method of experimenting is laborious and error prone. It has also been
common to construct ad hoc scripts and programs to automatize this task,
but for that at least some basic knowledge of programming and distributed
programming issues is necessary. Furthermore, the produced software usually
has been not portable and poorly, if at all, documented.

Nowadays, specialized scientific workflow workbenches such as Taverna [45,
30] and Kepler [35] are used. They are based on simple yet expressive graph-
ical notations, integrate most important tools, services and databases from a
given domain, and include various additional useful features like data prove-
nance tracking or service discovery. The models, languages and techniques
used in COSW modeling have become an interesting topic of study themselves
and are the focus of this thesis. They have many relationships with work-
flow modeling, business process modeling, databases, computational grids
and many more established research areas.

1.2 Existing systems

In this section we list popular existing scientific workflow systems. We also
review three that seem to be the most interesting in the context of this the-
sis, i.e., widely used Taverna, incorporating multiple models of computation
Kepler and BioKleisli which has a strong theoretical background. This choice
has been mainly motivated by the interesting design of models and languages
for specifying workflows that those systems are based on.

All three systems come from the domain of bioinformatics, which is
presently a thriving research area. The application of scientific workflow
systems in bioinformatics is a sign of strife to transfer the emphasis of the
biology research from wet laboratory to computer laboratory, i.e., to con-
duct as large part of the experiments as possible in silico as opposed to
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traditionally doing everything in vitro. If accomplished this allows to test
quickly and cheaply scientific hypotheses before engaging in time consuming
wet laboratory tests, i.e., with the use of test tubes and expensive chemical
reagents.

1.2.1 Taverna workbench

Taverna [45, 30] is an easy to operate workbench for COSW development and
enactment. It allows users to graphically construct COSWs from libraries of
available components and is intended for use in bioinformatics data analysis
experiments. The most important virtues of Taverna are that it is very easy
to use, has a specialized and expressive graphical specification language and
integrates thousands [46] of data analysis tools. It also includes additional
useful features like service discovery, storing intermediate results and tracking
data provenance. The workbench is being constantly developed, but it is
already considered stable and has been used in real life research, e.g., [57, 34].

A small example of a Taverna COSW is given in Fig. 1.1 (a). A set
of workflow inputs is indicated by a dotted rectangle with a small triangle
pointing upwards, which in this case contains one input labeled pin. The
graph also contains a set of workflow outputs indicated by a dotted rectan-
gle with a small triangle pointing downwards, here containing two outputs
labeled ppout and pout. Furthermore, the graph contains several so-called
processors which represent operations from the Taverna services and which
are labeled “Get Nucleotide FASTA”, “Merge String list to string”, “emma”,
“showalign” and “prettyplot”. For each processor, depending on the view set-
tings, the input ports are listed in the top row, as is done here, or in the left
column, as in some of the following examples. Similarly, the output ports are
listed in the bottom row or in the right column. For example, the processor
with label “emma” has one input port labeled sequence data direct and one
output port labeled outseq.

The COSW defines a simple yet often needed experiment. If a pin in-
put port is initiated with a list of nucleotide sequence identifiers, then the
“Get Nucleotide FASTA” processor implicitly iterates on this list and with
the use of an external service that searches the GenBank database [6] returns
FASTA formatted nucleotide sequences that correspond to the identifiers.
The next processor merges the list of those sequences into one long string,
on which the “emma” processor, which is a wrapper for the ClustalW opera-
tion of the EMBOSS [52] package, performs a sequence alignment. The final
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(a)

(c)

(b)

Figure 1.1: Examples of COSWs in Taverna
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two processors, “showalign” and “prettyplot” are used to present the output
respectively in a textual and graphical manner.

As can be noticed, the graphical representation of the COSW communi-
cates well the main intent of the experiment. In the following examples we
introduce other important features of the system and then we proceed with
formal definitions and discussions of these features.

The second example is abstract and is presented in Fig. 1.1 (b). The graph
has three branches that independently process their own input values. All the
computed values, i.e., the results of “foo1”, “foo2” and “foo3” processors, are
directed to the out workflow output. Although it is not visible in the graphical
representation of the COSW, for the out workflow output an incoming-links
strategy is specified. It determines how the value for a port is obtained in
case of multiple data edges ending in it. This strategy can be either merge
or select-first, where merge waits for values to arrive from all incoming data
edges and packs them into a list while select-first selects the first value that
arrives and ignores the others. Example use cases for the different incoming-
links strategies in this abstract COSW would be:

• for the merge strategy — obtaining nucleotide sequences from a number
of databases and packing them together into a list for further process-
ing, e.g., alignment,

• for select-first strategy — requesting the same computation with differ-
ent services and continuing the processing with the result that arrives
the quickest.

An extra feature of the select-first strategy is that the COSW is less error
prone. In Taverna processors can fail, for example if no connection can be
made with them over the Internet. Here the COSW finishes properly if at
least one of the used tools, i.e., “foo1”, “foo2” or “foo3”, finishes with success.

The third example is taken from the myExperiment [23] workflow repos-
itory. It is presented in Fig. 1.1 (c) and is incorporated as a building block
into several COSWs defining real-life in silico experiments that are also
published in the repository. First, it shows that in the Taverna COSWs
there are two kinds of edges. The data edges, indicated by solid edges
with an arrow head, represent data flow by connecting workflow inputs
or output ports of processors with input ports of processors or workflow
outputs. The control edges indicated by gray edges ending with a circle
represent additional control flow. They connect two processors specifying
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that one can execute only when the other has successfully finished. Sec-
ond, the example presents how a combination of failing processors, con-
trol edges and ports with many incoming edges and the select-first strat-
egy specified can be used to model conditional behavior. The COSW re-
turns a sequence in a FASTA format that corresponds to a sequence or
sequence entry identifier provided as an input. If a sequence identifier, in
database:identifier format, e.g. uniprot:wap_rat, is provided as the in-
put, then the “Fail if sequence” processor succeeds but the “Fail if identifier”
fails and thus the “fetchData” processor uses the EBI’s WSDbfetch web ser-
vice (see http://www.ebi.ac.uk/Tools/webservices/services/dbfetch)
to retrieve the sequence in FASTA format. Otherwise the “Fail if sequence”
processor fails but the “Fail if identifier” succeeds and the sequence is passed
through the Soaplab [33, 53] “seqret” service to force it into a FASTA format.
Both conditional branches are joined with the Sequence workflow output for
which the select-first strategy is specified.

Taverna includes other interesting features like product strategies and
nested COSWs, which are beyond this short presentation. A further and
complete discussion of this system is given in Chapter 2.

1.2.2 Kepler

The Kepler scientific workflow system [35] is applied in many areas includ-
ing bioinformatics, ecology, oceanography and geology. It is based on the
Ptolemy II [17] system, which is a modeling and simulation environment,
and extends it with new features and components for COSW design and for
efficient workflow execution. Similarly as in Taverna (see 1.2.1) COSWs are
specified as graphs where the nodes, here called actors, have input and out-
put ports and represent scientific operations. Ports can be connected with
channels to define the flow of data. Additional control flow constructs, as
loops and branches, are also present and COSWs can be nested with the use
of nested actors. An example COSW with a legend is presented in Figure 1.2.
It is an adapted version of an example provided with the Kepler user docu-
mentation. It solves a discrete finite-difference equation, that determines a
resource-limited population growth, with a growth factor “r”, and a carrying
capacity “k”.

A distinguishing feature of Kepler is its ability to enact one and the same
COSW according to different computation models which the COSW author
specifies with the so called director. Kepler includes directors that correspond
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Ports

Actors

Relation

Parameters

Figure 1.2: An example of a COSW in Kepler

to process network, synchronous dataflow, continuous time, discrete event,
and finite state machine computation models. In our example, both the top
level COSW and the nested COSW StopAtEndN, use the process network
director. Together with its restriction — the synchronous dataflow director
— they are the most frequently used ones. We will characterize the process
network model by explaining how the example from Fig. 1.2 works.

The execution in process network model is driven by input data availabil-
ity, i.e., an actor can fire, if some input data tokens are available on all its
input ports. On the output ports it produces tokens with the result values,
which are immediately transfered to further actors. Yet, there are excep-
tions. In the example from Fig. 1.2 a special actor SampleDelay is used to
start the loop. Without needing any input data tokens on its single input
port, it fires once and produces a token with the value assigned to COSW
parameter startN. Later on it behaves as an identity operation, which out-
puts the value it consumes. The value produced by the SampleDelay actor
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is used as the previous population size “n” by the actor that evaluates the
formula. Then, three copies of the newly computed population size are made.
The first is provided to the SequencePlotter actor that updates a diagram
with the computed results. The second is provided to the SampleDelay ac-
tor to continue the loop. Finally, the third is provided to a nested COSW
StopAfterNSteps, which contains a Counter actor that has an internal state
and counts the number of times it is executed. When that value reaches
the parameter nSteps, which is endlessly provided to the nested COSW by
a Constant actor nSteps, the StopAfterNSteps nested COSW uses another
actor it contains, namely Stop actor, to finish the computation. If a Stop
actor was not used explicitly, then the COSW would continue indefinitely
since the nSteps constant actor would not stop producing tokens and the
loop would continue.

In Kepler polymorphic COSWs can be defined, as discussed in [37]. The
definition of polymorphic COSWs is based on a technique that is similar to
that of the implicit iteration in Taverna, where an actor that expects input of
a certain type can also operate on collections of other types by automatically
identifying nested values of the right type and operating on them. This type
of polymorphic actor is referred to by the authors of [37] as collection-aware
actors. A difference with Taverna is that the user can specify in more detail
how such nested values are identified and how they are iterated over, where
in Taverna this is completely transparent. Another difference with Taverna
is that Kepler features an elaborate and refined type system which explicitly
allows heterogeneous values and this type system is used in the specification
of the aforementioned collection-aware actors.

Thanks to the inclusion of different computational models that can be
combined in one COSW, the availability of loops and the presence of special
actors like the Counter actor, which has an internal state, or the SampleDelay
actor, which does not need input tokens to fire for the first time, Kepler is
very expressive as compared to other COSW systems. By expressive we mean
here that difficult problems can be solved in Kepler with COSWs of small size.
The trade off is that Kepler COSWs are hard to analyze with formal methods
and difficult to understand by users with small programming experience.

1.2.3 BioKleisli

BioKleisli [14] is a system allowing querying and transforming complex data
from heterogeneous sources, including ones available through a network,
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which was developed for and used in the Human Genome Project [62]. It
is not a COSW system per se. It provides neither graphical notation nor
deals with control flow issues, but is very interesting because of the way how
complex collections of data can be processed and because of its theoretical
background. It is based on a query language called Collection Program-
ing Language (CPL) [71], which is amenable to optimizations and which
on nested relational data has the expressive power of nested relational alge-
bra [70]. The design of CPL is based on nested relational calculus (NRC) [9]
(see 3.2.1) — a calculus version of the nested relational algebra, which is
a well studied formalism for querying nested data collections and for which
many optimization results are available. It is worth pointing out that in
separate research [21, 22] we also studied the usefulness of NRC for COSW
specification and analysis. NRC and CPL follow a new approach to query
languages inspired by structural recursion [58] and the category theory no-
tion of a monad [68, 39]. They are also type orthogonal [14], which means
that the design of the language is structured around its type system.

The type system of CPL is given by:

τ ::= bool | int | string | . . . | {τ} | {|τ |} | {||τ ||} |
[l1 : τ1, . . . , ln : τn] | 〈l1 : τ1, . . . , ln : τn〉

where bool, int, string, . . ., are the base types, {τ}, {|τ |} and {||τ ||} are re-
spectively set, bag and list types from the type τ , and [l1 : τ1, . . . , ln : τn] and
〈l1 : τ1, . . . , ln : τn〉 are respectively record and variant record types with ele-
ment types τ1, . . . , τn and field labels l1, . . . , ln. The semantics of those types
is defined as usual.

The operations of CPL are based on NRC yet the syntax follows Wadler’s
work [68] in order to make it more user friendly. CPL is also more robust,
for example it is equipped with pattern matching and allows for function
definition within the language. We will not give here a complete definition,
but limit ourselves to a few simple queries on a database containing a set of
COSW system descriptions of type:

Systems = {[name : string,

domains : {string},
authors : {string}]}

9



An example fragment of data conforming to this type is:

DB = {[name = “BioKleisli”,

domains = {“bioinformatics”},
authors = {“S. Davidson”,“C. Overton”,“V. Tannen”,“L. Wong”}
], . . .}

In the query:

{[name = s.name, domains = s.domains] | \s <−DB}

on the right-hand side of | the variable \s traverses the set DB. The result
set is constructed on the left-hand side of | by projecting the records to
fields name and domains. In the case of bag construction the duplicates
would be kept and for lists the order of traversal would be maintained.

In the next query:

{[domains = d] | [name = “BioKleisli”, domains = \d, . . .] <−DB}

only the records with name = “BioKleisli” contribute to the result. As we
can see the ellipsis “. . . ” can be used to match the remaining record fields.

A normalization of the data on names and domains can be achieved with
the query:

{[name = n, domain = d]

| [name = \n, domains = \dd, . . .] <−DB, \d <−dd}

which results in a set of string pairs with a COSW system name and one of
its domains. Note, that this and the next query would not be possible in the
flat relational calculus.

Finally, the query:

{[domain = d, names = {x.name | \x <−DB, d <−x.domains}]
| \y <−DB, \d <−y.domains}

restructures the records so that for each domain a set of COSW system names
is stored as opposed to a set of domains for each COSW system name.

10



1.2.4 Other systems

Some other COSW systems include:

• DiscoveryNet [54] — from the domains of bioinformatics and chemistry;

• Triana [36] — from the domain of astronomy;

• Pegasus [15] — from the domains of astronomy and bioinformatics;

• SCIRun [32] — general usage, applied in biomedicine and bioelectric
field modeling;

• JOpera [48] — general usage web service composition tool, applied in
bioinformatics.

The newest systems can be tracked with help of on-line survey sites as [55,
24], that are maintained by the scientific community. Also business workflow
tools can be used to define and enact scientific workflows, yet they are usually
control flow oriented, i.e., lack the ability to manipulate complex collections
of data, and an additional work is required to integrate services from scientific
domains.

1.3 Problems that will be addressed

We start with studying and formalizing the semantics of the process model
of the Taverna workbench, which is one of the most popular COSW systems
used in bioinformatics. Our goal is to precisely and comprehensively describe
all its features, especially those that distinguish it from other workflow sys-
tems, examine their usefulness and discuss alternatives. Although we strive
for an elegant formal model, we make only a minimal number of compro-
mises in order to describe the current Taverna implementation as faithfully
as possible. This way when later a clean core model of Taverna is devised it
is possible to asses its fidelity.

Because the formalization of Taverna turns out to be very involved, the
question rises whether it is possible to design a simpler language with an
easier to understand formal semantics that can describe COSWs. For this
purpose we investigate if and how existing results on databases and classical
workflow modeling can be applied in the COSW research. There exist simple,
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clean and well studied formal models of workflows which deal only with con-
trol flow and ignore processing of nested collections of data, e.g., Petri nets
(see 3.2.2). Similarly, simple, clean and well studied formal models exist for
dealing with nested collections of data, but ignore the specification of control
flow, e.g., NRC (see 3.2.1). In the remainder of the thesis we are concerned
with the creation of a new hybrid formal model for specification of COSWs
from first principles, that combines both the control flow and data manipula-
tion aspects. Our aim is to structure the new model as close as possible to the
existing models from both domains, such that the reuse of results available
for them is possible. We also study if and how such a hybrid formal model
can be useful in practice, i.e., in real life scientific workflow experiments. For
that we construct a new COSW system and test it on real-life experiments
adapted from Taverna workbench.

1.4 Structure of the thesis

In Chapter 2 we have investigated and formalized the semantics of Scufl —
the COSW specification language of Taverna workbench. Then we use the
semantics to prove some basic properties of all COSWs defined in Scufl.

In Chapter 3 we formally define DFL (as in DataFlow Language) — a
new language for specifying COSWs which is a combination of Petri nets and
NRC. In Section 3.7 we present that certain results for its components can
also be applied for DFL. Then, in Section 3.8, we present a tool that allows
one to design, enact and analyze DFL COSWs.

Finally, in Chapter 4, we summarize our results and indicate interesting
areas and problems for further research that are motivated by the results
covered in this thesis.
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Chapter 2

Scufl

In this chapter we investigate and formalize the semantics of Scufl, study
its distinguishing features, examine their usefulness and discuss alternatives.
The formal definitions which we give not only allow to precisely understand
what is really being done in a given experiment. They are also the first step
toward automatic correctness verification and allow the creation of auxiliary
tools that would detect potential errors and suggest possible solutions to
COSW creators, the same way as Integrated Development Environments aid
modern programmers. The creation of formal semantics is also essential for
work on enactment optimization and in designing the means to effectively
query COSW repositories.

2.1 Motivation of formal semantics for Scufl

Scufl includes high level features and mechanisms, like implicit iteration, that
make the construction of real life COSWs simpler and allow the programmer
to focus on the problem being solved. At the same time the COSWs look
less complex and can be used in research papers to convey the main idea of
an in silico experiment that was conducted. Yet, distributed data-processing
experiments are complex in nature and a highly expressive definition language
that hides much of the complexity of the COSW behind implicit semantics
is not the silver bullet. When problems appear, e.g., while debugging, it is
important to exactly understand what computation is being done. And even
when the specification of the COSW is successfully finished, it’s merit has to
be effectively and objectively assessed by reviewers. For this a precise and
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formal semantics is needed.
It’s also obvious that the in silico experiments that are being conducted

become more and more complex and sooner or later automatic verification
procedures, similar to those used for verifying complex business transactions,
will have to be developed. For such verification the existence of formal se-
mantics is a necessary first step as well as for the creation of auxiliary tools
that would detect potential errors and suggest possible solutions to COSW
creators, the same way as Integrated Development Environments aid modern
programmers.

Another domain for which a formal semantics is fundamental is enactment
optimization. As with database queries the programmer could only specify
what has to be done and the determination of the most effective execution
strategy would be left to the COSW engine. In addition, with COSWs being
applied more and more frequently, and being shared in Internet reposito-
ries [23], their querying is becoming an interesting scientific problem [10, 5].
A successful COSW query language should take into account the semantics
and not just the syntax, i.e., compare what the COSWs do and not only how
they are defined.

Finally, we argue that the very act of formulating a formal semantics is
useful because it forces us to do a complete and thorough analysis of the
behavior of Taverna. The formulation of an elegant and natural formal se-
mantics is a good litmus test for checking if the current behavior is consistent
and well chosen. Such a test is not unimportant for large, complex and rela-
tively rapidly evolving systems such as Taverna. In addition, as is shown in
this thesis later on, it may provide inspiration for other interesting alterna-
tive semantics. Therefore the formulation of a formal semantics can help in
the future design and development of Taverna.

2.2 Scufl type system

As the Taverna authors notice “the problem of data typing in life sciences is
simply too hard to attack”. There is only one basic type that describes binary
data with an attached MIME annotation and we will denote this basic type
as M. The MIME annotation is used to determine how a basic type data
value is going to be presented to the user, e.g., whether a text, a picture, or
its binary representation is going to be displayed. The set of MIME values is
denoted as VM. For our examples we will usually assume it contains at least
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the natural numbers and strings.
In Taverna we meet in practice only one collection type, namely, ordered

lists, even though the documentation suggests that Scufl was designed to
support other collection types such as partial orders, trees, bags and sets.
Although the user documentation mentions only homogeneous lists, the work-
bench does not prevent the use of heterogeneous lists, i.e., lists containing
elements of different types such as [1, [2], 3, [[4]]]. Heterogeneous lists can be
obtained from homogeneous ones during the computation. For example, it
is possible to specify in a Taverna COSW that an input is computed from
different outputs of different processors by combining them into a single list.
Therefore we define the set of complex values such that it includes heteroge-
neous lists.

The set of complex values, denoted as Vtav, is defined as the smallest set
such that (1) VM ⊆ Vtav and (2) if x1, . . . , xn ∈ Vtav, then the list [x1, . . . , xn]
is in Vtav. The values of these list types will be denoted as [1, 2, 3] and
[[1, 2], [3, 4], 5], the empty list is denoted as [], and the concatenation of lists
is denoted with +, so [1, 2] + [1, 5] + [] = [1, 2, 1, 5]. Note, that this notion of
complex value does not include tuples or records.

Although heterogeneous lists can appear in Taverna, they usually cause
processors to fail and otherwise are not always processed coherently, e.g.,
applying the flatten operation to the list [[x], [[y]]], where x and y are some
basic values, results in [[x], [y]] while flattening of [[[x]], [y]] results in [[x], y].
It is however quite possible to give an intuitive semantics for Scufl that allows
heterogeneous values everywhere and deals with them consistently. There-
fore, we will in the formal part of this chapter, for the sake of simplicity and
consistency, assume that heterogeneous values are allowed everywhere. If het-
erogeneous values never appear, then the semantics defined in this chapter
corresponds to the observed behavior of Taverna.

The consistent behavior for the heterogeneous values is owed to the co-
herent generalization of semantics of product strategies expressions (see Sec-
tion 2.5.4) and implicit iteration mechanism (see Section 2.5.2). Despite this
we usually limit the presentation to homogeneous values only and discuss in
Section 2.7 the strategies for adapting the semantics such that the heteroge-
neous values are consistently avoided.

Although Taverna does as little typing as possible it still has a notion of
complex type, which is defined by the following syntax:

τ ::= M | [τ ]
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Examples of such types areM, [M], [[M]], et cetera. The set of all complex
types is denoted as Ttav. The semantics of these types are defined with
induction on their syntactic structure such that:

• [[M]] = VM, and

• [[[τ ]]] = [[τ ]] ∪ L([[τ ]]) where L(V ) denotes the set of finite lists over V .

Note, that the given type semantics is more liberal than usual and explicitly
allow heterogeneous lists. So not only [[1], [2]] ∈ [[[[M]]]] but also [1, [2]] ∈
[[[[M]]]] since 1 ∈ [[M]] ⇒ 1 ∈ [[[M]]]. Effectively the type only restricts the
maximum nesting depth of the complex values in its semantics.

Further motivation for the liberal list type semantics is given by the fact
that if the nesting depth of a certain value is lower than expected there is
always an intuitive interpretation of that value as a more deeply nested one,
namely by nesting it in singleton lists. For example, if a certain processor
expects on a certain input port a list of protein identifiers and it receives a
value that is an unnested single protein identifier, then it can interpret this
as a singleton list containing this protein. This principle can be applied to
every type, i.e., a value of type τ can always be interpreted as a value of
type [τ ] by assuming it is packed in a singleton list. This is reflected in the
type semantics by the fact that [[τ ]] ⊆ [[[τ ]]]. The idea that types are given
a semantics that is related to a coercion mechanism can be found in other
work such as [4].

Consistently with the given type semantics and the described type coer-
cion we define a subtyping relation, denoted by v, over complex types such
that τ v σ iff the nesting depth of τ is less than or equal to the nesting depth
of σ, i.e., either τ =M, or τ = [τ ′] and σ = [σ′], where τ ′ v σ′. For example,
M v [M], and [M] v [[[M]]], but [[M]] 6v [M]. Clearly, this notion of
subtyping is consistent with the given semantics, i.e., for all complex types τ
and σ it holds that τ v σ iff [[τ ]] ⊆ [[σ]].

Since there is only one basic type, viz. M, it is not hard to see that v
defines a linear order over the complex types. So we can define a function
max : P(Ttav)→ Ttav, such that max(T ) is the least common upper bound of
T , i.e., the smallest complex type σ such that for all types τ ∈ T it holds that
τ v σ. This means, for example, that max(∅) =M, max({M, [M]}) = [M],
and max({[M], [[[M]]]}) = [[[M]]].
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2.3 Scufl global components

Here we list the Scufl components that are common to all COSW. We postu-
late a countably infinite set PL of port labels that contains all names that can
be given to input and output ports of processors as well as to workflow inputs
and outputs. The Taverna workbench comes with a huge library of built-in
bioinformatics operations, which are mainly external service intermediaries,
i.e., programs that call external services. We call this extensible collection of
operations the Taverna services and model it by a set of service names called
TS which can contain an arbitrary number of names.

The interface of a service is defined by tuple types that give the input
type and the output type. These tuple types are defined as partial functions
σ : PL → Ttav that map a finite subset dom(σ) ⊆ PL, called the domain
of σ, to complex types. We will denote tuple types {(l1, τ1), . . . , (ln, τn)} as
〈 l1 : τ1, . . . , ln : τn 〉. The set of all tuple types is denoted as Ttup and the set
of all tuple values as Vtup. The semantics of a tuple type σ = 〈 l1 : τ1, . . . , ln :
τn 〉, denoted as [[σ]], is defined as the set all functions t : dom(σ) → Vtav
such that for each li ∈ dom(σ) it holds that t(li) ∈ [[τi]]. Such a function
{(l1, x1), . . . , (ln, xn)} will be denoted as 〈 l1 = x1, . . . , ln = xn 〉. For later use
we define a notation for the projection of a tuple type σ on a set of labels
L as σ|L such that σ|L = {(l, τ) ∈ σ | l ∈ L} and its counterpart for tuple
values as t|L = {(l, v) ∈ t | l ∈ L}.

To define the interface of the Taverna services we postulate the func-
tions typei : TS → Ttup and typeo : TS → Ttup that give the input type
and output type, respectively, of each service as a tuple type. In addition
we define the functions I : TS → P(PL) and O : TS → P(PL) such
that for every service name s ∈ TS I(s) gives the set of input port la-
bels and O(s) the set of output port labels, i.e., I(s) = dom(typei(s)) and
O(s) = dom(typeo(s)). For example, the interface for the string concate-
nation operation “Concatenate two strings” ∈ TS is defined as follows (we
abbreviate “Concatenate two strings” to “c t s”):

I(“c t s”) = {string1, string2}
typei(“c t s”) = 〈 string1 :M, string2 :M〉

O(“c t s”) = {output}
typeo(“c t s”) = 〈 output :M〉

The semantics of a service is defined by a non-deterministic function that
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maps a tuple of the input type of the service to one of possibly many tuples of
the output type. There are several reasons why the result might not be func-
tionally dependent on the input. One of them is that the services can have
an internal state which influences its result. Also the service can use ran-
domized approximation algorithms, which is often the case in bioinformatics.
Finally, the service can be based on a database which is constantly updated.
So it seems inappropriate to model services with deterministic functions in
the description of Taverna’s semantics. Therefore we associate with each la-
bel s ∈ TS a relation F [s] ⊆ [[typei(s)]]× [[typeo(s)]] such that for each tuple
t ∈ [[typei(s)]] there is at least one tuple t′ ∈ [[typeo(s)]] such that (t, t′) ∈ F [s].
It should be noted at this point that the current implementation of Taverna
does not check if a service call returns a tuple with fields of the correct type,
but we chose not to model this in the presented formal semantics.

2.4 Scufl syntax

A brief and informal introduction to Scufl has already been given in Sec-
tion 1.2.1. Here we follow with additional example and formal definitions.

The new example is presented in Fig. 2.1. We start with the analysis of
the top Scufl COSW graph which may seem incomplete because the nin2 has
no incoming data edges. For that port a default value is specified, but that
is not visible in the graphical representation.

Another thing that the diagram does not show are the product strategies
associated with all processors. Such strategies are needed because of the
implicit iteration semantics of Scufl that was illustrated by the first processor
in Fig. 1.1 (a). In general the implicit iteration strategy states that if a
processor receives a value that is nested deeper than expected, it will iterate
over subvalues of the expected nesting depth and combine the results again in
a list. For example, if a processor that computes a function f : [[〈 a :M〉]]→
[[〈 b : M〉]] receives on its port labeled a the value [“foo”,“bar”], then it will
compute the list [f(〈 a = “foo”〉), f(〈 a = “bar”〉)]. If a processor computes a
function that expects many inputs such as g : [[〈 a :M, b :M〉]]→ [[〈 c :M〉]]
and is presented with lists of mime values, then a product strategy such
as cross product or dot product is required to indicate how the input lists
are combined into a single list of tuples that represent the combination of
complex values to which the function is applied during the iteration. If the
list on port a is [“foo”,“bar”] and the list on port b is [“x”,“y”,“z”] then the
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Figure 2.1: An example of a nested Scufl COSW graph

cross product combines them into [[〈 a = “foo”, b = “x”〉, 〈 a = “foo”, b =
“y”〉, 〈 a = “foo”, b = “z”〉], [〈 a = “bar”, b = “x”〉, 〈 a = “bar”, b = “y”〉, 〈 a =
“bar”, b = “z”〉]] and the dot product combines them into [〈 a = “foo”, b =
“x”〉, 〈 a = “bar”, b = “y”〉]. For an arbitrary number of input ports a product
strategy is defined by an expression in the following syntax:

ps ::= ε | PL | (ps⊗ ps) | (ps� ps)

in which each label in PL appears at most once. In this expression ε denotes
the empty product strategy, a port label product strategy transforms values
into tuples, ⊗ represents the cross product1 and� represents the dot product.
The set of all product strategies is denoted as PS and the set of port labels
used in product strategy ps is denoted as L(ps), i.e., it is defined such that

1For lists the cross product L1 ⊗ L2 is not equivalent with L2 ⊗ L1 because the order
of the resulting tuples is not the same, but in Taverna there is also a difference in how the
result is nested, as will be explained later on.
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L(ε) = ∅, L(a) = {a} and L(ps1 ⊗ ps2) = L(ps1 � ps2) = L(ps1) ∪ L(ps2).
The result of a product strategy ps is always a possibly nested list of tuples
with fields L(ps), e.g., if ps = (a⊗b)�c, then this results in a possibly nested
list of tuples of the form 〈 a = x, b = y, c = z 〉.

A product strategy could be relevant for our example if the processor that
represents a nested Scufl COSW graph had a merge strategy specified for its
nin1 input port, but expected only a single value and not a list. A further
explanation of the default value mapping, the incoming-links strategy and
the product strategy is provided in Sections 2.5.3 and 2.5.4 respectively.

The final feature presented by the example in Fig. 2.1 is that Scufl COSW
graphs are allowed to be recursively nested. The nested Scufl COSW graph is
represented by a processor “Nested Scufl graph” and its workflow inputs and
outputs match the input ports and output ports of the processor. Nesting a
part of a Scufl COSW graph into a processor changes its semantics in two
ways. The first is that the nested COSW is not executed until all input ports
are ready, and the second is that it will apply the implicit iteration strategy
during its execution.

The informal discussion until now was illustrated with a notation that is
only one of the ways to represent Scufl COSW graphs and more elaborate
representations are available in Taverna, although none of them shows all
relevant aspects for understanding the complete semantics of the defined
COSW. We follow with a comprehensive formal definition of Scufl COSW
graphs — Scufl graphs for short. Since these can be recursively nested it
will be an inductive definition. For this definition we postulate a countably
infinite set P that contains all possible processor identifiers that we can use
in Scufl graphs.

Definition 2.4.1 (Scufl graph). The set of Scufl graphs G is defined as the
smallest set such that every Scufl graph composed of Scufl graphs in G is also
in G, where such a Scufl graph is defined as a tuple (I, O, P, πi, πo, Ed, Ec, λ, ils,
ps, dv) such that

• I ⊆ PL is a finite set of labels representing the workflow inputs,

• O ⊆ PL is a finite set of labels representing the workflow outputs,

• P ⊆ P is a finite set of processors disjoint with I and O,

• πi ⊆ P × PL a finite set representing processor input ports,
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• πo ⊆ P × PL a finite set representing processor output ports,

• Ed ⊆ (I × πi) ∪ (πo × πi) ∪ (πo ×O) is a set of data edges,

• Ec ⊆ P × P is a set of control edges,

• λ : P → (TS ∪G) is the processor labeling function, that maps proces-
sors to either a service label in TS or a nested Scufl graph such that
for every processor p ∈ P it holds that I(λ(p)) = {l | (p, l) ∈ πi} and
O(λ(p)) = {l | (p, l) ∈ πo},

• ils : (πi∪O)→ {first,merge} gives the incoming-links strategy for every
input port of a processor and the workflow outputs,

• ps : P → PS gives the product strategy for every processor p ∈ P such
that L(ps(p)) = {l | (p, l) ∈ πi},

• dv : πi → Vtav ∪ {⊥} gives a default value2 for each input port, where
⊥ represents the lack of default value and is only allowed if the port
has at least one incoming data edge, i.e., if dv((p, l)) = ⊥, then there
is a data edge (x, (p, l)) ∈ Ed for some x,

• there are no cycles in the dependency graph which is defined as a
directed graph over P such that there is an edge (p1, p2) iff there
is a control edge (p1, p2) ∈ Ec or there is a data edge of the form
((p1, l1), (p2, l2)) ∈ Ed,

where the I and O functions for labels in TS are generalized for Scufl graphs
such that for a Scufl graph g we let I(g) and O(g) denote the I and O
component of g, respectively.

The restriction that a default value must be specified for input ports
that have no arriving data edges is more strict than in the real Taverna
1.7.1, where basic processors are allowed to have input ports with neither
an incoming data edge nor a data value. This is an often used feature since
basic processors can wrap a service with many optional arguments and flags.
However, for the sake of simplicity of presentation we will assume that this
is represented in the formal syntax by a basic processor that has exactly the

2In Taverna 1.7.1, the version that was investigated for this thesis, only strings were
allowed as default values.
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set of input ports that are provided and has the semantics that the real basic
processor has for that particular set of input ports.

Next to generalizing I we also extend the function typei to Scufl graphs,
i.e., typei : (TS ∪ G) → Ttup. The main purpose of this type is to allow a
processor, that is labeled by λ with a Scufl graph, to determine what type
it actually expects, and use that to see if for a given complex value it will
do an implicit iteration or pass it on to the nested graph. Recall that if a
processor receives a value that is nested deeper than expected, then it will
identify the subvalues of the expected nesting depth and iterate over those,
i.e., pass them on one by one to the nested Scufl graphs.

Informally, the input type of each workflow input is computed by taking
the maximum of the types of processor input ports in the nested Scufl graph
to which it is connected. So, for example, if the workflow input is connected
to two processor input ports that expect [[M]] and [M], then the Scufl graph
is assumed to expect the type [[M]] on this input port. The justification for
taking the maximum is that this way the processor that contains the nested
Scufl graph only starts implicit iteration if it is really necessary, i.e., none of
the nested processors to which the value is passed on can deal with it without
iteration. For example, assume that the workflow input is connected to a
service with input type 〈 genes : [M] 〉 that expects a list of genes encoded as
DNA strands and selects the shortest one. Also assume that another service
with input type 〈 gen :M〉 is also connected to this workflow input. Then, if
the Scufl graph is given a list of genes, the implicit iteration is only needed for
the second service and not the whole Scufl graph. This way the first service
can find the shortest gene in the whole input list and not in every singleton
list resulting from implicit iteration on the workflow input.

Formally, following the induction of G, the input type of a Scufl graph
g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv) with I = {l1, . . . , ln}, is defined as
typei(g) = 〈 l1 : τ1, . . . , ln : τn 〉, where τi = max({σ(l′) | (li, (p, l

′)) ∈ Ed, σ =
typei(λ(p))}). Note, that this is well defined since the domain of typei(λ(p))
is I(λ(p)), which by the definition of Scufl graph is equal to {l′ | (p, l′) ∈ πi}.

2.4.1 Hierarchically nested Scufl graphs

The Scufl graph definition is an inductive definition that builds larger Scufl
graphs by using smaller ones as labels of its processors, i.e., as nested Scufl
graphs. It allows us to define notions and prove theorems with induction on
the structure of a Scufl graph. Over the set of all Scufl graphs G we can
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define the nesting graph that indicates which Scufl graph is nested in which
Scufl graph as follows.

Definition 2.4.2 (The nesting graph). The nesting graph is the directed
edge-labeled graph N = (G, E) where G is the set of nodes and the set of
edges E ⊆ G × P × G is defined such that (g, p, g′) ∈ E iff λ(p) = g′ with λ
the labeling function of g and p a processor in g.

It is easy to see that, since G is required in its definition to be minimal,
there are no directed cycles in N . The set of subgraphs of a Scufl graph g,
denoted as Gg, is defined as the set of nodes reachable in N from g, including
g itself. The nesting graph for a particular Scufl graph g is denoted as Ng
and defined as subgraph of N induced by Gg.

It is allowed that the same Scufl graph is reused as a label of more than one
processor in a certain Scufl graph definition, either within the same subgraph
or in different subgraphs. However, the definition of a state of a Scufl graph
can be simplified if such reuse is not allowed and therefore we introduce the
notion of hierarchically nested Scufl graphs.

Definition 2.4.3 (Hierarchically nested Scufl graphs). A Scufl graph g is
said to be hierarchically nested iff Ng is a tree.

Observe that if g is a hierarchically nested Scufl graph then all Scufl
graphs in Gg are also necessarily hierarchically nested.

If a Scufl graph is not hierarchical then it can be made so by replacing
each occurrence of a certain Scufl graph with a different but isomorphic Scufl
graph. For example, if processors p1 and p2 are both labeled with a Scufl
graph g, i.e., λ1(p1) = λ2(p2), where λ1 and λ2 are the processor labeling
function of the subgraphs in which p1 and p2 appear respectively, then we
redefine λ1 and λ2 such that λ1(p1) = g1 and λ2(p2) = g2, where g1 and
g2 are different but isomorphic copies of g that do not appear as subgraphs
themselves. If we start with a certain Scufl graph and repeat this for every
two different processors in subgraphs that are labeled with the same Scufl
graph, then we will obtain an equivalent hierarchically nested Scufl graph.

In the remainder of this chapter, where we describe the semantics of Scufl
graphs, we will do this only for hierarchically nested Scufl graphs, and there-
fore, when we refer to a Scufl graph, we always mean a hierarchically nested
Scufl graph. The semantics of other Scufl graphs is then defined as the se-
mantics of the corresponding hierarchically nested Scufl graphs. The reason
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for this is that in a hierarchically nested Scufl graph we can describe the
total state as a mapping of each Scufl graph that it contains to its particular
state. The exponential blow-up that can be caused by making a Scufl graph
hierarchical, is in some sense unavoidable, because it is linked to the poten-
tially exponential number of Scufl graph instances for which a state has to
be described.

2.5 Processor execution

2.5.1 An overview of processor execution

A successful execution of a processor is a complex event best explained by
dividing it in several steps. We give here an informal overview of those steps
and discuss the first two of them in the rest of this section in further detail by
defining the functions that compute them. Then, in Section 2.6, using those
functions and additional prerequisites defined in Section 2.5.2, we discuss the
execution of a Scufl graph as a whole, look into all the steps together, and
explore all possible scenarios including the possibility of processor failure.

We now proceed with the informal description of the steps of a successful
execution of a processor:

Computing the values in the input ports

In the first step an input value for each input port is computed from the values
that were sent to it through the incoming data edges. This is done by combin-
ing these values into a single complex value according to the incoming-links
strategy. The select-first strategy simply takes the first value that arrives
and ignores the others, and the merge strategy creates a list containing all
the arrived values.

Combining the input port values into the processor input value

A processor input value is computed, which is a single tuple that can be
processed by the service that the processor represents, or a possibly nested
nested list of such tuples. If for every input port of the processor the value
computed in the previous step is of the type expected by the processor, i.e., is
not overly nested, then the processor input value is a tuple labeled by input
port labels and holding the input port values. For example, if the input
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ports are labeled a and b and their computed input port values va and vb
are of the expected type, then the processor input value is 〈 a : va, b : vb 〉.
If any of the values computed in the preceding steps is too deeply nested,
then the values of the different input ports must be combined into a single
nested value, i.e., a list of tuples over which the processor can iterate. For
example, assume that va is a list of mime values and vb is a list of lists, while
the processor expects types M and [M], respectively. The computation of
the processor input value can then be thought of as consisting of two steps.
First, the values that were computed for the input ports are transformed
into values where the subvalues of the type that is expected are identified
by packing them in singleton tuples. Continuing the last example, the value
for the input port labeled a would be transformed to a list of tuples of type
〈 a :M〉 and the value for the input port labeled b would be transformed to a
list of tuples of type 〈 b : [M] 〉. Second, the product strategy of the processor
describes which combinations of the identified tuples are taken and how they
are nested in the result. For example, a strategy consisting of a single cross
product will combine all tuples in the first value with all tuples in the second,
resulting in a doubly nested list of tuples of type 〈 a :M, b : [M] 〉.

Performing the execution or the iteration

If the value computed in the preceding step is a tuple, the processor is exe-
cuted once, producing one result tuple with values for every output port. If
the processor input value is a list, it is iterated over by executing the pro-
cessor for each tuple in it. The result for each output port contains a list
of values from result tuples of subsequent iteration steps that is structured
accordingly to the nesting structure of the processor input list. Following the
previous example, if the processor has two output ports labeled c and d, and
is associated with a Taverna service with output type 〈 c : [M], d :M〉, then
the iteration will produce a list of lists with elements of type [M] for port
labeled c, and a list of lists with elements of type M for port labeled d.

Copying the computed output port values

When the normal execution or iteration has finished the values computed
in the processor output ports are copied to all processor input ports and
workflow outputs to which they are connected.
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2.5.2 Extended complex value construction and decon-
struction

As explained in the informal description of the semantics of processor execu-
tion in Section 2.5.1, we can describe the execution of a processor after the
processor input value has been computed as a process that takes a possibly
nested list of tuples, iterates over all tuples by executing the processor and
while doing so constructs for each output port a value by inserting, at the
position of the original tuple, the value that was computed for that output
port by the iteration step.

Since Vtup includes tuples, but not lists of tuples, we define an extended
complex value set Vext as the smallest set such that (1) Vtup ⊆ Vext and (2)
if x1, . . . , xn ∈ Vext then the list [x1, . . . , xn] is in Vext.

In order to identify the position of tuples and other subvalues in an ex-
tended complex value we introduce the notion of subvalue index. By a sub-
value of an extended complex value v we mean v itself, any element of v,
any element of element of v, and so on, up to the tuples. For example, if
v = [[a, b], [c]], where a, b and c are tuples, then all subvalues of v are: v,
[a, b], [c], a, b and c.

Definition 2.5.1 (Subvalue index). A subvalue index, or simply index, is a
list of positive natural numbers. Such indices are denoted by a list of numbers
separated by slashes, e.g., 2/3/8 and 1/1, and the empty list is denoted as ε.
The set of all complex value indices is denoted as I.

The numbers in an index are listed from most significant on the left, to
the least significant on the right. Following the last example, the subsequent
indexes of the mentioned subvalues of v are: ε, 1, 2, 1/1, 1/2 and 2/1.

Formally, the subvalue indicated by an index is defined by the function
get : Vext×I → (Vext∪⊥) such that get(v, ε) = v, and get(v, i/α) = get(vi, α)
if v = [v1, . . . , vn] and 1 ≤ i ≤ n, and get(v, i/α) = ⊥ otherwise. For example,
if v = [[a, b], [c]], then get(v, 2/1) = c and get(v, 2/2) = ⊥.

We assume that complex value indices are ordered according to the lex-
icographical ordering, i.e., the smallest binary relation � over I such that
for every i, j ∈ N and α, β ∈ I it holds that (1) ε � α, (2) if i ≤ j, then
i/α � j/β and (3) if α � β, then i/α � i/β. As usual this defines a linear
order over I.

In order to be able to iterate over all tuples in an extended complex value
we define a function that retrieves the index of the first tuple and a function to
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jump to the index of the next tuple. The first function is first : Vext → (I∪⊥)
which is defined such that first(v) = α where α is the smallest index such that
get(v, α) ∈ Vtup, and first(v) = ⊥ if there is no such α. The second function
is next : Vext×I → (I ∪⊥) and is defined such that next(v, α) = β if β is the
smallest index larger than α such that get(v, β) ∈ Vtup, and next(v, α) = ⊥
if such a β does not exist.

Finally, we define a function put(v, α, w) that inserts into the complex
value v at position α the complex value w, which can be used to construct
complex values. For example, put([x, [y]], 2/1, z) = [x, [z]] and put([], ε, z) =
z. If the position α does not yet exist in v then it is extended minimally
with empty lists to create it. For example, put([], 1/1/1, x) = [[[x]]] and
put([], 2/1, x) = [[], [x]]. Formally, this function put : Vtav × I × Vtav → Vtav
is defined such that (1) put(v, ε, w) = w, (2) put(v, i/α, w) = put([], i/α, w)
if v ∈ VM, (3) put([], 1/α,w) = [put([], α, w)], (4) put([v] + v′, 1/α,w) =
[put(v, α, w)] + v′, (5) put([], i/α, w) = [[]] + put([], (i− 1)/α,w) if i > 1, (6)
put([v] + v′, i/α, w) = [v] + put(v′, (i− 1)/α,w) if i > 1.

2.5.3 Incoming-links strategy semantics

Here we define the semantics of incoming-links strategy expressions which
are used to indicate how to compute the value for a processor input port or
workflow output by composing it from values provided from multiple incom-
ing data edges. The computation is done incrementally, that is, a temporary
result is extended each time a new value arrives from one of the data edges
that did not already supply a value. The lack of a previous temporary value
at the start of the process is represented by ⊥.

The select-first incoming-links strategy picks the first value to arrive and
ignores all the other. This is the default behavior of processor input ports
and workflow outputs. The function [[first]] : ((Vtav ∪ {⊥}) × Vtav) → Vtav
takes as the first argument the current temporary result and as the second
the value provided by the next data edge. As a result the new temporary
result is returned. Formally:

[[first]](t, v) =

{
v if t = ⊥
t otherwise

The merge incoming-links strategy combines all incoming values as ele-
ments of a list. It was added to Taverna 1.3.1 to prevent the need for creation
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of user defined n-argument processors that compose their arguments into a
list. As with select-first, the merge function [[merge]] : ((Vtav \ [[M]] ∪ {⊥})×
Vtav) → Vtav has two arguments, yet now the temporary value is never of
type M since it is a list of values provided so far. Formally:

[[merge]](t, v) =

{
[v] if t = ⊥
t+ [v] otherwise

Strictly speaking this is not a merge, but we adhere to the Taverna termi-
nology.

2.5.4 Product strategy semantics

Here we define the semantics of product strategy expressions ps ∈ PS. The
product strategy expressions are used to transform values from Vtav, that
are provided on individual input ports of a given processor p, to extended
complex values that contain tuples of type typei(λ(p)), i.e., lists of tuples
ready to be iterated upon by p.

The values provided on a processors’ input ports have to be combined into
a processor input value that is either a single tuple which can be processed by
the service that the processor represents or a nested list of such tuples. This
is done in two steps. The first step transforms each of the values provided
on every input port into a single unary tuple or a list of unary tuples. The
tuples’ field is labeled with the same label as the respective input port and
they contain values of the type that is expected on that port. The second
step combines such preprocessed values for processors with multiple input
ports into a single n-ary tuple or a nested list of those.

We now describe the first step in more detail. Its purpose is to identify
the subvalues that are of a nesting depth acceptable by the processor. For
example, if the value on the input port with label a is [[1, 2], [], [3]] and the
processor expects a value of type [M] on it, then the value is transformed
to [〈 a = [1, 2] 〉, 〈 a = [] 〉, 〈 a = [3] 〉]. If this is the only input port, then the
processor will iterate over the three values [1, 2], [] and [3]. If, on the other
hand, value of typeM is expected, then it is transformed to [[〈 a = 1 〉, 〈 a =
2 〉], [], [〈 a = 3 〉]] and the processor will iterate over the three values 1, 2
and 3. This is formalized by the packing function packl:τ : Vtav → Vext that
identifies nested values of type τ and packs them into tuples of type 〈 l : τ 〉.
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Formally, it is defined as follows:

packl:τ (x) =

{
〈 l = x 〉 if x ∈ [[τ ]]

[packl:τ (x1), . . . , packl:τ (xn)] if x = [x1, . . . , xn] 6∈ [[τ ]]

This function is well defined for every x ∈ Vtav, which can be shown with
induction on the structure of x and using the fact that VM ⊆ [[τ ]] for any τ ∈
Ttav. It is possible that a value of type τ contains a nested value that is also
of type τ . For example, if τ = [[M]] and x = [[[1]]], then there are in x three
nested values of type τ , namely 1, [1] and [[1]]. In that case the nested value
with the largest nesting depth is chosen and so packa:τ (x) = [〈 a = [[1]] 〉].
For a more elaborate example consider:

packa:[M]([[1], [[2], 3], 4])

= [packa:[M]([1]), packa:[M]([[2], 3]), packa:[M](4)]

= [〈 a = [1] 〉, [packa:[M]([2]), packa:[M](3)], 〈 a = 4 〉]
= [〈 a = [1] 〉, [〈 a = [2] 〉, 〈 a = 3 〉], 〈 a = 4 〉]

Note, that the values 3 and 4 are in [[[M]]] and therefore also packed in a
tuple.

We now proceed to the second step where we deal with the case of proces-
sors with multiple input ports. There the extended complex values computed
by the packing function have to be combined. For this the cross and dot prod-
uct strategy expressions are used to represent the × — cross and · — dot
product functions3. An intuition of how they work on flat lists has already
been given in Section 2.4.

For higher level lists the dot product used in Taverna fully flattens its
arguments, operates on the flat lists and structures the result according to
the structure of the argument with the highest nesting depth. For example,
if a, b, c, d and e are tuples, then [a, b] · [[c], [d, e]] = [[a ∪ c], [b ∪ d]], where
the union of tuple values is a well defined tuple since in product strategy
expressions each label from PL appears at most once. In the case where
both arguments have the same nesting depth the structuring occurs with
respect to the left one. For the formal definition of the dot product we define
three auxiliary notions.

3The functions × and · should not be confused with ⊗ and �, which are the corre-
sponding syntactical constructs in product strategy expressions.
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The first is the function flat∗ that flattens values in Vext, i.e., recursively
nested lists of tuples, to lists of tuples, e.g, if x1, x2 and x3 are tuples, then
flat∗([[[x1]], [[x2], [x3]]]) = [x1, x2, x3]. Formally, it is defined such that:

flat∗(x) =


[] if x = []

[x] if x ∈ Vtup
flat∗(x1) + . . .+ flat∗(xn) if x = [x1, . . . , xn]

The second notion is that of the tuple nesting depth of a value x in Vext,
denoted as tnd(x), which can be informally described as the maximum nesting
depth of tuples in x. It is formally defined such that (1) tnd(x) = 0 for
x ∈ Vtup, (2) tnd([]) = 1, and (3) tnd([x1, . . . , xn]) = 1 +max1≤i≤n(tnd(xi)).

Finally, a replace : Vext × Vext → Vext partial function is defined which
replaces all the subsequent tuple subvalues in the complex value provided as
the first argument with the subsequent elements of the tuple list provided
as the second argument. For example, assuming that every zi and ti is a
tuple, replace([[z1, z2], [z3]], [t1, t2, t3]) = [[t1, t2], [t3]]. Additionally, if the first
argument has more tuples than the second, the extra ones are ignored, e.g.,
replace([[z1], [z2, z3], [z4]], [t1, t2]) = [[t1], [t2]]. Similarly, we also ignore its sub-
values containing no tuples at all, e.g., replace([[z1, z2], [z3], []], [t1, t2, t3]) =
[[t1, t2], [t3]], but only if it does not change the positions of the other sub-
values, e.g., replace([[[z1], [z2]], [[]], [[z3, z4]]], [t1, t2, t3]) = [[[t1], [t2]], [], [[t3]]].
Formally, if z is a complex value such that flat∗(z) = [z1, . . . , zm] and t =
[t1, . . . , tn] where m ≥ n, then replace(z, t) = r where r is the smallest com-
plex value such that flat∗(r) = [r1, . . . , rn] and get(r, αi) = ri for all i = 1 . . . n
and α1, . . . , αn being the respective indexes of z1, . . . , zn in z. The ordering
of the complex values that we refer to in this definition is given such that: (1)
if a and b are tuples, then a ≤ b iff a = b, and (2) [a1, . . . , an] ≤ [b1, . . . , bm]
iff n ≤ m and for each i = 1, . . . , n it is true that ai ≤ bi. It is easy to see,
that this indeed defines a partial order.

With these notions we can now define the dot product. Let x and y be
complex values such that flat∗(x) = [x1, . . . , xn] and flat∗(y) = [y1, . . . , ym].
The dot product function · : Vext × Vext → Vext is defined such that x · y =
replace(zx,y, tx,y) where tx,y = [x1 ∪ y1, . . . , xmin(n,m) ∪ ymin(n,m)] and zx,y = y
if tnd(x) < tnd(y) and zx,y = x otherwise. It is easy to see that tx,y and zx,y
are well defined, and because n ≥ min(n,m) ≤ m so is the dot product.

Note that the pruning of the nested lists with no tuples by the replace
function is consistent with how Taverna works, e.g., for tuples a, b, c, d and e,
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it holds in Taverna that [[[]], [[a, b]]] · [c, d, e] = [[], [[a ∪ c], [b ∪ d]]]. Also note
that because of how zx,y is defined in the dot product function definition it
is the tuple nesting depth of the arguments that decides which of the two
arguments will determine the nesting structure of the result, as indeed is the
case in Taverna. An interesting alternative might be to always let the left
argument determine the nesting structure. That way the user can control
this by simply changing the order in the product strategy expression.

The generalization of the dot product in Taverna is not the only possible
generalization and may sometimes lead to unexpected results. To illustrate
this we propose here an alternative where the dot product is generalized
recursively. For example, if x = [x1, x2] and y = [y1, y2, y3], then x ·r y =
[x1 ·r y1, x2 ·r y2]. If x = [x1, x2] and y is a tuple, then x ·r y = [x1 ·r y], and if
both x and y are tuples, then x ·r y = x∪y. Formally, we define the recursive
dot product function ·r : Vext × Vext → Vext as follows:

k ·r l =



[] if flat∗(k) = [] or flat∗(l) = []

[k1 ·r l] if k = [k1, . . . , kn] and l ∈ Vtup
[k ·r l1] if k ∈ Vtup and l = [l1, . . . , lm]

[k1 ·r l1, . . . , kmin(n,m) ·r lmin(n,m)] if k = [k1, . . . , kn] and l = [l1, . . . , lm]

k ∪ l if k ∈ Vtup and l ∈ Vtup

To motivate the alternative definition let us analyze a simple example from

Figure 2.2: Recursive dot product motivation example

Fig. 2.2 where the initial value with an university department identifier, e.g.,
“informatics”, is used by two services, of which one produces a list of posi-
tions available in this department and other a list of scientists applying for
work there. The list of positions is sorted by their appeal and the scientists
are sorted according to their achievements. A third service is used to hire a
scientist for a position. To deal with the values of higher types it uses the
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dot product strategy. This way the best positions are assigned to the best
scientists and the hiring occurs while both positions and scientists are still
available. Observe now that if this Scufl graph is executed with a list of de-
partments identifiers, e.g., [“physics”,“bioinformatics”,“informatics”] and the
implicit iteration over “get positions” and “get applying scientists” returned
p = [[pp1, pp2], [pb1, pb2, pb3], [pi1, pi2]] and s = [[sp1, sp2, sp3], [sb1], [si1, si2]]
respectively, then the dot product of Taverna intermixes position and scien-
tists from different departments, i.e., the worst physicist sp3 will be hired
on the best bioinformatics position pb1 and the best informatician si1 will
be hired on the worst bioinformatics position pb3. Even if it is the case
that informaticians and especially physicists do well as bioinformaticians,
the informatics department becomes undermanned and does not get the best
people. Clearly our recursive definition of dot product does not intermix the
values, so scientists will only be hired by the departments they applied to
and the departments will be able to hire all the scientists that applied to
them as long as they have enough positions.

c£[[d;e];[f]]b£[[d;e];[f]]a£[[d;e];[f]]

a[d

x

a b c d fe a[fa[e b[d b[fb[e c[d c[fc[e

y
x£y

Figure 2.3: Cross product for higher list types

To understand the cross product of Taverna for higher list types it is
convenient to think of the nested lists as ordered trees with the leaves labeled
with tuple values. A tree interpretation of values x = [a, b, c] and y =
[[d, e], [f ]], where a, b, c, d, e and f are tuples, is given in Fig. 2.3. The cross
product of x and y is then obtained by replacing each of the leaf tuples tx in
x by a copy of the y tree that in turn has its every leaf tuple value ty replaced
by tx∪ ty (see Fig. 2.3). This in our case results in [[[a∪d, a∪ e], [a∪ f ]], [[b∪
d, b ∪ e], [b ∪ f ]], [[c ∪ d, c ∪ e], [c ∪ f ]]]. Formally, we define the cross product
function Vext × Vext → Vext as follows:

k × l =


[] if flat∗(k) = [] or flat∗(l) = []

[k1 × l, . . . , kn × l] if k = [k1, . . . , kn] and l 6= []

[k × l1, . . . , k × lm] if k ∈ Vtup and l = [l1, . . . , lm]

k ∪ l if k ∈ Vtup and l ∈ Vtup

32



Observe that the cross product of Taverna for flat lists is not a natural
version of the Cartesian product for lists. Although all the combinations
of the argument’s tuples are returned, the nesting structure of the result is
deeper, i.e., if x = [x1, . . . , xn] and y = [y1, . . . , ym], then x × y = [[x1 ∪
y1, . . . , x1 ∪ ym], . . . , [xn ∪ y1, . . . , xn ∪ ym]], while for the Cartesian product
one would expect [x1 ∪ y1, . . . , x1 ∪ ym, . . . , xn ∪ y1, . . . , xn ∪ ym]. A natural
generalization of the usual Cartesian product for lists can be obtained by
defining it recursively for higher order lists as follows:

k ×r l =



[] if flat∗(k) = [] or flat∗(l) = []

[k1 ×r l, . . . , kn ×r l] if k = [k1, . . . , kn] and l ∈ Vtup
[k ×r l1, . . . , k ×r lm] if k ∈ Vtup and l = [l1, . . . , lm]

[k1 ×r l1, . . . , k1 ×r lm,
. . . ,

kn ×r l1, . . . , kn ×r lm]

if k = [k1, . . . , kn] and l = [l1, . . . , lm]

k ∪ l if k ∈ Vtup and l ∈ Vtup
Notice, that when empty lists don’t appear, the nesting depth of the

result value for the cross product is the sum of the nesting depths of the
arguments and for the generalized Cartesian product it is the maximum. We
want to stress that the summing of nesting depths of the arguments in the
cross product used in Taverna may be sometimes unexpected for the user.
For example, when a Scufl graph with one input port of type M and one
output port type M is initiated with a list of lists of mime elements, then
most users would expect for it to result also with such a list. Yet, if at the
start of this Scufl graph a preprocessing of the input value takes place by a
binary operation for which a cross product is specified and both input ports
are connected to the workflow input, then the result will be a four times
nested list of mime elements. Even more interesting is the observation that
this will not be the case when such a Scufl graph is nested. Then, a full
implicit iteration will occur for the processor representing the nested Scufl
graph, i.e., the nested Scufl graph is executed on values of the expected type
and the implicit iteration mechanism collects the results into a list of the
same structure as the one that was iterated over.

Besides the different nesting of result values, the cross product of Taverna
and the generalized Cartesian product order the leaf elements differently, e.g.,
if a, b, c and d are tuples, x = [[a, b]], and y = [[c], [d]], then flat∗(x × y) =
[a ∪ c, a ∪ d, b ∪ c, b ∪ d], while flat∗(x×r y) = [a ∪ c, b ∪ c, a ∪ d, b ∪ d].
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Both operations, the cross product and the recursively generalized Carte-
sian product, may be useful to the user and it is not obvious how to simulate
one with the other.

Given the definitions of the cross and dot product we can now define the
semantics and typing of a product strategy ps for a processor in a certain
Scufl graph. Let τ be the input tuple type of the processor and ps a product
strategy such that L(ps) = dom(τ). Then we define for each such product
strategy ps and type τ a function [[ps]]τ : (L(ps) → Vtav) → Vext that maps
a tuple of complex values containing a field for each port label in ps to
an extended complex value over which the processor can execute or iterate.
Formally, we define this function as follows:

[[ε]]τ (t) = 〈〉
[[l]]τ (t) = packl:τ(l)(t(l))

[[(ps1 ⊗ ps2)]]τ (t) = [[ps1]]τ (t|L(ps1))× [[ps2]]τ (t|L(ps2))

[[(ps1 � ps2)]]τ (t) = [[ps1]]τ (t|L(ps1)) · [[ps2]]τ (t|L(ps2)).

All versions of cross and dot products defined here are binary expressions.
They can be easily generalized for more arguments thanks to the observation
that x× (y × z) = (x× y)× z and x · (y · z) = (x · y) · z regardless of which,
original or recursive, definition is chosen. In fact the generalized versions are
available in Taverna. Note also, that for higher level lists usually x×y 6= y×x,
so the order of port labels in the product strategy expression is important.

2.6 Transition system semantics

In this section we define the semantics of Scufl graphs in terms of a transi-
tion system, i.e., we specify a set of possible states of the Scufl graph and
which transitions are possible between these states. The following subsection
discusses the states, it is followed by subsections on auxiliary notions for de-
scribing the transitions, then the transitions themselves are discussed, and
the final subsection shows that the defined semantics can be used in proofs
of properties of Scufl graph.

2.6.1 Scufl graph state

The state of a Scufl graph is described in two levels. At the lowest level we
describe the so-called local state of each of the subgraphs. This local state
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consists of a descriptions of the states of the workflow inputs and outputs,
the processor input and output ports, and the processors themselves, but
only those that are directly part of the subgraph in question. At the highest
level the global state of a Scufl graph g is described by simply giving the local
states of all the Scufl graphs in Gg, i.e., all subgraphs, including the Scufl
graph itself. In the following we first define the notion of local state, followed
by a definition of the global state.

We start with an informal introduction of the components of a local state.
Consider the Scufl graph g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv). The work-
flow input value mapping Iv : I → (Vtav ∪ ⊥) stores the value associated
with each workflow input. The ⊥ represents the lack of value, which here
means that it has not been inserted yet or has already been pushed to the
connected processor input ports. Next, the workflow output value mapping
Ov : O → (Vtav ∪ ⊥), the input port value mapping ipv : πi → (Vtav ∪ ⊥)
and the output port value mapping opv : πo → (Vtav ∪⊥) store the values as-
sociated with workflow outputs, processor input ports and processor output
ports respectively. The stored values are constructed by the incoming-links
strategy function (see Section 2.5.3) in case of the workflow output value
mapping and the input port value mapping, or by the put function (see Sec-
tion 2.5.2) in case of the output port value mapping. This means that even
if they have already been defined, i.e., are not equal to ⊥, they may still be
extended with additional values arriving from further data edges or iteration
steps, respectively. Next, each processor itself can be in several states like
“scheduled” or “preparing”, which is specified by the execution state mapping
es : P → {“scheduled”,“preparing”,“waiting”,“finished”,“failed”}. The state
“scheduled” indicates that the processor has not yet been used. The state
“preparing” indicates that execution of this processor has already started but
the input value, or in case of iteration some of its subvalues, have still to
be processed. The state “waiting” indicates that the processor is waiting for
a nested Scufl graph or an external service to return a result4. The state
“finished” indicates that it has finished with success. Finally, “failed” indi-
cates that it has finished with failure. Finally, since a processor might have
to iterate, the current position in the iteration is stored by the iteration index
mapping ii : P → I.

4In official Taverna terminology the states that we call “preparing” and “waiting” are
divided into executing and iterating for when the processor is either processing a value
of its expected type or a value that is more deeply nested, respectively.
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Definition 2.6.1 (Local state). Given a Scufl graph g = (I, O, P, πi, πo, Ed,
Ec, λ, ils, ps, dv), a local state of g is a tuple ls = (Iv, Ov, ipv, opv, es, ii) such
that:

• Iv : I → (Vtav ∪ ⊥) is the workflow input value mapping,

• Ov : O → (Vtav ∪ ⊥) is the workflow output value mapping,

• ipv : πi → (Vtav ∪ ⊥) is the input port value mapping,

• opv : πi → (Vtav ∪ ⊥) is the output port value mapping,

• es : P → {“scheduled”,“preparing”,“waiting”,“finished”,“failed”} is the
processor state mapping,

• ii : P → I is the iteration index mapping.

We refer to the set of all local states for all Scufl graphs as LS. The input
port value of an input port (p, l), normally denoted as ipv((p, l)), will also be
written as ipv(p, l). Likewise the output port value of an output port (p, l)
will also be written as opv(p, l).

Scufl graphs do not have stateful features, such as counters or data-stores,
that can be read and updated during a run of the Scufl graph. So the
definition of a local state does not contain anything that represents the state
of such elements. Of course these can be simulated by defining a set of special
basic processors that have as their semantics that they read or write certain
data stores. However, also for such basic processors that represent calls to
stateful services, we do not represent the state of the service in the local state.
This is because we consider this state not a part of the Taverna system but a
part of the environment with which it communicates. It is possible to reason
about the behavior of Taverna while taking into account that a service it
calls has certain stateful behavior, e.g., is a counter. For that a description
of that behavior, ideally also in the form of a state transition system, has to
be composed with Taverna’s state transition system such that their mutual
transitions, i.e., the service calls, are synchronized.

Definition 2.6.2 (Global state). A global state of a Scufl graph g is a func-
tion gs : Gg → LS that associates with each subgraph g′ ∈ Gg a local state
of g′.
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Note that only one state is associated with each subgraph which means
that it executes only one run at any moment. Since we restrict ourselves
to hierarchically nested Scufl graphs (see Section 2.4.1) this cannot lead to
resource contention between different parts of the Scufl graph. Although
in Taverna it is possible to choose whether the iteration steps are executed
sequentially or in parallel, we will only describe here sequential execution.
It is possible to describe a semantics that would allow parallelism, see for
example [28, 26], but we have chosen not to do so in this thesis because it
would complicate the presentation of the main concepts of the semantics of
Scufl.

2.6.2 Ready ports and enabled processors

The fundamental notion that determines the execution of a Scufl graph is
the notion of enabledness of a processor, i.e., whether in a certain state a
processor can start processing its input. One necessary condition for this is
that all its input ports are ready, i.e., store a fully constructed input value.
In the following we describe these two notions in more detail.

Informally, a processor input port is said to be ready, if the value assigned
to it will not be further extended by the incoming-links strategy function (see
Section 2.5.3).

Definition 2.6.3 (Ready input port). Given a Scufl graph g = (I, O, P, πi,
πo, Ed, Ec, λ, ils, ps, dv) we say that input port pin ∈ πi is ready in a local
state ls = (Iv, Ov, ipv, opv, es, ii) iff pin either has no incoming data edges or
if pin has incoming data edges then it holds that :

(i) if ils(pin) = first, then the first value for pin has already arrived, i.e.,
ipv(pin) 6= ⊥, and

(ii) if ils(pin) = merge, then all the values for pin have already arrived,
i.e., the ipv(pin) is a list with length equal to the number of data edges
ending in pin.

Recall that input ports with no incoming edge must have a default value
specified, and therefore are always ready.

Note that if a select-first incoming-links strategy is specified, the port does
not wait for values from all incoming data edges, but is ready after receiving
the first one. On the other hand, if the merge incoming-links strategy is
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specified, the port has to wait for a value from every incoming data edge.
This way the merge setting can be viewed as a shortcut for an intermediary
processor with a separate input port for each incoming data edge and one
output port, that composes values from distinct ports into a list5.

The notion of readiness is extended to workflow outputs, which is natural
since the values stored there will also be constructed by the incoming-links
strategy function (see Section 2.5.3). There is a small exception to this in the
behavior of Taverna 1.7.1, where a workflow output with the merge strategy
may become ready even if only values from some of the incoming data edges
arrived and it is certain that no more will since the processors that should
produce them failed. However, this behavior seems to be idiosyncratic.

The notion of readiness now allows us to define the notion of enabledness.
Informally, a processor is said to be enabled, when it can start processing its
input. There are three conditions that have to hold for that to happen. First,
it has to be scheduled, which means that in the current run of the Scufl
graph it was not used yet. Second, all the processors that it synchronizes
with through the control edges must have already finished without a failure.
Finally, every one of its input ports has to be ready, i.e., a value has to be
available to be consumed from it, either one that was produced during the
computation or provided as default. Formally:

Definition 2.6.4 (Enabled processor). Given a Scufl graph g = (I, O, P, πi,
πo, Ed, Ec, λ, ils, ps, dv) and its local state ls = (Iv, Ov, ipv, opv, es, ii), a
processor p ∈ P is said to be enabled iff it holds that:

(i) es(p) = “scheduled”, and

(ii) for every control edge (p′, p) ∈ Ec, es(p′) = “finished”, and

(iii) each input port of p is ready in ls.

Notice that during one Scufl graph run each processor at the top level
can start processing of the input at most once, so it can produce at most one
result value and thus each data edge transports at most one value.

5Although, in the intermediary processor case the ordering of the elements of the result
list would be always the same and not correspond to order in which the input values have
arrived.
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2.6.3 Finished Scufl graphs

Here we explain when a Scufl graph is considered to be finished. Informally,
a Scufl graph is finished when all the workflow input values were propagated,
all values on processor output ports were propagated and there are no more
processors that can start preparing, are preparing or are waiting.

Definition 2.6.5 (Finished Scufl graph). A Scufl graph g = (I, O, P, πi, πo,
Ed, Ec, λ, ils, ps, dv) is said to be finished in a local state ls = (Iv, Ov, ipv, opv,
es, ii) iff it holds that:

(i) for every workflow input i ∈ I it holds that Iv(i) = ⊥,

(ii) for every processor output port (p, l) ∈ πo it holds that opv(p, l) = ⊥,

(iii) none of the scheduled processors is enabled, and

(iv) there are no preparing or waiting processors.

Furthermore, we say that the Scufl graph finished with a success, when
its every workflow output o ∈ O is ready, otherwise we say it finished with a
failure.

This definition of finishing with a success or failure is implied by the fact
that a Scufl graph can be nested and thus must produce values for its every
workflow output, so that the processor in which it is nested can produce
values on its every output port. However, in the real Taverna two exceptions
are present which we briefly discuss here. First, for a Scufl graph that is not
nested, i.e., the top level Scufl graph, it is enough to have at least one of its
workflow outputs ready so that it finishes with a success. Second, a nested
Scufl graph that iterates, i.e., was executed for a nested value in the value
computed by the product strategy, always finishes with a success, even if none
of its workflow outputs are ready. In the result of such iteration the empty
string is used to fill in the missing results for workflow outputs that were
not ready, but only when in a subsequent iteration step this workflow output
becomes ready. However, if during all iterations a nested Scufl graph has not
produced any value on a certain port, then the associated nested processor
will fail anyway. For example, assume a nested Scufl graph with one workflow
input and one workflow output is defined such that it returns its input value
when it is unequal to “x”, and no value otherwise. Then, if it iterates over
[“x”,“y”,“x”,“y”,“x”] it returns [“”,“y”,“”,“y”]. However, iterating with such
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a nested Scufl graph over a list with just “x” elements causes a failure of the
nested processor.

The inclusion of the extra empty values seems an attempt to save such
iterating nested Scufl graphs from failure. However, the empty values will
probably be misinterpreted in the remaining part of the Scufl graph in which
the iteration over the nested Scufl graph occurred. Moreover, the absence
of the extra empty values when they are not followed by ordinary results,
may also confuse the user. For example, consider the Scufl graph in Fig. 2.4,
where the nested Scufl graph is used to submit a paper to a PhD symposium
and apply for a grant to visit it, and the “Declaration of expenses” processor
has the dot product strategy specified. Let us assume, that this Scufl graph
is started with a list of three PhD students {“X”,“Y”,“Z”} and during the
iteration the papers written by “X” and “Z” are accepted, but for some formal
reasons they do not get grants and the paper written by “Y” is rejected,
but he gets a grant anyway since the money are available. That is the list
{“”,“gnY”}, where “gnY” is the grant number for “Y” is returned on the
output port grant number, and the list {“idX”,“”,“idZ”}, where “idX” is the
accepted paper identifier for“X”while“idZ” for“Z”, is returned on the output
port conference name. Now, if the “Declaration of expenses” processor is
not prepared to handle empty values,“X”will have his expenses refunded even
though he had no grant, “Y”will get money from his grant even though he did
not go to the symposium and “Z” will not have his expenses refunded, despite
the fact that he was in the same situation as “X”. Although the first thing
is not bad in this context, the remaining two probably are. Furthermore,
if the symposium chair was used to running this Scufl graph for individual
PhD students, he would probably be dissatisfied by the different behavior,
i.e., running this Scufl graph separately for any of “X”, “Y” and “Z” would
alert him with an error.

Therefore we have chosen not to allow in our formal semantics Taverna’s
exception for nested Scufl graphs and define them also to be finished with
failure if not all their workflow outputs have produced a value. For uniformity
we also do not allow Taverna’s exception for the top level Scufl graph, so also
there we define the notion such that all workflow outputs must produce a
result in order for it to finish with success.
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Figure 2.4: Iteration over a nested Scufl graph

2.6.4 Scufl graph initialization and result collection

When a Scufl graph starts execution its state needs to be reset such that
any remaining state properties such as intermediate and final results of the
previous execution are removed. Therefore we introduce the notion of an
initial state in which we reset the workflow outputs, the processor input ports,
the processor output ports, the processor states and the iteration indices.
Note that the workflow inputs are not required to be empty. Formally the
notion is defined as follows.

Definition 2.6.6 (Initial state). A local state ls = (Iv, Ov, ipv, opv, es, ii)
of Scufl graph g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv) is said to be an initial
state iff:

(i) Ov = {(o,⊥) | o ∈ O},

(ii) ipv = {(pin,⊥) | pin ∈ πi},

(iii) opv = {(pout,⊥) | pout ∈ πo},

(iv) es = {(p,“scheduled”) | p ∈ P}, and

(v) ii = {(p, ε) | p ∈ P}.

An initial state for which Iv−1({⊥}) = ∅, with Iv−1(X) := {i | Iv(i) ∈
X}, is called full, if Iv−1({⊥}) = I it is called clean and otherwise the initial
state is called partial.

In addition we define the function init to return the initial local state of
a given Scufl graph after initiating its workflow inputs with values stored on
fields of a given tuple. Formally, the function init : G×Vtup → LS is defined as
a partial function such that for a Scufl graph g and a tuple t where dom(t) ⊆ I
it holds that init(g, t) is the initial state (t∪ t̄, Ov, ipv, opv, es, ii) of g, where

41



t̄ = {(i,⊥) | i ∈ (I \ dom(t))}. Note that the returned initial state is full if
dom(t) = I.

We also define the function result to return the tuple of values computed
on the workflow outputs in a given local state of a given Scufl graph. For-
mally, the partial function result : LS → Vtup is defined such that result(ls) =
Ov if ls = (Iv, Ov, ipv, opv, es, ii) and Ov ∈ Vtup. Observe that result(ls) is
defined if a Scufl graph g finished with a success in local state ls.

2.6.5 State transitions

In this section we describe the possible transitions of the state of a Scufl
graph. Recall that a system and its state is defined by a hierarchical Scufl
graph g and a global state gs of g. For each type of transition we will specify
a precondition over gs that must be satisfied and specify the new global state
gs′ such that the transition gs gs′ is possible.

Before we proceed with the full description of the transitions, we summa-
rize them in a brief and informal overview:

Propagation of values from workflow inputs (PROPWI) The values
in the workflow inputs are propagated to the processor input ports and
workflow outputs to which they are connected by data edges. At their
destination they are added to any value that is already present there
according to the incoming-links strategy.

Initializing processor execution (INITPE) A scheduled and enabled
processor is prepared for execution, i.e., the output port values are
initialized and the iteration index is set to the first suitable value in
the result computed by the product strategy.

Starting a service call by a basic processor (STARTSC) A call is
made to the service associated with the basic processor, with the value
indicated by the iteration index as a parameter.

Finishing successfully a service call by a basic processor (SUCFSC)
A call to a service succeeds and returns a value. The value is distributed
and inserted into the different output port values of the processor. The
iteration index is moved to the next suitable value.

Failure of a service call by a basic processor (FAILSC) A call to a
service fails and so the whole execution of the processor fails.
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Starting a nested Scufl graph execution (STARTNSGE) The nested
Scufl graph is initialized with the value indicated by the iteration index.

Finishing successfully a nested Scufl graph execution (SUCFNSGE)
The nested Scufl graph finishes with success and returns a value. This
value is distributed and inserted into the different output port values of
the processor. The iteration index is moved to the next suitable value.

Failure of a nested Scufl graph execution (FAILNSGE) The nested
Scufl graph finishes with failure, and so the whole execution of the
processor fails.

Finishing processor execution (FINPE) If the iteration index is unde-
fined because there is no next suitable value, the executing of the pro-
cessor finishes with a success.

Propagation of values from processor output ports (PROPOP) If a
processor is finished, but not failed, the values of its output ports are
propagated to the processor input ports and workflow outputs to which
they are connected by data edges. At their destination they are added
to any value that is already there according to the specified incoming-
links strategy.

We now describe the transitions in full detail using the following notation.
For a local state ls = (Iv, Ov, ipv, opv, es, ii) we let ls[Iv := Iv′] denote the
local state (Iv′, Ov, ipv, opv, es, ii). In a similar fashion we define ls[Ov :=
Ov′], ls[ipv := ipv′], ls[opv := opv′], ls[es := es′] and ls[ii := ii′], as the
local states equal to ls but with the indicated tuple position replaced with
the new value. For a function f and values x and y, we let f [x 7→ y] denote
the function that is equal to f except that it maps x to y, i.e., the function
{(x′, y′) | (x′, y′) ∈ f, x′ 6= x}∪{(x, y)}. For two functions f and h, we let f [h]
denote the function equal of f except for values x for which h is defined, which
are mapped to h(x), i.e., the function {(x′, y′) ∈ f | ¬∃y′′ : (x′, y′′) ∈ h} ∪ h.

Propagation of values from workflow inputs (PROPWI)

Consider a workflow input i ∈ I. If the value of i is defined, i.e., Iv(i) 6= ⊥,
then this value is removed from the workflow input and added to the input
ports and workflow outputs to which i is connected with a data edge. For
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each such input port and workflow output the data is added as specified by
the corresponding incoming-links strategy. Formally:

precondition: g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv, Ov, ipv, opv, es, ii),
i ∈ I, Iv(i) 6= ⊥

transition: gs gs[g 7→ ls′] where
ls′ = ls[Iv := Iv[i 7→ ⊥]][Ov := Ov[Ov′]][ipv := ipv[ipv′]], with
Ov′ = {(o, [[ils(o)]](Ov(o), Iv(i)) | o ∈ O, (i, o) ∈ Ed} and
ipv′ = {(pin, [[ils(pin)]](ipv(pin), Iv(i))) | pin ∈ πi, (i, pin) ∈ Ed}

Note that if a workflow input has no outgoing data edges, its value is anyway
reset to ⊥.

Initializing processor execution (INITPE)

Consider an enabled processor p ∈ P in state “scheduled” and let v be the
value computed by the product strategy of p from its available input port
values and default values, i.e., v = [[ps(p)]]typei(p)(t1 ∪ t2) where t1 is the
tuple constructed from the available values on the input ports and t2 is the
tuple constructed from the default values for the input ports for which no
value is available, i.e., t1 = {(l, ipv(p, l)) | (p, l) ∈ πi, ipv(p, l) ∈ Vtav} and
t2 = {(l, dv(p, l)) | (p, l) ∈ πi, ipv(p, l) = ⊥}. The output port values of
the output ports of the processor p are initialized with an empty list, the
iteration index of p is set to the first iteration value in v, and the state of the
processor is set to “preparing”. Formally:

precondition: g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p ∈ P , p is enabled in ls, es(p) = “scheduled”,
t1 = {(l, ipv(p, l)) | (p, l) ∈ πi, ipv(p, l) ∈ Vtav},
t2 = {(l, dv(p, l)) | (p, l) ∈ πi, ipv(p, l) = ⊥},
v = [[ps(p)]]typei(p)(t1 ∪ t2)

transition: gs gs[g 7→ ls′] where
ls′ = ls[opv := opv[opv′]][es := es[p 7→ “preparing”]][ii := ii[p 7→
first(v)]], with opv′ = {((p, l), []) | (p, l) ∈ πo}
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Starting a service call by a basic processor (STARTSC)

Consider preparing basic processor p ∈ P and let v again be the value com-
puted by the product strategy of p from its input port values. The precon-
dition is that in v there is a next iteration element, i.e., ii(p) ∈ I, and that
the service was not yet called for this element, i.e., es(p) = “preparing”, then
the execution state of p is set to “waiting”. This models the real world event
that the service λ(p) is called with the parameters get(v, ii(p)). Formally:

precondition: g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p ∈ P , λ(p) ∈ TS, es(p) = “preparing”, ii(p) ∈ I

transition: gs gs[g 7→ ls[es := es[p 7→ “waiting”]]]

Finishing successfully a service call by a basic processor (SUCFSC)

Consider a basic processor p ∈ P that is waiting for the result of a service
call, i.e., es(p) = “waiting”, and let v again be the value computed by the
product strategy of p from its input port values. For a possible result of such
a service call the respective fields are inserted into the output port values
at the position indicated by the iteration index, the execution state is set to
“preparing”and the iteration index is advanced one position. This models the
real world event that the previously made service call succeeds and returns
a certain value. Formally:

precondition: g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p ∈ P , λ(p) ∈ TS, es(p) = “waiting”,
t1 = {(l, ipv(p, l)) | (p, l) ∈ πi, ipv(p, l) ∈ Vtav},
t2 = {(l, dv(p, l)) | (p, l) ∈ πi, ipv(p, l) = ⊥},
v = [[ps(p)]]typei(p)(t1 ∪ t2), (get(v, ii(p)), t) ∈ [[λ(p)]],

transition: gs gs[g 7→ ls[opv := opv[opv′]][es := es′][ii := ii′]] where
opv′ = {((p, l), put(opv(p, l), ii(p), t(l))) | (p, l) ∈ πo},
es′ = es[p 7→ “preparing”] and
ii′ = ii[p 7→ next(v, ii(p))]
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Failure of a service call by a basic processor (FAILSC)

Consider a basic processor p ∈ P . If the processor is waiting for the result of
a call, i.e., es(p) = “waiting”, then the call might fail and its execution state
becomes“failed”. This models the real world event that the call to the service
λ(p) failed. This leads to the following formal specification of the transition:

precondition: g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p ∈ P , λ(p) ∈ TS, es(p) = “waiting”

transition: gs gs[g 7→ ls[es := es[p 7→ “failed”]]]

Starting a nested Scufl graph execution (STARTNSGE)

This transition is very similar to the starting of a service call by a basic
processor, except that the processor is not a basic processor but a nested
Scufl graph and rather than starting a call to a service the nested Scufl
graph λ(p) is initialized for this iteration element. Formally:

precondition: g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p ∈ P , λ(p) ∈ G, es(p) = “preparing”, ii(p) ∈ I,
t1 = {(l, ipv(p, l)) | (p, l) ∈ πi, ipv(p, l) ∈ Vtav},
t2 = {(l, dv(p, l)) | (p, l) ∈ πi, ipv(p, l) = ⊥},
v = [[ps(p)]]typei(p)(t1 ∪ t2)

transition: gs  gs[g 7→ ls[es := es′]][λ(p) 7→ init(λ(p), get(v, ii(p)))]
where
es′ = es[p 7→ “waiting”]

Finishing successfully a nested Scufl graph execution (SUCFNSGE)

This transition is very similar to the finishing successfully of a service call
by a basic processor, except that the processor is not a basic processor but
a nested Scufl graph and it is required in the precondition that the nested
Scufl graph λ(p) must have finished with success in gs(λ(p)), and the result
tuple is composed from the output ports of the nested Scufl graph, i.e., t =
result(gs(λ(p))). Formally:
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precondition: g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p ∈ P , λ(p) ∈ G, es(p) = “waiting”,
λ(p) finished with a success in gs(λ(p)),
t1 = {(l, ipv(p, l)) | (p, l) ∈ πi, ipv(p, l) ∈ Vtav},
t2 = {(l, dv(p, l)) | (p, l) ∈ πi, ipv(p, l) = ⊥},
v = [[ps(p)]]typei(p)(t1 ∪ t2), t = result(gs(λ(p))),

transition: gs gs[g 7→ ls[opv := opv[opv′]][es := es′][ii := ii′]] where
opv′ = {((p, l), put(opv(p, l), ii(p), t(l))) | (p, l) ∈ πo},
es′ = es[p 7→ “preparing”] and
ii′ = ii[p 7→ next(v, ii(p))]

Failure of a nested Scufl graph execution (FAILNSGE)

This transition is very similar to the failure of a service call by a basic pro-
cessor, except that the processor is not a basic processor but a nested Scufl
graph and it is required in the precondition that the nested Scufl graph λ(p)
must have finished with a failure in its local state gs(λ(p)). Formally:

precondition: g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p ∈ P , λ(p) ∈ G, es(p) = “waiting”,
λ(p) finished with a failure in gs(λ(p))

transition: gs gs[g 7→ ls[es := es[p 7→ “failed”]]]

Finishing processor execution (FINPE)

If the processor is preparing and there is no next iteration index, then the
state of the processor becomes “finished”. Formally:

precondition: g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv, Ov, ipv, opv, es, ii),
p ∈ P , es(p) = “preparing”, ii(p) = ⊥

transition: gs gs[g 7→ ls[es := es[p 7→ “finished”]]]
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Propagation of values from processor output ports (PROPOP)

Consider a processor output port (p, l) ∈ πo. If the value of (p, l) is defined,
i.e., opv(p, l) 6= ⊥ and the processor is finished, but not failed, then this value
is removed from the processor output port and added to the input ports and
workflow outputs to which output port (p, l) is connected with a data edge.
For each such input port and workflow output the data is added as specified
by the corresponding incoming-links strategy. Formally:

precondition: g = (I, O, P, πi, πo, Ed, Ec, λ, ils, ps, dv),
gs(g) = ls = (Iv, Ov, ipv, opv, es, ii),
(p, l) ∈ πo, opv(p, l) 6= ⊥, es(p) = “finished”

transition: gs gs[g 7→ ls′] where
ls′ = ls[Ov := Ov[Ov′]][ipv := ipv[ipv′]][opv := opv[(p, l) 7→ ⊥]], with
Ov′ = {(o, [[ils(o)]](Ov(o), opv(p, l)) | o ∈ O, ((p, l), o) ∈ Ed} and
ipv′ = {(pin, [[ils(pin)]](ipv(pin), opv(p, l))) | pin ∈ πi, ((p, l), pin) ∈ Ed}

Note that if a processor output port has no outgoing edges, its value is anyway
reset to ⊥.

Scufl graph run

The specification of possible transitions defines a transition system that can
be used to describe the semantics of Scufl graphs. An instance of a computa-
tion of a particular Scufl graph g, i.e., a sequence of successive global states
reached during the computation, will be called a run6. We will denote a run
of global states gs1, . . . , gsn of g as gs1  . . . gsn, by which we mean that
gsi  gsi+1 for each 1 ≤ i ≤ n− 1.

A run gs1  . . .  gsn of g will be called a cleanly initialized run if it
starts with an initial local state of g, i.e., gs1(g) is initial, and clean initial
local states of all the nested graphs, i.e., for all g′ ∈ Gg such that g′ 6= g the
local state gs1(g′) is a clean initial state.

2.6.6 Soundness of the transition system

To check the completeness of our semantics definition we are going to formally
prove a property of Scufl graphs, which states that for every Scufl graph g all

6In the next chapter we will also use the term run in Definition 3.7.8, yet it will be in
a different context and the second definition does not cause ambiguity.

48



its cleanly initialized runs that start with g initialized with any input values
of any type7 and possibly missing input values eventually finish, either with
success or with failure.

At the same time this exercise shows that the formal semantics as defined
in this thesis can be used in proofs of this kind.

Theorem 2.6.7. For every Scufl graph g and any of its cleanly initialized
runs gs1  . . . gsn:

(i) there is a maximum number of steps that this run can be extended with,
i.e., such m ∈ N that for every run gs1  . . . gsn  gsn+1  . . . 
gsk of g it holds that k ≤ m, and

(ii) if in gsn none of the transitions is possible then g is finished.

Proof of Theorem 2.6.7 In the following we assume g to be a Scufl graph
and gs its global state.

We first show that the runs are of finite length. The idea is to show that
the global state of g in some sense decreases with each transition and this
decreasing cannot proceed indefinitely. For that we define a global state vector
which is a natural number vector. The composition of the vector is based on
the properties of combined local states of the Scufl graphs that occupy the
same level of the tree given by the nesting graph Ng (in the following referred
to as the nesting tree)8, i.e., graphs that as the nodes of the tree have the
same depth. Let Ng(k) be the set of graphs at depth k of the nesting tree
Ng, i.e., Ng(0) = {g} and Ng(k + 1) = {g′ | (g, p, g′) ∈ E, g ∈ Ng(k)}. For
each non-empty level k of the nesting tree the vector contains six subsequent
properties: (1) the total number of workflow inputs of graphs gk ∈ Ng(k)
which in gs(gk) are not empty, (2) the total number of processors of graphs
gk ∈ Ng(k) that in gs(gk) are scheduled, (3) the total number of processors
of graphs gk ∈ Ng(k) that in gs(gk) are neither finished nor failed, (4) the
total number of elements that still have to be iterated by processors of graphs
gk ∈ Ng(k) in gs(gk), (5) the total number of processors in graphs gk ∈ Ng(k)
that in gs(gk) are preparing (6) the total number of processor output ports
in gk ∈ Ng(k) that in gs(gk) are empty.

7Under our liberal type semantics this includes heterogeneous values, and therefore all
complex values.

8Recall (see Section 2.4.1) that we assume Scufl graphs to be hierarchically nested and
thus the nesting graph Ng is a tree.
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The following functions of signature N→ N give the values of those prop-
erties. In their definition we assume that gk = (Ik, Ok, P k, πki , π

k
o , E

k
d , E

k
c , λ

k,
ilsk, psk, dvk) and gs(gk) = (Ivk, Ovk, ipvk, opvk, esk, iik).

1. notewfigsg (k) =
∣∣{ i | i ∈ Ik, Ivk(i) 6= ⊥, gk ∈ Ng(k) }

∣∣
2. pschedgsg (k) =

∣∣{ p | p ∈ P k, esk(p) = “scheduled”, gk ∈ Ng(k) }
∣∣

3. pnotffgs
g (k) =∣∣{ p | p ∈ P k, esk(p) 6= “finished”, esk(p) 6= “failed”, gk ∈ Ng(k) }

∣∣
4. iterleftgsg (k) =

∑
{ togo(v, i) | p ∈ P k, iik(p) = i, gk ∈ Ng(k) }

5. pprepgsg (k) =
∣∣{ p | p ∈ P k, esk(p) = “preparing”, gk ∈ Ng(k) }

∣∣
6. ewfogsg (k) =

∣∣{ o | o ∈ Ok, Ovk(i) = ⊥, gk ∈ Ng(k) }
∣∣

where togo(v, i) : Vext × I → (Vext ∪ ⊥) is defined such that togo(v, i) = 0 if
get(v, i) = ⊥ and togo(v, i) = 1 + togo(v, i) if get(v, i) 6= ⊥. It is easy to see
that the functions are well defined in any state of a cleanly initialized run.

In the vector the components corresponding to smaller depths in the
nesting tree precede the ones for bigger depths. Formally the vector is defined
as follows:

(notewfigsg (0), pschedgsg (0), pnotffgs
g (0), iterleftgsg (0), pprepgsg (0), ewfogsg (0)

. . .

notewfigsg (hg), pschedgsg (hg), pnotffgs
g (hg), iterleftgsg (hg), pprepgsg (hg), ewfogsg (hg))

where hg is the height of the nesting tree, i.e., the biggest number k such
that Ng(k) 6= ∅. Observe that the vector is thus of finite size determined by
the height of the nesting tree, i.e., its size is equal six times the height of the
nesting tree.

We are now going to show that under a lexicographical ordering each
transition in a cleanly initialized run decreases the global state vector. For
that we are going to list how each state transition changes the vector:

PROPWI does not increase any component and decreases the number of
not empty workflow inputs (1),
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INITPE increases the number of remaining iterations (4) and the number
preparing processors (5), but at the same time decreases the number
of scheduled processors (2),

STARTSC does not increase any component and decreases the number of
preparing processors (5),

SUCFSC increases the number of preparing processors (5), but at the same
time decreases the number of remaining iterations (4),

FAILSC does not increase any component and decreases the number of
processors that are neither finished nor failed (3),

STARTNSGE increases the part of the vector that corresponds to the
nested Scufl graph, which is on a bigger depth thus less important
in our ordering, and decreases the number of scheduled processors (2),

SUCFNSGE similarly as SUCFSC increases the number of preparing pro-
cessors (5), but at the same time decreases the number of remaining
iterations (4),

FAILNSGE does not increase any component and decreases the number of
processors that are neither finished nor failed (3),

FINPE does not increase any component and decreases the number of pro-
cessors that are neither finished nor failed (3),

PROPOP decreases the number of empty workflow outputs (6).

It is well known from set theory that the set of natural number vectors of a
given length with lexicographical ordering is a well-founded partially ordered
set and thus it does not contain an infinite descending chain. For the self
containment of this work we show this formally in the Appendix A (see
Corollary A.0.7). This proves that all runs are of finite length, since from the
non-existence of an infinite descending chain it follows that there is a bound
on the number of transitions by which a given run can be extended.

To complete the proof of Theorem 2.6.7 we are going to show that if a
state has been reached in which no transitions are possible, i.e., none of the
transitions has its preconditions satisfied, then g is finished. The proof will
follow by induction on the height of the nesting tree Ng
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We first assume that the nesting tree Ng is of height 1 and that in a global
state gs′ of g none of the transitions has its preconditions satisfied. We will
show that g is finished in gs′(g). For that we look at the four conditions
in definition 2.6.5. It is clear that (i) directly follows from the unfulfillment
of the preconditions for transition PROPWI, (ii) directly follows from the
unfulfillment of the preconditions for transition PROPOP and (iii) directly
follows from the unfulfillment of the preconditions for transition INITPE. As
for (iv) let us first notice that if the nesting tree Ng is of height 1, then g
contains only basic processors, i.e., Ng = {{g}, ∅}. If there would be any
preparing processor, then either STARTSC or FINPE transitions would be
possible depending on whether there is a next iteration element for that
processor. Also, if there would be any waiting processor, then both the
SUCFSC and FAILSC transitions would be possible9. Thus all the conditions
for a finished Scufl graph are satisfied.

We now assume that the thesis holds for all the Scufl graphs with the
nesting tree of height smaller or equal to n and we are going to show that it
also holds for all graphs with the nesting tree of height n+1. Let the nesting
tree Ng be of height n + 1 and let gs′ be a global state g such that none of
the transitions has its preconditions satisfied. We will show that g is finished
in gs′(g). As before we look at the conditions in the definition 2.6.5. For
conditions (i), (ii) and (iii) the reasoning follows. As for (iv) the argument
for non-existence of preparing processors remains the same. Similarly for
the non-existence of waiting basic processors. The only thing left to show
is that there are no waiting processors that represent nested Scufl graphs.
Let us assume by contradiction that a waiting processor p exists in g and
represents a nested Scufl graph. Because preconditions for SUCFNSGE and
FAILNSGE transitions are not satisfied, then the nested Scufl graph of p
cannot be finished. Yet, the nesting tree of that nested Scufl graph is of
height smaller or equal to n and since we have assumed that no transitions
are possible, it follows from the induction assumption that the nested Scufl
graph is finished. This completes the proof by contradiction and thus the
proof by induction.

It is easy to see that a cleanly initialized run of a Scufl graph may finish
with failure if (1) not all input port values are available or if (2) a basic
processor fails. In both cases some processors can never produce their output

9Recall that we do not include the state of the external services in our formal model
and thus there is no dependency on any such state in the preconditions for the transitions.
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which may prevent some or all workflow outputs from becoming ready. It
can also be observed that (1) and (2) are the only reasons for a Scufl graph
not to succeed and thus for every Scufl graph g all its cleanly initialized runs
that start with g in a fully initialized local state, i.e., with all the workflow
input values present, eventually terminate with success if we exclude the
failure of transitions. Although we do not give here a formal proof, this
follows intuitively from the facts that processors without input ports are
immediately enabled, all processor input ports have either incoming data
edges or a default value specified and because Scufl graphs contain no cycles.

2.7 Dealing with heterogeneous values in Tav-

erna

Until now in the discussion of the semantics of Scufl we focused our attention
on homogeneous lists. Yet, heterogeneous values can be created in Taverna
with the use of the merge incoming-links strategy or by an iteration on a
processor that returns values with various nesting depths in its subsequent
executions, e.g., sometimes lists and sometimes lists of list. Unfortunately,
heterogeneous values are not processed consistently in the current implemen-
tation of Scufl. In Section 2.2 we gave an example that some services, i.e., the
built-in flatten operation, are not prepared to handle such values. Further-
more, the way the dot product is implemented in Taverna yields sometimes
rather unexpected results for heterogeneous values. Informally, the dot prod-
uct in Taverna is computed by iterating over the tuples in both arguments.
During the iteration, the subsequent pairs of tuples are combined, i.e., first
with first, second with second and so on. The combinations are placed in
the result nested list on positions pointed by the longer of the indexes of
the combined tuples. If both indexes have the same length, the left one
is chosen. This is different from our definition of the · operator from Sec-
tion 2.5.4 because we structure the result according to the argument with the
higher nesting depth, which means that the indexes for tuples combinations
are taken from an argument chosen in advance and not determined for each
combination of tuples separately. Of course, for homogeneous values both
methods produce the same results, since for homogeneous list all its tuple
indexes have the same length. Yet, in Taverna the resulting indexing can
contain gaps. For example, if a, b, c, x, y and z are tuples, and a dot product
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of [[[a, b]], c] and [[x, y, z]] is computed, then the result would contain: a ∪ x
on index 1/1/1, b∪y on index 1/1/2 and c∪z on index 1/3. The 1/2 position
would have to be filled up by some kind of empty value. This problem does
not occur if the definitions of dot product from Section 2.5.4 are taken, i.e.,
[[[a, b]], c]·[[x, y, z]] = [[[a∪x, b∪y]], c∪z] and [[[a, b]], c]·r [[x, y, z]] = [[[a∪x]]].

Here we discuss two possible solutions to the heterogeneous values prob-
lem in Taverna. One, is to adopt the formal semantics from this thesis
which seems intuitive while at the same time allows heterogeneous values
everywhere and deals with them consistently. We elaborate on this in Sec-
tion 2.7.1. The other solution is to avoid heterogeneous values at all, which
we discuss in further detail in Section 2.7.2.

2.7.1 Allowing heterogeneous lists

The semantics defined in this thesis deals with heterogeneous lists intuitively
and consistently, yet its adoption in the workbench may require additional
effort for adjusting some of the services. For examples, for the built-in flatten
operation a definition is possible that processes the heterogeneous values
consistently, that is:

flat(x) =

{
[] if x = []

list(x1) + . . .+ list(xn) if x = [x1, . . . , xn]

where list(x) = x for list values and list(x) = [x] for mime values. Note,
that with this definition, flattening of [[x], [[y]]] yields [x, [y]] and not [[x], [y]]
as it is the case in Taverna.

It is also possible to extend the type coercion mechanism described in
Section 2.2. If a certain service that requires its input lists to be homogeneous
and of a specific nesting depth, gets a value that is non homogeneous or is
of lower nesting depth, then there is always an intuitive interpretation of
subvalues in that value as more deeply nested ones, namely by nesting them
in singleton lists. For this a homogenisation function homτ : [[τ ]] → [[τ ]] can
be used, that maps all complex values of type τ to homogeneous complex
value with the maximum nesting depth possible in τ . It is defined such that:

• homM(x) = x,

• hom[τ ](x) = [homτ (x)], if x ∈ [[τ ]], and
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• hom[τ ]([x1, . . . , xn]) = [homτ (x1), . . . , homτ (xn)], if [x1, . . . , xn] 6∈ [[τ ]].

The function homτ packs values that do not have the maximum nesting
depth allowed in τ into singleton lists, and if the value does have the right
nesting depth and τ = [σ] then it applies itself to the elements of the
list for the type σ. For example, hom[[[M]]]([1, [2]]) = [hom[[M]]([1, [2]])] =
[[hom[M](1), hom[M]([2])]] = [[[homM(1)], [homM(2)]]] = [[[1], [2]]]. Thanks to
this function we can safely assume that all services can deal with all homo-
geneous and heterogeneous complex values that belong to their input type.

It is worth pointing out that the existence of such type coercion is consis-
tent with Taverna’s philosophy of trying to fix the type mismatches for the
user.

2.7.2 Adapting the semantics to avoid heterogeneous
lists

Assuming that the heterogeneous values cannot be provided by the user,
i.e., as workflow inputs or default values, to avoid them always, we have
to make sure that they cannot be obtained during the computation. New
values appear in a Scufl graph in the following cases: (1) they are produced
in a processor execution, (2) they are created in the incoming-links strategy
computation, (3) they are created in the product strategy computation, or
(4) they are produced in a processor iteration.

As for (1), a service that was provided with only homogeneous values as
arguments could produce heterogeneous results. One possibility is to inter-
pret this as a failure, another is to always adapt the result value with the
homogenisation function, i.e., if the service call returns v, then use homτ (v)
as the result, where τ is the smallest type of v.

As for (2), the select-first strategy does not change the values, so it cannot
cause a heterogeneous value to appear. Yet, the merge strategy can, if the
subsequent values provided to it are of different nesting depth. Similarly as
in (1), this can be remedied with the use of the homogenisation function to
extend the merge function as follows:

[[mergehom]](t, v) =

{
[v] if t = ⊥
hommin({τ |(t+[v])∈[[τ ]]})(t+ [v]) otherwise

where min : P(Ttav)→ Ttav returns the minimal type in a set of types.
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As for (3), neither the dot nor the cross product can produce hetero-
geneous values from homogeneous arguments, regardless which definition is
chosen, so no extra care is necessary.

Finally, as for (4), a heterogeneous value can be created, if the processor
returns results with different nesting depths in the subsequent iteration steps.
Again, this can be solved with the use of homogenisation function, this time
to extend the put function such that:

puthom(v, α, t) =

{
put(v, α, t) if put(v, α, t) = ⊥
hommin({τ |put(v,α,t)∈[[τ ]]})(put(v, α, t)) otherwise

2.8 Related work on Scufl semantics

Here we compare the presented work on Scufl semantics with that of Turi et
al. in [60]. In that work a calculus is defined to represent Scufl graphs and a
semantics is defined for them in terms of function that map workflow input
values to a workflow output value.

The most important difference is that in our work we assume that calls
to services have side effects, or, in other words, are observable events that
are part of the behavior of the system. This means that two computations
that call services in a different order or a different number of times, are
not considered as equivalent, even if they compute the same output value.
Therefore we describe the semantics of a Scufl graph not in terms of functions,
but in terms of a transition system that describes which calls are made in
which order, which arguments were passed, and which output values are
produced in the workflow outputs as the result of the Scufl graph execution.
A consequence of the side-effect assumption is that, contrary to what Turi
et al. assume, nesting a Scufl graph is no longer a purely syntactic construct
because it synchronizes the consumption of values on the input ports and
the production of values on the output ports, and so changes the observable
behavior of the transition system. The same holds for the control edge, which
can only have meaning if the order of computations is an observable aspect
of the system.

The second difference with the work by Turi et al. is that their syntax
is defined by a statically typed calculus. Since a Scufl graph is polymorphic
and can work on inputs of different types, its semantics cannot always be de-
scribed by a single calculus expression and may require a different one for each
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possible type of input value. In addition, the coercion to more deeply nested
list types by wrapping and the implicit iteration strategy have to be made
explicit in calculus expressions. As a result the mapping of a real Scufl graph,
as described in our work, given certain presumed input types for the workflow
inputs, to a calculus expression is not simple. In fact, certain peculiarities of
Taverna’s implicit iteration semantics seem to require operations that are not
expressible in the calculus presented by Turi et al. For example, during itera-
tion at deeper nesting levels, certain empty lists are removed. If the identity
processor that expects type M receives the value [[[]], [[v, w], []], [[]], [[x]], [[]]]
with v, w, x ∈ VM then it returns [[], [[v, w]], [], [[x]]]. Simulating this in the
calculus would require a test for empty lists. Another example is the dot
product at deeper nesting levels. Assume a processor with two input ports
that computes the function F (x, y), expectsM on both its ports, and has the
dot product iteration strategy. If it receives the values v = [[v1, v2], [v3, v4]]
and w = [w1, w2, w3] with v1, v2, v3, v4, w1, w2, w3 ∈ VM, then the result is
[[F (v1, w1), F (v2, w2)], [F (v3, w3)]]. It is possible to compute F for the listed
combinations by first flattening v, but the result would then be the flat list
[F (v1, w1), F (v2, w2), F (v3, w3)]. The difficulty lies in simulating that the re-
sult is nested according to the structure of v. So both types of behavior do
not seem easily expressible in the calculus unless special operators are added.

The third and last difference is that failure of processors and nested Scufl
graphs is not taken into account in the calculus by Turi et al. It can be
argued that this aspect should be dealt with at a lower abstraction level, and
in Taverna 1 there are indeed other mechanisms such as the specification of
the number of retries and alternative services to deal with this. Moreover, in
Taverna 2 the concept seems to have been removed entirely from the language
level. However, we maintain that it is an interesting and useful feature to have
at the language level, for example for specifying powerful fall-back strategies
in Scufl itself. It is also essential for understanding the semantics of Scufl in
Taverna 1, if only because it is used to represent conditional branching as
discussed in Section 2.4.
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Chapter 3

DataFlow Language

The complexities of the presented formal semantics of Taverna show that it
is desirable to have a cleaner model. In this chapter we propose a new formal
language to define COSWs which we call DataFlow Language (DFL) [28, 26].
It is a common extension of (1) Petri nets, which are responsible for the or-
ganization of the processing tasks, and (2) nested relational calculus, which is
a database query language over complex objects, and is responsible for han-
dling collections of data items, in particular for iteration, and for the typing
system. We also show that the existing theoretical results available for the
components can be easily adapted for DFL. Finally, we present DFL designer,
which is a tool that allows to design, enact and analyze DFL workflows.

Our idea of extending classical Petri nets is not new in general. Colored
Petri nets [31] permit tokens to be colored (with finitely many colors), and
thus tokens carry some information. In the nets-within-nets paradigm [64]
individual tokens have Petri net structure themselves. This way they can
represent objects with their own, proper dynamics. Finally, self-modifying
nets [63] assume standard tokens, but permit the transitions to consume and
produce them in quantities functionally dependent on the occupancies of the
places.

To compare, our approach assumes tokens to represent complex data
values, which are however static. The transitions are allowed to perform
operations on the tokens’ contents. Edges can be annotated with conditions
and pass only tokens which values satisfy those conditions. There is also a
special unnest/nest annotation. When unnest is applied to an output edge
of a transition, the output token with a set value is transformed into a set of
tokens, one for each element of the set. When nest is applied to an input edge
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of a transition, the set of tokens is grouped back into a single “composite”
token.

Also the introduction of complex value manipulation into Petri nets was
already proposed by others. Oberweis and Sander [43] proposed a formal-
ism called NR/T-nets where places represent nested relations in a database
schema and transitions represent operations that can be applied to the data-
base. Although somewhat similar, the purpose of that formalism, i.e., repre-
senting the database schema and possible operations on it, is very different
from the one presented here. For example, the structure of the Petri net in
NR/T-nets does not reflect the workflow, but only which relations are in-
volved in which operations. In our DFL formalism, we can easily integrate
external functions and tools as special transitions and use them at arbitrary
levels of the data structures. The latter is an important feature for describ-
ing and managing COSWs. Therefore we claim that, together with other
differences, this makes DFL a better formalism for representing COSWs.

Similarly the idea of using query languages as NRC to model data-centric
workflows is also not new. The NRC based BioKleisli system (see 1.2.3) allows
to query and transform complex data from heterogeneous sources, including
ones available through a network. In our own previous research [21, 22]
we have shown that this can be used to express side-effect free COSWs,
i.e., COSWs that describe which computations have to be performed, but
do not include operations with side effects for which precise specification of
control flow is necessary, e.g, is restricted by a certain protocol. In another
research of ours we have extended the Taverna workbench (see 1.2.1) to allow
defining side-effect free COSWs with the use of XQuery [73, 69], which is a
standard hierarchical data query language for XML [72] and is modeled after
NRC. Such XQuery based COSWs can be freely intermixed with standard
Taverna COSWs, i.e., XQuery based COSWs can use all processors available
in Taverna, including processors representing nested Scufl graphs, and can
themselves be nested in standard Taverna Scufl graphs. As we notice in [56]
for some side-effect free use cases query languages can be successfully used to
describe COSWs. In fact, for data-oriented workflows one can use database
techniques to define and manage them [2], but this is outside the scope of
this thesis.
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3.1 Motivation

We start with motivating why the definition of DFL is interesting, even
though a few alternative models and notations were already developed for
use in COSW systems.

The experiments that are being conducted with the use of COSWs can be
quite complex and thus many theoretical problems are interesting. For exam-
ple, properties of COSWs could be analyzed, similarly as complex business
transactions can be automatically checked for liveness, soundness, deadlocks
and the like. Furthermore, methods of enactment optimization could be de-
veloped for COSWs similarly as for database queries. Yet, the models and
notations used in practical COSW systems: (1) sometimes lack formal seman-
tics, which is a necessary first step for development of any formal methods, (2)
differ in detail, so the worked up formal methods would have to be adapted
to them separately, (3) are designed to be easy in use for COSW creators,
but the easiness of formal analysis and verification is not a priority in their
construction. Thus the definition of a language with formal semantics that
can serve as a comfortable framework for theoretical study and would be a
common denominator of languages used in practice, i.e., to which practically
applied languages could be mapped, is a worthy goal.

3.2 Combining NRC and Petri nets

3.2.1 Nested relational calculus

The nested relational calculus (NRC) [9] is a query language allowing one
to describe functional programs using collection types, e.g., lists, bags, sets,
etc. The most important feature of the language is the possibility to iterate
over a collection. NRC assumes a set of base types which can be combined
to form nested record and collection types. The only collection type we will
use are sets.

Besides standard language constructs enabling manipulation of records
and sets, NRC contains the three constructs sng, map and flatten. For
a value v of a certain type, sng(v) yields the singleton set containing v.
Operation map, applied to a function of type τ → σ, yields a function on
sets of type {τ} → {σ}. Finally, the operation flatten, given a set of sets
of type τ , yields a flattened set of type τ , by taking the union. These three
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basic operations are powerful enough for specifying functions by structural
recursion over collections [9].

Similarly as in computational lambda calculus [40], in NRC each nontriv-
ial computation processing a collection yields always a collection again. Even
if there is a single final value, it will be returned wrapped up in a collection.

3.2.2 Petri nets

A classical Petri net [41, 51] is a bipartite graph with two types of nodes
called places and transitions. The nodes are connected by directed edges.
Only nodes of a different types can be connected. Places are represented by
circles and transitions by rectangles.

Definition 3.2.1 (Petri net). A Petri net is a triple 〈P, T,E〉 where:

• P is a finite set of places,

• T is a finite set of transitions (P ∩ T = ∅),

• E ⊆ (P × T ) ∪ (T × P ) is a set of edges.

A place p is called an input place of a transition t, if there exists an edge
from p to t. A place p is called an output place of a transition t, if there exists
an edge from t to p. Given a Petri net 〈P, T,E〉 we will use the following
notations:

•p = {t | 〈t, p〉 ∈ E} p• = {t | 〈p, t〉 ∈ E}
•t = {p | 〈p, t〉 ∈ E} t• = {p | 〈t, p〉 ∈ E}
◦p = {〈t, p〉 | 〈t, p〉 ∈ E} p◦ = {〈p, t〉 | 〈p, t〉 ∈ E}
◦t = {〈p, t〉 | 〈p, t〉 ∈ E} t◦ = {〈t, p〉 | 〈t, p〉 ∈ E}

and their generalizations for sets:

•A =
⋃
x∈A

•x A• =
⋃
x∈A

x•

◦A =
⋃
x∈A

◦x A◦ =
⋃
x∈A

x◦

where A ⊆ P ∪ T . Places are stores for tokens, which are depicted as black
dots inside places when describing the run of a Petri net. Edges define the
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possible token flow. The semantics of a Petri net is defined as a transition
system. A state is a distribution of tokens over places. It is often referred
to as a marking M : P → (N ∪ {0}). The state of a net changes when a
transitions fires. For a transition t to fire it has to be enabled, that is, each
of its input places has to contain at least one token. If transition t fires, it
consumes one token from each of the places in •t and produces one token on
each of the places in t•.

Petri nets are an established process modeling technique. The interest in
them has been constantly growing for the last fifteen years. Many theoretical
results are available. One of the better studied classes are workflow nets,
which are used in workflow management [1].

Definition 3.2.2 (strongly connected). A Petri net is strongly connected if
and only if for every two nodes n1 and n2 there exists a directed path leading
from n1 to n2.

Definition 3.2.3 (workflow net). A Petri net PN = 〈P, T,E〉 is a workflow
net if and only if:

(i) PN has two special places: a source and a sink. The source has no
input edges, i.e., ◦source = ∅, and the sink has no output edges, i.e.,
sink◦ = ∅.

(ii) If we add to PN a transition t∗ and two edges 〈sink, t∗〉, 〈t∗, source〉,
then the resulting Petri net is strongly connected.

3.2.3 How we combine NRC and Petri nets

From NRC we inherit the set of basic operators and the type system. This
should make reusing of existing database theory results easy. COSWs spec-
ified in DFL, which we further call dataflows, could for example undergo
an optimization process as database queries do. To deal with the synchro-
nization issues arising from processing of the data by distributed services we
will use a Petri-net based formalism which is a clear and simple graphical
notation and has an abundance of correctness analysis results. We believe
that these techniques can be reused and combined with known results from
database theory for verifying the correctness of dataflows.

The fundamental operation in NRC is the map operation map. In order
to allow a similar kind of iteration in Petri nets we introduce special unnest
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and nest edges, that will be distinguished with a star. Unnest edges are
outgoing edges of transitions and nest edges are incoming edges. Unnest
edges can be used if the function associated with the transition produces
a set value. If an outgoing edge is marked as an unnest edge then, if the
transition fires, instead of producing in the associated place a single token
with the set that is the result of the transition, it will produce a set of tokens,
one for each element of the result set. Nest edges can be used if the function
associated with the transition requires a set value as a parameter. If an
incoming edge is marked as a nest edge then, if the transition fires, instead
of consuming from the associated place a single token with a set value, it will
consume a set of tokens and combine them into a single set that is used as
the parameter of the function.

id id f() id id∗ ∗ ∗ ∗

{{x, y}, {x}}

id id f() id id∗ ∗ ∗ ∗

  {x}{x, y}

id id f() id id∗ ∗ ∗ ∗

x yx

id id f() id id∗ ∗ ∗ ∗

f(x) f(y) f(x)

id id f() id id∗ ∗ ∗ ∗

{f(x), f(y)} {f(x)}

id id f() id id∗ ∗ ∗

{{f(x), f(y)}, {f(x)}}

∗

Figure 3.1: Nested iteration example

A simple example with a nested iteration is given in Fig. 3.1. If the
dataflow is initiated in the leftmost place with a token representing a set of
sets, it will be processed by the identity transition id and unnested. Next,
the resulting tokens representing sets that were the elements of the input
set are unnested themselves by the second pair of identity transition and
unnest edge. Finally, function f() is applied to each of the elements of the
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unnested subsets and the result is nested twice by two subsequent identity
transitions with nest edges. To assure that tokens originating from different
sets are not intermixed while nesting and that nesting appears only when all
the necessary tokens have arrived, each token carries its unnesting history,
which is described in Section 3.5.1.

The unnest and nest edges allow a straightforward representation of the
NRC map operation in a Petri net formalism and thus make it possible
to specify computational processes with the use of this type of structural
recursion [58].

3.3 Syntax

We define DFL by starting with Petri nets and adding labels to transitions to
define the computation done by them. Then we associate NRC values with
the tokens to represent the manipulated data. As it is usual with workflows
that are described by Petri nets we mandate one special input place and one
special output place. If there is external communication, this is modeled
by transitions that correspond to calls to external functions. We use edge
labeling to define how values of the consumed tokens map onto the parameters
of operations represented by transitions. To express conditional behavior we
propose edge annotations indicating conditions that the value associated with
a token must satisfy, so it can be transferred through the annotated edge. We
also introduce a special unnest/nest annotation, to enable explicit iteration
over values of a collection.

A dataflow — a COSW in DFL — will be defined by an acyclic workflow
net, transition labeling, edge labeling, and edge annotation. The underlying
Petri net will be called a dataflow net.

Definition 3.3.1 (dataflow net). ADFN = 〈P, T,E, source, sink〉 is a data-
flow net if and only if:

(i) 〈P, T,E〉 is a workflow net and is acyclic,

(ii) source ∈ P is the source place,

(iii) sink ∈ P is the sink place.

The restriction to acyclic nets is introduced to keep the presentation of the
main ideas simple. The formalism can be easily extended in such a way that
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cycles are allowed. Usually they are used to express iteration over all elements
of a collection, but for this type of iteration we will introduce alternatives in
the form of constructs for unnesting and nesting values. Obviously this does
not cover all types of iteration, but we conjecture that it is sufficient for the
purpose of COSWs. In addition, an advantage of the restriction is that the
termination is always guaranteed, but it has to be noted that termination
does not ensure correct termination, which is defined as termination with
only one token left which is in the sink and contains the output value.

3.3.1 The type system

Dataflows are strongly typed, which here means that each transition con-
sumes and produces tokens with values of a well determined type. The type
of the value of a token is called the token type. We will identify a type and
the set of objects of that type. The type system is similar to that of NRC.
We assume a finite but user-extensible set of basic types which might for
example be given by:

b ::= boolean | integer | string | XML

where the type boolean contains the boolean values true and false, integer
contains all integer numbers, string contains all strings and XML contains
all well-formed XML documents. Although this set can be arbitrarily chosen
we will require that it at least contains the boolean type. Assuming that the
non-terminal l denotes the set of field labels, from these basic types we can
build complex types as defined by:

τ ::= b | 〈l : τ, . . . , l : τ〉 | {τ}

The type 〈l1 : τ1, . . . , ln : τn〉, where li are distinct labels, is the type of all
records having exactly fields l1, . . . , ln of types τ1, . . . , τn respectively (records
with no fields are also included). Finally, {τ} is the type of all finite sets of
elements of type τ . For later use we define CT to be the set of all complex
types and CV the set of all possible complex values.

NRC can be also defined on other collection types such as lists or bags.
Moreover they are included in existing COSW systems, for example Taverna
supports lists. However, after a careful analysis of various use cases in bioin-
formatics and examples distributed with existing COSW systems we have
concluded that sets are sufficient.
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3.3.2 Edge naming function

Dataflows are not only models used to reason about data-processing exper-
iments but are meant to be executed and produce computation results. In
particular, when a transition has several input edges, we need a way to dis-
tinguish those, so as to know how the tokens map onto the operation ar-
guments. This is solved by edge labeling. Only edges leading from places
to transitions are labeled. This labeling is determined by an edge naming
function EN : ◦T → EL (note that ◦T = P◦), where EL is some countably
infinite set of edge label names, e.g., all strings over a certain non-empty
alphabet. The function EN is injective when restricted to incoming edges of
a certain transition, i.e., there cannot be two distinct incoming edges with
the same edge label for the same transition.

3.3.3 Transition naming function

To specify the desired operations and functions we also label the transitions.
The transition labeling is defined by a transition naming function TN : T →
TL, where TL is a set of transition labels. Each transition label determines
the number and possible labeling of input edges as well as the types of tokens
that the transition consumes and produces when it fires. For this purpose
the input typing and output typing functions are used: IT : TL → CT
maps each transition label to the input type which must be a record type,
and OT : TL → CT maps each transition label to the output type. Note
that these two functions are at the global level in the sense that they are the
same for every dataflow and therefore not part of the dataflow itself. This is
similar to the signatures of system functions which are not part of a specific
program. For detailed specification of transition labels see Section 3.4.

3.3.4 Edge annotation function

To introduce conditional behavior we annotate edges with conditions. If an
edge is annotated with a condition, then it can only transport tokens that
satisfy the condition. Conditions are visualized on diagrams in UML [44]
fashion, i.e., in square brackets. Only edges leading from places to transitions
are annotated with conditions. There are four possible condition annotations:
“=true”,“=false”,“=∅”,“6=∅”. Their meaning is self-explanatory. For detailed
specification see Section 3.5.
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There is another annotation “∗” used to indicate a special unnest/nest
branch. On diagrams it is visualized by addition of the symbol “∗” in the
middle of the edge. This annotation can occur on edges leading from transi-
tions to places as well as on edges from places to transitions. When an edge
leading from a transition to a place is annotated in such manner, it means
that a set value produced by this transition is unnested. That is, instead
of inserting a token with a set value into the destination place, a set of to-
kens representing each element in the set value gets inserted. Such edges will
be called unnest edges. When an edge leading from a place to a transition
is annotated in such manner, it means that in order to fire the destination
transition a set of tokens that originated from unnesting of some set value
will be used. That is, a set of tokens that originated from unnesting of some
set value will be consumed and a set of their values will be an input data for
the destination transition. Such edges will be called nest edges. The precise
semantics and explanation of the mechanism that is used to make sure that
all the tokens that originated from unnesting of some set value are already
there is described in Section 3.5.

The annotations are defined by an edge annotation function:

EA : (◦T ∪ ◦P )→ {“=true”, “=false”, “=∅”, “6=∅”,“∗”, ε},

where ε indicates the absence of an annotation and for all e ∈ ◦T it holds
that EA(e) ∈ {“=true”, “=false”, “=∅”, “6=∅”,“∗”, ε} while for all e ∈ ◦P it
holds that EA(e) ∈ {“∗”, ε}. From now on we will use the following notation
to stress the last two properties:

EA : (◦T → {“=true”, “=false”, “=∅”, “6=∅”,“∗”, ε}) ] (◦P → {“∗”, ε}),

3.3.5 Place type function

With each place in a dataflow net we associate a specific type that restricts
the allowed values for tokens in that place. This is represented by a place
type function PT : P → CT .

3.3.6 Dataflow

The dataflow net with edge naming, transition naming, edge annotation and
place typing functions specifies a dataflow.
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Definition 3.3.2 (dataflow). A dataflow is a five-tuple 〈DFN,EN, TN,EA,
PT 〉 where:

• DFN = 〈P, T,E, source, sink〉 is a dataflow net,

• EN : ◦T → EL is an edge naming function such that for each transition
t the partial function EN |◦t is injective,

• TN : T → TL is a transition naming function,

• EA : (◦T → {“=true”, “=false”, “=∅”, “6=∅”,“∗”, ε}) ] (◦P → {“∗”, ε})
is an edge annotation function,

• PT : P → CT is a place type function.

In order to ensure that the different labellings and annotations in a
dataflow are consistent, we introduce the notion of legality. Informally, a
dataflow is legal, if for each transition t: (1) the input edge labels and the
types of their corresponding places, with the nest edges taken into account,
define the input type of t; (2) if any of the input edges of t are annotated
with conditions, then the annotations are consistent with the types of the
associated input places; (3) if an output edge of t is not an unnest edge, then
the type of the connected place is equal to the output type of t, but if an
output edge of t is an unnest edge, then the output type of t is a set type
and the type of the connected place is equal to the element type of this set
type.

Definition 3.3.3 (legal). A dataflow 〈DFN,EN, TN,EA, PT 〉 is legal if
and only if each transition t ∈ T satisfies the following:

1. if {〈p1, t〉, . . . , 〈pn, t〉} = ◦t and for 1 ≤ i ≤ n we have

li = EN(〈pi, t〉) and τi =

{
PT (pi) if EA(〈pi, t〉) 6= “∗”
{PT (pi)} if EA(〈pi, t〉) = “∗”

then IT (TN(t)) = 〈l1 : τ1, . . . , ln : τn〉,

2. for each 〈p, t〉 ∈ ◦t:

• if EA(〈p, t〉) ∈ {“=true”,“=false”}, then PT (p) = boolean, and

• if EA(〈p, t〉) ∈ {“=∅”,“6=∅”}, then PT (p) is a set type,

3. for each 〈t, p〉 ∈ t◦:
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• if EA(〈t, p〉) 6= “∗”, then OT (TN(t)) = PT (p), and

• if EA(〈t, p〉) = “∗”, then OT (TN(t)) = {PT (p)}.

Henceforth, dataflows will always be assumed to be legal. Legality is an
easy syntactic check.

An example dataflow representing an if u = v then f(x) else g(x) ex-
pression is shown in Fig. 3.2. Although the transition labels and a precise
execution semantics are defined in the next two sections, the example is self-
explanatory. First, three copies of the input record of type 〈u : b, v : b, x : τ〉
are made. Then, each copy is projected onto another field, basic values u
and v are compared, and a choice between upper or lower dataflow branch
is made on the basis of the boolean comparison result. The boolean value is
disposed in a projection and depending on the branch that was chosen either
f(x) or g(x) is computed.

id

π[u]

π[v]

π[x]

=
〈⋅,⋅〉

             [=false]

〈⋅,⋅〉

            [=true]

π[x]

π[x]

g()

f()

Figure 3.2: If-then-else example

3.4 Transition labels

Since it is impossible to gather all scientific analysis tools that one may want
to use and data repositories that one may want to query, DFL defines only
a core label subset that is sufficient to express typical operations on the val-
ues from our type system. Similarly to NRC, DFL can be extended with
new extension transition labels. Such extension labels will usually represent
computations done by external services. Examples from the domain of bioin-
formatics include: sequence similarity searches with BLAST [3], queries to
the Swiss-Prot [8] protein knowledgebase, or local enactments of the tools
from the EMBOSS [52] package.
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3.4.1 Core transition labels

The core transition labels are based on the NRC operator set and are shown
in Table 3.1. A transition label is defined as a combination of the basic
symbol, from the first column, and a list of parameters which consists of
types and edge labels, from the second column. The values of the input
type function IT and the output type function OT are given by the last
two columns. For example, a concrete instance of the record constructor
label, i.e., a constructor label with concrete parameter values, would be tl′ =
〈·, ·〉a,bool,b,int where the parameters are indicated in subscript and for which
the functions IT and OT are defined such that IT (tl′) = OT (tl′) = 〈a :
bool, b : int〉. This means that tl′ has to have two input edges labeled a and
b, first of which connects to a place of type bool and second to a place of type
int. Another example would be tl′′ = π[b]a,b,bool,c,int, where IT (tl′′) = 〈a : 〈b :
bool, c : int〉〉 and OT (tl′′) = bool.

Table 3.1: Core transition labels

Sym. Param. Oper. name Input type Output type
∅ l, τ1, τ2 empty-set constr. 〈l : τ1〉 {τ2}
{·} l, τ singleton-set constr. 〈l : τ〉 {τ}
∪ l1, l2, τ set union 〈l1 : {τ}, l2 : {τ}〉 {τ}
ϕ l, τ flatten 〈l : {{τ}}〉 {τ}
× l1, τ1, l2, τ2 Cartesian product 〈l1 : {τ1}, l2 : {τ2}〉 {〈l1 : τ1, l2 : τ2〉}
= l1, l2, b atomic-value equal. 〈l1 : b, l2 : b〉 boolean

〈〉 l, τ empty record constr. 〈l : τ〉 〈〉
〈·, ·〉 l1, τ1, . . . , ln, τn record constr. 〈l1 : τ1, . . . , ln : τn〉 〈l1 : τ1, . . . , ln : τn〉
π[li] l, l1, τ1, . . . , ln, τn field projection 〈l : 〈l1 : τ1, . . . , ln : τn〉〉 τi

id l, τ identity 〈l : τ〉 τ

Moreover, for every transition label tl, there exists an associated function
Φtl : IT (tl) → OT (tl) which represents a computation that is performed
when the transition fires. For the core transition label subset all functions
are deterministic and correspond to those given in NRC definition [9].

To keep this presentation simple we will omit edge names and label pa-
rameters on diagrams, if it does not introduce ambiguity.
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3.4.2 Extension transition labels

Next to the set of core transition labels, the set of transition labels TL
also contains user-defined transition labels. As for core transition labels
the functions IT and OT must be defined for each of them, as well as an
associated function Φtl : IT (tl) → OT (tl) which can represent a possibly
non-deterministic computation that is performed when the transition fires.

To give a concrete example, a getSWPrByAC extension transition label
may be defined by a bioinformatician, such that IT (getSWPrByAC) = 〈ac :
string〉 and OT (getSWPrByAC) = XML. The ΦgetSWPrByAC function
would represent a call to a Swiss-Prot knowledgebase and return an XML
formatted entry for a given primary accession number.

3.5 Transition system semantics

The semantics of a dataflow 〈DFN,EN, TN,EA, PT 〉 is defined as a tran-
sition system (see Section 3.5.2). Each place contains zero or more tokens,
which represent data values. Formally a token is a pair k = 〈v, h〉, where
v ∈ CV is the transported value and h the unnesting history of this value.
This unnesting history is defined in Section 3.5.1. The set of all possible
tokens is then K = CV ×H. By the type of a token we mean the type of its
value, i.e., 〈v, h〉 : τ if and only if v : τ .

The state of a dataflow, also called marking, is the distribution M :
(P ×K) → (N ∪ {0}) of tokens over places, where M(p, k) = n means that
place p contains n copies of the token k1. Distributions are legal as markings
only if the token types match the types of places they are in, i.e., for all places
p ∈ P and tokens k ∈ K such that M(p, k) > 0 we must have k : PT (p).

Transitions are the active components in a dataflow. They can change the
state by firing, i.e., consuming tokens from their input places and producing
tokens in their output places. In distinction to classical workflow nets, tran-
sitions may produce/consume an arbitrary number of tokens in/from a place.
This is the case when an edge connecting such a place with the transition is
annotated with “∗”, i.e., is an unnest/nest edge. A transition that can fire in

1Although formally, because K is infinite, the definition allows for infinite markings,
we will only consider markings M where the support {〈p, k〉 ∈ (P ×K) |M(p, k) 6= 0} is
finite. It is easy to see, that during a dataflow execution the finiteness of support does not
change.
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a given state will be called enabled. The firing of a transition t represents a
computation step determined by the function ΦTN(t) associated with its tran-
sition label. Values carried by tokens consumed from input places together
with labels of the corresponding input edges determine the input record value
for the function with respect to the definitions in Table 3.1.

3.5.1 Token unnesting history

Every time a transition with an unnest edge fires, a set of tokens is produced.
Each token corresponds to an element of the set value that was produced as
a result of a computation carried out by that transition. The history of each
of the tokens is extended with a pair that contains the unnested set and the
element of that set to which the given token corresponds. The full history
is taken into account when it is being determined whether a transition with
nest edge can fire, that is if tokens representing all of the elements of the set
that is being nested are already there to be consumed. If this is the case,
then a set of tokens will be consumed and the set of their values will be used
to compute the result.

id

+10

id

(a)

id

+10

id

(c)

{1, 2, 3}; () 

1;  (〈{1, 2, 3}, 1〉)
3;  (〈{1, 2, 3}, 3〉)

id

+10

id

(d)

12;  (〈{1, 2, 3}, 2〉)
13;  (〈{1, 2, 3}, 3〉)

11;  (〈{1, 2, 3}, 1〉)

id

+10

id

(e)

{11, 12, 13};  ()

1;  (〈{1, 2, 3}, 1〉)
∗ ∗ ∗ ∗

∗∗∗∗

id

+10

id

(b)

2;  (〈{1, 2, 3}, 2〉)
3;  (〈{1, 2, 3}, 3〉)

12;  (〈{1, 2, 3}, 2〉)

∗

∗

Figure 3.3: An illustration of the unnest/nest edges and the unnesting history
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This is illustrated in Fig. 3.3 where in (a) in the top place we see a
single token with value {1, 2, 3} and an empty history. When the upper
id transition fires, a token for each element of the output value {1, 2, 3} is
produced as shown in (b). The history is extended at the end with a pair that
contains, first, the set that was unnested and, second, the element for which
this particular token was produced. As is shown in (b), (c) and (d) transitions
without any unnest or nest edge will produce tokens with histories identical
to that of the consumed input tokens. Once all the tokens that belong to
the same unnesting group have arrived in the input place of the bottom id
transition, as is shown in (d), it can fire and combine them into a single
set-valued token as is shown in (e). A transition can verify if all the tokens
that belong to the same unnesting group have arrived by looking at their
histories. Note that where the firing of a transition with an unnest edge adds
a pair to the history, firing a transition with a nest edge removes a pair from
the history.

(b) (d)

∪ ∪

{1, 2, 3}; (〈{1,2,3},{1,2,3}〉) 

1; (〈{1,2,3},1〉) 
2; (〈{1,2,3},2〉) 
3; (〈{1,2,3},3〉) 

(c)

∪
{1, 2, 3}; (〈∅,∅〉) 

id
∅; (〈∅,∅〉) 

...

id

...

id

...

(a)

∪

id

∅; () 

...
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Figure 3.4: An illustration of the unnesting history and iteration over empty
sets

The second example (see Fig. 3.4) presents what happens when one tran-
sition has unnest/nest edges as well as normal edges. The initial state is
presented in (a). As shown in (b), after firing transition id, the token rep-
resenting an empty set has been consumed. Since id has an unnest edge,
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the result of its computation — an empty set — has been unnested and
zero tokens have been inserted into the right output place. Yet, the left
output place is connected by a normal edge and a token has been produced
there. Because unnesting has been performed on the “∗” annotated edges,
its history has been extended with a pair consisting of twice the unnested
set. After some additional processing this token transports a set of three
numbers {1, 2, 3} as can be observed in (c). Now the set union transition
can fire. Although one of its input places is empty, it is enabled because it
is connected by a nest edge and the examination of the history of the token
from the other input place that was connected by a normal edge shows that
tokens representing elements of an empty set are to be expected there (so no
tokens need to be consumed). When the set union transition fires, a set of
{1, 2, 3} will be produced as a result of the union of {1, 2, 3} with an empty
set. As is shown in (d) another unnest can be performed and this time tokens
are inserted to both output places.

(a)

v1; h1

(b)

∗

v3; h3v2; h2
x1; (〈{v1,v2},v1〉)
x2; (〈{v1,v2},v2〉)

x3; (〈{v1,v2},{v1,v2}〉)
x4; (〈{v1},{v1}〉)

Figure 3.5: An illustration of how history affects transitions with many input
places

In the case of transitions with many input edges tokens consumed from
distinct input places must either have the same history or must represent the
same set. This way the history of the tokens produced by such a transition
can be unambiguously determined, tokens representing elements of different
sets do not interfere with each other in the body of the iteration and at the
same time the order of execution is free of any unnecessary restrictions. This
is illustrated on the third example (see Fig. 3.5). The transition in (a) can
fire only if h1 = h3 or h2 = h3. Otherwise it is not enabled even though
some tokens are in both of its input places. The transition in (b) can fire
consuming tokens with values x1 and x2 from the left input place and x3 from
the right input place since they represent the same sets. A token with value
x4 cannot be consumed in this state, because there is no token representing
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the element of set {v1} in the left input place.
Since sets can be unnested and nested several times, the history is a

sequence of pairs, where each pair contains the unnesting information of one
unnesting step. Therefore we formally define the set of all histories H as the
set of all sequences of pairs 〈s, x〉, where s ∈ CV is a set and x ∈ s or x = s.
To manipulate histories we will use the following notation for extending a
sequence with an element (a1, a2, . . . , an)⊕ an+1 := (a1, a2, . . . , an, an+1).

id id id

∗
∗ ∗

{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}; ()

(a)

(b)

(c)
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∗
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v

id id id

∗
∗ ∗
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∗
π[b]

π[v] 〈⋅,⋅〉°π[v]

〈⋅,⋅〉°π[v] ∗

∗

[=true]

[=false]

v

v

{1, 2}; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: true〉〉 )
{1, 2}; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: false〉〉 )

true; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: true〉〉 )
false; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: false〉〉 )

id id id

∗
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∗
π[b]

π[v] 〈⋅,⋅〉°π[v]

〈⋅,⋅〉°π[v] ∗
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[=true]

[=false]

v

v

3; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: true〉〉, 〈{1, 2}, 2〉 )

0; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: false〉〉, 〈{1, 2}, 1〉 )

2; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: true〉〉, 〈{1, 2}, 1〉 )

1; ( 〈{〈v: {1, 2}, b: true〉, 〈v: {1, 2}, b: false〉}, 〈v: {1, 2}, b: false〉〉, 〈{1, 2}, 2〉 )

Figure 3.6: An illustration of a nested iteration

The fourth and final example demonstrates why the whole history and
not only its last element is taken into account while nesting. The dataflow
in Fig. 3.6 unnests the input set of type {〈v : {integer}, b : boolean〉} and
processes each of its pair values based on the boolean element. For pairs
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with a true value, every element of the associated set of integers is increased
by one, while for pairs with a false value, the elements are decreased by
one. In (a) the initial state with the input value is presented. In (b) the
input value has been already unnested and, similarly as with the If-then-
else example from Section 3.3.6, the paired elements have been separated to
make the trueness based test. The 〈·, ·〉 ◦ π[v] transitions are used to dispose
of the boolean value by creating a pair and projecting the boolean value out.
Although in this example it is not important, since both pairs contained the
same set {1, 2}, the transitions labeled 〈·, ·〉 ◦ π[v] would not consume values
with different histories thus retaining the original pairing. In (c) the integer
sets have been unnested and their values have been increased in the upper
branch and decreased in the lower branch. The processed values are gathered
in one place and are ready to be nested back. Observe that inspecting the
last element of the history during nesting is not enough and the whole history
has to be taken into account to prevent intermixing of the values processed
by the lower and the upper branch.

It should be noted that this provides the dataflow authors with a simple
way to achieve multiple instantiation [25], which in the process modeling
domain is known as the ability to execute a task multiple times, possibly
simultaneously. Conveniently our approach does not enforce iterating over
elements of a set in any particular order and the transition semantics is local.
At the same time it is always possible to determine if a given transition
can fire and even in the case of a nested iteration over nested sets, tokens
representing elements of different sets will not become intermixed.

3.5.2 Semantics of transitions

We define the semantics as a transition system, where the states are the
distributions of tokens over places and state changes are caused by firing
enabled transitions. A transition is enabled in a given state, if from each of its
input places it can consume tokens with matching histories — an arbitrary
number from places connected by nest edges or one if it is not the case.
Those tokens/sets of tokens represent values that will become arguments
for the function represented by the enabled transition. The choice of such
tokens and the function arguments determined by it are called an enabling
configuration.

The following shortcut will be used, since tokens can only flow along a
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condition-annotated edge, if the value of the token satisfies the condition:

〈v, h〉y e
def
= (EA(e) = ε) ∨ (EA(e) = “∗”) ∨

(EA(e) = “=true”∧ v = true) ∨
(EA(e) = “=false”∧ v = false) ∨
(EA(e) = “=∅”∧ v =∅) ∨
(EA(e) = “6=∅”∧ v 6= ∅)

Definition 3.5.1 (enabling configuration). Given a transition t in marking
M , an enabling configuration is a function EC : •t→ 2K such that:

(i) for all places p ∈ •t and for all tokens k ∈ EC(p) it holds thatM(p, k) ≥
1 and k y 〈p, t〉,

(ii) at least one token is in the range of EC, i.e.,
⋃
p∈•tEC(p) 6= ∅, and

(iii) there is a history h such that:

- if t has at least one nest edge, then there exists a set S = {x1, . . . , xm} ∈
CV such that for all places p ∈ •t it holds that

EC(p) =

{
{〈vp,1, h⊕ 〈S, x1〉〉, . . . , 〈vp,m, h⊕ 〈S, xm〉〉} if EA(〈p, t〉) = “∗”
{〈vp, h⊕ 〈S, S〉〉} if EA(〈p, t〉) 6= “∗”

for some complex values vp,1, . . . , vp,m and vp,

- if t has no nest edge, then for all places p ∈ •t it holds that EC(p) =
{〈vp, h〉} for some complex value vp.

Note that since the range of the enabling configuration contains at least one
token, it holds that if such an EC exists, then h is uniquely determined, so
we denote it as hEC .

Moreover, given such an EC we define the enabling configuration value
function ECVEC : •t → CV , which with a place p associates the value
represented by the tokens pointed to by EC(p), i.e., for all places p ∈ •t it
holds that

ECVEC(p) =

{
{vp,1, . . . , vp,m} if EA(〈p, t〉) = “∗”
vp if EA(〈p, t〉) 6= “∗”.

A transition for which an enabling configuration exists can fire and it is
called enabled. In a given state many enabling configurations can exist for
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one transition. For example, if t has two input places connected by normal
edges, one of its input place contains two tokens, the other contains three
tokens and all the tokens have the same history, then there exist six enabling
configurations for t in this state.

Definition 3.5.2 (enabled transition). Transition t is enabled in a given
marking M if and only if there exists an enabling configuration for t in M .

When a transition fires, it consumes tokens according to some enabling
configuration EC and the transition’s associated function is being computed
with the arguments pointed to by ECVEC .

State transition (firing a transition)

For each t ∈ T it holds that M1
t−→M2 if and only if there exists an enabling

configuration EC for t in marking M1 such that

1. for all places p ∈ •t it holds that:

(a) M2(p, k) = M1(p, k)− 1 if k ∈ EC(p), and

(b) M2(p, k) = M1(p, k) if k /∈ EC(p)

2. if t has no unnest edges, then for all places p ∈ t• it holds that,
if vres is the result of ΦTN(t)(〈l1 : v1, . . . , ln : vn〉), in case when ΦTN(t)

is a deterministic function, or one of its possible results, when it is non-
deterministic, where {〈l1, v1〉, . . . , 〈ln, vn〉} = {〈EN(〈p′, t〉), ECVEC(p′)〉 |
p′ ∈ •t} then:

(a) M2(p, 〈vres, hEC〉) = M1(p, 〈vres, hEC〉) + 1, and

(b) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) if 〈v′, h′〉 6= 〈vres, hEC〉

3. if t has at least one unnest edge, then for all places p ∈ t• it holds that,
if vres is the result of ΦTN(t)(〈l1 : v1, . . . , ln : vn〉), in case when ΦTN(t)

is a deterministic function, or one of its possible results, when it is non-
deterministic, where {〈l1, v1〉, . . . , 〈ln, vn〉} = {〈EN(〈p′, t〉), ECVEC(p′)〉 |
p′ ∈ •t} then:

(a) M2(p, 〈vres, hEC⊕〈vres, vres〉〉) = M1(p, 〈vres, hEC⊕〈vres, vres〉)+1
if EA(〈t, p〉) 6= “∗”, and
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(b) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) if EA(〈t, p〉) 6= “∗” and
〈v′, h′〉 6= 〈vres, hEC ⊕ 〈vres, vres〉〉

(c) M2(p, 〈v, hEC ⊕ 〈vres, v〉〉) = M1(p, 〈v, hEC ⊕ 〈vres, v〉) + 1 if
EA(〈t, p〉) = “∗” and v ∈ vres, and

(d) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) if EA(〈t, p〉) = “∗” and
〈v′, h′〉 6= 〈v, hEC ⊕ 〈vres, v〉〉 for all v ∈ vres

4. for all places p 6∈ •t∪ t• it holds that M2(p, k) = M1(p, k) for all tokens
k ∈ K

It should be noted that for a given state M1, a transition t and two

not equal states M2 and M3 it can hold that M1
t−→ M2 and M1

t−→ M3.
This is because in M1 there can be more than one enabling configuration
for t. It can also be the case that the function represented by t is not a
deterministic one and transitions to M2 and M3 are possible for the same
enabling configuration, because two different output values can be produced.

We adopt the following Petri net notations:

• M1 −→M2: there is a transition t such that M1
t−→M2

• M1
θ−→ Mn: the firing sequence θ = t1t2 . . . tn−1 leads from state M1 to

state Mn, i.e., ∃M2,M3,...,Mn−1M1
t1−→M2

t2−→M3
t3−→ . . .

tn−1−−→Mn

• M1
∗−→ Mn: M1 = Mn or there exists a firing sequence θ = t1t2 . . . tn−1

such that M1
θ−→Mn

A state Mn is called reachable from M1 if and only if M1
∗−→Mn.

Although the semantics of a dataflow is presented as a transition system,
as in classical Petri nets, two or more enabled transitions may fire concur-
rently, if there are enough input tokens for both of them.

3.6 A bioinformatics example

In this section we2 present a dataflow example based on a part of a real bioin-
formatics example [19]. The dataflow is shown in Fig. 3.7. Its goal is to find
differences in peptide content of two samples of cerebrospinal fluid (a peptide

2The example was proposed by Natalia Kwasnikowska.
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Figure 3.7: Finding differences in peptide content of two samples
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is an amino acid polymer). One sample belongs to a diseased person and the
other to a healthy one. A mass spectrometry wet-lab experiment has pro-
vided data about observed polymers in each sample. A peptide-identification
algorithm was invoked to identify the sequences of those polymers, providing
an amino-acid sequence and a confidence score for each identified polymer.

The COSW starts with a record value containing two sets of data from
the identification algorithm, one obtained from the “healthy” sample and the
other from the “diseased” sample: complex input type 〈 healthy : PepList ,
diseased : PepList 〉 where PepList is the complex type { 〈 peptide :
String,
score : Number 〉 }. Each data set contains records consisting of an identi-
fied peptide, represented by the basic type String, and the associated confi-
dence score, represented by the basic type Number. The COSW transforms
this input into a set of records containing the identified peptide, a singleton
containing the confidence score from the “healthy” data set or an empty set
if the identified peptide was absent in the “healthy” data set, and similarly,
the confidence score from the “diseased” data set. The complex output type
is the following: { 〈 peptide : String, healthy : {Number }, diseased :
{Number } 〉 }.

The global structure of the dataflow can be described as follows. In
the first part up to and including the first transition labeled × it computes
the Cartesian product of two sets. The first set is computed in the left
branch, which consists again of two sub-branches, and is the union of all
mentioned peptides in the initial record. The second set is computed in
the right branch and is the singleton set containing the initial record. In
the second part of the dataflow, between the first Cartesian product and
the final place, the dataflow iterates over the result of the first part and
processes the records in the Cartesian product in parallel in three branches,
where the rightmost two branches themselves consist of two sub-branches,
and combines their results into a single record with a record constructor.
The first branch simply projects the record on the peptide label. The second
and third branch compute the scores of this peptide in the “healthy” peptide
list and the “diseased” peptide list, respectively. They do so by computing
the Cartesian product of the peptide and the relevant peptide list, iterating
over the result and applying to each record the function score h (or score d)
which compares the first peptide with the peptide in the nested record and
if they are equal returns a singleton set with the score or an empty set
otherwise. Note that the transitions labeled score h and score d could have
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been decomposed further and replaced with dataflows, but are represented
here by single transitions for brevity. Finally the dataflow collects all the
records consisting of the peptide and its scores in the “healthy” and the
“diseased” peptide list, into a single set.

3.7 Hierarchical collection-oriented scientific

workflows

Our extension of workflow nets allows the reuse of various technical and
theoretical results that are known about them. This is what we intend to
demonstrate here by discussing a way of constructing dataflows that guar-
antees that they always satisfy certain correctness criteria. A well-known
technique for this is the use of refinement rules that allow the step-wise gen-
eration of Petri nets by replacing a transition or place with a slightly bigger
net. Such refinement rules were studied by Berthelot in [7] and Murata in [41]
as reduction rules that preserve liveness and boundedness properties of Petri
nets. They are used by van der Aalst in [66], by Reijers in [50] and by
Chrz ↪astowski-Wachtel et al. in [13] to generate workflow nets. We show that
the same principles can be applied to our extended notion of workflow net,
and can be adapted to deal with the new problem of data-dependent control
flow.

DFL is developed to model data-centric workflows and in particular scien-
tific data-processing experiments. The data to be processed should be placed
in the dataflow’s source and after the processing, the result should appear in
its sink. A special notation is introduced to distinguish between two state
families.

Definition 3.7.1 (input state). Given dataflowD = 〈DFN,EN, TN,EA, PT 〉
with DFN = 〈P, T,E, source, sink〉 and value v : PT (source) we define the
input state inputDv as a marking such that:

• inputDv (source, 〈v, ()〉) = 1, and

• for all places p ∈ P and tokens k ∈ K such that 〈p, k〉 6= 〈source, 〈v, ()〉〉
it holds that inputDv (p, k) = 0.

Definition 3.7.2 (output state). Given dataflowD = 〈DFN,EN, TN,EA, PT 〉
with DFN = 〈P, T,E, source, sink〉 and value v : PT (sink) we define the
output state outputDv as a marking such that:
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• outputDv (sink, 〈v, ()〉) = 1, and

• for all places p ∈ P and tokens k ∈ K such that 〈p, k〉 6= 〈sink, 〈v, ()〉〉
it holds that outputDv (p, k) = 0.

Starting with one token in the source and executing the dataflow need
not always produce a result in the form of a single token in the sink place.
For some dataflows the computation may halt in a state in which none of
the transitions is enabled, yet the sink is empty. For other dataflows the
result token may be produced, but there still may be tokens left in other
places. Furthermore, for some dataflows reaching a state in which there are
no tokens at all is possible.

t1 t2 t2

t3

t1

t3

(a) (d)

t1

t2

(c)(b)

t1

t2 t3
∗ ∗

∗

Figure 3.8: Examples of dataflows that may not finish properly

Examples of dataflows for which starting with one token does not always
produce a result in the form of a single token in the sink place are shown in
Fig. 3.8. For the dataflow (a) the token from the source can be consumed by
a transition t1 or t2, but not by both of them at the same time. Transition
t3 will not become enabled then, because one of its input places will stay
empty. The (b) case presents an opposite scenario. Transition t1 produces
two output tokens and after either t2 or t3 consumes one of them and produces
a computation result, the second token is still there and another computation
result can be produced. In the (c) case t2 will never become enabled, since
the tokens with history appropriate for nesting will never be produced by t1.
Similarly in case (d) if t2 gets the source token, t3 will not become enabled,
because only t1 can produce a token with the required history. But for (d)
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it may even be not enough, when the t1 consumes the source token. If the
source token carried an empty set, then in the resulting state all places would
be empty.

Similar problems were also studied in the context of procedures modeled
by classical workflow nets. The procedures without such problems are called
sound [1]. A workflow net is considered to be sound if an only if:

1. if after starting with a single token in the source place a token gets
inserted into the sink, then there are no other tokens left,

2. the computation can be always completed, that is, if one starts with
a single token in the source and regardless of how the computation
proceeds at start, it is always possible to reach a state with the only
token in the sink place, and

3. there are no transitions that cannot be fired if starting with a single
token in the source place.

This classical notion of soundness can be directly applied to dataflows
such as (a) and (b) in Fig. 3.8 where the control flow does not depend upon
the data, but in dataflows such as (c) and (d) where the control flow may
depend upon the values and the unnesting histories associated with a token
the notion needs to be adapted. Here tokens carry values, so there are many
possible input states from which a computation can be started — one for each
possible value for the first token. It is natural to require that each transition
becomes enabled after starting from some input state, but not from all.

Definition 3.7.3 (soundness). A dataflow D = 〈DFN,EN, TN,EA, PT 〉
with DFN = 〈P, T,E, source, sink〉 is sound if and only if:

(i) for each value v′ : PT (source) and every markingM such that inputDv′
∗−→

M , if for some value v′′ : PT (sink) and history h′′ ∈ H it holds that
M(sink, 〈v′′, h′′〉) > 0, then M = outputDv′′ ,

(ii) for each value v′ : PT (source) and every markingM such that inputDv′
∗−→

M there exists a value v′′ : PT (sink) such that M
∗−→ outputDv′′ , and

(iii) for each transition t ∈ T there exists a value v′ : PT (source) and two

markings M and M ′ such that inputDv′
∗−→M

t−→M ′.
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Although it seems desirable to require soundness of dataflows, many of
the systems with conditional behavior will not satisfy (iii). The problem is
often not caused by the structure of the net, but by operations associated
with transition labels that are being used. An appearance of a value that
activates some part of the net may be dependent on the value with which
the dataflow is initiated. Checking if the right value can appear would be
undecidable as is determining if an NRC expression returns an empty set.
Indeed, it is well known that NRC can simulate the relational algebra [9].
That is why we introduce a weaker semi-soundness notion without the third
condition:

Definition 3.7.4 (semi-soundness). A dataflowD = 〈DFN,EN, TN,EA, PT 〉
with DFN = 〈P, T,E, source, sink〉 is semi-sound if and only if:

(i) for each value v′ : PT (source) and every markingM such that inputDv′
∗−→

M , if for some value v′′ : PT (sink) and history h′′ ∈ H it holds that
M(sink, 〈v′′, h′′〉) > 0, then M = outputDv′′ , and

(ii) for each value v′ : PT (source) and every markingM such that inputDv′
∗−→

M there exists a value v′′ : PT (sink) such that M
∗−→ outputDv′′ .

3.7.1 Refinement rules

In this section we introduce refinement rules for generating what may be
considered a well-structured dataflow. As we will show later, all dataflows
generated in this way are semi-sound. By starting from a single place and
applying the rules in a top-down manner we generate blank dataflows —
dataflows without edge and transition naming. We call such generated blank
dataflows hierarchical blank dataflows. From these we then obtain dataflows
by adding edge and transition naming functions. These will be called hier-
archical dataflows.

Definition 3.7.5 (blank dataflow). A blank dataflow is a tuple 〈DFN,EA〉
where:

• DFN = 〈P, T,E, source, sink〉 is a dataflow net,

• EA : (◦T → {“=true”, “=false”, “=∅”, “6=∅”,“∗”, ε}) ] (◦P → {“∗”, ε})
is an edge annotation function.
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Figure 3.9: Refinement rules

The refinement rules are presented in Fig. 3.9. Each refinement replaces
a subgraph presented on the lefthand side of the rule by the right-hand side
one. The edge annotation for the replaced subgraph and the subgraph that it
is replaced with is exactly as indicated. For each rule we define the concepts
of input nodes, output nodes and body nodes as indicated in Table 3.2.

Table 3.2: Input, output and body nodes

Rule a Rule b Rule c Rule d Rule e Rule f
Input nodes a, b1 a, b1 a, b1 a1, b1 a1, b1 a, b1, b2

Output nodes a, b3 a, b3 a, b4 a3, b4 a3, b4 a, b1, b2

Body nodes b2 b2 b2, b3 a2, b2, b3 a2, b2, b3

The right-hand side subgraph is connected to the rest of the blank dataflow
as follows:

• All the incoming edges of the left-hand side input node are reconnected
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to all the input nodes of the right-hand side. The annotations are
preserved. A visualization is presented in Fig. 3.10.

(a) sequential place split (b) sequential transition split

(f) AND-split
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Figure 3.10: Reconnecting of subgraphs

• For rules d and e all the remaining, i.e., not shown in the rule, outgoing
edges of the input nodes on the left-hand side are reconnected to the
input nodes on the right-hand side. The annotations are preserved. A
visualization is presented in Fig. 3.11.
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Figure 3.11: Reconnecting of subg. — additional edges for rules d and e
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• All the outgoing edges of the left-hand side output node are reconnected
to all the output nodes of the right-hand side. The annotations are
preserved, with the exception that for rule f condition annotations are
preserved only for outgoing edges of the node b1 and outgoing edges of
node b2 are not annotated with conditions. A visualization is presented
in Fig. 3.10.

• For rules d and e all the remaining, i.e., not shown in the rule, incoming
edges of the output nodes on the left-hand side are reconnected to the
output nodes on the right-hand side. The annotations are preserved.
A visualization is presented in Fig. 3.11.

• All the incoming and outgoing edges of the left-hand side body nodes
are reconnected to all the right-hand side body nodes. The annotations
are preserved. A visualization is presented in Fig. 3.11.

There are certain preconditions that must hold when the rules are ap-
plied:

(i) For rule d to be applied, all the transitions in •a1 that are connected
with a1 by a non-annotated edge cannot have any unnest edges, i.e.,
for all t ∈ •a1 it holds that: if EA(〈t, a1〉) = ε, then for all p ∈ t• it
holds that EA(〈t, p〉) 6= “∗”.

(ii) For rule d to be applied, all the transitions in •a1 cannot have any other
output places that are connected by an edge annotated in the same
way and on which an emptiness based decision is performed, i.e., for
all t ∈ •a1 and for all p ∈ t• it holds that: if p 6= a1 and EA(〈t, a1〉) =
EA(〈t, p〉), then for all t′ ∈ p• it holds that EA(〈p, t′〉) /∈ {“=∅”,“6=∅”}.

(iii) For rule e to be applied, all the transitions in •a1 cannot have any
other output places that are connected by an edge annotated in the
same way and on which a trueness based decision is performed, i.e., for
all t ∈ •a1 and for all p ∈ t• it holds that: if p 6= a1 and EA(〈t, a1〉) =
EA(〈t, p〉), then it holds that for all t′ ∈ p• it holds that EA(〈p, t′〉) /∈
{“=true”,“=false”}.

(iv) For rule f to be applied, a has to have at least one incoming and one
outgoing edge.
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The first three preconditions are necessary so that it is always possible
to label the generated blank dataflow such that it becomes a legal dataflow.
(i) deals with a requirement that a token representing set value cannot be
used to make a trueness based decision (see Fig. 3.12(i)), while (ii) and (iii)
prevent using tokens with the same values in different kinds of tests (see
Fig. 3.12(ii) and Fig. 3.12(iii)). Precondition (iv) guarantees that there is
exactly one input and output place.

a2

a1

a3

 ∗

 ∗

∗

∗

           [=false]              [=true]

b1

b3b2

b4

(i)

           [=false]              [=true]          [=Ø]          [≠Ø]

b2

b1

b4

b3

           [=false]              [=true]

a2

a1

a3

(iii)

         [=Ø]          [≠Ø]            [=false]              [=true]

b2

b1

b4

b3

         [=Ø]          [≠Ø]

a2

a1

a3

(ii)

Figure 3.12: Preconditions

Definition 3.7.6 (hierarchical blank dataflow). A blank dataflow which is
obtained by starting with a blank dataflow that consists of a single place
with no transitions and performing the transformations presented in Fig. 3.9
is called a hierarchical blank dataflow.

Definition 3.7.7 (hierarchical dataflow). A hierarchical dataflow is a legal
dataflow D = 〈DFN,EN, TN,EA, PT 〉 obtained by labeling transitions and
edges in a hierarchical blank dataflow BDF = 〈DFN,EA〉.

The rules and the aim to make dataflows structured as in structured
programming languages were inspired by the work done on workflow nets by
Chrz ↪astowski-Wachtel et al. [13].

An instance of a computation of a particular dataflow, which starts in
some input state, will be called a run. We will represent it as a pair of two
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sequences. The first one will contain successive transitions that were fired
and the second one subsequent states including the input state.

Definition 3.7.8 (run). Let D = 〈DFN,EN, TN,EA, PT 〉 be a dataflow
with a dataflow net DFN = 〈P, T,E, source, sink〉. A sequence of transi-
tions t1, . . . , tn ∈ T with a sequence of markings M0, . . . ,Mn of D, where M0

is an input state, forms a run if and only if it holds that M0
t1−→M1

t2−→ . . .
tn−→

Mn.

The run will be denoted as M0
t1−→M1

t2−→ . . .
tn−→Mn. If Mn is an output

state of D, then we will call such a run complete.

For a run M0
t1−→ M1

t2−→ . . .
tn−→ Mn, a place p and history h we define a

delta of tokens in p after firing a given transition ti+1 in a state Mi:

∆i(p, h) =
∑
v∈CV

Mi+1(p, 〈v, h〉)−
∑
v∈CV

Mi(p, 〈v, h〉)

We will also want to count tokens inserted to a place (since there are no
cycles, during one transition tokens are never inserted to and consumed from
a place at the same time):

∆+
i (p, h) =

{
∆i(p, h) if ∆i(p, h) > 0

0 otherwise

The number of tokens with a given history h inserted into a place p

during a run M0
t1−→M1

t2−→ . . .
tn−→Mn will be called a trace of p and defined

as Tr(p, h) =
∑n−1

i=0 ∆+
i (p, h).

Lemma 3.7.9. For each hierarchical dataflow D = 〈DFN,EN, TN,EA, PT 〉
with a dataflow net DFN = 〈P, T,E, source, sink〉 and for each run M0

t1−→
M1

t2−→ . . .
tn−→Mn of dataflow D, the trace of each place is bounded by 1, i.e.,

it holds that ∀h∈H∀p∈PTr(p, h) ≤ 1.

Theorem 3.7.10. Every hierarchical dataflow is semi-sound.

Proof. (of Lemma 3.7.9 and Theorem 3.7.10)
We will prove Lemma 3.7.9 and Theorem 3.7.10 together, by induction on
the number of refinements applied in the generation of the blank dataflow.
During this proof we will assume that in TL there are labels representing all
the NRC expressions on the available external functions.
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For a hierarchical dataflow consisting of only one place, all runs have
empty transition sequence and the state sequence consists of only one state,
which is an input and an output state at the same time. Therefore such
dataflow is semi-sound and the sum in Lemma 3.7.9 contains no elements,
thus is equal 0.

Let us assume by mathematical induction that for each hierarchical data-
flow Dn = 〈DFNn, ENn, TNn, EAn, PTn〉 with a dataflow net DFNn =
〈Pn, Tn,
En, sourcen, sinkn〉 whose hierarchical blank dataflow was generated in n ≥ 0
refinements it holds that:

(1) for each run M ′
0
t1−→ M ′

1
t2−→ . . .

td−→ M ′
d of Dn every trace of every place

is bounded by 1,

(2) for each value v′ : PTn(sourcen) and marking M ′ such that inputDnv′
∗−→

M ′, if for some value v′′ : PTn(sinkn) and history h′′ ∈ H it holds that
M ′(sinkn, 〈v′′, h′′〉) > 0, then M ′ = outputDnv′′ , and

(3) for each value v′ : PTn(sourcen) and marking M ′ such that inputDnv′
∗−→

M ′ there exists a value v′′ : PTn(sinkn) such that M ′ ∗−→ outputDnv′′ .

We will show that if Dn+1 = 〈DFNn+1, ENn+1, TNn+1, EAn+1, PTn+1〉
with a dataflow net DFNn+1 = 〈Pn+1, Tn+1, En+1, sourcen+1, sinkn+1〉 is an
arbitrary hierarchical dataflow whose hierarchical blank dataflow was gener-
ated in n+ 1 refinements, then:

(i) for each run M0
t1−→ M1

t2−→ . . .
tm−→ Mm of Dn+1 every trace of every

place is bounded by 1,

(ii) for each value v′ : PTn+1(sourcen+1) and each marking M such that

input
Dn+1

v′
∗−→ M , if for some value v′′ : PTn+1(sinkn+1) and history

h′′ ∈ H it holds that M(sinkn+1, 〈v′′, h′′〉) > 0, then M = output
Dn+1

v′′ ,
and

(iii) for each value v′ : PTn+1(sourcen+1) and each marking M such that

input
Dn+1

v′
∗−→ M there exists a value v′′ : PTn+1(sinkn+1) such that

M
∗−→ output

Dn+1

v′′ .

Let us consider each possible case for the last, (n+1)st, refinement applied.
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(a) The last applied refinement was a sequential place split (see Fig. 3.9a).
Let BDFn = 〈DFNn, EAn〉 with a dataflow net DFNn = 〈Pn, Tn, En,
sourcen, sinkn〉 be a blank hierarchical dataflow generated by the first
n refinements that generated the blank dataflow of Dn+1. Let Dn =
〈DFNn, ENn, TNn, EAn, PTn〉 be a hierarchical dataflow labeled ac-
cordingly to the labeling of Dn+1. Since there is no b2 transition in Dn,
to keep Dn legal, the function that it computes is incorporated into
the transitions that follow it directly, if there are any, or is omitted
otherwise. That is PTn(a) = PTn+1(b1) and for each t ∈ a• it holds
that

TNn(t) =

TNn+1(t)|
ΦTNn+1(b2)

ENn+1(〈b3,t〉) if EA(〈a, t〉) 6= “∗”
TNn+1(t)|

map(ΦTNn+1(b2))

ENn+1(〈b3,t〉) if EA(〈a, t〉) = “∗”

Here tl|fli means the transition label obtained from the transition label
tl, by letting the input from edge li through f first3. Namely, if IT (tl) =
〈l1 : τ1, . . . , lk : τk〉 and f : τ ′i → τi, then IT (tl|fli) = 〈l1 : τ1, . . . , li :

τ ′i , . . . , lk : τk〉, OT (tl|fli) = OT (tl) and for all values v1, . . . , vk of the
appropriate types Φtl|fli

(〈l1 : v1, . . . , lk : vk〉) = Φtl(〈l1 : v1, . . . , li :

f(vi), . . . , lk : vk〉).

For each run M0
t1−→ M1

t2−→ . . .
tm−→ Mm of Dn+1 we define a cor-

responding run M ′
0

t′1−→ M ′
1

t′2−→ . . .
t′d−→ M ′

d of Dn. The transitions are
fired in the same order, they consume the same tokens and functions
produce the same results, but all occurrences of b2 are omitted. It

is easy to see that M ′
0

t′1−→ M ′
1

t′2−→ . . .
t′d−→ M ′

d is indeed a run of Dn

and that it is unambiguously defined. Let us assume that the subse-
quence of not omitted transitions have indices i1, . . . , id. The markings
of Dn are equal to their counterparts in Dn+1 on all the places that
appear in both of the dataflows (i.e. for every p ∈ Pn ∩ Pn+1 and
k ∈ K it holds that M0(p, k) = M ′

0(p, k) and Mi1(p, k) = M ′
1(p, k), . . . ,

Mid(p, k) = M ′
d(p, k)). Whereas place a contains all the tokens that

in the counterpart marking are stored in b1 as well as all the tokens

3Note that if two successive sequential place splits would be incorporated into the
following transition over a “∗” annotated edge, then the input from that edge would be
preprocessed by map(f)◦map(g) = map(f ◦g), where f and g are functions of the removed
b2 transitions.
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that were consumed from b1 in order to produce the tokens that in the
counterpart are stored in b3. This correspondence in not an injection,
though. For each run of Dn there can be many corresponding runs of
Dn+1. This is because there is a choice when to fire b2, if tokens inserted
into a are not immediately consumed.

As for (i), the content of places in M0,Mi1 , . . . ,Mid is bounded by
the content of places in M ′

0,M
′
1, . . . ,M

′
d respectively. In the remaining

markings the only difference is that some tokens are consumed from b1,
processed by b2 and the result is placed in b3. Thus the traces of places
in markings of Dn+1 are limited by the traces of places in markings of
Dn, for which the induction assumption holds.

As for (ii), we can assume without loss of generality that Mm is the
first marking in M0, . . . ,Mm in which sinkn+1 is not empty. We will
first consider the case when sinkn+1 6= b3 and tm 6= b2. In M ′

d of the
corresponding run sinkn is therefore not empty (sinkn = sinkn+1).
From the induction assumption in M ′

d there is only one token — the
one in sinkn. Since in Mm there is the same number of tokens, then
also in Md there is only one token — the one in sinkn+1. In the case
where sinkn+1 = b3, it is only possible for a token to be inserted into
sinkn+1 = b3, when there was a token to be consumed from b1. Yet,
when the first token is inserted into b1, there are no other tokens since
in the corresponding run a token is inserted into a, which is a sink
there. Since M0, . . . ,Mm was arbitrarily chosen, (ii) holds.

As for (iii), let v′ : PTn+1(sourcen+1) and let M be a marking of Dn+1

such that input
Dn+1

v′
∗→ M . By the definition of marking reachability

there exists a run M0
t1→ M1

t2→ . . .
tm→ Mm, where M0 = input

Dn+1

v′

and Mm = M . We know that for this run in Dn there exists a cor-

responding run M ′
0

t′1→ M ′
1

t′2→ . . .
t′d→ M ′

d, where M ′
0 = inputDnv′ . From

the semi-soundness of Dn it follows that for some v′′ : PTn(sinkn) this

corresponding run can be extended into a complete run M ′
0

t′1→ M ′
1

t′2→

. . .
t′d→ M ′

d

t′d+1→ M ′
d+1

t′d+2→ . . .
t′d+q→ M ′

d+q, where M ′
d+q = outputDnv′′ . For it

in turn there exists a corresponding complete run M0
t1→ M1

t2→ . . .
tm→

Mm
tm+1→ Mm+1

tm+2→ . . .
tm+r→ Mm+r in Dn+1, which at the beginning

is identical to the run of Dn+1 we started from and in Mm+r place
b1 is empty (if b3 = sinkn+1, b1 can be emptied by firing b2). This
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completes the proof, since we have shown that Mm
∗→ output

Dn+1

v′′′ , for

v′′′ =

{
ΦTNn+1(b2)(v

′′) if a = sinkn

v′′ otherwise.

(b) The last refinement was a sequential transition split (see Fig. 3.9b).
As previously, with the first n refinements, we can construct a blank
hierarchical dataflow and label it accordingly to the labeling of Dn+1.
In the resulting dataflow Dn, the label of a represents the composi-
tion of functions ΦTNn+1(b3) and ΦTNn+1(b1). That is ITn(TNn(a)) =
ITn+1(TNn+1(b1)), OTn(TNn(a)) = OTn+1(TNn+1(b3)) and ΦTNn(a) =
ΦTNn+1(b3) ◦ ΦTNn+1(b1).

For each run M0
t1−→ M1

t2−→ . . .
tm−→ Mm of Dn+1 we define a cor-

responding run M ′
0

t′1−→ M ′
1

t′2−→ . . .
t′d−→ M ′

d of Dn. The transitions
are fired in the same order, they consume the same tokens and func-
tions produce the same results, but all occurrences of b1 are omitted
and all occurrences of b3 are replaced with a. It is easy to see that

M ′
0

t′1−→ M ′
1

t′2−→ . . .
t′d−→ M ′

d is indeed a run of Dn and that it is unam-
biguously defined. Let us assume that the subsequence of not omitted
(other that b1) transitions have indices i1, . . . , id. The markings of Dn

are equal to their counterparts in Dn+1 on all the places that appear
in both of the dataflows except the ones in •a = •b1 (i.e. for every
p ∈ ((Pn ∩ Pn+1) \ •a) and k ∈ K it holds that M0(p, k) = M ′

0(p, k)
and Mi1(p, k) = M ′

1(p, k), . . . , Mid(p, k) = M ′
d(p, k))). Whereas each

place in •a contains all the tokens that in the counterpart marking are
stored in the corresponding place in •b1 as well all the tokens that were
consumed from that place in order to produce the tokens that are in
the counterpart stored in b2. This correspondence in not an injection,
though. For each run of Dn there can be many corresponding runs
of Dn+1. This is because there is a choice when to fire b3, if tokens
produced by a into a• are not immediately consumed.

The rest of the proof follows the one given for (a).

(c) The last refinement was an iteration split (see Fig. 3.9c). As pre-
viously, with the first n refinements, we can construct a blank hier-
archical dataflow and label it accordingly to the labeling of Dn+1. In
the resulting dataflow Dn, the label of transition a represents a com-
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position of three functions: ΦTNn+1(b4), a pair function of appropri-
ate type that constructs a pair of twice its argument, and a function
ΦTNn+1(b1). That is ITn(TNn(a)) = ITn+1(TNn+1(b1)), OTn(TNn(a)) =
OTn+1(TNn+1(b4)) and ΦTNn(a) = ΦTNn+1(b4) ◦ pair ◦ ΦTNn+1(b1). The
correspondence of runs is analogous as in (b). The rest of the proof
follows.

(d) The last refinement was a trueness based decision (see Fig. 3.9d).
As previously, with the first n refinements, we can construct a blank
hierarchical dataflow and label it accordingly to the labeling of Dn+1.
That is ITn(TNn(a2)) = ITn+1(TNn+1(b2)) = ITn+1(TNn+1(b3)) and
OTn(TNn(a2)) = OTn+1(TNn+1(b2)) = OTn+1(TNn+1(b3)), and for the
edge names ENn(〈a1, a2〉) = ENn+1(〈b1, b2〉) = ENn+1(〈b1, b3〉). As-
sume ITn+1(TNn+1(b2)) = 〈l1 : τ1, . . . , lk : τk, ENn(〈a1, a2〉) : PT (a1)〉.
TNn(a2) represents a function computing if-then-else expression that
results in evaluating of either of ΦTNn+1(b2) or ΦTNn+1(b3). Which means
that for every values v1, . . . , vk of appropriate types and every v :
PT (a1) the result of function ΦTNn(a2)(〈l1 : v1, . . . , lk : vk, ENn(〈a1, a2〉) :
v〉) equals ΦTN(b2)(〈l1 : v1, . . . , lk : vk, ENn(〈a1, a2〉) : v〉), if v = false,
or ΦTN(b3)(〈l1 : v1, . . . , lk : vk, ENn(〈a1, a2〉) : v〉), otherwise.

The correspondence of runs in this case is a bijection. Transitions are
fired in the same order, but all occurrences of b2 and b3 are replaced
with a2 or depending on the consumed token value a2 is replaced by
b2 or b3. The markings are equal to their counterparts in all the place
that appear in both of the dataflows. Whereas a1 contains the same
tokens as b1 and a3 the same tokens as b4.

The rest of the proof follows.

(e) The last refinement was an emptiness based decision (see Fig. 3.9e).
The proof follows the one given for (d).

(f) The last refinement was an AND-split (see Fig. 3.9f). As previ-
ously, with the first n refinements, we can construct a blank hierarchical
dataflow and label it accordingly to the labeling of Dn+1. Since AND-
split was the last refinement applied in generation of blank dataflow
of Dn+1, we know that b1• = b2•, •b1 = •b2 and thus PTn+1(b1) =
PTn+1(b2). For every transition tn+1 ∈ b1•, where IT (TNn+1(tn+1)) =
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〈l1 : τ1, . . . , lk : τk, ENn+1(〈b1, tn+1〉) : PTn+1(b1), ENn+1(〈b2, tn+1〉) :
PTn+1(b2)〉, its corresponding transition tn ∈ a• is defined as follows:

• IT (TNn(tn)) = 〈l1 : τ1, . . . , lk : τk, ENn+1(〈b1, tn+1〉) : PTn+1(b1)〉,
that is ENn(〈a, tn〉) = ENn+1〈b1, tn+1〉,
• OT (TNn(tn)) = OT (TNn+1(tn+1)),

• for all values v1, . . . , vk of appropriate types and all v : PTn the
function computed by this transition is defined as follows

ΦTNn(tn)(〈l1 : v1, . . . , lk : vk, ENn+1(〈b1, tn+1〉) : v〉) =

ΦTNn+1(tn+1)(〈l1 : v1, . . . , lk : vk, ENn+1(〈b1, tn+1〉) : v,

ENn+1(〈b2, tn+1〉) : v〉)

The observation that in Dn+1 places b1 and b2 get the same tokens as
a gets in Dn completes the proof of Lemma 3.7.9.

The correspondence of runs in this case is a bijection. Transitions are
fired in the same order. The markings are equal to their counterparts in
all the place that appear in both of the dataflows. Whereas a contains
the same tokens as b1 and b2, which have to have identical content be-
cause, each of the transitions consuming token from one of those places
consumes a token with identical history from the other one (b1• = b2•)
and from Lemma 3.7.9 we know that there is no choice of such tokens,
so it must be exactly the one consumed from the first place. The rest
of the proof follows.

3.7.2 The bioinformatics example revisited

We conjecture that in terms of expressible functions hierarchical dataflows are
equivalent to NRC and thus, by following our claim in [21], are sufficient to
describe most data-centric experiments in life sciences such as bioinformatics.
To illustrate this we consider again the dataflow in Fig. 3.7. Closer inspection
of this dataflow shows that it is not hierarchical. This is because the iterations
in the dataflow start with a transition that only has unnesting edges as
outgoing edges. This is in conflict with the iteration split rule in Fig. 3.9
which requires that next to the unnest-nest branch there is another branch

96



 id 

⟨ healthy: PepList,
    diseased: PepList ⟩

  ×  

            lists

  
  ∪  

 

   *

π[diseased]
    * 

π[healthy]

       *

        diseased

⟨ peptide: String,
    score:Number  ⟩

    * b    

π[peptide]

 *  b

π[peptide]

String

{String}

{⋅}

⟨  peptide: String,
     lists: ⟨  healthy: PepList,
                  diseased: PepList  ⟩  ⟩

{ ⟨  healthy: PepList,
      diseased: PepList  ⟩ }

⟨⋅,⋅⟩

   *

             healthy

      *

peptide    

  × 
   *

      h

  × 
   *

       d

   *

peptide

    *

peptide

π[peptide] π[peptide] π[lists] π[peptide] π[lists]

String

π[healthy] π[diseased]{⋅}{⋅}

{String} PepList

⟨  peptide: String,
     d: ⟨  peptide: String,
              score: Number  ⟩  ⟩

score_h score_d

⟨⋅,⋅⟩
 * b

⟨⋅,⋅⟩
 * b

{Number}

{Number}

{ ⟨ peptide: String,
      healthy: {Number},
      diseased: {Number} ⟩ }

⟨  healthy: PepList,
    diseased: PepList  ⟩

PepList{String}

π[b]

⟨  peptide: String,
     healthy: {Number},
     diseased: {Number}  ⟩

      peptide

⟨⋅,⋅⟩ ⟨⋅,⋅⟩

{String}

a      a       

   a           a      

π[b] π[b]

π[b] π[b]

φ φ

⟨⋅,⋅⟩

 b *

     

a

Figure 3.13: Finding differences in peptide content of two samples (hierar-
chical)
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Figure 3.14: The generation of the blank dataflow from Fig. 3.7
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that does not unnest and nest. Recall that the reason for this requirement is
that if the function associated with the initial transition produces the empty
set then the transition produces no tokens and the dataflow will probably not
terminate properly. Observe that this is indeed what happens if the dataflow
is presented with an empty “healthy” or “diseased” peptide list since the ∪
transition will never be enabled. The dataflow is therefore strictly speaking
not semi-sound and cannot deal correctly with all possible input values. This
soundness problem can be easily solved by introducing extra branches for the
synchronization of the iterations as is shown in Fig. 3.13.

The corrected version of the dataflow can be shown to be hierarchical,
which is demonstrated in Fig. 3.14 where the corresponding blank dataflow,
called BDF8 here, is generated from the blank dataflow with only one place,
called BDF1. The gray boxes indicate groups of nodes that were generated
by expanding a single node in the preceding blank dataflow. For example,
all nodes in BDF2 where generated from the place in BDF1 by applying the
sequential place split and sequential transition split. For BDF3 a place is
split by using the AND-split and a transition is split by applying iteration
split. In the following step BDF4 is generated by applying the sequential
place split to two places. Then BDF5 is generated by using the AND-split
for two places. Then for constructing BDF6 some of the places that were
just introduced are expanded with the sequential place split. In the next step
BDF7 is constructed by applying the iteration split to four transitions and
the AND-split to two places. Finally, to construct BDF7 the sequential place
split and sequential transition split are applied several times.

As the preceding example shows, the hierarchical analysis of a dataflow
can sometimes reveal subtle soundness problems. In the next section we
present a tool with which for arbitrarily constructed dataflows it can be tested
if they are hierarchical. The test is possible in polynomial time, similarly as
for the rules proposed by Chrz ↪astowski-Wachtel et al. for plain Petri nets [12].

3.8 DFL designer

In this section we present DFL designer — a COSW tool based on the DFL
notation. Its main goal is to show that DFL can be used in practice as
COSW specification language and that the techniques presented so far in
this thesis are implementable. Additionally DFL designer aims to introduce
to the COSW setting some useful features known from workflow modeling
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Figure 3.15: DFL designer — Edit perspective

and database tools.
DFL designer is developed as a plugin for the Eclipse platform [20] and

is an open source project. It extends Eclipse with two new perspectives,
DFL Edit (see Figure 3.15) and DFL Run (see Figure 3.16), which define
the user interface configuration best suited for designing and enacting of
dataflows respectively. Apart from the basic DFL operations DFL designer
is provided with a huge library of bioinformatics services gathered by the
Taverna workbench (see Section 1.2.1 and Chapter 2) which is also an open
source project. Thanks to this it was possible to adapt already existing real
life COSWs designed with Taverna and test on them the usefulness of DFL
designer’s novel features.

In this section we describe the features of DFL designer that are the most
interesting and distinguishing from other COSW systems. We organize the
features into three groups: correctness enforcement, enactment optimization,
and debugging and testing support. Because of the space constraints and for

100



Figure 3.16: DFL designer — Run perspective

the accessibility of the presentation we use only abstract examples in this text.
Real-life examples constructed by us or ported from Taverna are presented on
the project web site at http://code.google.com/p/dfldesigner. The site
also contains installation instructions and multimedia materials presenting
DFL designer and its features.

3.8.1 Correctness enforcement

Source code editors in modern integrated development environments for strong-
ly typed languages, like the one used in Eclipse to edit Java code, prevent the
programmers from making certain types of errors by checking if operations
are applied to parameters of correct types and if the result is assigned to
a variable of a matching type. Thanks to the legality notion of DFL (see
Definition 3.3.3) this type of aid is built-in in DFL designer and prevents the
construction of illegal dataflows. While connecting the nodes on the diagram,

101



illegal constructions are prevented.
The enforcement of legality in the designer is more complex than for DFL

itself. This is because in DFL the core operations are parametrized by types
and labels, i.e., there are multiple instances of every operation with different
input and output types. Yet, in the designer we have made those operations
polymorphic to free the user from the inconvenience of dealing with many
variants of the same operation. By doing this dataflows became polymorphic
themselves and the types used in most cases cannot be determined exactly,
but rather have to be expressed as patterns. Thus, while connecting the nodes
on the diagram it is checked if corresponding patterns can be unified. For
example, in the dataflow in Figure 3.17 copies of the input value are projected
on fields u, v and x, so the input value has to be a record with at least such
fields. Similarly, because the operations f() and g() consume and produce
a string value, it also holds that string the type of field x. Checking if the
combined restrictions can be met together with the computation of patterns
for each place is a variant of the type inference problem [38, 49]. There are
many results for type inference in industrial-strength functional programming
languages like ML and Haskell. Some results are also available for a certain
extension of NRC [65], but there the problem is proven to be NP-complete.
Yet, for the polymorphic DFL the construction of a polynomial algorithm was
possible thanks to: (1) a slightly different definition of the Cartesian product,
which does not require that input values are sets of records with disjoint sets
of field labels, and (2) a simple equality test for only arguments of the same
basic type. A comprehensive discussion of which particular operations make
the type inference problem NP-hard can be found in [67].

Figure 3.17: If-then-else example in DFL designer

As we have stressed in Section 3.7, the legality is not the only notion
of correctness a dataflow author should keep in mind. Legal dataflows can
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still follow a faulty design, e.g., continue the processing after the result has
been produced, produce many results or not produce any results at all. We
have called the class of dataflows that are correct in this way semi-sound and
showed that it includes all hierarchical dataflows. In Sections 3.6 and 3.7.2
we have given an example of a real life dataflow which has some subtle flaws
that are difficult to notice by a human reader. Those can be detected by
checking the dataflow for hierarchicality and easily fixed by adhering to the
refinement rules. Thus, apart from enforcement of legality, DFL designer
can verify if a dataflow is hierarchical (see Section 3.8.2 for the details of
the algorithm), which is an interesting example of how Petri net structural
analysis can be applied to aid COSW practitioners.

3.8.2 Enactment optimization

Many tricks can be usually applied before executing a program, e.g., while
compiling or interpreting it, to speed up its execution. Optimization tech-
niques are also developed, applied and studied in the context of COSWs
enactment, but most often this research concentrates on aspects shared with
business workflows and grid techniques, e.g., which of many semantically
equivalent services to choose [29] or how to execute the COSW on distributed
resources such as the Grid [16]. Since we emphasize the data processing as-
pects of COSWs, we are more interested in application of the query optimiza-
tion results like the ones for NRC. It should be noted here, that the most
effective optimization results for query languages in general and for NRC in
particular depend upon algebraic identities that only hold if the involved op-
erations are side-effect free. It is our observation that most operations used
in COSWs are indeed side-effect free. Also the basic operators for which
these algebraic identities are known, like products, are present in COSW
languages, sometimes explicitly as in DFL and sometimes implicitly as in
Taverna, so these identities can also be used here for optimization.

The application of the query optimization results to COSWs can be done
by either developing similar results for COSW specification languages or by
translating COSWs to some query language for which optimized execution
engines exist. As we show with DFL designer, for hierarchical dataflows
a mapping to NRC is possible. Also NRC has many stable execution en-
gines [70], though by the time of this writing we have implemented the map-
ping algorithm but have not integrated DFL designer with an NRC execution
engine yet. The mapping is achieved by an extension of the algorithm that
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checks if a dataflow is hierarchical. Such a check is done by determining if
a reversal of the refinements from Figure 3.9 is possible until only one tran-
sition with a source and a sink place is left. Only if it is, the dataflow is
hierarchical. During the merging of dataflow nodes according to the reversed
refinement rules, operations represented by transitions can be composed, so
that in each step the dataflow as a whole computes the same function. The
idea for the compositions of functions is presented on Figure 3.18.
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Figure 3.18: Composition of functions while reversing the refinements

For example, in the case of the iteration split of rule (c), on left hand
side, the g function computed by the lower transition is provided on both of
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its arguments with the result of function f which is computed by the upper
transition. Thus, the transition on the right hand side which represents their
combination computes the function g◦pairk,l◦f , where pairk,l returns a record
with field labels k, l and the same value on both of them, i.e., the input value.
Here the “∗” annotated edges are unimportant since no processing occurs
between the unnesting and nesting. If a structural recursion indeed takes
place in the dataflow it is incorporated into the calculated functions by the
reversal of the sequential place split of rule (a). The notation d|(ld → map(f))
represents a modification of function d such that the value provided on the
label ld is first processed by the function map(f)4. The map(f) in turn is a
fundamental NRC operation that expects a collection and processes all of its
elements by f .

The presentation of the idea of the mapping algorithm in an algebraic
way, i.e., with function composition, was given here only because of its com-
pactness. The actual algorithm generates a calculus like expression. For the
if-then-else example from Figure 3.17 it produces:

if (id($”IN”).u == id($”IN”).v) then

f(in : 〈y : (id($”IN”).u == id($”IN”).v),

x : id($”IN”).x

〉.x)

else

g(in : 〈x : id($”IN”).x,

y : (id($”IN”).u == id($”IN”).v)

〉.x)

This expression can and would be simplified by the NRC optimizer to
if ($”IN”.u == $”IN”.v) then f($”IN”.x) else g($”IN”.x) by removing
the identity operations and noticing that records are constructed just to
be immediately projected on one of their fields. This extra complexity is
not an indication of bad design of DFL but of its graphical nature. Some
constructions, e.g., conditionals, filters and inner joins, are difficult to express
in a graphical notation where values cannot be accessed by context, but all

4Similarly (see case (f)), the notation f |(lf , kf → π[lf ]) represents a modification of
function f such that the values provided on the labels lf and kf are first processed by the
function π[lf ].
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flow of data has to be presented explicitly with an edge in the diagram.
This does not change even with the use of high level, user friendly graphical
notations that include many implicit features and a lot of syntactic sugar,
such as the one of the Taverna workbench.

3.8.3 Debugging and testing COSWs with interactive
firing of transitions

DFL designer can execute dataflows interactively, where the user selects
which of the enabled transitions will fire next. This is known from Petri
net tools as the token game. Yet, since the tokens in DFL carry data values,
an extra feature is present that allows to disable arbitrary tokens and thus
determine not only which transition will fire, but also which data values it
will consume. For user convenience it can be chosen whether the new tokens
are produced as enabled or disabled. At every moment of the interactive
execution the user has full control over the distribution of tokens and their
values. It is possible to inspect and edit what tokens are in each place, what
are their unnesting histories and what values they transport. The state of all
places can be saved to and loaded from an XML file. Also the information
about every single token, its data value and history can be stored this way.

The interactive firing of transitions together with the full control over the
state, allows the user to precisely understand the execution semantics of the
defined dataflow and gives the means to effectively debug and test them. In
particular the user can: (1) check what values are returned by transitions and
make sure that services represented by them behave as expected, (2) repeat
the experiments from saved partial states, (3) enforce and test all possible
variants of execution which is especially useful when complex synchronization
protocol is being defined, and (4) experiment in a “what would happen if”
way, by redefining the state during the execution.

3.8.4 Further research

There are many interesting directions of extending DFL designer and con-
tinuing our research. As we have already shown in [56] that an XQuery [59]
(a standard query language for XML data) engine can be integrated with a
COSW workbench in such a way that parts of the workflow can be expressed
as a query and this query can access the operations provided by the work-
bench. Similar integration with an NRC or XQuery engine is a natural next
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step in the development of DFL designer. It would also allow to enact the
dataflow more effectively since hierarchical fragments of dataflows which use
only side-effect free operations could be automatically translated into the
query language and optimized. Another interesting topic is adding prove-
nance support [27], so that information about how each data item has been
computed, i.e., by which services and from what input values, is collected.
This is important for scientists using COSWs for knowing how much they
can rely on the data, i.e., if it is very reliable data obtained by direct observa-
tion in laboratory or less reliable data resulting from several approximation
algorithms applied subsequently. Finally, further analysis algorithms can be
designed for DFL by following the results available for Petri nets. For exam-
ple, there are interesting results by Piotr Chrz ↪astowski-Wachtel [11] showing
that token distributions can also be checked for soundness, i.e., whether start-
ing from such a marking the computation can always be correctly completed
regardless of how it proceeds.

Apart from testing new ideas and setting new directions DFL designer
can be further developed in two ways: as a general use COSW tool and
as a supplement for other existing systems. The first requires additional
work on user friendliness, support of further domain specific operations and
enriching the DFL notation with syntactic sugar and implicit features like
an implicit iteration mechanism. The second requires the definition of a
mapping from notations used in other systems, e.g., from Scufl, to DFL such
that COSWs defined in other tools could be automatically translated to DFL
to take advantage of the analysis algorithms that are available for it. This
way DFL could be used as a formal core of COSW languages similarly as
NRC is a formal core of object-oriented and hierarchical query languages.
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Chapter 4

Summary of the presented
results and further research

4.1 Summary

In this thesis we have investigated and formalized the semantics of Scufl —
the COSW specification language of Taverna workbench and proved some
basic properties of all COSWs defined in Scufl.

Because the complexities of Taverna have convinced us that it is impor-
tant to have a cleaner model, we have proposed a new hybrid formal model
for specification of COSWs from first principles, that combines Petri nets
and NRC. We have also shown that results available for Petri nets can be
adapted to DFL.

In addition, we have constructed DFL designer — a new COSW system
that is based on the DFL notation, incorporates services available in Tav-
erna workbench and provides some features, unique in COSW setting, like
correctness enforcement, possible enactment optimization through NRC, and
debugging and testing support.

4.2 Publications and related research

The results presented in this thesis have been published or are under sub-
mission in several papers with several different coauthors. We survey these
publications here.

The results from Chapter 2 are under submission to the Fundamenta
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Informaticae journal. The material from Chapter 3, but without Section 3.8,
has been presented in [28, 21]. We also intend to present DFL designer, which
is described in Section 3.8, at some conference or workshop.

Verification OptimizationQuerying Practice

Petri nets

NRC TavernaXQuery

Repositories
and provenance

Formal model  
transition system

DFL

DFL
 designer

XQuery 
processor

 for Taverna

Taverna II
integrated with

DFL des.

DFL 
repositories

Formal model
with no

side-effects

Figure 4.1: Interdependencies and context of the results presented in this
thesis

The described results are part of a more extensive research on related
topics, which also have lead to several publications of ours or in which we
were involved, but which are only referenced in the text. In Fig. 4.1 we
outline the relationships between this other work and the work presented
in this thesis. We use blue rectangles to represent already existing results,
pink rectangles to represent results of ours which were only referenced in this
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thesis, yellow rectangles are the main results covered in this thesis and green
rectangles are interesting further research areas. The arrows symbolize the
direction of influence.

We have done some work on the importance of side-effects in COSWs
and the possibility to specify COSWs with just NRC [22, 21]. We have also
extended Taverna with the possibility to execute XQuery queries and specify
parts of COSW with XQuery [56]. Finally, we have defined a formal model
of COSW repositories [27].

In addition we have also proposed and tested in practice the idea of us-
ing a spreadsheet as a COSW specification interface and execution engine.
For that, in [18], we have extended the Calc spreadsheet from the OpenOf-
fice.org [47] package with the most important features of Taverna.

4.3 Further research

An interesting continuation of this research is to use DFL as a base model for
the COSW notations found in popular tools. This way the formal methods
developed for DFL would immediately become available for other COSW
languages. For example, a mapping from Scufl to DFL could be created. We
have already partially investigated such a mapping for the clean core of Scufl
as it is defined, by Turi et al. in [60]. In fact, as we claim in [21], if side effects
are not considered, as in Turi et al., then NRC itself is enough. A mapping
of the whole of Scufl may be more difficult, since in Scufl all the threads of
iteration over a nested Scufl graph start from a clean initial state. Expressing
this in DFL would require additional garbage token cleaning constructs. Yet,
as we know from our contacts with Taverna team, in the next version of
the system the select-first incoming-links strategy and failure mechanism,
whose simulation in DFL would cause garbage tokens to appear, will be
modified.

110



Appendix A

Basic properties of
lexicographical ordering of
number vectors

Definition A.0.1 (Number vector). A number vector of dimension n ∈ N
is a tuple c̄ = (c1, . . . , cn) with c1, . . . , cn ∈ N. The set of all such vectors is
denoted as Nn.

If c̄ = (c1, . . . , cn), then we let (c0, c̄) denote the number vector (c0, c1, . . . , cn).

Definition A.0.2 (Number vector ordering). Over Nn we let ≤n denote the
lexicographical ordering, i.e., it holds that:

(i) () ≤0 (), and

(ii) (c1, c̄) ≤n+1 (d1, d̄) iff (a) c1 < d1 or (b) c1 = d1 and c̄ ≤n d̄.

Proposition A.0.3. (Nn,≤n) is a partially ordered set for each n ∈ N.

Proof. We show this by induction on n. For n = 0 this is clear since N0 = {()}
and () ≤0 (). For n + 1 we can show, using the induction assumption for n,
the reflexivity, antisymmetry and transitivity as follows:

Reflexivity Let (c1, c̄) be an arbitrary vector from Nn+1. By induction we
know that c̄ ≤n c̄ and by (2b) it then follows that (c1, c̄) ≤n+1 (c1, c̄).
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Antisymmetry Let c̄′, d̄′ ∈ Nn+1 such that c̄′ ≤n+1 d̄′ and d̄′ ≤n+1 c̄′

where c̄′ = (c1, c̄) and d̄′ = (d1, d̄). Based on the definition of number vector
ordering this is only possible if c1 ≤ d1 and at the same time d1 ≤ c1 which
together imply c1 = d1. From this and the c̄′ ≤n+1 d̄′ it follows that c̄ ≤n d̄.
Similarly we get d̄ ≤n c̄. Now from the induction assumption we know that
c̄ = d̄ which completes the proof since we already showed that c1 = d1.

Transitivity Assume that (c1, c̄) ≤n+1 (d1, d̄) and that (d1, d̄) ≤n+1 (e1, ē).
Then one of the following cases holds: (i) c1 < d1 and d1 < e1, (ii) c1 < d1

and d1 = e1, (iii) c1 = d1 and d1 < e1, and (iv) c1 = d1 = e1, c̄ ≤n d̄ and
d̄ ≤n ē. In the first three cases (i), (ii) and (iii) it follows that c1 < e1,
and therefore (c1, c̄) ≤n+1 (e1, ē). In case (iv) it follows that c1 = e1 and by
induction that c̄ ≤n ē, and therefore (c1, c̄) ≤n+1 (e1, ē).

Definition A.0.4 (Well-founded). A partially ordered set (V,≤V ) is said
to be well-founded if it holds for every non-empty subset V ′ ⊆ V that it
contains at least one minimal element, i.e., an element v ∈ V ′ such that for
all w ∈ V ′ if w ≤V v then w = v.

Proposition A.0.5. The partial order (Nn,≤n) is well-founded.

Proof. We prove this with induction on n. For n = 0 it holds since there
is only one element in N0. Next, we consider n + 1. Let c′1 be the smallest
number in {c1 | (c1, c̄) ∈ Nn+1}. Then let c̄′ be the minimal element in
{c̄ | (c′1, c̄) ∈ Nn+1} w.r.t. ≤n, which by induction exists. We now show that
(c′1, c̄

′) is a minimal element of Nn+1. Assume that (c1, c̄) ≤n+1 (c′1, c̄
′). By

the definition of ≤n+1 it holds that c1 ≤ c′1 and by the definition of c′1 that
c′1 ≤ c1, and so c1 = c′1. From this it follows that c̄ ≤n c̄′. By induction and
the fact that c̄′ is a minimal element of a set of which c̄ is also an element, it
follows that c̄′ = c̄. It therefore holds that (c1, c̄) = (c′1, c̄

′).

Proposition A.0.6. (V,≤V ) is well-founded iff V contains no infinite de-
scending chains, i.e., there exists no injective function f : N → V such that
for every n ∈ N it holds f(n+ 1) ≤V f(n).

Proof. We will prove both implications by contradiction. Let V ′ ⊆ V be a
non-empty subset without a minimal element. The sequence f : N→ V ′ can
be defined as follows. f(0) is an arbitrary element of V ′. If f is defined for all
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k ≤ n and for every k < n it holds f(k+1) ≤V f(k) but f(k+1) 6= f(k) then
as f(n+1) we choose any other element from V ′ such that f(n+1) ≤V f(n).
The existence of such element follows from the fact that f(n) is not minimal
in V ′. The other way around, if there exists an infinite descending chain
f , then the image {f(1), f(2), . . .} is a non-empty subset of V that has no
minimal element.

Corollary A.0.7. The partially ordered set (Nn,≤n) contains no infinite
descending chains.

Proof. This follows directly from Propositions A.0.5 and A.0.6.
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[7] Gèrard Berthelot. Checking properties of nets using transformation.
In Advances in Petri Nets 1985, covers the 6th European Workshop on
Applications and Theory in Petri Nets-selected papers, volume 222 of
Lecture Notes in Computer Science, pages 19–40, London, UK, 1986.
Springer-Verlag.

114



[8] B. Boeckmann, A. Bairoch, R. Apweiler, MC. Blatter, A. Estreicher,
and et al. The SWISS-PROT protein knowledgebase and its supplement
TrEMBL in 2003. Nucleic Acids Research, 31:365–370, 2003.

[9] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Prin-
ciples of programming with complex objects and collection types. The-
oretical Computer Science, 149(1):3–48, 1995.

[10] Vassilis Christophides, Richard Hull, and Akhil Kumar. Querying and
splicing of XML workflows. In CooplS ’01: Proceedings of the 9th In-
ternational Conference on Cooperative Information Systems, pages 386–
402, London, UK, 2001. Springer-Verlag.

[11] Piotr Chrz ↪astowski-Wachtel. Determining sound markings in structured
nets. Fundamenta Informaticae, 72(1-3):65–79, 2006.

[12] Piotr Chrz ↪astowski-Wachtel. private communication, 2007.

[13] Piotr Chrz ↪astowski-Wachtel, Boualem Benatallah, Rachid Hamadi, Mil-
ton O’Dell, and Adi Susanto. A top-down Petri net-based approach for
dynamic workflow modeling. In Wil M. P. van der Aalst, Arthur H. M.
ter Hofstede, and Mathias Weske, editors, Business Process Manage-
ment, volume 2678 of Lecture Notes in Computer Science, pages 336–
353. Springer, 2003.

[14] Susan B. Davidson, G. Christian Overton, Val Tannen, and Limsoon
Wong. BioKleisli: A Digital Library for Biomedical Researchers. Int. J.
on Digital Libraries, 1(1):36–53, 1997.

[15] E. Deelman, G. Singh, Mei-Hui Su, J. Blythe, Y. Gil, C Kesselman,
G. Mehta, K. Vahi, B. Berriman, J. Good, A. Laity, J. C. Jacob, and
D. S. Katz. Pegasus: A framework for mapping complex scientific work-
flows onto distributed systems. Sci. Program., 13(3):219–237, 2005.

[16] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil,
Carl Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John
Good, Anastasia C. Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus:
A framework for mapping complex scientific workflows onto distributed
systems. Scientific Programming, 13(3):219–237, 2005.

115



[17] UC Berkeley Department of EECS. Ptolemy II project and system.
http://ptolemy.eecs.berkeley.edu/ptolemyII, 2008.

[18] Marek Dopiera, Adam Kawa, Piotr Krewski, Jacek Sroka, Jerzy
Tyszkiewicz, and Tomek Weksej. Tavernalc: How to transform your
OpenOffice Calc into a grid. In OpenOffice.org Conference (OOoCon),
2007.

[19] D. Dumont, J.P. Noben, J. Raus, P. Stinissen, and J. Robben. Pro-
teomic analysis of cerebrospinal fluid from multiple sclerosis patients.
Proteomics, 4(7), 2004.

[20] Eclipse — an open development platform. http://www.eclipse.org.

[21] Anna Gambin, Jan Hidders, Natalia Kwasnikowska, S lawomir Lasota,
Jacek Sroka, Jerzy Tyszkiewicz, and Jan Van den Bussche. NRC as a
formal model for expressing bioinformatics workflows. Poster at ISMB,
2005. Poster.

[22] Anna Gambin, Jan Hidders, Natalia Kwasnikowska, S lawomir Lasota,
Jacek Sroka, Jerzy Tyszkiewicz, and Jan Van den Bussche. Well-
constructed workflows in bioinformatics. In Workshop on Database Is-
sues in Biological Databases (DBiBD), 2005.

[23] C. A. Goble and D. C. De Roure. myExperiment: social networking
for workflow-using e-scientists. In WORKS ’07: Proceedings of the 2nd
workshop on Workflows in support of large-scale science, pages 1–2, New
York, NY, USA, 2007. ACM Press.

[24] Grid workflow forum. http://www.gridworkflow.org/snips/

gridworkflow/space/Projects.

[25] Adnene Guabtni and François Charoy. Multiple instantiation in a dy-
namic workflow environment. In Anne Persson and Janis Stirna, editors,
CAiSE, volume 3084 of Lecture Notes in Computer Science, pages 175–
188. Springer, 2004.

[26] Jan Hidders, Natalia Kwasnikowska, Jacek Sroka, Jerzy Tyszkiewicz,
and Jan Van den Bussche. Petri net + nested relational calculus =
dataflow. In OTM Conferences (1), pages 220–237, 2005.

116



[27] Jan Hidders, Natalia Kwasnikowska, Jacek Sroka, Jerzy Tyszkiewicz,
and Jan Van den Bussche. A formal model of dataflow repositories.
In Proc. of the 4th Int. Workshop on Data Integration in Life Sciences
(DILS), volume 4544/2007 of LNBI, pages 105–121, Philadelphia, PA,
USA, June 27–29 2007.

[28] Jan Hidders, Natalia Kwasnikowska, Jacek Sroka, Jerzy Tyszkiewicz,
and Jan Van den Bussche. DFL: A dataflow language based on Petri
nets and nested relational calculus. Information Systems, 33(3):261–284,
2008.

[29] Lican Huang, Asif Akram, Rob Allan, David W. Walker, Omer F. Rana,
and Yan Huang. A workflow portal supporting multi-language interop-
eration and optimization: Research articles. Concurr. Comput. : Pract.
Exper., 19(12):1583–1595, 2007.

[30] Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble,
Mathew R. Pocock, Peter Li, and Tom Oinn. Taverna: a tool for build-
ing and running workflows of services. Nucl. Acids Res., 34:W729–732,
2006.

[31] Kurt Jensen. Coloured Petri nets (2nd ed.): basic concepts, analysis
methods and practical use: volumes 1 and 2. Springer-Verlag, London,
UK, 1996.

[32] C. Johnson and S. Parker. Applications in computational medicine using
SCIRun: a computational steering programming environment, 1995.

[33] G. Kandaswamy, L. Fang, Y. Huang, S. Shirasuna, S. Marru, and
D. Gannon. Building web services for scientific grid applications. IBM
Journal of Research and Development, 50(2/3):249–260, 2006.

[34] P. Li, K. Hayward, C. Jennings, K. Owen, T. Oinn, R. Stevens,
S. Pearce, and A. Wipat. Association of variations in I kappa B-epsilon
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[35] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat
Jaeger, Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Sci-

117



entific workflow management and the Kepler system: Research Articles.
Concurr. Comput. : Pract. Exper., 18(10):1039–1065, 2006.

[36] Shalil Majithia, Matthew S. Shields, Ian J. Taylor, and Ian Wang. Tri-
ana: A Graphical Web Service Composition and Execution Toolkit.
In Proceedings of the IEEE International Conference on Web Services
(ICWS’04), pages 514–524. IEEE Computer Society, 2004.

[37] Timothy M. McPhillips, Shawn Bowers, and Bertram Ludäscher.
Collection-oriented scientific workflows for integrating and analyzing bi-
ological data. In Ulf Leser, Felix Naumann, and Barbara A. Eckman,
editors, DILS, volume 4075 of Lecture Notes in Computer Science, pages
248–263. Springer, 2006.

[38] John C. Mitchell. Foundations of programming languages. MIT Press,
Cambridge, MA, USA, 1996.

[39] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[40] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[41] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, 1989.

[42] National Center for Biotechnology Information. NCBI Blast. http:

//www.ncbi.nlm.nih.gov/blast/Blast.cgi.

[43] Andreas Oberweis and Peter Sander. Information system behavior spec-
ification by high level Petri nets. ACM Trans. Inf. Syst., 14(4):380–420,
1996.

[44] Object Management Group. Unified modeling language resource page.
http://www.uml.org.

[45] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna:
a tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045–3054, November 2004.

118



[46] Tom Oinn, Mark Greenwood, Matthew Addis, M. Nedim Alpdemir,
Justin Ferris, Kevin Glover, Carole Goble, Antoon Goderis, Duncan
Hull, Darren Marvin, Peter Li, Phillip Lord, Matthew R. Pocock, Mar-
tin Senger, Robert Stevens, Anil Wipat, and Chris Wroe. Taverna:
lessons in creating a workflow environment for the life sciences: Re-
search Articles. Concurr. Comput. : Pract. Exper., 18(10):1067–1100,
2006.

[47] OpenOffice.org — the free and open productivity suite. http://www.

openoffice.org.

[48] Cesare Pautasso and Gustavo Alonso. The JOpera visual composition
language. Journal of Visual Languages and Computing (JVLC), 16:119–
152, 2005.

[49] Benjamin C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002.

[50] Hajo A. Reijers. Design and Control of Workflow Processes: Business
Process Management for the Service Industry. Number 2617 in Lecture
Notes in Computer Science. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2003.

[51] Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York,
Inc., New York, NY, USA, 1985.

[52] P. Rice, I. Longden, and A. Bleasby. EMBOSS: the European Molecular
Biology Open Software Suite. Trends in Genetics, 16(6):276–277, June
2000.

[53] Peter M. Rice, Alan J. Bleasby, Syed A. Haider, Jon C. Ison, Shaun
McGlinchey, and Mahmut Uludag. EMBRACE: Bioinformatics Data
and Analysis Tool Services for e-Science. e-science, 0:146, 2006.

[54] A. Rowe, D. Kalaitzopoulos, M. Osmond, M. Ghanem, and Y. Guo.
The discovery net system for high throughput bioinformatics. In ISMB
(Supplement of Bioinformatics), pages 225–231, 2003.

[55] Scientific workflows survey. http://www.extreme.indiana.edu/

swf-survey.

119



[56] Jacek Sroka, Grzegorz Kaczor, Jerzy Tyszkiewicz, and Andrzej M.
Kierzek. XQTav: an XQuery processor for Taverna environment. Bioin-
formatics, 22(10):1280–1281, May 2006.

[57] R. Stevens, H.J. Tipney, C. Wroe, T. Oinn, M. Senger, C.A. Goble,
P. Lord, A. Brass, and M. Tassabehji. Exploring Williams-Beuren syn-
drome using myGrid. In Proceedings of 12th International Conference on
Intelligent Systems in Molecular Biology, 2004.

[58] Dan Suciu and Limsoon Wong. On two forms of structural recursion.
In ICDT, pages 111–124, 1995.

[59] The World Wide Web Consortium. XML query working group public
page. http://www.w3.org/XML/Query.

[60] Daniele Turi, Paolo Missier, Carole Goble, David De Roure, and Tom
Oinn. Taverna workflows: Syntax and semantics. In e-Science and Grid
Computing, IEEE International Conference on, pages 441–448, 2007.

[61] University of Virginia. FASTA Sequence Comparison. http://wrpmg5c.
bioch.virginia.edu/fasta_www2/fasta_list2.shtml.

[62] U.S. Department of Energy Human Genome Program. Genomics
and its impact on science and society: The Human Genome Project
and beyond. http://www.ornl.gov/TechResources/Human_Genome/

publicat/primer2001/index.html.
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