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Abstract

Our purpose is to give the new constructive method of derivation of Hardy
and Hardy–Sobolev inequalities. We build inequalities knowing solutions u
to p and A–harmonic problems, respectively. We derive Caccioppoli inequal-
ities for u. As a consequence we obtain weighted Hardy and Hardy–Sobolev
inequalities, respectively, for compactly supported Lipschitz functions.

In the first part we obtain one parameter family of Hardy inequalities of
the form ∫

Ω

|ξ(x)|pµ1,β(dx) ≤
∫

Ω

|∇ξ(x)|pµ2,β(dx),

where 1 < p <∞, ξ : Ω→ R is compactly supported Lipschitz function, and
Ω is an open subset of Rn not necessarily bounded. The involved measures
µ1,β(dx), µ2,β(dx) depend on certain parameter β and u — a nonnegative
weak solution to anticoercive PDI:

−∆pu ≥ Φ in Ω,

with locally integrable function Φ (see Theorem 3.3.1). We allow quite a
general function Φ that can be negative or sign changing if only there exists

σ0 := inf {σ ∈ R : Φ · u+ σ|∇u|p ≥ 0 a.e. in Ω ∩ {u > 0} } ∈ R. (1)

The second part is devoted to Hardy–Sobolev inequalities of the form∫
Ω

FĀ(|ξ|)µ1(dx) ≤
∫

Ω

Ā(|∇ξ|)µ2(dx),

where ξ : Ω → R is compactly supported Lipschitz function, Ω is an open
subset of Rn not necessarily bounded, Ā(λ) = A(|λ|)λ is an N–function satis-
fying ∆′–condition and FĀ(λ) = 1/(Ā(1/λ)). The involved measures µ1(dx),
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µ2(dx) depend on u — a nonnegative weak solution to the anticoercive partial
differential inequality of elliptic type involving A–Laplacian:

−∆Au = −divA(∇u) ≥ Φ in Ω,

with locally integrable function Φ, satisfying the condition corresponding
to (1). The results of the second part imply those of the first part with all
details. In particular, the constants which we obtain in both attempts are
equal.

Our method of construction of the inequalities is a handy tool. Not only
is it easy to conduct, but also give deep results such as classical inequalities
with the best constants.
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Streszczenie

Naszym celem jest wprowadzić nowa̧ konstrukcyjna̧ metodȩ formu lowania
nierówności typu Hardy’ego i Hardy’ego–Sobolewa. Konstruujemy je znaja̧c
rozwia̧zania u zagadnienień p oraz A–harmonicznych, odpowiednio. Wypro-
wadzamy nierówności typu Caccioppoliego dla u. Jako wniosek z nich otrzy-
mujemy ważone nierwnoci typu Hardy’ego i Hardy’ego–Sobolewa, odpowied-
nio, dla funkcji Lipschitzowskich o zwartym nośniku.

W pierwszej czȩści otrzymujemy jednoparametrowa̧ rodzinȩ nierówności
typu Hardy’ego postaci∫

Ω

|ξ(x)|pµ1,β(dx) ≤
∫

Ω

|∇ξ(x)|pµ2,β(dx),

gdzie 1 < p < ∞, ξ : Ω → R jest funkcja̧ Lipschitzowska̧ o zwartym
nośniku, Ω jest otwartym podzbiorem Rn nie koniecznie ograniczonym. Mi-
ary µ1,β(dx), µ2,β(dx) zależa̧ od pewnego parametru β oraz u — nieujemnego
rozwia̧zania antykoercytywnej nierówności różniczkowej:

−∆pu ≥ Φ in Ω,

z lokalnie ca lkowalna̧ funkcja̧ Φ (patrz Twierdzenie 3.3.1). Dopuszczamy
dość ogólna̧ postać Φ, która może być ujemna lub zmieniaja̧ca znak jeśli
tylko istnieje

σ0 := inf {σ ∈ R : Φ · u+ σ|∇u|p ≥ 0 a.e. in Ω ∩ {u > 0} } ∈ R. (2)

Druga czȩść jest poświȩcona nierównościom typu Hardy’ego–Sobolewa
postaci ∫

Ω

FĀ(|ξ|)µ1(dx) ≤
∫

Ω

Ā(|∇ξ|)µ2(dx),

gdzie ξ : Ω→ R ξ : Ω→ R jest funkcja̧ Lipschitzowska̧ o zwartym nośniku, Ω
jest otwartym podzbiorem Rn nie koniecznie ograniczonym, Ā(λ) = A(|λ|)λ
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jest N–funkcja̧ spe lniaja̧ca̧ warunek ∆′, a FĀ(λ) = 1/(Ā(1/t)). Miary µ1(dx),
µ2(dx) zależa̧ od u— nieujemnego rozwia̧zania antykoercytywnej nierówności
różniczkowej uwzglȩdniajcacej A–Laplasjan:

−∆Au = −divA(∇u) ≥ Φ in Ω,

with locally integrable function Φ, spe lniaja̧cej warunek odpowiadaja̧cy (2).
Wyniki drugiej czȩści implikuja̧ te z czȩci pierwszej ze wszystkimi szczegó lami.
Nawet otrzymane sta le sa̧ równe w obu podej́sciach.

Nasza metoda konstrukcji nierówności jest porȩcznym narzȩdziem. Nie
tylko jest  latwa do przeprowadzenia. Pozwala uzyskać g lȩbokie wyniki, jak
na przyk lad klasyczne nierówności z najlepszymi sta lymi.
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Podziȩkowania
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Chapter 1

Introduction

The dissertation introduces the new constructive method of derivation of
Hardy and Hardy–Sobolev inequalities. We build inequalities knowing weak
solutions to p and A–harmonic problems, respectively. The results are based
on [92, 93, 94] by the author.

The construction begins with derivation of Caccioppoli inequalities for
solutions. As a consequence we obtain Hardy inequalities, involving certain
measures, for test functions, i.e. compactly supported Lipschitz functions.
This method of construction of the inequalities is a handy tool. Not only is it
easy to conduct, but also give deep results such as classical inequalities with
the best constants. We present brief explanation of derivation and a sample
of main examples.

Our methods are inspired by the techniques from paper [72] where nonex-
istence of nontrivial nonnegative weak solutions to the A–harmonic problem

−∆Au ≥ Φ(u) on Rn, (1.1)

where Φ is a nonnegative function is investigated. The paper [72] develops
the idea from [86] in the following way. The authors derive Caccioppoli–
type estimate for nonnegative weak solutions to (1.1). Then, they obtain
more specified a priori estimates involving general test functions and finally,
choosing appropriate test functions, they obtain nonexistence.

We concentrate on the Caccioppoli–type estimate. Careful analysis en-
ables us to derive this type of estimate violating assumptions from [72] that
Φ = Φ(u), Φ ≥ 0 and that integrals are over whole space. Instead, we as-
sume only that Φ is in some sense bounded from below (see condition in
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(3.5), (3.12)). As a next step we notice that certain substitution in the de-
rived Caccioppoli–type inequality for solutions implies Hardy–type inequality
for compactly supported Lipschitz functions.

The first part is based on [92] and [93] by the author. These papers con-
cern derivation and application of one parameter family of Hardy inequalities
of the form ∫

Ω

|ξ(x)|pµ1,β(dx) ≤
∫

Ω

|∇ξ(x)|pµ2,β(dx), (1.2)

where 1 < p <∞, ξ : Ω→ R is compactly supported Lipschitz function, and
Ω is an open subset of Rn not necessarily bounded. The involved measures
µ1,β(dx), µ2,β(dx) depend on certain parameter β and u — a nonnegative
weak solution to anticoercive PDI

∆pu ≥ Φ in Ω, (1.3)

with locally integrable function Φ (see Theorem 3.3.1). We allow quite a
general function Φ that can be negative or sign changing if only there exists

σ0 := inf {σ ∈ R : Φ · u+ σ|∇u|p ≥ 0 a.e. in Ω ∩ {u > 0} } ∈ R. (1.4)

Let us mention some special cases which we present in Section 3.4. We
obtain classical Hardy inequality∫ ∞

0

(
|ξ(x)|
x

)p
xγ dx ≤ Cmin

∫ ∞
0

|ξ′(x)|pxγ dx,

with the optimal constant Cmin, for all admissible range of parameters γ and
p. Another special case is a more general result when measures in (1.2) have
a form µi(dx) = %i(|x|)dx, with locally integrable radial functions %i(|x|)
and Ω = Rn \ {0}. As a direct consequence of this approach we obtain
n–dimensional Hardy inequality∫

Rn\{0}
|ξ(x)|p|x|γ−p dx ≤ Cmin

∫
Rn\{0}

|∇ξ(x)|p|x|γ dx,

with the optimal constant Cmin within certain range of parameters γ and p.
In Subsection 3.4.3 we present Hardy inequalities with exponential weights.

In Subsection 3.4.4 we consider p–superharmonic functions. In that case the
measures derived in (1.2) have a simpler form. Such inequalities can be con-
structed for example by using harmonic function u, which satisfies a given
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boundary value problem. In Subsection 3.4.5 we investigate problems with
the negative lower bound of −p–Laplacian (i.e. function Φ from (1.3)).

Section 3.5 is devoted to applications of our methods. As a first of them,
we illustrate result by Ghoussoub and Moradifam from a recent paper [53],
giving the constructive method to obtain Bessel pairs. Our second appli-
cation is focused on mathematical models in astrophysics. We investigate
Hardy and Hardy–Sobolev inequalities resulting from model by Bertin and
Ciotti describing dynamics of elliptic galaxies. For this discussion knowing
the exact form of a solution is not necessary but the existence is needed.
Using existence result by Badiale and Tarantello [7] we derive the related
Hardy inequality. Let us mention that the model by Bertin and Ciotti has a
similar form to the well known Matukuma’s equation [82] and various other
models can be used to build Hardy inequalities as well.

In Section 3.6 we present results of [93] where the author derive Hardy–
Poincaré inequalities

C̄γ,n,p

∫
Rn
|ξ(x)|p(1 + |x|

p
p−1 )(p−1)(γ−1)dx ≤

∫
Rn
|∇ξ(x)|p(1 + |x|

p
p−1 )(p−1)γ dx,

(1.5)
with C̄γ,n,p proven to be optimal for sufficiently big γ’s. The version of this
result, when p = 2,

C

∫
Rn
|ξ|2(1 + |x|2)γ−1dx ≤

∫
Rn
|∇ξ|2(1 + |x|2)γdx, (1.6)

is of special interest in many disciplines of analysis. Let us recall some appli-
cations of (1.6) to the theory of nonlinear diffusions — evolution equations
of a form ut = ∆um, which are called fast diffusion equation (FDE) if m < 1
and porous media equation (PME) if m > 1. In the theory of FDE, Hardy–
Poincaré inequalities (1.6) with γ < 0 are the basic tools to investigate the
large–time asymptotic of solutions [4, 14, 26, 41]. For example, the best
constant in (1.6) is used in [16, 48] to show the fastest rate of convergence
of solutions of fast diffusion equation and to bring some information about
spectral properties of the elliptic operator Lα,du := −h1−γdiv (h−γ∇u), where
hα = (1 + |x|2)α. We refer also to [26, 40, 98] for the related results.

We are interested in (1.5) with γ > 1, and we take into account all
p ∈ (1,∞), not only p = 2. This result is obtained when we consider The-

orem 3.3.1 and apply uα(x) = (1 + |x|
p
p−1 )−α, α > 0. We prove inequality

(1.5) as well as optimality of the obtained constants for a range of parameters.
Details are given in the proof of Theorem 3.6.1.
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It appears that in some cases we improve the constants obtained by
Blanchet, Bonforte, Dolbeault, Grillo and Vázquez in [16], as well as those
by Ghoussoub and Moradifam from [53]. In the case p = 2, γ = n, our
constant is the same as in [16] and proven there to be optimal. Moreover,
we show that our constants are also optimal for p > 1, when γ ≥ n+ 1− n

p
,

but we do not know if they are optimal for wider range of parameters, either
in the case p = 2, or generally for p > 1. At the and of Subsection 3.6.2 we
give a summary of the known values of constants, and their optimality, in
different cases.

The second part is devoted to Hardy–Sobolev inequalities of the form∫
Ω

FĀ(|ξ|)µ1(dx) ≤
∫

Ω

Ā(|∇ξ|)µ2(dx), (1.7)

where ξ : Ω → R is compactly supported Lipschitz function, Ω is an open
subset of Rn not necessarily bounded, Ā(λ) = A(|λ|)λ is an N–function
satisfying ∆′–condition and FĀ(λ) = 1/(Ā(1/t)). The involved measures
µ1(dx), µ2(dx) depend on u — a nonnegative weak solution to the antico-
ercive partial differential inequality of elliptic type involving A–Laplacian
−∆Au = −divA(∇u) ≥ Φ in Ω, with locally integrable function Φ, satisfying
the condition corresponding to (1.4).

In Section 4 we give examples of inequalities of a type (1.7) with gen-
eral Ā(t) satisfying ∆′–condition with various measures. In particular we
present application of Ā(t) = tp logα(2 + t), p > 1, α > 0. This part ex-
tends results from Chapter 3 (based on [92] and [93]), where we considered
inequality −∆pu ≥ Φ, leading to Hardy inequalities with the best constants.
In particular, the obtained constants in both attempts are equal.
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Chapter 2

Motivation

Hardy–type inequalities are important tools in functional analysis, harmonic
analysis, probability theory, and PDEs. In the last three decades huge
progress was made to understand them, see e.g. books: [73, 75, 77, 76,
80, 83, 87] and their references. The applied tools are often expressed in the
language of functional analysis, harmonic analysis, and probability.

Applications. In theory of PDEs they are used to obtain a priori esti-
mates, existence, and regularity ([8, 19, 20, 50, 54], Section 2.5 in [83]), as
well as to study qualitative properties of solutions and their asymptotic be-
haviour [98]. Hardy inequalities are also applied in derivation of embedding
theorems (Theorem 3.1 in [27], [59, 64]), Gagliardo–Nirenberg interpolation
inequalities [32, 33, 58, 69] and in the real interpolation theory [47].

Validity of Hardy inequality.

Several necessary and sufficient conditions for the validity of Hardy–type
inequalities are present in the literature. Most of them seems to be rather
abstract and the conditions for the validity of inequalities are often very hard
to verify in practice.

Let us mention one of such results, where conditions for existence of
Hardy–type inequalities involving measures have been characterized com-
pletely, however they are hard to apply. The example is Theorem 2.4.1 in
[83] (in the case M(t) = |t|) which characterizes measures satisfying inequal-
ity ∫

Ω

|ξ|pµ(dx) ≤ C

∫
Ω

|∇ξ|pdx, 1 < p <∞,
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holding for smooth compactly supported functions u. The conditions, so–
called isoperimetric inequalities, are expressed on compact sets and involve
capacities.

There are many conditions equivalent to validity of Hardy inequalities.
They are usually associated with the name of Muckenhoupt and his work [88].
We give below the famous theorem, which summarizes efforts and ideas in
this topic of wide range of great mathematicians such as Artola, Talenti [96],
Tomaselli [97], Chisholm–Everitt [31], Muckenhoupt [88], Boyd–Erdos. The
proof that we invoke follows [76] where, apart from this formulation, a lot
of additional interesting historical information on the investigation of this
problems can be found.

Theorem 2.0.1 (Talenti–Tomaselli–Muckenhoupt). Let 1 ≤ p < ∞. The
inequality (∫ b

0

(∫ x

0

f(t)dt

)p
u(x)dx

) 1
p

≤ C

(∫ b

0

fp(t)v(x)dx

) 1
p

(2.1)

holds for all measurable functions f(x) ≥ 0 on (0, b), 0 < b ≤ ∞ if and only
if

A = sup
r>0

(∫ b

r

u(x)dx

) 1
p
(∫ r

0

v1−p′(x)dx

) 1
p′

<∞.

Moreover, the best constant C in (2.1) satifies A ≤ C ≤ p
1
pp′

1
p′ for 1 <

p <∞ and C = A for p = 1.

Hardy inequalities in PDEs

Generally speaking, linking nonlinear eigenvalue problems of elliptic and
parabolic type with Hardy inequalities is common in the literature. We
observe this issue also in the articles [3, 5, 7, 18, 24, 25, 68, 71, 85]. For
example it is well known that functions achieving best constants in Hardy–
Sobolev type inequalities satisfy the nonlinear eigenvalue problems [22, Chap-
ter 5]. Moreover, the best constants are investigated for proving existence of
parabolic eigenvalue problems [8, 35, 50, 52]. What is less understood is the
converse: that solutions or subsolutions to differential eigenvalue problems
are helpful to construct Hardy–Sobolev inequalities.

The best constant and existence. Analysis of the best constants
cn,γ,p in Classical n–dimensional Hardy inequalities is crucial to decide ex-
istence. We refer to seminal paper of P. Baras and J. A. Goldstein [8],
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where existence, nonexistence of global solutions, and a blow–up for follow-
ing parabolic problem is considered. For x ∈ Rn, n ≥ 3, and t ∈ (0, T ){

ut −∆u = λ u
|x2| , λ ∈ R,

u(x, 0) = u0(x) > 0, u0 ∈ L2(Rn),
(2.2)

has a solution if and only if λ ≤
(
n−2

2

)2
. See [8] for details and [54] for related

generalized results.

We note additionally that critical λ =
(
n−2

2

)2
is equal to optimal (but

not attained in the Sobolev space) constant in the following n–dimensional
Classical Hardy inequality(

n− 2

2

)2 ∫
Rn\{0}

|ξ|2|x|−2 dx ≤
∫
Rn\{0}

|∇ξ|p|x|2 dx, ξ ∈ C∞0 (Rn \ {0}).

Nevertheless, the authors of [8] neither apply nor recognize Hardy inequality
in any version. Connection with critical λ from (2.2) is revealed in [50] by
J. P. Garćıa–Azorero and I. Peral–Alonso. The authors study links between
Hardy inequality and nonlinear critical p–heat equation (and the related
stationary p–Laplacian equation) ut −∆pu = λ |u|

p−2u
|x|p , x ∈ Ω, t > 0, λ ∈ R,

u(x, 0) = f(x) ≥ 0, x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t > 0,

(2.3)

where −∆pu ≥ 0, Ω is a bounded domain in Rn, and 1 < p < N . Qualitative
properties of solutions, such as existence and blow–up, depend in general on
the relation between λ and the best constant in Hardy inequality.

Asymptotic behaviour. In [98] J. L. Vazquez and E. Zuazua describe
the asymptotic behaviour of the heat equation that reads

ut = ∆u+ V (x)u and ∆u+ V (x)u+ µu = 0,

where V (x) is an inverse–square potential (e.g. V (x) = λ
|x|2 ). The authors

consider the Cauchy–Dirichlet problem in a bounded domain and for the
Cauchy problem in Rn as well. The crucial tool is an improved form of Hardy–
Poincaré inequality and its new weighted version. The main results show the
decay rate of solutions. Well–posedness of the problem and problems with
uniqueness are also considered. Furthermore, in [98] the authors explain and
generalize the work of P. Baras and J. A. Goldstein [8].
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Radiality. Hardy inequality may play the key role to prove existence,
nonexistence, as well as radiality of solutions. All the mentioned applications
are studied in [51] by M. Garcia–Huidobro, A. Kufner, R. Manásevich, and
C. S. Yarur.

The authors establish a critical exponent for the inclusion of a certain
weighted Sobolev space into the weighted Lebesgue space. This result is
applied in the proof of radiality of solutions for a quasilinear equation{

div(a(|x|)|∇u|p−2∇u) = b(|x|)|∇u|q−2∇u in B ⊆ Rn,
u = 0 on ∂B,

(2.4)

where 1 < p < q, functions a, b are weight functions, and B is a ball.

Links between existence for differential equations and validity of
Hardy inequality

Constructing Hardy–type inequalities on the basis of differential problems is
an idea present in the literature.

ODEs. In paper [56] Gurka investigated the existence of one–dimensional
Hardy–type inequality between Lq and Lp (allowing the case p = q) that reads(∫ a

0

s(x)|u(x)|qdx
) 1

q

≤ C

(∫ a

0

r(x)|u′(x)|pdx
) 1

p

(2.5)

and found necessary and sufficient conditions for the existence of (2.5) in a
certain class of admitted functions. The work [56] generalises previous results
by Beesack [9], Kufner and Triebel [79], Muckenhoupt [88], and Tomaselli [97].
The main result of [56] reads

Theorem 2.0.2 ([56], Theorem 1.3). Assume 0 < a ≤ ∞, 1 < p ≤ q < ∞.
Let r(x) > 0, s(x) ≥ 0 be functions measurable on [0, a].

Moreover, let us suppose that the first derivative r′(x) exists for all x ∈
(0, a). Then the equation

λ
d

dx

(
r
q
p (x)(y′(x))

q
p′
)

+ s(x)y
q
p′ (x) = 0 (2.6)

(with a certain λ > 0) has a solution y(x) (with a locally absolutely continuous
first derivative) such that

y(x) > 0, y′(x) > 0, (x ∈ (0, a))
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if and only if there exists a constant C0 > 0 such that the inequality (2.5)
holds for every function u(x) absolutely continuous on [0, a] such that u(0) =
limt→∞ u(t) = 0.

In the recent paper by Ghoussoub and Moradifam [53], the authors proved
that the validity of inequalities

c

∫
B

|ξ(x)|2W (x)dx ≤
∫
B

|∇ξ(x)|2V (x)dx for all u ∈ C∞0 (B),

with radially symmetric functions V and W (so–called Bessel pairs), where
B is a ball with center at zero, is equivalent to the existence of solutions to
the one–dimensional nonlinear eigenvalue problem

y′′(r) +

(
n− 1

r
+
V ′(r)

V (r)

)
y′(r) +

cW (r)

V (r)
y(r) = 0, y > 0.

This is in the spirit of Gurka’s inequality (2.5).

PDEs. We find connections between p–superharmonic problems and
Hardy inequalities in papers [10, 11] by Barbatis, Filippas, and Tertikas.
The authors assume that the distance d(x) = dist(x,K), for a certain set
K ⊆ Ω, satisfies in the weak sense the problem

−∆p

(
d
p−k
p−1

)
≥ 0 in Ω \K,

where p 6= k. The obtained Hardy inequalities with remainder terms in-
volve function d. Furthermore, in the weight functions the exponent of the
function d is rigid.

More general approach is presented in several papers by D’Ambrosio
[36, 37, 38]. We find there an alternative method of construction of Hardy
inequalities from problems of a type −∆pu ≥ 0 and similar ones described in
terms of Heisenberg groups Hn. We find in [36] sufficient criteria for validity
of Hardy inequalities involving various weights, among others those with a
term with distance from the boundary. The derived inequalities are described
not only in Heisenberg setting but also in more general frameworks contain-
ing as particular cases the subelliptic setting as well as the usual Euclidean
setting. Our result refers to the latter kind of result, namely the inequality∫

|ξ(x)|pW (x)dx ≤ C

∫
|∇ξ(x)|pV (x)dx, for every ξ ∈ C1

0(Ω),
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where the weights V (x) and W (x) depend on a function u, that is a nonneg-
ative solution to −∆p(u

α) ≥ 0, and on the constant α. We generalize this
type of reasoning by allowing the lower bound of −p–Laplacian (i.e. function
Φ from (1.3)) to be negative.
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Chapter 3

Hardy inequalities derived from
p–harmonic problems

This part is based on [92, 93] by the author. We consider therein the anti–
coercive partial differential inequality of elliptic type involving p–Laplacian:
−∆pu ≥ Φ, where Φ is a given locally integrable function and u is defined on
an open subset Ω ⊆ Rn. We derive Caccioppoli inequalities for u. Knowing
solutions, as a direct consequence we obtain Hardy inequalities involving
certain measures for compactly supported Lipschitz functions. We present
several applications leading to various weighted Hardy inequalities. Our
methods allow to retrieve classical Hardy inequalities with optimal constants.
Moreover, we give optimal constants for Hardy–Poincaré inequalities with

weights of a type
(

1 + |x|
p
p−1

)α
for sufficiently big parameter α > 0.

3.1 Preliminaries

In the sequel we assume that p > 1, Ω ⊆ Rn is an open subset not necessarily
bounded.

By p–harmonic problems we understand those which involve p–Laplace
operator ∆pu = div(|∇u|p−2∇u).

If f is defined on Ω by fχΩ we understand function f extended by 0
outside Ω.

Having an arbitrary u ∈ W 1,1
loc (Rn) we define its value at every point by
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the formula (see e.g. [15])

u(x) := lim sup
r→0

∫
B(x,r)

u(y)dy. (3.1)

We write f ∼ g if function f is comparable with function g, i.e. if there
exist positive constants c1, c2 such that for every x

c1g(x) ≤ f(x) ≤ c2g(x).

Definition 3.1.1 (Weighted Sobolev space). By W 1,p
v1,v2

(Rn), where nonneg-
ative measurable functions v1, v2 are given, we mean the completion of the
set of functions u ∈ C∞(Rn) with

∫
Rn |u|

p v1dx <∞ and
∫
Rn|∇u|

p v2dx <∞,
under the norm

‖u‖W 1,p
v1,v2

(Rn) :=

(∫
Rn
|u|p v1dx+

∫
Rn
|∇u|p v2dx

) 1
p

.

Differential inequality
Our analysis is based on the following differential inequality.

Definition 3.1.1. Let Ω be any open subset of Rn and Φ be the locally inte-
grable function defined in Ω such that for every nonnegative compactly sup-
ported w ∈ W 1,p(Ω) ∫

Ω

Φw dx > −∞. (3.2)

Let u ∈ W 1,p
loc (Ω). We say that

−∆pu ≥ Φ, (3.3)

if for every nonnegative compactly supported w ∈ W 1,p(Ω) we have

〈−∆pu,w〉 :=

∫
Ω

|∇u|p−2〈∇u,∇w〉 dx ≥
∫

Ω

Φw dx. (3.4)

Remark 3.1.1. If p > 1 and u ∈ W 1,p
loc (Rn) then |∇u|p−2∇u ∈ L

p
p−1

loc (Rn,Rn).
In particular the second term in (3.4) is finite for every compactly supported
function w ∈ W 1,p(Ω). Therefore ∆pu = div(|∇u|p−2∇u) is well–defined in
the distributional sense.
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Remark 3.1.2. Let us consider the case Ω = (−1, 1), u(x) = 1−|x|, p = 2.
Then we have: −u′′ = 2δ0 ≥ 0 ≡ Φ in the sense of Definition 3.1.1. This
shows that in our approach ∆pu may not be a distribution represented by
locally integrable function.

The following condition is crucial in the sequel. Suppose u and Φ are as
in Definition 3.1.1 and moreover there exists a real number

(Φ,p) σ0 := inf {σ ∈ R : Φ · u+ σ|∇u|p ≥ 0 a.e. in Ω ∩ {u > 0} } (3.5)

where we set inf ∅ =∞.

Remark 3.1.3.
1. In the case when Φ ≥ 0 a.e. on {u > 0,∇u 6= 0} we have

σ0 = −essinf{u>0,∇u6=0}

(
Φ · u
|∇u|p

)
.

2. In the case Φ = −∆pu ∈ L1
loc(Ω), (3.5) reads

σ0
|∇u|p

u
≥ ∆pu a.e. in {u > 0}. (3.6)

3.2 Caccioppoli estimates for solutions to prob-

lem −∆pu ≥ Φ

Our main goal in this chapter is to obtain following result.

Theorem 3.2.1. Assume that 1 < p <∞ and u ∈ W 1,p
loc (Ω) is a nonnegative

solution to the PDI −∆pu ≥ Φ, in the sense of Definition 3.1.1, with locally
integrable function Φ satisfying (3.5) with σ0 ∈ R. Assume further that β
and σ are arbitrary numbers such that β > 0 and β > σ ≥ σ0.

Then the inequality∫
Ω

(Φ · u+ σ|∇u|p)χ{u>0}u
−β−1φ dx ≤

≤ (p− 1)p−1

pp(β − σ)p−1

∫
Ω

up−β−1χ{∇u6=0} · |∇φ|pφ1−p dx, (3.7)

holds for every nonnegative Lipschitz function φ with compact support in Ω
such that the integral

∫
suppφ

|∇φ|pφ1−p dx is finite.

23



We call (3.7) Caccioppoli inequality because it involves ∇u on the left–
hand side and only u on the right–hand side (see e.g. [23, 65]).

We note that we do not assume that the right–hand side in (3.7) is finite.
The proof is based on analysis of the proof of Proposition 3.1 from [72] in

the case when the considered A–harmonic operator is p–Laplacian. However,
here we are not restricted to Φ = Φ(u), Φ ≥ 0, and integrals over Rn.

Proof of Theorem 3.2.1. The proof follows by three steps.
Step 1. Derivation of a local inequality.

We obtain the following lemma.

Lemma 3.2.1. Assume that 1 < p < ∞ and u ∈ W 1,p
loc (Ω) is a nonnegative

solution to the PDI −∆pu ≥ Φ, in the sense of Definition 3.1.1, with locally
integrable function Φ. Assume further that β, τ > 0 are arbitrarily taken
numbers.

Then, for every 0 < δ < R, the inequality∫
{u≤R−δ}

(
Φ · u+

(
β − p− 1

p
τ

)
|∇u|pχ{∇u6=0}

)
(u+ δ)−β−1φ dx

≤ 1

pτ p−1

∫
Ω∩{∇u6=0, u≤R−δ}

(u+ δ)p−β−1 · |∇φ|pφ1−p dx+ C̃(δ, R), (3.8)

where

C̃(δ, R) = R−β
[∫

Ω∩{∇u6=0, u>R−δ}
|∇u|p−2〈∇u,∇φ〉 dx−

∫
Ω∩{u>R−δ}

Φφ dx

]
,

holds for every nonnegative Lipschitz function φ with compact support in Ω.

Before we prove the lemma let us formulate the following facts.

Fact 3.2.1. Let p > 1, τ > 0 and s1, s2 ≥ 0, then

s1s
p−1
2 ≤ 1

pτ p−1
· sp1 +

p− 1

p
τ · sp2.

Proof. We apply classical Young inequality ab ≤ ap

p
+ p−1

p
b

p
p−1 with a =

s1
δp−1 , b = (s2δ)

p−1, where δ > 0, to get

s1s
p−1
2 =

( s1

δp−1

)
(s2δ)

p−1 ≤ 1

p

( s1

δp−1

)p
+
p− 1

p
(s2δ)

(p−1) p
p−1 =
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=
1

pδp(p−1)
· sp1 +

p− 1

p
δp · sp2.

Now it suffices to substitute τ = δp.

Fact 3.2.2 (e.g. [72], Lemma 3.1). Let u ∈ W 1,1
loc (Ω) be defined everywhere

by (3.1) and let t ∈ R. Then

{x ∈ Rn : u(x) = t} ⊆ {x ∈ Rn : ∇u(x) = 0} ∪N,

where N is a set of Lebesgue’s measure zero.

Fact 3.2.3. For u, φ as in the assumptions of Lemma 3.2.1 we fix 0 < δ < R,
β > 0 and denote

uδ,R(x) := min (u(x) + δ, R) , G(x) := (uδ,R(x))−βφ(x).

Then uδ,R ∈ W 1,p
loc (Ω) and G ∈ W 1,p(Ω).

Proof of Lemma 3.2.1. Let us introduce some notation:

Ã1(δ, R) =

∫
Ω∩{∇u6=0, u≤R−δ}

|∇u|p (u+ δ)−β−1 φ dx,

B̃(δ, R) =

∫
Ω∩{∇u6=0, u≤R−δ}

|∇u|p−2〈∇u,∇φ〉(u+ δ)−β dx,

C̃1(δ, R) = R−β
∫

Ω∩{u>R−δ}
Φ · φ dx,

C̃2(δ, R) = R−β
∫

Ω∩{∇u6=0, u>R−δ}
|∇u|p−2〈∇u,∇φ〉 dx,

D̃(δ, R) =

∫
suppφ∩{∇u6=0, u≤R−δ}

(u+ δ)p−β−1 · |∇φ|pφ1−p dx.

We take w = G in (3.4) and note that

I :=

∫
Ω

Φ ·Gdx =

∫
Ω

Φ · (uδ,R)−βφ dx =

=

∫
Ω∩{u≤R−δ}

Φ · (u+ δ)−βφ dx+R−β
∫

Ω∩{u>R−δ}
Φ · φ dx =

=

∫
Ω∩{u≤R−δ}

Φ · (u+ δ)−βφ dx+ C̃1(δ, R), (3.9)
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On the other hand, inequality (3.3) implies

I :=

∫
Ω

Φ ·Gdx ≤ 〈−∆pu,G〉 =

∫
Ω∩{∇u6=0}

|∇u|p−2〈∇u,∇G〉 dx =

= −β
∫

Ω∩{∇u6=0, u≤R−δ}
|∇u|p(u+ δ)−β−1φ dx+

+

∫
Ω∩{∇u6=0, u≤R−δ}

|∇u|p−2〈∇u,∇φ〉(u+ δ)−β dx+

+R−β
∫

Ω∩{∇u6=0, u>R−δ}
|∇u|p−2〈∇u,∇φ〉 dx =

= −βÃ1(δ, R) + B̃(δ, R) + C̃2(δ, R).

Note that all the above integrals above are finite, what follows from Remark
3.1.1 (for 0 ≤ u ≤ R− δ we have δ ≤ u+ δ ≤ R). Moreover,

B̃(δ, R) ≤
∫

Ω∩{∇u6=0, u≤R−δ}
|∇u|p−1|∇φ|(u+ δ)−β dx =

=

∫
suppφ∩{∇u6=0, u≤R−δ}

(
|∇φ|
φ

(u+ δ)

)
· |∇u|p−1(u+ δ)−β−1 φdx.

We apply Fact 3.2.1 with s1 = |∇φ|
φ

(u+ δ), s2 = |∇u| and arbitrary τ > 0,
to get

B̃(δ, R) ≤ p− 1

p
τ

∫
suppφ∩{∇u6=0, u≤R−δ}

|∇u|p(u+ δ)−β−1φ dx+

+
1

pτ p−1

∫
suppφ∩{∇u6=0, u≤R−δ}

(
|∇φ|
φ

)p
(u+ δ)p−β−1φ dx.

≤ p− 1

p
τÃ1(δ, R) +

1

pτ p−1
D̃(δ, R).

Combining these estimates we deduce that

I ≤ −βÃ1(δ, R) + B̃(δ, R) + C̃2(δ, R) ≤

≤
(
−β +

p− 1

p
τ

)
Ã1(δ, R) +

1

pτ p−1
D̃(δ, R) + C̃2(δ, R).

Recall that C̃1(δ, R) and Ã1(δ, R) are finite (D̃(δ, R) is finite as well). This
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and (3.9) imply∫
Ω∩{u≤R−δ}

Φ(u+ δ)−βφ dx+

(
β − p− 1

p
τ

)
Ã1(δ, R) ≤

≤ 1

pτ p−1
D̃(δ, R) + C̃(δ, R),

which implies (3.8), because C̃(δ, R) = C̃2(δ, R)− C̃1(δ, R).

Remark 3.2.1. Introduction of parameters δ and R was necessary as we
needed to move some quantities in the estimates to opposite sides of inequal-
ities. For this we have to know that they are finite.

Step 2. Passing to the limit with δ ↘ 0.
We show that when β, τ > 0 are arbitrary numbers such that β− p−1

p
τ =:

σ ≥ σ0 then for any R > 0∫
{u≤R}

(Φ · u+ σ|∇u|p)u−β−1χ{u>0}φ dx (3.10)

≤ 1

pτ p−1

∫
{∇u6=0, u≤R}

up−β−1 · |∇φ|pφ1−p dx+ C̃(R),

where

C̃(R) = R−β

[∣∣∣∣∣
∫

Ω∩{u≥R
2
}
|∇u|p−1|∇u| · |∇φ| dx

∣∣∣∣∣+

∫
Ω∩{u≥R

2
}

Φφ dx

]

holds for every nonnegative Lipschitz function φ with compact support in
Ω such that the integral

∫
{suppφ∩∇u6=0} |∇φ|

pφ1−p dx is finite. Moreover, all

quantities appearing in (3.10) are finite.
We show first that under our assumptions, when δ ↘ 0, we have∫

Ω∩{∇u6=0,u+δ≤R}
(u+δ)p−β−1|∇φ|pφ1−pdx→

∫
Ω∩{∇u6=0,u≤R}

up−β−1|∇φ|pφ1−pdx,

(3.11)
whenever φ is a nonnegative Lipschitz function with compact support in Ω
such that the integral

∫
suppφ∩{∇u6=0} |∇φ|

pφ1−p dx is finite.

To verify this, we note that (u + δ)p−β−1χ{u+δ≤R}
δ→0→ up−β−1χ{u≤R} a.e.

This follows from Fact 3.2.2 (which gives that the sets {u = 0, |∇u| 6= 0}
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and {u = R, |∇u| = 0} are of measure zero) and the continuity outside zero
of the involved functions.

The function Θ(t) := tp−β−1 is decreasing or dominated in the neighbour-
hood of zero.

Let us start with the case when there exists ε > 0 such that for t < ε
the function Θ(t) is decreasing. Without loss of generality we may consider
ε ≤ R.

We divide the domain of integration∫
Ω∩{∇u6=0, u+δ≤R}

Θ(u+ δ) · |∇φ|pφ1−p dx =

=

∫
Eε

Θ(u+ δ) · |∇φ|pφ1−p dx+

∫
Fε

Θ(u+ δ)χ{u+δ≤R} · |∇φ|pφ1−p dx,

where
Eε =

{
u <

ε

2

}
∩ suppφ, Fε =

{ε
2
≤ u

}
∩ suppφ.

Let us begin with integral over Eε. We consider δ ↘ 0 so we may assume
that δ < ε/2. Then, over Eε we have u + δ < ε. As Θ(u) is decreasing
for u < ε, for δ ↘ 0 the function Θ(u + δ) is increasing and convergent
almost everywhere. Therefore, due to the Lebesgue’s Monotone Convergence
Theorem

lim
δ→0

∫
Eε

Θ(u+ δ) · |∇φ|pφ1−p dx =

∫
Eε

Θ(u) · |∇φ|pφ1−p dx.

In the case Fε we have ε/2 ≤ u+δ ≤ R. Over this domain Θ is a bounded
function so in particular∫
Fε

Θ(u+ δ)χ{u+δ≤R} · |∇φ|pφ1−p dx =

∫
{ε/2≤u+δ≤R}

Θ(u+ δ) · |∇φ|pφ1−p dx ≤

≤
∣∣∣R− ε

2

∣∣∣ sup
t∈[ε/2,R]

Θ(t) ·
∫

suppφ∩{∇u6=0}
|∇φ|pφ1−p dx <∞.

Taking into account convergence almost everywhere and boundedness of do-
main of integrating, we apply the Lebesgue’s Dominated Convergence The-
orem to write

lim
δ→0

∫
Fε

Θ(u+ δ)χ{u+δ≤R} · |∇φ|pφ1−p dx =

∫
Fε∩{u≤R}

Θ(u) · |∇φ|pφ1−p dx.
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This completes the case Θ decreasing in the neighbourhood of 0. Let us
consider the case of bounded Θ. We carry out the same reasoning as above
for Fε with ε = 0.

To complete this step we note that (3.11) says that, when δ ↘ 0, the first
integral on the right–hand side of (3.8) is convergent to the first integral of
the right–hand side of (3.10). To deal with the second expression note that
we have, for δ ≤ R

2
:

|C̃(δ, R)| ≤ |C̃2(δ, R)|+ |C̃1(δ, R)| ≤ C̃(R).

We observe that condition (3.5) implies

(Φ · u+ σ|∇u|p)χ{u>0} ≥ 0, a.e. whenever σ ≥ σ0. (3.12)

We can pass to the limit with the left–hand side of (3.8) due to The
Lebesgue’s Monotone Convergence Theorem as the expression in brackets is
nonnegative due to (3.12) (for σ = β − p−1

p
τ) and decreasing. Note that

(Φ · u+ σ|∇u|p)u−β−1χ{u>0} ≡ 0, when u ≡ 0 and in particular does not
depend on δ.
Step 3. We let R→∞ and finish the proof.

Without loss of generality we can assume that the integral in the right–
hand side of (3.7) is finite, as otherwise the inequality follows trivially. Note

that since |∇u|p−2〈∇u,∇φ〉 and Φφ are integrable we have limR→∞ C̃(R) = 0.
Therefore, (3.7) follows from (3.10) by the Lebesgue’s Monotone Convergence
Theorem.

3.3 General Hardy inequality

Now we state our main result of the first part of the thesis.

Theorem 3.3.1. Assume that 1 < p <∞ and u ∈ W 1,p
loc (Ω) is a nonnegative

solution to PDI −∆pu ≥ Φ, in the sense of Definition 3.1.1, where Φ is
locally integrable and satisfies (Φ,p) with σ0∈ R given by (3.5). Assume
further that β and σ are arbitrary numbers such that β > 0 and β > σ ≥ σ0.

Then, for every Lipschitz function ξ with compact support in Ω, we have∫
Ω

|ξ|pµ1(dx) ≤
∫

Ω

|∇ξ|pµ2(dx), (3.13)
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where

µ1(dx) =

(
β − σ
p− 1

)p−1

[Φ · u+ σ|∇u|p] · u−β−1χ{u>0} dx, (3.14)

µ2(dx) = up−β−1χ{|∇u|6=0} dx. (3.15)

Proof. We apply (4.15) with φ = ξp, where ξ is nonnegative Lipschitz func-
tion with compact support. Then φ is Lipschitz and

|∇ξ|p =

(
1

p
φ

1
p
−1|∇φ|

)p
=

1

pp

(
|∇φ|
φ

)p
φ.

Therefore (3.7) becomes (3.13). Note that for every nonnegative Lipschitz
function ξ with compact support in Ω we have

∫
Ω
|∇ξ|p dx <∞, equivalently∫

suppφ
|∇φ|pφ1−p dx <∞. As the absolute value of a Lipschitz function is a

Lipschitz function as well, we place it on the left–hand side to avoid requiring
its nonnegativeness.

Remark 3.3.1. Note that, by conversing this substitution, we obtain in-
equality with a structure of (3.7).

Remark 3.3.2. We do not assume that the density of µ2, the function
up−β−1χ{|∇u|6=0}, is locally integrable. However, if it is locally integrable only
on some subset Ω1 ⊆ Ω, instead of (3.13) we may derive inequality∫

Ω1

|ξ|pµ1(dx) ≤
∫

Ω1

|∇ξ|pµ2(dx),

for every Lipschitz function ξ with compact support in Ω1, where µ1 and µ2

are given by (3.14) and (3.15), respectively.

Remark 3.3.3. Note that µ1 is locally finite provided that additionally
up−β−1χ{|∇u|6=0} is locally integrable. We obtain it by the substitution of a
compactly supported ξ such that 0 ≤ ξ ≤ 1 and ξ ≡ 1 on a given ball of
radius R contained in Ω shows that the condition: up−β−1χ{|∇u|6=0} is locally

integrable. In that case
(
β−σ
p−1

)p−1

[Φ · u+ σ|∇u|p]·u−β−1χ{u>0} is also locally

integrable.
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3.4 Special cases

3.4.1 Classical Hardy inequality

Our goal is to derive classical Hardy inequality with optimal constant (see
e.g. [63], [75]) as a consequence of Theorem 3.3.1.

Theorem 3.4.1 (Classical Hardy inequality). Let 1 < p <∞ and γ 6= p−1.
Suppose that ξ = ξ(x) is an absolutely continuous function in (0,∞) such
that

ξ+(0) := limx→0 ξ(x) = 0 for γ < p− 1, (3.16)

ξ(∞) := limx→∞ ξ(x) = 0 for γ > p− 1. (3.17)

Then ∫ ∞
0

(
|ξ|
x

)p
xγ dx ≤ Cmin

∫ ∞
0

|ξ′|pxγ dx, (3.18)

where the constant Cmin =
(

p
|p−1−γ|

)p
is optimal.

Proof. We may assume that∫ ∞
0

|ξ′(x)|pxγ dx <∞. (3.19)

The proof follows by steps. Step 0 gives an explanation that it suffices to
prove (3.18) for every compactly supported Lipschitz function ξ, while Steps
1–5 an present application of Theorem 3.3.1 to reach (3.18).

Step 0. By a standard convolution argument, having (3.18) for com-
pactly supported Lipschitz functions, we deduce the inequality for compactly
supported functions from weighted Sobolev space W 1,p

v1,v2
(R+) (defined in Pre-

liminaries) where v1 = xγ−p, v2 = xγ. This is because on compact subsets of
(0,∞) the considered weights are comparable with constants.

We concentrate on the proof that (3.18) holds for absolutely continuous
functions satisfying (3.19) and vanishing condition (3.16) or (3.17). Let ξ be
such a function. We construct an approximative sequence ξN ∈ W 1,p

v1,v2
(R+)

with compact support. Let

ϕN(x) =


Nx− 1, x ∈ ( 1

N
, 2
N

),
1, x ∈ ( 2

N
, N),

− 1
N
x+ 2, x ∈ (N, 2N),
0, x ∈ (0, 1

N
) ∪ (2N,∞).
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Then each ξN = ϕN · ξ is a compactly supported function from W 1,p
v1,v2

(R+).
Thus, inequality (3.55) holds for each ξN . We pass to the limit with N →∞
obtaining ∫ ∞

0

(
|ξϕN |
x

)p
xγ dx −→

∫ ∞
0

(
|ξ|
x

)p
xγ dx (3.20)

due to the Lebesgue’s Monotone Convergence Theorem. Therefore, the left–
hand side of (3.18) is as required. Furthermore, we notice that( 1

Cmin

) 1
p
( ∫∞

0

(
|ξϕN |
x

)p
xγ dx

) 1
p ≤

(∫ ∞
0

|ξ′N |pxγ dx
) 1
p ≤ (3.21)

≤
( ∫∞

0
|ϕ′Nξ|pxγ dx

) 1
p

+
(∫ ∞

0

|ϕNξ′|pxγ dx
) 1
p

=: aN + bN .

Then bpN tends to the required right–hand side in (3.18) due to the Lebesgue’s
Monotone Convergence Theorem. By showing that {aN}N is bounded, we
prove

lim
N→∞

∫ ∞
0

|ξ′N |pxγ dx ≤ lim
N→∞

∫ ∞
0

|ϕNξ′|pxγ dx =

∫ ∞
0

|ξ′|pxγ dx.

We note that if
∫∞

0

(
|ξ|
x

)p
xγ dx <∞ then we have it. This follows from the

fact that ϕ′N ∼ 1
x
(χ[ 1

N
, 2
N

]∪[N,2N ]). Indeed, we have

apN =

∫ ∞
0

|ϕ′Nξ|pxγ dx =

∫ 2
N

1
N

|ϕ′Nξ|pxγ dx+

∫ 2N

N

|ϕ′Nξ|pxγ dx

≤ c

∫
[ 1
N
, 2
N

]∪[N,2N ]

∣∣∣∣ ξx
∣∣∣∣p xγ dx N→∞→ 0.

To show that the case
∫∞

0

(
|ξ|
x

)p
xγ dx = ∞ is impossible, we use the

following reasoning. It suffices to show that supN aN < const, because
then after passing to the limit with N → ∞ in (3.21) we necessarily have
limN→∞ bN =∞, which contradicts with (3.19).

In this step we denote by c positive constants independent of N .
In the case γ > p− 1 and condition (3.17) we define

ξ̄(t) =

∫ ∞
t

|ξ′(τ)|dτ.
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We observe that |ξ(t)| =
∣∣∫∞
t
ξ′(τ)dτ

∣∣ ≤ |ξ̄(t)|. We apply Hölder inequality

to functions f(τ) = |ξ′(τ)|τ
γ
p , g(τ) = τ−

γ
p and obtain

|ξ̄(t)| ≤
(

p− 1

γ − (p− 1)

) p−1
p
(∫ ∞

t

|ξ′(τ)|pτ γdτ
) 1

p

t−
γ−(p−1)

p ≤ ct−
γ−(p−1)

p .

It implies
|ξ(t)|ptγ−(p−1) ≤ c for every t > 0.

Consequently,∫
[ 1
N
, 2
N

]
|ξ(τ)|p τ γ−pdτ ≤ 1

N
sup

τ∈[ 1
N
, 2
N

]

{
|ξ(τ)|p τ γ−(p−1) · 1

τ

}
≤ 1

N
cN = c,

∫
[N,2N ]

|ξ(t)|ptγ−pdt ≤ N sup
τ∈[N,2N ]

{
|ξ(τ)|pτ γ−(p−1) · 1

τ

}
≤ Nc

1

N
= c.

Therefore, the sequence {aN}N is bounded in this case.
In the case γ < p− 1 and condition (3.16) we define

ξ̄(t) =

∫ t

0

|ξ′(τ)|dτ.

We observe that |ξ(t)| =
∣∣∣∫ t0 ξ′(τ)dτ

∣∣∣ ≤ |ξ̄(t)| and apply Hölder inequality for

functions f(τ) = |ξ′(τ)|τ
γ
p , g(τ) = τ−

γ
p to get

|ξ̄(t)| ≤
(

p− 1

(p− 1)− γ

) p−1
p
(∫ t

0

|ξ′(τ)|pτ γdτ
) 1

p

t−
γ−(p−1)

p ≤ ct−
γ−(p−1)

p .

It implies |ξ(t)|ptγ−(p−1) ≤ |ξ̄(t)|ptγ−(p−1) ≤ c. The remaining arguments are
the same as in case γ > p− 1.

This completes the proof of Step 0.
In the following steps we obtain inequality (3.18) for compactly supported

Lipschitz functions by application of Theorem 3.3.1.
Step 1. Let us consider the function u = uα(x) = xα where 0 6= α ∈ R.

When p > 1 the function uα(x) is nonnegative solution to the PDE

−∆pu = −|α|p−2α(p− 1)(α− 1)xα(p−1)−p =: Φ a.e. in Ω = (0,∞).

Note that we deal with one–dimensional p–Laplacian ∆pu = (|u′|p−2u′)′.
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Step 2. Constant σ0 defined in (3.5) equals σ0 = 1
α

(p − 1)(α − 1). To
verify this we note that

σ0 = − inf
Φ · u

|∇u|pχ{u6=0}
= − inf

−|α|p−2α(p− 1)(α− 1)xα(p−1)−p+α

|α|px(α−1)p
=

= − inf
−α(p− 1)(α− 1)

α2
=

1

α
(p− 1)(α− 1).

Step 3. For γ ∈ R and γ 6= p− 1, define β = β(α, γ) := p− 1− γ
α

. Now
we apply Theorem 3.3.1. For this we deal with arbitrary numbers β and σ
such that β > 0 and β > σ ≥ σ0 = 1

α
(p− 1)(α− 1). In our case β is already

defined, we require that p − 1 > γ
α

and the existence of the admissible σ is
equivalent to the condition sgnα(p− 1− γ) > 0.

Computing measures given by (3.14) and (3.15) directly, we obtain in-
equality

C

∫ ∞
0

|ξ|p xγ−p dx ≤
∫ ∞

0

|ξ′|p xγ dx. (3.22)

where C = C(α, β, σ, p) = (β−σ)p−1|α|p
(p−1)p−1 (σ− 1

α
(p− 1)(α− 1)), holding for every

Lipschitz function ξ with compact support in (0,∞).
Step 4. We observe that when γ is fixed, we can always choose α such

that p− 1 > γ
α

and sgnα(p− 1− γ) > 0. The choice of

σ =
1

p
(β(α) + σ0(p− 1)) = p− 1− (p− 1)2 + γ

pα
,

gives the inequality (3.22) with the maximal constant with respect to σ ∈
[σ0, β). Then, we divide both sides by the constant and obtain inequality

(3.18) with the constant C̄ =
(

p
sgnα(p−1−γ)

)p
=
(

p
|p−1−γ|

)p
, holding for every

Lipschitz function ξ with compact support in (0,∞).

Remark 3.4.1. We point out that in the above proof we admit negative
function Φ. For example in the case p = 2, γ = 0, α = 2, β = 1 we have
Φ ≡ −2.

3.4.2 Inequalities involving measures with radial den-
sities

Analysing radially symmetric solutions to the PDIs in Theorem 3.3.1 we
obtain the following result.
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Theorem 3.4.2. Suppose 1 < p < ∞ and β, σ are arbitrary numbers such
that β > 0 and β > σ ≥ σ0. Let w(x) ∈ W 1,p

loc (Rn \ {0}) ∩W 2,1
loc (Rn \ {0}) be

an arbitrary nonnegative radial function in the form w(x) = u(|x|) such that

σ0 := −ess inf
u(t)

u′(t)

(
−u

′′(t)

u′(t)
(p− 1)− n− 1

t

)
<∞ a.e. in {u(t) > 0}.

(3.23)
Assume further that

Φ(x) = |u′(|x|)|p−2

[
−u′′(|x|)(p− 1)− u′(|x|) · n− 1

|x|

]
(3.24)

is a locally integrable function.
Then, for every Lipschitz function ξ with compact support, we have∫

Rn\{0}
|ξ|pµ1(dx) ≤

∫
Rn\{0}

|∇ξ|pµ2(dx), (3.25)

where

µ1(dx) =

(
β − σ
p− 1

)p−1

χ{u>0}u
−β−1(|x|)|u′(|x|)|p−2 ·

·
[
σ(u′(|x|))2 − u′′(|x|)u(|x|)(p− 1)− u′(|x|)u(|x|)n− 1

|x|

]
dx,

µ2(dx) = up−β−1(|x|)χ{|∇u|6=0} dx.

Proof. We apply Theorem 3.3.1. At first we observe that when w(x) =
u(|x|) we have

−∆pw = Φ(x) a.e. in Rn \ {0},
with locally integrable right–hand side. Condition (Φ,p) is satified. Indeed,
due to (3.23), we observe that

σ0(u′(t))2 − u′′(t)u(t)(p− 1)− u′(t)u(t)
n− 1

t
≥ 0 a.e. in {u(t) > 0}

and therefore, when σ ≥ σ0, almost everywhere in {u(t) > 0} we have

Φ · u+ σ|∇u|p = |u′|p−2

[
σ(u′)2 − u′′u(p− 1)− u′un− 1

t

]
≥ 0.

Now it suffices to apply Theorem 3.3.1.
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As a direct consequence we retrieve Hardy inequality on Rn \ {0} with
best constants [77].

Corollary 3.4.1 (Hardy inequality on Rn \ {0}). Suppose p > 1, γ < p− n.
Then, for every nonnegative Lipschitz function ξ with compact support, we
have ∫

Rn\{0}
|ξ|p|x|γ−p dx ≤ C̃min

∫
Rn\{0}

|∇ξ|p|x|γ dx.

where the constant C̃min =
(

p
p−n−γ

)p
is optimal.

Proof. Notice that w(x) = |x| = u(|x|) satisfies assumptions of Theorem
3.4.2 with Φ(x) = −n−1

|x| and σ0 = −(n−1). Let β > 0 and β > σ > −(n−1).

Substituting it do the formulae describing measures we derive (3.25) with

µ1(dx) =

(
β − σ
p− 1

)p−1

(σ − (n− 1))|x|−β−1 dx,

µ2(dx) = |x|p−β−1 dx.

The choice of

σ =
1

p
(β + (n− 1)(p− 1))

gives the inequality (3.22) with the maximal constant with respect to σ ∈
[−(n−1), β). The substitution of γ = p−β−1 and division of both sides by

the constant implies the final result. The fact that constant C̃min =
(

p
p−n−γ

)p
is the best possible is well known [77].

Remark 3.4.2. To ensure that inequality (3.25) has a good interpretation we
must assume that function up−β−1(|x|)χ{|∇u|6=0} is locally integrable. Then,
also function

u−β−1(|x|)|u′(|x|)|p−2χ{u>0}·

·
[
σ(u′(|x|))2 − u′′(|x|)u(|x|)(p− 1)− u′(|x|)u(|x|)n− 1

|x|

]
is locally integrable which follows from the argument from Remark 3.3.3.

Remark 3.4.3. We point out that w(x) = u(|x|) is assumed to be more reg-
ular than only W 1,p

loc (Rn \ {0}). Namely, by our assumption u ∈ W 2,1
loc ((0,∞))

(see e. g. Fact 2.1 in [1]). This implies that if p ≥ 2, the function Φ is always
locally integrable.
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For qualitative properties of radial solutions to nonlinear eigenvalue prob-
lems having the form −∆pw(x) = 1

a(|x|)ϕ(w(x)), as well as for the nonexis-

tence theorems, we refer to [1] and their references.

3.4.3 Hardy and Hardy–Poincaré inequalities with ex-
ponential weights

In this subsection we concentrate on the case when the measures in the
derived inequality have exponential terms. We have the following result.

Theorem 3.4.3 (Hardy–Poincaré inequalities with exponential weights).
Assume that p, be > 1, κ, q > 0, r ≥ 0, κqb > r(p− 1)(b− 1).

Then, for every Lipschitz function ξ with compact support in R+, we have∫ ∞
0

|ξ|pµ1(dx) ≤ C̃

∫ ∞
0

|∇ξ|pµ2(dx), (3.26)

where

µ1(dx) = eκx
b

xbp−p−b
(
q + rxb

)
dx,

µ2(dx) = eκx
b

dx,

and the constant C̃ =
(

p−1
κqb−r(p−1)(b−1)

)p−1
qp

(p−1)(b−1)
.

Proof. Let us consider a > 0, β > σ ≥ p − 1, where those numbers will be
stablished later, and the function u = ua,b(x) = e−ax

b
where a > 0, b ≥ 1.

The proof follows by steps.
Step 1. When p > 1 the function u is a nonnegative solution to the PDE

−∆pu = |ab|p(p−1)up−1x(p−1)(b−1)−1

(
b− 1

ab
+ xb

)
=: Φ a.e. in Ω = (0,∞),

with locally integrable function Φ.
Indeed, u′(x) = −abxb−1u(x), so

−∆pu = −(|u′|p−2u′)′ = −(−ab|ab|p−2x(p−1)(b−1)up−1)′ =

= ab|ab|p−2x(p−1)(b−1)
(
(p− 1)(b− 1)x−1up−1 − ab(p− 1)xb−1up−1

)
= |ab|p(p− 1)up−1x(p−1)(b−1)−1

(
b− 1

ab
− xb

)
.

37



Step 2. We recognize that σ0 = p − 1. Indeed, when we note that
|u′(x)|p = |ab|pxp(b−1)up(x), we obtain

[Φ · u+ σ|∇u|p] = |ab|pupx(p−1)(b−1)−1

(
(p− 1)

[
b− 1

ab
− xb

]
+ σxb

)
=

= |ab|pupx(p−1)(b−1)−1

(
(p− 1)

b− 1

ab
+ [σ − (p− 1)]xb

)
,

which is nonnegative for σ ≥ p− 1, as p > 1, a > 0, b ≥ 1.
Step 3. Computing measures given by (3.14) and (3.15) directly, we

obtain inequality (3.13) with

µ1(dx) = |ab|pe−a(p−β−1)xbx(p−1)(b−1)−1

(
(p− 1)

b− 1

ab
+ [σ − (p− 1)]xb

)
dx,

µ2(dx) = e−a(p−β−1)xb dx,

C =

(
p− 1

β − σ

)p−1

.

It suffices to substitute now a, β, σ such that
κ = a(β − (p− 1)),
r = σ − (p− 1),

q = (p−1)(b−1)
ab

.

(3.27)

Then 
a = p−1

q
b−1
b
,

σ = r + (p− 1),

β = p− 1 + κqb
(p−1)(b−1)

.
(3.28)

The condition β > σ ≥ p − 1 requires r ≥ 0, κ, q > 0, b > 1, κqb >
r(p − 1)(b − 1). Then, we divide by the constant and obtain (3.26) with

C̃ =
(

p−1
κqb−r(p−1)(b−1)

)p−1
qp

(p−1)(b−1)
.

As a consequence we obtain the following theorem, which can also be
obtained from Corollary 3.1 from [68]. Two independent arguments are en-
closed.

Theorem 3.4.4 (Hardy inequalities with exponential weights). If p, b > 1
and κ > 0, then for every Lipschitz compactly supported function ξ, we have∫ ∞

0

|ξ(x)xb−1|peκxbdx ≤
( p
κb

)p ∫ ∞
0

|ξ′(x)|peκxbdx. (3.29)
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Proof. Method I. We apply Theorem 3.4.3. We omit a positive term in the
left–hand side of (3.26): qeκx

b
xbp−p−b and we minimize the constant

C̃ =
1

(p− 1)(b− 1)p
q

r

(
1

m− r
q

)p−1

=
1

mp(p− 1)(b− 1)p
qm

r

(
1

1− r
qm

)p−1

,

where m = κb
(p−1)(b−1)

, with respect to arbitrary q, r > 0 such that qm/r > 1.

We reach it by minimizing the function f(t) = t−1(m− t)1−p with respect to
0 < t < 1. We obtain the constant as required.
Method II. We apply Corollary 3.1 from [68]. In this case we deal with
M(λ) = λp, dM = DM = p, µ(dx) = e−ϕ(x)dx, ϕ(x) = −κxb, ω(x) =
|ϕ′(x)|, c(x) = xp. In such a case we have

ϕ′(x) = −κbxb−1,

ϕ′′(x) = −κb(b− 1)xb−2,

b1(x, |ϕ′|, ϕ,M) = 1 + (p− 1)
b− 1

κb

1

xb

Then b1 = inf{b1(x, ω, ϕ,M) : x > 0} = 1 > 0. Therefore, Corollary 3.1
from [68] asserts that under this conditions we obtain (3.29).

3.4.4 Inequalities derived using p–superharmonic func-
tions

In this subsection we analyse the case when nonnegative u is a p–superharmonic
function, e.i.

−∆pu ≥ Φ ≡ 0 (3.30)

in the sense of distributions. These results can be also obtained by the
techniques by D’Ambrosio [36]. We present them as a direct consequence of
Theorem 3.3.1.

Theorem 3.4.5. Assume that 1 < p < ∞, u ∈ W 1,p
loc (Ω) is a nonnegative

solution to (3.30) in the sense of distributions. Let β > p+ 1 be an arbitrary
number.

Then, for every Lipschitz function ξ with compact support in Ω, we have∫
Ω

|ξ|p
(
|∇u|
u

)p
dµ ≤ 1

β − 1− p

(
p− 1

p+ 1

)p−1 ∫
Ω

|∇ξ|p dµ, (3.31)

where dµ = u−β−1+pdx.
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Proof. It is a consequence of Theorem 3.3.1 when we substitute σ0 = 0 and
σ = β − 1− p.

Remark 3.4.4. If u−β−1+pχ{|∇u|6=0} is locally integrable only on some open
subset Ω1 ⊆ Ω, we interpret this inequality as in Remark 3.3.2, namely
holding for ξ’s with compact support in Ω1.

Since we know superharmonic functions for some domains, we can con-
struct now new Hardy–type inequalities. For example, substituting p = 2 in
Theorem 3.4.5, we obtain the following corollary.

Corollary 3.4.2. Assume that u ∈ W 1,2
loc (Ω) is a nonnegative superharmonic

function, e.i. ∆u ≤ 0 in Ω in the sense of distributions. Assume further that
β > 3 is an arbitrary number.

Then, for every Lipschitz function ξ with compact support in Ω, we have∫
Ω

|ξ|2 |∇u|2u−β−1 dx ≤ 1

3(β − 3)

∫
Ω

|∇ξ|2u−β+1 dx.

Using integral representations of u being a solution to{
−∆u(x) = f in Ω,
u(x) = g on ∂Ω,

(3.32)

where Ω ⊆ Rn is a bounded open subset with boundary of class C1, f, g
are sufficiently regular nonnegative functions, we may produce other Hardy
inequalities described in terms of f, g and a Green function for a domain.

As an example we state the following theorem dealing with harmonic u,
e.i. f = 0. Note that in particular, knowing arbitrary g ∈ C(∂Ω), we may
construct an inequality inside Ω.

Theorem 3.4.6. Let β > 3 be an arbitrary number, n ≥ 2, Ω ⊆ Rn be an
open bounded subset with boundary of class C1, G(x, y) be a Green function
for Ω and g ∈ C(∂Ω) is nonnegative and nonzero. We define operator T :
C(∂Ω)→ C∞(Ω) ∩ C(Ω̄) by the formula

Tg(x) = −
∫
∂Ω

∂G

∂ν
(x, y)g(y)Hn−1(dy), (3.33)

where ν is the outer normal vector on ∂Ω and Hn−1 is (n− 1)–dimensional
Hausdorff measure on ∂Ω.
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Then, for every Lipschitz function ξ with compact support in Ω, we have∫
Ω

|ξ|2 µ1(dx) ≤
∫

Ω

|∇ξ|2 µ2(dx),

where

µ1(dx) = |∇Tg(x)|2 (Tg(x))−β−1 dx,

µ2(dx) =
1

3(β − 3)
(Tg(x))−β+1 dx.

Proof. We apply Corollary 3.4.2. We substitute as u, a solution to a Laplace
equation ∆u = 0 in Ω with a boundary condition u = g on ∂Ω. Indeed,
u(x) = Tg(x) = −

∫
∂Ω

∂G
∂ν

(x, y)g(y)Hn−1(dy).

Remark 3.4.5. The above result can be generalised by an application of
u being the solution to (3.32) with the nonnegative functions f ∈ L2(Ω),
g ∈ C(∂Ω). In such a case the operator Tg in (3.33) should be replaced by

Tf, g(x) =

∫
Ω

G(x, y)f(y) dy −
∫
∂Ω

∂G

∂ν
(x, y)g(y)Hn−1(dy),

where ν is the outer normal vector on ∂Ω andHn−1 is the (n−1)–dimensional
Hausdorff measure on ∂Ω.

3.4.5 Hardy inequalities resulting from the PDI −∆pu ≥
Φ with negative Φ

The previous subsection confirms the results of D’Ambrosio [36]. In this
subsection we show the example violating one of his assumptions. Namely, we
derive here Hardy inequality from the problem −∆pu ≥ Φ when the function
Φ is negative. For some choice of parameters we have already admitted
nonpositive Φ in the proof of classical Hardy inequality, see Remark 3.4.1.
The following theorem deals with the case when Φ < 0 everywhere.

Theorem 3.4.7. Assume that 1 < p < ∞ and β > p − 1. Then, there
exists a constant c = c(p, β) such that for every compactly supported Lipschitz
function ξ, we have∫ ∞

0

|ξ|pµ1(dx) ≤ c

∫ ∞
0

|∇ξ|pµ2(dx), (3.34)
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where

µ1(dx) ∼ x−β−1 lnp−β−1(e+ x) dx, (3.35)

µ2(dx) = xp−β−1 lnp−β−1(e+ x) dx. (3.36)

Proof. We apply Theorem 3.3.1 with a function u(x) = x ln(e + x). As u is
increasing, we have

Φ = −∆pu = −(|u′|p−2u′)′ = −(|u′|p−1)′ = −(p− 1)|u′|p−2u′′,

where

u′(x) = ln(e+ x) +
x

e+ x
=

(e+ x) ln(e+ x) + x

e+ x
= |u′(x)|,

u′′(x) =
1

e+ x
+

e

(e+ x)2
=

x+ 2e

(e+ x)2
,

Φ = −(p− 1)|u′|p−2 x+ 2e

(e+ x)2
< 0.

We have to choose σ0 ≤ σ ensuring nonnegativeness of

Φ · u+ σ|u′|p =

= −(p− 1)|u′|p−2 x+ 2e

(e+ x)2
· u+ σ|u′|p =

=

[
−(p− 1)|u′|p−2 ((e+ x) ln(e+ x) + x)2

(e+ x)2

(x+ 2e)x ln(e+ x)

((e+ x) ln(e+ x) + x)2
+ σ|u′|p

]
=

=

[
−(p− 1)

x(x+ 2e) ln(e+ x)

((e+ x) ln(e+ x) + x)2 + σ

]
|u′|p. (3.37)

We require x(x+ 2e) ln(e+ x) < σ
p−1

((e+ x) ln(e+ x) + x)2 for σ ≥ σ0. It
is easy to compute that 0 ≤ σ0 ≤ p − 1. This follows from the following
arguments:

0 ≤ h(x) :=
x(x+ 2e)

(e+ x)2
· ln(e+ x)

(ln(e+ x) + x)2
≤

(x+(x+2e))
2

)2

(e+ x)2

1

ln(e+ x)
= 1 · 1

ln(e)
= 1,

σ0 = − inf
x∈(0,∞)

(−(p− 1)h(x)) = (p− 1) sup(h(x)) ≤ p− 1.

It is enough to consider σ = p− 1.
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We apply Theorem 3.3.1 and obtain (3.34) with the following measures

µ1(dx) =
(β − p+ 1)p−1

(p− 1)p−2

[
1− x(x+ 2e) ln(e+ x)

((e+ x) ln(e+ x) + x)2

]
|u′|pu−β−1dx,

µ2(dx) = (x ln(e+ x))p−β−1 dx.

It suffices to estimate the growth rate of the density of µ1(dx). We notice
that the expression in square brackets in (3.37) is comparable with a constant,
moreover

|u′|pu−β−1 =

(
(e+ x) ln(e+ x) + x

e+ x

)p
(x ln(e+ x))−β−1 ∼ x−β−1 lnp−β−1(e+x).

This completes the proof.

Above result can be compared with the statement of Proposition 5.2 in
[70] (expressed in Orlicz setting) stated below. In our case we have M(λ) =
λp, β̄ = p − β − 1 < 0, γ = β̄, α = −1, dM = DM = p and case b) applies.
The proofs in both mentioned statements are fairly different.

Proposition 3.4.1. Let M satisfy the ∆2–condition, and the weights ω, ρ :
R+ → R+ be given by (i) or (ii) where:

(i) ω(r) = rα(ln(2 + r))δ, ρ(r) = rβ̄(ln(2 + r))γ, α ∈ [−1, 0), β̄, δ, γ ∈ R,

(ii) ω(r) = rα, ρ(r) = rβ̄e−cr
γ
, α ∈ [−1, 0), β̄ ∈ R, γ, c > 0.

Then inequalities∫ ∞
0

M(ω(r)|u(r)|)ρ(r)dr ≤ C1

∫ ∞
0

M(|u(r)|) ρ(r)dr+C2

∫ ∞
0

M(|u′(r)|)ρ(r)dr,

(3.38)
and

‖ωu‖LM ((0,∞),ρ) ≤ C̃1‖u‖LM ((0,∞),ρ) + C̃2‖u′‖LM ((0,∞),ρ), (3.39)

hold for every u ∈ W , with positive constants independent of u, where

a) W = W 1,M((0,∞), ρ) when β̄ > |α|DM − 1,

b) W = {u ∈ W 1,M((0,∞), ρ) : lim infr→0+ M(rα|u(r)|)rβ̄+1 = 0},
when β̄ < |α|dM − 1.

43



The sets W are maximal subsets of W 1,M((0,∞), ρ) on which (3.38) holds
true.

We have more general observation, which implies Theorem 3.4.7.

Theorem 3.4.8. Suppose that u : (0,∞) → [0,∞) is nondecreasing and
convex, u 6≡ const, u ∈ W 2,1

loc ((0,∞)) and there exists some a > 0 such that

a · (u′(x))2 ≥ u′′(x)u(x) a.e. in (0,∞) (3.40)

and a · (u′(x))2 − u′′(x)u(x) 6≡ 0 a.e. Moreover, let 1 < p < ∞ and β >
a(p − 1). Then there exists a constant c = c(p, β, u) such that for every
compactly supported Lipschitz function ξ, we have∫ ∞

0

|ξ|pµ1(dx) ≤ c

∫ ∞
0

|∇ξ|pµ2(dx), (3.41)

where

µ1(dx) =
(β − a(p− 1))p−1

(p− 1)p−2 |u′|p−2
{
−u′′(x)u(x) + a(u′(x))2

}
u−β−1χ{u>0} dx,

µ2(dx) = up−β−1χ{u′ 6=0} dx.

Proof. An easy verification shows that −∆pu = −(p− 1)|u′|p−2u′′ and condi-
tion (Φ,p) is satisfied with 0 ≤ σ0 ≤ (p − 1)a. Therefore we can substitute
σ = (p− 1)a and apply Theorem 3.3.1.

Remark 3.4.6. Function u(x) = x ln(e+x) from the proof of Theorem 3.4.7
satisfies condition (3.40) and therefore Theorem 3.4.7 follows from Theorem
3.4.8 as a special case. Below we present some other examples of functions
u admitted to Theorem 3.4.8:

i) u(x) = ex implies (3.34) with µ1(dx) ∼ µ2(dx) ∼ e(p−β−1)xdx,

ii) u(x) = (x+ 1)ex implies (3.34) with

µ1(dx) ∼ µ2(dx) ∼ ((x+ 1)ex)p−β−1 dx.

Remark 3.4.7. Condition (3.40) can be interpreted as converse pointwise
multiplicative inequality dealing with nonnegative functions which states that

u′(x)2 ≤ Cu(x)Mu′′(x),

where Mv(x) := supB3x
1
|B|

∫
B
|v(y)|dy is Hardy–Littlewood maximal func-

tion of v and supremum is taken with respect to balls B containing x (see
[84], inequality (1.9) on page 93). It is clear that |v(x)| ≤ Mv(x) a.e., but
converse inequality, even up to a constant, in general does not hold.
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3.5 Applications

3.5.1 Analysis of Bessel pairs

Our approach shows constructive way to build Bessel pairs, defined by Ghous-
soub and Moradifam in [53] as following.

Definition 3.5.1 (Bessel pair). Pair (V, U), such that for all ξ ∈ C∞0 (BR)

(HV,U)

∫
BR

U(x)ξ2 dx ≤
∫
BR

V (x)|∇ξ(x)|2 dx, (3.42)

is called a Bessel pair.

They obtained the following result.

Theorem 3.5.1 ([53], Theorem 2.1). Let V and U be positive radial C1–
functions on BR \ {0}, where BR is a ball centered at zero with radius R
( 0 < R ≤ +∞) in Rn (n ≥ 1). Assume that

∫ a
0

1
rn−1V (r)

dr = +∞ and∫ a
0
rn−1V (r) dr < +∞ for some 0 < a < R. Then the following two state-

ments are equivalent:

1. The ordinary differential equation

(BV,U) y′′(r) +

(
n− 1

r
+
dV (r)

dr

1

V (r)

)
y′(r) +

U(r)

V (r)
y(r) = 0

has a positive solution on the interval (0, R] (possibly with y(R) = 0).

2. (V, U) is a Bessel pair.

As a direct consequence of Theorem 3.4.2 with p = 2, we obtain the
following corollary related to above theorem.

Corollary 3.5.1. Suppose BR is a ball centered at zero with radius R (
0 < R ≤ +∞) in Rn (n ≥ 1). Let w(x) ∈ C1(BR \ {0}) be an arbitrary
nonnegative radial function in the form w(x) = u(|x|) such that

σ0 := − inf
u(t)

u′(t)

(
u′′(t)

u′(t)
+
n− 1

t

)
<∞ a.e. t ∈ [0, R],
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and W1(x),W2(x) be positive radial C1–functions on BR \ {0}, such that

W1(x) = u−β+1(|x|)χ{|∇u|6=0},

W2(x) = (β − σ)χ{u>0}u
−β−1(|x|) ·

·
[
σ(u′(|x|))2 − u′′(|x|)u(|x|)− u′(|x|)u(|x|)n− 1

|x|

]
,

where β and σ are arbitrary numbers such that β > 0 and β > σ ≥ σ0.
Moreover, assume that

∫ a
0

1
rn−1W1(r)

dr = +∞ and
∫ a

0
rn−1W1(r) dr < +∞

for some 0 < a < R.
Then (W1,W2) is a Bessel pair.

Proof. We give the proof by applying two methods.
Method I. (via Theorem 3.4.2). We apply Theorem 3.4.2 with p = 2.
Method II (via Theorem 3.5.1). We note that y(x) = uβ−σ(|x|), solves
ODE (BV,U) with V = W1, U = W2. In particular, the solution to (BW1,W2)
exists and (W1,W2) is a Bessel pair.

Remark 3.5.1. It would be interesting to obtain generalisation of Corollary
3.5.1, considering the extension of inequality (3.42):

(Hp
V,U)

∫
BR

U(x)|ξ|p dx ≤
∫
BR

V (x)|∇ξ(x)|p dx,

to general p.

3.5.2 Inequalities resulting from existence theorems in
equations arising in astrophysics

In some cases one can prove existence of solutions to either equation or
inequality having the form{

−∆pu(x) = ϕ(x)up−1(x),
u(x) ≥ 0,

or more general {
−∆pu(x) ≥ ϕ(x)up−1(x),

u(x) ≥ 0
(3.43)

under certain general assumptions.
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Such problems arise often in astrophysics to model several phenomena.
For example, one observes this type of problems in classical models of globular
clusters of stars such as Eddington’s equation [43]

−∆u(x) =
1

1 + |x|2
e2u(x),

its improved version — Matukuma’s equations [82]

−∆u(x) =
1

1 + |x|2
up(x),

and its generalisations. Qualitative properties of their solutions are also con-
sidered from mathematical point of view [42]. Another astrophysical phe-
nomena modelled in this way is the dynamics of elliptic galaxies. The model,
which has been proposed by Bertin and Ciotti, has the form

−∆u(x) ≥ r2α

(1+r2)1/2+α |u(x)|p−2u(x), in R3

u(x) > 0 in R3,∫
R3 ϕ(r)up−1(x) dx = K <∞,

(3.44)

where x = (x1, x2, z) ∈ R3, r =
√
x2

1 + x2
2, α ≥ 0. For various astrophysical

models, their introduction and discussion, we refer to [7, 12, 13, 28].
In paper [7] Badiale and Tarantello consider existence of cylindrically

symmetric solutions to a problem of a type (3.43), based on (3.44), having
following form 

−∆u(x) ≥ ϕ(r)|u(x)|p−2u(x) in R3,
u(x) > 0 in R3,∫
R3 ϕ(r)up−1(x) dx = K <∞,

(3.45)

where p > 1, x = (x1, x2, z) ∈ R3, r =
√
x2

1 + x2
2, u(x) = u(r, z) is a

cylindrically symmetric function and ϕ is a nonnegative continuous function
depending only on r, vanishing both in zero and in infinity, rϕ(r) ∈ L∞(R+).
The condition

∫
R3 ϕ(r)up−1(x) dx <∞ guarantees that a given solution car-

ries a finite total mass.

Remark 3.5.2. Let us point out that in many cases (see e.g. [7, 53], (4.12)
in [8]), existence is an effect of certain Hardy inequalities. Here we obtain
possibly new Hardy inequalities as a consequence of existence. It would be
interesting to analyse the connections between them.
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It appears that even when we do not know u solving (3.45), but we have
the information that it exists, we can still deduce some Hardy inequalities
for a Lipschitz function ξ with compact support in Ω. We assume existence
in a more general setting than (3.45) and derive Hardy and Hardy–Sobolev
inequalities. Generalisation admits taking into account p–Laplacian for p ∈
(1,∞) instead of Laplacian, possibly other domain (Ω being any open subset
of R3), moreover we do not require cylindrical symmetry of u. For related
existence results we refer to [7, 42]. Below we state two results constructing
Hardy and Hardy–Sobolev inequalities under the assumption of existence of
solutions to the generalized problem, namely (3.46). In the first case we deal
with p = q while in the second one we assume 0 < q < p and additional
information about integrability of the solution. Note that in Theorem 3.5.3
power of integrability of ξ appearing in the left–hand side of derived Hardy–
Sobolev inequality is smaller than p.

Theorem 3.5.2. Suppose 1 < p < ∞ and there exists u ∈ W 1,p
loc (Ω) — a

solution to {
−∆pu(x) ≥ ϕ(x)|u(x)|p−2u(x) in Ω,
u(x) ≥ 0 in Ω,

where Φ = ϕ(x)|u(x)|p−2u(x) is locally integrable.
Then, for every Lipschitz function ξ with compact support in Ω, we have∫

Ω

|ξ|p ϕ dx ≤
∫

Ω

|∇ξ|p dx.

Proof. We note that Φ ≥ 0 so we take σ0 = 0 and the condition (Φ,p) is
satisfied with every σ ≥ σ0. We apply Theorem 3.3.1 and we obtain Hardy
inequality for every Lipschitz function ξ with compact support in Ω of the
following form ∫

Ω

|ξ|pµ1(dx) ≤
∫

Ω

|∇ξ|pµ2(dx),

where

µ1(dx) =

(
β − σ
p− 1

)p−1 [
ϕ|u|p−2u · u+ σ|∇u|p

]
· u−β−1χ{u>0} dx,

µ2(dx) = up−β−1χ{|∇u|6=0} dx

where β > σ. We take σ = σ0 ≥ 0 and thus the term σ|∇u|p in µ1(dx) is
cancelled. The choice β = p− 1 completes the proof.
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Theorem 3.5.3. Let 1 < p < ∞. Suppose 1 < q < p is such that there
exists u ∈ W 1,p

loc (Ω) — a solution to
−∆pu(x) ≥ ϕ(x)|u(x)|q−2u(x) in Ω,
u(x) ≥ 0 in Ω,∫

Ω
ϕ(x)uq−1(x) dx = K <∞,

(3.46)

where Φ = ϕ(x)|u(x)|p−2u(x) is locally integrable.
Then, for every Lipschitz function ξ with compact support in Ω, we have(∫

Ω

|ξ|
p(q−1)
p−1 ϕ(x) dx

) p−1
p(q−1)

≤ C

(∫
Ω

|∇ξ|p dx
) 1

p

(3.47)

with C = K
p−q
p(q−1)

(
p−1

p−1−σ0

) p−1
p
.

Proof. We note that Φ ≥ 0 so we can take σ0 = 0 and the condition (Φ,p)
is satisfied with every σ ≥ σ0. Suppose β > 0 and ξ is an arbitrary Lipschitz
function with compact support in Ω. If q ∈ (0, p) then Hölder inequality for

f = (ϕuq−1)1− q−1
p−1 and g = (|ξ|pϕuq−p)

q−1
p−1 with parameter p−1

q−1
gives∫

Ω

|ξ|
p(q−1)
p−1 ϕ(x) dx =

∫
Ω

(ϕuq−1)1− q−1
p−1 (|ξ|pϕuq−p)

q−1
p−1 dx ≤

≤
(∫

Ω

ϕ(x)uq−1(x) dx

)1− q−1
p−1
(∫

Ω

|ξ|pϕ(x)uq−p dx

) q−1
p−1

=

= K1− q−1
p−1

(∫
Ω

|ξ|pϕ(x)uq−1−β dx

) q−1
p−1

,

where p = β + 1 > 1. The second inequality comes from the condition from
the third line in (3.46). Moreover, Theorem 3.3.1 says that existence of
solution to (3.46) implies in particular inequality∫

Ω

|ξ|pϕuq−1−βχ{u>0} dx ≤
(
p− 1

β − σ0

)p−1 ∫
Ω

|∇ξ|p dx.

Summing up above observations, we obtain∫
Ω

|ξ|
p(q−1)
p−1 ϕ(x) dx ≤ K1− q−1

p−1

(
p− 1

β − σ0

)q−1(∫
Ω

|∇ξ|p dx
) q−1

p−1

.

To obtain (3.47) it suffices to put once again β = p − 1 and rise both sides
to power p−1

p(q−1)
.
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3.6 Hardy–Poincaré inequalities derived from

p–harmonic problems

This section is based on [93]. We apply general Hardy type inequalities,
obtained in Theorem 3.3.1. As a consequence we obtain a family of Hardy—
Poincaré inequalities with certain constants, contributing to the question
about precise constants in such inequalities posed in [16]. We confirm op-
timality of some constants obtained in [16] and [53]. Furthermore, we give
constants for generalized inequalities with the proof of their optimality.

3.6.1 The result

In this subsection we show that application of Theorem 3.3.1 with a special
function u, namely uα(x) = (1 + |x|

p
p−1 )−α with α > 0, leads to the following

theorem.

Theorem 3.6.1. Suppose p > 1 and γ > 1. Then, for every compactly
supported function ξ ∈ W 1,p

v1,v2
(Rn), where

v1(x) =
(

1 + |x|
p
p−1

)(p−1)(γ−1)

, v2(x) =
(

1 + |x|
p
p−1

)(p−1)γ

,

we have

C̄γ,n,p

∫
Rn
|ξ|p

[
(1 + |x|

p
p−1 )p−1

]γ−1

dx ≤
∫
Rn
|∇ξ|p

[
(1 + |x|

p
p−1 )p−1

]γ
dx,

(3.48)

with C̄γ,n,p = n
(
p(γ−1)
p−1

)p−1

. Moreover, for γ > n+ 1− n
p
, the constant C̄γ,n,p

is optimal and it is achieved by function ū(x) = (1 + |x|
p
p−1 )1−γ.

Proof. At first we note that, by standard density argument, it suffices to
prove (3.48) for every compactly supported Lipschitz function ξ. Indeed, let
ξ ∈ W 1,p

v1,v2
(Rn) and

φ(x) =


1, |x| < 1,

−|x|+ 2, 1 ≤ |x| ≤ 2,
0, 2 < |x|.

φR(x) = φ
(
x
R

)
, ξR(x) = ξ(x)φR(x).

An easy verification shows that ξR → ξ in W 1,p
v1,v2

(Rn). Standard convolution
argument shows that every compactly supported function u ∈ W 1,p

v1,v2
(Rn) can

be approximated in W 1,p
v1,v2

(Rn) by compactly supported Lipschitz functions.
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Let us consider the function uα(x) = (1 + |x|
p
p−1 )−α with α > 0. Now the

proof follows by steps.
Step 1. We recognize that the function uα ∈ W 1,p

loc (Rn) and that it is a
nonnegative solution to PDE

−∆p(uα) = d(1 + |x|
p
p−1 )α−αp−p(1 + κ|x|

p
p−1 ) =: Φ a.e. in Rn, (3.49)

where

d = d(n, α, p) =

(
αp

p− 1

)p−1

n and κ = κ(n, α, p) = 1− α + 1

n
p. (3.50)

Moreover, Φ satisfies (3.2). For readers convenience the computations are
carried out in the Appendix.

Step 2. In our case condition (Φ,p) becomes

σ0 := −ess inf

(
Φ · uα
|∇uα|p

)
= −p− 1

αp
(n− p(α + 1)) ∈ R. (3.51)

Indeed, by the formulae (3.49) and (3.51), we have

σ0 = − inf

(
αp
p−1

)p−1

(1 + |x|
p
p−1 )−p(α+1)

(
n+ (n− (α + 1)p)|x|

p
p−1

)
(
αp
p−1

)p
(1 + |x|

p
p−1 )−p(α+1)|x|

p
p−1

=

= − inf
n+ (n− (α + 1)p)|x|

p
p−1(

αp
p−1

)
|x|

p
p−1

=

= −
(
p− 1

αp

)[
inf

n+ (n− (α + 1)p)|x|
p
p−1

|x|
p
p−1

]
=

= −(p− 1)(n− (α + 1)p)

αp
.

Step 3. For given α > −γ, define β = (p − 1)( γ
α

+ 1). We apply
Theorem 3.3.1.

For this we require that β > 0 and that σ ∈ R is such that β > σ ≥ σ0.
This is equivalent to the condition γ > max{−α, 1 − n

p
}, which obviously

holds for all γ > 1, α > 0.

We are going to compute the measure given by (3.14). Let b1 =
(
αp
p−1

)p
·σ.

We note that γ = α
(

β
p−1
− 1
)

and −p(α+1)+α(β+1) = (p−1) (γ − 1)−1
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and recall that d and κ are given in (3.50). Applying these formulae to (3.14),
we obtain

µ1(dx) =

(
β − σ
p− 1

)p−1

[Φ · uα + σ|∇uα|p]u−β−1
α dx =

=

(
β − σ
p− 1

)p−1
[

d(1 + κ|x|
p
p−1 )

(1 + |x|
p
p−1 )p(α+1)

+
b1|x|

p
p−1

(1 + |x|
p
p−1 )p(α+1)

]
·

·(1 + |x|
p
p−1 )α(β+1) dx =

=

(
(β − σ)pα

(p− 1)2

)p−1{
n+

[
n− (α + 1)p+

σαp

p− 1

]
|x|

p
p−1

}
·(3.52)

·(1 + |x|
p
p−1 )−1

[
(1 + |x|

p
p−1 )p−1

]γ−1

dx,

while after substitution of β = (p−1)(α+γ)
α

, we obtain from (3.15)

µ2(dx) = up−β−1χ{|∇u|6=0} dx =
[
(1 + |x|

p
p−1 )−α

]p−β−1

dx =

=
[
(1 + |x|

p
p−1 )p−1

]γ
dx.

Step 4. We choose σ := (p−1)(α+1)
α

and realize

(p− 1)(α + γ)

α
= β > σ > σ0 =

(p− 1)(α + 1− n
p
)

α
,

because γ > 1. Then, in (3.52), the expression in curly brackets equals

n(1+|x|
p
p−1 ). This leads to the inequality (3.48) with the constant as required.

Step 5. In this step we prove the optimality of the proposed constant
under the assumption γ > n + 1 − n

p
. It suffices to show that both sides of

(3.48), for uα := ū defined below, are equal and finite.

We prove first that the function ū(x) = v(|x|) = (1 + |x|
p
p−1 )1−γ satisfies

−div(v2|∇ū|p−2∇ū) = C̄γ,n,pv1ū
p−1. (3.53)

For readers convenience the computations are carried out in the Appendix.

Now we concentrate on (3.48). Simple computations show that ū ∈
W 1,p
v1,v2

(Rn). It suffices to prove equality in (3.48) for ū. Due to (3.53), we
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obtain

C̄γ,n,p

∫
Rn
|ū|p

(
1 + |x|

p
p−1

)(p−1)(γ−1)

dx = C̄γ,n,p

∫
Rn
ūp v1 dx =

= −
∫
Rn

div(v2|∇ū|p−2∇ū) · ū dx = − lim
R→∞

∫
|x|<R

div(v2|∇ū|p−2∇ū) · ū dx =: L.

We apply Gauss–Ostrogradzki Theorem and observe that for an outer normal
vector nx = x

|x| to ∂B(R) we have 〈∇ū, nx〉 = |∇ū|. This implies

L = limR→∞

(∫
|x|<R v2|∇ū|p dx−

∫
|x|=R v2|∇ū|p−1 · ū dS

)
= limR→∞ (A− B) ,

where dS denotes the surface measure on the sphere Sn−1(R). To deal with
the limit we require γ > n + 1 − n

p
. Let us observe, that limR→∞ B = 0,

because it is up to a constant equal to
∫
|x|=R ū(x)|x|dS. Moreover, we notice

that finiteness of the limit of A is ensured by

1

C̄γ,n,p
A ≤

∫
Rn

(
1 + |x|

p
p−1

)−(γ−1)

dx ≤
∫
Rn

(1 + |x|)−
p(γ−1)
p−1 dx,

which is finite if the power of (1+|x|) is smaller than −n, e.i. for γ > n+1− n
p
.

This finishes the proof.

Remark 3.6.1. Careful analysis of the quotient

b(R)

a(R)
:=

∫
Rn |∇uR|

p(1 + |x|
p
p−1 )(p−1)γ dx

C̄γ,n,p
∫
Rn |uR|p(1 + |x|

p
p−1 )(p−1)(γ−1)dx

, (3.54)

where ūR = φRū, leads to optimality result also in the case of γ = n+ 1− n
p
.

We point out that when γ = n+1−n
p

function ū does not belong to W 1,p
v1,v2

(Rn).
We will prove optimality in this case in another way in Corollary 3.6.1.

3.6.2 Discussion on constants

Comparison with the classical Hardy inequality

We start with showing that constants in Hardy–Poincaré inequalities are not
smaller than in the classical Hardy inequalities. At first let us recall the
classical results. Partial theorems have been already mentioned (Theorem
3.4.1, Corollary 3.4.1). We refer to [63, 75, 78] for more information on the
best constants in various classical Hardy–type inequalities.
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Theorem 3.6.2 (Classical Hardy Inequalities). Let 1 < p <∞.

1. Assume further that γ 6= p− 1 and ξ is an arbitrary Lipschitz function
with compact support in (0,∞). Then∫ ∞

0

(
|ξ|
x

)p
xγ dx ≤ Hγ,1,p

∫ ∞
0

|ξ′|pxγ dx, (3.55)

where the constant Hγ,1,p =
(

p
|p−1−γ|

)p
is optimal.

2. Assume further that γ 6= p−n and ξ is an arbitrary Lipschitz function
with compact support in Rn \ {0}. Then∫

Rn\{0}
|ξ|p|x|γ−p dx ≤ Hγ,n,p

∫
Rn\{0}

|∇ξ|p|x|γ dx, (3.56)

where the constant Hγ,n,p =
(

p
|p−n−γ|

)p
is optimal.

Remark 3.6.2. The constant HPγ,n,p := 1/C̄γ,n,p, where C̄γ,n,p is the con-
stant from Hardy–Poincaré inequality (3.48), is not smaller than the constant
Hpγ,n,p from Hardy inequality (3.56), namely

Hpγ,n,p ≤ HPγ,n,p.

Proof. Let us consider (3.48) with function ξt(y) := ξ(ty)

C̄γ,n,p
∫
Rn |ξ(ty)|p

[
(1 + |y|

p
p−1 )p−1

]γ−1

dy ≤

≤
∫
Rn t

p |∇ξ(ty)|p
[
(1 + |y|

p
p−1 )p−1

]γ
dy,

and realize that it is equivalent to

C̄γ,n,p
∫
Rn |ξ(ty)|pt−p(γ−1)

[
(t

p
p−1 + |ty|

p
p−1 )p−1

]γ−1

dy ≤

≤
∫
Rn t

p|∇ξ(ty)|pt−pγ
[
(t

p
p−1 + |ty|

p
p−1 )p−1

]γ
dy.

We multiply both sides by tp(γ−1) and substitute x = ty, getting

C̄γ,n,p
∫
Rn |ξ(x)|p

[
(t

p
p−1 + |x|

p
p−1 )p−1

]γ−1

dx ≤

≤
∫
Rn |∇ξ(x)|p

[
(t

p
p−1 + |x|

p
p−1 )p−1

]γ
dy.
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It suffices to let t→ 0 and divide the inequality by C̄γ,n,p, to obtain∫
Rn
|ξ(x)|p|x|p(γ−1) dy ≤ HPγ,n,p

∫
Rn
|∇ξ(x)|p|x|pγ dy. (3.57)

We already know from Theorem 3.4.1 that the smallest possible constant is
Hpγ,n,p.

Applying this observation, we obtain following result.

Corollary 3.6.1 (Optimal constant). Suppose that p > 1, n ≥ 1 and γ =
n(1−1/p)+1. Then, for every nonnegative Lipschitz function ξ with compact
support, inequality (3.48) holds with optimal constant C̄γ,n,p = np.

Proof. We first notice that HPγ,n,p = HPn(1−1/p)+1,n,p = 1
n

(
p−1

p(γ−1)

)p−1

=

n−p =
(

pγ
|pγ−n−γ|

)p
= Hpγ,n,p (as pγ 6= p − n), and due to Remark 3.6.2 we

recognize the optimality of this constant.

Hardy—Poincaré Inequalities with improved constants

In this subsection we concentrate on the classical case p = 2. We show that,
for some values of parameters γ and n, our results improve the previously
know constant in the Hardy—Poincaré inequality (1.6).

Links with results by Blanchet, Bonforte, Dolbeault, Grillo and
Vázquez in [14, 16]. In [14], the authors apply inequality (1.6) with γ < 0
to investigate convergence of solutions to fast diffusion equations. In [16],
the following constants in (1.6) are established.

Remark 3.6.3 ([16]). For every v ∈ W 1,2
v1,v2

(Rn) where v1(x) = (1 + |x|2)γ−1,
v2(x) = (1 + |x|2)γ, inequality

Λγ,n

∫
Rn
|v|2 (1 + |x|2)γ−1 dx ≤

∫
Rn
|∇v|2 (1 + |x|2)γ dx,

holds with Λγ,n defined below.

1. For n = 1 and γ < 0 the optimal constant is

Λγ,1 =

{
(γ − 1

2
)2 if γ ∈ [−1

2
, 0),

−2γ if γ ∈ [−∞,−1
2
).

(3.58)
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2. For n = 2 and γ < 0 the optimal constant is

Λγ,2 =

{
γ2 if γ ∈ [−2, 0),
−2γ if γ ∈ [−∞,−2).

(3.59)

3. For n ≥ 3

• and γ < 0 the optimal constant is

Λγ,n =


(n−2+2γ)2

4
if γ ∈ [−n+2

2
, 0) \ {−n−2

2
},

−4γ − 2n if γ ∈ [−n,−n+2
2

),
−2γ if γ ∈ [−∞,−n).

(3.60)

• and γ = n the optimal constant is Λn,n = 2n(n− 1),

• and γ ≥ n the constant is Λγ,n = n(n+ γ − 2),

• and n ≥ γ > 0 the constant is Λγ,n = γ(n+ γ − 2).

Remark 3.6.4. Here we compare our results with the above ones.

1. We preserve the optimal constant if n ≥ 3 and γ = n.

2. We extend the above optimality result for γ = n ≥ 3 also to the case
γ = n = 2. Indeed, we recall that Corollary 3.6.1 applied to p = 2
gives the optimal constant C̄(n+2)/2,n,2 = n2 when n ≥ 1. In particular,
we obtain Λ2,2 = 2 · 2(2− 1) = C̄(2+2)/2,2,2.

3. In the case n ≥ 3, γ > 2, and n 6= γ, our constant C̄γ,n,2 = 2n(γ − 1)
is better than the constant in [16]:

• if γ > n then C̄γ,n,2 > Λγ,n = n(n+ γ − 2),

• if n > γ > 2 then C̄γ,n,2 > Λγ,n = γ(n+ γ − 2).

4. In the case n ≥ 3, 2 > γ > 1 our constant becomes worse than Λγ,n.

Links with results by Ghoussoub and Moradifam [53]. In a recent
paper [53] by Ghoussoub and Moradifam, some improvements to the results
of [14] are obtained. In particular, some new estimates for constants from
[14] are proven. We can further improve the constants from [53] for some
range of parameters.

Among other results, one finds in [53] the following.
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Theorem 3.6.3 ([53], Theorem 2.13, part II).
If a, b, α, β > 0 and n ≥ 2, then there exists a constant c such that for all
ξ ∈ C∞0 (Rn)

c

∫
Rn

(a+ b|x|α)β−
2
α ξ2 dx ≤

∫
Rn

(a+ b|x|α)β |∇ξ|2 dx, (3.61)

and moreover
(
n−2

2

)2
=: c1 ≤ c ≤

(
n+αβ−2

2

)2
.

A very special case of the above theorem (when a = b = 1, α = 2, and
β = γ) covers also our case, therefore we present it below and discuss the
related constants.

Corollary 3.6.2. If γ > 0 and n ≥ 2, then there exists a constant c̄1 > 0
such that for all ξ ∈ C∞0 (Rn)

c̄1

∫
Rn
|ξ|2(1 + |x|2)γ−1 dx ≤

∫
Rn
|∇ξ|2(1 + |x|2)γ dx, (3.62)

and moreover
(
n−2

2

)2
=: c1 ≤ c̄1 ≤

(
n+2γ−2

2

)2
.

Note, that we have already pointed out in Remark 3.6.2, that c̄1 ≤(
n+2γ−2

2

)2
. Therefore, we may concentrate only on the lower bound.

Remark 3.6.5. Here we compare our results with the above one. The con-
stant C̄γ,n,p is the left–hand side constant derived in Theorem 3.6.1 for γ, p >
1, n ≥ 1 and it is proven to be optimal for γ ≥ n + 1 − n

p
. Let c1 be the

constant from Corollary 3.6.2, where γ > 0, p = 2, n ≥ 2. We may compare
it only when γ > 1, p = 2, n ≥ 2. We have

Cγ,n,2 = 2n(γ − 1) >

(
n− 2

2

)2

= c1, (3.63)

for every γ > max
{

(n+2)2

8n
, 1
}

. This shows that for those γs Theorem 3.6.1

gives the inequality (3.62) with the constant better than the one resulting
from Corollary 3.6.2. Furthermore, we notice that (3.63) holds also for γ ∈(

(n+2)2

8n
, 1 + n

2

)
, when we do not have the optimality of C̄γ,n,2. When γ =

1
2n

(
n+2

2

)2
, we have c1 = C̄γ,n,2, but for such γ we do not prove the optimality

of C̄γ,n,2.

Comparison of the values of the constants C̄γ,n,2, Λγ,n, c1 under common
assumptions, in the case when C̄γ,n,2 is not proven to be optimal, is given in
Remark 3.6.6.
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Summary of results and open questions

We collect here all the known information about the constants in the Hardy–
Poincaré inequality (3.48). We point out that we consider the left–hand side
constant, and so the biggest possible one is optimal.

Let us recall that the constants c1, Λγ,n and C̄γ,n,p.

i) c1 comes from [53], see Theorem 3.6.3 and Corollary 3.6.2,

ii) Λγ,n comes from [16], see Remark 3.6.3,

iii) C̄γ,n,p is derived in Theorem 3.6.1 for p, γ > 1, n ≥ 1, and proven to
be optimal

– for γ > n
p
(p− 1) + 1 in Theorem 3.6.1,

– for γ = n
p
(p− 1) + 1 in Corollary 3.6.1.

For p = 2, we have C̄γ,n,2 = 2n(γ − 1), and moreover

n γ constant optimality see
n ≥ 1 γ > 1 C̄γ,n,2 for γ > n+2

2
, here Thm 3.6.1

n ≥ 1 γ = n+2
2

C̄γ,n,2 yes, here Coro. 3.6.1
n ≥ 1 γ < 0 Λγ,n yes, [16] Rem. 3.6.3
n = 2 γ = 2 C̄2,2,2 yes, here Rem. 3.6.4
n ≥ 3 γ = n C̄n,n,2 yes, [16] Rem. 3.6.3
n ≥ 3 γ > n C̄γ,n,2 ≥ Λγ,n > c1 yes, here Rem. 3.6.4
n = 2 0 < γ < 1 c1 ?? Coro. 3.6.2
n ≥ 3 γ ∈ (0,min{γc, 1}] c1 ≥ Λγ,n ?? Coro. 3.6.2
n ≥ 3 γc ≤ γ ≤ 1 Λγ,n ≥ c1 ?? Coro. 3.6.2
n ≥ 2 1 < γ ≤ γg c1 ≥ C̄γ,n,2 ?? Coro. 3.6.2
n ≥ 2 γ > γg C̄γ,n,2 > c1 for γ ≥ n+2

2
, here Rem. 3.6.5

where γc =
√

2−1
2

(n− 2), γg = (n+2)2

8n
.

As we can see above, for sufficiently big values of parameter γ (γ ≥ n+2
2

)
our constant is optimal, thus C̄γ,n,2 ≥ max {Λγ,n, c1}. In the following remark
we compare the values of the constants in the case when all three of them
are defined (namely p = 2, n ≥ 3, γ > 1) and when γ < n+2

2
.

Remark 3.6.6. We compare all the mentioned constants under assumptions:
p = 2, n ≥ 3, and 1 < γ < n+2

2
. We note
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i) c1 < Λγ,n if and only if γc < γ; c1 > Λγ,n if and only if γc > γ;

ii) C̄γ,n,2 < c1 if and only if γ < γg; C̄γ,n,2 > c1 if and only if γ > γg;

iii) C̄γ,n,2 < Λγ,n if and only if γ < 2; C̄γ,n,2 > Λγ,n if and only if γ > 2.

Therefore for p = 2, n ≥ 3, and n > γ > 1 we have γc <
n+2

2
, 1 < γg <

n+2
2

,
moreover

constants γ such γ exists for
C̄γ,n,2 > Λγ,n > c1 γ ∈ (max{2, γc}, n+2

2
) n ≥ 3

C̄γ,n,2 > c1 > Λγ,n γ ∈ (γg, γc) n ≥ 12
Λγ,n > C̄γ,n,2 > c1 γ ∈ (γg, 2) n ∈ [3, 11]
Λγ,n > c1 > C̄γ,n,2 γ ∈ (max{1, γc}, γg) n ∈ [3, 11]
c1 > Λγ,n > C̄γ,n,2 γ ∈ (1,min{2, γc}) n ≥ 7
c1 > C̄γ,n,2 > Λγ,n γ ∈ (2, γg) n ≥ 12

For p > 1, n ≥ 1, due to Theorem 3.6.1, we have C̄γ,n,p = n
(
p(γ−1)
p−1

)p−1

, and

γ constant optimality

γ ∈ (1, n
p
(p− 1) + 1) C̄γ,n,p = n

(
p(γ−1)
p−1

)p−1

??

γ = n
p
(p− 1) + 1 C̄γ,n,p = np Corollary 3.6.1

γ > n
p
(p− 1) + 1 C̄γ,n,p = n

(
p(γ−1)
p−1

)p−1

Theorem 3.6.1

Open questions.

• We do not know what is the optimal constant in (3.62) for γ < n
2

+ 1.

• We do not know what is the optimal constant in (3.48) for γ < n+1− n
p

and our methods do not give any estimates for the constant when γ < 1.

3.6.3 Appendix to Section 3.6

Proof of Step 1 of Proposition 3.6.1. We use the following computations. We
recall uα(x) = (1 + |x|

p
p−1 )−α and compute first everything, which is needed

to find its p–Laplacian.
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∇uα(x) = −α(1 + |x|
p
p−1 )−α−1 p

p− 1
|x|

p
p−1
−1 x

|x|
=

=
−αp
p− 1

(1 + |x|
p
p−1 )−α−1|x|

1
p−1

x

|x|
,

|∇uα(x)| =

∣∣∣∣ αpp− 1

∣∣∣∣ (1 + |x|
p
p−1 )−α−1|x|

1
p−1 ,

|∇uα(x)|p−2 =

∣∣∣∣ αpp− 1

∣∣∣∣p−2

(1 + |x|
p
p−1 )−(α+1)(p−2)|x|

p−2
p−1 ,

|∇uα(x)|p−2∇uα(x) = − αp

p− 1

∣∣∣∣ αpp− 1

∣∣∣∣p−2

(1 + |x|
p
p−1 )−(α+1)(p−1)x

= κ1xu(α+1)(p−1)(x),

where κ1 = −αp
p−1
| αp
p−1
|p−2.

Then (as α > 0) we have

∆p(uα(x)) = div(|∇uα(x)|p−2∇uα(x)) =
∑
i

∂(|∇uα(x)|p−2∇uα(x))

∂xi
=

= κ1

∑
i

∂(u(α+1)(p−1)(x)xi)

∂xi
=

= κ1

(∑
i

∂(u(α+1)(p−1)(x))

∂xi
xi + u(α+1)(p−1)(x)

∑
i

∂xi
∂xi

)
=

= κ1
−(α + 1)(p− 1)p

p− 1
(1 + |x|

p
p−1 )−(α+1)(p−1)−1|x|

1
p−1

∑
i x

2
i

|x|
+κ1nu(α+1)(p−1)(x) =

= κ1

(
−(α + 1)p(1 + |x|

p
p−1 )α−αp−p|x|

p
p−1 + nu(α+1)(p−1)(x)

)
=

=

(
αp

p− 1

)p−1

(1 + |x|
p
p−1 )α−αp−p ·

·
(

(α + 1)p|x|
p
p−1 − n(1 + |x|

p
p−1 )

)
.
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Therefore, our Φ has a form

Φ = −div(|∇uα(x)|p−2∇uα(x)) =

=

(
αp

p− 1

)p−1

(1 + |x|
p
p−1 )α−αp−p

(
n+ (n− (α + 1)p)|x|

p
p−1 )

)
.

Proof of (3.53) in Step 5 of Theorem 3.6.1. The proof follows from the
technical lemmas below (Lemmas 3.6.1, 3.6.2 and 3.6.3). They show that,
under assumption of Theorem 3.6.1, ū satisfies an equation equivalent to
equation (3.53). Therefore ū satisfies (3.53) as well.

Lemma 3.6.1. Let ū(x) = v(|x|) ∈ C2((R \ {0})) be an arbitrary function,

Φp(λ) = |λ|p−2λ, v2(r) =
(

1 + r
p
p−1

)(p−1)γ

then

i) ∇ū(x) = v′(|x|) x
|x| ,

ii) Φ′p(λ) = (p− 1)|λ|p−2,

iii) (Φp(∇ū(x))) = Φp(v
′(|x|)) · x|x| ,

iv) div(Φp(∇ū)) = |v′(|x|)|p−2
(

(p− 1)v′′(|x|) + (n− 1)v
′(|x|)
|x|

)
v) ∇v2(|x|) = γp(1 + |x|

p
p−1 )γ(p−1)−1|x|

1
p−1 x
|x|

Proof. We reach the claims i)–iii) and v) by elementary calculations. Then
applying i)–iii) we prove the claim iv) as follows

(Φp(∇ū)) = div

(
Φp(v

′(|x|)) x
|x|

)
=

= ∇(Φp(v
′(|x|))) · x

|x|
+ Φp(v

′(|x|))div

(
x

|x|

)
=

= Φ′p(v
′(|x|))∇v′(|x|) · x

|x|
+ Φp(v

′(|x|))n− 1

|x|
=

=
x

|x|
Φ′p(v

′(|x|))v′′(|x|) x
|x|

+ Φp(v
′(|x|))n− 1

|x|
=

= Φ′p(v
′(|x|))v′′(|x|) + Φp(v

′(|x|))n− 1

|x|
=

= (p− 1)|v′(|x|)|p−2v′′(|x|) + |v′(|x|)|p−2v′(|x|)n− 1

|x|
.
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Lemma 3.6.2. Equation (3.53), where ū(x) = v(|x|) ∈ C2(R \ {0}) is an

arbitrary function, v1(r) =
(

1 + r
p
p−1

)(p−1)(γ−1)

, v2(r) =
(

1 + r
p
p−1

)(p−1)γ

is

equivalent to equation

−A = B, (3.64)

where

A :=

(
(γp+ n− 1)|x|

1
p−1 +

n− 1

|x|

)
v′(|x|) + (p− 1)(1 + |x|

p
p−1 )v′′(|x|)

B := C̄γ,n,p(1 + |x|
p
p−1 )−p+2 vp−1(|x|) (v′(|x|))−(p−2).

Proof. We concentrate first on the left–hand side of (3.53):

−LHS = div(v2 · Φp(∇ū)) = ∇v2 · Φp(∇ū) + v2div(Φp(∇ū)) = I + II,

I = γp(1 + |x|
p
p−1 )γ(p−1)−1|x|

1
p−1

x

|x|
·
∣∣∣∣v′(|x|) x|x|

∣∣∣∣p−2

v′(|x|) x
|x|

=

= γp(1 + |x|
p
p−1 )γ(p−1)−1|x|

1
p−1 |v′(|x|)|p−2

v′(|x|),

II = (1 + |x|
p
p−1 )γ(p−1)|v′(|x|)|p−2

(
(p− 1)v′′(|x|) + v′(|x|)n− 1

|x|

)
.

Therefore,

−LHS = (1 + |x|
p
p−1 )γ(p−1)−1 |v′(|x|)|p−2 ·

·
(

(γp+ n− 1)|x|
1
p−1v′(|x|) +

n− 1

|x|
v′(|x|) + (p− 1)(1 + |x|

p
p−1 )v′′(|x|)

)
,

while the right–hand side of (3.53) equals

RHS = C̄γ,n,p(1 + |x|
p
p−1 )(γ−1)(p−1)vp−1(|x|).

As LHS = RHS, by multiplying this equation by
(1 + |x|

p
p−1 )−γ(p−1)+1 |v′(|x|)|−(p−2), we obtain (3.64).

Lemma 3.6.3. If α = 1− γ < 0, the function v(x) = (1 + |x|
p
p−1 )α satisfies

(3.64).

62



Proof. We will need the following computations, where we identify v(x) with
one variable function v(r)

v′ =
αp

p− 1
(1 + r

p
p−1 )α−1r

1
p−1 ,

v′′ =
αp

p− 1

(
(α− 1)p

p− 1
(1 + r

p
p−1 )α−2r

2
p−1 +

1

p− 1
(1 + r

p
p−1 )α−1r−

p−2
p−1

)
=

=
αp

(p− 1)2
(1 + r

p
p−1 )α−2

(
(α− 1)pr

2
p−1 + (1 + r

p
p−1 )r−

p−2
p−1

)
=

=
αp

(p− 1)2
(1 + r

p
p−1 )α−2

(
((α− 1)p+ 1)r

2
p−1 + r−

p−2
p−1

)
=

αp

(p− 1)2
(1 + r

p
p−1 )α−2r−

p−2
p−1

(
1 + ((α− 1)p+ 1)r

p
p−1

)
,

vp−1

|v′|p−2
=

(1 + r
p
p−1 )α(p−1)∣∣∣ αpp−1

∣∣∣p−2

(1 + r
p
p−1 )(α−1)(p−2)r

p−2
p−1

=

=

∣∣∣∣p− 1

αp

∣∣∣∣p−2

r−
p−2
p−1

(1 + r
p
p−1 )α(p−1)

(1 + r
p
p−1 )(α−1)(p−2)

=

=

∣∣∣∣p− 1

αp

∣∣∣∣p−2

r−
p−2
p−1 (1 + r

p
p−1 )α+p−2.

When we take into account the above results and substitute γ = −α+ 1, we
have in (3.64)

−A =

(
(γp+ n− 1)|x|

1
p−1 +

n− 1

|x|

)
v′(|x|) + (p− 1)(1 + |x|

p
p−1 )v′′(|x|) =

=

(
(γp+ n− 1)|x|

1
p−1 +

n− 1

|x|

)
(1− γ)p

p− 1
(1 + |x|

p
p−1 )−γ|x|

1
p−1 +

+(p− 1)(1 + |x|
p
p−1 )

(1− γ)p

(p− 1)2
(1 + |x|

p
p−1 )−γ−1|x|−

p−2
p−1

(
1 + (−γp+ 1)|x|

p
p−1

)
=

=
(1− γ)p

p− 1
(1 + |x|

p
p−1 )−γ|x|−

p−2
p−1

(
(n− 1) + (γp+ n− 1)|x|

p
p−1

)
+

+
(1− γ)p

p− 1
(1 + |x|

p
p−1 )−γ|x|−

p−2
p−1

(
1 + (−γp+ 1)|x|

p
p−1

)
=

= n
(1− γ)p

p− 1
(1 + |x|

p
p−1 )−γ|x|−

p−2
p−1

(
1 + |x|

p
p−1

)
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and on the the other hand

B = C̄γ,n,p(1 + |x|
p
p−1 )−p+2 vp−1(|x|)

|v′(|x|)|p−2
=

= C̄γ,n,p(1 + |x|
p
p−1 )−p+2

(
p− 1

(γ − 1)p

)p−2

|x|−
p−2
p−1 (1 + |x|

p
p−1 )−γ+1+p−2 =

= n

(
p (γ − 1)

p− 1

)p−1(
p− 1

(γ − 1)p

)p−2

(1 + |x|
p
p−1 )−γ+1|x|−

p−2
p−1 =

= n (γ − 1)
p

p− 1
(1 + |x|

p
p−1 )−γ+1|x|−

p−2
p−1 .

We recognize that for all γ > 1, n ≥ 1, p > 1, we have: −A = B.
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Chapter 4

Hardy–Sobolev inequalities
derived from A–harmonic
problems

This chapter is based on [94] by the author, where the methods of [92, 93] is
generalized. The work extends the previous results, described in Chapter 3,
where we considered inequality −∆pu ≥ Φ, leading among others to Hardy
inequalities with the best constants.

we are interested in Hardy–Sobolev type inequalities having a form∫
Ω

f(u)dµ1 ≤
∫

Ω

g(|∇u|)dµ2, (4.1)

with some functions f, g, Ω ⊆ Rn, holding for certain class of u’s. We
consider f, g in the Orlicz class, taking into account the most classical case
when f(t) = g(t) = tp.

Multiple authors consider generalized versions of Hardy–Sobolev–type in-
equalities with remainder terms [2, 6, 39] as well as those expressed in Orlicz
setting [21, 68] or combing this both ideas [70].

We consider the anticoercive partial differential inequality of elliptic type
involving A–Laplacian: −∆Au = −divA(∇u) ≥ Φ, where Φ is a given lo-
cally integrable function and u is defined on an open subset Ω ⊆ Rn. We
derive Caccioppoli inequalities for u. Knowing solutions, as a consequence
we obtain Hardy inequalities for compactly supported Lipschitz functions
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involving certain measures, having a form∫
Ω

FĀ(|ξ|)µ1(dx) ≤
∫

Ω

Ā(|∇ξ|)µ2(dx),

where Ā(λ) = A(|λ|)λ is an N–function satisfying ∆′–condition and FĀ(λ) =
1/(Ā(1/t)). We give several examples starting with Ā(t) = FĀ(t) = tp, p > 1
and new various measures, finishing with Ā(t) = tp logα(2+t), p > 1, α > 0.

4.1 Preliminaries

Notation

In the sequel we assume that Ω ⊆ Rn is an open subset not necessarily
bounded.

By A–harmonic problems we understand those, which involve A–Laplace
operator ∆Au = div(A(∇u)), understood in the weak sense, where A : Rn →
Rn is a C1–function. Choosing A(λ) = |λ|p−2λ we deal with the usual p–
Laplacian.

We restrict ourselves to A’s such that A(λ) = B(|λ|)λ, λ ∈ Rn, and we
set

Ā(s) = B(s)s2, where s ∈ [0,∞). (4.2)

We assume that Ā is an N–function, i.e. it is convex and lims→0
Ā(s)
s

=
lims→∞

s
Ā(s)

= 0. We refer to the monographs [74, 90] for basic properties

of Orlicz spaces. By Ā∗ we denote the Legendre transform of Ā, e.i. Ā∗ =
supt>0(st− Ā(t)).

As usual, Ck(Ω) (respectively Ck
0 (Ω)) denotes functions of class Ck de-

fined on an open set Ω ⊂ Rn (respectively Ck-functions on Ω with compact
support). If f is defined on Ω, by fχΩ we understand function f extended
by 0 outside Ω. When V ⊆ Rn, by |V | we denote its Lebesgue’s measure.

We deal with ∆2 and ∆′ conditions defined below.

Definition 4.1.1. We say that the function F : [0,∞)→ [0,∞) satisfies the
∆2–condition (denoted F ∈ ∆2), if there exists a constant C̄F > 0 such that
for every s > 0 we have

F (2s) ≤ C̄FF (s). (4.3)
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Definition 4.1.2. We say that the function F : [0,∞)→ [0,∞) satisfies the
∆′–condition (denoted F ∈ ∆′), if there exists a constant CF > 0 such that
for every s1, s2 > 0 we have

F (s1s2) ≤ CFF (s1)F (s2). (4.4)

Remark 4.1.1. Let us note that the ∆′–condition is stronger than the ∆2–
condition.

Typical examples of N–functions satisfying the ∆′–condition can be found
among Zygmund–type logarithmic functions. Their construction is based on
the following easy observation.

Fact 4.1.1 ([66]). The family of functions satisfying ∆′–condition is invari-
ant under multiplications and compositions.

Example 4.1.1 ([66]). The following N–functions satisfy ∆′–condition:

1. F (s) = sp, 1 < p <∞,

2. Mp,α(s) = sp(ln(2 + s))α, 1 < p <∞, α ≥ 0,

3. M1
p,α(s) = sp(ln(1 + s))α, 1 < p <∞, α ≥ 0,

4. F (s) = Mp1,α1 ◦ Mp2,α2 ◦ · · · ◦ Mpk,αk(s), α1, . . . , αk ≥ 0, pi > 1 for
i = 1, . . . , k.

Fact 4.1.2. Let Fb(s) = sp logα(b + s), b, p > 1, α > 0. Then, the constant

from ∆′–condition (see Definition 4.1.2), CF ≤
(

2
log b

)α
.

Proof. Suppose s1 ≤ s2. Then

log(b+s1s2) ≤ log(b+s2
2) ≤ log(b+s2)2 = 2 log(b+s2) ≤ 2 log(b+s2)· log(b+ s1)

log b
,

and F (s1s2) = (s1s2)p logα(b+s1s2) ≤
(

2
log b

)α
sp1s

p
2 logα(b+s1) logα(b+s2) =

CFF (s1)F (s2).

Let us state some useful facts and lemmas.

Lemma 4.1.1 ([68], Lemma 4.2). Suppose that F is a differentiable N–
function satisfying ∆2–condition. Then there exists constants 1 < dF ≤ DF ,
such that for every r > 0

dF
F (r)

r
≤ F ′(r) ≤ DF

F (r)

r
. (4.5)
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Moreover, for every r, s > 0 the following estimate holds true

F (r)

r
s ≤ DF − 1

dF
F (r) +

1

dF
F (s). (4.6)

Remark 4.1.2. Let us comment above lemma.

1. When F (r) = rp, 1
p

+ 1
p′

= 1, we get rp−1s ≤ 1
p′
rp + 1

p
sp, equivalent to

Young inequality qs ≤ qp
′

p′
+ sp

p
.

2. For general convex function F the latter inequality in (4.5) with finite
constant DF is equivalent to F ∈ ∆2, while the condition dF > 1 is
equivalent to F ∗ ∈ ∆2 (see [74], Theorem 4.3 or [67], Proposition 4.1).
If dF and DF are the best possible in (4.5), they are called Simonenko
lower and upper index of F , respectively (see e.g. [17, 49, 57, 91]) for
definition and discussion of properties.

Fact 4.1.3. Let F (s) = sp logα(b+ s), b, p > 1, α > 0. Then, the constants
from (4.5), equals DF = p+ α

log b
and dF = p.

Proof. F ′(s) = (sp logα(b+ s))′ = psp−1 logα(b+ s) + α sp

b+s
logα−1(b+ s) =

sp−1 logα(b+s)
(
p+ α s

(b+s) log(b+s)

)
≤ DF

F (s)
s
, withDF = sup

(
p+ α s

(b+s) log(b+s)

)
.

F ′(s) ≥ dF
F (s)
s
, with dF = inf

(
p+ α s

(b+s) log(b+s)

)
.

Orlicz—Sobolev spaces

By W 1,Ā(Ω) we mean the completion of the set

{u ∈ C∞(Ω) : ‖u‖W 1,Ā(Ω) := ‖u‖LĀ(Ω) + ‖∇u‖LĀ(Ω) <∞},

under the Luxemburg norm

‖f‖LĀ(Ω) = inf

{
K > 0 :

∫
Ω

Ā

(
|f(x)|
K

)
dx ≤ 1

}
(in the sequel we assume that inf ∅ = +∞). By W 1,Ā

loc (Ω) we denote such
functions u : Ω → R that uφ ∈ W 1,Ā(Ω) for every φ ∈ C1

0(Ω) (analogous
notation is used for local Orlicz spaces LĀloc(Ω)). Observe that we always

have W 1,Ā
loc (Ω) ⊆ W 1,1

loc (Ω). By W 1,Ā
0 (Ω) we denote the completion of smooth

compactly supported functions in W 1,Ā(Ω).
The following fact holds true.
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Fact 4.1.4 ([72], Fact 2.3). If Ā is an N–function and u ∈ W 1,Ā
loc (Ω), then

B(|∇u|)∇u =
Ā(|∇u|)
|∇u|

χ{|∇u|6=0} ∈ LĀ
∗

loc(Ω,Rn),

where B and Ā are the same as in (4.2).

Let u ∈ W 1,Ā
loc (Ω). For w ∈ W 1,Ā(Ω) with compact support we define

〈∆Au,w〉 := −
∫

Ω

B(|∇u|)〈∇u,∇w〉 dx. (4.7)

According to Fact 4.1.4 the right–hand side in (4.7) is well defined. Obviously
when A(λ) = |λ|p−2λ, then we retrieve the classical p–Laplacian, ∆pu.

Differential inequality
The differential inequality we want to analyze is given by the following

definition.

Definition 4.1.3. Let Ω be any open subset of Rn and Φ be the locally in-
tegrable function defined in Ω, such that for every nonnegative compactly
supported w ∈ W 1,Ā(Ω) ∣∣∣∣∫

Ω

Φw dx

∣∣∣∣ <∞. (4.8)

Let u ∈ W 1,Ā
loc (Ω). We will say that

−∆Au ≥ Φ (4.9)

if for every nonnegative compactly supported w ∈ W 1,Ā(Ω) we have

〈−∆Au,w〉 =

∫
Ω

B(|∇u|)〈∇u,∇w〉 dx ≥
∫

Ω

Φw dx. (4.10)

Remark 4.1.3. We may choose Φ = Φ(x, u,∇u).

Set of assumptions. In the sequel we will consider functions satisfying
the following assumptions.

(Ā) Ā is an N–function satisfying ∆′–condition;

(Ψ) there exists a function Ψ : [0,∞) → [0,∞), which is nonnegative and
belongs to C1((0,∞)) and satisfies the following conditions
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i) inequality

g(t)Ψ
′
(t) ≤ −CΨ(t) (4.11)

holds for all t > 0 with C > 0 independent of t and certain
continuous function g : (0,∞) → (0,∞), such that Ψ(t)/g(t) is
nonincreasing.

ii) function

s 7→ Θ(s) :=
Ā (g(s)) Ψ(s)

g(s)
(4.12)

is nonincreasing or bounded in certain neighbourhood of 0.

(u) u ∈ W 1,Ā
loc (Ω) is a given nonnegative solution to (4.9) which is nontrivial,

i.e. u 6≡ const, and there exists σ ∈ R such that

Φ + σ
Ā(|∇u|)
g(u)

χ{∇u6=0} ≥ 0 a.e. (4.13)

We define

σ0 = inf{σ ∈ R : (4.13) is satisfied}, (4.14)

where we set inf ∅ = +∞.

Remark 4.1.4. Examples when those conditions are satisfied in the case
when Ā(s) = sp, g(s) = s, Ψ(s) = s−β, β > 0 can be found in [92, 93].

Remark 4.1.5. Let us discuss the assumption (Ψ) i). In particular, it
implies that Ψ is decreasing. Elementary calculation leads to following pairs
of Ψ and g satisfying condition g(t)Ψ′(t) ≤ −CΨ(t) a.e. To ensure that
additionally Ψ(t)/g(t) is nonincreasing we have assume that g′(t) ≥ −C
with th same C. Indeed, Ψ/g is nonincreasing if(

Ψ(t)

g(t)

)′
= Ψ′(t)g(t)−Ψ(t)g′(t)

g2(t)
≤ −CΨ(t)−Ψ(t)g′(t)

g2(t)
=

= − Ψ(t)
g2(t)

(C + g′(t)) ≤ 0

I.e.: when g′(t) ≥ −C.
The following pairs satisfy assumption (Ψ) (see Table 4.1).
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Ψ(t) g(t) C remarks
t−α t α α > 0
e−t bounded by C, g′ ≥ −C C C > 0
e−t/t t/(1 + t) 1 —

e
1
2

log2(t) t/| log t| 1 considered on (0, 1)

Table 4.1: Good pairs of Ψ and g

4.2 Caccioppoli estimates for solutions to PDI

−∆Au ≥ Φ

Our main goal in this section is to obtain the following result.

Theorem 4.2.1. Let u ∈ W 1,Ā
loc (Ω) be a nonnegative solution to PDI: −∆Au ≥

Φ, in the sense of Definition 4.1.3, where Φ is locally integrable and assump-
tions (Ā), (Ψ), (u) are satisfied satisfied with C > 0 and σ ∈ [σ0, C), where
σ0 is given by (4.14). Let CĀ > 0 be a constant coming from ∆′–condition for
Ā (see Definition 4.1.2) and DĀ ≥ dĀ > 1 be constants coming from (4.5)
applied to Ā.

Then the inequality∫
Ω

(
Φ + σ

Ā(|∇u|)
g(u)

χ{∇u6=0}

)
Ψ(u)φ dx ≤ (4.15)

≤ K

∫
Ω∩{∇u6=0}

Ā (g(u)) Ψ(u)

g(u)
· Ā
(
|∇φ|
φ

)
φ dx,

holds for every nonnegative Lipschitz function φ with compact support in Ω,

such that the integral
∫
∩{∇u 6=0} Ā

(
|∇φ|
φ

)
φ dx is finite and

K = (C − σ)Ā

(
DĀ − 1

(C − σ)dĀ

)
C2
Ā

DĀ − 1
.

We call (4.15) Caccioppoli inequality, because it involves ∇u on the left–
hand side and only u on the right–hand side (see e.g. [23, 65]).

The proof is based on careful analysis of the proof of Proposition 3.1 from
[72]. However, here we are not restricted to Φ = Φ(u), Φ ≥ 0 and integrals
over Rn.
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Remark 4.2.1. We do not assume that right–hand side in (4.15) is finite.

Proof of Theorem 4.2.1. The proof follows by three steps.
Step 1. Derivation of local inequality.

We obtain the following lemma.

Lemma 4.2.1. Let u ∈ W 1,Ā
loc (Ω) be a nonnegative solution to PDI: −∆Au ≥

Φ, in the sense of Definition 4.1.3, where Φ is locally integrable and assump-
tions (Ā), (Ψ), (u) are satisfied satisfied with C > 0 and σ ∈ [σ0, C), where
σ0 is given by (4.14). Let K be the constant from Theorem 4.2.1.

Then for every 0 < δ < R and every nonnegative Lipschitz function φ
with compact support in Ω, the inequality∫

{u≤R−δ}

(
Φ + σ

Ā(|∇u|)
g(u+ δ)

χ{∇u6=0}

)
Ψ(u+ δ)φ dx

≤ K

∫
Ω∩{∇u6=0, u≤R−δ}

Θ(u+ δ) · Ā
(
|∇φ|
φ

)
φ dx+ C̃(δ, R), (4.16)

holds with Θ(u) given by (4.12) and

C̃(δ, R) := Ψ(R)

[∫
Ω∩{∇u6=0, u>R−δ}

B(|∇u|)〈∇u,∇φ〉 dx−
∫

Ω∩{u>R−δ}
Φφ dx

]
.

(4.17)

Before we prove the theorem let us formulate the following facts.

Fact 4.2.1 ([72]). For u, φ as in the assumptions of Theorem 4.2.1 we fix
0 < δ < R and denote

uδ,R(x) := min (u(x) + δ, R) , G(x) := Ψ(uδ,R(x))φ(x). (4.18)

Then uδ,R ∈ W 1,Ā
loc (Ω) and G ∈ W 1,Ā

0 (Ω) ⊆ W 1,Ā(Ω).

Fact 4.2.2 ([72]). Let u ∈ W 1,1
loc (Ω) be defined everywhere by the formula

(3.1) and let t ∈ R. Then

{x ∈ Ω : u(x) = t} ⊆ {x ∈ Ω : ∇u(x) = 0} ∪N (4.19)

where |N | = 0.
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Proof of Lemma 4.2.1. According to (4.8) integral
∫

Ω
Φφdx is finite.

Before we start the proof of (4.16), let us introduce some notation, where
0 < δ < R <∞:

Ã(δ, R) =

∫
Ω∩{∇u6=0, u≤R−δ}

Ā(|∇u|)Ψ′(u+ δ)φ dx,

Ã1(δ, R) =

∫
Ω∩{∇u6=0, u≤R−δ}

Ā(|∇u|)
(

Ψ(u+ δ)

g(u+ δ)

)
φ dx,

B̃(δ, R) =

∫
Ω∩{∇u6=0, u≤R−δ}

B(|∇u|)〈∇u,∇φ〉Ψ(u+ δ) dx,

C̃1(δ, R) = Ψ(R)

∫
Ω∩{u>R−δ}

Φφ dx, (4.20)

C̃2(δ, R) = Ψ(R)

∫
Ω∩{∇u6=0, u>R−δ}

B(|∇u|)〈∇u,∇φ〉 dx, (4.21)

D̃(ε̄, δ, R) = ε̄Ā

(
1

ε̄

)
C2
Ā

dĀ

∫
suppφ∩{∇u6=0, u≤R−δ}

Θ(u+ δ)Ā

(
|∇φ|
φ

)
φ dx,

where Θ(u) is given by (4.12). Let us consider uδ,R and G defined by (4.18).
We note that

I :=

∫
Ω

ΦGdx =

∫
Ω

ΦΨ(uδ,R)φ dx =

=

∫
Ω∩{u≤R−δ}

ΦΨ(u+ δ)φ dx+ Ψ(R)

∫
Ω∩{u>R−δ}

Φφ dx =

=

∫
Ω∩{u≤R−δ}

ΦΨ(u+ δ)φ dx+ C̃1(δ, R), (4.22)

On the other hand, inequality (4.9) implies

I :=

∫
Ω

ΦGdx ≤ 〈−∆Au,G〉 =

∫
Ω∩{∇u6=0}

B(|∇u|)〈∇u,∇G〉 dx =

=

∫
Ω∩{∇u6=0, u≤R−δ}

Ā(|∇u|)Ψ′(u+ δ)φ dx+

+

∫
Ω∩{∇u6=0, u≤R−δ}

B(|∇u|)〈∇u,∇φ〉Ψ(u+ δ) dx+

+ Ψ(R)

∫
Ω∩{∇u6=0, u>R−δ}

B(|∇u|)〈∇u,∇φ〉 dx =

= Ã(δ, R) + B̃(δ, R) + C̃2(δ, R). (4.23)
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Note that all integrals above are finite, what follows from Fact 4.1.4 (for
0 ≤ u ≤ R− δ we have δ ≤ u+ δ ≤ R). Using assumption (Ψ) we get

Ã(δ, R) ≤ −C
∫

Ω∩{∇u6=0, u≤R−δ}
Ā(|∇u|)

(
Ψ(u+ δ)

g(u+ δ)

)
φ dx =

= −CÃ1(δ, R). (4.24)

Moreover, for an arbitrary ε̄ > 0,

B̃(δ, R) ≤
∫

Ω∩{∇u6=0, u≤R−δ}
B(|∇u|)|∇u||∇φ|Ψ(u+ δ) dx =

= ε̄

∫
suppφ∩{∇u6=0, u≤R−δ}

B(|∇u|)|∇u|
(
|∇φ|
φ

g(u+ δ)

ε̄

)
Ψ(u+ δ)

g(u+ δ)
φdx.

As B(|∇u|)|∇u| = Ā(|∇u|)
|∇u| , we can apply (4.6) for the N–function Ā with

r = |∇u|, s =
(
|∇φ|
φ

g(u+δ)
ε̄

)
to get

B̃(δ, R) ≤ ε̄
DĀ − 1

dĀ

∫
suppφ∩{∇u6=0, u≤R−δ}

Ā(|∇u|)Ψ(u+ δ)

g(u+ δ)
φ dx+

+
ε̄

dĀ

∫
suppφ∩{∇u6=0, u≤R−δ}

Ā

(
|∇φ|
φ

g(u+ δ)

ε̄

)
Ψ(u+ δ)

g(u+ δ)
φ dx.

Then, applying ∆′–condition for Ā twice in the second expression above,
we obtain

B̃(δ, R) ≤ ε̄
DĀ − 1

dĀ
Ã1(δ, R) + D̃(ε̄, δ, R). (4.25)

Combining estimates (4.23), (4.24) and (4.25) we get

I ≤ −CÃ1(δ, R) + B̃(δ, R) + C̃2(δ, R) ≤

≤
(
−C + ε̄

DĀ − 1

dĀ

)
Ã1(δ, R) + D̃(ε̄, δ, R) + C̃2(δ, R).

Moreover, C̃1(δ, R) and Ã1(δ, R) are finite (and D̃(ε, δ, R) is finite as well).
This and (4.22) imply∫

Ω∩{u≤R−δ}
ΦΨ(u+ δ)φ dx+

(
C − ε̄DĀ − 1

dĀ

)
Ã1(δ, R) ≤

≤ D̃(ε̄, δ, R) + (C̃2(δ, R)− C̃1(δ, R)).
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This is (4.16). Indeed, we have C̃(δ, R) = C̃2(δ, R) − C̃1(δ, R). Moreover,
when we substitute σ := C − ε̄DĀ−1

dĀ
we get

ε̄Ā

(
1

ε̄

)
C2
Ā

dĀ
=

(C − σ)dĀ
DĀ − 1

Ā

(
DĀ − 1

(C − σ)dĀ

)
C2
Ā

dĀ
=

=
(C − σ)

DĀ − 1
Ā

(
DĀ − 1

(C − σ)dĀ

)
C2
Ā = K.

We notice that ε̄ > 0 is arbitrary and we may always choose 0 < ε̄ ≤ (C−σ0)dĀ
DĀ−1

,

so that σ0 ≤ σ < C.

We have to introduce parameters δ and R to make sure that some quan-
tities in the estimates, which we move to opposite sides of inequalities, are
finite.

Step 2. Passing to the limit with δ ↘ 0.

In this step we show that when assumptions (Ā), (Ψ) and (Φ) are satisfied
with ε > 0, K is the constant from Theorem 4.2.1, then for any R > 0
inequality ∫

{u≤R}

(
Φ + σ

Ā(|∇u|)
g(u)

χ{∇u6=0}

)
Ψ(u)φ dx ≤

≤ K

∫
{∇u6=0, u≤R}

Ā (g(u)) Ψ(u)

g(u)
Ā

(
|∇φ|
φ

)
φ dx+ C̃(R), (4.26)

where

C̃(R) = Ψ(R)

[∣∣∣∣∣
∫

Ω∩{u≥R
2
}
B(|∇u|)|∇u| · |∇φ| dx

∣∣∣∣∣+

∣∣∣∣∣
∫

Ω∩{u≥R
2
}

Φφ dx

∣∣∣∣∣
]

(4.27)
holds for every nonnegative Lipschitz function φ with compact support in

Ω, such that the integral
∫

suppφ∩∇u6=0
Ā
(
|∇φ|
φ

)
φ dx is finite. Moreover, all

quantities appearing in (4.26) are finite.

For this, we show first that under our assumptions, when δ ↘ 0 we have∫
Ω∩{∇u6=0, u+δ≤R}

Θ(u+δ)·Ā
(
|∇φ|
φ

)
φ dx→

∫
Ω∩{∇u6=0, u≤R}

Θ(u)·Ā
(
|∇φ|
φ

)
φ dx.

(4.28)
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Note that Θ(u+ δ)χu+δ≤R
δ→0→ Θ(u)χu≤R, a.e. This follows from Lemma

4.2.2 (which gives that the sets {u = 0, |∇u| 6= 0} and {u = R, |∇u| = 0}
are of measure zero) and the continuity outside zero of the involved functions.

We assumed in (Θ) that Θ is nonincreasing or bounded in the neighbour-
hood of zero. Let we start with the case when there exists κ > 0 such that
for λ < κ the function Θ(λ) is nonincreasing. Without loss of generality we
may consider κ ≤ R.

We divide the domain of integration∫
Ω∩{∇u6=0, u+δ≤R}

Θ(u+ δ) · Ā
(
|∇φ|
φ

)
φ dx =

=

∫
Eκ

Θ(u+ δ) · Ā
(
|∇φ|
φ

)
φ dx+

∫
Fκ

Θ(u+ δ)χ{u+δ≤R} · Ā
(
|∇φ|
φ

)
φ dx,

where

Eκ =
{
u <

κ

2
, ∇u 6= 0

}
∩ suppφ, Fκ =

{κ
2
≤ u, ∇u 6= 0

}
∩ suppφ.

Let us begin with integral over Eκ. We consider δ → 0, so we may assume
that δ < κ/2. Then for x ∈ Eκ we have u + δ < κ. As function λ → Θ(λ)
is nonincreasing when λ < κ, thus for δ ↘ 0 the function δ → Θ(u + δ) is
nondecreasing and so convergent monotonically almost everywhere to Θ(u).
Therefore, due to The Lebesgue’s Monotone Convergence Theorem

lim
δ→0

∫
Eκ

Θ(u+ δ)Ā

(
|∇φ|
φ

)
φ dx =

∫
Eκ

Θ(u)Ā

(
|∇φ|
φ

)
φ dx.

In the case of Fκ, we have κ/2 ≤ u + δ ≤ R. Over this domain Θ is a
bounded function, so in particular on Fκ:

Θ(u+ δ)χ{u+δ≤R}Ā

(
|∇φ|
φ

)
φ ≤ sup

t∈[κ/2,R]

Θ(t) · Ā
(
|∇φ|
φ

)
φ ∈ L1(Fκ).

We apply The Lebesgue’s Dominated Convergence Theorem to deduce that

lim
δ→0

∫
Fκ

Θ(u+ δ)χ{u+δ≤R}Ā

(
|∇φ|
φ

)
φ dx =

∫
Fκ∩{u≤R}

Θ(u)Ā

(
|∇φ|
φ

)
φ dx.

This completes the case of Θ nonincreasing in the neighbourhood of 0.
In the case when Θ is bounded in the neighbourhood of 0, we note that Θ is
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bounded on every interval [0, R], where R > 0. Hence, we can use previous
computations dealing with Fκ in case κ = 0.

To finish the proof of this step we note that (4.28) says that when δ ↘ 0
the first integral on the right–hand side of (4.16) is convergent to the first
integral of right–hand side of (4.26). To deal with the second expression we
note that for δ ≤ R

2
:

|C̃(δ, R)| ≤ |C̃2(δ, R)|+ |C̃1(δ, R)| ≤ C̃(R),

where C̃(δ, R), C̃2(δ, R), C̃1(δ, R), C̃(R) are given by (4.17), (4.20), (4.21),
(4.27), respectively.

We can pass to the limit with δ → 0 on the left–hand side of (4.16) due to
The Lebesgue’s Monotone Convergence Theorem as an expression in brackets
is nonnegative by (4.13) and the whole integrand therein is nonincreasing by
assumption (Ψ).
Step 3. We let R→∞ and finish the proof.

We are going to let R →∞ in (4.26). Without loss of generality we can
assume that the integral in the right–hand side of (4.15) is finite, as otherwise
the inequality follows trivially. Note that as B(|∇u|)〈∇u,∇φ〉 and Φφ are

integrable, we have limR→∞ C̃(R) = 0. Therefore (4.15) follows from (4.26)
by the Lebesgue’s Monotone Convergence Theorem.

4.3 Hardy type inequalities

Our most general conclusion resulting from Theorem 4.2.1 reads as follows.

Theorem 4.3.1. Let u ∈ W 1,Ā
loc (Ω) be a nonnegative solution to PDI: −∆Au ≥

Φ, in the sense of Definition 4.1.3, where Φ is locally integrable and assump-
tions (Ā), (Ψ), (u) are satisfied with C > 0 and σ ∈ [σ0, C), where σ0 is
given by (4.14). Set

FĀ(λ) =
1

Ā (1/λ)
, when λ > 0 and FĀ(0) = 0. (4.29)

Then for every Lipschitz function ξ with compact support in Ω, we have∫
Ω

FĀ(|ξ|)µ1(dx) ≤ C̃

∫
Ω

Ā(|∇ξ|)µ2(dx). (4.30)
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where

µ1(dx) = Ψ(u)

[
Φ + σ

Ā(|∇u|)
g(u)

]
χ{u>0} dx, (4.31)

µ2(dx) =
Ā (g(u)) Ψ(u)

g(u)
χ{∇u6=0} dx, (4.32)

C̃ = (C − σ)Ā

(
DĀ − 1

(C − σ)dĀ

)
Ā(DĀ)C4

Ā

DĀ − 1
. (4.33)

with constants CĀ > 0 coming from ∆′–condition for Ā (see Definition 4.1.2)
and DĀ > dĀ ≥ 1 coming from (4.5) applied to Ā.

Proof. Let ξ be a compactly supported Lipschitz function. We define φ =
FĀ(ξ) and apply Theorem 4.2.1. For this we have to verify that φ is compactly

supported Lipschitz function and
∫

Ω
Ā
(
|∇φ|
φ

)
φ dx < ∞. We observe that φ

is compactly supported, because FĀ(t) is continuous at 0. Indeed,

lim
t→0

FĀ(t) = lim
t→0

1

Ā (1/t)
= lim

s→∞

1

Ā (s)
= 0,

which ensures that suppφ = supp ξ. Furthermore, FĀ(t) is a locally Lipschitz
function. We obtain it from Lemma 4.1.1 which implies

F ′Ā(t) =

(
1

Ā (1/t)

)′
∼ 1

tĀ(1/t)
.

Applying the condition lims→∞
s

Ā(s)
= 0 from definition of N–function, we get

that F ′
Ā

(t) is a locally bounded function and bounded nearby 0. Therefore,
FĀ(t) is locally Lipshitz. The composition of locally Lipshitz function FĀ(t)
with Lipschitz and bounded ξ, i.e. FĀ(ξ) = φ, is Lipschitz.

We verify that
∫

Ω
Ā
(
|∇φ|
φ

)
φ dx < ∞. Note that for every compactly

supported Lipschitz function ξ we have
∫

Ω
Ā(|∇ξ|) dx < ∞. Therefore, it

suffices to prove that

Ā

(
|∇φ|
φ

)
φ ≤ C2

ĀĀ(DĀ)Ā(|∇ξ|). (4.34)
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As Ā ∈ ∆′, we note that for each pair of x, y ≥ 0 we have

Ā(x)y = Ā

(
x

Ā−1( 1
y
)
Ā−1

(
1

y

))
y ≤

≤ CĀĀ

(
x

Ā−1( 1
y
)

)
Ā

(
Ā−1

(
1

y

))
y = CĀĀ

(
x

Ā−1( 1
y
)

)
.(4.35)

Hence, taking x = |∇φ|
φ

and y = φ, we obtain from (4.35)

Ā

(
|∇φ|
φ

)
φ ≤ CĀĀ

(
|∇φ|
φ

1

Ā−1( 1
φ
)

)
, (4.36)

for any nonnegative φ at every x where φ(x) > 0.
Now we show that at every x, where φ(x) > 0 we have

|∇φ(x)|
φ(x)

1

Ā−1
(

1
φ(x)

) ≤ DĀ|∇ξ(x)|. (4.37)

Indeed, we have φ = 1

Ā( 1
ξ )
, so that

∇φ = F ′Ā(ξ) = − 1

Ā2
(

1
ξ

)Ā′(1

ξ

)(
− 1

ξ2

)
∇ξ.

Applying (4.5) to Ā ∈ ∆2 we have Ā′(λ) ≤ DĀ
Ā(λ)
λ
, with the constant DĀ.

Therefore

|∇φ| ≤ 1

Ā2
(

1
ξ

) DĀĀ

(
1

ξ

)
|∇ξ|
ξ

= DĀφ
|∇ξ|
ξ
.

Hence, we have |∇φ|
φ
ξ ≤ DĀ|∇ξ|, which is exactly (4.37).

Summing up the estimates (4.36) and (4.37) we obtain (4.34)

Ā

(
|∇φ|
φ

)
φ ≤ CĀĀ

(
|∇φ|
φ

1

Ā−1( 1
φ
)

)
≤ CĀĀ (DĀ|∇ξ|) ≤ C2

ĀĀ(DĀ)Ā(|∇ξ|).

Thus the assumptions of Theorem 4.2.1 are satisfied. We obtain (4.15).
The substitution φ = FĀ(ξ), equivalently taking

ξ(x) =

{
1

Ā−1( 1
φ(x))

, when φ(x) 6= 0,

0, when φ(x) = 0,
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where Ā−1 is the inverse function of Ā, transforms the left–hand side of
(4.15) into the left–hand side of (4.30). What remains to show is that the
right–hand side in (4.15) is estimated as follows∫
{∇u6=0}

Ā (g(u)) Ψ(u)

g(u)
Ā

(
|∇φ|
φ

)
φ dx ≤ C2

ĀĀ(DĀ)

∫
{∇u6=0}

Ā (g(u)) Ψ(u)

g(u)
Ā(|∇ξ|) dx.

This is a direct consequence of (4.34). The proof is complete.

Examples dealing with various FĀ and g are given in the following sec-
tions.

4.4 Retrieving our previous results

When we consider ∆A = ∆p (i.e. we take Ā(t) = tp), the method becomes
much simpler and the obtained inequality (4.30) involves FĀ(t) = 1

(1/t)p
=

tp = Ā(t). In this case we have∫
Ω

|ξ|pµ1(dx) ≤
∫

Ω

|∇ξ|pµ2(dx)

with certain measures.

We concentrate on retrieving our previous results from [92, 93] given in
Chapter 3. In particular, Theorem 4.3.1 imply Theorem 3.3.1. It leads among
others to Hardy and Hardy–Poincaré inequalities with optimal constants (see
Chapter 3).

Sketch of the proof of Theorem 3.3.1 via Theorem 4.3.1. We apply
Theorem 4.3.1, respectively, with Ā(t) = tp = FĀ(t), g(t) = t, Ψ(t) = t−β,
C = β > 0 (then CĀ = 1, dĀ = DĀ = p). We note that the assumption
(3.5) matches with the assumption (u). Inequality (3.13) follows from (4.30).
Involved measures and constants are the same.

Remark 4.4.1. Theorem 4.3.1 enables us to derive various measures in
(3.13). In the above examples we apply Ψ(t) = t−β, g(t) = t. When we check
the other pairs e.g. Ψ(t) = e−t, g(t) ≡ 1, or Ψ(t) = e−t

t
, g(t) = 1/(1 + t), we

obtain comparable inequalities.
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4.5 Hardy–Sobolev inequalities dealing with

Orlicz functions of power–logarythmic type

Now we deal with the case Ā(t) = tp logα(2 + t), p > 1, α > 0.

Lemma 4.5.1. Suppose p > 1, α > 0, Ā(t) = tp logα(2 + t) and Ω ⊆ Rn,

n ≥ 1. Let u ∈ W 1,Ā
loc (Ω) be a nonnegative solution to PDI: −∆Au ≥ Φ, in

the sense of Definition 4.1.3, where Φ is locally integrable and assumptions
(Ψ), (u) are satisfied with σ ∈ R and g : R+ → R+.

Then there exists a constant C̃ > 0, such that for every Lipschitz function
ξ with compact support in Ω, we have∫

Ω∩{ξ 6=0}
|ξ|p log−α(2 + 1/|ξ|)µ1(dx) ≤ C̃

∫
Ω

|∇ξ|p logα(2 + |∇ξ|)µ2(dx),

where

µ1(dx) = Ψ(u)

(
Φ +

σ

g(u)
|∇u|p logα(2 + |∇u|)

)
χ{u>0} dx, (4.38)

µ2(dx) = gp−1(u) logα(2 + g(u))Ψ(u)χ{∇u6=0} dx, (4.39)

Proof. We apply Theorem 4.3.1. We remark first that assumption (Ā) is
satisfied as, according to Example 4.1.1, Ā ∈ ∆′ if p > 1, α > 0. We notice,
that

FĀ(t) =
1

Ā(1/t)
=

1

(1/t)p logα(2 + 1/t)
= tp log−α(2 + 1/t), FĀ(0) = 0.

(4.40)

As a direct consequence of Lemma 4.5.1 we obtain the following corollary.

Corollary 4.5.1. Suppose p > 1, α > 0, Ā(t) = tp logα(1 + t) and Ω ⊆ Rn,

n ≥ 1. Let u ∈ W 1,Ā
loc (Ω) be a nonnegative solution to PDI: −∆Au ≥ Φ, in

the sense of Definition 4.1.3, where Φ is locally integrable and assumptions
(Ψ), (u) are satisfied satisfied with σ ∈ R and g : R+ → R+.

Then there exists C̃ > 0, such that for every Lipschitz function ξ with
compact support in Ω, we have∫

Ω

|ξ|p+αµ1(dx) ≤ C̃

∫
Ω

Ā(|∇ξ|)µ2(dx),

where µ1(dx), µ2(dx), C̃ comes from Theorem 4.5.1.
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Proof. We note, that tα < log−α (2 + 1/t). Indeed, log (2 + 1/t) = log
(

2t+1
t

)
=

log(2t+1)−log(t)
2t+1−t = log′(t1) = 1

t1
, for some t1 ∈ (t, 2t+ 1).

This implies∫
Ω

|ξ|p+αµ1(dx) <

∫
Ω

|ξ|p log−α(1 + 2/|ξ|)µ1(dx)

and the result follows from estimate proven in Theorem 4.5.1.

We give two examples of application Theorem 4.3.1 to power–logarithm
function Ā and u being a power function defined on a halfline. We start with
a lemma confirming common assumptions.

Lemma 4.5.2. Suppose p > 1, α > 0, β ∈ (0, 1) and Ω ⊆ R+. Assume
further that assumption (Ψ) is satisfied with functions Ψ, g and (u) is satisfied
with

σ > −(1/β − 1)(p− 1) inf
x>0

g(xβ)x−β =: σ0.

Then there exists a constant C̃ > 0, such that for every Lipschitz function
ξ with compact support in Ω, we have∫

Ω

|ξ|p log−α(2 + 1/|ξ|)µ1(dx) ≤ C̃

∫
Ω

|ξ′|p logα(2 + |ξ′|)µ2(dx),

where

µ1(dx) =
Ψ(xβ)

g(xβ)
xp(β−1) logα

(
2 + βxβ−1

)
dx, (4.41)

µ2(dx) =
Ψ(xβ)

g(xβ)
gp(xβ) logα(2 + g(xβ)) dx. (4.42)

Moreover

C̃ ≤ β1−p

(1− β)(p− 1) + σβ
(C − σ)Ā

(
DĀ − 1

(C − σ)dĀ

)
Ā(DĀ)C4

Ā

DĀ − 1
, (4.43)

where CĀ = ( 2
log 2

)α, dĀ = p, DĀ = p+ α
log 2

.

Proof. We are to apply Theorem 4.3.1. We consider Ā(t) = tp logα(1 + t).
The assumption (Ā) is satisfied as, according to Example 4.1.1, Ā ∈ ∆′ for
p > 1, α > 0. We notice, that (as in (4.40)) FĀ(t) = tp log−α(2 + 1/t), when
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t > 0 and FĀ(0) = 0. We note that u = uβ(x) = xβ, with β ∈ (0, 1), is the
solution to PDI −∆Au ≥ Φ, where

Φ = −(β − 1)βp−1(p− 1)xpβ−β−p logα
(
2 + βxβ−1

)
. (4.44)

Indeed, we have ∇u = βxβ−1, |∇u| = |β|xβ−1 and we compute the function
Φ

−∆Au = −div

(
Ā(|∇u|)
|∇u|2

∇u
)

= −β|β|p−2
(
x(p−1)(β−1) logα

(
2 + |β|xβ−1

))′
=

= −β|β|p−2(β − 1)x(p−1)(β−1)−1 logα−1
(
2 + |β|xβ−1

)
·

·
(

(p− 1) log
(
2 + |β|xβ−1

)
+ α

|β|xβ−1

2 + |β|xβ−1

)
≥

≥ −β|β|p−2(β − 1)(p− 1)xpβ−p−β logα
(
2 + |β|xβ−1

)
=

= |β|p(1/β − 1)(p− 1)xpβ−p−β logα
(
2 + |β|xβ−1

)
= Φ,

where the inequality holds for β ∈ (0, 1), thus we remove the absolute value
of β and write (4.44).

Now let us verify assumption (u).
We note first that Ā(|∇u|) = βpxp(β−1) logα

(
2 + βxβ−1

)
. Therefore

g(u)Φ + σĀ(|∇u|) = βpxp(β−1) logα
(
2 + βxβ−1

) [
(1/β − 1)(p− 1)g(xβ)x−β + σ

]
is positive for σ > −(1/β − 1)(p− 1) infx>0 g(xβ)x−β = σ0.

We reach the goal by computing the weights according to Theorem 4.3.1
and dividing both sides by the constant.

We notice that, due to the above method, we can estimate the constant
C̃ as in (4.43). For this we have to note that, according to Facts 4.1.2 and
4.1.3, CĀ = ( 2

log 2
)α, dĀ = p, DĀ = p+ α

log 2
.

4.5.1 Inequalities on (0,∞)

Applying Ψ(t) = t−C , g(t) = t in Lemma 4.5.2, we obtain the following
result.
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Theorem 4.5.1 (Power–logarithm Hardy–Sobolev inequality on (0,∞)). Let
p > 1, α > 0, β ∈ (0, 1), C > 0, C > σ > −(1/β − 1)(p− 1).

Then there exists c > 0, such that for every compactly supported Lipschitz
function ξ, we have∫ ∞

0

|ξ|p log−α(2 + 1/|ξ|)µ1(dx) ≤ c

∫ ∞
0

|ξ′|p logα(2 + |ξ′|)µ2(dx),

where

µ1(dx) = xγ−p logα
(
2 + βxβ−1

)
dx ∼ xγ−p logα (2 + x) dx,

µ2(dx) = xγ log(2 + xβ) dx ∼ xγ log (2 + x) dx,

with γ = −β(C + 1− p) and the constant c depends on Ā, p, C, β, σ.

Proof. We apply Lemma 4.5.2. It suffices now to check that the pair Ψ(t) =
t−C , g(t) = t with C > 0 satisfies the assumption (Ψ) i) and ii) and finally
we compute the weights.

i) The mentioned Ψ, g are positive functions. Ψ is locally Lipschitz, Ψ/g is
decreasing, moreover

Ψ′(t)g(t) = −Ct−C−1g(t) = −Ct−C−1t = −Ct−C−1+1 = −CΨ(t).

ii) The function Θ = tp−1−C logα (2 + t) (see (4.12)) is bounded in the neigh-
bourhood of 0 when p− 1−C ≥ 0 and decreasing when p− 1−C < 0.

We note that

σ > −(1/β − 1)(p− 1) inf
0<x

g(xβ)x−β =

= −(1/β − 1)(p− 1) inf
0<x

xβx−β = −(1/β − 1)(p− 1) = σ0.

Thus there exists σ ∈ [σ0, C) for any C > 0.
We apply Lemma 4.5.2 and obtain the following measures in inequality

(4.41)

µ1(dx) = (xβ)−C−1βpxp(β−1) logα
(
2 + βxβ−1

)
[(1/β − 1)(p− 1) + σ] dx =

= x−β(C+1−p)−p logα
(
2 + βxβ−1

)
βp [(1/β − 1)(p− 1) + σ] dx,

µ2(dx) = C̃x−β(C+1−p) log(2 + xβ) dx.

Now it suffices to take γ = −β(C + 1− p).

Remark 4.5.1. We may estimate c due to (4.43).
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4.5.2 Inequalities on (0, 1)

We present application with g(λ) different from identity. For this, it is con-
venient to consider the extension of previous results where we consider the
restriction of Ψ to the codomain of u. We need Theorems 4.2.1 and 4.3.1,
and Lemma 4.5.2, where instead of Assumption (Ψ) we suppose (Ψ)2 (see
below). Their proofs in this case are easy modifications of the proofs from
previous sections.

(Ψ)2 for a given nonnegative u ∈ W 1,Ā
loc (Ω), there exists a function Ψ :

[0,∞) → [0,∞), which is nonnegative and belongs to C1(u(Ω \ {0}),
where u(Ω) = {u(x) : x ∈ Ω}. Furthermore, the following conditions
are satisfied

i) inequality
g(t)Ψ′(t) ≤ −CΨ(t),

holds for all t ∈ u(Ω)\{0} with C > 0 independent of t and certain
continuous function g : (0,∞) → (0,∞), such that Ψ(t)/g(t) is
nonincreasing for t ∈ u(Ω). Moreover, we set Ψ(t) ≡ 0 for t 6∈
u(Ω).

ii) function Θ(t) given by (4.12) is nonincreasing or bounded in the
neighbourhood of 0.

When we restict ourselves to (0, 1) and apply Ψ(t) = e
1
2

log2(t), g(t) =
t/| log t|. They do not satisfy assumption (Ψ), but only (Ψ)2. In particular
assumption (Ψ) i) requires Ψ to be a decreasing function, but it does not
hold outside (0, 1). This choice in Lemma 4.5.2 leads to the following result.

Theorem 4.5.2 (Hardy–Sobolev inequality on (0, 1)). Let p > 1, α > 0,
β ∈ (0, 1) and Ā(t) = tp logα(2 + t).

Then there exists a constant c > 0, such that for every Lipschitz function
ξ with compact support in (0, 1), we have∫ 1

0

|ξ|p log−α(2 + 1/|ξ|)µ1(dx) ≤ c

∫ 1

0

Ā(|ξ′|)µ2(dx),

where

µ1(dx) = e
β
2

log2(x)| log x|x
(p−1)β

xp
logα

(
2 + βxβ−1

)
dx, (4.45)

µ2(dx) = e
β
2

log2(x)| log x| x
(p−1)β

| log x|p
logα(2 +

xβ

| log xβ|
) dx. (4.46)
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Proof. We apply Lemma 4.5.2, where u = uβ(x) = xβ is considered, with
Assumption (Ψ)2 instead of (Ψ). It suffices now to check that the pair Ψ(t) =

e
1
2

log2(t), g(t) = t
| log t| , with C = 1 (for t ∈ (0, 1)) satisfies the assumption

(Ψ)2 i) and ii).

i) The functions Ψ, g are positive. Ψ is locally Lipschitz. Moreover

Ψ′(t)g(t) = − t

log t
· 1

2
(log2 t)′e

1
2

log2(t) = − t

log t
· 1

2
2

log t

t
e

1
2

log2(t) =

= −e
1
2

log2(t) = −Ψ(t).

As t ∈ (0, 1), we have log t < 0. Therefore

g′(t) =

(
− t

log t

)′
= −t

′ log t− t log′ t

log2 t
= − log t− 1

log2 t
=

=
1 + | log t|

log2 t
≥ 0 > −1.

According to Remark 4.1.5 it is enough to ensure that Ψ/g is nonin-
creasing.

ii) The function Θ(s) = Ā(g(s))Ψ(s)
g(s)

=
(

s
| log s|

)p−1

logα
(

2 + s
| log s|

)
e

1
2

log2(s) is

decreasing in the neighbourhood of 0. Indeed, it is easy to show that
for sufficiently small positive s we have Θ′(s) < 0.

We note that there exists σ ∈ [σ0, C) = [0, 1). Indeed, the only condition
for σ is the following

σ > σ0 = −(1/β − 1)(p− 1) inf
0<x<1

g(xβ)x−β = −(1/β − 1)(p− 1) inf
0<x<1

xβ| log xβ|x−β =

= −(1/β − 1)(p− 1) inf
0<x<1

| log xβ| = 0.

We apply Lemma 4.5.2 and obtain the following measures in inequality
(4.41)

µ1(dx) = e
1
2

log2(xβ)| log(xβ)|xpβ−β−p logα
(
2 + βxβ−1

)
dx,

µ2(dx) = e
1
2

log2(xβ)| log(xβ)|−p+1xpβ−β logα
(

2 +
xβ

| log xβ|

)
dx.

We compute the final measures by removing unnecessary constants from
logarithm terms.
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solutions for a quasilinear equation via Hardy inequalities, Adv. Differ-
ential Equations 6 (2001), no. 12, 1517–1540.

[52] F. Gazzola, H.–C. Grunau, E. Mitidieri, Hardy inequalities with optimal
constants and reminder terms, Trans. Amer. Math. Soc. 365 (2004),
2149–2168.

[53] N. Ghoussoub, A. Moradifam, Bessel pairs and optimal Hardy and
Hardy-Rellich inequalities, Math. Ann. 349 (2011), no. 1, 1–57.

[54] J. A. Goldstein, Q. S. Zhang, On a degenerate heat equation with a
singular potential, J. Funct. Anal. 186 (2001), 342–359.

[55] G. Grillo, On the equivalence between p–Poincaré inequalities and Lr−
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