
University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Grzegorz Marczyński

Specifications of Software Architectures using

Diagrams of Constructions

PhD dissertation

Supervisor

prof. dr hab. Andrzej Tarlecki

Institute of Informatics

University of Warsaw

September 2014

Author’s declaration:

aware of legal responsibility I hereby declare that I have written this disser-

tation myself and all the contents of the dissertation have been obtained by

legal means.

September 22, 2014 .

date Grzegorz Marczyński

Supervisor’s declaration:

the dissertation is ready to be reviewed

September 22, 2014 .

date prof. dr hab. Andrzej Tarlecki

iii

Abstract

Formal methods promise the ultimate quality of software artifacts with math-

ematical proof of their correctness. Algebraic specification is one of such

methods, providing formal specifications of system components suitable for

verification of correctness of all individual steps in the software development

process, and hence of the entire development process and of the resulting

program.

In this thesis we propose a new approach to algebraic specifications of

software architectures, called diagrams of construction specifications. Con-

structions, as introduced here, model parameterised modules, with depen-

dency relation captured directly on signature symbols. They give a uniform

treatment of first- and higher-order parameterisation, and are equipped with

a single sum operation which subsumes the most standard operations on

parameterised modules, We introduce specifications for such constructions,

study their compositionality properties, and define a notion of refinement for

constructor specifications. Diagrams of construction specifications capture

design and development of modular software architecture, based on decom-

position and refinement of construction specifications.

Throughout the thesis we illustrate new concepts and problems discussed

by means of simple examples; a somewhat longer example is also added to

summarize our presentation.

iv

To Anne, Ada and Ernest

v

Acknowledgments

This work would have never been accomplished without great help of other

people.

First of all, I would like to thank Andrzej Tarlecki. Thank you, Andrzej,

for your patience, guidance and constant support!

I am also grateful to other people from MIMUW, especially Artur Zaw locki.

Thank you, Artur, for endless discussions, common work and your insightful

explanations. Thank you, Aleksy, Jacek, Patryk, and other participants of

SLIWOWICA seminar.

Many thanks go to my family. Thank you, Anne, for your support and

understanding! Thank you, Mom and Dad, for believing in me, Thank you,

Kasia and Julia, for asking questions.

Finally, I feel indebted to great friends : Ania, Antek, Bartek, Diane, Don-

ald, Ewa, Magda, Ma lgosia, Marion, Marta, Mateusz, Pawe l, Rafa l, Regis,

Rudy and others.

Thank you all nice people!

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Aims and Objectives . 3

1.3 Contributions . 4

1.4 Outline . 6

2 Related Work 7

2.1 Introduction . 7

2.2 Clear and Parameterised Programming 8

2.3 Modules in ACT TWO . 8

2.4 ASL and Parametric Algebras 9

2.5 CASL and Architectural Specifications 9

2.6 Software Architectures . 10

3 Technical Preliminaries and Assumptions 13

3.1 Introduction . 13

3.2 Basic Category Theory . 13

3.2.1 Categories of Ordered Sets 16

3.3 Institutions and Specifications 17

3.3.1 Universal Algebra and Examples of Institutions 19

3.4 Parameterisation . 22

3.5 Assumptions . 23

4 Signature Fragments 27

4.1 Introduction . 27

4.2 Basic Approach . 28

4.3 Extended Approach . 30

4.3.1 Special Fragments . 34

4.A Appendix: Proofs . 36

vii

viii CONTENTS

5 Signatures with Dependencies 39

5.1 Introduction . 39

5.2 Signatures with Dependencies 39

5.2.1 Dependency Relation 39

5.2.2 Signatures with Dependency Structure 41

5.3 Fragments of Signatures with Dependencies 43

5.A Appendix: Proofs . 48

6 Constructions 51

6.1 Introduction . 51

6.2 Construction Signatures . 52

6.2.1 Signatures of Modules as Construction Signatures . . . 53

6.3 Construction Models . 57

6.3.1 Models of Modules as Construction Models 60

6.4 Construction Specifications . 61

6.4.1 Consistency of Construction Specification 67

6.4.2 Cleaning Operator . 69

6.4.3 Module Specifications as Construction Specifications . 70

6.5 Construction Fittings and Sum 75

6.5.1 Construction Fittings and Sum of Construction Signa-

tures . 75

6.5.2 Sum of Construction Models 77

6.5.3 Sum of Construction Specifications 78

6.5.4 Other Operations as Sum Operation 83

6.A Appendix: Proofs . 97

7 Refinements 115

7.1 Introduction . 115

7.2 Construction Signature Refinement Morphisms 117

7.3 Construction Specification Refinements 120

7.4 Refinement Compositionality 124

7.A Appendix: Proofs . 128

CONTENTS ix

8 Architectures as Diagrams of Constr. 143

8.1 Introduction . 143

8.2 Diagrams of Constructions . 143

8.3 Operations as Diagrams of Constructions 151

8.A Appendix: Proofs . 153

9 Example 155

9.1 Introduction . 155

9.2 Travel Agency System . 155

9.3 Further Refinement Steps . 160

10 Summary 165

10.1 Future Work . 167

Bibliography 169

x CONTENTS

Chapter 1

Introduction

”It is not enough that we do our

best; sometimes we must do what is re-

quired.” Winston Churchill

1.1 Motivation

There are two main roles of software architectures (cf. [GS94]): to describe

software system decomposition into components and their interconnections,

and to define the system development process and its evolution. Contempo-

rary software systems are large and complex. They are constructed against

no smaller and no less complex functional and quality requirements. Typi-

cally, requirements change over time and the system evolves in response to

those changes. As a result, the development process rarely matches the wa-

terfall model, where the phases of analysis and design are followed by software

development, testing and deployment. Instead, many alternative approaches

to development process, like iterative, agile, extreme and prototype-based,

prove to be more effective and closer to the everyday practice (cf. [CRS+11]).

Formal methods promise the ultimate quality of software artifacts by

providing a mathematical proof of their correctness with respect to formally

presented requirements. Since the main factor common to all alternative ap-

proaches to software development is its changing nature, support of formal

methods for the development process has to offer flexibility throughout en-

tire development life-cycle with the constant emphasis on modularisation and

reuse. Unfortunately, the use of formal methods in practical software devel-

opment is still limited to core components of critical systems (cf. [WLBF09]).

The main reason for that situation is the higher cost of formal methods use

1

2 CHAPTER 1. INTRODUCTION

when compared with popular quality assurance approaches based on testing

and good practice. Wider adoption of formal methods requires simplification

and automation.

A formal method that we examine in this thesis is algebraic specification.

The idea is to provide formal specifications of system components and to

prove the correctness of single steps in the development process, thus, by

construction, ensuring correctness of the finally composed system.

Parameterised programming (cf. [Gog96]), ACT TWO (cf. [EM90]) and

Casl architectural specifications (cf. [ST88, Mos04]) are three representative

examples of algebraic specification frameworks aiming at formal development

of software systems based on modularisation and reuse.

The basic building blocks in the three approaches are (specifications of)

parameterised modules (called modules in ACT TWO and generic units in

Casl). Their parameterisation is of first-order functional type on the signa-

ture level, i.e. module specifications are signature morphisms together with

specifications of parameters and specification of the result. A module realisa-

tion (implementation), may be represented as λX : SPP . B[X] : SPR, where

SPP is a specification of the parameter, SPR is a specification of the result,

X is the formal parameter and B is the body of the module’s realisation,

which typically extends X.

All three approaches provide basic operations on modules, like composi-

tion, instantiation, enrichment and hiding. Every module operation requires

additional connection between modules, be it a view or a fitting morphism.

A module expression (or result expression) combines modules represented

in a module graph (or unit declaration and definition list) into the result-

ing parameterised module. The explicit sharing resolution is required, thus

the interconnections between modules in a module graph usually are non-

trivial. All approaches actually define a graph of architectural decomposition

of the system and they lack a higher-level specification to express architec-

tural properties upon the graph itself.

The plurality of operations and the need for a module expression to com-

pose a system is a source of potential confusion. The same modules connected

via the same views produce different results, depending on the operation

1.2. AIMS AND OBJECTIVES 3

that is prescribed to combine them. This overly complicates the specifica-

tion process, where, on such a high level, the composition should be a simple

operation, without additional unnecessary variation.

In the three frameworks mentioned above, all equipped with functional

signature-level parameterisation, partial instantiation of modules either re-

quires additional work or is impossible. It is also not evident whether all

parameters are actually needed by a parameterised module, because there is

no structure of the fine-grained (in)dependency between result symbols and

parameter symbols. Thus one needs to assume that all parameters are needed

and consider a system incomplete if some of them are missing, even when

the missing symbol is not actually required by the result to be complete. As

a consequence, also mutual and reflexive instantiations are problematic.

An extension from first-order to higher-order parameterisation, while in-

creasing considerably the expressiveness of the language, requires a tremen-

dous complication of syntax (cf. [ST12]), which makes such an extended

framework unusable from the practical point of view.

We consider the above-presented limitations as potential pitfalls when it

comes to real-life use of algebraic specification framework.

1.2 Aims and Objectives

Our goal is to define a formal specification approach to system development

that uniformly represents various kinds of decomposition units and their

interconnections. Given their realisations, the composition should be au-

tomatic. The impact of changes to requirements should be minimised and

limited only to dependent components.

Even though we base our work on typical approach to parameterised

programming (and architectural specifications) with parameterised module

as the main architectural primitive, we would like to challenge the limitations

of functional-type parameterisation and provide somehow more fine-grained

parameterisation, on the level of symbols.

The formalism should support a top-down approach to software develop-

ment by stepwise refinement and intuitive representation of software archi-

4 CHAPTER 1. INTRODUCTION

SP SP ′

SP ′
1

SP ′
F

SP ′
2 SP ′′

2

SP ′′
1

SP ′′
F

SP ′′
2

ω∼∼ c

ω′
∼∼ c

Figure 1.1: Example of a desired diagram of specifications, fittings, sums and
refinements

tectures via diagrams of system building blocks, as on the schematic example

diagram of module specifications in Fig. 1.1. The nodes are specifications of

modules, the squares are pushouts and represent module sums, the horizontal

arrows are refinements. In order to get uniform treatment of all stages of con-

struction of the system, it is desirable that all basic composition operations

be reduced to one simple sum operation.

1.3 Contributions

In this thesis we define a new approach to software architecture specifica-

tions called diagrams of construction specifications (or, diagrams of con-

structions, for short). Constructions are non-functional symbol-level param-

eterised modules with dependency relation provided directly on signature

symbols. Constructions give uniform treatment of first- and higher-order pa-

rameterised modules and a single composition operation suffices to express

different composition variants depending solely on the fitting connectives.

We also define construction specifications and introduce their refinements.

Technically, construction signatures are fragments of signatures with de-

pendency structure, [Mar12]. A signature fragment consists of a signature

with a distinguished set of symbols marked as defined by the construction.

All other symbols are considered assumed, i.e., expected from outside (as

parameters). Construction models are simply classes of models, subject to

conditions formulated on the symbol dependency from the construction sig-

nature. Constructions are inspired by constructors from [ST88] (hence the

name). We define the category of construction signatures and their mor-

1.3. CONTRIBUTIONS 5

phisms, which makes the pushout operation applicable to construction sig-

natures linked by a span of morphisms (a pair of morphisms with a common

source).

Two constructions connected by a span of morphisms satisfying mild

technical conditions may be joined by the sum operation that corresponds

to what is usually called an application of a parameterised module (e.g. in

Casl [Mos04]). However, in contrast to the typical application, the sum is

a symmetric operation. Moreover, the sum operation may be used not only

to compose a parameterised module and its actual parameter module, but it

may also be used to sum two parameterised modules (like composition and

union operations in [EM90]). This gives rise to the mutual parameterised

module application where two sides are actual parameters for each other.

Construction specifications enrich construction signatures by axioms (or

structured specifications build upon them). We define when a construction

satisfies a construction specification, introduce sum operation for construc-

tion specifications, and show its compatibility with sums of constructions.

Construction specification refinements allow for addition of extra depen-

dencies to symbols, therefore, reducts along such morphisms are suitable for

hiding. The target specification may be stronger on defined symbols only.

As envisaged in the previous section, diagrams of constructions are ho-

mogenous with construction refinements and sum squares (like in the exam-

ple from Fig. 1.1). Every diagram has a distinguished set of seed nodes,

i.e., the construction specifications that need to be implemented to construct

the whole system. The sharing of symbols in a diagram of constructions is

explicit and every symbol has exactly one path to its definition.

Unfortunately, nice properties of constructions come at the cost of more

complex and perhaps less intuitive semantics than those of parameterised

modules. However, as the complications concern mainly the internal me-

chanics, they should not be visible to the user, hidden by a specification

formalism that, by definition, takes into account requirements imposed on

construction models, specifications, sums and refinements.

6 CHAPTER 1. INTRODUCTION

1.4 Outline

The thesis is organised as follows. In Chapter 2 we present related work.

Then, in Chapter 3, we recall technical preliminaries and list technical as-

sumptions for further chapters. Chapter 4 presents signature fragments.

Chapter 5 defines extension of signatures by dependency relation on their

symbols and introduces the concept of signature fragments with dependency

structure. Chapter 6 gives formalisation of construction signatures, con-

struction models and construction specifications; additionally, in Sect. 6.5,

we introduce construction fittings and the sum operation. Chapter 7 con-

cerns construction specification refinements. In Chapter 8 we take the con-

cepts from the previous chapters, put them together and propose diagrams of

constructions as representations of software architecture, possibly capturing

also a software development process. Chapter 9 provides an example of a

top-down software development process based on diagrams of constructions.

Finally, Chapter 10 summarises the thesis and discusses possible future work.

Instead of having one huge appendix with proofs and additional lemmas at

the end of the document, we distributed the proofs in appendices throughout

the thesis as last sections of individual chapters.

Chapter 2

Related Work

2.1 Introduction

The research on algebraic specifications (cf. [BL69]) dated back to late 1960s.

First they used single- and later many-sorted algebras (see [BL70]) to repre-

sent software systems (implementations) and equational logic to abstractly

describe them (cf. [GTW78]). Such a rigorous approach promised the abil-

ity to mathematically prove the correctness of implementations against for-

mal specifications prepared in advance. The task of describing the complete

end-user requirements as monolithic specifications turned out to be unrealis-

tic, thus the idea of specification structuring and parameterisation emerged

(cf. [BG77, BG80, GB80]). However, for larger systems, specification pa-

rameterisation does not suffice, mainly due to the lack of independence of

specification units. Module specifications (cf. [Par72, EM90]) and specifica-

tions of parameterised programs (cf. [Gog84]), also called generic modules

(cf. [ST88]), allow for decomposition of system specifications into specifica-

tions of independent smaller units that can be refined and further decomposed

separately. Such decompositions, together with the constructive connections

between units are called software architectures (cf. [GS94, Gog96]). The typ-

ical approach to description of software architectures is to represent them

as diagrams; in parameterised programming approach (cf. [Gog96]) they are

called module graphs ; in Casl (cf. [Mos04]) they are called architectural

specifications.

In this chapter we review different approaches to module specifications

and modularisation in general, including parameterisation, architectural spec-

ifications and software architectures.

7

8 CHAPTER 2. RELATED WORK

2.2 Clear and Parameterised Programming

Specification language Clear, introduced in [BG77] with semantics presented

in [BG80], is considered the first algebraic specification language. In [GB80],

the CAT process of system implementation is envisaged as a two-dimensional

process with horizontal dimension corresponding to the structure of the spec-

ification and vertical dimension corresponding to the step-wise refinement.

The structuring is achieved by parameterisation and specification-building

operations (extend, combine, enrich, derive, apply). The successive refine-

ments go from the most abstract specifications on the top to the most con-

crete implementations at the bottom. (Loose) implementations of parame-

terised specifications (cf. [SW82]) compose vertically (two subsequent imple-

mentation steps may be represented as a one) and, under certain conditions,

also horizontally (independently implemented actual parameter specification

and parameterised specification compose and the result is an application).

Parameterised programming, introduced in [Gog84], is a technique, in-

spired by parameterisation in Clear, for reliable reuse of software with pa-

rameterised modules as basic building blocks. Theories are used to describe

formal parameters and module result. During instantiation, a view presents

the actual parameter module as a formal parameter theory and, by compo-

sition, the new module is created. Parameterised programming uses module

expressions for combination (like instantiation and sum) and modification

(like restrict and renaming) of parameterised modules.

OBJ3 (cf. [GWM+92]), an executable specification language based on

Clear, supports module hierarchies and parameterised programming.

2.3 Modules in ACT TWO

ACT TWO [EM90] is a modularisation meta-language built upon algebraic

specification language ACT ONE (cf. [EM85]) with initial semantics and

support for parameterisation and structuring. In ACT TWO a module spec-

ification consists of four components (algebraic specifications) describing the

body of the module, its imports, exports and (shared) parameters. The com-

2.4. ASL AND PARAMETRIC ALGEBRAS 9

ponents are connected by specification morphisms like in the commuting

diagram below.

PAR EXP

IMP BOD

e

i

s

v

Construction semantics of module specification is given as a composition of

the free functor along s and the forgetful functor along v.

ACT TWO provides several operations on module specifications, including

basic operations like renaming, composition, union and actualisation, and

more advanced, like partial composition and recursion.

2.4 ASL and Parametric Algebras

ASL is a kernel algebraic specification language introduced in [SW83]. It

offers basic specification-building operations (form, sum, derive) and behav-

ioral operations (restrict, abstract). Moreover it includes (recursive) parame-

terised specifications and a flexible notion of implementation supporting both

vertical and horizontal composition. Pluss (cf. [BGM89]) is a higher-level

specification language based on ASL.

Investigations on the parameterisation presented in [SST92] introduce

specifications of parametric algebras and their distinctions from parame-

terised specifications. As an extension to ASL, in [ST91], the authors provide

higher-order parameterisation for both cases (parameterised specifications

and specifications of parameterised objects).

2.5 CASL and Architectural Specifications

Casl (cf. [Mos04]) is an algebraic specification framework supporting basic

algebraic specifications, generic (parameterised) specifications and structured

specifications constructed using specification-building operations (transla-

tion, reduction, union, extension) or by freeness constraint.

10 CHAPTER 2. RELATED WORK

One of the Casl layers are architectural specifications, a formalism for

defining the composition of the system from reusable components. An ar-

chitectural specification is a list of (generic) unit specifications with the unit

expression prescribing the composition of the units to get the resulting unit.

Unit expressions are built out of unit terms, translations, amalgamations

(sums) and unit applications. All units may be seen as generic, i.e. parame-

terised (non-parameterised units are represented as parameterised units with

empty parameter). A unit specification is a pair of specifications, one for the

parameter and one for the result. A unit function is a map between models

of the unit parameter specification and models of the unit result specifica-

tion. A model of an architectural specification is a list of unit functions (for

the component units) and the unit function for the result. Unit specifica-

tions may themselves be architectural specifications, what enables hierarchal

decomposition of the system.

2.6 Software Architectures

Software architectures, an area of software engineering, are about structures

of software system decomposition. In [GS94] a concept of architectural style

is introduced to describe typical characteristics of groups of software architec-

ture instances. An architectural style specifies the types of components and

connectors between them together with constraints on the ways of their com-

position. An interesting formalisation of the notion of architectural connector

from [AG97], decomposes it to roles (specifications) and a glue specification

that describes how the activities of the roles are coordinated.

The approach to software architecture using parameterised programming

(cf. Sect. 2.2) given in [Gog96] shows close correspondence of the two con-

cepts. Parameterised modules may serve the purpose of components, views

(and other connectives like inheritance, parameterisation, instantiation) rep-

resent connectors, finally module expressions define the way of system com-

position, which may be seen as composition constraints. An architecture as a

whole is described by a module graph giving description of modules and rela-

tionships between them. In presence of the module graph, module expression

2.6. SOFTWARE ARCHITECTURES 11

defines the result of the system construction. In [FLW03] the formal con-

cept of architectural connector is given in terms known from parameterised

programming.

12 CHAPTER 2. RELATED WORK

Chapter 3

Technical Preliminaries and

Assumptions

3.1 Introduction

In this chapter we present an overview of theoretical notions (mostly taken

from [ST12]) used in the rest of our work. We start by presentation of

the basics of category theory, further we introduce institutions, algebraic

specifications and parameterisation. Finally we list assumptions that provide

technical context for the chapters that follow.

3.2 Basic Category Theory

We briefly cover some of the basics of category theory. For gentle introduction

for computer scientists see [ST12], for broader coverage see [ML98, AHS90].

A category C consists of a collection1 |C| of C-objects and for each pair

a, b ∈ |C|, a collection C(a, b) of C-morphisms from a to b. For each object

a ∈ |C| there exists a unique identity morphism id a ∈ C(a, a). For any

a, b, c ∈ |C|, there is the composition operation ; : C(a, b) → C(b, c) such

that identity morphisms are its identity elements, for a, b ∈ |C| and f ∈

C(a, b), f ;id b = ida;f = f , and it is associative, for a, b, c, d ∈ |C| and

f ∈ C(a, b), g ∈ C(b, c), h ∈ C(c, d), (f ;g);h = f ;(g;h). A category is small

if the collection of its objects and the union of the collections of its morphisms

are sets. A category is discrete if it has only identities as morphisms.

1Like in [ST12], we use a neutral term collection to disregard the problems related to
set-theoretical foundations for category theory (cf. Sect. 3.1.1.1 in [ST12]).

13

14 CHAPTER 3. TECHNICAL PRELIMINARIES AND ASSUMPTIONS

Notation. When C is clear from the context, we write objects and mor-

phisms instead of C-objects and C-morphisms. We use notation a ∈ C for

a ∈ |C|. We write f : a → b ∈ C or simply f : a → b, for f ∈ C(a, b),

a, b ∈ C. For any f : a → b, f is also called an arrow, object a is called the

source or domain, and b the target or codomain of morphism f .

The opposite of a category C, denoted by Cop, is obtained by reversing

the direction of arrows of C.

A category C is a subcategory of a category D if |C| ⊆ |D| and for all

a, b ∈ C, C(a, b) ⊆ D(a, b), with composition and identities in C the same as

in D. Category C is a full subcategory of D if additionally C(a, b) = D(a, b)

for all a, b ∈ C.

A morphism f : a → b ∈ C is an epimorphism (or epi) if for all g : b →

c, h : b → c ∈ C, f ; g = f ; h implies g = h. A morphism f : b → a ∈ C

is a monomorphism (or mono, monic) if for all g : c → b, h : c → b ∈ C,

g; f = h; f implies g = h. A morphism f : a → b is an isomorphism (or iso)

if there is a morphism f−1 : b → a such that f ;f−1 = ida and f−1;f = id b;

the morphism f−1 : b → a is then called the inverse of f .

A functor F : C → D from a category C to a category D is a collection of

functions: a function on C-objects, Fobj : |C| → |D| (later called F), and for

any a, b ∈ C a function on C-morphisms, Fm(a,b) : C(a, b) → D(F(a),F(b))

(later ambiguously also called F) such that F preserves the identities, for

any a ∈ C, F(ida) = idF(a) and it preserves the composition, for any f : a →

b, g : b → c ∈ C, F(f ; g) = F(f);F(g). A natural transformation τ : F → G

from a functor F : C → D to a functor with the same target and domain

G : C → D is a family of D-morphisms, τa : F(a) → G(a) for each a ∈ C,

such that for any a, b ∈ C and a C-morphism f : a → b, F(f);τa = τb;G(f).

For each category C, the identity functor IdC : C → C maps objects and

morphisms to themselves. A functor F : C → D is faithful/full when for any

a, b ∈ C it is injective/surjective on C(a, b).

The comma category (F ↓ G) of two functors F : C → D and G : C′ →

D has triples 〈a, a′, f : F(a) → G(a′)〉 as objects, where a ∈ C, a′ ∈ C′

and f ∈ D, and, for two (F ↓ G)-objects, 〈a, a′, f : F(a) → G(a′)〉 and

〈b, b′, g : F(b) → G(b′)〉, has pairs 〈h : a → b, h′ : a′ → b′〉 as morphisms, where

3.2. BASIC CATEGORY THEORY 15

h ∈ C, h′ ∈ C′ are such that F(h); g = f ;G(h′). Comma categories of iden-

tity functors (IdD ↓ G) or (F ↓ IDD) are denoted by (D ↓ G) or (F ↓ D),

respectively.

A diagram of shape J, where J is a small category, in a category C is a

functor from the category J to C, denoted by D : J → C. When presenting

a diagram we often omit the identity morphisms in J. A diagram of shape

J is finite if J is a finite category. A morphism of diagrams of shape J

in a category C is a natural transformation between respective functors.

A constant diagram Δ(n) : J → C sends every object of J to an object

n ∈ C and every morphism to the identity morphism idn. A cone with

vertex n ∈ C of a diagram D : J → C is a natural transformation from the

constant diagram Δ(n) to D. A co-cone with vertex n ∈ C of a diagram

D : J → C is a natural transformation from D to the constant diagram

Δ(n). A universal cone τ : Δ(n) → D is such that all cones of D uniquely

factor through it, i.e. for any cone τ ′ : Δ(n′) → D there exists a unique

C-morphism h : n′ → n such that for every j ∈ J, τ ′
j = h; τj . A universal

co-cone τ : D → Δ(n) is such that it factors uniquely through all co-cones

of D. The limit of a diagram D is a universal cone of D. The colimit of a

diagram D is a universal co-cone of D.

The important limits and colimits have names. The final object is the

limit of the empty diagram. The initial object is the colimit of the empty

diagram. A product is a limit of two objects. A coproduct is a colimit of two

objects. A pullback is a limit of a co-span, given by two arrows with common

target. A pushout is a colimit of a span, given by two arrows with common

source.

A category C has all (finite) (co)limits if all (finite) diagrams in C have

(co)limits. A category is (finitely) (co)complete if it has all (finite) (co)limits.

A functor is (finitely) (co)continuous if it preserves all (finite) (co)limits.

Category Set has sets as objects and functions as arrows. Category Cat

has categories2 as objects and functors as morphisms.

A concrete category (over Set) is a pair 〈C,U〉 where C is a category and

U : C → Set is a faithful functor (called forgetful or concretisation functor).

2Small categories in fact (cf. [ST12])

16 CHAPTER 3. TECHNICAL PRELIMINARIES AND ASSUMPTIONS

A category C has an inclusion system 〈IC,EC〉 if IC and EC are two

subcategories of C with |IC| = |EC| = |C| such that IC is a partial order, and

every C-morphism f can be factored uniquely by ef ∈ EC and if ∈ IC as f =

ef ; if . The morphisms in EC are called abstract surjections. The morphisms

in IC are called inclusions and they are denoted by ⊆; for o1, o2 ∈ |C| and an

IC-morphism i : o1 → o2, we write o1 ⊆ o2 (cf. [Dia08]). In a trivial inclusion

system for a category C, category IC is a discrete category. An inclusion

system has unions if IC has finite least upper bounds; unions are denoted by

∪. The standard inclusion system in Set is non-trivial and has unions.

3.2.1 Categories of Ordered Sets

Following [Mar12] we give the formalisation of categories of ordered sets and

p-morphisms.

Definition 3.1 (R-sets) An R-set is a pair 〈A,RA〉 where RA ⊆ A × A is

a transitive relation on a set A. We sometimes write AR instead of 〈A,RA〉.

We may use the infix notation for RA and for a1, a2 ∈ AR we may also write

a1 R a2 instead of a1 RA a2, when decorations are clear from the context.

Definition 3.2 (Category of R-sets and p-morphisms) Rset↓ has R-

sets as objects and pseudo-epimorphisms, or p-morphisms for short, as mor-

phisms. A p-morphism is a function that preserves the relation R and weakly

reflects R-set down-closures, i.e. a p-morphism f : 〈A,RA〉 → 〈B,RB〉 is a

function f : A → B such that:

1. (monotonicity) for all a1, a2 ∈ A, a1 RA a2 implies f(a1) RB f(a2).

2. (weakly reflect R-down-closures) for all a2 ∈ A, b1 ∈ B, b1 RB f(a2)

implies that there exists a1 ∈ A such that a1 RA a2 and f(a1) = b1.

Identities and composition are defined as expected.

The conditions listed above correspond to those of bisimulation (cf. [San09]).

In modal logics, R-sets are called transitive Kripke frames (cf. [Seg70]) and

p-morphisms are sometimes called bounded morphisms. The category of all

3.3. INSTITUTIONS AND SPECIFICATIONS 17

Kripke frames and p-morphisms is the category SetP of coalgebras of the

powerset functor (cf. [GS01]). This makes the category Rset↓ a full subcat-

egory of SetP.

Definition 3.3 We define three full subcategories of Rset↓ by limiting the

relations: Preord↓ (reflexive), Soset↓ (irreflexive), and Sosetb↓ (irreflexive

and bounded).

Objects of Sosetb↓ are strict orders (irreflexive, transitive, therefore asym-

metric) A< with the length of all descending chains limited by a natural

number. Notice that this is a stronger requirement than just requiring that

there are no infinite descending chains in A<.

Definition 3.4 (Dependency Bound) For A< ∈ Sosetb↓, let the depen-

dency bound of A<, denoted by db(A<), be the length (number of elements)

of the longest descending chain in A<.

Example 3.5 We have db(〈∅, ∅〉) = 0, db(〈{?}, ∅〉) = 1 and, for A< =

〈{1, 2, 3}, {〈1, 2〉, 〈2, 3〉, 〈1, 3〉}〉, db(A<) = 3.

3.3 Institutions and Specifications

Institutions are abstract formulations of model theory of logical systems.

They are used as a basis for logic-independent abstract algebraic specifi-

cations. Many different logics have been shown to be institutions. See

[GB84, BG92, ST12, Dia08] for introduction, comprehensive overview and

examples.

An institution I = 〈Sig,Mod,Sen, |=〉 consists of: a category Sig of

signatures ; a functor Mod : Sigop → Cat giving a category of Σ-models

for each Σ ∈ |Sig|; a functor Sen : Sig → Set giving a set of Σ-sentences

for each Σ ∈ |Sig|; a family {|=Σ}Σ∈|Sig| of satisfaction relations, where

|=Σ ⊆ Mod(Σ) × Sen(Σ) for each Σ ∈ |Sig|. The components of I are

subject to the following satisfaction condition : for every signature morphism

18 CHAPTER 3. TECHNICAL PRELIMINARIES AND ASSUMPTIONS

σ : Σ → Σ′, Σ′-model M ′ and Σ-sentence ϕ,

Mod(σ)(M ′) |=Σ ϕ iff M ′ |=Σ′ Sen(σ)(ϕ) .

For a signature Σ, the class of all Σ-models |Mod(Σ)| is denoted by

[[Σ]]. For a morphism σ : Σ → Σ′ in Sig, Sen(σ) is called the σ-translation

map and Mod(σ) the σ-reduct functor. The σ-translation of a sentence

ϕ ∈ Sen(Σ) is denoted by σ(ϕ). The σ-reduct of a Σ′-model M ′ is denoted

by M ′|σ.

For a signature Σ ∈ Sig and a set of Σ-sentences Φ ⊆ Sen(Σ), we say

that a Σ-model M satisfies Φ, M |=Σ Φ, if for each ϕ ∈ Φ, M |=Σ ϕ.

Given an institution I = 〈Sig,Mod,Sen, |=〉, the following diagram in

Sig admits amalgamation

Σ′

Σ1 Σ2

Σ
ϕ1 ϕ2

β1 β2

if for any two models M1 ∈ Mod(Σ1) and M2 ∈ Mod(Σ2) such that M1|ϕ1 =

M2|ϕ1 , there exists a unique model M ′ ∈ Mod(Σ′) such that M ′|β1 = M1

and M ′|β2 = M2 (then M ′ is called the amalgamation of M1 and M2); and for

any two model morphisms f1 : M1 → M ′
1 ∈ Mod(Σ1) and f2 : M2 → M ′

2 ∈

Mod(Σ2) such that f1|ϕ1 = f2|ϕ2 , there exists a unique model morphism

f ′ : M ′ → M ′′ ∈ Mod(Σ′) such that f ′|β1 = f1 and f ′|β2 = f2 (then f ′ is

called the amalgamation of f1 and f2). Institution I has the amalgamation

property if all pushouts in Sig exist and every pushout diagram in Sig admits

amalgamation. Institution I is semi-exact if all pushouts exist in Sig and its

model functor Mod preserves pushouts, that is, it maps them to pullbacks

in Cat. An institution has the amalgamation property iff it is semi-exact.

For an institution I = 〈Sig,Mod,Sen, |=〉, specifications in I are abstract

objects classified by signatures via operation Sig and defining classes of mod-

els via operation [[]] such that, for every specification SP , Sig(SP) ∈ |Sig|

and [[SP]] ⊆ |Mod(Sig(SP))|. We assume here that the class of specifications

3.3. INSTITUTIONS AND SPECIFICATIONS 19

is closed under the following specification-building operations :

• for any Σ ∈ |Sig| and Φ ⊆ Sen(Σ), a presentation 〈Σ, Φ〉 is a specifica-

tion with Sig(〈Σ, Φ〉) = Σ and [[〈Σ, Φ〉]] = {M ∈ |Mod(Σ)| | M |=Σ Φ};

• for any signature morphism σ : Σ → Σ′ and a specification SP such

that Sig(SP) = Σ, the translation of SP along σ is a specification

σ(SP) such that Sig(σ(SP)) = Σ′ and [[σ(SP)]] = {M ′ ∈ Mod(Σ′) |

M ′|σ ∈ [[SP]]};

• for any specifications SP1, SP2 such that Sig(SP1) = Sig(SP2), the

union SP 1 ∪ SP2 is a specification with Sig(SP1 ∪ SP2) = Sig(SP1)

and [[SP1 ∪ SP2]] = [[SP1]] ∩ [[SP2]];

• for any signature morphism σ : Σ → Σ′ and a specification SP ′ such

that Sig(SP ′) = Σ′, the reduct of SP ′ along σ is a specification SP ′|σ
such that Sig(SP ′|σ) = Σ and [[SP ′|σ]] = {M ′|σ | M ′ ∈ [[SP ′]]}.

For a signature Σ ∈ Sig, by Spec(Σ) we denote the class of all specifications

over Σ (presentations and those obtained by translation, union and reduct

operations). A model M ∈ Mod(Σ) satisfies SP ∈ Spec(Σ), written as

M |= SP , if M ∈ [[SP]].

A specification SP ′ ∈ Spec(Σ′) refines SP along a signature morphism

σ : Σ → Σ′, written SP σ∼∼ SP ′, if [[SP ′|σ]] ⊆ [[SP]]. Specifications in an

arbitrary institution form a category of specifications and specification mor-

phisms, where a specification morphism σ : SP → SP ′ is a signature mor-

phism σ : Sig(SP) → Sig(SP ′) such that it is the refinement SP σ∼∼ SP ′. A

specification morphism σ : SP → SP ′ is conservative if [[SP ′|σ]] = [[SP]]. The

composition of conservative morphisms is also conservative.

3.3.1 Universal Algebra and Examples of Institutions

Below we formalise two logics as institutions (see [ST12] for more examples

of institutions). Both are used in examples in further chapters. We start by

brief introduction of universal algebra preliminaries.

20 CHAPTER 3. TECHNICAL PRELIMINARIES AND ASSUMPTIONS

For a set S, an S-sorted set is an S-indexed family of sets X = 〈Xs〉s∈S.

Let X and Y be S-sorted sets, an S-sorted function f : X → Y is an S-

indexed family of functions f = 〈fs : Xs → Ys〉s∈S. A many-sorted signature

is a pair Σ = 〈S, Ω〉, where S is a set of sort names and Ω is an (S∗×S)-

sorted set of operation names, where S∗ is the set of finite (including empty)

sequences of elements of S. We write sorts(Σ) for S and ops(Σ) for Ω and

we say that f : s1× . . .×sn → s of arity s1 . . . sn and result sort s is in Σ

when s1 . . . sn ∈ S∗, s ∈ S and f ∈ Ωs1...sn,s. A signature Σ = 〈S, Ω〉 is finite

if it has finitely many symbols, i.e. S is a finite set; for any s1 . . . sn ∈ S∗

and s ∈ S, Ωs1...sn,s is a finite set; and for any s ∈ S only for finitely many

s1 . . . sn ∈ S∗, Ωs1...sn,s 6= ∅. A many-sorted signature morphism σ : Σ → Σ′

is a pair σ = 〈σsorts , σops〉 with σsorts : S → S ′ and σops : Ω → Ω′ being a

family of functions that map operation names respecting their arities and

result sorts. The category AlgSig of algebraic signatures has many-sorted

signatures as objects and many-sorted signature morphisms as morphisms.

In examples we use the keywords sorts and ops to list the sorts and the

operations of a many-sorted signature. For example we write

(sorts s, t; ops f : s × s → t)

to describe a signature Σ such that sorts(Σ) = {s, t} and ops(Σ)ss,t = {f},

and ops(Σ)o = ∅ for all o ∈ S∗ × S such that o 6= (ss, t). In examples, while

referring to the signature symbols, we sometimes shorten the name of an

operation and write f instead of f : s × s → t. When writing presentations

over algebraic signatures we sometimes use the keyword axms to list axioms,

for example we write

(sorts s, t; ops f : s × s → t; axms ϕ1, ϕ2)

to describe the presentation 〈Σ, Φ〉, where Σ is described above and Φ =

{ϕ1, ϕ2} and ϕ1, ϕ1 ∈ Sen(Σ).

The basic dependency functor SigSymbAlgSig : AlgSig → Sosetb↓ takes

signatures to ordered sets of their symbols and makes operation symbols

3.3. INSTITUTIONS AND SPECIFICATIONS 21

dependent on all the sorts from their arity and on the result sort. For any

signature Σ = (S, Ω) ∈ AlgSig, SigSymbAlgSig(Σ) = (A,<A), where A is

the set of all symbols from Σ given as A = S∪
⋃

s∈S∗×S Ωs×{s}3 and the basic

dependency of Σ is <A= {〈s′, 〈f, s〉〉 | f ∈ Ωs, s = 〈s1, . . . , sn, s〉 and s′ =

s or s′ = si, for 1 ≤ i ≤ n} (cf. [Mar12]). Then, for any set of symbols B ⊆ A

such that B is closed-down w.r.t. <A (i.e. for every b ∈ B and every a ∈ A, if

a <A b then a ∈ B) there exists the reconstruction of a Σ-subsignature from

B w.r.t. SigSymbAlgSig containing all symbols from B, denoted by ΣB,

i.e. ΣB is a signature such that ΣB ⊆ Σ and SigSymbAlgSig(ΣB) = 〈B,<B〉,

where <B = <A|B.

Let Σ = 〈S, Ω〉 be a many-sorted signature. A Σ-algebra A consists of an

S-sorted set |A| of nonempty4 carrier sets and, for each f : s1× . . .×sn → s

in Σ, an operation (f : s1× . . .×sn → s)A : |A|s1× . . .×|A|sn → |A|s. Let A

and B be Σ-algebras, a Σ-homomorphism h : A → B is an S-sorted function

h : |A| → |B| respecting the operations of Σ. For any signature Σ, the cate-

gory Alg(Σ) of Σ-algebras has Σ-algebras as objects and Σ-homomorphisms

as morphisms. By TΣ(X) we denote the Σ-algebra of Σ-terms with vari-

ables from an S-sorted set X (cf. [ST12] for details). For a Σ-algebra A,

an S-sorted function v : X → |A| is called an S-sorted valuation. There ex-

ists a unique Σ-homomorphism v# : TΣ(X) → A extending the valuation of

variables to valuation of terms. Let X be a fixed but arbitrary infinite set

of variables, a Σ-equation ∀X ∙ t = t′ consists of a finite S-sorted set X of

variables such that for all s ∈ S, Xs ⊆ X and two Σ-terms t, t′ ∈ |TΣ(X)|s,

for some sort s ∈ S. A Σ-algebra A satisfies a Σ-equation ∀X ∙ t = t′ if for

every S-sorted valuation function v : X → |A|, v#(t) = v#(t′).

Definition 3.6 (Institution of Equational Logic) The institution of equa-

tional logic, denoted by EQ, is a tuple 〈SigEQ,ModEQ,SenEQ, |=EQ〉, where

SigEQ = AlgSig; the model functor ModEQ : AlgSigop → Cat for each

signature Σ ∈ |AlgSig| gives the category Alg(Σ), and for each signature

3This makes the set of sort names and the sets of operation names disjoint.
4The requirement that sort carriers are nonempty follows for instance [Dia08] and differs

this definition from the one in [ST12]. It is needed to ensure assumption (7) in Sect. 3.5
below.

22 CHAPTER 3. TECHNICAL PRELIMINARIES AND ASSUMPTIONS

morphism σ : Σ → Σ′ gives the reduct functor |σ : Alg(Σ′) → Alg(Σ)

which maps Σ′-algebras and Σ′-homomorphisms to Σ-algebras and Σ-homo-

morphisms; the sentence functor SenEQ : AlgSig → Set for each Σ ∈

|AlgSig| gives the set of Σ-equations, and for each AlgSig-morphism σ : Σ →

Σ′ it gives the σ-translation function taking Σ-equations to Σ′-equations; for

each Σ ∈ |AlgSig|, the satisfaction relation |=EQ : |Alg(Σ)| × |SenEQ(Σ)| is

the relation of satisfaction of Σ-equations by Σ-algebras.

Definition 3.7 The institution of finite equational logic, denoted by EQF,

is a variant of EQ obtained by restricting its category of signatures to be

FAlgSig.

Definition 3.8 (Institution of First-Order Logic with Equality) The

institution of first-order logic with equality, denoted by FOEQ, is defined as a

tuple 〈SigFOEQ,ModFOEQ,SenFOEQ, |=FOEQ〉, where SigFOEQ = AlgSig;

the model functor ModFOEQ = ModEQ (cf. Def. 3.6); the sentence functor

SenFOEQ : AlgSig → Set for each Σ ∈ |AlgSig| gives the set of all closed

(i.e. without unbound occurrences of variables) first-order formulae built out

of atomic formulae using the standard propositional connectives (∨, ∧, ⇒,

⇐⇒ , ¬) and quantifiers (∀, ∃), where by atomic formulae we mean the

logical constants (true, false) and equalities of the form t = t′ with t and t′

being Σ-terms (possibly with variables) of the same sort; for each first-order

signature morphism σ : Σ → Σ′, it gives the usual translation of first-order

Σ-sentences to first-order Σ′-sentences; for each Σ ∈ |AlgSig|, the satis-

faction relation |=FOEQ : |Alg(Σ)| × |SenFOEQ(Σ)| is the usual relation of

satisfaction of first-order formulae by a Σ-algebra.

Definition 3.9 The institution of finite first-order logic with equality, de-

noted by FOEQF, is a variant of FOEQ obtained by restricting its category

of signatures to be FAlgSig.

3.4 Parameterisation

Parameterisation is a mechanism allowing for abstraction of a definition or an

expression from its context in a way that such abstraction may be considered

3.5. ASSUMPTIONS 23

as an independent entity. Dependencies on the context are represented by

an interface describing the admissible parameters (cf. [ST12]).

In the literature one considers parameterised specifications, which take

specifications as parameters and give specifications as results (in the spirit of

specification-building operations introduced above) and specifications of pa-

rameterised modules (or parameterised module specifications), where param-

eterised modules take models as parameters and give models as results (cor-

responding to parametric program modules e.g. in Standard ML [Mac84]).

In this thesis we discuss only the latter.

In a given institution I = 〈Sig,Mod,Sen, |=〉, a parameterised module

signature is a signature morphism σ : ΣP → ΣR ∈ Sig, where ΣP is a signa-

ture of the parameter and ΣR is a signature of the result. A parameterised

module model of σ (called also a constructor in [ST12]) is a (sometimes par-

tial) function κ : [[ΣP]] → [[ΣR]]. A parameterised module specification over σ

is a triple 〈σ, SPP , SPR〉, where SPP is a specification of the parameter and

SPR is the specification of the result such that σ : SPP → SPR is a specifica-

tion morphism. A parameterised module model κ satisfies a parameterised

module specification 〈σ, SPP , SPR〉 if for all M ∈ [[SPP]], κ(M) ∈ [[SPR]]. Pa-

rameterised module model κ is a persistent parameterised module model that

satisfies 〈σ, SPP , SPR〉 if additionally, for all M ∈ [[SPP]], κ(M)|σ = M .

3.5 Assumptions

In what follows we work in an institution I = 〈Sig,Mod,Sen, |=〉, called

base institution, such that:

1. institution I is semi-exact;

2. category of signatures Sig is a concrete category (via the forgetful func-

tor SetSymb : Sig → Set)5, and Sig has all finite colimits; addition-

ally, we require functor SetSymb to preserve and reflect finite colimits;

5Most of the work in this thesis is done for infinite signatures, however, in some places
we are obliged to assume that signatures are finite, i.e. Σ ∈ |Sig| such that SetSymb(Σ) is
a finite set. The finiteness of signatures is used in Sect. 6.4.3, Theorem 6.22, Lemma 6.35,
Lemma 7.6, Theorem 7.15, Corollary 7.16, and Def. 8.3 below.

24 CHAPTER 3. TECHNICAL PRELIMINARIES AND ASSUMPTIONS

3. category Sig comes with an inclusion system with unions (thus non-

trivial) and SetSymb maps inclusions in Sig to standard inclusions in

Set;

4. there is the basic dependency functor SigSymb : Sig → Sosetb↓, the

functor transforming signatures to bounded sosets (cf. Def. 3.3) of their

symbols (see Sect. 5.2 for use of SigSymb); the basic dependency func-

tor is compatible with the concretisation functor, i.e. for any signature

Σ ∈ |Sig|, SigSymb(Σ) = 〈SetSymb(Σ), <〉, for some relation <;

5. it is possible to reconstruct the subsignature from any closed-down

ordered subset of the symbols from the signature, i.e. for a signature

Σ ∈ |Sig|, let 〈A,<A〉 = SigSymb(Σ); for any set of symbols B ⊆ A

such that B is closed-down w.r.t. <A (i.e. for every b ∈ B and every

a ∈ A, if a <A b then a ∈ B) there exists the reconstruction of a Σ-

subsignature from B w.r.t. SigSymb containing all symbols from B,

denoted by ΣB, i.e. such that ΣB ⊆ Σ and SigSymb(ΣB) = 〈B,<B〉,

where <B = <A|B;

6. reduct functors for morphisms that are surjective on their symbols

are injective on models, i.e. for a signature morphism σ : Σ1 → Σ2, if

SetSymb(σ) is surjective in Set then for M,M ′ ∈ [[Σ2]], if M |σ = M ′|σ,

then M = M ′;

7. for a signature morphism σ : Σ1 → Σ2, if SetSymb(σ) is injective in

Set then for every model M1 ∈ [[Σ1]], there exists a model M2 ∈ [[Σ2]]

such that M2|σ = M1;

8. there is a unique model M∅ ∈ [[Σ∅]], where Σ∅ ∈ Sig is the initial object

of Sig.

Assumptions (2), (7) and (8) together imply that for every Σ ∈ Sig there

is M ∈ [[Σ]].

By default examples below are given in the institution of equational logic

EQ (cf. Def. 3.6). In some cases the institution is given explicitly (e.g. in

3.5. ASSUMPTIONS 25

Chapter 9) and then it is the institution of the first order logic with equal-

ity FOEQ (cf. Def. 3.8) or its finite variant FOEQF (cf. Def. 3.9). It is

easy to check that both EQ and FOEQ (and their finite variants EQF and

FOEQF) meet all requirements given above. The assumption that all carriers

in algebras are non-empty is required to satisfy assumption (7). The basic

dependency functor for many sorted algebraic signatures is SigSymbAlgSig

from Sect. 3.3.1.

26 CHAPTER 3. TECHNICAL PRELIMINARIES AND ASSUMPTIONS

Chapter 4

Signature Fragments

4.1 Introduction

Typically an algebraic signature is a set of symbols formed along some rules

into a well-defined structure. In the case of algebraic many-sorted signatures

the rule is that, given a signature, if an operation symbol is attributed by

a sort symbol as its argument or result type, then this sort symbol must

also be part of the signature (cf. Sect. 3.3.1). This “closure” requirement

causes that not all sets of symbols constitute signatures. Moreover, not all

operations known from the set theory are given for signatures. For example,

the subtraction operation is not defined on such signatures. It is impossible

to subtract from a signature a set of sort symbols, if any of those symbols is

an argument or result sort of a non-subtracted operation symbol.

Why would we need to subtract signatures? In this thesis we focus on

the signatures of parameterised modules, typically represented as signature

morphisms σ : ΣP → ΣR (cf. Sect. 3.4). The morphism σ (usually being an

inclusion) simply marks which result symbols come from the parameter and

which are defined by (are the result of) the parameterised module. Unfor-

tunately, it is impossible to express this kind of information directly. The

subtraction ΣR \ ΣP in general does not yield a well formed signature. Here

comes the idea of signature fragments. Given a signature, we distinguish

those elements that are defined in the signature, leaving the rest assumed

(parameter). This approach, even though it may seem only superficially dif-

ferent, gives rise to a direct representation of signature inclusion (with no

morphisms used) and enables all set-theoretic operations on defined sym-

bols. Moreover, it does not require the assumed part of a signature to be a

signature itself.

27

28 CHAPTER 4. SIGNATURE FRAGMENTS

In this chapter we introduce a concept of signature fragments indepen-

dently of the detailed definition of the category of signatures. In the first

section we give a basic approach with simple representation of signatures

as signature fragments and a completion of fragments into a full signature.

The other section presents more elaborate version providing more ways to

transform signature fragments into signatures and back. The content of that

other section is not to be used in the rest of the thesis. We provide it here

to give a somewhat more general view on the concept of fragments.

4.2 Basic Approach

In this section we define signature fragments assuming that the category of

signatures Sig is a concrete category with the concretisation functor named

SetSymb : Sig → Set. The results from this section apply to any concrete

category, we name it Sig to emphasise that a definition of signature fragments

is the main purpose of the results.

Definition 4.1 Category of Sig-fragments is a comma category

Sigfrag = (Set ↓ SetSymb)

Signature fragments are Sigfrag -objects, i.e. triples of the form

〈A, Σ, f : A → SetSymb(Σ)〉

where A ∈ Set, Σ ∈ Sig, and f is the internal function of the fragment.

A signature fragment morphisms from 〈A, Σ, f : A → SetSymb(Σ)〉 to

〈A′, Σ′, f ′ : A′ → SetSymb(Σ′)〉 is a pair

〈g : A → A′, σ : Σ → Σ′〉

where g is a function and σ is a Sig-morphism such that g; f ′ = f ;SetSymb(σ).

The idea behind the fragment 〈A, Σ, f : A → SetSymb(Σ)〉 is that f(A)

marks a distinguished set of Σ symbols. Those distinguished symbols are

4.2. BASIC APPROACH 29

called defined, whereas the rest of Σ-symbols are called assumed. The sets

of defined and assumed symbols are disjoint and their union is the set of all

symbols in Σ. Neither of them needs to be the set of symbols of a subsignature

of Σ.

A signature fragment is a fragment of the given whole. There is a set of

defined symbols (a fragment) and a signature (the whole). In that sense the

completion of the fragment is its whole.

There are three important functors between Sig and Sigfrag . The first

is the embedding functor FragSig : Sig → Sigfrag that takes a signature Σ

to the signature fragment 〈SetSymb(Σ), Σ, idSetSymb(Σ)〉. The second is the

completion functor ComplSig : Sigfrag → Sig defined as a projection that

takes 〈A, Σ, f : A → SetSymb(Σ)〉 to Σ. The third is the emptying functor

EmptSig : Sig → Sigfrag taking a signature Σ to 〈∅, Σ, εΣ : ∅ → SetSymb(Σ〉

where εΣ is the unique function from the empty set to SetSymb(Σ). The

behavior of the three functors on morphisms is as one expects (cf. the forth-

coming Sect. 4.3).

Notation. We omit the index Sig and simply write Compl, Frag and

Empt in order to make the notation more compact. For the same reason we

leave the embedding Frag and the projection Compl implicit where possible.

Signature fragments are underlined, e.g. we typically write

Σ = 〈A, Σ, f : A → SetSymb(Σ)〉

Defined symbols are considered as elements of the signature fragment, i.e. we

write a ∈ Σ and this means that a is defined in Σ. Assumed symbols are not

considered elements of the fragment, but they are elements of the completion

of the fragment, i.e. we write a ∈ Compl(Σ), a /∈ Σ, and this means that a is

assumed in Σ. When writing the contents of signature fragments we underline

assumed symbols, e.g. for Σ = (sort s; ops a : s, b : s), we have a : s ∈ Σ,

but s 6∈ Σ and b : s /∈ Σ. Of course we have a : s, b : s, s ∈ Compl(Σ).

Notation. When Sig contains symbols that expose some typing informa-

tion (like operation symbols in algebraic signatures) sometimes we drop the

type information of such symbols, of course only when the type is obvious

30 CHAPTER 4. SIGNATURE FRAGMENTS

from the context. For example, we may write a, b, s ∈ Compl(Σ) instead of

a : s, b : s, s ∈ Compl(Σ).

The following theorem shows that the (co)completeness of Sigfrag follows

the (co)completeness of Sig.

Theorem 4.2 Given a (finitely) (co)complete concrete category of signa-

tures Sig, the category of its signature fragments Sigfrag is (finitely) (co)complete

as well.

The proof is in Appendix 4.A.

The overall idea behind the signature fragments is that the distinguished

set simply marks some symbols as defined. However, the definition is more

general and does not limit fragments to those with injective internal functions

only. This is to keep the definition as simple as possible and to have the

(co)completeness of the category of signature fragments. Nevertheless, we

recognise such uniform signatures fragments and call them injective.

An injective signature fragment has an injection as the internal function:

〈A, Σ, f : A → SetSymb(Σ)〉 is injective if f is an injection.

There are two other special kinds of fragments that merit distinction:

empty and complete signature fragments.

An empty signature fragment is such that all symbols are assumed: sig-

nature fragment 〈A, Σ, f : A → SetSymb(Σ)〉 is empty if A = ∅.

In a complete signature fragment all symbols are uniquely defined: signa-

ture fragment 〈A, Σ, f : A → SetSymb(Σ)〉 is complete if f is bijective.

The inclusion system of Sigfrag is built over the inclusion systems of Set

and Sig (cf. diagonal-fill lemma in [Dia08]).

In literature one can find definitions of entities similar to our signature

fragments, e.g. signature fragments in Casl (cf. Sect. III:2.1 of [Mos04]).

4.3 Extended Approach

In this section we elaborate the notion of fragments, offering an interesting

further insight into this concept. Nevertheless this section may be skipped

at first reading, its content is not explicitly used in the chapters that follow.

4.3. EXTENDED APPROACH 31

Here we talk about fragments, not necessarily signature fragments, as pre-

viously. This is to emphasise the possibility to define fragments of objects in

any concrete category, not only signatures. Consequently, when discussing

describing the contents of a fragment we talk about elements instead of sym-

bols.

Nevertheless, the definition of fragments is essentially the same as the one

of signature fragments in Def. 4.1.

Definition 4.3 (Category of Fragments) Given a concrete category 〈C,U〉,

the category of C-fragments, 〈C,U〉frag , is the comma category (Set ↓ U).

Notation. If the forgetful functor U : C → Set is obvious from the con-

text, we omit it and write just C instead of 〈C,U〉 and Cfrag to denote

〈C,U〉frag .

Similarly to the basic approach of Sect. 4.2, we underline fragments, e.g.

p = 〈A, c, f : A → U(c)〉. Set f(A) contains defined elements of the fragment,

we write a ∈ p, for a ∈ f (A). Assumed elements are those elements of U(c)

that are not defined, i.e. not in the range of f . Assumed elements are not

considered being “in” the fragment, for b ∈ U(c) we write b /∈ p, if b /∈ f(A).

As already given in the previous section, there are functors between a

category 〈C,U〉 and its category of fragments. Here we show that they are

adjoint.

Definition 4.4 For each category of fragments 〈C,U〉frag there are functors:

(emptying functor) : EmptC : C → Cfrag ,

(completion functor) : ComplC : Cfrag → C,

(embedding functor) : FragC : C → Cfrag ,

32 CHAPTER 4. SIGNATURE FRAGMENTS

defined as

EmptC(c) = 〈∅, c, ∅U(c) : ∅ → U(c)〉,

EmptC(g) = 〈id∅, g〉,

ComplC(〈A, c, f〉) = c,

ComplC(〈g1, g2〉) = g2,

FragC(c) = 〈U(c), c, idU(c)〉,

FragC(g) = 〈U(g), g〉

for any object c ∈ C, morphism g : c → d ∈ C, fragment 〈A, c, f〉 ∈ Cfrag

and fragment morphism 〈g1, g2〉 : p → q ∈ Cfrag .

Notation. In order to make the text slightly more readable we omit the

index C and simply write Frag instead of FragC, etc.

Theorem 4.5 The three functors defined in Def. 4.3 are adjoint in the fol-

lowing way

Empt a Compl a Frag

and the counit of Compl a Frag is the identity. Moreover, category C is

fully embeddable into its category of fragments 〈C,U〉frag via Frag.

Proof. It is easy to check that the functors are adjoint as indicated using

directly their definitions.

For Empt a Compl, given f : c → Compl(p) ∈ C, for some p =

〈A, d, iA : A → U(d)〉 ∈ Cfrag , f# : Empt(c) → p = 〈∅A, f〉.

For Compl a Frag, given 〈f ′, f〉 : 〈A, d, iA : A → U(d)〉 → Frag(c) ∈

Cfrag , for some c ∈ C, 〈f ′, f〉# : d → c = f .

Given an object c ∈ C, the counit of Compl a Frag for c is the identity,

εc : Compl(Frag(c)) → c = id c, because Compl(Frag(c)) = c.

Category C is fully embeddable into 〈C,U〉frag via Frag, because Frag

is injective on objects, faithful and full. �

The (co)completeness of the concrete category induces (co)completeness

of its category of fragments. Theorem 4.2 applies also here.

4.3. EXTENDED APPROACH 33

Some concrete categories contain enough objects and morphisms to guar-

antee the existence of the greatest subobject included in the given fragment.

In the absence of a better name we call such categories fragmentable.

Definition 4.6 A concrete category 〈C,U〉frag is fragmentable if there exists

the fourth functor (an addition to the three functors from Def. 4.4)

(subobject functor) : SubC : Cfrag → C

such that it is the right adjoint of FragC, i.e. FragC a SubC, and the unit

of this adjunction is the identity.

Given a fragmentable category C and a C-fragment, the subobject func-

tor Sub gives the greatest C-object with all elements being defined in the

fragment. It is, however, not guaranteed that all elements defined in the frag-

ment are in the resulting C-object. Informally, the missing ones are those

dependent on some assumed elements.

The following theorem gives a very close relationship between the frag-

mentable categories and their categories of fragments.

Theorem 4.7 Every fragmentable category C is fully embeddable into its

category of fragments 〈C,U〉frag via Frag as a reflective and a coreflective

subcategory (cf. Sect. 4 in [AHS90]).

Proof. By Theorem 4.5 the category C is fully embeddable into its category

of fragments. The functor Frag is both left and right adjoint, thus the

embedding is reflective and coreflective (cf. Sect. 18.2 in [AHS90]).

�

By the requirement that the counit of Compl a Frag (cf. Def. 4.3) and

the unit of Frag a Sub (cf. Def. 4.6) are identities we easily get the following

result for any fragmentable category C.

Corollary 4.8 For any c ∈ C, Compl(Frag(c)) = Sub(Frag(c)) = c.

The above result gives proper grounds to the notation introduced in

Sect. 4.2, so that we sometimes leave the embedding Frag and the projection

Compl implicit.

34 CHAPTER 4. SIGNATURE FRAGMENTS

4.3.1 Special Fragments

In this section we rediscover the kinds of fragments that exhibit some nice

categorical properties. Essentially they prove to be the same structures as

already introduced in Sect. 4.2.

Empty fragments are those without any defined elements.

Definition 4.9 (Empty Fragments) A fragment p ∈ Cfrag is empty iff

the counit of Empt a Compl, εp : Empt(Compl(p)) → p, is an isomor-

phism.

The lemma below shows the correspondence of the above defined empty

fragments and those from Sect. 4.2.

Lemma 4.10 A fragment p = 〈A, c, f〉 ∈ Cfrag is an empty fragment iff

A = ∅.

Proof. Let the counit morphism of Empt a Compl for p be εp = 〈εp1, εp2〉

where εp1 : ∅ → A and εp2 : c → c. It is easy to check that εp2 = id c.

(⇒) Function εp1 is bijective, thus A = ∅;

(⇐) if A = ∅ then εp1 is bijective, εp2 is iso, thus εp is iso. �

Complete fragments have all elements defined, i.e. they are like objects

of the base category. The definition below and the lemma that follows show

that this intuition is correct.

Definition 4.11 (Complete Fragments) A fragment p ∈ Cfrag is com-

plete iff the unit of Compl a Frag, ηp : p → Frag(Compl(p)), is an iso-

morphism.

Lemma 4.12 Given a complete fragment p ∈ C frag , there exists an object

o ∈ C such that Frag(o) is isomorphic to p.

Proof. Let o = Compl(p). Fragment p is complete thus, by Def. 4.11,

Frag(Compl(p)) is isomorphic to p. �

The following lemma shows that the complete fragments as defined above

and those from Sect. 4.2 coincide in the framework of Sect. 4.2.

4.3. EXTENDED APPROACH 35

Lemma 4.13 A fragment p = 〈A, c, f〉 ∈ Cfrag is a complete fragment iff

the function f is bijective.

Proof. The unit morphism of Compl a Frag for p is ηp = 〈ηp1, ηp2〉

where ηp1 : A → U(c) and ηp2 : c → c. It is easy to check that ηp1 = f and

ηp2 = idU(c).

(⇒) ηp1 is bijective, thus f is also bijective;

(⇐) f is bijective, so ηp is iso. �

The subobject functor does not alter complete fragments, because the

greatest subobject included in a complete fragment is the whole object. The

lemma and the corollary below validate this intuition.

Lemma 4.14 For a fragmentable category C, given a complete fragment p ∈

Cfrag , the counit of Frag a Sub, εp : Frag(Sub(p)) → p, is an isomorphism.

Proof. Let p = 〈A, c, f〉 and εp = 〈εp1, εp2〉 where εp1 : U(Sub(p)) → A

and εp2 : Sub(p) → c. By Lemma 4.8, Sub(〈U(c), c, idU(c)〉) = c. It makes

〈f, id c〉 : p → 〈U(c), c, idU(c)〉 a Cfrag -morphism. Therefore, we have εp2 =

Sub(〈f, id c〉). By Lemma 4.13, f is bijective, thus εp2 is also iso and so is

εp1, because εp is a Cfrag -morphism; therefore, εp1; f = idU(Sub(p));U(εp2). �

Corollary 4.15 For a complete fragment p ∈ Cfrag , Compl(p) is isomor-

phic to Sub(p).

36 CHAPTER 4. SIGNATURE FRAGMENTS

4.A Appendix: Proofs

Proof of Theorem 4.2. The following general lemma does the work. No-

tice that we do not put any limitations on the functor F, only the properties

of two categories are used.

Lemma 4.16 Given categories C, D and a functor F : C → D. If both

categories are (finitely) (co)complete then the comma category (D ↓ F) is

also (finitely) (co)complete.

Proof. The first functor of the comma category (D ↓ F) is identity, so

it is cocontinuous. The cocompleteness of (D ↓ F) is a consequence of the

well known fact that if both categories are (finitely) cocomplete and the

first functor is (finitely) cocontinuous then the comma category is (finitely)

cocomplete (cf. [ST12]).

The proof of completeness without the requirement that F is contin-

uous is less known, we present it here. Let us first show the existence

of all equalizers and then the existence of all products. Given two (D ↓

F)-objects 〈d1, c1, i1 : d1 → F(c1)〉 and 〈d2, c2, i2 : d2 → F(c2)〉 and two mor-

phisms 〈f ′, f〉, 〈g′, g〉 : 〈d1, c1, i1〉 → 〈d2, c2, i2〉, their equalizer is a morphism

〈e′′; e′, e〉 : 〈d3, c3, i3〉 → 〈d1, c1, i1〉, where e : c3 → c1 is the equalizer of f

and g in C, e′ : d′
3 → d1 is the equalizer of f ′ and g′ in D, and morphisms

i3 : d3 → F(c3) and e′′ : d3 → d′
3 are the pullback of F(e) and e′; i1 in D.

F(c1)

d1

F(c2)

d2

F(c3)

d3 d′
3

F(f)

f ′

F(g)

g′

F(e)

e′
i1 i2i3

e′′

The universality of 〈e′′; e′, e〉 is a direct consequence of the universality of

equalizers e and e′ and the pullback i3, e′′.

The proof of the existence of products follows the same idea. Given a

(finite) collection 〈dn, cn, in〉 of (D ↓ F)-objects, n ∈ N , let c with projections

πc
n : c → cn for n ∈ N be the product of cn in C, let d with projections

4.A. APPENDIX: PROOFS 37

πd
n : d → dn for n ∈ N be the product of dn in D and let x with projections

πx
n : x → F(cn) for n ∈ N be the product of F(cn) in D. Due to universality

of x, there exist two morphisms u1 : d → x and u2 : F(c) → x in category D,

so that u1; π
x
n = πd

n; in and u2; π
x
n = F(πc

n). Let i : d′ → F(c) and i′ : d′ → d

be the pullback of u1 and u2 in D. The product of the collection is 〈d′, c, i〉

with projections 〈i′; πd
n, πc

n〉 for n ∈ N , as in the commuting diagram in D

below.

F(cn)

dn

x

F(c)

d′ d

F(πc
n)

πd
n

in

u2

u1

πx
n

i

i′

The universality of the product is a consequence of the universality of the

three products and the pullback used in the construction.

�

The proof of Theorem 4.2 follows from Lemma 4.16 using the assumption

that Sig is (finitely) (co)complete and the fact that Set is also (finitely)

(co)complete. �

38 CHAPTER 4. SIGNATURE FRAGMENTS

Chapter 5

Signatures with Dependencies

5.1 Introduction

Dependencies between symbols are present in most typical signatures used for

specifications. For example, in algebraic many-sorted signatures, sets of oper-

ation symbols are indexed by finite sequences of sort symbols (cf. Sect. 3.3.1).

This yields natural dependency between operation symbols and their arity

and result sorts. Another example are signatures of parameterised modules

(cf. Sect. 3.4), where each symbol from the result signature is (potentially)

dependent on all symbols from the parameters signature.

In this chapter we propose a formalism suitable to explicitly express de-

pendencies between symbols in signatures. This is not only to capture the

basic dependency relation derived from the structure of the signatures, but

also to allow its extension.

5.2 Signatures with Dependencies

Most of the content of this section comes from [Mar12], where we intro-

duced many-sorted algebraic signatures with dependency structure. Here we

slightly generalise the approach to cover any signatures formalised as cate-

gory Sig meeting the assumptions from Sect. 3.5.

5.2.1 Dependency Relation

We choose the relation suitable to represent dependencies between symbols

and the properties of morphisms between them. Typical dependencies are

transitive. The non-transitive dependencies (e.g. resulting from software

39

40 CHAPTER 5. SIGNATURES WITH DEPENDENCIES

layering, cf. [GS94]) can be represented by information hiding and need not be

addressed directly here. Before we impose further properties of the relation,

we formalise transitive relations as R-sets (cf. Def. 3.1).

Morphisms between R-sets must be monotonic and somehow reflect the

dependency. We choose the weak reflection of dependency structures de-

scribed by the conditions of p-morphism (cf. Def. 3.2).

The table1 below summarises the existence of (co)limits2 in the category

Rset↓ and three of its full subcategories: Preord↓, Soset↓, and Sosetb↓

(cf. Def. 3.3). We do not include partial orders as a candidate for dependency

relation, because the antisymmetry of partial orders causes that, in the case of

the algebraic many-sorted signatures with partial-order dependencies, there

are no coequalisers.

category relation equal. final

obj.

non-empty

product

coeq. coprod.

Rset↓ transitive yes no? no? yes yes

Preord↓ preorder yes yes no? yes yes

Soset↓ strict order yes no no? no yes

Sosetb↓ bounded

strict order

yes no yes yes yes

(finite)

We choose Sosetb↓ (cf. Def. 3.3), the category of bounded strictly ordered

sets, as our category of dependency structures. The boundedness requirement

is needed to show properties by structural induction on the dependency struc-

ture3 (e.g. see the proof of Lemma 6.51 in the next chapter). It is also used

to prove the existence of non-empty products (cf. [Mar12]) and coequalisers

(cf. the proof of Theorem 5.1 below).

In this thesis we rely on existence of the finite colimits in Sosetb↓, there-

1“No?” in the table means that absence of the property is a plausible conjecture
(cf. [Mar12]).

2The final object is the product of the empty set. In the table the final object and
nonempty products are presented in separate columns, because in some categories appar-
ently their existence does not coincide.

3It is needed, because we do not have a general assumption that signatures in Sig are
finite, cf. the footnote to assumption (2) in Sect. 3.5.

5.2. SIGNATURES WITH DEPENDENCIES 41

fore, we show the following result.

Theorem 5.1 Category Sosetb↓ is finitely cocomplete.

The construction of colimits in Sosetb↓ is essentially the same as in Set.

There is no need for transitive closure of the strict order in the construc-

tion of the coequaliser. The coequaliser of two morphisms f, g : A< → B<

in Sosetb↓ is e : B< → C<, where e is the coequaliser of f and g in Set

and the relation is simply given as <C = e(<B). The transitivity of <C

follows from the p-morphism conditions of f and g. The complete proof is

in Appendix 5.A.

5.2.2 Signatures with Dependency Structure

As described in Sect. 3.5, we assume that Sig comes equipped with the

basic dependency functor SigSymb : Sig → Sosetb↓ that maps signatures

to bounded sosets of their symbols. In examples we use the basic dependency

functor SigSymbAlgSig from Sect. 3.3.1.

Consider the following diagram of functors among different categories of

signatures and their fragments. We define all functors and categories from

the diagram.

SigDep

Sig

Sosetb↓

Set
SetSymb

DepSymb

U

Symb

SigSymb
DepUnDep

The category SigDep is an extension of Sig by strict bounded depen-

dency structure, with SigDep-objects being pairs Σ< = 〈Σ, <Σ〉 of a signa-

ture Σ ∈ Sig and a dependency relation <Σ ⊆ SetSymb(Σ) × SetSymb(Σ)

such that it is a bounded strict order that extends the basic dependency

given by the functor SigSymb, i.e. 〈SetSymb(Σ), <Σ〉 ∈ Sosetb↓ and for

〈A,<A〉 = SigSymb(Σ), it holds that <A ⊆ <Σ. The SigDep-morphisms

42 CHAPTER 5. SIGNATURES WITH DEPENDENCIES

are signature morphisms σ : Σ → Σ′ such that the function SetSymb(σ) is

a Sosetb↓-morphism (cf. Def. 3.2 and Def. 3.3).

Notation: In examples we usually omit the index of the order where no

confusion is possible, e.g. we write < instead of <Σ.

Example 5.2 Consider the following algebraic signature with dependencies.

Σ< =

sort Nat;

ops zero : Nat,

succ : Nat → Nat,

plus : Nat × Nat → Nat,

deps succ < plus ,

zero < succ
Nat

zero : Nat

succ : Nat → Nat

plus : Nat × Nat → Nat

Here and in the examples that follow, the basic dependency (i.e., zero, succ

and plus depend on Nat in this case) is omitted in our notation, whereas an

additional dependency (in above example that are: plus depends on succ and

succ depends on zero) is given after the keyword deps. Dependency relation

<Σ is given as the transitive closure of the union of basic dependency and

explicitly given additional dependency.

Let DepSymb, UnDep and U be the obvious projections. We define

functor Dep : Sig → SigDep as the embedding based on the basic depen-

dency relation, i.e. such that for any Σ ∈ Sig, Dep(Σ) = 〈Σ, <SigSymb(Σ)〉.

Functor Symb is given as the composition of UnDep and SetSymb.

The dependency bound of Σ< is defined as the dependency bound of its un-

derlying strictly ordered set (cf. Def. 3.4), i.e. db(Σ<) = db(DepSymb(Σ<)).

Category SigDep has all finite colimits. The coequaliser of two mor-

phisms f, g : 〈Σ, <Σ〉 → 〈Σ′, <Σ′〉 in SigDep is h : 〈Σ′, <Σ′〉 → 〈Σ′′, <Σ′′〉,

where h : Σ′ → Σ′′ is the coequaliser of f and g in Sig, and the bounded

strict order <Σ′′ = SetSymb(h)(<Σ′) (cf. Theorem 5.1 and its proof where

we show that <Σ′′ is transitive, irreflexive and bounded; this is provided

that SetSymb preserves the finite colimits, as assumed in Sect. 3.5). The

initial object in SigDep is Dep(Σ∅), where Σ∅ is the initial signature in

5.3. FRAGMENTS OF SIGNATURES WITH DEPENDENCIES 43

Sig. Binary coproducts in SigDep are binary coproducts in Sig ordered

by the union of the component orders. The resulting order is bounded by

the maximum of the bounds of component orders. It is transitive, because

the orders of components are transitive, and, since SetSymb preserves finite

colimits, no symbols are shared in the coproduct object, as in Set. Other

finite coproducts are defined in the same way.

Functor Symb preserves and reflects pushouts, because UnDep and

SetSymb do.

The inclusion system of Sosetb↓ comes directly from the inclusion system

of Set. Given a Sosetb↓-morphism f : A< → B< let fe : A → C and fi : C →

B be the factorisation of U(f) in Set. We define C< = 〈C,<B|fi
〉. It is easy

to prove that C< ∈ Sosetb↓ and that fe and fi are Sosetb↓-morphisms. In

other words, C< ⊆ B< iff C ⊆ B and <C = <B|C .

Category SigDep has the inclusion system derived from the inclusion

systems of Sig and Sosetb↓. For a SigDep-morphism σ : Σ< → Σ′
<, the fac-

torisation 〈σe, σi〉 of UnDep(σ) in Sig gives the factorisation of σ in SigDep.

The proof is by straightforward use of the assumption that SetSymb pre-

serves the inclusions (cf. Sect. 3.5).

We say that two symbols of a signature with dependency structure Σ<

are independent in Σ< if they are not related by <Σ. A set of Σ<-symbols is

an independent set if its elements are pairwise independent.

5.3 Fragments of Signatures with Dependen-

cies

Let SigDepfrag denote the category of fragments of signatures with depen-

dencies. It is defined analogously to Def. 4.1 for SigDep (instead of Sig)

as the concrete category with Symb (instead of SetSymb) as the concreti-

sation functor. Objects in SigDepfrag are S = 〈A, Σ<, f : A → Symb(Σ<)〉.

SigDepfrag -morphisms between SigDepfrag -objects S and S ′ are pairs σ =

〈g : A → A′, σ : Σ< → Σ′
<〉 : S → S ′, where g is a function and σ is a SigDep-

morphism, such that g; f ′ = f ;Symb(σ).

44 CHAPTER 5. SIGNATURES WITH DEPENDENCIES

Notation. We use the underlined calligraphic font (e.g. S) to denote

fragments of signatures with dependencies. Sometimes we implicitly assume

that the internals of S are given as 〈A, Σ<, f : A → Symb(Σ<)〉 and we use

symbols A, f , Σ, <Σ directly without prior introduction. When the confusion

is not possible we omit the indexes of dependency relations, e.g. we write <

instead of <Σ.

Consider the following diagram that contains fragments-related categories

and functors in addition to the categories and functors from the diagram in

Sect. 5.2.2:

SigDepfrag SigDep Sosetb↓

Sigfrag Sig Set

ComplSigDep

FragSigDep

EmptSigDep

ComplSig

FragSig

EmptSig

SetSymb

DepSymb

U

Symb

SigSymb

DepUnDepDepfragUnDepfrag

Category Sigfrag along functors FragSig, ComplSig, and EmptSig are

defined in Sect. 4.2. In addition to category SigDepfrag (explicitly defined

at the beginning of this section), the definition and the results from Sect. 4.2

applied to category SigDep (instead of Sig) and functor Symb (instead of

SetSymb) in the obvious way yield functors FragSigDep, ComplSigDep, and

EmptSigDep.

Notation. As it was already mentioned in Chapter 4, we omit the in-

dices Sig and SigDep and simply write Compl, Frag and Empt where no

confusion is possible.

Functor Depfrag maps a Sigfrag -object 〈A, Σ, f : A → SetSymb(Σ)〉 to

a SigDepfrag -object 〈A,Dep(Σ), f : A → Symb(Dep(Σ))〉 and a Sigfrag -

morphism to itself.

Functor UnDepfrag simply removes dependency relations, like UnDep.

It maps an SigDepfrag -object 〈A, Σ<, f : A → Symb(Σ<)〉 to a Sigfrag -object

5.3. FRAGMENTS OF SIGNATURES WITH DEPENDENCIES 45

〈A,UnDep(Σ<), f : A → SetSymb(UnDep(Σ<))〉. It is an identity on mor-

phisms.

By Theorem 4.2 (with the definitions and results from Sect. 4.2 ap-

plied to SigDep and Symb, as indicated above), category SigDepfrag has

all finite colimits. Let us explicitly give the construction of pushouts in

SigDepfrag . Consider two morphisms ϕ1 : S → S1 and ϕ2 : S → S2 such

that ϕ1 = 〈h1, ϕ1〉 and ϕ2 = 〈h2, ϕ2〉. Their pushout is a pair of morphism

β1 : S1 → S ′ and β2 : S2 → S ′ given as β1 = 〈g1, β1〉 and β2 = 〈g2, β2〉

where β1 : Σ1< → Σ′
< and β2 : Σ2< → Σ′

< form the pushout of ϕ1 and ϕ2 in

SigDep, and g1 : A1 → A′ and g2 : A2 → A′ form the pushout of h1 and h2 in

Set. The SigDepfrag -object S ′ = 〈A′, Σ′
<, f ′ : A′ → Symb(Σ′

<)〉 has the in-

ner mapping f ′ given as the universal morphism in Set for f1;Symb(β1) and

f2;Symb(β2) w.r.t. the pushout of h1 and h2, as on the following diagram

in Set.

Symb(Σ′
<)

Symb(Σ1<) Symb(Σ2<)

Symb(Σ<)

A′

A1 A2

A
Symb(ϕ1) Symb(ϕ2)

Symb(β1) Symb(β2)

h1 h2

g1 g2

f ′

f1 f2

f

Category SigDepfrag has the inclusion system built over the inclusion

systems of Set and SigDep, like Sigfrag in Sect. 4.2 (cf. also diagonal-fill

lemma in [Dia08]).

The dependency bound of S = 〈A, Σ<, f : A → Symb(Σ<)〉 is the depen-

dency bound of the underlying signature with dependencies (cf. Sect. 5.2.2),

i.e. db(S) = db(Σ<).

Notation. To simplify notation we write A ⊆ Compl(S) instead of

A ⊆ Symb(Compl(S)). Moreover, let us recall that defined symbols are

considered as elements of the signature fragment, i.e.,we write a ∈ S and

this means that a is defined in S. Assumed symbols are not elements of the

fragment, but they are elements of the completion of the fragment, i.e., for

46 CHAPTER 5. SIGNATURES WITH DEPENDENCIES

an assumed a we write a ∈ Compl(S), a /∈ S. The same notation extends

to sets of symbols and we write A ⊆ S when for all a ∈ A, a ∈ S.

For a signature fragment S = 〈A, Σ<, f : A → Symb(Σ<)〉 ∈ SigDepfrag

and any symbol b ∈ Symb(Σ<), let

Sb = {a ∈ Symb(Σ<) | a < b}

be the subset of Symb(Σ<) containing symbols that b depends on. Let ΣSb

be the reconstruction of a Σ-subsignature from Sb w.r.t. SigSymb (cf. as-

sumptions in Sect. 3.5), by ΣSb
< we denote Σ<-subsignature ΣSb

< = 〈ΣSb
, <Sb

〉,

where <Sb
= <Σ|Sb

. Of course we have Symb(ΣSb
<) = Sb.

The dependency structure below b is defined as

Sb⇓ = 〈f−1(Sb), Σ
Sb
< , f ′ : f−1(Sb) → Symb(ΣSb

<)〉 ∈ SigDepfrag .

where f ′ is the appropriate restriction of f .

Let Tb be the smallest subset of Symb(Σ<) containing b such that it is

closed-down w.r.t. <Σ. It is defined as

Tb = Sb ∪ {b}

Let ΣTb
< be the signature with dependency structure reconstructed as a sub-

signature of Σ<, analogously to ΣSb
< , but from Tb instead of Sb.

We define the dependency structure of b as

Sb↓ = 〈f−1(Tb), Σ
Tb
< , f ′′ : f−1(Tb) → Symb(ΣTb

<)〉 ∈ SigDepfrag

where f ′′ is the appropriate restriction of f . Notice that b is any symbol,

whether defined or assumed.

By SB⇓ we denote the dependency structure below a set of independent

symbols B ⊆ Symb(Σ<). It is the union of dependency structures below

all symbols in B. The requirement of independency of symbols in B is

important, because only then B ∩ Symb(Compl(SB⇓)) = ∅.

The dependency structure of a set of symbols C ⊆ Symb(Σ<) is denoted

5.3. FRAGMENTS OF SIGNATURES WITH DEPENDENCIES 47

by SC↓ and is the union of dependency structures of all symbols in C. Note

that symbols in C need not be independent.

To briefly summarize:

• Sa⇓ is the dependency structure below a symbol a, excluding a,

• SB⇓ is the dependency structure below a set of independent symbols

B, excluding B,

• Sa↓ is the dependency structure of a symbol a, including a,

• SB↓ is the dependency structure of a set of symbols B, including B,

• S∅↓ is the empty fragment of Σ∅, the initial signature in Sig, i.e.

S∅↓ = 〈∅, Σ∅<, ∅ → Symb(Σ∅<)〉

For any non-empty set B ⊆ Symb(Σ<) and a ∈ B the following inclusions

hold in SigDepfrag :

S∅↓ ⊆ Sa⇓ ⊂ Sa↓ ⊆ SB↓ ⊆ S

Notation. In the text that follows we stick to notation simplifications con-

cerning the use of functors from the diagram in the beginning of this section.

We sometimes omit them, but only when the identity of the omitted functor is

clear from the context. For example, given S ∈ SigDepfrag , we write [[S]] and

Spec(S) instead of [[UnDep(Compl(S))]] and Spec(UnDep(Compl(S))),

respectively.

We also use (sub)objects instead of inclusion morphisms, e.g. given a

model M ∈ [[S]] and a subsignature S ′ ⊆ S we write M |S′ instead of

M |UnDep(Compl(ι)), where ι : S ′ → S is the corresponding inclusion morphism.

Similarly, for a specification SP ∈ Spec(S) we simply write SP |S′ to denote

the hiding of SP via the morphism UnDep(Compl(ι)).

48 CHAPTER 5. SIGNATURES WITH DEPENDENCIES

5.A Appendix: Proofs

Proof of Theorem 5.1. It is enough to show the existence of the coequalis-

ers and the initial object. The lemma given below is used in the proof of this

theorem.

Lemma 5.3 Given two Sosetb↓-morphisms f, g : A< → B< let there be a

relation ∼ ⊆ B × B defined as b ∼ b′ iff there exists a ∈ A such that b = f(a)

and b′ = g(a). By ≡ we denote the reflexive, symmetric and transitive closure

of ∼. It holds that for any b1, b2 ∈ B, if b1 <B b2 then for any b′2 ∈ B such

that b′2 ≡ b2, there exists b′1 ∈ B such that b′1 ≡ b1 and b′1 <B b′2.

Proof. Let there be b1 <B b2 and b′2 ≡ b2. Notice that b2 ≡ b′2 iff

b2 (∼ ∪ ∼−1)n b′2 where n is the length of a sequence of relations (∼ or

∼−1) between b2 and b′2. Let us prove the lemma by induction on n.

In the base case, when n = 0, we have b2 = b′2, thus b1 is such that b1 ≡ b1

and b1 <B b2, as required.

In the induction step let n = i+1, i.e., b2 (∼ ∪ ∼−1)i+1 b′2, assume that the

lemma works for sequences of the length i. Without loss of generality assume

that there is a2 ∈ A such that f(a2) = b2 and g(a2) (∼ ∪ ∼−1)i b′2. This of

course makes g(a2) ≡ b′2. Since f is an Rset↓-morphism, by requirement (2)

of Def. 3.2, there exists a1 ∈ A such that f(a1) = b1 and a1 <A a2. Since g

is also an Rset↓-morphism, by requirement (1) of the same definition, it is

monotone, i.e., g(a1) <B g(a2). By definition of ∼ it holds that b1 ∼ g(a1),

thus g(a1) ≡ b1. From the inductive assumption we can use the lemma

for sequences of the length i. The lemma applied to b′2 ≡ g(a2) such that

g(a1) <B g(a2) gives us the existence of b′1 ≡ g(a1) such that b′1 <B b′2. From

g(a1) ≡ b1 and b′1 ≡ g(a1), by symmetry and transitivity of ≡, we get b′1 ≡ b1,

as required. �

Let ≡ be the equivalence relation from Lemma 5.3. The coequaliser of

two morphisms f, g : A< → B< in Sosetb↓ is e : B< → C<, where e is the

coequaliser of f and g in Set with C defined as B/≡ and the relation <C =

e(<B). We prove that <C is a bounded strict order (irreflexive, transitive

5.A. APPENDIX: PROOFS 49

and bounded) and that e is a Sosetb↓-morphism. We skip the detailed proof

of the coequaliser properties, because they follow easily from the properties

of e as the coequaliser of f and g in Set and the fact that e is surjective (by

the definition of C).

The irreflexivity of <C follows from the fact that for any b1, b2 ∈ B, if

b1 < b2 then b1 6≡ b2. In order to prove this, let us assume that there are

b1, b2 ∈ B such that b1 < b2. The proof goes by induction on the length of

the descending chain lower to b1 w.r.t. < (the chain is finite, because <B is

bounded). In the base case, let for all b ∈ B, b 6< b1 and suppose b1 ≡ b2.

By Lemma 5.3, since b1 ≡ b2 and b1 < b2, there must exist b′1 ∈ B such that

b′1 ≡ b1 and b′1 < b1; contradiction. In the induction step, let us assume that

for all b ∈ B, if b < b1 then b 6≡ b1. Again suppose b1 ≡ b2 and again by

Lemma 5.3, since b1 ≡ b2 and b1 < b2, we get the existence of b′1 ∈ B such

that b′1 < b1 and b′1 ≡ b1; contradiction. Therefore, <C is irreflexive.

The transitivity of <C is not obvious, because there is no transitive closure

in its definition. To prove this we use the transitivity of <B and the fact

that if there are b1, b2, b3, b4 ∈ B such that b1 <B b2 and b3 <B b4 and

e(b2) = e(b3) then e(b1) <C e(b4). This follows from Lemma 5.3, which

gives us the existence of b′1 ∈ B such that b′1 ≡ b1 and b′1 <B b3; then, by

transitivity of <B, we get b′1 <B b4, hence e(b1) = e(b′1) <C e(b4).

The relation <C is bounded, because it is irreflexive and it is defined as

e(<B), where <B is bounded and e is surjective.

The two conditions from Def. 3.2, needed to prove that e is a Sosetb↓-

morphism, are easily discharged by the observation that e is monotone (by

the definition of <C) and surjective (by the definition of C).

The empty set ordered by the empty relation is an initial object in

Sosetb↓. A binary coproduct of 〈A,<A〉 and 〈B,<B〉 is 〈A] B,<A]<B〉.

Other finite coproducts are defined in the same way. Not all infinite coprod-

ucts exist in Sosetb↓, because the resulting structure may be not bounded.

�

50 CHAPTER 5. SIGNATURES WITH DEPENDENCIES

Chapter 6

Constructions

6.1 Introduction

This chapter introduces constructions, a notion that uniformly covers non-

parameterised and parameterised modules and constitute basic building blocks

of architectural decomposition of systems.

As already discussed in Sect. 3.4, typically models of parameterised mod-

ules map (parameter signature) models to (result signature) models, so the

dependency between the parameter and the result is external to the parame-

ter and result signatures. In our approach the dependencies between symbols

are encoded into construction signatures. Internally, inside a construction sig-

nature, we mark the result symbols (called defined) leaving the rest as param-

eter symbols (called assumed). Such a representation of construction signa-

tures eliminates the distinction between the signatures of non-parameterised

and parameterised modules. Interestingly, it also handles uniformly the first-

and higher-order parameterisation.

The internal dependency relation between symbols is more fine-grained

than external definition of a parameter signature and a result signature.

It allows one to partially instantiate a construction and to use the partial

result, even though not all parameter symbols are given to the instantiation

operation.

We define a sum of two construction signatures in such a way that it guar-

antees that the sharing of symbols is explicit and only possible via assumed

symbols. This means that if composed constructions share a symbol, it must

not be defined in both construction signatures of the components. As a con-

sequence of this natural assumption we get an explicit information about

the origin of the definition for every symbol in the composite construction

51

52 CHAPTER 6. CONSTRUCTIONS

signature.

The content of this chapter is provided independently of any particular

choice of the base institution I that satisfies all assumptions listed in Sect. 3.5.

6.2 Construction Signatures

Construction signatures are defined as injective fragments of signatures with

dependency structure.

Definition 6.1 (Construction Signature) A construction signature is an

injective fragment of a signature with dependencies S ∈ SigDepfrag , i.e., for

S = 〈A, Σ<, f : A → Symb(Σ<)〉, f is an injection (cf. Sect. 5.3). A con-

struction signature morphism ω : S1 → S2 is a SigDepfrag-morphism, so it

is such that DepSymb(Compl(ω)) is a p-morphism.

Defined symbols of a construction signature indicate its result part, and as-

sumed symbols constitute the parameter part of a construction. Symbols

from the parameter part are sometimes called parameters. The dependency

structure of a symbol lists all symbols that may be given during its construc-

tion.

A complete construction signature is a construction signature such that

all its symbols are defined (cf. complete fragments in Sect. 4.2), therefore, the

whole signature is the result part and there are no parameters. Complete con-

struction signatures correspond to signatures of simple (non-parameterised)

modules.

An empty construction signature has all symbols assumed (cf. empty frag-

ments in Sect. 4.2), i.e. it has only a parameter part.

Let us remind the reader of the p-morphism requirements (cf. Def. 3.2)

posed on every construction signature morphism ω : S1 → S2:

1. (monotonic) For all b1, b
′
1 ∈ Compl(S1), if b′1 < b1 then ω(b′1) < ω(b1);

2. (weakly reflect <) for all b1 ∈ Compl(S1), b′2 ∈ Compl(S2), if b′2 <

ω(b1), then there exists b′1 ∈ Compl(S1) such that b′1 < b1 and ω(b′1) =

b′2.

6.2. CONSTRUCTION SIGNATURES 53

The above-given conditions guarantee preservation of the dependency

structure and that no new symbols are either added to or removed from

the dependency structure of any symbol. The idea is that each symbol of

a construction signature is inseparable from its dependency structure and

construction signature morphisms map it only to symbols with bisimilar de-

pendency structure (cf. Def. 3.2). In Sect. 7.2 we will define another kind of

morphisms1 between construction signatures, allowing addition of new sym-

bols to the dependency structure.

Notation. In what follows, examples of algebraic many-sorted construc-

tion signatures use the syntax of algebraic many-sorted signatures (cf. Sect. 3.3)

extended in the following way (as in Example 5.2): (1) assumed symbols are

underlined; (2) defined symbols are not underlined; (3) similarly to the no-

tation used in example in Sect. 5.2.2, the additional dependency structure

is given after the keyword deps; (4) basic dependency is implicit and may

be omitted. Dependency relation <Σ is given as the transitive closure of the

union of the basic dependency and the explicitly given additional dependency.

6.2.1 Signatures of Modules as Construction Signa-

tures

The construction signatures are suitable to represent signatures of param-

eterised and simple (non-parameterised) modules. In this section we give

an exemplary conversion from module signatures to construction signatures.

We begin by presenting the conversion for simple modules and later on for

parameterised modules.

A signature of a non-parameterised module is usually given as a signature

Σ ∈ Sig. The corresponding construction signature is SΣ = Frag(Dep(Σ)).

All symbols in SΣ are defined, i.e. it is a complete construction signature.

In the standard approach a signature of a parameterised module is a

signature morphism σ : ΣP → ΣR (cf. Sect. 3.4), where ΣP is a signature of

the module parameter and ΣR is a signature of the module result.

Let Aσ and Dσ, denoting the set of symbols assumed (parameters) and

1Construction signature refinement morphisms defined in Def. 7.1.

54 CHAPTER 6. CONSTRUCTIONS

defined by σ, respectively, be given as

Aσ = SetSymb(σ)(SetSymb(ΣP)),

Dσ = SetSymb(ΣR) \ Aσ.

The construction signature corresponding to σ is given as

Sσ = 〈Dσ, ΣR<, ι : Dσ → Symb(ΣR<)〉,

where ΣR< = 〈ΣR, <R〉 with <R ⊆ SetSymb(ΣR)×SetSymb(ΣR) is defined

as the smallest strict order such that:

1. <R includes the basic dependency of ΣR,

2. for any ap ∈ Aσ and any ad ∈ Dσ, it holds that ap <R ad, i.e. every

defined symbol depends on all assumed (parameter) symbols.

Relation <R is a bounded strict order, because the bound of Sσ is at most

2n + 1, where n is the bound of the basic dependency of ΣR.

The above-described conversion assumes maximal dependency between

result and parameter symbols. Moreover, it does not pose any additional

dependency between assumed symbols. At this level of generality this is the

only sensible approach; however, given more detailed information about sym-

bol inter-dependencies (e.g. from the specifications) the dependency structure

may be fine-tuned during the conversion (cf. Sect. 6.4.3 below for a discussion

about additional dependencies between assumed symbols during the conver-

sion of parameterised module specification into a construction specification).

Example 6.2 Consider a signature of parameterised module given as inclu-

sion

σ1 : (sort s; ops a : s) → (sort s; ops a : s, b : s).

The corresponding construction signature is

S1 = (sort s; ops a : s, b : s; dep a < b)

6.2. CONSTRUCTION SIGNATURES 55

In some approaches, like ACT2 (cf. [EM90]), signatures of parameterised

modules are of an extended form and contain also import and export sig-

natures. In general, it is only possible to convert such extended module

signatures to simple diagrams of constructions (cf. Sect. 8.2 below). We

leave this task for future work.

A construction signature S corresponds2 to a (first-order) parameterised

module signature if no assumed symbol in S depends on a defined symbol in

S. For example, the construction signature

(sorts s, t; ops a : s, b : t; deps a < b, a < t)

corresponds to the parameterised module signature given as the inclusion

(sort s; ops a : s) → (sort s, t; ops a : s, b : t).

In general, the conversion from constructions to parameterised modules

is possible only if we allow for higher-order parameterisation. For instance,

the construction signature (sort s; op a : s) has no corresponding first-order

parameterised module signature, because it is parametric on operation a : s

that in turn is parametric on sort s. The corresponding higher order param-

eterised module would have the following signature given as the inclusion

((sort s) → (sort s; op a : s)) → (sort s; op a : s). More examples follow.

Examples of the higher-order parameterised module signatures are given

here for illustration only (in particular in Example 6.4 below). In our thesis

we have no intend to analyse or formalise higher-order parameterised module

signatures otherwise than by investigations of our constructions and their

signatures.

Example 6.3 To reverse the conversion from Example 6.2, consider con-

2The term ”corresponds” is used semi-formally here, because the dependency structure
need not be preserved and reflected by this correspondence. Some dependencies may dis-
appear, because all dependencies among defined symbols and among assumed symbols in
S that are beyond the basic dependency of S are not present in the corresponding param-
eterised module signature. Some new dependencies may be formed, because each defined
symbol in S becomes dependent on all assumed symbols of AlgSig in the corresponding
parameterised module signature.

56 CHAPTER 6. CONSTRUCTIONS

struction signature S1 given there. Sort s and operation a are assumed; they

constitute the parameter part of the construction signature. Operation b is

defined, thus b is the result part of S1. Symbol b is dependent on s and a,

therefore, as expected, construction signature S1 corresponds to the signature

of parameterised module σ1 from Example 6.2.

Example 6.4 Consider another construction signature and a graph repre-

sentation of its dependency structure.

Nat

zero : Nat

succ : Nat → Nat

a : Nat

b : Nat

c : Nat

d : Nat

S2 =

sort Nat;

ops zero : Nat,

succ : Nat → Nat,

a : Nat, b : Nat,

c : Nat, d : Nat;

deps zero < succ,

succ < a,

a < b, a < d ,

b < c, d < c

There are two defined and five assumed symbols. Any construction over S2

provides an implementation of a and c. All other symbols are parameters.

The dependency structure indicates exactly which symbols can be potentially

used to construct other symbols. For instance, symbols b and d are potentially

needed to construct symbol c, but a is constructed independently of b and d.

Sort Nat together with operations zero and succ are assumed and they do

not depend on any defined symbol; therefore, they correspond to first-order

parameters in signatures of parameterised modules. Symbol a is defined and

depends on the first-order parameter, i.e., it is enough to provide the imple-

mentation of Nat, zero and succ for a to be uniquely constructed. Symbols

b and d are assumed and depend on defined a; this makes b and d second-

order parameters. Potential implementations of b and d may depend only

on a (and its dependency structure). Symbol c is defined and depends on

6.3. CONSTRUCTION MODELS 57

both second-order parameters b and d (as well as on a and the first-order

parameters).

Construction signature S2 corresponds to the signature of the higher order

parameterised module given below.

(((sort Nat; ops zero : Nat , succ : Nat → Nat)

→ (sort Nat ; ops zero : Nat , succ : Nat → Nat , a : Nat))

→ (sort Nat ; ops zero : Nat , succ : Nat → Nat ,

a : Nat , b : Nat , d : Nat))

→ (sort Nat ; ops zero : Nat , succ : Nat → Nat ,

a : Nat , b : Nat , c : Nat , d : Nat)

6.3 Construction Models

The definition of construction models reflects the intuition that all defined

symbols in the construction signature are uniquely constructed for every

model of dependency structure below them.

Definition 6.5 (Construction Model) A construction model of a con-

struction signature S is a class of models (from the base institution I de-

scribed in Sect. 3.5) Con ⊆ [[UnDep(Compl(S))]] such that, for any defined

symbol a ∈ S and any two models M,M ′ ∈ Con, if M |Sa⇓ = M ′|Sa⇓ then

M |Sa↓ = M ′|Sa↓.

The definition shall be read as follows. For each defined symbol a in the

construction signature, for any implementation of the dependency structure

below a existing in the construction model, there is (in the construction

model) a unique construction of the model of dependency structure of a

(including a).

Notation. By [[S]]c we denote the class of all construction models of S. We

use notation simplifications introduced at the end of Sect. 5.3. For example

we write [[S]] instead of [[UnDep(Compl(S))]] and M |Sa↓ instead of clumsy

58 CHAPTER 6. CONSTRUCTIONS

M |UnDep(Compl(ιSa↓)), where ιSa↓ is the SigDepfrag -morphism for inclusion

Sa↓ ⊆ S.

It is easy to check that, due to the implicative nature of the above def-

inition, the empty class of models is a construction model for any S, i.e.

∅ ∈ [[S]]c. Such construction models are called trivial.

Example 6.6 Consider the construction signature

S3 = (sort s; ops a : s, b : s, c : s; deps a < b, b < c)

and let there be two Compl(S3)-models

M1 = (s = Nat , a : s = 5, b : s = 10, c : s = 0)

M2 = (s = Nat , a : s = 5, b : s = 15, c : s = 1))

where Nat denotes the set of natural numbers. It is easy to check that the class

of models Con = {M1,M2} is a construction model of S3, i.e. Con ∈ [[S3]]
c.

The different values of defined symbol c in M1 and M2 do not pose a problem,

because the models of dependency structures below c are also different in them.

Let us now give two non-examples of S3-construction models. Let there

be two other Compl(S3)-models

M3 =(s = Nat , a : s = 6, b : s = 10, c : s = 0)

M4 =(s = Nat , a : s = 5, b : s = 10, c : s = 1)

The first non-example is the class of models Con′ = {M1,M2,M3} that

is not a construction model of S3, because the dependency structures below

symbol a are equal in M1 and M3 (sort s is Nat in both models), i.e. M1|Sa⇓ =

M3|Sa⇓, but the dependency structures of a are different (a = 6 in M1 and

a = 5 in M3), i.e. M1|Sa↓ 6= M3|Sa↓

The second non-example is Con′′ = {M1,M2,M4}. Con′′ is not a con-

struction model of S3, because the value of defined symbol c differs in M1 and

M4 even though the two models agree on the dependency structure below c.

6.3. CONSTRUCTION MODELS 59

Directly from the definition we have that in a nontrivial construction

model Con, any defined symbol that is not dependent on assumed symbols is

interpreted in the same way in all models in Con. Therefore, if the considered

construction signature is complete, Con is a singleton. This means that there

is one-to-one correspondence between nontrivial construction models of a

complete construction signature S ∈ SigDepfrag and models of Compl(S) ∈

Sig.

Reduct of construction models is defined pointwise.

Definition 6.7 (Reduct of Construction Model) Consider a construc-

tion signature morphism ω : S1 → S2, for some construction signatures S1

and S2. The reduct of an S2-construction model Con2 w.r.t. ω is the S1-

construction model Con2|ω = {M |ω | M ∈ Con2}.

Notation. Following the notation simplifications introduced at the end of

Sect. 5.3 we write M |ω instead of the bulky M |UnDep(Compl(ω)).

The following lemma shows that the result of the reduct operation is

indeed a construction model.

Lemma 6.8 The reduct of a construction model w.r.t. a construction signa-

ture morphism is a construction model.

The proof uses the fact that construction signature morphisms are p-morphism,

see Appendix 6.A for details.

The requirements posed on construction models simply guarantee that the

construction of defined symbols is solely parametric on their dependencies.

Nothing is said with regard to assumed symbols and possibility of partial

instantiation. Consider the following example.

Example 6.9 Let there be the following construction signature

S4 = (sort s; ops a : s, b : s)

60 CHAPTER 6. CONSTRUCTIONS

and the construction model of S4

Con4 = {(s = Nat , a : s = 1, b : s = 1),

(s = Nat , a : s = 0, b : s = 0),

(s = Nat , a : s = 1, b : s = 0)}

Symbols a and b are independent in S4. The set of values for a and b is

{0, 1}; however, after the symbol a is instantiated to 0 (becomes defined), the

set of values for b is reduced only to {0}. This poses an undesired dependency

between a and b. A construction model that is ready for partial instantiation

should contain models of all possible combinations of values of its assumed

symbols.

The concept of well-grouped construction models is a response to the

need depicted by the above example. Informally speaking, a well-grouped

construction model contains models with all independent combinations of

assumed (parameter) symbols.

Definition 6.10 (Well-grouped Construction Model) Given a construc-

tion signature S and a construction model Con ∈ [[S]]c, we say that Con is a

well-grouped construction model iff for all A ⊆ Compl(S) and all M ∈ [[S]],

if for all a ∈ A, M |Sa↓ ∈ Con|Sa↓, then M |SA↓ ∈ Con|SA↓.

Example 6.11 (cont. of Example 6.9) Construction model Con4 is not a

well-grouped construction model. The following construction model of S4 is

well-grouped

Con′
4 = {(s = Nat , a : s = 1, b : s = 1), (s = Nat , a : s = 0, b : s = 0),

(s = Nat , a : s = 1, b : s = 0), (s = Nat , a : s = 0, b : s = 1)}

6.3.1 Models of Modules as Construction Models

A model of a non-parameterised module signature Σ is simply a Σ-model M .

The corresponding construction model of SΣ (cf. Sect. 6.2.1) is a singleton

6.4. CONSTRUCTION SPECIFICATIONS 61

class containing M ,

ConM = {M} .

Given a signature of parameterised module σ : ΣP → ΣR, a persistent

parameterised module model of σ is a (partial) map of models κ : [[ΣP]] →

[[ΣR]] such that for all M ∈ dom(κ), κ(M)|σ = M (cf. Sect. 3.4).

The corresponding construction model is the range of κ,

Conκ = {κ(M) | M ∈ dom(κ)} .

Conκ is a construction model of construction signature Sσ (cf. Sect. 6.2.1),

because in Sσ every defined symbol depends on all assumed (parameter)

symbols, so the requirement from Def. 6.5 is discharged easily.

Note that Conκ in general does not need to be well-grouped, but it is

well-grouped when the domain of κ forms a well-grouped model of ΣP with

all symbols assumed; in particular, Conκ is well-grouped when κ is total.

Every construction model Con ∈ [[Sσ]]c can be represented as a persistent

parameterised module model of σ,

κσ = {〈M |σ,M〉 | M ∈ Con}.

6.4 Construction Specifications

As it has been already explained, a construction signature contains assumed

symbols that form its parameter part and defined symbols that are its re-

sult part. Similarly to construction signatures, construction specifications

describe the construction as a whole, uniformly in non-parameterised and

parameterised cases.

This approach differs from the typical specification of (first-order) param-

eterised modules consisting usually of separate specifications of the parameter

and of the result.

Definition 6.12 A construction specification SP over a construction signa-

ture S is a pair 〈S, SP〉, where SP ∈ Spec(UnDep(Compl(S))).

62 CHAPTER 6. CONSTRUCTIONS

Notation: When no confusion is possible, we omit the projection and write

SP for π2(SP), that is the specification SP .

The distinction between assumed and defined symbols plays a crucial

role in the definition of satisfaction relation. The below-given requirements

expose the difference between them coherently with the intuition that the

assumed and defined symbols are the parameter part and the result part of

the construction signature, respectively.

Definition 6.13 (Satisfaction Relation) A construction model Con ∈ [[S]]c

is a model of a construction specification SP over S, denoted Con |=c SP, iff

1. (construction) for all defined a ∈ S and all M ∈ Con,

if M |Sa⇓ |= SP |Sa⇓ then M |Sa↓ |= SP |Sa↓,

2. (completeness) for all assumed a∈Compl(S), a /∈ S, and all M |= SP,

if M |Sa⇓ ∈ Con|Sa⇓ then M |Sa↓ ∈ Con|Sa↓,

3. (grouping) Con is a well-grouped construction model (cf. Def. 6.10),

4. (Con-dependency-wise) for all A ⊆ Compl(S) and all M ∈ Con,

if for all a ∈ A, M |Sa↓ |= SP |Sa↓ then M |SA↓ |= SP |SA↓.

Notation: By [[SP]]c we denote the class of all construction models of SP .

In the definition above we use notation simplifications introduced at the

end of Sect. 5.3 and write M |Sa↓ and M |Sa⇓ instead of M |UnDep(Compl(ιSa↓))

and M |UnDep(Compl(ιSa⇓)), respectively. Here ιSa⇓ and ιSa↓ are defined as the

SigDepfrag -morphisms for inclusions Sa⇓ ⊆ Sa↓ ⊆ S. Similarly for SP |Sa⇓

and SP |Sa↓.

Let us explain the satisfaction requirements one by one. All models in

examples below interpret defined symbols Nat, zero and succ as the set of

natural numbers, 0 and the successor function, respectively.

1. (construction) For every defined symbol a, if a model from the con-

struction model satisfies the specification reduced to the dependency

structure below a then it must also satisfy the specification reduced

6.4. CONSTRUCTION SPECIFICATIONS 63

to the dependency structure of a (including a). This is to ensure that

all defined symbols, i.e., the results of the construction, satisfy the

specification, provided the model reducts to their proper dependency

structures do.

Example 6.14 Consider the following construction signature

Nat

zero : Nat

succ : Nat → Nat

a : Nat

b : Nat

c : Nat

S5 =

sort Nat ;

ops zero : Nat,

succ : Nat → Nat,

a : Nat, b : Nat,

c : Nat;

deps zero < succ,

succ < a,

a < b, b < c

and let SP 1 be construction specification over S5 consisting of the sen-

tence

b = zero ∧ c = succ(b).

We have

• {(a = 0, b = 0, c = 1)} |=c SP1, because b is 0 and c is 1,

• {(a = 0, b = 0, c = 2)} 6|=c SP1, because b is 0 and c is not 1,

• {(a = 0, b = 1, c = 3), (a = 0, b = 0, c = 1)} |=c SP1, because in

the model where b is 0 the value of c is 1, the value of c in the other

model does not matter for the satisfaction, because b (the symbol

in the dependency structure of c) does not satisfy the specification

SP1; to be precise the reduct model (a = 0, b = 1, c = 3)|Sc⇓, i.e.,

the model (a = 0, b = 1), is not the reduct of any model of SP 1;

and, since b is an assumed symbol, the condition (1) for symbol c

holds trivially in this case.

64 CHAPTER 6. CONSTRUCTIONS

2. (parameter completeness) For every assumed symbol a, all values of

a in the models of the specification compatible with the dependency

structure shall be in the models in Con. This is to guarantee that all

possible values of assumed symbols, i.e., the parameters of the con-

struction, are allowed by the construction, as long as this is consistent

with the construction specification.

Example 6.15 Let S5 be the construction signature from Example 6.14

and let specification SP 2 over S5 be given by

(b = zero ∨ b = succ(zero)) ∧ c = succ(b).

The following holds:

• {(a = 0, b = 0, c = 1)} 6|=c SP2, since there is no model with b

equal to 1,

{(a = 0, b = 1, c = 2)} 6|=c SP2, since there is no model with b

equal to 0,

• {(a = 0, b = 1, c = 2), (a = 0, b = 0, c = 1)} |=c SP2; there are as

many models as possible values of b.

3. (grouping) Following Def. 6.10, for a set of symbols from Compl(S),

if a model of the signature UnDep(Compl(S)) reduced to the depen-

dency structure of every element of the set is in the likewise reduced

construction model, then the model reduced to the dependency struc-

ture of the set as a whole must also be in the accordingly reduced

construction model.

This condition does not depend on the specification, therefore, it ap-

plies to all models, also those that have assumed symbols incompatible

with the specification. Nevertheless, it is included as a part of the sat-

isfaction relation, because it complements the completeness condition

(2) – it requires that for any set of symbols, all combinations of their

different interpretations must be allowed by models in the construction

6.4. CONSTRUCTION SPECIFICATIONS 65

model. Since the interpretation of defined symbols is uniquely given by

their dependency structure, in fact the condition concerns only assumed

symbols.

This condition guarantees that construction models satisfying a con-

struction specification are nontrivial, i.e. they are nonempty classes of

models. This is by taking the empty set of symbols and any model of

Compl(S) in Def. 6.10, which must exist, in consequence of assump-

tions from Sect. 3.5.

Example 6.16 Consider construction signature S6 and the correspond-

ing dependency graph given below.

Nat

zero : Nat

succ : Nat → Nat

a : Nat

b : Nat

c : Nat

S6 =

sort Nat;

ops zero : Nat,

succ : Nat → Nat,

a : Nat,

b : Nat,

c : Nat;

deps zero < succ,

succ < a,

a < b,

succ < c

Here b and c are assumed symbols and symbol c is independent of both

a and b. Only b depends on defined symbol a. Let the construction

specification SP 3 over S6 be given by the sentence

(b = succ(a) ∨ b = zero) ∧ (c = succ(zero) ∨ c = zero).

It holds that

• {(a = 0, b = 1, c = 1), (a = 0, b = 1, c = 0), (a = 0, b = 0, c = 0),

(a = 0, b = 0, c = 1)} |=c SP3; according to SP 3 the assumed

symbols b and c can have two values and all four models with

66 CHAPTER 6. CONSTRUCTIONS

all possible combinations of them are present in the construction

model;

• {(a = 0, b = 0, c = 1), (a = 0, b = 1, c = 0), (a = 0, b = 1, c =

1)} 6|=c SP3, because the construction model includes a model that

interprets b as 0 and a model with c interpreted as 0, but it does

not include a model having them both interpreted as 0.

4. (Con-dependency-wise) For any set of symbols of Compl(S) and any

model in the construction model Con, if the model reduced to the de-

pendency structure of every symbol satisfies the reduced specification,

the model reduced to the dependency structure of the whole set must

satisfy the same reduced specification. This is to make sure that the

specifications of symbols do not depend on symbols beyond their de-

pendency structure. In a way, this condition constraints specification

SP rather then the construction model – see Sect. 6.4.1.

Example 6.17 Consider construction signature S6 from Example 6.16.

Let SP 4 be the construction specification over S6 (where c is an assumed

symbol that does not depend on a) given by the sentence

c = succ(a).

No construction models in [[SP4]]
c are extensions of the standard model

of natural numbers, because on the one hand, c is an assumed symbol,

therefore, by condition (2) in the construction model there should be

as many models as possible values of c. On the other hand, a is a

defined symbol dependent only on Nat (with zero and succ), therefore,

all models in the construction model must interpret a as the same value.

Condition (4) puts requirements on c and a together, thus only singleton

construction models with Nat interpreted as a singleton set may possibly

satisfy the given conditions. If the specification additionally required

Nat to be a set of natural numbers, condition (4) would render the

specification inconsistent.

6.4. CONSTRUCTION SPECIFICATIONS 67

Example 6.18 Consider construction signature S6 from Example 6.16.

Let SP ′
4 be the construction specification over S6 consisting of the sen-

tence

a = zero ∧ b = zero ∧ c = succ(a) .

Then, perhaps surprisingly, we have {(a = 0, b = 0, c = 1)} |=c SP ′
4,

because both a and c depend on succ and zero and (c = succ(a)) is

equivalent to (c = succ(zero)), because (a = zero); this example shows

that a Con-dependency-wise specification can correlate symbols that are

not directly related by the dependency structure from the signature when

the correlation goes via symbols that they depend on (zero in this case).

In Sect. 6.4.3 below we discuss how the satisfaction of construction spec-

ifications corresponds to the typical satisfaction of specifications of parame-

terised module.

6.4.1 Consistency of Construction Specification

A construction specification is consistent iff there exists a construction model

that satisfies all conditions of Def. 6.13.

Lemma 6.19 Every consistent construction specification is consistent in the

base institution I.

The proof uses conditions (3) and (4) of Def. 6.13 for the empty set of

symbols. The details are in Appendix 6.A.

There are two main reasons of inconsistency of a construction specification

SP = 〈S, SP〉:

• inconsistency of specification SP in the base institution I;

• the condition (4) of Def. 6.13, i.e. the fact that the specification does

not match the dependency structure of its signature (cf. Example 6.17

above).

A stronger version of condition (4) of Def. 6.13 may be given without any

reference to satisfaction condition or construction models.

68 CHAPTER 6. CONSTRUCTIONS

Definition 6.20 (Dependency-wise Construction Specification) A con-

struction specification SP over a construction signature S is dependency-wise

iff for all A ⊆ Compl(S) and all M ∈ [[S]], if for all a ∈ A, M |Sa↓ |= SP |Sa↓

then M |SA↓ |= SP |SA↓.

The difference between condition (4) of Def. 6.13 and Def. 6.20 is that

the former limits the models to those in construction model Con, whereas

the latter refers to any models. Still, the idea is simple: a dependency-

wise construction specification does not directly relate symbols that are not

related by dependency relation in the construction signature.

Lemma 6.21 For any construction specification SP = 〈S, SP〉 and a con-

struction model Con ∈ [[S]]c. If SP and Con meet conditions (1-3) of Def. 6.13

and additionally SP is dependency-wise, then Con |=c SP.

The proof is easy and we omit it here. Obviously if the dependency-wise

condition works for all models in [[S]] (Def. 6.20), it also works for all models

in Con (condition (4) of Def. 6.13).

All dependency-wise construction specifications seen as specifications in

the base institution I are consistent. From the assumptions of Sect. 3.5 we

get that every signature in Sig has a model. Consider SP = 〈S, SP〉 and, by

the requirement of Def. 6.20 for the empty set of symbols, for any M ∈ [[S]]

we have M |Σ∅
|= SP |Σ∅

, where Σ∅ is the initial object in Sig. This means

that there exists M ′ ∈ [[SP]] such that M ′|Σ∅
= M |Σ∅

, thus SP is consistent.

The following theorem gives sufficient condition for construction specifi-

cation to be consistent as such. Notice the finiteness requirement.

Theorem 6.22 Every dependency-wise construction specification over a fi-

nite construction signature is consistent, i.e., it has a construction model.

The proof is in Appendix 6.A. The opposite implication does not hold,

because there are examples of consistent construction specifications that are

not dependency-wise. Below we present one of them.

Example 6.23 Consider SP = 〈S, SP〉 with S = (sort s; ops a : s, b : s)

and SP = {a = b}. Clearly SP is not dependency-wise, because, for the set

6.4. CONSTRUCTION SPECIFICATIONS 69

of symbols A = {a, b} and M = (s = {0, 1}, a = 1, b = 0), even though

M |Sa↓ |= SP |Sa↓ and M |Sb↓ |= SP |Sb↓, we get M |SA↓ 6|= SP |SA↓. Nevertheless,

it is consistent. Take M ′ = (s = {0, 1}, a = 0, b = 0) and we have

{M ′} |=c SP, which makes SP consistent.

6.4.2 Cleaning Operator

It is not always the case that given Con |=c SP , all models inside the con-

struction model Con satisfy the specification, i.e., that for all M ∈ Con,

M |= SP . We follow the design by contract approach, where the result is

required to meet a specification only if the parameter does. Therefore, all

models that do not meet the specification on their assumed symbols (param-

eter part) do not have to meet the specification on the result part. As a

consequence construction models may contain some “junk”, i.e., models that

do not satisfy the specification.

The following operator cleans the construction models up from the “junk”

models.

Definition 6.24 (Cleaning operator) For a construction specification SP ∈

Spec(S) and Con ∈ [[S]]c, the cleaning operator CleanSP : [[SP]]c → [[SP]]c

is defined as

CleanSP(Con) = {M ∈ Con | M |= SP} .

The theorem below ensures that the cleaning operator is well defined.

Theorem 6.25 The cleaning operator from Def. 6.24 is well defined, i.e. for

a construction specification and a construction model Con ∈ [[SP]]c, it holds

that CleanSP(Con) ∈ [[SP]]c.

This theorem may seem trivial, but the proof turns out to be quite elab-

orate. The main challenge is to prove that there are enough models in

CleanSP(Con) to satisfy conditions (2) and (3) of Def. 6.13. Both conditions

require a kind of completeness of the construction model with regard to the

assumed symbols, i.e. the parameters of the construction. It is not enough to

use directly the corresponding conditions w.r.t. Con ∈ [[SP]]c, because in the

70 CHAPTER 6. CONSTRUCTIONS

result we get the existence of models in Con such that their reduct to some

subset of signature symbols satisfies the appropriately reduced specification

and we still need to prove that they satisfy the specification as a whole,

i.e. that they belong to CleanSP(Con). The solution is that by induction we

can build a model that satisfies the specification and, when reduced to the

above mentioned subset of signature symbols, equals to the original model

reduced to the same subset. The detailed proof is given in Appendix 6.A

below.

Notation. A construction model Con such that Con |=c SP and Con =

CleanSP(Con) is called a clean construction model of SP . By CleanSP([[SP]]c)

we denote the class of all clean construction models of SP .

6.4.3 Module Specifications as Construction Specifica-

tions

A non-parameterised module specification is typically a specification SP over

a signature Σ ∈ Sig. The corresponding construction specification is

SP = 〈SΣ, SP〉

where SΣ is a construction signature corresponding to Σ (cf. Sect. 6.2.1). A

construction model of SP is a singleton {M} such that M ∈ [[SP]].

For a parameterised module specification SPM = 〈σ, SPP , SPR〉 over a pa-

rameterised module signature σ : ΣP → ΣR, the corresponding construction

specification is given as

SPM = 〈Sσ, σ(SPP) ∪ SPR〉

where Sσ is a construction signature corresponding to σ defined in Sect. 6.2.1.

Recall that a model (called persistent parameterised module model, cf. Sect. 3.4)

of a parameterised modules specification SPM , as above, is a (partial) map

κ : [[ΣP]] → [[ΣR]] such that for all Mp ∈ [[SPP]], κ(Mp) is defined, κ(Mp) ∈

[[SPR]] and κ(Mp)|σ = Mp.

Even if SPM is a consistent parameterised module specification, SPM may

6.4. CONSTRUCTION SPECIFICATIONS 71

fail to be a consistent construction specification, because it does not need to

be dependency-wise (cf. (4) of Def. 6.13 and Def. 6.20). If its construction

signature is finite, it is enough to add additional dependencies between as-

sumed symbols of Sσ to make it dependency-wise and, by Theorem 6.22, also

consistent.

The need for additional dependencies between assumed symbols results

from the different level of parameterisation in the parameterised modules and

constructions. The former have whole signatures as parameters and only in

presence of a model of the entire parameter signature, the result model of the

result signature is given. The latter admits parameterisation on the symbol

level (via assumed symbols) and any parameter symbol may be instantiated

on its own, as long as the dependencies are respected.

The following example shows how additional dependencies added to the

construction signature make the construction specification consistent.

Example 6.26 Consider a parameterised module specification 〈σ, SPP , SPR〉

over a parameterised module signature σ : ΣP → ΣR, where

ΣP = (sort Nat ; ops a : Nat , b : Nat),

ΣR = (sort Nat ; ops a : Nat , b : Nat , c : Nat),

σ is an inclusion and

SPP = {(a = 0 ∧ b = 1) ∨ (a = 1 ∧ b = 0)},

SPR = SPP ∪ {c = a + b}.

To simplify the notation assume that constants 0, 1 and operation + come to-

gether with the sort of natural numbers Nat. The corresponding construction

specification is SP = 〈Sσ, σ(SPP) ∪ SPR〉 with

Sσ = (sort Nat ; ops a : Nat , b : Nat , c : Nat)

deps a < c, b < c)

It is easy to show that 〈σ, SPP , SPR〉 is a consistent parameterised module

72 CHAPTER 6. CONSTRUCTIONS

specification and that SP is an inconsistent construction specification (for

Nat interpreted as the set of natural numbers). The reason is that SP is not

dependency-wise. Take A = {a, b} and M ∈ [[Sσ]], M = (a = 1, b = 1). It

holds that M |Sa
σ↓ |= SP |Sa

σ↓ and M |Sb
σ↓

|= SP |Sb
σ↓
, but M |SA

σ↓
6|= SP |SA

σ↓
. It is

enough to add a dependency between a and b in Sσ to make it dependency-

wise. Let

S ′
σ = (sort Nat ; ops a : Nat , b : Nat , c : Nat)

deps a < b, b < c)

It is easy to check that SP ′ = 〈S ′
σ, σ(SPP) ∪ SPR〉 is dependency-wise,

therefore, by Theorem 6.22, it is consistent.

In what follows we assume that SPM is a consistent construction specifi-

cation, either directly or, if we assume finiteness of signatures, after adding

extra dependencies between assumed symbols in Sσ. It may be done by

taking any linear order that extends the dependency relation of Sσ, then a

consistent parameterised module specification SPM is a consistent construc-

tion specification (over a construction signature with a linear dependency

relation). Note that this would not work for signatures with infinite set of

symbols, as the linear dependency imposed on them would not be bounded.

Finiteness is also required by Theorem 6.22.

Let Con be a construction model of SPM . It is easy to show that Con

is a class of ΣR-models such that for any MP |= SPP there exists a unique

M ∈ Con such that M |σ = MP and M |= SPR, i.e. the map {MP 7→

M | M ∈ Con,MP = M |σ,MP |= SPP , } is a persistent parameterised

module model of SPM . To sketch the proof, we first notice in the definition

of parameterised module specification in Sect. 3.4 that [[SPP]] ⊆ [[SPR|σ]].

From MP |= SPP we have existence of MR |= SPR such that MR|σ = MP ,

thus MR |= (σ(SPP) ∪ SPR). All the symbols from ΣP are assumed in Sσ

(denoted by set Aσ in Sect. 6.2.1), so, by inductive use of condition (2) and

(3) of Def. 6.13, we eventually get MR|SAσ↓ ∈ Con|SAσ↓. Therefore, there is

M ∈ Con such that M |SAσ↓ = MR|SAσ↓ and consequently M |σ = MP . All the

symbols from ΣR that are not coming from ΣP (i.e. that are not assumed) are

6.4. CONSTRUCTION SPECIFICATIONS 73

defined in Sσ (denoted by set Dσ in Sect. 6.2.1). No assumed symbol depends

on defined symbol in Sσ, so, by inductive use of (1) and (4) of Def. 6.13, we

get M |= σ(SPP) ∪ SPR, thus M |= SPR.

Let κ be a persistent module model that satisfies SPM . Unfortunately,

in general the corresponding construction model Conκ (cf. Sect. 6.3.1) does

not have to satisfy SPM directly. This is because satisfaction of construction

specifications is slightly stronger than satisfaction of parameterised module

specifications. The difference concerns parameter models that do not satisfy

SPP . The condition (3) of Def. 6.13 requires that given a set of symbols

A ⊆ ΣR and a ΣR-model M such that for every a ∈ A, M |Sa
σ↓ ∈ Conκ|Sa

σ↓,

then M |SA
σ↓

∈ Conκ|SA
σ↓

. If M |σ 6|= (σ(SPP)∪SPR)|σ, and so M |σ 6|= SPP , this

implies that there must exist M ′ ∈ Conκ such that M ′|SA↓ = M |SA↓. There

is no guarantee, however, that there is such M ′ ∈ Conκ, because satisfaction

of parameterised module specification conditions posed on κ concerns only

parameter models that satisfy SPP . Therefore, we use the cleaning operator

and we get:

CleanSP(Conκ) |=
c SP .

The following example illustrates the situation.

Example 6.27 Consider a parameterised module specification 〈σ, SPP , SPR〉

over a parameterised module signature σ : ΣP → ΣR, where

ΣP = (sort s ; ops a : s , b : s , c : s),

ΣR = (sort s ; ops a : s , b : s , c : s , d : s),

σ is an inclusion and

SPP = {a = c ∧ b 6= c },

SPR = SPP ∪ {d = b}.

The corresponding construction signature is

S = (sort s ; ops a : s , b : s , c : s , d : s ; deps c < a, c < b, a < d, b < d)

74 CHAPTER 6. CONSTRUCTIONS

Note the additional dependency in S, among a, b and c, added to make the

construction specification dependency-wise, as described above.

The corresponding construction specification is SP = 〈S, SPR〉.

Axiom b 6= c from specification SPP makes the carrier of sort s to have

at least two elements. In order to make this example readable, let us assume

that sort s is a set of exactly two elements (the general case is analogous to

this restricted one).

Consider four ΣP -models

MP
1 = (s = {0, 1}, a = 1, b = 0, c = 1),

MP
2 = (s = {0, 1}, a = 0, b = 1, c = 0),

MP
3 = (s = {0, 1}, a = 1, b = 1, c = 0),

MP
4 = (s = {0, 1}, a = 0, b = 0, c = 0)

and four ΣR-models

MR
1 = (s = {0, 1}, a = 1, b = 0, c = 1, d = 0),

MR
2 = (s = {0, 1}, a = 0, b = 1, c = 0, d = 1),

MR
3 = (s = {0, 1}, a = 1, b = 1, c = 0, d = 1),

MR
4 = (s = {0, 1}, a = 0, b = 0, c = 0, d = 0)

and a partial mapping κ : [[ΣP]] → [[ΣR]] given as

κ = {〈MP
i ,MR

i 〉 | 1 ≤ i ≤ 4} .

It is easy to show that κ is a persistent parameterised module model of

〈σ, SPP , SPR〉. For 1 ≤ i ≤ 2 we have MP
i |= SPP , MR

i |= SPR and

MR
i |σ = MP

i ; for 3 ≤ i ≤ 4 we have MP
i 6|= SPP and as a consequence

MR
i 6|= SPR.

The corresponding construction model is

Con = {MR
i | 1 ≤ i ≤ 4}

6.5. CONSTRUCTION FITTINGS AND SUM 75

and we have

Con 6|=c SP ,

because of condition (3) of Def. 6.13, for A = {a, b} and ΣR-model M ′ =

(s = {0, 1}, a = 1, b = 0, c = 0, d = 0), even though M ′|Sa↓ ∈ Con|Sa↓ and

M ′|Sb↓ ∈ Con|Sb↓, we have M ′|SA↓ 6∈ Con|SA↓.

However, it is easy to check that CleanSP(Con) = {MR
1 ,MR

2 } is a con-

struction model of SP:

CleanSP(Con) |=c SP .

6.5 Construction Fittings and Sum

Architectural decomposition of the system into a number of basic building

blocks makes sense only under the assumption that the blocks may be com-

posed together later into the system as a whole. In algebraic specifications

the system decomposition is typically described by a diagram of specifications

connected by (fitting) morphisms, and the colimit operation acts as such a

composition operation for specifications, with amalgamation of models used

to put together their “implementations”.

We take a similar approach. In order to connect symbols from two con-

struction signatures, we define fitting spans and we use the pushout as the

sum operation. It subsumes union, composition, translation and application

operations, as usually defined. This is possible due to fitting spans being

defined as external to construction signatures. Depending on the actual con-

nections between construction signature symbols, the sum operation captures

cases traditionally treated separately.

6.5.1 Construction Fittings and Sum of Construction

Signatures

The definition of construction fittings as spans in SigDepfrag makes them

suitable for symmetric and asymmetric connections between construction

signatures.

76 CHAPTER 6. CONSTRUCTIONS

Definition 6.28 (Construction Fitting) A construction fitting ft : S1↖↗S2

between two construction signatures S1 and S2 is a span in SigDepfrag

ft = 〈ϕ1 : F → S1, ϕ2 : F → S2〉, such that

1. F is an empty signature fragment (cf. Sect. 4)

2. the pushout β1 : S1 → S and β2 : S2 → S of ϕ1 and ϕ2 in SigDepfrag

yields a construction signature S.
S

S1 S2

F
ϕ1 ϕ2

β1 β2

The pushout signature S is called the sum of S1 and S2 w.r.t. fitting ft .

Notation. The symbols used in the above definition will be used as the

default notation for construction fittings and their pushouts. This means

that every time when we introduce a construction fitting ft without an ex-

plicit definition, we assume that ft = 〈ϕ1 : F → S1, ϕ2 : F → S2〉 and that

its pushout morphisms are β1 : S1 → S and β2 : S2 → S. Sometimes we may

write S1 ⊕ft S2 to denote the sum construction signature S.

Let us briefly describe the meaning of the requirements of the definition

above. Requirement (1) says that the fitting source F contains only assumed

symbols. Requirement (2) makes the construction of S unique (up-to isomor-

phism) with the internal mapping of S being an injection (cf. Def. 6.1). The

consequence of both requirements of Def. 6.28 is that β1 and β2 are injective

on defined symbols, and each defined symbol of S comes either from S1 or

S2.

The injectivity of β1 and β2 on defined symbols is the key for explicit

tracking of the origin of defined symbols, because it guarantees that each

defined symbol in the result construction signature comes from exactly one

component, i.e. there is a unique origin of symbol definition. However, it

renders some, perhaps expected operations on modules ill-defined.

Example 6.29 For a construction signature S = 〈A, Σ<, f : A → Symb(Σ<)〉

containing some defined symbols, A 6= ∅, the pair of identity morphisms

6.5. CONSTRUCTION FITTINGS AND SUM 77

〈idS , idS〉 fails to be a construction fitting in the sense of Def. 6.28, because

the source of the fitting is not empty. The pair 〈ϕ, ϕ〉 with ϕ : Empt(S) → S

defined as ϕ = 〈εA, idΣ<〉, where εA : ∅ → A also fails to be a construction

fitting, because the pushout object is not an injective fragment, thus it is not

a construction signature, c.f. the diagram in Set below (f ′ is not injective).

Symb(Σ<)

Symb(Σ<) Symb(Σ<)

Symb(Σ<)

A]A

A A

∅
Symb(idΣ<) Symb(idΣ<)

εA εA

f ′

f f

We do not take this as a disadvantage. To the contrary, in our approach

the sharing of symbols is via parameterisation only. This means that if two

constructions are to share a symbol that is defined on the one side, then the

construction fitting must map it to an assumed symbol on the other side.

Notation. We say that two symbols are shared (symmetrically) if they

are targets of a single symbol via the fitting span, i.e. for a1 ∈ Compl(S1)

and a2 ∈ Compl(S2) we say that a1 and a2 are shared iff there exists a ∈

Compl(F) such that ϕ1(a) = a1 and ϕ2(a) = a2.

6.5.2 Sum of Construction Models

As the sum of construction signatures connected by a construction fitting

is given by a pushout operation, not surprisingly, the sum of construction

models uses the amalgamation property (cf. Sect. 3.5) in its definition.

Definition 6.30 The sum of construction models Con1 and Con2 w.r.t. the

fitting ft is given as

Con1 ⊕ft Con2 = {M ∈ [[S]] | M |β1 ∈ Con1, M |β2 ∈ Con2}

78 CHAPTER 6. CONSTRUCTIONS

The sum of construction models contains amalgamations of all models

from both sides that prove to be compatible on the fitting source. The

operation looks trivial, but its effect is very powerful due to the nature of the

fitting and the contents of construction models, as required by Def. 6.5. We

make sure that the result of the sum operation also meets all the requirements

imposed on construction models.

Theorem 6.31 The sum of construction models is a construction model.

The proof is in Appendix 6.A.

6.5.3 Sum of Construction Specifications

The sum of construction specifications is the union of translations of compo-

nent specifications.

Definition 6.32 (Sum of Construction Specifications) The sum of con-

struction specifications SP 1 = 〈S1, SP1〉 and SP 2 = 〈S2, SP2〉 w.r.t. fitting

ft : S1↖↗S2 is the construction specification

SP1 ⊕ft SP2 = 〈S1 ⊕ft S2, β1(SP1) ∪ β2(SP2)〉.

It is not guaranteed that the sum of two consistent construction spec-

ifications connected via any construction fitting gives rise to a consistent

construction specification.

Example 6.33 Consider two construction specifications

SP 1 = 〈(sort s; ops a : s), {∀ x : s ∙ x = a}〉

SP2 = 〈(sort s; ops a : s, b : s), {a 6= b}〉

and a construction fitting ft = 〈ϕ1, ϕ2〉, where ϕ1 : F → S1 and ϕ2 : F → S2

are inclusions and F = (sort s; ops a : s).

Both SP 1 and SP 2 are consistent; however, their sum SP 1 ⊕ft SP2 is not

consistent, because by SP 1 sort s contains exactly one element and by SP 2 it

has at least two different elements.

6.5. CONSTRUCTION FITTINGS AND SUM 79

In order to address this problem we introduce the concept of compatibility

of construction specification w.r.t. the fitting span. The intention is to allow

defined symbols (actual parameters) to have stronger specifications than the

corresponding assumed symbols (formal parameters). The corresponding

assumed symbols on both sides must have equivalent specifications.

Definition 6.34 (Compatible Construction Specifications) Given a con-

struction fitting ft = 〈ϕ1, ϕ2〉 with ϕ1 : F → S1 and ϕ2 : F → S2 and two

consistent construction specifications SP 1 = 〈S1, SP1〉 and SP 2 = 〈S2, SP2〉,

we say that SP 1 is compatible with SP2 w.r.t. the fitting ft iff

1. for all sets of independent symbols A ⊆ Compl(F) such that for all

a ∈ A, ϕ1(a) /∈ S1 (this means that ϕ1(A) is a set of assumed symbols

in S1) and all M2 ∈ [[S2]] such that M2 |= SP2, if (M2|ϕ2)|FA⇓ |=

(SP1|ϕ1)|FA⇓ then (M2|ϕ2)|FA↓ |= (SP1|ϕ1)|FA↓

2. for all sets of independent symbols A ⊆ Compl(F) such that for all

a ∈ A, ϕ2(A) /∈ S2 (this means that ϕ2(A) is a set of assumed symbols

in S2) and all M1 ∈ [[S1]] such that M1 |= SP1, if (M1|ϕ1)|FA⇓ |=

(SP2|ϕ2)|FA⇓ then (M1|ϕ1)|FA↓ |= (SP2|ϕ2)|FA↓

The two compatibility conditions are symmetric, so it is enough to com-

ment only the first one. It says that for any set of independent assumed sym-

bols A shared between the two constructions (i.e. A is a subset of Compl(F))

such that the corresponding symbols in S1 are also assumed, for any model

of SP2, if the model reduced to the dependency structure below A satisfies

SP1 reduced to the same signature, then this is also the case on the depen-

dency structure of A, including A. This implies that the specification SP1

is not stronger than SP2 on the shared symbols that are assumed in S1. If

the corresponding symbols in S2 are also assumed, then, by symmetry, both

specifications have to be equivalent. However, if the corresponding symbols

in S2 are defined, then SP2 may be stronger with respect to them.

Such behavior is inspired by the typical situations arising from the appli-

cation of parameterised modules. When a parameterised module is instan-

tiated with an actual parameter, the specification of the actual parameter

80 CHAPTER 6. CONSTRUCTIONS

(defined symbols) has to ensure the specification of the formal parameter (the

corresponding assumed symbols) in the parameterised module specification,

but of course may be stronger than this specification.

The compatibility of two consistent construction specifications guarantees

the consistency of their sum in the base institution I, assuming that both

construction specifications are dependency-wise (cf. Def. 6.20) and over finite

construction signatures.

Lemma 6.35 Given two dependency-wise construction specifications, SP 1

and SP 2 over finite construction signatures such that they are compatible

w.r.t. a construction fitting ft, their sum (β1(SP1)∪β2(SP2)) is a consistent

specification in the base institution I.

The proof is in Appendix 6.A. The requirement of finiteness is due to

Theorem 6.22 used in the proof.

The following theorem shows that the definition of the sum of construction

specifications and the sum of clean construction models match. Moreover,

the sum of clean models yields a clean model.

Theorem 6.36 Given two compatible (cf. Def. 6.34) construction specifica-

tions SP 1 and SP 2 connected by a construction fitting ft, for any two clean

(cf. Sect. 6.4.2) construction models Con1 |=c SP1 and Con2 |=c SP2, the

following holds

Con |=c SP and Con is clean,

where Con = Con1 ⊕ft Con2 and SP = β1(SP1) ∪ β2(SP2).

The above theorem ensures that our method is sound and the decomposition

of the system specification into the smaller parts makes sense. Given models

of the component specifications we can join them and obtain the composite

that satisfies the specification of the whole. The proof is in Appendix 6.A.

The examples below show different aspects of (in)compatibility of con-

struction specifications.

6.5. CONSTRUCTION FITTINGS AND SUM 81

Example 6.37 Consider construction signatures

S1 = (sort s; ops a : s, b : s, f : s → s; deps a < b, b < f),

S2 = (sort s; ops a : s, b : s, f : s → s; deps a < b, b < f),

a fitting ft = 〈ϕ1, ϕ2〉 with ϕ1 : F → S1, ϕ2 : F → S2 such that F = S1

and ϕ1, ϕ2 are inclusions, and construction specifications SP 1 = 〈S1, SP1〉,

SP 2 = 〈S2, SP2〉 with

SP1 = {f(b) = b, f(a) = a},

SP2 = {b = a, f(a) = b}.

Construction specifications SP 1 and SP 2 are compatible w.r.t. construction

fitting ft and, by Theorem 6.36, for any clean Con1 |=c SP1 and Con2 |=c SP2

we have Con1 ⊕ft Con2 |=c (β1(SP1) ∪ β2(SP2)). This is because b and f are

defined in S2 and the specification SP 2 is stronger on b and f than SP 1

where, in S1 symbols b and f are assumed. The specifications of a in SP 1

and SP 2 are equivalent.

Example 6.38 (Cont. of Example 6.37) In order to show a non-example let

us change to the institution of the first-order logic FOEQ (to allow inequality

sentences) and take SP ′
2 = 〈S2, SP ′

2〉 with

SP ′
2 = {b 6= a, f(a) = b}.

Construction specifications SP 1 and SP ′
2 are not compatible w.r.t. construc-

tion fitting ft, because SP ′
2 is inconsistent with SP 1 in the base institution I

(which in the case of this example is FOEQ). By Lemma 6.35, since SP 1 and

SP ′
2 are dependency-wise construction specifications (all symbol dependencies

expressed by specifications are statically present in construction signatures S1

and S2) if they were compatible then their sum (β1(SP1)∪β2(SP ′
2)) would be

a consistent specification in the base institution, but it is not. More directly,

note than the requirements on b and f imposed by SP ′
2 do not entail those

imposed by SP 1. In this case for any Con1 |=c SP1 and Con2 |=c SP ′
2 we

82 CHAPTER 6. CONSTRUCTIONS

have Con1 ⊕ft Con2 = ∅.

Example 6.39 (Cont. of Example 6.38) To present a more subtle non-

example, consider SP ′′
2 = 〈S2, SP ′′

2〉 with

SP ′′
2 = {f(a) = a}.

Construction specifications SP 1 and SP ′′
2 are not compatible w.r.t. construc-

tion fitting ft, because the specification of defined symbol f in SP ′′
2 is weaker

than in SP 1. Their sum, however, is consistent in the base institution, so

the situation is different than before. It is easy to check that condition (1)

of Def. 6.34 is violated for A = {f}. It does not hold that any model of

SP ′′
2 that satisfies SP 1|{s,a,b} also satisfies SP 1|{s,a,b,f}, because SP 1 requires

f(b) = b which is not ensured by SP ′′
2. As a counterexample take model

M2 = (s = {0, 1}, a = 0, b = 1, f = {〈0, 0〉, 〈1, 0〉}). We have M2 |= SP ′′
2

and M2|{s,a,b} |= SP1|{s,a,b}, but M2|{s,a,b,f} 6|= SP1|{s,a,b,f}. In fact, there exist

clean construction models Con2 |=c SP ′′
2 such that for any Con1 |=c SP1 it

holds that Con1 ⊕ft Con2 |=c (β1(SP1) ∪ β2(SP2)), but there are also clean

Con′
2 |=

c SP1 such that Con1 ⊕ft Con′
2 6|=

c (β1(SP1) ∪ β2(SP2)),

Example 6.40 (Cont. of Example 6.39) The following example shows that

the compatibility condition is stronger than it is actually necessary for the

conclusion of Theorem 6.36. Consider SP ′′′
2 = 〈S ′′′

2 , SP ′′′
2 〉 with

S ′′′
2 = (sort s; ops a : s, b : s, f : s → s; deps a < b, b < f),

SP ′′′
2 = {f(a) = a}.

Construction specifications SP 1 and SP ′′′
2 are not compatible w.r.t. construc-

tion fitting ft, because the specification of assumed symbol f in SP ′′′
2 is weaker

than in SP 1. Note that symbol f is assumed in both S1 and S ′′′
2 , so this ex-

ample is quite different from the previous one. In this case it is easy to

check that for any clean Con2 |=c SP ′′′
2 and clean Con1 |=c SP1 it holds that

Con1 ⊕ft Con2 |=c (β1(SP1) ∪ β2(SP ′′′
2)).

6.5. CONSTRUCTION FITTINGS AND SUM 83

In fact, the requirement that specifications of assumed symbols must be

equivalent is not directly needed, because the theorem does not require the

sum construction model to persistently extend the summand construction

models in any way.

6.5.4 Other Operations as Sum Operation

The sum of construction specifications subsumes many typical operations

on parameterised module specifications. This is possible because construc-

tion fittings are external to construction signatures, therefore, sums of the

same construction specifications w.r.t. different construction fittings may give

completely different results. We list some of the typical operations on pa-

rameterised module specifications (mostly taken from [EM90]) and represent

them as sums w.r.t. some construction fittings. For every operation we give

a simple example of the corresponding sum of construction signatures.

The parameterisation exercised in the framework of construction specifi-

cations is on a different level than in the parameterised module specifications.

The former have parameterisation on individual symbols (together with their

dependency structures), the latter only on whole signatures.

As the result, additional work may be required to represent operations on

parameterised module specifications as sums of construction specifications.

The main reason is that in construction fittings the dependency structures

of shared symbols have to be same on both sides of the fitting, but there

is no equivalent requirement on the fittings (morphisms or spans) between

parameterised module specifications. Technically speaking, the problem is

that some fittings fail to be SigDepfrag -morphisms.

It should be noted, however, that construction specifications, thanks to

the lower level of parameterisation, are always ready for partial and mutual

applications without any additional assumptions that are needed in the case

of parameterised module specifications.

Union. Given two parameterised module specifications, the union operation

transforms them into one parameterised module specification, contain-

ing the union of both modules. The sharing of symbols is explicit via

84 CHAPTER 6. CONSTRUCTIONS

an injective fitting span. Injectivity assures that no symbols from any

signature are merged during the operation.

Union of parameterised module specifications corresponds directly to

the sum of construction specifications connected by a construction fit-

ting such that only assumed symbols are shared. Other sharing is

excluded firstly, because the sharing of assumed and defined symbols

corresponds to the application operation (explained below) and does

not happen in a union operation, and secondly, because the sharing

of defined symbols is inexpressible via a construction fitting definition

(cf. discussion in Sect. 6.5.1). Another requirement concerns the depen-

dency structure of shared symbols that needs to be exactly the same

on both sides.

Consider parameterised module specifications SP 1
M = 〈σ1, SP1

P , SP1
R〉

and SP2
M = 〈σ2, SP2

P , SP2
R〉 over some parameterised module signa-

tures σ1 : Σ1
P → Σ1

R and σ2 : Σ2
P → Σ2

R, respectively. Let there be an

inclusive fitting span 〈ϕ1 : ΣF → Σ1
P , ϕ2 : ΣF → Σ2

P 〉; we get 〈α1, α2〉 as

the pushout of 〈ϕ1, ϕ2〉 and 〈β1, β2〉 as the pushout of 〈ϕ1; σ1, ϕ2; σ2〉.

The situation is depicted on the following commuting diagram in Sig,

where ξ : ΣP → ΣR is the universal arrow.

ΣR

Σ1
R Σ2

R

ΣP

Σ1
P Σ2

P

ΣF

ϕ1 ϕ2

σ1 σ2

α1 α2

β1 β2

ξ

The union of SP1
M and SP2

M is the parameterised module specification

SPM = 〈ξ, SPP , SPR〉 with SPP and SPR obtained via pushout opera-

tions, i.e. SPP = α1(SP1
P) ∪ α2(SP2

P) and SPR = β1(SP1
R) ∪ β2(SP2

R).

Coming to constructions, let SP1 = 〈S1, SP1〉 and SP2 = 〈S2, SP2〉

6.5. CONSTRUCTION FITTINGS AND SUM 85

be the construction specifications corresponding to SP1
M and SP2

M , re-

spectively, as described in Sect. 6.4.3. In some cases, the simple depen-

dency structure of symbols in construction signatures (from Sect. 6.2.1)

must be adapted to make the specifications dependency-wise (cf. dis-

cussion in Sect. 6.4.3). Here we assume that construction signatures

S1 and S2 are defined in such a way that their shared symbols have

the same dependency structure. For example given any linear depen-

dency of shared symbols, any its extensions to linear orders in S1 and

S2 is sufficient. Let F be defined as an empty construction signature

Empt(Dep(ΣF)) with all the symbols from ΣF with the additional

above-mentioned dependencies. Let ft = 〈ϕ1, ϕ2〉 be the construction

fitting with ϕ1 = 〈ε1, ϕ
1
P 〉 and ϕ2 = 〈ε2, ϕ

2
P 〉, where ε1 : ∅ → Dσ1 and

ε2 : ∅ → Dσ2 are the unique functions from the empty set to the sets of

defined symbols in S1 and S2, respectively. Clearly, by definition, ft is

a construction fitting from Def. 6.28. The sum SP1⊕ft SP2 corresponds

to the union of SP1
M and SP2

M , given above.

Example 6.41 Consider the union of two parameterised module spec-

ifications:

〈(sort s), ∅〉 → 〈(sort s; ops a : s), ∅〉,

〈(sort s), ∅〉 → 〈(sort s; ops b : s), ∅〉

via the fitting span 〈(sort s) → (sort s), (sort s) → (sort s)〉. The re-

sult is the parameterised module specification

〈(sort s), ∅〉 → 〈(sort s; ops a : s, b : s), ∅〉.

The following sum of two construction signatures corresponds to the

union operation

86 CHAPTER 6. CONSTRUCTIONS

sort s;

ops a, b : s

sort s;

ops a : s

sort s;

ops b : s

sort s

where all morphisms are inclusions and the basic dependency (s < a,

s < b) is omitted. Symbol s is a shared assumed symbol. Symbol a is

defined by the left construction signature, whereas defined symbol b is

defined by the right construction signature.

Example 6.42 To show a problematic case, consider the union of two

parameterised module specifications:

〈(sort s; ops a : s, b : s), {a = b}〉 →

〈(sort s; ops a : s, b : s, c : s), {a = b, b = c}〉,

〈(sort s; ops a : s, d : s), {a = d}〉 →

〈(sort s; ops a : s, d : s, e : s), {a = d, a = e}〉

via the fitting span

〈(sort s; ops a : s) → (sort s; ops a : s, b : s),

(sort s; ops a : s) → (sort s; ops a : s, d : s)〉.

The result is the parameterised module specification

〈(sort s; ops a : s, b : s, d : s), {a = b, a = d}〉 →

〈(sort s; ops a : s, b : s, c : s, d : s), {a = b, b = c, a = d, a = e}}〉.

While transforming above parameterised module specifications to con-

struction specifications, in order to make them dependency-wise, one

needs to add some dependency between a and b in the first construction

6.5. CONSTRUCTION FITTINGS AND SUM 87

specification and another one between a and d in the second one. In the

first case, both choices, a < b and b < a, are equivalent when the first

construction specification is concerned in isolation. However, to ensure

compatibility with the second construction specification, only a < b is

the right choice, because b < a makes the shared symbol a dependent

on non-shared symbol b, therefore, the above-given fitting fails to be a

p-morphism. The same applies to the second construction specification,

where a < d is the only choice.

The following sum of two construction specifications corresponds to the

union operation

sort s;

ops a, b, c, d, e : s;

deps a < b, b < c, a < d, d < e;

axms a = b, b = c, a = d, a = e

sort s;

ops a, b, c : s;

deps a < b, b < c;

axms a = b, b = c

sort s;

ops a, d, e : s;

deps a < d, d < e;

axms a = d, a = e

sort s;

ops a : s

Disjoint union. For a parameterised module specification, a disjoint union

operation is a kind of union operation (as described above) that dupli-

cates all the otherwise shared symbols, because the fitting span with

the empty source (which is always a construction fitting) is used. A

special case is the disjoint union of a parameterised module with itself.

Example 6.43 The same construction signature connected by a fitting

with no symbols in its source corresponds to the disjoint union operation

88 CHAPTER 6. CONSTRUCTIONS

sort s1, s2;

ops a1 : s1,

a2 : s2

sort s;

ops a : s

sort s;

ops a : s

∅

β1 = {s 7→ s1, a 7→ a1} β2 = {s 7→ s2, a 7→ a2}

where the basic dependency is omitted. No symbols are shared.

Composition. Given two parameterised module specifications, the compo-

sition operation uses a fitting morphism to connect the result of the

first parameterised module to the parameter of the second one.

Consider parameterised module specifications SP 1
M = 〈σ1, SP1

P , SP1
R〉

and SP2
M = 〈σ2, SP2

P , SP2
R〉 over some parameterised module signatures

σ1 : Σ1
P → Σ1

R and σ2 : Σ2
P → Σ2

R, respectively. Let ϕ : SP2
P → SP1

R be

a specification morphism; let σ′
2 : Σ1

R → ΣR and ϕ′ : Σ2
R → ΣR be the

pushout of ϕ and σ2, as on the commuting diagram in Sig below.

ΣRΣ1
R

Σ2
R

Σ1
P

Σ2
P

σ1

σ2

ϕ

σ′
2

ϕ′

The result of the composition of SP1
M and SP2

M via ϕ is the parame-

terised module specification SPM = 〈σ1; σ
′
2, SP1

P , SPR〉 over σ1; σ
′
2 with

SPR = σ′
2(SP1

R) ∪ ϕ′(SP 2
R).

In order to present the composition as a sum of construction specifi-

cations, let SP1 = 〈S1, SP1〉 and SP2 = 〈S2, SP2〉 be the construction

specifications corresponding to SP1
M and SP2

M , respectively, defined in

such a way that they are dependency-wise construction specifications

6.5. CONSTRUCTION FITTINGS AND SUM 89

(cf. discussion in Sect. 6.4.3). Moreover the care must be taken to pre-

pare correctly construction signatures S1 and S2, so that every assumed

symbol from S2 has the same dependency structure as the related (by

ϕ) symbol from S1. If this is impossible without adding new symbols to

S2, either SP2 needs to be altered so that the (part of) the parameter

specification from SP1 is added to SP2 or some refactoring of the whole

setting is required (cf. Sect. 8.3 below for proposed approach in such

case). Let F = Empt(Dep(Σ2
P)) and ft = 〈ϕ, σ2〉 with ϕ = 〈ε1, ϕ〉 and

σ2 = 〈ε2, σ2〉, where ε1 : ∅ → Dσ1 and ε2 : ∅ → Dσ2 are the unique func-

tions from the empty set to the sets of defined symbols in S1 and S2,

respectively. Assuming that the dependency structures of related sym-

bols coincide, as discussed above, ϕ and σ2 are SigDepfrag -morphisms,

and also ft is a construction fitting. The sum of SP1 and SP2 w.r.t. ft

corresponds to the composition of SP1
M and SP2

M via ϕ.

Example 6.44 Consider the composition of the following parameterised

module specifications:

〈(sort s), ∅〉 → 〈(sort s; ops a : s), ∅〉,

〈(sort s; ops a : s), ∅〉 → 〈(sort s; ops a : s, b : s), ∅〉

via the fitting morphism (sort s; ops a : s) → (sort s; ops a : s). The

result is the parameterised module specification

〈(sort s), ∅〉 → 〈(sort s; ops a : s, b : s), ∅〉.

The below-given sum of two construction signatures corresponds to the

above composition

90 CHAPTER 6. CONSTRUCTIONS

sort s;

ops a, b : s;

deps a < b

sort s;

ops a : s

sort s;

ops a : s,

b : s;

deps a < b
sort s;

ops a : s

where all morphisms are inclusions and the basic dependency is omit-

ted. Both a and s are shared; however, there is a difference between

them. The symbol s is a shared parameter, whereas a is defined in the

left construction. Symbol b is defined in the right construction; it de-

pends on a that is a parameter there. In the resulting construction only

the symbol s is a parameter. This example, read literally, can also be

interpreted as a partial application (see below).

Example 6.45 The following composition of parameterised module spec-

ifications requires some transformation prior to its representation as a

sum of construction specifications. Consider the composition of two

parameterised module specifications

〈(sort s; ops a : s), ∅〉 → 〈(sort s; ops a : s, b : s), ∅〉,

〈(sort s; ops b : s), ∅〉 → 〈(sort s; ops b : s, c : s), ∅〉

via the inclusive fitting morphism (sort s; ops b : s) → (sort s; ops a :

s, b : s).

The result is the parameterised module specification

〈(sort s; ops a : s), ∅〉 → 〈(sort s; ops a : s, b : s, c : s), ∅〉.

The construction specifications corresponding to the above parameterised

6.5. CONSTRUCTION FITTINGS AND SUM 91

module specifications are

SP1 = 〈(sort s; ops a : s, b : s; deps a < b), ∅〉,

SP 2 = 〈(sort s; ops b : s, c : s; deps b < c), ∅〉.

The problem is that the fitting morphism is not a SigDepfrag-morphism,

because in the target construction signature we have a < b, and in the

source construction signature there is no a : s, so for no constant x,

x < b, and the morphism is not a p-morphism.

One way to handle such a situation is to amend the second construc-

tion specification simply by adding a : s as an assumed symbol to its

construction signature. The following sum of two construction signa-

tures corresponds to the above composition after the amendment of the

second construction specification

sort s;

ops a : s,

b, c : s;

deps a < b,

b < c

sort s;

ops a : s,

b : s;

deps a < b

sort s;

ops a, b : s,

c : s;

deps a < b,

b < c
sort s;

ops a, b : s;

deps a < b

where all morphisms are inclusions.

Another approach to handle this kind of problem is presented in Exam-

ple 8.13 below.

Application. For a non-parameterised module specification, a parameterised

module specification and a fitting morphism, the application operation

applies the second one to the first one via the given fitting. As result,

92 CHAPTER 6. CONSTRUCTIONS

we get a non-parameterised module specification. The application can

be seen as a special case of a composition (as described above).

Consider a non-parameterised module specification SP1 over Σ1 and

a parameterised module specification SP2
M = 〈σ2, SP2

P , SP2
R〉, where

σ2 : Σ2
P → Σ2

R. Let there be a specification morphism ϕ : SP2
P → SP1

and let σ′
2 : Σ1 → Σ and ϕ′ : Σ2

R → Σ be the pushout of ϕ and σ2.

ΣΣ1

Σ2
RΣ2

P

σ2

ϕ

σ′
2

ϕ′

The result of the application of SP2
M to SP1 via ϕ is a non-parameterised

module specification SP = σ′
2(SP1) ∪ ϕ′(SP2

R) over Σ.

To present the application as a sum of construction specifications, let

SP1 = 〈S1, SP1〉 and SP2 = 〈S2, SP2〉 be the construction specifi-

cations corresponding to SP1 and SP2
M , respectively (cf. Sect. 6.4.3).

By default they are defined in such a way that they are construction

specifications (cf. Sect. 6.4.3) and every assumed symbol in S2 has the

same dependency structure (including basic dependency) as the related

(by ϕ) symbol from S1. Let F = Empt(Dep(Σ2
P)) and ft = 〈ϕ, σ2〉

with ϕ = 〈ε1, ϕ〉 and σ2 = 〈ε2, σ2〉, where ε1 : ∅ → SetSymb(Σ1) and

ε2 : ∅ → Dσ2 are the unique functions from the empty set to the sets of

defined symbols in S1 and S2, respectively. By assumption about the

same dependency structures, ft is a construction fitting and the sum of

SP1 and SP2 w.r.t. ft corresponds to the application of SP2
M to SP1

via ϕ.

Example 6.46 When the parameterised module specification

〈(sort s; ops a : s), ∅〉 → 〈(sort s; ops a : s, b : s), ∅〉

is applied to the module specification 〈(sort s; ops a : s, c : s), ∅〉 via

6.5. CONSTRUCTION FITTINGS AND SUM 93

the inclusive fitting morphism (sort s; ops a : s) → (sort s; ops a :

s, c : s), the result is the non-parameterised module specification

〈(sort s; ops a : s, b : s, c : s), ∅〉.

The sum of construction signatures, as depicted below, corresponds to

the above-given application operation

sort s;

ops a, b, c : s;

dep a < b
sort s;

ops a, c : s

sort s;

ops a : s;

b : s;

dep a < bsort s;

op a : s

where all morphisms are inclusions and the basic dependency is omitted.

Both a and s are shared. They are defined by the left construction and

they are a parameter of the right construction. The left construction

additionally defines c that appears in the result of the application.

Partial application. Partial application is similar to application, but not

all parameters are instantiated. The result is a parameterised module

specification.

To use the partial application we need to require some additional struc-

ture on the parameter of the parameterised module. Here we assume

that the specification of a parameter is a coproduct of two specifica-

tions, but in general any colimit may be used for that purpose.

Consider a non-parameterised module specificationSP1 over a signature

Σ1 and a parameterised module specification SP2
M = 〈σ2, SP2

P , SP2
R〉

over σ2 : Σ2
P → Σ2

R. Let there be two specifications SP 2
P1 and SP2

P2 over

Σ2
P1 and Σ2

P2, respectively, such that Σ2
P is a coproduct of Σ2

P1 and Σ2
P2

via ι1 : Σ2
P1 → Σ2

P and ι2 : Σ2
P2 → Σ2

P and [[SP2
P]] = [[ι1(SP2

P1) ∪ ι2(SP2
P2)]].

94 CHAPTER 6. CONSTRUCTIONS

Let there also be a specification morphism ϕ : SP 2
P1 → SP1. Let

σ′
2 : Σ1 → Σ and ϕ′ : Σ2

R → Σ be the pushout of ϕ and ι1; σ2.

ΣΣ1

Σ2
RΣ2

P

Σ2
P1

Σ2
P2

ι1

ι2 σ2

ϕ

σ′
2

ϕ′

The result of the partial application of SP2
M to SP1 via ϕ is a param-

eterised module specification SPM = 〈SP2
P2, SP〉 over ι2; σ2; ϕ

′ with

SP = σ′
2(SP1) ∪ ϕ′(SP2

R).

In the framework of construction specifications, the explicit decomposi-

tion of SP2
P into SP2

P1 and SP2
P2 is not necessary. Let SP1 = 〈S1, SP1〉

and SP2 = 〈S2, SP2〉 be the construction specifications correspond-

ing to SP1 and SP2
M , respectively (cf. Sect. 6.4.3). By default they

are construction specifications indeed (cf. Sect. 6.4.3) and every as-

sumed symbol from S2 (from Σ2
P1 to be precise) has the same depen-

dency structure (including basic dependency) in S2 as in S1 (via ϕ).

Let F = Empt(Dep(Σ2
P1)) and ft = 〈ϕ, σ2〉 with ϕ = 〈ε1, ϕ〉 and

σ2 = 〈ε2, (ι1; σ2)〉, where ε1 : ∅ → SetSymb(Σ1) and ε2 : ∅ → Dσ2 are

the unique functions from the empty set to the sets of defined symbols

in S1 and S2, respectively. The above assumptions make ft a con-

struction fitting. The sum of SP1 and SP2 w.r.t. ft corresponds to the

partial application of SP 2
M to SP 1 via ϕ.

Example 6.47 Consider the parameterised module specification

〈(sort s, t; ops a : s, b : t), ∅〉 →

〈(sort s; ops a : s, b : t, c : s), ∅〉

with the parameter being the coproduct of 〈(sort s; ops a : s), ∅〉 and

6.5. CONSTRUCTION FITTINGS AND SUM 95

〈(sort t; ops b : t), ∅〉. Let there also be the module specification

〈(sort s; ops a : s, d : s), ∅〉

and the inclusive fitting morphism (sort s; ops a : s) → (sort s; ops a :

s, d : s). The result of the partial application is

〈(sort t; ops b : t), ∅〉 → 〈(sort s, t; ops a : s, b : t, c : s, d : s), ∅〉.

The following sum of construction signatures corresponds to the above

partial application

sort s, t;

ops a, c, d : s;

b : t;

dep a < c, b < csort s;

ops a, d : s

sort s, t;

ops a : s,

b : t,

c : s;

dep a < c,

b < c

sort s;

ops a : s

where all morphisms are inclusions and the basic dependency is omitted.

The symbol s is shared. It is defined in the left construction and it is

a part of the parameter of the right construction. The symbol a is a

parameter on the right side and it remains a parameter in the result.

Mutual application. Given two parameterised modules, mutual applica-

tion instantiates parameters on both sides simultaneously. This opera-

tion is a generalisation of partial application.

We do not formalize mutual application of parameterised modules, be-

cause in general this operation is not well defined and all special cases

are slightly too complex to consider them as basic operations.

However, for construction specifications, the mutual (partial) applica-

tion may be easily represented as a sum operation w.r.t. the construc-

tion fitting that shares assumed and defined symbols from both sides.

96 CHAPTER 6. CONSTRUCTIONS

Example 6.48 The diagram below is an example of a sum of construc-

tion signatures corresponding to mutual application

sort s;

ops a, b : s;

dep a < b

sort s;

ops a : s

sort s;

ops a : s;

b : s;

dep a < b
sort s;

ops a : s

where all morphisms are inclusions and the basic dependency is omitted.

The symbol s is a parameter of the left construction and it is defined

by the right construction. The opposite situation concerns a, which is

defined by the left construction and it is a parameter in the right one.

Both s and a are shared. The result is a construction without assumed

symbols (i.e. parameters), corresponding to a non-parameterised mod-

ule.

6.A. APPENDIX: PROOFS 97

6.A Appendix: Proofs

The following definition and lemma are going to be useful throughout the

proofs.

Definition 6.49 (Dependency Structure Morphisms) Given two signa-

ture fragments S1,S2 ∈ SigDepfrag , a set A ⊆ Compl(S1) and a morphism

ω : S1 → S2,

• the closed-down subsignature fragment morphism induced by A, de-

noted by ωA : SA
1↓ → Sω(A)

2 ↓, is given as ωA = ω|SA
1↓

• if A is a set of independent symbols in Compl(S1) and ω(A) is a

set of independent symbols3 in Compl(S2), the dependency structure

subsignature fragment morphism induced by A, ω−
A : SA

1⇓ → Sω(A)
2 ⇓, is

given as ω−
A = ω|SA

1⇓

S2S1

SA
1↓ Sω(A)

2 ↓

SA
1⇓ Sω(A)

2 ⇓

ω

ωA

ω−
A

The above definition uses the fact that SigDepfrag has an inclusion sys-

tem. It is easy to check that ωA, ω−
A ∈ SigDepfrag and the diagram in

Def. 6.49 is commuting.

Notation. When A = {b}, we sometimes write ωb : S
b
1↓ → Sω(b)

2 ↓ and

ω−
b : Sb

1⇓ → Sω(b)
2 ⇓, i.e. we use an element, instead of a singleton set that

consists of this element.

Lemma 6.50 Closed-down subsignature morphisms and dependency struc-

ture morphisms are surjective on symbols, i.e. both Symb(Compl(ωA)) and

Symb(Compl(ω−
A)) are surjections (using notation from Def. 6.49).

3An important assumption for ω such that it is not injective on symbols.

98 CHAPTER 6. CONSTRUCTIONS

Proof. P-morphisms by definition are surjective on the dependency struc-

ture of every element of the source signature. �

Proof of Lemma 6.8. Let there be a construction signature morphism

ω : S1 → S2 and a construction model Con2 ∈ [[S2]]
c. Let a ∈ S1 and let

there be two models M1,M
′
1 ∈ Con2|ω such that M1|Sa

1⇓ = M ′
1|Sa

1⇓. We have

to show that M1|Sa
1↓ = M ′

1|Sa
1↓. There exist two models M2,M

′
2 ∈ Con2

such that M2|ω = M1 and M ′
2|ω = M ′

1. From (M2|ω)|Sa
1⇓ = (M ′

2|ω)|Sa
1⇓,

by commutativity of the diagram in Def. 6.49, we obtain (M2|Sω(a)
2 ⇓

)|ω−
a

=

(M ′
2|Sω(a)

2 ⇓
))|ω−

a
. By Lemma 6.50, the morphism ω−

a : Sa
1⇓ → Sω(a)

2 ⇓ is surjec-

tive, therefore, by assumption from the beginning of Sect. 3.5, the reduct

functor |ω−
a

: [[Sω(a)
2 ⇓]] → [[Sa

1⇓]] is injective on models. Consequently, we get

M2|Sω(a)
2 ⇓

= M ′
2|Sω(a)

2 ⇓
and, by Def. 6.5, M2|Sω(a)

2 ↓
= M ′

2|Sω(a)
2 ↓

. This yields

M1|Sa
1↓ = M ′

1|Sa
1↓, because M1|Sa

1↓ = (M2|Sω(a)
2 ↓

)|ωa = (M ′
2|Sω(a)

2 ↓
)|ωa = M ′

1|Sa
1↓

�

Proof of Lemma 6.19. In consequence of the assumptions from Sect. 3.5,

every signature in Sig has a model. It is easy to check that, by condition

(3) of Def. 6.13 (for A = ∅), every construction model satisfying construction

specification is non-trivial, i.e., there exists a model (from the base institu-

tion I) in it. Then, by condition (4) of the same definition, the said model

reduced to initial signature is required to satisfy the specification (reduced

to the initial signature as well) in the base institution I and this makes the

specification consistent. �

Proof of Theorem 6.22. Let there be a dependency-wise construction

specification SP = 〈S, SP〉 over a finite construction signature S. Assump-

tions from Sect. 3.5 ensure that every signature in Sig has a model, so let

there be a model M ∈ [[S]]. Using the assumption that SP is dependency-

wise, for A = ∅, we get M |Σ∅
|= SP |Σ∅

, where Σ∅ is the initial object in Sig;

this means that there exists M ′ ∈ [[SP]] such that M ′|Σ∅
= M |Σ∅

, i.e. SP is

consistent in the base institution I.

6.A. APPENDIX: PROOFS 99

By induction we define a finite sequence of sets of symbols from Compl(S)

〈Ai〉0≤i≤n, where n = db(S) is the dependency bound of S (cf. Sect.5.3).

Let A0 = ∅ and Ai+1 = {a ∈ S | for all a′ ∈ Compl(S) such that a′ <

a, it holds a′ ∈ Ai or a′ /∈ S}. For i ∈ {0, . . . , n − 1}, Ai is a set of defined

symbols such that Ai ⊆ Ai+1, moreover Ai+1 \ Ai is a set of independent

symbols.

Let Con0 = [[SP]]. If n > 0, for i ∈ {0, . . . , n − 1} let Coni+1 be a

maximal subset of Coni such that for any M,M ′ ∈ Coni+1 and for each

a ∈ Ai+1, a ∈ S, if M |Sa⇓ = M ′|Sa⇓ then M |Sa↓ = M ′|Sa↓. The existence

of Coni+1 is guaranteed by the Kuratowski-Zorn lemma (hence also by the

axiom of choice). It is easily visible that Conn is a construction model.

Let us now prove that Conn satisfies SP according to Def. 6.13.

Condition (1) is discharged by the construction of Conn, because for any

M ∈ Conn ⊆ Con0, M |= SP .

We prove that Coni satisfies condition (2) by induction on i ∈ {0 . . . n}.

For i = 0 this is obvious. Suppose it holds for i ∈ {0 . . . n− 1}, and consider

an assumed symbol a ∈ Compl(S), a 6∈ S and a model M |= SP , M |Sa⇓ ∈

Coni+1|Sa⇓.

There are two cases.

1. Assume a ∈ Compl(SAi+1↓). Since Coni+1 ⊆ Coni, we have M |Sa⇓ ∈

Coni|Sa⇓; therefore, by the inductive assumption, M |Sa↓ ∈ Coni|Sa↓.

This means that there exists M ′ ∈ Coni such that, M ′|Sa↓ = M |Sa↓. If

M ′ ∈ Coni+1 then M |Sa↓ ∈ Coni+1|Sa↓, as required.

Otherwise, if M ′ 6∈ Coni+1, let B = {b ∈ Ai+1 | there exists Mb ∈

Coni+1 such that Mb|Sb⇓ = M ′|Sb⇓ and Mb|Sb↓ 6= M ′|Sb↓}. This means

that for all a′ ∈ (Ai+1 \ B), for any M ′′ ∈ Coni+1, if M ′′|Sa′⇓ = M ′|Sa′⇓

then M ′′|Sa′↓ = M ′|Sa′↓. We notice that B ⊆ (Ai+1 \ Ai), because

for each b ∈ (B ∩ Ai), for any M ′′ ∈ Coni+1 such that M ′′|Sb⇓ =

M ′|Sb⇓, since M ′,M ′′ ∈ Coni, by definition of Coni, M ′′|Sb↓ = M ′|Sb↓.

Therefore, B is a set of independent symbols. If a ≤ b for some b ∈ B,

from a 6= b (symbol a is assumed and B is a set of defined symbols) we

have a < b and there is Mb ∈ Coni+1 such that Mb|Sb⇓ = M ′|Sb⇓. We

100 CHAPTER 6. CONSTRUCTIONS

get Mb|Sa↓ = M ′|Sa↓ = M |Sa↓, hence, M |Sa↓ ∈ Coni+1|Sa↓, as required.

Assume a 6∈ Compl(SB↓). By assumption that S is finite, B also is

finite, so let m = |B|, let us arbitrarily name its elements as B =

{b1 . . . bm} and let the corresponding models from Coni+1 be named as

M b
1 , . . . ,M

b
m. For 1 ≤ j ≤ m, let Cj = (Ai+1\{bj})∪Symb(Compl(Sbj⇓)),

the following square of inclusions is a pushout in SigDepfrag .

SAi+1↓

SCj↓ Sbj↓

Sbj⇓

Let M1 = M ′, by induction on j ∈ {2, . . . ,m}, given Mj−1 |= SP

we construct Mj |= SP in the following way. By definition of B and

construction of Mj−1, we have M b
j |Sbj⇓ = M ′|Sbj⇓ = Mj−1|Sbj⇓. Let

M ′′
j ∈ [[SAi+1↓]] be the amalgamation of Mj−1|SCj↓ and M b

j |Sbj↓ w.r.t. the

above pushout diagram. By assumption (7) from Sect. 3.5 there ex-

ists a model M ′′′
j ∈ [[S]] such that M ′′

j = M ′′′
j |SAi+1↓. Since SP is

dependency-wise, from M ′′′
j |SCj↓ |= SP |SCj↓ and M ′′′

j |Sbj↓ |= SP |Sbj↓ we

get M ′′′
j |SAi+1↓ |= SP |SAi+1↓. This means that there exists Mj |= SP

such that Mj|SAi+1↓ = M ′′′
j |SAi+1↓.

By induction on j ∈ {0, . . . , i + 1} we prove that Mm ∈ Conj . For

j = 0, this is obvious, because Mm |= SP . Let us assume Mm ∈ Conj

for some j ∈ {0, . . . , i}.

By contradiction, assume that Mm 6∈ Conj+1. This means that there

exists MY ∈ Conj+1 and a′ ∈ Aj+1 such that MY |Sa′⇓ = Mm|Sa′⇓ and

MY |Sa′↓ 6= Mm|Sa′↓.

For j < i, from Aj+1 ⊆ Ai we have a′ ∈ Ai, hence a′ ∈ Ck, for all 1 ≤

k ≤ m. From Coni ⊆ Conj+1 it holds Mm|Sa′↓ = M ′′′
m |Sa′↓ = M ′′

m|Sa′↓ =

Mm−1|Sa′↓ = ∙ ∙ ∙ = M1|Sa′↓ = M ′|Sa′↓ ∈ Coni|Sa′↓ ⊆ Conj+1|Sa′↓. This

means that there exists MZ ∈ Conj+1 such that MZ |Sa′↓ = Mm|Sa′↓.

We have MY |Sa′⇓ = Mm|Sa′⇓ = MZ |Sa′⇓, thus, since MY ,MZ ∈ Conj+1,

6.A. APPENDIX: PROOFS 101

MY |Sa′↓ = MZ |Sa′↓ = Mm|Sa′↓. Contradiction.

For j = i, if a′ ∈ B then for some k ∈ {1, . . . ,m}, a′ = bk, thus

Mm|Sa′↓ = M ′′′
m |Sa′↓ = M ′′

m|Sa′↓ = ∙ ∙ ∙ = Mk|Sa′↓ = M b
k|Sa′↓ ∈ Coni+1|Sa′↓ =

Conj+1|Sa′↓. As above, this leads to contradiction.

If a′ ∈ (Ai+1\B), by definition of B, since MY ∈ Coni+1 and MY |Sa′⇓ =

Mm|Sa′⇓ = M ′′′
m |Sa′⇓ = M ′′

m|Sa′⇓ = Mm−1|Sa′⇓ = ∙ ∙ ∙ = M1|Sa′⇓ = M ′|Sa′⇓,

we have MY |Sa′↓ = M ′|Sa′↓ = M1|Sa′↓ = ∙ ∙ ∙ = Mm|Sa′↓. Contradiction.

This means that Mm ∈ Coni+1, thus, since M |Sa↓ = M ′|Sa↓ = M1|Sa↓ =

∙ ∙ ∙ = Mm|Sa↓, we get M |Sa↓ ∈ Coni+1|Sa↓, as required.

2. Assume a 6∈ Compl(SAi+1↓). For B = Symb(Compl(Sa⇓)) ∪ Ai+1,

the following square of inclusions is a pushout in SigDepfrag .

S(B∪{a})↓

Sa↓ SB↓

Sa⇓

From M |Sa⇓ ∈ Coni+1|Sa⇓, there exists M ′ ∈ Coni+1 such that M |Sa⇓ =

M ′|Sa⇓. Let M ′′ ∈ [[S(B∪{a})↓]] be the amalgamation of M |Sa↓ and M ′|SB↓

w.r.t. the above pushout diagram. By assumption (7) from Sect. 3.5

there exists a model M ′′′ ∈ [[S]] such that M ′′ = M ′′′|S(B∪{a})↓. Since SP

is dependency-wise, from M ′′′|Sa↓ |= SP |Sa↓ and M ′′′|SB↓ |= SP |SB↓ we

get M ′′′|S(B∪{a})↓ |= SP |S(B∪{a})↓. This means that there exists MX |= SP

such that MX |S(B∪{a})↓ = M ′′′|S(B∪{a})↓. By induction on j ∈ {0, . . . , i +

1} we prove that MX ∈ Conj . For j = 0, this is obvious. Let us assume

MX ∈ Conj for some j ∈ {0, . . . , i}. It holds that MX ∈ Conj+1,

because otherwise there would exist MY ∈ Conj+1 and a′ ∈ Aj+1 such

that MY |Sa′⇓ = MX |Sa′⇓ and MY |Sa′↓ 6= MX |Sa′↓, which is impossible

by definition of Conj+1, because Aj+1 ⊆ Ai+1 thus a′ ∈ Ai+1 and

Coni+1 ⊆ Conj+1 thus MX |Sa′↓ = M ′′′|Sa′↓ = M ′′|Sa′↓ = M ′|Sa′↓ ∈

Coni+1|Sa′↓ ⊆ Conj+1|Sa′↓. For j = i this gives MX ∈ Coni+1 and, since

M |Sa↓ = M ′′|Sa↓ = M ′′′|Sa↓ = MX |Sa↓, we get M |Sa↓ ∈ Coni+1|Sa↓, as

102 CHAPTER 6. CONSTRUCTIONS

required.

Regarding condition (3), let there be any A ⊆ Compl(S) and a model

M ∈ [[S]] such that for all a ∈ A, M |Sa↓ ∈ Conn|Sa↓, then by construction of

Conn we have M |Sa↓ |= SP |Sa↓. From the fact that SP is a dependency-wise

construction specification we get M |SA↓ |= SP |SA↓, therefore, by construction

of Conn we have M |SA↓ ∈ Conn|SA↓, as required.

Condition (4) follows directly from the fact that SP is a dependency-wise

construction specification.

�

Proof of Theorem 6.25. Let us prove the following lemma prior to showing

the main fact.

Lemma 6.51 Given a construction specification SP ∈ Spec(S) and a con-

struction model Con |=c SP, for any A ⊆ Compl(S) and M ∈ [[S]], if

M |SA↓ ∈ Con|SA↓ and M |SA↓ |= SP |SA↓

then

M |SA↓ ∈ CleanSP(Con)|SA↓

Proof. Let there be a consistent specification SP ∈ Spec(S), a con-

struction model Con |=c SP and a set A ⊆ Compl(S). Let us name

Con′ = CleanSP(Con).

By induction we define a chain of sets A0 ⊆ A1 ⊆ ∙ ∙ ∙ ⊆ An as A0 =

Compl(SA↓) and Ai+1 = {a ∈ Compl(S) | Compl(Sa⇓) ⊆ Ai}. Let n be

the smallest natural number such that An = Compl(S). The dependency

structure is a bounded strict order (cf. Sect. 5.3), so by definition n is finite

and n ≤ db(S).

Let us prove the internal lemma saying that for any 0 ≤ i ≤ n and any

model M ∈ [[S]], if M |SAi↓ ∈ Con|SAi↓ and M |SAi↓ |= SP |SAi↓ then M |SAi↓ ∈

Con′|SAi↓. The proof is by induction on i ∈ 〈n, . . . , 0〉.

6.A. APPENDIX: PROOFS 103

In the base case, for i = n, let us have M ∈ [[S]] such that M |SAi↓ ∈

Con|SAi↓ and M |SAi↓ |= SP |SAi↓. We have Ai = An = Compl(S), so M ∈

Con and M |= SP thus, by definition, M ∈ Con′, i.e. M |SAi↓ ∈ Con′|SAi↓.

As for the induction step, let us assume that the internal lemma holds for

i + 1, where 0 ≤ i < n, i.e. for any model M ∈ [[S]], if M |SAi+1↓ ∈ Con|SAi+1↓

and M |SAi+1↓ |= SP |SAi+1↓, then M |SAi+1↓ ∈ Con′|SAi+1↓. In what follows, we

prove the same for i.

Consider a model M ∈ [[S]] such that M |SAi↓ ∈ Con|SAi↓ and M |SAi↓ |=

SP |SAi↓. By definition of the reduct, there exist M ′ |= SP and M ′′ ∈ Con

such that M |SAi↓ = M ′|SAi↓ = M ′′|SAi↓. Let us define two sets

• Aa
i+1 = Ai ∪ {a ∈ Ai+1 | a /∈ S}

• Ad
i+1 = Ai ∪ {a ∈ Ai+1 | a ∈ S}

The following square of inclusions is a pushout in SigDepfrag .

SAi+1↓

SAd
i+1↓ SAa

i+1↓

SAi↓

Let Ms ∈ [[SAi+1↓]] be the amalgamation of M ′′|
S

Ad
i+1↓

and M ′|
S

Aa
i+1↓

w.r.t.

the above pushout diagram. Let Ml ∈ [[S]] be any model such that Ml|SAi+1↓ =

Ms (by assumption (7) from Sect. 3.5)

We show that for any a ∈ Ai+1 it holds that Ml|Sa↓ ∈ Con|Sa↓. Let

a ∈ Ai+1,

• if a ∈ Ai, then by assumption, Ml|Sa↓ = M |Sa↓ ∈ Con|Sa↓,

• if a /∈ Ai and a ∈ Ad
i+1, i.e. a is defined, Ml|Sa↓ = M ′′|Sa↓ ∈ Con|Sa↓,

• if a /∈ Ai and a ∈ Aa
i+1, i.e. a is assumed, we have Ml|Sa⇓ = M ′|Sa⇓ ∈

Con|Sa⇓, thus, since M ′ |= SP , by condition (2) of Def. 6.13 for Con |=c

SP , M ′|Sa↓ ∈ Con|Sa↓, and since M ′|Sa↓ = Ml|Sa↓, we get Ml|Sa↓ ∈

Con|Sa↓.

104 CHAPTER 6. CONSTRUCTIONS

By condition (3) of Def. 6.13, we obtain Ml|SAi+1↓ ∈ Con|SAi+1↓. That is, for

some Mx ∈ Con, Mx|SAi+1↓ = Ml|SAi+1↓.

Now we show that for any a ∈ Ai+1 it holds that Mx|Sa↓ |= SP |Sa↓. Let

a ∈ Ai+1,

• if a ∈ Ai, then by assumption, Mx|Sa↓ = Ml|Sa↓ = M |Sa↓ |= SP |Sa↓;

• if a /∈ Ai and a ∈ Aa
i+1, i.e. a is assumed, Mx|Sa↓ = Ml|Sa↓ = M ′|Sa↓ |=

SP |Sa↓;

• if a /∈ Ai and a ∈ Ad
i+1, i.e. a is defined, we have Mx|Sa↓ = Ml|Sa⇓ =

M ′′|Sa⇓ |= SP |Sa⇓; thus, since M ′′ ∈ Con, by condition (1) of Def. 6.13

for Con |=c SP , M ′|Sa↓ |= SP |Sa↓, and since M ′′|Sa↓ = Ml|Sa↓ = Mx|Sa↓,

we get Mx|Sa↓ |= SP |Sa↓.

Consequently, by condition (4) of Def. 6.13, we get Ml|SAi+1↓ = Mx|SAi+1↓ |=

SP |SAi+1↓.

By inductive assumption from Ml|SAi+1↓ ∈ Con|SAi+1↓ and Ml|SAi+1↓ |=

SP |SAi+1↓ we conclude that Ml|SAi+1↓ ∈ Con′|SAi+1↓, therefore, M |SAi↓ =

Ms|SAi↓ = Ml|SAi↓ ∈ Con′|SAi↓. This completes the proof of the internal

lemma.

Finally, to prove Lemma 6.51, let there be a model M ∈ [[S]] such that

M |SA↓ ∈ Con|SA↓ and M |SA↓ |= SP |SA↓. By definition A = A0 and by the

proven internal lemma, M |SA↓ ∈ Con′|SA↓.

�

To prove Theorem 6.25, let there be a construction specification SP and

a construction model Con such that Con |=c SP . This means that SP is a

consistent construction specification, thus, by Lemma 6.19, the specification

π2(SP) is consistent in the base institution I. Let Con′ = CleanSP(Con).

Clearly, since Con is a construction model, Con′ is a construction model as

well. We prove that Con′ |=c SP by showing all conditions from Def. 6.13.

To show condition (1), let there be a ∈ S and a model M ∈ Con′ such

that M |Sa⇓ |= SP |Sa⇓. By definition, M |= SP , thus M |Sa↓ |= SP |Sa↓.

For condition (2), let us have a ∈ Compl(S) such that a /∈ S and let

there be a model M |= SP such that M |Sa⇓ ∈ Con′|Sa⇓. From Con |=c SP ,

6.A. APPENDIX: PROOFS 105

since Con′ ⊆ Con, by condition (2) of Def. 6.13 for Con |=c SP , we have

M |Sa↓ ∈ Con|Sa↓. By Lemma 6.51, for A = {a}, from M |= SP and M |Sa↓ ∈

Con|Sa↓, we obtain M |Sa↓ ∈ Con′|Sa↓, as required.

Regarding condition (3), let there be a set A ⊆ Compl(S) and a model

M ∈ [[S]] such that for all a ∈ A, M |Sa↓ ∈ Con′|Sa↓. Again, since Con′ ⊆ Con,

by condition (3) of Def. 6.13 for Con |=c SP , we have M |SA↓ ∈ Con|SA↓. This

means that there exists M ′ ∈ Con such that M ′|SA↓ = M |SA↓ and for all

a ∈ A, M ′|Sa↓ |= SP |Sa↓. By condition (4) of Def. 6.13 for Con |=c SP , we

have M ′|SA↓ |= SP |SA↓, therefore, M |SA↓ |= SP |SA↓. By Lemma 6.51, from

M |SA↓ ∈ Con|SA↓ and M |SA↓ |= SP |SA↓ we get M |SA↓ ∈ Con′|SA↓, as required.

Finally, to prove condition (4) let there be a set A ⊆ Compl(S) and a

model M ∈ Con′ such that for all a ∈ A, M |Sa↓ |= SP |Sa↓. Since M ∈ Con,

by condition (4) of Def. 6.13 for Con |=c SP , we get M |SA↓ |= SP |SA↓, as

required.

�

Lemma 6.52 Cleaning operator is idempotent, i.e.

CleanSP(CleanSP(Con)) = CleanSP(Con)

Proof. Directly from definition. �

Proof of Theorem 6.31. Let the pushout of ft be as on the diagram

of Def. 6.28, and let us name Con = Con1 ⊕ft Con2. To check that Con

fulfills the requirement in Def. 6.5, let a ∈ S be a defined symbol, and let

M,M
′ ∈ Con be two models such that M |Sa⇓ = M ′|Sa⇓.

Without loss of generality we can assume that there exists a1 ∈ S1 such

that β1(a1) = a. Let us name M1 = M |β1 and M ′
1 = M ′|β1 . By defi-

nition M1,M
′
1 ∈ Con1. From M |Sa⇓ = M ′|Sa⇓ we obtain (M |Sa⇓)|(β1)−a1

=

(M |Sa⇓)|(β1)−a1
(cf. Def. 6.49). Hence, we get (M |β1)|Sa1

1 ⇓ = (M ′|β1)|Sa1
1 ⇓,

thus M1|Sa1
1 ⇓ = M ′

1|Sa1
1 ⇓. Since Con1 is a construction model, by Def. 6.5,

M1|Sa1
1 ↓ = M ′

1|Sa1
1 ↓.

106 CHAPTER 6. CONSTRUCTIONS

By Lemma 6.50, the morphism (β1)
−
a1

: Sa1
1 ⇓ → Sa⇓ is surjective, there-

fore, by assumption from the beginning of Sect. 3.5, the reduct functor

|(β1)−a1

: [[Sa↓]] → [[Sa1
1 ↓]] is injective on models, thus we get M |Sa↓ = M ′|Sa↓,

as required.

�

Proof of Lemma 6.35. Let there be two dependency-wise construction

specifications SP1 = 〈S1, SP1〉 and SP2 = 〈S2, SP2〉 compatible w.r.t. a

fitting ft = 〈ϕ1, ϕ2〉 such that S1 and S2 are finite. We use the notation from

Def. 6.28 (see the diagram there).

By Theorem 6.22, dependency-wise construction specifications over finite

construction signatures are consistent. By Lemma 6.19, they are also consis-

tent in the base institution I.

The compatibility definition (cf. Def. 6.34) provides us with certain prop-

erties w.r.t. a given set of independent symbols A ⊆ Compl(F). Using

those properties, we show by induction on the height of dependency struc-

ture of symbols from A that there exists a model M ∈ [[F]] such that

M |FA↓ |= (SP1|ϕ1)|FA↓ and M |FA↓ |= (SP2|ϕ2)|FA↓.

Let us define a sequence of sets of independent symbols from Compl(F),

〈A=
i 〉0≤i≤db(F) given as

A=
i = {a ∈ Compl(F) | db(Fa↓) = i}

Then, let there be another sequence of sets of independent symbols from

Compl(F), 〈Ai〉0≤i≤db(F) given by induction as A0 = ∅ and for i ∈ {1, . . . , db(F)}

Ai = {a ∈ Compl(F) | a ∈ A=
i or

a ∈ Ai−1 and there is no a′ ∈ A=
i such that a < a′}.

The sequence 〈Ai〉0≤i≤db(F) is such that in Ai there is at least one symbol

with the dependency structure of height i; Ai is the set of maximal elements

in
⋃

0≤k≤i A
=
k . We have FAdb(F)↓ = F and also for any i ∈ {1, . . . , db(F)},

FAi⇓ ⊆ FAi−1↓.

6.A. APPENDIX: PROOFS 107

Let us also define two sequences of sets of independent symbols from

Compl(F) corresponding to 〈Ai〉 that are mapped via ϕ1 and ϕ2 to assumed

symbols in Compl(S1) and Compl(S2), respectively, 〈Ak
i 〉0≤i≤db(F), given as

Ak
i = {a ∈ Ai | ϕk(a) /∈ Sk}

for k ∈ {1, 2}. Sets A1
i and A2

i need not be disjoint. Of course for any

i ∈ {0, . . . , db(F)}, Ak
i ⊆ Ai for k ∈ {1, 2} and Ai = A1

i ∪ A2
i .

In the base case, we have A0 = ∅, we take a model M1 |= SP1 (it ex-

ists, because SP1 is consistent) and of course it holds that (M1|ϕ1)|F∅↓ |=

(SP2|ϕ2)|F∅↓, because F∅↓ is the initial signature and SP2 is consistent. This

makes M0 = M1|ϕ1 a model of Compl(F) such that M0|FA0↓ |= (SP1|ϕ1)|FA0↓

and M0|FA0↓ |= (SP2|ϕ2)|FA0↓.

In the induction step, for a natural number i such that 0 ≤ i < db(F) we

assume that there exist a model M i ∈ [[F]] such that M i|FAi↓ |= (SP1|ϕ1)|FAi↓

and Mi|FAi↓ |= (SP 2|ϕ2)|FAi↓. We prove the existence of a model M i+1 ∈ [[F]]

such that M i+1|FAi+1↓ |= (SP1|ϕ1)|FAi+1↓ and Mi+1|FAi+1↓ |= (SP2|ϕ2)|FAi+1↓.

Let M ′
1 |= SP1 be such that (M ′

1|ϕ1)|FAi↓ = M i|FAi↓. By the induc-

tive assumption we have (M ′
1|ϕ1)|FAi↓ |= (SP2|ϕ2)|FAi↓ thus, by FAi+1⇓ ⊆

FAi↓, we get (M ′
1|ϕ1)|FAi+1⇓ |= (SP2|ϕ2)|FAi+1⇓. Since A2

i+1 ⊆ Ai+1, we

have (M ′
1|ϕ1)|FA2

i+1⇓
|= (SP2|ϕ2)|FA2

i+1⇓
. By compatibility, condition (2) from

Def. 6.34, we get (M ′
1|ϕ1)|FA2

i+1↓
|= (SP2|ϕ2)|FA2

i+1↓
.

Let M ′
2 |= SP2 be such that (M ′

2|ϕ2)|FAi↓ = M i|FAi↓. Using the same

reasoning as above, but for exchanged indexes (1 for 2 and vice versa), we

get (M ′
2|ϕ2)|FA1

i+1↓
|= (SP1|ϕ1)|FA1

i+1↓
.

Let B1
i+1 = {a ∈ A1

i+1 | a /∈ A2
i+1}. The following diagram is a pushout in

SigDepfrag

FAi+1↓

F (Ai∪A2
i+1)↓ F (Ai∪B1

i+1)↓

FAi↓

108 CHAPTER 6. CONSTRUCTIONS

Let M ′ ∈ [[FAi+1↓]] be the amalgamation of M ′
1|F(Ai∪A2

i+1
)
↓
and M ′

2|(Ai∪B1
i+1).

Then, by the assumptions from Sect. 3.5, there exists a model M i+1 ∈

[[F]] such that M i+1|FAi+1↓ = M ′. We use the fact that SP1 and SP2

are dependency-wise construction specifications to show that M i+1|FAi+1↓ |=

(SP1|ϕ1)|FAi+1↓ and M i+1|FAi+1↓ |= (SP2|ϕ2)|FAi+1↓. Since both conditions are

symmetrical, we show only the first one. By Def. 6.20, it is enough to show

that for any a ∈ Ai+1, M i+1|Fa↓ |= (SP1|ϕ1)|Fa↓. So consider a ∈ Ai+1.

If a ∈ Ai then by inductive assumption we have M i+1|Fa↓ |= SP1|Fa↓; if

a ∈ A2
i+1 then, since M ′

1 |= SP1, we get M i+1|Fa↓ |= SP1|Fa↓; if a ∈ B1
i+1

then, since (M ′
2|ϕ2)|FA1

i+1↓
|= (SP 1|ϕ1)|FA1

i+1↓
, we have M i+1|Fa↓ |= SP1|Fa↓.

Therefore, M i+1|FAi+1↓ |= (SP1|ϕ1)|FAi+1↓ and, by symmetry, M i+1|FAi+1↓ |=

(SP2|ϕ2)|FAi+1↓.

From the above-given proof by induction, since FAdb(F)↓ = F , we get

Mdb(F) |= SP1|ϕ1 and Mdb(F) |= SP2|ϕ2 . This means that there exist M1 |=

SP1 and M2 |= SP2 such that M1|ϕ1 = Mdb(F) and M2|ϕ2 = Mdb(F). By

amalgamation of M1 and M2 w.r.t. the diagram from Def. 6.28 we get a

model M ∈ [[S]], and moreover, M |= (β1(SP1) ∪ β2(SP2)). This proves that

β1(SP1) ∪ β2(SP2) is a consistent specification in the base institution I. �

Proof of Theorem 6.36. We show two lemmas before we prove the the-

orem. The lemma below shows that the sum of clean models yields a clean

model.

Lemma 6.53 Given two construction specifications SP 1 and SP 2 connected

by a construction fitting ft and two clean construction models Con 1 |=c SP1

and Con2 |=c SP2, it holds that

CleanSP(Con) = Con

where Con = Con1 ⊕ft Con2 and SP = β1(SP1) ∪ β2(SP2).

Proof. Let there be M ∈ Con. By Def. 6.30, M |βi
∈ Coni, thus for

i ∈ {1, 2}, M |βi
|= SP i, so M |= SP . �

6.A. APPENDIX: PROOFS 109

Lemma 6.54 Consider two compatible (cf. Def. 6.34) construction speci-

fications SP 1 and SP 2 connected by a construction fitting ft and two clean

construction models Con1 |=c SP1 and Con2 |=c SP2. Given a set A ⊆

Compl(S) let us name A1 = β1
−1(Compl(SA↓)) and A2 = β2

−1(Compl(SA↓)).

For M ∈ [[S]], if

(M |β1)|SA1
1 ↓

∈ Con1|SA1
1 ↓

and (M |β2)|SA2
2 ↓

∈ Con2|SA2
2 ↓

then M |SA↓ ∈ (Con1 ⊕ Con2)|SA↓.

Proof. Let there be ft , SP1, SP2, Con1, Con2, A, A1 and A2, as described

in the statement of the lemma. Consider a model M ∈ [[S]], such that

(M |β1)|SA1
1 ↓

∈ Con1|SA1
1 ↓

and (M |β2)|SA2
2 ↓

∈ Con2|SA2
2 ↓

. We have then Mi ∈

Coni such that (M |βi
)|
S

Ai
i ↓

= Mi|SAi
i ↓

, for i ∈ {1, 2}. Since CleanSP i
(Coni) =

Coni, Mi |= SP i for i ∈ {1, 2}.

To show that M |SA↓ ∈ (Con1 ⊕ Con2)|SA↓ we first search for M ′
1 ∈ Con1

and M ′
2 ∈ Con2 such that M ′

1|ϕ1 = M ′
2|ϕ2 and for i ∈ {1, 2}, M ′

i |SAi
i ↓

=

Mi|SAi
i ↓

.

Let AF = ϕ1
−1(Compl(SA1

1 ↓)) = ϕ2
−1(Compl(SA2

2 ↓)). By induction we

define a chain of sets A0
F ⊆ A1

F ⊆ ∙ ∙ ∙ ⊆ An
F as A0

F = Compl(FAF↓) and

Ai+1
F = {a ∈ Compl(F) | Compl(Fa⇓) ⊆ Ai

F}. Dependency structures are

bounded strict orders (cf. Sect. 5.3), therefore, there exists the least natural

number n such that An
F = Compl(F). For every i ∈ {0, . . . , n} let us name

Ai
1 = ϕ1(A

i
F) and Ai

2 = ϕ2(A
i
F).

By induction on i ∈ 〈0, . . . , n〉 we define two series of models M i
1 ∈ Con1

and M i
2 ∈ Con2 such that

M i
1|SA1

1 ↓
= M1|SA1

1 ↓
, M i

2|SA2
2 ↓

= M2|SA2
2 ↓

and

(M i
1|ϕ1)|FAi

F↓
= (M i

2|ϕ2)|FAi
F↓

In the base case, for i = 0, let M0
1 = M1 andM0

2 = M2. It is easy to check

that the above conditions are met.

110 CHAPTER 6. CONSTRUCTIONS

In the induction step case, let us assume that there are M i
1 and M i

2

satisfying the above conditions. In what follows we construct M i+1
1 and

M i+1
2 and prove that they have the required properties.

Let us define two sets X = {a ∈ Ai+1
F | a 6∈ Ai

F and ϕ1(a) /∈ S1} and

Y = {a ∈ Ai+1
F | a 6∈ Ai

F and a 6∈ X}. The set X contains F -symbols such

that they belong to Ai+1
F , they don’t belong to Ai

F and their images w.r.t. ϕ1

in S1 are assumed symbols. For any a, a′ ∈ X, db(Fa↓) = db(Fa′
↓), therefore,

X is a set of independent symbols in F . The set Y contains all the F -symbols

such that they belong to Ai+1
F and they belong neither to Ai

F nor to X. It

is easy to show that their images w.r.t. ϕ2 in S2 are assumed symbols and

that Y is a set of independent symbols in F . Let us name X1 = ϕ1(X)

and Y2 = ϕ2(Y). Since construction signature morphisms do not change the

dependency structure of symbols (thus they have the same height), it also

holds that X1 and Y2 are sets of independent assumed symbols in S1 and S2,

respectively.

From compatibility (cf. Def. 6.34), since M i
2 |= SP2, (M i

2|ϕ2)|FX⇓ |=

(SP1|ϕ1)|FX⇓ and X is a set of independent symbols of F that are assumed

in S1, we get (M i
2|ϕ2)|FX↓ |= (SP1|ϕ1)|FX↓, i.e. there exists MX

1 |= SP1 such

that

(MX
1 |ϕ1)|FX↓ = (M i

2|ϕ2)|FX↓

Since both X and X1 are sets of independent symbols in F and S1, respec-

tively, the morphism (ϕ1)
−
X : FX⇓ → SX1

1 ⇓ is a surjection (cf. Lemma 6.50).

By assumption from the beginning of Sect. 3.5, the reduct functor |(ϕ1)−X
is

injective on models. Consequently, from

(M i
1|ϕ1)|FX⇓ = (M i

2|ϕ2)|FX⇓ = (MX
1 |ϕ1)|FX⇓

by commutativity of the diagram from Def. 6.49 and injectivity of |(ϕ1)−X
, we

get

M i
1|SX1

1 ⇓
= MX

1 |
S

X1
1 ⇓

This means that MX
1 |

S
X1
1 ⇓

∈ Con1|SX1
1 ⇓

, thus for every b ∈ X1 we have

MX
1 |Sb

1⇓
∈ Con1|Sb

1⇓
, therefore, by (2) of Def. 6.13, MX

1 |Sb
1↓
∈ Con1|Sb

1↓
. Con-

6.A. APPENDIX: PROOFS 111

sequently, by (3) of Def. 6.13,

MX
1 |

S
X1
1 ↓

∈ Con1|SX1
1 ↓

Let X ′
1 = X1 ∪ Ai

1. The following square of inclusions is a pushout in

SigDepfrag .

SX′
1

1 ↓

SAi
1

1 ↓ SX1
1 ↓

SX1
1 ⇓

Let MX′

1 ∈ [[SX′

1 ↓]] be the result of amalgamation of M i
1|

S
Ai

1
1 ↓

and MX
1 |

S
X1
1 ↓

w.r.t. the pushout given above. Let M s
1 ∈ [[S1]] be such that M s

1 |SX′
1

1 ↓
=

MX′

1 (cf. the assumption about the base institution I at the beginning of

Sect. 3.5). From (3) of Def. 6.13, since for all a ∈ X ′
1, M s

1 |Sa
1↓ ∈ Con1|Sa

1↓

we get M s
1 |SX′

1
1 ↓

∈ Con1|
S

X′
1

1 ↓
. As a consequence, there exists M i+1

1 ∈ Con1

such that M s
1 |SX′

1
1 ↓

= M i+1
1 |

S
X′

1
1 ↓

. Obviously M i+1
1 |

S
A1
1 ↓

= M1|SA1
1 ↓

. Let X ′ =

X ∪ Ai
F . By construction we have

(M i+1
1 |ϕ1)|FX′

↓ = (M2|ϕ2)|FX′
↓

Now, in order to construct M i+1
2 we repeat the similar reasoning as above,

but for Y instead of X:

From compatibility (cf. Def. 6.34), since M i+1
1 |= SP1, (M i+1

1 |ϕ1)|FY⇓ |=

(SP2|ϕ2)|FY⇓ and Y is a set of independent symbols of F that are assumed

in S2, we get (M i+1
1 |ϕ1)|FY↓ |= (SP2|ϕ2)|FY↓, i.e. there exists MY

2 |= SP2 such

that

(MY
2 |ϕ2)|FY↓ = (M i+1

1 |ϕ1)|FY↓

Since both Y and Y2 are sets of independent symbols in F and S2, respec-

tively, the morphism (ϕ2)
−
Y : FY⇓ → SY2

2 ⇓ is a surjection (cf. Lemma 6.50).

By assumption from the beginning of Sect. 3.5, the reduct functor |(ϕ2)−Y
is

112 CHAPTER 6. CONSTRUCTIONS

injective on models. Consequently, from

(M i
2|ϕ2)|FY⇓ = (M i+1

1 |ϕ1)|FY⇓ = (MY
2 |ϕ2)|FY⇓

by commutativity of the diagram from Def. 6.49 and injectivity of |(ϕ2)−Y
, we

get

M i
2|SY2

2 ⇓
= MY

2 |
S

Y2
2 ⇓

This means that MY
2 |

S
Y2
1 ⇓

∈ Con2|SY2
2 ⇓

, thus for every b ∈ Y2 we have

MY
2 |Sb

2⇓
∈ Con2|Sb

2⇓
, therefore, by (2) of Def. 6.13, MY

2 |Sb
2↓
∈ Con2|Sb

2↓
. Con-

sequently, by (3) of Def. 6.13,

MY
2 |

S
Y2
2 ↓

∈ Con2|SY2
2 ↓

Let X ′
2 = ϕ2(X) ∪ Ai

2. The following square of inclusions is a pushout in

SigDepfrag .

SAi+1
2

2 ↓

SX′
2

2 ↓ SY2
2 ↓

SY2
2 ⇓

Let MY ′

2 ∈ [[SAi+1
2

2 ↓]] be the result of amalgamation of M i
2|SX′

2
2 ↓

and MY
2 |

S
Y2
2 ↓

w.r.t. the pushout given above. Let M s
2 ∈ [[S2]] be such that M s

2 |
S

Ai+1
2

2 ↓
= MY ′

2

(cf. assumption (7) in Sect. 3.5). From (3) of Def. 6.13, since for all a ∈

Ai+1
2 , M s

2 |Sa
2↓ ∈ Con2|Sa

2↓ we get M s
2 |

S
Ai+1

2
2 ↓

∈ Con2|
S

Ai+1
2

2 ↓
. As a consequence,

there exists M i+1
2 ∈ Con2 such that M s

2 |
S

Ai+1
2

2 ↓
= M i+1

2 |
S

Ai+1
2

2 ↓
. Obviously

M i+1
2 |

S
A2
2 ↓

= M2|SA2
2 ↓

. Moreover, by construction we have

(M i+1
1 |ϕ1)|FAi+1

F ↓
= (M i+1

2 |ϕ2)|FAi+1
F ↓

This finishes the induction step construction of M i+1
1 and M i+1

2 .

Put M ′
1 = Mn

1 and M ′
2 = Mn

2 . Since An
F = Compl(F), we indeed have

Mn
1 |ϕ1 = Mn

2 |ϕ2 and, by the construction, M ′
i ∈ Coni, M ′

i |SAi
i ↓

= Mi|SAi
i ↓

, for

6.A. APPENDIX: PROOFS 113

i ∈ {1, 2}, as it was required.

Now, to prove the main fact in Lemma 6.54, let M ′ be the result of amal-

gamation of M ′
1 and M ′

2. By definition of the sum of construction models,

M ′ ∈ Con1 ⊕ft Con2. The following square of inclusions is a pushout in

SigDepfrag

SA↓

SA1
1 ↓ SA2

2 ↓

FAF↓

where AF = ϕ1
−1(A1) = ϕ2

−1(A2). We have M ′|SA↓ = M |SA↓, because for

i ∈ {1, 2}, (M ′|βi
)|
S

Ai
i ↓

= M1|SAi
i ↓

and by uniqueness of the amalgamation

of models with respect to the above pushout. Therefore, M |SA↓ ∈ (Con1 ⊕

Con2)|SA↓, as required. �

Now, to prove Theorem 6.36 let us have two construction specifications,

SP1 and SP2, connected by a fitting 〈ϕ1, ϕ2〉 and let there be two clean

construction models Con1 |=c SP1 and Con2 |=c SP2. We name Con =

Con1 ⊕ft Con2 ∈ [[S]]c and SP = β1(SP1) ∪ β2(SP2). By Theorem 6.31 Con

is a construction model. By Lemma 6.53 Con is clean, i.e. CleanSP(Con) =

Con. To show that Con |=c SP we prove the four conditions of Def. 6.13.

As for condition (1), let a ∈ S and let there be M ∈ Con such that

M |Sa⇓ |= SP |Sa⇓. Since Con is clean, from M ∈ Con and Lemma 6.53 we get

M |= SP , therefore, M |Sa↓ |= SP |Sa↓.

Regarding condition (2), let a ∈ Compl(S) be such that a /∈ S and

let there be M |= SP such that M |Sa⇓ ∈ Con|Sa⇓. For i ∈ {1, 2}, let

Ai = β−1
i (Symb(Sa↓)). Let Mi = M |βi

. Of course Mi |= SP i. For every

ai ∈ Ai, Mi|Sai
i ⇓ ∈ Coni|Sai

i ⇓. By the definition of the construction signature

morphism, ai ∈ Compl(S i) and ai /∈ S i, because otherwise a ∈ S. By con-

dition (2) of Def. 6.13 for Coni, we get Mi|Sai
i ↓ ∈ Coni|Sai

i ↓. By the condition

(3) of the same definition we have Mi|SAi
i ↓

∈ Coni|SAi
i ↓

. By Lemma 6.54 we

get M |Sa↓ ∈ Con|Sa↓, as required.

114 CHAPTER 6. CONSTRUCTIONS

To prove condition (3), let there be A ⊆ S and a model M ∈ [[S]].

Let us assume that for every a ∈ A, M |Sa↓ ∈ Con|Sa↓. For i ∈ {1, 2}, let

Ai = β−1
i (Symb(SA↓)). Let Mi = M |βi

, for every ai ∈ Ai, Mi|Sai
i ↓ ∈ Con|Sai

i ↓.

By condition (3) of Def. 6.13 for Coni, we get Mi|SAi
i ↓

∈ Coni|SAi
i ↓

. By

Lemma 6.54 we obtain M |SA↓ ∈ Con|SA↓, as required.

Condition (4) follows: let there be A ⊆ Compl(S) and a model M ∈ Con

such that for all a ∈ A M |Sa↓ |= SP |Sa↓. By Lemma 6.53 (since Con1 and

Con2 are assumed to be clean), Con = CleanSP(Con), i.e. M |= SP , thus

M |SA↓ |= SP |SA↓. �

Chapter 7

Refinements

7.1 Introduction

Specifications refinements are a means to strengthen the specification in order

to add more implementation details. The following types of refinement are

described in the literature (cf. [GB80, ST88, ST12]).

Simple refinement. Specification SP1 refines SP0, SP0∼∼ SP1, when ev-

ery SP1-model is an SP0-model. Specification refinements compose

(vertically), i.e. SP 0∼∼ SP1 and SP1∼∼ SP2 implies SP0∼∼ SP2.

Implementation is a sequence of refinement steps

SP0∼∼ SP1∼∼ . . .∼∼ SPn

from the most abstract SP 0 to the most detailed SPn. All models of

SPn are also models of SP0.

Stepwise refinement via constructors. Constructor implementation, de-

noted by SP 0
∼∼
κ1 SP1, is a refinement via constructor κ1 : [[Sig(SP1)]] →

[[Sig(SP 0)]]. A constructor implementation is correct if for every model

M ∈ [[SP1]], κ1(M) ∈ [[SP0]]. In this approach, an implementation of

specification SP0 is a sequence of refinement steps via constructors

SP0
∼∼
κ1 SP1 ∼∼

κ2 . . . ∼∼
κn SPn = EMPTY

where EMPTY stands for the empty specification. If all constructor

implementations in the sequence are correct, a model of SP0 is obtained

by application of constructors, starting from the unique trivial model

115

116 CHAPTER 7. REFINEMENTS

ME ∈ [[EMPTY]],

κ1(κ2(. . . κn(ME) . . .)) ∈ [[SP0]].

Branching stepwise refinement via multi-parameter constructors.

Multi-parameter constructor implementation SP0
∼∼
κ1 (SP1

1, . . . , SP1
n)

is a refinement via constructor κ1 : [[Sig(SP1
1)]] × ∙ ∙ ∙ × [[Sig(SP1

n)]] →

[[Sig(SP 0)]]. Similarly to the single-parameter case, a multi-parameter

constructor implementation is correct if for all models M1 ∈ [[SP1
1]], . . . ,

M 1
n ∈ [[SPn

1]], it holds that κ1(M1, . . . ,Mn) ∈ [[SP0]]. In this approach,

refinement steps introduce branching and the implementation process

of SP0 is presented as a tree

SP0
∼∼

κ






SP1
∼∼
κ1 EMPTY

. . .

SPn
∼∼
κn






SPn1
∼∼
κn1 EMPTY

. . .

SPnm
∼∼
κnm EMPTY

with specification EMPTY in all leaves. Again, if all constructor im-

plementation steps in the tree are correct, the model of SP 0 is obtained

by application of constructions to trivial models of EMPTY .

Constructors in the latter two approaches are the same concept as single-

and multi-parameter parameterised modules (cf. Sect. 3.4). Constructions

introduced in the previous chapter also serve the similar purpose.

In this chapter we introduce the notion of construction specification refine-

ment corresponding to the simple refinement of specifications, but defined for

construction specifications. The construction fittings together with the sum

operation described in Sect. 6.5 are suitable for specification of branching.

Our approach to specification implementation combines the simple re-

finement and the branching stepwise refinement. We call it diagrams of

constructions (cf. Chapter 8). Implementation process of SP0 is presented

as a tree

7.2. CONSTRUCTION SIGNATURE REFINEMENT MORPHISMS 117

SP0

ω
∼∼ cSP ′

0
∼∼
ft0






SP1

ω1
∼∼ cSP ′

1

SP2

ω2
∼∼ cSP ′

2
∼∼
ft2






SP21

ω
∼∼ cSP ′

21
∼∼
ft21

{
SP211

SP212

SP22

ω22
∼∼ c SP ′

22

where SP0

ω
∼∼ cSP ′

0 says that SP ′
0 is a construction specification refinement

of SP0 along construction signature refinement morphism (cf. Def. 7.15 be-

low) and SP ′
0

∼∼
ft0 (SP1, SP2) says that SP ′

0 = SP1 ⊕ft0 SP 2 (cf. Def. 6.32),

i.e. that SP ′
0 is a sum of construction specifications SP1 and SP2 w.r.t. con-

struction fitting ft . If the construction specifications in every branch are

compatible, the construction model of (the most abstract) SP0 is obtained

by a series of sums of construction models and reducts along construction

refinement morphisms (cf. Def. 7.4 below), starting from (the most detailed)

construction models of the construction specification in the leaves of the tree.

7.2 Construction Signature Refinement Mor-

phisms

The construction signature morphisms considered so far (cf. Def. 6.1) pre-

serve and reflect the dependency structure of each symbol. This means that

adding new or removing old dependencies is illegal. In this section, we in-

troduce another type of morphism between construction signatures called

construction signature refinement morphism. It allows for adding new sym-

bols dependent on the existing signature symbols, but at the cost of requiring

injectivity on assumed symbols. The details follow.

Definition 7.1 (Construction Signature Refinement Morphism) A con-

struction signature refinement morphism ω : S1 → S2 is a Sigfrag-morphism

subject to the following conditions:

1. (injective on assumed) for all b1, b
′
1 ∈ Compl(S1), if b1, b

′
1 /∈ S1 and

ω(b1) = ω(b′1) then b1 = b′1,

118 CHAPTER 7. REFINEMENTS

2. (assumed stay so) for all b1 ∈ Compl(S1), if b1 6∈ S1 then ω(b1) 6∈ S2,

3. (new are defined) for all b2 ∈ Compl(S2), if b2 6∈ img(ω) then b2 ∈ S2,

4. (p-morphism within the image of ω)

(a) (monotonic) for all b1, b
′
1 ∈ Compl(S1), if b′1 < b1 then ω(b′1) <

ω(b1),

(b) (weakly reflected < within the range) for all b1, b
′
1 ∈ Compl(S1),

if ω(b′1) < ω(b1), then there exists b′′1 ∈ Compl(S1) such that

b′′1 < b1 and ω(b′′1) = ω(b′1),

The above requirements say that assumed elements must be injectively

mapped and they must not become defined. The assumed elements represent

the parameters of the construction, therefore one must ensure that no implicit

application is performed and that independent symbols remain independent

in the refined signature. All new symbols are defined in the target signature,

because they are considered auxiliary symbols, thus cannot be assumed there.

Refinement morphisms are monotone and within their range they reflect

weakly the dependency relation. This is to ensure that the refinement neither

removes nor adds any dependencies in the target signature between symbols

that existed in the source signature. The highlight of refinement morphisms is

that there is no restriction concerning dependencies to and from new symbols.

It is easy to check that construction signature refinement morphisms com-

pose and that the identity morphisms from Sigfrag are also construction sig-

nature refinement morphisms.

Definition 7.2 By SigDepref we denote the category of construction sig-

natures with objects from SigDepfrag and construction signature refinement

morphisms introduced by Def. 7.1.

In general, construction signature morphisms are not construction sig-

nature refinement morphisms and vice versa. The former are suitable for

application, i.e. an assumed symbol may be mapped to a defined symbol.

7.2. CONSTRUCTION SIGNATURE REFINEMENT MORPHISMS 119

The latter are suitable to express implementation details, because they per-

mit addition of new auxiliary symbols on which the existing symbols may

depend.

Example 7.3 Consider the following three construction signatures

S1 = (sort s; ops a : s, b : s; dep a < b),

S2 = (sort s; ops a : s, b : s, c : s; dep a < b, c < b),

S3 = (sort s; ops b : s, c : s; dep c < b)

and the two Sigfrag-morphisms

ω : S1 → S2 = {s 7→ s, a 7→ a, b 7→ b},

ϕ : S2 → S3 = {s 7→ s, a 7→ c, b 7→ b, c 7→ c}.

Morphism ω adds a new defined symbol c into the dependency structure of

b. Morphism ϕ merges assumed a with defined c, what corresponds to the

self-application operation. It is easy to check that ω ∈ SigDepref and ϕ ∈

SigDepfrag , i.e. ω is a construction signature refinement morphism, whereas

ϕ is a construction signature morphism. We also note that ϕ /∈ SigDepref

and ω /∈ SigDepfrag .

The above notation assumes the existence of the coercion of SigDepref

into Sigfrag . The coercion functor UnDepref : SigDepref → Sigfrag simply

removes dependency relation from objects and acts as an identity on mor-

phisms, analogously to UnDepfrag (defined in Sect. 5.3).

Let us now define a reduct of construction model along a construction

signature refinement morphism.

Definition 7.4 (Reduct along Construction Refinement Morphism)

Given a SigDepref -morphism ω : S1 → S2 and a construction model Con2 ∈

[[S2]]
c, the reduct of the construction model Con2 along ω is defined as

Con2|ω = {M |Compl(ω) | M ∈ Con2}

120 CHAPTER 7. REFINEMENTS

The definition of the reduct along construction refinement morphism

copies the definition of the reduct along construction signature morphism

given in Def. 6.7. Nevertheless, since morphisms are different, the following

lemma is needed.

Lemma 7.5 The reduct of a construction model of S2 along a construction

refinement morphism ω : S1 → S2 is a construction model of S1.

The proof of the lemma is in Appendix 7.A.

The following lemma shows that the reduct along a construction refine-

ment morphism preserves the property of being well-grouped construction

model (cf. Def. 6.10). The proof relies on the finiteness of the source con-

struction signature.

Lemma 7.6 The reduct of a well-grouped construction model of a construc-

tion signature S2 along a construction refinement morphism ω : S1 → S2,

for a finite construction signature S1, is a well-grouped construction model

of S1.

The proof of the lemma is in Appendix 7.A.

7.3 Construction Specification Refinements

The obvious standard notion of the simple refinement of two construction

specifications SP1 and SP2 over the same construction signature S is [[SP2]]
c ⊆

[[SP1]]
c (cf. [ST12]). We find it useful, however, to introduce this notion dif-

ferently, relying directly on the concepts from the base institution I. The

resulting notion, although technically slightly different, will serve the same

purpose in all practical situations.

Definition 7.7 (Construction Specification Refinement) Given two con-

struction specifications SP 1 and SP 2 over the same construction signature S,

SP1 is a construction specification refinement of SP 1, SP 1
c SP2, iff

1. (refinement) [[SP2]] ⊆ [[SP1]];

7.3. CONSTRUCTION SPECIFICATION REFINEMENTS 121

2. (stronger only on defined) for a ∈ Compl(S) and a model M ∈ [[S]],

if M |Sa⇓ |= SP2|Sa⇓ and M |Sa↓ |= SP1|Sa↓, but M |Sa↓ 6|= SP2|Sa↓ then

a ∈ S, i.e. a is a defined symbol.

The above conditions allow the specification SP2 to be stronger only on

defined symbols. This corresponds to the typical refinement of parameterised

specification, where only the specification of the result may be strengthened.

When we compare Def. 7.7 and simple [[SP2]]
c ⊆ [[SP1]]

c, it is clear that the

former is stronger, because it requires the equivalent specification of assumed

symbols in both specifications, whereas the latter admits the weakening of

the said specifications.

Example 7.8 Consider the construction signature

S = (sort s; ops a : s, b : s, c : s; deps a < b , b < c)

and three construction specifications over S

SP1 = 〈S, {b = a}〉,

SP2 = 〈S, {b = c}〉,

SP3 = 〈S, {b = a, b = c}〉.

It holds that

SP1 6
c SP2 and SP 1

c SP3

but

[[SP2]]
c ⊆ [[SP1]]

c and [[SP 3]]
c ⊆ [[SP1]]

c.

The following lemma shows that Def. 7.7 does indeed yield the refinement

of construction specifications.

Lemma 7.9 Given a construction specification refinement SP 1
c SP2 and

a construction model Con |=c SP2, it holds that Con |=c SP1.

The proof is in Appendix 7.A.

It is worth to note that a clean model of a refinement is also a clean model

of the original specification.

122 CHAPTER 7. REFINEMENTS

Lemma 7.10 For SP 1
c SP2 and a construction model Con |=c SP2,

CleanSP2
(Con) = CleanSP1

(CleanSP2
(Con)).

The proof is a direct application of condition (1) from Def. 7.7.

A special kind of construction refinement morphism, compatible with the

specification is needed to prove the satisfaction condition.

Definition 7.11 (Conservative Construction Refinement Morphism)

Given a construction specification SP 1 = 〈S1, SP1〉 ∈ Spec(S1) and a con-

struction refinement morphism ω : S1 → S2, we say that ω is a conservative

construction refinement morphism w.r.t. SP1 iff ω : SP1 → ω(SP1) is a con-

servative specification morphism.

It is easy to show that all injective construction specification morphisms

are conservative.

Lemma 7.12 For a construction specification SP 1 ∈ Spec(S1) and a con-

struction refinement morphism ω : S1 → S2, if ω is injective on symbols then

ω is a conservative construction refinement morphism w.r.t. SP 1.

Proof. The condition from Def. 7.11 is discharged directly by assumption

(7) from Sect. 3.5. �

The following example shows a non-injective construction refinement mor-

phism that is conservative for some construction specification and fails to be

conservative for another construction specification.

Example 7.13 Consider two construction signatures

S1 = (sort s; ops a1 : s, a2 : s, b : s; deps b < a1, b < a2),

S2 = (sort s; ops a : s, b : s, c : s; deps c < b, b < a)

and the construction refinement morphism ω : S1 → S2 given by ω(s) = s,

ω(a1) = a and ω(a2) = a. Let there be the two construction specifications

SP1 = 〈S1, {a1 = b, a2 = b}〉,

SP ′
1 = 〈S1, ∅〉.

7.3. CONSTRUCTION SPECIFICATION REFINEMENTS 123

Morphism ω is conservative w.r.t. SP 1, but it is not conservative w.r.t. SP ′
1.

The satisfaction condition (as discussed in Sect. 3.3) legitimates the use of

translation on construction specifications. It also constitutes a step towards

the definition of an institution of constructions. The following theorem proves

the “if” part of the satisfaction condition. The second half, the “only-if”part,

is not needed for our purposes and we leave it for the future work. The proof

uses Lemma 7.6 and thus requires the finiteness of the source construction

signature (cf. the comment on assumption (2) in Sect. 3.5).

Theorem 7.14 (Satisfaction Condition - the “if” part) Consider a sig-

nature refinement morphism ω : S1 → S2 and a construction specification

SP ∈ Spec(S1) such that S1 is finite and ω is a conservative construction

refinement morphism w.r.t. SP (cf. Def. 7.11); given a construction model

Con2 ∈ [[S2]]
c such that Con2 = Cleanω(SP)(Con2),

if Con2 |=
c ω(SP) then Con2|ω |=c SP

The proof is in Appendix 7.A.

We are now ready to introduce formally a refinement of a construction

specification along a signature refinement morphism.

Definition 7.15 (Construction Specification Refinement) For a con-

struction signature refinement morphism ω : S1 → S2 and two construc-

tion specifications SP 1 and SP 2 over S1 and S2, respectively, we say that

SP2 is a construction specification refinement of SP1 along ω, denoted by

SP1

ω
∼∼ cSP2, iff

1. ω is a conservative construction refinement morphism w.r.t. SP 1,

2. ω(SP1)
c SP2 (cf. Def. 7.7).

As a consequence of Lemma 7.9, Lemma 7.10, Theorem 6.25 and The-

orem 7.14, Def. 7.15 describes the refinement of construction specifications

via the reduct w.r.t. the construction signature refinement morphism.

124 CHAPTER 7. REFINEMENTS

Corollary 7.16 Consider a construction specification refinement along sig-

nature refinement morphism ω : S1 → S2, for a finite construction signature

S1,

SP1

ω
∼∼ cSP2.

For any clean construction model Con2 |=c SP2, it holds that

Con2|ω |=c SP1

and also

CleanSP1
(Con2|ω) = Con2|ω .

The above corollary justifies the notion of refinement of construction spec-

ifications in diagrams of constructions, to be presented in Chapter 8.

7.4 Refinement Compositionality

Having defined the construction specification refinement we check how it

can be used with the sum operation from Sect. 6.5. At the beginning we

prove compositionality of vertical morphisms (refinement) w.r.t. horizontal

morphisms (sum operation) (cf. [ST06]). Yet later we discover limits of its

applicability, as it turns out that it does not cover some interesting cases of

the stepwise system construction method.

Theorem 7.17 (Refinement and Fittings Compositionality) Given two

construction fitting spans 〈ϕ1, ϕ2〉 : S1↖↗S2 and 〈ϕ′
1, ϕ

′
2〉 : S

′
1↖↗S ′

2 and their

pushouts β1, β2 and β′
1, β′

2; given also three construction refinement mor-

phisms ω1 : S1 → S ′
1, ω2 : S2 → S ′

2 and ωF : F → F ′ such that ωF ; ϕ′
1 =

ϕ1; ω1 and ωF ; ϕ′
2 = ϕ2; ω2 in Sigfrag ; there exists the unique construction

refinement morphism ω : S → S ′ such that the following diagram commutes

in Sigfrag

7.4. REFINEMENT COMPOSITIONALITY 125

S

S1 S2

F

S ′

S ′
1 S ′

2

F ′

ϕ1 ϕ2

β1 β2

ϕ′
1 ϕ′

2

β′
1 β′

2ω

ω1 ω2

ωF

where S and S ′ are the construction signatures of the sum (cf. Def. 6.28) of

〈ϕ1, ϕ2〉 and 〈ϕ′
1, ϕ

′
2〉 respectively.

The proof is in Appendix 7.A. The result is not a trivial consequence

of pushout properties, because the above diagram is in Sigfrag and we re-

quire ω te be a SigDepref -morphism. Let us remind that both SigDepfrag

and SigDepref are embeddable into Sigfrag via functors UnDepfrag and

UnDepref respectively.

Applicability of Theorem 7.17 is limited, because the conditions put on

construction fittings and refinement morphisms are somehow incompatible

and do not cover all cases of interest. On the one hand, a construction

signature being the source of a construction fitting span is required to be an

empty fragment, i.e., with all elements being assumed. On the other hand,

new elements that may appear in the target of a construction refinement

morphism have to be defined. As a consequence, refinement morphism ωF

from Theorem 7.17 must not add any new elements to its target and it must

be injective on assumed symbols. Therefore, since construction signature

morphisms are p-morphisms, refinements ω1 and ω2 must not add any new

dependencies to shared elements, i.e., elements that come from from F . As

a consequence, no refinement (on either side) of shared symbols is possible.

The following example shows some limitations of the compositionality

given by Theorem 7.17.

Example 7.18 We show a simple typical situation where refinement con-

126 CHAPTER 7. REFINEMENTS

cerns shared symbols. Consider the following construction signatures

S = (sort s; ops a : s, b : s),

S1 = (sort s; op a : s),

S2 = (sort s; ops a : s, b : s),

F = (sort s; op a : s)

connected by inclusions

S

S1 S2

F

S ′
1 β1 β2

ϕ1 ϕ2

ω1

and S ′
1 = (sorts s, u; ops a : s, c : u; dep c < a) being a refinement of S1

via inclusion.

There exists no refinement of S2 that may be a part of the cube from

Theorem 7.17. Let us analyse why.

First we notice that in fact ϕ1 and ϕ2 are SigDepfrag-morphisms. Let

ft = 〈ϕ1, ϕ2〉, which is a construction fitting, and β1 and β2 are the pushout

of ft , moreover ω1 is a SigDepref -morphism. Since construction signature

refinement morphism ω1 adds a new defined symbol c to the dependency struc-

ture of shared symbol a in S ′
1, every refinement of S2 (via any ω2) would also

have to make a dependent on the new defined symbol c. Consequently, if there

existed construction signature F ′ and a pair of morphisms ϕ′
1 : F ′ → S1 and

ϕ′
2 : F ′ → S2, it would also contain this dependency. Construction fitting

sources are empty fragments (all symbols assumed) and construction signa-

ture refinement morphisms are bijective on assumed symbols, so the inclusion

between F and F ′ must have been an isomorphism. The pair 〈ϕ′
1, ϕ

′
2〉 would

fail to be a construction fitting, because its pushout object would not be a

construction signature (internal mapping would fail to be injective).

7.4. REFINEMENT COMPOSITIONALITY 127

The proper approach in the top-down style of the system construction is

to to add a dependency to a shared symbol before it is decomposed via the

sum operation.

The next chapter introduces diagrams of constructions without assump-

tion that local refinements compose with sums in any way.

128 CHAPTER 7. REFINEMENTS

7.A Appendix: Proofs

The following definition and lemma will be used in the subsequent proofs.

Definition 7.19 Given two signature fragments S1,S2 ∈ SigDepref , a set

A ⊆ Compl(S1) and a SigDepref -morphism ω : S1 → S2,

• the SigDepref -morphism ωA : SA
1↓ → Sω(A)

2 ↓ is given as ωA = ω|SA
1↓

,

• if A is a set of independent symbols in Compl(S1) and ω(A) is a

set of independent symbols1 in Compl(S2), the SigDepref -morphism

ω−
A : SA

1⇓ → Sω(A)
2 ⇓, is given as ω−

A = ω|SA
1⇓

,

• the following diagram, where all unnamed arrows are inclusions, is a

commuting diagram in SigDepref

S2S1

SA
1↓ Sω(A)

2 ↓

SA
1⇓ Sω(A)

2 ⇓

ω

ωA

ω−
A

Cf. Def. 6.49 for analogous definition for SigDepfrag -morphisms.

Notation. We sometimes use an element, instead of a singleton set that

consists of this element. When A = {b}, instead of ωA : SA
1↓ → Sω(A)

2 ↓

and ω−
A : SA

1⇓ → Sω(A)
2 ⇓, we write ωb : S

b
1↓ → Sω(b)

2 ↓ and ω−
b : Sb

1⇓ → Sω(b)
2 ⇓,

respectively.

Lemma 7.20 Given a construction refinement morphism ω : S1 → S2, a

construction model Con2 ∈ [[S2]]
c, two models M2,M

′
2 ∈ Con2, and A ⊆

Compl(S1),

1. if (M2|ω)|SA
1↓

= (M ′
2|ω)|SA

1↓
, then M2|Sω(A)

2 ↓
= M ′

2|Sω(A)
2 ↓

,

1Again, as in Def. 6.49, this is an important assumption for all ω that are not injective
on symbols.

7.A. APPENDIX: PROOFS 129

2. if A is a set of independent symbols in Compl(S1) and ω(A) is a set of

independent symbols in Compl(S2), if (M2|ω)|SA
1⇓

= (M ′
2|ω)|SA

1⇓
, then

M2|Sω(A)
2 ⇓

= M ′
2|Sω(A)

2 ⇓
.

Proof. We prove the lemma for case (2). The proof for case (1) is analogous.

The morphism ω−
A : SA

1⇓ → Sω(A)
2 ⇓ does not need to be surjective. Let

ωe
−
A be an abstract surjection ωe

−
A : SA

1⇓ → ω−
A(SA

1⇓) given by factorisation

of ω−
A to ωe

−
A and ωi

−
A. Assumption (3) from Sect. 3.5 implies that abstract

surjections in Sig are surjective on their symbols, thus ωe
−
A is surjective on

its symbols. Therefore, by assumption (6) from Sect. 3.5, the reduct functor

|ωe
−
A

: [[ω−
A(SA

1⇓)]] → [[SA
1⇓]] is injective on models. Consequently, we get

M2|ω−
e (SA

1⇓) = M ′
2|ω−

e (SA
1⇓).

By induction on the dependency bound (cf. Def. 3.4) of elements in Sω(A)
2 ⇓

we prove that for every b ∈ Compl(Sω(A)
2 ⇓), M2|Sb

2↓
= M ′

2|Sb
2↓
.

(Base case) For i = 0, there are no b ∈ Compl(Sω(A)
2 ⇓), such that

db(Sb
2↓) = 0, so the implication trivially holds.

(Induction step) Let 0 < i < db(Sω(A)
2 ⇓) and for all c ∈ Compl(Sω(A)

2 ⇓)

such that db(Sc
2↓) < i, we have M2|Sc

2↓ = M ′
2|Sc

2↓. Let b ∈ Compl(Sω(A)
2 ⇓) be

such that db(Sb
2↓) = i. By inductive assumption we have M2|Sb

2⇓
= M ′

2|Sb
2⇓

and

1. either b ∈ Sω(A)
2 ⇓ (b is a defined element) and since M2,M

′
2 ∈ Con, by

Def. 6.5, from M2|Sb
2⇓

= M ′
2|Sb

2⇓
we get M2|Sb

2↓
= M ′

2|Sb
2↓
,

2. or b /∈ Sω(A)
2 ⇓ (b is an assumed element), thus, by conditions (3) of

Def. 7.1, b ∈ Compl(ω−
e (SA

1⇓)), therefore, by inductive assumption

M2|Sb
2⇓

= M ′
2|Sb

2⇓
and M2|ω−

e (SA
1⇓) = M ′

2|ω−
e (SA

1⇓), we get M2|Sb
2↓

= M ′
2|Sb

2↓
.

So indeed, for every b ∈ Compl(Sω(A)
2 ⇓), M2|Sb

2↓
= M ′

2|Sb
2↓
, from which we

conclude that M2|Sω(A)
2 ⇓

= M ′
2|Sω(A)

2 ⇓
.

�

Proof of Lemma 7.5. Let there be a construction refinement morphism

ω : S1 → S2 and a construction model Con2 ∈ [[S2]]
c. Let us check that Con|ω

meets the condition of Def. 6.5.

130 CHAPTER 7. REFINEMENTS

Let a ∈ S1 and let there be two models M1,M
′
1 ∈ Con2|ω such that

M1|Sa⇓ = M ′
1|Sa⇓. There exist two models M2,M

′
2 ∈ Con2 such that M2|ω =

M1 and M ′
2|ω = M ′

1, thus (M2|ω)|Sa⇓ = (M ′
2|ω)|Sa⇓. From Lemma 7.20 we

get M2|Sω(a)
2 ⇓

= M ′
2|Sω(a)

2 ⇓
. Therefore, since ω(a) ∈ S2, by Def. 6.5, we get

M2|Sω(a)
2 ↓

= M ′
2|Sω(a)

2 ↓
. Finally, M1|Sa

1↓ = M ′
1|Sa

1↓, as required. �

Proof of Lemma 7.6. Consider a construction refinement morphism ω : S1 →

S2 such that construction signature S1 is finite, a well-grouped construction

model Con2 ∈ [[S2]]
c, a set A ⊆ Compl(S1) and a model M1 ∈ [[Compl(S1)]]

such that for all a ∈ A, M1|Sa
1↓ ∈ (Con2|ω)|Sa

1↓. This means that for all

a ∈ Compl(SA
1↓), M1|Sa

1↓ ∈ (Con2|ω)|Sa
1↓. Therefore, without loss of gen-

erality we assume that A = Compl(SA
1↓). Thus for any a ∈ A there is

Ma
2 ∈ Con2 such that (Ma

2 |ω)|Sa
1↓ = M1|Sa

1↓.

We first prove that for all a, a′ ∈ A such that a 6= a′ and ω(a) = ω(a′),

Ma
2 |Sω(a)

2 ↓
= Ma′

2 |
Sω(a′)

2 ↓
. In what follows such pairs of symbols are called

non-injective pairs. The proof is by induction on the dependency bound of

non-injective pairs of symbols in the dependency structure of a and a′ (we

notice that due to condition (4) of Def. 7.1, the dependency bound of both

symbols in a non-injective pair is the same). In the base case let a1, a2 ∈ A be

a minimal non-injective pair such that a1 ≤ a, a2 ≤ a′. By minimal we mean

that there are no non-injective pairs below it in the dependency structure,

i.e., for all b1, b2 ∈ A such that b1 < a1 and b2 < a2, if ω(b1) = ω(b2) then

b1 = b2. This means that Sa1
1 ⇓ = Sa2

1 ⇓, because for all b ∈ A such that

b < a1, we have ω(b) < ω(a2), therefore, by (4b) from Def. 7.1, there exists

b′ < a2 such that ω(b) = ω(b′), thus, by above conditions, b = b′ and b < a2.

We have (Ma
2 |ω)|Sa1

1 ⇓ = (Ma
2 |ω)|Sa2

1 ⇓ = (Ma′

2 |ω)|Sa2
1 ⇓. By Lemma 7.20, we get

Ma
2 |Sω(a1)

2 ⇓
= Ma

2 |Sω(a2)
2 ⇓

= Ma′

2 |
S

ω(a2)
2 ⇓

. Non-injectivity of ω on a1 and a2, by

(1) from Def. 7.1, implies that a1 and a2 are defined in S1. Therefore, by

Def. 6.5 from Ma
2 |Sω(a1)

2 ⇓
= Ma′

2 |
S

ω(a2)
2 ⇓

we get Ma
2 |Sω(a1)

2 ↓
= Ma′

2 |
S

ω(a2)
2 ↓

. In

the induction step, let us have an non-injective pair a1, a2 ∈ A such that

a1 ≤ a, a2 ≤ a′, we assume that for all non-injective pairs a′
1, a

′
2 ∈ A such

that a′
1 < a1 and a′

2 < a2, it holds that Ma
2 |Sω(a′1)

2 ↓
= Ma′

2 |
S

ω(a′2)

2 ↓
. For all b ∈ A

such that b < a1 and b < a2, we have (Ma
2 |ω)|Sb

1↓
= M1|Sb

1↓
= (Ma′

2 |ω)|Sb
1↓
,

7.A. APPENDIX: PROOFS 131

thus, by Lemma 7.20, we get Ma
2 |Sω(b)

2 ↓
= Ma′

2 |
Sω(b)

2 ↓
. Altogether this means

that for all c ∈ Compl(Sω(a1)
2 ⇓) such that there is b ∈ A, ω(b) = c we have

Ma
2 |Sc

2↓ = Ma′
2 |Sc

2↓. All other symbols in Compl(Sω(a1)
2 ⇓) are defined (cf. (3)

from Def. 7.1,), therefore, by repetitive use of Def. 6.5, we get Ma
2 |Sω(a1)

2 ↓
=

Ma′

2 |
S

ω(a2)
2 ↓

and finally Ma
2 |Sω(a)

2 ↓
= Ma′

2 |
Sω(a′)

2 ↓
, as required.

Let us now prove that M1|SA
1↓

∈ (Con2|ω)|SA
1↓

. Let n = db(SA
1↓), define,

for i ∈ {0, . . . , n}, A=
i = {a ∈ A | db(Sa

1↓) = i} and Ai =
⋃

0≤j≤i A
=
j . By

definition A0 = ∅ and An = A. We prove by induction on i that there exists

M i
2 ∈ Con2 such that (M i

2|ω)|
S

Ai
1 ↓

= M1|SAi
1 ↓

.

In the base case, for i = 0, A0 = ∅, let us take any M2 ∈ [[S2]] such

that M1|Σ∅
= M2|Σ∅

(cf. assumption (8) from Sect. 3.5), where signature

Σ∅ = UnDep(Compl(S∅
1↓)) = UnDep(Compl(S∅

2↓)) is the initial object of

Sig (cf. Sect. 5.3); then from Con2 |=c ω(SP) we get M1|Σ∅
= M2|Σ∅

∈

Con2|Σ∅
. By Def. 7.4 there exists M0

2 ∈ Con2 such that (M0
2 |ω)|

S
A0
1 ↓

=

M2|Σ∅
= M1|Σ∅

= M1|SA0
1 ↓

.

In the induction step, we assume that for some i ∈ {0, . . . , n − 1}, there

exists M i
2 ∈ Con2 such that (M i

2|ω)|
S

Ai
1 ↓

= M1|SAi
1 ↓

. We show the same for

i + 1. By assumption that S1 is finite we can assume that A=
i+1 is finite, let

B=
i+1 = ω(A=

i+1) and let us name its elements, i.e. let B=
i+1 = {b1, . . . , bk}.

By induction on elements from B=
i+1 we construct M i+1

2 ∈ Con2 such that

(M i+1
2 |ω)|

S
Ai+1
1 ↓

= M1|SAi+1
1 ↓

.

For any j ∈ {1, . . . , k}, let aj ∈ A=
i+1 be such that ω(aj) = bj , from

assumption M1|Saj
1 ↓ ∈ (Con2|ω)|Saj

1 ↓ there exists M
aj

2 ∈ Con2 such that

(M
aj

2 |ω)|Saj
1 ↓ = M1|Saj

1 ↓. By the inductive assumption, it holds that (M
aj

2 |ω)|Saj
1 ⇓ =

M1|Saj
1 ⇓ = (M i

2|ω)|Saj
1 ⇓, because Saj

1 ⇓ ⊆ Ai. By Lemma 7.20 we get M
aj

2 |
S

bj
2 ⇓

=

M i
2|Sbj

2 ⇓
. Notice that the choice of aj is unimportant, because, as it was al-

ready proven above, for all a, a′ ∈ A such that a 6= a′ and ω(a) = ω(a′),

Ma
2 |Sω(a)

2 ↓
= Ma′

2 |
Sω(a′)

2 ↓
.

Consider a sequence of sets 〈Cj〉j∈{0,...,k} defined inductively as C0 =

Symb(Compl(SAi+1

2 ⇓)) and Cj+1 = Cj ∪ {bj}. We have SCk
2 ↓ = Sω(Ai+1)

2 ↓.

For j ∈ {1, . . . , k}, the following diagram is a pushout in SigDepfrag

132 CHAPTER 7. REFINEMENTS

SCj

2 ↓

Sbj

2 ↓ SCj−1

2 ↓

Sbj

2⇓

Let N0
2 ∈ [[S2]] be defined as N0

2 = M i
2. By induction we construct

N j
2 ∈ [[S2]], for j ∈ {1, . . . , k}. Let N ′

j ∈ [[SCj

2 ↓]] be the amalgamation of

M
aj

2 |
S

bj
2 ↓

and N j−1
2 |

S
Cj−1
2 ⇓

w.r.t. the above pushout. Amalgamation is possible,

because we showed above that M
aj

2 |
S

bj
2 ⇓

= M i
2|Sbj

2 ⇓
. By assumption (7) from

Sect. 3.5, define N j
2 as any model from [[S2]] such that N j

2 |SCj
2 ↓

= N ′
j .

Let M ′
2 = Nk

2 . By construction, for any d ∈ Compl(S2)
Ai+1↓, we

get M ′
2|Sd

2↓
∈ Con2|Sd

2↓
. By assumption that Con2 is well-grouped we have

M ′
2|Sω(Ai+1)

2 ↓
∈ Con2|Sω(Ai+1)

2 ↓
. Therefore, there exists M i+1

2 ∈ Con2 such that

M i+1
2 |

S
ω(Ai+1)

2 ↓
= M ′

2|Sω(Ai+1)

2 ↓
. By construction (M i+1

2 |ω)|
S

Ai+1
1 ↓

= M1|SAi+1
1 ↓

,

as required.

Taking the just proven fact for i = n, we obtain Mn
2 ∈ Con2 such

that (Mn
2 |ω)|SAn

1 ↓ = M1|SAn
1 ↓. Therefore, since An = A, we have M1|SA

1↓
∈

(Con2|ω)|SA
1↓

, as required. �

Proof of Lemma 7.9. Let us show a useful lemma first.

Lemma 7.21 Consider a construction signature S and two construction

specifications SP 1 and SP 2 over S such that SP 1
c SP2. Let there be a con-

struction model Con |=c SP2 and a set of symbols A ⊆ Compl(S). For all

models M ∈ Con such that M |SA↓ |= SP1|SA↓, it holds that M |SA↓ |= SP2|SA↓.

Proof. By induction on db(SA↓). Let there be a construction signature S

and two construction specifications SP 1 and SP2 over S such that SP1
c

SP2 and a construction model Con |=c SP2.

In the base case, let A be such that db(SA↓) = 0. Notice that SA↓ is

then the initial construction signature. Since SP 2 is consistent (consequence

of existence of Con |=c SP 2 and Lemma 6.19), there exists M2 |= SP2, thus

M |SA↓ = M2|SA↓ |= SP2|SA↓.

7.A. APPENDIX: PROOFS 133

In the induction step case, assume that the lemma holds for all A′ such

that db(SA′
↓) ≤ i. We prove the lemma for A such that db(SA↓) ≤ i + 1.

For all A such that db(SA↓) < i + 1 the lemma is already covered by the

inductive assumption. Assume then that db(SA↓) = i+1. For all a ∈ A, from

M |SA↓ |= SP1|SA↓ we get M |Sa↓ |= SP1|Sa↓ and M |Sa⇓ |= SP1|Sa⇓, therefore,

since db(Sa⇓) ≤ i, by the inductive assumption, we get M |Sa⇓ |= SP2|Sa⇓. If

a is a defined symbol, by condition (1) of Def. 6.13 for Con |=c SP2, since

M ∈ Con and M |Sa⇓ |= SP2|Sa⇓, we get M |Sa↓ |= SP2|Sa↓. Otherwise, if a

is an assumed symbol, by condition (2) of Def. 7.7 for SP1
c SP2, since

M |Sa⇓ |= SP2|Sa⇓ and M |Sa↓ |= SP1|Sa↓, we also get M |Sa↓ |= SP2|Sa↓. This

means that for all a ∈ A, M |Sa↓ |= SP2|Sa↓. By condition (4) of Def. 6.13

for Con |=c SP2, since M ∈ Con and for all a ∈ A, M |Sa↓ |= SP2|Sa↓, we get

M |SA↓ |= SP2|SA↓, as required. �

Now, let us prove Lemma 7.9. Consider two construction specifications

SP1 and SP2 over the same construction signature S such that SP1
c SP2

(as in Def. 7.7). Let there be a construction model Con |=c SP2, we prove

that Con |=c SP1 by showing all conditions from Def. 6.13.

To prove condition (1), consider a defined symbol a ∈ S and a model

M ∈ Con such that M |Sa⇓ |= SP1|Sa⇓. Let A = Symb(Compl(Sa⇓)). By

Lemma 7.21, from M |SA↓ = M |Sa⇓ |= SP1|Sa⇓ = SP1|SA↓ we get M |SA↓ |=

SP2|SA↓, thus M |Sa⇓ |= SP2|Sa⇓. By condition (1) of Def. 6.13 for Con |=c

SP2, since M |Sa⇓ |= SP2|Sa⇓, we get M |Sa↓ |= SP2|Sa↓, therefore, M |Sa↓ |=

SP1|Sa↓, as required.

To prove condition (2), consider an assumed symbol a ∈ Compl(S), a /∈

S and a model M |= SP1 such that M |Sa⇓ ∈ Con|Sa⇓. This means that there

exists M ′ ∈ Con such that M ′|Sa⇓ = M |Sa⇓, thus M ′|Sa⇓ |= SP1|Sa⇓. Again

let A = Symb(Compl(Sa⇓)). By Lemma 7.21, from M ′|SA↓ = M ′|Sa⇓ |=

SP1|Sa⇓ = SP1|SA↓ we get M ′|SA↓ |= SP2|SA↓, thus M |Sa⇓ = M ′|Sa⇓ |= SP2|Sa⇓.

By condition (2) of Def. 7.7 from M |Sa⇓ |= SP2|Sa⇓ and M |Sa↓ |= SP1|Sa↓,

and by the fact that a is an assumed symbol, we get M |Sa↓ |= SP2|Sa↓.

This means that there exists M2 |= SP2 such that M2|Sa↓ = M |Sa↓ and

consequently M2|Sa⇓ ∈ Con|Sa⇓. Therefore, since Con |=c SP2, by condition

134 CHAPTER 7. REFINEMENTS

(2) of Def. 6.13, for a and M2 such that M2|Sa⇓ ∈ Con|Sa⇓, we obtain M2|Sa↓ ∈

Con|Sa↓. By M2|Sa↓ = M |Sa↓ we get M |Sa↓ ∈ Con|Sa↓, as required.

Condition (3) for Con |=c SP1 and Con |=c SP2 is the same, thus since it

holds for the latter, it also holds for the former.

As for condition (4), consider a set A ⊆ Compl(S) and a model M ∈ Con

such that for all a ∈ A, M |Sa↓ |= SP1|Sa↓. By Lemma 7.21, for A = {a},

from M |Sa↓ |= SP1|Sa↓ we have M |Sa↓ |= SP2|Sa↓. Thus, by condition (4) of

Def. 6.13 for Con |=c SP2, we get M |SA↓ |= SP2|SA↓, thus, by condition (1)

of Def. 7.7 , M |SA↓ |= SP1|SA↓, as required. �

Proof of Theorem 7.14. Let us show a useful lemma before we proceed

with the proof of the theorem.

Lemma 7.22 Given a construction specification SP 1 = 〈S1, SP1〉 ∈ Spec(S1)

and a conservative construction refinement morphism ω : S1 → S2 w.r.t. SP 1

(cf. Def. 7.11), for any M1 |= SP1,

1. there exists M2 |= ω(SP1) such that M2|ω = M1;

2. for any assumed symbol a ∈ Compl(S1), a /∈ S1, and a model M2 |=

ω(SP1) such that (M2|ω)|Sa
1⇓ = M1|Sa

1⇓, there exists a model M ′
2 |=

ω(SP1) such that

(a) (M ′
2|ω)|Sa

1↓ = M1|Sa
1↓;

(b) M ′
2|Sω(a)

2 ⇓
= M2|Sω(a)

2 ⇓
.

Proof. The proof is organized as follows. We start by proving the lemma

with the assumption that ω is injective on symbols. Later we generalise the

result to all morphisms.

Consider a signature refinement morphism ω : S1 → S2 such that ω is

injective on symbols, a construction specification SP 1 ∈ Spec(S1) and a

model M1 |= SP1. Let us show the claims from Lemma 7.22.

Claim (1) is discharged directly by assumption (7) from Sect. 3.5.

To prove claim (2) consider an assumed symbol a ∈ Compl(S1), a /∈

S1 and a model M2 |= ω(SP1) such that (M2|ω)|Sa
1⇓ = M1|Sa

1⇓. Consider

7.A. APPENDIX: PROOFS 135

also a commuting diagram in SigDepref (later referred to as diagram (1))

being a part of a variant of the diagram from Def. 7.19 (unnamed arrows are

inclusions).

Sa
1↓ Sω(a)

2 ↓

Sa
1⇓ Sω(a)

2 ⇓

ωa

ω−
a

The above square is a pushout in SigDepref , because we assumed that ω

is injective on symbols and consequently ωa and ω−
a are also injective on

symbols.

Define a sequence of sets of symbols by induction as A1 = {b ∈ Compl(S1) |

for all b′ ∈ Compl(S1), b 6< b′} and further Ai+1 = {b ∈ Compl(S1) |

b 6∈
⋃

(Aj)1≤j≤i and for all b′ ∈ Compl(S1), if b < b′ then there exists k ≤

i such that b′ ∈ Ak}. It is easy to prove that for i ∈ {1, . . . , db(S1)}, Ai is

a set of independent symbols. Moreover, for i < db(S1), S
Ai
1 ⇓ = SAi+1

1 ↓. It

also holds that
⋃

Ai = Symb(S1) and SA1
1 ↓ = S1. Obviously, there exists

ia ∈ {1, . . . , db(S1)} such that a ∈ Aia . In order to make the notation more

concise, we introduce another sequence of sets given as Aa
i = {a} ∪ Ai, for

i ∈ {1, . . . , db(S1)} and Ai = {a}, for i = db(S1)+1. It is easy to prove that

for all 1 ≤ i ≤ ia, S
Ai
1 ↓ = SAa

i
1 ↓. As a consequence, we have SAa

1
1 ↓ = SA1

1 ↓ = S1.

For any i ∈ {1, . . . , db(S1)} consider the following commuting diagram in

SigDepref (αi, βi and γi are inclusions), later referred to as diagram (2).

SAa
i

1 ↓ Sω(Aa
i)

2 ↓

Sω(a)
2 ↓ ∪ Sω(Ai)

2 ⇓S
Aa

i+1

1 ↓ S
ω(Aa

i+1)

2 ↓

ωAa
i

ωAa
i+1

αi

βi

γi

The square of αi, ωAa
i
, (ωAa

i+1
; βi), γi is a pushout in Sig (via coertion functor

UnDepref ;ComplSig). It is, however, not always a pushout in SigDepref

(the target of γi may include dependencies that are present neither in its

source nor in the source of ωAa
i
).

136 CHAPTER 7. REFINEMENTS

Let us construct a model M ′
2 |= ω(SP1) such that it meets the re-

quirements from (2) of Lemma 7.22. We begin by using diagram (1), a

pushout square, to amalgamate M1|Sa
1↓ and M2|Sω(a)

2 ⇓
. We name a result-

ing object Ma
2 ∈ [[Sω(a)

2 ↓]]. For i = db(S1), Aa
i+1 = {a} and we have

S
Aa

i+1

1 ↓ = Sa
1↓ and S

ω(Aa
i+1)

2 ↓ = Sω(a)
2 ↓; we name N i+1

2 = Ma
2 and use dia-

gram (2) to continue the construction. Morphism β1 is an inclusion, so it

is injective on symbols, thus, by assumption (7) from Sect. 3.5 for βi and

N i+1
2 , there exists M i+1

2 ∈ [[Sω(a)
2 ↓ ∪ Sω(Ai)

2 ⇓]] such that M i+1
2 |βi

= N i+1
2 . Di-

agram (2) is a pushout in Sig, so we amalgamate M1|
S

Aa
i

1 ↓
with M i+1

2 and

obtain a model N i
2 ∈ [[Sω(Aa

i)
2 ↓]]. By repeating the above described proce-

dure db(S1) − 1 times we get to i = 1 and we have N1
2 ∈ [[Sω(Aa

1)
2 ↓]] such

that N1
2 |ωAa

i
= M1|SAa

1
1 ↓

= M1|S1
= M1. Let δ : Sω(Aa

1)
2 ↓ → S2 be the inclu-

sion. It holds that ω = (ωAa
1
); δ. By assumption (7) from Sect. 3.5 for δ

and N1
2 , there exists M ′

2 ∈ [[S2]] such that M ′
2|δ = N1

2 . This means that

M ′
2|ω = M ′

2|(ωAa
1
);δ = N1

2 |ωAa
1

= M1, therefore, since M1 |= SP1, we have

M ′
2 |= ω(SP1). By construction of M ′

2 we have (M ′
2|ω)|Sa

1↓ = M1|Sa
1↓ and

M ′
2|Sω(a)

2 ⇓
= M2|Sω(a)

2 ⇓
, as required.

Let us now generalise the above proof to any ω, without the injectivity

assumption. Let us factorise ω into the abstract surjection ωe : S1 → S ′
1

and the inclusion ωi : S
′
1 → S2. Assumption (3) from Sect. 3.5 implies that

abstract surjections in Sig are surjective on their symbols and inclusions are

injective on their symbols, thus ωe is surjective and ωi is injective. Consider

the following diagram in SigDepref .

S2S1

S ′
1

Sa
1↓ S

ωe(a)
1 ↓ Sω(a)

2 ↓

Sa
1⇓ S

ωe(a)
1 ⇓ Sω(a)

2 ⇓

ω

ωe ωi

ωea ωia

ωe
−
a ωi

−
a

7.A. APPENDIX: PROOFS 137

Let there be a model M1 ∈ [[SP1]]. To show claim (1) of Lemma 7.22, from

the assumption that ω is a conservative refinement construction morphisms

w.r.t. SP1, by Def. 7.11, we get M1 ∈ [[(ω(SP1))|ω]], so there exists M2 ∈

[[ω(SP1)]] such that M2|ω = M1, as required.

Regarding claim (2), consider an assumed symbol a ∈ Compl(S1), a /∈ S1

and a model M2 |= ω(SP1) such that (M2|ω)|Sa
1⇓ = M1|Sa

1⇓. From claim

(1) proven above, we get existence of N2 ∈ [[ω(SP1)]] (we name it N2 to

avoid confusion) such that N2|ω = M1. Let us name M ′
1 = N2|ωi

. We

have (M ′
1|ωe)|Sa

1⇓ = (N2|ω)|Sa
1⇓ = M1|Sa

1⇓ = (M2|ω)|Sa
1⇓. By assumption (3)

from Sect. 3.5, by surjectivity of (ωe)
−

a
and by commutativity of the above

diagram, from (M ′
1|ωe)|Sa

1⇓ = (M2|ω)|Sa
1⇓ we get M ′

1|Sωe(a)

1 ⇓
= (M2|ωi

)|
S

ωe(a)

1 ⇓
.

Morphism ωi is injective on symbols, thus, by Lemma 7.12 it is a conservative

construction refinement morphism w.r.t. ωe(SP); therefore, we can use above

proven Lemma 7.22 for injective ωi : S
′
1 → S2. For the model M ′

1 |= ωe(SP1),

the assumed symbol ωe(a) ∈ Compl(S ′
1), and the model M2 |= ωi(ωe(SP1))

such that M ′
1|Sωe(a)

1 ⇓
= (M2|ωi

)|
S

ωe(a)

1 ⇓
we get existence of M ′

2 |= ωi(ωe(SP1))

such that (M ′
2|ωi

)|
S

ωe(a)

1 ↓
= M ′

1|Sωe(a)

1 ↓
and M ′

2|Sω(a)
2 ⇓

= M2|Sω(a)
2 ⇓

. This means

that ((M ′
2|ωi

)|
S

ωe(a)

1 ↓
)|ωea

= (M ′
1|Sωe(a)

1 ↓
)|ωea

, thus, by commutativity of the

above diagram, we get (M ′
2|ω)|Sa

1↓ = (M ′
1|ωe)|Sa

1↓ = M1|Sa
1↓, as required.

�

Now, let us prove Theorem 7.14. Consider a signature refinement mor-

phism ω : S1 → S2 such that S1 is finite and a construction specification

SP ∈ Spec(S1) such that ω is a conservative construction refinement mor-

phism w.r.t. SP . Consider a construction model Con2 ∈ [[S2]]
c such that

Con2 = Cleanω(SP)(Con2).

Assume that Con2 |=c ω(SP). To prove that Con2|ω |=c SP we need to

show the four conditions from Def. 6.13. Let a ∈ Compl(S1). Consider a

variant of the commuting diagram in SigDepref from Def. 7.19.

138 CHAPTER 7. REFINEMENTS

S2S1

Sa
1↓ Sω(a)

2 ↓

Sa
1⇓ Sω(a)

2 ⇓

ω

ωa

ω−
a

Regarding condition (1) of Def. 6.13, let a ∈ S1 and M1 ∈ Con2|ω are such

that M1|Sa
1⇓ |= SP |Sa

1⇓. By Def. 7.4 there exists M2 ∈ Con2 such that M2|ω =

M1 and, by assumption that Con2 = Cleanω(SP)(Con2), M2 |= ω(SP), thus

M1 |= SP , so M1|Sa
1↓ |= SP |Sa

1↓, as required.

To prove condition (2), consider a ∈ Compl(S1) such that a /∈ S1 and

model M1 |= SP such that M1|Sa
1⇓ ∈ (Con2|ω)|Sa⇓. By Def. 7.4 there ex-

ists M2 ∈ Con2 such that (M2|ω)|Sa
1⇓ = M1|Sa

1⇓. By assumption about

cleanness of Con2 we know that M2 |= ω(SP), therefore, by assumption

that ω is a conservative construction refinement morphism w.r.t. SP , and

by Lemma 7.22, there exists M ′
2 |= ω(SP) such that (M ′

2|ω)|Sa
1↓ = M1|Sa

1↓

and M ′
2|Sω(a)

2 ⇓
= M2|Sω(a)

2 ⇓
; hence M ′

2|Sω(a)
2 ⇓

∈ Con2|Sω(a)
2 ⇓

. By condition (2) of

Def. 6.13 for Con2 |=c ω(SP), for ω(a) ∈ Compl(S2), which by Def. 7.1 is an

assumed symbol, from M ′
2|Sω(a)

1 ⇓
∈ Con2|Sω(a)

1 ⇓
we get M ′

2|Sω(a)
1 ↓

∈ Con2|Sω(a)
1 ↓

.

From the commutativity of the above diagram we obtain as required:

M1|Sa
1↓ = (M ′

2|Sω(a)
2 ↓

)|ωa ∈ (Con2|Sω(a)
2 ↓

)|ωa = (Con2|ω)|Sa
1↓

Condition (3) is discharged directly by Lemma 7.6.

As for condition (4), let there be a set A ⊆ Compl(S) and a model

M1 ∈ Con2|ω such that for all a ∈ A, M1|Sa↓ |= SP |Sa
1↓. By Def. 7.4 there

exists M2 ∈ Con2 such that M2|ω = M1 and, by the assumption that Con2 =

Cleanω(SP)(Con2), we have M2 |= ω(SP), therefore

(M2|ω)|SA
1↓

|= (ω(SP)|ω)|SA
1↓

As a consequence, we get M1|SA
1↓

|= SP |SA
1↓

, as required. �

7.A. APPENDIX: PROOFS 139

Proof of Theorem 7.17. Pushouts in SigDep are also pushouts in Sig.

Similarly, by definition of fragments (cf. Def. 4.1), pushouts in SigDepfrag are

also pushouts in Sigfrag . Therefore, since ϕ1, ϕ2, β1 and β2 form a pushout

in SigDepfrag , they also do so in Sigfrag . We have ϕ1; ω1; β
′
1 = ϕ2; ω2; β

′
2 in

Sigfrag , thus there exists the unique universal Sigfrag -morphism ω : S → S ′

such that the whole diagram from the theorem commutes in Sigfrag . Let us

now prove that ω is a SigDepref -morphism.

We notice that F ′, as a source of the construction fitting span, is required

to be an empty fragment, i.e. containing only assumed elements, therefore,

the construction refinement morphism ωF is a bijection. This is a conse-

quence of requirements (1), (2) and (3) of Def. 7.1.

The following lemma will be used in the rest of the proof of Theorem 7.17.

Lemma 7.23 Given four functions, f : A → B, g : C → B, f ′ : D → C,

g′ : D → A, such that f ′; g = g′; f and f , g are the pushout of f ′, g′ in Set,

B

A C

D
g′ f ′

f g

for any a1 ∈ A define an undirected graph 〈V,E〉 as V = D′]f ′(D′)]g′(D′),

E = f ′|D′] g′|D′, where D′ ⊆ D is given as D′ = (f ′; g)−1({f(a1)}),

1. for any a2 ∈ A such that a1 6= a2,

f(a1) = f(a2) iff

a1 ∈ img(g′) and there exists a path from a1 to a2 in 〈V,E〉;

2. for any c2 ∈ C,

f(a1) = g(c2) iff

a1 ∈ img(g′) and there exists a path from a1 to c2 in 〈V,E〉.

Proof. Obvious by the construction of pushouts in Set. �

Let us check that ω satisfies all conditions from Def. 7.1.

140 CHAPTER 7. REFINEMENTS

Conditions (1), (2) and (3) are met only if ω is bijective on assumed

elements. It is enough to prove that ω is both injective and surjective on

assumed elements.

Regarding its injectivity on assumed symbols, let us have assumed a, b ∈

Compl(S) such that a 6= b. By contradiction, let us assume that ω(a) =

ω(b). Without loss of generality there exists an assumed a1 ∈ Compl(S1)

such that β1(a1) = a and of course β1(a1) 6= b. Now, either there exists an

assumed b1 ∈ Compl(S1) such that β1(b1) = b (first case) or there exists an

assumed b2 ∈ Compl(S2) such that β2(b2) = b (second case). Let us name

a′
1 = ω1(a1) and b′1 = ω1(b1) and b′2 = ω2(b2). All a′

1, b
′
1 and b′2 are assumed

elements, because ω1 and ω2 are bijective on assumed elements. In the first

case, a′
1 6= b′1 and β′

1(a
′
1) = β′

1(b
′
1). In the second case, β′

1(a
′
1) = β′

2(b
′
1).

By Lemma 7.23 both cases yield the existence of a′
f , b

′
f ∈ Compl(F) such

that ϕ′
1(a

′
f) = a′

1 and ϕ′
1(b

′
f) = b′1, in the first case, and ϕ′

2(b
′
f) = b′2, in the

second case. Moreover, by Lemma 7.23, there exists a path in the graph (for

〈ϕ′
1, ϕ

′
2〉) between a′

1 and b′1 or b′2, in respective cases. Since ωF is a bijection,

there exist af , bf ∈ Compl(F) such that af = ω−1
F (a′

f), bf = ω−1
F (b′f). Of

course b1 = ϕ1(bf) and b2 = ϕ2(bf), in respective cases. Moreover, since both

ω1 and ω2 are bijective on assumed elements, there must exist a path in the

graph (for 〈ϕ1, ϕ2〉) between a1 and b1 or b2, in respective cases. Therefore,

by Lemma 7.23, in both cases we get a = b, contradiction.

Regarding the surjectivity of ω on assumed symbols, let there be an as-

sumed b′ ∈ Compl(S ′). Without loss of generality we have an assumed

b′1 ∈ Compl(S ′
1) and, by bijectivity of ω1 on assumed symbols, there is an as-

sumed b1 ∈ Compl(S1). Since the diagram commutes, we get ω(β1(b1)) = b′.

The condition (4) is to prove that ω is monotone and that it weakly

reflects dependency within its range.

To prove monotonicity let us have a < b ∈ Compl(S). Without loss of

generality we can assume that there exist a1 < b1 ∈ Compl(S1) such that

β1(a1) = a and β1(b1) = b, because β1 is a p-morphism. Both ω1 and β′
1 are

monotone and the diagram is commutative in Sigfrag , thus

ω(a) = β′
1(ω1(a1)) < β ′

1(ω1(b1)) = ω(b)

7.A. APPENDIX: PROOFS 141

As for weakly reflected dependency within the range of ω, let a, b ∈

Compl(S) be such that ω(a) < ω(b). Without loss of generality we can

assume that there exists b1 ∈ Compl(S1) such that β1(b1) = b. Let us

name b′1 = ω1(b1). There exists a′
1 ∈ Compl(S ′

1) such that a′
1 < b′1 and

β′
1(a

′
1) = ω(a), because β ′

1 is a p-morphism and ω(a) < ω(b) = β′
1(b

′
1).

Let us now prove that a′
1 ∈ img(ω1). Since pushouts are jointly-epi, we

know that there exists a1 ∈ Compl(S1) such that β1(a1) = a or there exists

a2 ∈ Compl(S2) such that β2(a1) = a. In the first case, when it also happens

that ω1(a1) = a′
1, trivially we have a′

1 ∈ img(ω1). Otherwise, Lemma 7.23

(with assumption that SetSymb preserves pushouts, cf. (2) from Sect. 3.5)

applied to the first case when ω1(a1) 6= a′
1 and to the second case yields the

existence of a′
f ∈ Compl(F ′) such that ϕ′

1(a
′
f) = a′

1. Using the bijectivity of

ωF , let us name af = ω−1
F (a′

f). By commutativity of the diagram, we have

ω1(ϕ1(af)) = a′
1. It proves that a′

1 ∈ img(ω1) in all cases. By condition (4)

of Def. 7.1 for ω1 we get existence of a3 ∈ Compl(S1) such that a3 < b1 and

ω1(a3) = a′
1. This means that ω(β1(a3)) = ω(a) and, by monotonicity of β1,

we have

β1(a3) < β1(b1) = b

as required. �

142 CHAPTER 7. REFINEMENTS

Chapter 8

Architectures as Diagrams of

Constructions

8.1 Introduction

Constructions, construction fittings, sums and refinements, as so far pre-

sented in the previous chapters, are all ingredients needed to represent a

software architecture as a diagram of constructions. Such diagrams, present

in some form in most approaches to software modularisation (cf. Chapter 2),

give architectural system decomposition. In our case they capture a top-

down development process. Interestingly, our approach, in contrast to most

other frameworks, provides uniform representation of non-parameterised and

parameterised modules of any order in the diagram.

8.2 Diagrams of Constructions

Before we formally define diagrams of constructions, we introduce a cate-

gory suitable to uniformly represent different kind of morphisms between

construction signatures.

Definition 8.1 (Category of Construction Signatures) Let the category

SigDepcon have objects of SigDepref (and SigDepfrag , since both have the

same classes of objects) as its objects and morphisms of Sigfrag as its mor-

phisms.

The SigDepcon -objects are constructions signatures, the morphisms are

just Sigfrag -morphisms, disregarding any conditions related to the depen-

143

144 CHAPTER 8. ARCHITECTURES AS DIAGRAMS OF CONSTR.

dency structure. Therefore, both SigDepfrag and SigDepcon are subcate-

gories of SigDepcon such that |SigDepcon | = |SigDepfrag | = |SigDepref |.

Definition 8.2 (Category of Construction Specifications) The category

SpecDepcon has as objects construction specifications, i.e. pairs SP = 〈S, SP〉

(cf. Def. 6.12). SpecDepcon-morphisms σ : 〈S1, SP1〉 → 〈S2, SP2〉 are SigDepcon-

morphisms such that they are refinements SP 1
Compl(σ)
∼∼ SP2 in the base insti-

tution I, i.e. [[SP2|Compl(σ)]] ⊆ [[SP1]].

Notation. Given a SpecDepcon -object SP = 〈S, SP〉, we use projection

functions to get its components, π1(SP) = S and π2(SP) = SP .

Definition 8.3 (Diagrams of Constructions) A diagram of construction

specifications (or shortly a diagram of constructions) D : J → SpecDepcon ,

is a diagram in SpecDepcon such that:

1. every node in the diagram is a construction specification over a finite

construction signature;

2. every arrow in the diagram belongs to exactly one of the following sets

of arrows in the diagram:

(a) refinement arrows that are SigDepref -morphisms,

(b) composition arrows that are SigDepfrag-morphisms;

3. a sum square in the diagram is a pushout of a construction fitting

〈ϕ1, ϕ2〉 in SigDepfrag (cf. Def. 6.28)

SP

SP1 SP2

SPF

ϕ1 ϕ2

β1 β2

consisting of the bottom node SPF = 〈F , ∅〉, the side nodes SP1, SP 2

and the top node SP such that:

(a) the bottom node SPF is an empty construction specification over

an empty signature fragment (cf. Def. 6.28);

8.2. DIAGRAMS OF CONSTRUCTIONS 145

(b) the side nodes, i.e. construction specifications SP 1 and SP 2 over

S1 and S2, respectively, are compatible construction specifications

w.r.t. the fitting 〈ϕ1, ϕ2〉 (cf. Def. 6.34);

(c) the top node SP is given as a sum SP = β1(SP1) ∪ β2(SP2);

4. every composition arrow belongs to some sum square;

5. no two sum squares have common nodes;

6. every refinement arrow ω : SP1 → SP2 is a construction specification

refinement SP 1

ω
∼∼ cSP2 (cf. Def. 7.15);

7. the source of every refinement arrow is:

(a) a single node (not belonging to any sum square) or

(b) a side node of a sum square;

8. the target of every refinement arrow is:

(a) a single node (not belonging to any sum square) or

(b) a top node of a sum square;

9. every node is the source of at most one refinement arrow;

10. the diagram seen as a directed graph with refinement arrows (cf. con-

dition (2) above) as edges in the same direction and the composition

arrows (cf. condition (2) above) as edges in the opposite direction meets

the following conditions:

(a) the graph is a dag (directed acyclic graph);

(b) the graph is connected;

(c) there is exactly one node, called the result node, such that it is

not the target of any edge in the graph.

146 CHAPTER 8. ARCHITECTURES AS DIAGRAMS OF CONSTR.

Example 8.4 Consider the following construction signatures

S = (sorts s; ops a : s, c : s; a < c),

S1 = (sorts s; ops a : s, c : s; a < c),

S2 = (sorts s; ops a : s),

F = (sorts s; op a : s),

S ′
2 = (sorts s, t; ops a : s, b : t, f : t → s; deps b < f, f < s),

S ′
21 = (sorts s, t; ops a : s, b : t, f : t → s; deps b < f, f < s),

S ′
22 = (sorts s, t; ops a : s, b : t, f : t → s; deps b < f, f < s),

F ′ = (sorts s, t; op a : s, b : t, f : t → s; deps b < f, f < s).

and the following construction specifications

SP = 〈S, {(∀x ∙ x = a), (a = c)}〉, SP1 = 〈S1, {c = a}〉,

SP2 = 〈S2, {∀x ∙ x = a}〉, SP ′
2 = 〈S ′

2, {(∀x ∙ x = a), (f(b) = a)}〉,

SP ′
21 = 〈S ′

21, {f(b) = a}〉, SP ′
22 = 〈S ′

22, {(∀x ∙ x = a), (f(b) = a)}〉,

SPF = 〈F , ∅〉, SP ′
F = 〈F ′, ∅〉.

The following diagram D is a diagram of constructions.

SP

SP1 SP2 SP ′
2

SPF SP ′
21 SP ′

22

SP ′
F

ϕ1 ϕ2

β1 β2

ω
∼∼ c

β′
1 β′

2

ϕ′
1 ϕ′

2

where all morphisms are inclusions. In fact, ω is a refinement arrow and

all other morphisms are composition arrows; 〈ϕ1, ϕ2〉 and 〈ϕ′
1, ϕ

′
2〉 are con-

struction fittings; SP 1 is compatible with SP 2 w.r.t. 〈ϕ1, ϕ2〉 and SP ′
21 is

compatible with SP ′
22 w.r.t. 〈ϕ′

1, ϕ
′
2〉, thus the two squares on the diagram are

the sum squares. The source of the only refinement arrow ω is the side node

8.2. DIAGRAMS OF CONSTRUCTIONS 147

of the left sum square; its target is the top node of the right sum square. The

diagram seen as a directed graph (as described in (10) of Def. 8.3) indeed

meets all conditions listed in (10) of Def. 8.3.

∙

∙ ∙ ∙

∙ ∙ ∙

∙

ϕ1 ϕ2

β1 β2

ω
∼∼ c

β′
1 β′

2

ϕ′
1 ϕ′

2

Example 8.4 depicts the typical situation where a construction specifica-

tion SP is decomposed into a number of components (two in this case) and

they (only SP2 in this case) are further refined via construction specification

refinements (only ω in this case) and the refined signature (S ′
2 in this case)

contains new implementation-specific symbols (sort t and operations b : t

and f : t → s in this case). Additionally the refined specification (SP ′
2) may

be stronger than source one (SP2) on defined symbols.

Example 8.5 (Using the notation from Example 8.4) Let us present some

non-examples of diagrams of constructions.

1. The following diagram is not a construction diagram, because there

are two result nodes, SP and SP ′
2. Morphism ω is not marked as a

refinement morphism (
ω

∼∼ c). Even if ω was a refinement morphism,

its target is neither a top node nor a single node.

SP

SP1 SP2

SP ′
2

SPF

SP2 SP ′
22

SP ′
F

ϕ1 ϕ2

β1 β2

ω

β′
1 β′

2

ϕ′
1 ϕ′

2

2. There are two problems with the diagram below. The first is that the

target of refinement arrow ω′ is a side node of a sum square (not a top

148 CHAPTER 8. ARCHITECTURES AS DIAGRAMS OF CONSTR.

node). The second is that a node SP 2 is the source of two refinement

arrows.

SP

SP1 SP2 SP ′
2

SPF SP ′
22 SP ′

21

SP ′
F

ϕ1 ϕ2

β1 β2

ω
∼∼ c

ω′

∼∼ c

β′
1 β′

2

ϕ′
1 ϕ′

2

3. Let there be a construction specification SP 3 = 〈F , {true}〉. The dia-

gram given below (with all morphisms being inclusions) is not a dia-

gram of constructions, because when it is seen as a directed graph (as

described in condition (10) of Def. 8.3), it is not a dag.

SP 2 SP2

SP2 SP3

SPF

ζ

∼∼ c

ζ

∼∼ c

β3 β4

ϕ3 ϕ4

Seeds of the diagram of constructions are those nodes that are allowed to

be sources of refinement arrows, but they are not.

Definition 8.6 Given a diagram of constructions D : J → SigDepcon , the

set of seed nodes in D is defined as

Seeds(D) = {n ∈ |J| | n is not the source of any refinement arrow and

n either does not belong to any sum square or

n is a side node of a sum square}.

Example 8.7 In the diagram D from Example 8.4 the nodes marked by SP 1,

SP ′
21 and SP ′

22 are seed nodes of D.

8.2. DIAGRAMS OF CONSTRUCTIONS 149

Diagrams of constructions talk about construction specifications. Below

we precise the method to handle the construction models in a diagram. We

begin by defining the category suitable to represent models of construction

specifications and construction signature and refinement morphisms. Further

we define diagrams of construction models.

Definition 8.8 (Category of Models of Construction Specifications)

The category SpecDepMcon has pairs 〈SP ,Con〉 as objects, where SP ∈

SpecDepcon and Con ∈ [[SP]]c is clean, and SpecDepcon-morphisms as

morphisms.

The requirement that a construction model is clean reflects the technical

assumption made in Theorem 7.14, needed to prove the (one side of) the

satisfaction condition.

Definition 8.9 (Diagram of Construction Models) Given a diagram of

constructions D : J → SpecDepcon , a corresponding diagram of construc-

tion specification models (or shortly a diagram of construction models) is a

diagram DM : J → SpecDepMcon such that

1. for each J-object n, π1(DM(n)) = D(n);

2. for each J-morphism σ, DM(σ) = D(σ);

3. for each J-morphism σ : m → n that is a refinement arrow ω = D(σ)

in DM, the construction model in ω’s source, Conm = π2(DM(m)), is

the reduct of the construction model in ω’s target, Conn = π2(DM(n)),

i.e. Conm = Conn|ω;

4. for each sum square in DM, the construction model in the top node is

the sum of the construction models in the side nodes w.r.t. the con-

struction fitting from the sum square; and the construction model in

the bottom node is the full class of models over the given signature.

Let us notice that in requirement (3) from Def. 8.9 above, there is no

need for extra application of cleaning, because, by Corollary 7.16, we have

CleanD(m)(Conn|ω) = Conn|ω.

150 CHAPTER 8. ARCHITECTURES AS DIAGRAMS OF CONSTR.

Notation. Obviously, given a diagram of constructions D, it has the same

shape as any corresponding diagram of construction models DM. There-

fore, if we write seed nodes of DM we mean seed nodes of D and we write

Seeds(DM) for Seeds(D).

The construction model residing in the result node of a diagram of con-

struction models is considered a result of the system construction.

Definition 8.10 The result construction model of a diagram of construc-

tion models DM : J → SpecDepMcon , denoted by Result(DM), is given as

π2(DM(n)), where n ∈ |J| is the result node of DM.

It is enough to have a construction model for each seed of the diagram

of constructions to obtain the corresponding diagram of construction models

and hence the result of the system construction.

Theorem 8.11 Consider a diagram of constructions D : J → SpecDepcon

and for each seed node n ∈ Seeds(D), a construction model Conn such that

Conn |=c D(n) and Con = CleanD(n)(Con). This setting yields the unique

diagram of construction models DM corresponding to D such that for each

seed node n ∈ Seeds(D), π2(DM)(n) = D(n).

The proof is in Appendix 8.A. The diagram of construction models is

obtained by repeated use of the sum of construction models operation and

the reduct along the construction refinement morphism (cf. Corollary 7.16).

Example 8.12 Let us take the diagram of constructions D from Exam-

ple 8.4. By Example 8.7 we know that its seed nodes are SP 1, SP ′
21 and

SP ′
22. Consider the following construction models of respective construction

signatures of seed nodes:

Con1 = {M ∈ [[S1]] | aM = cM},

Con′
21 = {M ∈ [[S ′

21]] | fM (bM) = aM},

Con′
22 = {M ∈ [[S ′

22]] | tM = {♥,♦,♣,♠}, sM = {?}, aM = ?, bM = ♥,

for all x ∈ tM , fM(x) = ?}.

8.3. OPERATIONS AS DIAGRAMS OF CONSTRUCTIONS 151

It is easy to check that Con1 |=c SP1, Con′
21 |=

c SP ′
21 and Con′

22 |=
c SP ′

22.

One-by-one we build the whole diagram of construction models DM out

from the construction models of the seed nodes.

A sum of Con′
21 and Con′

22 w.r.t. the construction fitting of the right sum

square in D gives the construction model Con′
2 = Con′

22 such that Con′
2 |=c

SP ′
2.

The reduct of Con′
2 along ω yields a construction model of S2, defined as

Con2 = {M ∈ [[S2]] | sM = {?}, aM = ?}

and we have Con2 |=c SP2.

Finally, we get the result construction model Con = Con1⊕ft Con2, where

ft is the construction fitting of the left sum square of D. Its explicit definition

is the following

Con = {M ∈ [[S]] | sM = {?}, aM = ?, cM = ?}

and of course Con |=c SP.

8.3 Operations as Diagrams of Constructions

In this section we look again at the typical connectives between parame-

terised module specifications and, using an example, we show how they can

be represented as diagrams of constructions.

In general the problem is that the fitting spans or morphisms cannot

be directly transformed to the corresponding construction fittings, therefore,

there are examples of unions, compositions, applications and other operations

on parameterised module specifications that fail to be represented directly

as one sum of construction specifications. The technical reason is that not

all Sig-morphism are SigDepfrag -morphisms

The proposed solution is to use refinements as a method for abstraction,

and refactor the architecture of the given settings of parameterised modules

to make them representable as diagrams of constructions.

152 CHAPTER 8. ARCHITECTURES AS DIAGRAMS OF CONSTR.

Example 8.13 Consider the composition of parameterised module specifi-

cations from Example 6.45. The problem presented there concerns the de-

pendency structure of symbol b, which contains symbol a in the construction

signature of SP 1 and does not contain a in the construction signature of SP 2.

The refactored setting is presented as a diagram of constructions given below

SP

SP2 SP ′
2 SP ′

SPF SP1 SP ′
1

SP ′
F

ϕ1 ϕ2

β1 β2

ω
∼∼ c

β′
1 β′

2

ϕ′
1 ϕ′

2

where, additionally to already defined SP 1 and SP2, we have

SP = 〈(sort s; ops b : s, c : s; deps b < c), ∅〉,

SP ′
2 = 〈(sort s; ops b : s), ∅〉,

SPF = 〈(sort s; ops b : s), ∅〉,

SP ′ = 〈(sort s; ops a : s, b : s; deps a < b), ∅〉,

SP ′
1 = 〈(sort s; ops a : s), ∅〉,

SP ′
F = 〈(sort s; ops a : s), ∅〉

and all morphisms are inclusions. There are three seed nodes: SP 1, SP 2 and

SP ′
1. The first one constructs b (and corresponds to the first parameterised

module specification from Example 6.45), the second one constructs c (corre-

sponds to the second parameterised module specification). The last one is a

kind of a “parameter” of the above diagram with sort s and operation a; it

may be further refined to match the implementation, when provided.

As illustrated by the above example, the top-down approach to system

representation requires that all new dependencies are added prior to the

sum-based decomposition that corresponds to the composition or similarly

(partial) application operation on parameterised module specifications.

8.A. APPENDIX: PROOFS 153

8.A Appendix: Proofs

Proof of Theorem 8.11. Consider a diagram of constructions D : J →

SpecDepcon and a collection of construction models indexed by seed nodes

of D, 〈Conn〉n∈Seeds(D). Diagram D seen as a directed graph (as described

in condition (10) of Def. 8.3) is a dag. Its nodes without successors (leaves)

are either bottom nodes of sum squares (denote by SPF) or seed nodes of D.

We construct the diagram of construction models DM : J → SpecDepMcon .

On morphisms, for each J-morphism σ, we directly set DM(σ) = D(σ). On

nodes we proceed by induction on the structure of the dag.

• Its leaves are either construction models of seed nodes, so we put

DM(n) = Conn for any seed n, or full classes of models of F (because

SPF are empty specifications and every F contains only assumed sym-

bols), so we put DM(n) = [[π1(D(m))]] for any bottom node m in D;

• Each internal internal node of the tree is either the source of a unique

refinement arrow or it is the top node of a unique sum square;

1. if it is m ∈ |J| such that it is the source of a refinement arrow

ω in D, i.e. ω = D(σ) for σ : m → n ∈ J, we put DM(m) =

〈D(m), π2(DM(n))|ω〉 ,

2. if it is p ∈ |J| such that it is the top node of a sum square in

D, i.e. there are two nodes o1, o2 ∈ J such that D(o1) and D(o2)

are the side nodes of a sum square, which is the pushout of some

construction fitting ft = 〈ϕ1, ϕ2〉 in SigDepfrag , we put DM(p) =

〈D(p), π2(DM(o1)) ⊕ft π2(DM(o2))〉

By construction diagram DM is well defined on all morphisms and nodes.

Moreover, DM is a diagram of construction models (meeting all requirements

of Def. 8.8 and Def. 8.9). The nontrivial part is the requirement from Def. 8.8

that all construction models are clean. Regarding the point (1) above, by

Corollary 7.16, we have

π2(DM(n))|ω = CleanD(m)(π2(DM(n))|ω).

154 CHAPTER 8. ARCHITECTURES AS DIAGRAMS OF CONSTR.

Regarding the point (2) above, in definition Def. 8.3 it is required that the

construction specification in the top node of a sum square is the sum of

construction specifications from the side nodes. Therefore,

CleanD(p)(π2(DM(o1)) ⊕ft π2(DM(o2))) = π2(DM(o1)) ⊕ft π2(DM(o2)).

Finally, we notice that, by construction, DM is unique such that for each

seed node n ∈ Seeds(D), π2(DM)(n) = D(n), as required. �

Chapter 9

Example

9.1 Introduction

In this chapter we provide some steps of development of an example archi-

tecture specification. We start by stating a vague description of a system in

the natural language. Then we propose the encoding of the first understand-

ing of the system components into construction signatures and construction

specifications, and we represent the system decomposition as a diagram of

constructions. Further we refine some of the components and provide their

subsequent decompositions.

In this chapter, we assume that the base institution is FOEQF, the in-

stitution of first order logic with equality with finite many sorted algebraic

signatures (cf. Def. 3.9).

9.2 Travel Agency System

The example is about the development of a software system for travel agen-

cies. The system is supposed to manage offices where clients, interested in

reservations of flight or train tickets, and also considering taking hotel rooms,

may make reservations.

First, from the description we extract the following sorts, useful to for-

mulate the specification of the system:

office, client , need , reservation , ticket , offer , result

155

156 CHAPTER 9. EXAMPLE

We also add the operations:

OK : result

reserve : office × client × need → reservation × result

cancel : reservation → reservation × result

verify : reservation × client → result

reservationFor : reservation → client × result

issueTicket : reservation → ticket × result

OK models the successful results. Operation reserve covers the situation

where a client presents her/his needs to an office and gets a reservation

along with the result of the operation. We assume that need is a complete

description of possible needs, reservation encompasses all types and variants

of reservations, their statuses, payment information etc. Similarly result

represents any type of a result, possibly different for different operations.

Operation cancel allows a client to cancel a reservation. verify checks whether

a given reservation is good for a given client. Operations reservationOf and

reservationFor give some more information about the reservation. Finally,

issueTicket converts a reservation into a ticket.

The above-given description of sorts and operations suggests the following

dependency relation between them:

verifyissueTicket

cancel reservationForticket

reserve

reservation

clientofficeneed

OK

result

Let S be a construction signature that contains the above-given sorts,

operations and dependency relation. Let it be a complete signature fragment,

9.2. TRAVEL AGENCY SYSTEM 157

i.e. such that all symbols are defined.

The below-given first-order logic axioms reflect some of the expected prop-

erties of the system. All axioms are over the signature UnDep(Compl(S)).

Ax for = ∀ r : reservation ; o : office; c : client ; n : need ∙

(reserve(o, c, n) = 〈r,OK 〉) ⇒ (reservationFor (r) = 〈c,OK 〉)

Ax ver1 = ∀ r : reservation ; o : office; c : client ; n : need ∙

(reserve(o, c, n) = 〈r,OK 〉) ⇒ (verify(r, c) = OK)

Ax ver2 = ∀ r : reservation ; o : office; c, c′ : client ; n : need ∙

(reserve(o, c, n) = 〈r,OK 〉 ∧ ¬(c = c′)) ⇒ (¬(verify(r, c′) = OK))

Ax can = ∀ r, r′ : reservation ; c : client ∙

(cancel(r) = 〈r′, OK〉) ⇒ ¬(verify(r′, c) = OK)

Ax tic = ∀ r : reservation ; o : office; c : client ; n : need ; t : ticket ∙

¬(reserve(o, c, n) = 〈r,OK 〉) ⇒ ¬(issueTicket(r) = 〈t,OK 〉)

Ax for says that a successful reservation for a client is attributed to the same

client. Ax ver1 and Ax ver2 say that a successful reservation verifies positively

only for the same client. Ax can says that a cancelled reservation does not

verify positively for any client. Ax tic forbids the successful ticket issue from

the failed reservation.

Let Ax = {Ax ver1 ,Ax ver2 ,Ax can ,Ax tic}. We define SP = 〈S, 〈Σ,Ax 〉〉.

We expect the monolithic high-level description to be further decomposed

and refined. The following construction signatures constitute the candidates

for such decomposition (assumed symbols are underlined).

First is the results part. All other parts depend on it, because it repre-

sents the system common part. Recall that we omit all basic dependencies

(dependency of an operation on sorts from its profile).

Srlt = (sorts result ; op OK : result)

158 CHAPTER 9. EXAMPLE

There is also the offices part including clients. It is dependent on result part.

Soff = (sorts office, client , result ;

op OK : result ;

deps OK < office,OK < client)

Next comes the reservations part dependent on the office part.

Sres = (sorts reservation , need , office, client , result ;

ops reserve : office × client × need → reservation × result ,

cancel : reservation → reservation × result ,

verify : reservation × client → result ,

reservationFor : reservation → client × result ,

OK : result ;

deps reserve < cancel , cancel < verify , need < reservation ,

office < reservation , client < reservation ,

OK < need ,OK < office,OK < client)

The corresponding specification is SP res = 〈Sres , (Ax ver1 ∪ Ax ver2 ∪ Ax can)〉.

Finally there is a tickets part.

S tic = (sorts ticket , reservation , need , office, client , result ;

ops issueTicket : reservation → ticket × result

reserve : office × client × need → reservation × result ,

cancel : reservation → reservation × result ,

OK : result ;

deps reserve < cancel , cancel < issueTicket , need < reservation

office < reservation , client < reservation ,

OK < need ,OK < office,OK < client)

The specification for the tickets part is SP tic = 〈S tic,Ax tic〉.

9.2. TRAVEL AGENCY SYSTEM 159

The decomposition of the system may be given as a diagram of construc-

tions D1

SP SP

〈Srlt , ∅〉 SP ′ SP ′

〈Sa
rlt , ∅〉 〈Soff , ∅〉 SP res tic

〈Sa
off , ∅〉

SP res tic

SP res SP tic

〈Sa, ∅〉

idS
∼∼ c

idS′

∼∼ c

idSres tic∼∼ c

with all arrows being inclusions (the refinement morphisms being identities).

The construction signature Sa
rlt has the symbols and dependency structure

as Srlt, but with all symbols being assumed. Similarly, the construction sig-

natures Sa and Sa
off are the assumed versions of S and Soff , respectively. All

construction signatures indexed by a are empty signature fragments (con-

taining only assumed symbols). Moreover, we define SP ′ = 〈S ′,Ax 〉 with

S ′ = (Sa
rlt ∪ Soff ∪ Sres ∪ S tic) and SP res tic = SP res ∪ SP tic.

Another decomposition may be given as D2 depicted below,

SP SP

〈Srlt off , ∅〉 SP res tic SP res tic

〈Sa
off , ∅〉 SP res SP tic

〈Sa, ∅〉

〈Srlt off , ∅〉

〈Srlt , ∅〉 〈Soff , ∅〉

〈Sa
rlt , ∅〉

idS
∼∼ c

idSres tic∼∼ c
idSrlt off
∼∼ c

again with all arrows being inclusions. Additionally to the construction sig-

natures and specifications introduced in description of D1, the construction

signature Srlt off = Srlt ∪ Soff .

By looking at the seed nodes only, the two above diagrams of construc-

160 CHAPTER 9. EXAMPLE

tions are equivalent. However, clearly the architectures described by D1 and

D2 are different. As it will be briefly discussed in Chapter 10, in order to

disregard some architectural (unimportant) details of system decomposition,

it may be more appropriate to use some sort of architecture development

logic to write specifications of the decomposition in more abstract way.

9.3 Further Refinement Steps

In this section we propose refinement steps for some parts of the system. We

give the refinement definitions explicitly, but again, we see the need to have

a possibility to specify the refinement steps and decomposition in some sort

of the architecture development logic.

In the refinement we add to Sres the following sorts

flight , train, hotel

representing the respective reservation domains and an operation allowing to

get a reservation type from a reservation

reservationOf : reservation → flight × train × hotel × result

The update of dependencies needed to incorporate the new sorts and opera-

tion is given by the diagram below.

reservation

reservationOf

hoteltrainflightclientofficeneed

OK

result

9.3. FURTHER REFINEMENT STEPS 161

The construction signature of the refined reservations part is the following

S ′
res = (sorts reservation , need ,flight , train, hotel , office, client , result ;

ops reserve : office × client × need → reservation × result ,

cancel : reservation → reservation × result ,

verify : reservation × client → result ,

reservationFor : reservation → client × result ,

reservationOf : reservation → flight × train × hotel × result ,

OK : result ;

deps reserve < cancel , cancel < verify ,

need < reservation , office < reservation ,

client < reservation ,flight < reservation ,

train < reservation , hotel < reservation ,

OK < need ,OK < office,OK < client ,

OK < flight ,OK < train,OK < hotel)

Let SP ′
res = 〈S ′

res , (Ax ver1 ∪ Ax ver2 ∪ Ax can)〉 and let ιres : Sres → S ′
res be an

inclusion. Clearly ιres a is construction signature refinement morphism and

SP res
ιres∼∼ cSP ′

res .

Below-given diagram of constructions D′
1 is such an extension of D1 that

contains refinement of SP res by SP ′
res. The part of the diagram denoted by

“. . . ” is the same as in D1.

. . . SP res tic SP res tic

SP res SP tic

〈Sa, ∅〉

SP ′
res

idSrt∼∼ c

ιres
∼∼ c

After the refinement of the reservations part added the new sorts repre-

senting the reservation domains, the tickets part also needs the addition of

those sorts, because only then the right type of the ticket may be matched

162 CHAPTER 9. EXAMPLE

to the type of the reservation. The following operation allows one to get the

type of ticket and the corresponding reservation:

ticketInfo : ticket → flight × train × result

Consider the the construction signature of the refined tickets part.

S ′
tic = (sorts ticket ,flight , train, reservation , need , office, client , result ;

ops issueTicket : reservation → ticket × result

ticketInfo : ticket → flight × train × result

reserve : office × client × need → reservation × result ,

cancel : reservation → reservation × result ,

reservationOf : reservation → flight × train × hotel × result ,

OK : result ;

deps reserve < cancel , cancel < issueTicket ,

reservationOf < ticketInfo,

need < reservation , office < reservation ,

client < reservation ,flight < reservation ,

train < reservation , hotel < reservation ,

OK < need ,OK < office,OK < client ,

OK < flight ,OK < train,OK < hotel)

The following axiom expresses the expected property that the ticket issued

based on the reservation of a flight or a train, concerns the same transporta-

tion.

Ax tran = ∀ r : reservation ; f : flight ; tr : train; h : hotel ; t : ticket ∙

(issueTicket(r) = 〈t,OK 〉) ⇒

((reservationOf (r) = 〈f, tr, h, OK 〉) ⇐⇒

(ticketInfo(t) = 〈f, tr, OK 〉))

9.3. FURTHER REFINEMENT STEPS 163

Let the refined specification for the tickets part be SP ′
tic = 〈S tic,Ax tran ∪ Ax tic〉.

The independent refinements of two different parts of the system must

not add dependencies to the shared symbols (cf. the discussion below Theo-

rem 7.17). Therefore, the only way to consistently add new symbols to both

reservations part and tickets part is to do it before the split of SP res tic into

SP res and SP tic.

Consider D′′
1, another extension of D1; again, the part of the diagram

denoted by “. . . ” is the same as in D1

. . . SP res tic SP ′
res tic

SP ′
res SP ′

tic

〈S
′a
res tic, ∅〉

SP ′
res

ιrt
∼∼ c

idS′
res∼∼ c

where SP ′
res tic = SP ′

res ∪SP ′
tic is a construction specification over a construc-

tion signature S ′
res tic and S

′a
res tic is its assumed version; moreover, ιrt : Sres tic →

S ′
res tic is an inclusion.

164 CHAPTER 9. EXAMPLE

Chapter 10

Summary

In this thesis we presented an approach to development of software architec-

tures via diagrams of constructions. In order to unify the notion of simple

and parameterised modules we have equipped the construction signatures

with additional dependencies between symbols and the information whether

a given symbol is defined or assumed from the outside.

We have started by giving the motivation, discussing the related work,

presenting technical preliminaries and setting the assumptions about the base

institution I. Then we have provided a formal introduction to signature frag-

ments and signatures with dependency structure (called also signatures with

dependencies). Such signatures are equipped with additional relation on

symbols that describes the dependency structure of each symbol. Construc-

tion signatures are defined as fragments of signatures with dependencies, with

bounded strict orders as dependency relations. Morphisms between construc-

tion signatures are given as p-morphisms on their symbols, i.e., monotonic

maps that weakly reflect the dependency structures of symbols. Construc-

tion models are classes of models (from the base institution I) that share

interpretation of defined symbols under condition that they share the inter-

pretation of dependency structure of those symbols. The interpretation of

assumed symbol may vary, even in presence of the shared interpretation of

their dependency structure. Construction model reducts are reducts of all

models in the construction model. Construction specifications are then sim-

ply specifications in the base institution I. Satisfaction relation requires that

the constructed (defined) symbols satisfy the specification, the parameter

(assumed) symbols are represented in all variants matching the specification,

any partial instantiation respecting the dependency structure is possible,

and the specification respects the dependency structure (does not relate the

165

166 CHAPTER 10. SUMMARY

otherwise independent symbols). Further, we have defined the construction

fittings between construction signatures that guarantee the explicit tracking

of defined symbols. The sum operation is given by the pushout for construc-

tion signatures, the amalgamation operation for construction models, and the

specification union for construction specifications. We have given a notion

of static compatibility of construction specifications w.r.t. the construction

fitting and we have proven that the sum of compatible construction models

satisfies the union of corresponding construction specifications.

Along with the definitions of construction signatures, models and specifi-

cations, we have presented the correspondence between parameterised mod-

ules and constructions. Our sum operation essentially subsumes standard

operations (union, composition, application) on parameterised modules, un-

der their representation as constructions. Interestingly, constructions give

uniform treatment of first- and higher-order parameterised modules.

Construction signatures, models and specifications do not form an in-

stitution (of constructions). This is because the construction satisfaction

relation (cf. Def. 6.13) poses completeness requirements w.r.t. assumed sym-

bols, and construction signature morphism may map assumed symbols to

defined symbols. The reduct of a construction model along such morphism

usually contains fewer models than required by the satisfaction condition. In

our approach this is not a problem, because construction signatures are used

only for construction fittings and sum embeddings (horizontal composition

in terms of parameterised programming). We do not use such morphisms

for hiding (i.e., for abstraction). For that purpose we define another type of

morphisms.

Construction signature refinement morphisms between construction sig-

natures are injective on assumed symbols, require newly added symbols to

be defined and allow for addition of extra dependency between old and new

symbols (by new symbols we mean those that are not in the image of the mor-

phism). Such additions represent auxiliary symbols, possibly used to repre-

sent more implementation details in the target of the morphism. Further, we

have introduced construction specification refinements (vertical composition

in terms of parameterised programming) that allow for stronger specifications

10.1. FUTURE WORK 167

of defined symbols. By proving one side of the satisfaction condition for con-

structions with construction refinement morphisms, we come very close to

the definition of the institution of constructions. However, since such an

institution is not needed for the purpose of this thesis, we have left the com-

plete proof of the satisfaction condition (opposite side) for the future work.

We have shown that the typical symmetric compositionality theorem holds,

but its analysis has led to the discovery that its use in typical situations is

very limited. As a partial solution to those limitations, we give a single-side

compositionality result.

Having constructions as basic architectural units, the sum as a compo-

sition operation and construction refinements as a method for abstraction

and step-wise refinement we have defined the diagrams of constructions. Di-

agrams of constructions correspond to software architecture designs. They

represent the decomposition structure of the system, and also provide the

guideline for the software development process.

We have also presented an example of specification using diagram of con-

structions.

10.1 Future Work

Many aspects of system specification via diagrams of constructions were not

covered in this thesis. We always tried to give the most complete picture

of the defined notions, but, as the main goal of this thesis was to provide

proper formulation of software architectures as diagram for constructions,

some issues were left for the next steps.

The first topic that finally did not find its place in the thesis is archi-

tecture specification logic. Such logic has been envisaged to be interpreted

upon diagrams of constructions. Roughly, the idea is to extend a diagram of

constructions by a global signature and embeddings from every construction

signature in the diagram. The logic would be a variant of temporal logic

(e.g. based on CTL*) suitable to express architectural properties of the dia-

gram of construction, such as “a given set of symbols is defined only together,

i.e. in the same node of the diagram” or “in the refinement structure of some

168 CHAPTER 10. SUMMARY

node there is a node that exhibits an interface (made of assumed symbols)

that meets a given specification”, etc.

A missing concept is, as it was already mentioned, the institution of

constructions and construction signature refinements. It would be favorable

to have the constructions framework that forms an institution and benefit

from the extensive research base available for institutions.

Another interesting topic for future work is the standard compositional-

ity of construction specifications with respect to refinement. The approach

discussed in the thesis has shown to be limited in typical applications.

Finally, a natural follow-up is to implement the concept of constructions

as a specification language. Such formalism, code-named by us “dependency-

oriented specifications”, would allow one to check applicability and usability

of our concept, and whether internal complexity of its semantics is really a

huge challenge.

Bibliography

[AG97] Robert Allen and David Garlan. A formal basis for architectural

connection. ACM Transactions on Software Engineering and

Methodology (TOSEM) , 6(3):213–249, 1997.

[AHS90] Jǐŕı Adámek, Horst Herrlich, and George Strecker. Abstract and

Concrete Categories. Wiley-Interscience, 1990.

[BG77] Rod M. Burstall and Joseph. A. Goguen. Putting theories to-

gether to make specifications. In Proceedings of the 5th Inter-

national Joint Conference on Artificial Intelligence - Volume 2,

IJCAI’77, pages 1045–1058. Morgan Kaufmann Publishers Inc.,

1977.

[BG80] Rod M. Burstall and Joseph A. Goguen. The semantics of Clear,

a specification language. In Dines Bjørner, editor, Abstract Soft-

ware Specifications, volume 86 of Lecture Notes in Computer

Science, pages 292–332. Springer, 1980.

[BG92] Rod M. Burstall and Joseph A. Goguen. Institutions: Abstract

model theory for specification and programming. Journal of the

ACM (JACM), 39(1):95–146, 1992.

[BGM89] Michel Bidoit, Marie-Claude Gaudel, and Anne Mauboussin.

How to make algebraic specifications more understandable: An

experiment with the Pluss specification language. Science of

Computer Programming, 12(1):1 – 38, 1989.

[BL69] Rod M. Burstall and Peter J. Landin. Programs and their proofs:

an algebraic approach. In Bernard Meltzer and Donald Michie,

editors, Machine Intelligence, volume 4, pages 17–43. Edinburgh

University Press, 1969.

[BL70] Garrett Birkhoff and John D. Lipson. Heterogeneous algebras.

Journal of Combinatorial Theory , 8(1):115 – 133, 1970.

169

170 BIBLIOGRAPHY

[CRS+11] William Chaves de Souza Carvalho, Pedro Frosi Rosa, Michel

dos Santos Soares, Marco Antonio Teixeira da Cunha Jr., and

Luiz Carlos Buiatte. A comparative analysis of the agile and

traditional software development processes productivity. In Pro-

ceedings of the 2011 30th International Conference of the Chilean

Computer Science Society, SCCC ’11, pages 74–82. IEEE Com-

puter Society, 2011.

[Dia08] Răzvan Diaconescu. Institution-independent Model Theory.

Birkhäuser Basel, 1st edition, 2008.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic

Specification 1: Equations and Initial Semantics. Springer, 1985.

[EM90] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic

Specification 2: Module Specifications and Constraints. Springer,

1990.

[FLW03] José Luiz Fiadeiro, Antónia Lopes, and Michel Wermelinger. A

mathematical semantics for architectural connectors. In Roland

Backhouse and Jeremy Gibbons, editors, Generic Programming:

Advanced Lectures, number 2793 in Lecture Notes in Computer

Science, pages 178–221. Springer, 2003.

[GB80] Joseph A. Goguen and Rod M. Burstall. Cat, a system for

the structured elaboration of correct programs from structured

specifications. SRI Technical Report CSL 118. Computer Science

Laboratory, SRI International, 1980.

[GB84] Joseph A. Goguen and Rod M. Burstall. Introducing institu-

tions. In Edmund Clarke and Dexter Kozen, editors, Logics of

Programs, volume 164 of Lecture Notes in Computer Science,

pages 221–256. Springer, 1984.

[Gog84] Joseph A. Goguen. Parameterized programming. IEEE Trans-

actions on Software Engineering, 10(5):528–544, 1984.

BIBLIOGRAPHY 171

[Gog96] Joseph A. Goguen. Parameterized programming and software

architecture. In Proceedings of REUSE 1996, pages 2–11. IEEE

Computer Society Press, 1996.

[GS94] David Garlan and Mary Shaw. An introduction to software ar-

chitecture. CMU Software Engineering Institute Technical Re-

port CMU/SEI-94-TR-21. Carnegie Mellon University, 1994.

[GS01] H. Peter Gumm and Tobias Schröder. Products of coalgebras.

Algebra Universalis, 46:163—185, 2001.

[GTW78] Joseph A. Goguen, James W. Thatcher, and Eric G. Wagner. An

Initial algebra approach to the specification, correctness and im-

plementation of abstract data types. In Raymond T. Yeh, editor,

Current Trends in Programming Methodology: Data Structuring,

volume 4, pages 80–149. Prentice Hall, 1978.

[GWM+92] Joseph A. Goguen, Timothy Winkler, José Meseguer, Kokichi

Futatsugi, and Jean-Pierre Jouannaud. Introducing OBJ3. Tech-

nical Report SRI CSL 92-03. Computer Science Laboratory, SRI

International, 1992.

[Mac84] David MacQueen. Modules for Standard ML. In Proceedings

of the 1984 ACM Symposium on LISP and Functional Program-

ming, LFP ’84, pages 198–207. ACM, 1984.

[Mar12] Grzegorz Marczyński. Algebraic signatures enriched by depen-

dency structure. In Proceedings of WADT 2010, volume 7137

of Lecture Notes in Computer Science, pages 226–250. Springer,

2012.

[ML98] Saunders Mac Lane. Categories for the Working Mathematician

(Graduate Texts in Mathematics). Springer, 2nd edition, 1998.

[Mos04] Peter D. Mosses, editor. Casl Reference Manual, The Com-

plete Documentation of the Common Algebraic Specification

172 BIBLIOGRAPHY

Language, volume 2960 of Lecture Notes in Computer Science

(IFIP Series). Springer, 2004.

[Par72] David Lorge Parnas. A technique for software module specifi-

cation with examples. Communications of the Association for

Computing (j-CACM), 15(5):330–336, May 1972.

[San09] Davide Sangiorgi. On the origins of bisimulation and coinduc-

tion. ACM Transactions on Programming Languages and Sys-

tems, 31(4):15:1–15:41, May 2009.

[Seg70] Krister Segerberg. Modal logics with linear alternative relations.

Theoria, 36(3):301–322, December 1970.

[SST92] Donald Sannella, Stefan Sokolowski, and Andrzej Tarlecki. To-

ward formal development of programs from algebraic specifica-

tions: Parameterisation revisited. Acta Informatica, 29(8):689–

736, 1992.

[ST88] Donald Sannella and Andrzej Tarlecki. Toward formal develop-

ment of programs from algebraic specifications: Implementations

revisited. Acta Informatica, 25(3):233–281, April 1988.

[ST91] Donald Sannella and Andrzej Tarlecki. A kernel specification for-

malism with higher-order parameterisation. In Hartmut Ehrig,

Klaus P. Jantke, Fernando Orejas, and Horst Reichel, editors,

Recent Trends in Data Type Specification, volume 534 of Lecture

Notes in Computer Science, pages 274–296. Springer, 1991.

[ST06] Donald Sannella and Andrzej Tarlecki. Horizontal composabil-

ity revisited. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and

José Meseguer, editors, Algebra, Meaning, and Computation,

volume 4060 of Lecture Notes in Computer Science, pages 296–

316. Springer, 2006.

BIBLIOGRAPHY 173

[ST12] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic

Specification and Formal Software Development. EATCS Mono-

graphs on Theoretical Computer Science. Springer, 2012.

[SW82] Donald Sannella and Martin Wirsing. Implementation of pa-

rameterised specifications. In Mogens Nielsen and ErikMeineche

Schmidt, editors, Automata, Languages and Programming, vol-

ume 140 of Lecture Notes in Computer Science, pages 473–488.

Springer, 1982.

[SW83] Donald Sannella and Martin Wirsing. A kernel language for

algebraic specification and implementation extended abstract. In

Marek Karpinski, editor, Foundations of Computation Theory,

volume 158 of Lecture Notes in Computer Science, pages 413–

427. Springer, 1983.

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John

Fitzgerald. Formal methods: Practice and experience. ACM

Computing Surveys, 41(4):19:1–19:36, October 2009.

	Introduction
	Motivation
	Aims and Objectives
	Contributions
	Outline

	Related Work
	Introduction
	Clear and Parameterised Programming
	Modules in ACT TWO
	ASL and Parametric Algebras
	CASL and Architectural Specifications
	Software Architectures

	Technical Preliminaries and Assumptions
	Introduction
	Basic Category Theory
	Categories of Ordered Sets

	Institutions and Specifications
	Universal Algebra and Examples of Institutions

	Parameterisation
	Assumptions

	Signature Fragments
	Introduction
	Basic Approach
	Extended Approach
	Special Fragments

	Appendix: Proofs

	Signatures with Dependencies
	Introduction
	Signatures with Dependencies
	Dependency Relation
	Signatures with Dependency Structure

	Fragments of Signatures with Dependencies
	Appendix: Proofs

	Constructions
	Introduction
	Construction Signatures
	Signatures of Modules as Construction Signatures

	Construction Models
	Models of Modules as Construction Models

	Construction Specifications
	Consistency of Construction Specification
	Cleaning Operator
	Module Specifications as Construction Specifications

	Construction Fittings and Sum
	Construction Fittings and Sum of Construction Signatures
	Sum of Construction Models
	Sum of Construction Specifications
	Other Operations as Sum Operation

	Appendix: Proofs

	Refinements
	Introduction
	Construction Signature Refinement Morphisms
	Construction Specification Refinements
	Refinement Compositionality
	Appendix: Proofs

	Architectures as Diagrams of Constr.
	Introduction
	Diagrams of Constructions
	Operations as Diagrams of Constructions
	Appendix: Proofs

	Example
	Introduction
	Travel Agency System
	Further Refinement Steps

	Summary
	Future Work

	Bibliography

