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Abstra
t

In this dissertation, both qualitative and numeri
al analysis for an optimization problem is

performed for a feedba
k 
ontrol law applied to a 
lass of nonlinear rea
tion-di�usion pro
esses. A

�nite number of 
ontrol and measurement devi
es target their a
tions inside the pro
ess domain.

The measurement devi
es 
olle
t data on the pro
ess evolution, while the 
ontrol devi
es obtain

those data and a
tivate an appropriate rea
tion. The aim of this 
ontrol system is to keep the

pro
ess evolution 
lose to a user-de�ned referen
e state. The above optimization problem 
onsists

in 
hoosing geometri
al targeting of the 
ontrol and measurement devi
es a
tions a

ording to a

suitable optimality 
riterion.

Su
h an idea of the 
losed-loop 
ontrol of rea
tion-di�usion pro
esses is implemented by

a system of equations with a semilinear PDE 
oupled to several nonlinear ODEs. The 
ost

fun
tional utilized for a pre
ise de�nition of the announ
ed problem of optimal targeting is


onstru
ted as an integral of the di�eren
e between the pro
ess and referen
e states.

The present work is divided into two main parts. The �rst of them fo
uses on analysis of

the PDE-ODE model under 
onsideration. The se
ond one 
on
erns the problem of optimal

targeting, exploiting some of the results of the �rst part.

In the analysis of the PDE-ODE model we fo
us on questions 
on
erning existen
e, unique-

ness and stability of solutions as well as on the e�
ien
y of the 
losed-loop 
ontrol me
hanism

implemented there. By e�
ien
y we mean here an ability of moving the pro
ess 
lose to the

referen
e state. The existen
e, uniqueness and stability proofs are provided. The e�
ien
y of the


losed-loop 
ontrol is validated by results of numeri
al simulations for the investigated PDE-ODE

model. The numeri
al results suggest that the e�
ien
y of the 
onsidered 
losed-loop 
ontrol

depends on 
hanges of the model parameters. Moreover, the long-time behavior visible in the

subje
t simulations also is examined. In all simulations, the pro
ess appeared to tend to some

time-invariant state, after su�
iently long time. In some 
ases, that time-invariant state seemed

to be, at some rate, independent of the initial 
ondition of the PDE-ODE model.

In the part on the optimal targeting problem, we �rst fo
us on analyti
al questions. We prove

there the existen
e of minimizers and 
hara
terize the di�erential of the 
ost fun
tional too. Then,

we des
ribe numeri
al optimization experiments, utilizing three gradient optimization algorithms

(the steepest des
ent and two variants of the nonlinear 
onjugate gradient) and 
ompare their

performan
e. Here, the aforementioned 
hara
terization of the 
ost fun
tional di�erential is

used to implement the formula for the gradient. The results show how the performan
e of the

optimization algorithms varies with 
hanges of the parameters entering the 
ost fun
tional. It

is also shown that modi�
ations of the subje
t parameters 
an result in independen
e of the

optimization output on the initial 
ondition of the PDE-ODE model.



Stresz
zenie

W niniejszej rozprawie przeprowadzone s¡ zarówno jako±
iowa, jak i numery
zna analiza prob-

lemu optymaliza
ji sterowania ze sprz�»eniem zwrotnym zastosowanego do pewnej klasy nielin-

iowy
h pro
esów reak
ji-dyfuzji. Sko«
zona li
zba urz¡dze« steruj¡
y
h i pomiarowy
h skupia

swoje dziaªania wewn¡trz obszaru pro
esu. Urz¡dzenia pomiarowe zbieraj¡ dane o ewolu
ji pro-


esu, nast�pnie urz¡dzenia steruj¡
e otrzymuj¡ zebrane dane i uru
hamiaj¡ odpowiedni¡ reak
j�.

Celem sterowania jest utrzyma¢ ewolu
j� pro
esu blisko zde�niowanego przez u»ytkownika stanu

referen
yjnego. Powy»ej wspomniany problem optymaliza
ji polega na ustaleniu geometry
znego

wy
elowania dziaªa« urz¡dze« steruj¡
y
h i pomiarowy
h w odniesieniu do odpowiedniego kry-

terium optymalno±
i.

Przedstawiona idea sterowania w ukªadzie zamkni�tym pro
esem reak
ji-dyfuzji jest zaim-

plementowana poprzez ukªad równa« z semiliniowym równaniem ró»ni
zkowym 
z¡stkowym

sprz�»onym z wieloma nieliowymi równaniami ró»ni
zkowymi zwy
zajnymi. Funk
jonaª kosztu

wykorzystany na potrzeby pre
yzyjnej de�ni
ji zapowiedzianego problemu optymalnego wy
elowa-

nia jest skonstruowany jako 
aªka z ró»ni
y mi�dzy stanem pro
esu a stanem referen
yjnym.

Niniejsza pra
a podzielona jest na dwie gªówne 
z�±
i. Pierwsza z ni
h skupia si� na anal-

izie wspomnianego ukªadu równa«. Druga 
z�±¢ doty
zy problemu optymalnego wy
elowania,

wykorzystuj¡
 pewne rezultaty z 
z�±
i pierwszej.

W 
z�±
i doty
z¡
ej analizy wspomnianego ukªadu równa« skupiam si� na pytania
h doty
z¡-


y
h istnienia, jednozna
zno±
i oraz stabilno±
i rozwi¡za«, jak równie» na skute
zno±
i sterowa-

nia w ukªadzie zamkni�tym zaimplementowanego w rozwa»anym ukªadzie. Przez skute
zno±¢

rozumiem zdolno±¢ do sprowadzania pro
esu w pobli»e stanu referen
yjnego. Zaprezentowane

s¡ dowody istnienia, jednozna
zno±
i oraz stabilno±
i. Skute
zno±¢ rozwa»anego sterowania w

ukªadzie zamkni�tym jest zilustrowana za pomo
¡ rezultatów symula
ji numery
zny
h doty-


z¡
y
h badanego ukªadu równa«. Rezultaty numery
zne sugeruj¡, »e skute
zno±¢ rozwa»anego

sterowania w ukªadzie zamkni�tym zale»y od parametrów ukªadu równa«. Dodatkowo, po
zynione

s¡ obserwa
je doty
z¡
e za
howania dla du»y
h 
zasów wido
znego w przedmiotowy
h symula
-

ja
h. We wszystki
h symula
ja
h pro
es zdawaª si� d¡»y¢, po upªywie odpowiedniego 
zasu, do

pewnego stanu niezmienni
zego w 
zasie. W niektóry
h przypadka
h zaobserwowany stan niezmi-

enni
zy wydawaª si� by¢ w pewnym stopniu niezale»ny od stanu po
z¡tkowego dla rozwa»anego

ukªadu równa«.

W 
z�±
i doty
z¡
ej problemu optymalnego wy
elowania najpierw skupiam si� na pytani-

a
h anality
zny
h. Dowodz� instnienia minimizerów oraz 
harakteryzuj� ró»ni
zk� funk
jonaªu

kosztu. Nast�pnie opisuj� eksperymenty doty
z¡
e numery
znej optymaliza
ji, wykorzystuj¡
e

trzy gradientowe algorytmy optymaliza
ji (najwi�kszy spadek oraz dwa warianty nieliniowego

gradientu sprz�»onego) oraz porównuj� i
h wydajno±¢. Wspomniana przed 
hwil¡ 
harakterza
ja

ró»ni
zki funk
jonaªu kosztu wykorzystana jest do implementa
ji formuªy na gradient. Rezul-

taty pokazuj¡, »e wydajno±¢ algorytmów optymaliza
ji zmienia si� wraz ze zmianami parametrów

funk
jonaªu kosztu. Pokazane jest równie», »e mody�ka
je przedmiotowy
h parametrów mog¡

skutkowa¢ niezale»no±
i¡ wyników optymaliza
ji od warunku po
z¡tkowego rozwa»anego ukªadu

równa«.
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Introdu
tion

This question addresses a range of questions on 
losed-loop 
ontrol of nonlinear distributed

systems governed by a 
ombination of partial and ordinary di�erential equations. The 
ontrol

system set-up 
omprises a �nite number of measurement devi
es and a �nite number of 
ontrol

devi
es. We analyze su
h a 
lass of 
ontrol systems, addressing the existen
e and uniqueness of

solutions, the e�
ien
y of the 
losed-loop 
ontrols and their optimization.

Mathemati
al models applied in s
ien
e su�er from ina

ura
ies originating due to at least

two sour
es:

1) First, the models represent only approximations of real phenomenas.

2) Se
ond, also the values of model parameters frequently only approximate the values whi
h

are, in some sense, the best (optimal).

In the thesis, we 
onsider a 
ontrol system imposed on a pro
ess governed by the rea
tion-

di�usion equation:

yt(x, t) − ∆y(x, t) = f
(
y(x, t)

)
+ û(x, t) (0.A)

with a 
ontrol term û. The 
ontrol term is a model parameter, sele
ted a

ording to a parti
ular

aim of the 
ontrol, for instan
e, to rea
h a given state y∗ = y∗(x) at a given time T .

In the above 
ontext, �rst, one fa
es the question to what extend the semilinear rea
tion-

di�usion equation is a pre
ise representation of the underlying pro
ess. But even though the

above semilinear equation, with 
ertain 
on
rete f , were 
onsidered to be satisfa
tory in this


onne
tion, a se
ond question, 
on
erning the 
hoi
e of the 
ontrol term û (the model parameter),

would be fa
ed. The 
hoi
e of û should provide a �su�
iently a

urate� approximation of the

optimal û. Here, the meaning of optimality is determined by the above mentioned aim of the


ontrol.

The dire
t approa
h 
on
erning the issue 2) as above 
onsists in improving the approximation

of optimal values of the model parameters. However, this approa
h has several limitations:

• In general, the only way to approximate those optimal values is based on numeri
al ap-

proa
hes. As often the numeri
al optimization is 
omputationally of high 
omplexity, su
h

a treatment proves time 
onsuming.

• The results of numeri
al optimization usually remain di�erent from a
tual optimal values.

This produ
es a next obsta
le for models of instable nature, where even small perturbation

of model parameters 
an result in big 
hanges in the solution of the model.

• In (0.A), an optimal parameter û, being the 
ontrol variable, depends not only on the


ontrol obje
tive (to a
hieve a state y∗ at time T ) but also on the initial 
ondition of the

model. Thus, a 
hange of the initial 
ondition results in a ne
essity of 
omputing the model

parameter again.

ix



x INTRODUCTION

All above 
onsiderations refer a
tually to the open-loop set-up of the 
ontrol problem. The

latter shows, as dis
ussed, its obvious limitations. As an alternative 
on
ept, a 
losed-loop set-up


an be developed. In this 
ontext, our approa
h shall be to a

ept the parameters ina

ura
ies in

the model and extend the model of an additional me
hanism of automati
 real-time parameters


orre
tions, basing on the observed a
tual evolution of the model solution. In the 
ontext of

(0.A), this idea 
an be implemented by allowing the parameter û to depend on the solution of

the model itself:

û
(
x, t

)
= û

(
x, t, y( . , t)

)

or more generally

û
(
x, t

)
= û

(
x, t, y|

spa
e×[0,t)( . , . )
)

(0.B)

The latter formula stresses that the values of û in a given moment of time t 
an be 
omputed

using the whole information about the past behavior of the solution y (not only the information

on the present time t). The above idea of automati
 
orre
tion me
hanisms assumes that a


omputational algorithm for the values of the model parameters is given. Su
h an algorithm will

be 
alled a feedba
k law in our thesis. In our 
ontrol theory model (0.A), under assumption that

the term û is of form (0.B), the feedba
k law 
an be identi�ed with the de�nition of û.

The above approa
h involving the idea of automati
 
orre
tion me
hanisms, potentially, may

be a way to over
ome the aforementioned di�
ulties, be
ause:

• With su
h an approa
h, a 
omputationally expensive pro
edure of sear
hing for the optimal

values of the parameters 
an be unne
essary.

• Sin
e the basi
 idea of the dis
ussed approa
h is not to predi
t the behavior of the solution

of the model a priori, but to rea
t to the behavior of the solution in real time, the following


onsequen
es, hypotheti
ally, 
an be fa
ed:

a) The approa
h 
an be e�e
tive in the 
ase of the models exhibiting unstable nature.

Here, by the e�e
tiveness we mean the result of making the behavior of the solutions

of the model 
lose, in a suitable sense, to a desired referen
e.

b) In (0.A), with the obje
tive to rea
h a state y∗ at time T , a 
ontrol involving the

automati
 
orre
tion idea (i.e. a parameter û of form (0.B)) 
an o

ur to preserve

the 
ontrol e�e
tiveness under 
hanges of the initial 
ondition. In 
onsequen
e, the

proposed approa
h may help to avoid 
omputing the model parameter every time

when the initial 
ondition is 
hanged.


) In 
ontrol systems, a 
ontrol based on the automati
 
orre
tions idea may prove

e�e
tive even if the utilized des
ription of the underlying pro
ess (i.e. the equation

yt −∆y = f(y), in the 
ase of the model (0.A)) is ina

urate. In other words, 
losed-

loop 
ontrols of the 
onsidered type 
an preserve the e�e
tiveness under 
hanges of

the model. Thus, in the 
ontrol theory 
ontext, the automati
 
orre
tion idea 
an

also o�er a solution to the issue 1) as formulated above.

The aim of this thesis is to demonstrate the 
on
ept of automati
 
orre
tion me
hanism

in the 
ontrol theory model (0.A) in a spe
i�
 implementation, a 
ontrol by thermostats. The


ontrol by thermostats assumes that the feedba
k law, built into the 
ontrol term û, relies on

a �nite system measurement devi
es and 
ontrol devi
es. The measurement devi
es gather the

information on the 
urrent state of the pro
ess. The 
ontrol devi
es in�uen
e the pro
ess, basing

on the information provided by the measurement devi
es.

Questions on the models with an automati
 
orre
tion me
hanism that we shall address

in
lude:



xi

I) Whether a given model with the latter type of me
hanism is mathemati
ally well posed,

i.e. its solutions exist and are unique, further are stable subje
t to the data perturbations.

We investigate this questions for a model with 
ontrol by thermostats in Chapter 1.

II) Whether the automati
 
orre
tion me
hanism applied in a given model indeed ensures an

e�e
tiveness and insensitivity to 
hanges of the initial 
ondition. We fo
us on this questions

in Chapter 2, where results of numeri
al simulations for a model with 
ontrol by thermostats

are exposed.

III) It is natural to ask a question 
on
erning possibilities of re�ning the e�e
tiveness of a given

model with an automati
 
orre
tion me
hanism. This leads to the problem of optimization

of the feedba
k law, 
onstituting the automati
 
orre
tion me
hanism. Investigating the

latter problem for the model with 
ontrol by thermostats is the main aim of the present

work and is the subje
t of Chapter 3 and Chapter 4.

The set-up of the optimal feedba
k problem may seem in dissonan
e with the former remarks,

as one of the highlighted advantages of automati
 
orre
tion me
hanisms was their low 
ompu-

tational 
ost due to avoiding 
omputationally expensive optimization pro
edures. However, the

latter dissonan
e is only virtual. First, some of the numeri
al prototypes des
ribed in Chapter 2

show that an e�e
tive feedba
k law 
an be de�ned heuristi
ally, without optimization pro
edures

involved. Still, even if one is able to intuitively 
onstru
t a good feedba
k law, sear
hing for a

better one remains natural and hen
e our interest in the related optimization problem. Se
ond,

as mentioned, in the 
ontext of the 
ontrol theory, other possible advantage of automati
 
or-

re
tion me
hanisms is its insensitivity to the 
hanges the initial 
ondition (for the 
ontrol by

thermostats, it also seems to be the 
ase in 
ertain situations, as the results des
ribed in Chap-

ter 2 indi
ate). In 
onsequen
e, for a given model with a given aim of the 
ontrol, re-optimizing

the feedba
k law every time the initial 
ondition is 
hanged may be unne
essary. In su
h 
ases,

it is su�
ient to perform the optimization pro
edure just on
e.

To formulate the subje
t optimization problem pre
isely, a parametrization of the feedba
k

law is ne
essary. To this end, we assume that the thermostat feedba
k law is parametrized by

the lo
alization of the a
tions of 
ontrol and measurement devi
es. In other words, in Chapter 3

and Chapter 4, we will fo
us on the problem of 
hoosing optimal lo
alizations of the a
tions of

those devi
es.

For the optimization problem, a number of related questions will be explored. In Chapter 3,

theoreti
al aspe
ts as the existen
e of minimizers of a suitable 
ost fun
tional and the analysis

of its di�erentiability will be examined. Chapter 4 outlines the results of related numeri
al sim-

ulations. There, the problem of 
hoi
e of an appropriate optimization method and the question


on
erning independen
e of the optimal feedba
k law on the initial 
ondition of the model are

dis
ussed.

In the remaining part of Introdu
tion we set the framework for the thesis. The pre
ise

de�nition of the model with 
ontrol by thermostats addressed in this work is given in �1. In �2, we

formulate the optimization problem that will be 
onsidered throughout the thesis. Some possible

appli
ations of the 
ontrol by thermostats, as well as bibliographi
al information 
on
erning the

latter 
ontrol 
on
ept, are exposed in �3. Finally, �4 provides bibliographi
al notes 
on
erning

the present dissertation, a summary of its results in the above mentioned �elds of interest, as

well as a more details on the 
ontent of the subsequent 
hapters.
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�1 Model with the 
ontrol by thermostats

In the present work, we take into 
onsideration the following mathemati
al model, realizing the


on
ept of 
ontrol by thermostats:





yt(x, t) −D∆y(x, t) = f(y(x, t)) +
∑J

j=1
gj(x)κj(t) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(x, 0) = y0(x) for x ∈ Ω

(0.1)

together with





β1κ
′
1(t) + κ1(t) = W1

(
y( . , t), y∗(x, t)

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J (t) + κJ (t) = WJ

(
y( . , t), y∗(x, t)

)
on [0, T ]

κj(0) = κj0 ∈ R for j = 1, . . . , J

(0.2)

where QT = Ω× (0, T ), T > 0 and Ω ⊂ Rd
is a bounded domain with su�
iently regular bound-

ary. The unknown in the above equations is (y, κ1, . . . , κJ ), where y : QT → R and κj : [0, T ] → R.
The term f : R → R represents a given nonlinearity. The di�usion 
oe�
ient D > 0 is given, as

well as 
oe�
ients β1, . . . , βJ > 0. Fun
tions y∗ : QT → R and gj : Ω → R also are known. The

fun
tionals Wj are de�ned as follows, for j = 1, . . . , J :

Wj(y( . , t), y
∗( . , t)) =

K∑

k=1

αjkwk

(∫

Ω
hk(x)

(
y(x, t)− y∗(x, t)dx

))
(0.3)

where αjk ∈ R, wk : R → R and hk : Ω → R.
In (0.1) - (0.3), y∗ des
ribes a referen
e traje
tory � the purpose of the introdu
ed model

is to stabilize the rea
tion-di�usion pro
ess possibly 
lose to the referen
e traje
tory y∗. If y∗

is independent of the time variable, we will 
all it a referen
e state. Fun
tions gj are 
onstant

in time, 
hara
terizing the a
tions of 
ontrol devi
es in spa
e. The a
tions of 
ontrol devi
es

alternate in time a

ording to the values of fun
tions κj , 
alled response fun
tions or power

fun
tions. The response fun
tions depend on the pro
ess evolution, des
ribed by variable y. This
dependen
e 
an be des
ribed as follows. Measurement devi
es, whose a
tions are 
hara
terized

by fun
tions hk, a
quire the data on the 
urrent state of the pro
ess. Ea
h measurement devi
e

is responsible for 
omputing the measurement value, represented by the term

∫
Ω hk(y − y∗) dx,

entering the right hand side of (0.3). The measurement values returned by the measurement

devi
es are pro
essed by fun
tions wk. The pro
essed measurement data are synthesized by

the signal generator asso
iated with j-th 
ontrol devi
e, with weights αjk, k = 1, . . . ,K. The

fun
tion Wj(y( . , t), y
∗( . , t)), as a fun
tion of time, 
an be interpreted as the signal generated

by the signal generator for the j-th 
ontrol devi
e. Next, the j-th 
ontrol devi
e responses to the

input signal. The response of the j-th 
ontrol devi
e is des
ribed by the response fun
tion κj .

Figure 0.1 illustrates a fun
tional stru
ture of the 
ontrol me
hanism that we have des
ribed.

The below remarks 
an be helpful for understanding of the system (0.1) - (0.3):

• Fun
tions κj are modeled with ODEs in (0.2), meaning that the 
hanges of the response

are 
ontinuous in time.
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measurement values

control devices

domain

power spots

(    supports)

measurement spots

(    supports)

LEGEND:

DATA:

signal

signal

Figure 0.1: S
hemati
 presentation of the 
losed-loop 
ontrol 
on
ept, implemented in the system

(0.1) - (0.3), for the 
ase of two 
ontrol devi
es and three measurement devi
es.

• A natural example of the fun
tions gj and hk is a 
hara
teristi
 fun
tion of a small ball,

being a subset of Ω, times a 
onstant. If this is the 
ase for hk, then the measurement

devi
es return measurement values representing the mean di�eren
e between the 
urrent

pro
ess state and the referen
e traje
tory in a neighborhood (the ball supporting hk) of

ertain point (the 
enter of the ball). If gj are fun
tions as above, then the 
ontrol devi
es

deliver the energy uniformly over the balls being the supports of gj .

• For the fun
tions wk, a natural example is wk(s) = −sgn(s). In this 
ase, the fun
tion

wk returns simple information understood by the signal generators as �
ool down� or �heat

up�, depending on whether the k-th measurement value indi
ates that the pro
ess values

ex
eed the referen
e values or are below them. Hen
e, fun
tions wk 
an be understood as

fun
tions des
ribing a swit
hing me
hanism implemented in the system. We will 
all wk

the swit
hing fun
tions.

• The assumption that βj > 0 has a pra
ti
al interpretation. If, for 
ertain j ∈ {1, . . . , J},
βj > 0 and the signal Wj in the RHS of (0.2) is zero, then it follows straight by the basi


properties of the ODE (0.2) that the power fun
tion κj tends to zero. This is the behavior
whi
h one 
an intuitively expe
t, meaning �no signal � no power�. And the opposite, if

one assumed that βj < 0, then the power fun
tion κj would tend to in�nity for the signal

Wj equal zero and nonzero initial 
ondition κj0, what is a less natural behavior.

• Fun
tions hk in the system (0.1) - (0.3) des
ribe measurement abilities of spe
i�
 mea-

surement devi
es, not just measurement devi
es understood as physi
al units. Similarly,
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fun
tions gj des
ribe power spots 
reated in the pro
ess domain by 
ontrol devi
es rather

than physi
al devi
es itself. Putting the latter in another way, fun
tions gj and hk do

not des
ribe the me
hanism of work of the 
ontrol and measurement devi
es, but only the

e�e
t of the work of the devi
es.

Note that the 
ontrol devi
es 
an be pla
ed outside the domain of the 
ontrolled pro
ess.

For example, the 
ontrol devi
es 
an be ele
tromagneti
 transmitting antennas, pla
ed

outside the domain and fo
using the ele
tromagneti
 waves at some spot pla
ed inside

the domain. Then, the fun
tion gj des
ribe the spatial distribution of the intensity of the

ele
tromagneti
 e�e
ts generated in the domain by the j-th antenna.

• The above interpretation of the role of gj and hk has quite essential 
onsequen
es. If one

assumed that gj des
ribe physi
al units, then one 
ould expe
t some additional no-
ollision

restri
tions, as e.g. the 
ondition of disjoint supports of all fun
tions gj or the 
ondition

that the supports of gj are 
ontained in Ω. Instead, we only assume that gj des
ribe some

immaterial energy inje
tions, hen
e there is no reason to forbid interse
tions of the supports

of gj or to forbid the supports of gj to interse
t with the exterior of Ω. An analogous remark

holds for fun
tions hk.

• In many situations it is natural that the 
ontrol devi
es a
t through the boundary of the

domain. Even if the 
ontrol devi
es are physi
ally lo
ated in the pro
ess domain, then the

volume they o

upy should not be the in�uen
ed by the 
ontrol a
tion. To a
hieve this,

for example, one 
ould modify the domain of the pro
ess and ex
lude the volume o

upied

by the 
ontrol devi
es from the domain, what in fa
t leads to a model with 
ontrol a
ting

through some part of the boundary (i.e. the part being the boundary of the volumes

o

upied by the devi
es).

Hen
e, if one interpreted fun
tions gj in the model (0.1) - (0.3) as physi
al units, then the

model might seem not quite realisti
. But, as mentioned, fun
tions gj do not des
ribe the

physi
al units and 
an be understood e.g. as fun
tions des
ribing ele
tromagneti
 e�e
ts

in some volume of the domain, generated by ele
tromagneti
 antennas pla
ed outside the

domain. With this interpretation, the model (0.1) - (0.3) be
omes 
oherent.

Throughout this thesis, we will keep the above interpretation of the system (0.1) - (0.3),

assuming that fun
tions gj and hk do not represent physi
al obje
ts. Instead, gj and hk will be

assumed to 
hara
terize the a
tions of the 
ontrol and measurement devi
es a
tions.

In the present work, we will use the term the 
ontrol by thermostats or the thermostat 
ontrol

me
hanism to refer to the 
ontrol 
on
ept applied in the system of equations (0.1) - (0.3) for


ontrolling the rea
tion-di�usion pro
ess. In the literature, some variants of the above des
ribed


ontrol 
on
ept were already 
onsidered. We will brie�y 
omment on those variants in �3.

For further 
onvenien
e, we will 
all the mentioned variants thermostat 
ontrol me
hanisms or


ontrols by thermostats, as well. Thus, in the present work, the notion of �the thermostat 
ontrol

me
hanism� or �the 
ontrol by thermostats� refers to a family of 
losed-loop 
ontrol 
on
epts, to

whi
h the 
ontrol 
on
ept applied in (0.1) - (0.3) belongs.

Remark. For D = 1, the system (0.1) - (0.3) 
an be understood as a parti
ular 
ase of the

equation (0.A) with the 
ontrol term û of form (0.B). Indeed, it su�
es to set û :=
∑J

j=1 gjκj
in (0.1). Equations (0.2) and (0.3) 
an be understood as 
onditions des
ribing the feedba
k law

for 
omputing fun
tions κj and hen
e the term û. It follows by (0.2) and (0.3) that fun
tions κj
depend on y, or more pre
isely, that κj(t), for given t ∈ (0, T ), depends on the past values of y,
earlier than t. Thus, û de�ned as proposed above, is a realization of (0.B). N
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The properties of the system (0.1) - (0.3), su
h as the existen
e and uniqueness of solutions,

stability of the system or e�
ien
y of the thermostat 
ontrol me
hanism will be the dis
ussed

in Chapter 1 and Chapter 2. In Chapter 3 and Chapter 4, the system (0.1) - (0.3) will be


onsidered in the 
ontext of optimization of the feedba
k law implemented by the thermostat


ontrol me
hanism.

�2 Formulation of the optimal targeting problem

Below, we introdu
e the optimization problem whi
h will be investigated in Chapter 3 and

Chapter 4. The optimality 
riterion will refer to bringing the state of the 
ontrolled pro
ess

possibly 
lose to a given referen
e state at time T . In the problem, a feedba
k 
ontrol law in

(0.1) - (0.3) (i.e. the algorithm for 
omputing the response fun
tions κj) will be optimized so as

to meet su
h a requirement. The feedba
k law will be optimized with respe
t to the 
hoi
e of

geometri
al targeting of 
ontrol and measurement devi
es a
tions.

To this purpose, we will assume that the pattern of energy distributed in the domain by

a given 
ontrol devi
e is �xed and that the user 
an adjust the energy distribution only by

translations of the latter pattern. For instan
e, the situation 
an be 
onsidered where a 
ontrol

devi
e 
an produ
e a uniform energy distribution in a small ball-shaped volume and the user

is expe
ted just to 
hoose the 
enter of the volume. An analogous assumption will be made

for the measurement devi
es, stating that the measurement abilities of the measurement devi
es

are des
ribed by �xed patterns and 
an be adjusted only by spatial translations of the subje
t

patterns.

We pursue the above 
on
ept by the following mathemati
al assumptions.

We will understand the 
ontrol as the set of all fun
tions 
hara
terizing 
ontrol and measure-

ment devi
es along with weights entering to (0.1) - (0.3), i.e. the 
ontrol is (gj , hk, αjk)
k=1,...,K
j=1,...,J .

The 
hoi
e of 
ontrol determines the feedba
k law in (0.1) - (0.3), assuming that fun
tions wk and


oe�
ients βj are pres
ribed. Let fun
tions σg, σh : Rd → R and points x1, . . . , xJ and z1, . . . , zK
in Rd

be given. We assume that the fun
tions des
ribing the 
ontrol and measurement devi
es

a
tions are given by

gj(x) := σg(x− xj)|Ω, hj(x) := σh(x− zk)|Ω (0.4)

for j = 1, . . . , J , k = 1, . . . ,K. Fun
tions σg and σh will be 
alled the pattern fun
tions. For

example, in the 
ase of 
ontrol devi
es distributing energy uniformly in a ball-shaped volume,

one 
an set σg := Cg1B(0,rg), with parameters Cg and rg 
hosen a

ordingly. Points xj and zk

hara
terize targeting of spe
i�
 
ontrol and measurement devi
es a
tions.

Under the above assumptions, for pres
ribed pattern fun
tions σg and σh, the 
ontrol is

determined by a 
hoi
e of targetings x1, . . . , xJ and z1, . . . , zK as well as weights α1,1, . . . , αJ,K .

However, we do not plan to address the problem of optimal 
hoi
e of weights in the termostats


ontrol system. In the thesis we fo
us on the problem of optimal targeting of the devi
es a
tions.

To this end, we make the following simplifying assumptions. We postulate that

K = J (0.5)

and that

zj = xj for j = 1, . . . , J (0.6)

In addition, we set

αj,k := δj,k for j, k = 1, . . . , J (0.7)
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As a result, the problem of 
hoi
e of the weights disappears.

Now, with assumptions (0.4), (0.5), (0.6) and (0.7), for �xed pattern fun
tions σg and σh, the

hoi
e of targetings x1, . . . , xJ determines the 
ontrol and hen
e the feedba
k law in the system

(0.1) - (0.3). For this reason, the sequen
e (x1, . . . , xJ) will be 
alled the 
ontrol parameter.

Assumptions (0.4), (0.5), (0.6) and (0.7) together 
an be interpreted as a set 
onditions that

the 
ontrol and measurement devi
es are pairwise 
oupled in the thermostat 
ontrol me
hanism.

We are now ready to formulate the 
omplete optimization problem to be studied in Chapter 3

and Chapter 4. Let the pattern fun
tions σg and σh be given. The problem is to 
hoose the


ontrol parameter in an optimal manner, with respe
t to the 
riterion of minimizing the following


ost fun
tional:

(x1, . . . , xJ ) 7→ λ̃

∫ T

T0

∫

Ω

∣∣y(x, t)− y∗(x, t)
∣∣2 dxdt (0.8)

for 
ertain λ̃ > 0, T0 ∈ [0, T ), where y∗ is a referen
e traje
tory entering the system (0.1) - (0.3)

and y is the �rst 
omponent of solution (y, κ1, . . . , κJ ) of the system (0.1) - (0.3) with 
onditions

(0.4), (0.5), (0.6) and (0.7), 
orresponding to the 
ontrol parameter (x1, . . . , xJ).
The minimization problem for the 
ost fun
tional (0.8) 
an be referred to as the problem of

optimal targeting of 
ontrol and measurement devi
es a
tions. However, it will be 
onvenient to

have a shorter name, thus in this thesis we shall refer to it as the optimal targeting problem.

Remark. The 
ost fun
tional (0.8) re�e
ts the idea of measuring the gap between the

pro
ess evolution and the referen
e state. In parti
ular, setting T0 
lose to T and λ̃ = (T − T0)
−1
,

the above 
ost fun
tional approximates the gap at time T of the experiment. As su
h, the

subje
t 
ost fun
tional is appropriate to des
ribe the idea of bringing the pro
ess state 
lose to

the referen
e state at the terminal time T , mentioned in the beginning of �2. N

Remark. Due to our interpretation of the system (0.1) - (0.3), whi
h allows interse
tions

of the supports of fun
tions gj and hj with ea
h other and with the exterior of Ω (see �1), we do

not impose any 
ontrol parameter restri
tions for preventing the subje
t interse
tions. Thus, we

will view the optimal targeting problem as an un
onstrained optimization problem, 
onsisting in

minimization of the 
ost fun
tional (0.8) over whole

(
Rd

)J
. N

Remark. It will be 
onvenient for the reader to remember the terminology introdu
ed in

�1 and �2 of the present 
hapter (referen
e traje
tory, swit
hing fun
tions, 
ontrol parameter,

optimal targeting problem e.t.
.) be
ause we will use it frequently in this work. N

�3 Control by thermostats in the literature and possible appli
a-

tions

We will now give some 
omments on the history and variants of the 
on
ept of 
ontrol by

thermostats. We also remark on possible appli
ations.

In the mathemati
al literature, the idea of 
ontrol by thermostats of pro
esses governed by

evolutionary PDEs was probably introdu
ed �rst in [26℄, [25℄. There, a paraboli
 linear heat

�ow was 
ontrolled by thermostats. A model of 
ontrol by thermostat of a paraboli
 linear heat

�ow was 
onsidered also in [10℄. However, the appli
ations of thermostat 
ontrol me
hanisms

were not limited to 
ontrol of linear paraboli
 PDEs. The work [11℄ addressed the 
ontrol by

thermostats of a thermodynami
al pro
ess modeled by the telegraph equation. In [30℄ and [19℄,

the authors fo
used on models with pro
esses des
ribed by a semilinear equation 
ontrolled by
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thermostats, in [12℄ a system of semilinear equations with an additional 
onvolution term was


onsidered in the 
ontext of 
ontrol by thermostats. A lot of attention was dire
ted toward


ontrol by thermostats of phase transition pro
esses modeled by various versions of the Stefan

model, see e.g. [23℄, [33℄, [28℄, [15℄. The strain and temperature in a vis
oelasti
 body subje
t

to a thermodynami
al pro
ess were 
ontrolled by thermostats in the model presented in [29℄.

A problem of 
ontrol of saturation in a model of �ltration of a porous medium was 
onsidered

in [5℄, with the 
ontrol involving the thermostat 
on
ept. In more re
ent works [31℄ and [32℄, a

model for 
ontrol by thermostats of a linear heat �ow was 
onsidered.

Not only the 
ontrolled pro
ess varies in the models 
onsidered in the mentioned works. The

thermostat 
ontrol me
hanism also has its variants. One of the point where the di�eren
es in

the thermostat 
ontrol me
hanism 
an o

ur is the pla
ement of a
tions of the 
ontrol devi
es.

In all indi
ated referen
es, ex
ept for [19℄ and [30℄, the 
ontrol devi
es are a
ting through the

boundary of the pro
ess. In [19℄ and the present work the 
ontrol devi
es 
reate a power spot

distributed in the domain of the 
ontrolled pro
ess. In [30℄, the 
ontrol a
ts both through the

boundary and as a quantity distributed in the domain.

Also, various versions of the swit
hing me
hanism, being a part of the thermostat 
ontrol

me
hanism, 
an be found in the literature. A frequently en
ountered 
ase is that hysteresis in

the work of the swit
hing me
hanism is assumed to be present. See [33℄, [28℄, [29℄, [11℄, [12℄,

[31℄, [32℄ for appli
ations of the so-
alled relay swit
h hysteresis or [23℄, [10℄, [15℄, [28℄, [29℄, [12℄,

[5℄, [30℄ for the Preisa
h hysteresis model. In [33℄, [15℄ or [19℄, the 
ase of no hysteresis e�e
ts in

the swit
hing me
hanism was addressed. In the present work, we also do not assume hysteresis

e�e
ts.

The version of the thermostat 
ontrol me
hanism investigated in this work is very similar to

that in [19℄ or one of the 
ases taken into a

ount in [33℄.

Certain potential appli
ations of the thermostat 
ontrol me
hanisms have been already in-

di
ated above, in the des
ription of mathemati
al literature. They 
over 
ontrol of thermody-

nami
al pro
esses, strain in vis
oelasti
 bodies, saturation of porous media and phase transition

pro
esses. Besides, the 
ontrol 
on
epts similar to the 
on
ept of the thermostat 
ontrol me
ha-

nism were present also in te
hni
al literature.

In this 
ontext, we mention the appli
ation of thermostat 
ontrol me
hanism me
hanisms in

the hypertermia 
an
er therapy. Roughly speaking, hyperthermia 
onsists in heating the body

of a patient to in�uen
e the 
an
er tissue. See [48℄, [46℄ for general overview of the latter therapy

method, its variants and limitations. A

ording to those referen
es, one of the variants of hy-

perthermia assumes ultrasounds or ele
tromagneti
 waves to be the heating medium, delivering

energy dire
tly to the deep tissues of the body of the patient. A typi
al strategy in this hyper-

thermia variant is to heat the 
an
er tissue area to a possibly high temperature without rising

the temperature in the neighboring tissues above 
ertain 
riti
al level. A feedba
k information


on
erning the heating results is ne
essary. The measurement a
tions 
an be 
arried out by

interstitial heat probes or the magneti
 resonan
e imaging.

The model (0.1) - (0.3) 
an be understood as des
ribing the above situation, assuming that

the domain Ω represents the heated tissue. Note that the subje
t variant of the hyperthermia,


onsisting in the deep heating, is 
oherent with our interpretation of the fun
tions gj in the model

(0.1) - (0.3), des
ribing the 
ontrol e�e
ts in a 
ertain volume of the domain of the 
ontrolled

pro
ess. In the model (0.1) - (0.3), the strategy of sele
tive heating the tumor 
an be implemented

by a proper 
hoi
e of the referen
e state y∗, des
ribing a desired temperature distribution.

In many publi
ations addressing hyperthermia, the feedba
k information obtained by mag-

neti
 resonan
e is utilized to 
ontrol the a
tions of the heating medium transmitters. Control

me
hanisms whi
h share 
ontrol 
on
epts in 
ertain way related to the 
on
ept of thermostat
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ontrol me
hanisms are des
ribed (examples 
an be found in [42℄, [8℄). However, methods bas-

ing on other 
ontrol 
on
epts also were introdu
ed in the hypertermia-related publi
ations (for

instan
e, see [16℄, [35℄, [47℄).

In the 
ontext of hyperthermia, an interesting hybrid 
ontrol 
on
ept is presented in [36℄,


ombining a thermostat-like 
ontrol 
on
ept for 
ontrolling the power of the 
ontrol devi
es

in time with other kind of 
ontrol strategy for the 
ontrol of energy delivery in spa
e. The

latter strategy 
onsists in optimization of the 
ontrol devi
es settings, and hen
e, indire
tly, in

optimization of the patterns of the spatial distribution of the delivered energy. Thus, at the level

of general 
on
epts, the aims of the 
ontrol me
hanism in [36℄ are similar to the aims of both

our thermostat 
ontrol me
hanism and our optimal targeting problem, introdu
ed in �1 and �2.

Nonetheless, 
omparing to our work, many di�eren
es o

ur there. In parti
ular, the 
ontrol

me
hanism in [36℄ assumes other feedba
k law in the thermostat-like me
hanism used there and

there 
onsidered optimization problem is formulated in signi�
antly other way.

�4 Summary of the results and bibliographi
al notes

Below, we sket
h the plan of the present work, summarize the main results and provide bibli-

ographi
al notes. Chapter 1 and Chapter 2 are fo
used purely on the properties of the system

(0.1) - (0.3) and do not tou
h the optimal targeting problem. The optimal targeting problem,

asso
iated with the 
ost fun
tional (0.8), is the subje
t of Chapter 3 and Chapter 4.

In Chapter 1, we fo
us on analyti
al properties of the system (0.1) - (0.3). Two main

problems are addressed in this 
hapter. The �rst one is: what 
an be proven if we de
ide to

put dis
ontinuous swit
hing fun
tions in the system (0.1) - (0.3), e.g. if we put wk = −sgn.
Unfortunately, in this 
ase we prove only existen
e of solutions, without any uniqueness results.

Moreover, we prove the existen
e result not for the system (0.1) - (0.3) dire
tly, but for its

modi�
ation (see 
omments below). The se
ond problem 
onsists in proving existen
e, unique-

ness and stability w.r.t. perturbations of 
ontrol for solutions of the system (0.1) - (0.3), under

su�
iently strong assumptions. These su�
iently strong assumptions ex
lude the possibility of

dis
ontinuous swit
hing fun
tions. Knowledge on the existen
e, uniqueness and stability w.r.t.


ontrol for the system (0.1) - (0.3) is essential also in further parts of the thesis, 
on
erning

dire
tly the optimal targeting problem formulated in �2. Hen
e, investigating the above proper-

ties is ne
essary prior to pro
eed up to this optimization problem. For both problems, Lips
hitz


ontinuity of the rea
tive term f in the system (0.1) - (0.3) is assumed.

The �rst of the problems, 
on
erning dis
ontinuous swit
hing fun
tions in the system (0.1)

- (0.3), is treated in Se
tion 1.1. Our approa
h is the following one. For a given dis
ontinu-

ous swit
hing fun
tion wk, we repla
e it with a multivalued upper semi
ontinuous mapping w̃k

whose graph 
ontains the graph of wk. This means that the right hand side of (0.2) be
omes

a multivalued mapping. Hen
e, in Se
tion 1.1, we temporarily repla
e the di�erential equation

(0.2) with a di�erential in
lusion, obtaining a modi�ed version of the system (0.1) - (0.3). As

mentioned, we prove only the existen
e of solutions for the postulated modi�
ation of the system

(0.1) - (0.3). The proof of the existen
e theorem exploits the generalized Kakutani �xed-point

theorem.

The se
ond problem, 
on
erning existen
e, uniqueness and stability topi
s for the system

(0.1) - (0.3), is 
onsidered in Se
tion 1.2. Here, we 
ondu
t our reasoning under the assump-

tion of Lips
hitz 
ontinuity of the swit
hing fun
tions. This means that (0.2) be
omes equality

again rather than in
lusion, what brings us ba
k to analysis of the system (0.1) - (0.3). In

Se
tion 1.2, stability of solutions of the system (0.1) - (0.3) under perturbations of 
ontrol is
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proven, with the mentioned assumption on Lips
hitz 
ontinuity of wk and with the assumption

that y∗ ∈ L2(0, T ;L2(Ω)). Under the same assumptions, stability w.r.t. perturbations of the

initial 
ondition is shown, what proves the uniqueness of solutions of (0.1) - (0.3). The existen
e

result also is shown, with additional restri
tion for y∗ and wk, namely that one of the following

hypotheses is ful�lled: 1) y∗ ∈ L2(0, T ;L2(Ω)) and wk are bounded or 2) y∗ ∈ L∞(0, T ;L2(Ω)).
Eventually, as a 
omplementary result, we prove also weak stability of solutions of the system

(0.1) - (0.3), under the same assumptions under that the stability and uniqueness are proven. In

Se
tion 1.2, we provide also generalization of some of the above mentioned results for the 
ase

of f only lo
ally Lips
hitz with 
ertain growth 
ondition and y0 essentially bounded.

In Chapter 2, we present results of numeri
al simulations for the thermostat 
ontrol me
h-

anism, involved in the system (0.1) - (0.3). These simulations were intended to give an insight

into the properties of the system in some aspe
ts not tou
hed in Chapter 1.

In parti
ular, Chapter 1 does not 
on
ern the e�
ien
y of the thermostat 
ontrol me
ha-

nism in any sense, i.e. does not give an information whether the thermostat 
ontrol me
hanism,

des
ribed by (0.1) - (0.3), brings the pro
ess 
lose to the referen
e state y∗ or not. Thus, in Chap-

ter 2, we des
ribe numeri
al results illustrating e�
ien
y of the thermostat 
ontrol me
hanism,

in the above sense.

As a se
ond fo
us of our attention in the analysis of the numeri
al results, we take into

a

ount the problem of dependen
e on the initial state y0 of the large time behavior of the

pro
ess 
ontrolled by thermostats (i.e. of solution 
omponent y in the system (0.1) - (0.3)). The

information on independen
e of the pro
ess state at the terminal time T on the initial state

are important for the optimal targeting problem, 
onsidered in Chapter 3 and Chapter 4. To

be pre
ise, if the pro
ess state at the terminal time T is independent of the initial state then,

perhaps, the 
ost fun
tional (0.8) also be
omes independent of the initial state, assuming T0


lose to T . In 
onsequen
e, the lo
al minimums of the 
ost fun
tional be
ome independent of

the initial state.

In our simulations, two-dimensional square domain was 
onsidered and a triangulation of

triangular elements was used. To obtain the results, the system of equations was treated with

�nite element method 
ombined with the impli
it Euler s
heme. The �nite element spa
e was

the spa
e of 
ontinuous fun
tions, linear on ea
h element of the triangulation. The nonlinear

terms entering (0.1) - (0.3) were treated with the use of Pi
ard iterations.

The simulations addressed the 
ases of various referen
e states y∗, various initial states y0
and various 
on�gurations of the 
ontrol and measurement devi
es in the thermostat 
ontrol

me
hanism, des
ribed by (0.1) - (0.3).

The simulation results suggest that the e�
ien
y of thermostat 
ontrol me
hanism di�ers

with 
hanges of the model parameters. As a general rule, greater number of the 
ontrol and

measurement devi
es, not surprisingly, results in better e�
ien
y. Moreover, in all simulations,

stabilization of the pro
ess near to some time-invariant state was observed. The independen
e

of the subje
t time-invariant states on the initial state was observed in some, but not in all, of

the simulations.

In Chapter 3, we report an analysis of the optimal targeting problem, announ
ed in �2.

The main obje
tive of Chapter 3 is to derive a formula 
hara
terizing the gradient of the 
ost

fun
tional (0.8). The gradient formula will be ne
essary further, in Chapter 4, to perform

optimization pro
edures for approximation of lo
al solutions of the subje
t optimization problem.

Chapter 3 is split into two parts: 1) part 
on
erning the properties of the operator assigning

the solution of the system (0.1) - (0.3) to a given 
ontrol parameter, let us 
all this operator the

state operator and 2) part 
on
erning properties of the mentioned 
ost fun
tional, in
luding the
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formula for its gradient.

In Se
tion 3.1, we investigate the properties of the state operator. By the existen
e and

uniqueness results from Chapter 1, in Se
tion 3.1 we easily justify that the state operator is well

de�ned. Moreover, by the stability results from Chapter 1, we show that the state operator is

Lips
hitz 
ontinuous. In 
omparison to the results stating that the state operator is well de�ned,

its Lips
hitz 
ontinuity requires additionally stronger assumptions for the pattern fun
tions σg
and σh. Eventually, in Se
tion 3.1 we prove also the weak Gâteaux di�erentiability of the state

operator and 
hara
terize its weak Gâteaux di�erential. This is the main result of Se
tion 3.1,

ne
essary also in further 
onsiderations, 
on
erning the properties of the 
ost fun
tional. As we

will see, the Lips
hitz 
ontinuity of the state operator is essential to prove its weak Gâteaux

di�erentiability. In addition, the proof the weak Gâteaux di�erentiability of the state operator

assumes that both the nonlinear term f and the swit
hing fun
tions wk, k = 1, . . . ,K in the

system (0.1) - (0.3) are everywhere di�erentiable in the 
lassi
al sense.

In Se
tion 3.2, we investigate the properties of the 
ost fun
tional (0.8). First, we introdu
e

a simple 
riterion for existen
e of minimizers in the subje
t optimization problem. This 
riterion

assumes that the pattern fun
tions σg and σh have 
ompa
t supports. Next, we fo
us on the

matter of di�erentiability of the 
ost fun
tional. We show that it is Gâteaux di�erentiable under

the same 
onditions under whi
h the state operator is weakly Gâteaux di�erentiable. Finally, we

derive a formula for the gradient of the 
ost fun
tional, what is the main result of Se
tion 3.2.

In Chapter 4, we present results of numeri
al optimization experiments 
on
erning the op-

timal targeting problem. Chapter 4 
omplements the theoreti
al material provided in Chapter 3

by presenting attempts to 
onstru
t 
on
rete solutions of the investigated optimization problem.

The simulations des
ribed in Chapter 4 were intended mainly 1) to 
ompare performan
e of

various optimization methods for various parameters of the subje
t optimization problem and

2) to 
he
k whether the optimization output is independent of the initial state y0, entering the

system (0.1) - (0.3), when the parameter T0 in the 
ost fun
tional (0.8) is 
lose to T .

The independen
e of the optimization output on y0 is related with the independen
e of the

pro
ess state at the terminal time on y0 (see the remarks 
on
erning Chapter 2). Sin
e the

latter independen
e was observed in some 
ases in the simulations des
ribed in Chapter 2, one


an expe
t that the former independen
e, 
on
erning the optimization output, also is possible.

The independen
e of the optimization output on the initial state y0, if exists, would mean

that it is not ne
essary to re-optimize the feedba
k law 
onstituting the thermostat 
ontrol

me
hanism ea
h time the initial state is 
hanged (see the expe
tations expressed in the beginning

of Introdu
tion).

The numeri
al optimization experiments were performed with the use of steepest des
ent

method (SD method, in short) and nonlinear 
onjugate gradient method (CG method). The

CG method variant was implemented in the Polak-Ribière mode, with a 
ertain modi�
ation.

Two subvariants of the CG method were 
onsidered: 1) the method with a reset of the sear
h

dire
tion every Ndim iterations, where Ndim stands for dimension of the optimization spa
e

(CG+r method) and 2) the method without the latter reset pro
edure (CG-r method). The stop


riterion utilized in the experiments was a short step 
riterion. To implement the optimization

methods, we rely on the gradient 
hara
terization derived in Chapter 3.

We have 
ompared performan
e for the three optimization methods (SD, CG-r, CG+r) for

three variants of the initial state y0, three referen
e states y
∗
and two values of the left edge, T0,

of the integration interval in the de�nition of the 
ost fun
tional (0.8). Here, by performan
e of

an optimization method we mean the number of iterations ne
essary to meet the stop 
riterion.

The two 
onsidered values of T0 were 1) zero and 2) a value 
lose to terminal time T for the

system (0.1) - (0.3). Thus, in 
ase 2), the value of T0 
orresponded to the idea of measuring
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the gap between the pro
ess and the referen
e state in neighborhood of the terminal time of the

system (0.1) - (0.3).

The results show that the average performan
e of the SD method was mu
h inferior in the


ase of the parameter T0 
lose to T than in the 
ase of T0 equal zero. Nevertheless, the di�eren
e

in the average performan
e of the SD method for two di�erent values of T0 was leveled by using

the CG+r method instead of SD.

We have also 
ompared the average performan
e of the CG+r method for a given referen
e

state and T0 
lose to T , for varying values of parameter T (T = 2, 4, 6) and for two variants of

y0. It o

urred that the performan
e of the CG+r method was better in the 
ase of T = 2 than

in the 
ase of T = 4 or T = 6.

Hen
e a hypothesis that the average performan
e of optimization methods for our optimiza-

tion problem 
hanges both with 
hanges of T0 (when using the SD method)) and with 
hanges of

T (when using the CG+r method). For 
hanges of T0, the use of stronger optimization method

(CG+r instead of SD) levels the performan
e di�eren
es, while for 
hanges of T , the performan
e

di�eren
es o

ur despite using CG+r.

Other observation 
on
erning our experimental results with varying T is that the optimiza-

tion output be
omes more independent of y0 when lengthening time horizon T . This stays in

a

ordan
e with intuition. Unfortunately, greater T results in higher 
omputational 
ost. Thus,

if our observation was a general rule, the desired e�e
t of the independen
e of the optimization

output on y0 
ould be expe
ted for those values of parameter T whi
h result in a 
omputationally

more expensive numeri
al treatment of the optimization problem.

Bibliographi
al notes. As remarked in �3, the thermostat 
ontrol me
hanism was taken

into a

ount in the mathemati
al literature in di�erent versions. The thermostat 
ontrol me
h-

anism present in the model (0.1) - (0.3) was inspired by and is similar to the version 
onsidered

in [19℄ or one of the versions 
onsidered in [33℄. However, in 
omparison to those works, we make

additional assumptions for the swit
hing fun
tions in the thermostat 
ontrol me
hanism to get

stronger results (ex
ept Se
tion 1.1, where the assumptions for the swit
hing fun
tions are as in

the given referen
es).

The analyti
al results presented in Se
tion 1.2 of Chapter 1 and in Chapter 3 are obtained with

rather standard mathemati
al methods. The methods utilized in Se
tion 1.2 are an adaptation

of methods presented in many PDE handbooks to the PDE-ODE system (0.1) - (0.3). The

approa
h presented in Se
tion 3.1 of Chapter 3 for the investigation of the di�erentiability of the

state operator was inspired, in parti
ular, by some of the arguments utilized in [39℄. Some of the

key 
on
epts utilized in in Se
tion 3.2 of Chapter 3 for the 
hara
terization of the di�erential of

the 
ost fun
tional base on the methods broadly des
ribed in the handbook [45℄.

The methods utilized to obtain the main result of Se
tion 1.1 (Theorem 1.1.2) are probably

less standard (the generalized Kakutani theorem, the properties of multivalued mappings). The

latter methods were applied in a similar fashion to models with a similar version of the 
ontrol

by thermostats in works [33℄ and [19℄.

To our knowledge, rigorous mathemati
al analysis of the problem of optimal targeting of

the a
tions of 
ontrol and measurement devi
es in PDE models involving thermostat 
ontrol

me
hanisms was not performed so far. The latter remark 
on
erns both the variant of the

thermostat 
ontrol me
hanism present in the model (0.1) - (0.3) as well as its other variants,

present in the models addressed in the mathemati
al referen
es given in �3. Many other questions

were posed for the subje
t models, in
luding the existen
e or uniqueness of solutions (see [26℄, [25℄,

[33℄, [28℄, [15℄, [29℄, [12℄, [5℄), the existen
e, or other properties, of time-periodi
 solutions (see [28℄,

[30℄, [31℄, [32℄), 
onvergen
e to stationary solutions (see [28℄) or the existen
e of a global attra
tor

(see [30℄). In the mathemati
al literature, we have en
ountered only one type of optimization
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problems for PDE models involving thermostat 
ontrol me
hanisms. It is the problem of 
hoosing

the optimal hysteresis law, for the variant of thermostat 
ontrol me
hanism where a swit
hing

me
hanism with hysteresis was 
onsidered � see e.g. [23℄, [10℄, [5℄. The optimal targeting

problem announ
ed in �2, or similar, seems to be not addressed in the mathemati
al literature.

However, in non-mathemati
al literature, not providing rigorous mathemati
al analysis, the

problems in 
ertain fashion related to the optimal targeting problem were addressed. For in-

stan
e, see the referen
e [36℄ (some 
omments on this referen
e were given in �3).

Some of the results of this thesis were already published in a preliminary form on arXive.org,

in the work [18℄. This 
on
erns a major part of the 
ontent presented in Se
tion 1.2.1, Se
-

tion 1.2.2 and Chapter 2 of the thesis. Roughly speaking, the 
ontent of Se
tion 3 of [18℄ is

in
luded into Se
tion 1.2.1 and Se
tion 1.2.2 of the present dissertation, while the 
ontent of Se
-

tion 4 of [18℄ is in
luded into Chapter 2. Nevertheless, signi�
ant re�nements were implemented

sin
e the preliminary version in [18℄. In Se
tion 1.2.2, the only part imported form [18℄ is Theo-

rem 1.2.3 and its proof (the latter with 
ertain rearrangements). The rest of Se
tion 1.2.2 is a new


ontent, in
luding the image in Figure 1.3. In Se
tion 1.2.2, the re�nements in
lude improved

typesetting of mathemati
al formulas, rearrangements of a big part of the proofs, more pre
ise

exposition of 
ertain mathemati
al arguments and some additional 
omments. In addition, Se
-

tion 1.2.2 
onsiders both the 
ase of y∗ ∈ L∞(0, T ;L2(Ω)) and y∗ ∈ L2(0, T ;L2(Ω)), while in

[18℄ we in
luded only the 
onsiderations on y∗ ∈ L∞(0, T ;L2(Ω)). Chapter 2, in 
omparison to

Se
tion 4 of [18℄, 
ontains a mu
h more extensive des
ription of the numeri
al s
hemes utilized

in the simulations and some additional 
omments. The images in Figures 2.3, 2.4, 2.6 and 2.8

in Chapter 2 represent the same data as some of the images in [18℄, however they were plotted

anew, for better readability. The rest of images in Chapter 2, as well as the tables exposed

therein, is the same as 
orresponding images and tables in [18℄.

Moreover, some fragments of Se
tion 1 (Introdu
tion) of [18℄ (text bulk of less than two pages

in total) are present in the Introdu
tion of the preset dissertation. Se
tion 2 of [18℄ also is here,

splitting its 
ontent to Notation 
onventions and the beginning of Chapter 1. To be spe
i�
,

the list of norms in Notation 
onventions, along with some minor text fragments there, and big

parts of the notation remarks in the beginning of Chapter 1 are present in Se
tion 2 in [18℄.



Notation 
onventions

In this 
hapter, we introdu
e notation whi
h will be binding everywhere else in the present work.

General notation

By �domain� we mean a nonempty open subset of Rn
, for some n ∈ N \ {0}.

In the present work, Ω ⊂ Rd
always denotes the 
orresponding set appearing in the system

(0.1) - (0.3) and is assumed to be a domain. Positive integer d stands for the dimension of Ω.
T > 0 is the 
onstant in (0.1) - (0.3) determining the time horizon and QT := Ω× (0, T ).

Unless it is expli
itly said to be otherwise, Rn
for an arbitrary n ∈ N \{0} is always endowed

with its standard topology and with Lebesgue measure and so subsets of Rn
are, in
luding Ω.

If F is a fun
tion de�ned on a given set A and Ã is a subset of A, we denote by F |Ã the

restri
tion of F to Ã.
For a given set A and its subset Ã, 1Ã : A → R is the indi
ator fun
tion of Ã, i.e. 1Ã(ω)

equals 1 for ω ∈ Ã and equals 0 for ω /∈ Ã.
The fun
tion sgn : R → R is de�ned as follows: sgn(s) = 1 for s > 0, sgn(s) = −1 for s < 0,

sgn(0) = 0.
For j, k ∈ N, we use symbol δj,k to denote the Krone
ker delta fun
tion of j and k, i.e.

δj,k = 1 for j = k and δj,k = 0 for j 6= k.
For ve
tor spa
es X, Y and an operator T a
ting from X to Y, we will denote the value of T

on an element x ∈ X as T (x) or Tx, inter
hangeably.

Notation for fun
tion spa
es

Below, any spa
e of s
alar fun
tions is understood as a spa
e of real fun
tions and any Bana
h

spa
e is also assumed to be real.

Assume that X is a Bana
h spa
e. We denote:

X∗ � dual of X,

Xw, X
∗
w∗ � the spa
e X 
onsidered with its weak topology and the spa
e X∗ 
on-

sidered with its weak-∗ topology, respe
tively.

For two Bana
h spa
es X1 and X2, X1 →֒ X2 means that X1 
an be 
ontinuously embedded

in X2. When this notation is used, spe
i�
ation of the embedding operator is ne
essary. If

X1 ⊆ X2, then we assume that the embedding operator for X1 →֒ X2 is the identity operator.

If X1 is a separable, re�exive Bana
h spa
e, X2 is a separable Hilbert spa
e and X1 →֒ X2

densely, then the embedding operator for X2 →֒ X1
∗
is understood in the standard evolution

triples sense (see [51, Chap. 23.4℄ for explanation of this 
on
ept). If none of these two situation

takes pla
e, external embedding theorems will be referred in the text to spe
ify the meaning of

the embedding operator.

xxiii
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Assume that k, n ∈ N \ {0}, p ∈ [1,∞], X is a Bana
h spa
e and let A be a measure spa
e

and D ⊆ Rn
be a domain. The following notation 
on
erning fun
tion spa
es will be in use:

Lp(A) � standard Lebesgue spa
e,

W k,p(D) � standard Sobolev spa
e,

Hk(D) � synonym for W k,2(D),

C(D) � spa
e of real valued 
ontinuous fun
tions de�ned on D with its standard

topology,

Cc(D) � subspa
e of C(D) 
onsisting of fun
tions with support that is 
ompa
t

in D,

Lp(0, T ;X) � standard Bo
hner spa
e,

C([0, T ];X) � spa
e of 
ontinuous fun
tions from [0, T ] into X,

C([0, T ];Xw) � spa
e of weakly 
ontinuous fun
tions from [0, T ] into X, or in other

words, spa
e of 
ontinuous fun
tions from [0, T ] into Xw,

C([0, T ]) � synonym for C([0, T ];R).

Assuming that X is a Bana
h spa
e, H is a Hilbert spa
e and E ⊆ Rn
is a measurable set,

we denote:

∥∥ .
∥∥
X

� the norm of X,

( . , . )H � the s
alar produ
t of H,

〈 . , . 〉X∗,X � the natural pairing between X∗ and X; the �rst argument stands for the

element of X∗,∥∥ .
∥∥
p,E � the norm of the Lebesgue spa
e Lp(E), p ∈ [1,∞],

∥∥ .
∥∥
p

� the norm of the Lebesgue spa
e Lp(Ω), p ∈ [1,∞],
∥∥ .

∥∥
X,q

� the norm of the Bo
hner spa
e Lq(0, T ;X), q ∈ [1,∞],
∥∥ .

∥∥
p,q

� the norm of the Bo
hner spa
e Lq(0, T ;Lp(Ω)),

〈 . , . 〉 � the natural pairing between H1(Ω)
∗
and H1(Ω); the �rst argument

stands for the element of H1(Ω)
∗
, .

p
� p-th norm in Rn

, namely

x
p

:=
(∑n

i=1

∣∣xi
∣∣p)1/p

for p ∈ [1,∞) andx
p

:= maxi=1,...,n

∣∣xi
∣∣
for p = ∞, where x ∈ Rn

.

In addition, we do not want to bother with separate notation for norms of Rn
-valued fun
tions,

hen
e we denote the standard norm of (Lp(E))n simply as

∥∥ .
∥∥
p,E. Similarly, we denote the norms

of (Lp(Ω))n and Lq(0, T ; (Lp(Ω))n) by
∥∥ .

∥∥
p
or

∥∥ .
∥∥
p,q
, respe
tively. The standard s
alar produ
t

in

(
L2(E)

)n
will be denoted as ( . , . )L2(E).

Moreover, for p ∈ [1,∞), the spa
e Lp(0, T ;Lp(Ω)) 
an be identi�ed with the spa
e Lp(QT ).
The in
lusion Lp(QT ) ⊆ Lp(0, T ;Lp(Ω)) follows by arguments as in the proof of Example 23.4

in Chap. 23.2 in [51℄, the other in
lusion follows by approximation with step fun
tions. Thus,

in the present work, we will use these two spa
es inter
hangeably. In parti
ular, we assume that

for an arbitrary F ∈ Lp(0, T ;Lp(Ω)) it is legal to evaluate the norm

∥∥F
∥∥
Lp(QT )

and vi
e versa.

The de�nitions Lebesgue and Sobolev spa
es are 
ontained e.g. in [1, Chap. 2 & Chap. 3℄,

[45, Chap. 2.2℄ or [21, App.A.3 & Chap. 5.2℄. The Bo
hner spa
es are introdu
ed e.g. in [1, Par.
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7.4℄, [21, Chap. 5.9.2℄, [45, Chap. 3.4.1℄ or [51, Chap. 23.2℄. Spa
e C([0, T ];X) is de�ned e.g.

in [45, Chap. 3.4.1℄, [21, Chap. 5.9.2℄ or [51, Def. 23.1, Chap. 23.2℄. The norms of Lebesgue,

Sobolev, Bo
hner and C([0, T ];X) spa
es are also de�ned in the given referen
es.

Notation for di�erentiation

Let D ⊆ Rn
be a domain, for 
ertain n ∈ N \ {0}. In the present work, for a given fun
tion

F : D → R, partial derivative sign ∂iF , for i = 1, . . . , n, 
an refer both to the 
lassi
al partial

derivative and the weak partial derivative. Similarly, ∇F (x), for x ∈ D, 
an denote the ve
tor of


lassi
al partial derivatives or weak partial derivatives in x. Analogous remarks hold if F : D →
Rm

, for 
ertain m ∈ N \ {0}.
The �prim� operator for fun
tions of one variable also 
an have various meanings. Let I ⊆ R

be an open interval (�nite or in�nite) and let F be an X-valued fun
tion on I, where X is a given

Bana
h spa
e. Then, depending on the 
ontext, F ′ 
an refer both to the 
lassi
al derivative of

F or to the ve
tor-valued distributional derivative of F .
To sum up, the �∂i� and �∇� operators, if not understood in 
lassi
al sense, refer to weak

partial derivatives. The �prim� operator, if not understood in 
lassi
al sense, refer to the ve
tor-

valued distributional derivative of a ve
tor-valued fun
tion of one variable. In parti
ular pla
es

of the text, the meaning of the subje
t di�erential operators should be 
lear by the 
ontext.

Otherwise, we will expli
itly stress whi
h meaning of the di�erential operators is involved.

In addition to the above, in the present work, for a given fun
tion F : QT → R, symbol ∇F
always refers to the gradient with respe
t to the spatial variables. In other words, ∇F does not

in
lude the partial derivative with respe
t to the time variable, asso
iated with interval (0, T ),
regardless of the meaning of the partial derivatives (
lassi
al or weak).

We understand the 
on
ept of the weak derivative as in [51, Def. 21.2, Chap. 21.1℄, [1, Par.

1.62℄ or [21, Chap. 5.2.1℄. The ve
tor-valued distributional derivative 
on
ept that we use is

des
ribed e.g. in [51, Def. 23.15, Chap. 23.5℄ or [45, Chap. 3.4.3℄.
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Chapter 1

Thermostat 
ontrol me
hanism �

properties

The fundamental results for the rea
tion-di�usion model with an additive 
ontrol term not in-

volving the automati
 
orre
tion me
hanism (see model (0.A)), as the existen
e and uniqueness

of solutions or stability results, are known. However, introdu
ing the automati
 
orre
tion me
h-

anism to the 
ontrol term 
an turn the original rea
tion-di�usion model into a model of di�erent

algebrai
 type. This is the 
ase for the model (0.1) - (0.3), whi
h 
an be understood as the model

of rea
tion-di�usion pro
ess with 
ontrol by a parti
ular automati
 
orre
tion me
hanism. It is

straightforward that the results 
on
erning a single rea
tion-di�usion equation do not apply to

the system (0.1) - (0.3). Hen
e, the analysis of the properties of (0.1) - (0.3) is ne
essary.

Therefore, in the present 
hapter, we fo
us on fundamental analysis of the system (0.1) - (0.3).

By fundamental analysis, we understand in parti
ular the results on existen
e and uniqueness

of solutions for (0.1) - (0.3). We present also the results on stability of (0.1) - (0.3) under

perturbations of the 
ontrol and of the initial 
ondition.

The plan of the present 
hapter is as follows. In Se
tion 1.1, we begin with analysis of

the system (0.1) - (0.3) in the 
ase where the swit
hing fun
tions wk, k = 1, . . . ,K, are upper

semi
ontinuous multivalued mappings. This approa
h has the following advantages:

1. It is possible to prove existen
e for wk being upper semi
ontinuous multivalued mappings,

2. For a dis
ontinuous fun
tion, it is possible to �nd an upper semi
ontinuous multivalued

mapping related to this fun
tion in 
ertain sense (see Proposition A.5.5).

Thus, the above approa
h is an attempt to indire
tly handle the 
ase of dis
ontinuous swit
hing

fun
tions wk, in
luding the −sgn fun
tion.

A drawba
k of the proposed approa
h is that, to our knowledge, no method for proving

uniqueness of solutions is known for models with 
ontrol by thermostats with swit
hing fun
-

tions being upper semi
ontinuous multivalued mappings. In the beginning of Se
tion 1.1, we

indi
ate some referen
e works where the subje
t approa
h was exploited. In none of the indi
ated

works, uniqueness was obtained for swit
hing fun
tions being upper semi
ontinuous multivalued

mappings.

In Se
tion 1.2 we investigate the 
ase of stronger restri
tions for the swit
hing fun
tions wk.

This restri
tion 
onsists in assuming that wk are single-valued, Lips
hitz 
ontinuous mappings,

for k = 1, . . . ,K. With the latter assumption, we obtain not only existen
e but also uniqueness

results for the system (0.1) - (0.3). In addition, in Se
tion 1.2 we provide the analysis of stability,

with respe
t to both the 
ontrol and the initial 
ondition, of the system (0.1) - (0.3) with single-

valued Lips
hitz wk. Nevertheless, imposing the latter assumption ex
ludes the possibility of

1



2 CHAPTER 1. THERMOSTAT CONTROL MECHANISM � PROPERTIES

the above proposed approa
h for dealing with the 
ase of dis
ontinuous swit
hing fun
tions,

in
luding wk(s) = −sgn(s), in the system (0.1) - (0.3). Thus, one may say that in Se
tion 1.2

we trade a method of indire
t handling the situation of wk = −sgn in the system (0.1) - (0.3)

for fundamental results for the latter system. On the other hand, a method of indire
t handling

the 
ase of wk = −sgn is available also with the assumption of Lips
hitz swit
hing fun
tions �

with the latter assumption, the fun
tion −sgn 
an be approximated with Lips
hitz fun
tions of

a very steep slope near point zero.

The purpose of the announ
ed stability analysis is twofold. First, the mentioned uniqueness

result for the system (0.1) - (0.3) is in fa
t proven by using the stability with respe
t to the initial


ondition. Se
ond, the results 
on
erning stability w.r.t. the 
ontrol are useful from the point

of view of the optimal 
ontrol theory, for proving di�erentiability of so-
alled state operators.

Our results 
on
erning stability w.r.t. the 
ontrol will be used in Chapter 3 of the present work,

exa
tly for the latter purpose.

Notation remarks

In Chapter 1, we use the following de�nitions of spa
es:

X0 = L2(Ω)× RJ

X1 = L2(QT )×
(
L2(0, T )

)J

X2 =
{
(y, κ1, . . . , κJ ) ∈ L∞(0, T ;L2(Ω))× (L∞(0, T ))J :

y′ ∈ L2(0, T ;H1(Ω)
∗
), ∇y ∈

(
L2(QT )

)d
,

κ′j ∈ L2(0, T ) for j = 1, . . . , J
}

and

Xy =
{
y ∈ L∞(0, T ;L2(Ω)) : ∇y ∈

(
L2(QT )

)d
, y′ ∈ L2(0, T ;H1(Ω)

∗
)
}

Xκ =
{
(κ1, . . . , κJ) ∈

(
L2(0, T )

)J
: κ′j ∈ L2(0, T ), j = 1, . . . , J

}

where natural number J is the same as J appearing in the system (0.1) - (0.3). In the above

de�nitions of spa
es: 1) the derivatives y′ and κ′j are assumed to exist in the sense of ve
tor-

valued distributional derivatives (see Notation 
onventions) and 2) ∇y is assumed to exist as the

ve
tor of the weak partial derivatives of y w.r.t. the spatial variables (see Notation 
onventions).
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The topologies of X0
, X1

, X2
, Xy

and Xκ
are given by the following norms:

∥∥(y, κ1, . . . , κJ )
∥∥
X0 =

∥∥y
∥∥
2
+

J∑

j=1

∣∣κj
∣∣

∥∥(y, κ1, . . . , κJ )
∥∥
X1 =

∥∥y
∥∥
2,2

+

J∑

j=1

∥∥κj
∥∥
L2(0,T )

∥∥(y, κ1, . . . , κJ )
∥∥
X2 =

∥∥y
∥∥
2,∞

+
∥∥∇y

∥∥
2,2

+
∥∥y′

∥∥
H1(Ω)∗,2

+

+

J∑

j=1

∥∥κj
∥∥
L∞(0,T )

+

J∑

j=1

∥∥κ′j
∥∥
L2(0,T )

∥∥y
∥∥
Xy =

∥∥y
∥∥
2,∞

+
∥∥∇y

∥∥
2,2

+
∥∥y′

∥∥
H1(Ω)∗,2

∥∥(κ1, . . . , κJ )
∥∥
Xκ =

J∑

j=1

∥∥κj
∥∥
L2(0,T )

+

J∑

j=1

∥∥κ′j
∥∥
L2(0,T )

It is known that L2(0, T ;L2(Ω)) 
an be identi�ed with L2(QT ) and that

∥∥F
∥∥
2,2

=
∥∥F

∥∥
2,QT

for F ∈ L2(QT ) (see Example 23.4 in Chap. 23.2 in [51℄). An analogous fa
t holds for spa
es

L2(0, T ;
(
L2(Ω)

)d
) and

(
L2(QT )

)d
. Therefore, the above de�nitions of norms are meaningful.

Moreover, we de�ne the following spa
es:

U = Ug × Uh × Uα, Ug =
(
L2(Ω)

)J
, Uh =

(
L2(Ω)

)K
, Uα = RKJ

where natural numbers J , K are the same as J , K appearing in the system (0.1) - (0.3). U will

be 
alled the 
ontrol spa
e. We equip it with standard produ
t topology and s
alar produ
t. For

a given element û ∈ U we denote the 
oordinates of û in the following way:

û = (ûgj , ûhk
, ûαjk

)k=1,...,K
j=1,...,J

where (ûg1 . . . , ûgJ ) ∈ Ug, (ûh1 , . . . , ûhk
) ∈ Uh, (ûαj,k

)k=1,...,K
j=1,...,J ∈ Uα

An arbitrary su�
iently integrable 
ontrol (gj , hk, αjk)
k=1,...,K
j=1,...,J in the system (0.1) - (0.3) 
an

be interpreted as an element of U and vi
e versa � an arbitrary element û ∈ U gives a 
ontrol

for the system (0.1) - (0.3) by putting gj := ûgj , hk := ûhk
and αj,k := ûαj,k

.

For te
hni
al reason, we de�ne also the following spa
e:

Ũ =
(
L2(Ω)

)2J

We equip Ũ with standard produ
t topology and s
alar produ
t. For a given û ∈ Ũ , we denote
the 
oordinates of û as follows:

û = (ûg1 , . . . , ûgJ , ûh1 , . . . , ûhJ
) = (ûgj , ûhj

)Jj=1

Remark. Con
erning the weights αj,k in (0.3), one 
an expe
t an assumption that αj,k are

nonnegative and summable to unity over k = 1, . . . ,K, for all j = 1, . . . , J . But this assumption

does not play any role in our 
onsiderations, hen
e we do not impose it and allow αj,k to be

arbitrary real numbers. This is re�e
ted in the stru
ture of the 
ontrol spa
e U , whose 
omponent

spa
e Uα 
an be understand as a spa
e of admissible (αj,k)
k=1,...,K
j=1,...,J . N
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1.1 Multivalued swit
hing fun
tion � existen
e results

This se
tion is devoted to investigate the existen
e of solutions for the model of rea
tion-di�usion

pro
ess with 
ontrol by thermostats, des
ribed by the system (0.1) - (0.3). Consider an abstra
t

operator de�ned as the operator assigning the solution y of (0.1) to a given (κ1, . . . , κJ ), and than

solution of (0.2) to y, denote it (κ̄1, . . . , κ̄J ). The problem is to show that there exists (κ1, . . . , κJ )
su
h that (κ̄1, . . . , κ̄J ) = (κ1, . . . , κJ ). In other words, we wish to employ the �xed-point method

for proving the existen
e of solutions.

Nevertheless, for the sake of limitations of the mathemati
al te
hniques utilized below, we

need to modify (0.1) - (0.3) slightly before we pro
eed further.

Let us explain the latter 
omment in more detail. The natural 
andidate for the swit
hing

fun
tion wk in (0.3) is the dis
ontinuous fun
tion wk(s) = −sgn(s). The la
k of 
ontinuity of

the swit
hing fun
tion is an obsta
le for proving the existen
e in models with the variant of

thermostat 
ontrol me
hanism without hysteresis in the work of the swit
hing me
hanism, whi
h

is our variant. This obsta
le was the 
ase in works [33℄, [15℄ and [19℄, whi
h took into a

ount

models with the non-hysteresis variant of the thermostat 
ontrol me
hanism (more pre
isely, [19℄

fo
used only on a non-hysteresis thermostat 
ontrol me
hanism while [33℄ and [15℄ a

ounted,

in addition to non-hysteresis 
ontrols, 
ontrols involving hysteresis in the work of the swit
hing

me
hanism). In none of these works, for the variant of swit
hing me
hanism without hystere-

sis, the existen
e of solutions was proven under assumptions 
overing the 
ase of dis
ontinuous

swit
hing fun
tions being equal −sgn. Works [33℄, [19℄ required 
onsidering a swit
hing fun
tion

being an upper semi
ontinuous multivalued mapping in order to obtain the existen
e result. In

[15℄, a swit
hing fun
tion being a maximal monotone mapping whose graph 
ontained the graph

of −sgn was 
onsidered. The maximal monotoni
ity of the swit
hing fun
tion was essential in

the existen
e proof in [15℄.

Within this setting, −sgn 
annot be viewed dire
tly as an admissible swit
hing fun
tion,

be
ause it is not upper semi
ontinuous in the sense of multivalued mappings, nor it is maximal

monotone. However, it is possible to take a swit
hing fun
tion being a maximal monotone

multivalued mapping whose graph 
ontains the graph of −sgn into 
onsideration. Thus in some

sense, it is allowed to 
onsider swit
hing fun
tions �somehow related� to −sgn within this setting.

But, this abstra
t approa
h has only te
hni
al reasons and makes the model less realisti
.

Nevertheless, we will adapt this approa
h here and allow the swit
hing fun
tions to be mul-

tivalued mappings, obeying 
ertain additional 
onditions. From the mathemati
al point of view

allowing a multivalued wk makes the model (0.1) - (0.3) more general, thus results shown with

this approa
h will apply also for a 
ertain 
lass of the single-valued swit
hing fun
tions (whi
h,

as we will see, unfortunately o

urs to ex
lude the −sgn swit
hing fun
tion).

Assuming that wk are multivalued mappings for
es us to understand the ordinary di�erential

equations (0.2) as an ordinary di�erential in
lusions. Hen
e, in this se
tion we will 
onsider the

following modi�
ation of the system (0.1) - (0.3) instead of (0.1) - (0.3) itself:





yt(x, t) −D∆y(x, t) = f(y(x, t)) +
∑J

j=1
gj(x)κj(t) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(x, 0) = y0(x) for x ∈ Ω

(1.1)
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together with 



β1κ
′
1(t) + κ1(t) ∈ W1

(
y( . , t), y∗(x, t)

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J(t) + κJ(t) ∈ WJ

(
y( . , t), y∗(x, t)

)
on [0, T ]

κj(0) = κj0 ∈ R for j = 1, . . . , J

(1.2)

where the notation is as in the system (0.1) - (0.3) with the ex
eption that Wj are multivalued

fun
tions now, de�ned by:

Wj(y( . , t), y
∗( . , t)) =

K∑

k=1

αjkwk

(∫

Ω
hk(x)

(
y(x, t)− y∗(x, t)dx

))
(1.3)

where αjk ∈ R, hk : Ω → R are fun
tions and wk : R → 2R are multivalued mappings, for

k = 1, . . . ,K.

The present se
tion utilizes the theory of multivalued mappings, in the s
ope of Appendix A.5.

We will follow the methods exploiting upper semi
ontinuity of wk in the sense of multivalued

mappings (see De�nition A.5.2 in Appendix A.5), as it was the 
ase in [33℄ or [19℄. This is

re�e
ted in the following assumptions for the system (1.1) - (1.3):

(A-1) Ω ⊂ Rd
is a bounded domain, su
h that the embedding W 1,2(Ω) →֒ L2(Ω) is 
ompa
t (e.g.

a bounded domain satisfying the 
one 
ondition is su�
ient, see the Relli
h-Kondra
hov

theorem presented e.g. in [1, Th. 6.3.℄; for de�nition of the 
one 
ondition, see [1, par.

4.6.℄),

(A-2) K, J are given positive natural numbers, T > 0, D > 0 and βj > 0 for all j = 1, . . . , J ,

(A-3) f is globally Lips
hitz 
ontinuous; we denote its Lips
hitz 
onstant by L,

(A-4) wk is a multivalued fun
tion, wk : R → 2R, satisfying the following 
onditions, for k =
1, . . . ,K:

a) wk has nonempty, 
losed and 
onvex values,

b) wk is upper semi
ontinuous in the sense of upper semi
ontinuity of multivalued map-

pings,


) wk is bounded; we de�ne 
onstant Cwk
> 0 as 
onstant su
h that wk(t, s) ⊆ [−Cwk

, Cwk
]

for all s ∈ R,

(A-5) y0 ∈ L2(Ω), κj0 ∈ R for j = 1, . . . , J ,

(A-6) y∗ ∈ C([0, T ];L2(Ω)w).

In the present se
tion, we will use the following de�nition of solutions for the system (1.1) -

(1.3):

De�nition 1.1.1 An element (y, κ1, . . . , κJ ) of the spa
e X2
is a weak solution of the system

(1.1) - (1.3) if there exists (W1, . . . ,WJ ) ∈
(
L2(0, T )

)J
su
h that:

(a) y( . , 0) = y0 in L2(Ω) and κj(0) = κj0 for j = 1, . . . , J ,

(b) for all φ ∈ L2(0, T ;H1(Ω)), there holds

∫ T

0

〈
y′, φ

〉
+D

(
∇y,∇φ

)
L2(Ω)

+
(
−f(y)− κ1g1 − . . . − κJgJ , φ

)
L2(Ω)

dt = 0
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(
) for all ξ ∈ L2(0, T ), for j = 1, . . . , J , there holds

∫ T

0

(
βjκ
′
j + κj −Wj

)
ξ dt = 0

(d) Wj(t) ∈ Wj

(
y( . , t), y∗( . , t)

)
for a.e. t ∈ (0, T ).

The point (a) in De�nition 1.1.1 is meaningful be
ause if (y, κ1, . . . , κJ) ∈ X2
then

y ∈ C([0, T ];L2(Ω)) and (κ1, . . . , κJ ) ∈ C([0, T ]). For justi�
ation, note that the spa
es H1(Ω),
L2(Ω) andH1(Ω)

∗
form so-
alled evolution triple (de�ned e.g. in [51℄) with embeddingsH1(Ω) →֒

L2(Ω) →֒ H1(Ω)
∗
. Having this, see [51, Prop. 23.23℄ to 
on
lude that y ∈ C([0, T ];L2(Ω)). Then,

use the Sobolev embedding theorem, see [1, Th. 4.12, p. 85℄, or apply [51, Prop. 23.23℄ again to

get (κ1, . . . , κJ ) ∈ C([0, T ]).
The main Theorem of Se
tion 1.1 is the following existen
e result:

Theorem 1.1.2 Let assumptions (A-1) - (A-6) be ful�lled. Assume also that (y0, κ10, . . . , κJ0) ∈
X0

and (gj , hk, αj,k)
k=1,...,K
j=1,...,J ∈ U . Then, there exists a weak solution of the system (1.1) - (1.3).

We present the proof of Theorem 1.1.2 in Se
tion 1.1.1. Earlier, in Se
tion 1.1.2, we give some

te
hni
al lemmas ne
essary for the proof.

1.1.1 Auxiliary lemmas

This se
tion presents some auxiliary fa
ts that will be ne
essary for the proof of Theorem 1.1.2.

We will need to 
onsider the following auxiliary systems of equations:





yt(x, t)−D∆y(x, t) = f(y(x, t)) +
∑J

j=1
gj(x)kj(t) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(0) = y0 on Ω

(1.4)

{
βjκ
′
j(t) + κj(t) = Vj(t) on [0, T ]

κj(0) = κj0
for j = 1, . . . , J (1.5)

where kj ∈ L2(0, T ), Vj ∈ L2(0, T ) for j = 1, . . . , J are given and the rest of the notation is as

in the system (0.1) - (0.3).

De�nition 1.1.3 A weak solution of (1.4) is a fun
tion y ∈ Xy
that satis�es y(0) = y0 and

∫ T

0

〈
y′, φ

〉
+D

(
∇y,∇φ

)
L2(Ω)

+
(
−f(y)−

J∑

j=1

gjkj , φ
)
L2(Ω)

dt = 0 (1.6)

for all φ ∈ L2(0, T ;H1(Ω)).

De�nition 1.1.4 A weak solution of (1.5) is a fun
tion κ = (κ1, . . . , κJ ) ∈ Xκ
that satis�es

κj(0) = κj0 and ∫ T

0

(
βjκ
′
j + κj −Vj

)
ξ dt = 0 (1.7)

for all ξ ∈ L2(0, T ), for j = 1, . . . , J .
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For weak solutions of both (1.4) and (1.5), initial 
onditions are well de�ned, by the same

arguments as the ones on page 6, 
on
erning De�nition 1.1.1.

Now, we give some lemmas des
ribing properties of the weak solutions to (1.4) and (1.5):

Lemma 1.1.5 Let Ω, T , D, J , f , y0 be as in assumptions (A-1), (A-2), (A-3), (A-5), respe
-

tively, and let gj ∈ L2(Ω) for j = 1, . . . , J . In addition:

1. Let kj ∈ L2(0, T ) for j = 1, . . . , J . Then the weak solution of (1.4) exists and is unique.

2. Let y1 and y2 be two weak solutions of (1.4) 
orresponding to kj = k1j and kj = k2j respe
-

tively, for j = 1, . . . , J,where k1j ∈ L2(0, T ) and k2j ∈ L2(0, T ). Then

∥∥y1 − y2
∥∥
Xy ≤ C1

∥∥∥
J∑

j=1

gj(x)(k
1
j (t)− k2j (t))

∥∥∥
2,2

≤ C2

J∑

j=1

∥∥k1j − k2j
∥∥
L2(0,T )

(1.8)

where C1 = C1(T,D,L) and C2 = C2

(
T,D,L,

∥∥g1
∥∥
2
, . . . ,

∥∥gJ
∥∥
2

)
.

Proof. It is a known result that under the imposed assumptions the weak solution of the

equation (1.4) exists and is unique. Thus we do not prove it here but only give some 
omments

on the addressed matter.

The existen
e of solutions of (1.4) 
an be shown by Galerkin method. See [40, Chap. 8℄

for example realization of this method for a semilinear rea
tion-di�usion equation. A 
ase of

homogeneous Diri
hlet boundary data and a growth 
ondition for f other than ours is 
onsidered

there, also the solutions are de�ned in other spa
es. Nevertheless, the method presented there


an be adapted to our 
ase, after adequate modi�
ations.

One may 
ondu
t the proof of the existen
e with the above mentioned method to �nd that our

assumptions 
on
erning Ω, f , y0, gj , kj and D are essential for the assertion. The assumptions


on
erning T and J are ne
essary just to make the problem well de�ned.

The stability of the system (1.4), expressed by the �rst inequality in (1.8), also is a known

result for the 
ase of the Lips
hitz nonlinearity f , but we present its proof here for the sake of


ompleteness of the presented 
ontent. The �rst inequality in (1.8) 
an be shown as follows. For

estimates for

∥∥y1 − y2
∥∥
2,∞

we subtra
t the identity (1.6) 
orresponding to kj = k1j , j = 1, . . . , J

and the same identity 
orresponding to kj = k2j , j = 1, . . . , J . We test the resulting identity by

φ = 1[0,t](y
1 − y2) for a given t ∈ [0, T ]. This results in:

∫ t

0

〈
y1
′
− y2

′
, y1 − y2

〉
ds + D

∫ t

0

∥∥∇
(
y1 − y2

)∥∥2
2
ds =

=

∫ t

0

(
f(y1)− f(y2), y1 − y2

)
L2(Ω)

ds +

∫ t

0

∫

Ω

J∑

j=1

gj
(
k1j − k2j

)(
y1 − y2

)
dx ds

(1.9)

Next, the following identity holds:

∫ t

0

〈
y1
′
− y2

′
, y1 − y2

〉
dt =

1

2

∥∥y1( . , t) − y2( . , t)
∥∥2
2
−

1

2

∥∥y1( . , 0) − y2( . , 0)
∥∥2
2

(1.10)

(see Prop. 23.23 in [51℄ and note that spa
esH1(Ω) →֒ L2(Ω) →֒ H1(Ω)
∗
form an evolution triple,

de�ned as in Chap. 23.4 in [51℄). Using the above in (1.9) and re
alling that y1( . , 0) = y2( . , 0),
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we obtain:

1

2

∥∥y1( . , t)− y2( . , t)
∥∥2
2
+ D

∫ t

0

∥∥∇
(
y1 − y2

)∥∥2
2
ds =

≤
(
L+ 1

2

) ∫ t

0

∥∥y1(t)− y2(t)
∥∥2
2
dt+

1

2

∥∥∥
J∑

j=1

gj
(
k1 − k2

)∥∥∥
2

2,2

(1.11)

where the Lips
hitz 
ontinuity of f and the Young inequality were used to estimate the right

hand side of (1.9). Now, we negle
t the gradient term (whi
h is nonnegative) and by the Grönwall

inequality we 
on
lude that

∥∥y1 − y2
∥∥
2,∞

≤ C10

∥∥∥
J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

(1.12)

for some 
onstant C10 > 0, C10 = C10(T,L).

To get the estimates for

∥∥∇
(
y1 − y2

)∥∥
2,2
, we again use (1.11). Negle
ting the term

∥∥y1( . , t)−
y2( . , t)

∥∥
2
and taking t = T , it follows that:

D

∫ T

0

∥∥∇
(
y1 − y2

)∥∥2
2
dt ≤

(
L+ 1

2

)
T
∥∥y1 − y2

∥∥2
2,∞

+
1

2

∥∥∥
J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2

2,2

where we have used the estimate

∥∥y1 − y2
∥∥
2,2

≤ T 1/2
∥∥y1 − y2

∥∥
2,∞

. Now, we 
an use the above

inequality and (1.12) to get that

∥∥∇
(
y1 − y2

)∥∥
2,2

≤ C11

∥∥∥
J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

(1.13)

where C11 = C11(T,D,L).

To obtain estimates for

(
y1 − y2

)′
in L2(0, T ;H1(Ω)

∗
), we again subtra
t two 
opies of

(1.6) and treat the resulting integral identity as a 
ondition for a fun
tional on the spa
e

L2(0, T ;H1(Ω)). We 
on
lude that the below holds:

(y1 − y2)′ +DA(y1 − y2)−
(
Fy1 − Fy2

)
−G = 0 in L2(0, T ;H1(Ω)

∗
) (1.14)

where A : L2(0, T ;H1(Ω)) → L2(0, T ;H1(Ω)
∗
), F : L2(0, T ;H1(Ω)) → L2(0, T ;H1(Ω)

∗
) and

G ∈ L2(0, T ;H1(Ω)
∗
) are de�ned by

∫ T

0

〈
Aỹ, φ

〉
dt =

∫ T

0

(
∇ỹ,∇φ

)
L2(Ω)

dt

∫ T

0

〈
Fỹ, φ

〉
dt =

∫ T

0

(
f(ỹ), φ

)
L2(Ω)

dt

∫ T

0

〈
G, φ

〉
dt =

∫ T

0

( J∑

j=1

gj
(
k1j − k2j

)
, φ

)
L2(Ω)

dt

(1.15)

for a given ỹ ∈ L2(0, T ;H1(Ω)) and all φ ∈ L2(0, T ;H1(Ω)).
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It follows by de�nition of A, F and G that

∥∥Aỹ1
∥∥
H1(Ω)∗,2

≤
∥∥∇ỹ

∥∥
2,2

∥∥Fỹ1 − Fỹ2
∥∥
H1(Ω)∗,2

≤
∥∥f(ỹ1)− f(ỹ2)

∥∥
2,2

∥∥G
∥∥
H1(Ω)∗,2

≤
∥∥∥

J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

(1.16)

for given ỹ1, ỹ2 ∈ L2(0, T ;H1(Ω)). This, together with (1.14), yields:

∥∥(y1 − y2
)′∥∥

H1(Ω)∗,2
≤

∥∥∇y1 −∇y2
∥∥
2,2

+
∥∥f(y1)− f(y2)

∥∥
2,2

+
∥∥∥

J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

≤
∥∥∇y1 −∇y2

∥∥
2,2

+ L
∥∥y1 − y2

∥∥
2,2

+
∥∥∥

J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

Now, re
alling that

∥∥y1 − y2
∥∥
2,2


an be estimated by

∥∥y1 − y2
∥∥
2,∞

, we use (1.12) and (1.13) to


on
lude that

∥∥(y1 − y2
)′∥∥

H1(Ω)∗,2
≤ C12

∥∥∥
J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

(1.17)

where C12 = C12(T,D,L).

To sum up, by (1.12), (1.13) and (1.17), the �rst inequality in (1.8) follows. The se
ond

inequality in (1.8) follows straight by the Fubini theorem.

The proof of uniqueness 
an be 
ondu
ted by appli
ation of the Grönwall inequality, analo-

gously to the above proof of (1.12). Take y10, y
2
0 ∈ L2(Ω) and denote by y1, y2 given weak solutions

of (1.1) 
orresponding to y10, y
2
0 respe
tively. Then, subtra
t two 
opies of identity (1.6) 
orre-

sponding to y10 and y20, respe
tively, and test the resulting identity by φ = 1[0,t](y
1 − y2), for a

given t ∈ [0, T ]. This gives:

∫ t

0

〈
y1
′
− y2

′
, y1 − y2

〉
ds + D

∫ t

0

∥∥∇
(
y1 − y2

)∥∥2
2
ds =

∫ t

0

(
f(y1)− f(y2), y1 − y2

)
L2(Ω)

dt

In the above, use identity (1.10), re
all the Lips
hitz 
ontinuity of f with 
onstant L and negle
t

the gradient term (whi
h is nonnegative):

1

2

∥∥y1( . , t) − y2( . , t)
∥∥2
2

≤ L

∫ t

0

∥∥y1(t)− y2(t)
∥∥2
2
dt+

1

2

∥∥y10 − y20
∥∥2
2

Now, the Grönwall inequality yields

∥∥y1 − y2
∥∥
2,∞

≤ C13

∥∥y10 − y20
∥∥
2
, for 
ertain C13 = C13(T,L).

Thus, for y10 = y20 in L2(Ω) we have y1(t) = y2(t) in L2(Ω) for a.e. t ∈ [0, T ], what 
on
ludes the
proof of the uniqueness. �

Lemma 1.1.6 Let T , J , K and βj for j = 1, . . . , J be as in the assumption (A-2). Then, the

following statements are true:

1. Let Vj ∈ L2(0, T ) for j = 1, . . . , J . Then, the weak solution of (1.5) exists and is unique.
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2. Moreover, if κ = (κ1, . . . , κJ ) ∈ Xκ
is the weak solution of (1.5) 
orresponding to a given

(V1, . . . ,VJ) ∈ (L∞(0, T ))J , then

∥∥κ
∥∥
Xκ ≤ C3

( J∑

j=1

∣∣κj0
∣∣ +

J∑

j=1

∥∥Vj

∥∥
L2(0,T )

)
(1.18)

where C3 = C3(β1, . . . , βJ , T ).

3. Moreover, assume that Ṽ
n ∈

(
L2(0, T )

)J
for n ∈ N and that κ̃n ∈ Xκ

are the weak

solutions of (1.5) 
orresponding to Ṽ
n
, by putting Vj := Ṽ

n
j in (1.5). In addition, assume

that Ṽ
n ⇀ Ṽ in

(
L2(0, T )

)J
for 
ertain Ṽ ∈

(
L2(0, T )

)J
and that κ̃n ⇀ κ̃ in Xκ

for


ertain κ̃ ∈ Xκ
. Then, κ̃ is the weak solution of (1.5) 
orresponding to Ṽ, by putting

Vj := Ṽj in (1.5).

Proof. For the existen
e and uniqueness of solutions, �rst observe that the above intro-

du
ed notion of the weak solution of (1.5) is a
tually a Carathéodory solution. The Carathéodory

solution of (1.5) is an absolutely 
ontinuous fun
tion from [0, T ] to RJ
satisfying the ODE in

(1.5) a.e. on [0, T ] and satisfying the initial 
ondition in (1.5). The Carathéodory solutions, also

for ordinary di�erential equations more general than (1.5), were investigated e.g. in handbooks

[14℄ or [22℄.

Let us brie�y justify the above observation. An arbitrary weak solution κ of (1.5) belongs to

Xκ
and hen
e is Hölder 
ontinuous by the Sobolev embedding theorem (see [1, Th. 4.12℄). In

parti
ular, κ is absolutely 
ontinuous. Moreover, it satis�es the identity βjκ
′
j + κj −Vj = 0 a.e.

on [0, T ] for j = 1, . . . , J , be
ause by the de�nition of the weak solution of (1.5), βjκ
′
j+κj−Vj is

the zero element of L2(0, T ). Hen
e, κ being a weak solution of (1.5) is a Carathéodory solution

of (1.5) as well.

Conversely, let κ be a Carathéodory solution of (1.5). Sin
e it ful�lls βjκ
′
j + κj −Vj = 0 a.e.

on [0, T ] for j = 1, . . . , J , it ful�lls also the integral identity in (1.5). Moreover, as a 
ontinuous

fun
tion on a 
losed interval, κj is square integrable, for j = 1, . . . , J . κ′j also is square integrable

be
ause κ′j = β−1j (−κj +Vj) and κj , Vj are square integrable. Hen
e, κ ∈ Xκ
. In total, κ

o

urs to be a weak solution of (1.5) as well.

Thus the question on existen
e and uniqueness of weak solutions of (1.5) 
an be repla
ed by

the question on existen
e and uniqueness of the Carathéodory solutions of (1.5). The existen
e

of Carathéodory solutions 
an be 
on
luded by Theorem 1.1 in Chapter 2 in [14℄ or by Theorem

1 in Chapter 1 in [22℄, 
on
erning the existen
e of Carathéodory solutions for ODEs more general

than ours (the formulation of Theorem 1.1, Chap. 2 in [14℄ does not spe
ify pre
isely the interval

of existen
e, but analysis of the proof of this theorem indi
ates that in our 
ase the existen
e

on [0, T ] 
an be obtained; the formulation of Theorem 1, Chap. 1 in [22℄ is more pre
ise and

does not 
ause this kind problems). The uniqueness of Carathéodory solutions of (1.5) follows

by Theorem 2 in Chapter 1 in [22℄.

Alternatively, instead of referring to the general theory presented in [14℄ and [22℄, one 
an

prove the demanded existen
e and uniqueness assertion as follows. Simply note that the fun
tion

κ is a Carathéodory solution of (1.5) if and only if

κj(t) = exp
(
−

1

βj
t
)
κj0 +

1

βj

∫ t

0
exp

(
−

1

βj
(t− s)

)
Vj(s) ds for j = 1, . . . , J



1.1. MULTIVALUED SWITCHING FUNCTION. . . 11

Sin
e the integral in the right hand side of the latter identity is well de�ned for a given Vj ∈
L2(0, T ), the Carathéodory solution of (1.5) exists and is unique.

Now, let κ = (κ1, . . . , κJ ) ∈ Xκ
be the weak solution of (1.5) 
orresponding to (V1, . . . ,VJ ) ∈

(L∞(0, T ))J . By testing the weak form (1.7) of the equation (1.5) by ξ = κj1[0,t] we have

βj

∫ t

0
κj
′κj ds +

∫ t

0

∣∣κj
∣∣2 =

∫ t

0
Vjκj ds (1.19)

for t ∈ [0, T ], for j = 1, . . . , J . By integrability of κj
′
, we have the absolute 
ontinuity of κj .

Thus, by the integration by parts, the relation

∫ t
0 κ
′
jκj = 1

2

∣∣κj(t)
∣∣2− 1

2

∣∣κj(0)
∣∣2
is valid. Applying

the latter in (1.19), negle
ting the

∣∣κj
∣∣2

term (whi
h is nonnegative) and applying the Young

inequality yields:

∣∣κj(t)
∣∣2 ≤

∣∣κj0
∣∣2 + β−1j

∥∥Vj

∥∥2
L2(0,T )

+ β−1j

∫ t

0

∣∣κj(s)
∣∣2 ds

By applying the integral Grönwall inequality to the above:

∥∥κj
∥∥2
L∞(0,T )

≤ C30,j

(∣∣κj0
∣∣2 +

∥∥Vj

∥∥2
L2(0,T )

)
(1.20)

for j = 1, . . . , J , where C30,j = C30,j(βj , T ).
Next, the weak form (1.7) implies that

βjκj
′ + κj = Vj in L2(0, T )

for j = 1, . . . , J and therefore

∥∥κ′j
∥∥
L2(0,T )

≤ β−1j

∥∥κj
∥∥
L2(0,T )

+ β−1j

∥∥Vj

∥∥
L2(0,T )

(1.21)

Inequalities (1.20) and (1.21) together imply the estimate (1.18).

Proving the remaining part of the assertions of the present lemma is straightforward. Let

Ṽ
n
, Ṽ, κ̃n and κ̃ be as in the assumptions of the lemma. Then

βj
(
κ̃nj

)′
+ κ̃nj − Ṽ

n
j ⇀ βj κ̃

′
j + κ̃j − Ṽj in L2(0, T )

for j = 1, . . . , J . The above 
onvergen
e su�
es to pass to the limit in the weak form (1.7) of

the equation (1.5) and infer the desired assertion. �

Remark. It 
an be veri�ed that the proof of Lemma 1.1.6, after minor modi�
ations, would

be valid also for βj < 0. N

The following two lemmas also will be required in the proof of Theorem 1.1.2:

Lemma 1.1.7 Let W̃ : R → 2R be a bounded upper semi
ontinuous multivalued mapping (see

de�nitions in Appendix A.5) with nonempty and 
losed values. Let ṽ ∈ C([0, T ]). Then W̃ ◦ ṽ
has a measurable sele
tion, i.e. there exists at least one fun
tion Ṽ : [0, T ] → R whi
h is

measurable and Ṽ(t) ∈ W̃ ◦ ṽ(t) for a.e. t ∈ [0, T ].

Proof. The proof of Lemma 1.1.7 is analogous to that of [26, Lemma 3.4℄, but we in
lude

it here for 
ompleteness of the presented 
ontent.

By Corollary 1.1 on p. 237 in [20℄, if
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1. the image of W̃ ◦ ṽ is 
ontained in some 
ompa
t K ⊂ R,

2. G(W̃ ◦ ṽ) is a Borel set of R×K and

3. W̃ ◦ ṽ has 
losed and nonempty values a.e. on [0, T ]

then W̃ ◦ ṽ has a measurable sele
tion, as demanded in the assertion of the present lemma.

A 
ompa
t K as above exists by the assumption on boundedness of W̃.

Next, W̃ ◦ ṽ has 
losed and nonempty values be
ause the same applies to W̃.

Moreover, W̃ ◦ ṽ is upper semi
ontinuous in sense of multivalued fun
tions be
ause W̃ and ṽ

are so (see Prop. 6, Se
. 1, Chap. 3 in [4℄). An upper semi
ontinuous multivalued mapping with


losed values has 
losed graph (see Prop. 7, Se
. 1, Chap. 3 in [4℄), hen
e G(W̃ ◦ ṽ) is 
losed.

Hen
e, G(W̃ ◦ ṽ) is Borel as well.
This 
on
ludes the proof. �

Lemma 1.1.8 Let W̃ : R → 2R be a bounded upper semi
ontinuous multivalued mapping with

nonempty, 
losed and 
onvex values. Assume that ṽn → ṽ in C([0, T ]), Ṽn
∗
⇀ Ṽ in L∞(0, T )

and that Ṽn(t) ∈ W̃ ◦ ṽn(t) for a.e. t ∈ [0, T ], for n ∈ N. Then Ṽ(t) ∈ W̃ ◦ ṽ(t) for a.e.

t ∈ [0, T ].

Lemma 1.1.8 
an be viewed as a parti
ular 
ase of Lemma 3.6 in [26℄. N

1.1.2 The proof of the existen
e theorem (Theorem 1.1.2)

In this se
tion, we prove Theorem 1.1.2 with the use of auxiliary fa
ts from Se
tion 1.1.1. The

proof will base on the following �xed-point theorem for multivalued mappings:

Theorem 1.1.9 (generalized Kakutani theorem) Let X be a real Bana
h spa
e and let

M ⊂ X be its 
onvex, 
ompa
t and nonempty subset. Let T : M → 2M be a multivalued mapping

having the following properties:

a) the values T (x) are nonempty and 
onvex for all x ∈ M ,

b) G(T ) is 
losed in X ×X.

Then T has a �xed point in M , i.e. there exists x̄ ∈ M su
h that x̄ ∈ T (x̄).

For the proof of Theorem 1.1.9, see [9, Th. 4℄ or [27℄. The proof in [27℄ 
overs the more general


ase of 
onvex Hausdor� linear topologi
al spa
es. Alternatively, Theorem 1.1.9 
an be viewed

as a dire
t 
onsequen
e of Corollary 9, Chap. 3, Se
. 1 in [4℄ and Theorem 13, Chap. 6, Se
. 4

in [4℄, for the general 
ase of Hausdor� lo
ally 
onvex spa
es.

Remark. The formulation of Theorem 4 in [9℄ la
ks the assumption that the sets T (x) are

onvex but the proof presented there shows that this assumption is ne
essary and perhaps was

a

identally missed in the theorem statement. N

Proof of Theorem 1.1.2. De�ne the following operators:

• P1 :
(
L2(0, T )

)J
→ C([0, T ];L2(Ω)) is assigns the solution of (1.4) to a given (k1, . . . , kJ) ∈(

L2(0, T )
)J
.
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• P2 : C([0, T ];L2(Ω)) → (C([0, T ]))K assigns (v1, . . . ,vK) ∈ (C([0, T ]))K determined by the

formula

vk(t) =

∫

Ω
hk(x) (Y (x, t) − y∗(x, t)) dx on [0, T ], for k = 1, . . . ,K (1.22)

to a given Y ∈ C([0, T ];L2(Ω)).

• P3 : (C([0, T ]))K → 2(L
∞(0,T ))J

is a multivalued mapping assigning to a given (v1, . . . ,vK) ∈
(C([0, T ]))K the set (W1, . . . ,WJ ) ⊆ (L∞(0, T ))J determined by the following 
ondition:

for j = 1, . . . , J , Vj ∈ Wj if and only if

Vj(t) ∈
K∑

k=1

αj,k (wk ◦ vk(t)) a.e. on [0, T ] (1.23)

• P4 : (L∞(0, T ))J →
(
L2(0, T )

)J
assigns the solution of (1.5) to a given (V1, . . . ,VJ ) ∈

(L∞(0, T ))J .

• P := P4 ◦ P3 ◦ P2 ◦ P1 :
(
L2(0, T )

)J
→

(
L2(0, T )

)J
.

The meaning of the above operators in the 
ontext of the system (1.1) - (1.3), involving the

thermostat 
ontrol me
hanism, is explained in Figure 1.1.

Signals Wj(y, y
∗)

Measurement data∫

Ω
hk(y − y∗) dx)

Control devi
es response

(fun
tions κj)
Pro
ess state

(fun
tion y)

✛

✲✲

✛

P1

P3

P4 P2

Figure 1.1: A s
hemati
 representation of the role of the operators P1, P2, P3 and P4, 
onsidered

in the proof of Theorem 1.1.2, in the 
ontext of the thermostat 
ontrol me
hanism, present in

the system (1.1) - (1.3). The notation in the pi
ture is as in the subje
t system.

The existen
e of a weak solutions of (1.1) - (1.3) is equivalent to the existen
e of a �xed point

of P , i.e. of k̄ ∈
(
L2(0, T )

)J
with k̄ ∈ P (k̄). Indeed, by the de�nition of the operator P4, su
h

k̄ belongs to the spa
e Xκ
(de�ned in Se
tion 1.1.1), and P1(k̄) belongs to the spa
e Xy

(also

de�ned there), hen
e the element

(
P1(k̄), k̄1, . . . , k̄J

)
belongs to X2

. Moreover, by de�nitions of

operators P1, P2, P3 and P4, the latter element ful�lls De�nition 1.1.1 with y = P1(k̄), κj = k̄j

for j = 1, . . . , J and with (W1, . . . ,WJ ) ∈
(
L2(0, T )

)J
given by Wj = βj k̄

′
j + k̄j =

(
P4
−1(k̄)

)
j
.

Now, we shall verify that the assumptions of Theorem 1.1.9 are satis�ed for the operator P
restri
ted to a suitable subset (whi
h we will indi
ate in the sequel). This will justify that P has

a �xed point and allow us to 
on
lude the proof.

Nonempty values. By Lemma 1.1.5, P1 is well de�ned. By the assumption (A-6) and by

the stru
ture of (1.22), P2 is well de�ned. By Lemma 1.1.6, P4 is well de�ned. Moreover, P3 has

nonempty values, be
ause, by Lemma 1.1.7, ea
h of multivalued mappings vk 7→ wk ◦ vk, k =
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1, . . . ,K, entering the de�nition of P3, has nonempty values. More pre
isely, by the 
ontinuity

of vk and properties of wk, Lemma 1.1.7 yields the existen
e of a measurable sele
tion for the

multivalued mapping s 7→ wk ◦vk(s). By the boundedness of wk, this measurable sele
tion must

be bounded and hen
e must be an element of L∞(0, T ). Thus, the set wk ◦ vk ⊂ L∞(0, T ) is
nonempty for a given vk ∈ C([0, T ]).

Therefore, the superposition P4 ◦ P3 ◦ P2 ◦ P1 has nonempty values.

Convex values. By point (a) in the assumption (A-4), the values of P3 are 
onvex. Indeed,

for a given t ∈ [0, T ] , wk(t) := wk ◦ vk(t) is a 
onvex set and hen
e the 
olle
tion W̃k of all

w̃k ∈ L∞(0, T ) su
h that w̃k(t) ∈ wk(t) a.e. on [0, T ] is 
onvex. Next, Wj =
∑J

j=1 αj,kW̃k, i.e.

Wj is a linear 
ombination of 
onvex sets, and as su
h is 
onvex. It follows straight that the

produ
t over j = 1, . . . , J of Wj is 
onvex in (L∞(0, T ))J . Thus the 
onvexity of values of P3 is

justi�ed.

Next, the operator P4 is a�ne thus it maps 
onvex sets to 
onvex sets, i.e. P4 ◦ P3(v) is


onvex for an arbitrary v ∈ (C([0, T ]))K . But the latter means that P4 ◦P3 ◦P2 ◦P1(k) is 
onvex

for an arbitrary k ∈
(
L2(0, T )

)J
.

Convex and 
ompa
t image. Theorem 1.1.9, to hold, requires a multivalued mapping to

a
t from a 
ompa
t, 
onvex and nonempty set into itself. Now we shall determine a set that is

suitable for Theorem 1.1.9 in our 
ase. De�ne auxiliary sets A and B as follows:

A :=

{
(V1, . . . ,VJ ) ∈ (L∞(0, T ))J :

∥∥Vj

∥∥
L∞(0,T )

≤ CWj
∀j=1,...,J

}

where CWj
:=

∑K
k=1 αj,kCwk

, for j = 1 . . . , J and for Cwk
being the 
onstants from point (
) in

the assumption (A-4),

B :=

{
k ∈

(
L2(0, T )

)J
:
∥∥k

∥∥
Xκ ≤ C3

J∑

j=1

(∣∣κj0
∣∣+ TCWj

)
∀j=1,...,J

}

where κj0 are the initial 
onditions assumed for (1.2) in the assumption (A-5) and C3 is the


onstant appearing in the estimate (1.18) in Lemma 1.1.6.

It follows from the de�nition of P3 and from point (
) in the assumption (A-4) that P3(v) ⊆ A
for an arbitrary v ∈ (C([0, T ]))K . Next, the estimate (1.18) in Lemma 1.1.6 allows to infer that

P4 maps the set A into the set B. Hen
e, P4◦P3 ◦P2◦P1(k) ⊆ B for an arbitrary k ∈
(
L2(0, T )

)J
.

Denote by B the 
losure of B in

(
L2(0, T )

)J
. B is nonempty and 
onvex, and hen
e the same

holds for its 
losure. By the Relli
h-Kondra
hov Theorem (see [1, Th. 6.3℄), B is pre
ompa
t

in

(
L2(0, T )

)J
. Moreover, P (k) ∈ B for k ∈

(
L2(0, T )

)J
. Thus in total, B is nonempty, 
onvex

and 
ompa
t and P |B : B → 2B.

Closed graph. Now, we will verify that G(P |B) is 
losed in

(
L2(0, T )

)J
×

(
L2(0, T )

)J
.

Sin
e we are in a metri
 spa
e, it is su�
ient to 
he
k that G(P |B) is sequentially 
losed. Thus

let kn, ξn ∈ B, ξn ∈ P (kn) for n ∈ N and assume that kn → k and ξn → ξ in

(
L2(0, T )

)J
, for


ertain k, ξ ∈
(
L2(0, T )

)J
. Sin
e B is 
losed, k, ξ ∈ B. We are left to show that ξ ∈ P |B(k) =

P4 ◦ P3 ◦ P2 ◦ P1(k).

For n ∈ N, there exist Vn ∈ (L∞(0, T ))J su
h that ξn = P4(V
n) and V

n = P3 ◦ P2 ◦ P1(k).
Sin
e V

n
are in the image of P3, V

n
are bounded w.r.t. n in (L∞(0, T ))J . Hen
e, a weakly-

∗ 
onvergent subsequen
e V
n ∗
⇀ V 
an be extra
ted, for some V ∈ (L∞(0, T ))J (for brevity

of notation, we denote this subsequen
e with the original indexes). It remains to verify that

ξ = P4(V) and V ∈ P3 ◦ P2 ◦ P1(k).
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Weak-∗ 
onvergen
e of V
n
to V in (L∞(0, T ))J implies weak 
onvergen
e in

(
L2(0, T )

)J
,

therefore, by Lemma 1.1.6, ξ = P4(V). To 
on
lude the in
lusion V ∈ P3 ◦ P2 ◦ P1(k), note
that P1 and P2 are 
ontinuous. The 
ontinuity of P1 follows by Lemma 1.1.5. The 
ontinuity

of P2 follows from the Hölder inequality. Having this and denoting v
n := P2 ◦ P1(k

n) and

v := P2 ◦ P1(k), we infer that 
onvergen
e kn → k in

(
L2(0, T )

)J
implies 
onvergen
e v

n → v

in (C([0, T ]))K . By de�nition of V
n
and v

n
, we have V

n ∈ P3(v
n). To obtain the in
lusion

V ∈ P3 ◦ P2 ◦ P1(k), it su�
es to show that V ∈ P3(v).
To show the latter, we will use Lemma 1.1.8, pro
eeding as follows. We have v = (v1, . . . ,vK)

and v
n = (vn

1 , . . . ,v
n
K), where v

n
k → vk in C([0, T ]). Moreover, we have V

n = (Vn
1 , . . . ,V

n
J),

where, by the de�nition of the operator P3, elements V
n
j , for j = 1, . . . , J , 
an be represented as

V
n
j =

K∑

k=1

V
n
(j,k)

where, for all j = 1, . . . , J and k = 1, . . . ,K,

V
n
(j,k) ∈ αj,k(wk ◦ v

n
k ) in L∞(0, T ) (1.24)

By the assumption that wk are bounded (see the part 
) of the assumption (A-4)), V
n
(j,k) are

bounded in L∞(0, T ) w.r.t. n, for all j = 1, . . . , J , k = 1, . . . ,K. Thus, we 
an extra
t weakly-∗


onvergent subsequen
es V
n
(j,k)

∗
⇀ Ṽ(j,k), for 
ertain Ṽ(j,k) ∈ L∞(0, T ). In 
onsequen
e, on the

subsequen
es we have V
n ∗
⇀ Ṽ, where Ṽ = (Ṽ1, . . . , ṼJ ) and Ṽj =

∑K
k=1 Ṽ(j,k).

Now, by (1.24), by 
onvergen
es v
n
k → vk and V

n
(j,k)

∗
⇀ Ṽ(j,k) and by an appli
ation of

Lemma 1.1.8 to fun
tions αj,kwk, we obtain Ṽ(j,k) ∈ αj,k(wk ◦ vk). Thus, by de�nitions of P3

and Ṽ, we 
an write Ṽ ∈ P3(v). Note also that Ṽ = V, otherwise the 
onvergen
e V
n ∗
⇀ Ṽ

would be a 
ontradi
tion to the 
onvergen
e V
n ∗
⇀ V. Therefore, V ∈ P3(v), as required. The

proof of the 
losedness of G(P |B) is 
omplete.

Now, apply Theorem 1.1.9 with X =
(
L2(0, T )

)J
, M = B and T = P |B to get the existen
e

of a �xed point of P |B and hen
e of P as well. The proof of Theorem 1.1.2 is 
omplete. �

Remark. By de�nition, in the 
ase of a single-valued fun
tion, the upper semi
ontinuity

in the multivalued sense redu
es to the usual 
ontinuity. Thus, any result holding for (1.1) -

(1.3) under the assumption (A-4) from beginning of Se
tion 1.1, holds in parti
ular for bounded,


ontinuous single-valued swit
hing fun
tions. N

Remark. One 
an say that Theorem 1.1.2 o�ers a method of indire
t handling of the


ase of dis
ontinuous swit
hing fun
tions in the thermostat 
ontrol me
hanism. Assume that a

dis
ontinuous single-valued fun
tion w̃k : R → R is given. In the 
ase where the swit
hing fun
tion

wk in the system (1.1) - (1.3) is de�ned by wk := w̃k, it is not possible to apply Theorem 1.1.2.

However, assuming that right and left limits of w̃k exist in an arbitrary point s ∈ R, it is possible
to take into a

ount a swit
hing fun
tion

˜̃wk asso
iated with w̃k by the formula (A.5.5) in the

statement of Proposition A.5.5 in Appendix A.5. The assertion of Proposition A.5.5 together with

the formula (A.5.5) guarantee that

˜̃wk ful�lls the assumption (A-4). In 
onsequen
e, Theorem

1.1.2 apply for wk := ˜̃wk in the system (1.1) - (1.3). Thus, Theorem 1.1.2, however does not allow

dis
ontinuous swit
hing fun
tions dire
tly, allows to 
onsider, instead of a given dis
ontinuous

swit
hing fun
tion w̃k, a multivalued swit
hing fun
tion

˜̃wk related to w̃k (related � in the sense

of the formula (A.5.5)).
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Note, that the above 
omment is valid in parti
ular for w̃k(s) = −sgn(s), whi
h is a natural


andidate for the swit
hing fun
tion in the thermostat 
ontrol me
hanism (see �1 of Introdu
tion).

In this 
ase,

˜̃wk generated by the formula (A.5.5) is

˜̃wk =





+ 1 for s < 0

[−1,+1] for s = 0

− 1 for s > 0

(1.25)

N

Remark. An alternative approa
h 
ould be employed to justify the 
losedness of the

operator P3 in the proof of Theorem 1.1.2. The subje
t approa
h refers to the theory of maximal

monotone multivalued mappings. However, su
h approa
h would be less general to the one

present in the proof of Theorem 1.1.2. Let us explain this matter in more detail.

In the proof of Theorem 1.1.2, the assumption (A-4) from beginning of Se
tion 1.1, 
on
erning

swit
hing fun
tions wk in the system (1.1) - (1.3), was 
ru
ial. It was the property whi
h

allowed us to 
on
lude that the multivalued operator P3, utilized in the proof, was 
losed in

suitable topology. More pre
isely, P3 
an be interpreted as P3 =
(
(P3)1, . . . , (P3)j

)
, where

(P3(v))j =
∑K

k=1 αj,k(wk ◦vk), for j = 1, . . . , J (
ompare with (1.23)). A given operator (P3)j is
thus a weighted sum of multivalued superposition operators wk ◦vk, indu
ed by the multivalued

mappings wk. In the proof of Theorem 1.1.2, ea
h of these superposition operators o

urred to be


losed in suitable topology due to Lemma 1.1.8, basing strongly on the properties of multivalued

mappings indi
ated in the assumption (A-4).

However, it is possible to prove the 
losedness of the superposition operator asso
iated with a

given multivalued mapping also with other means, e.g. assuming that the multivalued mapping

is maximal monotone. If this is the 
ase, then the asso
iated superposition operator also is a

maximal monotone mapping, in suitable spa
es. At the same time, in 
ertain fun
tion spa
es,

maximal monotoni
ity of multivalued mappings su�
es to imply their 
losedness � results of

this kind are given e.g. in Proposition 3, Ch. 6, Se
. 7 in [4℄ or Lemma 1.3, Chap. 2, Se
. 1.2,

p. 42 in [6℄.

This argument was exploited in [15℄, also investigating a model with a 
ontrol by thermostats,

to prove 
losedness of the superposition operator asso
iated with a multivalued swit
hing fun
-

tion, denote it w, su
h that −w was maximal monotone. In addition to the maximal monotoni
ity

of the negative of the swit
hing fun
tion, boundedness of the swit
hing fun
tion was ne
essary

in [15℄, as in our 
ase (see the part 
) of the assumption (A-4)).

In our situation, after suitable modi�
ation of the employed fun
tion spa
es, applying the

subje
t method for proving 
losedness of P3 would be possible for the 
ase of bounded and

maximal monotone −wk (maximal monotoni
ity of wk itself also would work but then the 
ase

of wk as in (1.25) would be ex
luded, be
ause the latter, in opposite to its negative, is not

a monotone multivalued mapping). We skip the details be
ause do not intend to develop this

approa
h here.

Nevertheless, the method employed in the proof of Theorem 1.1.2, involving the assumption

(A-4), is more general than the method basing on boundedness and maximal monotoni
ity of

−wk. The reason for this is that the assumption of boundedness and maximal monotoni
ity is

stronger than the assumption (A-4). Indeed, it is straightforward that there exist wk ful�lling

the assumption (A-4) from beginning of Se
tion 1.1 but su
h that wk, nor −wk, is not maximal

monotone. On the other hand, an arbitrary bounded maximal monotone −wk obeys the assump-

tion (A-4), and so wk does. The latter is true be
ause a maximal monotone multivalued mapping
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has 
losed and 
onvex values (see Proposition A.5.8) and, if it additionally has the image 
on-

tained in a 
ompa
t set, it is upper semi
ontinuous (Proposition A.5.7) and has nonempty values

(Proposition A.5.9). Thus, from the 
ondition of boundedness and maximal monotoni
ity of a

multivalued mapping, one 
an re
over the properties indi
ated in the assumption (A-4). N

1.2 Single-valued swit
hing fun
tion � existen
e, uniqueness, sta-

bility

The modi�
ation of the system (0.1) - (0.3) 
onsidered in Se
tion 1.1 allowed to prove an exis-

ten
e result for the 
ase where dis
ontinuous swit
hing fun
tions are repla
ed with a multivalued

mappings satisfying su�
iently strong assumptions (assumption (A-4)). However, these assump-

tions, being strong enough for the existen
e, still are not su�
ient for obtaining the uniqueness

result.

This was the 
ase e.g. in works [33℄, [15℄ or [19℄. These works, similarly to Se
tion 1.1 of

the present work, 
on
ern models with the variant of the thermostat 
ontrol me
hanism without

hysteresis in the work of the swit
hing me
hanism and with multivalued swit
hing fun
tions

(work [19℄ 
on
ern only this variant, works [33℄ and [15℄ 
on
ern also variants where the work of

the swit
hing me
hanism involves hysteresis). Works [33℄ and [19℄ take into a

ount the 
ase of

multivalued swit
hing fun
tions ful�lling assumptions analogous to the assumption (A-4). Work

[15℄ exploited even stronger properties of the there 
onsidered multivalued swit
hing fun
tion,

namely the boundedness and the maximal monotoni
ity. At the same time, in none of the works

[33℄, [19℄, [15℄ the uniqueness for the models with there 
onsidered variants of the thermostat


ontrol me
hanism was proven.

Hen
e, in the present se
tion we aim in strengthening the assumptions 
on
erning the swit
h-

ing fun
tions in the system (1.1) - (1.3) in order to be able to prove the uniqueness result. For

this end, we shall assume that the swit
hing fun
tions are single-valued Lips
hitz 
ontinuous

fun
tions.

Note, that the latter assumption implies that the in
lusion (1.2) be
omes equality again.

Thus, we return to analysis of primary the system (0.1) - (0.3) instead of its modi�
ation (1.1)

- (1.3) from Se
tion 1.1.

Moreover, the assumption of the Lips
hitz 
ontinuity of the swit
hing fun
tion ex
ludes the

possibility of taking the swit
hing fun
tion wk equal the −sgn fun
tion. It also ex
ludes the

approa
h from Se
tion 1.1, providing a method for indire
t handling of the 
ase of wk = −sgn
by repla
ing the original wk by an upper semi
ontinuous multivalued mapping in some sense

related to wk (see Se
tion 1.1 for details). Nevertheless, a sort of indire
t method of handling

the situation of wk = −sgn is available also under the presently 
onsidered assumption. Namely,

the assumption of the Lips
hitz 
ontinuity of wk allows to approximate the fun
tion −sgn by

Lips
hitz fun
tions of a very steep slope near point zero.

Example. For instan
e, for w̃k = −sgn, one 
an de�ne fun
tions w̃n
k by w̃n

k (s) :=
−max(min(ns, 1),−1), for s ∈ R, n ∈ N. It follows straight that w̃n

k are Lips
hitz 
ontinu-

ous fun
tions. Moreover, for all k = 1, . . . ,K, w̃n
k → w̃k, both pointwise and in the Lebesgue

norm

∥∥ .
∥∥
Lp(R), for arbitrary p ∈ [1,∞) (
f Figure 1.2). Instead swit
hing fun
tions wk := w̃k in

the system (0.1) - (0.3), whi
h are not Lips
hitz 
ontinuous, one may 
onsider swit
hing fun
tions

wk := w̃n
k , whi
h are Lips
hitz 
ontinuous and approximate w̃k in the latter sense. N

Thus, in 
ertain sense, the assumption of Lips
hitz 
ontinuity of the swit
hing fun
tions is no
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-1
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0
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1
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-sgn
appr

Figure 1.2: An example of a sequen
e of Lips
hitz 
ontinuous fun
tions approximating the fun
-

tion −sgn, both pointwise and in the Lp(R)-norm, for p ∈ [1,∞). The lines denoted as appr


orrespond to approximating fun
tions given by s 7→ −max(min(ns, 1),−1), for n = 1, 2, 4.

waste in 
omparison to the situation 
onsidered in Se
tion 1.1, be
ause 1) in both 
ases, dire
t

treatment of wk = −sgn is not possible, 2) in both 
ases, an indire
t way to deal with wk = −sgn
is available. The above proposed approa
h for dealing with dis
ontinuous wk was exploited in

the numeri
al simulations des
ribed in Chapter 2.

Also, the assumption that the swit
hing fun
tions are Lips
hitz 
ontinuous will be su�
ient

for proving the stability of the system (0.1) - (0.3) with respe
t to perturbations of the 
ontrol.

Results 
on
erning this kind of stability will be 
ru
ial in Chapter 3, 
on
erning the mathemat-

i
al analysis of the optimal targeting problem. This gives a motivation to 
onsider the above

announ
ed assumption that the swit
hing fun
tions are Lips
hitz 
ontinuous.

We pro
eed in the following order. Se
tion 1.2.1 fo
uses on existen
e of solutions of the

system (0.1) - (0.3). The existen
e is shown for the 
ase of Lips
hitz swit
hing fun
tions wk

in the system (0.1) - (0.3) being additionally bounded. Se
tion 1.2.1 
ontains two existen
e

theorems. The �rst of them is just a 
onsequen
e of Theorem 1.1.2 in Se
tion 1.1. The se
ond

of these theorems generalizes the �rst in sense of weakening the assumptions for the referen
e

traje
tory y∗. It is the main theorem of Se
tion 1.2.1.

In Se
tion 1.2.2, existen
e, uniqueness and stability results are presented and justi�ed, for

Lips
hitz wk without the restri
tion of boundedness. Dismissing the restri
tion of boundedness

of wk in existen
e results in Se
tion 1.2.2 involves slightly stronger assumptions for the referen
e

traje
tory y∗ in (0.1) - (0.3) than in the main theorem in Se
tion 1.2.1. The uniqueness and

stability results in Se
tion 1.2.2 are proven for Lips
hitz wk. The latter results do not require

the restri
tion of boundedness and do not require the assumptions for the referen
e traje
tory

to be stronger than in the main theorem in Se
tion 1.2.1.

In Se
tion 1.2.3, estimates as well as existen
e and uniqueness for weak solutions of the

system (0.1) - (0.3) are proven under the assumption that f is lo
ally Lips
hitz, ful�lls the

growth 
ondition f(s)s ≤ 0 for big

∣∣s
∣∣
and that y0 ∈ L∞(Ω). These assumptions are di�erent

that the assumptions utilized in Se
tion 1.2.2, where f is assumed to be Lips
hitz and y0 is

assumed to belong to L2(Ω). The assumptions that f is lo
ally Lips
hitz and y0 is bounded

were used in the numeri
al simulations for the system (0.1) - (0.3) whi
h are des
ribed in further

parts of the present work. Thus, Se
tion 1.2.3 provides theoreti
al results whi
h 
over the data

utilized in the subje
t simulations. Moreover, the results of Se
tion 1.2.3 will be used also in
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some pla
es of Chapter 3 of the present work, providing analyti
al ba
kground for the optimal

targeting problem.

Se
tion 1.2.4 
on
erns a modi�
ation of the system (0.1) - (0.3), assuming modi�ed stru
ture

of the equations. We state the results 
on
erning existen
e, uniqueness and estimates for the

solutions of the modi�ed system. For te
hni
al reasons, the subje
t results for the modi�ed

system will be ne
essary in Chapter 3. The modi�
ation of the system (0.1) - (0.3) 
onsidered

in Se
tion 1.2.4 and the original the system (0.1) - (0.3) are similar enough to apply the same

methods for the analysis of the modi�ed system. For this reason, in Se
tion 1.2.4, we do not


ontain the proofs of the results des
ribed there, but we only give some remarks 
on
erning the

proofs. The results des
ribed in Se
tion 1.2.4 will play an auxiliary role in Chapter 3, 
on
erning

the analyti
al aspe
ts of the optimal targeting problem.

Remark. As mentioned above, Lips
hitz 
ontinuous swit
hing fun
tions in the system (0.1)

- (0.3) 
an be utilized to approximate dis
ontinuous swit
hing fun
tions, as −sgn. We stress that

swit
hing fun
tions equal −sgn are not allowed in our results, however, instead, 
ertain multival-

ued swit
hing fun
tions 
ontaining −sgn were allowed in the results in Se
tion 1.1, 
on
erning

the modi�ed system (1.1) - (1.3). Assuming notation as in the example given above, results


on
erning the 
onvergen
e of solutions of (0.1) - (0.3) 
orresponding to swit
hing fun
tions w̃n
k

to a solution of (1.1) - (1.3) 
orresponding to suitable multivalued swit
hing fun
tions 
ontaining

w̃k would be interesting. This matter was not 
overed in the present work and 
an be a �eld for

further resear
h. N

Let us pro
eed to the mathemati
al details. The below assumptions for the system (0.1) -

(0.3) will be ne
essary in the present se
tion:

(B-1) Ω ⊂ Rd
is a domain that:

a) is bounded,

b) satis�es the 
one 
ondition (de�nition of the 
one 
ondition 
an be found e.g. in [1,

par. 4.6.℄),

(B-2) K, J are given positive natural numbers, T > 0, D > 0 and βj > 0 for all j = 1, . . . , J ,

(B-3) f is globally Lips
hitz 
ontinuous; we denote its Lips
hitz 
onstant by L and put f0 :=
f(0),

(B-4) wk is globally Lips
hitz 
ontinuous, where we denote the Lips
hitz 
onstant of wk by Lk

and put wk0 := wk(0), for all k = 1, . . . ,K,

(B-5) y0 ∈ L2(Ω), κj0 ∈ R for j = 1, . . . , J .

The ne
essary regularity of the referen
e traje
tory y∗ in (0.1) - (0.3) will di�er in parti
ular

theorems of this se
tion. The following two variants of the assumption 
on
erning y∗ will be in
use:

(C-1) y∗ ∈ L2(0, T ;L2(Ω)),

(C-2) y∗ ∈ L∞(0, T ;L2(Ω)),

The following de�nition of solutions for the system (0.1) - (0.3) will be utilized in the present

se
tion:

De�nition 1.2.1 An element (y, κ1, . . . , κJ ) ∈ X2
is a weak solution of the system (0.1) - (0.3)

if:
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(a) y( . , 0) = y0 in L2(Ω) and κj(0) = κj0 for j = 1, . . . , J ,

(b) for all φ ∈ L2(0, T ;H1(Ω)), there holds

∫ T

0

〈
y′, φ

〉
+D

(
∇y,∇φ

)
L2(Ω)

+
(
−f(y)− κ1g1 − . . . − κJgJ , φ

)
L2(Ω)

dt = 0 (1.26)

(
) for all ξ ∈ L2(0, T ), for j = 1, . . . , J , there holds

∫ T

0

(
βjκ
′
j + κj −Wj(y, y

∗)
)
ξ dt = 0 (1.27)

The point (a) in De�nition 1.2.1 is meaningful, be
ause, by arguments similar as in the 
ase of

De�nition 1.1.1 (see page 6), if (y, κ1, . . . , κJ) ∈ X2
then y ∈ C([0, T ];L2(Ω)) and (κ1, . . . , κJ ) ∈

C([0, T ]).

1.2.1 Existen
e for bounded swit
hing fun
tions

Below, we prove existen
e of weak solutions for the system (0.1) - (0.3). Nevertheless, we make

an assumption that the swit
hing fun
tions wk, for k = 1, . . . ,K, not only ful�ll the assumption

(B-4) but moreover are bounded. If the referen
e traje
tory y∗ ful�lls the assumption (A-6) in

Se
tion 1.1, then the existen
e result 
an be obtained as a 
onsequen
e of results of Se
tion 1.1.

But, with the above restri
tions for wk, it is possible to prove the existen
e for y∗ satisfying the

assumption (C-1) only. It will be done below.

The restri
tion of boundedness of wk is temporary � in Se
tion 1.2.2, we will show how to

dismiss it in the existen
e results for pri
e of strengthening the assumptions for the referen
e

traje
tory y∗ from (C-1) to (C-2).

Let us begin with short justi�
ation that the results of Se
tion 1.1 
an be applied here, under

suitable assumptions. Compare De�nition 1.2.1 of weak solutions for the system (0.1) - (0.3) with

De�nition 1.1.1 of weak solutions for the system (1.1) - (1.3), given in Se
tion 1.1. Assume that

wk in the system (1.1) - (1.3) are single-valued fun
tions. Then, the only possible 
hoi
e of Wj in

De�nition 1.1.1 is Wj(t) := Wj(y( . , t), y
∗( . , t)) for a.e. t ∈ [0, T ]. Consequently, 
onditions in

points (
) and (d) in De�nition 1.1.1 redu
e to the point (
) in De�nition 1.2.1. Hen
e, De�nition

1.1.1 is equivalent to De�nition 1.2.1 if wk in the system (1.1) - (1.3) are single-valued fun
tions.

Hen
e, under suitable assumptions, results 
on
erning weak solutions of the system (1.1) -

(1.3) 
an be transmitted to weak solutions of the system (0.1) - (0.3). Thus we 
on
lude the

below:

Theorem 1.2.2 Let assumptions (B-1) - (B-5) be ful�lled and (gj , hk, αjk)
k=1,...,K
j=1,...,J ∈ U , y∗ ∈

C([0, T ];L2(Ω)w). Assume additionally that wk are bounded for k = 1, . . . ,K. Then, there exists

a weak solution of the system (0.1) - (0.3).

This is true, be
ause under imposed assumptions, swit
hing fun
tions wk ful�ll the assumption

(A-4) and the referen
e traje
tory y∗ ful�lls the assumption (A-6). Thus, Theorem 1.1.2 
an

be applied. This theorem, together with the above remark on the equivalen
e of de�nitions of

solutions, yields the assertion.

One 
an follow the lines of the proof of Theorem 1.1.2 to �nd out that the assumption

y∗ ∈ C([0, T ];L2(Ω)w) was essential there. It was used to ensure that the operator P2 (given

by formula (1.22)) is well de�ned as an operator into (C([0, T ]))K . Enfor
ing the image spa
e
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of P2 to be (C([0, T ]))K was required be
ause, in the proof of Theorem 1.1.2, it was ne
essary

to make the image spa
e of P2 be not larger than the domain spa
e of the operator P3, whi
h

was a
tually (C([0, T ]))K (see (1.23) for the de�nition of P3 in the subje
t proof). Next, it

was needed to take (C([0, T ]))K as the domain spa
e of P3 be
ause it allowed to apply Lemma

1.1.7 and Lemma 1.1.8 to P3, what was an essential step of the proof of Theorem 1.1.2 (more

pre
isely, the subje
t lemmas were applied not to P3 dire
tly, but to 
ertain operators entering its

de�nition; nevertheless, one 
an verify that the latter does not 
hange the 
on
lusion 
on
erning

the requirement on the domain spa
e of P3). To sum up, assumption y∗ ∈ C([0, T ];L2(Ω)w) was
essential for Theorem 1.1.2 and hen
e 
annot be relaxed in Theorem 1.2.2, as long as we derive

the latter as a 
orollary of the former.

On the other hand, it is not ne
essary to derive the theorem on the existen
e of weak so-

lutions of (0.1) - (0.3) as a 
orollary of Theorem 1.1.2. One 
an prove it separately and, due

to the strengthened assumption 
on
erning the swit
hing fun
tions wk, obtain a result allowing

a weakened assumption for the referen
e traje
tory y∗. The below theorem realizes the latter

postulate:

Theorem 1.2.3 Assume that general assumptions (B-1) - (B-5) together with (C-1) hold and

(gj , hk, αjk)
k=1,...,K
j=1,...,J ∈ U . Assume moreover that fun
tions wk are bounded for k = 1, . . . ,K.

Then the system (0.1) - (0.3) has a weak solution.

The proof bases on the S
hauder �xed theorem, formulated below for 
onvenien
e. The

S
hauder theorem is less general that the generalized Kakutani theorem (Theorem 1.1.9), utilized

for the proof of Theorem 1.1.2, but su�
ient for the proof of Theorem 1.2.3.

Theorem 1.2.4 (S
hauder theorem) Let X be a Bana
h spa
e. Let M be a 
onvex, 
ompa
t

and nonempty subset of X. Let T : M → M be 
ontinuous. Then T has a �xed point, i.e. there

exists x̄ ∈ M su
h that x̄ = T (x̄).

The above version of the S
hauder �xed point theorem is given in Corollary 2.13 in Chap. 2.6

in [50℄.

Proof of Theorem 1.2.3. We de�ne following operators:

• P1 :
(
L2(0, T )

)J
→ C([0, T ];L2(Ω)) is the operator assigning the solution of (1.4) to a

given (k1, . . . , kj) ∈
(
L2(0, T )

)J
. It is well de�ned sin
e, by Lemma 1.1.5, for (k1, . . . , kj)

as de
lared, the solution of (1.4) exists in Xy
, is unique and Xy →֒ C([0, T ];L2(Ω)) (by

[51, Prop. 23.23℄).

• P2 : C([0, T ];L2(Ω)) →
(
L2(0, T )

)J
assigns (V1, . . . ,VJ ) given by formula

Vj(t) =

K∑

k=1

αj,kwk

(∫

Ω
hk(x) (Y (x, t)− y∗(x, t)) dx

)
a.e. on [0, T ] (1.28)

to a given Y ∈ C([0, T ];L2(Ω)). We 
an verify that P2 is well de�ned. More pre
isely,

Hölder inequality allows to infer that vk de�ned for k = 1, . . . ,K by

vk :=

∫

Ω
hk(x)(Y (x, t)− y∗(x, t)) dx

belong to L2(0, T ), for Y as de
lared and y∗ as in the assumption (C-1). IfV = P2(Y ), then
Vj =

∑K
k=1 αj,kwk ◦vk. Hen
e, Vj are measurable as sums of superpositions of 
ontinuous

wk with measurable vk. In addition, Vj are also bounded be
ause wk are bounded. Thus,

Vj belongs not only to L2(0, T ) but even to L∞(0, T ) , for j = 1, . . . , J .
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• P3 :
(
L2(0, T )

)J
→

(
L2(0, T )

)J
assigns the solution of (1.5) for a given (V1, . . . ,VJ ) ∈(

L2(0, T )
)J
. It is well de�ned sin
e, by Lemma 1.1.6, for (V1, . . . ,VJ ) as de
lared, the

solution of (1.5) exists in Xκ
and is unique, and Xκ →֒

(
L2(0, T )

)J
.

The role of the above operators in the 
ontext of the system (0.1) - (0.3) is illustrated in Figure

1.3.

Signals Wj(y, y
∗)

Control devi
es response

(fun
tions κj)
Pro
ess state

(fun
tion y)
✲✲

✛

P1

P3 P2

Figure 1.3: A s
hemati
 representation of the role of the operators P1, P2 and P3, 
onsidered in

the proof of Theorem 1.2.3, in the 
ontext of the thermostat 
ontrol me
hanism, present in the

system (0.1) - (0.3). The notation in the pi
ture is as in the subje
t system. Comparing to the

proof of Theorem 1.1.2, the state-to-measurement and measurement-to-signal operators 
onsid-

ered there (see Figure 1.1) are �merged� in the present proof into the state-to-signal operator.

The latter simpli�
ation is made be
ause in the present situation the ne
essary properties of the

state-to-signal operator are easy enough to obtain �in one turn�, without splitting the subje
t

mapping into two separate operator.

Proving that P := P3 ◦ P2 ◦ P1 has a �xed point in L2(0, T ) is equivalent to proving the

assertion of the theorem. In other words, we need to prove that there exists k̄ ∈ L2(0, T ) su
h
that k̄ = P3(V), V = P2(Y ), Y = P1(k̄).

By Lemma 1.1.5, the operator P1 is 
ontinuous.

By the assumption that wk are Lips
hitz 
ontinuous for k = 1, . . . ,K, we also verify the


ontinuity of P2. Let V
1 = P2(Y

1) and V
2 = P2(Y

2) for given Y 1, Y 2 ∈ C([0, T ];L2(Ω)). Then:

∥∥V1
j −V

2
j

∥∥
L2(0,T )

≤ T 1/2
∥∥V1

j −V
2
j

∥∥
L∞(0,T )

≤ T 1/2
ess supt∈[0,T ]

K∑

k=1

αj,kLk

∣∣∣
∫

Ω
hk(x)(Y

1(x, t)− Y 2(x, t)) dx
∣∣∣

≤ T 1/2

( K∑

k=1

αj,kLk

∥∥hk
∥∥
2

)∥∥Y 1 − Y 2
∥∥
2,∞

for j = 1, . . . , J , where Lk are the Lips
hitz 
onstants of wk, as in the assumption (B-4).

Moreover, by the linear stru
ture of (1.5), the operator P3 is a�ne. By the estimate (1.18)

in Lemma 1.1.6, the operator P3 is also bounded. Therefore, as a bounded a�ne operator, P3 is


ontinuous from

(
L2(0, T )

)J
to Xκ

. Sin
e Xκ

an be embedded 
ontinuously into

(
L2(0, T )

)J
,

P3 is also 
ontinuous with values in

(
L2(0, T )

)J
.

Summing up the above 
onsiderations, P3 ◦ P2 ◦ P1 is 
ontinuous from

(
L2(0, T )

)J
to itself.

Next, re
all the assumption that wk are bounded. We denote Cwk
:=

∥∥wk

∥∥
L∞(R) for k =
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1, . . . ,K. It is straightforward, that P2 : C([0, T ];L2(Ω)) → A for

A :=

{
(V1, . . . ,VJ) ∈

(
L2(0, T )

)J
:
∥∥Vj

∥∥
L2(0,T )

≤ T
∥∥Vj

∥∥
L∞(0,T )

≤ TCWj
∀j=1,...,J

}

where CWj
:=

∑K
k=1 αj,kCwk

, for j = 1 . . . , J . By estimate (1.18) in Lemma 1.1.6, we also get

that P3|A : A → B for

B :=

{
k ∈

(
L2(0, T )

)J
:
∥∥k

∥∥
Xκ ≤ C3

J∑

j=1

(∣∣κj0
∣∣+ TCWj

)
∀j=1,...,J

}

where κj0 are the initial 
onditions assumed for (1.2) in the assumption (A-5) and C3 is the


onstant appearing in the estimate (1.18) in Lemma 1.1.6. Thus superposition P3 ◦P2 ◦P1 takes

values in B as well.

The set B is nonempty and 
onvex. The 
losure of B in

(
L2(0, T )

)J
, denote it B, is in

addition 
ompa
t (by Relli
h-Kondra
hov theorem, see [1, Th. 6.3℄).

To sum up, we have shown that P = P3 ◦ P2 ◦ P1 :
(
L2(0, T )

)J
→ B, where B is nonempty,


onvex and 
ompa
t in

(
L2(0, T )

)J
and P is 
ontinuous from

(
L2(0, T )

)J
to itself, and thus from

B to itself. Hen
e, P has a �xed point in B by the S
hauder theorem (Theorem 1.2.4). �

Remark. The only step in the proof of Theorem 1.2.3 where the 
ondition βj > 0, being a

part of the assumption (B-2), was used was the appli
ation of Lemma 1.1.6, whi
h also assumes

βj > 0. However, it is possible to prove a version of Lemma 1.1.6 allowing βj < 0 (what was

pointed out in the remark on page 11). Hen
e, a version of Theorem 1.2.3 allowing βj < 0 also

would be valid.

An analogous remark hold for Theorem 1.1.2, and hen
e for Theorem 1.2.2, being a 
orollary

of the former result, as well. N

The result given in Theorem 1.2.3 deta
hes us from the requirement of the weak 
ontinuity of

the referen
e traje
tory, present in Theorem 1.2.2. This 
an be essential in 
ertain situations. For

example, it seems natural to allow the user of the thermostat 
ontrol me
hanism to 
hange the

referen
e state that he would like to keep. Thus, there 
an be some swit
hing moment during

the experiment. E.g., for time from 0 up to a given t1 < T , the user may want to keep the

state of the pro
ess 
lose to some state y∗1 : Ω → R and then, for times grater than t1, he may

de
ide to 
hange the state that he want to be 
lose to from y∗1 to some y∗2 : Ω → R. It would be

in
onvenient for the user to for
e him to fo
us on how he should 
hange his target from y∗1 to y∗2
in order not to break the requirement of the weak 
ontinuity. In this sense, it would be better

if the thermostat 
ontrol me
hanism allowed the user to just swit
h the state that he wants to

keep. Here, Theorem 1.2.3 have the advantage over Theorem 1.2.2.

For 
on
rete example of situation of the above kind, 
onsider two square integrable fun
tions

y∗1 and y∗2, y
∗
1, y
∗
2 : Ω → R, su
h that

∫
Ω y∗1(x) dx 6=

∫
Ω y∗2(x) dx. Let the referen
e traje
tory y∗

in the system (0.1) - (0.3) be given by

y∗(x, t) =

{
y∗1(x) for t ≤ t1

y∗2(x) for t > t1

where t1 ∈ (0, T ) is known. Then, y∗ is an element of L2(0, T ;L2(Ω)) but is not an element

of C([0, T ];L2(Ω)w). To justify the latter, note that, by assumptions on y∗1 and y∗2, integral∫
Ω y∗(x, t)φ(x) dx 
an be dis
ontinuous in time, what is the 
ase e.g. for φ ≡ 1 on Ω. Therefore,
for the referen
e traje
tory y∗ as above, it is possible to apply Theorem 1.2.3 but not Theorem

1.2.2.
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1.2.2 Existen
e, uniqueness and stability for general 
ase

In Se
tion 1.2.1, we have proven the existen
e of weak solutions of (0.1) - (0.3) for the 
ase of

swit
hing fun
tions ful�lling the assumption (B-4), being additionally bounded. Here, we are

going to extend this results and prove not only existen
e but also uniqueness and stability for

arbitrary swit
hing fun
tions ful�lling the assumption (B-4). Nevertheless, the existen
e results

from Se
tion 1.2.1 form a base, ne
essary for some of arguments utilized in the present se
tion.

The stability of (0.1) - (0.3) will be investigated w.r.t. both the 
ontrol and the initial


ondition. We will also prove the weak subsequential stability of (0.1) - (0.3) when the 
ontrol

spa
e is 
onsidered with its weak topology.

The pri
e for obtaining the above mentioned existen
e results for arbitrary swit
hing fun
tions

wk obeying the assumption (B-4) will be a slightly stronger assumption for y∗, in 
omparison

to Theorem 1.2.3 in Se
tion 1.2.1. More pre
isely, the new existen
e result will require the

assumption (C-2) instead of the assumption (C-1). Fortunately, the strengthened assumption

for y∗ is still weaker than that indi
ated in Theorem 1.2.2 in Se
tion 1.2.2.

The above announ
ed existen
e result will involve some additional estimates for weak solu-

tions of the system (0.1) - (0.3). Moreover, the uniqueness result will rely on the stability of

the system (0.1) - (0.3) with respe
t to perturbations of the initial 
ondition. Hen
e, we start

this se
tion with proving the ne
essary estimates and the stability results. Next, we pro
eed to

existen
e and uniqueness results. In the �nal part of the present se
tion, we fo
us on the results


on
erning the weak subsequential stability of (0.1) - (0.3).

Theorem 1.2.5 Let the part a) in the assumption (B-1) and assumptions (B-2) - (B-4) together

with (C-1) be ful�lled, let û ∈ U and (y0, κ10, . . . , κJ0) ∈ X0
. Assume also that

∥∥û
∥∥
U
≤ RU

for

some RU > 0 and that

∥∥(y0, κ10, . . . , κJ0)
∥∥
X0 ≤ R0

for some R0 > 0. Let (y, κ1, . . . , κJ ) ∈ X2

be a weak solution of the system (0.1) - (0.3) 
orresponding to gj := ûgj , hk := ûhk
, αj,k := ûαj,k

and the initial 
ondition (y0, κ10, . . . , κJ0). Then the following estimate holds:

∥∥(y, κ1, . . . , κJ )
∥∥
X2 ≤ C

where

C = C(T,
∣∣Ω

∣∣,K, J, L, f0, L1, . . . , LK , w10, . . . , wK0, R
U , R0,

∥∥y∗
∥∥
2,2

,D, β1, . . . , βJ )

and where the appearing quantities are the same as those in the general assumptions referred to

above.

Proof. We test the weak form (1.26) of the equation for y by φ(x, s) := y(x, s)1(0,t)(s), for

ertain t ∈ [0, T ], and obtain:

∫ t

0

〈
y′, y

〉
+D

∥∥∇y
∥∥2
2
ds =

∫ t

0
(f(y), y)L2(Ω) +

J∑

j=1

(κj ûgj , y)L2(Ω) ds (1.29)

Next, we estimate term (f(y), y)L2(Ω) in (1.29) by using

∣∣f(s)
∣∣ ≤

∣∣f0
∣∣ + L

∣∣s
∣∣
(what is true by

the assumption (B-3)), by the Hölder inequality and by the Young inequality and our stru
tural

assumptions:

∫

Ω
f(y)y dx ≤

∫

Ω
L
∣∣y
∣∣2 dx+ f0

∫

Ω

∣∣y
∣∣ dx ≤ L

∥∥y
∥∥2
2
+ f0

∥∥y
∥∥
2

∥∥1Ω
∥∥
2

≤ L
∥∥y

∥∥2
2
+

f0
2

∥∥y
∥∥2
2
+

f0
2

∥∥1Ω
∥∥2
2

(1.30)
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By the Hölder and Young inequalities and the de�nition of 
onstant RU
, term (κj ûgj , y)L2(Ω) in

(1.29) 
an be estimated, for ea
h j = 1, . . . , J , by:

(κj ûgj , y)L2(Ω) =
∣∣κj

∣∣∥∥ûgj
∥∥
2

∥∥y
∥∥
2

≤
1

2

∥∥y
∥∥2
2
+

1

2

(
RU

)2∣∣κj
∣∣2

(1.31)

Spa
es H1(Ω), L2(Ω) and H1(Ω)
∗
form an evolution triple with embeddings H1(Ω) →֒ L2(Ω) →֒

H1(Ω)
∗
, hen
e the identity

∫ t
0

〈
y′, y

〉
= 1

2

∥∥y( . , t)
∥∥2
2
− 1

2

∥∥y( . , 0)
∥∥2
2
holds (see Prop. 23.23 in [51℄).

By the latter, by the relation y(., 0) = y0 and by (1.29), (1.30) and (1.31), we obtain:

1

2

∥∥y(., t)
∥∥2
2
+ D

∫ t

0

∥∥∇y
∥∥2
2
ds ≤

1

2

∫ t

0
C1

∥∥y
∥∥2
2
+

(
RU

)2 J∑

j=1

∣∣κj
∣∣2 ds +

+
1

2
C2 +

1

2

∥∥y0
∥∥2
2

(1.32)

where

C1 =
(
2L+

∣∣f0
∣∣+ J

)
, C2 = Tf0

∣∣Ω
∣∣

Above, the assumption that Ω is bounded was ne
essary to ensure that

∥∥1Ω
∥∥
2
is �nite.

At the same time, testing the weak form (1.27) of the equation for κj by ξ(s) := κj(s)1(0,t)(s),

negle
ting the appearing

∣∣κj
∣∣2
term (whi
h is nonnegative), expanding the de�nition ofWj (given

in (0.3)) and using the Young inequality yields:

βj

∫ t

0
κ′jκj ds ≤

∫ t

0

K∑

k=1

ûαjk
wk

(∫

Ω
ûhk

(y − y∗) dx
)
κj ds

≤
1

2

∫ t

0

K∑

k=1

û2αjk
wk

(∫

Ω
ûhk

(y − y∗) dx
)2

ds +
1

2

∫ t

0
K
∣∣κj

∣∣2 ds
(1.33)

By the assumption (B-4), the Hölder inequality and the de�nition of RU
, the �rst term appearing

in the sum obeys:

∣∣∣ûαjk
wk

(∫

Ω
ûhk

(y − y∗) dx
)∣∣∣

2
≤

∣∣ûαjk

∣∣2
(∣∣wk0

∣∣+ Lk

∥∥hk
∥∥
2

∥∥y − y∗
∥∥
2

)2

≤
(
RU

)2(∣∣wk0

∣∣+ LkR
U
(∥∥y

∥∥
2
+

∥∥y∗
∥∥
2

))2

≤ 2
(
RU

)2
w2
k0 + 2

(
RU

)4
L2
k

(∥∥y
∥∥
2
+

∥∥y∗
∥∥
2

)2

≤ 2
(
RU

)2
w2
k0 + 4

(
RU

)4
L2
k

∥∥y∗
∥∥2
2
+ 4

(
RU

)4
L2
k

∥∥y
∥∥2
2

From the above, we derive the following:

∫ t

0

K∑

k=1

∣∣∣ûαjk
wk

(∫

Ω
ûhk

(y − y∗) dx
)∣∣∣

2
ds ≤ C3,j

∫ t

0

∥∥y
∥∥2
2
ds + C4,j + C5,j (1.34)
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where

C3,j = 4
(
RU

)4 K∑

k=1

L2
k

C4,j = 4
(
RU

)4 K∑

k=1

L2
k

∥∥y∗
∥∥2
2,2

C5,j = 2T
(
RU

)2 K∑

k=1

w2
k0

As κj
′
is integrable, κj is absolutely 
ontinuous. Thus, by integration by parts, identity

∫ t
0 κ
′
jκj =

1
2

∣∣κj(t)
∣∣2− 1

2

∣∣κj(0)
∣∣2
holds. Combining the latter with the relation κj(0) = κj0 and with estimates

(1.33) and (1.34) yields, for j = 1, . . . , J :

1

2

∣∣κj(t)
∣∣2 ≤

1

2βj

∫ t

0
C3,j

∥∥y
∥∥2
2
+ K

∣∣κj
∣∣2 ds +

1

2βj

(
C4,j + C5,j

)
+

1

2

∣∣κj0
∣∣2

(1.35)

After summation of (1.32) and (1.35) for every j and negle
ting the gradient term (whi
h is

nonnegative), we obtain:

∥∥y(., t)
∥∥2
2
+

J∑

j=1

∣∣κj(t)
∣∣2 ≤

∫ t

0
C6

∥∥y
∥∥2
2
+ C7

J∑

j=1

∣∣κj
∣∣2 ds +

+ C8 +
∥∥y0

∥∥2
2
+

J∑

j=1

∣∣κj0
∣∣2

(1.36)

where

C6 = C1 +

J∑

j=1

β−1j C3,j

C7 =
(
RU

)2
+K

J∑

j=1

β−1j

C8 = C2 +

J∑

j=1

β−1j (C4,j + C5,j)

Now, by the de�nition of R0
, one 
an verify that

∥∥y0
∥∥2
2
+

J∑

j=1

∣∣κj0
∣∣2 ≤ (J + 1)

∥∥(y0, κ10, . . . , κJ0)
∥∥2
X0 ≤ (J + 1)

(
R0

)2

Using the above in (1.36) and applying the integral Grönwall inequality allows to �nd that

∥∥y
∥∥2
2,∞

+

J∑

j=1

∥∥κj
∥∥2
L∞(0,T )

≤

≤
(
C8 + (J + 1)

(
R0

)2)
·
(
1 + T max{C6, C7}e

T max{C6,C7}
) (1.37)
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The stru
ture of the 
onstants C6, C7, C8 guarantees that the right hand side of the above depends

only on the quantities stated in the assertion of the theorem.

Still, to 
omplete the proof we need to estimate norms

∥∥∇y
∥∥
2,2
,

∥∥y′
∥∥
H1(Ω)∗,2

and

∥∥κ′j
∥∥
L2(0,T )

,

sin
e they enter the de�nition of the norm of the spa
e X2
. For estimating the gradient term,

we again use the inequality (1.32) with t = T , negle
ting
∥∥y(., t)

∥∥2
2
term:

D
∥∥∇y

∥∥2
2,2

≤
1

2

∫ T

0
C1

∥∥y
∥∥2
2
+

(
RU

) J∑

j=1

∣∣κj(s)
∣∣2 ds +

1

2
C2 +

1

2

∥∥y0
∥∥2
2

≤
T

2
C1

∥∥y
∥∥2
2,∞

+
T

2

(
RU

) J∑

j=1

∥∥κj
∥∥2
L∞(0,T )

+
1

2
C2 +

1

2

∥∥y0
∥∥2
2

(1.38)

Next, use the relation

∥∥y0
∥∥
2
≤ R0

and apply (1.37) to estimate the right hand side of the above

inequality in terms of C1, C2, C6, C7, C8, T , J , R
U

and R0
, whi
h depend at most on the

quantities stated in the theorem.

To obtain estimates for the time derivative of y, we treat the weak form (1.26) of (0.1) as an

equality of fun
tionals on the spa
e L2(0, T ;H1(Ω)). We rewrite it in the below form:

y′ +DAy − Fy −G = 0 in L2(0, T ;H1(Ω)
∗
) (1.39)

where Ay, Fy and G are de�ned by

∫ T

0

〈
Ay, φ

〉
dt =

∫ T

0

(
∇y,∇φ

)2

L2(Ω)
dt

∫ T

0

〈
Fy, φ

〉
dt =

∫ T

0

(
f(y), φ

)2

L2(Ω)
dt

∫ T

0

〈
G, φ

〉
dt =

∫ T

0

( J∑

j=1

κjgj, φ
)
L2(Ω)

dt

for φ ∈ L2(0, T ;H1(Ω)).
It follows by the de�nition of the above fun
tionals that

∥∥Ay
∥∥
H1(Ω)∗,2

≤
∥∥∇y

∥∥
2,2

,
∥∥Fy

∥∥
H1(Ω)∗,2

≤
∥∥f(y)

∥∥
2,2

,
∥∥G

∥∥
H1(Ω)∗,2

≤
J∑

j=1

∥∥κjgj
∥∥
2,2

(1.40)

This, along with (1.39), yields:

∥∥y′
∥∥
H1(Ω)∗,2

≤ D
∥∥∇y

∥∥
2,2

+
∥∥f(y)

∥∥
2,2

+

J∑

j=1

∥∥κj ûgj
∥∥
2,2

≤ D
∥∥∇y

∥∥
2,2

+
∥∥∣∣f0

∣∣+ L
∣∣y
∣∣∥∥

2,2
+

J∑

j=1

∥∥ûgj
∥∥
2

∥∥κj
∥∥
L2(0,T )

≤ D
∥∥∇y

∥∥
2,2

+ T 1/2L
∥∥y

∥∥
2,∞

+ TRU
J∑

j=1

∥∥κj
∥∥
L∞(0,T )

+ (T
∣∣Ω

∣∣)1/2
∣∣f0

∣∣

(1.41)

where we have used the Lips
hitz 
ontinuity of f , the Hölder inequality and the de�nition of RU
.

Now, (1.37) and (1.38) 
an be applied to estimate the right hand side of (1.41) in terms of C1,

C2, C6, C7, C8, D,

∣∣Ω
∣∣
, T , L, f0, J , R

U
and R0

.
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Moreover, by (1.27), one 
an infer that

βjκ
′
j + κj = Wj(y, y

∗) in L2(0, T )

for j = 1, . . . , J . By the above, expanding the de�nition of Wj given in (0.3), we have

β2
j

∥∥κ′j
∥∥2
L2(0,T )

≤ 2
∥∥κ

∥∥2
L2(0,T )

+ 2
∥∥∥

K∑

k=1

ûαjk
wk

(∫

Ω
ûhk

(y − y∗) dx
)∥∥∥

2

L2(0,T )
(1.42)

Dividing (1.42) by β2
j and using (1.34) to estimate the se
ond term in the right hand side, we

obtain the following:

∥∥κ′j
∥∥2
L2(0,T )

≤ 2β−2j

(∥∥κ
∥∥2
L2(0,T )

+ KC3,j

∥∥y
∥∥2
2,2

+ KC4,j + KC5,j

)

≤ 2β−2j

(
T
∥∥κ

∥∥2
L∞(0,T )

+ KC3,jT
∥∥y

∥∥2
2,∞

+ KC4,j + KC5,j

) (1.43)

Constant K above appears due to moving the square power to the terms under the sum

∑K
k=1,

a

ording to general inequality

∣∣∑
k ak

∣∣2 ≤ K
∑

k

∣∣ak
∣∣2
. Now, (1.37) 
an be applied to estimate

terms

∥∥κj
∥∥
L∞(0,T )

and

∥∥y
∥∥
2,∞

. This gives a bound for the right hand side of (1.43)in terms of

βj , C3,j , C4,j , C5,j , C6, C7, C8, T , K, J and R0
, whi
h depend at most on the quantities stated

in the theorem.

Altogether, (1.37), (1.38), (1.41) and (1.43) guarantee that all the investigated norms 
an

be estimated in terms of the 
onstants whi
h depend at most on the quantities stated in the

assertion of the theorem. �

We now pro
eed to the stability of the system (0.1) - (0.3). During the le
ture of the proof

of the below stability theorem, one 
an note that the proof utilizes the above proven Theorem

1.2.5, 
on
erning the estimates of the weak solutions of the system (0.1) - (0.3).

Theorem 1.2.6 Let the part a) in the assumption (B-1) and assumptions (B-2) - (B-4) together

with (C-1) be ful�lled, let û1, û2 ∈ U and

(y10 , κ
1
10, . . . , κ

1
J0), (y20 , κ

2
10, . . . , κ

2
J0) ∈ X0

Assume also that

∥∥ûi
∥∥
U
≤ RU

for some RU > 0 and that

∥∥(yi0, κi10, . . . , κiJ0)
∥∥
X0 ≤ R0

for some

R0 > 0, for i = 1, 2. Let (yi, κi1, . . . , κ
i
J ) ∈ X2

be a weak solution of the system (0.1) - (0.3)


orresponding to gj := ûigj , hk := ûihk
, αj,k := ûiαj,k

and the initial 
ondition (yi0, κ
i
10, . . . , κ

i
J0),

for i = 1, 2. Denote y = y1 − y2, κj = κ1j − κ2j , û = û1 − û2, y0 = y10 − y20 and κj0 = κ1j0 − κ2j0.
Then:

∥∥(y, κ1, . . . , κJ )
∥∥
X2 ≤ C

(∥∥û
∥∥2
U
+

∥∥(y0, κ10 . . . , κJ0)
∥∥2
X0

)1/2

where

C = C(T,
∣∣Ω

∣∣,K, J, L, f0, L1, . . . , LK , w10, . . . , wK0, R
U , R0,

∥∥y∗
∥∥
2,2

,D, β1, . . . , βJ )

and where the appearing quantities are the same as those in the general assumptions referred to

above.
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Proof. For i = 1, 2, the fun
tion yi satis�es the identity (1.26) with κj := κij and gj := gij ,

for j = 1, . . . , J . For i = 1, 2 and for j = 1, . . . , J , the fun
tion κij satis�es the identity (1.27),

with y = yi and with Wj := W i
j , where

W i
j (y( . , t), y

∗( . , t)) :=

K∑

k=1

αi
jkwk

(∫

Ω
hik(x)

(
y(x, t)− y∗(x, t)dx

))
for i = 1, 2

Subtra
ting by sides the identities 
orresponding to y1 and y2 and subtra
ting by sides the

identities 
orresponding to κ1j and κ2j , for j = 1, . . . , J , we obtain:

∫ T

0

〈
y′, φ

〉
+D

(
∇y,∇φ

)
L2(Ω)

ds =

∫ T

0

(
f(y1)− f(y2) , φ

)
L2(Ω)

ds +

+

∫ T

0

( J∑

j=1

κ1jg
1
j −

J∑

j=1

κ2jg
2
j , φ

)
L2(Ω)

ds

(1.44)

for all φ ∈ L2(0, T ;H1(Ω)) and

∫ T

0

(
βjκ
′
j + κj

)
ξ dt =

∫ T

0

(
W 1

j (y
1, y∗)−W 2

j (y
2, y∗)

)
ξ dt (1.45)

for all ξ ∈ L2(0, T ), for j = 1, . . . , J .
Now, we pro
eed as in the proof of Theorem 1.2.5. The present proof is very similar however

requires longer 
al
ulations, whi
h involves multiple use of the triangle inequality.

Testing the identity (1.44) by φ(x, s) := y(x, s)1(0,t)(s) yields:

∫ t

0

〈
y′, y

〉
+D

∥∥∇y
∥∥2
2
ds =

∫ t

0
(f(y1)− f(y2), y1 − y2)L2(Ω) +

+
J∑

j=1

(û1gjκ
1
j − û2gjκ

2
j , y

1 − y2)L2(Ω) ds

(1.46)

By the Lips
hitz 
ontinuity of f we have:

(f(y1)− f(y2), y1 − y2)L2(Ω) ≤ L
∥∥y1 − y2

∥∥
2

(1.47)

while for the se
ond term on the right hand side of (1.46) we 
an write

(û1gjκ
1
j − û2gjκ

2
j , y

1 − y2)L2(Ω) = (û1gjκ
1
j − û2gjκ

1
j , y)L2(Ω) + (û2gjκ

1
j − û2gjκ

2
j , y)L2(Ω)

≤
∣∣κ1j

∣∣∥∥ûgj
∥∥
2

∥∥y
∥∥
2
+

∣∣κj
∣∣∥∥û2gj

∥∥
2

∥∥y
∥∥
2

≤
1

2

∣∣κ1j
∣∣2∥∥ûgj

∥∥2
2
+

1

2

∥∥y
∥∥2
2
+

1

2

∥∥û2gj
∥∥2
2

∣∣κj
∣∣2 +

1

2

∥∥y
∥∥2
2

≤
1

2
C1

∥∥ûgj
∥∥2
2
+

1

2
(RU )

2∣∣κj
∣∣2 +

∥∥y
∥∥2
2

(1.48)

where C1 denotes the 
onstant from the assertion of Theorem 1.2.5 � it states that the square

of the supremum of ea
h κj is bounded by this 
onstant. Note, that the imposed assumptions


over the assumptions of Theorem 1.2.5, hen
e the latter 
an be applied.
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Now, the relation

∫ t
0

〈
y′, y

〉
= 1

2

∥∥y( . , t)
∥∥2
2
− 1

2

∥∥y( . , 0)
∥∥2

2
(see the 
omments pre
eding (1.32)

in the proof of Theorem 1.2.5) and relations y( . , 0) = y0, (1.46), (1.47), (1.48) together imply

1

2

∥∥y( . , t)
∥∥2
2
−

1

2

∥∥y0
∥∥2
2
+ D

∥∥∇y
∥∥2
2
ds ≤

≤

∫ t

0
(L+ J)

∥∥y
∥∥2
2
+

1

2
(RU )2

J∑

j=1

∣∣κj
∣∣2 ds +

1

2
TC1

J∑

j=1

∥∥ûgj
∥∥2
2

(1.49)

A similar pro
edure 
an be performed for the equation for κj � for j = 1, . . . , J , we test the

identity (1.45) by ξ(s) := κj(s)1(0,t)(s), negle
t the
∣∣κj

∣∣2
term (being nonnegative) and expand

the de�nition of W 1
j and W 2

j what gives:

βj

∫ t

0
κ′jκj ds ≤

≤

∫ t

0

K∑

k=1

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣
∣∣κj

∣∣ ds

≤

∫ t

0

K

2

∣∣κj
∣∣2 + 1

2

K∑

k=1

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
ds

(1.50)

where the se
ond inequality follows by the Young inequality. The right hand side term 
ontaining

wk is the term requiring the most 
al
ulations in the present proof. The subje
t term ful�lls the

below inequality:

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
≤

≤ 3
∣∣∣û1αjk

wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û1αjk

wk

(∫

Ω
û1hk

(y2 − y∗) dx
)∣∣∣

2
+

+ 3
∣∣∣û1αjk

wk

(∫

Ω
û1hk

(y2 − y∗) dx
)
− û1αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
+

+ 3
∣∣∣û1αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2

(1.51)

We estimate separately the three terms appearing in the right hand side of (1.51). In the �rst

term, by the Lips
hitz 
ontinuity of wk we get:

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û1αjk

wk

(∫

Ω
û1hk

(y2 − y∗) dx
)∣∣∣

2
≤

≤ L2
k

∣∣û1αjk

∣∣2 ∥∥û1hk

∥∥2
2

∥∥y1 − y2
∥∥2
2

≤ L2
k

(
RU

)4 ∥∥y1 − y2
∥∥2
2

(1.52)

The se
ond term in the right hand side of (1.51) is estimated as follows:

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y2 − y∗) dx
)
− û1αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
≤

≤ L2
k

∣∣û1αjk

∣∣2 ∥∥y2 − y∗
∥∥2
2

∥∥û1hk
− û2hk

∥∥2
2

≤ L2
k

(
RU

)2 (
C1 +

∥∥y∗
∥∥
2

)2 ∥∥û1hk
− û2hk

∥∥2
2

≤ 2L2
k

(
RU

)2 (
C2
1 +

∥∥y∗
∥∥2
2

) ∥∥û1hk
− û2hk

∥∥2
2

(1.53)
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be
ause

∥∥y2( . , t)
∥∥
2
≤ C1 for t ∈ [0, T ]. The latter is true sin
e

∥∥y2
∥∥
2,∞

≤ C1 (by Theorem

1.2.5) and y2 ∈ C([0, T ];X) (see the 
omments after De�nition 1.2.1). The third term in the

right hand side of (1.51) obeys:

∣∣∣û1αjk
wk

(∫

Ω
û2hk

(y2 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
≤

≤
∣∣û1αjk

− û2αjk

∣∣2
∣∣∣wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2

≤
∣∣û1αjk

− û2αjk

∣∣2
(
wk0 + Lk

∥∥û2hk

∥∥
2

∥∥y2 − y∗
∥∥
2

)2

≤
∣∣û1αjk

− û2αjk

∣∣2
(
wk0 + LkR

U
(
C1 +

∥∥y∗
∥∥
2

))2

≤
∣∣û1αjk

− û2αjk

∣∣2
(
2w2

k0 + 4L2
k

(
RU

)2 (
C2
1 +

∥∥y∗
∥∥2
2

))

(1.54)

where we have again used the fa
t that

∥∥y2( . , t)
∥∥
2
≤ C1 for t ∈ [0, T ]. In total, by inequalities

(1.51), (1.52), (1.53) and (1.54) we infer that:

∫ t

0

K∑

k=1

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
ds ≤

≤ C2,j

∫ t

0

∥∥y
∥∥2
2
ds + C3,j

K∑

k=1

∥∥ûhk

∥∥2
2
+ C4,j

K∑

k=1

∣∣ûαjk

∣∣2
(1.55)

where, for j = 1, . . . , J ,

C2,j = 3
K∑

k=1

L2
k

(
RU

)4

C3,j = 3 max
k=1,...,K

{
2L2

k

(
RU

)2(
TC2

1 +
∥∥y∗

∥∥2
2,2

)}

C4,j = 3 max
k=1,...,K

{
2Tw2

k0 + 4L2
k

(
RU

)2(
TC2

1 +
∥∥y∗

∥∥2
2,2

)}

From the relation

∫ t
0 κ
′
jκj = 1

2

∣∣κj(t)
∣∣2 − 1

2

∣∣κj(0)
∣∣2

(see the 
omments pre
eding (1.35) in

the proof of Theorem 1.2.5) and from relations κj(0) = κj0, (1.50), (1.55) we infer that, for

j = 1, . . . , J :

1

2

∣∣κj(t)
∣∣2 − 1

2

∣∣κj0
∣∣2 ≤

K

2βj

∫ t

0

∣∣κj
∣∣2 ds +

1

2βj
C2,j

∫ t

0

∥∥y
∥∥2
2
ds +

+
1

2βj
C3,j

K∑

k=1

∥∥ûhk

∥∥2
2
+

1

2βj
C4,j

K∑

k=1

∣∣ûαjk

∣∣2
(1.56)

We sum (1.49) and (1.56) for every j = 1, . . . , J and negle
t the gradient term, whi
h is
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nonnegative. As the result, we get:

∥∥y( . , t)
∥∥2
2
+

J∑

j=1

∣∣κj(t)
∣∣2 ≤

∥∥y0
∥∥2
2
+

J∑

j=1

∣∣κj0
∣∣2 +

+ C5

∫ t

0

∥∥y
∥∥2
2
ds + C6

J∑

j=1

∫ t

0

∣∣κj
∣∣2 ds +

+ TC1

J∑

j=1

∥∥ûgj
∥∥2
2
+ C7

K∑

k=1

∥∥ûhk

∥∥2
2
+ C8

J∑

j=1

K∑

k=1

∣∣ûαjk

∣∣2

(1.57)

where

C5 = 2L+ 2J +

J∑

j=1

β−1j C2,j C7 =

J∑

j=1

β−1j C3,j

C6 =
(
RU

)2
+max

j
{Kβ−1j } C8 = max

j=1,...,J
β−1j C4,j

By the integral Grönwall inequality we infer from (1.57) that

∥∥y
∥∥2
2,∞

+
J∑

j=1

∥∥κj
∥∥2
L∞(0,T )

≤
(
1 + T max{C5, C6}e

T max{C5,C6}
)
·

·
(∥∥y0

∥∥2
2
+

J∑

j=1

∣∣κj0
∣∣2 + max{TC1, C7, C8}

∥∥û
∥∥2
U

) (1.58)

where 
onstants C1, C5, C6, C7, C8 depend only on the quantities stated in the assertion of the

theorem.

To 
lose the proof, it su�
es to show that

∥∥∇y
∥∥
2,2

+
∥∥y′

∥∥
H1(Ω)∗,2

+
∥∥κ′j

∥∥
L2(0,T )

≤

≤ C9

(∥∥y
∥∥
2,∞

+

J∑

j=1

∥∥κj
∥∥
L∞(0,T )

+
∥∥y0

∥∥2
2
+

J∑

j=1

∣∣κj0
∣∣2 +

∥∥û
∥∥2
U

)
(1.59)

for 
ertain positive C9 depending only on the quantities stated in the assertion of the theorem.

If (1.59) holds, then (1.58) 
an be applied to 
omplete our reasoning. The ne
essary estimates

for parti
ular norms in the left hand side of (1.59) 
an be obtained with methods similar as in

the proof of Theorem 1.2.5, but, for 
ompleteness, we derive the subje
t estimates.

We start with term

∥∥∇y
∥∥
2,2
. By (1.49), negle
ting

∥∥y( . , t)
∥∥
2
term (whi
h is nonnegative),

setting t = T and taking into a

ount

∑J
j=1

∥∥ûgj
∥∥2
2
≤

∥∥û
∥∥2
U
, we derive

D
∥∥∇y

∥∥2
2,2

ds ≤ T (L+ J)
∥∥y

∥∥2
2,∞

+
1

2
T (RU )2

J∑

j=1

∥∥κj
∥∥2
L∞(0,T )

+

+
1

2

∥∥y0
∥∥2
2
+

1

2
TC1

∥∥û
∥∥2
U

(1.60)

To estimate term

∥∥y′
∥∥
H1(Ω)∗,2

, we treat (1.44) as an equality in L2(0, T ;H1(Ω)
∗
), whi
h 
an

be rewritten as:

(y1 − y2)′ +DA(y1 − y2)−
(
Fy1 − Fy2

)
−K = 0 in L2(0, T ;H1(Ω)

∗
) (1.61)
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where we de�ne A and F as in (1.15) while K is de�ned by

∫ T

0

〈
K, φ

〉
dt =

∫ T

0

( J∑

j=1

û1gjκ
1
j − û2gjk

2
j , φ

)
L2(Ω)

dt for φ ∈ L2(0, T ;H1(Ω))

The below follow straight from the de�nition of K and basi
 inequalities:

∥∥K
∥∥
H1(Ω)∗,2

≤
∥∥∥

J∑

j=1

û1gjκ
1
j − û2gjκ

2
j

∥∥∥
2,2

≤
∥∥∥

J∑

j=1

û1gj
(
κ1j − κ2j

)∥∥∥
2,2

+
∥∥∥

J∑

j=1

(
û1gj − û2gj

)
κ2j

∥∥∥
2,2

≤
J∑

j=1

∥∥û1gj
∥∥
2

∥∥κj
∥∥
L2(0,T )

+

J∑

j=1

∥∥ûgj
∥∥
2

∥∥κ2j
∥∥
L2(0,T )

≤ RU
J∑

j=1

∥∥κj
∥∥
L2(0,T )

+ T 1/2C1

J∑

j=1

∥∥ûgj
∥∥
2

where we have used Theorem 1.2.5 to estimate

∥∥κ2j
∥∥
L∞(0,T )

≤ C1, for j = 1, . . . , J and for C1

as above in the present proof. From the above estimate for K, from the estimates for A and F

given in (1.16) and from (1.61), we derive the following:

∥∥y′
∥∥
H1(Ω)∗,2

≤
∥∥∇y

∥∥
2,2

+
∥∥f(y1)− f(y2)

∥∥
2,2

+RU
J∑

j=1

∥∥κj
∥∥
L2(0,T )

+ T 1/2C1

J∑

j=1

∥∥ûgj
∥∥
2

≤
∥∥∇y

∥∥
2,2

+ T 1/2L
∥∥y

∥∥
2,∞

+ T 1/2RU
J∑

j=1

∥∥κj
∥∥
L∞(0,T )

+ T 1/2C1J
1/2

∥∥û
∥∥
2

(1.62)

where we have used the Lips
hitz 
ontinuity of f with 
onstant L and inequality

(∑
j

∥∥ûgj
∥∥
2

)2
≤

J
∑

j

∥∥ûgj
∥∥2
2
≤ J

∥∥û
∥∥2
U
.

To estimate

∥∥κ′j
∥∥
L2(0,T )

, we pro
eed as follows. From (1.45) we 
on
lude that

βjκj
′ + κj = W 1

j (y
1, y∗)−W 2

j (y
2, y∗) in L2(0, T )

for j = 1, . . . , J . By the above, expanding the de�nition of W 1
j and W 2

j , one obtain:

βj
∥∥κ′j

∥∥2
L2(0,T )

≤ 2
∥∥κj

∥∥2
L2(0,T )

+

+ 2
∥∥∥

K∑

k=1

û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∥∥∥

2

L2(0,T )

(1.63)

The se
ond term in the right hand side of (1.63) 
an be estimated with the use of (1.55), what

yields:

βj
∥∥κ′j

∥∥2
L2(0,T )

≤ 2T
∥∥κj

∥∥2
L∞(0,T )

+

+ 2K
(
TC2,j

∥∥y
∥∥2
2,∞

+ C3,j

K∑

k=1

∥∥ûhk

∥∥2
2
+ C4,j

K∑

k=1

∣∣ûαjk

∣∣2
)

≤ 2T
∥∥κj

∥∥2
L∞(0,T )

+ 2KTC2,j

∥∥y
∥∥2
2,∞

+ 2Kmax{C3,j , C4,j}
∥∥û

∥∥2
U

(1.64)
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Above, 
onstant K appears as a result of moving the square to the terms under the sum sign∑K
k=1, as in general inequality

∣∣∑
k ak

∣∣2 ≤ K
∑

k

∣∣ak
∣∣2
.

Altogether, by (1.60), (1.62) and (1.64), the estimate (1.59) holds with 
onstant C9 depending

only on the quantities appearing in (1.60), (1.62) and (1.64), i.e. on C1, C2,j , C3,j , C4,j , T , D,

βj , K, J , L, RU
. This 
loses the proof. �

As the next result shows, in 
onsequen
e of the existen
e result provided by Theorem 1.2.3

and the estimates given in Theorem 1.2.5, it is possible to prove the existen
e of solutions for

unbounded swit
hing fun
tions wk in the system (0.1) - (0.3). The latter is the 
ase not 
overed

by Theorem 1.2.3. However, note that the below result requires a stronger assumption 
on
erning

the referen
e traje
tory y∗ in the system (0.1) - (0.3), in 
omparison to Theorem 1.2.3.

Theorem 1.2.7 Assume that assumptions (B-1) - (B-5) and (C-2) hold and (gj , hk, αjk)
k=1,...,K
j=1,...,J ∈

U . Then the system (0.1) - (0.3) has a weak solution.

Proof. Theorem 1.2.3 assumes that wk fun
tions are bounded, i.e.

∥∥wk

∥∥
L∞(R) < ∞. But

Theorem 1.2.5 gives a bound for solutions of (0.1) - (0.3) that is independent of

∥∥wk

∥∥
L∞(R).

Thus the standard trun
ation te
hnique 
an be utilized to dismiss the assumption that wk are

bounded.

More pre
isely, for a given wk as in the assumption (B-4), 
onsider its trun
ation wn
k given

by

wn
k (s) :=





wk(−n) for s < −n

wk(s) for s ∈ [−n, n]

wk(n) for s > n

Let (yn, κn1 , . . . , κ
n
J) ∈ X2

denote the weak solution of the system (0.1) - (0.3) with wn
k in pla
e

of wk. By Theorem 1.2.5,

∥∥yn
∥∥
2,∞

= C1 < ∞ where C1 does not depend on

∥∥wk

∥∥
L∞(R).

Let C2 :=
∥∥y∗

∥∥
2,∞

and 
hoose ñ >
∥∥hk

∥∥
2
(C1 + C2). The swit
hing fun
tion wñ

k in (0.3) 
an

be repla
ed by wñ
k with no side e�e
t to the weak solution (yñ, κñ1 , . . . , κ

ñ
J). Indeed, for the above


hoi
e of ñ we have

vk(t) :=

∫

Ω
hk(y

ñ( . , t) − y∗( . , t)) dx ≤

≤
∥∥hk

∥∥
2
(C1 + C2) < ñ

for a.e. t ∈ [0, T ] (1.65)

where we have used the Hölder inequality. Therefore

wk(vk(t)) = wñ
k (vk(t)) for a.e. t ∈ [0, T ] (1.66)

Thus, from the above and from the de�nition of the weak solution we 
on
lude what follows �

for ñ as indi
ated, an arbitrary weak solution of (0.1) - (0.3) with swit
hing fun
tions wñ
k is also

a weak solution of (0.1) - (0.3) with swit
hing fun
tions wk. Now, Theorem 1.2.3 
an be applied

to obtain existen
e of the weak solution for (0.1) - (0.3) with swit
hing fun
tions wñ
k . Hen
e the

assertion follows. �

Remark. In the above proof the assumption that y∗ ∈ L∞(0, T ;L2(Ω)) was essential to
obtain the estimate (1.65) for a.e. t ∈ [0, T ]. The assumption y∗ ∈ L2(0, T ;L2(Ω)), imposed

in Theorem 1.2.3, would not allow to obtain this estimate a.e. on [0, T ] and hen
e the identity

(1.66) 
ould fail on some subset of [0, T ] of positive measure. This would make impossible to
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identify the weak solutions of the system (0.1) - (0.3) with an unbounded swit
hing fun
tion wk

and the weak solutions of (0.1) - (0.3) with the swit
hing fun
tion wñ
k de�ned as in the above

proof. Hen
e, the �nal argument of the proof would be not valid.

Thus, 
omparing Theorem 1.2.3 with Theorem 1.2.7, we have traded the unboundedness of∥∥y∗( . , t)
∥∥
2
for unboundedness of wk. N

The below 
orollaries are straightforward due to existen
e Theorems 1.2.3, 1.2.7 and stability

Theorem 1.2.6.

Corollary 1.2.8 Let assumptions (B-1) - (B-5) and (C-1) be satis�ed and (gj , hk, αjk)
k=1,...,K
j=1,...,J ∈

U . Assume moreover that fun
tions wk entering the system (0.1) - (0.3) are bounded. Then the

system (0.1) - (0.3) has a unique weak solution.

Corollary 1.2.9 Let assumptions (B-1) - (B-5) and (C-2) be ful�lled and (gj , hk, αjk)
k=1,...,K
j=1,...,J ∈

U . Then the system (0.1) - (0.3) has a unique weak solution.

This 
loses the part 
on
erning the uniqueness and existen
e of the weak solutions of (0.1) -

(0.3). However, Theorem 1.2.5 and Theorem 1.2.6 are ne
essary not only for the uniqueness

and existen
e results in Corollaries 1.2.8 and 1.2.9. The stability result in Theorem 1.2.6 will be


ru
ial in Chapter 3, 
on
erning theoreti
al aspe
ts of the optimal targeting problem, announ
ed

in �2 of Introdu
tion.

But there are also other properties 
on
erning the behavior of the system (0.1) - (0.3) under

the perturbations of the 
ontrol whi
h we would like to present. Assume that there is a sequen
e

of 
ontrols ûn ∈ U given and one have only the knowledge on the weak 
onvergen
e of these


ontrols. This does not allow to utilize the former theorems of the present se
tion to infer about

anything more than boundedness of (yn, κn1 , . . . , κ
n
J ) in X2

, where (yn, κn1 , . . . , κ
n
J) denotes the

solution of (0.1) - (0.3) 
orresponding to ûn. Here, the following result may be useful:

Theorem 1.2.10 Let assumptions (B-1) - (B-5) and (C-1) be ful�lled. Let the sequen
e ûn


onverge weakly to û in U . Denote by (yn, κn1 , . . . , κ
n
J ) the weak solution of (0.1) - (0.3) 
orre-

sponding to ûn and by (ỹ, κ̃1, . . . , κ̃J) the weak solution of (0.1) - (0.3) 
orresponding to û. Then
there exists a sequen
e of natural indexes n1 < n2 < . . . su
h that subsequen
e (ynk , κnk

1 , . . . , κnk

J )

onverges weakly-∗ to (ỹ, κ̃1, . . . , κ̃J ) in X2

when k → ∞.

Proof. Let ûn ⇀ û in U , as in the assumptions. A weakly 
onvergent sequen
e is

bounded, thus by Theorem 1.2.5 (yn, κn1 , . . . , κ
n
J) is bounded in X2

. This allows us to extra
t

a weakly-∗ 
onvergent subsequen
e (for simpli
ity, we relabel it and keep the original indexes):

(yn, κn1 , . . . , κ
n
J )
∗
⇀ (ȳ, κ̄1, . . . , κ̄J ) in X2

for 
ertain (ȳ, κ̄1, . . . , κ̄J) ∈ X2
. In parti
ular:

yn
∗
⇀ ȳ in L∞(0, T ;L2(Ω))

yn′ ⇀ ȳ′ in L2(0, T ;H1(Ω)
∗
)

∇yn ⇀ ∇ȳ in

(
L2(QT )

)d

κnj
∗
⇀ κ̄j in L∞(0, T )

κnj
′ ⇀ κ̄′j in L2(0, T )

(1.67)

It su�
es to show that (ȳ, κ̄1, . . . , κ̄J ) = (ỹ, κ̃1, . . . , κ̃J). For this reason we need to prove that

we 
an pass with n to in�nity in all terms appearing in the weak formulation given in De�nition
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1.2.1 The passage in linear terms follows straight due to (1.67). We are left to deal with the

terms ∫ T

0
(κnj û

n
gj , φ)L2(Ω) dt,

∫ T

0
(f(yn), φ)L2(Ω) dt,

∫ T

0
Wj(y

n, y∗) ξ dt

for φ ∈ L2(0, T ;H1(Ω)), ξ ∈ L2(0, T ).

Let us begin with the term 
orresponding to κnj û
n
gj . By the assumption and by (1.67),

ûgj ⇀ û in L2(Ω) and κnj ⇀ κ̄j in L2(0, T ). But this means that for an arbitrary φΩ ∈ C(Ω̄)

and φT ∈ C([0, T ]) we have

∫ T

0
(κnj û

n
gj , φ

ΩφT )L2(Ω) dt =

=

∫ T

0
κnj φ

T dt

∫

Ω
ûngjφ

Ω dx −→

∫ T

0
κ̄jφ

T dt

∫

Ω
ûgjφ

Ω dx =

=

∫ T

0
(κ̄j ûgj , φ

ΩφT )L2(Ω) dt

To 
on
lude that the weak 
onvergen
e of κnj û
n
gj to κ̄j ûgj in L2(QT ) holds it su�
es to justify

that κnj û
n
gj is bounded in L2(QT ) and the set of fun
tions φ of form φ(x, t) = φΩ(x)φT (t), where

φΩ
and φT

are as above, is linearly dense in L2(QT ). The former is straightforward by the weak


onvergen
e properties of κnj and ûngj . Con
erning the latter, by the Stone-Weierstrass theorem

(see [49, Chap. 0.2, p.9℄), the set of all possible φ is dense in C(Q̄T ) and the latter set is linearly

dense in L2(QT ). Altogether, the following 
an be stated:

κnj û
n
gj ⇀ κ̄j ûgj in L2(QT ) (1.68)

Guaranteeing the 
onvergen
e of the remaining two terms will involve the knowledge on the

strong 
onvergen
e of yn in L2(QT ). But this 
an be 
on
luded by the Aubin-Lions lemma (see

[43, Chap III.1. Prop. 1.3℄ for the probably most 
ommon formulation of the lemma or [44, Se
.

8 Cor. 4℄ for a more general statement). More pre
isely, spa
es H1(Ω), L2(Ω) and H1(Ω)
∗
form

an evolution triple with 
ontinuous embeddings H1(Ω) →֒ L2(Ω) →֒ H1(Ω)
∗
(see [51, Chap.

23.4℄), where the �rst embedding is in addition 
ompa
t, by the Relli
h-Kondra
hov theorem

(see [1, par. 4.6.℄). Moreover, the bounds for yn and yn′ in (1.67) hold. Thus the 
onditions

of the Aubin-Lions lemma are ful�lled and it 
an be applied to 
on
lude that there exists a

subsequen
e su
h that

yn → ȳ in L2(QT ) (1.69)

The limit in (1.69) is exa
tly ȳ sin
e otherwise it would be a 
ontradi
tion to (1.67). This is

the point where the assumption (B-1) was ne
essary sin
e the above referred Relli
h-Kondra
hov

theorem version requires that Ω is bounded and satis�es the 
one 
ondition.

By the Lips
hitz 
ontinuity of f and (1.69) the 
onvergen
e

f(yn) → f(ȳ) in L2(QT ) (1.70)

is a straightforward 
on
lusion.

We are left to investigate the 
onvergen
e of the term 
orresponding to Wj(y
n, y∗). Note that

by the de�nition (see (0.3)), Wj has an impli
it dependen
e on ûnhk
and ûnαjk

. Thus in the present


ontext we should interpret Wj as Wj(û
n
hk
, ûnαjk

, yn, y∗). By (0.3) and the Lips
hitz 
ontinuity of

wk we 
an write, using the triangle inequality:
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∫ T

0

∣∣Wj

(
ûnhk

, ûnαjk
, yn(t), y∗(t)

)
−Wj

(
ûhk

, ûαjk
, ȳ(t), y∗(t)

)∣∣2 dt ≤

≤ 2

K∑

k=1

Lk

{ ∣∣ûnαjk

∣∣2∥∥ûnhk

∥∥2
2

∫ T

0

∥∥yn − ȳ
∥∥2
2
dt +

+
∣∣ûnαjk

∣∣2
∫ T

0

∣∣∣
∫

Ω
(ûnhk

− ûhk
)(ȳ − y∗) dx

∣∣∣
2
dt +

+
∣∣ûnαjk

− ûαjk

∣∣2∥∥ûhk

∥∥2
2

∫ T

0

∥∥ȳ − y∗
∥∥2
2
dt

}

(1.71)

Let us 
onsider ea
h of the three terms appearing in the right hand side of the above.

The �rst term in the right hand side of (1.71) 
onverges to zero sin
e the sequen
e of 
ontrols

ûn is bounded and (1.69) holds.

The third term in the right hand side of (1.71) is 
onvergent to zero sin
e by ûn ⇀ û in U
we have ûnαjk

→ ûαjk
.

To treat the se
ond term, 
onsider a fun
tion

Fn(t) =

∫

Ω
(ûnhk

− ûhk
)(ȳ(t)− y∗(t)) dx

As the sequen
e of numbers

∣∣ûnαj,k

∣∣2
in the 
onsidered term is bounded, it is enough to show the


onvergen
e of Fn
to zero in L2(0, T ). We have ȳ(t), y∗(t) ∈ L2(Ω) a.e. on [0, T ]. Thus, by the

weak 
onvergen
e ûnhk
⇀ ûhk

in L2(Ω) for every k = 1, . . . ,K we infer that Fn(t) 
onverges to
zero a.e. on [0, T ], as n → ∞. Moreover, a.e. on [0, T ]

∣∣Fn(t)
∣∣ ≤

∥∥ûnhk
− ûhk

∥∥
2

∥∥ȳ(t)− y∗(t)
∥∥
2

≤ CU

∥∥ȳ(t)− y∗(t)
∥∥
2

where CU = supn
∥∥ûn

∥∥
U

is �nite and the term

∥∥ȳ(t) − y∗(t)
∥∥
2
is square integrable due to

ȳ, y∗ ∈ L2(QT ). These observations 
on
erning Fn(t) allow us to apply the Lebesgue domi-

nated 
onvergen
e theorem (see [41, Chap. 1℄ or [21, App. E.3, Th. 5℄) and get the 
onvergen
e

Fn → 0 in L2(0, T )

Altogether, we 
on
lude that the right hand side of (1.71) 
onverges to zero thus:

Wj(û
n
hk
, ûnαjk

, yn, y∗) → Wj(ûhk
, ûαjk

, ȳ, y∗) in L2(0, T )
(1.72)

To sum up, the 
onvergen
e results (1.67), (1.68), (1.70), (1.72) allow us to infer that

(ȳ, κ̄1, . . . , κ̄J ) is the weak solution of the system (0.1) - (0.3) in sense of the De�nition 1.2.1,


orresponding to û, i.e. (ȳ, κ̄1, . . . , κ̄J ) = (ỹ, κ̃1, . . . , κ̃J) what 
on
ludes the proof. �

Remark. Note that, in the proof of Theorem 1.2.10, we did not require a priori knowl-

edge on validity of theorems 
on
erning existen
e of weak solutions. We simply assumed that

(yn, κn1 , . . . , κ
n
J ) and (ỹ, κ̃1, . . . , κ̃J ) are weak solutions of the system (0.1) - (0.3). Thus, the

assumptions of Theorem 1.2.10 did not need to 
over the assumptions of the existen
e results

provided by Theorem 1.2.3 or Theorem 1.2.7. Analogous remark holds for Theorem 1.2.5 and

Theorem 1.2.6, whi
h also did not base on the existen
e results and hen
e did not require to


over the assumptions of the latter results. N
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Remark. In the 
ontent of the present se
tion, the 
ondition βj > 0, being a part of the

assumption (B-2), was utilized dire
tly only in the proofs of Theorem 1.2.5 and Theorem 1.2.6,

e.g. to preserve the dire
tion of inequalities when dividing by βj . In the rest of the statements

of Se
tion 1.2.2, the 
ondition βj was ne
essary only be
ause they refer to Theorem 1.2.5 and

Theorem 1.2.6 (or to Theorem 1.2.3, but the latter a
tually 
ould be proven also for βj < 0, see
the remark on page 23).

However, we expe
t that, after suitable modi�
ations, versions of Theorem 1.2.5 and Theorem

1.2.6 allowing βj < 0 also 
ould be proven. In 
onsequen
e, the rest of the results of Se
tion 1.2.2

also would be valid for βj < 0.

We also expe
t that the results presented in Se
tion 1.2.3 and Se
tion 1.2.4, whi
h also assume

βj > 0, would be valid for βj < 0 as well.

The above, if true, have 
onsequen
es also for analyti
al results in Chapter 3 of the present

work, whi
h rely on the theorems given here, in Se
tion 1.2.2, as well as in Se
tion 1.2.3 and

Se
tion 1.2.4. Perhaps, all of the analyti
al results of Chapter 3, as well as the rest of the present

work, would be valid if we allowed βj < 0. However, a 
areful veri�
ations of the proofs would

be ne
essary to guarantee the above hypotheses. N

1.2.3 Generalizations for lo
ally Lips
hitz rea
tive term

In Se
tion 1.2.3, we fo
us on the system (0.1) - (0.3) with assumptions 
on
erning nonlinear term

f di�erent than in Se
tion 1.2.2. More pre
isely, we assume below that f is lo
ally Lips
hitz


ontinuous only. However, to 
ompensate this loose of strength of assumptions, we assume that

f obeys 
ertain growth 
ondition, whi
h will be pre
isely formulated below. In addition, we

impose assumptions for the initial 
ondition 
omponent y0 that are stronger in 
omparison to

the assumptions imposed in Se
tion 1.2.2, namely y0 ∈ L∞(Ω). Also, we put more restri
tive

assumptions for the integrability of the fun
tions des
ribing the 
ontrol devi
es a
tions, denoted

in the system (0.1) - (0.3) by gj , j = 1, . . . , J .

Te reasons of 
onsidering the system (0.1) - (0.3) with the above mentioned modi�ed as-

sumptions are twofold. First, numeri
al experiments des
ribed in further 
hapters of the present

work involved data with lo
ally Lips
hitz f and bounded initial 
ondition. Hen
e, our intention

is to give analyti
al results that 
over the data utilized in the mentioned experiment. Se
ond,

the results presented in Se
tion 1.2.3 will be used also in the 
hapter 
on
erning mathemati
al

analysis of the optimal targeting problem.

The results of the present subse
tion rely strongly on a theorem for boundedness of the weak

solutions of (1.4). The subje
t theorem requires the nonlinear term to satisfy 
ertain growth


ondition, the initial 
ondition to be bounded and the free term to be integrable with su�
iently

high power. In the result, the assumptions 
on
erning the growth of f , the boundedness of y0
and for the integrability of fun
tions gj in (0.1) - (0.3) are inherited by most of the results of the

present subse
tion.

In Se
tion 1.2.3, we prove estimates analogous to those given in Theorem 1.2.5, but for

the system (0.1) - (0.3) with the modi�ed assumptions, mentioned above. Next, using the

boundedness of the weak solutions of (1.4) and the derived estimates, we prove that the weak

solutions of the system (0.1) - (0.3) with the modi�ed assumptions also are bounded. Having

the latter boundedness result, we prove the existen
e and uniqueness result for the system (0.1)

- (0.3) with the modi�ed assumptions. For this end, we base on a trun
ation argument, redu
ing

the problem with the modi�ed assumptions to the problem with the assumptions originally


onsidered in the results of Se
tion 1.2.2.
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Let us pro
eed to the mathemati
al details. The above mentioned growth 
ondition for

f : R → R is as follows.

sf(s) ≤ 0 if

∣∣s
∣∣ > Cf (1.73)

for 
ertain Cf > 0.
In the sequel, we will need also the following 
onditions. Re
all that d denotes the spa
e

dimension of domain Ω, entering the system (0.1) - (0.3). The following 
onditions 
onstituting

a relation between two numbers s1, s2 ∈ [1,∞] will be utilized in Se
tion 1.2.3:

1

2s′2
+

d

4s′1
=

d

4
(1.74)





s1 ∈ [1,∞], s2 ∈ [1, 2] for d = 1

s1 ∈ (1,∞], s2 ∈ [1,∞) for d = 2

s1 ∈ [d2 ,∞], s2 ∈ [1,∞] for d ≥ 3

(1.75)

where s′1 and s′2 denote the Hölder 
onjugate of s1 and s2, respe
tively. Notation �

1
∞ = 0� is

utilized in the above 
onditions.

The below theorem 
on
erning the boundedness of the weak solutions of paraboli
 di�erential

equations will be 
ru
ial:

Theorem 1.2.11 Let Ω, T , D, J , f be as in assumptions (B-1), (B-2), (B-3). Let y0 ∈ L∞(Ω).
Let also gj ∈ Ls1(Ω), kj ∈ Ls2(0, T ) for j = 1, . . . , J , where numbers s1 and s2 obey 
onditions

(1.74) and (1.75). Let C∞, CF be nonnegative numbers su
h that

∥∥y0
∥∥
∞

≤ C∞,
∥∥∥

J∑

j=1

gjkj

∥∥∥
s1,s2

≤ CF

Let f ful�ll the 
ondition (1.73) with a 
onstant Cf . Assume that y is a weak solution of the

system (1.4), 
orresponding to the above data. Then y belongs to L∞(QT ) and

∥∥y
∥∥
L∞(QT )

≤ C

where C = C(d,Ω, T,D, s1, s2, C∞, CF , Cf ).

Theorem 1.2.11 
an be proved with the same methods as Theorem 7.1 in Chapter III of [37℄.

The 
ase treated there is in some details di�erent than ours. In the referred theorem it is a priori

assumed that the values of the solution on ∂Ω× (0, T ) are bounded what is an information that

we do not assume to have (instead, we assume to 
ontrol the values of the derivative of the

solution on ∂Ω × (0, T ), in the dire
tion normal to ∂Ω). Besides, the referred theorem treats

the 
ase of a linear paraboli
 equation while the state equation in (1.4) is semilinear. In spite

of that, we have veri�ed that the methods utilized in the proof of Theorem 7.1 in Chapter 3 of

[37℄ 
an be applied in our situation. The above listed di�eren
es do not 
hange the main steps

of the proof.

Now, we pro
eed to the estimates for the weak solutions of the system (0.1) - (0.3). The

following result is a variant of Theorem 1.2.5, assuming a modi�ed assumption for the rea
tive

term f in the system (0.1) - (0.3):

Theorem 1.2.12 In the system (0.1) - (0.3), let the part a) of the assumption (B-1) and as-

sumptions (B-2), (B-4), (C-1) hold. Let f : R → R be a lo
ally Lips
hitz 
ontinuous fun
tion,

satisfying the 
ondition (1.73) for a given 
onstant Cf > 0. Denote f0 := f(0) and let LCf
be
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the Lips
hitz 
onstant of f on interval [−Cf , Cf ]. Let also û ∈ U and (y0, κ10, . . . , κJ0) ∈ X0
.

Assume that RU
and R0

are positive numbers su
h that

∥∥û
∥∥
U

≤ RU ,
∥∥(y0, κ10, . . . , κJ0)

∥∥
X0 ≤ R0

Assume that (y, κ1, . . . , κJ) ∈ X2
is a weak solution of the system (0.1) - (0.3) with the above

data and with gj := ûgj , hk := ûhk
, αj,k := ûαj,k

. Then

∥∥y
∥∥
2,∞

+
∥∥∇y

∥∥
2,2

+
J∑

j=1

∥∥κj
∥∥
L∞(0,T )

+
J∑

j=1

∥∥κ′j
∥∥
L2(0,T )

≤ C1 (1.76)

where

C1 = C1(T,
∣∣Ω

∣∣,K, J,D, β1, . . . , βJ , LCf
, f0, L1, . . . , LK , w10, . . . , wK0, R

U , R0,
∥∥y∗

∥∥
2,2

)

where the quantities on whi
h 
onstant C1 depends are as in the above assumptions.

If, in addition,

∥∥y
∥∥
L∞(QT )

≤ C0, then

∥∥y′
∥∥
H1(Ω)∗,2

≤ C2 (1.77)

where

C2 = C2(f(C0), C1, T,
∣∣Ω

∣∣,D,RU )

Proof. We start with the proof of the estimate (1.76). The proof is analogous to a part

of the proof of Theorem 1.2.5. The di�eren
es are minor. Therefore, we do not present the full

proof but only dis
uss the subje
t di�eren
es.

The only di�eren
e o

urs in the estimate (1.30). Estimating term (f(y), y)L2(Ω) needs to

be done slightly di�erent in the present situation than in the proof of Theorem 1.2.5. More

pre
isely, denote

ACf
:=

{
(x, t) ∈ Ω× (0, T ) :

∣∣y(x, t)
∣∣ ≤ Cf

}

Now we use property (1.73), Lips
hitz 
ontinuity of f on [−Cf , Cf ], the Hölder inequality and

the Young inequality to �nd that:

(f(y), y)L2(Ω) =

∫

Ω
f(y)y dx ≤

∫

ACf

f(y)y dx

≤ LCf

∫

ACf

∣∣y
∣∣2 dx + f0

∫

ACf

∣∣y
∣∣ dx

≤ LCf

∥∥y
∥∥2
2
+ f0

∥∥y
∥∥
2

∥∥1Ω
∥∥
2

≤ LCf

∥∥y
∥∥2
2
+

f0
2

∥∥y
∥∥2
2
+

1

2

∥∥1Ω
∥∥2
2

In the proof of Theorem 1.2.5, we insert the above estimate instead of the estimate (1.30).

The further part of the proof, until the estimate (1.38), remains valid, with the side e�e
t that


onstant L, whenever appears in the subje
t part of the proof, should be repla
ed by LCf
. In

parti
ular, estimates (1.37) and (1.38) hold (for L repla
ed by LCf
), what gives the demanded

estimates for

∥∥y
∥∥
2,∞

,

∥∥∇y
∥∥
2,2

and

∥∥κj
∥∥
L∞(0,T )

, for j = 1, . . . , J .

Similarly, one 
an verify that estimates (1.42) and (1.43) remain valid, assuming that 
onstant

L is repla
ed by LCf
. Thus, by the estimate (1.43) (for L repla
ed by LCf

), we have the estimate

for

∥∥κ′j
∥∥
L2(0,T )

, for j = 1, . . . , J . This gives the estimate (1.76).
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To obtain the estimate (1.77), we 
annot pro
eed exa
tly as in the proof of Theorem 1.2.5.

The reason for this is that in the estimate (1.41), 
ru
ial for estimating

∥∥y′
∥∥
H1(Ω)∗,2

, term∥∥f(y)
∥∥
2,2

appears. Under the present assumptions for f , the subje
t term 
an be ill de�ned if y

belongs to L∞(0, T ;L2(Ω)) only. This makes the estimates for

∥∥y′
∥∥
H1(Ω)∗,2

derived in the proof

of Theorem 1.2.5 invalid. To over
ome the subje
t obsta
le, we use the assumption

∥∥y
∥∥
L∞(QT )

≤

C0.

More pre
isely, (1.39) and (1.40) in the proof of Theorem 1.2.5 still hold, with the same

arguments as given there. Thus, from (1.39) and (1.40) we infer that:

∥∥y′
∥∥
H1(Ω)∗,2

≤ D
∥∥∇y

∥∥
2,2

+
∥∥f(y)

∥∥
2,2

+

J∑

j=1

∥∥ûgj
∥∥
2

∥∥κj
∥∥
L2(0,T )

By the assumption

∥∥y
∥∥
L∞(QT )

≤ C0, by the Hölder inequality and by the de�nition of 
onstant

RU
, we 
an estimate the right hand side of the above and obtain:

∥∥y′
∥∥
H1(Ω)∗,2

≤ D
∥∥∇y

∥∥
2,2

+ f(C0)
(
T
∣∣Ω

∣∣)1/2 + TRU
J∑

j=1

∥∥κj
∥∥
L∞(0,T )

Now, (1.76) 
an be used to estimate norms

∥∥∇y
∥∥
2,2

and

∥∥κj
∥∥
L∞(0,T )

for j = 1, . . . , J appearing

above by C1. In total, the right hand side of the above 
an be estimated in terms of f(C0), C1,

D, T ,
∣∣Ω

∣∣
and RU

. Hen
e (1.77) follows. �

The below theorem requires both Theorem 1.2.11 and Theorem 1.2.12 for the proof. It will

be a 
ru
ial te
hni
al result in our method of proving the uniqueness and existen
e results given

in the further part of Se
tion 1.2.3.

Theorem 1.2.13 In the system (0.1) - (0.3), let the part a) of the assumption (B-1) and as-

sumptions (B-2), (B-4), (C-1) hold. Let f : R → R be a lo
ally Lips
hitz 
ontinuous fun
tion,

satisfying the 
ondition (1.73) for a given 
onstant Cf > 0. Denote f0 := f(0) and let LCf
be

the Lips
hitz 
onstant of f on interval [−Cf , Cf ]. Let also û ∈ U and (y0, κ10, . . . , κJ0) ∈ X0
.

Assume that RU
and R0

are positive numbers su
h that

∥∥û
∥∥
U

≤ RU ,
∥∥(y0, κ10, . . . , κJ0)

∥∥
X0 ≤ R0

In addition, assume that y0 ∈ L∞(Ω) and that ûgj ∈ Ls1(Ω) for 
ertain s1 ≥ max{2, d2 }, for
j = 1, . . . , J . Let C∞ and Rg

be nonnegative number su
h that

∥∥y0
∥∥
L∞(Ω)

≤ C∞, max
j=1,...,J

∥∥ûgj
∥∥
s1

≤ Cg

Assume that (y, κ1, . . . , κJ) ∈ X2
is a weak solution of the system (0.1) - (0.3) with the above

data and with gj := ûgj , hk := ûhk
, αj,k := ûαj,k

. Then

∥∥y
∥∥
L∞(QT )

≤ C (1.78)

where

C = C(d, T,Ω,K, J,D, β1, . . . , βJ , LCf
, f0, L1, . . . , LK , w10, . . . , wK0,

RU , R0,
∥∥y∗

∥∥
2,2

, C∞, Cf , s1, Cg)

where the quantities on whi
h C depends are as in the assumptions of the theorem.
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Proof. Let s1 be as in the assumption of the theorem and let s2 ∈ [1,∞]. We will need

to have estimates for norm

∥∥∑J
j=1 ûgjκj

∥∥
s1,s2

. We derive them as follows. By independen
e of

variables being arguments for ûgj and κj and by the de�nition of Cg:

∥∥∥
∑

j=1

ûgjκj

∥∥∥
s1,s2

≤
J∑

j=1

∥∥ûgj
∥∥
s1

∥∥κj
∥∥
Ls2(0,T )

≤
J∑

j=1

Cg

∥∥κj
∥∥
Ls2 (0,T )

(1.79)

The assumptions 
on
erning the estimate (1.76) in Theorem 1.2.12 are ful�lled. Thus, by the

Hölder inequality and by Theorem 1.2.12, term

∥∥κj
∥∥
Ls2 (0,T )


an be estimated by:

∥∥κj
∥∥
Ls2 (0,T )

≤ C0

∥∥κj
∥∥
L∞(0,T )

≤ C0C1 (1.80)

where C0 = T 1/s2
for s2 < ∞, C0 = 1 for s2 = ∞ and where C1 stands for the 
onstant from

(1.76). Note that the assumption s1 ≥ 2 is ne
essary here due to the fa
t that Theorem 1.2.12

assumes ûgj ∈ L2(Ω), j = 1, . . . , J .
Combining (1.79) and (1.80) together, we have

∥∥∥
J∑

j=1

ûgjκj

∥∥∥
s1,s2

≤ CF (1.81)

where

CF := JCgC0C1

The estimate (1.81) is true for an arbitrary s2 ∈ [1,∞]. In parti
ular, we 
an 
hoose





s2 =
2s1

2s1 − d
for s1 > d/2

s2 = ∞ for s1 = d/2

(1.82)

One 
an verify that for s1 as in the assumptions of the theorem and for s2 given in (1.82), pair

of numbers s1, s2 obeys 
onditions (1.74) and (1.75). This is the point of the proof where the

assumption s1 ≥ max{2, d2 } is ne
essary be
ause it guarantees that s1 obeys the restri
tions

given in (1.75).

Let s2 be as in (1.82), so as 
onditions (1.74) and (1.75) were valid. This, along with (1.81)

and with the assumptions of the present theorem, implies that the assumptions of Theorem

1.2.11 are ful�lled for the system (1.4) with kj := κj and with gj := ûgj , j = 1, . . . , J . Observe
that y is a weak solution of the system (1.4), with the mentioned assignments (see De�nition

1.1.3). Thus, by Theorem 1.2.11 we �nd that

∥∥y
∥∥
L∞(QT )

≤ C3

where C3 is the 
onstant from the assertion of Theorem 1.2.11. Taking into a

ount the list

of quantities on whi
h 
onstant C3 depends, the 
onstru
tion of 
onstant CF above and the

meaning of C1, the assertion follows. �

Basing on Theorem 1.2.13, we will show the following modi�
ations of the existen
e and

uniqueness results given in Corollary 1.2.8 and Corollary 1.2.9:

Theorem 1.2.14 Let the assumptions of Corollary 1.2.8 be ful�lled, with the following modi�-


ations:
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• we assume that f : R → R is lo
ally Lips
hitz 
ontinuous and obeys (1.73) with 
onstant

Cf > 0, instead of the 
ondition for f given in the assumption (B-3),

• we assume that y0 ∈ L∞(Ω), instead of the 
ondition for y0 given in the assumption (B-5),

• we assume that gj ∈ Ls1(Ω), for s1 ≥ max{2, d2 }, for j = 1, . . . , J , instead of assuming

that gj belongs to L2(Ω) only.

Then, there exists a unique weak solution of the system (0.1) - (0.3).

Theorem 1.2.15 Let the assumptions of Corollary 1.2.9 be ful�lled, with the modi�
ations as

in Theorem 1.2.14. Then, there exists a unique weak solution of the system (0.1) - (0.3).

Remark. Note that the 
ondition gj ∈ L2(Ω) for j = 1, . . . , J allows the assumptions of

Theorem 1.2.14 and Theorem 1.2.15 be ful�lled only for domain dimension d ∈ {1, 2, 3, 4}. One

an verify that for higher dimension of the domain, higher integrability of fun
tions gj would be

required. N

For 
on
iseness, we present only the proof of Theorem 1.2.14. The proof of Theorem 1.2.15

follows the same lines.

Proof of Theorem 1.2.14. The proof relies on the 
on
ept of trun
ations. For a given

n > 0, we de�ne trun
ation fn : R → R as follows:

fn(s) :=





f(n) for s > n

f(s) for s ∈ [−n, n]

f(−n) for s < −n

Note that the fun
tion fn
is Lips
hitz 
ontinuous for an arbitrary n > 0 (by lo
al Lips
hitz


ontinuity of f ) and, for n ≥ Cf , obeys (1.73) with the same 
onstant Cf as the original fun
tion

f .
Denote by

(
(0.1) - (0.3)

)n
the modi�
ation of the system (0.1) - (0.3) 
onsisting in putting

fn
instead of f in the main equation of (0.1). The system

(
(0.1) - (0.3)

)n

ertainly is a par-

ti
ular 
ase of (0.1) - (0.3), hen
e all de�nitions and theorems 
on
erning (0.1) - (0.3) apply to(
(0.1) - (0.3)

)n
as well.

In parti
ular, a weak solution of the system

(
(0.1) - (0.3)

)n
(see De�nition 1.2.1) exists and

is unique, for an arbitrary n > 0 � see Corollary 1.2.8 and re
all the Lips
hitz 
ontinuity of fn
.

The assumption that s1 ≥ 2 also is ne
essary to apply Corollary 1.2.8.

Assume that (yn, κn1 , . . . , κ
n
J ) ∈ X2

is the weak solution of the system

(
(0.1) - (0.3)

)n
for


ertain n > 0. Now, we will justify that yn is bounded on QT by a 
onstant independent of n,
for n big enough.

Fun
tions ûgj := gj obey the requirements of Theorem 1.2.13, for s1 as presently assumed. As

mentioned, fn
is Lips
hitz and, for n ≥ Cf , f

n
ful�lls (1.73) with 
onstant Cf independent of n.

By the latter, and under other assumptions of the present theorem, the system

(
(0.1) - (0.3)

)n
obeys the assumptions of Theorem 1.2.13, for n > Cf . Thus, by Theorem 1.2.13, we �nd that

∥∥yn
∥∥
L∞(QT )

≤ C0 for n > Cf (1.83)

where C0 is the 
onstant from the assertion of Theorem 1.2.13. C0 is independent of n be
ause

none of the quantities on whi
h C0 depends (Theorem 1.2.13) is dependent on n (what in par-

ti
ular 
on
erns 
onstant Cf , whi
h is the 
onstant for the 
ondition (1.73) for the fun
tion fn

with n > Cf ).
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Let us 
hoose number ñ greater than max{C0, Cf}. Taking into a

ount the estimate (1.83)

and the de�nition of fn
we obtain:

f ñ(yñ) = f(yñ) for a.e. (x, t) ∈ QT

Therefore we 
on
lude that (yñ, κñ1 , . . . , κ
ñ
J ) is also a weak solution of the system (0.1) - (0.3).

Above, we have proven that an arbitrary weak solution of

(
(0.1) - (0.3)

)ñ
is a weak solution

of (0.1) - (0.3). Thus, by existen
e of weak solutions for

(
(0.1) - (0.3)

)ñ
(Corollary 1.2.8) we


on
lude the existen
e of weak solutions of (0.1) - (0.3). To infer the uniqueness, we need justify

that an arbitrary weak solution of (0.1) - (0.3) is a weak solution of

(
(0.1) - (0.3)

)n
, for 
ertain

n > 0, and re
all the uniqueness result for

(
(0.1) - (0.3)

)n
(Corollary 1.2.8). This will 
lose the

proof.

But the fa
t that a weak solution of (0.1) - (0.3) is also a weak solution of

(
(0.1) - (0.3)

)n
, for


ertain n > 0, follows by arguments analogous to the above ones. Assume that (y, κ1, . . . , κJ ) ∈
X2

is a weak solution of (0.1) - (0.3). Under the assumptions of the present theorem, the system

(0.1) - (0.3) obeys the requirements of Theorem 1.2.13. Thus, we 
an apply Theorem 1.2.13

again to infer that ∥∥y
∥∥
L∞(QT )

≤ C0

where 
onstant C0 is the same as in (1.83). Having this, by arguments analogous as above, we

see that

f ñ(y) = f(y) for a.e. (x, t) ∈ QT

for ñ greater than C0. Therefore, (y, κ1, . . . , κJ ) is a weak solution of

(
(0.1) - (0.3)

)ñ
. The

uniqueness of the weak solutions for

(
(0.1) - (0.3)

)ñ
follows by Corollary 1.2.8. �

Remark. The proof of Theorem 1.2.15 is exa
tly the same as the above proof, with the

sole di�eren
e that every referen
e to Corollary 1.2.8 appearing in the proof should be repla
ed

with a referen
e to Corollary 1.2.9. N

Remark. The estimate (1.77) in Theorem 1.2.12 assumes a priori knowledge that y ∈
L∞(QT ), what 
an be impra
ti
al. Theorem 1.2.13 allows to spe
ify more 
on
rete assumptions

under whi
h the estimate (1.77) is valid. Namely,

• let the assumptions ne
essary for the estimate (1.76) in Theorem 1.2.12 hold,

• and in addition, assume that

∥∥y0
∥∥
∞

≤ C∞ and ûgj ∈ Ls1(Ω), for 
ertain s1 ≥ max{2, d2 },
for j = 1, . . . , J .

Then, the assumptions of Theorem 1.2.13 are ful�lled. Now, Theorem 1.2.13 
an be applied

to 
on
lude that y ∈ L∞(QT ). In 
onsequen
e of the latter and the fa
t that we impose the

assumptions required for (1.76), the assumptions ne
essary for (1.77) in Theorem 1.2.12 hold.

Provided the above reasoning, 
onstant C0 entering the stru
ture of C2 in the estimate

(1.77) be
omes the 
onstant from the assertion of Theorem 1.2.13 and depends on the quantities

indi
ated therein. N

1.2.4 Other generalizations

For te
hni
al reasons, in further parts of the present work it will be ne
essary to deal also with

systems of stru
ture slightly di�erent than the stru
ture of (0.1) - (0.3). These are the system
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(3.9) - (3.10) (
alled linearized system) and the system (3.30) - (3.31) (
alled adjoint system),

introdu
ed in Chapter 3. It will be ne
essary to have existen
e and uniqueness results for the

mentioned systems, moreover we will need to have estimates for the solutions of the linearized

system. Hen
e, below we introdu
e a system of stru
ture su�
iently general to let the linearized

system and the adjoint system be parti
ular 
ases of the subje
t system, and, next, provide

uniqueness and existen
e results along with the ne
essary estimates for the subje
t system.

The announ
ed system, whi
h 
overs the 
ase of both the linearized system and the adjoint

system, is the following one:





yt(x, t)−D∆y(x, t) = f̃(x, t, y(x, t))+

+
∑J

j=1
Ξj(x, t)κj(t) +

∑J

j=1
g̃j(x)Θj(x, t) on QT

∂y

∂n
= 0 on ∂Ω × (0, T )

y(0, x) = ỹ0(x) for x ∈ Ω

(1.84)





β1κ
′
1(t) + κ1(t) = W̃1

(
y( . , t),Y( . , t)

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J(t) + κJ(t) = W̃J

(
y( . , t),Y( . , t)

)
on [0, T ]

κj(0) = κ̃j0 ∈ R for j = 1, . . . , J

(1.85)

W̃j(y( . , t),Y( . , t)) = Zj(t)

(∫

Ω
h̃j(x)Y(x, t) dx+ w̃j

(∫

Ω
hj(x)y(x, t)dx

))
(1.86)

where unknown are κj : (0, T ) → R for j = 1, . . . , J and y : QT → R. In the system (1.84)

- (1.86), as in previous se
tions, T > 0 and Ω, being a domain in Rd
, are given, and QT :=

Ω×(0, T ). Moreover, D,β1, . . . , βJ > 0, f̃ : Ω×(0, T )×R → R, w̃j : R → R, Ξj,Θj ,Y : QT → R,
ỹ0, g̃j , h̃j ,hj : Ω → R, Zj : (0, T ) → R and κ̃j0 ∈ R are given, for j = 1, . . . , J .

In the present se
tion, we provide existen
e and uniqueness results for the system (1.84) -

(1.86), together with estimates for its solutions. The system (1.84) - (1.86) 
annot be viewed

as a parti
ular 
ase of the system (0.1) - (0.3), thus the results 
on
erning (0.1) - (0.3) are not

transmittable to the system (1.84) - (1.86). Nevertheless, the proofs of the existen
e, uniqueness

and stability theorems for (1.84) - (1.86), whi
h will be formulated below, utilize the same

methods as the proofs of the analogous theorems 
on
erning (0.1) - (0.3). For this reason, we do

not present the proofs in the present se
tion.

The following assumptions will be ne
essary in this se
tion:

(D-1) Ω ⊂ Rd
is as in the assumption (B-1), i.e. Ω:

a) is bounded,

b) satis�es the 
one 
ondition,

(D-2) J , T , D and βj , for all j = 1, . . . , J , are as in the assumption (B-2),

(D-3) f̃ : (x̂, t̂, ŷ) 7→ f̂ ∈ R, a
ting on Ω× (0, T )× R, is:

a) globally Lips
hitz 
ontinuous w.r.t. ŷ for a.e. (x̂, t̂) ∈ QT , with a Lips
hitz 
onstant

independent of (x̂, t̂) ∈ QT ; we denote this Lips
hitz 
onstant by L̃ and put f̃0 := f(0)
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b) measurable w.r.t. (x̂, t̂) for all ŷ ∈ R,


) f̃0
, de�ned by f̃0(x̂, t̂) := f̃(x̂, t̂, 0) for (x̂, t̂) ∈ QT , belongs to L2(QT ),

(D-4) w̃j is globally Lips
hitz 
ontinuous; we denote the Lips
hitz 
onstant of w̃j by L̃j and put

w̃j0 := w̃j(0), for all j = 1, . . . , J ,

(D-5) ỹ0 ∈ L2(Ω) and κ̃j0 ∈ R, for j = 1, . . . , J ,

(D-6) Y ∈ L2(0, T ;L2(Ω)), Ξj ∈ L∞(0, T ;L2(Ω)), Θj ∈ L∞(QT ), Zj ∈ L∞(0, T ) and hj ∈
L2(Ω), for j = 1, . . . , J .

The solutions of the system (1.84) - (1.86) are understood in the sense analogous to that

given in De�nition 1.2.1:

De�nition 1.2.16 We say that (y, κ1, . . . , κJ ) ∈ X2
is a weak solution to the system (1.84) -

(1.86) if:

(a) y( . , 0) = ỹ0 in L2(Ω) and κj(0) = κ̃j0 for j = 1, . . . , J ,

(b) for all φ ∈ L2(0, T ;H1(Ω)), there holds

∫ T

0

〈
y′, φ

〉
+D

(
∇y,∇φ

)
L2(Ω)

+
(
−f̃( . , t, y) −

J∑

j=1

Ξjκj −
J∑

j=1

Θj g̃j , φ
)
L2(Ω)

dt = 0

(
) for all ξ ∈ L2(0, T ), for j = 1, . . . , J , there holds

∫ T

0

(
βjκ
′
j + κj − W̃j(y,Y)

)
ξ dt = 0

The point (a) in the above de�nition makes sense, be
ause, by arguments as in the 
ase of

De�nition 1.1.1 (see page 6), the 
ondition (y, κ1, . . . , κJ ) ∈ X2
implies y ∈ C([0, T ];L2(Ω)) and

(κ1, . . . , κJ) ∈ C([0, T ]).

The below analogues of results presented in Theorem 1.2.5 (estimates in X2
norm) and

Corollary 1.2.9 (existen
e and uniqueness) are valid:

Theorem 1.2.17 Let the part a) of the assumption (D-1) and assumptions (D-2) - (D-4), (D-

6) be ful�lled. Let û ∈ Ũ and (y0, κ10, . . . , κJ0) ∈ X0
. Assume also that

∥∥û
∥∥
Ũ
≤ RU

for some

RU > 0 and that

∥∥(ỹ0, κ̃10, . . . , κ̃J0)
∥∥
X0 ≤ R0

for some R0 > 0. Let (y, κ1, . . . , κJ ) ∈ X2
be a

weak solution of the system (1.84) - (1.86) 
orresponding to g̃j := ûgj , h̃j := ûhj
, for j = 1, . . . , J ,

and the initial 
ondition (ỹ0, κ̃10, . . . , κ̃J0). Then the following estimate holds:

∥∥(y, κ1, . . . , κJ )
∥∥
X2 ≤ C

where C depends only on

T, J, L̃,
∥∥f̃0

∥∥
2,2

, L̃1, . . . , L̃J , w̃10, . . . , w̃J0,D, β1, . . . , βJ ,

RU , R0,
∥∥Y

∥∥
2,2

,
∥∥Ξj

∥∥
2,∞

,
∥∥Θj

∥∥
L∞(QT )

,
∥∥Zj

∥∥
L∞(0,T )

,
∥∥h

∥∥
L2(Ω)

.
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Lemma 1.1.5

(properties of (1.4))

Lemma 1.1.6

(properties of (1.5))

❄

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏✏✮

Theorem 1.2.3

(existen
e for bounded

swit
hing fun
tions)

Theorem 1.2.5

(estimates in X2
norm)

❄

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏✏✮ ❄

Theorem 1.2.7

(existen
e for unbounded

swit
hing fun
tions)

Theorem 1.2.6

(stability in X2
norm)

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏✏✮❄

Corollary 1.2.9

(existen
e and uniqueness for

unbounded s. f.)

Figure 1.4: Dependen
ies between some of theorems in Chapter 1, 
on
erning the system (0.1) -

(0.3). Lemmas 1.1.5 and 1.1.6 
on
ern auxiliary equations, while the rest of the results indi
ated

in the above graph 
on
ern the system (0.1) - (0.3) dire
tly. In the graph, an arrow leading from

A to B means that A was utilized in the proof of B.

Theorem 1.2.18 Let assumptions (D-1) - (D-6) be ful�lled. Let

(
g̃j , h̃j

)J
j=1

∈ Ũ . Then, the

system (1.84) - (1.86) has a unique weak solution.

Remark. We have veri�ed that Theorem 1.2.17 and Theorem 1.2.18, as analogues of

Theorem 1.2.5 and Corollary 1.2.9, respe
tively, 
an be proven with the same methods as the

latter statements. Corollary 1.2.9 depend also on other results proven in Chapter 1, see Figure 1.4.

Fortunately, analogues of these results also 
an be proven for the system (1.84) - (1.86) with the

same methods.

We give one ne
essary 
omment 
on
erning the above matter. One of the ne
essary results

is an analogue of Lemma 1.1.5. We remark that the appropriate analogue of Lemma 1.1.5,

ne
essary here, should be proven (and 
an be proven), not for auxiliary the system (1.4) (whi
h
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was 
onsidered in Lemma 1.1.5), but for the following modi�
ation of (1.4):





yt(x, t)−D∆y(x, t) = f̃(x, t, y(x, t))+

+
∑J

j=1
Ξj(x, t)kj(t) +

∑J

j=1
Θj(x, t)g̃j(x) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(0) = ỹ0 on Ω

N

Sin
e, a

ording to the above remark, the proofs of Theorems 1.2.17 and 1.2.18 
an be


ondu
ted with the methods as the other proofs of Chapter 1, we skip them.



Chapter 2

Thermostat 
ontrol me
hanism �

numeri
al prototypes

The present 
hapter is devoted to numeri
al simulations 
on
erning the thermostat 
ontrol me
h-

anism, utilized in (0.1) - (0.3).

The aim of the simulations is twofold. First, we intended to investigate the e�
ien
y of the

thermostat 
ontrol me
hanism, understood as the ability of the latter to bring the state of the

pro
ess 
lose to some neighborhood of the referen
e state y∗. In our simulations, we observe

how the e�
ien
y 
hanges with 
hanges of the referen
e state, of the initial state and of the

number of the 
ontrol and measurement devi
es. Note that the results des
ribed in Chapter 1

do not say anything about the e�
ien
y of the thermostat 
ontrol me
hanism, in the mentioned

sense. Thus, the observations 
on
erning the e�
ien
y, made within the s
ope of the numeri
al

simulations, 
omplement the qualitative results given in Chapter 1.

Se
ond, we were interested in the question whether the state of the pro
ess 
ontrolled by

thermostats, for large time, be
omes independent of the initial state of the pro
ess or not.

This kind of independen
e is essential for the optimal targeting problem, announ
ed in �2 of

Introdu
tion, be
ause the independen
e on the initial state gives additional pra
ti
al advantage

to the 
ost fun
tional (0.8).

Being more pre
ise, assume that the pro
ess, 
ontrolled by thermostats, stabilizes 
lose to a


ertain state, independent of the initial state. Then, the 
ost fun
tional (0.8) with T0 
lose to

T , also be
omes independent of the initial state of the 
ontrolled pro
ess. In 
onsequen
e, still

assuming T0 
lose to T , the optimal targeting problem, whi
h bases on the latter 
ost fun
tional,

has solutions independent of the initial state. Nevertheless, we mention the above only to signalize


ertain issues 
on
erning the optimal targeting problem. We postpone the analysis of the latter

problem until Chapter 3 and Chapter 4.

As mentioned above, the e�
ien
y of the thermostat 
ontrol me
hanism will be understood

as the ability to bring the state of the pro
ess to a neighborhood of the referen
e state. To

work with this approa
h, it is ne
essary to observe whether the state of the pro
ess indeed stays,

for large time, in some neighborhood of the referen
e state or not. Assuming that this is the


ase, we 
an introdu
e an intuitive 
riterion to 
ompare the e�
ien
y of the thermostat 
ontrol

me
hanism in two distin
t situations. For example, let situations A and B di�er in the initial

state of the pro
ess. We will say that the thermostat 
ontrol me
hanism is more e�
ient in

situation A than in situation B if in situation A the 
ontrolled pro
ess stays in a neighborhood

of the referen
e state of a diameter smaller than in situation B. In parti
ular, assume that, after

some time, the pro
ess evolution stabilizes near to some time-invariant state. Then, the e�
ien
y

of the thermostat 
ontrol me
hanism 
an be measured in terms of the gap between the pro
ess
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state, at time moment large enough to observe the stabilization, and the referen
e state. In the

present 
hapter, we refer to the latter understanding of e�
ien
y. For this purpose, we measure

the gap between the pro
ess state and the referen
e state in terms of W 1,2(ΩN ) norm, where ΩN

denotes the triangulated domain utilized in the simulations.

Mathemati
ally, in the present 
hapter, by the initial state of the pro
ess 
ontrolled by

thermostats we mean y0 
omponent of the initial 
ondition (y0, κ10, . . . , κJ0) in the system (0.1)

- (0.3).

In the simulations des
ribed in the present 
hapter, the main equation of the system (0.1)

- (0.3) was dis
retized in spa
e with the use of the �nite element method. A square domain,

triangulated with triangular elements, was 
onsidered. The �nite element spa
e was the spa
e

of 
ontinuous fun
tions, linear on ea
h element. The time dis
retization was performed by

employing the impli
it Euler s
heme. The nonlinear terms entering the system (0.1) - (0.3) were

treated by means of the Pi
ard iterations method.

Three experiments were performed. The �rst 
on
erns the properties of the thermostat


ontrol me
hanism when it is fo
used on a task of preserving an unstable state. The se
ond one


on
erns an attempt of 
omparison of e�
ien
y of the thermostat 
ontrol me
hanism for various

initial states. The third one 
ompares the properties of the thermostat 
ontrol me
hanism when

two di�erent numbers of the 
ontrol and measurement devi
es are 
onsidered.

In the results of the simulations, we observe that the e�
ien
y of the thermostat 
ontrol

me
hanism, understood in the above mentioned sense, 
hanges with the 
hanges of the number

of the 
ontrol and measurement devi
es. The e�
ien
y varies also with 
hanges of the size of

the supports of fun
tions gj and hk, des
ribing the 
ontrol and measurement devi
es a
tions.

Con
erning the independen
e of the behavior of the 
ontrolled pro
ess on the initial state

for large time, varying results were observed. In some of the performed simulations, the results

suggest that the alleged independen
e is possible. However, there were also simulations suggesting

the opposite, namely that a 
hange of the initial state possibly 
ould result, even for long time

horizon, in an essentially di�erent state.

The order of the present 
hapter is as follows. In Se
tion 2.1, we des
ribe the stru
tural

assumptions imposed in the system (0.1) - (0.3) in our simulations, i.e. we spe
ify the domain,

the nonlinear terms et
. Next, in Se
tion 2.2, we des
ribe the utilized numeri
al s
heme in more

detail. Eventually, we pro
eed to Se
tion 2.3, whi
h is devoted to presentation and dis
ussion of

the results of the simulations.

2.1 Stru
tural assumptions

In the experiments des
ribed in Se
tion 2.3, the below assumptions were made.

We assumed that every 
ontrol devi
e in the thermostat 
ontrol me
hanism distributes energy

uniformly in a dis
 
entered at given xj ∈ Ω. We treated the measurement devi
es analogously,

assuming that every measurement devi
e observes a dis
-shaped area. Moreover, we assumed

that the numbers of the 
ontrol and measurement devi
es are equal. More pre
isely, in the

system (0.1) - (0.3), fun
tions gj and hk, 
hara
terizing the devi
es a
tions, were determined by

K = J (2.1)

gj := ûgj := σg( . − xj)|Ω, hj(x) := ûhj
:= σh( . − xj)|Ω (2.2)

for j = 1, . . . , J , where xj ∈ Rd
and σg, σh : Rd → R, and where σg and σh are given by:

σg(x) = Cg1B(0,rσ)(x), σh(x) = Ch1B(0,rσ)(x) (2.3)
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for 
ertain rσ, Cg, Ch > 0. In other words, the area of a
tions of every 
ontrol devi
e 
oin
ided

with area of a
tions of exa
tly one measurement devi
e.

We imposed the following assumption for the weights αjk:

αjk := ûαjk
:= δj,k (2.4)

for j, k = 1, . . . , J , where δj,k denotes the Krone
ker delta fun
tion of j and k (see Notation


onventions). The assumption (2.4) is natural in the 
ontext of assumptions (2.1), (2.2), (2.3).

Having (2.1), (2.2), (2.3) and (2.4), the 
ontrol (gj , hj , αjk)j=1,...,J ∈ U , applied in the sys-

tem (0.1) - (0.3), is determined on
e a sele
tion of the points x1, . . . , xJ and the parameters

rσ, Cg, Ch > 0 is made.

The above assumptions result in a simpli�ed version of the model (0.1) - (0.3), whi
h is a

fo
us of our interest in the present 
hapter, 
on
erning the numeri
al results:





yt(x, t)−D∆y(x, t) = f(y(x, t)) +
∑J

j=1
gj(x)κj(t) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(x) = y0(x, 0) for x ∈ Ω

(2.5)

together with





β1κ
′
1(t) + κ1(t) = w1

(∫

Ω
h1(x)(y − y∗)dx

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J(t) + κJ(t) = wJ

(∫

Ω
hJ(x)(y − y∗)dx

)
on [0, T ]

κj(0) = κj0 ∈ R for j = 1, . . . , J

(2.6)

for fun
tions gj and hj de�ned by (2.2) and (2.3).

The experiments were performed for a two-dimensional re
tangular domain:

Ω = (−1, 1) × (−1, 1) ⊂ R2
(2.7)

It was assumed that y∗ was time independent: y∗ = y∗(x).
The rea
tive term f treated in the experiments was:

f(s) = −s3 + s (2.8)

together with wj given by

wj(s) = Hw max(min(Lws, 1),−1) (2.9)

for 
ertain Lw, Hw, for j = 1, . . . , J .

Remark. In fa
t, our intention was to use wj de�ned by wj(s) = −Hwsgn(s) for a


ertain Hw, be
ause, a

ording to remarks in �1 of Introdu
tion, −sgn is a natural example

of a swit
hing fun
tion in thermostat 
ontrol me
hanism. Nevertheless, we wanted the data

for the simulations to be 
overed by the analyti
al results presented in Se
tion 1.2, 
on
erning

in parti
ular existen
e and uniqueness of solutions for the system (0.1) - (0.3). The results of

Se
tion 1.2 are proven under assumption that the swit
hing fun
tions are Lips
hitz 
ontinuous,
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what ex
ludes the 
hoi
e of −sgn or −Hwsgn. Therefore, for the simulations, we have de
ided
to 
hoose Lips
hitz fun
tions of a steep slope in point s = 0, approximating in a 
ertain sense the

ideal fun
tion −Hwsgn. Basing on the reasoning as in the example on page 17, we have 
hosen

the swit
hing fun
tion as in (2.9). N

For a given rσ, we 
onsidered the value of Ch to be determined by the following relation:

Cswitch

∫

Rd

σh = 1/
∣∣Lw

∣∣
(2.10)

for 
ertain Cswitch > 0. In the above, Ch is present in the de�nition of σh. The identity (2.10)

along with de�nition of σh in (2.3) allows to infer that

Ch =
(
π
∣∣Lw

∣∣Cswitch r
2
σ

)−1
(2.11)

Remark. For better explanation of the meaning of the 
onstant Cswitch > 0, we make the

following remark. Due to assumptions (2.1) and (2.4), the term wj

(∫
Ω hj(y − y∗)

)
in the right

hand side of (2.6) is the signal generated by the signal generator asso
iated with j-th 
ontrol

devi
e (see the nomen
lature introdu
ed in �1 of Introdu
tion). The 
on
ept is that Cswitch

de�nes a threshold gap between the solution y and the referen
e state y∗ after ex
eeding whi
h

the extremal value of signal is returned by the signal generators. Being more pre
ise, for a given

measurement devi
e, (whi
h a
tions are 
hara
terized by the fun
tion hj) we want the signal to
a
hieve its maximal value when y − y∗ ≈ Cswitch or y − y∗ ≈ −Cswitch in the area observed by

the measurement devi
e (i.e. in the support of hj). Taking the formula for wj into a

ount, the

extremal signal value is a
hieved for

∫
Ω hj(y − y∗) = ±1/

∣∣Lw

∣∣
(or for higher values of the latter

integral; nevertheless, in our idea, we are interested in the smallest gap between y and y∗ for
whi
h the extremal signal value is a
hieved; hen
e the latter 
ondition with sign �=�, not �≥�,
expressing that we want the value of the integral to 
oin
ide with the 
losest to zero extremal

points of wj). Pro
essing the above 
onditions yields

1/
∣∣Lw

∣∣ =

∫

Ω
hj
∣∣y − y∗

∣∣ ≈ Cswitch

∫

Ω
hj

This gives the relation (2.10), after assuming that �≈� sign 
an be repla
ed by the equality

sign and after assuming that

∫
Ω hj =

∫
Rd σh. The latter is 
orre
t if supp(σh( . − xj)) ⊆ Ω. For

simpli
ity of the above reasoning, referring rather to general 
on
epts than to pre
ise 
al
ulations,

we assumed it to be true. However, it 
an be not the 
ase in general. N

Altogether, for Ω given by (2.7), the rea
tive term as in (2.8), the swit
hing fun
tion wj as in

(2.9), gj , hj , αj,k de�ned by 
onditions (2.1), (2.2), (2.3), (2.4) and Ch as in the formula (2.11),

the system (2.5) - (2.6) is uniquely determined by the 
hoi
e of the following quantities:

y0, κ10, . . . , κJ0, y∗ J, x1, . . . , xJ

T, D, β1, . . . , βJ , rσ, Cg, Cswitch, Lw,Hw

The values of the above quantities utilized in the parti
ular experiments will be spe
i�ed in

Se
tion 2.3.

Remark. One may verify that the above Ω, f , wj , gj , hj for j = 1, . . . , J �ts the

assumptions of the existen
e, uniqueness and stability results from Se
tion 1.2.3. Moreover, for

parti
ular experiments des
ribed in Se
tion 2.3, we will 
hoose y0 and y∗ whi
h also ful�ll the

assumptions of the subje
t existen
e, uniqueness and stability results. N
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2.2 Numeri
al methods

The below numeri
al methods were utilized in the experiments des
ribed in Se
tion 2.3.

For numeri
al treatment of the system (2.5) - (2.6) we utilized the �nite element method to

solve the 
omponent y 
orresponding to the paraboli
 equation.

The triangulation of Ω, see (2.7), was of the type presented on Figure 2.1. The �nite element

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 2.1: The type of triangulation of Ω utilized in the experiment. The triangulation is su
h

that the mesh asso
iated with the triangulation has the same number of nodes along ea
h spatial

dire
tion.

spa
e 
hosen for the simulations was the spa
e of 
ontinuous fun
tions, linear on every element

of the triangulation. The time interval was dis
retized by sele
ting a uniformly distributed in

the set [0, T ] of time points. The impli
it Euler s
heme was used to solve the model w.r.t. the

time variable.

The nonlinear terms f and w were treated with the use of the Pi
ard iterations te
hnique.

A 
onstant number of the Pi
ard iterations for every time step was utilized. We preferred a


onstant number of Pi
ard iterations instead of applying the error-based stop 
riterion in order

to 
ontrol the 
omputational time.

In the further part of our work, we will use the following notation 
on
erning the above

des
ribed numeri
al s
heme:

N + 1 � the number of nodes along ea
h spatial dire
tion, for the mesh asso
iated

with the triangulation,

τN � the length of the mesh step along ea
h spatial dire
tion,

M + 1 � the number of time points in the time dis
retization,

τM � the length of the time step,

NPicard � the number of Pi
ard iterations in every time step.

A

ording to the above notation, the total number of nodes in the triangulation equals (N +1)2.
Moreover, relations τN = N−1 and τM = M−1 hold.

Let us sket
h in more detail the numeri
al s
heme applied for the system (2.5) - (2.6). Denote

the triangulation of type presented in Figure 2.1, 
orresponding to N+1 nodes along ea
h spatial

dire
tion, as ΩN . Denote the �nite element spa
e of fun
tions on ΩN being 
ontinuous on ΩN

and linear on every element of ΩN as P1(ΩN ).

Moreover, for a given fun
tion F : Ω → R, denote the 
ontinuous linear interpolation of F ,
taking exa
t values in the nodes of the mesh asso
iated with ΩN , by [F ]N . In addition, denote

by

→
F the verti
al ve
tor of the values of F in the nodes of the mesh asso
iated with ΩN . It

follows by the de�nitions that

→
F=

−→

[F ]N .



54 CHAPTER 2. THERMOSTAT. . .� NUMERICAL PROTOTYPES

Remark. Note that, ΩN , understood as a subset of R2
, equals Ω. As a 
onsequen
e, it is

legal to write P1(ΩN ) ⊆ L2(Ω) or L2(ΩN ) = L2(Ω). N

We begin with dis
retization in spa
e, pro
eeding as follows. In the system (2.5) - (2.6), we

take [gj ]N , [hj ]N , [y0]N and [y∗]N instead of gj , hj , y0 and y∗, respe
tively. Next, we transform
this modi�
ation of (2.5) - (2.6) to the following variational problem, using the P1(ΩN ) spa
e:





d
dt

(
yN , φ

)
L2(ΩN )

+ D
(
∇yN ,∇φ

)
L2(ΩN )

=

=
(
[f(yN )]N , φ

)
L2(ΩN )

+
∑J

j=1

(
[gj ]N , φ

)
L2(ΩN )

κj,N on [0, T ], ∀φ∈P1(ΩN )

yN (0) = [y0]N

(2.12)

and 



βj
d
dtκj,N + κj,N = wj

((
[hj ]N , (yN − [y∗]N )

)
L2(ΩN )

)
on [0, T ]

κj,N (0) = κj0
(2.13)

for j = 1, . . . , J , where (yN , κ1,N , . . . , κJ,N ), with yN (t) ∈ P1(ΩN ) and κj,N(t) ∈ R for t ∈ [0, T ],
is the desired solution. Note, that the term f(yN ) is not in P1(ΩN ). This is the reason for

whi
h, de�ning the above variational problem, we use [f(yN (t))]N in (2.12) instead of f(yN (t))
(for the sake of readability, the time dependen
e in (2.12) is hidden). Note also that term

(∇yN ,∇φN )L2(ΩN ) above is well de�ned, sin
e P1(ΩN ) ⊆ H1(ΩN ) (see Theorem 2.1.1. in [13℄).

Remark. Sin
e, as a subset of R2
, ΩN equals Ω, using notation �ΩN � instead of �Ω� in

(2.12) - (2.13) is not ne
essary. Nevertheless, in (2.12) - (2.13) we use notation �ΩN � in order to

stress that we are working with a spa
e dis
retization of original the system (2.5) - (2.6). N

De�ne the following matri
es:

MN =
(
(φm, φn)L2(ΩN )

)(N+1)2

n,m=1
, AN =

(
(∇φm,∇φn)L2(ΩN )

)(N+1)2

n,m=1

where φn, for n = 1, . . . , (N + 1)2, denotes the standard �hat� basis of the �nite element spa
e

P1(ΩN ).

Note that, given F,G ∈ P1(Ω), we 
an represent them as F =
∑(N+1)2

n=1

→
Fn φn and G =

∑(N+1)2

n=1

→
Gn φn, respe
tively. Hen
e:

(F,G)L2(Ω) = (
→
F )TMN

→
G, (∇F,∇G)L2(Ω) = (

→
F )TAN

→
G (2.14)

Now, note that

−−−−−→
[f(yN)]N= f

(→
yN

)
. Using this and the above observation 
on
erning produ
ts

of P1(ΩN ) fun
tions, we transform the system (2.12) - (2.13) further, to the matrix form:





d
dtMN

→
yN + DAN

→
yN= MNf

(→
yN

)
+

∑J

j=1
MN

−→

[gj ]N κj,N on [0, T ]

→
yN (0) =

−→

[y0]N

(2.15)

with 



βj
d
dtκj,N + κj,N = wj

( −→

[hj ]N
T

MN

(→
yN −

−→

[y∗]N
))

on [0, T ]

κj,N(0) = κj0

(2.16)
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for j = 1, . . . , J . The unknown solution of (2.15) - (2.16) is

( →
yN , κ1,N , . . . , κJ,N

)
.

We approximate the solution of (2.15) - (2.16), as mentioned, by using the impli
it Eu-

ler s
heme with M + 1 time points, uniformly distributed in interval [0, T ], and by using the

method of Pi
ard iterations with NPicard iterations to treat the nonlinear terms in ea
h time

step. Denote the approximation of solution of (2.15) - (2.16) obtained with these methods by

(
→
YN , k̂1,N , . . . , k̂J,N ). The latter approximation is a fun
tion de�ned in the time dis
retization

points, t = mτM , m = 0, 1, . . . ,M , with values in R(N+1)2 × RJ
.

Having this, we 
onstru
t the following fun
tion (YN , k1,N , . . . , kJ,N ), de�ned in time dis-


retization points, i.e. in t = mτM , m = 0, . . . ,M , and taking values in P1(ΩN ) × RJ
. For

t = mτM , m = 0, . . . ,M , we put YN (t) =
∑(N+1)2

n=1 (
→
YN (t))n φn and kj,N = k̂j,N for j = 1, . . . , J .

The fun
tion (YN , k1,N , . . . , kJ,N ) is the output of the above numeri
al s
heme for the system

(2.5) - (2.6). In other words, we treat (YN , k1,N , . . . , kJ,N ) as an approximation of the weak

solution of (2.5) - (2.6) (sin
e (2.5) - (2.6) is a parti
ular 
ase of (0.1) - (0.3), we understand the

weak solution of (2.5) - (2.6) in sense of De�nition 1.2.1).

All simulations whi
h results are presented in Se
tion 2.3 were performed with the use of the

above des
ribed s
heme.

For the purpose of our experiments, the matri
es MN and AN were 
omputed expli
itly, with

no use of numeri
al integration methods.

Note, that the above des
ribed numeri
al s
heme is fully determined by the 
hoi
e of the

parameters determining the �nite element spa
e, the time dis
retization s
heme and the nonlinear

term treatment method, i.e. by the following parameters:

N, M, NPicard

The values of the above parameters utilized in the parti
ular experiments will be spe
i�ed in

Se
tion 2.3.

2.3 Results of simulations

Now we pro
eed to presentation of the results announ
ed in the introdu
tion to Chapter 2.

The experiments des
ribed below were performed with the use of the numeri
al s
heme from

Se
tion 2.2 and under the stru
tural assumptions from Se
tion 2.1.

In the below dis
ussion of the results, we put stress on the e�
ien
y of the thermostat 
ontrol

me
hanism, understood in terms of the gap between the pro
ess state and the referen
e state for

large time. To realize the subje
t obje
tive, we pro
eed with the following strategy. We observe

whether stabilization of the pro
ess o

urred at the terminal time, t = T , of our simulations and
s
rutinize the gap at t = T .

We are also interested in observing whether the behavior of the pro
ess 
ontrolled by ther-

mostats exhibits independen
e on the initial state for large time. The idea to investigate this

matter is to wait until the pro
ess, 
onsidered with distin
t initial states, stabilizes, an then to


ompare the observed pro
ess states.

Our approa
h to the both of the above questions (e�
ien
y and independen
e on the initial

state) assume that the behavior of the pro
ess stabilizes after some initial period, in whi
h

os
illations possibly o

ur. Hen
e, throughout the results dis
ussion in the present se
tion, we

will stress whether we observed stabilization in the behavior of the 
ontrolled pro
ess or not.

Above, as everywhere else in the further part of the present 
hapter, by stabilization we mean

that the pro
ess remains 
lose to 
ertain time-invariant state. By os
illations we mean rapid


hanges of the pro
ess state.
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Moreover, to realize the above ideas 
on
erning e�
ien
y, it is ne
essary to have some measure

of the distan
e between the referen
e state the pro
ess state in a given time t ∈ [0, T ]. For this
end, we measure the distan
e between two given states in terms of W 1,2(ΩN ) norm, where ΩN

is as in Se
tion 2.2 (this is implemented by means of fun
tions EYN
and Egrad

YN
, de�ned below).

In Se
tion 2.3.1 and Se
tion 2.3.3, we des
ribe experiments illustrating the behavior of the

thermostat 
ontrol me
hanism for varying numbers of the 
ontrol and measurement devi
es. In

Se
tion 2.3.2, we take a look at behavior of the subje
t system in a situation where the initial

state of the pro
ess varies.

Se
tion 2.3.1 
on
erns the 
ase where y∗ is an unstable equilibrium of the pro
ess and the

supports of fun
tions gj and hj 
over the domain tightly. The 
ases of various sizes of the

supports of gj and hj are 
ompared. It is observed that the e�
ien
y of the thermostat 
ontrol

me
hanism improves as the size of the supports of gj and hj de
reases. In Se
tion 2.3.2, we

assume that the number of the 
ontrol and measurement devi
es, as well as the targeting of their

a
tions, are �xed and we do not assume that y∗ is an unstable equilibrium (y∗ is 
hosen as a

state representing some free boundary). We observe that the e�
ien
y of the thermostat 
ontrol

me
hanism is similar for two distin
t variants of the initial state. In Se
tion 2.3.3, we 
onsider y∗

as in Se
tion 2.3.2. We also assume that the initial state and the sizes of the supports of gj and hj
are �xed. We 
ompare the behavior of the thermostat 
ontrol me
hanism for varying numbers of

the 
ontrol and measurement devi
es. It is observed that the e�
ien
y of the thermostat 
ontrol

me
hanism de
reases as the number of the devi
es de
reases.

In all 
ases 
onsidered in Se
tion 2.3.1, Se
tion 2.3.2 and Se
tion 2.3.3 some stabilization of

the behavior of the pro
ess was observed, after an initial period of os
illations. In other words,

the thermostat 
ontrol me
hanism seemed to bring the pro
ess near to some time-invariant state.

Nevertheless, in some 
ases the a
hieved approximate time-invariant state seems to be dependent

on the initial state of the pro
ess. We 
omment on this matter more broadly in Se
tion 2.3.4.

Below, by numeri
al solution of the system (2.5) - (2.6) we mean the approximation of a

solution of (2.5) - (2.6), denoted in Se
tion 2.2 as (YN , k1,N , . . . , kJ,N ). For 
onvenien
e, here we
also keep notation (YN , k1,N , . . . , kJ,N ) for denoting the numeri
al solution of (2.5) - (2.6). In

addition, by numeri
al pro
ess we mean �numeri
al approximation of the pro
ess 
ontrolled by

thermostats�. Mathemati
ally, the notion of numeri
al pro
ess below 
oin
ide with YN .

In the presentation of the results, some plots appear and thus we give a short 
lari�
ation

of the utilized plot 
onvention here. The plots 
an be grouped into 
ertain 
lasses: 1) plots of

fun
tions from P1(ΩN ), 2) plots 
on
erning 
on�guration of the 
ontrol devi
es utilized in the

experiments and 3) error plots.

By 
on�guration of the 
ontrol and measurement devi
es we mean the 
hoi
e of the supports

of fun
tions gj and hj , whi
h 
hara
terize the 
ontrol and measurement devi
es a
tions.

The error plots are self-des
ribing. The rest of the plots need to be 
ommented.

The plots of fun
tions from P1(ΩN ) are plots:

• of the main 
omponent YN of the numeri
al solution of the system (2.5) - (2.6), in a given

moment of time,

• of the initial state y0 of the pro
ess or of the referen
e state y
∗
, utilized in the experiments.

In the plots of fun
tions from P1(ΩN ), the 
olor map extends from bla
k to white. The values

below a down threshold value of the 
olor map are plotted in bla
k and the values ex
eeding an

upper threshold value are plotted in white. The threshold values of the 
olor map are indi
ated

in the plots. The maximal and minimal values of the plotted data also are indi
ated there.

The plots 
on
erning the 
on�guration of the 
ontrol and measurement devi
es are visual-

izations of supports of fun
tions gj and hj . An essential remark is that, due to the stru
tural
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assumptions in the Se
tion 2.1, the supports of the fun
tions gj and hj are pairwise equal. Thus,
one dis
 in a plot 
on
erning the 
on�guration of the devi
es represents a pair of supports � the

support of gj and the support of hj , for 
ertain j ∈ {1, . . . , J}.
The mentioned visualizations of supports, if su�
iently pre
ise, give a unique 
hara
terization

of the parameter rσ and of the utilized sequen
e of the 
entral points, x1, . . . , xJ , appearing in

(2.3) (up to permutation). The latter information, along with information 
on
erning parameters

Cg and Ch (whi
h will be provided expli
itly in the des
ription of the experiments), gives full

information about the fun
tions gj and hj .

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(a) 16 devi
es

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(b) 36 devi
es

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(
) 64 devi
es

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(d) 20 devi
es

Figure 2.2: Control and measurement devi
es 
on�gurations for Se
tion 2.3.
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Figure 2.3: A part of data employed for simulations in Se
tion 2.3. The plotted fun
tions are

given by formulas (2.17) for Fig. 2.3a, (2.18) for Fig. 2.3b and (2.19) for Fig. 2.3
.

Figures 2.2 and 2.3 present data whi
h shall be utilized in the experiments below. The data

employed in parti
ular experiments will be spe
i�ed in their des
ription by referen
e to these

�gures. The fun
tions plotted in Figure 2.3 are given by the following formulas:

ŷ(x1, x2) = 1− 2
(
1 + e−15

3
√

13
13

(x2−1.5x1)
)

(2.17)

ŷ(x1, x2) = − 1 +
(
2
(
1 + e−30 x1

)−1
−

(
1 + e−30(x1−0.8)

)−1)
·
(
1 + e30 x2

)−1
+

+ 2
(
1 + e30(x1+0.2)

)−1
·
(
1 + e−30x2

)−1 (2.18)

ŷ(x1, x2) = cos
(
4πx1

)
·
(
1− 2

(
1 + e30x2

)−1)
(2.19)
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Moreover, assume that y∗ ∈ H1(Ω) and that YN is the main 
omponent of numeri
al solution

of (2.12) - (2.13), obtained with the methods des
ribed in Se
tion 2.2. For the time dis
retization

points t = mτM , m = 0, . . . ,M we denote by EYN
(t) the L2

error between YN and [y∗]N :

EYN
(t) =

∥∥YN (t)− [y∗]N
∥∥
L2(Ω)

and by Egrad
YN

(t) the gradient error between yN and [y∗]N , or more pre
isely:

Egrad
YN

(t) =
∥∥∇ (YN (t)− [y∗]N )

∥∥
L2(Ω)

where [y∗]N is de�ned as in Se
tion 2.2.

For brevity, below, values EYN
(t) and Egrad

YN
(t) will be 
alled error values.

The below des
ribed simulations have been performed with the use of the GNU O
tave

software.

2.3.1 Experiment 1 � unstable equilibrium

The present experiment is intended to illustrate properties of the thermostat 
ontrol me
hanism

in a situation where the referen
e state is unstable.

The following data were exploited for the present experiment:

T = 24 Cg = 16/π Lw = −10 κj0 = 0 ∀j=1,...,J

D = 0.01 Cswitch = 0.2 Hw = 10

together with the numeri
al s
heme spe
i�
ation given by:

N = 100, M = 2400, NPicard = 3

We 
onsidered the initial state y0 as on Figure 2.3b and the referen
e state y∗ ≡ 0. Note that

the y∗ taken into a

ount indeed is an unstable state for the assumed rea
tive term f .

We have performed three simulations, basing on various 
on�gurations of the 
ontrol and

measurement devi
es. The 
ases of J = 16, 36, 64, with the devi
es tightly 
overing the domain

with their e�e
ts, but varying in the size of the areas a�e
ted by a single devi
e, have been


onsidered. The utilized devi
es 
on�gurations are presented on Figures 2.2a, 2.2b and 2.2
.

One 
an say that these 
on�gurations di�er with resolution of measurement abilities and with

resolution of 
ontrol abilities.

In ea
h of the three simulations, os
illations in the pro
ess behavior faded after 
ertain initial

period. It 
ould be observed that, after this initial period, there emerged 
ertain patterns whi
h

did not underwent further rapid 
hanges. However still, some slow evolution of the numeri
al

pro
ess 
ould be observed in longer time horizon. Nevertheless, by the evolution of the pro
ess

whi
h we observed, the pro
ess states a
hieved for the time t = T seemed to be 
lose to 
ertain

time-invariant states of the 
onsidered model (however, the latter require further work for better

veri�
ation).

Now, let us 
omment on the e�
ien
y of thermostat 
ontrol me
hanisms asso
iated with

the addressed devi
es 
on�gurations. Probably, for many users the result on Figure 2.4a (
orre-

sponding to only 16 devi
es) 
annot be 
onsidered to be pre
ise solution in the 
ontext of the

problem of leading the state of the pro
ess to the state y∗ ≡ 0. Nevertheless, the situation was


hanging as we were in
reasing the number of the devi
es, keeping uniform distribution of their

a
tions through the domain. Comparing Figures 2.4a, 2.4b and 2.4
 suggests that the greater
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Figure 2.4: Numeri
al pro
ess at time t = T , for the devi
es 
on�gurations 
onsidered in Se
-

tion 2.3.1. Fig. 2.4a 
orresponds to the dev. 
onf. in Fig. 2.2a; Fig. 2.4b � to Fig. 2.2b; Fig.

2.4
 � to Fig. 2.2
.
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Figure 2.5: EYN
(t) and Egrad

YN
(t) for time points t = mτM , m = 0, . . . ,M/2 for simulations 
or-

responding to the devi
es 
on�gurations 
onsidered in Se
tion 2.3.1. For the sake of readability,

the time horizon of the error plots is limited to [0, 12]. After time t = 12 the error values still

evolves, however slowly, without rapid 
hanges.

the number of the 
ontrol and measurement devi
es is, the more pre
ise response of the 
ontrol

devi
es 
an be expe
ted. This stays 
onsistent with the natural intuition.

The drasti
 di�eren
e between the e�
ien
y of the thermostat 
ontrol me
hanism for 16
devi
es and the e�
ien
y for the 
ases of 36 and 64 devi
es is well visible on the error plots in

Figures 2.5a and 2.5a. The Reader may also 
ompare the obtained error values at time t = T in

Table 2.1.

Remark. The above des
ribed results suggest that, in the situation of the present experi-
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y part for: 16 dev. 36 dev. 64 dev.

Ey(T ) 1.3006 0.3568 5.5550e-08

Egrad
y (T ) 8.2791 3.4143 6.9999e-07

Table 2.1: The values of error at the terminal time (t = T ) for the devi
es 
on�gurations


onsidered in Se
tion 2.3.1. The presented values are rounded.

ment, the main question 
on
erning the e�
ien
y of the 
ontrol by thermostats 
an be redu
ed to

the question on the number of the devi
es whi
h would be su�
ient to a
hieve demanded pre
i-

sion. This is mu
h simpler adjustment pro
edure than pro
edures that often 
an be ne
essary in

the 
ase of systems with an open-loop 
ontrol. Suppose that we 
onsider a system with an open-

loop 
ontrol in whi
h the user is responsible for the 
hoi
e of right number of the 
ontrol devi
es

as well as for the 
hoi
e of the power fun
tions, κj . In other words, equations (2.6) are not taken

into a

ount. Su
h open-loop 
ontrol is more di�
ult to handle than our 
losed-loop 
ontrol,

utilized in the model (2.5) - (2.6), be
ause the user has to 
ontrol more variables. Ne
essary is the


hoi
e of the devi
es together with the power fun
tions in the introdu
ed open-loop 
ase, versus

the 
hoi
e of the devi
es only in the 
ase of our 
losed-loop 
ontrol. Moreover, in the open-loop

situation a proper 
hoi
e of the power fun
tions κj is hard to be done by intuition. Probably,

proper power fun
tions would be sear
hed by some optimization pro
edure, what additionally

in
reases the 
omplexity of e�orts ne
essary to deal with the open-loop 
ase. In addition, it is

reasonable to expe
t that the 
hoi
e of the power fun
tions depend on the initial state of the

pro
ess. Thus, it would be ne
essary to repeat the optimization pro
edure 
on
erning the power

fun
tions after every 
hange of the initial state.

To sum up, the observed simpli
ity of adjustment of the thermostat 
ontrol me
hanism stays

in a

ordan
e with the expe
ted advantages of the models with automati
 
orre
tion me
hanisms,

expressed in Introdu
tion. N

2.3.2 Experiment 2 � various initial 
onditions

Below, we present numeri
al results whi
h illustrate behavior o

urring in the investigated model

with 
ontrol by thermostats when perturbations of the initial state are indu
ed.

In the present experiment, the following data were used :

T = 4 rσ = 1/8 Lw = −10 Cswitch = 0.2

D = 0.02 Cg = 16/π Hw = 10 κj0 = 0 ∀j=1,...,J

together with the numeri
al s
heme spe
i�
ation given by:

N = 100, M = 400, NPicard = 3

The 
on�guration of the 
ontrol and measurement devi
es was assumed to be as the devi
es


on�guration with J = 64 utilized in the experiment from the Se
tion 2.3.1, i.e. as on Figure

2.2
. The referen
e state was as in Figure 2.3a.

Two simulations has been performed, with two variants of the initial state y0. The �rst of

them was as in Figure 2.3b, the se
ond initial state was as in Figure 2.3
.

For the both simulations, stabilization of the numeri
al pro
ess o

urred after initial period

of os
illations, i.e. 
ertain states whi
h did not underwent further visible 
hanges emerged.



2.3. RESULTS OF SIMULATIONS 61

min.val.= -1.4558
max.val.=1.4674

black=-1.00 white=1.00

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(a) 1st variant, t = 0.25

min.val.= -1.1357
max.val.=1.2222

black=-1.00 white=1.00

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(b) 1st variant, t = 1
min.val.= -1.6000
max.val.=1.6000

black=-1.00 white=1.00

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(
) 2nd variant, t = 0.25

min.val.= -1.0898
max.val.=1.0898

black=-1.00 white=1.00

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(d) 2nd variant, t = 1

Figure 2.6: Numeri
al pro
ess at time t = 0.25 and t = 1, for two initial state variants 
onsidered
in Se
tion 2.3.2. Fig. 2.6a, 2.6b 
orrespond to the i. 
ond. in Fig. 2.3b; Fig. 2.6
, 2.6d � to

Fig. 2.3
.

The subje
t stable states seemed to mat
h the referen
e state at some rate of a

ura
y, at

least visually. Moreover, the numeri
al pro
ess generated in both simulations o

urred to a
hieve

a high level of likeness in a short time. This is visible on Figures 2.6a - 2.6d � in parti
ular, the

�gures 
orresponding to the time t = 1 (Figures 2.6b and 2.6d) represent pro
ess states whi
h


an be 
onsidered to be visually similar. It suggests that the e�
ien
y of the thermostat 
ontrol

me
hanism is similar for the two subje
t simulations.

The error plots in Figures 2.7a and 2.7b 
on�rm that the 
omponents YN of the both nu-

meri
al solutions fall into the same neighborhood of the referen
e state, in the sense of the error

metri
 
onsidered in the present 
hapter. Moreover, the ratio of the error at the terminal time

of the experiment is 
lose to 1 (see Table 2.2). Thus, indeed, the e�
ien
y of the thermostat


ontrol me
hanism, observed in the above numeri
al simulations, 
an be 
onsidered to be similar

for the two initial state 
ases.

As an out
ome of the above observations, we propose the following hypothesis: the thermostat


ontrol me
hanism has the very useful property of preserving the e�
ien
y under perturbations

of the initial state.
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Figure 2.7: EYN
(t) and Egrad

YN
(t) for time points t = mτM , m = 0, . . . ,M/2, for simulations


orresponding to the two initial state variants 
onsidered in Se
tion 2.3.2. The time interval for

the plots is limited to [0, 2] for the sake of readability. No signi�
ant �u
tuations of the error

values were observed after time t = 2.

y part for: 1st variant 2nd variant ratio

Ey(T ) 0.12569814 0.12569916 1.00000812

Egrad
y (T ) 2.26541586 2.26541453 0.99999941

Table 2.2: The values of error at the terminal time (t = T ) for the initial state y0 
onsidered in

Se
tion 2.3.2 (with rounding to 8 signi�
ant digits).

Remark. In Figures 2.7a and 2.7b, it 
an be observed that the initial error was leveled

within a similar time, approximately equal t ≈ 1, in both 
ases. However, the reason of the

latter 
an be e.g. the 
omparable rank of values of the 
onsidered initial states. It is reasonable

to expe
t that if we had 
onsidered two initial states where one of them was de�ned as ten

thousand times the other then the time of leveling the initial error would di�er. Nevertheless, the

above observation suggests the following hypothesis 
on
erning the properties of the investigated

thermostat 
ontrol me
hanism: if the family of initial states satisfy 
ertain 
ommon bound, then

the time of 
onvergen
e of the 
ontrolled pro
ess to a given neighborhood of the stable state is

similar for all initial states in the subje
t family. N

Remark. An interesting observation 
an be made by 
omparing the results dis
ussed in

Se
tion 2.3.2 with the result 
on
erning the 
ase of 64 devi
es, dis
ussed in Se
tion 2.3.1. The

simulations whi
h generated the subje
t results share the same 
on�guration of the 
ontrol and

measurement devi
es. As we already have noted, in all the subje
t simulations the numeri
al

pro
ess behavior eventually stabilize. The error values (see Figures 2.5a, 2.5a, 2.7a, 2.7b) also

seem to stabilize at some stable value. Compare the error values in Table 2.2 and Table 2.1 (for

64 devi
es). An observation 
an be made that the stable error value is mu
h lower in the 
ase

of the referen
e state y∗ ≡ 0 than in the 
ase of y∗ as in Figure 2.3a. This is interesting sin
e
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one 
ould expe
t the opposite, as the behavior of the pro
ess near y∗ ≡ 0 is perhaps, roughly

speaking, more unstable than near y∗ as in Figure 2.3a. N

2.3.3 Experiment 3 � various numbers of thermostats

This experiment is devoted to 
ompare behavior of the thermostat 
ontrol me
hanism for two

di�erent 
on�gurations of the 
ontrol and measurement devi
es, where the size of the areas

a�e
ted by parti
ular devi
es equals in both 
ases but the number of the devi
es di�ers. This is

a situation di�erent than in Se
tion 2.3.1, where the 
onsidered devi
es 
on�gurations di�ered

not only with number of the devi
es but also with the sizes of the areas a�e
ted by the devi
es.

The following data was exploited for the present experiment:

T = 4 rσ = 1/8 Lw = −10 Cswitch = 0.2

D = 0.02 Cg = 16/π Hw = 10 κj0 = 0 ∀j=1,...,J

together with the numeri
al s
heme spe
i�
ation given by:

N = 100, M = 400, NPicard = 3

The initial state 
hosen for the present experiment was as in Figure 2.3b and the referen
e state

was as in Figure 2.3a.

Two simulations, 
orresponding to two 
on�gurations of the 
ontrol and measurement devi
es,

were performed. The 
onsidered 
on�gurations of the devi
es one with J = 64 and the other

with J = 20, are presented in Figures 2.2
 and 2.2d.

In both simulations, stabilization of the numeri
al pro
ess took pla
e after some initial period

of time. In other words, 
ertain states whi
h did not underwent further visible 
hanges emerged.

In the 
ase of 64 devi
es, the numeri
al pro
ess o

urred to stabilize qui
kly at some state

similar to the referen
e state, see Figures 2.8a and 2.8b. We 
an say that the pro
ess falls to

some relatively small neighborhood of the referen
e state in this 
ase. For the 
ase of 20 devi
es,

as we see on Figures 2.8
 and 2.8d, the pro
ess also seems to fall into some neighborhood of the

referen
e state. However, the di�eren
e between Figures 2.8
 and 2.8d seems to be bigger than

between Figures 2.8a and 2.8b, at least visually. Therefore, it is possible that for 20 devi
es, the

evolution toward the referen
e state is slower than in 
ase of the simulation with 64 devi
es.

In the error plots in Figures 2.9a and 2.9b we observe that the error values for both 
onsidered

simulations stabilize at some level. The subje
t error plots also suggest that the e�
ien
y of

the thermostat 
ontrol me
hanism, understood as the error at time t = T , di�ers for the two


onsidered devi
es 
on�gurations. The latter is also 
on�rmed by the error values at time t = T ,
presented in Table 2.3.

y part for: 64 dev. 20 dev. ratio

Ey(T ) 0.2609 0.1257 0.4817

Egrad
y (T ) 3.0757 2.2654 0.7366

Table 2.3: The values of error at the terminal time (t = T ) for the devi
es 
on�gurations


onsidered in Se
tion 2.3.3 (with rounding to 4 signi�
ant digits).

As a 
on
lusion, the above observations stays 
onsistent with the intuitive hypothesis that

the e�
ien
y of the thermostat 
ontrol me
hanism looses its e�
ien
y as the number of the


ontrol and measurement devi
es is de
reased.
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Figure 2.8: Numeri
al pro
ess at time t = 1 and t = 2 for the devi
es 
on�gurations 
onsidered

in Se
tion 2.3.3. Fig. 2.8a, 2.8b 
orrespond to the dev. 
onf. in Fig. 2.2
; Fig. 2.8
, 2.8d � to

Fig. 2.2d.

Remark. We already remarked above that in the 
ase of 20 devi
es the thermostat 
ontrol

me
hanism may drive the pro
ess state toward some stable state slower than in the 
ase of 64
devi
es. This is visible also in Figures 2.9a and 2.9b. For both plots, the error line 
on
erning the


ase of 20 devi
es tends to the terminal value slower, in 
omparison to the error line 
on
erning

64 
ontrol and measurement devi
es.

Hen
e, by the above observations, we propose the following hypothesis: when the number of

the devi
es is de
reased, the thermostat 
ontrol me
hanism loose not only its e�
ien
y, under-

stood in terms of the gap between the pro
ess state and the referen
e state for large time, but

also looses the speed of stabilizing the pro
ess. Note that this stays in opposite to the situation


onsidered in Se
tion 2.3.2. There, we 
on
luded with a hypothesis that, for a given 
on�guration

of the devi
es, the speed of stabilization is approximately the same for varying initial data. N

Remark. Summing up the observations made in Se
tion 2.3.3, one 
an say that the

20 devi
es thermostat 
ontrol me
hanism seems to loose in the 
ontest with the 64 devi
es

thermostat 
ontrol me
hanism. However, a situation where we have not enough 
ontrol devi
es
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Figure 2.9: EYN
(t) and Egrad

YN
(t) for time points t = mτM , m = 0, . . . ,M , for simulations


orresponding to the devi
es 
on�gurations 
onsidered in Se
tion 2.3.3.

to 
over the domain tightly with their e�e
ts, i.e. the situation of 20 devi
es 
onsidered above,

seems to be more natural than the situation of 64 devi
es.

This leads to further questions. The 
on�guration of the 20 
ontrol and measurement devi
es

presented on Figure 2.2d has been 
hosen for our experiments by intuition. Hen
e it is natural to

ask whether the a
tions of these devi
es 
ould be lo
alized in the domain Ω better. Or, whether

we 
ould remove more 
ontrol devi
es and still obtain a result whi
h would be 
alled satisfa
tory

with respe
t to a given 
riterion. Here, the realm of optimization begins. N

2.3.4 Remarks on large time behavior

In the above des
ribed experiments, observations 
on
erning stabilization of the numeri
al pro-


ess near to some time-invariant state were made. This allows to pose hypotheses on the de-

penden
e of these time-invariant states on the initial state. It will be 
onvenient to express the

hypotheses in question in the language of hypotheses 
on
erning the asymptoti
 behavior of the

system (0.1) - (0.3), understood in terms of existen
e and 
hara
terization of attra
ting sets. For

example, to say that the time-invariant state is probably independent of the initial state means

to say that the attra
ting set is probably a singleton (if exists).

It is not straightforward what should be the pre
ise form of the hypotheses in question. The

numeri
al prototypes in Se
tion 2.3.1, Se
tion 2.3.2 and Se
tion 2.3.3 suggest that the behavior

of the model (0.1) - (0.3) for large times varies depending its 
on�guration. By the 
on�guration

of the model (0.1) - (0.3) we understand the 
hoi
e of parti
ular parameters, as the initial state

y0, the referen
e state y∗ and fun
tions gj and hk, 
hara
terizing the 
ontrol and measurement

devi
es a
tions.

In the situations taken into a

ount in the simulations in Se
tion 2.3.2 and Se
tion 2.3.3,

intuition suggests that the pro
ess stabilizes at 
ertain state whi
h is relatively 
lose to the

referen
e state. Thus, for these 
on�gurations of the model, existen
e of a one-point or a very

small attra
ting set 
an be expe
ted.

The situation in the simulations 
on
erning the referen
e state being an unstable equilibrium,
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what was the 
ase in Se
tion 2.3.1, is di�erent. If the numeri
al pro
ess states in terminal time,

presented on the Figures 2.4a, 2.4b and 2.4
, are 
lose to 
ertain time-invariant state of the real

pro
ess then, by symmetry, the transposed states are 
lose to a time-invariant state as well. The

transposed state should be obtained at time t = T in the simulation with the transposed initial

state. By a transposed state we mean a state with swapped role of axis of the 
oordinate system

in R2
. In 
onsequen
e, in the 
ase of J = 16 
ontrol and measurement devi
es, the hypotheti


attra
ting set, if exists, 
annot be expe
ted to be small in the sense of diameter. The reason for

this is that in the subje
t 
ase the pro
ess state obtained at the terminal time (Figure 2.4a) is

quite distant from its transposed state. The attra
ting set, if exists, should 
ontain states whi
h

are 
lose to both the original and transposed state.

To sum up the above, the numeri
al results presented in this 
hapter suggest that the at-

tra
ting set for the dynami
al system asso
iated with the model (0.1) - (0.3), if exists, has the

stru
ture varying signi�
antly with 
hanges of the 
on�guration of the model. There are 
on�g-

urations for whi
h the results suggest a small, or even one-point attra
ting set, as well as there

are 
on�gurations for whi
h a rather big attra
ting set 
an be expe
ted.

Besides the above question on the stru
ture of the attra
ting set, one 
an also be interested

in the question on time ne
essary to bring the pro
ess near to the time-invariant state. The

subje
t information also is essential, if one wants to rank the thermostat 
ontrol me
hanism with

respe
t to the gap between the state obtained for large times and the referen
e state.

In this �eld, the di�eren
es also o

urred between parti
ular simulations. For simulations

des
ribed in Se
tion 2.3.2, time interval [0, 4] was enough for the numeri
al pro
ess to a
hieve

some state that seemed time invariant. This is also re�e
ted on the error plots on Figures 2.7a,

2.7b, 2.9a, 2.9b. In 
ontrary, for experiment des
ribed in Se
tion 2.3.1, for the 
ases of J = 16
and J = 36 devi
es, the evolution of the numeri
al pro
ess toward states whi
h seemed time-

invariant was very slow. This is the main reason for whi
h we have 
hosen the time interval

for this experiment equal to [0, 24], what is six times longer than the time intervals in other

experiments. At time t = 4, the numeri
al pro
ess still evolved, for the 
ases of J = 16 and

J = 36 devi
es des
ribed des
ribed in Se
tion 2.3.1. This is visible in the error plots in Figures

2.5a and 2.5b.

Thus, the numeri
al results des
ribed in the present 
hapter suggest that the time ne
essary

to bring the state of the 
ontrolled pro
ess near a time-invariant state varies wit 
hanges of the


on�guration of the model (0.1) - (0.3).

Nevertheless, the above hypotheses 
on
erning the stru
ture of the alleged attra
ting set and

the speed of evolution of the pro
ess base on the error graphs and on visual inspe
tion of the

numeri
al solution plots. Therefore, these hypotheses require further veri�
ation. It will be not

the subje
t of the present work.



Chapter 3

Optimal targeting problem �

properties

In the simulations des
ribed in Chapter 2, we have observed that the e�
ien
y of the thermostat


ontrol me
hanism, understood as the gap between the state of the 
ontrolled pro
ess and the

referen
e state at the terminal time T , may di�er for di�erent 
hoi
e of parameters in the ther-

mostat 
ontrol me
hanism (e.g. for di�erent referen
e states or di�erent numbers of the 
ontrol

and measurement devi
es). Hen
e the natural question 
on
erning improving the e�
ien
y of

the thermostat 
ontrol me
hanism.

The problem of improving e�
ien
y of the thermostat 
ontrol me
hanism 
an be understood

as the problem of optimizing the feedba
k law in this system, with respe
t to a 
ost fun
tional

whi
h re�e
ts the above understanding of e�
ien
y (where the feedba
k law is the algorithm

for 
omputing the response fun
tions κj in the system (0.1) - (0.3)). However, the problem of

optimizing the feedba
k law require a parametrization of the feedba
k law.

In many situations, it 
an be a natural assumption that the user of the thermostat 
ontrol

me
hanism 
annot freely manipulate the patterns of energy distributed in the domain by a given


ontrol devi
e but only 
an de
ide on the lo
ation of the pattern. Analogous remark 
on
erns the

a
tions of the measurement devi
es. We will thus parametrize the feedba
k law by assuming that

the patterns asso
iated with the a
tions of both 
ontrol and measurement devi
es are given and

that the 
ontrol parameter is the set of lo
ations of the subje
t patterns. Moreover, to ex
lude

the problems asso
iated with the 
hoi
e of weights αj,k, we will assume that αj,k are given.

The above assumptions lead us to the optimal targeting problem, announ
ed in �2 of Intro-

du
tion. The latter problem will be the subje
t of the present 
hapter.

To re
all, the optimal targeting problem bases on the system (0.1) - (0.3) with additional


onditions (0.4) - (0.7). The latter 
onditions allow to transform the system (0.1) - (0.3) to the

following system:





yt(x, t)−D∆y(x, t) =

= f(y(x, t)) +
∑J

j=1

(
PR,ΩTσg(xj)

)
(x)κj(t) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(x, 0) = y0(x) for x ∈ Ω

(3.1)

67
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together with





β1κ
′
1(t) + κ1(t) =

= w1

(∫

Ω

(
PR,ΩTσh

(x1)
)
(x)

(
y(x, t)− y∗(x, t)

)
dx

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J(t) + κJ(t) =

= wJ

(∫

Ω

(
PR,ΩTσh

(xJ)
)
(x)

(
y(x, t)− y∗(x, t)

)
dx

)
on [0, T ]

κj(0) = κj0 ∈ R for j = 1, . . . , J

(3.2)

where (y, κ1, . . . , κJ ) is the unknown and: σg, σh : Rd → R; xj ∈ Rd
; Ω is a domain in Rd

;

T,D, βj > 0, y∗ : QT → R; y0 : Ω → R; κj0 ∈ R; f,wj : R → R; where j = 1, . . . , J . Operators

Tσg and Tσh
are de�ned as in Appendix A.4. The operator PR,Ω

is the operator of restri
tion to

Ω of a fun
tion from Rd
to R.

For 
onvenien
e, in the present 
hapter, we will refer to the system (3.1) - (3.2) rather than

to the system (0.1) - (0.3) with 
onditions (0.4) - (0.7). Note that 
onditions (2.1), (2.2) and

(2.4), utilized in Chapter 2, are equivalent to 
onditions (0.4) - (0.7), 
onstituting the optimal

targeting problem. The di�eren
e is that in Chapter 2 we 
onsidered a parti
ular 
hoi
e of the

pattern fun
tions, given by the additional 
ondition (2.3), while in the present 
hapter we dismiss

the latter 
ondition, taking aim at allowing a more general 
hoi
e the pattern fun
tions.

Re
all the nomen
lature introdu
ed in �2 of Introdu
tion. In (3.1) - (3.2), fun
tions σg and

σh are 
alled the pattern fun
tions. The sequen
e (x1, . . . , xJ ) is 
alled the 
ontrol parameter ,

be
ause it determines the 
ontrol uniquely.

The 
ost fun
tional whi
h we will investigate is the following:

(x1, . . . , xJ ) 7→ λ̃

∫ T

T0

∫

Ω

∣∣y(x, t)− y∗(x, t)
∣∣2 dx dt (3.3)

where λ̃ > 0, T0 ∈ (0, T ) and y : QT → R is as in (3.1) - (3.2) � in parti
ular, y depends on the


ontrol parameter (x1, . . . , xJ ). The optimal targeting problem is to minimize the 
ost fun
tional

(3.3).

Re
all that, for T0 
lose to T , the 
ost fun
tional (3.3) 
an be understood as an approximate

measure of the gap between the pro
ess state and the referen
e state at the terminal time T (see

the remarks in �2 of Introdu
tion), i.e. as an approximate measure of e�
ien
y of thermostat


ontrol me
hanism. Re
all also that, sin
e we do not 
onsider the fun
tions gj and hj to represent
material obje
ts (see �1 of Introdu
tion), interse
tion of their supports with ea
h other and with

the exterior of Ω are allowed. In 
onsequen
e, we do not put any 
onstraints in the optimal

targeting problem (see �2 of Introdu
tion).

In this 
hapter, we intend to perform mathemati
al analysis of the optimal targeting prob-

lem. The main results of this analysis 
on
ern existen
e of minimizers and 
hara
terization of the

gradient of the 
ost fun
tional de�ned by (3.3), in a form of an expli
it formula. The formula for

the gradient of the 
ost fun
tional is a result of a great pra
ti
al meaning. An expli
it formula

for the gradient of (3.3) is ne
essary for performing many optimization pro
edures whi
h approx-

imate the lo
al minimizers of (3.3). In Chapter 4, we des
ribe results of numeri
al optimization

experiments in whi
h the formula for gradient of (3.3), derived in the present 
hapter, was uti-

lized. Moreover, an expli
it formula for the gradient of (3.3) has also a meaning for formulating

expli
it ne
essary optimality 
onditions for the 
onsidered optimization problem.
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The more detailed order of the present 
hapter is as follows. In Se
tion 3.1, the main goal is

to investigate the properties of the operator assigning solutions of (3.1) - (3.2) to a given 
ontrol

parameter (x1, . . . , xJ), let us 
all it the state operator. Knowledge on this properties is ne
essary
for further analysis, 
on
erning the 
ost fun
tional (3.3), be
ause the subje
t 
ost fun
tional 
an

be viewed as a superposition of the squared se
ond Lebesgue norm, of translation by −y∗ and of

the mentioned state operator. In Se
tion 3.1, the main results rely strongly on the properties of

the system (0.1) - (0.3) whi
h were investigated in Se
tion 1.2. Consequently, the main results of

Se
tion 3.1 are shown under stru
tural assumptions 
on
erning the system (3.1) - (3.2) similar to

the assumptions imposed in Se
tion 1.2 for the system (0.1) - (0.3), with some modi�
ations and

supplements, if ne
essary. To des
ribe brie�y the mentioned results, we show that, depending on

pattern fun
tions σg and σh, the mentioned state operator is 
ontinuous (for σg, σh ∈ L2(Rd)),
or even Lips
hitz 
ontinuous and weakly Gâteaux di�erentiable (for σg, σh ∈ W 1,2(Rd)).

In Se
tion 3.2, we fo
us dire
tly on analysis of the 
ost fun
tional (3.3). The analysis involves

also the results for the state operator obtained in Se
tion 3.1. We derive a simple 
riterion for

existen
e of minimizers for the 
ost fun
tional (3.3). This 
riterion is shown under 
onditions

su�
ient for 
ontinuity of the state operator (in parti
ular, σg, σh ∈ L2(Rd)) and additionally

assumes that the supports of the pattern fun
tions σg and σh are 
ompa
t. The latter assump-

tion is strong but su�
ient for our purposes be
ause, in the numeri
al optimization experiments

des
ribed in Chapter 4, we operate with the pattern fun
tions with 
ompa
t support. Next, we

pro
eed to analysis of di�erentiability of the 
ost fun
tional (3.3). In brief, the 
ost fun
tional

(3.3) is Gâteaux di�erentiable if the above mentioned state operator is weakly Gâteaux di�er-

entiable. Therefore, the Gâteux di�erentiability of the 
ost fun
tional (3.3) is shown under the

assumption σg, σh ∈ W 1,2(Rd) in parti
ular, as it is one of 
onditions ne
essary for weak Gâteaux
di�erentiability of the state operator in Se
tion 3.1. Under the same assumption, we also derive

a formula 
hara
terizing the gradient of the 
ost fun
tional, what is a main result of Se
tion 3.2.

Before we pro
eed to realization of the above obje
tives, let us introdu
e the de�nition of

weak solutions of the system (3.1) - (3.2). PDE-ODE the system (3.1) - (3.2) is a parti
ular 
ase

of (0.1) - (0.3). Thus, we assume the de�nition of weak solutions for (3.1) - (3.2) to be exa
tly

the same as for (0.1) - (0.3) � see De�nition 1.2.1. To be 
lear:

De�nition 3.0.1 An element (y, κ1, . . . , κJ ) belonging to X2
is a weak solution of the system

(3.1) - (3.2) if it is a weak solution for the system (0.1) - (0.3) 
orresponding to:

gj := PR,ΩTσg(xj), hj := PR,ΩTσh
(xj), αj,k = δj,k

for j, k = 1, . . . , J .

Above, the spa
e X2
is as in Chapter 1. Uniqueness and existen
e of weak solutions of (3.1) -

(3.2) will be one of results of Se
tion 3.1.2, thus we do not tou
h this matter now.

In many results of the present 
hapter, assumptions 
on
erning the system (3.1) - (3.2) will


over, in parti
ular, assumptions utilized in previous 
hapters for the system (0.1) - (0.3). More

pre
isely, assumptions (B-1) - (B-5) and (C-1) - (C-2) from Se
tion 1.2 will be in use in this


hapter as well. Nevertheless, some of the results in the present 
hapter will require additional

assumptions. These assumptions are:

(E-1) f ′(s) exists for all s ∈ R, in 
lassi
al sense,

(E-2) w′j(s) exists for all s ∈ R and all j = 1, . . . , J , in 
lassi
al sense,

(E-3) a) p2 ∈ (2, 4 − 4
p1
], where p1 is a given number satisfying p1 > 2 (in 
ase d = 1, 2) or

2d/(d− 2) ≥ p1 > 2 (in 
ase d > 2),
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b) y∗ ∈ Lp2(0, T ;L2(Ω)), for p2 as in a).

Moreover, assumptions 
on
erning pattern fun
tions σg and σh are ne
essary. Depending on

situation, a subset of the following set of assumptions will be utilized:

(F-1) σg, σh ∈ L2(Rd),

(F-2) σg, σh ∈ W 1,2(Rd),

(F-3) σg and σh have 
ompa
t supports in Rd
.

Notation remarks

In the present 
hapter, spa
es X1
, X2

, U and Ũ are as in Chapter 1. In addition, we de�ne the

following spa
e:

X3,p = Lp(0, T ;Lp(Ω))×
(
L2(0, T )

)J

where p ∈ [1,∞] is given and natural number J is the same as J appearing in the system (0.1) -

(0.3). We endow X3,p
with the standard produ
t topology, hen
e we 
onsider the following norm

for X3,p
:

∥∥(y, κ1, . . . , κJ)
∥∥
X3,p =

∥∥y
∥∥
p,p

+

J∑

j=1

∥∥κj
∥∥
L2(0,T )

We also de�ne

V =
(
Rd

)J

where natural number J is the same as J appearing in the system (0.1) - (0.3). V will be 
alled

the 
ontrol parameter spa
e. For a given element υ̂ ∈ V we denote its 
omponents as follows:

υ̂ = (υ̂1, . . . , υ̂J )

Note, that an arbitrary 
ontrol parameter (x1, . . . , xJ) in the system (3.1) - (3.2) 
an be

understood as an element of V and vi
e versa � an element υ̂ ∈ V determines a 
ontrol parameter

for the system (3.1) - (3.2), by relations xj := υ̂j , j = 1, . . . , J .
For a given T0 ∈ (0, T ), we use the following notation:

QT0
T := Ω× (T0, T )

In addition, for given fun
tions F1 : Rd → R, F2 : Ω → R, F3 : QT → R and F4 : (0, T ) → R
and a given index j ∈ {1, . . . , J}, the following de�nitions of operators will be valid in the present


hapter:

PR,Ω
� restri
tion operator de�ned by PR,Ω(F1) = F1|Ω (already used in the

system (3.1) - (3.2)),

PE,Ω
� extension by zero operator de�ned by PE,Ω(F2) = F2 on Ω and

PE,Ω(F2) = 0 on Ωc
,

PR,T0
� restri
tion operator de�ned by PR,T0(F3) = F3|QT0

T

,

Pi
QT

� inverse time operator de�ned by Pi
QT

(F3)(x, t) := F3(x, T − t), for all
(x, t) ∈ QT ,

Pi
T � inverse time operator de�ned by Pi

QT
(F4)(t) := F4(T − t), for t ∈ (0, T ),
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PR,V
j � operator for extra
tion of j-th 
omponent of υ̂ ∈ V , i.e. PR,V

j (υ̂) = υ̂j
for υ̂ ∈ V ,

PE,V
j � operator for extension of a ve
tor in Rd

by zero to a ve
tor in V , i.e.

PE,V
j (a) = υ̂ for a ∈ Rd

, where υ̂ ∈ V is su
h that υ̂j = a and υ̂k = 0

for k 6= j and where 0 is the zero ve
tor in Rd
.

By de�nition, PR,V
j : V → Rd

and PE,V
j : Rd → V . Con
erning the rest of the above operators,

in general, their domain and range spa
es 
an be 
hosen in various ways. In the present 
hapter,

we understand operators PR,Ω
and PE,Ω

as PR,Ω : L2(Rd) → L2(Ω) and PE,Ω : L2(Ω) → L2(Rd),
the operator PR,T0

as PR,T0 : L2(QT ) → L2(QT0
T ), the operator Pi

QT
as Pi

QT
: L2(QT ) → L2(QT )

and the operator Pi
T as Pi

T : L
2(0, T ) → L2(0, T ). This requires understanding the above def-

initions in the �almost everywhere� sense whi
h involves a
ting on the equivalen
e 
lasses of

fun
tions in the relation of being equal almost everywhere instead of a
ting on fun
tions them-

selves.

Besides the above preliminaries, the present 
hapter utilizes theory 
on
erning di�erentiabil-

ity in Bana
h spa
es, properties of the Nemytskii operators and properties of translation oper-

ators. The required material is 
ontained in Appendix A.1, Appendix A.3 and Appendix A.4,

respe
tively. In parti
ular, Appendix A.1 introdu
es the notion of the weak sequential dire
tional

derivative, whi
h will be ne
essary in the present 
hapter and whi
h is probably not 
ommon in

the literature.

In the present 
hapter, for a given F : Rn → R, n ∈ N \ {0}, the asso
iated translation

operator TF is always understood as TF : Rn → L2(Rn).

3.1 State operators

Below, we will pre
isely de�ne and formulate properties of two operators: 1) the operator S,

assigning the weak solution of (0.1) - (0.3) to a given 
ontrol (gj , hk, αjk)
k=1,...,K
j=1,...,J and 2) the

operator Z, assigning the weak solution of (3.1) - (3.2) to a given 
ontrol parameter x1, . . . , xJ ∈
Rd

. Sin
e the idea of both S and Z is to assign a realization of the pro
ess to given data, both

of these operators will be 
alled state operators.

The state operator Z will be utilized in the analysis of the optimal targeting problem, in

Se
tion 3.2. For this reason, we need to have some information about the properties of Z. The

properties whi
h will be ne
essary in Se
tion 3.2, are 
ontinuity and di�erentiability properties

of Z. Both of them will be investigated below.

Nevertheless, the operator S also is helpful be
ause, as we will see, it 
an be used to 
on
lude


ertain informations about Z. Thus, we start with pre
ise de�nition and Lips
hitz 
ontinuity of

S. This is done in Se
tion 3.1.1. There in
luded material is brief � the Lips
hitz 
ontinuity of

S is a simple 
on
lusion of theorems presented in Se
tion 1.2.2, 
on
erning the stability result

in the spa
e X2
. However, we show that the Lips
hitz 
ontinuity of S with values in X2

implies

also the Lips
hitz 
ontinuity of S with values in the spa
e X3,p2
, with suitably 
hosen p2 > 2.

In Se
tion 3.1.2 and Se
tion 3.1.3, we will fo
us on the operator Z. In Se
tion 3.1.2, we

present pre
ise de�nition of Z. Moreover, we brie�y indi
ate 
onditions under whi
h Z inherits

the Lips
hitz 
ontinuity property of S. Next, in Se
tion 3.1.3, we pro
eed to investigating the

di�erentiability of Z. This di�erentiability will be shown to hold in sense of weak Gâteaux

di�erentiability. Proving this will rely on the Lips
hitz 
ontinuity of Z, thus the 
onditions

required in Se
tion 3.1.2 for the Lips
hitz 
ontinuity are required also in Se
tion 3.1.3 for the

weak Gâteaux di�erentiability.
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3.1.1 Control-to-state operator � de�nition and 
ontinuity

We de�ne the state operator

S = (Sy,Sκ1 , . . . ,SκJ
) : U −→ X2

as the operator assigning to a given 
ontrol û ∈ U the weak solution of the system (0.1) - (0.3)


orresponding to gj := ûgj , hk := ûhk
and αjk := ûαjk

in the subje
t system.

Below, we justify brie�y that S is well posed and Lips
hitz 
ontinuous, in suitable spa
es.

These properties of S will be required in Se
tion 3.1.2.

It follows straight that under assumptions of Corollary 1.2.8 or Corollary 1.2.9, S(û) is well
de�ned, for an arbitrary û ∈ U . In addition, Theorem 1.2.6 allows to 
on
lude the Lips
hitz


ontinuity of S, under suitable assumptions. We summarize these observations in the following

theorem:

Theorem 3.1.1 In the system (0.1) - (0.3), let assumptions (B-1) - (B-5) and at least one of

the following:

• y∗ ful�lls the assumption (C-1) and fun
tions wk are bounded for k = 1, . . . ,K,

• y∗ ful�lls the assumption (C-2)

be ful�lled. Then, the operator S : U → X2
is well de�ned and Lips
hitz 
ontinuous on bounded

subsets of U , with respe
t to the norms of the 
onsidered spa
es.

In the sequel, we will need to have the Lips
hitz 
ontinuity of S in a spa
e di�erent than X2
,

what is the subje
t of the next theorem.

Theorem 3.1.2 Let the assumptions of Theorem 3.1.1 be ful�lled. Assume also that p2 is as in

the part a) of the assumption (E-3). Then the operator S understood as

S : U −→ X3,p2

is well de�ned and is Lips
hitz 
ontinuous on bounded subsets of U , with respe
t to the norms of

the 
onsidered spa
es.

Theorem 3.1.2 is a dire
t 
onsequen
e of Theorem 3.1.1 and the below lemma:

Lemma 3.1.3 Assume that p2 is as in the part a) of the assumption (E-3). Then, X2 ⊆ X3,p2

and X2 →֒ X3,p2
.

Proof. By de�nition ofX3,p2
, to justify the demanded in
lusion and 
ontinuous embedding,

it is enough to verify that

L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) ⊆ Lp2(QT )

L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) →֒ Lp2(QT )
(3.4)

Take p1 and p2 as in the part a) of the assumption (E-3). Then

L∞(0, T ;L2(Ω)) ∩ L2(0, T ;Lp1(Ω)) ⊆ Lp2(0, T ;Lp2(Ω))
∥∥y

∥∥
p2,p2

≤ C1 max
{

1
q ,

q−1
q

} (∥∥y
∥∥
2,∞

+
∥∥y

∥∥
p1,2

)
(3.5)
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for 
ertain 
onstant C1 = C(p1, p2,Ω). Indeed, by the Hölder inequality:

∥∥y
∥∥p2
p2,p2

=

∫ T

0

∫

Ω

∣∣y
∣∣p2−2∣∣y

∣∣2 dx dt

≤

∫ T

0

(∫

Ω

∣∣y
∣∣p2−2 p1

p1−2 dx
) p1−2

p1

(∫

Ω

∣∣y
∣∣2 p1

2 dx
) 2

p1 dt

≤ sup
[0,T ]

∥∥y
∥∥p2−2

p1(p2−2)

p1−2

∫ T

0

∥∥y
∥∥2
p1

dt

≤ C1

∥∥y
∥∥p2−2
2,∞

∥∥y
∥∥2
p1,2

where we have used the fa
t that the Hölder 
onjugate of

p1
2 is

p1
p1−2

and that L
p1(p2−2)

p1−2 (Ω) ⊆ L2(Ω)

sin
e by the assumptions it 
an be veri�ed that

p1(p2−2)
p1−2

≤ 2. The 
onstant C1 is the 
onstant

appearing in estimation of the L
p1(p2−2)

p1−2 (Ω) norm by the L2(Ω) norm, hen
e C1 = C1(p1, p2,Ω).
This justi�es the in
lusion in (3.5).

Now, still having the assumptions for p1 and p2 in mind, we 
an estimate the right hand side

by the Young inequality, taking an arbitrary exponent 1 < q < ∞:

∥∥y
∥∥p2
p2,p2

≤ C1

∥∥y
∥∥(p2−2)/p2
2,∞

∥∥y
∥∥2/p2
p1,2

≤ C1

(
1

q

∥∥y
∥∥

p2−2
p2

q

2,∞ +
q − 1

q

∥∥y
∥∥

2
p2

q

q−1

p1,2

)

sin
e the Hölder 
onjugate of q is

q
q−1 . Let us set q = p2

p2−2
or, equivalently, p2 = 2q

q−1 . Then

both exponents appearing in the right hand side of the above redu
e:

p2−2
p2

q = 1 and

2
p2

q
q−1 = 1.

Hen
e the inequality in (3.5).

Moreover, for p1 as in the part a) of the assumption (E-3), we have

L2(0, T ;H1(Ω)) ⊆ L2(0, T ;Lp1(Ω))∥∥ .
∥∥
p1,2

≤ C2

∥∥ .
∥∥
H1(Ω),2

(3.6)

where C2 = C2(p1,d,Ω). This is straightforward by the Sobolev embedding theorem (see [1,

Theorem 4.12℄).

(3.5) and (3.6) together yield the in
lusion and 
ontinuous embedding (3.4) for

p2 ∈ (2, 4− (4/p1) ], what 
on
ludes the proof. �

3.1.2 Targeting-to-state operator � de�nition and 
ontinuity

We de�ne the state operator

Z = (Zy,Zκ1 , . . . ,ZκJ
) : V −→ X2

as the operator assigning to a given 
ontrol parameter υ̂ ∈ V the weak solution of the system

(3.1) - (3.2) 
orresponding to xj := υ̂j for j = 1, . . . , J in the subje
t system.

We are interested in Lips
hitz 
ontinuity and weak Gâteaux di�erentiability of Z. The

di�erentiability of Z is the subje
t of Se
tion 3.1.3. Here, we fo
us on the 
ontinuity matter.

To deal with it, we will represent Z as the superposition of S with 
ertain other operator. This

kind of representation immediately allows to see that 
ontinuity properties of Z depend strongly

on 
ontinuity properties of S.
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Assuming that (2.1) holds and that pattern fun
tions σg, σh : Rd → R in (2.2) are given, we

de�ne the operator

Υ =
(
Υgj , Υhj

, Υαj,k

)
j,k=1,...,J

: V −→ U

by the following relations:

(Υ (υ̂))gj := Υgj(υ̂) := PR,ΩTσg(xj)

(Υ (υ̂))hj
:= Υhj

(υ̂) := PR,ΩTσh
(xj)

(Υ (υ̂))αj,k
:= Υαj,k

(υ̂) := δj,k

(3.7)

for j, k = 1, . . . , J , where δj,k is de�ned as in Notation 
onventions. We re
all that, in the

present 
hapter, the parti
ular operators above are understood as Tσg ,Tσh
: Rd → L2(Rd) and

PR,Ω : L2(Rd) → L2(Ω). Due to (3.7), the operator Υ is fully determined by the 
hoi
e of σg
and σh. The operator Υ 
an be understood as an operator assigning a 
ontrol to a given 
ontrol

parameter.

To 
on
lude properties of the operator Z, it �rst will be useful to know how properties of σg
and σh are related with properties of the operator Υ , whi
h de�nition depends on σg and σh.
Informations 
on
erning these relations are summarized in the below lemma:

Lemma 3.1.4 The following impli
ations are true:

a) if σg, σh ∈ L2(Rd), then operators Υgj : V → L2(Ω), Υhj
: V → L2(Ω) and Υαj,k

: V → R, for
j, k = 1, . . . , J , are well-de�ned and 
ontinuous and hen
e so Υ : V → U is,

b) if σg, σh ∈ W 1,2(Rd), then operators Υgj : V → L2(Ω), Υhj
: V → L2(Ω) and Υαj,k

: V → R,
for j, k = 1, . . . , J , are Lips
hitz 
ontinuous (globally) and hen
e so Υ : V → U is,


) if σg, σh ∈ W 1,2(Rd), then operators Υgj : V → L2(Ω), Υhj
: V → L2(Ω) and Υαj,k

: V → R,
for j, k = 1, . . . , J , are weakly Gâteaux di�erentiable and hen
e so Υ : V → U is.

Proof. It is straightforward that operators Υαj,k
are well-de�ned, Lips
hitz 
ontinuous,

weak Gâteaux di�erentiable. We are left to deal with the remaining operators Υgj and Υgj .

The operators Υgj and Υgj , for j = 1, . . . , J , 
an be expressed as

Υgj = PR,Ω ◦ Tσg ◦ P
R,V
j , Υgj = PR,Ω ◦ Tσh

◦ PR,V
j (3.8)

Operators PR,Ω : L2(Rd) → L2(Ω) and PR,V
j : V → Rd

are linear and 
ontinuous. Thus, the

question on the properties of Υgj and Υhj
, for j = 1, . . . , J , redu
es in its most essential part to

the question on the properties of Tσg .

Operators PR,Ω
and PR,V

j are well de�ned in respe
tive spa
es, for j = 1, . . . , J . Moreover,

for an arbitrary σg ∈ L2(Rd), translation operators Tσg and Tσh
are well de�ned from Rd

to

L2(Rd). Thus, by (3.8), Υgj and Υhj
, for j = 1, . . . , J , are well de�ned.

For an arbitrary σg ∈ L2(Rd), the translation operator Tσg : R
d → L2(Rd) is 
ontinuous

(see Theorem A.4.2). This, together with (3.8) and the 
ontinuity of PR,Ω
and PR,V

j , gives the


ontinuity of Υgj for j = 1, . . . , J . Analogous argument holds for operators Υhj
, for j = 1, . . . , J .

For σg ∈ W 1,2(Rd), the translation operator Tσg : R
d → L2(Rd) is Lips
hitz 
ontinuous (see

Theorem A.4.4). Moreover, operators PR,Ω
and PR,V

j , as linear and 
ontinuous operators, are

Lips
hitz 
ontinuous for j = 1, . . . , J . Hen
e, by (3.8), Υgj is so, for j = 1, . . . , J . Similarly,

σh ∈ W 1,2(Rd) implies Lips
hitz 
ontinuity of Υhj
, for j = 1, . . . , J .
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Also, for σg ∈ W 1,2(Rd), Theorem A.4.5 gives weak Gâteaux di�erentiability of Tσg : R
d →

L2(Rd). Therefore, by (3.8) and by the rules for di�erential 
al
ulus in Bana
h spa
es (see

Theorem A.1.4, Observation A.1.7 and Observation A.1.11 in Appendix A.1), Υgj is weakly

Gâteaux di�erentiable for σg ∈ W 1,2(Rd). Analogously, Υhj
is weakly Gâteaux di�erentiable for

σh ∈ W 1,2(Rd). �

Now, we pro
eed to investigating properties of the state operator Z. Note that, under the

assumption that (2.1) holds, the weak solution of (3.1) - (3.2) is exa
tly the weak solution of

(0.1) - (0.3) asso
iated with gj := Υgj (υ̂), hj := Υhk
(υ̂) and αj,k := Υαj,k

(υ̂). Hen
e,

Z = S ◦ Υ

In parti
ular, the properties of Z are determined by properties of S and Υ .
Having made the above observation, Lemma 3.1.4 together with Theorems 3.1.1 and 3.1.2

allow to justify the below:

Theorem 3.1.5 In the system (3.1) - (3.2), let assumptions (B-1) - (B-5) be ful�lled, with

additional restri
tion K = J . Assume also that at least one of the following is true:

• y∗ ful�lls the assumption (C-1) and fun
tions wj are bounded, for j = 1, . . . , J ,

• y∗ ful�lls the assumption (C-2).

Then, the following statements are true:

a) if σg, σh ful�ll the assumption (F-1), then Z : V → X2
is well de�ned and 
ontinuous,

b) if σg, σh ful�ll the assumption (F-3), then Z : V → X2
is in addition Lips
hitz 
ontinuous

(globally).

Moreover, let p2 be as in the part a) of the assumption (E-3). Then, the above statements hold

also with X2
repla
ed by X3,p2

.

Remark. Note, that Theorem 3.1.5 in parti
ular asserts that the weak solution of (3.1) -

(3.2) exists and is unique. N

Remark. Note, that in 
ontrary to the Lips
hitz 
ontinuity on the bounded sets stated

for S in theorems of Se
tion 3.1.1, the Lips
hitz 
ontinuity of Z in Theorem 3.1.5 is global.

The reason for the latter is the following. Z = S ◦ Υ , hen
e, for an arbitrary subset A of V ,

the Lips
hitz 
onstant of Z on A is lesser on equal to produ
t of Lips
hitz 
onstant of Υ on A
and Lips
hitz 
onstant of S on Υ (A). The Lips
hitz 
onstant of Υ is global (see Lemma 3.1.4).

Moreover, for all υ̂ ∈ V , the 
orresponding 
ontrol û = Υ (υ̂) belongs to a ball BU (0, rσ) in U ,
with radius rσ depending only on

∥∥σg
∥∥
2,Rd and

∥∥σh
∥∥
2,Rd . By Theorems 3.1.1 and 3.1.2, S is

Lips
hitz 
ontinuous on BU (0, rσ). Thus, we 
an take A = B(0, rσ) to justify the global Lips
hitz

ontinuity of Z. N

3.1.3 Targeting-to-state operator � di�erentiability

Now, we will fo
us on the matter of weak Gâteaux di�erentiability of the operator Z understood

as an operator from V to X1
. Z is 
ertainly well de�ned in this sense, be
ause X2 ⊆ X1

.

Nevertheless, investigating di�erentiability of Z : V → X1
involves longer justi�
ation.
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We will begin with presenting an auxiliary system of equations, whi
h we 
all the linearized

system and justifying some basi
 properties of the subje
t system. Next, we will formulate the

main theorem of the present se
tion, i.e. theorem 
on
erning weak Gâteaux di�erentiability of

Z. This theorem, as well as its proof, involves strongly the linearized system, therefore the

linearized system is essential for the present se
tion.

Let us start. The below system, whi
h we 
all the linearized system, will be utilized later for


hara
terizing the weak Gâteaux di�erential of Z:





yt −D∆y − f ′(ŷ)y =
∑J

j=1
Υgj(υ̂)κj +

∑J

j=1
DG,wΥgj(υ̂)(η̂)κ̂j on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(x, 0) ≡ 0 for x ∈ Ω

(3.9)

together with





β1κ
′
1 + κ1 = w′1

((
Υh1(υ̂), ŷ − y∗

)
L2(Ω)

)
·

·
((

DG,wΥh1(υ̂)(η̂), ŷ − y∗
)
L2(Ω)

+
(
Υh1(υ̂), y

)
L2(Ω)

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J + κJ = w′J

((
ΥhJ

(υ̂), ŷ − y∗
)
L2(Ω)

)
·

·
((

DG,wΥhJ
(υ̂)(η̂), ŷ − y∗

)
L2(Ω)

+
(
ΥhJ

(υ̂), y
)
L2(Ω)

)
on [0, T ]

κj(0) = 0 for j = 1, . . . , J

(3.10)

where: Ω is a domain, T > 0, QT := Ω × (0, T ); D,βj > 0; f,wj : R → R; κ̂j : (0, T ) → R;
ŷ, y∗ : QT → R; υ̂, η̂ ∈ V ; Υgj and Υhj


orrespond to given σg, σh : Rd → R (see (3.7) for the

explanation of the latter 
orresponden
e); where j = 1, . . . , J . In the system (3.9) - (3.10), the

unknown is the fun
tion (y, κ1, . . . , κJ ) : QT → RJ+1
.

The system (3.9) - (3.10) is a parti
ular 
ase of the system (1.84) - (1.86) in Se
tion 1.2.4,

with

g̃j := DG,wΥgj(υ̂)(η̂),

h̃j := DG,wΥhj
(υ̂)(η̂),

Y := ŷ − y∗,

Θj(x, t) := κ̂j(t),

Ξj(x, t) := Υgj (υ̂),

hj := Υhj
(υ̂),

Zj := w′j
((
Υhj

(υ̂), ŷ − y∗
)
L2(Ω)

)

ỹ0(x) := 0,

κ̃j0 := 0,

f̃(x, t, s) := f ′(ŷ(x, t))s,

w̃j(s) := s,

(3.11)

for j = 1, . . . , J , x ∈ Ω, t ∈ (0, T ), s ∈ R. Hen
e the below de�nition:

De�nition 3.1.6 (y, κ1, . . . , κJ) ∈ X2
is a weak solution of (3.9) - (3.10) if it is a weak solution

of (1.84) - (1.86) with 
onditions (3.11) (see De�nition 1.2.16).

The following lemma summarizes those properties of (3.9) - (3.10) whi
h will be ne
essary

for us in the sequel.

Lemma 3.1.7 Let assumptions (B-1) - (B-4) be ful�lled, with additional restri
tion K = J . Let
also assumptions (E-1) - (E-2) and (F-2) hold. Moreover, assume that ŷ, y∗ ∈ L2(0, T ;L2(Ω))
and κj ∈ L∞(0, T ), for j = 1, . . . , J .
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Then, the weak solution of the system (3.9) - (3.10) exists, is unique and moreover belongs

to X3,p2
, for p2 as in the assumption (E-3), for arbitrary υ̂, η̂ ∈ V . In addition, for a given

υ̂ ∈ V , the operator assigning the weak solution of (3.9) - (3.10) to η̂ ∈ V belongs to L(V,X1),
to L(V,X2) and to L(V,X3,p2) with p2 as in the assumption (E-3).

Proof. We will verify that the fun
tions de�ned by relations (3.11) ful�ll assumptions

(D-1) - (D-6) from Se
tion 1.2.4.

First, f ′ is a Borel measurable fun
tion, as the 
lassi
al derivative of a 
ontinuous fun
tion

(see assumptions (B-4) and (E-1)). Thus 
omposition of f ′ with the measurable fun
tion ŷ is

measurable. Hen
e, f̃ in (3.11) is measurable in (x, t) ∈ QT for an arbitrary s ∈ R. Moreover,

f ′ is bounded (by the assumption (B-3)), hen
e f̃ is Lips
hitz 
ontinuous in s, with the same


onstant for every (x, t) ∈ QT . Also, fun
tion f̃( . , . , 0) belongs to L2(QT ). Therefore, f̃ de�ned

in (3.11) ful�lls the assumption (D-3) in Se
tion 1.2.4.

Next, (Υhj
(υ̂), ŷ− y∗)L2(Ω), understood as a fun
tion of variable t, is measurable. To see this,

note that this fun
tion 
an be understood as a 
omposition of a strongly measurable fun
tion

ŷ − y∗, from [0, T ] to L2(Ω), with a 
ontinuous linear fun
tional on L2(Ω) given by Υhj
(υ̂) and

apply the Pettis theorem (see [3, Th. 1.1.1℄, [21, App. E.5℄, [49, Chap. V.4℄ or [52, p. 1012℄;

[21℄ and [52℄ do not 
ontain the proof of the theorem). The fun
tion w′j is Borel measurable,

as a 
lassi
al derivative of a 
ontinuous fun
tion (see assumptions (B-5) and (E-2)). Thus, the


omposition of w′j with a measurable fun
tion is measurable, for j = 1, . . . , J . Moreover, w′j is

bounded (by the assumption (B-4)), for j = 1, . . . , J . Hen
e, for j = 1, . . . , J , Zj de�ned in

(3.11) is an element of L∞(0, T ) and as su
h, obeys the assumption (D-6) in Se
tion 1.2.4.

The observation that, for j = 1, . . . , J , Y, Θj , Ξj , hj , ỹ0, κ̃j0 and w̃j de�ned in (3.11)

obey assumptions (D-4), (D-5), (D-6) and (C-2), respe
tively, follows straight. Moreover, by the

assumption (F-2) and Lemma 3.1.4, g̃j and h̃j in (3.11) belong to L2(Ω), for j = 1, . . . , J . Hen
e,(
g̃j , h̃j

)
j=1,...,J

∈ Ũ .

Therefore, the system (3.9) - (3.10) ful�lls the assumptions of Theorems 1.2.17 and 1.2.18 in

Se
tion 1.2.4. By Theorem 1.2.18, we 
on
lude that the weak solution of (3.9) - (3.10) exists in

X2
and is unique. In addition, for p2 as assumed, X2 ⊆ X3,p2

, X2 →֒ X3,p2
(see Lemma 3.1.3).

Hen
e, the weak solution of (3.9) - (3.10) belongs also to X3,p2
. Moreover:

• by the de�nition of weak Gâteaux di�erential, the operator

η̂ 7→ (DG,wΥg1(υ̂)(η̂), . . . ,DG,wΥgJ (υ̂)(η̂),DG,wΥh1(υ̂)(η̂), . . . ,DG,wΥhJ
(υ̂)(η̂)) =: ûυ̂,η̂

is linear and bounded from V to Ũ ,

• by the stru
ture of (3.9) - (3.10) and by Theorem 1.2.17, the operator assigning the weak

solution of (3.9) - (3.10) to a given element ûυ̂,η̂ is linear and bounded from Ũ to X2
.

Hen
e, the operator assigning the weak solution of (3.9) - (3.10) to a given η̂ ∈ V , as the

superposition of the above operators, is linear and bounded from V to X2
. Sin
e X1 ⊆ X2

,

X1 →֒ X2
, the subje
t operator is also linear and bounded from V to X1

. Moreover, sin
e

X2 ⊆ X3,p2
and X2 →֒ X3,p2

, the subje
t operator is linear and bounded from V to X3,p2
. �

Now, we formulate the main theorem of Se
tion 3.1.3:

Theorem 3.1.8 In the system (3.1) - (3.2), let assumptions (B-1) - (B-5) be ful�lled, with

additional restri
tion K = J . Assume also that at least one of the following is true:

• y∗ ful�lls the assumption (C-1) and fun
tions wj are bounded, for j = 1, . . . , J ,



78 CHAPTER 3. OPTIMAL TARGETING PROBLEM � PROPERTIES

• y∗ ful�lls the assumption (C-2).

Moreover, let assumptions (E-1) - (E-3) and (F-2) be ful�lled.

Then, the operator Z understood as

Z : V −→ X1

is well de�ned and weakly Gâteaux di�erentiable. Moreover, the value of the weak Gâteaux

di�erential of Z in a point υ̂ ∈ V applied to a dire
tion η̂ ∈ V , i.e. the value DG,wZ(υ̂)(η̂),

an be identi�ed with the element (ỹ, κ̃1, . . . , κ̃J ) ∈ X1

whi
h is the weak solution to the system

(3.9) - (3.10) with 
onditions ŷ = Zy(υ̂) and κ̂j = Zκj
(υ̂).

Remark. In the assumptions of the above theorem, the assumption (E-3) is not ne
essary if

y∗ ful�lls the assumption (C-2). But if y∗ ful�lls the assumption (C-1) only, then the assumption

(E-3) is essential. N

Remark. Note that, under assumptions of Theorem 3.1.8, Lemma 3.1.7 
an be applied.

Hen
e, the element (ỹ, κ̃1, . . . , κ̃J) ∈ X1
in Theorem 3.1.8 is well de�ned. Moreover, as Lemma

3.1.7 states, for a given υ̂, the operator assigning (ỹ, κ̃1, . . . , κ̃J) ∈ X1
to η̂ ∈ V , denote it

Ẑ υ̂ : V → X1
, is linear and bounded. Hen
e indeed, the operator Ẑ υ̂

is meaningful as the

weak Gâteaux di�erential of Z in point υ̂. Therefore, Theorem 3.1.8, asserting in fa
t that

DG,wZ(υ̂)(η̂) = Ẑ υ̂(η̂) for all η̂ ∈ V , makes sense. N

Remark. Note also, that equality DG,wZ(υ̂)(η̂) = Ẑ υ̂(η̂) for all η̂ ∈ V , where Ẑ υ̂
is as

above, explains why we 
all the system (3.9) - (3.10) the linearized system. N

The following observation will be useful in the proof of Theorem 3.1.8:

Lemma 3.1.9 Let Bana
h spa
es X, Y and an operator T : X → Y , point û ∈ X and dire
tion

v̂ ∈ X be given. Assume that T is Lips
hitz 
ontinuous and Y is re�exive. Consider 
olle
tion

E of all sequen
es {εn}
∞
n=1 su
h that εn 6= 0, εn → 0 for n → ∞ and the di�eren
e quotients

εn
−1 (T (û+ εnv̂)− T (û)) are weakly 
onvergent to some limit in Y for n → ∞. Assume that

this limit is independent of the 
hoi
e of {εn}
∞
n=1 ∈ E, or more pre
isely, that there exists L ∈ Y

su
h that

{εn}
∞
n=1 ∈ E =⇒

T (û+ εnv̂)− T (û)

εn

n→∞
−→ L

Then δwT (û; v̂) exists and equals L.

To our knowledge, results of the above type are rarely formulated in the literature on PDEs.

We have derived the below simple proof by our own 
onsiderations. The proof is not te
hni
ally


omplex, thus the result is probably not new. However, we do not known a literature referen
e

for 
iting here.

Proof. For brevity, for a given ε 6= 0 denote T ε(û; v̂) := ε−1 (T (û+ εv̂)− T (û)). Let

Ẽ denote the 
olle
tion of all real sequen
es {εn}
∞
n=1 su
h that εn 6= 0, εn → 0 for n → ∞.

Establishing equality Ẽ = E will 
on
lude the proof, sin
e, under the axiom of 
hoi
e, Cau
hy

and Heine limit of a fun
tion de�nitions are equivalent in metri
 spa
es. The in
lusion Ẽ ⊇ E
follows straight. The in
lusion Ẽ ⊆ E 
an be justi�ed as follows.

First,

⋃
E 
ontains a set (−ε̄, ε̄) \ {0}, for some ε̄ > 0. It 
omes by 
ontradi
tion: if not,

then, by the axiom of 
hoi
e, there exists ǫ̃ ∈ Ẽ, ǫ̃ = {ε̃n}
∞
n=1 su
h that ǫ̃ ∩ (

⋃
E) = ∅. But, by

the Lips
hitz 
ontinuity of T , the 
orresponding di�eren
e quotients, T ε̃n(û; v̂), are bounded in



3.1. STATE OPERATORS 79

Y w.r.t. n. Thus, by re�exivity of Y , sequen
e ǫ̃ 
ontains a subsequen
e

˜̃ǫ = {˜̃εn}∞n=1 su
h that

T
˜̃εn(û; v̂) 
onverges weakly in Y as n → ∞. Hen
e,

˜̃ǫ ∈ E, what 
ontradi
ts ǫ̃ ∩ (
⋃

E) = ∅.
Having this, an arbitrary sequen
e belonging Ẽ 
onsists of elements of sequen
es belonging

to E. The in
lusion Ẽ ⊆ E will be shown on
e we justify that an arbitrary sequen
e 
onsisting of

elements of sequen
es belonging to E is still in E. For this end, it is now enough to verify that

all sequen
es from E have the same modulus of 
onvergen
e, i.e. for all φ ∈ Y ∗ for all λ > 0
there exists γ > 0 su
h that for all ǫ = {εn}

∞
n=1 ∈ E for all elements satisfying εn < γ there holds∣∣〈φ, T εn(û; v̂)− L〉Y ∗,Y

∣∣ < λ.

But this also 
omes by 
ontradi
tion. If this is not true, then, by the axiom of 
hoi
e, we

would be able to 
onstru
t a sequen
e ǭ = {ε̄n}
∞
n=1 
onsisting of elements of sequen
es from E

su
h that

∣∣〈φ, T ε̄n(û; v̂)− L〉Y ∗,Y

∣∣ ≥ λ for 
ertain λ > 0 and φ ∈ Y ∗. Hen
e, ǭ 
annot have any
weakly 
onvergent to L subsequen
e. But this is not possible: by the Lips
hitz 
ontinuity of

T , the di�eren
e quotients T ε̄n(û; v̂) are bounded in Y w.r.t. n, and therefore, by re�exivity of

Y , ǭ has a subsequen
e

¯̄ǫ = {¯̄εn}
∞
n=1 su
h that T ¯̄εn(û; v̂) 
onverges weakly in Y as n → ∞. By

assumption, the weak limit of

¯̄ǫ equals L, what is a 
ontradi
tion. �

Now, we are ready to pro
eed to the proof of the main theorem of the present se
tion.

Proof of Theorem 3.1.8. The fa
t that Z is well de�ned from V to X1
is 
lear by

Theorem 3.1.5 and by X2 ⊆ X1
, X2 →֒ X1

. Con
erning the di�erentiability matter, we will

prove that, in fa
t, the operator Z is weakly Gâteaux di�erentiable from V to X3,p2
, with p2

as assumed. This yields the asserted di�erentiability from V to X1
, sin
e p2 > 2 and thus

X3,p2 ⊆ X1
, X3,p2 →֒ X1

.

For ε 6= 0, denote di�eren
e quotients of Z in υ̂ in dire
tion η̂ as

Zε(υ̂; η̂) := ε−1 (Z(υ̂ + εη̂)−Z(υ̂))

Assume that ǫ = {εn}
∞
n=1 is a sequen
e su
h that εn 6= 0, εn → 0 for n → ∞ and that the


orresponding di�eren
e quotients are weakly 
onvergent to 
ertain Z̃ǫ(υ̂; η̂) ∈ X3,p2
:

Zεn(υ̂; η̂)⇀Z̃ǫ(υ̂; η̂) in X3,p2
, as n → ∞ (3.12)

Let E denote the 
olle
tion of all sequen
es ǫ = {εn}
∞
n=1 satisfying the above 
onditions. To

justify that Z is weakly Gâteaux di�erentiable from V to X1
, we need to establish that the

following hypotheses hold:

(Hyp-1) Z̃ǫ(υ̂; η̂) ∈ X3,p2
is independent of sequen
e ǫ ∈ E, i.e. there exists Z̃(υ̂; η̂) ∈ X3,p2

su
h

that Z̃ǫ(υ̂; η̂) = Z̃(υ̂; η̂) for all ǫ ∈ E.

(Hyp-2) Z̃(υ̂; . ) is a bounded linear operator from V to X3,p2
.

The above two hypotheses together, if proven, imply that Z is weakly Gâteaux di�erentiable

from V to X3,p2
. To justify it, assume temporarily that hypotheses (Hyp-1) and (Hyp-2) hold.

Having this, note that, by (Hyp-1), Lemma 3.1.9 
an be applied. Indeed, X3,p2
is re�exive and

Bana
h and, by Theorem 3.1.5, Z is Lips
hitz 
ontinuous with values in X3,p2
. Therefore, sin
e

(Hyp-1) holds, all assumptions of Lemma 3.1.9 are satis�ed. Thus it 
an be used to 
on
lude

that δwZ(υ̂; η̂) exists in X3,p2
and equals Z̃(υ̂; η̂). Now, if δwZ(υ̂; . ) is linear and bounded from

V to X3,p2
, then it 
an be identi�ed with the weak Gâteaux di�erential of Z : V → X3,p2

, in

point υ̂ ∈ V . But the linearity and boundedness follows by the relation δwZ(υ̂; η̂) = Z̃(υ̂; η̂) and
by (Hyp-2).
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Therefore, we are left to justify hypotheses (Hyp-1) and (Hyp-2). But the 
onsidered hy-

potheses will be straightforward on
e we prove that, for an arbitrary sequen
e ǫ ∈ E, Z̃ǫ(υ̂; η̂) is
the element of the spa
e X3,p2

whi
h is the weak solution of the system (3.9) - (3.10). Indeed, by

Lemma 3.1.7, the weak solution of (3.9) - (3.10) exists in X3,p2
and is unique. Hen
e, if Z̃ǫ(υ̂; η̂)

is the weak solution of (3.9) - (3.10) for an arbitrary ǫ ∈ E, then (Hyp-1) holds � we 
an write

that Z̃ǫ(υ̂; η̂) = Z̃(υ̂; η̂), for Z̃(υ̂; η̂) being the weak solution of (3.9) - (3.10). Moreover, if Z̃(υ̂; η̂)
is the weak solution of (3.9) - (3.10), then Lemma 3.1.7 states that the operator Z̃(υ̂; . ) is linear
and bounded from V to X3,p2

. Thus, (Hyp-2) also holds. Altogether, it remains to show that

Z̃ǫ(υ̂; η̂) solves the system (3.9) - (3.10) for an arbitrary ǫ ∈ E to 
omplete the proof.

Thus �x ǫ := {εn}
∞
n=1 ∈ E. Sin
e Z̃ǫ(υ̂; η̂) is in fa
t the sequential weak dire
tional derivative

of Z in X1
on sequen
e ǫ (see De�nition A.1.9), we will use notation δ̄ǫwZ(υ̂; η̂) in pla
e of

Z̃ǫ(υ̂; η̂). Moreover, for 
onvenien
e, denote for a given ε 6= 0:

(ỹε, κ̃ε1, . . . , κ̃
ε
J ) := Zε(υ̂; η̂), (ỹ, κ̃1, . . . , κ̃J) := δ̄ǫwZ(υ̂; η̂), (ŷ, κ̂1, . . . , κ̂J ) := Z(υ̂)

Consider the weak form of the system (3.1) - (3.2) (see De�nition 3.0.1) 
orresponding to

xj := υ̂j and the weak form of this system 
orresponding to xj := υ̂j + εη̂j , for j = 1, . . . , J
and for a given ε 6= 0. Subtra
t these weak forms and divide the resulting identities by ε. By

the above introdu
ed notation, we get that (ỹε, κ̃ε1, . . . , κ̃
ε
J ) is an element of X2

satisfying the

following 
onditions:

ỹε( . , 0) ≡ 0 in L2(Ω), κ̃εj(0) = 0 for j = 1, . . . , J
(3.13)

∫ T

0

〈
(ỹε)′ , φ

〉
+ D

(
∇ỹε,∇φ

)
L2(Ω)

+

−

(
F (υ̂ + εη̂))− F (υ̂))

ε
+

J∑

j=1

Gj(υ̂ + εη̂)−Gj(υ̂)

ε
, φ

)

L2(Ω)

dt = 0
(3.14)

∫ T

0

(
βj(κ̃

ε
j)
′ + κ̃εj −

Hj(υ̂ + εη̂)−Hj(υ̂)

ε

)
ξ dt = 0 (3.15)

for all φ ∈ L2(0, T ;H1(Ω)) and all ξ ∈ L2(0, T ), and where we have utilized the following

de�nitions:

F (υ̃)(x, t) := f
(
Zy(υ̃)(x, t)

)
a.e. on QT

Gj(υ̃)(x, t) := PR,ΩTσg (υ̃j)(x) Zκj
(υ̃)(t) = Υgj(υ̃)(x) Zκj

(υ̃)(t) a.e. on QT

Hj(υ̃)(t) := wj

(∫

Ω
PR,ΩTσh

(υ̃j)(x) (Zy(υ̃)(x, t)− y∗(x, t))dx
)

= wj

(∫

Ω
Υhj

(υ̃)(x) (Zy(υ̃)(x, t)− y∗(x, t))dx
)

a.e. on (0, T )

for υ̃ ∈ V and j = 1, . . . , J .
We intend to pass to the limit in identities (3.13) - (3.15), putting ε = εn and sending n to

∞. The passage in the linear terms follows straight, by (3.12). We need to fo
us on the nonlinear

terms appearing in the identity (3.14) and the identity (3.15). These are the terms asso
iated

with the di�eren
e quotients of F , of Gj and of Hj , for j = 1, . . . , J .
The �rst term. Let us start with the term asso
iated with the di�eren
e quotients of F ,

i.e.: ∫ T

0

( 1

εn
{F (υ̂ + εnη̂))− F (υ̂))} , φ

)
L2(Ω)

dt where φ ∈ L2(0, T ;H1(Ω))



3.1. STATE OPERATORS 81

For the limit passage, we need to justify that

1
εn

{F (υ̂ + εnη̂))− F (υ̂))} 
onverges weakly in

L2(0, T ;L2(Ω)), as n tends to ∞. But the weak 
onvergen
e in L2(0, T ;L2(Ω)) is equivalent to
the weak 
onvergen
e in L2(QT ). We will fo
us on investigating the latter. We will show that

the stated weak 
onvergen
e holds and that the weak limit is equal f ′(ŷ)δ̄ǫwZy(υ̂; η̂) = f ′(ŷ)ỹ.
Note, that F (υ̂) 
an be interpreted as F (υ̂) = Nf ◦ Zy(υ̂) where Nf denotes the Nemytskii

operator Nf asso
iated with the fun
tion f . Therefore, the 
onsidered di�eren
e quotients of F

onverge weakly in L2(QT ) to δ̄ǫw(Nf ◦ Zy)(υ̂; η̂), if the latter exists. Thus, we need to justify

that δ̄ǫw(Nf ◦ Zy)(υ̂; η̂) exists in L2(QT ) and equals f ′(ŷ)ỹ.
By Theorem 3.1.5 and by identi�
ation Lp2(0, T ;Lp2(Ω)) = Lp2(QT ), Zy 
an be understood

as Zy : V → Lp2(QT ). Moreover, by (3.12) and by the introdu
ed notation, δ̄ǫwZy(υ̂; η̂) exists in
Lp2(QT ) and equals ỹ.

By the assumption (B-3), it 
an be veri�ed that f obeys the following growth 
ondition

sup
s∈R

∣∣f(s)
∣∣/
(
1 +

∣∣s
∣∣p2/2) < ∞

Therefore, by Theorem A.3.2 in Appendix A.3, Nf is well de�ned asNf : Lp2(QT ) → L2(QT ). By
assumptions (B-3) and (E-1), the derivative f ′ exists and satis�es the following growth 
ondition:

sup
s∈R

∣∣f ′(s)
∣∣/
(
1 +

∣∣s
∣∣(p2/2)−1) < ∞

Thus, by Theorem A.3.5 in Appendix A.3, the Nemytskii operator Nf is Fré
het di�erentiable

from Lp2(QT ) to L2(QT ), with

DFNf (p)(q)(x, t) = f ′(p(x, t))q(x, t) a.e. on QT , for p, q ∈ Lp2(QT )

By the above properties of Zy and Nf and by the 
hain rule (see Theorems A.1.4 and A.1.10

in Appendix A.3), δ̄ǫw(Nf ◦ Zy)(υ̂; η̂) exists and

δ̄ǫw(Nf ◦ Zy)(υ̂; η̂) = DFNf (Zy(υ̂))δ̄
ǫ
wZy(υ̂; η̂) = f ′(ŷ)ỹ (3.16)

1

εn
{F (υ̂ + εnη̂))− F (υ̂))} ⇀ δ̄ǫw(Nf ◦ Zy)(υ̂; η̂) in L2(QT ) (3.17)

The se
ond term. Now, we pro
eed to the terms asso
iated with the di�eren
e quotients

of Gj , i.e.

∫ T

0

( 1

εn
{Gj(υ̂ + εnη̂))−Gj(υ̂))} , φ

)
L2(Ω)

dt where φ ∈ L2(0, T ;H1(Ω))

for j = 1, . . . , J . For the limit passage, we need to verify that

1
εn

{Gj(υ̂ + εnη̂))−Gj(υ̂))}


onverges weakly in L2(0, T ;L2(Ω)), as n → ∞, for j = 1, . . . , J . We will use the fa
t that the

weak 
onvergen
e in L2(0, T ;L2(Ω)) and the weak 
onvergen
e in L2(QT ) are equivalent. We

will show that the weak 
onvergen
e in L2(QT ) hold and that the weak limit equals Υgj(υ̂)κ̃j +
DG,wΥgj(υ̂)(η̂)κ̂j .

Term Gj , for j = 1, . . . , J , 
an be understood as:

Gj(υ̂) = I(Υgj (υ̂),Zκj
(υ̂))

where

I : L2(Ω)× L2(0, T ) −→ L2(QT ), I(p, q)(x, t) := p(x)q(t) a.e. on QT
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for p ∈ L2(Ω), q ∈ L2(0, T ). Therefore, for j = 1, . . . , J , the 
onsidered di�eren
e quotients

of Gj 
onverge weakly in L2(QT ) to δ̄ǫwI ◦ (Υgj ,Zκj
)(υ̂; η̂), if this derivative exists. Thus, it

is ne
essary to justify that the subje
t derivative indeed exists in L2(QT ), and that it equals

Υgj(υ̂)κ̃j +DG,wΥgj(υ̂)(η̂)κ̂j .
By (3.12) and by the introdu
ed notation, δ̄ǫwZκj

(υ̂; η̂) exists in L2(0, T ) and equals κ̃j .

By Lemma 3.1.4, the operator Υgj is well de�ned and weakly Gâteaux di�erentiable from V
to L2(Ω).

Moreover, it is straightforward that I(p, q) is measurable for arbitrary p ∈ L2(Ω) and q ∈
L2(0, T ) and, by Fubini theorem, belongs to L2(QT ). Thus, I is well-de�ned. I is also bilinear

and, again by Fubini theorem, bounded.

Hen
e, by the above properties of Zκj
, Υgj and I and by the produ
t rule for Bana
h spa
es

(see Theorem A.1.5 in Appendix A.1), we infer that, for j = 1, . . . , J , there holds:

δ̄ǫwI ◦ (Υgj ,Zκj
)(υ̂; η̂) = I

(
δ̄ǫwΥgj(υ̂; η̂),Zκj

(υ̂)
)

+ I
(
Υgj(υ̂), δ̄

ǫ
wZκj

(υ̂; η̂)
)

= DGΥgj (υ̂)(η̂)κ̂j + Υgj(υ̂)κ̃j
(3.18)

1

εn
{Gj(υ̂ + εnη̂)−Gj(υ̂)} ⇀ δ̄ǫwI ◦ (Υgj ,Zκj

)(υ̂; η̂) in L2(QT ) (3.19)

The third term. The remaining terms we need to investigate are the terms asso
iated with

the di�eren
e quotients of Hj , i.e. terms

∫ T

0

( 1

εn
{Hj(υ̂ + εnη̂))−Hj(υ̂))}

)
ξ dt where ξ ∈ L2(0, T )

for j = 1, . . . , J . We require to justify that

1
εn

{Hj(υ̂ + εnη̂))−Hj(υ̂))} 
onverges weakly in

L2(0, T ), as n tends to ∞. We will prove that this weak 
onvergen
e holds and that the weak

limit in this 
onvergen
e is equal

w′j
((
Υhj

(υ̂) , ŷ − y∗
)
L2(Ω)

)
·
((

DG,wΥhj
(υ̂)(η̂) , ŷ − y∗

)
L2(Ω)

+
(
Υhj

(υ̂) , ỹ
)
L2(Ω)

)

Term Hj 
an be understood as:

Hj(υ̂) = Nwj
◦ I

(
Υhj

(υ̂),Zy(υ̂)− y∗
)

= Nwj
◦ I ◦

(
Υhj

, iy∗ ◦ Zy

)
(υ̂)

where, for j = 1, . . . , J

iy∗ : L
p2(0, T ;L2(Ω)) → Lp2(0, T ;L2(Ω)) iy∗(p) := p− y∗

I : L2(Ω)× Lp2(0, T ;L2(Ω)) −→ Lp2(0, T ) I(q, r)(t) := (q( . ), r( . , t))L2(Ω) a.e. on [0, T ]

Nwj
: Lp2(0, T ) −→ L2(0, T ) is the Nemytskii operator 
orresp. to wj

for p, r ∈ Lp2(0, T ;L2(Ω)), q ∈ L2(Ω). Hen
e, for j = 1, . . . , J , the investigated di�eren
e

quotients of Hj 
onverge to δ̄ǫwNwj
◦ I ◦

(
Υhj

, iy∗ ◦ Zy

)
(υ̂; η̂), if the latter exists. Thus, analysis

of existen
e of this derivative is required. We will perform it now.

Note that Lp2(0, T ;Lp2(Ω)) ⊆ Lp2(0, T ;L2(Ω)) and Lp2(0, T ;Lp2(Ω)) →֒ Lp2(0, T ;L2(Ω)).
Thus, Zy is well de�ned with values in Lp2(0, T ;L2(Ω)). By the mentioned embedding and

by (3.12), the derivative δ̄ǫwZy(υ̂; η̂) exists in Lp2(0, T ;L2(Ω)) and, by the introdu
ed notation,

equals ỹ.



3.1. STATE OPERATORS 83

Next, it follows straight that the operator iy∗ is well de�ned. It 
an be veri�ed by the de�nition
of the Fré
het di�erentiability, that the operator iy∗ is Fré
het di�erentiable with DF iy∗(p)s = s,
for p, s ∈ Lp2(0, T ;L2(Ω)).

By Lemma 3.1.4, the operator Υhj
is well de�ned and weakly Gâteaux di�erentiable from V

to L2(Ω), for j = 1, . . . , J .

By Pettis theorem, I(q, r) is measurable for arbitrary q ∈ L2(Ω) and r ∈ Lp2(0, T ;L2(Ω)).
Moreover, by the Fubini theorem and the Hölder inequality:

∥∥I(p, q)
∥∥p2
Lp2 (0,T )

=

∫ T

0

∣∣(p( . ) , q( . , t)
)
L2(Ω)

∣∣p2 dt

≤
∥∥p

∥∥p2
2

∫ T

0

∥∥q( . , t)
∥∥p2
2

dt =
∥∥p

∥∥p2
2

∥∥q
∥∥p2
2,p2

Hen
e, I is well de�ned. I is also bilinear and, by the above estimates, bounded.

By the assumption (B-4), it 
an be veri�ed that wj , for j = 1, . . . , J , satis�es the following
growth 
ondition

sup
s∈R

∣∣wj(s)
∣∣/
(
1 +

∣∣s
∣∣p2/2) < ∞

Hen
e, by Theorem A.3.2 in Appendix A.3, Nwj
is well de�ned as Nf : Lp2(0, T ) → L2(0, T ).

Also, by assumptions (B-4) and (E-2), the derivative w′j exists and:

sup
s∈R

∣∣w′j(s)
∣∣/
(
1 +

∣∣s
∣∣(p2/2)−1) < ∞

Therefore, by Theorem A.3.5 in Appendix A.3, the Nemytskii operator Nwj
is Fré
het di�eren-

tiable from Lp2(0, T ) to L2(0, T ), with

DFNwj
(p)(q)(x, t) = w′j(p(t))q(t) a.e. on (0, T ), for p, q ∈ Lp2(0, T )

Having the above properties of Zy, iy∗ , Υhj
, I and Nwj

, for j = 1, . . . , J , the 
hain rule and

the produ
t rule (see Theorems A.1.4 and A.1.5 in Appendix A.1) 
an be 
ombined to infer that

δ̄ǫwHj(υ̂; η̂) exists and

δ̄ǫwHjk(υ̂; η̂) = δ̄ǫw
(
Nwk

◦ I ◦
(
Υhj

, iy∗ ◦ Zy

))
(υ̂; η̂)

= w′k
(
I
(
Υhj

(υ̂),Zy(υ̂)− y∗
))
·

·
{
I
(
δ̄ǫwΥhk

(υ̂; η̂),Zy(υ̂)− y∗
)
+ I

(
Υhk

(υ̂), δ̄ǫwZy(υ̂; η̂)
)}

= w′k
((
Υhk

(υ̂), ŷ − y∗
)
L2(Ω)

)
·

·
{(

DG,wΥhk
(υ̂)(η̂), ŷ − y∗

)
L2(Ω)

+
(
Υhk

(υ̂), ỹ
)
L2(Ω)

}

(3.20)

1

εn
(Hjk(υ̂ + εnη̂)−Hjk(υ̂)) ⇀ δ̄ǫwHjk(υ̂; η̂) in L2(QT ) (3.21)

The analysis of the nonlinear terms is �nished. Altogether, due to (3.12), (3.17), (3.19) and

(3.21), we 
an pass with n to in�nity in identities (3.13) - (3.15). Moreover, by (3.16), (3.18)

and (3.20) we infer that the limit passage results in identities whi
h 
orrespond pre
isely to the

de�nition of the weak solution of (3.9) - (3.10), with (ỹ, κ̃1, . . . , κ̃J ) = δ̄ǫwZ(υ̂; η̂) being the weak

solution (see De�nition 3.1.6). This 
on
ludes the proof of the theorem. �
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3.2 Optimization problem

In this se
tion, we fo
us on the optimal targeting problem, announ
ed in the beginning of Chap-

ter 3. The main point of the present se
tion is derivation of a formula for the Gâteaux di�erential

of the 
ost fun
tional (3.3). This formula allows to express ne
essary optimality 
onditions for

the optimal targeting problem in an expli
it way. Moreover, the subje
t formula was helpful

to perform the numeri
al optimization experiments, des
ribed in Chapter 4. For 
ompleteness

of our 
onsiderations, in this se
tion we present also a simple result 
on
erning existen
e of

minimizers of the 
ost fun
tional (3.3).

The present se
tion is organized as follows. We begin with reformulating the 
ost fun
tional

(3.3) within a fun
tional analysis framework, more 
onvenient to work with. Next, in brief

Se
tion 3.2.1, we give a basi
 
riterion 
on
erning existen
e of minimizers for the 
ost fun
tional.

This 
riterion assumes 
ompa
tness of the supports of the pattern fun
tions σg and σh, entering
the system (3.1) - (3.2). Restri
tion of 
ompa
t supports may seem to be strong. Nevertheless, in

Chapter 4, 
on
erning numeri
al optimization experiments, we will use patterns fun
tions with


ompa
t supports. Therefore results assuming 
ompa
t supports of the pattern fun
tions are

su�
ient for our purposes.

In Se
tion 3.2.2, we pro
eed to the matter of di�erentiability of the 
ost fun
tional. First,

it is shown that the 
ost fun
tional is Gâteaux di�erentiable. Next, we pass to 
hara
terizing

the Gâteaux di�erential of the 
ost fun
tional. Sin
e, by de�nition, the Gâteaux di�erential of

the 
ost fun
tional in point υ̂ ∈ V is a bounded linear fun
tional on V , it 
an be 
hara
terized

as an element of Λυ̂ ∈ V ∗ = V , dependent on υ. The main theorem of Se
tion 3.2.2 gives a

formula for Λυ̂
. The above results on di�erentiability of the 
ost fun
tional require the operator

Z, de�ned in Se
tion 3.1.2, to be weakly Gâteaux di�erentiable. Hen
e, these results inherit the

assumptions guarantying weak Gâteaux di�erentiability of Z, see Se
tion 3.1.3.

In Se
tion 3.2.1 and Se
tion 3.2.2, the main results assume, in parti
ular, that in the system

(3.1) - (3.2) the fun
tion f is globally Lips
hitz and y0 belongs to L
2(Ω). In Se
tion 3.2.3, we show

how to generalize the main results of Se
tion 3.2.1 and Se
tion 3.2.2 to the 
ase where f is lo
ally

Lips
hitz only, with the 
ondition (1.73) and where y0 ∈ L∞(Ω). The results of Se
tion 3.2.3 
over
the 
ase of the data utilized in the numeri
al optimization experiments des
ribed in Chapter 4.

Let us start. Note, that if the assumptions for the system (3.1) - (3.2) are su
h that the weak

solution exists (i.e. y ∈ L2(QT ), in parti
ular), then the 
ost fun
tional (3.3) 
an be identi�ed

with the 
ost fun
tional I , de�ned as follows:

I : V → R, I(υ̂) := λ̃
∥∥ZT0

y (υ̂)− y∗T0
∥∥2
L2(Q

T0
T

)
(3.22)

where parameters λ̃ > 0 and T0 ∈ (0, T ) are given, QT0
T is de�ned as in the beginning of the

present 
hapter and

ZT0
y := PR,T0 ◦ Zy, y∗T0 := PR,T0(y∗) (3.23)

We re
all that, in the present 
hapter, the operator PR,T0
is understood as PR,T0 : L2(QT ) →

L2(QT0
T ). Conditions (3.22) - (3.23) are more 
onvenient for analysis than the 
ondition (3.3).

Hen
e, sin
e now until the end of Se
tion 3.2, we will fo
us 
onditions (3.22) - (3.23) instead of

the 
ondition (3.3).

Having the above de�nition of I , we formulate the optimization problem that we will fo
us

on as:

inf
υ̂∈V

I(υ̂) (3.24)
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3.2.1 Existen
e of lo
al minimizers

In this brief se
tion, we address the question 
on
erning the existen
e of solutions to the problem

(3.24). The following result is true:

Theorem 3.2.1 In the system (3.1) - (3.2), let assumptions (B-1) - (B-5) be ful�lled, with

additional restri
tion K = J . Assume also that at least one of the following is true:

• y∗ ful�lls the assumption (C-1) and fun
tions wk are bounded, for j = 1, . . . , J ,

• y∗ ful�lls the assumption (C-2).

and that σg, σh ful�ll assumptions (F-1) and (F-3). Then, the optimization problem (3.24)

attains at least one solution.

Proof. Let distV denote the metri
 in the metri
 spa
e V . By the assumption (F-3),

I : V → R is 
onstant on the set Ec
, being the 
omplement in V of

E =
{
(x1, . . . , xJ) : dist(xj ,Ω) ≤ Csupp j = 1, . . . , J

}

where Csupp = max{diam(supp(σg)),diam(supp(σh))}. Indeed, the operator Υ is 
onstant on

Ec ⊆ V and hen
e Zy = Sy ◦ Υ is 
onstant on Ec
and so I is.

On the other hand, our assumptions allow to apply Theorem 3.1.5 and 
on
lude that Z : V →
X2

is 
ontinuous. By this, the 
omponent Zy of Z is 
ontinuous when understood as Zy : V →

L2(QT ). Hen
e, it 
an be veri�ed that ZT0
y : V → L2(Qt1

T ) is 
ontinuous as well. The latter

allows to infer the 
ontinuity of I : V → R.
Moreover, due to the assumption (F-3), E ⊂ V is 
ompa
t or empty. In the 
ase when E is


ompa
t, I , as a 
ontinuous fun
tional, attains its minimum on E in some point ῡ ∈ E. Then

the minimal value of I on V is min{I(υ̂),I(ῡ)} for an arbitrary υ̂ ∈ Ec
. In the 
ase of empty E

the minimal value of I on V is I(υ̂) for an arbitrary υ̂ ∈ Ec
. �

Remark. The proof of Theorem 3.2.1 is simple due to the restri
tive the assumption

(F-3). Nevertheless, the assumption (F-3) su�
e to 
over the data 
onsidered in the numeri
al

optimization experiments des
ribed in Chapter 4. N

Remark. Dispensing the assumption (F-3) in Theorem 3.2.1 is not an obvious modi�
a-

tion. This assumption allowed to redu
e the optimization problem to the problem of existen
e

of minimizers of I on a 
ompa
t subset of V , what, along with the assumptions su�
ient for

the 
ontinuity of I , immediately justi�ed the desired result. Without the assumption (F-3), the

methods of the proof of Theorem 3.2.1 do not redu
e the problem to the problem of minimization

on a 
ompa
t subset of V . Hen
e, in this situation, the natural strategy would be to sele
t a

minimizing sequen
e, to justify its boundedness in V , to sele
t a weakly 
onvergent subsequen
e

and next to justify the properties of I ne
essary for the limit passage on this subsequen
e. In

situations of this kind, it is 
ommon that the boundedness of the minimizing sequen
e is 
on-


luded by the presen
e of some 
oer
ing term in the de�nition of a 
ost fun
tional. Unfortunately,

the de�nition of I does not 
ontain any 
oer
ing term, allowing to obtain boundedness of the

minimizing sequen
e. Thus, the mentioned strategy would be not straightforward to apply.

The above makes the problem of dispensing the assumption (F-3) in Theorem 3.2.1 inter-

esting. However, we would like to fo
us rather on the problem of 
hara
terizing the solutions of

problem (3.24) than on the problem of existen
e of its solutions. Therefore, we do not 
ontinue

the investigation of the latter problem in the present work. N



86 CHAPTER 3. OPTIMAL TARGETING PROBLEM � PROPERTIES

3.2.2 The gradient of the 
ost fun
tional

Se
tion 3.2.2 is devoted to investigating the di�erentiability of I : V → R and deriving a 
hara
-

terization of its di�erential. The 
hara
terization of the di�erential of I is the main theorem of

Se
tion 3.2.2. Before deriving the announ
ed 
hara
terization, we introdu
e an auxiliary system

of equations, whi
h we 
all the adjoint system. The idea of the proof of the main theorem 
onsists

in testing the solution of the linearized system (see Se
tion 3.1.3) with the solution of the adjoint

system, testing the solution of the adjoint system with the solution of the linearized system and


omparing the results of these testings. Hen
e, both the adjoint system and the linearized system

are essential for the proof of the main theorem of Se
tion 3.2.2.

To be more pre
ise, we aim in proving the Gâteaux di�erentiability of the 
ost fun
tional I ,
de�ned by (3.22) - (3.23), and representing its Gâteaux di�erential in the following form:

DGI(υ̂)(η̂) =
(
Λυ̂, η̂

)
V

(3.25)

for 
ertain Λυ̂ ∈ V ∗ = V . The element Λυ̂
in (3.25) is in fa
t the gradient of I and hen
e 
an be

utilized to perform gradient-type optimization pro
edures. The 
hara
terization of Λυ̂
, obtained

below in the present se
tion, was utilized in the numeri
al experiments des
ribed in Chapter 4.

Let us begin with some remarks on di�erentiability of I .

Lemma 3.2.2 Let the assumptions of Theorem 3.1.8 be ful�lled. Then, the 
ost fun
tional

I : V → R, de�ned in (3.22) - (3.23), is Gâteaux di�erentiable and

(DGI)(υ̂)(η̂) = 2λ̃
(
ZT0
y (υ̂)− y∗T0 , DG,wZ

T0
y (υ̂)(η̂)

)
L2(Q

T0
T

)
(3.26)

and DG,wZ
T0
y (υ̂)(η̂) 
an be 
hara
terized as follows:

DG,wZ
T0
y (υ̂)(η̂) = PR,T0

(
DG,wZy(υ̂)(η̂)

)
(3.27)

Proof. First, note that, by (3.22) and (3.23), I 
an be understood as

I(υ̂) = λ̃
∥∥PR,T0 ◦ iy∗ ◦ Zy (υ̂)

∥∥2
L2(Q

T0
T

)
(3.28)

where λ̃, T0 and QT0
T are as in (3.22) - (3.23) and where iy∗ is de�ned by

iy∗ : L
2(QT ) → L2(QT ), iy∗(p) := p− y∗ (3.29)

for p ∈ L2(QT ).

Note, that the de�nition of iy∗ in (3.29) makes sense under the assumption (E-3), sin
e

Lp2(0, T ;L2(Ω)) →֒ L2(QT ). It also follows by the de�nition of the Fré
het di�erentiability

that iy∗ is Fré
het di�erentiable and DF iy∗(p)(q) = q, for p, q ∈ L2(QT ). Moreover, the op-

erator PR,T0 : L2(QT ) → L2(QT0
T ) is linear and bounded and hen
e Fré
het di�erentiable with

DFP
R,T0(p)(q) = PR,T0(q), for p, q ∈ L2(QT ) (see Observation A.1.7 in Appendix A.1). In ad-

dition, sin
e the assumptions of Theorem 3.1.8 are ful�lled, the operator Zy is weakly Gâteaux

di�erentiable from V to L2(QT ).

By the above remarks, by (3.28) and by Theorem A.1.4 and Observations A.1.6, A.1.8 in

Appendix A.1, we 
on
lude that the assertion holds. �
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Lemma 3.2.2 justi�es the existen
e of DGI and, by (3.26), gives 
ertain 
hara
terization of

the latter. Nevertheless, the subje
t 
hara
terization is not of form (3.25), being our aim. Thus,

we now fo
us on deriving representation (3.25) of the di�erential of the 
ost fun
tional I .

The following system of equations, whi
h we 
all the adjoint system, will be ne
essary for our

purposes: 



− pt −D∆p− f ′(Ŷ )p = (Ŷ − y∗)1(T0,T )+

+
∑J

j=1
w′j

(∫

Ω
Υhj

(υ̂)(Ŷ − y∗) dx
)
Υhj

(υ̂) qj on QT

∂p

∂n
= 0 on ∂Ω× (0, T )

p(T, x) ≡ 0

(3.30)

together with 



− β1q
′
1 + q1 =

∫

Ω
Υg1(υ̂)p dx on [0, T ]

.

.

.

.

.

.

− βJq
′
J + qJ =

∫

Ω
ΥgJ (υ̂)p dx on [0, T ]

qj(T ) = 0 for j = 1, . . . , J

(3.31)

where: Ω is a domain, T > 0, QT := Ω × (0, T ) and, for j = 1, . . . , J , D,βj > 0 are given

numbers, f,wj : R → R, Ŷ , y∗ : QT → R are given fun
tions, υ̂ ∈ V , Υgj and Υhj

orrespond to

given σg, σh : Rd → R (see (3.7) for the explanation of the latter 
orresponden
e), T0 ∈ (0, T )
and 1(T0,T ) : (0, T ) → R denotes the 
hara
teristi
 fun
tion of interval (T0, T ) (see Notation


onventions). In the system (3.30) - (3.31), the unknown is the fun
tion (p, q1, . . . , qJ) : QT →
RJ+1

.

Note, that if (p, q1, . . . , qJ) was a 
lassi
al solution of the system (3.30) - (3.31), then

(Pi
QT

p,Pi
T q1, . . . ,P

i
T qJ), where P

i
QT

and Pi
T are de�ned as in the beginning of the present 
hap-

ter, would be a 
lassi
al solution of the system (1.84) - (1.86) in Se
tion 1.2.4, with

Y(x, t) := 0,

Θj(x, t) := 0,

Ξj := w′j

(∫

Ω
Υhj

(υ̂)Pi
QT

(Ŷ − y∗) dx
)
Υhj

(υ̂),

f̃(x, t, s) := f ′(Pi
QT

(Ŷ )(x, t))s +

+ Pi
QT

(Ŷ − y∗)(x, t)Pi
T

(
1(T0,T )

)
(t),

w̃j(s) := s,

hj := Υgj(υ̂),

Zj(t) := 1,

g̃j(x) := 0,

h̃j(x) := 0,

ỹ0(x) := 0,

κ̃j0 := 0,

(3.32)

for j = 1, . . . , J , x ∈ Ω, t ∈ (0, T ), s ∈ R.
The above remark explains the motivation behind the following de�nition of weak solutions

of (3.30) - (3.31), also involving the use of inverse time operators Pi
QT

and Pi
T :

De�nition 3.2.3 The element (p, q1, . . . , qJ) ∈ X2
is a weak solution of (3.30) - (3.31) if the

element (Pi
QT

p,Pi
T q1, . . . ,P

i
T qJ) is a weak solution of (1.84) - (1.86) with 
onditions (3.32) (see

De�nition 1.2.16).
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It is straightforward that if (p, q1, . . . , qJ) ∈ X2
, then (Pi

QT
p,Pi

T q1, . . . ,P
i
T qJ) ∈ X2

. Thus,

De�nition 3.2.3 is meaningful.

With the above de�nition, we 
an justify the following existen
e and uniqueness result:

Lemma 3.2.4 Let assumptions (B-1) - (B-4) be ful�lled, with additional restri
tion K = J . Let
also assumptions (E-1) - (E-2) and (F-1) hold. Moreover, assume that Ŷ , y∗ ∈ L2(0, T ;L2(Ω)).

Then, the weak solution of the system (3.30) - (3.31) exists and is unique.

Proof. By De�nition 3.2.3, it su�
es to show, that the system (1.84) - (1.86) with


onditions (3.32) has a unique weak solution in sense of De�nition 1.2.16. For this end, it is

enough to justify that the assumptions of Theorem 1.2.18 are ful�lled.

First, Ŷ ∈ L2(QT ) and hen
e Pi
QT

Ŷ ∈ L2(QT ). In parti
ular, Pi
QT

Ŷ is measurable. More-

over, f ′ is a Borel measurable fun
tion be
ause it is the 
lassi
al derivative of a 
ontinuous

fun
tion (see assumptions (B-4) and (E-1)). Therefore, f ′(Pi
QT

(Ŷ )( . , . )) is measurable, as well

as f ′(Pi
QT

(Ŷ )( . , . ))s, for an arbitrary s ∈ R. Also, Pi
QT

y∗ is measurable be
ause, by our as-

sumptions, y∗ ∈ L2(QT ) and hen
e Pi
QT

y∗ ∈ L2(QT ). This, along with the fa
t that Pi
QT

Ŷ and

Pi
QT

1(T0,T ) are measurable, gives a 
on
lusion that Pi
QT

(Ŷ −y∗)Pi
T (1(T0,T )) is measurable. Sum-

ming up the above remarks, we 
on
lude that f̃ de�ned in (3.32) is measurable, for an arbitrary

s ∈ R.
Se
ond, by the assumption (B-3), f ′ is bounded. Therefore, it follows that f̃ de�ned in

(3.32) is Lips
hitz 
ontinuous in s for a.e. (x, t) ∈ QT , with the Lips
hitz 
onstant independent

of (x, t) ∈ QT .

Third, for f̃ de�ned in (3.32), f̃( . , . , 0) = Pi
QT

(Ŷ −y∗)Pi
T (1(T0,T )), what belongs to L2(QT ),

sin
e Pi
QT

Ŷ ,Pi
QT

ŷ∗ ∈ L2(QT ).

Summing up the above, f̃ de�ned in (3.32) ful�lls the assumption (D-3).

Moreover, Pi
QT

(Ŷ −y∗) belongs to L2(0, T ;L2(Ω)), hen
e it is strongly measurable. Therefore,

by the Pettis theorem, F̃j :=
∫
Ω Υhj

(υ̂)Pi
QT

(Ŷ −y∗) dx understood as a real fun
tion of variable t
is measurable, for j = 1, . . . , J . A the same time, w′j is Borel measurable as a 
lassi
al derivative

of a 
ontinuous fun
tion (see assumptions (B-5) and (E-2)). Therefore, the fun
tion w′j ◦ F̃j is

measurable, for j = 1, . . . , J . The fun
tion w′j ◦ F̃j is also bounded for j = 1, . . . , J , be
ause

w′j is bounded, by the assumption (B-4). Thus, w′j ◦ F̃j belongs to L∞(0, T ) for j = 1, . . . , J .

Taking into a

ount the latter and Υhj
(υ̂) ∈ L2(Ω), we 
on
lude that Ξj de�ned in (3.32) ful�lls

the assumption (D-6).

The fa
t, that ỹ0, κ̃j0, Y, Θj , w̃j , hj and Zj , for j = 1, . . . , J , ful�ll assumptions (D-5) and

(D-6), respe
tively, follows straight. Moreover,

(
g̃j , h̃j

)
j=1,...,J

∈ Ũ .

To sum up, the assumptions of Theorem 1.2.18 are ful�lled and hen
e there exists a unique

weak solution of the system (1.84) - (1.86) with 
onditions (3.32). �

Now, we present the main theorem of Se
tion 3.2.2, whi
h gives a 
hara
terization of Gâteaux

di�erential of the 
ost fun
tional I in the form given in (3.25).

Theorem 3.2.5 Let assumptions (B-1) - (B-5) be ful�lled, with additional restri
tion K = J .
Assume also that at least one of the following is true:

• y∗ ful�lls the assumption (C-1) and fun
tions wj are bounded, for j = 1, . . . , J ,

• y∗ ful�lls the assumption (C-2).
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Moreover, let assumptions (E-1) - (E-3) and (F-2) be ful�lled and let λ̃ > 0, T0 ∈ (0, T ) and

υ̂, η̂ ∈ V be given. Let also (ŷ, κ̂1, . . . , κ̂J ) = Z(υ̂) and let (p̃, q̃1, . . . , q̃J) be the weak solution of

the system (3.30) - (3.31) 
orresponding to Ŷ := ŷ.
Then, the 
ost fun
tional I, de�ned in (3.22) - (3.23), is Gâteaux di�erentiable and its

di�erential in point υ̂ in dire
tion η̂ is equal to DGI(υ̂)(η̂) =
(
Λυ̂, η̂

)
V
, where Λυ̂ ∈ V is given

by:

Λυ̂ =
J∑

j=1

2λ̃
(
DG,wΥgj(υ̂)

)∗ (
∫ T

0
κ̂j p̃ dt

)
+

+

J∑

j=1

2λ̃
(
DG,wΥhj

(υ̂)
)∗ (

∫ T

0
w′j

(∫

Ω
Υhj

(υ̂)(ŷ − y∗) dx
)
(ŷ − y∗) q̃j dt

) (3.33)

The 
hara
terization of Gâteaux di�erential of the 
ost fun
tional I given in Theorem 3.2.5 is

not expli
it, sin
e the adjoint operators entering the formula (3.33) are not expli
itly des
ribed.

Hen
e, below we provide a theorem 
hara
terizing the latter operators.

Theorem 3.2.6 Let the assumption (F-2) be ful�lled. Let also υ̂ ∈ V be given. Then, the adjoint

operators

(
DG,wΥgj(υ̂)

)∗
: L2(Ω) −→ V , for j = 1, . . . , J , are well de�ned and are 
hara
terized

by the following formulas:

(
DG,wΥgj (υ̂)

)∗
F̂ =

(
0, . . . ,0︸ ︷︷ ︸

j−1

,
(
DG,wTσg(υ̂j)

)∗
PE,ΩF̂︸ ︷︷ ︸

j-th position

,0, . . . ,0︸ ︷︷ ︸
J−j

)
(3.34)

for F̂ ∈ L2(Ω), where 0 ∈ Rd
and where the non-zero element on j-th position 
an be expressed

by

(
DG,wTσg (υ̂j)

)∗
PE,ΩF̂ =

(
−

∫

Ω
F̂ (z)

(
PR,ΩT∂iσg

(υ̂j)
)
(z) dz

)d

i=1

(3.35)

The adjoint operators

(
DG,wΥhj

(υ̂)
)∗

: L2(Ω) −→ V , for j = 1, . . . , J , are also well de�ned

and are 
hara
terized by the same formulas, with σg repla
ed by σh.

We re
all that, in the present 
hapter, the parti
ular operators entering the above formulas

are understood as PE,Ω : L2(Ω) → L2(Rd) and Tσg ,T∂iσg
: Rd → L2(Rd).

Now, we present the proofs of Theorem 3.2.5 and Theorem 3.2.6.

Proof Theorem 3.2.5. The Gâteaux di�erentiability of I was already explained in

Lemma 3.2.2 (note, that its assumptions are ful�lled in the present theorem). It remains to

justify formulas 
hara
terizing the subje
t Gâteaux di�erential.

We will begin with justifying that the formula (3.33) is well-posed. For this end, note that the

assumptions of Theorem 3.1.5 are ful�lled, hen
e (ŷ, κ̂1, . . . , κ̂J ) in the assumptions of the present

theorem is a well de�ned element of X2
. With this, assumptions of Lemma 3.2.4 are also ful�lled,

hen
e (p̃, q̃1, . . . , q̃J) in the assumptions is a well de�ned elements of X2
as well. This, together

with the Fubini theorem and the Hölder inequality, allows to justify that

∫ T
0 κ̂j(t)p̃(x, t) dt,

understood as a fun
tion of x, is a well de�ned element of L2(Ω), hen
e it belongs to the domain

of

(
DG,wΥgj (υ̂)

)∗
, for j = 1, . . . , J . Similarly, we 
an �nd out that, for j = 1, . . . , J , expression∫ T

0 w′j
(∫

Ω Υhj
(υ̂)(ŷ − y∗) dx

)
(ŷ − y∗) q̃jdt belongs to the domain of

(
DG,wΥhj

(υ̂)
)∗
, i.e. to L2(Ω).

Indeed, arguing as in the proof of Lemma 3.1.7, we get that w′j
(∫

Ω Υhj
(υ̂)(ŷ − y∗) dx

)
belongs
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to L∞(0, T ). This, along with ŷ ∈ L2(QT ), q̃j ∈ L2(0, T ), with assumptions for y∗, with the

Fubbini theorem and with the Hölder inequality justi�es the ne
essary. Thus, the formula (3.33)

is meaningful.

Next, assumptions of Lemma 3.1.7 are ful�lled. Hen
e, the weak solution of (3.9) - (3.10)

exists and is unique. Denote this weak solution as (ỹ, κ̃1, . . . , κ̃J ). By De�nition 3.1.6, it means

that the identity in the part b) of De�nition 1.2.16 is ful�lled with y := ỹ and the identity in

the part 
) of De�nition 1.2.16 is ful�lled with κj := κ̃j , with relations (3.11) utilized there.

Sin
e X2 →֒ L2(0, T ;H1(Ω)), the element (p̃, q̃1, . . . , q̃J) 
an serve as a test fun
tion in the

referred identities, by putting φ := p̃ in the part b) and, for j = 1, . . . , J , putting ξ := q̃j in the

part 
) of De�nition 1.2.16, with relations (3.11) applied there. Exe
uting the above des
ribed

substitutions and utilizing relations (3.11) in the subje
t identities, we get:

∫ T

0

〈
ỹt, p̃

〉
+D

(
∇ỹ,∇p̃

)
L2(Ω)

+
(
−f ′(ŷ)ỹ −

J∑

j=1

Υgj(υ̂)κ̃j , p̃
)
L2(Ω)

dt =

=

∫ T

0

( J∑

j=1

DG,wΥgj(υ̂)(η̂)κ̂j , p̃
)
L2(Ω)

dt

(3.36a)

∫ T

0

{
βj κ̃
′
j + κ̃j − w′j

(∫

Ω
Υhj

(υ̂)(ŷ − y∗) dx
)
·
(∫

Ω
Υhj

(υ̂)ỹ dx
)}

q̃j dt =

=

∫ T

0
w′j

(∫

Ω
Υhj

(υ̂)(ŷ − y∗) dx

)
·

·

(∫

Ω
DG,wΥhj

(υ̂)(η̂)(ŷ − y∗) dx

)
q̃j dt for j = 1, . . . , J

(3.36b)

Similarly,

(
Pi
QT

ỹ,Pi
T κ̃1, . . . ,P

i
T κ̃J

)

an serve as a test fun
tion for weak solution (p̃, q̃1, . . . , q̃J)

of the system (3.30) - (3.31). More pre
isely, by De�nition 3.2.3, in the identity in the part b) of

De�nition 1.2.16 we 
an put y := Pi
QT

p̃, φ := Pi
QT

ỹ and, for j = 1, . . . , J , in the identity in the

part 
) of De�nition 1.2.16 we 
an put κj := Pi
T q̃j , ξ := Pi

T κ̃j , together with utilizing relations

(3.32). Exe
uting the above substitutions, utilizing relations (3.32) in the subje
t identities, inte-

grating the time derivative terms by parts w.r.t. t (see Prop. 23.23 in [51℄ for the integration by

parts formula for ve
tor valued fun
tions) and inverting the time dire
tion by applying operators

Pi
QT

and Pi
T , we get:

∫ T

0

〈
ỹt, p̃

〉
+D

(
∇p̃,∇ỹ

)
L2(Ω)

+

+
(
−f ′(ŷ)p̃ −

J∑

j=1

w′j

(∫

Ω
Υhj

(υ̂)(y − y∗) dx
)
Υhj

(υ̂) q̃j , ỹ
)
L2(Ω)

dt =

=

∫ T

0

(
(ŷ − y∗)1(T0,T ) , ỹ

)
L2(Ω)

dt

(3.37a)

∫ T

0

(
βj q̃
′
j + q̃j −

(
Υgj(υ̂), p̃

)
L2(Ω)

)
κ̃j dt = 0 for j = 1, . . . , J (3.37b)

Comparing (3.36) and (3.37), we observe that the sum of the left hand sides of (3.36) equals

the sum of the left hand sides of (3.37). Hen
e, the sums of the right hand sides of (3.36) and of
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(3.37) also equal. Thus, after 
hanging the order of integration in these sums, we get:

∫ T

0

(
(ŷ − y∗)1(T0,T ) , ỹ

)
L2(Ω)

dt =

=

J∑

j=1

(∫ T

0
κj p̃ dt , DG,wΥgj(υ̂)(η̂)

)
L2(Ω)

+

+
J∑

j=1

(∫ T

0
w′j

(∫

Ω
Υhj

(υ̂)(y − y∗) dx
)
(y − y∗) q̃j dt , DG,wΥhj

(υ̂)(η̂)
)
L2(Ω)

(3.38)

Re
all that ỹ = (DG,wZ(υ̂)(η̂))y = DG,wZy(υ̂)(η̂) and ŷ = Zy(υ̂). By the de�nition of ZT0
y

and y∗T0
, see (3.23), and by (3.27) in Lemma 3.2.2, we dedu
e that

∫ T

0

(
(ŷ − y∗)1(T0,T ), ỹ

)
L2(Ω)

dt =

∫ T

T0

(
PR,T0(ŷ − y∗) , PR,T0 ỹ

)
L2(Ω)

dt

=
(
ZT0
y (υ̂)− y∗T0 , DG,wZ

T0
y (υ̂)(η̂)

)
L2(Q

T0
T

)

(3.39)

Identities (3.38) and (3.39), by involving adjoint operators

(
DG,wΥgj(υ̂)

)∗
and

(
DG,wΥhj

(υ̂)
)∗
,

for j = 1, . . . , J , and by Lemma 3.2.2, justi�es the assertion of Theorem 3.2.5. �

Proof of Theorem 3.2.6. We will prove the assertion for operators

(
DG,wΥgj(υ̂)

)∗
. The


ase of operators

(
DG,wΥhj

(υ̂)
)∗

follows the same lines.

To prove the required, we repeat some arguments from the proof of Lemma 3.1.4. We observe

that Υgj = PR,Ω ◦Tσg ◦P
R,V
j , where the parti
ular operators are understood as PR,Ω : L2(Rd) →

L2(Ω), Tσg : R
d → L2(Rd) and PR,V

j : V → Rd
. Sin
e σg ∈ W 1,2(Rd), we 
an apply Theorem

A.4.5 to 
on
lude that Tσg is weakly Gâteaux di�erentiable. Moreover, operators PR,Ω
and

PR,V
j are linear and 
ontinuous. Thus, we 
an 
ombine the above fa
ts with Observation A.1.7,

Observation A.1.11, Theorem A.1.4 and, for brevity, use identities υ̂j = PR,V
j (υ̂) and η̂j =

PR,V
j (η̂) to get that Υgj is weakly Gâteaux di�erentiable from V to L2(Ω) and

DG,wΥgj (υ̂)(η̂) = PR,Ω
(
DG,wTσg (υ̂j) (η̂j)

)

for arbitrary υ̂, η̂ ∈ V .

In 
onsequen
e, as operators DG,wΥgj(υ̂) : V → L2(Ω) are well de�ned for j = 1, . . . , J , the
adjoint operators also are well de�ned, what justi�es the 
orresponding statement the se
ond

assertion of the theorem.

Next, we note that

(
PR,Ω

)∗
= PE,Ω : L2(Ω) → L2(Rd) and

(
PR,V
j

)∗
= PE,V

j : Rd → V .

Using this and the above derived representation of DG,wΥgj(υ̂)(η̂), we 
on
lude the following:

(
F̂ , DG,wΥgj (υ̂)(η̂)

)
L2(Ω)

=
(
F̂ , PR,Ω

(
DG,wTσg(υ̂j)

)
η̂j

)
L2(Ω)

=

=
((

DG,wTσg(υ̂j)
)∗

PE,ΩF̂ , η̂j

)
Rd

=
(
PE,V
j

(
DG,wTσg(υ̂j)

)∗
PE,ΩF̂ , η̂

)
V

Taking into a

ount the de�nition of PE,V
j , the above justi�es the formula (3.34).

Now, we are left to �nd the 
hara
terization of the adjoint of DG,wTσg(υ̂j)( . ), still not expli
it
above. Fun
tions σg and σh satisfy the assumption (F-2), thus by the Theorem A.4.5 we have
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an expli
it 
hara
terization of the di�erentials of Tσg and Tσh
at our disposal. This helps us to

a
hieve our goal:

(
PE,ΩF̂ , DG,wTσg(υ̂j)η̂j

)
L2(Rd)

=
(
PE,ΩF̂ ,

(
−T∇σg(υ̂j), η̂j

)
Rd

)
L2(Rd)

=

=
((

−

∫

Rd

(PE,ΩF̂ )(z)T∂iσg
(υ̂j)(z) dz

)d

i=1
, η̂j

)
Rd

=

=
((

−

∫

Ω
F̂ (z)

(
PR,ΩT∂iσg

(υ̂j)
)
(z) dz

)d

i=1
, η̂j

)
Rd

The above justi�es the formula (3.35).

This 
on
ludes the proof of Theorem 3.2.6. �

Thanks to Theorem 3.2.6, we 
an write the formula for Λυ̂ ∈ V , asserted in Theorem 3.2.5,

in a more expli
it form:

Corollary 3.2.7 Let assumptions imposed in Theorem 3.2.5 be ful�lled. Then, for υ̂ ∈ V , the

weak Gâteaux di�erential in υ̂ of the 
ost fun
tional I, de�ned in (3.22) - (3.23), exists and 
an

be 
hara
terized by o DGI(υ̂)(η̂) =
(
Λυ̂, η̂

)
V
for η̂ ∈ V , where Λυ̂ ∈ V is given by:

(
Λυ̂
j

)
i
= 2λ̃

∫ T

0

∫

Ω
κ̂j p̃

(
PR,Ω ◦ T−∂iσg

)
(υ̂j) dx dt

+ 2λ̃

∫ T

0

∫

Ω
q̃j w

′
j

(∫

Ω
Υhj

(υ̂)
(
ŷ − y∗

)
dx

) (
ŷ − y∗

) (
PR,Ω ◦ T−∂iσh

)
(υ̂j) dx dt

(3.40)

for j = 1, . . . , J , for i = 1, . . . ,d, where (ŷ, κ̂1, . . . , κ̂J ) is the weak solution of the system (3.1) -

(3.2) 
orresponding to xj := υ̂j, for j = 1, . . . , J , and (p̃, q̃1, . . . , q̃J) is the weak solution of the

system (3.30) - (3.31), 
orresponding to ŷ.

The above 
omes by 
ombining formulas (3.33) and (3.34) - (3.35), 
hanging the order of inte-

gration and noting that −T∂iσ(υ̂j)(x) = T−∂iσ(υ̂j)(x) for a.e. x ∈ Ω, for σ = σg, σh, j = 1, . . . , J ,
i = 1, . . . ,d.

Remark. Note that the formula (3.40) is expli
it enough to approximate it with numeri
al

methods. Indeed, for a given σg and σh, fun
tions T−∂iσg
, T−∂iσh

and Υhj
(υ̂), entering (3.40),


an be expressed expli
itly by their de�nitions. Thus, assuming that one is able to �nd nu-

meri
al approximations of solutions (ŷ, κ̂1, . . . , κ̂J ) and (p̃, q̃1, . . . , q̃J), the formula (3.40) 
an be

approximately evaluated with a use of numeri
al integration methods. N

Formulating ne
essary optimality 
ondition is a usual step towards 
hara
terizing the so-

lutions of a 
onsidered optimization problem. A �rst 
hoi
e ne
essary optimality 
ondition is

frequently the generalization of the Fermat 
ondition for multidimensional sets given in The-

orem A.2.1 in Appendix A.2). Applying the latter requires the knowledge on the Gâteaux

di�erential of the 
ost fun
tional. In the 
ase of optimization problem (3.24), we 
an use The-

orem A.2.1 along with the 
hara
terization of DGI , provided by Corollary 3.2.7, to obtain the

following ne
essary optimality 
ondition:

Corollary 3.2.8 Let the assumptions of Corollary 3.2.7 hold. If υ̂ ∈ V solves the optimization

problem (3.24) then 
ondition (
Λυ̂, ν̂ − υ̂

)
V
≥ 0 ∀ν̂∈V

is ful�lled, for Λυ̂
as in Corollary 3.2.7.
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3.2.3 Generalizations for lo
ally Lips
hitz rea
tive term

In the present se
tion, we prove results for optimization problem (3.24) under assumptions dif-

ferent that those utilized in the main results of 3.2.1 and Se
tion 3.2.2. In the results of the latter

se
tions, it was assumed for the system (3.1) - (3.2), in parti
ular, that f is Lips
hitz and that

y0 ∈ L2(Ω). Below, we will 
hange the Lips
hitz 
ontinuity of f to lo
al Lips
hitz 
ontinuity plus

the growth 
ondition given in (1.73) and we will 
hange the assumption for y0 to y0 ∈ L∞(Ω).
Moreover, we will require higher integrability of the pattern fun
tion σg.

Below, we justify analogues of the previously proven theorems 
on
erning existen
e of mini-

mizers for the 
ost fun
tional I (Theorem 3.2.1) and the 
hara
terization of its gradient (Theorem

3.2.5), but with the above mentioned modi�
ations in the assumptions.

The purpose of the present se
tion is the following. In Chapter 4 of the present work, we

des
ribe numeri
al simulations for optimization problem (3.24). The subje
t simulations involved

data assuming lo
ally Lips
hitz f satisfying the 
ondition (1.73) and y0 ∈ L∞(Ω). For this reason,
we aimed in deriving analyti
al results 
overing the 
ase of the data utilized in the simulations.

Hen
e the below 
ontent.

The proofs presented below, in their essen
e, 
onsist in redu
ing optimization problem (3.24)

with lo
ally Lips
hitz f obeying (1.73) to optimization problem (3.24) with globally Lips
hitz f .
Sin
e for globally Lips
hitz f the existen
e of minimizers and the formula for the gradient of the


ost fun
tional are already known (Theorem 3.2.1 and Theorem 3.2.5), the mentioned redu
tion

will imply the ne
essary results.

For the proof of Theorem Theorem 3.2.5, the theorem on the di�erentiability of the state

operator Z, asso
iated with globally Lips
hitz and di�erentiable f , was 
ru
ial. The redu
tion

approa
h in the present se
tion allow to avoid dire
t analysis of di�erentiability of the state

operator Z asso
iated with lo
ally Lips
hitz f .

In Se
tion 3.2.3, we pro
eed as follows. We begin with introdu
ing some de�nitions and

notations whi
h will be ne
essary in the sequel. Next, we formulate simple results 
on
erning

existen
e and uniqueness of the weak solutions for the 
ase of the modi�ed assumptions for f , y0
and σg mentioned above. The subje
t existen
e and uniqueness results 
on
ern the system (3.1)

- (3.2), the system (3.30) - (3.31) and 
ertain asso
iated systems, whi
h will be de�ned below for

te
hni
al reasons. Eventually, we pro
eed to proving analogues of Theorem 3.2.1 and Theorem

3.2.5 for the modi�ed assumptions for f , y0 and σg .

Let us pro
eed to formulation of the ne
essary de�nitions.

For 
ontinuous f : R → R, for n > 0 it possible to de�ne the following fun
tion fn : R → R:

fn(s) := f(s) for s ∈ (−n, n)

fn(s) := f(−(n+ 1)) for s < −(n+ 1)

fn(s) := f(n+ 1) for s > n+ 1

(3.41)

and





fn
is linear on [−(n+ 1),−n], linear on [n, n+ 1] and

fn(−(n+ 1)) := f(−(n+ 1)) fn(n+ 1) := f(n+ 1)

fn(−n) := f(−n) fn(n) := f(n)

(3.42)

If, in addition, f ′(s) exists for all s ∈ R, it is meaningful to de�ne fn
by the 
ondition (3.41)
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and by the following 
ondition instead of (3.42):





fn
is 3rd degree polynomial on [−(n+ 1),−n], 3rd deg. pol. on [n, n+ 1] and

fn(−(n + 1)) := f(−(n+ 1)) fn(n+ 1) := f(n+ 1)

fn(−n) := f(−n) fn(n) := f(n)

fn′(−(n + 1)) := f ′(−(n+ 1)) fn′(n+ 1) := f ′(n+ 1)

fn′(−n)) := f ′(−n) fn′(n) := f ′(n)

(3.43)

The following observations are straightforward:

Observation 3.2.9 If f : R → R:

• is 
ontinuous, then fn
de�ned by (3.41) and (3.42) is so, for all n > 0.

• is di�erentiable in every point of R, then fn
de�ned by (3.41) and (3.43) is so, for all

n > 0.

• is lo
ally Lips
hitz, then fn
de�ned by (3.41) and (3.42) as well as fn

de�ned by (3.41)

and (3.43) are globally Lips
hitz, for all n > 0.

• obeys the 
ondition (1.73) with 
onstant Cf , then fn
de�ned by (3.41) and (3.42) as well

as as well as fn
de�ned by (3.41) and (3.43) also obey the 
ondition (1.73), with the same

Cf , for all positive n su
h that n+ 1 ≥ Cf .

In the present 
ontent, we still assume that Z : V → X2
and Υ : V → U are de�ned as in

Se
tion 3.1.2 and I : V → R is de�ned by 
onditions (3.22) - (3.23). However, in the below


onsiderations, it will be 
onvenient to have the following additional notation. Assume that

arbitrary fun
tions fn : R → R are given, for all n > 0. Then, for n > 0:

• The system (3.1) - (3.2) with fn
instead of f will be denoted by

(
(3.1) - (3.2)

)n
.

• The system (3.30) - (3.31) with fn′
instead of f ′ will be denoted by

(
(3.30) - (3.31)

)n
.

• By Zn
, where

Zn = (Zn
y ,Z

n
κ1
, . . . ,Zn

κJ
) : V −→ X2

we will understand the operator assigning the weak solution of

(
(3.1) - (3.2)

)n
to a given

υ̂ ∈ V , assuming assignment xj := υ̂j for j = 1, . . . , J in

(
(3.1) - (3.2)

)n
.

• By In : V → R we will understand the 
ost fun
tional given by (3.22) - (3.23), with Zn
y

instead of Zy.

Now, we pass to existen
e fa
ts for systems (3.1) - (3.2), (3.30) - (3.31),

(
(3.1) - (3.2)

)n
and(

(3.30) - (3.31)

)n
. The following fa
ts are 
orollaries from earlier 
onsiderations in the present

work:

Corollary 3.2.10 In the system (3.1) - (3.2), let assumptions (B-1), (B-2) and (B-4) be ful�lled,

with additional restri
tion K = J . Moreover, assume that

• f is Lo
ally Lips
hitz 
ontinuous and obeys the 
ondition (1.73), for some 
onstant Cf > 0,

• y0 ∈ L∞(Ω) and κj0 ∈ R for j = 1, . . . , J ,
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• σg ∈ Ls1(Rd) and σh ∈ L2(Rd), where s1 ≥ max{2, d2 }.

Let also at least one of the below 
onditions hold:

• y∗ is as in (C-1) and fun
tions wj are bounded, for j = 1, . . . , J ,

• y∗ is as in (C-2).

Then, there exist a unique weak solution of the system (3.1) - (3.2). In 
onsequen
e, the operator

Z : V → X2
and the 
ost fun
tional I : V → R are well de�ned.

Proof. To prove Corollary 3.2.10, note that the system (3.1) - (3.2) is a parti
ular 
ase

of the system (0.1) - (0.3), with K = J and with

(
gj , hj , αjk

)
j,k

:= Υ (υ̂). Hen
e, by Theorem

1.2.14 and Theorem 1.2.15, we obtain the assertion. �

Corollary 3.2.11 Let the assumptions of Corollary 3.2.10 be ful�lled. Let fun
tions fn
for n > 0

be given by (3.41) and (3.42). Then, for n > 0, there exist a unique weak solution of the system(
(3.1) - (3.2)

)n
. In 
onsequen
e, the operator Zn : V → X2

and 
ost fun
tional In : V → R are

well de�ned, for n > 0.
If, in addition, f ′(s) exist for all s ∈ R, then the above assertion holds also for fun
tions fn

given by (3.41) and (3.43), for n > 0.

Above, the assumption that f ′ exists everywhere is ne
essary only to guarantee that fn
is

well de�ned for n > 0, in the 
ase where fn
is de�ned by 
onditions (3.41) and (3.43).

Proof. First, 
onsider the 
ase of y∗ is as in (C-1) and bounded fun
tions wj , j = 1, . . . , J .
For f as assumed in Corollary 3.2.10, fun
tions fn

are Lips
hitz, for both fn
de�ned by (3.41)

and (3.42) and fn
de�ned by (3.41) and (3.43) (see Observation 3.2.9). Thus, one 
an verify

that the system

(
(3.1) - (3.2)

)n
meets the assumptions of Corollary 1.2.8 with fn

instead of f ,
regardless on the variant of fn

. Hen
e, the assertion follows by Corollary 1.2.8.

The 
ase of y∗ is as in (C-2) follows exa
tly the same lines, with the use of Corollary 1.2.9

instead of the use of Corollary 1.2.8. �

Corollary 3.2.12 In the system (3.30) - (3.31), let assumptions (B-1), (B-2), (B-4) be ful�lled,

with additional restri
tion K = J and assume that f : R → R is Lo
ally Lips
hitz 
ontinuous and

obeys the 
ondition (1.73), for some 
onstant Cf > 0. Assume also that (E-1) - (E-2) and (F-1)

hold. Moreover, assume that Ŷ ∈ L∞(QT ) and y∗ ∈ L2(0, T ;L2(Ω)).
Then, the weak solution of the system (3.30) - (3.31) exists and is unique.

Corollary 3.2.13 Let the assumptions of Corollary 3.2.12 be ful�lled. Let fun
tions fn
for

n > 0 be given by (3.41) and (3.43). Then, for n > 0, there exist a unique weak solution of the

system

(
(3.30) - (3.31)

)n
.

We have formulated Corollary 3.2.12 prior to Corollary 3.2.13, for the sake of more readable

presentation. But te
hni
ally, Corollary 3.2.13 should be proven �rst.

Proof of Corollary 3.2.13. For f as assumed in Corollary 3.2.12, fun
tions fn
as

assumed in Corollary 3.2.13 are Lips
hitz and di�erentiable (see Observation 3.2.9). Thus, for

n > 0, the system

(
(3.30) - (3.31)

)n
obeys assumptions of Lemma 3.2.4 with fn

instead of f .
Hen
e, by Lemma 3.2.4, the assertion follows. �
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Proof of Corollary 3.2.12. Let fn
be given by (3.41) and (3.43), for n > 0. If su�
es

to show that arbitrary weak solution of (3.30) - (3.31) is a weak solution of

(
(3.30) - (3.31)

)n
,

for 
ertain n, and that arbitrary weak solution of

(
(3.30) - (3.31)

)n
is a weak solution of (3.30)

- (3.31). Having this, the assertion follows by Corollary 3.2.13.

Chose ñ >
∥∥Ŷ

∥∥
L∞(QT )

. By the 
ondition (3.41), we have

(
f
)′
(Ŷ (x, t)) =

(
f ñ

)′
(Ŷ (x, t)) for a.e. (x, t) ∈ QT

Thus, by De�nition 3.2.3, every weak solution of (3.30) - (3.31) is a weak solution of(
(3.30) - (3.31)

)ñ
and every weak solution of

(
(3.30) - (3.31)

)ñ
is a weak solution of (3.30) -

(3.31). This 
loses the proof. �

We pro
eed to the key part of Se
tion 3.2.3. The below statements, whi
h are the main

statements of Se
tion 3.2.3, rely strongly on Theorem 1.2.13.

Theorem 3.2.14 Let the system (3.1) - (3.2) ful�ll the assumptions of Theorem 3.2.1, ex
ept

the assumptions 
on
erning f , y0 and σg. For f , y0 and σg, we make the following assumptions

• f is lo
ally Lips
hitz 
ontinuous and obeys the 
ondition (1.73) for 
ertain 
onstant Cf ,

• y0 ∈ L∞(Ω),

• σg obeys assumptions (F-1) and (F-3) and, in addition, σg ∈ Ls1(Rd) for 
ertain s1 ≥
d

2 .

Then, the optimization problem (3.24) attains at least one solution.

Proof. Let fun
tions fn
be de�ned by (3.41) and (3.42), for n > 0.

Let υ̂ ∈ V . Denote (y, κ1, . . . , κJ ) = Z(υ̂) (what is well de�ned, see Corollary 3.2.10). By

the de�nition of Z, (y, κ1, . . . , κJ ) is the weak solution of the system (3.1) - (3.2) 
orresponding

to xj := υ̂j , j = 1, . . . , J .

The system (3.1) - (3.2) with xj := υ̂j , j = 1, . . . , J is a parti
ular 
ase of the system (0.1)

- (0.3), with K = J and with

(
gj, hj , αjk

)
j,k

:= Υ (υ̂). By the assumptions presently imposed

for the system (3.1) - (3.2), Theorem 1.2.13 with û := Υ (υ̂) 
an be applied to the system (3.1) -

(3.2) to 
on
lude that: ∥∥y
∥∥
L∞(QT )

≤ C0 (3.44)

where C0 stands for the 
onstant from the estimate (1.78) in Theorem 1.2.13. C0 depends in

parti
ular on 
onstants denoted in Theorem 1.2.13 as Cg and RU
. Sin
e we assume û := Υ (υ̂),

one 
an 
he
k that, to apply Theorem 1.2.13, it su�
es to set

Cg :=
∥∥σg

∥∥
Ls1(Rd)

, RU := J
(∥∥σg

∥∥2
L2(Rd)

+
∥∥σh

∥∥2
L2(Rd)

+ 1
)

for arbitrary υ̂ ∈ V . Other quantities on whi
h C0 depends (whi
h are indi
ated in Theorem

1.2.13) also are independent of υ̂ ∈ V . Hen
e, having 
hosen Cg and RU
as above, C0 in (3.44)

is independent of υ̂ ∈ V as well.

Note that the assumption σg ∈ L2(Rd)∩Ls1(Rd) is essential above be
ause of the assumptions

for the integrability of ûgj imposed in Theorem 1.2.13 (in the present 
ase, ûgj := Υgj(υ̂) =

σg( . − υ̂j)|Ω). Theorem 1.2.13 requires ûgj ∈ Lmax{2,d/2}(Ω) at least, for j = 1, . . . , J . Moreover,

Theorem 1.2.13 requires y0 ∈ L∞(Ω), thus the latter also is ne
essary.
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Choose ñ > C0. By the 
ondition (3.41) and by (3.44) we see that

f ñ(y(x, t)) = f(y(x, t)) for a.e. (x, t) ∈ QT (3.45)

for arbitrary υ̂ ∈ V . Thus, inserting the above into the de�nition of the weak solution (see De�ni-

tion 3.0.1) we �nd that (y, κ1, . . . , κJ ) is also the weak solution of

(
(3.1) - (3.2)

)ñ
, 
orresponding

to xj := υ̂j , for j = 1, . . . , J (whi
h exists and is unique, see Corollary 3.2.11). Therefore,

Z(υ̂) = Z ñ(υ̂) and, in 
onsequen
e,

I(υ̂) = I ñ(υ̂) for all υ̂ ∈ V

Now, note that for I ñ
, and hen
e for I , the existen
e of minimizers follows by Theorem

3.2.1. Indeed, by the assumption 
on
erning f , fun
tions fn
are Lips
hitz (see Observation

3.2.9). Thus, one may verify that the system

(
(3.1) - (3.2)

)n
obeys assumptions of Theorem

3.2.1, for all n > 0, in parti
ular for n := ñ. Appli
ation of Theorem 3.2.1 
on
ludes the proof.

Above, assumptions (F-1) and (F-3) are essential be
ause Theorem 3.2.1 also requires them. �

Theorem 3.2.15 Let the system (3.1) - (3.2) ful�ll the assumptions of Theorem 3.2.5, ex
ept

the assumptions 
on
erning f , y0 and σg. For f , y0 and σg, we make the following assumptions:

• f is lo
ally Lips
hitz 
ontinuous, obeys the 
ondition (1.73) for 
ertain 
onstant Cf and

obeys the assumption (E-1),

• y0 ∈ L∞(Ω),

• σg obeys the assumption (F-2) and, in addition, σg ∈ Ls1(Rd) for 
ertain s1 ≥
d

2 .

Then, the 
ost fun
tional I, de�ned in (3.22) - (3.23), is Gâteaux di�erentiable and its di�erential

in point υ̂ in dire
tion η̂ is equal to DGI(υ̂)(η̂) =
(
Λυ̂, η̂

)
V
, where Λυ̂ ∈ V is given by the formula

(3.33).

Proof. In the present proof, the following notation will be 
onvenient. For n > 0, let
(3.33)

n
denote the formula (3.33) with the following modi�
ations:

• (ŷ, κ̂1, . . . , κ̂J) is repla
ed by (ŷn, κ̂n1 , . . . , κ̂
n
J ) = Zn(υ̂),

• (p̃, q̃1, . . . , q̃J) is repla
ed by (p̃n, q̃n1 , . . . , q̃
n
J ) being the weak solution of the system(

(3.30) - (3.31)

)n

orresponding to Ŷ := ŷn.

In the proof, we assume that fun
tions fn
are de�ned by (3.41) and (3.43), for n > 0.

Let υ̂ ∈ V . Assume that (y, κ1, . . . , κJ ) ∈ X2
is the weak solution of the system (3.1) - (3.2),


orresponding to xj := υ̂j , j = 1, . . . , J (whi
h exists and is unique, see Corollary 3.2.10).

By the same argument as in the proof of Theorem 3.2.14, the estimate (3.44) hold, with


onstant C0 independent of υ̂ ∈ V . Note in parti
ular that deriving (3.44) required Theorem

1.2.13 and that the present assumptions 
on
erning integrability of σg are su�
ient to apply

Theorem 1.2.13. Moreover, Theorem 1.2.13 requires y0 ∈ L∞(Ω), thus the latter also is utilized

here.

Let ñ > C0. By (3.44), by the 
ondition (3.41) and by the 
hoi
e of ñ, we have (3.45),

independently on the 
hoi
e of υ̂ ∈ V . Hen
e, inserting (3.45) into the de�nition of the weak

solution (see De�nition 3.0.1), (y, κ1, . . . , κJ ) is the weak solution of the system

(
(3.1) - (3.2)

)ñ
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(whi
h exists and is unique, see Corollary 3.2.11), for all υ̂ ∈ V . In 
onsequen
e, I(υ̂) = I ñ(υ̂),
for all υ̂ ∈ V .

Fun
tions fn
are Lips
hitz 
ontinuous and fn′(s) exists for all s ∈ R (see Observation 3.2.9).

Thus, it 
an be veri�ed that the system (3.1) - (3.2) ful�lls the assumption of Theorem 3.2.5, for

all n > 0, in parti
ular for n := ñ. Therefore, by Theorem 3.2.5 we 
on
lude that I ñ
is Gâteaux

di�erentiable and for all υ̂, η̂ ∈ V we have DGI
ñ(υ̂)(η̂) =

(
Λυ̂
n, η̂

)
V
, where Λυ̂

n ∈ V is given by

the formula (3.33)

ñ
. Sin
e I ñ = I , I also is Gâteaux di�erentiable and DGI(υ̂)(η̂) =

(
Λυ̂
n, η̂

)
V
,

for υ̂, η̂ ∈ V .

Above, the assumption (F-2) is essential be
ause Theorem 3.2.5 also requires it.

The proof will be 
losed on
e we show that Λυ̂
ñ = Λυ̂

for ñ as above, for υ̂ ∈ V . Comparing

formulas (3.33) and (3.33)

ñ
, whi
h de�ne Λυ̂

and Λυ̂
ñ respe
tively, we see that we need to justify

the following, for all υ̂ ∈ V :

•
(
ŷñ, κ̂ñ1 , . . . , κ̂

ñ
J

)
= (ŷ, κ̂1, . . . , κ̂J), where (ŷ, κ̂1, . . . , κ̂J ) := Z(υ̂),

•
(
p̃ñ, q̃ñ1 , . . . , q̃

ñ
J

)
= (p̃, q̃1, . . . , q̃J), where (p̃, q̃1, . . . , q̃J) is the weak solution of the system

(3.30) - (3.31) 
orresponding to Ŷ := ŷ.

Equality

(
ŷñ, κ̂ñ1 , . . . , κ̂

ñ
J

)
= (ŷ, κ̂1, . . . , κ̂J ) follows by showing that, for ñ as assumed, a

weak solution of

(
(3.1) - (3.2)

)ñ
is a weak solution of (3.1) - (3.2) 
orresponding to xj := υ̂,

j = 1, . . . , J . But we have already shown above that a weak solution of (3.1) - (3.2) is a weak

solution of

(
(3.1) - (3.2)

)ñ
. The opposite follows immediately, sin
e we have the existen
e and

uniqueness results for both systems (see Corollary 3.2.10 and Corollary 3.2.11).

To justify equality

(
p̃ñ, q̃ñ1 , . . . , q̃

ñ
J

)
= (p̃, q̃1, . . . , q̃J), we pro
eed as follows. We need to show

that

(
p̃ñ, q̃ñ1 , . . . , q̃

ñ
J

)
is in fa
t the weak solution of (3.30) - (3.31) 
orresponding to Ŷ := ŷ. But

it follows with arguments similar to the above ones. By ŷñ = ŷ (already proven), by (3.44), by

(3.41) and by the 
hoi
e of ñ, we have

f ñ′(ŷñ(x, t)) = f ′(ŷ(x, t)) for a.e. (x, t) ∈ QT

The above along with ŷñ = ŷ yields the ne
essary.

The proof of Theorem 3.2.15 is 
omplete. �

From Theorem 3.2.15 and Theorem 3.2.6, we 
an derive an analogue of Corollary 3.2.7:

Corollary 3.2.16 Let the assumptions of Theorem 3.2.15 be ful�lled. Then, the 
ost fun
tional

I, de�ned in (3.22) - (3.23), is Gâteaux di�erentiable and its di�erential in point υ̂ in dire
tion

η̂ is equal to DGI(υ̂)(η̂) =
(
Λυ̂, η̂

)
V
, where Λυ̂ ∈ V is given by the formula (3.40).

The above follows, as in the 
ase of Corollary 3.2.7, by applying formulas (3.33), (3.34) and

(3.35), 
hanging the integration order and observing that −T∂iσ(υ̂j)(x) = T−∂iσ(υ̂j)(x) holds for
a.e. x ∈ Ω, for σ = σg, σh, for j = 1, . . . , J and for i = 1, . . . ,d.



Chapter 4

Optimal targeting problem �

numeri
al prototypes

In this 
hapter, we des
ribe numeri
al experiments for the optimal targeting problem, announ
ed

in �2 of Introdu
tion. We will base on the mathemati
ally more pre
ise formulation of the

subje
t problem given in Se
tion 3.2. We will thus identify the optimal targeting problem with

the optimization problem (3.24), 
onsisting in minimization of 
ost fun
tional I (de�ned by


onditions (3.22) - (3.23)).

In Chapter 3, we have already answered the question 
on
erning possibility of solving opti-

mization problem (3.24) (Theorem 3.2.1, Theorem 3.2.14), as well as given the 
hara
terization

of the solutions (Corollary 3.2.8). Now, we are going to fo
us on the matter of numeri
al 
on-

stru
tion of the solutions.

Therefore, in the present 
hapter, the main point of our interest is the matter of 
hoi
e

of optimization algorithms proper to atta
k optimization problem (3.24). Thus, we test a few

optimization methods to 
he
k how their performan
e varies with 
hanges of parameters and

fun
tions entering the de�nition of 
ost fun
tional I or the system (3.1) - (3.2).

Cost fun
tional I depends on the 
ontrol parameter (i.e. the targetings of the 
ontrol and

measurement devi
es a
tions), whi
h parametrizes the feedba
k law (i.e. the algorithm of 
om-

puting the response fun
tions) in thermostat 
ontrol me
hanism (see Introdu
tion for details).

Consider the 
ase of T0 being 
lose to T in the de�nition of 
ost fun
tional I (see (3.22) - (3.23)).

This determines a 
ost fun
tional en
oding idea of measuring the gap between the pro
ess state

and referen
e state in the neighborhood of the terminal time T (see the remarks in �2 of In-

trodu
tion). The latter gap 
an serve as a natural measure of the e�
ien
y of the thermostat


ontrol me
hanism. Hen
e, the problem of minimization of 
ost fun
tional I with T0 
lose to T
is 
onsistent with one the general ideas of the present work, whi
h is to optimize the feedba
k

law in the thermostat 
ontrol me
hanism in order to improve its e�
ien
y (see the beginning of

Introdu
tion). For this reason, in the present 
hapter we are parti
ularly interested in the 
ase

of T0 
lose to T .

Other point of our interest was the independen
e of the optimization results on the initial

state of the 
ontrolled pro
ess, des
ribed in the system (3.1) - (3.2) by y0, in the 
ase of T0


lose to T . To explain our motivations, 
onsider the model with an open-loop 
ontrol des
ribed

by the sole equation (3.1) (without (3.2)), where the user is responsible for the 
hoi
e of both

fun
tions gj , 
hara
terizing the 
ontrol devi
es a
tions, and the power fun
tions κj . It follows

by intuition that the optimal 
hoi
e of κj perhaps depends on the initial state y0 (regardless of

whether T0 is 
lose to T in the de�nition of I or not). Therefore, the independen
e of solutions

of the optimal targeting problem on the initial state of the pro
ess would be an advantage of

99
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the thermostat 
ontrol me
hanism, at least in 
omparison to the mentioned system with an

open-loop 
ontrol (see also the general ideas des
ribed in the beginning of Introdu
tion). Hen
e,

during our experiments, we have made an attempt to verify whether the subje
t independen
e

indeed exists or not.

By the results of Chapter 2, we may expe
t that, in 
ertain 
ases, the alleged independen
e

on y0 of the solutions of the optimal targeting problem 
an be true. Indeed, in the simulations

des
ribed in Chapter 2 we observed that in some (but not all) situations the pro
ess 
ontrolled

by thermostats stabilizes near to the same state, independently on the initial state y0 of the

pro
ess. In other words, the pro
ess states a
hieved near to the terminal time T were very

similar, regardless on y0. For this kind of situations, the 
ost fun
tional I with T0 
lose to T 
an

vary insigni�
antly under 
hanges of y0, be
ause su
h I 
aptures only the data 
on
erning the

pro
ess near to the terminal time T . Hen
e, the minimal points for I with T0 
lose to T also


an vary insigni�
antly under 
hanges of y0.

The optimization algorithms utilized in our experiments were gradient-based algorithms �

the steepest des
ent method and the nonlinear 
onjugate gradient method, implemented in the

Polak-Ribière mode with 
ertain modi�
ation. The latter method was used in two variants: one

with a periodi
 reset of the algorithm every Nr iterations, with Nr equal to the dimension of the

optimization spa
e; the other without the periodi
 reset. Ea
h of the methods involves 
omputing

the gradient of the 
ost fun
tional. In our experiments, the gradient was 
omputed basing on the


hara
terization given in Corollary 3.2.16. The latter 
hara
terization involves solving systems

(3.1) - (3.2) and (3.30) - (3.31). Besides, 
omputing the value of the 
ost fun
tional I also

involves solving the system (3.1) - (3.2). For solving numeri
ally these two systems, we employed

the �nite element method for dis
retization in spa
e, the impli
it Euler s
hemes for dis
retization

in time and the Pi
ard iterations method for treating the nonlinear terms entering the system

(3.1) - (3.2).

To 
ompare performan
e of parti
ular optimization algorithms, we in fa
t 
ompare the num-

ber of iterations ne
essary to approximate a solution of (3.24) when using a given algorithm with

a given stop 
riterion. Thus, by saying that performan
e of a given optimization algorithm was

better (worse) in situation A than in situation B we mean that the number of iterations of the

algorithm in situation A was lower (higher) than in situation B.

The results of the experiments suggest that average performan
e of the steepest des
ent

method for optimization problem (3.24) vary with 
hanges of the parameter T0, entering the

de�nition of the 
ost fun
tional I (average, in a sense to be 
lari�ed later). Setting T0 
lose to

T resulted in more iterations of the algorithm than for T0 = 0 (Se
tion 4.4.1 and Se
tion 4.4.2).

In this sense, problem (3.24) with T0 
lose to T is more di�
ult than with T = 0. Neverthe-

less, 
hanging the optimization algorithm to nonlinear 
onjugate gradient with reset leveled the

mentioned di�eren
e in the average performan
e (Se
tion 4.4.2).

We have also tested behavior of the nonlinear 
onjugate gradient method with reset under


hanges of the time horizon T in the system (3.1) - (3.2). We observed that lengthening the

time horizon T also resulted in inferior average performan
e of the optimization algorithm (Se
-

tion 4.4.3). This happened despite the nonlinear 
onjugate method with reset was su

essful in

leveling the performan
e di�eren
es for 
hanges of the parameter T0.

To sum up, the average performan
e of the optimization algorithms 
hanged when varying

both T0 and T . However, for 
hanges of T0, the di�eren
es in the average performan
e was

observed for the steepest des
ent method and disappeared when using the nonlinear 
onjugate

gradient method with reset.

As mentioned, the 
ase of T0 being 
lose to T is parti
ularly interesting for us. In this 
ase,

the experiments results suggest that when lengthening the time horizon of the system (3.1) -
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(3.2), the optimization pro
edure output be
omes more independent of the initial 
ondition in

the latter the system (Se
tion 4.4.3). This 
on�rms our expe
tations, des
ribed above.

However, lengthening the time interval in
reases 
omputational 
ost for numeri
al treatment

of problem (3.24). Indeed, assuming that the time step in the numeri
al s
heme remains the

same, the 
ost of solving the system (3.1) - (3.2) in
reases as the time horizon be
omes longer.

Ea
h evaluation of the 
ost fun
tional I requires solving the system (3.1) - (3.2), thus the


omputational 
ost of sear
hing for minimums of I grows as the 
omputational 
ost of solving

(3.1) - (3.2) grows. Therefore, it is expensive 
omputational task to solve optimization problem

(3.24) and obtain results independent of y0, be
ause it is ne
essary to 
hoose long time horizon

T . Moreover, as mentioned, lengthening the time interval in our experiments resulted in higher

number of iterations, what made the 
omputational task even more expensive.

In fa
t, in our experiments, the 
omputational time ne
essary to approximate a solution of I
for long time interval was impra
ti
ally long. Redu
tion of this time would be a desired result.

In Se
tion 4.4.4, we propose some possible strategies for redu
tion of optimization pro
edures


omputational 
ost, whi
h 
an be tested in the future experiments.

Chapter 4 is divided into two parts: 1) the part for spe
i�
ation of utilized parameters, opti-

mization methods and numeri
al s
hemes (Se
tion 4.1, Se
tion 4.2 and Se
tion 4.3, respe
tively)

and 2) the part devoted to des
ription of results of optimization pro
edures performed with

the use of these parameters, methods and s
hemes (Se
tion 4.4). In Se
tion 4.4.4, 
on
luding

the se
ond part, we propose re�nements for the optimization algorithms and numeri
al s
hemes

des
ribed in Se
tion 4.2 and Se
tion 4.3.

4.1 Stru
tural assumptions

Below, we des
ribe stru
tural assumptions 
on
erning optimization problem (3.24), whi
h were

imposed for simulations des
ribed in Se
tion 4.4. This assumptions spe
ify the parameters

ne
essary to determine the 
ost fun
tional I , de�ned by (3.22) - (3.23), was the target of our

optimization experiments.

Let us begin with the assumptions 
on
erning the system (3.1) - (3.2), de�ning whi
h is ne
-

essary for de�ning the 
ost fun
tional I . Basi
ally, our intention was to operate with assumptions

analogous to those des
ribed in Se
tion 2.1. However, some of the assumptions imposed there

needed modi�
ations before employing them here.

To be more pre
ise, in the system (3.1) - (3.2) we assume that d = 2, that domain Ω is given

as in (2.7) and that rea
tive term f is given as in (2.8). Note that both Ω and f 
hosen by us

�t the assumptions of Corollary 3.2.16.

At the same time, we 
annot reuse the assumptions des
ribed in Se
tion 2.1 for pattern

fun
tions σg, σh and swit
hing fun
tions wj , j = 1, . . . , J , for the below reasons:

1. Con
erning the pattern fun
tions σg and σh, note that if they obey the formula (2.3)

from Se
tion 2.1, then they are not elements of W 1,2(Rd). In parti
ular, for pattern

fun
tions as in (2.3), partial derivatives ∂iσg and ∂iσh, for i = 1, . . . ,d, are not well de�ned.
Simultaneously, Corollary 3.2.16 assumes σg, σh ∈ W 1,2(Rd). The gradient formula (3.40),

asserted in Corollary 3.2.16, also involves the partial derivatives of σg and σh for j =
1, . . . , J . Thus, the subje
t gradient formula fails if the pattern fun
tions are given by

(2.3). In 
onsequen
e, the formula (2.3) 
annot be applied in the present 
ontext, be
ause,

as mentioned in the beginning of Chapter 4, we intend to use the gradient 
hara
terization

asserted in Corollary 3.2.16.
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2. Con
erning the swit
hing fun
tions wj , j = 1, . . . , J , note that the formula (2.9) de�nes

non-di�erentiable wj . Simultaneously, the di�erentiability of the swit
hing fun
tions wj is

assumed in Corollary 3.2.16. Thus, Corollary 3.2.16 fails to hold if the swit
hing fun
tions

are given by (2.9). Hen
e, the formula (2.9) 
annot be utilized here, be
ause we intend to

utilize the gradient 
hara
terization given in Corollary 3.2.16.

To deal with the above di�
ulties, we impose the following assumptions for pattern fun
tions

σg, σh and swit
hing fun
tions wj , j = 1, . . . , J :

1. We have 
hosen the below pattern fun
tions to be utilized in experiments des
ribed in

Se
tion 4.4:

σg(x) =





Cg on B(0, rσ,1)

0 on (B(0, rσ,2))
c

radially linear otherwise

σh(x) =





Ch on B(0, rσ,1)

0 on (B(0, rσ,2))
c

radially linear otherwise

(4.1)

for 
ertain rσ,2 > rσ,1, and Cg, Ch > 0. Note, that the pattern fun
tions given in (4.1)


an be understood as a regularization of the pattern fun
tions given in (2.3) � putting

rσ,2 = rσ, one 
an observe that σg given in (4.1) tends in L2(Rd) to σg given in (2.3) as

rσ,1 → rσ,2, and the same holds for σh.

With the pattern fun
tions as in (4.1), Lemma 3.1.4 guarantees weak Gâteaux di�erentia-

bility of the asso
iated operators Υgj and Υhj
, for j = 1, . . . , J . Moreover, for σg and σh as

in (4.1), the weak dire
tional derivatives ∂iσg and ∂iσh, for i = 1, . . . ,d are well de�ned.

Hen
e, the formula asserted by Corollary 3.2.16 is well de�ned.

2. For experiments des
ribed in Se
tion 4.4, we have 
hosen swit
hing fun
tions being smoothed

versions of the swit
hing fun
tions given in (2.9). Smoothing with se
ond order polynomials

was performed.

The details of the smoothing pro
edure whi
h was applied are as follows. Choose 
onstants

Csmooth ∈ [0, 1] and Lw < 0. De�ne the fun
tion

waux,1(s) := Lws

Denote by s+smooth the point where waux,1 a
hieves value −Csmooth and by s−smooth the point

where waux,1 a
hieves value +Csmooth. De�ne also p+, p− as se
ond degree polynomials of

one variable determined by the following 
onditions:

p+(s
+
smooth) = waux,1(s

+
smooth) = −Csmooth

p′+(s
+
smooth) = w′aux,1(s

+
smooth) = Lw

min
R

(p+) = −1

p−(s
−
smooth) = waux,1(s

−
smooth) = Csmooth

p′−(s
−
smooth) = w′aux,1(s

−
smooth) = Lw

max
R

(p−) = 1

Denote by smax the maximizer of p− and by smin the minimizer of p+. Note that points

s+smooth, s
−
smooth, smax and smin are determined by the 
hoi
e of 
onstants Csmooth and Lw.

Expli
it formulas for these points 
an be derived, if ne
essary. We do not present the latter

formulas here only for brevity reasons.
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Having this, we de�ne the following fun
tion wj , for j = 1, . . . , J , being a spline of fun
tions
+1, p−, waux,1, p+, −1:

wj(s) = Hwwaux,2(s) waux,2(s) =





+ 1 on (−∞, smax]

p−(s) on (smax, s
−
smooth]

waux,1(s) on (s−smooth, s
+
smooth)

p+(s) on [s+smooth, smin)

− 1 on [smin,+∞)

(4.2)

for 
ertain Hw > 0. In the experiments des
ribed in Se
tion 4.4, we have assumed the

swit
hing fun
tions in the system (3.1) - (3.2) to be given by (4.2).

Sin
e the points s+smooth, s
−
smooth, smax and smin are determined by 
onstants Csmooth and

Lw, fun
tions wj , j = 1, . . . , J de�ned in (4.2) are determined by the 
hoi
e of 
onstants

Lw, Hw and Csmooth.

One 
an verify that fun
tions wj de�ned by (4.2) belong to C1(R), for j = 1, . . . , J . Thus,
Corollary 3.2.16 is valid if they are utilized as the swit
hing fun
tions in the system (3.1)

- (3.2).

As in Se
tion 2.1, we assume that the value of Ch is determined by the relation (2.10), for


ertain Cswitch > 0. The meaning of the 
onstant Cswitch was explained in Se
tion 2.1, thus we

do not repeat this explanation here.

Remark. In Se
tion 2.1, for deriving the relation (2.10), the points in whi
h the swit
hing

fun
tions a
hieved the extremal values (more pre
isely, the 
losest to s = 0 points in whi
h wj

attains a global extremum) were essential. For the swit
hing fun
tions wj 
onsidered there (see

the formula (2.9)), the subje
t points were ±1/
∣∣Lw

∣∣
. Here, with wj de�ned as in (4.2), the

extremal values are a
hieved in di�erent points, above denoted as smax and smin. Thus, to be

puristi
, we should derive an analog of the relation (2.10) one more time, a

ounting the new

swit
hing fun
tions having new extremal points, if we wanted to preserve the idea lying behind

the 
onstant Cswitch, explained in Se
tion 2.1. Nevertheless, for simpli
ity, we de
ided to negle
t

the e�e
ts inferred by the shift of the extremal points 
aused by the 
hange of the swit
hing

fun
tions. N

Now, sin
e we assume that Ch is determined by the relation (2.10) we substitute the pattern

fun
tion σh to the subje
t relation and �nd out that Ch 
an be expressed more expli
itly by:

Ch =
(π
3

∣∣Lw

∣∣Cswitch ((rσ,1)
2 + rσ,1rσ,2 + (rσ,2)

2)
)−1

(4.3)

In addition, we make the following assumption for the parameter λ̃ in the de�nition of the


ost fun
tional I :
λ̃ = (T − T0)

−1
(4.4)

where T0 is the parameter entering the de�nition of the 
ost fun
tional I .
To sum up, for Ω given by (2.7), the swit
hing fun
tion wj as in (4.2), pattern fun
tions σg

and σh as in the formula (4.1) and Ch as in the formula (4.3), the system (3.1) - (3.2) is uniquely

determined by the 
hoi
e of the following fun
tions and parameters:

y0, κ10, . . . , κJ0, y∗

T, D, β1, . . . , βJ , J, x1, . . . , xJ , rσ,1, rσ,2, Cg, Cswitch, Lw,Hw, Csmooth
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With the above indi
ated 
onditions and with λ̃ as in (4.4), 
ost fun
tional I is fully de-

termined by spe
i�
ation of the above listed fun
tions and parameters and, additionally, by

spe
i�
ation of the parameter T0.

4.2 Optimization methods

We des
ribe now optimization methods utilized for solving optimization problem (3.24). All

experiments des
ribed in Se
tion 4.4 base on the below des
ribed methods.

Generally, two methods were employed: the steepest des
ent method and the nonlinear 
on-

jugate gradient method (des
ribed and extensively 
ommented e.g. in [38℄ or [7℄). The se
ond of

these two was 
onsidered in two variants � one with reset of the algorithm every Nr iterations,

for a given natural Nr, the other without the reset. Below, we des
ribe these methods in more

detail.

For 
onvenien
e, we use the following notation in the present se
tion. Let F : I → R be

a given fun
tion, where I = [0, b] or I = [0, b), with b ∈ R+ ∪ {+∞}. By minns∈IF (s) we

understand the problem of �nding the lo
al minimum of F whi
h is the 
losest to origin point

s = 0. Note that the solution of minns∈IF (s) 
an be di�erent than the global minimum of F ,
even if the global minimum exists.

SDmethod. By the steepest des
ent method (SD method, in brief), we understand the following

algorithm:

1. Choose υ̂0 ∈ V . Set n = 0.

2. If the stop 
riterion (to be des
ribed below) is ful�lled, then terminate. Else:

(a) Compute rn := −∇I(υ̂n). Set dn := rn.

(b) Find sn ∈ [0, 1] solving 1-D minimization problem minns∈[0,1]I(υ̂
n + sdn).

(
) Assign υ̂n+1 := υ̂n + snd
n
.

(d) In
rement n and repeat step 2.

CG method. By the nonlinear 
onjugate gradient method (CG method, in brief), we under-

stand the following algorithm:

1. Choose υ̂0 ∈ V . Set n = 0. Set d−1 := 0 ∈ V .

2. If the stop 
riterion (to be des
ribed below) is ful�lled, then terminate. Else:

(a) Compute rn := −∇I(υ̂n).

(b) Compute 
oe�
ient ̺n (to be des
ribed below) and set dn := rn + ̺nd
n−1

(
) Find sn ∈ [0, 1] solving 1-D minimization problem minns∈[0,1]I(υ̂
n + sdn).

(d) Assign υ̂n+1 := υ̂n + snd
n
.

(e) In
rement n and repeat step 2.

To 
omplete the above spe
i�
ations, we need to des
ribe the stop 
riterion and 
oe�
ient

̺n.
Stop 
riterion. In our experiments, we terminated further exe
ution of the optimization

algorithms if n = Nopt, for a given natural Nopt, or if n ≥ 1 and the last 
omputed sn satis�ed

sn = 0.
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Coe�
ient ̺n. Various 
hoi
es of 
oe�
ient ̺n are possible for the nonlinear 
onjugate

gradient method (see [38, Chap.5.2℄ or [7, p.329℄). Our 
hoi
e of the subje
t 
oe�
ient involved

the Polak-Ribière 
on
ept (presented e.g. in the latter referen
es):

̺PR :=
∥∥rn

∥∥−2
V

(rn, rn − rn−1)V

with some modi�
ations, 
on
erning the reset of the algorithm. More pre
isely, in ea
h simulation

des
ribed in Se
tion 4.4, one of the following methods for 
omputing ̺n was involved:

• Method 1. If n = 0, set ̺n = 0, for 
onsisten
y. For n ≥ 1, set ̺n := ̺PR
and next, if

̺n ≤ 0, reset CG algorithm, i.e. assign ̺n := 0.

• Method 2. If n = 0, set ̺n = 0, for 
onsisten
y. For n ≥ 1, set ̺n := ̺PR
and next:

1. If ̺n ≤ 0, reset CG algorithm, i.e. assign ̺n := 0.

2. For a given Nr ∈ N, if there was no reset in last Nr iterations, i.e. in iterations

n−Nr + 1, n −Nr + 2, . . . , n, of CG algorithm, then reset the algorithm, i.e. assign

̺n := 0.

In the experiments des
ribed in Se
tion 4.4, value Nr = 2J was always used, whenever

Method 2. was utilized, where J is the same as in the system (3.1) - (3.2).

We will use the following terminology:

• CG-r method is the CG method without reset every Nr iterations, i.e. the CG method

with Method 1. for 
hoosing 
oe�
ient ̺n.

• CG+r method is the CG method with reset every Nr iterations, i.e. the CG method

with Method 2. for 
hoosing 
oe�
ient ̺n.

Remark. Resetting the algorithm if 
oe�
ient ̺PR
o

urs to be negative is ne
essary

be
ause, if this is the 
ase, the ve
tor rn + ̺PRdn−1 
an be not a des
ent dire
tion (see [38,

p.122-123℄). Resetting the algorithm every Nr iterations also is a 
ommon pra
ti
e, with the

usual 
hoi
e of Nr equal to the dimension of V (see [38, p.124℄). The latter remark suggests

Nr = 2J in our 
ase, as assumed above. N

Remark. In the above des
ribed methods we solve 1-D problems of the form

minns∈[0,1]I(υ̂ + sd̂), for 
ertain υ̂, d̂ ∈ V , not just mins∈[0,1] I(υ̂ + sd̂). On level of general

ideas it means that we intend to extra
t the lo
al minimum of I(υ̂+ . d̂) whi
h is situated 
losest

to the point s = 0. This serves to keep the iteration points υ̂1, υ̂2, υ̂3, . . . in the same �valley� in

the graph of I in whi
h the initial point υ̂0 lays. N

To sum up, we spe
ify the optimization algorithm by the 
hoi
e of: 1) the initial point υ̂0 ∈ V ,

2) the parameter Nopt and 3) the optimization method (SD, CG-r or CG+r).

4.3 Numeri
al methods

Here, we des
ribe numeri
al s
hemes for performing the optimization methods des
ribed in Se
-

tion 4.2. These s
hemes were utilized in experiments des
ribed in Se
tion 4.4, whenever the

subje
t optimization methods were involved.
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By the spe
i�
ations given in Se
tion 4.2, we see that performing the subje
t methods requires

a method for evaluating the 
ost fun
tional I , a method for 
omputing its gradient and a method

of solving the 1-D optimization problem. The base for the �rst two methods are the de�nition

of I given in (3.22) - (3.23) and the gradient formula (3.40), asserted in Corollary 3.2.16. Both

the formula (3.22) - (3.23) and the gradient formula (3.40) depend on the weak solution of the

system (3.1) - (3.2). Moreover, the gradient formula (3.40) require the weak solution of the

system (3.30) - (3.31). Hen
e, in total, to perform the subje
t optimization methods, we need

methods for:

1) 
omputing the solutions of the system (3.1) - (3.2) and the system (3.30) - (3.31),

2) 
omputing the gradient of I in a given point,

3) 
omputing the value of I in a given point,

4) solving 1-D optimization problem minns∈[0,1]I(υ̂ + sd̂), for suitable υ̂, d̂ ∈ V .

In the experiments des
ribed in Se
tion 4.4, ea
h of the above subproblems was solved approxi-

mately, by use of numeri
al methods. Thus, in fa
t, in our experiments, we have treated problem

(3.24) not with the SD or CG methods itself, but numeri
al approximations of these methods.

Below, we des
ribe the numeri
al s
hemes whi
h were utilized for solving subproblems 1) - 4),

whenever solving these subproblems was ne
essary during exe
ution of the SD or CG methods

in our experiments.

4.3.1 Main system and adjoint system

Now, we des
ribe numeri
al methods utilized in the experiments des
ribed in Se
tion 4.4 for solv-

ing systems (3.1) - (3.2) and (3.30) - (3.31). The below methods were utilized in the experiments

whenever it was ne
essary to solve the mentioned systems.

For dis
retization in spa
e, the �nite element method was used for both systems. The trian-

gulation of Ω utilized for the �nite element method was as in Figure 2.1 in Se
tion 2.2 (re
all

that we assumed Ω to be given for our experiments by (2.7)). The �nite element spa
e 
on-

sidered in our experiments was the spa
e of 
ontinuous fun
tions, linear on ea
h element of the

triangulation.

For dis
retization in time for the system (3.1) - (3.2), we employed impli
it Euler s
heme

and, for dis
retization in time for the system (3.30) - (3.31), ba
kward impli
it Euler s
heme was

applied. In both 
ases, the dis
retization of the time interval [0, T ] assumed uniform distribution

of the time dis
retization points.

Moreover, the nonlinear terms in the system (3.1) - (3.2) were treated with the use of Pi
ard

iterations method.

Now, let us give a more detailed des
ription of the above sket
hed numeri
al s
hemes for

(3.1) - (3.2) and (3.30) - (3.31). Below, we assume that υ̂ ∈ V is given and that x1, . . . , xJ in

the system (3.1) - (3.2) are determined by xj := υ̂j , for j = 1, . . . , J .
Similarly as in Chapter 2, denote:

N + 1 � the number of triangulation mesh vertexes along ea
h spatial dire
tion

(i.e., the triangulation has (N + 1)2 vertexes),

M + 1 � the number of time dis
retization points in interval [0, T ],
NPicard � the number of Pi
ard iterations applied in ea
h time step to treat the

nonlinear terms appearing in (3.1) - (3.2).

Denote also τM := M−1 and τN := N−1.
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In addition, denote the triangulation presented in Figure 2.1 in Se
tion 2.2 by ΩN , denote the

spa
e of fun
tions 
ontinuous on ΩN and linear on ea
h element of the triangulation by P1(ΩN )
and denote ve
tors of standard �hat� basis of P1(ΩN ) by φn, for n = 1, . . . , (N + 1)2.

Remark. Two impli
it Euler s
hemes are mentioned above: the �usual� one and a s
heme

whi
h we have 
alled ba
kward impli
it Euler s
heme. By the ba
kward impli
it Euler s
heme

for the di�erential equation −ẋ = F (x, t) on [0, T ], with the terminal 
ondition x(T ) = x̃, we

mean the following s
heme:

x
M = x̃, xm − xm+1 = τMF (xm, tm)

for tm = mτM , m = 0, 1, . . . ,M − 1, where M and τM are as above. The �usual� impli
it Euler

s
heme is a 
ommon s
heme, hen
e we do not de�ne it here. N

The system (3.1) - (3.2) is treated with the same numeri
al s
heme as the system (2.5)

- (2.6) in Se
tion 2.1, with gj := Υgj(υ̂) and hj := Υhj
(υ̂). More pre
isely, the output of

the numeri
al s
heme for (3.1) - (3.2) is exa
tly the fun
tion (YN , k1,N , . . . , kJ,N ) de�ned in

Se
tion 2.1, assuming that we put gj := Υgj(υ̂) and hj := Υhj
(υ̂) in the system (2.5) - (2.6). We

treat su
h (YN , k1,N , . . . , kJ,N ) as a fun
tion approximating the weak solution of (2.5) - (2.6).

The above referred s
heme for approximating the weak solution of the system (3.1) - (3.2)

was employed in the experiments des
ribed in Se
tion 4.4 whenever 
omputing the value of the


ost fun
tional I or 
omputing its gradient was ne
essary (re
all that both of these involve the

weak solution of the system (3.1) - (3.2)).

Note that the above numeri
al s
heme for (3.1) - (3.2) involves matri
es MN and AN , de�ned

in Se
tion 2.2.

The system (3.30) - (3.31) is treated with numeri
al methods whi
h are analogous as the

methods applied for the system (3.1) - (3.2). Nevertheless, sin
e the algebrai
 form of both

systems di�er, below we des
ribe the numeri
al s
heme for the system (3.30) - (3.31) in more

detail.

First, for a given fun
tion F : Ω → R, let [F ]N and

→
F be de�ned as in Se
tion 2.2. Re
all

also that

→
F=

−→

[F ]N .

We use the following dis
retization in spa
e for the system (3.30) - (3.31). Put gj := Υgj(υ̂)

and hj := Υhj
(υ̂) for j = 1, . . . , J . In the system (3.30) - (3.31), we insert [gj ]N , [hj ]N , [Ŷ ]N

and [y∗]N instead of Υgj(υ̂), Υhj
(υ̂), Ŷ and y∗, respe
tively. For the subje
t modi�
ation of the

system (3.30) - (3.31), we approximate its solution by the solution of the following variational

problem:





− d
dt

(
pN , φ

)
L2(ΩN )

+ D
(
∇pN ,∇φ

)
L2(ΩN )

−
(
[f ′(Ŷ )]NpN , φ

)
L2(ΩN )

=

=
(
[Ŷ ]N − [y∗]N , φ

)
L2(ΩN )

1(T0,T ) +

+
∑J

j=1
w′j

((
[hj ]N , [Ŷ ]N − [y∗]N

)
L2(ΩN )

) (
[hj ]N , φ

)
L2(ΩN )

qj,N
∀φ∈P1(ΩN )

on [0, T ]

∂pN
∂n

= 0 on ∂ΩN × (0, T )

pN (T ) = 0

(4.5)
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together with 



− β1
d
dtq1,N + q1,N =

(
[g1]N , pN

)
L2(ΩN )

on [0, T ]

.

.

.

.

.

.

− βJ
d
dtqJ,N + qJ,N =

(
[gJ ]N , pN

)
L2(ΩN )

on [0, T ]

qj,N(T ) = 0 ∀j=1,...,J

(4.6)

where 0 ∈ P1(ΩN ), pN (t) ∈ P1(ΩN ) and qj,N(t) ∈ R, for j = 1, . . . , J , t ∈ [0, T ] and where

the desired solution is (pN , q1,N , . . . , qJ,N ). One may note, that f ′([Ŷ ]N ) is not ne
essarily in

P1(Ω). For this reason, we de�ne the above variational problem by inserting [f ′(Ŷ )]N term and

not f ′([Ŷ ]N ) term. Note moreover that term (∇yN ,∇φN )L2(ΩN ) in the system (4.5) - (4.6) is

well de�ned, be
ause P1(ΩN ) ⊆ H1(ΩN ) (see Theorem 2.1.1. in [13℄).

Remark. The sets Ω and ΩN are equal. Nonetheless, similarly as in the 
ase of the system

(2.12) - (2.13) in Se
tion 2.2, in (4.5) - (4.6) we use notation �ΩN � instead of �Ω� to stress that

we are 
onsidering a spa
e dis
retization of original the system (3.30) - (3.31). N

As mentioned in Se
tion 2.2, for given F,G ∈ P1(Ω), we 
an write:

(F,G)L2(Ω) = (
→
F )TMN

→
G, (∇F,∇G)L2(Ω) = (

→
F )TAN

→
G

where matri
es MN and MN are de�ned as in Se
tion 2.2. One 
an verify that in addition the

following hold for a.e. t ∈ [0, T ]:

(
[f ′(Ŷ ( . , t)]NF ( . ) , G( . )

)
L2(Ω)

= (
→
F )TCN (t)

→
G

where matrix CN (t) is de�ned by:

CN (t) =

(∫

ΩN

[f ′(Ŷ (x, t)]Nφm(x)φn(x) dx

)(N+1)2

n,m=1

Using the above remarks, we transform the system (4.5) - (4.6) to the matrix form:





− d
dtMN

→
pN + DAN

→
pN − CN

→
pN =

= MN

( −→
[Ŷ ]N −

−→

[y∗]N

)
1(T0,T ) +

+
∑J

j=1
w′j

( −→

[hj ]N
T

MN

( −→
[Ŷ ]N −

−→

[y∗]N

))
MN

−→

[hj ]N qj,N
∀φ∈P1(ΩN )

on [0, T ]
→
pN (T ) = 0

(4.7)

together with 



− β1
d

dt
q1,N + q1,N =

−→

[g1]N
T

MN
→
pN on [0, T ]

.

.

.

.

.

.

− βJ
d

dt
qJ,N + qJ,N =

−→

[gJ ]N
T

MN
→
pN on [0, T ]

qj,N(T ) = 0 ∀j=1,...,J

(4.8)

where 0 ∈ R(N+1)2
and where the desired solution is (

→
pN , q1,N , . . . , qJ,N ).
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Next, we approximate the solution of (4.7) - (4.8) by use of ba
kward impli
it Euler s
heme,

basing on M + 1 time dis
retization points, uniformly distributed in [0, T ]. Denote the subje
t

approximate solution of (4.7) - (4.8) by (
→
PN , Q̂1,N , . . . , Q̂J,N ). This approximate solution is

a fun
tion de�ned in time dis
retization points, t = mτM , m = 0, 1, . . . ,M , with values in

R(N+1)2 × RJ
.

Basing on the latter, we 
onstru
t a fun
tion (PN , Q1,N , . . . , QJ,N ), de�ned in the time dis-


retization points t = mτM , m = 0, 1, . . . ,M and taking values in P1(ΩN )×RJ
in the following

way. We put PN (t) :=
∑(N+1)2

n=1 (
→
PN (t))nφn and Qj,N(t) := Q̂j,N(t), for j = 1, . . . , J , for

t = mτM , m = 0, 1, . . . ,M .

The s
heme for numeri
al solving the system (3.30) - (3.31) is �nished by obtaining the

fun
tion (PN , Q1,N , . . . , QJ,N ), des
ribed above. In other words, we treat (PN , Q1,N , . . . , QJ,N )
as an approximation of the weak solution of (3.30) - (3.31).

The above s
heme for solving (3.30) - (3.31) was utilized in our experiments, with Ŷ = YN ,

whenever 
omputing the gradient of the 
ost fun
tional I was ne
essary (re
all that the gradient

of I depends on the weak solution of (3.30) - (3.31)).

Note that the numeri
al s
heme for (3.1) - (3.2), des
ribed above, is uniquely determined by

the 
hoi
e of the parameter N (determining the �nite element spa
e), the parameter M (deter-

mining the time dis
retization) and the parameter NPicard (determining the Pi
ard iterations

method for treating the nonlinear terms in (3.1) - (3.2)). Moreover, for a given Ŷ , the above

des
ribed s
heme for (3.30) - (3.31) is determined by 
hoi
e of N and M .

For use in our experiments, matri
esMN and AN were assembled, similarly as in the numeri
al

s
heme des
ribed in Se
tion 2.2, by expli
it 
omputing the integrals appearing in the de�nitions

of the subje
t matri
es (no numeri
al integration was used). The matrix CN (t), for t ∈ [0, T ],
was assembled with help of the fun
tion quad of the GNU O
tave pa
kage, being a fun
tion for

numeri
al integration.

4.3.2 Evaluating the 
ost fun
tional

Below, we des
ribe a numeri
al s
heme for evaluation of the 
ost fun
tional I . The s
heme was

utilized in experiments des
ribed in Se
tion 4.4 whenever it was ne
essary in the optimization

methods involved in the subje
t experiments (see Se
tion 4.2). We still assume that, for a given

F : Ω → R, the de�nitions of [F ]N and

→
F are as in Se
tion 2.2.

For a given υ̂, the s
heme for approximating the value I(υ̂), de�ned by 
onditions (3.22) -

(3.23), is as follows.

First, we use the des
ribed in Se
tion 4.3.1 numeri
al s
heme for obtaining a numeri
al

solution of the system (3.1) - (3.2), with xj := υ̂j , for j = 1, . . . , J . Let (YN , k1,N , . . . , kJ,N )
denote this numeri
al solution.

Se
ond, we perform integration with respe
t to spa
e in time dis
retization points, i.e. we

evaluate Ẽm :=
∥∥YN ( . , tm) − [y∗]N ( . , tm)

∥∥2
2
for tm = mτM , m = 0, 1, . . . ,M . To do it, we use

the below formula, whi
h is true by the relation (2.14):

Ẽm =

∫

ΩN

∣∣YN (x, tm)− [y∗]N (x, tm)
∣∣2 dx =

( →
YN (tm)−

→

y∗ (tm)
)T

MN

( →
YN (tm)−

→

y∗ (tm)
)

for tm as above, for m = 0, 1, . . . ,M .

Third, we integrate with respe
t to time on interval (T0, T ). However, now we dispose only


ertain values Ẽm for time dis
retization points. To integrate on interval (T0, T ), we need to

extend this values to some fun
tion given on the whole interval. For this end, we assume the
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pie
ewise linear behavior of the fun
tion in question. More pre
isely, we 
onstru
t a pie
ewise

linear fun
tion Ê : [0, T ] → R by assigning Ê(tm) := Ẽm for tm := mτM , m = 0, . . . ,M and

Ê(t) :=
tm+1 − t

τM
Ê(tm) +

t− tm
τM

Ê(tm+1) (4.9)

for t ∈ (tm, tm+1), m = 0, . . . ,M − 1.

We intend to 
ompute integral

∫ T
T0

Ê(t) dt. We apply the trapezoidal quadrature to 
ompute

the subje
t integral, with nodes of the quadrature being the time dis
retization points t0, . . . , tM
plus the down limit of integration (if T0 is not amongst the time dis
retization points). Sin
e Ê
is 
ontinuous on [0, T ] and linear on ea
h of intervals spanned by two neighboring nodes of the

quadrature, the subje
t quadrature returns the exa
t value of the integral

∫ T
T0

Ê(t) dt.

The numeri
al s
heme for evaluation of I(υ̂) is �nished by obtaining, with the above means,

integral

∫ T
T0

Ê(t)dt. In other words, we assume that the value of the subje
t integral approximate

the value of I(υ̂).

4.3.3 Computing the gradient

Below, we des
ribe a numeri
al s
heme for 
omputing an approximation of the gradient of I . The
s
heme 
onsists in approximate evaluating the formula (3.40), asserted in Corollary 3.2.16. The

subje
t s
heme was utilized in the experiments des
ribed in Se
tion 4.4 whenever the employed

optimization pro
edures (des
ribed in Se
tion 4.2) required 
omputing the gradient of I .

For brevity, we will use the following notation for a part of the terms entering the formula

(3.40): T̃ σ
i,j :=

(
PR,Ω ◦ T−∂iσ

)
(υ̂j), for σ = σg, σh and for j = 1, . . . , J , i = 1, . . . ,d. Denote also

hj := Υhj
(υ̂), for j = 1, . . . , J .

Assume that υ̂ ∈ V is given. The s
heme for 
omputing ∇I(υ̂) is as follows.

Keep in mind that we intend to approximately evaluate the formula (3.40), whi
h, by Corol-

lary 3.2.16, 
hara
terizes the gradient of I .

First, we use the des
ribed in Se
tion 4.3.1 numeri
al s
heme for obtaining an approximate

solution of the system (3.1) - (3.2). Denote this approximate solution by (YN , k1,N , . . . , kJ,N ).
Having this, we use the des
ribed in Se
tion 4.3.1 numeri
al s
heme for gaining an approxi-

mate solution of (3.30) - (3.31), with Ŷ = YN . Denote the latter approximate solution by

(PN , Q1,N , . . . , QJ,N ).

Remark. A 
onsisten
y problem may seem to o

ur. Namely, Ŷ is a fun
tion de�ned

on [0, T ] with values in L2(Ω) and YN is de�ned only in points tm ∈ [0, T ], for tm = mτM ,

m = 0, 1, . . . ,M − 1, where M and τM are as in Se
tion 4.3.1, with values in P1(ΩN ) ⊆ L2(Ω).
This makes the above assignment Ŷ = YN meaningless. To resolve this obsta
le, one may

attempt to extend YN to the whole interval [0, T ], e.g. by linear interpolation, before making the

assignment. But in fa
t, this is not ne
essary, be
ause the numeri
al s
heme for solving (3.30) -

(3.31), given in Se
tion 4.3.1, utilizes only the information on Ŷ in points tm as above. Hen
e,

an arbitrary extension of YN to whole [0, T ] is good, but also irrelevant at the same time. N

We intend to approximate the value of the formula (3.40), with ΩN , YN , kj,N , PN , Qj,N ,

[y∗]N , [hj ], [T̃
σg

i,j ]N and [T̃ σh

i,j ]N instead of Ω, ŷ, κ̂j , p̃, q̃j , y
∗
, hj , T̃

σg

i,j and T̃ σh

i,j , respe
tively, for

j = 1, . . . , J .

Thus, se
ond, we perform integration w.r.t. spa
e in time dis
retization points. More pre-
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isely, we evaluate the following:

Ẽ1,m := kj,N (tm)

∫

ΩN

PN (x, tm) [T̃
σg

i,j ]N (x) dx

Ẽ2,m := w′j

(∫

ΩN

(
YN (x, tm)− [y∗]N (x, tm)

)
[hj ]N (x) dx

)

Ẽ3,m := Qj,N(tm)Ẽ2,m

∫

ΩN

(
YN (x, tm)− [y∗]N (x, tm)

)
[T̃ σh

i,j ]N (x) dx

for tm = mτM , m = 0, 1, . . . ,M . To 
ompute the above integrals, we use the following identities,

being true due to (2.14):

∫

ΩN

PN (x, tm) [T̃
σg

i,j ]N (x) dx =
( →
PN (tm)

)T
MN

→

T̃
σg

i,j

∫

ΩN

(
YN (x, tm)− [y∗]N (x, tm)

)
[hj ]N (x) dx =

( →
YN (tm)−

→

y∗ (tm)
)T

MN

→
hj

∫

ΩN

(
YN (x, tm)− [y∗]N (x, tm)

)
[T̃ σh

i,j ]N (x) dx =
( →
YN (tm)−

→

y∗ (tm)
)T

MN

→

T̃ σh

i,j

Third, we de�ne the following fun
tion Ê∇ : [0, T ] → R and integrate it on interval (T0, T ).
For tm = mτM , m = 0, 1, . . . ,M we put Ê∇(tm) := Ẽ1,m + Ẽ3,m. For t ∈ (tm, tm+1), m =

0, 1, . . . ,M − 1, we put Ê∇(t) to be equal the value implied by the linear interpolation of values

of Ê∇ in points tm and tm+1. More pre
isely, Ê∇(t) is de�ned by the formula (4.9), with Ê
repla
ed by Ê∇.

For 
omputing integral

∫ T
T0

Ê∇(t) dt, we use the trapezoidal quadrature, with M + 1 nodes,


oin
iding with the M + 1 time dis
retization points t0, . . . , tM . Sin
e the integrand Ê∇ is


ontinuous on [0, T ] and linear on ea
h interval spanned by two neighboring quadrature nodes,

the subje
t quadrature returns the exa
t value of

∫ T
T0

Ê∇(t) dt.

We assume that integral

∫ T
T0

Ê∇(t)dt approximates the value of (Λυ̂
j )i in Corollary 3.2.16, for

j = 1, . . . , J , i = 1, . . . ,d. This gives approximation of ∇I(υ̂), be
ause ∇I(υ̂) = Λυ̂
. Hen
e,

the numeri
al s
heme for 
omputing the gradient of I in υ̂ is �nished by evaluating the above

integral.

4.3.4 1-D optimization

Now, we des
ribe a method for approximate solving 1-D optimization problem minns∈[0,1]I(υ̂ +

sd̂), entering the optimization methods des
ribed in Se
tion 4.2 with suitable υ̂, d̂ ∈ V . The

method was utilized whenever solving the 1-D problem was ne
essary in the experiments de-

s
ribed in Se
tion 4.4.

A method for approximating the solution of the 1-D optimization problem will be 
alled line

sear
h pro
edure. Moreover, denote Ĩ(s) := I(υ̂ + sd̂). We will 
all Ĩ the target fun
tion.

The pre
ise des
ription of our line sear
h pro
edure for solving problem minns∈[0,1]Ĩ(υ̂+ sd̂),

for a given υ̂, d̂ ∈ V is as follows:

1. Initialization: we set Nls := 10, de�ne the sear
h interval Ils := [0, 1] and de�ne the set of

evaluation points Pls = {s̃i = i/Nls : i = 0, 1, . . . , Nls}.

2. We approximate values Ĩ(s̃i), for i = 0, 1, . . . , Nls, using the numeri
al s
heme for evalu-

ating the 
ost fun
tional I des
ribed in Se
tion 4.3.2.
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3. We 
hoose lo
al minimums, i.e. points s̃i ∈ Pls ful�lling Ĩ(s̃i) ≤ Ĩ(s̃i−1) and Ĩ(s̃i) ≤
Ĩ(s̃i+1) (or one of these inequalities, if s̃i is the extremal point of Ils). Amongst these

lo
al minimums, we 
hoose the one whi
h is situated 
losest the point s = 0. Denote this
minimum by s̃ and its index in Pls by ĩ (i.e. ĩ is the index su
h that s̃̃i = s̃).

4. We verify whether the stop 
riterion is ful�lled or not. If yes � then we terminate the line

sear
h algorithm and return point

˜̃s := s̃. The stop 
riterion is as follows: verify whether

s̃1 − s̃0 ≤ Rls, where Rls is given. Note that, sin
e the points s̃0, . . . , s̃Nls
are uniformly

distributed in Ils, we 
an alternatively verify the inequality s̃i+1− s̃i ≤ Rls for an arbitrary

i = 1, . . . , Nls.

In the experiments des
ribed in Se
tion 4.4, we have always used the value Rls = 0.001.

5. We determine a new sear
h interval and a new set of evaluation points in the following

way:

(a) If s̃ = s̃0, set Ils := [s̃0, s̃1] and Pls := {s̃0,
1
2(s̃0 + s̃1), s̃1} (3 new evaluation points).

(b) If s̃ = s̃Nls
, set Ils := [s̃Nls−1, s̃Nls

] and Pls := {s̃Nls−1,
1
2(s̃Nls−1 + s̃Nls

), s̃Nls
} (3 new

evaluation points).

(
) If neither of the above two 
ases hold, set Ils := [s̃̃i−1, s̃̃i+1] and

Pls := {s̃̃i−1,
1
2 (s̃̃i−1 + s̃̃i), s̃̃i,

1
2(s̃̃i + s̃̃i+1), s̃̃i+1} (5 new evaluation points).

Set Nls := #Pls. Relabel the points of set Pls as s̃0, . . . , s̃Nls
.

6. Go to the step 2.

The line sear
h pro
edure is terminated by determining the point above denoted as

˜̃s. In

other words, we assume that

˜̃s approximates the solution of problem minns∈[0,1]Ĩ(υ̂ + sd̂), for a

given υ̂, d̂ ∈ V . The above pro
edure for solving problem minns∈[0,1]Ĩ(υ̂+sd̂) was always utilized
whenever solving this kind of problem was ne
essary in the experiments des
ribed in Se
tion 4.4.

Remark. Assume that the fun
tion I(υ̂n + . dn) is su�
iently regular for 
onvergen
e of

the line sear
h pro
edure to the real solution of minns∈[0,1]I(υ̂
n + sdn), for υ̂n and dn being as

in the optimization methods des
ribed in Se
tion 4.2. Compare the stop 
riterion imposed in

the optimization methods and the stop 
riterion in the above line sear
h pro
edure. The stop


riterion for the optimization methods is ful�lled if the line sear
h pro
edure returns

˜̃s = 0. This
happens if s̃ = 0 and s̃1 − s̃0 ≤ Rls. Thus, due to our assumption, one may 
on
lude that the

stop 
riterion for the optimization methods is ful�lled if the �real step length� sn, i.e. the real

solution of minns∈[0,1]I(υ̂
n + sdn), is lesser than Rls. N

Remark. The general idea of the above line sear
h pro
edure 
an be explained in the

following way. The subje
t pro
edure 
onsists of two stages. In the �rst stage, we perform the

uniform line sear
h, with Nls + 1 evaluation points, for a given natural Nls. The uniform line

sear
h results in redu
ing the initial sear
h interval [0, 1] to some new shorter sear
h interval.

Next, in the se
ond stage, we run iteratively a bise
tion-like line sear
h on the new sear
h interval.

The stage of uniform line sear
h 
onsists simply in an additional iteration with many (Nls + 1)
evaluation points, pla
ed at the beginning of the whole line sear
h pro
edure. The bise
tion-like

line sear
h stage is realized by all subsequent iterations. N

Remark. The motivation behind the usage of the above 
omposite line sear
h method,


onsisting of two stages, is as follows. Re
all that we intend to solve the minimization problem
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of extra
ting the lo
al minimum on [0, 1] being the 
losest to s = 0. The uniform line sear
h

utilizes more evaluation points in one iteration than the bise
tion-like line sear
h. Hen
e, in

the �rst iteration, we use the uniform line sear
h to redu
e the risk that we will loose essential

information on the geometry of the target fun
tion Ĩ on the initial sear
h interval. This in
reases

the 
han
e that we sele
t a 
onse
utive sear
h interval whi
h 
ontains the the minimum of Ĩ
whi
h is the 
losest to s = 0. Next, after 
hoosing the new sear
h interval, whi
h is signi�
antly

shorter than the initial one, we swit
h to the bise
tion-like line sear
h be
ause it is superior to

the uniform line sear
h in terms of speed. N

Remark. We use name �bise
tion-like line sear
h�, not �bise
tion line sear
h�, be
ause

the latter is usually used for other algorithm. We have not found the des
ription of the above

bise
tion-like line sear
h method in publi
ations, thus we 
ould not establish the proper name of

the subje
t line sear
h method. The sour
e in whi
h we have en
ountered the des
ription of the

subje
t method is the le
ture s
ript [34℄ (in Polish). N

4.4 Results of simulations

In this se
tion, we des
ribe results of our experiments 
on
erning attempts to �nd numeri
ally

an approximate solutions of optimization problem (3.24). All below des
ribed simulations based

on one of the optimization methods spe
i�ed in Se
tion 4.2. The numeri
al s
hemes whi
h

were utilized for implementing these methods are des
ribed in Se
tion 4.3. The assumptions


on
erning problem (3.24) were as in Se
tion 4.1.

In Se
tion 4.4.1, we 
ompare the results of the SD method, for two di�erent parameters T0 in

the 
ost fun
tional I and two di�erent pro
ess initial states y0 in the system (3.1) - (3.2). The

results suggest that the performan
e of the SD method is poorer for the parameter T0 
lose to

T . Moreover, a dependen
e of the optimization output on y0 is observed for T0 
lose to T , what
is opposite to our expe
tations (explained in the beginning of Chapter 4).

In Se
tion 4.4.2, we vary not only T0 and y0, but also the referen
e state y
∗
in the system (3.1)

- (3.2). Moreover, the simulations are performed with the use of three optimization algorithms:

SD, CG-r and CG+r. The results 
on�rm further that the average performan
e of the SD method

varies as T0 varies (average, in a sense of both the mean and the median of number of iterations).

Nevertheless, the di�eren
e in the average performan
e vanquishes when swit
hing from the SD

method to the CG+r method. Basing on the results, we 
on
lude that the CG+r method is most

appropriate for our optimization problem.

In Se
tion 4.4.3, we 
ompare results of the CG+r method for the optimization problem with

T0 
lose to T , for varying values of the parameter T and for a varying initial state y0. The

results suggest that the average performan
e of the CG+r method 
hanges with 
hanges of the

time interval, determined by the parameter T . However, it is also observed that lengthening

the time interval resulted with greater independen
e on y0 of the optimization output. Due

to our general motivations, see the beginning of Chapter 4, we prefer situations exhibiting the

latter e�e
t, thus simulations with rather long time horizon are interesting for us. Nevertheless

the long time interval makes the optimization pro
edures more time 
onsuming. Hen
e, in

Se
tion 4.4.4, we propose some possible re�nements to our optimization pro
edures, to test in

the future experiments.

All below des
ribed experiments were performed with the use of the GNU O
tave software

(version 3.6.4) and 
omputer 
luster Halo2 (a ma
hine of Interdis
iplinary Centre for Math-

emati
al and Computational Modelling, University of Warsaw). Halo2 pro
essors are AMD
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Quad-Core Opteron pro
essors with ar
hite
ture x86_64 �Bar
elona�. No parallelization was

used, ea
h optimization pro
edure run using one pro
essing 
ore.

Two types of plots are 
ontained in the present se
tion: 1) plots of s
alar fun
tions de�ned

on domain Ω (e.g. the initial state y0 or the referen
e state y
∗
in the system (3.1) - (3.2)) and 2)

plots of parti
ular 
on�gurations of the 
ontrol and measurement devi
es. Conventions for both

mentioned types of plots are analogous as the 
onventions des
ribed in Se
tion 2.3.

By the 
on�guration of the 
ontrol and measurement devi
es we mean, similarly as in Se
-

tion 2.3, the 
hoi
e of the supports of fun
tions gj and hj , for j = 1, . . . , J , 
hara
terizing the


ontrol and measurement devi
es a
tions. Here, these are fun
tions PR,ΩTσg(xj) and PR,ΩTσh
(xj)

in system (3.1) - (3.2), with xj := υ̂j for j = 1, . . . , J , where υ̂ ∈ V is a given 
ontrol parameter.

Note that, due to spe
i�
 assumptions for the pattern fun
tions (see (4.1)), the visualization

of the supports of the fun
tions 
hara
terizing the devi
es a
tions give 
hara
terization of points

x1, . . . , xJ (up to permutation). In 
onsequen
e, one 
an retrieve the 
ontrol parameter υ̂ ∈ V
basing on the mentioned visualizations of supports.

In all experiments des
ribed in the present se
tion, initial states y0 and referen
e states y∗

for the system (3.1) - (3.2) were 
hosen from the set of three parti
ular variants, presented in

Figure 4.1. In des
ription of ea
h experiment, we will spe
ify expli
itly whi
h variants were used.

Figure 4.1 presents the same plots as Figure 2.3 in Se
tion 2.3 but we pla
e it here again, for


ompleteness and 
onvenien
e. The formulas determining the fun
tions plotted in Figure 4.1 are:

ŷ(x1, x2) = cos
(
4πx1

)
·
(
1− 2

(
1 + e30 x2

)−1)
(4.10)

ŷ(x1, x2) = − 1 +
(
2
(
1 + e−30x1

)−1
−

(
1 + e−30(x1−0.8)

)−1)
·
(
1 + e30 x2

)−1
+

+ 2
(
1 + e30(x1+0.2)

)−1
·
(
1 + e−30 x2

)−1 (4.11)

ŷ(x1, x2) = 1− 2
(
1 + e−15

3
√

13
13

(x2−1.5x1)
)

(4.12)

min.val.= -1.0000
max.val.=1.0000

black=-1.00 white=1.00

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(a) Variant 1.
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(b) Variant 2.

min.val.= -1.0000
max.val.=1.0000

black=-1.00 white=1.00

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(
) Variant 3.

Figure 4.1: Variants of the initial state y0 and the referen
e state y∗ utilized in the experiments

des
ribed in Se
tion 4.4. The plots present s
alar fun
tions de�ned on the 
onsidered R2
domain.

The formulas determining the plotted fun
tions are (4.10) for Fig. 4.1a, (4.11) for Fig. 4.1b and

(4.12) for Fig. 4.1
.

Moreover, in all experiments, it was assumed that the number of the 
ontrol and measurement

devi
es equals twenty (J = 20). In addition, for ea
h experiment experiment, the 
on�guration

of 
ontrol and measurement devi
es used as a start 
on�guration for the optimization algorithms

was as in Figure 4.2.
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Figure 4.2: The start 
on�guration of 
ontrol and measurement devi
es for optimization pro
e-

dures utilized in the experiments des
ribed in Se
tion 4.4. In other words, the plot 
hara
terizes

the 
ontrol parameter υ̂0 ∈ V , utilized in the des
riptions in Se
tion 4.2.

Also, in ea
h of the below des
ribed experiments the following data were used. The pa-

rameters 
on
erning the system (3.1) - (3.2) (see Se
tion 4.1 for explanation of the parameters

meaning) were:

D = 0.03 rσ,2 = 1/8 Cswitch = 0.2 Csmooth = 0.9

βj = 1 ∀j=1,...,J rσ,1 = 0.6 · rσ,2 Lw = −10

κj0 = 0 ∀j=1,...,J Cg = 16/π Hw = 10

Other parameters, i.e. the parameter T (
on
erning the system (3.1) - (3.2), see Se
tion 4.1),

parameters N , M , NPicard (
on
erning the numeri
al s
heme, see Se
tion 4.3) and the parameter

Nopt (
on
erning the stop of optimization algorithms, see Se
tion 4.2) will be spe
i�ed below,

in the des
riptions of parti
ular experiments. The 
hoi
e of the optimization pro
edures (SD

method, CG-r method or CG+r method) also will be spe
i�ed there.

4.4.1 Experiment 1 � various initial 
onditions and 
ost fun
tionals

This experiment served for 
omparing the behavior of the SD method for optimization problem

(3.24), for two di�erent parameters T0, entering the de�nition of the 
ost fun
tional I . One

of the 
onsidered values of T0 
orrespond to the 
on
ept of the 
ost fun
tional that 
onsists in

measuring the gap between the referen
e state and the evolution of the pro
ess on the whole

time interval of the experiment, [0, T ]. The other value of T0 
orresponds to the 
ost fun
tional


on
ept that 
onsists in measuring the subje
t gap only in the neighborhood of the terminal time

T .
The se
ond of the above 
ost fun
tional 
on
epts �ts our main motivation, des
ribed in the

beginning of Chapter 4, whi
h is the problem of 
hoosing the targeting of the devi
es a
tions

w.r.t. the task of bringing the pro
ess state possibly 
lose to the referen
e state at the terminal

time T . In this 
ase of the 
ost fun
tional, it is desired that the optimization pro
edure will

return results being independent of the initial state y0 (see the explanation in the beginning of

Chapter 4). Unfortunately, the latter o

urs to be not true, at least with the data employed in

the present experiment. Below, we suggest some possible solutions to this situation.

Despite the fa
t that we are interested in the 
ost fun
tional with measurement 
on
entrated


lose to terminal time, the 
omparison with the other mentioned type of the 
ost fun
tional

(measurement distributed over the whole [0, T ]) also is interesting. This 
omparison, as we will

see below, 
an suggest that the SD method applied in the investigated optimization problem

di�ers in the its performan
e depending on the 
hosen parameter T0.
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In the presently 
onsidered experiment, the time horizon for the system (3.1) - (3.2) was

T = 2.

The referen
e state y∗ was assumed to be as in Figure 4.1
.

The following parameters for the numeri
al s
heme were assumed: N = 80, NPicard = 2 and

M = 100.
The applied optimization algorithm was SD method, des
ribed in Se
tion 4.2, with Nopt =

1000.

Four simulations were performed, 
orresponding to two variants of the initial state y0 and

two values of the 
ost fun
tional parameter T0. The subje
t two 
hoi
es of y0 were 
orresponding
to the fun
tions plotted in Figure 4.1a and Figure 4.1b (we 
all it variant 1. and variant 2.,

respe
tively). The two 
onsidered values of T0 were T0 = 0 and T0 = 0.9T .

Simulation Iterations Initial 
ost Terminal 
ost

y0 variant 1, T0 = 0 39 0.918962 0.720012

y0 variant 2, T0 = 0 68 1.780059 0.981571

y0 variant 1, T0 = 0.9T 118 0.109127 0.017851

y0 variant 2, T0 = 0.9T 1000 0.232079 0.020284

Table 4.1: Performan
e of optimization pro
edures 
onsidered in Se
tion 4.4.1, for two variants

of the initial state y0 and two values of the parameter T0 
onsidered in the subje
t se
tion.

Column �Iterations� informs how many iterations of the optimization pro
edure (see integer n
in the des
ription of the SD and CG methods, given in Se
tion 4.2) were performed before

the pro
edure ful�lled the stop 
riterion. If the optimization pro
edure was terminated due to

the 
ondition n = Nopt and not sn = 0, (see the spe
i�
ation of the stop 
riterion, given in

Se
tion 4.2), the number of iteration is given with bold font. The last two 
olumns present the

values of the 
ost fun
tional at start of an optimization pro
edure and after the optimization

pro
edure terminated. In other words, values I(υ̂0) and I(υ̂n), for n 
orresponding to the stop

iteration, are presented there (with υ̂i being as in the des
ription of SD and CG methods given

in Se
tion 4.2).

Table 4.1 
ompares the performan
e of the SD method in the four 
onsidered simulations. A

grater number of iterations was ne
essary to ful�ll the stop 
riterion for simulations 
on
erning

T0 = 0.9T . In parti
ular, in the simulation 
on
erning T0 = 0.9T and variant 2. of y0, the SD
method failed to stop in one thousand iterations. This is greatly worse result that in the 
ase

of the other three simulations. One 
an pose a hypothesis that worse performan
e of the SD

method for T0 = 0.9T is a general rule. In Se
tion 4.4.2, we will make a further step towards

veri�
ation of the subje
t hypothesis.

Now, let us take a look at the devi
es 
on�gurations obtained by the here 
onsidered opti-

mization pro
edures.

The two simulations with T0 = 0 di�er only with the variant of y0. Comparing Figures

4.3a and 4.3b we see that the result of these simulation varies strongly. The meaning of the

optimization problem (3.24) with the parameter T0 = 0 entering the 
ost fun
tional 
an be

explained as follows. The problem is to adjust the 
on�guration of the devi
es in a manner that

results in qui
k redu
tion of the di�eren
e between the initial state of the pro
ess and the referen
e

state. In other words, the di�eren
e between y0 and y∗ is 
ru
ial and hen
e the dependen
e on y0
of the subje
t two simulations results 
ould be expe
ted. In addition, one may 
ompare Figures

4.3a and 4.3b with Figures 4.4a and 4.4b, respe
tively. If one merged the 
orresponding �gures

pairwise, it 
ould be noted, that the obtained targeting of the devi
es a
tions 
oin
ide with the
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(a) y0 variant 1.,
T0 = 0, iter. 39.
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(b) y0 variant 2.,
T0 = 0, iter. 68.
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(
) y0 variant 1.,
T0 = 0.9T , iter. 118.
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(d) y0 variant 2.,
T0 = 0.9T , iter. 1000.

Figure 4.3: Con�gurations of the 
ontrol and measurement devi
es a
tions, obtained by opti-

mization pro
edures addressed in Se
tion 4.4.1, for two variants of the initial state y0 and two

values of the parameter T0 
onsidered in the subje
t se
tion. Values of the parameter T0 and the

variants of the initial state (
orresponding to the fun
tions plotted Figure 4.1) are indi
ated in

the �gures. Ea
h plot presents the 
on�guration 
orresponding to the terminal iteration of the

subje
t optimization pro
edures (see 
olumn �Iterations� in Table 4.1).
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∣∣y0−y∗
∣∣
for variant 1.

of y0.
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(b)

∣∣y0−y∗
∣∣
for variant 2.

of y0.

Figure 4.4: The fun
tion

∣∣y0−y∗
∣∣
, for y∗ being as assumed in Se
tion 4.4.1 and for two variants of

y0 
onsidered in the subje
t se
tion. Fig. 4.4a 
orresponds to the 
ase of y0 being as in Fig. 4.1a

and Fig. 4.4b 
orresponds to y0 as in Fig. 4.1b.

light �elds in the plots of di�eren
e

∣∣y0 − y∗
∣∣
. It means that the optimization pro
edure has

lo
ated the 
ontrol and measurement devi
es a
tions there where the subje
t di�eren
e was the

greatest.

The two simulations 
orresponding to T0 = 0.9T also di�er only with the variant of y0.
However, this time we expe
t a looser dependen
e of the results on y0. The latter expe
tation


an be justi�ed with reasoning as already mentioned in the introdu
tion to Chapter 4. Let

us re
all it. Most of the data 
onsidered in the subje
t simulations is as in Se
tion 2.3.2 and

Se
tion 2.3.3. There, the pro
ess o

urred to stabilize in the neighborhood of 
ertain time-

invariant state, independent of y0. Therefore, one 
ould expe
t that in the present simulations

the pro
ess also may stabilize near 
ertain y0-independent, time-invariant state. If this was the


ase, then the values of the 
ost fun
tional would not di�er signi�
antly under 
hanges of y0,
be
ause for T0 = 0.9T the 
ost fun
tional a

ounts only the behavior of the pro
ess near the
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terminal time, where the pro
ess evolves independently on y0. In 
onsequen
e, minimal points

of the 
ost fun
tional also would depend on y0 insigni�
antly.

The results returned by the SD method for the 
ase T0 = 0.9T deny part of the above

expe
tations. Comparing Figures 4.3
 and 4.3d shows that the obtained 
on�gurations of the

devi
es di�er for the two 
onsidered variants of y0. The di�eren
e between the two patterns is not

that big as in the 
ase of Figures 4.3a and 4.3b. Nevertheless, depending on parti
ular a

ura
y

requirements, the mat
h between the patterns in Figures 4.3
 and 4.3d 
an be 
onsidered to be

not enough a

urate.

Several hypotheses 
on
erning the latter observations, 
on
erning the dependen
e of the

optimization results of y0 in 
ase T0 = 0.9T , 
an be posed. In parti
ular, the following ones seem

to be natural:

(a) the above hypotheses 
on
erning the stabilization near to a time-invariant state independent

of y0 are false,

(b) the time interval of the model in the presently 
onsidered simulations was too short for the

pro
ess to get 
lose enough to the time-invariant state,

(
) the optimization pro
edure was not a

urate enough to approximate the minimum of the


ost fun
tional with su�
ient pre
ision (it is possible be
ause in the simulation 
on
erning

variant 2. of y0 and T0 = 0.9T the optimization pro
edure stopped due to a large number

of iterations, not due to a short step length � see Table 4.1).

We will tou
h part of the above hypotheses in the forth
oming se
tions.

4.4.2 Experiment 2 � 
omparing optimization methods

In the below des
ribed experiment, we 
ompare performan
e of the SD method with performan
e

of CG methods (more pre
isely, the CG-r and CG+r methods), for optimization problem (3.24).

The simulations were performed for varying initial states y0, varying referen
e states y
∗
, entering

the system (3.1) - (3.2), and varying values of the parameter T0, entering the 
ost fun
tional I .

The aims of the experiment were threefold. First, we wanted to get further veri�
ation of the

observations made in Se
tion 4.4.1, that the performan
e of the SD method for the optimization

problem with T0 = 0.9T is inferior to the 
ase of T0 = 0. This obje
tive is realized by performing

more simulations, using the SD method, for both 
ases of T0. Se
ond, we posed a parti
ular aim

to verify whether the CG methods are more appropriate for our optimization problem in the 
ase

of T0 = 0.9T , whi
h is parti
ularly interesting for us (see the introdu
tion to Chapter 4). Third,

we wanted to 
ompare the results obtained in Se
tion 4.4.1 for the 
ase T0 = 0.9T with the use

of the SD method with results obtained in the same 
ase with the use of the CG methods. This

serves for investigating the reasons of the dependen
e of the optimizations results on y0, what
was observed in Se
tion 4.4.1. A dis
ussion 
on
erning the three introdu
ed obje
tives will be


ondu
ted below.

In the presently 
onsidered experiment, the time horizon for the system (3.1) - (3.2) was

T = 2.

The following parameters for the numeri
al s
heme were assumed: N = 80, NPicard = 2 and

M = 100 (i.e. τM = M−1 = 0.02).

The stop 
riterion parameter for the optimization methods was Nopt = 1000.

54 simulations were performed, 
orresponding to di�erent variants of: the initial state y0, the
referen
e state y∗, the 
ost fun
tional parameter T0 and the optimization method. Three 
hoi
es
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of y0, three 
hoi
es of y
∗
, two 
hoi
es of T0 and three 
hoi
es of the optimization methods were


onsidered, what gives 3× 3× 2× 3 = 54 di�erent data 
on�gurations. Hen
e 54 simulations.

The three 
onsidered variants of y0 were 
orresponding to the three fun
tions, plotted in

Figure 4.1a, Figure 4.1b and Figure 4.1
 (we 
all it variant 1., variant 2. and variant 3., re-

spe
tively). The three variants of y∗ also were 
orresponding to these three fun
tions. The two

values of T0 taken into a

ount were T0 = 0 and T0 = 0.9T . The three optimization methods

were: 1) SD method, 2) CG-r method and 3) CG+r method (see Se
tion 4.2 for explanation of

these methods).

A

ording to the above, four of the simulations des
ribed here are exa
tly those des
ribed

in Se
tion 4.4.1 (the simulations with variant 3. of y∗ and with the use of the SD method).

Nevertheless, we atta
h the result of the subje
t four simulations here, for more 
onvenient


omparison with other results.

Simulation Iterations Ratio

SD CG-r CG+r

CG-r

SD

CG+r

SD

y0 var. 1, y
∗
var. 3, T0 = 0 39 58 58 1.4872 1.4872

y0 var. 2, y
∗
var. 3, T0 = 0 68 106 97 1.5588 1.4265

y0 var. 3, y
∗
var. 3, T0 = 0 188 139 176 0.7394 0.9362

y0 var. 1, y
∗
var. 2, T0 = 0 261 49 52 0.1877 0.1992

y0 var. 2, y
∗
var. 2, T0 = 0 558 76 82 0.1362 0.1470

y0 var. 3, y
∗
var. 2, T0 = 0 1000 139 168 0.1390 0.1680

y0 var. 1, y
∗
var. 1, T0 = 0 184 52 50 0.2826 0.2717

y0 var. 2, y
∗
var. 1, T0 = 0 179 92 87 0.5140 0.4860

y0 var. 3, y
∗
var. 1, T0 = 0 106 79 122 0.7453 1.1509

Mean 287.0 87.8 99.1 0.6434 0.6970

Median 184.0 79.0 87.0 0.5140 0.4860

y0 var. 1, y
∗
var. 3, T0 = 0.9T 118 64 52 0.5424 0.4407

y0 var. 2, y
∗
var. 3, T0 = 0.9T 1000 255 279 0.2550 0.2790

y0 var. 3, y
∗
var. 3, T0 = 0.9T 211 77 77 0.3649 0.3649

y0 var. 1, y
∗
var. 2, T0 = 0.9T 212 96 84 0.4528 0.3962

y0 var. 2, y
∗
var. 2, T0 = 0.9T 250 89 95 0.3560 0.3800

y0 var. 3, y
∗
var. 2, T0 = 0.9T 384 125 112 0.3255 0.2917

y0 var. 1, y
∗
var. 1, T0 = 0.9T 1000 60 82 0.0600 0.0820

y0 var. 2, y
∗
var. 1, T0 = 0.9T 526 35 35 0.0665 0.0665

y0 var. 3, y
∗
var. 1, T0 = 0.9T 1000 137 42 0.1370 0.0420

Mean 522.3 104.2 95.3 0.2845 0.2603

Median 384.0 89.0 82.0 0.3255 0.2917

Table 4.2: Performan
e of the optimization methods 
onsidered in Se
tion 4.4.2, for three variants

of the initial state y0, three variants of the referen
e state y∗ and two values of the parameter

T0 
onsidered in the subje
t se
tion. The meaning of 
olumn �Iterations� and the notation


on
erning the stop 
riterion (the bold font entries) are as in the 
ase of Table 4.1. Column �Ratio�

presents, for ea
h simulation, the ratio of iteration numbers 
on
erning indi
ated optimization

methods (with rounding to 4 signi�
ant digits). The mean values given in the latter 
olumn

refer to the mean of the ratio values, not to the ratio of the mean numbers of iterations in the

pre
eding 
olumns. The analogous 
onvention 
on
erns the median values.

Consider the data presented in Table 4.2. First, observe that both the mean and the median
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of the number of iterations ne
essary for SD method to stop are mu
h greater in the 
ase of

T0 = 0.9T than in the 
ase of T0 = 0. Basing on the subje
t result, one may suspe
t that the

SD method has worse performan
e in the 
ase T0 = 0.9T (in the sense of the expe
ted value or

of the median). This is 
onsistent with the preliminary observation 
on
erning the behavior of

the SD method, 
ontained in Se
tion 4.4.1.

Next, 
ompare the performan
e of the SD method with the performan
e of the two 
onsidered

CG methods. In the 
ase of T0 = 0, we observe that the mean of the redu
tion of the number

of iterations ne
essary to a
hieve the stop 
riterion when using one of the CG methods instead

of the SD method is over 30% (see 
olumn �Ratio� in Table 4.2). The median of the redu
tion

is about 50%. In the 
ase of T0 = 0.9T , both the mean and the median of the redu
tion are

signi�
antly greater and take value about 70%.

In addition, we remark that for the CG methods the optimization pro
edures never stopped

due to a
hieving a large number of iterations, equal Nopt. For these methods, the stop reason

was always a short step length (for the des
ription of the stop 
riterion, see Se
tion 4.2). Note

however an interesting parti
ularity that in the 
ase of T0 = 0 there were two situations where

the SD method was in advantage to the CG methods, in sense of number of iterations (variants

1. and 2. of y0 with variant 3. of y∗), while in the 
ase of T0 = 0.9T the CG methods always

behaved better than the SD method.

Another interesting observation is that both the mean and the median of the number of

iterations for the CG+r method were similar both for T0 = 0 and for T0 = 0.9T . For the SD

method, this is not true. In the 
ase of the CG-r method, the di�eren
es in the mean and the

median of the number of ne
essary iterations o

urring in 
omparison of T0 = 0 and T0 = 0.9T

ases also were small (in 
omparison to the SD method), but not that small as in the 
ase of the

CG+r method. It looks like the performan
e of the CG+r method, in sense of the mean and the

median, was most immune to the 
hange of the parameter T0, among the 
onsidered methods.

To sum up the above observations, the SD method seems to have statisti
ally worse perfor-

man
e in the 
ase of T0 = 0.9T than in the 
ase of T0 = 0 (in the sense of the mean and the

median of the number of iterations). This di�eren
e in the behavior of the optimization method

is leveled by swit
hing to the CG+r method. In both 
ases (T0 = 0 and T0 = 0.9T ), swit
hing
to one of the CG methods was a fruitful step. Nevertheless, the bene�ts of swit
hing to the CG

methods were 
onsiderably higher in the 
ase T0 = 0.9T .

Among the three proposed optimization methods, the method that seems to be in favor for

our purposes is the CG+r method. It was most immune to 
hanges of the 
ost fun
tional (in the

sense of the mean and the median of the number of iterations). In this sense, the performan
e

of this method is most predi
table. Moreover, in the 
ase of T0 = 0.9T , whi
h is the 
ase of

our interest, its performan
e is statisti
ally the best among the proposed methods (in the sense

of the mean and the median). Besides, applying a reset pro
edure in the nonlinear 
onjugate

gradient method seems to be a standard approa
h, at least in a part of the literature 
on
erning

this method.

In addition to the above observations, we fo
us for the moment on the simulations 
on
erning

the 
ase of variant 3. of y∗ and T0 = 0.9T . This 
ase was one of the subje
ts of Se
tion 4.4.1,

with 
on
lusion that the dependen
e of the optimization results on the initial state y0 
an be

observed. In simulations des
ribed in Se
tion 4.4.1, SD method was used. In the simulation


on
erning variant 2. of y0 and T0 = 0.9T , it stopped due to large number of iterations, not due

to short step length (see Table 4.1). Therefore the obtained approximation of lo
al minimum

of the 
ost fun
tional I 
ould be of low quality. Now, we 
an 
ompare the results des
ribed in

Se
tion 4.4.1 with optimization results obtained by CG-r and CG+r methods. For the latter

methods the optimization pro
edure always stopped due to the short step length (see Table 4.2).
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(f) y0 variant 2.,
CG+r, iter. 279.

Figure 4.5: Con�gurations of the 
ontrol and measurement devi
es 
on
erning variant 3. of y∗

and T0 = 0.9T , obtained as a result of simulations des
ribed in Se
tion 4.4.2, for two variants

of the initial state y0 and three optimization methods. The optimization methods and the

variants of the initial state (
orresponding to the fun
tions plotted Figure 4.1) are indi
ated

in the �gures. Ea
h plot presets the 
on�guration 
orresponding to the �nal iteration of the

subje
t optimization pro
edures (see 
olumn �Iterations� in Table 4.2). Figures 4.5a and 4.5d

are the same as Figures 4.3
 and 4.3d, respe
tively, but we pla
e them here for more 
onvenient


omparison of optimization methods.

For this reason, we assume that, for variant 2. of y0 and T0 = 0.9T , the approximation of the

lo
al minimums of I obtained be the subje
t methods is of higher quality than the approximation

obtained in Se
tion 4.4.1. Thus, 
omparison of the results 
an serve for verifying the hypothesis

that the dependen
e on y0 observed in Se
tion 4.4.1 was a 
onsequen
e of poor quality of the

optimization pro
edures output (see hypothesis (
) in the 
on
luding part of the latter se
tion).

Comparing parti
ular plots presented in Figure 4.5, one may observe that for CG-r and

CG+r methods dependen
e of the optimization output on y0 also takes pla
e, similarly as in

the 
ase of the SD method. This, under the assumption that the quality of the optimization

results is a

eptably high for the CG-r and CG+r methods, stays against the hypothesis that sole

optimization output quality was responsible for the dependen
e on y0 observed in simulations

des
ribed in Se
tion 4.4.1.

4.4.3 Experiment 3 � various initial 
onditions and time horizons

In the present se
tion, we 
ompare results of the CG+r method applied to optimization problem

(3.24), for two di�erent initial states y0 and for the time horizon parameter T greater that in

Se
tion 4.4.1 and Se
tion 4.4.2. The 
ost fun
tional 
onsidered in the below des
ribed experiment



122 CHAPTER 4. OPTIMAL TARGETING PROBLEM � NUMERICAL PROTOTYPES


orrespond to the idea of measurement of the gap between the pro
ess and the referen
e state

in the neighborhood of the terminal time T .
The aim of the below des
ribed experiment was further attempt to verify hypotheses 
on-


erning the dependen
e of the optimization results on y0, observed in the experiments des
ribed

in Se
tion 4.4.1 and Se
tion 4.4.2. As we will see below, lengthening the time interval results in


onsiderably higher immunity of the optimization problem to the 
hanges of y0. This supports
hypothesis (b), formulated as one of the 
on
lusions of Se
tion 4.4.1.

As a side result, we observe that the number of CG+r iterations ne
essary for time horizons

parameters T 
onsidered here is higher that in the previous se
tions, for T = 2.
In the presently 
onsidered experiment, the referen
e state y∗ for the system (3.1) - (3.2) was

assumed to be as the fun
tion plotted in Figure 4.1
.

The following parameters for the numeri
al s
heme were assumed: N = 80, NPicard = 2 and

τM = 0.02.

The applied optimization algorithm was CG+r method, des
ribed in Se
tion 4.2.

The stop 
riterion parameter for the optimization methods was Nopt = 600.

Four simulations were performed, 
orresponding to two di�erent variants of the initial state

y0 and two di�erent variants of the time horizon parameter T . The subje
t two variants of y0
were as the fun
tions plotted in Figure 4.1a and Figure 4.1b (we 
all it variant 1. and variant

2., respe
tively). The two values of the parameter T were T = 4 and T = 6.

Simulation Iterations Initial 
ost Terminal 
ost

y0 variant 1, T = 4 600 0.078051 0.007050

y0 variant 2, T = 4 468 0.083608 0.007149

y0 variant 1, T = 6 216 0.076831 0.006993

y0 variant 2, T = 6 600 0.077166 0.007088

Table 4.3: Behavior of optimization pro
edures 
onsidered in Se
tion 4.4.3, for two variants of

the initial 
ondition and two values of the parameter T 
onsidered in the subje
t se
tion. The

meaning of parti
ular 
olumns and the notation 
on
erning the stop 
riterion (the bold font

entries) are as in the 
ase of Table 4.1.

Note that the time step length τM is the same as in the previous experiments, however the

time horizon is longer and hen
e the number of the time steps M in the time dis
retization

is greater as well. This makes the 
omputational time ne
essary to perform one iteration of

an optimization algorithm greater than it was the 
ase in the previous experiments. This is

the reason for whi
h we have redu
ed the value of the parameter Nopt to 600 (in the previous

experiments, we 
onsidered Nopt = 1000).
The use of the CG+r method instead of the SD method also serves for redu
ing the 
ompu-

tational e�ort, sin
e, by the previous results, CG+r has performan
e superior to SD and more

predi
table than CG-r, in the sense of the mean and the median of the number of iterations

(see Se
tion 4.4.2). Nevertheless, 
omparison with previously des
ribed results shows that the

numbers of iterations in the presently 
onsidered simulations, with T = 4 or T = 6 (see Ta-

ble 4.3), are higher that the numbers of iterations for analogous simulations with T = 2 (i.e.

those simulations in Table 4.2 whi
h 
on
ern variant 3. of y∗ and T0 = 0.9T and whi
h use the

CG+r method). This allows to pose a hypothesis that the performan
e of the CG+r method for

optimization problem (3.24) varies with 
hanges of T .
Speaking at the level of general ideas, results of previous experiments may suggest that the

di�
ulty of the optimization problem (3.24) varies with 
hanges of T0 (be
ause the performan
e
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of the SD method varies, see Se
tion 4.4.2), while the here presented results may suggest that

the di�
ulty 
hanges also with 
hanges of T (be
ause the performan
e of the CG+r method


hanges). Nevertheless, it is worth re
alling that the di�eren
es in the performan
e of the CG+r

method were not present when 
hanging the parameter T0, in opposite to 
hanges of T .
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(f) y0 variant 2.,
T = 6, iter. 600.

Figure 4.6: Con�gurations of the 
ontrol and measurement devi
es, obtained by optimization

pro
edures addressed in Se
tion 4.4.3, for two variants of the initial state y0 and two values of the

parameter T 
onsidered in the subje
t se
tion. Values of the parameter T and the variants of the

initial state (
orresponding to the fun
tions plotted Figure 4.1) are indi
ated in the �gures. Ea
h

plot presets the 
on�guration 
orresponding to the �nal iteration of the subje
t optimization

pro
edures (see 
olumn �Iterations� in Table 4.3). Figures 4.6a and 4.6d 
on
ern simulations

des
ribed in Se
tion 4.4.2 and are the same as Figures 4.5
 and 4.5f, respe
tively, but we pla
e

them here for more 
onvenient 
omparison.

Now, we will 
ompare the optimization output obtained by the here 
onsidered simulations

with the output obtained in the simulations des
ribed in the previous se
tions.

Two of the simulations des
ribed in Se
tion 4.4.2 di�er with the simulations des
ribed here

only with time horizon T (these are the simulations 
onsidered there whi
h 
on
ern variant 3.

of y∗ and T0 = 0.9T and whi
h use the CG+r method). In Se
tion 4.4.2, for the subje
t two

simulations, shorter time horizon, T = 2, was 
onsidered. At the same time, dependen
e of

the optimization results on the initial state y0 was observed. Now, we 
an 
ompare the results


on
erning T = 2, des
ribed in Se
tion 4.4.2 (Figures 4.6a and 4.6d), with the results 
on
erning

longer time horizon (Figures 4.6b, 4.6
, 4.6e and 4.6f).

First, we 
an observe as the di�eren
e between the optimization output for distin
t y0 variants
de
reases when lengthening the time horizon T . The di�eren
e between the results obtained for

T = 4 (Figures 4.6b and 4.6e) are visible smaller that the di�eren
es for T = 2 (Figures 4.6a and
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4.6d). Still, some di�eren
e 
an be observed also for T = 4. Comparing the results 
on
erning

T = 4 with the results 
on
erning T = 6 (Figures 4.6
 and 4.6f), we observe further growth of

similarity between the optimization results obtained for the two 
onsidered variants of y0.

Se
ond, as an additional observation, note that in all of Figures 4.6b, 4.6
, 4.6e and 4.6f, a

strong visual dependen
e of the results with the referen
e state y∗ (Figure 4.1
) is visible. This
is expressed by 
on
entration of the devi
es a
tions near the diagonal-like line, asso
iated with

the referen
e state y∗ (Figure 4.1
) and by symmetry of the a
tions targeting with respe
t to the

subje
t line. In parti
ular, for variant 2. of y0 this dependen
e seems to be 
learer for T = 4 and
T = 6 (Figures 4.6e and 4.6f) than in the 
ase of T = 2 (Figure 4.6d). The level of symmetry

visible in Figures 4.6e and 4.6f is higher than in Figure 4.6d.

To sum up, the use of a longer time interval resulted in leveling the dependen
e on y0,
observed in Se
tion 4.4.2 for the simulations asso
iated with T0 = 0.9T and y∗ as in Figure 4.1
.

Re
all also that 
hanging the optimization method from SD to CG+r did not bring this kind of

results (see Se
tion 4.4.2). These observations seem to 
on�rm hypothesis (b), formulated for

SD method in the 
on
luding part of Se
tion 4.4.1.

Moreover, looser the dependen
e on y0 of the optimization results was, the stronger depen-

den
e on y∗ was visible.

4.4.4 Te
hni
al remarks

We now give some te
hni
al remarks 
on
luding the present 
hapter.

First, we have not 
ondu
ted the 
onvergen
e analysis of the optimization pro
edures applied

in our experiments. Below, we will 
omment whi
h additional steps would be ne
essary in the


onvergen
e analysis.

Se
ond, as indi
ated in the present 
hapter, our experiments for numeri
al treatment of the

optimization problem (3.24) were a rather heavy 
omputational e�ort. At the same time, we are

parti
ularly interested in performing the optimization experiments for long time horizons (be-


ause it resulted in redu
ed dependen
e of the results on the initial 
ondition, see Se
tion 4.4.3),

what makes the the experiments even more time 
onsuming.

To be pre
ise, for simulations des
ribed in Se
tion 4.4.1, with T = 2, the mean time of single

iterations was about 500 se
. For simulations with T = 4 or T = 6, des
ribed in Se
tion 4.4.3,

the mean iteration time was even longer (about 850 and 1200 se
, respe
tively). This made

the latter simulations impra
ti
ally long, be
ause they required hundreds of iterations be
ause

a
hieving the stop 
riterion (see Table 4.3).

Thus, below we 
omment on 
ertain possibilities of redu
ing the 
omputational time ne
essary

in numeri
al treatment of the optimization problem (3.24).

Remark. The above information 
on
erning 
omputational time for a single iteration is

not pre
ise be
ause, unfortunately, we have not saved timestamps 
on
erning ea
h parti
ular

iteration during our experiments. N

Convergen
e analysis

We begin with remarks 
on
erning the 
onvergen
e of the optimization pro
edures utilized in

our experiments.

It 
an be shown (see [24℄ or Chapters 3.2 and 5.2 in [38℄) that, under appropriate 
onditions,

the 
onvergen
e of the SD and CG methods, des
ribed in Se
tion 4.2, to a stationary point takes

pla
e in the following sense:
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• limn→∞

∥∥∇I(υ̂n)
∥∥
V
−→ 0 for the SD method.

• lim infn→∞
∥∥∇I(υ̂n)

∥∥
V
−→ 0 for the CG method.

Roughly speaking, the above mentioned appropriate 
onditions 
on
ern:

• The regularity of the 
ost fun
tional I . It should be di�erentiable in the 
lassi
al sense

(i.e., in the Fré
het sense, not only G

�

teaux) and its gradient should be Lips
hitz 
ontinuous

(see [24℄ or Chapters 3.2 and 5.2 in [38℄).

• The line sear
h pro
edure. It should return exa
t solution of 1-D optimization problem

(see Theorem 2.1 and Theorem 4.3 in [24℄), or it should ful�ll so-
alled Wolfe 
onditions

in the 
ase of the SD and CG+r algorithms (see Theorem 3.2 and subsequent remarks in

[38℄) or the Wolfe 
onditions plus so-
alled su�
ient des
ent 
ondition in the 
ase of the

CG-r algorithm (see Corollary 4.4 in [24℄).

• Besides, the results in [24℄ require the set of points with values of the 
ost fun
tional equal

below the value of the start point (
all it the level set) to be bounded.

In our work, we have not investigated the Lips
hitz 
ontinuity of ∇I nor we have addressed

the matter of boundedness of the level set.

In the optimization pro
edures in our simulations, the aim of the line sear
h pro
edure (see

Se
tion 4.3.4) was to approximate the exa
t solutions of the 1-D optimization problem. This may

seem to be reasonable to approximate the exa
t solutions, sin
e, in view of the above remarks,

they are su�
ient for the 
onvergen
e results. Nevertheless, despite the exa
t solutions are

su�
ient, their 
lose approximations not need to be su
h. The referred above results require

either exa
t solutions or so-
alled Wolfe 
onditions with, possibly, so-
alled su�
ient des
ent


ondition. In general, the exa
t solutions, as well as their approximations, do not ne
essarily obey

the Wolfe 
onditions. Thus, however the line sear
h pro
edure proposed in Se
tion 4.3.4 worked

properly, for the 
onvergen
e analysis it may 
onvenient to 
hange the line sear
h pro
edure for

a pro
edure obeying the Wolfe 
onditions and the su�
ient des
ent 
ondition.

Moreover, the numeri
al s
hemes applied for solving the 1-D problem base on inexa
t evalu-

ation of I (see Se
tion 4.3.2) and inexa
t evaluation of dn, 
aused by inexa
t evaluation of the

gradient of I (see Se
tion 4.3.3). Indeed, the ve
tor dn in the 1-D problem depends strongly on

the gradient of I , both for the SD and for the CG method. Thus, for the 
onvergen
e analysis of

the optimization pro
edures, it would be required to investigate the in�uen
e of the latter e�e
ts

to the 
onvergen
e.

Summing up, to investigate the 
onvergen
e of the real optimization pro
edures applied in

our simulations (whi
h are merely approximations of the ideal SD and CG methods, des
ribed

in Se
tion 4.2), it would be ne
essary to:

• Prove results on Lips
hitz 
ontinuity of ∇I .

• Propose a line sear
h pro
edure obeying the Wolfe 
onditions and the su�
ient des
ent


ondition.

• Answer the questions 
on
erning the 
onvergen
e of the numeri
al s
heme 
on
erning the

evaluation of I (Se
tion 4.3.2) and the evaluation of the gradient (Se
tion 4.3.3).

• Solve the rather te
hni
al problem of guaranteeing that the level set is bounded, if one

wants to base on the results of [24℄.
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Sin
e we have not performed analysis of the above points in the present work, we leave the

question 
on
erning the 
onvergen
e of the SD and CG algorithms applied in our experiments

open.

Possible os
illations near the stationary points

Roughly speaking, in our situation, possible re�nements 
on
erning the redu
tion of the 
om-

putational time of the numeri
al optimization experiments 
an be grouped into two 
ategories.

One of them is the group of re�nements fo
using on redu
ing the 
omputational time of a single

iteration of the optimization pro
edures, the other one is the group of re�nements serving for

redu
ing the expe
ted number of iterations. The below remark 
on
erns 
on
erns the latter

group of re�nements.

Taking a look at Tables 4.1, 4.2 and 4.3, one 
an observe that the number of iterations

ne
essary to rea
h the point ful�lling the stop 
riterion varies strongly for parti
ular simulations.

For some simulations, the number of iterations was parti
ularly high, e.g. for simulations with

long time interval, des
ribed in Se
tion 4.4.3. Thus one 
an pose a hypothesis, whi
h we do

not verify here, that in these simulations the optimization pro
edure was os
illating 
lose to the

stationary point for many iterations before rea
hing the stop 
riterion. Here, by os
illations me

mean 
onse
utive iterations of the optimization pro
edures whi
h bring no signi�
ant 
hanges

of the values of the 
ost fun
tional nor of the 
ontrol parameter. This kind of os
illations is


ertainly an undesired e�e
t, making the 
omputational time signi�
antly longer.

We propose two strategies of re�ning the optimization pro
edures applied in our experi-

ments. The subje
t strategies 
an be tested in future experiments and, if the alleged os
illations

indeed were present in our experiments, 
an result in improved performan
e of the optimization

algorithms. These strategies are:

• Use a stronger stop 
riterion. In our simulations, the stop 
riterion was probably quite

weak, in sense that strong 
onditions have to be ful�lled to trigger the stop 
riterion. It

is tempting to propose a stop 
riterion whi
h dete
ts the moment when the optimization

pro
edure does not make signi�
ant progress anymore, or when the os
illations begin.

Nevertheless, due to variety of possibilities whi
h 
ould be 
onsidered in this 
ontext, we

do not 
ontinue with this issue here.

• Apply the Newton method 
ombined with one of the SD or CG methods. This idea

is not new. It is known that the Newton method, if starting su�
iently 
lose to the

stationary point, 
onverges to this point qui
kly (see Theorem 3.5, p. 44 in [38℄). Thus, a

reasonable optimization pro
edure 
an be to start with the SD or CG method and swit
h

to the Newton method when a proper swit
hing 
riterion is triggered. Further proposition

is to use some quasi-Newton method instead of the Newton method itself, to avoid the

ne
essity of 
omputing the Hessian and dealing with 
onditions su�
ient for se
ond order

di�erentiability of I .

Note also that the ina

ura
ies in 
omputing the gradient of I , whi
h were mentioned above

in the 
ontext of the 
onvergen
e analysis, also 
an be related with the alleged os
illations of the

optimization pro
edures near the stationary points. Small perturbations of the gradient near the

lo
al minimum 
an in�uen
e the 
onvergen
e of gradient optimization algorithms, however this

is also merely a hypothesis. To 
on
lude, if the os
illations indeed are present in our simulations,

then, besides the above proposed strategies, it may be worthwhile to 
onsider possibilities of

improving the a

ura
y of the numeri
al s
hemes 
on
erning the evaluation of the gradient of I .
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Redu
tion to the stationary problem

There are also 
ertain dire
tions of development whi
h 
an help to redu
e the 
omputational

time of a single iteration in our optimization pro
edures. In this 
ontext, we propose the fol-

lowing strategy, whi
h in fa
t 
onsists in repla
ing the optimization problem (3.24) with other

optimization problem, potentially requiring less 
omputational power.

The strategy is to redu
e the system (3.1) - (3.2) to a stationary model, not involving the time

variable. Having this, one 
an de�ne an alternative 
ost fun
tional, basing on the gap between

the solution of the stationary model and the referen
e state. New optimization problem would

be to minimize the new 
ost fun
tional.

Computing a numeri
al solution of the stationary model should be less time 
onsuming than


omputing the numeri
al solution of (3.1) - (3.2). In our simulations, the main e�ort in every

iteration of the optimization pro
edures 
on
erned solving the system (3.1) - (3.2) multiple

times. Hen
e, a single iteration of the new optimization problem would be probably mu
h less

time 
onsuming.

From mathemati
al point of view, applying this approa
h would require the analysis of the

new optimization problem itself, 
onsisting of the steps analogous to those in the present work,

as the existen
e and uniqueness results, stability analysis and results 
on
erning di�erentiability

of the state operator and of the 
ost fun
tional.

On the level of general ideas, the new optimization problem approximates the original opti-

mization problem with T0 
lose to T , under the 
ondition that the dynami
al system asso
iated

with (3.1) - (3.2) posses a one point attra
ting set. Therefore, this approa
h is possible but

demands, besides the analysis of the new optimization problem itself, the analysis of large time

behavior of the system (3.1) - (3.2), involving in parti
ular analysis of the attra
ting sets. This

analysis probably would be not trivial be
ause, as remarked in Se
tion 2.3.4, in 
ertain situations

the attra
ting set, if exists, probably is bigger than one point. In 
onsequen
e, a non-obvious

problem of 
hara
terizing those parameters and fun
tions entering the system (3.1) - (3.2) for

whi
h a one point attra
ting set exists would be fa
ed during the large time behavior analysis.

Numeri
al s
hemes with an improved integration method

Next, we would like to give a more extensive 
omment on the numeri
al s
hemes 
on
erning the

evaluation of the 
ost fun
tional I (see Se
tion 4.3.2) and its gradient (Se
tion 4.3.3). The subje
t

s
hemes return inexa
t values, what, as already remarked above, 
an both have 
onsequen
es for

the analysis of 
onvergen
e of the numeri
al optimization pro
edures and 
ause the hypotheti
al

os
illations of the numeri
al pro
edures.

The s
hemes for evaluation of the 
ost fun
tional and its gradient give inexa
t values, for

multiple reasons. First, for a given υ̂ ∈ V , the values I(υ̂) and ∇I(υ̂) are 
omputed basing

not on the weak solutions of systems (3.1) - (3.2) and (3.30) - (3.31), but on the approximate

solutions of these system, obtained by the methods des
ribed in Se
tion 4.3.1. Se
ond, the time

integrals of the approximate solutions or their transformations, appearing both in the de�nition

of I(υ̂) and in the formula 
hara
terizing ∇I(υ̂), are 
omputed inexa
tly. Being puristi
, the

time integrals of the approximate solutions are not even de�ned be
ause we assumed that the

approximate solutions are de�ned only in the time dis
retization points.

Thus, let us propose an alternative approa
h 
on
erning numeri
al s
hemes for the 
ost

fun
tional and its gradient, whi
h 
an be tested in the future experiments. We still assume

that the stru
tural assumptions presented in Se
tion 4.1 hold. The alternative approa
h 
an be

sket
hed a follows:
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1. De�ne approximate solution with 
ontinuous time for the system (3.1) - (3.2) as a pie
ewise

linear extension to [0, T ] of the approximate solution with dis
rete time, de�ned for the sys-

tem (3.1) - (3.2) in Se
tion 4.3.1 for time dis
retization points t0, t1, . . . , tM . Let this linear

extension be 
hosen su
h that it is linear on ea
h interval (tm, tm+1), m = 0, 1, . . . ,M − 1.
This makes the approximate solution with 
ontinuous time unique. The approximate so-

lution with 
ontinuous time for the system (3.30) - (3.31) is de�ned analogously, basing

on the approximate solution with dis
rete time, de�ned for the system (3.30) - (3.31) in

Se
tion 4.3.1.

2. To approximate the 
ost fun
tional, we evaluate the formula

∫ T
T0

∫
ΩN

∣∣YN − [y∗]N
∣∣2
, where

YN is the �rst 
omponent of the approximate solution with 
ontinuous time for the system

(3.1) - (3.2). Below, the subje
t formula will be 
alled the modi�ed 
ost formula. The

notation [y∗]N has meaning as in Se
tion 4.3.2.

To evaluate the modi�ed 
ost formula, we pro
eed as follows. First, de�ne the fun
tion

Ẽ : [0, T ] → R with the formula analogous as the formula for Ẽm in Se
tion 4.3.2, but with

t ∈ [0, T ] instead of dis
rete points t0, t1, . . . , tM . Note, that the fun
tion Ẽ is pie
ewise

paraboli
 and 
ontinuous, as a produ
t of two pie
ewise linear 
ontinuous fun
tions. Next,


ompute the time integral from T0 to T of Ẽ using the paraboli
 quadrature with nodes


oin
iding with the time dis
retization points. Su
h quadrature gives the exa
t value of

integral

∫ T
T0

Ẽ, be
ause Ẽ is pie
ewise paraboli
 and 
ontinuous. Hen
e, by the de�nition

of Ẽ, it is also an exa
t value of the modi�ed 
ost formula.

3. To approximate the gradient, we pro
eed analogously. We base on the formula (3.40). In

the subje
t formula, we substitute approximate solutions with 
ontinuous time instead of

the real solutions and P1(ΩN ) approximations of other fun
tions instead of the fun
tions

itself. Let us 
all the result the modi�ed gradient formula. We treat the modi�ed gradient

formula as an approximation of the gradient of the 
ost fun
tional.

To evaluate the modi�ed gradient formula, we de�ne fun
tions Ẽ1, Ẽ2, Ẽ3 : [0, T ] → R
analogously as Ẽ1,m, Ẽ2,m and Ẽ3,m in Se
tion 4.3.3, but with t ∈ [0, T ] instead of dis
rete

points t0, t1, . . . , tM . We also de�ne Ê∇ := Ẽ1+ Ẽ3. Next, we integrate Ê
∇
with respe
t to

time. Now, a di�eren
e with the step 
on
erning evaluation of the 
ost fun
tional o

urs

be
ause Ê∇ is not pie
ewise paraboli
, in opposite to Ẽ. Observing the stru
ture of Ẽ1,

Ẽ2, Ẽ3 one 
an note that:

• Ẽ1 is pie
ewise paraboli
 and 
ontinuous as a produ
t of two pie
ewise linear 
ontin-

uous fun
tions.

• Ẽ2 is pie
ewise paraboli
 and 
ontinuous as a 
omposition of two pie
ewise linear


ontinuous fun
tions (due to our stru
tural assumptions, w′j is pie
ewise linear). Nev-

ertheless, the nodes of Ẽ2 do not 
oin
ide with the time dis
retization points.

• Ẽ3 is pie
ewise polynomial of fourth order and 
ontinuous, as a produ
t of Ẽ2 and

two pie
ewise linear 
ontinuous fun
tions. The nodes of Ẽ3 do not 
oin
ide with the

time dis
retization points.

• Ê∇ is pie
ewise fourth order polynomial and 
ontinuous, with nodes not 
oin
iding

with the time dis
retization points.

As a result, to 
ompute the integral

∫ T
T0

Ê∇ using fourth order polynomials quadrature,

with more elaborate 
hoi
e of the quadrature nodes, depending on w′j . Deriving the exa
t

algebrai
 formulas is possible but to 
ompli
ated to do it here. Nevertheless � the obtained
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value is the exa
t value of

∫ T
T0

Ê∇ and hen
e, by the de�nition of Ê∇, also the exa
t value

of the modi�ed gradient formula.

Numerous advantages of the above proposed s
hemes for evaluating the 
ost fun
tional and

its gradient 
an be indi
ated. First, in 
omparison to the s
hemes presented in Se
tion 4.3.2 and

Se
tion 4.3.3, we have better 
ontrol on the output of the numeri
al s
hemes, be
ause the above

proposed s
hemes 
ompute exa
t values of 
on
rete formulas, i.e. of the modi�ed 
ost formula

and the modi�ed gradient formula.

Se
ond, it is tempting, and may possible, to prove that the modi�ed gradient formula in

fa
t 
hara
terizes the exa
t gradient of the 
ost fun
tional given by the modi�ed 
ost formula.

Su
h statement, if proven, would have interesting 
onsequen
es, in parti
ular for the analysis of


onvergen
e of the numeri
al optimization pro
edures to the stationary points of the 
ost fun
-

tional I . In 
ontrary to the 
onvergen
e analysis for the numeri
al s
hemes given in Se
tion 4.3

(see the remarks above in the present se
tion), here, it wouldn't be ne
essary to prove that the

gradient approximation is �ne enough. It would be su�
ient to prove the 
onvergen
e of the

SD and CG methods for the 
ost fun
tional asso
iated with the modi�ed gradient formula and

then to prove the 
onvergen
e of the latter 
ost fun
tional to the original 
ost fun
tional I . To
sum up, if the modi�ed gradient formula was the gradient of the modi�ed 
ost formula, then

it would be possible to apply ��rst dis
retize then optimize� approa
h instead of ��rst optimize

then dis
retize�.

Moreover, if the alleged os
illations of our optimization pro
edures (mentioned above in this

se
tion) were in fa
t 
aused by ina

ura
ies 
on
erning the gradient of I , then swit
hing to the

above proposed ��rst dis
retize then optimize� approa
h 
ould be a remedy to the os
illations

matter.

Nevertheless, the proposed approa
h has also its drawba
ks. The numeri
al s
heme ne
es-

sary for exa
t evaluation of the modi�ed gradient formula depends on the fun
tion w′j . For

example, reasoning as above we �nd that if w′j was pie
ewise a polynomial of order three, then

the quadrature ne
essary for exa
t evaluation of

∫ T
T0

Ê∇ would rise from four to �ve. If w′j was
not a polynomial at all, then a question arises how to 
hoose a proper quadrature for integral∫ T
T0

Ê∇. Thus, if one wanted to apply this approa
h, one would fa
e the problem of automati



hoi
e of quadrature during the implementation of the optimization pro
edures. This problem,

however interesting, 
ould 
ause problems both at the algorithmi
 level and at the level of 
ode

implementation, whi
h would be
ome more 
umbersome than it was the 
ase in our situation.
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Con
luding remarks

Below, we 
omment on 
ertain issues whi
h were not investigated in the present work. We

indi
ate 
ertain problems 
on
erning the model (0.1) - (0.3), introdu
ed in �1 of Introdu
tion,

or the optimal targeting problem, introdu
ed in �2 of Introdu
tion, whi
h were not solved in the

pre
eding 
hapters. We also 
omment on possibilities of re�ning the model (0.1) - (0.3) or the

setting of the optimal targeting problem itself.

The below questions remain open in the present work and 
an be investigated in the future:

• In Se
tion 2.3.4, we have indi
ated some observations 
on
erning the large time behavior of

the model (0.1) - (0.3). We have posed 
ertain hypotheses, basing on the e�e
ts observed

in the numeri
al results. One of them was that the stru
ture of the alleged attra
ting set

of the dynami
al system asso
iated with the model (0.1) - (0.3) signi�
antly depends on

the parameters of the model. It would be desired to 
on�rm the subje
t hypotheses by

analyti
al proofs. In parti
ular, it would be interesting to 
hara
terize those parameters

entering system (0.1) - (0.3) for whi
h the 
ontrolled pro
ess tends to some time-invariant

state, independent of the initial 
ondition. In other words, we are interested in those model

parameters, for whi
h a one-point attra
ting set exists.

The existen
e of a one-point attra
ting set would mean that, in the model (0.1) - (0.3),

the e�
ien
y of the thermostat 
ontrol me
hanism, understood as the distan
e between

the pro
ess state and the referen
e state for large times, is insensitive to the 
hanges of

the initial state of the pro
ess. The insensitivity to the 
hanges of the initial 
ondition is

one of the hypotheti
al advantages of the 
ontrols involving the automati
 
orre
tions idea

(see Introdu
tion), as .e.g. the thermostat 
ontrol me
hanism. Hen
e, the 
hara
terization

of those parameters of the model for whi
h the latter property holds would be a desired

result.

• Neither for the numeri
al s
hemes des
ribed in Chapter 2 nor for the ones des
ribed in

Chapter 4 we have performed the 
onvergen
e analysis. Therefore, from the mathemati
al

point of view, the 
onvergen
e analysis is one of the natural �elds for the further resear
h.

In Se
tion 4.4.4, 
ertain steps ne
essary for the analysis of the 
onvergen
e of the optimiza-

tion pro
edures utilized in the experiments des
ribed in Chapter 4 are indi
ated.

• The simulations 
on
erning the optimal targeting problem, des
ribed in Chapter 4, were

rather time 
onsuming. In Se
tion 4.4.4, we have indi
ated some possibilities of redu
ing the


omputational time of generating approximate solutions of the optimal targeting problem.

One of the aims of the future resear
h 
an be to test a part of the subje
t possibilities.

In parti
ular, performing optimization pro
edures based on the ��rst dis
retize then op-

timize� approa
h, proposed in Se
tion 4.4.4, and 
omparing the results with the results

des
ribed in Chapter 4 
ould be an interesting experiment. In some of the simulations

des
ribed in Chapter 4, the optimization pro
edures needed a parti
ularly large number
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of iterations to stop. One of the hypotheses 
on
erning the latter e�e
t, indi
ated in Se
-

tion 4.4.4, is that they it is related with the ina

ura
ies in the numeri
al s
heme for

the evaluation of the gradient of the 
ost fun
tional. The �rst dis
retize then optimize

approa
h, as explained in Se
tion 4.4.4, should eliminate the problem of ina

ura
ies of

the numeri
al s
heme for evaluation of the gradient of the 
ost fun
tional. Therefore, the


omparison of the results obtained with the latter approa
h and the results des
ribed in

Chapter 4 
an help to answer the questions 
on
erning the reasons behind the mentioned

e�e
t of the large number of iterations.

• We have not investigated the sensitivity of the e�e
tiveness of the thermostat 
ontrol me
h-

anism in the model (0.1) - (0.3) to perturbations of the model itself, i.e. of the di�usion


oe�
ient D or the rea
tive term f in the main equation (0.1) (here, we understand e�e
-

tiveness as in Introdu
tion, see 
omment a), page x). Insensitivity to perturbations of the

model is one of alleged advantages of the automati
 
orre
tions me
hanism, indi
ated in

the beginning of Introdu
tion. A further investigation 
an 
on
ern also the sensitivity of

the solutions of the optimal targeting problem to the 
hanges of the subje
t parameters.

• In the beginning of Se
tion 1.2, we have indi
ated that Lips
hitz 
ontinuous swit
hing

fun
tions in the system (0.1) - (0.3) 
an be utilized to approximate the 
ase of dis
ontinuous

swit
hing fun
tions, as −sgn, whi
h are not allowed dire
tly by the analyti
al results of the

present work. At the same time, the results of Se
tion 1.1, 
on
erning the modi�ed system

(1.1) - (1.3), allowed 
ertain multivalued swit
hing fun
tions 
ontaining −sgn. Thus, it

would be interesting to investigate the 
onvergen
e of the solutions of the system (0.1) -

(0.3) with Lips
hitz swit
hing fun
tions approximating −sgn to a solution of the modi�ed

system (1.1) - (1.3) with appropriate multivalued swit
hing fun
tions 
ontaining −sgn.
The subje
t 
onvergen
e was not analyzed in the present work and 
an be an aim for

further investigations.

Besides the above indi
ated te
hni
al problems, one may 
onsider to re�ne the model 
on-

sidered in the present work, as well as introdu
e 
hanges to the optimal targeting problem. In

this s
ope, we point out the following possibilities:

• The model (0.1) - (0.3) assumes that a pro
ess des
ribed by a rea
tion-di�usion equation

is 
ontrolled by thermostats. Not all real-world phenomenas whi
h are the subje
t of

the 
ontrol theory in PDEs 
an be des
ribed this way. The referen
es given in �3 of

Introdu
tion present examples of the models with thermostat 
ontrol me
hanism in whi
h

a state equation (or system of equations) other that the s
alar rea
tion-di�usion equation

is 
onsidered.

Hen
e, one of the generalizations of the 
ontent of the present work 
an 
onsist in assuming

a more general state equation or equations to be 
ontrolled by thermostats. Generalizing

further, one 
an try to implement the thermostat 
ontrol me
hanism for abstra
t dynami
al

systems and indi
ate whi
h properties of the subje
t systems are essential for deriving

results similar to the here presented ones (as the existen
e of solutions, the stability, the

di�erentiability of the 
ost fun
tional).

• The 
onsidered thermostat 
ontrol me
hanism, basing on whi
h we formulate the optimal

targeting problem, also 
an be re�ned. The model (0.1) - (0.3) involves a thermostat


ontrol me
hanism with assumes no hysteresis in the work of the swit
hing me
hanism (see

the remarks on possible variants of thermostat 
ontrol me
hanism in �3 of Introdu
tion).

In the present work, the latter assumption was imposed for the sake of the simpli
ity



133

of the investigated mathemati
al model. Nevertheless, a thermostat 
ontrol me
hanism

with hysteresis would be more realisti
, sin
e in real world perfe
tly immediate rea
tion to

observed 
hanges is not possible. In fa
t, a big part of the mathemati
al referen
es given in

�3 of Introdu
tion address models involving thermostat 
ontrol me
hanism with hysteresis

(however, none of those works fo
us on the optimal targeting problem).

• One may 
onsider also 
ertain modi�
ations in the optimal targeting problem as well. In

the present work, we assumed that the number of the 
ontrol devi
es equals the number

of the measurement devi
es and, moreover, that the 
ontrol and measurement devi
es

are pairwise 
oupled (see �2 of Introdu
tion). By 
oupling of the devi
es, we mean the

assumption that their a
tions has pairwise the same targeting in spa
e and a given 
ontrol

devi
e responds to the data 
olle
ted by the 
oupled measurement devi
e with weight equal

1. These assumptions were imposed to ex
lude the problem of the 
hoi
e of weights from

our resear
h. Nevertheless, in 
ertain appli
ations, the problem of the 
hoi
e of the weights

in thermostat 
ontrol me
hanisms seems to be natural and should not be ex
luded from

the setting of the optimization problem.

For example, one may 
onsider the situation of the hyperthermia 
an
er therapy, des
ribed

in �3 of Introdu
tion. As mentioned there, the temperature in the patient tissues 
an be

measured by magneti
 resonan
e imaging and the energy 
an be applied by 
ontrol devi
es

transmitting or ele
tromagneti
 waves. In the setting of thermostat 
ontrol me
hanism, the

a
tions of the magneti
 resonan
e 
an be interpreted as a dense mesh of small measurement

spots of �xed lo
ation. However, the user is permitted to 
alibrate the 
ontrol devi
es and,

in 
onsequen
e, to manipulate the targeting of their a
tions in spa
e. In this situation, it

is not natural to assume that the weights entering the thermostat 
ontrol me
hanism are

given. Thus, to handle the situation of the above type, one 
ould de�ne a new optimization

problem, taking into a

ount the problem of the 
hoi
e of both the targeting of the 
ontrol

devi
es a
tions and the weights, assuming that the a
tions of the measurement devi
es

have �xed targeting.
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Appendix A

Auxiliary theorems

A.1 Di�erentiability in Bana
h spa
es

The below de�nitions of dire
tional derivative, Gâteaux derivative and Fré
het derivative are

equivalent as those in [50℄, Chap. 4. The notions of the weak derivatives introdu
ed in this

Se
tion bases on [4℄, Chap. 1, Se
. 4. In addition, [50℄ provides the proofs (or te
hniques for the

proofs) for most of fa
ts and theorems presented below.

De�nition A.1.1 Let T : X → Y be an operator between two Bana
h spa
es. For û, v̂ ∈ X, we


all δT (û; v̂) ∈ Y (or δwT (û; v̂) ∈ Y ) the dire
tional derivative (or the weak dire
tional derivative,

respe
tively) of T in point û ∈ X in dire
tion v̂ ∈ X if

δT (û; v̂) = lim
ε→0

T (û+ εv̂)− T (û)

ε〈
φ̂ , δwT (û; v̂)

〉
Y ∗,Y

= lim
ε→0

〈
φ̂ ,

T (û+ εv̂)− T (û)

ε

〉
Y ∗,Y

∀φ̂∈Y ∗

(A.1)

The operator δT (û; . ) (or δwT (û; . )), a
ting on X is 
alled the variation (or the weak variation,

respe
tively) of T in point û ∈ X.

De�nition A.1.2 If the (weak) variation in point û is a bounded linear operator from X to Y ,

then we say that T is (weakly) Gâteaux di�erentiable in û and we de�ne the (weak) Gâteaux

derivative of T in û respe
tively as

DGT (û) := δT (û; . )

DG,wT (û) := δwT (û; . )
(A.2)

De�nition A.1.3 We say that DFT (û) ∈ L(X,Y ) (or DF,wT (û) ∈ L(X,Y )) is the Fré
het

derivative (or the weak Fré
het derivative, respe
tively) in point û ∈ X if

lim
v̂→0

T (û+ v̂)− T (û)−DFT (û)v̂∥∥v̂
∥∥
X

= 0

lim
v̂→0

〈
φ̂,

T (û+ v̂)− T (û)−DF,wT (û)v̂∥∥v̂
∥∥
X

〉
Y ∗,Y

= 0 ∀φ̂∈Y ∗

(A.3)
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Note, that by the above de�nition the existen
e of a dire
tional derivative implies the existen
e of

the weak dire
tional derivative. An analogous relation holds between the notion of the Gâteaux

di�erntiability and the weak Gâteaux di�erntiability and between the Fré
het di�erntiability and

the weak Fré
het di�erntiability.

Theorem A.1.4 (The 
hain rule) Let X1, X2 and X3 be Bana
h spa
es and let

T1 : X1 → X2, T2 : X2 → X3. Suppose, that:

1. T1 has the (weak) dire
tional derivative in point û ∈ X1 in dire
tion v̂ ∈ X1,

2. T2 is Fré
het di�erentiable (at least in point T1(û)).

Then the 
omposite operator T2 ◦ T1 has the (weak) dire
tional derivative in point û ∈ X1 in

dire
tion v̂ ∈ X1 and it 
an be expressed respe
tively as:

δ(T2 ◦ T1)(û; v̂) = (DFT2)(T1(û))δT1(û; v̂)

δw(T2 ◦ T1)(û; v̂) = (DFT2)(T1(û))δwT1(û; v̂)
(A.4)

The proof is very similar to the proof of Proposition 4.10 in [50℄.

Note, that Theorem A.1.4 implies that if T1 is (weakly) Gâteaux di�erentiable and T2 is

Fré
het di�erentiable then the superposition T2 ◦ T1 is (weakly) Gâteaux di�erentiable and the


hain rule holds.

Theorem A.1.5 (The produ
t rule) Let X1, X2,1, X2,2 and X3 be Bana
h spa
es, let

T1 : X1 → X2,1, T2 : X1 → X2,2, B̂ : X2,1×X2,2 → X3 and denote H(û) := B̂(T1(û), T2(û)). Fix
û, v̂ ∈ X1. We make the following assumptions:

1. B is bilinear and bounded,

2. Ti has the (weak) dire
tional derivative in point û in dire
tion v̂, for i = 1, 2.

Then H also has the (weak) dire
tional derivative in point û in dire
tion v̂ and it 
an be expressed

respe
tively as:

δH(û; v̂) = B̂(δT1(û; v̂), T2(û)) + B̂(T1(û), δT2(û; v̂))

δwH(û; v̂) = B̂(δwT1(û; v̂), T2(û)) + B̂(T1(û), δwT2(û; v̂))
(A.5)

The assertion follows as in the proof of Proposition 4.11 in [50℄.

Observation A.1.6 Note, that for Y = R in De�nition A.1.2 the weak Gâteaux di�erentiability

be
omes equivalent to the Gâteaux di�erentiability. For this reason, if we set in Theorem A.1.4

Y as R and T1 as a weakly Gâteaux di�erentiable operator, then we get that the superposition

T2 ◦ T1 is not only weakly Gâteaux di�erentiable but also Gâteaux di�erentiable and the 
hain

rule holds.

Observation A.1.7 Every bounded linear operator T : X → Y a
ting between two Bana
h

spa
es X and Y is Fré
het di�erentiable and its Fré
het di�erential in an arbitrary point is

equal to the operator itself, i.e. DFT (û)(v̂) = T (v̂) for all û, v̂ ∈ X.
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Observation A.1.8 Let H be a real Hilbert spa
e with norm

∥∥ .
∥∥
H

and s
alar produ
t ( . , . )H .

Let the operator T : H → R be de�ned by T (û) :=
∥∥u

∥∥2
H
. Then, T is Fré
het di�erentiable and

DFT (û)v̂ = 2 (û, v̂)H ∀û, v̂ ∈ H (A.6)

The Observations A.1.6 and A.1.7 follow straight while the Observation A.1.8 is an exer
ise

involving dire
t appli
ation of the derivative de�nition: �rst, we 
al
ulate the dire
tional deriva-

tives to obtain the 
hara
terization of the Gâteaux derivative of T (see, e.g., [45, p.57℄) and then

we estimate the reminder of the linearization to show, that the Gâteaux derivative is in fa
t the

Fré
het derivative of T as well.

If the 
onvergen
e in (A.1) in De�nition A.1.1 holds only for some sequen
e {εn}
∞
n=1, where

εn 6= 0, εn → 0 as n → ∞, then it is meaningful to pose a question: are the 
hain rule and the

produ
t rule still true? In the latter 
ontext, the below notion will be 
onvenient for the sake of

brevity:

De�nition A.1.9 For an operator T : X → Y , point û ∈ X, dire
tion v̂ ∈ X and a sequen
e

ǫ := {εn}
∞
n=1, εn → 0 as n → ∞, if the di�eren
e quotients

1
εn

(T (û+ εnv̂)− T (û)) are (weakly)


onvergent as n → ∞ then we 
all the limit the sequential (weak) dire
tional derivative on the

sequen
e ǫ and denote it δ̄ǫT (û; v̂) (or δ̄ǫwT (û; v̂), respe
tively).

Theorem A.1.10 Assume that ǫ := {εn}
∞
n=1, εn → 0 as n → ∞. The following modi�
ations

of Theorems A.1.4 and A.1.5 are true:

1. In Theorem A.1.4, if we repla
e the assumption on the existen
e of the (weak) dire
tional

derivative of T1 by an assumption of the existen
e of the sequential (weak) dire
tional

derivative of T1 on the sequen
e ǫ, then the assertion of the theorem holds in the sequential

version, i.e. the sequential (weak) dire
tional derivative of T2 ◦ T1 on the sequen
e ǫ exists
and it 
an be expressed respe
tively as:

δ̄ǫ(T2 ◦ T1)(û; v̂) = (DFT2)(T1(û))δ̄
ǫT1(û; v̂)

δ̄ǫw(T2 ◦ T1)(û; v̂) = (DFT2)(T1(û))δ̄
ǫ
wT1(û; v̂)

(A.7)

2. In Theorem A.1.5, if we repla
e the assumption on the existen
e of the (weak) dire
tional

derivatives of Ti, i = 1, 2 by an assumption of the existen
e of the sequential (weak) di-

re
tional derivatives of Ti, i = 1, 2 on the sequen
e ǫ, then the assertion of the theorem

holds in the sequential version, i.e. the sequential (weak) dire
tional derivative of H on the

sequen
e ǫ exists and it 
an be expressed respe
tively as:

δ̄ǫH(û; v̂) = B̂(δ̄ǫT1(û; v̂), T2(û)) + B̂(T1(û), δ̄
ǫT2(û; v̂))

δ̄ǫwH(û; v̂) = B̂(δ̄ǫwT1(û; v̂), T2(û)) + B̂(T1(û), δ̄
ǫ
wT2(û; v̂))

(A.8)

The proof of this theorem in fa
t 
onsists in analyzing the proofs of Theorems A.1.4 and A.1.5

and noting that the above modi�
ation is possible.

For the superposition of two operators T2 ◦ T1, Theorem A.1.4 implies that the 
hain rule is


orre
t if we assume the Fré
het di�erentiability of T2 and the (weak) Gâteaux di�erentiability

of T1. In the 
onverse situation, namely assuming only the (weak) Gâteaux di�erentiability of

T2, the 
hain rule is not true, even if the inner operator T1 is Fré
het di�erentiable. However,

there is a parti
ular 
ase in whi
h we 
an get the 
hain rule for (weakly) Gâteaux di�erentiable

T2:
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Observation A.1.11 Let X1, X2 and X3 be Bana
h spa
es, let T1 : X1 → X2, T2 : X2 → X3

and let û ∈ X1. Suppose, that:

1. T1 is a 
ontinuous linear operator,

2. T2 is (weakly) Gâteaux di�erentiable (at least in point T1(û)).

Then the 
omposite operator T2 ◦T1 is (weakly) Gâteaux di�erentiable in point û ∈ X1 and it 
an

be expressed respe
tively as:

DG(T2 ◦ T1)(û)(v̂) = (DGT2)(T1(û))(T1(v̂)) = (DGT2)(T1(û))(DFT1(û)(v̂))

DG,w(T2 ◦ T1)(û)(v̂) = (DG,wT2)(T1(û))(T1(v̂)) = (DG,wT2)(T1(û))(DFT1(û)(v̂))
(A.9)

Proof. The proof follows immediately. Let us 
he
k the di�eren
e quotient in point û ∈ X1

in dire
tion v̂ ∈ X1:

ε−1
(
T2

(
T1(û+ εv̂)

)
− T2

(
T1(û)

))
= ε−1

(
T2

(
T1(û) + εT1(v̂)

)
− T2

(
T1(û)

))

what tends to the (weak) dire
tional derivative of T2 in point T1(û) in dire
tion T1(v̂) when

ε → 0. If T2 is weakly Gâteaux di�erentiable then the above su�
es to verify the asserted

formulas. �

A.2 Optimality 
onditions for di�erentiable fun
tionals

Having introdu
ed the notion of derivatives in Bana
h spa
es and their basi
 properties, we 
an

link this theory to the theory of optimization and formulate the optimality 
riterion, generalizing

the Fermat's ne
essary 
ondition for existen
e of minimum of a real fun
tion of one real variable:

Theorem A.2.1 Let C ⊂ D ⊂ X where X is a real Bana
h spa
e, C is a nonempty and 
onvex

subset and D is an open subset of X 
ontaining C. Let also T : D → R be a Gâteaux di�erentiable

fun
tional. Then the ne
essary 
ondition for ū ∈ X to solve the optimization problem inf û∈C T (û)
if that the following 
ondition is ful�lled in ū:

DGT (ū)(ŵ − ū) ≥ 0 ∀ŵ∈C (A.10)

For the proof, see Lemma 2.21 in [45℄.

A.3 Nemytskii operators

Below, we present a short part of the theory of Nemytskii operators, ne
essary in the present work.

We do not need the theory of Nemytskii operators in its full generality. Our attention is restri
ted

to autonomous Nemytskii operators a
ting on fun
tions de�ned on Lebesgue-measurable subsets

of Rn
of bounded measure. A reader interested in the more general theory is referred to [2℄

or [17℄. A
tually, the below fa
ts 
on
erning Nemytskii operators are based on the 
ontent of

Chapters 6 and 7 in [17℄.
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In general, for a set A and a fun
tion F : A×R → R, the Nemytskii operator asso
iated with

F , denote it NF , is the operator a
ting from the set of real fun
tions on A to itself de�ned by

the following 
ondition:

NF (û)(x) := F
(
x, û(x)

)
for x ∈ A, for û : A → R

We are interested in the situation of F being a fun
tion of only one variable, F : R → R. In this


ase, the operator NF is 
alled autonomous Nemytskii operator and 
an be expressed as:

NF (û) := F ◦ û for û : A → R

The Nemytskii operator NF is often 
onsidered to a
t between Lebesgue spa
es Ls1(A) and
Ls2(A), for some exponents s1 and s2. However, to understand NF this way, we need to remember

that elements of the Lebesgue spa
es are not the fun
tions, but equivalen
e 
lasses of the relation

of being equal a.e. If v̂ = ŵ a.e. on A and F is measurable, then {x ∈ A : F ◦ v̂ 6= F ◦ ŵ} ⊆
{x ∈ A : v̂ 6= ŵ} and hen
e F ◦ v̂ = F ◦ ŵ a.e. on A. Thus the following de�nition is meaningful:

De�nition A.3.1 Let F : R → R be a measurable fun
tion, A be a measure spa
e and s1, s2 ∈
[1,∞]. Assume that an operator NF : Ls1(A) → Ls2(A) is de�ned by the formula NF (û) = [F ◦û],
where [ . ] denotes the equivalen
e 
lass of the relation of being equal a.e. on A, û is understood as

and equivalen
e 
lass, subje
t to the latter relation, and û ∈ û. Then, NF is 
alled autonomous

Nemytskii operator.

Below, we will give 
onditions, under whi
h the autonomous Nemytskii operators are well de�ned

as operators form a Lebesgue spa
e to a Lebesgue spa
e. Besides, we will formulate 
ontinuity

and di�erentiability 
riterion in the Lebesgue spa
es. For this end, we will present 
ertain results

from [17℄. Book [2℄ also addresses the matter of well-posedness, 
ontinuity and di�erentiability

of Nemytskii operators. But there 
ontained results are formulated in di�erent fashion than in

[17℄ and frequently are not dire
t equivalents of the results from [17℄ on whi
h we base.

The theory of Nemytskii operators in its full generality is not ne
essary in this work. It will

be su�
ient, if we restri
t our attention to the 
ase where A = E for 
ertain E ⊂ Rn
of �nite

Lebesgue measure, for a given n ∈ N \ {0}.

Theorem A.3.2 Let E be a Lebesgue-measurable subset of Rn
of �nite measure and let F : R →

R. Assume also that 1 ≤ s1 ≤ ∞, 1 ≤ s2 < ∞ and that F is measurable and satis�es the

following growth 
ondition:

sup
s∈R

∣∣F (s)
∣∣/
(
1 +

∣∣s
∣∣s1/s2) < ∞

Then NF is well de�ned as an operator from Ls1(E) into Ls2(E). Moreover, NF is bounded (i.e.

is bounded on bounded sets).

This is the parti
ular 
ase of Theorem 7.13, part a) in [17℄.

Remark. In [17℄, a 
ondition of so-
alled universal measurability of a fun
tion is utilized

in the formulation of the part a) in Theorem 7.13. Nevertheless, in the 
ase of �nite, 
omplete

measure spa
es, the notions of universally measurable fun
tions and measurable fun
tions 
oin-


ide (see the remarks on pp. 337 of [17℄). This helps to apply the result from [17℄ for measurable

fun
tions, as in the present 
ase. N

Theorem A.3.3 If, in Theorem A.3.2, we additionally assume that the fun
tion F is 
ontinuous

and s1 < ∞, then the autonomous Nemytskii operator NF is 
ontinuous from Ls1(E) to Ls2(E).
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The above is a 
onsequen
e of the previous theorem and Theorem 7.19 in [17℄.

Remark. In [17℄, the notions of Carathéodory fun
tion and Shragin fun
tions are used in

the formulation of Theorem 7.19. Nevertheless, 
ontinuous fun
tions are Carathéodory fun
tions

(by de�nition, see pp. 341 therein) and Carathéodory fun
tions are Shragin fun
tions (pp. 341

therein). This helps to apply the result from [17℄ for measurable fun
tions, as in the present


ase. N

Now, we pro
eed to di�erential properties of Nemytskii operators a
ting between Lebesgue

spa
es. For this purpose, the notion of the multipli
ation operator will be useful. For û ∈ Ls0(E),
the multipli
ation operator Mû is de�ned as

Mû(v̂)(x) = û(x)v̂(x) for a.e. x ∈ E, for v̂ ∈ Ls1(E)

Remark. To be pre
ise, in the above setting, multipli
ation operators a
t not on fun
tions

but on equivalen
e 
lasses in the relation of being equal a.e. Thus, the puristi
 de�nition of Mû

should base on formula Mû(v̂) = [ûv̂] where û ∈ û, v̂ ∈ v̂, û and v̂ are understood as equivalen
e


lasses and [ . ] is as in De�nition A.3.1. N

Observation A.3.4 For given 1 ≤ s2 < s1 < ∞, Mû(v̂) belongs to Ls2(E), assuming that

û ∈ Ls0(E) with s0 = s1s2/(s1 − s2).

This follows by the Hölder inequality (for a more expli
it proof, see Lemma 7.37 in [17℄). Thus,

given s0, s1, s2 as above and û ∈ Ls0(E), the operator Mû is a well de�ned operator from Ls1(E)
to Ls2(E).

Theorem A.3.5 Let E be a Lebesgue-measurable subset of Rn
of �nite measure and let F : R →

R. Assume also that F ′ exists everywhere on R and that the numbers 1 ≤ s2 < s1 < ∞ are given.

Then the autonomous Nemytskii operator NF is everywhere Fré
het di�erentiable from Ls1(E)
to Ls2(E) if and only if F ′ satis�es the following growth 
ondition:

sup
s∈R

∣∣F ′(s)
∣∣/
(
1 +

∣∣s
∣∣(s1/s2)−1) < ∞ (A.11)

If this is the 
ase, then the Fré
het di�erential of NF in a point û ∈ Ls1(E) on a dire
tion

v̂ ∈ Ls1(E) is given by

DFNF (û)v̂ = MF ′◦û(v̂) (A.12)

or more dire
tly

(DFNF (û)v̂)(x) = F ′(û(x))v̂(x) for a.e. x ∈ E

For the proof, see Proposition 7.45 in [17℄.

Remark. By the assumption û ∈ Ls1(E) and the growth 
ondition (A.11), one 
an verify

that F ′ ◦ û ∈ Ls0(E), for s0 as in Observation A.3.4. Hen
e, in view of Observation A.3.4, the

di�erential of NF , 
hara
terized by the formula (A.12), is a well de�ned operator from Ls1(E)
to Ls2(E). N
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A.4 Translation operators

This se
tion 
on
erns translation operators de�ned as follows:

De�nition A.4.1 Assume that F : Rn → Rl
, for some l, n ∈ N \ {0}. We de�ne the translation

operator TF asso
iated with F as

TF (x) := F ( . − x)

We want to investigate properties of the translation operators understood as TF : Rn → (Ls(Rn))l

for some exponent s. This for
es both F and TF (x) for x ∈ Rn
to be elements of (Ls(Rn))l and

hen
e the above de�nition in the latter 
ontext should be understood in the �almost everywhere�

sense, i.e. the operator TF : Rn → (Ls(Rn))l a
ts into equivalen
e 
lasses of fun
tions in the

relation of being equal a.e. in Rn
rather than into fun
tions, where F also is an equivalen
e 
lass

in this relation. This is straight forward that for F1,F2 ∈ F there holds [F1( . −x)] = [F2( . −x)],
where [ . ] denotes the equivalen
e 
lass of the subje
t relation 
orresponding to a given element,

hen
e it is possible to pose the de�nition of the translation operator 
orre
tly.

For brevity of notation of ve
tor spa
es asso
iated with operator TF , in this se
tion we fo
us

on the 
ase of F : Rn → R. Also, the following notation will be valid in the present se
tion:

T ε
F (x; y) := ε−1

(
TF (x+ εy)− TF (x)

)
for x, y ∈ Rn

We do not 
laim that the below results are new, but we have not found suitable fa
ts 
on-


erning the translation operators de�ned as above in the literature.

Theorem A.4.2 Let s ∈ [1,∞) and F ∈ Ls(Rn). Then the operator TF : Rn → Ls(Rn) is

uniformly 
ontinuous.

Proof. The translation in a Lebesgue spa
e is a norm 
onserving operation, hen
e if TF
is 
ontinuous in one point then it is 
ontinuous in every point of Rn

with the same modulus of


ontinuity. Therefore it is enough to verify the 
ontinuity of TF to get the uniform 
ontinuity.

This 
an be done by verifying the 
ontinuity of TF for F ∈ Cc(Rn) and subsequently by approx-

imating arbitrary F ∈ Ls(Rn) with fun
tions from Cc(Rn). This reasoning is realized e.g. in the

proof of [1, Th. 2.32℄. �

Lemma A.4.3 Let F ∈ W 1,s(Rn), s ∈ [1,∞) and x, y ∈ Rn
. Then

∥∥T ε
F (x; y)

∥∥
s
≤

y
s′

∥∥∇F (x)
∥∥
s

for all ε 6= 0, where s′ is the Hölder 
onjugate of s.

Proof. The proof rely on reasoning utilized in the proof of [21, Chap. 5.8.2, Th. 3℄.

However, the above Theorem is formulated slightly di�erent than the one in [21℄ hen
e we

present the proof below.

Begin with the 
ase of F ∈ C1(Rn). Denote by ei the i-th ve
tor of the 
anoni
al base in

Rn
. Then:

F (x+ εei)− F (x) =

∫ ε

0
∂iF (x+ tei) dt = ε

∫ 1

0
∂iF (x+ tεei) dt

Now we 
an write:

∥∥T ε
F (x; ei)

∥∥s
s

≤

∫

Rn

(∫ 1

0

∣∣∂iF (x+ tεei)
∣∣ dt

)s

dx

≤

∫ 1

0

∫

Rn

∣∣∂iF (x+ tεei)
∣∣s dt dx =

∫ 1

0

∥∥∂iF
∥∥s
s
dt =

∥∥∂iF
∥∥s
s

(A.13)
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Fix x, y ∈ Rn
. Note that for arbitrary y ∈ Rn

:

T ε
F (x, y) =

n∑

i=1

yiT
εyi
F (xi, ei)

where xi := x for i = 1 and xi := xi−1 + yi for i = 2, . . . , n. By the above, by (A.13) and by

Hölder inequality for sequen
es we have:

∥∥T ε
F

∥∥
s

≤
n∑

i=1

∣∣yi
∣∣∥∥T εyi

F (xi; ei)
∥∥
s

≤
n∑

i=1

∣∣yi
∣∣∣∣∂iF

∣∣s ≤
y

s′

∥∥∇F
∥∥
s

C1(Rn) fun
tions are dense in W 1,s(Rn) for s ∈ [1,∞), see [1, Th. 3.17℄, hen
e we infer that
the above holds also for all F ∈ W 1,s(Rn). �

As a 
onsequen
e, we 
an prove su�
ient 
onditions for the Lips
hitz 
ontinuity and the

weak Gâteaux di�erentiability of TF .

Theorem A.4.4 Let F ∈ W 1,s(Rn), s ∈ [1,∞). Then the operator TF : Rn → Ls(Rn) is globally
Lips
hitz 
ontinuous.

Theorem A.4.4 is a dire
t 
onsequen
e of Lemma A.4.3.

Theorem A.4.5 Let F ∈ W 1,s(Rn), s ∈ (1,∞). Then TF : Rn → Ls(Rn) is weakly Gâteaux

di�erentiable and its weak Gâteaux di�erential in point x ∈ Rn
in dire
tion y ∈ Rn

is given by

(
DG,wTF (x)(y)

)
(z) = −DFF (z − x)y =

= −
(
∇F (z − x), y

)
Rn = −

(
T∇F (x)(z), y

)
Rn

(A.14)

for a.e. z ∈ Rn

Proof. Note, that translations 
ommute with di�erentiation, hen
e it su�
es to verify the

assertion for x = 0 � if the di�eren
e quotients 
onverge weakly to − (T∇F (0), y)Rn then the

translated by x di�eren
e quotients 
onverge weakly to − (T∇F (x), y)Rn .

For x = 0 and for φ ∈ C∞c (Rn)

∫

Rn

T ε
F (0; y)(z)φ(z) dz =

∫

Rn

ε−1
(
F (z − εy)− F (z)

)
φ(z) dz =

=

∫

Rn

F (z) ε−1
(
φ(z + εy)− φ(z)

)
dz

ε
−→

∫

Rn

F (z)
(
∇φ(z), y

)
Rn dz =

= −

∫

Rn

(
∇F (z), y

)
Rnφ(z) dz = −

∫

Rn

(
T∇F (0)(z), y

)
Rnφ(z) dz

Moreover, C∞c (Rn) is dense in Ls′(Rn) (see [1, par. 2.30℄) and due to Lemma A.4.3 the di�eren
e

quotients T ε
F (0; y) are bounded w.r.t. ε in Ls(Rn). Therefore, the above 
onvergen
e holds also

for all φ ∈ Ls′(Rn) what 
on
ludes the proof. �

Example. Theorem A.4.4 together with Theorem A.4.5 give a big 
lass of fun
tions F for

whi
h the asso
iated translation operator TF is both Lips
hitz and weakly Gâteaux di�erentiable.

However, an example of F ∈ Ls(Rn) for whi
h TF is Lips
hitz 
ontinuous but not weakly Gâteaux

di�erentiable 
an be easily indi
ated. For instan
e, take into 
onsideration F (x) := 1B(0,r)(x)
with given radius r > 0 and the spa
e L2(Rn). It 
an be veri�ed that the Lips
hitz 
ontinuity of
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TF in L2(Rn) is true. At the same time, it is straightforward to 
he
k in the 
ase of n = 1, that
TF is not weakly Gâteaux di�erentiable. To see it, one 
an 
he
k that the di�eren
e quotients of

TF for n = 1 are unbounded in L2(R), hen
e they 
annot be weakly 
onvergent, what 
ontradi
ts

the weak Gâteaux di�erentiability. N

A.5 Multivalued mappings

This short se
tion mostly bases on 
on
epts 
on
erning multivalued mappings presented in [4℄.

The Reader is referred there for more detailed theory of multivalued mappings.

A multivalued mapping from set A1 to set A2 is a fun
tion with values in the set of subsets

of A2. A given multivalued mapping 
an be understood both as an usual fun
tion from A1 to

2A2
or as a generalization of usual fun
tion from A1 to A2. In the below de�nitions and fa
ts,

the se
ond of these two interpretations is exploited. However de�ning a multivalued mapping F
from A1 to A2 we prefer to use notation F : A1 → 2A2

in order to emphasize that F is not an

usual fun
tion from A1 to A2.

For a given multivalued mapping F : A1 → 2A2
, we denote by G(F ) its graph, de�ned by

G(F ) :=
⋃

ω∈A1

{
(ω,F (ω)) ⊂ A1 × A2

}
=

{
(ω1, ω2) ∈ A1 ×A2 : ω2 ∈ F (ω1)

}

Thus we understand G(F ) as a subset of A1 × A2 and not as a subset of A1 × 2A2
.

For 
onvenien
e of notation, for a multivalued mapping F : A1 → 2A2
as above and for a

given subset Ã ⊆ A1 we denote by F |Ã the restri
tion of F to Ã.

Moreover, still keeping the above meaning of A1, A2, Ã and F , we denote:

F (Ã) =
⋃

ω∈Ã

F (ω)

Basing on the above notation, we de�ne the superposition of two multivalued mappings in

the following way. Let sets A1, A2 and A3 be given and let F1 : A1 → 2A2
and F2 : A2 → 2A3

be

multivalued mappings. We denote F2 ◦ F1(ω) = F2(F1(ω)) for all ω ∈ A1.

If A1 and A2 are topologi
al spa
es, a notion of 
ontinuity 
an be de�ned for a multivalued

mapping F : A1 → 2A2
. Below, for simpli
ity, we restri
t our attention to the 
ase where both

A1 and A2 are Bana
h spa
es.

De�nition A.5.1 For two Bana
h spa
es X and Y , a multivalued mapping T : X −→ 2Y is

said to be bounded on X if and only if there exists R > 0 su
h, that T (x̂) ⊆ B(0, R) for all

x̂ ∈ X.

De�nition A.5.2 For two Bana
h spa
es X and Y , a multivalued mapping T : X −→ 2Y is

said to be upper semi
ontinuous in x̂ ∈ X if and only if for every neighborhood O ⊆ Y of T (x̂),
there exists a neighborhood U ⊆ X of x̂ su
h that T (ẑ) ⊂ O for ẑ ∈ U . T is said to be upper

semi
ontinuous if it is upper semi
ontinuous for all x̂ ∈ X.

De�nition A.5.3 For two Bana
h spa
es X and Y , a multivalued mapping T : X −→ 2Y is said

to be lower semi
ontinuous in x̂ ∈ X if and only if for every ŷ ∈ T (x̂) and every neighborhood

O ⊆ Y of ŷ, there exists a neighborhood U ⊆ X of x̂ su
h that T (ẑ)∩O 6= ∅ for ẑ ∈ U . T is said

to be lower semi
ontinuous if it is lower semi
ontinuous for all x̂ ∈ X.
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De�nition A.5.4 For two Bana
h spa
es X and Y , a multivalued mapping T : X −→ 2Y is

said to be 
ontinuous in x̂ ∈ X if and only if it is both upper and lower semi
ontinuous in X̂. T
is said to be 
ontinuous if it is 
ontinuous for all x̂ ∈ X.

If the values of T in the above de�nitions are singletons, then T 
an be understood as a usual

single-valued operator between Bana
h spa
es. Note that in this 
ase, the property of upper

semi
ontinuity in De�nition A.5.2 redu
es to the de�nition of 
ontinuity of T . The same ob-

servation holds for the notion of lower semi
ontinuity of multivalued mappings in De�nition

A.5.3. Thus the upper semi
ontinuity an the lower semi
ontinuity of a multivalued mapping is

a property that is stronger that the upper semi
ontinuity of a usual single-valued operator.

The following two examples of multivalued mappings are as in [4, p. 109, Ch. 3 Se
. 1℄ and

illustrate the di�eren
es between the notion of upper semi
ontinuity and lower semi
ontinuity of

multivalued mappings. Let F1, F2 : R → 2R be de�ned by

F1(s) =

{
0 for s ∈ R \ {0}

[−1, 1] for s = 0
F2(s) =

{
[−1, 1] for s ∈ R \ {0}

0 for s = 0

It is straightforward that F1 is upper semi
ontinuous and not lower semi
ontinuous. At the same

time, F2 is lower semi
ontinuous but not upper semi
ontinuous.

Now, by the below proposition, we will indi
ate more examples of upper semi
ontinuous

mappings:

Proposition A.5.5 For a given single-valued fun
tion F : R → R, de�ne
→
F (s) := limr→s− F (r),

←
F (s) := limr→s+ F (r), F̃min(s) := min

{→
F (s),

←
F (s)

}
and F̃max(s) := max

{→
F (s),

←
F (s)

}
for

s ∈ R. If F is su
h that

→
F (s) and

←
F (s) are well de�ned for all s ∈ R, then the multivalued

mapping F̃ : R → 2R given by

F̃ (s) = [F̃min(s), F̃max(s)] for s ∈ R (A.15)

is upper semi
ontinuous.

Proof. For 
onvenien
e, for ε > 0 and for A ⊆ R, we denote by Aε the ε-neighborhood of

A, i.e. the set {s ∈ R : distR(s,A) < ε}, where distR denote the distan
e in the metri
 spa
e R.
Step 1. Fix s0 ∈ R and ε > 0. It su�
es to show that there exists δ > 0 su
h that, for s

satisfying

∣∣s0 − s
∣∣ < δ, there holds F̃ (s) ⊂

(
F̃ (s0)

)
ε
. The latter in
lusion is equivalent to

sup F̃ (s) < sup F̃ (s0) + ε

inf F̃ (s) < inf F̃ (s0)− ε
(A.16)

For s = s0 the above is trivial. We will fo
us on the 
ase s > s0. The 
ase s < s0 
an be treated

analogously.

Step 2. Let the number ε̄ > 0 be �xed. Then, by de�nition of

←
F , there exists δ1 > 0 su
h

that ∣∣←F (s0)− F (s)
∣∣ < ε̄ for s0 < s < s0 + δ1 (A.17)

Inequality (A.17) means that the values of F belong to 
ertain interval for s su�
iently 
lose to

s0. From this we infer that the limits of values of F remain in the 
losure of the latter interval,

hen
e: ∣∣←F (s0)−
←
F (s)

∣∣ ≤ ε̄ < 2ε̄ for s0 < s < s0 + δ1 (A.18)
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By triangle inequality, (A.17) and (A.18) imply that:

∣∣←F (s)− F (r)
∣∣ < 3ε̄ for s0 < r, s < s0 + δ1 (A.19)

Next, by de�nition of

→
F , for a given s there exists δ2 > 0 su
h that

∣∣→F (s)− F (r)
∣∣ < ε̄ for s0 < r < s < s0 + δ1,

∣∣r − s
∣∣ < δ2 (A.20)

Now, let r and s satisfy 
onditions s0 < r < s < s0+δ1,
∣∣r−s

∣∣ < δ2. The di�eren
e
←
F (s)−

→
F (s)


an be represented as

←
F (s)− F (r) + F (r)−

→
F (s). The latter representation together with the

triangle inequality, (A.19) and (A.20) yields

∣∣←F (s)−
→
F (s)

∣∣ < 4ε̄ for s0 < s < s0 + δ1 (A.21)

Step 3. Take ε̄ = ε/6 and s > s0. Choose δ1 as in the previous step if the proof. Using

(A.18) and (A.21), we obtain:

sup F̃ (s) = max
{→
F (s),

←
F (s)

}
< max

{←
F (s) + 4ε̄,

←
F (s)

}

< max
{←
F (s0) + 2ε̄+ 4ε̄,

←
F (s0) + 2ε̄

}
=
←
F (s0) + 6ε̄ =

←
F (s0) + ε

(A.22)

for s0 < s < s0 + δ1. In the same manner we get

inf F̃ (s) >
←
F (s0)− ε (A.23)

Step 4. If

←
F (s0) ≥

→
F (s0), then (A.22) with (A.23) imply

sup F̃ (s) <
←
F (s0) + ε = sup F̃ (s0) + ε

inf F̃ (s) >
←
F (s0)− ε ≥

→
F (s0)− ε = inf F̃ (s0)− ε

and (A.16) is proven. If

←
F (s0) ≥

→
F (s0), then (A.16) 
an be proven analogously. The proof is


omplete. �

Proposition A.5.5, by the mapping F 7→ F̃ , gives a method of assigning an unique up-

per semi
ontinuous multivalued mapping to a given fun
tion, satisfying respe
tive assump-

tions. For example, for F (s) = −sgn(s) Proposition A.5.5 
an be applied and the formula

F̃ (s) = [F̃min(s), F̃max(s)] in the statement of the proposition gives a multivalued mapping

F̃ (s) =





+ 1 for s < 0

[−1,+1] for s = 0

− 1 for s > 0

Other important notion 
on
erning multivalued mappings is monotoni
ity and maximal

monotoni
ity:

De�nition A.5.6 Let H be a Hilbert spa
e and let a multivalued mapping T : H → 2H be given.

We say that T is monotone if and only if

(x1 − x2, y1 − y2)H ≥ 0 for all (x1, y1), (x2, y2) ∈ G(T )

We say that T is maximal monotone if and only if there is no monotone multivalued mapping

T̃ : H → 2H su
h that G(T ) $ G(T̃ ).
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The below fa
ts emphasize properties of maximal monotone multivalued mappings. Note in

parti
ular, that the �rst of the below two propositions indi
ates a big 
lass of upper semi
ontinu-

ous multivalued mappings, extending the 
olle
tion of examples of upper semi
ontinuity already

given above.

Proposition A.5.7 Let H be a Hilbert spa
e and let M be its 
ompa
t subset. A maximal

monotone multivalued mapping T : H → 2M is upper semi
ontinuous.

Proof. First, by [4, Prop. 3, Ch. 6, Se
. 7℄ we 
an infer that the graph of a maximal

monotone multivalued mapping is sequentially 
losed. Sin
e Hilbert spa
es are metri
, it means

that G(T ) is 
losed. Next, by [4, Coro. 9, Ch.3, Se
. 1℄, in parti
ular multivalued mappings

on Hilbert spa
es with 
losed graph and with values in a 
ompa
t set are upper semi
ontinuous.

This justi�es the desired assertion. �

Proposition A.5.8 Let H be a Hilbert spa
e and let T : H → 2H be a maximal monotone

multivalued mapping. Then values of T are 
losed and 
onvex.

For justi�
ation of Proposition A.5.8, see [4, Prop. 3, Ch. 6, Se
. 7℄.

Maximal monotone mappings do not need to have nonempty values. For instan
e, 
onsider

T : R → R de�ned by T (s) = ln(s) for s > 0, T (s) = ∅ otherwise. The mapping is monotone

and, by a simple veri�
ation, maximal. At the same time, it has in�nitely many empty values.

But, assuming that a maximal monotone mapping is bounded, the possibility of empty values


an be ex
luded for mappings T : R → R:

Proposition A.5.9 Let T : R → R be maximal monotone and bounded. Then, T (s) are nonempty

for all s ∈ R.

Proof. We will justify the assertion by 
ontradi
tion. Namely, assume that there exists

s0 ∈ R su
h that T (s0) = ∅. We will prove that T 
an be extended to s0 in a manner preserving

the monotoni
ity, what will 
ontradi
t the maximality of T .
Sin
e T is bounded, the in�mum of the values being �on the right� of s0 (i.e. the number

inf
⋃

s>s0
T (s)) is �nite. Denote it as CR. Similarly, the supremum of the values being �on the

left� of s0, denote it CL, is �nite. It follows straight that CL ≤ CR. Otherwise, a 
ontradi
tion

to monotoni
ity would be implied. In 
onsequen
e, the set [CL, CR] is nonempty (here, in the


ase of CL = CR, we interpret the latter set as the singleton {CR}).
Now, simply note that by assigning the value [CL, CR] to the point s0 we obtain an extension

of T whi
h is monotone. This follows straight by the de�nition of monotoni
ity (De�nition A.5.6)

and de�nitions of CR and CL. The maximality of T has been 
ontradi
ted, what 
on
ludes the

proof. �

We do not 
laim that the results given in Lemma A.5.5 and Lemma A.5.9 are new, however

we do not know a suitable literature referen
e for the subje
t statements.
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