
University of Warsaw

Faulty of Mathematis, Informatis and Mehanis

Grzegorz Dudziuk

Optimization of losed-loop ontrols by thermostats for a lass

of nonlinear reation-di�usion proesses

PhD dissertation

Supervisor

prof. dr hab. Marek Niezgódka

Interdisiplinary Centre for Mathematial and Computational Modelling

University of Warsaw

May 2014



Author's delaration:

Aware of legal responsibility, I hereby delare that I have written this dissertation myself and

all the ontents of the dissertation have been obtained by legal means.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

date Grzegorz Dudziuk

Supervisors' delaration:

The dissertation is ready to be reviewed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

date prof. dr hab. Marek Niezgódka



Abstrat

In this dissertation, both qualitative and numerial analysis for an optimization problem is

performed for a feedbak ontrol law applied to a lass of nonlinear reation-di�usion proesses. A

�nite number of ontrol and measurement devies target their ations inside the proess domain.

The measurement devies ollet data on the proess evolution, while the ontrol devies obtain

those data and ativate an appropriate reation. The aim of this ontrol system is to keep the

proess evolution lose to a user-de�ned referene state. The above optimization problem onsists

in hoosing geometrial targeting of the ontrol and measurement devies ations aording to a

suitable optimality riterion.

Suh an idea of the losed-loop ontrol of reation-di�usion proesses is implemented by

a system of equations with a semilinear PDE oupled to several nonlinear ODEs. The ost

funtional utilized for a preise de�nition of the announed problem of optimal targeting is

onstruted as an integral of the di�erene between the proess and referene states.

The present work is divided into two main parts. The �rst of them fouses on analysis of

the PDE-ODE model under onsideration. The seond one onerns the problem of optimal

targeting, exploiting some of the results of the �rst part.

In the analysis of the PDE-ODE model we fous on questions onerning existene, unique-

ness and stability of solutions as well as on the e�ieny of the losed-loop ontrol mehanism

implemented there. By e�ieny we mean here an ability of moving the proess lose to the

referene state. The existene, uniqueness and stability proofs are provided. The e�ieny of the

losed-loop ontrol is validated by results of numerial simulations for the investigated PDE-ODE

model. The numerial results suggest that the e�ieny of the onsidered losed-loop ontrol

depends on hanges of the model parameters. Moreover, the long-time behavior visible in the

subjet simulations also is examined. In all simulations, the proess appeared to tend to some

time-invariant state, after su�iently long time. In some ases, that time-invariant state seemed

to be, at some rate, independent of the initial ondition of the PDE-ODE model.

In the part on the optimal targeting problem, we �rst fous on analytial questions. We prove

there the existene of minimizers and haraterize the di�erential of the ost funtional too. Then,

we desribe numerial optimization experiments, utilizing three gradient optimization algorithms

(the steepest desent and two variants of the nonlinear onjugate gradient) and ompare their

performane. Here, the aforementioned haraterization of the ost funtional di�erential is

used to implement the formula for the gradient. The results show how the performane of the

optimization algorithms varies with hanges of the parameters entering the ost funtional. It

is also shown that modi�ations of the subjet parameters an result in independene of the

optimization output on the initial ondition of the PDE-ODE model.



Streszzenie

W niniejszej rozprawie przeprowadzone s¡ zarówno jako±iowa, jak i numeryzna analiza prob-

lemu optymalizaji sterowania ze sprz�»eniem zwrotnym zastosowanego do pewnej klasy nielin-

iowyh proesów reakji-dyfuzji. Sko«zona lizba urz¡dze« steruj¡yh i pomiarowyh skupia

swoje dziaªania wewn¡trz obszaru proesu. Urz¡dzenia pomiarowe zbieraj¡ dane o ewoluji pro-

esu, nast�pnie urz¡dzenia steruj¡e otrzymuj¡ zebrane dane i uruhamiaj¡ odpowiedni¡ reakj�.

Celem sterowania jest utrzyma¢ ewoluj� proesu blisko zde�niowanego przez u»ytkownika stanu

referenyjnego. Powy»ej wspomniany problem optymalizaji polega na ustaleniu geometryznego

wyelowania dziaªa« urz¡dze« steruj¡yh i pomiarowyh w odniesieniu do odpowiedniego kry-

terium optymalno±i.

Przedstawiona idea sterowania w ukªadzie zamkni�tym proesem reakji-dyfuzji jest zaim-

plementowana poprzez ukªad równa« z semiliniowym równaniem ró»nizkowym z¡stkowym

sprz�»onym z wieloma nieliowymi równaniami ró»nizkowymi zwyzajnymi. Funkjonaª kosztu

wykorzystany na potrzeby preyzyjnej de�niji zapowiedzianego problemu optymalnego wyelowa-

nia jest skonstruowany jako aªka z ró»niy mi�dzy stanem proesu a stanem referenyjnym.

Niniejsza praa podzielona jest na dwie gªówne z�±i. Pierwsza z nih skupia si� na anal-

izie wspomnianego ukªadu równa«. Druga z�±¢ dotyzy problemu optymalnego wyelowania,

wykorzystuj¡ pewne rezultaty z z�±i pierwszej.

W z�±i dotyz¡ej analizy wspomnianego ukªadu równa« skupiam si� na pytaniah dotyz¡-

yh istnienia, jednoznazno±i oraz stabilno±i rozwi¡za«, jak równie» na skutezno±i sterowa-

nia w ukªadzie zamkni�tym zaimplementowanego w rozwa»anym ukªadzie. Przez skutezno±¢

rozumiem zdolno±¢ do sprowadzania proesu w pobli»e stanu referenyjnego. Zaprezentowane

s¡ dowody istnienia, jednoznazno±i oraz stabilno±i. Skutezno±¢ rozwa»anego sterowania w

ukªadzie zamkni�tym jest zilustrowana za pomo¡ rezultatów symulaji numeryznyh doty-

z¡yh badanego ukªadu równa«. Rezultaty numeryzne sugeruj¡, »e skutezno±¢ rozwa»anego

sterowania w ukªadzie zamkni�tym zale»y od parametrów ukªadu równa«. Dodatkowo, pozynione

s¡ obserwaje dotyz¡e zahowania dla du»yh zasów widoznego w przedmiotowyh symula-

jah. We wszystkih symulajah proes zdawaª si� d¡»y¢, po upªywie odpowiedniego zasu, do

pewnego stanu niezmiennizego w zasie. W niektóryh przypadkah zaobserwowany stan niezmi-

ennizy wydawaª si� by¢ w pewnym stopniu niezale»ny od stanu poz¡tkowego dla rozwa»anego

ukªadu równa«.

W z�±i dotyz¡ej problemu optymalnego wyelowania najpierw skupiam si� na pytani-

ah analityznyh. Dowodz� instnienia minimizerów oraz harakteryzuj� ró»nizk� funkjonaªu

kosztu. Nast�pnie opisuj� eksperymenty dotyz¡e numeryznej optymalizaji, wykorzystuj¡e

trzy gradientowe algorytmy optymalizaji (najwi�kszy spadek oraz dwa warianty nieliniowego

gradientu sprz�»onego) oraz porównuj� ih wydajno±¢. Wspomniana przed hwil¡ harakterzaja

ró»nizki funkjonaªu kosztu wykorzystana jest do implementaji formuªy na gradient. Rezul-

taty pokazuj¡, »e wydajno±¢ algorytmów optymalizaji zmienia si� wraz ze zmianami parametrów

funkjonaªu kosztu. Pokazane jest równie», »e mody�kaje przedmiotowyh parametrów mog¡

skutkowa¢ niezale»no±i¡ wyników optymalizaji od warunku poz¡tkowego rozwa»anego ukªadu

równa«.
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Introdution

This question addresses a range of questions on losed-loop ontrol of nonlinear distributed

systems governed by a ombination of partial and ordinary di�erential equations. The ontrol

system set-up omprises a �nite number of measurement devies and a �nite number of ontrol

devies. We analyze suh a lass of ontrol systems, addressing the existene and uniqueness of

solutions, the e�ieny of the losed-loop ontrols and their optimization.

Mathematial models applied in siene su�er from inauraies originating due to at least

two soures:

1) First, the models represent only approximations of real phenomenas.

2) Seond, also the values of model parameters frequently only approximate the values whih

are, in some sense, the best (optimal).

In the thesis, we onsider a ontrol system imposed on a proess governed by the reation-

di�usion equation:

yt(x, t) − ∆y(x, t) = f
(
y(x, t)

)
+ û(x, t) (0.A)

with a ontrol term û. The ontrol term is a model parameter, seleted aording to a partiular

aim of the ontrol, for instane, to reah a given state y∗ = y∗(x) at a given time T .

In the above ontext, �rst, one faes the question to what extend the semilinear reation-

di�usion equation is a preise representation of the underlying proess. But even though the

above semilinear equation, with ertain onrete f , were onsidered to be satisfatory in this

onnetion, a seond question, onerning the hoie of the ontrol term û (the model parameter),

would be faed. The hoie of û should provide a �su�iently aurate� approximation of the

optimal û. Here, the meaning of optimality is determined by the above mentioned aim of the

ontrol.

The diret approah onerning the issue 2) as above onsists in improving the approximation

of optimal values of the model parameters. However, this approah has several limitations:

• In general, the only way to approximate those optimal values is based on numerial ap-

proahes. As often the numerial optimization is omputationally of high omplexity, suh

a treatment proves time onsuming.

• The results of numerial optimization usually remain di�erent from atual optimal values.

This produes a next obstale for models of instable nature, where even small perturbation

of model parameters an result in big hanges in the solution of the model.

• In (0.A), an optimal parameter û, being the ontrol variable, depends not only on the

ontrol objetive (to ahieve a state y∗ at time T ) but also on the initial ondition of the

model. Thus, a hange of the initial ondition results in a neessity of omputing the model

parameter again.

ix



x INTRODUCTION

All above onsiderations refer atually to the open-loop set-up of the ontrol problem. The

latter shows, as disussed, its obvious limitations. As an alternative onept, a losed-loop set-up

an be developed. In this ontext, our approah shall be to aept the parameters inauraies in

the model and extend the model of an additional mehanism of automati real-time parameters

orretions, basing on the observed atual evolution of the model solution. In the ontext of

(0.A), this idea an be implemented by allowing the parameter û to depend on the solution of

the model itself:

û
(
x, t

)
= û

(
x, t, y( . , t)

)

or more generally

û
(
x, t

)
= û

(
x, t, y|

spae×[0,t)( . , . )
)

(0.B)

The latter formula stresses that the values of û in a given moment of time t an be omputed

using the whole information about the past behavior of the solution y (not only the information

on the present time t). The above idea of automati orretion mehanisms assumes that a

omputational algorithm for the values of the model parameters is given. Suh an algorithm will

be alled a feedbak law in our thesis. In our ontrol theory model (0.A), under assumption that

the term û is of form (0.B), the feedbak law an be identi�ed with the de�nition of û.

The above approah involving the idea of automati orretion mehanisms, potentially, may

be a way to overome the aforementioned di�ulties, beause:

• With suh an approah, a omputationally expensive proedure of searhing for the optimal

values of the parameters an be unneessary.

• Sine the basi idea of the disussed approah is not to predit the behavior of the solution

of the model a priori, but to reat to the behavior of the solution in real time, the following

onsequenes, hypothetially, an be faed:

a) The approah an be e�etive in the ase of the models exhibiting unstable nature.

Here, by the e�etiveness we mean the result of making the behavior of the solutions

of the model lose, in a suitable sense, to a desired referene.

b) In (0.A), with the objetive to reah a state y∗ at time T , a ontrol involving the

automati orretion idea (i.e. a parameter û of form (0.B)) an our to preserve

the ontrol e�etiveness under hanges of the initial ondition. In onsequene, the

proposed approah may help to avoid omputing the model parameter every time

when the initial ondition is hanged.

) In ontrol systems, a ontrol based on the automati orretions idea may prove

e�etive even if the utilized desription of the underlying proess (i.e. the equation

yt −∆y = f(y), in the ase of the model (0.A)) is inaurate. In other words, losed-

loop ontrols of the onsidered type an preserve the e�etiveness under hanges of

the model. Thus, in the ontrol theory ontext, the automati orretion idea an

also o�er a solution to the issue 1) as formulated above.

The aim of this thesis is to demonstrate the onept of automati orretion mehanism

in the ontrol theory model (0.A) in a spei� implementation, a ontrol by thermostats. The

ontrol by thermostats assumes that the feedbak law, built into the ontrol term û, relies on

a �nite system measurement devies and ontrol devies. The measurement devies gather the

information on the urrent state of the proess. The ontrol devies in�uene the proess, basing

on the information provided by the measurement devies.

Questions on the models with an automati orretion mehanism that we shall address

inlude:
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I) Whether a given model with the latter type of mehanism is mathematially well posed,

i.e. its solutions exist and are unique, further are stable subjet to the data perturbations.

We investigate this questions for a model with ontrol by thermostats in Chapter 1.

II) Whether the automati orretion mehanism applied in a given model indeed ensures an

e�etiveness and insensitivity to hanges of the initial ondition. We fous on this questions

in Chapter 2, where results of numerial simulations for a model with ontrol by thermostats

are exposed.

III) It is natural to ask a question onerning possibilities of re�ning the e�etiveness of a given

model with an automati orretion mehanism. This leads to the problem of optimization

of the feedbak law, onstituting the automati orretion mehanism. Investigating the

latter problem for the model with ontrol by thermostats is the main aim of the present

work and is the subjet of Chapter 3 and Chapter 4.

The set-up of the optimal feedbak problem may seem in dissonane with the former remarks,

as one of the highlighted advantages of automati orretion mehanisms was their low ompu-

tational ost due to avoiding omputationally expensive optimization proedures. However, the

latter dissonane is only virtual. First, some of the numerial prototypes desribed in Chapter 2

show that an e�etive feedbak law an be de�ned heuristially, without optimization proedures

involved. Still, even if one is able to intuitively onstrut a good feedbak law, searhing for a

better one remains natural and hene our interest in the related optimization problem. Seond,

as mentioned, in the ontext of the ontrol theory, other possible advantage of automati or-

retion mehanisms is its insensitivity to the hanges the initial ondition (for the ontrol by

thermostats, it also seems to be the ase in ertain situations, as the results desribed in Chap-

ter 2 indiate). In onsequene, for a given model with a given aim of the ontrol, re-optimizing

the feedbak law every time the initial ondition is hanged may be unneessary. In suh ases,

it is su�ient to perform the optimization proedure just one.

To formulate the subjet optimization problem preisely, a parametrization of the feedbak

law is neessary. To this end, we assume that the thermostat feedbak law is parametrized by

the loalization of the ations of ontrol and measurement devies. In other words, in Chapter 3

and Chapter 4, we will fous on the problem of hoosing optimal loalizations of the ations of

those devies.

For the optimization problem, a number of related questions will be explored. In Chapter 3,

theoretial aspets as the existene of minimizers of a suitable ost funtional and the analysis

of its di�erentiability will be examined. Chapter 4 outlines the results of related numerial sim-

ulations. There, the problem of hoie of an appropriate optimization method and the question

onerning independene of the optimal feedbak law on the initial ondition of the model are

disussed.

In the remaining part of Introdution we set the framework for the thesis. The preise

de�nition of the model with ontrol by thermostats addressed in this work is given in �1. In �2, we

formulate the optimization problem that will be onsidered throughout the thesis. Some possible

appliations of the ontrol by thermostats, as well as bibliographial information onerning the

latter ontrol onept, are exposed in �3. Finally, �4 provides bibliographial notes onerning

the present dissertation, a summary of its results in the above mentioned �elds of interest, as

well as a more details on the ontent of the subsequent hapters.



xii INTRODUCTION

�1 Model with the ontrol by thermostats

In the present work, we take into onsideration the following mathematial model, realizing the

onept of ontrol by thermostats:





yt(x, t) −D∆y(x, t) = f(y(x, t)) +
∑J

j=1
gj(x)κj(t) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(x, 0) = y0(x) for x ∈ Ω

(0.1)

together with





β1κ
′
1(t) + κ1(t) = W1

(
y( . , t), y∗(x, t)

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J (t) + κJ (t) = WJ

(
y( . , t), y∗(x, t)

)
on [0, T ]

κj(0) = κj0 ∈ R for j = 1, . . . , J

(0.2)

where QT = Ω× (0, T ), T > 0 and Ω ⊂ Rd
is a bounded domain with su�iently regular bound-

ary. The unknown in the above equations is (y, κ1, . . . , κJ ), where y : QT → R and κj : [0, T ] → R.
The term f : R → R represents a given nonlinearity. The di�usion oe�ient D > 0 is given, as

well as oe�ients β1, . . . , βJ > 0. Funtions y∗ : QT → R and gj : Ω → R also are known. The

funtionals Wj are de�ned as follows, for j = 1, . . . , J :

Wj(y( . , t), y
∗( . , t)) =

K∑

k=1

αjkwk

(∫

Ω
hk(x)

(
y(x, t)− y∗(x, t)dx

))
(0.3)

where αjk ∈ R, wk : R → R and hk : Ω → R.
In (0.1) - (0.3), y∗ desribes a referene trajetory � the purpose of the introdued model

is to stabilize the reation-di�usion proess possibly lose to the referene trajetory y∗. If y∗

is independent of the time variable, we will all it a referene state. Funtions gj are onstant

in time, haraterizing the ations of ontrol devies in spae. The ations of ontrol devies

alternate in time aording to the values of funtions κj , alled response funtions or power

funtions. The response funtions depend on the proess evolution, desribed by variable y. This
dependene an be desribed as follows. Measurement devies, whose ations are haraterized

by funtions hk, aquire the data on the urrent state of the proess. Eah measurement devie

is responsible for omputing the measurement value, represented by the term

∫
Ω hk(y − y∗) dx,

entering the right hand side of (0.3). The measurement values returned by the measurement

devies are proessed by funtions wk. The proessed measurement data are synthesized by

the signal generator assoiated with j-th ontrol devie, with weights αjk, k = 1, . . . ,K. The

funtion Wj(y( . , t), y
∗( . , t)), as a funtion of time, an be interpreted as the signal generated

by the signal generator for the j-th ontrol devie. Next, the j-th ontrol devie responses to the

input signal. The response of the j-th ontrol devie is desribed by the response funtion κj .

Figure 0.1 illustrates a funtional struture of the ontrol mehanism that we have desribed.

The below remarks an be helpful for understanding of the system (0.1) - (0.3):

• Funtions κj are modeled with ODEs in (0.2), meaning that the hanges of the response

are ontinuous in time.
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measurement values

control devices

domain

power spots

(    supports)

measurement spots

(    supports)

LEGEND:

DATA:

signal

signal

Figure 0.1: Shemati presentation of the losed-loop ontrol onept, implemented in the system

(0.1) - (0.3), for the ase of two ontrol devies and three measurement devies.

• A natural example of the funtions gj and hk is a harateristi funtion of a small ball,

being a subset of Ω, times a onstant. If this is the ase for hk, then the measurement

devies return measurement values representing the mean di�erene between the urrent

proess state and the referene trajetory in a neighborhood (the ball supporting hk) of
ertain point (the enter of the ball). If gj are funtions as above, then the ontrol devies

deliver the energy uniformly over the balls being the supports of gj .

• For the funtions wk, a natural example is wk(s) = −sgn(s). In this ase, the funtion

wk returns simple information understood by the signal generators as �ool down� or �heat

up�, depending on whether the k-th measurement value indiates that the proess values

exeed the referene values or are below them. Hene, funtions wk an be understood as

funtions desribing a swithing mehanism implemented in the system. We will all wk

the swithing funtions.

• The assumption that βj > 0 has a pratial interpretation. If, for ertain j ∈ {1, . . . , J},
βj > 0 and the signal Wj in the RHS of (0.2) is zero, then it follows straight by the basi

properties of the ODE (0.2) that the power funtion κj tends to zero. This is the behavior
whih one an intuitively expet, meaning �no signal � no power�. And the opposite, if

one assumed that βj < 0, then the power funtion κj would tend to in�nity for the signal

Wj equal zero and nonzero initial ondition κj0, what is a less natural behavior.

• Funtions hk in the system (0.1) - (0.3) desribe measurement abilities of spei� mea-

surement devies, not just measurement devies understood as physial units. Similarly,
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funtions gj desribe power spots reated in the proess domain by ontrol devies rather

than physial devies itself. Putting the latter in another way, funtions gj and hk do

not desribe the mehanism of work of the ontrol and measurement devies, but only the

e�et of the work of the devies.

Note that the ontrol devies an be plaed outside the domain of the ontrolled proess.

For example, the ontrol devies an be eletromagneti transmitting antennas, plaed

outside the domain and fousing the eletromagneti waves at some spot plaed inside

the domain. Then, the funtion gj desribe the spatial distribution of the intensity of the

eletromagneti e�ets generated in the domain by the j-th antenna.

• The above interpretation of the role of gj and hk has quite essential onsequenes. If one

assumed that gj desribe physial units, then one ould expet some additional no-ollision

restritions, as e.g. the ondition of disjoint supports of all funtions gj or the ondition

that the supports of gj are ontained in Ω. Instead, we only assume that gj desribe some

immaterial energy injetions, hene there is no reason to forbid intersetions of the supports

of gj or to forbid the supports of gj to interset with the exterior of Ω. An analogous remark

holds for funtions hk.

• In many situations it is natural that the ontrol devies at through the boundary of the

domain. Even if the ontrol devies are physially loated in the proess domain, then the

volume they oupy should not be the in�uened by the ontrol ation. To ahieve this,

for example, one ould modify the domain of the proess and exlude the volume oupied

by the ontrol devies from the domain, what in fat leads to a model with ontrol ating

through some part of the boundary (i.e. the part being the boundary of the volumes

oupied by the devies).

Hene, if one interpreted funtions gj in the model (0.1) - (0.3) as physial units, then the

model might seem not quite realisti. But, as mentioned, funtions gj do not desribe the

physial units and an be understood e.g. as funtions desribing eletromagneti e�ets

in some volume of the domain, generated by eletromagneti antennas plaed outside the

domain. With this interpretation, the model (0.1) - (0.3) beomes oherent.

Throughout this thesis, we will keep the above interpretation of the system (0.1) - (0.3),

assuming that funtions gj and hk do not represent physial objets. Instead, gj and hk will be

assumed to haraterize the ations of the ontrol and measurement devies ations.

In the present work, we will use the term the ontrol by thermostats or the thermostat ontrol

mehanism to refer to the ontrol onept applied in the system of equations (0.1) - (0.3) for

ontrolling the reation-di�usion proess. In the literature, some variants of the above desribed

ontrol onept were already onsidered. We will brie�y omment on those variants in �3.

For further onveniene, we will all the mentioned variants thermostat ontrol mehanisms or

ontrols by thermostats, as well. Thus, in the present work, the notion of �the thermostat ontrol

mehanism� or �the ontrol by thermostats� refers to a family of losed-loop ontrol onepts, to

whih the ontrol onept applied in (0.1) - (0.3) belongs.

Remark. For D = 1, the system (0.1) - (0.3) an be understood as a partiular ase of the

equation (0.A) with the ontrol term û of form (0.B). Indeed, it su�es to set û :=
∑J

j=1 gjκj
in (0.1). Equations (0.2) and (0.3) an be understood as onditions desribing the feedbak law

for omputing funtions κj and hene the term û. It follows by (0.2) and (0.3) that funtions κj
depend on y, or more preisely, that κj(t), for given t ∈ (0, T ), depends on the past values of y,
earlier than t. Thus, û de�ned as proposed above, is a realization of (0.B). N
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The properties of the system (0.1) - (0.3), suh as the existene and uniqueness of solutions,

stability of the system or e�ieny of the thermostat ontrol mehanism will be the disussed

in Chapter 1 and Chapter 2. In Chapter 3 and Chapter 4, the system (0.1) - (0.3) will be

onsidered in the ontext of optimization of the feedbak law implemented by the thermostat

ontrol mehanism.

�2 Formulation of the optimal targeting problem

Below, we introdue the optimization problem whih will be investigated in Chapter 3 and

Chapter 4. The optimality riterion will refer to bringing the state of the ontrolled proess

possibly lose to a given referene state at time T . In the problem, a feedbak ontrol law in

(0.1) - (0.3) (i.e. the algorithm for omputing the response funtions κj) will be optimized so as

to meet suh a requirement. The feedbak law will be optimized with respet to the hoie of

geometrial targeting of ontrol and measurement devies ations.

To this purpose, we will assume that the pattern of energy distributed in the domain by

a given ontrol devie is �xed and that the user an adjust the energy distribution only by

translations of the latter pattern. For instane, the situation an be onsidered where a ontrol

devie an produe a uniform energy distribution in a small ball-shaped volume and the user

is expeted just to hoose the enter of the volume. An analogous assumption will be made

for the measurement devies, stating that the measurement abilities of the measurement devies

are desribed by �xed patterns and an be adjusted only by spatial translations of the subjet

patterns.

We pursue the above onept by the following mathematial assumptions.

We will understand the ontrol as the set of all funtions haraterizing ontrol and measure-

ment devies along with weights entering to (0.1) - (0.3), i.e. the ontrol is (gj , hk, αjk)
k=1,...,K
j=1,...,J .

The hoie of ontrol determines the feedbak law in (0.1) - (0.3), assuming that funtions wk and

oe�ients βj are presribed. Let funtions σg, σh : Rd → R and points x1, . . . , xJ and z1, . . . , zK
in Rd

be given. We assume that the funtions desribing the ontrol and measurement devies

ations are given by

gj(x) := σg(x− xj)|Ω, hj(x) := σh(x− zk)|Ω (0.4)

for j = 1, . . . , J , k = 1, . . . ,K. Funtions σg and σh will be alled the pattern funtions. For

example, in the ase of ontrol devies distributing energy uniformly in a ball-shaped volume,

one an set σg := Cg1B(0,rg), with parameters Cg and rg hosen aordingly. Points xj and zk
haraterize targeting of spei� ontrol and measurement devies ations.

Under the above assumptions, for presribed pattern funtions σg and σh, the ontrol is

determined by a hoie of targetings x1, . . . , xJ and z1, . . . , zK as well as weights α1,1, . . . , αJ,K .

However, we do not plan to address the problem of optimal hoie of weights in the termostats

ontrol system. In the thesis we fous on the problem of optimal targeting of the devies ations.

To this end, we make the following simplifying assumptions. We postulate that

K = J (0.5)

and that

zj = xj for j = 1, . . . , J (0.6)

In addition, we set

αj,k := δj,k for j, k = 1, . . . , J (0.7)
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As a result, the problem of hoie of the weights disappears.

Now, with assumptions (0.4), (0.5), (0.6) and (0.7), for �xed pattern funtions σg and σh, the
hoie of targetings x1, . . . , xJ determines the ontrol and hene the feedbak law in the system

(0.1) - (0.3). For this reason, the sequene (x1, . . . , xJ) will be alled the ontrol parameter.

Assumptions (0.4), (0.5), (0.6) and (0.7) together an be interpreted as a set onditions that

the ontrol and measurement devies are pairwise oupled in the thermostat ontrol mehanism.

We are now ready to formulate the omplete optimization problem to be studied in Chapter 3

and Chapter 4. Let the pattern funtions σg and σh be given. The problem is to hoose the

ontrol parameter in an optimal manner, with respet to the riterion of minimizing the following

ost funtional:

(x1, . . . , xJ ) 7→ λ̃

∫ T

T0

∫

Ω

∣∣y(x, t)− y∗(x, t)
∣∣2 dxdt (0.8)

for ertain λ̃ > 0, T0 ∈ [0, T ), where y∗ is a referene trajetory entering the system (0.1) - (0.3)

and y is the �rst omponent of solution (y, κ1, . . . , κJ ) of the system (0.1) - (0.3) with onditions

(0.4), (0.5), (0.6) and (0.7), orresponding to the ontrol parameter (x1, . . . , xJ).
The minimization problem for the ost funtional (0.8) an be referred to as the problem of

optimal targeting of ontrol and measurement devies ations. However, it will be onvenient to

have a shorter name, thus in this thesis we shall refer to it as the optimal targeting problem.

Remark. The ost funtional (0.8) re�ets the idea of measuring the gap between the

proess evolution and the referene state. In partiular, setting T0 lose to T and λ̃ = (T − T0)
−1
,

the above ost funtional approximates the gap at time T of the experiment. As suh, the

subjet ost funtional is appropriate to desribe the idea of bringing the proess state lose to

the referene state at the terminal time T , mentioned in the beginning of �2. N

Remark. Due to our interpretation of the system (0.1) - (0.3), whih allows intersetions

of the supports of funtions gj and hj with eah other and with the exterior of Ω (see �1), we do

not impose any ontrol parameter restritions for preventing the subjet intersetions. Thus, we

will view the optimal targeting problem as an unonstrained optimization problem, onsisting in

minimization of the ost funtional (0.8) over whole

(
Rd

)J
. N

Remark. It will be onvenient for the reader to remember the terminology introdued in

�1 and �2 of the present hapter (referene trajetory, swithing funtions, ontrol parameter,

optimal targeting problem e.t..) beause we will use it frequently in this work. N

�3 Control by thermostats in the literature and possible applia-

tions

We will now give some omments on the history and variants of the onept of ontrol by

thermostats. We also remark on possible appliations.

In the mathematial literature, the idea of ontrol by thermostats of proesses governed by

evolutionary PDEs was probably introdued �rst in [26℄, [25℄. There, a paraboli linear heat

�ow was ontrolled by thermostats. A model of ontrol by thermostat of a paraboli linear heat

�ow was onsidered also in [10℄. However, the appliations of thermostat ontrol mehanisms

were not limited to ontrol of linear paraboli PDEs. The work [11℄ addressed the ontrol by

thermostats of a thermodynamial proess modeled by the telegraph equation. In [30℄ and [19℄,

the authors foused on models with proesses desribed by a semilinear equation ontrolled by
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thermostats, in [12℄ a system of semilinear equations with an additional onvolution term was

onsidered in the ontext of ontrol by thermostats. A lot of attention was direted toward

ontrol by thermostats of phase transition proesses modeled by various versions of the Stefan

model, see e.g. [23℄, [33℄, [28℄, [15℄. The strain and temperature in a visoelasti body subjet

to a thermodynamial proess were ontrolled by thermostats in the model presented in [29℄.

A problem of ontrol of saturation in a model of �ltration of a porous medium was onsidered

in [5℄, with the ontrol involving the thermostat onept. In more reent works [31℄ and [32℄, a

model for ontrol by thermostats of a linear heat �ow was onsidered.

Not only the ontrolled proess varies in the models onsidered in the mentioned works. The

thermostat ontrol mehanism also has its variants. One of the point where the di�erenes in

the thermostat ontrol mehanism an our is the plaement of ations of the ontrol devies.

In all indiated referenes, exept for [19℄ and [30℄, the ontrol devies are ating through the

boundary of the proess. In [19℄ and the present work the ontrol devies reate a power spot

distributed in the domain of the ontrolled proess. In [30℄, the ontrol ats both through the

boundary and as a quantity distributed in the domain.

Also, various versions of the swithing mehanism, being a part of the thermostat ontrol

mehanism, an be found in the literature. A frequently enountered ase is that hysteresis in

the work of the swithing mehanism is assumed to be present. See [33℄, [28℄, [29℄, [11℄, [12℄,

[31℄, [32℄ for appliations of the so-alled relay swith hysteresis or [23℄, [10℄, [15℄, [28℄, [29℄, [12℄,

[5℄, [30℄ for the Preisah hysteresis model. In [33℄, [15℄ or [19℄, the ase of no hysteresis e�ets in

the swithing mehanism was addressed. In the present work, we also do not assume hysteresis

e�ets.

The version of the thermostat ontrol mehanism investigated in this work is very similar to

that in [19℄ or one of the ases taken into aount in [33℄.

Certain potential appliations of the thermostat ontrol mehanisms have been already in-

diated above, in the desription of mathematial literature. They over ontrol of thermody-

namial proesses, strain in visoelasti bodies, saturation of porous media and phase transition

proesses. Besides, the ontrol onepts similar to the onept of the thermostat ontrol meha-

nism were present also in tehnial literature.

In this ontext, we mention the appliation of thermostat ontrol mehanism mehanisms in

the hypertermia aner therapy. Roughly speaking, hyperthermia onsists in heating the body

of a patient to in�uene the aner tissue. See [48℄, [46℄ for general overview of the latter therapy

method, its variants and limitations. Aording to those referenes, one of the variants of hy-

perthermia assumes ultrasounds or eletromagneti waves to be the heating medium, delivering

energy diretly to the deep tissues of the body of the patient. A typial strategy in this hyper-

thermia variant is to heat the aner tissue area to a possibly high temperature without rising

the temperature in the neighboring tissues above ertain ritial level. A feedbak information

onerning the heating results is neessary. The measurement ations an be arried out by

interstitial heat probes or the magneti resonane imaging.

The model (0.1) - (0.3) an be understood as desribing the above situation, assuming that

the domain Ω represents the heated tissue. Note that the subjet variant of the hyperthermia,

onsisting in the deep heating, is oherent with our interpretation of the funtions gj in the model

(0.1) - (0.3), desribing the ontrol e�ets in a ertain volume of the domain of the ontrolled

proess. In the model (0.1) - (0.3), the strategy of seletive heating the tumor an be implemented

by a proper hoie of the referene state y∗, desribing a desired temperature distribution.

In many publiations addressing hyperthermia, the feedbak information obtained by mag-

neti resonane is utilized to ontrol the ations of the heating medium transmitters. Control

mehanisms whih share ontrol onepts in ertain way related to the onept of thermostat
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ontrol mehanisms are desribed (examples an be found in [42℄, [8℄). However, methods bas-

ing on other ontrol onepts also were introdued in the hypertermia-related publiations (for

instane, see [16℄, [35℄, [47℄).

In the ontext of hyperthermia, an interesting hybrid ontrol onept is presented in [36℄,

ombining a thermostat-like ontrol onept for ontrolling the power of the ontrol devies

in time with other kind of ontrol strategy for the ontrol of energy delivery in spae. The

latter strategy onsists in optimization of the ontrol devies settings, and hene, indiretly, in

optimization of the patterns of the spatial distribution of the delivered energy. Thus, at the level

of general onepts, the aims of the ontrol mehanism in [36℄ are similar to the aims of both

our thermostat ontrol mehanism and our optimal targeting problem, introdued in �1 and �2.

Nonetheless, omparing to our work, many di�erenes our there. In partiular, the ontrol

mehanism in [36℄ assumes other feedbak law in the thermostat-like mehanism used there and

there onsidered optimization problem is formulated in signi�antly other way.

�4 Summary of the results and bibliographial notes

Below, we sketh the plan of the present work, summarize the main results and provide bibli-

ographial notes. Chapter 1 and Chapter 2 are foused purely on the properties of the system

(0.1) - (0.3) and do not touh the optimal targeting problem. The optimal targeting problem,

assoiated with the ost funtional (0.8), is the subjet of Chapter 3 and Chapter 4.

In Chapter 1, we fous on analytial properties of the system (0.1) - (0.3). Two main

problems are addressed in this hapter. The �rst one is: what an be proven if we deide to

put disontinuous swithing funtions in the system (0.1) - (0.3), e.g. if we put wk = −sgn.
Unfortunately, in this ase we prove only existene of solutions, without any uniqueness results.

Moreover, we prove the existene result not for the system (0.1) - (0.3) diretly, but for its

modi�ation (see omments below). The seond problem onsists in proving existene, unique-

ness and stability w.r.t. perturbations of ontrol for solutions of the system (0.1) - (0.3), under

su�iently strong assumptions. These su�iently strong assumptions exlude the possibility of

disontinuous swithing funtions. Knowledge on the existene, uniqueness and stability w.r.t.

ontrol for the system (0.1) - (0.3) is essential also in further parts of the thesis, onerning

diretly the optimal targeting problem formulated in �2. Hene, investigating the above proper-

ties is neessary prior to proeed up to this optimization problem. For both problems, Lipshitz

ontinuity of the reative term f in the system (0.1) - (0.3) is assumed.

The �rst of the problems, onerning disontinuous swithing funtions in the system (0.1)

- (0.3), is treated in Setion 1.1. Our approah is the following one. For a given disontinu-

ous swithing funtion wk, we replae it with a multivalued upper semiontinuous mapping w̃k

whose graph ontains the graph of wk. This means that the right hand side of (0.2) beomes

a multivalued mapping. Hene, in Setion 1.1, we temporarily replae the di�erential equation

(0.2) with a di�erential inlusion, obtaining a modi�ed version of the system (0.1) - (0.3). As

mentioned, we prove only the existene of solutions for the postulated modi�ation of the system

(0.1) - (0.3). The proof of the existene theorem exploits the generalized Kakutani �xed-point

theorem.

The seond problem, onerning existene, uniqueness and stability topis for the system

(0.1) - (0.3), is onsidered in Setion 1.2. Here, we ondut our reasoning under the assump-

tion of Lipshitz ontinuity of the swithing funtions. This means that (0.2) beomes equality

again rather than inlusion, what brings us bak to analysis of the system (0.1) - (0.3). In

Setion 1.2, stability of solutions of the system (0.1) - (0.3) under perturbations of ontrol is
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proven, with the mentioned assumption on Lipshitz ontinuity of wk and with the assumption

that y∗ ∈ L2(0, T ;L2(Ω)). Under the same assumptions, stability w.r.t. perturbations of the

initial ondition is shown, what proves the uniqueness of solutions of (0.1) - (0.3). The existene

result also is shown, with additional restrition for y∗ and wk, namely that one of the following

hypotheses is ful�lled: 1) y∗ ∈ L2(0, T ;L2(Ω)) and wk are bounded or 2) y∗ ∈ L∞(0, T ;L2(Ω)).
Eventually, as a omplementary result, we prove also weak stability of solutions of the system

(0.1) - (0.3), under the same assumptions under that the stability and uniqueness are proven. In

Setion 1.2, we provide also generalization of some of the above mentioned results for the ase

of f only loally Lipshitz with ertain growth ondition and y0 essentially bounded.

In Chapter 2, we present results of numerial simulations for the thermostat ontrol meh-

anism, involved in the system (0.1) - (0.3). These simulations were intended to give an insight

into the properties of the system in some aspets not touhed in Chapter 1.

In partiular, Chapter 1 does not onern the e�ieny of the thermostat ontrol meha-

nism in any sense, i.e. does not give an information whether the thermostat ontrol mehanism,

desribed by (0.1) - (0.3), brings the proess lose to the referene state y∗ or not. Thus, in Chap-

ter 2, we desribe numerial results illustrating e�ieny of the thermostat ontrol mehanism,

in the above sense.

As a seond fous of our attention in the analysis of the numerial results, we take into

aount the problem of dependene on the initial state y0 of the large time behavior of the

proess ontrolled by thermostats (i.e. of solution omponent y in the system (0.1) - (0.3)). The

information on independene of the proess state at the terminal time T on the initial state

are important for the optimal targeting problem, onsidered in Chapter 3 and Chapter 4. To

be preise, if the proess state at the terminal time T is independent of the initial state then,

perhaps, the ost funtional (0.8) also beomes independent of the initial state, assuming T0

lose to T . In onsequene, the loal minimums of the ost funtional beome independent of

the initial state.

In our simulations, two-dimensional square domain was onsidered and a triangulation of

triangular elements was used. To obtain the results, the system of equations was treated with

�nite element method ombined with the impliit Euler sheme. The �nite element spae was

the spae of ontinuous funtions, linear on eah element of the triangulation. The nonlinear

terms entering (0.1) - (0.3) were treated with the use of Piard iterations.

The simulations addressed the ases of various referene states y∗, various initial states y0
and various on�gurations of the ontrol and measurement devies in the thermostat ontrol

mehanism, desribed by (0.1) - (0.3).

The simulation results suggest that the e�ieny of thermostat ontrol mehanism di�ers

with hanges of the model parameters. As a general rule, greater number of the ontrol and

measurement devies, not surprisingly, results in better e�ieny. Moreover, in all simulations,

stabilization of the proess near to some time-invariant state was observed. The independene

of the subjet time-invariant states on the initial state was observed in some, but not in all, of

the simulations.

In Chapter 3, we report an analysis of the optimal targeting problem, announed in �2.

The main objetive of Chapter 3 is to derive a formula haraterizing the gradient of the ost

funtional (0.8). The gradient formula will be neessary further, in Chapter 4, to perform

optimization proedures for approximation of loal solutions of the subjet optimization problem.

Chapter 3 is split into two parts: 1) part onerning the properties of the operator assigning

the solution of the system (0.1) - (0.3) to a given ontrol parameter, let us all this operator the

state operator and 2) part onerning properties of the mentioned ost funtional, inluding the
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formula for its gradient.

In Setion 3.1, we investigate the properties of the state operator. By the existene and

uniqueness results from Chapter 1, in Setion 3.1 we easily justify that the state operator is well

de�ned. Moreover, by the stability results from Chapter 1, we show that the state operator is

Lipshitz ontinuous. In omparison to the results stating that the state operator is well de�ned,

its Lipshitz ontinuity requires additionally stronger assumptions for the pattern funtions σg
and σh. Eventually, in Setion 3.1 we prove also the weak Gâteaux di�erentiability of the state

operator and haraterize its weak Gâteaux di�erential. This is the main result of Setion 3.1,

neessary also in further onsiderations, onerning the properties of the ost funtional. As we

will see, the Lipshitz ontinuity of the state operator is essential to prove its weak Gâteaux

di�erentiability. In addition, the proof the weak Gâteaux di�erentiability of the state operator

assumes that both the nonlinear term f and the swithing funtions wk, k = 1, . . . ,K in the

system (0.1) - (0.3) are everywhere di�erentiable in the lassial sense.

In Setion 3.2, we investigate the properties of the ost funtional (0.8). First, we introdue

a simple riterion for existene of minimizers in the subjet optimization problem. This riterion

assumes that the pattern funtions σg and σh have ompat supports. Next, we fous on the

matter of di�erentiability of the ost funtional. We show that it is Gâteaux di�erentiable under

the same onditions under whih the state operator is weakly Gâteaux di�erentiable. Finally, we

derive a formula for the gradient of the ost funtional, what is the main result of Setion 3.2.

In Chapter 4, we present results of numerial optimization experiments onerning the op-

timal targeting problem. Chapter 4 omplements the theoretial material provided in Chapter 3

by presenting attempts to onstrut onrete solutions of the investigated optimization problem.

The simulations desribed in Chapter 4 were intended mainly 1) to ompare performane of

various optimization methods for various parameters of the subjet optimization problem and

2) to hek whether the optimization output is independent of the initial state y0, entering the

system (0.1) - (0.3), when the parameter T0 in the ost funtional (0.8) is lose to T .

The independene of the optimization output on y0 is related with the independene of the

proess state at the terminal time on y0 (see the remarks onerning Chapter 2). Sine the

latter independene was observed in some ases in the simulations desribed in Chapter 2, one

an expet that the former independene, onerning the optimization output, also is possible.

The independene of the optimization output on the initial state y0, if exists, would mean

that it is not neessary to re-optimize the feedbak law onstituting the thermostat ontrol

mehanism eah time the initial state is hanged (see the expetations expressed in the beginning

of Introdution).

The numerial optimization experiments were performed with the use of steepest desent

method (SD method, in short) and nonlinear onjugate gradient method (CG method). The

CG method variant was implemented in the Polak-Ribière mode, with a ertain modi�ation.

Two subvariants of the CG method were onsidered: 1) the method with a reset of the searh

diretion every Ndim iterations, where Ndim stands for dimension of the optimization spae

(CG+r method) and 2) the method without the latter reset proedure (CG-r method). The stop

riterion utilized in the experiments was a short step riterion. To implement the optimization

methods, we rely on the gradient haraterization derived in Chapter 3.

We have ompared performane for the three optimization methods (SD, CG-r, CG+r) for

three variants of the initial state y0, three referene states y
∗
and two values of the left edge, T0,

of the integration interval in the de�nition of the ost funtional (0.8). Here, by performane of

an optimization method we mean the number of iterations neessary to meet the stop riterion.

The two onsidered values of T0 were 1) zero and 2) a value lose to terminal time T for the

system (0.1) - (0.3). Thus, in ase 2), the value of T0 orresponded to the idea of measuring
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the gap between the proess and the referene state in neighborhood of the terminal time of the

system (0.1) - (0.3).

The results show that the average performane of the SD method was muh inferior in the

ase of the parameter T0 lose to T than in the ase of T0 equal zero. Nevertheless, the di�erene

in the average performane of the SD method for two di�erent values of T0 was leveled by using

the CG+r method instead of SD.

We have also ompared the average performane of the CG+r method for a given referene

state and T0 lose to T , for varying values of parameter T (T = 2, 4, 6) and for two variants of

y0. It ourred that the performane of the CG+r method was better in the ase of T = 2 than

in the ase of T = 4 or T = 6.

Hene a hypothesis that the average performane of optimization methods for our optimiza-

tion problem hanges both with hanges of T0 (when using the SD method)) and with hanges of

T (when using the CG+r method). For hanges of T0, the use of stronger optimization method

(CG+r instead of SD) levels the performane di�erenes, while for hanges of T , the performane

di�erenes our despite using CG+r.

Other observation onerning our experimental results with varying T is that the optimiza-

tion output beomes more independent of y0 when lengthening time horizon T . This stays in

aordane with intuition. Unfortunately, greater T results in higher omputational ost. Thus,

if our observation was a general rule, the desired e�et of the independene of the optimization

output on y0 ould be expeted for those values of parameter T whih result in a omputationally

more expensive numerial treatment of the optimization problem.

Bibliographial notes. As remarked in �3, the thermostat ontrol mehanism was taken

into aount in the mathematial literature in di�erent versions. The thermostat ontrol meh-

anism present in the model (0.1) - (0.3) was inspired by and is similar to the version onsidered

in [19℄ or one of the versions onsidered in [33℄. However, in omparison to those works, we make

additional assumptions for the swithing funtions in the thermostat ontrol mehanism to get

stronger results (exept Setion 1.1, where the assumptions for the swithing funtions are as in

the given referenes).

The analytial results presented in Setion 1.2 of Chapter 1 and in Chapter 3 are obtained with

rather standard mathematial methods. The methods utilized in Setion 1.2 are an adaptation

of methods presented in many PDE handbooks to the PDE-ODE system (0.1) - (0.3). The

approah presented in Setion 3.1 of Chapter 3 for the investigation of the di�erentiability of the

state operator was inspired, in partiular, by some of the arguments utilized in [39℄. Some of the

key onepts utilized in in Setion 3.2 of Chapter 3 for the haraterization of the di�erential of

the ost funtional base on the methods broadly desribed in the handbook [45℄.

The methods utilized to obtain the main result of Setion 1.1 (Theorem 1.1.2) are probably

less standard (the generalized Kakutani theorem, the properties of multivalued mappings). The

latter methods were applied in a similar fashion to models with a similar version of the ontrol

by thermostats in works [33℄ and [19℄.

To our knowledge, rigorous mathematial analysis of the problem of optimal targeting of

the ations of ontrol and measurement devies in PDE models involving thermostat ontrol

mehanisms was not performed so far. The latter remark onerns both the variant of the

thermostat ontrol mehanism present in the model (0.1) - (0.3) as well as its other variants,

present in the models addressed in the mathematial referenes given in �3. Many other questions

were posed for the subjet models, inluding the existene or uniqueness of solutions (see [26℄, [25℄,

[33℄, [28℄, [15℄, [29℄, [12℄, [5℄), the existene, or other properties, of time-periodi solutions (see [28℄,

[30℄, [31℄, [32℄), onvergene to stationary solutions (see [28℄) or the existene of a global attrator

(see [30℄). In the mathematial literature, we have enountered only one type of optimization
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problems for PDE models involving thermostat ontrol mehanisms. It is the problem of hoosing

the optimal hysteresis law, for the variant of thermostat ontrol mehanism where a swithing

mehanism with hysteresis was onsidered � see e.g. [23℄, [10℄, [5℄. The optimal targeting

problem announed in �2, or similar, seems to be not addressed in the mathematial literature.

However, in non-mathematial literature, not providing rigorous mathematial analysis, the

problems in ertain fashion related to the optimal targeting problem were addressed. For in-

stane, see the referene [36℄ (some omments on this referene were given in �3).

Some of the results of this thesis were already published in a preliminary form on arXive.org,

in the work [18℄. This onerns a major part of the ontent presented in Setion 1.2.1, Se-

tion 1.2.2 and Chapter 2 of the thesis. Roughly speaking, the ontent of Setion 3 of [18℄ is

inluded into Setion 1.2.1 and Setion 1.2.2 of the present dissertation, while the ontent of Se-

tion 4 of [18℄ is inluded into Chapter 2. Nevertheless, signi�ant re�nements were implemented

sine the preliminary version in [18℄. In Setion 1.2.2, the only part imported form [18℄ is Theo-

rem 1.2.3 and its proof (the latter with ertain rearrangements). The rest of Setion 1.2.2 is a new

ontent, inluding the image in Figure 1.3. In Setion 1.2.2, the re�nements inlude improved

typesetting of mathematial formulas, rearrangements of a big part of the proofs, more preise

exposition of ertain mathematial arguments and some additional omments. In addition, Se-

tion 1.2.2 onsiders both the ase of y∗ ∈ L∞(0, T ;L2(Ω)) and y∗ ∈ L2(0, T ;L2(Ω)), while in

[18℄ we inluded only the onsiderations on y∗ ∈ L∞(0, T ;L2(Ω)). Chapter 2, in omparison to

Setion 4 of [18℄, ontains a muh more extensive desription of the numerial shemes utilized

in the simulations and some additional omments. The images in Figures 2.3, 2.4, 2.6 and 2.8

in Chapter 2 represent the same data as some of the images in [18℄, however they were plotted

anew, for better readability. The rest of images in Chapter 2, as well as the tables exposed

therein, is the same as orresponding images and tables in [18℄.

Moreover, some fragments of Setion 1 (Introdution) of [18℄ (text bulk of less than two pages

in total) are present in the Introdution of the preset dissertation. Setion 2 of [18℄ also is here,

splitting its ontent to Notation onventions and the beginning of Chapter 1. To be spei�,

the list of norms in Notation onventions, along with some minor text fragments there, and big

parts of the notation remarks in the beginning of Chapter 1 are present in Setion 2 in [18℄.



Notation onventions

In this hapter, we introdue notation whih will be binding everywhere else in the present work.

General notation

By �domain� we mean a nonempty open subset of Rn
, for some n ∈ N \ {0}.

In the present work, Ω ⊂ Rd
always denotes the orresponding set appearing in the system

(0.1) - (0.3) and is assumed to be a domain. Positive integer d stands for the dimension of Ω.
T > 0 is the onstant in (0.1) - (0.3) determining the time horizon and QT := Ω× (0, T ).

Unless it is expliitly said to be otherwise, Rn
for an arbitrary n ∈ N \{0} is always endowed

with its standard topology and with Lebesgue measure and so subsets of Rn
are, inluding Ω.

If F is a funtion de�ned on a given set A and Ã is a subset of A, we denote by F |Ã the

restrition of F to Ã.
For a given set A and its subset Ã, 1Ã : A → R is the indiator funtion of Ã, i.e. 1Ã(ω)

equals 1 for ω ∈ Ã and equals 0 for ω /∈ Ã.
The funtion sgn : R → R is de�ned as follows: sgn(s) = 1 for s > 0, sgn(s) = −1 for s < 0,

sgn(0) = 0.
For j, k ∈ N, we use symbol δj,k to denote the Kroneker delta funtion of j and k, i.e.

δj,k = 1 for j = k and δj,k = 0 for j 6= k.
For vetor spaes X, Y and an operator T ating from X to Y, we will denote the value of T

on an element x ∈ X as T (x) or Tx, interhangeably.

Notation for funtion spaes

Below, any spae of salar funtions is understood as a spae of real funtions and any Banah

spae is also assumed to be real.

Assume that X is a Banah spae. We denote:

X∗ � dual of X,

Xw, X
∗
w∗ � the spae X onsidered with its weak topology and the spae X∗ on-

sidered with its weak-∗ topology, respetively.

For two Banah spaes X1 and X2, X1 →֒ X2 means that X1 an be ontinuously embedded

in X2. When this notation is used, spei�ation of the embedding operator is neessary. If

X1 ⊆ X2, then we assume that the embedding operator for X1 →֒ X2 is the identity operator.

If X1 is a separable, re�exive Banah spae, X2 is a separable Hilbert spae and X1 →֒ X2

densely, then the embedding operator for X2 →֒ X1
∗
is understood in the standard evolution

triples sense (see [51, Chap. 23.4℄ for explanation of this onept). If none of these two situation

takes plae, external embedding theorems will be referred in the text to speify the meaning of

the embedding operator.

xxiii
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Assume that k, n ∈ N \ {0}, p ∈ [1,∞], X is a Banah spae and let A be a measure spae

and D ⊆ Rn
be a domain. The following notation onerning funtion spaes will be in use:

Lp(A) � standard Lebesgue spae,

W k,p(D) � standard Sobolev spae,

Hk(D) � synonym for W k,2(D),

C(D) � spae of real valued ontinuous funtions de�ned on D with its standard

topology,

Cc(D) � subspae of C(D) onsisting of funtions with support that is ompat

in D,

Lp(0, T ;X) � standard Bohner spae,

C([0, T ];X) � spae of ontinuous funtions from [0, T ] into X,

C([0, T ];Xw) � spae of weakly ontinuous funtions from [0, T ] into X, or in other

words, spae of ontinuous funtions from [0, T ] into Xw,

C([0, T ]) � synonym for C([0, T ];R).

Assuming that X is a Banah spae, H is a Hilbert spae and E ⊆ Rn
is a measurable set,

we denote:

∥∥ .
∥∥
X

� the norm of X,

( . , . )H � the salar produt of H,

〈 . , . 〉X∗,X � the natural pairing between X∗ and X; the �rst argument stands for the

element of X∗,∥∥ .
∥∥
p,E � the norm of the Lebesgue spae Lp(E), p ∈ [1,∞],

∥∥ .
∥∥
p

� the norm of the Lebesgue spae Lp(Ω), p ∈ [1,∞],
∥∥ .

∥∥
X,q

� the norm of the Bohner spae Lq(0, T ;X), q ∈ [1,∞],
∥∥ .

∥∥
p,q

� the norm of the Bohner spae Lq(0, T ;Lp(Ω)),

〈 . , . 〉 � the natural pairing between H1(Ω)
∗
and H1(Ω); the �rst argument

stands for the element of H1(Ω)
∗
, .

p
� p-th norm in Rn

, namely

x
p

:=
(∑n

i=1

∣∣xi
∣∣p)1/p

for p ∈ [1,∞) andx
p

:= maxi=1,...,n

∣∣xi
∣∣
for p = ∞, where x ∈ Rn

.

In addition, we do not want to bother with separate notation for norms of Rn
-valued funtions,

hene we denote the standard norm of (Lp(E))n simply as

∥∥ .
∥∥
p,E. Similarly, we denote the norms

of (Lp(Ω))n and Lq(0, T ; (Lp(Ω))n) by
∥∥ .

∥∥
p
or

∥∥ .
∥∥
p,q
, respetively. The standard salar produt

in

(
L2(E)

)n
will be denoted as ( . , . )L2(E).

Moreover, for p ∈ [1,∞), the spae Lp(0, T ;Lp(Ω)) an be identi�ed with the spae Lp(QT ).
The inlusion Lp(QT ) ⊆ Lp(0, T ;Lp(Ω)) follows by arguments as in the proof of Example 23.4

in Chap. 23.2 in [51℄, the other inlusion follows by approximation with step funtions. Thus,

in the present work, we will use these two spaes interhangeably. In partiular, we assume that

for an arbitrary F ∈ Lp(0, T ;Lp(Ω)) it is legal to evaluate the norm

∥∥F
∥∥
Lp(QT )

and vie versa.

The de�nitions Lebesgue and Sobolev spaes are ontained e.g. in [1, Chap. 2 & Chap. 3℄,

[45, Chap. 2.2℄ or [21, App.A.3 & Chap. 5.2℄. The Bohner spaes are introdued e.g. in [1, Par.
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7.4℄, [21, Chap. 5.9.2℄, [45, Chap. 3.4.1℄ or [51, Chap. 23.2℄. Spae C([0, T ];X) is de�ned e.g.

in [45, Chap. 3.4.1℄, [21, Chap. 5.9.2℄ or [51, Def. 23.1, Chap. 23.2℄. The norms of Lebesgue,

Sobolev, Bohner and C([0, T ];X) spaes are also de�ned in the given referenes.

Notation for di�erentiation

Let D ⊆ Rn
be a domain, for ertain n ∈ N \ {0}. In the present work, for a given funtion

F : D → R, partial derivative sign ∂iF , for i = 1, . . . , n, an refer both to the lassial partial

derivative and the weak partial derivative. Similarly, ∇F (x), for x ∈ D, an denote the vetor of

lassial partial derivatives or weak partial derivatives in x. Analogous remarks hold if F : D →
Rm

, for ertain m ∈ N \ {0}.
The �prim� operator for funtions of one variable also an have various meanings. Let I ⊆ R

be an open interval (�nite or in�nite) and let F be an X-valued funtion on I, where X is a given

Banah spae. Then, depending on the ontext, F ′ an refer both to the lassial derivative of

F or to the vetor-valued distributional derivative of F .
To sum up, the �∂i� and �∇� operators, if not understood in lassial sense, refer to weak

partial derivatives. The �prim� operator, if not understood in lassial sense, refer to the vetor-

valued distributional derivative of a vetor-valued funtion of one variable. In partiular plaes

of the text, the meaning of the subjet di�erential operators should be lear by the ontext.

Otherwise, we will expliitly stress whih meaning of the di�erential operators is involved.

In addition to the above, in the present work, for a given funtion F : QT → R, symbol ∇F
always refers to the gradient with respet to the spatial variables. In other words, ∇F does not

inlude the partial derivative with respet to the time variable, assoiated with interval (0, T ),
regardless of the meaning of the partial derivatives (lassial or weak).

We understand the onept of the weak derivative as in [51, Def. 21.2, Chap. 21.1℄, [1, Par.

1.62℄ or [21, Chap. 5.2.1℄. The vetor-valued distributional derivative onept that we use is

desribed e.g. in [51, Def. 23.15, Chap. 23.5℄ or [45, Chap. 3.4.3℄.
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Chapter 1

Thermostat ontrol mehanism �

properties

The fundamental results for the reation-di�usion model with an additive ontrol term not in-

volving the automati orretion mehanism (see model (0.A)), as the existene and uniqueness

of solutions or stability results, are known. However, introduing the automati orretion meh-

anism to the ontrol term an turn the original reation-di�usion model into a model of di�erent

algebrai type. This is the ase for the model (0.1) - (0.3), whih an be understood as the model

of reation-di�usion proess with ontrol by a partiular automati orretion mehanism. It is

straightforward that the results onerning a single reation-di�usion equation do not apply to

the system (0.1) - (0.3). Hene, the analysis of the properties of (0.1) - (0.3) is neessary.

Therefore, in the present hapter, we fous on fundamental analysis of the system (0.1) - (0.3).

By fundamental analysis, we understand in partiular the results on existene and uniqueness

of solutions for (0.1) - (0.3). We present also the results on stability of (0.1) - (0.3) under

perturbations of the ontrol and of the initial ondition.

The plan of the present hapter is as follows. In Setion 1.1, we begin with analysis of

the system (0.1) - (0.3) in the ase where the swithing funtions wk, k = 1, . . . ,K, are upper

semiontinuous multivalued mappings. This approah has the following advantages:

1. It is possible to prove existene for wk being upper semiontinuous multivalued mappings,

2. For a disontinuous funtion, it is possible to �nd an upper semiontinuous multivalued

mapping related to this funtion in ertain sense (see Proposition A.5.5).

Thus, the above approah is an attempt to indiretly handle the ase of disontinuous swithing

funtions wk, inluding the −sgn funtion.

A drawbak of the proposed approah is that, to our knowledge, no method for proving

uniqueness of solutions is known for models with ontrol by thermostats with swithing fun-

tions being upper semiontinuous multivalued mappings. In the beginning of Setion 1.1, we

indiate some referene works where the subjet approah was exploited. In none of the indiated

works, uniqueness was obtained for swithing funtions being upper semiontinuous multivalued

mappings.

In Setion 1.2 we investigate the ase of stronger restritions for the swithing funtions wk.

This restrition onsists in assuming that wk are single-valued, Lipshitz ontinuous mappings,

for k = 1, . . . ,K. With the latter assumption, we obtain not only existene but also uniqueness

results for the system (0.1) - (0.3). In addition, in Setion 1.2 we provide the analysis of stability,

with respet to both the ontrol and the initial ondition, of the system (0.1) - (0.3) with single-

valued Lipshitz wk. Nevertheless, imposing the latter assumption exludes the possibility of

1
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the above proposed approah for dealing with the ase of disontinuous swithing funtions,

inluding wk(s) = −sgn(s), in the system (0.1) - (0.3). Thus, one may say that in Setion 1.2

we trade a method of indiret handling the situation of wk = −sgn in the system (0.1) - (0.3)

for fundamental results for the latter system. On the other hand, a method of indiret handling

the ase of wk = −sgn is available also with the assumption of Lipshitz swithing funtions �

with the latter assumption, the funtion −sgn an be approximated with Lipshitz funtions of

a very steep slope near point zero.

The purpose of the announed stability analysis is twofold. First, the mentioned uniqueness

result for the system (0.1) - (0.3) is in fat proven by using the stability with respet to the initial

ondition. Seond, the results onerning stability w.r.t. the ontrol are useful from the point

of view of the optimal ontrol theory, for proving di�erentiability of so-alled state operators.

Our results onerning stability w.r.t. the ontrol will be used in Chapter 3 of the present work,

exatly for the latter purpose.

Notation remarks

In Chapter 1, we use the following de�nitions of spaes:

X0 = L2(Ω)× RJ

X1 = L2(QT )×
(
L2(0, T )

)J

X2 =
{
(y, κ1, . . . , κJ ) ∈ L∞(0, T ;L2(Ω))× (L∞(0, T ))J :

y′ ∈ L2(0, T ;H1(Ω)
∗
), ∇y ∈

(
L2(QT )

)d
,

κ′j ∈ L2(0, T ) for j = 1, . . . , J
}

and

Xy =
{
y ∈ L∞(0, T ;L2(Ω)) : ∇y ∈

(
L2(QT )

)d
, y′ ∈ L2(0, T ;H1(Ω)

∗
)
}

Xκ =
{
(κ1, . . . , κJ) ∈

(
L2(0, T )

)J
: κ′j ∈ L2(0, T ), j = 1, . . . , J

}

where natural number J is the same as J appearing in the system (0.1) - (0.3). In the above

de�nitions of spaes: 1) the derivatives y′ and κ′j are assumed to exist in the sense of vetor-

valued distributional derivatives (see Notation onventions) and 2) ∇y is assumed to exist as the

vetor of the weak partial derivatives of y w.r.t. the spatial variables (see Notation onventions).
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The topologies of X0
, X1

, X2
, Xy

and Xκ
are given by the following norms:

∥∥(y, κ1, . . . , κJ )
∥∥
X0 =

∥∥y
∥∥
2
+

J∑

j=1

∣∣κj
∣∣

∥∥(y, κ1, . . . , κJ )
∥∥
X1 =

∥∥y
∥∥
2,2

+

J∑

j=1

∥∥κj
∥∥
L2(0,T )

∥∥(y, κ1, . . . , κJ )
∥∥
X2 =

∥∥y
∥∥
2,∞

+
∥∥∇y

∥∥
2,2

+
∥∥y′

∥∥
H1(Ω)∗,2

+

+

J∑

j=1

∥∥κj
∥∥
L∞(0,T )

+

J∑

j=1

∥∥κ′j
∥∥
L2(0,T )

∥∥y
∥∥
Xy =

∥∥y
∥∥
2,∞

+
∥∥∇y

∥∥
2,2

+
∥∥y′

∥∥
H1(Ω)∗,2

∥∥(κ1, . . . , κJ )
∥∥
Xκ =

J∑

j=1

∥∥κj
∥∥
L2(0,T )

+

J∑

j=1

∥∥κ′j
∥∥
L2(0,T )

It is known that L2(0, T ;L2(Ω)) an be identi�ed with L2(QT ) and that

∥∥F
∥∥
2,2

=
∥∥F

∥∥
2,QT

for F ∈ L2(QT ) (see Example 23.4 in Chap. 23.2 in [51℄). An analogous fat holds for spaes

L2(0, T ;
(
L2(Ω)

)d
) and

(
L2(QT )

)d
. Therefore, the above de�nitions of norms are meaningful.

Moreover, we de�ne the following spaes:

U = Ug × Uh × Uα, Ug =
(
L2(Ω)

)J
, Uh =

(
L2(Ω)

)K
, Uα = RKJ

where natural numbers J , K are the same as J , K appearing in the system (0.1) - (0.3). U will

be alled the ontrol spae. We equip it with standard produt topology and salar produt. For

a given element û ∈ U we denote the oordinates of û in the following way:

û = (ûgj , ûhk
, ûαjk

)k=1,...,K
j=1,...,J

where (ûg1 . . . , ûgJ ) ∈ Ug, (ûh1 , . . . , ûhk
) ∈ Uh, (ûαj,k

)k=1,...,K
j=1,...,J ∈ Uα

An arbitrary su�iently integrable ontrol (gj , hk, αjk)
k=1,...,K
j=1,...,J in the system (0.1) - (0.3) an

be interpreted as an element of U and vie versa � an arbitrary element û ∈ U gives a ontrol

for the system (0.1) - (0.3) by putting gj := ûgj , hk := ûhk
and αj,k := ûαj,k

.

For tehnial reason, we de�ne also the following spae:

Ũ =
(
L2(Ω)

)2J

We equip Ũ with standard produt topology and salar produt. For a given û ∈ Ũ , we denote
the oordinates of û as follows:

û = (ûg1 , . . . , ûgJ , ûh1 , . . . , ûhJ
) = (ûgj , ûhj

)Jj=1

Remark. Conerning the weights αj,k in (0.3), one an expet an assumption that αj,k are

nonnegative and summable to unity over k = 1, . . . ,K, for all j = 1, . . . , J . But this assumption

does not play any role in our onsiderations, hene we do not impose it and allow αj,k to be

arbitrary real numbers. This is re�eted in the struture of the ontrol spae U , whose omponent

spae Uα an be understand as a spae of admissible (αj,k)
k=1,...,K
j=1,...,J . N
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1.1 Multivalued swithing funtion � existene results

This setion is devoted to investigate the existene of solutions for the model of reation-di�usion

proess with ontrol by thermostats, desribed by the system (0.1) - (0.3). Consider an abstrat

operator de�ned as the operator assigning the solution y of (0.1) to a given (κ1, . . . , κJ ), and than

solution of (0.2) to y, denote it (κ̄1, . . . , κ̄J ). The problem is to show that there exists (κ1, . . . , κJ )
suh that (κ̄1, . . . , κ̄J ) = (κ1, . . . , κJ ). In other words, we wish to employ the �xed-point method

for proving the existene of solutions.

Nevertheless, for the sake of limitations of the mathematial tehniques utilized below, we

need to modify (0.1) - (0.3) slightly before we proeed further.

Let us explain the latter omment in more detail. The natural andidate for the swithing

funtion wk in (0.3) is the disontinuous funtion wk(s) = −sgn(s). The lak of ontinuity of

the swithing funtion is an obstale for proving the existene in models with the variant of

thermostat ontrol mehanism without hysteresis in the work of the swithing mehanism, whih

is our variant. This obstale was the ase in works [33℄, [15℄ and [19℄, whih took into aount

models with the non-hysteresis variant of the thermostat ontrol mehanism (more preisely, [19℄

foused only on a non-hysteresis thermostat ontrol mehanism while [33℄ and [15℄ aounted,

in addition to non-hysteresis ontrols, ontrols involving hysteresis in the work of the swithing

mehanism). In none of these works, for the variant of swithing mehanism without hystere-

sis, the existene of solutions was proven under assumptions overing the ase of disontinuous

swithing funtions being equal −sgn. Works [33℄, [19℄ required onsidering a swithing funtion

being an upper semiontinuous multivalued mapping in order to obtain the existene result. In

[15℄, a swithing funtion being a maximal monotone mapping whose graph ontained the graph

of −sgn was onsidered. The maximal monotoniity of the swithing funtion was essential in

the existene proof in [15℄.

Within this setting, −sgn annot be viewed diretly as an admissible swithing funtion,

beause it is not upper semiontinuous in the sense of multivalued mappings, nor it is maximal

monotone. However, it is possible to take a swithing funtion being a maximal monotone

multivalued mapping whose graph ontains the graph of −sgn into onsideration. Thus in some

sense, it is allowed to onsider swithing funtions �somehow related� to −sgn within this setting.

But, this abstrat approah has only tehnial reasons and makes the model less realisti.

Nevertheless, we will adapt this approah here and allow the swithing funtions to be mul-

tivalued mappings, obeying ertain additional onditions. From the mathematial point of view

allowing a multivalued wk makes the model (0.1) - (0.3) more general, thus results shown with

this approah will apply also for a ertain lass of the single-valued swithing funtions (whih,

as we will see, unfortunately ours to exlude the −sgn swithing funtion).

Assuming that wk are multivalued mappings fores us to understand the ordinary di�erential

equations (0.2) as an ordinary di�erential inlusions. Hene, in this setion we will onsider the

following modi�ation of the system (0.1) - (0.3) instead of (0.1) - (0.3) itself:





yt(x, t) −D∆y(x, t) = f(y(x, t)) +
∑J

j=1
gj(x)κj(t) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(x, 0) = y0(x) for x ∈ Ω

(1.1)
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together with 



β1κ
′
1(t) + κ1(t) ∈ W1

(
y( . , t), y∗(x, t)

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J(t) + κJ(t) ∈ WJ

(
y( . , t), y∗(x, t)

)
on [0, T ]

κj(0) = κj0 ∈ R for j = 1, . . . , J

(1.2)

where the notation is as in the system (0.1) - (0.3) with the exeption that Wj are multivalued

funtions now, de�ned by:

Wj(y( . , t), y
∗( . , t)) =

K∑

k=1

αjkwk

(∫

Ω
hk(x)

(
y(x, t)− y∗(x, t)dx

))
(1.3)

where αjk ∈ R, hk : Ω → R are funtions and wk : R → 2R are multivalued mappings, for

k = 1, . . . ,K.

The present setion utilizes the theory of multivalued mappings, in the sope of Appendix A.5.

We will follow the methods exploiting upper semiontinuity of wk in the sense of multivalued

mappings (see De�nition A.5.2 in Appendix A.5), as it was the ase in [33℄ or [19℄. This is

re�eted in the following assumptions for the system (1.1) - (1.3):

(A-1) Ω ⊂ Rd
is a bounded domain, suh that the embedding W 1,2(Ω) →֒ L2(Ω) is ompat (e.g.

a bounded domain satisfying the one ondition is su�ient, see the Rellih-Kondrahov

theorem presented e.g. in [1, Th. 6.3.℄; for de�nition of the one ondition, see [1, par.

4.6.℄),

(A-2) K, J are given positive natural numbers, T > 0, D > 0 and βj > 0 for all j = 1, . . . , J ,

(A-3) f is globally Lipshitz ontinuous; we denote its Lipshitz onstant by L,

(A-4) wk is a multivalued funtion, wk : R → 2R, satisfying the following onditions, for k =
1, . . . ,K:

a) wk has nonempty, losed and onvex values,

b) wk is upper semiontinuous in the sense of upper semiontinuity of multivalued map-

pings,

) wk is bounded; we de�ne onstant Cwk
> 0 as onstant suh that wk(t, s) ⊆ [−Cwk

, Cwk
]

for all s ∈ R,

(A-5) y0 ∈ L2(Ω), κj0 ∈ R for j = 1, . . . , J ,

(A-6) y∗ ∈ C([0, T ];L2(Ω)w).

In the present setion, we will use the following de�nition of solutions for the system (1.1) -

(1.3):

De�nition 1.1.1 An element (y, κ1, . . . , κJ ) of the spae X2
is a weak solution of the system

(1.1) - (1.3) if there exists (W1, . . . ,WJ ) ∈
(
L2(0, T )

)J
suh that:

(a) y( . , 0) = y0 in L2(Ω) and κj(0) = κj0 for j = 1, . . . , J ,

(b) for all φ ∈ L2(0, T ;H1(Ω)), there holds

∫ T

0

〈
y′, φ

〉
+D

(
∇y,∇φ

)
L2(Ω)

+
(
−f(y)− κ1g1 − . . . − κJgJ , φ

)
L2(Ω)

dt = 0
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() for all ξ ∈ L2(0, T ), for j = 1, . . . , J , there holds

∫ T

0

(
βjκ
′
j + κj −Wj

)
ξ dt = 0

(d) Wj(t) ∈ Wj

(
y( . , t), y∗( . , t)

)
for a.e. t ∈ (0, T ).

The point (a) in De�nition 1.1.1 is meaningful beause if (y, κ1, . . . , κJ) ∈ X2
then

y ∈ C([0, T ];L2(Ω)) and (κ1, . . . , κJ ) ∈ C([0, T ]). For justi�ation, note that the spaes H1(Ω),
L2(Ω) andH1(Ω)

∗
form so-alled evolution triple (de�ned e.g. in [51℄) with embeddingsH1(Ω) →֒

L2(Ω) →֒ H1(Ω)
∗
. Having this, see [51, Prop. 23.23℄ to onlude that y ∈ C([0, T ];L2(Ω)). Then,

use the Sobolev embedding theorem, see [1, Th. 4.12, p. 85℄, or apply [51, Prop. 23.23℄ again to

get (κ1, . . . , κJ ) ∈ C([0, T ]).
The main Theorem of Setion 1.1 is the following existene result:

Theorem 1.1.2 Let assumptions (A-1) - (A-6) be ful�lled. Assume also that (y0, κ10, . . . , κJ0) ∈
X0

and (gj , hk, αj,k)
k=1,...,K
j=1,...,J ∈ U . Then, there exists a weak solution of the system (1.1) - (1.3).

We present the proof of Theorem 1.1.2 in Setion 1.1.1. Earlier, in Setion 1.1.2, we give some

tehnial lemmas neessary for the proof.

1.1.1 Auxiliary lemmas

This setion presents some auxiliary fats that will be neessary for the proof of Theorem 1.1.2.

We will need to onsider the following auxiliary systems of equations:





yt(x, t)−D∆y(x, t) = f(y(x, t)) +
∑J

j=1
gj(x)kj(t) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(0) = y0 on Ω

(1.4)

{
βjκ
′
j(t) + κj(t) = Vj(t) on [0, T ]

κj(0) = κj0
for j = 1, . . . , J (1.5)

where kj ∈ L2(0, T ), Vj ∈ L2(0, T ) for j = 1, . . . , J are given and the rest of the notation is as

in the system (0.1) - (0.3).

De�nition 1.1.3 A weak solution of (1.4) is a funtion y ∈ Xy
that satis�es y(0) = y0 and

∫ T

0

〈
y′, φ

〉
+D

(
∇y,∇φ

)
L2(Ω)

+
(
−f(y)−

J∑

j=1

gjkj , φ
)
L2(Ω)

dt = 0 (1.6)

for all φ ∈ L2(0, T ;H1(Ω)).

De�nition 1.1.4 A weak solution of (1.5) is a funtion κ = (κ1, . . . , κJ ) ∈ Xκ
that satis�es

κj(0) = κj0 and ∫ T

0

(
βjκ
′
j + κj −Vj

)
ξ dt = 0 (1.7)

for all ξ ∈ L2(0, T ), for j = 1, . . . , J .
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For weak solutions of both (1.4) and (1.5), initial onditions are well de�ned, by the same

arguments as the ones on page 6, onerning De�nition 1.1.1.

Now, we give some lemmas desribing properties of the weak solutions to (1.4) and (1.5):

Lemma 1.1.5 Let Ω, T , D, J , f , y0 be as in assumptions (A-1), (A-2), (A-3), (A-5), respe-

tively, and let gj ∈ L2(Ω) for j = 1, . . . , J . In addition:

1. Let kj ∈ L2(0, T ) for j = 1, . . . , J . Then the weak solution of (1.4) exists and is unique.

2. Let y1 and y2 be two weak solutions of (1.4) orresponding to kj = k1j and kj = k2j respe-

tively, for j = 1, . . . , J,where k1j ∈ L2(0, T ) and k2j ∈ L2(0, T ). Then

∥∥y1 − y2
∥∥
Xy ≤ C1

∥∥∥
J∑

j=1

gj(x)(k
1
j (t)− k2j (t))

∥∥∥
2,2

≤ C2

J∑

j=1

∥∥k1j − k2j
∥∥
L2(0,T )

(1.8)

where C1 = C1(T,D,L) and C2 = C2

(
T,D,L,

∥∥g1
∥∥
2
, . . . ,

∥∥gJ
∥∥
2

)
.

Proof. It is a known result that under the imposed assumptions the weak solution of the

equation (1.4) exists and is unique. Thus we do not prove it here but only give some omments

on the addressed matter.

The existene of solutions of (1.4) an be shown by Galerkin method. See [40, Chap. 8℄

for example realization of this method for a semilinear reation-di�usion equation. A ase of

homogeneous Dirihlet boundary data and a growth ondition for f other than ours is onsidered

there, also the solutions are de�ned in other spaes. Nevertheless, the method presented there

an be adapted to our ase, after adequate modi�ations.

One may ondut the proof of the existene with the above mentioned method to �nd that our

assumptions onerning Ω, f , y0, gj , kj and D are essential for the assertion. The assumptions

onerning T and J are neessary just to make the problem well de�ned.

The stability of the system (1.4), expressed by the �rst inequality in (1.8), also is a known

result for the ase of the Lipshitz nonlinearity f , but we present its proof here for the sake of

ompleteness of the presented ontent. The �rst inequality in (1.8) an be shown as follows. For

estimates for

∥∥y1 − y2
∥∥
2,∞

we subtrat the identity (1.6) orresponding to kj = k1j , j = 1, . . . , J

and the same identity orresponding to kj = k2j , j = 1, . . . , J . We test the resulting identity by

φ = 1[0,t](y
1 − y2) for a given t ∈ [0, T ]. This results in:

∫ t

0

〈
y1
′
− y2

′
, y1 − y2

〉
ds + D

∫ t

0

∥∥∇
(
y1 − y2

)∥∥2
2
ds =

=

∫ t

0

(
f(y1)− f(y2), y1 − y2

)
L2(Ω)

ds +

∫ t

0

∫

Ω

J∑

j=1

gj
(
k1j − k2j

)(
y1 − y2

)
dx ds

(1.9)

Next, the following identity holds:

∫ t

0

〈
y1
′
− y2

′
, y1 − y2

〉
dt =

1

2

∥∥y1( . , t) − y2( . , t)
∥∥2
2
−

1

2

∥∥y1( . , 0) − y2( . , 0)
∥∥2
2

(1.10)

(see Prop. 23.23 in [51℄ and note that spaesH1(Ω) →֒ L2(Ω) →֒ H1(Ω)
∗
form an evolution triple,

de�ned as in Chap. 23.4 in [51℄). Using the above in (1.9) and realling that y1( . , 0) = y2( . , 0),
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we obtain:

1

2

∥∥y1( . , t)− y2( . , t)
∥∥2
2
+ D

∫ t

0

∥∥∇
(
y1 − y2

)∥∥2
2
ds =

≤
(
L+ 1

2

) ∫ t

0

∥∥y1(t)− y2(t)
∥∥2
2
dt+

1

2

∥∥∥
J∑

j=1

gj
(
k1 − k2

)∥∥∥
2

2,2

(1.11)

where the Lipshitz ontinuity of f and the Young inequality were used to estimate the right

hand side of (1.9). Now, we neglet the gradient term (whih is nonnegative) and by the Grönwall

inequality we onlude that

∥∥y1 − y2
∥∥
2,∞

≤ C10

∥∥∥
J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

(1.12)

for some onstant C10 > 0, C10 = C10(T,L).

To get the estimates for

∥∥∇
(
y1 − y2

)∥∥
2,2
, we again use (1.11). Negleting the term

∥∥y1( . , t)−
y2( . , t)

∥∥
2
and taking t = T , it follows that:

D

∫ T

0

∥∥∇
(
y1 − y2

)∥∥2
2
dt ≤

(
L+ 1

2

)
T
∥∥y1 − y2

∥∥2
2,∞

+
1

2

∥∥∥
J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2

2,2

where we have used the estimate

∥∥y1 − y2
∥∥
2,2

≤ T 1/2
∥∥y1 − y2

∥∥
2,∞

. Now, we an use the above

inequality and (1.12) to get that

∥∥∇
(
y1 − y2

)∥∥
2,2

≤ C11

∥∥∥
J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

(1.13)

where C11 = C11(T,D,L).

To obtain estimates for

(
y1 − y2

)′
in L2(0, T ;H1(Ω)

∗
), we again subtrat two opies of

(1.6) and treat the resulting integral identity as a ondition for a funtional on the spae

L2(0, T ;H1(Ω)). We onlude that the below holds:

(y1 − y2)′ +DA(y1 − y2)−
(
Fy1 − Fy2

)
−G = 0 in L2(0, T ;H1(Ω)

∗
) (1.14)

where A : L2(0, T ;H1(Ω)) → L2(0, T ;H1(Ω)
∗
), F : L2(0, T ;H1(Ω)) → L2(0, T ;H1(Ω)

∗
) and

G ∈ L2(0, T ;H1(Ω)
∗
) are de�ned by

∫ T

0

〈
Aỹ, φ

〉
dt =

∫ T

0

(
∇ỹ,∇φ

)
L2(Ω)

dt

∫ T

0

〈
Fỹ, φ

〉
dt =

∫ T

0

(
f(ỹ), φ

)
L2(Ω)

dt

∫ T

0

〈
G, φ

〉
dt =

∫ T

0

( J∑

j=1

gj
(
k1j − k2j

)
, φ

)
L2(Ω)

dt

(1.15)

for a given ỹ ∈ L2(0, T ;H1(Ω)) and all φ ∈ L2(0, T ;H1(Ω)).
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It follows by de�nition of A, F and G that

∥∥Aỹ1
∥∥
H1(Ω)∗,2

≤
∥∥∇ỹ

∥∥
2,2

∥∥Fỹ1 − Fỹ2
∥∥
H1(Ω)∗,2

≤
∥∥f(ỹ1)− f(ỹ2)

∥∥
2,2

∥∥G
∥∥
H1(Ω)∗,2

≤
∥∥∥

J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

(1.16)

for given ỹ1, ỹ2 ∈ L2(0, T ;H1(Ω)). This, together with (1.14), yields:

∥∥(y1 − y2
)′∥∥

H1(Ω)∗,2
≤

∥∥∇y1 −∇y2
∥∥
2,2

+
∥∥f(y1)− f(y2)

∥∥
2,2

+
∥∥∥

J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

≤
∥∥∇y1 −∇y2

∥∥
2,2

+ L
∥∥y1 − y2

∥∥
2,2

+
∥∥∥

J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

Now, realling that

∥∥y1 − y2
∥∥
2,2

an be estimated by

∥∥y1 − y2
∥∥
2,∞

, we use (1.12) and (1.13) to

onlude that

∥∥(y1 − y2
)′∥∥

H1(Ω)∗,2
≤ C12

∥∥∥
J∑

j=1

gj
(
k1j − k2j

)∥∥∥
2,2

(1.17)

where C12 = C12(T,D,L).

To sum up, by (1.12), (1.13) and (1.17), the �rst inequality in (1.8) follows. The seond

inequality in (1.8) follows straight by the Fubini theorem.

The proof of uniqueness an be onduted by appliation of the Grönwall inequality, analo-

gously to the above proof of (1.12). Take y10, y
2
0 ∈ L2(Ω) and denote by y1, y2 given weak solutions

of (1.1) orresponding to y10, y
2
0 respetively. Then, subtrat two opies of identity (1.6) orre-

sponding to y10 and y20, respetively, and test the resulting identity by φ = 1[0,t](y
1 − y2), for a

given t ∈ [0, T ]. This gives:

∫ t

0

〈
y1
′
− y2

′
, y1 − y2

〉
ds + D

∫ t

0

∥∥∇
(
y1 − y2

)∥∥2
2
ds =

∫ t

0

(
f(y1)− f(y2), y1 − y2

)
L2(Ω)

dt

In the above, use identity (1.10), reall the Lipshitz ontinuity of f with onstant L and neglet

the gradient term (whih is nonnegative):

1

2

∥∥y1( . , t) − y2( . , t)
∥∥2
2

≤ L

∫ t

0

∥∥y1(t)− y2(t)
∥∥2
2
dt+

1

2

∥∥y10 − y20
∥∥2
2

Now, the Grönwall inequality yields

∥∥y1 − y2
∥∥
2,∞

≤ C13

∥∥y10 − y20
∥∥
2
, for ertain C13 = C13(T,L).

Thus, for y10 = y20 in L2(Ω) we have y1(t) = y2(t) in L2(Ω) for a.e. t ∈ [0, T ], what onludes the
proof of the uniqueness. �

Lemma 1.1.6 Let T , J , K and βj for j = 1, . . . , J be as in the assumption (A-2). Then, the

following statements are true:

1. Let Vj ∈ L2(0, T ) for j = 1, . . . , J . Then, the weak solution of (1.5) exists and is unique.
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2. Moreover, if κ = (κ1, . . . , κJ ) ∈ Xκ
is the weak solution of (1.5) orresponding to a given

(V1, . . . ,VJ) ∈ (L∞(0, T ))J , then

∥∥κ
∥∥
Xκ ≤ C3

( J∑

j=1

∣∣κj0
∣∣ +

J∑

j=1

∥∥Vj

∥∥
L2(0,T )

)
(1.18)

where C3 = C3(β1, . . . , βJ , T ).

3. Moreover, assume that Ṽ
n ∈

(
L2(0, T )

)J
for n ∈ N and that κ̃n ∈ Xκ

are the weak

solutions of (1.5) orresponding to Ṽ
n
, by putting Vj := Ṽ

n
j in (1.5). In addition, assume

that Ṽ
n ⇀ Ṽ in

(
L2(0, T )

)J
for ertain Ṽ ∈

(
L2(0, T )

)J
and that κ̃n ⇀ κ̃ in Xκ

for

ertain κ̃ ∈ Xκ
. Then, κ̃ is the weak solution of (1.5) orresponding to Ṽ, by putting

Vj := Ṽj in (1.5).

Proof. For the existene and uniqueness of solutions, �rst observe that the above intro-

dued notion of the weak solution of (1.5) is atually a Carathéodory solution. The Carathéodory

solution of (1.5) is an absolutely ontinuous funtion from [0, T ] to RJ
satisfying the ODE in

(1.5) a.e. on [0, T ] and satisfying the initial ondition in (1.5). The Carathéodory solutions, also

for ordinary di�erential equations more general than (1.5), were investigated e.g. in handbooks

[14℄ or [22℄.

Let us brie�y justify the above observation. An arbitrary weak solution κ of (1.5) belongs to

Xκ
and hene is Hölder ontinuous by the Sobolev embedding theorem (see [1, Th. 4.12℄). In

partiular, κ is absolutely ontinuous. Moreover, it satis�es the identity βjκ
′
j + κj −Vj = 0 a.e.

on [0, T ] for j = 1, . . . , J , beause by the de�nition of the weak solution of (1.5), βjκ
′
j+κj−Vj is

the zero element of L2(0, T ). Hene, κ being a weak solution of (1.5) is a Carathéodory solution

of (1.5) as well.

Conversely, let κ be a Carathéodory solution of (1.5). Sine it ful�lls βjκ
′
j + κj −Vj = 0 a.e.

on [0, T ] for j = 1, . . . , J , it ful�lls also the integral identity in (1.5). Moreover, as a ontinuous

funtion on a losed interval, κj is square integrable, for j = 1, . . . , J . κ′j also is square integrable

beause κ′j = β−1j (−κj +Vj) and κj , Vj are square integrable. Hene, κ ∈ Xκ
. In total, κ

ours to be a weak solution of (1.5) as well.

Thus the question on existene and uniqueness of weak solutions of (1.5) an be replaed by

the question on existene and uniqueness of the Carathéodory solutions of (1.5). The existene

of Carathéodory solutions an be onluded by Theorem 1.1 in Chapter 2 in [14℄ or by Theorem

1 in Chapter 1 in [22℄, onerning the existene of Carathéodory solutions for ODEs more general

than ours (the formulation of Theorem 1.1, Chap. 2 in [14℄ does not speify preisely the interval

of existene, but analysis of the proof of this theorem indiates that in our ase the existene

on [0, T ] an be obtained; the formulation of Theorem 1, Chap. 1 in [22℄ is more preise and

does not ause this kind problems). The uniqueness of Carathéodory solutions of (1.5) follows

by Theorem 2 in Chapter 1 in [22℄.

Alternatively, instead of referring to the general theory presented in [14℄ and [22℄, one an

prove the demanded existene and uniqueness assertion as follows. Simply note that the funtion

κ is a Carathéodory solution of (1.5) if and only if

κj(t) = exp
(
−

1

βj
t
)
κj0 +

1

βj

∫ t

0
exp

(
−

1

βj
(t− s)

)
Vj(s) ds for j = 1, . . . , J
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Sine the integral in the right hand side of the latter identity is well de�ned for a given Vj ∈
L2(0, T ), the Carathéodory solution of (1.5) exists and is unique.

Now, let κ = (κ1, . . . , κJ ) ∈ Xκ
be the weak solution of (1.5) orresponding to (V1, . . . ,VJ ) ∈

(L∞(0, T ))J . By testing the weak form (1.7) of the equation (1.5) by ξ = κj1[0,t] we have

βj

∫ t

0
κj
′κj ds +

∫ t

0

∣∣κj
∣∣2 =

∫ t

0
Vjκj ds (1.19)

for t ∈ [0, T ], for j = 1, . . . , J . By integrability of κj
′
, we have the absolute ontinuity of κj .

Thus, by the integration by parts, the relation

∫ t
0 κ
′
jκj = 1

2

∣∣κj(t)
∣∣2− 1

2

∣∣κj(0)
∣∣2
is valid. Applying

the latter in (1.19), negleting the

∣∣κj
∣∣2

term (whih is nonnegative) and applying the Young

inequality yields:

∣∣κj(t)
∣∣2 ≤

∣∣κj0
∣∣2 + β−1j

∥∥Vj

∥∥2
L2(0,T )

+ β−1j

∫ t

0

∣∣κj(s)
∣∣2 ds

By applying the integral Grönwall inequality to the above:

∥∥κj
∥∥2
L∞(0,T )

≤ C30,j

(∣∣κj0
∣∣2 +

∥∥Vj

∥∥2
L2(0,T )

)
(1.20)

for j = 1, . . . , J , where C30,j = C30,j(βj , T ).
Next, the weak form (1.7) implies that

βjκj
′ + κj = Vj in L2(0, T )

for j = 1, . . . , J and therefore

∥∥κ′j
∥∥
L2(0,T )

≤ β−1j

∥∥κj
∥∥
L2(0,T )

+ β−1j

∥∥Vj

∥∥
L2(0,T )

(1.21)

Inequalities (1.20) and (1.21) together imply the estimate (1.18).

Proving the remaining part of the assertions of the present lemma is straightforward. Let

Ṽ
n
, Ṽ, κ̃n and κ̃ be as in the assumptions of the lemma. Then

βj
(
κ̃nj

)′
+ κ̃nj − Ṽ

n
j ⇀ βj κ̃

′
j + κ̃j − Ṽj in L2(0, T )

for j = 1, . . . , J . The above onvergene su�es to pass to the limit in the weak form (1.7) of

the equation (1.5) and infer the desired assertion. �

Remark. It an be veri�ed that the proof of Lemma 1.1.6, after minor modi�ations, would

be valid also for βj < 0. N

The following two lemmas also will be required in the proof of Theorem 1.1.2:

Lemma 1.1.7 Let W̃ : R → 2R be a bounded upper semiontinuous multivalued mapping (see

de�nitions in Appendix A.5) with nonempty and losed values. Let ṽ ∈ C([0, T ]). Then W̃ ◦ ṽ
has a measurable seletion, i.e. there exists at least one funtion Ṽ : [0, T ] → R whih is

measurable and Ṽ(t) ∈ W̃ ◦ ṽ(t) for a.e. t ∈ [0, T ].

Proof. The proof of Lemma 1.1.7 is analogous to that of [26, Lemma 3.4℄, but we inlude

it here for ompleteness of the presented ontent.

By Corollary 1.1 on p. 237 in [20℄, if
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1. the image of W̃ ◦ ṽ is ontained in some ompat K ⊂ R,

2. G(W̃ ◦ ṽ) is a Borel set of R×K and

3. W̃ ◦ ṽ has losed and nonempty values a.e. on [0, T ]

then W̃ ◦ ṽ has a measurable seletion, as demanded in the assertion of the present lemma.

A ompat K as above exists by the assumption on boundedness of W̃.

Next, W̃ ◦ ṽ has losed and nonempty values beause the same applies to W̃.

Moreover, W̃ ◦ ṽ is upper semiontinuous in sense of multivalued funtions beause W̃ and ṽ

are so (see Prop. 6, Se. 1, Chap. 3 in [4℄). An upper semiontinuous multivalued mapping with

losed values has losed graph (see Prop. 7, Se. 1, Chap. 3 in [4℄), hene G(W̃ ◦ ṽ) is losed.

Hene, G(W̃ ◦ ṽ) is Borel as well.
This onludes the proof. �

Lemma 1.1.8 Let W̃ : R → 2R be a bounded upper semiontinuous multivalued mapping with

nonempty, losed and onvex values. Assume that ṽn → ṽ in C([0, T ]), Ṽn
∗
⇀ Ṽ in L∞(0, T )

and that Ṽn(t) ∈ W̃ ◦ ṽn(t) for a.e. t ∈ [0, T ], for n ∈ N. Then Ṽ(t) ∈ W̃ ◦ ṽ(t) for a.e.

t ∈ [0, T ].

Lemma 1.1.8 an be viewed as a partiular ase of Lemma 3.6 in [26℄. N

1.1.2 The proof of the existene theorem (Theorem 1.1.2)

In this setion, we prove Theorem 1.1.2 with the use of auxiliary fats from Setion 1.1.1. The

proof will base on the following �xed-point theorem for multivalued mappings:

Theorem 1.1.9 (generalized Kakutani theorem) Let X be a real Banah spae and let

M ⊂ X be its onvex, ompat and nonempty subset. Let T : M → 2M be a multivalued mapping

having the following properties:

a) the values T (x) are nonempty and onvex for all x ∈ M ,

b) G(T ) is losed in X ×X.

Then T has a �xed point in M , i.e. there exists x̄ ∈ M suh that x̄ ∈ T (x̄).

For the proof of Theorem 1.1.9, see [9, Th. 4℄ or [27℄. The proof in [27℄ overs the more general

ase of onvex Hausdor� linear topologial spaes. Alternatively, Theorem 1.1.9 an be viewed

as a diret onsequene of Corollary 9, Chap. 3, Se. 1 in [4℄ and Theorem 13, Chap. 6, Se. 4

in [4℄, for the general ase of Hausdor� loally onvex spaes.

Remark. The formulation of Theorem 4 in [9℄ laks the assumption that the sets T (x) are
onvex but the proof presented there shows that this assumption is neessary and perhaps was

aidentally missed in the theorem statement. N

Proof of Theorem 1.1.2. De�ne the following operators:

• P1 :
(
L2(0, T )

)J
→ C([0, T ];L2(Ω)) is assigns the solution of (1.4) to a given (k1, . . . , kJ) ∈(

L2(0, T )
)J
.
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• P2 : C([0, T ];L2(Ω)) → (C([0, T ]))K assigns (v1, . . . ,vK) ∈ (C([0, T ]))K determined by the

formula

vk(t) =

∫

Ω
hk(x) (Y (x, t) − y∗(x, t)) dx on [0, T ], for k = 1, . . . ,K (1.22)

to a given Y ∈ C([0, T ];L2(Ω)).

• P3 : (C([0, T ]))K → 2(L
∞(0,T ))J

is a multivalued mapping assigning to a given (v1, . . . ,vK) ∈
(C([0, T ]))K the set (W1, . . . ,WJ ) ⊆ (L∞(0, T ))J determined by the following ondition:

for j = 1, . . . , J , Vj ∈ Wj if and only if

Vj(t) ∈
K∑

k=1

αj,k (wk ◦ vk(t)) a.e. on [0, T ] (1.23)

• P4 : (L∞(0, T ))J →
(
L2(0, T )

)J
assigns the solution of (1.5) to a given (V1, . . . ,VJ ) ∈

(L∞(0, T ))J .

• P := P4 ◦ P3 ◦ P2 ◦ P1 :
(
L2(0, T )

)J
→

(
L2(0, T )

)J
.

The meaning of the above operators in the ontext of the system (1.1) - (1.3), involving the

thermostat ontrol mehanism, is explained in Figure 1.1.

Signals Wj(y, y
∗)

Measurement data∫

Ω
hk(y − y∗) dx)

Control devies response

(funtions κj)
Proess state

(funtion y)

✛

✲✲

✛

P1

P3

P4 P2

Figure 1.1: A shemati representation of the role of the operators P1, P2, P3 and P4, onsidered

in the proof of Theorem 1.1.2, in the ontext of the thermostat ontrol mehanism, present in

the system (1.1) - (1.3). The notation in the piture is as in the subjet system.

The existene of a weak solutions of (1.1) - (1.3) is equivalent to the existene of a �xed point

of P , i.e. of k̄ ∈
(
L2(0, T )

)J
with k̄ ∈ P (k̄). Indeed, by the de�nition of the operator P4, suh

k̄ belongs to the spae Xκ
(de�ned in Setion 1.1.1), and P1(k̄) belongs to the spae Xy

(also

de�ned there), hene the element

(
P1(k̄), k̄1, . . . , k̄J

)
belongs to X2

. Moreover, by de�nitions of

operators P1, P2, P3 and P4, the latter element ful�lls De�nition 1.1.1 with y = P1(k̄), κj = k̄j

for j = 1, . . . , J and with (W1, . . . ,WJ ) ∈
(
L2(0, T )

)J
given by Wj = βj k̄

′
j + k̄j =

(
P4
−1(k̄)

)
j
.

Now, we shall verify that the assumptions of Theorem 1.1.9 are satis�ed for the operator P
restrited to a suitable subset (whih we will indiate in the sequel). This will justify that P has

a �xed point and allow us to onlude the proof.

Nonempty values. By Lemma 1.1.5, P1 is well de�ned. By the assumption (A-6) and by

the struture of (1.22), P2 is well de�ned. By Lemma 1.1.6, P4 is well de�ned. Moreover, P3 has

nonempty values, beause, by Lemma 1.1.7, eah of multivalued mappings vk 7→ wk ◦ vk, k =
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1, . . . ,K, entering the de�nition of P3, has nonempty values. More preisely, by the ontinuity

of vk and properties of wk, Lemma 1.1.7 yields the existene of a measurable seletion for the

multivalued mapping s 7→ wk ◦vk(s). By the boundedness of wk, this measurable seletion must

be bounded and hene must be an element of L∞(0, T ). Thus, the set wk ◦ vk ⊂ L∞(0, T ) is
nonempty for a given vk ∈ C([0, T ]).

Therefore, the superposition P4 ◦ P3 ◦ P2 ◦ P1 has nonempty values.

Convex values. By point (a) in the assumption (A-4), the values of P3 are onvex. Indeed,

for a given t ∈ [0, T ] , wk(t) := wk ◦ vk(t) is a onvex set and hene the olletion W̃k of all

w̃k ∈ L∞(0, T ) suh that w̃k(t) ∈ wk(t) a.e. on [0, T ] is onvex. Next, Wj =
∑J

j=1 αj,kW̃k, i.e.

Wj is a linear ombination of onvex sets, and as suh is onvex. It follows straight that the

produt over j = 1, . . . , J of Wj is onvex in (L∞(0, T ))J . Thus the onvexity of values of P3 is

justi�ed.

Next, the operator P4 is a�ne thus it maps onvex sets to onvex sets, i.e. P4 ◦ P3(v) is

onvex for an arbitrary v ∈ (C([0, T ]))K . But the latter means that P4 ◦P3 ◦P2 ◦P1(k) is onvex

for an arbitrary k ∈
(
L2(0, T )

)J
.

Convex and ompat image. Theorem 1.1.9, to hold, requires a multivalued mapping to

at from a ompat, onvex and nonempty set into itself. Now we shall determine a set that is

suitable for Theorem 1.1.9 in our ase. De�ne auxiliary sets A and B as follows:

A :=

{
(V1, . . . ,VJ ) ∈ (L∞(0, T ))J :

∥∥Vj

∥∥
L∞(0,T )

≤ CWj
∀j=1,...,J

}

where CWj
:=

∑K
k=1 αj,kCwk

, for j = 1 . . . , J and for Cwk
being the onstants from point () in

the assumption (A-4),

B :=

{
k ∈

(
L2(0, T )

)J
:
∥∥k

∥∥
Xκ ≤ C3

J∑

j=1

(∣∣κj0
∣∣+ TCWj

)
∀j=1,...,J

}

where κj0 are the initial onditions assumed for (1.2) in the assumption (A-5) and C3 is the

onstant appearing in the estimate (1.18) in Lemma 1.1.6.

It follows from the de�nition of P3 and from point () in the assumption (A-4) that P3(v) ⊆ A
for an arbitrary v ∈ (C([0, T ]))K . Next, the estimate (1.18) in Lemma 1.1.6 allows to infer that

P4 maps the set A into the set B. Hene, P4◦P3 ◦P2◦P1(k) ⊆ B for an arbitrary k ∈
(
L2(0, T )

)J
.

Denote by B the losure of B in

(
L2(0, T )

)J
. B is nonempty and onvex, and hene the same

holds for its losure. By the Rellih-Kondrahov Theorem (see [1, Th. 6.3℄), B is preompat

in

(
L2(0, T )

)J
. Moreover, P (k) ∈ B for k ∈

(
L2(0, T )

)J
. Thus in total, B is nonempty, onvex

and ompat and P |B : B → 2B.

Closed graph. Now, we will verify that G(P |B) is losed in

(
L2(0, T )

)J
×

(
L2(0, T )

)J
.

Sine we are in a metri spae, it is su�ient to hek that G(P |B) is sequentially losed. Thus

let kn, ξn ∈ B, ξn ∈ P (kn) for n ∈ N and assume that kn → k and ξn → ξ in

(
L2(0, T )

)J
, for

ertain k, ξ ∈
(
L2(0, T )

)J
. Sine B is losed, k, ξ ∈ B. We are left to show that ξ ∈ P |B(k) =

P4 ◦ P3 ◦ P2 ◦ P1(k).

For n ∈ N, there exist Vn ∈ (L∞(0, T ))J suh that ξn = P4(V
n) and V

n = P3 ◦ P2 ◦ P1(k).
Sine V

n
are in the image of P3, V

n
are bounded w.r.t. n in (L∞(0, T ))J . Hene, a weakly-

∗ onvergent subsequene V
n ∗
⇀ V an be extrated, for some V ∈ (L∞(0, T ))J (for brevity

of notation, we denote this subsequene with the original indexes). It remains to verify that

ξ = P4(V) and V ∈ P3 ◦ P2 ◦ P1(k).
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Weak-∗ onvergene of V
n
to V in (L∞(0, T ))J implies weak onvergene in

(
L2(0, T )

)J
,

therefore, by Lemma 1.1.6, ξ = P4(V). To onlude the inlusion V ∈ P3 ◦ P2 ◦ P1(k), note
that P1 and P2 are ontinuous. The ontinuity of P1 follows by Lemma 1.1.5. The ontinuity

of P2 follows from the Hölder inequality. Having this and denoting v
n := P2 ◦ P1(k

n) and

v := P2 ◦ P1(k), we infer that onvergene kn → k in

(
L2(0, T )

)J
implies onvergene v

n → v

in (C([0, T ]))K . By de�nition of V
n
and v

n
, we have V

n ∈ P3(v
n). To obtain the inlusion

V ∈ P3 ◦ P2 ◦ P1(k), it su�es to show that V ∈ P3(v).
To show the latter, we will use Lemma 1.1.8, proeeding as follows. We have v = (v1, . . . ,vK)

and v
n = (vn

1 , . . . ,v
n
K), where v

n
k → vk in C([0, T ]). Moreover, we have V

n = (Vn
1 , . . . ,V

n
J),

where, by the de�nition of the operator P3, elements V
n
j , for j = 1, . . . , J , an be represented as

V
n
j =

K∑

k=1

V
n
(j,k)

where, for all j = 1, . . . , J and k = 1, . . . ,K,

V
n
(j,k) ∈ αj,k(wk ◦ v

n
k ) in L∞(0, T ) (1.24)

By the assumption that wk are bounded (see the part ) of the assumption (A-4)), V
n
(j,k) are

bounded in L∞(0, T ) w.r.t. n, for all j = 1, . . . , J , k = 1, . . . ,K. Thus, we an extrat weakly-∗

onvergent subsequenes V
n
(j,k)

∗
⇀ Ṽ(j,k), for ertain Ṽ(j,k) ∈ L∞(0, T ). In onsequene, on the

subsequenes we have V
n ∗
⇀ Ṽ, where Ṽ = (Ṽ1, . . . , ṼJ ) and Ṽj =

∑K
k=1 Ṽ(j,k).

Now, by (1.24), by onvergenes v
n
k → vk and V

n
(j,k)

∗
⇀ Ṽ(j,k) and by an appliation of

Lemma 1.1.8 to funtions αj,kwk, we obtain Ṽ(j,k) ∈ αj,k(wk ◦ vk). Thus, by de�nitions of P3

and Ṽ, we an write Ṽ ∈ P3(v). Note also that Ṽ = V, otherwise the onvergene V
n ∗
⇀ Ṽ

would be a ontradition to the onvergene V
n ∗
⇀ V. Therefore, V ∈ P3(v), as required. The

proof of the losedness of G(P |B) is omplete.

Now, apply Theorem 1.1.9 with X =
(
L2(0, T )

)J
, M = B and T = P |B to get the existene

of a �xed point of P |B and hene of P as well. The proof of Theorem 1.1.2 is omplete. �

Remark. By de�nition, in the ase of a single-valued funtion, the upper semiontinuity

in the multivalued sense redues to the usual ontinuity. Thus, any result holding for (1.1) -

(1.3) under the assumption (A-4) from beginning of Setion 1.1, holds in partiular for bounded,

ontinuous single-valued swithing funtions. N

Remark. One an say that Theorem 1.1.2 o�ers a method of indiret handling of the

ase of disontinuous swithing funtions in the thermostat ontrol mehanism. Assume that a

disontinuous single-valued funtion w̃k : R → R is given. In the ase where the swithing funtion

wk in the system (1.1) - (1.3) is de�ned by wk := w̃k, it is not possible to apply Theorem 1.1.2.

However, assuming that right and left limits of w̃k exist in an arbitrary point s ∈ R, it is possible
to take into aount a swithing funtion

˜̃wk assoiated with w̃k by the formula (A.5.5) in the

statement of Proposition A.5.5 in Appendix A.5. The assertion of Proposition A.5.5 together with

the formula (A.5.5) guarantee that

˜̃wk ful�lls the assumption (A-4). In onsequene, Theorem

1.1.2 apply for wk := ˜̃wk in the system (1.1) - (1.3). Thus, Theorem 1.1.2, however does not allow

disontinuous swithing funtions diretly, allows to onsider, instead of a given disontinuous

swithing funtion w̃k, a multivalued swithing funtion

˜̃wk related to w̃k (related � in the sense

of the formula (A.5.5)).
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Note, that the above omment is valid in partiular for w̃k(s) = −sgn(s), whih is a natural

andidate for the swithing funtion in the thermostat ontrol mehanism (see �1 of Introdution).

In this ase,

˜̃wk generated by the formula (A.5.5) is

˜̃wk =





+ 1 for s < 0

[−1,+1] for s = 0

− 1 for s > 0

(1.25)

N

Remark. An alternative approah ould be employed to justify the losedness of the

operator P3 in the proof of Theorem 1.1.2. The subjet approah refers to the theory of maximal

monotone multivalued mappings. However, suh approah would be less general to the one

present in the proof of Theorem 1.1.2. Let us explain this matter in more detail.

In the proof of Theorem 1.1.2, the assumption (A-4) from beginning of Setion 1.1, onerning

swithing funtions wk in the system (1.1) - (1.3), was ruial. It was the property whih

allowed us to onlude that the multivalued operator P3, utilized in the proof, was losed in

suitable topology. More preisely, P3 an be interpreted as P3 =
(
(P3)1, . . . , (P3)j

)
, where

(P3(v))j =
∑K

k=1 αj,k(wk ◦vk), for j = 1, . . . , J (ompare with (1.23)). A given operator (P3)j is
thus a weighted sum of multivalued superposition operators wk ◦vk, indued by the multivalued

mappings wk. In the proof of Theorem 1.1.2, eah of these superposition operators ourred to be

losed in suitable topology due to Lemma 1.1.8, basing strongly on the properties of multivalued

mappings indiated in the assumption (A-4).

However, it is possible to prove the losedness of the superposition operator assoiated with a

given multivalued mapping also with other means, e.g. assuming that the multivalued mapping

is maximal monotone. If this is the ase, then the assoiated superposition operator also is a

maximal monotone mapping, in suitable spaes. At the same time, in ertain funtion spaes,

maximal monotoniity of multivalued mappings su�es to imply their losedness � results of

this kind are given e.g. in Proposition 3, Ch. 6, Se. 7 in [4℄ or Lemma 1.3, Chap. 2, Se. 1.2,

p. 42 in [6℄.

This argument was exploited in [15℄, also investigating a model with a ontrol by thermostats,

to prove losedness of the superposition operator assoiated with a multivalued swithing fun-

tion, denote it w, suh that −w was maximal monotone. In addition to the maximal monotoniity

of the negative of the swithing funtion, boundedness of the swithing funtion was neessary

in [15℄, as in our ase (see the part ) of the assumption (A-4)).

In our situation, after suitable modi�ation of the employed funtion spaes, applying the

subjet method for proving losedness of P3 would be possible for the ase of bounded and

maximal monotone −wk (maximal monotoniity of wk itself also would work but then the ase

of wk as in (1.25) would be exluded, beause the latter, in opposite to its negative, is not

a monotone multivalued mapping). We skip the details beause do not intend to develop this

approah here.

Nevertheless, the method employed in the proof of Theorem 1.1.2, involving the assumption

(A-4), is more general than the method basing on boundedness and maximal monotoniity of

−wk. The reason for this is that the assumption of boundedness and maximal monotoniity is

stronger than the assumption (A-4). Indeed, it is straightforward that there exist wk ful�lling

the assumption (A-4) from beginning of Setion 1.1 but suh that wk, nor −wk, is not maximal

monotone. On the other hand, an arbitrary bounded maximal monotone −wk obeys the assump-

tion (A-4), and so wk does. The latter is true beause a maximal monotone multivalued mapping
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has losed and onvex values (see Proposition A.5.8) and, if it additionally has the image on-

tained in a ompat set, it is upper semiontinuous (Proposition A.5.7) and has nonempty values

(Proposition A.5.9). Thus, from the ondition of boundedness and maximal monotoniity of a

multivalued mapping, one an reover the properties indiated in the assumption (A-4). N

1.2 Single-valued swithing funtion � existene, uniqueness, sta-

bility

The modi�ation of the system (0.1) - (0.3) onsidered in Setion 1.1 allowed to prove an exis-

tene result for the ase where disontinuous swithing funtions are replaed with a multivalued

mappings satisfying su�iently strong assumptions (assumption (A-4)). However, these assump-

tions, being strong enough for the existene, still are not su�ient for obtaining the uniqueness

result.

This was the ase e.g. in works [33℄, [15℄ or [19℄. These works, similarly to Setion 1.1 of

the present work, onern models with the variant of the thermostat ontrol mehanism without

hysteresis in the work of the swithing mehanism and with multivalued swithing funtions

(work [19℄ onern only this variant, works [33℄ and [15℄ onern also variants where the work of

the swithing mehanism involves hysteresis). Works [33℄ and [19℄ take into aount the ase of

multivalued swithing funtions ful�lling assumptions analogous to the assumption (A-4). Work

[15℄ exploited even stronger properties of the there onsidered multivalued swithing funtion,

namely the boundedness and the maximal monotoniity. At the same time, in none of the works

[33℄, [19℄, [15℄ the uniqueness for the models with there onsidered variants of the thermostat

ontrol mehanism was proven.

Hene, in the present setion we aim in strengthening the assumptions onerning the swith-

ing funtions in the system (1.1) - (1.3) in order to be able to prove the uniqueness result. For

this end, we shall assume that the swithing funtions are single-valued Lipshitz ontinuous

funtions.

Note, that the latter assumption implies that the inlusion (1.2) beomes equality again.

Thus, we return to analysis of primary the system (0.1) - (0.3) instead of its modi�ation (1.1)

- (1.3) from Setion 1.1.

Moreover, the assumption of the Lipshitz ontinuity of the swithing funtion exludes the

possibility of taking the swithing funtion wk equal the −sgn funtion. It also exludes the

approah from Setion 1.1, providing a method for indiret handling of the ase of wk = −sgn
by replaing the original wk by an upper semiontinuous multivalued mapping in some sense

related to wk (see Setion 1.1 for details). Nevertheless, a sort of indiret method of handling

the situation of wk = −sgn is available also under the presently onsidered assumption. Namely,

the assumption of the Lipshitz ontinuity of wk allows to approximate the funtion −sgn by

Lipshitz funtions of a very steep slope near point zero.

Example. For instane, for w̃k = −sgn, one an de�ne funtions w̃n
k by w̃n

k (s) :=
−max(min(ns, 1),−1), for s ∈ R, n ∈ N. It follows straight that w̃n

k are Lipshitz ontinu-

ous funtions. Moreover, for all k = 1, . . . ,K, w̃n
k → w̃k, both pointwise and in the Lebesgue

norm

∥∥ .
∥∥
Lp(R), for arbitrary p ∈ [1,∞) (f Figure 1.2). Instead swithing funtions wk := w̃k in

the system (0.1) - (0.3), whih are not Lipshitz ontinuous, one may onsider swithing funtions

wk := w̃n
k , whih are Lipshitz ontinuous and approximate w̃k in the latter sense. N

Thus, in ertain sense, the assumption of Lipshitz ontinuity of the swithing funtions is no
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Figure 1.2: An example of a sequene of Lipshitz ontinuous funtions approximating the fun-

tion −sgn, both pointwise and in the Lp(R)-norm, for p ∈ [1,∞). The lines denoted as appr

orrespond to approximating funtions given by s 7→ −max(min(ns, 1),−1), for n = 1, 2, 4.

waste in omparison to the situation onsidered in Setion 1.1, beause 1) in both ases, diret

treatment of wk = −sgn is not possible, 2) in both ases, an indiret way to deal with wk = −sgn
is available. The above proposed approah for dealing with disontinuous wk was exploited in

the numerial simulations desribed in Chapter 2.

Also, the assumption that the swithing funtions are Lipshitz ontinuous will be su�ient

for proving the stability of the system (0.1) - (0.3) with respet to perturbations of the ontrol.

Results onerning this kind of stability will be ruial in Chapter 3, onerning the mathemat-

ial analysis of the optimal targeting problem. This gives a motivation to onsider the above

announed assumption that the swithing funtions are Lipshitz ontinuous.

We proeed in the following order. Setion 1.2.1 fouses on existene of solutions of the

system (0.1) - (0.3). The existene is shown for the ase of Lipshitz swithing funtions wk

in the system (0.1) - (0.3) being additionally bounded. Setion 1.2.1 ontains two existene

theorems. The �rst of them is just a onsequene of Theorem 1.1.2 in Setion 1.1. The seond

of these theorems generalizes the �rst in sense of weakening the assumptions for the referene

trajetory y∗. It is the main theorem of Setion 1.2.1.

In Setion 1.2.2, existene, uniqueness and stability results are presented and justi�ed, for

Lipshitz wk without the restrition of boundedness. Dismissing the restrition of boundedness

of wk in existene results in Setion 1.2.2 involves slightly stronger assumptions for the referene

trajetory y∗ in (0.1) - (0.3) than in the main theorem in Setion 1.2.1. The uniqueness and

stability results in Setion 1.2.2 are proven for Lipshitz wk. The latter results do not require

the restrition of boundedness and do not require the assumptions for the referene trajetory

to be stronger than in the main theorem in Setion 1.2.1.

In Setion 1.2.3, estimates as well as existene and uniqueness for weak solutions of the

system (0.1) - (0.3) are proven under the assumption that f is loally Lipshitz, ful�lls the

growth ondition f(s)s ≤ 0 for big

∣∣s
∣∣
and that y0 ∈ L∞(Ω). These assumptions are di�erent

that the assumptions utilized in Setion 1.2.2, where f is assumed to be Lipshitz and y0 is

assumed to belong to L2(Ω). The assumptions that f is loally Lipshitz and y0 is bounded

were used in the numerial simulations for the system (0.1) - (0.3) whih are desribed in further

parts of the present work. Thus, Setion 1.2.3 provides theoretial results whih over the data

utilized in the subjet simulations. Moreover, the results of Setion 1.2.3 will be used also in
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some plaes of Chapter 3 of the present work, providing analytial bakground for the optimal

targeting problem.

Setion 1.2.4 onerns a modi�ation of the system (0.1) - (0.3), assuming modi�ed struture

of the equations. We state the results onerning existene, uniqueness and estimates for the

solutions of the modi�ed system. For tehnial reasons, the subjet results for the modi�ed

system will be neessary in Chapter 3. The modi�ation of the system (0.1) - (0.3) onsidered

in Setion 1.2.4 and the original the system (0.1) - (0.3) are similar enough to apply the same

methods for the analysis of the modi�ed system. For this reason, in Setion 1.2.4, we do not

ontain the proofs of the results desribed there, but we only give some remarks onerning the

proofs. The results desribed in Setion 1.2.4 will play an auxiliary role in Chapter 3, onerning

the analytial aspets of the optimal targeting problem.

Remark. As mentioned above, Lipshitz ontinuous swithing funtions in the system (0.1)

- (0.3) an be utilized to approximate disontinuous swithing funtions, as −sgn. We stress that

swithing funtions equal −sgn are not allowed in our results, however, instead, ertain multival-

ued swithing funtions ontaining −sgn were allowed in the results in Setion 1.1, onerning

the modi�ed system (1.1) - (1.3). Assuming notation as in the example given above, results

onerning the onvergene of solutions of (0.1) - (0.3) orresponding to swithing funtions w̃n
k

to a solution of (1.1) - (1.3) orresponding to suitable multivalued swithing funtions ontaining

w̃k would be interesting. This matter was not overed in the present work and an be a �eld for

further researh. N

Let us proeed to the mathematial details. The below assumptions for the system (0.1) -

(0.3) will be neessary in the present setion:

(B-1) Ω ⊂ Rd
is a domain that:

a) is bounded,

b) satis�es the one ondition (de�nition of the one ondition an be found e.g. in [1,

par. 4.6.℄),

(B-2) K, J are given positive natural numbers, T > 0, D > 0 and βj > 0 for all j = 1, . . . , J ,

(B-3) f is globally Lipshitz ontinuous; we denote its Lipshitz onstant by L and put f0 :=
f(0),

(B-4) wk is globally Lipshitz ontinuous, where we denote the Lipshitz onstant of wk by Lk

and put wk0 := wk(0), for all k = 1, . . . ,K,

(B-5) y0 ∈ L2(Ω), κj0 ∈ R for j = 1, . . . , J .

The neessary regularity of the referene trajetory y∗ in (0.1) - (0.3) will di�er in partiular

theorems of this setion. The following two variants of the assumption onerning y∗ will be in
use:

(C-1) y∗ ∈ L2(0, T ;L2(Ω)),

(C-2) y∗ ∈ L∞(0, T ;L2(Ω)),

The following de�nition of solutions for the system (0.1) - (0.3) will be utilized in the present

setion:

De�nition 1.2.1 An element (y, κ1, . . . , κJ ) ∈ X2
is a weak solution of the system (0.1) - (0.3)

if:
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(a) y( . , 0) = y0 in L2(Ω) and κj(0) = κj0 for j = 1, . . . , J ,

(b) for all φ ∈ L2(0, T ;H1(Ω)), there holds

∫ T

0

〈
y′, φ

〉
+D

(
∇y,∇φ

)
L2(Ω)

+
(
−f(y)− κ1g1 − . . . − κJgJ , φ

)
L2(Ω)

dt = 0 (1.26)

() for all ξ ∈ L2(0, T ), for j = 1, . . . , J , there holds

∫ T

0

(
βjκ
′
j + κj −Wj(y, y

∗)
)
ξ dt = 0 (1.27)

The point (a) in De�nition 1.2.1 is meaningful, beause, by arguments similar as in the ase of

De�nition 1.1.1 (see page 6), if (y, κ1, . . . , κJ) ∈ X2
then y ∈ C([0, T ];L2(Ω)) and (κ1, . . . , κJ ) ∈

C([0, T ]).

1.2.1 Existene for bounded swithing funtions

Below, we prove existene of weak solutions for the system (0.1) - (0.3). Nevertheless, we make

an assumption that the swithing funtions wk, for k = 1, . . . ,K, not only ful�ll the assumption

(B-4) but moreover are bounded. If the referene trajetory y∗ ful�lls the assumption (A-6) in

Setion 1.1, then the existene result an be obtained as a onsequene of results of Setion 1.1.

But, with the above restritions for wk, it is possible to prove the existene for y∗ satisfying the

assumption (C-1) only. It will be done below.

The restrition of boundedness of wk is temporary � in Setion 1.2.2, we will show how to

dismiss it in the existene results for prie of strengthening the assumptions for the referene

trajetory y∗ from (C-1) to (C-2).

Let us begin with short justi�ation that the results of Setion 1.1 an be applied here, under

suitable assumptions. Compare De�nition 1.2.1 of weak solutions for the system (0.1) - (0.3) with

De�nition 1.1.1 of weak solutions for the system (1.1) - (1.3), given in Setion 1.1. Assume that

wk in the system (1.1) - (1.3) are single-valued funtions. Then, the only possible hoie of Wj in

De�nition 1.1.1 is Wj(t) := Wj(y( . , t), y
∗( . , t)) for a.e. t ∈ [0, T ]. Consequently, onditions in

points () and (d) in De�nition 1.1.1 redue to the point () in De�nition 1.2.1. Hene, De�nition

1.1.1 is equivalent to De�nition 1.2.1 if wk in the system (1.1) - (1.3) are single-valued funtions.

Hene, under suitable assumptions, results onerning weak solutions of the system (1.1) -

(1.3) an be transmitted to weak solutions of the system (0.1) - (0.3). Thus we onlude the

below:

Theorem 1.2.2 Let assumptions (B-1) - (B-5) be ful�lled and (gj , hk, αjk)
k=1,...,K
j=1,...,J ∈ U , y∗ ∈

C([0, T ];L2(Ω)w). Assume additionally that wk are bounded for k = 1, . . . ,K. Then, there exists

a weak solution of the system (0.1) - (0.3).

This is true, beause under imposed assumptions, swithing funtions wk ful�ll the assumption

(A-4) and the referene trajetory y∗ ful�lls the assumption (A-6). Thus, Theorem 1.1.2 an

be applied. This theorem, together with the above remark on the equivalene of de�nitions of

solutions, yields the assertion.

One an follow the lines of the proof of Theorem 1.1.2 to �nd out that the assumption

y∗ ∈ C([0, T ];L2(Ω)w) was essential there. It was used to ensure that the operator P2 (given

by formula (1.22)) is well de�ned as an operator into (C([0, T ]))K . Enforing the image spae
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of P2 to be (C([0, T ]))K was required beause, in the proof of Theorem 1.1.2, it was neessary

to make the image spae of P2 be not larger than the domain spae of the operator P3, whih

was atually (C([0, T ]))K (see (1.23) for the de�nition of P3 in the subjet proof). Next, it

was needed to take (C([0, T ]))K as the domain spae of P3 beause it allowed to apply Lemma

1.1.7 and Lemma 1.1.8 to P3, what was an essential step of the proof of Theorem 1.1.2 (more

preisely, the subjet lemmas were applied not to P3 diretly, but to ertain operators entering its

de�nition; nevertheless, one an verify that the latter does not hange the onlusion onerning

the requirement on the domain spae of P3). To sum up, assumption y∗ ∈ C([0, T ];L2(Ω)w) was
essential for Theorem 1.1.2 and hene annot be relaxed in Theorem 1.2.2, as long as we derive

the latter as a orollary of the former.

On the other hand, it is not neessary to derive the theorem on the existene of weak so-

lutions of (0.1) - (0.3) as a orollary of Theorem 1.1.2. One an prove it separately and, due

to the strengthened assumption onerning the swithing funtions wk, obtain a result allowing

a weakened assumption for the referene trajetory y∗. The below theorem realizes the latter

postulate:

Theorem 1.2.3 Assume that general assumptions (B-1) - (B-5) together with (C-1) hold and

(gj , hk, αjk)
k=1,...,K
j=1,...,J ∈ U . Assume moreover that funtions wk are bounded for k = 1, . . . ,K.

Then the system (0.1) - (0.3) has a weak solution.

The proof bases on the Shauder �xed theorem, formulated below for onveniene. The

Shauder theorem is less general that the generalized Kakutani theorem (Theorem 1.1.9), utilized

for the proof of Theorem 1.1.2, but su�ient for the proof of Theorem 1.2.3.

Theorem 1.2.4 (Shauder theorem) Let X be a Banah spae. Let M be a onvex, ompat

and nonempty subset of X. Let T : M → M be ontinuous. Then T has a �xed point, i.e. there

exists x̄ ∈ M suh that x̄ = T (x̄).

The above version of the Shauder �xed point theorem is given in Corollary 2.13 in Chap. 2.6

in [50℄.

Proof of Theorem 1.2.3. We de�ne following operators:

• P1 :
(
L2(0, T )

)J
→ C([0, T ];L2(Ω)) is the operator assigning the solution of (1.4) to a

given (k1, . . . , kj) ∈
(
L2(0, T )

)J
. It is well de�ned sine, by Lemma 1.1.5, for (k1, . . . , kj)

as delared, the solution of (1.4) exists in Xy
, is unique and Xy →֒ C([0, T ];L2(Ω)) (by

[51, Prop. 23.23℄).

• P2 : C([0, T ];L2(Ω)) →
(
L2(0, T )

)J
assigns (V1, . . . ,VJ ) given by formula

Vj(t) =

K∑

k=1

αj,kwk

(∫

Ω
hk(x) (Y (x, t)− y∗(x, t)) dx

)
a.e. on [0, T ] (1.28)

to a given Y ∈ C([0, T ];L2(Ω)). We an verify that P2 is well de�ned. More preisely,

Hölder inequality allows to infer that vk de�ned for k = 1, . . . ,K by

vk :=

∫

Ω
hk(x)(Y (x, t)− y∗(x, t)) dx

belong to L2(0, T ), for Y as delared and y∗ as in the assumption (C-1). IfV = P2(Y ), then
Vj =

∑K
k=1 αj,kwk ◦vk. Hene, Vj are measurable as sums of superpositions of ontinuous

wk with measurable vk. In addition, Vj are also bounded beause wk are bounded. Thus,

Vj belongs not only to L2(0, T ) but even to L∞(0, T ) , for j = 1, . . . , J .
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• P3 :
(
L2(0, T )

)J
→

(
L2(0, T )

)J
assigns the solution of (1.5) for a given (V1, . . . ,VJ ) ∈(

L2(0, T )
)J
. It is well de�ned sine, by Lemma 1.1.6, for (V1, . . . ,VJ ) as delared, the

solution of (1.5) exists in Xκ
and is unique, and Xκ →֒

(
L2(0, T )

)J
.

The role of the above operators in the ontext of the system (0.1) - (0.3) is illustrated in Figure

1.3.

Signals Wj(y, y
∗)

Control devies response

(funtions κj)
Proess state

(funtion y)
✲✲

✛

P1

P3 P2

Figure 1.3: A shemati representation of the role of the operators P1, P2 and P3, onsidered in

the proof of Theorem 1.2.3, in the ontext of the thermostat ontrol mehanism, present in the

system (0.1) - (0.3). The notation in the piture is as in the subjet system. Comparing to the

proof of Theorem 1.1.2, the state-to-measurement and measurement-to-signal operators onsid-

ered there (see Figure 1.1) are �merged� in the present proof into the state-to-signal operator.

The latter simpli�ation is made beause in the present situation the neessary properties of the

state-to-signal operator are easy enough to obtain �in one turn�, without splitting the subjet

mapping into two separate operator.

Proving that P := P3 ◦ P2 ◦ P1 has a �xed point in L2(0, T ) is equivalent to proving the

assertion of the theorem. In other words, we need to prove that there exists k̄ ∈ L2(0, T ) suh
that k̄ = P3(V), V = P2(Y ), Y = P1(k̄).

By Lemma 1.1.5, the operator P1 is ontinuous.

By the assumption that wk are Lipshitz ontinuous for k = 1, . . . ,K, we also verify the

ontinuity of P2. Let V
1 = P2(Y

1) and V
2 = P2(Y

2) for given Y 1, Y 2 ∈ C([0, T ];L2(Ω)). Then:

∥∥V1
j −V

2
j

∥∥
L2(0,T )

≤ T 1/2
∥∥V1

j −V
2
j

∥∥
L∞(0,T )

≤ T 1/2
ess supt∈[0,T ]

K∑

k=1

αj,kLk

∣∣∣
∫

Ω
hk(x)(Y

1(x, t)− Y 2(x, t)) dx
∣∣∣

≤ T 1/2

( K∑

k=1

αj,kLk

∥∥hk
∥∥
2

)∥∥Y 1 − Y 2
∥∥
2,∞

for j = 1, . . . , J , where Lk are the Lipshitz onstants of wk, as in the assumption (B-4).

Moreover, by the linear struture of (1.5), the operator P3 is a�ne. By the estimate (1.18)

in Lemma 1.1.6, the operator P3 is also bounded. Therefore, as a bounded a�ne operator, P3 is

ontinuous from

(
L2(0, T )

)J
to Xκ

. Sine Xκ
an be embedded ontinuously into

(
L2(0, T )

)J
,

P3 is also ontinuous with values in

(
L2(0, T )

)J
.

Summing up the above onsiderations, P3 ◦ P2 ◦ P1 is ontinuous from

(
L2(0, T )

)J
to itself.

Next, reall the assumption that wk are bounded. We denote Cwk
:=

∥∥wk

∥∥
L∞(R) for k =
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1, . . . ,K. It is straightforward, that P2 : C([0, T ];L2(Ω)) → A for

A :=

{
(V1, . . . ,VJ) ∈

(
L2(0, T )

)J
:
∥∥Vj

∥∥
L2(0,T )

≤ T
∥∥Vj

∥∥
L∞(0,T )

≤ TCWj
∀j=1,...,J

}

where CWj
:=

∑K
k=1 αj,kCwk

, for j = 1 . . . , J . By estimate (1.18) in Lemma 1.1.6, we also get

that P3|A : A → B for

B :=

{
k ∈

(
L2(0, T )

)J
:
∥∥k

∥∥
Xκ ≤ C3

J∑

j=1

(∣∣κj0
∣∣+ TCWj

)
∀j=1,...,J

}

where κj0 are the initial onditions assumed for (1.2) in the assumption (A-5) and C3 is the

onstant appearing in the estimate (1.18) in Lemma 1.1.6. Thus superposition P3 ◦P2 ◦P1 takes

values in B as well.

The set B is nonempty and onvex. The losure of B in

(
L2(0, T )

)J
, denote it B, is in

addition ompat (by Rellih-Kondrahov theorem, see [1, Th. 6.3℄).

To sum up, we have shown that P = P3 ◦ P2 ◦ P1 :
(
L2(0, T )

)J
→ B, where B is nonempty,

onvex and ompat in

(
L2(0, T )

)J
and P is ontinuous from

(
L2(0, T )

)J
to itself, and thus from

B to itself. Hene, P has a �xed point in B by the Shauder theorem (Theorem 1.2.4). �

Remark. The only step in the proof of Theorem 1.2.3 where the ondition βj > 0, being a

part of the assumption (B-2), was used was the appliation of Lemma 1.1.6, whih also assumes

βj > 0. However, it is possible to prove a version of Lemma 1.1.6 allowing βj < 0 (what was

pointed out in the remark on page 11). Hene, a version of Theorem 1.2.3 allowing βj < 0 also

would be valid.

An analogous remark hold for Theorem 1.1.2, and hene for Theorem 1.2.2, being a orollary

of the former result, as well. N

The result given in Theorem 1.2.3 detahes us from the requirement of the weak ontinuity of

the referene trajetory, present in Theorem 1.2.2. This an be essential in ertain situations. For

example, it seems natural to allow the user of the thermostat ontrol mehanism to hange the

referene state that he would like to keep. Thus, there an be some swithing moment during

the experiment. E.g., for time from 0 up to a given t1 < T , the user may want to keep the

state of the proess lose to some state y∗1 : Ω → R and then, for times grater than t1, he may

deide to hange the state that he want to be lose to from y∗1 to some y∗2 : Ω → R. It would be

inonvenient for the user to fore him to fous on how he should hange his target from y∗1 to y∗2
in order not to break the requirement of the weak ontinuity. In this sense, it would be better

if the thermostat ontrol mehanism allowed the user to just swith the state that he wants to

keep. Here, Theorem 1.2.3 have the advantage over Theorem 1.2.2.

For onrete example of situation of the above kind, onsider two square integrable funtions

y∗1 and y∗2, y
∗
1, y
∗
2 : Ω → R, suh that

∫
Ω y∗1(x) dx 6=

∫
Ω y∗2(x) dx. Let the referene trajetory y∗

in the system (0.1) - (0.3) be given by

y∗(x, t) =

{
y∗1(x) for t ≤ t1

y∗2(x) for t > t1

where t1 ∈ (0, T ) is known. Then, y∗ is an element of L2(0, T ;L2(Ω)) but is not an element

of C([0, T ];L2(Ω)w). To justify the latter, note that, by assumptions on y∗1 and y∗2, integral∫
Ω y∗(x, t)φ(x) dx an be disontinuous in time, what is the ase e.g. for φ ≡ 1 on Ω. Therefore,
for the referene trajetory y∗ as above, it is possible to apply Theorem 1.2.3 but not Theorem

1.2.2.
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1.2.2 Existene, uniqueness and stability for general ase

In Setion 1.2.1, we have proven the existene of weak solutions of (0.1) - (0.3) for the ase of

swithing funtions ful�lling the assumption (B-4), being additionally bounded. Here, we are

going to extend this results and prove not only existene but also uniqueness and stability for

arbitrary swithing funtions ful�lling the assumption (B-4). Nevertheless, the existene results

from Setion 1.2.1 form a base, neessary for some of arguments utilized in the present setion.

The stability of (0.1) - (0.3) will be investigated w.r.t. both the ontrol and the initial

ondition. We will also prove the weak subsequential stability of (0.1) - (0.3) when the ontrol

spae is onsidered with its weak topology.

The prie for obtaining the above mentioned existene results for arbitrary swithing funtions

wk obeying the assumption (B-4) will be a slightly stronger assumption for y∗, in omparison

to Theorem 1.2.3 in Setion 1.2.1. More preisely, the new existene result will require the

assumption (C-2) instead of the assumption (C-1). Fortunately, the strengthened assumption

for y∗ is still weaker than that indiated in Theorem 1.2.2 in Setion 1.2.2.

The above announed existene result will involve some additional estimates for weak solu-

tions of the system (0.1) - (0.3). Moreover, the uniqueness result will rely on the stability of

the system (0.1) - (0.3) with respet to perturbations of the initial ondition. Hene, we start

this setion with proving the neessary estimates and the stability results. Next, we proeed to

existene and uniqueness results. In the �nal part of the present setion, we fous on the results

onerning the weak subsequential stability of (0.1) - (0.3).

Theorem 1.2.5 Let the part a) in the assumption (B-1) and assumptions (B-2) - (B-4) together

with (C-1) be ful�lled, let û ∈ U and (y0, κ10, . . . , κJ0) ∈ X0
. Assume also that

∥∥û
∥∥
U
≤ RU

for

some RU > 0 and that

∥∥(y0, κ10, . . . , κJ0)
∥∥
X0 ≤ R0

for some R0 > 0. Let (y, κ1, . . . , κJ ) ∈ X2

be a weak solution of the system (0.1) - (0.3) orresponding to gj := ûgj , hk := ûhk
, αj,k := ûαj,k

and the initial ondition (y0, κ10, . . . , κJ0). Then the following estimate holds:

∥∥(y, κ1, . . . , κJ )
∥∥
X2 ≤ C

where

C = C(T,
∣∣Ω

∣∣,K, J, L, f0, L1, . . . , LK , w10, . . . , wK0, R
U , R0,

∥∥y∗
∥∥
2,2

,D, β1, . . . , βJ )

and where the appearing quantities are the same as those in the general assumptions referred to

above.

Proof. We test the weak form (1.26) of the equation for y by φ(x, s) := y(x, s)1(0,t)(s), for
ertain t ∈ [0, T ], and obtain:

∫ t

0

〈
y′, y

〉
+D

∥∥∇y
∥∥2
2
ds =

∫ t

0
(f(y), y)L2(Ω) +

J∑

j=1

(κj ûgj , y)L2(Ω) ds (1.29)

Next, we estimate term (f(y), y)L2(Ω) in (1.29) by using

∣∣f(s)
∣∣ ≤

∣∣f0
∣∣ + L

∣∣s
∣∣
(what is true by

the assumption (B-3)), by the Hölder inequality and by the Young inequality and our strutural

assumptions:

∫

Ω
f(y)y dx ≤

∫

Ω
L
∣∣y
∣∣2 dx+ f0

∫

Ω

∣∣y
∣∣ dx ≤ L

∥∥y
∥∥2
2
+ f0

∥∥y
∥∥
2

∥∥1Ω
∥∥
2

≤ L
∥∥y

∥∥2
2
+

f0
2

∥∥y
∥∥2
2
+

f0
2

∥∥1Ω
∥∥2
2

(1.30)
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By the Hölder and Young inequalities and the de�nition of onstant RU
, term (κj ûgj , y)L2(Ω) in

(1.29) an be estimated, for eah j = 1, . . . , J , by:

(κj ûgj , y)L2(Ω) =
∣∣κj

∣∣∥∥ûgj
∥∥
2

∥∥y
∥∥
2

≤
1

2

∥∥y
∥∥2
2
+

1

2

(
RU

)2∣∣κj
∣∣2

(1.31)

Spaes H1(Ω), L2(Ω) and H1(Ω)
∗
form an evolution triple with embeddings H1(Ω) →֒ L2(Ω) →֒

H1(Ω)
∗
, hene the identity

∫ t
0

〈
y′, y

〉
= 1

2

∥∥y( . , t)
∥∥2
2
− 1

2

∥∥y( . , 0)
∥∥2
2
holds (see Prop. 23.23 in [51℄).

By the latter, by the relation y(., 0) = y0 and by (1.29), (1.30) and (1.31), we obtain:

1

2

∥∥y(., t)
∥∥2
2
+ D

∫ t

0

∥∥∇y
∥∥2
2
ds ≤

1

2

∫ t

0
C1

∥∥y
∥∥2
2
+

(
RU

)2 J∑

j=1

∣∣κj
∣∣2 ds +

+
1

2
C2 +

1

2

∥∥y0
∥∥2
2

(1.32)

where

C1 =
(
2L+

∣∣f0
∣∣+ J

)
, C2 = Tf0

∣∣Ω
∣∣

Above, the assumption that Ω is bounded was neessary to ensure that

∥∥1Ω
∥∥
2
is �nite.

At the same time, testing the weak form (1.27) of the equation for κj by ξ(s) := κj(s)1(0,t)(s),

negleting the appearing

∣∣κj
∣∣2
term (whih is nonnegative), expanding the de�nition ofWj (given

in (0.3)) and using the Young inequality yields:

βj

∫ t

0
κ′jκj ds ≤

∫ t

0

K∑

k=1

ûαjk
wk

(∫

Ω
ûhk

(y − y∗) dx
)
κj ds

≤
1

2

∫ t

0

K∑

k=1

û2αjk
wk

(∫

Ω
ûhk

(y − y∗) dx
)2

ds +
1

2

∫ t

0
K
∣∣κj

∣∣2 ds
(1.33)

By the assumption (B-4), the Hölder inequality and the de�nition of RU
, the �rst term appearing

in the sum obeys:

∣∣∣ûαjk
wk

(∫

Ω
ûhk

(y − y∗) dx
)∣∣∣

2
≤

∣∣ûαjk

∣∣2
(∣∣wk0

∣∣+ Lk

∥∥hk
∥∥
2

∥∥y − y∗
∥∥
2

)2

≤
(
RU

)2(∣∣wk0

∣∣+ LkR
U
(∥∥y

∥∥
2
+

∥∥y∗
∥∥
2

))2

≤ 2
(
RU

)2
w2
k0 + 2

(
RU

)4
L2
k

(∥∥y
∥∥
2
+

∥∥y∗
∥∥
2

)2

≤ 2
(
RU

)2
w2
k0 + 4

(
RU

)4
L2
k

∥∥y∗
∥∥2
2
+ 4

(
RU

)4
L2
k

∥∥y
∥∥2
2

From the above, we derive the following:

∫ t

0

K∑

k=1

∣∣∣ûαjk
wk

(∫

Ω
ûhk

(y − y∗) dx
)∣∣∣

2
ds ≤ C3,j

∫ t

0

∥∥y
∥∥2
2
ds + C4,j + C5,j (1.34)
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where

C3,j = 4
(
RU

)4 K∑

k=1

L2
k

C4,j = 4
(
RU

)4 K∑

k=1

L2
k

∥∥y∗
∥∥2
2,2

C5,j = 2T
(
RU

)2 K∑

k=1

w2
k0

As κj
′
is integrable, κj is absolutely ontinuous. Thus, by integration by parts, identity

∫ t
0 κ
′
jκj =

1
2

∣∣κj(t)
∣∣2− 1

2

∣∣κj(0)
∣∣2
holds. Combining the latter with the relation κj(0) = κj0 and with estimates

(1.33) and (1.34) yields, for j = 1, . . . , J :

1

2

∣∣κj(t)
∣∣2 ≤

1

2βj

∫ t

0
C3,j

∥∥y
∥∥2
2
+ K

∣∣κj
∣∣2 ds +

1

2βj

(
C4,j + C5,j

)
+

1

2

∣∣κj0
∣∣2

(1.35)

After summation of (1.32) and (1.35) for every j and negleting the gradient term (whih is

nonnegative), we obtain:

∥∥y(., t)
∥∥2
2
+

J∑

j=1

∣∣κj(t)
∣∣2 ≤

∫ t

0
C6

∥∥y
∥∥2
2
+ C7

J∑

j=1

∣∣κj
∣∣2 ds +

+ C8 +
∥∥y0

∥∥2
2
+

J∑

j=1

∣∣κj0
∣∣2

(1.36)

where

C6 = C1 +

J∑

j=1

β−1j C3,j

C7 =
(
RU

)2
+K

J∑

j=1

β−1j

C8 = C2 +

J∑

j=1

β−1j (C4,j + C5,j)

Now, by the de�nition of R0
, one an verify that

∥∥y0
∥∥2
2
+

J∑

j=1

∣∣κj0
∣∣2 ≤ (J + 1)

∥∥(y0, κ10, . . . , κJ0)
∥∥2
X0 ≤ (J + 1)

(
R0

)2

Using the above in (1.36) and applying the integral Grönwall inequality allows to �nd that

∥∥y
∥∥2
2,∞

+

J∑

j=1

∥∥κj
∥∥2
L∞(0,T )

≤

≤
(
C8 + (J + 1)

(
R0

)2)
·
(
1 + T max{C6, C7}e

T max{C6,C7}
) (1.37)
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The struture of the onstants C6, C7, C8 guarantees that the right hand side of the above depends

only on the quantities stated in the assertion of the theorem.

Still, to omplete the proof we need to estimate norms

∥∥∇y
∥∥
2,2
,

∥∥y′
∥∥
H1(Ω)∗,2

and

∥∥κ′j
∥∥
L2(0,T )

,

sine they enter the de�nition of the norm of the spae X2
. For estimating the gradient term,

we again use the inequality (1.32) with t = T , negleting
∥∥y(., t)

∥∥2
2
term:

D
∥∥∇y

∥∥2
2,2

≤
1

2

∫ T

0
C1

∥∥y
∥∥2
2
+

(
RU

) J∑

j=1

∣∣κj(s)
∣∣2 ds +

1

2
C2 +

1

2

∥∥y0
∥∥2
2

≤
T

2
C1

∥∥y
∥∥2
2,∞

+
T

2

(
RU

) J∑

j=1

∥∥κj
∥∥2
L∞(0,T )

+
1

2
C2 +

1

2

∥∥y0
∥∥2
2

(1.38)

Next, use the relation

∥∥y0
∥∥
2
≤ R0

and apply (1.37) to estimate the right hand side of the above

inequality in terms of C1, C2, C6, C7, C8, T , J , R
U

and R0
, whih depend at most on the

quantities stated in the theorem.

To obtain estimates for the time derivative of y, we treat the weak form (1.26) of (0.1) as an

equality of funtionals on the spae L2(0, T ;H1(Ω)). We rewrite it in the below form:

y′ +DAy − Fy −G = 0 in L2(0, T ;H1(Ω)
∗
) (1.39)

where Ay, Fy and G are de�ned by

∫ T

0

〈
Ay, φ

〉
dt =

∫ T

0

(
∇y,∇φ

)2

L2(Ω)
dt

∫ T

0

〈
Fy, φ

〉
dt =

∫ T

0

(
f(y), φ

)2

L2(Ω)
dt

∫ T

0

〈
G, φ

〉
dt =

∫ T

0

( J∑

j=1

κjgj, φ
)
L2(Ω)

dt

for φ ∈ L2(0, T ;H1(Ω)).
It follows by the de�nition of the above funtionals that

∥∥Ay
∥∥
H1(Ω)∗,2

≤
∥∥∇y

∥∥
2,2

,
∥∥Fy

∥∥
H1(Ω)∗,2

≤
∥∥f(y)

∥∥
2,2

,
∥∥G

∥∥
H1(Ω)∗,2

≤
J∑

j=1

∥∥κjgj
∥∥
2,2

(1.40)

This, along with (1.39), yields:

∥∥y′
∥∥
H1(Ω)∗,2

≤ D
∥∥∇y

∥∥
2,2

+
∥∥f(y)

∥∥
2,2

+

J∑

j=1

∥∥κj ûgj
∥∥
2,2

≤ D
∥∥∇y

∥∥
2,2

+
∥∥∣∣f0

∣∣+ L
∣∣y
∣∣∥∥

2,2
+

J∑

j=1

∥∥ûgj
∥∥
2

∥∥κj
∥∥
L2(0,T )

≤ D
∥∥∇y

∥∥
2,2

+ T 1/2L
∥∥y

∥∥
2,∞

+ TRU
J∑

j=1

∥∥κj
∥∥
L∞(0,T )

+ (T
∣∣Ω

∣∣)1/2
∣∣f0

∣∣

(1.41)

where we have used the Lipshitz ontinuity of f , the Hölder inequality and the de�nition of RU
.

Now, (1.37) and (1.38) an be applied to estimate the right hand side of (1.41) in terms of C1,

C2, C6, C7, C8, D,

∣∣Ω
∣∣
, T , L, f0, J , R

U
and R0

.
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Moreover, by (1.27), one an infer that

βjκ
′
j + κj = Wj(y, y

∗) in L2(0, T )

for j = 1, . . . , J . By the above, expanding the de�nition of Wj given in (0.3), we have

β2
j

∥∥κ′j
∥∥2
L2(0,T )

≤ 2
∥∥κ

∥∥2
L2(0,T )

+ 2
∥∥∥

K∑

k=1

ûαjk
wk

(∫

Ω
ûhk

(y − y∗) dx
)∥∥∥

2

L2(0,T )
(1.42)

Dividing (1.42) by β2
j and using (1.34) to estimate the seond term in the right hand side, we

obtain the following:

∥∥κ′j
∥∥2
L2(0,T )

≤ 2β−2j

(∥∥κ
∥∥2
L2(0,T )

+ KC3,j

∥∥y
∥∥2
2,2

+ KC4,j + KC5,j

)

≤ 2β−2j

(
T
∥∥κ

∥∥2
L∞(0,T )

+ KC3,jT
∥∥y

∥∥2
2,∞

+ KC4,j + KC5,j

) (1.43)

Constant K above appears due to moving the square power to the terms under the sum

∑K
k=1,

aording to general inequality

∣∣∑
k ak

∣∣2 ≤ K
∑

k

∣∣ak
∣∣2
. Now, (1.37) an be applied to estimate

terms

∥∥κj
∥∥
L∞(0,T )

and

∥∥y
∥∥
2,∞

. This gives a bound for the right hand side of (1.43)in terms of

βj , C3,j , C4,j , C5,j , C6, C7, C8, T , K, J and R0
, whih depend at most on the quantities stated

in the theorem.

Altogether, (1.37), (1.38), (1.41) and (1.43) guarantee that all the investigated norms an

be estimated in terms of the onstants whih depend at most on the quantities stated in the

assertion of the theorem. �

We now proeed to the stability of the system (0.1) - (0.3). During the leture of the proof

of the below stability theorem, one an note that the proof utilizes the above proven Theorem

1.2.5, onerning the estimates of the weak solutions of the system (0.1) - (0.3).

Theorem 1.2.6 Let the part a) in the assumption (B-1) and assumptions (B-2) - (B-4) together

with (C-1) be ful�lled, let û1, û2 ∈ U and

(y10 , κ
1
10, . . . , κ

1
J0), (y20 , κ

2
10, . . . , κ

2
J0) ∈ X0

Assume also that

∥∥ûi
∥∥
U
≤ RU

for some RU > 0 and that

∥∥(yi0, κi10, . . . , κiJ0)
∥∥
X0 ≤ R0

for some

R0 > 0, for i = 1, 2. Let (yi, κi1, . . . , κ
i
J ) ∈ X2

be a weak solution of the system (0.1) - (0.3)

orresponding to gj := ûigj , hk := ûihk
, αj,k := ûiαj,k

and the initial ondition (yi0, κ
i
10, . . . , κ

i
J0),

for i = 1, 2. Denote y = y1 − y2, κj = κ1j − κ2j , û = û1 − û2, y0 = y10 − y20 and κj0 = κ1j0 − κ2j0.
Then:

∥∥(y, κ1, . . . , κJ )
∥∥
X2 ≤ C

(∥∥û
∥∥2
U
+

∥∥(y0, κ10 . . . , κJ0)
∥∥2
X0

)1/2

where

C = C(T,
∣∣Ω

∣∣,K, J, L, f0, L1, . . . , LK , w10, . . . , wK0, R
U , R0,

∥∥y∗
∥∥
2,2

,D, β1, . . . , βJ )

and where the appearing quantities are the same as those in the general assumptions referred to

above.
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Proof. For i = 1, 2, the funtion yi satis�es the identity (1.26) with κj := κij and gj := gij ,

for j = 1, . . . , J . For i = 1, 2 and for j = 1, . . . , J , the funtion κij satis�es the identity (1.27),

with y = yi and with Wj := W i
j , where

W i
j (y( . , t), y

∗( . , t)) :=

K∑

k=1

αi
jkwk

(∫

Ω
hik(x)

(
y(x, t)− y∗(x, t)dx

))
for i = 1, 2

Subtrating by sides the identities orresponding to y1 and y2 and subtrating by sides the

identities orresponding to κ1j and κ2j , for j = 1, . . . , J , we obtain:

∫ T

0

〈
y′, φ

〉
+D

(
∇y,∇φ

)
L2(Ω)

ds =

∫ T

0

(
f(y1)− f(y2) , φ

)
L2(Ω)

ds +

+

∫ T

0

( J∑

j=1

κ1jg
1
j −

J∑

j=1

κ2jg
2
j , φ

)
L2(Ω)

ds

(1.44)

for all φ ∈ L2(0, T ;H1(Ω)) and

∫ T

0

(
βjκ
′
j + κj

)
ξ dt =

∫ T

0

(
W 1

j (y
1, y∗)−W 2

j (y
2, y∗)

)
ξ dt (1.45)

for all ξ ∈ L2(0, T ), for j = 1, . . . , J .
Now, we proeed as in the proof of Theorem 1.2.5. The present proof is very similar however

requires longer alulations, whih involves multiple use of the triangle inequality.

Testing the identity (1.44) by φ(x, s) := y(x, s)1(0,t)(s) yields:

∫ t

0

〈
y′, y

〉
+D

∥∥∇y
∥∥2
2
ds =

∫ t

0
(f(y1)− f(y2), y1 − y2)L2(Ω) +

+
J∑

j=1

(û1gjκ
1
j − û2gjκ

2
j , y

1 − y2)L2(Ω) ds

(1.46)

By the Lipshitz ontinuity of f we have:

(f(y1)− f(y2), y1 − y2)L2(Ω) ≤ L
∥∥y1 − y2

∥∥
2

(1.47)

while for the seond term on the right hand side of (1.46) we an write

(û1gjκ
1
j − û2gjκ

2
j , y

1 − y2)L2(Ω) = (û1gjκ
1
j − û2gjκ

1
j , y)L2(Ω) + (û2gjκ

1
j − û2gjκ

2
j , y)L2(Ω)

≤
∣∣κ1j

∣∣∥∥ûgj
∥∥
2

∥∥y
∥∥
2
+

∣∣κj
∣∣∥∥û2gj

∥∥
2

∥∥y
∥∥
2

≤
1

2

∣∣κ1j
∣∣2∥∥ûgj

∥∥2
2
+

1

2

∥∥y
∥∥2
2
+

1

2

∥∥û2gj
∥∥2
2

∣∣κj
∣∣2 +

1

2

∥∥y
∥∥2
2

≤
1

2
C1

∥∥ûgj
∥∥2
2
+

1

2
(RU )

2∣∣κj
∣∣2 +

∥∥y
∥∥2
2

(1.48)

where C1 denotes the onstant from the assertion of Theorem 1.2.5 � it states that the square

of the supremum of eah κj is bounded by this onstant. Note, that the imposed assumptions

over the assumptions of Theorem 1.2.5, hene the latter an be applied.
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Now, the relation

∫ t
0

〈
y′, y

〉
= 1

2

∥∥y( . , t)
∥∥2
2
− 1

2

∥∥y( . , 0)
∥∥2

2
(see the omments preeding (1.32)

in the proof of Theorem 1.2.5) and relations y( . , 0) = y0, (1.46), (1.47), (1.48) together imply

1

2

∥∥y( . , t)
∥∥2
2
−

1

2

∥∥y0
∥∥2
2
+ D

∥∥∇y
∥∥2
2
ds ≤

≤

∫ t

0
(L+ J)

∥∥y
∥∥2
2
+

1

2
(RU )2

J∑

j=1

∣∣κj
∣∣2 ds +

1

2
TC1

J∑

j=1

∥∥ûgj
∥∥2
2

(1.49)

A similar proedure an be performed for the equation for κj � for j = 1, . . . , J , we test the

identity (1.45) by ξ(s) := κj(s)1(0,t)(s), neglet the
∣∣κj

∣∣2
term (being nonnegative) and expand

the de�nition of W 1
j and W 2

j what gives:

βj

∫ t

0
κ′jκj ds ≤

≤

∫ t

0

K∑

k=1

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣
∣∣κj

∣∣ ds

≤

∫ t

0

K

2

∣∣κj
∣∣2 + 1

2

K∑

k=1

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
ds

(1.50)

where the seond inequality follows by the Young inequality. The right hand side term ontaining

wk is the term requiring the most alulations in the present proof. The subjet term ful�lls the

below inequality:

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
≤

≤ 3
∣∣∣û1αjk

wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û1αjk

wk

(∫

Ω
û1hk

(y2 − y∗) dx
)∣∣∣

2
+

+ 3
∣∣∣û1αjk

wk

(∫

Ω
û1hk

(y2 − y∗) dx
)
− û1αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
+

+ 3
∣∣∣û1αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2

(1.51)

We estimate separately the three terms appearing in the right hand side of (1.51). In the �rst

term, by the Lipshitz ontinuity of wk we get:

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û1αjk

wk

(∫

Ω
û1hk

(y2 − y∗) dx
)∣∣∣

2
≤

≤ L2
k

∣∣û1αjk

∣∣2 ∥∥û1hk

∥∥2
2

∥∥y1 − y2
∥∥2
2

≤ L2
k

(
RU

)4 ∥∥y1 − y2
∥∥2
2

(1.52)

The seond term in the right hand side of (1.51) is estimated as follows:

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y2 − y∗) dx
)
− û1αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
≤

≤ L2
k

∣∣û1αjk

∣∣2 ∥∥y2 − y∗
∥∥2
2

∥∥û1hk
− û2hk

∥∥2
2

≤ L2
k

(
RU

)2 (
C1 +

∥∥y∗
∥∥
2

)2 ∥∥û1hk
− û2hk

∥∥2
2

≤ 2L2
k

(
RU

)2 (
C2
1 +

∥∥y∗
∥∥2
2

) ∥∥û1hk
− û2hk

∥∥2
2

(1.53)
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beause

∥∥y2( . , t)
∥∥
2
≤ C1 for t ∈ [0, T ]. The latter is true sine

∥∥y2
∥∥
2,∞

≤ C1 (by Theorem

1.2.5) and y2 ∈ C([0, T ];X) (see the omments after De�nition 1.2.1). The third term in the

right hand side of (1.51) obeys:

∣∣∣û1αjk
wk

(∫

Ω
û2hk

(y2 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
≤

≤
∣∣û1αjk

− û2αjk

∣∣2
∣∣∣wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2

≤
∣∣û1αjk

− û2αjk

∣∣2
(
wk0 + Lk

∥∥û2hk

∥∥
2

∥∥y2 − y∗
∥∥
2

)2

≤
∣∣û1αjk

− û2αjk

∣∣2
(
wk0 + LkR

U
(
C1 +

∥∥y∗
∥∥
2

))2

≤
∣∣û1αjk

− û2αjk

∣∣2
(
2w2

k0 + 4L2
k

(
RU

)2 (
C2
1 +

∥∥y∗
∥∥2
2

))

(1.54)

where we have again used the fat that

∥∥y2( . , t)
∥∥
2
≤ C1 for t ∈ [0, T ]. In total, by inequalities

(1.51), (1.52), (1.53) and (1.54) we infer that:

∫ t

0

K∑

k=1

∣∣∣û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∣∣∣

2
ds ≤

≤ C2,j

∫ t

0

∥∥y
∥∥2
2
ds + C3,j

K∑

k=1

∥∥ûhk

∥∥2
2
+ C4,j

K∑

k=1

∣∣ûαjk

∣∣2
(1.55)

where, for j = 1, . . . , J ,

C2,j = 3
K∑

k=1

L2
k

(
RU

)4

C3,j = 3 max
k=1,...,K

{
2L2

k

(
RU

)2(
TC2

1 +
∥∥y∗

∥∥2
2,2

)}

C4,j = 3 max
k=1,...,K

{
2Tw2

k0 + 4L2
k

(
RU

)2(
TC2

1 +
∥∥y∗

∥∥2
2,2

)}

From the relation

∫ t
0 κ
′
jκj = 1

2

∣∣κj(t)
∣∣2 − 1

2

∣∣κj(0)
∣∣2

(see the omments preeding (1.35) in

the proof of Theorem 1.2.5) and from relations κj(0) = κj0, (1.50), (1.55) we infer that, for

j = 1, . . . , J :

1

2

∣∣κj(t)
∣∣2 − 1

2

∣∣κj0
∣∣2 ≤

K

2βj

∫ t

0

∣∣κj
∣∣2 ds +

1

2βj
C2,j

∫ t

0

∥∥y
∥∥2
2
ds +

+
1

2βj
C3,j

K∑

k=1

∥∥ûhk

∥∥2
2
+

1

2βj
C4,j

K∑

k=1

∣∣ûαjk

∣∣2
(1.56)

We sum (1.49) and (1.56) for every j = 1, . . . , J and neglet the gradient term, whih is
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nonnegative. As the result, we get:

∥∥y( . , t)
∥∥2
2
+

J∑

j=1

∣∣κj(t)
∣∣2 ≤

∥∥y0
∥∥2
2
+

J∑

j=1

∣∣κj0
∣∣2 +

+ C5

∫ t

0

∥∥y
∥∥2
2
ds + C6

J∑

j=1

∫ t

0

∣∣κj
∣∣2 ds +

+ TC1

J∑

j=1

∥∥ûgj
∥∥2
2
+ C7

K∑

k=1

∥∥ûhk

∥∥2
2
+ C8

J∑

j=1

K∑

k=1

∣∣ûαjk

∣∣2

(1.57)

where

C5 = 2L+ 2J +

J∑

j=1

β−1j C2,j C7 =

J∑

j=1

β−1j C3,j

C6 =
(
RU

)2
+max

j
{Kβ−1j } C8 = max

j=1,...,J
β−1j C4,j

By the integral Grönwall inequality we infer from (1.57) that

∥∥y
∥∥2
2,∞

+
J∑

j=1

∥∥κj
∥∥2
L∞(0,T )

≤
(
1 + T max{C5, C6}e

T max{C5,C6}
)
·

·
(∥∥y0

∥∥2
2
+

J∑

j=1

∣∣κj0
∣∣2 + max{TC1, C7, C8}

∥∥û
∥∥2
U

) (1.58)

where onstants C1, C5, C6, C7, C8 depend only on the quantities stated in the assertion of the

theorem.

To lose the proof, it su�es to show that

∥∥∇y
∥∥
2,2

+
∥∥y′

∥∥
H1(Ω)∗,2

+
∥∥κ′j

∥∥
L2(0,T )

≤

≤ C9

(∥∥y
∥∥
2,∞

+

J∑

j=1

∥∥κj
∥∥
L∞(0,T )

+
∥∥y0

∥∥2
2
+

J∑

j=1

∣∣κj0
∣∣2 +

∥∥û
∥∥2
U

)
(1.59)

for ertain positive C9 depending only on the quantities stated in the assertion of the theorem.

If (1.59) holds, then (1.58) an be applied to omplete our reasoning. The neessary estimates

for partiular norms in the left hand side of (1.59) an be obtained with methods similar as in

the proof of Theorem 1.2.5, but, for ompleteness, we derive the subjet estimates.

We start with term

∥∥∇y
∥∥
2,2
. By (1.49), negleting

∥∥y( . , t)
∥∥
2
term (whih is nonnegative),

setting t = T and taking into aount

∑J
j=1

∥∥ûgj
∥∥2
2
≤

∥∥û
∥∥2
U
, we derive

D
∥∥∇y

∥∥2
2,2

ds ≤ T (L+ J)
∥∥y

∥∥2
2,∞

+
1

2
T (RU )2

J∑

j=1

∥∥κj
∥∥2
L∞(0,T )

+

+
1

2

∥∥y0
∥∥2
2
+

1

2
TC1

∥∥û
∥∥2
U

(1.60)

To estimate term

∥∥y′
∥∥
H1(Ω)∗,2

, we treat (1.44) as an equality in L2(0, T ;H1(Ω)
∗
), whih an

be rewritten as:

(y1 − y2)′ +DA(y1 − y2)−
(
Fy1 − Fy2

)
−K = 0 in L2(0, T ;H1(Ω)

∗
) (1.61)
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where we de�ne A and F as in (1.15) while K is de�ned by

∫ T

0

〈
K, φ

〉
dt =

∫ T

0

( J∑

j=1

û1gjκ
1
j − û2gjk

2
j , φ

)
L2(Ω)

dt for φ ∈ L2(0, T ;H1(Ω))

The below follow straight from the de�nition of K and basi inequalities:

∥∥K
∥∥
H1(Ω)∗,2

≤
∥∥∥

J∑

j=1

û1gjκ
1
j − û2gjκ

2
j

∥∥∥
2,2

≤
∥∥∥

J∑

j=1

û1gj
(
κ1j − κ2j

)∥∥∥
2,2

+
∥∥∥

J∑

j=1

(
û1gj − û2gj

)
κ2j

∥∥∥
2,2

≤
J∑

j=1

∥∥û1gj
∥∥
2

∥∥κj
∥∥
L2(0,T )

+

J∑

j=1

∥∥ûgj
∥∥
2

∥∥κ2j
∥∥
L2(0,T )

≤ RU
J∑

j=1

∥∥κj
∥∥
L2(0,T )

+ T 1/2C1

J∑

j=1

∥∥ûgj
∥∥
2

where we have used Theorem 1.2.5 to estimate

∥∥κ2j
∥∥
L∞(0,T )

≤ C1, for j = 1, . . . , J and for C1

as above in the present proof. From the above estimate for K, from the estimates for A and F

given in (1.16) and from (1.61), we derive the following:

∥∥y′
∥∥
H1(Ω)∗,2

≤
∥∥∇y

∥∥
2,2

+
∥∥f(y1)− f(y2)

∥∥
2,2

+RU
J∑

j=1

∥∥κj
∥∥
L2(0,T )

+ T 1/2C1

J∑

j=1

∥∥ûgj
∥∥
2

≤
∥∥∇y

∥∥
2,2

+ T 1/2L
∥∥y

∥∥
2,∞

+ T 1/2RU
J∑

j=1

∥∥κj
∥∥
L∞(0,T )

+ T 1/2C1J
1/2

∥∥û
∥∥
2

(1.62)

where we have used the Lipshitz ontinuity of f with onstant L and inequality

(∑
j

∥∥ûgj
∥∥
2

)2
≤

J
∑

j

∥∥ûgj
∥∥2
2
≤ J

∥∥û
∥∥2
U
.

To estimate

∥∥κ′j
∥∥
L2(0,T )

, we proeed as follows. From (1.45) we onlude that

βjκj
′ + κj = W 1

j (y
1, y∗)−W 2

j (y
2, y∗) in L2(0, T )

for j = 1, . . . , J . By the above, expanding the de�nition of W 1
j and W 2

j , one obtain:

βj
∥∥κ′j

∥∥2
L2(0,T )

≤ 2
∥∥κj

∥∥2
L2(0,T )

+

+ 2
∥∥∥

K∑

k=1

û1αjk
wk

(∫

Ω
û1hk

(y1 − y∗) dx
)
− û2αjk

wk

(∫

Ω
û2hk

(y2 − y∗) dx
)∥∥∥

2

L2(0,T )

(1.63)

The seond term in the right hand side of (1.63) an be estimated with the use of (1.55), what

yields:

βj
∥∥κ′j

∥∥2
L2(0,T )

≤ 2T
∥∥κj

∥∥2
L∞(0,T )

+

+ 2K
(
TC2,j

∥∥y
∥∥2
2,∞

+ C3,j

K∑

k=1

∥∥ûhk

∥∥2
2
+ C4,j

K∑

k=1

∣∣ûαjk

∣∣2
)

≤ 2T
∥∥κj

∥∥2
L∞(0,T )

+ 2KTC2,j

∥∥y
∥∥2
2,∞

+ 2Kmax{C3,j , C4,j}
∥∥û

∥∥2
U

(1.64)
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Above, onstant K appears as a result of moving the square to the terms under the sum sign∑K
k=1, as in general inequality

∣∣∑
k ak

∣∣2 ≤ K
∑

k

∣∣ak
∣∣2
.

Altogether, by (1.60), (1.62) and (1.64), the estimate (1.59) holds with onstant C9 depending

only on the quantities appearing in (1.60), (1.62) and (1.64), i.e. on C1, C2,j , C3,j , C4,j , T , D,

βj , K, J , L, RU
. This loses the proof. �

As the next result shows, in onsequene of the existene result provided by Theorem 1.2.3

and the estimates given in Theorem 1.2.5, it is possible to prove the existene of solutions for

unbounded swithing funtions wk in the system (0.1) - (0.3). The latter is the ase not overed

by Theorem 1.2.3. However, note that the below result requires a stronger assumption onerning

the referene trajetory y∗ in the system (0.1) - (0.3), in omparison to Theorem 1.2.3.

Theorem 1.2.7 Assume that assumptions (B-1) - (B-5) and (C-2) hold and (gj , hk, αjk)
k=1,...,K
j=1,...,J ∈

U . Then the system (0.1) - (0.3) has a weak solution.

Proof. Theorem 1.2.3 assumes that wk funtions are bounded, i.e.

∥∥wk

∥∥
L∞(R) < ∞. But

Theorem 1.2.5 gives a bound for solutions of (0.1) - (0.3) that is independent of

∥∥wk

∥∥
L∞(R).

Thus the standard trunation tehnique an be utilized to dismiss the assumption that wk are

bounded.

More preisely, for a given wk as in the assumption (B-4), onsider its trunation wn
k given

by

wn
k (s) :=





wk(−n) for s < −n

wk(s) for s ∈ [−n, n]

wk(n) for s > n

Let (yn, κn1 , . . . , κ
n
J) ∈ X2

denote the weak solution of the system (0.1) - (0.3) with wn
k in plae

of wk. By Theorem 1.2.5,

∥∥yn
∥∥
2,∞

= C1 < ∞ where C1 does not depend on

∥∥wk

∥∥
L∞(R).

Let C2 :=
∥∥y∗

∥∥
2,∞

and hoose ñ >
∥∥hk

∥∥
2
(C1 + C2). The swithing funtion wñ

k in (0.3) an

be replaed by wñ
k with no side e�et to the weak solution (yñ, κñ1 , . . . , κ

ñ
J). Indeed, for the above

hoie of ñ we have

vk(t) :=

∫

Ω
hk(y

ñ( . , t) − y∗( . , t)) dx ≤

≤
∥∥hk

∥∥
2
(C1 + C2) < ñ

for a.e. t ∈ [0, T ] (1.65)

where we have used the Hölder inequality. Therefore

wk(vk(t)) = wñ
k (vk(t)) for a.e. t ∈ [0, T ] (1.66)

Thus, from the above and from the de�nition of the weak solution we onlude what follows �

for ñ as indiated, an arbitrary weak solution of (0.1) - (0.3) with swithing funtions wñ
k is also

a weak solution of (0.1) - (0.3) with swithing funtions wk. Now, Theorem 1.2.3 an be applied

to obtain existene of the weak solution for (0.1) - (0.3) with swithing funtions wñ
k . Hene the

assertion follows. �

Remark. In the above proof the assumption that y∗ ∈ L∞(0, T ;L2(Ω)) was essential to
obtain the estimate (1.65) for a.e. t ∈ [0, T ]. The assumption y∗ ∈ L2(0, T ;L2(Ω)), imposed

in Theorem 1.2.3, would not allow to obtain this estimate a.e. on [0, T ] and hene the identity

(1.66) ould fail on some subset of [0, T ] of positive measure. This would make impossible to
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identify the weak solutions of the system (0.1) - (0.3) with an unbounded swithing funtion wk

and the weak solutions of (0.1) - (0.3) with the swithing funtion wñ
k de�ned as in the above

proof. Hene, the �nal argument of the proof would be not valid.

Thus, omparing Theorem 1.2.3 with Theorem 1.2.7, we have traded the unboundedness of∥∥y∗( . , t)
∥∥
2
for unboundedness of wk. N

The below orollaries are straightforward due to existene Theorems 1.2.3, 1.2.7 and stability

Theorem 1.2.6.

Corollary 1.2.8 Let assumptions (B-1) - (B-5) and (C-1) be satis�ed and (gj , hk, αjk)
k=1,...,K
j=1,...,J ∈

U . Assume moreover that funtions wk entering the system (0.1) - (0.3) are bounded. Then the

system (0.1) - (0.3) has a unique weak solution.

Corollary 1.2.9 Let assumptions (B-1) - (B-5) and (C-2) be ful�lled and (gj , hk, αjk)
k=1,...,K
j=1,...,J ∈

U . Then the system (0.1) - (0.3) has a unique weak solution.

This loses the part onerning the uniqueness and existene of the weak solutions of (0.1) -

(0.3). However, Theorem 1.2.5 and Theorem 1.2.6 are neessary not only for the uniqueness

and existene results in Corollaries 1.2.8 and 1.2.9. The stability result in Theorem 1.2.6 will be

ruial in Chapter 3, onerning theoretial aspets of the optimal targeting problem, announed

in �2 of Introdution.

But there are also other properties onerning the behavior of the system (0.1) - (0.3) under

the perturbations of the ontrol whih we would like to present. Assume that there is a sequene

of ontrols ûn ∈ U given and one have only the knowledge on the weak onvergene of these

ontrols. This does not allow to utilize the former theorems of the present setion to infer about

anything more than boundedness of (yn, κn1 , . . . , κ
n
J ) in X2

, where (yn, κn1 , . . . , κ
n
J) denotes the

solution of (0.1) - (0.3) orresponding to ûn. Here, the following result may be useful:

Theorem 1.2.10 Let assumptions (B-1) - (B-5) and (C-1) be ful�lled. Let the sequene ûn

onverge weakly to û in U . Denote by (yn, κn1 , . . . , κ
n
J ) the weak solution of (0.1) - (0.3) orre-

sponding to ûn and by (ỹ, κ̃1, . . . , κ̃J) the weak solution of (0.1) - (0.3) orresponding to û. Then
there exists a sequene of natural indexes n1 < n2 < . . . suh that subsequene (ynk , κnk

1 , . . . , κnk

J )
onverges weakly-∗ to (ỹ, κ̃1, . . . , κ̃J ) in X2

when k → ∞.

Proof. Let ûn ⇀ û in U , as in the assumptions. A weakly onvergent sequene is

bounded, thus by Theorem 1.2.5 (yn, κn1 , . . . , κ
n
J) is bounded in X2

. This allows us to extrat

a weakly-∗ onvergent subsequene (for simpliity, we relabel it and keep the original indexes):

(yn, κn1 , . . . , κ
n
J )
∗
⇀ (ȳ, κ̄1, . . . , κ̄J ) in X2

for ertain (ȳ, κ̄1, . . . , κ̄J) ∈ X2
. In partiular:

yn
∗
⇀ ȳ in L∞(0, T ;L2(Ω))

yn′ ⇀ ȳ′ in L2(0, T ;H1(Ω)
∗
)

∇yn ⇀ ∇ȳ in

(
L2(QT )

)d

κnj
∗
⇀ κ̄j in L∞(0, T )

κnj
′ ⇀ κ̄′j in L2(0, T )

(1.67)

It su�es to show that (ȳ, κ̄1, . . . , κ̄J ) = (ỹ, κ̃1, . . . , κ̃J). For this reason we need to prove that

we an pass with n to in�nity in all terms appearing in the weak formulation given in De�nition
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1.2.1 The passage in linear terms follows straight due to (1.67). We are left to deal with the

terms ∫ T

0
(κnj û

n
gj , φ)L2(Ω) dt,

∫ T

0
(f(yn), φ)L2(Ω) dt,

∫ T

0
Wj(y

n, y∗) ξ dt

for φ ∈ L2(0, T ;H1(Ω)), ξ ∈ L2(0, T ).

Let us begin with the term orresponding to κnj û
n
gj . By the assumption and by (1.67),

ûgj ⇀ û in L2(Ω) and κnj ⇀ κ̄j in L2(0, T ). But this means that for an arbitrary φΩ ∈ C(Ω̄)

and φT ∈ C([0, T ]) we have

∫ T

0
(κnj û

n
gj , φ

ΩφT )L2(Ω) dt =

=

∫ T

0
κnj φ

T dt

∫

Ω
ûngjφ

Ω dx −→

∫ T

0
κ̄jφ

T dt

∫

Ω
ûgjφ

Ω dx =

=

∫ T

0
(κ̄j ûgj , φ

ΩφT )L2(Ω) dt

To onlude that the weak onvergene of κnj û
n
gj to κ̄j ûgj in L2(QT ) holds it su�es to justify

that κnj û
n
gj is bounded in L2(QT ) and the set of funtions φ of form φ(x, t) = φΩ(x)φT (t), where

φΩ
and φT

are as above, is linearly dense in L2(QT ). The former is straightforward by the weak

onvergene properties of κnj and ûngj . Conerning the latter, by the Stone-Weierstrass theorem

(see [49, Chap. 0.2, p.9℄), the set of all possible φ is dense in C(Q̄T ) and the latter set is linearly

dense in L2(QT ). Altogether, the following an be stated:

κnj û
n
gj ⇀ κ̄j ûgj in L2(QT ) (1.68)

Guaranteeing the onvergene of the remaining two terms will involve the knowledge on the

strong onvergene of yn in L2(QT ). But this an be onluded by the Aubin-Lions lemma (see

[43, Chap III.1. Prop. 1.3℄ for the probably most ommon formulation of the lemma or [44, Se.

8 Cor. 4℄ for a more general statement). More preisely, spaes H1(Ω), L2(Ω) and H1(Ω)
∗
form

an evolution triple with ontinuous embeddings H1(Ω) →֒ L2(Ω) →֒ H1(Ω)
∗
(see [51, Chap.

23.4℄), where the �rst embedding is in addition ompat, by the Rellih-Kondrahov theorem

(see [1, par. 4.6.℄). Moreover, the bounds for yn and yn′ in (1.67) hold. Thus the onditions

of the Aubin-Lions lemma are ful�lled and it an be applied to onlude that there exists a

subsequene suh that

yn → ȳ in L2(QT ) (1.69)

The limit in (1.69) is exatly ȳ sine otherwise it would be a ontradition to (1.67). This is

the point where the assumption (B-1) was neessary sine the above referred Rellih-Kondrahov

theorem version requires that Ω is bounded and satis�es the one ondition.

By the Lipshitz ontinuity of f and (1.69) the onvergene

f(yn) → f(ȳ) in L2(QT ) (1.70)

is a straightforward onlusion.

We are left to investigate the onvergene of the term orresponding to Wj(y
n, y∗). Note that

by the de�nition (see (0.3)), Wj has an impliit dependene on ûnhk
and ûnαjk

. Thus in the present

ontext we should interpret Wj as Wj(û
n
hk
, ûnαjk

, yn, y∗). By (0.3) and the Lipshitz ontinuity of

wk we an write, using the triangle inequality:
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∫ T

0

∣∣Wj

(
ûnhk

, ûnαjk
, yn(t), y∗(t)

)
−Wj

(
ûhk

, ûαjk
, ȳ(t), y∗(t)

)∣∣2 dt ≤

≤ 2

K∑

k=1

Lk

{ ∣∣ûnαjk

∣∣2∥∥ûnhk

∥∥2
2

∫ T

0

∥∥yn − ȳ
∥∥2
2
dt +

+
∣∣ûnαjk

∣∣2
∫ T

0

∣∣∣
∫

Ω
(ûnhk

− ûhk
)(ȳ − y∗) dx

∣∣∣
2
dt +

+
∣∣ûnαjk

− ûαjk

∣∣2∥∥ûhk

∥∥2
2

∫ T

0

∥∥ȳ − y∗
∥∥2
2
dt

}

(1.71)

Let us onsider eah of the three terms appearing in the right hand side of the above.

The �rst term in the right hand side of (1.71) onverges to zero sine the sequene of ontrols

ûn is bounded and (1.69) holds.

The third term in the right hand side of (1.71) is onvergent to zero sine by ûn ⇀ û in U
we have ûnαjk

→ ûαjk
.

To treat the seond term, onsider a funtion

Fn(t) =

∫

Ω
(ûnhk

− ûhk
)(ȳ(t)− y∗(t)) dx

As the sequene of numbers

∣∣ûnαj,k

∣∣2
in the onsidered term is bounded, it is enough to show the

onvergene of Fn
to zero in L2(0, T ). We have ȳ(t), y∗(t) ∈ L2(Ω) a.e. on [0, T ]. Thus, by the

weak onvergene ûnhk
⇀ ûhk

in L2(Ω) for every k = 1, . . . ,K we infer that Fn(t) onverges to
zero a.e. on [0, T ], as n → ∞. Moreover, a.e. on [0, T ]

∣∣Fn(t)
∣∣ ≤

∥∥ûnhk
− ûhk

∥∥
2

∥∥ȳ(t)− y∗(t)
∥∥
2

≤ CU

∥∥ȳ(t)− y∗(t)
∥∥
2

where CU = supn
∥∥ûn

∥∥
U

is �nite and the term

∥∥ȳ(t) − y∗(t)
∥∥
2
is square integrable due to

ȳ, y∗ ∈ L2(QT ). These observations onerning Fn(t) allow us to apply the Lebesgue domi-

nated onvergene theorem (see [41, Chap. 1℄ or [21, App. E.3, Th. 5℄) and get the onvergene

Fn → 0 in L2(0, T )

Altogether, we onlude that the right hand side of (1.71) onverges to zero thus:

Wj(û
n
hk
, ûnαjk

, yn, y∗) → Wj(ûhk
, ûαjk

, ȳ, y∗) in L2(0, T )
(1.72)

To sum up, the onvergene results (1.67), (1.68), (1.70), (1.72) allow us to infer that

(ȳ, κ̄1, . . . , κ̄J ) is the weak solution of the system (0.1) - (0.3) in sense of the De�nition 1.2.1,

orresponding to û, i.e. (ȳ, κ̄1, . . . , κ̄J ) = (ỹ, κ̃1, . . . , κ̃J) what onludes the proof. �

Remark. Note that, in the proof of Theorem 1.2.10, we did not require a priori knowl-

edge on validity of theorems onerning existene of weak solutions. We simply assumed that

(yn, κn1 , . . . , κ
n
J ) and (ỹ, κ̃1, . . . , κ̃J ) are weak solutions of the system (0.1) - (0.3). Thus, the

assumptions of Theorem 1.2.10 did not need to over the assumptions of the existene results

provided by Theorem 1.2.3 or Theorem 1.2.7. Analogous remark holds for Theorem 1.2.5 and

Theorem 1.2.6, whih also did not base on the existene results and hene did not require to

over the assumptions of the latter results. N
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Remark. In the ontent of the present setion, the ondition βj > 0, being a part of the

assumption (B-2), was utilized diretly only in the proofs of Theorem 1.2.5 and Theorem 1.2.6,

e.g. to preserve the diretion of inequalities when dividing by βj . In the rest of the statements

of Setion 1.2.2, the ondition βj was neessary only beause they refer to Theorem 1.2.5 and

Theorem 1.2.6 (or to Theorem 1.2.3, but the latter atually ould be proven also for βj < 0, see
the remark on page 23).

However, we expet that, after suitable modi�ations, versions of Theorem 1.2.5 and Theorem

1.2.6 allowing βj < 0 also ould be proven. In onsequene, the rest of the results of Setion 1.2.2

also would be valid for βj < 0.

We also expet that the results presented in Setion 1.2.3 and Setion 1.2.4, whih also assume

βj > 0, would be valid for βj < 0 as well.

The above, if true, have onsequenes also for analytial results in Chapter 3 of the present

work, whih rely on the theorems given here, in Setion 1.2.2, as well as in Setion 1.2.3 and

Setion 1.2.4. Perhaps, all of the analytial results of Chapter 3, as well as the rest of the present

work, would be valid if we allowed βj < 0. However, a areful veri�ations of the proofs would

be neessary to guarantee the above hypotheses. N

1.2.3 Generalizations for loally Lipshitz reative term

In Setion 1.2.3, we fous on the system (0.1) - (0.3) with assumptions onerning nonlinear term

f di�erent than in Setion 1.2.2. More preisely, we assume below that f is loally Lipshitz

ontinuous only. However, to ompensate this loose of strength of assumptions, we assume that

f obeys ertain growth ondition, whih will be preisely formulated below. In addition, we

impose assumptions for the initial ondition omponent y0 that are stronger in omparison to

the assumptions imposed in Setion 1.2.2, namely y0 ∈ L∞(Ω). Also, we put more restritive

assumptions for the integrability of the funtions desribing the ontrol devies ations, denoted

in the system (0.1) - (0.3) by gj , j = 1, . . . , J .

Te reasons of onsidering the system (0.1) - (0.3) with the above mentioned modi�ed as-

sumptions are twofold. First, numerial experiments desribed in further hapters of the present

work involved data with loally Lipshitz f and bounded initial ondition. Hene, our intention

is to give analytial results that over the data utilized in the mentioned experiment. Seond,

the results presented in Setion 1.2.3 will be used also in the hapter onerning mathematial

analysis of the optimal targeting problem.

The results of the present subsetion rely strongly on a theorem for boundedness of the weak

solutions of (1.4). The subjet theorem requires the nonlinear term to satisfy ertain growth

ondition, the initial ondition to be bounded and the free term to be integrable with su�iently

high power. In the result, the assumptions onerning the growth of f , the boundedness of y0
and for the integrability of funtions gj in (0.1) - (0.3) are inherited by most of the results of the

present subsetion.

In Setion 1.2.3, we prove estimates analogous to those given in Theorem 1.2.5, but for

the system (0.1) - (0.3) with the modi�ed assumptions, mentioned above. Next, using the

boundedness of the weak solutions of (1.4) and the derived estimates, we prove that the weak

solutions of the system (0.1) - (0.3) with the modi�ed assumptions also are bounded. Having

the latter boundedness result, we prove the existene and uniqueness result for the system (0.1)

- (0.3) with the modi�ed assumptions. For this end, we base on a trunation argument, reduing

the problem with the modi�ed assumptions to the problem with the assumptions originally

onsidered in the results of Setion 1.2.2.
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Let us proeed to the mathematial details. The above mentioned growth ondition for

f : R → R is as follows.

sf(s) ≤ 0 if

∣∣s
∣∣ > Cf (1.73)

for ertain Cf > 0.
In the sequel, we will need also the following onditions. Reall that d denotes the spae

dimension of domain Ω, entering the system (0.1) - (0.3). The following onditions onstituting

a relation between two numbers s1, s2 ∈ [1,∞] will be utilized in Setion 1.2.3:

1

2s′2
+

d

4s′1
=

d

4
(1.74)





s1 ∈ [1,∞], s2 ∈ [1, 2] for d = 1

s1 ∈ (1,∞], s2 ∈ [1,∞) for d = 2

s1 ∈ [d2 ,∞], s2 ∈ [1,∞] for d ≥ 3

(1.75)

where s′1 and s′2 denote the Hölder onjugate of s1 and s2, respetively. Notation �

1
∞ = 0� is

utilized in the above onditions.

The below theorem onerning the boundedness of the weak solutions of paraboli di�erential

equations will be ruial:

Theorem 1.2.11 Let Ω, T , D, J , f be as in assumptions (B-1), (B-2), (B-3). Let y0 ∈ L∞(Ω).
Let also gj ∈ Ls1(Ω), kj ∈ Ls2(0, T ) for j = 1, . . . , J , where numbers s1 and s2 obey onditions

(1.74) and (1.75). Let C∞, CF be nonnegative numbers suh that

∥∥y0
∥∥
∞

≤ C∞,
∥∥∥

J∑

j=1

gjkj

∥∥∥
s1,s2

≤ CF

Let f ful�ll the ondition (1.73) with a onstant Cf . Assume that y is a weak solution of the

system (1.4), orresponding to the above data. Then y belongs to L∞(QT ) and

∥∥y
∥∥
L∞(QT )

≤ C

where C = C(d,Ω, T,D, s1, s2, C∞, CF , Cf ).

Theorem 1.2.11 an be proved with the same methods as Theorem 7.1 in Chapter III of [37℄.

The ase treated there is in some details di�erent than ours. In the referred theorem it is a priori

assumed that the values of the solution on ∂Ω× (0, T ) are bounded what is an information that

we do not assume to have (instead, we assume to ontrol the values of the derivative of the

solution on ∂Ω × (0, T ), in the diretion normal to ∂Ω). Besides, the referred theorem treats

the ase of a linear paraboli equation while the state equation in (1.4) is semilinear. In spite

of that, we have veri�ed that the methods utilized in the proof of Theorem 7.1 in Chapter 3 of

[37℄ an be applied in our situation. The above listed di�erenes do not hange the main steps

of the proof.

Now, we proeed to the estimates for the weak solutions of the system (0.1) - (0.3). The

following result is a variant of Theorem 1.2.5, assuming a modi�ed assumption for the reative

term f in the system (0.1) - (0.3):

Theorem 1.2.12 In the system (0.1) - (0.3), let the part a) of the assumption (B-1) and as-

sumptions (B-2), (B-4), (C-1) hold. Let f : R → R be a loally Lipshitz ontinuous funtion,

satisfying the ondition (1.73) for a given onstant Cf > 0. Denote f0 := f(0) and let LCf
be
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the Lipshitz onstant of f on interval [−Cf , Cf ]. Let also û ∈ U and (y0, κ10, . . . , κJ0) ∈ X0
.

Assume that RU
and R0

are positive numbers suh that

∥∥û
∥∥
U

≤ RU ,
∥∥(y0, κ10, . . . , κJ0)

∥∥
X0 ≤ R0

Assume that (y, κ1, . . . , κJ) ∈ X2
is a weak solution of the system (0.1) - (0.3) with the above

data and with gj := ûgj , hk := ûhk
, αj,k := ûαj,k

. Then

∥∥y
∥∥
2,∞

+
∥∥∇y

∥∥
2,2

+
J∑

j=1

∥∥κj
∥∥
L∞(0,T )

+
J∑

j=1

∥∥κ′j
∥∥
L2(0,T )

≤ C1 (1.76)

where

C1 = C1(T,
∣∣Ω

∣∣,K, J,D, β1, . . . , βJ , LCf
, f0, L1, . . . , LK , w10, . . . , wK0, R

U , R0,
∥∥y∗

∥∥
2,2

)

where the quantities on whih onstant C1 depends are as in the above assumptions.

If, in addition,

∥∥y
∥∥
L∞(QT )

≤ C0, then

∥∥y′
∥∥
H1(Ω)∗,2

≤ C2 (1.77)

where

C2 = C2(f(C0), C1, T,
∣∣Ω

∣∣,D,RU )

Proof. We start with the proof of the estimate (1.76). The proof is analogous to a part

of the proof of Theorem 1.2.5. The di�erenes are minor. Therefore, we do not present the full

proof but only disuss the subjet di�erenes.

The only di�erene ours in the estimate (1.30). Estimating term (f(y), y)L2(Ω) needs to

be done slightly di�erent in the present situation than in the proof of Theorem 1.2.5. More

preisely, denote

ACf
:=

{
(x, t) ∈ Ω× (0, T ) :

∣∣y(x, t)
∣∣ ≤ Cf

}

Now we use property (1.73), Lipshitz ontinuity of f on [−Cf , Cf ], the Hölder inequality and

the Young inequality to �nd that:

(f(y), y)L2(Ω) =

∫

Ω
f(y)y dx ≤

∫

ACf

f(y)y dx

≤ LCf

∫

ACf

∣∣y
∣∣2 dx + f0

∫

ACf

∣∣y
∣∣ dx

≤ LCf

∥∥y
∥∥2
2
+ f0

∥∥y
∥∥
2

∥∥1Ω
∥∥
2

≤ LCf

∥∥y
∥∥2
2
+

f0
2

∥∥y
∥∥2
2
+

1

2

∥∥1Ω
∥∥2
2

In the proof of Theorem 1.2.5, we insert the above estimate instead of the estimate (1.30).

The further part of the proof, until the estimate (1.38), remains valid, with the side e�et that

onstant L, whenever appears in the subjet part of the proof, should be replaed by LCf
. In

partiular, estimates (1.37) and (1.38) hold (for L replaed by LCf
), what gives the demanded

estimates for

∥∥y
∥∥
2,∞

,

∥∥∇y
∥∥
2,2

and

∥∥κj
∥∥
L∞(0,T )

, for j = 1, . . . , J .

Similarly, one an verify that estimates (1.42) and (1.43) remain valid, assuming that onstant

L is replaed by LCf
. Thus, by the estimate (1.43) (for L replaed by LCf

), we have the estimate

for

∥∥κ′j
∥∥
L2(0,T )

, for j = 1, . . . , J . This gives the estimate (1.76).
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To obtain the estimate (1.77), we annot proeed exatly as in the proof of Theorem 1.2.5.

The reason for this is that in the estimate (1.41), ruial for estimating

∥∥y′
∥∥
H1(Ω)∗,2

, term∥∥f(y)
∥∥
2,2

appears. Under the present assumptions for f , the subjet term an be ill de�ned if y

belongs to L∞(0, T ;L2(Ω)) only. This makes the estimates for

∥∥y′
∥∥
H1(Ω)∗,2

derived in the proof

of Theorem 1.2.5 invalid. To overome the subjet obstale, we use the assumption

∥∥y
∥∥
L∞(QT )

≤

C0.

More preisely, (1.39) and (1.40) in the proof of Theorem 1.2.5 still hold, with the same

arguments as given there. Thus, from (1.39) and (1.40) we infer that:

∥∥y′
∥∥
H1(Ω)∗,2

≤ D
∥∥∇y

∥∥
2,2

+
∥∥f(y)

∥∥
2,2

+

J∑

j=1

∥∥ûgj
∥∥
2

∥∥κj
∥∥
L2(0,T )

By the assumption

∥∥y
∥∥
L∞(QT )

≤ C0, by the Hölder inequality and by the de�nition of onstant

RU
, we an estimate the right hand side of the above and obtain:

∥∥y′
∥∥
H1(Ω)∗,2

≤ D
∥∥∇y

∥∥
2,2

+ f(C0)
(
T
∣∣Ω

∣∣)1/2 + TRU
J∑

j=1

∥∥κj
∥∥
L∞(0,T )

Now, (1.76) an be used to estimate norms

∥∥∇y
∥∥
2,2

and

∥∥κj
∥∥
L∞(0,T )

for j = 1, . . . , J appearing

above by C1. In total, the right hand side of the above an be estimated in terms of f(C0), C1,

D, T ,
∣∣Ω

∣∣
and RU

. Hene (1.77) follows. �

The below theorem requires both Theorem 1.2.11 and Theorem 1.2.12 for the proof. It will

be a ruial tehnial result in our method of proving the uniqueness and existene results given

in the further part of Setion 1.2.3.

Theorem 1.2.13 In the system (0.1) - (0.3), let the part a) of the assumption (B-1) and as-

sumptions (B-2), (B-4), (C-1) hold. Let f : R → R be a loally Lipshitz ontinuous funtion,

satisfying the ondition (1.73) for a given onstant Cf > 0. Denote f0 := f(0) and let LCf
be

the Lipshitz onstant of f on interval [−Cf , Cf ]. Let also û ∈ U and (y0, κ10, . . . , κJ0) ∈ X0
.

Assume that RU
and R0

are positive numbers suh that

∥∥û
∥∥
U

≤ RU ,
∥∥(y0, κ10, . . . , κJ0)

∥∥
X0 ≤ R0

In addition, assume that y0 ∈ L∞(Ω) and that ûgj ∈ Ls1(Ω) for ertain s1 ≥ max{2, d2 }, for
j = 1, . . . , J . Let C∞ and Rg

be nonnegative number suh that

∥∥y0
∥∥
L∞(Ω)

≤ C∞, max
j=1,...,J

∥∥ûgj
∥∥
s1

≤ Cg

Assume that (y, κ1, . . . , κJ) ∈ X2
is a weak solution of the system (0.1) - (0.3) with the above

data and with gj := ûgj , hk := ûhk
, αj,k := ûαj,k

. Then

∥∥y
∥∥
L∞(QT )

≤ C (1.78)

where

C = C(d, T,Ω,K, J,D, β1, . . . , βJ , LCf
, f0, L1, . . . , LK , w10, . . . , wK0,

RU , R0,
∥∥y∗

∥∥
2,2

, C∞, Cf , s1, Cg)

where the quantities on whih C depends are as in the assumptions of the theorem.
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Proof. Let s1 be as in the assumption of the theorem and let s2 ∈ [1,∞]. We will need

to have estimates for norm

∥∥∑J
j=1 ûgjκj

∥∥
s1,s2

. We derive them as follows. By independene of

variables being arguments for ûgj and κj and by the de�nition of Cg:

∥∥∥
∑

j=1

ûgjκj

∥∥∥
s1,s2

≤
J∑

j=1

∥∥ûgj
∥∥
s1

∥∥κj
∥∥
Ls2(0,T )

≤
J∑

j=1

Cg

∥∥κj
∥∥
Ls2 (0,T )

(1.79)

The assumptions onerning the estimate (1.76) in Theorem 1.2.12 are ful�lled. Thus, by the

Hölder inequality and by Theorem 1.2.12, term

∥∥κj
∥∥
Ls2 (0,T )

an be estimated by:

∥∥κj
∥∥
Ls2 (0,T )

≤ C0

∥∥κj
∥∥
L∞(0,T )

≤ C0C1 (1.80)

where C0 = T 1/s2
for s2 < ∞, C0 = 1 for s2 = ∞ and where C1 stands for the onstant from

(1.76). Note that the assumption s1 ≥ 2 is neessary here due to the fat that Theorem 1.2.12

assumes ûgj ∈ L2(Ω), j = 1, . . . , J .
Combining (1.79) and (1.80) together, we have

∥∥∥
J∑

j=1

ûgjκj

∥∥∥
s1,s2

≤ CF (1.81)

where

CF := JCgC0C1

The estimate (1.81) is true for an arbitrary s2 ∈ [1,∞]. In partiular, we an hoose





s2 =
2s1

2s1 − d
for s1 > d/2

s2 = ∞ for s1 = d/2

(1.82)

One an verify that for s1 as in the assumptions of the theorem and for s2 given in (1.82), pair

of numbers s1, s2 obeys onditions (1.74) and (1.75). This is the point of the proof where the

assumption s1 ≥ max{2, d2 } is neessary beause it guarantees that s1 obeys the restritions

given in (1.75).

Let s2 be as in (1.82), so as onditions (1.74) and (1.75) were valid. This, along with (1.81)

and with the assumptions of the present theorem, implies that the assumptions of Theorem

1.2.11 are ful�lled for the system (1.4) with kj := κj and with gj := ûgj , j = 1, . . . , J . Observe
that y is a weak solution of the system (1.4), with the mentioned assignments (see De�nition

1.1.3). Thus, by Theorem 1.2.11 we �nd that

∥∥y
∥∥
L∞(QT )

≤ C3

where C3 is the onstant from the assertion of Theorem 1.2.11. Taking into aount the list

of quantities on whih onstant C3 depends, the onstrution of onstant CF above and the

meaning of C1, the assertion follows. �

Basing on Theorem 1.2.13, we will show the following modi�ations of the existene and

uniqueness results given in Corollary 1.2.8 and Corollary 1.2.9:

Theorem 1.2.14 Let the assumptions of Corollary 1.2.8 be ful�lled, with the following modi�-

ations:
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• we assume that f : R → R is loally Lipshitz ontinuous and obeys (1.73) with onstant

Cf > 0, instead of the ondition for f given in the assumption (B-3),

• we assume that y0 ∈ L∞(Ω), instead of the ondition for y0 given in the assumption (B-5),

• we assume that gj ∈ Ls1(Ω), for s1 ≥ max{2, d2 }, for j = 1, . . . , J , instead of assuming

that gj belongs to L2(Ω) only.

Then, there exists a unique weak solution of the system (0.1) - (0.3).

Theorem 1.2.15 Let the assumptions of Corollary 1.2.9 be ful�lled, with the modi�ations as

in Theorem 1.2.14. Then, there exists a unique weak solution of the system (0.1) - (0.3).

Remark. Note that the ondition gj ∈ L2(Ω) for j = 1, . . . , J allows the assumptions of

Theorem 1.2.14 and Theorem 1.2.15 be ful�lled only for domain dimension d ∈ {1, 2, 3, 4}. One
an verify that for higher dimension of the domain, higher integrability of funtions gj would be

required. N

For oniseness, we present only the proof of Theorem 1.2.14. The proof of Theorem 1.2.15

follows the same lines.

Proof of Theorem 1.2.14. The proof relies on the onept of trunations. For a given

n > 0, we de�ne trunation fn : R → R as follows:

fn(s) :=





f(n) for s > n

f(s) for s ∈ [−n, n]

f(−n) for s < −n

Note that the funtion fn
is Lipshitz ontinuous for an arbitrary n > 0 (by loal Lipshitz

ontinuity of f ) and, for n ≥ Cf , obeys (1.73) with the same onstant Cf as the original funtion

f .
Denote by

(
(0.1) - (0.3)

)n
the modi�ation of the system (0.1) - (0.3) onsisting in putting

fn
instead of f in the main equation of (0.1). The system

(
(0.1) - (0.3)

)n
ertainly is a par-

tiular ase of (0.1) - (0.3), hene all de�nitions and theorems onerning (0.1) - (0.3) apply to(
(0.1) - (0.3)

)n
as well.

In partiular, a weak solution of the system

(
(0.1) - (0.3)

)n
(see De�nition 1.2.1) exists and

is unique, for an arbitrary n > 0 � see Corollary 1.2.8 and reall the Lipshitz ontinuity of fn
.

The assumption that s1 ≥ 2 also is neessary to apply Corollary 1.2.8.

Assume that (yn, κn1 , . . . , κ
n
J ) ∈ X2

is the weak solution of the system

(
(0.1) - (0.3)

)n
for

ertain n > 0. Now, we will justify that yn is bounded on QT by a onstant independent of n,
for n big enough.

Funtions ûgj := gj obey the requirements of Theorem 1.2.13, for s1 as presently assumed. As

mentioned, fn
is Lipshitz and, for n ≥ Cf , f

n
ful�lls (1.73) with onstant Cf independent of n.

By the latter, and under other assumptions of the present theorem, the system

(
(0.1) - (0.3)

)n
obeys the assumptions of Theorem 1.2.13, for n > Cf . Thus, by Theorem 1.2.13, we �nd that

∥∥yn
∥∥
L∞(QT )

≤ C0 for n > Cf (1.83)

where C0 is the onstant from the assertion of Theorem 1.2.13. C0 is independent of n beause

none of the quantities on whih C0 depends (Theorem 1.2.13) is dependent on n (what in par-

tiular onerns onstant Cf , whih is the onstant for the ondition (1.73) for the funtion fn

with n > Cf ).
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Let us hoose number ñ greater than max{C0, Cf}. Taking into aount the estimate (1.83)

and the de�nition of fn
we obtain:

f ñ(yñ) = f(yñ) for a.e. (x, t) ∈ QT

Therefore we onlude that (yñ, κñ1 , . . . , κ
ñ
J ) is also a weak solution of the system (0.1) - (0.3).

Above, we have proven that an arbitrary weak solution of

(
(0.1) - (0.3)

)ñ
is a weak solution

of (0.1) - (0.3). Thus, by existene of weak solutions for

(
(0.1) - (0.3)

)ñ
(Corollary 1.2.8) we

onlude the existene of weak solutions of (0.1) - (0.3). To infer the uniqueness, we need justify

that an arbitrary weak solution of (0.1) - (0.3) is a weak solution of

(
(0.1) - (0.3)

)n
, for ertain

n > 0, and reall the uniqueness result for

(
(0.1) - (0.3)

)n
(Corollary 1.2.8). This will lose the

proof.

But the fat that a weak solution of (0.1) - (0.3) is also a weak solution of

(
(0.1) - (0.3)

)n
, for

ertain n > 0, follows by arguments analogous to the above ones. Assume that (y, κ1, . . . , κJ ) ∈
X2

is a weak solution of (0.1) - (0.3). Under the assumptions of the present theorem, the system

(0.1) - (0.3) obeys the requirements of Theorem 1.2.13. Thus, we an apply Theorem 1.2.13

again to infer that ∥∥y
∥∥
L∞(QT )

≤ C0

where onstant C0 is the same as in (1.83). Having this, by arguments analogous as above, we

see that

f ñ(y) = f(y) for a.e. (x, t) ∈ QT

for ñ greater than C0. Therefore, (y, κ1, . . . , κJ ) is a weak solution of

(
(0.1) - (0.3)

)ñ
. The

uniqueness of the weak solutions for

(
(0.1) - (0.3)

)ñ
follows by Corollary 1.2.8. �

Remark. The proof of Theorem 1.2.15 is exatly the same as the above proof, with the

sole di�erene that every referene to Corollary 1.2.8 appearing in the proof should be replaed

with a referene to Corollary 1.2.9. N

Remark. The estimate (1.77) in Theorem 1.2.12 assumes a priori knowledge that y ∈
L∞(QT ), what an be impratial. Theorem 1.2.13 allows to speify more onrete assumptions

under whih the estimate (1.77) is valid. Namely,

• let the assumptions neessary for the estimate (1.76) in Theorem 1.2.12 hold,

• and in addition, assume that

∥∥y0
∥∥
∞

≤ C∞ and ûgj ∈ Ls1(Ω), for ertain s1 ≥ max{2, d2 },
for j = 1, . . . , J .

Then, the assumptions of Theorem 1.2.13 are ful�lled. Now, Theorem 1.2.13 an be applied

to onlude that y ∈ L∞(QT ). In onsequene of the latter and the fat that we impose the

assumptions required for (1.76), the assumptions neessary for (1.77) in Theorem 1.2.12 hold.

Provided the above reasoning, onstant C0 entering the struture of C2 in the estimate

(1.77) beomes the onstant from the assertion of Theorem 1.2.13 and depends on the quantities

indiated therein. N

1.2.4 Other generalizations

For tehnial reasons, in further parts of the present work it will be neessary to deal also with

systems of struture slightly di�erent than the struture of (0.1) - (0.3). These are the system
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(3.9) - (3.10) (alled linearized system) and the system (3.30) - (3.31) (alled adjoint system),

introdued in Chapter 3. It will be neessary to have existene and uniqueness results for the

mentioned systems, moreover we will need to have estimates for the solutions of the linearized

system. Hene, below we introdue a system of struture su�iently general to let the linearized

system and the adjoint system be partiular ases of the subjet system, and, next, provide

uniqueness and existene results along with the neessary estimates for the subjet system.

The announed system, whih overs the ase of both the linearized system and the adjoint

system, is the following one:





yt(x, t)−D∆y(x, t) = f̃(x, t, y(x, t))+

+
∑J

j=1
Ξj(x, t)κj(t) +

∑J

j=1
g̃j(x)Θj(x, t) on QT

∂y

∂n
= 0 on ∂Ω × (0, T )

y(0, x) = ỹ0(x) for x ∈ Ω

(1.84)





β1κ
′
1(t) + κ1(t) = W̃1

(
y( . , t),Y( . , t)

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J(t) + κJ(t) = W̃J

(
y( . , t),Y( . , t)

)
on [0, T ]

κj(0) = κ̃j0 ∈ R for j = 1, . . . , J

(1.85)

W̃j(y( . , t),Y( . , t)) = Zj(t)

(∫

Ω
h̃j(x)Y(x, t) dx+ w̃j

(∫

Ω
hj(x)y(x, t)dx

))
(1.86)

where unknown are κj : (0, T ) → R for j = 1, . . . , J and y : QT → R. In the system (1.84)

- (1.86), as in previous setions, T > 0 and Ω, being a domain in Rd
, are given, and QT :=

Ω×(0, T ). Moreover, D,β1, . . . , βJ > 0, f̃ : Ω×(0, T )×R → R, w̃j : R → R, Ξj,Θj ,Y : QT → R,
ỹ0, g̃j , h̃j ,hj : Ω → R, Zj : (0, T ) → R and κ̃j0 ∈ R are given, for j = 1, . . . , J .

In the present setion, we provide existene and uniqueness results for the system (1.84) -

(1.86), together with estimates for its solutions. The system (1.84) - (1.86) annot be viewed

as a partiular ase of the system (0.1) - (0.3), thus the results onerning (0.1) - (0.3) are not

transmittable to the system (1.84) - (1.86). Nevertheless, the proofs of the existene, uniqueness

and stability theorems for (1.84) - (1.86), whih will be formulated below, utilize the same

methods as the proofs of the analogous theorems onerning (0.1) - (0.3). For this reason, we do

not present the proofs in the present setion.

The following assumptions will be neessary in this setion:

(D-1) Ω ⊂ Rd
is as in the assumption (B-1), i.e. Ω:

a) is bounded,

b) satis�es the one ondition,

(D-2) J , T , D and βj , for all j = 1, . . . , J , are as in the assumption (B-2),

(D-3) f̃ : (x̂, t̂, ŷ) 7→ f̂ ∈ R, ating on Ω× (0, T )× R, is:

a) globally Lipshitz ontinuous w.r.t. ŷ for a.e. (x̂, t̂) ∈ QT , with a Lipshitz onstant

independent of (x̂, t̂) ∈ QT ; we denote this Lipshitz onstant by L̃ and put f̃0 := f(0)
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b) measurable w.r.t. (x̂, t̂) for all ŷ ∈ R,

) f̃0
, de�ned by f̃0(x̂, t̂) := f̃(x̂, t̂, 0) for (x̂, t̂) ∈ QT , belongs to L2(QT ),

(D-4) w̃j is globally Lipshitz ontinuous; we denote the Lipshitz onstant of w̃j by L̃j and put

w̃j0 := w̃j(0), for all j = 1, . . . , J ,

(D-5) ỹ0 ∈ L2(Ω) and κ̃j0 ∈ R, for j = 1, . . . , J ,

(D-6) Y ∈ L2(0, T ;L2(Ω)), Ξj ∈ L∞(0, T ;L2(Ω)), Θj ∈ L∞(QT ), Zj ∈ L∞(0, T ) and hj ∈
L2(Ω), for j = 1, . . . , J .

The solutions of the system (1.84) - (1.86) are understood in the sense analogous to that

given in De�nition 1.2.1:

De�nition 1.2.16 We say that (y, κ1, . . . , κJ ) ∈ X2
is a weak solution to the system (1.84) -

(1.86) if:

(a) y( . , 0) = ỹ0 in L2(Ω) and κj(0) = κ̃j0 for j = 1, . . . , J ,

(b) for all φ ∈ L2(0, T ;H1(Ω)), there holds

∫ T

0

〈
y′, φ

〉
+D

(
∇y,∇φ

)
L2(Ω)

+
(
−f̃( . , t, y) −

J∑

j=1

Ξjκj −
J∑

j=1

Θj g̃j , φ
)
L2(Ω)

dt = 0

() for all ξ ∈ L2(0, T ), for j = 1, . . . , J , there holds

∫ T

0

(
βjκ
′
j + κj − W̃j(y,Y)

)
ξ dt = 0

The point (a) in the above de�nition makes sense, beause, by arguments as in the ase of

De�nition 1.1.1 (see page 6), the ondition (y, κ1, . . . , κJ ) ∈ X2
implies y ∈ C([0, T ];L2(Ω)) and

(κ1, . . . , κJ) ∈ C([0, T ]).

The below analogues of results presented in Theorem 1.2.5 (estimates in X2
norm) and

Corollary 1.2.9 (existene and uniqueness) are valid:

Theorem 1.2.17 Let the part a) of the assumption (D-1) and assumptions (D-2) - (D-4), (D-

6) be ful�lled. Let û ∈ Ũ and (y0, κ10, . . . , κJ0) ∈ X0
. Assume also that

∥∥û
∥∥
Ũ
≤ RU

for some

RU > 0 and that

∥∥(ỹ0, κ̃10, . . . , κ̃J0)
∥∥
X0 ≤ R0

for some R0 > 0. Let (y, κ1, . . . , κJ ) ∈ X2
be a

weak solution of the system (1.84) - (1.86) orresponding to g̃j := ûgj , h̃j := ûhj
, for j = 1, . . . , J ,

and the initial ondition (ỹ0, κ̃10, . . . , κ̃J0). Then the following estimate holds:

∥∥(y, κ1, . . . , κJ )
∥∥
X2 ≤ C

where C depends only on

T, J, L̃,
∥∥f̃0

∥∥
2,2

, L̃1, . . . , L̃J , w̃10, . . . , w̃J0,D, β1, . . . , βJ ,

RU , R0,
∥∥Y

∥∥
2,2

,
∥∥Ξj

∥∥
2,∞

,
∥∥Θj

∥∥
L∞(QT )

,
∥∥Zj

∥∥
L∞(0,T )

,
∥∥h

∥∥
L2(Ω)

.
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Lemma 1.1.5

(properties of (1.4))

Lemma 1.1.6

(properties of (1.5))

❄

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏✏✮

Theorem 1.2.3

(existene for bounded

swithing funtions)

Theorem 1.2.5

(estimates in X2
norm)

❄

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏✏✮ ❄

Theorem 1.2.7

(existene for unbounded

swithing funtions)

Theorem 1.2.6

(stability in X2
norm)

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏
✏

✏✏✮❄

Corollary 1.2.9

(existene and uniqueness for

unbounded s. f.)

Figure 1.4: Dependenies between some of theorems in Chapter 1, onerning the system (0.1) -

(0.3). Lemmas 1.1.5 and 1.1.6 onern auxiliary equations, while the rest of the results indiated

in the above graph onern the system (0.1) - (0.3) diretly. In the graph, an arrow leading from

A to B means that A was utilized in the proof of B.

Theorem 1.2.18 Let assumptions (D-1) - (D-6) be ful�lled. Let

(
g̃j , h̃j

)J
j=1

∈ Ũ . Then, the

system (1.84) - (1.86) has a unique weak solution.

Remark. We have veri�ed that Theorem 1.2.17 and Theorem 1.2.18, as analogues of

Theorem 1.2.5 and Corollary 1.2.9, respetively, an be proven with the same methods as the

latter statements. Corollary 1.2.9 depend also on other results proven in Chapter 1, see Figure 1.4.

Fortunately, analogues of these results also an be proven for the system (1.84) - (1.86) with the

same methods.

We give one neessary omment onerning the above matter. One of the neessary results

is an analogue of Lemma 1.1.5. We remark that the appropriate analogue of Lemma 1.1.5,

neessary here, should be proven (and an be proven), not for auxiliary the system (1.4) (whih
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was onsidered in Lemma 1.1.5), but for the following modi�ation of (1.4):





yt(x, t)−D∆y(x, t) = f̃(x, t, y(x, t))+

+
∑J

j=1
Ξj(x, t)kj(t) +

∑J

j=1
Θj(x, t)g̃j(x) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(0) = ỹ0 on Ω

N

Sine, aording to the above remark, the proofs of Theorems 1.2.17 and 1.2.18 an be

onduted with the methods as the other proofs of Chapter 1, we skip them.



Chapter 2

Thermostat ontrol mehanism �

numerial prototypes

The present hapter is devoted to numerial simulations onerning the thermostat ontrol meh-

anism, utilized in (0.1) - (0.3).

The aim of the simulations is twofold. First, we intended to investigate the e�ieny of the

thermostat ontrol mehanism, understood as the ability of the latter to bring the state of the

proess lose to some neighborhood of the referene state y∗. In our simulations, we observe

how the e�ieny hanges with hanges of the referene state, of the initial state and of the

number of the ontrol and measurement devies. Note that the results desribed in Chapter 1

do not say anything about the e�ieny of the thermostat ontrol mehanism, in the mentioned

sense. Thus, the observations onerning the e�ieny, made within the sope of the numerial

simulations, omplement the qualitative results given in Chapter 1.

Seond, we were interested in the question whether the state of the proess ontrolled by

thermostats, for large time, beomes independent of the initial state of the proess or not.

This kind of independene is essential for the optimal targeting problem, announed in �2 of

Introdution, beause the independene on the initial state gives additional pratial advantage

to the ost funtional (0.8).

Being more preise, assume that the proess, ontrolled by thermostats, stabilizes lose to a

ertain state, independent of the initial state. Then, the ost funtional (0.8) with T0 lose to

T , also beomes independent of the initial state of the ontrolled proess. In onsequene, still

assuming T0 lose to T , the optimal targeting problem, whih bases on the latter ost funtional,

has solutions independent of the initial state. Nevertheless, we mention the above only to signalize

ertain issues onerning the optimal targeting problem. We postpone the analysis of the latter

problem until Chapter 3 and Chapter 4.

As mentioned above, the e�ieny of the thermostat ontrol mehanism will be understood

as the ability to bring the state of the proess to a neighborhood of the referene state. To

work with this approah, it is neessary to observe whether the state of the proess indeed stays,

for large time, in some neighborhood of the referene state or not. Assuming that this is the

ase, we an introdue an intuitive riterion to ompare the e�ieny of the thermostat ontrol

mehanism in two distint situations. For example, let situations A and B di�er in the initial

state of the proess. We will say that the thermostat ontrol mehanism is more e�ient in

situation A than in situation B if in situation A the ontrolled proess stays in a neighborhood

of the referene state of a diameter smaller than in situation B. In partiular, assume that, after

some time, the proess evolution stabilizes near to some time-invariant state. Then, the e�ieny

of the thermostat ontrol mehanism an be measured in terms of the gap between the proess

49
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state, at time moment large enough to observe the stabilization, and the referene state. In the

present hapter, we refer to the latter understanding of e�ieny. For this purpose, we measure

the gap between the proess state and the referene state in terms of W 1,2(ΩN ) norm, where ΩN

denotes the triangulated domain utilized in the simulations.

Mathematially, in the present hapter, by the initial state of the proess ontrolled by

thermostats we mean y0 omponent of the initial ondition (y0, κ10, . . . , κJ0) in the system (0.1)

- (0.3).

In the simulations desribed in the present hapter, the main equation of the system (0.1)

- (0.3) was disretized in spae with the use of the �nite element method. A square domain,

triangulated with triangular elements, was onsidered. The �nite element spae was the spae

of ontinuous funtions, linear on eah element. The time disretization was performed by

employing the impliit Euler sheme. The nonlinear terms entering the system (0.1) - (0.3) were

treated by means of the Piard iterations method.

Three experiments were performed. The �rst onerns the properties of the thermostat

ontrol mehanism when it is foused on a task of preserving an unstable state. The seond one

onerns an attempt of omparison of e�ieny of the thermostat ontrol mehanism for various

initial states. The third one ompares the properties of the thermostat ontrol mehanism when

two di�erent numbers of the ontrol and measurement devies are onsidered.

In the results of the simulations, we observe that the e�ieny of the thermostat ontrol

mehanism, understood in the above mentioned sense, hanges with the hanges of the number

of the ontrol and measurement devies. The e�ieny varies also with hanges of the size of

the supports of funtions gj and hk, desribing the ontrol and measurement devies ations.

Conerning the independene of the behavior of the ontrolled proess on the initial state

for large time, varying results were observed. In some of the performed simulations, the results

suggest that the alleged independene is possible. However, there were also simulations suggesting

the opposite, namely that a hange of the initial state possibly ould result, even for long time

horizon, in an essentially di�erent state.

The order of the present hapter is as follows. In Setion 2.1, we desribe the strutural

assumptions imposed in the system (0.1) - (0.3) in our simulations, i.e. we speify the domain,

the nonlinear terms et. Next, in Setion 2.2, we desribe the utilized numerial sheme in more

detail. Eventually, we proeed to Setion 2.3, whih is devoted to presentation and disussion of

the results of the simulations.

2.1 Strutural assumptions

In the experiments desribed in Setion 2.3, the below assumptions were made.

We assumed that every ontrol devie in the thermostat ontrol mehanism distributes energy

uniformly in a dis entered at given xj ∈ Ω. We treated the measurement devies analogously,

assuming that every measurement devie observes a dis-shaped area. Moreover, we assumed

that the numbers of the ontrol and measurement devies are equal. More preisely, in the

system (0.1) - (0.3), funtions gj and hk, haraterizing the devies ations, were determined by

K = J (2.1)

gj := ûgj := σg( . − xj)|Ω, hj(x) := ûhj
:= σh( . − xj)|Ω (2.2)

for j = 1, . . . , J , where xj ∈ Rd
and σg, σh : Rd → R, and where σg and σh are given by:

σg(x) = Cg1B(0,rσ)(x), σh(x) = Ch1B(0,rσ)(x) (2.3)
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for ertain rσ, Cg, Ch > 0. In other words, the area of ations of every ontrol devie oinided

with area of ations of exatly one measurement devie.

We imposed the following assumption for the weights αjk:

αjk := ûαjk
:= δj,k (2.4)

for j, k = 1, . . . , J , where δj,k denotes the Kroneker delta funtion of j and k (see Notation

onventions). The assumption (2.4) is natural in the ontext of assumptions (2.1), (2.2), (2.3).

Having (2.1), (2.2), (2.3) and (2.4), the ontrol (gj , hj , αjk)j=1,...,J ∈ U , applied in the sys-

tem (0.1) - (0.3), is determined one a seletion of the points x1, . . . , xJ and the parameters

rσ, Cg, Ch > 0 is made.

The above assumptions result in a simpli�ed version of the model (0.1) - (0.3), whih is a

fous of our interest in the present hapter, onerning the numerial results:





yt(x, t)−D∆y(x, t) = f(y(x, t)) +
∑J

j=1
gj(x)κj(t) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(x) = y0(x, 0) for x ∈ Ω

(2.5)

together with





β1κ
′
1(t) + κ1(t) = w1

(∫

Ω
h1(x)(y − y∗)dx

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J(t) + κJ(t) = wJ

(∫

Ω
hJ(x)(y − y∗)dx

)
on [0, T ]

κj(0) = κj0 ∈ R for j = 1, . . . , J

(2.6)

for funtions gj and hj de�ned by (2.2) and (2.3).

The experiments were performed for a two-dimensional retangular domain:

Ω = (−1, 1) × (−1, 1) ⊂ R2
(2.7)

It was assumed that y∗ was time independent: y∗ = y∗(x).
The reative term f treated in the experiments was:

f(s) = −s3 + s (2.8)

together with wj given by

wj(s) = Hw max(min(Lws, 1),−1) (2.9)

for ertain Lw, Hw, for j = 1, . . . , J .

Remark. In fat, our intention was to use wj de�ned by wj(s) = −Hwsgn(s) for a

ertain Hw, beause, aording to remarks in �1 of Introdution, −sgn is a natural example

of a swithing funtion in thermostat ontrol mehanism. Nevertheless, we wanted the data

for the simulations to be overed by the analytial results presented in Setion 1.2, onerning

in partiular existene and uniqueness of solutions for the system (0.1) - (0.3). The results of

Setion 1.2 are proven under assumption that the swithing funtions are Lipshitz ontinuous,
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what exludes the hoie of −sgn or −Hwsgn. Therefore, for the simulations, we have deided
to hoose Lipshitz funtions of a steep slope in point s = 0, approximating in a ertain sense the

ideal funtion −Hwsgn. Basing on the reasoning as in the example on page 17, we have hosen

the swithing funtion as in (2.9). N

For a given rσ, we onsidered the value of Ch to be determined by the following relation:

Cswitch

∫

Rd

σh = 1/
∣∣Lw

∣∣
(2.10)

for ertain Cswitch > 0. In the above, Ch is present in the de�nition of σh. The identity (2.10)

along with de�nition of σh in (2.3) allows to infer that

Ch =
(
π
∣∣Lw

∣∣Cswitch r
2
σ

)−1
(2.11)

Remark. For better explanation of the meaning of the onstant Cswitch > 0, we make the

following remark. Due to assumptions (2.1) and (2.4), the term wj

(∫
Ω hj(y − y∗)

)
in the right

hand side of (2.6) is the signal generated by the signal generator assoiated with j-th ontrol

devie (see the nomenlature introdued in �1 of Introdution). The onept is that Cswitch

de�nes a threshold gap between the solution y and the referene state y∗ after exeeding whih

the extremal value of signal is returned by the signal generators. Being more preise, for a given

measurement devie, (whih ations are haraterized by the funtion hj) we want the signal to
ahieve its maximal value when y − y∗ ≈ Cswitch or y − y∗ ≈ −Cswitch in the area observed by

the measurement devie (i.e. in the support of hj). Taking the formula for wj into aount, the

extremal signal value is ahieved for

∫
Ω hj(y − y∗) = ±1/

∣∣Lw

∣∣
(or for higher values of the latter

integral; nevertheless, in our idea, we are interested in the smallest gap between y and y∗ for
whih the extremal signal value is ahieved; hene the latter ondition with sign �=�, not �≥�,
expressing that we want the value of the integral to oinide with the losest to zero extremal

points of wj). Proessing the above onditions yields

1/
∣∣Lw

∣∣ =

∫

Ω
hj
∣∣y − y∗

∣∣ ≈ Cswitch

∫

Ω
hj

This gives the relation (2.10), after assuming that �≈� sign an be replaed by the equality

sign and after assuming that

∫
Ω hj =

∫
Rd σh. The latter is orret if supp(σh( . − xj)) ⊆ Ω. For

simpliity of the above reasoning, referring rather to general onepts than to preise alulations,

we assumed it to be true. However, it an be not the ase in general. N

Altogether, for Ω given by (2.7), the reative term as in (2.8), the swithing funtion wj as in

(2.9), gj , hj , αj,k de�ned by onditions (2.1), (2.2), (2.3), (2.4) and Ch as in the formula (2.11),

the system (2.5) - (2.6) is uniquely determined by the hoie of the following quantities:

y0, κ10, . . . , κJ0, y∗ J, x1, . . . , xJ

T, D, β1, . . . , βJ , rσ, Cg, Cswitch, Lw,Hw

The values of the above quantities utilized in the partiular experiments will be spei�ed in

Setion 2.3.

Remark. One may verify that the above Ω, f , wj , gj , hj for j = 1, . . . , J �ts the

assumptions of the existene, uniqueness and stability results from Setion 1.2.3. Moreover, for

partiular experiments desribed in Setion 2.3, we will hoose y0 and y∗ whih also ful�ll the

assumptions of the subjet existene, uniqueness and stability results. N
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2.2 Numerial methods

The below numerial methods were utilized in the experiments desribed in Setion 2.3.

For numerial treatment of the system (2.5) - (2.6) we utilized the �nite element method to

solve the omponent y orresponding to the paraboli equation.

The triangulation of Ω, see (2.7), was of the type presented on Figure 2.1. The �nite element

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 2.1: The type of triangulation of Ω utilized in the experiment. The triangulation is suh

that the mesh assoiated with the triangulation has the same number of nodes along eah spatial

diretion.

spae hosen for the simulations was the spae of ontinuous funtions, linear on every element

of the triangulation. The time interval was disretized by seleting a uniformly distributed in

the set [0, T ] of time points. The impliit Euler sheme was used to solve the model w.r.t. the

time variable.

The nonlinear terms f and w were treated with the use of the Piard iterations tehnique.

A onstant number of the Piard iterations for every time step was utilized. We preferred a

onstant number of Piard iterations instead of applying the error-based stop riterion in order

to ontrol the omputational time.

In the further part of our work, we will use the following notation onerning the above

desribed numerial sheme:

N + 1 � the number of nodes along eah spatial diretion, for the mesh assoiated

with the triangulation,

τN � the length of the mesh step along eah spatial diretion,

M + 1 � the number of time points in the time disretization,

τM � the length of the time step,

NPicard � the number of Piard iterations in every time step.

Aording to the above notation, the total number of nodes in the triangulation equals (N +1)2.
Moreover, relations τN = N−1 and τM = M−1 hold.

Let us sketh in more detail the numerial sheme applied for the system (2.5) - (2.6). Denote

the triangulation of type presented in Figure 2.1, orresponding to N+1 nodes along eah spatial

diretion, as ΩN . Denote the �nite element spae of funtions on ΩN being ontinuous on ΩN

and linear on every element of ΩN as P1(ΩN ).

Moreover, for a given funtion F : Ω → R, denote the ontinuous linear interpolation of F ,
taking exat values in the nodes of the mesh assoiated with ΩN , by [F ]N . In addition, denote

by

→
F the vertial vetor of the values of F in the nodes of the mesh assoiated with ΩN . It

follows by the de�nitions that

→
F=

−→

[F ]N .
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Remark. Note that, ΩN , understood as a subset of R2
, equals Ω. As a onsequene, it is

legal to write P1(ΩN ) ⊆ L2(Ω) or L2(ΩN ) = L2(Ω). N

We begin with disretization in spae, proeeding as follows. In the system (2.5) - (2.6), we

take [gj ]N , [hj ]N , [y0]N and [y∗]N instead of gj , hj , y0 and y∗, respetively. Next, we transform
this modi�ation of (2.5) - (2.6) to the following variational problem, using the P1(ΩN ) spae:





d
dt

(
yN , φ

)
L2(ΩN )

+ D
(
∇yN ,∇φ

)
L2(ΩN )

=

=
(
[f(yN )]N , φ

)
L2(ΩN )

+
∑J

j=1

(
[gj ]N , φ

)
L2(ΩN )

κj,N on [0, T ], ∀φ∈P1(ΩN )

yN (0) = [y0]N

(2.12)

and 



βj
d
dtκj,N + κj,N = wj

((
[hj ]N , (yN − [y∗]N )

)
L2(ΩN )

)
on [0, T ]

κj,N (0) = κj0
(2.13)

for j = 1, . . . , J , where (yN , κ1,N , . . . , κJ,N ), with yN (t) ∈ P1(ΩN ) and κj,N(t) ∈ R for t ∈ [0, T ],
is the desired solution. Note, that the term f(yN ) is not in P1(ΩN ). This is the reason for

whih, de�ning the above variational problem, we use [f(yN (t))]N in (2.12) instead of f(yN (t))
(for the sake of readability, the time dependene in (2.12) is hidden). Note also that term

(∇yN ,∇φN )L2(ΩN ) above is well de�ned, sine P1(ΩN ) ⊆ H1(ΩN ) (see Theorem 2.1.1. in [13℄).

Remark. Sine, as a subset of R2
, ΩN equals Ω, using notation �ΩN � instead of �Ω� in

(2.12) - (2.13) is not neessary. Nevertheless, in (2.12) - (2.13) we use notation �ΩN � in order to

stress that we are working with a spae disretization of original the system (2.5) - (2.6). N

De�ne the following matries:

MN =
(
(φm, φn)L2(ΩN )

)(N+1)2

n,m=1
, AN =

(
(∇φm,∇φn)L2(ΩN )

)(N+1)2

n,m=1

where φn, for n = 1, . . . , (N + 1)2, denotes the standard �hat� basis of the �nite element spae

P1(ΩN ).

Note that, given F,G ∈ P1(Ω), we an represent them as F =
∑(N+1)2

n=1

→
Fn φn and G =

∑(N+1)2

n=1

→
Gn φn, respetively. Hene:

(F,G)L2(Ω) = (
→
F )TMN

→
G, (∇F,∇G)L2(Ω) = (

→
F )TAN

→
G (2.14)

Now, note that

−−−−−→
[f(yN)]N= f

(→
yN

)
. Using this and the above observation onerning produts

of P1(ΩN ) funtions, we transform the system (2.12) - (2.13) further, to the matrix form:





d
dtMN

→
yN + DAN

→
yN= MNf

(→
yN

)
+

∑J

j=1
MN

−→

[gj ]N κj,N on [0, T ]

→
yN (0) =

−→

[y0]N

(2.15)

with 



βj
d
dtκj,N + κj,N = wj

( −→

[hj ]N
T

MN

(→
yN −

−→

[y∗]N
))

on [0, T ]

κj,N(0) = κj0

(2.16)
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for j = 1, . . . , J . The unknown solution of (2.15) - (2.16) is

( →
yN , κ1,N , . . . , κJ,N

)
.

We approximate the solution of (2.15) - (2.16), as mentioned, by using the impliit Eu-

ler sheme with M + 1 time points, uniformly distributed in interval [0, T ], and by using the

method of Piard iterations with NPicard iterations to treat the nonlinear terms in eah time

step. Denote the approximation of solution of (2.15) - (2.16) obtained with these methods by

(
→
YN , k̂1,N , . . . , k̂J,N ). The latter approximation is a funtion de�ned in the time disretization

points, t = mτM , m = 0, 1, . . . ,M , with values in R(N+1)2 × RJ
.

Having this, we onstrut the following funtion (YN , k1,N , . . . , kJ,N ), de�ned in time dis-

retization points, i.e. in t = mτM , m = 0, . . . ,M , and taking values in P1(ΩN ) × RJ
. For

t = mτM , m = 0, . . . ,M , we put YN (t) =
∑(N+1)2

n=1 (
→
YN (t))n φn and kj,N = k̂j,N for j = 1, . . . , J .

The funtion (YN , k1,N , . . . , kJ,N ) is the output of the above numerial sheme for the system

(2.5) - (2.6). In other words, we treat (YN , k1,N , . . . , kJ,N ) as an approximation of the weak

solution of (2.5) - (2.6) (sine (2.5) - (2.6) is a partiular ase of (0.1) - (0.3), we understand the

weak solution of (2.5) - (2.6) in sense of De�nition 1.2.1).

All simulations whih results are presented in Setion 2.3 were performed with the use of the

above desribed sheme.

For the purpose of our experiments, the matries MN and AN were omputed expliitly, with

no use of numerial integration methods.

Note, that the above desribed numerial sheme is fully determined by the hoie of the

parameters determining the �nite element spae, the time disretization sheme and the nonlinear

term treatment method, i.e. by the following parameters:

N, M, NPicard

The values of the above parameters utilized in the partiular experiments will be spei�ed in

Setion 2.3.

2.3 Results of simulations

Now we proeed to presentation of the results announed in the introdution to Chapter 2.

The experiments desribed below were performed with the use of the numerial sheme from

Setion 2.2 and under the strutural assumptions from Setion 2.1.

In the below disussion of the results, we put stress on the e�ieny of the thermostat ontrol

mehanism, understood in terms of the gap between the proess state and the referene state for

large time. To realize the subjet objetive, we proeed with the following strategy. We observe

whether stabilization of the proess ourred at the terminal time, t = T , of our simulations and
srutinize the gap at t = T .

We are also interested in observing whether the behavior of the proess ontrolled by ther-

mostats exhibits independene on the initial state for large time. The idea to investigate this

matter is to wait until the proess, onsidered with distint initial states, stabilizes, an then to

ompare the observed proess states.

Our approah to the both of the above questions (e�ieny and independene on the initial

state) assume that the behavior of the proess stabilizes after some initial period, in whih

osillations possibly our. Hene, throughout the results disussion in the present setion, we

will stress whether we observed stabilization in the behavior of the ontrolled proess or not.

Above, as everywhere else in the further part of the present hapter, by stabilization we mean

that the proess remains lose to ertain time-invariant state. By osillations we mean rapid

hanges of the proess state.
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Moreover, to realize the above ideas onerning e�ieny, it is neessary to have some measure

of the distane between the referene state the proess state in a given time t ∈ [0, T ]. For this
end, we measure the distane between two given states in terms of W 1,2(ΩN ) norm, where ΩN

is as in Setion 2.2 (this is implemented by means of funtions EYN
and Egrad

YN
, de�ned below).

In Setion 2.3.1 and Setion 2.3.3, we desribe experiments illustrating the behavior of the

thermostat ontrol mehanism for varying numbers of the ontrol and measurement devies. In

Setion 2.3.2, we take a look at behavior of the subjet system in a situation where the initial

state of the proess varies.

Setion 2.3.1 onerns the ase where y∗ is an unstable equilibrium of the proess and the

supports of funtions gj and hj over the domain tightly. The ases of various sizes of the

supports of gj and hj are ompared. It is observed that the e�ieny of the thermostat ontrol

mehanism improves as the size of the supports of gj and hj dereases. In Setion 2.3.2, we

assume that the number of the ontrol and measurement devies, as well as the targeting of their

ations, are �xed and we do not assume that y∗ is an unstable equilibrium (y∗ is hosen as a

state representing some free boundary). We observe that the e�ieny of the thermostat ontrol

mehanism is similar for two distint variants of the initial state. In Setion 2.3.3, we onsider y∗

as in Setion 2.3.2. We also assume that the initial state and the sizes of the supports of gj and hj
are �xed. We ompare the behavior of the thermostat ontrol mehanism for varying numbers of

the ontrol and measurement devies. It is observed that the e�ieny of the thermostat ontrol

mehanism dereases as the number of the devies dereases.

In all ases onsidered in Setion 2.3.1, Setion 2.3.2 and Setion 2.3.3 some stabilization of

the behavior of the proess was observed, after an initial period of osillations. In other words,

the thermostat ontrol mehanism seemed to bring the proess near to some time-invariant state.

Nevertheless, in some ases the ahieved approximate time-invariant state seems to be dependent

on the initial state of the proess. We omment on this matter more broadly in Setion 2.3.4.

Below, by numerial solution of the system (2.5) - (2.6) we mean the approximation of a

solution of (2.5) - (2.6), denoted in Setion 2.2 as (YN , k1,N , . . . , kJ,N ). For onveniene, here we
also keep notation (YN , k1,N , . . . , kJ,N ) for denoting the numerial solution of (2.5) - (2.6). In

addition, by numerial proess we mean �numerial approximation of the proess ontrolled by

thermostats�. Mathematially, the notion of numerial proess below oinide with YN .

In the presentation of the results, some plots appear and thus we give a short lari�ation

of the utilized plot onvention here. The plots an be grouped into ertain lasses: 1) plots of

funtions from P1(ΩN ), 2) plots onerning on�guration of the ontrol devies utilized in the

experiments and 3) error plots.

By on�guration of the ontrol and measurement devies we mean the hoie of the supports

of funtions gj and hj , whih haraterize the ontrol and measurement devies ations.

The error plots are self-desribing. The rest of the plots need to be ommented.

The plots of funtions from P1(ΩN ) are plots:

• of the main omponent YN of the numerial solution of the system (2.5) - (2.6), in a given

moment of time,

• of the initial state y0 of the proess or of the referene state y
∗
, utilized in the experiments.

In the plots of funtions from P1(ΩN ), the olor map extends from blak to white. The values

below a down threshold value of the olor map are plotted in blak and the values exeeding an

upper threshold value are plotted in white. The threshold values of the olor map are indiated

in the plots. The maximal and minimal values of the plotted data also are indiated there.

The plots onerning the on�guration of the ontrol and measurement devies are visual-

izations of supports of funtions gj and hj . An essential remark is that, due to the strutural
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assumptions in the Setion 2.1, the supports of the funtions gj and hj are pairwise equal. Thus,
one dis in a plot onerning the on�guration of the devies represents a pair of supports � the

support of gj and the support of hj , for ertain j ∈ {1, . . . , J}.
The mentioned visualizations of supports, if su�iently preise, give a unique haraterization

of the parameter rσ and of the utilized sequene of the entral points, x1, . . . , xJ , appearing in

(2.3) (up to permutation). The latter information, along with information onerning parameters

Cg and Ch (whih will be provided expliitly in the desription of the experiments), gives full

information about the funtions gj and hj .
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Figure 2.2: Control and measurement devies on�gurations for Setion 2.3.

min.val.= -1.0000
max.val.=1.0000

black=-1.00 white=1.00

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(a) A referene state.

min.val.= -1.0000
max.val.=1.0000

black=-1.00 white=1.00

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(b) Init. ond., 1st vari-

ant

min.val.= -1.0000
max.val.=1.0000

black=-1.00 white=1.00

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

() Init. ond., 2nd vari-

ant

Figure 2.3: A part of data employed for simulations in Setion 2.3. The plotted funtions are

given by formulas (2.17) for Fig. 2.3a, (2.18) for Fig. 2.3b and (2.19) for Fig. 2.3.

Figures 2.2 and 2.3 present data whih shall be utilized in the experiments below. The data

employed in partiular experiments will be spei�ed in their desription by referene to these

�gures. The funtions plotted in Figure 2.3 are given by the following formulas:

ŷ(x1, x2) = 1− 2
(
1 + e−15

3
√

13
13

(x2−1.5x1)
)

(2.17)

ŷ(x1, x2) = − 1 +
(
2
(
1 + e−30 x1

)−1
−

(
1 + e−30(x1−0.8)

)−1)
·
(
1 + e30 x2

)−1
+

+ 2
(
1 + e30(x1+0.2)

)−1
·
(
1 + e−30x2

)−1 (2.18)

ŷ(x1, x2) = cos
(
4πx1

)
·
(
1− 2

(
1 + e30x2

)−1)
(2.19)
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Moreover, assume that y∗ ∈ H1(Ω) and that YN is the main omponent of numerial solution

of (2.12) - (2.13), obtained with the methods desribed in Setion 2.2. For the time disretization

points t = mτM , m = 0, . . . ,M we denote by EYN
(t) the L2

error between YN and [y∗]N :

EYN
(t) =

∥∥YN (t)− [y∗]N
∥∥
L2(Ω)

and by Egrad
YN

(t) the gradient error between yN and [y∗]N , or more preisely:

Egrad
YN

(t) =
∥∥∇ (YN (t)− [y∗]N )

∥∥
L2(Ω)

where [y∗]N is de�ned as in Setion 2.2.

For brevity, below, values EYN
(t) and Egrad

YN
(t) will be alled error values.

The below desribed simulations have been performed with the use of the GNU Otave

software.

2.3.1 Experiment 1 � unstable equilibrium

The present experiment is intended to illustrate properties of the thermostat ontrol mehanism

in a situation where the referene state is unstable.

The following data were exploited for the present experiment:

T = 24 Cg = 16/π Lw = −10 κj0 = 0 ∀j=1,...,J

D = 0.01 Cswitch = 0.2 Hw = 10

together with the numerial sheme spei�ation given by:

N = 100, M = 2400, NPicard = 3

We onsidered the initial state y0 as on Figure 2.3b and the referene state y∗ ≡ 0. Note that

the y∗ taken into aount indeed is an unstable state for the assumed reative term f .

We have performed three simulations, basing on various on�gurations of the ontrol and

measurement devies. The ases of J = 16, 36, 64, with the devies tightly overing the domain

with their e�ets, but varying in the size of the areas a�eted by a single devie, have been

onsidered. The utilized devies on�gurations are presented on Figures 2.2a, 2.2b and 2.2.

One an say that these on�gurations di�er with resolution of measurement abilities and with

resolution of ontrol abilities.

In eah of the three simulations, osillations in the proess behavior faded after ertain initial

period. It ould be observed that, after this initial period, there emerged ertain patterns whih

did not underwent further rapid hanges. However still, some slow evolution of the numerial

proess ould be observed in longer time horizon. Nevertheless, by the evolution of the proess

whih we observed, the proess states ahieved for the time t = T seemed to be lose to ertain

time-invariant states of the onsidered model (however, the latter require further work for better

veri�ation).

Now, let us omment on the e�ieny of thermostat ontrol mehanisms assoiated with

the addressed devies on�gurations. Probably, for many users the result on Figure 2.4a (orre-

sponding to only 16 devies) annot be onsidered to be preise solution in the ontext of the

problem of leading the state of the proess to the state y∗ ≡ 0. Nevertheless, the situation was

hanging as we were inreasing the number of the devies, keeping uniform distribution of their

ations through the domain. Comparing Figures 2.4a, 2.4b and 2.4 suggests that the greater
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Figure 2.4: Numerial proess at time t = T , for the devies on�gurations onsidered in Se-

tion 2.3.1. Fig. 2.4a orresponds to the dev. onf. in Fig. 2.2a; Fig. 2.4b � to Fig. 2.2b; Fig.

2.4 � to Fig. 2.2.
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Figure 2.5: EYN
(t) and Egrad

YN
(t) for time points t = mτM , m = 0, . . . ,M/2 for simulations or-

responding to the devies on�gurations onsidered in Setion 2.3.1. For the sake of readability,

the time horizon of the error plots is limited to [0, 12]. After time t = 12 the error values still

evolves, however slowly, without rapid hanges.

the number of the ontrol and measurement devies is, the more preise response of the ontrol

devies an be expeted. This stays onsistent with the natural intuition.

The drasti di�erene between the e�ieny of the thermostat ontrol mehanism for 16
devies and the e�ieny for the ases of 36 and 64 devies is well visible on the error plots in

Figures 2.5a and 2.5a. The Reader may also ompare the obtained error values at time t = T in

Table 2.1.

Remark. The above desribed results suggest that, in the situation of the present experi-
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y part for: 16 dev. 36 dev. 64 dev.

Ey(T ) 1.3006 0.3568 5.5550e-08

Egrad
y (T ) 8.2791 3.4143 6.9999e-07

Table 2.1: The values of error at the terminal time (t = T ) for the devies on�gurations

onsidered in Setion 2.3.1. The presented values are rounded.

ment, the main question onerning the e�ieny of the ontrol by thermostats an be redued to

the question on the number of the devies whih would be su�ient to ahieve demanded prei-

sion. This is muh simpler adjustment proedure than proedures that often an be neessary in

the ase of systems with an open-loop ontrol. Suppose that we onsider a system with an open-

loop ontrol in whih the user is responsible for the hoie of right number of the ontrol devies

as well as for the hoie of the power funtions, κj . In other words, equations (2.6) are not taken

into aount. Suh open-loop ontrol is more di�ult to handle than our losed-loop ontrol,

utilized in the model (2.5) - (2.6), beause the user has to ontrol more variables. Neessary is the

hoie of the devies together with the power funtions in the introdued open-loop ase, versus

the hoie of the devies only in the ase of our losed-loop ontrol. Moreover, in the open-loop

situation a proper hoie of the power funtions κj is hard to be done by intuition. Probably,

proper power funtions would be searhed by some optimization proedure, what additionally

inreases the omplexity of e�orts neessary to deal with the open-loop ase. In addition, it is

reasonable to expet that the hoie of the power funtions depend on the initial state of the

proess. Thus, it would be neessary to repeat the optimization proedure onerning the power

funtions after every hange of the initial state.

To sum up, the observed simpliity of adjustment of the thermostat ontrol mehanism stays

in aordane with the expeted advantages of the models with automati orretion mehanisms,

expressed in Introdution. N

2.3.2 Experiment 2 � various initial onditions

Below, we present numerial results whih illustrate behavior ourring in the investigated model

with ontrol by thermostats when perturbations of the initial state are indued.

In the present experiment, the following data were used :

T = 4 rσ = 1/8 Lw = −10 Cswitch = 0.2

D = 0.02 Cg = 16/π Hw = 10 κj0 = 0 ∀j=1,...,J

together with the numerial sheme spei�ation given by:

N = 100, M = 400, NPicard = 3

The on�guration of the ontrol and measurement devies was assumed to be as the devies

on�guration with J = 64 utilized in the experiment from the Setion 2.3.1, i.e. as on Figure

2.2. The referene state was as in Figure 2.3a.

Two simulations has been performed, with two variants of the initial state y0. The �rst of

them was as in Figure 2.3b, the seond initial state was as in Figure 2.3.

For the both simulations, stabilization of the numerial proess ourred after initial period

of osillations, i.e. ertain states whih did not underwent further visible hanges emerged.
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Figure 2.6: Numerial proess at time t = 0.25 and t = 1, for two initial state variants onsidered
in Setion 2.3.2. Fig. 2.6a, 2.6b orrespond to the i. ond. in Fig. 2.3b; Fig. 2.6, 2.6d � to

Fig. 2.3.

The subjet stable states seemed to math the referene state at some rate of auray, at

least visually. Moreover, the numerial proess generated in both simulations ourred to ahieve

a high level of likeness in a short time. This is visible on Figures 2.6a - 2.6d � in partiular, the

�gures orresponding to the time t = 1 (Figures 2.6b and 2.6d) represent proess states whih

an be onsidered to be visually similar. It suggests that the e�ieny of the thermostat ontrol

mehanism is similar for the two subjet simulations.

The error plots in Figures 2.7a and 2.7b on�rm that the omponents YN of the both nu-

merial solutions fall into the same neighborhood of the referene state, in the sense of the error

metri onsidered in the present hapter. Moreover, the ratio of the error at the terminal time

of the experiment is lose to 1 (see Table 2.2). Thus, indeed, the e�ieny of the thermostat

ontrol mehanism, observed in the above numerial simulations, an be onsidered to be similar

for the two initial state ases.

As an outome of the above observations, we propose the following hypothesis: the thermostat

ontrol mehanism has the very useful property of preserving the e�ieny under perturbations

of the initial state.
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Figure 2.7: EYN
(t) and Egrad

YN
(t) for time points t = mτM , m = 0, . . . ,M/2, for simulations

orresponding to the two initial state variants onsidered in Setion 2.3.2. The time interval for

the plots is limited to [0, 2] for the sake of readability. No signi�ant �utuations of the error

values were observed after time t = 2.

y part for: 1st variant 2nd variant ratio

Ey(T ) 0.12569814 0.12569916 1.00000812

Egrad
y (T ) 2.26541586 2.26541453 0.99999941

Table 2.2: The values of error at the terminal time (t = T ) for the initial state y0 onsidered in

Setion 2.3.2 (with rounding to 8 signi�ant digits).

Remark. In Figures 2.7a and 2.7b, it an be observed that the initial error was leveled

within a similar time, approximately equal t ≈ 1, in both ases. However, the reason of the

latter an be e.g. the omparable rank of values of the onsidered initial states. It is reasonable

to expet that if we had onsidered two initial states where one of them was de�ned as ten

thousand times the other then the time of leveling the initial error would di�er. Nevertheless, the

above observation suggests the following hypothesis onerning the properties of the investigated

thermostat ontrol mehanism: if the family of initial states satisfy ertain ommon bound, then

the time of onvergene of the ontrolled proess to a given neighborhood of the stable state is

similar for all initial states in the subjet family. N

Remark. An interesting observation an be made by omparing the results disussed in

Setion 2.3.2 with the result onerning the ase of 64 devies, disussed in Setion 2.3.1. The

simulations whih generated the subjet results share the same on�guration of the ontrol and

measurement devies. As we already have noted, in all the subjet simulations the numerial

proess behavior eventually stabilize. The error values (see Figures 2.5a, 2.5a, 2.7a, 2.7b) also

seem to stabilize at some stable value. Compare the error values in Table 2.2 and Table 2.1 (for

64 devies). An observation an be made that the stable error value is muh lower in the ase

of the referene state y∗ ≡ 0 than in the ase of y∗ as in Figure 2.3a. This is interesting sine
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one ould expet the opposite, as the behavior of the proess near y∗ ≡ 0 is perhaps, roughly

speaking, more unstable than near y∗ as in Figure 2.3a. N

2.3.3 Experiment 3 � various numbers of thermostats

This experiment is devoted to ompare behavior of the thermostat ontrol mehanism for two

di�erent on�gurations of the ontrol and measurement devies, where the size of the areas

a�eted by partiular devies equals in both ases but the number of the devies di�ers. This is

a situation di�erent than in Setion 2.3.1, where the onsidered devies on�gurations di�ered

not only with number of the devies but also with the sizes of the areas a�eted by the devies.

The following data was exploited for the present experiment:

T = 4 rσ = 1/8 Lw = −10 Cswitch = 0.2

D = 0.02 Cg = 16/π Hw = 10 κj0 = 0 ∀j=1,...,J

together with the numerial sheme spei�ation given by:

N = 100, M = 400, NPicard = 3

The initial state hosen for the present experiment was as in Figure 2.3b and the referene state

was as in Figure 2.3a.

Two simulations, orresponding to two on�gurations of the ontrol and measurement devies,

were performed. The onsidered on�gurations of the devies one with J = 64 and the other

with J = 20, are presented in Figures 2.2 and 2.2d.

In both simulations, stabilization of the numerial proess took plae after some initial period

of time. In other words, ertain states whih did not underwent further visible hanges emerged.

In the ase of 64 devies, the numerial proess ourred to stabilize quikly at some state

similar to the referene state, see Figures 2.8a and 2.8b. We an say that the proess falls to

some relatively small neighborhood of the referene state in this ase. For the ase of 20 devies,

as we see on Figures 2.8 and 2.8d, the proess also seems to fall into some neighborhood of the

referene state. However, the di�erene between Figures 2.8 and 2.8d seems to be bigger than

between Figures 2.8a and 2.8b, at least visually. Therefore, it is possible that for 20 devies, the

evolution toward the referene state is slower than in ase of the simulation with 64 devies.

In the error plots in Figures 2.9a and 2.9b we observe that the error values for both onsidered

simulations stabilize at some level. The subjet error plots also suggest that the e�ieny of

the thermostat ontrol mehanism, understood as the error at time t = T , di�ers for the two

onsidered devies on�gurations. The latter is also on�rmed by the error values at time t = T ,
presented in Table 2.3.

y part for: 64 dev. 20 dev. ratio

Ey(T ) 0.2609 0.1257 0.4817

Egrad
y (T ) 3.0757 2.2654 0.7366

Table 2.3: The values of error at the terminal time (t = T ) for the devies on�gurations

onsidered in Setion 2.3.3 (with rounding to 4 signi�ant digits).

As a onlusion, the above observations stays onsistent with the intuitive hypothesis that

the e�ieny of the thermostat ontrol mehanism looses its e�ieny as the number of the

ontrol and measurement devies is dereased.
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Figure 2.8: Numerial proess at time t = 1 and t = 2 for the devies on�gurations onsidered

in Setion 2.3.3. Fig. 2.8a, 2.8b orrespond to the dev. onf. in Fig. 2.2; Fig. 2.8, 2.8d � to

Fig. 2.2d.

Remark. We already remarked above that in the ase of 20 devies the thermostat ontrol

mehanism may drive the proess state toward some stable state slower than in the ase of 64
devies. This is visible also in Figures 2.9a and 2.9b. For both plots, the error line onerning the

ase of 20 devies tends to the terminal value slower, in omparison to the error line onerning

64 ontrol and measurement devies.

Hene, by the above observations, we propose the following hypothesis: when the number of

the devies is dereased, the thermostat ontrol mehanism loose not only its e�ieny, under-

stood in terms of the gap between the proess state and the referene state for large time, but

also looses the speed of stabilizing the proess. Note that this stays in opposite to the situation

onsidered in Setion 2.3.2. There, we onluded with a hypothesis that, for a given on�guration

of the devies, the speed of stabilization is approximately the same for varying initial data. N

Remark. Summing up the observations made in Setion 2.3.3, one an say that the

20 devies thermostat ontrol mehanism seems to loose in the ontest with the 64 devies

thermostat ontrol mehanism. However, a situation where we have not enough ontrol devies
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Figure 2.9: EYN
(t) and Egrad

YN
(t) for time points t = mτM , m = 0, . . . ,M , for simulations

orresponding to the devies on�gurations onsidered in Setion 2.3.3.

to over the domain tightly with their e�ets, i.e. the situation of 20 devies onsidered above,

seems to be more natural than the situation of 64 devies.

This leads to further questions. The on�guration of the 20 ontrol and measurement devies

presented on Figure 2.2d has been hosen for our experiments by intuition. Hene it is natural to

ask whether the ations of these devies ould be loalized in the domain Ω better. Or, whether

we ould remove more ontrol devies and still obtain a result whih would be alled satisfatory

with respet to a given riterion. Here, the realm of optimization begins. N

2.3.4 Remarks on large time behavior

In the above desribed experiments, observations onerning stabilization of the numerial pro-

ess near to some time-invariant state were made. This allows to pose hypotheses on the de-

pendene of these time-invariant states on the initial state. It will be onvenient to express the

hypotheses in question in the language of hypotheses onerning the asymptoti behavior of the

system (0.1) - (0.3), understood in terms of existene and haraterization of attrating sets. For

example, to say that the time-invariant state is probably independent of the initial state means

to say that the attrating set is probably a singleton (if exists).

It is not straightforward what should be the preise form of the hypotheses in question. The

numerial prototypes in Setion 2.3.1, Setion 2.3.2 and Setion 2.3.3 suggest that the behavior

of the model (0.1) - (0.3) for large times varies depending its on�guration. By the on�guration

of the model (0.1) - (0.3) we understand the hoie of partiular parameters, as the initial state

y0, the referene state y∗ and funtions gj and hk, haraterizing the ontrol and measurement

devies ations.

In the situations taken into aount in the simulations in Setion 2.3.2 and Setion 2.3.3,

intuition suggests that the proess stabilizes at ertain state whih is relatively lose to the

referene state. Thus, for these on�gurations of the model, existene of a one-point or a very

small attrating set an be expeted.

The situation in the simulations onerning the referene state being an unstable equilibrium,
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what was the ase in Setion 2.3.1, is di�erent. If the numerial proess states in terminal time,

presented on the Figures 2.4a, 2.4b and 2.4, are lose to ertain time-invariant state of the real

proess then, by symmetry, the transposed states are lose to a time-invariant state as well. The

transposed state should be obtained at time t = T in the simulation with the transposed initial

state. By a transposed state we mean a state with swapped role of axis of the oordinate system

in R2
. In onsequene, in the ase of J = 16 ontrol and measurement devies, the hypotheti

attrating set, if exists, annot be expeted to be small in the sense of diameter. The reason for

this is that in the subjet ase the proess state obtained at the terminal time (Figure 2.4a) is

quite distant from its transposed state. The attrating set, if exists, should ontain states whih

are lose to both the original and transposed state.

To sum up the above, the numerial results presented in this hapter suggest that the at-

trating set for the dynamial system assoiated with the model (0.1) - (0.3), if exists, has the

struture varying signi�antly with hanges of the on�guration of the model. There are on�g-

urations for whih the results suggest a small, or even one-point attrating set, as well as there

are on�gurations for whih a rather big attrating set an be expeted.

Besides the above question on the struture of the attrating set, one an also be interested

in the question on time neessary to bring the proess near to the time-invariant state. The

subjet information also is essential, if one wants to rank the thermostat ontrol mehanism with

respet to the gap between the state obtained for large times and the referene state.

In this �eld, the di�erenes also ourred between partiular simulations. For simulations

desribed in Setion 2.3.2, time interval [0, 4] was enough for the numerial proess to ahieve

some state that seemed time invariant. This is also re�eted on the error plots on Figures 2.7a,

2.7b, 2.9a, 2.9b. In ontrary, for experiment desribed in Setion 2.3.1, for the ases of J = 16
and J = 36 devies, the evolution of the numerial proess toward states whih seemed time-

invariant was very slow. This is the main reason for whih we have hosen the time interval

for this experiment equal to [0, 24], what is six times longer than the time intervals in other

experiments. At time t = 4, the numerial proess still evolved, for the ases of J = 16 and

J = 36 devies desribed desribed in Setion 2.3.1. This is visible in the error plots in Figures

2.5a and 2.5b.

Thus, the numerial results desribed in the present hapter suggest that the time neessary

to bring the state of the ontrolled proess near a time-invariant state varies wit hanges of the

on�guration of the model (0.1) - (0.3).

Nevertheless, the above hypotheses onerning the struture of the alleged attrating set and

the speed of evolution of the proess base on the error graphs and on visual inspetion of the

numerial solution plots. Therefore, these hypotheses require further veri�ation. It will be not

the subjet of the present work.



Chapter 3

Optimal targeting problem �

properties

In the simulations desribed in Chapter 2, we have observed that the e�ieny of the thermostat

ontrol mehanism, understood as the gap between the state of the ontrolled proess and the

referene state at the terminal time T , may di�er for di�erent hoie of parameters in the ther-

mostat ontrol mehanism (e.g. for di�erent referene states or di�erent numbers of the ontrol

and measurement devies). Hene the natural question onerning improving the e�ieny of

the thermostat ontrol mehanism.

The problem of improving e�ieny of the thermostat ontrol mehanism an be understood

as the problem of optimizing the feedbak law in this system, with respet to a ost funtional

whih re�ets the above understanding of e�ieny (where the feedbak law is the algorithm

for omputing the response funtions κj in the system (0.1) - (0.3)). However, the problem of

optimizing the feedbak law require a parametrization of the feedbak law.

In many situations, it an be a natural assumption that the user of the thermostat ontrol

mehanism annot freely manipulate the patterns of energy distributed in the domain by a given

ontrol devie but only an deide on the loation of the pattern. Analogous remark onerns the

ations of the measurement devies. We will thus parametrize the feedbak law by assuming that

the patterns assoiated with the ations of both ontrol and measurement devies are given and

that the ontrol parameter is the set of loations of the subjet patterns. Moreover, to exlude

the problems assoiated with the hoie of weights αj,k, we will assume that αj,k are given.

The above assumptions lead us to the optimal targeting problem, announed in �2 of Intro-

dution. The latter problem will be the subjet of the present hapter.

To reall, the optimal targeting problem bases on the system (0.1) - (0.3) with additional

onditions (0.4) - (0.7). The latter onditions allow to transform the system (0.1) - (0.3) to the

following system:





yt(x, t)−D∆y(x, t) =

= f(y(x, t)) +
∑J

j=1

(
PR,ΩTσg(xj)

)
(x)κj(t) on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(x, 0) = y0(x) for x ∈ Ω

(3.1)

67
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together with





β1κ
′
1(t) + κ1(t) =

= w1

(∫

Ω

(
PR,ΩTσh

(x1)
)
(x)

(
y(x, t)− y∗(x, t)

)
dx

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J(t) + κJ(t) =

= wJ

(∫

Ω

(
PR,ΩTσh

(xJ)
)
(x)

(
y(x, t)− y∗(x, t)

)
dx

)
on [0, T ]

κj(0) = κj0 ∈ R for j = 1, . . . , J

(3.2)

where (y, κ1, . . . , κJ ) is the unknown and: σg, σh : Rd → R; xj ∈ Rd
; Ω is a domain in Rd

;

T,D, βj > 0, y∗ : QT → R; y0 : Ω → R; κj0 ∈ R; f,wj : R → R; where j = 1, . . . , J . Operators

Tσg and Tσh
are de�ned as in Appendix A.4. The operator PR,Ω

is the operator of restrition to

Ω of a funtion from Rd
to R.

For onveniene, in the present hapter, we will refer to the system (3.1) - (3.2) rather than

to the system (0.1) - (0.3) with onditions (0.4) - (0.7). Note that onditions (2.1), (2.2) and

(2.4), utilized in Chapter 2, are equivalent to onditions (0.4) - (0.7), onstituting the optimal

targeting problem. The di�erene is that in Chapter 2 we onsidered a partiular hoie of the

pattern funtions, given by the additional ondition (2.3), while in the present hapter we dismiss

the latter ondition, taking aim at allowing a more general hoie the pattern funtions.

Reall the nomenlature introdued in �2 of Introdution. In (3.1) - (3.2), funtions σg and

σh are alled the pattern funtions. The sequene (x1, . . . , xJ ) is alled the ontrol parameter ,

beause it determines the ontrol uniquely.

The ost funtional whih we will investigate is the following:

(x1, . . . , xJ ) 7→ λ̃

∫ T

T0

∫

Ω

∣∣y(x, t)− y∗(x, t)
∣∣2 dx dt (3.3)

where λ̃ > 0, T0 ∈ (0, T ) and y : QT → R is as in (3.1) - (3.2) � in partiular, y depends on the

ontrol parameter (x1, . . . , xJ ). The optimal targeting problem is to minimize the ost funtional

(3.3).

Reall that, for T0 lose to T , the ost funtional (3.3) an be understood as an approximate

measure of the gap between the proess state and the referene state at the terminal time T (see

the remarks in �2 of Introdution), i.e. as an approximate measure of e�ieny of thermostat

ontrol mehanism. Reall also that, sine we do not onsider the funtions gj and hj to represent
material objets (see �1 of Introdution), intersetion of their supports with eah other and with

the exterior of Ω are allowed. In onsequene, we do not put any onstraints in the optimal

targeting problem (see �2 of Introdution).

In this hapter, we intend to perform mathematial analysis of the optimal targeting prob-

lem. The main results of this analysis onern existene of minimizers and haraterization of the

gradient of the ost funtional de�ned by (3.3), in a form of an expliit formula. The formula for

the gradient of the ost funtional is a result of a great pratial meaning. An expliit formula

for the gradient of (3.3) is neessary for performing many optimization proedures whih approx-

imate the loal minimizers of (3.3). In Chapter 4, we desribe results of numerial optimization

experiments in whih the formula for gradient of (3.3), derived in the present hapter, was uti-

lized. Moreover, an expliit formula for the gradient of (3.3) has also a meaning for formulating

expliit neessary optimality onditions for the onsidered optimization problem.
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The more detailed order of the present hapter is as follows. In Setion 3.1, the main goal is

to investigate the properties of the operator assigning solutions of (3.1) - (3.2) to a given ontrol

parameter (x1, . . . , xJ), let us all it the state operator. Knowledge on this properties is neessary
for further analysis, onerning the ost funtional (3.3), beause the subjet ost funtional an

be viewed as a superposition of the squared seond Lebesgue norm, of translation by −y∗ and of

the mentioned state operator. In Setion 3.1, the main results rely strongly on the properties of

the system (0.1) - (0.3) whih were investigated in Setion 1.2. Consequently, the main results of

Setion 3.1 are shown under strutural assumptions onerning the system (3.1) - (3.2) similar to

the assumptions imposed in Setion 1.2 for the system (0.1) - (0.3), with some modi�ations and

supplements, if neessary. To desribe brie�y the mentioned results, we show that, depending on

pattern funtions σg and σh, the mentioned state operator is ontinuous (for σg, σh ∈ L2(Rd)),
or even Lipshitz ontinuous and weakly Gâteaux di�erentiable (for σg, σh ∈ W 1,2(Rd)).

In Setion 3.2, we fous diretly on analysis of the ost funtional (3.3). The analysis involves

also the results for the state operator obtained in Setion 3.1. We derive a simple riterion for

existene of minimizers for the ost funtional (3.3). This riterion is shown under onditions

su�ient for ontinuity of the state operator (in partiular, σg, σh ∈ L2(Rd)) and additionally

assumes that the supports of the pattern funtions σg and σh are ompat. The latter assump-

tion is strong but su�ient for our purposes beause, in the numerial optimization experiments

desribed in Chapter 4, we operate with the pattern funtions with ompat support. Next, we

proeed to analysis of di�erentiability of the ost funtional (3.3). In brief, the ost funtional

(3.3) is Gâteaux di�erentiable if the above mentioned state operator is weakly Gâteaux di�er-

entiable. Therefore, the Gâteux di�erentiability of the ost funtional (3.3) is shown under the

assumption σg, σh ∈ W 1,2(Rd) in partiular, as it is one of onditions neessary for weak Gâteaux
di�erentiability of the state operator in Setion 3.1. Under the same assumption, we also derive

a formula haraterizing the gradient of the ost funtional, what is a main result of Setion 3.2.

Before we proeed to realization of the above objetives, let us introdue the de�nition of

weak solutions of the system (3.1) - (3.2). PDE-ODE the system (3.1) - (3.2) is a partiular ase

of (0.1) - (0.3). Thus, we assume the de�nition of weak solutions for (3.1) - (3.2) to be exatly

the same as for (0.1) - (0.3) � see De�nition 1.2.1. To be lear:

De�nition 3.0.1 An element (y, κ1, . . . , κJ ) belonging to X2
is a weak solution of the system

(3.1) - (3.2) if it is a weak solution for the system (0.1) - (0.3) orresponding to:

gj := PR,ΩTσg(xj), hj := PR,ΩTσh
(xj), αj,k = δj,k

for j, k = 1, . . . , J .

Above, the spae X2
is as in Chapter 1. Uniqueness and existene of weak solutions of (3.1) -

(3.2) will be one of results of Setion 3.1.2, thus we do not touh this matter now.

In many results of the present hapter, assumptions onerning the system (3.1) - (3.2) will

over, in partiular, assumptions utilized in previous hapters for the system (0.1) - (0.3). More

preisely, assumptions (B-1) - (B-5) and (C-1) - (C-2) from Setion 1.2 will be in use in this

hapter as well. Nevertheless, some of the results in the present hapter will require additional

assumptions. These assumptions are:

(E-1) f ′(s) exists for all s ∈ R, in lassial sense,

(E-2) w′j(s) exists for all s ∈ R and all j = 1, . . . , J , in lassial sense,

(E-3) a) p2 ∈ (2, 4 − 4
p1
], where p1 is a given number satisfying p1 > 2 (in ase d = 1, 2) or

2d/(d− 2) ≥ p1 > 2 (in ase d > 2),
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b) y∗ ∈ Lp2(0, T ;L2(Ω)), for p2 as in a).

Moreover, assumptions onerning pattern funtions σg and σh are neessary. Depending on

situation, a subset of the following set of assumptions will be utilized:

(F-1) σg, σh ∈ L2(Rd),

(F-2) σg, σh ∈ W 1,2(Rd),

(F-3) σg and σh have ompat supports in Rd
.

Notation remarks

In the present hapter, spaes X1
, X2

, U and Ũ are as in Chapter 1. In addition, we de�ne the

following spae:

X3,p = Lp(0, T ;Lp(Ω))×
(
L2(0, T )

)J

where p ∈ [1,∞] is given and natural number J is the same as J appearing in the system (0.1) -

(0.3). We endow X3,p
with the standard produt topology, hene we onsider the following norm

for X3,p
:

∥∥(y, κ1, . . . , κJ)
∥∥
X3,p =

∥∥y
∥∥
p,p

+

J∑

j=1

∥∥κj
∥∥
L2(0,T )

We also de�ne

V =
(
Rd

)J

where natural number J is the same as J appearing in the system (0.1) - (0.3). V will be alled

the ontrol parameter spae. For a given element υ̂ ∈ V we denote its omponents as follows:

υ̂ = (υ̂1, . . . , υ̂J )

Note, that an arbitrary ontrol parameter (x1, . . . , xJ) in the system (3.1) - (3.2) an be

understood as an element of V and vie versa � an element υ̂ ∈ V determines a ontrol parameter

for the system (3.1) - (3.2), by relations xj := υ̂j , j = 1, . . . , J .
For a given T0 ∈ (0, T ), we use the following notation:

QT0
T := Ω× (T0, T )

In addition, for given funtions F1 : Rd → R, F2 : Ω → R, F3 : QT → R and F4 : (0, T ) → R
and a given index j ∈ {1, . . . , J}, the following de�nitions of operators will be valid in the present

hapter:

PR,Ω
� restrition operator de�ned by PR,Ω(F1) = F1|Ω (already used in the

system (3.1) - (3.2)),

PE,Ω
� extension by zero operator de�ned by PE,Ω(F2) = F2 on Ω and

PE,Ω(F2) = 0 on Ωc
,

PR,T0
� restrition operator de�ned by PR,T0(F3) = F3|QT0

T

,

Pi
QT

� inverse time operator de�ned by Pi
QT

(F3)(x, t) := F3(x, T − t), for all
(x, t) ∈ QT ,

Pi
T � inverse time operator de�ned by Pi

QT
(F4)(t) := F4(T − t), for t ∈ (0, T ),
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PR,V
j � operator for extration of j-th omponent of υ̂ ∈ V , i.e. PR,V

j (υ̂) = υ̂j
for υ̂ ∈ V ,

PE,V
j � operator for extension of a vetor in Rd

by zero to a vetor in V , i.e.

PE,V
j (a) = υ̂ for a ∈ Rd

, where υ̂ ∈ V is suh that υ̂j = a and υ̂k = 0

for k 6= j and where 0 is the zero vetor in Rd
.

By de�nition, PR,V
j : V → Rd

and PE,V
j : Rd → V . Conerning the rest of the above operators,

in general, their domain and range spaes an be hosen in various ways. In the present hapter,

we understand operators PR,Ω
and PE,Ω

as PR,Ω : L2(Rd) → L2(Ω) and PE,Ω : L2(Ω) → L2(Rd),
the operator PR,T0

as PR,T0 : L2(QT ) → L2(QT0
T ), the operator Pi

QT
as Pi

QT
: L2(QT ) → L2(QT )

and the operator Pi
T as Pi

T : L
2(0, T ) → L2(0, T ). This requires understanding the above def-

initions in the �almost everywhere� sense whih involves ating on the equivalene lasses of

funtions in the relation of being equal almost everywhere instead of ating on funtions them-

selves.

Besides the above preliminaries, the present hapter utilizes theory onerning di�erentiabil-

ity in Banah spaes, properties of the Nemytskii operators and properties of translation oper-

ators. The required material is ontained in Appendix A.1, Appendix A.3 and Appendix A.4,

respetively. In partiular, Appendix A.1 introdues the notion of the weak sequential diretional

derivative, whih will be neessary in the present hapter and whih is probably not ommon in

the literature.

In the present hapter, for a given F : Rn → R, n ∈ N \ {0}, the assoiated translation

operator TF is always understood as TF : Rn → L2(Rn).

3.1 State operators

Below, we will preisely de�ne and formulate properties of two operators: 1) the operator S,

assigning the weak solution of (0.1) - (0.3) to a given ontrol (gj , hk, αjk)
k=1,...,K
j=1,...,J and 2) the

operator Z, assigning the weak solution of (3.1) - (3.2) to a given ontrol parameter x1, . . . , xJ ∈
Rd

. Sine the idea of both S and Z is to assign a realization of the proess to given data, both

of these operators will be alled state operators.

The state operator Z will be utilized in the analysis of the optimal targeting problem, in

Setion 3.2. For this reason, we need to have some information about the properties of Z. The

properties whih will be neessary in Setion 3.2, are ontinuity and di�erentiability properties

of Z. Both of them will be investigated below.

Nevertheless, the operator S also is helpful beause, as we will see, it an be used to onlude

ertain informations about Z. Thus, we start with preise de�nition and Lipshitz ontinuity of

S. This is done in Setion 3.1.1. There inluded material is brief � the Lipshitz ontinuity of

S is a simple onlusion of theorems presented in Setion 1.2.2, onerning the stability result

in the spae X2
. However, we show that the Lipshitz ontinuity of S with values in X2

implies

also the Lipshitz ontinuity of S with values in the spae X3,p2
, with suitably hosen p2 > 2.

In Setion 3.1.2 and Setion 3.1.3, we will fous on the operator Z. In Setion 3.1.2, we

present preise de�nition of Z. Moreover, we brie�y indiate onditions under whih Z inherits

the Lipshitz ontinuity property of S. Next, in Setion 3.1.3, we proeed to investigating the

di�erentiability of Z. This di�erentiability will be shown to hold in sense of weak Gâteaux

di�erentiability. Proving this will rely on the Lipshitz ontinuity of Z, thus the onditions

required in Setion 3.1.2 for the Lipshitz ontinuity are required also in Setion 3.1.3 for the

weak Gâteaux di�erentiability.
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3.1.1 Control-to-state operator � de�nition and ontinuity

We de�ne the state operator

S = (Sy,Sκ1 , . . . ,SκJ
) : U −→ X2

as the operator assigning to a given ontrol û ∈ U the weak solution of the system (0.1) - (0.3)

orresponding to gj := ûgj , hk := ûhk
and αjk := ûαjk

in the subjet system.

Below, we justify brie�y that S is well posed and Lipshitz ontinuous, in suitable spaes.

These properties of S will be required in Setion 3.1.2.

It follows straight that under assumptions of Corollary 1.2.8 or Corollary 1.2.9, S(û) is well
de�ned, for an arbitrary û ∈ U . In addition, Theorem 1.2.6 allows to onlude the Lipshitz

ontinuity of S, under suitable assumptions. We summarize these observations in the following

theorem:

Theorem 3.1.1 In the system (0.1) - (0.3), let assumptions (B-1) - (B-5) and at least one of

the following:

• y∗ ful�lls the assumption (C-1) and funtions wk are bounded for k = 1, . . . ,K,

• y∗ ful�lls the assumption (C-2)

be ful�lled. Then, the operator S : U → X2
is well de�ned and Lipshitz ontinuous on bounded

subsets of U , with respet to the norms of the onsidered spaes.

In the sequel, we will need to have the Lipshitz ontinuity of S in a spae di�erent than X2
,

what is the subjet of the next theorem.

Theorem 3.1.2 Let the assumptions of Theorem 3.1.1 be ful�lled. Assume also that p2 is as in

the part a) of the assumption (E-3). Then the operator S understood as

S : U −→ X3,p2

is well de�ned and is Lipshitz ontinuous on bounded subsets of U , with respet to the norms of

the onsidered spaes.

Theorem 3.1.2 is a diret onsequene of Theorem 3.1.1 and the below lemma:

Lemma 3.1.3 Assume that p2 is as in the part a) of the assumption (E-3). Then, X2 ⊆ X3,p2

and X2 →֒ X3,p2
.

Proof. By de�nition ofX3,p2
, to justify the demanded inlusion and ontinuous embedding,

it is enough to verify that

L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) ⊆ Lp2(QT )

L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) →֒ Lp2(QT )
(3.4)

Take p1 and p2 as in the part a) of the assumption (E-3). Then

L∞(0, T ;L2(Ω)) ∩ L2(0, T ;Lp1(Ω)) ⊆ Lp2(0, T ;Lp2(Ω))
∥∥y

∥∥
p2,p2

≤ C1 max
{

1
q ,

q−1
q

} (∥∥y
∥∥
2,∞

+
∥∥y

∥∥
p1,2

)
(3.5)
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for ertain onstant C1 = C(p1, p2,Ω). Indeed, by the Hölder inequality:

∥∥y
∥∥p2
p2,p2

=

∫ T

0

∫

Ω

∣∣y
∣∣p2−2∣∣y

∣∣2 dx dt

≤

∫ T

0

(∫

Ω

∣∣y
∣∣p2−2 p1

p1−2 dx
) p1−2

p1

(∫

Ω

∣∣y
∣∣2 p1

2 dx
) 2

p1 dt

≤ sup
[0,T ]

∥∥y
∥∥p2−2

p1(p2−2)

p1−2

∫ T

0

∥∥y
∥∥2
p1

dt

≤ C1

∥∥y
∥∥p2−2
2,∞

∥∥y
∥∥2
p1,2

where we have used the fat that the Hölder onjugate of

p1
2 is

p1
p1−2

and that L
p1(p2−2)

p1−2 (Ω) ⊆ L2(Ω)

sine by the assumptions it an be veri�ed that

p1(p2−2)
p1−2

≤ 2. The onstant C1 is the onstant

appearing in estimation of the L
p1(p2−2)

p1−2 (Ω) norm by the L2(Ω) norm, hene C1 = C1(p1, p2,Ω).
This justi�es the inlusion in (3.5).

Now, still having the assumptions for p1 and p2 in mind, we an estimate the right hand side

by the Young inequality, taking an arbitrary exponent 1 < q < ∞:

∥∥y
∥∥p2
p2,p2

≤ C1

∥∥y
∥∥(p2−2)/p2
2,∞

∥∥y
∥∥2/p2
p1,2

≤ C1

(
1

q

∥∥y
∥∥

p2−2
p2

q

2,∞ +
q − 1

q

∥∥y
∥∥

2
p2

q

q−1

p1,2

)

sine the Hölder onjugate of q is

q
q−1 . Let us set q = p2

p2−2
or, equivalently, p2 = 2q

q−1 . Then

both exponents appearing in the right hand side of the above redue:

p2−2
p2

q = 1 and

2
p2

q
q−1 = 1.

Hene the inequality in (3.5).

Moreover, for p1 as in the part a) of the assumption (E-3), we have

L2(0, T ;H1(Ω)) ⊆ L2(0, T ;Lp1(Ω))∥∥ .
∥∥
p1,2

≤ C2

∥∥ .
∥∥
H1(Ω),2

(3.6)

where C2 = C2(p1,d,Ω). This is straightforward by the Sobolev embedding theorem (see [1,

Theorem 4.12℄).

(3.5) and (3.6) together yield the inlusion and ontinuous embedding (3.4) for

p2 ∈ (2, 4− (4/p1) ], what onludes the proof. �

3.1.2 Targeting-to-state operator � de�nition and ontinuity

We de�ne the state operator

Z = (Zy,Zκ1 , . . . ,ZκJ
) : V −→ X2

as the operator assigning to a given ontrol parameter υ̂ ∈ V the weak solution of the system

(3.1) - (3.2) orresponding to xj := υ̂j for j = 1, . . . , J in the subjet system.

We are interested in Lipshitz ontinuity and weak Gâteaux di�erentiability of Z. The

di�erentiability of Z is the subjet of Setion 3.1.3. Here, we fous on the ontinuity matter.

To deal with it, we will represent Z as the superposition of S with ertain other operator. This

kind of representation immediately allows to see that ontinuity properties of Z depend strongly

on ontinuity properties of S.
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Assuming that (2.1) holds and that pattern funtions σg, σh : Rd → R in (2.2) are given, we

de�ne the operator

Υ =
(
Υgj , Υhj

, Υαj,k

)
j,k=1,...,J

: V −→ U

by the following relations:

(Υ (υ̂))gj := Υgj(υ̂) := PR,ΩTσg(xj)

(Υ (υ̂))hj
:= Υhj

(υ̂) := PR,ΩTσh
(xj)

(Υ (υ̂))αj,k
:= Υαj,k

(υ̂) := δj,k

(3.7)

for j, k = 1, . . . , J , where δj,k is de�ned as in Notation onventions. We reall that, in the

present hapter, the partiular operators above are understood as Tσg ,Tσh
: Rd → L2(Rd) and

PR,Ω : L2(Rd) → L2(Ω). Due to (3.7), the operator Υ is fully determined by the hoie of σg
and σh. The operator Υ an be understood as an operator assigning a ontrol to a given ontrol

parameter.

To onlude properties of the operator Z, it �rst will be useful to know how properties of σg
and σh are related with properties of the operator Υ , whih de�nition depends on σg and σh.
Informations onerning these relations are summarized in the below lemma:

Lemma 3.1.4 The following impliations are true:

a) if σg, σh ∈ L2(Rd), then operators Υgj : V → L2(Ω), Υhj
: V → L2(Ω) and Υαj,k

: V → R, for
j, k = 1, . . . , J , are well-de�ned and ontinuous and hene so Υ : V → U is,

b) if σg, σh ∈ W 1,2(Rd), then operators Υgj : V → L2(Ω), Υhj
: V → L2(Ω) and Υαj,k

: V → R,
for j, k = 1, . . . , J , are Lipshitz ontinuous (globally) and hene so Υ : V → U is,

) if σg, σh ∈ W 1,2(Rd), then operators Υgj : V → L2(Ω), Υhj
: V → L2(Ω) and Υαj,k

: V → R,
for j, k = 1, . . . , J , are weakly Gâteaux di�erentiable and hene so Υ : V → U is.

Proof. It is straightforward that operators Υαj,k
are well-de�ned, Lipshitz ontinuous,

weak Gâteaux di�erentiable. We are left to deal with the remaining operators Υgj and Υgj .

The operators Υgj and Υgj , for j = 1, . . . , J , an be expressed as

Υgj = PR,Ω ◦ Tσg ◦ P
R,V
j , Υgj = PR,Ω ◦ Tσh

◦ PR,V
j (3.8)

Operators PR,Ω : L2(Rd) → L2(Ω) and PR,V
j : V → Rd

are linear and ontinuous. Thus, the

question on the properties of Υgj and Υhj
, for j = 1, . . . , J , redues in its most essential part to

the question on the properties of Tσg .

Operators PR,Ω
and PR,V

j are well de�ned in respetive spaes, for j = 1, . . . , J . Moreover,

for an arbitrary σg ∈ L2(Rd), translation operators Tσg and Tσh
are well de�ned from Rd

to

L2(Rd). Thus, by (3.8), Υgj and Υhj
, for j = 1, . . . , J , are well de�ned.

For an arbitrary σg ∈ L2(Rd), the translation operator Tσg : R
d → L2(Rd) is ontinuous

(see Theorem A.4.2). This, together with (3.8) and the ontinuity of PR,Ω
and PR,V

j , gives the

ontinuity of Υgj for j = 1, . . . , J . Analogous argument holds for operators Υhj
, for j = 1, . . . , J .

For σg ∈ W 1,2(Rd), the translation operator Tσg : R
d → L2(Rd) is Lipshitz ontinuous (see

Theorem A.4.4). Moreover, operators PR,Ω
and PR,V

j , as linear and ontinuous operators, are

Lipshitz ontinuous for j = 1, . . . , J . Hene, by (3.8), Υgj is so, for j = 1, . . . , J . Similarly,

σh ∈ W 1,2(Rd) implies Lipshitz ontinuity of Υhj
, for j = 1, . . . , J .
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Also, for σg ∈ W 1,2(Rd), Theorem A.4.5 gives weak Gâteaux di�erentiability of Tσg : R
d →

L2(Rd). Therefore, by (3.8) and by the rules for di�erential alulus in Banah spaes (see

Theorem A.1.4, Observation A.1.7 and Observation A.1.11 in Appendix A.1), Υgj is weakly

Gâteaux di�erentiable for σg ∈ W 1,2(Rd). Analogously, Υhj
is weakly Gâteaux di�erentiable for

σh ∈ W 1,2(Rd). �

Now, we proeed to investigating properties of the state operator Z. Note that, under the

assumption that (2.1) holds, the weak solution of (3.1) - (3.2) is exatly the weak solution of

(0.1) - (0.3) assoiated with gj := Υgj (υ̂), hj := Υhk
(υ̂) and αj,k := Υαj,k

(υ̂). Hene,

Z = S ◦ Υ

In partiular, the properties of Z are determined by properties of S and Υ .
Having made the above observation, Lemma 3.1.4 together with Theorems 3.1.1 and 3.1.2

allow to justify the below:

Theorem 3.1.5 In the system (3.1) - (3.2), let assumptions (B-1) - (B-5) be ful�lled, with

additional restrition K = J . Assume also that at least one of the following is true:

• y∗ ful�lls the assumption (C-1) and funtions wj are bounded, for j = 1, . . . , J ,

• y∗ ful�lls the assumption (C-2).

Then, the following statements are true:

a) if σg, σh ful�ll the assumption (F-1), then Z : V → X2
is well de�ned and ontinuous,

b) if σg, σh ful�ll the assumption (F-3), then Z : V → X2
is in addition Lipshitz ontinuous

(globally).

Moreover, let p2 be as in the part a) of the assumption (E-3). Then, the above statements hold

also with X2
replaed by X3,p2

.

Remark. Note, that Theorem 3.1.5 in partiular asserts that the weak solution of (3.1) -

(3.2) exists and is unique. N

Remark. Note, that in ontrary to the Lipshitz ontinuity on the bounded sets stated

for S in theorems of Setion 3.1.1, the Lipshitz ontinuity of Z in Theorem 3.1.5 is global.

The reason for the latter is the following. Z = S ◦ Υ , hene, for an arbitrary subset A of V ,

the Lipshitz onstant of Z on A is lesser on equal to produt of Lipshitz onstant of Υ on A
and Lipshitz onstant of S on Υ (A). The Lipshitz onstant of Υ is global (see Lemma 3.1.4).

Moreover, for all υ̂ ∈ V , the orresponding ontrol û = Υ (υ̂) belongs to a ball BU (0, rσ) in U ,
with radius rσ depending only on

∥∥σg
∥∥
2,Rd and

∥∥σh
∥∥
2,Rd . By Theorems 3.1.1 and 3.1.2, S is

Lipshitz ontinuous on BU (0, rσ). Thus, we an take A = B(0, rσ) to justify the global Lipshitz
ontinuity of Z. N

3.1.3 Targeting-to-state operator � di�erentiability

Now, we will fous on the matter of weak Gâteaux di�erentiability of the operator Z understood

as an operator from V to X1
. Z is ertainly well de�ned in this sense, beause X2 ⊆ X1

.

Nevertheless, investigating di�erentiability of Z : V → X1
involves longer justi�ation.
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We will begin with presenting an auxiliary system of equations, whih we all the linearized

system and justifying some basi properties of the subjet system. Next, we will formulate the

main theorem of the present setion, i.e. theorem onerning weak Gâteaux di�erentiability of

Z. This theorem, as well as its proof, involves strongly the linearized system, therefore the

linearized system is essential for the present setion.

Let us start. The below system, whih we all the linearized system, will be utilized later for

haraterizing the weak Gâteaux di�erential of Z:





yt −D∆y − f ′(ŷ)y =
∑J

j=1
Υgj(υ̂)κj +

∑J

j=1
DG,wΥgj(υ̂)(η̂)κ̂j on QT

∂y

∂n
= 0 on ∂Ω× (0, T )

y(x, 0) ≡ 0 for x ∈ Ω

(3.9)

together with





β1κ
′
1 + κ1 = w′1

((
Υh1(υ̂), ŷ − y∗

)
L2(Ω)

)
·

·
((

DG,wΥh1(υ̂)(η̂), ŷ − y∗
)
L2(Ω)

+
(
Υh1(υ̂), y

)
L2(Ω)

)
on [0, T ]

.

.

.

.

.

.

βJκ
′
J + κJ = w′J

((
ΥhJ

(υ̂), ŷ − y∗
)
L2(Ω)

)
·

·
((

DG,wΥhJ
(υ̂)(η̂), ŷ − y∗

)
L2(Ω)

+
(
ΥhJ

(υ̂), y
)
L2(Ω)

)
on [0, T ]

κj(0) = 0 for j = 1, . . . , J

(3.10)

where: Ω is a domain, T > 0, QT := Ω × (0, T ); D,βj > 0; f,wj : R → R; κ̂j : (0, T ) → R;
ŷ, y∗ : QT → R; υ̂, η̂ ∈ V ; Υgj and Υhj

orrespond to given σg, σh : Rd → R (see (3.7) for the

explanation of the latter orrespondene); where j = 1, . . . , J . In the system (3.9) - (3.10), the

unknown is the funtion (y, κ1, . . . , κJ ) : QT → RJ+1
.

The system (3.9) - (3.10) is a partiular ase of the system (1.84) - (1.86) in Setion 1.2.4,

with

g̃j := DG,wΥgj(υ̂)(η̂),

h̃j := DG,wΥhj
(υ̂)(η̂),

Y := ŷ − y∗,

Θj(x, t) := κ̂j(t),

Ξj(x, t) := Υgj (υ̂),

hj := Υhj
(υ̂),

Zj := w′j
((
Υhj

(υ̂), ŷ − y∗
)
L2(Ω)

)

ỹ0(x) := 0,

κ̃j0 := 0,

f̃(x, t, s) := f ′(ŷ(x, t))s,

w̃j(s) := s,

(3.11)

for j = 1, . . . , J , x ∈ Ω, t ∈ (0, T ), s ∈ R. Hene the below de�nition:

De�nition 3.1.6 (y, κ1, . . . , κJ) ∈ X2
is a weak solution of (3.9) - (3.10) if it is a weak solution

of (1.84) - (1.86) with onditions (3.11) (see De�nition 1.2.16).

The following lemma summarizes those properties of (3.9) - (3.10) whih will be neessary

for us in the sequel.

Lemma 3.1.7 Let assumptions (B-1) - (B-4) be ful�lled, with additional restrition K = J . Let
also assumptions (E-1) - (E-2) and (F-2) hold. Moreover, assume that ŷ, y∗ ∈ L2(0, T ;L2(Ω))
and κj ∈ L∞(0, T ), for j = 1, . . . , J .
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Then, the weak solution of the system (3.9) - (3.10) exists, is unique and moreover belongs

to X3,p2
, for p2 as in the assumption (E-3), for arbitrary υ̂, η̂ ∈ V . In addition, for a given

υ̂ ∈ V , the operator assigning the weak solution of (3.9) - (3.10) to η̂ ∈ V belongs to L(V,X1),
to L(V,X2) and to L(V,X3,p2) with p2 as in the assumption (E-3).

Proof. We will verify that the funtions de�ned by relations (3.11) ful�ll assumptions

(D-1) - (D-6) from Setion 1.2.4.

First, f ′ is a Borel measurable funtion, as the lassial derivative of a ontinuous funtion

(see assumptions (B-4) and (E-1)). Thus omposition of f ′ with the measurable funtion ŷ is

measurable. Hene, f̃ in (3.11) is measurable in (x, t) ∈ QT for an arbitrary s ∈ R. Moreover,

f ′ is bounded (by the assumption (B-3)), hene f̃ is Lipshitz ontinuous in s, with the same

onstant for every (x, t) ∈ QT . Also, funtion f̃( . , . , 0) belongs to L2(QT ). Therefore, f̃ de�ned

in (3.11) ful�lls the assumption (D-3) in Setion 1.2.4.

Next, (Υhj
(υ̂), ŷ− y∗)L2(Ω), understood as a funtion of variable t, is measurable. To see this,

note that this funtion an be understood as a omposition of a strongly measurable funtion

ŷ − y∗, from [0, T ] to L2(Ω), with a ontinuous linear funtional on L2(Ω) given by Υhj
(υ̂) and

apply the Pettis theorem (see [3, Th. 1.1.1℄, [21, App. E.5℄, [49, Chap. V.4℄ or [52, p. 1012℄;

[21℄ and [52℄ do not ontain the proof of the theorem). The funtion w′j is Borel measurable,

as a lassial derivative of a ontinuous funtion (see assumptions (B-5) and (E-2)). Thus, the

omposition of w′j with a measurable funtion is measurable, for j = 1, . . . , J . Moreover, w′j is

bounded (by the assumption (B-4)), for j = 1, . . . , J . Hene, for j = 1, . . . , J , Zj de�ned in

(3.11) is an element of L∞(0, T ) and as suh, obeys the assumption (D-6) in Setion 1.2.4.

The observation that, for j = 1, . . . , J , Y, Θj , Ξj , hj , ỹ0, κ̃j0 and w̃j de�ned in (3.11)

obey assumptions (D-4), (D-5), (D-6) and (C-2), respetively, follows straight. Moreover, by the

assumption (F-2) and Lemma 3.1.4, g̃j and h̃j in (3.11) belong to L2(Ω), for j = 1, . . . , J . Hene,(
g̃j , h̃j

)
j=1,...,J

∈ Ũ .

Therefore, the system (3.9) - (3.10) ful�lls the assumptions of Theorems 1.2.17 and 1.2.18 in

Setion 1.2.4. By Theorem 1.2.18, we onlude that the weak solution of (3.9) - (3.10) exists in

X2
and is unique. In addition, for p2 as assumed, X2 ⊆ X3,p2

, X2 →֒ X3,p2
(see Lemma 3.1.3).

Hene, the weak solution of (3.9) - (3.10) belongs also to X3,p2
. Moreover:

• by the de�nition of weak Gâteaux di�erential, the operator

η̂ 7→ (DG,wΥg1(υ̂)(η̂), . . . ,DG,wΥgJ (υ̂)(η̂),DG,wΥh1(υ̂)(η̂), . . . ,DG,wΥhJ
(υ̂)(η̂)) =: ûυ̂,η̂

is linear and bounded from V to Ũ ,

• by the struture of (3.9) - (3.10) and by Theorem 1.2.17, the operator assigning the weak

solution of (3.9) - (3.10) to a given element ûυ̂,η̂ is linear and bounded from Ũ to X2
.

Hene, the operator assigning the weak solution of (3.9) - (3.10) to a given η̂ ∈ V , as the

superposition of the above operators, is linear and bounded from V to X2
. Sine X1 ⊆ X2

,

X1 →֒ X2
, the subjet operator is also linear and bounded from V to X1

. Moreover, sine

X2 ⊆ X3,p2
and X2 →֒ X3,p2

, the subjet operator is linear and bounded from V to X3,p2
. �

Now, we formulate the main theorem of Setion 3.1.3:

Theorem 3.1.8 In the system (3.1) - (3.2), let assumptions (B-1) - (B-5) be ful�lled, with

additional restrition K = J . Assume also that at least one of the following is true:

• y∗ ful�lls the assumption (C-1) and funtions wj are bounded, for j = 1, . . . , J ,
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• y∗ ful�lls the assumption (C-2).

Moreover, let assumptions (E-1) - (E-3) and (F-2) be ful�lled.

Then, the operator Z understood as

Z : V −→ X1

is well de�ned and weakly Gâteaux di�erentiable. Moreover, the value of the weak Gâteaux

di�erential of Z in a point υ̂ ∈ V applied to a diretion η̂ ∈ V , i.e. the value DG,wZ(υ̂)(η̂),
an be identi�ed with the element (ỹ, κ̃1, . . . , κ̃J ) ∈ X1

whih is the weak solution to the system

(3.9) - (3.10) with onditions ŷ = Zy(υ̂) and κ̂j = Zκj
(υ̂).

Remark. In the assumptions of the above theorem, the assumption (E-3) is not neessary if

y∗ ful�lls the assumption (C-2). But if y∗ ful�lls the assumption (C-1) only, then the assumption

(E-3) is essential. N

Remark. Note that, under assumptions of Theorem 3.1.8, Lemma 3.1.7 an be applied.

Hene, the element (ỹ, κ̃1, . . . , κ̃J) ∈ X1
in Theorem 3.1.8 is well de�ned. Moreover, as Lemma

3.1.7 states, for a given υ̂, the operator assigning (ỹ, κ̃1, . . . , κ̃J) ∈ X1
to η̂ ∈ V , denote it

Ẑ υ̂ : V → X1
, is linear and bounded. Hene indeed, the operator Ẑ υ̂

is meaningful as the

weak Gâteaux di�erential of Z in point υ̂. Therefore, Theorem 3.1.8, asserting in fat that

DG,wZ(υ̂)(η̂) = Ẑ υ̂(η̂) for all η̂ ∈ V , makes sense. N

Remark. Note also, that equality DG,wZ(υ̂)(η̂) = Ẑ υ̂(η̂) for all η̂ ∈ V , where Ẑ υ̂
is as

above, explains why we all the system (3.9) - (3.10) the linearized system. N

The following observation will be useful in the proof of Theorem 3.1.8:

Lemma 3.1.9 Let Banah spaes X, Y and an operator T : X → Y , point û ∈ X and diretion

v̂ ∈ X be given. Assume that T is Lipshitz ontinuous and Y is re�exive. Consider olletion

E of all sequenes {εn}
∞
n=1 suh that εn 6= 0, εn → 0 for n → ∞ and the di�erene quotients

εn
−1 (T (û+ εnv̂)− T (û)) are weakly onvergent to some limit in Y for n → ∞. Assume that

this limit is independent of the hoie of {εn}
∞
n=1 ∈ E, or more preisely, that there exists L ∈ Y

suh that

{εn}
∞
n=1 ∈ E =⇒

T (û+ εnv̂)− T (û)

εn

n→∞
−→ L

Then δwT (û; v̂) exists and equals L.

To our knowledge, results of the above type are rarely formulated in the literature on PDEs.

We have derived the below simple proof by our own onsiderations. The proof is not tehnially

omplex, thus the result is probably not new. However, we do not known a literature referene

for iting here.

Proof. For brevity, for a given ε 6= 0 denote T ε(û; v̂) := ε−1 (T (û+ εv̂)− T (û)). Let

Ẽ denote the olletion of all real sequenes {εn}
∞
n=1 suh that εn 6= 0, εn → 0 for n → ∞.

Establishing equality Ẽ = E will onlude the proof, sine, under the axiom of hoie, Cauhy

and Heine limit of a funtion de�nitions are equivalent in metri spaes. The inlusion Ẽ ⊇ E
follows straight. The inlusion Ẽ ⊆ E an be justi�ed as follows.

First,

⋃
E ontains a set (−ε̄, ε̄) \ {0}, for some ε̄ > 0. It omes by ontradition: if not,

then, by the axiom of hoie, there exists ǫ̃ ∈ Ẽ, ǫ̃ = {ε̃n}
∞
n=1 suh that ǫ̃ ∩ (

⋃
E) = ∅. But, by

the Lipshitz ontinuity of T , the orresponding di�erene quotients, T ε̃n(û; v̂), are bounded in
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Y w.r.t. n. Thus, by re�exivity of Y , sequene ǫ̃ ontains a subsequene

˜̃ǫ = {˜̃εn}∞n=1 suh that

T
˜̃εn(û; v̂) onverges weakly in Y as n → ∞. Hene,

˜̃ǫ ∈ E, what ontradits ǫ̃ ∩ (
⋃

E) = ∅.
Having this, an arbitrary sequene belonging Ẽ onsists of elements of sequenes belonging

to E. The inlusion Ẽ ⊆ E will be shown one we justify that an arbitrary sequene onsisting of

elements of sequenes belonging to E is still in E. For this end, it is now enough to verify that

all sequenes from E have the same modulus of onvergene, i.e. for all φ ∈ Y ∗ for all λ > 0
there exists γ > 0 suh that for all ǫ = {εn}

∞
n=1 ∈ E for all elements satisfying εn < γ there holds∣∣〈φ, T εn(û; v̂)− L〉Y ∗,Y

∣∣ < λ.

But this also omes by ontradition. If this is not true, then, by the axiom of hoie, we

would be able to onstrut a sequene ǭ = {ε̄n}
∞
n=1 onsisting of elements of sequenes from E

suh that

∣∣〈φ, T ε̄n(û; v̂)− L〉Y ∗,Y

∣∣ ≥ λ for ertain λ > 0 and φ ∈ Y ∗. Hene, ǭ annot have any
weakly onvergent to L subsequene. But this is not possible: by the Lipshitz ontinuity of

T , the di�erene quotients T ε̄n(û; v̂) are bounded in Y w.r.t. n, and therefore, by re�exivity of

Y , ǭ has a subsequene

¯̄ǫ = {¯̄εn}
∞
n=1 suh that T ¯̄εn(û; v̂) onverges weakly in Y as n → ∞. By

assumption, the weak limit of

¯̄ǫ equals L, what is a ontradition. �

Now, we are ready to proeed to the proof of the main theorem of the present setion.

Proof of Theorem 3.1.8. The fat that Z is well de�ned from V to X1
is lear by

Theorem 3.1.5 and by X2 ⊆ X1
, X2 →֒ X1

. Conerning the di�erentiability matter, we will

prove that, in fat, the operator Z is weakly Gâteaux di�erentiable from V to X3,p2
, with p2

as assumed. This yields the asserted di�erentiability from V to X1
, sine p2 > 2 and thus

X3,p2 ⊆ X1
, X3,p2 →֒ X1

.

For ε 6= 0, denote di�erene quotients of Z in υ̂ in diretion η̂ as

Zε(υ̂; η̂) := ε−1 (Z(υ̂ + εη̂)−Z(υ̂))

Assume that ǫ = {εn}
∞
n=1 is a sequene suh that εn 6= 0, εn → 0 for n → ∞ and that the

orresponding di�erene quotients are weakly onvergent to ertain Z̃ǫ(υ̂; η̂) ∈ X3,p2
:

Zεn(υ̂; η̂)⇀Z̃ǫ(υ̂; η̂) in X3,p2
, as n → ∞ (3.12)

Let E denote the olletion of all sequenes ǫ = {εn}
∞
n=1 satisfying the above onditions. To

justify that Z is weakly Gâteaux di�erentiable from V to X1
, we need to establish that the

following hypotheses hold:

(Hyp-1) Z̃ǫ(υ̂; η̂) ∈ X3,p2
is independent of sequene ǫ ∈ E, i.e. there exists Z̃(υ̂; η̂) ∈ X3,p2

suh

that Z̃ǫ(υ̂; η̂) = Z̃(υ̂; η̂) for all ǫ ∈ E.

(Hyp-2) Z̃(υ̂; . ) is a bounded linear operator from V to X3,p2
.

The above two hypotheses together, if proven, imply that Z is weakly Gâteaux di�erentiable

from V to X3,p2
. To justify it, assume temporarily that hypotheses (Hyp-1) and (Hyp-2) hold.

Having this, note that, by (Hyp-1), Lemma 3.1.9 an be applied. Indeed, X3,p2
is re�exive and

Banah and, by Theorem 3.1.5, Z is Lipshitz ontinuous with values in X3,p2
. Therefore, sine

(Hyp-1) holds, all assumptions of Lemma 3.1.9 are satis�ed. Thus it an be used to onlude

that δwZ(υ̂; η̂) exists in X3,p2
and equals Z̃(υ̂; η̂). Now, if δwZ(υ̂; . ) is linear and bounded from

V to X3,p2
, then it an be identi�ed with the weak Gâteaux di�erential of Z : V → X3,p2

, in

point υ̂ ∈ V . But the linearity and boundedness follows by the relation δwZ(υ̂; η̂) = Z̃(υ̂; η̂) and
by (Hyp-2).
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Therefore, we are left to justify hypotheses (Hyp-1) and (Hyp-2). But the onsidered hy-

potheses will be straightforward one we prove that, for an arbitrary sequene ǫ ∈ E, Z̃ǫ(υ̂; η̂) is
the element of the spae X3,p2

whih is the weak solution of the system (3.9) - (3.10). Indeed, by

Lemma 3.1.7, the weak solution of (3.9) - (3.10) exists in X3,p2
and is unique. Hene, if Z̃ǫ(υ̂; η̂)

is the weak solution of (3.9) - (3.10) for an arbitrary ǫ ∈ E, then (Hyp-1) holds � we an write

that Z̃ǫ(υ̂; η̂) = Z̃(υ̂; η̂), for Z̃(υ̂; η̂) being the weak solution of (3.9) - (3.10). Moreover, if Z̃(υ̂; η̂)
is the weak solution of (3.9) - (3.10), then Lemma 3.1.7 states that the operator Z̃(υ̂; . ) is linear
and bounded from V to X3,p2

. Thus, (Hyp-2) also holds. Altogether, it remains to show that

Z̃ǫ(υ̂; η̂) solves the system (3.9) - (3.10) for an arbitrary ǫ ∈ E to omplete the proof.

Thus �x ǫ := {εn}
∞
n=1 ∈ E. Sine Z̃ǫ(υ̂; η̂) is in fat the sequential weak diretional derivative

of Z in X1
on sequene ǫ (see De�nition A.1.9), we will use notation δ̄ǫwZ(υ̂; η̂) in plae of

Z̃ǫ(υ̂; η̂). Moreover, for onveniene, denote for a given ε 6= 0:

(ỹε, κ̃ε1, . . . , κ̃
ε
J ) := Zε(υ̂; η̂), (ỹ, κ̃1, . . . , κ̃J) := δ̄ǫwZ(υ̂; η̂), (ŷ, κ̂1, . . . , κ̂J ) := Z(υ̂)

Consider the weak form of the system (3.1) - (3.2) (see De�nition 3.0.1) orresponding to

xj := υ̂j and the weak form of this system orresponding to xj := υ̂j + εη̂j , for j = 1, . . . , J
and for a given ε 6= 0. Subtrat these weak forms and divide the resulting identities by ε. By

the above introdued notation, we get that (ỹε, κ̃ε1, . . . , κ̃
ε
J ) is an element of X2

satisfying the

following onditions:

ỹε( . , 0) ≡ 0 in L2(Ω), κ̃εj(0) = 0 for j = 1, . . . , J
(3.13)

∫ T

0

〈
(ỹε)′ , φ

〉
+ D

(
∇ỹε,∇φ

)
L2(Ω)

+

−

(
F (υ̂ + εη̂))− F (υ̂))

ε
+

J∑

j=1

Gj(υ̂ + εη̂)−Gj(υ̂)

ε
, φ

)

L2(Ω)

dt = 0
(3.14)

∫ T

0

(
βj(κ̃

ε
j)
′ + κ̃εj −

Hj(υ̂ + εη̂)−Hj(υ̂)

ε

)
ξ dt = 0 (3.15)

for all φ ∈ L2(0, T ;H1(Ω)) and all ξ ∈ L2(0, T ), and where we have utilized the following

de�nitions:

F (υ̃)(x, t) := f
(
Zy(υ̃)(x, t)

)
a.e. on QT

Gj(υ̃)(x, t) := PR,ΩTσg (υ̃j)(x) Zκj
(υ̃)(t) = Υgj(υ̃)(x) Zκj

(υ̃)(t) a.e. on QT

Hj(υ̃)(t) := wj

(∫

Ω
PR,ΩTσh

(υ̃j)(x) (Zy(υ̃)(x, t)− y∗(x, t))dx
)

= wj

(∫

Ω
Υhj

(υ̃)(x) (Zy(υ̃)(x, t)− y∗(x, t))dx
)

a.e. on (0, T )

for υ̃ ∈ V and j = 1, . . . , J .
We intend to pass to the limit in identities (3.13) - (3.15), putting ε = εn and sending n to

∞. The passage in the linear terms follows straight, by (3.12). We need to fous on the nonlinear

terms appearing in the identity (3.14) and the identity (3.15). These are the terms assoiated

with the di�erene quotients of F , of Gj and of Hj , for j = 1, . . . , J .
The �rst term. Let us start with the term assoiated with the di�erene quotients of F ,

i.e.: ∫ T

0

( 1

εn
{F (υ̂ + εnη̂))− F (υ̂))} , φ

)
L2(Ω)

dt where φ ∈ L2(0, T ;H1(Ω))
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For the limit passage, we need to justify that

1
εn

{F (υ̂ + εnη̂))− F (υ̂))} onverges weakly in

L2(0, T ;L2(Ω)), as n tends to ∞. But the weak onvergene in L2(0, T ;L2(Ω)) is equivalent to
the weak onvergene in L2(QT ). We will fous on investigating the latter. We will show that

the stated weak onvergene holds and that the weak limit is equal f ′(ŷ)δ̄ǫwZy(υ̂; η̂) = f ′(ŷ)ỹ.
Note, that F (υ̂) an be interpreted as F (υ̂) = Nf ◦ Zy(υ̂) where Nf denotes the Nemytskii

operator Nf assoiated with the funtion f . Therefore, the onsidered di�erene quotients of F
onverge weakly in L2(QT ) to δ̄ǫw(Nf ◦ Zy)(υ̂; η̂), if the latter exists. Thus, we need to justify

that δ̄ǫw(Nf ◦ Zy)(υ̂; η̂) exists in L2(QT ) and equals f ′(ŷ)ỹ.
By Theorem 3.1.5 and by identi�ation Lp2(0, T ;Lp2(Ω)) = Lp2(QT ), Zy an be understood

as Zy : V → Lp2(QT ). Moreover, by (3.12) and by the introdued notation, δ̄ǫwZy(υ̂; η̂) exists in
Lp2(QT ) and equals ỹ.

By the assumption (B-3), it an be veri�ed that f obeys the following growth ondition

sup
s∈R

∣∣f(s)
∣∣/
(
1 +

∣∣s
∣∣p2/2) < ∞

Therefore, by Theorem A.3.2 in Appendix A.3, Nf is well de�ned asNf : Lp2(QT ) → L2(QT ). By
assumptions (B-3) and (E-1), the derivative f ′ exists and satis�es the following growth ondition:

sup
s∈R

∣∣f ′(s)
∣∣/
(
1 +

∣∣s
∣∣(p2/2)−1) < ∞

Thus, by Theorem A.3.5 in Appendix A.3, the Nemytskii operator Nf is Fréhet di�erentiable

from Lp2(QT ) to L2(QT ), with

DFNf (p)(q)(x, t) = f ′(p(x, t))q(x, t) a.e. on QT , for p, q ∈ Lp2(QT )

By the above properties of Zy and Nf and by the hain rule (see Theorems A.1.4 and A.1.10

in Appendix A.3), δ̄ǫw(Nf ◦ Zy)(υ̂; η̂) exists and

δ̄ǫw(Nf ◦ Zy)(υ̂; η̂) = DFNf (Zy(υ̂))δ̄
ǫ
wZy(υ̂; η̂) = f ′(ŷ)ỹ (3.16)

1

εn
{F (υ̂ + εnη̂))− F (υ̂))} ⇀ δ̄ǫw(Nf ◦ Zy)(υ̂; η̂) in L2(QT ) (3.17)

The seond term. Now, we proeed to the terms assoiated with the di�erene quotients

of Gj , i.e.

∫ T

0

( 1

εn
{Gj(υ̂ + εnη̂))−Gj(υ̂))} , φ

)
L2(Ω)

dt where φ ∈ L2(0, T ;H1(Ω))

for j = 1, . . . , J . For the limit passage, we need to verify that

1
εn

{Gj(υ̂ + εnη̂))−Gj(υ̂))}

onverges weakly in L2(0, T ;L2(Ω)), as n → ∞, for j = 1, . . . , J . We will use the fat that the

weak onvergene in L2(0, T ;L2(Ω)) and the weak onvergene in L2(QT ) are equivalent. We

will show that the weak onvergene in L2(QT ) hold and that the weak limit equals Υgj(υ̂)κ̃j +
DG,wΥgj(υ̂)(η̂)κ̂j .

Term Gj , for j = 1, . . . , J , an be understood as:

Gj(υ̂) = I(Υgj (υ̂),Zκj
(υ̂))

where

I : L2(Ω)× L2(0, T ) −→ L2(QT ), I(p, q)(x, t) := p(x)q(t) a.e. on QT
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for p ∈ L2(Ω), q ∈ L2(0, T ). Therefore, for j = 1, . . . , J , the onsidered di�erene quotients

of Gj onverge weakly in L2(QT ) to δ̄ǫwI ◦ (Υgj ,Zκj
)(υ̂; η̂), if this derivative exists. Thus, it

is neessary to justify that the subjet derivative indeed exists in L2(QT ), and that it equals

Υgj(υ̂)κ̃j +DG,wΥgj(υ̂)(η̂)κ̂j .
By (3.12) and by the introdued notation, δ̄ǫwZκj

(υ̂; η̂) exists in L2(0, T ) and equals κ̃j .

By Lemma 3.1.4, the operator Υgj is well de�ned and weakly Gâteaux di�erentiable from V
to L2(Ω).

Moreover, it is straightforward that I(p, q) is measurable for arbitrary p ∈ L2(Ω) and q ∈
L2(0, T ) and, by Fubini theorem, belongs to L2(QT ). Thus, I is well-de�ned. I is also bilinear

and, again by Fubini theorem, bounded.

Hene, by the above properties of Zκj
, Υgj and I and by the produt rule for Banah spaes

(see Theorem A.1.5 in Appendix A.1), we infer that, for j = 1, . . . , J , there holds:

δ̄ǫwI ◦ (Υgj ,Zκj
)(υ̂; η̂) = I

(
δ̄ǫwΥgj(υ̂; η̂),Zκj

(υ̂)
)

+ I
(
Υgj(υ̂), δ̄

ǫ
wZκj

(υ̂; η̂)
)

= DGΥgj (υ̂)(η̂)κ̂j + Υgj(υ̂)κ̃j
(3.18)

1

εn
{Gj(υ̂ + εnη̂)−Gj(υ̂)} ⇀ δ̄ǫwI ◦ (Υgj ,Zκj

)(υ̂; η̂) in L2(QT ) (3.19)

The third term. The remaining terms we need to investigate are the terms assoiated with

the di�erene quotients of Hj , i.e. terms

∫ T

0

( 1

εn
{Hj(υ̂ + εnη̂))−Hj(υ̂))}

)
ξ dt where ξ ∈ L2(0, T )

for j = 1, . . . , J . We require to justify that

1
εn

{Hj(υ̂ + εnη̂))−Hj(υ̂))} onverges weakly in

L2(0, T ), as n tends to ∞. We will prove that this weak onvergene holds and that the weak

limit in this onvergene is equal

w′j
((
Υhj

(υ̂) , ŷ − y∗
)
L2(Ω)

)
·
((

DG,wΥhj
(υ̂)(η̂) , ŷ − y∗

)
L2(Ω)

+
(
Υhj

(υ̂) , ỹ
)
L2(Ω)

)

Term Hj an be understood as:

Hj(υ̂) = Nwj
◦ I

(
Υhj

(υ̂),Zy(υ̂)− y∗
)

= Nwj
◦ I ◦

(
Υhj

, iy∗ ◦ Zy

)
(υ̂)

where, for j = 1, . . . , J

iy∗ : L
p2(0, T ;L2(Ω)) → Lp2(0, T ;L2(Ω)) iy∗(p) := p− y∗

I : L2(Ω)× Lp2(0, T ;L2(Ω)) −→ Lp2(0, T ) I(q, r)(t) := (q( . ), r( . , t))L2(Ω) a.e. on [0, T ]

Nwj
: Lp2(0, T ) −→ L2(0, T ) is the Nemytskii operator orresp. to wj

for p, r ∈ Lp2(0, T ;L2(Ω)), q ∈ L2(Ω). Hene, for j = 1, . . . , J , the investigated di�erene

quotients of Hj onverge to δ̄ǫwNwj
◦ I ◦

(
Υhj

, iy∗ ◦ Zy

)
(υ̂; η̂), if the latter exists. Thus, analysis

of existene of this derivative is required. We will perform it now.

Note that Lp2(0, T ;Lp2(Ω)) ⊆ Lp2(0, T ;L2(Ω)) and Lp2(0, T ;Lp2(Ω)) →֒ Lp2(0, T ;L2(Ω)).
Thus, Zy is well de�ned with values in Lp2(0, T ;L2(Ω)). By the mentioned embedding and

by (3.12), the derivative δ̄ǫwZy(υ̂; η̂) exists in Lp2(0, T ;L2(Ω)) and, by the introdued notation,

equals ỹ.
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Next, it follows straight that the operator iy∗ is well de�ned. It an be veri�ed by the de�nition
of the Fréhet di�erentiability, that the operator iy∗ is Fréhet di�erentiable with DF iy∗(p)s = s,
for p, s ∈ Lp2(0, T ;L2(Ω)).

By Lemma 3.1.4, the operator Υhj
is well de�ned and weakly Gâteaux di�erentiable from V

to L2(Ω), for j = 1, . . . , J .

By Pettis theorem, I(q, r) is measurable for arbitrary q ∈ L2(Ω) and r ∈ Lp2(0, T ;L2(Ω)).
Moreover, by the Fubini theorem and the Hölder inequality:

∥∥I(p, q)
∥∥p2
Lp2 (0,T )

=

∫ T

0

∣∣(p( . ) , q( . , t)
)
L2(Ω)

∣∣p2 dt

≤
∥∥p

∥∥p2
2

∫ T

0

∥∥q( . , t)
∥∥p2
2

dt =
∥∥p

∥∥p2
2

∥∥q
∥∥p2
2,p2

Hene, I is well de�ned. I is also bilinear and, by the above estimates, bounded.

By the assumption (B-4), it an be veri�ed that wj , for j = 1, . . . , J , satis�es the following
growth ondition

sup
s∈R

∣∣wj(s)
∣∣/
(
1 +

∣∣s
∣∣p2/2) < ∞

Hene, by Theorem A.3.2 in Appendix A.3, Nwj
is well de�ned as Nf : Lp2(0, T ) → L2(0, T ).

Also, by assumptions (B-4) and (E-2), the derivative w′j exists and:

sup
s∈R

∣∣w′j(s)
∣∣/
(
1 +

∣∣s
∣∣(p2/2)−1) < ∞

Therefore, by Theorem A.3.5 in Appendix A.3, the Nemytskii operator Nwj
is Fréhet di�eren-

tiable from Lp2(0, T ) to L2(0, T ), with

DFNwj
(p)(q)(x, t) = w′j(p(t))q(t) a.e. on (0, T ), for p, q ∈ Lp2(0, T )

Having the above properties of Zy, iy∗ , Υhj
, I and Nwj

, for j = 1, . . . , J , the hain rule and

the produt rule (see Theorems A.1.4 and A.1.5 in Appendix A.1) an be ombined to infer that

δ̄ǫwHj(υ̂; η̂) exists and

δ̄ǫwHjk(υ̂; η̂) = δ̄ǫw
(
Nwk

◦ I ◦
(
Υhj

, iy∗ ◦ Zy

))
(υ̂; η̂)

= w′k
(
I
(
Υhj

(υ̂),Zy(υ̂)− y∗
))
·

·
{
I
(
δ̄ǫwΥhk

(υ̂; η̂),Zy(υ̂)− y∗
)
+ I

(
Υhk

(υ̂), δ̄ǫwZy(υ̂; η̂)
)}

= w′k
((
Υhk

(υ̂), ŷ − y∗
)
L2(Ω)

)
·

·
{(

DG,wΥhk
(υ̂)(η̂), ŷ − y∗

)
L2(Ω)

+
(
Υhk

(υ̂), ỹ
)
L2(Ω)

}

(3.20)

1

εn
(Hjk(υ̂ + εnη̂)−Hjk(υ̂)) ⇀ δ̄ǫwHjk(υ̂; η̂) in L2(QT ) (3.21)

The analysis of the nonlinear terms is �nished. Altogether, due to (3.12), (3.17), (3.19) and

(3.21), we an pass with n to in�nity in identities (3.13) - (3.15). Moreover, by (3.16), (3.18)

and (3.20) we infer that the limit passage results in identities whih orrespond preisely to the

de�nition of the weak solution of (3.9) - (3.10), with (ỹ, κ̃1, . . . , κ̃J ) = δ̄ǫwZ(υ̂; η̂) being the weak

solution (see De�nition 3.1.6). This onludes the proof of the theorem. �
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3.2 Optimization problem

In this setion, we fous on the optimal targeting problem, announed in the beginning of Chap-

ter 3. The main point of the present setion is derivation of a formula for the Gâteaux di�erential

of the ost funtional (3.3). This formula allows to express neessary optimality onditions for

the optimal targeting problem in an expliit way. Moreover, the subjet formula was helpful

to perform the numerial optimization experiments, desribed in Chapter 4. For ompleteness

of our onsiderations, in this setion we present also a simple result onerning existene of

minimizers of the ost funtional (3.3).

The present setion is organized as follows. We begin with reformulating the ost funtional

(3.3) within a funtional analysis framework, more onvenient to work with. Next, in brief

Setion 3.2.1, we give a basi riterion onerning existene of minimizers for the ost funtional.

This riterion assumes ompatness of the supports of the pattern funtions σg and σh, entering
the system (3.1) - (3.2). Restrition of ompat supports may seem to be strong. Nevertheless, in

Chapter 4, onerning numerial optimization experiments, we will use patterns funtions with

ompat supports. Therefore results assuming ompat supports of the pattern funtions are

su�ient for our purposes.

In Setion 3.2.2, we proeed to the matter of di�erentiability of the ost funtional. First,

it is shown that the ost funtional is Gâteaux di�erentiable. Next, we pass to haraterizing

the Gâteaux di�erential of the ost funtional. Sine, by de�nition, the Gâteaux di�erential of

the ost funtional in point υ̂ ∈ V is a bounded linear funtional on V , it an be haraterized

as an element of Λυ̂ ∈ V ∗ = V , dependent on υ. The main theorem of Setion 3.2.2 gives a

formula for Λυ̂
. The above results on di�erentiability of the ost funtional require the operator

Z, de�ned in Setion 3.1.2, to be weakly Gâteaux di�erentiable. Hene, these results inherit the

assumptions guarantying weak Gâteaux di�erentiability of Z, see Setion 3.1.3.

In Setion 3.2.1 and Setion 3.2.2, the main results assume, in partiular, that in the system

(3.1) - (3.2) the funtion f is globally Lipshitz and y0 belongs to L
2(Ω). In Setion 3.2.3, we show

how to generalize the main results of Setion 3.2.1 and Setion 3.2.2 to the ase where f is loally

Lipshitz only, with the ondition (1.73) and where y0 ∈ L∞(Ω). The results of Setion 3.2.3 over
the ase of the data utilized in the numerial optimization experiments desribed in Chapter 4.

Let us start. Note, that if the assumptions for the system (3.1) - (3.2) are suh that the weak

solution exists (i.e. y ∈ L2(QT ), in partiular), then the ost funtional (3.3) an be identi�ed

with the ost funtional I , de�ned as follows:

I : V → R, I(υ̂) := λ̃
∥∥ZT0

y (υ̂)− y∗T0
∥∥2
L2(Q

T0
T

)
(3.22)

where parameters λ̃ > 0 and T0 ∈ (0, T ) are given, QT0
T is de�ned as in the beginning of the

present hapter and

ZT0
y := PR,T0 ◦ Zy, y∗T0 := PR,T0(y∗) (3.23)

We reall that, in the present hapter, the operator PR,T0
is understood as PR,T0 : L2(QT ) →

L2(QT0
T ). Conditions (3.22) - (3.23) are more onvenient for analysis than the ondition (3.3).

Hene, sine now until the end of Setion 3.2, we will fous onditions (3.22) - (3.23) instead of

the ondition (3.3).

Having the above de�nition of I , we formulate the optimization problem that we will fous

on as:

inf
υ̂∈V

I(υ̂) (3.24)
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3.2.1 Existene of loal minimizers

In this brief setion, we address the question onerning the existene of solutions to the problem

(3.24). The following result is true:

Theorem 3.2.1 In the system (3.1) - (3.2), let assumptions (B-1) - (B-5) be ful�lled, with

additional restrition K = J . Assume also that at least one of the following is true:

• y∗ ful�lls the assumption (C-1) and funtions wk are bounded, for j = 1, . . . , J ,

• y∗ ful�lls the assumption (C-2).

and that σg, σh ful�ll assumptions (F-1) and (F-3). Then, the optimization problem (3.24)

attains at least one solution.

Proof. Let distV denote the metri in the metri spae V . By the assumption (F-3),

I : V → R is onstant on the set Ec
, being the omplement in V of

E =
{
(x1, . . . , xJ) : dist(xj ,Ω) ≤ Csupp j = 1, . . . , J

}

where Csupp = max{diam(supp(σg)),diam(supp(σh))}. Indeed, the operator Υ is onstant on

Ec ⊆ V and hene Zy = Sy ◦ Υ is onstant on Ec
and so I is.

On the other hand, our assumptions allow to apply Theorem 3.1.5 and onlude that Z : V →
X2

is ontinuous. By this, the omponent Zy of Z is ontinuous when understood as Zy : V →

L2(QT ). Hene, it an be veri�ed that ZT0
y : V → L2(Qt1

T ) is ontinuous as well. The latter

allows to infer the ontinuity of I : V → R.
Moreover, due to the assumption (F-3), E ⊂ V is ompat or empty. In the ase when E is

ompat, I , as a ontinuous funtional, attains its minimum on E in some point ῡ ∈ E. Then

the minimal value of I on V is min{I(υ̂),I(ῡ)} for an arbitrary υ̂ ∈ Ec
. In the ase of empty E

the minimal value of I on V is I(υ̂) for an arbitrary υ̂ ∈ Ec
. �

Remark. The proof of Theorem 3.2.1 is simple due to the restritive the assumption

(F-3). Nevertheless, the assumption (F-3) su�e to over the data onsidered in the numerial

optimization experiments desribed in Chapter 4. N

Remark. Dispensing the assumption (F-3) in Theorem 3.2.1 is not an obvious modi�a-

tion. This assumption allowed to redue the optimization problem to the problem of existene

of minimizers of I on a ompat subset of V , what, along with the assumptions su�ient for

the ontinuity of I , immediately justi�ed the desired result. Without the assumption (F-3), the

methods of the proof of Theorem 3.2.1 do not redue the problem to the problem of minimization

on a ompat subset of V . Hene, in this situation, the natural strategy would be to selet a

minimizing sequene, to justify its boundedness in V , to selet a weakly onvergent subsequene

and next to justify the properties of I neessary for the limit passage on this subsequene. In

situations of this kind, it is ommon that the boundedness of the minimizing sequene is on-

luded by the presene of some oering term in the de�nition of a ost funtional. Unfortunately,

the de�nition of I does not ontain any oering term, allowing to obtain boundedness of the

minimizing sequene. Thus, the mentioned strategy would be not straightforward to apply.

The above makes the problem of dispensing the assumption (F-3) in Theorem 3.2.1 inter-

esting. However, we would like to fous rather on the problem of haraterizing the solutions of

problem (3.24) than on the problem of existene of its solutions. Therefore, we do not ontinue

the investigation of the latter problem in the present work. N



86 CHAPTER 3. OPTIMAL TARGETING PROBLEM � PROPERTIES

3.2.2 The gradient of the ost funtional

Setion 3.2.2 is devoted to investigating the di�erentiability of I : V → R and deriving a hara-

terization of its di�erential. The haraterization of the di�erential of I is the main theorem of

Setion 3.2.2. Before deriving the announed haraterization, we introdue an auxiliary system

of equations, whih we all the adjoint system. The idea of the proof of the main theorem onsists

in testing the solution of the linearized system (see Setion 3.1.3) with the solution of the adjoint

system, testing the solution of the adjoint system with the solution of the linearized system and

omparing the results of these testings. Hene, both the adjoint system and the linearized system

are essential for the proof of the main theorem of Setion 3.2.2.

To be more preise, we aim in proving the Gâteaux di�erentiability of the ost funtional I ,
de�ned by (3.22) - (3.23), and representing its Gâteaux di�erential in the following form:

DGI(υ̂)(η̂) =
(
Λυ̂, η̂

)
V

(3.25)

for ertain Λυ̂ ∈ V ∗ = V . The element Λυ̂
in (3.25) is in fat the gradient of I and hene an be

utilized to perform gradient-type optimization proedures. The haraterization of Λυ̂
, obtained

below in the present setion, was utilized in the numerial experiments desribed in Chapter 4.

Let us begin with some remarks on di�erentiability of I .

Lemma 3.2.2 Let the assumptions of Theorem 3.1.8 be ful�lled. Then, the ost funtional

I : V → R, de�ned in (3.22) - (3.23), is Gâteaux di�erentiable and

(DGI)(υ̂)(η̂) = 2λ̃
(
ZT0
y (υ̂)− y∗T0 , DG,wZ

T0
y (υ̂)(η̂)

)
L2(Q

T0
T

)
(3.26)

and DG,wZ
T0
y (υ̂)(η̂) an be haraterized as follows:

DG,wZ
T0
y (υ̂)(η̂) = PR,T0

(
DG,wZy(υ̂)(η̂)

)
(3.27)

Proof. First, note that, by (3.22) and (3.23), I an be understood as

I(υ̂) = λ̃
∥∥PR,T0 ◦ iy∗ ◦ Zy (υ̂)

∥∥2
L2(Q

T0
T

)
(3.28)

where λ̃, T0 and QT0
T are as in (3.22) - (3.23) and where iy∗ is de�ned by

iy∗ : L
2(QT ) → L2(QT ), iy∗(p) := p− y∗ (3.29)

for p ∈ L2(QT ).

Note, that the de�nition of iy∗ in (3.29) makes sense under the assumption (E-3), sine

Lp2(0, T ;L2(Ω)) →֒ L2(QT ). It also follows by the de�nition of the Fréhet di�erentiability

that iy∗ is Fréhet di�erentiable and DF iy∗(p)(q) = q, for p, q ∈ L2(QT ). Moreover, the op-

erator PR,T0 : L2(QT ) → L2(QT0
T ) is linear and bounded and hene Fréhet di�erentiable with

DFP
R,T0(p)(q) = PR,T0(q), for p, q ∈ L2(QT ) (see Observation A.1.7 in Appendix A.1). In ad-

dition, sine the assumptions of Theorem 3.1.8 are ful�lled, the operator Zy is weakly Gâteaux

di�erentiable from V to L2(QT ).

By the above remarks, by (3.28) and by Theorem A.1.4 and Observations A.1.6, A.1.8 in

Appendix A.1, we onlude that the assertion holds. �



3.2. OPTIMIZATION PROBLEM 87

Lemma 3.2.2 justi�es the existene of DGI and, by (3.26), gives ertain haraterization of

the latter. Nevertheless, the subjet haraterization is not of form (3.25), being our aim. Thus,

we now fous on deriving representation (3.25) of the di�erential of the ost funtional I .

The following system of equations, whih we all the adjoint system, will be neessary for our

purposes: 



− pt −D∆p− f ′(Ŷ )p = (Ŷ − y∗)1(T0,T )+

+
∑J

j=1
w′j

(∫

Ω
Υhj

(υ̂)(Ŷ − y∗) dx
)
Υhj

(υ̂) qj on QT

∂p

∂n
= 0 on ∂Ω× (0, T )

p(T, x) ≡ 0

(3.30)

together with 



− β1q
′
1 + q1 =

∫

Ω
Υg1(υ̂)p dx on [0, T ]

.

.

.

.

.

.

− βJq
′
J + qJ =

∫

Ω
ΥgJ (υ̂)p dx on [0, T ]

qj(T ) = 0 for j = 1, . . . , J

(3.31)

where: Ω is a domain, T > 0, QT := Ω × (0, T ) and, for j = 1, . . . , J , D,βj > 0 are given

numbers, f,wj : R → R, Ŷ , y∗ : QT → R are given funtions, υ̂ ∈ V , Υgj and Υhj
orrespond to

given σg, σh : Rd → R (see (3.7) for the explanation of the latter orrespondene), T0 ∈ (0, T )
and 1(T0,T ) : (0, T ) → R denotes the harateristi funtion of interval (T0, T ) (see Notation

onventions). In the system (3.30) - (3.31), the unknown is the funtion (p, q1, . . . , qJ) : QT →
RJ+1

.

Note, that if (p, q1, . . . , qJ) was a lassial solution of the system (3.30) - (3.31), then

(Pi
QT

p,Pi
T q1, . . . ,P

i
T qJ), where P

i
QT

and Pi
T are de�ned as in the beginning of the present hap-

ter, would be a lassial solution of the system (1.84) - (1.86) in Setion 1.2.4, with

Y(x, t) := 0,

Θj(x, t) := 0,

Ξj := w′j

(∫

Ω
Υhj

(υ̂)Pi
QT

(Ŷ − y∗) dx
)
Υhj

(υ̂),

f̃(x, t, s) := f ′(Pi
QT

(Ŷ )(x, t))s +

+ Pi
QT

(Ŷ − y∗)(x, t)Pi
T

(
1(T0,T )

)
(t),

w̃j(s) := s,

hj := Υgj(υ̂),

Zj(t) := 1,

g̃j(x) := 0,

h̃j(x) := 0,

ỹ0(x) := 0,

κ̃j0 := 0,

(3.32)

for j = 1, . . . , J , x ∈ Ω, t ∈ (0, T ), s ∈ R.
The above remark explains the motivation behind the following de�nition of weak solutions

of (3.30) - (3.31), also involving the use of inverse time operators Pi
QT

and Pi
T :

De�nition 3.2.3 The element (p, q1, . . . , qJ) ∈ X2
is a weak solution of (3.30) - (3.31) if the

element (Pi
QT

p,Pi
T q1, . . . ,P

i
T qJ) is a weak solution of (1.84) - (1.86) with onditions (3.32) (see

De�nition 1.2.16).
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It is straightforward that if (p, q1, . . . , qJ) ∈ X2
, then (Pi

QT
p,Pi

T q1, . . . ,P
i
T qJ) ∈ X2

. Thus,

De�nition 3.2.3 is meaningful.

With the above de�nition, we an justify the following existene and uniqueness result:

Lemma 3.2.4 Let assumptions (B-1) - (B-4) be ful�lled, with additional restrition K = J . Let
also assumptions (E-1) - (E-2) and (F-1) hold. Moreover, assume that Ŷ , y∗ ∈ L2(0, T ;L2(Ω)).

Then, the weak solution of the system (3.30) - (3.31) exists and is unique.

Proof. By De�nition 3.2.3, it su�es to show, that the system (1.84) - (1.86) with

onditions (3.32) has a unique weak solution in sense of De�nition 1.2.16. For this end, it is

enough to justify that the assumptions of Theorem 1.2.18 are ful�lled.

First, Ŷ ∈ L2(QT ) and hene Pi
QT

Ŷ ∈ L2(QT ). In partiular, Pi
QT

Ŷ is measurable. More-

over, f ′ is a Borel measurable funtion beause it is the lassial derivative of a ontinuous

funtion (see assumptions (B-4) and (E-1)). Therefore, f ′(Pi
QT

(Ŷ )( . , . )) is measurable, as well

as f ′(Pi
QT

(Ŷ )( . , . ))s, for an arbitrary s ∈ R. Also, Pi
QT

y∗ is measurable beause, by our as-

sumptions, y∗ ∈ L2(QT ) and hene Pi
QT

y∗ ∈ L2(QT ). This, along with the fat that Pi
QT

Ŷ and

Pi
QT

1(T0,T ) are measurable, gives a onlusion that Pi
QT

(Ŷ −y∗)Pi
T (1(T0,T )) is measurable. Sum-

ming up the above remarks, we onlude that f̃ de�ned in (3.32) is measurable, for an arbitrary

s ∈ R.
Seond, by the assumption (B-3), f ′ is bounded. Therefore, it follows that f̃ de�ned in

(3.32) is Lipshitz ontinuous in s for a.e. (x, t) ∈ QT , with the Lipshitz onstant independent

of (x, t) ∈ QT .

Third, for f̃ de�ned in (3.32), f̃( . , . , 0) = Pi
QT

(Ŷ −y∗)Pi
T (1(T0,T )), what belongs to L2(QT ),

sine Pi
QT

Ŷ ,Pi
QT

ŷ∗ ∈ L2(QT ).

Summing up the above, f̃ de�ned in (3.32) ful�lls the assumption (D-3).

Moreover, Pi
QT

(Ŷ −y∗) belongs to L2(0, T ;L2(Ω)), hene it is strongly measurable. Therefore,

by the Pettis theorem, F̃j :=
∫
Ω Υhj

(υ̂)Pi
QT

(Ŷ −y∗) dx understood as a real funtion of variable t
is measurable, for j = 1, . . . , J . A the same time, w′j is Borel measurable as a lassial derivative

of a ontinuous funtion (see assumptions (B-5) and (E-2)). Therefore, the funtion w′j ◦ F̃j is

measurable, for j = 1, . . . , J . The funtion w′j ◦ F̃j is also bounded for j = 1, . . . , J , beause

w′j is bounded, by the assumption (B-4). Thus, w′j ◦ F̃j belongs to L∞(0, T ) for j = 1, . . . , J .

Taking into aount the latter and Υhj
(υ̂) ∈ L2(Ω), we onlude that Ξj de�ned in (3.32) ful�lls

the assumption (D-6).

The fat, that ỹ0, κ̃j0, Y, Θj , w̃j , hj and Zj , for j = 1, . . . , J , ful�ll assumptions (D-5) and

(D-6), respetively, follows straight. Moreover,

(
g̃j , h̃j

)
j=1,...,J

∈ Ũ .

To sum up, the assumptions of Theorem 1.2.18 are ful�lled and hene there exists a unique

weak solution of the system (1.84) - (1.86) with onditions (3.32). �

Now, we present the main theorem of Setion 3.2.2, whih gives a haraterization of Gâteaux

di�erential of the ost funtional I in the form given in (3.25).

Theorem 3.2.5 Let assumptions (B-1) - (B-5) be ful�lled, with additional restrition K = J .
Assume also that at least one of the following is true:

• y∗ ful�lls the assumption (C-1) and funtions wj are bounded, for j = 1, . . . , J ,

• y∗ ful�lls the assumption (C-2).
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Moreover, let assumptions (E-1) - (E-3) and (F-2) be ful�lled and let λ̃ > 0, T0 ∈ (0, T ) and

υ̂, η̂ ∈ V be given. Let also (ŷ, κ̂1, . . . , κ̂J ) = Z(υ̂) and let (p̃, q̃1, . . . , q̃J) be the weak solution of

the system (3.30) - (3.31) orresponding to Ŷ := ŷ.
Then, the ost funtional I, de�ned in (3.22) - (3.23), is Gâteaux di�erentiable and its

di�erential in point υ̂ in diretion η̂ is equal to DGI(υ̂)(η̂) =
(
Λυ̂, η̂

)
V
, where Λυ̂ ∈ V is given

by:

Λυ̂ =
J∑

j=1

2λ̃
(
DG,wΥgj(υ̂)

)∗ (
∫ T

0
κ̂j p̃ dt

)
+

+

J∑

j=1

2λ̃
(
DG,wΥhj

(υ̂)
)∗ (

∫ T

0
w′j

(∫

Ω
Υhj

(υ̂)(ŷ − y∗) dx
)
(ŷ − y∗) q̃j dt

) (3.33)

The haraterization of Gâteaux di�erential of the ost funtional I given in Theorem 3.2.5 is

not expliit, sine the adjoint operators entering the formula (3.33) are not expliitly desribed.

Hene, below we provide a theorem haraterizing the latter operators.

Theorem 3.2.6 Let the assumption (F-2) be ful�lled. Let also υ̂ ∈ V be given. Then, the adjoint

operators

(
DG,wΥgj(υ̂)

)∗
: L2(Ω) −→ V , for j = 1, . . . , J , are well de�ned and are haraterized

by the following formulas:

(
DG,wΥgj (υ̂)

)∗
F̂ =

(
0, . . . ,0︸ ︷︷ ︸

j−1

,
(
DG,wTσg(υ̂j)

)∗
PE,ΩF̂︸ ︷︷ ︸

j-th position

,0, . . . ,0︸ ︷︷ ︸
J−j

)
(3.34)

for F̂ ∈ L2(Ω), where 0 ∈ Rd
and where the non-zero element on j-th position an be expressed

by

(
DG,wTσg (υ̂j)

)∗
PE,ΩF̂ =

(
−

∫

Ω
F̂ (z)

(
PR,ΩT∂iσg

(υ̂j)
)
(z) dz

)d

i=1

(3.35)

The adjoint operators

(
DG,wΥhj

(υ̂)
)∗

: L2(Ω) −→ V , for j = 1, . . . , J , are also well de�ned

and are haraterized by the same formulas, with σg replaed by σh.

We reall that, in the present hapter, the partiular operators entering the above formulas

are understood as PE,Ω : L2(Ω) → L2(Rd) and Tσg ,T∂iσg
: Rd → L2(Rd).

Now, we present the proofs of Theorem 3.2.5 and Theorem 3.2.6.

Proof Theorem 3.2.5. The Gâteaux di�erentiability of I was already explained in

Lemma 3.2.2 (note, that its assumptions are ful�lled in the present theorem). It remains to

justify formulas haraterizing the subjet Gâteaux di�erential.

We will begin with justifying that the formula (3.33) is well-posed. For this end, note that the

assumptions of Theorem 3.1.5 are ful�lled, hene (ŷ, κ̂1, . . . , κ̂J ) in the assumptions of the present

theorem is a well de�ned element of X2
. With this, assumptions of Lemma 3.2.4 are also ful�lled,

hene (p̃, q̃1, . . . , q̃J) in the assumptions is a well de�ned elements of X2
as well. This, together

with the Fubini theorem and the Hölder inequality, allows to justify that

∫ T
0 κ̂j(t)p̃(x, t) dt,

understood as a funtion of x, is a well de�ned element of L2(Ω), hene it belongs to the domain

of

(
DG,wΥgj (υ̂)

)∗
, for j = 1, . . . , J . Similarly, we an �nd out that, for j = 1, . . . , J , expression∫ T

0 w′j
(∫

Ω Υhj
(υ̂)(ŷ − y∗) dx

)
(ŷ − y∗) q̃jdt belongs to the domain of

(
DG,wΥhj

(υ̂)
)∗
, i.e. to L2(Ω).

Indeed, arguing as in the proof of Lemma 3.1.7, we get that w′j
(∫

Ω Υhj
(υ̂)(ŷ − y∗) dx

)
belongs
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to L∞(0, T ). This, along with ŷ ∈ L2(QT ), q̃j ∈ L2(0, T ), with assumptions for y∗, with the

Fubbini theorem and with the Hölder inequality justi�es the neessary. Thus, the formula (3.33)

is meaningful.

Next, assumptions of Lemma 3.1.7 are ful�lled. Hene, the weak solution of (3.9) - (3.10)

exists and is unique. Denote this weak solution as (ỹ, κ̃1, . . . , κ̃J ). By De�nition 3.1.6, it means

that the identity in the part b) of De�nition 1.2.16 is ful�lled with y := ỹ and the identity in

the part ) of De�nition 1.2.16 is ful�lled with κj := κ̃j , with relations (3.11) utilized there.

Sine X2 →֒ L2(0, T ;H1(Ω)), the element (p̃, q̃1, . . . , q̃J) an serve as a test funtion in the

referred identities, by putting φ := p̃ in the part b) and, for j = 1, . . . , J , putting ξ := q̃j in the

part ) of De�nition 1.2.16, with relations (3.11) applied there. Exeuting the above desribed

substitutions and utilizing relations (3.11) in the subjet identities, we get:

∫ T

0

〈
ỹt, p̃

〉
+D

(
∇ỹ,∇p̃

)
L2(Ω)

+
(
−f ′(ŷ)ỹ −

J∑

j=1

Υgj(υ̂)κ̃j , p̃
)
L2(Ω)

dt =

=

∫ T

0

( J∑

j=1

DG,wΥgj(υ̂)(η̂)κ̂j , p̃
)
L2(Ω)

dt

(3.36a)

∫ T

0

{
βj κ̃
′
j + κ̃j − w′j

(∫

Ω
Υhj

(υ̂)(ŷ − y∗) dx
)
·
(∫

Ω
Υhj

(υ̂)ỹ dx
)}

q̃j dt =

=

∫ T

0
w′j

(∫

Ω
Υhj

(υ̂)(ŷ − y∗) dx

)
·

·

(∫

Ω
DG,wΥhj

(υ̂)(η̂)(ŷ − y∗) dx

)
q̃j dt for j = 1, . . . , J

(3.36b)

Similarly,

(
Pi
QT

ỹ,Pi
T κ̃1, . . . ,P

i
T κ̃J

)
an serve as a test funtion for weak solution (p̃, q̃1, . . . , q̃J)

of the system (3.30) - (3.31). More preisely, by De�nition 3.2.3, in the identity in the part b) of

De�nition 1.2.16 we an put y := Pi
QT

p̃, φ := Pi
QT

ỹ and, for j = 1, . . . , J , in the identity in the

part ) of De�nition 1.2.16 we an put κj := Pi
T q̃j , ξ := Pi

T κ̃j , together with utilizing relations

(3.32). Exeuting the above substitutions, utilizing relations (3.32) in the subjet identities, inte-

grating the time derivative terms by parts w.r.t. t (see Prop. 23.23 in [51℄ for the integration by

parts formula for vetor valued funtions) and inverting the time diretion by applying operators

Pi
QT

and Pi
T , we get:

∫ T

0

〈
ỹt, p̃

〉
+D

(
∇p̃,∇ỹ

)
L2(Ω)

+

+
(
−f ′(ŷ)p̃ −

J∑

j=1

w′j

(∫

Ω
Υhj

(υ̂)(y − y∗) dx
)
Υhj

(υ̂) q̃j , ỹ
)
L2(Ω)

dt =

=

∫ T

0

(
(ŷ − y∗)1(T0,T ) , ỹ

)
L2(Ω)

dt

(3.37a)

∫ T

0

(
βj q̃
′
j + q̃j −

(
Υgj(υ̂), p̃

)
L2(Ω)

)
κ̃j dt = 0 for j = 1, . . . , J (3.37b)

Comparing (3.36) and (3.37), we observe that the sum of the left hand sides of (3.36) equals

the sum of the left hand sides of (3.37). Hene, the sums of the right hand sides of (3.36) and of
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(3.37) also equal. Thus, after hanging the order of integration in these sums, we get:

∫ T

0

(
(ŷ − y∗)1(T0,T ) , ỹ

)
L2(Ω)

dt =

=

J∑

j=1

(∫ T

0
κj p̃ dt , DG,wΥgj(υ̂)(η̂)

)
L2(Ω)

+

+
J∑

j=1

(∫ T

0
w′j

(∫

Ω
Υhj

(υ̂)(y − y∗) dx
)
(y − y∗) q̃j dt , DG,wΥhj

(υ̂)(η̂)
)
L2(Ω)

(3.38)

Reall that ỹ = (DG,wZ(υ̂)(η̂))y = DG,wZy(υ̂)(η̂) and ŷ = Zy(υ̂). By the de�nition of ZT0
y

and y∗T0
, see (3.23), and by (3.27) in Lemma 3.2.2, we dedue that

∫ T

0

(
(ŷ − y∗)1(T0,T ), ỹ

)
L2(Ω)

dt =

∫ T

T0

(
PR,T0(ŷ − y∗) , PR,T0 ỹ

)
L2(Ω)

dt

=
(
ZT0
y (υ̂)− y∗T0 , DG,wZ

T0
y (υ̂)(η̂)

)
L2(Q

T0
T

)

(3.39)

Identities (3.38) and (3.39), by involving adjoint operators

(
DG,wΥgj(υ̂)

)∗
and

(
DG,wΥhj

(υ̂)
)∗
,

for j = 1, . . . , J , and by Lemma 3.2.2, justi�es the assertion of Theorem 3.2.5. �

Proof of Theorem 3.2.6. We will prove the assertion for operators

(
DG,wΥgj(υ̂)

)∗
. The

ase of operators

(
DG,wΥhj

(υ̂)
)∗

follows the same lines.

To prove the required, we repeat some arguments from the proof of Lemma 3.1.4. We observe

that Υgj = PR,Ω ◦Tσg ◦P
R,V
j , where the partiular operators are understood as PR,Ω : L2(Rd) →

L2(Ω), Tσg : R
d → L2(Rd) and PR,V

j : V → Rd
. Sine σg ∈ W 1,2(Rd), we an apply Theorem

A.4.5 to onlude that Tσg is weakly Gâteaux di�erentiable. Moreover, operators PR,Ω
and

PR,V
j are linear and ontinuous. Thus, we an ombine the above fats with Observation A.1.7,

Observation A.1.11, Theorem A.1.4 and, for brevity, use identities υ̂j = PR,V
j (υ̂) and η̂j =

PR,V
j (η̂) to get that Υgj is weakly Gâteaux di�erentiable from V to L2(Ω) and

DG,wΥgj (υ̂)(η̂) = PR,Ω
(
DG,wTσg (υ̂j) (η̂j)

)

for arbitrary υ̂, η̂ ∈ V .

In onsequene, as operators DG,wΥgj(υ̂) : V → L2(Ω) are well de�ned for j = 1, . . . , J , the
adjoint operators also are well de�ned, what justi�es the orresponding statement the seond

assertion of the theorem.

Next, we note that

(
PR,Ω

)∗
= PE,Ω : L2(Ω) → L2(Rd) and

(
PR,V
j

)∗
= PE,V

j : Rd → V .

Using this and the above derived representation of DG,wΥgj(υ̂)(η̂), we onlude the following:

(
F̂ , DG,wΥgj (υ̂)(η̂)

)
L2(Ω)

=
(
F̂ , PR,Ω

(
DG,wTσg(υ̂j)

)
η̂j

)
L2(Ω)

=

=
((

DG,wTσg(υ̂j)
)∗

PE,ΩF̂ , η̂j

)
Rd

=
(
PE,V
j

(
DG,wTσg(υ̂j)

)∗
PE,ΩF̂ , η̂

)
V

Taking into aount the de�nition of PE,V
j , the above justi�es the formula (3.34).

Now, we are left to �nd the haraterization of the adjoint of DG,wTσg(υ̂j)( . ), still not expliit
above. Funtions σg and σh satisfy the assumption (F-2), thus by the Theorem A.4.5 we have
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an expliit haraterization of the di�erentials of Tσg and Tσh
at our disposal. This helps us to

ahieve our goal:

(
PE,ΩF̂ , DG,wTσg(υ̂j)η̂j

)
L2(Rd)

=
(
PE,ΩF̂ ,

(
−T∇σg(υ̂j), η̂j

)
Rd

)
L2(Rd)

=

=
((

−

∫

Rd

(PE,ΩF̂ )(z)T∂iσg
(υ̂j)(z) dz

)d

i=1
, η̂j

)
Rd

=

=
((

−

∫

Ω
F̂ (z)

(
PR,ΩT∂iσg

(υ̂j)
)
(z) dz

)d

i=1
, η̂j

)
Rd

The above justi�es the formula (3.35).

This onludes the proof of Theorem 3.2.6. �

Thanks to Theorem 3.2.6, we an write the formula for Λυ̂ ∈ V , asserted in Theorem 3.2.5,

in a more expliit form:

Corollary 3.2.7 Let assumptions imposed in Theorem 3.2.5 be ful�lled. Then, for υ̂ ∈ V , the

weak Gâteaux di�erential in υ̂ of the ost funtional I, de�ned in (3.22) - (3.23), exists and an

be haraterized by o DGI(υ̂)(η̂) =
(
Λυ̂, η̂

)
V
for η̂ ∈ V , where Λυ̂ ∈ V is given by:

(
Λυ̂
j

)
i
= 2λ̃

∫ T

0

∫

Ω
κ̂j p̃

(
PR,Ω ◦ T−∂iσg

)
(υ̂j) dx dt

+ 2λ̃

∫ T

0

∫

Ω
q̃j w

′
j

(∫

Ω
Υhj

(υ̂)
(
ŷ − y∗

)
dx

) (
ŷ − y∗

) (
PR,Ω ◦ T−∂iσh

)
(υ̂j) dx dt

(3.40)

for j = 1, . . . , J , for i = 1, . . . ,d, where (ŷ, κ̂1, . . . , κ̂J ) is the weak solution of the system (3.1) -

(3.2) orresponding to xj := υ̂j, for j = 1, . . . , J , and (p̃, q̃1, . . . , q̃J) is the weak solution of the

system (3.30) - (3.31), orresponding to ŷ.

The above omes by ombining formulas (3.33) and (3.34) - (3.35), hanging the order of inte-

gration and noting that −T∂iσ(υ̂j)(x) = T−∂iσ(υ̂j)(x) for a.e. x ∈ Ω, for σ = σg, σh, j = 1, . . . , J ,
i = 1, . . . ,d.

Remark. Note that the formula (3.40) is expliit enough to approximate it with numerial

methods. Indeed, for a given σg and σh, funtions T−∂iσg
, T−∂iσh

and Υhj
(υ̂), entering (3.40),

an be expressed expliitly by their de�nitions. Thus, assuming that one is able to �nd nu-

merial approximations of solutions (ŷ, κ̂1, . . . , κ̂J ) and (p̃, q̃1, . . . , q̃J), the formula (3.40) an be

approximately evaluated with a use of numerial integration methods. N

Formulating neessary optimality ondition is a usual step towards haraterizing the so-

lutions of a onsidered optimization problem. A �rst hoie neessary optimality ondition is

frequently the generalization of the Fermat ondition for multidimensional sets given in The-

orem A.2.1 in Appendix A.2). Applying the latter requires the knowledge on the Gâteaux

di�erential of the ost funtional. In the ase of optimization problem (3.24), we an use The-

orem A.2.1 along with the haraterization of DGI , provided by Corollary 3.2.7, to obtain the

following neessary optimality ondition:

Corollary 3.2.8 Let the assumptions of Corollary 3.2.7 hold. If υ̂ ∈ V solves the optimization

problem (3.24) then ondition (
Λυ̂, ν̂ − υ̂

)
V
≥ 0 ∀ν̂∈V

is ful�lled, for Λυ̂
as in Corollary 3.2.7.
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3.2.3 Generalizations for loally Lipshitz reative term

In the present setion, we prove results for optimization problem (3.24) under assumptions dif-

ferent that those utilized in the main results of 3.2.1 and Setion 3.2.2. In the results of the latter

setions, it was assumed for the system (3.1) - (3.2), in partiular, that f is Lipshitz and that

y0 ∈ L2(Ω). Below, we will hange the Lipshitz ontinuity of f to loal Lipshitz ontinuity plus

the growth ondition given in (1.73) and we will hange the assumption for y0 to y0 ∈ L∞(Ω).
Moreover, we will require higher integrability of the pattern funtion σg.

Below, we justify analogues of the previously proven theorems onerning existene of mini-

mizers for the ost funtional I (Theorem 3.2.1) and the haraterization of its gradient (Theorem

3.2.5), but with the above mentioned modi�ations in the assumptions.

The purpose of the present setion is the following. In Chapter 4 of the present work, we

desribe numerial simulations for optimization problem (3.24). The subjet simulations involved

data assuming loally Lipshitz f satisfying the ondition (1.73) and y0 ∈ L∞(Ω). For this reason,
we aimed in deriving analytial results overing the ase of the data utilized in the simulations.

Hene the below ontent.

The proofs presented below, in their essene, onsist in reduing optimization problem (3.24)

with loally Lipshitz f obeying (1.73) to optimization problem (3.24) with globally Lipshitz f .
Sine for globally Lipshitz f the existene of minimizers and the formula for the gradient of the

ost funtional are already known (Theorem 3.2.1 and Theorem 3.2.5), the mentioned redution

will imply the neessary results.

For the proof of Theorem Theorem 3.2.5, the theorem on the di�erentiability of the state

operator Z, assoiated with globally Lipshitz and di�erentiable f , was ruial. The redution

approah in the present setion allow to avoid diret analysis of di�erentiability of the state

operator Z assoiated with loally Lipshitz f .

In Setion 3.2.3, we proeed as follows. We begin with introduing some de�nitions and

notations whih will be neessary in the sequel. Next, we formulate simple results onerning

existene and uniqueness of the weak solutions for the ase of the modi�ed assumptions for f , y0
and σg mentioned above. The subjet existene and uniqueness results onern the system (3.1)

- (3.2), the system (3.30) - (3.31) and ertain assoiated systems, whih will be de�ned below for

tehnial reasons. Eventually, we proeed to proving analogues of Theorem 3.2.1 and Theorem

3.2.5 for the modi�ed assumptions for f , y0 and σg .

Let us proeed to formulation of the neessary de�nitions.

For ontinuous f : R → R, for n > 0 it possible to de�ne the following funtion fn : R → R:

fn(s) := f(s) for s ∈ (−n, n)

fn(s) := f(−(n+ 1)) for s < −(n+ 1)

fn(s) := f(n+ 1) for s > n+ 1

(3.41)

and





fn
is linear on [−(n+ 1),−n], linear on [n, n+ 1] and

fn(−(n+ 1)) := f(−(n+ 1)) fn(n+ 1) := f(n+ 1)

fn(−n) := f(−n) fn(n) := f(n)

(3.42)

If, in addition, f ′(s) exists for all s ∈ R, it is meaningful to de�ne fn
by the ondition (3.41)
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and by the following ondition instead of (3.42):





fn
is 3rd degree polynomial on [−(n+ 1),−n], 3rd deg. pol. on [n, n+ 1] and

fn(−(n + 1)) := f(−(n+ 1)) fn(n+ 1) := f(n+ 1)

fn(−n) := f(−n) fn(n) := f(n)

fn′(−(n + 1)) := f ′(−(n+ 1)) fn′(n+ 1) := f ′(n+ 1)

fn′(−n)) := f ′(−n) fn′(n) := f ′(n)

(3.43)

The following observations are straightforward:

Observation 3.2.9 If f : R → R:

• is ontinuous, then fn
de�ned by (3.41) and (3.42) is so, for all n > 0.

• is di�erentiable in every point of R, then fn
de�ned by (3.41) and (3.43) is so, for all

n > 0.

• is loally Lipshitz, then fn
de�ned by (3.41) and (3.42) as well as fn

de�ned by (3.41)

and (3.43) are globally Lipshitz, for all n > 0.

• obeys the ondition (1.73) with onstant Cf , then fn
de�ned by (3.41) and (3.42) as well

as as well as fn
de�ned by (3.41) and (3.43) also obey the ondition (1.73), with the same

Cf , for all positive n suh that n+ 1 ≥ Cf .

In the present ontent, we still assume that Z : V → X2
and Υ : V → U are de�ned as in

Setion 3.1.2 and I : V → R is de�ned by onditions (3.22) - (3.23). However, in the below

onsiderations, it will be onvenient to have the following additional notation. Assume that

arbitrary funtions fn : R → R are given, for all n > 0. Then, for n > 0:

• The system (3.1) - (3.2) with fn
instead of f will be denoted by

(
(3.1) - (3.2)

)n
.

• The system (3.30) - (3.31) with fn′
instead of f ′ will be denoted by

(
(3.30) - (3.31)

)n
.

• By Zn
, where

Zn = (Zn
y ,Z

n
κ1
, . . . ,Zn

κJ
) : V −→ X2

we will understand the operator assigning the weak solution of

(
(3.1) - (3.2)

)n
to a given

υ̂ ∈ V , assuming assignment xj := υ̂j for j = 1, . . . , J in

(
(3.1) - (3.2)

)n
.

• By In : V → R we will understand the ost funtional given by (3.22) - (3.23), with Zn
y

instead of Zy.

Now, we pass to existene fats for systems (3.1) - (3.2), (3.30) - (3.31),

(
(3.1) - (3.2)

)n
and(

(3.30) - (3.31)

)n
. The following fats are orollaries from earlier onsiderations in the present

work:

Corollary 3.2.10 In the system (3.1) - (3.2), let assumptions (B-1), (B-2) and (B-4) be ful�lled,

with additional restrition K = J . Moreover, assume that

• f is Loally Lipshitz ontinuous and obeys the ondition (1.73), for some onstant Cf > 0,

• y0 ∈ L∞(Ω) and κj0 ∈ R for j = 1, . . . , J ,
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• σg ∈ Ls1(Rd) and σh ∈ L2(Rd), where s1 ≥ max{2, d2 }.

Let also at least one of the below onditions hold:

• y∗ is as in (C-1) and funtions wj are bounded, for j = 1, . . . , J ,

• y∗ is as in (C-2).

Then, there exist a unique weak solution of the system (3.1) - (3.2). In onsequene, the operator

Z : V → X2
and the ost funtional I : V → R are well de�ned.

Proof. To prove Corollary 3.2.10, note that the system (3.1) - (3.2) is a partiular ase

of the system (0.1) - (0.3), with K = J and with

(
gj , hj , αjk

)
j,k

:= Υ (υ̂). Hene, by Theorem

1.2.14 and Theorem 1.2.15, we obtain the assertion. �

Corollary 3.2.11 Let the assumptions of Corollary 3.2.10 be ful�lled. Let funtions fn
for n > 0

be given by (3.41) and (3.42). Then, for n > 0, there exist a unique weak solution of the system(
(3.1) - (3.2)

)n
. In onsequene, the operator Zn : V → X2

and ost funtional In : V → R are

well de�ned, for n > 0.
If, in addition, f ′(s) exist for all s ∈ R, then the above assertion holds also for funtions fn

given by (3.41) and (3.43), for n > 0.

Above, the assumption that f ′ exists everywhere is neessary only to guarantee that fn
is

well de�ned for n > 0, in the ase where fn
is de�ned by onditions (3.41) and (3.43).

Proof. First, onsider the ase of y∗ is as in (C-1) and bounded funtions wj , j = 1, . . . , J .
For f as assumed in Corollary 3.2.10, funtions fn

are Lipshitz, for both fn
de�ned by (3.41)

and (3.42) and fn
de�ned by (3.41) and (3.43) (see Observation 3.2.9). Thus, one an verify

that the system

(
(3.1) - (3.2)

)n
meets the assumptions of Corollary 1.2.8 with fn

instead of f ,
regardless on the variant of fn

. Hene, the assertion follows by Corollary 1.2.8.

The ase of y∗ is as in (C-2) follows exatly the same lines, with the use of Corollary 1.2.9

instead of the use of Corollary 1.2.8. �

Corollary 3.2.12 In the system (3.30) - (3.31), let assumptions (B-1), (B-2), (B-4) be ful�lled,

with additional restrition K = J and assume that f : R → R is Loally Lipshitz ontinuous and

obeys the ondition (1.73), for some onstant Cf > 0. Assume also that (E-1) - (E-2) and (F-1)

hold. Moreover, assume that Ŷ ∈ L∞(QT ) and y∗ ∈ L2(0, T ;L2(Ω)).
Then, the weak solution of the system (3.30) - (3.31) exists and is unique.

Corollary 3.2.13 Let the assumptions of Corollary 3.2.12 be ful�lled. Let funtions fn
for

n > 0 be given by (3.41) and (3.43). Then, for n > 0, there exist a unique weak solution of the

system

(
(3.30) - (3.31)

)n
.

We have formulated Corollary 3.2.12 prior to Corollary 3.2.13, for the sake of more readable

presentation. But tehnially, Corollary 3.2.13 should be proven �rst.

Proof of Corollary 3.2.13. For f as assumed in Corollary 3.2.12, funtions fn
as

assumed in Corollary 3.2.13 are Lipshitz and di�erentiable (see Observation 3.2.9). Thus, for

n > 0, the system

(
(3.30) - (3.31)

)n
obeys assumptions of Lemma 3.2.4 with fn

instead of f .
Hene, by Lemma 3.2.4, the assertion follows. �
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Proof of Corollary 3.2.12. Let fn
be given by (3.41) and (3.43), for n > 0. If su�es

to show that arbitrary weak solution of (3.30) - (3.31) is a weak solution of

(
(3.30) - (3.31)

)n
,

for ertain n, and that arbitrary weak solution of

(
(3.30) - (3.31)

)n
is a weak solution of (3.30)

- (3.31). Having this, the assertion follows by Corollary 3.2.13.

Chose ñ >
∥∥Ŷ

∥∥
L∞(QT )

. By the ondition (3.41), we have

(
f
)′
(Ŷ (x, t)) =

(
f ñ

)′
(Ŷ (x, t)) for a.e. (x, t) ∈ QT

Thus, by De�nition 3.2.3, every weak solution of (3.30) - (3.31) is a weak solution of(
(3.30) - (3.31)

)ñ
and every weak solution of

(
(3.30) - (3.31)

)ñ
is a weak solution of (3.30) -

(3.31). This loses the proof. �

We proeed to the key part of Setion 3.2.3. The below statements, whih are the main

statements of Setion 3.2.3, rely strongly on Theorem 1.2.13.

Theorem 3.2.14 Let the system (3.1) - (3.2) ful�ll the assumptions of Theorem 3.2.1, exept

the assumptions onerning f , y0 and σg. For f , y0 and σg, we make the following assumptions

• f is loally Lipshitz ontinuous and obeys the ondition (1.73) for ertain onstant Cf ,

• y0 ∈ L∞(Ω),

• σg obeys assumptions (F-1) and (F-3) and, in addition, σg ∈ Ls1(Rd) for ertain s1 ≥
d

2 .

Then, the optimization problem (3.24) attains at least one solution.

Proof. Let funtions fn
be de�ned by (3.41) and (3.42), for n > 0.

Let υ̂ ∈ V . Denote (y, κ1, . . . , κJ ) = Z(υ̂) (what is well de�ned, see Corollary 3.2.10). By

the de�nition of Z, (y, κ1, . . . , κJ ) is the weak solution of the system (3.1) - (3.2) orresponding

to xj := υ̂j , j = 1, . . . , J .

The system (3.1) - (3.2) with xj := υ̂j , j = 1, . . . , J is a partiular ase of the system (0.1)

- (0.3), with K = J and with

(
gj, hj , αjk

)
j,k

:= Υ (υ̂). By the assumptions presently imposed

for the system (3.1) - (3.2), Theorem 1.2.13 with û := Υ (υ̂) an be applied to the system (3.1) -

(3.2) to onlude that: ∥∥y
∥∥
L∞(QT )

≤ C0 (3.44)

where C0 stands for the onstant from the estimate (1.78) in Theorem 1.2.13. C0 depends in

partiular on onstants denoted in Theorem 1.2.13 as Cg and RU
. Sine we assume û := Υ (υ̂),

one an hek that, to apply Theorem 1.2.13, it su�es to set

Cg :=
∥∥σg

∥∥
Ls1(Rd)

, RU := J
(∥∥σg

∥∥2
L2(Rd)

+
∥∥σh

∥∥2
L2(Rd)

+ 1
)

for arbitrary υ̂ ∈ V . Other quantities on whih C0 depends (whih are indiated in Theorem

1.2.13) also are independent of υ̂ ∈ V . Hene, having hosen Cg and RU
as above, C0 in (3.44)

is independent of υ̂ ∈ V as well.

Note that the assumption σg ∈ L2(Rd)∩Ls1(Rd) is essential above beause of the assumptions

for the integrability of ûgj imposed in Theorem 1.2.13 (in the present ase, ûgj := Υgj(υ̂) =

σg( . − υ̂j)|Ω). Theorem 1.2.13 requires ûgj ∈ Lmax{2,d/2}(Ω) at least, for j = 1, . . . , J . Moreover,

Theorem 1.2.13 requires y0 ∈ L∞(Ω), thus the latter also is neessary.
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Choose ñ > C0. By the ondition (3.41) and by (3.44) we see that

f ñ(y(x, t)) = f(y(x, t)) for a.e. (x, t) ∈ QT (3.45)

for arbitrary υ̂ ∈ V . Thus, inserting the above into the de�nition of the weak solution (see De�ni-

tion 3.0.1) we �nd that (y, κ1, . . . , κJ ) is also the weak solution of

(
(3.1) - (3.2)

)ñ
, orresponding

to xj := υ̂j , for j = 1, . . . , J (whih exists and is unique, see Corollary 3.2.11). Therefore,

Z(υ̂) = Z ñ(υ̂) and, in onsequene,

I(υ̂) = I ñ(υ̂) for all υ̂ ∈ V

Now, note that for I ñ
, and hene for I , the existene of minimizers follows by Theorem

3.2.1. Indeed, by the assumption onerning f , funtions fn
are Lipshitz (see Observation

3.2.9). Thus, one may verify that the system

(
(3.1) - (3.2)

)n
obeys assumptions of Theorem

3.2.1, for all n > 0, in partiular for n := ñ. Appliation of Theorem 3.2.1 onludes the proof.

Above, assumptions (F-1) and (F-3) are essential beause Theorem 3.2.1 also requires them. �

Theorem 3.2.15 Let the system (3.1) - (3.2) ful�ll the assumptions of Theorem 3.2.5, exept

the assumptions onerning f , y0 and σg. For f , y0 and σg, we make the following assumptions:

• f is loally Lipshitz ontinuous, obeys the ondition (1.73) for ertain onstant Cf and

obeys the assumption (E-1),

• y0 ∈ L∞(Ω),

• σg obeys the assumption (F-2) and, in addition, σg ∈ Ls1(Rd) for ertain s1 ≥
d

2 .

Then, the ost funtional I, de�ned in (3.22) - (3.23), is Gâteaux di�erentiable and its di�erential

in point υ̂ in diretion η̂ is equal to DGI(υ̂)(η̂) =
(
Λυ̂, η̂

)
V
, where Λυ̂ ∈ V is given by the formula

(3.33).

Proof. In the present proof, the following notation will be onvenient. For n > 0, let
(3.33)

n
denote the formula (3.33) with the following modi�ations:

• (ŷ, κ̂1, . . . , κ̂J) is replaed by (ŷn, κ̂n1 , . . . , κ̂
n
J ) = Zn(υ̂),

• (p̃, q̃1, . . . , q̃J) is replaed by (p̃n, q̃n1 , . . . , q̃
n
J ) being the weak solution of the system(

(3.30) - (3.31)

)n
orresponding to Ŷ := ŷn.

In the proof, we assume that funtions fn
are de�ned by (3.41) and (3.43), for n > 0.

Let υ̂ ∈ V . Assume that (y, κ1, . . . , κJ ) ∈ X2
is the weak solution of the system (3.1) - (3.2),

orresponding to xj := υ̂j , j = 1, . . . , J (whih exists and is unique, see Corollary 3.2.10).

By the same argument as in the proof of Theorem 3.2.14, the estimate (3.44) hold, with

onstant C0 independent of υ̂ ∈ V . Note in partiular that deriving (3.44) required Theorem

1.2.13 and that the present assumptions onerning integrability of σg are su�ient to apply

Theorem 1.2.13. Moreover, Theorem 1.2.13 requires y0 ∈ L∞(Ω), thus the latter also is utilized

here.

Let ñ > C0. By (3.44), by the ondition (3.41) and by the hoie of ñ, we have (3.45),

independently on the hoie of υ̂ ∈ V . Hene, inserting (3.45) into the de�nition of the weak

solution (see De�nition 3.0.1), (y, κ1, . . . , κJ ) is the weak solution of the system

(
(3.1) - (3.2)

)ñ
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(whih exists and is unique, see Corollary 3.2.11), for all υ̂ ∈ V . In onsequene, I(υ̂) = I ñ(υ̂),
for all υ̂ ∈ V .

Funtions fn
are Lipshitz ontinuous and fn′(s) exists for all s ∈ R (see Observation 3.2.9).

Thus, it an be veri�ed that the system (3.1) - (3.2) ful�lls the assumption of Theorem 3.2.5, for

all n > 0, in partiular for n := ñ. Therefore, by Theorem 3.2.5 we onlude that I ñ
is Gâteaux

di�erentiable and for all υ̂, η̂ ∈ V we have DGI
ñ(υ̂)(η̂) =

(
Λυ̂
n, η̂

)
V
, where Λυ̂

n ∈ V is given by

the formula (3.33)

ñ
. Sine I ñ = I , I also is Gâteaux di�erentiable and DGI(υ̂)(η̂) =

(
Λυ̂
n, η̂

)
V
,

for υ̂, η̂ ∈ V .

Above, the assumption (F-2) is essential beause Theorem 3.2.5 also requires it.

The proof will be losed one we show that Λυ̂
ñ = Λυ̂

for ñ as above, for υ̂ ∈ V . Comparing

formulas (3.33) and (3.33)

ñ
, whih de�ne Λυ̂

and Λυ̂
ñ respetively, we see that we need to justify

the following, for all υ̂ ∈ V :

•
(
ŷñ, κ̂ñ1 , . . . , κ̂

ñ
J

)
= (ŷ, κ̂1, . . . , κ̂J), where (ŷ, κ̂1, . . . , κ̂J ) := Z(υ̂),

•
(
p̃ñ, q̃ñ1 , . . . , q̃

ñ
J

)
= (p̃, q̃1, . . . , q̃J), where (p̃, q̃1, . . . , q̃J) is the weak solution of the system

(3.30) - (3.31) orresponding to Ŷ := ŷ.

Equality

(
ŷñ, κ̂ñ1 , . . . , κ̂

ñ
J

)
= (ŷ, κ̂1, . . . , κ̂J ) follows by showing that, for ñ as assumed, a

weak solution of

(
(3.1) - (3.2)

)ñ
is a weak solution of (3.1) - (3.2) orresponding to xj := υ̂,

j = 1, . . . , J . But we have already shown above that a weak solution of (3.1) - (3.2) is a weak

solution of

(
(3.1) - (3.2)

)ñ
. The opposite follows immediately, sine we have the existene and

uniqueness results for both systems (see Corollary 3.2.10 and Corollary 3.2.11).

To justify equality

(
p̃ñ, q̃ñ1 , . . . , q̃

ñ
J

)
= (p̃, q̃1, . . . , q̃J), we proeed as follows. We need to show

that

(
p̃ñ, q̃ñ1 , . . . , q̃

ñ
J

)
is in fat the weak solution of (3.30) - (3.31) orresponding to Ŷ := ŷ. But

it follows with arguments similar to the above ones. By ŷñ = ŷ (already proven), by (3.44), by

(3.41) and by the hoie of ñ, we have

f ñ′(ŷñ(x, t)) = f ′(ŷ(x, t)) for a.e. (x, t) ∈ QT

The above along with ŷñ = ŷ yields the neessary.

The proof of Theorem 3.2.15 is omplete. �

From Theorem 3.2.15 and Theorem 3.2.6, we an derive an analogue of Corollary 3.2.7:

Corollary 3.2.16 Let the assumptions of Theorem 3.2.15 be ful�lled. Then, the ost funtional

I, de�ned in (3.22) - (3.23), is Gâteaux di�erentiable and its di�erential in point υ̂ in diretion

η̂ is equal to DGI(υ̂)(η̂) =
(
Λυ̂, η̂

)
V
, where Λυ̂ ∈ V is given by the formula (3.40).

The above follows, as in the ase of Corollary 3.2.7, by applying formulas (3.33), (3.34) and

(3.35), hanging the integration order and observing that −T∂iσ(υ̂j)(x) = T−∂iσ(υ̂j)(x) holds for
a.e. x ∈ Ω, for σ = σg, σh, for j = 1, . . . , J and for i = 1, . . . ,d.



Chapter 4

Optimal targeting problem �

numerial prototypes

In this hapter, we desribe numerial experiments for the optimal targeting problem, announed

in �2 of Introdution. We will base on the mathematially more preise formulation of the

subjet problem given in Setion 3.2. We will thus identify the optimal targeting problem with

the optimization problem (3.24), onsisting in minimization of ost funtional I (de�ned by

onditions (3.22) - (3.23)).

In Chapter 3, we have already answered the question onerning possibility of solving opti-

mization problem (3.24) (Theorem 3.2.1, Theorem 3.2.14), as well as given the haraterization

of the solutions (Corollary 3.2.8). Now, we are going to fous on the matter of numerial on-

strution of the solutions.

Therefore, in the present hapter, the main point of our interest is the matter of hoie

of optimization algorithms proper to attak optimization problem (3.24). Thus, we test a few

optimization methods to hek how their performane varies with hanges of parameters and

funtions entering the de�nition of ost funtional I or the system (3.1) - (3.2).

Cost funtional I depends on the ontrol parameter (i.e. the targetings of the ontrol and

measurement devies ations), whih parametrizes the feedbak law (i.e. the algorithm of om-

puting the response funtions) in thermostat ontrol mehanism (see Introdution for details).

Consider the ase of T0 being lose to T in the de�nition of ost funtional I (see (3.22) - (3.23)).

This determines a ost funtional enoding idea of measuring the gap between the proess state

and referene state in the neighborhood of the terminal time T (see the remarks in �2 of In-

trodution). The latter gap an serve as a natural measure of the e�ieny of the thermostat

ontrol mehanism. Hene, the problem of minimization of ost funtional I with T0 lose to T
is onsistent with one the general ideas of the present work, whih is to optimize the feedbak

law in the thermostat ontrol mehanism in order to improve its e�ieny (see the beginning of

Introdution). For this reason, in the present hapter we are partiularly interested in the ase

of T0 lose to T .

Other point of our interest was the independene of the optimization results on the initial

state of the ontrolled proess, desribed in the system (3.1) - (3.2) by y0, in the ase of T0

lose to T . To explain our motivations, onsider the model with an open-loop ontrol desribed

by the sole equation (3.1) (without (3.2)), where the user is responsible for the hoie of both

funtions gj , haraterizing the ontrol devies ations, and the power funtions κj . It follows

by intuition that the optimal hoie of κj perhaps depends on the initial state y0 (regardless of

whether T0 is lose to T in the de�nition of I or not). Therefore, the independene of solutions

of the optimal targeting problem on the initial state of the proess would be an advantage of

99
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the thermostat ontrol mehanism, at least in omparison to the mentioned system with an

open-loop ontrol (see also the general ideas desribed in the beginning of Introdution). Hene,

during our experiments, we have made an attempt to verify whether the subjet independene

indeed exists or not.

By the results of Chapter 2, we may expet that, in ertain ases, the alleged independene

on y0 of the solutions of the optimal targeting problem an be true. Indeed, in the simulations

desribed in Chapter 2 we observed that in some (but not all) situations the proess ontrolled

by thermostats stabilizes near to the same state, independently on the initial state y0 of the

proess. In other words, the proess states ahieved near to the terminal time T were very

similar, regardless on y0. For this kind of situations, the ost funtional I with T0 lose to T an

vary insigni�antly under hanges of y0, beause suh I aptures only the data onerning the

proess near to the terminal time T . Hene, the minimal points for I with T0 lose to T also

an vary insigni�antly under hanges of y0.

The optimization algorithms utilized in our experiments were gradient-based algorithms �

the steepest desent method and the nonlinear onjugate gradient method, implemented in the

Polak-Ribière mode with ertain modi�ation. The latter method was used in two variants: one

with a periodi reset of the algorithm every Nr iterations, with Nr equal to the dimension of the

optimization spae; the other without the periodi reset. Eah of the methods involves omputing

the gradient of the ost funtional. In our experiments, the gradient was omputed basing on the

haraterization given in Corollary 3.2.16. The latter haraterization involves solving systems

(3.1) - (3.2) and (3.30) - (3.31). Besides, omputing the value of the ost funtional I also

involves solving the system (3.1) - (3.2). For solving numerially these two systems, we employed

the �nite element method for disretization in spae, the impliit Euler shemes for disretization

in time and the Piard iterations method for treating the nonlinear terms entering the system

(3.1) - (3.2).

To ompare performane of partiular optimization algorithms, we in fat ompare the num-

ber of iterations neessary to approximate a solution of (3.24) when using a given algorithm with

a given stop riterion. Thus, by saying that performane of a given optimization algorithm was

better (worse) in situation A than in situation B we mean that the number of iterations of the

algorithm in situation A was lower (higher) than in situation B.

The results of the experiments suggest that average performane of the steepest desent

method for optimization problem (3.24) vary with hanges of the parameter T0, entering the

de�nition of the ost funtional I (average, in a sense to be lari�ed later). Setting T0 lose to

T resulted in more iterations of the algorithm than for T0 = 0 (Setion 4.4.1 and Setion 4.4.2).

In this sense, problem (3.24) with T0 lose to T is more di�ult than with T = 0. Neverthe-

less, hanging the optimization algorithm to nonlinear onjugate gradient with reset leveled the

mentioned di�erene in the average performane (Setion 4.4.2).

We have also tested behavior of the nonlinear onjugate gradient method with reset under

hanges of the time horizon T in the system (3.1) - (3.2). We observed that lengthening the

time horizon T also resulted in inferior average performane of the optimization algorithm (Se-

tion 4.4.3). This happened despite the nonlinear onjugate method with reset was suessful in

leveling the performane di�erenes for hanges of the parameter T0.

To sum up, the average performane of the optimization algorithms hanged when varying

both T0 and T . However, for hanges of T0, the di�erenes in the average performane was

observed for the steepest desent method and disappeared when using the nonlinear onjugate

gradient method with reset.

As mentioned, the ase of T0 being lose to T is partiularly interesting for us. In this ase,

the experiments results suggest that when lengthening the time horizon of the system (3.1) -
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(3.2), the optimization proedure output beomes more independent of the initial ondition in

the latter the system (Setion 4.4.3). This on�rms our expetations, desribed above.

However, lengthening the time interval inreases omputational ost for numerial treatment

of problem (3.24). Indeed, assuming that the time step in the numerial sheme remains the

same, the ost of solving the system (3.1) - (3.2) inreases as the time horizon beomes longer.

Eah evaluation of the ost funtional I requires solving the system (3.1) - (3.2), thus the

omputational ost of searhing for minimums of I grows as the omputational ost of solving

(3.1) - (3.2) grows. Therefore, it is expensive omputational task to solve optimization problem

(3.24) and obtain results independent of y0, beause it is neessary to hoose long time horizon

T . Moreover, as mentioned, lengthening the time interval in our experiments resulted in higher

number of iterations, what made the omputational task even more expensive.

In fat, in our experiments, the omputational time neessary to approximate a solution of I
for long time interval was impratially long. Redution of this time would be a desired result.

In Setion 4.4.4, we propose some possible strategies for redution of optimization proedures

omputational ost, whih an be tested in the future experiments.

Chapter 4 is divided into two parts: 1) the part for spei�ation of utilized parameters, opti-

mization methods and numerial shemes (Setion 4.1, Setion 4.2 and Setion 4.3, respetively)

and 2) the part devoted to desription of results of optimization proedures performed with

the use of these parameters, methods and shemes (Setion 4.4). In Setion 4.4.4, onluding

the seond part, we propose re�nements for the optimization algorithms and numerial shemes

desribed in Setion 4.2 and Setion 4.3.

4.1 Strutural assumptions

Below, we desribe strutural assumptions onerning optimization problem (3.24), whih were

imposed for simulations desribed in Setion 4.4. This assumptions speify the parameters

neessary to determine the ost funtional I , de�ned by (3.22) - (3.23), was the target of our

optimization experiments.

Let us begin with the assumptions onerning the system (3.1) - (3.2), de�ning whih is ne-

essary for de�ning the ost funtional I . Basially, our intention was to operate with assumptions

analogous to those desribed in Setion 2.1. However, some of the assumptions imposed there

needed modi�ations before employing them here.

To be more preise, in the system (3.1) - (3.2) we assume that d = 2, that domain Ω is given

as in (2.7) and that reative term f is given as in (2.8). Note that both Ω and f hosen by us

�t the assumptions of Corollary 3.2.16.

At the same time, we annot reuse the assumptions desribed in Setion 2.1 for pattern

funtions σg, σh and swithing funtions wj , j = 1, . . . , J , for the below reasons:

1. Conerning the pattern funtions σg and σh, note that if they obey the formula (2.3)

from Setion 2.1, then they are not elements of W 1,2(Rd). In partiular, for pattern

funtions as in (2.3), partial derivatives ∂iσg and ∂iσh, for i = 1, . . . ,d, are not well de�ned.
Simultaneously, Corollary 3.2.16 assumes σg, σh ∈ W 1,2(Rd). The gradient formula (3.40),

asserted in Corollary 3.2.16, also involves the partial derivatives of σg and σh for j =
1, . . . , J . Thus, the subjet gradient formula fails if the pattern funtions are given by

(2.3). In onsequene, the formula (2.3) annot be applied in the present ontext, beause,

as mentioned in the beginning of Chapter 4, we intend to use the gradient haraterization

asserted in Corollary 3.2.16.
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2. Conerning the swithing funtions wj , j = 1, . . . , J , note that the formula (2.9) de�nes

non-di�erentiable wj . Simultaneously, the di�erentiability of the swithing funtions wj is

assumed in Corollary 3.2.16. Thus, Corollary 3.2.16 fails to hold if the swithing funtions

are given by (2.9). Hene, the formula (2.9) annot be utilized here, beause we intend to

utilize the gradient haraterization given in Corollary 3.2.16.

To deal with the above di�ulties, we impose the following assumptions for pattern funtions

σg, σh and swithing funtions wj , j = 1, . . . , J :

1. We have hosen the below pattern funtions to be utilized in experiments desribed in

Setion 4.4:

σg(x) =





Cg on B(0, rσ,1)

0 on (B(0, rσ,2))
c

radially linear otherwise

σh(x) =





Ch on B(0, rσ,1)

0 on (B(0, rσ,2))
c

radially linear otherwise

(4.1)

for ertain rσ,2 > rσ,1, and Cg, Ch > 0. Note, that the pattern funtions given in (4.1)

an be understood as a regularization of the pattern funtions given in (2.3) � putting

rσ,2 = rσ, one an observe that σg given in (4.1) tends in L2(Rd) to σg given in (2.3) as

rσ,1 → rσ,2, and the same holds for σh.

With the pattern funtions as in (4.1), Lemma 3.1.4 guarantees weak Gâteaux di�erentia-

bility of the assoiated operators Υgj and Υhj
, for j = 1, . . . , J . Moreover, for σg and σh as

in (4.1), the weak diretional derivatives ∂iσg and ∂iσh, for i = 1, . . . ,d are well de�ned.

Hene, the formula asserted by Corollary 3.2.16 is well de�ned.

2. For experiments desribed in Setion 4.4, we have hosen swithing funtions being smoothed

versions of the swithing funtions given in (2.9). Smoothing with seond order polynomials

was performed.

The details of the smoothing proedure whih was applied are as follows. Choose onstants

Csmooth ∈ [0, 1] and Lw < 0. De�ne the funtion

waux,1(s) := Lws

Denote by s+smooth the point where waux,1 ahieves value −Csmooth and by s−smooth the point

where waux,1 ahieves value +Csmooth. De�ne also p+, p− as seond degree polynomials of

one variable determined by the following onditions:

p+(s
+
smooth) = waux,1(s

+
smooth) = −Csmooth

p′+(s
+
smooth) = w′aux,1(s

+
smooth) = Lw

min
R

(p+) = −1

p−(s
−
smooth) = waux,1(s

−
smooth) = Csmooth

p′−(s
−
smooth) = w′aux,1(s

−
smooth) = Lw

max
R

(p−) = 1

Denote by smax the maximizer of p− and by smin the minimizer of p+. Note that points

s+smooth, s
−
smooth, smax and smin are determined by the hoie of onstants Csmooth and Lw.

Expliit formulas for these points an be derived, if neessary. We do not present the latter

formulas here only for brevity reasons.
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Having this, we de�ne the following funtion wj , for j = 1, . . . , J , being a spline of funtions
+1, p−, waux,1, p+, −1:

wj(s) = Hwwaux,2(s) waux,2(s) =





+ 1 on (−∞, smax]

p−(s) on (smax, s
−
smooth]

waux,1(s) on (s−smooth, s
+
smooth)

p+(s) on [s+smooth, smin)

− 1 on [smin,+∞)

(4.2)

for ertain Hw > 0. In the experiments desribed in Setion 4.4, we have assumed the

swithing funtions in the system (3.1) - (3.2) to be given by (4.2).

Sine the points s+smooth, s
−
smooth, smax and smin are determined by onstants Csmooth and

Lw, funtions wj , j = 1, . . . , J de�ned in (4.2) are determined by the hoie of onstants

Lw, Hw and Csmooth.

One an verify that funtions wj de�ned by (4.2) belong to C1(R), for j = 1, . . . , J . Thus,
Corollary 3.2.16 is valid if they are utilized as the swithing funtions in the system (3.1)

- (3.2).

As in Setion 2.1, we assume that the value of Ch is determined by the relation (2.10), for

ertain Cswitch > 0. The meaning of the onstant Cswitch was explained in Setion 2.1, thus we

do not repeat this explanation here.

Remark. In Setion 2.1, for deriving the relation (2.10), the points in whih the swithing

funtions ahieved the extremal values (more preisely, the losest to s = 0 points in whih wj

attains a global extremum) were essential. For the swithing funtions wj onsidered there (see

the formula (2.9)), the subjet points were ±1/
∣∣Lw

∣∣
. Here, with wj de�ned as in (4.2), the

extremal values are ahieved in di�erent points, above denoted as smax and smin. Thus, to be

puristi, we should derive an analog of the relation (2.10) one more time, aounting the new

swithing funtions having new extremal points, if we wanted to preserve the idea lying behind

the onstant Cswitch, explained in Setion 2.1. Nevertheless, for simpliity, we deided to neglet

the e�ets inferred by the shift of the extremal points aused by the hange of the swithing

funtions. N

Now, sine we assume that Ch is determined by the relation (2.10) we substitute the pattern

funtion σh to the subjet relation and �nd out that Ch an be expressed more expliitly by:

Ch =
(π
3

∣∣Lw

∣∣Cswitch ((rσ,1)
2 + rσ,1rσ,2 + (rσ,2)

2)
)−1

(4.3)

In addition, we make the following assumption for the parameter λ̃ in the de�nition of the

ost funtional I :
λ̃ = (T − T0)

−1
(4.4)

where T0 is the parameter entering the de�nition of the ost funtional I .
To sum up, for Ω given by (2.7), the swithing funtion wj as in (4.2), pattern funtions σg

and σh as in the formula (4.1) and Ch as in the formula (4.3), the system (3.1) - (3.2) is uniquely

determined by the hoie of the following funtions and parameters:

y0, κ10, . . . , κJ0, y∗

T, D, β1, . . . , βJ , J, x1, . . . , xJ , rσ,1, rσ,2, Cg, Cswitch, Lw,Hw, Csmooth
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With the above indiated onditions and with λ̃ as in (4.4), ost funtional I is fully de-

termined by spei�ation of the above listed funtions and parameters and, additionally, by

spei�ation of the parameter T0.

4.2 Optimization methods

We desribe now optimization methods utilized for solving optimization problem (3.24). All

experiments desribed in Setion 4.4 base on the below desribed methods.

Generally, two methods were employed: the steepest desent method and the nonlinear on-

jugate gradient method (desribed and extensively ommented e.g. in [38℄ or [7℄). The seond of

these two was onsidered in two variants � one with reset of the algorithm every Nr iterations,

for a given natural Nr, the other without the reset. Below, we desribe these methods in more

detail.

For onveniene, we use the following notation in the present setion. Let F : I → R be

a given funtion, where I = [0, b] or I = [0, b), with b ∈ R+ ∪ {+∞}. By minns∈IF (s) we

understand the problem of �nding the loal minimum of F whih is the losest to origin point

s = 0. Note that the solution of minns∈IF (s) an be di�erent than the global minimum of F ,
even if the global minimum exists.

SDmethod. By the steepest desent method (SD method, in brief), we understand the following

algorithm:

1. Choose υ̂0 ∈ V . Set n = 0.

2. If the stop riterion (to be desribed below) is ful�lled, then terminate. Else:

(a) Compute rn := −∇I(υ̂n). Set dn := rn.

(b) Find sn ∈ [0, 1] solving 1-D minimization problem minns∈[0,1]I(υ̂
n + sdn).

() Assign υ̂n+1 := υ̂n + snd
n
.

(d) Inrement n and repeat step 2.

CG method. By the nonlinear onjugate gradient method (CG method, in brief), we under-

stand the following algorithm:

1. Choose υ̂0 ∈ V . Set n = 0. Set d−1 := 0 ∈ V .

2. If the stop riterion (to be desribed below) is ful�lled, then terminate. Else:

(a) Compute rn := −∇I(υ̂n).

(b) Compute oe�ient ̺n (to be desribed below) and set dn := rn + ̺nd
n−1

() Find sn ∈ [0, 1] solving 1-D minimization problem minns∈[0,1]I(υ̂
n + sdn).

(d) Assign υ̂n+1 := υ̂n + snd
n
.

(e) Inrement n and repeat step 2.

To omplete the above spei�ations, we need to desribe the stop riterion and oe�ient

̺n.
Stop riterion. In our experiments, we terminated further exeution of the optimization

algorithms if n = Nopt, for a given natural Nopt, or if n ≥ 1 and the last omputed sn satis�ed

sn = 0.
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Coe�ient ̺n. Various hoies of oe�ient ̺n are possible for the nonlinear onjugate

gradient method (see [38, Chap.5.2℄ or [7, p.329℄). Our hoie of the subjet oe�ient involved

the Polak-Ribière onept (presented e.g. in the latter referenes):

̺PR :=
∥∥rn

∥∥−2
V

(rn, rn − rn−1)V

with some modi�ations, onerning the reset of the algorithm. More preisely, in eah simulation

desribed in Setion 4.4, one of the following methods for omputing ̺n was involved:

• Method 1. If n = 0, set ̺n = 0, for onsisteny. For n ≥ 1, set ̺n := ̺PR
and next, if

̺n ≤ 0, reset CG algorithm, i.e. assign ̺n := 0.

• Method 2. If n = 0, set ̺n = 0, for onsisteny. For n ≥ 1, set ̺n := ̺PR
and next:

1. If ̺n ≤ 0, reset CG algorithm, i.e. assign ̺n := 0.

2. For a given Nr ∈ N, if there was no reset in last Nr iterations, i.e. in iterations

n−Nr + 1, n −Nr + 2, . . . , n, of CG algorithm, then reset the algorithm, i.e. assign

̺n := 0.

In the experiments desribed in Setion 4.4, value Nr = 2J was always used, whenever

Method 2. was utilized, where J is the same as in the system (3.1) - (3.2).

We will use the following terminology:

• CG-r method is the CG method without reset every Nr iterations, i.e. the CG method

with Method 1. for hoosing oe�ient ̺n.

• CG+r method is the CG method with reset every Nr iterations, i.e. the CG method

with Method 2. for hoosing oe�ient ̺n.

Remark. Resetting the algorithm if oe�ient ̺PR
ours to be negative is neessary

beause, if this is the ase, the vetor rn + ̺PRdn−1 an be not a desent diretion (see [38,

p.122-123℄). Resetting the algorithm every Nr iterations also is a ommon pratie, with the

usual hoie of Nr equal to the dimension of V (see [38, p.124℄). The latter remark suggests

Nr = 2J in our ase, as assumed above. N

Remark. In the above desribed methods we solve 1-D problems of the form

minns∈[0,1]I(υ̂ + sd̂), for ertain υ̂, d̂ ∈ V , not just mins∈[0,1] I(υ̂ + sd̂). On level of general

ideas it means that we intend to extrat the loal minimum of I(υ̂+ . d̂) whih is situated losest

to the point s = 0. This serves to keep the iteration points υ̂1, υ̂2, υ̂3, . . . in the same �valley� in

the graph of I in whih the initial point υ̂0 lays. N

To sum up, we speify the optimization algorithm by the hoie of: 1) the initial point υ̂0 ∈ V ,

2) the parameter Nopt and 3) the optimization method (SD, CG-r or CG+r).

4.3 Numerial methods

Here, we desribe numerial shemes for performing the optimization methods desribed in Se-

tion 4.2. These shemes were utilized in experiments desribed in Setion 4.4, whenever the

subjet optimization methods were involved.
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By the spei�ations given in Setion 4.2, we see that performing the subjet methods requires

a method for evaluating the ost funtional I , a method for omputing its gradient and a method

of solving the 1-D optimization problem. The base for the �rst two methods are the de�nition

of I given in (3.22) - (3.23) and the gradient formula (3.40), asserted in Corollary 3.2.16. Both

the formula (3.22) - (3.23) and the gradient formula (3.40) depend on the weak solution of the

system (3.1) - (3.2). Moreover, the gradient formula (3.40) require the weak solution of the

system (3.30) - (3.31). Hene, in total, to perform the subjet optimization methods, we need

methods for:

1) omputing the solutions of the system (3.1) - (3.2) and the system (3.30) - (3.31),

2) omputing the gradient of I in a given point,

3) omputing the value of I in a given point,

4) solving 1-D optimization problem minns∈[0,1]I(υ̂ + sd̂), for suitable υ̂, d̂ ∈ V .

In the experiments desribed in Setion 4.4, eah of the above subproblems was solved approxi-

mately, by use of numerial methods. Thus, in fat, in our experiments, we have treated problem

(3.24) not with the SD or CG methods itself, but numerial approximations of these methods.

Below, we desribe the numerial shemes whih were utilized for solving subproblems 1) - 4),

whenever solving these subproblems was neessary during exeution of the SD or CG methods

in our experiments.

4.3.1 Main system and adjoint system

Now, we desribe numerial methods utilized in the experiments desribed in Setion 4.4 for solv-

ing systems (3.1) - (3.2) and (3.30) - (3.31). The below methods were utilized in the experiments

whenever it was neessary to solve the mentioned systems.

For disretization in spae, the �nite element method was used for both systems. The trian-

gulation of Ω utilized for the �nite element method was as in Figure 2.1 in Setion 2.2 (reall

that we assumed Ω to be given for our experiments by (2.7)). The �nite element spae on-

sidered in our experiments was the spae of ontinuous funtions, linear on eah element of the

triangulation.

For disretization in time for the system (3.1) - (3.2), we employed impliit Euler sheme

and, for disretization in time for the system (3.30) - (3.31), bakward impliit Euler sheme was

applied. In both ases, the disretization of the time interval [0, T ] assumed uniform distribution

of the time disretization points.

Moreover, the nonlinear terms in the system (3.1) - (3.2) were treated with the use of Piard

iterations method.

Now, let us give a more detailed desription of the above skethed numerial shemes for

(3.1) - (3.2) and (3.30) - (3.31). Below, we assume that υ̂ ∈ V is given and that x1, . . . , xJ in

the system (3.1) - (3.2) are determined by xj := υ̂j , for j = 1, . . . , J .
Similarly as in Chapter 2, denote:

N + 1 � the number of triangulation mesh vertexes along eah spatial diretion

(i.e., the triangulation has (N + 1)2 vertexes),

M + 1 � the number of time disretization points in interval [0, T ],
NPicard � the number of Piard iterations applied in eah time step to treat the

nonlinear terms appearing in (3.1) - (3.2).

Denote also τM := M−1 and τN := N−1.
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In addition, denote the triangulation presented in Figure 2.1 in Setion 2.2 by ΩN , denote the

spae of funtions ontinuous on ΩN and linear on eah element of the triangulation by P1(ΩN )
and denote vetors of standard �hat� basis of P1(ΩN ) by φn, for n = 1, . . . , (N + 1)2.

Remark. Two impliit Euler shemes are mentioned above: the �usual� one and a sheme

whih we have alled bakward impliit Euler sheme. By the bakward impliit Euler sheme

for the di�erential equation −ẋ = F (x, t) on [0, T ], with the terminal ondition x(T ) = x̃, we

mean the following sheme:

x
M = x̃, xm − xm+1 = τMF (xm, tm)

for tm = mτM , m = 0, 1, . . . ,M − 1, where M and τM are as above. The �usual� impliit Euler

sheme is a ommon sheme, hene we do not de�ne it here. N

The system (3.1) - (3.2) is treated with the same numerial sheme as the system (2.5)

- (2.6) in Setion 2.1, with gj := Υgj(υ̂) and hj := Υhj
(υ̂). More preisely, the output of

the numerial sheme for (3.1) - (3.2) is exatly the funtion (YN , k1,N , . . . , kJ,N ) de�ned in

Setion 2.1, assuming that we put gj := Υgj(υ̂) and hj := Υhj
(υ̂) in the system (2.5) - (2.6). We

treat suh (YN , k1,N , . . . , kJ,N ) as a funtion approximating the weak solution of (2.5) - (2.6).

The above referred sheme for approximating the weak solution of the system (3.1) - (3.2)

was employed in the experiments desribed in Setion 4.4 whenever omputing the value of the

ost funtional I or omputing its gradient was neessary (reall that both of these involve the

weak solution of the system (3.1) - (3.2)).

Note that the above numerial sheme for (3.1) - (3.2) involves matries MN and AN , de�ned

in Setion 2.2.

The system (3.30) - (3.31) is treated with numerial methods whih are analogous as the

methods applied for the system (3.1) - (3.2). Nevertheless, sine the algebrai form of both

systems di�er, below we desribe the numerial sheme for the system (3.30) - (3.31) in more

detail.

First, for a given funtion F : Ω → R, let [F ]N and

→
F be de�ned as in Setion 2.2. Reall

also that

→
F=

−→

[F ]N .

We use the following disretization in spae for the system (3.30) - (3.31). Put gj := Υgj(υ̂)

and hj := Υhj
(υ̂) for j = 1, . . . , J . In the system (3.30) - (3.31), we insert [gj ]N , [hj ]N , [Ŷ ]N

and [y∗]N instead of Υgj(υ̂), Υhj
(υ̂), Ŷ and y∗, respetively. For the subjet modi�ation of the

system (3.30) - (3.31), we approximate its solution by the solution of the following variational

problem:





− d
dt

(
pN , φ

)
L2(ΩN )

+ D
(
∇pN ,∇φ

)
L2(ΩN )

−
(
[f ′(Ŷ )]NpN , φ

)
L2(ΩN )

=

=
(
[Ŷ ]N − [y∗]N , φ

)
L2(ΩN )

1(T0,T ) +

+
∑J

j=1
w′j

((
[hj ]N , [Ŷ ]N − [y∗]N

)
L2(ΩN )

) (
[hj ]N , φ

)
L2(ΩN )

qj,N
∀φ∈P1(ΩN )

on [0, T ]

∂pN
∂n

= 0 on ∂ΩN × (0, T )

pN (T ) = 0

(4.5)
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together with 



− β1
d
dtq1,N + q1,N =

(
[g1]N , pN

)
L2(ΩN )

on [0, T ]

.

.

.

.

.

.

− βJ
d
dtqJ,N + qJ,N =

(
[gJ ]N , pN

)
L2(ΩN )

on [0, T ]

qj,N(T ) = 0 ∀j=1,...,J

(4.6)

where 0 ∈ P1(ΩN ), pN (t) ∈ P1(ΩN ) and qj,N(t) ∈ R, for j = 1, . . . , J , t ∈ [0, T ] and where

the desired solution is (pN , q1,N , . . . , qJ,N ). One may note, that f ′([Ŷ ]N ) is not neessarily in

P1(Ω). For this reason, we de�ne the above variational problem by inserting [f ′(Ŷ )]N term and

not f ′([Ŷ ]N ) term. Note moreover that term (∇yN ,∇φN )L2(ΩN ) in the system (4.5) - (4.6) is

well de�ned, beause P1(ΩN ) ⊆ H1(ΩN ) (see Theorem 2.1.1. in [13℄).

Remark. The sets Ω and ΩN are equal. Nonetheless, similarly as in the ase of the system

(2.12) - (2.13) in Setion 2.2, in (4.5) - (4.6) we use notation �ΩN � instead of �Ω� to stress that

we are onsidering a spae disretization of original the system (3.30) - (3.31). N

As mentioned in Setion 2.2, for given F,G ∈ P1(Ω), we an write:

(F,G)L2(Ω) = (
→
F )TMN

→
G, (∇F,∇G)L2(Ω) = (

→
F )TAN

→
G

where matries MN and MN are de�ned as in Setion 2.2. One an verify that in addition the

following hold for a.e. t ∈ [0, T ]:

(
[f ′(Ŷ ( . , t)]NF ( . ) , G( . )

)
L2(Ω)

= (
→
F )TCN (t)

→
G

where matrix CN (t) is de�ned by:

CN (t) =

(∫

ΩN

[f ′(Ŷ (x, t)]Nφm(x)φn(x) dx

)(N+1)2

n,m=1

Using the above remarks, we transform the system (4.5) - (4.6) to the matrix form:





− d
dtMN

→
pN + DAN

→
pN − CN

→
pN =

= MN

( −→
[Ŷ ]N −

−→

[y∗]N

)
1(T0,T ) +

+
∑J

j=1
w′j

( −→

[hj ]N
T

MN

( −→
[Ŷ ]N −

−→

[y∗]N

))
MN

−→

[hj ]N qj,N
∀φ∈P1(ΩN )

on [0, T ]
→
pN (T ) = 0

(4.7)

together with 



− β1
d

dt
q1,N + q1,N =

−→

[g1]N
T

MN
→
pN on [0, T ]

.

.

.

.

.

.

− βJ
d

dt
qJ,N + qJ,N =

−→

[gJ ]N
T

MN
→
pN on [0, T ]

qj,N(T ) = 0 ∀j=1,...,J

(4.8)

where 0 ∈ R(N+1)2
and where the desired solution is (

→
pN , q1,N , . . . , qJ,N ).
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Next, we approximate the solution of (4.7) - (4.8) by use of bakward impliit Euler sheme,

basing on M + 1 time disretization points, uniformly distributed in [0, T ]. Denote the subjet

approximate solution of (4.7) - (4.8) by (
→
PN , Q̂1,N , . . . , Q̂J,N ). This approximate solution is

a funtion de�ned in time disretization points, t = mτM , m = 0, 1, . . . ,M , with values in

R(N+1)2 × RJ
.

Basing on the latter, we onstrut a funtion (PN , Q1,N , . . . , QJ,N ), de�ned in the time dis-

retization points t = mτM , m = 0, 1, . . . ,M and taking values in P1(ΩN )×RJ
in the following

way. We put PN (t) :=
∑(N+1)2

n=1 (
→
PN (t))nφn and Qj,N(t) := Q̂j,N(t), for j = 1, . . . , J , for

t = mτM , m = 0, 1, . . . ,M .

The sheme for numerial solving the system (3.30) - (3.31) is �nished by obtaining the

funtion (PN , Q1,N , . . . , QJ,N ), desribed above. In other words, we treat (PN , Q1,N , . . . , QJ,N )
as an approximation of the weak solution of (3.30) - (3.31).

The above sheme for solving (3.30) - (3.31) was utilized in our experiments, with Ŷ = YN ,

whenever omputing the gradient of the ost funtional I was neessary (reall that the gradient

of I depends on the weak solution of (3.30) - (3.31)).

Note that the numerial sheme for (3.1) - (3.2), desribed above, is uniquely determined by

the hoie of the parameter N (determining the �nite element spae), the parameter M (deter-

mining the time disretization) and the parameter NPicard (determining the Piard iterations

method for treating the nonlinear terms in (3.1) - (3.2)). Moreover, for a given Ŷ , the above

desribed sheme for (3.30) - (3.31) is determined by hoie of N and M .

For use in our experiments, matriesMN and AN were assembled, similarly as in the numerial

sheme desribed in Setion 2.2, by expliit omputing the integrals appearing in the de�nitions

of the subjet matries (no numerial integration was used). The matrix CN (t), for t ∈ [0, T ],
was assembled with help of the funtion quad of the GNU Otave pakage, being a funtion for

numerial integration.

4.3.2 Evaluating the ost funtional

Below, we desribe a numerial sheme for evaluation of the ost funtional I . The sheme was

utilized in experiments desribed in Setion 4.4 whenever it was neessary in the optimization

methods involved in the subjet experiments (see Setion 4.2). We still assume that, for a given

F : Ω → R, the de�nitions of [F ]N and

→
F are as in Setion 2.2.

For a given υ̂, the sheme for approximating the value I(υ̂), de�ned by onditions (3.22) -

(3.23), is as follows.

First, we use the desribed in Setion 4.3.1 numerial sheme for obtaining a numerial

solution of the system (3.1) - (3.2), with xj := υ̂j , for j = 1, . . . , J . Let (YN , k1,N , . . . , kJ,N )
denote this numerial solution.

Seond, we perform integration with respet to spae in time disretization points, i.e. we

evaluate Ẽm :=
∥∥YN ( . , tm) − [y∗]N ( . , tm)

∥∥2
2
for tm = mτM , m = 0, 1, . . . ,M . To do it, we use

the below formula, whih is true by the relation (2.14):

Ẽm =

∫

ΩN

∣∣YN (x, tm)− [y∗]N (x, tm)
∣∣2 dx =

( →
YN (tm)−

→

y∗ (tm)
)T

MN

( →
YN (tm)−

→

y∗ (tm)
)

for tm as above, for m = 0, 1, . . . ,M .

Third, we integrate with respet to time on interval (T0, T ). However, now we dispose only

ertain values Ẽm for time disretization points. To integrate on interval (T0, T ), we need to

extend this values to some funtion given on the whole interval. For this end, we assume the
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pieewise linear behavior of the funtion in question. More preisely, we onstrut a pieewise

linear funtion Ê : [0, T ] → R by assigning Ê(tm) := Ẽm for tm := mτM , m = 0, . . . ,M and

Ê(t) :=
tm+1 − t

τM
Ê(tm) +

t− tm
τM

Ê(tm+1) (4.9)

for t ∈ (tm, tm+1), m = 0, . . . ,M − 1.

We intend to ompute integral

∫ T
T0

Ê(t) dt. We apply the trapezoidal quadrature to ompute

the subjet integral, with nodes of the quadrature being the time disretization points t0, . . . , tM
plus the down limit of integration (if T0 is not amongst the time disretization points). Sine Ê
is ontinuous on [0, T ] and linear on eah of intervals spanned by two neighboring nodes of the

quadrature, the subjet quadrature returns the exat value of the integral

∫ T
T0

Ê(t) dt.

The numerial sheme for evaluation of I(υ̂) is �nished by obtaining, with the above means,

integral

∫ T
T0

Ê(t)dt. In other words, we assume that the value of the subjet integral approximate

the value of I(υ̂).

4.3.3 Computing the gradient

Below, we desribe a numerial sheme for omputing an approximation of the gradient of I . The
sheme onsists in approximate evaluating the formula (3.40), asserted in Corollary 3.2.16. The

subjet sheme was utilized in the experiments desribed in Setion 4.4 whenever the employed

optimization proedures (desribed in Setion 4.2) required omputing the gradient of I .

For brevity, we will use the following notation for a part of the terms entering the formula

(3.40): T̃ σ
i,j :=

(
PR,Ω ◦ T−∂iσ

)
(υ̂j), for σ = σg, σh and for j = 1, . . . , J , i = 1, . . . ,d. Denote also

hj := Υhj
(υ̂), for j = 1, . . . , J .

Assume that υ̂ ∈ V is given. The sheme for omputing ∇I(υ̂) is as follows.

Keep in mind that we intend to approximately evaluate the formula (3.40), whih, by Corol-

lary 3.2.16, haraterizes the gradient of I .

First, we use the desribed in Setion 4.3.1 numerial sheme for obtaining an approximate

solution of the system (3.1) - (3.2). Denote this approximate solution by (YN , k1,N , . . . , kJ,N ).
Having this, we use the desribed in Setion 4.3.1 numerial sheme for gaining an approxi-

mate solution of (3.30) - (3.31), with Ŷ = YN . Denote the latter approximate solution by

(PN , Q1,N , . . . , QJ,N ).

Remark. A onsisteny problem may seem to our. Namely, Ŷ is a funtion de�ned

on [0, T ] with values in L2(Ω) and YN is de�ned only in points tm ∈ [0, T ], for tm = mτM ,

m = 0, 1, . . . ,M − 1, where M and τM are as in Setion 4.3.1, with values in P1(ΩN ) ⊆ L2(Ω).
This makes the above assignment Ŷ = YN meaningless. To resolve this obstale, one may

attempt to extend YN to the whole interval [0, T ], e.g. by linear interpolation, before making the

assignment. But in fat, this is not neessary, beause the numerial sheme for solving (3.30) -

(3.31), given in Setion 4.3.1, utilizes only the information on Ŷ in points tm as above. Hene,

an arbitrary extension of YN to whole [0, T ] is good, but also irrelevant at the same time. N

We intend to approximate the value of the formula (3.40), with ΩN , YN , kj,N , PN , Qj,N ,

[y∗]N , [hj ], [T̃
σg

i,j ]N and [T̃ σh

i,j ]N instead of Ω, ŷ, κ̂j , p̃, q̃j , y
∗
, hj , T̃

σg

i,j and T̃ σh

i,j , respetively, for

j = 1, . . . , J .

Thus, seond, we perform integration w.r.t. spae in time disretization points. More pre-
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isely, we evaluate the following:

Ẽ1,m := kj,N (tm)

∫

ΩN

PN (x, tm) [T̃
σg

i,j ]N (x) dx

Ẽ2,m := w′j

(∫

ΩN

(
YN (x, tm)− [y∗]N (x, tm)

)
[hj ]N (x) dx

)

Ẽ3,m := Qj,N(tm)Ẽ2,m

∫

ΩN

(
YN (x, tm)− [y∗]N (x, tm)

)
[T̃ σh

i,j ]N (x) dx

for tm = mτM , m = 0, 1, . . . ,M . To ompute the above integrals, we use the following identities,

being true due to (2.14):

∫

ΩN

PN (x, tm) [T̃
σg

i,j ]N (x) dx =
( →
PN (tm)

)T
MN

→

T̃
σg

i,j

∫

ΩN

(
YN (x, tm)− [y∗]N (x, tm)

)
[hj ]N (x) dx =

( →
YN (tm)−

→

y∗ (tm)
)T

MN

→
hj

∫

ΩN

(
YN (x, tm)− [y∗]N (x, tm)

)
[T̃ σh

i,j ]N (x) dx =
( →
YN (tm)−

→

y∗ (tm)
)T

MN

→

T̃ σh

i,j

Third, we de�ne the following funtion Ê∇ : [0, T ] → R and integrate it on interval (T0, T ).
For tm = mτM , m = 0, 1, . . . ,M we put Ê∇(tm) := Ẽ1,m + Ẽ3,m. For t ∈ (tm, tm+1), m =

0, 1, . . . ,M − 1, we put Ê∇(t) to be equal the value implied by the linear interpolation of values

of Ê∇ in points tm and tm+1. More preisely, Ê∇(t) is de�ned by the formula (4.9), with Ê
replaed by Ê∇.

For omputing integral

∫ T
T0

Ê∇(t) dt, we use the trapezoidal quadrature, with M + 1 nodes,

oiniding with the M + 1 time disretization points t0, . . . , tM . Sine the integrand Ê∇ is

ontinuous on [0, T ] and linear on eah interval spanned by two neighboring quadrature nodes,

the subjet quadrature returns the exat value of

∫ T
T0

Ê∇(t) dt.

We assume that integral

∫ T
T0

Ê∇(t)dt approximates the value of (Λυ̂
j )i in Corollary 3.2.16, for

j = 1, . . . , J , i = 1, . . . ,d. This gives approximation of ∇I(υ̂), beause ∇I(υ̂) = Λυ̂
. Hene,

the numerial sheme for omputing the gradient of I in υ̂ is �nished by evaluating the above

integral.

4.3.4 1-D optimization

Now, we desribe a method for approximate solving 1-D optimization problem minns∈[0,1]I(υ̂ +

sd̂), entering the optimization methods desribed in Setion 4.2 with suitable υ̂, d̂ ∈ V . The

method was utilized whenever solving the 1-D problem was neessary in the experiments de-

sribed in Setion 4.4.

A method for approximating the solution of the 1-D optimization problem will be alled line

searh proedure. Moreover, denote Ĩ(s) := I(υ̂ + sd̂). We will all Ĩ the target funtion.

The preise desription of our line searh proedure for solving problem minns∈[0,1]Ĩ(υ̂+ sd̂),

for a given υ̂, d̂ ∈ V is as follows:

1. Initialization: we set Nls := 10, de�ne the searh interval Ils := [0, 1] and de�ne the set of

evaluation points Pls = {s̃i = i/Nls : i = 0, 1, . . . , Nls}.

2. We approximate values Ĩ(s̃i), for i = 0, 1, . . . , Nls, using the numerial sheme for evalu-

ating the ost funtional I desribed in Setion 4.3.2.
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3. We hoose loal minimums, i.e. points s̃i ∈ Pls ful�lling Ĩ(s̃i) ≤ Ĩ(s̃i−1) and Ĩ(s̃i) ≤
Ĩ(s̃i+1) (or one of these inequalities, if s̃i is the extremal point of Ils). Amongst these

loal minimums, we hoose the one whih is situated losest the point s = 0. Denote this
minimum by s̃ and its index in Pls by ĩ (i.e. ĩ is the index suh that s̃̃i = s̃).

4. We verify whether the stop riterion is ful�lled or not. If yes � then we terminate the line

searh algorithm and return point

˜̃s := s̃. The stop riterion is as follows: verify whether

s̃1 − s̃0 ≤ Rls, where Rls is given. Note that, sine the points s̃0, . . . , s̃Nls
are uniformly

distributed in Ils, we an alternatively verify the inequality s̃i+1− s̃i ≤ Rls for an arbitrary

i = 1, . . . , Nls.

In the experiments desribed in Setion 4.4, we have always used the value Rls = 0.001.

5. We determine a new searh interval and a new set of evaluation points in the following

way:

(a) If s̃ = s̃0, set Ils := [s̃0, s̃1] and Pls := {s̃0,
1
2(s̃0 + s̃1), s̃1} (3 new evaluation points).

(b) If s̃ = s̃Nls
, set Ils := [s̃Nls−1, s̃Nls

] and Pls := {s̃Nls−1,
1
2(s̃Nls−1 + s̃Nls

), s̃Nls
} (3 new

evaluation points).

() If neither of the above two ases hold, set Ils := [s̃̃i−1, s̃̃i+1] and

Pls := {s̃̃i−1,
1
2 (s̃̃i−1 + s̃̃i), s̃̃i,

1
2(s̃̃i + s̃̃i+1), s̃̃i+1} (5 new evaluation points).

Set Nls := #Pls. Relabel the points of set Pls as s̃0, . . . , s̃Nls
.

6. Go to the step 2.

The line searh proedure is terminated by determining the point above denoted as

˜̃s. In

other words, we assume that

˜̃s approximates the solution of problem minns∈[0,1]Ĩ(υ̂ + sd̂), for a

given υ̂, d̂ ∈ V . The above proedure for solving problem minns∈[0,1]Ĩ(υ̂+sd̂) was always utilized
whenever solving this kind of problem was neessary in the experiments desribed in Setion 4.4.

Remark. Assume that the funtion I(υ̂n + . dn) is su�iently regular for onvergene of

the line searh proedure to the real solution of minns∈[0,1]I(υ̂
n + sdn), for υ̂n and dn being as

in the optimization methods desribed in Setion 4.2. Compare the stop riterion imposed in

the optimization methods and the stop riterion in the above line searh proedure. The stop

riterion for the optimization methods is ful�lled if the line searh proedure returns

˜̃s = 0. This
happens if s̃ = 0 and s̃1 − s̃0 ≤ Rls. Thus, due to our assumption, one may onlude that the

stop riterion for the optimization methods is ful�lled if the �real step length� sn, i.e. the real

solution of minns∈[0,1]I(υ̂
n + sdn), is lesser than Rls. N

Remark. The general idea of the above line searh proedure an be explained in the

following way. The subjet proedure onsists of two stages. In the �rst stage, we perform the

uniform line searh, with Nls + 1 evaluation points, for a given natural Nls. The uniform line

searh results in reduing the initial searh interval [0, 1] to some new shorter searh interval.

Next, in the seond stage, we run iteratively a bisetion-like line searh on the new searh interval.

The stage of uniform line searh onsists simply in an additional iteration with many (Nls + 1)
evaluation points, plaed at the beginning of the whole line searh proedure. The bisetion-like

line searh stage is realized by all subsequent iterations. N

Remark. The motivation behind the usage of the above omposite line searh method,

onsisting of two stages, is as follows. Reall that we intend to solve the minimization problem
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of extrating the loal minimum on [0, 1] being the losest to s = 0. The uniform line searh

utilizes more evaluation points in one iteration than the bisetion-like line searh. Hene, in

the �rst iteration, we use the uniform line searh to redue the risk that we will loose essential

information on the geometry of the target funtion Ĩ on the initial searh interval. This inreases

the hane that we selet a onseutive searh interval whih ontains the the minimum of Ĩ
whih is the losest to s = 0. Next, after hoosing the new searh interval, whih is signi�antly

shorter than the initial one, we swith to the bisetion-like line searh beause it is superior to

the uniform line searh in terms of speed. N

Remark. We use name �bisetion-like line searh�, not �bisetion line searh�, beause

the latter is usually used for other algorithm. We have not found the desription of the above

bisetion-like line searh method in publiations, thus we ould not establish the proper name of

the subjet line searh method. The soure in whih we have enountered the desription of the

subjet method is the leture sript [34℄ (in Polish). N

4.4 Results of simulations

In this setion, we desribe results of our experiments onerning attempts to �nd numerially

an approximate solutions of optimization problem (3.24). All below desribed simulations based

on one of the optimization methods spei�ed in Setion 4.2. The numerial shemes whih

were utilized for implementing these methods are desribed in Setion 4.3. The assumptions

onerning problem (3.24) were as in Setion 4.1.

In Setion 4.4.1, we ompare the results of the SD method, for two di�erent parameters T0 in

the ost funtional I and two di�erent proess initial states y0 in the system (3.1) - (3.2). The

results suggest that the performane of the SD method is poorer for the parameter T0 lose to

T . Moreover, a dependene of the optimization output on y0 is observed for T0 lose to T , what
is opposite to our expetations (explained in the beginning of Chapter 4).

In Setion 4.4.2, we vary not only T0 and y0, but also the referene state y
∗
in the system (3.1)

- (3.2). Moreover, the simulations are performed with the use of three optimization algorithms:

SD, CG-r and CG+r. The results on�rm further that the average performane of the SD method

varies as T0 varies (average, in a sense of both the mean and the median of number of iterations).

Nevertheless, the di�erene in the average performane vanquishes when swithing from the SD

method to the CG+r method. Basing on the results, we onlude that the CG+r method is most

appropriate for our optimization problem.

In Setion 4.4.3, we ompare results of the CG+r method for the optimization problem with

T0 lose to T , for varying values of the parameter T and for a varying initial state y0. The

results suggest that the average performane of the CG+r method hanges with hanges of the

time interval, determined by the parameter T . However, it is also observed that lengthening

the time interval resulted with greater independene on y0 of the optimization output. Due

to our general motivations, see the beginning of Chapter 4, we prefer situations exhibiting the

latter e�et, thus simulations with rather long time horizon are interesting for us. Nevertheless

the long time interval makes the optimization proedures more time onsuming. Hene, in

Setion 4.4.4, we propose some possible re�nements to our optimization proedures, to test in

the future experiments.

All below desribed experiments were performed with the use of the GNU Otave software

(version 3.6.4) and omputer luster Halo2 (a mahine of Interdisiplinary Centre for Math-

ematial and Computational Modelling, University of Warsaw). Halo2 proessors are AMD
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Quad-Core Opteron proessors with arhiteture x86_64 �Barelona�. No parallelization was

used, eah optimization proedure run using one proessing ore.

Two types of plots are ontained in the present setion: 1) plots of salar funtions de�ned

on domain Ω (e.g. the initial state y0 or the referene state y
∗
in the system (3.1) - (3.2)) and 2)

plots of partiular on�gurations of the ontrol and measurement devies. Conventions for both

mentioned types of plots are analogous as the onventions desribed in Setion 2.3.

By the on�guration of the ontrol and measurement devies we mean, similarly as in Se-

tion 2.3, the hoie of the supports of funtions gj and hj , for j = 1, . . . , J , haraterizing the

ontrol and measurement devies ations. Here, these are funtions PR,ΩTσg(xj) and PR,ΩTσh
(xj)

in system (3.1) - (3.2), with xj := υ̂j for j = 1, . . . , J , where υ̂ ∈ V is a given ontrol parameter.

Note that, due to spei� assumptions for the pattern funtions (see (4.1)), the visualization

of the supports of the funtions haraterizing the devies ations give haraterization of points

x1, . . . , xJ (up to permutation). In onsequene, one an retrieve the ontrol parameter υ̂ ∈ V
basing on the mentioned visualizations of supports.

In all experiments desribed in the present setion, initial states y0 and referene states y∗

for the system (3.1) - (3.2) were hosen from the set of three partiular variants, presented in

Figure 4.1. In desription of eah experiment, we will speify expliitly whih variants were used.

Figure 4.1 presents the same plots as Figure 2.3 in Setion 2.3 but we plae it here again, for

ompleteness and onveniene. The formulas determining the funtions plotted in Figure 4.1 are:

ŷ(x1, x2) = cos
(
4πx1

)
·
(
1− 2

(
1 + e30 x2

)−1)
(4.10)

ŷ(x1, x2) = − 1 +
(
2
(
1 + e−30x1

)−1
−

(
1 + e−30(x1−0.8)

)−1)
·
(
1 + e30 x2

)−1
+

+ 2
(
1 + e30(x1+0.2)

)−1
·
(
1 + e−30 x2

)−1 (4.11)

ŷ(x1, x2) = 1− 2
(
1 + e−15

3
√

13
13

(x2−1.5x1)
)

(4.12)
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(a) Variant 1.
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(b) Variant 2.
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() Variant 3.

Figure 4.1: Variants of the initial state y0 and the referene state y∗ utilized in the experiments

desribed in Setion 4.4. The plots present salar funtions de�ned on the onsidered R2
domain.

The formulas determining the plotted funtions are (4.10) for Fig. 4.1a, (4.11) for Fig. 4.1b and

(4.12) for Fig. 4.1.

Moreover, in all experiments, it was assumed that the number of the ontrol and measurement

devies equals twenty (J = 20). In addition, for eah experiment experiment, the on�guration

of ontrol and measurement devies used as a start on�guration for the optimization algorithms

was as in Figure 4.2.
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Figure 4.2: The start on�guration of ontrol and measurement devies for optimization proe-

dures utilized in the experiments desribed in Setion 4.4. In other words, the plot haraterizes

the ontrol parameter υ̂0 ∈ V , utilized in the desriptions in Setion 4.2.

Also, in eah of the below desribed experiments the following data were used. The pa-

rameters onerning the system (3.1) - (3.2) (see Setion 4.1 for explanation of the parameters

meaning) were:

D = 0.03 rσ,2 = 1/8 Cswitch = 0.2 Csmooth = 0.9

βj = 1 ∀j=1,...,J rσ,1 = 0.6 · rσ,2 Lw = −10

κj0 = 0 ∀j=1,...,J Cg = 16/π Hw = 10

Other parameters, i.e. the parameter T (onerning the system (3.1) - (3.2), see Setion 4.1),

parameters N , M , NPicard (onerning the numerial sheme, see Setion 4.3) and the parameter

Nopt (onerning the stop of optimization algorithms, see Setion 4.2) will be spei�ed below,

in the desriptions of partiular experiments. The hoie of the optimization proedures (SD

method, CG-r method or CG+r method) also will be spei�ed there.

4.4.1 Experiment 1 � various initial onditions and ost funtionals

This experiment served for omparing the behavior of the SD method for optimization problem

(3.24), for two di�erent parameters T0, entering the de�nition of the ost funtional I . One

of the onsidered values of T0 orrespond to the onept of the ost funtional that onsists in

measuring the gap between the referene state and the evolution of the proess on the whole

time interval of the experiment, [0, T ]. The other value of T0 orresponds to the ost funtional

onept that onsists in measuring the subjet gap only in the neighborhood of the terminal time

T .
The seond of the above ost funtional onepts �ts our main motivation, desribed in the

beginning of Chapter 4, whih is the problem of hoosing the targeting of the devies ations

w.r.t. the task of bringing the proess state possibly lose to the referene state at the terminal

time T . In this ase of the ost funtional, it is desired that the optimization proedure will

return results being independent of the initial state y0 (see the explanation in the beginning of

Chapter 4). Unfortunately, the latter ours to be not true, at least with the data employed in

the present experiment. Below, we suggest some possible solutions to this situation.

Despite the fat that we are interested in the ost funtional with measurement onentrated

lose to terminal time, the omparison with the other mentioned type of the ost funtional

(measurement distributed over the whole [0, T ]) also is interesting. This omparison, as we will

see below, an suggest that the SD method applied in the investigated optimization problem

di�ers in the its performane depending on the hosen parameter T0.
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In the presently onsidered experiment, the time horizon for the system (3.1) - (3.2) was

T = 2.

The referene state y∗ was assumed to be as in Figure 4.1.

The following parameters for the numerial sheme were assumed: N = 80, NPicard = 2 and

M = 100.
The applied optimization algorithm was SD method, desribed in Setion 4.2, with Nopt =

1000.

Four simulations were performed, orresponding to two variants of the initial state y0 and

two values of the ost funtional parameter T0. The subjet two hoies of y0 were orresponding
to the funtions plotted in Figure 4.1a and Figure 4.1b (we all it variant 1. and variant 2.,

respetively). The two onsidered values of T0 were T0 = 0 and T0 = 0.9T .

Simulation Iterations Initial ost Terminal ost

y0 variant 1, T0 = 0 39 0.918962 0.720012

y0 variant 2, T0 = 0 68 1.780059 0.981571

y0 variant 1, T0 = 0.9T 118 0.109127 0.017851

y0 variant 2, T0 = 0.9T 1000 0.232079 0.020284

Table 4.1: Performane of optimization proedures onsidered in Setion 4.4.1, for two variants

of the initial state y0 and two values of the parameter T0 onsidered in the subjet setion.

Column �Iterations� informs how many iterations of the optimization proedure (see integer n
in the desription of the SD and CG methods, given in Setion 4.2) were performed before

the proedure ful�lled the stop riterion. If the optimization proedure was terminated due to

the ondition n = Nopt and not sn = 0, (see the spei�ation of the stop riterion, given in

Setion 4.2), the number of iteration is given with bold font. The last two olumns present the

values of the ost funtional at start of an optimization proedure and after the optimization

proedure terminated. In other words, values I(υ̂0) and I(υ̂n), for n orresponding to the stop

iteration, are presented there (with υ̂i being as in the desription of SD and CG methods given

in Setion 4.2).

Table 4.1 ompares the performane of the SD method in the four onsidered simulations. A

grater number of iterations was neessary to ful�ll the stop riterion for simulations onerning

T0 = 0.9T . In partiular, in the simulation onerning T0 = 0.9T and variant 2. of y0, the SD
method failed to stop in one thousand iterations. This is greatly worse result that in the ase

of the other three simulations. One an pose a hypothesis that worse performane of the SD

method for T0 = 0.9T is a general rule. In Setion 4.4.2, we will make a further step towards

veri�ation of the subjet hypothesis.

Now, let us take a look at the devies on�gurations obtained by the here onsidered opti-

mization proedures.

The two simulations with T0 = 0 di�er only with the variant of y0. Comparing Figures

4.3a and 4.3b we see that the result of these simulation varies strongly. The meaning of the

optimization problem (3.24) with the parameter T0 = 0 entering the ost funtional an be

explained as follows. The problem is to adjust the on�guration of the devies in a manner that

results in quik redution of the di�erene between the initial state of the proess and the referene

state. In other words, the di�erene between y0 and y∗ is ruial and hene the dependene on y0
of the subjet two simulations results ould be expeted. In addition, one may ompare Figures

4.3a and 4.3b with Figures 4.4a and 4.4b, respetively. If one merged the orresponding �gures

pairwise, it ould be noted, that the obtained targeting of the devies ations oinide with the
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(a) y0 variant 1.,
T0 = 0, iter. 39.
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(b) y0 variant 2.,
T0 = 0, iter. 68.
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() y0 variant 1.,
T0 = 0.9T , iter. 118.
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(d) y0 variant 2.,
T0 = 0.9T , iter. 1000.

Figure 4.3: Con�gurations of the ontrol and measurement devies ations, obtained by opti-

mization proedures addressed in Setion 4.4.1, for two variants of the initial state y0 and two

values of the parameter T0 onsidered in the subjet setion. Values of the parameter T0 and the

variants of the initial state (orresponding to the funtions plotted Figure 4.1) are indiated in

the �gures. Eah plot presents the on�guration orresponding to the terminal iteration of the

subjet optimization proedures (see olumn �Iterations� in Table 4.1).
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Figure 4.4: The funtion

∣∣y0−y∗
∣∣
, for y∗ being as assumed in Setion 4.4.1 and for two variants of

y0 onsidered in the subjet setion. Fig. 4.4a orresponds to the ase of y0 being as in Fig. 4.1a

and Fig. 4.4b orresponds to y0 as in Fig. 4.1b.

light �elds in the plots of di�erene

∣∣y0 − y∗
∣∣
. It means that the optimization proedure has

loated the ontrol and measurement devies ations there where the subjet di�erene was the

greatest.

The two simulations orresponding to T0 = 0.9T also di�er only with the variant of y0.
However, this time we expet a looser dependene of the results on y0. The latter expetation

an be justi�ed with reasoning as already mentioned in the introdution to Chapter 4. Let

us reall it. Most of the data onsidered in the subjet simulations is as in Setion 2.3.2 and

Setion 2.3.3. There, the proess ourred to stabilize in the neighborhood of ertain time-

invariant state, independent of y0. Therefore, one ould expet that in the present simulations

the proess also may stabilize near ertain y0-independent, time-invariant state. If this was the

ase, then the values of the ost funtional would not di�er signi�antly under hanges of y0,
beause for T0 = 0.9T the ost funtional aounts only the behavior of the proess near the
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terminal time, where the proess evolves independently on y0. In onsequene, minimal points

of the ost funtional also would depend on y0 insigni�antly.

The results returned by the SD method for the ase T0 = 0.9T deny part of the above

expetations. Comparing Figures 4.3 and 4.3d shows that the obtained on�gurations of the

devies di�er for the two onsidered variants of y0. The di�erene between the two patterns is not

that big as in the ase of Figures 4.3a and 4.3b. Nevertheless, depending on partiular auray

requirements, the math between the patterns in Figures 4.3 and 4.3d an be onsidered to be

not enough aurate.

Several hypotheses onerning the latter observations, onerning the dependene of the

optimization results of y0 in ase T0 = 0.9T , an be posed. In partiular, the following ones seem

to be natural:

(a) the above hypotheses onerning the stabilization near to a time-invariant state independent

of y0 are false,

(b) the time interval of the model in the presently onsidered simulations was too short for the

proess to get lose enough to the time-invariant state,

() the optimization proedure was not aurate enough to approximate the minimum of the

ost funtional with su�ient preision (it is possible beause in the simulation onerning

variant 2. of y0 and T0 = 0.9T the optimization proedure stopped due to a large number

of iterations, not due to a short step length � see Table 4.1).

We will touh part of the above hypotheses in the forthoming setions.

4.4.2 Experiment 2 � omparing optimization methods

In the below desribed experiment, we ompare performane of the SD method with performane

of CG methods (more preisely, the CG-r and CG+r methods), for optimization problem (3.24).

The simulations were performed for varying initial states y0, varying referene states y
∗
, entering

the system (3.1) - (3.2), and varying values of the parameter T0, entering the ost funtional I .

The aims of the experiment were threefold. First, we wanted to get further veri�ation of the

observations made in Setion 4.4.1, that the performane of the SD method for the optimization

problem with T0 = 0.9T is inferior to the ase of T0 = 0. This objetive is realized by performing

more simulations, using the SD method, for both ases of T0. Seond, we posed a partiular aim

to verify whether the CG methods are more appropriate for our optimization problem in the ase

of T0 = 0.9T , whih is partiularly interesting for us (see the introdution to Chapter 4). Third,

we wanted to ompare the results obtained in Setion 4.4.1 for the ase T0 = 0.9T with the use

of the SD method with results obtained in the same ase with the use of the CG methods. This

serves for investigating the reasons of the dependene of the optimizations results on y0, what
was observed in Setion 4.4.1. A disussion onerning the three introdued objetives will be

onduted below.

In the presently onsidered experiment, the time horizon for the system (3.1) - (3.2) was

T = 2.

The following parameters for the numerial sheme were assumed: N = 80, NPicard = 2 and

M = 100 (i.e. τM = M−1 = 0.02).

The stop riterion parameter for the optimization methods was Nopt = 1000.

54 simulations were performed, orresponding to di�erent variants of: the initial state y0, the
referene state y∗, the ost funtional parameter T0 and the optimization method. Three hoies
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of y0, three hoies of y
∗
, two hoies of T0 and three hoies of the optimization methods were

onsidered, what gives 3× 3× 2× 3 = 54 di�erent data on�gurations. Hene 54 simulations.

The three onsidered variants of y0 were orresponding to the three funtions, plotted in

Figure 4.1a, Figure 4.1b and Figure 4.1 (we all it variant 1., variant 2. and variant 3., re-

spetively). The three variants of y∗ also were orresponding to these three funtions. The two

values of T0 taken into aount were T0 = 0 and T0 = 0.9T . The three optimization methods

were: 1) SD method, 2) CG-r method and 3) CG+r method (see Setion 4.2 for explanation of

these methods).

Aording to the above, four of the simulations desribed here are exatly those desribed

in Setion 4.4.1 (the simulations with variant 3. of y∗ and with the use of the SD method).

Nevertheless, we attah the result of the subjet four simulations here, for more onvenient

omparison with other results.

Simulation Iterations Ratio

SD CG-r CG+r

CG-r

SD

CG+r

SD

y0 var. 1, y
∗
var. 3, T0 = 0 39 58 58 1.4872 1.4872

y0 var. 2, y
∗
var. 3, T0 = 0 68 106 97 1.5588 1.4265

y0 var. 3, y
∗
var. 3, T0 = 0 188 139 176 0.7394 0.9362

y0 var. 1, y
∗
var. 2, T0 = 0 261 49 52 0.1877 0.1992

y0 var. 2, y
∗
var. 2, T0 = 0 558 76 82 0.1362 0.1470

y0 var. 3, y
∗
var. 2, T0 = 0 1000 139 168 0.1390 0.1680

y0 var. 1, y
∗
var. 1, T0 = 0 184 52 50 0.2826 0.2717

y0 var. 2, y
∗
var. 1, T0 = 0 179 92 87 0.5140 0.4860

y0 var. 3, y
∗
var. 1, T0 = 0 106 79 122 0.7453 1.1509

Mean 287.0 87.8 99.1 0.6434 0.6970

Median 184.0 79.0 87.0 0.5140 0.4860

y0 var. 1, y
∗
var. 3, T0 = 0.9T 118 64 52 0.5424 0.4407

y0 var. 2, y
∗
var. 3, T0 = 0.9T 1000 255 279 0.2550 0.2790

y0 var. 3, y
∗
var. 3, T0 = 0.9T 211 77 77 0.3649 0.3649

y0 var. 1, y
∗
var. 2, T0 = 0.9T 212 96 84 0.4528 0.3962

y0 var. 2, y
∗
var. 2, T0 = 0.9T 250 89 95 0.3560 0.3800

y0 var. 3, y
∗
var. 2, T0 = 0.9T 384 125 112 0.3255 0.2917

y0 var. 1, y
∗
var. 1, T0 = 0.9T 1000 60 82 0.0600 0.0820

y0 var. 2, y
∗
var. 1, T0 = 0.9T 526 35 35 0.0665 0.0665

y0 var. 3, y
∗
var. 1, T0 = 0.9T 1000 137 42 0.1370 0.0420

Mean 522.3 104.2 95.3 0.2845 0.2603

Median 384.0 89.0 82.0 0.3255 0.2917

Table 4.2: Performane of the optimization methods onsidered in Setion 4.4.2, for three variants

of the initial state y0, three variants of the referene state y∗ and two values of the parameter

T0 onsidered in the subjet setion. The meaning of olumn �Iterations� and the notation

onerning the stop riterion (the bold font entries) are as in the ase of Table 4.1. Column �Ratio�

presents, for eah simulation, the ratio of iteration numbers onerning indiated optimization

methods (with rounding to 4 signi�ant digits). The mean values given in the latter olumn

refer to the mean of the ratio values, not to the ratio of the mean numbers of iterations in the

preeding olumns. The analogous onvention onerns the median values.

Consider the data presented in Table 4.2. First, observe that both the mean and the median
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of the number of iterations neessary for SD method to stop are muh greater in the ase of

T0 = 0.9T than in the ase of T0 = 0. Basing on the subjet result, one may suspet that the

SD method has worse performane in the ase T0 = 0.9T (in the sense of the expeted value or

of the median). This is onsistent with the preliminary observation onerning the behavior of

the SD method, ontained in Setion 4.4.1.

Next, ompare the performane of the SD method with the performane of the two onsidered

CG methods. In the ase of T0 = 0, we observe that the mean of the redution of the number

of iterations neessary to ahieve the stop riterion when using one of the CG methods instead

of the SD method is over 30% (see olumn �Ratio� in Table 4.2). The median of the redution

is about 50%. In the ase of T0 = 0.9T , both the mean and the median of the redution are

signi�antly greater and take value about 70%.

In addition, we remark that for the CG methods the optimization proedures never stopped

due to ahieving a large number of iterations, equal Nopt. For these methods, the stop reason

was always a short step length (for the desription of the stop riterion, see Setion 4.2). Note

however an interesting partiularity that in the ase of T0 = 0 there were two situations where

the SD method was in advantage to the CG methods, in sense of number of iterations (variants

1. and 2. of y0 with variant 3. of y∗), while in the ase of T0 = 0.9T the CG methods always

behaved better than the SD method.

Another interesting observation is that both the mean and the median of the number of

iterations for the CG+r method were similar both for T0 = 0 and for T0 = 0.9T . For the SD

method, this is not true. In the ase of the CG-r method, the di�erenes in the mean and the

median of the number of neessary iterations ourring in omparison of T0 = 0 and T0 = 0.9T
ases also were small (in omparison to the SD method), but not that small as in the ase of the

CG+r method. It looks like the performane of the CG+r method, in sense of the mean and the

median, was most immune to the hange of the parameter T0, among the onsidered methods.

To sum up the above observations, the SD method seems to have statistially worse perfor-

mane in the ase of T0 = 0.9T than in the ase of T0 = 0 (in the sense of the mean and the

median of the number of iterations). This di�erene in the behavior of the optimization method

is leveled by swithing to the CG+r method. In both ases (T0 = 0 and T0 = 0.9T ), swithing
to one of the CG methods was a fruitful step. Nevertheless, the bene�ts of swithing to the CG

methods were onsiderably higher in the ase T0 = 0.9T .

Among the three proposed optimization methods, the method that seems to be in favor for

our purposes is the CG+r method. It was most immune to hanges of the ost funtional (in the

sense of the mean and the median of the number of iterations). In this sense, the performane

of this method is most preditable. Moreover, in the ase of T0 = 0.9T , whih is the ase of

our interest, its performane is statistially the best among the proposed methods (in the sense

of the mean and the median). Besides, applying a reset proedure in the nonlinear onjugate

gradient method seems to be a standard approah, at least in a part of the literature onerning

this method.

In addition to the above observations, we fous for the moment on the simulations onerning

the ase of variant 3. of y∗ and T0 = 0.9T . This ase was one of the subjets of Setion 4.4.1,

with onlusion that the dependene of the optimization results on the initial state y0 an be

observed. In simulations desribed in Setion 4.4.1, SD method was used. In the simulation

onerning variant 2. of y0 and T0 = 0.9T , it stopped due to large number of iterations, not due

to short step length (see Table 4.1). Therefore the obtained approximation of loal minimum

of the ost funtional I ould be of low quality. Now, we an ompare the results desribed in

Setion 4.4.1 with optimization results obtained by CG-r and CG+r methods. For the latter

methods the optimization proedure always stopped due to the short step length (see Table 4.2).
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(f) y0 variant 2.,
CG+r, iter. 279.

Figure 4.5: Con�gurations of the ontrol and measurement devies onerning variant 3. of y∗

and T0 = 0.9T , obtained as a result of simulations desribed in Setion 4.4.2, for two variants

of the initial state y0 and three optimization methods. The optimization methods and the

variants of the initial state (orresponding to the funtions plotted Figure 4.1) are indiated

in the �gures. Eah plot presets the on�guration orresponding to the �nal iteration of the

subjet optimization proedures (see olumn �Iterations� in Table 4.2). Figures 4.5a and 4.5d

are the same as Figures 4.3 and 4.3d, respetively, but we plae them here for more onvenient

omparison of optimization methods.

For this reason, we assume that, for variant 2. of y0 and T0 = 0.9T , the approximation of the

loal minimums of I obtained be the subjet methods is of higher quality than the approximation

obtained in Setion 4.4.1. Thus, omparison of the results an serve for verifying the hypothesis

that the dependene on y0 observed in Setion 4.4.1 was a onsequene of poor quality of the

optimization proedures output (see hypothesis () in the onluding part of the latter setion).

Comparing partiular plots presented in Figure 4.5, one may observe that for CG-r and

CG+r methods dependene of the optimization output on y0 also takes plae, similarly as in

the ase of the SD method. This, under the assumption that the quality of the optimization

results is aeptably high for the CG-r and CG+r methods, stays against the hypothesis that sole

optimization output quality was responsible for the dependene on y0 observed in simulations

desribed in Setion 4.4.1.

4.4.3 Experiment 3 � various initial onditions and time horizons

In the present setion, we ompare results of the CG+r method applied to optimization problem

(3.24), for two di�erent initial states y0 and for the time horizon parameter T greater that in

Setion 4.4.1 and Setion 4.4.2. The ost funtional onsidered in the below desribed experiment
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orrespond to the idea of measurement of the gap between the proess and the referene state

in the neighborhood of the terminal time T .
The aim of the below desribed experiment was further attempt to verify hypotheses on-

erning the dependene of the optimization results on y0, observed in the experiments desribed

in Setion 4.4.1 and Setion 4.4.2. As we will see below, lengthening the time interval results in

onsiderably higher immunity of the optimization problem to the hanges of y0. This supports
hypothesis (b), formulated as one of the onlusions of Setion 4.4.1.

As a side result, we observe that the number of CG+r iterations neessary for time horizons

parameters T onsidered here is higher that in the previous setions, for T = 2.
In the presently onsidered experiment, the referene state y∗ for the system (3.1) - (3.2) was

assumed to be as the funtion plotted in Figure 4.1.

The following parameters for the numerial sheme were assumed: N = 80, NPicard = 2 and

τM = 0.02.

The applied optimization algorithm was CG+r method, desribed in Setion 4.2.

The stop riterion parameter for the optimization methods was Nopt = 600.

Four simulations were performed, orresponding to two di�erent variants of the initial state

y0 and two di�erent variants of the time horizon parameter T . The subjet two variants of y0
were as the funtions plotted in Figure 4.1a and Figure 4.1b (we all it variant 1. and variant

2., respetively). The two values of the parameter T were T = 4 and T = 6.

Simulation Iterations Initial ost Terminal ost

y0 variant 1, T = 4 600 0.078051 0.007050

y0 variant 2, T = 4 468 0.083608 0.007149

y0 variant 1, T = 6 216 0.076831 0.006993

y0 variant 2, T = 6 600 0.077166 0.007088

Table 4.3: Behavior of optimization proedures onsidered in Setion 4.4.3, for two variants of

the initial ondition and two values of the parameter T onsidered in the subjet setion. The

meaning of partiular olumns and the notation onerning the stop riterion (the bold font

entries) are as in the ase of Table 4.1.

Note that the time step length τM is the same as in the previous experiments, however the

time horizon is longer and hene the number of the time steps M in the time disretization

is greater as well. This makes the omputational time neessary to perform one iteration of

an optimization algorithm greater than it was the ase in the previous experiments. This is

the reason for whih we have redued the value of the parameter Nopt to 600 (in the previous

experiments, we onsidered Nopt = 1000).
The use of the CG+r method instead of the SD method also serves for reduing the ompu-

tational e�ort, sine, by the previous results, CG+r has performane superior to SD and more

preditable than CG-r, in the sense of the mean and the median of the number of iterations

(see Setion 4.4.2). Nevertheless, omparison with previously desribed results shows that the

numbers of iterations in the presently onsidered simulations, with T = 4 or T = 6 (see Ta-

ble 4.3), are higher that the numbers of iterations for analogous simulations with T = 2 (i.e.

those simulations in Table 4.2 whih onern variant 3. of y∗ and T0 = 0.9T and whih use the

CG+r method). This allows to pose a hypothesis that the performane of the CG+r method for

optimization problem (3.24) varies with hanges of T .
Speaking at the level of general ideas, results of previous experiments may suggest that the

di�ulty of the optimization problem (3.24) varies with hanges of T0 (beause the performane
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of the SD method varies, see Setion 4.4.2), while the here presented results may suggest that

the di�ulty hanges also with hanges of T (beause the performane of the CG+r method

hanges). Nevertheless, it is worth realling that the di�erenes in the performane of the CG+r

method were not present when hanging the parameter T0, in opposite to hanges of T .
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Figure 4.6: Con�gurations of the ontrol and measurement devies, obtained by optimization

proedures addressed in Setion 4.4.3, for two variants of the initial state y0 and two values of the

parameter T onsidered in the subjet setion. Values of the parameter T and the variants of the

initial state (orresponding to the funtions plotted Figure 4.1) are indiated in the �gures. Eah

plot presets the on�guration orresponding to the �nal iteration of the subjet optimization

proedures (see olumn �Iterations� in Table 4.3). Figures 4.6a and 4.6d onern simulations

desribed in Setion 4.4.2 and are the same as Figures 4.5 and 4.5f, respetively, but we plae

them here for more onvenient omparison.

Now, we will ompare the optimization output obtained by the here onsidered simulations

with the output obtained in the simulations desribed in the previous setions.

Two of the simulations desribed in Setion 4.4.2 di�er with the simulations desribed here

only with time horizon T (these are the simulations onsidered there whih onern variant 3.

of y∗ and T0 = 0.9T and whih use the CG+r method). In Setion 4.4.2, for the subjet two

simulations, shorter time horizon, T = 2, was onsidered. At the same time, dependene of

the optimization results on the initial state y0 was observed. Now, we an ompare the results

onerning T = 2, desribed in Setion 4.4.2 (Figures 4.6a and 4.6d), with the results onerning

longer time horizon (Figures 4.6b, 4.6, 4.6e and 4.6f).

First, we an observe as the di�erene between the optimization output for distint y0 variants
dereases when lengthening the time horizon T . The di�erene between the results obtained for

T = 4 (Figures 4.6b and 4.6e) are visible smaller that the di�erenes for T = 2 (Figures 4.6a and
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4.6d). Still, some di�erene an be observed also for T = 4. Comparing the results onerning

T = 4 with the results onerning T = 6 (Figures 4.6 and 4.6f), we observe further growth of

similarity between the optimization results obtained for the two onsidered variants of y0.

Seond, as an additional observation, note that in all of Figures 4.6b, 4.6, 4.6e and 4.6f, a

strong visual dependene of the results with the referene state y∗ (Figure 4.1) is visible. This
is expressed by onentration of the devies ations near the diagonal-like line, assoiated with

the referene state y∗ (Figure 4.1) and by symmetry of the ations targeting with respet to the

subjet line. In partiular, for variant 2. of y0 this dependene seems to be learer for T = 4 and
T = 6 (Figures 4.6e and 4.6f) than in the ase of T = 2 (Figure 4.6d). The level of symmetry

visible in Figures 4.6e and 4.6f is higher than in Figure 4.6d.

To sum up, the use of a longer time interval resulted in leveling the dependene on y0,
observed in Setion 4.4.2 for the simulations assoiated with T0 = 0.9T and y∗ as in Figure 4.1.

Reall also that hanging the optimization method from SD to CG+r did not bring this kind of

results (see Setion 4.4.2). These observations seem to on�rm hypothesis (b), formulated for

SD method in the onluding part of Setion 4.4.1.

Moreover, looser the dependene on y0 of the optimization results was, the stronger depen-

dene on y∗ was visible.

4.4.4 Tehnial remarks

We now give some tehnial remarks onluding the present hapter.

First, we have not onduted the onvergene analysis of the optimization proedures applied

in our experiments. Below, we will omment whih additional steps would be neessary in the

onvergene analysis.

Seond, as indiated in the present hapter, our experiments for numerial treatment of the

optimization problem (3.24) were a rather heavy omputational e�ort. At the same time, we are

partiularly interested in performing the optimization experiments for long time horizons (be-

ause it resulted in redued dependene of the results on the initial ondition, see Setion 4.4.3),

what makes the the experiments even more time onsuming.

To be preise, for simulations desribed in Setion 4.4.1, with T = 2, the mean time of single

iterations was about 500 se. For simulations with T = 4 or T = 6, desribed in Setion 4.4.3,

the mean iteration time was even longer (about 850 and 1200 se, respetively). This made

the latter simulations impratially long, beause they required hundreds of iterations beause

ahieving the stop riterion (see Table 4.3).

Thus, below we omment on ertain possibilities of reduing the omputational time neessary

in numerial treatment of the optimization problem (3.24).

Remark. The above information onerning omputational time for a single iteration is

not preise beause, unfortunately, we have not saved timestamps onerning eah partiular

iteration during our experiments. N

Convergene analysis

We begin with remarks onerning the onvergene of the optimization proedures utilized in

our experiments.

It an be shown (see [24℄ or Chapters 3.2 and 5.2 in [38℄) that, under appropriate onditions,

the onvergene of the SD and CG methods, desribed in Setion 4.2, to a stationary point takes

plae in the following sense:
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• limn→∞

∥∥∇I(υ̂n)
∥∥
V
−→ 0 for the SD method.

• lim infn→∞
∥∥∇I(υ̂n)

∥∥
V
−→ 0 for the CG method.

Roughly speaking, the above mentioned appropriate onditions onern:

• The regularity of the ost funtional I . It should be di�erentiable in the lassial sense

(i.e., in the Fréhet sense, not only G

�

teaux) and its gradient should be Lipshitz ontinuous

(see [24℄ or Chapters 3.2 and 5.2 in [38℄).

• The line searh proedure. It should return exat solution of 1-D optimization problem

(see Theorem 2.1 and Theorem 4.3 in [24℄), or it should ful�ll so-alled Wolfe onditions

in the ase of the SD and CG+r algorithms (see Theorem 3.2 and subsequent remarks in

[38℄) or the Wolfe onditions plus so-alled su�ient desent ondition in the ase of the

CG-r algorithm (see Corollary 4.4 in [24℄).

• Besides, the results in [24℄ require the set of points with values of the ost funtional equal

below the value of the start point (all it the level set) to be bounded.

In our work, we have not investigated the Lipshitz ontinuity of ∇I nor we have addressed

the matter of boundedness of the level set.

In the optimization proedures in our simulations, the aim of the line searh proedure (see

Setion 4.3.4) was to approximate the exat solutions of the 1-D optimization problem. This may

seem to be reasonable to approximate the exat solutions, sine, in view of the above remarks,

they are su�ient for the onvergene results. Nevertheless, despite the exat solutions are

su�ient, their lose approximations not need to be suh. The referred above results require

either exat solutions or so-alled Wolfe onditions with, possibly, so-alled su�ient desent

ondition. In general, the exat solutions, as well as their approximations, do not neessarily obey

the Wolfe onditions. Thus, however the line searh proedure proposed in Setion 4.3.4 worked

properly, for the onvergene analysis it may onvenient to hange the line searh proedure for

a proedure obeying the Wolfe onditions and the su�ient desent ondition.

Moreover, the numerial shemes applied for solving the 1-D problem base on inexat evalu-

ation of I (see Setion 4.3.2) and inexat evaluation of dn, aused by inexat evaluation of the

gradient of I (see Setion 4.3.3). Indeed, the vetor dn in the 1-D problem depends strongly on

the gradient of I , both for the SD and for the CG method. Thus, for the onvergene analysis of

the optimization proedures, it would be required to investigate the in�uene of the latter e�ets

to the onvergene.

Summing up, to investigate the onvergene of the real optimization proedures applied in

our simulations (whih are merely approximations of the ideal SD and CG methods, desribed

in Setion 4.2), it would be neessary to:

• Prove results on Lipshitz ontinuity of ∇I .

• Propose a line searh proedure obeying the Wolfe onditions and the su�ient desent

ondition.

• Answer the questions onerning the onvergene of the numerial sheme onerning the

evaluation of I (Setion 4.3.2) and the evaluation of the gradient (Setion 4.3.3).

• Solve the rather tehnial problem of guaranteeing that the level set is bounded, if one

wants to base on the results of [24℄.
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Sine we have not performed analysis of the above points in the present work, we leave the

question onerning the onvergene of the SD and CG algorithms applied in our experiments

open.

Possible osillations near the stationary points

Roughly speaking, in our situation, possible re�nements onerning the redution of the om-

putational time of the numerial optimization experiments an be grouped into two ategories.

One of them is the group of re�nements fousing on reduing the omputational time of a single

iteration of the optimization proedures, the other one is the group of re�nements serving for

reduing the expeted number of iterations. The below remark onerns onerns the latter

group of re�nements.

Taking a look at Tables 4.1, 4.2 and 4.3, one an observe that the number of iterations

neessary to reah the point ful�lling the stop riterion varies strongly for partiular simulations.

For some simulations, the number of iterations was partiularly high, e.g. for simulations with

long time interval, desribed in Setion 4.4.3. Thus one an pose a hypothesis, whih we do

not verify here, that in these simulations the optimization proedure was osillating lose to the

stationary point for many iterations before reahing the stop riterion. Here, by osillations me

mean onseutive iterations of the optimization proedures whih bring no signi�ant hanges

of the values of the ost funtional nor of the ontrol parameter. This kind of osillations is

ertainly an undesired e�et, making the omputational time signi�antly longer.

We propose two strategies of re�ning the optimization proedures applied in our experi-

ments. The subjet strategies an be tested in future experiments and, if the alleged osillations

indeed were present in our experiments, an result in improved performane of the optimization

algorithms. These strategies are:

• Use a stronger stop riterion. In our simulations, the stop riterion was probably quite

weak, in sense that strong onditions have to be ful�lled to trigger the stop riterion. It

is tempting to propose a stop riterion whih detets the moment when the optimization

proedure does not make signi�ant progress anymore, or when the osillations begin.

Nevertheless, due to variety of possibilities whih ould be onsidered in this ontext, we

do not ontinue with this issue here.

• Apply the Newton method ombined with one of the SD or CG methods. This idea

is not new. It is known that the Newton method, if starting su�iently lose to the

stationary point, onverges to this point quikly (see Theorem 3.5, p. 44 in [38℄). Thus, a

reasonable optimization proedure an be to start with the SD or CG method and swith

to the Newton method when a proper swithing riterion is triggered. Further proposition

is to use some quasi-Newton method instead of the Newton method itself, to avoid the

neessity of omputing the Hessian and dealing with onditions su�ient for seond order

di�erentiability of I .

Note also that the inauraies in omputing the gradient of I , whih were mentioned above

in the ontext of the onvergene analysis, also an be related with the alleged osillations of the

optimization proedures near the stationary points. Small perturbations of the gradient near the

loal minimum an in�uene the onvergene of gradient optimization algorithms, however this

is also merely a hypothesis. To onlude, if the osillations indeed are present in our simulations,

then, besides the above proposed strategies, it may be worthwhile to onsider possibilities of

improving the auray of the numerial shemes onerning the evaluation of the gradient of I .



4.4. RESULTS OF SIMULATIONS 127

Redution to the stationary problem

There are also ertain diretions of development whih an help to redue the omputational

time of a single iteration in our optimization proedures. In this ontext, we propose the fol-

lowing strategy, whih in fat onsists in replaing the optimization problem (3.24) with other

optimization problem, potentially requiring less omputational power.

The strategy is to redue the system (3.1) - (3.2) to a stationary model, not involving the time

variable. Having this, one an de�ne an alternative ost funtional, basing on the gap between

the solution of the stationary model and the referene state. New optimization problem would

be to minimize the new ost funtional.

Computing a numerial solution of the stationary model should be less time onsuming than

omputing the numerial solution of (3.1) - (3.2). In our simulations, the main e�ort in every

iteration of the optimization proedures onerned solving the system (3.1) - (3.2) multiple

times. Hene, a single iteration of the new optimization problem would be probably muh less

time onsuming.

From mathematial point of view, applying this approah would require the analysis of the

new optimization problem itself, onsisting of the steps analogous to those in the present work,

as the existene and uniqueness results, stability analysis and results onerning di�erentiability

of the state operator and of the ost funtional.

On the level of general ideas, the new optimization problem approximates the original opti-

mization problem with T0 lose to T , under the ondition that the dynamial system assoiated

with (3.1) - (3.2) posses a one point attrating set. Therefore, this approah is possible but

demands, besides the analysis of the new optimization problem itself, the analysis of large time

behavior of the system (3.1) - (3.2), involving in partiular analysis of the attrating sets. This

analysis probably would be not trivial beause, as remarked in Setion 2.3.4, in ertain situations

the attrating set, if exists, probably is bigger than one point. In onsequene, a non-obvious

problem of haraterizing those parameters and funtions entering the system (3.1) - (3.2) for

whih a one point attrating set exists would be faed during the large time behavior analysis.

Numerial shemes with an improved integration method

Next, we would like to give a more extensive omment on the numerial shemes onerning the

evaluation of the ost funtional I (see Setion 4.3.2) and its gradient (Setion 4.3.3). The subjet

shemes return inexat values, what, as already remarked above, an both have onsequenes for

the analysis of onvergene of the numerial optimization proedures and ause the hypothetial

osillations of the numerial proedures.

The shemes for evaluation of the ost funtional and its gradient give inexat values, for

multiple reasons. First, for a given υ̂ ∈ V , the values I(υ̂) and ∇I(υ̂) are omputed basing

not on the weak solutions of systems (3.1) - (3.2) and (3.30) - (3.31), but on the approximate

solutions of these system, obtained by the methods desribed in Setion 4.3.1. Seond, the time

integrals of the approximate solutions or their transformations, appearing both in the de�nition

of I(υ̂) and in the formula haraterizing ∇I(υ̂), are omputed inexatly. Being puristi, the

time integrals of the approximate solutions are not even de�ned beause we assumed that the

approximate solutions are de�ned only in the time disretization points.

Thus, let us propose an alternative approah onerning numerial shemes for the ost

funtional and its gradient, whih an be tested in the future experiments. We still assume

that the strutural assumptions presented in Setion 4.1 hold. The alternative approah an be

skethed a follows:
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1. De�ne approximate solution with ontinuous time for the system (3.1) - (3.2) as a pieewise

linear extension to [0, T ] of the approximate solution with disrete time, de�ned for the sys-

tem (3.1) - (3.2) in Setion 4.3.1 for time disretization points t0, t1, . . . , tM . Let this linear

extension be hosen suh that it is linear on eah interval (tm, tm+1), m = 0, 1, . . . ,M − 1.
This makes the approximate solution with ontinuous time unique. The approximate so-

lution with ontinuous time for the system (3.30) - (3.31) is de�ned analogously, basing

on the approximate solution with disrete time, de�ned for the system (3.30) - (3.31) in

Setion 4.3.1.

2. To approximate the ost funtional, we evaluate the formula

∫ T
T0

∫
ΩN

∣∣YN − [y∗]N
∣∣2
, where

YN is the �rst omponent of the approximate solution with ontinuous time for the system

(3.1) - (3.2). Below, the subjet formula will be alled the modi�ed ost formula. The

notation [y∗]N has meaning as in Setion 4.3.2.

To evaluate the modi�ed ost formula, we proeed as follows. First, de�ne the funtion

Ẽ : [0, T ] → R with the formula analogous as the formula for Ẽm in Setion 4.3.2, but with

t ∈ [0, T ] instead of disrete points t0, t1, . . . , tM . Note, that the funtion Ẽ is pieewise

paraboli and ontinuous, as a produt of two pieewise linear ontinuous funtions. Next,

ompute the time integral from T0 to T of Ẽ using the paraboli quadrature with nodes

oiniding with the time disretization points. Suh quadrature gives the exat value of

integral

∫ T
T0

Ẽ, beause Ẽ is pieewise paraboli and ontinuous. Hene, by the de�nition

of Ẽ, it is also an exat value of the modi�ed ost formula.

3. To approximate the gradient, we proeed analogously. We base on the formula (3.40). In

the subjet formula, we substitute approximate solutions with ontinuous time instead of

the real solutions and P1(ΩN ) approximations of other funtions instead of the funtions

itself. Let us all the result the modi�ed gradient formula. We treat the modi�ed gradient

formula as an approximation of the gradient of the ost funtional.

To evaluate the modi�ed gradient formula, we de�ne funtions Ẽ1, Ẽ2, Ẽ3 : [0, T ] → R
analogously as Ẽ1,m, Ẽ2,m and Ẽ3,m in Setion 4.3.3, but with t ∈ [0, T ] instead of disrete

points t0, t1, . . . , tM . We also de�ne Ê∇ := Ẽ1+ Ẽ3. Next, we integrate Ê
∇
with respet to

time. Now, a di�erene with the step onerning evaluation of the ost funtional ours

beause Ê∇ is not pieewise paraboli, in opposite to Ẽ. Observing the struture of Ẽ1,

Ẽ2, Ẽ3 one an note that:

• Ẽ1 is pieewise paraboli and ontinuous as a produt of two pieewise linear ontin-

uous funtions.

• Ẽ2 is pieewise paraboli and ontinuous as a omposition of two pieewise linear

ontinuous funtions (due to our strutural assumptions, w′j is pieewise linear). Nev-

ertheless, the nodes of Ẽ2 do not oinide with the time disretization points.

• Ẽ3 is pieewise polynomial of fourth order and ontinuous, as a produt of Ẽ2 and

two pieewise linear ontinuous funtions. The nodes of Ẽ3 do not oinide with the

time disretization points.

• Ê∇ is pieewise fourth order polynomial and ontinuous, with nodes not oiniding

with the time disretization points.

As a result, to ompute the integral

∫ T
T0

Ê∇ using fourth order polynomials quadrature,

with more elaborate hoie of the quadrature nodes, depending on w′j . Deriving the exat

algebrai formulas is possible but to ompliated to do it here. Nevertheless � the obtained
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value is the exat value of

∫ T
T0

Ê∇ and hene, by the de�nition of Ê∇, also the exat value

of the modi�ed gradient formula.

Numerous advantages of the above proposed shemes for evaluating the ost funtional and

its gradient an be indiated. First, in omparison to the shemes presented in Setion 4.3.2 and

Setion 4.3.3, we have better ontrol on the output of the numerial shemes, beause the above

proposed shemes ompute exat values of onrete formulas, i.e. of the modi�ed ost formula

and the modi�ed gradient formula.

Seond, it is tempting, and may possible, to prove that the modi�ed gradient formula in

fat haraterizes the exat gradient of the ost funtional given by the modi�ed ost formula.

Suh statement, if proven, would have interesting onsequenes, in partiular for the analysis of

onvergene of the numerial optimization proedures to the stationary points of the ost fun-

tional I . In ontrary to the onvergene analysis for the numerial shemes given in Setion 4.3

(see the remarks above in the present setion), here, it wouldn't be neessary to prove that the

gradient approximation is �ne enough. It would be su�ient to prove the onvergene of the

SD and CG methods for the ost funtional assoiated with the modi�ed gradient formula and

then to prove the onvergene of the latter ost funtional to the original ost funtional I . To
sum up, if the modi�ed gradient formula was the gradient of the modi�ed ost formula, then

it would be possible to apply ��rst disretize then optimize� approah instead of ��rst optimize

then disretize�.

Moreover, if the alleged osillations of our optimization proedures (mentioned above in this

setion) were in fat aused by inauraies onerning the gradient of I , then swithing to the

above proposed ��rst disretize then optimize� approah ould be a remedy to the osillations

matter.

Nevertheless, the proposed approah has also its drawbaks. The numerial sheme nees-

sary for exat evaluation of the modi�ed gradient formula depends on the funtion w′j . For

example, reasoning as above we �nd that if w′j was pieewise a polynomial of order three, then

the quadrature neessary for exat evaluation of

∫ T
T0

Ê∇ would rise from four to �ve. If w′j was
not a polynomial at all, then a question arises how to hoose a proper quadrature for integral∫ T
T0

Ê∇. Thus, if one wanted to apply this approah, one would fae the problem of automati

hoie of quadrature during the implementation of the optimization proedures. This problem,

however interesting, ould ause problems both at the algorithmi level and at the level of ode

implementation, whih would beome more umbersome than it was the ase in our situation.
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Conluding remarks

Below, we omment on ertain issues whih were not investigated in the present work. We

indiate ertain problems onerning the model (0.1) - (0.3), introdued in �1 of Introdution,

or the optimal targeting problem, introdued in �2 of Introdution, whih were not solved in the

preeding hapters. We also omment on possibilities of re�ning the model (0.1) - (0.3) or the

setting of the optimal targeting problem itself.

The below questions remain open in the present work and an be investigated in the future:

• In Setion 2.3.4, we have indiated some observations onerning the large time behavior of

the model (0.1) - (0.3). We have posed ertain hypotheses, basing on the e�ets observed

in the numerial results. One of them was that the struture of the alleged attrating set

of the dynamial system assoiated with the model (0.1) - (0.3) signi�antly depends on

the parameters of the model. It would be desired to on�rm the subjet hypotheses by

analytial proofs. In partiular, it would be interesting to haraterize those parameters

entering system (0.1) - (0.3) for whih the ontrolled proess tends to some time-invariant

state, independent of the initial ondition. In other words, we are interested in those model

parameters, for whih a one-point attrating set exists.

The existene of a one-point attrating set would mean that, in the model (0.1) - (0.3),

the e�ieny of the thermostat ontrol mehanism, understood as the distane between

the proess state and the referene state for large times, is insensitive to the hanges of

the initial state of the proess. The insensitivity to the hanges of the initial ondition is

one of the hypothetial advantages of the ontrols involving the automati orretions idea

(see Introdution), as .e.g. the thermostat ontrol mehanism. Hene, the haraterization

of those parameters of the model for whih the latter property holds would be a desired

result.

• Neither for the numerial shemes desribed in Chapter 2 nor for the ones desribed in

Chapter 4 we have performed the onvergene analysis. Therefore, from the mathematial

point of view, the onvergene analysis is one of the natural �elds for the further researh.

In Setion 4.4.4, ertain steps neessary for the analysis of the onvergene of the optimiza-

tion proedures utilized in the experiments desribed in Chapter 4 are indiated.

• The simulations onerning the optimal targeting problem, desribed in Chapter 4, were

rather time onsuming. In Setion 4.4.4, we have indiated some possibilities of reduing the

omputational time of generating approximate solutions of the optimal targeting problem.

One of the aims of the future researh an be to test a part of the subjet possibilities.

In partiular, performing optimization proedures based on the ��rst disretize then op-

timize� approah, proposed in Setion 4.4.4, and omparing the results with the results

desribed in Chapter 4 ould be an interesting experiment. In some of the simulations

desribed in Chapter 4, the optimization proedures needed a partiularly large number
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of iterations to stop. One of the hypotheses onerning the latter e�et, indiated in Se-

tion 4.4.4, is that they it is related with the inauraies in the numerial sheme for

the evaluation of the gradient of the ost funtional. The �rst disretize then optimize

approah, as explained in Setion 4.4.4, should eliminate the problem of inauraies of

the numerial sheme for evaluation of the gradient of the ost funtional. Therefore, the

omparison of the results obtained with the latter approah and the results desribed in

Chapter 4 an help to answer the questions onerning the reasons behind the mentioned

e�et of the large number of iterations.

• We have not investigated the sensitivity of the e�etiveness of the thermostat ontrol meh-

anism in the model (0.1) - (0.3) to perturbations of the model itself, i.e. of the di�usion

oe�ient D or the reative term f in the main equation (0.1) (here, we understand e�e-

tiveness as in Introdution, see omment a), page x). Insensitivity to perturbations of the

model is one of alleged advantages of the automati orretions mehanism, indiated in

the beginning of Introdution. A further investigation an onern also the sensitivity of

the solutions of the optimal targeting problem to the hanges of the subjet parameters.

• In the beginning of Setion 1.2, we have indiated that Lipshitz ontinuous swithing

funtions in the system (0.1) - (0.3) an be utilized to approximate the ase of disontinuous

swithing funtions, as −sgn, whih are not allowed diretly by the analytial results of the

present work. At the same time, the results of Setion 1.1, onerning the modi�ed system

(1.1) - (1.3), allowed ertain multivalued swithing funtions ontaining −sgn. Thus, it

would be interesting to investigate the onvergene of the solutions of the system (0.1) -

(0.3) with Lipshitz swithing funtions approximating −sgn to a solution of the modi�ed

system (1.1) - (1.3) with appropriate multivalued swithing funtions ontaining −sgn.
The subjet onvergene was not analyzed in the present work and an be an aim for

further investigations.

Besides the above indiated tehnial problems, one may onsider to re�ne the model on-

sidered in the present work, as well as introdue hanges to the optimal targeting problem. In

this sope, we point out the following possibilities:

• The model (0.1) - (0.3) assumes that a proess desribed by a reation-di�usion equation

is ontrolled by thermostats. Not all real-world phenomenas whih are the subjet of

the ontrol theory in PDEs an be desribed this way. The referenes given in �3 of

Introdution present examples of the models with thermostat ontrol mehanism in whih

a state equation (or system of equations) other that the salar reation-di�usion equation

is onsidered.

Hene, one of the generalizations of the ontent of the present work an onsist in assuming

a more general state equation or equations to be ontrolled by thermostats. Generalizing

further, one an try to implement the thermostat ontrol mehanism for abstrat dynamial

systems and indiate whih properties of the subjet systems are essential for deriving

results similar to the here presented ones (as the existene of solutions, the stability, the

di�erentiability of the ost funtional).

• The onsidered thermostat ontrol mehanism, basing on whih we formulate the optimal

targeting problem, also an be re�ned. The model (0.1) - (0.3) involves a thermostat

ontrol mehanism with assumes no hysteresis in the work of the swithing mehanism (see

the remarks on possible variants of thermostat ontrol mehanism in �3 of Introdution).

In the present work, the latter assumption was imposed for the sake of the simpliity
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of the investigated mathematial model. Nevertheless, a thermostat ontrol mehanism

with hysteresis would be more realisti, sine in real world perfetly immediate reation to

observed hanges is not possible. In fat, a big part of the mathematial referenes given in

�3 of Introdution address models involving thermostat ontrol mehanism with hysteresis

(however, none of those works fous on the optimal targeting problem).

• One may onsider also ertain modi�ations in the optimal targeting problem as well. In

the present work, we assumed that the number of the ontrol devies equals the number

of the measurement devies and, moreover, that the ontrol and measurement devies

are pairwise oupled (see �2 of Introdution). By oupling of the devies, we mean the

assumption that their ations has pairwise the same targeting in spae and a given ontrol

devie responds to the data olleted by the oupled measurement devie with weight equal

1. These assumptions were imposed to exlude the problem of the hoie of weights from

our researh. Nevertheless, in ertain appliations, the problem of the hoie of the weights

in thermostat ontrol mehanisms seems to be natural and should not be exluded from

the setting of the optimization problem.

For example, one may onsider the situation of the hyperthermia aner therapy, desribed

in �3 of Introdution. As mentioned there, the temperature in the patient tissues an be

measured by magneti resonane imaging and the energy an be applied by ontrol devies

transmitting or eletromagneti waves. In the setting of thermostat ontrol mehanism, the

ations of the magneti resonane an be interpreted as a dense mesh of small measurement

spots of �xed loation. However, the user is permitted to alibrate the ontrol devies and,

in onsequene, to manipulate the targeting of their ations in spae. In this situation, it

is not natural to assume that the weights entering the thermostat ontrol mehanism are

given. Thus, to handle the situation of the above type, one ould de�ne a new optimization

problem, taking into aount the problem of the hoie of both the targeting of the ontrol

devies ations and the weights, assuming that the ations of the measurement devies

have �xed targeting.
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Appendix A

Auxiliary theorems

A.1 Di�erentiability in Banah spaes

The below de�nitions of diretional derivative, Gâteaux derivative and Fréhet derivative are

equivalent as those in [50℄, Chap. 4. The notions of the weak derivatives introdued in this

Setion bases on [4℄, Chap. 1, Se. 4. In addition, [50℄ provides the proofs (or tehniques for the

proofs) for most of fats and theorems presented below.

De�nition A.1.1 Let T : X → Y be an operator between two Banah spaes. For û, v̂ ∈ X, we

all δT (û; v̂) ∈ Y (or δwT (û; v̂) ∈ Y ) the diretional derivative (or the weak diretional derivative,

respetively) of T in point û ∈ X in diretion v̂ ∈ X if

δT (û; v̂) = lim
ε→0

T (û+ εv̂)− T (û)

ε〈
φ̂ , δwT (û; v̂)

〉
Y ∗,Y

= lim
ε→0

〈
φ̂ ,

T (û+ εv̂)− T (û)

ε

〉
Y ∗,Y

∀φ̂∈Y ∗

(A.1)

The operator δT (û; . ) (or δwT (û; . )), ating on X is alled the variation (or the weak variation,

respetively) of T in point û ∈ X.

De�nition A.1.2 If the (weak) variation in point û is a bounded linear operator from X to Y ,

then we say that T is (weakly) Gâteaux di�erentiable in û and we de�ne the (weak) Gâteaux

derivative of T in û respetively as

DGT (û) := δT (û; . )

DG,wT (û) := δwT (û; . )
(A.2)

De�nition A.1.3 We say that DFT (û) ∈ L(X,Y ) (or DF,wT (û) ∈ L(X,Y )) is the Fréhet

derivative (or the weak Fréhet derivative, respetively) in point û ∈ X if

lim
v̂→0

T (û+ v̂)− T (û)−DFT (û)v̂∥∥v̂
∥∥
X

= 0

lim
v̂→0

〈
φ̂,

T (û+ v̂)− T (û)−DF,wT (û)v̂∥∥v̂
∥∥
X

〉
Y ∗,Y

= 0 ∀φ̂∈Y ∗

(A.3)
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Note, that by the above de�nition the existene of a diretional derivative implies the existene of

the weak diretional derivative. An analogous relation holds between the notion of the Gâteaux

di�erntiability and the weak Gâteaux di�erntiability and between the Fréhet di�erntiability and

the weak Fréhet di�erntiability.

Theorem A.1.4 (The hain rule) Let X1, X2 and X3 be Banah spaes and let

T1 : X1 → X2, T2 : X2 → X3. Suppose, that:

1. T1 has the (weak) diretional derivative in point û ∈ X1 in diretion v̂ ∈ X1,

2. T2 is Fréhet di�erentiable (at least in point T1(û)).

Then the omposite operator T2 ◦ T1 has the (weak) diretional derivative in point û ∈ X1 in

diretion v̂ ∈ X1 and it an be expressed respetively as:

δ(T2 ◦ T1)(û; v̂) = (DFT2)(T1(û))δT1(û; v̂)

δw(T2 ◦ T1)(û; v̂) = (DFT2)(T1(û))δwT1(û; v̂)
(A.4)

The proof is very similar to the proof of Proposition 4.10 in [50℄.

Note, that Theorem A.1.4 implies that if T1 is (weakly) Gâteaux di�erentiable and T2 is

Fréhet di�erentiable then the superposition T2 ◦ T1 is (weakly) Gâteaux di�erentiable and the

hain rule holds.

Theorem A.1.5 (The produt rule) Let X1, X2,1, X2,2 and X3 be Banah spaes, let

T1 : X1 → X2,1, T2 : X1 → X2,2, B̂ : X2,1×X2,2 → X3 and denote H(û) := B̂(T1(û), T2(û)). Fix
û, v̂ ∈ X1. We make the following assumptions:

1. B is bilinear and bounded,

2. Ti has the (weak) diretional derivative in point û in diretion v̂, for i = 1, 2.

Then H also has the (weak) diretional derivative in point û in diretion v̂ and it an be expressed

respetively as:

δH(û; v̂) = B̂(δT1(û; v̂), T2(û)) + B̂(T1(û), δT2(û; v̂))

δwH(û; v̂) = B̂(δwT1(û; v̂), T2(û)) + B̂(T1(û), δwT2(û; v̂))
(A.5)

The assertion follows as in the proof of Proposition 4.11 in [50℄.

Observation A.1.6 Note, that for Y = R in De�nition A.1.2 the weak Gâteaux di�erentiability

beomes equivalent to the Gâteaux di�erentiability. For this reason, if we set in Theorem A.1.4

Y as R and T1 as a weakly Gâteaux di�erentiable operator, then we get that the superposition

T2 ◦ T1 is not only weakly Gâteaux di�erentiable but also Gâteaux di�erentiable and the hain

rule holds.

Observation A.1.7 Every bounded linear operator T : X → Y ating between two Banah

spaes X and Y is Fréhet di�erentiable and its Fréhet di�erential in an arbitrary point is

equal to the operator itself, i.e. DFT (û)(v̂) = T (v̂) for all û, v̂ ∈ X.
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Observation A.1.8 Let H be a real Hilbert spae with norm

∥∥ .
∥∥
H

and salar produt ( . , . )H .

Let the operator T : H → R be de�ned by T (û) :=
∥∥u

∥∥2
H
. Then, T is Fréhet di�erentiable and

DFT (û)v̂ = 2 (û, v̂)H ∀û, v̂ ∈ H (A.6)

The Observations A.1.6 and A.1.7 follow straight while the Observation A.1.8 is an exerise

involving diret appliation of the derivative de�nition: �rst, we alulate the diretional deriva-

tives to obtain the haraterization of the Gâteaux derivative of T (see, e.g., [45, p.57℄) and then

we estimate the reminder of the linearization to show, that the Gâteaux derivative is in fat the

Fréhet derivative of T as well.

If the onvergene in (A.1) in De�nition A.1.1 holds only for some sequene {εn}
∞
n=1, where

εn 6= 0, εn → 0 as n → ∞, then it is meaningful to pose a question: are the hain rule and the

produt rule still true? In the latter ontext, the below notion will be onvenient for the sake of

brevity:

De�nition A.1.9 For an operator T : X → Y , point û ∈ X, diretion v̂ ∈ X and a sequene

ǫ := {εn}
∞
n=1, εn → 0 as n → ∞, if the di�erene quotients

1
εn

(T (û+ εnv̂)− T (û)) are (weakly)

onvergent as n → ∞ then we all the limit the sequential (weak) diretional derivative on the

sequene ǫ and denote it δ̄ǫT (û; v̂) (or δ̄ǫwT (û; v̂), respetively).

Theorem A.1.10 Assume that ǫ := {εn}
∞
n=1, εn → 0 as n → ∞. The following modi�ations

of Theorems A.1.4 and A.1.5 are true:

1. In Theorem A.1.4, if we replae the assumption on the existene of the (weak) diretional

derivative of T1 by an assumption of the existene of the sequential (weak) diretional

derivative of T1 on the sequene ǫ, then the assertion of the theorem holds in the sequential

version, i.e. the sequential (weak) diretional derivative of T2 ◦ T1 on the sequene ǫ exists
and it an be expressed respetively as:

δ̄ǫ(T2 ◦ T1)(û; v̂) = (DFT2)(T1(û))δ̄
ǫT1(û; v̂)

δ̄ǫw(T2 ◦ T1)(û; v̂) = (DFT2)(T1(û))δ̄
ǫ
wT1(û; v̂)

(A.7)

2. In Theorem A.1.5, if we replae the assumption on the existene of the (weak) diretional

derivatives of Ti, i = 1, 2 by an assumption of the existene of the sequential (weak) di-

retional derivatives of Ti, i = 1, 2 on the sequene ǫ, then the assertion of the theorem

holds in the sequential version, i.e. the sequential (weak) diretional derivative of H on the

sequene ǫ exists and it an be expressed respetively as:

δ̄ǫH(û; v̂) = B̂(δ̄ǫT1(û; v̂), T2(û)) + B̂(T1(û), δ̄
ǫT2(û; v̂))

δ̄ǫwH(û; v̂) = B̂(δ̄ǫwT1(û; v̂), T2(û)) + B̂(T1(û), δ̄
ǫ
wT2(û; v̂))

(A.8)

The proof of this theorem in fat onsists in analyzing the proofs of Theorems A.1.4 and A.1.5

and noting that the above modi�ation is possible.

For the superposition of two operators T2 ◦ T1, Theorem A.1.4 implies that the hain rule is

orret if we assume the Fréhet di�erentiability of T2 and the (weak) Gâteaux di�erentiability

of T1. In the onverse situation, namely assuming only the (weak) Gâteaux di�erentiability of

T2, the hain rule is not true, even if the inner operator T1 is Fréhet di�erentiable. However,

there is a partiular ase in whih we an get the hain rule for (weakly) Gâteaux di�erentiable

T2:
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Observation A.1.11 Let X1, X2 and X3 be Banah spaes, let T1 : X1 → X2, T2 : X2 → X3

and let û ∈ X1. Suppose, that:

1. T1 is a ontinuous linear operator,

2. T2 is (weakly) Gâteaux di�erentiable (at least in point T1(û)).

Then the omposite operator T2 ◦T1 is (weakly) Gâteaux di�erentiable in point û ∈ X1 and it an

be expressed respetively as:

DG(T2 ◦ T1)(û)(v̂) = (DGT2)(T1(û))(T1(v̂)) = (DGT2)(T1(û))(DFT1(û)(v̂))

DG,w(T2 ◦ T1)(û)(v̂) = (DG,wT2)(T1(û))(T1(v̂)) = (DG,wT2)(T1(û))(DFT1(û)(v̂))
(A.9)

Proof. The proof follows immediately. Let us hek the di�erene quotient in point û ∈ X1

in diretion v̂ ∈ X1:

ε−1
(
T2

(
T1(û+ εv̂)

)
− T2

(
T1(û)

))
= ε−1

(
T2

(
T1(û) + εT1(v̂)

)
− T2

(
T1(û)

))

what tends to the (weak) diretional derivative of T2 in point T1(û) in diretion T1(v̂) when

ε → 0. If T2 is weakly Gâteaux di�erentiable then the above su�es to verify the asserted

formulas. �

A.2 Optimality onditions for di�erentiable funtionals

Having introdued the notion of derivatives in Banah spaes and their basi properties, we an

link this theory to the theory of optimization and formulate the optimality riterion, generalizing

the Fermat's neessary ondition for existene of minimum of a real funtion of one real variable:

Theorem A.2.1 Let C ⊂ D ⊂ X where X is a real Banah spae, C is a nonempty and onvex

subset and D is an open subset of X ontaining C. Let also T : D → R be a Gâteaux di�erentiable

funtional. Then the neessary ondition for ū ∈ X to solve the optimization problem inf û∈C T (û)
if that the following ondition is ful�lled in ū:

DGT (ū)(ŵ − ū) ≥ 0 ∀ŵ∈C (A.10)

For the proof, see Lemma 2.21 in [45℄.

A.3 Nemytskii operators

Below, we present a short part of the theory of Nemytskii operators, neessary in the present work.

We do not need the theory of Nemytskii operators in its full generality. Our attention is restrited

to autonomous Nemytskii operators ating on funtions de�ned on Lebesgue-measurable subsets

of Rn
of bounded measure. A reader interested in the more general theory is referred to [2℄

or [17℄. Atually, the below fats onerning Nemytskii operators are based on the ontent of

Chapters 6 and 7 in [17℄.
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In general, for a set A and a funtion F : A×R → R, the Nemytskii operator assoiated with

F , denote it NF , is the operator ating from the set of real funtions on A to itself de�ned by

the following ondition:

NF (û)(x) := F
(
x, û(x)

)
for x ∈ A, for û : A → R

We are interested in the situation of F being a funtion of only one variable, F : R → R. In this

ase, the operator NF is alled autonomous Nemytskii operator and an be expressed as:

NF (û) := F ◦ û for û : A → R

The Nemytskii operator NF is often onsidered to at between Lebesgue spaes Ls1(A) and
Ls2(A), for some exponents s1 and s2. However, to understand NF this way, we need to remember

that elements of the Lebesgue spaes are not the funtions, but equivalene lasses of the relation

of being equal a.e. If v̂ = ŵ a.e. on A and F is measurable, then {x ∈ A : F ◦ v̂ 6= F ◦ ŵ} ⊆
{x ∈ A : v̂ 6= ŵ} and hene F ◦ v̂ = F ◦ ŵ a.e. on A. Thus the following de�nition is meaningful:

De�nition A.3.1 Let F : R → R be a measurable funtion, A be a measure spae and s1, s2 ∈
[1,∞]. Assume that an operator NF : Ls1(A) → Ls2(A) is de�ned by the formula NF (û) = [F ◦û],
where [ . ] denotes the equivalene lass of the relation of being equal a.e. on A, û is understood as

and equivalene lass, subjet to the latter relation, and û ∈ û. Then, NF is alled autonomous

Nemytskii operator.

Below, we will give onditions, under whih the autonomous Nemytskii operators are well de�ned

as operators form a Lebesgue spae to a Lebesgue spae. Besides, we will formulate ontinuity

and di�erentiability riterion in the Lebesgue spaes. For this end, we will present ertain results

from [17℄. Book [2℄ also addresses the matter of well-posedness, ontinuity and di�erentiability

of Nemytskii operators. But there ontained results are formulated in di�erent fashion than in

[17℄ and frequently are not diret equivalents of the results from [17℄ on whih we base.

The theory of Nemytskii operators in its full generality is not neessary in this work. It will

be su�ient, if we restrit our attention to the ase where A = E for ertain E ⊂ Rn
of �nite

Lebesgue measure, for a given n ∈ N \ {0}.

Theorem A.3.2 Let E be a Lebesgue-measurable subset of Rn
of �nite measure and let F : R →

R. Assume also that 1 ≤ s1 ≤ ∞, 1 ≤ s2 < ∞ and that F is measurable and satis�es the

following growth ondition:

sup
s∈R

∣∣F (s)
∣∣/
(
1 +

∣∣s
∣∣s1/s2) < ∞

Then NF is well de�ned as an operator from Ls1(E) into Ls2(E). Moreover, NF is bounded (i.e.

is bounded on bounded sets).

This is the partiular ase of Theorem 7.13, part a) in [17℄.

Remark. In [17℄, a ondition of so-alled universal measurability of a funtion is utilized

in the formulation of the part a) in Theorem 7.13. Nevertheless, in the ase of �nite, omplete

measure spaes, the notions of universally measurable funtions and measurable funtions oin-

ide (see the remarks on pp. 337 of [17℄). This helps to apply the result from [17℄ for measurable

funtions, as in the present ase. N

Theorem A.3.3 If, in Theorem A.3.2, we additionally assume that the funtion F is ontinuous

and s1 < ∞, then the autonomous Nemytskii operator NF is ontinuous from Ls1(E) to Ls2(E).
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The above is a onsequene of the previous theorem and Theorem 7.19 in [17℄.

Remark. In [17℄, the notions of Carathéodory funtion and Shragin funtions are used in

the formulation of Theorem 7.19. Nevertheless, ontinuous funtions are Carathéodory funtions

(by de�nition, see pp. 341 therein) and Carathéodory funtions are Shragin funtions (pp. 341

therein). This helps to apply the result from [17℄ for measurable funtions, as in the present

ase. N

Now, we proeed to di�erential properties of Nemytskii operators ating between Lebesgue

spaes. For this purpose, the notion of the multipliation operator will be useful. For û ∈ Ls0(E),
the multipliation operator Mû is de�ned as

Mû(v̂)(x) = û(x)v̂(x) for a.e. x ∈ E, for v̂ ∈ Ls1(E)

Remark. To be preise, in the above setting, multipliation operators at not on funtions

but on equivalene lasses in the relation of being equal a.e. Thus, the puristi de�nition of Mû

should base on formula Mû(v̂) = [ûv̂] where û ∈ û, v̂ ∈ v̂, û and v̂ are understood as equivalene

lasses and [ . ] is as in De�nition A.3.1. N

Observation A.3.4 For given 1 ≤ s2 < s1 < ∞, Mû(v̂) belongs to Ls2(E), assuming that

û ∈ Ls0(E) with s0 = s1s2/(s1 − s2).

This follows by the Hölder inequality (for a more expliit proof, see Lemma 7.37 in [17℄). Thus,

given s0, s1, s2 as above and û ∈ Ls0(E), the operator Mû is a well de�ned operator from Ls1(E)
to Ls2(E).

Theorem A.3.5 Let E be a Lebesgue-measurable subset of Rn
of �nite measure and let F : R →

R. Assume also that F ′ exists everywhere on R and that the numbers 1 ≤ s2 < s1 < ∞ are given.

Then the autonomous Nemytskii operator NF is everywhere Fréhet di�erentiable from Ls1(E)
to Ls2(E) if and only if F ′ satis�es the following growth ondition:

sup
s∈R

∣∣F ′(s)
∣∣/
(
1 +

∣∣s
∣∣(s1/s2)−1) < ∞ (A.11)

If this is the ase, then the Fréhet di�erential of NF in a point û ∈ Ls1(E) on a diretion

v̂ ∈ Ls1(E) is given by

DFNF (û)v̂ = MF ′◦û(v̂) (A.12)

or more diretly

(DFNF (û)v̂)(x) = F ′(û(x))v̂(x) for a.e. x ∈ E

For the proof, see Proposition 7.45 in [17℄.

Remark. By the assumption û ∈ Ls1(E) and the growth ondition (A.11), one an verify

that F ′ ◦ û ∈ Ls0(E), for s0 as in Observation A.3.4. Hene, in view of Observation A.3.4, the

di�erential of NF , haraterized by the formula (A.12), is a well de�ned operator from Ls1(E)
to Ls2(E). N
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A.4 Translation operators

This setion onerns translation operators de�ned as follows:

De�nition A.4.1 Assume that F : Rn → Rl
, for some l, n ∈ N \ {0}. We de�ne the translation

operator TF assoiated with F as

TF (x) := F ( . − x)

We want to investigate properties of the translation operators understood as TF : Rn → (Ls(Rn))l

for some exponent s. This fores both F and TF (x) for x ∈ Rn
to be elements of (Ls(Rn))l and

hene the above de�nition in the latter ontext should be understood in the �almost everywhere�

sense, i.e. the operator TF : Rn → (Ls(Rn))l ats into equivalene lasses of funtions in the

relation of being equal a.e. in Rn
rather than into funtions, where F also is an equivalene lass

in this relation. This is straight forward that for F1,F2 ∈ F there holds [F1( . −x)] = [F2( . −x)],
where [ . ] denotes the equivalene lass of the subjet relation orresponding to a given element,

hene it is possible to pose the de�nition of the translation operator orretly.

For brevity of notation of vetor spaes assoiated with operator TF , in this setion we fous

on the ase of F : Rn → R. Also, the following notation will be valid in the present setion:

T ε
F (x; y) := ε−1

(
TF (x+ εy)− TF (x)

)
for x, y ∈ Rn

We do not laim that the below results are new, but we have not found suitable fats on-

erning the translation operators de�ned as above in the literature.

Theorem A.4.2 Let s ∈ [1,∞) and F ∈ Ls(Rn). Then the operator TF : Rn → Ls(Rn) is

uniformly ontinuous.

Proof. The translation in a Lebesgue spae is a norm onserving operation, hene if TF
is ontinuous in one point then it is ontinuous in every point of Rn

with the same modulus of

ontinuity. Therefore it is enough to verify the ontinuity of TF to get the uniform ontinuity.

This an be done by verifying the ontinuity of TF for F ∈ Cc(Rn) and subsequently by approx-

imating arbitrary F ∈ Ls(Rn) with funtions from Cc(Rn). This reasoning is realized e.g. in the

proof of [1, Th. 2.32℄. �

Lemma A.4.3 Let F ∈ W 1,s(Rn), s ∈ [1,∞) and x, y ∈ Rn
. Then

∥∥T ε
F (x; y)

∥∥
s
≤

y
s′

∥∥∇F (x)
∥∥
s

for all ε 6= 0, where s′ is the Hölder onjugate of s.

Proof. The proof rely on reasoning utilized in the proof of [21, Chap. 5.8.2, Th. 3℄.

However, the above Theorem is formulated slightly di�erent than the one in [21℄ hene we

present the proof below.

Begin with the ase of F ∈ C1(Rn). Denote by ei the i-th vetor of the anonial base in

Rn
. Then:

F (x+ εei)− F (x) =

∫ ε

0
∂iF (x+ tei) dt = ε

∫ 1

0
∂iF (x+ tεei) dt

Now we an write:

∥∥T ε
F (x; ei)

∥∥s
s

≤

∫

Rn

(∫ 1

0

∣∣∂iF (x+ tεei)
∣∣ dt

)s

dx

≤

∫ 1

0

∫

Rn

∣∣∂iF (x+ tεei)
∣∣s dt dx =

∫ 1

0

∥∥∂iF
∥∥s
s
dt =

∥∥∂iF
∥∥s
s

(A.13)
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Fix x, y ∈ Rn
. Note that for arbitrary y ∈ Rn

:

T ε
F (x, y) =

n∑

i=1

yiT
εyi
F (xi, ei)

where xi := x for i = 1 and xi := xi−1 + yi for i = 2, . . . , n. By the above, by (A.13) and by

Hölder inequality for sequenes we have:

∥∥T ε
F

∥∥
s

≤
n∑

i=1

∣∣yi
∣∣∥∥T εyi

F (xi; ei)
∥∥
s

≤
n∑

i=1

∣∣yi
∣∣∣∣∂iF

∣∣s ≤
y

s′

∥∥∇F
∥∥
s

C1(Rn) funtions are dense in W 1,s(Rn) for s ∈ [1,∞), see [1, Th. 3.17℄, hene we infer that
the above holds also for all F ∈ W 1,s(Rn). �

As a onsequene, we an prove su�ient onditions for the Lipshitz ontinuity and the

weak Gâteaux di�erentiability of TF .

Theorem A.4.4 Let F ∈ W 1,s(Rn), s ∈ [1,∞). Then the operator TF : Rn → Ls(Rn) is globally
Lipshitz ontinuous.

Theorem A.4.4 is a diret onsequene of Lemma A.4.3.

Theorem A.4.5 Let F ∈ W 1,s(Rn), s ∈ (1,∞). Then TF : Rn → Ls(Rn) is weakly Gâteaux

di�erentiable and its weak Gâteaux di�erential in point x ∈ Rn
in diretion y ∈ Rn

is given by

(
DG,wTF (x)(y)

)
(z) = −DFF (z − x)y =

= −
(
∇F (z − x), y

)
Rn = −

(
T∇F (x)(z), y

)
Rn

(A.14)

for a.e. z ∈ Rn

Proof. Note, that translations ommute with di�erentiation, hene it su�es to verify the

assertion for x = 0 � if the di�erene quotients onverge weakly to − (T∇F (0), y)Rn then the

translated by x di�erene quotients onverge weakly to − (T∇F (x), y)Rn .

For x = 0 and for φ ∈ C∞c (Rn)

∫

Rn

T ε
F (0; y)(z)φ(z) dz =

∫

Rn

ε−1
(
F (z − εy)− F (z)

)
φ(z) dz =

=

∫

Rn

F (z) ε−1
(
φ(z + εy)− φ(z)

)
dz

ε
−→

∫

Rn

F (z)
(
∇φ(z), y

)
Rn dz =

= −

∫

Rn

(
∇F (z), y

)
Rnφ(z) dz = −

∫

Rn

(
T∇F (0)(z), y

)
Rnφ(z) dz

Moreover, C∞c (Rn) is dense in Ls′(Rn) (see [1, par. 2.30℄) and due to Lemma A.4.3 the di�erene

quotients T ε
F (0; y) are bounded w.r.t. ε in Ls(Rn). Therefore, the above onvergene holds also

for all φ ∈ Ls′(Rn) what onludes the proof. �

Example. Theorem A.4.4 together with Theorem A.4.5 give a big lass of funtions F for

whih the assoiated translation operator TF is both Lipshitz and weakly Gâteaux di�erentiable.

However, an example of F ∈ Ls(Rn) for whih TF is Lipshitz ontinuous but not weakly Gâteaux

di�erentiable an be easily indiated. For instane, take into onsideration F (x) := 1B(0,r)(x)
with given radius r > 0 and the spae L2(Rn). It an be veri�ed that the Lipshitz ontinuity of
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TF in L2(Rn) is true. At the same time, it is straightforward to hek in the ase of n = 1, that
TF is not weakly Gâteaux di�erentiable. To see it, one an hek that the di�erene quotients of

TF for n = 1 are unbounded in L2(R), hene they annot be weakly onvergent, what ontradits

the weak Gâteaux di�erentiability. N

A.5 Multivalued mappings

This short setion mostly bases on onepts onerning multivalued mappings presented in [4℄.

The Reader is referred there for more detailed theory of multivalued mappings.

A multivalued mapping from set A1 to set A2 is a funtion with values in the set of subsets

of A2. A given multivalued mapping an be understood both as an usual funtion from A1 to

2A2
or as a generalization of usual funtion from A1 to A2. In the below de�nitions and fats,

the seond of these two interpretations is exploited. However de�ning a multivalued mapping F
from A1 to A2 we prefer to use notation F : A1 → 2A2

in order to emphasize that F is not an

usual funtion from A1 to A2.

For a given multivalued mapping F : A1 → 2A2
, we denote by G(F ) its graph, de�ned by

G(F ) :=
⋃

ω∈A1

{
(ω,F (ω)) ⊂ A1 × A2

}
=

{
(ω1, ω2) ∈ A1 ×A2 : ω2 ∈ F (ω1)

}

Thus we understand G(F ) as a subset of A1 × A2 and not as a subset of A1 × 2A2
.

For onveniene of notation, for a multivalued mapping F : A1 → 2A2
as above and for a

given subset Ã ⊆ A1 we denote by F |Ã the restrition of F to Ã.

Moreover, still keeping the above meaning of A1, A2, Ã and F , we denote:

F (Ã) =
⋃

ω∈Ã

F (ω)

Basing on the above notation, we de�ne the superposition of two multivalued mappings in

the following way. Let sets A1, A2 and A3 be given and let F1 : A1 → 2A2
and F2 : A2 → 2A3

be

multivalued mappings. We denote F2 ◦ F1(ω) = F2(F1(ω)) for all ω ∈ A1.

If A1 and A2 are topologial spaes, a notion of ontinuity an be de�ned for a multivalued

mapping F : A1 → 2A2
. Below, for simpliity, we restrit our attention to the ase where both

A1 and A2 are Banah spaes.

De�nition A.5.1 For two Banah spaes X and Y , a multivalued mapping T : X −→ 2Y is

said to be bounded on X if and only if there exists R > 0 suh, that T (x̂) ⊆ B(0, R) for all

x̂ ∈ X.

De�nition A.5.2 For two Banah spaes X and Y , a multivalued mapping T : X −→ 2Y is

said to be upper semiontinuous in x̂ ∈ X if and only if for every neighborhood O ⊆ Y of T (x̂),
there exists a neighborhood U ⊆ X of x̂ suh that T (ẑ) ⊂ O for ẑ ∈ U . T is said to be upper

semiontinuous if it is upper semiontinuous for all x̂ ∈ X.

De�nition A.5.3 For two Banah spaes X and Y , a multivalued mapping T : X −→ 2Y is said

to be lower semiontinuous in x̂ ∈ X if and only if for every ŷ ∈ T (x̂) and every neighborhood

O ⊆ Y of ŷ, there exists a neighborhood U ⊆ X of x̂ suh that T (ẑ)∩O 6= ∅ for ẑ ∈ U . T is said

to be lower semiontinuous if it is lower semiontinuous for all x̂ ∈ X.
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De�nition A.5.4 For two Banah spaes X and Y , a multivalued mapping T : X −→ 2Y is

said to be ontinuous in x̂ ∈ X if and only if it is both upper and lower semiontinuous in X̂. T
is said to be ontinuous if it is ontinuous for all x̂ ∈ X.

If the values of T in the above de�nitions are singletons, then T an be understood as a usual

single-valued operator between Banah spaes. Note that in this ase, the property of upper

semiontinuity in De�nition A.5.2 redues to the de�nition of ontinuity of T . The same ob-

servation holds for the notion of lower semiontinuity of multivalued mappings in De�nition

A.5.3. Thus the upper semiontinuity an the lower semiontinuity of a multivalued mapping is

a property that is stronger that the upper semiontinuity of a usual single-valued operator.

The following two examples of multivalued mappings are as in [4, p. 109, Ch. 3 Se. 1℄ and

illustrate the di�erenes between the notion of upper semiontinuity and lower semiontinuity of

multivalued mappings. Let F1, F2 : R → 2R be de�ned by

F1(s) =

{
0 for s ∈ R \ {0}

[−1, 1] for s = 0
F2(s) =

{
[−1, 1] for s ∈ R \ {0}

0 for s = 0

It is straightforward that F1 is upper semiontinuous and not lower semiontinuous. At the same

time, F2 is lower semiontinuous but not upper semiontinuous.

Now, by the below proposition, we will indiate more examples of upper semiontinuous

mappings:

Proposition A.5.5 For a given single-valued funtion F : R → R, de�ne
→
F (s) := limr→s− F (r),

←
F (s) := limr→s+ F (r), F̃min(s) := min

{→
F (s),

←
F (s)

}
and F̃max(s) := max

{→
F (s),

←
F (s)

}
for

s ∈ R. If F is suh that

→
F (s) and

←
F (s) are well de�ned for all s ∈ R, then the multivalued

mapping F̃ : R → 2R given by

F̃ (s) = [F̃min(s), F̃max(s)] for s ∈ R (A.15)

is upper semiontinuous.

Proof. For onveniene, for ε > 0 and for A ⊆ R, we denote by Aε the ε-neighborhood of

A, i.e. the set {s ∈ R : distR(s,A) < ε}, where distR denote the distane in the metri spae R.
Step 1. Fix s0 ∈ R and ε > 0. It su�es to show that there exists δ > 0 suh that, for s

satisfying

∣∣s0 − s
∣∣ < δ, there holds F̃ (s) ⊂

(
F̃ (s0)

)
ε
. The latter inlusion is equivalent to

sup F̃ (s) < sup F̃ (s0) + ε

inf F̃ (s) < inf F̃ (s0)− ε
(A.16)

For s = s0 the above is trivial. We will fous on the ase s > s0. The ase s < s0 an be treated

analogously.

Step 2. Let the number ε̄ > 0 be �xed. Then, by de�nition of

←
F , there exists δ1 > 0 suh

that ∣∣←F (s0)− F (s)
∣∣ < ε̄ for s0 < s < s0 + δ1 (A.17)

Inequality (A.17) means that the values of F belong to ertain interval for s su�iently lose to

s0. From this we infer that the limits of values of F remain in the losure of the latter interval,

hene: ∣∣←F (s0)−
←
F (s)

∣∣ ≤ ε̄ < 2ε̄ for s0 < s < s0 + δ1 (A.18)
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By triangle inequality, (A.17) and (A.18) imply that:

∣∣←F (s)− F (r)
∣∣ < 3ε̄ for s0 < r, s < s0 + δ1 (A.19)

Next, by de�nition of

→
F , for a given s there exists δ2 > 0 suh that

∣∣→F (s)− F (r)
∣∣ < ε̄ for s0 < r < s < s0 + δ1,

∣∣r − s
∣∣ < δ2 (A.20)

Now, let r and s satisfy onditions s0 < r < s < s0+δ1,
∣∣r−s

∣∣ < δ2. The di�erene
←
F (s)−

→
F (s)

an be represented as

←
F (s)− F (r) + F (r)−

→
F (s). The latter representation together with the

triangle inequality, (A.19) and (A.20) yields

∣∣←F (s)−
→
F (s)

∣∣ < 4ε̄ for s0 < s < s0 + δ1 (A.21)

Step 3. Take ε̄ = ε/6 and s > s0. Choose δ1 as in the previous step if the proof. Using

(A.18) and (A.21), we obtain:

sup F̃ (s) = max
{→
F (s),

←
F (s)

}
< max

{←
F (s) + 4ε̄,

←
F (s)

}

< max
{←
F (s0) + 2ε̄+ 4ε̄,

←
F (s0) + 2ε̄

}
=
←
F (s0) + 6ε̄ =

←
F (s0) + ε

(A.22)

for s0 < s < s0 + δ1. In the same manner we get

inf F̃ (s) >
←
F (s0)− ε (A.23)

Step 4. If

←
F (s0) ≥

→
F (s0), then (A.22) with (A.23) imply

sup F̃ (s) <
←
F (s0) + ε = sup F̃ (s0) + ε

inf F̃ (s) >
←
F (s0)− ε ≥

→
F (s0)− ε = inf F̃ (s0)− ε

and (A.16) is proven. If

←
F (s0) ≥

→
F (s0), then (A.16) an be proven analogously. The proof is

omplete. �

Proposition A.5.5, by the mapping F 7→ F̃ , gives a method of assigning an unique up-

per semiontinuous multivalued mapping to a given funtion, satisfying respetive assump-

tions. For example, for F (s) = −sgn(s) Proposition A.5.5 an be applied and the formula

F̃ (s) = [F̃min(s), F̃max(s)] in the statement of the proposition gives a multivalued mapping

F̃ (s) =





+ 1 for s < 0

[−1,+1] for s = 0

− 1 for s > 0

Other important notion onerning multivalued mappings is monotoniity and maximal

monotoniity:

De�nition A.5.6 Let H be a Hilbert spae and let a multivalued mapping T : H → 2H be given.

We say that T is monotone if and only if

(x1 − x2, y1 − y2)H ≥ 0 for all (x1, y1), (x2, y2) ∈ G(T )

We say that T is maximal monotone if and only if there is no monotone multivalued mapping

T̃ : H → 2H suh that G(T ) $ G(T̃ ).
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The below fats emphasize properties of maximal monotone multivalued mappings. Note in

partiular, that the �rst of the below two propositions indiates a big lass of upper semiontinu-

ous multivalued mappings, extending the olletion of examples of upper semiontinuity already

given above.

Proposition A.5.7 Let H be a Hilbert spae and let M be its ompat subset. A maximal

monotone multivalued mapping T : H → 2M is upper semiontinuous.

Proof. First, by [4, Prop. 3, Ch. 6, Se. 7℄ we an infer that the graph of a maximal

monotone multivalued mapping is sequentially losed. Sine Hilbert spaes are metri, it means

that G(T ) is losed. Next, by [4, Coro. 9, Ch.3, Se. 1℄, in partiular multivalued mappings

on Hilbert spaes with losed graph and with values in a ompat set are upper semiontinuous.

This justi�es the desired assertion. �

Proposition A.5.8 Let H be a Hilbert spae and let T : H → 2H be a maximal monotone

multivalued mapping. Then values of T are losed and onvex.

For justi�ation of Proposition A.5.8, see [4, Prop. 3, Ch. 6, Se. 7℄.

Maximal monotone mappings do not need to have nonempty values. For instane, onsider

T : R → R de�ned by T (s) = ln(s) for s > 0, T (s) = ∅ otherwise. The mapping is monotone

and, by a simple veri�ation, maximal. At the same time, it has in�nitely many empty values.

But, assuming that a maximal monotone mapping is bounded, the possibility of empty values

an be exluded for mappings T : R → R:

Proposition A.5.9 Let T : R → R be maximal monotone and bounded. Then, T (s) are nonempty

for all s ∈ R.

Proof. We will justify the assertion by ontradition. Namely, assume that there exists

s0 ∈ R suh that T (s0) = ∅. We will prove that T an be extended to s0 in a manner preserving

the monotoniity, what will ontradit the maximality of T .
Sine T is bounded, the in�mum of the values being �on the right� of s0 (i.e. the number

inf
⋃

s>s0
T (s)) is �nite. Denote it as CR. Similarly, the supremum of the values being �on the

left� of s0, denote it CL, is �nite. It follows straight that CL ≤ CR. Otherwise, a ontradition

to monotoniity would be implied. In onsequene, the set [CL, CR] is nonempty (here, in the

ase of CL = CR, we interpret the latter set as the singleton {CR}).
Now, simply note that by assigning the value [CL, CR] to the point s0 we obtain an extension

of T whih is monotone. This follows straight by the de�nition of monotoniity (De�nition A.5.6)

and de�nitions of CR and CL. The maximality of T has been ontradited, what onludes the

proof. �

We do not laim that the results given in Lemma A.5.5 and Lemma A.5.9 are new, however

we do not know a suitable literature referene for the subjet statements.
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