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Abstract

In this dissertation, both qualitative and numerical analysis for an optimization problem is
performed for a feedback control law applied to a class of nonlinear reaction-diffusion processes. A
finite number of control and measurement devices target their actions inside the process domain.
The measurement devices collect data on the process evolution, while the control devices obtain
those data and activate an appropriate reaction. The aim of this control system is to keep the
process evolution close to a user-defined reference state. The above optimization problem consists
in choosing geometrical targeting of the control and measurement devices actions according to a
suitable optimality criterion.

Such an idea of the closed-loop control of reaction-diffusion processes is implemented by
a system of equations with a semilinear PDE coupled to several nonlinear ODEs. The cost
functional utilized for a precise definition of the announced problem of optimal targeting is
constructed as an integral of the difference between the process and reference states.

The present work is divided into two main parts. The first of them focuses on analysis of
the PDE-ODE model under consideration. The second one concerns the problem of optimal
targeting, exploiting some of the results of the first part.

In the analysis of the PDE-ODE model we focus on questions concerning existence, unique-
ness and stability of solutions as well as on the efficiency of the closed-loop control mechanism
implemented there. By efficiency we mean here an ability of moving the process close to the
reference state. The existence, uniqueness and stability proofs are provided. The efficiency of the
closed-loop control is validated by results of numerical simulations for the investigated PDE-ODE
model. The numerical results suggest that the efficiency of the considered closed-loop control
depends on changes of the model parameters. Moreover, the long-time behavior visible in the
subject simulations also is examined. In all simulations, the process appeared to tend to some
time-invariant state, after sufficiently long time. In some cases, that time-invariant state seemed
to be, at some rate, independent of the initial condition of the PDE-ODE model.

In the part on the optimal targeting problem, we first focus on analytical questions. We prove
there the existence of minimizers and characterize the differential of the cost functional too. Then,
we describe numerical optimization experiments, utilizing three gradient optimization algorithms
(the steepest descent and two variants of the nonlinear conjugate gradient) and compare their
performance. Here, the aforementioned characterization of the cost functional differential is
used to implement the formula for the gradient. The results show how the performance of the
optimization algorithms varies with changes of the parameters entering the cost functional. Tt
is also shown that modifications of the subject parameters can result in independence of the
optimization output on the initial condition of the PDE-ODE model.



Streszczenie

W niniejszej rozprawie przeprowadzone sa zaréwno jakosciowa, jak i numeryczna analiza prob-
lemu optymalizacji sterowania ze sprzezeniem zwrotnym zastosowanego do pewnej klasy nielin-
iowych proceséow reakcji-dyfuzji. Skoriczona liczba urzadzen sterujacych i pomiarowych skupia
swoje dziatania wewnatrz obszaru procesu. Urzadzenia pomiarowe zbieraja dane o ewolucji pro-
cesu, nastepnie urzadzenia sterujace otrzymuja zebrane dane i uruchamiaja odpowiednia reakcje.
Celem sterowania jest utrzymac ewolucje procesu blisko zdefiniowanego przez uzytkownika stanu
referencyjnego. Powyzej wspomniany problem optymalizacji polega na ustaleniu geometrycznego
wycelowania dziatan urzadzen sterujacych i pomiarowych w odniesieniu do odpowiedniego kry-
terium optymalnosci.

Przedstawiona idea sterowania w ukladzie zamknietym procesem reakcji-dyfuzji jest zaim-
plementowana poprzez uktad réwnan z semiliniowym réwnaniem rézniczkowym czastkowym
sprzezonym z wieloma nieliowymi réwnaniami roézniczkowymi zwyczajnymi. Funkcjonal kosztu
wykorzystany na potrzeby precyzyjnej definicji zapowiedzianego problemu optymalnego wycelowa-
nia jest skonstruowany jako catka z réznicy miedzy stanem procesu a stanem referencyjnym.

Niniejsza praca podzielona jest na dwie gtéwne czesci. Pierwsza z nich skupia sie na anal-
izie wspomnianego uktadu réownan. Druga czes¢ dotyczy problemu optymalnego wycelowania,
wykorzystujac pewne rezultaty z czesci pierwszej.

W czesci dotyczacej analizy wspomnianego uktadu rownan skupiam sie na pytaniach dotycza-
cych istnienia, jednoznacznoéci oraz stabilnosdci rozwiazan, jak rowniez na skutecznosci sterowa-
nia w uktadzie zamknietym zaimplementowanego w rozwazanym ukladzie. Przez skutecznosc¢
rozumiem zdolnosé¢ do sprowadzania procesu w poblize stanu referencyjnego. Zaprezentowane
sa dowody istnienia, jednoznacznosci oraz stabilnogci. Skuteczno$é rozwazanego sterowania w
uktadzie zamknietym jest zilustrowana za pomoca rezultatéw symulacji numerycznych doty-
czacych badanego uktadu réwnain. Rezultaty numeryczne sugeruja, ze skutecznosé rozwazanego
sterowania w uktadzie zamknietym zalezy od parametréw uktadu rownari. Dodatkowo, poczynione
sa obserwacje dotyczace zachowania dla duzych czaséw widocznego w przedmiotowych symulac-
jach. We wszystkich symulacjach proces zdawal sie dazy¢, po uptywie odpowiedniego czasu, do
pewnego stanu niezmienniczego w czasie. W niektérych przypadkach zaobserwowany stan niezmi-
enniczy wydawal sie by¢ w pewnym stopniu niezalezny od stanu poczatkowego dla rozwazanego
uktadu réwnan.

W czesci dotyczacej problemu optymalnego wycelowania najpierw skupiam sie na pytani-
ach analitycznych. Dowodze instnienia minimizeréow oraz charakteryzuje rézniczke funkcjonatu
kosztu. Nastepnie opisuje eksperymenty dotyczace numerycznej optymalizacji, wykorzystujace
trzy gradientowe algorytmy optymalizacji (najwiekszy spadek oraz dwa warianty nieliniowego
gradientu sprzezonego) oraz porownuje ich wydajnosé. Wspomniana przed chwilg charakterzacja
rozniczki funkcjonalu kosztu wykorzystana jest do implementacji formuty na gradient. Rezul-
taty pokazuja, ze wydajnos¢ algorytmow optymalizacji zmienia sie wraz ze zmianami parametrow
funkcjonatu kosztu. Pokazane jest rowniez, ze modyfikacje przedmiotowych parametréw moga
skutkowaé niezaleznoscia wynikéw optymalizacji od warunku poczatkowego rozwazanego uktadu
rownan.
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Introduction

This question addresses a range of questions on closed-loop control of nonlinear distributed
systems governed by a combination of partial and ordinary differential equations. The control
system set-up comprises a finite number of measurement devices and a finite number of control
devices. We analyze such a class of control systems, addressing the existence and uniqueness of
solutions, the efficiency of the closed-loop controls and their optimization.

Mathematical models applied in science suffer from inaccuracies originating due to at least
two sources:

1) First, the models represent only approximations of real phenomenas.

2) Second, also the values of model parameters frequently only approximate the values which
are, in some sense, the best (optimal).

In the thesis, we consider a control system imposed on a process governed by the reaction-
diffusion equation:

yt(x’t) - Ay(x’t) = f(y(x,t)) + ﬁ(x’t) (OA)

with a control term . The control term is a model parameter, selected according to a particular
aim of the control, for instance, to reach a given state y* = y*(z) at a given time 7.

In the above context, first, one faces the question to what extend the semilinear reaction-
diffusion equation is a precise representation of the underlying process. But even though the
above semilinear equation, with certain concrete f, were considered to be satisfactory in this
connection, a second question, concerning the choice of the control term 1 (the model parameter),
would be faced. The choice of 01 should provide a ,sufficiently accurate” approximation of the
optimal 0. Here, the meaning of optimality is determined by the above mentioned aim of the
control.

The direct approach concerning the issue 2) as above consists in improving the approximation
of optimal values of the model parameters. However, this approach has several limitations:

e In general, the only way to approximate those optimal values is based on numerical ap-
proaches. As often the numerical optimization is computationally of high complexity, such
a treatment proves time consuming.

e The results of numerical optimization usually remain different from actual optimal values.
This produces a next obstacle for models of instable nature, where even small perturbation
of model parameters can result in big changes in the solution of the model.

e In (0.A), an optimal parameter 1, being the control variable, depends not only on the
control objective (to achieve a state y* at time 7T') but also on the initial condition of the
model. Thus, a change of the initial condition results in a necessity of computing the model
parameter again.

ix
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All above considerations refer actually to the open-loop set-up of the control problem. The
latter shows, as discussed, its obvious limitations. As an alternative concept, a closed-loop set-up
can be developed. In this context, our approach shall be to accept the parameters inaccuracies in
the model and extend the model of an additional mechanism of automatic real-time parameters
corrections, basing on the observed actual evolution of the model solution. In the context of
(0.A), this idea can be implemented by allowing the parameter & to depend on the solution of
the model itself:

ﬁ(x,t) = ﬁ(x,t,y( . ,t))

or more generally

ﬁ(x,t) = ﬁ(x, t y|space><[0,t)( ot )) (OB)
The latter formula stresses that the values of 1 in a given moment of time ¢ can be computed
using the whole information about the past behavior of the solution y (not only the information
on the present time t). The above idea of automatic correction mechanisms assumes that a
computational algorithm for the values of the model parameters is given. Such an algorithm will
be called a feedback law in our thesis. In our control theory model (0.A), under assumption that
the term 1 is of form (0.B), the feedback law can be identified with the definition of 1.

The above approach involving the idea of automatic correction mechanisms, potentially, may
be a way to overcome the aforementioned difficulties, because:

e With such an approach, a computationally expensive procedure of searching for the optimal
values of the parameters can be unnecessary.

e Since the basic idea of the discussed approach is not to predict the behavior of the solution
of the model a priori, but to react to the behavior of the solution in real time, the following
consequences, hypothetically, can be faced:

a) The approach can be effective in the case of the models exhibiting unstable nature.
Here, by the effectiveness we mean the result of making the behavior of the solutions
of the model close, in a suitable sense, to a desired reference.

b) In (0.A), with the objective to reach a state y* at time T, a control involving the
automatic correction idea (i.e. a parameter @ of form (0.B)) can occur to preserve
the control effectiveness under changes of the initial condition. In consequence, the
proposed approach may help to avoid computing the model parameter every time
when the initial condition is changed.

¢) In control systems, a control based on the automatic corrections idea may prove
effective even if the utilized description of the underlying process (i.e. the equation
yr — Ay = f(y), in the case of the model (0.A)) is inaccurate. In other words, closed-
loop controls of the considered type can preserve the effectiveness under changes of
the model. Thus, in the control theory context, the automatic correction idea can
also offer a solution to the issue 1) as formulated above.

The aim of this thesis is to demonstrate the concept of automatic correction mechanism
in the control theory model (0.A) in a specific implementation, a control by thermostats. The
control by thermostats assumes that the feedback law, built into the control term 1, relies on
a finite system measurement devices and control devices. The measurement devices gather the
information on the current state of the process. The control devices influence the process, basing
on the information provided by the measurement devices.

Questions on the models with an automatic correction mechanism that we shall address
include:
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I) Whether a given model with the latter type of mechanism is mathematically well posed,
i.e. its solutions exist and are unique, further are stable subject to the data perturbations.
We investigate this questions for a model with control by thermostats in Chapter 1.

IT) Whether the automatic correction mechanism applied in a given model indeed ensures an
effectiveness and insensitivity to changes of the initial condition. We focus on this questions
in Chapter 2, where results of numerical simulations for a model with control by thermostats
are exposed.

III) It is natural to ask a question concerning possibilities of refining the effectiveness of a given
model with an automatic correction mechanism. This leads to the problem of optimization
of the feedback law, constituting the automatic correction mechanism. Investigating the
latter problem for the model with control by thermostats is the main aim of the present
work and is the subject of Chapter 3 and Chapter 4.

The set-up of the optimal feedback problem may seem in dissonance with the former remarks,
as one of the highlighted advantages of automatic correction mechanisms was their low compu-
tational cost due to avoiding computationally expensive optimization procedures. However, the
latter dissonance is only virtual. First, some of the numerical prototypes described in Chapter 2
show that an effective feedback law can be defined heuristically, without optimization procedures
involved. Still, even if one is able to intuitively construct a good feedback law, searching for a
better one remains natural and hence our interest in the related optimization problem. Second,
as mentioned, in the context of the control theory, other possible advantage of automatic cor-
rection mechanisms is its insensitivity to the changes the initial condition (for the control by
thermostats, it also seems to be the case in certain situations, as the results described in Chap-
ter 2 indicate). In consequence, for a given model with a given aim of the control, re-optimizing
the feedback law every time the initial condition is changed may be unnecessary. In such cases,
it is sufficient to perform the optimization procedure just once.

To formulate the subject optimization problem precisely, a parametrization of the feedback
law is necessary. To this end, we assume that the thermostat feedback law is parametrized by
the localization of the actions of control and measurement devices. In other words, in Chapter 3
and Chapter 4, we will focus on the problem of choosing optimal localizations of the actions of
those devices.

For the optimization problem, a number of related questions will be explored. In Chapter 3,
theoretical aspects as the existence of minimizers of a suitable cost functional and the analysis
of its differentiability will be examined. Chapter 4 outlines the results of related numerical sim-
ulations. There, the problem of choice of an appropriate optimization method and the question
concerning independence of the optimal feedback law on the initial condition of the model are
discussed.

In the remaining part of Introduction we set the framework for the thesis. The precise
definition of the model with control by thermostats addressed in this work is given in §1. In §2, we
formulate the optimization problem that will be considered throughout the thesis. Some possible
applications of the control by thermostats, as well as bibliographical information concerning the
latter control concept, are exposed in §3. Finally, §4 provides bibliographical notes concerning
the present dissertation, a summary of its results in the above mentioned fields of interest, as
well as a more details on the content of the subsequent chapters.
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§1 Model with the control by thermostats

In the present work, we take into consideration the following mathematical model, realizing the
concept of control by thermostats:

wlat) = DAY, 1) = Fue, ) + Y gi(@)n () on Qr

% =0 on 90 x (0,7) (0.1)
y(x,0) = yo(x) for x € Q

together with

Brky(t) + Kk1(t) = W1 (y( . ,t),y*(a:,t)) on [0,7]

: ' 0.2
Bk (t) + ky(t) = Wy(y(.,t),y"(z,t)) on [0,T] 0
I{]’(O):I{j()ER forj=1,...,J
where Q7 = Q x (0,T), T > 0 and Q € RY is a bounded domain with sufficiently regular bound-
ary. The unknown in the above equations is (y, K1, ..., k), where y: Q7 — Rand ;: [0,7] — R.
The term f: R — R represents a given nonlinearity. The diffusion coefficient D > 0 is given, as
well as coefficients 31,...,8; > 0. Functions y*: Q7 — R and g;: 2 — R also are known. The
functionals W; are defined as follows, for j =1,...,J:

W](y( : 7t)7y*( : 7t)) = Zajkwk </Q hk(x) (y(.%',t) - y*(x7t)dx)) (0'3)
k=1

where o € R, wi: R — R and h;: @ — R.

In (0.1) - (0.3), y* describes a reference trajectory — the purpose of the introduced model
is to stabilize the reaction-diffusion process possibly close to the reference trajectory y*. If y*
is independent of the time variable, we will call it a reference state. Functions g; are constant
in time, characterizing the actions of control devices in space. The actions of control devices
alternate in time according to the values of functions r;, called response functions or power
functions. The response functions depend on the process evolution, described by variable y. This
dependence can be described as follows. Measurement devices, whose actions are characterized
by functions hg, acquire the data on the current state of the process. Each measurement device
is responsible for computing the measurement value, represented by the term fQ hi(y — y*) dz,
entering the right hand side of (0.3). The measurement values returned by the measurement
devices are processed by functions wyg. The processed measurement data are synthesized by
the signal generator associated with j-th control device, with weights aj, k = 1,..., K. The
function Wj(y(.,t),y*(.,t)), as a function of time, can be interpreted as the signal generated
by the signal generator for the j-th control device. Next, the j-th control device responses to the
input signal. The response of the j-th control device is described by the response function ;.

Figure 0.1 illustrates a functional structure of the control mechanism that we have described.

The below remarks can be helpful for understanding of the system (0.1) - (0.3):

e Functions ; are modeled with ODEs in (0.2), meaning that the changes of the response
are continuous in time.
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measurement values DATA:
| @ty (w.0) do J=2 K=3
LEGEND:
i 1 N power spots
signa Wy (y7 Y ) o (g; supports)
signal . measurement spots
g Waly, y*) @ (hj supports)

Figure 0.1: Schematic presentation of the closed-loop control concept, implemented in the system

(0.1)

- (0.3), for the case of two control devices and three measurement devices.

A natural example of the functions g; and hy, is a characteristic function of a small ball,
being a subset of €2, times a constant. If this is the case for hy, then the measurement
devices return measurement values representing the mean difference between the current
process state and the reference trajectory in a neighborhood (the ball supporting hy) of
certain point (the center of the ball). If g; are functions as above, then the control devices
deliver the energy uniformly over the balls being the supports of g;.

For the functions wy, a natural example is wg(s) = —sgn(s). In this case, the function
wy, returns simple information understood by the signal generators as ,,cool down” or ,heat
up”, depending on whether the k-th measurement value indicates that the process values
exceed the reference values or are below them. Hence, functions wy can be understood as
functions describing a switching mechanism implemented in the system. We will call wy
the switching functions.

The assumption that §; > 0 has a practical interpretation. If, for certain j € {1,...,J},
B; > 0 and the signal W} in the RHS of (0.2) is zero, then it follows straight by the basic
properties of the ODE (0.2) that the power function x; tends to zero. This is the behavior
which one can intuitively expect, meaning ,no signal — no power”. And the opposite, if
one assumed that 3; < 0, then the power function x; would tend to infinity for the signal
W; equal zero and nonzero initial condition x;o, what is a less natural behavior.

Functions hy in the system (0.1) - (0.3) describe measurement abilities of specific mea-
surement devices, not just measurement devices understood as physical units. Similarly,
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functions g; describe power spots created in the process domain by control devices rather
than physical devices itself. Putting the latter in another way, functions g; and hj do
not describe the mechanism of work of the control and measurement devices, but only the
effect of the work of the devices.

Note that the control devices can be placed outside the domain of the controlled process.
For example, the control devices can be electromagnetic transmitting antennas, placed
outside the domain and focusing the electromagnetic waves at some spot placed inside
the domain. Then, the function g; describe the spatial distribution of the intensity of the
electromagnetic effects generated in the domain by the j-th antenna.

e The above interpretation of the role of g; and hj has quite essential consequences. If one
assumed that g; describe physical units, then one could expect some additional no-collision
restrictions, as e.g. the condition of disjoint supports of all functions g; or the condition
that the supports of g; are contained in ). Instead, we only assume that g; describe some
immaterial energy injections, hence there is no reason to forbid intersections of the supports
of g; or to forbid the supports of g; to intersect with the exterior of 2. An analogous remark
holds for functions hy,.

e In many situations it is natural that the control devices act through the boundary of the
domain. Even if the control devices are physically located in the process domain, then the
volume they occupy should not be the influenced by the control action. To achieve this,
for example, one could modify the domain of the process and exclude the volume occupied
by the control devices from the domain, what in fact leads to a model with control acting
through some part of the boundary (i.e. the part being the boundary of the volumes
occupied by the devices).

Hence, if one interpreted functions g; in the model (0.1) - (0.3) as physical units, then the
model might seem not quite realistic. But, as mentioned, functions g; do not describe the
physical units and can be understood e.g. as functions describing electromagnetic effects
in some volume of the domain, generated by electromagnetic antennas placed outside the
domain. With this interpretation, the model (0.1) - (0.3) becomes coherent.

Throughout this thesis, we will keep the above interpretation of the system (0.1) - (0.3),
assuming that functions g; and hj, do not represent physical objects. Instead, g; and hj, will be
assumed to characterize the actions of the control and measurement devices actions.

In the present work, we will use the term the control by thermostats or the thermostat control
mechanism to refer to the control concept applied in the system of equations (0.1) - (0.3) for
controlling the reaction-diffusion process. In the literature, some variants of the above described
control concept were already considered. We will briefly comment on those variants in §3.
For further convenience, we will call the mentioned variants thermostat control mechanisms or
controls by thermostats, as well. Thus, in the present work, the notion of ,the thermostat control
mechanism” or ,the control by thermostats” refers to a family of closed-loop control concepts, to
which the control concept applied in (0.1) - (0.3) belongs.

REMARK. For D =1, the system (0.1) - (0.3) can be understood as a particular case of the
equation (0.A) with the control term @ of form (0.B). Indeed, it suffices to set & := Z}']:1 gjk;
in (0.1). Equations (0.2) and (0.3) can be understood as conditions describing the feedback law
for computing functions «; and hence the term . It follows by (0.2) and (0.3) that functions ;
depend on y, or more precisely, that «;(t), for given ¢ € (0,T"), depends on the past values of y,
earlier than ¢. Thus, G defined as proposed above, is a realization of (0.B). A
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The properties of the system (0.1) - (0.3), such as the existence and uniqueness of solutions,
stability of the system or efficiency of the thermostat control mechanism will be the discussed
in Chapter 1 and Chapter 2. In Chapter 3 and Chapter 4, the system (0.1) - (0.3) will be
considered in the context of optimization of the feedback law implemented by the thermostat
control mechanism.

§2 Formulation of the optimal targeting problem

Below, we introduce the optimization problem which will be investigated in Chapter 3 and
Chapter 4. The optimality criterion will refer to bringing the state of the controlled process
possibly close to a given reference state at time 7. In the problem, a feedback control law in
(0.1) - (0.3) (i.e. the algorithm for computing the response functions x;) will be optimized so as
to meet such a requirement. The feedback law will be optimized with respect to the choice of
geometrical targeting of control and measurement devices actions.

To this purpose, we will assume that the pattern of energy distributed in the domain by
a given control device is fixed and that the user can adjust the energy distribution only by
translations of the latter pattern. For instance, the situation can be considered where a control
device can produce a uniform energy distribution in a small ball-shaped volume and the user
is expected just to choose the center of the volume. An analogous assumption will be made
for the measurement devices, stating that the measurement abilities of the measurement devices
are described by fixed patterns and can be adjusted only by spatial translations of the subject
patterns.

We pursue the above concept by the following mathematical assumptions.

We will understand the control as the set of all functions characterizing control and measure-
ment devices along with weights entering to (0.1) - (0.3), i.e. the control is (gj,hk,ajk)kzl K

IR}

J=lyeed -
The choice of control determines the feedback law in (0.1) - (0.3), assuming that functions wy, and
coefficients 3; are prescribed. Let functions o, oy, : R? — R and points z1, ...,y and z1,. .., 2K

in R be given. We assume that the functions describing the control and measurement devices
actions are given by

9;(w) == o4(x —zj)la,  hi(x) = on(z — 2l (0.4)

forj=1,...,J, k=1,...,K. Functions o, and o} will be called the pattern functions. For
example, in the case of control devices distributing energy uniformly in a ball-shaped volume,
one can set o4 := Cylp(q,,), With parameters Cy and ry chosen accordingly. Points z; and zj
characterize targeting of specific control and measurement devices actions.

Under the above assumptions, for prescribed pattern functions o, and o3, the control is
determined by a choice of targetings x1,...,z; and z1,..., 2k as well as weights oy 1,...,a K.
However, we do not plan to address the problem of optimal choice of weights in the termostats
control system. In the thesis we focus on the problem of optimal targeting of the devices actions.
To this end, we make the following simplifying assumptions. We postulate that

K=1J (0.5)

and that
zj=x; forj=1,...,J (0.6)

In addition, we set
=0, forjk=1,...,J (0.7)
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As a result, the problem of choice of the weights disappears.

Now, with assumptions (0.4), (0.5), (0.6) and (0.7), for fixed pattern functions o4 and oy, the
choice of targetings x1, ...,z  determines the control and hence the feedback law in the system
(0.1) - (0.3). For this reason, the sequence (x1,...,z) will be called the control parameter.

Assumptions (0.4), (0.5), (0.6) and (0.7) together can be interpreted as a set conditions that
the control and measurement devices are pairwise coupled in the thermostat control mechanism.

We are now ready to formulate the complete optimization problem to be studied in Chapter 3
and Chapter 4. Let the pattern functions o, and o, be given. The problem is to choose the
control parameter in an optimal manner, with respect to the criterion of minimizing the following
cost functional:

. T
(@1see ) )\/T /Q|y(x,t)—y*(x,t)\2dxdt (0.8)

for certain A > 0, Ty € [0,T), where y* is a reference trajectory entering the system (0.1) - (0.3)
and y is the first component of solution (y, &1, ..., ) of the system (0.1) - (0.3) with conditions
(0.4), (0.5), (0.6) and (0.7), corresponding to the control parameter (z1,...,2s).

The minimization problem for the cost functional (0.8) can be referred to as the problem of
optimal targeting of control and measurement devices actions. However, it will be convenient to
have a shorter name, thus in this thesis we shall refer to it as the optimal targeting problem.

REMARK.  The cost functional (0.8) reflects the idea of measuring the gap between the
process evolution and the reference state. In particular, setting T close to T" and A= (T — To)_l,
the above cost functional approximates the gap at time T of the experiment. As such, the
subject cost functional is appropriate to describe the idea of bringing the process state close to
the reference state at the terminal time 7', mentioned in the beginning of §2. A

REMARK. Due to our interpretation of the system (0.1) - (0.3), which allows intersections
of the supports of functions g; and h; with each other and with the exterior of 2 (see §1), we do
not impose any control parameter restrictions for preventing the subject intersections. Thus, we
will view the optimal targeting problem as an unconstrained optimization problem, consisting in
minimization of the cost functional (0.8) over whole (Rd)J. A

REMARK. It will be convenient for the reader to remember the terminology introduced in
§1 and §2 of the present chapter (reference trajectory, switching functions, control parameter,
optimal targeting problem e.t.c.) because we will use it frequently in this work. A

§3 Control by thermostats in the literature and possible applica-
tions

We will now give some comments on the history and variants of the concept of control by
thermostats. We also remark on possible applications.

In the mathematical literature, the idea of control by thermostats of processes governed by
evolutionary PDEs was probably introduced first in [26], [25]. There, a parabolic linear heat
flow was controlled by thermostats. A model of control by thermostat of a parabolic linear heat
flow was considered also in [10]. However, the applications of thermostat control mechanisms
were not limited to control of linear parabolic PDEs. The work [11] addressed the control by
thermostats of a thermodynamical process modeled by the telegraph equation. In [30] and [19],
the authors focused on models with processes described by a semilinear equation controlled by
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thermostats, in [12] a system of semilinear equations with an additional convolution term was
considered in the context of control by thermostats. A lot of attention was directed toward
control by thermostats of phase transition processes modeled by various versions of the Stefan
model, see e.g. [23], [33], [28], [15]. The strain and temperature in a viscoelastic body subject
to a thermodynamical process were controlled by thermostats in the model presented in [29].
A problem of control of saturation in a model of filtration of a porous medium was considered
in [5], with the control involving the thermostat concept. In more recent works [31] and [32], a
model for control by thermostats of a linear heat flow was considered.

Not only the controlled process varies in the models considered in the mentioned works. The
thermostat control mechanism also has its variants. One of the point where the differences in
the thermostat control mechanism can occur is the placement of actions of the control devices.
In all indicated references, except for [19] and [30], the control devices are acting through the
boundary of the process. In [19] and the present work the control devices create a power spot
distributed in the domain of the controlled process. In [30], the control acts both through the
boundary and as a quantity distributed in the domain.

Also, various versions of the switching mechanism, being a part of the thermostat control
mechanism, can be found in the literature. A frequently encountered case is that hysteresis in
the work of the switching mechanism is assumed to be present. See [33], [28], [29], [11], [12],
[31], [32] for applications of the so-called relay switch hysteresis or [23], [10], [15], [28], [29], [12],
[5], [30] for the Preisach hysteresis model. In [33], [15] or [19], the case of no hysteresis effects in
the switching mechanism was addressed. In the present work, we also do not assume hysteresis
effects.

The version of the thermostat control mechanism investigated in this work is very similar to
that in [19] or one of the cases taken into account in [33].

Certain potential applications of the thermostat control mechanisms have been already in-
dicated above, in the description of mathematical literature. They cover control of thermody-
namical processes, strain in viscoelastic bodies, saturation of porous media and phase transition
processes. Besides, the control concepts similar to the concept of the thermostat control mecha-
nism were present also in technical literature.

In this context, we mention the application of thermostat control mechanism mechanisms in
the hypertermia cancer therapy. Roughly speaking, hyperthermia consists in heating the body
of a patient to influence the cancer tissue. See [48], [46] for general overview of the latter therapy
method, its variants and limitations. According to those references, one of the variants of hy-
perthermia assumes ultrasounds or electromagnetic waves to be the heating medium, delivering
energy directly to the deep tissues of the body of the patient. A typical strategy in this hyper-
thermia variant is to heat the cancer tissue area to a possibly high temperature without rising
the temperature in the neighboring tissues above certain critical level. A feedback information
concerning the heating results is necessary. The measurement actions can be carried out by
interstitial heat probes or the magnetic resonance imaging.

The model (0.1) - (0.3) can be understood as describing the above situation, assuming that
the domain ) represents the heated tissue. Note that the subject variant of the hyperthermia,
consisting in the deep heating, is coherent with our interpretation of the functions g; in the model
(0.1) - (0.3), describing the control effects in a certain volume of the domain of the controlled
process. In the model (0.1) - (0.3), the strategy of selective heating the tumor can be implemented
by a proper choice of the reference state y*, describing a desired temperature distribution.

In many publications addressing hyperthermia, the feedback information obtained by mag-
netic resonance is utilized to control the actions of the heating medium transmitters. Control
mechanisms which share control concepts in certain way related to the concept of thermostat
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control mechanisms are described (examples can be found in [42], [8]). However, methods bas-
ing on other control concepts also were introduced in the hypertermia-related publications (for
instance, see [16], [35], [47]).

In the context of hyperthermia, an interesting hybrid control concept is presented in [36],
combining a thermostat-like control concept for controlling the power of the control devices
in time with other kind of control strategy for the control of energy delivery in space. The
latter strategy consists in optimization of the control devices settings, and hence, indirectly, in
optimization of the patterns of the spatial distribution of the delivered energy. Thus, at the level
of general concepts, the aims of the control mechanism in [36] are similar to the aims of both
our thermostat control mechanism and our optimal targeting problem, introduced in §1 and §2.
Nonetheless, comparing to our work, many differences occur there. In particular, the control
mechanism in [36] assumes other feedback law in the thermostat-like mechanism used there and
there considered optimization problem is formulated in significantly other way.

§4 Summary of the results and bibliographical notes

Below, we sketch the plan of the present work, summarize the main results and provide bibli-
ographical notes. Chapter 1 and Chapter 2 are focused purely on the properties of the system
(0.1) - (0.3) and do not touch the optimal targeting problem. The optimal targeting problem,
associated with the cost functional (0.8), is the subject of Chapter 3 and Chapter 4.

In Chapter 1, we focus on analytical properties of the system (0.1) - (0.3). Two main
problems are addressed in this chapter. The first one is: what can be proven if we decide to
put discontinuous switching functions in the system (0.1) - (0.3), e.g. if we put wy = —sgn.
Unfortunately, in this case we prove only existence of solutions, without any uniqueness results.
Moreover, we prove the existence result not for the system (0.1) - (0.3) directly, but for its
modification (see comments below). The second problem consists in proving existence, unique-
ness and stability w.r.t. perturbations of control for solutions of the system (0.1) - (0.3), under
sufficiently strong assumptions. These sufficiently strong assumptions exclude the possibility of
discontinuous switching functions. Knowledge on the existence, uniqueness and stability w.r.t.
control for the system (0.1) - (0.3) is essential also in further parts of the thesis, concerning
directly the optimal targeting problem formulated in §2. Hence, investigating the above proper-
ties is necessary prior to proceed up to this optimization problem. For both problems, Lipschitz
continuity of the reactive term f in the system (0.1) - (0.3) is assumed.

The first of the problems, concerning discontinuous switching functions in the system (0.1)
- (0.3), is treated in Section 1.1. Our approach is the following one. For a given discontinu-
ous switching function wy, we replace it with a multivalued upper semicontinuous mapping wy
whose graph contains the graph of wy. This means that the right hand side of (0.2) becomes
a multivalued mapping. Hence, in Section 1.1, we temporarily replace the differential equation
(0.2) with a differential inclusion, obtaining a modified version of the system (0.1) - (0.3). As
mentioned, we prove only the existence of solutions for the postulated modification of the system
(0.1) - (0.3). The proof of the existence theorem exploits the generalized Kakutani fixed-point
theorem.

The second problem, concerning existence, uniqueness and stability topics for the system
(0.1) - (0.3), is considered in Section 1.2. Here, we conduct our reasoning under the assump-
tion of Lipschitz continuity of the switching functions. This means that (0.2) becomes equality
again rather than inclusion, what brings us back to analysis of the system (0.1) - (0.3). In
Section 1.2, stability of solutions of the system (0.1) - (0.3) under perturbations of control is
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proven, with the mentioned assumption on Lipschitz continuity of wj and with the assumption
that y* € L?(0,7;L?*(2)). Under the same assumptions, stability w.r.t. perturbations of the
initial condition is shown, what proves the uniqueness of solutions of (0.1) - (0.3). The existence
result also is shown, with additional restriction for y* and wg, namely that one of the following
hypotheses is fulfilled: 1) y* € L2(0,T; L*())) and wy are bounded or 2) y* € L>(0,T; L(£2)).
Eventually, as a complementary result, we prove also weak stability of solutions of the system
(0.1) - (0.3), under the same assumptions under that the stability and uniqueness are proven. In
Section 1.2, we provide also generalization of some of the above mentioned results for the case
of f only locally Lipschitz with certain growth condition and g essentially bounded.

In Chapter 2, we present results of numerical simulations for the thermostat control mech-
anism, involved in the system (0.1) - (0.3). These simulations were intended to give an insight
into the properties of the system in some aspects not touched in Chapter 1.

In particular, Chapter 1 does not concern the efficiency of the thermostat control mecha-
nism in any sense, i.e. does not give an information whether the thermostat control mechanism,
described by (0.1) - (0.3), brings the process close to the reference state y* or not. Thus, in Chap-
ter 2, we describe numerical results illustrating efficiency of the thermostat control mechanism,
in the above sense.

As a second focus of our attention in the analysis of the numerical results, we take into
account the problem of dependence on the initial state yo of the large time behavior of the
process controlled by thermostats (i.e. of solution component y in the system (0.1) - (0.3)). The
information on independence of the process state at the terminal time T on the initial state
are important for the optimal targeting problem, considered in Chapter 3 and Chapter 4. To
be precise, if the process state at the terminal time T is independent of the initial state then,
perhaps, the cost functional (0.8) also becomes independent of the initial state, assuming Tj
close to T. In consequence, the local minimums of the cost functional become independent of
the initial state.

In our simulations, two-dimensional square domain was considered and a triangulation of
triangular elements was used. To obtain the results, the system of equations was treated with
finite element method combined with the implicit Euler scheme. The finite element space was
the space of continuous functions, linear on each element of the triangulation. The nonlinear
terms entering (0.1) - (0.3) were treated with the use of Picard iterations.

The simulations addressed the cases of various reference states y*, various initial states yg
and various configurations of the control and measurement devices in the thermostat control
mechanism, described by (0.1) - (0.3).

The simulation results suggest that the efficiency of thermostat control mechanism differs
with changes of the model parameters. As a general rule, greater number of the control and
measurement devices, not surprisingly, results in better efficiency. Moreover, in all simulations,
stabilization of the process near to some time-invariant state was observed. The independence
of the subject time-invariant states on the initial state was observed in some, but not in all, of
the simulations.

In Chapter 3, we report an analysis of the optimal targeting problem, announced in §2.
The main objective of Chapter 3 is to derive a formula characterizing the gradient of the cost
functional (0.8). The gradient formula will be necessary further, in Chapter 4, to perform
optimization procedures for approximation of local solutions of the subject optimization problem.
Chapter 3 is split into two parts: 1) part concerning the properties of the operator assigning
the solution of the system (0.1) - (0.3) to a given control parameter, let us call this operator the
state operator and 2) part concerning properties of the mentioned cost functional, including the
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formula for its gradient.

In Section 3.1, we investigate the properties of the state operator. By the existence and
uniqueness results from Chapter 1, in Section 3.1 we easily justify that the state operator is well
defined. Moreover, by the stability results from Chapter 1, we show that the state operator is
Lipschitz continuous. In comparison to the results stating that the state operator is well defined,
its Lipschitz continuity requires additionally stronger assumptions for the pattern functions o,
and op. Eventually, in Section 3.1 we prove also the weak Géateaux differentiability of the state
operator and characterize its weak Gateaux differential. This is the main result of Section 3.1,
necessary also in further considerations, concerning the properties of the cost functional. As we
will see, the Lipschitz continuity of the state operator is essential to prove its weak Gateaux
differentiability. In addition, the proof the weak Géateaux differentiability of the state operator
assumes that both the nonlinear term f and the switching functions wg, £ = 1,..., K in the
system (0.1) - (0.3) are everywhere differentiable in the classical sense.

In Section 3.2, we investigate the properties of the cost functional (0.8). First, we introduce
a simple criterion for existence of minimizers in the subject optimization problem. This criterion
assumes that the pattern functions o4 and o, have compact supports. Next, we focus on the
matter of differentiability of the cost functional. We show that it is Gateaux differentiable under
the same conditions under which the state operator is weakly Gateaux differentiable. Finally, we
derive a formula for the gradient of the cost functional, what is the main result of Section 3.2.

In Chapter 4, we present results of numerical optimization experiments concerning the op-
timal targeting problem. Chapter 4 complements the theoretical material provided in Chapter 3
by presenting attempts to construct concrete solutions of the investigated optimization problem.

The simulations described in Chapter 4 were intended mainly 1) to compare performance of
various optimization methods for various parameters of the subject optimization problem and
2) to check whether the optimization output is independent of the initial state yg, entering the
system (0.1) - (0.3), when the parameter Tp in the cost functional (0.8) is close to T'.

The independence of the optimization output on g is related with the independence of the
process state at the terminal time on yo (see the remarks concerning Chapter 2). Since the
latter independence was observed in some cases in the simulations described in Chapter 2, one
can expect that the former independence, concerning the optimization output, also is possible.
The independence of the optimization output on the initial state yg, if exists, would mean
that it is not necessary to re-optimize the feedback law constituting the thermostat control
mechanism each time the initial state is changed (see the expectations expressed in the beginning
of Introduction).

The numerical optimization experiments were performed with the use of steepest descent
method (SD method, in short) and nonlinear conjugate gradient method (CG method). The
CG method variant was implemented in the Polak-Ribiére mode, with a certain modification.
Two subvariants of the CG method were considered: 1) the method with a reset of the search
direction every Ng;,, iterations, where N, stands for dimension of the optimization space
(CG+r method) and 2) the method without the latter reset procedure (CG-r method). The stop
criterion utilized in the experiments was a short step criterion. To implement the optimization
methods, we rely on the gradient characterization derived in Chapter 3.

We have compared performance for the three optimization methods (SD, CG-r, CG-+r) for
three variants of the initial state yg, three reference states y* and two values of the left edge, T,
of the integration interval in the definition of the cost functional (0.8). Here, by performance of
an optimization method we mean the number of iterations necessary to meet the stop criterion.
The two considered values of Ty were 1) zero and 2) a value close to terminal time T for the
system (0.1) - (0.3). Thus, in case 2), the value of Tj corresponded to the idea of measuring
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the gap between the process and the reference state in neighborhood of the terminal time of the
system (0.1) - (0.3).

The results show that the average performance of the SD method was much inferior in the
case of the parameter Tj close to T" than in the case of Ty equal zero. Nevertheless, the difference
in the average performance of the SD method for two different values of Ty was leveled by using
the CG+r method instead of SD.

We have also compared the average performance of the CG+r method for a given reference
state and T} close to T', for varying values of parameter T (T' = 2,4,6) and for two variants of
yo. It occurred that the performance of the CG+r method was better in the case of T'= 2 than
in the case of T'=4 or T = 6.

Hence a hypothesis that the average performance of optimization methods for our optimiza-
tion problem changes both with changes of Ty (when using the SD method)) and with changes of
T (when using the CG-+r method). For changes of T}, the use of stronger optimization method
(CG+r instead of SD) levels the performance differences, while for changes of T', the performance
differences occur despite using CG-r.

Other observation concerning our experimental results with varying 7' is that the optimiza-
tion output becomes more independent of yy when lengthening time horizon T'. This stays in
accordance with intuition. Unfortunately, greater 71" results in higher computational cost. Thus,
if our observation was a general rule, the desired effect of the independence of the optimization
output on gy could be expected for those values of parameter T which result in a computationally
more expensive numerical treatment of the optimization problem.

Bibliographical notes. As remarked in §3, the thermostat control mechanism was taken
into account in the mathematical literature in different versions. The thermostat control mech-
anism present in the model (0.1) - (0.3) was inspired by and is similar to the version considered
in [19] or one of the versions considered in [33]. However, in comparison to those works, we make
additional assumptions for the switching functions in the thermostat control mechanism to get
stronger results (except Section 1.1, where the assumptions for the switching functions are as in
the given references).

The analytical results presented in Section 1.2 of Chapter 1 and in Chapter 3 are obtained with
rather standard mathematical methods. The methods utilized in Section 1.2 are an adaptation
of methods presented in many PDE handbooks to the PDE-ODE system (0.1) - (0.3). The
approach presented in Section 3.1 of Chapter 3 for the investigation of the differentiability of the
state operator was inspired, in particular, by some of the arguments utilized in [39]. Some of the
key concepts utilized in in Section 3.2 of Chapter 3 for the characterization of the differential of
the cost functional base on the methods broadly described in the handbook [45].

The methods utilized to obtain the main result of Section 1.1 (Theorem 1.1.2) are probably
less standard (the generalized Kakutani theorem, the properties of multivalued mappings). The
latter methods were applied in a similar fashion to models with a similar version of the control
by thermostats in works [33] and [19].

To our knowledge, rigorous mathematical analysis of the problem of optimal targeting of
the actions of control and measurement devices in PDE models involving thermostat control
mechanisms was not performed so far. The latter remark concerns both the variant of the
thermostat control mechanism present in the model (0.1) - (0.3) as well as its other variants,
present in the models addressed in the mathematical references given in §3. Many other questions
were posed for the subject models, including the existence or uniqueness of solutions (see [26], [25],
[33], [28], [15], [29], [12], |5]), the existence, or other properties, of time-periodic solutions (see [28],
[30], [31], [32]), convergence to stationary solutions (see [28]) or the existence of a global attractor
(see [30]). In the mathematical literature, we have encountered only one type of optimization
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problems for PDE models involving thermostat control mechanisms. It is the problem of choosing
the optimal hysteresis law, for the variant of thermostat control mechanism where a switching
mechanism with hysteresis was considered — see e.g. [23], [10], [5]. The optimal targeting
problem announced in §2, or similar, seems to be not addressed in the mathematical literature.

However, in non-mathematical literature, not providing rigorous mathematical analysis, the
problems in certain fashion related to the optimal targeting problem were addressed. For in-
stance, see the reference [36] (some comments on this reference were given in §3).

Some of the results of this thesis were already published in a preliminary form on arXive.org,
in the work [18]. This concerns a major part of the content presented in Section 1.2.1, Sec-
tion 1.2.2 and Chapter 2 of the thesis. Roughly speaking, the content of Section 3 of [18] is
included into Section 1.2.1 and Section 1.2.2 of the present dissertation, while the content of Sec-
tion 4 of [18] is included into Chapter 2. Nevertheless, significant refinements were implemented
since the preliminary version in [18]. In Section 1.2.2, the only part imported form [18] is Theo-
rem 1.2.3 and its proof (the latter with certain rearrangements). The rest of Section 1.2.2 is a new
content, including the image in Figure 1.3. In Section 1.2.2, the refinements include improved
typesetting of mathematical formulas, rearrangements of a big part of the proofs, more precise
exposition of certain mathematical arguments and some additional comments. In addition, Sec-
tion 1.2.2 considers both the case of y* € L>(0,T;L*(Q)) and y* € L?(0,T; L*(Q)), while in
[18] we included only the considerations on y* € L>(0,T; L?(Q2)). Chapter 2, in comparison to
Section 4 of [18], contains a much more extensive description of the numerical schemes utilized
in the simulations and some additional comments. The images in Figures 2.3, 2.4, 2.6 and 2.8
in Chapter 2 represent the same data as some of the images in [18], however they were plotted
anew, for better readability. The rest of images in Chapter 2, as well as the tables exposed
therein, is the same as corresponding images and tables in [18].

Moreover, some fragments of Section 1 (Introduction) of [18] (text bulk of less than two pages
in total) are present in the Introduction of the preset dissertation. Section 2 of [18] also is here,
splitting its content to Notation conventions and the beginning of Chapter 1. To be specific,
the list of norms in Notation conventions, along with some minor text fragments there, and big
parts of the notation remarks in the beginning of Chapter 1 are present in Section 2 in [18].
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In this chapter, we introduce notation which will be binding everywhere else in the present work.

General notation

By ,domain” we mean a nonempty open subset of R™, for some n € N\ {0}.

In the present work, Q C RY always denotes the corresponding set appearing in the system
(0.1) - (0.3) and is assumed to be a domain. Positive integer d stands for the dimension of €2.
T > 0 is the constant in (0.1) - (0.3) determining the time horizon and Q7 := Q x (0, 7).

Unless it is explicitly said to be otherwise, R™ for an arbitrary n € N\ {0} is always endowed
with its standard topology and with Lebesgue measure and so subsets of R™ are, including €.

If F'is a function defined on a given set A and A is a subset of A, we denote by F|; the

restriction of F' to A. B N

For a given set A and its subset A, 17: A — R is the indicator function of A, ie. 13(w)
equals 1 for w € A and equals 0 for w ¢ A

The function sgn: R — R is defined as follows: sgn(s) =1 for s > 0, sgn(s) = —1 for s < 0,
sgn(0) = 0.

For j,k € N, we use symbol 4, to denote the Kronecker delta function of j and k, i.e.
0jr =1for j =k and §;; = 0 for j # k.

For vector spaces X, Y and an operator 1" acting from X to Y, we will denote the value of T’
on an element x € X as T'(z) or Tz, interchangeably.

Notation for function spaces

Below, any space of scalar functions is understood as a space of real functions and any Banach
space is also assumed to be real.
Assume that X is a Banach space. We denote:

X* — dual of X,

X, X*ws — the space X considered with its weak topology and the space X™ con-
sidered with its weak-* topology, respectively.

For two Banach spaces X7 and X5, X7 < X5 means that X7 can be continuously embedded
in Xo. When this notation is used, specification of the embedding operator is necessary. If
X1 C Xo, then we assume that the embedding operator for X; < X5 is the identity operator.
If X7 is a separable, reflexive Banach space, X5 is a separable Hilbert space and X; «— Xy
densely, then the embedding operator for X5 < X;* is understood in the standard evolution
triples sense (see [51, Chap. 23.4] for explanation of this concept). If none of these two situation
takes place, external embedding theorems will be referred in the text to specify the meaning of
the embedding operator.

xxiil
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NOTATION CONVENTIONS

Assume that k,n € N\ {0}, p € [1,00], X is a Banach space and let A be a measure space
and D C R” be a domain. The following notation concerning function spaces will be in use:

LP(A)
WkP(D)
H*(D)

c((0,77)

standard Lebesgue space,

standard Sobolev space,

synonym for W#2(DD),

space of real valued continuous functions defined on ID with its standard
topology,

subspace of C(D) consisting of functions with support that is compact
in D,

standard Bochner space,

space of continuous functions from [0, 7] into X,

space of weakly continuous functions from [0,7] into X, or in other
words, space of continuous functions from [0, 7] into X,

synonym for C(]0,7]; R).

Assuming that X is a Banach space, H is a Hilbert space and E C R" is a measurable set,

we denote:

(B
("')H

(0 xe x

I,
-1,
(P

H : Hp,q

(s)

the norm of X,
the scalar product of H,

the natural pairing between X* and X; the first argument stands for the
element of X™,

the norm of the Lebesgue space LP(E), p € [1, 0],

the norm of the Lebesgue space LP(Q2), p € [1, o],

the norm of the Bochner space L9(0,T; X), q € [1, o],
the norm of the Bochner space L9(0,T; LP(Q2)),

the natural pairing between H'(Q)* and H'(Q); the first argument
stands for the element of H'(Q)",

p-th norm in R™, namely |x | b, = (Z?:1|xi|p)l/p for p € [1,00) and

| T | b= maxizlv___,n‘xi{ for p = oo, where z € R".

In addition, we do not want to bother with separate notation for norms of R"-valued functions,

hence we denote the standard norm of (LP(E))" simply as || .

Hp g Similarly, we denote the norms

of (LP(Q))"™ and L1(0,T; (LP(Q2))") by H ) Hp or H . H , respectively. The standard scalar product
in (L?(E))" will be denoted as (., Dr2(m)-

Moreover, for p € [1,00), the space LP(0,T'; LP(2)) can be identified with the space LP(Qr).
The inclusion LP(Qr) C LP(0,T; LP(Q2)) follows by arguments as in the proof of Example 23.4
in Chap. 23.2 in [51], the other inclusion follows by approximation with step functions. Thus,
in the present work, we will use these two spaces interchangeably. In particular, we assume that

for an arbitrary F € LP(0,T; LP(£2)) it is legal to evaluate the norm |

p.q

‘FHLP(QT) and wvice versa.

The definitions Lebesgue and Sobolev spaces are contained e.g. in [1, Chap. 2 & Chap. 3],
[45, Chap. 2.2] or [21, App.A.3 & Chap. 5.2]. The Bochner spaces are introduced e.g. in |1, Par.
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7.4], [21, Chap. 5.9.2], [45, Chap. 3.4.1] or [51, Chap. 23.2]. Space C(]0,7T]; X) is defined e.g.
in [45, Chap. 3.4.1], [21, Chap. 5.9.2] or [51, Def. 23.1, Chap. 23.2]. The norms of Lebesgue,
Sobolev, Bochner and C([0,T]; X') spaces are also defined in the given references.

Notation for differentiation

Let D C R™ be a domain, for certain n € N\ {0}. In the present work, for a given function
F: D — R, partial derivative sign &;F, for i = 1,...,n, can refer both to the classical partial
derivative and the weak partial derivative. Similarly, VF(x), for z € D, can denote the vector of
classical partial derivatives or weak partial derivatives in . Analogous remarks hold if F': D —
R™, for certain m € N\ {0}.

The ,,prim” operator for functions of one variable also can have various meanings. Let I C R
be an open interval (finite or infinite) and let F' be an X-valued function on I, where X is a given
Banach space. Then, depending on the context, F’ can refer both to the classical derivative of
F or to the vector-valued distributional derivative of F'.

To sum up, the ,,0;” and ,,V” operators, if not understood in classical sense, refer to weak
partial derivatives. The ,prim” operator, if not understood in classical sense, refer to the vector-
valued distributional derivative of a vector-valued function of one variable. In particular places
of the text, the meaning of the subject differential operators should be clear by the context.
Otherwise, we will explicitly stress which meaning of the differential operators is involved.

In addition to the above, in the present work, for a given function F': Q7 — R, symbol VF
always refers to the gradient with respect to the spatial variables. In other words, VF does not
include the partial derivative with respect to the time variable, associated with interval (0,7),
regardless of the meaning of the partial derivatives (classical or weak).

We understand the concept of the weak derivative as in [51, Def. 21.2, Chap. 21.1], [1, Par.
1.62] or [21, Chap. 5.2.1|. The vector-valued distributional derivative concept that we use is
described e.g. in [51, Def. 23.15, Chap. 23.5] or [45, Chap. 3.4.3].
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Chapter 1

Thermostat control mechanism —
properties

The fundamental results for the reaction-diffusion model with an additive control term not in-
volving the automatic correction mechanism (see model (0.A)), as the existence and uniqueness
of solutions or stability results, are known. However, introducing the automatic correction mech-
anism to the control term can turn the original reaction-diffusion model into a model of different
algebraic type. This is the case for the model (0.1) - (0.3), which can be understood as the model
of reaction-diffusion process with control by a particular automatic correction mechanism. It is
straightforward that the results concerning a single reaction-diffusion equation do not apply to
the system (0.1) - (0.3). Hence, the analysis of the properties of (0.1) - (0.3) is necessary.

Therefore, in the present chapter, we focus on fundamental analysis of the system (0.1) - (0.3).
By fundamental analysis, we understand in particular the results on existence and uniqueness
of solutions for (0.1) - (0.3). We present also the results on stability of (0.1) - (0.3) under
perturbations of the control and of the initial condition.

The plan of the present chapter is as follows. In Section 1.1, we begin with analysis of
the system (0.1) - (0.3) in the case where the switching functions wy, k = 1,..., K, are upper
semicontinuous multivalued mappings. This approach has the following advantages:

1. It is possible to prove existence for wy being upper semicontinuous multivalued mappings,

2. For a discontinuous function, it is possible to find an upper semicontinuous multivalued
mapping related to this function in certain sense (see Proposition A.5.5).

Thus, the above approach is an attempt to indirectly handle the case of discontinuous switching
functions wy, including the —sgn function.

A drawback of the proposed approach is that, to our knowledge, no method for proving
uniqueness of solutions is known for models with control by thermostats with switching func-
tions being upper semicontinuous multivalued mappings. In the beginning of Section 1.1, we
indicate some reference works where the subject approach was exploited. In none of the indicated
works, uniqueness was obtained for switching functions being upper semicontinuous multivalued
mappings.

In Section 1.2 we investigate the case of stronger restrictions for the switching functions wy.
This restriction consists in assuming that wy are single-valued, Lipschitz continuous mappings,
for k =1,..., K. With the latter assumption, we obtain not only existence but also uniqueness
results for the system (0.1) - (0.3). In addition, in Section 1.2 we provide the analysis of stability,
with respect to both the control and the initial condition, of the system (0.1) - (0.3) with single-
valued Lipschitz wy. Nevertheless, imposing the latter assumption excludes the possibility of
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the above proposed approach for dealing with the case of discontinuous switching functions,
including wg(s) = —sgn(s), in the system (0.1) - (0.3). Thus, one may say that in Section 1.2
we trade a method of indirect handling the situation of wy = —sgn in the system (0.1) - (0.3)
for fundamental results for the latter system. On the other hand, a method of indirect handling
the case of wp = —sgn is available also with the assumption of Lipschitz switching functions —
with the latter assumption, the function —sgn can be approximated with Lipschitz functions of
a very steep slope near point zero.

The purpose of the announced stability analysis is twofold. First, the mentioned uniqueness
result for the system (0.1) - (0.3) is in fact proven by using the stability with respect to the initial
condition. Second, the results concerning stability w.r.t. the control are useful from the point
of view of the optimal control theory, for proving differentiability of so-called state operators.
Our results concerning stability w.r.t. the control will be used in Chapter 3 of the present work,
exactly for the latter purpose.

Notation remarks

In Chapter 1, we use the following definitions of spaces:

X% = L%(Q) x R’

X' = L2(Qr) x (L2(0, 7))’

X2 = {(gs ks i) € L0, LA(Q) x (L0, T))
y € L3(0,T; HY(Q)"), Vy € (LH(Qn)",
K, € L2(0,T) for j = 1,...,J}

and

xv = {ye L™0,T;12(Q)): Vy e (L%(Qr)", ¥ € L*(0,T; Hl(Q)*)}

{
X5 = {(m,...,m) e (2%(0,7)) : &, GLQ(O,T),]‘:L...,J}

where natural number J is the same as J appearing in the system (0.1) - (0.3). In the above
definitions of spaces: 1) the derivatives y’ and K;- are assumed to exist in the sense of vector-
valued distributional derivatives (see Notation conventions) and 2) Vy is assumed to exist as the
vector of the weak partial derivatives of y w.r.t. the spatial variables (see Notation conventions).
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The topologies of X°, X!, X2, XY and X" are given by the following norms:
J
Ik mnllxo =Nl + DIl
j=1

J
H(y,m,---,/w)HXl = HyHQQ + ZHRJHLQ(O,T)
j=1

@m0kl = 9llaee + (1V9llz + 1612 +
+ ;H“J'HLOO(O,T) + ;HK;HLQ(O,T)
[Wllxs = Mllone + [1V¥lloe + 1912

J J
H(Kl""’RJ)HX'f = ZH“J’HL?(O,T) + ZHK;HLQ(O,T)
=1 j=1

It is known that L2(0,T;L?(€2)) can be identified with L?(Qr) and that ||F||,, = HFHQQT
for F € L*(Qr) (see Example 23.4 in Chap. 23.2 in [51]). An analogous fact holds for spaces

L?(0,T; (LQ(Q))d) and (LQ(QT))d. Therefore, the above definitions of norms are meaningful.
Moreover, we define the following spaces:

U=U, xUy xUs, U,= (L), U= (L2Q)", U, = REY

where natural numbers J, K are the same as J, K appearing in the system (0.1) - (0.3). U will
be called the control space. We equip it with standard product topology and scalar product. For
a given element & € U we denote the coordinates of @ in the following way:

. L k=1,..K
u = (u9j7uhk7u04jk)j:1,...,J
N R N . N k=1,..K
where (g, ...,Uq,) € Uy,  (Upy,...,0n,) € Up, (Uozj,k)j:L..., € Ua

An arbitrary sufficiently integrable control (g;, i, ozjk)f;l ff in the system (0.1) - (0.3) can

be interpreted as an element of U and vice versa — an arbitrary element @ € U gives a control
for the system (0.1) - (0.3) by putting g; := Gy, hy = 1y, and a;p = Uq, -
For technical reason, we define also the following space:

U= (L3 @)*

We equip U with standard product topology and scalar product. For a given 4 € U , we denote
the coordinates of @ as follows:

U= (lgyy ey Uy Tpyy e lp,) = (agj,ahj)jzl

REMARK. Concerning the weights «; j in (0.3), one can expect an assumption that «;j, are
nonnegative and summable to unity over k =1,..., K, forall j =1,...,J. But this assumption
does not play any role in our considerations, hence we do not impose it and allow «;; to be
arbitrary real numbers. This is reflected in the structure of the control space U, whose component

space U, can be understand as a space of admissible (a]k)f;lf A
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1.1 Multivalued switching function — existence results

This section is devoted to investigate the existence of solutions for the model of reaction-diffusion
process with control by thermostats, described by the system (0.1) - (0.3). Consider an abstract
operator defined as the operator assigning the solution y of (0.1) to a given (k1,..., k), and than
solution of (0.2) to y, denote it (K1, ...,< ). The problem is to show that there exists (k1,...,Kk )
such that (R1,...,ky) = (K1,...,ks). In other words, we wish to employ the fixed-point method
for proving the existence of solutions.

Nevertheless, for the sake of limitations of the mathematical techniques utilized below, we
need to modify (0.1) - (0.3) slightly before we proceed further.

Let us explain the latter comment in more detail. The natural candidate for the switching
function wy, in (0.3) is the discontinuous function wy(s) = —sgn(s). The lack of continuity of
the switching function is an obstacle for proving the existence in models with the variant of
thermostat control mechanism without hysteresis in the work of the switching mechanism, which
is our variant. This obstacle was the case in works [33], [15] and [19], which took into account
models with the non-hysteresis variant of the thermostat control mechanism (more precisely, [19]
focused only on a non-hysteresis thermostat control mechanism while [33] and [15] accounted,
in addition to non-hysteresis controls, controls involving hysteresis in the work of the switching
mechanism). In none of these works, for the variant of switching mechanism without hystere-
sis, the existence of solutions was proven under assumptions covering the case of discontinuous
switching functions being equal —sgn. Works [33], [19] required considering a switching function
being an upper semicontinuous multivalued mapping in order to obtain the existence result. In
[15], a switching function being a maximal monotone mapping whose graph contained the graph
of —sgn was considered. The maximal monotonicity of the switching function was essential in
the existence proof in [15].

Within this setting, —sgn cannot be viewed directly as an admissible switching function,
because it is not upper semicontinuous in the sense of multivalued mappings, nor it is maximal
monotone. However, it is possible to take a switching function being a maximal monotone
multivalued mapping whose graph contains the graph of —sgn into consideration. Thus in some
sense, it is allowed to consider switching functions ,somehow related” to —sgn within this setting.
But, this abstract approach has only technical reasons and makes the model less realistic.

Nevertheless, we will adapt this approach here and allow the switching functions to be mul-
tivalued mappings, obeying certain additional conditions. From the mathematical point of view
allowing a multivalued wjy makes the model (0.1) - (0.3) more general, thus results shown with
this approach will apply also for a certain class of the single-valued switching functions (which,
as we will see, unfortunately occurs to exclude the —sgn switching function).

Assuming that wy, are multivalued mappings forces us to understand the ordinary differential
equations (0.2) as an ordinary differential inclusions. Hence, in this section we will consider the
following modification of the system (0.1) - (0.3) instead of (0.1) - (0.3) itself:

(1) = DAy(,t) = fy(w ) + Y gi(a)ns(t) on Qo
oy
% _
y(z,0) = yo(z) for x €

0 on 92 x (0,7T) (1.1)
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together with
Blffll(t) +"<'31(t) € Wl(y(7t)7y*(x7t)) on [07T]

: : (1.2)
BJ’%CI(t) +"€J(t) € WJ(y(7t)7y*(x7t)) on [07T]

Hj(o):HjOGR forj=1,...,J
where the notation is as in the system (0.1) - (0.3) with the exception that W; are multivalued
functions now, defined by:

K
Wiy(.,t),y"(.,1) = Z%‘kwk (/ () (y(, t) — ?/*(ﬂf,t)d$)) (1.3)
k=1 Q

where o, € R, hy: Q@ — R are functions and wy: R — 2R are multivalued mappings, for
k=1,...,K.
The present section utilizes the theory of multivalued mappings, in the scope of Appendix A.5.
We will follow the methods exploiting upper semicontinuity of wy, in the sense of multivalued
mappings (see Definition A.5.2 in Appendix A.5), as it was the case in [33] or [19]. This is
reflected in the following assumptions for the system (1.1) - (1.3):

(A-1) Q c RYis a bounded domain, such that the embedding W2(Q) < L?(Q) is compact (e.g.
a bounded domain satisfying the cone condition is sufficient, see the Rellich-Kondrachov

theorem presented e.g. in [1, Th. 6.3.|; for definition of the cone condition, see [1, par.
4.6.]),

(A-2) K, J are given positive natural numbers, "> 0, D >0 and 3; >0forall j=1,...,J,
(A-3) f is globally Lipschitz continuous; we denote its Lipschitz constant by L,

(A-4) wy, is a multivalued function, wy: R — 2K, satisfying the following conditions, for k =
1 K:

PRI

a) wy has nonempty, closed and convex values,

b) wy is upper semicontinuous in the sense of upper semicontinuity of multivalued map-
pings,

¢) wy, is bounded; we define constant C',, > 0 as constant such that wy (¢, s) C [=Cl, , Cu,.]
for all s € R,

(A—5) Yo € LQ(Q), Kjo € R fOI‘j =1,...,J,
(A-6) y* € C([0,T); L*(Q),,)-

In the present section, we will use the following definition of solutions for the system (1.1) -
(1.3):

Definition 1.1.1 An element (y,k1,...,k7) of the space X? is a weak solution of the system
(1.1) - (1.3) if there exists (W1,..., W) € (LZ(O,T))J such that:

(a) y(.,0) =yo in L*(Q) and r;(0) = kjo for j=1,...,J,
(b) for all € L?(0,T; H'(Q)), there holds

T
/0 <y’, ¢> + D(Vya v¢)L2(Q) + (_f(y) — k191 — ... — KJjgJ, ¢)L2(Q) dt = 0
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(¢) for all ¢ € L*(0,T), for j =1,...,J, there holds
T
/ (Bj +rj = Wj) Edt = 0
0

(d) W;(t) € W;(y(.,t),y*(.,t)) for a.e. t € (0,T).

The point (a) in Definition 1.1.1 is meaningful because if (y,k1,...,57) € X2 then
y € C([0,T); L3(R)) and (k1,...,ks) € C([0,7T)). For justification, note that the spaces H'(£2),
L%(92) and H'(Q)" form so-called evolution triple (defined e.g. in [51]) with embeddings H'(Q) —
L2(Q) — H'(Q)". Having this, see [51, Prop. 23.23] to conclude that y € C([0,T]; L?(R2)). Then,
use the Sobolev embedding theorem, see [1, Th. 4.12, p. 85|, or apply [51, Prop. 23.23] again to
get (K1,...,ky) € C([0,T)).

The main Theorem of Section 1.1 is the following existence result:

Theorem 1.1.2 Let assumptions (A-1) - (A-6) be fulfilled. Assume also that (yo, K10, - - -, KJ0) €

X and (g, hk,ozj7k)§;1’_'_'_"§ € U. Then, there exists a weak solution of the system (1.1) - (1.3).

We present the proof of Theorem 1.1.2 in Section 1.1.1. Earlier, in Section 1.1.2, we give some
technical lemmas necessary for the proof.

1.1.1 Auxiliary lemmas

This section presents some auxiliary facts that will be necessary for the proof of Theorem 1.1.2.
We will need to consider the following auxiliary systems of equations:

i, t) = DAY(w, 1) = Fy(o,0) + 3 gi(@)ls(t) on Qo

g_i 0 on 92 x (0,7) (1.4
y(0) = yo o
{ﬁj/ﬁg(t) +h) =V;t) on[0.T] j=1,...,J (1.5)
1§ (0) = Ko

where k; € L?(0,T), V; € L*(0,T) for j = 1,...,J are given and the rest of the notation is as
in the system (0.1) - (0.3).

Definition 1.1.3 A weak solution of (1.4) is a function y € XY that satisfies y(0) = yo and
T J
/0\ <yl7 ¢> + D(V% v¢)L2(Q) + (_f(y) - Zgjkj ) ¢)L2(Q) dt = 0 (16)
j=1

for all ¢ € L*(0,T; HY(Q2)).

Definition 1.1.4 A weak solution of (1.5) is a function k = (ki1,...,k5) € X" that satisfies
k;(0) = Kkjo and

T
/0 (ﬁjmﬁnj—vj)gdt =0 (1.7)

for all ¢ € L?(0,T), forj=1,...,J.
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For weak solutions of both (1.4) and (1.5), initial conditions are well defined, by the same
arguments as the ones on page 6, concerning Definition 1.1.1.
Now, we give some lemmas describing properties of the weak solutions to (1.4) and (1.5):

Lemma 1.1.5 Let Q, T, D, J, f, yo be as in assumptions (A-1), (A-2), (A-3), (A-5), respec-
tively, and let g; € L*(Q) for j =1,...,J. In addition:

1. Let kj € L?(0,T) for j =1,...,J. Then the weak solution of (1.4) exists and is unique.

2. Let y' and y? be two weak solutions of (1.4) corresponding to k; = k:]l and kj = /<:]2 respec-
twely, for j =1,..., Jwhere kjl € L*(0,T) and k]2 € L*(0,T). Then

J J
' =l < G a@wo -8, < Gk -l 08
j=1 ’ j=1

where C; = C1(T, D, L) and Cy = C2(T,D,L, H91H2, ce H9JH2).

PrROOF. It is a known result that under the imposed assumptions the weak solution of the
equation (1.4) exists and is unique. Thus we do not prove it here but only give some comments
on the addressed matter.

The existence of solutions of (1.4) can be shown by Galerkin method. See [40, Chap. §]
for example realization of this method for a semilinear reaction-diffusion equation. A case of
homogeneous Dirichlet boundary data and a growth condition for f other than ours is considered
there, also the solutions are defined in other spaces. Nevertheless, the method presented there
can be adapted to our case, after adequate modifications.

One may conduct the proof of the existence with the above mentioned method to find that our
assumptions concerning €2, f, yo, gj, k; and D are essential for the assertion. The assumptions
concerning 1" and J are necessary just to make the problem well defined.

The stability of the system (1.4), expressed by the first inequality in (1.8), also is a known
result for the case of the Lipschitz nonlinearity f, but we present its proof here for the sake of
completeness of the presented content. The first inequality in (1.8) can be shown as follows. For
estimates for Hyl — y2H27OO we subtract the identity (1.6) corresponding to k; = k]l, i7=1,...,J

and the same identity corresponding to k; = k:]Q-, j=1,...,J. We test the resulting identity by
¢=1py (y* — y?) for a given t € [0, T]. This results in:

¢ 1/ 2! 1 2 t 1 2 2
/<y —yt oyt —y?)ds + D/HV(y —y)|lyds =
0 0
K 1 2 1 2 ! ! 1 2 1 2 (19)
= [ = 10D =) gy a5+ [ Sl -k =) dads
j=1

Next, the following identity holds:

[ =t =y = Sl —Cnl - Sl Co—RColE o)

(see Prop. 23.23 in [51] and note that spaces H'(Q) < L?(Q) — H'(Q)" form an evolution triple,
defined as in Chap. 23.4 in [51]). Using the above in (1.9) and recalling that y'(.,0) = y?(.,0),
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we obtain:

1

sl =2l + D [ 96 =) as -

) (1.11)

t J
1 1 2 2 1 1 2
< @) [ -l DGR
where the Lipschitz continuity of f and the Young inequality were used to estimate the right
hand side of (1.9). Now, we neglect the gradient term (which is nonnegative) and by the Gronwall
inequality we conclude that

ot = Pl < Con S 02 - )] 112)
j=1 ’

for some constant C1g > 0, C19 = C1o(T, L).
To get the estimates for HV (y' —v?) H2 »» We again use (1.11). Neglecting the term Hyl( L t)—

v2(. ,t)H2 and taking ¢t = T, it follows that:

2

T 1 J
D [IvG =) < @+ DTl -2l + 5[ @ -],
Jj=1 ’

where we have used the estimate Hyl -y
inequality and (1.12) to get that

2H272 < Tl/QHy1 - yQHZOO. Now, we can use the above

96"~ as = oS 6 - ), 113)

where C1y = C1 (T, D, L).

To obtain estimates for (y'— y2)l in L2(0,T; H'(Q)"), we again subtract two copies of
(1.6) and treat the resulting integral identity as a condition for a functional on the space
L?(0,T; H'(©2)). We conclude that the below holds:

(v' =) + DA(y' —y*) — (Fy' =Fy’) ~G =0 w L*0,T;H'(Q)")  (L.14)

where A: L%(0,T; H'(Q)) — L*0,T; H'(Q)"), F: L*(0,T; HY(Q)) — L*(0,T; H'(Q)") and
G € L?(0,T; HY(Q)") are defined by

T T
/0 (Ay, ¢)dt = /O (vg,v¢)L2(m dt

T T
/O<F§,¢>dt :/0 <f(@,¢)L2(Q) dt (1.15)
g T d 1 2

/O<G,¢>dt :/0 (;gj (kj—kj),¢)L2(Q)dt

for a given y € L2(0,T; H'(Q)) and all ¢ € L(0,T; H'(2)).
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It follows by definition of A, F and G that

185 s a2 < [V
B9~ B 1y < 156~ £GP L.16)

HGHHl(Q)*,z = Hégj (kﬂl N k?)Hm

for given y', 5% € L?(0,T; H*(2)). This, together with (1.14), yields:

J
16" =) e <190 =9l + 1760 = P02+ [0 05 )],
j=1 ’

J
< HVyl - vy2H2,2 + LH?/I - y2H2,2 + H; gj (kjl - k?)”m
Now, recalling that ||y' — y2H22 can be estimated by [|y! — y2H2 - We use (1.12) and (1.13) to
conclude that 7 7

J
6 = s < G0 (5 - )], 117)
i=1 ’
where Cy9 = C1o(T, D, L).

To sum up, by (1.12), (1.13) and (1.17), the first inequality in (1.8) follows. The second
inequality in (1.8) follows straight by the Fubini theorem.

The proof of uniqueness can be conducted by application of the Gronwall inequality, analo-
gously to the above proof of (1.12). Take y3, 43 € L?(2) and denote by y*, ¥ given weak solutions
of (1.1) corresponding to yg, y2 respectively. Then, subtract two copies of identity (1.6) corre-
sponding to y§ and y3, respectively, and test the resulting identity by ¢ = 1j0,4 (y* —y?), for a
given t € [0,T]. This gives:

! 1/ 2/ 1 2 ! 1 2\ 1|2 ! 1 2y .1 2
/(y —y* oyt =) ds + D/HV(y —y)H2d8=/ (f) = F@) 0" = ¥) o) dt
0 0 0

In the above, use identity (1.10), recall the Lipschitz continuity of f with constant L and neglect
the gradient term (which is nonnegative):

S0 =90l <L [ I sl e+ b - vl

Now, the Gronwall inequality yields Hyl - y2H2 o< C’lguyé - y%‘

5, for certain C13 = C13(T), L).
Thus, for y} = y2 in L?(Q) we have y!(t) = y(t) in L*(Q) for a.e. t € [0,7], what concludes the
proof of the uniqueness. l

Lemma 1.1.6 Let T, J, K and 8; for j =1,...,J be as in the assumption (A-2). Then, the
following statements are true:

1. Let Vj € L*(0,T) for j =1,...,J. Then, the weak solution of (1.5) exists and is unique.
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2. Moreover, if k = (k1,...,ky) € X" is the weak solution of (1.5) corresponding to a given
(Vi,...,Vj) e (L>(0,T)), then

J

J
Iollee < €Sl + XMVl (115)
j=1

j=1
where C3 = C3(B1,...,B5,T).

3. Moreover, assume that V" € (LQ(O,T))J for n € N and that k" € X" are the weak
solutions of (1.5) corresponding to V", by putting V= {7? in (1.5). In addition, assume
that V" — V in (L2(0,T))J for certain V € (LQ(O,T))J and that K" — K in X" for
certain k € X". Then, K is the weak solution of (1.5) corresponding to \7, by putting
V,;:=V;in (1.5).

ProOOF. For the existence and uniqueness of solutions, first observe that the above intro-
duced notion of the weak solution of (1.5) is actually a Carathéodory solution. The Carathéodory
solution of (1.5) is an absolutely continuous function from [0,7] to R’ satisfying the ODE in
(1.5) a.e. on [0,7] and satisfying the initial condition in (1.5). The Carathéodory solutions, also
for ordinary differential equations more general than (1.5), were investigated e.g. in handbooks
[14] or [22].

Let us briefly justify the above observation. An arbitrary weak solution s of (1.5) belongs to
X" and hence is Holder continuous by the Sobolev embedding theorem (see |1, Th. 4.12]). In
particular, x is absolutely continuous. Moreover, it satisfies the identity ,3]'/43;- +kj—V;=0a.e.
on [0,T] for j =1,...,J, because by the definition of the weak solution of (1.5), B]-m; +r;—Vjis
the zero element of L2(0,T). Hence, k being a weak solution of (1.5) is a Carathéodory solution
of (1.5) as well.

Conversely, let k be a Carathéodory solution of (1.5). Since it fulfills Bjn;- +r;—V;=0a.e.
on [0,7] for j =1,...,J, it fulfills also the integral identity in (1.5). Moreover, as a continuous
function on a closed interval, ; is square integrable, for j = 1,...,J. K;- also is square integrable
because /{9 = ﬁ;l (—k; +Vj) and kj, V; are square integrable. Hence, x € X". In total, K
occurs to be a weak solution of (1.5) as well.

Thus the question on existence and uniqueness of weak solutions of (1.5) can be replaced by
the question on existence and uniqueness of the Carathéodory solutions of (1.5). The existence
of Carathéodory solutions can be concluded by Theorem 1.1 in Chapter 2 in [14] or by Theorem
1 in Chapter 1 in [22], concerning the existence of Carathéodory solutions for ODEs more general
than ours (the formulation of Theorem 1.1, Chap. 2 in [14] does not specify precisely the interval
of existence, but analysis of the proof of this theorem indicates that in our case the existence
on [0,7] can be obtained; the formulation of Theorem 1, Chap. 1 in [22] is more precise and
does not cause this kind problems). The uniqueness of Carathéodory solutions of (1.5) follows
by Theorem 2 in Chapter 1 in [22].

Alternatively, instead of referring to the general theory presented in [14] and [22], one can
prove the demanded existence and uniqueness assertion as follows. Simply note that the function
k is a Carathéodory solution of (1.5) if and only if

k;(t) = exp(—ﬁijt)njo + ﬁ_1] /Otexp<——(t - s))Vj(s) ds forj=1,...,J
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Since the integral in the right hand side of the latter identity is well defined for a given V; €
L?(0,T), the Carathéodory solution of (1.5) exists and is unique.

Now, let kK = (k1,...,Ks) € X" be the weak solution of (1.5) corresponding to (Vy,..., V) €
(L°°(0,T))”. By testing the weak form (1.7) of the equation (1.5) by & = rj1lj0,q We have

t t t
,3]' / Iijllij ds + / |/€j‘2 = / Vjk; ds (1.19)
0 0 0

for t € [0,T], for j = 1,...,J. By integrability of ;’, we have the absolute continuity of ;.
Thus, by the integration by parts, the relation fg Kikj = %|/€j (t)‘2 — %‘nj (O)‘2 is valid. Applying
the latter in (1.19), neglecting the ‘/@!2 term (which is nonnegative) and applying the Young
inequality yields:

t
I OF < Irol’ + 571V s + 57 [ Insto) as
By applying the integral Gronwall inequality to the above:

19517 0.1y < C0, (|’€j0|2 + HVjHiz(o,T)) (1.20)
for j=1,...,.J, where Csy; = Cs0,(8;,T).
Next, the weak form (1.7) implies that
Bik; +rK;=V;  in L*(0,T)
for j =1,...,J and therefore
15511 20,1y < B85 153l 2o,y + B3 IVl oy (1.21)

Inequalities (1.20) and (1.21) together imply the estimate (1.18).
_ Proving the remaining part of the assertions of the present lemma is straightforward. Let
V™ V, k" and k be as in the assumptions of the lemma. Then

Bi(RM) + R} = VP — BE, +%;—V;  in L*0,7)

for j = 1,...,J. The above convergence suffices to pass to the limit in the weak form (1.7) of
the equation (1.5) and infer the desired assertion. W

REMARK. It can be verified that the proof of Lemma 1.1.6, after minor modifications, would
be valid also for 3; < 0. A

The following two lemmas also will be required in the proof of Theorem 1.1.2:

Lemma 1.1.7 Let W: R — 28 be a bounded upper semicontinuous multivalued mapping (see
definitions in Appendiz A.5) with nonempty and closed values. Let v € C([0,T]). Then Wov
has a measurable selection, i.e. there erxists at least one function V : [0,T] — R which is
measurable and V (t) € WOV(t) for a.e. t €[0,T].

PROOF. The proof of Lemma 1.1.7 is analogous to that of |26, Lemma 3.4], but we include
it here for completeness of the presented content.

By Corollary 1.1 on p. 237 in [20], if
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1. the image of W o ¥ is contained in some compact K C R,
2. G(W o v) is a Borel set of R x K and
3. Wo v has closed and nonempty values a.e. on [0, 7]

then W o v has a measurable selection, as demanded in the assertion of the present lemma.

A compact K as above exists by the assumption on boundedness of W.

Next, W o ¥ has closed and nonempty values because the same applies to W,

Moreover, Wov is upper semicontinuous in sense of multivalued functions because W and v
are so (see Prop. 6, Sec. 1, Chap. 3 in [4]). An upper semicontinuous multivalued mapping with
closed values has closed graph (see Prop. 7, Sec. 1, Chap. 3 in [4]), hence G(W o V) is closed.
Hence, G(W o V) is Borel as well.

This concludes the proof. H

Lemma 1.1.8 Let W: R — 28 be a bounded upper semicontinuous multialued mapping with
nonempty, closed and conver values. Assume that ¥, — v in C([0,T]), V,, = V in L®(0,T)

and that V,(t) € W o Va(t) for ae. t € [0,T], for n € N. Then V(t) € Wo v(t) for a.c.
te0,T].

Lemma 1.1.8 can be viewed as a particular case of Lemma 3.6 in [26]. A

1.1.2 The proof of the existence theorem (Theorem 1.1.2)

In this section, we prove Theorem 1.1.2 with the use of auxiliary facts from Section 1.1.1. The
proof will base on the following fixed-point theorem for multivalued mappings:

Theorem 1.1.9 (generalized Kakutani theorem) Let X be a real Banach space and let
M C X be its convex, compact and nonempty subset. Let T: M — 2M be a multivalued mapping
having the following properties:

a) the values T'(x) are nonempty and convex for all x € M,
b) G(T) is closed in X x X.
Then T has a fived point in M, i.e. there exists T € M such that = € T(Z).

For the proof of Theorem 1.1.9, see [9, Th. 4] or [27]. The proof in [27] covers the more general
case of convex Hausdorff linear topological spaces. Alternatively, Theorem 1.1.9 can be viewed
as a direct consequence of Corollary 9, Chap. 3, Sec. 1 in [4] and Theorem 13, Chap. 6, Sec. 4
in [4], for the general case of Hausdorff locally convex spaces.

REMARK. The formulation of Theorem 4 in [9] lacks the assumption that the sets T'(z) are
convex but the proof presented there shows that this assumption is necessary and perhaps was
accidentally missed in the theorem statement. A

PROOF OF THEOREM 1.1.2. Define the following operators:

o Pp: (LQ(O,T))J — C([0,T); L*(£2)) is assigns the solution of (1.4) to a given (ki,...,ky) €
(£2(0,7))”.
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o Py: C([0,T]; L2()) — (C([0,T])™ assigns (v1,...,vk) € (C([0,T]))" determined by the

formula

vi(t) = /Qhk(x) (Y(z,t) —y*(x,t)) de on [0,T], for k=1,..., K (1.22)

to a given Y € C([0,T]; L*(Q)).
e Py: (C([0,T])* — 2(L=O.1) ig a multivalued mapping assigning to a given (Vi,...,VK) €

(
(C([0, 7)™ the set (Wy,...,W,) C (L>=(0,T))’ determined by the following condition:
forj=1,...,J, V; € W, if and only if

K
Vi(t) € Y aji (wpovi(t)) ae. on [0,T] (1.23)
k=1

o Py: (L®(0,7)) — (L2(0,T))J assigns the solution of (1.5) to a given (Vy,..., V) €
(2(0,T))".

e P:=PoPyoPyoPy: (L2(0,T)) — (L2(0,7))”.

The meaning of the above operators in the context of the system (1.1) - (1.3), involving the
thermostat control mechanism, is explained in Figure 1.1.

Control devices response P, Process state
(functions £;) (function y)

P4 P2

Measurement data

/ hi(y —y*) dx)
Q

L Signals W;(y,y*)

Figure 1.1: A schematic representation of the role of the operators Py, P», P3 and Py, considered
in the proof of Theorem 1.1.2, in the context of the thermostat control mechanism, present in
the system (1.1) - (1.3). The notation in the picture is as in the subject system.

The existence of a weak solutions of (1.1) - (1.3) is equivalent to the existence of a fixed point
of P, ie. of k € (LQ(O,T))J with k& € P(k). Indeed, by the definition of the operator Py, such
k belongs to the space X* (defined in Section 1.1.1), and P;(k) belongs to the space XV (also
defined there), hence the element (Pl(l_g), ki,....k J) belongs to X?2. Moreover, by definitions of
operators Pp, P», P3 and Py, the latter element fulfills Definition 1.1.1 with y = Py(k), k; = k;
for ] = 1, ceey J and with (Wl, cee ,WJ) S (L2(0,T))J given by Wj = ,3]]%3 + kj = (P4_1(];Z))j.

Now, we shall verify that the assumptions of Theorem 1.1.9 are satisfied for the operator P
restricted to a suitable subset (which we will indicate in the sequel). This will justify that P has
a fixed point and allow us to conclude the proof.

Nonempty values. By Lemma 1.1.5, P; is well defined. By the assumption (A-6) and by
the structure of (1.22), P is well defined. By Lemma 1.1.6, P is well defined. Moreover, P5 has
nonempty values, because, by Lemma 1.1.7, each of multivalued mappings vy +— wy o vg, k =
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1,..., K, entering the definition of P3, has nonempty values. More precisely, by the continuity
of v and properties of wy, Lemma 1.1.7 yields the existence of a measurable selection for the
multivalued mapping s — wy o vi(s). By the boundedness of wy, this measurable selection must
be bounded and hence must be an element of L>°(0,7"). Thus, the set wy o vy C L*°(0,7T) is
nonempty for a given vy € C([0,T7]).

Therefore, the superposition Py o P3 o P, o P; has nonempty values.

Convex values. By point (a) in the assumption (A-4), the values of P3 are convex. Indeed,
for a given ¢ € [0,T] , wg(t) := wy o vi(t) is a convex set and hence the collection Wy, of all
wy, € L°°(0,T) such that w(t) € wi(t) a.e. on [0,7] is convex. Next, W, = Z}']:1 ajykwk, ie.
W, is a linear combination of convex sets, and as such is convex. It follows straight that the
product over j =1,...,J of W; is convex in (L*(0, T))J. Thus the convexity of values of P3 is
justified.

Next, the operator Py is affine thus it maps convex sets to convex sets, i.e. Pjo P3(v) is
convex for an arbitrary v € (C(]0,7]))*. But the latter means that Pyo Pyo Pyo Py (k) is convex
for an arbitrary k € (L2(O, T))J.

Convex and compact image. Theorem 1.1.9, to hold, requires a multivalued mapping to
act from a compact, convex and nonempty set into itself. Now we shall determine a set that is
suitable for Theorem 1.1.9 in our case. Define auxiliary sets A and B as follows:

A= {(Vl, . ,VJ) S (LOO(O,T))J : HV]HLOQ(QT) < CWJ' ijl,...,J}

where Cyy, := Zle a;jxCu,, for j =1...,J and for Cy, being the constants from point (c) in
the assumption (A-4),

J
B .= {k € (L20.1)" : [kl < Ca D (o] + TChwy) VJ':L...,J}
j=1

where kjo are the initial conditions assumed for (1.2) in the assumption (A-5) and Cj is the
constant appearing in the estimate (1.18) in Lemma 1.1.6.

It follows from the definition of P3 and from point (c) in the assumption (A-4) that P3(v) C A
for an arbitrary v € (C([0,71))". Next, the estimate (1.18) in Lemma 1.1.6 allows to infer that

Py maps the set A into the set B. Hence, PyoP3o Pyo Py (k) C B for an arbitrary k € (L*(0, T))J.

Denote by B the closure of B in (LQ(O, T))J. B is nonempty and convex, and hence the same
holds for its closure. By the Rellich-Kondrachov Theorem (see [1, Th. 6.3]), B is precompact
in (LQ(O,T))J. Moreover, P(k) € B for k € (LZ(O,T))J. Thus in total, B is nonempty, convex
and compact and P|g : B — 2B.

Closed graph. Now, we will verify that G(P|g) is closed in (LQ(O,T))J X (LQ(O,T))J.
Since we are in a metric space, it is sufficient to check that G(P|g) is sequentially closed. Thus
let k", &" € B, " € P(k™) for n € N and assume that k" — k and £" — & in (L2(0,T))J, for
certain k,§ € (L2(O,T))J. Since B is closed, k,& € B. We are left to show that £ € P|g(k) =
Pyo Pyo Pyo Pi(k).

For n € N, there exist V" € (L*(0,T))” such that &* = P,(V") and V" = Py o Py o Py (k).
Since V™ are in the image of P5, V" are bounded w.r.t. n in (L°°(0,7))”. Hence, a weakly-
« convergent subsequence V" - V can be extracted, for some V € (L>(0,7))” (for brevity

of notation, we denote this subsequence with the original indexes). It remains to verify that
5 == P4(V) and V € P3 OP2 OPl(k‘)
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Weak-% convergence of V" to V in (L>(0,7))” implies weak convergence in (L2(0,T))J,
therefore, by Lemma 1.1.6, £ = P4(V). To conclude the inclusion V € P35 o P, o P;(k), note
that P, and P, are continuous. The continuity of P; follows by Lemma 1.1.5. The continuity
of P, follows from the Hoélder inequality. Having this and denoting v" := P, o P;(k™) and
v := Py o Pi(k), we infer that convergence k" — k in(LQ(O,T))J implies convergence v" — v
n (C([0,7)))%. By definition of V" and v, we have V" € P3(v"). To obtain the inclusion
V € Pyo Pyo Pi(k), it suffices to show that V € P3(v).

To show the latter, we will use Lemma 1.1.8, proceeding as follows. We have v = (vy,...,Vg)
and v" = (v{,..., V), where v} = v in C([0,T]). Moreover, we have V" = (V{,..., V"),
where, by the definition of the operator Ps, elements V?, for j =1,...,J, can be represented as

K
n __ n
Vi=> Vi
k=1

where, forall j=1,...,Jand k=1,..., K,
Viix € ajr(wgovy) — in L(0,T) (1.24)

By the assumption that wy are bounded (see the part ¢) of the assumption (A-4)), Vi ) are
bounded in L>*(0,T) w.r.t. n,forall j =1,...,J, k=1,..., K. Thus, we can extract weakly-x

convergent subsequences V? K) A V(] k)» for certain V(] k) € L>(0,T). In consequence, on the
subsequences we have V" 5 V| where V = (Vy,..., V) and V Zk 1 V(J k)

Now, by (1.24), by convergences v} — vj and V( ") A V(] k) and by an application of
Lemma 1.1.8 to functions o jwy, we obtain V(] k) € o p(wy o vi). Thus, by definitions of P3

and V, we can write V € Ps(v). Note also that V =V, otherwise the convergence V" = A
would be a contradiction to the convergence V" =~ V. Therefore, V € Ps(v), as required. The
proof of the closedness of G(P|g) is complete.

Now, apply Theorem 1.1.9 with X = (LQ(O,T))J, M =B and T = P|p to get the existence
of a fixed point of P|g and hence of P as well. The proof of Theorem 1.1.2 is complete. B

REMARK. By definition, in the case of a single-valued function, the upper semicontinuity
in the multivalued sense reduces to the usual continuity. Thus, any result holding for (1.1) -
(1.3) under the assumption (A-4) from beginning of Section 1.1, holds in particular for bounded,
continuous single-valued switching functions. A

REMARK.  One can say that Theorem 1.1.2 offers a method of indirect handling of the
case of discontinuous switching functions in the thermostat control mechanism. Assume that a
discontinuous single-valued function wy: R — R is given. In the case where the switching function
wy, in the system (1.1) - (1.3) is defined by wy, := wy, it is not possible to apply Theorem 1.1.2.
However, assuming that right and left limits of wy, exist in an arbitrary point s € R, it is possible
to take into account a switching function wy, associated with wy by the formula (A.5.5) in the
statement of Proposition A.5.5in Appendix A.5. The assertion of Proposition A.5.5 together with
the formula (A.5.5) guarantee that wy fulfills the assumption (A-4). In consequence, Theorem
1.1.2 apply for wy, := wy, in the system (1.1) - (1.3). Thus, Theorem 1.1.2, however does not allow
discontinuous switching functions directly, allows to consider, instead of a given discontinuous
switching function wy, a multivalued switching function wy, related to wy, (related — in the sense
of the formula (A.5.5)).
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Note, that the above comment is valid in particular for wy(s) = —sgn(s), which is a natural
candidate for the switching function in the thermostat control mechanism (see §1 of Introduction).
In this case, wy generated by the formula (A.5.5) is

+1 for s <0
Wy =14 [-1,41] fors=0 (1.25)
-1 for s >0

REMARK.  An alternative approach could be employed to justify the closedness of the
operator P5 in the proof of Theorem 1.1.2. The subject approach refers to the theory of maximal
monotone multivalued mappings. However, such approach would be less general to the one
present in the proof of Theorem 1.1.2. Let us explain this matter in more detail.

In the proof of Theorem 1.1.2, the assumption (A-4) from beginning of Section 1.1, concerning
switching functions wy in the system (1.1) - (1.3), was crucial. It was the property which
allowed us to conclude that the multivalued operator Pj, utilized in the proof, was closed in
suitable topology. More precisely, P3 can be interpreted as P3 = ((Pg)l,...,(Pg)j), where
(P3(v)); = Zszl a;k(wgovy), for j =1,...,J (compare with (1.23)). A given operator (P3); is
thus a weighted sum of multivalued superposition operators wy, o v, induced by the multivalued
mappings wg. In the proof of Theorem 1.1.2, each of these superposition operators occurred to be
closed in suitable topology due to Lemma 1.1.8, basing strongly on the properties of multivalued
mappings indicated in the assumption (A-4).

However, it is possible to prove the closedness of the superposition operator associated with a
given multivalued mapping also with other means, e.g. assuming that the multivalued mapping
is maximal monotone. If this is the case, then the associated superposition operator also is a
maximal monotone mapping, in suitable spaces. At the same time, in certain function spaces,
maximal monotonicity of multivalued mappings suffices to imply their closedness — results of
this kind are given e.g. in Proposition 3, Ch. 6, Sec. 7 in [4] or Lemma 1.3, Chap. 2, Sec. 1.2,
p. 42 in [6].

This argument was exploited in [15], also investigating a model with a control by thermostats,
to prove closedness of the superposition operator associated with a multivalued switching func-
tion, denote it w, such that —w was maximal monotone. In addition to the maximal monotonicity
of the negative of the switching function, boundedness of the switching function was necessary
in [15], as in our case (see the part c) of the assumption (A-4)).

In our situation, after suitable modification of the employed function spaces, applying the
subject method for proving closedness of P3 would be possible for the case of bounded and
maximal monotone —wy (maximal monotonicity of wy itself also would work but then the case
of wi as in (1.25) would be excluded, because the latter, in opposite to its negative, is not
a monotone multivalued mapping). We skip the details because do not intend to develop this
approach here.

Nevertheless, the method employed in the proof of Theorem 1.1.2, involving the assumption
(A-4), is more general than the method basing on boundedness and maximal monotonicity of
—wy. The reason for this is that the assumption of boundedness and maximal monotonicity is
stronger than the assumption (A-4). Indeed, it is straightforward that there exist wy fulfilling
the assumption (A-4) from beginning of Section 1.1 but such that wy, nor —wy, is not maximal
monotone. On the other hand, an arbitrary bounded maximal monotone —wy obeys the assump-
tion (A-4), and so wy, does. The latter is true because a maximal monotone multivalued mapping
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has closed and convex values (see Proposition A.5.8) and, if it additionally has the image con-
tained in a compact set, it is upper semicontinuous (Proposition A.5.7) and has nonempty values
(Proposition A.5.9). Thus, from the condition of boundedness and maximal monotonicity of a
multivalued mapping, one can recover the properties indicated in the assumption (A-4). A

1.2 Single-valued switching function — existence, uniqueness, sta-
bility

The modification of the system (0.1) - (0.3) considered in Section 1.1 allowed to prove an exis-
tence result for the case where discontinuous switching functions are replaced with a multivalued
mappings satisfying sufficiently strong assumptions (assumption (A-4)). However, these assump-
tions, being strong enough for the existence, still are not sufficient for obtaining the uniqueness
result.

This was the case e.g. in works [33], [15] or [19]. These works, similarly to Section 1.1 of
the present work, concern models with the variant of the thermostat control mechanism without
hysteresis in the work of the switching mechanism and with multivalued switching functions
(work [19] concern only this variant, works [33| and [15] concern also variants where the work of
the switching mechanism involves hysteresis). Works [33] and [19] take into account the case of
multivalued switching functions fulfilling assumptions analogous to the assumption (A-4). Work
[15] exploited even stronger properties of the there considered multivalued switching function,
namely the boundedness and the maximal monotonicity. At the same time, in none of the works
[33], [19], [15] the uniqueness for the models with there considered variants of the thermostat
control mechanism was proven.

Hence, in the present section we aim in strengthening the assumptions concerning the switch-
ing functions in the system (1.1) - (1.3) in order to be able to prove the uniqueness result. For
this end, we shall assume that the switching functions are single-valued Lipschitz continuous
functions.

Note, that the latter assumption implies that the inclusion (1.2) becomes equality again.
Thus, we return to analysis of primary the system (0.1) - (0.3) instead of its modification (1.1)
- (1.3) from Section 1.1.

Moreover, the assumption of the Lipschitz continuity of the switching function excludes the
possibility of taking the switching function w; equal the —sgn function. It also excludes the
approach from Section 1.1, providing a method for indirect handling of the case of wi = —sgn
by replacing the original wy by an upper semicontinuous multivalued mapping in some sense
related to wy (see Section 1.1 for details). Nevertheless, a sort of indirect method of handling
the situation of wy = —sgn is available also under the presently considered assumption. Namely,
the assumption of the Lipschitz continuity of wy allows to approximate the function —sgn by
Lipschitz functions of a very steep slope near point zero.

EXAMPLE. For instance, for wp = —sgn, one can define functions w} by wp(s) :=
—max(min(ns, 1), 1), for s € R, n € N. It follows straight that w} are Lipschitz continu-
ous functions. Moreover, for all k = 1,..., K, w}} — wy, both pointwise and in the Lebesgue

norm H . , for arbitrary p € [1,00) (cf Figure 1.2). Instead switching functions wy := wy, in

o @)
the system (0.1) - (0.3), which are not Lipschitz continuous, one may consider switching functions

wy, := Wy, which are Lipschitz continuous and approximate wy in the latter sense. A

Thus, in certain sense, the assumption of Lipschitz continuity of the switching functions is no
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T e e Gttt Ji T —-Sg
aprp
0.5
0
-0.5
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-1.5 -1 -0.5 0 0.5 1 1.5

Figure 1.2: An example of a sequence of Lipschitz continuous functions approximating the func-
tion —sgn, both pointwise and in the LP(R)-norm, for p € [1,00). The lines denoted as appr
correspond to approximating functions given by s — — max(min(ns, 1), —1), for n = 1,2, 4.

waste in comparison to the situation considered in Section 1.1, because 1) in both cases, direct
treatment of wy = —sgn is not possible, 2) in both cases, an indirect way to deal with wy = —sgn
is available. The above proposed approach for dealing with discontinuous wy was exploited in
the numerical simulations described in Chapter 2.

Also, the assumption that the switching functions are Lipschitz continuous will be sufficient
for proving the stability of the system (0.1) - (0.3) with respect to perturbations of the control.
Results concerning this kind of stability will be crucial in Chapter 3, concerning the mathemat-
ical analysis of the optimal targeting problem. This gives a motivation to consider the above
announced assumption that the switching functions are Lipschitz continuous.

We proceed in the following order. Section 1.2.1 focuses on existence of solutions of the
system (0.1) - (0.3). The existence is shown for the case of Lipschitz switching functions wy
in the system (0.1) - (0.3) being additionally bounded. Section 1.2.1 contains two existence
theorems. The first of them is just a consequence of Theorem 1.1.2 in Section 1.1. The second
of these theorems generalizes the first in sense of weakening the assumptions for the reference
trajectory y*. It is the main theorem of Section 1.2.1.

In Section 1.2.2, existence, uniqueness and stability results are presented and justified, for
Lipschitz w;, without the restriction of boundedness. Dismissing the restriction of boundedness
of wy, in existence results in Section 1.2.2 involves slightly stronger assumptions for the reference
trajectory y* in (0.1) - (0.3) than in the main theorem in Section 1.2.1. The uniqueness and
stability results in Section 1.2.2 are proven for Lipschitz wy. The latter results do not require
the restriction of boundedness and do not require the assumptions for the reference trajectory
to be stronger than in the main theorem in Section 1.2.1.

In Section 1.2.3, estimates as well as existence and uniqueness for weak solutions of the
system (0.1) - (0.3) are proven under the assumption that f is locally Lipschitz, fulfills the
growth condition f(s)s < 0 for big !s‘ and that yo € L>(2). These assumptions are different
that the assumptions utilized in Section 1.2.2, where f is assumed to be Lipschitz and yq is
assumed to belong to L?(f). The assumptions that f is locally Lipschitz and yo is bounded
were used in the numerical simulations for the system (0.1) - (0.3) which are described in further
parts of the present work. Thus, Section 1.2.3 provides theoretical results which cover the data
utilized in the subject simulations. Moreover, the results of Section 1.2.3 will be used also in
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some places of Chapter 3 of the present work, providing analytical background for the optimal
targeting problem.

Section 1.2.4 concerns a modification of the system (0.1) - (0.3), assuming modified structure
of the equations. We state the results concerning existence, uniqueness and estimates for the
solutions of the modified system. For technical reasons, the subject results for the modified
system will be necessary in Chapter 3. The modification of the system (0.1) - (0.3) considered
in Section 1.2.4 and the original the system (0.1) - (0.3) are similar enough to apply the same
methods for the analysis of the modified system. For this reason, in Section 1.2.4, we do not
contain the proofs of the results described there, but we only give some remarks concerning the
proofs. The results described in Section 1.2.4 will play an auxiliary role in Chapter 3, concerning
the analytical aspects of the optimal targeting problem.

REMARK. As mentioned above, Lipschitz continuous switching functions in the system (0.1)
- (0.3) can be utilized to approximate discontinuous switching functions, as —sgn. We stress that
switching functions equal —sgn are not allowed in our results, however, instead, certain multival-
ued switching functions containing —sgn were allowed in the results in Section 1.1, concerning
the modified system (1.1) - (1.3). Assuming notation as in the example given above, results
concerning the convergence of solutions of (0.1) - (0.3) corresponding to switching functions w}
to a solution of (1.1) - (1.3) corresponding to suitable multivalued switching functions containing
wy, would be interesting. This matter was not covered in the present work and can be a field for
further research. A

Let us proceed to the mathematical details. The below assumptions for the system (0.1) -
(0.3) will be necessary in the present section:

(B-1) Q c RY is a domain that:

a) is bounded,

b) satisfies the cone condition (definition of the cone condition can be found e.g. in [1,
par. 4.6.]),

(B-2) K, J are given positive natural numbers, 77> 0, D >0 and g; >0 forall j =1,...,J,

(B-3) f is globally Lipschitz continuous; we denote its Lipschitz constant by L and put fy :=
f(0),

(B-4) wy, is globally Lipschitz continuous, where we denote the Lipschitz constant of wy by Ly
and put wg := wi(0), forall k =1,... K,

(B-5) yo € L*(Q), kjo e Rfor j=1,...,J.

The necessary regularity of the reference trajectory y* in (0.1) - (0.3) will differ in particular
theorems of this section. The following two variants of the assumption concerning y* will be in
use:

(C-1) y* € L*(0,T; L*(%2)),
(C-2) y* € L™®(0,T; L*(2)),

The following definition of solutions for the system (0.1) - (0.3) will be utilized in the present
section:

Definition 1.2.1 An element (y,k1,...,k7) € X2 is a weak solution of the system (0.1) - (0.3)
if:
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(a) y(.,0) =yo in L*(Q) and k;(0) = kjo for j=1,...,.J,

(b) for all € L*(0,T; H'(S2)), there holds
T
/
/0 <y ,¢> + D(V?/, V¢)L2(Q) + (_f(y) —Rig1 — ... —KJjgJ, ¢)L2(Q) dt = 0 (1'26)
(c) for all ¢ € L*(0,T), for j =1,...,J, there holds

T
/0 (8K} + Kj — Wiy, y")) €dt = 0 (1.27)

The point (a) in Definition 1.2.1 is meaningful, because, by arguments similar as in the case of
Definition 1.1.1 (see page 6), if (y, k1, .., /) € X2 then y € C([0,T); L%(Q)) and (k1,...,k7) €
c([0, T7).

1.2.1 Existence for bounded switching functions

Below, we prove existence of weak solutions for the system (0.1) - (0.3). Nevertheless, we make
an assumption that the switching functions wyg, for k = 1,..., K, not only fulfill the assumption
(B-4) but moreover are bounded. If the reference trajectory y* fulfills the assumption (A-6) in
Section 1.1, then the existence result can be obtained as a consequence of results of Section 1.1.
But, with the above restrictions for wy, it is possible to prove the existence for y* satisfying the
assumption (C-1) only. It will be done below.

The restriction of boundedness of wy is temporary — in Section 1.2.2, we will show how to
dismiss it in the existence results for price of strengthening the assumptions for the reference
trajectory y* from (C-1) to (C-2).

Let us begin with short justification that the results of Section 1.1 can be applied here, under
suitable assumptions. Compare Definition 1.2.1 of weak solutions for the system (0.1) - (0.3) with
Definition 1.1.1 of weak solutions for the system (1.1) - (1.3), given in Section 1.1. Assume that
wy, in the system (1.1) - (1.3) are single-valued functions. Then, the only possible choice of W in
Definition 1.1.1 is W(t) := W;(y(.,t),y*(.,t)) for a.e. t € [0,T]. Consequently, conditions in
points (c¢) and (d) in Definition 1.1.1 reduce to the point (¢) in Definition 1.2.1. Hence, Definition
1.1.1 is equivalent to Definition 1.2.1 if wy, in the system (1.1) - (1.3) are single-valued functions.

Hence, under suitable assumptions, results concerning weak solutions of the system (1.1) -
(1.3) can be transmitted to weak solutions of the system (0.1) - (0.3). Thus we conclude the
below:

Theorem 1.2.2 Let assumptions (B-1) - (B-5) be fulfilled and (gj,hk,ajk);?;l:_'_'_"’f eU, y* e
C([0,T); L*(Q),,). Assume additionally that wy are bounded for k =1,...,K. Then, there exists
a weak solution of the system (0.1) - (0.3).

This is true, because under imposed assumptions, switching functions wy, fulfill the assumption
(A-4) and the reference trajectory y* fulfills the assumption (A-6). Thus, Theorem 1.1.2 can
be applied. This theorem, together with the above remark on the equivalence of definitions of
solutions, yields the assertion.

One can follow the lines of the proof of Theorem 1.1.2 to find out that the assumption
y* € C([0,T]; L*(2),,) was essential there. It was used to ensure that the operator P, (given
by formula (1.22)) is well defined as an operator into (C([0,77))*. Enforcing the image space
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of Py to be (C([0,T)) was required because, in the proof of Theorem 1.1.2, it was necessary
to make the image space of P, be not larger than the domain space of the operator Ps, which
was actually (C([0,T]))" (see (1.23) for the definition of P3 in the subject proof). Next, it
was needed to take (C([0,7]))" as the domain space of P3 because it allowed to apply Lemma
1.1.7 and Lemma 1.1.8 to P53, what was an essential step of the proof of Theorem 1.1.2 (more
precisely, the subject lemmas were applied not to P; directly, but to certain operators entering its
definition; nevertheless, one can verify that the latter does not change the conclusion concerning
the requirement on the domain space of P3). To sum up, assumption y* € C([0, T]; L*(2),,) was
essential for Theorem 1.1.2 and hence cannot be relaxed in Theorem 1.2.2, as long as we derive
the latter as a corollary of the former.

On the other hand, it is not necessary to derive the theorem on the existence of weak so-
lutions of (0.1) - (0.3) as a corollary of Theorem 1.1.2. One can prove it separately and, due
to the strengthened assumption concerning the switching functions wy, obtain a result allowing
a weakened assumption for the reference trajectory y*. The below theorem realizes the latter
postulate:

Theorem 1.2.3 Assume that general assumptions (B-1) - (B-5) together with (C-1) hold and
(gj,hk,ajk)lel’_'_'_"f € U. Assume moreover that functions wy are bounded for k = 1,... K.

Then the system (0.1) - (0.3) has a weak solution.

The proof bases on the Schauder fixed theorem, formulated below for convenience. The
Schauder theorem is less general that the generalized Kakutani theorem (Theorem 1.1.9), utilized
for the proof of Theorem 1.1.2, but sufficient for the proof of Theorem 1.2.3.

Theorem 1.2.4 (Schauder theorem) Let X be a Banach space. Let M be a convez, compact
and nonempty subset of X. Let T: M — M be continuous. Then T has a fixed point, i.e. there
erists T € M such that & = T(Z).

The above version of the Schauder fixed point theorem is given in Corollary 2.13 in Chap. 2.6
in [50].
PrOOF OF THEOREM 1.2.3. We define following operators:
o P: (LQ(O,T))J — C([0,T); L3(£2)) is the operator assigning the solution of (1.4) to a
given (ki,...,k;) € (LQ(O,T))J. It is well defined since, by Lemma 1.1.5, for (k1,...,k;)

as declared, the solution of (1.4) exists in XY, is unique and XY < C([0,7]; L?(2)) (by
[51, Prop. 23.23]).

o Po: C([0,T]; L*(2)) — (LQ(O,T))J assigns (V1,..., V) given by formula

K
V;(t) = Zaj,kwk (/ hi () (Y(z,t) —y*(z,1)) dac) a.e. on [0,7] (1.28)
k=1 @

to a given Y € C([0,T); L3(Q2)). We can verify that P, is well defined. More precisely,
Holder inequality allows to infer that v defined for k =1,..., K by

Vi = /Qhk(x)(Y(x,t) —y*(x,t)) do

belong to L2(0, T), for Y as declared and y* as in the assumption (C-1). If V. = P5(Y), then
V=5, ojrwiovy. Hence, V; are measurable as sums of superpositions of continuous
wy, with measurable vj. In addition, V; are also bounded because wy, are bounded. Thus,
V belongs not only to L2(0,7) but even to L>(0,T) , for j =1,...,J.
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o P5: (L2(0,T))J — (LQ(O,T))J assigns the solution of (1.5) for a given (Vy,..., V) €
(LZ(O,T))J. It is well defined since, by Lemma 1.1.6, for (Vy,..., V) as declared, the
solution of (1.5) exists in X* and is unique, and X" — (LQ(O,T))J.

The role of the above operators in the context of the system (0.1) - (0.3) is illustrated in Figure
1.3.

Control devices response P, Process state
(functions ;) (function y)

Py Py

Signals W;(y,y*)

Figure 1.3: A schematic representation of the role of the operators P, P, and Ps, considered in
the proof of Theorem 1.2.3, in the context of the thermostat control mechanism, present in the
system (0.1) - (0.3). The notation in the picture is as in the subject system. Comparing to the
proof of Theorem 1.1.2, the state-to-measurement and measurement-to-signal operators consid-
ered there (see Figure 1.1) are ,merged” in the present proof into the state-to-signal operator.
The latter simplification is made because in the present situation the necessary properties of the
state-to-signal operator are easy enough to obtain ,in one turn”, without splitting the subject
mapping into two separate operator.

Proving that P := P30 P, o P; has a fixed point in L?(0,T) is equivalent to proving the
assertion of the theorem. In other words, we need to prove that there exists k € L?(0,7) such
that k = P3(V), V= R(Y), Y = P (k).

By Lemma 1.1.5, the operator P is continuous.

By the assumption that wy are Lipschitz continuous for & = 1,..., K, we also verify the
continuity of Pp. Let VI = Py(Y1) and V2 = Py(Y?) for given Y1, Y? € C([0,T]; L*(2)). Then:

HV]I _VJ2'HL2(0,T) = T1/2HV11' _V?HL“’(O,T)

K
< T2 eags SUPyeo,T] Z aj’kLk‘/Q hk(x)(Yl(x, t) — YQ(x7 t)) dx
k=1

K
<Y sl ) V- Y2
k=1

for j =1,...,J, where Lj are the Lipschitz constants of wy, as in the assumption (B-4).
Moreover, by the linear structure of (1.5), the operator P is affine. By the estimate (1.18)

in Lemma 1.1.6, the operator Pj is also bounded. Therefore, as a bounded affine operator, Pj is

continuous from (LQ(O,T))J to X*. Since X" can be embedded continuously into (L2(0,T))J,

P3 is also continuous with values in (L*(0, T))J.

Summing up the above considerations, P5 o P; o Py is continuous from (L*(0,T ))J to itself.
for k =

Next, recall the assumption that wy are bounded. We denote C,,, := Hwk ‘LM(R)
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., K. Tt is straightforward, that Py: C([0,7]; L?(Q2)) — A for
A= {(Vl,...,V ) e (L20,1)) : ||V, 20y < T Vill 0.y < TCOW, ¥j=1., J}

where Cyy; = Zszl a;j Cu,, for j = 1...,J. By estimate (1.18) in Lemma 1.1.6, we also get
that Ps|a: A — B for

J
Bim {i e (220.7)7 s g0 < 03 (ol +7Cw;) Yot }
Jj=1
where kjo are the initial conditions assumed for (1.2) in the assumption (A-5) and Cj is the
constant appearing in the estimate (1.18) in Lemma 1.1.6. Thus superposition P;o Py o P; takes
values in B as well.
The set B is nonempty and convex. The closure of B in (L2(O,T))J, denote it B, i
addition compact (by Rellich-Kondrachov theorem, see [1, Th. 6.3]).

To sum up, we have shown that P = Pyo Pyo Py (LQ(O, T))J — B, where B is nonempty,

convex and compact in (L?(0,7T)) 7 and P is continuous from (L*(0, T))J to itself, and thus from
B to itself. Hence, P has a fixed point in B by the Schauder theorem (Theorem 1.2.4). B

REMARK. The only step in the proof of Theorem 1.2.3 where the condition 3; > 0, being a
part of the assumption (B-2), was used was the application of Lemma 1.1.6, which also assumes
B; > 0. However, it is possible to prove a version of Lemma 1.1.6 allowing §; < 0 (what was
pointed out in the remark on page 11). Hence, a version of Theorem 1.2.3 allowing 3; < 0 also
would be valid.

An analogous remark hold for Theorem 1.1.2, and hence for Theorem 1.2.2, being a corollary
of the former result, as well. A

The result given in Theorem 1.2.3 detaches us from the requirement of the weak continuity of
the reference trajectory, present in Theorem 1.2.2. This can be essential in certain situations. For
example, it seems natural to allow the user of the thermostat control mechanism to change the
reference state that he would like to keep. Thus, there can be some switching moment during
the experiment. E.g., for time from 0 up to a given t; < T', the user may want to keep the
state of the process close to some state yj: 2 — R and then, for times grater than t;, he may
decide to change the state that he want to be close to from yj to some y5: Q2 — R. It would be
inconvenient for the user to force him to focus on how he should change his target from yj to 5
in order not to break the requirement of the weak continuity. In this sense, it would be better
if the thermostat control mechanism allowed the user to just switch the state that he wants to
keep. Here, Theorem 1.2.3 have the advantage over Theorem 1.2.2.

For concrete example of situation of the above kind, consider two square integrable functions
yi and y3, yi,v5: Q@ — R, such that [, yi(z)dz # [,y5(x) dx. Let the reference trajectory y*
in the system (0.1) - (0.3) be given by

. yi(z) fort <ty
ylat) =9 ",
ys(x) fort >ty

where t; € (0,7) is known. Then, y* is an element of L?(0,7;L?(2)) but is not an element
of C([0,T];L*(),,). To justify the latter, note that, by assumptions on y; and y3, integral
Jo y*(z,t)p(x) da can be discontinuous in time, what is the case e.g. for ¢ = 1 on Q. Therefore,

for the reference trajectory y* as above, it is possible to apply Theorem 1.2.3 but not Theorem
1.2.2.
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1.2.2 Existence, uniqueness and stability for general case

In Section 1.2.1, we have proven the existence of weak solutions of (0.1) - (0.3) for the case of
switching functions fulfilling the assumption (B-4), being additionally bounded. Here, we are
going to extend this results and prove not only existence but also uniqueness and stability for
arbitrary switching functions fulfilling the assumption (B-4). Nevertheless, the existence results
from Section 1.2.1 form a base, necessary for some of arguments utilized in the present section.

The stability of (0.1) - (0.3) will be investigated w.r.t. both the control and the initial
condition. We will also prove the weak subsequential stability of (0.1) - (0.3) when the control
space is considered with its weak topology.

The price for obtaining the above mentioned existence results for arbitrary switching functions
wy, obeying the assumption (B-4) will be a slightly stronger assumption for y*, in comparison
to Theorem 1.2.3 in Section 1.2.1. More precisely, the new existence result will require the
assumption (C-2) instead of the assumption (C-1). Fortunately, the strengthened assumption
for y* is still weaker than that indicated in Theorem 1.2.2 in Section 1.2.2.

The above announced existence result will involve some additional estimates for weak solu-
tions of the system (0.1) - (0.3). Moreover, the uniqueness result will rely on the stability of
the system (0.1) - (0.3) with respect to perturbations of the initial condition. Hence, we start
this section with proving the necessary estimates and the stability results. Next, we proceed to
existence and uniqueness results. In the final part of the present section, we focus on the results
concerning the weak subsequential stability of (0.1) - (0.3).

Theorem 1.2.5 Let the part a) in the assumption (B-1) and assumptions (B-2) - (B-4) together
with (C-1) be fulfilled, let 0 € U and (yo, K10, - - -, kj0) € X0, Assume also that H@HU < RY for

some RV > 0 and that H(yo,/-ilo,...,mJo)HXo < RY for some R® > 0. Let (y,k1,...,k5) € X?
be a weak solution of the system (0.1) - (0.3) corresponding to g; := iy, hx = tp,, ok = Ga,,
and the initial condition (Yo, K10, ---,kJ0). Then the following estimate holds:

H(yaﬁ'la"'aﬂJ)Hx2 < C
where
C= C(T’ |Q‘,K, JaLaanLly"' )LKawl(]a"' awKO,RU’RO? HZU*HQ,?D,,BI,---,BJ)

and where the appearing quantities are the same as those in the general assumptions referred to
above.

PROOF. We test the weak form (1.26) of the equation for y by ¢(x, s) 1= y(z, s)1 (g4 (s), for
certain ¢ € [0,7], and obtain:

J

t t
/0<y’,y>+DHVyH§dS = /0(f(y),y)m(n)+Z(Hjﬂgj,y)m(m ds (1.29)

j=1

Next, we estimate term (f(y),y)r2(q) in (1.29) by using |f(s)| < |f0‘ + L|s| (what is true by
the assumption (B-3)), by the Holder inequality and by the Young inequality and our structural
assumptions:

[ swae < [ thPacs g [lolae < L+ slul ol
Q Q Q (1.30)

J I
< Lyl + 2y + 210
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By the Hélder and Young inequalities and the definition of constant RY, term (njﬁgj,y) 12(Q) in
(1.29) can be estimated, for each j =1,...,J, by:

" . 1 1
(5t )z = [willlag, Iollwll, < Sllwlz + 5 (RY) |yl (1.31)
Spaces H(2), L*(Q) and Hl(Q) form an evolution triple with embeddings H'(Q) — L2?(Q) —

H'(Q)", hence the identity fo ' y) = 3|y(., Hi — 2y(. ,O)Hi holds (see Prop. 23.23 in [51]).
By the latter, by the relation y(.,0) = yo and by (1.29), (1.30) and (1.31), we obtain:

Sl als + 0 [Ivalas <3 /cluyuguRU)zg’;lwds N

1 1
+ 50 + 5(’?/0\@

(1.32)

where

Cr = 2L+ [fol+7),  C=Th|Q|

Above, the assumption that ) is bounded was necessary to ensure that H].QH2 is finite.
At the same time, testing the weak form (1.27) of the equation for r; by £(s) := k;(s)1(04)(5),

neglecting the appearing ‘/s:j ‘2 term (which is nonnegative), expanding the definition of W; (given
n (0.3)) and using the Young inequality yields:

t
,Bj/o ﬁ;-/{jds < /OZuakak</ Un, (y —y )dx) Kkj ds

= (1.33)
1 = .2 .
< —/0 kZuakak</Quhk(y—y )dx) ds + —/ K|,€]‘ ds

By the assumption (B-4), the Holder inequality and the definition of RV, the first term appearing
in the sum obeys:

2
* (leovol + Ziflhally = v,

2
Uy, W </Q Up, (y —y™) dw)‘ <

ROY? (fus| + iRV (lo]l, + 19°]))

IN

2(R) "y + 2(RY)" LR (lull, + vl,)"

2(RY) why + 4(BY)'LE ][5 + 4(BY) Lllu]3

IN

From the above, we derive the following:

[

2 t
G, W /uhk(y—y*) dw)‘ ds < CgJ/O Hy”i ds + Cy; + Cs (1.34)

k=1
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where

=

Cs; =4(RV)'S 12
k=1

Ci; =4(RY)" Z_: 22 [yl

K
057]' = QT(RU)2 Zwio
k=1

As k' is integrable, k; is absolutely continuous. Thus, by integration by parts, identity f(f /f;-nj =

0] ‘2— 21k (0) ‘2 holds. Combining the latter with the relation x;(0) = x;o and with estimates
(1.33) and (1.34) yields, for j =1,...,J:

1 I
shOF < o5 [ el + Klwf'as +

1
2B;

After summation of (1.32) and (1.35) for every j and neglecting the gradient term (which is
nonnegative), we obtain:

1
(047]' +C57j) + 5{/@‘0{2 (1.35)

J

J t
IO+ Sl < [ colyll + ol s +
i=1 ’ = (1.36)

J
+ Cs + |lwolly + D |mjol’
j=1

where

J
Ce =C1+ Zﬁ]lcs,j
=1

J
Cr = RV + K> 57!

J=1

J
Cs =Cy + > B (Cuj+Cs)
j=1
Now, by the definition of R", one can verify that
J
H%H; + Z"WF < (J+ 1)“(y07ﬁ107---,HJ0){’§(0 < (J+ 1)(]%0)2
j=1

Using the above in (1.36) and applying the integral Gronwall inequality allows to find that

J
ol + ;Hmuiw(w = (1.37)

< <CS + (J+1)(R0)2> . <1 + Tmax{C(i’C?}eTmax{(j&@})
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The structure of the constants Cg, C7, Cs guarantees that the right hand side of the above depends
only on the quantities stated in the assertion of the theorem.

Still, to complete the proof we need to estimate norms HVyH2 2 Hy’HHI @), , and Hm] HL2 (0.7

since they enter the definition of the norm of the space X2. For estlmatlng the gradient term,
we again use the inequality (1.32) with ¢ = T, neglecting Hy H2 term:

1 /T J 1 1
DIwulE, <1 [ bl + () Sl s+ 20 + Ll
j=1

(1.38)
T T J 1 1
< 50l + B XMkl + 5C + sl
j=1

Next, use the relation HyOH2 < R° and apply (1.37) to estimate the right hand side of the above
inequality in terms of C;, Cy, Cg, C7, Cs, T, J, RV and R°, which depend at most on the
quantities stated in the theorem.

To obtain estimates for the time derivative of y, we treat the weak form (1.26) of (0.1) as an
equality of functionals on the space L?(0,T; H'(2)). We rewrite it in the below form:

Y +DAy—Fy—G=0 in L*0,T; H'(Q)") (1.39)
where Ay, Fy and G are defined by

/ T(Ay, ) dt = / ' (Vy, v¢) ;(Q) dt
/0 (Fy. o) dt / (10:9) ..
/0T<G 6)d /T(im g],¢>L2(Q

7j=1

for ¢ € L2(0,T; HY(Q)).
It follows by the definition of the above functionals that

J
1Al 10y o < V0l Wl 2 < NP 1G]y, Z!%Hm (1.40)

This, along with (1.39), yields:
J
HyIHHl(Q)*,2 < DHV?/HM + Hf(y)H22 + ZH“J'%J'HM

J
< DI[Vyllyy + lllfol + Zlylllon + 3 lg; o llwsll 2oy (1.41)
j=1

J
< D|[Vyll,, + T2Lylly e + TR |5l oy + (TI2DY?| o]
j=1

where we have used the Lipschitz continuity of f, the Holder inequality and the definition of RV.
Now, (1.37) and (1.38) can be applied to estimate the right hand side of (1.41) in terms of Cf,
027 CG: 077 087 D, ‘Q‘a T, L, f07 J, RY and R.
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Moreover, by (1.27), one can infer that
for j =1,...,J. By the above, expanding the definition of W; given in (0.3), we have

2
(1.42)

K
ﬁ?H"‘;H;(o,T) = 2“““22(0@ + QHZﬁO&jkwk</ﬂﬁhk(y—y*)dw)‘LQ(OT)
k=1 '

Dividing (1.42) by 5]2 and using (1.34) to estimate the second term in the right hand side, we
obtain the following:

HK;Hi?(O,T) = 2ﬁj'_2(H“Hi2(o,T) + KC&J'H?/H;Q + KCyj + KC5J) i)
1.43
< 2ﬁj'_2<TH“Hioo(o,T) + KC&J'TH?/H;,OO + KCyj + KC5J)

Constant K above appears due to moving the square power to the terms under the sum Zszla
according to general inequality |Zk akf < sz|ak‘2. Now, (1.37) can be applied to estimate
terms H'%J'HLw(O,T) and HyH2OO This gives a bound for the right hand side of (1.43)in terms of
Bj, C34, Caj, Cs 5, Cs, C7, Cs, T, K, J and R®, which depend at most on the quantities stated
in the theorem.

Altogether, (1.37), (1.38), (1.41) and (1.43) guarantee that all the investigated norms can
be estimated in terms of the constants which depend at most on the quantities stated in the
assertion of the theorem. M

We now proceed to the stability of the system (0.1) - (0.3). During the lecture of the proof
of the below stability theorem, one can note that the proof utilizes the above proven Theorem
1.2.5, concerning the estimates of the weak solutions of the system (0.1) - (0.3).

Theorem 1.2.6 Let the part a) in the assumption (B-1) and assumptions (B-2) - (B-4) together
with (C-1) be fulfilled, let 4',4? € U and

1.1 1 2 .2 2 0
(Mo: K105 -+ Kg0)s (Mgs KTos -~ Kg0) € X
Assume also that ||’ gy < R[{ fqr some RY >0 and that H(yé,nilo, e ,/ﬁ;f,O)HX() < RO for some
R >0, fori=1,2. Let (y’,/{’l,..'.,/{f,) € X? be a weak solution of the system (0.1) - (03)
corresponding to g; := ﬂ’gj, hy == Up, , Ok = %,k and the initial condition (yy, Ko, ---,K),
fori=1,2. Denote y =y' — 12, Kj = /{} — /{?, =14 —a®, yo = yé — yg and kjo = /4]1-0 — /{?0.
Then:
112 2 \1/2
I le < € (Nallf + om0 700 0 )
where

C = C(T’ |Q‘,K, JaLaanLb"' )LKawl(]a"' awKO,RU’RO? HZU*HQ,?D,,BI,---,BJ)

and where the appearing quantities are the same as those in the general assumptions referred to
above.
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PrROOF. For i = 1,2, the function y’ satisfies the identity (1.26) with x; := n; and g; == g;'-,
for j=1,...,J. Fori=1,2 and for j = 1,...,J, the function /@;- satisfies the identity (1.27),
with y = y* and with W = W]?, where

K
W00 0) = 3o [ B (otant) =y (@ 0de))  fori =12
k=1

Subtracting by sides the identities corresponding to y' and y? and subtracting by sides the
identities corresponding to /@} and /@?, for j=1,...,J, we obtain:

T T
/ (Y, 0) + D(Vy, V) 1) ds = / (W) = W), 8) 2y ds +
0 0

/zm zw], ) ey 5

(1.44)

for all ¢ € L2(0,T; H'(2)) and

T T
/0 (BjK + k) Edt = /0 (Wi (') = W22 y")) Edt (1.45)

for all £ € L2(0,T), for j =1,...,J.

Now, we proceed as in the proof of Theorem 1.2.5. The present proof is very similar however
requires longer calculations, which involves multiple use of the triangle inequality.

Testing the identity (1.44) by ¢(z,s) := y(x, 5)1( ) (s) yields:

t t
/O<y’,y>+DHVyH§ds = /0(f(yl)—f(y2),y1—y2)m(m -

(1.46)
+ Z Ii —u /s;],y y2)L2(Q) ds
J=1
By the Lipschitz continuity of f we have:
(W) =&y =) e < Llv' =4, (1.47)

while for the second term on the right hand side of (1.46) we can write

11202 1 2 _ el 1 a2 £2 1 .22
(g, 55 — g, 55,y — Y )ra) = (lg,K5 = Ug, K5, y)12(@) + (lg, K5 — g, 5, Y) 12()

IN

|5 g [ lllly + Ls g, NIl
) (1.48)

1 R 1
<3 g, lolwi” + vl

N 1
12+ Sll +

1
o + 5ED sl +

1
< =Cq||u
< 54
where C'1 denotes the constant from the assertion of Theorem 1.2.5 — it states that the square
of the supremum of each x; is bounded by this constant. Note, that the imposed assumptions
cover the assumptions of Theorem 1.2.5, hence the latter can be applied.
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Now, the relation f0t<y',y> = 1|y(. ,t)H; — 3|y ,0)H§ (see the comments preceding (1.32)
in the proof of Theorem 1.2.5) and relations y(.,0) = yo, (1.46), (1.47), (1.48) together imply

1 1
SluCo0ly = Slllly + DIVl ds <

t 9 1 Ura J 9 1 J . 9 (149)
= / L+ Dyl + §(R ) Z‘“J" ds  + §T012Hugj”2
0 j=1 j=1
A similar procedure can be performed for the equation for x; — for j = 1,...,J, we test the

identity (1.45) by £(s) := £;(s)104)(s), neglect the {/@j‘z term (being nonnegative) and expand
the definition of le and I/Vj2 what gives:

t
,Bj/ H;-I{j ds <
0

gy, Wh </Q i, (v —y") dfﬂ) — g, , W, (/Q i, (y* = ") dw)“"”vj\ ds (1.50)

'K 2 1 < 1 1 1 9 2 /.2 2
S/o 5 |5l +§;ua]kwk</guhk(y —y)da) i wk(/ﬂuhk(y —y)dz)| ds

where the second inequality follows by the Young inequality. The right hand side term containing
wyg, is the term requiring the most calculations in the present proof. The subject term fulfills the
below inequality:

2
‘ué wk</ﬂzl;1lk(y1 —y") dac) — a2 wk</guhk > <

<3 ﬁ(lxjkwk (/ ﬁkk(yl —y") dx) — ﬁajkwk </ uhk d(L‘) +
; ! , (1.51)
+ 3|dg,, wy (/ iy, (y* — ") dw) — iy, wk</ iy, (y dx) +
Q Q
2
+ 3 zltlljkwk (/ ﬁik(gf —y") dx) - u2 W </ uhk dgg)
Q Q

We estimate separately the three terms appearing in the right hand side of (1.51). In the first
term, by the Lipschitz continuity of wy we get:

g, wk</ i, (y' —y* )dw) — ) wk([)ﬂik(yQ—y*)dx>‘2 <

< L3 fab |, I o - 471 (152
< LR (R o' = o715
The second term in the right hand side of (1.51) is estimated as follows:
2
i, wk</ﬂﬂi,€(y2—y )dw) — wk(/gﬂik(f—y*)dfﬂ)‘ <

< L2 A:Axgk{ H uthQ (1_53)
< LE(BY)" (Cr+ ly]l,)’ il

<21 (RY)* (CF + o7 l5) lla, — a1
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because HyQ( t)H2 < C; for t € [0,7]. The latter is true since HyzH2oo < C; (by Theorem

1.2.5) and y* € C([0,T); X) (see the comments after Definition 1.2.1). The third term in the
right hand side of (1.51) obeys:

2
([ a2 =) o) = a2 ([ i, 02—y o) <
2

2
b = 2, | (w0 + La|a3, L, w2 = o) (154)

2
b, — 2, (w0 + LeR (1 + [lv7]),))

il — 2| (208 + 47 (RY) (7 + [ [3)

where we have again used the fact that HyQ( . ,t)H2 < (4 for t € [0,T]. In total, by inequalities
(1.51), (1.52), (1.53) and (1.54) we infer that:

/OZ gy, Wi /uhk@ )dx)— 07 wk(/gﬁ%k(f—y*)dw)fds <

h=1 (1.55)

K K
< cuy [l + Cos S lan i + iy Yo, f
k=1 k=1

where, for j =1,...,J,
K
Coy =3 LE(RY)
k=1

-----

-----

From the relation fg/@ = 2‘16] ‘2 - 2‘16] !2 (see the comments preceding (1.35) in
the proof of Theorem 1.2. 5) and from relations «;(0) = kjo, (1.50), (1.55) we infer that, for

j=1...,J

1 1 K [ 1 t
I OF =gl < 5 / wds + 350 / ol s +

HZ 04] Z‘uoﬁk ’

(1.56)

We sum (1.49) and (1.56) for every j = 1,...,J and neglect the gradient term, which is
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nonnegative. As the result, we get:

J J
lyColz + olmi®I < llwolly + DIl +

j=1
t ) J ot )
+ s [olfas + 63 [ nPas+ (157
j:l
J K
+ TClZHugj\b + C?ZH%\E + Cs
7=1 j=1k=1
where
J J
Cy = 2L+2J+Zﬁj_102,j Cr; = Zﬁj_ngJ
=1 ‘
Ce = (RU)2 +m?X{K5;1} Cs = jgf}?fJﬁ]104,j

By the integral Gronwall inequality we infer from (1.57) that

J
lylly e + D lsil2 oy < (1+Tmax{c5,cﬁ}eTmaX{c5,c6}>.
= (1.58)

J
-(HyoHi + Z\%‘o{z + max{TCy, (7,
j=1

2
Ul

where constants C'1, C5, Cg, C7, Cg depend only on the quantities stated in the assertion of the
theorem.
To close the proof, it suffices to show that

IVyll, + Hy/HHl(Q)*,2 + HKSHLQ(O,T) =
J J
< o9l + XWsllmory + o0l + bl + il )
j=1 j=1

for certain positive Cg depending only on the quantities stated in the assertion of the theorem.
If (1.59) holds, then (1.58) can be applied to complete our reasoning. The necessary estimates
for particular norms in the left hand side of (1.59) can be obtained with methods similar as in
the proof of Theorem 1.2.5, but, for completeness, we derive the subject estimates.

We start with term HVyHm. By (1.49), neglecting Hy( ) ,t)H2 term (which is nonnegative),

i, | <

J
1
D|[Vylypds < TE+ Dyl + 57ED 3 lwslEm o) +
=1

(1.59)

setting ¢ = T" and taking into account ZJ: all?,, we derive

(1.60)

1 2
+ 2wl

To estimate term Hy’HHI(Q)* 5 We treat (1.44) as an equality in L?(0,T; H'(Q)"), which can
be rewritten as:

(y' —v*) + DA(y' — ) — (Fy' = Fy?) ~K =0 in L*0,7; H'(Q)") (1.61)
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where we define A and F as in (1.15) while K is defined by

T T, J
_ 11 2 12 2 Crrl
/O<K,¢>dt - /0 (Zugjmj—ugjkj@)wmdt for ¢ € L2(0,T; H(Q))

=1

The below follow straight from the definition of K and basic inequalities:

J
‘KHHI(Q = qu Fb _u 517 HQZ = qu; (H;_KQ HQZ + HZ ' HZQ

7j=1

J
< ZHﬁ;jHZHKjHLQ(O,T) +ZH€L9J'H2HK?HL2(O,T)
=1 =1
J J
< RUZH“J’HL%O,T) + 1120y ZHﬁngQ
j=1

J=1

where we have used Theorem 1.2.5 to estimate H/'ﬁ}j HL°° 07) < (4, for j =1,...,J and for Cy
as above in the present proof. From the above estimate for K, from the estimates for A and F

given in (1.16) and from (1.61), we derive the following:

J J
Hy/HHl(Q)*,Z < HVyHZQ +1fh - f(yQ)Hzp + RUZ"HJ“LQ(O,T) + 120, : g, [
o~ = (1.62)
= Hvsz,Q + Tl/QLHsz,oo + T1/2RUZHKJ'HLDO(0,T) + T2 i
j=1

where we have used the Lipschitz continuity of f with constant L and inequality (Z y Hﬂg]. H2)2 <

I <

To estimate H’%HL%O T)’

we proceed as follows. From (1.45) we conclude that
Biri + kj = Wiy y*) = Wiy y")  in L*(0,7)
for j =1,...,J. By the above, expanding the definition of le and Wf, one obtain:
2 2
BJ’HK;HB or) = 2“/€j“L2(0 ) T

+ 2HZuakwk(/ uhk yl—y )dx) — a2 wk</ﬂﬁik(y2—y*)dx>

The second term in the right hand side of (1.63) can be estimated with the use of (1.55), what
yields:

) (1.63)

L2(0,T)

Bj“K;"‘i?(O,T) < 2TH"J‘Hioo(o,T) +

K
+ 2 (T ol + Cos Yfan; ’) (o1
k=1

< 9T gy + 2KTC o2, + 2K max(Cay, o il



34 CHAPTER 1. THERMOSTAT CONTROL MECHANISM — PROPERTIES

Above, constant K appears as a result of moving the square to the terms under the sum sign
ZkK:l, as in general inequality ‘Zk ak{2 < sz{ak‘?

Altogether, by (1.60), (1.62) and (1.64), the estimate (1.59) holds with constant Cy depending
only on the quantities appearing in (1.60), (1.62) and (1.64), i.e. on Cy, Cy, Cs, Cyu;, T, D,
Bj, K, J, L, RY. This closes the proof. W

As the next result shows, in consequence of the existence result provided by Theorem 1.2.3
and the estimates given in Theorem 1.2.5, it is possible to prove the existence of solutions for
unbounded switching functions wy, in the system (0.1) - (0.3). The latter is the case not covered
by Theorem 1.2.3. However, note that the below result requires a stronger assumption concerning
the reference trajectory y* in the system (0.1) - (0.3), in comparison to Theorem 1.2.3.

Theorem 1.2.7 Assume that assumptions (B-1) - (B-5) and (C-2) hold and (g;, hy, ozjk)?;l’:::’f €
U. Then the system (0.1) - (0.3) has a weak solution.

PrROOF. Theorem 1.2.3 assumes that wj, functions are bounded, i.e. HwkHLm(R) < 0o. But

Theorem 1.2.5 gives a bound for solutions of (0.1) - (0.3) that is independent of Hwk‘HLoo(R)'
Thus the standard truncation technique can be utilized to dismiss the assumption that w; are
bounded.
More precisely, for a given wy, as in the assumption (B-4), consider its truncation wj} given
by
wr(—n)  for s < —n
wi(s) = ¢ wg(

s) for s € [-n,n]
w(n) for s >n

Let (y", K7,...,K") € X? denote the weak solution of the system (0.1) - (0.3) with w} in place
of wg. By Theorem 1.2.5, Hy"H2oo = (1 < 0o where (' does not depend on HwkHLw(R)'

Let Cy := Hy*H2 -, and choose n > Hth2 (C1 + Cy). The switching function wy in (0.3) can

be replaced by w? with no side effect to the weak solution (37, k7, . .. ,/-i’j}). Indeed, for the above
choice of n we have

i) = [ MOy <

for a.e. t € [0,T] (1.65)
< el €1+ €2) <
where we have used the Holder inequality. Therefore
wi(vi(t) = wi(vi(t)) for ae. ¢t € [0,T) (1.66)

Thus, from the above and from the definition of the weak solution we conclude what follows —
for 71 as indicated, an arbitrary weak solution of (0.1) - (0.3) with switching functions w is also
a weak solution of (0.1) - (0.3) with switching functions wy. Now, Theorem 1.2.3 can be applied
to obtain existence of the weak solution for (0.1) - (0.3) with switching functions wj. Hence the
assertion follows. H

REMARK. In the above proof the assumption that y* € L°(0,7; L?(£))) was essential to
obtain the estimate (1.65) for a.e. t € [0,7]. The assumption y* € L2(0,T; L?*(f2)), imposed
in Theorem 1.2.3, would not allow to obtain this estimate a.e. on [0,7] and hence the identity
(1.66) could fail on some subset of [0,77] of positive measure. This would make impossible to



1.2. SINGLE-VALUED SWITCHING FUNCTION. .. 35

identify the weak solutions of the system (0.1) - (0.3) with an unbounded switching function wy,
and the weak solutions of (0.1) - (0.3) with the switching function w? defined as in the above
proof. Hence, the final argument of the proof would be not valid.

Thus, comparing Theorem 1.2.3 with Theorem 1.2.7, we have traded the unboundedness of
Hy*( . ,t)H2 for unboundedness of wy. A

The below corollaries are straightforward due to existence Theorems 1.2.3, 1.2.7 and stability
Theorem 1.2.6.

Corollary 1.2.8 Let assumptions (B-1) - (B-5) and (C-1) be satisfied and (gj;, hk,ajk);?;l’_'_'_"f €
U. Assume moreover that functions wy, entering the system (0.1) - (0.3) are bounded. Then the
system (0.1) - (0.3) has a unique weak solution.

Corollary 1.2.9 Let assumptions (B-1) - (B-5) and (C-2) be fulfilled and (g;, hk,ozjk)?;l’ K e

7'.'.'7‘]
U. Then the system (0.1) - (0.3) has a unique weak solution.

This closes the part concerning the uniqueness and existence of the weak solutions of (0.1) -
(0.3). However, Theorem 1.2.5 and Theorem 1.2.6 are necessary not only for the uniqueness
and existence results in Corollaries 1.2.8 and 1.2.9. The stability result in Theorem 1.2.6 will be
crucial in Chapter 3, concerning theoretical aspects of the optimal targeting problem, announced
in §2 of Introduction.

But there are also other properties concerning the behavior of the system (0.1) - (0.3) under
the perturbations of the control which we would like to present. Assume that there is a sequence
of controls 4" € U given and one have only the knowledge on the weak convergence of these
controls. This does not allow to utilize the former theorems of the present section to infer about
anything more than boundedness of (y™, x7,...,x") in X2, where (y", k7, ...,x%) denotes the
solution of (0.1) - (0.3) corresponding to ™. Here, the following result may be useful:

Theorem 1.2.10 Let assumptions (B-1) - (B-5) and (C-1) be fulfilled. Let the sequence u"™
converge weakly to @ in U. Denote by (y",kY,...,K) the weak solution of (0.1) - (0.3) corre-
sponding to u"™ and by (y,R1,...,Ky) the weak solution of (0.1) - (0.8) corresponding to . Then

there exists a sequence of natural indezes ny < ng < ... such that subsequence (y"™*, k7%, ... ,/433’“)
converges weakly-x to (§,R1,...,ky) in X2 when k — 0o,
ProOOF. Let 4" — 4 in U, as in the assumptions. A weakly convergent sequence is

bounded, thus by Theorem 1.2.5 (y",x7,...,"}) is bounded in X?2. This allows us to extract
a weakly-* convergent subsequence (for simplicity, we relabel it and keep the original indexes):

(y", KT, ... KT) A (F,F1,...,Ry) in X2 for certain (7, 71,...,ky) € X2. In particular:
y' = in L>(0,T; L*(2)
y =y i L0, T HY(Q))
_ . d

Vy" = Vy in (L*(Qr)) (1.67)
KR in L>°(0,T)
K} — R in L*(0,T)

It suffices to show that (y,%1,...,ks) = (Y,K1,..., k). For this reason we need to prove that

we can pass with n to infinity in all terms appearing in the weak formulation given in Definition
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1.2.1 The passage in linear terms follows straight due to (1.67). We are left to deal with the
terms

T T T
| g ot [ G omed [ Wiahycd
0 0 0

for ¢ € L2(0,T; HY(Q)), £ € L%(0,T).

Let us begin with the term corresponding to 7} ug By the assumption and by (1.67),
tig, — 4 in L*(2) and K — £j in L?(0,T). But this means that for an arbitrary ¢ € C(Q)
and ¢T € C([0,T]) we have

T
/0(] g,gbgb)LQ(Q =

T T
:/0 /ﬁ?ngdt/gzﬁngéde —>/0 /ﬁ;jngdt/Qzlgjngdx -
T QT
:/o (Rjtlg;, 0" )12 dt

To conclude that the weak convergence of K?ﬁgj to Kjig; in L?(Qr) holds it suffices to justify

that 7y, is bounded in L?*(Qr) and the set of functions ¢ of form ¢(z,t) = ¢*(x)¢” (t), where

¢ and ¢ are as above, is linearly dense in L?>(Qr). The former is straightforward by the weak
convergence properties of K and @Zj. Concerning the latter, by the Stone-Weierstrass theorem
(see [49, Chap. 0.2, p.9]), the set of all possible ¢ is dense in C'(Qr) and the latter set is linearly
dense in L?(Q7). Altogether, the following can be stated:
Kjdy, — iy, in L*(Qr) (1.68)
Guaranteeing the convergence of the remaining two terms will involve the knowledge on the
strong convergence of y™ in L?(Qr). But this can be concluded by the Aubin-Lions lemma (see
[43, Chap III.1. Prop. 1.3] for the probably most common formulation of the lemma or [44, Sec.
8 Cor. 4] for a more general statement). More precisely, spaces H'(Q), L?(©2) and H'(Q)" form
an evolution triple with continuous embeddings H'(Q) < L%*(Q) — HY(Q)" (see [51, Chap.
23.4]), where the first embedding is in addition compact, by the Rellich-Kondrachov theorem
(see [1, par. 4.6.]). Moreover, the bounds for y™ and y" in (1.67) hold. Thus the conditions
of the Aubin-Lions lemma are fulfilled and it can be applied to conclude that there exists a
subsequence such that

y" — g in L?(Qr) (1.69)

The limit in (1.69) is exactly y since otherwise it would be a contradiction to (1.67). This is
the point where the assumption (B-1) was necessary since the above referred Rellich-Kondrachov
theorem version requires that €2 is bounded and satisfies the cone condition.

By the Lipschitz continuity of f and (1.69) the convergence

fly") = f(y) in L*(Qr) (1.70)

is a straightforward conclusion.

We are left to investigate the convergence of the term corresponding to W;(y", y*). Note that
by the definition (see (0.3)), W; has an implicit dependence on @ and dg_, . Thus in the present
context we should interpret W as Wj(dy, ,dg g Y™y *). By (0.3) and the Llpschltz continuity of
wy we can write, using the triangle inequality:
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/ |W uhk’ ak’y "(1),y (t)) W(Uhk,uajk,y(t )| dt <

§2;Lk{ 3 [ - ol

ag.kf/ \/(a%k )7 - ) e dt +
w2 [ - vlgar )

Let us consider each of the three terms appearing in the right hand side of the above.
The first term in the right hand side of (1.71) converges to zero since the sequence of controls
" is bounded and (1.69) holds.
The third term in the right hand side of (1.71) is convergent to zero since by " — 4 in U
we have agjk — -
To treat the second term, consider a function

(1.71)

_l’_

uagk

Fr(t) = /Q (@, — ) (@(t) — " () da

As the sequence of numbers {ﬁgﬂk {2 in the considered term is bounded, it is enough to show the
convergence of F™ to zero in L%(0,T). We have g(t),y*(t) € L?(Q) a.e. on [0,T]. Thus, by the
weak convergence dj, — iy, in L?(Q) for every k = 1,..., K we infer that F™(t) converges to
zero a.e. on [0,7], as n — oco. Moreover, a.e. on [0, 7]

[P < |ag, — ||, 5() < Cyllu(t) -

I B,

where Cpy = suanu"HU is finite and the term ||y(t) — y* t)H2 is square integrable due to
7,y* € L?>(Q7). These observations concerning F™(t) allow us to apply the Lebesgue domi-
nated convergence theorem (see [41, Chap. 1] or [21, App. E.3, Th. 5]) and get the convergence

F" — 0 in L*0,7)
Altogether, we conclude that the right hand side of (1.71) converges to zero thus:
W]-(a;;k,agjk,y",y*) — Wiltn,, day,, ¥, y*) in L?(0,7) (1.72)

To sum up, the convergence results (1.67), (1.68), (1.70), (1.72) allow us to infer that
(9, R1,...,Ry) is the weak solution of the system (0.1) - (0.3) in sense of the Definition 1.2.1,
corresponding to 4, i.e. (g,R1,...,Rs) = (y,R1,...,Rs) what concludes the proof. B

REMARK. Note that, in the proof of Theorem 1.2.10, we did not require a priori knowl-
edge on validity of theorems concerning existence of weak solutions. We simply assumed that
(y", kY, ...,k%) and (y,k1,...,Ry) are weak solutions of the system (0.1) - (0.3). Thus, the
assumptions of Theorem 1.2.10 did not need to cover the assumptions of the existence results
provided by Theorem 1.2.3 or Theorem 1.2.7. Analogous remark holds for Theorem 1.2.5 and
Theorem 1.2.6, which also did not base on the existence results and hence did not require to
cover the assumptions of the latter results. A
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REMARK. In the content of the present section, the condition 5; > 0, being a part of the
assumption (B-2), was utilized directly only in the proofs of Theorem 1.2.5 and Theorem 1.2.6,
e.g. to preserve the direction of inequalities when dividing by ;. In the rest of the statements
of Section 1.2.2, the condition [3; was necessary only because they refer to Theorem 1.2.5 and
Theorem 1.2.6 (or to Theorem 1.2.3, but the latter actually could be proven also for 3; < 0, see
the remark on page 23).

However, we expect that, after suitable modifications, versions of Theorem 1.2.5 and Theorem
1.2.6 allowing 3; < 0 also could be proven. In consequence, the rest of the results of Section 1.2.2
also would be valid for 3; < 0.

We also expect that the results presented in Section 1.2.3 and Section 1.2.4, which also assume
Bj > 0, would be valid for §; < 0 as well.

The above, if true, have consequences also for analytical results in Chapter 3 of the present
work, which rely on the theorems given here, in Section 1.2.2, as well as in Section 1.2.3 and
Section 1.2.4. Perhaps, all of the analytical results of Chapter 3, as well as the rest of the present
work, would be valid if we allowed 3; < 0. However, a careful verifications of the proofs would
be necessary to guarantee the above hypotheses. A

1.2.3 Generalizations for locally Lipschitz reactive term

In Section 1.2.3, we focus on the system (0.1) - (0.3) with assumptions concerning nonlinear term
f different than in Section 1.2.2. More precisely, we assume below that f is locally Lipschitz
continuous only. However, to compensate this loose of strength of assumptions, we assume that
f obeys certain growth condition, which will be precisely formulated below. In addition, we
impose assumptions for the initial condition component yg that are stronger in comparison to
the assumptions imposed in Section 1.2.2, namely yo € L>°(2). Also, we put more restrictive
assumptions for the integrability of the functions describing the control devices actions, denoted
in the system (0.1) - (0.3) by g;, 7 =1,...,J.

Te reasons of considering the system (0.1) - (0.3) with the above mentioned modified as-
sumptions are twofold. First, numerical experiments described in further chapters of the present
work involved data with locally Lipschitz f and bounded initial condition. Hence, our intention
is to give analytical results that cover the data utilized in the mentioned experiment. Second,
the results presented in Section 1.2.3 will be used also in the chapter concerning mathematical
analysis of the optimal targeting problem.

The results of the present subsection rely strongly on a theorem for boundedness of the weak
solutions of (1.4). The subject theorem requires the nonlinear term to satisfy certain growth
condition, the initial condition to be bounded and the free term to be integrable with sufficiently
high power. In the result, the assumptions concerning the growth of f, the boundedness of yq
and for the integrability of functions g; in (0.1) - (0.3) are inherited by most of the results of the
present subsection.

In Section 1.2.3, we prove estimates analogous to those given in Theorem 1.2.5, but for
the system (0.1) - (0.3) with the modified assumptions, mentioned above. Next, using the
boundedness of the weak solutions of (1.4) and the derived estimates, we prove that the weak
solutions of the system (0.1) - (0.3) with the modified assumptions also are bounded. Having
the latter boundedness result, we prove the existence and uniqueness result for the system (0.1)
- (0.3) with the modified assumptions. For this end, we base on a truncation argument, reducing
the problem with the modified assumptions to the problem with the assumptions originally
considered in the results of Section 1.2.2.
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Let us proceed to the mathematical details. The above mentioned growth condition for
f: R — R is as follows.
sf(s) <0 if|s| > C (1.73)

for certain C'y > 0.

In the sequel, we will need also the following conditions. Recall that d denotes the space
dimension of domain {2, entering the system (0.1) - (0.3). The following conditions constituting
a relation between two numbers s, s2 € [1, 00] will be utilized in Section 1.2.3:

1 d d

—t — = — 1.74
2s,  4s) 4 (1.74)
s1 € [1,00], s9€(1,2] ford=1
s1 € (1,00], s2€[l,o0) ford=2 (1.75)

1
s1€[$,00], s2€[l,0q] ford >3

where s] and s, denote the Holder conjugate of s; and so, respectively. Notation ,,é =0"is
utilized in the above conditions.

The below theorem concerning the boundedness of the weak solutions of parabolic differential
equations will be crucial:

Theorem 1.2.11 Let Q, T, D, J, f be as in assumptions (B-1), (B-2), (B-3). Let yo € L>®(Q).
Let also g; € L°* (), kj € L**(0,T) for j =1,...,J, where numbers s; and sy obey conditions
(1.74) and (1.75). Let Cy, Cr be nonnegative numbers such that

J
lvoll, € Coos Hzgjkj < Cr
=1

51,52

Let f fulfill the condition (1.73) with a constant Cy. Assume that y is a weak solution of the
system (1.4), corresponding to the above data. Then y belongs to L (Qr) and

HyHLOO(QT) < C

where C = C(d,Q,T, D, s1,s2,Co,Cp,Cy).

Theorem 1.2.11 can be proved with the same methods as Theorem 7.1 in Chapter III of [37].
The case treated there is in some details different than ours. In the referred theorem it is a priori
assumed that the values of the solution on 992 x (0,7") are bounded what is an information that
we do not assume to have (instead, we assume to control the values of the derivative of the
solution on 99 x (0,7, in the direction normal to 0€2). Besides, the referred theorem treats
the case of a linear parabolic equation while the state equation in (1.4) is semilinear. In spite
of that, we have verified that the methods utilized in the proof of Theorem 7.1 in Chapter 3 of
[37] can be applied in our situation. The above listed differences do not change the main steps
of the proof.

Now, we proceed to the estimates for the weak solutions of the system (0.1) - (0.3). The
following result is a variant of Theorem 1.2.5, assuming a modified assumption for the reactive
term f in the system (0.1) - (0.3):

Theorem 1.2.12 In the system (0.1) - (0.3), let the part a) of the assumption (B-1) and as-
sumptions (B-2), (B-4), (C-1) hold. Let f: R — R be a locally Lipschitz continuous function,
satisfying the condition (1.73) for a given constant Cy > 0. Denote fo := f(0) and let Lc, be



40 CHAPTER 1. THERMOSTAT CONTROL MECHANISM — PROPERTIES

the Lipschitz constant of f on interval [—Cy,Cy]. Let also 4 € U and (yo, K10, - - - , ko) € X°.
Assume that RV and R° are positive numbers such that

all, < RY, | (o, K105 - - - £0) || yo < R°

U

Assume that (y,k1,...,57) € X? is a weak solution of the system (0.1) - (0.3) with the above
data and with g; := tg;, hy = Up,, Qj = Ua,,. Then

J J
Hsz,oo + Hvsz,Q + ZH“J’HL%(O,T) + ZH“;'HH(O,T) < G (1.76)
=1 =1
where
Cl = Cl(T7 |Q 7K7 J7D7517"'7/8J7L0f7f07L17"'7LK7w107"'7wK07RU7R07 y*sz)

where the quantities on which constant C1 depends are as in the above assumptions.
If, in addition, HyHLw(QT) < Cy, then

[V |y < Co (1.77)

where

Cy = Co(f(Co), Cy, T,

Q[,D,RY)

PrOOF. We start with the proof of the estimate (1.76). The proof is analogous to a part
of the proof of Theorem 1.2.5. The differences are minor. Therefore, we do not present the full
proof but only discuss the subject differences.

The only difference occurs in the estimate (1.30). Estimating term (f(y),y)r2(q) needs to
be done slightly different in the present situation than in the proof of Theorem 1.2.5. More
precisely, denote

A, = {(x,t) cQx(0,7): |y, 1) < cf}

Now we use property (1.73), Lipschitz continuity of f on [-Cy,Cy], the Hélder inequality and
the Young inequality to find that:

W) )iz = /Q fwds < [ fwds
Cy

<Ley | |y[Pde + fo [ |yl de
!
Ao Ao

f f

f 1
< Legllylly + follulloltell, < Lelvls + Flllls + 3ltell;

In the proof of Theorem 1.2.5, we insert the above estimate instead of the estimate (1.30).
The further part of the proof, until the estimate (1.38), remains valid, with the side effect that
constant L, whenever appears in the subject part of the proof, should be replaced by Le;. In
particular, estimates (1.37) and (1.38) hold (for L replaced by L¢,), what gives the demanded
estimates for HyHZOO, HVyHm and H“J‘HLOO(O,T)’ forj=1,...,J.

Similarly, one can verify that estimates (1.42) and (1.43) remain valid, assuming that constant
Lisreplaced by L¢,. Thus, by the estimate (1.43) (for L replaced by L¢, ), we have the estimate

for ||} for j =1,...,J. This gives the estimate (1.76).

J HL2(0,T)7
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To obtain the estimate (1.77), we cannot proceed exactly as in the proof of Theorem 1.2.5.
The reason for this is that in the estimate (1.41), crucial for estimating Hy,HHl(Q)* 5 term

H f (y)H22 appears. Under the present assumptions for f, the subject term can be ill defined if y
belongs to L>(0, T; L?(€2)) only. This makes the estimates for HyIHHl(Q)*,Z
of Theorem 1.2.5 invalid. To overcome the subject obstacle, we use the assumption HyH Lo (Qr) <
Co.

More precisely, (1.39) and (1.40) in the proof of Theorem 1.2.5 still hold, with the same
arguments as given there. Thus, from (1.39) and (1.40) we infer that:

derived in the proof

J
Hy/HHl(Q)*,z SDHV?/HM + Hf(y)Hm + ZH%J'H2H“JHL2(0,T)
j=1

By the assumption < Cp, by the Holder inequality and by the definition of constant

HyHLOO(QT)
RY | we can estimate the right hand side of the above and obtain:

J
19/l im0y < DIVl + FCHETIRN + TRY 165 e oy
j=1

Now, (1.76) can be used to estimate norms HVyH2 , and HKJ]‘HLOO(O T for j =1,...,J appearing

above by C. In total, the right hand side of the above can be estimated in terms of f(Cp), C1,
D, T, || and RY. Hence (1.77) follows. W

The below theorem requires both Theorem 1.2.11 and Theorem 1.2.12 for the proof. Tt will
be a crucial technical result in our method of proving the uniqueness and existence results given
in the further part of Section 1.2.3.

Theorem 1.2.13 In the system (0.1) - (0.3), let the part a) of the assumption (B-1) and as-
sumptions (B-2), (B-4), (C-1) hold. Let f: R — R be a locally Lipschitz continuous function,
satisfying the condition (1.73) for a given constant Cy > 0. Denote fo := f(0) and let Lc, be
the Lipschitz constant of f on interval [—Cy,Cy]. Let also @ € U and (yo, k10, - - - , ko) € X°.
Assume that RY and R° are positive numbers such that

|all, < RY, (w0, k10, - - #30) | xo < R

In addition, assume that yo € L>°(Q) and that iy, € L**(Q) for certain s; > max{2, 43, for
j=1,...,J. Let C and RY be nonnegative number such that

HyOHLoo(Q) < G, jg?}?jJH%HSI <Gy

Assume that (y, K1, ...,k7) € X2 is a weak solution of the system (0.1) - (0.3) with the above
data and with g; := tg;, hg = Up,, Qj = Ua,, . Then

HyHLOO(QT) < (1.78)

where
C:C(d’T7Q7K7‘]’DaIBI,"'7BJ’LCfaf0,Lla"'aLK,wl(),"'awKOa

RUaRoa | y*H272) COOa Cfa 51? Cg)

where the quantities on which C depends are as in the assumptions of the theorem.




42 CHAPTER 1. THERMOSTAT CONTROL MECHANISM — PROPERTIES

PROOF. Let s; be as in the assumption of the theorem and let sy € [1,00]. We will need
to have estimates for norm HZ}]:1 ﬂgj/{szl 5" We derive them as follows. By independence of
variables being arguments for iy, and x; and by the definition of Cl:

Sl = Shoullbsliaon = Sl

The assumptions concerning the estimate (1.76) in Theorem 1.2.12 are fulfilled. Thus, by the
Holder inequality and by Theorem 1.2.12, term Hmj{ can be estimated by:

<

$1,89 LSQ(O T) (].-79)

Le=2(0,T)

L20r) = COH“J‘HLoo(QT) < CoCh (1.80)

75|
where Cy = TY52 for s9 < oo, Cyp = 1 for so = oo and where 4 stands for the constant from
(1.76). Note that the assumption s; > 2 is necessary here due to the fact that Theorem 1.2.12
assumes iy, € L2(Q),j=1,...,J.
Combining (1.79) and (1.80) together, we have

qug]

< Cr (1.81)

51,582

where

CF = JCgC(]Cl

The estimate (1.81) is true for an arbitrary sq € [1,00]. In particular, we can choose

281
f d/2
o —a rs>df (1.82)

S9 = 00 for s1 =d/2

S9 =

One can verify that for s; as in the assumptions of the theorem and for so given in (1.82), pair
of numbers s1, sy obeys conditions (1.74) and (1.75). This is the point of the proof where the
assumption s; > max{2, %} is necessary because it guarantees that s; obeys the restrictions
given in (1.75).

Let so be as in (1.82), so as conditions (1.74) and (1.75) were valid. This, along with (1.81)
and with the assumptions of the present theorem, implies that the assumptions of Theorem
1.2.11 are fulfilled for the system (1.4) with k; := ; and with g; := 4y, j = 1,...,J. Observe
that y is a weak solution of the system (1.4), with the mentioned assignments (see Definition
1.1.3). Thus, by Theorem 1.2.11 we find that

HyHLOO(QT) < Cs

where C3 is the constant from the assertion of Theorem 1.2.11. Taking into account the list
of quantities on which constant C3 depends, the construction of constant Crp above and the
meaning of (', the assertion follows. W

Basing on Theorem 1.2.13, we will show the following modifications of the existence and
uniqueness results given in Corollary 1.2.8 and Corollary 1.2.9:

Theorem 1.2.14 Let the assumptions of Corollary 1.2.8 be fulfilled, with the following modifi-
cations:
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e we assume that f: R — R is locally Lipschitz continuous and obeys (1.73) with constant
Cy > 0, instead of the condition for f given in the assumption (B-3),

e we assume that yo € L°(QY), instead of the condition for yy given in the assumption (B-5),

o we assume that g; € L*1(Q), for s; > max{2, %}, for j = 1,...,J, instead of assuming
that g; belongs to L*(2) only.

Then, there exists a unique weak solution of the system (0.1) - (0.3).

Theorem 1.2.15 Let the assumptions of Corollary 1.2.9 be fulfilled, with the modifications as
in Theorem 1.2.1}. Then, there exists a unique weak solution of the system (0.1) - (0.3).

REMARK. Note that the condition g; € L*(Q) for j = 1,...,.J allows the assumptions of
Theorem 1.2.14 and Theorem 1.2.15 be fulfilled only for domain dimension d € {1,2,3,4}. One
can verify that for higher dimension of the domain, higher integrability of functions g; would be
required. A

For conciseness, we present only the proof of Theorem 1.2.14. The proof of Theorem 1.2.15
follows the same lines.

PrROOF OF THEOREM 1.2.14. The proof relies on the concept of truncations. For a given
n > 0, we define truncation f™: R — R as follows:

f(n) for s >n
f(s) =< f(s) for s € [—n,n|

f(=n)  fors<-—n

Note that the function f™ is Lipschitz continuous for an arbitrary n > 0 (by local Lipschitz
continuity of f) and, for n > C, obeys (1.73) with the same constant C as the original function
f-

Denote by ((0.1) - (0.3))" the modification of the system (0.1) - (0.3) consisting in putting
f™ instead of f in the main equation of (0.1). The system ((0.1) - (0.3))" certainly is a par-
ticular case of (0.1) - (0.3), hence all definitions and theorems concerning (0.1) - (0.3) apply to
((0.1) - (0.3))" as well.

In particular, a weak solution of the system ((0.1) - (0.3))" (see Definition 1.2.1) exists and
is unique, for an arbitrary n > 0 — see Corollary 1.2.8 and recall the Lipschitz continuity of f™.
The assumption that s; > 2 also is necessary to apply Corollary 1.2.8.

Assume that (y",k7,...,k") € X? is the weak solution of the system ((0.1) - (0.3))" for
certain n > 0. Now, we will justify that y™ is bounded on Q7 by a constant independent of n,
for n big enough.

Functions iy, := g; obey the requirements of Theorem 1.2.13, for s; as presently assumed. As
mentioned, f™ is Lipschitz and, for n > C, f™ fulfills (1.73) with constant Cy independent of n.
By the latter, and under other assumptions of the present theorem, the system ((0.1) - (0.3))”
obeys the assumptions of Theorem 1.2.13, for n > Cy. Thus, by Theorem 1.2.13, we find that

HynHLoo(QT) <o for n > Cy (1.83)

where C is the constant from the assertion of Theorem 1.2.13. Cj is independent of n because
none of the quantities on which Cy depends (Theorem 1.2.13) is dependent on n (what in par-
ticular concerns constant Cy, which is the constant for the condition (1.73) for the function f"
with n > Cf).
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Let us choose number 7 greater than max{Cp,Cy}. Taking into account the estimate (1.83)
and the definition of f™ we obtain:

fﬁ(yﬁ) = f(yﬁ) for a.e. (x,t) € Qr

Therefore we conclude that (y", k7, ..., ") is also a weak solution of the system (0.1) - (0.3).

Above, we have proven that an arbitrary weak solution of ((0.1) - (0.3))" is a weak solution

of (0.1) - (0.3). Thus, by existence of weak solutions for ((0.1) - (0.3))" (Corollary 1.2.8) we
conclude the existence of weak solutions of (0.1) - (0.3). To infer the uniqueness, we need justify
that an arbitrary weak solution of (0.1) - (0.3) is a weak solution of ((0.1) - (0.3))", for certain
n > 0, and recall the uniqueness result for ((0.1) - (0.3))" (Corollary 1.2.8). This will close the
proof.

But the fact that a weak solution of (0.1) - (0.3) is also a weak solution of ((0.1) - (0.3))", for
certain n > 0, follows by arguments analogous to the above ones. Assume that (y,K1,...,Kk7) €
X2 is a weak solution of (0.1) - (0.3). Under the assumptions of the present theorem, the system
(0.1) - (0.3) obeys the requirements of Theorem 1.2.13. Thus, we can apply Theorem 1.2.13
again to infer that

HyHLOO(QT) <Gy

where constant Cj is the same as in (1.83). Having this, by arguments analogous as above, we
see that

) = f(y) for a.e. (z,t) € Qr
for 7 greater than Cy. Therefore, (y,k1,...,ky) is a weak solution of ((0.1) - (0.3))77. The
uniqueness of the weak solutions for ((0.1) - (0.3))" follows by Corollary 1.2.8. B

REMARK. The proof of Theorem 1.2.15 is exactly the same as the above proof, with the
sole difference that every reference to Corollary 1.2.8 appearing in the proof should be replaced
with a reference to Corollary 1.2.9. A

REMARK.  The estimate (1.77) in Theorem 1.2.12 assumes a priori knowledge that y €
L>(Qr), what can be impractical. Theorem 1.2.13 allows to specify more concrete assumptions
under which the estimate (1.77) is valid. Namely,

e let the assumptions necessary for the estimate (1.76) in Theorem 1.2.12 hold,

e and in addition, assume that HyOHOO < Cw and 1y, € L*1(Q), for certain s; > max{2, 43,
forj=1,...,J.

Then, the assumptions of Theorem 1.2.13 are fulfilled. Now, Theorem 1.2.13 can be applied
to conclude that y € L*°(Qr). In consequence of the latter and the fact that we impose the
assumptions required for (1.76), the assumptions necessary for (1.77) in Theorem 1.2.12 hold.

Provided the above reasoning, constant Cj entering the structure of Cy in the estimate
(1.77) becomes the constant from the assertion of Theorem 1.2.13 and depends on the quantities
indicated therein. A

1.2.4 Other generalizations

For technical reasons, in further parts of the present work it will be necessary to deal also with
systems of structure slightly different than the structure of (0.1) - (0.3). These are the system
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(3.9) - (3.10) (called linearized system) and the system (3.30) - (3.31) (called adjoint system),
introduced in Chapter 3. It will be necessary to have existence and uniqueness results for the
mentioned systems, moreover we will need to have estimates for the solutions of the linearized
system. Hence, below we introduce a system of structure sufficiently general to let the linearized
system and the adjoint system be particular cases of the subject system, and, next, provide
uniqueness and existence results along with the necessary estimates for the subject system.

The announced system, which covers the case of both the linearized system and the adjoint
system, is the following one:

ye(z,t) — DAy(z,t) = f(z,t,y(z, 1))+
+ Z}le = (@, 6)r () + Z;’:l 3(2)0;(z,t) on Qr

(1.84)
%:O on 90 x (0,T)
y(0,7) = yo(x) for x € Q
Biry () + k1 (t) = Wi (y(.,1),Y(.,t))  on [0,T)
- (1.85)

Brwly(t) + ka(t) = Wi(y(.. 1), Y(.,t)) on[0,T)
HJ(O):%jOER forj=1,...,J

Wily(..1),Y(.,1) :z]-(t)</ﬂﬁj(x)Y(x,t) dx+wj(/ hj(x)y(x,t)dx)> (1.86)

Q

where unknown are x;: (0,7) — R for j = 1,...,J and y: Qr — R. In the system (1.84)
- (1.86), as in previous sections, T > 0 and €2, being a domain in RY, are given, and Q7 :=
Q% (0,T). Moreover, D, 31,...,8; >0, f: Ox 0, T)xR =R, wj: R=+R,Z;,0,,Y: Qr = R,
gjo,ﬁj,ﬁj,hj: Q—=R,Z;: (0,7) = R and kjo € R are given, for j=1,...,J.

In the present section, we provide existence and uniqueness results for the system (1.84) -
(1.86), together with estimates for its solutions. The system (1.84) - (1.86) cannot be viewed
as a particular case of the system (0.1) - (0.3), thus the results concerning (0.1) - (0.3) are not
transmittable to the system (1.84) - (1.86). Nevertheless, the proofs of the existence, uniqueness
and stability theorems for (1.84) - (1.86), which will be formulated below, utilize the same
methods as the proofs of the analogous theorems concerning (0.1) - (0.3). For this reason, we do
not present the proofs in the present section.

The following assumptions will be necessary in this section:

(D-1) © C RY is as in the assumption (B-1), i.e. Q:

a) is bounded,
b) satisfies the cone condition,
(D-2) J, T, D and p;, for all j =1,...,J, are as in the assumption (B-2),

(D-3) f: (2,1,9) — f € R, acting on Q x (0,T) x R, is:

a) globally Lipschitz continuous w.r.t. ¢ for a.e. (,f) € Qr, with a Lipschitz constant
independent of (Z,%) € Qr; we denote this Lipschitz constant by L and put fo := f(0)
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b) measurable w.r.t.

(2,1) for all § € R,
¢) f9, defined by fO(&,1)

.= f(&,1,0) for (2,7) € Qr, belongs to L2(Qr),

(D-4) wj is globally Lipschitz continuous; we denote the Lipschitz constant of w; by Ej and put
wjo := w;(0), forall j =1,...,J,

(D-5) 9o € L*(2) and Fjo € R, for j =1,...,.J,

(D-6) Y € L*0,T;L*()), E; € L>(0,T;L*(Q)), ©; € L>®(Qr), Z; € L>(0,T) and h; €
L2(Q), for j=1,...,J.

The solutions of the system (1.84) - (1.86) are understood in the sense analogous to that
given in Definition 1.2.1:

Definition 1.2.16 We say that (y,k1,...,57) € X2 is a weak solution to the system (1.84) -
(1.86) if:

(a) y(.,0) =70 in L*(Q) and k;(0) = Kjo for j=1,...,J,

(b) for all € L*(0,T; H'(S2)), there holds

T _ J J
A <y,7 ¢> + D(Vy, V(b)LQ(Q) + (_f( . 7t7y) - Z‘Ej’k':j - Z ejgj ’ ¢)L2(Q) dt = 0
j=1

j=1

(c) for all ¢ € L*(0,T), for j =1,...,J, there holds

T —
/0 (,BjI{;-—FI{j—Wj(y,Y))édt =0

The point (a) in the above definition makes sense, because, by arguments as in the case of
Definition 1.1.1 (see page 6), the condition (y, #1,...,xs) € X2 implies y € C([0,T]; L?(2)) and
(Iﬁ:l, ce 7HJ) S C([O,T]).

The below analogues of results presented in Theorem 1.2.5 (estimates in X2 norm) and
Corollary 1.2.9 (existence and uniqueness) are valid:

Theorem 1.2.17 Let the part a) of the assumption (D-1) and assumptions (D-2) - (D-4), (D-
6) be fulfilled. Let i € U and (Y0, K10, - - -, ko) € XV. Assume also that HﬁHﬁ < RY for some
RY > 0 and that H(go,ﬁlo,...,'f%JO)HXo < RY for some R® > 0. Let (y,k1,...,k5) € X% be a
weak solution of the system (1.84) - (1.86) corresponding to g; := iy, 7Lj = Ap,, forj=1,...,J,
and the initial condition (Yo, K10, --.,kJjo). Then the following estimate holds:

H(yaﬁ'la"'aﬂJ)Hx2 < C

where C' depends only on
T7J7zaH}VOH2727517-"7zJ7iDlO="'7@JO7D7517"'7/8J7

R, R ([ Y ], |

Eszoo’ H@J'HLoo(QT)’ HZJ'HLOO(O,T)’ HhHLQ(Q)'
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Lemma 1.1.5 Lemma 1.1.6
(properties of (1.4)) (properties of (1.5))

Theorem 1.2.3
(existence for bounded
switching functions)

Theorem 1.2.5
(estimates in X2 norm)

Theorem 1.2.7
(existence for unbounded
switching functions)

Theorem 1.2.6
(stability in X2 norm)

Corollary 1.2.9
(existence and uniqueness for

unbounded s. f.)

Figure 1.4: Dependencies between some of theorems in Chapter 1, concerning the system (0.1) -
(0.3). Lemmas 1.1.5 and 1.1.6 concern auxiliary equations, while the rest of the results indicated
in the above graph concern the system (0.1) - (0.3) directly. In the graph, an arrow leading from
A to B means that A was utilized in the proof of B.

Theorem 1.2.18 Let assumptions (D-1) - (D-6) be fulfilled. Let ('gvj,ﬁj)jzl € U. Then, the
system (1.84) - (1.86) has a unique weak solution.

REMARK. We have verified that Theorem 1.2.17 and Theorem 1.2.18, as analogues of
Theorem 1.2.5 and Corollary 1.2.9, respectively, can be proven with the same methods as the
latter statements. Corollary 1.2.9 depend also on other results proven in Chapter 1, see Figure 1.4.
Fortunately, analogues of these results also can be proven for the system (1.84) - (1.86) with the
same methods.

We give one necessary comment concerning the above matter. One of the necessary results
is an analogue of Lemma 1.1.5. We remark that the appropriate analogue of Lemma 1.1.5,
necessary here, should be proven (and can be proven), not for auxiliary the system (1.4) (which
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was considered in Lemma 1.1.5), but for the following modification of (1.4):

ye(z,t) = DAy(x,t) = f(a,t, y(z, 1))+
+ Z;’:l =, (2, )k (8) + ijl 0,(x,)j;(x) on Qr

oy
%—0 onan(O,T)
y(0) = %o on

Since, according to the above remark, the proofs of Theorems 1.2.17 and 1.2.18 can be
conducted with the methods as the other proofs of Chapter 1, we skip them.



Chapter 2

Thermostat control mechanism —
numerical prototypes

The present chapter is devoted to numerical simulations concerning the thermostat control mech-
anism, utilized in (0.1) - (0.3).

The aim of the simulations is twofold. First, we intended to investigate the efficiency of the
thermostat control mechanism, understood as the ability of the latter to bring the state of the
process close to some neighborhood of the reference state y*. In our simulations, we observe
how the efficiency changes with changes of the reference state, of the initial state and of the
number of the control and measurement devices. Note that the results described in Chapter 1
do not say anything about the efficiency of the thermostat control mechanism, in the mentioned
sense. Thus, the observations concerning the efficiency, made within the scope of the numerical
simulations, complement the qualitative results given in Chapter 1.

Second, we were interested in the question whether the state of the process controlled by
thermostats, for large time, becomes independent of the initial state of the process or not.
This kind of independence is essential for the optimal targeting problem, announced in §2 of
Introduction, because the independence on the initial state gives additional practical advantage
to the cost functional (0.8).

Being more precise, assume that the process, controlled by thermostats, stabilizes close to a
certain state, independent of the initial state. Then, the cost functional (0.8) with T close to
T, also becomes independent of the initial state of the controlled process. In consequence, still
assuming Ty close to T', the optimal targeting problem, which bases on the latter cost functional,
has solutions independent of the initial state. Nevertheless, we mention the above only to signalize
certain issues concerning the optimal targeting problem. We postpone the analysis of the latter
problem until Chapter 3 and Chapter 4.

As mentioned above, the efficiency of the thermostat control mechanism will be understood
as the ability to bring the state of the process to a neighborhood of the reference state. To
work with this approach, it is necessary to observe whether the state of the process indeed stays,
for large time, in some neighborhood of the reference state or not. Assuming that this is the
case, we can introduce an intuitive criterion to compare the efficiency of the thermostat control
mechanism in two distinct situations. For example, let situations A and B differ in the initial
state of the process. We will say that the thermostat control mechanism is more efficient in
situation A than in situation B if in situation A the controlled process stays in a neighborhood
of the reference state of a diameter smaller than in situation B. In particular, assume that, after
some time, the process evolution stabilizes near to some time-invariant state. Then, the efficiency
of the thermostat control mechanism can be measured in terms of the gap between the process
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state, at time moment large enough to observe the stabilization, and the reference state. In the
present chapter, we refer to the latter understanding of efficiency. For this purpose, we measure
the gap between the process state and the reference state in terms of W12(Qy) norm, where Qy
denotes the triangulated domain utilized in the simulations.

Mathematically, in the present chapter, by the initial state of the process controlled by
thermostats we mean yo component of the initial condition (yo, k10, .., /Jo) in the system (0.1)
- (0.3).

In the simulations described in the present chapter, the main equation of the system (0.1)
- (0.3) was discretized in space with the use of the finite element method. A square domain,
triangulated with triangular elements, was considered. The finite element space was the space
of continuous functions, linear on each element. The time discretization was performed by
employing the implicit Euler scheme. The nonlinear terms entering the system (0.1) - (0.3) were
treated by means of the Picard iterations method.

Three experiments were performed. The first concerns the properties of the thermostat
control mechanism when it is focused on a task of preserving an unstable state. The second one
concerns an attempt of comparison of efficiency of the thermostat control mechanism for various
initial states. The third one compares the properties of the thermostat control mechanism when
two different numbers of the control and measurement devices are considered.

In the results of the simulations, we observe that the efficiency of the thermostat control
mechanism, understood in the above mentioned sense, changes with the changes of the number
of the control and measurement devices. The efficiency varies also with changes of the size of
the supports of functions g; and hy, describing the control and measurement devices actions.

Concerning the independence of the behavior of the controlled process on the initial state
for large time, varying results were observed. In some of the performed simulations, the results
suggest that the alleged independence is possible. However, there were also simulations suggesting
the opposite, namely that a change of the initial state possibly could result, even for long time
horizon, in an essentially different state.

The order of the present chapter is as follows. In Section 2.1, we describe the structural
assumptions imposed in the system (0.1) - (0.3) in our simulations, i.e. we specify the domain,
the nonlinear terms etc. Next, in Section 2.2, we describe the utilized numerical scheme in more
detail. Eventually, we proceed to Section 2.3, which is devoted to presentation and discussion of
the results of the simulations.

2.1 Structural assumptions

In the experiments described in Section 2.3, the below assumptions were made.

We assumed that every control device in the thermostat control mechanism distributes energy
uniformly in a disc centered at given x; € ). We treated the measurement devices analogously,
assuming that every measurement device observes a disc-shaped area. Moreover, we assumed
that the numbers of the control and measurement devices are equal. More precisely, in the
system (0.1) - (0.3), functions g; and hy, characterizing the devices actions, were determined by

K=J (2.1)
gj i=1tg; = 0g(. —xj)la,  hy(@) = dn; = on(. —x5)la (2.2)
for j=1,...,J, where x; € R4 and Og,Oh: RY — R, and where o4 and oy, are given by:

04(7) = Cylpoyr,)(x),  on(x) = Cplp,,) () (2.3)
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for certain r4,Cy, Cy, > 0. In other words, the area of actions of every control device coincided
with area of actions of exactly one measurement device.
We imposed the following assumption for the weights o

Ak = ﬁajk = 5j,k (2.4)

for j,k = 1,...,J, where §; denotes the Kronecker delta function of j and k (see Notation
conventions). The assumption (2.4) is natural in the context of assumptions (2.1), (2.2), (2.3).
Having (2.1), (2.2), (2.3) and (2.4), the control (g;, hj, ajr);_, ; € U, applied in the sys-
tem (0.1) - (0.3), is determined once a selection of the points x1,...,z; and the parameters
re,Cy,Cp > 0 is made.
The above assumptions result in a simplified version of the model (0.1) - (0.3), which is a
focus of our interest in the present chapter, concerning the numerical results:

(1) = DAy(a,t) = Fy(,0) + 3 gi(as(t)  on Qr

% =0 on 9 x (0,7T) (2:5)
n
y(x) = yo(z,0) for z € Q

together with

B (0) + ra(®) = w ([ @)y~ y7)dx)  on [0.7)

Q
’ (2.6)
8y (0) 4 8,0) =i ([ Bota)ly—y)dz) on [0.7)
Q
\lﬁj(O):IijQER forj=1,...,J
for functions g; and h; defined by (2.2) and (2.3).
The experiments were performed for a two-dimensional rectangular domain:
Q=(-1,1) x (-1,1) c R? (2.7)
It was assumed that y* was time independent: y* = y*(z).
The reactive term f treated in the experiments was:
f(s)=—-s3+s (2.8)
together with w; given by
wj(s) = Hy max(min(Lys, 1), —1) (2.9)
for certain L, Hy, for j=1,...,J.
REMARK.  In fact, our intention was to use w; defined by w;(s) = —Hysgn(s) for a

certain H,,, because, according to remarks in §1 of Introduction, —sgn is a natural example
of a switching function in thermostat control mechanism. Nevertheless, we wanted the data
for the simulations to be covered by the analytical results presented in Section 1.2, concerning
in particular existence and uniqueness of solutions for the system (0.1) - (0.3). The results of
Section 1.2 are proven under assumption that the switching functions are Lipschitz continuous,
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what excludes the choice of —sgn or —H,,sgn. Therefore, for the simulations, we have decided
to choose Lipschitz functions of a steep slope in point s = 0, approximating in a certain sense the
ideal function —H,,sgn. Basing on the reasoning as in the example on page 17, we have chosen
the switching function as in (2.9). A

For a given r,, we considered the value of C}, to be determined by the following relation:
Cswitch/ Op = 1/‘Lw| (210)
Rd

for certain Cyypiren, > 0. In the above, C}, is present in the definition of oj. The identity (2.10)
along with definition of o, in (2.3) allows to infer that

Cp = (7T ‘Lw| Cswitch T?y)_l (2.11)

REMARK. For better explanation of the meaning of the constant Cyyiren, > 0, we make the
following remark. Due to assumptions (2.1) and (2.4), the term w; ([, hj(y — y*)) in the right
hand side of (2.6) is the signal generated by the signal generator associated with j-th control
device (see the nomenclature introduced in §1 of Introduction). The concept is that Cgyizen
defines a threshold gap between the solution y and the reference state y* after exceeding which
the extremal value of signal is returned by the signal generators. Being more precise, for a given
measurement device, (which actions are characterized by the function h;) we want the signal to
achieve its maximal value when y — y* & Cypiten Or ¥y — y* &~ —Clypiten, in the area observed by
the measurement device (i.e. in the support of h;). Taking the formula for w; into account, the
extremal signal value is achieved for [, hj(y — y*) = £1/|Ly| (or for higher values of the latter
integral; nevertheless, in our idea, we are interested in the smallest gap between y and y* for
which the extremal signal value is achieved; hence the latter condition with sign ,,=", not ,,>”,
expressing that we want the value of the integral to coincide with the closest to zero extremal
points of w;). Processing the above conditions yields

1/{Lw{ :/Qh]‘y—y*{ ~ CswitchAhj

This gives the relation (2.10), after assuming that ,&” sign can be replaced by the equality
sign and after assuming that [, hj = [pa on. The latter is correct if supp(op(. — 2;)) € Q. For
simplicity of the above reasoning, referring rather to general concepts than to precise calculations,
we assumed it to be true. However, it can be not the case in general. A

Altogether, for Q2 given by (2.7), the reactive term as in (2.8), the switching function w; as in
(2.9), g5, hj, aj defined by conditions (2.1), (2.2), (2.3), (2.4) and C}, as in the formula (2.11),
the system (2.5) - (2.6) is uniquely determined by the choice of the following quantities:

*
Yo, K10,---5KJ0, Y J, x1,...,1y
T7 Daﬁl,"'aﬁ], TJ;Cg;Cswitch,Lw;Hw

The values of the above quantities utilized in the particular experiments will be specified in
Section 2.3.

REMARK. One may verify that the above Q, f, wj, g;, h; for j = 1,...,J fits the
assumptions of the existence, uniqueness and stability results from Section 1.2.3. Moreover, for
particular experiments described in Section 2.3, we will choose yg and y* which also fulfill the
assumptions of the subject existence, uniqueness and stability results. A
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2.2 Numerical methods

The below numerical methods were utilized in the experiments described in Section 2.3.

For numerical treatment of the system (2.5) - (2.6) we utilized the finite element method to
solve the component y corresponding to the parabolic equation.

The triangulation of 2, see (2.7), was of the type presented on Figure 2.1. The finite element

Figure 2.1: The type of triangulation of €2 utilized in the experiment. The triangulation is such
that the mesh associated with the triangulation has the same number of nodes along each spatial
direction.

space chosen for the simulations was the space of continuous functions, linear on every element
of the triangulation. The time interval was discretized by selecting a uniformly distributed in
the set [0, 7] of time points. The implicit Euler scheme was used to solve the model w.r.t. the
time variable.

The nonlinear terms f and w were treated with the use of the Picard iterations technique.
A constant number of the Picard iterations for every time step was utilized. We preferred a
constant number of Picard iterations instead of applying the error-based stop criterion in order
to control the computational time.

In the further part of our work, we will use the following notation concerning the above
described numerical scheme:

N +1 — the number of nodes along each spatial direction, for the mesh associated
with the triangulation,

™ — the length of the mesh step along each spatial direction,

M+1 — the number of time points in the time discretization,

™ — the length of the time step,

Npjcara — the number of Picard iterations in every time step.

According to the above notation, the total number of nodes in the triangulation equals (N +1)2.
Moreover, relations 7v = N~ and 73y = M ! hold.

Let us sketch in more detail the numerical scheme applied for the system (2.5) - (2.6). Denote
the triangulation of type presented in Figure 2.1, corresponding to N 41 nodes along each spatial
direction, as 2. Denote the finite element space of functions on 2 being continuous on
and linear on every element of Qy as P (Qy).

Moreover, for a given function F': 2 — R, denote the continuous linear interpolation of F,
taking exact values in the nodes of the mesh associated with Qy, by [F]y. In addition, denote

—
by F the vertical vector of the values of F' in the nodes of the mesh associated with Q. It
—

follows by the definitions that E: [F]N-
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REMARK. Note that, Qy, understood as a subset of R?, equals Q. As a consequence, it is
legal to write P1(Qy) C L2(2) or L2(Qn) = L3(Q). A

We begin with discretization in space, proceeding as follows. In the system (2.5) - (2.6), we
take [g;] v, [j]y» [Yo]n and [y*]n instead of g;, hj, yo and y*, respectively. Next, we transform
this modification of (2.5) - (2.6) to the following variational problem, using the P;(2y) space:

F N ) 2y T D(VYN, V) 12,y =
= ([f(yN)]Na ¢)L2(QN) + Z;.Izl ([gj]N, ¢) LQ(QN)KLN on [Oa T], VqﬁePl(QN) (2'12)
yn(0) = [yoln

and
Bitki N + KjN =W, <([hj]N, (yn — [’y*]N))LQ(QN)) on [0,7]

#j.N(0) = Kjo

(2.13)

for j =1,...,J, where (yn, k1N, ..., kiN), With yn(t) € Pi(Qn) and k; n(t) € R for ¢ € [0,T7,
is the desired solution. Note, that the term f(yn) is not in P;(Qy). This is the reason for
which, defining the above variational problem, we use [f(yn(t))]y in (2.12) instead of f(yn(%))
(for the sake of readability, the time dependence in (2.12) is hidden). Note also that term
(Vyn, VON) 20, above is well defined, since P(€2n) C H'(Qp) (see Theorem 2.1.1. in [13]).

REMARK. Since, as a subset of R?, Qy equals €, using notation ,,Qx” instead of ,,£0” in
(2.12) - (2.13) is not necessary. Nevertheless, in (2.12) - (2.13) we use notation ,Q2x” in order to
stress that we are working with a space discretization of original the system (2.5) - (2.6). A

Define the following matrices:
(N+1)?
My = ((¢m,¢n)L2(QN)) > Ay = <(v¢mav¢n)L2(QN))

n,m=1

(N+1)2
n,m=1
where ¢, for n = 1,..., (N + 1)2, denotes the standard ,hat” basis of the finite element space
P (Qn). L
Note that, given F,G € P;(f2), we can represent them as F = Z( ) Fn ¢n and G =

n=1
2 —
Z&Z}Ll) Gn ®n, respectively. Hence:

= - = -
(F,G) o) = (F)' My G, (VE,VG) 2 = (F) AN G (2.14)

% N
Now, note that [f(yn)]y= f(yN). Using this and the above observation concerning products
of P;(Qy) functions, we transform the system (2.12) - (2.13) further, to the matrix form:

d — — _ — J —) .
GV yx + DAy yv=Myf(yn) + 3" My lg;lv rin on [0,7] (2.15)
R —
yn (0) =[yoln
with
d T =
Bidkjn+rjN = wj<[hj N My(yn —ly ]N)) on [0, 7] (2.16)

kN (0) = Kjo
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for j =1,...,J. The unknown solution of (2.15) - (2.16) is (y_fv,/ﬁ;l,N, - ,K)LLN).

We approximate the solution of (2.15) - (2.16), as mentioned, by using the implicit Eu-
ler scheme with M + 1 time points, uniformly distributed in interval [0,7], and by using the
method of Picard iterations with Np;..-q iterations to treat the nonlinear terms in each time
step. Denote the approximation of solution of (2.15) - (2.16) obtained with these methods by

(ﬁv, ]%1,N, A I?:LN). The latter approximation is a function defined in the time discretization
points, t = mrar, m = 0,1,..., M, with values in ROVFD?* x RV,

Having this, we construct the following function (Yy,ki n,...,ksn), defined in time dis-
cretization points, i.e. in t = m7y, m = 0,..., M, and taking values in P;(Qy) x R’. For

t=mmyg, m=0,..., M, weput Yn(t) = SNV (6))n b and kjy =y for j=1,...,J.

The function (Y, k1 N, ..., ks n) is the output of the above numerical scheme for the system
(2.5) - (2.6). In other words, we treat (Yn,kin,...,ksn) as an approximation of the weak
solution of (2.5) - (2.6) (since (2.5) - (2.6) is a particular case of (0.1) - (0.3), we understand the
weak solution of (2.5) - (2.6) in sense of Definition 1.2.1).

All simulations which results are presented in Section 2.3 were performed with the use of the
above described scheme.

For the purpose of our experiments, the matrices My and Ay were computed explicitly, with
no use of numerical integration methods.

Note, that the above described numerical scheme is fully determined by the choice of the
parameters determining the finite element space, the time discretization scheme and the nonlinear
term treatment method, i.e. by the following parameters:

N7 M, NPicard

The values of the above parameters utilized in the particular experiments will be specified in
Section 2.3.

2.3 Results of simulations

Now we proceed to presentation of the results announced in the introduction to Chapter 2.
The experiments described below were performed with the use of the numerical scheme from
Section 2.2 and under the structural assumptions from Section 2.1.

In the below discussion of the results, we put stress on the efficiency of the thermostat control
mechanism, understood in terms of the gap between the process state and the reference state for
large time. To realize the subject objective, we proceed with the following strategy. We observe
whether stabilization of the process occurred at the terminal time, ¢ = T', of our simulations and
scrutinize the gap at t =T

We are also interested in observing whether the behavior of the process controlled by ther-
mostats exhibits independence on the initial state for large time. The idea to investigate this
matter is to wait until the process, considered with distinct initial states, stabilizes, an then to
compare the observed process states.

Our approach to the both of the above questions (efficiency and independence on the initial
state) assume that the behavior of the process stabilizes after some initial period, in which
oscillations possibly occur. Hence, throughout the results discussion in the present section, we
will stress whether we observed stabilization in the behavior of the controlled process or not.
Above, as everywhere else in the further part of the present chapter, by stabilization we mean
that the process remains close to certain time-invariant state. By oscillations we mean rapid
changes of the process state.
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Moreover, to realize the above ideas concerning efficiency, it is necessary to have some measure
of the distance between the reference state the process state in a given time ¢ € [0,7]. For this
end, we measure the distance between two given states in terms of W12(Qy) norm, where Qy
is as in Section 2.2 (this is implemented by means of functions Ey,, and E%{ad, defined below).

In Section 2.3.1 and Section 2.3.3, we describe experiments illustrating the behavior of the
thermostat control mechanism for varying numbers of the control and measurement devices. In
Section 2.3.2, we take a look at behavior of the subject system in a situation where the initial
state of the process varies.

Section 2.3.1 concerns the case where y* is an unstable equilibrium of the process and the
supports of functions g; and h; cover the domain tightly. The cases of various sizes of the
supports of g; and h; are compared. It is observed that the efficiency of the thermostat control
mechanism improves as the size of the supports of g; and h; decreases. In Section 2.3.2, we
assume that the number of the control and measurement devices, as well as the targeting of their
actions, are fixed and we do not assume that y* is an unstable equilibrium (y* is chosen as a
state representing some free boundary). We observe that the efficiency of the thermostat control
mechanism is similar for two distinct variants of the initial state. In Section 2.3.3, we consider y*
as in Section 2.3.2. We also assume that the initial state and the sizes of the supports of g; and h;
are fixed. We compare the behavior of the thermostat control mechanism for varying numbers of
the control and measurement devices. It is observed that the efficiency of the thermostat control
mechanism decreases as the number of the devices decreases.

In all cases considered in Section 2.3.1, Section 2.3.2 and Section 2.3.3 some stabilization of
the behavior of the process was observed, after an initial period of oscillations. In other words,
the thermostat control mechanism seemed to bring the process near to some time-invariant state.
Nevertheless, in some cases the achieved approximate time-invariant state seems to be dependent
on the initial state of the process. We comment on this matter more broadly in Section 2.3.4.

Below, by numerical solution of the system (2.5) - (2.6) we mean the approximation of a
solution of (2.5) - (2.6), denoted in Section 2.2 as (Yy, ki n,...,kjsn). For convenience, here we
also keep notation (Y, ki n,...,ksn) for denoting the numerical solution of (2.5) - (2.6). In
addition, by numerical process we mean ,numerical approximation of the process controlled by
thermostats”. Mathematically, the notion of numerical process below coincide with Yy

In the presentation of the results, some plots appear and thus we give a short clarification
of the utilized plot convention here. The plots can be grouped into certain classes: 1) plots of
functions from P;(Qy), 2) plots concerning configuration of the control devices utilized in the
experiments and 3) error plots.

By configuration of the control and measurement devices we mean the choice of the supports
of functions g; and h;, which characterize the control and measurement devices actions.

The error plots are self-describing. The rest of the plots need to be commented.

The plots of functions from P; () are plots:

e of the main component Yy of the numerical solution of the system (2.5) - (2.6), in a given
moment of time,

e of the initial state yq of the process or of the reference state y*, utilized in the experiments.

In the plots of functions from P;(Qy), the color map extends from black to white. The values
below a down threshold value of the color map are plotted in black and the values exceeding an
upper threshold value are plotted in white. The threshold values of the color map are indicated
in the plots. The maximal and minimal values of the plotted data also are indicated there.

The plots concerning the configuration of the control and measurement devices are visual-
izations of supports of functions g; and h;. An essential remark is that, due to the structural
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assumptions in the Section 2.1, the supports of the functions g; and h; are pairwise equal. Thus,
one disc in a plot concerning the configuration of the devices represents a pair of supports — the
support of g; and the support of hj, for certain j € {1,...,J}.

The mentioned visualizations of supports, if sufficiently precise, give a unique characterization
of the parameter r, and of the utilized sequence of the central points, x1,...,x s, appearing in
(2.3) (up to permutation). The latter information, along with information concerning parameters
Cy and Cj, (which will be provided explicitly in the description of the experiments), gives full
information about the functions g; and h;.

1 /iF
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(a) 16 devices (b) 36 devices (c) 64 devices (d) 20 devices

Figure 2.2: Control and measurement devices configurations for Section 2.3.
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Figure 2.3: A part of data employed for simulations in Section 2.3. The plotted functions are
given by formulas (2.17) for Fig. 2.3a, (2.18) for Fig. 2.3b and (2.19) for Fig. 2.3c.

Figures 2.2 and 2.3 present data which shall be utilized in the experiments below. The data
employed in particular experiments will be specified in their description by reference to these
figures. The functions plotted in Figure 2.3 are given by the following formulas:

gz, xp) = 1-2(1+ e—153{§(x2—1.5x1)) (2.17)

J(r1,22) = — 1+ (2(1 + 6730:“)_1 — (1 + 6730(1170'8))_1) . (1 + 63012)_1 + (2.18)
+ 2(1 4 0@ 0T (] om30e2) T '

G(z1,19) = cos(4mwy) - (1 -2(1+ 630:”2)71) (2.19)
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Moreover, assume that y* € H'(Q) and that Yy is the main component of numerical solution
of (2.12) - (2.13), obtained with the methods described in Section 2.2. For the time discretization
points t = m7y, m =0,..., M we denote by Ey, () the L? error between Yy and [y*]y:

By () = [[Yx(0) = 51|
and by E%{ad(t) the gradient error between yxy and [y*]x, or more precisely:

Bty = ||V (Yn(t) - 1) 20

where [y*]y is defined as in Section 2.2.

For brevity, below, values Ey, (t) and Ef,;ad(t) will be called error values.

The below described simulations have been performed with the use of the GNU Octave
software.

2.3.1 Experiment 1 — unstable equilibrium

The present experiment is intended to illustrate properties of the thermostat control mechanism
in a situation where the reference state is unstable.
The following data were exploited for the present experiment:

T =24 Cg = 16/7T Lw =—10 I{jo =0 V]'=1,---7J
D =0.01 Coswiteh = 0.2 H, =10

together with the numerical scheme specification given by:
N =100, M = 2400, Npicard = 3

We considered the initial state yo as on Figure 2.3b and the reference state y* = 0. Note that
the y* taken into account indeed is an unstable state for the assumed reactive term f.

We have performed three simulations, basing on various configurations of the control and
measurement devices. The cases of J = 16,36, 64, with the devices tightly covering the domain
with their effects, but varying in the size of the areas affected by a single device, have been
considered. The utilized devices configurations are presented on Figures 2.2a, 2.2b and 2.2c.
One can say that these configurations differ with resolution of measurement abilities and with
resolution of control abilities.

In each of the three simulations, oscillations in the process behavior faded after certain initial
period. It could be observed that, after this initial period, there emerged certain patterns which
did not underwent further rapid changes. However still, some slow evolution of the numerical
process could be observed in longer time horizon. Nevertheless, by the evolution of the process
which we observed, the process states achieved for the time ¢ = T seemed to be close to certain
time-invariant states of the considered model (however, the latter require further work for better
verification).

Now, let us comment on the efficiency of thermostat control mechanisms associated with
the addressed devices configurations. Probably, for many users the result on Figure 2.4a (corre-
sponding to only 16 devices) cannot be considered to be precise solution in the context of the
problem of leading the state of the process to the state y* = 0. Nevertheless, the situation was
changing as we were increasing the number of the devices, keeping uniform distribution of their
actions through the domain. Comparing Figures 2.4a, 2.4b and 2.4c suggests that the greater
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Figure 2.4: Numerical process at time ¢t = T, for the devices configurations considered in Sec-
tion 2.3.1. Fig. 2.4a corresponds to the dev. conf. in Fig. 2.2a; Fig. 2.4b — to Fig. 2.2b; Fig.
2.4c — to Fig. 2.2c.
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Figure 2.5: Ey, (t) and E%jvad(t) for time points ¢t = m7y, m = 0,..., M/2 for simulations cor-

responding to the devices configurations considered in Section 2.3.1. For the sake of readability,
the time horizon of the error plots is limited to [0,12]. After time ¢t = 12 the error values still
evolves, however slowly, without rapid changes.

the number of the control and measurement devices is, the more precise response of the control
devices can be expected. This stays consistent with the natural intuition.

The drastic difference between the efficiency of the thermostat control mechanism for 16
devices and the efficiency for the cases of 36 and 64 devices is well visible on the error plots in
Figures 2.5a and 2.5a. The Reader may also compare the obtained error values at time ¢ = T in
Table 2.1.

REMARK. The above described results suggest that, in the situation of the present experi-
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y part for: | 16 dev. | 36 dev. 64 dev.
E,(T) 1.3006 | 0.3568 | 5.5550e-08
EI N T) | 8.2791 | 3.4143 | 6.9999e-07

Table 2.1: The values of error at the terminal time (¢ = T) for the devices configurations
considered in Section 2.3.1. The presented values are rounded.

ment, the main question concerning the efficiency of the control by thermostats can be reduced to
the question on the number of the devices which would be sufficient to achieve demanded preci-
sion. This is much simpler adjustment procedure than procedures that often can be necessary in
the case of systems with an open-loop control. Suppose that we consider a system with an open-
loop control in which the user is responsible for the choice of right number of the control devices
as well as for the choice of the power functions, ;. In other words, equations (2.6) are not taken
into account. Such open-loop control is more difficult to handle than our closed-loop control,
utilized in the model (2.5) - (2.6), because the user has to control more variables. Necessary is the
choice of the devices together with the power functions in the introduced open-loop case, versus
the choice of the devices only in the case of our closed-loop control. Moreover, in the open-loop
situation a proper choice of the power functions s; is hard to be done by intuition. Probably,
proper power functions would be searched by some optimization procedure, what additionally
increases the complexity of efforts necessary to deal with the open-loop case. In addition, it is
reasonable to expect that the choice of the power functions depend on the initial state of the
process. Thus, it would be necessary to repeat the optimization procedure concerning the power
functions after every change of the initial state.

To sum up, the observed simplicity of adjustment of the thermostat control mechanism stays
in accordance with the expected advantages of the models with automatic correction mechanisms,
expressed in Introduction. A

2.3.2 Experiment 2 — various initial conditions

Below, we present numerical results which illustrate behavior occurring in the investigated model
with control by thermostats when perturbations of the initial state are induced.
In the present experiment, the following data were used :

T=4 Ty = 1/8 Lw =-10 Cswitch =02
D =10.02 Cy=16/m H, =10 kjo =0 V=1,

together with the numerical scheme specification given by:
N =100, M = 400, Npicard = 3

The configuration of the control and measurement devices was assumed to be as the devices
configuration with J = 64 utilized in the experiment from the Section 2.3.1, i.e. as on Figure
2.2c. The reference state was as in Figure 2.3a.

Two simulations has been performed, with two variants of the initial state yy. The first of
them was as in Figure 2.3b, the second initial state was as in Figure 2.3c.

For the both simulations, stabilization of the numerical process occurred after initial period
of oscillations, i.e. certain states which did not underwent further visible changes emerged.
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Figure 2.6: Numerical process at time ¢ = 0.25 and ¢ = 1, for two initial state variants considered
in Section 2.3.2. Fig. 2.6a, 2.6b correspond to the i. cond. in Fig. 2.3b; Fig. 2.6c, 2.6d — to
Fig. 2.3c.

The subject stable states seemed to match the reference state at some rate of accuracy, at
least visually. Moreover, the numerical process generated in both simulations occurred to achieve
a high level of likeness in a short time. This is visible on Figures 2.6a - 2.6d — in particular, the
figures corresponding to the time ¢ = 1 (Figures 2.6b and 2.6d) represent process states which
can be considered to be visually similar. It suggests that the efficiency of the thermostat control
mechanism is similar for the two subject simulations.

The error plots in Figures 2.7a and 2.7b confirm that the components Yy of the both nu-
merical solutions fall into the same neighborhood of the reference state, in the sense of the error
metric considered in the present chapter. Moreover, the ratio of the error at the terminal time
of the experiment is close to 1 (see Table 2.2). Thus, indeed, the efficiency of the thermostat
control mechanism, observed in the above numerical simulations, can be considered to be similar
for the two initial state cases.

As an outcome of the above observations, we propose the following hypothesis: the thermostat
control mechanism has the very useful property of preserving the efficiency under perturbations
of the initial state.
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(a) By, (t) values (vert. axis) in time (b) Elg/;ad(t) values (vert. axis) in time
Figure 2.7: Ey, (t) and Ef,;ad(t) for time points t = m7y, m = 0,...,M/2, for simulations
corresponding to the two initial state variants considered in Section 2.3.2. The time interval for
the plots is limited to [0, 2] for the sake of readability. No significant fluctuations of the error
values were observed after time t = 2.

y part for: | 1st variant | 2nd variant ratio
E,(T) 0.12569814 | 0.12569916 | 1.00000812
Egmd(T) 2.26541586 | 2.26541453 | 0.99999941

Table 2.2: The values of error at the terminal time (¢ = T") for the initial state yo considered in
Section 2.3.2 (with rounding to 8 significant digits).

REMARK. In Figures 2.7a and 2.7b, it can be observed that the initial error was leveled
within a similar time, approximately equal ¢ =~ 1, in both cases. However, the reason of the
latter can be e.g. the comparable rank of values of the considered initial states. It is reasonable
to expect that if we had considered two initial states where one of them was defined as ten
thousand times the other then the time of leveling the initial error would differ. Nevertheless, the
above observation suggests the following hypothesis concerning the properties of the investigated
thermostat control mechanism: if the family of initial states satisfy certain common bound, then
the time of convergence of the controlled process to a given neighborhood of the stable state is
similar for all initial states in the subject family. A

REMARK. An interesting observation can be made by comparing the results discussed in
Section 2.3.2 with the result concerning the case of 64 devices, discussed in Section 2.3.1. The
simulations which generated the subject results share the same configuration of the control and
measurement devices. As we already have noted, in all the subject simulations the numerical
process behavior eventually stabilize. The error values (see Figures 2.5a, 2.5a, 2.7a, 2.7b) also
seem to stabilize at some stable value. Compare the error values in Table 2.2 and Table 2.1 (for
64 devices). An observation can be made that the stable error value is much lower in the case
of the reference state y* = 0 than in the case of y* as in Figure 2.3a. This is interesting since
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one could expect the opposite, as the behavior of the process near y* = 0 is perhaps, roughly
speaking, more unstable than near y* as in Figure 2.3a. A

2.3.3 Experiment 3 — various numbers of thermostats

This experiment is devoted to compare behavior of the thermostat control mechanism for two

different configurations of the control and measurement devices, where the size of the areas

affected by particular devices equals in both cases but the number of the devices differs. This is

a situation different than in Section 2.3.1, where the considered devices configurations differed

not only with number of the devices but also with the sizes of the areas affected by the devices.
The following data was exploited for the present experiment:

T=14 Te = 1/8 Lw =-10 Cswitch =0.2
D=002 C,=16/r Hy,=10 Kjo =0Vjo1.. g

together with the numerical scheme specification given by:
N = 100, M = 400, Npicarda = 3

The initial state chosen for the present experiment was as in Figure 2.3b and the reference state
was as in Figure 2.3a.

Two simulations, corresponding to two configurations of the control and measurement devices,
were performed. The considered configurations of the devices one with J = 64 and the other
with J = 20, are presented in Figures 2.2c and 2.2d.

In both simulations, stabilization of the numerical process took place after some initial period
of time. In other words, certain states which did not underwent further visible changes emerged.
In the case of 64 devices, the numerical process occurred to stabilize quickly at some state
similar to the reference state, see Figures 2.8a and 2.8b. We can say that the process falls to
some relatively small neighborhood of the reference state in this case. For the case of 20 devices,
as we see on Figures 2.8c and 2.8d, the process also seems to fall into some neighborhood of the
reference state. However, the difference between Figures 2.8c and 2.8d seems to be bigger than
between Figures 2.8a and 2.8b, at least visually. Therefore, it is possible that for 20 devices, the
evolution toward the reference state is slower than in case of the simulation with 64 devices.

In the error plots in Figures 2.9a and 2.9b we observe that the error values for both considered
simulations stabilize at some level. The subject error plots also suggest that the efficiency of
the thermostat control mechanism, understood as the error at time ¢t = T, differs for the two
considered devices configurations. The latter is also confirmed by the error values at time ¢t = T,
presented in Table 2.3.

y part for: | 64 dev. | 20 dev. ratio
E,(T) 0.2609 | 0.1257 | 0.4817
EJYT) | 3.0757 | 2.2654 | 0.7366

Table 2.3: The values of error at the terminal time (¢ = T) for the devices configurations
considered in Section 2.3.3 (with rounding to 4 significant digits).

As a conclusion, the above observations stays consistent with the intuitive hypothesis that
the efficiency of the thermostat control mechanism looses its efficiency as the number of the
control and measurement devices is decreased.
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Figure 2.8: Numerical process at time t = 1 and t = 2 for the devices configurations considered
in Section 2.3.3. Fig. 2.8a, 2.8b correspond to the dev. conf. in Fig. 2.2¢; Fig. 2.8c, 2.8d — to
Fig. 2.2d.

REMARK. We already remarked above that in the case of 20 devices the thermostat control
mechanism may drive the process state toward some stable state slower than in the case of 64
devices. This is visible also in Figures 2.9a and 2.9b. For both plots, the error line concerning the
case of 20 devices tends to the terminal value slower, in comparison to the error line concerning
64 control and measurement devices.

Hence, by the above observations, we propose the following hypothesis: when the number of
the devices is decreased, the thermostat control mechanism loose not only its efficiency, under-
stood in terms of the gap between the process state and the reference state for large time, but
also looses the speed of stabilizing the process. Note that this stays in opposite to the situation
considered in Section 2.3.2. There, we concluded with a hypothesis that, for a given configuration
of the devices, the speed of stabilization is approximately the same for varying initial data. A

REMARK. Summing up the observations made in Section 2.3.3, one can say that the
20 devices thermostat control mechanism seems to loose in the contest with the 64 devices
thermostat control mechanism. However, a situation where we have not enough control devices
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Figure 2.9: Ey, (t) and Ef,;ad(t) for time points t = m7y, m = 0,..., M, for simulations
corresponding to the devices configurations considered in Section 2.3.3.

to cover the domain tightly with their effects, i.e. the situation of 20 devices considered above,
seems to be more natural than the situation of 64 devices.

This leads to further questions. The configuration of the 20 control and measurement devices
presented on Figure 2.2d has been chosen for our experiments by intuition. Hence it is natural to
ask whether the actions of these devices could be localized in the domain {2 better. Or, whether
we could remove more control devices and still obtain a result which would be called satisfactory
with respect to a given criterion. Here, the realm of optimization begins. A

2.3.4 Remarks on large time behavior

In the above described experiments, observations concerning stabilization of the numerical pro-
cess near to some time-invariant state were made. This allows to pose hypotheses on the de-
pendence of these time-invariant states on the initial state. It will be convenient to express the
hypotheses in question in the language of hypotheses concerning the asymptotic behavior of the
system (0.1) - (0.3), understood in terms of existence and characterization of attracting sets. For
example, to say that the time-invariant state is probably independent of the initial state means
to say that the attracting set is probably a singleton (if exists).

It is not straightforward what should be the precise form of the hypotheses in question. The
numerical prototypes in Section 2.3.1, Section 2.3.2 and Section 2.3.3 suggest that the behavior
of the model (0.1) - (0.3) for large times varies depending its configuration. By the configuration
of the model (0.1) - (0.3) we understand the choice of particular parameters, as the initial state
Yo, the reference state y* and functions g; and hy, characterizing the control and measurement
devices actions.

In the situations taken into account in the simulations in Section 2.3.2 and Section 2.3.3,
intuition suggests that the process stabilizes at certain state which is relatively close to the
reference state. Thus, for these configurations of the model, existence of a one-point or a very
small attracting set can be expected.

The situation in the simulations concerning the reference state being an unstable equilibrium,
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what was the case in Section 2.3.1, is different. If the numerical process states in terminal time,
presented on the Figures 2.4a, 2.4b and 2.4c, are close to certain time-invariant state of the real
process then, by symmetry, the transposed states are close to a time-invariant state as well. The
transposed state should be obtained at time ¢ = 7" in the simulation with the transposed initial
state. By a transposed state we mean a state with swapped role of axis of the coordinate system
in R?. In consequence, in the case of J = 16 control and measurement devices, the hypothetic
attracting set, if exists, cannot be expected to be small in the sense of diameter. The reason for
this is that in the subject case the process state obtained at the terminal time (Figure 2.4a) is
quite distant from its transposed state. The attracting set, if exists, should contain states which
are close to both the original and transposed state.

To sum up the above, the numerical results presented in this chapter suggest that the at-
tracting set for the dynamical system associated with the model (0.1) - (0.3), if exists, has the
structure varying significantly with changes of the configuration of the model. There are config-
urations for which the results suggest a small, or even one-point attracting set, as well as there
are configurations for which a rather big attracting set can be expected.

Besides the above question on the structure of the attracting set, one can also be interested
in the question on time necessary to bring the process near to the time-invariant state. The
subject information also is essential, if one wants to rank the thermostat control mechanism with
respect to the gap between the state obtained for large times and the reference state.

In this field, the differences also occurred between particular simulations. For simulations
described in Section 2.3.2, time interval [0,4] was enough for the numerical process to achieve
some state that seemed time invariant. This is also reflected on the error plots on Figures 2.7a,
2.7b, 2.9a, 2.9b. In contrary, for experiment described in Section 2.3.1, for the cases of J = 16
and J = 36 devices, the evolution of the numerical process toward states which seemed time-
invariant was very slow. This is the main reason for which we have chosen the time interval
for this experiment equal to [0,24], what is six times longer than the time intervals in other
experiments. At time ¢ = 4, the numerical process still evolved, for the cases of J = 16 and
J = 36 devices described described in Section 2.3.1. This is visible in the error plots in Figures
2.5a and 2.5b.

Thus, the numerical results described in the present chapter suggest that the time necessary
to bring the state of the controlled process near a time-invariant state varies wit changes of the
configuration of the model (0.1) - (0.3).

Nevertheless, the above hypotheses concerning the structure of the alleged attracting set and
the speed of evolution of the process base on the error graphs and on visual inspection of the
numerical solution plots. Therefore, these hypotheses require further verification. It will be not
the subject of the present work.



Chapter 3

Optimal targeting problem —
properties

In the simulations described in Chapter 2, we have observed that the efficiency of the thermostat
control mechanism, understood as the gap between the state of the controlled process and the
reference state at the terminal time 7', may differ for different choice of parameters in the ther-
mostat control mechanism (e.g. for different reference states or different numbers of the control
and measurement devices). Hence the natural question concerning improving the efficiency of
the thermostat control mechanism.

The problem of improving efficiency of the thermostat control mechanism can be understood
as the problem of optimizing the feedback law in this system, with respect to a cost functional
which reflects the above understanding of efficiency (where the feedback law is the algorithm
for computing the response functions x; in the system (0.1) - (0.3)). However, the problem of
optimizing the feedback law require a parametrization of the feedback law.

In many situations, it can be a natural assumption that the user of the thermostat control
mechanism cannot freely manipulate the patterns of energy distributed in the domain by a given
control device but only can decide on the location of the pattern. Analogous remark concerns the
actions of the measurement devices. We will thus parametrize the feedback law by assuming that
the patterns associated with the actions of both control and measurement devices are given and
that the control parameter is the set of locations of the subject patterns. Moreover, to exclude
the problems associated with the choice of weights «; ;, we will assume that o, are given.

The above assumptions lead us to the optimal targeting problem, announced in §2 of Intro-
duction. The latter problem will be the subject of the present chapter.

To recall, the optimal targeting problem bases on the system (0.1) - (0.3) with additional
conditions (0.4) - (0.7). The latter conditions allow to transform the system (0.1) - (0.3) to the
following system:

((yi(x,t) — DAy(z,t) =
= Fe,0) + Y07 (PR, (1) @i (t) on Qn

3.1)
oy (
a—n—O on 9 x (0,7T)

y(x,0) = yo(x) for z € Q

67
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together with
Bk (t) + ra(t) =
=y (/Q(PR’QT,}L(xl))(x) (y(m,t) — y*(m,t)) daz) on [0,7]

' (3.2)
By (t) + k. (t) =
=wy (/Q (PR’Q'Eh (xJ))(x)(y(x,t) — y*(x,t)) dx) on [0,7]
k;(0) = Kkjo €R forj=1,...,J
where (y,K1,...,ky) is the unknown and: o4, 0p: RY - R; rj € RY: Q is a domain in RY;

T,D,8; >0,y": Qr = R; yo: @ = R; kj0o € R; f,wj: R = R; where j = 1,...,J. Operators
T, and T, are defined as in Appendix A.4. The operator PR g the operator of restriction to
Q of a function from RY to R.

For convenience, in the present chapter, we will refer to the system (3.1) - (3.2) rather than
to the system (0.1) - (0.3) with conditions (0.4) - (0.7). Note that conditions (2.1), (2.2) and
(2.4), utilized in Chapter 2, are equivalent to conditions (0.4) - (0.7), constituting the optimal
targeting problem. The difference is that in Chapter 2 we considered a particular choice of the
pattern functions, given by the additional condition (2.3), while in the present chapter we dismiss
the latter condition, taking aim at allowing a more general choice the pattern functions.

Recall the nomenclature introduced in §2 of Introduction. In (3.1) - (3.2), functions o, and
oy, are called the pattern functions. The sequence (z1,...,x7) is called the control parameter,
because it determines the control uniquely.

The cost functional which we will investigate is the following:

T
(1,...,2)) — A/ /|y(x,t)—y*(x,t)\2dxdt (3.3)
To JQ
where \ > 0, 7o € (0,T) and y: Qr — R is as in (3.1) - (3.2) — in particular, y depends on the
control parameter (z1,...,27). The optimal targeting problem is to minimize the cost functional
(3.3).

Recall that, for Ty close to T, the cost functional (3.3) can be understood as an approximate
measure of the gap between the process state and the reference state at the terminal time 7' (see
the remarks in §2 of Introduction), i.e. as an approximate measure of efficiency of thermostat
control mechanism. Recall also that, since we do not consider the functions g; and h; to represent
material objects (see §1 of Introduction), intersection of their supports with each other and with
the exterior of €2 are allowed. In consequence, we do not put any constraints in the optimal
targeting problem (see §2 of Introduction).

In this chapter, we intend to perform mathematical analysis of the optimal targeting prob-
lem. The main results of this analysis concern existence of minimizers and characterization of the
gradient of the cost functional defined by (3.3), in a form of an explicit formula. The formula for
the gradient of the cost functional is a result of a great practical meaning. An explicit formula
for the gradient of (3.3) is necessary for performing many optimization procedures which approx-
imate the local minimizers of (3.3). In Chapter 4, we describe results of numerical optimization
experiments in which the formula for gradient of (3.3), derived in the present chapter, was uti-
lized. Moreover, an explicit formula for the gradient of (3.3) has also a meaning for formulating
explicit necessary optimality conditions for the considered optimization problem.
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The more detailed order of the present chapter is as follows. In Section 3.1, the main goal is
to investigate the properties of the operator assigning solutions of (3.1) - (3.2) to a given control
parameter (x1,...,27), let us call it the state operator. Knowledge on this properties is necessary
for further analysis, concerning the cost functional (3.3), because the subject cost functional can
be viewed as a superposition of the squared second Lebesgue norm, of translation by —y* and of
the mentioned state operator. In Section 3.1, the main results rely strongly on the properties of
the system (0.1) - (0.3) which were investigated in Section 1.2. Consequently, the main results of
Section 3.1 are shown under structural assumptions concerning the system (3.1) - (3.2) similar to
the assumptions imposed in Section 1.2 for the system (0.1) - (0.3), with some modifications and
supplements, if necessary. To describe briefly the mentioned results, we show that, depending on
pattern functions o4 and oy, the mentioned state operator is continuous (for o4, 04 € L2(Rd)),
or even Lipschitz continuous and weakly Gateaux differentiable (for o, 0y, € WLH2(R9)).

In Section 3.2, we focus directly on analysis of the cost functional (3.3). The analysis involves
also the results for the state operator obtained in Section 3.1. We derive a simple criterion for
existence of minimizers for the cost functional (3.3). This criterion is shown under conditions
sufficient for continuity of the state operator (in particular, 0,4, 0, € L*(RY)) and additionally
assumes that the supports of the pattern functions o, and o}, are compact. The latter assump-
tion is strong but sufficient for our purposes because, in the numerical optimization experiments
described in Chapter 4, we operate with the pattern functions with compact support. Next, we
proceed to analysis of differentiability of the cost functional (3.3). In brief, the cost functional
(3.3) is Gateaux differentiable if the above mentioned state operator is weakly Gateaux differ-
entiable. Therefore, the Gateux differentiability of the cost functional (3.3) is shown under the
assumption og4, o, € WH2(RY) in particular, as it is one of conditions necessary for weak Gateaux
differentiability of the state operator in Section 3.1. Under the same assumption, we also derive
a formula characterizing the gradient of the cost functional, what is a main result of Section 3.2.

Before we proceed to realization of the above objectives, let us introduce the definition of
weak solutions of the system (3.1) - (3.2). PDE-ODE the system (3.1) - (3.2) is a particular case
of (0.1) - (0.3). Thus, we assume the definition of weak solutions for (3.1) - (3.2) to be exactly
the same as for (0.1) - (0.3) — see Definition 1.2.1. To be clear:

Definition 3.0.1 An element (y,s1,...,k7) belonging to X? is a weak solution of the system
(8.1) - (3.2) if it is a weak solution for the system (0.1) - (0.3) corresponding to:

g = PO, (2)),  hy = PR, (2)),  ajp =8
forj k=1,...,J.

Above, the space X? is as in Chapter 1. Uniqueness and existence of weak solutions of (3.1) -
(3.2) will be one of results of Section 3.1.2, thus we do not touch this matter now.

In many results of the present chapter, assumptions concerning the system (3.1) - (3.2) will
cover, in particular, assumptions utilized in previous chapters for the system (0.1) - (0.3). More
precisely, assumptions (B-1) - (B-5) and (C-1) - (C-2) from Section 1.2 will be in use in this
chapter as well. Nevertheless, some of the results in the present chapter will require additional
assumptions. These assumptions are:

(E-1) f'(s) exists for all s € R, in classical sense,
(E-2) w;-(s) exists for all s €¢ Rand all j =1,...,J, in classical sense,

(E-3) a) p2 € (2,4 — pil], where pp is a given number satisfying p; > 2 (in case d = 1,2) or
2d/(d —2) > p; > 2 (in case d > 2),
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b) y* € LP2(0,T; L*(Q)), for ps as in a).

Moreover, assumptions concerning pattern functions o, and o0}, are necessary. Depending on
situation, a subset of the following set of assumptions will be utilized:

(F-1) a4,04 € L2(RY),
(F-2) a4,04 € WHE(RY),

(F-3) 04 and o, have compact supports in R4,

Notation remarks

In the present chapter, spaces X', X2, U and U are as in Chapter 1. In addition, we define the
following space:
X3 = [P(0,T; () x (L0, T))”

where p € [1,00] is given and natural number J is the same as J appearing in the system (0.1) -
(0.3). We endow X3P with the standard product topology, hence we consider the following norm

for X3P:
J

H(y7 Riye.. 7"€J)HX37P - Hprm + ZHKjHLQ(O,T)
j=1

We also define
V= (rRY)’

where natural number J is the same as J appearing in the system (0.1) - (0.3). V will be called
the control parameter space. For a given element © € V' we denote its components as follows:

@:(’Dl,...,’UJ)

Note, that an arbitrary control parameter (xi,...,z) in the system (3.1) - (3.2) can be
understood as an element of V' and vice versa — an element 0 € V determines a control parameter
for the system (3.1) - (3.2), by relations z; :==0;, j =1,...,J.

For a given Ty € (0,7'), we use the following notation:

D= x(1,T)

In addition, for given functions Fy: RY - R, F5: Q — R, F3: Qr — R and Fy: (0,7) — R

and a given index j € {1,...,J}, the following definitions of operators will be valid in the present
chapter:
PR restriction operator defined by PR?(F) = Fy|q (already used in the
system (3.1) - (3.2)),
PES  extension by zero operator defined by PF?(F,) = F, on Q and
PE’Q(FQ) =0 on Qc,
PRI restriction operator defined by PR70(F3) = F Qo
T
PL ,  — inverse time operator defined by PéT(Fg)($,t) = F3(x, T —t), for all
('Ia t) S QT:

P, — inverse time operator defined by P&T(F4)(t) = Fy(T —t), for t € (0,7,
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PJR’V — operator for extraction of j-th component of 0 € V, i.e. PJB’V(@) = V;
forveV,
pEV. operator for extension of a vector in R4 by zero to a vector in V, i.e.

PJE’V(a) = ¢ for a € R4, where © € V is such that 0; = a and Oy = 0

for k # j and where 0 is the zero vector in R9.

By definition, PJR’V: V — RY and PJE’V: RY — V. Concerning the rest of the above operators,
in general, their domain and range spaces can be chosen in various ways. In the present chapter,
we understand operators P and PP as PR [2(RY) — L2(Q) and PP L2(Q) — L*(RY),
the operator P10 ag PRT0: [2(Qr) — L3( %0), the operator Péh as P&T : L2(Qr) — L*(Q7)
and the operator Pk as Pr: L?(0,T) — L*(0,7). This requires understanding the above def-
initions in the ,almost everywhere” sense which involves acting on the equivalence classes of
functions in the relation of being equal almost everywhere instead of acting on functions them-
selves.

Besides the above preliminaries, the present chapter utilizes theory concerning differentiabil-
ity in Banach spaces, properties of the Nemytskii operators and properties of translation oper-
ators. The required material is contained in Appendix A.1, Appendix A.3 and Appendix A.4,
respectively. In particular, Appendix A.1 introduces the notion of the weak sequential directional
derivative, which will be necessary in the present chapter and which is probably not common in
the literature.

In the present chapter, for a given F: R — R, n € N\ {0}, the associated translation
operator Tr is always understood as 7p: R™ — L?(R™).

3.1 State operators

Below, we will precisely define and formulate properties of two operators: 1) the operator S,
assigning the weak solution of (0.1) - (0.3) to a given control (gj,hk,ajk)f;l::;’f and 2) the
operator Z, assigning the weak solution of (3.1) - (3.2) to a given control parameter z1,...,x; €
R9. Since the idea of both S and Z is to assign a realization of the process to given data, both
of these operators will be called state operators.

The state operator Z will be utilized in the analysis of the optimal targeting problem, in
Section 3.2. For this reason, we need to have some information about the properties of Z. The
properties which will be necessary in Section 3.2, are continuity and differentiability properties
of Z. Both of them will be investigated below.

Nevertheless, the operator S also is helpful because, as we will see, it can be used to conclude
certain informations about Z. Thus, we start with precise definition and Lipschitz continuity of
S. This is done in Section 3.1.1. There included material is brief — the Lipschitz continuity of
S is a simple conclusion of theorems presented in Section 1.2.2, concerning the stability result
in the space X?2. However, we show that the Lipschitz continuity of S with values in X? implies
also the Lipschitz continuity of S with values in the space X3P2, with suitably chosen py > 2.

In Section 3.1.2 and Section 3.1.3, we will focus on the operator Z. In Section 3.1.2, we
present precise definition of Z. Moreover, we briefly indicate conditions under which Z inherits
the Lipschitz continuity property of S. Next, in Section 3.1.3, we proceed to investigating the
differentiability of Z. This differentiability will be shown to hold in sense of weak Gateaux
differentiability. Proving this will rely on the Lipschitz continuity of Z, thus the conditions
required in Section 3.1.2 for the Lipschitz continuity are required also in Section 3.1.3 for the
weak Gateaux differentiability.
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3.1.1 Control-to-state operator — definition and continuity

We define the state operator
S=(8),Su1s-,Sk,): U — X2

as the operator assigning to a given control @ € U the weak solution of the system (0.1) - (0.3)
corresponding to g := g, hi := Up, and ajj := Uq,, in the subject system.

Below, we justify briefly that S is well posed and Lipschitz continuous, in suitable spaces.
These properties of § will be required in Section 3.1.2.

It follows straight that under assumptions of Corollary 1.2.8 or Corollary 1.2.9, S(1) is well
defined, for an arbitrary @ € U. In addition, Theorem 1.2.6 allows to conclude the Lipschitz
continuity of S, under suitable assumptions. We summarize these observations in the following
theorem:

Theorem 3.1.1 In the system (0.1) - (0.3), let assumptions (B-1) - (B-5) and at least one of
the following:

o y* fulfills the assumption (C-1) and functions wy are bounded for k=1,... K,
o y* fulfills the assumption (C-2)

be fulfilled. Then, the operator S: U — X? is well defined and Lipschitz continuous on bounded
subsets of U, with respect to the norms of the considered spaces.

In the sequel, we will need to have the Lipschitz continuity of S in a space different than X?,
what is the subject of the next theorem.

Theorem 3.1.2 Let the assumptions of Theorem 3.1.1 be fulfilled. Assume also that ps is as in
the part a) of the assumption (E-3). Then the operator S understood as

S: U — X3P

s well defined and is Lipschitz continuous on bounded subsets of U, with respect to the norms of
the considered spaces.

Theorem 3.1.2 is a direct consequence of Theorem 3.1.1 and the below lemma:

Lemma 3.1.3 Assume that ps is as in the part a) of the assumption (E-3). Then, X? C X3P2
and X? — X3P2,

PROOF. By definition of X3P2_ to justify the demanded inclusion and continuous embedding,
it is enough to verify that

L*(0,T; H'()) N L™(0,T; L*(2)) € LP*(Qr)

) . , (3.4)
L7(0,T5 H™(Q)) N L>(0,T5 L7(Q)) = L (Qr)
Take p; and ps as in the part a) of the assumption (E-3). Then
L°(0,T; L*()) N L*(0,T; LP*(Q)) C LF2(0,T; LP2(Q))
(3.5)

[9llyoy < Crmax{f. 52} (ol + N0, )
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for certain constant C; = C(p1, p2,2). Indeed, by the Holder inequality:

T
-2 2
Il = [ bl
/ </|y|P2—2pf—£2 dm /‘y‘ Pl dt
0 Q

[Soup HyHm P2 2) / Hprl dt

CNMWQMH

IN

IN

IN

P1,2

2)

p1(p
where we have used the fact that the Holder conjugate of & is -5 and that L = (Q) C L?()

since by the assumptions it can be verified that % < 2. The constant C7 is the constant
Pr1(p2—2)

appearing in estimation of the L™ 71-2 (2) norm by the L?(Q) norm, hence C; = C1(p1, pa, Q).
This justifies the inclusion in (3.5).

Now, still having the assumptions for p; and po in mind, we can estimate the right hand side
by the Young inequality, taking an arbitrary exponent 1 < ¢ < co:

1 P2
oIz, < Gl e < o (S + Sl
since the Holder conjugate of ¢ is %1. Let us set ¢ = p§22 or, equivalently, Py = 2—‘11 Then

both exponents appearing in the right hand side of the above reduce: p2 24 =1and p—ML =1.
Hence the inequality in (3.5).
Moreover, for p; as in the part a) of the assumption (E-3), we have

L*(0,T; H' ()

C L3(0,T; L7 (%))
1Ml < @

(3.6)
ol 1.0 2

where Cy = Ca(p1,d, Q). This is straightforward by the Sobolev embedding theorem (see [1,
Theorem 4.12]).

(3.5) and (3.6) together yield the inclusion and continuous embedding (3.4) for
p2 € (2,4 — (4/p1)], what concludes the proof. B

3.1.2 Targeting-to-state operator — definition and continuity

We define the state operator
Z=(2), 2005 2n,): V — X?

as the operator assigning to a given control parameter 0 € V the weak solution of the system
(3.1) - (3.2) corresponding to x; := 0; for j =1,...,J in the subject system.

We are interested in Lipschitz continuity and weak Géateaux differentiability of Z. The
differentiability of Z is the subject of Section 3.1.3. Here, we focus on the continuity matter.
To deal with it, we will represent Z as the superposition of § with certain other operator. This
kind of representation immediately allows to see that continuity properties of Z depend strongly
on continuity properties of S.
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Assuming that (2.1) holds and that pattern functions o4, 04 : R — R in (2.2) are given, we
define the operator

T= ( gj’Thj’Taj,k)j,k:L...,J Vo= U
by the following relations:
X(@)g, = Ty(0) = PEOTG (x5)
@@, = Th@®) = PR (x) (3.7)
(T (0)a; = Yo, (0) = &k
for j,k = 1,...,J, where §;;, is defined as in Notation conventions. We recall that, in the

present chapter, the particular operators above are understood as 75, 7, : RY — L%(RY) and
PR [2(RY) — L2(Q). Due to (3.7), the operator 7 is fully determined by the choice of o,
and oj,. The operator 7" can be understood as an operator assigning a control to a given control
parameter.

To conclude properties of the operator Z, it first will be useful to know how properties of o,
and oy, are related with properties of the operator 7", which definition depends on o, and oy.
Informations concerning these relations are summarized in the below lemma:

Lemma 3.1.4 The following implications are true:

a) if 04,01 € L*(RY), then operators Ty,: V= L2(92), Ty, V — L?(Q) and Yo, 0 V =R, for
Jk=1,...,J, are well-defined and continuous and hence soV:V — U is,

b) if 0,01 € WHE(RY), then operators Ty,: V — L*(Q), Tp: V= L3(Q) and Yo, 00V = R,
for g,k =1,...,J, are Lipschitz continuous (globally) and hence so 1V :V — U is,

c) if 04,0 € WHE(RY), then operators Ty,: V — L*(Q), Tp: V= L3(Q) and Yo, 00V = R,
for i,k =1,...,J, are weakly Gateauz differentiable and hence so T :V — U is.

PROOF. It is straightforward that operators 1, are well-defined, Lipschitz continuous,
weak Géteaux differentiable. We are left to deal with the remaining operators 1y, and Ty, .
The operators Ty, and T, for j =1,...,J, can be expressed as

ng — pRQ, 7'09 o ’PJR’V, ng — pRL, T, © ’PJR’V (3.8)

Operators PR [2(RY) — L?(Q) and P]R’V: V — RY are linear and continuous. Thus, the
question on the properties of 7, and 1, for j = 1,...,J, reduces in its most essential part to
the question on the properties of 75, .

Operators P and PJR’V are well defined in respective spaces, for j = 1,...,J. Moreover,
for an arbitrary o, € L?(R?), translation operators 7, and 7, are well defined from R? to
L?*(RY). Thus, by (3.8), Ty, and 1}, for j = 1,...,J, are well defined.

For an arbitrary o, € L?(RY), the translation operator T, : RY — L%*(R9) is continuous
(see Theorem A.4.2). This, together with (3.8) and the continuity of P and PJR’V, gives the
continuity of 7y, for j =1,...,J. Analogous argument holds for operators 1}, for j =1,...,J.

For o4 € W'2(RY), the translation operator 75, : RY — L?(R?) is Lipschitz continuous (see
Theorem A.4.4). Moreover, operators P and PJB ’V, as linear and continuous operators, are
Lipschitz continuous for j = 1,...,J. Hence, by (3.8), 7y, is so, for j = 1,...,J. Similarly,
op, € WH2(RY) implies Lipschitz continuity of T, for j=1,...,J.
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Also, for o4 € WH2(RY), Theorem A.4.5 gives weak Géteaux differentiability of To,: RY —
L?(RY). Therefore, by (3.8) and by the rules for differential calculus in Banach spaces (see
Theorem A.1.4, Observation A.1.7 and Observation A.1.11 in Appendix A.1), 7. is weakly
Gateaux differentiable for o, € WH2(R9). Analogously, T, is weakly Gateaux differentiable for
op € WHA(RY). B

Now, we proceed to investigating properties of the state operator Z. Note that, under the

assumption that (2.1) holds, the weak solution of (3.1) - (3.2) is exactly the weak solution of
(0.1) - (0.3) associated with g; := 7, (D), hj := T, (0) and a;y := T, , (0). Hence,

C“j,k
Z=80T

In particular, the properties of Z are determined by properties of S and 7.
Having made the above observation, Lemma 3.1.4 together with Theorems 3.1.1 and 3.1.2
allow to justify the below:

Theorem 3.1.5 In the system (3.1) - (3.2), let assumptions (B-1) - (B-5) be fulfilled, with
additional restriction K = J. Assume also that at least one of the following is true:

o y* fulfills the assumption (C-1) and functions w; are bounded, for j =1,...,J,
o y* fulfills the assumption (C-2).
Then, the following statements are true:
a) if g, oy fulfill the assumption (F-1), then Z: V — X? is well defined and continuous,

b) if o4, on fulfill the assumption (F-3), then Z:V — X2 is in addition Lipschitz continuous
(globally).

Moreover, let ps be as in the part a) of the assumption (E-3). Then, the above statements hold
also with X? replaced by X>P2.

REMARK. Note, that Theorem 3.1.5 in particular asserts that the weak solution of (3.1) -
(3.2) exists and is unique. A

REMARK. Note, that in contrary to the Lipschitz continuity on the bounded sets stated
for § in theorems of Section 3.1.1, the Lipschitz continuity of Z in Theorem 3.1.5 is global.
The reason for the latter is the following. Z = S o T, hence, for an arbitrary subset A of V|
the Lipschitz constant of Z on A is lesser on equal to product of Lipschitz constant of 7 on A
and Lipschitz constant of S on 7°(A). The Lipschitz constant of 7" is global (see Lemma 3.1.4).
Moreover, for all 0 € V, the corresponding control @ = 7°(0) belongs to a ball By (0,7,) in U,
with radius r, depending only on Hdgand and HO’}LHZRd. By Theorems 3.1.1 and 3.1.2, S is
Lipschitz continuous on By(0,7,). Thus, we can take A = B(0,7,) to justify the global Lipschitz
continuity of Z. A

3.1.3 Targeting-to-state operator — differentiability

Now, we will focus on the matter of weak Gateaux differentiability of the operator Z understood
as an operator from V to X!. Z is certainly well defined in this sense, because X2 C X
Nevertheless, investigating differentiability of Z: V' — X! involves longer justification.
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We will begin with presenting an auxiliary system of equations, which we call the linearized
system and justifying some basic properties of the subject system. Next, we will formulate the
main theorem of the present section, i.e. theorem concerning weak Géateaux differentiability of
Z. This theorem, as well as its proof, involves strongly the linearized system, therefore the
linearized system is essential for the present section.

Let us start. The below system, which we call the linearized system, will be utilized later for
characterizing the weak Géateaux differential of Z:

— DAy — f'(y y—z Lo, (0 ﬂﬂrz DG wy; (0)(0)R;  on Qr

g—z —0 on 00 x (0,7) (39
y(z,0) =0 for z € Q

together with
( ,81'%,1 + K1 = wll((Thl (@)ag - y*)LQ(Q))
((DG'wThl(A)( ) g—y )L2(Q) + (Th1( ) y)L2(Q)> on [07T]
/BJK{]‘FKJ :wf]((ThJ(@)ag_y*)LQ(Q))' (3.10)
((DGwThJ( )( ) y Y ) L2(Q) (ThJ(ﬁ)7y)L2(Q)> on [07T]

( k;(0) =0 forj=1,...,J

where: € is a domain, 7' > 0, Q7 := Q x (0,7); D,B; > 0; f,w;: R = R; &;: (0,T) —
9,y": Qr — R; 0, € V; Ty, and 1}, correspond to given oy, 0p: RY = R (see (3 7) for the
explanation of the latter correspondence); where j = 1,...,J. In the system (3.9) - (3.10), the
unknown is the function (y,x1,...,%7): Qr — R7/FL.

The system (3.9) - (3.10) is a particular case of the system (1.84) - (1.86) in Section 1.2.4,
with

9i = DauwTy(0)(0), hj = T1p,(0),
hy = DeuwTh, (®)(0), zj = wi((V,(0),5=9") 20
Y = -, Yo(z) = 0, (3.11)
O,(x,t) = k;(t), Kjo = 0,
Zj(x,t) = Ty, (0), flat,s) = fi1)s,
wi(s) = s,

forj=1,...,J,2€Q,t€(0,T), s € R. Hence the below definition:

Definition 3.1.6 (y,k1,...,k7) € X? is a weak solution of (3.9) - (3.10) if it is a weak solution
of (1.84) - (1.86) with conditions (3.11) (see Definition 1.2.16).

The following lemma summarizes those properties of (3.9) - (3.10) which will be necessary
for us in the sequel.

Lemma 3.1.7 Let assumptions (B-1) - (B-4) be fulfilled, with additional restriction K = J. Let
also assumptions (E-1) - (E-2) and (F-2) hold. Moreover, assume that §,y* € L?(0,T; L?(2))
and kj € L>(0,T), for j=1,...,J.
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Then, the weak solution of the system (3.9) - (3.10) exists, is unique and moreover belongs
to X3P2 for py as in the assumption (E-3), for arbitrary 0,5 € V. In addition, for a given
0 €V, the operator assigning the weak solution of (3.9) - (3.10) to ) € V belongs to L(V, X1),
to L(V, X?) and to L(V, X>P2) with py as in the assumption (E-3).

PrROOF.  We will verify that the functions defined by relations (3.11) fulfill assumptions
(D-1) - (D-6) from Section 1.2.4.

First, f’ is a Borel measurable function, as the classical derivative of a continuous function
(see assumptions (B-4) and (E-1)). Thus composition of f’ with the measurable function g is
measurable. Hence, f in (3.11) is measurable in (x,t) € Q7 for an arbitrary s € R. Moreover,
f" is bounded (by the assumption (B-3)), hence f is Lipschitz continuous in s, with the same
constant for every (x,t) € Qp. Also, function f(., .,0) belongs to L?>(Q7). Therefore, f defined
in (3.11) fulfills the assumption (D-3) in Section 1.2.4.

Next, (Th;(0),9 —y*)12(q), understood as a function of variable ¢, is measurable. To see this,
note that this function can be understood as a composition of a strongly measurable function
9 — y*, from [0, 7] to L?(2), with a continuous linear functional on L?(f) given by 7, (0) and
apply the Pettis theorem (see [3, Th. 1.1.1], [21, App. E.5], [49, Chap. V.4] or [52, p. 1012],
[21] and [52] do not contain the proof of the theorem). The function w} is Borel measurable,
as a classical derivative of a continuous function (see assumptions (B-5) and (E-2)). Thus, the
composition of w; with a measurable function is measurable, for j = 1,...,J. Moreover, w; is
bounded (by the assumption (B-4)), for j = 1,...,J. Hence, for j = 1,...,J, Z; defined in
(3.11) is an element of L>°(0,T") and as such, obeys the assumption (D-6) in Section 1.2.4.

The observation that, for j = 1,...,J, Y, ©;, E;, hj, 5o, Kjo and w; defined in (3.11)
obey assumptions (D-4), (D-5), (D-6) and (C-2), respectively, follows straight. Moreover, by the
assumption (F-2) and Lemma 3.1.4, g; and h; in (3.11) belong to L*(2), for j = 1,...,.J. Hence,
(@ hi);—y €U

Therefore, the system (3.9) - (3.10) fulfills the assumptions of Theorems 1.2.17 and 1.2.18 in
Section 1.2.4. By Theorem 1.2.18, we conclude that the weak solution of (3.9) - (3.10) exists in
X? and is unique. In addition, for py as assumed, X? C X3P2 X2 < X3P2 (see Lemma 3.1.3).
Hence, the weak solution of (3.9) - (3.10) belongs also to X3P2. Moreover:

e by the definition of weak Géateaux differential, the operator
i = (D6,wXyy (0)(0), - -, DawTy, (0)(0), Da,wln, (0)(@), - -, D wTh, (0)()) =: a7
is linear and bounded from V to U ,

e by the structure of (3.9) - (3.10) and by Theorem 1.2.17, the operator assigning the weak
solution of (3.9) - (3.10) to a given element 4% is linear and bounded from U to X?2.

Hence, the operator assigning the weak solution of (3.9) - (3.10) to a given 7 € V, as the
superposition of the above operators, is linear and bounded from V to X?2. Since X! C X2,
X! < X2 the subject operator is also linear and bounded from V to X'. Moreover, since
X2 C X3P2 and X? < X3P2 the subject operator is linear and bounded from V to X372, W

Now, we formulate the main theorem of Section 3.1.3:

Theorem 3.1.8 In the system (3.1) - (3.2), let assumptions (B-1) - (B-5) be fulfilled, with
additional restriction K = J. Assume also that at least one of the following is true:

o y* fulfills the assumption (C-1) and functions w; are bounded, for j =1,...,J,
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o y* fulfills the assumption (C-2).

Moreover, let assumptions (E-1) - (E-3) and (F-2) be fulfilled.
Then, the operator Z understood as

zZ.V — X!

is well defined and weakly Gateaux differentiable. Moreover, the value of the weak Gdteaux
differential of Z in a point O € V applied to a direction 1) € V, i.e. the value Dg ., Z(0)(1),
can be identified with the element (§,F1,...,ky) € X' which is the weak solution to the system
(8.9) - (3.10) with conditions § = Z,(0) and kj = Z,,(0).

REMARK. In the assumptions of the above theorem, the assumption (E-3) is not necessary if
y* fulfills the assumption (C-2). But if y* fulfills the assumption (C-1) only, then the assumption
(E-3) is essential. A

REMARK. Note that, under assumptions of Theorem 3.1.8, Lemma, 3.1.7 can be applied.
Hence, the element (7, %1,...,%s) € X! in Theorem 3.1.8 is well defined. Moreover, as Lemma,
3.1.7 states, for a given 0, the operator assigning (7,%1,...,%7) € X' to # € V, denote it
20V 5 X 1 is linear and bounded. Hence indeed, the operator 20 s meaningful as the
weak Gateaux differential of Z in point ©. Therefore, Theorem 3.1.8, asserting in fact that
D¢ 2Z(0)(n) = Z0(f)) for all 7 € V, makes sense. A

REMARK. Note also, that equality Dg ., Z(0)(1) = Z(f) for all § € V, where Z° is as
above, explains why we call the system (3.9) - (3.10) the linearized system. A

The following observation will be useful in the proof of Theorem 3.1.8:

Lemma 3.1.9 Let Banach spaces X, Y and an operator T : X —'Y, point 4 € X and direction
v € X be given. Assume that T is Lipschitz continuous and Y 1is reflexive. Consider collection
E of all sequences {en},. | such that e, # 0, e, — 0 for n — oo and the difference quotients
en H(T (4 + e,®) —T(@)) are weakly convergent to some limit in Y for n — oco. Assume that
this limit is independent of the choice of {e,}>2 | € E, or more precisely, that there exists L € Y
such that . . .

T(a+ 5,;1)) —T(a) n—rqo

n

L

Then 6,1 (u;0) exists and equals L.

To our knowledge, results of the above type are rarely formulated in the literature on PDEs.
We have derived the below simple proof by our own considerations. The proof is not technically
complex, thus the result is probably not new. However, we do not known a literature reference
for citing here.

~ Proor.  For brevity, for a given € # 0 denote T°(@;9) := ¢! (T'(a+¢e0) — T(a)). Let
E denote the collection of all real sequences {g,}>°; such that ¢, # 0, ¢, — 0 for n — oc.
Establishing equality E = E will conclude the proof, since, under the axiom of choice, Cauchy
and Heine limit of a function definitions are equivalent in metric spaces. The inclusion E 2 E
follows straight. The inclusion E C E can be justified as follows.

First, |JE contains a set (—¢,€) \ {0}, for some & > 0. It comes by contradiction: if not,
then, by the axiom of choice, there exists € € E, € = {€,}°°, such that €N (JE) = (. But, by
the Lipschitz continuity of 7', the corresponding difference quotients, 75 (u; ), are bounded in
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Y w.r.t. n. Thus, by reflexivity of Y, sequence € contains a subsequence = {?n}go:l such that

T% (1;0) converges weakly in Y as n — co. Hence, ¢ € E, what contradicts €N (UE) =0.

Having this, an arbitrary sequence belonging E consists of elements of sequences belonging
to E. The inclusion E C E will be shown once we justify that an arbitrary sequence consisting of
elements of sequences belonging to E is still in E. For this end, it is now enough to verify that
all sequences from [E have the same modulus of convergence, i.e. for all ¢ € Y* for all A > 0
there exists v > 0 such that for all e = {¢,}°°; € E for all elements satisfying €, < v there holds
(6, T (11 0) — L)y y| < A.

But this also comes by contradiction. If this is not true, then, by the axiom of choice, we
would be able to construct a sequence € = {&,}°2 ; consisting of elements of sequences from E
such that |(¢, T (; ) — ]L)Y*’Y| > \ for certain A > 0 and ¢ € Y*. Hence, € cannot have any
weakly convergent to I subsequence. But this is not possible: by the Lipschitz continuity of
T, the difference quotients T (4;¢) are bounded in Y w.r.t. n, and therefore, by reflexivity of
Y, € has a subsequence € = {£,}2%, such that T%"(a;9) converges weakly in Y as n — oo. By
assumption, the weak limit of € equals L, what is a contradiction. H

Now, we are ready to proceed to the proof of the main theorem of the present section.

PROOF OF THEOREM 3.1.8. The fact that Z is well defined from V to X' is clear by
Theorem 3.1.5 and by X? C X', X2 <+ X!. Concerning the differentiability matter, we will
prove that, in fact, the operator Z is weakly Gateaux differentiable from V to X372, with po
as assumed. This yields the asserted differentiability from V to X!, since ps > 2 and thus
X3r2 C X1 X3Pz y X1,

For ¢ # 0, denote difference quotients of Z in © in direction 7 as

Z5(051) = e (Z(0+en) — Z(0))

Assume that € = {,}22, is a sequence such that ¢, # 0, ¢, — 0 for n — oo and that the
corresponding difference quotients are weakly convergent to certain Z(0;7) € X3P2:

ZEn(0;7)—Ze(0:7)  in XPP2 as n — oo (3.12)

Let E denote the collection of all sequences € = {e,}°° satisfying the above conditions. To
justify that Z is weakly Gateaux differentiable from V to X!, we need to establish that the
following hypotheses hold:

(Hyp-1) Z(ﬁ;ﬁ) e X3p2 is independent of sequence € € E, i.e. there exists Z(ﬁ; ) € X3P2 such
that Z.(0;n) = Z(0;1) for all € € E.

(Hyp-2) Z(ﬁ; .) is a bounded linear operator from V to X3¥2.

The above two hypotheses together, if proven, imply that Z is weakly Gateaux differentiable
from V to X3P2. To justify it, assume temporarily that hypotheses (Hyp-1) and (Hyp-2) hold.
Having this, note that, by (Hyp-1), Lemma 3.1.9 can be applied. Indeed, X372 is reflexive and
Banach and, by Theorem 3.1.5, Z is Lipschitz continuous with values in X3P2. Therefore, since
(Hyp-1) holds, all assumptions of Lemma 3.1.9 are satisfied. Thus it can be used to conclude
that §,, Z(0;7) exists in X>P2 and equals Z(0;7). Now, if §,Z(0; .) is linear and bounded from
V to X3P2, then it can be identified with the weak Gateaux differential of Z: V — X3P2 in

point © € V. But the linearity and boundedness follows by the relation 6,,Z(0;7) = Z(0;7) and
by (Hyp-2).
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Therefore, we are left to justify hypotheses (Hyp-1) and (Hyp-2). But the considered hy-
potheses will be straightforward once we prove that, for an arbitrary sequence € € E, Z(ﬁ; 1) is
the element of the space X>P? which is the weak solution of the system (3.9) - (3.10). Indeed, by
Lemma 3.1.7, the weak solution of (3.9) - (3.10) exists in X*P2 and is unique. Hence, if Z(0;1)
is the weak solution of (3.9) - (3.10) for an arbitrary € € E, then (Hyp-1) holds — we can write
that Zc(0;9) = Z(0;4), for Z(0;17) being the weak solution of (3.9) - (3.10). Moreover, if Z(©;1)
is the weak solution of (3.9) - (3.10), then Lemma 3.1.7 states that the operator Z(0; .) is linear
and bounded from V' to X 32 Thus, (Hyp-2) also holds. Altogether, it remains to show that
Z(0;7) solves the system (3.9) - (3.10) for an arbitrary ¢ € E to complete the proof.

Thus fix € := {e,}°°, € E. Since Z,(0;7) is in fact the sequential weak directional derivative
of Z in X! on sequence e (see Definition A.1.9), we will use notation 8¢ Z(0;7) in place of

Z(0;n). Moreover, for convenience, denote for a given & # 0:
(U5, RS, ... Ry) == Z5(057), (U,R1,...,ky) = 0,2(030), (§,Fk1,...,ky) = Z(D)

Consider the weak form of the system (3.1) - (3.2) (see Definition 3.0.1) corresponding to
x; = U; and the weak form of this system corresponding to z; := 0; + €7, for j = 1,...,J
and for a given € # 0. Subtract these weak forms and divide the resulting identities by €. By
the above introduced notation, we get that (y°,k7,...,k5) is an element of X 2 satisfying the
following conditions:

7(.,00=0in L*(Q),  F(0)=0forj=1,...,J (3.13)

F(0+ei)) = F(0)) | <= Gy(0+en) — Gy(0) (3.14)
—( . +JZ; : — ,¢>L2(Q)dt:0
/T<Bj(%§)’+%§—Hj(ﬁ“z)_Hj(ﬁ))gdt =0 (3.15)
0

for all ¢ € L2(0,T; H'(Q)) and all ¢ € L?(0,T), and where we have utilized the following
definitions:

F@)(z,t) = f(Z,(0)(z,1)) a.e. on Qp
GO at) = PROT,, (5)(x) 20, ()(E) = T,,@)() 2, @) ae. on Qr
HE0 = ([ PROT, @) (2,00 - (@ )ds)

Q

= uy /Q Ty, (0)(2) (2,(0)(. 1) — " (2, 1))d) ae. on (0,7)

fororeVandj=1,...,J.

We intend to pass to the limit in identities (3.13) - (3.15), putting € = &, and sending n to
0o. The passage in the linear terms follows straight, by (3.12). We need to focus on the nonlinear
terms appearing in the identity (3.14) and the identity (3.15). These are the terms associated
with the difference quotients of I, of Gj and of Hj, for j =1,...,J.

The first term. Let us start with the term associated with the difference quotients of F',
ie.

T
/0 <$ {F(0+enn)) — F(0))}, ¢>L2(Q) dt where ¢ € L*(0,T; H'(Q))
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For the limit passage, we need to justify that é {F(0+¢€,n)) — F(0))} converges weakly in
L?(0,T; L?(52)), as n tends to co. But the weak convergence in L?(0,7T; L?(f2)) is equivalent to
the weak convergence in L?(Qr). We will focus on investigating the latter. We will show that
the stated weak convergence holds and that the weak limit is equal f'(§)d5,Z,(0;9) = f/(9)7.

Note, that F(0) can be interpreted as F(0) = Ny o Z,(0) where Ny denotes the Nemytskii
operator Ny associated with the function f. Therefore, the considered difference quotients of F'
converge weakly in L?(Qr) to 65(Ny o Z,)(0;7), if the latter exists. Thus, we need to justify
that 05, (N o Z,)(0;7) exists in L?(Qr) and equals f/(§)y.

By Theorem 3.1.5 and by identification LP2(0,T; LP?(Q)) = LP*(Qr), Z, can be understood
as Z, : V. — LP2(Qr). Moreover, by (3.12) and by the introduced notation, 65,2, (9;7) exists in
LP2(Qr) and equals 3.

By the assumption (B-3), it can be verified that f obeys the following growth condition

sup | f(s)|/(1+ |3‘p2/2) < 00
seR

Therefore, by Theorem A.3.2 in Appendix A.3, Ny is well defined as Ny : LP2(Qr) — L*(Qr). By
assumptions (B-3) and (E-1), the derivative f’ exists and satisfies the following growth condition:

sup |f/(5)‘/(1 + ‘S‘(pz/Z)—l) < 00
seR

Thus, by Theorem A.3.5 in Appendix A.3, the Nemytskii operator N is Fréchet differentiable
from LP?(Qr) to L?(Qr), with

DpNy(p)(a)(z,t) = f'(p(z,1))g(x,t)  ae. on Qr, for p,q € L7 (Qr)

By the above properties of Z, and ANy and by the chain rule (see Theorems A.1.4 and A.1.10
in Appendix A.3), 65,(Ny o Z,)(0;7) exists and

0u(NF 0 2,)(059) = DeNj(2,(0))0;, 2,(031) = f'(#)y (3.16)

= {F(o+ 20i) = FO)} — 5Ng 0 2,)(03) in *(Qn) @17

The second term. Now, we proceed to the terms associated with the difference quotients
of Gj, i.e.

T
1 N . N
| G160+ = Go0}.0) ,  dt where 6 € 0. T3 (@)
for j = 1,...,J. For the limit passage, we need to verify that i {G(0+enn)) — G;(0))}
converges weakly in L2(0,T; L?(Q)), as n — oo, for j = 1,...,.J. We will use the fact that the
weak convergence in L?(0,7; L?(f2)) and the weak convergence in L?(Q7) are equivalent. We
will show that the weak convergence in L?(Qr) hold and that the weak limit equals 7y, (0)k; +

DTy, (0) ()R-
Term G, for j =1,...,J, can be understood as:
G;(0) = I(Ty;(0), Zx,(0))
where

I:L%(Q) x L*(0,T) — L*(Qr), I(p,q)(x,t) == p(z)q(t) a.e. on Qr
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for p € L%3(Q), ¢ € L*(0,T). Therefore, for j = 1,...,.J, the considered difference quotients
of G; converge weakly in L?(Qr) to 65,1 o (Yy,, Z,,)(0;7), if this derivative exists. Thus, it
is necessary to justify that the subject derivative indeed exists in L?(Qr), and that it equals
ng (ﬁ)%j + DG,ngj (@)(ﬁ)l%] _

By (3.12) and by the introduced notation, 8¢, 2, (0;7) exists in L*(0,T) and equals &;.

By Lemma 3.1.4, the operator 7y, is well defined and weakly Géateaux differentiable from V'
to L2(Q).

Moreover, it is straightforward that I(p,q) is measurable for arbitrary p € L?(Q) and ¢ €
L?(0,T) and, by Fubini theorem, belongs to L?(Q7). Thus, I is well-defined. I is also bilinear
and, again by Fubini theorem, bounded.

Hence, by the above properties of Z,., 7, and I and by the product rule for Banach spaces
(see Theorem A.1.5 in Appendix A.1), we infer that, for j = 1,...,J, there holds:

Ol o (Xy;s Zi,)(031)) = I (03,7, (031), 2, (D)) + I (X, (0), 0525, (031))

. (3.18)
= DeTy, (0) M)k + Ty, (0)R;

G0+ eni) = ()} = Bl o (Ty,, 2,,)(65) in I2(Qr) (3.19)

n

The third term. The remaining terms we need to investigate are the terms associated with
the difference quotients of Hj, i.e. terms

T
/0 (5 {H(0+eni)) = Hj(0)} )€t where € € I3(0,T)

for j = 1,...,J. We require to justify that - {H;(0 + &,79)) — H;(0))} converges weakly in

En

L?(0,T), as n tends to oco. We will prove that this weak convergence holds and that the weak
limit in this convergence is equal

w‘lj((Thj (7}) ) ?j - y*)LQ(Q)) : <(DG,wThj (ﬁ)(ﬁ) ) Q - y*)LQ(Q) + (Thj (@) 3 ?7)[/2(9))
Term Hj; can be understood as:

H](@) = ij ol (Thj (ﬁ)’Zy(@) - y*)
= Ny o Lo (T, iy 0 2,) (0)

where, for j =1,...,J

iy s LP2(0,T; L*(Q)) — LP*(0,T5; L*(Q)) iy (p) :=p—y"
I+ L2(Q) x LP(0,T5 LX(Q)) — DP(0,T)  1(g,7)(t) i= (a(.),r(, ) 1oy ae. on [0,7]
N, = LP*(0,T) — L*(0,T) is the Nemytskii operator corresp. to w;

for p,r € LP2(0,T;L*(Q)), ¢ € L*(Q). Hence, for j = 1,...,.J, the investigated difference
quotients of Hj converge to 65Ny, o I o (13, ,iy= 0 Z,) (0;7), if the latter exists. Thus, analysis
of existence of this derivative is required. We will perform it now.

Note that LP2(0,T;LP2(Q)) C LP2(0,T; L*(Q))) and LP2(0,T; LP2(2)) — LP2(0,T; L*(Q)).
Thus, Z, is well defined with values in LP2(0,7T;L?*(f2)). By the mentioned embedding and
by (3.12), the derivative 65,2, (0;7) exists in LP2(0,T; L*()) and, by the introduced notation,
equals 7.
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Next, it follows straight that the operator iy« is well defined. It can be verified by the definition
of the Fréchet differentiability, that the operator i,~ is Fréchet differentiable with Dpi,«(p)s = s,
for p,s € LP2(0,T; L*(Q2)).

By Lemma 3.1.4, the operator 1, is well defined and weakly Géateaux differentiable from V'
to L2(Q), for j =1,...,J.

By Pettis theorem, I(q,r) is measurable for arbitrary ¢ € L?()) and r € LP2(0,T; L*(Q2)).
Moreover, by the Fubini theorem and the Hdélder inequality:

11(p, ) LP2 (0,7 / | (p( 1) 2 Q)‘m dt

<MW/M M5 de = lll5*llalls,

Hence, I is well defined. I is also bilinear and, by the above estimates, bounded.
By the assumption (B-4), it can be verified that w;, for j = 1,...,J, satisfies the following
growth condition

sup ‘wj(s){/(l + {s‘mﬂ) < 00
seR

Hence, by Theorem A.3.2 in Appendix A.3, N, is well defined as Ny : LP*(0,T) — L*(0,T).

Also, by assumptions (B-4) and (E-2), the derivative w} exists and:

su}g {w;(s)‘/(l + ‘s‘(m/z)_l) < 00
sE€

Therefore, by Theorem A.3.5 in Appendix A.3, the Nemytskii operator N, is Fréchet differen-
tiable from LP2(0,T) to L?(0,T), with

DpNuw; (p)(q)(x,t) = wi(p(t))q(t) a.e. on (0,7, for p,q € L*?(0,T)
Having the above properties of Z, iy, Tj,, I and ./\/wj, for j =1,...,J, the chain rule and

the product rule (see Theorems A.1.4 and A.1.5 in Appendix A.1) can be combined to infer that
05, H;(0;n) exists and

O Hin(0:1) = 03, (N, 0 Lo (Y, iye © 2,)) (0;7)
= wj, (I(Vh,(0), Z,(0) —y*))-
(TG 5500, 2,0) ) +TM @520} 5
= wi (70, (), 9 - y*)L2(Q))'
AP ©)@).5 ) 12y + V0. ) 1oy}
- (H(0 4 ef) — Hin0)) = S (o) in L(Qr) (3.21)

n

The analysis of the nonlinear terms is finished. Altogether, due to (3.12), (3.17), (3.19) and
(3.21), we can pass with n to infinity in identities (3.13) - (3.15). Moreover, by (3.16), (3.18)
and (3.20) we infer that the limit passage results in identities which correspond precisely to the
definition of the weak solution of (3.9) - (3.10), with (7, &1, ...,ks) = 652Z(0;7) being the weak
solution (see Definition 3.1.6). This concludes the proof of the theorem. B
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3.2 Optimization problem

In this section, we focus on the optimal targeting problem, announced in the beginning of Chap-
ter 3. The main point of the present section is derivation of a formula for the Gateaux differential
of the cost functional (3.3). This formula allows to express necessary optimality conditions for
the optimal targeting problem in an explicit way. Moreover, the subject formula was helpful
to perform the numerical optimization experiments, described in Chapter 4. For completeness
of our considerations, in this section we present also a simple result concerning existence of
minimizers of the cost functional (3.3).

The present section is organized as follows. We begin with reformulating the cost functional
(3.3) within a functional analysis framework, more convenient to work with. Next, in brief
Section 3.2.1, we give a basic criterion concerning existence of minimizers for the cost functional.
This criterion assumes compactness of the supports of the pattern functions o4 and oy,, entering
the system (3.1) - (3.2). Restriction of compact supports may seem to be strong. Nevertheless, in
Chapter 4, concerning numerical optimization experiments, we will use patterns functions with
compact supports. Therefore results assuming compact supports of the pattern functions are
sufficient for our purposes.

In Section 3.2.2, we proceed to the matter of differentiability of the cost functional. First,
it is shown that the cost functional is Gateaux differentiable. Next, we pass to characterizing
the Gateaux differential of the cost functional. Since, by definition, the Gateaux differential of
the cost functional in point © € V is a bounded linear functional on V, it can be characterized
as an element of A € V* = V, dependent on v. The main theorem of Section 3.2.2 gives a
formula for A”. The above results on differentiability of the cost functional require the operator
Z, defined in Section 3.1.2, to be weakly Gateaux differentiable. Hence, these results inherit the
assumptions guarantying weak Gateaux differentiability of Z, see Section 3.1.3.

In Section 3.2.1 and Section 3.2.2, the main results assume, in particular, that in the system
(3.1) - (3.2) the function f is globally Lipschitz and yo belongs to L?(£2). In Section 3.2.3, we show
how to generalize the main results of Section 3.2.1 and Section 3.2.2 to the case where f is locally
Lipschitz only, with the condition (1.73) and where yo € L*°(€2). The results of Section 3.2.3 cover
the case of the data utilized in the numerical optimization experiments described in Chapter 4.

Let us start. Note, that if the assumptions for the system (3.1) - (3.2) are such that the weak
solution exists (i.e. y € L?(Qr), in particular), then the cost functional (3.3) can be identified
with the cost functional Z, defined as follows:

I:V =R, Z(0) = N 2[@) —yT

172 gm0, (3.22)

where parameters A>0and Ty € (0,T) are given, Q;O is defined as in the beginning of the
present chapter and

gl =phloz, — T = phl(y) (3.23)

We recall that, in the present chapter, the operator P70 is understood as P10 L*(Qr) —
L%( %0) Conditions (3.22) - (3.23) are more convenient for analysis than the condition (3.3).
Hence, since now until the end of Section 3.2, we will focus conditions (3.22) - (3.23) instead of
the condition (3.3).

Having the above definition of Z, we formulate the optimization problem that we will focus
on as:

inf Z(0) (3.24)
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3.2.1 Existence of local minimizers

In this brief section, we address the question concerning the existence of solutions to the problem
(3.24). The following result is true:

Theorem 3.2.1 In the system (3.1) - (3.2), let assumptions (B-1) - (B-5) be fulfilled, with
additional restriction K = J. Assume also that at least one of the following is true:

o y* fulfills the assumption (C-1) and functions wy are bounded, for j =1,...,J,
e y* fulfills the assumption (C-2).

and that o4, oy fulfill assumptions (F-1) and (F-3). Then, the optimization problem (3.24)
attains at least one solution.

PROOF.  Let disty denote the metric in the metric space V. By the assumption (F-3),
Z:V — R is constant on the set E¢, being the complement in V' of

E = {(xl,...,xJ): dist(xj,$2) §C’suppj:1,...,J}

where Cyypp = max{diam(supp(oy)), diam(supp(os))}. Indeed, the operator 1 is constant on
E® C V and hence Z, = S, o T is constant on E° and so Z is.

On the other hand, our assumptions allow to apply Theorem 3.1.5 and conclude that Z: V —
X? is continuous. By this, the component Z, of Z is continuous when understood as Z,: V —
L*(Qr). Hence, it can be verified that ZyTO: V — L2(Q§1) is continuous as well. The latter
allows to infer the continuity of Z: V' — R.

Moreover, due to the assumption (F-3), E C V is compact or empty. In the case when E is
compact, Z, as a continuous functional, attains its minimum on E in some point v € E. Then
the minimal value of Z on V' is min{Z(0),Z(v)} for an arbitrary 0 € E°. In the case of empty E
the minimal value of Z on V' is Z(0) for an arbitrary 0 € E¢. W

REMARK.  The proof of Theorem 3.2.1 is simple due to the restrictive the assumption
(F-3). Nevertheless, the assumption (F-3) suffice to cover the data considered in the numerical
optimization experiments described in Chapter 4. A

REMARK. Dispensing the assumption (F-3) in Theorem 3.2.1 is not an obvious modifica-
tion. This assumption allowed to reduce the optimization problem to the problem of existence
of minimizers of Z on a compact subset of V', what, along with the assumptions sufficient for
the continuity of Z, immediately justified the desired result. Without the assumption (F-3), the
methods of the proof of Theorem 3.2.1 do not reduce the problem to the problem of minimization
on a compact subset of V. Hence, in this situation, the natural strategy would be to select a
minimizing sequence, to justify its boundedness in V', to select a weakly convergent subsequence
and next to justify the properties of Z necessary for the limit passage on this subsequence. In
situations of this kind, it is common that the boundedness of the minimizing sequence is con-
cluded by the presence of some coercing term in the definition of a cost functional. Unfortunately,
the definition of Z does not contain any coercing term, allowing to obtain boundedness of the
minimizing sequence. Thus, the mentioned strategy would be not straightforward to apply.

The above makes the problem of dispensing the assumption (F-3) in Theorem 3.2.1 inter-
esting. However, we would like to focus rather on the problem of characterizing the solutions of
problem (3.24) than on the problem of existence of its solutions. Therefore, we do not continue
the investigation of the latter problem in the present work. A
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3.2.2 The gradient of the cost functional

Section 3.2.2 is devoted to investigating the differentiability of Z: V' — R and deriving a charac-
terization of its differential. The characterization of the differential of Z is the main theorem of
Section 3.2.2. Before deriving the announced characterization, we introduce an auxiliary system
of equations, which we call the adjoint system. The idea of the proof of the main theorem consists
in testing the solution of the linearized system (see Section 3.1.3) with the solution of the adjoint
system, testing the solution of the adjoint system with the solution of the linearized system and
comparing the results of these testings. Hence, both the adjoint system and the linearized system
are essential for the proof of the main theorem of Section 3.2.2.

To be more precise, we aim in proving the Gateaux differentiability of the cost functional Z,
defined by (3.22) - (3.23), and representing its Gateaux differential in the following form:

for certain A® € V* =V . The element A? in (3.25) is in fact the gradient of Z and hence can be

utilized to perform gradient-type optimization procedures. The characterization of A?, obtained

below in the present section, was utilized in the numerical experiments described in Chapter 4.
Let us begin with some remarks on differentiability of Z.

Lemma 3.2.2 Let the assumptions of Theorem 3.1.8 be fulfilled. Then, the cost functional
Z:V — R, defined in (3.22) - (3.23), is Gateaux differentiable and

(DeT)(@)() = 2X (Z(0) = y*™, DawZP(®)@) | (3.26)
L2(Q7)
and DG,wZ;fO(@)(ﬁ) can be characterized as follows:
DgwZ0(0)(7) = PP (DawZ,(0)(1)) (3.27)
ProOF. First, note that, by (3.22) and (3.23), Z can be understood as
T . 12

(D) = )\HPR7T0 0y« 0 Zy (0) ‘LQ(Q;O) (3.28)

where X, T and Qg“ are as in (3.22) - (3.23) and where i+ is defined by
iy L2(Qr) = L*(Q1), iy (p):=p—y" (3.29)

for p € L*(Qr).

Note, that the definition of i~ in (3.29) makes sense under the assumption (E-3), since
LP2(0,T; L%(Q)) — L*(Qr). It also follows by the definition of the Fréchet differentiability
that i,+ is Fréchet differentiable and Dpiy(p)(q) = ¢, for p,q € L*(Qr). Moreover, the op-
erator PH10: L2(Qr) — L*( go) is linear and bounded and hence Fréchet differentiable with
DrPRTo(p)(q) = PRT0(q), for p,q € L*(Q7) (see Observation A.1.7 in Appendix A.1). In ad-
dition, since the assumptions of Theorem 3.1.8 are fulfilled, the operator Z, is weakly Gateaux
differentiable from V to L?(Qr).

By the above remarks, by (3.28) and by Theorem A.1.4 and Observations A.1.6, A.1.8 in
Appendix A.1, we conclude that the assertion holds. W
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Lemma 3.2.2 justifies the existence of DgZ and, by (3.26), gives certain characterization of
the latter. Nevertheless, the subject characterization is not of form (3.25), being our aim. Thus,
we now focus on deriving representation (3.25) of the differential of the cost functional Z.

The following system of equations, which we call the adjoint system, will be necessary for our
purposes:

(—pi—DAp— f'(V)p= (Y = y" ), 1)+
J o N .
SR /Q 1, (0)(V — y) da) Ty, (8)g;  on Qr

(3.30)

@—0 on 092 x (0,7T)

on ’

p(T,x) =

together with
(
—Biqy +q1 = / Yy, (O)pdxz  on [0,T]
Q

(3.31)

—Bsqs +q5 = /QTg(,(@)p dxr on [0,7]

¢;(T)=0 forj=1,...,J

where: 2 is a domain, T > 0, Q7 := Q x (0,7) and, for j = 1,...,J, D,B; > 0 are given
numbers, f,w;: R — R, ?,y*: Qr — R are given functions, © € V, 7, and 7}, correspond to
given 04,0, R4 — R (see (3.7) for the explanation of the latter correspondence), Ty € (0,7)
and 1(p, 7y: (0,7) — R denotes the characteristic function of interval (Tp,T') (see Notation
conventions). In the system (3.30) - (3.31), the unknown is the function (p,q1,...,qs): Qr —
RJ+L

Note, that if (p,qi,...,qs) was a classical solution of the system (3.30) - (3.31), then
(PéT D, P%ql, e ,P%qj), where PéT and 73% are defined as in the beginning of the present chap-
ter, would be a classical solution of the system (1.84) - (1.86) in Section 1.2.4, with

Y(xz,t) = 0,

Z;(t) = 1,
penme G = o
== w;‘(/QThj(@)PbT(Y—y*)dx)Thj(ﬁ), %](x) 0,
flatys) = f'(Ph,(Y)(@,1)s + Bo(e) = 0, (3.32)
+ Po (Y =) (@, )Pr (L, 1)) (1), fjo =0,
wi(s) = s,
h; = ng(@),

forj=1,...,J,2€Q,t€ (0,7), s€R.
The above remark explains the motivation behind the following definition of weak solutions
of (3.30) - (3.31), also involving the use of inverse time operators PéT and PL.:

Definition 3.2.3 The element (p,q1,...,q7) € X? is a weak solution of (3.30) - (3.31) if the
element (PéTp, Phqi,...,Phqy) is a weak solution of (1.84) - (1.86) with conditions (3.32) (see
Definition 1.2.16).
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It is straightforward that if (p,qi,...,qs) € X?, then (P&Tp, Piqi, ..., Phqy) € X% Thus,
Definition 3.2.3 is meaningful.
With the above definition, we can justify the following existence and uniqueness result:

Lemma 3.2.4 Let assumptions (B-1) - (B-4) be fulfilled, with additional restriction K = J. Let
also assumptions (E-1) - (E-2) and (F-1) hold. Moreover, assume that Y ,y* € L?(0,T; L*(Q2)).
Then, the weak solution of the system (3.30) - (3.31) exists and is unique.

PrROOF. By Definition 3.2.3, it suffices to show, that the system (1.84) - (1.86) with
conditions (3.32) has a unique weak solution in sense of Definition 1.2.16. For this end, it is
enough to justify that the assumptions of Theorem 1.2.18 are fulfilled.

First, Y € L*(Qr) and hence PéT? € L*(Qr). In particular, PéTY is measurable. More-
over, f’ is a Borel measurable function because it is the classical derivative of a continuous
function (see assumptions (B-4) and (E-1)). Therefore, f’ (PéT (Y)(.,.)) is measurable, as well
as [’ (PéT(SA/)( ., .))s, for an arbitrary s € R. Also, PéTy* is measurable because, by our as-
sumptions, y* € L?(Qr) and hence PéTy* € L?(Qr). This, along with the fact that PéTSA/ and
Péng(To ,r) are measurable, gives a conclusion that P&T (v — y*)P%(l(TO ,7)) is measurable. Sum-
ming up the above remarks, we conclude that fdeﬁned in (3.32) is measurable, for an arbitrary
seR.

Second, by the assumption (B-3), f’ is bounded. Therefore, it follows that ]7 defined in
(3.32) is Lipschitz continuous in s for a.e. (z,t) € Qr, with the Lipschitz constant independent
of (z,t) € Qr.

Third, for f defined in (3.32), f(., .,0) = PéT(SA/ —y*)Pi(1(r, 1), what belongs to L*(Qr),
since PéTY, P&Tj* € LQ(QTJ.

Summing up the above, f defined in (3.32) fulfills the assumption (D-3).

Moreover, P&T (Y—y*) belongs to L?(0, T; L?(£2)), hence it is strongly measurable. Therefore,
by the Pettis theorem, F} := JoTn; (ﬁ)P&T(Y —y*) dx understood as a real function of variable ¢
is measurable, for j = 1,...,J. A the same time, w; is Borel measurable as a classical derivative

of a continuous function (see assumptions (B-5) and (E-2)). Therefore, the function wj o ﬁj is

measurable, for j = 1,...,J. The function w; o ﬁj is also bounded for 7 = 1,...,.J, because
w; is bounded, by the assumption (B-4). Thus, w} o ﬁj belongs to L>(0,T) for j = 1,...,J.
Taking into account the latter and 7}, (0) € L%(2), we conclude that =; defined in (3.32) fulfills
the assumption (D-6).

The fact, that o, Kjo, Y, ©;, wj, h; and Z;, for j =1,...,J, fulfill assumptions (D-5) and
(D-6), respectively, follows straight. Moreover, (EJ”EJ')J:L...,J eU.

To sum up, the assumptions of Theorem 1.2.18 are fulfilled and hence there exists a unique
weak solution of the system (1.84) - (1.86) with conditions (3.32). W

Now, we present the main theorem of Section 3.2.2, which gives a characterization of Gateaux
differential of the cost functional Z in the form given in (3.25).

Theorem 3.2.5 Let assumptions (B-1) - (B-5) be fulfilled, with additional restriction K = J.
Assume also that at least one of the following is true:

o y* fulfills the assumption (C-1) and functions w; are bounded, for j=1,...,J,

o y* fulfills the assumption (C-2).
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Moreover, let assumptions (E-1) - (E-3) and (F-2) be fulfilled and let X > 0, Ty € (0,T) and
0,1 € V be given. Let also (y,R1,...,ky) = Z(0) and let (p,qi,...,qy) be the weak solution of
the system (3.30) - (3.81) corresponding to Y := .

Then, the cost functional I, defined in (3.22) - (3.23), is Gdteaur differentiable and its
differential in point © in direction 1) is equal to DgZ(0)(n) = (Aﬁ,ﬁ)v, where A® € V is given
by:

AT = izi (DawTy, )" ( /0 ' Rbdt) +
o . (3.33)
+ 32 (DauT, (@) ( /0 wi( /Q T, () — y*) d) (5~ y7) G dt

J=1

The characterization of Gateaux differential of the cost functional Z given in Theorem 3.2.5 is
not explicit, since the adjoint operators entering the formula (3.33) are not explicitly described.
Hence, below we provide a theorem characterizing the latter operators.

Theorem 3.2.6 Let the assumption (F-2) be fulfilled. Let also © € V be given. Then, the adjoint
operators (DG,ngj (@))* cL2(Q) — V, for j=1,...,J, are well defined and are characterized
by the following formulas:

(DwYy, (0)) F = (0, 0,0, (Dgw Ty, (0;)) PELE, 0,... ,0> (3.34)

Jj—1 j-th position J—=j

for Fe L?(Q), where 0 € RY and where the non-zero element on j-th position can be expressed

by
d

(Do, (05)) " PEOE = <_ /Q F(2) (PP, (0)) (2) dz> (3.35)
i=1
The adjoint operators (D(;vahj (ﬁ))* CL2(Q) — V, for j =1,...,J, are also well defined
and are characterized by the same formulas, with o, replaced by op,.

We recall that, in the present chapter, the particular operators entering the above formulas
are understood as P¥?: L?(Q) — L*(RY) and Ty, To,0, : RY — L2(RY).

e

Now, we present the proofs of Theorem 3.2.5 and T}gleorem 3.2.6.

ProOF THEOREM 3.2.5.  The Géateaux differentiability of Z was already explained in
Lemma 3.2.2 (note, that its assumptions are fulfilled in the present theorem). It remains to
justify formulas characterizing the subject Gateaux differential.

We will begin with justifying that the formula (3.33) is well-posed. For this end, note that the
assumptions of Theorem 3.1.5 are fulfilled, hence (g, &1, ..., 4s) in the assumptions of the present
theorem is a well defined element of X2. With this, assumptions of Lemma 3.2.4 are also fulfilled,
hence (P, q1,--.,qy) in the assumptions is a well defined elements of X? as well. This, together
with the Fubini theorem and the Holder inequality, allows to justify that fOT Ri(t)p(x,t) dt,
understood as a function of z, is a well defined element of L?(£2), hence it belongs to the domain
of (DG,ngj (@))*, for j =1,...,J. Similarly, we can find out that, for j = 1,...,J, expression
fOT W) (Jo Ty (0)(§ — y*) dz) (§ — y*) gjdt belongs to the domain of (D w15, (0))", i.e. to L2(Q).
Indeed, arguing as in the proof of Lemma 3.1.7, we get that w;- (fQ T, (0)(G = y*) dx) belongs
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to L>(0,T). This, along with § € L*(Qr), ¢; € L*(0,T), with assumptions for y*, with the
Fubbini theorem and with the Holder inequality justifies the necessary. Thus, the formula (3.33)
is meaningful.

Next, assumptions of Lemma 3.1.7 are fulfilled. Hence, the weak solution of (3.9) - (3.10)
exists and is unique. Denote this weak solution as (y,k1,..., % ). By Definition 3.1.6, it means
that the identity in the part b) of Definition 1.2.16 is fulfilled with y := y and the identity in
the part c) of Definition 1.2.16 is fulfilled with s; := &;, with relations (3.11) utilized there.
Since X2 < L2(0,T; H'(Q)), the element (p,qi,...,qs) can serve as a test function in the
referred identities, by putting ¢ := p in the part b) and, for j = 1,...,J, putting £ := ¢; in the
part ¢) of Definition 1.2.16, with relations (3.11) applied there. Executing the above described
substitutions and utilizing relations (3.11) in the subject identities, we get:

J
/ (U, D, +D(Vy,Vp)L2(Q)+< "(9)y — ZT% (0)R; N) @) dt =
/ (ZDG“” a5 (0)( ﬁ)’%j’ﬁ)wm o

B /T (/ Ty (0) —v )d””>' (3.36b)

</DGwTh ) (A) (G — *)dx>;jjdt for j=1,...,J

(3.36a)

Similarly, (%T@‘, PLki,. .. ,P%%J) can serve as a test function for weak solution (p, g1, . .., qs)
of the system (3.30) - (3.31). More precisely, by Definition 3.2.3, in the identity in the part b) of
Definition 1.2.16 we can put y := PiQTﬁ, Q= PiQT’Lj and, for j = 1,...,J, in the identity in the
part ¢) of Definition 1.2.16 we can put ; := Pig;, £ := PiF;, together with utilizing relations
(3.32). Executing the above substitutions, utilizing relations (3.32) in the subject identities, inte-
grating the time derivative terms by parts w.r.t. ¢ (see Prop. 23.23 in [51] for the integration by
parts formula for vector valued functions) and inverting the time direction by applying operators
PéT and PL, we get:

T
= A ((Q - y*)l(TO,T) ) g)[ﬁ(ﬂ) dt

T
/ (ﬂja} +q; — (ng(@),ﬁ)L2(9)> Rjdt = 0 forj=1,...,J (3.37b)
0

Comparing (3.36) and (3.37), we observe that the sum of the left hand sides of (3.36) equals
the sum of the left hand sides of (3.37). Hence, the sums of the right hand sides of (3.36) and of
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(3.37) also equal. Thus, after changing the order of integration in these sums, we get:

T
/0 (@ =) mym)s ) 2y dt =

J T

- ;(/0 P dt, DG’ngj(@)(ﬁ)>L2(Q) * (3.38)
J

+ ; ( /OT wj( /Q T, (0)(y —y*) dz) (y ") dt, DT, (ﬁ)(ﬁ))L2(Q)

Recall that y = (DgwZ(0)(1)), = DawZy(0)(7) and § = Z,(0). By the definition of Zgb
and y*70 see (3.23), and by (3.27) in Lemma 3.2.2, we deduce that

T

T
/ ((Q - y*)l(To,T)’ g) L2(Q) dt = / <’PR,TO (?) - y*) > PR7T0 ?7) 5 dt
0 To L2(©) (3.39)
= (20@ ~y™, Doz @) ,

Identities (3.38) and (3.39), by involving adjoint operators (D¢ w1y, (0))" and (Déwh, ()",
for j=1,...,J, and by Lemma 3.2.2, justifies the assertion of Theorem 3.2.5. B

PROOF OF THEOREM 3.2.6. We will prove the assertion for operators (D¢, Ty, (@))* The
case of operators (DG,wThj (9))" follows the same lines.

To prove the required, we repeat some arguments from the proof of Lemma 3.1.4. We observe
that 1, = phQ 07T, oPJR’V, where the particular operators are understood as P®: L2(R9) —

L*(Q), To,: RY — L?(RY) and PJR’V: V — R4, Since o0, € WH3(RY), we can apply Theorem
A.4.5 to conclude that 75, is weakly Géteaux differentiable. Moreover, operators PR and

PJR’V are linear and continuous. Thus, we can combine the above facts with Observation A.1.7,

Observation A.1.11, Theorem A.1.4 and, for brevity, use identities 0; = PJB’V(@) and 7); =

PJR’V(ﬁ) to get that 7, is weakly Gateaux differentiable from V' to L?(Q2) and

Deuy; (0)(0) = P (Dg.wTs, (0) (1))

for arbitrary 0,7 € V.

In consequence, as operators D¢, 1y, (0): V — L?(2) are well defined for j = 1,...,J, the
adjoint operators also are well defined, what justifies the corresponding statement the second
assertion of the theorem. .

Next, we note that (PR’Q)* = PEL [2(Q) — L?(RY) and (PJR’V) = PJE’V: RY — V.
Using this and the above derived representation of D¢ ., Yy, (0)(#), we conclude the following:

(£ DTy, (@)

= ((DewTo, (@) PEOE i), = (PPY (DewTo, (0)) PPOF i)

_ ( F, PR (DgwTs, (05)) ﬁj) -

L) L)

Taking into account the definition of PJE’V, the above justifies the formula (3.34).
Now, we are left to find the characterization of the adjoint of D¢ .75, (0;)( . ), still not explicit
above. Functions o, and o}, satisfy the assumption (F-2), thus by the Theorem A.4.5 we have
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an explicit characterization of the differentials of 7, and 75, at our disposal. This helps us to
achieve our goal:

<PE7QF7 DG,w%g(@j)ﬁj)m(Rd) B <PE79F’ (_Tvgg(@j)’ﬁj)Rd>L2(Rd) -

= ((- [LPPonema @@ @) )., =
- / F(2) (PP To,0,(25)) (2) dz>(.i P’ f'ﬂ')
Q

i= Rd

The above justifies the formula (3.35).
This concludes the proof of Theorem 3.2.6. B

Thanks to Theorem 3.2.6, we can write the formula for A® € V, asserted in Theorem 3.2.5,
in a more explicit form:

Corollary 3.2.7 Let assumptions imposed in Theorem 3.2.5 be fulfilled. Then, for 0 € V, the
weak Gateauz differential in O of the cost functional Z, defined in (3.22) - (3.23), exists and can
be characterized by o DgZ(0)(n) = (Af’,ﬁ)v for i € V., where A® € V is given by:

(AY), = QX/T/ i (P 0 Topyg, ) (D)) da dt
+2>\/ /q] /Th (©) (9 — *)dﬂf) (9 —y") (P 0 Too,0,)(05) d dt

forj=1,...,J, fori=1,...,d, where (§,k1,...,Ry) is the weak solution of the system (3.1) -
(3.2) corresponding to x; := v, for j =1,...,J, and (p,q1,...,qs) is the weak solution of the
system (3.30) - (3.31), corresponding to .

(3.40)

The above comes by combining formulas (3.33) and (3.34) - (3.35), changing the order of inte-
gration and noting that —75,,(0;)(x) = T_5,,(0;)(z) for a.e. x € Q, for 0 = og,0p, 1 =1,...,J,
i=1,....d.

REMARK. Note that the formula (3.40) is explicit enough to approximate it with numerical
methods. Indeed, for a given o4 and oy, functions T g,4,, 78,0, and 1}, (0), entering (3.40),
can be expressed explicitly by their definitions. Thus, assuming that one is able to find nu-
merical approximations of solutions (7, &1, ...,ky) and (p,q1,...,qs), the formula (3.40) can be
approximately evaluated with a use of numerical integration methods. A

Formulating necessary optimality condition is a usual step towards characterizing the so-
lutions of a considered optimization problem. A first choice necessary optimality condition is
frequently the generalization of the Fermat condition for multidimensional sets given in The-
orem A.2.1 in Appendix A.2). Applying the latter requires the knowledge on the Gateaux
differential of the cost functional. In the case of optimization problem (3.24), we can use The-
orem A.2.1 along with the characterization of DgZ, provided by Corollary 3.2.7, to obtain the
following necessary optimality condition:

Corollary 3.2.8 Let the assumptions of Corollary 3.2.7 hold. If 0 € V' solves the optimization
problem (3.24) then condition )
(A%, 0—0), >0  Vey

14
is fulfilled, for A® as in Corollary 3.2.7.
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3.2.3 Generalizations for locally Lipschitz reactive term

In the present section, we prove results for optimization problem (3.24) under assumptions dif-
ferent that those utilized in the main results of 3.2.1 and Section 3.2.2. In the results of the latter
sections, it was assumed for the system (3.1) - (3.2), in particular, that f is Lipschitz and that
Yo € L?(Q2). Below, we will change the Lipschitz continuity of f to local Lipschitz continuity plus
the growth condition given in (1.73) and we will change the assumption for yy to yg € L>(2).
Moreover, we will require higher integrability of the pattern function o,.

Below, we justify analogues of the previously proven theorems concerning existence of mini-
mizers for the cost functional Z (Theorem 3.2.1) and the characterization of its gradient (Theorem
3.2.5), but with the above mentioned modifications in the assumptions.

The purpose of the present section is the following. In Chapter 4 of the present work, we
describe numerical simulations for optimization problem (3.24). The subject simulations involved
data assuming locally Lipschitz f satisfying the condition (1.73) and yo € L°°(2). For this reason,
we aimed in deriving analytical results covering the case of the data utilized in the simulations.
Hence the below content.

The proofs presented below, in their essence, consist in reducing optimization problem (3.24)
with locally Lipschitz f obeying (1.73) to optimization problem (3.24) with globally Lipschitz f.
Since for globally Lipschitz f the existence of minimizers and the formula for the gradient of the
cost functional are already known (Theorem 3.2.1 and Theorem 3.2.5), the mentioned reduction
will imply the necessary results.

For the proof of Theorem Theorem 3.2.5, the theorem on the differentiability of the state
operator Z, associated with globally Lipschitz and differentiable f, was crucial. The reduction
approach in the present section allow to avoid direct analysis of differentiability of the state
operator Z associated with locally Lipschitz f.

In Section 3.2.3, we proceed as follows. We begin with introducing some definitions and
notations which will be necessary in the sequel. Next, we formulate simple results concerning
existence and uniqueness of the weak solutions for the case of the modified assumptions for f, yo
and o4, mentioned above. The subject existence and uniqueness results concern the system (3.1)
- (3.2), the system (3.30) - (3.31) and certain associated systems, which will be defined below for
technical reasons. Eventually, we proceed to proving analogues of Theorem 3.2.1 and Theorem
3.2.5 for the modified assumptions for f, yo and oy .

Let us proceed to formulation of the necessary definitions.
For continuous f: R — R, for n > 0 it possible to define the following function f™: R — R:

f(s) :== f(s) for s € (—n,n)
f(s) = f(=(n+1)) fors<—(n+1) (3.41)
f(s) = f(n+1) fors >n+1

and
f" is linear on [—(n + 1), —n], linear on [n,n + 1] and

[ (=(n+1))
f*(=n)

(n+1) (3.42)
(n)

= f(=n+1) D)
= J(~n) () :

If, in addition, f’(s) exists for all s € R, it is meaningful to define f™ by the condition (3.41)
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and by the following condition instead of (3.42):

(™ is 3rd degree polynomial on [—(n + 1), —n], 3rd deg. pol. on [n,n + 1] and

Fr=(n+1)) == f(~(n+1)) fin+1):= f(n+1)
f(—n) = f(-n) f(n) = f(n) (3.43)
FU~(n+1) = f(~(n+1)  fn+1):=f(n+1)
FY(=n)) == f'(-n) F(n) = f'(n)

The following observations are straightforward:

Observation 3.2.9 If f: R — R:

is continuous, then f" defined by (3.41) and (3.42) is so, for all n > 0.

is differentiable in every point of R, then f™ defined by (3.41) and (3.43) is so, for all
n > 0.

is locally Lipschitz, then f™ defined by (3.41) and (3.42) as well as f" defined by (3.41)
and (3.43) are globally Lipschitz, for all n > 0.

obeys the condition (1.73) with constant Cy, then f" defined by (3.41) and (3.42) as well
as as well as f™ defined by (3.41) and (3.43) also obey the condition (1.73), with the same
Cy, for all positive n such that n +1> Cjy.

In the present content, we still assume that Z: V — X2 and 7: V — U are defined as in
Section 3.1.2 and Z: V' — R is defined by conditions (3.22) - (3.23). However, in the below
considerations, it will be convenient to have the following additional notation. Assume that
arbitrary functions f™: R — R are given, for all n > 0. Then, for n > 0:

The system (3.1) - (3.2) with f™ instead of f will be denoted by ((3.1) - (3.2))".
The system (3.30) - (3.31) with £ instead of f’ will be denoted by ((3.30) - (3.31))".

By Z™, where
Zh=(2} 28, 2Z8) V. — X?

K1)
we will understand the operator assigning the weak solution of ((3.1) - (3.2))" to a given
U € V, assuming assignment x; := 0; for j =1,...,J in ((3.1) - (3.2))”.

By I": V. — R we will understand the cost functional given by (3.22) - (3.23), with Z?
instead of Z,.

Now, we pass to existence facts for systems (3.1) - (3.2), (3.30) - (3.31), ((3.1) - (3.2))" and
((3.30) - (3.31))". The following facts are corollaries from earlier considerations in the present

work:

Corollary 3.2.10 In the system (3.1) - (3.2), let assumptions (B-1), (B-2) and (B-4) be fulfilled,
with additional restriction K = J. Moreover, assume that

o fis Locally Lipschitz continuous and obeys the condition (1.73), for some constant Cy > 0,

® yo € L®(Q) and kjo €R forj=1,...,J,
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e 0, € L*1(RY) and o, € L*(RY), where s1 > max{2, $}.

Let also at least one of the below conditions hold:
e y* is as in (C-1) and functions w; are bounded, for j=1,...,J,
o y*isas in (C-2).

Then, there ezist a unique weak solution of the system (3.1) - (3.2). In consequence, the operator
Z:V — X? and the cost functional I: V — R are well defined.

PrROOF. To prove Corollary 3.2.10, note that the system (3.1) - (3.2) is a particular case
of the system (0.1) - (0.3), with K = J and with (gj’hj7ajk)j,k‘ := 7(0). Hence, by Theorem
1.2.14 and Theorem 1.2.15, we obtain the assertion. H
Corollary 3.2.11 Let the assumptions of Corollary 3.2.10 be fulfilled. Let functions f™ forn > 0
be given by (3.41) and (3.42). Then, for n > 0, there exist a unique weak solution of the system
((3.1) - (5.2))". In consequence, the operator Z": V — X2 and cost functional I": V — R are
well defined, for n > 0.

If, in addition, f'(s) exist for all s € R, then the above assertion holds also for functions f"
given by (3.41) and (3.43), for n > 0.

Above, the assumption that f’ exists everywhere is necessary only to guarantee that f™ is
well defined for n > 0, in the case where f™ is defined by conditions (3.41) and (3.43).

ProOOF. First, consider the case of y* is as in (C-1) and bounded functions wj;, j =1,...,J.
For f as assumed in Corollary 3.2.10, functions f™ are Lipschitz, for both f™ defined by (3.41)
and (3.42) and f" defined by (3.41) and (3.43) (see Observation 3.2.9). Thus, one can verify
that the system ((3.1) - (3.2))" meets the assumptions of Corollary 1.2.8 with f" instead of f,
regardless on the variant of f™. Hence, the assertion follows by Corollary 1.2.8.

The case of y* is as in (C-2) follows exactly the same lines, with the use of Corollary 1.2.9
instead of the use of Corollary 1.2.8. B

Corollary 3.2.12 In the system (3.30) - (3.31), let assumptions (B-1), (B-2), (B-4) be fulfilled,
with additional restriction K = J and assume that f: R — R is Locally Lipschitz continuous and
obeys the condition (1.73), for some constant Cy > 0. Assume also that (E-1) - (E-2) and (F-1)
hold. Moreover, assume that Y € L®°(Qr) and y* € L*(0,T; L*(Q)).

Then, the weak solution of the system (3.30) - (3.31) exists and is unique.

Corollary 3.2.13 Let the assumptions of Corollary 3.2.12 be fulfilled. Let functions f™ for
n > 0 be given by (3.41) and (3.43). Then, for n > 0, there exist a unique weak solution of the
system ((8.30) - (3.31))".

We have formulated Corollary 3.2.12 prior to Corollary 3.2.13, for the sake of more readable
presentation. But technically, Corollary 3.2.13 should be proven first.

PrOOF OF COROLLARY 3.2.13. For f as assumed in Corollary 3.2.12, functions f" as
assumed in Corollary 3.2.13 are Lipschitz and differentiable (see Observation 3.2.9). Thus, for
n > 0, the system ((3.30) - (3.31))" obeys assumptions of Lemma 3.2.4 with f" instead of f.
Hence, by Lemma 3.2.4, the assertion follows. H
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PROOF OF COROLLARY 3.2.12. Let f™ be given by (3.41) and (3.43), for n > 0. If suffices
to show that arbitrary weak solution of (3.30) - (3.31) is a weak solution of ((3.30) - (3.31))",
for certain n, and that arbitrary weak solution of ((3.30) - (3.31))" is a weak solution of (3.30)
- (3.31). Having this, the assertion follows by Corollary 3.2.13.

Chose 1o > HYHLOO(QT). By the condition (3.41), we have

() (V(x,t) = (fY) (V(z,t)  forae. (z,t) € Qr

Thus, by Definition 3.2.3, every weak solution of (3.30) - (3.31) is a weak solution of

((3.30) - (3.31))" and every weak solution of ((3.30) - (3.31))" is a weak solution of (3.30) -
(3.31). This closes the proof. B

We proceed to the key part of Section 3.2.3. The below statements, which are the main
statements of Section 3.2.3, rely strongly on Theorem 1.2.13.

Theorem 3.2.14 Let the system (3.1) - (3.2) fulfill the assumptions of Theorem 3.2.1, except
the assumptions concerning f, yo and o4. For f, yo and o4, we make the following assumptions

o f is locally Lipschitz continuous and obeys the condition (1.73) for certain constant Cy,
o yo € L>(Q),
e 0, obeys assumptions (F-1) and (F-3) and, in addition, o, € L**(R9) for certain s; > 9.

Then, the optimization problem (3.24) attains at least one solution.

PROOF. Let functions f" be defined by (3.41) and (3.42), for n > 0.

Let v € V. Denote (y,k1,...,k5) = Z(0) (what is well defined, see Corollary 3.2.10). By
the definition of Z, (y,k1,...,ky) is the weak solution of the system (3.1) - (3.2) corresponding
to € :Z@j,j: 1,...,J.

The system (3.1) - (3.2) with z; := 05, 7 = 1,...,J is a particular case of the system (0.1)
- (0.3), with K = J and with (gj,hj,ajk)jk := 7(0). By the assumptions presently imposed
for the system (3.1) - (3.2), Theorem 1.2.13 with @ 1= Y'(0) can be applied to the system (3.1) -
(3.2) to conclude that:

HyHLOO(QT) < Co (3.44)

where Cj stands for the constant from the estimate (1.78) in Theorem 1.2.13. C{ depends in
particular on constants denoted in Theorem 1.2.13 as C, and RY. Since we assume @ := 1(9),
one can check that, to apply Theorem 1.2.13, it suffices to set

Cy = o]

2 2
ey B = I([|ogl e ay + ol gay +1)

for arbitrary © € V. Other quantities on which Cy depends (which are indicated in Theorem
1.2.13) also are independent of © € V. Hence, having chosen C,; and RV as above, Cj in (3.44)
is independent of U € V as well.

Note that the assumption o, € L2(RY)NL*1 (RY) is essential above because of the assumptions
for the integrability of 4, imposed in Theorem 1.2.13 (in the present case, iy, = 1y, (0) =
0g(. —05)|a). Theorem 1.2.13 requires i, € Lmax{2d/2} Q) at least, for j = 1,...,J. Moreover,
Theorem 1.2.13 requires yp € L*°(2), thus the latter also is necessary.
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Choose nn > Cy. By the condition (3.41) and by (3.44) we see that

fiy(z,t)) = flylz,t)  forae (x,t) € Qr (3.45)

for arbitrary © € V. Thus, inserting the above into the definition of the weak solution (see Defini-
tion 3.0.1) we find that (y, s1,..., %) is also the weak solution of ((3.1) - (3.2))", corresponding
to x; = 0;, for j = 1,...,J (which exists and is unique, see Corollary 3.2.11). Therefore,
Z(0) = Z™(0) and, in consequence,

(o) = I%0) forallvoeV

Now, note that for Z", and hence for Z, the existence of minimizers follows by Theorem
3.2.1. Indeed, by the assumption concerning f, functions f™ are Lipschitz (see Observation
3.2.9). Thus, one may verify that the system ((3.1) - (3.2))” obeys assumptions of Theorem
3.2.1, for all n > 0, in particular for n := n. Application of Theorem 3.2.1 concludes the proof.

Above, assumptions (F-1) and (F-3) are essential because Theorem 3.2.1 also requires them. W

Theorem 3.2.15 Let the system (3.1) - (3.2) fulfill the assumptions of Theorem 3.2.5, except
the assumptions concerning f, yo and o4. For f, yo and o4, we make the following assumptions:

o f s locally Lipschitz continuous, obeys the condition (1.73) for certain constant Cy and
obeys the assumption (E-1),

e yp € L>(Q),

e 04 obeys the assumption (F-2) and, in addition, o, € L5 (RY) for certain sy > %

Then, the cost functional Z, defined in (3.22) - (3.23), is Gateauz differentiable and its differential
in point O in direction 1) is equal to DgZ(0)(n) = (Af’, ﬁ)v, where A € V is given by the formula

PrROOF. In the present proof, the following notation will be convenient. For n > 0, let
(3.33)" denote the formula (3.33) with the following modifications:

® (9,k1,...,ky) is replaced by (9", AT, ...,R}) = Z™(0),

e (p,q1,---,qy) is replaced by (p",q7,...,q") being the weak solution of the system
((3.30) - (3.31))" corresponding to Y :

In the proof, we assume that functions f™ are defined by (3.41) and (3.43), for n > 0.

Let © € V. Assume that (y,x1,...,k7) € X? is the weak solution of the system (3.1) - (3.2),
corresponding to x; := 0;, j = 1,...,J (which exists and is unique, see Corollary 3.2.10).

By the same argument as in the proof of Theorem 3.2.14, the estimate (3.44) hold, with
constant C independent of © € V. Note in particular that deriving (3.44) required Theorem
1.2.13 and that the present assumptions concerning integrability of o, are sufficient to apply
Theorem 1.2.13. Moreover, Theorem 1.2.13 requires yo € L>(£2), thus the latter also is utilized
here.

Let n > Cy. By (3.44), by the condition (3.41) and by the choice of 1, we have (3.45),
independently on the choice of © € V. Hence, inserting (3.45) into the definition of the weak

solution (see Definition 3.0.1), (y, k1, ...,%7) is the weak solution of the system ((3.1) - (3.2))ﬁ
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(which exists and is unique, see Corollary 3.2.11), for all & € V. In consequence, Z(0) = Z"(0),
forall v € V.

Functions f" are Lipschitz continuous and f™(s) exists for all s € R (see Observation 3.2.9).
Thus, it can be verified that the system (3.1) - (3.2) fulfills the assumption of Theorem 3.2.5, for
all n > 0, in particular for n := n. Therefore, by Theorem 3.2.5 we conclude that Z” is Gateaux
differentiable and for all ©,7 € V we have DgZ™(0)(7) = (A};’,ﬁ)v, where A2 € V is given by
the formula (3.33)". Since I = T, T also is Gateaux differentiable and DgZ(0)(7) = (A2, M)y
forvo,neV.

Above, the assumption (F-2) is essential because Theorem 3.2.5 also requires it.

The proof will be closed once we show that A%’ = A? for 1 as above, for 0 € V. Comparing
formulas (3.33) and (3.33)", which define A? and AL respectively, we see that we need to justify
the following, for all v € V:

o (§7 AT, .. k%) = (§,R1,...,ky), where (§,1,..., k) = Z(D),

° (ﬁﬁ,a?,,(ﬁ) = (p,q1,-.-,qs), where (p,q1,...,qy) is the weak solution of the system
(3.30) - %

Equality (gjﬁ,/%?,...,/%?) = (g,R1,...,~y) follows by showing that, for n as assumed, a

(3.31) corresponding to Y := g.

weak solution of ((3.1) - (3.2))" is a weak solution of (3.1) - (3.2) corresponding to z; = 0,
j=1,...,J. But we have already shown above that a weak solution of (3.1) - (3.2) is a weak
solution of ((3.1) - (3.2))". The opposite follows immediately, since we have the existence and
uniqueness results for both systems (see Corollary 3.2.10 and Corollary 3.2.11).

To justify equality (ﬁﬁ,c}’?, .. ,cﬁ) =(p,q1,---,q7), we proceed as follows. We need to show
that (5", 4}, ... ,c}’}) is in fact the weak solution of (3.30) - (3.31) corresponding to Y :={. But
it follows with arguments similar to the above ones. By §" = gy (already proven), by (3.44), by
(3.41) and by the choice of n, we have

Y@ x,t) = f@at)  forae. (z,0) € Qr

The above along with §” = § yields the necessary.
The proof of Theorem 3.2.15 is complete. B

From Theorem 3.2.15 and Theorem 3.2.6, we can derive an analogue of Corollary 3.2.7:

Corollary 3.2.16 Let the assumptions of Theorem 3.2.15 be fulfilled. Then, the cost functional
Z, defined in (3.22) - (3.23), is Gateauz differentiable and its differential in point U in direction
7 18 equal to DgZ(0)(1) = (Af’,ﬁ)v, where A® € V is given by the formula (3.40).

The above follows, as in the case of Corollary 3.2.7, by applying formulas (3.33), (3.34) and
(3.35), changing the integration order and observing that —7s,,(0;)(2) = T_5,,(0;)(x) holds for
a.e. v €§), for o =o4,0p, for j=1,...,Jand fori =1,...,d.



Chapter 4

Optimal targeting problem —
numerical prototypes

In this chapter, we describe numerical experiments for the optimal targeting problem, announced
in §2 of Introduction. We will base on the mathematically more precise formulation of the
subject problem given in Section 3.2. We will thus identify the optimal targeting problem with
the optimization problem (3.24), consisting in minimization of cost functional Z (defined by
conditions (3.22) - (3.23)).

In Chapter 3, we have already answered the question concerning possibility of solving opti-
mization problem (3.24) (Theorem 3.2.1, Theorem 3.2.14), as well as given the characterization
of the solutions (Corollary 3.2.8). Now, we are going to focus on the matter of numerical con-
struction of the solutions.

Therefore, in the present chapter, the main point of our interest is the matter of choice
of optimization algorithms proper to attack optimization problem (3.24). Thus, we test a few
optimization methods to check how their performance varies with changes of parameters and
functions entering the definition of cost functional Z or the system (3.1) - (3.2).

Cost functional Z depends on the control parameter (i.e. the targetings of the control and
measurement devices actions), which parametrizes the feedback law (i.e. the algorithm of com-
puting the response functions) in thermostat control mechanism (see Introduction for details).
Consider the case of Tj) being close to T" in the definition of cost functional Z (see (3.22) - (3.23)).
This determines a cost functional encoding idea of measuring the gap between the process state
and reference state in the neighborhood of the terminal time T (see the remarks in §2 of In-
troduction). The latter gap can serve as a natural measure of the efficiency of the thermostat
control mechanism. Hence, the problem of minimization of cost functional Z with T close to T'
is consistent with one the general ideas of the present work, which is to optimize the feedback
law in the thermostat control mechanism in order to improve its efficiency (see the beginning of
Introduction). For this reason, in the present chapter we are particularly interested in the case
of Ty close to T'.

Other point of our interest was the independence of the optimization results on the initial
state of the controlled process, described in the system (3.1) - (3.2) by o, in the case of Tj
close to T'. To explain our motivations, consider the model with an open-loop control described
by the sole equation (3.1) (without (3.2)), where the user is responsible for the choice of both
functions g;, characterizing the control devices actions, and the power functions x;. It follows
by intuition that the optimal choice of x; perhaps depends on the initial state yo (regardless of
whether Tj is close to T in the definition of Z or not). Therefore, the independence of solutions
of the optimal targeting problem on the initial state of the process would be an advantage of

99
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the thermostat control mechanism, at least in comparison to the mentioned system with an
open-loop control (see also the general ideas described in the beginning of Introduction). Hence,
during our experiments, we have made an attempt to verify whether the subject independence
indeed exists or not.

By the results of Chapter 2, we may expect that, in certain cases, the alleged independence
on gq of the solutions of the optimal targeting problem can be true. Indeed, in the simulations
described in Chapter 2 we observed that in some (but not all) situations the process controlled
by thermostats stabilizes near to the same state, independently on the initial state yg of the
process. In other words, the process states achieved near to the terminal time T were very
similar, regardless on yg. For this kind of situations, the cost functional Z with T close to T' can
vary insignificantly under changes of yg, because such Z captures only the data concerning the
process near to the terminal time 7. Hence, the minimal points for Z with Ty close to T also
can vary insignificantly under changes of .

The optimization algorithms utilized in our experiments were gradient-based algorithms —
the steepest descent method and the nonlinear conjugate gradient method, implemented in the
Polak-Ribiére mode with certain modification. The latter method was used in two variants: one
with a periodic reset of the algorithm every N, iterations, with N, equal to the dimension of the
optimization space; the other without the periodic reset. Each of the methods involves computing
the gradient of the cost functional. In our experiments, the gradient was computed basing on the
characterization given in Corollary 3.2.16. The latter characterization involves solving systems
(3.1) - (3.2) and (3.30) - (3.31). Besides, computing the value of the cost functional Z also
involves solving the system (3.1) - (3.2). For solving numerically these two systems, we employed
the finite element method for discretization in space, the implicit Euler schemes for discretization
in time and the Picard iterations method for treating the nonlinear terms entering the system
(3.1) - (3.2).

To compare performance of particular optimization algorithms, we in fact compare the num-
ber of iterations necessary to approximate a solution of (3.24) when using a given algorithm with
a given stop criterion. Thus, by saying that performance of a given optimization algorithm was
better (worse) in situation A than in situation B we mean that the number of iterations of the
algorithm in situation A was lower (higher) than in situation B.

The results of the experiments suggest that average performance of the steepest descent
method for optimization problem (3.24) vary with changes of the parameter Tj, entering the
definition of the cost functional Z (average, in a sense to be clarified later). Setting Ty close to
T resulted in more iterations of the algorithm than for 7o = 0 (Section 4.4.1 and Section 4.4.2).
In this sense, problem (3.24) with T close to T is more difficult than with 7" = 0. Neverthe-
less, changing the optimization algorithm to nonlinear conjugate gradient with reset leveled the
mentioned difference in the average performance (Section 4.4.2).

We have also tested behavior of the nonlinear conjugate gradient method with reset under
changes of the time horizon 7T in the system (3.1) - (3.2). We observed that lengthening the
time horizon T also resulted in inferior average performance of the optimization algorithm (Sec-
tion 4.4.3). This happened despite the nonlinear conjugate method with reset was successful in
leveling the performance differences for changes of the parameter Tj.

To sum up, the average performance of the optimization algorithms changed when varying
both Ty and T. However, for changes of Tj, the differences in the average performance was
observed for the steepest descent method and disappeared when using the nonlinear conjugate
gradient method with reset.

As mentioned, the case of Ty being close to T is particularly interesting for us. In this case,
the experiments results suggest that when lengthening the time horizon of the system (3.1) -
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(3.2), the optimization procedure output becomes more independent of the initial condition in
the latter the system (Section 4.4.3). This confirms our expectations, described above.

However, lengthening the time interval increases computational cost for numerical treatment
of problem (3.24). Indeed, assuming that the time step in the numerical scheme remains the
same, the cost of solving the system (3.1) - (3.2) increases as the time horizon becomes longer.
Each evaluation of the cost functional Z requires solving the system (3.1) - (3.2), thus the
computational cost of searching for minimums of Z grows as the computational cost of solving
(3.1) - (3.2) grows. Therefore, it is expensive computational task to solve optimization problem
(3.24) and obtain results independent of yg, because it is necessary to choose long time horizon
T. Moreover, as mentioned, lengthening the time interval in our experiments resulted in higher
number of iterations, what made the computational task even more expensive.

In fact, in our experiments, the computational time necessary to approximate a solution of 7
for long time interval was impractically long. Reduction of this time would be a desired result.
In Section 4.4.4, we propose some possible strategies for reduction of optimization procedures
computational cost, which can be tested in the future experiments.

Chapter 4 is divided into two parts: 1) the part for specification of utilized parameters, opti-
mization methods and numerical schemes (Section 4.1, Section 4.2 and Section 4.3, respectively)
and 2) the part devoted to description of results of optimization procedures performed with
the use of these parameters, methods and schemes (Section 4.4). In Section 4.4.4, concluding
the second part, we propose refinements for the optimization algorithms and numerical schemes
described in Section 4.2 and Section 4.3.

4.1 Structural assumptions

Below, we describe structural assumptions concerning optimization problem (3.24), which were
imposed for simulations described in Section 4.4. This assumptions specify the parameters
necessary to determine the cost functional Z, defined by (3.22) - (3.23), was the target of our
optimization experiments.

Let us begin with the assumptions concerning the system (3.1) - (3.2), defining which is nec-
essary for defining the cost functional Z. Basically, our intention was to operate with assumptions
analogous to those described in Section 2.1. However, some of the assumptions imposed there
needed modifications before employing them here.

To be more precise, in the system (3.1) - (3.2) we assume that d = 2, that domain Q is given
as in (2.7) and that reactive term f is given as in (2.8). Note that both € and f chosen by us
fit the assumptions of Corollary 3.2.16.

At the same time, we cannot reuse the assumptions described in Section 2.1 for pattern
functions o4, oj, and switching functions w;, j = 1,...,J, for the below reasons:

1. Concerning the pattern functions o, and oy, note that if they obey the formula (2.3)
from Section 2.1, then they are not elements of W1H2(RY). In particular, for pattern
functions as in (2.3), partial derivatives 0;04 and 0;op,, fori =1,...,d, are not well defined.
Simultaneously, Corollary 3.2.16 assumes o, 0, € W12(R9). The gradient formula (3.40),
asserted in Corollary 3.2.16, also involves the partial derivatives of o, and oy, for j =
1,...,J. Thus, the subject gradient formula fails if the pattern functions are given by
(2.3). In consequence, the formula (2.3) cannot be applied in the present context, because,
as mentioned in the beginning of Chapter 4, we intend to use the gradient characterization
asserted in Corollary 3.2.16.
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2. Concerning the switching functions wj, j = 1,...,J, note that the formula (2.9) defines

non-differentiable w;. Simultaneously, the differentiability of the switching functions wj is
assumed in Corollary 3.2.16. Thus, Corollary 3.2.16 fails to hold if the switching functions
are given by (2.9). Hence, the formula (2.9) cannot be utilized here, because we intend to
utilize the gradient characterization given in Corollary 3.2.16.

To deal with the above difficulties, we impose the following assumptions for pattern functions

04, 0y and switching functions wj, j =1,...,J:

1. We have chosen the below pattern functions to be utilized in experiments described in

Section 4.4:
Cy on B(0,74,1) Ch on B(0,74.1)
og(x) =<0 on (B(0,752))¢ on(z) =140 on (B(0,74,2))°
radially linear otherwise radially linear otherwise

(4.1)
for certain 7,9 > 141, and Cy,Cp, > 0. Note, that the pattern functions given in (4.1)
can be understood as a regularization of the pattern functions given in (2.3) — putting
Te2 = Ty, One can observe that o, given in (4.1) tends in L?(RY) to o, given in (2.3) as
T¢,1 — Tg,2, and the same holds for oy,

With the pattern functions as in (4.1), Lemma 3.1.4 guarantees weak Gateaux differentia-
bility of the associated operators 1, and T, for j = 1,...,J. Moreover, for o, and o}, as
n (4.1), the weak directional derivatives d;0, and 0oy, for i = 1,...,d are well defined.
Hence, the formula asserted by Corollary 3.2.16 is well defined.

For experiments described in Section 4.4, we have chosen switching functions being smoothed
versions of the switching functions given in (2.9). Smoothing with second order polynomials
was performed.

The details of the smoothing procedure which was applied are as follows. Choose constants
Csmooth € [0,1] and L,, < 0. Define the function

Waua,1(8) = Lys

Denote by ssmooth the point where wgy,,1 achieves value —Cypo0tn and by s .. the point
where wgyz,1 achieves value +Clno0rn- Define also py, p— as second degree polynomials of
one variable determined by the following conditions:

( smooth) = wa“%l(s;’—mooth) = _Csmooth
( smooth) = wﬁmﬂi,l(ssmooth) = Ly
= —1
mﬂén(m)
( smooth) = wauz 1( smooth) = Csmooth
( smooth) Woe, 1( smooth) = Lw
mﬂgX(p—) =1

Denote by $;,4, the maximizer of p_ and by $,,:, the minimizer of p,. Note that points
s:mooth, S mooth Smaz and Spmin are determined by the choice of constants Cipp0tn and Ly,.
Explicit formulas for these points can be derived, if necessary. We do not present the latter
formulas here only for brevity reasons.
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Having this, we define the following function wj, for j = 1,...,J, being a spline of functions
+17 P—, Waux,1, P+, —1:

+1 on (—09, Smazx)
p—(s) on (Smaz, smooth]
wj(s) = waaua:,Q(s) waum,?(s) = waux,l(s) on (Simooth’ smooth) (4.2)
p+(s) on (83,00t Smin)
[ -1 0 [Smin, +00)

for certain H,, > 0. In the experiments described in Section 4.4, we have assumed the
switching functions in the system (3.1) - (3.2) to be given by (4.2).

Slnce the points s amooths Ssmooths Smaz and Smin are determined by constants Cgpoon and
L., functions wj, j = 1,...,J defined in (4.2) are determined by the choice of constants
Lw: Hw and Csmooth-

One can verify that functions w; defined by (4.2) belong to C1(R), for j = 1,...,.J. Thus,
Corollary 3.2.16 is valid if they are utilized as the switching functions in the system (3.1)
- (3.2).

As in Section 2.1, we assume that the value of C}, is determined by the relation (2.10), for
certain Cgpiten > 0. The meaning of the constant Cyyiren, Wwas explained in Section 2.1, thus we
do not repeat this explanation here.

REMARK. In Section 2.1, for deriving the relation (2.10), the points in which the switching
functions achieved the extremal values (more precisely, the closest to s = 0 points in which w;
attains a global extremum) were essential. For the switching functions w; considered there (see
the formula (2.9)), the subject points were #1/|L,|. Here, with w; defined as in (4.2), the
extremal values are achieved in different points, above denoted as Sy,4; and Sp,. Thus, to be
puristic, we should derive an analog of the relation (2.10) one more time, accounting the new
switching functions having new extremal points, if we wanted to preserve the idea lying behind
the constant Clyten, €xplained in Section 2.1. Nevertheless, for simplicity, we decided to neglect
the effects inferred by the shift of the extremal points caused by the change of the switching
functions. A

Now, since we assume that C}, is determined by the relation (2.10) we substitute the pattern
function oy, to the subject relation and find out that C} can be expressed more explicitly by:

1
Ch = <% |Lw‘ Cswitch ((ra,l)Q + To,170,2 + (7’072)2)) (43)

In addition, we make the following assumption for the parameter X in the definition of the
cost functional Z: N
A= (T-Ty) ! (4.4)

where T is the parameter entering the definition of the cost functional Z.

To sum up, for © given by (2.7), the switching function w; as in (4.2), pattern functions oy
and oy, as in the formula (4.1) and C}, as in the formula (4.3), the system (3.1) - (3.2) is uniquely
determined by the choice of the following functions and parameters:

*
Yo, K105 ---5KJjo, Y

T, D?Bla"'aﬁ], J, L1y gy, To1,7T0,2, Cg,cswitchaLwanacsmooth
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With the above indicated conditions and with X as in (4.4), cost functional Z is fully de-
termined by specification of the above listed functions and parameters and, additionally, by
specification of the parameter Tj.

4.2 Optimization methods

We describe now optimization methods utilized for solving optimization problem (3.24). All
experiments described in Section 4.4 base on the below described methods.

Generally, two methods were employed: the steepest descent method and the nonlinear con-
jugate gradient method (described and extensively commented e.g. in [38] or [7]). The second of
these two was considered in two variants — one with reset of the algorithm every N, iterations,
for a given natural N,, the other without the reset. Below, we describe these methods in more
detail.

For convenience, we use the following notation in the present section. Let F': I — R be
a given function, where I = [0,b] or I = [0,b), with b € RT U {+00}. By minngc;F(s) we
understand the problem of finding the local minimum of F' which is the closest to origin point
s = 0. Note that the solution of minnge;F(s) can be different than the global minimum of F,
even if the global minimum exists.

SD method. By the steepest descent method (SD method, in brief), we understand the following
algorithm:

1. Choose ©° € V.. Set n = 0.
2. If the stop criterion (to be described below) is fulfilled, then terminate. Else:

Compute r" := —VZ(0"). Set d" := r".

Find s, € [0, 1] solving 1-D minimization problem minncp 1) Z(0" + sd").

(a
(b
(c
(d

Assign 0"t = 0" 4 s5,d".

~— O~ e

Increment n and repeat step 2.

CG method. By the nonlinear conjugate gradient method (CG method, in brief), we under-
stand the following algorithm:

1. Choose ©° € V. Set n=0. Set d"1:=0€ V.
2. If the stop criterion (to be described below) is fulfilled, then terminate. Else:

a) Compute r" := —VZ(0").

(a)
(b) Compute coefficient g,, (to be described below) and set d" := r" + g, d"~!
(c) Find s, € [0,1] solving 1-D minimization problem minn,c(o;Z(0" + sd").
(d) Assign 0"t = 0" 4 s5,d".

)

(e) Increment n and repeat step 2.

To complete the above specifications, we need to describe the stop criterion and coefficient
On-

Stop criterion. In our experiments, we terminated further execution of the optimization
algorithms if n = N, for a given natural Ny, or if n > 1 and the last computed s,, satisfied
s, = 0.
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Coefficient o,. Various choices of coefficient g, are possible for the nonlinear conjugate
gradient method (see [38, Chap.5.2] or [7, p.329]). Our choice of the subject coefficient involved
the Polak-Ribiére concept (presented e.g. in the latter references):

QPR . HT”H‘;Q(Tn,Tn . T’n_l)v

with some modifications, concerning the reset of the algorithm. More precisely, in each simulation
described in Section 4.4, one of the following methods for computing o, was involved:

e Method 1. If n = 0, set 0, = 0, for consistency. For n > 1, set g, := o' and next, if
on <0, reset CG algorithm, i.e. assign g, := 0.

e Method 2. If n = 0, set o, = 0, for consistency. For n > 1, set p,, := o' and next:

1. If g, <0, reset CG algorithm, i.e. assign g, := 0.

2. For a given N, € N, if there was no reset in last N, iterations, i.e. in iterations
n—N,+1,n—N.+2,...,n, of CG algorithm, then reset the algorithm, i.e. assign
On = 0.

In the experiments described in Section 4.4, value N, = 2J was always used, whenever
Method 2. was utilized, where J is the same as in the system (3.1) - (3.2).

We will use the following terminology:

e CG-r method is the CG method without reset every NV, iterations, i.e. the CG method
with Method 1. for choosing coefficient g,,.

e CG+r method is the CG method with reset every N, iterations, i.e. the CG method
with Method 2. for choosing coefficient g,,.

REMARK.  Resetting the algorithm if coefficient o”’f occurs to be negative is necessary
because, if this is the case, the vector " 4+ oPfd"~1 can be not a descent direction (see [38,
p.122-123]). Resetting the algorithm every N, iterations also is a common practice, with the
usual choice of N, equal to the dimension of V' (see [38, p.124]). The latter remark suggests
N, = 2J in our case, as assumed above. A

REMARK. In the above described methods we solve 1-D problems of the form
minnge o 1Z(0 + sd), for certain 0,d € V, not just mingep 1 Z(0 + sd). On level of general
ideas it means that we intend to extract the local minimum of Z(0+ cZ) which is situated closest

to the point s = 0. This serves to keep the iteration points O, 02, 03,... in the same ,yalley” in
the graph of Z in which the initial point 00 lays. A

To sum up, we specify the optimization algorithm by the choice of: 1) the initial point ©° € V/,
2) the parameter N, and 3) the optimization method (SD, CG-r or CG+r).

4.3 Numerical methods

Here, we describe numerical schemes for performing the optimization methods described in Sec-
tion 4.2. These schemes were utilized in experiments described in Section 4.4, whenever the
subject optimization methods were involved.
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By the specifications given in Section 4.2, we see that performing the subject methods requires
a method for evaluating the cost functional Z, a method for computing its gradient and a method
of solving the 1-D optimization problem. The base for the first two methods are the definition
of Z given in (3.22) - (3.23) and the gradient formula (3.40), asserted in Corollary 3.2.16. Both
the formula (3.22) - (3.23) and the gradient formula (3.40) depend on the weak solution of the
system (3.1) - (3.2). Moreover, the gradient formula (3.40) require the weak solution of the
system (3.30) - (3.31). Hence, in total, to perform the subject optimization methods, we need
methods for:

1) computing the solutions of the system (3.1) - (3.2) and the system (3.30) - (3.31),

2) computing the gradient of Z in a given point,

)
3) computing the value of Z in a given point,
4) solving 1-D optimization problem minngcg 1) Z(0 + ch), for suitable 0,d € V.

In the experiments described in Section 4.4, each of the above subproblems was solved approxi-
mately, by use of numerical methods. Thus, in fact, in our experiments, we have treated problem
(3.24) not with the SD or CG methods itself, but numerical approximations of these methods.
Below, we describe the numerical schemes which were utilized for solving subproblems 1) - 4),
whenever solving these subproblems was necessary during execution of the SD or CG methods
in our experiments.

4.3.1 Main system and adjoint system

Now, we describe numerical methods utilized in the experiments described in Section 4.4 for solv-
ing systems (3.1) - (3.2) and (3.30) - (3.31). The below methods were utilized in the experiments
whenever it was necessary to solve the mentioned systems.

For discretization in space, the finite element method was used for both systems. The trian-
gulation of € utilized for the finite element method was as in Figure 2.1 in Section 2.2 (recall
that we assumed 2 to be given for our experiments by (2.7)). The finite element space con-
sidered in our experiments was the space of continuous functions, linear on each element of the
triangulation.

For discretization in time for the system (3.1) - (3.2), we employed implicit Euler scheme
and, for discretization in time for the system (3.30) - (3.31), backward implicit Euler scheme was
applied. In both cases, the discretization of the time interval [0, 7] assumed uniform distribution
of the time discretization points.

Moreover, the nonlinear terms in the system (3.1) - (3.2) were treated with the use of Picard
iterations method.

Now, let us give a more detailed description of the above sketched numerical schemes for
(3.1) - (3.2) and (3.30) - (3.31). Below, we assume that 0 € V is given and that x1,...,2 in
the system (3.1) - (3.2) are determined by z; := 0;, for j =1,...,J.

Similarly as in Chapter 2, denote:

N+1 — the number of triangulation mesh vertexes along each spatial direction
(i.e., the triangulation has (N + 1)? vertexes),

M +1 — the number of time discretization points in interval [0,77],

Npjcard — the number of Picard iterations applied in each time step to treat the

nonlinear terms appearing in (3.1) - (3.2).

Denote also 7y := M~ and 7y := N~ L.
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In addition, denote the triangulation presented in Figure 2.1 in Section 2.2 by €, denote the
space of functions continuous on 2y and linear on each element of the triangulation by P;(2y)
and denote vectors of standard ,hat” basis of P (Qx) by ¢n, for n=1,..., (N +1)2.

REMARK. Two implicit Euler schemes are mentioned above: the ,usual” one and a scheme
which we have called backward implicit Euler scheme. By the backward implicit Euler scheme
for the differential equation —% = F'(x,t) on [0,7], with the terminal condition x(7T) = X, we
mean the following scheme:

X" =X, Xm—Xmt+1 = T EF (X, tm)

for t,, = mmy, m=0,1,...,M — 1, where M and 7y are as above. The ,usual” implicit Euler
scheme is a common scheme, hence we do not define it here. A

The system (3.1) - (3.2) is treated with the same numerical scheme as the system (2.5)
- (2.6) in Section 2.1, with g; := 7, (0) and h; := 73,(0). More precisely, the output of
the numerical scheme for (3.1) - (3.2) is exactly the function (Yn, ki n,...,ksn) defined in
Section 2.1, assuming that we put g; := 7, (0) and h; := 7}, (0) in the system (2.5) - (2.6). We
treat such (Yy, ki n,...,kjn) as a function approximating the weak solution of (2.5) - (2.6).

The above referred scheme for approximating the weak solution of the system (3.1) - (3.2)
was employed in the experiments described in Section 4.4 whenever computing the value of the
cost functional Z or computing its gradient was necessary (recall that both of these involve the
weak solution of the system (3.1) - (3.2)).

Note that the above numerical scheme for (3.1) - (3.2) involves matrices My and Ay, defined
in Section 2.2.

The system (3.30) - (3.31) is treated with numerical methods which are analogous as the
methods applied for the system (3.1) - (3.2). Nevertheless, since the algebraic form of both
systems differ, below we describe the numerical scheme for the system (3.30) - (3.31) in more
detail. R

First, for a given function F': Q — R, let [F|y and F be defined as in Section 2.2. Recall

—

also that E: [F]n-

We use the following discretization in space for the system (3.30) - (3.31). Put g; := 7, (0)
and hj := 1},,(0) for j = 1,...,J. In the system (3.30) - (3.31), we insert [g;]y, [hs]n, [Y]N
and [y*]y instead of Ty, (0), T, (D), Y and y*, respectively. For the subject modification of the
system (3.30) - (3.31), we approximate its solution by the solution of the following variational
problem:

( _%(pNa¢)L2(QN) + D(Vpn, Vo) 12y — <[f/(?)]NPN, ¢) =

L2(Qn)
= ([Y]N o I ¢)L2(QN)1(TO,T) +
J -, ‘ - N ‘ ‘ YoePi(Qn)
+ 3w (v, B =), (QN)) (sl 0) i o'y
0
%:0 on 0Qn x (0,T)
pn(T)=0
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together with
— Bida N +qin = ([gl]N,pN)Lg(QN) on [0,7]

(4.6)

— Briaqin+ N = ([gs]n:PN) 20y On (0,7

g N(T)=0 V=1 .
where 0 € Pi(Qn), pn(t) € Pi(Qn) and gjn(t) € R, for j = 1,...,J, t € [0,T] and where
the desired solution is (pn,qi,N,--.,qsn). One may note, that f'([Y]x) is not necessarily in
P1(Q). For this reason, we define the above variational problem by inserting [f '(V)]n term and
not f'([Y]n) term. Note moreover that term (Vyn, Vén);2(q,) in the system (4.5) - (4.6) is
well defined, because Pi(Qy) € H'(2x) (see Theorem 2.1.1. in [13]).

REMARK. The sets 2 and Qy are equal. Nonetheless, similarly as in the case of the system
(2.12) - (2.13) in Section 2.2, in (4.5) - (4.6) we use notation ,Qn” instead of ,,2” to stress that
we are considering a space discretization of original the system (3.30) - (3.31). A

As mentioned in Section 2.2, for given F,G € P;(Q2), we can write:

= - = -

where matrices My and My are defined as in Section 2.2. One can verify that in addition the
following hold for a.e. t € [0, T7:

(P HINFC), G, = (F)TCn(t) @

12(Q)

where matrix Cy(t) is defined by:
. (N+1)2
Cnt) = ([ 11 @ tlnon(@onlo) do)

n,m=1

Using the above remarks, we transform the system (4.5) - (4.6) to the matrix form:

- %MNP_;\/ + DAN pv — Cn py =
- —
= MN([Y]N - [’y*]N> L(py,1) +
A7)
J T . y _— YsePi () (
+ 30 ((haly M (Bl = 7)) ) My il v o
oy (T) =0
together with
— T N
- ﬁ1 JALN T LN = 91y My py  on [0,T]
(4.8)

_>T

- ﬁJ L 49N +qin = [gs]nv My pn on [0,T]
qj,N(T) =0 V=1,

where 0 € RV+D? and where the desired solution is (p_fv, QUNs - QIN)-
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Next, we approximate the solution of (4.7) - (4.8) by use of backward implicit Euler scheme,
basing on M + 1 time discretization points, uniformly distributed in [0, 7"]. Denote the subject
ﬁ

approximate solution of (4.7) - (4.8) by (PN,QLN,...,QJ’N). This approximate solution is
a function defined in time discretization points, t = m7y, m = 0,1,..., M, with values in
RWN+D? « R

Basing on the latter, we construct a function (Py,Q1,n,...,Q n), defined in the time dis-
cretization points t = m7ys, m = 0, 1 ., M and taking values in P(Qy) x R” in the following

way. We put Py(t) == SO0 (py ( Nt and Q;n(t) = Q;n(t), for j = 1,....,J, for
t=mmpy,m=0,1,... , M.

The scheme for numerical solving the system (3.30) - (3.31) is finished by obtaining the
function (Pn,Q1.N,--.,Q N), described above. In other words, we treat (Pn,Q1.n,...,QJN)
as an approximation of the weak solution of (3.30) - (3.31).

The above scheme for solving (3.30) - (3.31) was utilized in our experiments, with ¥ = Y,
whenever computing the gradient of the cost functional Z was necessary (recall that the gradient
of Z depends on the weak solution of (3.30) - (3.31)).

Note that the numerical scheme for (3.1) - (3.2), described above, is uniquely determined by
the choice of the parameter N (determining the finite element space), the parameter M (deter-
mining the time discretization) and the parameter Npjcqrq (determining the Picard iterations
method for treating the nonlinear terms in (3.1) - (3.2)). Moreover, for a given Y, the above
described scheme for (3.30) - (3.31) is determined by choice of N and M.

For use in our experiments, matrices My and Ay were assembled, similarly as in the numerical
scheme described in Section 2.2, by explicit computing the integrals appearing in the definitions
of the subject matrices (no numerical integration was used). The matrix Cy(t), for ¢t € [0, 7],
was assembled with help of the function quad of the GNU Octave package, being a function for
numerical integration.

4.3.2 Evaluating the cost functional

Below, we describe a numerical scheme for evaluation of the cost functional Z. The scheme was
utilized in experiments described in Section 4.4 whenever it was necessary in the optimization
methods involved in the subject experiments (see Section 4.2). We still assume that, for a given

F: Q — R, the definitions of [F]y and E are as in Section 2.2.

For a given 0, the scheme for approximating the value Z(0), defined by conditions (3.22) -
(3.23), is as follows.

First, we use the described in Section 4.3.1 numerical scheme for obtaining a numerical
solution of the system (3.1) - (3.2), with x; := 0;, for j = 1,...,J. Let (Yn,kin,...,kiN)
denote this numerical solution.

Second we perform integration Wlth respect to space in time discretization points, i.e. we
evaluate E,, = HYN Stm) = [N (-, H2 for t,, = mmy, m =0,1,...,M. To do it, we use
the below formula, which is true by the relatlon (2.14):

Eu- [ Y ) = 3 )| e = (Vo ()= 5 ()} M (Y (b= 0 (t))

for ¢, as above, for m =0,1,..., M.

Third, we integrate with respect to time on interval (Tp,T'). However, now we dispose only
certain values E’m for time discretization points. To integrate on interval (7p,T'), we need to
extend this values to some function given on the whole interval. For this end, we assume the
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piecewise linear behavior of the function in question. More precisely, we construct a piecewise
linear function E: [0,T] — R by assigning E(t,,) := E,, for t,, := m7rar, m =0,..., M and

~ tm1 —t = t—tm
E(t) = #E(tm) + (1) (4.9)

fort € (tmytmy1), m=0,...,M — 1.

We intend to compute integral f;; E’(t) dt. We apply the trapezoidal quadrature to compute
the subject integral, with nodes of the quadrature being the time discretization points o, ...ty
plus the down limit of integration (if T is not amongst the time discretization points). Since E
is continuous on [0,7] and linear on each of intervals spanned by two neighboring nodes of the
quadrature, the subject quadrature returns the exact value of the integral f;; E’(t) dt.

The numerical scheme for evaluation of Z(0) is finished by obtaining, with the above means,

integral f;; E’(t) dt. In other words, we assume that the value of the subject integral approximate
the value of Z(0).

4.3.3 Computing the gradient

Below, we describe a numerical scheme for computing an approximation of the gradient of Z. The
scheme consists in approximate evaluating the formula (3.40), asserted in Corollary 3.2.16. The
subject scheme was utilized in the experiments described in Section 4.4 whenever the employed
optimization procedures (described in Section 4.2) required computing the gradient of Z.

For brevity, we will use the following notation for a part of the terms entering the formula
(3.40): TZ(’] = (PR 0T p,5) (0), for 0 = 04,04 and for j =1,...,J,i=1,...,d. Denote also
hj =1, (0), for j =1,...,J.

Assume that © € V' is given. The scheme for computing VZ(0) is as follows.

Keep in mind that we intend to approximately evaluate the formula (3.40), which, by Corol-
lary 3.2.16, characterizes the gradient of Z.

First, we use the described in Section 4.3.1 numerical scheme for obtaining an approximate
solution of the system (3.1) - (3.2). Denote this approximate solution by (Yn, ki n,....kjn).
Having this, we use the described in Section 4.3.1 numerical scheme for gaining an approxi-
mate solution of (3.30) - (3.31), with ¥ = Yy. Denote the latter approximate solution by

(PN, QiN, - QuN)-

REMARK. A consistency problem may seem to occur. Namely, Y is a function defined
on [0,T] with values in L?(Q2) and Yy is defined only in points t,, € [0,T], for t,, = m7ys,
m=0,1,...,M — 1, where M and ), are as in Section 4.3.1, with values in P;(Qy) C L?(f).
This makes the above assignment Y = Yn meaningless. To resolve this obstacle, one may
attempt to extend Yy to the whole interval [0, 7], e.g. by linear interpolation, before making the
assignment. But in fact, this is not necessary, because the numerical scheme for solving (3.30) -
(3.31), given in Section 4.3.1, utilizes only the information on Y in points ¢,, as above. Hence,
an arbitrary extension of Yy to whole [0, 7] is good, but also irrelevant at the same time. A

We intend to approximate the value of the formula (3.40), with Qn, Yy, k; n, Py, Qj.N,
[v*I~, [, [Tf]"]N and [I7!]y instead of 0, §, ;. P, @j, ¥*, hy, Tfj and T7", respectively, for
=1, .

Thus, second, we perform integration w.r.t. space in time discretization points. More pre-
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cisely, we evaluate the following:

Evm = kjn(tm) vt ) [L77n (@) da

Ba = (| ((ot) = [l 8) i) do)
B = Qiov{tm) Ba [ (Vo) = '] () (5 () i

for t,, = mmy, m=0,1,..., M. To compute the above integrals, we use the following identities,
being true due to (2.14):

T ~o4
N Py (x,tm) [T7v(z) do = (PN (tm)> My T°

[ ltn) = ) o) s ) o = (Vo (1) o <tm>)TMN h
Qn
| st = ) E5 ) o =

Third, we define the following function EV: [0,T] — R and integrate it on interval (TO,T ).
For t,, = mmy, m = 0,1,..., M we put EV( m) = E1,m + B3, Fort € (ty,tme1), m =
0,1,...,M — 1, we put E’v( ) to be equal the value implied by the linear interpolation of values
of Ev in points ¢, and t,4+1. More precisely, EV(t) is defined by the formula (4.9), with E
replaced by EV.

For computing integral f:,z; Ev(t) dt, we use the trapezoidal quadrature, with M + 1 nodes,
coinciding with the M + 1 time discretization points tg,...,ty;. Since the integrand EV is
continuous on [0, 7] and linear on each interval spanned by two neighboring quadrature nodes,
the subject quadrature returns the exact value of fi?o EY (t) dt.

We assume that integral fTTO Ev(t) dt approximates the value of (A;’)Z in Corollary 3.2.16, for
j=1,...,J,i=1,...,d. This gives approximation of VZ(?0), because VZ(0) = A®. Hence,
the numerical scheme for computing the gradient of Z in © is finished by evaluating the above
integral.

4.3.4 1-D optimization

Now, we describe a method for approximate solving 1-D optimization problem minn ¢ 11 Z(0 +
sci), entering the optimization methods described in Section 4.2 with suitable @,cj € V. The
method was utilized whenever solving the 1-D problem was necessary in the experiments de-
scribed in Section 4.4.

A method for approximating the solution of the 1-D optimization problem will be called line
search, procedure. Moreover, denote Z(s) := Z(0 4 sd). We will call Z the target function.

The precise description of our line search procedure for solving problem minn,¢(g 1] (v + sd)

for a given ©,d € V is as follows:

1. Initialization: we set N := 10, define the search interval I;5 := [0, 1] and define the set of
evaluation points Py = {5; = i/Nis: i =0,1,..., N}

2. We approximate values f('s}), for i = 0,1,..., Ny, using the numerical scheme for evalu-
ating the cost functional Z described in Section 4.3.2.
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3. We choose local minimums, i.e. points s; € P fulfilling 7(3) < Z(3;—1) and Z(3;) <
Z(Si+1) (or one of these inequalities, if 5; is the extremal point of Ijs). Amongst these
local minimums, we choose the one which is situated closest the point s = 0. Denote this
minimum by 3 and its index in Pj; by 7 (i.e. i is the index such that 57 =135).

4. We verify whether the stop criterion is fulfilled or not. If yes — then we terminate the line
search algorithm and return point s := 3. The stop criterion is as follows: verify whether

51 — 80 < Rys, where Ry is given. Note that, since the points Sp,...,sy,, are uniformly
distributed in Ij4, we can alternatively verify the inequality §;11 —5; < Ry for an arbitrary
i=1,..., Ng.

In the experiments described in Section 4.4, we have always used the value R;; = 0.001.

5. We determine a new search interval and a new set of evaluation points in the following
way:

(a) If 5= 3, set Ijs := [50,31] and P := {30, 2(50 + 31), 51} (3 new evaluation points).

(b) If s= gle, set I} := [gle_l,gle] and P := {gle_l, %(gle_l + gle),gle} (3 new
evaluation points).

(c) If neither of the above two cases hold, set [js := [s7_;, 57, ]

Py =1{5 3G | +5),5, 35+ 57.1): 57,1} (5 new evaluation points).

and

Set Nis := #Fjs. Relabel the points of set Fjs as sq,...,5n,-
6. Go to the step 2.

The line search procedure is terminated by determining the point above denoted as 5. In
other words, we assume that s approximates the solution of problem mlnnse[o 1}1(1) + sd), for a

given 0, d € V. The above procedure for solving problem minn ¢|g, 1}1 (04 sd) was always utilized
whenever solving this kind of problem was necessary in the experiments described in Section 4.4.

REMARK. Assume that the function Z(0™ + .d") is sufficiently regular for convergence of
the line search procedure to the real solution of minn¢(g ) Z(0" + sd™), for 0" and d" being as
in the optimization methods described in Section 4.2. Compare the stop criterion imposed in
the optimization methods and the stop criterion in the above line search procedure. The stop
criterion for the optimization methods is fulfilled if the line search procedure returns s = 0. This
happens if s = 0 and 57 — 59 < Rjs. Thus, due to our assumption, one may conclude that the
stop criterion for the optimization methods is fulfilled if the ,real step length” s,, i.e. the real
solution of minn,e(g 1) Z(0" + sd"), is lesser than R;;. A

REMARK. The general idea of the above line search procedure can be explained in the
following way. The subject procedure consists of two stages. In the first stage, we perform the
uniform line search, with Nis + 1 evaluation points, for a given natural N;s. The uniform line
search results in reducing the initial search interval [0,1] to some new shorter search interval.
Next, in the second stage, we run iteratively a bisection-like line search on the new search interval.
The stage of uniform line search consists simply in an additional iteration with many (N;s + 1)
evaluation points, placed at the beginning of the whole line search procedure. The bisection-like
line search stage is realized by all subsequent iterations. A

REMARK. The motivation behind the usage of the above composite line search method,
consisting of two stages, is as follows. Recall that we intend to solve the minimization problem
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of extracting the local minimum on [0, 1] being the closest to s = 0. The uniform line search
utilizes more evaluation points in one iteration than the bisection-like line search. Hence, in
the first iteration, we use the uniform line search to reduce the risk that we will loose essential
information on the geometry of the target function Z on the initial search interval. This increases
the chance that we select a consecutive search interval which contains the the minimum of 7
which is the closest to s = 0. Next, after choosing the new search interval, which is significantly
shorter than the initial one, we switch to the bisection-like line search because it is superior to
the uniform line search in terms of speed. A

REMARK.  We use name ,bisection-like line search”, not ,bisection line search”, because
the latter is usually used for other algorithm. We have not found the description of the above
bisection-like line search method in publications, thus we could not establish the proper name of
the subject line search method. The source in which we have encountered the description of the
subject method is the lecture script [34] (in Polish). A

4.4 Results of simulations

In this section, we describe results of our experiments concerning attempts to find numerically
an approximate solutions of optimization problem (3.24). All below described simulations based
on one of the optimization methods specified in Section 4.2. The numerical schemes which
were utilized for implementing these methods are described in Section 4.3. The assumptions
concerning problem (3.24) were as in Section 4.1.

In Section 4.4.1, we compare the results of the SD method, for two different parameters 7y in
the cost functional Z and two different process initial states yg in the system (3.1) - (3.2). The
results suggest that the performance of the SD method is poorer for the parameter Tj close to
T. Moreover, a dependence of the optimization output on yq is observed for Ty close to T', what
is opposite to our expectations (explained in the beginning of Chapter 4).

In Section 4.4.2, we vary not only T and yg, but also the reference state y* in the system (3.1)
- (3.2). Moreover, the simulations are performed with the use of three optimization algorithms:
SD, CG-r and CG-+r. The results confirm further that the average performance of the SD method
varies as T varies (average, in a sense of both the mean and the median of number of iterations).
Nevertheless, the difference in the average performance vanquishes when switching from the SD
method to the CG+r method. Basing on the results, we conclude that the CG+r method is most
appropriate for our optimization problem.

In Section 4.4.3, we compare results of the CG+r method for the optimization problem with
Ty close to T, for varying values of the parameter 1" and for a varying initial state yg. The
results suggest that the average performance of the CG+r method changes with changes of the
time interval, determined by the parameter 7. However, it is also observed that lengthening
the time interval resulted with greater independence on yg of the optimization output. Due
to our general motivations, see the beginning of Chapter 4, we prefer situations exhibiting the
latter effect, thus simulations with rather long time horizon are interesting for us. Nevertheless
the long time interval makes the optimization procedures more time consuming. Hence, in
Section 4.4.4, we propose some possible refinements to our optimization procedures, to test in
the future experiments.

All below described experiments were performed with the use of the GNU Octave software
(version 3.6.4) and computer cluster Halo2 (a machine of Interdisciplinary Centre for Math-
ematical and Computational Modelling, University of Warsaw). Halo2 processors are AMD
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Quad-Core Opteron processors with architecture x86 64 ,Barcelona”. No parallelization was
used, each optimization procedure run using one processing core.

Two types of plots are contained in the present section: 1) plots of scalar functions defined
on domain 2 (e.g. the initial state yo or the reference state y* in the system (3.1) - (3.2)) and 2)
plots of particular configurations of the control and measurement devices. Conventions for both
mentioned types of plots are analogous as the conventions described in Section 2.3.

By the configuration of the control and measurement devices we mean, similarly as in Sec-
tion 2.3, the choice of the supports of functions g; and hj, for j = 1,...,J, characterizing the
control and measurement devices actions. Here, these are functions P, ,(xj) and PROT. (x5)
in system (3.1) - (3.2), with z; :== 0; for j = 1,...,J, where 0 € V is a given control parameter.

Note that, due to specific assumptions for the pattern functions (see (4.1)), the visualization
of the supports of the functions characterizing the devices actions give characterization of points
Z1,...,2y (up to permutation). In consequence, one can retrieve the control parameter 0 € V/
basing on the mentioned visualizations of supports.

In all experiments described in the present section, initial states yg and reference states y*
for the system (3.1) - (3.2) were chosen from the set of three particular variants, presented in
Figure 4.1. In description of each experiment, we will specify explicitly which variants were used.
Figure 4.1 presents the same plots as Figure 2.3 in Section 2.3 but we place it here again, for
completeness and convenience. The formulas determining the functions plotted in Figure 4.1 are:

g(z1,29) = cos(4rzy) - (1 -2(1+ 63012)_1> (4.10)
o) = =1+ (2e @) - reHatN T ety
A1
+ 2(1 + 630(ac1+0.2))4 ) (1 + 6—30@)*1
V13

§(z1,m0) = 1—2(1 4 ¢ 155" @2-1521)) (4.12)

min.val.= -1.0000 min.val.= -1.0000 min.val.= -1.0000

max.val.=1.0000 max.val.=1.0000 max.val.=1.0000

black=-1.00 white=1.00 black=-1.00 white=1.00 black=-1.00 white=1.00

(a) Variant 1. (b) Variant 2. (c) Variant 3.

Figure 4.1: Variants of the initial state yg and the reference state y* utilized in the experiments
described in Section 4.4. The plots present scalar functions defined on the considered R? domain.
The formulas determining the plotted functions are (4.10) for Fig. 4.1a, (4.11) for Fig. 4.1b and
(4.12) for Fig. 4.1c.

Moreover, in all experiments, it was assumed that the number of the control and measurement
devices equals twenty (J = 20). In addition, for each experiment experiment, the configuration
of control and measurement devices used as a start configuration for the optimization algorithms
was as in Figure 4.2.



4.4. RESULTS OF SIMULATIONS 115

-

CNONORCEO
ONOJCNONO
ofc¥oRc¥o
Looad

- -0.5 0 0.5

Figure 4.2: The start configuration of control and measurement devices for optimization proce-
dures utilized in the experiments described in Section 4.4. In other words, the plot characterizes
the control parameter 0" € V', utilized in the descriptions in Section 4.2.

Also, in each of the below described experiments the following data were used. The pa-
rameters concerning the system (3.1) - (3.2) (see Section 4.1 for explanation of the parameters
meaning) were:

D = 003 7’0.72 = 1/8 Cswitch = 02 Csmooth — 09
/8] = 1 v]:177J 7’0.71 = 0_6 . 7’0_72 L’LU g —10
Kjo =0Vj=1,..0  Cg=16/7 H, =10

Other parameters, i.e. the parameter 7' (concerning the system (3.1) - (3.2), see Section 4.1),
parameters N, M, Npjqqrq (concerning the numerical scheme, see Section 4.3) and the parameter
Nopt (concerning the stop of optimization algorithms, see Section 4.2) will be specified below,
in the descriptions of particular experiments. The choice of the optimization procedures (SD
method, CG-r method or CG+r method) also will be specified there.

4.4.1 Experiment 1 — various initial conditions and cost functionals

This experiment served for comparing the behavior of the SD method for optimization problem
(3.24), for two different parameters Ty, entering the definition of the cost functional Z. One
of the considered values of T correspond to the concept of the cost functional that consists in
measuring the gap between the reference state and the evolution of the process on the whole
time interval of the experiment, [0,7]. The other value of T corresponds to the cost functional
concept that consists in measuring the subject gap only in the neighborhood of the terminal time
T.

The second of the above cost functional concepts fits our main motivation, described in the
beginning of Chapter 4, which is the problem of choosing the targeting of the devices actions
w.r.t. the task of bringing the process state possibly close to the reference state at the terminal
time T. In this case of the cost functional, it is desired that the optimization procedure will
return results being independent of the initial state yo (see the explanation in the beginning of
Chapter 4). Unfortunately, the latter occurs to be not true, at least with the data employed in
the present experiment. Below, we suggest some possible solutions to this situation.

Despite the fact that we are interested in the cost functional with measurement concentrated
close to terminal time, the comparison with the other mentioned type of the cost functional
(measurement distributed over the whole [0,77]) also is interesting. This comparison, as we will
see below, can suggest that the SD method applied in the investigated optimization problem
differs in the its performance depending on the chosen parameter 7j.
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In the presently considered experiment, the time horizon for the system (3.1) - (3.2) was
T=2.

The reference state y* was assumed to be as in Figure 4.1c.

The following parameters for the numerical scheme were assumed: N = 80, Npj;carqg = 2 and
M = 100.

The applied optimization algorithm was SD method, described in Section 4.2, with N, =
1000.

Four simulations were performed, corresponding to two variants of the initial state yo and
two values of the cost functional parameter Ty. The subject two choices of yy were corresponding
to the functions plotted in Figure 4.1a and Figure 4.1b (we call it variant 1. and variant 2.,
respectively). The two considered values of T were Ty = 0 and Ty = 0.97.

Simulation [terations | Initial cost | Terminal cost
yo variant 1, 7 =0 39 0.918962 0.720012
yo variant 2, Ty =0 68 1.780059 0.981571
yo variant 1, Ty = 0.9T 118 0.109127 0.017851
yo variant 2, Ty = 0.97 1000 0.232079 0.020284

Table 4.1: Performance of optimization procedures considered in Section 4.4.1, for two variants
of the initial state yy and two values of the parameter T considered in the subject section.
Column Iterations” informs how many iterations of the optimization procedure (see integer n
in the description of the SD and CG methods, given in Section 4.2) were performed before
the procedure fulfilled the stop criterion. If the optimization procedure was terminated due to
the condition n = Ny and not s, = 0, (see the specification of the stop criterion, given in
Section 4.2), the number of iteration is given with bold font. The last two columns present the
values of the cost functional at start of an optimization procedure and after the optimization
procedure terminated. In other words, values Z(¢%) and Z(¢"), for n corresponding to the stop
iteration, are presented there (with 0’ being as in the description of SD and CG methods given
in Section 4.2).

Table 4.1 compares the performance of the SD method in the four considered simulations. A
grater number of iterations was necessary to fulfill the stop criterion for simulations concerning
Ty = 0.97". In particular, in the simulation concerning Ty = 0.97" and variant 2. of yg, the SD
method failed to stop in one thousand iterations. This is greatly worse result that in the case
of the other three simulations. One can pose a hypothesis that worse performance of the SD
method for Ty = 0.97 is a general rule. In Section 4.4.2, we will make a further step towards
verification of the subject hypothesis.

Now, let us take a look at the devices configurations obtained by the here considered opti-
mization procedures.

The two simulations with Ty = 0 differ only with the variant of y3. Comparing Figures
4.3a and 4.3b we see that the result of these simulation varies strongly. The meaning of the
optimization problem (3.24) with the parameter Ty = 0 entering the cost functional can be
explained as follows. The problem is to adjust the configuration of the devices in a manner that
results in quick reduction of the difference between the initial state of the process and the reference
state. In other words, the difference between yy and y* is crucial and hence the dependence on g
of the subject two simulations results could be expected. In addition, one may compare Figures
4.3a and 4.3b with Figures 4.4a and 4.4b, respectively. If one merged the corresponding figures
pairwise, it could be noted, that the obtained targeting of the devices actions coincide with the
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(a) yo variant 1., (b) yo variant 2., (¢) yo variant 1., (d) yo variant 2.,
Ty = 0, iter. 39. To =0, iter. 68. To =097, iter. 118. Ty = 0.97, iter. 1000.

Figure 4.3: Configurations of the control and measurement devices actions, obtained by opti-
mization procedures addressed in Section 4.4.1, for two variants of the initial state yy and two
values of the parameter Ty considered in the subject section. Values of the parameter Ty and the
variants of the initial state (corresponding to the functions plotted Figure 4.1) are indicated in
the figures. Each plot presents the configuration corresponding to the terminal iteration of the
subject optimization procedures (see column ,Iterations” in Table 4.1).

min.val.= 0.0000 min.val.= 0.0000
max.val.=2.0000 max.val.=2.0000
black=0.00 white=2.00 black=0.00 white=2.00

-1 -0.5 0 0.5 1

a) |y0 - y*| for variant 1. (b) |y0 — y*‘ for variant 2.
of Yo- of Yo-

Figure 4.4: The function |y0—y*|, for y* being as assumed in Section 4.4.1 and for two variants of
yo considered in the subject section. Fig. 4.4a corresponds to the case of yg being as in Fig. 4.1a
and Fig. 4.4b corresponds to yg as in Fig. 4.1b.

light fields in the plots of difference ‘yo — y*| It means that the optimization procedure has
located the control and measurement devices actions there where the subject difference was the
greatest.

The two simulations corresponding to Ty = 0.97 also differ only with the variant of .
However, this time we expect a looser dependence of the results on yg. The latter expectation
can be justified with reasoning as already mentioned in the introduction to Chapter 4. Let
us recall it. Most of the data considered in the subject simulations is as in Section 2.3.2 and
Section 2.3.3. There, the process occurred to stabilize in the neighborhood of certain time-
invariant state, independent of yg. Therefore, one could expect that in the present simulations
the process also may stabilize near certain yg-independent, time-invariant state. If this was the
case, then the values of the cost functional would not differ significantly under changes of yo,
because for Ty = 0.97 the cost functional accounts only the behavior of the process near the
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terminal time, where the process evolves independently on yy. In consequence, minimal points
of the cost functional also would depend on g insignificantly.

The results returned by the SD method for the case Ty = 0.97 deny part of the above
expectations. Comparing Figures 4.3c and 4.3d shows that the obtained configurations of the
devices differ for the two considered variants of yy. The difference between the two patterns is not
that big as in the case of Figures 4.3a and 4.3b. Nevertheless, depending on particular accuracy
requirements, the match between the patterns in Figures 4.3c and 4.3d can be considered to be
not enough accurate.

Several hypotheses concerning the latter observations, concerning the dependence of the
optimization results of yg in case Ty = 0.97, can be posed. In particular, the following ones seem
to be natural:

(a) the above hypotheses concerning the stabilization near to a time-invariant state independent
of yg are false,

(b) the time interval of the model in the presently considered simulations was too short for the
process to get close enough to the time-invariant state,

(c) the optimization procedure was not accurate enough to approximate the minimum of the
cost functional with sufficient precision (it is possible because in the simulation concerning
variant 2. of yg and Ty = 0.97 the optimization procedure stopped due to a large number
of iterations, not due to a short step length — see Table 4.1).

We will touch part of the above hypotheses in the forthcoming sections.

4.4.2 Experiment 2 — comparing optimization methods

In the below described experiment, we compare performance of the SD method with performance
of CG methods (more precisely, the CG-r and CG+r methods), for optimization problem (3.24).
The simulations were performed for varying initial states 1o, varying reference states y*, entering
the system (3.1) - (3.2), and varying values of the parameter Tj, entering the cost functional Z.

The aims of the experiment were threefold. First, we wanted to get further verification of the
observations made in Section 4.4.1, that the performance of the SD method for the optimization
problem with Ty = 0.97 is inferior to the case of Ty = 0. This objective is realized by performing
more simulations, using the SD method, for both cases of Ty. Second, we posed a particular aim
to verify whether the CG methods are more appropriate for our optimization problem in the case
of Ty = 0.97', which is particularly interesting for us (see the introduction to Chapter 4). Third,
we wanted to compare the results obtained in Section 4.4.1 for the case Ty = 0.97 with the use
of the SD method with results obtained in the same case with the use of the CG methods. This
serves for investigating the reasons of the dependence of the optimizations results on yg, what
was observed in Section 4.4.1. A discussion concerning the three introduced objectives will be
conducted below.

In the presently considered experiment, the time horizon for the system (3.1) - (3.2) was
T=2.

The following parameters for the numerical scheme were assumed: N = 80, Npjcarqg = 2 and
M =100 (i.e. 7y = M~1 =0.02).

The stop criterion parameter for the optimization methods was N,,; = 1000.

54 simulations were performed, corresponding to different variants of: the initial state yq, the
reference state y*, the cost functional parameter Ty and the optimization method. Three choices
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of yp, three choices of y*, two choices of Ty and three choices of the optimization methods were
considered, what gives 3 x 3 x 2 x 3 = 54 different data configurations. Hence 54 simulations.

The three considered variants of yg were corresponding to the three functions, plotted in
Figure 4.1a, Figure 4.1b and Figure 4.1c (we call it variant 1., variant 2. and variant 3., re-
spectively). The three variants of y* also were corresponding to these three functions. The two
values of Ty taken into account were Ty = 0 and Ty = 0.97. The three optimization methods
were: 1) SD method, 2) CG-r method and 3) CG+r method (see Section 4.2 for explanation of
these methods).

According to the above, four of the simulations described here are exactly those described
in Section 4.4.1 (the simulations with variant 3. of y* and with the use of the SD method).
Nevertheless, we attach the result of the subject four simulations here, for more convenient
comparison with other results.

Simulation [terations Ratio
SD | CGr | CG+r | &5 | &
yo var. 1, y* var. 3, Tp =0 39 58 58 | 1.4872 | 1.4872
yo var. 2, y* var. 3, Tp =0 68 106 97 | 1.5588 | 1.4265
yo var. 3, y* var. 3, Tp =0 188 139 176 | 0.7394 | 0.9362
yo var. 1, y* var. 2, Tp =0 261 49 52 | 0.1877 | 0.1992
yo var. 2, y* var. 2, Tp =0 558 76 82 | 0.1362 | 0.1470
yo var. 3, y* var. 2, Tp =0 1000 139 168 | 0.1390 | 0.1680
yo var. 1, y* var. 1, Ty =0 184 52 50 | 0.2826 | 0.2717
yo var. 2, y* var. 1, Tp =0 179 92 87 | 0.5140 | 0.4860
yo var. 3, y* var. 1, T =0 106 79 122 | 0.7453 | 1.1509
Mean 287.0| 878 99.1 | 0.6434 | 0.6970
Median 184.0 | 79.0 87.0 | 0.5140 | 0.4860
yo var. 1, y* var. 3, Ty = 0.9T 118 64 52 | 0.5424 | 0.4407
yo var. 2, y* var. 3, Top = 0.97 | 1000 255 279 | 0.2550 | 0.2790
yo var. 3, y* var. 3, Ty = 0.9T 211 7 77 | 0.3649 | 0.3649
yo var. 1, y* var. 2, Tp = 0.9T 212 96 84 | 0.4528 | 0.3962
yo var. 2, y* var. 2, Ty = 0.9T 250 89 95 | 0.3560 | 0.3800
yo var. 3, y* var. 2, Top = 0.9T 384 125 112 | 0.3255 | 0.2917
yo var. 1, y* var. 1, Ty = 0.97 | 1000 60 82 | 0.0600 | 0.0820
yo var. 2, y* var. 1, Top = 0.9T 526 35 35 | 0.0665 | 0.0665
yo var. 3, y* var. 1, Ty = 0.97 | 1000 137 42 | 0.1370 | 0.0420
Mean 522.8 | 104.2 95.8 | 0.2845 | 0.2603
Median 384.0 | 89.0 82.0 | 0.3255 | 0.2917

Table 4.2: Performance of the optimization methods considered in Section 4.4.2, for three variants
of the initial state yg, three variants of the reference state y* and two values of the parameter
Ty considered in the subject section. The meaning of column ,lterations” and the notation
concerning the stop criterion (the bold font entries) are as in the case of Table 4.1. Column ,Ratio”
presents, for each simulation, the ratio of iteration numbers concerning indicated optimization
methods (with rounding to 4 significant digits). The mean values given in the latter column
refer to the mean of the ratio values, not to the ratio of the mean numbers of iterations in the
preceding columns. The analogous convention concerns the median values.

Consider the data presented in Table 4.2. First, observe that both the mean and the median
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of the number of iterations necessary for SD method to stop are much greater in the case of
Ty = 0.97 than in the case of Ty = 0. Basing on the subject result, one may suspect that the
SD method has worse performance in the case Ty = 0.97 (in the sense of the expected value or
of the median). This is consistent with the preliminary observation concerning the behavior of
the SD method, contained in Section 4.4.1.

Next, compare the performance of the SD method with the performance of the two considered
CG methods. In the case of Ty = 0, we observe that the mean of the reduction of the number
of iterations necessary to achieve the stop criterion when using one of the CG methods instead
of the SD method is over 30% (see column ,Ratio” in Table 4.2). The median of the reduction
is about 50%. In the case of Ty = 0.97, both the mean and the median of the reduction are
significantly greater and take value about 70%.

In addition, we remark that for the CG methods the optimization procedures never stopped
due to achieving a large number of iterations, equal N,,. For these methods, the stop reason
was always a short step length (for the description of the stop criterion, see Section 4.2). Note
however an interesting particularity that in the case of Ty = 0 there were two situations where
the SD method was in advantage to the CG methods, in sense of number of iterations (variants
1. and 2. of yg with variant 3. of y*), while in the case of Ty = 0.9T the CG methods always
behaved better than the SD method.

Another interesting observation is that both the mean and the median of the number of
iterations for the CG+r method were similar both for T = 0 and for Ty = 0.97". For the SD
method, this is not true. In the case of the CG-r method, the differences in the mean and the
median of the number of necessary iterations occurring in comparison of Ty = 0 and Ty = 0.9T
cases also were small (in comparison to the SD method), but not that small as in the case of the
CG+r method. It looks like the performance of the CG-+r method, in sense of the mean and the
median, was most immune to the change of the parameter Ty, among the considered methods.

To sum up the above observations, the SD method seems to have statistically worse perfor-
mance in the case of Ty = 0.97 than in the case of Ty = 0 (in the sense of the mean and the
median of the number of iterations). This difference in the behavior of the optimization method
is leveled by switching to the CG+r method. In both cases (Tp = 0 and Ty = 0.97), switching
to one of the CG methods was a fruitful step. Nevertheless, the benefits of switching to the CG
methods were considerably higher in the case Ty = 0.97T'.

Among the three proposed optimization methods, the method that seems to be in favor for
our purposes is the CG+r method. It was most immune to changes of the cost functional (in the
sense of the mean and the median of the number of iterations). In this sense, the performance
of this method is most predictable. Moreover, in the case of Ty = 0.97", which is the case of
our interest, its performance is statistically the best among the proposed methods (in the sense
of the mean and the median). Besides, applying a reset procedure in the nonlinear conjugate
gradient method seems to be a standard approach, at least in a part of the literature concerning
this method.

In addition to the above observations, we focus for the moment on the simulations concerning
the case of variant 3. of y* and Ty = 0.97". This case was one of the subjects of Section 4.4.1,
with conclusion that the dependence of the optimization results on the initial state yg can be
observed. In simulations described in Section 4.4.1, SD method was used. In the simulation
concerning variant 2. of yg and Ty = 0.97', it stopped due to large number of iterations, not due
to short step length (see Table 4.1). Therefore the obtained approximation of local minimum
of the cost functional Z could be of low quality. Now, we can compare the results described in
Section 4.4.1 with optimization results obtained by CG-r and CG+r methods. For the latter
methods the optimization procedure always stopped due to the short step length (see Table 4.2).
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Figure 4.5: Configurations of the control and measurement devices concerning variant 3. of y*
and Ty = 0.97, obtained as a result of simulations described in Section 4.4.2, for two variants
of the initial state yy and three optimization methods. The optimization methods and the
variants of the initial state (corresponding to the functions plotted Figure 4.1) are indicated
in the figures. Each plot presets the configuration corresponding to the final iteration of the
subject optimization procedures (see column ,Iterations” in Table 4.2). Figures 4.5a and 4.5d
are the same as Figures 4.3c and 4.3d, respectively, but we place them here for more convenient
comparison of optimization methods.

For this reason, we assume that, for variant 2. of yo and Ty = 0.97, the approximation of the
local minimums of Z obtained be the subject methods is of higher quality than the approximation
obtained in Section 4.4.1. Thus, comparison of the results can serve for verifying the hypothesis
that the dependence on gy observed in Section 4.4.1 was a consequence of poor quality of the
optimization procedures output (see hypothesis (c¢) in the concluding part of the latter section).

Comparing particular plots presented in Figure 4.5, one may observe that for CG-r and
CG+r methods dependence of the optimization output on y also takes place, similarly as in
the case of the SD method. This, under the assumption that the quality of the optimization
results is acceptably high for the CG-r and CG+r methods, stays against the hypothesis that sole
optimization output quality was responsible for the dependence on gy observed in simulations
described in Section 4.4.1.

4.4.3 Experiment 3 — various initial conditions and time horizons

In the present section, we compare results of the CG+r method applied to optimization problem
(3.24), for two different initial states yo and for the time horizon parameter T greater that in
Section 4.4.1 and Section 4.4.2. The cost functional considered in the below described experiment
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correspond to the idea of measurement of the gap between the process and the reference state
in the neighborhood of the terminal time 7.

The aim of the below described experiment was further attempt to verify hypotheses con-
cerning the dependence of the optimization results on g, observed in the experiments described
in Section 4.4.1 and Section 4.4.2. As we will see below, lengthening the time interval results in
considerably higher immunity of the optimization problem to the changes of yq. This supports
hypothesis (b), formulated as one of the conclusions of Section 4.4.1.

As a side result, we observe that the number of CG+r iterations necessary for time horizons
parameters T' considered here is higher that in the previous sections, for T' = 2.

In the presently considered experiment, the reference state y* for the system (3.1) - (3.2) was
assumed to be as the function plotted in Figure 4.1c.

The following parameters for the numerical scheme were assumed: N = 80, Npj;carqg = 2 and
v = 0.02.

The applied optimization algorithm was CG-+r method, described in Section 4.2.

The stop criterion parameter for the optimization methods was N, = 600.

Four simulations were performed, corresponding to two different variants of the initial state
1o and two different variants of the time horizon parameter T'. The subject two variants of yg
were as the functions plotted in Figure 4.1a and Figure 4.1b (we call it variant 1. and variant
2., respectively). The two values of the parameter T' were T'= 4 and T = 6.

Simulation [terations | Initial cost | Terminal cost
yo variant 1, 7' =4 600 0.078051 0.007050
yo variant 2, T' =4 468 0.083608 0.007149
yo variant 1, 7 =6 216 0.076831 0.006993
yo variant 2, T'=6 600 0.077166 0.007088

Table 4.3: Behavior of optimization procedures considered in Section 4.4.3, for two variants of
the initial condition and two values of the parameter T considered in the subject section. The
meaning of particular columns and the notation concerning the stop criterion (the bold font
entries) are as in the case of Table 4.1.

Note that the time step length 7,/ is the same as in the previous experiments, however the
time horizon is longer and hence the number of the time steps M in the time discretization
is greater as well. This makes the computational time necessary to perform one iteration of
an optimization algorithm greater than it was the case in the previous experiments. This is
the reason for which we have reduced the value of the parameter N,y to 600 (in the previous
experiments, we considered Ny = 1000).

The use of the CG+r method instead of the SD method also serves for reducing the compu-
tational effort, since, by the previous results, CG-+r has performance superior to SD and more
predictable than CG-r, in the sense of the mean and the median of the number of iterations
(see Section 4.4.2). Nevertheless, comparison with previously described results shows that the
numbers of iterations in the presently considered simulations, with 7' = 4 or T' = 6 (see Ta-
ble 4.3), are higher that the numbers of iterations for analogous simulations with 7" = 2 (i.e.
those simulations in Table 4.2 which concern variant 3. of y* and Ty = 0.97" and which use the
CG+r method). This allows to pose a hypothesis that the performance of the CG+r method for
optimization problem (3.24) varies with changes of T

Speaking at the level of general ideas, results of previous experiments may suggest that the
difficulty of the optimization problem (3.24) varies with changes of Ty (because the performance
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of the SD method varies, see Section 4.4.2), while the here presented results may suggest that
the difficulty changes also with changes of T' (because the performance of the CG-+r method
changes). Nevertheless, it is worth recalling that the differences in the performance of the CG-+r
method were not present when changing the parameter Tj, in opposite to changes of 7.
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(b) yo variant 1.,
T =4, iter. 600.
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(d) yo variant 2.,
T =2, iter. 279.

(e) yo variant 2.,
T = 4, iter. 468.

(f) yo variant 2.,
T = 6, iter. 600.

Figure 4.6: Configurations of the control and measurement devices, obtained by optimization
procedures addressed in Section 4.4.3, for two variants of the initial state yg and two values of the
parameter 1" considered in the subject section. Values of the parameter 7" and the variants of the
initial state (corresponding to the functions plotted Figure 4.1) are indicated in the figures. Each
plot presets the configuration corresponding to the final iteration of the subject optimization
procedures (see column ,Iterations” in Table 4.3). Figures 4.6a and 4.6d concern simulations
described in Section 4.4.2 and are the same as Figures 4.5¢ and 4.5f, respectively, but we place
them here for more convenient comparison.

Now, we will compare the optimization output obtained by the here considered simulations
with the output obtained in the simulations described in the previous sections.

Two of the simulations described in Section 4.4.2 differ with the simulations described here
only with time horizon T (these are the simulations considered there which concern variant 3.
of y* and Ty = 0.97 and which use the CG+r method). In Section 4.4.2, for the subject two
simulations, shorter time horizon, T" = 2, was considered. At the same time, dependence of
the optimization results on the initial state yy was observed. Now, we can compare the results
concerning T' = 2, described in Section 4.4.2 (Figures 4.6a and 4.6d), with the results concerning
longer time horizon (Figures 4.6b, 4.6¢, 4.6e and 4.6f).

First, we can observe as the difference between the optimization output for distinct yg variants
decreases when lengthening the time horizon T'. The difference between the results obtained for
T = 4 (Figures 4.6b and 4.6e) are visible smaller that the differences for 7' = 2 (Figures 4.6a and
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4.6d). Still, some difference can be observed also for T = 4. Comparing the results concerning
T = 4 with the results concerning 7" = 6 (Figures 4.6¢c and 4.6f), we observe further growth of
similarity between the optimization results obtained for the two considered variants of yq.

Second, as an additional observation, note that in all of Figures 4.6b, 4.6¢c, 4.6e and 4.6f, a
strong visual dependence of the results with the reference state y* (Figure 4.1c) is visible. This
is expressed by concentration of the devices actions near the diagonal-like line, associated with
the reference state y* (Figure 4.1c) and by symmetry of the actions targeting with respect to the
subject line. In particular, for variant 2. of yg this dependence seems to be clearer for T' = 4 and
T = 6 (Figures 4.6e and 4.6f) than in the case of T' = 2 (Figure 4.6d). The level of symmetry
visible in Figures 4.6e and 4.6f is higher than in Figure 4.6d.

To sum up, the use of a longer time interval resulted in leveling the dependence on vy,
observed in Section 4.4.2 for the simulations associated with Ty = 0.97 and y* as in Figure 4.1c.
Recall also that changing the optimization method from SD to CG+r did not bring this kind of
results (see Section 4.4.2). These observations seem to confirm hypothesis (b), formulated for
SD method in the concluding part of Section 4.4.1.

Moreover, looser the dependence on gy of the optimization results was, the stronger depen-
dence on y* was visible.

4.4.4 Technical remarks

We now give some technical remarks concluding the present chapter.

First, we have not conducted the convergence analysis of the optimization procedures applied
in our experiments. Below, we will comment which additional steps would be necessary in the
convergence analysis.

Second, as indicated in the present chapter, our experiments for numerical treatment of the
optimization problem (3.24) were a rather heavy computational effort. At the same time, we are
particularly interested in performing the optimization experiments for long time horizons (be-
cause it resulted in reduced dependence of the results on the initial condition, see Section 4.4.3),
what makes the the experiments even more time consuming.

To be precise, for simulations described in Section 4.4.1, with T' = 2, the mean time of single
iterations was about 500 sec. For simulations with 7" = 4 or T' = 6, described in Section 4.4.3,
the mean iteration time was even longer (about 850 and 1200 sec, respectively). This made
the latter simulations impractically long, because they required hundreds of iterations because
achieving the stop criterion (see Table 4.3).

Thus, below we comment on certain possibilities of reducing the computational time necessary
in numerical treatment of the optimization problem (3.24).

REMARK. The above information concerning computational time for a single iteration is
not precise because, unfortunately, we have not saved timestamps concerning each particular
iteration during our experiments. A

Convergence analysis

We begin with remarks concerning the convergence of the optimization procedures utilized in
our experiments.

It can be shown (see [24] or Chapters 3.2 and 5.2 in [38]) that, under appropriate conditions,
the convergence of the SD and CG methods, described in Section 4.2, to a stationary point takes
place in the following sense:
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e limy, 00| VZ(0™)||;, — 0 for the SD method.
e liminf, || VZ(0"™)||,, — 0 for the CG method.
Roughly speaking, the above mentioned appropriate conditions concern:

e The regularity of the cost functional Z. It should be differentiable in the classical sense
(i.e., in the Fréchet sense, not only Gfeaux) and its gradient should be Lipschitz continuous
(see [24] or Chapters 3.2 and 5.2 in [38]).

e The line search procedure. It should return exact solution of 1-D optimization problem
(see Theorem 2.1 and Theorem 4.3 in [24]), or it should fulfill so-called Wolfe conditions
in the case of the SD and CG+r algorithms (see Theorem 3.2 and subsequent remarks in
[38]) or the Wolfe conditions plus so-called sufficient descent condition in the case of the
CG-r algorithm (see Corollary 4.4 in [24]).

e Besides, the results in [24] require the set of points with values of the cost functional equal
below the value of the start point (call it the level set) to be bounded.

In our work, we have not investigated the Lipschitz continuity of VZ nor we have addressed
the matter of boundedness of the level set.

In the optimization procedures in our simulations, the aim of the line search procedure (see
Section 4.3.4) was to approximate the exact solutions of the 1-D optimization problem. This may
seem to be reasonable to approximate the exact solutions, since, in view of the above remarks,
they are sufficient for the convergence results. Nevertheless, despite the exact solutions are
sufficient, their close approximations not need to be such. The referred above results require
either exact solutions or so-called Wolfe conditions with, possibly, so-called sufficient descent
condition. In general, the exact solutions, as well as their approximations, do not necessarily obey
the Wolfe conditions. Thus, however the line search procedure proposed in Section 4.3.4 worked
properly, for the convergence analysis it may convenient to change the line search procedure for
a procedure obeying the Wolfe conditions and the sufficient descent condition.

Moreover, the numerical schemes applied for solving the 1-D problem base on inexact evalu-
ation of Z (see Section 4.3.2) and inexact evaluation of d", caused by inexact evaluation of the
gradient of Z (see Section 4.3.3). Indeed, the vector d" in the 1-D problem depends strongly on
the gradient of Z, both for the SD and for the CG method. Thus, for the convergence analysis of
the optimization procedures, it would be required to investigate the influence of the latter effects
to the convergence.

Summing up, to investigate the convergence of the real optimization procedures applied in
our simulations (which are merely approximations of the ideal SD and CG methods, described
in Section 4.2), it would be necessary to:

e Prove results on Lipschitz continuity of VZ.

e Propose a line search procedure obeying the Wolfe conditions and the sufficient descent
condition.

e Answer the questions concerning the convergence of the numerical scheme concerning the
evaluation of Z (Section 4.3.2) and the evaluation of the gradient (Section 4.3.3).

e Solve the rather technical problem of guaranteeing that the level set is bounded, if one
wants to base on the results of [24].
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Since we have not performed analysis of the above points in the present work, we leave the
question concerning the convergence of the SD and CG algorithms applied in our experiments
open.

Possible oscillations near the stationary points

Roughly speaking, in our situation, possible refinements concerning the reduction of the com-
putational time of the numerical optimization experiments can be grouped into two categories.
One of them is the group of refinements focusing on reducing the computational time of a single
iteration of the optimization procedures, the other one is the group of refinements serving for
reducing the expected number of iterations. The below remark concerns concerns the latter
group of refinements.

Taking a look at Tables 4.1, 4.2 and 4.3, one can observe that the number of iterations
necessary to reach the point fulfilling the stop criterion varies strongly for particular simulations.
For some simulations, the number of iterations was particularly high, e.g. for simulations with
long time interval, described in Section 4.4.3. Thus one can pose a hypothesis, which we do
not verify here, that in these simulations the optimization procedure was oscillating close to the
stationary point for many iterations before reaching the stop criterion. Here, by oscillations me
mean consecutive iterations of the optimization procedures which bring no significant changes
of the values of the cost functional nor of the control parameter. This kind of oscillations is
certainly an undesired effect, making the computational time significantly longer.

We propose two strategies of refining the optimization procedures applied in our experi-
ments. The subject strategies can be tested in future experiments and, if the alleged oscillations
indeed were present in our experiments, can result in improved performance of the optimization
algorithms. These strategies are:

e Use a stronger stop criterion. In our simulations, the stop criterion was probably quite
weak, in sense that strong conditions have to be fulfilled to trigger the stop criterion. It
is tempting to propose a stop criterion which detects the moment when the optimization
procedure does not make significant progress anymore, or when the oscillations begin.
Nevertheless, due to variety of possibilities which could be considered in this context, we
do not continue with this issue here.

e Apply the Newton method combined with one of the SD or CG methods. This idea
is not new. It is known that the Newton method, if starting sufficiently close to the
stationary point, converges to this point quickly (see Theorem 3.5, p. 44 in [38]). Thus, a
reasonable optimization procedure can be to start with the SD or CG method and switch
to the Newton method when a proper switching criterion is triggered. Further proposition
is to use some quasi-Newton method instead of the Newton method itself, to avoid the
necessity of computing the Hessian and dealing with conditions sufficient for second order
differentiability of Z.

Note also that the inaccuracies in computing the gradient of Z, which were mentioned above
in the context of the convergence analysis, also can be related with the alleged oscillations of the
optimization procedures near the stationary points. Small perturbations of the gradient near the
local minimum can influence the convergence of gradient optimization algorithms, however this
is also merely a hypothesis. To conclude, if the oscillations indeed are present in our simulations,
then, besides the above proposed strategies, it may be worthwhile to consider possibilities of
improving the accuracy of the numerical schemes concerning the evaluation of the gradient of Z.
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Reduction to the stationary problem

There are also certain directions of development which can help to reduce the computational
time of a single iteration in our optimization procedures. In this context, we propose the fol-
lowing strategy, which in fact consists in replacing the optimization problem (3.24) with other
optimization problem, potentially requiring less computational power.

The strategy is to reduce the system (3.1) - (3.2) to a stationary model, not involving the time
variable. Having this, one can define an alternative cost functional, basing on the gap between
the solution of the stationary model and the reference state. New optimization problem would
be to minimize the new cost functional.

Computing a numerical solution of the stationary model should be less time consuming than
computing the numerical solution of (3.1) - (3.2). In our simulations, the main effort in every
iteration of the optimization procedures concerned solving the system (3.1) - (3.2) multiple
times. Hence, a single iteration of the new optimization problem would be probably much less
time consuming.

From mathematical point of view, applying this approach would require the analysis of the
new optimization problem itself, consisting of the steps analogous to those in the present work,
as the existence and uniqueness results, stability analysis and results concerning differentiability
of the state operator and of the cost functional.

On the level of general ideas, the new optimization problem approximates the original opti-
mization problem with Ty close to T', under the condition that the dynamical system associated
with (3.1) - (3.2) posses a one point attracting set. Therefore, this approach is possible but
demands, besides the analysis of the new optimization problem itself, the analysis of large time
behavior of the system (3.1) - (3.2), involving in particular analysis of the attracting sets. This
analysis probably would be not trivial because, as remarked in Section 2.3.4, in certain situations
the attracting set, if exists, probably is bigger than one point. In consequence, a non-obvious
problem of characterizing those parameters and functions entering the system (3.1) - (3.2) for
which a one point attracting set exists would be faced during the large time behavior analysis.

Numerical schemes with an improved integration method

Next, we would like to give a more extensive comment on the numerical schemes concerning the
evaluation of the cost functional Z (see Section 4.3.2) and its gradient (Section 4.3.3). The subject
schemes return inexact values, what, as already remarked above, can both have consequences for
the analysis of convergence of the numerical optimization procedures and cause the hypothetical
oscillations of the numerical procedures.

The schemes for evaluation of the cost functional and its gradient give inexact values, for
multiple reasons. First, for a given © € V, the values Z(0) and VZ(0) are computed basing
not on the weak solutions of systems (3.1) - (3.2) and (3.30) - (3.31), but on the approximate
solutions of these system, obtained by the methods described in Section 4.3.1. Second, the time
integrals of the approximate solutions or their transformations, appearing both in the definition
of Z(0) and in the formula characterizing VZ(0), are computed inexactly. Being puristic, the
time integrals of the approximate solutions are not even defined because we assumed that the
approximate solutions are defined only in the time discretization points.

Thus, let us propose an alternative approach concerning numerical schemes for the cost
functional and its gradient, which can be tested in the future experiments. We still assume
that the structural assumptions presented in Section 4.1 hold. The alternative approach can be
sketched a follows:
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1. Define approximate solution with continuous time for the system (3.1) - (3.2) as a piecewise

linear extension to [0, 7] of the approximate solution with discrete time, defined for the sys-
tem (3.1) - (3.2) in Section 4.3.1 for time discretization points tg, t1, ..., ta. Let this linear
extension be chosen such that it is linear on each interval (¢, tpm41), m =0,1,..., M — 1.
This makes the approximate solution with continuous time unique. The approximate so-
lution with continuous time for the system (3.30) - (3.31) is defined analogously, basing
on the approximate solution with discrete time, defined for the system (3.30) - (3.31) in
Section 4.3.1.

. To approximate the cost functional, we evaluate the formula sz; fQN|YN — [v*] N{2, where

Y is the first component of the approximate solution with continuous time for the system
(3.1) - (3.2). Below, the subject formula will be called the modified cost formula. The
notation [y*]xy has meaning as in Section 4.3.2.

To evaluate the modified cost formula, we proceed as follows. First, define the function
E:[0,T] — R with the formula analogous as the formula for E,, in Section 4.3.2, but with
t € [0,7T] instead of discrete points tg,t1,...,ty. Note, that the function E is piecewise
parabolic and continuous, as a product of two piecewise linear continuous functions. Next,
compute the time integral from Ty to T of E using the parabolic quadrature with nodes
c01nc1d1ng with the time discretization points. Such quadrature gives the exact value of
integral fT FE, because E is piecewise parabolic and continuous. Hence, by the definition

of E, it is also an exact value of the modified cost formula.

. To approximate the gradient, we proceed analogously. We base on the formula (3.40). In

the subject formula, we substitute approximate solutions with continuous time instead of
the real solutions and P;(2y) approximations of other functions instead of the functions
itself. Let us call the result the modified gradient formula. We treat the modified gradient
formula as an approximation of the gradient of the cost functional.

To evaluate the modified gradient formula, we define functions El,Eg,Eg 0,7] - R
analogously as E1 m E2 .m and Es ,, in Section 4.3.3, but with ¢ € [0, 7] instead of discrete
points tg,t1,...,ta. We also define EV = = FE, +E3 Next, we integrate EV with respect to
time. Now, a dlfference with the step concerning evaluation of the cost functional occurs
because Ev is not piecewise parabolic, in opposite to E. Observing the structure of El,
Eg, E3 one can note that:

e F) is piecewise parabolic and continuous as a product of two piecewise linear contin-
uous functions.

o Es is piecewise parabolic and continuous as a composition of two piecewise linear
continuous functions (due to our structural assumptions, wg- is piecewise linear). Nev-
ertheless, the nodes of E» do not coincide with the time discretization points.

° E’g is piecewise polynomial of fourth order and continuous, as a product of E’g and
two piecewise linear continuous functions. The nodes of Eg do not coincide with the
time discretization points.

o BV is piecewise fourth order polynomial and continuous, with nodes not coinciding
with the time discretization points.

As a result, to compute the integral f;; EV using fourth order polynomials quadrature,
with more elaborate choice of the quadrature nodes, depending on w}. Deriving the exact
algebraic formulas is possible but to complicated to do it here. Nevertheless — the obtained
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value is the exact value of fi?o EV and hence, by the definition of E’V, also the exact value
of the modified gradient formula.

Numerous advantages of the above proposed schemes for evaluating the cost functional and
its gradient can be indicated. First, in comparison to the schemes presented in Section 4.3.2 and
Section 4.3.3, we have better control on the output of the numerical schemes, because the above
proposed schemes compute exact values of concrete formulas, i.e. of the modified cost formula
and the modified gradient formula.

Second, it is tempting, and may possible, to prove that the modified gradient formula in
fact characterizes the exact gradient of the cost functional given by the modified cost formula.
Such statement, if proven, would have interesting consequences, in particular for the analysis of
convergence of the numerical optimization procedures to the stationary points of the cost func-
tional Z. In contrary to the convergence analysis for the numerical schemes given in Section 4.3
(see the remarks above in the present section), here, it wouldn’t be necessary to prove that the
gradient approximation is fine enough. It would be sufficient to prove the convergence of the
SD and CG methods for the cost functional associated with the modified gradient formula and
then to prove the convergence of the latter cost functional to the original cost functional Z. To
sum up, if the modified gradient formula was the gradient of the modified cost formula, then
it would be possible to apply ,first discretize then optimize” approach instead of ,first optimize
then discretize”.

Moreover, if the alleged oscillations of our optimization procedures (mentioned above in this
section) were in fact caused by inaccuracies concerning the gradient of Z, then switching to the
above proposed ,first discretize then optimize” approach could be a remedy to the oscillations
matter.

Nevertheless, the proposed approach has also its drawbacks. The numerical scheme neces-
sary for exact evaluation of the modified gradient formula depends on the function wg. For
example, reasoning as above we find that if wg- was piecewise a polynomial of order three, then

the quadrature necessary for exact evaluation of f;; EV would rise from four to five. If w; was
not a polynomial at all, then a question arises how to choose a proper quadrature for integral
f;; EV. Thus, if one wanted to apply this approach, one would face the problem of automatic
choice of quadrature during the implementation of the optimization procedures. This problem,
however interesting, could cause problems both at the algorithmic level and at the level of code
implementation, which would become more cumbersome than it was the case in our situation.



130 CHAPTER 4. OPTIMAL TARGETING PROBLEM — NUMERICAL PROTOTYPES



Concluding remarks

Below, we comment on certain issues which were not investigated in the present work. We
indicate certain problems concerning the model (0.1) - (0.3), introduced in §1 of Introduction,
or the optimal targeting problem, introduced in §2 of Introduction, which were not solved in the
preceding chapters. We also comment on possibilities of refining the model (0.1) - (0.3) or the
setting of the optimal targeting problem itself.

The below questions remain open in the present work and can be investigated in the future:

e In Section 2.3.4, we have indicated some observations concerning the large time behavior of
the model (0.1) - (0.3). We have posed certain hypotheses, basing on the effects observed
in the numerical results. One of them was that the structure of the alleged attracting set
of the dynamical system associated with the model (0.1) - (0.3) significantly depends on
the parameters of the model. It would be desired to confirm the subject hypotheses by
analytical proofs. In particular, it would be interesting to characterize those parameters
entering system (0.1) - (0.3) for which the controlled process tends to some time-invariant
state, independent of the initial condition. In other words, we are interested in those model
parameters, for which a one-point attracting set exists.

The existence of a one-point attracting set would mean that, in the model (0.1) - (0.3),
the efficiency of the thermostat control mechanism, understood as the distance between
the process state and the reference state for large times, is insensitive to the changes of
the initial state of the process. The insensitivity to the changes of the initial condition is
one of the hypothetical advantages of the controls involving the automatic corrections idea
(see Introduction), as .e.g. the thermostat control mechanism. Hence, the characterization
of those parameters of the model for which the latter property holds would be a desired
result.

e Neither for the numerical schemes described in Chapter 2 nor for the ones described in
Chapter 4 we have performed the convergence analysis. Therefore, from the mathematical
point of view, the convergence analysis is one of the natural fields for the further research.

In Section 4.4.4, certain steps necessary for the analysis of the convergence of the optimiza-
tion procedures utilized in the experiments described in Chapter 4 are indicated.

e The simulations concerning the optimal targeting problem, described in Chapter 4, were
rather time consuming. In Section 4.4.4, we have indicated some possibilities of reducing the
computational time of generating approximate solutions of the optimal targeting problem.
One of the aims of the future research can be to test a part of the subject possibilities.

In particular, performing optimization procedures based on the  first discretize then op-
timize” approach, proposed in Section 4.4.4, and comparing the results with the results
described in Chapter 4 could be an interesting experiment. In some of the simulations
described in Chapter 4, the optimization procedures needed a particularly large number

131



132 CONCLUDING REMARKS

of iterations to stop. One of the hypotheses concerning the latter effect, indicated in Sec-
tion 4.4.4, is that they it is related with the inaccuracies in the numerical scheme for
the evaluation of the gradient of the cost functional. The first discretize then optimize
approach, as explained in Section 4.4.4, should eliminate the problem of inaccuracies of
the numerical scheme for evaluation of the gradient of the cost functional. Therefore, the
comparison of the results obtained with the latter approach and the results described in
Chapter 4 can help to answer the questions concerning the reasons behind the mentioned
effect of the large number of iterations.

e We have not investigated the sensitivity of the effectiveness of the thermostat control mech-
anism in the model (0.1) - (0.3) to perturbations of the model itself, i.e. of the diffusion
coefficient D or the reactive term f in the main equation (0.1) (here, we understand effec-
tiveness as in Introduction, see comment a), page x). Insensitivity to perturbations of the
model is one of alleged advantages of the automatic corrections mechanism, indicated in
the beginning of Introduction. A further investigation can concern also the sensitivity of
the solutions of the optimal targeting problem to the changes of the subject parameters.

e In the beginning of Section 1.2, we have indicated that Lipschitz continuous switching
functions in the system (0.1) - (0.3) can be utilized to approximate the case of discontinuous
switching functions, as —sgn, which are not allowed directly by the analytical results of the
present work. At the same time, the results of Section 1.1, concerning the modified system
(1.1) - (1.3), allowed certain multivalued switching functions containing —sgn. Thus, it
would be interesting to investigate the convergence of the solutions of the system (0.1) -
(0.3) with Lipschitz switching functions approximating —sgn to a solution of the modified
system (1.1) - (1.3) with appropriate multivalued switching functions containing —sgn.
The subject convergence was not analyzed in the present work and can be an aim for
further investigations.

Besides the above indicated technical problems, one may consider to refine the model con-
sidered in the present work, as well as introduce changes to the optimal targeting problem. In
this scope, we point out the following possibilities:

e The model (0.1) - (0.3) assumes that a process described by a reaction-diffusion equation
is controlled by thermostats. Not all real-world phenomenas which are the subject of
the control theory in PDEs can be described this way. The references given in §3 of
Introduction present examples of the models with thermostat control mechanism in which
a state equation (or system of equations) other that the scalar reaction-diffusion equation
is considered.

Hence, one of the generalizations of the content of the present work can consist in assuming
a more general state equation or equations to be controlled by thermostats. Generalizing
further, one can try to implement the thermostat control mechanism for abstract dynamical
systems and indicate which properties of the subject systems are essential for deriving
results similar to the here presented ones (as the existence of solutions, the stability, the
differentiability of the cost functional).

e The considered thermostat control mechanism, basing on which we formulate the optimal
targeting problem, also can be refined. The model (0.1) - (0.3) involves a thermostat
control mechanism with assumes no hysteresis in the work of the switching mechanism (see
the remarks on possible variants of thermostat control mechanism in §3 of Introduction).
In the present work, the latter assumption was imposed for the sake of the simplicity
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of the investigated mathematical model. Nevertheless, a thermostat control mechanism
with hysteresis would be more realistic, since in real world perfectly immediate reaction to
observed changes is not possible. In fact, a big part of the mathematical references given in
§3 of Introduction address models involving thermostat control mechanism with hysteresis
(however, none of those works focus on the optimal targeting problem).

One may consider also certain modifications in the optimal targeting problem as well. In
the present work, we assumed that the number of the control devices equals the number
of the measurement devices and, moreover, that the control and measurement devices
are pairwise coupled (see §2 of Introduction). By coupling of the devices, we mean the
assumption that their actions has pairwise the same targeting in space and a given control
device responds to the data collected by the coupled measurement device with weight equal
1. These assumptions were imposed to exclude the problem of the choice of weights from
our research. Nevertheless, in certain applications, the problem of the choice of the weights
in thermostat control mechanisms seems to be natural and should not be excluded from
the setting of the optimization problem.

For example, one may consider the situation of the hyperthermia cancer therapy, described
in §3 of Introduction. As mentioned there, the temperature in the patient tissues can be
measured by magnetic resonance imaging and the energy can be applied by control devices
transmitting or electromagnetic waves. In the setting of thermostat control mechanism, the
actions of the magnetic resonance can be interpreted as a dense mesh of small measurement
spots of fixed location. However, the user is permitted to calibrate the control devices and,
in consequence, to manipulate the targeting of their actions in space. In this situation, it
is not natural to assume that the weights entering the thermostat control mechanism are
given. Thus, to handle the situation of the above type, one could define a new optimization
problem, taking into account the problem of the choice of both the targeting of the control
devices actions and the weights, assuming that the actions of the measurement devices
have fixed targeting.
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Appendix A

Auxiliary theorems

A.1 Differentiability in Banach spaces

The below definitions of directional derivative, Gateaux derivative and Fréchet derivative are
equivalent as those in [50], Chap. 4. The notions of the weak derivatives introduced in this
Section bases on [4], Chap. 1, Sec. 4. In addition, [50] provides the proofs (or techniques for the
proofs) for most of facts and theorems presented below.

Definition A.1.1 Let T : X — Y be an operator between two Banach spaces. For u,0 € X, we
call 0T (u;0) € Y (or 0,1 (0;0) € Y) the directional derivative (or the weak directional derivative,
respectively) of T in point 4 € X in direction © € X if
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The operator 6T (4; .) (or 0, T(4; .)), acting on X is called the variation (or the weak variation,
respectively) of T in point 1 € X.

Definition A.1.2 If the (weak) variation in point G is a bounded linear operator from X toY,
then we say that T is (weakly) Gdteauz differentiable in 4 and we define the (weak) Gdteaux
derivative of T in u respectively as

(A.2)

Definition A.1.3 We say that DpT(4) € L(X,Y) (or Dp,T(4) € L(X,Y)) is the Fréchet
derivative (or the weak Fréchet derivative, respectively) in point 4 € X if

T(i+ ) — T(4) — DpT(a)b

1ir% - =0
v— v
X
(A.3)
~ T(u 0) —T(1) — Dp T ()0
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Note, that by the above definition the existence of a directional derivative implies the existence of
the weak directional derivative. An analogous relation holds between the notion of the Gateaux
differntiability and the weak Géateaux differntiability and between the Fréchet differntiability and
the weak Fréchet differntiability.

Theorem A.1.4 (The chain rule) Let X;, Xo and Xs be Banach spaces and let
Ty : X1 — Xo, 15 : Xo — X3. Suppose, that:

1. Ty has the (weak) directional derivative in point G € Xy in direction 0 € Xy,
2. Ty is Fréchet differentiable (at least in point T1(4)).

Then the composite operator Ty o Ty has the (weak) directional derivative in point 4 € X1 in
direction 0 € X1 and it can be expressed respectively as:

(A4)

The proof is very similar to the proof of Proposition 4.10 in [50].

Note, that Theorem A.1.4 implies that if 77 is (weakly) Gateaux differentiable and T3 is
Fréchet differentiable then the superposition T o T is (weakly) Géateaux differentiable and the
chain rule holds.

Theorem A.1.5 (The product rule) Let X, Xo1, Xoo and X3 be Banach spaces, let
T12 X1 — X271, TQZ X1 — X272, B X2,1 X X272 — X3 and denote H(ﬂ) = B(Tl(ﬂ),TQ(ﬂ)) Fiz
u,0 € Xq1. We make the following assumptions:

1. B 1s bilinear and bounded,
2. T; has the (weak) directional derivative in point G in direction ¥, for i =1,2.

Then H also has the (weak) directional derivative in point @ in direction © and it can be expressed
respectively as:

The assertion follows as in the proof of Proposition 4.11 in [50].

Observation A.1.6 Note, that for Y = R in Definition A.1.2 the weak Gateauz differentiability
becomes equivalent to the Gateauz differentiability. For this reason, if we set in Theorem A.1.4
Y as R and Ty as a weakly Gdteauzr differentiable operator, then we get that the superposition

T5 o T is not only weakly Gdteaur differentiable but also Gateaux differentiable and the chain
rule holds.

Observation A.1.7 Every bounded linear operator T: X — Y acting between two Banach
spaces X and Y 1is Fréchet differentiable and its Fréchet differential in an arbitrary point is
equal to the operator itself, i.e. DpT(4)(0) = T(0) for all 4,0 € X.
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Observation A.1.8 Let H be a real Hilbert space with norm H HH
Let the operator T: H — R be defined by T'(1) := HuHH Then, T is Fréchet differentiable and

and scalar product (., . ).

DpT ()0 = Q(ﬁ,@)H Vi, o € H (A.6)

The Observations A.1.6 and A.1.7 follow straight while the Observation A.1.8 is an exercise
involving direct application of the derivative definition: first, we calculate the directional deriva-
tives to obtain the characterization of the Gateaux derivative of T' (see, e.g., [45, p.57]) and then
we estimate the reminder of the linearization to show, that the Gateaux derivative is in fact the
Fréchet derivative of T as well.

If the convergence in (A.1) in Definition A.1.1 holds only for some sequence {£,,}22 , where
en #0, g, = 0 as n — oo, then it is meaningful to pose a question: are the chain rule and the
product rule still true? In the latter context, the below notion will be convenient for the sake of

brevity:

Definition A.1.9 For an operator T : X — Y, point 4 € X, direction v € X and a sequence
€:={en}ry, €n = 0 as n — oo, if the difference quotients i (T'(+ epv) —T(0)) are (weakly)
convergent as n — oo then we call the limit the sequential (weak) directional derivative on the
sequence € and denote it 5T (1;0) (or 65T (1i;0), respectively).

Theorem A.1.10 Assume that € := {e,}-

net1s €n — 0 as n — oo. The following modifications
of Theorems A.1.} and A.1.5 are true:

1. In Theorem A.1.4, if we replace the assumption on the existence of the (weak) directional
derivative of Th by an assumption of the existence of the sequential (weak) directional
derivative of T1 on the sequence €, then the assertion of the theorem holds in the sequential
version, i.e. the sequential (weak) directional deriwative of Th o Ty on the sequence € exists
and it can be expressed respectively as:

(55( byoTy)(G;0) = (DFTQ)(Tl(ﬁ))SeTl(a,@) (A7)
Oy (Ty o T1) (15 0) = (DpTy)(Th(a))d;, T (1;0) '

2. In Theorem A.1.5, if we replace the assumption on the existence of the (weak) directional
derivatives of T;, i = 1,2 by an assumption of the existence of the sequential (weak) di-
rectional deriwvatives of T;, 1 = 1,2 on the sequence €, then the assertion of the theorem
holds in the sequential version, i.e. the sequential (weak) directional derivative of H on the
sequence € exists and it can be expressed respectively as:

6 H (1;0) = B(6°T1(0;0), Ta(1)) + B(Ti(),6Ts (i
b T (1

;0))
S, H(a;0) = B(6,T1(50), To(d)) + B(Ti(a), 8, Th(d; 0

A8
) (A-8)

The proof of this theorem in fact consists in analyzing the proofs of Theorems A.1.4 and A.1.5
and noting that the above modification is possible.

For the superposition of two operators T o 17, Theorem A.1.4 implies that the chain rule is
correct if we assume the Fréchet differentiability of T and the (weak) Gateaux differentiability
of T1. In the converse situation, namely assuming only the (weak) Gateaux differentiability of
Ty, the chain rule is not true, even if the inner operator T is Fréchet differentiable. However,
there is a particular case in which we can get the chain rule for (weakly) Gateaux differentiable
T22
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Observation A.1.11 Let X1, X5 and X3 be Banach spaces, let Ty : X1 — Xo, Ty : Xo — X3
and let 1. € X1. Suppose, that:

1. Ty is a continuous linear operator,
2. Ty is (weakly) Gateauz differentiable (at least in point Th(u)).

Then the composite operator TooTy is (weakly) Gateaux differentiable in point 4 € Xy and it can
be expressed respectively as:

Dg(Ty o Th)(u)(0) = (DaTe)(Th(0))(T1(0) = (DaTe)(T1(a))(DpTi(a) (D))

(A.9)
D (T2 0 Th)(4)(0) = (DgwT2)(Ti(0))(T1(0)) = (DewT2)(T1(@)(DpTi(a)(0))

PRrooOF. The proof follows immediately. Let us check the difference quotient in point @ € X
in direction v € Xy

e <T2 (T1 (1 + 20)) — Ty (T (ﬁ))) — ! (T2 (T3 (@) + T3 (3)) — To(Th (ﬁ)))

what tends to the (weak) directional derivative of T in point 77 () in direction T4 (9) when
e — 0. If T is weakly Gateaux differentiable then the above suffices to verify the asserted
formulas. W

A.2 Optimality conditions for differentiable functionals

Having introduced the notion of derivatives in Banach spaces and their basic properties, we can
link this theory to the theory of optimization and formulate the optimality criterion, generalizing
the Fermat’s necessary condition for existence of minimum of a real function of one real variable:

Theorem A.2.1 Let C' C D C X where X is a real Banach space, C is a nonempty and convex
subset and D is an open subset of X containing C. Let also T : D — R be a Gateauz differentiable
functional. Then the necessary condition for u € X to solve the optimization problem infyec T ()
if that the following condition is fulfilled in u:

DeT(u)(w—u) 20 Vgec (A.10)

For the proof, see Lemma 2.21 in [45].

A.3 Nemytskii operators

Below, we present a short part of the theory of Nemytskii operators, necessary in the present work.
We do not need the theory of Nemytskii operators in its full generality. Our attention is restricted
to autonomous Nemytskii operators acting on functions defined on Lebesgue-measurable subsets
of R™ of bounded measure. A reader interested in the more general theory is referred to [2]
or [17]. Actually, the below facts concerning Nemytskii operators are based on the content of
Chapters 6 and 7 in [17].
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In general, for a set A and a function F': A x R — R, the Nemytskii operator associated with
F, denote it N, is the operator acting from the set of real functions on A to itself defined by
the following condition:

Np(a)(z) := F(z,0(z)) forz € A, for u: A - R

We are interested in the situation of F' being a function of only one variable, F': R — R. In this
case, the operator N is called autonomous Nemytskii operator and can be expressed as:

Np(@):=Fod for a: A — R

The Nemytskii operator N is often considered to act between Lebesgue spaces L1 (A) and
L#*2(A), for some exponents s1 and s3. However, to understand N this way, we need to remember
that elements of the Lebesgue spaces are not the functions, but equivalence classes of the relation
of being equal a.e. If 0 = w a.e. on A and F is measurable, then {x € A: Fot # Fow} C
{r € A: v +#w} and hence Fod = Fow a.e. on A. Thus the following definition is meaningful:

Definition A.3.1 Let F: R — R be a measurable function, A be a measure space and si,s9 €
[1,00]. Assume that an operator N : L (A) — L%2(A) is defined by the formula Np(i4) = [Foul,
where [.] denotes the equivalence class of the relation of being equal a.e. on A, U is understood as
and equivalence class, subject to the latter relation, and 0 € 4. Then, N is called autonomous
Nemytskii operator.

Below, we will give conditions, under which the autonomous Nemytskii operators are well defined
as operators form a Lebesgue space to a Lebesgue space. Besides, we will formulate continuity
and differentiability criterion in the Lebesgue spaces. For this end, we will present certain results
from [17]. Book [2] also addresses the matter of well-posedness, continuity and differentiability
of Nemytskii operators. But there contained results are formulated in different fashion than in
[17] and frequently are not direct equivalents of the results from [17] on which we base.

The theory of Nemytskii operators in its full generality is not necessary in this work. It will
be sufficient, if we restrict our attention to the case where A = [E for certain E C R" of finite
Lebesgue measure, for a given n € N\ {0}.

Theorem A.3.2 Let E be a Lebesque-measurable subset of R™ of finite measure and let F' : R —
R. Assume also that 1 < s1 < 00, 1 < 89 < o0 and that F is measurable and satisfies the
following growth condition:

sup |F(s)|/(1+|8|81/82) < o0
seR

Then N is well defined as an operator from L**(E) into L52(E). Moreover, N is bounded (i.e.
is bounded on bounded sets).

This is the particular case of Theorem 7.13, part a) in [17].

REMARK. In [17], a condition of so-called universal measurability of a function is utilized
in the formulation of the part a) in Theorem 7.13. Nevertheless, in the case of finite, complete
measure spaces, the notions of universally measurable functions and measurable functions coin-
cide (see the remarks on pp. 337 of [17]). This helps to apply the result from [17]| for measurable
functions, as in the present case. A

Theorem A.3.3 If, in Theorem A.3.2, we additionally assume that the function F is continuous
and s1 < 0o, then the autonomous Nemytskii operator Np is continuous from L5 (E) to L*2(E).
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The above is a consequence of the previous theorem and Theorem 7.19 in [17].

REMARK. In [17], the notions of Carathéodory function and Shragin functions are used in
the formulation of Theorem 7.19. Nevertheless, continuous functions are Carathéodory functions
(by definition, see pp. 341 therein) and Carathéodory functions are Shragin functions (pp. 341
therein). This helps to apply the result from [17] for measurable functions, as in the present
case. A

Now, we proceed to differential properties of Nemytskii operators acting between Lebesgue
spaces. For this purpose, the notion of the multiplication operator will be useful. For 4 € L*(IE),
the multiplication operator My is defined as

My (0)(x) = u(x)o(z) for a.e. x € E, for v € L (E)

REMARK. To be precise, in the above setting, multiplication operators act not on functions
but on equivalence classes in the relation of being equal a.e. Thus, the puristic definition of My
should base on formula M,(0) = [aVv] where & € 4, Vv € 0, 4 and © are understood as equivalence
classes and [.] is as in Definition A.3.1. A

Observation A.3.4 For given 1 < s < 51 < oo, My(0) belongs to L*2(E), assuming that
4 € L*(E) with sy = s152/(s1 — $2).

This follows by the Holder inequality (for a more explicit proof, see Lemma 7.37 in [17]). Thus,
given s, s1, S as above and @ € L%°(E), the operator My is a well defined operator from L°!(E)
to L52(E).

Theorem A.3.5 Let E be a Lebesque-measurable subset of R™ of finite measure and let F': R —
R. Assume also that F' exists everywhere on R and that the numbers 1 < s < 51 < 00 are given.
Then the autonomous Nemytskii operator Np is everywhere Fréchet differentiable from L' (E)
to L*2(R) if and only if F' satisfies the following growth condition:

sup [F'(s)]/(1+ 5|7 < oo (A.11)

If this is the case, then the Fréchet differential of N in a point & € L*'(E) on a direction
0 € L (E) is given by
DpNp(t)t = Mprog (D) (A.12)

or more directly
(DpNp(d)d)(z) = F'(u(x))d(z) for a.e. x € E

For the proof, see Proposition 7.45 in [17].

REMARK. By the assumption @ € L*'(E) and the growth condition (A.11), one can verify
that F' o4 € L% (E), for so as in Observation A.3.4. Hence, in view of Observation A.3.4, the
differential of N, characterized by the formula (A.12), is a well defined operator from L5!(E)
to L¥2(E). A
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A.4 Translation operators

This section concerns translation operators defined as follows:

Definition A.4.1 Assume that F: R® — R, for some I,n € N\ {0}. We define the translation
operator Tr associated with F as

Tr(z) = F(. —x)

We want to investigate properties of the translation operators understood as Tp: R™ — (L*(R™))!
for some exponent s. This forces both F and Tz (z) for € R to be elements of (L*(R™))" and
hence the above definition in the latter context should be understood in the ,,almost everywhere”
sense, i.e. the operator Tp : R" — (L* (R”))l acts into equivalence classes of functions in the
relation of being equal a.e. in R™ rather than into functions, where F' also is an equivalence class
in this relation. This is straight forward that for F1, Fy € F there holds [Fi(. —z)] = [F2(. —x)],
where [.] denotes the equivalence class of the subject relation corresponding to a given element,
hence it is possible to pose the definition of the translation operator correctly.

For brevity of notation of vector spaces associated with operator T, in this section we focus
on the case of F': R” — R. Also, the following notation will be valid in the present section:

Ti(z;y) = (Tr(z +ey) — Tr(z)) forz,y € R"

We do not claim that the below results are new, but we have not found suitable facts con-
cerning the translation operators defined as above in the literature.

Theorem A.4.2 Let s € [1,00) and F' € L*(R™). Then the operator Tp: R" — L*(R"™) is
uniformly continuous.

PrOOF. The translation in a Lebesgue space is a norm conserving operation, hence if Tp
is continuous in one point then it is continuous in every point of R™ with the same modulus of
continuity. Therefore it is enough to verify the continuity of 7z to get the uniform continuity.
This can be done by verifying the continuity of T for F' € C.(R™) and subsequently by approx-
imating arbitrary F' € L*(R"™) with functions from C.(R™). This reasoning is realized e.g. in the
proof of [1, Th. 2.32]. &

Lemma A.4.3 Let FF € WY3(R"), s € [1,00) and z,y € R™. Then HTﬁ(x;y)HS < |y o
for all € # 0, where s’ is the Holder conjugate of s.

VF((L‘)HS

PROOF.  The proof rely on reasoning utilized in the proof of [21, Chap. 5.8.2, Th. 3|.
However, the above Theorem is formulated slightly different than the one in [21] hence we
present the proof below.

Begin with the case of FF € C'(R"). Denote by e; the i-th vector of the canonical base in
R™. Then:

€ 1
F(x+ce;) — F(z) = / O;iF(x +te;)dt = 5/ O0;F(x + tee;) dt
0 0

1 s
R 0

1 1
/ |8,~F(x—|—taei)|sdtdx:/ |o:F|* dt = |0, F||
0 JR"» 0

Now we can write:

[ 75 ()|

IN

(A.13)

IN
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Fix z,y € R™. Note that for arbitrary y € R™:
Tr(x,y) Z yl (xi,€;)

where x; := z for i = 1 and x; := x;_1 + y; for i = 2,...,n. By the above, by (A.13) and by
Holder inequality for sequences we have:

1780, < SlllT e Z\yz |0iF]s < [yl
=1

C1(R™) functions are dense in W1$(R") for s € [1,00), see [1, Th. 3.17], hence we infer that
the above holds also for all F € W1$(R"). B

As a consequence, we can prove sufficient conditions for the Lipschitz continuity and the
weak Gateaux differentiability of Tp.

Theorem A.4.4 Let F € WY¥(R"), s € [1,00). Then the operator Tr: R™ — L*(R™) is globally
Lipschitz continuous.

Theorem A.4.4 is a direct consequence of Lemma A.4.3.

Theorem A.4.5 Let F € W1$(R"), s € (1,00). Then Tp: R™ — L%(R"™) is weakly Gateaus
differentiable and its weak Gateaux differential in point © € R™ in direction y € R™ is given by

(DGMTF(x)(y)) (2) = = DpF(z—2)y =

= — (VF(z—x),y)Rn = —(Tvp(a:)(z),y)Rn (A-14)

for a.e. z € R

Proor. Note, that translations commute with differentiation, hence it suffices to verify the
assertion for x = 0 — if the difference quotients converge weakly to — (7v#(0),y)g» then the
translated by « difference quotients converge weakly to — (Tvr(z), y)gn-

For x = 0 and for ¢ € C°(R")

7fmwxawadz=:/ e (F(z - ey) — F(2)) 6(2) d= =

R

Rn

= [ (VFE W@ s = — [ (Ter(0)(:).0)go(2) ds

Moreover, C°(R") is dense in L* (R") (see [1, par. 2.30]) and due to Lemma A.4.3 the difference
quotients 75(0;y) are bounded w.r.t. € in L*(R™). Therefore, the above convergence holds also
for all ¢ € L* (R™) what concludes the proof. W

ExamMpPLE. Theorem A.4.4 together with Theorem A.4.5 give a big class of functions F' for
which the associated translation operator 7z is both Lipschitz and weakly Gateaux differentiable.
However, an example of F' € L*(R"™) for which T is Lipschitz continuous but not weakly Gateaux
differentiable can be easily indicated. For instance, take into consideration F'(z) := 1gq ()
with given radius » > 0 and the space L?(R"). It can be verified that the Lipschitz continuity of
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Tr in L2(R") is true. At the same time, it is straightforward to check in the case of n = 1, that
Tr is not weakly Gateaux differentiable. To see it, one can check that the difference quotients of
Tr for n = 1 are unbounded in L?(IR), hence they cannot be weakly convergent, what contradicts
the weak Gateaux differentiability. A

A.5 Multivalued mappings

This short section mostly bases on concepts concerning multivalued mappings presented in [4].
The Reader is referred there for more detailed theory of multivalued mappings.

A multivalued mapping from set A; to set Ag is a function with values in the set of subsets
of Ay. A given multivalued mapping can be understood both as an usual function from A; to
282 or as a generalization of usual function from A; to As. In the below definitions and facts,
the second of these two interpretations is exploited. However defining a multivalued mapping F'
from Aq to Ay we prefer to use notation F: A; — 242 in order to emphasize that F is not an
usual function from A; to As.

For a given multivalued mapping F: A; — 252, we denote by G(F) its graph, defined by

= |J {(w,F(w)) C A1 x Ao} = {(w1,w2) € Ay x Ag: wy € F(wy)}
weA
Thus we understand G(F) as a subset of A; x Ay and not as a subset of A; x 242,

For convenience of notation, for a multivalued mapping F': A; — 22 as above and for a
given subset A C Ay we denote by F|; the restriction of F' to A.

Moreover, still keeping the above meaning of Ay, Ao, A and F, we denote:

weA

Basing on the above notation, we define the superposition of two multivalued mappings in
the following way. Let sets Aj, Ay and As be given and let Fy: Ay — 282 and Fy: Ay — 283 be
multivalued mappings. We denote F; o F}(w) = F5(Fi(w)) for all w € A;.

If Ay and Ay are topological spaces, a notion of continuity can be defined for a multivalued
mapping F: A; — 2%2. Below, for simplicity, we restrict our attention to the case where both
Aq and A, are Banach spaces.

Definition A.5.1 For two Banach spaces X and Y, a multivalued mapping T : X — 2Y is
said to be bounded on X if and only if there exists R > 0 such, that T(z) C B(0,R) for all
T eX.

Definition A.5.2 For two Banach spaces X and Y, a multivalued mapping T : X — 2Y is
said to be upper semicontinuous in & € X if and only if for every neighborhood O CY of T(Z),
there exists a neighborhood U C X of & such that T(2) C O for 2 € U. T is said to be upper
semicontinuous if it is upper semicontinuous for all T € X.

Definition A.5.3 For two Banach spaces X and Y, a multivalued mapping T : X — 2Y is said
to be lower semicontinuous in & € X if and only if for every § € T(&) and every neighborhood
O CY of g, there exists a neighborhood U C X of & such that T(2)NO # 0 for 2 € U. T is said
to be lower semicontinuous if it is lower semicontinuous for all T € X.
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Definition A.5.4 For two Banach spaces X and Y, a multivalued mapping T : X — 2Y is
said to be continuous in & € X if and only if it is both upper and lower semicontinuous in X. T
s said to be continuous if it is continuous for all & € X.

If the values of T in the above definitions are singletons, then 7" can be understood as a usual
single-valued operator between Banach spaces. Note that in this case, the property of upper
semicontinuity in Definition A.5.2 reduces to the definition of continuity of T. The same ob-
servation holds for the notion of lower semicontinuity of multivalued mappings in Definition
A.5.3. Thus the upper semicontinuity an the lower semicontinuity of a multivalued mapping is
a property that is stronger that the upper semicontinuity of a usual single-valued operator.

The following two examples of multivalued mappings are as in [4, p. 109, Ch. 3 Sec. 1| and
illustrate the differences between the notion of upper semicontinuity and lower semicontinuity of
multivalued mappings. Let Fy, Fy : R — 2R be defined by

_Jo for s e R\ {0} ~J[-1,1] for s € R\ {0}
FI(S)_{[—l,l] for s =0 F2(S)_{O for s =0

It is straightforward that Fj is upper semicontinuous and not lower semicontinuous. At the same
time, Fb is lower semicontinuous but not upper semicontinuous.

Now, by the below proposition, we will indicate more examples of upper semicontinuous
mappings:

Proposition A.5.5 For a given single-valued function F: R — R, define E (s) :=lim,_, 4 F(r),
— ~ — — ~ — —
F (s) = lim,_, 4+ F(r), Fpin(s) := min {F (s), F (s)} and Frax(s) = max{F (s), F (s)} for

s € R. If I is such that E (s) and F (s) are well defined for all s € R, then the multivalued
mapping F: R — 28 given by

F(5) = [Frnin(s), Fmax(s)]  forseR (A.15)

1§ upper semicontinuous.

PRrROOF. For convenience, for ¢ > 0 and for A C R, we denote by A. the e-neighborhood of
A, ie. the set {s € R: distgr(s,A) < ¢}, where distg denote the distance in the metric space R.
Step 1. Fix so € R and ¢ > 0. It suffices to show that there exists § > 0 such that, for s

satisfying |so — s| < 4, there holds F(s) C (ﬁ (so)> . The latter inclusion is equivalent to
3

sup Fi(s) < sup F(sg) + ¢

- - (A.16)
inf F'(s) < inf F(sg) —¢

For s = sg the above is trivial. We will focus on the case s > sg. The case s < sg can be treated
analogously.
Step 2. Let the number € > 0 be fixed. Then, by definition of F, there exists §; > 0 such
that .
|F (s0) — F(s)| <&  for sy <s<so+d (A.17)

Inequality (A.17) means that the values of F belong to certain interval for s sufficiently close to
sp. From this we infer that the limits of values of F' remain in the closure of the latter interval,
hence:

-

|F (s0)— F (5)| <e<28  forsog<s<so+d (A.18)
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By triangle inequality, (A.17) and (A.18) imply that:
{F(s)—F(T){ <3¢ forsp<rs<sy+d (A.19)
Next, by definition of }_7), for a given s there exists do > 0 such that
‘E(s)—F(r)‘ <& forsp<r<s<sy+d, !r—s|<52 (A.20)

Now, let r and s satisfy conditions sg < r < s < s9+061, |r—s| < d2. The difference F (s)— E (s)

— —
can be represented as I (s) — F'(r) + F(r)— F (s). The latter representation together with the
triangle inequality, (A.19) and (A.20) yields

— —
|F (s)— F (s)| <4e  for sp < s<so+6 (A.21)

Step 3. Take € = ¢/6 and s > sg. Choose d; as in the previous step if the proof. Using
(A.18) and (A.21), we obtain:

sup F(s) = max{ﬁ(s),?(s)} < max{% (S)+46_,F(S)}

= — — — (A-22)
< max{F (so) +2&+4&, F (so) +2é} =F (so)+68 =F (so)+e¢
for so < s < sp + 61. In the same manner we get
inf F(s) > F (s0) — ¢ (A.23)

Step 4. If F (50) ZE (s0), then (A.22) with (A.23) imply
~ «— ~
sup F((s) < F (so)+¢ = sup F(sg) + ¢
—
F

inf F(s) > F(s0) —¢ > F (s0) —¢ = inf F(so) — ¢

and (A.16) is proven. If F (so) ZE (so), then (A.16) can be proven analogously. The proof is
complete. W

Proposition A.5.5, by the mapping F' — F', gives a method of assigning an unique up-
per semicontinuous multivalued mapping to a given function, satisfying respective assump-
tions. For example, for F(s) = —sgn(s) Proposition A.5.5 can be applied and the formula
F(5) = [Frin(5), Fiax(s)] in the statement of the proposition gives a multivalued mapping

+1 for s <0
F(s) =< [-1,+1] fors=0
-1 for s >0

Other important notion concerning multivalued mappings is monotonicity and maximal
monotonicity:

Definition A.5.6 Let H be a Hilbert space and let a multivalued mapping T: H — 22 be given.
We say that T is monotone if and only if

(21 — 22,91 —Y2)g =0 for all (x1,y1), (x2,12) € G(T')

We say that T' is mazimal monotone if and only if there is no monotone multivalued mapping
T: H — 2" such that G(T) S G(T).
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The below facts emphasize properties of maximal monotone multivalued mappings. Note in
particular, that the first of the below two propositions indicates a big class of upper semicontinu-
ous multivalued mappings, extending the collection of examples of upper semicontinuity already
given above.

Proposition A.5.7 Let H be a Hilbert space and let M be its compact subset. A mazimal
monotone multivalued mapping T: H — 2M is upper semicontinuous.

Proor. First, by [4, Prop. 3, Ch. 6, Sec. 7] we can infer that the graph of a maximal
monotone multivalued mapping is sequentially closed. Since Hilbert spaces are metric, it means
that G(T') is closed. Next, by [4, Coro. 9, Ch.3, Sec. 1], in particular multivalued mappings
on Hilbert spaces with closed graph and with values in a compact set are upper semicontinuous.
This justifies the desired assertion. H

Proposition A.5.8 Let H be a Hilbert space and let T: H — 27 be a mazimal monotone
multivalued mapping. Then values of T are closed and convez.

For justification of Proposition A.5.8, see [4, Prop. 3, Ch. 6, Sec. 7.

Maximal monotone mappings do not need to have nonempty values. For instance, consider
T:R — R defined by T'(s) = In(s) for s > 0, T'(s) = () otherwise. The mapping is monotone
and, by a simple verification, maximal. At the same time, it has infinitely many empty values.
But, assuming that a maximal monotone mapping is bounded, the possibility of empty values
can be excluded for mappings 7': R — R:

Proposition A.5.9 LetT: R — R be mazimal monotone and bounded. Then, T'(s) are nonempty
for all s € R.

Proor. We will justify the assertion by contradiction. Namely, assume that there exists
so € R such that T'(sg) = 0. We will prove that 7' can be extended to so in a manner preserving
the monotonicity, what will contradict the maximality of T

Since T is bounded, the infimum of the values being ,on the right” of sy (i.e. the number
inf (J,~,, T'(s)) is finite. Denote it as Cg. Similarly, the supremum of the values being ,on the
left” of sy, denote it Cp, is finite. It follows straight that C'7, < Cr. Otherwise, a contradiction
to monotonicity would be implied. In consequence, the set [Cr,CRg] is nonempty (here, in the
case of C, = Cg, we interpret the latter set as the singleton {CRr}).

Now, simply note that by assigning the value [Cr, Cr] to the point sy we obtain an extension
of T" which is monotone. This follows straight by the definition of monotonicity (Definition A.5.6)
and definitions of Cr and Cf. The maximality of 7" has been contradicted, what concludes the
proof. l

We do not claim that the results given in Lemma A.5.5 and Lemma A.5.9 are new, however
we do not know a suitable literature reference for the subject statements.
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Figures:

Figure 0.1 — page xiii — Interpretation of the model (0.1) - (0.3).
Figure 1.1 — page 13 — Interpretation of operators defined in the proof of Theorem 1.1.2.

Figure 1.2 — page 18 — Example approximation of the function —sgn with Lipschitz
continuous functions of very steep slope.

Figure 1.1 — page 13 — Interpretation of operators defined in the proof of Theorem 1.2.3.
Figure 1.4 — page 47 — Relations between some of results presented in Chapter 1.
Figure 2.1 — page 53 — Triangulation utilized in the experiments described in Chapter 2.

Figure 2.2 — page 57 — Configurations of the control and measurement devices utilized
in the experiments described in Chapter 2.

Figure 2.3 — page 57 — Initial and reference states utilized in the experiments described
in Chapter 2.

Figure 2.4 — page 59 — Results of simulations.
Figure 2.5 — page 59 — Results of simulations: error plots.
Figure 2.6 — page 61 — Results of simulations.
Figure 2.7 — page 62 — Results of simulations: error plots.
Figure 2.8 — page 64 — Results of simulations.
Figure 2.9 — page 65 — Results of simulations: error plots.

Figure 4.1 — page 114 — Initial and reference states utilized in the numerical optimization
experiments described in Chapter 4.

Figure 4.2 — page 115 — Start point for the numerical optimization experiments described
in Chapter 4.

Figure 4.3 — page 117 — Results of numerical optimization.
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e Figure 4.4 — page 117 — Difference between the initial states and the reference state
considered in one of the numerical optimization experiments described in Chapter 4.
e Figure 4.5 — page 121 — Results of numerical optimization.

e Figure 4.6 — page 123 — Results of numerical optimization.

Tables:

e Table 2.1 — page 60 — Results of simulations: error values.
e Table 2.2 — page 62 — Results of simulations: error values.
e Table 2.3 — page 63 — Results of simulations: error values.

e Table 4.1 — page 116 — Results of numerical optimization: numbers of iteration and cost
reduction.

e Table 4.2 — page 119 — Results of numerical optimization: numbers of iteration.

e Table 4.3 — page 122 — Results of numerical optimization: numbers of iteration and cost
reduction.
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Index of theorems

Below, general theorems utilized in the theoretical chapters of the present work are listed, to-
gether with list of pages where the theorems were formulated or necessary. However, the list
may omit some occurrences of the indexed theorems. Also, the list omits theorems of lesser
importance. If we write ,passim”, then it means that a given theorem was used in too many
places to list them here, or certain of its occurrences were not of significant importance, or it
was used implicitly, without explicit reference in the text.

Aubin-Lions lemma, 36
Axiom of choice, 78

Banach-Alaoglu theorem, passim

Differentiability in Banach spaces, 75, 86, 135
— chain rule, 75, 81, 83, 86, 136, 137
— of Nemytskii operators, see Nemytskii opera-
tors
— of squared norm in Hilbert spaces, 86, 137
— of translation operators, see tanslation opera-
tors

— product rule, 82, 83, 136, 137
— sequential, 78, 81, 82, 83, 137

Evolution triple properties

— embeddings, 6, passim

— integration by parts, 7, 25, 30
Extreme value theorem, 85

Gronwall inequality, 26, 32, passim
Holder inequality, passim
Kakutani generalized fixed point theorem, 12

Maximal monotone multivalued mappings, 17, 145
— closedness, 16
Multivalued mappings, 143

— upper semicontinuous, see Upper semicontinu-
ous m. m.

— maximal monotone, see Maximal monotone m.
m.

Nemytskii operators, 138
— differentiability, 81, 83, 140

Optimality conditions for differentiable functionals,
92, 138
Ordinary differential equations

— estimates and stability, 10, 14, 15, 22

— Carathéodory solutions, 10

Parabolic PDEs
— boundedness of solutions, 39, 42
— existence of solutions, 7, 13, 21
— stability, 7, 15, 22

Rellich-Kondrachov theorem, 14, 23, 36

Schauder fixed point theorem, 21, 23
Sobolev embedding theorem, 6, 10, 73
Stone-Weierstrass theorem, 36

Translation operators, 141
— continuity, 74, 141
— differentiability, 75, 142
— Lipschitz continuity, 74, 142

Upper semicontinuous multivalued mappings, 143
— measurable selection, 11, 14

— closedness, 12, 15

Young inequality, 73, passim
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