
Warsaw University
Faculty of Mathematics, Informatics and Mechanics

Filip Piękniewski

Spontaneous Scale-free Structures in Spike Flow
Graphs for Recurrent Neural Networks

PhD dissertation

Supervisor

dr hab. Tomasz Schreiber

Faculty of Mathematics & Computer Science
Nicolaus Copernicus University

October 2008



Author’s declaration:
aware of legal responsibility I hereby declare that I have written this dissertation
myself and all the contents of the dissertation have been obtained by legal means.

October 1, 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date Filip Piękniewski

Supervisor’s declaration:
the dissertation is ready to be reviewed

October 1, 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date dr hab. Tomasz Schreiber



Abstract

In this thesis we present both theoretical and numerical results, revealing
self-organization in graphs of functional connections for a number of recur-
rent neural network models. The consequence of studied self-organization
is the spontaneous emergence of scale-free connectivity. The concept of
the scale-free network (whose vertex degree distribution obeys a power
law) discussed in detail in the thesis is an intensively studied part of ran-
dom graph theory. These studies are particularly motivated by a number
of recent discoveries which show that many networks found in the real
world are indeed scale-free. To date, such a structure has been found
in the Internet, scientific/artistic collaboration networks, social networks,
linguistic networks, metabolic networks and many others. The results re-
lated to neural networks however, are not evident. Some findings show
that the neural networks (on the level of synapses) of small organisms
exhibit rather exponential decay of degree distribution, while other exper-
iments conducted with functional magnetic resonance imaging (fMRI) on
the human brain reveal that the networks connecting correlated functional
centers of activity are scale-free, with a power law exponent consistent
with our theoretical results. In further chapters of this thesis we intro-
duce a mathematically tractable model of an asynchronous spiking neural
network which generalizes the concept of a Boltzmann machine. We ana-
lyze energy minima (ground states) of the presented model and the graph
of charge transfers between the units in the course of the dynamics. We
argue that under certain natural assumptions about the Hamiltonian at
low enough temperatures the large-scale behavior of the system admits an
accurate description in terms of a winner-take-all type dynamics. This can
be used to show that the resulting graph of charge transfers, referred to
as the spike flow graph in the sequel, has scale-free properties with power
law exponent γ = 2. Additionally, we demonstrate the results of numeric
studies which show that the introduced model accurately describes the in-
teraction between isolated neuronal groups based on the phenomenological
model of Eugene M. Izhikevich. We point out possible further research
directions based on spontaneously developing neuronal groups and large
scale brain simulations.

Keywords: scale-free graph; stochastic neural network; winner-take-all
dynamics
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Streszczenie

W pracy przedstawiamy wyniki, zarówno teoretyczne jak i numeryczne,
opisujące samoorganizację funkcjonalnych grafów połączeń dla kilku mo-
deli rekurencyjnych sieci neuronowych. Rezultatem badanej samoorgani-
zacji jest przede wszystkim spontaniczne powstawanie w takich grafach
struktur bezskalowych, czyli takich w których rozkład stopni wierzchoł-
ków spełnia prawo potęgowe. Dyskutowane szerzej w pracy sieci bezska-
lowe stanowią intensywnie eksplorowaną obecnie gałąź badań grafów loso-
wych, szczególnie w kontekście doniesień, iż bardzo wiele grafów występu-
jących w otaczającym nas świecie ma cechy bezskalowości. Do tej pory
cechy takie stwierdzono w strukturze Internetu, sieciach współpracy na-
ukowej/artystycznej, społecznych, lingwistycznych, metabolicznych i wielu
innych. Tymczasem wyniki dotyczące struktury połączeń sieci neurono-
wych nie są jednoznaczne. Pewne doniesienia wskazują na wykładniczy
zanik ogona rozkładu stopni wierzchołków w układach neuronowych nie-
wielkich organizmów (na poziomie synaps), inne natomiast badania prze-
prowadzone na mózgu ludzkim za pomocą funkcjonalnego rezonansu ma-
gnetycznego (fMRI) wskazują, iż grafy indukowane przez centra aktyw-
ności są istotnie bezskalowe, z wykładnikiem zgodnym z naszymi prze-
widywaniami teoretycznymi. W dalszych rozdziałach tej pracy prezentu-
jemy model matematyczny asynchronicznej impulsującej sieci neuronowej
uogólniającej koncepcję maszyny Boltzmanna. Analizujemy minima ener-
getyczne (stany bazowe) prezentowanego modelu, oraz graf indukowany
przez przepływy potencjału pomiędzy jednostkami. Dowodzimy, że dla
pewnych naturalnych założeń dotyczących funkcji energetycznej i w odpo-
wiednio niskiej temperaturze wielkoskalowy opis układu sprowadza się do
dynamiki typu “zwycięzca bierze wszystko” z czego można dalej wniosko-
wać, iż indukowany graf przepływu impulsów jest bezskalowy z wykład-
nikiem γ = 2. Ponadto prezentujemy wyniki badań symulacyjnych, które
wskazują, iż zaproponowany model dobrze odzwierciedla interakcje mię-
dzy izolowanymi grupami neuronów opartych o fenomenologiczny model
Eugene M. Izhikevicha. Wskazujemy dalsze kierunki badań oparte o spon-
tanicznie wykształcające się grupy neuronów oraz wielkoskalowe symulacje
układu nerwowego.

Słowa kluczowe: graf bezskalowy; stochastyczna sieć neuronowa; dyna-
mika “zwycięzca bierze wszystko”

Klasyfikacja tematyczna AMS 2000: 05C80, 82C32, 92B20, 68T99
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Chapter 1

Introduction

1.1 Motivation
The concept of a power law network has gathered a lot of attention in recent years
providing a unified description of a wide variety of complex network topologies
all of which display evidence of strong structuring principles co-existent with a
considerable degree of randomness (see Albert & Barabási (2002) for a compre-
hensive survey). A distinctive feature of a power law network is that its random
subgraphs with great probability have degree distributions that follow a power
law with the same exponent as in the original graph. Hence the shape of degree
distribution is invariant over scale and thus such networks are often referred to as
scale-free. The presence of such power laws has been observed for a broad class
of networks, prominent examples including the World Wide Web (Albert et al. ,
1999), science collaboration networks (Barabási et al. , 2002), citation networks
(Redner, 1998), ecological networks (Montoya & V., 2002), linguistic networks
(i Cancho & Solé, 2001) as well as cellular metabolic networks (Jeong et al. ,
2000) and many others, see (Albert & Barabási, 2002) and chapter 2 of this the-
sis. Many instances of structuring principles resulting in scale-free networks have
been proposed, with a prominent collection of examples stemming from Barabási-
Albert model (Albert & Barabási, 2002; Barabási & Albert, 1999) and its variants
modeling a variety of scale-free networks with different power law exponents by
exploiting the fundamental properties of growth and preferential attachment.

Recently, considerable interest has been attracted by neural networks built on
scale-free graphs and it turned out that a hierarchical scale-free network architec-
ture is in many cases beneficial for efficiency of neuronal information processing.
A scale-free graph is relatively sparse, and so the memory needed to store a neural
network built on such a graph is significantly reduced, as is the computational
effort required to perform certain tasks(see Perotti et al. (2006); Stauffer et al.
(2003)). In this context it is natural to ask whether these advantages are reflected
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1. INTRODUCTION

in some mechanisms which are inherent to the usual recurrent neural network dy-
namics and which result in emergence of power laws. In general this does not
seem to be necessarily the case for neural networks with simple processing units.
For instance the neural network of C.elegans worm exhibits rather exponential
decay (Amaral et al. , 2000; Koch & Laurent, 1999). Numerical simulation based
on the simple model by Eugene M. Izhikevich (Izhikevich, 2003) also did not re-
veal any scale-free structure, as long as the processing units were single neurons
(Piękniewski, 2007). However, things can be very different when more compli-
cated individual unit architecture is assumed, in which case a single formal neuron
can be interpreted as modeling a computational unit exhibiting some non-trivial
internal structure and memory, for instance a group of biological or artificial
neurons, see (Piękniewski, 2007) for related numerical study. In this thesis we
study circumstances in which scale-free connectivity may emerge naturally as a
consequence of neural like dynamics. We introduce a simple and mathematically
tractable model (Piękniewski & Schreiber, 2008) which in many ways resembles
the classical Boltzmann machine (Aarts & Korst, 1989), yet admitting a richer
state space and assuming rather different dynamics for individual neurons which
are simple spiking units here. We analyze the ground states of the model and
argue it can be represented via a kind of a winner-take-all dynamics whose par-
ticular features enable us to establish explicit results on the scale-free properties
of the spike-flow graph. These results seem to be in agreement (including power
law exponent) with empirical results based on fMRI presented in (Egúiluz et al.
, 2005). We also present related numerical studies based on the explicit model as
well as dynamical spiking neurons and investigate what conditions are necessary
in such networks for the power law connectivity to emerge.

1.2 Structure of this thesis
This thesis is organized as follows: in chapter 2 we introduce various concepts of
random graphs, in particular Erdős-Rényi random graphs (section 2.2) and gen-
eralizations of this model (section 2.3). In section 2.4 we discuss several examples
of empirical graphs studied in recent years as well as random models aimed at
examining their structure. In subsection 2.4.4 we discuss the present knowledge
about the low level connectivity of the nervous system. In chapter 3 we give a
brief introduction into contemporary models of neurons in a somewhat different
fashion than usually found in the literature. In particular we focus on dynamical
spiking models that are more related to neuroscience than to typical applications
(sections 3.2, 3.4, 3.5), while only briefly covering classical models and algorithms
(section 3.3). In chapter 4 based on (Piękniewski & Schreiber, 2008) we introduce
a novel model resembling a spiking neural network. This chapter contains the
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1.2 Structure of this thesis

main results of the thesis, stating that under appropriate assumptions about the
Hamiltonian, the presented model reveals a power law graph structure as an out-
come of its dynamical behavior. This model is significantly different compared
to existing models of random power law graphs discussed in chapter 2. Apart
from formal derivation, chapter 4 also contains the results of direct numerical
simulation of the presented model (section 4.4). In the next chapter 5 based on
(Piękniewski, 2007) we present another numerical study founded on dynamical
spiking neurons (discussed in section 3.5) revealing the general mechanisms which
may lead to power law distributions in neural systems. In chapter 6 we present
a more advanced numerical study based on (Izhikevich et al. , 2004). We recon-
structed the model in search of power law distributions, but the numeric results
obtained are rather obscure and therefore we regard the chapter as a direction for
further research. In particular in section 6.4 we discuss the possible perspectives
of further studies based on most recent large scale neuro-simulations. Finally, in
chapter 7 we conclude the thesis summarizing the achieved results.
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Chapter 2

Random and power law graphs

2.1 Introduction
Graphs can be formally defined within one line of text yet they posses huge abili-
ties in providing models for certain far more complex mathematical entities. Any
binary relation on a finite set is a graph, which suggests a rather controversial
statement that almost everything in mathematics can be seen as a graph. Math-
ematics itself can be represented as a graph whose vertices are statements and
edges are steps of proof leading from one statement to another. Category theory
offers yet a higher perspective, stating that in fact whole theories in mathematics
can be interpreted as vertices with homomorphisms playing the role of edges. But
graphs are not exclusively associated with mathematics. The real world is full
of graphs whose structure can tell us a lot about physical reality. These graphs
can be explicit like a science collaboration network, the Internet, the neuronal
structure of a human brain, or implicit like graphs of chemical reactions forming
the metabolism of a cell, or a semantic network of words in a given language.
These examples encourage people to study graph theory, in particular to study
properties of a typical graph. Yet the notion of a typical graph is problematic. The
confusion is hidden in the meaning of the word “typical”. Typical in what sense?
There are infinitely many graphs, and even if we restrict ourselves to graphs of
a fixed size, their number could easily become astronomical1. What probabilistic
measure should we attribute to a set of graphs of a fixed size? Even if we choose
the probabilistic measure, will we be able to study the expected properties of a
graph with respect to that measure? Will we be able to efficiently select a random
graph with respect to that measure? And most of all: is the introduced random
model a good replica of the graphs found in the real world? These seemingly

1Depending on whether for example 221000 is still astronomical or rather something more
than that.
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2. RANDOM AND POWER LAW GRAPHS

simple questions may have surprisingly difficult answers.

2.2 Erdős-Rényi random graphs
The study of random graphs began with the pioneering work of Paul Erdős and
Alfréd Rényi (Erdős & Rényi, 1959, 1960). They have introduced two models of
random graphs:

• Set the number of vertices n and a number of edges m. For consecutive
edges choose their endpoints randomly among all of the vertices.

• Set the number of vertices n and a probability p. For every pair of vertices
insert an edge with probability p.

At first sight the models look equivalent, especially when p = m/
(
n
2

)
, but in

fact the first model has a small degree of dependence due to a fixed amount of
edges. The second one is more convenient for analysis, because edges appear
independently of each other. Obviously the probability measure resulting from
such a setup is concentrated among graphs with expected number of edges p

(
n
2

)
,

yet any other graph is achievable with non zero probability (though decreasing
exponentially with the divergence from the expected number of edges). By vary-
ing parameter p different regions of the space can be studied. Surprisingly for
n → ∞ there is a sharp threshold in p above which the graph has the so called
giant component with probability close to 1, and below which it is composed of
small tree like components. A variety of interesting things can happen in the
critical regime, the study of which is beyond the scope of this thesis (see Bollobas
(2001, 1998))

2.2.1 Onset of the giant component - phase transition
The presence of a giant component is an important property studied in the ran-
dom graph theory. As mentioned above for Erdős-Rényi random model, there
exists a sharp threshold (function depending on n), below which a typical ran-
dom graph is a set of disjoint trees (or the so called unicyclic components) of
size at most log n. Only after the probability p reaches the threshold, a large
connected component emerges (whose size is of the same order as the size of the
entire graph). Here we will present a sketch of argumentation motivating the
above discussion (details can be found in chapter 2 of Durrett (2007)). The key
idea is simple: assume we start from some randomly chosen vertex v and look
at its neighbors. They form the first generation of descendants of v. We can
then examine the second generation, that is to say the neighbors of the neigh-
bors, and so on. Such a process can be approximated by a procedure defined as
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2.2 Erdős-Rényi random graphs

follows: consider a sequence ζti i.i.d nonnegative integer valued random variables
and define Zt, t > 0 as Z0 = 1 and:

Zt+1 =
ζ

t+1
1 + ...+ ζt+1

Zt ; Zt > 0
0 Zt = 0

(2.1)

Zt is called Galton-Watson process or a branching process. The probability dis-

Figure 2.1: A sample Erdős-Rényi graph with 10000 vertices just above the
critical probability. There is a large component and a couple of tiny isolated com-
ponents.

tribution pk of ζti is called the offspring distribution. The idea is simple: Zt is
the number of individuals in t-th generation. Each individual gives birth to some
number of offsprings according to pk. Under appropriate delicate assumptions
the branching process accurately approximates the local structure of connected
components in E-R graphs, at least as long as they are small enough, each oc-
cupying a negligible fraction of vertices. In this context the offspring probability
law is simply the binomial distribution induced by the constructing principles of

7



2. RANDOM AND POWER LAW GRAPHS

the graph. Note that when p = λ/n for some λ, each vertex has a binomial num-
ber of neighbors B(n − 1, λ/n) whose expected value tends to λ. When λ < 1
the process dies out (expected number of descendants of any individual is less
than 1), when λ > 1 the process is sustained with high probability (the case
λ = 1 is delicate, but it can be shown that in this case the branching process
dies out as well unless the offspring probability distribution is trivial). This ap-
proximation begins to break down when the size of the component approaches
the size of the graph, which is already far enough to establish the existence of
giant component (though it requires delicate calculation). It is fairly easy to
show that a branching process whose expected number of children for each in-
dividual is less than 1 will die out exponentially fast. Note that E(Zt) = λt

(each new generation multiplies the existing by λ). Zt ≥ 1 on {Zt > 0}, so
P (Zt > 0) ≤ E(Zt;Zt > 0) = E(Zt) = λt → 0 when t → ∞ (furthermore the
convergence is exponential). In the case when λ = 1 and P (ζti = 1) < 1 the
vanishing of the process can also be proven using the fact that Zt/λt is a mar-
tingale. The proof that the process persists when λ > 1 is somewhat longer and
uses properties of generating functions of the offspring distribution. In fact the

Figure 2.2: Phase transition on a sample Erdős-Rényi graph with 1000 vertices.
Edge probability values p = 0.9/1000, 1/1000, 1.1/1000 from left to right respec-
tively. As predicted by theory the graph below the critical probability is composed
of a number of small trees (leftmost figure), at the critical regime the number of
small trees decreases and cycles emerge as well as the giant component (middle).
A little above the critical regime the graph becomes connected (right).

phase transitions in Erdős-Rényi model are now (after many years of research)
characterized more precisely as follows (see section 5.1 in Chung & Lu (2006)):

• p = o(1/n) the graph is a disjoint union of trees.

• p ≈ λ/n for λ ∈ (0, 1) the graph contains cycles of any length with positive
probability (in the limit). All connected components are either trees or
unicyclic components of size O(log n) (see figure 2.2).
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2.2 Erdős-Rényi random graphs

• p = (1 + ε)/n there suddenly appears the giant component. For ε = 0
(the critical regime) the largest component is of size n2/3. With probability
0.9325 (as n → ∞) the graph consists of trees, cycles and double cycles.
With probability 0.9957 the graph consists of trees, cycles and at most one
more complex component. With probability between 0.987 and 0.9998 it is
planar. For ε > 0 most of the small components get connected and for a
giant component of size αn, where ε = − 1

α
log(1− α)− 1.

• p = λ/n for λ > 1 except for the giant component, all the other components
are of logarithmic size. Most of them are trees (see figures 2.2 and 2.1)
though unicyclic components may be present as well.

• p = λ log(n)/n for λ > 1 as n → ∞ the graph becomes almost surely
connected.

• p = ω(n) log(n)/n with ω(n) −−−→
n→∞

∞ the graph is almost surely connected
and the degrees of almost all nodes are asymptotically equal.

2.2.2 Erdős-Rényi random graphs and the real world
Apart from being a very successful mathematical model Erdős-Rényi random
graphs have certain drawbacks which became apparent by the end of XX century.
At this time, computational power reached level appropriate for the numerical
study of large graphs that appear in the real world. Other sciences like biology
and social sciences collected numerous databases, whose structural properties
became important for further research. Within a short period of time a number
of papers appeared, revealing, step by step, striking new features of empirical
graphs. These can be summarized as follows:

• empirical graphs are sparse. Most of the graphs found in engineering, biol-
ogy, social sciences have a small number of edges, scaling linearly with the
number of vertices (with small linear coefficient). Corresponding Erdős-
Rényi graphs (with approximately the same number of edges) are almost
surely composed of trees and unicyclic components, whereas empirical graphs
form complex giant components(see chapter 2 in Chung & Lu (2006), chap-
ter II in Albert & Barabási (2002) and reprinted papers in chapter 3 in
Newman et al. (2006)).

• empirical graphs have a nontrivial local structure. In most of the graphs
found in nature, the fact that two vertices have common neighbors greatly
increases the probability that these two are neighbors themselves. This
property is captured by the notion of clustering coefficient (see appendix at
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the end of this chapter) which, for every vertex, calculates the actual number
of triangles divided by the number of all possible triangles among the vertex
neighbors. Sparse Erdős-Rényi almost completely lack the local structure.
This phenomenon combined with the short average path characteristic (that
is also present in E-R graphs once they get connected) is sometimes referred
to as the small world property .

• empirical graphs often have heavy tail distributions of their vertex degrees.
These tails usually resemble power laws, but even if the distributions are
essentially exponential in nature, they are far less concentrated than in the
corresponding Erdős-Rényi graph. In a large E-R graph all nodes have fairly
equal degree (the degree distribution approaches Poisson distribution with
n→∞), while in empirical graphs there are huge discrepancies giving rise
to formation of the so called hubs (vertices having exceptional connectivity).

Among others these three are the main reasons for seeking different model of a
random graph, that would inherit some of the analysis techniques of E-R model,
and yet would be more adequate for real world phenomena.

2.3 Fixed degree distribution models
One of the ideas is to generalize the concept of Erdős-Rényi graph by introducing
expected degree sequence w (see chapter 5 in Chung & Lu (2006)). In this
setup each vertex receives its expected degree wi. An edge between vertices i
and j is added with probability swiwj where s is the global scaling parameter
s = 1/∑n

i=1wi. In this setup the expected number of edges adjacent to vertex i
is ∑n

j=1 swiwj = 1/
(∑n

j=1wj
)
·∑n

j=1wiwj = wi. A lot of interesting properties of
such graphs have been studied in numerous papers (summarized in chapters 5-7
in Chung & Lu (2006)), and in particular, properties of a typical graph whose
expected degree sequence follows a power law. Among other results the most
interesting ones include:

• A typical graph with desired expected degree sequence almost surely has a
giant component if the average expected degree is greater than one (theorem
6.14 in Chung & Lu (2006)) .

• The volume (a volume of a subset of vertices is the sum of their degrees) of
the giant component is λ0 + O

(√
n log3.5 n
V ol(G)

)
where λ0 is the unique positive

root of the following equation
n∑
i=1

wie
−wiλ = (1− λ)

n∑
i=1

wi (2.2)
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2.4 Models based on real world phenomena

which is a significant generalization of results of Erdős & Rényi (1959)
(again theorem 6.14 in Chung & Lu (2006)).

• If the expected degree sequence follows a power law with exponent β, the
exponent (and the power law) is with great probability preserved in random
subgraphs of such a graph (section 5.8 in Chung & Lu (2006)). The random
subgraph can be chosen by either fixing random vertices or random edges
(the preservation of power law works in both cases). This gives a hint as to
why power law graphs are sometimes referred to as scale-free graphs.

• Random graphs, even with the expected power law degree sequence, lack
the local structure. For real world graphs it seems that such a structure
is imposed by the notion of distance in physical space (see 2.4.1), while
randomly constructed graphs, as discussed here, are not embedded into any
space (though there are such models as well (Toroczkai & Guclu, 2007)
often related to percolation theory and epidemic). One may think of a real
world network as a sum of a local network and a global network (chap-
ter 12 in Chung & Lu (2006)). Since the global and local mechanism of
network construction might be different, they could result in discrepancies
between the degree distributions of empirical graphs and exact power law
estimations.

Many of the estimates presented in Chung & Lu (2006) are compared to the data
from real world graphs (exhibiting surprisingly good agreement).

2.4 Models based on real world phenomena

2.4.1 Small World Graphs
The notion of Small World networks (short average path length combined with
high locality, see chapter 12 in Chung & Lu (2006)) was a part of public knowledge
for years, sometimes referred to as the six degrees of separation phenomenon.
The concept was popularized by an experiment conducted by Stanley Milgram
who examined the average path in sociological network of citizens of Omaha and
Wichita (Travers & Milgram, 1969). The procedure was as follows:

• Random individuals in U.S. cities of Omaha, Nebraska and Wichita, Kansas
were chosen as the starting points and Boston, Massachusetts to be the
end point of a chain of correspondence. These cities were selected because
they represented a great distance in the United States, both socially and
geographically.
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2. RANDOM AND POWER LAW GRAPHS

Figure 2.3: From a fully localized graph (left) to a completely random graph
(right). Small world networks interpolate between the two extremes. Good local-
ization combined with a small diameter makes these graphs a good model of real
world networks.

• Information packets were initially sent to random starting points. The
detailed study purpose was included, and an information about the target
person in Boston (without the address).

• Upon receiving the invitation to participate, the recipient was asked whether
he or she personally knew the contact person described in the letter. If so,
the person was to forward the letter directly to that person. For the pur-
poses of this study, knowing someone “personally” is defined as knowing
them on a first-name basis.

• In the more likely case that the person did not personally know the target,
the person was to think of a friend or relative they know personally that is
more likely to know the target. They were then directed to sign their name
on the roster and forward the packet to that person. A postcard was also
mailed to the researchers at Harvard so that they could track the chain’s
progression toward the target.

• When and if the package eventually reached the contact person in Boston,
the researchers could examine the roster to count the number of times it
had been forwarded from person to person. Additionally, for packages that
never reached the destination, the incoming postcards helped identify the
break point in the chain.

Shortly after the experiment started, letters began to arrive at their destinations
and researchers could analyze the chain of contacts between randomly chosen
people. Among those that actually reached their targets the average path was
about 6, however the experiment was criticized, since many of the letters never
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2.4 Models based on real world phenomena

reached their journey’s end. Nevertheless, the results were quite surprising and
attained public interest. Similar concepts are related to the famous Erdős number
for mathematicians. Erdős had his number 0, any of his collaborators (coauthors
of papers) have Erdős number 1, collaborators of collaborators 2 and so on2.
Later analogous experiments gave rise to the Kevin Bacon3 game which is based
on finding a shortest movie collaboration path between a given actor and Kevin
Bacon.

These phenomena, though funny and grabbing public interest, were beyond
the reach of precise mathematical analysis for many years (Erdős-Rényi graphs
do have short average paths, but completely lack the local structure) until 1998
when Duncan J. Watts and Steven H. Strogatz published their paper (Watts &
Strogatz, 1998) in which they captured Small World phenomena in a simple and
elegant mathematical model. The idea is remarkably simple: start with a locally
connected graph and rewire a small number of edges randomly. These rewired
edges provide global shortcuts dramatically decreasing the average path length,
while the rest of the edges are responsible for highly localized structure (revealed
by the high clustering coefficient). The key issue here is that by rewiring edges,
average distance drops dramatically, while clustering coefficient decreases slowly,
which leaves a huge space for small world networks of the interest. This elegant
model, though very useful, ignored another silent feature of real world networks,
which became apparent at that time as well: power law degree distributions.

2.4.2 Preferential attachment and power law graphs
Power law degree distributions are among the most striking features of real world
networks. It is fairly understandable that many real world graphs coming from
totally different disciplines would share some basic common features like size,
sparseness, locality, but why on earth would they have similar degree distribu-
tions (much different than those of Erdős-Rényi graphs)? Nevertheless power law
distributions are present in a huge variety of graphs including the World Wide
Web (Albert et al. , 1999), science collaboration networks (Barabási et al. , 2002),
Hollywood graph (Barabási & Albert, 1999), citation networks (Redner, 1998),
ecological networks (Montoya & V., 2002), linguistic networks (i Cancho & Solé,

2The author estimated his Erdős number to be 4 as he coauthored with Tomasz Schreiber
(Piękniewski & Schreiber, 2008) who coauthored with Joseph Elliott Yukich who coauthored
with Svante Janson who coauthored with Paul Erdős...

3Kevin Bacon is neither the most famous, neither the richest actor in Hollywood, but he
played so many roles that he seemed to be a good candidate for a hub in an actor collaboration
network. In fact thoughtful analysis of Hollywood actor collaboration graph revealed that there
are more than a thousand better candidates for being the centers of Hollywood, Rod Steiger
was the best one while writing this text. An up to date list can be found on:
http://oracleofbacon.org/
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2. RANDOM AND POWER LAW GRAPHS

2001), telephone call network (Abello et al. , 1998; Aiello et al. , 2000) as well
as cellular metabolic networks (Bhalla & Iyengar, 1999; Jeong et al. , 2000), and
many others, see (Albert & Barabási, 2002) for a survey. Right from the begin-
ning it seemed evident that some basic organizing principles present in all those
network are responsible for the power law. In 1999 Barabási & Albert (1999)
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Figure 2.4: Power law degree distribution found in many empirical graphs (blue)
and Poissonian distribution expected in large Erdős-Rényi random graphs (pink).
One of the features of power laws is that they appear as straight lines in log-log
plots and the exponent can be estimated as the negative slope. This property
makes power laws easy to distinguish in various empirical data.

introduced a model based on two principles: growth and preferential attachment.
They have shown that such a process results in a power law graph (often referred
to as a scale-free graph). In detail their model looks as follows:

• Start with a small number of vertices (usually just a single vertex)

• In each step add a vertex, and connect it with existing ones giving preference
to those already well connected (that is the probability that an edge will
end up in some vertex v is proportional to the present degree dv of v). The
number of edges added in each step is fixed as a model parameter m.

Such a mechanism leads to a power law graph with exponent γ = 3. The argument
proceeds as follows:

• Note that vertices with high degree acquire new connections faster than
others. The rate at which a vertex i collects edges is approximately

∂ki
∂t

= ki
2t (2.3)

which yields ki(t) = m
√
t/ti where ti is the time at which vertex i was

added to the system.
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• Using the above, one can estimate the probability that vertex i has connec-
tivity smaller than k. We have

P (ki < k) = P (ti > m2t/k2) (2.4)

(the connectivity depends directly on the time the vertex was allowed to col-
lect edges). Assuming quite naturally that vertices are added at a constant
rate we obtain:

P (ti > m2t/k2) = 1− P (ti ≤ m2t/k2) = 1− m2t

k2(t+m0)
(2.5)

where m0 is the initial number of vertices (e.g. m0 = 1). For large time
scales t/(t+m0) ≈ 1. To obtain probability density one only has to differ-
entiate P (k) = ∂P (ki(t) < k)/∂k which gives

P (k) ≈ 2m2

k3 (2.6)

and so γ = 3 is independent of m and t

By varying the dependence of the attachment probability on connectivity (by
introducing nonlinear dependency for example), other exponents from [2, 3] are
also achievable. It is fairly understandable that such a process is present in
citation networks (a popular cited paper has a higher chance of hitting reference
list than a new article), the World Wide Web (newly created page is likely to
contain links to those already popular) or social networks (where being popular
makes it more likely to gather even more popularity) but it is far more surprising
that such principles are present in ecological, linguistic or telephone call networks.
Biological networks however, often have exponents below 2, which suggests there
is some other mechanism responsible for the network structure (see further section
2.4.3).

The rich gets richer phenomenon was first observed by Italian economist
Vilfredo Pareto4 (Pareto, 1896-1897) in his lecture notes, and hence power law
distribution are now named Pareto distributions. Lotka (1926) found that the
number of authors who published n papers is inversely proportional to n2 in decen-
nial index of chemical abstracts. Later Zipf (1932) found power laws in frequencies
of occurrences of words in English language (similar results were afterwards found
in other languages). Simon (1955) analyzed power laws in distributions of words
in prose samples, distribution of scientists by the number of papers they pub-
lished, distributions of cities by population, distribution of income by size and

4Probably many people in the past suspected this principle, but Pareto was the first to give
it a formal statement in the framework of probability theory.
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Figure 2.5: Pareto distribution kxkm
xk+1 with mode xm = 1 and scaling parameters

k = 1, 2, 3.

distributions of biological genera by number of species. At the very beginning
of his paper Simon notes: “Its (the distribution’s) appearance is so frequent and
the phenomena in which it appears so diverse, that one is led to conjecture that
if these phenomena have any property in common it can only be a similarity in
underlying probability mechanisms”. Simon’s model based on preferential attach-
ment caused some excitement and was attacked by Mandelbrot. Things had to
wait until the very end of XX century when various research groups reported
power laws in many real world graphs and the avalanche had started. Proba-
bly the best empirical graph to study today is the Internet, since it is huge (for
practical study it is almost unbounded), and fairly easy to track on many levels.
Furthermore the availability of the Internet encourages people to organize into
various social networking services, which in turn provide further data for study
graphs of social relationships. Again, these graphs are large, easy to obtain and
fairly well reflect social networks which are otherwise hard to study. The fact that
power laws are present in such large graphs ensures that this phenomenon is not
some temporary fluctuation, but rather something quite universal. In particular
the World Wide Web was extensively studied by independent research groups,
which all found that the indegree exponent of the Web is 2.1 and outdegree 2.7.
These figures are stable over a couple of years and sizes (Albert & Barabási, 2002;
Barabási et al. , 2000; Broder et al. , 2000; Kumar et al. , 1999). This consistency
over time and space is the reason why power law graphs are frequently referred
to as scale-free graphs.
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Figure 2.6: (Left) an illustration of the Zipfs law which says that the most
frequent word will occur approximately twice as often as the second most frequent
word, which will occur approximately twice as often as the third most frequent
word etc. This sample is based on a fragment of Hamlet by Shakespeare. (Right)
similar dependency of sizes of US cities.

2.4.3 Duplication models for biological networks
The exponent ranges found in diverse real world graphs differ depending on the
field of study. Various communication networks have exponent between 2 and
3. There are examples of networks of higher exponents but they are rare (in
fact networks with exponents above 3 are in many respects different than those
below, see chapter 4 in Chung & Lu (2006)). Biological (in particular biochemical)
networks however, frequently have exponents below 2 and such networks are again
somewhat different than those with exponents in [2, 3] (see Seyed-allaei et al.
(2006)). The key process present in biological networks is duplication. Essentially
most of the processes related to metabolism are based on continuous duplication
working against the destructive force of disorder and growth of entropy. It turns
out that duplication is indeed responsible for low power law exponents. Consider
the following model:

• Start with some initial graph

• Select a random vertex v of the current graph. Create a new vertex u and
connect u to v

• For each edge adjacent to v with probability p copy the edge to u (that is
u inherits a number of neighbors of v)

• Repeat the above steps sequentially

The new vertex u can be regarded as a descendant of v. The initial graph of the
process can be any graph, the process that runs for long enough will end up in
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Figure 2.7: Graphs: random Erdős-Rényi, small world Watts-Strogatz, scale-
free Barabási-Albert. Note in the last example an existence of a hub node with
exceptional connectivity and a fair number of poorly connected nodes.

a power law graph with exponent depending on the probability p. The detailed
estimation of the degree sequences of the above model is in chapter 4 of (Chung &
Lu, 2006) and in (Chung et al. , 2003). Indeed depending on p power law graphs
with exponents below 2 can be constructed which indicates that this model is
suitable for biochemical networks.

2.4.4 Connectivity of the brain
The brain is probably the most sophisticated network we have right at our dis-
posal, and yet it is very difficult to study. Neuronal fibers are of microscopic
size and their number is astronomical, and most of all it is very hard to in-
vestigate neural connectivity without destroying its fragile structure. For that
reason detailed empirical connectivity data of a nervous system is only known for
simple organisms like Caenorhabditis elegans worm (there are also multiple par-
tial results on connectivity of single cortical microcolumns and various thalamic
structures but the global picture is still missing). It is still unknown what kind
of a graph we will find in the brain. Will it be a power law network? Or will
it resemble some hierarchic structure or will it rather be more like E-R random
graph? There are even problems with defining the actual unit (a vertex) and the
principles of connectivity. The neuron could be regarded as a basic unit, taking
its synapses as edges. But on the other hand, the neuron could be regarded as
a long wire, with the synapses being the information processing units. Or per-
haps we should rather look at neuronal groups of some kind? Maybe each axonal
branching point should be treated as a vertex? These questions are of a rather
fundamental character but on the other hand the theoretical models of random
networks studied at present are not usually based on any of the phenomena found
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in the nervous system. Neurons certainly don’t wire entirely randomly like the
E-R graphs. Clearly there is a local structure and global connections, but it does
not fit well into the Watts-Strogatz rewiring model. Finally, even though there
certainly is a feedback loop which makes an active neuron more likely to wire to
others, there is no such thing as growth and preferential attachment like in the
Barabási-Albert model. Are there any other more realistic principles related to
the brain structure that would lead to power law graphs?

Empirical studies of Caenorhabditis elegans worm (Amaral et al. , 2000; Koch
& Laurent, 1999) imply that the graph of neural connections with neurons as
vertices and synapses as edges has an exponentially decaying tail. This result, al-
though important, does not answer many of the above questions. Some synapses
can be weak and unimportant while other ones can be strong and essential. In-
vestigating static morphology of neural connections might not be the right way
to seek power law connectivity, which might be hidden in the networks dynamics
(which is far more difficult to study experimentally). Finally, the notion of a
single neuron might not be the right information processing unit of the brain (in
particular fMRI studies of Egúiluz et al. (2005) show that functional networks
connecting correlated centers of activity in the brain are in fact both scale-free
and small world).

On the other hand, artificial neural networks are usually either built on fully
connected (Hopfield network), well-structured and layered (Multi Layer Percep-
trons) or completely local (Pulse Coupled Networks in many applications) graphs.
Fully connected graphs are inefficient in large applications and furthermore incon-
sistent with biological prototype. Layered connectivity is somewhat artificially
imposed by the drawbacks of learning algorithms, in particular the inability of
a back-propagation algorithm to deal with recurrent connections. Local con-
nectivity results in interesting phenomena (Piękniewski, 2006), but again lacks
biological motivation. Some interesting results were obtained for Small World
Networks (Kwok et al. , 2006; N.Davey et al. , 2004) and scale-free graphs (Per-
otti et al. , 2006; Stauffer et al. , 2003), but in this case the connectivity was not
a result of neural activity but was rather imposed as a background for already
existing models. In the current state of the art to our best knowledge there is no
clear mechanism of existing neural models that would lead to scale-free connec-
tivity. The results presented in further chapters (4 and 5) of this thesis are aimed
at showing such a mechanism and studying related phenomena.

2.5 Appendix: Mathematical tools
The mathematical arsenal in dealing with graphs is diverse. There are various
combinatorial results, that fit well into regular graph set-up (frequently found in
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2. RANDOM AND POWER LAW GRAPHS

algebra or combinatorics), but random graphs usually fail to meet the rigorous
conditions5 required by these theorems6. Furthermore, algorithmic tools that
work for graphs of moderate size are unsuccessful with huge graphs (frequently
found in surrounding reality). The problems investigated in random graph theory
may seem trivial (like whether a graph is connected or not), but they turn out to
be pretty difficult when the examined graph has millions of vertices (or when we
want to establish whether a typical random graph out of an astronomical number
of graphs satisfying certain conditions has some property or not). In this section
we shortly introduce some concepts that play an important role in random graph
analysis.

2.5.1 Spectral methods
Any graph G with n nodes can be represented by its adjacency matrix A of
n × n elements Aij whose values are Aij = 1 if there is an edge from node
i to j and Aij = 0 otherwise. For undirected graphs adjacency matrices are
symmetric and therefore have real eigenvalues. The set of eigenvalues of the
adjacency matrix A corresponding to a graph G is called the spectrum of the
graph G. Eigenvalues contain a lot of interesting information about the original
graph compressed into a fairly small sequence of real numbers. Recent findings of
Czerwinski (2007) (not yet published in a peer reviewed journal but available at
arXiv) indicate that graph eigenvalues together with their eigenvectors contain
enough information to solve the graph isomorphism problem in polynomial time7.
An important fact is that the spectra are fairly easy to approximate numerically.
Most interesting properties of graph spectra are that the largest eigenvalue of
adjacency matrix gives the idea of growth of number of alternative paths between
vertices. Many other enumeration problems can be stated in terms of adjacency
matrix eigenvalues (see (Godsil & Royle, 2001) for a survey). To get a general
idea of the spectral properties of a graph it is useful to define its spectral density:

p(λ) = 1
n

n∑
j=1

δ(λ− λj) (2.7)

5In fact graphs with a non trivial group of automorphisms are rare, see chapter 2 in Godsil
& Royle (2001).

6Many interesting results are obtained for regular or nearly regular graphs. In particular
large and decently connected Erdős-Rényi graphs are fairly regular (meaning that the degrees
of vertices do not differ too much from their respective expectations). In contrast, power law
graphs display nearly the opposite of such a definition of regularity, in that they have a large
variety of node degrees, and so require quite different mathematical tools to study.

7It is known that the subgraph isomorphism problem is NP-complete, but the graph isomor-
phism problem is likely to be easier.
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which may approach a continuous function as n → ∞. Spectral density8 has
interesting links with graphs properties, for example k − th moment of spectral
density is the number of paths of length k that return to the their origin (possibly
visiting other nodes multiple times). An interesting result was established by
Wigner (1955, 1957, 1958), stating that for a wide range of matrices whose entries
are random variables, spectral density approaches semicircular function (known
as Wigner’s semi-circle law). In particular random Erdős-Rényi graph fits this
framework (Füredi & Komlós, 1981).

Alternatively (but not equivalently) graph spectra can be defined as sets of
eigenvalues of a (normalized) Laplacian matrix. A Laplacian matrix is con-
structed as follows:

L = D − A (2.8)

where A is the adjacency matrix and D is a diagonal matrix with (i, i)− th entry
containing the degree of node i. Matrix L can be normalized by

L = D−1/2LD−1/2 (2.9)

so that diagonal values of L are all equal 1. This definition relates better to
some graph invariants. For examples the spectral gap (the absolute value of the
difference between the first and second consecutive eigenvalues of L) gives a lot
of information about expansion properties, in particular the Cheeger constant
(Alon, 1986; Alon & Milman, 1985). These notions are of particular interest in
the study of expander graphs, which are very useful tools for theoretical computer
science (see Chung (1997) for more details).

2.5.2 Tree matrix theorem
In this context it is worth recalling the tree matrix theorem by Gustav Kirchhoff
(1847) which states that the number of nonidentical spanning trees of a graph is
equal to any cofactor of the (not normalized) combinatorial Laplacian. Kirchhoff
found this relation when studying the flow of current in electrical networks rep-
resented by graphs, and related the total current flow to the number of possible
spanning trees (see chapter II in Bollobas (1998) for details). This theorem has
a simple and elegant proof (based on the fact that L is the product of incidence
matrix and its transpose, and application of Cauchy-Binet formula) which gives
the flavor of relationships between determinants and various graph properties
that are the object of extensive study.

8Formally we mean spectral measure, which may not have a density in the exact sense, but
the term “spectral density” is used frequently in the literature.
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2. RANDOM AND POWER LAW GRAPHS

2.5.3 Clustering coefficient
Clustering coefficient was introduced in Watts & Strogatz (1998) to reveal the
local structure of a graph. For a node i its clustering coefficient is defined as
follows:

Ci = 2|{ej,k}|
di(di − 1) (2.10)

where nodes j and k are adjacent to i, and di denotes degree of i. In other words
it is the number of connections between the neighbors of the node i divided by
the number of all possible connections between the neighbors of i. Clustering
coefficient can be alternatively defined as

Ci = 2λG(i)
di(di − 1) (2.11)

where λG is the number of triangles on vertex i. This definition suggests quite
an efficient algorithm of computing the clustering coefficient, since the number
of triangles coming from a node (assuming there are no loops of length one at
vertices) is simply the corresponding entry on the diagonal of A3, where A is
the adjacency matrix. We assume that Ci = 0 if di = 0 and Ci = 1 if di = 1.
The average clustering coefficient of the whole graph is simply the average of
coefficients computed for every node and hence it coincides with the suitably
normalized trace of A3. High clustering coefficient is a typical feature in many
empirical graphs (see section 2.4.1) while is very low in E-R random graphs.
Other interesting features of a graph include the information on how clustering
coefficient is distributed over vertices of different degrees and, likewise, how the
degree is distributed over nodes having clustering coefficient within a fixed range
etc.
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Chapter 3

Contemporary neural models

3.1 Introduction
It is widely believed that the origin of magnificent variety of brain activities lies
in the activity of neurons. Like any other cells in a living tissue, neurons metab-
olize, have their cell body, intracellular vesicles, mitochondria, nuclei and other
structures. What makes neurons different is their ability to generate action po-
tentials – electro-chemical waves on the cell’s membrane. Such action potentials
(often referred to as spikes) propagate through the membrane until they end up
in a synapse - a terminal between two neurons. Synapses are complex chemical
devices1 which are responsible for exchanging action potentials between different
neurons. This electrical activity of neurons suggests their importance in generat-
ing brain activity, yet there are other cells present in the nervous tissue as well
and the role that some of them play remains a mystery. Empirical data shows
that there are about 1014 neurons in a typical human brain, each of them can
be connected with up to 10000 others. Many of these connections are probably
redundant, yet still these numbers are impressive. The connections are mostly
local, but some neurons could be up to a 1 meter long, and spread their axons
in completely different parts of the brain or body (in fact much of the nervous
tissue is composed of neuronal fibers). Systems of this size and complexity are
beyond the range of current computer simulations unless massive simplifications
are made. This circumstance drives researchers into extracting the most impor-
tant computational properties of neurons and creating simple empirical models,
which in many cases lack the morphological details and have ridiculously simpli-
fied dynamics. Even these simplified models often provide a great challenge for
theoretical approach, as well as useful tools for engineering and practical com-

1There are also other types of synapses based on direct flow of electrical current, referred to
as “gap junctions” or “electrical synapses”.
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3. CONTEMPORARY NEURAL MODELS

puter science (computational intelligence in particular).
In this chapter we briefly introduce the general mechanism leading to an

action potential (at least as far as we understand these mechanisms today). We
start with the classical Hodgkin-Huxley model (section 3.2) and then depart into
various directions introducing reduced ionic models and phenomenological models
(sections 3.4 and 3.5). In particular we cover only briefly the classical models
utilized in engineering (section 3.3), based on the firing rate idea. These models
have been thoughtfully discussed in the literature (see Rojas (1996) for example)
and share a common feature that the temporal structure of neural signals is to a
large extent ignored. For that reason, these models are computationally efficient,
but lack many, possibly important features of biological neurons.

3.2 Hodgkin-Huxley model

Figure 3.1: Complete neuron cell diagram. Image courtesy of Mariana
Ruiz Villarreal (Available at: http://en.wikipedia.org/wiki/Image:Complete˙
neuron˙cell˙diagram˙en.svg)

Theoretical research on neuronal dynamics received strong input in 1952 with
the seminal work of Sir Alan Lloyd Hodgkin and Sir Andrew Fielding Huxley
(Hodgkin & Huxley, 1952), who studied electrochemical properties of the giant
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3.2 Hodgkin-Huxley model

squid neurons (earlier empirical studies of Sir Edgar Douglas Adrian (1926, 1928)
should also be noted). They were able to create an electrical circuit that resembled
the electrical properties they observed. The key to understand the mechanism of
spike propagation in axons is to understand the properties of infinitesimal piece
of neuron’s membrane. One such piece consists of the membrane (of nonzero
capacitance), extracellular and intracellular media both filled with a family of
ions and ion pumps. Ions are able to diffuse through the membrane. There are
three forces that drive the diffusion of ions:

• Electric force, since ions are charged

• Ordinary diffusion which tries to equalize the saturation of ions on both
sides of the membrane

• Ionic pumps which continuously pump certain ionic species across the mem-
brane

Eventually each ion’s concentration on both sides of the membrane reaches an
equilibrium, which may result in a non zero electric potential (Nernst poten-
tial) across. All in all the membrane is usually polarized with rest potential of
≈ −65mV . The Hodgkin-Huxley model takes into account sodium (gNa) and
potassium (gK) ionic channels, leak channel (gL). There are other ions which
also play some role in the membrane dynamics (like calcium) but they are less
important. Eventually the model can be described in terms of the following set
of differential equations:

Cm
dV

dt
= −gL(V − VL)− gNam3h(V − VNa)− gKn4(V − VK)

dm

dt
= αm(V )(1−m)− βm(V )m

dh

dt
= αh(V )(1− h)− βh(V )h

dn

dt
= αn(V )(1− n)− βn(V )n

(3.1)

where

αn(V ) = 0.01 10− V
e

10−V
10 − 1

, βn(V ) = 0.125e−V80 ,

αm(V ) = 0.1 25− V
e

25−V
10 − 1

, βm(V ) = 4e−V18 ,

αh(V ) = 0.07e−V20 , βh(V ) = 1
1 + e

30−V
10
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3. CONTEMPORARY NEURAL MODELS

and typically:

Ek = −12mV, ENa = 120mV, EL = 10.6mV,
gK = 36mS/cm2, gNa = 120mS/cm2, 7 gL7 = 0.3mS/cm2,

C = 1µF/cm2

The first line in equation 3.1 describes the changes of the total membrane po-
tential, whereas the latter three describe the dynamics of ionic channels. The
variables m and n are the statuses of activation gates of sodium and potassium
channels respectively (0 - fully closed, 1 - fully open), whereas h is inactivation
gate status for sodium (0 - inactivated, 1 - deinactivated). That is, increase in V
causes increase in m, which increases sodium current and so on. The gate variable
m is taken to a power of 3 in the voltage equation since there are 3 activation
gates and one inactivation gate h (and there are 4 activation gates for potassium
respectively). If some external stimuli (possibly nearby membrane compartment)
changes the V variable driving it away from the rest state, it starts a whole cas-
cade of events. Since V changes, also m, h and n change (they depend on voltage
through α and β functions), and so ionic conductances change etc. Different
ions have different response rates (α and β functions) and so, a strong enough
impulse may cause sodium conductance to grow and in turn the system will be
amplifying V until sodium inactivates and potassium ions come to play. In the
early stage of a spike, increase in V causes increase in gNa, which causes Na+ ions
inflow, which in turn causes further increase in V . This amplifying feedback goes
on for a couple of milliseconds (V reaches values beyond 30mV ), when slow K
ions catch up. While sodium channel eventually inactivates, potassium instantly
re-polarizes the membrane which enters the so called refractory period, and then
slowly converges to the equilibrium back again. The above formulation 3.1 is
presented for historical reasons, it is more convenient to express Hudgkin-Huxley
equation a bit differently:

Cm
dV

dt
= −gL(V − VL)− gNam3h(V − VNa)− gKn4(V − VK)

dm

dt
= (m∞(V )−m)/τm(V )

dh

dt
= (h∞(V )− h)/τh(V )

dn

dt
= (n∞(V )− n)/τn(V )

(3.2)

and refer tom∞, h∞, n∞ as steady state activation functions and τm(V ), τh(V ), τn(V )
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3.2 Hodgkin-Huxley model

voltage dependent time constants. In this case:

n∞ = αn/(αn + βn), τn = 1/(αn + βn)
m∞ = αm/(αm + βm), τm = 1/(αm + βm)
h∞ = αh/(αh + βh), τh = 1/(αh + βh)

These functions are obtained empirically for different ionic channels and approx-
imated appropriately by sigmoids, gaussoids or other elementary functions. For
example n∞(V ) denotes the asymptotic conductance of potassium channel at
voltage V , which is reached with relaxation speed proportional to τn(V ). In the
event of an action potential the voltage constantly changes, and so asymptotic
conductances change, as well as the rate of their relaxation, which makes the
dynamics pretty complex (see figure 3.2) and computationally demanding. Con-
sequently Hudgkin-Huxley equation is not suitable for large scale simulations of
neurons, even on contemporary computers.

3.2.1 Structural dynamics of neural cell
The Hudgkin-Huxley equation describes the dynamics of a infinitesimal piece of
the neuronal membrane, whereas neurons have a rather complex anatomy (see
figure 3.1). In order to accurately reproduce the neuronal activity one has to
reconstruct the spatial details of the cell (that may include hundreds of dendrites,
synapses, dendritic spines and internal structures) and simulate the spatial version
of the equation over such a complex domain. The spatial equation is a parabolic
second order equation of the form:

CVt = a

2R
∂2V

∂x2 + I − IK − INa − IL (3.3)
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Figure 3.2: Example evolution of membrane potential (left), sodium ion (middle)
and potassium ion (right) conductance in response to 6.2 millivolt pulse.
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3. CONTEMPORARY NEURAL MODELS

referred to as the Hudgkin-Huxley cable equation. R is the intracellular resistivity
and a is the cell radius (both may vary). The typical practice is to divide a neuron
into set of uniform compartments connected via conductances. Compartments
themselves have the Hudgkin-Huxley dynamics (also the spatial version thereof
when the compartments are large e.g. long dendrites). This method allows for
simulation of dendritic tree branches and complex geometry, but obviously is com-
putationally demanding - depending on the geometrical complexity (a pyramidal
neuron may have thousands of dendrites), a simulation of a single neuron could
be a challenge for contemporary computers (especially if it is supposed to be a
real time simulation). In simulations of large populations of neurons one usually
uses single compartment models, while spike propagation dynamics is squeezed
into a simple synaptic conduction delay (see chapter 6 for an example of such a
model).

3.3 Firing rate models
Since electrophysiology of neurons is complex, researchers in 40’ies and early
50’ies of XX th century looked for something less computationally demanding. In
those days recent development of digital computers launched high hopes for quick
occurrence of the artificial intelligence, and consequently some immense simpli-
fications into neural models had to be made. Many researchers believed that
neurons perform tasks analogous to those of logical gates in electronic circuits
of computers, and the whole complexity of action potentials is some biological
throwback rather than something of essential importance. The key to simplifica-
tion of neural models were the following observations2:

• A neuron which is not stimulated remains quiescent

• When the level of stimulation reaches certain threshold the neuron begins
to produce action potentials and becomes active

In this setup the neuron can be attributed with two states - quiescence and activ-
ity - depending on the level of external stimuli, ignoring the temporal structure of
action potentials. The input consists of signals from dozens of synapses. In this
coarse grained setup one can assume that this input is simply summed linearly.
Such simplified models resemble to some extent logical gates of electronic circuits.
In the classical model (next subsection) the state of a neuron is binary (firing -
1, quiet - 0). In later developments by Frank Rosenblatt (1958, 1988) introduced
“synaptic” weights and continuous activation functions (the differentiability of

2As discussed in other sections of this thesis, both of these observations are rough approxi-
mations, that are frequently violated in biological neurons.
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3.3 Firing rate models

activation function became important with the development of back-propagation
algorithm (Rumelhart et al. , 1986; Werbos, 1974))

3.3.1 McCulloch-Pitts neuron and the perceptron
The model informally introduced above is called the McCulloch-Pitts artificial
neuron (in honour of Warren McCulloch and Walter Pitts) and was introduced
in (McCulloch & Pitts, 1943) nearly a decade earlier than Hudgkin-Huxley equa-
tions. Formally the neuron is a simple entity consisting of a number of binary
inputs that sum up to I = ∑n

i=1Ei, a threshold θ and a transfer function (acti-
vation function), which in this simple model is:

f(I) =
1; whenever activation exceeds the threshold θ

0; otherwise
(3.4)

In the case of McCulloch-Pitts neuron the input Ei ∈ {0, 1}. Later, around
1958 Frank Rosenblatt combined the findings of Donald Hebb (1949) with the
McCulloch-Pitts neuron and introduced the perceptron (Rosenblatt, 1958, 1988).
The perceptron allowed for continuous inputs, included synaptic weights, more
complex activation functions and was equipped with an algorithm that found
a solution to a classification problem (if one existed). The algorithm however
worked only for one unit. In the case of the perceptron the input is the dot
product I = ∑n

i=1Eiwi, and the weights wi are variable parameters which change
in the course of learning. Geometrically such a neuron is capable of recognizing
linearly separable sets of data which is not very impressive unless many such
units are joined together (a single neuron is not even capable of recognising the
simple xor problem), and for such structures there was no learning algorithm.
For many years this drawback slowed down the development of artificial neural
networks (and was a source of strong criticism of the whole idea (Minsky & Pa-
pert, 1969)), since in order to solve more complex problems networks had to be
constructed either manually or via one of the constructive algorithms (tower al-
gorithm, tiling algorithm etc. (Gallant, 1990, 1993)). This was a major drawback
since networks created via constructive algorithms could not be easily controlled
in terms of regularization, and manually tuned networks could easily fail on new
data. Other models like the ADALINE (Widrow & M.E. Hoff, 1960) were also
derived from McCulloch-Pitts neuron, but the field remained in a stale until the
back-propagation algorithm came to play.

3.3.2 Multi Layer Perceptrons
The long anticipated revival of the discipline occurred in the 80’ies of the XX th

century, with the back-propagation algorithm (Rumelhart et al. , 1986), although
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Figure 3.3: Schematic diagram of the artificial neuron (left) and a geometrical
interpretation of its activation in 2d space (the plotted function is smooth sigmoidal
for better readability).

the idea dates back to 1974 work of Paul Werbos (1974). Rumelhart, Hinton and
Williams rediscovered the algorithm a decade later, and this time their paper
gathered proper attention of the society. The Back-propagation algorithm for
the first time allowed for completely automatic construction and training of multi
layered networks consisting of sigmoidal perceptrons (MLP) to solve complex cat-
egorization tasks. A lot of practical implementations of the idea emerged in the
following years (like associative memories, data-mining systems) and a cascade of
interesting research results was started. In particular, computational properties
of such networks were studied. It has been shown that a three layer network
solves any problem that is solvable by a network with arbitrary number of layers
(Cybenko, 1989; Hornik, 1991) (this result is known as the universal approxima-
tion theorem). It also turned out that the general problem of deciding whether
for a given set of training data and a given network architecture there exists
a set of weights that would allow for good classification is NP-complete (Blum
& Rivest, 1993). This result did not stop the development, since in practical
applications networks’ structure can be dynamically adjusted (ontogenic neural
networks), and the classification does not necessarily have to be ideal. The result
shows however, that even such a vastly simplified neuronal model can be difficult
for computational analysis.

3.3.3 Hopfield network
Multi layer perceptrons are examples of feed forward networks, that is they don’t
contain any feedback connections. This simplifies the analysis (and enables the
straightforward implementation of the error back-propagation), but is biologically
inaccurate. Most of the brain structures are heavily recurrent – this fact estab-
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lished a need for different models (and, more important: learning algorithms).
This request was answered in 1982 with the seminal paper by John Hopfield
(1982). The Hopfield network in the original setup is also based on McCulloch-
Pitts-like neurons but is completely recurrent, and requires entirely different ap-
proach in the analysis. In this case the appropriate formalism turned out to
be the statistical mechanics. The learning algorithm for the Hopfield network
is based on Hebbian learning for pattern recognition tasks, or derived directly
from the form of Hamiltonian for combinatorial optimization problems. Later
Hopfield network got equipped with stochastic dynamics(Ackley et al. (1985);
Hinton & Sejnowski (1986, 1983) and independently Hofstadter (1984)) which
resulted in the so called Boltzmann machine (Aarts & Korst, 1989) (combination
of the Hopfield architecture with simulated annealing). The model proved to
be useful in pattern recognition, computer vision, robot control but in general
had not obtained particularly good results in combinatorial optimization due to
emergence local minima and slow convergence. In general methods based on sim-
ulated annealing are weak in hard combinatorial optimization unless the solution
has a carefully selected structure of search space which results in smoother energy
landscape (see chapter “The traveling salesman problem: a case study” in (Aarts
& Lenstra, 1997) for a comprehensive study based on the TSP).

Hopfiled networks generally fit into the spin-glass theory framework, while
locally connected Hopfield networks are similar to Ising model with respect to
their statistical mechanics and can be studied in terms of Pirogov-Sinai theory
and related methods (Zahradńık, 1984). A study of phase diagrams in such
locally connected Hopfield networks can be found in (Piękniewski, 2005, 2006;
Piękniewski & Schreiber, 2005).

3.4 Reduced ionic models
The Hudgkin-Huxley model is computationally demanding, theoretically diffi-
cult (four variables, nonlinear kinetics) and yet not entirely biologically accurate.
There are dozens of other ionic channels either voltage or calcium gated, and there
are more being discovered almost every year. It is certainly not obvious whether
all this variety is a necessity, or is it some biological/evolutional artifact. It seems
however that the key issue in neurocomputation is excitability, that is the ability
of neurons to generate action potentials (other mechanisms possibly play some
regulatory role). It turns out that for this single task, even the Hudgkin-Huxley
model contains a lot of unnecessary features. This led to a development of mini-
mal conduction based models, that is the reduction of Hudgkin-Huxley model as
much as possible with the constraint that it still retains excitability. Surprisingly
even extensive simplifications retain their ability to generate action potentials
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as long as there are at least two variables (which is a necessary condition, since
one dimensional dynamical systems do not have limit cycles). One of the most
prominent models is the so called “persistent sodium plus potassium”(Na +K)
(see section 5.1.2 in Izhikevich (2006a)). The model:

Cm
dV

dt
= −gL(V − VL)− gNam(V − VNa)− gKn(V − VK)

dm

dt
= (m∞(V )−m)/τm(V )

dn

dt
= (n∞(V )− n)/τn(V )

(3.5)

is mathematically equivalent to the model of Morris & Lecar (1981). Since sodium
activation is almost instantaneous, the model could be further reduced to

Cm
dV

dt
= −gL(V − VL)− gNam∞(V − VNa)− gKn(V − VK)

dn

dt
= (n∞(V )− n)/τn(V )

(3.6)

Two dimensional dynamical system can be conveniently analyzed in terms of
phase plane, nullclines3 etc. Figure 3.4 shows a phase portrait of Na+K model
with sample parameters C = 1, EL = −80, ENa = 60, EK = −90, gL = 8,
gNa = 20, gK = 10, I = 0 and m∞(V ) = 1

1+e
−20−V

15
, n∞(V ) = 1

1+e
−25−V

5
and

τ(V ) = 1. These parameters are biologically reasonable, taken from chapter 4 in
(Izhikevich, 2006a). When I increases the system approaches a bifurcation and
a limit cycle is created responsible for spiking. Obviously any further reduction
of Na + K model would strip its most important property, that is excitability,
therefore this model is minimal. There are other combinations possible:

• “transient sodium model” (see section 5.1.3 in Izhikevich (2006a)) - an in-
teresting model that includes only transient sodium and leak current. Sur-
prisingly this ridiculously simple model is still capable of generating action
potentials!

Cm
dV

dt
= −gL(V − VL)− gNam3h(V − VNa)

dh

dt
= (h∞(V )− h)/τh(V )

dm

dt
= (m∞(V )−m)/τm(V )

(3.7)

3A nullcline is a locus of points where the vector field vanishes in one of the base (x/y)
directions.
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Figure 3.4: Phase portrait of the instantaneous “persistent sodium plus potas-
sium” model. The nullclines are depicted with bold colored lines, while a number of
trajectories are depicted with thin black lines. There are equilibria (stable and un-
stable) on the intersections of nullclines responsible for rest state, and a mechanism
of excitability (a “shadow” of the limit cycle).

Again the sodium activation gating variable can be replaced with m∞ for
simplicity. This model can produce spikes solely depending on sodium acti-
vation/inactivation and leakage. The spikes, apart from having rather slow
re-polarization, are not very different than those of other models.

• “persistent sodium plus h-current model” (see section 5.1.4 in Izhikevich
(2006a)) - used to model sub-threshold voltage oscillations in some thalamic
and cortical neurons

• “h-current plus inwardly rectifying potassium model” (see section 5.1.5 in
Izhikevich (2006a)) - a rather weird model

• “persistent plus inwardly rectifying potassium model”, “transient potassium
model” (see sections 5.1.6 and 5.1.7 in Izhikevich (2006a)) - models consist-
ing of only K+ currents, yet still able to produce sustained oscillations.

All of these models are conveniently discussed in chapter 5 of Izhikevich (2006a).
There are also other approaches to simplification of the Hudgkin-Huxley equation.
In early computer simulation by Russian scientists Krinskii & Kokoz (1973) it
came out that

n(t) + h(t) ≈ 0.84 (3.8)
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3. CONTEMPORARY NEURAL MODELS

The analysis of (n, h) plane reveals that the values of n and h lie near h =
0.89− 1.1n line (see section 5.2 in Izhikevich (2006a)). By substituting m gating
variable with m∞ (instantaneous sodium kinetics), one can obtain two dimen-
sional reduced Hudgkin-Huxley model as follows:

Cm
dV

dt
= −gL(V − VL)− gNam3

∞(0.89− 1.1n)(V − VNa)− gKn4(V − VK)
dn

dt
= (n∞(V )− n)/τn(V )

(3.9)

3.5 Phenomenological spiking models
Since the key feature of neurons is the excitability, then why bother with the
ionic zoo? Wouldn’t it be better to create models that are simply excitable?
This paradigm is the foundation for creating the so called phenomenological mod-
els, which simply mimic the phenomenon of excitability ignoring the biological
and electrochemical details. The pros and cons of these models are discussed in
(Izhikevich, 2004).

3.5.1 Integrate and fire models
The key property of neurons is that they accumulate some input, and when
exceeding a certain threshold they fire. Simplified models of McCulloch-Pits
perform “spatial” integration while completely ignoring temporal structure of
inputs (time is discretized, and the neuron does not have any memory of its
previous state). Conduction based models on the other hand, rely heavily on
the temporal structure of inputs, but are difficult in analysis. Between these two
extremes there are a number of “integrate and fire” models, the simplest of which
can be expressed:

Cm
dV

dt
= I(t) (3.10)

that is the membrane voltage at time t is simply an integral of input I(t) over time.
When V reaches a certain threshold value Vth a delta function action potential is
fired and everything is reset to the initial state. This model was investigated in
1907 year by Lapicque (Abbott, 1999). Basically this model resembles a capacitor
being constantly charged by an input current, instantly discharged after reaching
the threshold. The only difference is that there is a spike signal sent as an output.
Presented mechanism is not biologically accurate, since it can obtain arbitrary
high spiking frequencies with high input which is not the case for biological neuron
(lack of refractory period). Another issue, is that the neuron “remembers” its
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3.5 Phenomenological spiking models

history for arbitrary long time before it gets discharged, and this again is in
contrast with biological neurons which have leaks, and return to steady state
some time after excitation. A more biologically plausible is the leaky integrate
and fire model:

Cm
dV

dt
= I(t)− V

R
(3.11)

which converges to the equilibrium (zero charge) with rate proportional to R.
Both of these models can be simulated in an “event driven” fashion (assuming
that the input is actually relevant only when there is an action potential coming),
that is the parameters of neuron can be recomputed when some input actually
comes in, and don’t have to be constantly updated (which is the case for more
complex dynamical models), which renders them useful in large scale simulations.
In particular these models are extensively used in the concept of Liquid State
Machines (Maass & Markram, 2004; Maass et al. , 2002), a fairly new notion of
neuronal microcircuits performing calculations via “submerging” an input into
a high dimensional dynamical system (liquid) and reading of the properties of
resulting dynamical attractor.

Another interesting model called neuromime based on leaky integrators was
introduced in (French & Stein, 1970) (see figure 3.5). In this case the firing
threshold is variable and depends on previous activity (which is far more plausible
from the biological point of view). An input for neuromime is supplied to the first
leaky integrator. Its output is then compared with the dynamical threshold Θ.
If it exceeds Θ a spike is generated. The output spike is supplied back to another
leaky integrator which is responsible for providing Θ. Therefore Θ gets increased,
which causes further spikes less probable. If the neuron doesn’t fire, Θ converges
slowly to Θ0 (minimal threshold). This model was explored in (Eckhorn et al. ,
1990) and is the basic unit for Pulse Coupled Neural Networks (PCNN) (Johnson
& Padgett, 1999). Unlike integrate and fire neurons, neuromime accommodates
its firing rate to the magnitude of input, but in contrast to biological neurons
it lacks important dynamical features like subthreshold oscillations or excitation

∑
leaky

integrator

comparator

leaky
integrator

+ Θ0

Figure 3.5: Schema of the neuromime pulse generator.
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block.

3.5.2 Fithugh-Nagumo model

Figure 3.6: Phase portrait of the FitzHugh-Nagumo model. Notice that the phase
portrait resembles the one of Na+K model (figure 3.4).

The FitzHugh-Nagumo model introduced and explored in (FitzHugh, 1961,
1969, 1955; Nagumo et al. , 1962) is defined as follows:

dV

dt
= V − V 3 − w + I

τ
dw

dt
= V − a− bw

(3.12)

where V is the voltage-like variable and w is referred to as the recovery variable.
This model abstracts from the ionic conductances and focuses on key features of
neuronal dynamics. Notice that the phase portrait of FitzHugh-Nagumo model
resembles that of Na+K (compare figures 3.6 and 3.4). The important feature
of this model is the interplay of cubic nullcline with the second nullcline (that
is sigmoidal in Na + K model, here approximated by a linear function). The
magnitude of input influences the relative shift of cubic nullcline with respect
to linear nullcline, changing the topology of phase space and causing various
dynamical events.

The FitzHugh-Nagumo model was very successful in explaining many of dy-
namical phenomena of the Hudgkin-Huxley equation, like the absence of thresh-
old, excitation block (the new stable equilibrium emerges at the right knee of the
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3.5 Phenomenological spiking models

cubic nullcline eliminating stable cycle responsible for spiking), post-inhibitory
spikes (sudden stop of inhibition causes a spike, since the cubic nullcline jumps
upwards, and the system suddenly falls into a limit cycle) and spike accommo-
dation (slow increase in the input current shifts the cubic nullcline but the state
remains in the stable equilibrium whereas sudden increase by the same magni-
tude causes instantaneous action potential) in terms of phase plane analysis (see
Izhikevich (2006b)).

Figure 3.7: The phase plane for the simple spiking neuron model. Nullclines and
a number of sample trajectories are plotted.

3.5.3 Simple model by Eugene M. Izhikevich
In 2003 Eugene M. Izhikevich went a step further and introduced (Izhikevich,
2003) simple model defined as follows:

dV

dt
= 0.04V 2 + 5V + 140− u+ I

du

dt
= a(bV − u)

(3.13)

This model focuses near the point of intersection of nullclines. Here cubic null-
cline is approximated by a quadratic function, second nullcline is linear (see figure
3.7). In general trajectories in this model are unbounded, so they are manually
clipped, that is: V := c;u := u + d whenever V exceeds 30mV (which marks
the occurrence of a spike). This imitates the behavior of more complex systems
near the steady state equilibrium, but the exact shape of an action potential is
different than that of Hodgkin-Huxley model or experimental data. This model,
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Figure 3.8: Diagram of the dynamical model (Izhikevich, 2003) and possible
spiking regimes that the model is capable of reproducing. Note the subthreshold
oscillations (resonator), which are missing in simpler integrate and fire models.
Image courtesy of Eugene M. Izhikevich (http://www.izhikevich.com).

although it might seem rather artificial, is useful in modeling of large popula-
tions of neurons in a coarse-grained setup (although should not be used in more
detailed studies of small neuronal circuits). Simple dynamics and fair numerical
stability allows for large simulations of hundreds of thousand or even millions such
neurons (including simulations of the whole brain (Izhikevich & Edelman, 2008)).
By varying dimensionless parameters a, b, c, d a variety of behaviors observed in
biological neurons can be mimicked (see figure 3.8). This model is nearly as sim-
ple as integrate and fire models, yet capable of producing oscillations (and for the
same reason has to be simulated continuously, and cannot be run in event driven
fashion). More on studying collective dynamics of neural networks in dynamical
system setup can be found in (Hoppensteadt & Izhikevich, 1997) and (Izhikevich,
2006a).
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Chapter 4

Spike flow graphs

In this chapter (presenting the material of Piękniewski & Schreiber (2008)) we
propose a simple and tractable mathematical model for a situation in which a
single processing unit is able to store some information related to its previous
incoming and outgoing activity. Such a unit is an adequate description of activity
of a neuronal group (as supported by empirical evidence of Egúiluz et al. (2005))
with heavy recurrent connectivity (recurrence is very important here as shown in
further chapters). Any entity being able to store incoming signals (tokens) and
forwarding them without high loss would also fit this framework. In particular it
can also be interesting for economists as modeling the flow of capital in the society
(which also has scale-free properties as noted by Vilfredo Pareto (1896-1897)) as
well as many other phenomena.

The model consists of a number of neuron like units allowed to exchange charge
under stochastic dynamics, which is modeled as neuronal spikes being transmitted
along the edges of a fully connected network. Next, each edge is labelled with
the count of spikes it transmitted, which results in a graph with weighed edges,
called the spike flow graph in the sequel. Our theoretical results below, further
confirmed by numeric evidence, state roughly speaking that if we remove those
neural connections which are only relatively seldom used for spike transfers and
we keep only those often used and relevant to the dynamics, the resulting graph
is with overwhelming probability scale free with power law exponent γ = 2. The
proof goes by showing that in low enough temperatures the large-scale behavior of
the system admits an accurate description in terms of a particular winner-take-all
type dynamics. Whereas the considered neural network model may be regarded
to some extent simplistic, its asymptotic description in terms of a winner-take-all
type dynamics and hence also the scale-free nature of the spike flow graph seem
to be rather universal, as suggested by numeric evidence (Piękniewski, 2007).

We find the results of this chapter important and interesting as showing how
scale-free structures spontaneously emerge in neural information processing, ar-
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guably for rather general models and with no special assumptions aimed at stimu-
lating this kind of self-organization. Apart from their theoretical value the results
established in this chapter provide a further justification for considering neural
architectures based on small-world and scale-free graphs, as has become popular
in the literature in recent years, see (Perotti et al. , 2006; Stauffer et al. , 2003)
and the references therein.

The remaining part of this chapter is organized as follows. In Section 4.1
below we introduce our basic theoretical model sharing certain features with the
standard Boltzmann machines (Aarts & Korst, 1989), yet admitting a richer state
space and assuming a rather different dynamics for individual neurons which are
simple spiking units here. Next, in Section 4.2 we describe the behavior of this
model in large system size and long evolution time limit and argue it can be
represented via a kind of a winner-take-all dynamics whose particular features
enable us to establish explicit results on the scale-free properties of the spike-flow
graph in the following Section 4.3.

4.1 Basic model
In our research we sought a model whose dynamics would in its essence resemble
that encountered in usual recurrent neural networks and, while being simple
in terms of its statistical mechanics, would exhibit a scale-free structure as a
natural consequence of its construction. These considerations resulted in the
following spike flow model originally introduced in (Piękniewski & Schreiber,
2007). We consider a simple stochastic recurrent neural network consisting of
N neurons assuming states labeled by natural numbers σi ∈ {0, 1, . . . ,Mi}, i =
1, . . . , N, interpreted as neuronal charges below, and with natural or possibly
infinite numbers Mi standing for maximum admissible values for the respective
charges σi, i = 1, . . . , N. The network is built on a complete graph in that there
is a connection between each pair of neurons σi, σj, i 6= j, carrying a real-valued
weight wij ∈ R satisfying the usual symmetry condition wij = wji, moreover
wii := 0. The values of wij are drawn independently from the standard Gaussian
distribution N (0, 1) and are assumed to remain fixed in the course of the network
dynamics. A configuration σ̄ = (σi)i≤N of the network is assigned its Hamiltonian
given by

H(σ̄) := 1
2
∑
i 6=j

wij|σi − σj| (4.1)

if 0 ≤ σi ≤ Mi, i = 1, . . . , N, and H(σ̄) = +∞ otherwise. The dynamics of the
network is defined as follows: at each step we randomly choose a pair of neurons
(σi, σj), i 6= j, and denote by σ̄∗ the network configuration resulting from the
original configuration σ̄ by decreasing σi by one and increasing σj by one, that is to
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say by letting a unit charge transfer from σi to σj, whenever σi > 0 and σj < Mj.
Next, if H(σ̄∗) ≤ H(σ̄) we accept σ̄∗ as the new configuration of the network
whereas if H(σ̄∗) > H(σ̄) we accept the new configuration σ̄∗ with probability
exp(−β[H(σ̄∗) − H(σ̄)]), β > 0, and reject it keeping the original configuration
σ̄ otherwise, with β > 0 standing for an extra parameter of the dynamics, in the
sequel referred to as the inverse temperature conforming to the usual language of
statistical mechanics and assumed fixed and large (low temperature) throughout.
Observe that the sum ∑

i σi of neuronal charges is preserved by the dynamics and
that, in the course of dynamics with some initial configuration σ̄0, any other σ̄
with ∑

i σ
0
i = ∑

i σi is eventually reached with positive (although possibly very
small) probability. Consequently, upon standard verification of the usual detailed
balance conditions, we readily see that the collection of stationary states of the
above dynamics are precisely the distributions

Pn(σ̄) =


exp(−βH(σ̄))(∑

σ̄′,
∑

i
σ′
i
=n exp(−βH(σ̄′))

) , if ∑i σi = n,

0, otherwise
(4.2)

and their convex combinations. In particular, our model bears some resemblance
to the usual stochastic Boltzmann machines (Aarts & Korst, 1989), with the
weights wij indicating the extent to which the system favors the agreement (for
positive wij) or disagreement (for negative wij) of the neuronal states σi and σj.
There are evident differences though, one of them being the possibly unbounded
state space whenever Mi = ∞, the other one that precisely two neurons are af-
fected in each update with clearly determines the source and destination of the
charge flow. Whereas the latter difference does not lead far away from the con-
cept of a Boltzmann machine, as yielding a rather similar form of the stationary
distribution, the former one is crucial – indeed, if Mi is a large number, the be-
havior of the corresponding i-th unit becomes quite complex and arguably it can
be regarded as exhibiting some kind of memory of charge transfers undergone in
the course of the dynamics. In this thesis we shall concentrate on the cases where
Mi’s are all infinite or of order only slightly smaller than the overall charge stored
in the system, thus conforming to our leading assumption of a complex neuronal
structure. We will prove below that in this set-up the induced network exhibits
natural scale-free features. On the other extreme one can impose all Mi’s very
small, which makes our model resemble classical Bolztmann machines. Taking all
Mi ≡ 1 and i.i.d. Gaussian weights yields a network which can be regarded as a
somewhat modified version of the well-known Sherrington-Kirkpatrick spin glass
model, see Chapter 2 in (Talagrand, 2003). In general, our model interpolates be-
tween both extremes and can exhibit a wide range of behaviors depending on the
choice of the Mi’s. For the network dynamics running during a period [0, T ] we
are now in a position to define the spike flow graph to be a directed graph with
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vertices corresponding to the neurons σi, i = 1, . . . , N and whose edges carry
numbers (edge multiplicities) Fi→j indicating how many times in the course of
the dynamics the charge flow occurred from σi to σj. If β is large, which is al-
ways going to be assumed in this chapter, after a long enough simulation run the
system freezes in some ground state whereupon any further charge flow becomes
very rare and consequently the numbers Fi→j also freeze undergoing virtually no
further changes. The in-degree of a neuron σi is now defined as din(j) := ∑

i Fi→j.
The main question considered in this chapter is whether the so-defined spike flow
graph is scale-free in that its in- degree distribution follows a power law, that is
to say P(din(i) ≈ x) ∼ cinx

−γin for a randomly picked node i. Choosing Mi’s large
enough we shall establish a positive answer to this question. It should be noted
at this point, as will become clear from our discussion below, that the asymptotic
behavior of the corresponding out-degree distribution is the same as that of the
in-degrees.

4.2 Winner-take-all dynamics and ground states
For the scope of this research we will limit ourselves to very low temperature
regime, which amounts to assuming that the overwhelming majority of network
updates are just jumps towards lower energy configurations, as in the correspond-
ing zero-temperature (infinite β) approximation.

We assume first that all Mi’s are infinite and thus no upper bounds are im-
posed on individual charges. In this extreme set-up we argue that with over-
whelming probability with respect to the choice of the weights wij, the unique
ground state (lowest energy state) of the network, and hence also the unique at-
tractor of its dynamics, is a configuration in which all charge present in the system
is stored in a single best unit with all the remaining units devoid of charge. To
see this, for each unit σi consider the support Si it gets from the remaining units,
given by

Si := −
∑
j 6=i

wij.

Clearly, all the Si’s so defined are Gaussian random variables N (0, N − 1) and
are virtually independent – indeed, Si and Sj for i 6= j share just one summand
wij whereas the remaining ones are independent. With S:k standing for the k-th
largest value among Si’s, it is known by extreme value theory, see e.g. Section
1.2 in (Talagrand, 2003), that the order statistics S:k are well approximated by

S:k ≈
√

2N log2N

√log 2 + ξk√
log2N

 (4.3)
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Bulk

        Elite

support

Figure 4.1: Schematic presentation of the spike flow model

where the sequence ξ1 > ξ2 > . . . is chosen according to a Poisson point process
with intensity 1

π
exp(−2t

√
log 2), t ∈ R, in particular the p-th ξi above 0 is of

order log p and S:k’s are of order
√
N logN which is much higher than the order

of the typical Si being
√
N. To proceed, assume we run our spike-flow dynamics

for some long enough amount of time to get close to equilibrium, whereupon
we consider a small number o(N) of neurons which store the highest charge,
considerably higher than the remaining units, and we call these elite neurons
while granting the term bulk neurons to the remaining units in the system. Since
the number of elite neurons is a negligible fraction of N, the formula (4.1) becomes
then

H(σ̄) ≈ −
∑
i∈elite

σiSi +
1
2

∑
j,l∈bulk

wjl|σj − σl|. (4.4)

Thus, whenever in the course of the network dynamics a charge transfer is pro-
posed from a bulk neuron σj to an elite neuron σi, the resulting energy change
is seen to be well approximated by −Si plus a term due to the interaction be-
tween σj and other bulk neurons. In general, we have no control of this term,
yet if σi is one of the neurons with the highest support as in (4.3), this offending
term of order at most

√
N is very likely to be negligible compared to −Si which

is of order
√
N logN, thus making the energy change strongly negative and the

proposed transfer extremely likely to be accepted. Clearly, the inverse transfer
becomes then almost impossible. Consequently, whenever a neuron with a very
high support enters the elite, it virtually never leaves it; moreover it continuously
drains charge from the bulk losing it only to other elite members if at all (see
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Figure 4.2 for numerical support of these claims). Furthermore, should a neuron
with a small support value happen to enter the elite at the early stages of the
dynamics, it will soon leave it having its charge drained by other higher supported
neurons. Thus, after running our dynamics long enough we end up with a picture
where the elite consists of neurons with the highest support. Although the elite
neurons do struggle for charge between themselves, they cooperate in draining it
from the bulk. Therefore eventually almost no charge will be present in the bulk
and hence the Hamiltonian will admit a particularly simple approximation

H(σ̄) ≈ −
∑
i∈elite

σiSi (4.5)

and all further updates in the system will only happen due to charge transfers
within the elite. Note now that the interactions between elite neurons as deter-
mined by their connectivities (weights) are of order o(

√
N) since the cardinality

of the elite is o(N) whereas the differences between the highest consecutive sup-
port values are of higher order Θ(

√
N) in view of (4.3) which makes the former

negligible compared to the latter. Thus, the dynamics between the elite neurons
takes eventually a particularly simple form: a pair of elite neurons is chosen by
random and if the one with smaller support attempts to transfer a unit charge
to the one with higher support, the attempt is accepted, otherwise it is rejected.
The only ground state of the system is then obtained by putting all charge into
the unit of the highest support. It should be noted that at intermediate stages
of the dynamics it may happen that elite members show up with charges whose
order is inverse to that determined by the supports rather than consistent with
it. This is an artifact due to the fact that if we admitted negative charges here,
a twofold sign-flip symmetry would be present in the system in full analogy to
usual networks with no external field and such inverse ordering would compete
with the standard one on equal rights. This is not the case here though because
negative charges are not allowed and therefore such inversely ordered structures
are unstable and do not persist in the course of the dynamics.

In view of the above discussion, the highest in-degrees of the spike-flow graph
are observed in elite units enjoying the highest support from the system, and
the corresponding charge flows Fi→j are mainly due to the internal charge trans-
fers within the elite. Thus, we have shown that the asymptotic behavior of our
network model is accurately described by the following winner-take-all model:

• the system consists of K neurons ui, i = 1, . . . , K, representing the elite
units and ordered according to decreasing supports,

• n units of charge are sequentially introduced into the system, each time
according to the following dynamics
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– first, a unit charge is transferred to a randomly chosen neuron uk0 , k0 ≤
K,

– thereupon it starts jumping to further neurons ukl , where kl+1 < kl is
randomly chosen in {1, . . . , kl − 1},

– eventually the unit charge reaches u1 and gets frozen there.

• the in-degrees of the elite neurons in the original network are approximated
by the numbers Di indicating how many charge units have visited ui on
their way to u1.

In other words, in this model the charge transfers always occur from a neuron
with smaller support to a randomly chosen better supported one, whence the term
winner-take-all dynamics. Curiously enough, the winner-take-model is easily seen
to exhibit a consistency property – if we take some K ′ < K and observe the be-
havior of the model restricted to K ′ neurons of highest support only, this exactly
coincides with what we get if we run our original dynamics on the restricted set
{u1, . . . , uK′} of units. Consequently, from the viewpoint of our asymptotic anal-
ysis of the in-degree sequence D1, D2, . . . the precise value of K is irrelevant as
long as K � N but K →∞ as N →∞.

Now, repeating the argument presented in this section for Mi’s large but
finite, we end up with the following modification of the above winner-take-all
dynamics. Assume first that the elite neurons of the highest support are not
yet saturated, that is to say their capacity has not yet been reached. In such
a case the dynamics follows exactly as previously. Once a certain elite neuron
gets saturated, it becomes inactive, since it cannot accept any more incoming
charge. If this happens to be a neuron of high support, then it is very unlikely to
get unblocked prior than possibly at the very final stages of the dynamics, since
with overwhelming probability only units of higher support drain any charge
from the considered unit, and their number is negligible compared to that of
lower supported neurons pumping their charges upwards the support hierarchy.
Therefore, should a neuron of a very high support get saturated, it will most likely
stay inactive for the most of the simulation thereafter, and it could be removed
from any additional consideration as playing no relevant role anymore. Further
evolution of the so reduced system follows the same pattern: at any stage the
winner-take-all dynamics is present among the set of best unsaturated neurons.
Consequently, in case Mi’s are of the same order as total charge present in the
system, the deviation from the unbounded version of the dynamics is negligible,
which can be easily noted in simulations. If Mi’s are much smaller though, the
saturation factor becomes significant and the winner-take-all dynamics breaks
down. Some models exhibiting this property will also be discussed in the next
Section 4.3.
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4.3 Power law for spike-flow in-degrees
We are now in a position to exactly characterize the asymptotic behavior of the in-
degree sequenceDi, i ≥ 1. Again, we begin with the extreme set-upMi ≡ ∞ first,
passing to more general choice of charge constraints thereafter. It is worth noting
that asymptotically the out-degree sequence behaves in exactly the same way as
the in-degrees since for most units save the highest support neuron and very low
support neurons their in- and out-degrees are almost equal. Some insignificant
disagreements may occur in finite numerical simulations, where all units start
with some fixed amount of charge and proceed according the dynamics. In such
case the out-degree sequence is disturbed by the single (therefore insignificant)
unit that eventually receives and keeps the whole charge present in the system,
whereas the in-degree sequence is disturbed within some range of low degrees
(units which received far less charge than they gave away to others). We can
avoid these fluctuations by only looking at the tail of the distribution (in practice,
say, degrees higher than 5-10 times the initial charge per neuron) or by simulating
larger systems.

To proceed, consider a single charge unit introduced into the system and de-
note kl for the number of neuron ukl it visits after its l-th jump, l = 0, 1, . . . . Recall
from Section 4.2 that k0 is drawn uniformly from {1, . . . , K}. Further, consider
also a sequence X0, X1, X2, . . . of continuous (0, 1)-valued random variables such
that X0 is uniform in (0, 1) and Xl+1 is chosen uniformly from (0, Xl) for all l ≥ 0.
Then it is easily seen that for K large enough we can safely approximate in law

kl = dKXle

with d·e standing for the upper integer value of its argument. In particular,
defining πi, i = 1, . . . to be the probability that the charge unit visits ui, we have
πi = P(∃lkl = i) and hence for K large enough we get the approximation

πi ≈ E|{l, Xl ∈ [(i− 1)/K, i/K]}|, i > 1 (4.6)

and, clearly, π1 = 1. The values of in-degrees Di are then binomially distributed
b(πi, n) with parameters πi and n, the latter standing for the number of charge
units present in the system.

To proceed with our asymptotic analysis we observe that Xl’s form a so-called
record sequence in the sense of classical extreme-value theory, see Chapter 4 in
(Resnick, 1987). Consequently, by Section 4.1 ibidem, the sequence Tl := − logXl

is simply a unit intensity homogeneous Poisson point process in R+. Thus, using
(4.6) we get

πi ≈ E|{l, Tl ∈ [− log(i/K),− log((i− 1)/K)]}| ≈ 1/i.
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4.3 Power law for spike-flow in-degrees

Hence, for large values of n we have by the law of large numbers

Di ≈ n/i.

It means that, for large k,

|{i, Di > k}| ≈ n/k

or,
|{i, Di ≈ k}| ≈ n/k2.

We have thus proven the main result of this thesis.
Theorem 1 For the basic spike-flow model with Mi ≡ ∞ the resulting spike-flow
graph is scale-free with exponent γ = 2.

In analogy to this argument assume now that Mi’s instead of being infinite
are finite, indepedent from the weights wij, independent among themselves, and
drawn from a power-law distribution

P(Mi > k) ≈ ck−α (4.7)

for some α > 0. In such a set-up, if c in (4.7) is not very large, a non-negligible
fraction of units will get saturated in the course of the dynamics and therefore
would stop accepting any more incoming charge at some stage of the network
evolution. This may considerably alter the behavior characterized by Theorem
1. In fact, it is natural to expect that three groups of units will emerge:

• Units of highest support, elite of the elite, which can be sure to reach their
capacities. By the independence of Mi’s from the weights wij’s and hence
also from the supports Si’s, when choosing at random among such units
the probability of exceeding in-degree k is given by the product of the
probability of the chosen unit exceeding the in-degree k in the unconstrained
dynamics (Mi ≡ +∞) times the probability of its capacity being higher than
k. Consequently, in view of Theorem 1 the in-degrees of the highest support
units should follow a power law with exponent α + γ = α + 2.

• Units of intermediate supports, lower elite, still falling into the elite and
reaching rather high in-degrees, but not exceeding or even reaching their
capacities. Such units do not feel the constraints Mi’s and constitute a
portion of the network where in-degrees should follow a power law with
exponent γ = 2 as in the unconstrained dynamics.

• Units of rather high but not highest supports, medium elite, for which the
capacity and in-degrees they would reach under the unconstrained dynamics
are of a comparable order. Their behavior should interpolate between the
above two extremes.
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4. SPIKE FLOW GRAPHS

These observations would suggest that two principal regimes should be observ-
able for the in- degree distribution of such networks: highest in-degrees should
follow a power law with exponent α+ 2 whereas the lower elite in-degrees should
behave as in Theorem 1 stating power law with exponent 2. The region separating
these regimes should interpolate between these two behaviors, possibly exhibiting
very complicated properties due to the presence to traffic jams at medium elite
units, which are no more negligible unlike in case of lower elite units, but which
only temporarily disable the blocked units and may be eventually discharged in
contrast to the case of high elite units. We cannot claim to have confirmed these
conjectures by numerical results though because the realistic system sizes we were
able to reach in our simulation were too small to ensure statistically significant
collection of units in each of the afore-mentioned regimes.
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Fig. 1. Typical evolution of the charge stored in seven units of the highest support. The above figure is a result of a simulation run of 3000

units (left) and 4000 units (right). Note that while in the beginning of the simulation all seven elite members compete for charge, by the end

the single best unit gets everything.

Fig. 2. Percentage of charge jumps leading to a unit of higher support (sampled every 100 jumps) in a simulation run of 3000 units. The

plot on the left is scaled linearly, the one on the right is semi-log. Note that after initial unstable phase (about 104 steps), the plot increases
steadily until about 2 ∗ 106 steps where again some fluctuations occur. These fluctuations are caused by increased significance of stochastic

term (tiny energy modifications leaving room for thermal fluctuations). It is worth noting that by that time jumps are already infrequent

while the state is near the energy optimum. By the step 2 ∗ 107 the system freezes completely in the ground state.

to traffic jams at medium elite units, which are no more
negligible unlike in case of lower elite units, but which only
temporarily disable the blocked units and may be eventu-
ally discharged in contrast to the case of high elite units.
We cannot claim to have confirmed these conjectures by
numerical results though because the realistic system sizes
we were able to reach in our simulation were too small to
ensure statistically significant collection of units in each of
the afore-mentioned regimes.

5. Numeric results

The above considerations were accompanied by a numer-
ical simulation implemented in Matlab, letting us continu-
ously verify our assumptions, and giving valuable hints for
further investigation. The simulations were usually carried
out for systems of about 3000-6000 neurons with the basic
dynamics (as described in Section 2) – the only speed-up
was that the neuron to pass a unit charge to some other
one was chosen randomly only among those containing any
charge at all. The total energy computation required a
quadratic time in the number of neurons, but during the

6

Figure 4.2: Typical evolution of the charge stored in seven units of the highest
support. The above figure is a result of a simulation run of 3000 units (left) and
4000 units (right). Note that while in the beginning of the simulation all seven
elite members compete for charge, by the end the single best unit gets everything.

4.4 Numeric results
The above considerations were accompanied by a numerical simulation imple-
mented in Matlab, letting us continuously verify our assumptions, and giving
valuable hints for further investigation. The simulations were usually carried out
for systems of about 3000-6000 neurons with the basic dynamics (as described
in Section 4.1) – the only speed-up was that the neuron to pass a unit charge to
some other one was chosen randomly only among those containing any charge at
all. The total energy computation required a quadratic time with regard to the
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Fig. 1. Typical evolution of the charge stored in seven units of the highest support. The above figure is a result of a simulation run of 3000

units (left) and 4000 units (right). Note that while in the beginning of the simulation all seven elite members compete for charge, by the end
the single best unit gets everything.
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Fig. 2. Percentage of charge jumps leading to a unit of higher support (sampled every 100 jumps) in a simulation run of 3000 units. The
plot on the left is scaled linearly, the one on the right is semi-log. Note that after initial unstable phase (about 104 steps), the plot increases

steadily until about 2 ∗ 106 steps where again some fluctuations occur. These fluctuations are caused by increased significance of stochastic

term (tiny energy modifications leaving room for thermal fluctuations). It is worth noting that by that time jumps are already infrequent
while the state is near the energy optimum. By the step 2 ∗ 107 the system freezes completely in the ground state.
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Figure 4.3: Percentage of charge jumps leading to a unit of higher support (sam-
pled every 100 jumps) in a simulation run of 3000 units. The plot on the left
is scaled linearly, the one on the right is semi-log. Note that after initial unsta-
ble phase (about 104 steps), the plot increases steadily until about 2 ∗ 106 steps
where again some fluctuations occur. These fluctuations are caused by increased
significance of stochastic term (tiny energy modifications leaving room for thermal
fluctuations). It is worth noting that by that time jumps are already infrequent
while the state is near the energy optimum. By step 2 ∗ 107 the system freezes
completely in the ground state.

number of neurons, but during the simulation we only needed to compute local
energy updates, which took only linear time. Despite of these straightforward en-
hancements, larger systems (≈ 10000 units) became problematic due to memory
consumption and did not give any qualitatively better results. In the future we
plan to simulate much bigger systems based on the simplified version of dynamics
(the winner-take-all asymptotic version) that would allow us to avoid the need
for explicit connectivity matrix, in order to confirm the intuitions described in
final paragraphs of Section 4.3. In the course of the present simulation β (the
inverse temperature) was fixed at β = 10 which, since the average energy updates
in the simulation were of order ≈ 1 per step, places us in the low temperature
regime. The temperature only became more significant by the end of the simula-
tions when the energy modifications were of much smaller order leaving place for
thermal fluctuations, but by that time the system usually had already converged
to the expected “winner-take-all” configuration (Figure 4.3 gives some insight
into temperature based fluctuations). The results of the simulations confirmed
our theoretical predictions about the “winner-take-all” dynamics (see Figures
4.2,4.3,4.5), as well as the scale-free properties of the spike flow graph (Figure
4.4). The number of steps was 10 times the number of neurons squared, which
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Fig. 3. Cumulative distribution function (CDF) of the out-degree in the spike flow graph (in-degree yields a similar plot) of 3000 units (left)
and 4000 units (right). Presented CDF slopes correspond to the power law exponent γ = 2 + /− 0.03. The slopes were approximated by the

least squares method.

Fig. 4. The charge stored in 2% units of highest support (left) and number of units storing 98% of total charge. These figures give strong
support to the idea of dividing the units into elite and bulk, and treating these groups separately.

9

Figure 4.4: Cumulative distribution function (CDF) of the out-degree in the spike
flow graph (in-degree yields a similar plot) of 3000 units (left) and 4000 units (right).
Presented CDF slopes correspond to the power law exponent γ = 2+/−0.03. The
slopes were approximated by the least squares method.

was about the number of steps required for full convergence to the ground state.
Rarely the system converged to a state in which two units of highest support
shared the whole charge. This is possible, whenever the weight between the two
competing units is comparable to the difference of their supports, thus forming
a local energy minimum (pumping charge to the better unit requires temporary
energy increase). Since the experimental system is finite, such unusual configu-
rations may appear with some small probability. Evidently as the system size
increases, such energy minima become less probable (asymptotically negligible).
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Fig. 3. Cumulative distribution function (CDF) of the out-degree in the spike flow graph (in-degree yields a similar plot) of 3000 units (left)

and 4000 units (right). Presented CDF slopes correspond to the power law exponent γ = 2 + /− 0.03. The slopes were approximated by the
least squares method.
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Fig. 4. The charge stored in 2% units of highest support (left) and number of units storing 98% of total charge. These figures give strong
support to the idea of dividing the units into elite and bulk, and treating these groups separately.

simulation we only needed to compute local energy updates,
which took only linear time. Despite of these straightfor-
ward enhancements, larger systems (≈ 10000 units) be-
came problematic due to memory consumption and did not
give any qualitatively better results. In the future we plan to
simulate much bigger systems based on the simplified ver-
sion of dynamics (the winner-take-all asymptotic version)
that would allow us to avoid the need for explicit connec-
tivity matrix, in order to confirm the intuitions described
in final paragraphs of Section 4. In the course of the present
simulation β (the inverse temperature) was fixed at β = 10
which, since the average energy updates in the simulation
were of order≈ 1 per step, places us in the low temperature
regime. The temperature only became more significant by
the end of the simulations when the energy modifications

were of much smaller order leaving place for thermal fluc-
tuations, but by that time the system usually had already
converged to the expected ”winner-take-all” configuration
(Figure 2 gives some insight into temperature based fluctu-
ations). The results of the simulations confirmed our the-
oretical predictions about the ”winner-take-all” dynamics
(see Figures 1,2,4), as well as the scale-free properties of
the spike flow graph (Figure 3). The number of steps was 10
times the number of neurons squared, which was about the
number of steps required for full convergence to the ground
state. Rarely the system converged to a state in which two
units of highest support shared the whole charge. This is
possible, whenever the weight between the two compet-
ing units is comparable to the difference of their supports,
thus forming a local energy minimum (pumping charge to

7

Figure 4.5: The charge stored in 2% units of highest support (left) and number
of units storing 98% of total charge. These figures give strong support to the idea
of dividing the units into elite and bulk, and treating these groups separately.
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Chapter 5

Scale-freeness of dynamical
spiking networks

5.1 Introduction

In this chapter we present the material of (Piękniewski, 2007), a numerical study
aimed at finding scale-free connectivity in systems based on dynamical spiking
neural networks. As mentioned in previous chapters, the simplest property lead-
ing to scale-freeness of a network is preferential attachment combined with model
growth (see Albert & Barabási (2002)). Preferential attachment imposes that
units already well connected should have a higher probability of being attached
to other nodes. In terms of neurons and their spike flow graphs this property
might be translated as follows: the more activity a unit receives, the more active
it becomes and retains this activity for some period of time, depending on the
initial excitation. It is essential in this formulation that a unit possesses a non
trivial memory of its state (amount of activity already received, and therefore
ability to become active). Although single neurons (even single compartment
dynamical models) do possess some amount of state memory (stored in current
vector of parameters in the phase space), this is not enough to clearly exhibit
“preferential attachment” in the sense defined above. Single neurons act more
like wires, though the excitation mechanism is active, they do not have any sig-
nificant capacity to store incoming signals. In the following sections we argue
that things change if we move from single neurons into neuronal groups of cer-
tain kind. Such groups have opportunity to stay active for a longer period of
time, and have some ability to store received activity by continuous excitation
(of a number of units within the group) and therefore have some sort of memory
of their past excitation. This property (although not easy to clearly distinguish
from other dynamical behaviors of such a group), should lead to a certain kind
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5. SCALE-FREENESS OF DYNAMICAL SPIKING NETWORKS

of synchronization that would result in a scale-free network of synchronizations
between the groups. These informal statements will be specified more precisely
in following subsections. Theoretically speaking, for infinite simulation runs the
model growth is required, because otherwise the network would saturate with
spike flow and lose scale-free property. With the models discussed in this chapter
though, the oversaturation can be to a large extent neglected due to relatively
short time of simulation, therefore our model is static, although it is also worth
noting that in biological reality there are processes of decay and growth that
prevent neural networks from saturation. In the previous chapter we examined
a model of a spike flow graph, with simple units whose states were in N. We
have shown that under appropriate assumptions the neuronal dynamics of that
model imposes scale-free structure on the induced graph of potential transfers.
Encouraged by this result we asked a question - is this behavior general and can
it be reproduced with dynamical spiking neural models? For this investigation
we have chosen the simple spiking model introduced by Eugene M. Izhikevich
in (Izhikevich, 2003) (see section 3.5.3). We selected this model due to compu-
tational simplicity which lets one carry out simulations with a large number of
these fairly complex (in terms of possible dynamical behaviors) spiking neurons
reasonably fast, and therefore it fits perfectly the requirements of the presented
research assignment.

One of the first objectives of this study was to confirm that single neurons do
not posses enough memory1 to exhibit a scale-free synchronization graph (infor-
mally, the weight of an edge in synchronization graph2 is high if the spike trains
of two units are similar and low in the other case, this concept is explained more
formally in next section). We carried out a number of simulations with different
weight matrices, and did not obtain any graph that would exhibit a scale-free
nature (figure 5.4), either before or after thresholding3. It seems that such simple
systems either synchronize too well, or don’t synchronize at all, whereas scale-free
property requires something in between.

Since, as expected, single neurons are not complex enough, our second step
was to construct a model of neuronal groups. This approach is not very far from
real life, since it is well known that neurons form well connected groups, and such
phenomena were observed before even in the model we use in the present chapter
(see Izhikevich et al. (2004) for example). For simplicity we have constructed the
groups randomly, with respect to some basic properties like distinction between
excitatory and inhibitory neurons etc. The connectivity within a single group
(about 10 to 20 neurons) was quite similar to that presented in (Izhikevich, 2003),

1In the sense discussed above.
2This notion is similar to the functional network studied empirically by Egúiluz et al. (2005)
3The obtained graph is weighted, thresholding is a way of creating corresponding unweighted

graph.
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Figure 5.1: A schematic presentation of the model investigated in this chapter.
The model consists of a number (about 1000-3000) of neuronal groups, connected
randomly (weights chosen from Gaussian distribution N (0, 1)) by the group leaders
- neurons chosen to interconnect every group with others. The group’s synchro-
nization depends on the input received from the group leader and, on the other
hand, the activity of the leader reflects the activity of the group.

with appropriately scaled weights to ensure sustained activity within a group. In
every group, one neuron was chosen to play a special role (in the sequel we will
refer to it as the group leader). This special neuron connects the group with
other groups, it forms a kind of a gateway between the group and the rest of
the model. Group leaders were connected randomly with normally distributed
weights (see figure 5.1 for conceptual schema). The simulation was carried out
with about 3000 groups (that gives about 45000 neurons) for more than 10000
steps (the coefficients in the model are tuned, so that each step corresponds
to approximately 1 ms in real time, this however is not a key issue, since the
presented model does not resemble any particular biological network). The output
seemed quite promising right from the beginning - figures 5.2 and 5.3 reveal rich
neuronal behavior with global synchronization episodes, some of the units were
exhibiting bursting activity. The striking feature of this plot is its self-similarity
- in some ways it looks like a fractal. This detail, although interesting, was not a
part of this research project - the goal was to translate synchronizations into real
numbers, use these numbers as graph weights, and determine whether this graph
has a scale-free property or not. The details are yet to be described in further
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5. SCALE-FREENESS OF DYNAMICAL SPIKING NETWORKS

sections, however this section can be concluded by giving a positive answer to
the preceding question - figure 5.5 strongly supports the claim that the degree
distribution of a graph received from this numerical experiment follows a power
law (similar plot was obtained in a number of simulations).

5.2 Model details

Student Version of MATLAB

Figure 5.2: Example of spike activity plot of 3000 group leaders during 6000ms
timeframe (only the activity of group leaders is plotted). Note the global synchrony
episodes as well as bursting of single units.

As mentioned in the preceding section, the simulation was carried out for a
set of 3000 groups (each consisting of 10-20 neurons - the number was chosen
randomly with uniform distribution), represented by the group leaders. The con-
nectivity within a single group was quite similar to the one from (Izhikevich,
2003), with appropriately scaled weights, to ensure synchronization. The ratio
of excitatory/inhibitory neurons was also chosen randomly from uniform distri-
bution. Note that this construction was not based on any particular biological
inspiration since the goal of this research was rather to find a link between the
discrete model discussed in previous chapter and more complex continuos dynam-
ical one, than mimicking the biological complexity. The next steps of this project
would be to create more and more biologically feasible models that would still
exhibit the scale-free property, to this end however it is essential to know what
dynamical features of these models are responsible for emergence the scale-free
phenomenon (see next chapter). The simulation was carried out on two levels,
on both of them synchronously:
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Figure 5.3: Magnified segment of figure 5.2 showing neurons 1000 to 1500 within
2000ms-3000ms timeframe. Please note the similarities of these plots (actually
it is a self-similarity). The number and length of straight horizontal lines (each
symbolizing a bursting activity) in both plots is approximately the same.

1. Initialization phase - each group was simulated synchronously over one time
step (1ms). The initial input to every group was 0 plus some slight Gaus-
sian noise (applied to every neuron independently) that simulated external
excitation.

2. After this phase, weighted summation of group leader output activities is
performed and given as input activity to group leaders in the next step.

3. Each group was simulated synchronously over one time step, with the group
leader activity and a slight Gaussian noise as an input for every neuron.

4. Steps 2 and 3 were repeated until the end of simulation (in this case up to
12000 steps).

As the output, the simulation produced a significant number of spike trains (3000
neurons, each over more than 10000 time steps) that had to be compared with
respect to a measure of synchronization computed in the following manner:

1. Each spike train was blurred by a convolution with exp
(
−
(
x
10

)2
)

kernel,
see figure 5.8.

2. The transformed spike train of every two neurons was then multiplied and
integrated. The integral (real number) was interpreted as a measure of
synchronization.
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5. SCALE-FREENESS OF DYNAMICAL SPIKING NETWORKS

The blur was necessary, to assure similarity between two spike trains that were
in fact roughly similar, but corresponding spikes were shifted by several time
steps in either direction (in this model we did not include any axonal delays). It
is worth noting that this measure strongly supports bursting - two units giving
continuous spike response in the same time gain much similarity in the sense
above. Note that this measure is significant only if spikes actually do occur, two
empty spike trains are similar in some sense, but in terms of a proposed measure
their similarity is zero.

Based on the similarity measure above a symmetric weight matrix correspond-
ing to a weighted graph was obtained. The resulting graph was subject to further
analysis, based on typical tools from random graph theory (section 2.5) like de-
gree distribution, average path, number of connected components and clustering
coefficient.
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Figure 5.4: Example degree distributions of synchronization graphs produced by
a network of spiking neurons for different coupling regimes. Certainly these graphs
do not exhibit a scale-free property.

5.3 Results
The obtained graph was weighted which had its advantages and disadvantages.
We used some analytical tools on the weighted graph, and then continued with an
unweighted one created by thresholding the original graph over a certain value (in
this case the average weight in the graph). The essential feature in the focus of this
chapter – the scale-free property – was observed in either case. For the weighted
graph the node degree was defined simply as the sum of weights of edges adjacent
to that node. For the unweighted graph we used the usual definition (number of
edges adjacent to the node). In both graphs the degree distribution followed a
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Figure 5.5: The degree distributions of a network received from the model (left),
and one obtained by thresholding the original network at an average weight (right)
in order to produce an unweighted graph. In either case the presence of a power
law with exponent of about 2 is quite clear. Note the significant difference between
these plots and the ones showed in figure 5.4.

power law, with exponent of about 2, in the weighted case there were some slight
deviations - the power law was slightly violated near the plot limits. This however
is not very surprising, since such disturbances are present in a number of other
scale free networks, especially of medium size graphs like the one investigated in
this chapter. These artifacts appear because of under/over saturation of high/low
degree nodes, due to finite time of simulation. In the unweighted case these
fluctuations are even less significant possibly caused by thresholding. In order to
gain confidence (and avoid possible statistical disturbance), the simulation was
repeated a number of times (about 30 for each set of parameters), the results
were always similar.

The power law exponent is roughly 2 in agreement with the results of the
previous chapter. To provide a better estimate, far larger graphs should be sim-
ulated, which does not seem particularly reasonable since this particular model
is rather a proof of concept than a biologically plausible simulation of practical
significance.

Note that as expected - more active units (the activity is measured as an
integral of spike train convolved with exp

(
−
(
x
10

)2
)

kernel, as previously) gain
more neighbors in the output graph (either weighted or unweighted). This is
clearly visible in figure 5.6 and evidently supports our hypothesis of the presence
in the model of a form of preferential attachment principle as discussed earlier.

The unweighted graph formed a singlegiant component4 (possibly with some

4This obviously depends on the thresholding level. As the threshold grew, more and more
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Figure 5.6: The dependency between spiking activity and vertex degree before
(left) and after thresholding the graph (right). In either case we observe a clearly
monotone dependency which supports our preferential attachment hypothesis.

number of isolated nodes).
The interesting feature of the thresholded graph is its very high clustering

coefficient - this graph is very well clustered. What’s more, the clustering coeffi-
cient exhibits a surprisingly regular dependence on degree (see figure 5.7, which
displays this dependency as well as the corresponding dependency obtained from
Erdős-Rényi random graph with similar connection density), which suggests that
lower degree nodes are nearly fully clustered but after reaching a certain degree
threshold (in the case of presented simulation the threshold is of about 102, but
this value most probably depends on the system size), the clustering coefficient
drops dramatically leaving high degree nodes almost unclustered. This gives an
interesting insight into graph structure, but it is not yet obvious whether this
dependency is an artifact of graph thresholding or is it some general property of
these networks5.

It is worth noting that the resulting graph also had a small world property
- high clustering coefficient as discussed above (about a magnitude higher than
in corresponding Erdős-Rényi random graph) combined with short average path
length (depending on the thresholding level, the average path varied from about
2 to 4 nodes, so the connectivity is very good). Again this might not be very
surprising in the context of already published results (Kwok et al. , 2006) and
the fact that scale-free networks exhibit short average paths quite naturally.

nodes became isolated, but still a single giant connected component was present.
5It seems reasonable though, from sociological point of view, that people having only a few

friends have higher probability that these friends also know each other, than people with a
huge number of friends (hubs) possibly distributed over a large area. These considerations are
obviously informal.
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Figure 5.7: Clustering coefficient as a function of degree in the investigated
network. This plot is interesting, since such behavior of clustering coefficient is
rather rare - the nodes of small degrees are well clustered whereas those with high
degree are not. Compare with box 2 in (Barabási & Oltvai, 2004). The black-
circle plot depicts this dependency obtained from Erdős-Rényi random graph with
similar number of edges.
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Figure 5.8: Spike activity convolved with exp
(
−
(
x
10
)2) kernel. This procedure

blurs the spike train significantly, but lets one receive non zero product of two such
trains even if corresponding spikes are shifted. The product is later integrated to
obtain synchronization strength, a measure we introduced to describe similarity
between spike trains.
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Chapter 6

Further research

6.1 Introduction
The model discussed in the previous chapter is somewhat artificial. The neuronal
groups presented there, are not biologically motivated (though one might think
of them as of cortical columns), and only exhibit the appearance of mechanism
discussed earlier in the dynamical systems setup, though the methodology of
creating a graph based on synchronization much resembles that used in empirical
studies of Egúiluz et al. (2005), which revealed scale-free structure in functional
MRI data. We made efforts to seek for power law structures directly in a more
biologically plausible model, but the results are not evident. Nevertheless we
decided it is worth discussing these simulations (simulating 100000 dynamical
neurons is a challenging task), pointing out the possible reasons for the failure of
finding power law structures and examining possible further directions.

6.2 The model
The model we investigated was introduced in the well known paper of Izhikevich
et al. (2004) which appeared in Cerebral Cortex. It consists of a neuronal sphere
filled with 100000 excitatory and inhibitory neurons having both local and remote
connections. Each neuronal connection has a delay that is proportional to the
distance (long range connections have different propagation velocities though).
The synapses model four types of synaptic receptors having linear kinetics. The
synapse strength is determined both by short term depression-facilitation as well
as long range changes controlled by spike timing dependent plasticity (STDP). In
the course of the simulation STDP causes neurons to self-organize into sponta-
neous groups. We were able to reproduce these groups and study their statistical
features.
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6.2.1 Anatomy
The model consisted of 80000 excitatory neurons and 20000 inhibitory neurons
spread uniformly on the surface of a sphere of radius 8mm. The 4/1 ratio of ex-
citatory/inhibitory neurons is observed in mammalian brains. Each neuron was
modeled as a single compartment unit using the simple phenomenological model
(Izhikevich, 2003). Each excitatory neuron had 75 local connections spread uni-
formly within a radius of 1.5mm and 25 long distance connections. The targets
of these long range connections lied within a circle of radius 0.5mm with a ran-
domly chosen center. One can think of these long range connections as of a
single axonal fiber, branching at its end into 25 collaterals targeting randomly
chosen neurons within the range of 0.5mm. These long range connections (that
model long myelinated axons) had spike propagation speed of 1m/s whereas
the local connections of 0.15m/s. Each inhibitory neuron had 25 local targets
spread uniformly within a radius of 0.5mm. This setup resulted in synaptic de-
lays varying from 1 to 12 ms of model time (the model was simulated with 1ms
resolution as discussed in further sections). As in the original model (Izhikevich

Figure 6.1: A sketch of the connectivity in the neuronal sphere model investigated
in this chapter. Only 200 out of 100 000 neurons are plotted.

et al. , 2004), to assure heterogeneity neural parameters a, b, c, d (see section
3.5.3 in particular figure 3.8) were varied. In general, excitatory neurons had
(a, b) = (0.02, 0.2) and (c, d) = (−65, 8) + (15,−6)r2 where r is a uniform ran-
dom variable (single copy). Such a choice of parameters results in most of the
excitatory neurons falling into regular spiking (RS) regime with some fraction
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tending to chattering regime (CH) (compare with figure 3.8). Inhibitory neurons
had (a, b) = (0.02, 0.25) + (0.08,−0.05)r and (c, d) = (−65, 2) and therefore, as
explained above, they interpolate between low threshold spiking (LTS) and fast
spiking (FS) regimes. The typical neuronal density on the surface of the sphere
was 125 neurons/mm2

6.2.2 Short term synaptic dynamics
The model consisted of 8.5 millions of synapses, and their efficient implementa-
tion was crucial. Each synapse incorporated short term depression/facilitation
proposed by Markram et al. (1998) as follows:

dR

dt
= 1−R

D
−Rwδ(t− tspike)

dw

dt
= U − w

F
+ U(1− w)δ(t− tspike)

(6.1)

where δ() is Dirac delta function, U , D, F are parameters, tspike is the time of spike
of the presynaptic neuron. That is whenever presynaptic neuron is quiescent, R
and w variables evolve according to linear differential equation:

dR

dt
= 1−R

D
dw

dt
= U − w

F

(6.2)

When the spike occurs, R gets decreased by Rw and w gets increased by U(1−w).
The product Rw models in the sequel the fractional amount of neurotransmitter
(affecting the respective conductance), therefore rate of change of postsynaptic
potential (PSP) is proportional to Rw. The parameters U , D, F in general can be
different for every synapse which would require simulating 8.5 millions such equa-
tions. However synapses found in most biological neurons are rather homogenous
and it is reasonable to assume that each neuron’s synapses are identical with re-
spect to the short term dynamics (in this model the synapse parameters only differ
between excitatory and inhibitory neurons, as discussed below) and consequently
the equation 6.1 can be simulated per neuron not per synapse (the solution of
6.1 depends entirely on intervals between presynaptic spikes and the presynaptic
neuron type, so values Rw are identical for every outgoing synapse of the same
neuron, but may arrive at different time steps depending on the axonal delay).
The parameters were U = 0.5, F = 1000 and D = 800 for excitatory neurons
and U = 0.2, F = 20, D = 700 for inhibitory neurons. Consequently inhibitory
synapses facilitate a lot faster than excitatory ones. In general these parameters
correspond to synapses exhibiting depression, so when a couple of spikes arrives
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at the synapse, the first one may produce a high PSP but consecutive ones will
be weaker and weaker.

6.2.3 Long term synaptic dynamics
Apart from short term dynamics excitatory synapses have synaptic weights con-
trolled by long term dynamics. Each excitatory synaptic weight ci→j from neuron
i to j can take values in [0, 0.5]. Short and long term dynamics both contribute
to the rate of change of excitatory postsynaptic potential, which is proportional
to the product ci→jRiwi. This term for excitatory synapses can be at most 0.25
(and 0.2 for inhibitory synapses which have all weights constant and equal 1).
The weights are controlled by a differential equation (simulated and here scaled
for time step 1s):

dc

dt
= 0.001 + c∆(t) (6.3)

where c∆(t) is an auxiliary function following its own dynamics (discussed fur-
ther). The 0.001 term is responsible for slow, activity independent amplification
of synaptic weights, in particular of those neurons that remain quiescent in the
course of the simulations (such weights are no amplified by the spike timing de-
pendent plasticity). Values of c are clipped in order to stay in [0, 0.5]. c∆(t) is
controlled by a linear differential equation:

dc∆

dt
= −c

∆(t)
10 (6.4)

simulated with time step 1s and here scaled appropriately. Apart from the above
equation, another mechanism contributing to the values od c∆ and hence to the
rate of change of c is the so-called spike timing dependent plasticity (STDP).
The STDP is a novel form of Hebbian learning taking into account temporal
structure of pre and postsynaptic spikes (Markram et al. , 1997). The paradigm
of the idea is that if the presynaptic spike precedes the postsynaptic one (and
that way may have contributed to the occurrence of postsynaptic spike), then
the weight leading from pre to postsynaptic neuron should be potentiated. If on
the other hand the presynaptic spike comes after postsynaptic spike, then the
weigh should be depressed. The rate of depression/potentiation depends on time
interval between the spikes. Assume 4t = tpost−tpre, then long term potentiation
is LTP = A · e

4t
τLTP for positive 4t and long term depression LTD = A · e

−4t
τLTD

for negative 4t. In this model τLTP = 15, τLTD = 20, A = 0.004, therefore the
depression curve has a higher time constant so in general depression is stronger
than potentiation. Values of LTP/LTD are added/substracted from c∆ when the
spikes are processed. The detailed discussion of this mechanism is in subsection
6.3.2 related to implementation details.
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6.2 The model

6.2.4 Neuronal dynamics
Each neuron was simulated as a single compartment dynamical system based
on the simple model discussed in 3.5.3. Recall that the model is based on a
quadratic/linear set of equations:

dV

dt
= 0.04V 2 + 5V + 140− u+ Isyn

du

dt
= a(bV − u)

(6.5)

where parameter Isyn is the total synaptic input of the system. The total synaptic
input consists of modeled synaptic transmitters:

Isyn =− gAMPA · V+

− gNMDA ·

(
(V+80)

60

)2

1 +
(

(V+80)
60

)2 · V+

− gGABAA · (V + 70)+
− gGABAB · (V + 90)

(6.6)

where V stands for the postsynaptic membrane potential. Therefore the synap-
tic input depends on the membrane voltage (this dependency is a bit weird
for NMDA). The gAMPA,gNMDA, gGABAA and gGABAB model conductances of
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, N-methyl-D-aspartic
acid and gamma-aminobutyric acid respectively and have linear kinetics:

dgAMPA/NMDA/GABAA/B

dt
= −

gAMPA/NMDA/GABAA/B

τAMPA/NMDA/GABAA/B

(6.7)

The appropriate time constants are τ = 5, 150, 6 and 150 for AMPA, NMDA,
GABAA and GABAB receptors respectively (see Dayan & Abbott (2001)). Since
V is typically negative at the rest state, so gAMPA and gNMDA act as excitatory
transmitters and gGABAA and gGABAB usually act as inhibitory transmitters (un-
less V gets below −70mV ). Each time a presynaptic excitatory spike reaches
the synapse, gAMPA and gNMDA are increased by ci→jRiwi (with Riwi being the
short term depression/facilitation variables of presynaptic neuron i as described
above) . Each time a presynaptic inhibitory spike reaches the synapse, gGABAA
and gGABAB are increased by Riwi (inhibitory connections are not plastic, and
have fixed weight equal 1). Apart from synaptic stimuli, the model incorporated
a random noisy input (without it, the activity of the model would not persist).
The input was simulated as a forced spiking steered by the Poisson point process
with intensity of 1/1000ms. On average one spike per second for each neuron can
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Figure 6.2: A plot of changes of membrane voltage in a randomly selected exci-
tatory neuron (left) and inhibitory neuron (right). Each figure shows the activity
over a period of 2s. Notice a number of sub-threshold jumps.

be attributed to the noisy input, the rest of them (about 7 spikes per second)
were due to synaptic interactions. There were some discrepancies when forced
spiking was replaced by a super-threshold pulse, or fake synapse, especially at the
beginning of the simulation where rhythms were more significantly pronounced.
Forced spiking leads, however, quickly to a steady Poissonian spike train desirable
for the simulation.

6.3 Implementation details
In this section we examine some of the issues already discussed previously, this
time focusing on implementation details. Since neurosimulations of such a scale
and complexity have been developed fairly recently, whereas scientific papers
published in various journals frequently do not include detailed implementation
information, we decided this section might be valuable.

6.3.1 Short term dynamics
Recall from subsection 6.2.2, that the short term dynamics defined in equation
6.1 was computed per neuron, not per synapse. That way the number of equa-
tions to solve is reduced from nearly 8.5 million to 100000 (almost two orders of
magnitude). This reduction is possible if we assume that each neuron has ho-
mogenous synapses (in terms of short term dynamics). Nevertheless there is still
some space for improvements: note that most of the time neurons do not spike
and so it is a good idea to optimize numerical solution to 6.2. This could be done

68



6.3 Implementation details

by a variable substitution:

Rfast = 1−R
wfast = w − U = −(U − w)

(6.8)

that way equation 6.2 becomes:

dRfast

dt
= −Rfast

D
dwfast
dt

= −wfast
F

(6.9)

which is particularly easy for numerical simulation, since Euler scheme can be
replaced by a single multiplication (this saves a couple of valuable processor
cycles). The rest of the equation 6.1 becomes a bit more complicated:

Rw = (1−Rfast) ∗ (U + wfast); (6.10)

but it only needs to be computed when presynaptic neuron actually spikes (and
that happens usually once per a 100 simulation steps). Whenever presynaptic
neuron decides to spike, the product of R and w from that particular moment is
computed and forwarded to the synapses, where it arrives after respective axonal
conduction delay and contributes to PSP.

6.3.2 STDP
The efficient implementation of STDP is essential for the model since this mech-
anism has to be triggered for every pair of spikes emerging at two connected
neurons. Things get more complicated, since there are at least several of imple-
mentations of STDP varying by selection of spikes that contribute to plasticity
(Izhikevich & Desai, 2003). As suggested in the paper, in the original model the
authors used an implementation which takes only temporarily nearest pairs of
spikes into account (that means LTP/LTD functions are being completely reset
in the event of a spike). In our implementation this resulted in a bit too high
firing rate (about 25 spikes/s) and too strong potentiation (see figure 6.3). After
switching the implementation to the one that increments LTP/LTD, we reached
a spiking regime that better resembles the one (about 8 spikes/s) obtained in the
original implementation (compare figure 6.4). It remains unclear why in our im-
plementation of the model with “resetting” STDP converged to the other spiking
regime. The model of such a complexity however, is sensitive to certain parame-
ters and implementation details (like the mechanism of random stimulation) and
it is very difficult to get identical behavior. The correspondence with the author
of (Izhikevich et al. , 2004) was very useful in dealing with many implementation
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Figure 6.3: A sample spike train obtained from the model, that used the “reset-
ting” implementation of STDP. The firing regime is a bit different than the one in
the original model, the firing to high, there is a lot of bursting.

Figure 6.4: A sample spike train obtained from the model using the “increment-
ing” implementation of STDP. The firing regime here resembles the regime from
the original model.

70



6.3 Implementation details

details1 but by the moment of writing we still haven’t figured out the STDP issue
(it is worth noting that the emergence of neuronal groups was also observable
in the other spiking regime). Nevertheless “incrementing” implementation is not
much different and results in approximately right spiking regime, so the rest of
the simulation was done in the following setup:

• Each neuron keeps LDP/LTP values. It needs only instantaneous (current)
value of LTD and a piece of LTP curve extending to the past up to the
maximal conduction delay (this guarantees that any target neuron that
receives a spike will be able to use the LTP value of the presynaptic neuron
recorded at the time it spiked). LTP is kept in a cyclic buffer.

• If the neuron i spikes, it alters the rate of change of all its excitatory presy-
naptic weights by increasing c∆ by values of LTP kept in the presynaptic
neurons (these values become significant if presynaptic neuron spiked re-
cently prior to the conduction delay, and so might have contributed to the
current spike of i). Recall that LTP is kept in a cyclic buffer, thus previ-
ous values extending up to maximal conduction delay are available. If we
denote the current time by t and conduction delay from neuron j to i Dj→i
we have:

c∆j→i := c∆j→i + LTPj[(t−Dj→i)] (6.11)

for every presynaptic neuron j of i ((t−Dj→i) is reduced modulo maximal
conduction delay). After updating presynaptic c∆, neuron i updates its own
LTPi/LTDi functions, increasing2 them by A = 0.004.

• If the neuron i receives a spike from another neuron j it decreases c∆j→i by
its own value of LTDi (note this value will be significant if neuron i spiked
recently).

• Changes to cj→i are not instantaneous, in fact all STDP contributions are
accumulated in c∆j→i for a 1000ms (time steps) and impact cj→i once per
1s (model time) according to long term dynamics described in subsection
6.2.3.

LTP is implemented as a cyclic buffer, in each step of simulation next value
(modulo maximal conduction delay) is computed from previous one. The same
applies to LTD but in this case previous value can be deleted. Since STDP curve

1The author would like to greatly acknowledge the help of Dr Eugene M. Izhikevich who
without any hesitation answered a number of emails containing an even greater number of
questions.

2The other implementation of STDP discussed in this section differs only in this point: the
values of LTP/LTD are being reset to A = 0.004 instead of being increased.

71



6. FURTHER RESEARCH

is an exponential curve, the computation is particularly simple, the next value is
obtained from previous by multiplication by a constant multiplier.

6.3.3 Neuronal dynamics

Recall from 6.2.4 that the dynamics of each neuron is controlled by:

dV

dt
= 0.04V 2 + 5V + 140− u− gAMPA · V+

− gNMDA ·

(
(V+80)

60

)2

1 +
(

(V+80)
60

)2 · V+

− gGABAA · (V + 70)+
− gGABAB · (V + 90)

du

dt
= a(bV − u)

(6.12)

The above setup suggests a rather straightforward method of numerical solution
based in the first order Euler method, but this could be tricky. The incorporation
of inhibitory synaptic receptors in the model introduces a numerical instability.
Note that when V is positive, inhibitory conductances give it a huge inhibitory
kick. In the next step V is strongly negative and gets a strong excitatory push in-
stead. This oscillatory mechanism may amplify under certain conditions3 (which
are not very rare to occur in the system of 100000 neurons) and lead to nu-
merical instability (V becomes so large, that recovery variable becomes NaN ;
because recovery is not being reset after the spike, the instability remains con-
served once it appears). This undesirable phenomenon can be avoided by using
mixed open/closed Euler scheme4. The open part includes the voltage and re-
covery dependent part of the equation, whereas the closed part includes voltage
dependent synaptic conductances. Since they depend linearly on V (with the
exception of NMDA which is “nearly” linear), the closed scheme has a uncom-

3The exact mechanism leading to instability is somewhat knotty and depends on the details
of numeric implementation. In general the instability emerges, when an inhibitory spiking
mechanism gets activated, which gradually increases the recovery variable. Once the recovery
variable is very large, V may become numeric infinity, and then u becomes not a number (NaN).
The process takes some time, and is not a problem of single iteration. In a huge system however
(like the one discussed), it turned out to eliminate about ≈ 40 neurons each 1000 ms, which is
obviously not acceptable. Increasing the precision wouldn’t improve the situation significantly.

4This method was suggested by Dr. E. Izhikevich, who faced similar problems while imple-
menting the original model.
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plicated solution:

Vt+1 = (Vt + ∆t · ((0.04 · Vt + 5) · Vt − u+ 140− 70 · gGABAA − 90 · gGABAB))
1 + ∆t · (gAMPA + gNMDA · (VNMDA) + gGABAA + gGABAB)

(6.13)
where we assume:

VNMDA =

(
(Vt+80)

60

)2

1 +
(

(Vt+80)
60

)2 (6.14)

is computed with the same time step as synaptic conductances (that is 1ms for
discussed simulation) and is kept constant (as well as other synaptic parameters)
while the finer (that is 0.5 ms) time step solution of voltage is computed.

6.3.4 Code structure and parallelization
Simulating 100000 neurons is a demanding task for contemporary computers,
even if the neurons are fairly simple. Each second of simulated model time re-
quires billions of unavoidable floating point operations, and interactions. To some
extent the problems found in neuro-simulations related to code parallelization are
similar to those of computational fluid dynamics with the neuronal activity re-
sembling fluid flow over a very complex domain5. This particular model however
is well suited for parallelization and does not incorporate any global conservation
principles like those found in inviscid fluid simulations6. The original simula-
tion was performed (according to Izhikevich et al. (2004)) on a Pentium 1 GHz
with 1.5 GB of RAM. At the time of writing this thesis we could utilize two
machines: 4 core Xeon 2.0 GHz with 4GB of RAM and an 8 core Xeon 2.8 GHz
with 10 GB of RAM7. In order to exploit the multi-core architecture the OpenMP
(OpenMP (2008)) language extensions available in GCC 4.2 and above were used.
OpenMP is a very convenient parallelizing language extension which lets one use
contemporary shared memory parallel systems while skipping laborious thread
maintenance sections. The parallelization is achieved by a system of pragmas
inserted before important sections of code e.g. #pragma parallel for inserted
in the program before for loop, instantly parallelizes the loop, by default the

5In fact a detailed brain simulation would have to take into account a flow of oxidized blood
and diffusion of nutritional substances etc., which would incorporate CFD as well...

6In such case the fluid flow (velocity) vector field has to have a zero divergence over the
whole domain, which requires solving a global system of linear equations. In the case of neu-
rosimulations such global principles can be imposed for example by a limit on global activity
depending on the inflow of substances required for metabolism etc.

7The author would like to thank Mr Leszek Rybicki for the opportunity of using his 8 core
Mac Pro.
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Figure 6.5: Structural presentation of the code used in simulation. The same
structure can be extended to an arbitrary number of cores.

number of threads created depends on the number of available cores in the ma-
chine. But parallelizing code is far from being that simple, there is a lot of work
left with the synchronization of threads and effective load balance which are not
trivial. The crucial step in case of neuro simulations (as well as CFD etc.) is the
propagation of information across the domain (that is propagation of spikes in
this case) which inherently requires synchronization of multithread/distributed
systems and therefore its efficient implementation is critical. Each spike has a
set of targets associated with it, every target has an established delay. In the
discussed model, the spikes are handled as follows:

• When a neuron spikes (V jumps above 30mv and is being reset), the short
term depression/facilitation is computed, and a spike is added to the spike
queue. The queue (that consists in reality of a couple of queues) contains the
source neuron number, depression/facilitation value, index of the processed
synapse (0 initially) and the time elapsed since the spike (0 initially). The
important issue here is that the list of synapses of every neuron is sorted
(ascending) with respect to axonal delay.

• After all neurons are processed, the next step is to take care of the spikes.
The spike queue is examined one by one. First, the time elapsed since spike
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occurrence is incremented. Next, all the synapses that match the current
delay are processed (the fact that the synapses are sorted with respect
to axonal delay guarantees that all the synapses are processed on time).
If there are no more synapses with matching delays, next spike is being
processed.

• Finally the queue is inspected once again from the beginning, deleting all the
spikes that reached their final synapse (until an unfinished spike is found).
Eventually every spike will end up in this initial segment of the queue and
get deleted, not necessarily right after it reaches it’s final synapse, but at
worse a couple of time steps later.

The above algorithm is optimal, since every event of spike reaching its destination
has to be processed, and in the presented setup each such event is processed ex-
actly once, and exactly when it should. It is impossible to process all the arrivals
right at spike time, since synaptic conductances depend on future postsynaptic
voltage to become available after axonal delay. In our implementation the pre-
sented mechanism had to be adapted to parallelization issues. This requires that
the spike queue be locked while a spike is being added (since many threads might
have reached the spiking neuron at the same time). Adding a semaphore would
solve the problem but could introduce significant lags (in fact it does). A better
idea is to split the spike queue into many independent queues, each attached to
a certain thread id. That way, locking is avoided and all the threads can process
their neurons independently. After neurons have been processed, the spike queues
can again be processed in parallel. There is unfortunately an unavoidable critical
section here. When a spike is processed, it alters synaptic conductances of the
postsynaptic neuron, but the same neuron might be a target of another spike, be-
ing processed by different thread. The most efficient solution is to prepare a lock
for every neuron and move the modifying code into protected area. It requires
some extra memory for the locks, but is certainly more efficient than creating a
global critical section (since there are 100000 neurons and just a couple of parallel
threads the concurrency is rare and the time the threads spend on locks is not
ruinous). One tiny improvement would be to create two locks per neuron – an
excitatory lock and inhibitory lock, since excitatory and inhibitory spikes modify
different conductances and therefore are independent.

In the presented setup the program was able to utilize about 750% of processor
time8 on an 8 core machine (the remaining 50% idle was lost on synchronization
and memory access). Any further improvements of the code would have to take
into account costly access to the systems memory which would become a real
bottleneck for systems with more than 8 cores. Most of such improvements would

8Which is not bad, taking into account Amdahls law.
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be low level and depend heavily on particular architecture (loop unrolling, cache
optimization etc.).

6.4 Results
The simulation was run for a couple of days which corresponds to several hours
of model time (the simulation was carried out for a number of times in different
regimes). Initial excitatory weights were in all cases set to 0.1, the model needed
about a 1000 seconds (model time) to approach asymptotic firing rate (see figure
6.6). In the setup discussed above excitatory neurons fired between 8 and 9 spikes
per second. Inhibitory neurons had higher firing rates (between 11 and 13 spikes
per second) that balanced their smaller number and connectivity. The model
converged into a homeostasis – even though weight continued to change, the the
global behavior remained constant. By looking at figure 6.7 it is easy to see that

Figure 6.6: The firing rate versus time at the beginning of the simulation for
excitatory neurons (black) and inhibitory neurons (blue). The plot on right shows
the same data in semi logarithmic scale. Clearly the system converges into an
equilibrium state after about 1000s of model time.

the spatial distribution of activity was rather homogenous as expected. There
were some variations on the small scale though, note a number of “hot” neurons
on the sphere picture, but they were evenly distributed all over the sphere. Small
number of fairly quiescent neurons is also visible. Distribution of synaptic weights
and EPSP (figure 6.8) was a good marker indicating whether the model is in the
right spiking regime (corresponding to the original model). The most interesting
part of this numerical study was the emergence of spontaneous neuronal groups.
In each such group neurons are organized so that they fire in time locked intervals
(not necessarily synchronously). In (Izhikevich, 2006c) Eugene M. Izhikevich
coined a term polychronous for such a behavior. In his own words “Since the
firings of these neurons are not synchronous but time-locked to each other, we
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Figure 6.7: Variation of activity (spiking rate) in the sphere model. The hue
represents excitatory activity in logarithmic scaling. The figure demonstrates that
the activity is very homogenous.

refer to such groups as polychronous, where poly means many and chronous means
time or clock in Greek. Polychrony should be distinguished from asynchrony,
since the latter does not imply a reproducible time-locking pattern, but usually
describes noisy, random, nonsynchronous events.”. Polychrony is an interesting
phenomenon since these groups can overlap, and each neuron could be a member
of many such groups. An analogy in classical circuits could be that a single logical
gate be a potential part of completely different computations depending on a
current cycle (which sounds inconceivable with present technology). Nevertheless
neurons are not as simple as logical gates, and could be rather described as
functional circuits. In this setting the participation in such a polychronous group
sounds a bit like switching a context in a microprocessor.

Emergence of polychronous groups was studied in (Izhikevich et al. , 2004)
using a simple algorithm based on the concept of anchor neuron. We used this
algorithm in present study as well, although in later work (Izhikevich, 2006c)
other method of detecting groups was incorporated. The anchor-based algorithm
works as follows:

• Select an anchor excitatory neuron having two or more strong (within 5%
of the strongest connections) connections to other excitatory neurons. This
ensures that firing of the anchor neuron increases the probability that target
neurons will fire in the appropriate time, resulting from axonal delays.

• For the descendants of the anchor neuron, find any common postsynap-
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Figure 6.8: Distribution of excitatory weights (left) and corresponding distribu-
tion of excitatory postsynaptic potentials (EPSP). EPSPs are computed by taking
into account the state of synaptic short term depression/facilitation and assuming
that the postsynaptic neuron is at rest (compare with original model Izhikevich
et al. (2004), the results are very similar.)

tic targets that have strong connections and matching delays, that is to
say if the descendants of the anchor neuron fire excited by the anchor, the
resulting spikes will reach the common target synchronously (within 2ms
interval). If no such common targets are found, the anchor neuron is dis-
carded.

• If there are such common targets, they are added to the group. The process
is repeated, that is to say common postsynaptic targets with matching
delays for all the current members of the group are found. The process
finishes when there are no more such targets.

The algorithm, though rather straightforward, has some details which may severely
influence the results. First of all, in the original model, the possible targets were
restricted to the local circuitry neurons, that is long myelinated connections were
not taken into account. Secondly not every target with converging delays is se-
lected as a new group member, only those whose excitation was strong enough.
This leaves some space for ambiguity. Authors in (Izhikevich et al. , 2004) used
estimated EPSP as a discriminating factor, but the estimation itself does not take
into account the state of the postsynaptic neuron (see figure 6.8) which makes
this estimate rather artificial. Furthermore, EPSPs change all the time which
may cause some further distortions. In the original paper authors found about
1.5 thousand polychronous groups, whereas in the presented implementation de-
pending on the parameters of group finding algorithm we found between 4000
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Figure 6.9: Schema of the group finding algorithm. A is the anchor neuron, B,C
its immediate descendants. We assume that B and C fire after excitation coming
from the anchor. Next we seek for common postsynaptic targets having converging
delays (D). E and F are discarded from the group.

up to 13000 such groups. These figures are not frightening though since later
developments with other group finding algorithms show that the number of poly-
chronous groups could easily exceed the number of neurons in the system (this
system contains 80000 excitatory neurons!). The differences are also by no means
inconsistent with the original results presented in (Izhikevich et al. , 2004) and
may be due to some tiny details of the algorithm the authors of the original model
actually used (unfortunately the exact code they used is not available9). On the
contrary they show that the concept of spontaneously developing neuronal group
is robust and manifests itself with variable intensity in wide range of models and
group search algorithms. In the end we decided not to worry about the huge
number of the groups and decided to build them in the following setup:

• Ignore the global connections - they have rather long axonal delays and
provide feedback (reentrant) connections not much correlated with the local
activity.

• The decision of whether a neuron should be added to the group is based
on the value of the synaptic weights, not by estimated EPSP. Large weight
usually means large EPSP (certainly tiny weights force small EPSPs). In
this setup the groups should be more stable, though the algorithm finds far
more groups than the original one.

9Dr Eugene M. Izhikevich was so kind to provide some pieces of code and valuable hints for
which the author is grateful.

79



6. FURTHER RESEARCH

Figure 6.10: A fraction of the groups fund in one of the simulations (total number
of groups in this case was about 13000). The left figure shows 2% of total number
of groups, while the right figure shows 10%.

The groups found in our simulations are plotted in figure 6.10. The picture
resembles the original figure in (Izhikevich et al. , 2004).

The whole numerical simulation was conducted in order to seek for power
law distributions among the signals between the groups. Note that this setup
is entirely different compared to the one presented in chapter 5: the groups
are not isolated, furthermore they even frequently overlap. These circumstances
caused difficulties in deciding what actually should be regarded as the group
input, and what should be regarded as output. Nevertheless we provided a couple
of simulations, calculating the number of spikes incoming and outgoing to/from
every group and analyzed the output histograms. Unfortunately on the current
state of the art we have to conclude that we cannot confirm the existence of power
law distributions in this system.

There are a number of reasons why the histograms presented in figure 6.11
could be questionable. First of all there is some level of noise in the system. At
least 10% of the spikes that appear are forced by random process and many others
could be attributed to reentrant inputs, which in this statistics would also act as
noise (since these connections come from long distances, have significant delays
and usually are not correlated with local activity). The noise level in this case
is difficult to estimate but it is easy to imagine that it could be very significant.
Secondly the groups are constantly changing (some appear and some disappear),
and even though many of the groups are persistent it is questionable on how to
treat those volatile groups in the statistics (in the above setup they were ignored).
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Figure 6.11: Sample histograms of group activity. Left figure shows the output
(number of spikes departing from the group versus number of groups), the right
figure shows the same statistics divided by the activity of an anchor neuron. In the
lower row are the logarithmic plots.

Even though at short intervals the number of volatile groups is small, in the long
turn they may become very significant.

The numerical experiment described above should be considered as a warm
up task before the real challenge which is simulating a whole functional brain in
a computer system. First efforts to run such an extensive simulation are already
being made (Izhikevich & Edelman, 2008). The idea is to reconstruct the large
scale connectivity of a fully sized brain based on DTI (Diffusion Tensor Imaging)
and anatomical data. The small scale connectivity can be then reconstructed
randomly with respect to known distributions found in various parts of the brain.
In further developments the model should be equipped with the possibility of
small scale rewiring based on neurogenesis. The results already published are
promising, although in general the presented project is a daunting task and has a
high risk of failure10. Such an experiment would also be an invaluable opportunity

10Hardly anybody believes that such simulations will lead us to strong AI in immediate future,
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to study the connectivity of the brain in a global setup without the restrictions
of the empirical approach.

but they could be extremely valuable from the medical point of view and teach as a lot about
brain disorders and related issues.
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Chapter 7

Conclusions

In this thesis we briefly discussed the current state of the art in random graph
theory, in particular the recent development in scale-free and small world graphs.
We examined dynamical spiking neural models and their relevance for mimicking
phenomena found in biological neurons. In Section 4.1 we introduced a new spik-
ing network model that is sufficiently simple to allow for theoretical approach, yet
its dynamics is rich enough to clearly exhibit scale-free properties. The spike flow
model provides an interesting theoretical hint linking together neurodynamics
with power law graphs. Moreover, the argument in the crucial Section 4.2 pro-
viding a description of the large-size behavior of our model in terms of a winner-
take-all dynamics, seems to be rather robust and independent of many specific
features of the model, which makes us believe it is universal for a broad class of
similar models which do not necessarily have Gaussian and or i.i.d. weights, and
even admitting possible modifications to the dynamics etc. A further important
issue, already signalled in the previous chapters above, is that our results are
by no means contradictory to the lack of scale-free properties reported in cer-
tain real-world neural networks, e.g. negative results for C.elegans worm nervous
system, whose connectivity reveals rather exponential decay – see Amaral et al.
(2000); Koch & Laurent (1999). The point is that we only expect scale-free

properties to arise in presence of sufficiently complicated information processing
units, corresponding for instance to neuronal groups rather than single neurons,
and exhibiting a kind of (collective) state memory. This is often not the case
for individual biological neurons or their models, where only the presence of a
short refractory period carries some information about the history of previous
excitations which cannot be stored for later use (roughly speaking the arrival of
the system at the stable rest equilibrium practically erases all information about
previous activity). Things can be different however if a recurrent group of neu-
rons is taken into account as a single computational unit. In this case the rich
dynamics inside the group can develop a kind of a collective state memory we
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have in mind (the phase space of the system is so complex that once thrown
out of equilibrium it requires a significant amount of time to get back to the
rest state). In chapter 5 (and a recent paper Piękniewski (2007)) we show a
numerical experiment based on the Eugene M. Izhikevich simple spiking neuron
model (Izhikevich, 2003) that supports the above claims. In brief, the experiment
shows that by substituting small neuronal groups in place of single neurons, the
resulting activity graph (analogous to the spike-flow graph discussed above) be-
comes a scale-free network, even for fairly small neuronal groups (less than 20
neurons per group). In chapter 6 we investigate possible further studies giving
first results. These results did not give a clear support for our thesis and require
further investigation, possibly related to the very concept of spontaneous group
(or the definition of group activity combined with the methodology of obtaining
the related “functional network”). These early studies also give an idea about
difficulties that can be encountered with more biologically plausible models. Last
but not least our results are supported by the important empirical findings of
Egúiluz et al. (2005), which show that the functional network recorded by fMRI
in the human brain is not only both scale-free and small-world, but also that the
power law exponent is approximately ≈ 2, in good agreement with our theoretical
and numerical results. The methodology of reconstructing the functional graph
in (Egúiluz et al. , 2005) much resembles that used in chapter 5 (which stands
in contrast to the methodology used in chapter 6, where the spikes were counted
directly – which is not achievable in empirical studies with current technology )
and gives important clues on further research directions, especially those related
to large scale brain simulation (Izhikevich & Edelman, 2008).
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Markram, Henry, Lübke, Joachim, Frotscher, Michael, & Sakmann,
Bert. 1997. Regulation of synaptic efficacy by coincidence of postsynaptic APs
and EPSPs. Science, 275, 213–215. Available from: http://www.sciencemag.
org/cgi/content/abstract/275/5297/213. 66

McCulloch, Warren, & Pitts, Walter. 1943. A logical calculus of the
ideas immanent in nervous activity. Bulletin of mathematical biology, 5(4),
115–133. Available from: http://dx.doi.org/10.1007/BF02478259, doi:10.
1007/BF02478259. 29

Minsky, M., & Papert, S. 1969. Perceptrons. MA: MIT Press. 29

Montoya, Jose M., & V., Ricard V. Solé. 2002. Small world patterns in
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Rényi, Alfréd, 6
rewiring, 13
Rosenblatt, Frank, 29

Simon, Herbert A., 16
simulated annealing, 31
small world, 10, 11
spectrum, 20
spike flow graph, 39, 49
spike-flow graph, 2
spiking

network, iii, 2, 53, 54
neuron, 2, 3, 32, 34, 37, 40, 54, 64,

75
regime, 69, 71, 76

spin glass, 31
Strogatz, Steven H., 13

unicyclic component, 9

Watts, Duncan J. , 13

Zipfs law, 15

100


	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Structure of this thesis

	2 Random and power law graphs
	2.1 Introduction
	2.2 Erdos-Rényi random graphs
	2.2.1 Onset of the giant component - phase transition
	2.2.2 Erdos-Rényi random graphs and the real world

	2.3 Fixed degree distribution models
	2.4 Models based on real world phenomena
	2.4.1 Small World Graphs
	2.4.2 Preferential attachment and power law graphs
	2.4.3 Duplication models for biological networks
	2.4.4 Connectivity of the brain

	2.5 Appendix: Mathematical tools
	2.5.1 Spectral methods
	2.5.2 Tree matrix theorem
	2.5.3 Clustering coefficient


	3 Contemporary neural models
	3.1 Introduction
	3.2 Hodgkin-Huxley model
	3.2.1 Structural dynamics of neural cell

	3.3 Firing rate models
	3.3.1 McCulloch-Pitts neuron and the perceptron
	3.3.2 Multi Layer Perceptrons
	3.3.3 Hopfield network

	3.4 Reduced ionic models
	3.5 Phenomenological spiking models
	3.5.1 Integrate and fire models
	3.5.2 Fithugh-Nagumo model
	3.5.3 Simple model by Eugene M. Izhikevich


	4 Spike flow graphs
	4.1 Basic model
	4.2 Winner-take-all dynamics and ground states
	4.3 Power law for spike-flow in-degrees
	4.4 Numeric results

	5 Scale-freeness of dynamical spiking networks
	5.1 Introduction
	5.2 Model details
	5.3 Results

	6 Further research
	6.1 Introduction
	6.2 The model
	6.2.1 Anatomy
	6.2.2 Short term synaptic dynamics
	6.2.3 Long term synaptic dynamics
	6.2.4 Neuronal dynamics

	6.3 Implementation details
	6.3.1 Short term dynamics
	6.3.2 STDP
	6.3.3 Neuronal dynamics
	6.3.4 Code structure and parallelization

	6.4 Results

	7 Conclusions
	Bibliography
	Index

