
Warsaw University
Faculty of Mathematics, Informatics and Mechanics

Filip Murlak

E�ective Topological Hierarchies of

Recognizable Tree Languages

PhD dissertation

Supervisor

dr hab. Damian Niwi«ski

Institute of Informatics
Warsaw University

January 2008

Author's declaration:
aware of legal responsibility I hereby declare that I have written this disser-
tation myself and all the contents of the dissertation have been obtained by
legal means.

January 23, 2008 .
date Filip Murlak

Supervisor's declaration:
the dissertation is ready to be reviewed

January 23, 2008 .
date dr hab. Damian Niwi«ski

3

Abstract

In this study we investigate the topological complexity of recognizable lan-
guages of in�nite trees. We are particularly interested in deciding topological
properties of a language, based on the structure of an automaton that rec-
ognizes it.

We show that weak automata with index (0, n) can only recognize lan-
guages from the Borel class Π0

n and, dually, (1, n + 1)-automata can only
recognize Σ0

n languages. For deterministic tree languages, we also prove the
converse implication. In other words, we show that the Borel hierarchy and
the weak index hierarchy coincide for deterministic tree languages. We pro-
vide an e�ective procedure to calculate the position of a given deterministic
language in both hierarchies.

Then we move to the Wadge ordering of recognizable languages. We give
an e�ective description of the Wadge ordering of deterministic tree languages.
The obtained hierarchy has the height ωω·3 + 3. We complete the results on
deterministic languages by providing an algorithm computing the Wadge
degree of a given deterministic language. Finally, we prove that the Wadge
hierarchy restricted to weak languages has the height of at least ε0, which is
the least �xpoint of the exponentiation with the base ω.

Keywords

automata on in�nite trees, Wadge hierarchy, Borel hierarchy, index hierarchy,
decision problems

ACM Computing Classi�cation System

F.4.3, F.1.1, F.1.3

AMS Mathematics Subject Classi�cation

68Q45, 03D30, 03E15

4

5

Streszczenie

Niniejsze studium jest po±wi¦cone topologicznej zªo»ono±ci regularnych j¦zy-
ków drzew niesko«czonych. Szczególnie interesuje nas rozstrzyganie topo-
logicznych wªasno±ci j¦zyka na podstawie struktury rozpoznaj¡cego go au-
tomatu.

Pokazujemy, »e sªabe automaty o indeksie (0, n) mog¡ rozpoznawa¢ je-
dynie j¦zyki z klasy Σ0

n i dualnie, sªabe automaty o indeksie (1, n + 1)
rozpoznaj¡ j¦zyki Π0

n. Dla j¦zyków deterministycznych, tj. rozpoznawanych
przez automaty deterministyczne, wykazujemy równie» odwrotn¡ implikacj¦.
Uzyskujemy w ten sposób równo±¢ hierarchii borelowskiej i sªabej hierar-
chii indeksu dla j¦zyków deterministycznych. Prezentujemy tak»e procedur¦
obliczaj¡c¡ poªo»enie zadanego j¦zyka deterministycznego w obu tych hie-
rarchiach.

Nast¦pnie przechodzimy do analizy hierarchii Wadge'a dla regularnych
j¦zyków drzew. Podajemy efektywny opis porz¡dku Wadge'e na j¦zykach
deterministycznych otrzymuj¡c hierarchi¦ o wysoko±ci ωω·3 + 3. Prezentu-
jemy algorytm obliczaj¡cy stopie« Wadge'a dla zadanego j¦zyka determi-
nistycznego. Na koniec wykazujemy, »e hierarchia Wadge'a dla j¦zyków roz-
poznawanych przez sªabe automaty ma wysoko±¢ co najmniej ε0 (najmniejszy
punkt staªy pot¦gowania przy podstawie ω).

Sªowa kluczowe

automaty na drzewach niesko«czonych, hierarchia Wadge'a, hierarchia bore-
lowska, hierarchia indeksu, problemy decyzyjne

ACM Computing Classi�cation System

F.1.1, F.1.3, F.4.3

AMS Mathematics Subject Classi�cation

68Q45, 03D30, 03E15

6

7

Acknowledgements

First and foremost I thank Damian Niwi«ski. He has been the best su-
pervisor I could wish for. He talked me into taking on this topic, so perfectly
combining my favourite areas: automata theory, in�nite combinatorics and
topology. By sending me to summer schools and conferences, he let me see
people doing science for life � working hard and having fun out of it; this
was an excellent motivation. He always had time to read and think over my
writings, never accepting anything dull, ugly, or unclear. Often to my great
discontent, he made me rewrite this thesis again and again, while the argu-
ments were slowly becoming precise, adequate, and readable. He showed me
what it really meant to understand, and how much too fast I was to believe I
did. He pointed out for me this subtle point of balance between being humble
and arrogant towards mathematics.

The second person who had immense in�uence on this thesis is Jacques
Duparc from the University of Lausanne. We obtained the lower bound for
weakly recognizable languages in collaboration, and also the other results
on the Wadge degree rely entirely on what he taught me. Jacques has a
rare ability to explain extremely complex mathematical tools in a way that
makes them instantly �t your brain like a long used hammer �ts the hand of
a carpenter.

I am very grateful to Igor Walukiewicz from Université Bordeaux 1 for
the invaluable suggestions about the exposition of the Wadge hierarchy for
deterministic languages. If the present Chapter 3 has any elegance, it is in
great part due to Igor's help.

I am also indebted to the professors at the Warsaw University and the Pol-
ish Academy of Sciences. Zo�a Adamowicz, Adam Krawczyk, Jerzy Tyszkie-
wicz, Paweª Urzyczyn, and Piotr Zakrzewski taught me logic and set theory;
their lectures were always di�cult enough to be inspiring, and easy enough
to be fun. The courses on automata, logic, and semigroups, by Mikoªaj Bo-
ja«czyk, and on veri�cation, by Sªawomir Lasota, brought me up to date
with the most recent developments in the �eld.

Many thanks to Anna Osma«ska-Zych from the Secretariat for guiding
me through all the rules and regulations of the PhD studies. She is one of
the most helpful people in the department.

It felt really good to have the support of my father, always believing in
me, my mother, understanding the dilemmas of a would-be mathematician,
my brothers, putting up with me far more patiently than I deserved, my

8

friends, making this world feel like home, and Ania, giving me reasons to
work, or not to work, somehow always knowing exactly which was it that I
actually needed.

During the preparation of the thesis I was supported by Polish government
grants 4 T11C 042 25 and N206 005 31/0881. The results on the Wadge
hierarchy of weakly recognizable languages were partially obtained during
my visit at the University of Lausanne, Switzerland, �nanced by AutoMathA
(ESF Short Visit Grant 1410).

To lay out the thesis I used a latex template written by my colleague,
Jarosªaw Buczy«ski.

Contents

1 Measuring Hardness 11
1.1 Automata for Veri�cation . 11
1.2 Topological Hardness . 12
1.3 Questions We Answer . 13
1.4 Open Problems . 14

2 Index and Borel Rank 17
2.1 Words, Trees, Languages . 17
2.2 Automata . 19
2.3 Index Hierarchies . 20
2.4 Alternation . 22
2.5 Weak Hierarchy . 24
2.6 Topological Hierarchy . 25
2.7 Weak Index vs. Borel Rank 27
2.8 Unravelling the Patterns . 30
2.9 The Power of the Weak . 32
2.10 Solution . 36

3 Wadge Ordering 39
3.1 Scenario . 39
3.2 Games and Automata . 41
3.3 Operations . 45
3.4 Canonical Automata . 47
3.5 Without Branching . 50
3.6 The Use of Replication . 54
3.7 Automata in Order . 58
3.8 Patterns in Automata . 63
3.9 Hard Automata . 66

9

10 CONTENTS

3.10 Closure Properties . 71
3.11 Completeness . 79
3.12 Algorithm . 82

4 Wadge Degrees 85
4.1 More on Wadge Hierarchy . 85
4.2 Arithmetic . 87
4.3 Calculating Degrees . 89
4.4 Conciliatory World . 96
4.5 A Lower Bound . 99

Bibliography 105

Index 109

Chapter 1

Measuring Hardness

During over 40 years of studies into recognizable languages of in�nite words,
two measures of hardness have proved useful and inspiring: the index hierar-
chy, which re�ects the combinatorial complexity of the recognizing automa-
ton, and the Wagde hierarchy, which is a subtle re�nement of the classical
Borel/projective hierarchy. The remarkable relations between the two hier-
archies were best re�ected in Klaus Wagner's results, giving rise to what is
now known as the Wagner hierarchy.

Taking the Wagner hierarchy as a paragon, we attempt to provide an
equally complete and, hopefully, not less beautiful picture for recognizable
languages of in�nite trees. In this we succeed only partially.

1.1 Automata for Veri�cation

Tree automata, designed by Michael O. Rabin as a tool to prove decidabil-
ity of second order monadic logic of two successors, are today � together
with µ-calculus � an important theoretic tool in modeling and veri�cation
of concurrent systems. In one of possible approaches, a tree represents a
possible behaviour of an analysed system, and an automaton is a coded cor-
rectness condition. While the e�ciency of veri�cation methods depends on
the simplicity of the correctness conditions, they often result redundant when
modeling real systems. Therefore, algorithmic methods for simplifying the
form in which an actual correctness condition is expressed would be welcome.

The most interesting measure of complexity of such a condition is the
nesting depth of positive and negative constraints on the events occurring

11

12 CHAPTER 1. MEASURING HARDNESS

in�nitely often. The formalization of that criterion gives the notion of the
index of an automaton. Usually, possible behaviours of the system are also
speci�ed by means of an automaton and veri�cation reduces to the inclusion
problem for automata, which can be further reduced to the emptiness prob-
lem. The complexity of the emptiness problem seems to depend mainly on
the index of the automaton: known algorithms are exponential in the index
but only polynomial in the number of states [4, 8, 32].

This motivates the investigation of the index of automata. The basic task
here is the index problem, i. e., calculating the minimal index of an automaton
recognizing a given language. So far, there have been presented procedures
calculating the non-deterministic indices of regular path languages [13, 25],
and, more generally, deterministically recognizable tree languages [27, 37].
The µ-calculus approach resulted in a procedure deciding if a given formula
of modal µ-calculus is equivalent to a formula of modal logic [28].

1.2 Topological Hardness

The classical descriptive set theory classi�es subsets of Polish spaces with
respect to their simplest de�nitions in terms of projection, countable union
and complementation of the basic open sets. The result of this classi�cation is
the Borel/projective hierarchy which can be used as an alternative measure of
complexity of recognizable languages. The examples by Skurczy«ski [34] and
the Gap Theorem by Niwi«ski and Walukiewicz [26] suggest that the index
and the Borel rank of recognizable languages are closely related. Comparing
these two measures of complexity may be interesting on its own, but it is
even more so thanks to the applications in the veri�cation theory.

Yet another objective of studying the topological hardness of recognizable
languages is to compare di�erent models of computation. What is more
powerful: deterministic or weak alternating automata? It is known that
there are deterministic languages that are not weakly recognizable and vice
versa. How to compare, if not by inclusion? An even more exotic case:
deterministic tree languages versus deterministic context free word languages.
How to compare trees with words?

A promising tool is the Wagde ordering based on the existence of con-
tinuous reductions between subsets of Polish spaces. This ordering induces
a hierarchy of languages that re�nes immensely the hierarchy of Borel and
gives a very subtle measure of hardness. Using the Wadge hierarchy one

1.3. QUESTIONS WE ANSWER 13

can compare any classes of languages of in�nite trees and words by simply
looking at the height of the Wadge hierarchy restricted to these particular
classes.

One can �nally be interested in an absolute measure of hardness. Again,
the Wadge hierarchy is a reasonable candidate, since it puts languages into
an almost linear order. As it is, the Wadge hierarchy provides a measure
for Borel sets only, but assuming well justi�ed set-theoretic axiom of de-
terminacy, one can extend its applicability enough to cover all recognizable
languages of trees or words. In this setting, one may ask how far a particu-
lar recognizing device can get. We have known a lot about word languages
[6, 10, 33, 41], but almost nothing about tree languages. Which levels of the
Wadge hierarchy are inhabited by deterministically recognizable tree lan-
guages? And what about weakly recognizable tree languages?

1.3 Questions We Answer

The principal scope of this thesis are deterministic languages, but we start
and �nish with weak languages, i. e., languages recognizable by weak alter-
nating automata. In 1993 Skurczy«ski gave examples of Π0

n and Σ0
n-complete

languages recognized by weak alternating automata with index (0, n) and
(1, n + 1) accordingly [34]. We complete this result by showing that weak
(0, n)-automata can only recognize Π0

n languages and, dually, (1, n + 1)-
automata can only recognize Σ0

n languages (Chapter 2, Sect. 7).
Then we turn to deterministic languages. We continue the investigation of

weak index hierarchy and Borel hierarchy and prove that the two hierarchies
actually coincide for deterministic tree languages (Chapter 2, Sect. 8�10).
The starting point for this line of research is the Gap Theorem by Niwi«ski
and Walukiewicz [26], which implies that a deterministic language is either
Π0

3 and can be recognized by a weak alternating (0, 3)-automaton or is Π1
1-

complete and not weakly recognizable. The Gap Theorem actually gives an
e�ective criterion for this dichotomy: a deterministic automaton recognizes
a Π0

3 language if and only if its transition graph does not contain a certain
forbidden pattern. Inspired by this result, we provide analogous forbidden
patterns for the remaining �ve Borel classes and thus prove decidability of
the weak index hierarchy and the Borel hierarchy for deterministic languages.

Afterwords, we re�ne our analysis and give an e�ective description of the
Wadge ordering of deterministic tree languages (Chapter 3). The obtained

14 CHAPTER 1. MEASURING HARDNESS

hierarchy has the height ωω·3 + 3, which should be compared with ωω for
regular word languages (the Wagner hierarchy) [41], ωω

2
for deterministic

context-free word languages [6], (ωCK1)ω for word languages recognized by
deterministic Turing machines [33], or an unknown ordinal ξ > ε0 for nonde-
terministic context-free word languages [10]. The key notion of our argument
is an adaptation of the Wadge game to tree languages, rede�ned entirely in
terms of automata. Using this tool we construct a hierarchy of canonical au-
tomata representing all Wadge degrees of deterministic tree languages, and
give a procedure calculating for a given deterministic automaton a Wadge
equivalent canonical automaton, thus �nding its place in the Wadge ordering.
The procedure runs within the time of �nding the productive states of the
automaton (the exact complexity of this problem is unknown, but not worse
than exponential).

Further on, we investigate the levels represented by deterministic tree
languages in the Wadge hierarchy of all Borel sets (Chapter 4, Sect. 1�3).
We complete the results on deterministic languages by calculating the Wadge
degrees of the canonical automata. The technique we use is based on the set-
theoretical counterparts of ordinal sum, supremum, and multiplication by ω1

of Wadge degrees, used previously by Jacques Duparc to describe the Wadge
hierarchy of deterministic context free word languages [6].

Towards the end, we return to weak languages and show a lower bound for
the height of the Wadge hierarchy for those (Chapter 4, Sect. 4�5). Instead
of full trees we work with conciliatory trees (those can have both �nite and
in�nite branches). We prove that the conciliatory analog of Wadge hierarchy
embeds into the ordinary Wadge hierarchy, and that the embedding preserves
weak recognizability. The conciliatory weak languages are closed by three
set-theoretic operations corresponding to the sum, multiplication by ordinals
< ωω and pseudo-exponentiation with the base ω1 of the conciliatory Wadge
degrees. In consequence, the Wadge hierarchy restricted to weak languages
has the height of at least ε0, which is the least �xpoint of the exponentiation
with the base ω. This should be contrasted with the aforementioned height
of the hierarchy of deterministic tree languages, which is as low as ωω·3 + 3.

1.4 Open Problems

Just like in classical complexity theory, the real challenge in automata the-
ory is nondeterminism. The power it gives to tree automata makes them

1.4. OPEN PROBLEMS 15

extremely di�cult to tackle. The Borel hierarchy and the Wadge hierarchy
of nondeterministic languages are still big unknowns. So is the decidability
of the index hierarchy, both nondeterministic and alternating.

In this study we only consider a very restricted version of nondeterminism
provided by weak alternating automata. Being the intersection of Büchi and
co-Büchi languages [19, 30], weakly recognizable languages form a rather
small subclass of all regular tree languages. In fact, this class does not
even contain all deterministic languages. On the other hand, it captures
some real nondeterminism, as it contains a lot of languages that cannot be
recognized by deterministic automata: Skurczy«ski's examples show that
weakly recognizable languages can have any �nite Borel rank [34], while
deterministic languages are either Π1

1-complete or are in Π0
3 [26]. However,

even in this simple case, the three most important hierarchies � index, Borel,
and Wadge � are not properly understood. Among other problems, there
are two conjectures formulated in this thesis: that the height of the Wadge
hierarchy of weak languages is ε0, and that the weak index hierarchy coincides
with the Borel hierarchy in the class of weak languages.

16 CHAPTER 1. MEASURING HARDNESS

Chapter 2

Index and Borel Rank

The investigation of topological complexity of regular word languages was
started by Lawrence H. Landweber in late 1960s. In [14] he described an
algorithm to calculate the Borel rank of a given language. Further research
brought elementary decision procedures for the index hierarchy [13, 25].

For trees the index hierarchy is well understood only for the deterministic
automata [25, 27, 37]. As for topological complexity, it goes much higher than
that of regular word languages. Indeed, while all regular word languages are
∆0

3 [14], deterministic automata of an index as low as (0, 1) can recognize
Π1

1-complete tree languages [23], and there are even weakly recognizable tree
languages on each �nite level of the Borel hierarchy [34]. On the other hand,
on each level of the deterministic index hierarchy one can �nd languages
which are ∆0

3. In other words, for some Π1
1-languages the index (0, 1) is

enough, but there are ∆0
3 languages that need an arbitrarily high index! It

might seem that the index and the Borel rank measure an entirely di�erent
kind of complexity. Yet, we will show that they are deeply related, provided
that a suitable version of index is considered.

2.1 Words, Trees, Languages

We use the symbol ω to denote the set of natural numbers {0, 1, 2, . . .}. For
an alphabet X, X∗ is the set of �nite words over X and Xω is the set of
in�nite words over X. The concatenation of words u ∈ X∗ and v ∈ X∗ ∪Xω

will be denoted by uv, and the empty word by ε. The concatenation is
naturally generalized for in�nite sequences of �nite words v1v2v3 The

17

18 CHAPTER 2. INDEX AND BOREL RANK

concatenation of sets A ⊆ X∗, B ⊆ X∗ ∪Xω is AB = {uv : u ∈ A, v ∈ B}.
A tree is any subset of ω∗ closed under the pre�x relation. An element

of a tree is usually called a node. A leaf is any node of a tree which is not
a (strict) pre�x of some other node. A Σ-labeled tree (or a tree over Σ) is a
function t : dom t→ Σ such that dom t is a tree. A full n-ary Σ-labeled tree
is a function t : {0, 1, . . . , n − 1}∗ 7→ Σ. The symbol TΣ will denote the set
of full binary trees over Σ.

For any trees t, s and v, a node of t, the result of the substitution of v with
s in t is a tree t′ whose domain is the set {w ∈ dom t : v is not a pre�x of w}∪
v dom s and

t′(u) =

{
s(u′) if u = vu′ for some u′

t(u) otherwise
.

Note that t′(v) = s(ε).

The concatenation of tree languages A,B is a tree language AB consisting
of all trees obtained from some t ∈ A by substituting every leaf u of t with
some tree su ∈ B. The concatenation of in�nite sequence of tree languages
is a natural generalization of the above. A more precise de�nition requires
an auxiliary notion of a limit. Let t0, t1, . . . be a sequence of trees such that

• dom t0 ⊆ dom t1 ⊆ . . .,

• ∀v ∈
⋃
m∈ω dom tm ∃nv ∀n ≥ nv tn(v) = tnv(v).

The limit t = lim tn is de�ned as follows:

• dom t =
⋃
m∈ω dom tm,

• t(v) = tnv(v).

An in�nite concatenation of tree languages L0L1 . . . consists of the limits of
all sequences t0, t1, . . . such that t0 ∈ L0 and tn+1 ∈ {tn}Ln+1 for all n.

The concatenation of trees s, t is the only element of the concatenation
{s}{t}. Similarly, the concatenation of in�nite sequence of trees t = t1t2t3 . . .
is the only element of {t1}{t2}{t3}

For v ∈ dom t we de�ne t.v as a subtree of t rooted in v, i. e., dom (t.v) =
{u : vu ∈ dom t}, t.v(u) = t(vu).

From now on, if not stated otherwise, a �tree� will mean a full binary tree
over some alphabet.

2.2. AUTOMATA 19

2.2 Automata

Out of a variety of acceptance conditions for automata on in�nite structures,
we choose the parity condition. A nondeterministic parity automaton on
words can be presented as a tuple A = 〈Σ, Q, δ, q0, rank〉, where Σ is a �nite
input alphabet, Q is the set of states, δ ⊆ Q×Σ×Q is the relation of transition
and q0 ∈ Q is the initial state. The meaning of the function rank : Q → ω
will be explained later. Instead of (q, σ, q1) ∈ δ one usually writes q

σ−→ q1.
A run of an automaton A on a word w ∈ Σω is a word ρw ∈ Qω such that
ρw(0) = q0 and if ρw(n) = q, ρw(n+ 1) = q1, and w(n) = σ, then q

σ−→ q1. A
run ρw is accepting if the highest rank repeating in�nitely often in ρw is even;
otherwise ρw is rejecting. A word is accepted by A if there exists an accepting
run on it. The language recognized by A, denoted L(A) is the set of words
accepted by A. An automaton is deterministic if its relation of transition is a
total function Q×Σ→ Q. Note that a deterministic automaton has a unique
run (accepting or not) on every word. We call a language deterministic if it
is recognized by a deterministic automaton.

A nondeterministic automaton on trees is a tuple A = 〈Σ, Q, δ, q0, rank〉,
the only di�erence being that δ ⊆ Q× Σ×Q×Q. Like before, q σ−→ q1, q2

means (q, σ, q1, q2) ∈ δ. We write q
σ,0−→ q1 if there exists a state q2 such that

q
σ−→ q1, q2. Similarly for q

σ,1−→ q2. A run of A on a tree t ∈ TΣ is a tree
ρt ∈ TQ such that ρt(ε) = q0 and if ρt(v) = q, ρt(v0) = q1, ρt(v1) = q2 and

t(v) = σ, then q
σ−→ q1, q2. A path π of the run ρt is accepting if the highest

rank repeating in�nitely often in π is even; otherwise π is rejecting. A run
is called accepting if all its paths are accepting. If at least one of them is
rejecting, so is the whole run. An automaton is called deterministic if its
transition relation is a total function Q× Σ→ Q×Q.

By Aq we denote the automaton A with the initial state set to q. A state
q is all-accepting if Aq accepts all trees, and all-rejecting if Aq rejects all trees.
A state (a transition) is called productive if it is used in some accepting run.
Observe that being productive is more than just not being all-rejecting. A
state q is productive if and only if it is not all-rejecting and there is a path

q0
σ0,d0−→ q1

σ1,d1−→ . . .
σn,dn−→ q such that qi

σi,d̄i−→ q′i, d̄i 6= di, and q
′
i is not all-rejecting

for i = 0, 1, . . . , n.

Without loss of generality we may assume that all states in A are produc-
tive save for one all-rejecting state ⊥ and that all transitions are either pro-
ductive or are of the form q

σ−→ ⊥,⊥. The reader should keep in mind that

20 CHAPTER 2. INDEX AND BOREL RANK

(1, 1) (1, 2) (1, 3) (1, 4) · · ·
� � � � � �
� � � � � �

(0, 0) (0, 1) (0, 2) (0, 3) · · ·

Figure 2.1: The Mostowski�Rabin index hierarchy.

this assumption has in�uence on the complexity of our algorithms. Trans-
forming a given automaton into such a form of course needs calculating the
productive states, which is equivalent to deciding a language's emptiness.
The latter problem is known to be in NP ∩ co-NP, but it has no polynomial
time solutions yet. Therefore, we can only claim that our algorithms are
polynomial for the automata that underwent the above preprocessing. We
will try to mention it whenever particularly important.

2.3 Index Hierarchies

The Mostowski�Rabin index of an automaton A is a pair

(min rankQ,max rankQ) .

An automaton with index (ι, κ) is often called a (ι, κ)-automaton. Scaling
down the rank function if necessary, one may assume that min rankQ is
either 0 or 1. Thus, the indices are elements of {0, 1} × ω \ {(1, 0)}. For an
index (ι, κ) we shall denote by (ι, κ) the dual index, i. e., (0, κ) = (1, κ + 1),
(1, κ) = (0, κ − 1). Let us de�ne an ordering of indices with the following
formula

(ι, κ) < (ι′, κ′) if and only if κ− ι < κ′ − ι′ .

In other words, one index is smaller than another if and only if it uses less
ranks. This means that dual indices are not comparable. The Mostowski�
Rabin index hierarchy for a certain class of automata consists of ascending
sets (levels) of languages recognized by (ι, κ)-automata (see Fig. 2.1).

The fundamental question about the hierarchy is the strictness, i. e.,
the existence of languages recognized by a (ι, κ)-automaton, but not by a
(ι, κ)-automaton. The strictness of the hierarchy for deterministic automata
follows easily from the strictness of the hierarchy for deterministic word au-
tomata [41]: if a word language L needs at least the index (ι, κ), so does

2.3. INDEX HIERARCHIES 21

the language of trees that have a word from L on the leftmost branch. The
index hierarchy for nondeterministic automata is also strict [24]. In fact, the
languages showing the strictness may be chosen deterministic: one exam-
ple is the family of the languages of trees over the alphabet {ι, ι + 1, . . . , κ}
satisfying the parity condition on each path.

The second important question one may ask about the index hierarchy is
how to determine the exact position of a given language. This is known as
the index problem.

Given a deterministic language, one may ask about its deterministic in-
dex, i. e., the exact position in the index hierarchy of deterministic automata
(deterministic index hierarchy). This question can be answered e�ectively.
Here we follow the method introduced by Niwi«ski and Walukiewicz [25].

A path in an automaton is a sequence of states and transitions:

p0
σ1,d1−→ p1

σ2,d2−→ . . .
σn−1,dn−1−→ pn .

A loop is a path starting and ending in the same state, p0−→p1−→ . . .−→p0.
A loop is called accepting if maxi rank (pi) is even. Otherwise it is rejecting.
A j-loop is a loop with the highest rank on it equal to j. A sequence of loops
λι, λι+1, . . . , λκ in an automaton is called an alternating chain if the highest
rank appearing on λi has the same parity as i and it is higher then the highest
rank on λi−1 for i = ι, ι + 1, . . . , κ. A (ι, κ)-�ower is an alternating chain
λι, λι+1, . . . , λκ such that all loops have a common state q.

Niwi«ski and Walukiewicz use �owers in their solution of the index prob-
lem for deterministic word automata.

Theorem 1 (Niwi«ski, Walukiewicz [25]). A deterministic automaton on
words is equivalent to a deterministic (ι, κ)-automaton i� it does not contain
a (ι, κ)-�ower.

For a tree language L over Σ, let Paths(L) ⊆ (Σ × {0, 1})ω denote the
language of generalized paths of L,

Paths(L) = {〈(σ1, d1), (σ2, d2), . . .〉 : ∃t∈L ∀i t(d1d2 . . . di−1) = σi} .

A deterministic tree automaton A, can be treated as a deterministic au-
tomaton recognizing Paths(L(A)). Simply for A = 〈Q,Σ, q0, δ, rank〉, take
〈Q,Σ×{0, 1}, q0, δ

′, rank〉, where (p, (σ, d), q) ∈ δ′ ⇐⇒ (p, σ, d, q) ∈ δ. Con-
versely, given a deterministic word automaton recognizing Paths(L(A)), one

22 CHAPTER 2. INDEX AND BOREL RANK

may interpret it as a tree automaton, obtaining thus a deterministic automa-
ton recognizing L(A). Hence, applying Theorem 1 one gets the following
result.

Proposition 1. For a deterministic tree automaton A the language L(A)
is recognized by a deterministic (ι, κ)-automaton i� A does not contain a
(ι, κ)-�ower.

For a deterministic language one may want to calculate its nondetermin-
istic index, i.e. the position in the hierarchy of nondeterministic automata.
This may be lower than the deterministic index, due to greater expressive
power of nondeterministic automata. Consider for example the language L0ω

M

consisting of trees whose leftmost paths are in a regular word languageM . It
can be recognized by a nondeterministic (1, 2)-automaton, but its determin-
istic index is equal to the deterministic index of M , which can be arbitrarily
high.

The problem transpired to be rather di�cult and has only just been
solved in [27]. Decidability of the general index problem for nondeterministic
automata is one of the most important open questions in the �eld.

2.4 Alternation

Alternating automata were �rst introduced by Muller and Schupp [20]. The
acceptance for that kind of automata is most conveniently de�ned by means
of games. A parity game is a perfect information game of possibly in�nite
duration played by two players, Adam and Eve. We present it as a tuple
〈V∃, V∀, E, v0, rank〉, where V∃ and V∀ are disjoint sets of positions of Eve and
Adam, E ⊆ V ×V is the relation of possible moves, with V = V∃∪V∀, v0 ∈ V
is a designated initial position, and rank : V → ω is the ranking function.

The players start a play in the position v0 and then move the token
according to relation E (always to a successor of the current position), thus
forming a path in the graph (V,E). The move is selected by Eve or Adam,
depending on who is the owner of the current position. If a player cannot
move, she/he looses. Otherwise, the result of the play is an in�nite path
in the graph, v0, v1, v2, Eve wins the play if the highest rank visited
in�nitely often is even, otherwise Adam wins.

A positional strategy for the player θ is a (partial) function σ : Vθ → V
satisfying (v, σ(v)) ∈ E for all v ∈ domσ, which �intuitively � tells the

2.4. ALTERNATION 23

player where to go from a given position. A crucial property of parity games
is the positional determinacy: in each parity game either Adam or Eve has a
winning positional strategy [9, 18].

An alternating automaton (on trees) A = 〈Σ, Q∃, Q∀, q0, δ, rank〉 is a mod-
i�cation of a nondeterministic automaton de�ned previously. The set of
states Q is partitioned into existential states Q∃ and universal states Q∀, and
δ ⊆ Q× Σ× {0, 1, ε} ×Q.

An input tree t is accepted by an alternating automaton A i� Eve has a
winning strategy in the parity game 〈Q∃×{0, 1}∗, Q∀×{0, 1}∗, (q0, ε), E, rank′〉,
where E = {((p, v), (q, vd)) : (p, t(v), d, q) ∈ δ} and rank′(q, v) = rank(q).

The computation tree of A on an input tree t is obtained by unravelling
the graph 〈Q × {0, 1}∗, E〉 from the vertex (q0, ε) and labeling the node
(q0, ε), (q1, d1), . . . , (qn, dn) with qn. The result of the parity game above only
depends on the computation tree.

It is known that alternating automata have the same expressive power as
nondeterministic ones [19], however they might use less ranks to recognize a
language. Recall that deterministic languages can be arbitrarily high in the
nondeterministic hierarchy. In the alternating hierarchy they are all on the
second level, as the following folklore fact shows.

Proposition 2. For deterministic languages the alternating index hierarchy
collapses to (0, 1).

Proof. For a deterministic automaton A over the alphabet Σ, L(A){ = TΣ \
L(A) can be recognized by a nondeterministic automaton B of index (1, 2)
that guesses a path rejected by A. To get an alternating (0, 1)-automaton
recognizing L(A) it is enough to interpret the automaton B as alternating
and apply the usual complementation procedure: swap the existential and
universal states, and decrease the ranks by 1.

For all recognizable tree languages the alternating hierarchy is strict. Let
W(ι,κ) denote the set of trees t over the alphabet {∃,∀}×{ι, ι+1, . . . , κ} such
that Eve wins the parity game Gt = 〈V∃, V∀, E, ε, rank〉, where Vθ = {v ∈
{0, 1}∗ : t(v) = (θ, n) for some n}, E = {(v, vj) : v ∈ {0, 1}∗ , j ∈ {0, 1}},
and rank(v) = n if t(v) = (θ, n) for some θ.

Theorem 2 (Brad�eld [3]). For all (ι, κ), W(ι,κ) can be recognized by an

alternating (ι, κ)-automaton, but not by an alternating (ι, κ)-automaton.

An elegant topological proof of this fact based on the Banach Contraction
Principle was given later by Arnold [1].

24 CHAPTER 2. INDEX AND BOREL RANK

It is a bit surprising that W(ι,κ) can actually be recognized by a nondeter-
ministic (ι, κ)-automaton, just like the languages proving the strictness of the
nondeterministic hierarchy could be recognized by deterministic automata.

2.5 Weak Hierarchy

In the previous section we have introduced the alternating hierarchy. For
deterministic languages it collapsed at the second level. We will now restrict
the power of alternating automata signi�cantly and consider yet another
hierarchy.

A weak automaton is an alternating automaton satisfying the condition

p
σ,d−→ q =⇒ rank p ≤ rank q .

A more elegant de�nition of the class of weakly recognized languages is ob-
tained by using weak parity games in the de�nition of acceptance by alter-
nating automata. In those games Eve wins a play if the highest rank used
at least once is even. For the purpose of the following lemma, let us call
the �rst version restricted alternating automata and the second version, weak
automata. Later, we will stick to the second de�nition.

Lemma 1. For every L it holds that L is recognized by a restricted alternating
(ι, κ)-automaton i� it is recognized by a weak (ι, κ)-automaton.

Proof. Every restricted automaton can be transformed into an equivalent
weak automaton by simply changing the acceptance condition to weak. Let
us, then, concentrate on the converse implication.

Fix a weak automaton A using ranks (ι, κ). To construct a restricted
automaton we will take one copy of A for each rank: A(ι), A(ι+1), . . . , A(κ). By
q(i) we will denote the counterpart of A's state q in A(i). Set rank q(i) = i. We
want the number of the copy the computation is in to re�ect the highest rank
seen so far. To obtain that, we set the initial state of the new automaton to

q
(rank q0)
0 , and for each i and each transition p

σ,d−→ q in A we add a transition

p(i) σ,d−→ q(max(i, rank q)). For each i and q, q(i) is universal i� q is universal.
Checking the equivalence is straightforward.

How weak are the weak automata? Compared to nondeterministic au-
tomata � very weak.

2.6. TOPOLOGICAL HIERARCHY 25

Theorem 3 (Rabin [31]; Muller, Saoudi, Schupp [19]). A language L is
weakly recognizable i� L and L{ can be recognized by a nondeterministic (1, 2)-
automaton.

However, in the course of this study we will see that they are not that weak
in the realm of deterministic languages.

Just like for previous classes we can consider the index hierarchy of weak
automata. The strictness of this hierarchy was established by Mostowski
[17] via equivalence with the quanti�er-alternation hierarchy for the weak
monadic second order logic, whose strictness was proved by Thomas [35].
The weak index problem, i. e., computing the minimal weak index needed to
recognize a given weak language, for the time being remains unsolved just
like its previous versions.

In [21] we showed how to compute the weak deterministic index of a given
deterministic language. The procedure is based on the method of di�cult
patterns used in Theorem 1 and Proposition 1. We need the simplest pattern
exceeding the capability of weak deterministic (ι, κ)-automata. Just like in
the case of the deterministic index, it seems natural to look for a generic
pattern capturing all the power of (ι, κ). Intuitively, we need to enforce
the alternation of ranks provided by (ι, κ). Let a weak (ι, κ)-�ower be a
sequence of loops λι, λι+1 . . . , λκ such that λj+1 is reachable from λj, and λj
is accepting i� j is even.

Proposition 3 ([21]). A deterministic automaton A is equivalent to a weak
deterministic (ι, κ)-automaton i� it does not contain a weak (ι, κ)-�ower.

In this study we solve the weak index problem with input restricted to
deterministic automata.

2.6 Topological Hierarchy

We start with a short recollection of elementary notions of descriptive set
theory. For further information see [12].

Let 2ω be the set of in�nite binary sequences with a metric given by the
formula

d(u, v) =

{
2−min{i∈ω : ui 6=vi} i� u 6= v
0 i� u = v

26 CHAPTER 2. INDEX AND BOREL RANK

and TΣ be the set of in�nite binary trees over Σ with a metric

d(s, t) =

{
2−min{|x| : x∈{0,1}∗, s(x) 6=t(x)} i� s 6= t
0 i� s = t

.

Both 2ω and TΣ, with the topologies induced by the above metrics, are Polish
spaces (complete metric spaces with countable dense subsets). In fact, both
of them are homeomorphic to the Cantor discontinuum.

The class of Borel sets of a topological space X is the closure of the class
of open sets of X by complementation and countable sums. Within this class
one builds so called Borel hierarchy. The initial (�nite) levels of the Borel
hierarchy are de�ned as follows:

Σ0
1(X) � open subsets of X,

Π0
k(X) � complements of sets from Σ0

k(X),

Σ0
k+1(X) � countable sums of sets from Π0

k(X).

For example, Π0
1(X) are closed sets, Σ0

2(X) are Fσ sets, and Π0
2(X) are Gδ

sets. By convention, Π0
0(X) = {X} and Σ0

0(X) = {∅}.
Even more general classes of sets from the projective hierarchy. We will

need only its lowest level:

Σ1
1(X) � analytical subsets of X, i. e., projections of Borel subsets of X2 with

product topology,

Π1
1(X) � complements of sets from Σ1

1(X).

Whenever the space X is determined by the context, we will skip it in
the notation above and write simply Σ0

1, Π0
1, and so on.

Let ϕ : X → Y be a continuous map of topological spaces. One says that
ϕ is a reduction of A ⊆ X to B ⊆ Y , if ∀x∈X x ∈ A ↔ ϕ(x) ∈ B. Note
that if B is in a certain class of the above hierarchies, so is A. For any class
C a set B is C-hard, if for any set A ∈ C there exists a reduction of A to B.
The topological hierarchy is strict for Polish spaces, so if a set is C-hard, it
cannot be in any lower class. If a C-hard set B is also an element of C, then
it is C-complete.

We end this section with three examples which will turn out useful later.
Example 1. Let L0∗1ω

a ⊆ T{a,b} be the set of trees which have at least one
a on every path from the set 0∗1ω. First, observe that L0∗1ω

a =
⋂
n<ω L

0n1ω

a ,

2.7. WEAK INDEX VS. BOREL RANK 27

where L0n1ω

a denotes the set of trees which have at least one a on the path
0n1ω. Since these languages are open, L0∗1ω

a is Π0
2.

Suppose that it is also a Σ0
2 set. Let L0∗1ω

a =
⋃
n∈ω Fn, Fn is closed for all

n. We claim that for every n there exists mn such that in every tree from Fn
the letter a occurs in some node 0n1m with m < mn. If there was no such
number, then we could �nd a sequence tk of trees having no letters a in the
nodes 0n1m for m < lk, where l1 < l2 < l3 < As T{a,b} is compact, there
exists a subsequence tki convergent in Fn. However the limit of tki cannot be
in Fn for it has no letter a on the path 0n1ω. Now, consider a tree t with a
in nodes 0n1mn+1 and b in other nodes. Clearly, t ∈ L0∗1ω

a , but t /∈
⋃
n∈ω Fn.

This way we have shown that L0∗1ω
a /∈ Σ0

2.
It is well-known that any set in Π0

n \Σ0
n is Π0

n-complete. In consequence,
L0∗1ω
a is Π0

2-complete. •
Example 2. Let Q = (a∗b)∗aω. Following the method above one proves

that Q{ = (a∗b)ω ∈ Π0
2 \ Σ0

2. Hence, Q ∈ Σ0
2 \ Π0

2. In particular, Q is
Σ0

2-complete. •
Example 3. Let L0∗1ω

Q denote the language of trees such that in�nite
word on the rightmost path from every node of the form 0∗ belongs to the
language Q de�ned above. One easily writes L0∗1ω

Q as a countable intersection

of Σ0
2-sets. Hence, L0∗1ω

Q ∈ Π0
3. This time we will prove directly that it is

Π0
3-complete, and therefore it is not in Σ0

3. Let us take any M =
⋂
i<ωXi

with Xi in Σ0
2. Since Q is Σ0

2-complete, for each i there exists fi reducing Xi

to Q. One easily de�nes a continuous reduction of M to L0∗1ω
Q assigning to

each t a tree having the word fi(t) on the path 0i1ω for all i, and as in all
the other nodes. •

2.7 Weak Index vs. Borel Rank

We start the discussion of the relations between the index of a weak automa-
ton and the Borel rank of the language it recognizes by recalling Skurczy«ski's
results. Let us de�ne a sequence of languages:

• L(0,1) = {t}, where t ∈ T{a,b} is the tree with no b's,

• L(1,n+1) = L{
(0,n) for n ≥ 1,

• L(0,n) = {t ∈ T{a,b} : ∀k t.0k1 ∈ L(1,n)} for n ≥ 1.

28 CHAPTER 2. INDEX AND BOREL RANK

Theorem 4 (Skurczy«ski [34]). For each n ≥ 1,

• L(0,n) is a Π0
n-complete language recognized by a weak (0, n)-automaton,

• L(1,n+1) is a Σ0
n-complete language recognized by a weak (1, n + 1)-

automaton.

We will now show that this construction is as e�cient as it can be: ranks
(0, n) are necessary to recognize any Π0

n-hard language (if it can be weakly
recognized at all).

We will actually prove a bit stronger result. We will consider weak game
languages W [

(ι,κ), to which all languages recognized by weak (ι, κ)-automata

can be reduced, and show show that W [
(0,n) ∈ Π0

n and W [
(1,n+1) ∈ Σ0

n (by

Skurczy«ski's results, they are hard for these classes). The languages W [
(ι,κ)

are natural weak counterparts of strong game languages W(ι,κ) which prove
the strictness of the alternating index hierarchy. Lately Arnold and Niwi«ski
proved that the strong game languages also form a strict hierarchy with
respect to continuous reductions, but they are all non-Borel [2].

Fix a natural number N . Let T(ι,κ) denote the set of all N -ary trees over
the alphabet {∃,∀} × {ι, ι + 1, . . . , κ} with the usual topology. For ι = 0, 1
and κ ≥ ι let W [

(ι,κ) ⊆ T(ι,κ) be the set of trees t such that Eve has a winning

strategy in the weak parity game Gt (see page 23).

Theorem 5. For all n, W [
(0,n) ∈ Π0

n(T(ι,κ)) and W [
(1,n+1) ∈ Σ0

n(T(ι,κ)).

Proof. We will proceed by induction on n. For n = 0 the claim is obvious:
W [

(0,0) = T(0,0)(T(0,0)) ∈ Π0
0, W

[
(1,1) = ∅ ∈ Σ0

0(T(1,1)).

Take n > 0. For each t ∈ W [
(1,n+1) there exists a strategy σ for Eve, such

that it guarantees that the play reaches a node with the rank greater or equal
to 2. By König lemma, this must happen in a bounded number of moves.
Basing on this observation we will provide a Σ0

n presentation of W(1,n+1).
Let k-antichain be a subset of the nodes on the level k. Let A denote the

set of all possible k-antichains for all k < ω. Obviously this set is countable.
For a k-antichain A let WA denote the set of trees such that there exists a
strategy for Eve that guarantees visiting a node with the rank ≥ 2 during
the initial k moves and reaching a node from A. This set is a clopen. We
have a presentation

W [
(1,n+1) =

⋃
A∈A

(
WA ∩

⋂
v∈A

{
t : t′.v ∈ W [

(0,n−1)

})
,

2.7. WEAK INDEX VS. BOREL RANK 29

where t′ is obtained from t by decreasing all the ranks by 2 (if the result is
−1, take 0). The claim follows by induction hypothesis and the continuity
of t 7→ t′ and t 7→ t.v.

Now, it remains to see that W [
(0,n) ∈ Π0

n(T(0,n)). For this, note that

W [
(0,n) =

{
t : t′′ ∈ (W(1,n+1))

{
}
,

where t′′ is obtained from t by swapping ∃ and ∀, and increasing ranks by 1.
The claim follows by the continuity of t 7→ t′′.

As a corollary we get the promised improvement of Skurczy«ski's result.

Corollary 1. Let A be a weak alternating automaton.

1. If A is a (0, n)-automaton, L(A) ∈ Π0
n.

2. If A is a (1, n+ 1)-automaton, L(A) ∈ Σ0
n.

Proof. Let A be a (ι, κ)-automaton. For su�ciently large N we may assume
without loss of generality that the computation trees of the automaton are
N -ary. For an input tree t consider a tree t′ obtained from A's computation
tree on t by replacing each label q ∈ Qθ with (θ, rank(q)). The mapping
t → t′ is a continuous reduction of L(A) to W [

(ι,κ). Hence, the claim follows
from the theorem above.

In fact the corollary follows also from Mostowski's theorem on equivalence
of weak automata and weak monadic second order logic on trees [17]. The
present proof of Theorem 5 is actually just a repetition of Mostowski's proof
in the setting of the Borel hierarchy. An entirely di�erent proof can be found
in [7].

We conjecture that the converse implication is also true: a weakly rec-
ognizable Π0

n-language can be recognized by a weak (0, n)-automaton (and
dually for Σ0

n).

Conjecture 1. For weakly recognizable languages the weak index hierarchy
and the Borel hierarchy coincide.

Later in this chapter we will see that the conjecture holds true when restricted
to deterministic languages.

The results described in this section give yet another argument to one of
the opposing parties in the everlasting dispute between the big-endians and
the little-endians of game theory. Had we de�ned a play to be winning for

30 CHAPTER 2. INDEX AND BOREL RANK

Σ0
0 Σ0

1 Σ0
2

� � � � �
∆0

1 ∆0
2 ∆0

3 = Σ0
3

� � � � � �
Π0

0 Π0
1 Π0

2 Π0
3 Π1

1 − complete

Figure 2.2: The Borel hierarchy for deterministic tree languages.

Eve if the lowest rank was even, the correspondence between the indices and
Borel classes would be rather ugly.

2.8 Unravelling the Patterns

In this section we begin the investigation of the topological complexity of
deterministic languages. We concentrate on the Borel rank problem: for a
given language compute its exact position in the Borel/projective hierarchy.

In 2002 Niwi«ski and Walukiewicz discovered a surprising dichotomy in
the family of deterministic languages: a deterministic language has either a
very low Borel rank or it is not Borel at all (see Fig. 2.2). We say that an

automaton A admits a split if there are two loops p
σ,0−→ p0 −→ . . . −→ p and

p
σ,1−→ p1 −→ . . . −→ p such that the highest ranks occurring on them are of

di�erent parity and the higher one is odd.

Theorem 6 (Niwi«ski, Walukiewicz [26]). For a deterministic automaton
A, L(A) is on the level Π0

3 of the Borel hierarchy i� A does not admit split;
otherwise L(A) is Π1

1-complete (hence non-Borel).

Hence, the Borel hierarchy of deterministic languages collapses on the
third level. Below Π0

3 the hierarchy is strict, as follows from the examples of
hard languages in Sect. 2.6.

An important tool used in the proof of the Gap Theorem is the technique
of di�cult patterns. In the topological setting the general recipe goes like
this: for given class identify a pattern that can be unravelled to a language
complete for this class; if an automaton does not contain the pattern, then
L(A) should be in the dual class.

Formalising the unravelling technique will require a few de�nitions. A
segment of a tree t between u and uv is the restriction of the function t.u
to the set dom (t.u) \ v{0, 1}+. A partial run of a deterministic automaton

2.8. UNRAVELLING THE PATTERNS 31

A is a segment of any run of A. A partial run ρ realizes a �nite path π in
the automaton if it is a segment of an accepting run ρ̃ between two nodes
x and y such that ρ̃ agrees with π between x and y. More precisely, if π =

p0
σ1,d1−→ . . .

σm,dm−→ pm, then y = xd1d1 . . . dm, ρ̃(x) = p0, and ρ̃(xd1 . . . di) = pi
for i = 1, . . . ,m. Note that, since ρ is a segment of an accepting run, all
its in�nite paths are accepting. A tree segment f realizes a path π if the
corresponding partial run ρf realizes π.

Observe that if f1 realises π1, f2 realises π2, and the last state of π1 is
the same as the �rst state of π2, then f1f2 realises π1π2. A similar property
holds for in�nite concatenations.

By unravelling a pattern we will understand choosing for each ingredient
of a pattern � a path or a loop � one tree fragment that realises it and
constructing reductions that only use trees that are concatenations of these
tree fragments. Such a concatenation realises some in�nite paths in the
pattern. Whether it is accepted or rejected by an automaton depends only
on those paths, since all the others are accepting. Obviously, elements of
the reduced language should be sent to trees realising accepting paths, and
the elements of the complement to those realising rejecting paths. In the
reductions one node of the input tree (one position of the input word) will
correspond to one tree fragment in the resulting concatenation.

In the proof of the Gap Theorem, the split pattern is unravelled into the
language of trees having only �nitely many 1's on each path. This language is
Π1

1-complete (via a reduction of the set of well-founded trees). We are going
to show how other patterns can be unravelled into languages hard for the
remaining classes from the above hierarchy. But �rst, let us introduce one of
the most important technical notions of this study. A state p is replicated by

a loop q1
σ,d0−→ q2 −→ . . . −→ q1 if there exist a path q1

σ,d1−→ q′2 −→ . . . −→ p
such that d0 6= d1. We will say that a �ower is replicated by a loop λ if it
contains a state replicated by λ. The phenomenon of replication is the main
di�erence between trees and words. We will use it constantly to construct
hard languages that have no counterparts among word languages. Some of
them are listed in the proposition below.

Proposition 4. Let A be a deterministic automaton.

1. If A contains a weak (1, 2)-�ower, L(A) is Σ0
1-hard.

2. If A contains a weak (0, 1)-�ower, L(A) is Π0
1-hard.

32 CHAPTER 2. INDEX AND BOREL RANK

3. If A contains a (0, 1)-�ower, L(A) is Σ0
2-hard.

4. If A contains a (1, 2)-�ower or a weak (1, 2)-�ower replicated by an
accepting loop, L(A) is Π0

2-hard.

5. If A contains a (0, 1)-�ower replicated by an accepting loop, L(A) is
Π0

3-hard.

Proof. (1) Let λ2 be an accepting loop reachable from a rejecting loop λ1.
Let g1 realize a path from the initial state q0 to some q1 ∈ λ1, g2 realize a
path from q1 to some q2 ∈ λ2, and f1, f2 realize loops λ1 (from q1 to q1), λ2

(from q2 to q2) respectively. Consider tn = g1(f1)ng2(f2)ω and t = g1(f1)ω.
Clearly, tn ∈ L(A) and tn → t when n → ∞, but t /∈ L(A). Hence L(A) is
not closed. Since any non-closed set is hard for Σ0

1, the claim follows.

(2) This is proved analogously.

(3) Let λ0 and λ1 be the loops forming a (0, 1)-�ower, accepting and
rejecting respectively. Let q be a state lying on both loops. Let f0, f1 be
tree segments realizing λ0 and λ1 respectively (both from q to q). Consider
a map ϕ : {0, 1}ω → TΣ de�ned by the formula

ϕ(x0x1x2 . . .) = ffx0fx1fx2 . . . ,

where f is a tree segment realizing a path from the initial state q0 to q. The
map ϕ is a continuous reduction of (0∗1)∗0ω to L(A). By Example 2 (page
27) L(A) is Σ0

2-hard.

(4) Unravelling a (1, 2)-�ower gives a reduction of (1∗2)ω to L(A), and un-
ravelling a weak (1, 2)-�ower replicated by an accepting loop gives a reduction
of L0∗1ω

a to L(A). By Examples 1 and 2, in either case L(A) is Π0
2-hard.

(5) Once again, unravel the pattern to obtain a reduction of Π0
3-complete

language L0∗1ω
Q from Example 3 to L(A).

2.9 The Power of the Weak

In this section we will turn to the weak recognizability of deterministic lan-
guages. The Gap Theorem by Niwi«ski and Walukiewicz has also an index
version.

2.9. THE POWER OF THE WEAK 33

(1, 1) (1, 2) (1, 3)
� � � � �
� � � � � �

(0, 0) (0, 1) (0, 2) (0, 3) co-Büchi hard

Figure 2.3: The weak index hierarchy for deterministic tree languages.

Theorem 7 (Niwi«ski, Walukiewicz [26]). For a deterministic automaton
A, L(A) can be recognized by a weak (0, 3)-automaton1 i� A does not admit
a split; otherwise L(A) cannot be recognized by a Büchi automaton (hence it
cannot be recognized by a weak automaton).

The weak index hierarchy of deterministic languages is presented on Fig. 2.3.
Observe that the characterisation given in the Gap Theorem is e�ective:

it can be checked (in polynomial time, if the productive states are given
explicitly � see page 20) if a given automaton admits a split or not. In
the remaining of this section we will give similar conditions su�cient for a
deterministic automaton to be equivalent to a weak alternating automaton
of index (0, 2), (1, 3) and (1, 4). This is the �rst step to the solution of the
weak index problem for deterministic automata.

Proposition 5. Each deterministic (1, 2)-automaton is equivalent to a weak
(0, 2)-automaton.

Proof. Fix a deterministic (1, 2)-automaton A. We will construct a weak
(0, 2)-automaton B such that L(A) = L(B). Basically, for each node v the
automaton B should check whether on each path in the subtree rooted in v
the automaton A will reach a state with rank 2. This can be done as follows.
Take two copies of A. In the �rst copy, all the states are universal and have
rank 0. The transitions are like in A plus, for each state q(1) there is an
ε-transition to q(2), the counterpart of q(1) in the second copy. In the second
copy all states are universal and have rank 1. For the states with rank 1 in
A, the transitions are like in A. For the states with rank 2 in A, there is just
one transition to an all-accepting state > (rank 2 in B).

Before we proceed with the conditions, let us show a useful property of
the replication.

1In the original paper this index is (0, 2) because of a slight di�erence in the de�nition

of weak automata. The authors let the automata stop after reading a letter for which

there is no transition from the current state, which is equivalent to having one extra rank.

34 CHAPTER 2. INDEX AND BOREL RANK

Lemma 2 (Replication Lemma). A state occurs in in�nitely many incom-
parable nodes of an accepting run i� it is productive and is replicated by an
accepting loop.

Proof. If a state p is replicated by an accepting loop, then by productivity
one may easily construct an accepting run with in�nitely many incomparable
occurrences of p. Let us concentrate on the converse implication.

Let p occur in an in�nite number of incomparable nodes v0, v1, . . . of an
accepting run ρ. Let πi be a path of ρ going through the node vi. Since 2ω

is compact, we may assume, passing to a subsequence, that the sequence πi
converges to a path π. Since vi are incomparable, vi is not on π. Let the
word αi be the sequence of states labeling the path from the last common
node of π and πi to vi. Cutting the loops o� if needed, we may assume
that |αi| ≤ |Q| for all i ∈ ω. Consequently, there exist a word α repeating
in�nitely often in the sequence α0, α1, Moreover, the path π is accepting,
so the starting state of α must lay on an accepting productive loop. This
loop replicates p.

Proposition 6. Each deterministic (0, 1)-automaton which contains no weak
(1, 2)-�ower replicated by an accepting loop is equivalent to a weak (1, 3)-
automaton.

Proof. Let A be a deterministic (0, 1)-automaton which contains no weak
(1, 2)-�ower replicated by an accepting loop. Let us call a state of A relevant if
it has the highest rank on some loop. We may change the ranks of productive
irrelevant states to 0, and assume from now on that all odd states are relevant.
We claim that the odd states occur only �nitely many times on accepting
runs of A. Suppose that an odd state p occurs in�nitely many times in an
accepting run ρ. Then it must occur in in�nitely many incomparable nodes
(otherwise we would get a rejecting path). By the Replication Lemma p is
replicated by an accepting loop. As p is odd and relevant, it lies on some
nontrivial rejecting loop. Since p is also productive, some accepting loop can
be reached from p. Hence, A contains a weak (1, 2)-�ower replicated by an
accepting loop - a contradiction

Now, we can easily construct a weak (1, 3)-automaton recognizing L(A).
Intuitively, we will simulate A and check if A's odd states occur �nitely many
times. This can be done as follows. Take three copies of A. In the �rst copy
all the states are universal and have rank 1. The transitions are just like in
A, only they go to the second copy of A. In the second copy of A, all the

2.9. THE POWER OF THE WEAK 35

states are existential and have rank 1. From each state q′′ there are two ε-
transitions to q(1) in he �rst copy and to q(3) in the third copy. Finally, in the
third copy of A all the states are universal and have rank 2. The transitions
from the states ranked 0 in A are just like in A, and from the states ranked
1 in A they go to an all-rejecting state ⊥ (rank 3 in B). It is easy to see that
B recognizes L(A).

Proposition 7. Each deterministic automaton containing no (0, 1)-�ower
replicated by an accepting loop is equivalent to a weak alternating (1, 4)-
automaton.

Proof. Let A be an automaton without (0, 1)-�ower replicated by an accept-
ing loop. Consider the DAG of strongly connected components of A. For each
SCC X containing at least one loop we will construct a weak automaton BX

recognizing the languages of trees t such that each path of A's run on t that
enters X either leaves X or is accepting. Obviously, the conjunction of such
automata recognizes exactly L(A). Let us �rst consider components repli-
cated by an accepting loop. By the hypothesis, such a component must not
contain a (0, 1)-�ower. Therefore we may assume that X only uses ranks 1
and 2. To obtain BX take a copy of A. The states outside X can be divided
into three disjoint groups: those that can be reached from X, those from
which X can be reached, and the rest. Give the states from the �rst group
the rank 4, and the states from the second and third group the rank 2. Fi-
nally, following the method from Proposition 5, replace X with an equivalent
weak alternating subautomaton using ranks 2,3, and 4.

The case of X not replicated by an accepting loop is more tricky. The key
property follows from the Replication Lemma. Let ρX denote the restriction
of the run ρ to the nodes labeled with a state from X or having a descendant
labeled with a state from X. By the Replication Lemma, this tree has only
�nitely many branches (some of them may be in�nite). What BX should do
is to guess a node v on each path such that in the subtree rooted in v, ρX is
either empty or consists of one in�nite accepting branch. In the latter case
we may additionally demand that on this in�nite path the highest rank that
ever occurs, occurs in�nitely many times.

BX consists of the component Cguess realising the guessing, the component
CA\X checking that no path of the computation enters X, and components
CX,r for all ranks r used in X, which check that in a given subtree of the
run ρ there is exactly one branch of ρX and that on this branch r occurs
in�nitely often and no higher rank is used.

36 CHAPTER 2. INDEX AND BOREL RANK

To construct Cguess, take a copy of A and declare all the states universal
and set their ranks to 1. For each q add a fresh existential state q′ of rank 1
with an ε-transition to q and either to qA\X ∈ CA\X if q /∈ X (ρX is empty)
or to qX,r ∈ CX,r for all r if q ∈ X (ρX is one in�nite accepting path). Finally

replace each transition p
σ−→ p0, p1 with

σ−→ p′0, p
′
1.

The component CA\X is a copy of A with all ranks equal 2, and the SCC
X replaced with one all-rejecting state ⊥ with rank 3.

Finally, let us now describe the automaton CX,r. The automaton, staying
in rank 2, works its way down the input tree just like A would, with the
following modi�cations:

• if A enters a state in X with rank greater than r, CX,r moves to an all
rejecting state ⊥ (rank 3),

• if A takes a transition exiting X on both branches or staying in X on
both branches, CX,r moves to ⊥,

• if A takes a transition whose left branch leaves X and the right branch
stays inside, CX,r sends to the right a (3, 4)-component looking for a
state from X with the rank r, and moves on to the right subtree (and
symmetrically).

In order two see that CX,r does the job, it is enough to observe that if
the (3, 4) component always succeeds to �nd a state from X with the rank r,
then on the unique path that stays forever in X the rank r repeats in�nitely
often.

2.10 Solution

We have now collected all the ingredients for the solution of the weak index
problem and the Borel rank problem for deterministic languages. So far we
have su�cient conditions for index easiness and Borel hardness. We will
now use Corollary 1 to glue them together and see that they are in fact also
necessary conditions.

Theorem 8. For deterministic tree languages the Borel hierarchy and the
weak index hierarchy coincide (see Fig. 2.4) and are decidable in polynomial
time.

2.10. SOLUTION 37

Σ0
0 = (1, 1) Σ0

1 = (1, 2) Σ0
2 = (1, 3)

� � � � �
Σ0

1 ∩Π0
1 Σ0

2 ∩Π0
2 Σ0

3 ∩Π0
3

‖ ‖ ‖
(1, 2) ∩ (0, 1) (1, 3) ∩ (0, 2) (1, 4) ∩ (0, 3)

� � � � � �
Π0

0 = (0, 0) Π0
1 = (0, 1) Π0

2 = (0, 2) Π0
3 = (0, 3)

Figure 2.4: For deterministic tree languages the hierarchies coincide.

Proof. We will abuse the notation and write (ι, κ) to denote the class of
languages recognized by weak (ι, κ)-automata. All the classes considered
here are relativised to the deterministic languages.

By the two versions of the Gap Theorem we have the equality and decid-
ability of the classes of the classes Π0

3 and (0, 3).
Let us continue with the third level. Let us see that Σ0

3 = (1, 4). We will
show that both these classes are equal to the class of languages recognized
by deterministic automata without a (0, 1)-�ower replicated by an accessible
loop. If a deterministic automaton A does not contain this pattern, then
it is equivalent to a weak (1, 4)-automaton and by Corollary 1 recognizes a
Σ0

3 language. If A does contain this pattern, then by Proposition 4 it is not
Σ0

3 and so is not equivalent to a weak (1, 4)-automaton. The decidability
follows easily, since checking for the pattern above can be done e�ectively (in
polynomial time).

For the equality Π0
2 = (0, 2), prove that both classes are equal to the class

of languages recognized by deterministic automata without a (0, 1)-�ower.
Proceed just like before, only use Proposition 5 instead of Proposition 7.
Analogously, using Proposition 6, show that both Σ0

2 and (1, 3) are equal
to the class of languages recognized by deterministic automata admitting
neither a (1, 2)-�ower nor a weak (1, 0)-�ower replicated by an accepting
loop.

For the �rst level use the characterisation given by Proposition 3. The
level zero is trivial.

38 CHAPTER 2. INDEX AND BOREL RANK

Chapter 3

Wadge Ordering

Topological hierarchies stormed into the theory of formal languages with
Klaus Wagner's fundamental works on regular word languages [40, 41]. The
incredible coincidence of the Wagde ordering and the index hierarchy for
these languages encouraged further investigation of the Wadge ordering of
wider classes of word languages, corresponding to more powerful recognizing
devices: push-down automata and Turing machines [6, 10, 33].

The beauty of these results inspires the search for a complete picture
of the two hierarchies and the relations between them for recognizable tree
languages. As a �rst step towards this end, we deal with the deterministic
case. The index hierarchy for deterministic tree automata has already been
explored thoroughly [27, 37]. Here, we investigate the Wadge ordering of
deterministic tree languages.

3.1 Scenario

The notion of continuous reduction de�ned in the last chapter yields a pre-
ordering on sets. Let X and Y be topological spaces, and let A ⊆ X, B ⊆ Y .
We write A ≤W B (to be read �A is Wadge reducible to B�), if there exists
a continuous reduction of A to B, i. e., a continuous function ϕ : X → Y
such that A = ϕ−1(B). We say that A is Wadge equivalent to B, in symbols
A ≡W B, if A ≤W B and A ≤W B, and A <W B if A ≤W B and B 6≤W A.
The Wadge ordering is the ordering induced by ≤W on the ≡w-classes of sub-
sets of Polish spaces. The Wadge ordering restricted to Borel sets is called
the Wadge hierarchy.

39

40 CHAPTER 3. WADGE ORDERING

In this study we only work with the spaces TΣ and Σω. Since we only
consider �nite Σ, these spaces are homeomorphic with the Cantor discontin-
uum {0, 1}ω as long as |Σ| ≥ 2. In particular, all the languages we consider
are Wadge equivalent to subsets of {0, 1}ω. Note however that the home-
omorphism need not preserve recognizability. In fact, no homeomorphism
from TΣ to {0, 1}ω does: the Borel hierarchy for regular tree languages is in-
�nite, but for words it collapses on ∆0

3. In other words, there are regular tree
languages (even weak, or deterministic), which are not Wadge equivalent to
regular word languages. Conversely, each regular word language L is Wadge
equivalent to a deterministic tree language L′ consisting of trees which have
a word from L on the leftmost branch. As a consequence, the height of the
Wadge ordering of regular word languages gives as a lower bound for the
case of deterministic tree languages, and this is essentially everything we can
conclude from the word case.

The remaining part of this chapter is in fact one long proof. The aim
of this short section is to help the reader see it this way. The theorem we
want to prove says that the Wadge ordering is decidable for deterministic
tree languages. We could have tried to work on it directly, by comparing
carefully the structure of two given automata, but we have chosen a di�erent
approach. We provide a collection of canonical deterministic automata, one
for each ≡W -class that contains a deterministic tree language. Then we
describe the ordering of the canonical automata induced by ≤W . Finally, we
provide an algorithm that for a given automaton constructs an equivalent
canonical one, and so computes the ≡W class of the language recognized by
the automaton. This way we also get the height of the Wadge hierarchy
restricted to deterministic tree languages.

The proof is divided into Sections 3.2 � 3.12. We start by reformulating
the classical criterion of reducibility via Wadge games in terms of automata
(Sect. 3.2). This will be the main tool of the whole argument. Then we
de�ne four ways of composing automata: sequential composition ⊕, parallel
composition ∧, alternative ∨, and (ι, κ)-replication

(ι,κ)−→ (Sect. 3.3). The

operations ⊕, ∨, and (1,1)−→ are used to construct the canonical automata: we
de�ne automata Cα for each 0 < α < ωω·3, and Dα, Eα for 0 < α < ω or
α = ωω·2α2 + ωωα1 + n with α2 < ωω, 0 < α1 < ωω, and n < ω (Sect.
3.4). After some preparatory remarks (Sect. 3.5 and 3.6), we prove that
the canonical automata form a strict hierarchy, roughly speaking, coinciding
with the usual order on their ordinal indices (Sect. 3.7). This completes the

3.2. GAMES AND AUTOMATA 41

�rst part of the proof, the description of the hierarchy.
Next, we need to show the our hierarchy contains all deterministic lan-

guages (up to Wadge equivalence). Once again we turn to the methodology
of patterns used widely in Chapter 2. We introduce a fundamental notion
of admittance, which formalizes what it means to contain an automaton as
a pattern (Sect. 3.8). Then we extend the family of the canonical automata
with three more elements forming the top of the hierarchy, and rephrase the
results on the Borel hierarchy and the Wagner hierarchy in terms of admit-
tance of canonical automata (Sect. 3.9). Basing on these results, we show
that the family of canonical automata is closed by the composition oper-
ations from Sect. 3.3 (Sect. 3.10), and prove the Completeness Theorem
asserting that (up to Wadge equivalence) each deterministic automaton may
be obtained by composing C1 and D1 using those operations (Sect. 3.11).
As a consequence, each deterministic automaton is equivalent to a canonical
one, which concludes the second part of the proof.

Finally, from the proof of the Completeness Theorem, we extract an al-
gorithm calculating the equivalent canonical automata (Sect. 3.12). This
solves the problem: given two deterministic automata, A and B, we decide
if L(A) ≤W L(B) by comparing the equivalent canonical automata.

3.2 Games and Automata

A classical criterion for reducibility is based on the notion of Wadge games.
Let us introduce a tree version of Wadge games (see [29] for word version).
For any pair of tree languages L ⊆ TΣ1 ,M ⊆ TΣ2 the game GW (L,M) is
played by Spoiler and Duplicator. Each player builds a tree, tS ∈ TΣ1 and
tD ∈ TΣ2 respectively. In every round, �rst Spoiler adds at least one complete
level to tS and then Duplicator can either add some levels to tD or skip a
round (not forever). Duplicator wins the game if tS ∈ L ⇐⇒ tD ∈ M . We
say that Spoiler is in charge of L, and Duplicator is in charge of M .

Just like for the classical Wadge games, a winning strategy for Duplicator
can be easily transformed into a continuous reduction, and vice versa.

Lemma 3. Duplicator has a winning strategy in GW (L,M) if and only if
L ≤W M .

Proof. A strategy for Duplicator de�nes a reduction in an obvious way. Con-
versely, suppose there exist a reduction t 7→ ϕ(t). It follows that there exist

42 CHAPTER 3. WADGE ORDERING

a sequence nk (without loss of generality, increasing) such that the level k of
ϕ(t) depends only on the levels 1, . . . , nk of t. Then the strategy for Dupli-
cator is the following: if the number of the round is nk, choose the k-th level
of tD according to ϕ; otherwise skip.

We would like to point out that Wadge games are much less interactive
than classical games. The move made by one player has no in�uence on the
possible moves of the other. Of course, if one wants to win, one has to react
to the opponent's actions, but the responses need not be immediate. As
long as the player keeps putting some new letters, he may postpone the real
reaction until he knows more about the opponent's plans. Because of that,
we will often speak about strategies for some language without considering
the opponent and even without saying if the player in charge of the language
is Spoiler or Duplicator.

Since we only want to work with deterministically recognizable languages,
let us rede�ne the games in terms of automata. Let A, B be deterministic
tree automata as de�ned in Sect. 2.2. The automata game G(A,B) starts
with one token put in the initial state of each automaton. In every round
players perform a �nite number of the following actions:

�re a transition � for a token placed in a state q choose a transition q
σ−→

ql, q2, take the old token away from q and put new tokens in q1 and q2,

remove � remove a token placed in a state di�erent from ⊥.

Spoiler plays on A and must perform one of these actions at least for all
the tokens produced in the previous round. Duplicator plays on B and is
allowed to postpone performing an action for a token, but not forever. Let
us �rst consider plays in which the players never remove tokens. The paths
visited by the tokens of each player de�ne a run of the respective automaton.
We say that Duplicator wins a play if both runs are accepting or both are
rejecting. Now, removing a token from a state p is interpreted as plugging in
an accepting subrun in the corresponding node of the constructed run. So,
Duplicator wins if the runs obtained by plugging in an accepting subrun for
every removed token are both accepting or both rejecting.

Observe that removing tokens in fact does not give any extra power to
the players: instead of actually removing a token, a player may easily pick
an accepting subrun, and in future keep realizing it level by level in the
constructed run. The only reason for adding this feature in the game is that
it simpli�es the strategies. In a typical strategy, while some tokens have a

3.2. GAMES AND AUTOMATA 43

signi�cant role to play, most are just moved along a trivially accepting path.
It is convenient to remove them right o� and keep concentrated on the real
actors of the play.

We will write A ≤ B if Duplicator has a winning strategy in G(A,B).
Like for languages, de�ne A ≡ B i� A ≤ B and A ≥ B. Finally, let A < B
i� A ≤ B and A 6≥ B.

Lemma 4. For all deterministic tree automata A and B,

A ≤ B ⇐⇒ L(A) ≤W L(B) .

Proof. Suppose that Duplicator has a winning strategy in G(A,B). We will
show that Duplicator has a winning strategy in GW (L(A), L(B)), and hence
L(A) ≤W L(B). What Duplicator should do is to simulate a play of G(A,B)
in which an imaginary Spoiler keeps constructing the run of A on the tree tS
constructed by the real Spoiler inGW (L(A), L(B)), and Duplicator replies ac-
cording to his winning strategy that exists by hypothesis. InGW (L(A), L(B))
Duplicator should simply construct a tree such that B's run on it is exactly
Duplicator's tree from G(A,B).

For the converse implication, Duplicator should simulate a play in the
game GW (L(A), L(B)) in which Spoiler keeps constructing a tree such that
A's run on it is exactly the tree constructed by the real Spoiler in G(A,B),
and Duplicator replies according to his winning strategy. InG(A,B) Duplica-
tor should keep constructing the run of B on tD constructed in the simulated
play.

As a corollary we have that all automata recognising a given language have
the same �game power�.

Corollary 2. For deterministic tree automata A and B, if L(A) = L(B),
then A ≡ B.

Classically, in automata theory we are interested in the language recog-
nized by an automaton. One language may be recognized by many automata
and we usually pick the automaton that �ts best our purposes. Here, the
approach is entirely di�erent. We are not interested in the language itself,
but in its Wadge equivalence class. This, as it turns out, is re�ected in the
general structure of the automaton. Hence, our main point of interest will
be that structure.

We will frequently modify an automaton in a way that does change the
recognized language, but only within one ≡W -class. One typical thing we

44 CHAPTER 3. WADGE ORDERING

need to do with an automaton, is to treat it as an automaton over an extended
alphabet in such a way, that the new recognized language is Wadge equivalent
to the original one. This has to be done with some care, since the automaton
is required to have transitions by each letter from every state. Suppose we
want to extend the input alphabet by a fresh letter τ . Let us construct an
automaton Aτ . First, if A has the all-rejecting state ⊥, add a transition
⊥ τ−→ ⊥,⊥. Then add an all-accepting state > with transitions > σ−→ >,>
for each σ ∈ Σ ∪ {τ} (if A already has the state >, just add a transition
> τ−→ >,>). Then for each p /∈ {⊥,>}, add a transition p

τ−→ >,>.

Lemma 5. For every deterministic tree automaton A over Σ and a letter
τ 6∈ Σ, A ≡ Aτ .

Proof. It is obvious that A ≤ Aτ : since Aτ contains all transitions of A,
a trivial winning strategy for Duplicator in G(A,Aτ) is to copy Spoiler's
actions. Let us see that new transitions do not give any real power. Consider
G(Aτ , A). While Spoiler uses old transitions, Duplicator may again copy his
actions. The only di�culty lies in responding to a move that uses a new
transition. Suppose Spoiler does use a new transition. If Spoiler �res a
transition p

τ−→ >,> for a token x in a state p 6= ⊥, Duplicator simply
removes the corresponding token in p, and ignores the further behaviour of x
and all his descendants. The only other possibility is that Spoiler �res ⊥ τ−→
⊥,⊥. Then for the corresponding token Duplicator should �re ⊥ σ−→ ⊥,⊥
for some σ ∈ Σ. The described strategy is clearly winning for Duplicator.

An automaton for us is not as much a recognizing device, as a device
to carry out strategies. Therefore even two automata with substantially
di�erent structure may be equivalent, as long as they enable us to use the
same set of strategies. A typical thing we will be doing, is to replace a
part of an automaton with a di�erent part that gives the same strategical
possibilities. Recall that by Aq we denote the automaton A with the initial
state changed to q. For q ∈ QA let Aq:=B denote the automaton obtained
from a copy of A and a copy of B by replacing each A's transition of the

form p
σ,d−→ q with p

σ,d−→ qB0 . Note that Aq:=Aq is equivalent to A.

Lemma 6 (Substitution Lemma). Let A, B, C be deterministic automata
with pairwise disjoint sets of states, and let p be a state of C. If A ≤ B, then
Cp:=A ≤ Cp:=B.

3.3. OPERATIONS 45

Proof. Consider the game G(Cp:=A, Cp:=B) and the following strategy for Du-
plicator. In C Duplicator copies Spoiler's actions. If some Spoiler's token
x enters the automaton A, Duplicator should put its counterpart y in the
initial state of B, and then y and its descendants should use Duplicator's
winning strategy from G(A,B) against x and its descendants.

Let us see that this strategy is winning. Suppose �rst that Spoiler's run is
rejecting. Then there is a rejecting path, say π. If on π the computation stays
in C, in Duplicator's run π is also rejecting. Suppose π enters A. Let v be
the �rst node of π in which the computation is in A. The subrun of Spoiler's
run rooted in v is a rejecting run of A. Since Duplicator was applying a
winning strategy form G(A,B), the subrun of Duplicator's run rooted in v
is also rejecting. In either case, Duplicator's run is rejecting.

Now assume that Spoiler's run is accepting, and let us see that so is
Duplicator's. All paths staying in C are accepting, because they are identical
to the paths in Spoiler's run. For every v in which the computation enters
B, the subrun rooted in v is accepting thanks to the winning strategy form
G(A,B) used to construct it.

3.3 Operations

It this section we introduce four operations that will be used to construct
canonical automata representing all Wadge degrees of deterministic tree lan-
guages.

The �rst operation yields an automaton that lets a player choose between
A and B. For two deterministic tree automata A and B over Σ, the alterna-
tive A ∨B is an automaton with the input alphabet Σ ∪ {a, b} consisting of
disjoint copies of A and B over the extended alphabet Σ ∪ {a, b}, Aa,b and
Ba,b, and a fresh initial state q0 with transitions

q0
a−→ q

Aa,b
0 ,> , q0

b−→ q
Ba,b
0 ,> , and q0

σ−→ >,> for σ /∈ {a, b}

(only if L(A) = L(B) = ∅ put q0
σ−→ ⊥,⊥). By Lemma 6, ≡ is a congruence

with respect to ∨. Furthermore, L(A∨B) is Wadge equivalent to the disjoint
union of L(A) and L(B), so ∨ is associative and commutative up to ≡.
Multiple alternatives are performed from left to right:

A1 ∨ A2 ∨ A3 ∨ A4 = ((A1 ∨ A2) ∨ A3) ∨ A4 .

46 CHAPTER 3. WADGE ORDERING

The parallel composition A∧B is de�ned analogously, only now we extend
the alphabet only by a and add transitions

q0
a−→ qA0 , q

B
0 , and q0

σ−→ >,> for σ 6= a

(only if L(A) = ∅ or L(B) = ∅, put q0
σ−→ ⊥,⊥). Note that, while in A ∨B

the computation must choose between A and B, here it continues in both.
Again, ≡ is a congruence with respect to ∧. The language L(A∧B) is Wadge
equivalent to L(A) × L(B) and ∧ is associative and commutative up to ≡.
Multiple parallel compositions are performed from left to right, and for n > 0
the symbol (A)n denotes A ∧ . . . ∧ A︸ ︷︷ ︸

n

.

The canonical (ι, κ)-�ower F(ι,κ) is an automaton with the input alphabet
{aι, aι+1 . . . , aκ}, the states qι, qι+1, . . . , qκ where the initial state is qι and
rank(qi) = i, and transitions

qι
aι−→ qι,> , qι

aj−→ qj,> , qj
aj−→ q0,> , and qj

ak−→ >,>

for j = ι+ 1, ι+ 2, . . . , κ and k 6= j. A �ower F(ι,κ) is nontrivial if ι < κ.
Let A,Aι, . . . , Aκ be deterministic tree automata over Σ. The (ι, κ)-

replication A
(ι,κ)−→ Aι, . . . , Aκ is obtained as follows. Take a copy of F(ι,κ)

over the extended alphabet {aι, aι+1 . . . , aκ} ∪ Σ ∪ {b}, where b is a fresh
letter. Add single disjoint copies of Aι, . . . , Aκ and A over the extended
alphabet Σ ∪ {aι, aι+1 . . . , aκ} ∪ {b}. Finally, in F(ι,κ) over the extended al-

phabet, replace the transition qι
b,0−→ r (where r ∈ {⊥,>}) with qι

b,0−→ qA0 ,

and qι
ai,1−→ > with qι

ai,1−→ qAi0 for i = ι, . . . , κ. Again, using Lemma 6 it is
easy to see that the ≡-class of the de�ned automaton depends only on (ι, κ)
and the ≡-classes of A,Aι, . . . , Aκ. Hence, ≡ is a congruence with respect to
(ι,κ)−→ for every (ι, κ).

The last operation we de�ne produces out of A and B an automaton that
behaves as A, but in at most one point (on the leftmost path) may switch to
B. Consider the DAG of strongly connected components of the automaton
A. A component X is leftmost if no path connecting the initial state with
a state in X uses a right transition. In other words, no run of A contains
a state from X outside of the leftmost branch. In particular, all transitions
within X are left. A leftmost component that is a leaf in the DAG of SCCs
is called a tail component. We will also use the term head component to
denote the root of the DAG of SCCs. Note that, while each automaton

3.4. CANONICAL AUTOMATA 47

has a unique head component, it may have many or none tail components.
For deterministic tree automata A and B over Σ, the sequential composition
A ⊕ B is an automaton with the input alphabet Σ ∪ {b}, where b is a fresh
letter. It is constructed by taking copies of A and B over the extended

alphabet Σ ∪ {b} and replacing the transition p
b,0−→ r with p

b,0−→ qBb0 for all
p in tail components of A and r ∈ {⊥,>}. Like for ∧ and ∨, we perform
the multiple sequential compositions from left to right. For n > 0 we often
use an abbreviation nA = A⊕ . . .⊕ A︸ ︷︷ ︸

n

. Since the tail components of A⊕ B

are exactly those of B, the operation ⊕ is associative up to a permutation
of the letters freshly added to the input alphabet. In particular, the ≡-class
of a multiple sequential composition does not depend on the way we put
parentheses. An analog of ⊕ for word automata de�nes an operation on ≡-
classes, but for tree automata this is no longer true. We will also see later
that ⊕ is not commutative even up to ≡.

The priority of the operations is ⊕,∧,∨, (ι,κ)−→. For instance A1 → A2 ⊕
A3 ∧A4 ∨A5 = A1 → (((A2 ⊕A3) ∧A4) ∨A5). Nevertheless, we usually use
parentheses to make the expressions easier to read.

In the de�nitions above we often use an all-accepting state >. This is
in fact a way of saying that a transition is of no importance when it comes
to possible strategies: a token moved to > has no use later in the play.
Therefore, we may assume that players remove their tokens instead of putting
them to >. In particular, when a transition is of the form p

σ−→ q,>, it
is convenient to treat it as a "left only" transition in which no new token
is created, only the old token is moved from p to q. Consequently, when
analyzing games on automata, we will ignore the transitions to >.

3.4 Canonical Automata

In this section we de�ne canonical automata, which � as we will later see
� represent all ≡W -classes realised by deterministic tree languages, save for
three which will be de�ned later. For each α < ωω·3 we de�ne the canonical
automaton Cα. For some values of α we also de�ne canonical automata Dα

and Eα. All the de�ned automata have at least one tail component, so the
operation ⊕ is always non-trivial.

48 CHAPTER 3. WADGE ORDERING

Let C1 = F(0,0), D1 = F(1,1), and E1 = F(0,0)∨F(1,1). For 1 < α < ω de�ne

Cα = C1 ⊕ (α− 1)E1 ,

Dα = D1 ⊕ (α− 1)E1 ,

Eα = αE1 .

For ω ≤ α < ωω we only de�ne Cα. In what follows we use → to denote

the operation
(1,1)−→. Let Cω = C1 → C3 and Cωk+1 = C1 → (C1⊕Cωk) for 1 ≤

k < ω. For every α from the considered range we have a unique presentation
α = ωlknk + ωlk−1nk−1 . . . + ωl0n0, with ω > lk > 0, lk > lk−1 > . . . l0 and
0 < ni < ω. For l0 = 0 de�ne

Cα = Cn0 ⊕ n1Cωl1 ⊕ . . .⊕ nkCωlk for odd n0 ,

Cα = Dn0 ⊕ n1Cωl1 ⊕ . . .⊕ nkCωlk for even n0 ,

and for l0 > 0 set

Cα = n0Cωl0 ⊕ n1Cωl1 ⊕ . . .⊕ nkCωlk .

Now consider ωω ≤ α < ωω·2. For k < ω let Cωω+k = F(0,k+1), Dωω+k =
F(1,k+2) and Eωω+k = F(0,k+1) ∨ F(1,k+2). For every α from the considered
range we have a unique presentation α = ωωα1 + α0 with α0, α1 < ωω and
α1 > 0. Let α1 = ωlknk + ωlk−1nk−1 . . . + ωl0n0, with ω > lk > lk−1 > . . . l0
and 0 < ni < ω. For α0 = 0 and l0 = 1 let

Cα = Cωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

Dα = Dωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

Eα = Eωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

for α0 = 0 and l0 > 1 let

Cα = Cωω+l0 ⊕ (n0 − 1)Eωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

Dα = Dωω+l0 ⊕ (n0 − 1)Eωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

Eα = n0Eωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

for ω > α0 > 0 let

Cα = Cα0 ⊕ Eωωα1 ,

Dα = Dα0 ⊕ Eωωα1 ,

Eα = Eα0 ⊕ Eωωα1 ,

3.4. CANONICAL AUTOMATA 49

and for α0 > ω let

Cα = Cα0 ⊕ Eωωα1 .

Finally consider ωω·2 ≤ α < ωω·3. Let Cωω·2 = C1 → F(0,2), and for
k < ω let Cωω·2+k+1 = C1 → (C1 ⊕ Cωω·2+k). We have a unique presentation
α = ωω·2α2 + ωωα1 + α0 with α0, α1, α2 < ωω and α2 > 0. Let α2 =
ωlknk + ωlk−1nk−1 . . . + ωl0n0, with ω > lk > lk−1 > . . . l0 and 0 < ni < ω.
For α0 = α1 = 0 let

Cα = n0Cωω·2+l0 ⊕ n1Cωω·2+l1 ⊕ . . .⊕ nkCωω·2+lk ,

for α0 = 0 and α1 > 0 let

Cα = Cωωα1 ⊕ Cωω·2α2
,

Dα = Dωωα1 ⊕ Cωω·2α2
,

Eα = Eωωα1 ⊕ Cωω·2α2
,

for ω > α0 > 0 and α1 = 0 let

Cα = Cα0 ⊕ Cωω·2α2
for odd α0 ,

Cα = Dα0 ⊕ Cωω·2α2
for even α0 ,

and in the remaining case (α0 > ω or α1 > 0) let

Cα = Cωωα1+α0 ⊕ Cωω·2α2
.

Let C denote the family of the canonical automata, i. e.,

C = {Cα : α < ωω·3} ∪ {Dn, En : n < ω} ∪
∪ {Dωω·2α2+ωωα1+n, Eωω·2α2+ωωα1+n : 0 < α1 < ωω , α2 < ωω , n < ω} .

In the next three sections we will investigate the order induced on C by the
Wadge ordering of the recognized languages.

Now, let us discuss brie�y the taxonomy of the canonical automata. Sim-
ple automata are those canonical automata that cannot be decomposed with
respect to ⊕, i. e., the automata on the levels ωk, ωω+k, and ωω·2+k for k < ω.
Complex automata are those obtained from simple ones by means of ⊕. If for
some (simple) automata A1, A2, . . . , An we have A = A1⊕A2⊕ . . . An, we call
Ai (simple) components of A. Non-branching canonical automata are those
constructed from �owers without the use of→, i. e., Cωωα+n, Dωωα+n, Eωωα+n

for α < ωω and n < ω. The remaining automata are called branching.

50 CHAPTER 3. WADGE ORDERING

3.5 Without Branching

In this section we brie�y reformulate Wagner's results on regular word lan-
guages [41] in terms of canonical automata. For the sake of completeness, we
reprove them in this framework.

The outline is just like for tree languages: de�ne a collection of canon-
ical automata, prove that they form a strict hierarchy with respect to the
Wadge reducibility, check some closure properties, and provide an algorithm
calculating the equivalent canonical automaton for a given deterministic au-
tomaton, thus proving that the hierarchy is complete for regular languages.

Since the non-branching canonical automata have only left transitions,
they only check a regular word property on the leftmost path. It is easy
to see that for each word language K, the language of trees whose leftmost
branch is in K is Wadge equivalent to K. Based on this observation, we will
treat the non-branching canonical automata as automata on words.

Let L(ι,κ) denote the language of in�nite words over {ι, ι+ 1, . . . , κ} that
satisfy the parity condition, i. e., the highest number occurring in�nitely
often is even.

Lemma 7. For every index (ι, κ) and every deterministic tree automaton A
of index at most (ι, κ),

1. L(A) ≤ L(ι,κ)

2. L(F(ι,κ)) ≡W L(ι,κ),

3. L(ι,κ) ≤ L(ι,κ′) i� (ι, κ) ≤ (ι′, κ′).

Proof. The reduction showing (1) is given by w 7→ rank(q0)rank(q1)rank(q2) . . .,
where q0q1q2 . . . is the run of A on the word w.

For (2) the remaining reduction is obtained by assigning to a sequence
n1n2n3 . . . the tree with the word an1an1an2an2an3an3 . . . on the leftmost
branch, and a aι elsewhere.

Since L(ι,κ) can be recognized by a (ι, κ) automaton, one implication in
(3) follows from (1). To prove the remaining one, it is enough to show that
L(ι,κ) 6≤ L(ι,κ). Let us �x ι and proceed by induction on κ. For ι = κ the

claim holds trivially: ∅ ⊆ T{1} and T{1} are not reducible to each other. Take

ι < κ and let (ι′, κ′) = (ι, κ). Consider the game Gκ = GW (L(ι,κ), L(ι′,κ′)).
As long as Duplicator does not play κ′, Spoiler can follow the strategy from
Gκ−1 = GW (L(ι,κ−1), L(ι,κ−1)). If Duplicator never plays κ′, he loses. When

3.5. WITHOUT BRANCHING 51

Duplicator plays κ′, Spoiler should play κ, and then again follow the strategy
from Gκ−1, and so on. Each time, Duplicator has to play κ′ �nally, otherwise
he loses. But then he must play κ′ in�nitely many times, and he loses to,
since κ′ and κ have di�erent parity.

For the sake of convenience let us renumber the non-branching automata.
For η < ωω let

Ĉωη+n = Cωωη+n , D̂ωη+n = Dωωη+n , Êωη+n = Eωωη+n .

Let Ĉ = {Ĉα, D̂α, Êα : 1 < α < ωω}.

Proposition 8. For 0 < α < β < ωω we have

Ĉα Ĉβ
↘ ↗ ↘

Êα Êβ
↗ ↘ ↗

D̂α D̂β

where → means <. Furthermore, Ĉα 6≤ D̂α and D̂α 6≤ Ĉα.

Proof. First, observe that Ĉα ≤ Êα: a winning strategy for Duplicator in
G(Ĉα, Êα) is to move the initial token to F(0,κ), and then simply copy Spoiler's

actions. Analogously, D̂α ≤ Êα.
Let us now suppose that β = ωk for some k < ω. Then α = ωk−1nk−1 +

. . . + n0. By de�nition, Êα, has index at most (0, k). Hence, by Lemma 7,
Êα ≤ F(0,k) = Ĉβ. If we increase the ranks in each F(0,l) in Êα by 2, we obtain
an automaton with index at most (1, k + 1) recognizing the same language.
Hence, we also have Êα ≤ F(1,k+1) = D̂α.

Now, consider the general case. We have a unique pair of presentations
α = ωkmk + . . . + m0 and β = ωknk + . . . + n0 with nk > 0. Let i be
the largest number satisfying mi 6= ni. Since α < β, mi0 < ni0 . Thus
we have Êα ≡ Êα0 ⊕ Êγ, Ĉβ ≡ Êβ0 ⊕ Ĉγ, where γ = ωkmk + . . . + ωimi,
α0 = ωi−1mi−1 + . . .+m0, β0 = ωi(ni−mi) +ωi−1mi−1 + . . .+m0. Consider
the game G(Êα0 ⊕ Êγ, Êβ0 ⊕ Ĉγ). The strategy for Duplicator is as follows.

First move the token to the last F(0,i) in Ĉβ0 . Then follow the strategy given

by the inequality Êα0 ≤ F(0,i), as long as Spoiler stays in Êα0 . If he stays

there forever, Duplicator wins. If Spoiler moves to Êγ, Duplicator should do

52 CHAPTER 3. WADGE ORDERING

Ĉ1 Ĉ2 Ĉω Ĉω+1 Ĉω·2 Ĉω·2+1

� � � � � � � � �
Ê1 Ê2 · · · Êω Êω+1 · · · Êω·2 Êω·2+1 · · ·

� � � � � � � � �
D̂1 D̂2 D̂ω D̂ω+1 D̂ω·2 D̂ω·2+1

Figure 3.1: An initial segment of the Wagner hierarchy

the same and keep copying Spoiler's move from that moment on. This also
guarantees winning. The proof for D̂β is entirely analogous.

In order to prove that the inequalities are strict it is enough to show
that Ĉα 6≤ D̂α and D̂α 6≤ Ĉα. We only prove that Ĉα 6≤ D̂α; the proof for
D̂α 6≤ Ĉα is entirely analogous. Let us proceed by induction. The assertion
holds for α = 1: the whole space is not reducible to the empty set. Let us
take α > 1. By the de�nition, Ĉα = F(0,k) ⊕ Êγ, D̂α = F(1,k+1) ⊕ Êγ, where
α = ωk + γ. Consider the game G(F(0,k) ⊕ Êγ, F(1,k+1) ⊕ Êγ). We have to
�nd a winning strategy for Spoiler. If Duplicator never leaves F(1,k+1) Spoiler
can stay in F(0,k) and win using the strategy given by the Lemma 7 (3).

Otherwise, after Duplicator enters Êγ, he must make choice between Ĉγ and

D̂γ. Spoiler should loop in any loop of F(0,k) waiting for Duplicator's choice.

When Duplicator chooses one of Ĉγ, D̂γ, Spoiler should choose the other one
and use the strategy given by the induction hypothesis.

The third step is proving closure by natural operations. For word au-
tomata only the operations ⊕ and ∨ make sense. The operation ∨ is de�ned
just like for trees. To de�ne ⊕, simply assume that the tail components of a
word automaton are leaf SCCs. It is easy to see that ≡ is a congruence with
respect to ⊕ and ∧. Both operations are associative up to ≡.

Proposition 9. For each A1, A2 ∈ Ĉ, one can �nd in polynomial time au-
tomata A∨, A⊕ ∈ Ĉ such that A1 ∨ A2 ≡ A∨ and A1 ⊕ A2 ≡ A⊕.

Proof. Closure by ∨ is easy. If A1 ≥ A2, A1 ∨ A2 ≡ A1. Without loss
of generality we may assume that A1 and A2 are incomparable. But then
A1 = Ĉα, A1 = Ĉα for some α < ωω. It is very easy to see that Cα∨Dα ≡ Eα.

Let us now consider A1 ⊕ A2. Since ⊕ is associative up to ≡ and only
depends on the ≡ classes of the input automata, it is enough to prove the
claim for simple A1; in order to obtain a canonical automaton for (A

(1)
1 ⊕

. . .⊕A(n)
1)⊕A2, take A

(1)
1 ⊕ (A

(2)
1 ⊕ . . . (A

(n)
1 ⊕A2) . . .). Let us �rst consider

3.5. WITHOUT BRANCHING 53

A1 = Cωk . Observe that if Cωk ≥ B, Cωk ⊕ B ≡ Cωk . It is enough to give
a strategy for Duplicator in G(Cωk ⊕ B,Cωk), since the other inequality is
obvious. To win, Duplicator should �rst copy Spoiler's actions, as long as
Spoiler stays in Cωk . When Spoiler moves to B, Duplicator should simply
switch to the strategy from G(B,Cωk).

Using the property above, we easily reduce the general situation to one
of the following cases: Cωk ⊕Cηωk+1 , Cωk ⊕Dηωk , or Cωk ⊕Eηωk . In the third
case, the automaton is already canonical. Let us calculate the result in the
�rst two cases.

In the �rst case we have Cωk ⊕ Cηωk+1 ≡ Cηωk+1 . Consider the game
G(Cωk ⊕ Cηωk+1 , Cηωk+1). Let Cωl be the head component of Cηωk+1 . It
holds that l > k. In order to win the game, while Spoiler stays inside Cωk ,
Duplicator should stay in Cωl and use the strategy from G(Cωk , Cωl). When
Spoiler enters Cηωk+1 , Duplicator may simply copy his actions. The converse
inequality is trivial.

In the second case there are two possibilities. If the head component of
Dηωk is Dωl with l > k, proceeding as before one proves Cωk ⊕ Dηωk+1 ≡
Dηωk+1 . But if l = k, we have Cωk ⊕ Dηωk ≡ Cηωk+ωk . Consider the game
G(Cηωk+ωk , Cωk ⊕Dηωk). While Spoiler stays in Cωk , Duplicator should copy
his actions. When Spoiler leaves Cωk , he has to choose between Dωk and
the next copy of Cωk . If he chooses Dωk , Duplicator also moves to his copy
of Dωk , and mimics Spoiler actions. Suppose Spoiler chooses Cωk . Then
Duplicator stays in his head component, and mimics Spoiler's actions, as
long as he stays in Cωk . When Spoiler leaves Cωk , he enters the head state of
Eη′ωk , where η

′ + 1 = η. Duplicator should exit Cωk , go past Dωk , and enter
his copy of Eη′ωk . From now on, he can copy Spoiler's actions.

For A1 = Dωk , simply dualize the claims and the proofs. For A1 = Eωk ,
note that Eωk ⊕ A2 ≡ Cωk ⊕ A2 ∨ Dωk ⊕ A2, and the equivalent canonical
automaton can be obtained by previous cases.

Let us now see that the hierarchy is complete for word languages.

Theorem 9. For each word automaton A one can �nd in polynomial time a
canonical non-branching automaton B such that L(A) ≡W L(B).

Proof. We will proceed by induction on the height of the DAG of strongly
connected components of A. Suppose that the automaton is just one strongly
connected component. Let (ι, κ) be the highest index for which A contains
a (ι, κ)-�ower. It is well de�ned, because if A contains a (0, k)-�ower and a

54 CHAPTER 3. WADGE ORDERING

(1, k + 1)-�ower, it must also contain a (0, k + 1)-�ower. By Theorem 1, A
is equivalent to a (ι, κ)-automaton and so, by Lemma 7, A ≤ F(ι,κ). On the
other hand it is easy to see, that in G(F(ι,κ), A), Duplicator may easily use
the (ι, κ)-�ower in A to mimic Spoiler's actions in F(ι,κ). Hence, A ≡ F(ι,κ).

Now, suppose that the DAG of SCCs of A has at least two nodes. Let
X be the root SCC. Like before, let (ι, κ) be the maximal index such that
X contains a (ι, κ)-�ower. Let q1, . . . , qm be all the states reached by the
transitions exiting X (the �initial� states of the SCCs that are children of
X). Recall that Aq is the automaton A with the initial state set to q. Let
Bi be the canonical non-branching automaton equivalent to Aqi . It is easy
to see that A ≡ F(ι,κ) ⊕ (B1 ∨B2 ∨ . . . ∨Bm).

3.6 The Use of Replication

According to the de�nition of the automata game, in a branching transition
a token is split in two. However in branching canonical automata, the role to
be played by two new tokens is very di�erent. Therefore, we prefer to see the
process of splitting a token as producing a new token that moves along the
right branch of the transition, while the original one moves left. Thus the
initial token moves along the leftmost path, bubbling out new tokens now
and then.

Recall that we have de�ned the operation ⊕ in such a way, that the second
automaton can only be reached via a leftmost path. This means that the
only token that can actually move from one simple automaton to another
is the initial token. Since passing between the simple automata forming a
canonical automaton is usually the key strategic decision, we call the initial
token critical, and the path it moves along, the critical path.

Branching automata are de�ned by iterating
(1,1)−→, shortly denoted by →.

The signi�cance of→ lies in the fact that closing the family of non-branching
automata by this operation gives, up to Wadge equivalence, almost all de-
terministic tree languages (only Cωω·3 , Cωω·3+1, and Cωω·3+2 will be de�ned
by means of a stronger replication). In particular, we will show that the op-
eration ∧ is not needed. In other words, → is everything that deterministic
tree automata have, which word automata have not. Let us see then what
the use of the operation → is.

There are two kinds of simple branching automata. The �rst one is
obtained by iterating → on C3, and generalizes Cn. Intuitively, Cn =

3.6. THE USE OF REPLICATION 55

C1⊕(n−1)E1 lets a player in an automata game change his mind n−1 times
in the following sense. First, the player moves his (only) token along the head
loop. The head loop is accepting, so if he keeps looping there forever, the
resulting run will be accepting. But after some time he may decide that
producing an accepting run is not a good idea. In such a case he can move
to the rejecting loop in the �rst copy of E1. Later he may want to change
his mind again, and again, until he reaches the last copy of E1. Now, when
the player is in charge of Cω = C1 → C3 he can choose a number n < ω,
and looping in the head loop of Cω produce n tokens in the head loop of his
copy of C3. We will see that with those tokens it is possible to simulate any
strategy designed for Cn+2. In other words, Cω o�ers the choice between Cn
for arbitrarily high n ≥ 3. The automaton Cω2 = C1 → (C1 ⊕ (C1 → C3))
lets you choose the number of times you will be allowed to choose some Cn,
and so on.

The second kind of simple branching automata, obtained by iterating →
on Cωω+1 , does the same with Cωω+n instead of Cn. For instance, Cωω·2 =
C1 → Cωω+1 lets the player choose any Cωω+n = Ĉωn (see page 51), and in
consequence L(Cωω·2) is hard for the class of regular languages of words.

Let us now see the proofs. The �rst lemma justi�es the name replication.

Lemma 8. For all automata A,B and all 0 < k < ω,

1. A→ B ≥ (A→ B) ∧ (B)k,

2. C1 → B ≥ (B)k.

Proof. To see that (1) holds, consider G((A→ B)∧ (B)k, A→ B). Spoiler's
initial moves produce a token x in the head loop of A → B, and tokens
x1, . . . , xk, each in the head component of a di�erent copy of B. Duplicator
should loop his starting token y around the head loop of A → B exactly k
times producing for each xi a doppelgänger yi and move them all to the initial
state of B. From now on y mimics x, and yi mimics xi for i = 1, . . . , k.

For the proof of (2) it is enough to check that (C1 → B) ∧ (B)k ≥ (B)k.
Clearly C1 → B ≥ C1. By Lemma 6, (C1 → B)∧ (B)k ≥ C1 ∧ (B)k, and the
claim follows.

Next we need to calculate the value of (C3)n and (Cωω+1)n. Apart from
canonical (ι, κ)-�owers F(ι,κ), we consider the following automata containing

56 CHAPTER 3. WADGE ORDERING

weak (ι, κ)-�owers (see page 25):

WF(0,n) = C1 ⊕D1 ⊕ C1 ⊕D1 ⊕ . . .︸ ︷︷ ︸
n+1

, WF(1,n+1) = D1 ⊕ C1 ⊕D1 ⊕ C1 ⊕ . . .︸ ︷︷ ︸
n+1

.

We will refer to these automata as weak (ι, κ)-�owers too. In fact, WF(0,n) ≡
Cn+1, WF(1,n+1) ≡ Dn+1, but we �nd the notation convenient.

A pair (i1, i2) ∈ ω×ω is called even if both i1 and i2 are even. Otherwise
(i1, i2) is odd. Let [ι, κ] denote the set {ι, ι+ 1, . . . , κ} ⊆ ω with the natural
order. Consider the set [ι, κ] × [ι′, κ′] with the product order: (x1, y1) ≤
(x2, y2) if x1 ≤ x2 and y1 ≤ y2 . An alternating chain of type (m,n), or
(m,n)-chain, is a sequence (xm, ym) < (xm+1, ym+1) < . . . < (xn, yn), such
that (xi, yi) is even i� i is even. It is enough to consider (0, n) and (1, n)
chains. Suppose we have a (m,n)-chain of maximal length in [ι, κ] × [ι′, κ′].
The parity of n is equal to the parity of (κ, κ′), as de�ned above, for otherwise
we could extend the alternating chain with (κ, κ′) and get a (m,n+1)-chain.
Consequently, the following operation is well-de�ned:

(ι, κ) ∧ (ι′, κ′) = the type of the longest alternating chain in [ι, κ]× [ι′, κ′] .

Lemma 9. For all indices (ι1, κ1) and (ι2, κ2) it holds that

F(ι1,κ1) ∧ F(ι2,κ2) ≡ F(ι1,κ1)∧(ι2,κ2) ,

WF(ι1,κ1) ∧WF(ι2,κ2) ≡ WF(ι1,κ1)∧(ι2,κ2) .

In particular, (F(0,2))
k ≡ F(0,2k) and (WF(0,2))

k ≡ WF(0,2k). Equivalently,
(Cωω+1)k ≡ Cωω+1+2k and (C3)k = C2k+1.

Proof. By Lemma 7, L(F(i,j)) ≡W L(i,j), so L(F(ι1,κ1) ∧ F(ι2,κ2)) ≡W L(ι1,κ1) ×
L(ι2,κ2), where L×M = {(x1, y1)(x2, y2) . . . : x1x2 . . . ∈ L, y1y2 . . . ∈M}. We
will show that L(ι1,κ1) × L(ι2,κ2) ≡W L(ι,κ), where (ι, κ) = (ι1, κ1) ∧ (ι2, κ2).

Consider the following automaton A. The state space is the set

[ι1, κ1]× [ι2, κ2]→ {0, 1, 2}

and the initial state is the function constantly equal 0. The transition relation
δ is de�ned as (f, σ, g) ∈ δ i� for all i and j, (f(i, j), σ, g(i, j)) ∈ δ(i,j), where
δ(i,j) is de�ned as

0
(i,∗)−→ 1 , 0

(k,∗)−→ 0 for all k 6= i ,

1
(∗,j)−→ 2 , 1

(∗,k)−→ 1 for all k 6= j ,

2
(∗,∗)−→ 1 ,

3.6. THE USE OF REPLICATION 57

with ∗ denoting any letter.
Let us now de�ne the rank function. For i ∈ [ι1, κ1] and j ∈ [ι2, κ2], let

(ι′, κ′) = (ι1, i)∧(ι2, j) and rank(i, j) = κ′. Observe that ι′ = ι, so ι ≤ κ′ ≤ κ.
Set the rank of the states that never take the value 2 to ι. For the remaining
states set the rank to rank(maxk ik,maxk jk), where (i1, j1), (i2, j2), . . . , (ir, jr)
are the arguments for which the value 2 is taken

Let us check that the automaton recognizes L(ι1,κ1) × L(ι2,κ2). Take a
word w = (x1, y1)(x2, y2) Let x = maxk xk and y = maxk yk. In the
run of A on w, the states f satisfying f(x, y) = 2 will occur in�nitely often.
Furthermore, from some moment on there only appear states f satisfying
∀(x′,y′) f(x′, y′) = 2 =⇒ (x′, y′) ≤ (x, y). Since (x, y) ≤ (x′, y′) =⇒
rank(x, y) ≤ rank(x′, y′), the highest rank used in�nitely often in the run on
w is rank(x, y). Finally, rank(x, y) is even i� x and y are even, so the run on
w is accepting i� w ∈ L(ι1,κ1) × L(ι2,κ2).

Since A has the index (ι, κ), the automaton itself provides a reduction of
L(ι1,κ1) × L(ι2,κ2) to L(ι,κ).

By de�nition of (ι, κ), there exists a sequence of pairs

(xι, yι) < (xι+1, yι+1) < . . . < (xκ, yκ)

such that for all i it holds that ι1 ≤ xi ≤ κ1, ι2 ≤ yi ≤ κ2, and xi and yi are
even i� i is even. The reduction is given by the function

ϕ(i1i2i3 . . .) = (xi1 , yi1)(xi2 , yi2)(xi3 , yi3)

The proof for weak �owers is entirely analogous.

Lemma 10. For all 0 < k, l < ω and all m < ω

C1 ⊕ Cωmk ∧ C1 ⊕ Cωml ≡ C1 ⊕ Cωm(k+l) ,

C1 ⊕ Cωω·2+mk ∧ C1 ⊕ Cωω·2+ml ≡ C1 ⊕ Cωω·2+m(k+l) .

In particular, (C1⊕Cωm)k ≡ C1⊕Cωmk and (C1⊕Cωω·2+m)k ≡ C1⊕Cωω·2+mk.

Proof. Consider G(C1 ⊕Cωmk ∧C1 ⊕Cωml, C1 ⊕Cωmk ⊕Cωml). Duplicator's
critical token moves along WF(0,2k+2l) formed by the alternating head and
tail loops of consecutive copies of Cωm . Spoiler's initial token splits in the
�rst move in two tokens which continue moving along WF(0,2k) and WF(0,2l).
For the purpose of this proof, call them both critical.

58 CHAPTER 3. WADGE ORDERING

The strategy for Duplicator is based on the fact thatWF(0,2k)∧WF(0,2l) ≡
WF(0,2k+2l). Duplicator can loop his critical token inside an accepting loop
as long as both Spoiler's critical tokens loop inside accepting loops. When
Spoiler changes his mind and moves one of them to a rejecting loop, Dupli-
cator should also move to a rejecting loop too, and keep looping there until
both Spoiler's tokens are again in accepting loops. This can only repeat k+ l
times, so Duplicator is able to realise this strategy.

This way, whenever Spoiler produces a new token x using one of the
critical tokens, Duplicator can produce its doppelgänger y. The role of the
doppelgänger is to mimic the original. The mimicking is in fact passed from
generation to generation: if the original token bubbles a new token x′, y
should bubble a new doppelgänger y′ which is to mimic x′, and so on.

In order to see that the strategy is winning it is enough to observe two
facts: Duplicator's critical token stays in a rejecting loop forever i� one
of Spoiler's critical tokens does, and the sequence of ranks seen by any of
Spoiler's non-critical tokens is equal to the one seen by its doppelgänger.
Hence, C1 ⊕ Cωmk ∧ C1 ⊕ Cωml ≤ C1 ⊕ Cωm(k+l).

The converse inequality is proved in a similar way and for the second
equivalence the same proof works.

Corollary 3. For all l, ι, κ < ω and all 0 < n < ω

1. Cω > WF(ι,κ), Cωl+1 ≥ Cωln,

2. Cωω·2 > F(ι,κ), Cωω·2+l+1 ≥ Cωω·2+ln.

Proof. By Lemma 8 and Lemma 9, Cω ≥ (WF(0,2))
m ≡ WF(0,2m) and by the

strictness of the hierarchy for word languages Cω > WF(ι,κ). Similarly, using
Lemma 8 and Lemma 10 we get Cωl+1 ≥ (C1 ⊕ Cωl)n ≡ C1 ⊕ Cωln ≥ Cωln.
The remaining two inequalities are analogous.

3.7 Automata in Order

Let us start with a simple observation on canonical automata. Recall that, by
convention, in transitions of the form p

σ−→ q,> or p
σ−→ >, q no new tokens

are produced, only the old token moves from p to q, and in the remaining
transitions the old token moves left bubbling the new token to the right. The
following lemma relies on this convention.

3.7. AUTOMATA IN ORDER 59

Lemma 11. Let A be a canonical automaton.

1. If a player in charge of A produces in�nitely may tokens, the resulting
run is rejecting.

2. If a run constructed by a player in charge of A is rejecting, one of the
tokens realized a rejecting path.

Proof. We will proceed by structural induction. The claim holds trivially
for non-branching automata. Suppose now that A = C1 → A′. If the con-
structed run is to be accepting, the player can only produce a �nite number
of tokens by looping in the head loop of A. By the induction hypothesis
for A′, those tokens can only have �nitely many descendants. Hence, in the
whole play there can be only �nitely many tokens.

Now, take A = A′⊕A′′. Suppose there were in�nitely many tokens in some
play on A. Observe that all the tokens in A′′ are descendants of the critical
token. Hence, if there were in�nitely many tokens in A′′, by the induction
hypothesis for A′′ the whole run is rejecting. Suppose there were in�nitely
many tokens in A′. Consider a play in which the critical token instead of
moving to A′′ stays in the last accepting loop of A′ (it exists by the de�nition
of canonical automata). In such a play a run of A′ is build. Since there are
in�nitely many tokens used, the run is rejecting by the induction hypothesis
for A′. Consequently, the run of A constructed in the original play must have
been rejecting as well.

For the proof of (2) it is enough to observe that in a canonical automaton
the only loop using right transitions is the loop around >. In other words,
each path of the constructed computation that does not reach > goes right
only a bounded number of times (depending on A). Now, consider a rejecting
run of A constructed during a play. It must contain a rejecting path π. The
token created during the last right transition on π realises a su�x of π, which
of course is a rejecting path.

Using the above observation we can slowly start examining the order on
canonical automata.

Lemma 12. For all 0 < α < ωω

Cα ≤ Cωω , Cα ≤ Dωω .

Proof. We give a proof for the �rst inequality; the second one is proved
analogously. Consider the following strategy for Duplicator in G(Cα, Cωω).

60 CHAPTER 3. WADGE ORDERING

In every move, if any of Spoiler's tokens is inside a rejecting loop, Duplicator
should move his critical token around a 1-loop, otherwise he should loop
around the 0-loop. Let us see that the strategy is winning.

By Lemma 11 (1) if Spoiler's run is to be accepting, he must produce
only �nitely many tokens. All of those tokens must �nally get to some 0-
loop, and stay there forever. This means that after some number of moves,
all Spoiler's tokens are in 0-loops which they will never leave later. But
from this moment on Duplicator's critical token will keep looping around the
0-loop, so Duplicator's run will also be accepting.

By Lemma 11 (2), if Spoiler's run is to be rejecting, there must be a token
that from some moment on stays forever in a 1-loop. Then Duplicator's token
will also get trapped in the rejecting loop in Cωω , and Duplicator's run will
be rejecting too.

Let us now see that we can restrict the way the players use non-critical
tokens. For a simple automaton A and a canonical automaton B = B1 ⊕
. . . ⊕ Bn with Bi simple, we say that B dominates A if one of the following
conditions holds

• A is non-branching

• A = C1 → Cα, B1 = C1 → Cβ, and β ≥ α,

• A = Ck
ω and B1 = F(ι,κ) or B = F(ι,κ) ∨ F(ι,κ) for ι < κ.

Lemma 13. Let A1, A2, . . . , An be simple and let B be a canonical automaton
dominating all Ai. For every deterministic automaton C, if Spoiler has a
winning strategy in G(A1 ⊕ . . . An ⊕ B,C), then he also has a strategy in
which he removes all non-critical tokens before entering B. Similarly for
Duplicator in G(C,A1 ⊕ . . . An ⊕B).

Proof. Let B = B1⊕ . . .⊕Bn with Bi simple. Suppose that at some moment
the strategy tells Spoiler to enter B (if this never happens, the claim is
obvious). If there are no non-critical tokens left in A1, A2, . . . , An, then we
are done. However if there are, we have to take extra care of them. Suppose
Spoiler has produced non-critical tokens x1, . . . , xr, and xi is in Ami . Since
xi is not on a critical path of Ami , by the de�nitions of canonical automata,
it will stay within a copy of Cαi over the alphabet extended to the alphabet
of B.

3.7. AUTOMATA IN ORDER 61

Suppose B1 = C1 → Cβ. Since B dominates Ai, β ≥ αi for all i. Spoiler
should replace the token xi with x

′
i and let x′i take over the duties of xi. To

produce x′i, Spoiler should loop once in the head loop of B1. If B1 = Cωk , or
Ai = Cωω·2+k′ , Spoiler may simply move x′i to a copy of Cαi and let it perform
exactly the actions xi would take. If β = Cωω·2+k , αi = Cωk′ , Spoiler should
move x′i to the copy of F(0,2) contained in Cβ, and let it apply the strategy
guaranteed by Lemma 12. To see that the strategy is applicable, it is enough
to note that it does not require any waiting, and that F(0,2) contains a copy
of F(0,1).

Suppose now that B1 is non-branching. Then, αi < ωω for all i. In this
case Spoiler cannot produce a token to take over xi's duties. Instead, he has
to modify the actions of the critical token. He should move the critical token
according to his original strategy moving from �ower to �ower, only when one
of his non-critical tokens would be in a rejecting loop, he should choose a 1-
loop in his current �ower (instead of the loop suggested by the old strategy).
Just like in the proof of Lemma 12, if in a play according to the original
strategy one of the non-critical tokens stays forever in a rejecting loop, then
in the game according to the new strategy the critical token �nally also gets
trapped in a 1-loop. Otherwise, there are only �nitely many non-critical
tokens, and all of them �nally stabilize in an accepting loop. From that
moment on, the critical token will see exactly the same ranks as it would
see if Spoiler was playing with the original strategy. Hence, the modi�ed
strategy is also winning.

If the original strategy brings Spoiler to a branching automaton, he should
produce counterparts of his non-critical tokens just like above.

Corollary 4. For every canonical automaton of the form A ⊕ B and every
deterministic tree automaton C, if a Spoiler has a winning strategy in G(A⊕
B,C), than he has also a winning strategy which removes all non-critical
tokens before entering B. Similarly for Duplicator in G(C,A⊕B).

Proof. Let A = A1 ⊕ A2 ⊕ . . . ⊕ An with Ai simple. From the structure of
canonical automata it follows that if A⊕B is canonical, B dominates Ai for
i = 1, 2, . . . , n.

Now we are ready to get back to the order on C.

Lemma 14. If 0 < α ≤ β < ωω·3 then Cα ≤ Cβ and whenever Dα and Eβ
are de�ned, Dα ≤ Eβ, Cα ≤ Eβ. If β < α, then Eβ ≤ Dα, Eβ ≤ Cα.

62 CHAPTER 3. WADGE ORDERING

C1 C2 Cω − Cω+1 . . . Cωω Cωω+1 Cωω+ω − Cωω+ω+1 · · ·
� � � � � �
E1 E2 · · · Eωω Eωω+1 · · · · · ·

� � � � � �
D1 D2 Dωω Dωω+1

Figure 3.2: The Wadge ordering of the canonical automata.

Proof. As an auxiliary claim let us see that if A⊕B is canonical and A′ ≥ A,
A⊕ B ≤ A′ ⊕ B. Indeed, the following is a winning strategy for Duplicator
in G(A⊕B,A′ ⊕B). While Spoiler keeps inside A, apply the strategy from
G(A,A′). If Spoiler enters B, by Corollary 4 we may assume he removes all
non-critical tokens. Hence, Duplicator may remove non-critical tokens, move
the critical token to B and copy Spoiler's actions. In an analogous way we
prove A⊕B ≤ A′ ⊕B.

Let us now see that Cα ≤ Cβ for α < β < ωω·3; the other inequalities may
be proved in an analogous way. We will proceed by induction on (α, β) with
lexicographic order. If β < ω, the result follows by the word languages case.
Suppose that ω ≤ β < ωω. Let α = ωkmk+ . . .+m0 and β = ωknk+ . . .+n0,
nk > 0. First, assume that mk = 0. Obviously Cωk ≤ Cβ, simply because
Cβ contains a copy of Cωk . If k = 1 the claim follows directly from Corollary
3. For k > 1, using the induction hypothesis and Corollary 3, we get Cα ≤
Cωk−1(mk−1+1) ≤ Cωk . Now, assume that mk > 0. Then α = ωk + α′,
β = ωk + β′ for some ordinals α′ < β′. By de�nition Cα = Cα′ ⊕ Cωk ,
Cβ = Cβ′ ⊕ Cωk , and by induction hypothesis, Cα′ ≤ Cβ′ . Hence, by the
auxiliary claim above, Cα ≤ Cβ.

Now, suppose that ωω ≤ β < ωω·2. Let α = ωωα1 + α0, β = ωωβ1 + β0

for α0, α1, β0, β1 < ωω. If α1 = β1, then by induction hypothesis Cα0 ≤ Cβ0 ,
and Cα ≤ Cβ follows by the auxiliary claim above. Assume that α1 < β1.
By Lemma 12, Cα0 ≤ Cωω . Replacing G(Cα0 , Cβ0) with G(Cα0 , Cωω) in the
above strategy, we get Cα = Cα0 ⊕ Eωωα1 ≤ Cωω ⊕ Eωωα1 = Cωω(α1+1). By
Proposition 8 Cωω(α1+1) ≤ Cωωβ1 and since Cωωβ1 is contained in Cωωβ1+β0 ,
we get Cωωα1+α0 ≤ Cωωβ1+β0 . Observe that the argument works also for α0

or β0 equal to 0.
The case ωω·2 ≤ β < ωω·3 is analogous to ω ≤ β < ωω.

For a complete description of the ordering on the canonical automata (see
Fig. 3.2) we need the strictness of the inequalities from the previous lemma.

Theorem 10. Let 0 < α ≤ β < ωω·3. Whenever the respective automata
are de�ned, it holds that Dα � Cα, Dα � Cα, Dα < Eβ, Cα < Eβ, and for

3.8. PATTERNS IN AUTOMATA 63

α < β, Cα < Cβ, Eα < Dβ, Eα < Cβ.

Proof. By Lemma 14 it is enough to prove Cα < Cα+1, Dα < Eα, Cα < Eα,
Dα � Cα, Dα � Cα. We will only give a proof of the �rst inequality; the
others can be argued similarly. We will proceed by induction on α. If α < ω,
the claim follows by the word languages case.

Suppose α = ωk + α′, k ≥ 1. Let α′ ≥ 1 (the remaining case is similar).
We shall describe a winning strategy for Spoiler in G = G(Cωk+α′+1, Cωk+α′).
Spoiler should �rst follow the winning strategy for G(Cα′+1, Cα′), which exists
by the induction hypothesis. Suppose that Duplicator enters the head loop
of Cωk . We may assume that he removes all his non-critical tokens (Corollary
4). Spoiler should remove all his non-critical tokens, move his critical token
to the (accepting) tail loop of Cα′+1 and loop there until Duplicator leaves
the head loop. If Duplicator stays forever in the head loop of Cωk , he loses.
Suppose that Duplicator leaves the head loop of Cωk after producing r tokens.
The rest of the game is equivalent toG′ = G(C1⊕Cωk , A) for A = A1∧. . .∧Ar,
where Aj is the part of Cωk accessible for the Duplicator's jth token. If k = 1,
then Aj ≤ WF(0,2) for each j. Hence A ≤ WF(0,2r) and by Corollary 3 Spoiler
has a winning strategy in G′. Let us suppose k > 1. Then Aj ≤ C1⊕Cωk−1 for
j = 1, . . . , r and so, by Lemma 6, A ≤ (C1 ⊕ Cωk−1)r. Hence, by Lemma 10,
A ≤ Cωk−1r+1. Since ω

k−1r + 1 < ωk−1r + 2 ≤ α, we may use the induction
hypothesis to get a winning strategy for Spoiler in G′. In either case Spoiler
has a winning strategy in G as well.

Now, assume ωω ≤ α < ωω·2. Let α = ωωα1 +α0 with α0 < ωω, 1 ≤ α1 <
ωω. Again, we describe a strategy for Spoiler inG = G(Cωωα1+α0+1, Cωωα1+α0)
only for α0 ≥ 1, leaving the remaining case to the reader. First follow the
winning strategy from G(Cα0+1, Cα0). If Duplicator does not leave the Cα0

component, he will lose. After leaving Cα0 , Duplicator has to choose Dωωα1

or Cωωα1 . Suppose he chooses Dωωα1 . Again, by Corollary 4 we may assume
that he removes all non-critical tokens. Now, Spoiler has to remove all non-
critical tokens and move the critical token to the initial state of Eωωα1 and
use the winning strategy from G(Eωωα1 , Dωωα1).

For α = ωω·2+k + α′ argue like for α = ωk + α′.

3.8 Patterns in Automata

Compare the notion of a pattern called (ι, κ)-�ower de�ned in Chapter 2 and
the canonical �ower F(ι,κ). It is fairly clear that if A contains a (ι, κ)-�ower,

64 CHAPTER 3. WADGE ORDERING

Duplicator can win in G(F(ι,κ), A) by copying Spoiler's actions. It seems
plausible to look at A as if it contained F(ι,κ). In this section we provide a
notion which captures this intuition.

Two paths p
σ′1,d

′
1−→ p′1

σ′2,d
′
2−→ . . .

σ′m,d
′
m−→ p′m and p

σ′′1 ,d
′′
1−→ p′′1

σ′′2 ,d
′′
2−→ . . .

σ′′n,d
′′
n−→ p′′n in a

deterministic automaton A are branching i� there exists i < min(m,n) such
that for all j < i it holds that (σ′j, d

′
j) = (σ′′j , d

′′
j), σ

′
i = σ′′i , and d

′
i 6= d′′i . Note

that the condition implies that p′j = p′′j for j ≤ i.
An automaton B can be embedded into an automaton A, if there exists a

function eQ : QB → QB and a function eδ : QB × ΣB × {0, 1} → ΠA, where
ΠA is the set of paths in A, satisfying the following conditions:

1. if p
σ,d−→ q and eδ(p, σ, d) = r0

σ1,d1−→ r1
σ2,d2−→ . . .

σn,dn−→ rn then r0 = eQ(p),
rn = eQ(q),

2. for all p, σ the paths eδ(p, σ, 0) and eδ(p, σ, 1) are branching,

3. for every loop λ in B, the corresponding loop in A (obtained by con-
catenating the paths assigned to the edges of λ) is accepting i� λ is
accepting.

For each tree automaton A, let A′ be the automaton obtained from A by
unravelling the DAG of strongly connected components into a tree (for the
purpose of this de�nition, we allow multiple copies of ⊥). An automaton
A admits an automaton B, in symbols B v A, if the automaton B′ can be
embedded into A. Note that if B can be embedded into A, then A v B.

Lemma 15. For all deterministic tree automata A and B

A v B =⇒ A ≤ B .

Proof. Since L(B′) = L(B), without loss of generality we may assume that
B = B′. We have to provide a winning strategy for Duplicator in G(B,A).
Without loss of generality, we may assume that Spoiler never removes his
tokens. Let eQ and eδ be the embedding functions. We will show that Du-
plicator can keep a collection of doppelgängers, one for each Spoiler's token,
such that if some Spoiler's token x is in the state p, its doppelgänger y is in
the state eQ(p).

Let us �rst assume that eQ(qB0) = qA0 . Then the invariant above holds
when the play starts. As long as Spoiler does not enter ⊥, the invariant can
be maintained by means of the function eδ as follows. Suppose that Spoiler

3.8. PATTERNS IN AUTOMATA 65

�res a transition q
σ−→ q′, q′′ for some token x obtaining new tokens x′ and

x′′. Let

eδ(q, σ, 0) = p0
σ1,d1−→ . . .

σl−1,dl−1−→ pl−1

σl,d
′
l−→ p′l

σ′l+1,d
′
l+1−→ . . .

σ′m,d
′
m−→ p′m ,

eδ(q, σ, 1) = p0
σ1,d1−→ . . .

σl−1,dl−1−→ pl−1

σl,d
′′
l−→ p′′l

σ′′l+1,d
′′
l+1−→ . . .

σ′′n,d
′′
n−→ p′′n ,

with d′l = 1− d′′l .

Let ri, r
′
j, r
′′
k be such that pi−1

σi,di−→ ri, p
′
j−1

σ′j ,d
′
j−→ r′j, and p

′′
k−1

σ′′k ,d
′′
k−→ r′′k for

1 ≤ i < l, l + 1 ≤ j ≤ m, l + 1 ≤ k ≤ n, where d = 1− d.
Recall that we assume that for every transition, either both target states

are ⊥ or none. Since q′ 6= ⊥ and q′′ 6= ⊥ then, by the condition (3) of the
de�nition of admittance, p′m 6= ⊥ and p′′n 6= ⊥ and consequently all the states
pi, ri, p

′
j, r

′
j, p

′′
k, r

′′
k are not equal to ⊥. Hence, Duplicator can proceed as

follows. Starting with the token y (the doppelgänger of x), �re the transitions
forming the common pre�x of both paths, each time removing the token sent
to ri. Thus he reaches the state pl−1 with a descendant of the token y. Then
he should �re the next transition producing two tokens y′ and y′′, and for
each of them �re the remaining sequence of transitions (again removing the
tokens in the states r′j and r′′k). Thus he ends up with two tokens in the
states p′m = eQ(q′) and p′′n = eQ(q′′). Hence, the token in eQ(q′) may be the
doppelgänger of x′, and the token in eQ(q′′) may be the doppelgänger of x′′.

Let us see that if Spoiler never enters ⊥, Duplicator wins. Observe that
the function eδ induces a function e from the set of in�nite paths in B to the
set of in�nite paths in A. Owing to the condition (3), e(π) is accepting i� π
is accepting. The strategy used by Duplicator guarantees that for each path
π in Spoiler's run, Duplicator's run contains the path e(π). The paths in
Duplicator's run that are not images of paths from Spoiler's run were all de-
clared accepting by removing the corresponding tokens. Hence, Duplicator's
run is accepting i� Spoiler's run is accepting.

Now, if Spoiler enters ⊥, Duplicator proceeds as before, only if some
ri, r

′
j, or r

′′
k is equal to ⊥, instead of removing the token from there (he is

not allowed to do that), he lets the token and all its descendants loop there
forever. In the end, again each path in Spoiler's run has a counterpart in
Duplicator's run. The images of the rejecting paths (which exist in Spoiler's
run), will be rejecting too. Hence, Duplicator also wins in this case.

Finally we have to consider the situation when eQ(qB0) 6= qA0 . In this case,
Duplicator should �rst move his initial token to the state eQ(qB0), removing

66 CHAPTER 3. WADGE ORDERING

the other tokens produced on the way whenever possible, and then proceed
as before.

Another property that makes admittance similar to containment is tran-
sitivity.

Lemma 16. For all deterministic tree automata A, B, and C,

A v B v C =⇒ A v C .

Proof. Again, we may assume that A′ = A. Furthermore, since the states
from one SCC have to be mapped to states from one SCC, then A can be
embedded directly into B′. Hence, we may also assume that B = B′. Let
eX,YQ , eX,Yδ be functions embedding the automaton X into Y . The embedding

of A into C is simply a composition of two given embeddings: eA,CQ = eB,CQ ◦
eA,CQ , eA,Cδ = eB,CΠ ◦ eA,Bδ , where eB,CΠ : ΠB → ΠC is the function induced

by eB,Cδ in the natural way. It is easy to see that eA,CQ and eA,Cδ satisfy the
conditions from the de�nition of admittance.

Embedding for automata on words is de�ned analogously, only the func-
tion eδ is de�ned on Q× Σ instead of Q× Σ× {0, 1}, and the condition (2)
is dropped. Admittance is de�ned identically. The two lemmas above carry
over with analogous proofs.

3.9 Hard Automata

In previous sections we have described an extended hierarchy of canonical
automata. As we have already mentioned there are still three canonical

automata left to de�ne. Let Cωω·3 = C1
(0,1)−→ C1, C(0,2) and Cωω·3+1 = C1

(0,0)−→
F(0,1). The last automaton, Cωω·3+2 consists of the states q0, q1, > with
rank(qi) = i and transitions

q0
a−→ q0, q1 , q0

b−→ >,> ,

q1
a−→ q0,> , q1

b−→ >,> .

Using canonical automata we can formulate results from Chapter 2 in a
uniform way. In the proof we will need the following technical lemma.

3.9. HARD AUTOMATA 67

Lemma 17. Let A be a deterministic tree automaton. For every productive
state p in A there exists a state q, a path πp from p to q, and pair of branching
paths π0

q , π
1
q from q to q forming accepting loops.

Proof. We prove the following claim: every set S ⊆ Q such that the graph of
A restricted to S is strongly connected and for which there exists an accepting
run that uses only states from S, contains a state q and a pair of branching
paths from q to q forming accepting loops. We proceed by induction on the
highest rank κ used in S.

If κ is even, the claim follows trivially. Take κ = 2k + 1. Consider an
accepting run ρ using only states from S. In ρ there must be a subtree ρ′

that does not contain the rank 2k+ 1 (otherwise, we would �nd a path with
in�nitely many occurrences of 2k+ 1). Consider the set S ′ ⊆ S of the states
used in ρ′. Clearly, the graph of A restricted to S ′ may not be strongly
connected anymore. Let S ′′ be the set of vertices of some leaf SCC of this
graph. Let p ∈ S ′′, and let ρ′′ be the subtree of ρ′ rooted in some node
labeled with p. The run ρ′′ is accepting and only uses states from S ′′. Since
S ′′ ⊆ S ′, the highest rank it uses is less then 2k + 1. The claim follows by
the induction hypothesis.

To obtain the lemma, take S equal to the states of some productive SCC
reachable from p.

Theorem 11. Let A be a deterministic automaton.

1. L(C1 ⊕D1) is Π0
1-complete; L(A) ∈ Σ0

1 i� A does not admit C1 ⊕D1.

2. L(D1 ⊕ C1) is Σ0
1-complete; L(A) ∈ Π0

1 i� A does not admit D1 ⊕ C1.

3. L(F(1,2)) and L(C1
(0,0)−→ (D1 ⊕ C1)) are Π0

2-complete;

L(A) ∈ Σ0
2 i� A does not admit F(1,2) nor C1

(0,0)−→ (D1 ⊕ C1).

4. L(F(0,1)) is Σ0
2-complete; L(A) ∈ Π0

2 i� A does not admit F(0,1).

5. L(Cωω·3+1) is Π0
3-complete; L(A) ∈ Σ0

3 i� A does not admit Cωω·3+1.

6. L(A) ∈ Π0
3 i� A does not admit Cωω·3+2.

7. L(Cωω·3+2) is Π1
1-complete; L(A) is Π1

1-complete i� A admits Cωω·3+2.

68 CHAPTER 3. WADGE ORDERING

Proof. Proving Theorem 8 (page 36) we in fact proved that the implications
in Proposition 4 (page 31) were equivalences. It remains to be seen that for an
automaton it is the same to contain some of the patterns from Proposition 4
and to admit the respective automaton. It is straightforward to check that it
indeed is so. The only di�culty is embedding the transitions to all-accepting
states, but this is solved by Lemma 17. Let us just see the case of Cωω·3+2.
If A admits Cωω·3+2, then the image of the two loops in Cωω·3+2 that contain
the initial state is a split.

Suppose that A contains a split consisting of an i-loop p
σ,0−→ p1

σ1,d1−→
. . .

σm,dm−→ pm+1 = p and a j-loop p
σ,1−→ p′1

σ′1,d
′
1−→ . . .

σ′n,d
′
n−→ p′n+1 = p, such that

i is even, j is odd, and i < j. Without loss of generality we may assume

that m,n ≥ 1. Let p′1
σ′1,d

′
1−→ q′, and let tp, tp′1 , tq′ be the states guaranteed by

Lemma 17 for p, p′1, and q
′ respectively.

Let B be the automaton obtained from Cωω·3+2 by unravelling the DAG
of SCC's. The only way it di�ers from Cωω·3+2 is that instead of one state >
it contains 5 all-accepting states >1, . . . ,>5, one for each transition from the
root SCC:

q0
a−→ q0, q1 , q0

b−→ >1,>2 ,

q1
a−→ q0,>3 , q1

b−→ >4,>5 .

De�ne eQ(q0) = p, eQ(q1) = p′1, eQ(>1) = eQ(>2) = tp, eQ(>3) = tq′ ,
eQ(>4) = eQ(>4) = tp′1 . The function eδ is de�ned as follows:

eδ(q0, a, 0) = p
σ,0−→ p1

σ1,d1−→ . . .
σm,dm−→ p ,

eδ(q0, a, 1) = p
σ,1−→ p′1

eδ(q0, b, 0) = πpπ
0
tp ,

eδ(q0, b, 1) = πpπ
1
tp ,

eδ(q1, a, 0) = p′1
σ′1,d

′
1−→ . . .

σ′n,d
′
n−→ p ,

eδ(q1, a, 1) = (p′1
σ′1,d

′
1−→ q′)πq′ ,

eδ(q1, b, 0) = πp′1π
0
tp′1
,

eδ(q1, b, 1) = πp′1π
1
tp′1
,

eδ(>i, ∗, 0) = π0
eQ(>i) ,

eδ(>i, ∗, 1) = π1
eQ(>i) ,

3.9. HARD AUTOMATA 69

where ∗ denotes any letter and by π1π2 we mean the concatenation of two
paths. Checking that this is an embedding is straightforward.

The following theorem settles the position of the last canonical automa-
ton, Cωω·3 .

Theorem 12. L(Cωω·3) is Wadge complete for deterministic ∆0
3 tree lan-

guages. In particular, A ≤ Cωω·3 for each A ∈ C.

Proof. Since Cωω·3 admits neither Cωω·3+2 nor Cωω·3+1, L(Cωω·3) is a deter-
ministic ∆0

3 language (Theorem 11). Let us see that it is hard in that class.
Take a deterministic automaton A recognizing a ∆0

3-language. By The-

orem 11 (5), A does not admit Cωω·3+1 = C1
(0,0)−→ F(0,1). Let us divide the

states of A into two categories: a state is blue if it is replicated (see page 31)
by a accepting loop, otherwise it is red.

Let A′ be the automaton A with the ranks of red states set to 0, and
let A′′ be A with the ranks of the blue states set to 0. It is easy to prove

that A ≤ A′ ∧ A′′. Since A does not admit C1
(0,0)−→ F(0,1), it follows that all

(0, 1)-�owers in A are red. Consequently, A′ does not admit F(0,1), and so
L(A′) is Π0

2. Since L(F(1,2)) is Π0
2-hard (Theorem 11 (3)), A′ ≤ F(1,2).

Now consider A′′. Note that every state reachable from a blue state is
blue. Since all blue states have rank 0, we may actually replace all the
blue states with one all-accepting state > without changing the recognized
language. Recall that, by convention, instead of putting tokens into > we
simply remove them. Hence, when for some token in p a transition of the
form p

σ−→ >, q or p σ−→ q,> is �red, we imagine that the token is moved to
q without producing any new tokens. By the Replication Lemma (Lemma 2,
page 34) the occurrences of red states in an accepting run may be covered by a
�nite number of in�nite paths. Hence, by our convention, only �nitely many
tokens may be produced in a play if the constructed run is to be accepting.

Let us now show that Duplicator has a winning strategy in G(A′′, (C1
(0,1)−→

C1, F(ι,κ))), where (ι, κ) is the index of A. Whenever Spoiler produces a new
token (including the starting token), Duplicator should loop once around the
head 1-loop producing a doppelgänger in F(ι,κ), and keep looping around the
head 0-loop. The new token is to visit states with exactly the same ranks
as the token produced by Spoiler. Let us see that this strategy works. Sup-
pose Spoiler's run was accepting. Then, there were only �nitely many red
tokens produced, and hence the head 1-loop was visited only �nitely often.

70 CHAPTER 3. WADGE ORDERING

Furthermore, each Spoiler's token visited an accepting path. But then, so
did its doppelgänger, and Duplicator's run was also accepting. Now suppose
Spoiler's run was rejecting. If in�nitely many red tokens were produced, the
head 1-loop was visited in�nitely often, and Duplicator's run was also reject-
ing. If there were �nitely many tokens produced, then one of the tokens must
have gone along a rejecting path, but so did its doppelgänger and Duplicator's

run was also rejecting. Hence A′′ ≤ (C1
(0,1)−→ C1, F(ι,κ)).

By Lemma 6, A′ ∧ A′′ ≤ (C1
(0,1)−→ C1, F(ι,κ)) ∧ F(1,2), so it is enough

to check that (C1
(0,1)−→ C1, F(ι,κ)) ∧ F(1,2) ≤ Cωω·3 . Consider the following

strategy for Duplicator in the game G((C1
(0,1)−→ C1, F(ι,κ)) ∧ F(1,2), Cωω·3).

First, loop once around the 1-loop and produce a new token in F(0,2) and use
it to mimic Spoiler's actions in F(1,2). Then, for each new token x Spoiler
produces in his 1-loop and sends to F(ι,κ), Duplicator should produce tokens

y1, . . . , ybκ+1
2
c in F(0,2). By Lemma 9, (F(0,2))

bκ+1
2
c ≡ F(0,2bκ+1

2
c) ≤ F(ι,κ), so

Duplicator has a winning strategy in G(F(ι,κ), (F(0,2))
bκ+1

2
c). Adapting this

strategy, Duplicator can simulate the actions of Spoiler's token x in F(ι,κ)

with the tokens y1, . . . , ybκ+1
2
c in F(0,2). If Spoiler loops the 1-loop without

producing a new token, or loops around the 0-loop, Duplicator should copy
his actions. Clearly, this strategy is winning for Duplicator.

Finally, let us see that A ≤ Cωω·3 for each A ∈ C. Take n < ω. Observe
that in Cωω·2+n no state is replicated by an accepting loop. Hence, Cωω·2+n
may not admit Cωω·3+1 nor Cωω·3+2. By Theorem 11, L(Cωω·2+n) is in ∆0

3.
By Theorem 14, for each A ∈ C there exists m < ω such that A ≤ Cωω·2+n .
Hence, all for all A ∈ C, L(A) ∈ ∆0

3, and A ≤ Cωω·3 .

From Theorems 11 and 12 we obtain the following picture of the top of
the hierarchy:

C < Cωω·3 < Cωω·3+1 < Cωω·3+2 .

Let C ′ = C∪{Cωω·3 , Cωω·3+1, Cωω·3+2}. In the remaining of the chapter we will
show that each deterministic automaton is Wadge equivalent to one of the
canonical automata from C ′. Note that the hierarchy has the height (ωω)3+3,
which should be compared with ωω for regular word languages [41], (ωω)ω

for deterministic context-free word languages [6], (ωCK1)ω for word languages
recognized by deterministic Turing machines [33], or an unknown ordinal
ξ > ε0 for nondeterministic context-free word languages [10].

3.10. CLOSURE PROPERTIES 71

3.10 Closure Properties

Our aim is to show that each deterministic tree language is Wadge equivalent
to the language recognized by one of the canonical automata. If this is to
be true, the family of canonical automata should be closed (up to Wadge
equivalence) by the operations introduced in Sect. 3.3. In this section we
will see that it is so indeed. The closure properties carry substantial part of
the technical di�culty of the main theorem, whose proof is thus made rather
concise.

Proposition 10. For A,B ∈ C one can �nd in polynomial time an automa-
ton in C equivalent to A ∨B.

Proof. Take A,B ∈ C. Obviously, if A ≤ B, then A ∨ B ≡ B and if B ≤ A,
then A ∨ B ≡ A. If A and B are incomparable, by Lemma 14 we get that
they must be equal to Dα and Cα. It follows immediately from the de�nitions
of the automata that Dα ∨ Cα ≡ Eα.

Proposition 11. For A,B ∈ C one can �nd in polynomial time an automa-
ton in C equivalent to A⊕B.

Proof. Recall that simple automata are those that cannot be written as A1⊕
A2 for some canonical automata A1, A2. Let us �rst assume that A is a simple
branching automaton. First let us prove that for B < A, A ⊕ B ≡ A. Let
us consider the game G(A ⊕ B,A). The following is a winning strategy for
Duplicator. While Spoiler keeps inside the head loop of A, mimic his actions.
When he exits the head loop, let all the non-critical tokens produced so far
copy the actions of their counterparts belonging to Spoiler, and for the critical
token (and all new tokens to be produced) proceed as follows. If C1⊕B is a
canonical automaton, then, by the shape of the hierarchy, C1 ⊕ B < A and
Duplicator may use the winning strategy from G(C1 ⊕ B,A). If C1 ⊕ B is
not canonical, then B = F(ι,κ) ⊕ B′ for some (ι, κ) 6= (1, 1). It is very easy
to see that C1 ⊕ F(ι,κ) ⊕ B′ ≡ F(ι,κ) ⊕ B′, and again Duplicator can use the
winning strategy from G(C1 ⊕B,A).

Let us assume now that B = B1⊕B2⊕ . . .⊕Bn where Bi are simple and
B1 ≥ A. Suppose B = Cωωη for some η < ωω·3. Then A ⊕ B ≡ B. Indeed,
consider the game G(A ⊕ B,B). While Spoiler keeps inside A, Duplicator
should keep in B1 and apply the strategy from G(A,B1). Suppose Duplicator
enters B. Since B1 ≥ A, it holds that B dominates A and we may assume

72 CHAPTER 3. WADGE ORDERING

that Spoiler has removed his non-critical tokens before entering B. From
now on Duplicator may simply mimic Spoiler's behaviour.

An analogous argument shows that for B1 = Dωωη, we get A ⊕ B ≡ B.
For B1 = Eωωη, A⊕B is a canonical automaton (up to a permutation of the
input alphabet).

Now, consider B = B1 ⊕ . . . ⊕ Bn ≥ A, Bi simple and B1 < A. By the
de�nition of canonical automata, B1 ≤ B2 ≤ . . . ≤ Bn, and since B ≥ A,
Bn ≥ A. Let k be the least number for which Bk ≥ A. Let B′ = B1 ⊕
. . . ⊕ Bk−1 and B′′ = Bk ⊕ . . . ⊕ Bn. In order to reduce this case to the
previous one it is enough to check that A ⊕ B ≤ A ⊕ B′′ (the converse
inequality is obvious). Consider G(A ⊕ B,A ⊕ B′′). While Spoiler's critical
token stays inside A⊕B′, Duplicator follows the strategy from G(A⊕B′, A).
If Spoiler does not leave A⊕B′, he loses. Suppose that Spoiler �nally enters
B′′. Note that B′′ dominates A and B1, . . . , Bk−1. Hence, by Lemma 13, we
may assume that Spoiler removes all his non-critical tokens on entering B′′.
Duplicator should simply move his critical token to the head component of
B′′ and mimic Spoiler's actions.

Suppose now that A = F(ι,κ) or A = F(ι,κ) ∨F(ι,κ). Let B = B1⊕ . . .⊕Bn

with Bi simple. For ι < κ proceeding like in Lemma 9 (page 52) one proves
that

1. B < A =⇒ A⊕B ≡ A,

2. B1 = F(ι,κ) =⇒ A⊕B ≡ F(ι,κ) ⊕ (F(ι,κ) ∨ F(ι,κ))⊕B2 ⊕ . . .⊕Bn ∈ C,

3. A ≤ B1 = (F(ι′,κ′) ∨ F(ι′,κ′)) =⇒ A⊕B ∈ C,

4. A ≤ B1 = F(ι′,κ′) =⇒ A⊕B ≡ B,

5. A ≤ B1 = (C1 → B′1) =⇒ A⊕B ≡ B.

In the remaining case, B1 < A ≤ B, argue like for branching A. For ι = κ,
the implications (2), (3), and (4) also hold, and give a canonical form if
B1 is non-branching. If B1 is branching, A ⊕ B ≡ B for A = F(1,1), and
A⊕B ≡ F(0,0) ⊕B ∈ C for A ∈ {F(0,0), F(0,0) ∨ F(1,1)}.

Finally let A = A1 ⊕ A2 ⊕ . . .⊕ Ar, where Ai are simple. Using the fact
that ⊕ is associative up to ≡, and Lemma 6 (page 44), we get (A1 ⊕ A2 ⊕
. . .⊕Ar)⊕B ≡ (A1⊕A2⊕. . .⊕Ar−1)⊕(Ar⊕B) ≡ (A1⊕A2⊕. . .⊕Ar−1)⊕B′
where B′ is a canonical automaton equivalent to (Ar ⊕ B). Repeating this
r− 1 times more we obtain a canonical automaton equivalent to A⊕B.

3.10. CLOSURE PROPERTIES 73

In the following proofs we will need the following property. For simple
branching automata B = (C1 → Cα), let B− = D1 → Cα.

Lemma 18. For every A ∈ C and every simple branching B one can �nd in
polynomial time a canonical automaton equivalent to B− ⊕ A.

Proof. B is simple branching, so B = Cα where α = ωk or α = ωω·2+k. Let
A = S ⊕ A′, where A′ ∈ C and S is a simple automaton. Suppose �rst that
S is a branching automaton. Then S ≡ C−β ⊕ C1 and A ≡ C−β ⊕ C1 ⊕ A′

with β = ωj or β = ωω·2+j. Let us check that C−α ⊕ C−β ⊕ C1 ⊕ A′ ≡
C−max(α,β)⊕C1⊕A′. Consider the following strategy for Duplicator in G(C−α ⊕
C−β ⊕C1⊕A′, C−max(α,β)⊕C1⊕A′). While Spoiler's critical token x can reach

the head loop of C−α or C−β , Duplicator may keep his critical token y looping

in the head loop of his automaton C−max(α,β). For every new token produced by

Spoiler in the head loop of C−α or C−β , Duplicator produces a doppelgänger

in the head loop of C−max(α,β). When Spoiler moves his critical token x to

C1⊕A′, Duplicator does the same with y and lets it copy x's actions. As the
converse inequality is obvious, C−max(α,β) ⊕C1 ⊕A′ ≡ Cmax(α,β) ⊕A′ gives the
canonical form for C−α ⊕ A.

Now, let S be non-branching. Suppose �rst that S is one of the automata
Dωω+k , Cωω+k , Eωω+k for k ≥ 0. If α = ωk, C−α ⊕ S ⊕ A′ ≤ Cα ⊕ S ⊕ A′ ≡
S ⊕A′ by the proof of the closure by ⊕. The converse inequality is obvious.
Similarly, if α = ωω·2+k, C−α ⊕S⊕A′ ≤ Cα⊕S⊕A′ ≡ Cα⊕A′. The converse
inequality is obvious again.

The remaining possible values for S are C1, D1 and E1. If S = C1,
C−α ⊕C1⊕A ≡ Cα⊕A, and the canonical automaton is obtained via closure
by ⊕. For S = E1, observe that C

−
α ⊕E1⊕A′ ≤ C−

ωk
⊕C2⊕A′ = Cωk⊕D1⊕A.

By the proof of the closure by ⊕ we get Cωk ⊕ D1 ⊕ A ≡ Cωk ⊕ A. Hence
C−
ωk
⊕ E1 ⊕ A ≤ Cωk ⊕ A. The converse inequality is obvious. Finally, if

S = D1, we get C−α ⊕ D1 ⊕ A′ ≡ C−α ⊕ A′. By the structure of canonical
automata, A′ must start with E1 or Cωω+k . In both cases we can use one of
the previous cases to get an equivalent canonical automaton.

If A = S the whole argument is analogous, only in the last case, for
S = D1, we have C

−
α ⊕D1 ≡ D1.

Proposition 12. For A,B ∈ C one can �nd in polynomial time an automa-
ton in C equivalent to A ∧B.

74 CHAPTER 3. WADGE ORDERING

Proof. We will proceed by induction on (A,B) with the product order in-
duced by ≤. Let A = A1 ⊕A2 ⊕ . . .⊕Am, B = B1 ⊕B2 ⊕ . . .⊕Bn with Ai,
Bj simple. Let A′ = A2 ⊕ . . . ⊕ Am for m > 1 and B′ = B2 ⊕ . . . ⊕ Bn for
n > 1.

First, assume that B1 = C1 → Cβ, and either A1 = Fι,κ for some (ι, κ),
or A1 = C1 → Cα for α ≤ β. Let m,n > 1. Let us see that A ∧ B ≡
B−1 ⊕ (A′ ∧ B ∨ A ∧ C1 ⊕ B′). In the �rst move Spoiler produces token xA

in A and xB in B. While xA stays in A1 and xB stays in the head loop of
B1, Duplicator should keep his critical token in the head loop of B−1 and
for each x, a child of xB or xA, produce a token y whose task is to play
against x. The token x after being produced is put in the head loop of Cβ
or, if A1 = C1 → Cα, in the head loop of Cα. The token y is put in the
head loop of Cβ. Since α ≤ β, y can adapt the strategy from G(Cα, Cβ) if
x is in Cα, or simply copy x's actions if x is in Cβ. Now, two things may
happen. If xA enters A′ while xB stays in the head loop of B1, Duplicator
should move his critical token to A′∧B and split it into yA sent to A′ and yB

sent to B. Then yA should mimic xA, and yB should mimic xB. If xB exits
the head loop of B1, Duplicator should move to A ∧ C1 ⊕ B′, produce two
tokens, and mimic Spoiler's actions. The converse inequality is even simpler.
In a similar way we prove A ∧ B ≡ B−1 ⊕ (A ∧ C1 ⊕ B′) for n > m = 1,
A∧B ≡ B−1 ⊕ (A′ ∧B ∨A∧C1) for m > n = 1, and A∧B ≡ B−1 ⊕ (A∧C1)
for m = n = 1. In all four cases using the induction hypothesis, the closure
by ∨, ⊕, and the Substitution Lemma (Lemma 6, page 44) we obtain an
automaton of the form B−1 ⊕ C, where C is canonical. Lemma 18 gives an
equivalent canonical automaton.

Next, suppose that A1 = F(ι,κ), B1 = F(ι′,κ′). Assume m,n > 1. Using
Lemma 9 one proves easily that A∧B ≡ F(ι,κ)∧(ι′,κ′)⊕ ((A∧B′)∨ (A′ ∧B)).
Similarly, for m > 1, n = 1, we have A ∧ B ≡ F(ι,κ)∧(ι′,κ′) ⊕ (A′ ∧ B) and
the canonical form follows from the induction hypothesis. For m = 1, n > 1
proceed symmetrically. For m = n = 1, A ∧ B ≡ F(ι,κ)∧(ι′,κ′). Again, using
the induction hypothesis, the closure by ∨, ⊕, and the Substitution Lemma,
we get an equivalent canonical automaton.

The general case may be reduced to one of the special cases above, because
Eα ∧ A ≡ (Cα ∧ A) ∨ (Dα ∧ A).

Since (ι, κ)-replication requires a rather involved analysis, let us �rst con-
sider the (1, 1) case.

3.10. CLOSURE PROPERTIES 75

Proposition 13. For A,B ∈ C one can �nd in polynomial time an automa-
ton in C equivalent to A→ B.

Proof. First, let us deal with two special cases for which the general method
does not work. For B � C3 simple calculations give the following equiva-
lences: A → B ≡ (D1 ⊕ A) ∧ B for B ∈ {C1, E1, C2, D2, D3}, A → D1 ≡
A ∨D1, A → E2 ≡ A → D3. By the Substitution Lemma, the equivalent
canonical forms follow from the closure by ⊕, ∨, and ∧.

The second special case is when B contains non-trivial �owers but B �
F(0,2). First, let us see that A→ F(0,1) ≡ (D1 ⊕ A) ∧ F(0,1). The inequality
A→ F(0,1) ≥ (D1⊕A)∧F(0,1) follows easily from Lemma 8. For the converse
it remains to observe that the following strategy is winning for Duplicator in
G(A→ F(0,1), (D1⊕A)∧F(0,1)): in D1⊕A mimic Spoiler and in F(0,1) apply
the strategy from G(C1 → F(0,1), F(0,1)) given by Theorem 11 (3 and 4). An
analogous argument shows that A → F(1,2) ≡ (D1 ⊕ A) ∧ F(1,2). For the
remaining possible values of B we will show A→ B ≡ (D1⊕A)∧F(0,1)∧F(1,2).
Again, A→ B ≥ (D1 ⊕A) ∧B ∧B ≥ (D1 ⊕A) ∧ F(0,1) ∧ F(1,2) is easy. For
the converse, observe that B only uses ranks 1, 2, 3. Consider the following
strategy for Duplicator in G(A → B, (D1 ⊕ A) ∧ F(0,1) ∧ F(1,2)). In the
component D1 ⊕ A simply mimic the behaviour of Spoiler's critical token.
In F(0,1) use the strategy from G(C1 → B′, F(0,1)), where B

′ denotes B with
ranks 1 and 2 replaced by 0 and rank 3 replaced by 1. In F(1,2) use the
strategy from G(C1 → B′′, F(1,2)), where B

′′ denotes B with all 3's replaced
by 1's. The combination of these three strategies is winning for Duplicator.

For the remaining automata, we will show that what really matters is
the maximal simple branching automaton contained in C1 → B. There are
two main cases: either Cωk−1 < B ≤ Cωk (C3 ≤ B ≤ Cω for k = 1), or
Cωω·2+(k−1) < B ≤ Cωω·2+k (F(0,2) ≤ B ≤ Cωω·2 for k = 1). In the �rst case
A→ B ≡ C−

ωk
⊕A, in the second case A→ B ≡ C−

ωω·2+k
⊕A. Since the proofs

are entirely analogous, we will only consider the �rst case. We only need to
argue that A→ B ≤ C−

ωk
⊕ A, since the converse inequality is obvious.

Let us start with B = Cωk . Denote the head loop of Cωk by λ0. It is
enough to show a winning strategy inG(A→ B,C−

ωk
⊕A). Since no path from

the head loop of A → B to λ0 goes through an accepting loop, Duplicator
may keep his critical token in the head loop of C−

ωk
as long as at least one of

Spoiler's tokens can reach λ0. Hence, for every token produced by Spoiler in
λ0, Duplicator can produce a doppelgänger. When none of Spoiler's tokens
can reach λ0 any more, Duplicator moves his critical token to A and mimics

76 CHAPTER 3. WADGE ORDERING

Spoiler.

Let us now suppose that Cωk−1 < B < Cωk , k ≥ 2 (for k = 1 the proof is
very similar). The strategy for Duplicator in G(A→ B,C−

ωk
⊕A) is as follows.

Let m be such that B ≤ Cωk−1m. For every token xi produced by Spoiler
using the head loop of A → B, Duplicator produces m tokens y1

i , . . . , y
m
i

using the head loop of C−
ωk
. Then the tokens y1

i , . . . , y
m
i play against xi

simulating Duplicator's winning strategy from G(B, (C1 ⊕ Cωk−1)m). When
Spoiler moves his critical token to A, Duplicator does the same and keeps
mimicking Spoiler in A.

Thus we managed to simplify A → B to C−α ⊕ A where α = ωk or α =
ωω·2+k. An equivalent canonical automaton is provided by Lemma 18.

Now we are ready to deal with (ι, κ)-replication. Since Cωω·3 = C1
(0,1)−→

Cωω+1 , the class C is not closed by
(ι,κ)−→. However, adding the three top

canonical automata is enough to get the closure property.

Proposition 14. For A,Aι, . . . , Aκ ∈ C, ι, κ < ω, one can �nd in polynomial

time an automaton in C ′ equivalent to A (ι,κ)−→ Aι, . . . , Aκ.

Proof. Let B = A
(ι,κ)−→ Aι, . . . , Aκ. If B admits any of the automata Cωω·3 ,

Cωω·3+1, Cωω·3+2, then it is equivalent to the maximal one it admits (see
Theorems 11 and 12). Let us assume B admits none of the three automata
above. Let us also assume that ι < κ.

1. If some Ai contains a (0, 1)-�ower and some Aj contains a (1, 2)-
�ower, then B ≡ (F(ι,κ) ⊕ A) ∧ F(1,2) ∧ F(0,1). It is easy to show that
(F(ι,κ)⊕A)∧F(1,2)∧F(0,1) ≤ B (c. f. Lemma 8). We shall concentrate on the
converse inequality. From the hypothesis that B does not admit Cωω·3+1, it
follows easily that κ must be odd and Aι, . . . , Aκ−1 must be (1, 2) automata.
Furthermore, since B does not admit Cωω·3 , Ak uses only ranks 1, 2, 3. The
strategy for Duplicator in G(B, (F(ι,κ)⊕A)∧F(1,2)∧F(0,1)) is analogous to the
one used in the proof of the previous proposition. In the component F(ι,κ)⊕A
simply mimic the behaviour of Spoiler's critical token. In F(0,1), loop around
the 1-loop whenever Spoiler loops around the 1-loop of a (0, 1)-�ower in Aκ
(again, if the run is to be accepting, this may happen only �nitely many
times), otherwise loop around 0-loop. For the strategy in F(1,2), treat all the
ranks appearing in Spoiler's F(ι,κ) or A as 2's, and the 3's in Aκ as 1's. Seen

3.10. CLOSURE PROPERTIES 77

this way, B is a (1, 2)-automaton, and by Theorem 11 Spoiler's actions can
be simulated in F(1,2).

2. If Ai contain only (1, 2)-�owers, then B ≡ (F(ι,κ)⊕A)∧F(1,2). This
is proved just like the �rst case.

3. If Ai contain only (0, 1)-�owers, then B ≡ (A
(ι,κ)−→ Aι, . . . , Aκ−1, C1)∧

F(0,1) (use case 4 or 5 to get a canonical form). Like in the �rst case, κ
must be odd, Aι, . . . , Aκ−1 must be (1, 2)-automata. Consequently, it must be
Aκ that contains a (0, 1)-�ower. Since Aκ contain no F(0,2) (by the hypothesis

no Ai does), Aκ = F(0,1). Again B ≥ ((A
(ι,κ)−→ Aι, . . . , Aκ−1, C1) ∧ F(0,1)) is

easy. The strategy for Duplicator in G(B, (A
(ι,κ)−→ Aι, . . . , Aκ−1, C1)∧F(0,1)) is

to copy Spoiler's actions in A
(ι,κ)−→ Aι, . . . , Aκ−1, C1 and in F(0,1) keep record

of all 1's appearing in Aκ (if the run is to be accepting, there may be only
�nitely many altogether).

4. If Ai contain no non-trivial �owers, ι = 0, and Aι contains a D2,
then B ≡ (F(ι,κ) ⊕ A) ∧ F(1,2). The inequality B ≤ (F(ι,κ) ⊕ A) ∧ F(1,2) is
proved just like in the �rst case. Let us see that the converse holds. Consider
the game G((F(ι,κ)⊕A)∧F(1,2), B) and the following strategy for Duplicator.
Copy Spoiler's actions in F(ι,κ) ⊕ A, but whenever Spoiler enters the 1-loop
in (1, 2), loop once around 0-loop, move the extra token to the head loop of
D2, and keep looping around until Spoiler leaves his 1-loop. Then remove
your extra token, and so on. It is easy to see that the strategy is winning for
Duplicator.

5. If Ai contain no non-trivial �owers and either ι 6= 0 or Aι contains
no D2, then B ≡ F(ι,κ) ⊕A. To prove it, we have to describe the strategy
for Duplicator in G(B,F(ι,κ) ⊕ A). During the whole play keep numbering
the new tokens produced by Spoiler according to their birth time. (As usual,
the left token is considered a parent, the right token is born, transitions of
the form p −→ >, q or p −→ q,> do not produce new tokens.) The strategy
is as follows. While there are no new tokens in rejecting loops in Aι, . . . , Aκ,
keep copying Spoiler's moves in his F(ι,κ). When the �rst new token, say
xi1 , enters a 1-loop, start looping around the 1-loop of your F(ι,κ) (the loop
exists since ι < κ), and keep doing it until xi1 leaves the 1-loop. If it does

78 CHAPTER 3. WADGE ORDERING

not happen, Spoiler will lose. When it does happen, stop looping around
1-loop. Investigate all the ranks used by Spoiler in (ι, κ)-�ower while you
were simulating xi1 , choose the highest one, say k, and loop once a k-loop.
Afterwords, if there are no tokens in rejecting loops in Ai, copy Spoiler's
moves. Otherwise, choose the token with the smallest number, say xi2 , start
looping around the loop with the highest rank 1 in your (ι, κ)-�ower, and so
on.

Let us see that if Spoiler does not enter A, he loses the game. If the
run constructed by Spoiler is to be rejecting, either the highest rank used
in�nitely often in F(ι,κ) is odd, or some token stays forever in a rejecting loop
in one of Aι, . . . , Aκ. In any case Duplicator's strategy guarantees a rejecting
run for him as well. Let us suppose that Spoiler's run is accepting. If only
�nitely many new tokens entered rejecting loops in Aι, . . . , Aκ, then there
was a round such that from this round on Duplicator was simply mimicking
Spoiler's actions in F(ι,κ) and so Duplicator's run is also accepting. Suppose
that in�nitely many new tokens visited rejecting loops in Aι, . . . , Aκ. We have
assumed that either ι 6= 0 or Aι contains no D2. In either case the ranks
greater then 0 must have been used in�nitely many times in F(ι,κ). Conse-
quently, the highest rank used in F(ι,κ) is greater then 1, and Duplicator's
run is accepting despite in�nitely many 1's used in F(ι,κ).

Suppose now that Spoiler leaves F(ι,κ). Following the argument used in
the proof of the closure by ⊕, we may suppose that the simple automaton
containing the head loop of A is at least a (ι, κ). When Spoiler enters A,
he may produce no more tokens in Aι, . . . , Aκ. From now on Duplicator
should mimic Spoiler's behaviour in his copy of A, handling rejecting loops
in Aι, . . . , Aκ in the usual way.

What is left is the case ι = κ. If κ is odd, B = A→ A1. If κ is even, A0

must be a (1, 2)-automaton. In the cases 2 and 4 proceed just like before. In
the case 5, the automaton A0 cannot contain D2. If A0 ∈ {C1, D1, C2}, then
B ≡ (C1 ⊕ A) ∧ A0. If A0 = E1, then B ≡ C1 ⊕ (A ∨ C1).

The following corollary sums up the closure results.

Corollary 5. The class of canonical automata C ′ is closed by ∨, ⊕, ∧, (ι,κ)−→,
and the equivalent automaton can be found in polynomial time.

Proof. The claim is an almost immediate consequence of the preceding propo-
sitions. Only the automata Cωω·3 , Cωω·3+1, Cωω·3+2 need special care: if the

3.11. COMPLETENESS 79

result of the operation in question admits any of these automata, it is equiv-
alent to the hardest one it admits (Theorems 11 and 12).

3.11 Completeness

In this section we show that the canonical automata represent the ≡W -classes
of all deterministically recognizable tree languages. We will implicitly use
Corollary 5 and the Substitution Lemma (Lemma 6, page 44) on several
occasions.

We will say that a transition is positive if one of its branches lies on an
accepting loop, and negative if one of its branches lies on a rejecting loop.
Note that a transition may be positive and negative at the same time. Recall
the notion of replication (see page 31). We say that a state is j-replicated if
it is replicated by a j-loop. An automaton is j-replicated if its initial state
is j-replicated.

Finally, let us recall the lifting operation invented by Niwi«ski and Walu-
kiewicz and used to prove the decidability of the deterministic index hierarchy
(Theorem 1, page 21).

Lemma 19 (Niwi«ski and Walukiewicz [25]). For each deterministic au-
tomaton A one can compute (in polynomial time if the productive states are
given) an automaton A ↑0↑1 . . . ↑n such that L(A) = L(A ↑0↑1 . . . ↑n) and if
a state q has the rank j ≤ n than q lies on a j-loop of a (j, n)-�ower.

Theorem 13. For every deterministic tree automaton there exists an equiv-
alent canonical automaton.

Proof. Let A be a deterministic tree automaton. From Theorem 11 (7) it
follows that if A admits Cωω·3+2, A ≡ Cωω·3+2. If A does not admit Cωω·3+2,
then by Theorem 11 (5 and 6) if A admits Cωω·3+1, A ≡ Cωω·3+1. Otherwise
L(A) ∈ ∆3 and if A admits Cωω·3 , then A ≡ Cωω·3 (Theorem 12). In the
remaining of the proof we will assume that A admits none of these three
automata. We will proceed by induction on the height of the DAG of SCCs
of A. Let X denote the head SCC of A. We will say that X contains a
transition p −→ p′, p′′, if X contains all three states, p, p′, and p′′. We
consider four separate cases.

80 CHAPTER 3. WADGE ORDERING

1. X contains a positive transition. Should A admit F(0,1), it would also
admit Cωω·3+1, which is excluded by our initial assumption. Consequently,
A is a (1, 2)-automaton and L(A) ∈ Π0

2. Since L(F(0,2)) is Π0
2-complete,

A ≤ F(1,2). If A admits F(1,2) or C1
(0,0)−→ D1 ⊕ C1, then L(A) is Π0

2-complete
and A ≡ F(1,2). Otherwise, X contains no rejecting loops and A does not
admit D1 ⊕ C1. By Theorem 11 (2), L(A) ∈ Π0

1 and since L(C1 ⊕ D1) is
Π0

1-complete, A ≤ C1 ⊕D1. If A admits D1 it also admits C1 ⊕D1, and so
A ≡ C2. If A does not admit D1 it means that it contains no rejecting loop.
Hence, A accepts every tree and A ≡ C1.

2. X contains an accepting loop and a negative transition, but no
positive transitions. Let λ+ be an accepting loop in X and λX be a loop
visiting all X's nodes and containing a branch of the (negative) transition
contained inX. SinceX does not contain positive transitions, λX is rejecting.
The loops λ+ and λX form a (0, 1)-�ower. Hence, A admits F(0,1). Further-
more, should A contain a (0, 2)-�ower, it would obviously be replicated by λX
and A would admit Cωω·3 , which contradicts our general hypothesis. Hence,
A does not admit F(0,2), which means A is a (1, 3)-automaton (Theorem 1,
page 22). Without loss of generality we may assume that it uses only ranks
1, 2, 3.

By Theorem 11 (3 and 4), if A admits neither F(1,2) nor C1
(0,0)−→ D1⊕C1,

then A ≡ F(0,1). Suppose that A admits one of these two automata. Consider
the game G(F(0,1) ∧F(1,2), A). Let x1 and x2 be Spoiler's tokens in F(0,1) and
F(1,2), respectively. Since X contains a (negative) transition, Duplicator can
split his critical token into y1 and y2 within X, and move y1 to the (0, 1)-
�ower in X, and y2 to the (1, 2)-�ower, or to the accepting loop replicating

a weak (1, 2)-�ower (if A admits C1
(0,0)−→ D1 ⊕ C1). Then y1 should mimic

x1, and y2 should mimic x2 (either directly, or adapting the strategy from

G(F(1,2)), C1
(0,0)−→ D1 ⊕ C1)). Hence, Duplicator has a strategy to win the

game.
It follows that F(0,1) ∧ F(1,2) ≤ A. For the converse inequality, let us call

the states with rank 3 contained in a (0, 1)-�ower red, and the remaining

blue. Since A does not admit C1
(0,0)−→ F(0,1), no red state is replicated by an

accepting loop. Consider the game G(A,F(0,1) ∧ F(1,2)). For a strategy in
F(1,2) Duplicator should treat all the red states as if they had rank 1; the
automaton A modi�ed this way does not admit F(0,1), so Duplicator may use

3.11. COMPLETENESS 81

the strategy given by Theorem 11 (3 and 4). In F(0,1) Duplicator should loop a
1-loop whenever some Spoiler's token is in a red state. Otherwise, Duplicator
should loop a 0-loop. Let us see that this strategy is winning. Suppose that
Spoiler's run is accepting. After changing the ranks of red states from 3 to 1
it is still accepting, so Duplicator's token in F(1,2) visited an accepting path.
By the Replication Lemma (Lemma 8, page 55), the occurrences of red states
in Spoiler's run may be covered by a �nite number of paths. Furthermore,
each of these paths is accepting, so it may only contain a �nite number of red
states. Hence, there may be only �nitely many red states in Spoiler's run and
the path visited by Duplicator's token in F(0,1) is also accepting. Suppose
now, that Spoiler's run is rejecting. If red states occurred only �nitely often,
Spoiler's run is still rejecting after changing their ranks to 1, so Duplicator's
token in F(1,2) visited a rejecting path. If there were in�nitely many red
states in Spoiler's run, Duplicator's token in F(0,1) visited a rejecting path.
By Lemma 9, A ≡ F(1,3).

3. X contains some transitions but no accepting loops. Let qi
σi−→

q′i, q
′′
i , i = 1, . . . , n be all the transitions such that qi ∈ X and q′i, q

′′
i /∈ X. Let

pj
σi,d−→ p′j j = 1, . . . ,m be all the remaining transitions such that pj ∈ X and

p′j /∈ X. We will call the automata (A)q′i , (A)q′′i and (A)p′j the child automata
of X. By the induction hypothesis we may assume that they are in canonical
forms. Let B = ((A)q′1 ∧ (A)q′′1) ∨ . . . ∨ ((A)q′n ∧ (A)q′′n) ∨ (A)p′1 ∨ . . . ∨ (A)p′m .
It is not di�cult to see that A is equivalent to C1 → B.

4. X contains no transitions. Recall that this means exactly that
at most one branch of every transition stays in X. First replace subtrees
rooted in the target states of transitions whose all branches leave X with one
canonical automaton B just like above. Let (ι, κ) denote the highest index
of a �ower contained in X. It is well de�ned, because a strongly connected
component admitting F(0,j) and F(1,j+1) must also admit F(0,j+1). We may
assume that X uses only ranks ι, . . . , κ, and that each j-loop is indeed a
j-loop in a (j, κ)-�ower (Lemma 19). For each j = ι, . . . , κ, let Bj be the
alternative of all the child automata replicated by a j-loop inX. By induction
hypothesis and the closure properties, we may assume that Bι, . . . , Bκ and

B are canonical automata. Let A′ = B
(ι,κ)−→ Bι, . . . , Bκ. We will show that

A ≡ A′.
If ι = κ, the assertion is clear. Suppose that ι < κ. Obviously, A′ ≥

82 CHAPTER 3. WADGE ORDERING

A. Let us see that A′ ≤ A. Let A′′ denote the result of the following
simpli�cations performed on A′.

• If some Bi contains a (0, 1)-�ower and some Bj contains a (1, 2)-�ower,
replace Bκ with a (1, 3)-�ower.

• If some Bi contains a (0, 1)-�ower and no Bj contains a (1, 2)-�ower,
replace Bκ with a (0, 1)-�ower.

• If some Bi contains a (1, 2)-�ower and no Bj contains a (0, 1)-�ower,
replace Bκ with a (1, 2)-�ower.

• If Bι, . . . , Bκ admit no F(ι,κ) with ι < κ, remove Bκ.

• If ι = 0 and Bι admits D2, replace Bι with D2. Otherwise, remove Bι.

• Remove all Bι+1, . . . , Bκ−1.

Examination of the �ve cases considered in the proof of Proposition 14 reveals
that A′ and A′′ have identical canonical forms. Consequently, A′ ≡ A′′, and
it is enough to show that A′′ ≤ A. Consider all (ι, κ)-�owers in X. Choose
any one whose ι-loop replicates D2, if there is one, or take any (ι, κ)-�ower
otherwise. Then, extend the κ-loop to a loop using all the transitions in X.
Denote this �ower, together with the subtrees replicated by ι-loop or κ-loop,
by F . One can prove easily that A′′ ≤ F ⊕B, and obviously F ⊕B ≤ A.

3.12 Algorithm

From the proof of the completeness theorem, one easily extracts an algo-
rithm to calculate the canonical form of a given deterministic automaton
(Algorithm 1).

Corollary 6. For a deterministic tree automaton, a Wadge equivalent canon-
ical automaton can be calculated within the time of �nding the productive
states of the automaton.

Proof. It is easy to see that the size of the canonical forms returned by the
recursive calls of each depth is bounded by the size of A (up to a uniform con-
stant factor). To prove the time complexity of the algorithm assume that the
productive states of A are given. Checking if A admits any of the automata

3.12. ALGORITHM 83

Algorithm 1 The canonical form of deterministic tree automata
1: if A admits Cωω·3+2 then
2: return Cωω·3+2

3: else if A admits Cωω·3+1 then
4: return Cωω·3+1

5: else if A admits Cωω·3 then
6: return Cωω·3
7: else
8: X := the head component of A
9: if X contains a positive transition then

10: if A admits F(1,2) or A admits ∅ (0,0)−→ D2 then
11: return F(1,2)

12: else if A admits D1 then
13: return C2

14: else
15: return C1

16: end if
17: else if X contains a negative transition then
18: if X admits C1 then

19: if A admits F(1,2) or A admits ∅ (0,0)−→ D2 then
20: return F(1,3)

21: else
22: return F(0,1)

23: end if
24: else
25: B := the alternative of the canonical forms of X's children
26: return C1 → B
27: end if
28: else {X contains no transitions}
29: B := the alternative of the canonical forms of X's non-replicated

children
30: lift ranks in X
31: (ι, κ) := the index of the maximal �ower
32: for j := ι to κ do
33: Bj := the alternative of the canonical forms of X's j-replicated

children
34: end for

35: return B
(ι,κ)−→ Bι, . . . , Bκ

36: end if
37: end if

84 CHAPTER 3. WADGE ORDERING

mentioned in the algorithm can be easily done in polynomial time. The op-
erations on the automata returned by the recursive calls of the procedure
(lines 25, 26, 29, 33, and 35) are polynomial in the size of those automata,
and by the initial remark also in the size of the automaton. By Lemma 19
the lifting operation is also polynomial. Therefore, when implemented dy-
namically, this procedure takes polynomial time for each SCC. Processing
the entire automaton increases this polynomial by a linear factor.

Instead of a canonical automaton, the algorithm above can return its
�name�, i. e., a letter C, D, or E, and an ordinal α ≤ ωω·3 + 2 presented as a
polynomial in ωω, with the coe�cients presented as polynomials in ω. Since
for such presentation it is decidable in linear time if α ≤ β, as an immediate
consequence of Corollary 6 and Lemma 14 we get an algorithm for Wadge
reducibility.

Corollary 7. For deterministic tree automata A, B it is decidable if L(A) ≤W
L(B) (within the time of �nding the productive states of the automata).

Chapter 4

Wadge Degrees

A truly remarkable aspect of the Wagner hierarchy is how simply it embeds
into the general Wadge hierarchy: a language from the level ωknk + . . . +
ωn1 + n0 of the Wagner hierarchy is on the level ωk1nk + . . . + ω1n1 + n0 of
the Wadge hierarchy. This fact was observed by many people independently
in 1990s (according to J. Duparc, V. Selivanov might be the �rst, or P.
Simonnet and J.-P. Ressayre) but never published. Indeed, the proof is
almost straightforward if one uses a handy and powerful tool: simple set-
theoretical operations corresponding to ordinal sum and multiplication of
Wadge degrees discovered already by Wadge in his PhD thesis [38, 39].

Duparc completed the list of the operations with the exponentiation with
the base ω1 [5], and later used some of those to show that in the case of
deterministic context-free word languages the embedding is equally elegant
[6]. Applying this technique we will calculate the Wadge degrees of determin-
istic tree languages and provide a lower bound for the height of the Wadge
ordering of weak tree languages. The latter is a joint work with Jacques
Duparc.

4.1 More on Wadge Hierarchy

Martin's famous determinacy theorem [16] gives very precise information on
the shape of the Wadge hierarchy.

Theorem 14 (Wadge Lemma). For Borel languages L,M it holds that

L ≤W M or L{ ≥W M .

85

86 CHAPTER 4. WADGE DEGREES

Proof. By determinacy one of the players has a winning strategy inGW (L,M).
If it is Duplicator, then L ≤W M . Suppose it is Spoiler who has a winning
strategy. One can easily transform this strategy into a winning strategy for
Duplicator in GW (M,L{) (see [12] or [29] for details).

In other words the theorem says that the width of the Wadge hierarchy is at
most two, and if L and M are incomparable, then L ≡W M{. It means that
the Wadge ordering is almost linear. The second fundamental result states
that it is also a well-ordering (see [12]).

Theorem 15 (Wadge, Martin, Monk). The Wadge hierarchy is well-founded.

Altogether, the position of a language in the Wadge hierarchy is determined,
up to complementation, by its height. It also follows that each ≡W -class has
one or two direct successors: the minimal ≡W -classes above.

If L ≡W L{ then L is called self dual. Otherwise L is not comparable
with L{ and is called non self dual. Both notions are naturally extended to
≡W -classes. Note that a level in the hierarchy contains only one ≡W -class if
and only if the class is self dual. Otherwise it contains two non self dual ≡W -
classes which are complementary two each other, i. e., each set in one class
is Wadge equivalent to the complement of each set in the other class. Steel
and Van Weesp proved that the self dual and non self dual levels alternate
(see [12]). If the alphabet is �nite, which is our case, on limit steps we have
non self duals. Finally, the self dual classes are easily obtained from their
non self dual predecessors by means of disjoint union (see the proposition
below).

Before we formalize this, let us observe that the choice of the alphabet
Σ is of no importance. Let Σ and Σ′ be �nite alphabets containing at least
two letters. For any language L over Σ, one can �nd a Wadge equivalent
language L′ over Σ′. Furthermore, if L is recognized by an automaton, so
can be L′, and the construction of the new automaton is e�ective. Therefore,
without loss of generality we may assume Σ = {a, b}.

Fix a language L over Σ. Let L− consist of those trees t for which there
exists n such that

• t(0n) = b and t(0m) = a for all m < n,

• t.0n+1 ∈ L,

and let L+ = L− ∪ {t : ∀n t(0n) = a}. De�ne also L± as the set of trees t for
which either t(ε) = a and t.0 ∈ L or t(ε) = b and t.0 ∈ L{.

4.2. ARITHMETIC 87

Proposition 15. Let L be a Borel tree language.

1. If L is self dual, L+ and L− are its two direct successors.

2. If L is non self dual, L± is its only direct successor.

3. If L is self dual, there exists M <W L such that L ≡W M±.

The proof of this fact can be found in [6]. It is worth noting that if L is self
dual, L± ≡W L.

The results summarized above make it reasonable to ignore self duals
when counting the height. Hence, the following de�nition. The Wadge degree
of a non self dual set is an ordinal given by the inductive formula

• dW (∅) = dW (∅{) = 1,

• dW (L) = sup{dW (M) + 1 : M is non self dual, M <W L} for L >W ∅.

For self duals, we set

• dW (L) = sup{dW (M) : M is non self dual, M <W L}.

By our de�nition, each Wadge degree is shared by three ≡W -classes: L, L{,
and L± for a non self dual L. This de�nition is a slight modi�cation of
the one introduced by Duparc, the original de�nition by Wadge counted self
duals too (see [5] for details).

As a �nal remark of this section we would like to give the reader a hint
about the height of the Wadge hierarchy. Let Ω1 = 1, and Ωn+1 = ωΩn

1 . The
Wadge degree of a Π0

n-complete set is Ωn for 1 < n < ω.

4.2 Arithmetic

One of the most surprising discoveries about the Wadge hierarchy is that
the arithmetical structure on the Wadge degrees is re�ected in simple set-
theoretical operations on languages that in addition have natural interpre-
tations in terms of Wadge games. We will now present a number of such
operations selected for the �rst main goal of this chapter: calculating the
Wadge degrees of deterministic tree languages. The operations were intro-
duced by Wadge for the languages of in�nite words [38, 39], here we present
a straightforward adaptation to trees.

For L,M ⊆ TΣ de�ne L+M as the set of trees t ∈ TΣ satisfying one of
the following conditions:

88 CHAPTER 4. WADGE DEGREES

• t.0 ∈M and t(10n) = a for all n,

• 10n is the �rst node on the path 10∗ labeled with b and either t(10n0) =
a and t.10n00 ∈ L or t(10n0) = b and t.10n00 ∈ L{.

When playing a Wadge game, being in charge of M + L is like being in
charge of L with one extra move that erases everything the player has played
so far and changes the set the player is in charge of to M or M{. This move
can be played only once during the play, and is executed by playing b on the
path 10∗ for the �rst time. By choosing the next letter on this path we make
choice between M and M{.

Multiple sum is performed from left to right, i. e., L1 + L2 + L3 + L4 =
((L1 + L2) + L3) + L4. Later it will become clear that the operation is
associative up to Wadge equivalence.

The next operation is a generalization of +. It lets the player choose from
a countable collection of languages. Let Ln ⊆ TΣ for n < ω. De�ne sup−n<ωLn
as the set of trees t ∈ TΣ satisfying the following conditions for some k:

• 1k is the �rst node on 1∗ labeled with b,

• t.1k0 ∈ Lk.

De�ne also
sup+

nLn =
(
sup−nLn

)
∪ {t : ∀n t(1n) = a} .

Intuitively, in the �rst operation we reject the trees in which the Wadge game
player did not choose any Ln, and in the second operation we accept them.
The operations are dual: (

sup+
nLn

){
= sup−n

(
L{
n

)
.

Later we will make use of a di�erent kind of duality, given by the lemma
below.

Lemma 20. If L1, L2, . . . satisfy ∀i ∃j>i Li <W Lj then

sup−nLn ≡W
(
sup+

nLn
){
.

Proof. By the last observation, for the inequality ≤W it is enough to consider
GW (sup−nLn, sup−n (Ln){). The strategy for Duplicator is to wait until Spoiler
chooses Li and then choose (Lj)

{ such that Lj >W Li. Then (Lj)
{ >W Li,

4.3. CALCULATING DEGREES 89

and Duplicator can use the strategy from GW (Li, (Lj)
{). If Spoiler chooses

no Ln, both trees are outside the respective languages.
For the converse inequality considerGW (sup−n (Ln){, sup−nLn) and proceed

analogously.

Using sup one could easily de�ne multiplication by countable ordinals as
iterated sums, but here we will need the multiplication by ω1. Let L ·ω1 be
the set of trees satisfying the following conditions for some n:

• t(1n) = b and t(1m) = a for all m > n,

• either t(1n0) = a and t(1n00) ∈ L or t(1n0) = b and t(1n00) ∈ L{.

By multiplying L by ω1 we get a language that lets the player switch between
L and L{ entirely unboundedly.

The names of the operations and the notation used make the following
theorem rather expected.

Theorem 16 (Wadge). For L1, L2, . . . ⊆ TΣ it holds that

dW (L1 + L2) = dW (L1) + dW (L2) ,

dW (sup+
nLn) = dW (sup−nLn) = supndW (Ln) ,

dW (L1 · ω1) = dW (L1) · ω1 .

An elegant proof of this theorem can be found in [6].

4.3 Calculating Degrees

The non-branching canonical automata discussed in Sect. 3.4 give a complete
representation of the Wadge ordering of regular word languages. The beauty
of the Wagner hierarchy lies in the correspondence already mentioned in the
introduction. Abusing the notation we will write dW (A) instead of dW (L(A)).
For α < ωω, α = ωknk + . . .+ ω1n1 + n0 and

jReg(ωknk + . . .+ ω1n1 + n0) = ωk1nk + . . .+ ω1
1n1 + n0 ,

it holds that
dW (Ĉα) = dW (D̂α) = dW (Êα) = jReg(α) .

We call jReg the Wagner function for regular word languages. Later, we will
give a proof of this result.

90 CHAPTER 4. WADGE DEGREES

In [6], Wagner's results are extended to deterministic context free word
languages. It is proved that the hierarchy has the height (ωω)ω and that the
analogue of the Wagner function is given by the formula

jDetCFree((ω
ω)kαk + . . .+ (ωω)1α1 + α0) = (ω1)kαk + . . .+ (ω1)1α1 + α0 ,

with αi < ωω.
In this section we describe the Wagner function for deterministic tree

languages. Due to the lack of complementation for deterministic languages,
the function will not be that elegant. To this end we need to relate the
operations from the previous section with the composing operations from
Sect. 3.3. Let us start with the replication →. Recall that (A)n denotes
A ∧ . . . ∧ A︸ ︷︷ ︸

n

(page 46).

Lemma 21. For every automaton A

L(C1 → A) ≡W sup−nL((A)n) .

Proof. The strategy for Duplicator in G(L(C1 → A), sup−nL((A)n)) is as fol-
lows. While the leftmost branch of the run of C1 → A on the tree constructed
by Spoiler keeps in the head loop, Duplicator should play a's everywhere.
Suppose that Spoiler �nally plays a letter that makes the leftmost path of
the run exit the head loop in 0k. Then tS ∈ L(C1 → A) i� tS.0

i1 ∈ L(A) for
i = 0, 1, . . . , k− 1. Now, if Duplicator plays b in 1k, then tD ∈ sup−nL((A)n))
i� tD.1

k0 ∈ L((A)n)). Hence, Duplicator wins if he copies Spoiler's actions.
For the converse inequality, consider G(sup−nL((A)n), L(C1 → A)). The

winning strategy for Duplicator is as follows. As long as Spoiler does not
choose any of L((A)n), Duplicator plays a tree that keeps the leftmost branch
of the computation of C1 → A in the head loop. If this continues forever,
Duplicator wins. If �nally Spoiler chooses L((A)k), then Duplicator simply
applies the strategy given by (A)k ≤ C1 → A (Lemma 8, page 55).

The symbols chosen to denote canonical automata were to re�ect the shape
of the hierarchy: dual automata are called Cα and Dα, and self dual ones
are denoted by Eα. Since for the canonical automata of the form C1 → A
the automaton L(C1 → A){ is not equivalent to a deterministic language, we
will need the following lemma.

Lemma 22. For every canonical automaton of the form C1 → A,

L(C1 → A){ ≤W L(C1 ⊕ (C1 → A)) .

4.3. CALCULATING DEGREES 91

Proof. By Lemma 21,

L(C1 → A){ = (sup−nL((A)n)){ ≡ sup+
nL((A)n){ .

The strategy for Duplicator in G(sup+
nL((A)n){, L(C1 ⊕ (C1 → A))) is as

follows. While Spoiler keeps playing a's on the path 1∗, Duplicator should
play a tree which keeps the leftmost path of the run of C1 ⊕ (C1 → A) in
C1. Suppose that Spoiler �nally plays b in 1k. Then tS ∈ sup+

nL((A)n){

i� tS.1
k0 ∈ L((A)k). Furthermore, tD ∈ L(C1 ⊕ (C1 → A)) i� tD.0

k ∈
L(C1 ⊕ (C1 → A)). Hence, Duplicator could apply a winning strategy from
G(L((A)k){, L(C1 ⊕ (C1 → A))), if it existed.

Let us check that L((A)k){ ≤W L(C1⊕(C1 → A)). By the Wadge Lemma
(Lemma 14), it is enough to prove that L((A)k) <W L(C1 ⊕ (C1 → A)).
By Lemma 8 (page 55), (A)k ≤ C1 → A. Since C1 → A is canonical,
C1 → A = Cα for α = ωl, 0 < l < ω or α = ωω·2+l, 0 ≤ l < ω. By Theorem
10, in either case Cα < Cα+1 = C1 ⊕ Cα.

Now, let us move to ⊕. For automata on words, one can prove that
L(A⊕ B) ≡ L(A) + L(B) for arbitrary A and B. For tree automata this is
only true if B dominates (see page 60) all the simple automata that constitute
A. That su�ces, since we only need this property for canonical A⊕B.

Lemma 23. For every canonical automaton A = A1 ⊕ . . . ⊕ An, where Ai
are simple automata,

L(A) ≡W L(A1) + . . .+ L(An) .

Proof. We proceed by induction on n. For n = 1 the claim is trivial. Take
n > 1. Let A′ = A1⊕. . .⊕An−1. By induction hypothesis, L(A′) ≡W L(A1)+
. . .+ L(An−1), so it is enough to prove that L(A′ ⊕ An) ≡W L(A′) + L(An).
Abusing slightly the de�nition of canonical automata we will assume that A′

and An are over the same input alphabet Σ.
Let us �rst consider GW (L(A′⊕An), L(A′) +L(An)). While the tree con-

structed by Spoiler does not force the corresponding run of A′⊕An into An,
Spoiler is in fact in charge of L(A′τ), where A

′
τ is a copy of A

′ over an alphabet
extended with one fresh letter τ . By Lemma 5 (page 44), L(A′) ≡W L(A′τ).
Hence, Duplicator wins if he applies the strategy from GW (L(A′), L(A′τ)) in
tD.0, and plays a's elsewhere. Suppose that Spoiler does force the run of
A′ ⊕ An into the initial state of An. By de�nition of ⊕, this must happen
in v = 0k for some k < ω. It is easy to see, adapting the proof of Lemma

92 CHAPTER 4. WADGE DEGREES

13 (page 60) and Corollary 4 (page 61), that if Spoiler has a strategy in
this game, he also has a strategy such that, if the computation of A′ ⊕ An
on the constructed tree enters An, than all the paths staying within A′ are
accepting. Then, by de�nition of ⊕, tS ∈ L(A′ ⊕ An) i� tS.v0 ∈ L((An)τ).
Hence, Duplicator should play ba on the path 10∗, say in the nodes 10l and
10l0, in tD.10l00 use the strategy from GW (L((An)τ)), L(An)), and elsewhere
play a's.

For the converse inequality, consider GW (L(A′) + L(An), L(A′ ⊕ An)).
If Spoiler does not play b on the path 10∗, then tS ∈ L(A′) + L(An) i�
tS.0 ∈ L(A′). Hence, while Spoiler plays a's on 10∗, Duplicator may apply
the strategy from GW (L(A′), L(A′τ)). Suppose Spoiler plays b in 10k, and a
in 10k0. Then tS ∈ L(A′) + L(An) i� tS.10k00 ∈ L(An). Duplicator should
now play on the leftmost branch a sequence that will force the computation
to An in a node v′ and than apply the strategy from GW (L(An), L((An)τ) in
tD.v

′0. Elsewhere Duplicator should play τ 's.
Suppose now that Spoiler plays b in 10k and in 10k0. Then tS ∈ L(A′) +

L(An) i� tS.10k00 ∈ L(An){. If An is a non-branching automaton, then by
the de�nition of canonical automata it is an alternative of two dual �owers
An ≡ A{

n and An ∨ A{
n ≡ An. Hence, Duplicator may proceed like before,

only instead of the strategy from GW (L(An), L((An)τ)), he should use the
winning strategy from GW (L(An){, L((An)τ)).

Finally, let An be a branching automaton. By Lemma 22, L(An){ ≤W
L(C1 ⊕ An). Recall that WF(0,n) ≡ Cn+1, WF(1,n+1) ≡ Dn+1 (see page
56). Hence, replacing Cn and Dn with WF(ι,κ) in the de�nition of Cα for
α = αωω·2 + α1ω

ω + α0ω + n, with αi < ωω and either α0 > 0 or α2 > α1

(page 47), we may assume that An−1 is not equal to D1 nor E1. Hence, on
the leftmost branch Duplicator can always play a sequence that will move
the computation to an accepting loop in An−1 in a node 0l for some l < ω.
In the nodes that are not descendants of 0l, Duplicator should play τ and
in the subtree rooted in 0l Duplicator should simulate the strategy from the
game GW (L(An){, L(C1 ⊕ An)) given by Lemma 22.

Let us now compute the Wadge degrees of canonical �owers.

Lemma 24. For every index (ι, κ)

dW (F(ι,κ)) = ωκ−ι1 .

Proof. We will proceed by induction on κ− ι. For ι = κ, we have L(F(0,0)) =

∅{ and L(F(1,1)) = ∅, so dW ((F(0,0)) = dW ((F(1,1)) = 1 by de�nition. Let

4.3. CALCULATING DEGREES 93

us take ι < κ with κ odd. By Theorem 16 and the induction hypothesis,
it is enough to prove that L(F(ι,κ)) ≡W L(F(ι,κ−1)) · ω1. By Lemma 9 (page
56), L(F(ι,κ)) ≡W L(ι,κ) ≡W L′(ι,κ), where L

′
(ι,κ) is a language of trees over the

alphabet {ι, ι + 1, . . . , κ}, such that the highest number occurring in�nitely
often on the leftmost path is even. We will prove that L′(ι,κ) ≡W L′(ι,κ−1) · ω1.

Let us consider GW (L′(ι,κ), L
′
(ι,κ−1) ·ω1). While Spoiler does not play κ on

the leftmost branch, Duplicator should copy his actions in tD.0, and play a's
elsewhere. If Spoiler never uses κ on the leftmost branch, Duplicator wins.
Suppose that Spoiler does play κ. Then Duplicator should play the erasing
letter in the �rst free node on the rightmost path, say 1k, and again copy
Spoiler's actions in tD.1

k0. If after a few repetitions of this scenario, Spoiler
never uses κ on the leftmost branch again, Duplicator wins. If Spoiler uses κ
in�nitely often on the leftmost branch, Duplicator plays the �erasing� letter
in�nitely often. Hence, both trees will be outside of the respective languages.

In GW (L′(ι,κ−1) · ω1, L
′
(ι,κ)) the strategy for Duplicator is similar. As long

as Spoiler does not play the �erasing� letter, Duplicator should simply copy
the leftmost branch, and play ι elsewhere. When Spoiler plays the �erasing�
letter in 1k, Duplicator should play κ on the leftmost branch and then copy
the letters played by Spoiler on the path 1k0, 1k00, . . ., until Spoiler plays
the �erasing� letter again. Like before, it is easy to see that this strategy is
winning.

For ι < κ and κ even, observe that L(F(ι,κ)) ≡W L(F(ι,κ))
{. Hence,

dW (F(ι,κ)) = dW (F(ι,κ)) = ωκ−ι1 by the previous case.

Using the above results we can calculate the Wadge degrees of the lan-
guages recognized by simple automata.

Lemma 25.

1. dW (C1) = dW (D1) = dW (E1) = 1.

2. dW (Cωω+k) = dW (Dωω+k) = dW (Eωω+k) = ωk+1
1 for 0 ≤ k < ω.

3. dW (Cωk) = ωk, for all k ≥ 1.

4. dW (Cωω·2+k) = ωω1 ω
k, for all k ≥ 0.

5. dW (Cωω·3) = ωω+1
1 .

94 CHAPTER 4. WADGE DEGREES

Proof. First, observe that for each (ι, κ), L(F(ι,κ)) ≡W L(F(ι,κ))
{. In conse-

quence, L(F(ι,κ) ∨ F(ι,κ)) ≡W L(F(ι,κ)))
±, so dW (F(ι,κ)) = dW (F(ι,κ) ∨ F(ι,κ)).

By Lemma 24, we immediately get (1) and (2).
The proof of (3) is by induction. For k = 1, Cω = C1 → C3. By Lemma

21 and Lemma 9 (page 56)

L(Cω) = sup−n≥1L ((C3)n) = sup−n≥1L (C1+2n) .

By (1) and Lemma 23, dW (Ck) = k. Hence,

dW (Cω) = supn≥1dW (C1+2n) = supn≥1 (1 + 2n) = ω .

The inductive step is similar: Cωk+1 = C1 → C1 ⊕ Cωk , so by Lemma 21,
Lemma 10 (page 57), and the induction hypothesis

dW (Cωk+1) = supn≥1dW ((C1 ⊕ Cωk)n) = supn≥1dW (C1 ⊕ nCωk) =

= supn≥1 (1 + ωkn) = ωk+1 .

Analogously we get (4):

dW (Cωω·2) = supn≥1dW
(
(F(0,2))

n
)

= supn≥1dW
(
F(0,2n)

)
=

= supn≥1ω
2n
1 = ωω1 ,

dW (Cωω·2+k+1) = supn≥1dW ((C1 ⊕ Cωω·2+k)n) = supn≥1dW (C1 ⊕ nCωω·2+k) =

= supn≥1(1 + ωω1 ω
kn) = ωω1 ω

k+1 .

For (5) we need to prove that L(C1
(0,1)−→ F(0,2)) ≡W L(C1 → F(0,2)) · ω1.

Let us �rst consider GW (L(C1
(0,1)−→ F(0,2)), L(C1 → F(0,2)) ·ω1). Suppose that

for some time Spoiler plays in such a way that on the leftmost branch the
computation stays in the 1-loop of the head component. Then on paths of the
form 02i+110∗ the computation stays in F(0,2). While Spoiler plays like this,
Duplicator should keep the computation in the head loop of C1 → F(0,2), and
on the path 0i10∗ mimic the path 02i+110∗. Suppose that �nally, in the node
02k, the computation on tS moves to the 0-loop in the head component of

C1
(0,1)−→ F(0,2). Then Duplicator should play a letter that makes the leftmost

branch of the computation move to the accepting tail loop of C1 → F(0,2),
an on keep mimicking Spoiler on the paths 0i10∗ for i = 1, 2, . . . , k. If the

4.3. CALCULATING DEGREES 95

computation on tS never returns to the head 1-loop, Duplicator wins. If it
does, Duplicator should play the letter τ , that �erases� everything played
so far (see page 89), choose L(C1 → F(0,2)) again (not the complement),
make the computation loop k times in the head loop sending k paths of the
form 0i10∗ to F(0,2), and then proceed as before, producing for each new
path of the computation on tS in F(0,2), a path of the computation on tD
in F(0,2), and so on. If after a few iterations of this scenario the leftmost
branch of the computation on tS stabilizes in the 0-loop, Duplicator wins.
Otherwise, the leftmost branch of the computation on tS will be rejecting, but
then Duplicator will play the �erasing� letter in�nitely often, and tD will not

belong to L(C1 → F(0,2))·ω1. Hence, L(C1
(0,1)−→ F(0,2)) ≤W L(C1 → F(0,2))·ω1,

For the converse inequality consider GW (L(C1 → F(0,2)) · ω1, L(C1
(0,1)−→

F(0,2))). As long as Spoiler does not use the �erasing� letter, Duplicator should

follow the strategy given by L(C1 → F(0,2)) ≤ L(C1
(0,1)−→ F(0,2)). Suppose that

Spoiler plays the �erasing� letter, and chooses L(C1 → F(0,2)) again. Let 0l

be the last node played by Duplicator on the leftmost branch. In tD.0
l0,

Duplicator should again apply the strategy given by L(C1 → F(0,2)) ≤W
L(C1

(0,1)−→ F(0,2)), and in the remaining paths play letters that will make

the computation accepting. If Spoiler chooses L(C1 → F(0,2))
{, Duplicator

proceeds like above, only uses the strategy given by L(C1 → F(0,2))
{ ≤W

L(C1 ⊕ (C1 → F(0,2))) ≤W L(C1
(0,1)−→ F(0,2)) (Lemma 22 and Theorem 12,

page 69). If Spoiler plays the �erasing� letter in�nitely many times, on the
leftmost branch of tD the computation loops in�nitely often in 1-loop, and
so tD is rejected.

We have now everything we need to get the Wagner function for deter-
ministic tree languages. For every α < ωω·3 there is a unique presentation

α = ωω·2(ωpkp + . . .+ ω0k0) + ωω(ωqlq + . . .+ ω0l0) + ωrmr + . . .+ ω0m0 ,

with kp, lq,mr > 0. De�ne jDet(α) for α < ωω·3 with the formula

jDet(α) = ωω1 (ωpkp + . . .+ ω0k0) + ω1(ωq1lq + . . .+ ω0
1l0) + ωrmr + . . .+ ω0m0

and let jDet(ω
ω·3) = ωω+1

1 , jDet(ω
ω·3 + 1) = ωω1

1 .

Theorem 17. For all α ≤ ωω·3 + 1 (whenever the automata are de�ned)

dW (Cα) = dW (Dα) = dW (Eα) = jDet(α) .

96 CHAPTER 4. WADGE DEGREES

Proof. Recall that theWadge degree of a Π0
3-complete language is ωω1

1 . Hence,
the case of Cωω·3+1 is obvious. The remaining cases follow directly from Lem-
mas 23 and 25.

The result on the word languages mentioned in the beginning of the section
follows immediately from this theorem.

Corollary 8. For all α < ωω

dW (Ĉα) = dW (D̂α) = dW (Êα) = jReg(α) .

4.4 Conciliatory World

In the remaining part of the present chapter we work mainly with binary trees
that may not be full, i.e., partial functions t : {0, 1} → Σ with a pre�x closed
domain. Let T̃Σ denote the set of such trees. A conciliatory tree language
over Σ is a subset of T̃Σ.

For conciliatory languages L,M we de�ne a conciliatory version of the
Wadge game GC(L,M) (see [5]). The classical Wadge game was de�ned for
languages of full in�nite trees. The players had to add both child nodes
under each node they had put in the previous round. Only Duplicator was
allowed to skip, but not forever. He had to make in�nitely many real moves,
so that the resulting tree was full. Here, this requirement is not needed: in
each round both players are allowed to put arbitrary (�nite) number of new
nodes, including no nodes at all. Obviously, the resulting trees may contain
�nite branches, or even be �nite.

For conciliatory languages L,M we use the notation L ≤C M i� Duplica-
tor has a winning strategy in the game GC(L,M). If L ≤C M and M ≤C L,
we will write L ≡C M . The conciliatory hierarchy is the order induced by
≤C on the ≡C classes of conciliatory languages.

Let us examine the relations between the conciliatory hierarchy and the
Wadge hierarchy. Consider TΣ∪{s}, where s stands for �skip�. For a tree

t ∈ TΣ∪{s} we will de�ne u(t) ∈ T̃Σ, called the undressing of t. Informally, we
want to omit the skips in a top-down manner. Suppose we are in a node v
such that t(v) = s. We would like to ignore this node and replace it with the
next one. However, in case of trees we have two nodes to choose from: v0
and v1. Let us always choose v0. Another problem is that we may encounter
an in�nite sequence of s's. This would keep us replacing the current node
with its left child, and never get to a symbol di�erent from s. In that case,

4.4. CONCILIATORY WORLD 97

u(t) simply does not contain v. Now, let us see a formal de�nition. For each
v ∈ {0, 1}∗ consider two possibly in�nite sequences:

• w0 = ε, v0 = v,

• for vi = bv′, wi+1 = wib, vi+1 = 0v′ if t(wi+1) = s, and vi+1 = v′

otherwise.

If vn = ε for some n, then v ∈ domu(t) and u(t)(v) = t(wn). Otherwise,
v /∈ domu(t).

For a conciliatory language L, de�ne Ls as the set of trees that belong
to L after undressing, i. e., Ls = {t ∈ TΣ∪{s} : u(t) ∈ L}. The mapping
L 7→ Ls gives a natural embedding of the conciliatory hierarchy into the
Wadge hierarchy.

Lemma 26. For all conciliatory languages L and M ,

L ≤C M ⇐⇒ Ls ≤W Ms .

Proof. A strategy in one game can be translated easily to a strategy in the
other: arbitrary skipping in GC(L,M) gives the same power as the s labels in
GW (Ls,Ms). In particular, in GW (Ls,Ms) Duplicator does not need skipping
at all.

Recall that a language is called self dual if it is equivalent to its com-
plement. The conciliatory hierarchy does not contain self dual languages:
a strategy for Spoiler in GC(L,L{) is to skip in the �rst round, and then
copy Duplicator's moves. By the lemma above, Ls is non self dual in terms
of ordinary Wadge reducibility. Altogether, this shows that the conciliatory
languages correspond to certain non self dual languages. To which ones?

To answer this question we make a detour via word languages. A concil-
iatory word language is simply L ⊆ Σ∗ ∪ Σω, i. e., a set of �nite or in�nite
words. As for trees, we de�ne Ls as the set of words over Σ ∪ {s}, such
that when we ignore all the s we obtain a word (�nite or in�nite) from L.
Obviously, Lemma 26 holds also for words, but we get much more than that.

Theorem 18. (Duparc [5]) For every L ⊆ Σω of �nite Borel rank, L is non
self dual i� there exists F ⊆ Σ∗ such that L ≡W (F ∪ L)s.

In particular, a word language of �nite Borel rank is non self dual i� it
is Wadge equivalent to Cs for some conciliatory language C. Using Theorem
18, we will show that this also holds for tree languages.

98 CHAPTER 4. WADGE DEGREES

Corollary 9. For every L ⊆ TΣ of �nite Borel rank, L is non self dual i�
L ≡W Cs for some conciliatory tree language C.

Proof. First, observe that L is Wadge equivalent to Lw, which is the set of
sequences obtained by writing down the trees from L level by level from left to
right. The �writing down� and its inverse are suitable continuous reductions.
By Theorem 18, Lw is equivalent to (Lw ∪F)s for some set of �nite words F .
Now, we need a conciliatory tree language C, such that Cs ≡W (Lw ∪ F)s.

For t ∈ T̃Σ let fixed(t) denote the sequence obtained by writing down the
tree level by level from left to right until the �rst missing node is reached.
Note that fixed(t) is in�nite i� t is a full tree. Let C = {t ∈ T̃Σ : fixed(t) ∈
Lw ∪F}. The identity function reduces L to Cs, so Cs ≥W L ≡W (Lw ∪F)s.

To prove the converse inequality consider a hybrid game G(Cs, (Lw ∪
F)s). (Formally, instead of (Lw ∪ F)s one can take a Wadge equivalent
language T (Lw∪F), consisting of trees which have the leftmost path in (Lw∪
F)s.) In this game Spoiler constructs a tree tS, and Duplicator constructs a
word wD. A winning strategy for Duplicator is to undress on-line the tree
constructed by Spoiler and write it down level by level, from left to right.
When Duplicator reaches a place where the node is missing, he plays s until
Spoiler plays the missing node. If this never happens, Duplicator plays s
forever. At the end of the play, fixed(u(tS)) = u(wD). Hence, tS ∈ Cs ⇐⇒
wD ∈ (Lw ∪ F)s.

Since the conciliatory hierarchy can be embedded into the Wadge hier-
archy (Lemma 26), we can de�ne inductively the conciliatory degree of a
language:

• dC(∅) = dC(∅{) = 1,

• dC(L) = sup{dC(M) + 1 : M <C L} for L >C ∅.

By Corollary 9 and Lemma 26, for conciliatory L such that Ls has �nite Borel
rank, dC(L) = dW (Ls). This observation lets us work with the conciliatory
hierarchy instead of the Wadge hierarchy, as long as we restrict ourselves to
non self dual sets of �nite Borel ranks.

The operations +, sup+ and sup− can be generalised easily to conciliatory
sets. Now, we will also need the multiplication by countable ordinals. It is
de�ned inductively by means of + and sup+:

• L · 1 = L,

4.5. A LOWER BOUND 99

• L · (α + 1) = L+ L · α,

• L · λ = sup+
γ<λL · γ for limit ordinals λ.

Yet another arithmetical operation that has an almost exact counterpart
is exponentiation. Let L ⊆ T̃Σ. For t ∈ T̃Σ let

i(t)(a1a2 . . . an) =

{
s if ∃k t(a10a2 . . . 0an1k) = b
t(a10a2 . . . 0an0) otherwise

.

Intuitively, the rightmost path starting in a10a2 . . . 0an tells us whether to
skip the node a10a2 . . . 0an0 or not. Let

expL = {t ∈ T̃Σ : u(i(t)) ∈ L} .

A player in charge of expL is like a player in charge of L with an extra
possibility to decide that a chosen node he played in the past (and the subtree
rooted in its right child) is to be ignored.

Like before, the operations correspond to order-arithmetical operations
on conciliatory degrees, only with exponentiation we get a slight discrepancy.
The pseudoexponentiation is de�ned as exp′ α = ωα+ε

1 , where

ε =

−1 if dC(L) < ω
0 if dC(L) = β + n and cofβ = ω1

+1 if dC(L) = β + n and cofβ = ω
.

Theorem 19 (Duparc [5]). For L,M ⊆ T̃Σ, Ls,Ms Borel of �nite rank, and
a countable ordinal α it holds that

dC(L+M) = dC(L) + dC(M) ,

dC(L · α) = dC(L) · α ,
dC(expL) = exp′ dC(L) .

4.5 A Lower Bound

In this section we give a lower bound for the height of the Wadge hierarchy
restricted to weak languages. We obtain the bound by showing that weak
automata are closed by some of the operations from the previous section.
For that purpose we need to adapt the de�nition of weak automata to the

100 CHAPTER 4. WADGE DEGREES

conciliatory case. Apparently, we could simply feed the automaton with a
tree that may not be full, get a �partial� computation tree, and use the stan-
dard de�nition of acceptance via weak parity games. However, for technical
reasons (and for the sake of elegance) we prefer to use a slightly modi�ed
version of weak parity games. We say that a play (�nite or in�nite) is win-
ning for Eve if the highest rank used at least once is even. Thus we put an
end to the special treatment of the situations, when a player cannot move.

In this section, the language recognized by the automaton, L(A), is the
set of accepted trees, full or not. For the set of full trees accepted by the
automaton we will use the symbol Lω(A).

The extension of weak recognizability we propose is preserved by the
embedding operation used in Sect. 4.4.

Corollary 10. The mapping L 7→ Ls embeds the conciliatory hierarchy re-
stricted to weakly recognizable languages into the Wadge hierarchy restricted
to weakly recognizable languages.

Proof. By Lemma 26 it is enough to prove that each weak automaton A can
be transformed into a weak automaton A′ such that Lω(A′) = (L(A))s. The
automaton A′ simply moves deterministically to the left without changing
the state whenever it sees a node labeled with s. In other words, it is enough

to add {q s,0−→ q : q ∈ Q} to the transition relation of A.

Let A, B be weak alternating tree automata with input alphabet {a, b}.
We will construct weak automata A+B, A ·ω, expA, such that L(A+B) ≡C
L(B) + L(A), L(A · ω) ≡C L(A) · ω, and L(expA) ≡C expL(A).

Sum. Consider the automaton B + A de�ned on Fig. 4.1. The symbol ∗
denotes any letter. The diamond states are existential and the box states are
universal. The circle states can be treated as existential, but in fact they give
no choice to either player. The transitions leading to A, B and B{ should
be understood as transitions to the initial states of the according automata.
The priority functions of B and B{ should be increased by 2, so that they
do not use the value 0. It is easy to check that L(B + A) = L(B) + L(A).

Multiplication by ω. The automaton A · ω is shown on Fig. 4.1. The
language recognized by A ·ω consists of trees having no b's on the path 1∗ or
satisfying the following conditions for some 0 < i ≤ k and n:

4.5. A LOWER BOUND 101

Figure 4.1: The automata B + A and A · ω.

• 1k is the �rst node labeled with b on the path 1∗,

• i is minimal such that for all i < j ≤ k the path 1j0+ contains no b's,

• 1i0n is the �rst node labeled with b lying on the path 1i0+,

• either t(1i0n0) = a and t.1i0n00 ∈ L(A) or t(1i0n0) = b and t.1i0n00 ∈
L(A){.

Denote by Lk the set of trees satisfying the four conditions above for a �xed
k. Let us see that Lk ≡W ∅+ L(A) · k.

Consider GW (Lk, ∅ + L(A) · k). If Spoiler does not play the word from
ak−1b{a, b}ω on the rightmost branch, Duplicator should �ll the whole tree
with a's . This way tD ∈ ∅+L(A) ·k i� tD.0 ∈ ∅. Hence, tD /∈ ∅+L(A) ·k and
Duplicator wins. Suppose that Spoiler played ak−1b on the rightmost branch.
Now, while Spoiler plays a's on the leftmost paths starting in 1, 11, . . . , 1k,
Duplicator should play a's everywhere. Again, this guarantees a win for
Duplicator. Suppose that �nally, Spoiler plays b in 1i10j1 for some 0 < i1 ≤ k
and j1 < ω. Duplicator should now play the �erasing� letter, say in the node
v1. From now on, tD ∈ ∅+ L(A) · k i� tD.v10 ∈ L(A) · k. As long as Spoiler

102 CHAPTER 4. WADGE DEGREES

does not play b in a node 1i20j2 for some i1 < i2 ≤ k and some j2 < ω,
Duplicator should observe Spoiler's actions in tS.1

i10j1 , copy them to tD.v100
and play a's elsewhere. If this continues, Duplicator wins. When Spoiler does
play b in 1i20j2 for some i1 < i2 ≤ k and some j2 < ω, Duplicator should play
the erasing letter, say in v2. Afterwords, tD ∈ ∅ + L(A) · k ⇐⇒ tD.v20 ∈
L(A) · (k − 1) and Duplicator should proceed as before.

If this process stops before the numbers i1, i2, . . ., reach k, Duplicator
wins. Suppose that for some l, il = k. Then tS ∈ LK i� either tS(1k0k0) = a
and tS.1

k0jl00 ∈ L(A) or tS(1il0jl0) = b and tS.1
il0jl00 ∈ L(A){. An in the

case of Duplicator, tD ∈ ∅+L(A) · k i� Duplicator does not play the erasing
letter (if l = k he actually cannot) and either tD(vl0) = a and tD.vl00 ∈ L(A)
or tD(vl0) = b and tD.vl00 ∈ L(A){. Hence, Duplicator wins too.

Thus we have shown Lk ≤W ∅ + L(A) · k. Analogously we prove the
converse inequality and get the equivalence.

Now, consider GC(L(A) · ω, L(A · ω)). By de�nition, L(A) · ω consists
of trees having no b on the rightmost path, or such that 1k is the �rst node
on this path labeled with b, and t.1k0 ∈ L(A) · k. Consider the following
strategy for Duplicator. First, only observe the rightmost path of Spoiler's
tree tS. While Spoiler plays a's, keep playing a's in tD (Duplicator's tree). If
Spoiler never plays a b, Duplicator wins. Suppose Spoiler plays his �rst b in
the node 1k. Duplicator should also play b in the node 1k. Now, the result
of the play depends only on whether tS.1

k0 ∈ L(A) · k ⇐⇒ tD ∈ Lk, and
Duplicator should simply use the strategy from GC(L(A) · k, Lk).

In the game GC(L(A ·ω), L(A) ·ω)) the only di�erence is that Duplicator
should play one more a: if Spoiler plays the �rst b on the rightmost path in
the node 1k, then Duplicator should put his �rst b in 1k+2, so that he can
later use the winning strategy from GC(Lk, L(A) · (k + 2)). Let us see that
such a strategy exists. It is enough to show a strategy in GW (∅ + L(A) ·
k, L(A) · (k + 2)). Duplicator should immediately play the �erasing� letter,
and choose L(A){ if L(A){ 6= ∅, and L(A) otherwise. Then, while Spoiler
does not play the �erasing� letter, Duplicator should play in tD.0 a tree that
is not in the chosen language, and a's elsewhere. When Spoiler does play the
�erasing� letter, say in v, Duplicator should also play the �erasing� letter, say
in v′. Then Duplicator should copy tS.v0 into tD.v

′0.

Pseudoexponentiation. Both previous constructions were performed by
combining two or three automata with a particularly chosen gadget. The

4.5. A LOWER BOUND 103

Figure 4.2: The gadget to replace p in the construction of expA. The state
p′′ is existential i� p is existential, i = rank p, and j is the least even number
greater or equal to i.

automaton expA is a bit more tricky. This time, we have to change the
whole structure of the automaton. Instead of adding one gadget, we replace
each state of A by a di�erent gadget.

The gadget for a state p is shown on Fig. 4.2. By replacing p with the
gadget we mean that all the transitions ending in p should now end in p′ and
all the transitions starting in p should start in p′′. Note that the state p′′ is
the place where the original transition is chosen, so p′′ should be existential
i� p is existential. It is not di�cult to see that expA recognizes exactly
expL(A).

Now we are ready to prove the promised lower bound.

Theorem 20. The Wadge hierarchy restricted to weakly recognizable tree
languages has the height of at least ε0.

Proof. The class of weakly recognizable conciliatory languages is closed by
sum, multiplication by ω, and pseudoexponentiation. By iterating �nitely
many times sum and multiplication by ω we obtain the closure by multipli-
cation by ordinals of the form ωnkn + . . . + ωk1 + k0, i.e., all ordinals less
then ωω.

104 CHAPTER 4. WADGE DEGREES

In other words, we can �nd a weakly recognizable language of any con-
ciliatory degree from the closure of {1} by ordinal sum, multiplication by
ordinals < ωω and exp′. It is easy to see that the order type of this set is
not changed if we replace exp′ with α 7→ ωα1 . This in turn is isomorphic
with the closure of {1} by ordinal sum, multiplication by ordinals < ωω, and
exponentiation with the base ωω. This last set is obviously ε0, the least �xed
point of the exponentiation with the base ω. The result follows by Corollary
10.

Our intuition tells us the bound is tight, but we have no evidence for
that. Hence, we end the chapter � and the whole thesis � with a conjecture.

Let α < ε0. It has a unique presentation in the base ωω. Let α =
(ωω)βnαn + . . . + (ωω)β1α1 + (ωω)β0α0, with β0 < β1 < . . . < βn < α, and
0 < αi < ωω for i = 0, 1, . . . , n. De�ne jWeak(0) = 0 and for α > 0 inductively

jWeak(α) = ω
jWeak(βn)
1 αn + . . .+ ω

jWeak(β1)
1 α1 + ω

jWeak(β0)
1 α0 .

Conjecture 2. The height of the Wadge hierarchy of the weakly recognizable
tree languages is ε0 and the Wagner function is given by jWeak.

Bibliography

[1] A. Arnold. The µ-calculus alternation-depth hierarchy is strict on binary
trees. RAIRO-Theoretical Informatics and Applications 33 (1999) 329�
339.

[2] A. Arnold, D. Niwi«ski. Continuous separation of game languages.
Manuscript, submitted, 2006.

[3] J. C. Brad�eld. The modal mu-calculus alternation hierarchy is strict.
Theoret. Comput. Sci. 195 (1998) 133�153.

[4] A. Browne, E. M. Clarke, S. Jha, D. E. Long, W. Marrero. An improved
algorithm for the evaluation of �xpoint expressions. Theoret. Comput.
Sci. 178 (1997) 237�255.

[5] J. Duparc. Wadge hierarchy and Veblen hierarchy. Part I: Borel sets of
�nite rank. The Journal of Symbolic Logic 66 (2001).

[6] J. Duparc. A hierarchy of deterministic context-free ω-languages. The-
oret. Comput. Sci. 290 (2003) 1253�1300.

[7] J. Duparc, F. Murlak. On the topological complexity of weakly recog-
nizable tree languages. Proc. FCT 2007, LNCS 4639 (2007) 261-273.

[8] E. A. Emerson, C. S. Jutla The complexity of tree automata and logics
of programs. Proc. FoCS '88, IEEE Computer Society Press 1988, 328�
337.

[9] E. A. Emerson, C. S. Jutla. Tree automata, mu-calculus and determi-
nacy. Proc. FoCS '91, IEEE Computer Society Press 1991, 368�377.

[10] O. Finkel. Wadge Hierarchy of Omega Context Free Languages. Theoret.
Comput. Sci. 269 (2001) 283�315.

105

106 BIBLIOGRAPHY

[11] M. Jurdzi«ski, J. Vöge. A discrete strategy improvement algorithm for
solving parity games. Proc. CAV '00, LNCS 1855 (2000) 202�215.

[12] A. S. Kechris. Classical Descriptive Set Theory.Graduate Texts in Math-
ematics, Vol. 156, Springer-Verlag 1995.

[13] O. Kupferman, S. Safra, M. Vardi. Relating Word and Tree Automata.
Proc. LICS '96, 322�332.

[14] L. H. Landweber. Decision problems for ω-automata. Math. Systems
Theory 3 (1969) 376�384.

[15] G. Lenzi. A hierarchy theorem for the mu-calculus. Proc. ICALP '96,
LNCS 1099 (1996) 87�109.

[16] D. A. Martin. Borel determinacy. Ann. Math. 102 (1975) 363�371.

[17] A. W. Mostowski. Hierarchies of weak automata and weak monadic for-
mulas. Theoret. Comput. Sci. 83 (1991) 323-335.

[18] A. W. Mostowski. Games with forbidden positions. Technical Report 78,
Instytut Matematyki, University of Gdansk, 1991.

[19] D. E. Muller, A. Saoudi, P. E. Schupp. Alternating automata. The weak
monadic theory of the tree, and its complexity. Proc. ICALP '86, LNCS
226 (1986) 275�283.

[20] D. E. Muller, P. E. Schupp. Alternating automata on in�nite objects,
determinacy and Rabin's theorem. Proc. Automata on In�nite Words
1984, LNCS 192 (1985) 100�107.

[21] F. Murlak. On deciding topological classes of deterministic tree lan-
guages. Proc. CSL '05, LNCS 3634 (2005) 428�441.

[22] F. Murlak. The Wadge hierarchy of deterministic tree languages. Proc.
ICALP '06, Part II, LNCS 4052 (2006) 408-419.

[23] D. Niwi«ski. An example of non-Borel set of in�nite trees recognizable
by a Rabin automaton. Manuscript, Warsaw Univeristy, 1985 (in polish).

[24] D. Niwi«ski. On �xed point clones. Proc. ICALP '86, LNCS 226 (1986)
464�473.

BIBLIOGRAPHY 107

[25] D. Niwi«ski, I. Walukiewicz. Relating hierarchies of word and tree au-
tomata. Proc. STACS '98, LNCS 1373 (1998) 320�331.

[26] D. Niwi«ski, I. Walukiewicz. A gap property of deterministic tree lan-
guages. Theoret. Comput. Sci. 303 (2003) 215�231.

[27] D. Niwi«ski, I. Walukiewicz. Deciding nondeterministic hierarchy of de-
terministic tree automata. Proc. WoLLiC '04, Electronic Notes in The-
oret. Comp. Sci. 2005, 195�208.

[28] M. Otto. Eliminating recursion in µ-calculus. Proc. STACS'99, LNCS
1563 (1999) 531�540.

[29] D. Perrin, J.-E. Pin. In�nite Words. Automata, Semigroups, Logic and
Games. Pure and Applied Mathematics Vol. 141, Elsevier 2004.

[30] M. O. Rabin. Decidability of second-order theories and automata on
in�nite trees. Trans. Amer. Soc. 141 (1969) 1�35.

[31] M. O. Rabin. Weakly de�nable relations and special automata. Mathe-
matical Logic and Foundations of Set Theory, North-Holland 1970, 1�70.

[32] H. Seidl. Fast and simple nested �xpoints. Information Processing Let-
ters 59 (1996) 303�308.

[33] V. Selivanov. Wadge Degrees of ω-languages of deterministic Turing ma-
chines. Theoret. Informatics Appl. 37 (2003) 67-83.

[34] J. Skurczy«ski. The Borel hierarchy is in�nite in the class of regular sets
of trees. Theoret. Comput. Sci. 112 (1993) 413�418.

[35] W. Thomas. A hierarchy of sets of in�nite trees. Proc. Theoretical Com-
puter Science, LNCS 145 (1982) 335�342.

[36] W. Thomas. Languages, automata, and logic. Handbook of Formal Lan-
guages, Vol. 3, Springer-Verlag 1997, 389�455.

[37] T. F. Urba«ski. On deciding if deterministic Rabin language is in Büchi
class. Proc. ICALP '00, LNCS 1853 (2000) 663�674.

[38] W. W. Wadge. Degrees of complexity of subsets of the Baire space.
Notice Amer. Math. Soc. (1972) A-714.

108 BIBLIOGRAPHY

[39] W. W. Wadge. Reducibility and determinateness on the Baire space.
Ph. D. Thesis, Berkeley, 1984.

[40] K. Wagner. Eine topologische Charakterisierung einiger Klassen reg-
ulärer Folgenmengen. J. Inf. Process. Cybern. EIK 13 (1977) 473�487.

[41] K. Wagner. On ω-regular sets. Inform. and Control 43 (1979) 123�177.

Index

B−, 73
Cα, 47
Dα, 47
Eα, 47
L · ω1, 89
L+M , 87
L · α, 98
Lω(A), 100
TΣ, 18
X∗, 17
Xω, 17
⊥, 19
expL, 99
∧, 46
∨, 45
sup+

n<ωLn, 88
sup−n<ωLn, 88
ω, 17
⊕, 47
(ι,κ)−→, 46
j-loop, 21
t.v, 18
C-complete, 26
C-hard, 26

lim tn, 18

algorithm, 82
alternating chain, 21, 56
alternative, 45
analytical set, 26

automata game, 42
automaton on in�nite trees

alternating, 23
computation tree, 23

branching, 49
canonical, 47
complex, 49
deterministic
partial run, 30

non-branching, 49
nondeterministic, 19
run, 19

simple, 49
weak, 24

automaton on in�nite words
deterministic, 19
nondeterministic, 19
run, 19

Borel hierarchy, 26
of deterministic languages, 30, 37

Borel rank, 30
Borel set, 26

Cantor discontinuum, 26
closure properties, 71
component

head, 46
leftmost, 46
tail, 46

concatenation of

109

110 INDEX

tree languages, 18
trees, 18
word languages, 18
words, 17

conciliatory degree, 98
conciliatory hierarchy, 96
conciliatory Wadge game, 96
continuous reduction, 26, 39
critical path, 54

domination, 60
doppelgänger, 58
Duplicator, 41, 42

embedding, 64

�ower, 21
canonical, 46
nontrivial, 46

game languages, 28
Gap Theorem, 30, 32

index, 20
dual, 20

index hierarchy, 20
alternating, 23
of deterministic languages, 23

deterministic, 21
nondeterministic, 21
of deterministic languages, 22

weak, 25
of deterministic languages, 33,
37

index problem
deterministic, 21
nondeterministic, 21, 22
weak, 25

leaf, 18

lifting operation, 79
loop, 21

j-loop, 21
accepting, 21
rejecting, 21

Mostowski�Rabin index, see index
multiplication, 89, 98

negative transition, 79
node, 18
non self dual set, 86

parallel composition, 46
parity game, 22

positional determinacy, 23
weak, 24

pattern, 31
Polish space, 26
positive transition, 79
projective hierarchy, 26
pseudoexponentiation, 99

replication, 31, 46
Replication Lemma, 34

segment, 30
self dual set, 86
sequential composition, 47
Spoiler, 41, 42
state

all-accepting, 19
all-rejecting, 19
productive, 19
replicated, 31

substitution, 18
Substitution Lemma, 44
sum, 87

token, 42

INDEX 111

critical, 54
tree, 18

Σ-labeled, 18
n-ary, 18

undressing, 96

Wadge degree, 87
Wadge game, 41
Wadge hierarchy, 39
Wadge ordering, 39
Wadge reducibility, 39
Wadge reduction, see continuous re-

duction
Wagner hierarchy, 52

