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Abstract

Our research is directed to quasi-static evolution of thermo-visco-elastic models. We assume that
the material is subject to two kinds of mechanical deformations: elastic and inelastic. Moreover,
our analysis captures the influence of the temperature on visco-elastic properties of the body.
The subject of this dissertation is to study a thermodynamically consistent models which describe
such type of phenomena related to Mróz model, Norton-Hoff-type model and model with growth
conditions in Orlicz spaces.

The proofs base on two level Galerkin approximation. We present the construction of ap-
proximate solutions and discuss their existence. Moreover, the problem of low data regularity
in parabolic equation appears for considered models. The paper presents two possible ways how
to deal with it, i.e. the approach of Boccardo & Gallouët and the approach of renormalized
solutions.

We provide proofs regarding existence of solutions to thermo-visco-elastic models in a sim-
plified setting, namely the thermal expansion effects are neglected. Consequently, the coupling
between the temperature and the displacement occurs only in the constitutive function for the
evolution of the visco-elastic strain.

Keywords

visco-elasticity, thermal effects, Galerkin approximation, monotonicity method, renormalizations,
generalized Orlicz space, Young measure

AMS Mathematics Subject Classification
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Streszczenie

Nasze badania koncentrują się na analizie modeli termo-lepko-sprężystych opisujących ewolucję
quasi-statyczną. Rozważamy modele, które łączą odkształcenia odwracalne (sprężyste) i nieod-
wracalne (lepko-sprężyste). Dodatkowo, pojawienie się w modelu odkształceń nieodwracalnych
związane jest z dysypacją energii mechanicznej i pojawieniem się efektów cieplnych, które również
są przedmiotem analizy.

Przedmiotem badań prezentowanych w niniejszej pracy są modele termodynamicznie domknięte
opisujące to zjawisko. Dowodzimy istnienia rozwiązań dla modelu Mroza, modelu typu Nortona-
Hoffa i modelu z warunkami wzrostu w przestrzeniach Orlicza.

Dowody istnienia rozwiązań oparte są na dwustopniowej aproksymacji Galerkina. Prezentu-
jemy konstrukcję rozwiązań przybliżonych oraz dowodzimy ich istnienia. Ponadto, w rozważanych
modelach pojawia się problem niskiej regularności danych w równaniu przewodnictwa cieplnego.
Rozważamy dwa sposoby rozwiązania tego problemu, tj. podejście Boccardo & Gallouëta oraz
podejście oparte na teorii rozwiązań zrenormalizowanych.

Dodatkowo zakładamy, że rozważane materiały nie ulegają rozszerzalności cieplnej. W związku
z tym, zależność przemieszczenia i temperatury jest spowodowana tylko przez funkcję konstytu-
tywną opisującą ewolucję tensora lepko-sprężystego.

Słowa kluczowe

lepko-sprężystość, efekty termiczne, aproksymacja Galerkina, metody monotoniczności, renor-
malizacje, uogólnione przestrzenie Orlicza, miary Younga
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Chapter 1

Introduction

The objective of this dissertation is to show the existence of solution to special class of models
which describes deformation of solid material. We consider the material body which occupies the
domain Ω and is treated by external forces and heat flux through the boundary. There are many
different types of such phenomena. Our goal is to study the visco-elastic type of deformation.
Moreover, we also take into account changes of temperature because what happens during this
phenomena is loss of energy. The result of such situation is the naming convention used to
describe this class of models, i.e. thermo-visco-elastic models.

Different properties of deformations cause their different naming convention. Let us start with
elasticity. If the deformation is reversible and the mechanical energy is not dissipate, i.e. after
termination of action of external forces the body returns to its initial state, we say that this is an
elastic deformation. Moreover, if the strain is proportional to stress we say that this is a linear
elasticity. To classify the inelastic deformation, we use a book of Duvaut and Lions, see [26].

If there exists the region where the deformation is elastic and after some threshold the de-
formation starts to be inelastic we add a suffix plastic to describe it (elasto-visco-plastic, rigid-
perfectly plastic, plastic with work hardening, elastic-perfectly-plastic). When the external forces
start acting on the material, firstly the elastic deformation appears, however it occurs only till
specified threshold, after which deformation ceased to be elastic.

When no such threshold exist and there are two types of deformation from the beginning of
action of external forces we say that this deformation is visco-elastic. We focus on visco-elastic
types of materials in this dissertation.

It is obvious that the properties of the material depend on many different factors, e.g. the
temperature. Hence, all models hold only in some specific regimes. The same material in different
temperature may be characterized by different properties. Let us take the rubber which is elastic
in the room temperature. The same rubber in the temperature of liquid nitrogen is brittle. In
this dissertation, we focus on the process in such temperature regimes that they have no influence
on material properties.

In the case of inelastic deformations, the relation between stress and strain may be time
dependent, e.g. the reaction of material depends on the speed of load. Elastic material does not
care how fast the load is applied. However, if the stress rate does take into account this relation
we say that material is viscous.

For the visco-elastic materials we may observe many different phenomena, e.g. creep, stress
relaxation or phase shift in stress response if sinusoidal load is applied. Here, we do not focus
on this phenomena. We only want to stress that such phenomena happen. Thanks to that, the
visco-elastic materials have many applications, e.g. as energy absorbers (damping the vibrations),
noise reducer (in HH-53C rescue helicopter produced by Sikorsky), car bumpers or in computer
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2 CHAPTER 1. INTRODUCTION

devices to protect them from mechanical shock, see [47]. Many materials which behave elastically
at room temperature attain the visco-elastic properties after heating.

There are many visco-elastic materials, e.g. synthetic polymers, wood, human tissue (liga-
ments, tendons or disc in human spine) or some metals in specific temperature. It is important to
take into account the properties of material in engineering, designing or during physical experi-
ments. In some situations the visco-elastic properties are desirable and in some they are not, e.g.
material which is not visco-elastic must be used in the filaments in light bulbs. Many metals in
so heigh temperature (greater than 3000◦C) creep, hence the filaments are made from tungsten
which is not visco-elastic in this temperature.

Following [11, 18, 22, 26, 45, 46, 60, 70, 71, 72, 78, 79] we study the quasi-static evolution,
i.e. the evolution, which is slow and we neglect the acceleration term in the equation for balance
of momentum. As mentioned previously, the reactions of visco-elastic materials may be different
for different loads speed. Our interest is to examine slow and long-time behaviour of materials.

Furthermore, time dependency between stress and strain is defined by evolutionary equation
for visco-elastic strain (flow rule). The difference between symmetric gradient of displacement
and visco-elastic strain characterizes the deformation which defines the potential energy of the
system, i.e. elastic deformation.

Additionally, considerations regarding solid mechanics with thermal effect included should
take into account the thermal expansion of the body, i.e. changes of the volume Ω with changes
of temperature. We focus on this problem in [60]. We consider materials which do not change
the volume with the changes of temperature.

The most common phenomenon is thermal expansion in a sense that materials expand when
temperature increases and contract when temperature decreases. However, there is a group of
materials that behave in a different way: materials with negative thermal expansion (denoted by
NTE) and zero thermal expansion (denoted by ZTE). ZTE materials prevent or reduce resulting
strain or internal stresses in systems subject to large temperature fluctuations. Their behaviours
are different than our expectations but they have many technical applications, e.g. they are
used in systems that are subject to thermal shock, in functional materials (thermomechanical
actuators and space applications, see [66]), in precision engineered parts and microdevices, cf.
[23, 51, 66, 67, 68, 88].

ZTE in a single, uncombined material is known only in a few cases, e.g.

• YbGaGe, has negligible volume change between 100 and 400 K, see [66];

• Mn3AN, where A = Cu/Sn, Zn/Sn, cf. [76];

• Fe[Co(CN)6], cf. [54];

• N(CH3)4CuZn(CN)4, see [62].

There are many different components that contain negative and positive thermal expansion ma-
terials such that zero thermal expansion material is obtained. However, the case of components is
much more complicated than the case considered in our paper. In components, internal stresses
appear, which are not subject of our work.

Negative thermal expansion may be observed in: silicon and germanium in very low tempera-
ture (less than 100K), glasses in the titania–silica family, Kevlar, carbon fibres, anisotropic Invar
Fe-Ni alloys and ZrW2O8 (see [55]) in room temperature.

Moreover, we consider the model with infinitesimal displacement. In a consequence, the
dependence between the Cauchy stress tensor and ε(u)−εp is linear (generalized Hooke’s law, for
more details see [60] or [63]). Additionally, we assume that thermal expansion of material is linear.
Majority of different approaches involve models that are purely mechanical, namely concern the



3

theory of inelastic and infinitesimal deformations with the nonlinear inelastic constitutive relation
of monotone type, however they neglect all thermal influences, see [2] and also [18, 19, 20, 21].
On the other hand, the mathematical analysis of linear thermo-elasticity is also classical, well
understood topic, cf. [44], contrary to an analysis of thermo-inelastic models. By thermo-inelastic
models we mean systems consisting of balance of momentum for inelastic deformation and the
equation for evolution of temperature. In the literature there are only some results for special
models or for simplified models, see [11, 12, 22].

Furthermore, we assume that the visco-elastic part of deformation is an isochoric process. It
means that visco-elastic deformation does not change the volume of Ω.

All of the results presented in this dissertation are motivated by the papers of Hömberg [43],
Chełmiński and Racke [22]. In [43] author considered the general physical phenomena which,
inter alia, consists of thermo-visco-elastic deformation related to Mróz model. However, the de-
pendency between temperature and visco-elastic strain tensor is defined by a general operator. In
[22] authors considered the Norton-Hoff model but in isothermal case (with omission of temper-
ature changes). We have generalize their result to temperature dependent problem. Moreover,
they assume that the inelastic deformation is not an isochoric process. Considerations of isochoric
process contains additional mathematical difficulties such as the fact that test functions are not
regular enough.

Moreover, Norton-Hoff-type models and models with growth conditions in Orlicz spaces are
approximations of Prandtl-Reuss model, see [22, 79]. Prandtl-Reuss model describes elastic-
perfectly-plastic deformation. It means that there exist a threshold such that before it the defor-
mation is elastic and after it the deformation is perfectly-plastic. Perfectly-plastic deformation
is such deformation, for which all mechanical energy of external forces is dissipated and after its
termination the body does not change its shape and does not come back to any previous state.
Perfect-plasticity is a type of irreversible deformation which occurs without any increase in stress
or load.

In the literature many different models are considered. For general information we refer the
reader to [2, 26, 60]. A lot of information about different models as well ad many various ways
to prove the existence of solution may be found there. All simplifications used in this paper
are a standard way to consider such problem. However, thermal dependency of visco-elastic
constitutive function causes that many methods used before do not work in this case.

This paper presents the reader with new approaches regarding analysis of thermo-inelastic
model. First of all, we use Gallerkin approximation to construct the approximate solution of
system, see Chapter 2. This requires us to construct proper bases functions. Then, the proof
of approximate solutions existence is not trivial. The second novelty is a consideration with
regards to heat equation. Assumptions on the visco-elastic functions provide low regular right-
hand side of heat equation. Using two independent approaches we prove the existence of two
different solutions. The first one is a solution of Boccardo & Gallouet type, see [15]. The second
one is a renormalised solution. Both approaches were introduced for heat equation with Dirichlet
boundary conditions. We provide the existence of this solution for Neumann boundary conditions,
see Chapter 3. Additionally, we apply these approaches to complicated system of equations and
not only for a single equation. The last novelty is the proof of solution regarding three thermo-
visco-elastic models: Mróz model, see Chapter 4, Norton-Hoff-type models, see Chapter 5 and
models with growth conditions in Orlicz spaces, see Chapter 6. Models with growth conditions
in Orlicz spaces allow us to consider the nonhomogeneous materials.
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1.1 Derivation of the model

We start considerations regarding thermo-visco-elastic models with the derivation of model. Our
goal is to show that considered system of equations really describes the physical phenomena.
Furthermore, following calculations we obtain the relations between terms in different equations,
e.g. thermal expansion of Ω and existence of nonlinear term in heat equation.

Thermo-visco-elastic system of equations, as a consequence of balance of momentum and
balance of energy, cf. [30, 50], see also [33], captures displacement, temperature and visco-elastic
strain. Since these two principles do not take into account the material properties of considered
body, we may complement it by adding constitutive relations which complete missing information.
A standard technique in the visco-elastic deformation is to work with two constitutive relations.
First one describes the dependency between stress and strains, i.e. this is an equation for the
Cauchy stress tensor. To obtain the equation for Cauchy stress tensor we start from physics. Using
Helmholtz free energy we get the necessary relation. The entropy for such models is a consequence
of statistical mechanics. The second one is a constitutive equation which is characterized by the
evolution of visco-elastic strain tensor, named also the flow rule.

1.1.1 Balance of momentum

A linear momentum is a conserved quantity. Hence, changes of a linear momentum correspond
to the action of external forces, i.e. volume, where f is a density of external volume force, and
surface forces which are defined by normal part of Cauchy stress tenor σn to this surface. Let
us consider an open subset O of Ω. Then the balance of momentum has the following form

d

dt

∫
O
ρut dx =

∫
O
f dx+

∫
∂O
σn ds, (1.1.1)

where ρ is the density of the body, σ stands for the Cauchy stress tensor and n is an unit outward
normal vector to the boundary ∂O and u is a displacement. Using the Green theorem we obtain∫

O
ρutt dx−

∫
O

divσ dx =

∫
O
f dx. (1.1.2)

Equation (1.1.2) is tantamount to the weak formulation of the following equation

ρutt − divσ = f . (1.1.3)

To be exact, we may observe that in the abovementioned equation we use two different systems
of coordinates. Displacement is presented in Lagrangian coordinates and Cauchy stress tensor in
Eulerian coordinates. This complication will disappear due to the small displacements hypothesis,
because we may approximate stress tensor in Eulerian coordinates by stress tensor in Lagrangian
coordinates, cf. e.g. [81, pages 203-205].

1.1.2 Balance of energy

The second conservation law used to derive the thermo-visco-elastic system is balance of energy.
Let us start with the definition of energy density for this problem. Since we consider the visco-
elastic deformation of Ω and heat flow, we take into account three different types of energy:
thermal, potential and kinetic:

e = cθ +
1

2
D(ε(u)− εp) : (ε(u)− εp) +

1

2
ρ|ut|2, (1.1.4)
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where θ is temperature and constant c stands for the heat capacity of the body. Moreover, by
ε(u) we denote a symmetric gradient of displacement u: ε(u) = 1

2(∇u+∇Tu) and by εp visco-
elastic strain tensor. The operator D is a linear, positively defined and bounded operator from
S3 to S3, where S3 is a set of symmetric 3×3−matrices with real entries. Symmetry of εp follows
from the material objectivity and isotropy of the material. Thus implies symmetry of ε(u)− εp.
Tensor D describes the material behaviour, in further coming sections we discuss more precisely
operator D. Let us define tensor T as follows

T := D(ε(u)− εp). (1.1.5)

Since deformation may be split into elastic and visco-elastic one, i.e.

ε(u) = ε(u)− εp︸ ︷︷ ︸
elastic

+

visco-elastic︷︸︸︷
εp , (1.1.6)

tensor T stands for elastic stress. The density of global energy may be reformulated as follows

e = cθ +
1

2
D−1T : T +

1

2
ρ|ut|2. (1.1.7)

The changes of global energy of the closed system are equal to the work done on the system
and the heat supplied to the system, namely

d

dt
E = Pexternal +

d

dt
Q, (1.1.8)

where E is the global energy of the system, Pexternal denotes the rate of work of external forces
and Q is the heat. Let us again consider an open subset O of the body Ω. Changes of the global
energy in the set O are then prescribed as follows

d

dt
EO =

d

dt

∫
O

(
cθ +

1

2
D−1T : T +

1

2
ρ|ut|2

)
dx

=

∫
O

(
cθt + T : ε(ut)− T : εpt +

1

2
ρ
d

dt
|ut|2

)
dx.

=

∫
O

(
cθt + T : ∇ut − T : εpt +

1

2
ρ
d

dt
|ut|2

)
dx,

(1.1.9)

where the last equation is caused by symmetry of T . The rate of work of external forces acting
on the set O is equal to the rate of work of surface forces and volume forces

Pexternal =

∫
∂O
σn · ut ds+

∫
O
f · ut dx

=

∫
O

div (σut) dx+

∫
O
f · ut dx

=

∫
O
σ : ∇ut dx+

∫
O

divσ · ut dx+

∫
O
f · ut dx

=

∫
O
σ : ∇ut dx+

∫
O

(divσ + f) · ut dx.

(1.1.10)

On the basis of (1.1.2) we conclude further

Pexternal =

∫
O
σ : ∇ut dx+

∫
O
ρutt · ut dx

=

∫
O
σ : ∇ut dx+

∫
O
ρ

1

2

d

dt
|ut|2 dx.

(1.1.11)



6 CHAPTER 1. INTRODUCTION

The changes of the heat are equal to the heat produced by the heat sources in the body (in our
case the density of the heat sources is denoted by r) and the heat flux through the boundary of O

d

dt
Q =

∫
O
r dx−

∫
∂O
q · nds =

∫
O
r dx−

∫
O

div q dx. (1.1.12)

According to the Fourier’s law, the heat flux is proportional to the gradient of the temperature
(q = −κ∇θ). Using this observation, we obtain

d

dt
Q =

∫
O
r dx+

∫
O
κ∆θ dx. (1.1.13)

Collecting all components of energy, we get the complete form of energy balance∫
O

(
cθt + T : ∇ut − T : εp

t + ρ
1

2

d

dt
|ut|2

)
dx =

∫
O

(
σ : ∇ut + r + κ∆θ + ρ

1

2

d

dt
|ut|2

)
dx.

This equation holds for arbitrary subset O of Ω, hence it is equivalent to

cθt − κ∆θ +
(
T − σ

)
: ∇ut = T : εp

t + r. (1.1.14)

1.1.3 Cauchy stress tensor

Cauchy stress tensor is an equation describing the relation between the stress and the strain. We
start with physical properties of Cauchy stress tensor. Let us observe that Cauchy stress tensor,
as a physical quantity, is a symmetric tensor and its symmetry follows from the principle of the
conservation of angular momentum, cf. [50]. Indeed, let us assume that our body is in the rest.
Then, by linear conservation of momentum, see (1.1.1), we get∫

O
(divσ + f) dx = 0, (1.1.15)

for arbitrary subset O of Ω. Since (1.1.15) is a vector equation, we may consider each of its
components independently. Then, for i = 1, 2, 3 it holds∫

O
(

3∑
j=1

σij,j + fi) dx = 0, (1.1.16)

where σ = {σij}i,j=1,2,3 and by σij,j we denote
∂σij
∂xj

. Moreover, if Ω is in the rest then the angular
momentum of O is equal to zero. As in the case of linear momentum, the angular momentum is
split into volume and surface angular momentum∫

O
r × f dx+

∫
∂O
r × (σn) ds = 0, (1.1.17)

where r = (x1, x2, x3)T is a position vector. To rewrite (1.1.17), we use the Levi-Civita symbol
εijk

1 and we obtain

3∑
i,j=1

(∫
O
εijkxjfk dx+

∫
∂O

3∑
m=1

εijkxjσkmnm ds

)
= 0, (1.1.18)

1εijk is called the sign of a permutation. εijk = 1 if i, j, k is an even permutation of 1, 2, 3, εijk = −1 if it is an
odd permutation. Otherwise εijk = 0.
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which holds for k = 1, 2, 3. Using Green theorem we get

0 =
3∑

i,j=1

(∫
O
εijkxjfk dx+

∫
O

3∑
m=1

∂(εijkxjσkm)

∂xm
dx

)

=

3∑
i,j=1

(∫
O
εijkxjfk dx+

∫
O
εijkxj

3∑
m=1

σkm,m dx+

∫
O

3∑
m=1

εijkσkm
∂xj
∂xm

dx

)

=
3∑

i,j=1

(∫
O
εijkxj

(
fk +

3∑
m=1

σkm,m

)
dx+

∫
O
εijkσkj dx

)
,

(1.1.19)

where the last inequality is a consequence of ∂xj
∂xm

= δjm. By (1.1.16) first term of right-hand side
is equal to zero. Then, for k = 1, 2, 3, the following inequality holds

3∑
i,j=1

(∫
O
εijkσkj dx

)
= 0. (1.1.20)

Arbitrary choice of O and definition of Levi-Civita symbol imply

σjk = σkj . (1.1.21)

To obtain the equation for Cauchy stress tensor we follow [2] or [41, 47]. We know that there
exists a Helmholtz free energy, denoted by Ψ(ε(u), θ), and the following relation holds

σ =
∂Ψ(ε(u), θ)

∂ε(u)
. (1.1.22)

Since we consider the linear case, we may use the Taylor series to represent Cauchy stress tensor

σ =
∂Ψ(ε(u), θ)

∂ε(u)
≈ ∂Ψ(ε(u), θ)

∂ε(u)

∣∣∣
ε(u)=εp,θ=θR

+
∂2Ψ(ε(u), θ)

∂ε(u)2

∣∣∣
ε(u)=εp,θ=θR

(ε(u)− εp) +
∂2Ψ(ε(u), θ)

∂ε(u)∂θ

∣∣∣
ε(u)=εp,θ=θR

(θ − θR).

(1.1.23)

In the reference temperature and without any external forces Cauchy stress tensor is equal to 0,
hence ∂Ψ(ε(u),θ)

∂ε(u)

∣∣∣
ε(u)=εp,θ=θR

= 0. Then, we may define

D :=
∂2Ψ(ε(u), θ)

∂ε(u)2

∣∣∣
ε(u)=εp,θ=θR

and α :=
∂2Ψ(ε(u), θ)

∂ε(u)∂θ

∣∣∣
ε(u)=εp,θ=θR

. (1.1.24)

And this implies the following assumption.

Assumption 1.1.1. Cauchy stress tensor
The Cauchy stress tensor is in the form (Hooke’s law) of

σ = D(ε(u)− εp)− α(θ − θR)I, (1.1.25)

where θR is the reference temperature, α is a positive constant, I is an identity matrix from S3.
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Linear dependence holds for infinitesimal displacements, it should be understood as a relation
after neglecting the higher order terms in Taylor expansion. Similar approach was used in [2, 3,
11, 21, 22, 45, 46, 60, 63, 71, 72, 79]. Additionally, we assume that changes of temperature are
also infinitesimal.

We assume that the body in the reference temperature and without action of external forces
is in the rest, i.e. the Helmholtz free energy is equal to 0, entropy is equal to 0, stress σ and
strains ε(u), εp are equal to zero. Thus,

Ψ(ε(u) = εp, θR) = 0.

s(ε(u) = εp, θR) = 0,
(1.1.26)

where s is an entropy of the system. Using the thermodynamics relationship we obtain

Ψ(ε(u), θ) = e− θs+ g(ε(u), θR), (1.1.27)

where g(ε(u), θR) is a normalization function. Thus,

∂Ψ(ε(u), θ)

∂ε(u)
= D(ε(u)− εp)− θ∂s(ε(u), θ)

∂ε(u)
+
∂g(ε(u), θR)

∂ε(u)
(1.1.28)

This and (1.1.25) implies that

∂s(ε(u), θ)

∂ε(u)
= α and

∂g(ε(u), θR)

∂ε(u)
= θRα (1.1.29)

On the other hand, using the basic thermodynamic we get

ds =

(
∂s

∂θ

)
ε(u)=const

dθ +

(
∂s

∂ε(u)

)
θ=const

dε(u) (1.1.30)

and
(
∂s
∂θ

)
ε(u)=const

= c
θ , where c is a heat capacity. Then

s = α(ε(u)− εp) + c ln
θ

θR
. (1.1.31)

And therefore,

Ψ(ε(u), θ) = e− θ
(
α(ε(u)− εp) + c ln

θ

θR

)
+ g(ε(u), θR), (1.1.32)

Let us consider the reference state

Ψ(ε(u) = εp, θ = θR) = cθR + g(ε(u) = εp, θR) = 0,

s(ε(u) = εp, θ = θR) = α(ε(u)− εp) + c ln
θR
θR

= 0.
(1.1.33)

Thus, it holds that g(ε(u) = εp, θR) = −cθR. Finally, we obtain that

Ψ(ε(u), θ) = cθ +
1

2
D(ε(u)− εp) : (ε(u)− εp) +

1

2
|ut|2 − θs− cθR − θRα : (ε(u)− εp),

s(ε(u), θ) = α : (ε(u)− εp) + c ln
θ

θR
.

(1.1.34)
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Our interest is devoted to three phenomena: mechanical effects, which can be divided into
elastic and visco-elastic deformation and thermal effects. Hence, to describe the problem appro-
priately we intend to include the dependence on ε(u), εp and θ in the Cauchy stress tensor.
Tensor T = D(ε(u) − εp) describes the elastic force of the deformation. The second part of
Cauchy stress tensor, α(θ − θR)I, is associated with thermal expansion of the body. We may
replace α(θ− θR) by tensor-valued function α(θ− θR) with some good properties, e.g. symmetry.
This does not lie in our interest here, however it is worth mentioning. For engineering materials
the coefficient α is of the order 10−5K−1.

Operator D is a four-index matrix, i.e. D = {di,j,k,l}3i,j,k,l=1. For general materials, functions
di,j,k,l may depend on the spatial variable x. Additionally, since strains and stress are symmetric,
the following equalities hold

di,j,k,l = dj,i,k,l, di,j,k,l = di,j,l,k and di,j,k,l = dk,l,i,j ∀i, j, k, l = 1, 2, 3. (1.1.35)

If we denote the strain by ε = {εij}, then the example of dependency between stress and strain
may be defined by

σij = λδijεkk + 2µεij , (1.1.36)

where λ and µ are Lamé’s coordinates, cf. [26, 60, 81]. The specific assumptions on the coefficient
of operator D are presented for each model independently.

1.1.4 Evolutionary equation for visco-elastic deformation

In order to complete the system we need to define the evolution equation for the visco-elastic
strain tensor. We consider an isochoric visco-elastic flow. We discuss a specific type of constitutive
functions in this dissertation, i.e.

εp
t = G(θ,T d), (1.1.37)

for models considered in Chapter 4 and in Chapter 5 or

εp
t = G(x, θ,T d), (1.1.38)

for model in Chapter 6. Moreover, differences of considered models are caused by accurate
assumptions on function G, which are made on the beginning of Chapters 4–6

Assumption 1.1.2. Function G : R+ × S3
d → S3

d is a function of two variables: temperature θ
and deviatoric part of Cauchy stress tensor σd. By S3

d we denote a subset of traceless symmetric
matrices, S3

d ⊂ S3. Moreover, let us observe that

σd = σ − 1

3
tr(σ)I

= T − α(θ − θR)I − 1

3
tr(T )I + α(θ − θR)I

= T − 1

3
tr(T )I = T d.

(1.1.39)

Since it is isochoric visco-elastic flow, we assume that it depends only on the deviatoric part
of the Cauchy stress tensor and its range is the set of traceless matrices. The last assumption,
together with the fact that εp

0 (x) is traceless, provides that also εp is traceless.
Vanishing of the deformation tensor’s trace corresponds to preservation of the material’s

volume. Indeed, the volume change is associated only with the elastic response of the material,
and the plastic response is essentially incompressible, cf. [31]. The dependence of G(θ, ·) only on
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T d is essential to maintain the coercivity of the model. Once we know that the range of G(·, ·)
is S3

d , then even for the isothermal process, namely the case of G(θ,T ) = G(T ) we observe that
G(T ) : T = G(T ) : T d. Then e.g. taking the identity matrix as T we immediately see that
G(I) : Id = 0.

Different models describing the solid body deformation differ in assumptions on the consti-
tutive function G. Choice of the function G leads to specific model. There is a broad range of
different models considered in the literature, e.g.

• Mróz model [17, 43]:
G(θ,T d) = g(θ)T d, (1.1.40)

where g : R+ → R+ is a continuous function.

• Norton-Hoff, model without temperature [3],

G(T d) = |T d|p−2 T
d

|T d|
(1.1.41)

• Bodner-Partom model [11, 18, 20]:

G(θ,T d) = G

({
|T d|+ β(θ)

}+

y

)
T d

|T d|
,

yt = γ(y)G
(
|T d|
y

)
|T d| −Aδ(y),

(1.1.42)

where y : Ω×R+ → R+ describes the isotropic hardening of the metal, {·}+ stands for the
positive part of {·}, γ : R+ ⊃ D(γ)→ R+ and δ : R+ ⊃ D(δ)→ R+ are given functions and
A is a positive constant. Moreover, functions G(·), γ(·), δ(·) and β(·) fulfill some specific
properties.

• Prandtl-Reuss model with linear kinematic hardening [22]

εp
t ∈ ∂IK(θ)(T − αεp), (1.1.43)

where IK(θ) is the indicator function of the closed and convex subset K(θ) = {T ∈ S3 :

|T d| ≤ k−θ} and α, k > 0 are material parameters. Furthermore, ∂IK(θ) is a subdifferential
of the function IK(θ).

For further examples of constitutive relations (e.g. classical Maxwell model, models proposed by
Chaboche, Hart, Miler, Bruhns and many others) we refer the reader to [2, Chapter 2.2]. In this
dissertation we focus on three types of models: Mróz model (Chapter 4), Norton-Hoff-type model
(Chapter 5) and models with growth conditions in Orlicz space (Chapter 6).

1.1.5 Full model

Summarizing previous sections we obtain the following system of equations

%utt − divσ = f in Ω× (0, T ), (1.1.44)
σ = T − α(θ − θR)I in Ω× (0, T ), (1.1.45)
T = D(ε(u)− εp) in Ω× (0, T ), (1.1.46)

εp
t = G(θ,T d) in Ω× (0, T ), (1.1.47)

cθt − κ∆θ + α(θ − θR)divut = T d : G(θ,T d) + r in Ω× (0, T ), (1.1.48)
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which holds in bounded domain Ω. This system of equations should be supplemented by initial
(u0,u0,t, ε

p
0 , θ0) and boundary conditions  u = gu

∂θ

∂n
= gθ

(1.1.49)

on ∂Ω× (0, T ).
The function σ : Ω × R+ → S3 is the Cauchy stress tensor. The Cauchy stress tensor can

be divided into two parts: mechanical and thermal. The mechanical part is T = D(ε(u)− εp),
where the operator D : S3 → S3 is linear, positively definite and bounded. The operator D is a
four-index matrix, i.e. D = {di,j,k,l}3i,j,k,l=1 and the equalities (1.1.35) hold.

The evolution of the visco-elastic strain tensor εp is governed by the constitutive relation
G : R+ × S3

d → S3
d . The visco-elastic strain tensor εp = (εp)d is traceless if εp

0 is traceless. The
temperature θR is the reference temperature. The function r : Ω × R+ → R+ describes a given
density of heat sources, κ :is a constant material’s conductivity, ρ is a constant density of the
body and c is a heat capacity. Moreover, α is constant and it describes the thermal expansion of
the body. If α > 0, then the material expands with the increasing temperature.

1.2 Simplifications

Consideration of full thermo-visco-elastic model (1.1.44)–(1.1.48) with general flow rule is still an
open problem. Issues lying on the boundary of mathematics and other science requires special
attention and knowledge of both scientific fields, but they will certainly find real-life applica-
tions. Better knowledge of processes occurring in the materials and better knowledge of their
mathematical properties may help us in modeling and then also to improve the engineering work.

Since the problem of inelastic deformation is a very complex one, we make a list of simplifi-
cations which help us in the calculations. Let us explain the character of these simplifications.
They are not only mathematical facilitations, but they may be justified from physical point of
view.

Following Bartczak [11], Chełmiński [18], Chełmiński and Racke [22], Duvaut and J.L. Lions
[26], Johnson [45, 46], Nečas and Hlaváček [60], Suquet [70, 71, 72], Temam [78, 79] we consider
the quasi-static case. It means that acting forces cause small and long term displacement.

Assumption 1.2.1. Consideration of quasi-static problem means that the acceleration term in
momentum equation may be neglected, i.e.

%utt = 0. (1.2.1)

The fact of neglecting the acceleration term implies that the system of equations does not
have to be supplemented by initial condition to displacement u0 and velocity u0,t.

Furthermore, we assume that considered materials do not change the volume with changes
of temperature, i.e. the material is characterized by zero thermal expansions (ZTE). There are
many different ways to deal with thermal expansion of body. Taking into account the thermal
expansion we get also the nonlinear term in heat equation α(θ−θR)divut. This term is the biggest
troublemaker in inelastic systems. Some authors, cf. Bartczak [11], Chełmiński and Racke [22],
try to linearize it in heat equation based on argumentation that the process is close to some
temperature, in particular different form the reference temperature. Then the approximation
α(θ − θR)divut ≈ α0divut is made. Such approach causes a loss of physical properties of the
model, see next section or [32].
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Assumption 1.2.2. We assume that α = 0, i.e. the considered material is not subject to thermal
expansion.

Finally, we simplify the calculations by eliminating all constants. Similar results hold even
for more general material parameter. Our goal is to focus on the behavior of system for different
visco-elastic constitutive functions G.

Assumption 1.2.3. We assume there are no heat sources in the system, hence r = 0, material’s
conductivity κ and capacity c are constant, to simplify κ = 1 and c = 1.

Taking into account the above assumptions we get the following system of equations:
−divT = f ,

T = D(ε(u)− εp),

εpt = G(θ,T d),

θt −∆θ = T d : G(θ,T d),

(1.2.2)

with initial and boundary conditions
θ(x, 0) = θ0(x) on Ω,
εp(x, 0) = εp

0 (x) on Ω,
u = gu on ∂Ω× (0, T ),
∂θ
∂n = gθ on ∂Ω× (0, T ).

(1.2.3)

As we may observe there is still an interaction between temperature and displacement. Hence,
we cannot split this system into two independent systems of equations, but omission of thermal
expansion causes that heat equation is linear.

1.3 Thermodynamical consistency

Simplifications made in previous section may cause a loss of physical properties of model. The
purpose of the current section is to show that these simplifications lead to the model which still
conserves the energy, the temperature is positive and there exists a function of state, namely the
entropy, which has a positive rate of production. We shall say that the system is thermodynam-
ically consistent. In [33] we prove thermodynamical consistency of full thermo-visco-elasticity
model, i.e. (1.1.44)–(1.1.48), whereas in [32] we present this result for simplified problem (1.2.2).
Through this dissertation we consider only the simplified system of equation, hence we confine
here to show the thermodynamic consistency of simplified problem. To derive the whole model we
use the physical conservation laws, hence it is not interesting to repeat the same argumentation
backward.

Let us consider the isolated system, i.e. the system without external force (f = 0), with
homogeneous boundary values (gu = 0 and gθ = 0) and without the heat sources (r = 0). All of
the calculations in this section are formal.
Conservation of total energy
To show that the global energy is preserved we multiply (1.2.2)(1) by ut. After integration over
an arbitrary set O ⊂ Ω, we obtain

−
∫
O

divT · ut dx = 0 (1.3.1)

and then ∫
O
T : ∇ut dx−

∫
∂O
Tn · ut ds = 0. (1.3.2)
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Furthermore, let us multiply (1.2.2)(3) by T and integrate over O. Subtracting this equation from
(1.3.2) we get∫

O

(
T : ∇ut − T : εp

t

)
dx−

∫
∂O
Tn · ut ds = −

∫
O
T d : G(θ,T d) dx. (1.3.3)

By symmetry of T we obtain

1

2

d

dt

∫
O
T : (ε(u)− εp) dx−

∫
∂O
Tn · ut ds = −

∫
O
T d : G(θ,T d) dx. (1.3.4)

Considering the quasi-static evolution we omit the acceleration term in (1.2.2)(1). Thus we also
omit the kinetic energy in the definition of energy density, i.e.

e = θ +
1

2
D−1T : T . (1.3.5)

Thus we obtain
EO(t) =

∫
O
θ dx+

1

2

∫
O
T : (ε(u)− εp) dx. (1.3.6)

Consequently, the equation (1.3.4) may be written in the following from

d

dt
EO(t) =

d

dt

∫
O
θ dx−

∫
O
T d : G(θ,T d) dx+

∫
∂O
Tn · ut ds. (1.3.7)

Using (1.2.2)4, we obtain

d

dt
EO(t) =

∫
O
θt dx−

∫
O
θt dx+

∫
O

∆θ dx+

∫
∂O
Tn · ut ds

=

∫
∂O

(
Tut +∇θ

)
· nds.

(1.3.8)

Zero external forces, homogeneous boundary conditions and lack of heat sources imply that ut = 0
and ∇θ · n = 0 on the boundary ∂Ω. Therefore, the global energy EΩ is constant in time.
Positivity of the temperature
To prove the positivity of temperature we should assume that initial temperature θ0 is positive.
The heat equation after simplifications has a form of

θt −∆θ = G(θ,T d) : T d. (1.3.9)

For each considered model G(θ,T d) : T d is positive, see Assumption 4.0.1, Assumption 5.0.1 or
Assumption 6.0.1. Hence, we consider

θt −∆θ ≥ 0 (1.3.10)

with positive initial condition and homogeneous boundary condition is positive. Positivity of θ
is obvious. Moreover, if initial temperature is greater than reference temperature then we obtain
that θ is greater then θR.
Entropy inequality
Since the temperature is positive we multiply (1.3.9) by 1/θ. After integration over an arbitrary
set O ⊂ Ω, we obtain

d

dt

∫
O

ln θ dx−
∫
O

div
∇θ
θ

dx−
∫
O

|∇θ|2

θ2
dx =

∫
O

G(θ,T d) : T d

θ
dx.
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Thus

d

dt

∫
O

ln θ dx+

∫
O

div
(q
θ

)
dx =

∫
O

G(θ,T d) : T d

θ
dx+

∫
O

|∇θ|2

θ2
dx. (1.3.11)

By the assumptions on function G(·, ·), see Assumption 4.0.1, Assumption 5.0.1 or Assumption
6.0.1, and by positivity of θ, the right-hand side of (1.3.11) is positive. Therefore, an arbitrary
choice of the domain O implies that the inequality holds(

ln θ
)
t
+ div

(q
θ

)
≥ 0. (1.3.12)

The above relation is so-called Clausius-Duhem inequality and it is one of the equivalent formu-
lations of the second principle of thermodynamics. Hence, the homogeneous boundary conditions
and the definition of the heat flux (q = −∇θ) imply that

d

dt

∫
Ω

ln θ ≥ 0. (1.3.13)

Note that s(θ) = ln θ is one of the admissible entropies for system (1.2.2) which furnishes a formal
justification for the thermodynamical consistency of the model. Comparing entropy mentioned
in Section 1.1.3 and s(θ) = ln θ we may observe that they differ by a constant. Adding or
subtracting the constant to entropy does not change its meaning, hence s(θ) = ln θ − ln θR is
also an admissible entropy. Therefore, s(θ) = ln θ coincides with the results for zero thermal
expansion materials.

1.4 Main problems

Finite energy of the system is a starting point of energy estimates. Considering physical phenom-
ena requires conservation of physical properties. In quasi-static case total energy of Ω consists
of two kinds of energy, i.e. thermal energy (proportional to temperature) and potential energy,
which is defined below.

Definition 1.4.1. Potential energy
Let us define potential energy as follows

E(ε, εp) :=
1

2

∫
Ω
D(ε− εp) : (ε− εp) dx.

We concentrate on three different models. We start from the simplest one, Mróz model (see
Assumption 4.0.1) and then we consider more complicated models, namely Norton-Hoff-type (see
Assumption 5.0.1) and model with growth conditions in Orlicz spaces (see Assumption 6.0.1).

We use two level Galerkin approximation. Construction of approximate solutions is presented
in Chapter 2 and is the same for each model. Then, we focus on

a) identification of nonlinear term;

b) identification of right-hand side of heat equation;

c) existence of temperature as a solution of low regular data parabolic equation.
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We deal with problem c) in Chapter 3. We present two possible ways to solve it, i.e. Boccardo
Gallouët approach and renormalised solution.

To solve problems a) and b) we also use two different approaches. For Mróz model (Chapter
4) we use the Young measure tools to identify the limit of nonlinear term and also we get the
strong convergence of right-hand side of heat equation. For Norton-Hoff-type model (Chapter
5) and model with growth conditions in Orlicz spaces (Chapter 6) we use three-step method to
solve problems a) and b). Under three-step method we understand the following steps:

1) showing the inequality for the limit of heat equation’s right-hand sides;

2) using Minty-Browder trick to identify the weak limit of nonlinear term;

3) identifying the limit of right-hand side of heat equation.

The first step is similar for both models. A small difference occurs only in the fact that some
test functions are not regular enough. The second and the third steps vary to a great extent.
Different assumptions on constitutive functions describing the evolution of visco-elastic strain
tensor results in the need to use different mathematical tools.
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Chapter 2

Construction of approximate solutions

This chapter is dedicated to construction of approximate solution to thermo-visco-elastic model.
Throughout the whole dissertation we use Galerkin approximation to prove the existence of so-
lution. Construction of approximate solution is a very important step, which is often neglected
in other scientific papers. Omitting this step of reasoning may cause that the rest of our consid-
eration fails. Results presented in this chapter were obtained in [33]. The same method was also
used in [32, 33, 48].

In all models considered in this dissertation, problems that appear in the existence proofs are
similar. Different assumptions cause use of various analytical tools but data for heat equation are
low regular for all models. From physical point of view, it is correct, whereas from mathematical
perspective it entails many problems. The existence of solution to parabolic equation with only
integrable data is a subject of discussion in Chapter 3 and it requires special attention.

One of crucial steps in approaches presented in Chapter 3 is to test the equation by the
solution’s truncation. However, this truncation does not need to be a linear combination of basis
functions. That is the reason why we use two level approximation. By two level approximation
we understand independent parameters of approximation in the displacement and temperature.
Moreover, construction of approximate solution to visco-elastic strain also requires a few words
of discussion, what we do later.

Furthermore, due to linearity of equations we may split the solutions (θ,u) into two parts.
Considering the independent elastostatic and heat equation with non-homogeneous data we get
the first set of solutions. The second one is obtained by use of the Galerkin approximation to
homogeneous boundary-value problem. Existence of first part of solutions is discussed for each
of considered models independently. Different results are obtained for each model. In the rest
of this chapter we focus on the second part of solutions, i.e. the part obtained by Galerkin
approximation.

2.1 Definition of bases functions

Definition 2.1.1. Let k ∈ N and Tk(·) be a standard truncation operator

Tk(x) =


k x > k,

x |x| ≤ k,
−k x < −k.

(2.1.1)

We construct the approximate solution for temperature, displacement and visco-elastic strain,
hence we need to construct three independent bases for these physical quantities. We start with

17
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bases for displacement. To do this, let us consider the space L2(Ω,S3) with a scalar product
defined as

(ξ,η)D :=

∫
Ω
D

1
2 ξ : D

1
2η dx for ξ,η ∈ L2(Ω,S3), (2.1.2)

where D
1
2 ◦ D

1
2 = D. Let {wi}∞i=1 be the set of eigenfunctions of the elastostatic operator

−divDε(·) with the domain W 1,2
0 (Ω,R3) such that {wi} is orthonormal in L2(Ω,R3) and {wi}

orthogonal in W 1,2
0 (Ω,R3) with the inner product

(w,v)
W 1,2

0 (Ω)
= (ε(w), ε(v))D. (2.1.3)

By {λi} we denote the set of corresponding eigenvalues. Moreover, using the eigenvalue problem
for elastostatic operator we obtain∫

Ω
Dε(wi) : ε(wj) dx = λi

∫
Ω
wi ·wj dx = 0 (2.1.4)

Set {wi} is a basis for displacements construction.
Let {vi}∞i=1 be the subset of W 1,2(Ω) such that∫

Ω
(∇vi · ∇φ− µiviφ) dx = 0, (2.1.5)

holds for every function φ ∈ C∞(Ω), see [5, 69]. Moreover, we may assume that {vi} is orthogonal
in W 1,2(Ω) and orthonormal in L2(Ω). Let {µi} be the set of corresponding eigenvalues. Set {vi}
is to be used to construct approximate solutions to temperature.

To construct the basis for approximating the visco-elastic strain tensor we proceed as follows.
For 3

2 < s ≤ 2 let us denote by Hs(Ω,S3) the fractional Sobolev space with a scalar product
((·, ·))s. Due to the regularity of eigenfunctions we observe that for each i ∈ N tensor ε(wi) is an
element of Hs(Ω,S3). Let us define

Vk := (span{ε(w1), ..., ε(wk)})⊥, (2.1.6)

where by ⊥ we understand the orthogonal complementation in L2(Ω,S3) taken with respect to
the scalar product (·, ·)D. Then, denote

V s
k := Vk ∩Hs(Ω,S3). (2.1.7)

Since the co-dimension of V s
k is finite, then V s

k is closed in Hs(Ω,S3) with respect to the ‖ · ‖Hs-
norm.

Now, the idea is to find the basis of Vk. The following reasoning comes from [53]. We adapt
results presented in [53] into our particular case, see also [32]. Let us consider the following
problem: find ζki ∈ V s

k and λi ∈ R such that

((ζki ,Φ))s = λi(ζ
k
i ,Φ)D ∀ Φ ∈ V s

k . (2.1.8)

where ((·, ·))s and (·, ·)D are previously defined scalar products in Hs(Ω,S3) and in L2(Ω,S3),
respectively.

Theorem 2.1.1 (Theorem 4.11, page 286 from [53]). There exist a countable set of eigenvalues
{λi}∞i=1 and a corresponding family of eigenfunctions {ζi}∞i=1 solving (2.1.8) such that

• (ζi, ζj)D = δij for all i, j ∈ N,
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• 1 ≤ λ1 ≤ λ2 ≤ ... and λi →∞ as i tends to ∞,

• (( ζi√
λi
,
ζj√
λi

))s = δij for all i, j ∈ N,

• the set {ζi}∞i=1 is a basis of V s
k .

• the set {ζi}∞i=1 is a basis of Vk.

Moreover, let us define the subspace HN ≡ span{ζ1, ..., ζN} and projection PN : V s
k → HN such

that PNϕ ≡
∑N

i=1(ϕ, ζi)Dζi, then we get

‖PNϕ‖Hs ≤ ‖ϕ‖Hs . (2.1.9)

Proof. Proof is divided into few steps.
Existence of ζ1

Let us define
1

λ1
≡ sup

V ∈V s
k

‖v‖Hs≤1

(V ,V )D. (2.1.10)

Consequently, there exists a sequence {V i}∞i=1 such that (V i,V i)D → 1
λ1

as i tends to ∞ and
‖V i‖Hs(Ω) = 1. Then, there exists a subsequence {V i}∞i=1 (still denoted by i) and ζ1 ∈ V s

k such
that

V i ⇀ ζ1 weakly in V s
k ,

V i → ζ1 in L2(Ω,S3).
(2.1.11)

If ‖ζ1‖Hs(Ω) < 1, then let us define ζ = ζ1
‖ζ1‖Hs(Ω)

and then

‖ζ‖Hs(Ω) = 1 and (ζ, ζ)D =
(ζ1, ζ1)D
‖ζ1‖2Hs(Ω)

>
1

λ1
, (2.1.12)

which is contrary with (2.1.10) and it implies that ‖ζ1‖Hs(Ω) = 1. To finish the first step we show
that ζ1 is an eigenfunction. Let us take arbitrary H ∈ V s

k and define the function

Φ(t) =
(ζ1 + tH, ζ1 + tH)D
((ζ1 + tH, ζ1 + tH))s

. (2.1.13)

Calculating the derivative of function Φ(t), we obtain

0 =
d

dt
Φ(t)|t=0 =

2(ζ1,H)D((ζ1, ζ1))s − 2(ζ1, ζ1)D((ζ1,H))s
((ζ1, ζ1))2

s

=
2(ζ1,H)D − 2

λ1
((ζ1,H))s

((ζ1, ζ1))2
s

(2.1.14)

and then
λ1(ζ1,H)D = ((ζ1,H))s ∀ H ∈ V s

k . (2.1.15)

Iterative construction
Assume that for N ≥ 1 there exist a set of eigenvalues {λi}Ni=1 and a set of corresponding
eigenfunctions {ζi}Ni=1. Let us define the space

WN ≡ {V ∈ V s
k : ((V , ζi))s = 0, i = 1, ..., N}. (2.1.16)
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Using the similar construction as in the previous step, we find the next eigenvalue and eigenfunc-
tion

(ζN+1, ζN+1)D = sup
V ∈WN

‖V ‖Hs=1

(V ,V )D ≡
1

λN+1
. (2.1.17)

Finally, we obtain
1 ≤ λ1 ≤ λ2 ≤ ...,
(ζi, ζj)D = 0 if i 6= j,

((ζi, ζj))s = δij ∀i, j ∈ N.
(2.1.18)

Unboundedness of eigenvalues
Let us assume that the set of eigenvalues has a finite limit, i.e. limi→∞ λi = λ < ∞. Since
‖ζi‖Hs = 1, using subsequence if it is necessary, we get ζli → ζ in L2(Ω,S3) as i→∞. Hence

2 = ((ζli , ζli))s + ((ζlj , ζlj ))s

= ((ζli − ζlj , ζli − ζlj ))s
= ((ζli , ζli − ζlj ))s − ((ζlj , ζli − ζlj ))s
= λli(ζli , ζli − ζlj )D − λlj (ζlj , ζli − ζlj )D.

(2.1.19)

Since {ζli} is a Cauchy sequence and sequence {λli} is bounded, the right-hand side of abovemen-
tioned equation may be arbitrary small by letting i, j to ∞. Obviously, this is a contradiction.
The set {λi}∞i=1 contains all eigenvalues
Let us assume that there exists an eigenvalue λ such that λ /∈ {λi}∞i=1. Let ζ be the corresponding
eigenfunction to the eigenvalue λ and

((ζ,Φ))s = λ(ζ,Φ)D Φ ∈ V s
k . (2.1.20)

Without losing the generality, we assume that ‖ζ‖Hs = 1. Moreover, there exists i ∈ N such that
λi < λ < λi+1. Then, by the definition of eigenvalue, for all k = 1, ..., i

λ(ζ, ζk)D = ((ζ, ζk))s = ((ζk, ζ))s = λk(ζk, ζ)D, (2.1.21)

which implies that (ζ, ζk)D = 0. Therefore ζ ∈W i and using the definition of λi+1 we get

(ζ, ζ)D =
1

λ
>

1

λi
= sup

V ∈WN

‖V ‖s,2=1

(V ,V )D, (2.1.22)

which is contradictory with λi < λ.
The set {ζi}∞i=1 is a basis in V s

k

Let us define X = span{ζ1, ζ2, ...} and let us assume that X 6= V s
k . Then, there exists Φ ∈ V s

k

such that ‖Φ‖Hs(Ω) = 1 and ((Φ, ζi))s = 0 for all i ∈ N. Moreover, for all i ∈ N

(Φ,Φ)D ≤ sup
V ∈Wi

‖V ‖Hs=1

(V ,V )D =
1

λi
, (2.1.23)

which implies that Φ = 0.
The set {ζi}∞i=1 is a basis in Vk
Let us observe that the space V s

k is dense in Vk in L2(Ω,S3) norm. For arbitrary element ξ ∈ Vk
there exist the sequence ξn ∈ Hs(Ω,S3) such that ξn → ξ in L2(Ω,S3). Let us define the
projection Pk : Hs(Ω,S3)→ lin{ε(w1), ..., ε(wk)} by PkV :=

∑k
i=1(V , ε(wi))Dε(wi). Since Pk
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is the projection on a finite dimensional space, and the dimension of the space is independent of
l, there exists a constant, also independent of l such that ‖PkV ‖Hs ≤ C‖V ‖Hs . Then, define

ξ
n

:= ξn − Pkξn. (2.1.24)

Hence, we immediately obtain that ξn is bounded in Hs(Ω,S3) and converges to ξ ∈ Vk. Conse-
quently, {ζi}∞i=1 is also a basis in Vk.
Renormalization of basis
To complete the proof we may renormalise the basis

ζ̂i ≡
ζi√
λi
. (2.1.25)

for all i ∈ N.
The continuity of PN

Consider now ϕ ∈ V s
k . Then

‖PNϕ‖2Hs =

N∑
i=1

(ϕ, ζi)
2
D((ζi, ζi))s =

N∑
i=1

((ϕ, ζi))
2
s

λ2
i

((ζi, ζi))s

≤
N∑
i=1

((ϕ,
ζi√
λi

))2
s ≤ ‖ϕ‖2Hs .

(2.1.26)

Thus (2.1.9) is proved.

To construct the basis for approximate solution to visco-elastic strain tensor we use {wi}
and {ζki }. For each pair of approximate parameters (k, l) the basis contains two subsets. One
of them consist of symmetric gradients of first k functions from the basis for displacement, i.e.
set {ε(wi)}ki=1. The second subset contains first l function from {ζi}∞i=1. It is obvious that basis
{ζkj } depends on the parameter k. Additionally, for all k ∈ N after limit passage with l going to
∞ the set {ε(wj), ζ

k
i }j=1,...,k; i=1,...,∞ is a basis of whole space L2(Ω,S3).

At the end of this section we define three projections, which are very important in next
chapters.

Definition 2.1.2. Let us define the following projections:

• Let P k : Hs(Ω,S3)→ lin{ε(w1), . . . , ε(wk)} be defined by

P k(v) :=
k∑

n=1

(v, ε(wn))Dε(wn). (2.1.27)

• Let P l,k
L2 : L2(Ω,S3)→ lin{ζk1, . . . , ζkl } be defined by

P l,k
L2 (v) :=

l∑
m=1

(v, ζkm)Dζ
k
m. (2.1.28)

• Let P l,kHs : Hs(Ω,S3)→ lin{ζk1, . . . , ζkl } be defined by

P l,kHs(v) :=
l∑

m=1

((v,
ζkm√
λkm

))s
ζkm√
λkm

. (2.1.29)
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As we may observer the projections P l,kHs and P l,k
L2 are equal on V s

k . Indeed, if ϕ ∈ V s
k then

P l,k
L2ϕ =

l∑
m=1

(ϕ, ζkm)Dζ
k
m =

l∑
m=1

((ϕ,
ζkm√
λkm

))s
ζkm√
λkm

= P l,kHsϕ, (2.1.30)

where the second equality is condition for eigenvalues. The norms ‖P l,kHs‖L(Hs) and ‖P l,k
L2 ‖L(L2)

are equal to 1. Moreover, we may observe that for v ∈ Hs(Ω,S3) it holds

(P l,kHs ◦ (Id− P k))v =
l∑

m=1

(((Id− P k)v, ζ
k
m√
λkm

))s
ζkm√
λkm

=
l∑

m=1

((Id− P k)v, ζkm)Dζ
k
m

=

l∑
m=1

(v, ζkm)Dζ
k
m = P l,k

L2 v.

(2.1.31)

Since P k is the projection which does not dependent on l, then there exists c(k) (depending
only on k) such that for every ϕ ∈ Hs(Ω,S3) it holds

max(‖P kϕ‖Hs , ‖(Id− P k)ϕ‖Hs) ≤ c(k)‖ϕ‖Hs . (2.1.32)

2.2 Definition of approximate solution

As we have mentioned before it is much easier and more transparent to show the construction of
approximate solutions for homogeneous problems. Our idea is to consider displacement, Cauchy
stress tensor and temperature as a sum of solutions to three different problems.

Instead of considering thermo-visco-elastic problem

−div T̂ = f ,

T̂ = D(ε̂− εp),

εp
t = G(θ̂, T̂

d
),

θ̂t −∆θ̂ = T̂
d

: G(θ̂, T̂
d
).

(2.2.1)

with initial and boundary conditions (1.2.3) we focus on the following problems:

• elastostatic equation with the same data (volume force and boundary condition) as for the
full model {

−div T̃ = f in Ω× (0, T ),
ũ = gu on ∂Ω× (0, T ),

(2.2.2)

• heat equation with heat flux through the boundary as in the full model and without any
heat sources 

θ̃t −∆θ̃ = 0 in Ω× (0, T ),
∂θ̃
∂n = gθ on ∂Ω× (0, T ),

θ̃(x, 0) = θ̃0 in Ω.

(2.2.3)

• thermo-visco-elastic system of equations with homogeneous boundary data

−divT = 0,

T = D(ε− εp),

εp
t = G(θ + θ̃,T d + T̃

d
),

θt −∆θ =
(
T̃
d

+ T d
)

: G(θ̃ + θ, T̃
d

+ T d).

(2.2.4)
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with initial conditions {
θ(x, 0) = θ0 − θ̃0,

εp(x, 0) = εp
0 .

(2.2.5)

To get the same solutions to (2.2.1) and to (2.2.2) – (2.2.4) we introduce the shifts of solution
to constitutive functions. Then, by linear character of the system (2.2.1), finding (ũ, T̃ , θ̃, εp) is
equivalent to finding (ũ, T̃ ), θ̃ and (u,T , θ, εp). Moreover, the following relations hold

ũ = û+ u,

T̃ = T̂ + T ,

θ̃ = θ̂ + θ.

(2.2.6)

Existence proofs to (2.2.2) and (2.2.2) are well known results, see e.g. [29] or [82]. For each model
ũ and T̃ should belong to different functional spaces, hence we discuss their existence for each
model separately.

In this section we focus on the construction of approximate solution, i.e. on the construction
of uk,l,T k,l, θk,l and ε

p
k,l which are the approximations of u,T , θ and εp, respectively. With the

bases from the previous section we may proceed with the definition of approximate solutions. For
k, l ∈ N let

uk,l =
k∑

n=1

αnk,l(t)wn,

θk,l =

l∑
m=1

βmk,l(t)vm,

εp
k,l =

k∑
n=1

γnk,l(t)ε(wn) +
l∑

m=1

δmk,l(t)ζ
k
m,

(2.2.7)

and uk,l, ε
p
k,l and θk,l solve the approximate system of equations∫

Ω T k,l : ε(wn) dx = 0 n = 1, ..., k,

T k,l = D(ε(uk,l)− εp
k,l),∫

Ω(εp
k,l)t : Dε(wn) dx =

∫
ΩG(θ̃ + θk,l, T̃

d
+ T dk,l) : Dε(wn) dx n = 1, ..., k,∫

Ω(εp
k,l)t : Dζkm dx =

∫
ΩG(θ̃ + θk,l, T̃

d
+ T dk,l) : Dζkm dx m = 1, ..., l,∫

Ω(θk,l)tvm dx+
∫

Ω∇θk,l · ∇vm dx

=
∫

Ω Tk((T̃
d

+ T dk,l) : G(θ̃ + θk,l, T̃
d

+ T dk,l))vm dx m = 1, ..., l.

(2.2.8)
for a.a. t ∈ (0, T ). For each approximate equation we have the initial conditions in the following
form 

(θk,l(x, 0), vm) =
(
Tk(θ0 − θ̃0), vm

)
m = 1, .., l,(

εp
k,l(x, 0), ε(wn)

)
D

=
(
εp

0 , ε(wn)
)
D

n = 1, .., k,(
εp
k,l(x, 0), ζkm

)
D

=
(
εp

0 , ζ
k
m

)
D

m = 1, .., l,

(2.2.9)
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where
(
·, ·
)
denotes the scalar product in L2(Ω) and

(
·, ·
)
D

the scalar product in L2(Ω,S3). It is
important to mention here that shifts, caused by considering three systems of equations, appear
also in initial condition on temperature.

Using (2.2.8)(1) and (2.2.8)(2) we obtain∫
Ω
D(ε(uk,l)− εp

k,l) : ε(wn) dx = 0. (2.2.10)

The selection of the Galerkin bases and representation of the approximate solutions (2.2.7) allow
us to notice that

αnk,l(t) =
1

λn
γnk,l(t)

∫
Ω
Dε(wn) : ε(wn) dx = γnk,l(t). (2.2.11)

Let us define
ξ(t) = (β1

k,l(t), ..., β
l
k,l(t), γ

1
k,l(t), ..., γ

k
k,l(t), δ

1
k,l(t), ..., δ

l
k,l(t))

T .

Then the constitutive function G may be presented as a function G̃ which is a function of x, t
and of ξ, i.e.

G̃(x, t, ξ(t)) := G(θ̃ + θk,l, T̃
d

+ T dk,l)

= G
(
θ̃ +

l∑
j=1

βjk,l(t)vj(x), T̃
d −

(
D

l∑
j=1

δjk,l(t)ζj

)d)
.

Hence we obtain

(γnk,l(t))t =
1

λn

∫
Ω
G̃(x, t, ξ(t)) : Dε(wn) dx,

(δmk,l(t))t =

∫
Ω
G̃(x, t, ξ(t)) : Dζkm dx,

(βmk,l(t))t =

∫
Ω
Tk
((
T̃
d − (D

l∑
n=1

δnk,l(t)ζn)d
)

: G̃(x, t, ξ(t))
)
vm dx+ µmβ

m
k,l(t),

(2.2.12)

for n = 1, ..., k and m = 1, ..., l. Moreover, the initial conditions (2.2.9) are equivalent to the
system 

βmk,l(0) =
(
Tk(θ0 − θ̃0), vm

)
,

γnk,l(0) =
1

λm

(
εp

0 , ε(wn)
)
D
,

δmk,l(0) =
(
εp

0 , ζ
k
m

)
D
,

(2.2.13)

where n = 1, .., k and m = 1, ..., l, can be equivalently written as the initial value problem

dξ2

dt
= F (ξ(t), t), t ∈ [0, T ),

ξ(0) = ξ0,
(2.2.14)

where ξ0 is a vector of initial conditions (2.2.13).

Lemma 2.2.1. (Existence of approximate solution)
For initial condition satisfying εp

0 ∈ L1(Ω,S3
d) and θ0 ∈ L1(Ω) there exists an absolutely

continuous in time solution to (2.2.14).
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Proof. According to Carathéodory Theorem, see [53, Theorem 3.4] or [87, Appendix (61)], there
exist unique absolutely continuous functions βmk,l(t), γ

n
k,l(t) and δmk,l(t) for every n ≤ k and m ≤ l

on some time interval [0, t∗]. By (2.2.11) there exists a unique absolutely continuous function
αnk,l(t).

Remark. To get the global existence of approximate solution we need to use the uniform estimates
for solutions. For each model considered in this dissertation, we show the estimates independently
in the following chapters.
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Chapter 3

Solution to heat equation

The subject of this chapter is to consider the heat equation from thermo-visco-elastic model. In
case of all models considered in this dissertation we encounter the same issue, i.e. assumptions
on visco-elastic constitutive function cause that the right-hand sides of heat equations are only
integrable functions. We deal with low regularity of data in two different ways. The first approach
is based on the paper of Boccardo & Gallouët [15] and the second one on papers of Blanchard
and Blanchard & Murat [13, 14]. The approach of Boccardo & Gallouët was the first solution
regarding parabolic equation with low regular right-hand side. Further result was the renormalised
approach. Additionally, renormalised solutions give more information than Boccardo & Gallouët
ones. Renormalization methods were used firstly to prove the existence of solution to Boltzmann
equation, see [25].

There are two main differences between results presented in [13, 14, 15] and our work. The
first one lies in the use of boundary conditions. In [13, 14, 15] authors consider problems with
Dirichlet boundary conditions in the contrast to our case, where we use Neumann boundary
conditions. The second difference is that the heat equation is a part of system of equations.
Thus, we do not have full data information, e.g. we know nothing about the convergence of
right-hand side. In [13, 14, 15] authors consider only one equation and they do not have the
problem with coupling of equations.

This chapter is divided into two sections which present two different approaches. In both cases,
we start with uniform boundedness of right-hand side of heat equation, which is a consequence of
uniform boundedness of approximate solutions. In Boccardo-Gallouët’s approach this information
is sufficient to prove all properties of temperature, whereas it is not enough to prove the existence
of renormalised approach. The uniform boundedness of right-hand side of heat equations implies
only the almost pointwise convergence of temperature’s approximate sequence to a measurable
function θ. To prove another properties of θ and also to prove that θ is a renormalised solution
(see Definition 3.2.1) we should have some (weak or strong) convergence of right-hand side of
heat equations.

For Mróz and Norton-Hoff-type models we use Boccardo-Gallouët’s approach, see Chapter 4
and Chapter 5. For models with growth conditions in Orlicz spaces we use renormalised approach,
see Chapter 6. This is our arbitrary choice and it is obvious that making some improvements of
proofs presented in Chapter 4–6 we may use then conversely. Thus, in the renormalised approach
we present results for strong convergence of right-hand sides of heat equations, which takes place
in case of Mróz model.

Let Tk(·) be a standard truncation operator defined in 2.1.1. Then, we focus on the following

27
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problem 
(θk)t −∆θk = fk in Q,

∂θk
∂n = 0 in ∂Ω× (0, T ),

θk(·, 0) = Tk(θ0) on Ω.

(3.0.1)

where for every k ∈ N function fk belongs to L2(Q) and the sequence {fk} is uniformly bounded
in L1(Q), i.e. ‖fk‖L1(Q) ≤ B. Additionally, we have Tk(θ0) ∈ L2(Ω), ‖Tk(θ0)‖L1(Ω) ≤ ‖θ0‖L1(Ω)

and Tk(θ0)→ θ0 in L1(Ω). In the case of thermo-visco-elastic models considered here we have

fk = Tk((T̃
d

+ T dk) : G(θ̃ + θk, T̃
d

+ T dk)) in Q. (3.0.2)

3.1 Boccardo-Gallouët approach

Current section is devoted to prove the existence to the heat equation with Neumann boundary
conditions. Two dimensional case was considered in [24], and also used in [43]. Lemmas presented
below come from [32], where we consider Norton-Hoff-type models.

Lemma 3.1.1. The sequence {θk,l} is uniformly bounded in L∞(0, T ;L1(Ω)) with respect to k
and l.

Proof. It can be immediately observed that

sup
0≤t≤T

‖θk,l(t)‖L1(Ω) ≤ B + ‖θ0‖L1(Ω),

which completes the proof.

Lemma 3.1.2. The sequence of approximate solutions to the heat equation (3.0.1) is uniformly
bounded in space Lq(0, T,W 1,q(Ω)) for q < 2(N+1)−N

N+1 (q < 5
4 in three dimensional case N = 3).

Proof. We define special truncation function ψm(·) for every m ∈ N:

ψm(s) =


1 if s ≥ m+ 1,

s−m if m+ 1 ≥ s ≥ m,
0 if |s| ≤ m,

s+m if s ≥ m+ 1,
−1 if s ≤ −m− 1.

(3.1.1)

Using ψm(θk) as a test function for (3.0.1) we obtain

∫ T

0

∫
Ω

(Ψm(θk))t dx dt+

∫ T

0

∫
Ω
∇θk · ∇ψm(θk) dx dt =

∫ T

0

∫
Ω
fkψm(θk) dx dt, (3.1.2)

where Ψm(s) =
∫ s

0 ψm(τ) dτ . Thus∫
Ω

Ψm(θk)(T ) dx+

∫ T

0

∫
Ω
∇θk · ∇ψm(θk) dx dt =

∫ T

0

∫
Ω
fkψm(θk) dx dt+

∫
Ω

Ψm(Tk(θ0)) dx.

Terms on the right-hand side of the above equation can be estimated as follows∫ T

0

∫
Ω
fkψm(θk) dx dt ≤ ‖f‖L1(0,T,L1(Ω)),∫

Ω
Ψm(Tk(θ0)) dx ≤ ‖θ0‖L1(Ω),
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for every k,m ∈ N. Additionally,
∫

Ω Ψm(θk)(T )dx is nonnegative. Hence,

∫
Bm

|∇θk|2 dx dt =

∫ T

0

∫
Ω
∇θk · ∇ψm(θk) dx dt ≤ ‖f‖L1(0,T,L1(Ω)) + ‖θ0‖L1(Ω),

where Bm := {(x, t) ∈ Ω× (0, T ) : m ≤ θk(x, t) ≤ m+ 1}. Now let q ≤ 2(N+1)−N
N+1 and r = N+1

N q

(in our case q < 5
4 and r = 4

3q). Using the Hölder inequality we obtain

∫
Bm

|∇θk|q dx dt ≤
(∫

Bm

|∇θk|q
2
q dx dt

) q
2
(∫

Bm

1
2

2−q dx dt

)1− q
2

≤
(∫

Bm

|∇θk|2 dx dt

) q
2
(∫

Bm

dx dt

)1− q
2

≤ c3

(∫
Bm

|θk|r

mr
dx dt

)1− q
2

≤ c3

(∫
Bm

|θk|r dx dt

)1− q
2 1

m
r(2−q)

2

≤ c3

(∫
Bm

|θk|r dx dt

)1− q
2

(
1

m
r(2−q)
q

) q
2

.

Then

∫
Q
|∇θk|q dx dt ≤ c4(n0) + c3

∞∑
m=n0

(∫
Bm

|θk|r dx dt

)1− q
2

(
1

m
r(2−q)
q

) q
2

≤ c4(n0) + c3

( ∞∑
m=n0

∫
Bm

|θk|r dx dt

)1− q
2
( ∞∑
m=n0

1

m
r(2−q)
q

) q
2

≤ c4(n0) + c3

(∫
Q
|θk|r dx dt

)1− q
2

( ∞∑
m=n0

1

m
r(2−q)
q

) q
2

,

(3.1.3)

where c4(n0) =
∫
{(x,t):|θk(x,t)|≤n0} |∇θk|

q dx dt. Using the Hölder inequality we observe that

c4(n0) is bounded by B, ‖u0‖L1(Ω) and the measure of set Q. Furthermore, r(2−q)
q > 1 and∑∞

m=n0
m
− r(2−q)

q is summable. Using the interpolation inequality for ‖θk‖Lq(Ω) we obtain

‖θk‖Lq(Ω) ≤ ‖θk‖sL1(Ω)‖θk‖
1−s
Lq∗ (Ω)

, (3.1.4)

where q∗ = Nq
N−q (= 3q

3−q ) and
1
q = s

1 + 1−s
q∗ . After simple calculations we get that 1− s = 1−q

1−q∗
q∗

q
(and 0 < s < 1). In Lemma 3.1.1 we showed that ‖θk‖L1(Ω) is uniformly bounded, hence

∫ T

0

∫
Ω
|θk|q dx dt ≤ C

∫ T

0
‖θk‖

(1−s)q
Lq∗ (Ω)

dt ≤ C
∫ T

0
‖θk‖

1−q
1−q∗ q

∗

Lq∗ (Ω)
dt.
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Using the Hölder inequality we obtain∫ T

0

∫
Ω
|θk|q dx dt ≤ C

∫ T

0
‖θk‖

1−q
1−q∗ q

∗

Lq∗ (Ω)
dt

≤ C
(∫ T

0
‖θk‖

1−q
1−q∗ q

∗ q∗−1
q−1

q
q∗

Lq∗ (Ω)
dt

) q−1
q∗−1

q∗
q

= C

(∫ T

0
‖θk‖qLq∗ (Ω)

dt

) q−1
q∗−1

q∗
q

.

Let us notice that the exponent q−1
q∗−1

q∗

q = N(q−1)
N(q−1)+q < 1. Using the interpolation inequality for

‖θk‖Lr(Ω) we get

‖θk‖Lr(Ω) ≤ ‖θk‖sL1(Ω)‖θk‖
1−s
Lq∗ (Ω)

, (3.1.5)

where 1
r = s

1 + 1−s
q∗ . The parameters s are different in each interpolation inequality (3.1.4) and

(3.1.5). Simple calculations yield that 1− s = 1−r
1−q∗

q∗

r . By Lemma 3.1.1 we conclude that

‖θk‖rLr(0,T,Lr(Ω)) ≤
∫ T

0
‖θk‖rLr(Ω) dt

≤
∫ T

0
‖θk‖srL1(Ω)‖θk‖

1−r
1−q∗

q∗
r
r

Lq∗ (Ω)
dt

≤ C
∫ T

0
‖θk‖qLq∗ (Ω)

dt = C‖θk‖qLq(0,T,Lq∗ (Ω))
.

(3.1.6)

The Sobolev embedding theorem implies that

‖θk‖qLq(0,T,Lq∗ (Ω))
=

∫ T

0

(∫
Ω
|θk|q

∗
dx

) q
q∗

dt ≤ C
(∫ T

0

∫
Ω
|θk|q dx dt+

∫ T

0

∫
Ω
|∇θk|q dx dt

)
.

Using the previous inequalities we obtain

‖θk‖qLq(0,T,Lq∗ (Ω))
≤ C‖θk‖

q−1
q∗−1

q∗
q

Lq(0,T,Lq∗ (Ω))
+ c4(n0) +D

(∫
Q
|θk|r dx dt

)1− q
2

≤ C‖θk‖
q−1
q∗−1

q∗
q

Lq(0,T,Lq∗ (Ω))
+ c4(n0) +D‖θk‖

q 2−q
2

Lq(0,T,Lq∗ (Ω))

and q−1
q∗−1

q∗

q < 1 and q 2−q
2 < q, so we have the uniform boundedness

‖θk‖qLq(0,T,Lq∗ (Ω))
≤ C,

and from previous inequalities we get the uniform boundedness of sequence {θk} in the space
Lq(0, T, Lq

∗
(Ω)). Using this uniform boundedness, inequalities (3.1.3) and (3.1.6) we get the

uniform boundedness of the sequence {θk} in the spaces Lq(0, T,W 1,q(Ω)), which completes the
proof.

Lemma 3.1.3. Let fk ⇀ f weakly in L1(Q). Then the sequence {∇θk} converges strongly to ∇θ
in L1(0, T, L1(Ω)).
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Proof. Let us define a test function

ϕ(s) =


ε s > ε,
s |s| ≤ ε,
−ε s < −ε,

(3.1.7)

for fixed ε > 0. Subtracting equation (3.0.1) with function on right-hand side fn and fm, and
using the test function ϕ(θn − θm) we obtain∫

Ω
Φ(θn−θm)(T ) dx+

∫
Dn,m,ε

|∇(θn − θm)|2 dx dt =∫ T

0

∫
Ω

(fn − fm)ϕ(θn − θm) dx dt+

∫
Ω

Φ(Tn(θ0)− Tm(θ0)) dx,

where Φ(s) =
∫ s

0 ϕ(τ)dτ and Dn,m,ε = {(x, t) ∈ Ω × (0, T ) : |θn(x, t) − θm(x, t)| ≤ ε}. The
sequence Tk(θ0) is convergent to θ0 in L1(Ω), hence, we can find n0 such that for every n, m
greater than n0 we have

∫
Ω Φ(Tn(θ0) − Tm(θ0)) < ε. The function Φ is nonnegative and the

right-hand side of the equation above is bounded (‖fn‖L1(0,T,L1(Ω)) ≤ B), hence∫
Dn,m,ε

|∇(θn − θm)|2 dx dt ≤ 2εB + ε = (2B + 1)ε.

The Hölder inequality yields∫
Dn,m,ε

|∇(θn − θm)| dx dt ≤

(∫
Dn,m,ε

|∇(θn − θm)|2 dx dt

) 1
2

(meas(Dn,m,ε))
1
2

≤ C(2B + 1)
1
2 ε

1
2 .

Using the decomposition of Q = Dn,m,ε ∪ (Q \Dn,m,ε) we have to consider the integral over the
second set.∫

Q\Dn,m,ε
|∇(θn − θm)| dx dt ≤

(∫
Q\Dn,m,ε

|∇(θn − θm)|q dx dt

) 1
q

(meas(Q \Dn,m,ε))
1− 1

q

(3.1.8)

The first term on the right-hand side is bounded, since the sequence {θn} is uniformly bounded
in Lq(0, T,W 1,q(Ω)). The sequence {θn} is a Cauchy sequence in L1(0, T, L1(Ω)), so there exists
n0 such that for all n,m > n0 occur (meas(Q \Dn,m,ε))

1− 1
q < ε. Then, from the previous

inequalities we obtain∫
Q
|∇θn −∇θm| dx dt =

∫
Dn,m,ε

|∇(θn − θm)|dx dt+

∫
Q\Dn,m,ε

|∇(θn − θm)|dx dt

≤ c1ε
1
2 + c2ε

(3.1.9)

which implies that {∇θn} is a Cauchy sequence in L1(0, T, L1(Ω)).

Lemma 3.1.4 (Aubin-Lions, Lemma 7.7 from [65]). Let V1, V2 be Banach spaces, and V3 be a
metrizable Hausdorff locally convex space, V1 be separable and reflexive, V1 ⊂⊂ V2 (a compact
embedding), V2 ⊂ V3 (a continuous embedding), 1 < p < ∞, 1 ≤ q ≤ ∞. Then {u : u ∈
Lp(0, T, V1);ut ∈ Lq(0, T, V3)} ⊂⊂ Lp(0, T, V2) (a compact embedding).
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From the uniform boundedness of the sequence {fk} in L1(0, T, L1(Ω)) and from the uniform
boundedness of the sequence {θk} in Lq(0, T,W 1,q(Ω)) we obtain that {(θk)t} is a bounded se-
quence in the space L1(0, T,W−1,q(Ω)). Consequently, the sequence {θk} is relatively compact in
L1(0, T, L1(Ω)). Due to Lemma 3.1.2 and Lemma 3.1.3 we know that the sequence {θk} converges
strongly to θ in Lq(0, T,W 1,q(Ω)). Moreover, (θk)t converges strongly to θt in L1(0, T ;W−2,2(Ω))
by Rellich–Kondrachov’s theorem. Thus, θk converges strongly to θ in C([0, T ],W−2,2(Ω)) and
θk(·, 0) converges to θ(·, 0) in W−2,2(Ω).

Additionally, in Chapter 4 and in Chapter 5 existence of temperature θ gives us information
about the convergence of right-hand sides of heat equations. Thus, we may pass to the limit in
heat equation.

Lemma 3.1.5. Let fk ⇀ f weakly in L1(Q) and θ0 belongs to L1(Ω). Then, for q < 2(N+1)−N
N+1

(q < 5
4 when N = 3) there exists θ ∈ Lq(0, T,W 1,q(Ω)) ∩ C([0, T ],W−2,2(Ω)) - a solution to the

system 
θt −∆θ = f in Ω× (0, T ),

∂θ
∂n = 0 on ∂Ω× (0, T ),

θ(x, 0) = θ0(x) in Ω.

(3.1.10)

Proof. Choosing for (3.0.1) the test function ψ ∈ C∞c ([∞, T ), C∞(Ω)), we get∫ T

0

∫
Ω

(θn)tψ dx dt−
∫ T

0

∫
Ω

∆θnψ dx dt =

∫ T

0

∫
Ω
fnψ dx dt.

Then

−
∫ T

0

∫
Ω
θnψt dx dt+

∫
Ω
θnψ dx

∣∣∣T
0

+

∫ T

0

∫
Ω
∇θn · ∇ψ dx dt−

∫ T

0

∫
∂Ω

∂θn
∂n

ψ dx dt =

∫ T

0

∫
Ω
fnψ dx dt.

And finally

−
∫ T

0

∫
Ω
θnψt dx dt+

∫ T

0

∫
Ω
∇θn · ∇ψ dx dt =

∫ T

0

∫
Ω
fnψ dx dt+

∫
Ω
Tn(θ0)ψ dx.

Using the convergence of the temperatures’ sequence we obtain

−
∫ T

0

∫
Ω
θψt +

∫ T

0

∫
Ω
∇θ · ∇ψ =

∫ T

0

∫
Ω
fψ +

∫
Ω
θ0ψ.

Remark. The solution θ obtained by Boccardo & Gallouët’s approach is not unique.

3.2 Renormalised approach

The second approach is to find the renormalised solution. The notion of renormalised solution
for parabolic equation was introduced in [13, 14], but only for Dirichlet boundary conditions.
Some proofs from [13, 14] require modification for the case of Neumann boundary conditions.
Moreover, since the heat equation is one out of equations from the whole system, we obtain the
result in two steps. Firstly, having only the uniform boundedness of right-hand sides we obtain
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the existence of temperature θ and almost pointwise convergence of approximate temperatures
θk to θ as k tends to ∞. Again, we consider systems of equations

(θk)t −∆θk = fk in Q,
∂θk
∂n = 0 on ∂Ω× (0, T ),
θk(t = 0) = θk,0, in Ω

(3.2.1)

where for every k ∈ N function fk belongs to L2(Q), the sequence {fk} is uniformly bounded in
L1(Q) and θk,0 belongs to L2(Ω) and strongly converges to θ0 in L1(Ω) as k tends to ∞.

Secondly, usage of pointwise convergence way prove the convergence of right-hand side of heat
equation, see Chapter 6. This information is necessary to complete the prove of renormalised
solution.

Definition 3.2.1 (Renormalised solution to heat equation). Let f belong to L1(Q) and θ0 belong
to L1(Ω). A real-valued function θ defined on Q is a renormalised solution of heat equation (3.2.1)
if

a) θ is a measurable function such that TK(θ) belongs to L2(0, T,W 1,2(Ω)) for all positive K;

b) for all positive c
TK+c(θ)− TK(θ)→ 0 (3.2.2)

in L2(0, T,W 1,2(Ω)) as K goes to ∞;

c) and θ(t = 0) = θ0.

Moreover, for all functions S ∈ C∞(R), such that S′ belongs to C∞0 (R) (S′ has a compact
support), the following equality holds

−
∫
Q
S(θ)

∂φ

∂t
dx dt+

∫
Ω
S(θ0)φ(x, 0) dx+

∫
Q
S′(θ)∇θ · ∇φ dx dt

+

∫
Q
S′′(θ)|∇θ|2φ dx dt =

∫
Q
fS′(θ)φ dx dt

(3.2.3)

where φ ∈ C∞c ([−∞, T ), C∞(Ω)).

We use the notation limk,l→∞ when the order in the passing to the limit is not relevant, i.e.

lim
k,l→∞

Fk,l = lim
k→∞

lim
l→∞

Fk,l = lim
l→∞

lim
k→∞

Fk,l.

Our reasoning is different then the one presented in [13], e.g. we divide Lemma 1 from
[13] into two lemmas. Firstly, our goal is to get the existence of temperature and its almost
pointwise convergence in Q. Convergence of right-hand sides of heat equations is a consequence
of existence of temperature and it requires some calculation, see Chapter 6. For different models
we have different convergence, i.e. strong (for Mróz model) or weak (for Norton-Hoff-type model
and model with growth conditions in generalized Orlicz spaces). These differences cause different
properties of temperature, see Lemma 3.2.2.

Lemma 3.2.1. Let us assume that the sequence {fk} is uniformly bounded in L1(Q). Then,
there exists a subsequence of the sequence {θk} (still denoted by k) and measurable function θ,
such that when k tends to ∞ and for any fixed positive real number K the following conditions
are satisfied
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a) θk converges to θ almost everywhere in Q;

b) TK(θk) converges weakly to TK(θ) in L2(0, T,W 1,2(Ω)).

Proof. Let us take TK(θk) as a test function in (3.2.1). Then for t ∈ (0, T ) it holds∫ t

0

∫
Ω

∂θk
∂t
TK(θk) dx dt+

∫ t

0

∫
Ω
|∇TK(θk)|2 dx dt =

∫ t

0

∫
Ω
fkTk(θk) dx dt, (3.2.4)

and∫
Ω
T̃K(θk)(t) dx+

∫ t

0

∫
Ω
|∇TK(θk)|2 dx dt =

∫ t

0

∫
Ω
fkTk(θk) dx dt+

∫
Ω
T̃K(θk,0) dx, (3.2.5)

where T̃K(r) =
∫ r

0 TK(z) dz is a positive real valued function. Using definition of the truncation
and linear growth of function T̃K(r) at infinity, the following estimate holds∫

Ω
T̃K(θk)(t) dx+

∫ t

0

∫
Ω
|∇TK(θk)|2 dx dt ≤ K‖f‖L1(Q) + C(K)‖θk,0‖L1(Ω). (3.2.6)

To show that sequence {TK(θk)} is uniformly bounded in L2(0, T,W 1,2(Ω)), it is enough to
estimate ‖TK(θk)‖L2(Q) by ‖T̃K(θk)‖L1(Q) and ‖∇TK(θk)‖L2(Q). By Poincaré inequality we get

‖TK(θk)‖L2(Q) ≤ ‖TK(θk)− (TK(θk))Ω‖L2(Q) + ‖(TK(θk))Ω‖L2(Q)

≤ ‖∇TK(θk)‖L2(Q) + ‖(TK(θk))Ω‖L2(Q),
(3.2.7)

where by (TK(θk))Ω we denote the mean value. Using the definition of truncation operator we
obtain

T̃K(θk) =

{
1
2(θk)

2 |θk| ≤ K,
1
2K

2 +K(|θk| −K) |θk| > K,
(3.2.8)

and then it remains to show the estimates for (TK(θk))Ω∫
Ω
|TK(θk)|2 dx =

∫
{x∈Ω:|θk|≤K}

|θk|2 dx+

∫
{x∈Ω:|θk|>K}

K2 dx ≤ 2

∫
Ω
T̃K(θk) dx. (3.2.9)

Finite measure of Q implies that sequence {TK(θk)} is uniformly bounded in L2(0, T,W 1,2(Ω)),
which completes the proof.

If we have the convergence of right-hand side functions of heat equation we may improve the
result from Lemma 3.2.1.

Lemma 3.2.2. Let us assume that the sequence {fk} converges weakly to f in L1(Q) with k →∞.
For a subsequence {θk} from Lemma 3.2.1 and for any fixed positive real number K there exists
the following limit

lim
η,ε→∞

∫
Q
|∇TK(θk − θl)|2 dx dt = 0. (3.2.10)

Moreover, if {fk} converges strongly to f then θ belongs to C([0, T ], L1(Ω)).
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Proof. To prove (3.2.10) we use TK(θk − θl) as a test function for difference of two approximate
equations (3.2.1), i.e.

∂

∂t
(θk − θl)−∆(θk − θl) = fk − fl. (3.2.11)

Thus, after integration over Ω and time interval (0, T ) we obtain∫
Ω
T̃K(θk − θl)(T ) dx+

∫
Q
|∇TK(θk − θl)|2 dx dt

=

∫
Q

(fk − fl)TK(θk − θl) dx dt+

∫
Ω
T̃K(θk,0 − θl,0) dx.

(3.2.12)

Positivity of the first term on the left-hand side in abovementioned equation, boundedness of
TK(θk − θl), weak convergences of the sequence {fk} and strong convergence of initial conditions
imply that

lim
k,l→∞

∫
Q
|∇TK(θk − θl)|2 dx dt = 0. (3.2.13)

Let us assume that {fk} converges strongly to f . For δ > 0, let us test (3.2.11) by function
1
δTδ(θk − θl). Then, we get

1

δ

∫
Ω
T̃δ(θk − θl)(t) dx+

1

δ

∫ t

0

∫
Ω
|∇Tδ(θk − θl)|2 dx dt

=
1

δ

∫ t

0

∫
Ω

(fk − fl)Tδ(θk − θl) dx dt+
1

δ

∫
Ω
T̃δ(θk,0 − θl,0) dx.

(3.2.14)

Using the positivity of the second term of the left-hand side we obtain

1

δ

∫
Ω
T̃δ(θk − θl)(t) dx ≤

∫ t

0

∫
Ω
|fk − fl|dx dt+

1

δ

∫
Ω
T̃δ(θk,0 − θl,0) dx. (3.2.15)

Passing to the limit with δ tends to 0 we obtain

lim
δ→0

1

δ

∫
Ω
T̃δ(θk − θl)(t) dx =

∫
Ω

(θk − θl)(t) dx,

lim
δ→0

1

δ

∫
Ω
T̃δ(θk,0 − θl,0) dx =

∫
Ω

(θk,0 − θl,0) dx.

(3.2.16)

Therefore, ∫
Ω

(θk − θl)(t) dx ≤
∫ t

0

∫
Ω
|fk − fl|dx dt+

∫
Ω

(θk,0 − θl,0) dx, (3.2.17)

and we conclude that the sequence {θk} is a Cauchy sequence in C([0, T ], L1(Ω)), hence there
exist θ ∈ C([0, T ], L1(Ω)), such that θk → θ in C([0, T ], L1(Ω)) as k tends to ∞.

Let us take any T ′ > T and let us extend fk by 0 on Ω × (0, T ′). Then we denote Q′ =
Ω× (T, T ′) and we consider the following problem

∂θk
∂t −∆θl = fk in Q′,
∂θk
∂n = 0 on ∂Ω× (0, T ′),
θk(t = 0) = θk,0 in Ω.

(3.2.18)

Thus, we know that there exists an unique solution θ̂k and θ̂k = θk a.e. on Q. Hence, later we
do not distinguish these two solutions.

Now, our goal is to prove that the convergence of a sequence {TK(θk)} is strong. For this
purpose we start with auxiliary Lemma.
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Lemma 3.2.3 (Lemma 2 from [13]). Let H and Z be two real valued functions which belong to
W 2,∞(R) such that H ′ and Z ′ have compact supports with Z(0) = Z ′(0) = 0. Then

lim
k,l→∞

∫
Q′

(T ′ − t)H ′′(θk)Z(θk − θl)|∇θk|2 dx dt = 0. (3.2.19)

Proof. Let θk, θl be two different solutions to problem (3.2.18). Then taking the difference of
these equations we get

(θk − θl)t −∆(θk − θl) = fk − fl. (3.2.20)
Since Z ′ and H are Lipschitz bounded functions with Z ′(0) = 0, Z ′(θk − θl)H(θk) may be used
as a test function in (3.2.20). Thus,∫ T ′

0

∫ τ

0

∫
Ω

(θk − θl)tZ ′(θk − θl)H(θk) dx dt dτ

+

∫ T ′

0

∫ τ

0

∫
Ω

(∇θk −∇θl) · ∇
(
Z ′(θk − θl)H(θk)

)
dx dtdτ

=

∫ T ′

0

∫ τ

0

∫
Ω

(fk − fl)Z ′(θk − θl)H(θk) dx dtdτ.

(3.2.21)

Choosing now Z(θk − θl)H ′(θk) as a test function in the equation (3.2.18)(1) for θk gives∫ T ′

0

∫ τ

0

∫
Ω

(θk)tZ(θk − θl)H ′(θk) dx dt dτ +

∫ T ′

0

∫ τ

0

∫
Ω
∇θk · ∇

(
Z(θk − θl)H ′(θk)

)
dx dtdτ

=

∫ T ′

0

∫ τ

0

∫
Ω
fkZ(θk − θl)H ′(θk) dx dt dτ.

(3.2.22)

Since θk → θ almost pointwise in Q′ and Z,H,Z ′, H ′ are Lipschitz bounded functions, Z(θk −
θl)H

′(θk) and Z ′(θk−θl)H(θk) both converge to 0 almost pointwise as k and l go to∞. Moreover,
using the weak convergence of {fk} in L1(Q), we conclude that both right-hand sides of (3.2.21)
and (3.2.22) tend to 0 as k and l go to ∞.

Integration by parts results in∫ T ′

0

∫ τ

0

∫
Ω

(θk)tZ(θk − θl)H ′(θk) dx dtdτ =

∫ T ′

0

∫ τ

0

∫
Ω

(H(θk))tZ(θk − θl) dx dt dτ

= −
∫ T ′

0

∫ τ

0

∫
Ω
H(θk)(Z(θk − θl))t dx dtdτ

+

∫ T ′

0

[∫
Ω
Z(θk − θl)H(θk) dx

]τ
0

dτ

= −
∫ T ′

0

∫ τ

0

∫
Ω

(θk − θl)tZ ′(θk − θl)H(θk) dx dt dτ

+

∫
Q′
Z(θk − θl)H(θk) dx dτ − T ′

∫
Ω
Z(θk,0 − θl,0)H(θk,0) dx.

(3.2.23)

We know that θk → θ a.e. in Q′ and functions Z,H belong to W 2,∞(R). Thus, it provides to

lim
k,l→∞

∫
Q′
Z(θk − θl)H(θk) dx dτ = 0,

lim
k,l→∞

T

∫
Ω
Z(θk,0 − θl,0)H(θk,0) dx = 0.

(3.2.24)
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And then we obtain

lim
k,l→∞

∫ T ′

0

∫ τ

0

∫
Ω

(θk)tZ(θk−θl)H ′(θk) dx dt dτ = − lim
k,l→∞

∫ T ′

0

∫ τ

0

∫
Ω

(θk−θl)tZ ′(θk−θl)H(θk) dx dtdτ.

(3.2.25)
Vanishing of right-hand sides of (3.2.21), (3.2.22) and equality (3.2.25) provides that

lim
k,l→∞

∫ T ′

0

∫
Ω

∫ τ

0
((∇θk −∇θl) · ∇

(
Z ′(θk − θl)H(θk)

)
dtdx dτ

= − lim
k,l→∞

∫ T ′

0

∫
Ω

∫ τ

0
∇θk · ∇

(
Z(θk − θl)H ′(θk)

)
dt dx dτ.

(3.2.26)

In the abovementioned equation we have the following situation. We consider limits in the
form of

∫ T ′
0

∫
Ω

∫ τ
0 a(x, t) dt dx dτ . Using Fubini theorem we may change the order of integration

and we obtain∫ T ′

0

∫
Ω

∫ τ

0
a(x, t) dt dx dτ =

∫ T ′

0

∫
Ω

∫ T ′

t
dτ a(x, t) dx dt =

∫ T ′

0

∫
Ω

(T ′− t)a(x, t) dx dt (3.2.27)

Thus, two terms in (3.2.26) may be rewritten in the form of∫ T ′

0

∫
Ω

∫ τ

0
(∇θk −∇θl) · ∇

(
Z ′(θk − θl)H(θk)

)
dt dx dτ

=

∫
Q′

(T ′ − t)Z ′′(θk − θl)H(θk)|∇(θk − θk)|2 dx dt︸ ︷︷ ︸
=Ek,lK

+

∫
Q′

(T ′ − t)Z ′(θk − θl)H ′(θk)∇(θk − θk) · ∇θk dx dt︸ ︷︷ ︸
=Fk,lK

,

(3.2.28)

and∫ T ′

0

∫
Ω

∫ τ

0
∇θk · ∇

(
Z(θk − θl)H ′(θk)

)
dt dx dτ

=

∫
Q′

(T ′ − t)Z ′(θk − θl)H ′(θk)∇(θk − θk) · ∇θk dx dt︸ ︷︷ ︸
=Fk,lK

+

∫
Q′

(T ′ − t)Z(θk − θl)H ′′(θk)|∇θk|2 dx dt︸ ︷︷ ︸
=Gk,lK

.

(3.2.29)

The next step of the proof is to show that Ek,lK and F k,lK converge to zero as k and l go to ∞.
Since (3.2.26) holds, it will imply that Gk,lK converges to zero as k and l go to ∞. Let us take a
positive real number M such that supp(H ′) ⊂ [−M,+M ] and supp(Z ′) ⊂ [−M,+M ]. Then, the
following estimate holds

Ek,lK ≤ T‖Z
′′‖L∞(R)‖H‖L∞(R)

∫
Q′
|∇TM (θk − θl)|2 dx dt (3.2.30)

Using Lemma 3.2.2 we obtain
lim

k,l→∞
Ek,lK = 0. (3.2.31)

Similarly, F ε,ηK is estimated as follows

F k,lK ≤ T‖Z
′‖L∞(R)‖H ′‖L∞(R)

∫
Q′
|∇TM (θk − θk)||∇TM (θk)| dx dt. (3.2.32)
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Using Hölder’s inequality and again Lemma 3.2.2 we get

lim
k,l→∞

F k,lK = 0, (3.2.33)

which completes the proof.

Now, we pass to the main theorem of this section.

Theorem 3.2.1. Let K be a fixed positive real number. The sequence {TK(θk)} strongly converges
to TK(θ) in L2(0, T,W 1,2(Ω)).

Proof. The main point of the following proof is to show that

lim
k→∞

∫
Q′

(T ′ − t)|∇TK(θk)−∇TK(θ)|2 dx dt = 0. (3.2.34)

Since θk is the unique solution of the problem (3.2.18) it is obvious that

lim
k→∞

∫
Q′

(T ′ − t)|∇TK(θk)−∇TK(θ)|2 ≥ (T ′ − T ) lim
k→∞

∫
Q
|∇TK(θk)−∇TK(θ)|2 ≥ 0. (3.2.35)

Let us start with decomposition of set Q′ into four subsets:

• {(x, t) ∈ Q′ : |θk| < K} ∩ {(x, t) ∈ Q′ : |θl| < K};

• {(x, t) ∈ Q′ : |θk| < K} ∩ {(x, t) ∈ Q′ : |θl| ≥ K};

• {(x, t) ∈ Q′ : |θk| ≥ K} ∩ {(x, t) ∈ Q′ : |θl| < K};

• and {(x, t) ∈ Q′ : |θk| ≥ K} ∩ {(x, t) ∈ Q′ : |θl| ≥ K}.

Applying this decomposition and using the truncation operator we obtain∫
Q′

(T ′ − t)|∇TK(θk)−∇TK(θl)|2 dx dt

=

∫
{(x,t)∈Q′: |θk|<K}∩{(x,t)∈Q′: |θl|<K}

(T ′ − t)|∇θk −∇θl|2 dx dt︸ ︷︷ ︸
=Ak,lK

+

∫
{(x,t)∈Q′: |θk|<K}∩{(x,t)∈Q′: |θl|≥K}

(T ′ − t)|∇θk|2 dx dt︸ ︷︷ ︸
=Bk,lK

+

∫
{(x,t)∈Q′: |θk|≥K}∩{(x,t)∈Q′: |θl|<K}

(T ′ − t)|∇θl|2 dx dt︸ ︷︷ ︸
=Bk,lK

+

∫
{(x,t)∈Q′: |θk|≥K}∩{(x,t)∈Q′: |θl|≥K}

(T ′ − t)0 dx dt︸ ︷︷ ︸
=0

.

(3.2.36)

We may observe that Bk,l
K and Bk,l

K are symmetric with respect to k and l. Our goal is to show
that Ak,lK and Bk,l

K converge to 0 with k, l→∞.
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The term Ak,lK is easily estimated since

0 ≤ Ak,lK ≤
∫
{(x,t)∈Q′: |θk−θl|<2K}

(T ′ − t)|∇(θk − θl)|2 dx dt

=

∫
Q′

(T ′ − t)|∇T2K(θk − θl)|2 dx dt

≤ T ′
∫
Q′
|∇T2K(θk − θl)|2 dx dt.

(3.2.37)

Using Lemma 3.2.2 we conclude that

lim
k,l→∞

Ak,lK = 0. (3.2.38)

The next step of the proof is to show the estimates for Bk,l
K . Let K ′ be any positive real

number. Then we split the set {(x, t) ∈ Q′ : |θk| < K} ∩ {(x, t) ∈ Q′ : |θl| ≥ K} into two
subsets {(x, t) ∈ Q′ : |θk| < K} ∩ {(x, t) ∈ Q′ : |θl| ≥ K} ∩ {(x, t) ∈ Q′ : |θk − θl| ≤ K ′} and
{(x, t) ∈ Q′ : |θk| < K} ∩ {(x, t) ∈ Q′ : |θl| ≥ K} ∩ {(x, t) ∈ Q′ : |θk − θl| > K ′}. Thus

Bk,l
K =

=Bk,l1︷ ︸︸ ︷∫
{(x,t)∈Q′: |θk|<K}∩{(x,t)∈Q′: |θl|≥K}∩{(x,t)∈Q′: |θk−θl|≤K′}

(T ′ − t)|∇θk|2 dx dt

+

∫
{(x,t)∈Q′: |θk|<K}∩{(x,t)∈Q′: |θl|≥K}∩{(x,t)∈Q′: |θk−θl|>K′}

(T ′ − t)|∇θk|2 dx dt︸ ︷︷ ︸
=Bk,l2

.

(3.2.39)

Moreover, the following inequality holds

0 ≤ Bk,l
1 =

∫
{(x,t)∈Q′: |θk|<K}∩{(x,t)∈Q′: |θl|≥K}∩{(x,t)∈Q′: |θk−θl|≤K′}

(T ′ − t)|∇θk|2 dx dt

=

∫
{|θk|<K}∩{|θl|≥K}∩{|θk−θl|≤K′}

(T ′ − t)
(
|∇(θk − θl)|2 + 2∇θk · ∇θl − |∇θl|2

)
dx dt

≤
∫
{|θk|<K}∩{K≤|θl|<K+K′}

(T ′ − t)
(
|∇(θk − θl)|2 + 2∇θk · ∇θl − |∇θl|2

)
dx dt

≤
∫
{(x,t)∈Q′: |θk|<K}∩{(x,t)∈Q′: K≤|θl|<K+K′}

(T ′ − t)|∇(θk − θl)|2 dx dt

+ 2

∫
{(x,t)∈Q′: |θk|<K}∩{(x,t)∈Q′: K≤|θl|<K+K′}

(T ′ − t)∇θk · ∇θl dx dt

≤ T ′
∫
Q′
|∇T2K+K′(θk − θl)|2 dx dt

+ 2

∫
{(x,t)∈Q′: |θk|<K}∩{(x,t)∈Q′: K≤|θl|<K+K′}

(T ′ − t)∇θk · ∇θl dx dt

(3.2.40)

By Lemma 3.2.2 the first term in the right-hand side of (3.2.40) converges to 0 when k and l go
to ∞. To deal with the second one let us define the following function

ΘK′
K (s) =


0 |s| ≤ K,
s−Ksgn(s) K ≤ |s| ≤ K ′,
K ′sgn(s) K ′ ≤ |s|.

(3.2.41)
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Thus, the second term of right-hand side of (3.2.40) is equal to∫
{(x,t)∈Q′: |θk|<K}∩{(x,t)∈Q′: K≤|θl|<K+K′}

(T ′ − t)∇θk · ∇θl dx dt

=

∫
Q′

(T ′ − t)∇TK(θk)∇ΘK′
K (θl) dx dt.

(3.2.42)

Through the use of ΘK′
K (θl) as a test function in the equation (3.2.18) for θl we obtain∫

Ω
Θ̃K′
K (θl)(t) dx+

∫ t

0

∫
Ω
|∇ΘK′

K (θl)|2 dx dt =

∫ t

0

∫
Ω
f εΘK′

K (θl) dx dt+

∫
Ω

Θ̃K′
K (θk,0) dx, (3.2.43)

where Θ̃K′
K (s) =

∫ s
0 ΘK′

K (τ) dτ is a positive real valued function. This provides that the sequence
{∇ΘK′

K (θl)} is uniformly bounded in L2(Q′) (for any fixed K and K ′). Using the same argu-
mentation as in the proof of Lemma 3.2.1 we obtain that the sequence {ΘK′

K (θl)} is uniformly
bounded in L2(0, T ′,W 1,2(Ω)).

Convergence of sequence {θl} to θ almost everywhere with l → ∞ implies that sequence
{ΘK′

K (θl)} converges weakly to ΘK′
K (θ) in L2(0, T,W 1,2(Ω)). Passing to the limit with l→∞ and

then k →∞ (or reversibly, since k and l are independent) we obtain

lim
k→∞

lim
l→∞

∫
Q′

(T ′ − t)∇TK(θk)∇ΘK′
K (θl) dx dt =

∫
Q′

(T ′ − t)∇TK(θ)∇ΘK′
K (θ) dx dt. (3.2.44)

Furthermore, it is obvious that TK(s) = TK(TK+1(s)) and ΘK′
K (s) = ΘK′

K (TK+K′(s)). Applying
those equalities to (3.2.44) and using the chain rule we get∫

Q′
∇TK(θ)∇ΘK′

K (θ) dx dt =

∫
Q′
T ′K(θ)(ΘK′

K )′(θ)∇TK+1(θ)∇TK+K′(θ) dx dt. (3.2.45)

Due to definition of TK and ΘK′
K the function T ′K(θ)(ΘK′

K )′(θ)∇TK+1(θ)∇TK+K′(θ) is equal to 0
a.e. in Q. This information, (3.2.40), (3.2.42) and (3.2.44) imply that

lim
k,l→∞

Bk,l
1 = 0. (3.2.46)

To finish the proof it is enough to show that Bk,l
2 goes to 0 with k, l →∞. For this purpose

we use Lemma 3.2.3. The natural choice of H ′′(θk) in (3.2.19) is |T ′K(θk)|2. Unfortunately, this
is not the proper choice, because if H ′′(θk) = |T ′K(θk)|2 then H(θk) does not belong to W 2,∞(R).
Hence, for positive δ let us define the function

(Hδ
K)′′(s) =


1 |s| < K,
−Kδ K < |s| < K + 1

δ ,
0 K + 1

δ .
(3.2.47)

Deriving Hδ
K(s) from (3.2.47), together with the conditions Hδ

K(0) = (Hδ
K)′(0) = 0 we obtain

the function which belongs to W 2,∞(R) and its support supp((Hδ
K)′) is contained in the interval

[−K − 1
δ ,K + 1

δ ]. Moreover, the sequence {(Hδ
K)′′} converges to (T ′K)2 as δ goes to zero. Thus,

using (3.2.47) in (3.2.19) we get

lim
k,l→∞

∫
{(x,t)∈Q′: |θk|≤K}

(T ′ − t)(Hδ
K(θl))

′′Z(θk − θl)|∇θk|2 = 0 (3.2.48)
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and then

lim
k,l→∞

∫
{(x,t)∈Q′: |θk|≤K}

(T ′ − t)Z(θk − θl)|∇θk|2 dx dt

= Kδ lim
k,l→∞

∫
{(x,t)∈Q′: K≤|θk|≤K+ 1

δ
}
(T ′ − t)Z(θk − θl)|∇θk|2 dx dt,

(3.2.49)

for any δ. If δ tends to zero in (3.2.49) then

lim
k,l→∞

∫
{(x,t)∈Q′: |θk|≤K}

(T ′ − t)Z(θk − θl)|∇θk|2 dx dt

= K lim
δ→0

(
δ lim
k,l→∞

∫
{(x,t)∈Q′: K≤|θk|≤K+ 1

δ
}
(T ′ − t)Z(θk − θl)|∇θk|2 dx dt

)
.

(3.2.50)

Furthermore, it holds that∣∣∣δ lim
k,l→∞

∫
{(x,t)∈Q′: K≤|θk|≤K+ 1

δ
}
(T ′ − t)Z(θk − θl)|∇θk|2 dx dt

∣∣∣
≤ δT ′‖Z‖L∞(R)

∫
{(x,t)∈Q′: K≤|θk|≤K+ 1

δ
}
|∇θk|2 dx dt

(3.2.51)

To estimate the right-hand side of (3.2.51) let us use δΘ
1
δ
K(θk) (where Θ

1
δ
K(θk) is defined in

(3.2.41)) as a test function in (3.2.18). We obtain

δ

∫
Ω

Θ̃
1
δ
K(θk)(T

′) dx+δ

∫
{(x,t)∈Q′: K≤|θk|≤K+ 1

δ
}
|∇θk|2 dx dt

= δ

∫
Q′
f εΘ

1
δ
K(θk) dx dt+ δ

∫
Ω

Θ̃
1
δ
K(θk,0) dx

(3.2.52)

where Θ̃
1
δ
K(s) =

∫ s
0 Θ

1
δ
K(τ) dτ is a positive real valued function with linear growth at infinity.

Moreover, almost pointwise convergence of {θk} and weak convergence of {fk} in L1(Q′) imply
that

lim
k→∞

∫
Q′
fkΘ

1
δ
K(θk) dx dt =

∫
Q′
fΘ

1
δ
K(θ) dx dt. (3.2.53)

Using strong convergence of initial condition θk,0 to θ0 in L1(Ω) and (3.2.53) in (3.2.52) we obtain

δ lim
k→∞

∫
{(x,t)∈Q′: K≤|θk|≤K+ 1

δ
}
|∇θk|2 dx dt ≤ δ

∫
Q′
fΘ

1
δ
K(θ) dx dt+ δ

∫
Ω

Θ̃
1
δ
K(θ0) dx (3.2.54)

Sequences {δΘ
1
δ
K(θ)} and {δΘ̃

1
δ
K(θ0)} converge almost pointwise to 0 as δ goes to zero. Moreover,

terms on the right-hand side of (3.2.54) are uniformly bounded, thus we conclude that right-hand
side of (3.2.54) convergence to 0. Then

lim
δ→0

[
δ lim
k→∞

∫
{(x,t)∈Q′: K≤|θk|≤K+ 1

δ
}
|∇θk|2 dx dt

]
= 0. (3.2.55)
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According to (3.2.50) and (3.2.51) we deduce that

lim
k,l→∞

∫
{(x,t)∈Q′: |θk|≤K}

(T − t)Z(θk − θl)|∇θk|2 dx dt = 0 (3.2.56)

Now, let us take Z ∈ W 2,∞(R) such that Z(0) = Z ′(0) = 0, Z is positive and Z(s) = 1 for
|s| > K ′. This provides to equation

lim
k,l→∞

∫
{(x,t)∈Q′: |θk|≤K}∩{(x,t)∈Q′: |θk−θl|>K′}

(T ′ − t)|∇θk|2 dx dt = 0, (3.2.57)

which immediately leads to

lim
k,l→∞

Bk,l
K = 0. (3.2.58)

We decomposed Q′ into a few subsets and showed that each of them converges to 0 with k, l
going to ∞. Thus, we conclude that

lim
k,l→∞

∫
Q′

(T ′ − t)|∇TK(θk)−∇TK(θl)|2 dx dt = 0, (3.2.59)

and it provides to

lim
k,l→∞

∫
Q′

(T ′ − t)|∇TK(θk)−∇TK(θl)|2 dx dt

= lim
k,l→∞

∫
Q′

(T ′ − t)|∇TK(θk)|2 dx dt− 2 lim
k,l→∞

∫
Q′

(T ′ − t)∇TK(θk) · ∇TK(θl)
2 dx dt

+ lim
k,l→∞

∫
Q′

(T ′ − t)|∇TK(θl)|2 dx dt = 0.

(3.2.60)

Since k and l are independent and the sequence {∇TK(θk)} is weakly convergent in L2(Q′), we
rewrite the abovementioned equation as follows

lim
k→∞

∫
Q′

(T ′ − t)|∇TK(θk)|2 dx dt =

∫
Q′

(T ′ − t)|∇TK(θ)|2 dx dt. (3.2.61)

Through the use of weak convergence of {∇TK(θk)} and (3.2.61), we get

lim
k→∞

∫
Q′

(T ′ − t)|∇TK(θk)−∇TK(θ)|2 dx dt

= lim
k→∞

∫
Q′

(T ′ − t)|∇TK(θk)|2 dx dt− 2 lim
ε→0

∫
Q′

(T ′ − t)∇TK(θk) · ∇TK(θ) dx dt

+

∫
Q′

(T ′ − t)|∇TK(θ)|2 dx dt

= 2

∫
Q′

(T ′ − t)|∇TK(θ)|2 dx dt− 2

∫
Q′

(T ′ − t)|∇TK(θ)|2 dx dt = 0,

(3.2.62)

which completes the proof.
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To finish the proof of existence of renormalised solution it is enough to prove that (3.2.2) and
(3.2.3) hold. Let us start with the proof of (3.2.2).

Lemma 3.2.4. For all positive c it holds that

TK+c(θ)− TK(θ)→ 0 (3.2.63)

in L2(0, T,W 1,2(Ω)) as K goes to ∞.

Proof. Let c be a positive number. We use test function TK+c(θk)− TK(θk) as a test function in
(3.2.1). Then,∫

Q
(θk)t(TK+c(θk)− TK(θk)) dx dt+

∫
Q
∇θk · ∇(TK+c(θk)− TK(θk)) dx dt

=

∫
Q
fk(TK+c(θk)− TK(θk)) dx dt.

(3.2.64)

Using chain rule we obtain∫
Ω

(T̃K+c(θk)− T̃K(θk))(t) dx+

∫
Q
∇θk · ∇(TK+c(θk)− TK(θk)) dx dt

=

∫
Q
fk(TK+c(θk)− TK(θk)) dx dt+

∫
Ω

(T̃K+c(θk,0)− T̃K(θk,0)) dx,

(3.2.65)

where T̃K(r) =
∫ r

0 TK(z) dz and T̃K+c(r) =
∫ r

0 TK+c(z) dz. Furthermore, T̃K+c(θk)− T̃K(θk) is a
positive function (since c is positive). Thus∫

Q
∇θk · ∇(TK+c(θk)− TK(θk)) dx dt

≤
∫
Q
fk(TK+c(θk)− TK(θk)) dx dt+

∫
Ω

(T̃K+c(θk,0)− T̃K(θk,0)) dx.

(3.2.66)

We may observe that ∇(TK+c(θk) − TK(θk)) is equal to 0 when θk does not belong to {(x, t) ∈
Q : K < |θk| < K + c}. Moreover, on {(x, t) ∈ Q : K < |θk| < K + c} it holds that
∇θk = ∇(TK+c(θk)− TK(θk)). Thus,∫

{(x,t)∈Q: K<|θk|<K+C}
|∇(TK+c(θk)− TK(θk))|2 dx dt

≤
∫
Q
fk(TK+c(θk)− TK(θk)) dx dt+

∫
Ω

(T̃K+c(θk,0)− T̃K(θk,0)) dx.

(3.2.67)

Almost pointwise convergence of {θk} to θ in Q with k → ∞ and weak convergence of the
sequence {fk} to f in L1(Q) with k → ∞ imply that

∫
Q fk(TK+c(θk) − TK(θk)) dx dt tends to∫

Q f(TK+c(θ)−TK(θ)) dx dt as k goes to∞. Furthermore, using the strong convergence of initial
conditions and by Lemma 3.2.1 we obtain∫

{(x,t)∈Q: K<|θk|<K+c}
|∇(TK+c(θ)− TK(θ))|2 dx dt

≤
∫
Q
f(TK+c(θ)− TK(θ)) dx dt+

∫
Ω

(T̃K+c(θ0)− T̃K(θ0)) dx.

(3.2.68)
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TK+c(θ)− TK(θ) is bounded by c and it converges to 0 a.e. in Q. Then,

lim
K→∞

∫
Q
f(TK+c(θ)− TK(θ)) dx dt = 0. (3.2.69)

Moreover, ∫
Ω

(T̃K+c(θ0)− T̃K(θ0)) dx ≤ C
∫
{x∈Ω: |θ0|>K}

|θ0|dx, (3.2.70)

which implies that right-hand side of (3.2.68) converges to 0 with K goes to∞. This proves that
θ satisfies (3.2.63).

Multiplying (3.2.1) by S′(θk)φ, where S ∈ C∞(R), S′ has a compact support and φ ∈
C∞c ([−∞, T ), C∞(Ω)), we get

−
∫
Q
S(θk)

∂φ

∂t
dx dt−

∫
Ω
S(θk,0)φ(x, 0) dx+

∫
Q
S′(θl)∇θk · ∇φ dx dt

+

∫
Q
S′′(θl)|∇θk|2φ dx dt =

∫
Q
fkS

′(θk)φ dx dt.

(3.2.71)

S′ has a compact support, hence there exist 0 < M < ∞ such that supp(S′) ⊂ [−M,M ]. This
allows us to enter the truncations operator into equation (3.2.71). Thus

−
∫
Q
S(θk)

∂φ

∂t
dx dt−

∫
Ω
S(θk,0)φ(x, 0) dx+

∫
Q
S′(TM (θk))∇TM (θk) · ∇φ dx dt

+

∫
Q
S′′(TM (θk))|∇TM (θk)|2φ dx dt =

∫
Q
fkS

′(TM (θk))φ dx dt.

(3.2.72)

Using pointwise convergence of {θk}, bounded character of S′, S′′ and strong convergence of
{TM (θk)} we obtain the following convergences

S′(TM (θk))∇TM (θk)→ S′(TM (θ))∇TM (θ) in L2(Q,R3),
S′′(TM (θk))|∇TM (θk)|2 → S′′(TM (θ))|∇TM (θ)|2 in L1(Q),
fkS

′(TM (θk)) ⇀ fS′(TM (θ)) in L1(Q).
(3.2.73)

Hence, passing to the limit with k going to ∞ in (3.2.72) we obtain

−
∫
Q
S(θ)

∂φ

∂t
dx dt−

∫
Ω
S(θ0)φ(x, 0) dx+

∫
Q
S′(TM (θ))∇TM (θ) · ∇φ dx dt

+

∫
Q
S′′(TM (θ))|∇TM (θ)|2φ dx dt =

∫
Q
fS′(TM (θ))φ dx dt.

(3.2.74)

And finally, using the compact support of S′ we can omit the truncations in (3.2.74) and we
obtain

−
∫
Q
S(θ)

∂φ

∂t
dx dt−

∫
Ω
S(θ0)φ(x, 0) dx+

∫
Q
S′(θ)∇θ · ∇φ dx dt

+

∫
Q
S′′(θ)|∇θ|2φ dx dt =

∫
Q
fS′(θ)φ dx dt.

(3.2.75)

It completes the proof of renormalised solution’s existence to a parabolic equation with Neumann
boundary condition.
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3.2.1 Uniqueness

Lemma 3.2.5. Assume that θ0,1, θ0,2 belong to L1(Ω) and f1, f2 belong in L1(Q) and that they
satisfy {

θ0,1 ≤ θ0,2,

f1 ≤ f2.
(3.2.76)

Then if θ1 and θ2 are two renormalised solutions for data (θ0,1, f1) and (θ0,2, f2), respectively, we
have

θ1 ≤ θ2, (3.2.77)

almost everywhere in Q.

Proof. Multiplying (3.2.1) for θ1 and θ2 by test functions S′(θ1)φ and S′(θ2)φ respectively, where
S is C∞(R)-function ans S′ has a compact support. Then, after integration over Ω × (0, t) and
then over (0, T ), we obtain∫ T

0

∫ t

0

∫
Ω

∂S(θ1)

∂t
φ dx ds dt+

∫ T

0

∫ t

0

∫
Ω
S′(θ1)∇θ1 · ∇φ dx ds dt+

∫ T

0

∫ t

0

∫
Ω
S′′(θ1)|∇θ1|2φdx dsdt

=

∫ T

0

∫ t

0

∫
Ω
f1S

′(θ1)φ dx dsdt.∫ T

0

∫ t

0

∫
Ω

∂S(θ2)

∂t
φ dx ds dt+

∫ T

0

∫ t

0

∫
Ω
S′(θ2)∇θ2 · ∇φ dx ds dt+

∫ T

0

∫ t

0

∫
Ω
S′′(θ2)|∇θ2|2φdx dsdt

=

∫ T

0

∫ t

0

∫
Ω
f2S

′(θ2)φ dx dsdt.

Subtracting these equations we obtain∫ T

0

∫ t

0

∫
Ω

∂(S(θ1)− S(θ2))

∂t
φ dx dsdt+

∫ T

0

∫ t

0

∫
Ω

(
S′(θ1)∇θ1 − S′(θ2)∇θ2

)
· ∇φ dx ds dt

+

∫ T

0

∫ t

0

∫
Ω

(
S′′(θ1)|∇θ1|2 − S′′(θ2)|∇θ2|2

)
φ dx ds dt

=

∫ T

0

∫ t

0

∫
Ω

(f1S
′(θ1)− f2S

′(θ2))φ dx ds dt.

Now, let h be C∞0 (R)-function such that:

h(s) =

{
1 |s| ≤ 1,
0 2 ≤ |s|, (3.2.78)

and ‖h‖L∞ ≤ 1. Then we may define

hn(s) =

{
1 |s| ≤ n− 1,
h(s− (n− 1)sg(s)) n− 1 ≥ |s|, (3.2.79)

where sg(s) denotes the sign of s. Moreover, we define

Sn(s) =

∫ s

0
hn(τ) dτ. (3.2.80)
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For some positive M let us take the test function φ = T +
M (Sn(θ1)− Sn(θ2)), where T +

M (Sn(θ1)−
Sn(θ2)) denote the positive part of TM (Sn(θ1)− Sn(θ2)). It is obvious that T +

M (Sn(θ1)− Sn(θ2))
belongs to L2(0, T,W 1,2(Ω)) ∩ L∞(Q). Then

∫ T

0

∫ t

0

∫
Ω

∂(Sn(θ1)− Sn(θ2))

∂t
T +
M (Sn(θ1)− Sn(θ2)) dx ds dt

+

∫ T

0

∫ t

0

∫
Ω

(
S′n(θ1)∇θ1 − S′n(θ2)∇θ2

)
· ∇T +

M (Sn(θ1)− Sn(θ2)) dx dsdt

+

∫ T

0

∫ t

0

∫
Ω

(
S′′n(θ1)|∇θ1|2 − S′′n(θ2)|∇θ2|2

)
T +
M (Sn(θ1)− Sn(θ2)) dx ds dt

=

∫ T

0

∫ t

0

∫
Ω

(f1S
′
n(θ1)− f2S

′
n(θ2))T +

M (Sn(θ1)− Sn(θ2)) dx ds dt.

(3.2.81)

It is obvious that for the first term on the left-hand side it holds

∫ t

0

∫
Ω

∂(Sn(θ1)− Sn(θ2))

∂t
T +
M (Sn(θ1)− Sn(θ2)) dx ds =

∫ t

0

∫
Ω

∂T̃M ([Sn(θ1)− Sn(θ2)]+)

∂t
dx dt

=

∫
Ω
T̃M ([Sn(θ1)− Sn(θ2)]+)(t) dx

−
∫

Ω
T̃M ([Sn(θ0,1)− Sn(θ0,2)]+) dx,

where T̃M (s) =
∫ s

0 TM (τ) dτ . Moreover, the choice of sequence of function {Sn}∞n=1 causes that
the following convergences

Sn(θ1)− Sn(θ2)→ θ1 − θ2

(f1S
′
n(θ1)− f2S

′
n(θ2))T +

M (Sn(θ1)− Sn(θ2))→ (f1 − f2)T +
M (θ1 − θ2)

Sn(θ0,1)− Sn(θ0,2)→ θ0,1 − θ0,2

(3.2.82)

hold strongly in L1(Q) and L1(Ω), respectively, as n → ∞. Let us focus on the second and the
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third term on the left-hand side of (3.2.81). It is obvious that∫ T

0

∫ t

0

∫
Ω

(
S′n(θ1)∇θ1 − S′n(θ2)∇θ2

)
· ∇T +

M (Sn(θ1)− Sn(θ2)) dx ds dt

=

∫ T

0

∫ t

0

∫
Ω

(∇Sn(θ1)−∇Sn(θ2)) · ∇T +
M (Sn(θ1)− Sn(θ2)) dx ds dt

=

∫ T

0

∫
{(x,s)∈Ω×(0,t): 0≤∇Sn(θ1)−∇Sn(θ2)≤M}

(∇Sn(θ1)−∇Sn(θ2)) · ∇(Sn(θ1)− Sn(θ2)) dx dsdt

=

∫ T

0

∫
{(x,s)∈Ω×(0,t): 0≤∇Sn(θ1)−∇Sn(θ2)≤M}

|∇Sn(θ1)−∇Sn(θ2)|2 dx dsdt ≥ 0,

∣∣∣ ∫ T

0

∫ t

0

∫
Ω

(
S′′n(θ1)|∇θ1|2 − S′′n(θ2)|∇θ2|2

)
T +
M (Sn(θ1)− Sn(θ2)) dx ds dt

∣∣∣
=
∣∣∣ ∫

Q
(T − t)

(
S′′n(θ1)|∇θ1|2 − S′′n(θ2)|∇θ2|2

)
T +
M (Sn(θ1)− Sn(θ2)) dx dt

∣∣∣
= T‖S′′n‖L∞(R)M

∫
{(x,t)∈Q: n≤|θ1|≤n+1}

|∇θ1|2 dx dt

+ T‖S′′n‖L∞(R)M

∫
{(x,t)∈Q: n≤|θ1|≤n+1}

|∇θ2|2 dx dt.

(3.2.83)

Using Lemma 3.2.4 we obtain that the right-hand side of abovementioned equation tends to 0 as
n goes to ∞. Then we may rewrite (3.2.81) in the following form∫
Q
T̃M ([θ1 − θ2]+) dx dt =

∫ T

0

∫ t

0

∫
Ω

(f1 − f2)T +
M (θ1 − θ2) dx dsdt+ T

∫
Ω
T̃M ([θ0,1 − θ0,2]+) dx.

(3.2.84)

Since θ0,1 ≤ θ0,2 and f1 ≤ f2, then the right-hand side of (3.2.84) is nonpositive and thus
T̃M ([θ1−θ2]+) is nonpositive. Since function T̃M is nonegative (see the definition) and nonpositive,
we obtain that [θ1 − θ2]+ is equal to 0. And this implies that θ1 ≤ θ2, which completes the
proof.
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Chapter 4

Mróz model

The subject of this chapter is to consider a general class of thermo-visco-elastic models, to which
belongs the Mróz model, cf. [57]. In 1967 a Polish engineer prof. Z. Mróz formulated the
hardening rule, where the dependency between visco-elastic constitutive function and deviatoric
part of Cauchy stress tensor was linear, i.e. G(θ,T d) = G1(θ)T d. Our goal is to present the
proof of existence of solution to visco-elastic models of Mróz-type. Let us start with formulation
of assumptions on constitutive function G.

Assumption 4.0.1. For the function G(·, ·) the following conditions hold

a) G(θ,T d) is continuous with respect to θ and T d;

b) (G(θ,T d1)−G(θ,T d2)) : (T d1 − T d2) > 0, where T d1 6= T d2, T 1,T 2 belong to S3;

c) |G(θ,T d)| ≤ C|T d|, where T belongs to S3 and C is a positive constant;

d) G(θ,T d) : T d ≥ β|T d|2, where T belongs to S3 and β is a positive constant;

Constants C and β are independent of temperature θ.

We have to additionally assume that Ω ⊂ R3 is an open bounded set with a C2 boundary and
moreover, the considered body is homogeneous in space, i.e. function G and operator D do not
depend on spatial variable x.

The results included in this chapter are a combination of two papers. In [33], we showed the
sketch of the proof for models satisfying Assumption 4.0.1. Here, we present different proof. We
modify the proof from [33] by using the results obtained in [32]. The main idea is still the same,
i.e. we still use Young measure tools to complete each limit passage. The differences between
these proofs lie in transformation of a system into homogeneous boundary-value problem and in
the estimates for approximate solutions.

This chapter is divided into three sections. Firstly, we recall well known facts regarding
Young measures. We formulate theorems, lemmas ans their proofs. Then, we formulate the main
theorem of this chapter. And finally, we present full proof of solutions existence.

4.1 Young measure tools

We begin this section with a few general remarks about Young measures. Let n,m ∈ N and E
be a measurable subset of Rn. And let us consider the sequence {zj} such that zj : E → Rm.
The Young measure is a limiting probability distribution as j → ∞ of the value zj near point
x ∈ Rn. In the case of many sequences, e.g. sequence which converges only weakly, we are

49
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not able to predict how the nonlinear function of this sequence will behave. For example, the
weak convergence of velocity does not hold any information about the kinetic energy. The first
individual who investigated the failure of classical minimization was L.C. Young in the 1930’s.

The Young measures may be a very useful tool to get more information about the sequence
behaviour. The idea of looking at the limit of the sequence as a probability distribution comes
from L.C. Young [86]. Young applied this technique for problems of calculus of variations without
the minimizer in a classical sense. Later, application of Young measures for many other problems
was shown, e.g. for optimal control, cf. [52, 83, 86], or nonlinear hyperbolic equations, see [77],
as well as many others.

Let us consider a measurable set E ⊂ Rn. By C0(Rm) we denote the closure of continuous
functions on Rm with a compact support. C0(Rm) with a norm defined by ‖f‖∞ = supλ∈Rm |f(λ)|
is a Banach space. By Riesz representation theorem, see e.g. [42, p.364], the dual space to C0(Rm)
is a Banach spaceM(Rm) of bounded Radon measures on Rm. The duality pair between C0(Rm)
andM(Rm) is defined by

〈ν, f〉 =

∫
Rm

f(λ) dν(λ). (4.1.1)

Let us denote also by L∞w (E,M(Rm)) the space of weak* measurable maps ν : E → M(Rm)
that are bounded. Moreover, L∞w (E,M(Rm)) is the dual of the separable space L1(E,C0(Rm)),
cf. [27, p.588], and the duality pairing is given by

〈µ,Ψ〉 =

∫
E
〈µx(·),Ψ(x, ·)〉 dx. (4.1.2)

In this section, we present a few theorems and lemmas which are used to prove the existence of
solutions to thermo-visco-elastic models. We also use this tools in Chapter 6. Theorem 4.1.1 and
Lemma 4.1.1 – Lemma 4.1.3 come from [58]. For the fundamental theorem on Young measures
we also refer the reader to [9]. Proof of Theorem 4.1.1 come partially from [58] and partially
from [9]. Proofs of lemmas presented below come from [58], but with some additional comment
to improve its readability. In its application to nonlinear partial differential equation it is very
important that in the fundamental theorem on Young measures we prove point (v), which says
that this approach may be used for unbounded functions, e.g. potential energy.

Theorem 4.1.1 (Fundamental theorem on Young measures, Theorem 3.1 from [58]). Let E ⊂ Rn
be a measurable set of finite measures and let zj : E → Rm be a sequence of measurable functions.
Then there exist a subsequence (still denote by zj) and weak* measurable map νx : E →M(Rm)
such that the following holds

(i) νx ≥ 0, ‖νx‖M(Rm) =
∫
Rm dνx ≤ 1, for a.e. x ∈ E;

(ii) for all f ∈ C0(Rm)

f(zj)
∗
⇀ f in L∞(E), (4.1.3)

where

f(x) = 〈νx, f〉 =

∫
Rm

f(λ) dνx(λ); (4.1.4)

(iii) Let K ⊂ Rm be compact. If dist(zj ,K)→ 0 in measure then

supp νx ⊂ K; (4.1.5)
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(iv) Furthermore one has
‖νx‖M(Rm) = 1, (4.1.6)

for a.a. x ∈ E if and only if the sequence does not go to infinity, i.e. if

lim
M→∞

sup
j

meas({|zj | ≥M}) = 0; (4.1.7)

(v) if (4.1.6) holds, A ⊂ E is measurable, f ∈ C(Rm) and if

the set {f(zj)} is relatively weakly compact in L1(A), (4.1.8)

then
f(zj) ⇀ f in L1(A), f(x) = 〈νx, f〉; (4.1.9)

(vi) If (4.1.6) holds, then in (iii) one can replace ’if ’ by ’if and only if ’.

Proof. The idea of this proof is not to consider a real valued vector functions zj : E → Rm, but
passing to maps νj : E →M(Rm). Let us define

νj(x) = δzj(x). (4.1.10)

By (4.1.1) we obtain
〈νj(x), f〉 = f(zj(x)) (4.1.11)

for f ∈ C0(Rm) and ‖νj(x)‖M(Rn) = 1. This implies that νj belongs to L∞w (E,M(Rm)). Hence,
by the Banach-Alaoglu theorem (see [16, Theorem 3.16, page 66]) we obtain that there exists a
subsequence of {νj} (still denoted by {νj}) such that

νj(·) ∗⇀ ν in L∞w (E,M(Rm)). (4.1.12)

We should remember that by νx we denote ν(x). Lower semicontinuity of the norm implies that
‖νx‖M(Rm) ≤ 1 for a.e. x ∈ E. Let us take a function Ψ ∈ L1(E,C0(Rm)). Using (4.1.12) we get∫

E
Ψ(x, zj(x)) dx =

∫
E
〈νj(·),Ψ(x, ·)〉dx→

∫
E
〈νx(·),Ψ(x, ·)〉 dx (4.1.13)

as j →∞. Taking Ψ(x, λ) = ψ(x)f(λ) where ψ ∈ L1(E) and f ∈ C0(Rm) are arbitrary functions
we obtain ∫

E
ψ(x)f(zj(x)) dx→

∫
E
ψ(x)〈νx(·), f(·)〉 dx, (4.1.14)

which implies (ii). Moreover, considering all functions f ≥ 0, ψ ≥ 0 we get that νx ≥ 0, which
finishes the proof of (i).

Let us take arbitrary function f ∈ C0(Rm \K). To prove (iii) it is suffient to show that

〈νx, f〉 = 0. (4.1.15)

Let us take arbitrary ε > 0, then there exists Cε such that the following inequality holds

|f(λ)| ≤ ε+ Cεdist(λ,K), (4.1.16)

and then
(|f(λ)| − ε)+ ≤ Cεdist(λ,K), (4.1.17)
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where we denote a positive part of · by (·)+. Since dist(zj ,K) → 0 in measure as j goes to ∞
then also (|f(zj)| − ε)+ → 0 in measure. By (ii) we get

〈νx, (|f | − ε)+〉 = 0 (4.1.18)

for a.e. x ∈ E. Since ε > 0 is arbitrary constant (4.1.15) follows.
To prove (iv) let us define the ’hat’ function

φM (λ) =


1 |λ| ≤M,
1 +M − |λ| M ≤ |λ| ≤M + 1,
0 M + 1 ≤ |λ|,

(4.1.19)

for positive M . Then

lim
j→∞

∫
E
φM (zj(x)) dx =

∫
E
〈νx, φM 〉 dx ≤

∫
E
〈νx, 1〉dx =

∫
E
‖νx‖M(Rm) dx. (4.1.20)

Moreover ∫
E

(1− φM (zj(x))) dx ≤ meas({|zj | ≥M}), (4.1.21)

and thus
meas(E)−meas({|zj | ≥M}) ≤

∫
E
φM (zj(x)) dx. (4.1.22)

Passing to the limit with j →∞ we get

meas(E)− sup
j

meas({|zj | ≥M}) ≤
∫
E
‖νx‖M(Rm) dx, (4.1.23)

and then with M →∞

meas(E)− lim
M→∞

sup
j

meas({|zj | ≥M}) ≤
∫
E
‖νx‖M(Rm) dx. (4.1.24)

Finally, if limM→∞ supj meas({|zj | ≥M}) = 0 then ‖νx‖M = 1. We prove the second implication
by contradiction. Let us assume that there exists ε > 0 and sequence of pairs {(Mk, jk)} such
that Mk →∞ as k →∞ and meas({|zjk | ≥Mk}) > ε. Let us take some positive M

lim
k→∞

∫
E
φM (zjk(x)) dx =

∫
E
〈νx, φM 〉dx. (4.1.25)

Then there exists sufficiently large k, such that Mk ≥M + 1 and the following inequality holds∫
E
φM (zjk(x)) dx ≤ meas(E)− ε. (4.1.26)

By monotone convergence theorem we may pass in (4.1.25) to the limit with M going to ∞.
Then by (4.1.26) we obtain∫

E
‖νx‖M(Rm) dx =

∫
E
〈νx, 1〉dx

= lim
M→∞

∫
E
〈νx, φM 〉dx

= lim
M→∞

lim
k→∞

∫
E
φM (zjk(x)) dx

≤ meas(E)− ε,

(4.1.27)
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which stays in a contradiction with ‖νx‖M(Rm) = 1.
To prove (v) it is enough to consider only positive functions f ∈ C(Rm). Since (4.1.6) holds,

then by (iv) we get
f(zj) ⇀ χ in L1(A). (4.1.28)

Let fM (λ) = ΦM (λ)f(λ), where ΦM (λ) was defined by (4.1.19). Let us take Ψ ∈ L∞(A). Then

|
∫
A

Ψ(fM (zj)− f(zj)) dx| ≤ C
∫
{x∈A: |zj |≥M}

|f(zj)|dx, (4.1.29)

where constant C depends on the choice of Ψ. By Dunford-Petittis theorem [56, Theorem T23]
relatively weak compact set is also uniformly integrable, hence for all ε > 0 there exists R > 0
such that

sup
j∈N

∫
{x∈A: |f(zj)|≥R}

|f(zj)|dx < ε. (4.1.30)

Then we may continue the estimates in (4.1.29) as follows

|
∫
A

Ψ(fM (zj)− f(zj)) dx| ≤ C
∫
{x∈A: |zj |≥M}

|f(zj)| dx

= C

∫
{x∈A: |zj |≥M}∩{x∈A: |f(zj)|≥R}

|f(zj)| dx

+ C

∫
{x∈A: |zj |≥M}∩{x∈A: |f(zj)|≤R}

|f(zj)| dx

≤ C
∫
{x∈A: |f(zj)|≥R}

|f(zj)|dx

+ C

∫
{x∈A: |zj |≥M}∩{x∈A: |f(zj)|≤R}

|f(zj)| dx

≤ Cε+ CR meas({x ∈ A : |zj | ≥M}).

(4.1.31)

For sufficiently large M the right-hand side of (4.1.31) may be bounded by 2εC. Since ε > 0 is
an arbitrary constant then

lim
M→∞

∫
A

ΨfM (zj) dx =

∫
A

Ψf(zj) dx (4.1.32)

for all Ψ ∈ L∞(A). Moreover

lim
j→∞

∫
A

ΨfM (zj) =

∫
A

Ψ〈νx, fM 〉 dx. (4.1.33)

Since {fM} is an increasing sequence then we may pass to the limit with M →∞ in (4.1.33) by
using the monotone convergence theorem. Also we may pass to the limit with j →∞ in (4.1.32).
Then we get ∫

A
Ψ〈νx, f〉dx = lim

M→∞

∫
A

Ψ〈νx, fM 〉 dx =

∫
A

Ψχdx, (4.1.34)

which completes the proof of (v).
Finally, let us prove (vi). We define the function f(λ) = min(dist(λ,K), 1). Then the set

{f(zj)} is relatively weakly compact in L1(E) and by applying (v) we obtain

lim
j→∞

∫
E
φmin(dist(zj ,K), 1) =

∫
E
φ〈νx(·),min(dist(·,K), 1)〉 = 0. (4.1.35)
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for every φ ∈ L∞(E). The last equality holds because supports of function f and measure νx are
disjoint.

Definition 4.1.1. Let f, fn : E → Rn be measurable functions. We say that the sequence {fn}
converges in measure to f , if for every ε > 0 holds

lim
n→∞

meas({x ∈ E : |f(x)− fn(x)| ≥ ε}) = 0. (4.1.36)

On the basis of fundamental theorem on Young measures we know that Young measure exists.
Now, we prove its properties which are used latterly. The following lemmas come from [58], see
also [61]. Similar technique was used in [21, 34, 73].

Lemma 4.1.1 (Corollary 3.2 from [58] ). Suppose that a sequence zj of measurable functions
from E to Rm generates the Young measure ν : E → M(Rm). Then zj → z in measure if and
only if νx = δz(x) a.e..

Proof. Let us assume that zj → z in measure. Then also f(zj) → f(z) in measure for all
f ∈ C0(Rm). By Theorem 4.1.1 (ii) we obtain that∫

E
Ψ〈νx, f〉 dx = lim

j→∞

∫
E

Ψf(zj) dx =

∫
E

Ψf(z(x)) dx, (4.1.37)

for all f ∈ C0(Rm) and Ψ ∈ L1(E). Thus νx = δz(x) and the proof of first implication is complete.
Let νx = δz(x) a.e. in E. Since {νx}x∈E is weak* measurable then the function z is measurable.

We define a continuous function φ : R+ → [0, 1] by

φ(x) =


0 x ≤ ε

2 ,
continuous ε

2 ≤ x ≤ ε,
1 ε ≤ x,

(4.1.38)

for some positive ε. Using Theorem 4.1.1 (v) for function f(λ) = φ(|λ − a|) for some constant
a ∈ Rm we obtain

lim
j→∞

∫
E
f(zj) dx =

∫
E
〈νx, f〉dx

=

∫
E
f(z) dx =

∫
E
φ(|z − a|) dx =

∫
{x∈E: |z(x)−a|≥ ε

2
}
φ(|z − a|) dx

(4.1.39)

Since φ(|z−a|) ≤ 1 then the right-hand side of (4.1.39) is bounded by meas({x ∈ E : |z(x)−a| >
ε
2}). Moreover, the left-hand side of (4.1.39) may be estimated by

lim
j→∞

∫
E
f(zj) dx = lim

j→∞

∫
E
φ(|zj − a|) dx

= lim
j→∞

(∫
{x∈E: ε

2
≤|zj(x)−a|<ε}

φ(|zj − a|) dx+

∫
{x∈E: |zj(x)−a|≥ε}

φ(|zj − a|) dx

)

≥ lim sup
j→∞

∫
{x∈E: |zj(x)−a|≥ε}

φ(|zj − a|) dx

= lim sup
j→∞

meas({x ∈ E : |zj(x)− a| ≥ ε}).

(4.1.40)
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Hence

lim sup
j→∞

meas({x ∈ E : |zj(x)− a| ≥ ε}) ≤ meas({x ∈ E : |z(x)− a| ≥ ε

2
}). (4.1.41)

Furthermore, similar inequality holds if we choose piecewise constant measurable functions w :
E → Rm. Let w(x) =

∑
i 1χi(x)ai then

lim sup
j→∞

meas({x ∈ E : |zj(x)− w(x)| > ε}) = lim sup
j→∞

meas
∑
i

({x ∈ χi : |zj(x)− ai| > ε})

=
∑
i

lim sup
j→∞

meas({x ∈ χi : |zj(x)− ai| > ε})

≤
∑
i

meas({x ∈ χi : |z(x)− ai| >
ε

2
})

= meas({x ∈ E : |z(x)− w(x)| > ε

2
}).

(4.1.42)

Thus

lim sup
j→∞

meas({x ∈ E : |zj(x)− z(x)| > ε})

≤ lim sup
j→∞

meas({x ∈ E : |zj(x)− w(x)| > ε

2
})

+ lim sup
j→∞

meas({x ∈ E : |z(x)− w(x)| > ε

2
})

≤ 2 meas({x ∈ E : |z(x)− w(x)| > ε

4
}).

(4.1.43)

The right-hand side of (4.1.43) may be made arbitrary small, because we may approximate every
measurable function by piecewise constant functions.

Lemma 4.1.2 (Corollary 3.3 from [58] ). Suppose that the sequence of maps zj : E → Rm
generates Young measure ν : E → M(Rm). Let f : E × Rm → Rm be a Carathéodory function
(i.e. measurable in the first argument and continuous in the second). Let us also assume that the
negative part f−(x, zj(x)) is weakly relatively compact in L1(E). Then

lim inf
j→∞

∫
E
f(x, zj(x)) dx ≥

∫
E

∫
Rd
f(x, λ) dνx(λ) dx (4.1.44)

If, in addition, the sequence of functions {f+(·, zj(·)) + f−(·, zj(·))} is weakly relatively compact
in L1(E), then

f(·, zj(·)) ⇀
∫
Rd
f(·, λ) dνx(λ) in L1(E). (4.1.45)

Proof. The proof of this lemma consist of four steps. Firstly, we prove this lemma for positive
function f with support contained in some ball. Then, we remove the condition on supports
boundedness (step 2.) and we remove the assumption on positivity of function (step 3.). The
last step is to show that (4.1.45) holds.
Step 1. Let us start the proof with considering the case of positive function f ≥ 0. Moreover,
we assume that f(x, λ) = 0 if |λ| ≥ R for some positive R. By Scorza-Dragoni theorem (see
e.g. [6, Theorem 12.1.3]) there exists an increasing sequence of compact sets Ek such that
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meas(E \ Ek) → 0 as k → ∞ and f |Ek×Rm is continuous. Let us define Fk : E → C0(Rm)

by Fk(x, ·) = 1Ek(x)f(x, ·). It is obvious that Fk ∈ L1(E;C0(Rm)). Moreover, δzj(x)
∗
⇀ νx in

L∞w (E,M(Rm)) as j →∞. Hence∫
E
f(x, zj(x)) dx ≥

∫
Ek

f(x, zj(x)) dx =

∫
E
Fk(x, zj(x)) dx

=

∫
E
〈δzj(x), Fk(x, ·)〉 dx→

∫
E
〈νx, Fk(x, ·)〉 dx

=

∫
E

∫
Rm

Fk(x, λ) dνx(λ) dx =

∫
Ek

∫
Rm

f(x, λ) dνx(λ) dx

(4.1.46)

as j →∞. By monotone convergence theorem, as k →∞, we obtain∫
E
f(x, zj(x)) dx ≥

∫
E

∫
Rm

f(x, λ) dνx(λ) dx. (4.1.47)

Passing to the limit with j →∞ we complete the step 1.
Step 2. To remove the assumption that support of function f(x, ·) is contained in a ball, let us
consider an increasing sequence {ηl} ⊂ C0(Rm), such that ηl converges to 1 as l goes to∞. Then
let fl(x, λ) = f(x, λ)ηl(λ) and by (4.1.47)∫

E
fl(x, zj(x)) dx ≥

∫
E

∫
Rm

fl(x, λ) dνx(λ) dx. (4.1.48)

holds for every l ∈ N. By applying again the monotone convergence theorem we may pass to the
limit with l → ∞ and finish the proof of step 2. Moreover, by using shifts, (4.1.44) holds for
every function bounded from below.
Step 3.

Since {f−(x, zj(x))} is relatively weakly compact in L1(E), by [56, Theorem T23], then it is
uniformly integrable. Hence, for every ε > 0 there exists positive M such that

sup
j

∫
{x∈E: |f−(x,zj(x))|≥M}

f−(x, zj(x)) dx < ε. (4.1.49)

Let us define an auxiliary function

fM (x, λ) = max(f(x, λ),−M). (4.1.50)

Then by use of conclusion from step 2. we obtain

lim inf
j→∞

∫
E
fM (x, zj(x)) dx ≥

∫
E

∫
Rm

fM (x, λ) dνx(λ) dx ≥
∫
E

∫
Rm

f(x, λ) dνx(λ) dx. (4.1.51)

Moreover, definition of function fM and uniform integrability of f− implies

lim inf
j→∞

∫
E
fM (x, zj(x)) dx = lim inf

j→∞

∫
E

(
f+
M (x, zj(x))− f−M (x, zj(x))

)
dx

= lim inf
j→∞

(∫
E
f+(x, zj(x)) dx−

∫
E
f−(x, zj(x)) dx

+

∫
{x∈E: |f−(x,zj(x))|≥M}

f−(x, zj(x)) dx

)

= lim inf
j→∞

(∫
E
f(x, zj(x)) dx+

∫
{x∈E: |f−(x,zj(x))|≥M}

f−(x, zj(x)) dx

)

≤ lim inf
j→∞

∫
E
f(x, zj(x)) dx+ ε.

(4.1.52)
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Hence
lim inf
j→∞

∫
E
f(x, zj(x)) dx+ ε ≥

∫
E

∫
Rm

f(x, λ) dνx(λ) dx, (4.1.53)

and since ε > 0 is an arbitrary constant, the proof of step 3. is finished.
Step 4.

It is sufficient to observe that (4.1.45) is an application of (4.1.44) to f̃(x, λ) = ±φ(x)f(x, λ)
for all positive φ ∈ L∞(E).

Lemma 4.1.3 (Corollary 3.4 from [58] ). Let E ⊂ Rd and let uj : E → Rn , vj : E → Rm
be measurable and suppose that uj → u a.e. while vj generates the Young measure ν. Then the
sequence of pairs (uj , vj) : E → Rn+m generates the Young measure x→ δu(x) ⊗ νx.

Proof. Let us take the following functions φ ∈ C0(Rn), ψ ∈ C0(Rn) and η ∈ L1(E). Since uj → u
a.e. in E then also φ(uj) → φ(u) a.e. in E. Using Lebesgue’s dominated convergence theorem
we obtain that ηφ(uj)→ ηφ(u) in L1(E). Furthermore, by Theorem 4.1.1 (ii) we get

ψ(vj)
∗
⇀ ψ in L∞(E) and ψ(x) = 〈νx, ψ〉. (4.1.54)

Let us denote by φ⊗ ψ the tensor product. Then∫
E
η(φ⊗ ψ)(uj , vj) dx =

∫
E
ηφ(uj)ψ(vj) dx

→
∫
E
ηφ(u)〈νx, ψ〉 dx,

=

∫
E
η〈δu(x) ⊗ νx, φ⊗ ψ〉dx,

(4.1.55)

as j →∞. Then, by the density of linear combinations of products φ⊗ψ in C0(Rn+m), we obtain

(φ⊗ ψ)(uj , vj)
∗
⇀ 〈δu(·) ⊗ ν·, φ⊗ ψ〉 in L∞(E), (4.1.56)

which completes the proof.

The following Lemma comes from [34, Theorem 1.2]. Use of this lemma in the proof of
existence is a crucial step of the main theorem of this chapter.

Lemma 4.1.4. Let Ω ⊂ Rn be a measurable set of finite measure, let Q = Ω× (0, T ) and let an
operator A(x, t, s, ξ) : Ω× R+ × Rm × Rn → Rn, satisfy the following conditions:

(i) A(x, t, s, ξ) is a Carathéodory function (measurable w.r.t. (x, t) and continuous w.r.t. (s, ξ));

(ii) For all x ∈ Ω, t ∈ [0, T ], s ∈ Rm and ξ1, ξ2 ∈ Rn, ξ1 6= ξ2(
A(x, t, s, ξ1)−A(x, t, s, ξ2)

)
·
(
ξ1 − ξ2

)
> 0; (4.1.57)

(iii) There exist positive constants c1, c2 such that for p > 1 it is held that

A(x, t, s, ξ) · ξ ≥ c1|ξ|p, (4.1.58)

and
|A(x, t, s, ξ)| ≤ c2|ξ|p−1. (4.1.59)

Let yj : Q→ Rm and zj : Q→ Rn be sequences of measurable functions such that
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(iv) yj → y a.e. in Q;

(v) zj ⇀ z in Lp(Q) and A(x, t, yj , zj) ⇀ A∗ in L
p
p−1 (Q);

(vi)

lim sup
j→∞

∫
Q
A(x, t, yj , zj) · zj dx dt ≤

∫
Q
A∗ · z dx dt. (4.1.60)

Then there exists a subsequence of {zj}, such that zj → z in Lp(Q).

Proof. We start the proof with applying Lemma 4.1.2 to the function A(x, t, yj , zj) · zj . Since
condition (iii) is held, A(x, t, yj , zj) · zj is positive for every j ∈ N, the sequence of negative parts
is relatively weakly compact in L1(Q). Then we obtain

lim sup
j→∞

∫
Q
A(x, t, yj , zj) · zj dx dt ≥

∫
Q

∫
Rm×Rn

A(x, t, s, λ) · λdµx,t(s, λ) dx dt (4.1.61)

where µx is the Young measure generated by the sequence (yn, zn). By Lemma 4.1.3 we may
characterize this measure more precisely, i.e

µx,t(s, λ) = δy(x,t)(s)⊗ νx,t(λ), (4.1.62)

since yj converges to y a.e. in Q and sequence {zj} generate the Young measure νx,t. Then∫
Q

∫
Rm×Rn

A(x, t, s, λ) · λ dµx,t(s, λ) dx dt =

∫
Q

∫
Rn
A(x, t, y, λ) · λ dνx,t(λ) dx dt. (4.1.63)

Moreover, the set {zj} is bounded in Lp(Q) hence it is relatively weakly compact in L1(Q). Using
Theorem 4.1.1 we obtain that z(x, t) =

∫
Rn λ dνx,t(λ). Applying the same argument to function

A(·, ·, ·, ·) we get A∗ =
∫
Rn A(x, t, y, λ) dνx,t(λ). By combining these results with condition (vi)

and (4.1.61) we get∫
Q

∫
Rn
A(x, t, y, λ) · λdνx,t(λ) dx dt ≤

∫
Q
A∗ · z dx dt

=

∫
Q

∫
Rn
A(x, t, y, λ) dνx,t(λ) ·

∫
Rn
λ dνx,t(λ) dx dt.

(4.1.64)

Let us define

h(x, t, λ) :=

(
A(x, t, y, λ)−A

(
x, t, y,

∫
Rn
ξ dνx,t(ξ)

))
·
(
λ−

∫
Rn
ξ dνx,t(ξ)

)
. (4.1.65)

Monotonicity of A with respect to last variable implies that∫
Q

∫
Rn
h(x, t, λ) dνx,t(λ) dx dt ≥ 0. (4.1.66)

Thus∫
Q

∫
Rn
h(x, t, λ) dνx,t(λ) dx dt

=

∫
Q

∫
Rn
A(x, t, y, λ) ·

(
λ−

∫
Rn
ξ dνx,t(ξ)

)
dνx,t(λ) dx dt

−
∫
Q

∫
Rn
A

(
x, t, y,

∫
Rn
ξ dνx,t(ξ)

)
·
(
λ−

∫
Rn
ξ dνx,t(ξ)

)
dνx,t(λ) dx dt

(4.1.67)
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The second term of right-hand side is equal to zero. Indeed, changing the variables we obtain∫
Q

∫
Rn
A

(
x, t, y,

∫
Rn
ξ dνx,t(ξ)

)
·
(
λ−

∫
Rn
ξ dνx,t(ξ)

)
dνx,t(λ) dx dt

=

∫
Q

∫
Rn
A

(
x, t, y,

∫
Rn
ξ dνx,t(ξ)

)
· λ dνx,t(λ) dx dt

−
∫
Q

∫
Rn
A

(
x, t, y,

∫
Rn
ξ dνx,t(ξ)

)
·
∫
Rn
ξ dνx,t(ξ) dνx,t(λ) dx dt

=

∫
Q
A

(
x, t, y,

∫
Rn
ξ dνx,t(ξ)

)
·
∫
Rn
ξ dνx,t(ξ) dx dt

−
∫
Q
A

(
x, t, y,

∫
Rn
ξ dνx,t(ξ)

)
·
∫
Rn
ξ dνx,t(ξ) dx dt

(4.1.68)

Coming back to (4.1.67) we get∫
Q

∫
Rn
h(x, t, λ) dνx,t(λ) dx dt =

∫
Ω

∫
Rn
A(x, t, y, λ) · λ dνx,t(λ) dx dt

−
∫

Ω

∫
Rn
A(x, t, y, λ) dνx,t(λ) ·

∫
Rn
λ dνx,t(λ) dx dt.

(4.1.69)

Using (4.1.64) and (4.1.66) we get ∫
Rn
h(x, t, λ) dνx,t(λ) = 0, (4.1.70)

for a.a. (x, t) ∈ Q. Using (4.1.65) and properties of a measure νx,t we obtain that

h(x, t, λ) = 0 ⇐⇒ λ−
∫
Rn
ξ dνx,t(ξ) = 0. (4.1.71)

Moreover, by (4.1.70) the support of function h(x, t, ·) and measure νx,t are disjoint for a.a
(x, t) ∈ Q. This implies νx,t = δz(x,t) a.e..

By Lemma 4.1.1 we obtain that zj converges to z in measure. Then there exists a subsequence
of {zj} such that zj → z a.e.. Moreover, using Lemma 4.1.3 and assumption (vi) we get

lim sup
j→∞

∫
Q
A(x, t, yj , zj) · zj dx dt ≤

∫
Q
A(x, t, y, z) · z dx dt ≤ lim inf

j→∞

∫
Q
A(x, t, yj , zj) · zj dx dt.

Let us define gn = A(x, t, yn, zn) · zn and g = A(x, t, y, z) · z. We know that

gn ≥ 0, g ∈ L1(Q),

∫
Q
gn dx dt→

∫
Q
g dx dt, gn → g a.e. in Q. (4.1.72)

Furthermore ∫
Q
|gn − g| dx dt =

∫
Q

(gn − g) dx dt+ 2

∫
Q

max{(g − gn), 0} dx. (4.1.73)

By Lebesgue’s dominated convergence theorem we get that the sequence {A(x, t, yj , zj) · zj}
converges to A(x, t, y, z) · z in L1(Q) as j goes to ∞. Thus, it is uniformly integrable and by
assumption (iii) also the sequence |zj |p is uniformly integrable. Using Vitali’s Theorem [53,
Lemma 2.11] yields that zj → z in Lp(Q), which completes the proof.



60 CHAPTER 4. MRÓZ MODEL

4.2 Formulation of problem

Let us defineW 1,2
gu (Ω,R3) := {u ∈W 1,2(Ω,R3) : u = gu on ∂Ω}. Now, we are ready to formulate

the solution’s definition and the main theorem of this chapter.

Definition 4.2.1. Solution to Mróz model
Let q ∈ (1, 5

4). The triple of functions (u,T , θ) is a weak solution to the system (1.2.2) when

u ∈ L2(0, T,W 1,2
gu

(Ω,R3)),

T ∈ L2(Q,S3),

θ ∈ Lq(0, T,W 1,q(Ω)) ∩ C([0, T ],W−2,2(Ω)),

(4.2.1)

and it satisfies ∫ T

0

∫
Ω
T : ∇ϕdx dt =

∫ T

0

∫
Ω
f ·ϕ dx dt, (4.2.2)

where T d is deviatoric part of Cauchy stress tensor T = D(ε(u)− εp), and

−
∫ T

0

∫
Ω
θφt dx dt−

∫
Ω
θ0(x)φ(0, x) dx

+

∫ T

0

∫
Ω
∇θ · ∇φ dx dt−

∫ T

0

∫
∂Ω
gθφ dx dt =

∫ T

0

∫
Ω
T d : G(θ,T d)φ dx dt,

(4.2.3)

for every test function ϕ ∈ C∞([0, T ], C∞c (Ω,R3)) and φ ∈ C∞c ([−∞, T ), C∞(Ω)). Furthermore,
the visco-elastic strain tensor can be recovered from the equation on its evolution, i.e.

εp(x, t) = εp0(x) +

∫ t

0
G(θ(x, τ),T d(x, τ)) dτ, (4.2.4)

for a.e. x ∈ Ω and t ∈ [0, T ). Then εp belongs to W 1,2(0, T, L2(Ω,S3
d)).

Theorem 4.2.1. Let initial conditions satisfy θ0 ∈ L1(Ω), εp0 ∈ L2(Ω,S3
d), boundary conditions

satisfy gu ∈ L2(0, T,H
1
2 (∂Ω,R3)) and gθ ∈ L2(0, T, L2(∂Ω)), function f ∈ L2(0, T,W−1,2(Ω,R3))

and function G(·, ·) satisfy the same condition as in Assumptions 4.0.1. Then there exists a weak
solution according to Definition 4.2.1, to system (1.2.2).

4.3 Proof of Theorem 4.2.1

Proof of Theorem 4.2.1 contains a few steps. Some elements of this reasoning can be found in
Chapter 2 and in Chapter 3 and for more details we refer the reader to these chapters. This
section is organized as follows: in Section 4.3.1 we concentrate on transforming of full thermo-
visco-elastic problem into a homogeneous boundary-value problem, which allows us to focus on
the homogeneous boundary-value problem. Sections 4.3.2 and 4.3.3 are dedicated to show the
uniform boundedness of approximate solutions. Results presented in Section 4.3.3 are valid for
other models presented in this dissertation and we refer to it in the next chapters. Finally, due
to use of two level approximation, we pass to limit with l→∞ in Section 4.3.4 and with k →∞
in Section 4.3.5.
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4.3.1 Transformation to a homogeneous boundary-value problem

The idea of transformation to homogeneous boundary-value problems was discuss in Chapter 2.
Let us consider two systems of equations with given initial and boundary data.

−div T̃ = f in Ω× (0, T ),

T̃ = Dε̃ in Ω× (0, T ),
ũ = gu on ∂Ω× (0, T ),

(4.3.1)

and 
θ̃t −∆θ̃ = 0 in Ω× (0, T ),

∂θ̃
∂n = gθ on ∂Ω× (0, T ),

θ̃(x, 0) = θ̃0 in Ω.

(4.3.2)

Lemma 4.3.1. Let initial condition satisfy θ̃0 ∈ L2(Ω), boundary conditions satisfy gu ∈
Lp(0, T,W

1− 1
p
,p

(∂Ω))3, gθ ∈ L2(0, T, L2(∂Ω)) and also the volume force f belongs to Lp(0, T,W−1,p(Ω,R3)).
Then, there exists a solution of systems (4.3.1) and (4.3.2). Additionally, the estimate holds:

‖ũ‖Lp(0,T,W 1,p(Ω)) ≤ C1(‖gu‖
Lp(0,T,W

1− 1
p ,p(∂Ω,R3))

+ ‖f‖Lp(0,T,W−1,p(Ω,R3)),

‖θ̃‖L∞(0,T,L1(Ω)) + ‖θ̃‖L2(0,T,W 1,2(Ω)) ≤ C2

(
‖gθ‖L2(0,T,L2(∂Ω)) + ‖θ̃0‖L2(Ω)

)
.

Moreover, θ̃ belongs to C([0, T ], L2(Ω)).

Proof. From the trace theorem [82, Chapter II] there exists g̃ ∈ Lp(0, T,W 1,p(Ω,R3)) such that
g̃|∂Ω = gu. Therefore, instead of finding the solution ũ to (4.3.1) we focus on finding the solution
ũ1 to system {

−divDε(ũ1) = f + divDε(g̃) in Ω× (0, T ),
ũ1 = 0 on ∂Ω× (0, T ).

(4.3.3)

It can be immediately observed that solution to (4.3.1) ũ is a sum of ũ1 and g̃. The existence of
solution to elastostatic problem (4.3.3) and its estimate is obtained by usage [82, Corollary 4.4].
The proof and estimates for heat equation are standard. This results can be found, for example,
in [29].

For Mróz model, i.e. p = 2, the boundary data satisfy the assumptions from Theorem 4.2.1
and we may transform the problem into homogeneous boundary value problem. Then data are
coming into the system by shifts of the solutions in nonlinear functionG(·, ·). Thus, it is sufficient
to consider the following system of equations

−divT = 0,

T = D(ε− εp),
εpt = G(θ̃ + θ,T d + T d),

θt −∆θ =
(
T̃
d

+ T d
)

: G(θ̃ + θ, T̃
d

+ T d),

(4.3.4)

with initial conditions: {
θ = θ0 − θ̃0 in Ω,
εp = εp0 in Ω,

(4.3.5)

and homogeneous boundary condition on displacement and temperature.
We start the proof with the definition of approximate system of equations and approximate

solutions, see (2.2.8). Moreover, we know that the approximate solutions are absolutely continu-
ous on some time interval (0, t∗), see Lemma 2.2.1. Our goal is to show that these solutions exist
on the whole time interval (0, T ) and that limits of these sequences exist and fulfill Definition
4.2.1.
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4.3.2 Potential Energy estimates

As we mentioned in the introduction, the uniform estimates for approximate solutions are con-
sequences of finite initial energy. Density of energy in quasi-static case consists of potential and
thermal energy. Let us start with the estimates regarding potential energy, see Definition 1.4.1.
The estimates for the temperature are the subject of next section.

Lemma 4.3.2. There exists a constant C, which is independent of k and l, such that

sup
t∈[0,T ]

E(ε(uk,l), ε
p
k,l)(t) + c‖T̃ d + T dk,l‖2L2(0,T,L2(Ω)) ≤ C. (4.3.6)

Proof. The potential energy of approximate solutions is an absolutely continuous function. Hence,
calculating the time derivative of E(t) for a.a. t ∈ [0, T ] we obtain

d

dt
E(ε(uk,l), ε

p
k,l) =

∫
Ω
D(ε(uk,l)− εp

k,l) : (ε(uk,l))t dx

−
∫

Ω
D(ε(uk,l)− εp

k,l) : (εp
k,l)t dx.

(4.3.7)

Using the approximate system of equations we the changes of potential energy. At the beginning
let us multiply (2.2.8)(1) by {(αnk,l)t} for each n ≤ k. After summing obtained equations over
n = 1, ..., k we get ∫

Ω
D(ε(uk,l)− εp

k,l) : (ε(uk,l)t dx = 0. (4.3.8)

Hence, the first term in (4.3.7) vanishes. Consequently, we multiply (2.2.8)(4) by δmk,l for every
m = 1, ..., l. Summing over m = 1, ..., l, we obtain the identity, which is equivalent to∫

Ω
(εp
k,l)t : T k,l dx =

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T k,l dx. (4.3.9)

And thus

d

dt
E(ε(uk,l), ε

p
k,l) = −

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l dx, (4.3.10)

where we use the properties of traceless matrices, i.e. if Ad = A then Ad : B = Ad : Bd. Using
Assumption 4.0.1 and the Young inequality we get

d

dt
E(ε(uk,l), ε

p
k,l) = −

∫
Ω

(T̃
d

+ T dk,l) : G(θ̃ + θk,l, T̃
d

+ T dk,l) dx

+

∫
Ω
T̃
d

: G(θ̃ + θk,l, T̃
d

+ T dk,l) dx

≤ −β‖T̃ d + T dk,l‖2L2(Ω) + ‖T̃ d‖L2(Ω)‖G(θ̃ + θk,l, T̃
d

+ T dk,l)‖L2(Ω)

≤ −β‖T̃ d + T dk,l‖2L2(Ω) + c(ε)‖T̃ d‖2L2(Ω) + ε‖G(θ̃ + θk,l, T̃
d

+ T dk,l)‖2L2(Ω)

where ε < β
2C2 , with a constant C coming from Assumption 4.0.1. Hence, we estimate the last

term as follows
ε‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖2L2(Ω) ≤ C

2ε‖T̃ d + T dk,l‖2L2(Ω), (4.3.11)
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and the choice of ε implies that C2ε = β
2 . Finally, integrating over (0, t), with 0 ≤ t ≤ T we

obtain

E(ε(uk,l), ε
p
k,l)(t) +

β

2
‖T̃ d + T dk,l‖2L2(0,T,L2(Ω))

≤ c(ε)‖T̃ d‖2L2(0,T,L2(Ω)) + E(ε(uk,l), ε
p
k,l)(0),

(4.3.12)

which completes the proof.

Remark. Using Lemma 4.3.2 and Assumption 4.0.1 we immediately observe that the following
inequalities hold

‖T k,l‖L∞(0,T,L2(Ω,S3)) ≤ c1,

‖T dk,l‖L2(0,T,L2(Ω,S3)) ≤ c2,

‖G(θ̃ + θk,l, T̃
d

+ T dk,l)‖L2(0,T,L2(Ω,S3)) ≤ c3,

‖(T̃ d + T dk,l) : G(θ̃ + θk,l, T̃
d

+ T dk,l)‖L1(0,T,L1(Ω,S3)) ≤ c4,

(4.3.13)

for all k, l ∈ N. Moreover, constants c1, c2, c3 as well as c4 are independent of approximation
parameters k and l. Uniform boundedness from (4.3.13)(1)−(3) implies existence of weak limits
for each of these quantities.

Lemma 4.3.3. The sequence {(εp
k,l)t} is uniformly bounded in L2(0, T, (Hs(Ω,S3))′) with respect

to l.

Proof. Let ϕ ∈ L2(0, T,Hs(Ω,S3)). Let us notice that (P k + P l,k
L2 )(εp

k,l)t = (εp
k,l)t. Using the

orthogonality of the subspaces lin{ε(w1), . . . , ε(wk)} and lin{ζ1, . . . , ζl} in the sense of scalar
product (·, ·)D we obtain∫ T

0
|((εp

k,l)t,ϕ)D|dt =

∫ T

0
|((P k + P l,k

L2 )(εp
k,l)t,ϕ)D| dx

=

∫ T

0
|((εp

k,l)t, (P
k + P l,k

L2 )ϕ)D| dt

≤
∫ T

0
|((εp

k,l)t, P
kϕ)D|dt+

∫ T

0
|((εp

k,l)t, P
l,k
L2ϕ)D|dt,

(4.3.14)

where P k and P l,k
L2 are projections on lin{ε(wn)}kn=1 and lin{ζkm}lm=1, respectively, in the sense

of (·, ·)D, see Definition 2.1.2. Then, we may estimate∫ T

0
|((εp

k,l)t, ϕ)D|dt ≤
∫ T

0
|
∫

Ω
DG(θk,l + θ̃,T dk,l + T̃

d
)P kϕdx|dt

+

∫ T

0
|
∫

Ω
DG(θk,l + θ̃,T dk,l + T̃

d
)P l,k

L2ϕ dx| dt

≤ d
∫ T

0
|
∫

Ω
G(θk,l + θ̃,T dk,l + T̃

d
)P kϕ dx| dt

+ d

∫ T

0
|
∫

Ω
G(θk,l + θ̃,T dk,l + T̃

d
)(P l,kHs ◦ (Id− P k))ϕ dx| dt,

(4.3.15)
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where we use the identity (2.1.31) in the last inequality. We continue the estimates as follows∫ T

0
|((εp

k,l)t,ϕ)D| dt ≤ d
∫ T

0
|
∫

Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l)P

kϕ dx| dt

+ d

∫ T

0
|
∫

Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l)(P

l,k
Hs ◦ (Id− P k))ϕ dx| dt

≤ d
∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L2(Ω)‖P kϕ‖L2(Ω) dt

+ d

∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L2(Ω)‖(P

l,k
Hs ◦ (Id− P k))ϕ‖L2(Ω) dt

≤ dc̃
∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L2(Ω)‖P kϕ‖Hs(Ω) dt

+ dc̃

∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L2(Ω)‖(P

l,k
Hs ◦ (Id− P k))ϕ‖Hs(Ω) dt

≤ dc(k)c̃

∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L2(Ω)‖ϕ‖Hs(Ω) dt

+ dc̃

∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L2(Ω)‖(Id− P k)ϕ‖Hs(Ω) dt

≤ dc(k)c̃

∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L2(Ω)‖ϕ‖Hs(Ω) dt

+ dc(k)c̃

∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L2(Ω)‖ϕ‖Hs(Ω) dt

≤ 2dc(k)c̃‖G(θ̃ + θk,l, T̃
d

+ T dk,l)‖L2(0,T,L2(Ω))‖ϕ‖L2(0,T,Hs(Ω)),

(4.3.16)

where c̃ is an optimal embedding constant of Hs(Ω,S3) ⊂ L2(Ω,S3). Consequently, there exists
C(k) > 0 such that

sup
ϕ∈L2(0,T,Hs(Ω))
‖ϕ‖

L2(0,T,Hs(Ω))
≤1

∫ T

0
|((εp

k,l)t,ϕ)D|dt ≤ C(k) (4.3.17)

and hence the sequence {(εp
k,l)t} is uniformly bounded in L2(0, T, (Hs(Ω,S3))′).

4.3.3 Uniform boundedness of temperature

Results presented in this section hold for every model considered in this dissertation. Difference
between considered models result from assumptions on the function describing the evolution of
visco-elastic strain. The heat equation stays the same in all cases. We draw our attention to all
small differences which may appear in next chapters.

Lemma 4.3.4. The sequence {θk,l} is uniformly bounded in L∞(0, T ;L1(Ω)) with respect to k
and l.

Proof. It can be immediately observed that

sup
0≤t≤T

‖θk,l(t)‖L1(Ω) ≤ C‖(T̃
d

+ T dk,l) : G(θ̃ + θk,l, T̃
d

+ T dk,l)‖L1(0,T,L1(Ω)) + ‖θ0‖L1(Ω)

and Lemma 4.3.2 holds.
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Lemma 4.3.4 implies that the internal energy of Ω is finite at any time t ∈ [0, T ] if the initial
internal energy is finite. It is possible to prove better estimates for the temperature, however this
estimate is uniform only with respect to l and not with respect to k. We provide the details in
the proceeding lemma.

Lemma 4.3.5. There exists a constant C, depending on the domain Ω and the time interval
(0, T ), such that for every k ∈ N

sup
0≤t≤T

‖θk,l(t)‖2L2(Ω) + ‖θk,l‖2L2(0,T,W 1,2(Ω)) + ‖(θk,l)t‖2L2(0,T,W−1,2(Ω))

≤ C
(
‖Tk
(

(T̃
d

+ T dk,l) : G(θ̃ + θk,l, T̃
d

+ T dk,l)
)
‖2L2(0,T,L2(Ω)) + ‖Tk(θ0)‖2L2(Ω)

)
.

(4.3.18)

The proof follows from the standard tools for parabolic equations, see e.g. Evans [29].

Proof. Using standard tools for parabolic equations we obtain

sup
0≤t≤T

‖θk,l(t)‖2L2(Ω) + ‖∇θk,l‖2L2(0,T,L2(Ω)) + ‖(θk,l)t‖2L2(0,T,W−1,2(Ω))

≤ C
(
‖Tk((T̃

d
+ T dk,l) : G(θ̃ + θk,l, T̃

d
+ T dk,l))‖2L2(0,T,L2(Ω)) + ‖Tk(θ0)‖L2(Ω)

)
.

(4.3.19)

Due to the Neumann boundary condition we cannot use Poincaré inequality in a straightforward
way. Let us define an operator (θ)Ω as an average of function θ on Ω. Then

‖θk,l‖L2(0,T,L2(Ω)) ≤ ‖θk,l − (θk,l)Ω‖L2(0,T,L2(Ω)) + ‖(θk,l)Ω‖L2(0,T,L2(Ω)).

Applying the Poincaré inequality for functions fromW 1,2(Ω) we get boundedness of the first term
on the left-hand side by C‖∇θk,l‖L2(0,T,L2(Ω)). For the second one we use simple calculations
(Hölder inequality)

‖(θk,l)Ω‖2L2(0,T,L2(Ω)) =

∫ T

0

∫
Ω

(θk,l)
2
Ω dx dt

=

∫ T

0

∫
Ω

(
1

meas(Ω)

∫
Ω
θk,l dy

)2

dx dt

≤ 1

meas(Ω)2

∫ T

0

∫
Ω

(
(

∫
Ω
|θk,l|2 dy)

1
2meas(Ω)

1
2

)2

dx dt

=
1

meas(Ω)

∫ T

0

∫
Ω

∫
Ω
|θk,l|2 dy dx dt

From (4.3.19) we know that
∫

Ω |θk,l(t)|
2 dy is bounded for every t ∈ (0, T ), what completes the

proof.

All terms on the right-hand side of (4.3.18) are bounded and the boundary is independent of
l, hence, for every k ∈ N we choose the subsequence {θk,l} (with respect to l) which converges
weakly to θk in L2(0, T,W 1,2(Ω)) and the subsequence {θ′k,l} which converges weakly to θ′k in
L2(0, T,W−1,2(Ω)). Let us denote this subsequence by {θk,l}.

Remark. The uniform boundedness of solutions implies the global existence of approximate so-
lutions, i.e. existence of solutions {αnk,l(t), βmk,l(t), γnk,l(t), δmk,l(t)} on the whole time interval [0, T ]
for each n = 1, ..., k and m = 1, ..., l.
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4.3.4 Limit passage with l going to ∞

Due to low regularity of the right-hand side of heat equation and due to necessity of using Boc-
cardo and Galllouët approach, see Section 3.1. We firstly pass to the limit with approximation
parameter for temperature. Let us multiply the system (2.2.8) by smooth time-dependent func-
tions and integrate over [0, T ]. Then we may rewrite the system as follows. For momentum
equation ∫ T

0

∫
Ω
T k,l : ∇wnϕ1(t) dx dt = 0, n = 1, . . . , k. (4.3.20)

Evolutionary equation for visco-elastic strain can be presented as∫ T

0

∫
Ω

(εp
k,l)t : Dε(wn)ϕ2(t) dx dt

=

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : Dε(wn)ϕ2(t) dx dt, n = 1, ..., k,∫ T

0

∫
Ω

(εp
k,l)t : Dζkmϕ3(t) dx dt

=

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : Dζkmϕ3(t) dx dt, m = 1, ..., l.

(4.3.21)

And finally, balance of energy may be rewritten as

−
∫ T

0

∫
Ω
θk,lϕ

′
4(t)vm dx dt−

∫
Ω
θ0(x)ϕ4(0)vm dx+

∫ T

0

∫
Ω
∇θk,l · ∇vmϕ4(t) dx dt

=

∫ T

0

∫
Ω
Tk
(

(T̃
d

+ T dk,l) : G(θ̃ + θk,l, T̃
d

+ T dk,l)
)
ϕ4(t)vm dx dt,

(4.3.22)

for every m = 1, ..., l. Furthermore, (4.3.20) – (4.3.22) hold for all test functions ϕ1, ϕ2, ϕ3 ∈
C∞([0, T ]) and ϕ4 ∈ C∞c ([−∞, T )).

Using uniform boundedness of approximate solutions sequences obtained in the previous sec-
tions, we get (passing to the subsequence if it is necessary) the following convergences

T k,l ⇀ T k weakly in L2(Q,S3),

T dk,l ⇀ T dk weakly in L2(Q,S3
d),

G(θ̃ + θk,l, T̃
d

+ T dk,l) ⇀ χk weakly in L2(Q,S3
d),

θk,l ⇀ θk weakly in L2(0, T,W 1,2(Ω)),
θk,l → θk a.e. in Q,

(εp
k,l)t ⇀ (εp

k )t weakly in L2(0, T, (Hs(Ω,S3))′).

(4.3.23)

Now passing to the limit in (4.3.20)–(4.3.21) results in∫ T

0

∫
Ω
T k : ∇wnϕ1(t) dx dt = 0, n = 1, . . . , k (4.3.24)

and∫ T

0

∫
Ω

(εp
k )t : Dε(wn)ϕ2(t) dx dt =

∫ T

0

∫
Ω
χk : Dε(wn)ϕ2(t) dx dt, n = 1, ..., k,∫ T

0

∫
Ω

(εp
k )t : Dζkmϕ3(t) dx dt =

∫ T

0

∫
Ω
χk : Dζkmϕ3(t) dx dt, m ∈ N,

(4.3.25)
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hold for every test function ϕ1, ϕ2, ϕ3 ∈ C∞([0, T ]). Density of lin{ζkm}∞m=1 in L2(Ω,S3) implies
that ∫ T

0

∫
Ω

(εp
k )t : ϕ dx dt =

∫ T

0

∫
Ω
χk : ϕ dx dt (4.3.26)

holds for all ϕ ∈ C∞([0, T ], L2(Ω,S3)) and then also for all ϕ ∈ L2(0, T ;L2(Ω,S3)).
It remains to pass to the limit in (4.3.22). To do this, we should identify the limit of the

right-hand side term ∫ T

0

∫
Ω
Tk
(
G(θ̃ + θk,l, T̃

d
+ T dk,l) : (T̃

d
+ T dk,l)

)
dx dt. (4.3.27)

The characterization of the limit is not obvious as we are dealing with a product of two weakly
converging sequences. For this purpose we will use Young measures tools which were introduced
in Section 4.1. Moreover, we should identify χk, which can also be done by the use of Young
measures tools.

Lemma 4.3.6. The following inequality holds for the solution of approximate system

lim sup
l→∞

∫ τ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l dx dt ≤

∫ t

0

∫
Ω
χk : T dk dx dt, (4.3.28)

for every τ ∈ (0, T ).

Proof. For each µ > 0, τ ≤ T − µ, s ≥ 0, let ψµ,τ : R+ → R+ be defined as follows

ψµ,τ (s) =


1 for s ∈ [0, τ),
− 1
µ(s− τ) + 1 for s ∈ [τ, τ + µ),

0 for s ≥ τ + µ.

(4.3.29)

Next we shall use (4.3.10) and multiply it by ψµ,τ (t) and integrate over (0, T )∫ T

0

d

dτ
E(ε(uk,l), ε

p
k,l)ψµ,τ dt = −

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l ψµ,τ dx dt. (4.3.30)

Let us now integrate by parts the left-hand side of (4.3.30)∫ T

0

d

dτ
E(ε(uk,l), ε

p
k,l)ψµ,τ dt =

1

µ

∫ τ+µ

τ
E(ε(uk,l), ε

p
k,l) dt− E(ε(uk,l), ε

p
k,l)(0). (4.3.31)

Passing to the limit in (4.3.31) with l→∞ we obtain

lim inf
l→∞

∫ T

0

d

dτ
E(ε(uk,l), ε

p
k,l)ψµ,τ dt

= lim inf
l→∞

1

µ

∫ τ+µ

τ
E(ε(uk,l), ε

p
k,l) dt− lim

l→∞
E(ε(uk,l), ε

p
k,l)(0)

≥ 1

µ

∫ τ+µ

τ
E(ε(uk), ε

p
k ) dt− E(ε(uk), ε

p
k )(0)

(4.3.32)

Note that the last inequality holds due to weak lower semicontinuity in L2(0, T, L2(Ω;S3)). Con-
vergence of the initial potential energy is a consequence of strong convergence of initial condition
for visco-elastic strain tensor.
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Now the problem is low regularity of {(αnk)t}. Since αnk is a limit of absolutely continuous
functions, (αnk)t cannot be used as a test function in (4.3.24). Hence, we use time mollifier to
solve this problem. Let us take ϕ1(t) = ((αnk)t ∗ηε1(t1,t2))∗ηε, as a test function in (4.3.24), where
ηε is a standard mollifier with respect to time and ε < min(t1, T − t2). Then∫ T

0

∫
Ω
T k : ε(((αnk)t ∗ ηε1(t1,t2)) ∗ ηεwn) dx dt = 0. (4.3.33)

Summing over n = 1, ..., k and using the properties of convolution we obtain∫ t2

t1

∫
Ω
D
(
ε(uk)− εp

k

)
∗ ηε : (ε(uk) ∗ ηε)t dx dt = 0. (4.3.34)

Let us take ϕ = (T k ∗ ηε1(t1,t2)) ∗ ηε, as a test function in (4.3.26). Thus we get∫ T

0

∫
Ω

(εp
k )t : (T k ∗ ηε1(t1,t2)) ∗ ηε dx =

∫ T

0

∫
Ω
χk : (T k ∗ ηε1(t1,t2)) ∗ ηε dx. (4.3.35)

Using the properties of convolution, we rewrite it in the following way∫ t2

t1

∫
Ω
D(ε(uk)− εp

k ) ∗ ηε : (εp
k ∗ ηε)t dx dt =

∫ t2

t1

∫
Ω
χk ∗ ηε : T k ∗ ηε dx dt. (4.3.36)

Subtracting (4.3.34) and (4.3.36) we obtain∫ t2

t1

∫
Ω
D(ε(uk)−εp

k ) ∗ ηε : ((ε(uk)−εp
k ) ∗ ηε)t dx dt = −

∫ t2

t1

∫
Ω
χk ∗ ηε : T k ∗ ηε dx dt, (4.3.37)

and then∫
Ω
D(ε(uk)− εp

k ) ∗ ηε : (ε(uk)− εp
k ) ∗ ηε dx

∣∣∣t2
t1

= −
∫ t2

t1

∫
Ω
χk ∗ ηε : T k ∗ ηε dx dt. (4.3.38)

Since {ε(uk)− εp
k} belongs to L

∞(0, T, L2(Ω)) and χk,T k belong to L2(0, T, L2(Ω)), we pass to
the limit with ε→ 0. We obtain

1

2

∫
Ω
D(ε(uk)− εp

k ) : (ε(uk)− εp
k ) dx

∣∣∣t2
t1

= −
∫ t2

t1

∫
Ω
χk : T dk dx dt. (4.3.39)

Since ε(uk) − εp
k ∈ Cw([0, T ], L2(Ω,S3)) then we may pass with t1 → 0, replace t2 by t and

conclude (using the definition of potential energy) that

E(ε(uk), ε
p
k )(t)− E(ε(uk), ε

p
k )(0) = −

∫ t

0

∫
Ω
χk : T dk dx ds. (4.3.40)

Multiplying (4.3.40) by 1
µ and integrating over the interval (τ, τ + µ) we get

1

µ

∫ τ+µ

τ
E(ε(uk), ε

p
k )(t) dt− E(ε(uk), ε

p
k )(0) = − 1

µ

∫ τ+µ

τ

∫ t

0

∫
Ω
χk : T dk dx ds dt. (4.3.41)

For conciseness of further calculations let us define

F (s) :=

∫
Ω
χk(s) : T dk(s) dx. (4.3.42)
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It is obvious that F belongs to L1(0, T ). Applying Fubini theorem we have

1

µ

∫ τ+µ

τ

∫ t

0
F (s) ds dt =

1

µ

∫
R2

1{0≤s≤t}(s)1{τ≤t≤τ+µ}(t)F (s) ds dt

=

∫
R

(
1

µ

∫
R

1{0≤s≤t}(s)1{τ≤t≤τ+µ}(t) dt

)
F (s) ds.

(4.3.43)

The crucial observation is that

ψµ,τ (s) =
1

µ

∫
R

1{0≤s≤t}(s)1{τ≤t≤τ+µ}(t) dt, (4.3.44)

and then

− 1

µ

∫ τ+µ

τ

∫ t

0
F (s) ds dt = −

∫
R
F (s)ψµ,τ (s) ds =

∫
R

∫
Ω
χk : T dkψµ,τ dx ds (4.3.45)

Finally, using (4.3.30), (4.3.32) and (4.3.41) we conclude

−
∫ T

0

∫
Ω
χk : T dk ψµ,τ dx dt ≤ lim inf

l→∞

(
−
∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l ψµ,τ dx dt

)
,

(4.3.46)
which is nothing else than

lim sup
l→∞

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l ψµ,τ dx dt ≤

∫ T

0

∫
Ω
χk : T dk ψµ,τ dx dt. (4.3.47)

To finish the proof let us observe that

lim sup
l→∞

∫ τ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l dx dt

= lim sup
l→∞

∫ τ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : (T̃

d
+ T dk,l) dx dt

− lim
l→∞

∫ τ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T̃

d
dx dt

≤ lim sup
l→∞

∫ τ+µ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : (T̃

d
+ T dk,l)ψµ,τ dx dt

− lim
l→∞

∫ τ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T̃

d
dx dt,

(4.3.48)

where the last inequality is caused by definition of ψµ,τ and positivity of G(θ̃ + θk,l, T̃
d

+ T dk,l) :

(T̃
d

+ T dk,l). Then the estimate may follow

lim sup
l→∞

∫ τ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l dx dt

≤ lim sup
l→∞

∫ τ+µ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l ψµ,τ dx dt

+ lim
l→∞

∫ τ+µ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T̃

d
ψµ,τ dx dt

− lim
l→∞

∫ τ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T̃

d
dx dt

(4.3.49)
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Hence, using (4.3.47) to the first term on the right-hand side of abovementioned equation and
using the identity ψµ,τ ≡ 1 on [0, τ ] to remaining terms we obtain

lim sup
l→∞

∫ τ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l dx dt

≤
∫ τ+µ

0

∫
Ω
χk : T dk ψµ,τ dx dt

+ lim
l→∞

∫ τ+µ

τ

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T̃

d
ψµ,τ dx dt

=

∫ τ+µ

0

∫
Ω
χk : T dk ψµ,τ dx dt+ lim

l→∞

∫ τ+µ

τ

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T̃

d
k ψµ,τ dx dt.

(4.3.50)

Passing with µ→ 0 results in (4.3.28). The proof is complete.

Now, we use Theorem 4.1.4 to finish the limit passage in heat equation. In our case G(·, ·) is
a nonlinear function. Let us check the assumptions of Theorem 4.1.4. The conditions (i)− (iii)
are held, because of Assumption 4.0.1. Due to the energy estimate and uniform boundedness
of temperature {θk,l}, condition (iv) is fulfilled. Uniform boundedness of the sequences {T dk,l}
and {G(θ̃ + θk,l, T̃

d
+ T dk,l)} with respect to l in L2(Q,S3

d) implies that the condition (v) is
satisfied. Finally, the last condition (vi) is a result of Lemma 4.3.6. Hence, for every k ∈ N there
exists the subsequence {T dk,l} which converges to T dk in L2(Q,S3

d) with l →∞. Moreover, using

Lebesgue’s dominated convergence theorem there exists a subsequence {G(θ̃ + θk,l, T̃
d

+ T dk,l)}
which converges to G(θ̃+ θk, T̃

d
+T dk) in L2(Q,S3) with l→∞. Consequently, product {G(θ̃+

θk,l, T̃
d

+ T dk,l) : T dk,l} converges to G(θ̃ + θk, T̃
d

+ T dk) : T dk in L1(Q,S3) with l going to ∞.
Hence, we pass to the limit in (4.3.22) and

−
∫ T

0

∫
Ω
θkϕ

′
4(t) dx dt−

∫
Ω
θ0(x)ϕ4(0) dx+

∫ T

0

∫
Ω
∇θk · ∇ϕ4 dx dt

=

∫ T

0

∫
Ω
Tk
(

(T̃
d

+ T dk) : G(θ̃ + θk, T̃
d

+ T dk,l)
)
ϕ4 dx dt,

(4.3.51)

holds for every test function ϕ4 ∈ C∞c ([−∞, T )).

Lemma 4.3.7. The sequence {εp
k} is uniformly bounded in W 1,2(0, T, L2(Ω,S3)) with respect

to k.

Proof. By Assumption 4.0.1 and the fact that the constant C is independent of temperature, we
get

εp
k (x, t) = εp

k (x, 0) +

∫ t

0
(εp
k (x, s))s ds.

Hence

|εp
k |

2(x, t) ≤ 2|εp
k |

2(x, 0) + 2t1/2
∫ t

0
|(εp

k )s|2(x, s) ds
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and consequently∫ T

0

∫
Ω
|εp
k |

2(x, t) dx dt ≤ 2

∫ T

0

∫
Ω
|εp
k |

2(x, 0) dx dt+ 2t1/2
∫ T

0

∫
Ω

∫ t

0
|(εp

k )s|2(x, s) dsdx dt

≤ C(T )(1 +

∫
Ω

∫ T

0
|G(θ̃ + θk, T̃

d
+ T dk)|2) dsdx

≤ C(T )(1 +

∫ T

0

∫
Ω
|T̃ d + T dk|2) dx dt.

It follows from Lemma 4.3.2 that the right-hand side is uniformly bounded.

Lemma 4.3.8. The sequence {uk} is uniformly bounded in L2(0, T,W 1,2
0 (Ω,R3)) with respect

to k.

Proof. Using the triangle inequality and the fact that the operator D is positively definite, we
obtain

|ε(uk)|2 ≤ 2|ε(uk)− εp
k |

2 + 2|εp
k |

2 ≤ c|T k|2 + 2|εp
k |

2. (4.3.52)

Integrating over Ω× (0, T ) we get∫ T

0

∫
Ω
|ε(uk)|2 dx dt ≤ c

∫ T

0

∫
Ω
|T k|2 dx dt+ 2

∫ T

0

∫
Ω
|εp
k |

2 dx dt

≤ c‖T k‖2L2(0,T,L2(Ω)) + 2‖εp
k‖

2
L2(0,T,L2(Ω)).

(4.3.53)

Due to Lemma 4.3.2 the sequence {T k} is uniformly bounded in L2(0, T, L2(Ω,S3)). The tensor
ε(uk) is the symmetric gradient of displacement, thus using Korn inequality (cf. [53, Theorem
1.10]) we conclude that the sequence {uk} is uniformly bounded in L2(0, T,W 1,2

0 (Ω,R3)).

4.3.5 Passing to the limit with k going to ∞

To complete the proof we make the second limit passage in the approximate system of equations.
In previous sections we have presented the uniform boundedness of solutions sequences. Hence,
we have the following convergences

uk ⇀ u weakly in L2(0, T,W 1,2
0 (Ω,R3)),

T k ⇀ T weakly in L2(Q,S3),

T dk ⇀ T d weakly in L2(Q,S3
d),

G(θ̃ + θk, T̃
d

+ T k) ⇀ χ weakly in L2(Q,S3
d),

εpk ⇀ εp weakly in L2(Q,S3
d).

(4.3.54)

Using these convergences we make the limit passage in (4.3.24) and (4.3.26) and we get∫ T

0

∫
Ω
T : ∇ϕ1 dx dt = 0∫ T

0

∫
Ω
εp
t : ϕ2 dx dt =

∫ T

0

∫
Ω
χ : ϕ2 dx dt

(4.3.55)

for ϕ1 ∈ L2(0, T, L2(Ω,R3)) and ϕ2 ∈ L2(0, T, L2(Ω,S3)).
As previously we should carefully consider the right-hand side of heat equation as a product

of two weakly converging sequences. We have also problem with identification of χ.
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Since the sequences {G(θ̃+θk, T̃
d

+T dk)} and {T̃
d

+T dk} are uniformly bounded in L2(Q,S3
d)

then also the sequence {G(θ̃ + θk, T̃
d

+ T dk) : (T̃
d

+ T dk)} is uniformly bounded in L1(Q). Using
Boccardo and Galllouët approach for Neumann boundary condition, see Chapter 2 Section 3.1,
there exists a subsequence {θk} such that θk ⇀ θ in Lq(0, T,W 1,q(Ω)) for every q ∈ (1, 5

4).
Hence, it remains to identify the limit of the right-hand side of the heat equation and to

identify χ. As in previous limit passage we use Theorem 4.1.4 and we prove that χ = G(θ̃ +

θ, T̃
d

+ T d). The only difficulties concentrate on checking that assumption (vi) from Theorem
4.1.4 is fulfilled.

Lemma 4.3.9. The following inequality holds for the solution of approximate system

lim sup
l→∞

∫ τ

0

∫
Ω
G(θ̃ + θk, T̃

d
+ T dk) : T dk dx dt ≤

∫ τ

0

∫
Ω
χ : T d dx dt, (4.3.56)

for every τ ∈ (0, T ).

Proof. For each µ > 0, τ ≤ T − µ, s ≥ 0, let ψµ,τ : R+ → R+ be defined by (4.3.29). Due to
(4.3.40) we obtain∫ T

0

d

dτ
E(ε(uk), ε

p
k )ψµ,τ dt = −

∫ T

0

∫
Ω
G(θ̃ + θk, T̃

d
+ T dk) : T dk ψµ,τ dx dt. (4.3.57)

Let us integrate by parts the left-hand side of (4.3.57)∫ T

0

d

dτ
E(ε(uk), ε

p
k )ψµ,τ dt =

1

µ

∫ τ+µ

τ
E(ε(uk), ε

p
k )(t) dt− E(ε(uk), ε

p
k )(0). (4.3.58)

Passing to the limit in (4.3.58) with k →∞ we obtain

lim inf
k→∞

∫ T

0

d

dτ
E(ε(uk), ε

p
k )ψµ,τ dt

= lim inf
k→∞

1

µ

∫ τ+µ

τ
E(ε(uk), ε

p
k ) dt− lim

k→∞
E(ε(uk), ε

p
k )(0)

≥ 1

µ

∫ τ+µ

τ
E(ε(u), εp) dt− E(ε(u), εp)(0).

(4.3.59)

Note that the last inequality holds due to the weak lower semicontinuity in L2(0, T, L2(Ω;S3)).
We cannot use ut as a test function because it is not regular enough with respect to time.

Using the time mollifier can help us in dealing with that issue. Then (ut∗ηε1(t1,t2))∗ηε is a proper
test function to (4.3.55)(1). Further, we use (T ∗ ηε1(t1,t2)) ∗ ηε as a test function in (4.3.55)(2).
Hence∫ T

0

∫
Ω
T : (ε(u)t ∗ ηε1(t1,t2)) ∗ ηε dx dt = 0,∫ T

0

∫
Ω
εp
t : (T ∗ ηε1(t1,t2)) ∗ ηε dx dt =

∫ T

0

∫
Ω
χ : (T ∗ ηε1(t1,t2)) ∗ ηε dx dt,

(4.3.60)

and then ∫ t2

t1

∫
Ω
T ∗ ηε : ε(u)t ∗ ηε dx dt = 0,∫ t2

t1

∫
Ω
εp
t ∗ ηε : T ∗ ηε dx dt =

∫ t2

t1

∫
Ω
χ ∗ ηε : T ∗ ηε dx dt.

(4.3.61)
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Subtracting (4.3.61)(1) and (4.3.61)(2) we get∫ t2

t1

∫
Ω
T ∗ ηε : ((ε(u)− εp) ∗ ηε)t dx dt = −

∫ t2

t1

∫
Ω
χ ∗ ηε : T ∗ ηε dx dt (4.3.62)

and then ∫
Ω
T ∗ ηε : (ε(u)− εp) ∗ ηε dx

∣∣∣t2
t1

= −
∫ t2

t1

∫
Ω
χ ∗ ηε : T ∗ ηε dx dt. (4.3.63)

Since ε(u) − εp belongs to L∞(0, T, L2(Ω,S3)) and χ,T belongs to L2(0, T, L2(Ω,S3)) we may
pass to limit with ε going to 0 for a.a. t1, t2 ∈ (0, T )∫

Ω
T : (ε(u)− εp) dx

∣∣∣t2
t1

= −
∫ t2

t1

∫
Ω
χ : T dx dt. (4.3.64)

Using the same argumentation as in Lemma 4.3.6 we may pass to the limit t1 → 0. Finally,
repeating the reasoning with function ψµ,τ we complete the proof.

By Theorem 4.1.4 we improve convergence from (4.3.54) to

uk → u in L2(0, T,W 1,2
0 (Ω)),

T k → T in L2(Q,S3),

T dk → T d in L2(Q,S3
d),

G(θ̃ + θk, T̃
d

+ T dk)→ G(θ,T ) in L2(Q,S3
d),

εp
k → εp in W 1,2(0, T, L2(Ω)).

(4.3.65)

Additionally, we have G(θ̃+ θk, T̃
d

+T k) : (T̃
d

+T dk)→ G(θ̃+ θ, T̃
d

+T d) : (T̃
d

+T d) in L1(Q).
Using these convergences we pass to the limit in (4.3.24), (4.3.26) and (4.3.51) with k going to
∞, we obtain∫ T

0

∫
Ω
D(ε(u)− εp) : ∇ϕ1 dx dt =

∫ T

0

∫
Ω
f ·ϕ1 dx dt,∫ T

0

∫
Ω
εp
t : ϕ2 dx dt =

∫ T

0

∫
Ω
G(θ̃ + θ, T̃

d
+ T d) : ϕ2 dx dt,

−
∫ T

0

∫
Ω
θ(ϕ3)t dx dt−

∫
Ω
θ0(x)ϕ3(0, x) dx

+

∫ T

0

∫
Ω
∇θ · ∇ϕ3 dx dt =

∫ T

0

∫
Ω

(T̃
d

+ T d) : G(θ̃ + θ, T̃
d

+ T d)ϕ3 dx dt,

(4.3.66)

for ϕ1 ∈ L2(0, T, L2(Ω,R3)), ϕ2 ∈ L2(0, T, L2(Ω,S3)) and ϕ3 ∈ C∞c (0, T, C∞(Ω)).
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Chapter 5

Norton-Hoff-type models

The subject of this chapter is to present the existence theorem for models of Norton-Hoff-type
hardening rule. This class of models is a natural extension of the Mróz model. We generalize the
assumption on constitutive function in two ways. Firstly, we allow the p-growth instead of linear
growth in Mróz model. Moreover, the visco-elastic constitutive function G is merely monotone
and may fail to be strictly monotone. These two changes imply application of other techniques.

Let us assume that Ω ⊂ R3 is an open bounded set with a C2 boundary and moreover, the
body is homogeneous in space. Then we may formulate the assumptions on constitutive function
describing the Norton-Hoff-types models.

Assumption 5.0.1. The function G(θ,T d) is continuous with respect to θ and T d and for p ≥ 2
satisfies the following conditions:

a) (G(θ,T d1)−G(θ,T d2)) : (T d1 − T d2) ≥ 0, for all T d1,T
d
2 ∈ S3

d and θ ∈ R+;

b) |G(θ,T d)| ≤ C(1 + |T d|)p−1, where T d ∈ S3
d , θ ∈ R+;

c) G(θ,T d) : T d ≥ β|T d|p, where T d ∈ S3
d , θ ∈ R+,

where C and β are positive constants, independent of the temperature θ.

Motivation for current considerations were the results of Alber and Chełmiński [3] and of
Hömberg [43]. In [3] the authors considered the quasi-static visco-elasticity models with Norton-
Hoff constitutive function

G(T ) = c|T |p−2T , (5.0.1)

with p > 2. The parameter c was a positive constant.The idea of proof in [3] was to formulate
the problem in a way that it fits to the abstract theory of maximal monotone operators, cf. [10].

In the contrast to [3] we include thermal effects of the process. As we mentioned at the
beginning of this dissertation we consider materials without thermal expansion. Hence, thermal
effects appear only in the form of additional equation on heat conductivity and by taking into
account the dependency of the constitutive function G(·, ·) on the temperature. This depen-
dence, i.e. the dependence of G(·, ·) on temperature, destroys the monotone character of the
model and it requires different approach. Moreover, in our case the function G depends only on
deviatoric part of Cauchy stress tensor and it has technical consequences. Contrary to the proof
of Alber and Chełmiński, where they showed that T belongs to Lp(0, T, Lp(Ω,S3)) for p ≥ 2,
the estimates conducted in the present situation provide us only with the fact that T belongs to
L2(0, T, L2(Ω,S3)).

In [43] Hömberg considered more general physical phenomena. Besides deformations and
temperature Hömberg was interested in electro-magnetic effects and concentrations of different

75
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phases of material. Changes of temperature have got the influence on concentrations. This de-
pendency was prescribed by a general operator P [·], which has got good properties. Visco-elastic
constitutive functions depend on these concentrations instead of temperature. This assumption
and linear dependency between function G and deviatoric part of Cauchy stress tensor (Mróz
model) implied that there are no problems with nonlinearities. The similarities between Höm-
berg’s paper and our result lie in the construction of approximated problem (truncation of the
terms that are only integrable) and in the approach used in order to deal with right-hand side
of heat equation. Nevertheless, because of the different structure of the problem, Hömberg could
show strong convergence of approximated sequence of the Cauchy stress tensor. For the concept
of showing this strong convergence let us observe that in the case of linear Mróz relation, and
in fact also in the case of Norton-Hoff relation (5.0.1), the stronger condition than monotonicity
holds, namely the uniform monotonicity condition

G(θ,T d1)−G(θ,T d2)) : (T d1 − T d2) ≥ c|T d1 − T d2|p, (5.0.2)

for all T d1,T
d
2 ∈ S3

d and θ ∈ R+. For the proof see e.g. [53].
Results presented in this Chapter come from [32]. Here, we skip some details which are

analogous to the one used in Chapter 4. The following chapter is organized as follows: Section
5.1 is dedicated to definition of solution and formulation of main Theorem. In Section 5.2 we
show the proof of this theorem. In a few places the proof goes in the same way as for Mróz model.
Therefore, minor details are omitted.

5.1 Formulation of the problem

Definition 5.1.1 (Solution to Norton-Hoff-type model). Let p ≥ 2, q < 5
4 and p′ = p/(p − 1).

The triple of functions

u ∈ Lp′(0, T,W 1,p′
g (Ω,R3))

T ∈ L2(0, T, L2(Ω,S3))

and
θ ∈ Lq(0, T,W 1,q(Ω)) ∩ C([0, T ],W−2,2(Ω))

is a weak solution to the system (1.2.2) if∫ T

0

∫
Ω
T : ∇ϕdx dt =

∫ T

0

∫
Ω
f ·ϕ dx dt, (5.1.1)

where
T = D(ε(u)− εp), (5.1.2)

and

−
∫ T

0

∫
Ω
θφt dx dt−

∫
Ω
θ0(x)φ(0, x) dx

+

∫ T

0

∫
Ω
∇θ · ∇φ dx dt−

∫ T

0

∫
∂Ω
gθφ dx dt =

∫ T

0

∫
Ω
T d : G(θ,T d)φ dx dt,

(5.1.3)

holds for every test function ϕ ∈ C∞([0, T ], C∞c (Ω,R3)) and φ ∈ C∞c ([−∞, T ), C∞(Ω)). Fur-
thermore, the visco-elastic strain tensor can be recovered from the equation on its evolution, i.e.

εp(x, t) = εp
0 (x) +

∫ t

0
G(θ(x, τ),T d(x, τ)) dτ, (5.1.4)

for a.e. x ∈ Ω and t ∈ [0, T ). Moreover, εp ∈W 1,p′(0, T, Lp
′
(Ω,S3

d)).
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Theorem 5.1.1. Let p ≥ 2 and let initial conditions satisfy θ0 ∈ L1(Ω), εp
0 ∈ L2(Ω,S3

d),
boundary conditions satisfy g ∈ Lp(0, T,W

1− 1
p
,p

(∂Ω,R3)), gθ ∈ L2(0, T, L2(∂Ω)) and volume
force f ∈ Lp(0, T,W−1,p(Ω,R3)) and function G(·, ·) satisfy the Assumption 5.0.1. Then there
exists a weak solution to system (1.2.2).

5.2 Proof of Theorem 5.1.1

The proof of Theorem 5.1.1 is similar to the proof of Theorem 4.2.1. We point out the differences
of these proofs. Differences between assumptions on Norton-Hoff-type models and Mróz models
appear in: non-strictly monotone condition with respect to the second variable and p-growth
condition of function with respect to second variable. We do not use Young measures tools in
the proof, since non-strictly monotone condition with respect to second variable is not sufficient
to show that the Young measure reduces to a Dirac measure. Thus, we use Minty-Browder trick
to deal with this issue.

In Section 5.2.1 we present transformation into homoguouens boundary-value problem and
the energy estimates of approximate solutions. Section 5.2.2 and Section 5.2.3 are dedicated to
limit passage with approximation parameters.

5.2.1 Energy estimates

Using the same argumentation as in Chapter 4, see Lemma 4.3.1, we can transform the system
into homogenoues boundary value problem and then using results discussed in Chapter 2 we
construct the approximate systems of equations.

Now, we show the uniform boundedness of approximate solutions. As in the case of Mróz
model, the uniform estimates are the consequences of finite energy of the system. Estimates for
potential energy are similar to previous ones.

Lemma 5.2.1. There exists a constant C which is uniform with respect to k and l such that

sup
t∈[0,T ]

E(ε(uk,l), ε
p
k,l)(t) + c‖T̃ d + T dk,l‖

p
Lp(0,T,Lp(Ω)) ≤ C. (5.2.1)

Proof. Let us start the proof in the same way as proof of Lemma 4.3.2. Since the potential
energy is absolutely continuous function, we calculate time derivative of E(t) and then after
simple calculation we obtain

d

dt
E(ε(uk,l), ε

p
k,l) = −

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l dx. (5.2.2)

Using growth condition of function G, Hölder inequality and Young inequality we get

d

dt
E(ε(uk,l), ε

p
k,l) = −

∫
Ω

(T̃
d

+ T dk,l) : G(θ̃ + θk,l, T̃
d

+ T dk,l) dx

+

∫
Ω
T̃
d

: G(θ̃ + θk,l, T̃
d

+ T dk,l) dx

≤ −β‖T̃ d + T dk,l‖
p
Lp(Ω) + ‖T̃ d‖Lp(Ω)‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖Lp′ (Ω)

≤ −β‖T̃ d + T dk,l‖
p
Lp(Ω) + c(ε)‖T̃ d‖pLp(Ω) + ε‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖

p′

Lp′ (Ω)

(5.2.3)
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where ε = β

2pCp′
. A constant C comes from Assumption 5.0.1. Hence, by the Jensen inequality,

the last term may be estimated as follows

ε‖G(θ̃ + θk,l,T
d
k,l + T̃

d
)‖p
′

Lp′ (Ω)
≤ Cp′ε

∫
Ω

(1 + |T̃ d + T dk,l|)p
′(p−1) dx

≤ Cp′ε
∫

Ω
(1 + |T̃ d + T dk,l|)p dx

≤ Cp′2p−1ε
(
|Ω|+ ‖T̃ d + T dk,l‖

p
Lp(Ω)

)
≤ β

2
|Ω|+ β

2
‖T dk,l + T̃

d‖pLp(Ω).

(5.2.4)

To finish the proof we integrate (5.2.3) over time interval (0, t), with 0 ≤ t ≤ T and we get

E(ε(uk,l), ε
p
k,l)(t) +

β

2
‖T dk,l + T̃

d‖pLp(0,T,Lp(Ω))

≤ c(ε)‖T̃ d‖pLp(0,T,Lp(Ω)) + E(ε(uk,l), ε
p
k,l)(0) +

β

2
t|Ω|.

(5.2.5)

Remark. From Lemma 5.2.1 we immediately notice that the sequence {T dk,l} is uniformly bounded
in the space Lp(Q,S3

d) with respect to k and l. Additionally, combining Assumption 5.0.1 with
Lemma 5.2.1 we conclude the uniform boundedness of the sequence {G(θ̃+θk,l, T̃

d
+T dk,l)} in the

space Lp′(Q,S3
d). Summing up, we obtain the uniform boundedness of the sequence {(T̃ d+T dk,l) :

G(θ̃ + θk,l, T̃
d

+ T dk,l)} in L1(Q).

Remark. The uniform boundedness of the potential energy implies that the sequence {T k,l} is
uniformly bounded in L∞(0, T, L2(Ω,S3)) and in particular in L2(Q,S3

d).

As a consequence of Lemma 5.2.1 we may observe that the regularity with respect to spatial
variable of Cauchy stress tensor and its deviatoric part are significantly different. Deviatoric
part of Cauchy stress tensor has higher integrability. We point this out, because it causes main
changes in the proof of Theorem 5.1.1 in comparison with proof of Theorem 4.2.1.

Lemma 5.2.2. The sequence {(εp
k,l)t} is uniformly bounded in Lp′(0, T, (Hs(Ω,S3))′) with respect

to l.

The proof of this lemma is similar to the proof of Lemma 4.3.3. The only difference is that
we should use the Hölder inequality with p and p′ instead of 2.

Next lemmas are the same as in previous chapter. The regularity of product {(T̃ d + T dk,l) :

G(θ̃ + θk,l, T̃
d

+ T dk,l)} is the same as for Mróz model. Different assumptions on function G(·, ·)
in Mróz and Norton-Hoff-type models do not affect temperature results. To see these proofs we
refer the reader to Chapter 4.

Lemma 5.2.3. The sequence {θk,l} is uniformly bounded in L∞(0, T ;L1(Ω)) with respect to k
and l.

Lemma 5.2.4. There exists a constant C, depending on the domain Ω and the time interval
(0, T ), such that for every k ∈ N

sup
0≤t≤T

‖θk,l(t)‖2L2(Ω) + ‖θk,l‖2L2(0,T,W 1,2(Ω)) + ‖(θk,l)t‖2L2(0,T,W−1,2(Ω))

≤ C
(
‖Tk
(

(T̃
d

+ T dk,l) : G(θ̃ + θk,l, T̃
d

+ T dk,l)
)
‖2L2(0,T,L2(Ω)) + ‖Tk(θ0)‖2L2(Ω)

)
.

(5.2.6)
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Remark. The uniform boundedness of solutions implies the global existence of approximate so-
lutions, i.e. existence of solutions {αnk,l(t), βmk,l(t), γnk,l(t), δmk,l(t)} on the whole time interval [0, T ]
for each n = 1, ..., k and m = 1, ..., l.

5.2.2 Limit passage l→∞ and uniform estimates.

Let us multiply the system (2.2.8) by smooth time-dependent functions, integrate over [0, T ] and
then rewrite the system as follows∫ T

0

∫
Ω
T k,l : ∇wnϕ1(t) dx dt = 0, n = 1, . . . , k, (5.2.7)

and ∫ T

0

∫
Ω

(εp
k,l)t : Dε(wn)ϕ2(t) dx dt

=

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : Dε(wn)ϕ2(t) dx dt, n = 1, ..., k,∫ T

0

∫
Ω

(εp
k,l)t : Dζkmϕ3(t) dx dt

=

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : Dζkmϕ3(t) dx dt, m = 1, ..., l,

(5.2.8)

and for m = 1, . . . , l

−
∫ T

0

∫
Ω
θk,lϕ

′
4(t)vm dx dt−

∫
Ω
θ0(x)ϕ4(0)vm dx+

∫ T

0

∫
Ω
∇θk,l · ϕ4(t)∇vm dx dt

=

∫ T

0

∫
Ω
Tk
(

(T̃
d

+ T dk,l) : G(θ̃ + θk,l, T̃
d

+ T dk,l)
)
ϕ4(t)vm dx dt,

(5.2.9)

holds for every test function ϕ1, ϕ2, ϕ3 ∈ C∞([0, T ]) and ϕ4 ∈ C∞c ([−∞, T )).
Firstly, we pass to the limit with approximation parameter for temperature. In previous

section we proved uniform boundedness with respect to l for appropriate sequences. Then, at
least for a subsequence, but still denoted by the index l, we get the following convergences

T k,l ⇀ T k weakly in L2(Q,S3),

T dk,l ⇀ T dk weakly in Lp(Q,S3
d),

G(θ̃ + θk,l, T̃
d

+ T dk,l) ⇀ χk weakly in Lp′(Q,S3
d),

θk,l ⇀ θk weakly in L2(0, T,W 1,2(Ω)),
θk,l → θk a.e. in Q,

(εp
k,l)t ⇀ (εp

k )t weakly in Lp′(0, T, (Hs(Ω,S3))′).

(5.2.10)

Passing now to the limit in (5.2.7)-(5.2.8) yields∫ T

0

∫
Ω
T k : ∇wnϕ1(t) dx dt = 0, n = 1, . . . , k, (5.2.11)

and∫ T

0

∫
Ω

(εp
k )t : Dε(wn)ϕ2(t) dx dt =

∫ T

0

∫
Ω
χk : Dε(wn)ϕ2(t) dx dt, n = 1, ..., k,∫ T

0

∫
Ω

(εp
k )t : Dζkmϕ3(t) dx dt =

∫ T

0

∫
Ω
χk : Dζkmϕ3(t) dx dt, m ∈ N,

(5.2.12)
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holds for every test function ϕ1, ϕ2, ϕ3 ∈ C∞([0, T ]). Basis functions lin{ζkm}∞m=1 are dense in
Lp(Ω,S3), hence we conclude that∫ T

0

∫
Ω

(εp
k )t : ϕ dx dt =

∫ T

0

∫
Ω
χk : ϕ dx dt (5.2.13)

holds for all ϕ ∈ C∞([0, T ], Lp(Ω,S3)) and then also for all ϕ ∈ Lp(Q,S3).
The remaining part of this section is dedicated to identification of weak limit of the nonlinear

term χk and showing the convergence of right-hand side of heat equation (5.2.9). As previously
(T̃

d
+ T dk,l) : G(θ̃ + θk,l, T̃

d
+ T dk,l) is a product of two weakly convergent sequences. The same

problem was considered for Mróz model. Since we have different monotone condition on function
G(·, ·), we do not use Young measures to identify the nonlinear term.

Our idea is to solve this problem in three steps method. The first step is to show the limiting
inequality as in Lemma 4.3.6. The second one is to identify the weak limit χk by usage of
Minty-Browder trick. And finally, we prove the weak convergence of the product (T̃

d
+ T dk,l) :

G(θ̃ + θk,l, T̃
d

+ T dk,l).
Step 1. Limiting inequality.

Lemma 5.2.5. The following inequality holds for the solution of approximate system

lim sup
l→∞

∫ t

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l dx dt ≤

∫ t

0

∫
Ω
χk : T dk dx dt. (5.2.14)

Proof of this lemma is the same as of Lemma 4.3.6. The only difference in the proof is to pass
to the limit with convolution in Lp space instead of L2 space. Hence, we can omit this proof and
refer the reader to the proof of 4.3.6.

Step 2. Minty-Browder trick
From the monotonicity condition of the function G(·, ·) we obtain∫

Ω

(
G(θ̃ + θk,l, T̃

d
+ T dk,l)−G(θ̃ + θk,l, T̃

d
+W d)

)
: (T dk,l−W d) dx ≥ 0

∀ W d ∈ Lp(Q,S3
d).

(5.2.15)

Hence∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l dx dt−

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : W d dx dt

−
∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+W d) :

(
T dk,l −W d

)
dx dt ≥ 0.

(5.2.16)

Our goal is to pass to the limit with l→∞ in (5.2.16). Limit of the first term comes from Lemma
5.2.5. There is no problem with limit passage in the second term sinceG(θ̃+θk,l, T̃

d
+T dk,l) ⇀ χk

in Lp′(Q,S3
d). It remains to consider the last term from (5.2.16).

The pointwise convergence of {θk,l} implies the pointwise convergence of {G(θ̃ + θk,l, T̃
d

+

W d)} to {G(θ̃ + θk, T̃
d

+ W d)}. The function |T̃ d + W d|p−1 belongs to Lp
′
(Q), hence the

sequence {G(θ̃ + θk,l, T̃
d

+W d)} is uniformly bounded in Lp′(Q,S3
d). By Lebesgue’s dominated
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convergence theorem we obtain that G(θ̃ + θk,l, T̃
d

+W d)→ G(θ̃ + θk, T̃
d

+W d) in Lp′(Q,S3
d)

for every W d ∈ Lp(Q,S3
d). Letting l→∞ in (5.2.16), we get∫ T

0

∫
Ω

(
χk −G(θ̃ + θk, T̃

d
+W d)

)
: (T dk −W d) dx dt ≥ 0 ∀ W d ∈ Lp(Q,S3

d). (5.2.17)

Let us take W d = T dk − λUd, where Ud ∈ Lp(Q,S3
d) and λ > 0. Then we obtain∫ T

0

∫
Ω

(
χk −G(θ̃ + θk, T̃

d
+ T dk − λUd)

)
: (λUd) dx dt ≥ 0 ∀ Ud ∈ Lp(Q,S3

d). (5.2.18)

Hence, dividing by λ, we get∫ T

0

∫
Ω

(
χk −G(θ̃ + θk, T̃

d
+ T dk − λUd)

)
: Ud dx dt ≥ 0 ∀ Ud ∈ Lp(Q,S3

d). (5.2.19)

Letting λ→ 0 we obtain∫ T

0

∫
Ω

(
χk −G(θ̃ + θk, T̃

d
+ T dk)

)
: Ud dx dt ≥ 0 ∀ Ud ∈ Lp(0, T, Lp(Q,S3

d). (5.2.20)

Repeating the reasoning with negative λ we obtain the opposite inequality. Hence∫ T

0

∫
Ω

(
χk −G(θ̃ + θk, T̃

d
+ T dk)

)
: Ud dx dt = 0 ∀ Ud ∈ Lp(Q,S3

d). (5.2.21)

Thus implies
χk = G(θ̃ + θk, T̃

d
+ T dk) a.e. in Q. (5.2.22)

Consequently for every k ∈ N

G(θ̃ + θk,l, T̃
d

+ T dk,l) ⇀ G(θ̃ + θk, T̃
d

+ T dk),

in Lp′(Q,S3
d) as l→∞.

Step 3. Limit of the right-hand side of heat equation.

Lemma 5.2.6. For each k ∈ N it holds

lim
l→∞

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : (T̃

d
+ T dk,l) dx dt

=

∫ T

0

∫
Ω
G(θ̃ + θk, T̃

d
+ T dk) : (T̃

d
+ T dk) dx dt.

(5.2.23)

Proof. Using monotonicity of the function G(·, ·)

0 ≤
∫ T

0

∫
Ω

(
G(θ̃ + θk,l, T̃

d
+ T dk,l)−G(θ̃ + θk,l, T̃

d
+ T dk)

)
: (T dk,l − T dk) dx dt

=

∫ T

0

∫
Ω

(
G(θ̃ + θk,l, T̃

d
+ T dk,l) : (T dk,l − T dk)−G(θ̃ + θk,l, T̃

d
+ T dk) : (T dk,l − T dk)

)
dx dt.

(5.2.24)
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Passing with l to ∞ we get that the second term from right-hand side of (5.2.24) converges to
zero. Furthermore, using Lemma 5.2.5 we obtain

0 ≤ lim sup
l→∞

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : (T dk,l + T̃

d − T̃ d − T dk) dx dt

= lim sup
l→∞

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : (T̃

d
+ T dk,l) dx dt

− lim
l→∞

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : (T̃

d
+ T dk) dx dt ≤ 0.

(5.2.25)

Hence

lim
l→∞

∫ T

0

∫
Ω
G(θ̃ + θk,l,T̃

d
+ T dk,l) : (T̃

d
+ T dk,l) dx dt

= lim
l→∞

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk) : (T̃

d
+ T dk) dx dt

=

∫ T

0

∫
Ω
G(θ̃ + θk, T̃

d
+ T dk) : (T̃

d
+ T dk) dx dt,

which completes the proof.

After three steps method we may pass to the limit in the heat equation, namely for all
ϕ4 ∈ C∞([−∞, T ]× Ω) we obtain

−
∫ T

0

∫
Ω
θk(ϕ4)t dx dt−

∫
Ω
θk(x, 0)ϕ4(x, 0) dx+

∫ T

0

∫
Ω
∇θk · ∇ϕ4 dx dt

=

∫ T

0

∫
Ω
Tk
(

(T̃
d

+ T dk) : G(θ̃ + θk, T̃
d

+ T dk)
)
ϕ4 dx dt.

(5.2.26)

Next two lemmas are similar to Lemmas 4.3.7 and 4.3.8. We omit its proofs but we should
mention that it is crucial that p ≥ 2.

Lemma 5.2.7. The sequence {εp
k} is uniformly bounded in W 1,p′(0, T, Lp

′
(Ω,S3)) with respect

to k.

Lemma 5.2.8. The sequence {uk} is uniformly bounded in Lp
′
(0, T,W 1,p′

0 (Ω,R3)) with respect
to k.

5.2.3 Limit passage k →∞

We start the second limit passage with considerations on the temperature sequence. Uniform
boundedness of sequence {(T̃ d+T dk) : G(θ̃+θk, T̃

d
+T dk)} in L1(Q) allows us to use the Boccardo

and Gallouët approach, see Chapter 2 Section 3.1. We obtain that there exists a subsequence
{θk} such that for each 1 < q < 5

4 :

θk ⇀ θ weakly in Lq(0, T,W 1,q(Ω)). (5.2.27)

Furthermore, uniform estimates from the previous sections imply that the following convergences
hold

θk → θ a.e. in Q,
uk ⇀ u weakly in Lp′(0, T,W 1,p′

0 (Ω,R3)),
T k ⇀ T weakly in L2(Q,S3),

T dk ⇀ T d weakly in Lp(Q,S3
d),

G(θ̃ + θk, T̃
d

+ T dk) ⇀ χ weakly in Lp′(Q,S3
d),

(εp
k )t ⇀ (εp)t weakly in Lp′(Q,S3

d).

(5.2.28)
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Consequently, passing to the limit with k →∞ in (5.2.11), (5.2.13) we obtain∫ T

0

∫
Ω
T : ∇ϕdx dt = 0, (5.2.29)

for all ϕ ∈ C∞([0, T ], L2(Ω,S3)) and then also for all ϕ ∈ L2(Q,S3), and∫ T

0

∫
Ω

(εp)t : ψ dx dt =

∫ T

0

∫
Ω
χ : ψ dx dt (5.2.30)

for all ψ ∈ Lp(Q,S3).
We use three steps method to characterize χ and to identify weak limit of right-hand side

of (5.2.26). Now, it is very important to carefully consider the first step. There appear some
difficulties in the limiting inequality and we cannot obtain it by the same argumentation as in
Lemma 4.3.6.

Lemma 5.2.9. The following inequality holds for the solution of approximate systems

lim sup
k→∞

∫ t2

0

∫
Ω
G(θ̃ + θk, T̃

d
+ T dk) : T dk dx dt ≤

∫ t2

0

∫
Ω
χ : T d dx dt. (5.2.31)

Proof. Due to (5.2.22) we can rewrite (4.3.40) as follows

d

dt
E(ε(uk), ε

p
k ) = −

∫
Ω
G(θ̃ + θk, T̃

d
+ T dk) : T dk dx. (5.2.32)

We multiply the above identity by ψµ,τ given by formula (4.3.29) and integrate over (0, T ).
Passing to the limit k →∞ we proceed in the same manner as in the proof of Lemma 4.3.9 and
we obtain

lim inf
k→∞

∫ T

0

d

dτ
E(ε(uk), ε

p
k )ψµ,τ dt

= lim inf
k→∞

1

µ

∫ τ+µ

τ
E(ε(uk), ε

p
k ) dt− lim

k→∞
E(ε(uk), ε

p
k )(0)

≥ 1

µ

∫ τ+µ

τ
E(ε(uk), ε

p
k )(t) dt− E(ε(u), εp)(0).

(5.2.33)

For the final step of the proof we need to show that the energy equality holds. Proceeding
similarly as in previous limit passage, we shall use as a test function ut mollified with respect
to time. Now, we cannot do this, because of low regularity of u with respect to space (p′ < 2).
Therefore, we proceed differently. We use an approximate sequence as a test function in the
limit identity (5.2.29). For uk we do not have a problem with spatial regularity, because it
is a finite combination of basis functions. Hence, we take in (5.2.29) the test function ϕ =
(uk ∗ ηε)t1(t1,t2)) ∗ ηε, where again ηε is a standard mollifier and we mollify with respect to time∫ t2

t1

∫
Ω
D(ε(u)− εp) ∗ ηε : (ε(uk) ∗ ηε)t dx dt = 0. (5.2.34)

To complete the calculations, we use ψ = ((T d ∗ ηε1(t1,t2)) ∗ ηε as a test function in (5.2.13).
Having (5.2.22) in mind, we obtain∫ t2

t1

∫
Ω

(εp
k ∗ ηε)t : T ∗ ηε dx dt =

∫ t2

t1

∫
Ω
G(θ̃ + θk, T̃

d
+ T dk) ∗ ηε : T ∗ ηε dx dt. (5.2.35)
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Products in (5.2.35) are well defined, since for the matrices A ∈ S3
d and B ∈ S3 the equivalence

A : Bd = A : B holds and tensor T d belongs to Lp(Q,S3
d). Subtracting (5.2.35) from (5.2.34)

we get∫ t2

t1

∫
Ω
T ∗ηε : (ε(uk)−εp

k )t ∗ηε dx dt = −
∫ t2

t1

∫
Ω
G(θ̃+θk, T̃

d
+T dk)∗ηε : T d ∗ηε dx dt. (5.2.36)

For every ε > 0 the sequence {(ε(uk)− εp
k )t ∗ ηε} belongs to L2(Q,S3

d) and is uniformly bounded
in L2(Q,S3

d). Moreover, {G(θ̃+θk, T̃
d
+T dk)∗ηε} belongs to Lp

′
(Q,S3

d) and is uniformly bounded
in this space. Hence, we pass to the limit with k →∞∫ t2

t1

∫
Ω
T ∗ ηε : (ε(u)− εp)t ∗ ηε dx dt = −

∫ t2

t1

∫
Ω
χ ∗ ηε : T d ∗ ηε dx dt.

Using the properties of convolution we get∫
Ω
T ∗ ηε : (ε(u)− εp) ∗ ηε dx

∣∣∣t2
t1

= −
∫ t2

t1

∫
Ω
χ ∗ ηε : T d ∗ ηε dx dt,

and finally by passing to the limit with ε→ 0 and then with t1 → 0∫
Ω
D(ε(u)− εp) : (ε(u)− εp) dx

∣∣∣t2
0

= −
∫ t2

0

∫
Ω
χ : T d dx dt. (5.2.37)

We multiply (5.2.37) by 1
µ and integrate over (τ, τ + µ) and proceed now in the same manner as

in the proof of Lemma 4.3.6.

Again we identify the weak limit χ by using the Minty-Browder trick and get χ = G(θ̃ +

θ, T̃
d

+ T d). Moreover, we obtain

G(θ̃ + θk, T̃
d

+ T dk) : (T̃
d

+ T dk) ⇀ G(θ̃ + θ, T̃
d

+ T d) : (T̃
d

+ T d), (5.2.38)

weakly in L1(Q). Furthermore,

Tk
(
G(θ̃ + θk, T̃

d
+ T dk) : (T̃

d
+ T dk)

)
⇀ G(θ̃ + θ, T̃

d
+ T d) : (T̃

d
+ T d), (5.2.39)

weakly in L1(Q). Here, coming back to removed boundary value problems we conclude that∫ T

0

∫
Ω

(
T̃ + T

)
: ∇ϕ dx dt =

∫ T

0

∫
Ω
f ·ϕdx dt, (5.2.40)

where
T = D(ε(u)− εp), T̃ = ε(ũ), (5.2.41)

and ϕ ∈ C∞([0, T ], C∞c (Ω,R3)). Moreover,

−
∫ T

0

∫
Ω

(θ̃ + θ)φt dx dt−
∫

Ω
(θ̃0(x) + θ0(x))φ(x, 0) dx+

∫ T

0

∫
Ω
∇(θ̃ + θ) · ∇φ dx dt

−
∫ T

0

∫
∂Ω
gθφ ds dt =

∫ T

0

∫
Ω

(T̃
d

+ T d) : G(θ̃ + θ, T̃
d

+ T d)φ dx dt,

(5.2.42)

for φ ∈ C∞c ([−∞, T ], C∞(Ω)) and

εp(x, t) = εp
0 (x) +

∫ t

0
G(θ̃ + θ, T̃

d
+ T d) dτ. (5.2.43)

That completes the proof of Theorem 5.1.1.



Chapter 6

Models with growth conditions in
generalized Orlicz spaces

In this chapter we extend the results presented previously. The growth conditions in the general-
ized Orlicz spaces for visco-elastic constitutive function are natural extensions of Norton-Hoff-type
model. First of all, the use of generalized Orlicz spaces takes into consideration more rapid growth
than determined by polynomial growth condition (providing solution in Lebesgue spaces), hence
it is a better approximation of Prandtl-Reuss model. Secondly, the choice of generalized Orlicz
space allows us to consider non-homogeneous materials. Results presented in this chapter are
based on [48].

We assume that the body Ω ⊂ R3 is an open bounded set with a C2 boundary. In previous
chapters we considered only homogeneous materials. Here, we omit this assumption. In the case
of generalized Orlicz spaces, the N -function depends on spatial variable x. Thus, in different
regions of Ω we may have different growth conditions. Furthermore, operator D and function G
may also depend on the spatial variable.

Assumption 6.0.1. The function G(x, θ,T d) is a Carethéodory function, i.e. is measurable with
respect to x and continuous with respect to θ and T d, and what is more, it satisfies the following
conditions:

a) (G(x, θ,T d1)−G(x, θ,T d2)) : (T d1 − T d2) ≥ 0, for all T d1,T
d
2 ∈ S3

d and θ ∈ R+;

b) G(x, θ,T d) : T d ≥ c
(
M(x,T d) +M∗(x,G(x, θ,T d))

)
for a.a. x ∈ Ω, where T d ∈ S3

d ,
θ ∈ R+ and c is a positive constant independent of temperature θ;

c) G(x, θ,0) = 0 for a.a. x ∈ Ω.

Moreover, M is an N -function and M∗ is an N -function complementary to M . The class of
N -functions is restricted as follows:

1) the inequality holds ∫
Q
M∗(x,A(x, t)) dx dt ≤

∫
Q
|A|2 dx dt; (6.0.1)

2) M∗ satisfies the ∆2-condition.

Further, we write G(θ,T d) instead of G(x, θ,T d). We keep in mind that one of variables of
function G is x but we omit repetitions in order to make the content more clear for the reader.

85
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Studying mechanical problems in Orlicz spaces is not an isolated issue. The problem of
visco-elastic deformation involving Orlicz spaces was considered in [21], but only in the case of
N -function independent of spatial variable x. In the case of N -function which depends on the
spatial variable x some accurate assumptions must be done. There are two possible ways to do
it. Firstly, we may assume the regularity with respect to x, e.g. log-Hölder continuity in [74, 75].
And secondly, upper or lower growth condition of an N -function with respect to the last variable
can be considered, e.g. see [35, 36, 37, 84]. There are no results for thermo-visco-elastic problems
without any upper and lower growth condition on N -function with respect to the last variable.

In the contrast to results presented in Chapter 4 and Chapter 5 we use another approach to
heat equation. In Chapter 3 we presented two different approaches which may be used to solve
heat equation. As previously, by Assumption 6.0.1 we know that the right-hand side function
G(θ,T d) : T d is only an integrable function. Here, we prove existence of renormalised solution to
heat equation, see Section 3.2. The use of different approach than one used in previous models
causes another definition of solution to heat equation, see Definition 6.2.2. Similarly as for
previous model we approximate the difference θ̂− θ̃, where θ̃ is a solution to cutting off problem,
see (6.3.2), and θ̂ is a solution to whole system of equations. In the contrast to Boccardo and
Gallouët’s solution the difference θ̂ − θ̃ appears in the definition of renormalised solution, see
Definition 6.2.2.

This chapter is organised as follows. In Section 6.1 we make some general remarks about
generalised Orlicz space. We quote main definitions and prove important lemmas. In Section 6.2
we present the statement of the main theorem of this chapter. Finally, Section 6.3 is dedicated
to the proof.

6.1 Generalized Orlicz spaces

We recall important definitions which will be used to formulate the statement of this chapter.
Let us start with the repetition of generalized Orlicz spaces. For general concept of Orlicz spaces
we refer the reader to [1, 49, 59, 64]. Let us start with the definition of N -function.

Definition 6.1.1. Let Ω be a bounded open domain in R3. A function M : Ω×S3 → R+ is said
to be N -function if it satisfies the following conditions:

1) M is a Carathéodory function such that M(x, ξ) = 0 if and only if ξ = 0;

2) M(x, ξ) = M(x,−ξ) a.e. in Ω;

3) M(x, ξ) is a convex function with respect to ξ;

4) lim|ξ|→0M(x, ξ)/|ξ| = 0 for a. a. x ∈ Ω;

5) lim|ξ|→∞M(x, ξ)/|ξ| =∞ for a. a. x ∈ Ω.

Definition 6.1.2. The complementary function M∗ to a function M is defined by

M∗(x,η) = sup
η∈S3

(ξ : η −M(x, ξ)), (6.1.1)

for η ∈ S3, x ∈ Ω.

Remark. A complementary function M∗ to N -function M is also an N -function.
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The generalized Orlicz class LM (Q,S3) is the set of all measurable functions ξ : Q→ S3 such
that ∫

Q
M(x, ξ(x, t)) dx dt <∞. (6.1.2)

The generalized Orlicz space LM (Q,S3) can be defined as the smallest linear space containing
LM (Q,S3). It is a Banach space with respect to the Orlicz norm

‖ξ‖O,M = sup

{∫
Q
ξ : η dx dt : η ∈ LM∗(Q,S3),

∫
Q
M∗(x,η) dx dt ≤ 1

}
(6.1.3)

or equivalently with respect to Luxemburg norm

‖ξ‖L,M = inf

{
λ > 0 :

∫
Q
M

(
x,
ξ(x, t)

λ

)
dx dt < 1

}
. (6.1.4)

By EM (Q,S3) we denote the closure of the set of bounded functions in ‖ · ‖O-norm.

Definition 6.1.3. We say that an N -function M satisfies ∆2-condition if for almost all x ∈ Ω
and for all ξ ∈ S3, there exist a constant c and nonnegative integrable function h : Ω → R such
that

M(x, 2ξ) ≤ cM(x, ξ) + h(x). (6.1.5)

If this condition fails, we lose numerous properties of the space LM (Q,S3) like separability, re-
flexivity, cf. [1, 59] and many others. In particular, if (6.1.5) holds, then LM (Q,S3) = LM (Q,S3).

Remark. For every M the following inclusion holds

EM (Q,S3) ⊆ LM (Q,S3) ⊆ LM (Q,S3). (6.1.6)

If M satisfies the ∆2-condition, then EM (Q,S3) = LM (Q,S3).

The proof of abovementioned remark comes from [37, Proposition A.2].

Proof. Inclusions in (6.1.6) are obvious. We show that if M satisfies ∆2-condition, LM (Q,S3)
is a vector space. Then, by definition of Orlicz spaces LM (Q,S3) and EM (Q,S3) the proof is
complete.

LetM satisfy ∆2-condition. Below we prove that pointwise addition and scalar multiplication
are invariant in LM (Q,S3). M(x, ·) is a convex function with respect to second variable, thus for
ξ, ζ ∈ LM (Q,S3) it holds∫
Q
M(x, ξ(t, x) + ζ(t, x)) dx dt =

∫
Q
M
(
x, 2

ξ(t, x) + ζ(t, x)

2

)
dx dt

≤ c
(∫

Q
M(x, ξ(t, x)) dx dt+

∫
Q
M(x, ζ(t, x)) dx dt

)
+

∫
Q
h(x) dx dt <∞,

(6.1.7)

where constant c and function h come from Definition 6.1.3. Let n ∈ N such that |λ| ≤ 2n then∫
Q
M(x, λξ) dx dt =

∫
Q
M
(
x, (sgnλ)2nξ

)
dx dt ≤ cn

∫
Q
M(x, ξ) dx dt+ n

∫
Q
h(x) dx dt <∞

(6.1.8)
which completes the proof.
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The space LM∗(Q,S3) is the dual space of EM (Q,S3). The functional

ρ(ξ) =

∫
Q
M(x, ξ) dx dt (6.1.9)

is a modular.

Definition 6.1.4. We say that a sequence {ξi}∞i=1 convergences modularly to ξ in LM (Q,S3) if
there exists λ > 0 such that ∫

Q
M
(
x,
ξi − ξ
λ

)
dx dt→ 0 (6.1.10)

We will use the notation ξi
M−→ ξ for modular convergence in LM (Q,S3).

Assumption 6.0.1 requires the usage of basic tools regarding generalized Orlicz spaces. Here
we present some basic lemmas, which are used in the proof regarding existence of solution to
thermo-visco-elastic models. The following lemmas and their proofs come from [37]. They may
be also found in [28, 35, 39, 85] and many other publications.

Lemma 6.1.1 (Fenchel-Young inequality). Let M be an N -function and M∗ be complementary
to M . Then following inequality is satisfied

|ξ : η| ≤M(x, ξ) +M∗(x,η) (6.1.11)

for all ξ,η ∈ S3 and for almost all x ∈ Ω.

Fenchel-Young inequality is a consequence of definition of complementary N -function, see
Definition 6.1.2

Lemma 6.1.2 (Hölder inequality). Let M be an N -function and M∗ be complementary to M .
Then the following inequality is satisfied∣∣∣ ∫

Q
ξ : η dx dt

∣∣∣ ≤ 2‖ξ‖L,M‖η‖L,M∗ . (6.1.12)

Proof. By applying the Young inequality to the product of ξ
‖ξ‖L,M and η

‖η‖L,M∗
we obtain

∫
Q

ξ

‖ξ‖L,M
:

η

‖η‖L,M∗
dx dt ≤

∫
Q
M
(
x,

ξ

‖ξ‖L,M

)
dx dt+

∫
Q
M∗
(
x,

η

‖η‖L,M∗

)
dx dt = 2,

(6.1.13)
where the last equality is the consequence of Luxemburg norms definition.

Lemma 6.1.3 (Lemma A.3 from [37]). Let ξi : Q→ Rd be a measurable sequence. Then ξi
M−→ ξ

in LM (Q,S3) modularly if and only if ξi → ξ in measure and there exists some λ > 0 such that
the sequence {M(·, λξi)} is uniformly integrable, i.e.

lim
R→∞

(
sup
i∈N

∫
{(t,x): |M(x,λξi)|≥R}

M(x, λξi) dx dt

)
= 0. (6.1.14)
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Proof. Note that ξj → ξ in measure if and only if M(·, (ξj − ξ)/λ)→ 0 in measure for all λ > 0.
Moreover, the convergence ξj → ξ in measure implies that for all measurable sets A ⊂ Q it holds

lim inf
j→∞

∫
A
M(x, ξj) dx dt ≥

∫
A
M(x, ξ) dx dt. (6.1.15)

Note also that the convexity of M implies∫
A
M
(
x,
ξj − ξ
λ

)
dx dt ≤

∫
A
M
(
x,
ξj
2λ

)
dx dt+

∫
A
M
(
x,
ξ

2λ

)
dx dt (6.1.16)

Hence by the classical Vitali’s lemma for fj(x) = M(x, (ξj−ξ)/λ) we obtain that fj → 0 strongly
in L1(Q).

Lemma 6.1.4 (Lemma A.4 from [37]). LetM be an N -function and for all i ∈ N, let
∫
QM(x, ξi) dx dt ≤

C. Then the sequence {ξi} is uniformly integrable.

Proof. Let us define δ(R) = min|ξ|=RM(x, ξ)/|ξ|. Then, for all j ∈ N, it holds∫
{(x,t)∈Q: |ξj(x,t)|≥R}

M(x, ξj(t, x)) dx dt =

∫
{(x,t)∈Q: |ξj(x,t)|≥R}

M(x, ξj)

|ξj |
|ξj |dx dt

≥ δ(R)

∫
{(x,t)∈Q: |ξj(x,t)|≥R}

|ξj | dx dt.

(6.1.17)

Since the left-hand side is bounded, we obtain

sup
j∈N

∫
{(x,t)∈Q: |ξj(x,t)|≥R}

|ξj(t, x)|dx dt ≤ C

δ(R)
. (6.1.18)

Function δ(R) is increasing, hence the proof is complete.

Lemma 6.1.5 (Lemma A.5 from [37]). Let M be an N -function and M∗ its complementary
function. Suppose that the sequences Φi : Q → S3 and Ψi : Q → S3 are uniformly bounded
in LM (Q,S3) and LM∗(Q,S3), respectively. Moreover, Φi

M−→ Φ modularly in LM (Q,S3) and
Φi

M∗−−→ Φ modularly in LM∗(Q,S3). Then, Φi : Ψi → Φ : Ψ strongly in L1(Q).

Proof. Owing to Lemma 6.1.3 the modular convergence of {Ψj} and {Φj} implies the convergence
in measure of these sequences and consequently also the convergence in measure of the product.
Hence it is sufficient to show the uniform integrability of {Ψj : Φj}. Notice that it is equivalent
with the uniform integrability of the term {Ψj

λ1
:

Φj

λ2
} for any λ1, λ2 > 0. The assumptions of the

proposition provide that there exist some λ1, λ2 > 0 such that the sequences{
M

(
x,

Ψj

λ1

)}
and

{
M∗

(
x,

Φj

λ2

)}
(6.1.19)

are uniformly integrable. Hence, let us use the same constants and estimate with the help of
Fenchel–Young inequality ∣∣∣Ψj

λ1
:

Φj

λ2

∣∣∣ ≤M(x, Ψj

λ1

)
+M

(
x,

Φj

λ2

)
. (6.1.20)

Obviously, the uniform integrability of the right-hand side provides the uniform integrability of
the left-hand side and this yields the assertion.
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Lemma 6.1.6 (Lemma A.6 from [37]). Let ρi be a standard mollifier, i.e. ρ ∈ C∞(R), ρ has
a compact support and

∫
R ρ(τ) dτ = 1, ρ(τ) = ρ(−τ). We define ρi(τ) = iρ(iτ). Moreover,

let ∗ denote a convolution in the variable τ . Then for any function Φ : Q → S3, such that
Φ ∈ L1(Q,S3), it holds

ρi ∗Φ→ Φ in measure as i→∞. (6.1.21)

Proof. For a.a. x ∈ Ω the function Ψ(·, x) ∈ L1(0, T ) and ρi ∗Ψ(·, x)→ Ψ(·, x) in L1(0, T ) and
hence ρi ∗Ψ→ Ψ in measure on the set [0, T ]× Ω.

Lemma 6.1.7 (Lemma A.7 from [37]). Let ρi be a standard mollifier. Given an N -function M
and a function Φ : Q → S3 such that Φ ∈ LM (Q), the sequence {M(x, ρi ∗ Φ)} is uniformly
integrable.

Proof. We start with an abstract fact concerning the uniform integrability. Namely, the following
two conditions are equivalent for any measurable sequence {ξj}

(a) ∀ε > 0 ∃δ > 0 : supj∈N sup|A|≤δ
∫
A |ξj | dx dt ≤ ε

(b) ∀ε > 0 ∃δ > 0 : supj∈N
∫
Q

(
|ξj | − 1√

δ

)+
≤ ε where we use the same notation as in previous

chapters, i.e. z+ = max{0, z}.

The implication (a) ⇒ (b) is obvious. There exists γ > 0 such that there exists A′ = {(x, t) ∈
Q : |ξj | > 1√

γ } with meas(A′) ≤ δ. Then

sup
j∈N

∫
A′
|ξj |dx dt ≤ ε, (6.1.22)

and
sup
j∈N

∫
A′

(
|ξj | −

1
√
γ

)
dx dt ≤ ε+

δ
√
γ
, (6.1.23)

By the proper choice of A′ we obtain supj∈N
∫
Q

(
|ξj | − 1√

γ

)+
dx dt ≤ ε + δ√

γ , which completes
this implication. To show that also (b)⇒ (a) holds, let us estimate

sup
j∈N

sup
meas(A)≤δ

∫
A
|ξj |dx dt = sup

j∈N
sup

meas(A)≤δ

∫
A

∣∣ξj − 1√
δ

+
1√
δ

∣∣ dx dt

≤ sup
j∈N

sup
meas(A)≤δ

∫
A

(
|ξj | −

1√
δ

)+

dx dt+ sup
meas(A)≤δ

meas(A)
1√
δ

≤
√
δ + sup

j∈N

∫
Q

(
|ξj | −

1√
δ

)+

dx dt

≤
√
δ + ε.

(6.1.24)

Notice that since M is a convex function, the following inequality holds for all δ > 0:∫
Q

∣∣M(x,Ψ)− 1

δ

∣∣+ dx dt ≥
∫
Q

∣∣M(x, ρj ∗Ψ)− 1

δ

∣∣+ dx dt. (6.1.25)

Finally, since Ψ ∈ LM (Q), also
∫
Q |M(x,Ψ)−(1/

√
δ)|+ dx dt is finite and hence taking supremum

over j ∈ N in abovementioned equation we prove the assertion.
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6.2 Formulation of the problem

Heterogeneity of domain Ω implies the need of making the assumptions on regularity of component
in regards of operator D.

Assumption 6.2.1. Let the operator D : S3 → S3 be a four-index matrix, i.e.

D = D(x) = {di,j,k,l(x)}3i,j,k,l=1 (6.2.1)

and the following equalities hold

di,j,k,l(x) = dj,i,k,l(x), di,j,k,l(x) = di,j,l,k(x) and di,j,k,l(x) = dk,l,i,j(x), (6.2.2)

where function di,j,k,l belongs to W 1,p(Ω) for each i, j, k, l = 1, 2, 3 and for some p > 3. Moreover,
let D be linear, positively definite and bounded.

Assumption 6.0.1 on function G(·, ·) causes use of space for displacement.

Definition 6.2.1. Let us define the space BDM∗(Q,R3) by formula

BDM∗(Q,R3) =
{
u ∈ L1(Ω,R3) : ε(u) ∈ LM∗(Ω,S3)

}
. (6.2.3)

The space BDM∗(Q,R3) is a Banach space with a norm

‖u‖BDM (Q) = ‖u‖L1(Q) + ‖ε(u)‖M∗ . (6.2.4)

Space BDM∗(Q,R3) is a subspace of the space of bounded deformations BD(Q,R3)

BD(Q,R3) =
{
u ∈ L1(Ω,R3) : [ε(u)]i,j ∈M(Q)

}
, (6.2.5)

where M(Q) is a space of bounded measures on Q and [ε(u)]i,j = 1
2( ∂ui∂xj

+
∂uj
∂xi

), cf. [38].
According to [80, Theorem 1.1] there exist a unique continuous operator γ0 from BDM∗(Q) onto
L1((0, T )× ∂Ω) such that the generalized Green formula

2

∫
Q
φεi,j(u) dx dt = −

∫
Q

(ui
∂φ

∂xi
+ uj

∂φ

∂xj
) +

∫ T

0

∫
∂Ω
φ(γ0(ui)nj + γ0(uj)ni)dH2 dt (6.2.6)

hold for every φ ∈ C1(Q) and where n = (n1, n2, n3)T is an unite outward normal vector on ∂Ω
and H2 is the 2-Hausdorff measure. Moreover, BD(Q,R3) is compactly embedded in Lq(Q,R3)
for every 1 ≤ q < 3

2 , see [80, Remark 2.3].
Furthermore, we understand v ∈ BDM∗(Q,R3) +L∞(0, T,W 2,p(Ω,R3)) in the following way:

There exists a decomposition v = v1+v2 , where v1 ∈ BDM∗(Q,R3) and v2 ∈ L∞(0, T,W 2,p(Ω,R3)).

Definition 6.2.2 (Weak-renormalised solution of the system (1.2.2) ). The triple of functions
u ∈ BDM∗(Q,R3) + L∞(0, T,W 2,p(Ω,R3)), T ∈ L2(Q,S3) and a measurable function θ such
that for every K ∈ N, TK(θ) ∈ L2(0, T,W 1,2(Ω)) is a weak-renormalised solution of the system
(1.2.2) when ∫ T

0

∫
Ω
T : ∇ϕ dx dt =

∫ T

0

∫
Ω
f ·ϕdx dt, (6.2.7)

where
T = D(ε(u)− εp), (6.2.8)



92CHAPTER 6. MODELS WITH GROWTH CONDITIONS IN GENERALIZED ORLICZ SPACES

holds for every test function ϕ ∈ C∞([0, T ], C∞c (Ω,R3)) and

−
∫
Q
S(θ − θ̃)∂φ

∂t
dx dt−

∫
Ω
S(θ0 − θ̃0)φ(x, 0) dx+

∫
Q
S′(θ − θ̃)∇(θ − θ̃) · ∇φ dx dt

+

∫
Q
S′′(θ − θ̃)|∇(θ − θ̃)|2φ dx dt =

∫
Q
G(θ,T d) : T dS′(θ − θ̃)φ dx dt

(6.2.9)

holds for every test function φ ∈ C∞c ([−∞, T ), C∞(Ω)), for every function S ∈ C∞(R) such that
S′ ∈ C∞0 (R) and for θ̃ which is a solution of the problem

θ̃t −∆θ̃ = 0 in Ω× (0, T ),
∂θ̃
∂n = gθ on ∂Ω× (0, T ),

θ̃(x, 0) = θ̃0 in Ω,

(6.2.10)

where θ̃0 ∈ L2(Ω). Furthermore, the visco-elastic strain tensor can be recovered from the equation
on its evolution, i.e.

εp(x, t) = εp
0 (x) +

∫ t

0
G(θ(x, τ),T d(x, τ)) dτ, (6.2.11)

for a.e. x ∈ Ω and t ∈ [0, T ) also εp, εp
t ∈ LM∗(Q).

Theorem 6.2.1. Let initial conditions satisfy θ0 ∈ L1(Ω), εp
0 ∈ LM∗(Ω,S3

d), boundary conditions
satisfy gθ ∈ L2(0, T, L2(∂Ω)), for p > 3 function g ∈ L∞(0, T,W 2,p(Ω,R3)) and volume force
f ∈ L∞(0, T, Lp(Ω,R3)), also function G(·, ·) satisfy the same condition as in Assumptions 6.0.1
and let operator D satisfy Assumption 6.2.1. Then there exists a weak solution to system (1.2.2).

6.3 Proof of Theorem 6.2.1

The idea of the proof is similar to proofs presented in previous chapters. We use two level Galerkin
approximations to construct the approximate system of equations. Use of growth condition in
Orlicz spaces instead of growth condition in Lebesgue spaces implies usage of different analytic
tools. For example, we use Minty-Browder trick in nonreflexive spaces, see [84], to identify the
weak limit of nonlinear term. Moreover, to prove the convergence of right-hand side term of heat
equation we apply the biting limit, cf. [8], and Young measures tools, which were described in
Chapter 4.

Construction of the proof is similar to previous cases. We start with cutting off the boundary
conditions, Section 6.3.1. Then, we construct the approximate solutions and show their uniform
boundedness, see Section 6.3.2. Finally, we pass to the limit independently with approximation
parameter for temperature (Section 6.3.3) and with approximation parameter for displacement
(Section 6.3.4).

6.3.1 Transformation to a homogeneous boundary-value-problem

As we mentioned in Chapter 2, our idea is to consider three systems of equations, i.e. two systems
which take the boundary conditions for displacement and heat flux. i.e.

−div T̃ = f in Ω× (0, T ),

T̃ = Dε(ũ) in Ω× (0, T ),
ũ = g on ∂Ω× (0, T ),

(6.3.1)



6.3. PROOF OF THEOREM 6.2.1 93

and 
θ̃t −∆θ̃ = 0 in Ω× (0, T ),

∂θ̃
∂n = gθ on ∂Ω× (0, T ),

θ̃(x, 0) = θ̃0 in Ω,

(6.3.2)

and one with homogeneous boundary conditions

−divT = 0,

T = D(ε(u)− εp),

εp
t = G(θ̃ + θ, T̃

d
+ T d),

θt −∆θ =
(
T̃
d

+ T d
)

: G(θ̃ + θ, T̃
d

+ T d).

(6.3.3)

By the following lemma we show the existence of solutions to (6.3.1) and (6.3.2). In the rest of
this chapter we prove that solution to the last system exists.

Lemma 6.3.1. For p > 3, let θ̃0 ∈ L2(Ω), g ∈ L∞(0, T,W 2,p(Ω,R3)), gθ ∈ L2(0, T, L2(∂Ω)) and
f ∈ L∞(0, T, Lp(Ω,R3)). Then there exists a solution to systems (6.3.1) and (6.3.2). Addition-
ally, the following estimates hold:

‖ũ‖L∞(0,T,W 2,p(Ω)) ≤ C1

(
(‖g‖L∞(0,T,W 2,p(Ω)) + ‖f‖L∞(0,T,Lp(Ω))

)
,

‖θ̃‖L∞(0,T,L1(Ω)) + ‖θ̃‖L2(0,T,W 1,2(Ω)) ≤ C2

(
‖gθ‖L2(0,T,L2(∂Ω)) + ‖θ̃0‖L2(Ω)

)
.

Moreover, θ̃ belongs to C([0, T ], L2(Ω)) and the following estimate for Cauchy stress tensor holds

‖T̃ ‖L∞(Q) ≤ C3

(
‖g‖L∞(0,T,W 2,p(Ω)) + ‖f‖L∞(0,T,L,p(Ω))

)
. (6.3.4)

Proof. The results for temperature were discussed in previous chapters, hence let us focus on
existence of the elastostatic problem. The idea of proof is the same as in the proof of Lemma
4.3.1. The main difference between is that we require more regularity of Cauchy stress tensor T̃ .
It is caused by usage of Minty-Browder trick in nonreflexive spaces and estimate 6.3.4 is crucial
in the next steps of main Theorems proof.

Rewriting the solution in the form ũ = ũ1 +g, we may replace finding ũ by finding ũ1, where
it is a solution to system{

−divDε(ũ1) = f + divDε(g) in Ω× (0, T ),
ũ1 = 0 on ∂Ω× (0, T ).

(6.3.5)

Function f + divDε(g) belongs to L∞(0, T, Lp(Ω,R3)). By [82, Theorem 7.1] we know that
there exists an unique solution ũ1 ∈ L∞(0, T,W 2,p(Ω,R3)). For p > 3, using the general Sobolev
inequalities [29, Theorem 6, p. 270] we obtain the inequality (6.3.4).

6.3.2 Boundedness of energy

Following the procedure presented in Chapter 2 we construct the approximate system of equations.
Finite initial energy of the system implies the boundedness of approximate solutions. Let us start
with estimates for potential energy, see Definition 1.4.1.
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Lemma 6.3.2. There exists a constant C (uniform with respect to k and l) such that

E(ε(uk,l), ε
p
k,l)(t) +

2c− d
2

∫
Q
M∗(x,G(θ̃ + θk,l, T̃

d
+ T dk,l)) dx dt

+ c

∫
Q
M(x, T̃

d
+ T dk,l) dx dt ≤ C,

(6.3.6)

where c is a constant Assumption 6.0.1 and d = min(1, c). Moreover, constant C depends on
solution of additional problem (6.3.1) and potential energy in the initial time

C =

∫
Q
M(x,

2

d
T̃
d
) dx dt+ E(ε(uk,l), ε

p
k,l)(0). (6.3.7)

Since T̃ belongs to L∞(Q), the constant C in (6.3.2) is finite.

Proof. Let us start with calculating the time derivative of the potential energy E(t). For a.a.
t ∈ [0, T ] we obtain

d

dt
E(ε(uk,l), ε

p
k,l) =

∫
Ω
D(ε(uk,l)− εp

k,l) : (ε(uk,l))t dx

−
∫

Ω
D(ε(uk,l)− εp

k,l) : (εp
k,l)t dx

Terms on the right-hand side of abovementioned equation may be rewritten with application of
approximate system of equations (2.2.8). Firstly, for each n ≤ k let us multiply (2.2.8)1 by (αnk,l)t.
After summing over n = 1, ..., k we get∫

Ω
D(ε(uk,l)− εp

k,l) : (ε(uk,l))t dx = 0. (6.3.8)

Then for each n ≤ k let us multiply (2.2.8)3 by γnk,l and for each m ≤ l let us multiply (2.2.8)4
by δnk,l. Summing over n = 1, .., k and m = 1, ..., l we obtain∫

Ω
(εp
k,l)t : D(ε(uk,l)− εp

k,l) dx =

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T k,l dx. (6.3.9)

Hence

d

dt
E(ε(uk,l), ε

p
k,l) = −

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T k,l dx, (6.3.10)

and then

d

dt
E(ε(uk,l), ε

p
k,l) = −

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : (T̃

d
+ T dk,l) dx

+

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T̃

d
dx.

Thus, using Assumption 6.0.1 and Fenchel-Young inequality we estimate the changes of potential
energy by

d

dt
E(ε(uk,l), ε

p
k,l) ≤ −c

(∫
Ω
M(x, T̃

d
+ T dk,l) dx+

∫
Ω
M∗(x,G(θ̃ + θk,l, T̃

d
+ T dk,l)) dx

)
+

∫
Ω
M(x,

2

d
T̃
d
) dx+

∫
Ω
M∗(x,

d

2
G(θ̃ + θk,l, T̃

d
+ T dk,l)) dx,
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where d = min(1, c). Then, by convexity of N -function, we obtain

d

dt
E(ε(uk,l), ε

p
k,l) ≤ −c

(∫
Ω
M(x, T̃

d
+ T dk,l) dx+

∫
Ω
M∗(x,G(θ̃ + θk,l, T̃

d
+ T dk,l)) dx

)
+

∫
Ω
M(x,

2

d
T̃
d
) dx+

d

2

∫
Ω
M∗(x,G(θ̃ + θk,l, T̃

d
+ T dk,l)) dx

Finally, integrating over time interval (0, t), with 0 ≤ t ≤ T we obtain

E(ε(uk,l), ε
p
k,l)(t) + c

∫
Q
M(x, T̃

d
+ T dk,l) dx dt+

2c− d
2

∫
Q
M∗(x,G(θ̃ + θk,l, T̃

d
+ T dk,l)) dx dt

≤
∫
Q
M(x,

2

d
T̃
d
) dx dt+ E(ε(uk,l), ε

p
k,l)(0).

which completes the proof.

Remark. From Lemma 6.3.2 we know that the sequence {T dk,l} is uniformly bounded in LM (Q,S3)

with respect to k and l, as well as the sequence {G(θ̃ + θk,l, T̃
d

+ T dk,l)} is uniformly bounded in
the space LM∗(Q,S3) with respect to k and l. Hence, using the Fenchel-Young inequality, the
sequence {(T̃ d + T dk,l) : G(θ̃ + θk,l, T̃

d
+ T dk,l)} is uniformly bounded in L1(Q).

Remark. On basis of Lemma 6.3.2 the sequence {T k,l} is uniformly bounded in L∞(0, T, L2(Ω,S3))
and in particular in L2(0, T, L2(Ω,S3)).

The following lemma is similar to Lemma 4.3.3 and Lemma 5.2.2. In the proof we use the
projections, see Definition 2.1.2. The differences in the estimates are caused by looking for the
solutions in another functional spaces.

Lemma 6.3.3. The sequence {(εp
k,l)t} is uniformly bounded in L1(0, T, (Hs(Ω,S3))′) with respect

to l.

Proof. Let ϕ ∈ L∞(0, T,Hs(Ω,S3)) . Since (P k+P l,k
L2 )(εp

k,l)t = (εp
k,l)t we may estimate as follows∫ T

0
|((εp

k,l)t,ϕ)D|dt =

∫ T

0
|((εp

k,l)t, (P
k + P l,k

L2 )ϕ)D| dt

≤
∫ T

0
|((εp

k,l)t, P
kϕ)D| dt+

∫ T

0
|((εp

k,l)t, P
l,k
L2ϕ)D|dt.

(6.3.11)

Thus∫ T

0
|((εp

k,l)t,ϕ)D|dt ≤
∫ T

0
|
∫

Ω
DG(θ̃ + θk,l, T̃

d
+ T dk,l)P

kϕ dx| dt

+

∫ T

0
|
∫

Ω
DG(θ̃ + θk,l, T̃

d
+ T dk,l)P

l,k
L2ϕdx|dt

≤ d
∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L1(Ω)‖P kϕ‖L∞(Ω) dt

+ d

∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L1(Ω)‖(P

l,k
Hs ◦ (Id− P k))ϕ‖L∞(Ω) dt.

(6.3.12)
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As s ∈ (3
2 , 2], then by Sobolev inequality we get ‖P l,kHsϕ‖L∞(Ω) ≤ c̃‖P

l,k
Hsϕ‖Hs(Ω) and ‖P kϕ‖L∞(Ω) ≤

c̃‖P kϕ‖Hs(Ω), where c̃ is an optimal embedding constant. Then, we may proceed similarly as in
the proof of Lemma 4.3.3∫ T

0
|((εp

k,l)t,ϕ)D| dt ≤ dc̃
∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L1(Ω)‖P kϕ‖Hs(Ω) dt

+ dc̃

∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L1(Ω)‖(P

l,k
Hs ◦ (Id− P k))ϕ‖Hs(Ω) dt

≤ dc(k)c̃

∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L1(Ω)‖ϕ‖Hs(Ω) dt

+ dc(k)c̃

∫ T

0
‖G(θ̃ + θk,l, T̃

d
+ T dk,l)‖L1(Ω)‖ϕ‖Hs(Ω) dt

≤ 2dcc̃‖G(θ̃ + θk,l, T̃
d

+ T dk,l)‖L1(Q)‖ϕ‖L∞(0,T,Hs(Ω)).

(6.3.13)

It is obvious that ‖G(θ̃ + θk,l, T̃
d

+ T dk,l)‖L1(Q) is bounded. Hence, there exists C > 0 such that

sup
ϕ∈L∞(0,T,Hs(Ω))
‖ϕ‖L∞(0,T,Hs(Ω))≤1

∫ T

0
|((εp

k,l)t,ϕ)D|dt ≤ C(k), (6.3.14)

and hence the sequence {(εp
k,l)t} is uniformly bounded in L1(0, T, (Hs(Ω,S3))′).

Since {(T̃ d + T dk,l) : G(θ̃ + θk,l, T̃
d

+ T dk,l)} is uniformly bounded in L1(Q) the lemmas for
temperature remain the same as in models mentioned previously. Estimates in Lemma 6.3.5
depend on k and it forces us to use two level Galerkin approximation.

Lemma 6.3.4. The sequence {θk,l} is uniformly bounded in L∞(0, T ;L1(Ω)) with respect to k
and l.

Lemma 6.3.5. There exists a constant C, depending on the domain Ω and the time interval
(0, T ), such that for every k ∈ N

sup
0≤t≤T

‖θk,l(t)‖2L2(Ω) + ‖θk,l‖2L2(0,T,W 1,2(Ω)) + ‖(θk,l)t‖2L2(0,T,W−1,2(Ω))

≤ C
(
‖Tk
(

(T̃
d

+ T dk,l) : G(θ̃ + θk,l, T̃
d

+ T dk,l)
)
‖2L2(0,T,L2(Ω)) + ‖Tk(θ0)‖2L2(Ω)

)
.

(6.3.15)

We observe that the uniform boundedness of solutions (Lemma 6.3.2 and Lemma 6.3.5) implies
the global existence of approximate solutions. For each n = 1, ..., k and m = 1, ..., l the solutions
{αnk,l(t), βmk,l(t), γnk,l(t), δmk,l(t)} exist on the whole time interval [0, T ].

6.3.3 Limit passage l→∞ and uniform estimates

Multiplying (2.2.8) by time dependent test functions ϕ1(t), ϕ2(t), ϕ3(t) ∈ C∞([0, T ]) and ϕ4(t) ∈
C∞c ([−∞, T )) and then after integration over time interval (0, T ), we obtain the following system
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of equations∫ T

0

∫
Ω
T k,l : ε(wn)ϕ1(t) dx dt = 0

∫ T

0

∫
Ω

(εp
k,l)t : ε(wn)ϕ2(t) dx dt =

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : ε(wm)ϕ2(t) dx dt

∫ T

0

∫
Ω

(εp
k,l)t : ζkmϕ3(t) dx dt =

∫ T

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : ζkmϕ3(t) dx dt

−
∫ T

0

∫
Ω
θk,lvmϕ

′
4(t) dx dt−

∫
Ω
θ0,k,l(x)vmϕ4(0) dx+

∫ T

0

∫
Ω
∇θk,l · ∇vmϕ4(t) dx dt

=

∫ T

0

∫
Ω
Tk((T̃

d
+ T dk,l) : G(θ̃ + θk,l, T̃

d
+ T dk,l))vmϕ4(t) dx dt

(6.3.16)

where the first and the second equation hold for n = 1, ..., k and the third and the fourth hold
for m = 1, ..., l. Moreover, it holds T k,l = D(ε(uk,l)− εp

k,l).
Uniform boundedness proved in previous section implies that the following convergences holds

T k,l ⇀ T k weakly in L2(Q,S3),

T dk,l ⇀
∗ T dk weakly* in LM (Q,S3

d),

G(θ̃ + θk,l, T̃
d

+ T dk,l) ⇀
∗ χk weakly* in LM∗(Q,S3

d),

θk,l ⇀ θk weakly in L2(0, T,W 1,2(Ω)),
θk,l → θk a.e. in Ω× (0, T ),

(εp
k,l)t ⇀ (εp

k )t weakly in L1(0, T, (Hs(Ω,S3))′),

(6.3.17)

with l → ∞ and with the use of appropriate subsequences if it is necessary. Using these con-
vergences we pass to the limit in (6.3.16) with l → ∞. Then, for n = 1, ..., k and m ∈ N, it
holds ∫ T

0

∫
Ω
T k : ε(wn)ϕ1(t) dx dt = 0,∫ T

0

∫
Ω

(εp
k )t : ε(wm)ϕ2(t) dx dt =

∫ T

0

∫
Ω
χk : ε(wm)ϕ2(t) dx dt,∫ T

0

∫
Ω

(εp
k )t : ζkmϕ3(t) dx dt =

∫ T

0

∫
Ω
χk : ζkmϕ3(t) dx dt.

(6.3.18)

Moreover, {ε(wn), ζm}n=1,..,k;m=1,..,∞ is a base of whole spaceHs(Ω,S3) and abomentioned equa-
tions can be replaced by ∫ T

0

∫
Ω

(εp
k )t : ζ dx dt =

∫ T

0

∫
Ω
χk : ζ dx dt (6.3.19)

for ζ ∈ L∞(0, T,Hs(Ω,S3)). To show that (6.3.19) holds also for all ζ ∈ LM (Q,S3) we proceed
similarly as in [35, 37, 48].

It still remains to make the limit passage in (6.3.16)(5) and to identify the weak limit χ. As we
know the same problems appeared in models considered previously. For this purpose, we repeat
three-step method presented in Chapter 5.

All calculations in three-step method for Norton-Hoff-type model and model with growth
conditions in generalized Orlicz spaces are significantly different. Only some parts of proof of
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Lemma 6.3.6 are the same as those related to Norton-Hoff-type models. We skip these parts and
for more details we refer the reader to Chapter 4. To prove the limiting inequality we use lemmas
presented in Section 6.1. In the second step we use Minty-Browder trick for Orlicz space, see [84].
And finally, to show the convergence of {(T̃ d + T dk,l) : G(θ̃+ θk,l, T̃

d
+ T dk,l)} we use biting limit

and Young measures tools.
Step 1. Limiting inequality.

Lemma 6.3.6. The following inequality holds for the solution of approximate systems.

lim sup
l→∞

∫ τ

0

∫
Ω
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l dx dt ≤

∫ τ

0

∫
Ω
χk : T dk dx dt. (6.3.20)

for every τ ∈ (0, T ).

Proof. At the beginning of the proof procedure is the same as in proof of Lemma 4.3.6. We
multiply (6.3.10) by function ψµ,τ (t), see (4.3.29), and then all of the computation proceed the
same way as previously. The difference appears when we want to make a limit passage with ε→ 0
in the following equation

∫ t2

t1

∫
Ω
D(ε(uk)−εp

k )∗ηε :
(
(ε(uk)− εp

k ) ∗ ηε
)
t

dx dt = −
∫ t2

t1

∫
Ω
χk∗ηε : T dk∗ηε dx dt. (6.3.21)

Since ε(uk)− εp
k belongs to L2(Q,S3) we may pass to the limit on the left-hand side of equation

(6.3.21), but to make a limit passage on right-hand side we should use lemmas presented in
Section 6.1.

From Lemma 6.1.7 sequences {M(x,T dk ∗ ηε)} and {M∗(x,χk ∗ ηε)} are uniformly integrable.
Moreover, {T dk ∗ ηε}ε converges in measure to T dk and {χk ∗ ηε}ε converges in measure to χk (by
Lemma 6.1.6) as ε goes to 0. Uniform integrability of the sequence and convergence in measure
of this sequence implies (by Lemma 6.1.3) that

T dk ∗ ηε
M−→ T dk modularly in LM (Q),

χk ∗ ηε
M∗−−→ χk modularly in LM∗(Q),

(6.3.22)

as ε→ 0. Then, using Lemma 6.1.5 we complete the limit passage in (6.3.21) and we obtain

1

2

∫
Ω
D(ε(uk)− εp

k ) : (ε(uk)− εp
k ) dx

∣∣∣t2
t1

= −
∫ t2

t1

∫
Ω
χk : T dk dx dt. (6.3.23)

The rest part of the proof is similar to proof of Lemma 4.3.6, hence we omit this part.

Step 2. Minty-Browder tick.
Let us take s ∈ (0, T ] and let us define Qs = Ω× (0, s). By monotonicity condition of function

G(θ, ·) we obtain∫
Qs

(
G(θ̃ + θk,l, T̃

d
+ T dk,l)−G(θ̃ + θk,l, T̃

d
+W d)

)
: (T dk,l−W d) dx dt ≥ 0

∀ W d ∈ L∞(Q,S3
d).

(6.3.24)

Lemma 6.3.6 yields

lim sup
l→∞

∫
Qs
G(θ̃ + θk,l, T̃

d
+ T dk,l) : T dk,l dx dt ≤

∫
Qs
χk : T dk dx dt. (6.3.25)
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Since W d belongs to L∞(Q), then it belongs also to EM (Q). By weak* convergence of {G(θ̃ +

θk,l, T̃
d

+ T dk,l)} in LM∗(Q) we get

lim
l→∞

∫
Qs
G(θ̃ + θk,l, T̃

d
+ T dk,l) : W d dx dt =

∫
Qs
χk : W d dx dt. (6.3.26)

Now, we focus on the convergence of the sequence {G(θ̃+ θk,l, T̃
d

+W d)}. By pointwise conver-
gence of {θk,l} we get pointwise convergence of {G(θ̃ + θk,l, T̃

d
+W d)}. Furthermore, from the

Assumption 6.0.1 and non-negativity of N -functions we get

|T̃ d +W d| ≥ c
M∗(x,G(θ̃ + θk,l, T̃

d
+W d))

|G(θ̃ + θk,l, T̃
d

+W d)|
. (6.3.27)

T̃
d

+ W d belongs to L∞(Q,S3
d) and M∗ is an N -function. This implies that the sequence

{G(θ̃ + θk,l, T̃
d

+W d)} belongs to L∞(Q,S3
d) and by Lemma 6.1.3 we obtain

G(θ̃ + θk,l, T̃
d

+W d)
M∗−−→ G(θ̃ + θk, T̃

d
+W d), (6.3.28)

modularly in LM∗(Q). Then∫
Qs
|G(θ̃ + θk,l, T̃

d
+W d) : (T dk,l −W )−G(θ̃ + θk, T̃

d
+W d) : (T dk −W d)|dx dt

≤
∫
Qs

∣∣∣(G(θ̃ + θk,l, T̃
d

+W d)−G(θ̃ + θk, T̃
d

+W d)
)

: (T dk,l −W d)
∣∣∣dx dt

+

∫
Qs

∣∣∣G(θ̃ + θk, T̃
d

+W d) : (T dk,l − T dk)
∣∣∣ dx dt.

(6.3.29)

Finally, using Hölder inequality (Lemma 6.1.2) we get∫
Qs
|G(θ̃ + θk,l, T̃

d
+W d) : (T dk,l −W )−G(θ̃ + θk, T̃

d
+W d) : (T dk −W d)|dx dt

≤ 2‖G(θ̃ + θk,l, T̃
d

+W d)−G(θ̃ + θk, T̃
d

+W d)‖L,M∗‖T dk,l −W d‖L,M

+

∫
Qs

∣∣∣G(θ̃ + θk, T̃
d

+W d) : (T dk,l − T dk)
∣∣∣dx dt

(6.3.30)

Since ‖T dk,l−W d‖L,M is uniformly bounded, ‖G(θ̃+θk,l, T̃
d
+W d)−G(θ̃+θk, T̃

d
+W d)‖L,M∗ → 0

(M∗ satisfies ∆2-condition and the sequence {G(θ̃+θk,l, T̃
d
+W d)} convergence toG(θ̃+θk, T̃

d
+

W d) in modular) and T dk,l−T dk ⇀ 0 in LM (Q,S3
d) as l goes to∞, the right-hand side of (6.3.30)

goes to 0 as l goes to ∞ and we obtain

lim
l→∞

∫
Qs
G(θ̃ + θk,l, T̃

d
+W d) : (T dk,l −W d) dx dt =

∫
Qs
G(θ̃ + θk, T̃

d
+W d) : (T dk −W d) dx dt

(6.3.31)

Therefore, passing to the limit with l→∞ in (6.3.24), we get∫
Qs

(
χk −G(θ̃ + θk, T̃

d
+W d)

)
: (T dk −W d) dx dt ≥ 0 ∀W d ∈ L∞(Qs,S3). (6.3.32)
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For j > 0 let us define the set

Qj = {(t, x) ∈ Qs : |T dk| ≤ j a.e. in Qs}. (6.3.33)

Let us use the notation 1H for characteristic function of set H. Then, for arbitrary 0 < j < i
and h > 0 we define function

W d = −T̃ d1Qs\Qi + T dk1Qi + hUd1Qj (6.3.34)

where Ud ∈ L∞(Q,S3). We use this function as a test function in (6.3.32) and get∫
Qs

(
χk −G(θ̃ + θk,T̃

d − T̃ d1Qs\Qi + T dk1Qi + hUd1Qj )
)

:(
T dk + T̃

d
1Qs\Qi − T

d
k1Qi − hUd1Qj

)
dx dt ≥ 0

(6.3.35)

Since Qj ⊂ Qi ⊂ Qs we get

−h
∫
Qj

(
χk−G(θ̃ + θk, T̃

d
+ T dk + hUd)

)
: Ud dx dt

+

∫
Qi\Qj

(
χk−G(θ̃ + θk, T̃

d
+ T dk)

)
: (T dk − T dk) dx dt

+

∫
Qs\Qi

(
χk −G(θ̃ + θk,0)

)
: (T dk + T̃

d
) dx dt ≥ 0.

(6.3.36)

By Assumptions 6.0.1 we know that G(θ̃ + θk,0) = 0 a.e. in Ω. Hence

−h
∫
Qj

(
χk −G(θ̃ + θk, T̃

d
+ T dk + hUd)

)
: Ud dx dt+

∫
Qs\Qi

χk : (T dk + T̃
d
) dx dt ≥ 0.

(6.3.37)

Moreover, from the definition of characteristic function∫
Qs\Qi

χk : (T dk + T̃
d
) dx dt =

∫
Q

(
χk : (T dk + T̃

d
)
)

1Qs\Qi dx dt. (6.3.38)

Since
∫
Qχk : (T dk + T̃

d
) < ∞ and

(
χk : (T dk + T̃

d
)
)

1Qs\Qi → 0 a.e. in Q as i goes to ∞,
Lebesgue’s dominated convergence theorem implies that

lim
i→∞

∫
Qs\Qi

χk : (T dk + T̃
d
) dx dt = 0. (6.3.39)

Passing to the limit with i going to ∞ in (6.3.37) and by dividing by h we obtain∫
Qj

(
χk −G(θ̃ + θk, T̃

d
+ T dk + hUd)

)
: Ud dx dt ≤ 0. (6.3.40)

Since T̃
d
+T dk+hUd goes to T̃

d
+T dk a.e. in Q when h→ 0+, {G(θ̃+θk, T̃

d
+T dk+hUd)}h>0

is uniformly bounded in LM∗(Qj ,S3), we conclude that

G(θ̃ + θk, T̃
d

+ T dk + hUd) ⇀∗ G(θ̃ + θk, T̃
d

+ T dk) (6.3.41)
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in LM∗(Qj ,S3) as h goes to 0+. Consequently, passing to the limit with h going to 0+ in (6.3.40)
we obtain ∫

Qj

(
χk −G(θ̃ + θk, T̃

d
+ T dk)

)
: Ud dx dt ≤ 0, (6.3.42)

for all Ud ∈ L∞(Q,S3
d), so taking

Ud =


χk−G(θ̃+θk,T̃

d
+T dk)

|χk−G(θ̃+θk,T̃
d
+T dk)|

when χk 6= G(θ̃ + θk, T̃
d

+ T dk),

0 when χk = G(θ̃ + θk, T̃
d

+ T dk),

(6.3.43)

we obtain ∫
Qj

|χk −G(θ̃ + θk, T̃
d

+ T dk)| dx dt ≤ 0, (6.3.44)

i.e. χk = G(θ̃+ θk, T̃
d

+T dk) a.e. in Qj . Arbitrary choice of j > 0 and of 0 ≤ s ≤ T implies that
χk = G(θ̃ + θk, T̃

d
+ T dk) a.e. in Q.

Step 3. Limit of right-hand side of heat equations.
The idea how to prove the convergence of right-hand side of heat equation came from paper

of Gwiazda et al. [40]. Let us denote by b−→ the biting limit used, cf. [8].

Definition 6.3.1 (Biting limit). Let {fν} be a bounded sequence in L1(Q). We say that f ∈
L1(Q) is a biting limit of subsequence {fν}, we denote fν b−→ f , if there exists nonincreasing
sequence {Ek} with Ek ⊂ Q and limk→∞ |Ek| = 0, such that fν convergence weakly to f in
L1(Q \ Ek) for every fixed k.

The following Lemma and its proof came from [40].

Lemma 6.3.7 (Lemma 4.6 from [40]). Let an ∈ L1(Q) and let 0 ≤ a0 ∈ L1(Q) and

an ≥ −a0, an
b−→ a and lim sup

n→∞

∫
Q
an dx dt ≤

∫
Q
a dx dt (6.3.45)

then
an ⇀ a weakly in L1(Q). (6.3.46)

Proof. By [4, Theorem 2.5] there exists subsequence {ansup} which converges weakly* inM(Q)
to lim supn→∞

∫
Q an dx dt, and also there exists a nonegative measure a such that

ansup ⇀ ∗ a+ a inM(Q). (6.3.47)

Then ∫
Q
ansup dx dt→

∫
Q
a dx dt+

∫
Q
a dx dt, (6.3.48)

as nsup → ∞. Since lim supn→∞
∫
Q an dx dt ≤

∫
Q adx dt, we obtain that

∫
Q adxdt = 0. There-

fore, a = 0 as a measure. Thus, by [4, Theorem 2.9 (ii)] the sequence an converges weakly to a
in L1(Q) with n→∞.

Lemma 6.3.8. For each k ∈ N sequence {G(θ̃ + θk,l, T̃
d

+ T dk,l) : (T̃
d

+ T dk,l)}∞l=1 converges

weakly to G(θ̃ + θk, T̃
d

+ T dk) : (T̃
d

+ T dk) in L1(Q).



102CHAPTER 6. MODELS WITH GROWTH CONDITIONS IN GENERALIZED ORLICZ SPACES

Proof. Using the Assumption 6.0.1, Frechet-Young inequality and convexity of N -functions, we
get

c
(
M(x, T̃

d
+T dk) +M∗(x,G(θ̃ + θk,l, T̃

d
+ T dk))

)
≤ G(θ̃ + θk,l, T̃

d
+ T dk)) : (T̃

d
+ T dk)

≤M(x,
2

d
(T̃

d
+ T dk)) +M∗(x,

d

2
G(θ̃ + θk,l, T̃

d
+ T dk))

≤M(x,
2

d
(T̃

d
+ T dk)) +

d

2
M∗(x,G(θ̃ + θk,l, T̃

d
+ T dk)),

(6.3.49)

where d = min(c, 1). And finally

cM(x, T̃
d

+ T dk) +
2c− d

2
M∗(x,G(θ̃ + θk,l, T̃

d
+ T dk)) ≤M(x,

2

d
(T̃

d
+ T dk)). (6.3.50)

Hence the sequence {G(θ̃+ θk,l, T̃
d

+T dk)} is uniformly bounded in LM∗(Q).Using monotonicity
of function G(·, ·) with respect to the second variable, we get

0 ≤
(
G(θ̃ + θk,l, T̃

d
+ T dk,l)−G(θ̃ + θk,l, T̃

d
+ T dk)

)
: (T dk,l − T dk). (6.3.51)

Right-hand side of abovmentioned inequality is uniformly bounded in L1(Q). Thus, there exists
the Young measure denoted by µx,t(·, ·), see Theorem 4.1.1, such that the following converges
hold

(G(θ̃+θk,l, T̃
d

+ T dk,l)−G(θ̃ + θk,l, T̃
d

+ T dk)) : (T dk,l − T dk)
b−→
∫
R×R3×3

(
G(s,λ)−G(s, T̃

d
+ T dk)

)
: (λ− (T̃

d
+ T dk))dµx,t(s,λ).

(6.3.52)

Using Lemma 4.1.3 we obtain that the measure µx,t(s,λ) can be presented in the form δθ̃+θk ⊗
νx,t(λ). Then∫

R×R3×3

(
G(s,λ)−G(s, T̃

d
+ T dk)

)
: (λ− (T̃

d
+ T dk))dµx,t(s,λ)

=

∫
R3×3

(
G(θ̃ + θk,λ)−G(θ̃ + θk, T̃

d
+ T dk)

)
: (λ− (T̃

d
+ T dk))dνx,t(λ)

=

∫
R3×3

G(θ̃ + θk,λ) : (λ− (T̃
d

+ T dk))dνx,t(λ)

−
∫
R3×3

G(θ̃ + θk, T̃
d

+ T dk) : (λ− (T̃
d

+ T dk))dνx,t(λ).

(6.3.53)

Since sequence {T̃ d + T dk,l} generate the measure dνx,t(·) then
∫
R3×3 λdνx,t(λ) = T̃

d
+ T dk. The

second term in abovementioned equation disappears. Indeed,

−
∫
R3×3

G(θ̃ + θk,T̃
d

+ T dk) : (λ− (T̃
d

+ T dk))dνx,t(λ)

= −G(θ̃ + θk, T̃
d

+ T dk) :

(∫
R3×3

λdνx,t(λ)− (T̃
d

+ T dk)

)
.

(6.3.54)

Moreover, uniform boundedness of the sequence {G(θ̃+θk,l, T̃
d
+T dk,l) : (T̃

d
+T dk,l)} in L1(Q)

implies that

G(θ̃ + θk,l, T̃
d

+ T dk,l) : (T̃
d

+ T dk,l)
b−→
∫
R×R3×3

G(s,λ) : λdµx,t(s,λ)

=

∫
R3×3

G(θ̃ + θk,λ) : λdνx,t(λ).

(6.3.55)
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Hence, by positivity of G(θ̃ + ·, T̃ d + ·) : (T̃
d

+ ·) and using Lemma 4.1.2 we get

lim inf
l→∞

∫
Q
G(θ̃ + θk,l, T̃

d
+ T dk,l) : (T̃

d
+ T dk,l) dx dt ≥

∫
Q

∫
R3

G(θ̃ + θk,λ) : λdνx,t(λ) dx dt.

(6.3.56)

Lemma 6.3.6 and knowledge that χk = G(θ̃ + θk, T̃
d

+ T dk) a.e. in Q imply that∫
Q
G(θ̃ + θk, T̃

d
+ T dk) : (T̃

d
+ T dk) dx dt ≥

∫
Q

∫
R3

G(θ̃ + θk,λ) : λdνx,t(λ) dx dt. (6.3.57)

Since G(θ̃ + θk, T̃
d

+ T dk) =
∫
R3 G(θ̃ + θk,λ)dνx,t(λ) and (6.3.51) holds, we obtain(

G(θ̃ + θk,l, T̃
d

+ T dk,l)−G(θ̃ + θk,l, T̃
d

+ T dk)
)

: (T dk,l − T dk)
b−→ 0. (6.3.58)

Using biting limit once more we get

G(θ̃ + θk,l, T̃
d

+ T dk)) : (T dk,l − T dk)
b−→ 0, (6.3.59)

with l→∞. Hence

G(θ̃ + θk,l, T̃
d

+ T dk,l) : (T dk + T̃
d
)
b−→ G(θ̃ + θk, T̃

d
+ T dk) : (T dk + T̃

d
). (6.3.60)

with l→∞. Using Lemma 6.3.7 we complete the proof.

Thus, we pass to the limit with l→∞ in (6.3.16)(5)

−
∫ T

0

∫
Ω
θkvm(ϕ4(t))t dx dt+

∫
Ω
θk(x, 0)ϕ4(x, 0) dx+

∫ T

0

∫
Ω
∇θk · ∇vmϕ4(t) dx dt

=

∫ T

0

∫
Ω
Tk((T̃

d
+ T dk) : G(θk + θ̃, T̃

d
+ T dk))vmϕ4(t) dx dt.

(6.3.61)

We finish this section with two lemmas. We prove the uniform boundedness of the sequences
{εp

k} and {uk} in proper spaces. This allows us to make the limit passage with second parameter
in the next section.

Lemma 6.3.9. The sequence {εp
k} is uniformly bounded in LM∗(Q,S3

d). Moreover, sequence
{(εp

k )t} is also uniformly bounded in LM∗(Q,S3
d).

Proof. Let us consider the equation for the evolution of the visco-elastic strain tensor

(εp
k )t = G(θ̃ + θk, T̃

d
+ T dk).

Hence

εp
k (x, t) = εp

k (x, 0) +

∫ t

0
(εp
k (x, s))s ds.

Integrating the value of M∗(x, εp
k (x, t)) over cylinder Q and using ∆2-condition of N -function

M∗ (6.1.5) we get∫
Q
M∗(x, εp

k (x, t)) dx dt ≤ c
∫
Q
M∗
(
x,

1

2
εp
k (x, t)

)
dx dt+ T

∫
Ω
h(x) dx

= c

∫
Q
M∗
(
x,

1

2
εp
k (x, 0) +

1

2

∫ t

0
(εp
k (x, s))s ds

)
dx dt+ T

∫
Ω
h(x) dx.
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Using the convexity of M∗ we obtain∫
Q
M∗(x, εp

k (x, t)) dx dt ≤ c

2

∫
Q
M∗(x, εp

k (x, 0)) dx dt

+
c

2

∫
Q
M∗

(
x,

∫ t

0
G(θ̃ + θk, T̃

d
+ T dk)(x, s) ds

)
dx dt+ T

∫
Ω
h(x) dx.

(6.3.62)

Let us focus on the middle term on the right-hand side in abovementioned equation. Changing
variable τ = t

T we obtain∫ T

0

∫
Ω
M∗
(
x,

∫ t

0
G(θ̃ + θk, T̃

d
+ T dk)(x, s) ds

)
dx dt

= T

∫ 1

0

∫
Ω
M∗

(
x,

∫ τT

0
G(θ̃ + θk, T̃

d
+ T dk)(x, s) ds

)
dx dτ.

By Jensen inequality we get

T

∫ 1

0

∫
Ω
M∗

(
x,

∫ t

0
G(θ̃ + θk, T̃

d
+ T dk)(x, s) ds

)
dx dt

≤ T
∫ 1

0

∫
Ω

1

τT

∫ τT

0
M∗
(
x, τTG(θ̃ + θk, T̃

d
+ T dk)

)
ds dx dτ

≤ T
∫ 1

0

∫
Ω

1

τT

∫ τT

0
τM∗

(
x, TG(θ̃ + θk, T̃

d
+ T dk)

)
ds dx dτ

=

∫ 1

0

∫
Ω

∫ τT

0
M∗
(
x, TG(θ̃ + θk, T̃

d
+ T dk)

)
ds dx dτ.

There exists d ∈ R such that 2d ≥ T . Then, using the ∆2-condition, coming back to original
variable and using the Fubini theorem we get∫ 1

0

∫
Ω

∫ τT

0
M∗
(
x, TG(θ̃ + θk, T̃

d
+ T dk)

)
dsdx dτ

≤
∫ 1

0

∫
Ω

∫ τT

0
M∗
(
x, 2dG(θ̃ + θk, T̃

d
+ T dk)

)
ds dx dτ

≤ cd
∫ 1

0

∫
Ω

∫ τT

0
M∗
(
x,G(θ̃ + θk, T̃

d
+ T dk)

)
ds dx dτ + C(d)

∫
Ω
h(x) dx

=
cd

T

∫ T

0

∫
Ω

∫ t

0
M∗
(
x,G(θ̃ + θk, T̃

d
+ T dk)

)
ds dx dt+ C(d)

∫
Ω
h(x) dx

≤ cd
∫ T

0

∫
Ω
M∗
(
x,G(θ̃ + θk, T̃

d
+ T dk)

)
dx dt+ C(d)

∫
Ω
h(x) dx.

(6.3.63)

Coming back to (6.3.62) we get∫
Q
M∗(x, εp

k (x, t)) dx dt ≤ cT

2

∫
Ω
M∗(x, εp

k (x, 0)) dx

+ cd
∫ T

0

∫
Ω
M∗
(
x,G(θ̃ + θk, T̃

d
+ T dk)

)
dx dt+ C(d)

∫
Ω
h(x) dx.

Lemma 6.3.2 and initial condition in LM∗(Ω,S3
d) complete the proof.
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Lemma 6.3.10. The sequence {uk} is uniformly bounded in BDM∗(Ω,R3).

Proof. Let us start from showing the uniform boundedness of the sequence {ε(uk)} in the space
LM∗(Q). Using ∆2-condition, convexity of N -function and Assumption 6.0.1 we obtain∫

Q
M∗(x, ε(uk)) dx dt ≤ c

∫
Q
M∗
(
x,

1

2
ε(uk)

)
dx dt+

∫
Q
h(x) dx dt

= c

∫
Q
M∗
(
x,

1

2
(ε(uk)− εp

k ) +
1

2
εp
k

)
dx dt+ T

∫
Ω
h(x) dx

≤ c

2

∫
Q
M∗(x, ε(uk)− εp

k ) dx dt+
c

2

∫
Q
M∗(x, εp

k ) dx dt+ T

∫
Ω
h(x) dx

≤ c

2

∫
Q
|ε(uk)− εp

k |
2 dx dt+

c

2

∫
Q
M∗(x, εp

k ) dx dt+ T

∫
Ω
h(x) dx

≤ c

2

∫
Q
|T k|2 dx dt+

c

2

∫
Q
M∗(x, εp

k ) dx dt+ T

∫
Ω
h(x) dx.

(6.3.64)

Following Anzellotti and Giaquinta [7, Preposition 1.2 a)] we get the inequality

‖uk‖L1(Q) ≤ C‖ε(uk)‖L1(Q),

where C is a constant depending on Ω. Finally we get the estimates

‖uk‖L1(Q) ≤ CQ,M
∫
Q
M∗(x, ε(uk)) dx dt,

where constant CQ,M depends on N -function M and space-times cylinder Q. This completes the
proof.

6.3.4 Limit passage k →∞

We start the second limit passage with short discussion about solution to heat equation. Since
{G(θ̃+ θk, T̃

d
+T dk) : (T̃

d
+T dk)} is uniformly bounded in L1(Q), then there exists a measurable

function θ, see Lemma 3.2.1, such that θk → θ a.e. in Q.
Furthermore, uniform boundedness of approximate solutions sequences obtained in previous

sections imply the following convergences, passing to the subsequence if it is necessary,

uk → u weakly in L1(Q,R3),
ε(uk) ⇀

∗ ε(u) weakly* in LM∗(Q,R3),
T k ⇀ T weakly in L2(Q,S3),

T dk ⇀
∗ T d weakly* in LM (Q,S3

d),

G(θ̃ + θk, T̃
d

+ T dk) ⇀
∗ χ weakly* in LM∗(Q,S3

d),
(εp
k )t ⇀

∗ (εp)t weakly* in LM∗(Q,S3
d).

(6.3.65)

Using these convergences in (6.3.18)(1) and (6.3.61), we get

∫
Q
T : ∇ϕdx dt = 0∫

Q
(εp)t : ψ dx dt =

∫
Q
χ : ψ dx dt

(6.3.66)
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for ϕ ∈ C∞([0, T ], L2(Ω,R3)) andψ ∈ LM (Q,S3). To complete the limit passage in heat equation
and to deal with nonlinearities limits we should repeat the three-step method.

Lemma 6.3.11. The following inequality holds for the solution of approximate systems.

lim sup
k→∞

∫ t2

0

∫
Ω
G(θ̃ + θk, T̃

d
+ T dk) : T dk dx dt ≤

∫ t2

0

∫
Ω
χ : T d dx dt. (6.3.67)

Proof. This proof is similar to proof of Lemma 5.2.9. Using the lower semicontinuity in L2(Q)
we get

lim inf
k→∞

∫ T

0

d

dt
E(ε(uk), ε

p
k )ψµ,τ dt

= lim inf
k→∞

1

µ

∫ τ+µ

τ
E(ε(uk), ε

p
k )(t) dt− lim

k→∞
E(ε(uk), ε

p
k )(0)

≥ 1

µ

∫ τ+µ

τ
E(ε(uk), ε

p
k )(t) dt− E(ε(u), εp)(0).

(6.3.68)

We use ϕ1 = ((ε(uk) ∗ ηε)t1(t1,t2)) ∗ ηε as a test function in (6.3.66), where ηε is a standard
mollifier with respect to time, then∫ t2

t1

∫
Ω
D(ε(u)− εp) ∗ ηε : (ε(uk) ∗ ηε)t dx dt = 0. (6.3.69)

Moreover, we use ψ = (T d ∗ ηε1(t1,t2)) ∗ ηε as a test function in (6.3.19). Then∫ t2

t1

∫
Ω

(εp
k ∗ ηε)t : T ∗ ηε dx dt =

∫ t2

t1

∫
Ω
G(θ̃ + θk, T̃

d
+ T dk) ∗ ηε : T ∗ ηε dx dt. (6.3.70)

Products in (6.3.70) are well defined. Subtracting these two equations we get∫ t2

t1

∫
Ω
T ∗ηε : (ε(uk)−εp

k )t ∗ηε dx dt = −
∫ t2

t1

∫
Ω
G(θ̃+θk, T̃

d
+T dk)∗ηε : T d ∗ηε dx dt. (6.3.71)

For every ε > 0 the sequence {(ε(uk)− εp
k )t ∗ ηε} belongs to L2(Q,S3) and is uniformly bounded

in L2(Q,S3) with respect to k, hence we pass to the limit with k →∞ and we obtain∫ t2

t1

∫
Ω
T ∗ ηε : (ε(u)− εp)t ∗ ηε dx dt = −

∫ t2

t1

∫
Ω
χ ∗ ηε : T d ∗ ηε dx dt.

Using the properties of convolution we get∫
Ω
T ∗ ηε : (ε(u)− εp) ∗ ηε dx

∣∣∣t2
t1

= −
∫ t2

t1

∫
Ω
χ ∗ ηε : T d ∗ ηε dx dt.

In the same way as in the previous section we pass to the limit with ε→ 0 and then with t1 → 0∫
Ω
D(ε(u)− εp) : (ε(u)− εp) dx

∣∣∣t2
0

= −
∫ t2

0

∫
Ω
χ : T d dx dt. (6.3.72)

We multiply (6.3.72) by 1
µ and integrate over (τ, τ + µ) and proceed now in the same manner as

in the proof of Lemma 4.3.6.
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The second and the third step of this method are followed in the same way as in the limit
passage with l→∞. Hence, we omit this calculations. Using Minty-Browder trick we obtain

χ = G(θ̃ + θ, T̃
d

+ T d), (6.3.73)

a.e. in Q. Moreover, using Young measures tools we may pass to the limit in right-hand side
term of heat equation. Repeating the procedure from the previous limit passage we obtain

Tk((T̃
d

+ T dk) : G(θ̃ + θk, T̃
d

+ T dk)) ⇀ (T̃
d

+ T d) : G(θ̃ + θ, T̃
d

+ T d)), (6.3.74)

weakly in L1(Q). Weak convergence of right-hand sides of heat equation and strong convergence
of initial conditions imply that there exists a renormalised solution to heat equation θ, see Section
3.2, such that for every K ∈ N holds

TK(θk) ⇀ TK(θ) weakly in L2(0, T,W 1,2(Ω)),
θk → θ a.e. in Q. (6.3.75)

Taking S′(θ)φ as a test function in (6.3.61), where S is a C∞(R) function, such that S′ has a
compact support we obtain

−
∫
Q
S(θ)

∂φ

∂t
dx dt−

∫
Ω
S(θ0 − θ̃0)φ(x, 0) dx+

∫
Q
S′(θ)∇θ · ∇φ dx dt

+

∫
Q
S′′(θ)|∇θ|2φ dx dt =

∫
Q
G(θ̃ + θ, T̃

d
+ T d) : (T̃

d
+ T d)S′(θ)φ dx dt.

(6.3.76)

Since θ = θ̂ − θ̃ we may rewrite (6.3.76) in the following form:

−
∫
Q
S(θ̂ − θ̃)∂φ

∂t
dx dt−

∫
Ω
S(θ0 − θ̃0)φ(x, 0) dx+

∫
Q
S′(θ̂ − θ̃)∇(θ̂ − θ̃) · ∇φ dx dt

+

∫
Q
S′′(θ̂ − θ̃)|∇(θ − θ̃)|2φ dx dt =

∫
Q
G(θ̃ + θ, T̃

d
+ T d) : (T̃

d
+ T d)S′(θ̂ − θ̃)φ dx dt,

(6.3.77)

where θ̃ is a solution of (6.3.2), θ̂ is a solution to full thermo-visco-elastic model and (6.3.77)
hold for every test function φ ∈ C∞c ([−∞, T ), C∞(Ω)). Moreover, using the solution to problem
(6.3.1) we obtain ∫ T

0

∫
Ω

(T̃ + T ) : ∇ϕ dx dt =

∫ T

0

∫
Ω
f ·ϕ dx dt, (6.3.78)

where
T = D(ε(u)− εp), (6.3.79)

and (6.3.78) holds for every test function ϕ ∈ C∞([0, T ], C∞c (Ω,R3)).
This completes the proof of Theorem 6.2.1.
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List of Notations

x point in the reference configuration
t time moment
u(x, t) displacement
θ(x, t) temperature
εp(x, t) visco-elastic strain tensor
D linear, positively definite and bounded operator
ε(u) symmetric gradient of displacement u
G(θ,T d) visco-elastic constitutive function
S3 space of symmetric matrices 3× 3
S3
d space of traceless symmetric matrices 3× 3

T d deviatoric part of tensor T
I identity matrix form S3

ρ density
α thermal expansion
η(t) standard mollifire with respect to the time
σ Cauchy stress tensor
r density of heat sources
θR reference temperature
κ material’s conductivity
c material’s capacity or constant
O arbitrary subset of Ω

W 1,p′
g (Ω,R3) space

{
u ∈W 1,p′(Ω,R3) : u = g on ∂Ω

}
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