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Abstract

The following thesis is dedicated to the mathematical analysis of a model governing the flow
of chemically reacting compressible mixtures. We investigate the existence of weak solutions to
the Navier-Stokes system supplemented by the reaction-diffusion equations for the species. We
put particular emphasis on the reversible reactions and the state equation which depends on the
chemical composition of the mixture. In the first approach, we consider the isothermal steady
flow with diagonal, linear diffusion. However, a direct attempt to generalize this result for the
case of heat-conducting fluids leads to inconsistency with the second law of thermodynamics.
To avoid this discrepancy, the more complex form of the species diffusion flux, the so called
multicomponent diffusion, has to be considered. As a result, a new type of degeneration in the
species mass balance equations arises, which cannot be handled using the standard renormal-
ization techniques. We solve this problem by introducing the entropy variables which make it
possible to derive the basic a-priori estimate. The next important aspect of the studied model is
vanishing viscosity at the vacuum states. Postulating particular form of the viscosity coefficients
enables to obtain higher regularity of the density, necessary to define the notion of the weak
solution. Under this assumption we show sequential stability of weak solutions to the flow of
two-component mixture with the multicomponent diffusion. Further, for an additional modifica-
tion of the barotropic pressure in the neighborhood of small densities, we present the complete
existence result and prove the sequential stability of weak variational entropy solutions to the
flow of heat-conducting mixture of arbitrary large number of reacting species.

Keywords

Navier-Stokes-Fourier system, compressible flow, thermal conduction, chemically reacting mix-
tures, multicomponent diffusion, sequential stability of solutions, large data, weak solutions,
weak variational entropy solutions
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Streszczenie

Niniejsza rozprawa poświęcona jest analizie matematycznej przepływów chemicznie reagujących
mieszanin ściśliwych. Badamy istnienie słabych rozwiązań dla układu równań Naviera-Stokesa
uzupełnionego równaniami reakcji-dyfuzji poszczególnych składników. Skupiamy się na opisie
reakcji odwracalnych i równaniu stanu uwzględniającym skład chemiczny mieszaniny. W pier-
wszej kolejności rozważamy izotermiczny przepływ stacjonarny z diagonalną, liniową dyfuzją.
Jednak bezpośrednia próba przeniesienia tego wyniku na przypadek płynów przewodzących
ciepło prowadzi do sprzeczności z drugą zasadą termodynamiki. Aby tego uniknąć, konieczne jest
wprowadzenie bardziej ogólnej postaci strumienia dyfuzji składników, tzw. dyfuzji wieloskład-
nikowej. W rezultacie, mamy do czynienia z nowym rodzajem degeneracji w równaniach bilansu
masowego składników, który nie pozwala na wykorzystanie standardowych technik renormal-
izacyjnych. Rozwiązujemy ten problem poprzez zastosowanie zmiennych entropijnych, dzięki
którym udaje się uzyskać podstawowe oszacowanie a-priori. Kolejnym ważnym aspektem anal-
izowanego modelu jest zerowanie się lepkości w obszarach próżni. Przyjęcie, że współczynniki
lepkości są funkcjami gęstości spełniającymi odpowiednią relację pozwala na uzyskanie wyższej
regularności gęstości, koniecznej do zdefiniowania pojęcia słabego rozwiązania. Przy tym założe-
niu pokazujemy ciągową stabilność słabych rozwiązań dla równań przepływu dwuskładnikowej
mieszaniny z ogólną dyfuzją. Dla dodatkowej modyfikacji ciśnienia barotropowego w okolicach
próżni przedstawiamy kompletny dowód istnienia słabych rozwiązań oraz dowodzimy ciągowej
stabilności słabych wariacyjnych rozwiązań entropijnych dla przewodzącej ciepło mieszaniny
dowolnie wielu chemicznie reagujących gazów.

Słowa kluczowe

równania Naviera-Stokesa-Fouriera, przepływ ściśliwy, przewodnictwo ciepła, mieszaniny chemicznie
reagujące, wieloskładnikowa dyfuzja, ciągowa stabilność rozwiązań, duże dane, słabe rozwiąza-
nia, słabe wariacyjne rozwiązania entropijne

Klasyfikacja tematyczna według AMS

35B45, 35D05, 35Q30, 76N10, 80A32
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Chapter 1

Introduction

This dissertation develops the existence theory for the flows of chemically reacting gaseous mix-
tures. We analyze the model formulated by the full Navier-Stokes system supplemented by the
reaction-diffusion equations for the species. Our principal intention is to handle the reversible
reactions and the pressure which depends on concentration of the chemical species. As a conse-
quence, one has to deal with more complex balance law for the entropy. This is the main source
of the a-priori estimates, provided the model is consistent with the principles of continuum me-
chanics and thermodynamics. To ensure that, more general than usual forms of the transport
fluxes must be considered. The mathematical investigation of such systems encounters various
problems arising mostly due to a strong cross-diffusion in the species transport and the insuf-
ficient information about the density satisfying only the hyperbolic equation. Because of these
difficulties, for a long time, the effort of mathematicians focused on systems simplifying either
the reactive or dynamical aspects of the flow, or minimizing the coupling between them. They
still can be used to model particular phenomena, but most of nowadays applications require more
detailed description. For example, in modeling hydrogen-oxygen system included in a number of
chemical mechanisms, as many as 20 different reactions can be taken into account involving the
eight species:

H2, O2, H2O, OH, O, H, HO2 and H2O2.

Moreover, depending upon the temperature, pressure, and extent of reaction, all the reverse
reactions can become important [104]. The main motivation of this thesis is to undertake a first
step in solving some fundamental mathematical problems for such type of systems. Our approach
charges from several fragmentary results that have been obtained for compressible Navier-Stokes
equations so far. Below we present a brief survey on current state of the art in this area.

1.1 Overview of the theory

The existence theory for the compressible Navier-Stokes type of systems started to develop
at the end of 70’s when the first local existence theorems for solutions with arbitrary norm
(Tani [100], Solonnikov [98]) and global existence theorems for initial data sufficiently close to
an equilibrium [65] were established. In [65] Matsumura and Nishida considered the full Navier-
Stokes system (coupled with heat equation) and proved the existence of global solution around
the constant steady state, for the Cauchy problem with no external force. It was then extended
in [66,67] to the case of bounded domains and a half-space for small external forces. Under similar
assumptions, the issue of asymptotic stability was addressed by Valli [106]. It was a starting
point to further studies devoted to existence of almost-periodic, periodic and stationary solutions
for barotropic flow in a bounded domain with zero Dirichlet boundary condition [106–108]. Later

13



14 CHAPTER 1. INTRODUCTION

on, these results were generalized by Valli and Zajączkowski [109] for the heat-conducting fluids
with the inflow and outflow through the boundary.

The earliest result for the case of large external potential forces is due to Matsumura and
Padula [68] who adopted the energy method to prove global in time existence of strong solutions
which tend to a nontrivial steady state. For the relevant existence result in the Lp approach we
refer to the papers of Mucha and Zajączkowski [70,75,76].

Concerning compressible steady flow, until early 90’s, existence of strong solutions near the
equilibrium corresponding to small perturbations of zero external forces became well understood
due to results of Padula [87], Beirao da Veiga [6] and Farwig [31]. They applied the energy method
in the spirit of [66], so the existence was obtained in the Hilbert and the Sobolev spaces. The
same approach was used by Novotný and Padula in [80] to investigate the small perturbations of
large potential forces, however the proof was relatively long and could not be easily generalized
for more complicated boundary-value problems. An advance in this subject was a method of
decomposition of velocity introduced by the same authors in [81] and then adapted by Novotný
and Pileckas to treat the large potential forces [82].

At the same time, in parallel to the theory of strong solutions, there appeared the first results
concerning discontinuous (weak) global solutions (Hoff [46–49], Serre [93,94], Shelukhin [96]). In
case of large data some new ideas were exposed already by Padula [86] for the 2-dimensional
case and by Kazhikhov [52] when convection in the momentum equation is neglected. It is
here also worth to mention the result of Vaigant and Kazhikhov [105], who established the
existence of global classical and weak solution to the initial-value problem on a square for the
density dependent viscosity coefficients satisfying additional growth conditions. But the real
breakthrough came with the pioneering works of Lions [60,61] and with his subsequent book [62]
from 1998, where he gave the global existence results for the steady as well as the non-steady
barotropic Navier-Stokes system and also for some compressible models with temperature. The
proofs were essentially using properties of quantity called the effective viscous flux or the effective
pressure. A compactness of this quantity was studied already by Novotný [79] using the method
of decomposition from [81]. Later on, this approach was improved by Feireisl [32] to handle the
case when density is not a-priori bounded in L2, by introducing the tool for studying density
oscillations, which was then adopted by Novo and Novotný [77] to treat the steady case. The
comparison of these methods together with complete approximation scheme can be found in the
book of Novotný and Straškraba [85], mostly for the Dirichlet boundary conditions. For the
steady problem with slip boundary conditions we refer to the papers of Mucha and Pokorný
[71,89], where also a new idea of construction of approximate solution has been introduced.

For the full Navier-Stokes system, the question of existence of the weak variational solutions
was addressed by Feireisl [33]. Later on, the concept of the weak variational entropy solutions
(i.e. a solution satisfying the balance of mass, momentum, the entropy inequality and the global
balance of total energy) was introduced by Feireisl and Novotný [35], who proved the sequential
stability of these solutions. Then, in the monograph [36], also the existence of the weak variational
entropy solutions was proven and several asymptotic limits were investigated. These remarkable
results and their later generalizations are the only ones for the temperature-dependent viscosity
coefficients with physically acceptable growth conditions. For the steady flows, the existence of
weak solutions was shown first by Mucha and Pokorný [72] for the adiabatic exponent γ > 3.
Then, it has been observed by Novotný and Pokorný that considering temperature-dependent
viscosity coefficients helps to attain more realistic values of γ, see [83,84]. Moreover, in [84], the
authors proved that if γ > 4

3 then not only the entropy inequality but the weak formulation of
the total energy balance is fulfilled. More recently, a generalization of this result to the case of
slip boundary conditions has been proven in [50].
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Another important achievement in this theory is due to Feireisl and Novotný [37] who showed
the weak-strong uniqueness of weak variational entropy solutions, meaning that they coincide with
the strong ones, emanating from the same initial data, as long as the latter exists. Proving this
property provides a strong argument in favor to call the weak formulation based on the entropy
inequality the suitable one. It is, in a sense, a generalization of the classical result of Prodi [90]
and Serrin [95] to the case of heat-conducting compressible fluid flows.

Recently, many studies have been focused on the compressible flows with density dependent
viscosity. There is a sequel of papers devoted to sequential stability of weak solutions to the
barotropic Navier-Stokes system [14, 69] and its generalization to the heat-conducting case [13].
These studies were originally developed for the Korteweg and shallow water models [10,15] and
all they relay on a new mathematical concept of entropy, that has been discovered by Bresch,
Desjardins and Lin [15]. Although the stability result is widely regarded as a most difficult step
in the complete proof of existence, the construction of sufficiently smooth approximate solutions
is still an open problem; some ideas can be found in [12].

Much less is known about the physically reasonable models that include the chemical re-
actions. In fact, we are aware of only one global-in time result applicable to a large number
of reversibly reacting gaseous species. The existence of solutions to the system based on the
Navier-Stokes equations equipped with physically relevant constitutive relations was established
by Giovangigli [45]. He assumed, however, that the initial conditions are sufficiently close to an
equilibrium state.

The serious difficulty in analysis of such models is the mixed hyperbolic-parabolic type of
associated PDEs and a strong coupling between the species mass balance equations and the rest
of the system. But the most troublesome is the form of diffusion flux which does not allow
to apply the standard tools for parabolic systems. For this reason, in majority of studies, the
diffusion fluxes are described by the Fick law. This approximation does not take into account the
cross-effects that are well-known to play an important role in many phenomena. Furthermore,
such an assumption leads to inconsistency with the second law of thermodynamics, when the
pressure depends on the chemical composition of the mixture. In that case, the sign of the
entropy production may fail to be non-negative, which contradicts physical admissibility of the
process. This in turn interferes with obtaining the fundamental a-priori estimates causing that
the methods from [13,36,62] break down.

A similar problem appeared in the works of Frehse, Goj and Málek [40, 41] who proved
existence and uniqueness of solutions to the steady Stokes-like system for a mixture of two
(non-reactive) fluids (see also [42] for relevant result on quasi-stationary model). The authors
considered the model assigning densities and velocity fields to each species of the fluid (cf. [91]).
In their case, neglecting some nonlinear interaction terms in the source of momentum caused
that the basic energy equality was no longer preserved.

Regarding models with the Fick approximation, the literature is more exhaustive, especially
for one dimensional case [18,28,114] and for the multidimensional combustion models. As far as
the latter are concerned, the global existence of weak solutions was recently proven by Donatelli
and Trivisa [26] and then extended in [25] to treat the pressure dependence on the mass fraction of
fuel. Concerning multicomponent models, the issue of global-in-time existence of weak variational
entropy solutions was investigated by Feireisl, Petzeltová and Trivisa [38]. They generalized the
proof from [36] to the case of chemically reacting flows, when there is no interaction among the
species diffusion fluxes and the pressure does not depend on the chemical composition of the
mixture. Since the proof is based on the energy-entropy method, it is not clear if it can be
extended to cover more realistic state equation without including a general form of diffusion.
Nevertheless, it should be emphasized that it provides an exact mathematical complementation
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of the scale analysis and numerical experiments presented in the work of Klein et al. [54].

1.2 Main results

The thesis consists of four main parts. Each of them, as a separate chapter, is a distinct result
based on the series of articles [73, 74,111–113].

The Fick approximation – adaptation of Lions’ approach, [111]. In this chapter we
examine the system of equations governing the steady flow of a polyatomic isothermal reactive
gaseous mixture. The model covers situation when the pressure depends on species concentra-
tions and when the diffusion fluxes are approximated by the Fick law with density-dependent
coefficients. It is shown that this problem admits a weak solution provided the adiabatic expo-
nent for the mixture γ is greater than 7

3 . In the proof we follow the idea of Lions [62] based
on the DiPerna-Lions transport theory [24]. This approach requires the L2 integrability of the
density in order to get the renormalized solution of the continuity equation which is later on
used to exploit the effective viscous flux equality. In the barotropic case it is possible to improve
the value of γ be applying the oscillations defect measure introduced by Feireisl [32]. It seems,
however, that here this technique could not be used due to a presence of the molecular part of
the pressure.

The case of two species – vanishing viscosity coefficients, [73, 113]. Here, we study
the Cauchy problem for the system of equations governing flow of isothermal reactive mixture of
compressible gases. The first part of this chapter is devoted to the proof of sequential stability
of weak solutions when the state equation essentially depends on the species concentration and
the viscosity vanish on vacuum. The main difficulty in comparison to the systems with viscosity
coefficients bounded from below by a constant [36, 62], is lack of information about the velocity
vector field. On the other hand, a special relation among the viscosity coefficients

ν(%) = 2%µ′(%)− 2µ(%) (1.1)

proposed by Bresch and Desjardins in [11] allows to show some better properties of the density.
But still, it is not enough to deduce compactness of the most restrictive convective term when no
additional term, like capillary or a drag force, is present. In the second part of the chapter, under
further assumption on the barotropic pressure, we give a detailed description of the approximate
scheme and prove the existence of weak solutions for arbitrary large initial data.

System of reaction-diffusion equations – the entropy variables, [74]. In this part of
the thesis we analyze the system of reaction-diffusion equations for the compressible mixture of
gases, taking rigorously into account the thermodynamical regime. It implies, in particular, that
the diffusion terms are non-symmetric, not positively defined and cross-diffusion effects must
be taken into account. In consequence one has to deal with a system of parabolic equations
with hyperbolic deviation. Our main achievement is the proof of existence of weak solutions for
arbitrary number of reacting species under the assumption that the total density is as regular
as it follows from the previous chapter. Here, in contrary to [40], the nonlinear diffusion terms
appear in all the species diffusion forces, while the matrix of diffusion coefficients C satisfies the
assumptions from [45], Chapter 7. We present our technique only for a particular form of C,
however, the entropy-like estimate we obtain in the course of proof seems to be of independent
interest as it indicates possible renormalization of the system.

Heat-conducting mixtures – a key role of the entropy estimate, [112]. The purpose
of the last chapter is to bring together and complement the results from [74,113] in order to treat
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the complete mathematical model governing the motion of n-component, heat-conducting and
chemically reacting gaseous mixture. We prove sequential stability of weak variational entropy
solutions when the state equation essentially depends on the species concentration and the species
diffusion fluxes depend on the gradients of partial pressures, analogously as in [74]. The complete
existence result, however important and interesting, seems to be very complex and technically
complicated task and is left for future study. Of crucial importance for our analysis is the
fact that viscosity coefficients are related by (1.1) and the source terms enjoy the admissibility
condition dictated by the second law of thermodynamics. Thanks to this, we are able to combine
the entropy inequality with the Bresch-Desjardins type of estimate [11]. The latter, similarly
as in [113], compensates the missing information about the species densities, which is due to a
more general form of diffusion fluxes. However, the presence of the temperature causes that the
method scratched in [113] and [74] is now more intricate.

It is to be noticed that, unlike to [13], we perform the limit passage in the framework of weak
variational entropy formulation, similar in spirit to [38]. What is still lacking to end up with the
usual weak solution, is better regularity of the temperature required to pass to the limit in the
internal energy balance.

1.3 Presentation of the model

In the following section we first present the set of equations governing multicomponent reactive
flow. The derivation of such model from the kinetic theory of gases can be found in numerous
textbooks [17, 45, 110]. Next, we introduce some equivalent formulations that can be used in-
terchangeably depending on the context and purpose. Then, in Section 1.3.3, we supplement
the system of field equations by the set of constitutive relations characteristic for compressible,
viscous, heat-conductive and chemically-reacting mixtures.

1.3.1 Equations of motion

To describe the flow of n-component chemically reacting compressible mixture, we will use the
full Navier-Stokes-Fourier (NSF) system suplemented by the set of n reaction-diffusion equations
for the species:

∂t%+ div(%u) = 0

∂t(%u) + div(%u⊗ u)− divS +∇π = %f

∂t(%E) + div(%Eu) + div(πu) + divQ− div(Su) = %f · u

∂t%k + div(%ku) + div(Fk) = %ϑωk, k ∈ {1, ..., n}


in (0, T )× Ω. (1.2)

These equations express the physical laws of conservation of mass, momentum, total energy and
the balances of species mass, respectively.

Here, u : R3 → R3 is the velocity field, % : R3 → R denotes the total mass density being a sum
of species densities %k, k ∈ {1, . . . , n}. The last unknown quantity is the temperature ϑ : R3 → R
which appears implicitly in all the equations of (1.2) except for the continuity equation. Next,
S denotes the viscous stress tensor, the internal pressure is denoted by π, f is a given external
force, E is the total energy per unit mass, Q stands for the heat flux, Fk, k ∈ {1, . . . , n} denote
the species diffusion fluxes and ωk, k ∈ {1, . . . , n} are the chemical source terms, also termed the
species production rates.

In (1.2), t denotes time t ∈ (0, T ) and the length of the time interval T is usually assumed
to be arbitrary large, but finite. The space domain Ω is a bounded subset of R3 that will be
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different in different chapters. The vectors belonging to the physical space R3 as well as the
tensors are printed in the boldface style.

1.3.2 Alternative formulations

In what follows we give different formulations for the species mass balances and the energy
equation. The first of them is very convenient in case when the diffusion fluxes for species are
approximated by the Fick law; the second one allows to show several properties of function ϑ as
a solution to quasilinear parabolic equation.

The species mass conservation equations. They can be equivalently written in terms of
species mass fractions:

∂t(%Yk) + div(%Yku) + div(Fk) = %ϑωk,

where Yk, k ∈ {1, . . . , n} are defined by Yk = %k
% and they satisfy:

n∑
k=1

Yk = 1. (1.3)

We remark that we will freely switch from one notation to the other using the species unknowns
(%, %1, . . . , %n) or equivalently (%, Y1, . . . , Yn). Note, however, that due to the law of mass con-
servation, system (1.2) is a priori linearly dependent. Indeed, assuming the following constraints
for diffusion fluxes and the production rates for species

n∑
k=1

Fk = 0,
n∑
k=1

ωk = 0,

we sum the n species mass conservation equations and derive the continuity equation. Therefore,
to solve the system, one should eliminate one equation or constraint (1.3). In the subsequent
chapters we will follow one of two strategies: either we solve the n species equations with the
species unknowns (%1, . . . , %n) or we will look for a solution to the n species equations and the
continuity equation in parallel and then investigate compatibility with (1.3).

The internal energy equation. The total energy E per unit mass may be written in the form

E =
1

2
|u|2 + e,

where the first component is the kinetic energy whereas e = e(%, ϑ, Y ), Y = (Y1, . . . Yn)T stands
for the specific internal energy. As mentioned above, it is sometimes more convenient to replace
the total energy by the internal energy balance. It can be derived by subtracting from the total
energy balance the balance of kinetic energy:

∂t(%e) + div(%eu) + divQ = −π divu + S : ∇u. (1.4)

It should be, however, underlined that these formulations have different physical meaning and
system (1.2) is equivalent to the one with the total energy equation replaced by the internal
energy equation, provided the motion is sufficiently smooth. In the next section we will transform
equation (1.4) into another form, based on the thermodynamical concept of entropy.
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1.3.3 Constitutive relations

The purpose of this section is to specify the constitutive relations of the gaseous mixture, i.e.
to supplement system (1.2) with a set of expressions determining the form of thermodynamical
functions and transport fluxes in terms of macroscopic variable gradients and transport coeffi-
cients in the spirit of [45], Chapter 2. Precise evaluation of the form of transport coefficients is
a very difficult task in the modeling, in fact, only some approximate expressions are available.
We will specify the structural properties to be imposed on them, separately in the subsequent
chapters.

Thermal equation of state. We consider the pressure π = π(%, ϑ, Y ), which can be decom-
posed into

π = πm + πc, (1.5)

where the latter component depends solely on the density and it corresponds to the barotropic
process of viscous gas. It is the only non-vanishing component of the pressure when temperature
goes to zero, thus will be termed a ”cold pressure” or a barotropic correction. The first component
πm = πm(%, ϑ, Y ) is the classical molecular pressure of the mixture which is determined through
the Boyle law as a sum of partial pressures pk:

πm(%, ϑ, Y ) =
n∑
k=1

pk(%, ϑ, Yk) = R
n∑
k=1

%ϑYk
mk

,

with mk the molar mass of the k-th species and R the perfect gas constant.
Likewise the pressure, the internal energy e = e(%, ϑ, Y ) can be decomposed into

e = est + em + ec, est(Y ) =
n∑
k=1

Yke
st
k , em(ϑ, Y ) = ϑ

n∑
k=1

cvkYk, (1.6)

where estk = const . is the formation energy of the k-th species, at the standard temperature ϑst,
while cvk is the constant-volume specific heat of the k-th species. The ”cold” components of the
internal energy ec = ec(%) and pressure πc are related through the following equation of state:

%2dec(%)

d%
= πc(%). (1.7)

The last relation is a consequence of the second law of thermodynamics which postulates the
existence of a state function called the entropy.

The entropy equation. The entropy of a thermodynamical system is defined (up to an additive
constant) by the differentials of energy, total density, and species mass fractions via the Gibbs
relation:

ϑDs = De+ πD

(
1

%

)
−

n∑
k=1

gkDYk, (1.8)

where D denotes the total derivative with respect to the state variables {%, ϑ, Y }; whereas gk are
the Gibbs functions

gk = hk − ϑsk. (1.9)
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Here, hk = hk(ϑ) denotes the specific enthalpy and sk = sk(ϑ, %k) is the specific entropy of the
k-th species

hk(ϑ) = estk + cpkϑ,

sk(ϑ, %k) = sstk + cvk log
ϑ

ϑst
+

R

mk
log

Γstmk

%k
, (1.10)

where sstk = const. denotes the formation entropy of k-th species and Γst = pst

Rϑst is the standard
concentration (at the standard temperature ϑst and the standard pressure pst).
The constant-volume (cvk) and constant-pressure (cpk) specific heats for the k-th species are
constants related by the following formula

cpk = cvk +
R

mk
. (1.11)

In accordance with (1.4), (1.6), (1.7) and (1.8), the specific entropy of the mixture, expressed as
a weighted sum of the species specific entropies

s =

n∑
k=1

Yksk, (1.12)

is governed by the following equation

∂t(%s) + div(%su) + div

(
Q

ϑ
−

n∑
k=1

gk
ϑ
Fk

)
= σ, (1.13)

where σ is the entropy production rate

σ =
S : ∇u
ϑ

− Q · ∇ϑ
ϑ2

−
n∑
k=1

Fk · ∇
(gk
ϑ

)
−
∑n

k=1 gk%ϑωk
ϑ

. (1.14)

By virtue of the second law of thermodynamics, the entropy production rate must be non-negative
for any admissible process.

The stress tensor. The viscous part of the stress tensor obeys the Newton rheological law,
namely:

S = 2µD(u) + ν divuI, (1.15)

where D(u) = 1
2

(
∇u + (∇u)T

)
and µ, ν are the Lamé viscosity coefficients (dependent on tem-

perature and pressure) satisfying the following conditions

µ > 0, 2µ+ 3ν ≥ 0. (1.16)

These inequalities are the consequence of the second law of thermodynamics. It implies, in
particular, that the production of entropy associated with the flow of viscous fluid must not be
negative, i.e. that S(u):u

ϑ ≥ 0.
Rewriting relation (1.15) as a sum of two orthogonal components, we get the following expression

S(u) = 2µ

(
D(u)− 1

3
divuI

)
+ ξ divuI, (1.17)
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where µ is the shear viscosity coefficient and ξ = 2
3µ + ν is the bulk viscosity coefficient, thus

the dissipation is equal to

S(u) : ∇u =
1

2
µ

3∑
i,j=1

(
∇iuj +∇jui −

2

3
divu δij

)2

+ ξ(divu)2.

So, it is nonnegative provided µ, ξ ≥ 0.

The species diffusion fluxes. Following [45], Chapter 2, Section 2.5.1, we postulate that the
diffusion flux of the k-th species is given by

Fk = −C0

n∑
l=1

Ckldl, k = 1, ...n, (1.18)

where C0, Ckl are multicomponent flux diffusion coefficients and dk is the species k diffusion
force specified, in the absence of external forces, by the following relation

dk = ∇
(
pk
πm

)
+

(
pk
πm
− %k

%

)
∇ log πm. (1.19)

The main properties of the flux diffusion matrix C = (Ck,l)
n
k,l=1 are the following (see [45]):

CY = YCT , N(C) = RY, R(C) = U⊥, (1.20)

where Y = diag(Y1, . . . , Yn) is the diagonal matrix of species mass fractions Yk, N(C) is the
nullspace of matrix C and by R(C) we denote its range; U = (1, . . . , 1)T and U⊥ is the orthogonal
complement of RU .
Another important condition on C, postulated for example by Waldmann [110], is that wherever
it can be defined, the matrix

Dkl =
Ckl
%k

, k, l ∈ {1, . . . , n}, (1.21)

is symmetric and positive definite over the physical hyperplane U⊥, which corresponds to the
positivity of entropy production rate associated with the diffusive process. For more details on
evaluation of C from the kinetic theory of gases as well as its mathematical properties, we refer
the reader to [45], Chapters 4, 7 and the references therein.
For the purposes of Chapter 2 we recall here some additional properties of diagonal diffusion
matrix C for n− 1 species, formulated as Lemma 7.5.10 in [45].

Lemma 1.1. Assume that there exist scalars αk, k ∈ {1, . . . , n− 1}, n ≥ 2 such that

∀x ∈ U⊥, ∀k ∈ {1, . . . , n− 1}, (Cx)k =
n∑
l=1

Cklxl = αkxk.

Then the matrix C is in the form

C =


α1(1− y1) −α1y1 . . . −α1y1

. . .
...

−α1yn−1 . . . αn−1(1− yn−1) −αn−1yn−1

−α1 + σ . . . −αn−1 + σ σ

 , (1.22)

where yk = Yk/〈Y,U〉, k ∈ {1, . . . , n}, and σ =
∑n−1

k=1 αkyk. In addition, we have αi > 0, for
i ∈ {1, . . . , n− 1}, and whenever αi 6= αj, we must have YiYj = 0.
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The heat flux. It is the sum of two components

Q =
n∑
k=1

hkFk − κ∇ϑ, (1.23)

where the second term represents the Fourier law with the thermal conductivity coefficient κ.
The first term describes transfer of energy due to the species molecular diffusion.

The species production rates. We already included in model (1.2) the linear dependence with
respect to ϑ and % in the right hand side of the species mass balance equations. In accordance
with the second law of thermodynamics, we additionally assume that ωk, k = 1, . . . , n enjoy the
following condition

−
∫

Ω

n∑
k=1

gk%ωk dx ≥ 0, (1.24)

for any admissible thermodynamical process [45].



Chapter 2

The Fick approximation

The Fick law relates the diffusive flux to the gradients of concentrations

Fk = −%Dap
k ∇Yk,

where Dap
k denotes the empirical diffusion coefficient of the k-th species of the mixture. This

is a very common approximation often used implicitly in the classical textbooks as well as in
various studies devoted to scale analysis and numerical experiments. From the point of view of
mathematical analysis such a simplification leads, on one hand, to the the system of elliptic (in
a steady case) or parabolic (in case of time-dependent flow) equations of species mass conserva-
tion, on the other hand, it is an obstacle to obtain series of a-priori estimates resulting from the
entropy balance.

2.1 Introduction and main result

We investigate the model of motion of four-component gaseous mixture undergoing an isothermal,
reversible chemical reaction constituted by

A+B 
 C (2.1)

and we assume that the reaction takes place in the presence of a dilutant D. For reversible
reactions, the postulate that the process occurs in a constant temperature is met when the
reaction is slow enough to enable the surroundings to continually compensate the difference in
heats between the substrates and products.

We will focus on the stationary flow that can be characterised by the state variables: the
total mass density % = %(x), the velocity vector field u = u(x) and the species mass fractions
Yk = Yk(x) for k ∈ {A,B,C,D}, throughout the set of balance equations:

div(%u) = 0

div(%u⊗ u)− divS +∇π = %f

div(%YAu) + div(FA) = %ωA

div(%YBu) + div(FB) = %ωB

div(%YCu) + div(FC) = %ωC


in Ω, (2.2)

expressing the conservation of mass, momentum and the conservation of species mass, respec-
tively.

23
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In this chapter Ω is a bounded subset of R3 and we supplement system (2.2) by the imperme-
ability conditions

u · n|∂Ω = Fk · n|∂Ω = 0, (2.3)

together with the no-slip boundary condition

u× n|∂Ω = 0. (2.4)

We assume that the total mass is given,∫
Ω
% dx = M > 0.

The model is consistent with the principle of mass conservation, thus necessarily∑
k∈S

Yk = 1, (2.5)

and ∑
k∈S

ωk = 0, (2.6)

where by S we denote the set of all species {A,B,C,D}. Note that we consider only the first
three mass fractions as unknowns and use (2.5) to evaluate the mass fraction of the remaining
species YD.
The internal pressure π is a function of density % and mass fractions Y = {YA, YB, YC , YD} and
it obeys the following equation of state

π(%, Y ) = %γ +R%

(∑
k∈S

Yk
mk

)
, γ > 1. (2.7)

The viscous part of the stress tensor S is given by (1.15), where µ, ν are constant viscosity
coefficients satisfying

µ > 0, 2µ+ 3ν ≥ 0. (2.8)

The species mass fluxes Fk, k ∈ {A,B,C}, are given by the Fick empirical law

Fk = −Dk(%)∇Yk, k ∈ {A,B,C}, FD = −FA − FB − FC , (2.9)

whereDk(%) stand for the diffusion coefficients andDk(%) = ckD(%), ck ∈ R. This approximation
corresponds to diffusion matrix C which is diagonal only for the species A,B,C. For the moment
we assume, however, that it is diagonal with respect to all four species, so

Dk(%) = D(%) for k ∈ {A,B,C}, and FD = −D(%)∇YD.

We shall come back to the general case (2.9) at the end of this chapter.
Furthermore, the common diffusion coefficient satisfies

D(·) ∈ C([0,∞)), D(1 + %
γ
2 ) ≤ D(%) ≤ D(1 + %

γ
2 ), (2.10)

for some positive constants D, D.
The production rates ωk are continuous function and for k ∈ {A,B,C} we have

−ω ≤ ωk(Y ) ≤ ω, for all 0 ≤ Yk ≤ 1, (2.11)
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ωD = 0, moreover we suppose

ωk(Y ) ≥ 0 whenever Yk = 0. (2.12)

The main result of this chapter concerns the existence of weak solutions in the sense specified
by the following definition.

Definition 2.1. We say that a set of functions (%,u, Y ) is a weak solution to the problem (2.2–
2.4) provided % ∈ Lγ(Ω), u ∈ W 1,2

0 (Ω), Y ∈ W 1,2(Ω), Fk · n|∂Ω = 0, k ∈ S, Yk, % ≥ 0,∑
k∈S Yk = 1 a.e. in Ω, and the following integral equalities are satisfied∫

Ω
%u · ∇ξ dx = 0 ∀ξ ∈ C∞(Ω), (2.13)

∫
Ω

(−% (u⊗ u) : ∇ϕ+ S(u) : ∇ϕ) dx−
∫

Ω
π(%, Y ) divϕ dx =

∫
Ω
%f · ϕ dx ∀ϕ ∈ C∞0 (Ω),

−
∫

Ω
%uYk · ∇φ dx+

∫
Ω
D(%)∇Yk · ∇φ dx =

∫
Ω
%ωkφ dx ∀φ ∈ C∞(Ω),

for all k ∈ {A,B,C}.

We will also use the notion of the renormalized solution to the continuity equation

Definition 2.2. Let u ∈W 1,2
loc (R3) and % ∈ L6/5

loc (R3) solve

div(%u) = 0

in the sense of distributions on R3, then the pair (%,u) is called a renormalized solution to the
continuity equation, if

div(b(%)u) + (%b′(%)− b(%)) divu dx = 0, (2.14)

in the sense of distributions on R3, for all b ∈ W 1,∞(0,∞) ∩ C1([0,∞)), such that sb′(s) ∈
L∞(0,∞).

The main result of this chapter is

Theorem 2.3. Let Ω ∈ C2 be a bounded domain in R3, let µ > 0, 2µ + 3ν ≥ 0, γ > 7
3 , M>0

and let f ∈ L∞(Ω). Then there exists a weak solution to the problem (2.2–2.4) in the sense of
Definition 2.1. Moreover

∫
Ω % dx = M , and if γ ≥ 3, then % ∈ L2γ(Ω), otherwise if 7

3 < γ < 3
then % ∈ L3γ−3(Ω). Additionally, the pair (%,u), extended by 0 outside Ω, is a renormalized
solution to the continuity equation in the sense of Definition 2.2.

The proof of this theorem is based on several ideas from the theory of weak solutions to
the steady Navier-Stokes equations, which originates from the pioneering work of Lions [62]. He
proved the existence of weak solutions for the steady as well as the non-steady Navier-Stokes
system for barotropic flow. This means that the internal pressure has a particular form π(%) ≈ %γ ,
where γ > 1 is the adiabatic constant, which is determined by the number of degree of freedom
of a single gas molecule. From the mathematical point of view, the value of γ indicates the
quality of a-priori estimates of %. The proof proposed by Lions relies on the DiPerna-Lions
transport theory [24] requiring L2 integrability of the density, which entails γ ≥ 5

3 . The most
difficult part of the proof was to show the strong convergence of the density in order to pass to
the limit in the nonlinear term %γ . Here, one essentially uses the compactness of quantity called
effective viscous flux or effective pressure. The compactness of this quantity was studied already
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in [79] using the method of decomposition proposed by Novotný and Padula in [81]. Later, these
ideas were extended by Feireisl [32] by introducing a tool for studying density oscilations in the
case of nonsteady equations. His method was then adapted to the steady system by Novo and
Novotný [77] and led to the proof existence of weak solutions for an optimal value of adiabatic
constant, γ > 3

2 . A modification of this approach in the case of steady flows with slip boundary
conditions has been introduced by Mucha and Pokorný in a two dimensional case in [71] and in 3D
in [89]. More recently, these ideas were also extended to treat the heat-conducting case [72,83,84],
as it was mentioned in the introduction.

From the point of view of existence theory for steady flows of chemically reacting mixtures, the
investigations devoted to stability and asymptotic analysis presented in [56,58] are of particular
interest, since, to the best of our knowledge, the time-independent problems were not considered
so far. They seem to be worse than the nonsteady cases in the sense that the energy inequality
by itself does not give any information about the sequence of weak solutions. This is precisely
the reason why the value of γ obtained in the course of our proof is far from being physically
relevant.

2.2 Existence of solutions

This section is devoted to the proof of Theorem 2.3. First we introduce the approximative system
following the approach from [38, 62, 85]. At this stage the classical theory for elliptic equations
together with the fixed point argument are sufficient to show the existence of regular solutions.
In this section we also show the basic energy estimate that is used, with some modifications,
throughout all the paper. Next, we let ε → 0 in order to get rid of artificial diffusion in the
continuity equation. The requirement imposed on the adiabatic constant, γ > 7

3 is necessary
to get the boundedness of velocity gradient in L2(Ω) and enables to apply Lions technique of
showing the strong convergence of density.

2.2.1 Approximative system

Combining the ideas from [85] and [38] we introduce the following approximative system. For
the constant parameters h, ε, η > 0 we will look for a triple (%η,ε,uη,ε, Yη,ε) (we will skip the
subscripts when no confusion can arise) satisfying:
• the approximate continuity equation

ε%+ div(%u) = ε∆%+ εh,

∇% · n|∂Ω = 0,
(2.15)

where h = M
|Ω| ,

• the approximate momentum equation

1
2%u · ∇u + 1

2 div(%u⊗ u)− divS(u) +∇π(%, Y ) = %f ,

u|∂Ω = 0,
(2.16)

• the approximate species mass balance equations

ε%Yk + div (%uYk)− div(Dη∇Yk)− ε∆(%Yk) = %ωk + εhK(Yk), k ∈ {A,B,C}

∇Yk · n|∂Ω = 0,
(2.17)
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where we denoted

K(Yk) =

{ ∫
Ω Yk dx∑

i∈S
∫
Ω Yi dx

for % 6= 0,

0 for % = 0.

Observe, that due to restriction (2.5) the approximate equation for species D writes as

ε%YD + div (%uYD)− div(Dη∇YD)− ε∆(%YD) = εh(1−K(YA)−K(YB)−K(YC))

and its r.h.s. is equal to εhK(YD) for % > 0 otherwise it is εh.
Further, D(%)η is a standard regularization of function D(%) (extended by constant D(0) to the
negative real line) by means of mollifiers, i.e.

D(%)η = D ∗ ψη(%) =

∫
R
ψη(%− ξ)D(ξ) dξ,

and the regularizing kernel satisfies the following properties

ψ ∈ C∞(R), supp ψ ⊂ (−1, 1), ψ(t) = ψ(−t) ≥ 0,

∫
R
ψ(t)dt = 1, ψη =

1

η
ψ

(
t

η

)
.

For more properties of such convolutions we refer the reader to [30], Appendix C.4, in particular,
regularized diffusion coefficients conserve the property (2.10) uniformly with respect to η.
The aim of this section is to prove the following theorem.

Theorem 2.4. Let ε > 0, k ∈ S, h = M
|Ω| . Under assumptions of Theorem 2.3, there exists

a triple (%,u, Y ) being a regular solution to (2.15-2.17), such that % ∈W 2,p(Ω), u ∈ W 2,p(Ω),
Yk ∈ W 2,p(Ω), k ∈ S, for all p < ∞. Moreover, % ≥ 0 in Ω,

∫
Ω % dx = M , Yk ≥ 0 and∑

k∈S Yk = 1.

The proof of this theorem is based on several auxiliary lemmas and it is presented in the next
section.

2.2.2 Existence for fixed parameters

Step 1: We denote for p ∈ [1,∞]:

Mp =
{
w ∈W 1,p(Ω);w|∂Ω = 0

}
,

and define the operator
S : M∞ →W 2,p(Ω),

1 ≤ p < ∞, S(u) = %, where % solves the approximate continuity equation (2.15) with the
Neumann boundary condition. We then claim that the following result holds true

Lemma 2.5. Let assumptions of Theorem 2.4 be satisfied. Then the operator S is well defined
for all p < ∞. Moreover, if S(u) = %, then % ≥ 0 in Ω and

∫
Ω % dx =

∫
Ω h dx. Additionally, if

‖u‖W 1,∞(Ω) ≤ L, L > 0, then

‖%‖2,p ≤ C(ε, p,Ω)(1 + L)h, 1 < p <∞. (2.18)
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The above lemma is an analogue of Proposition 4.29 from [85], so we omit the proof.

Step 2: Our next aim is to show the non-negativity of the species concentrations under assump-
tion that the solution to (2.15–2.17) is sufficiently smooth, i.e. %,u and Yk ∈ W 2,p(Ω), for any
p <∞, k ∈ S,

∑
k∈S Yk = 1 and % ≥ 0.

It will follow directly from the features of the species production terms provided we justify
that the set Ω−k = {x ∈ Ω : Yk(x) < 0} is sufficiently regular to integrate by parts. Assuming
for a moment that this is the case, we integrate each of equations of (2.17) over Ω−k , and by the
smoothness of Yk we obtain

ε

∫
Ω−k

%Yk dx+

∫
∂Ω−k

%Yku · n dσ −
∫
∂Ω−k

(Dη∇Yk + ε∇(%Yk)) · n dσ

=

∫
Ω−k

%ωk dx+ ε

∫
Ω−k

hK(Y +
k ) dx. (2.19)

The same can be done for the equation of species D, for which ωD = 0 and we obtain ”≥” instead
of ”=”.
The second integral on the l.h.s. vanishes due to the boundary conditions on ∂Ω and on ∂Ω−k ,
the third one is non-positive since ∂nYk ≥ 0 on ∂Ω−k , ∂n% = 0 on ∂Ω and Fk · n = 0 on ∂Ω.
Finally, the first integral on the r.h.s. is non-negative due to assumptions imposed on ωk (2.12),
thus we end up with ∫

Ω−k

%Yk dx ≥
∫

Ω−k

hK(Y +
k ) dx.

Since the r.h.s. is non-negative and the l.h.s is non-positive, the inequality may hold only in the
case when

∫
Ω−k

%Yk dx = 0, thus %Yk ≥ 0, in particular Yk ≥ 0, k ∈ S for % > 0.
Let us now focus on the case when % = 0, we denote

Ω0
k = {x ∈ Ω : (%(x) = 0) ∩ (Yk(x) < 0)}.

Observe that by the fact that
∫

Ω % dx = M > 0, provided Ω0
k has sufficiently smooth boundary,

the set ∂Ω0
k \ ∂Ω is nonempty, moreover, it has a non-zero measure.

Next, multiplying each of equations of (2.17) by Yk and integrating by parts over Ω0
k we obtain

‖
√
Dη(0)∇Yk‖L2(Ω0

k) = 0, (2.20)

which suggests that Yk is constant on Ω0
k, but due to the zero boundary condition Yk = 0 on Ω0

k,
k ∈ {A,B,C}. For the last species, similar reasoning leads to

‖
√
Dη(0)∇YD‖L2(Ω0

D) = εh

∫
Ω0
D

YD dx ≤ 0, (2.21)

thus also YD ≥ 0 a.e. in Ω.
Let us now come back to the issue of regularity of ∂Ω−k ; the proof for ∂Ω0

k will follow the same
way. What we actually claim is that the set Ω−k may be approximated by sufficiently smooth
sets Ω−k,δn = {x ∈ Ω : Yk(x) < δn} for δn > 0, such that all the integrations by parts from the
preceding step can be executed for Ω−k,δn and we obtain the final result by letting δn → 0+.

The existence of such sets can be deduced from the following variant of the Sard theorem for
the maps which are differentiable in the Sobolev sense, whose prove can be found e.g. in [22],
see also [39].
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Theorem 2.6. Let Ω be an open set in Rn and let u ∈ W k,p(Ω) with values in Rm, where n,m
are two integers such that n > m. If k = n−m+ 1 and p > n, then the set of critical values of
u, namely the image according to u of the critical set

S = {x ∈ Rn : rank(∇u(x)) < m},

has zero m-measure.

The rough idea of the proof is first to choose sufficiently smooth representative of u that
coincides with u (together with all derivatives) on the set Fε, such that the measure of Ω \ Fε
is less then ε, then to apply the classical Sard theorem [92], and to let ε to zero. Therefore,
similarly to the case of continuously differentiable functions, we may use the Implicit Function
Theorem to infer that for a.e. y ∈ Rm, the connected components of the level set Ey = u−1(y)
are at most n−m dimensional and can be locally parametrized by a W k,p function.

In our case, the structure of system (2.15)-(2.17) implies that, provided u ∈ W 2,p(Ω), the
regularity of % can be improved up to W 3,p(Ω) and the same holds for Yk. Hence, Theorem 2.6
can be used to prove that there exists a sequence δn ∈ R convergent to zero, such that these
parts of ∂Ω−k,δn which do not adhere to ∂Ω belong to the regularity class W 2,p. In particular,
Ω−k,δn is a Lipschitz domain.

Step 3: We now prove the existence of solutions to the species mass balance equations for u,
% given. The main idea consists on applying the Leray-Schauder fixed point theorem to the
mapping

T : W 2,p →W 2,p, T (Ỹk)→ Yk,

where Yk is a solution to the boundary-value problem

−div((Dη + ε%)∇Yk) = %ωk(Ỹ ) + εhK(Ỹ +)− ε%Ỹk − div
(
%uỸk

)
+ εdiv(∇%Ỹk),

∇Yk · n|∂Ω = 0,
(2.22)

for k ∈ {A,B,C}, where we denoted

K(Ỹ +) =


∫
Ω Ỹ

+
k dx∑

i∈S
∫
Ω Ỹ

+
i dx

for % 6= 0

0 for % = 0

and Ỹ +
k =


0 if Ỹk < 0

Ỹk if 0 ≤ Ỹk < 1

1 if 1 ≤ Ỹk
.

We have the following lemma.

Lemma 2.7. Let assumptions of Theorem 2.4 be fulfilled and let u ∈ M∞ and % be given by
Lemma 2.5. Then, the operator T is continuous and compact from W 2,p(Ω) into itself, such that
the set

{Yk ∈W 2,p(Ω) : Yk = tT Yk for some t ∈ [0, 1]}

is bounded.

Proof. The existence and uniqueness of solution to the system (2.22) is a consequence of Lax-
Milgram theorem. Evidently, the mapping T is compact, since the r.h.s of (2.22) is sufficiently
smooth and of lower order, it is also continuous.
To conclude, we should show boundedness of possible fixed points to

tT (Yk) = Yk, t ∈ [0, 1].
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The above equality rewrites as

−div((Dη + ε%)∇Yk) = t
(
%ωk + εhK(Y +

k )− ε%Yk − div (%uYk) + εdiv(∇%Yk)
)
,

∇Yk · n|∂Ω = 0.
(2.23)

Multiplying the first equation by Yk integrating by parts and using the boundary conditions we
get∫

Ω
(Dη + ε%)|∇Yk|2 dx

= tε

∫
Ω

(
hK(Y +

k )Yk − %Y 2
k

)
dx− tε

2

∫
Ω
∇% · ∇Y 2

k dx− t

2

∫
Ω

div(%u)Y 2
k dx+ t

∫
Ω
%ωkYk dx.

By the approximate continuity equation we obtain∫
Ω

(Dη + ε%)|∇Yk|2 dx+ tε

∫
Ω

(
h
Y 2
k

2
+ %

Y 2
k

2

)
dx = t

∫
Ω
%ωkYk dx+ tε

∫
Ω
hK(Y +

k )Yk dx.

Thus, using the Cauchy inequality and boundedness of ωk, we show

‖Yk‖W 1,2(Ω) ≤ c, (2.24)

with a costant c independent of t. Finally, we may estimate the norm of second gradient of Yk
directly from (2.23), we have

− (Dη + ε%)∆Yk

= −t
(
%ωk + εhK(Y +

k )− ε%Yk − div (%uYk) + εdiv(∇%Yk
)
−∇(Dη + ε%) · ∇Yk.

Due to regularity of %,u and estimate (2.24), we first justify that Yk ∈ W 2,2(Ω) ↪→ W 1,6(Ω) ↪→
L∞(Ω). Then, by the bootstrap procedure, we arrive at ‖Yk‖W 2,p(Ω) ≤ c. �

Step 4: Having prepared the necessary information we are ready to proceed with the proof of
existence of regular solutions to the approximate momentum equation. We will use the Leray-
Schauder fixed point theorem for the operator

T : M∞ →M∞, (2.25)

such that v = T (u) is a solution of the problem

−divS(v) = −1
2%u · ∇u−

1
2 div(%u⊗ u)−∇π(%, Y ) + %f ,

% = S(u),
v|∂Ω = 0.

(2.26)

Again, the existence of unique solution to this system can be shown by the direct application
of the Lax-Milgram theorem. Regarding compactness and continuity of operator T , the only
difference with respect to the situation studied in [85], Chapter 4.7, is the presence of additional
term in the pressure. But, by Lemma 2.7 one can see that the right hand side is still sufficiently
smooth and bounded in Lp(Ω) for 1 < p < ∞ in order to estimate the norm of solution in
W 2,p(Ω). The last information needed to verify the hypothesis of the Leray-Schauder fixed point
theorem is the boundedness of possible fixed points to

tT (u) = u, t ∈ [0, 1] (2.27)

which will be derived from the first a priori estimate.
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Lemma 2.8. Let assumptions of Theorem 2.4 be fulfilled. Let t ∈ [0, 1], u ∈M∞ be a fixed point
u = tT (u). Then there exists a constant c > 0 independent of t ∈ [0, 1], such that

‖u‖1,2 ≤ c. (2.28)

Proof. Taking as a test function in (2.27) the solution u which satisfies S(u) = % one gets∫
Ω
S(u) : ∇u dx = −t

∫
Ω
∇π(%, Y ) · u dx+ t

∫
Ω
%f · u dx.

Next, we use (2.15) to get∫
Ω
∇%γ · u dx = εγ

∫
Ω
%γ−2|∇%|2 dx+ ε

γ

γ − 1

∫
Ω
%γ dx− ε γ

γ − 1

∫
Ω
h%γ−1 dx,

thus we have∫
Ω
S(u) : ∇u dx+ tεγ

∫
Ω
%γ−2|∇%|2 dx+ tε

γ

γ − 1

∫
Ω
%γ dx

= tε
γ

γ − 1

∫
Ω
h%γ−1 dx+ tR

∫
Ω

(∑
k∈S

Yk
mk

)
%divu dx+ t

∫
Ω
%f · u dx. (2.29)

We now want to show that the first term on the l.h.s. can be used to control the norm of u in
W 1,2

0 (Ω), to this purpose we prove a simple generalization of the Korn inequality, which can be
of independent interest.

Lemma 2.9. For u ∈ W 1,2
0 (Ω) and S satisfying (1.15) and (2.8), there exists a constant c

depending on Ω and µ such that

c‖u‖2W 1,2(Ω) ≤
∫

Ω
S(u) : ∇u dx.

Proof. Rewriting the viscous part of the stress tensor in the form (1.17), we can estimate∫
Ω
S(u) : ∇u dx ≥ µ

∫
Ω

(
|∇u|2 + (∇u)T : ∇u− 2

3
(divu)2

)
dx = µ

∫
Ω

(
|∇u|2 +

1

3
(divu)2

)
dx,

and we conclude by application of the Poincaré inequality. �
Comming back to (2.29), we infer

c‖u‖21,2 + tεγ

∫
Ω
%γ−2|∇%|2 dx+ t

εγ

γ − 1

∫
Ω
%γ dx

≤ t γhε
γ − 1

∫
Ω
%γ−1 dx+ tR

∫
Ω

(∑
k∈S

Yk
mk

)
%divu dx+ t

∫
Ω
%f · u dx. (2.30)

The first term on the r.h.s. can be absorbed by the corresponding one on the l.h.s. Next, the
Hölder and Young inequalities yield

t

∫
Ω

Yk
mk

%divu dx+ t

∫
Ω
%f · u dx ≤ t

mk
‖%‖2‖u‖1,2 + t‖f‖∞‖%‖6/5‖u‖1,2. (2.31)

In order to control the norm of % in L2(Ω) we test the approximate momentum equation (2.27)
by the function

Φ = B
(
πβ − 1

|Ω|

∫
Ω
πβ dx

)
,
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where β ∈ (0, 1] and B is the Bogovskii operator. Its definition and main properties are recalled
in Lemma 6.4, we know in particular that

‖∇Φ‖p ≤ c(p,Ω)‖πβ‖p

and due to the Sobolev imbedding

‖Φ‖p̄ ≤ c(p,Ω)‖πβ‖p, 1 < p <∞, p̄ =


3p

3−p if p < 3,

∈ [1,∞) if p = 3,

∞ if p > 3.

This testing results in the following identity

t

∫
Ω
π1+β dx =− t1

2

∫
Ω
% (u⊗ u) : ∇Φ dx+ t

1

2

∫
Ω
% (u · ∇u) · Φ dx

+

∫
Ω
S(u) : ∇Φ dx− t

∫
Ω
%f · Φ dx+ t

1

|Ω|

∫
Ω
π dx

∫
Ω
πβ dx =

5∑
i=1

Ii.

(2.32)

The ”worst” estimate here is due to the convective term:

I1 + I2 ≤ t‖%‖(1+β)γ‖u‖21,2‖π‖
β
3γβ(1+β)

2γ(1+β)−3

≤ ct3‖%‖(1+β)γ‖%‖22‖π‖
β
3γβ(1+β)

2γ(1+β)−3

(2.33)

where in the last inequality we used (2.30) and (2.31) to estimate the W 1,2 norm of u by the L2

norm of %. Next, provided 3γβ(1+β)
2γ(1+β)−3 ≤ β + 1 meaning that

β =

{ 2γ−3
γ if γ < 3

1 if γ ≥ 3,
(2.34)

we can transform (2.33) ino the following form:

I1 + I2 ≤ ct3‖%‖1+2a
(1+β)γ‖π‖

β
β+1, (2.35)

where we additionally used the interpolation inequality ‖%‖2 ≤ ‖%‖1−a1 ‖%‖a(β+1)γ , with a =
(β+1)γ

2(β+1)γ−2 . Hence, from (2.32) we deduce in particular that independently of t ∈ [0, 1] and ε
we have

‖%‖(1+β)γ ≤ c, (2.36)

if only 1 + 2a + βγ < γ(1 + β). Therefore, by virtue of (2.34), one can see that the relevant
condition on γ is γ > 7

3 .
Estimate (2.36), along with (2.30), leads to the following conclusion

‖u‖21,2 + tε
(
‖%‖γγ + ‖∇%

γ
2 ‖22
)
≤ ct, (2.37)

that finishes the proof of Lemma 2.8. �
This information allows us to repeat the procedure described in Chapter 4.3 of [85] which together
with the Lemmas 2.5, 2.7 yields the existence of regular solutions, and hence completes the proof
of Theorem 2.4. �
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2.2.3 Limit passage η, ε→ 0

Although the construction from previous section corresponds only to regularized system, it is
clear that the final estimates are completely independent of ε. In particular, taking t = 1 in
(2.37) we get

‖u‖21,2 + ε
(
‖%‖γγ + ‖∇%

γ
2 ‖22
)
≤ c,

in addition, the Bogovskii type of estimates gives

‖π(%, Y )‖1+β ≤ c,

so, we can repeat the first a-priori estimate for ∇Yk and since 0 ≤ Yk ≤ 1, k ∈ S, we have

‖Yk‖W 1,2(Ω) ≤ c

independently of ε. Moreover, taking % as a test function in the approximate continuity equation
one gets √

ε‖∇%‖2 ≤ c.

These estimates can be used to deduce that, at least for a suitable subsequence, we have

uε → u weakly in W 1,2(Ω), (2.38)
%ε → % weakly in L(1+β)γ(Ω), (2.39)

ε∇%ε → 0 strongly in L2(Ω), (2.40)
(Yk)ε → Yk weakly in W 1,2(Ω), (2.41)
(Yk)ε → Yk weakly∗ in L∞(Ω). (2.42)

We are hence in a position to conclude that there exists a triple of functions (%,u, Y ) which
satisfy the integral equalities: ∫

Ω
%u · ∇ξ dx = 0 ∀ξ ∈ C∞(Ω), (2.43)

∫
Ω

(−% (u⊗ u) : ∇ϕ+ S(u) : ∇ϕ) dx−
∫

Ω
π(%, Y ) divϕ dx =

∫
Ω
%f · ϕ dx ∀ϕ ∈ C∞0 (Ω),∫

Ω
%uYk∇ · φ dx =

∫
Ω
D(%)∇Yk · ∇φ dx−

∫
Ω
%ωkφ dx ∀φ ∈ C∞(Ω),

for k ∈ {A,B,C}. Here and in the sequel g(%,u, Y ) denotes the weak limit of a sequence
g(%ε,uε, Yε).
Accordingly, there left two problems that need to be solved, namely, is it true that π(%, Y ) =
π(%, Y ) and is D(%)∇Yk = D(%)∇Yk? As we already have an information about strong con-
vergence of Yk for k ∈ S, the positive answer for the first question is, as will be seen in the
sequel, in fact equivalent to the strong convergence of the density. Moreover, having proved this,
it will be straightforward to see that the second hypothesis holds true as well. It is an easy
consequence of boundedness of D(%) in L2(Ω). The aim of the following reasoning is to derive
the weak compactness identity for the effective pressure, which is the key point of proving the
strong convergence of the density.

Since %εuε and ∇%ε possess zero normal traces, it is possible to extend the approximate
continuity equation to the whole R3

ε1Ω%ε + div(1Ω%εuε) = εdiv(1Ω∇%ε) + ε1Ωh. (2.44)
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Next, we introduce the operators A = ∇∆−1, R = ∇⊗∇∆−1 specified by (6.2) and (6.3) in the
Appendix. We will use some general results on such operators as continuity but also some facts
about commutators, see Lemmas 6.5, 6.6 and 6.7.

First, we test the approximate momentum equation by the function

ϕ(x) = ζ(x)φ, φ = (∇∆−1)[1Ω%ε], ζ ∈ C∞0 (Ω),

observe that this operation ”gains” one derivative thus using only the L(1+β)γ(Ω) integrability of
%ε we justify that this is an admissible test function. Evidently

∑3
i=1Ri,i[v] = v, thus integrating

by parts we obtain from this testing the following equivalence:∫
Ω
ζ (π(%ε, Yε)%ε − S(uε) : R[1Ω%ε]) dx

= −1

2

∫
Ω
ζ∂j(%uj)uiAi[1Ω%ε] dx−

∫
Ω
ζ%εuiujRi,j [1Ω%ε] dx−

∫
Ω
%εuiuj∂jζAi[1Ω%ε] dx

+

∫
Ω
Si,j∂jζAi[1Ω%ε] dx−

∫
Ω
π(%ε, Yε)∂iζAi[1Ω%ε] dx−

∫
Ω
%εζf

iAi[1Ω%ε] dx,

(2.45)

where we used the Einstein summation convention. Now, adding and substracting the term∫
Ω ζ%εujRi,j [1Ω%εui] dx we may rewrite the r.h.s. in the form which lets the commutator appear

r.h.s =

∫
Ω
ζ%εujRi,j [1Ω%εui] dx−

∫
Ω
ζ%εuiujRi,j [1Ω%ε] dx

−
∫

Ω
ζ%εujRi,j [1Ω%εui] dx− 1

2

∫
Ω
ζ∂j(%uj)uiAi[1Ω%ε] dx−

∫
Ω
%εuiuj∂jζAi[1Ω%ε] dx

+

∫
Ω
Si,j∂jζAi[1Ω%ε] dx−

∫
Ω
π(%ε, Yε)∂iζAi[1Ω%ε] dx−

∫
Ω
%εζf

iAi[1Ω%ε] dx.

Using the fact that Ri,j [v] = ∂iAj [v], the basic properties of the Riesz operator:

Ri,j [v] = Rj,i[v],

∫
R3

Ri,j [v]u dx =

∫
R3

Rj,i[v]u dx, v ∈ Lp(R3), u ∈ Lp′(R3)

and the approximate continuity equaion, we transform (2.45) into∫
Ω
ζ (π(%ε, Yε)%ε − S(uε) : R[1Ω%ε]) dx

=

∫
Ω
ζ (%εuε · R[1Ω%εuε]− %ε(uε ⊗ uε) : R[1Ω%ε]) dx

−
∫

Ω
ζ%εuε · ∇∆−1[div 1Ω%εuε] dx+

ε

2

∫
Ω
ζ(∇%ε · ∇)uε · ∇∆−1[1Ω%ε] dx

+
ε

2

∫
Ω

(∇%ε ⊗ uε) : ∇
(
ζ∇∆−1[1Ω%ε]

)
dx+

ε

2

∫
Ω
ζ(%ε − h)uε · ∇∆−1[1Ω%ε] dx

−
∫

Ω
%ε(uε ⊗ uε) : ∇ζ ⊗∇∆−1[1Ω%ε] dx+

∫
Ω
S(uε) : ∇ζ ⊗∇∆−1[1Ω%ε] dx

−
∫

Ω
π(%ε, Yε)∇ζ ⊗∇∆−1[1Ω%ε] dx−

∫
Ω
f · %εζ∇∆−1[1Ω%ε] dx =

9∑
i=1

Ii.

(2.46)
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Finally, I2 may be expressed by means of approximate (extended) continuity equation (2.44) in
the following way

I2 = −ε
∫

Ω
ζ%εuε · ∇∆−1[div 1Ω∇%ε] dx+ ε

∫
Ω
ζ%εuε · ∇∆−1[1Ω(%ε − h)] dx. (2.47)

We will compare (2.46) with a similar expression obtained by testing the limit momentum equa-
tion with the function

ϕ(x) = ζ(x)φ, φ = (∇∆−1)[1Ω%], ζ ∈ C∞0 (Ω),

more precisely∫
Ω
ζ
(
π(%, Y )%− S(u) : R[1Ω%]

)
dx =

∫
Ω
ζ (%u · R[1Ω%u]− %(u⊗ u) : R[1Ω%]) dx

−
∫

Ω
%ε(u⊗ u) : ∇ζ ⊗∇∆−1[1Ω%] dx+

∫
Ω
S(u) : ∇ζ∇∆−1[1Ω%] dx

−
∫

Ω
π(%, Y )∇ζ ⊗∇∆−1[1Ω%] dx−

∫
Ω
f%ζ∇∆−1[1Ω%] dx =

5∑
i=1

Ii.

(2.48)

Now, observe that
(∇∆−1)[1Ω%ε]→ (∇∆−1)[1Ω%] in C(Ω), (2.49)

which is the consequence of Lemma 6.5. Recalling (2.38-2.41) we show that the ε-dependent
integrals on the right hand side of (2.46) vanish, whence I6, I7, I8, I9 converge to their counterparts
in (2.48).
In what follows we give some more details of these limit passages. Firstly, due to the compact
imbeddung W 1,2(Ω) ↪→ Lp(Ω) for 1 ≤ p < 6, we have

uε → u strongly in Lp(Ω), 1 ≤ p < 6, (2.50)

taking into account also (2.39) we therefore get

uε%ε → u% weakly in Lp(Ω), 1 ≤ p < 6(1 + β)γ

6 + (1 + β)γ
. (2.51)

Since 6(1+β)γ
6+(1+β)γ > 2 for γ > 7

3 and by virtue of (2.40) and Lemma 6.5, we check that the most
restrictive term of I2 (2.47) goes to 0, i.e.

ε

∫
Ω
ζ%εuε · ∇∆−1[div 1Ω∇%ε] dx→ 0.

The second integral in (2.47) is evidently convergent to 0 on account of (2.51) and (2.49), the
same argument works also for I5.
Next, due to (2.38) and (2.40)

ε(∇%ε · ∇)uε → 0 weakly in L1(Ω),

which, when coupled with (2.49), implies the zero limit of I3.
Similarly, observe, that (2.40) together with (2.50) yields

ε∇%ε ⊗ uε → 0 strongly in Lp(Ω), 1 ≤ p < 3

2
.
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Moreover, using the second inequality from Lemma 6.5 and the fact that ζ is smooth, we show
weak convergence of the second component of the integrant in I4 in the same space as (2.40),
thus I4 → 0.
In order to show convergence of I6, I7, I8 to the corresponding integrals in the formula (2.48) it
suffices to justify the weak convergence of %εuε ⊗ uε, S(uε), π(%ε, Yε) to %u ⊗ u, S(u), π(%, Y )
respectively, in Lp(Ω) for any p ≥ 1; the passage to the limit in I9 is trivial. Observe, that due
to (2.38) and (2.51) we have

%εuε ⊗ uε → %u⊗ u weakly in Lp(Ω), 1 ≤ p < 6(1 + β)γ

6 + 2(1 + β)γ
,

and p > 1 for γ > 7
3 . Next, in view of (2.38) we deduce that

D(uε)→ D(u), divuε → divu weakly in L2(Ω),

thus also S(uε) → S(u) weakly in L2(Ω). Finally, using (2.39), (2.41), or directly from the
Bogovskii estimate, we are able to extract the subsequence such that

π(%ε, Y )→ π(%, Y ) weakly in L1+β(Ω).

Summarizing, by letting ε to 0 in (2.46) and substracting from it (2.48) we deduce∫
Ω
ζ (π(%ε, Yε)%ε − S(uε) : R[1Ω%ε]) dx−

∫
Ω
ζ (%εuε · R[1Ω%εuε]− %ε(uε ⊗ uε) : R[1Ω%ε]) dx

→
∫

Ω
ζ
(
π(%, Y )%− S(u) : R[1Ω%]

)
dx−

∫
Ω
ζ (%u · R[1Ω%u]− %(u⊗ u) : R[1Ω%]) dx. (2.52)

Our next aim is to show that the last terms from both sides cancels. For this purpose we will
apply Lemma 6.6.

We take Vε = %εuε, rε = %ε and check that they fulfill assumptions of Lemma 6.6 with
p = 6(1+β)γ

(1+β)γ+6 and q = (1 + β)γ, where by %ε,uε, %,u we mean the functions extended by 0

outside Ω to the whole space. Thus there is enough room to choose s > 2 such that 1
p + 1

q = 1
s

and so Lemma 6.6 yields

%εuε · R[1Ω%εuε]− %ε(uε ⊗ uε) : R[1Ω%ε]→ %u · R[1Ω%u]− %(u⊗ u) : R[1Ω%],

weakly in Ls(Ω). Substituting this result into (2.52) we obtain

lim
ε→0

∫
Ω
ζ (π(%ε, Yε)%ε − S(uε) : R[1Ω%ε]) dx =

∫
Ω
ζ
(
π(%, Y )%− S(u) : R[1Ω%]

)
dx. (2.53)

We would now like to express S(uε) : R[1Ω%ε] and S(u) : R[1Ω%] in terms of divergence of uε
and u, respectively. There is no problem with the second part of (1.15) as we have

ν divuεI : R[1Ω%ε] = ν

3∑
i=1

divuεRi,i[1Ω%ε] = ν1Ω divuε%ε.

To handle the first part, we integrate by parts and we check that∫
Ω
ζµ
(
∇uε + (∇uε)T

)
: R[1Ω%ε] dx =

∫
Ω
R : [ζµ

(
∇uε + (∇uε)T

)
]%ε dx. (2.54)
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Observe that R :
[
∇uε + (∇uε)T

]
= 2

∑3
i,j=1 ∂iAj∂juε,i = 2

∑3
i ∂i

∑3
j=1Rj,jui = 2 divuε, thus,

the r.h.s. of (2.54) can be rewritten as∫
Ω
R : [ζ2µD(uε)]%ε dx

=

∫
Ω
ζ2µ divuε%ε dx+

∫
Ω

(R : [ζ2µD(uε)]− ζR : [2µD(uε)]) %ε dx. (2.55)

Repeating the same procedure for the limit stress tensor S(u) we obtain from (2.53) the following
expression∫

Ω
ζ
(
π(%, Y )%− (2µ+ ν) divu%

)
dx =

∫
Ω
ζ
(
π(%, Y )%− (2µ+ ν) divu%

)
dx

+ lim
ε→0

∫
Ω

(R : [ζ2µD(uε)]− ζR : [2µD(uε)]) %ε dx−
∫

Ω
(R : [ζ2µD(u)]− ζR : [2µD(u)]) % dx.

(2.56)

In order to show that the two last integrals cancel we will apply Lemma 6.7 to each row of the
matrix D(uε), i.e. we take

w = ζ, Vi = ∂iuε,j + ∂juε,i, j = 1, 2, 3

and due to (2.37)V ∈ L2(R3). Since ζ extended by 0 outside Ω belongs in particular toW 1,∞(R3)
we can take any s ∈ (1, 6) and α = 6−s

2s for which

‖R : [ζ2µD(uε)]− ζR : [2µD(uε)]‖Wα,s(R3) ≤ c.

Next, we may use the fact thatWα,s(R3) is continuously embedded into La(R3) for any 1 ≤ a ≤ 6
and the embedding is compact for a < 6. Moreover, since 1

q = 1
a + 1

(1+β)γ < 1, thus

(R : [ζ2µD(uε)]− ζR : [2µD(uε)]) %ε → (R : [ζ2µD(u)]− ζR : [2µD(u)]) % (2.57)

weakly in Lq(R3). Therefore, we may now reduce (2.56) to the following remarkable identity:∫
Ω
ζ
(
π(%, Y )%− (2µ+ ν) divu%

)
dx =

∫
Ω
ζ
(
π(%, Y )%− (2µ+ ν) divu%

)
dx. (2.58)

In what follows, we will exploit (2.58) by use of the renormalized continuity equation.
Applying Lemma 6.8 to the limit continuity equation we can verify that the pair of functions
(%,u) extended by zero outside of Ω is a solution to the renormalized continuity equation, as
specified in Definition 2.2. Moreover, taking b(%) = % log % and ξ = 1 it can be deduced from
(2.43) that ∫

Ω
divu% dx = 0.

Alternatively, one can derive the same relation applying Theorem 1.1 from [78], see also [72].
We now test the approximate continuity equation (2.15) with log(%ε + η), η > 0, note that

due to Lemma 2.5 this is an admissible test function

ε

∫
Ω

(%ε − h) log(%ε + η) dx−
∫

Ω
%εuε ·

∇%ε
%ε + η

dx− ε
∫

Ω
∆%ε log(%ε + η) dx = 0.
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Integrating by parts in the last integral, and using the boundary conditions we obtain the fol-
lowing expression

ε

∫
Ω

(%ε − h) log(%ε + η) dx−
∫

Ω
%εuε ·

∇%ε
%ε + η

dx+ ε

∫
Ω

|∇%ε|2

%ε + η
dx = 0,

but the last term is non-negative, so we have

ε

∫
Ω

(%ε − h) log(%ε + η) dx−
∫

Ω
%εuε ·

∇%ε
%ε + η

dx ≤ 0.

Next, let η → 0. Due to regularity of %ε,uε, the only problematic term is −
∫

Ω h log(%ε + η) dx
for %ε < 1 − η, but as the above inequality has the right sign, we can handle it by use of the
Lebesgue monotone convergence theorem. Integrating by parts once more, we end up with

ε

∫
Ω

(%ε − h) log %ε dx+

∫
Ω

divuε%ε dx ≤ 0. (2.59)

Since x log x is a convex function it satisfies the following inequality

(1 + log %ε) (%ε − h) ≥ %ε log %ε − h log h

and by the fact that
∫

Ω %ε dx =
∫

Ω h dx we derive from (2.59) that

ε

∫
Ω
%ε log %ε dx− ε

∫
Ω
h log h dx+

∫
Ω

divuε%ε dx ≤ 0,

so, after letting ε→ 0 we finally arrive at∫
Ω

divu% dx ≤ 0.

Because of this, identity (2.58) may be transformed into:∫
Ω
π(%, Y )% dx ≥

∫
Ω
π(%, Y )% dx,

and by the definition of π we thus have

∫
Ω

(
%γ%+R%

∑
k∈S

Yk
mk

%

)
dx ≥

∫
Ω

(
%γ+1 +R%

∑
k∈S

Yk
mk

%

)
dx. (2.60)

This inequality can be used to show strong convergence of density as soon as one justifies

%γ% ≤ %γ+1, %
∑
k∈S

Yk
mk

% ≤ %
∑
k∈S

Yk
mk

%. (2.61)

To do this we will use a well known result about weak convergence of monotone functions
composed with weakly converging sequences, whose proof can be found e.g. in [36], Theorem
10.19.



2.3. A NOTE ON THE NON-DIAGONAL DIFFUSION 39

Lemma 2.10 (Weak convergence of monotone functions). Let Ω be a domain in RN and (P,G) ∈
C(R)×C(R) be a couple of non-decreasing function. Assume that un is a sequence of functions
from L1(Ω) with values in R such that

P (un)→ P (u),

G(un)→ G(u),

P (un)G(un)→ P (u)G(u)

weakly in L1(Ω).

(i) Then
P (u) G(u) ≤ P (u)G(u) a.e. in Ω.

(ii) If, in addition
G(z) = z, P ∈ C(R), P is non-decreasing

and
P (u)G(u) = P (u) G(u),

then
P (u) = P (u).

Applying this lemma to (2.61), we see that the first inequality is evidently true since P (%ε) =
%γε and G(%ε) = %ε are increasing. Regarding the second inequality, by the strong convergence of
(Yk)ε in Lp(Ω) for p < 6, we check that Yk% = Yk%, thus %Yk% = Yk%

2, while the r.h.s. satisfies
%Yk% = Yk%2 ≥ Yk%

2, where, we applied Lemma 2.10 with P (%ε) = G(%ε) = %ε. Hence, by
comparison of (2.60) with (2.61) we obtain, using the statement (ii) of Lemma 2.10, that

%γ = %γ a.e. in Ω.

This in turn implies the strong convergence of the density as Lγ(Ω) is a uniformly convex Banach
space. The proof of Theorem 2.3 is now complete. �

2.3 A note on the non-diagonal diffusion

The Fick law is a relevant approximation for the diffusion flux of species, provided the molar
masses of species do not differ much from the average mass, i.e. pk

πm
≈ %k

% . Thus, the species
diffusion forces defined by (1.19) may be approximated by

dk ≈ ∇
pk
πm
≈ ∇Yk for k ∈ {A,B,C}.

Recall that we used this approximation to express the diffusion forces only for species taking
an active part in reaction (2.1), but since

∑
k∈S dk = 0 we get the same for the dilutant, i.e.

dD = ∇YD. Such a case corresponds to the diffusion matrix C that is diagonal for 3 species only,
see (1.18), and in general, there is no reason to assume that the diffusion coefficientsDA, DB, DC

coincide.
However, in agreement with Lemma 1.1, page 21, the species diffusion coefficients for sub-

strates DA and DB must be the same, otherwise restriction YAYB = 0 would exclude reaction
(2.1). This in turn implies that we may formally reduce system (2.2) to the following one

div(%u) = 0

div(%u⊗ u)− divS +∇π = %f

div(%YABu) + div(FAB) = %ωAB

div(%YCu) + div(FC) = %ωC


in Ω, (2.62)
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where we denoted YAB = YA + YB, ωAB = ωA + ωB, FAB = −D∇YAB and D = DA = DB. If
in addition D 6= DC , then

YABYC = 0,

and so, in the absence of dilutant YD = 0 we would have either YAB = 0, YC = 1 or YAB =
1, YC = 0. By this observation, the whole reasoning performed for a system with diagonal
diffusion matrix may be now repeated with merely several minor changes. In particular, a kind
of maximum principle, derived for the approximate system (2.17), does still hold for the last
species. More precisely, we may again start from the following equality

ε

∫
Ω−D

%YD dx+

∫
∂Ω−k

%YDu · n dσ +

∫
∂Ω−D

(DAB,η∇YAB +DC,η∇YC − ε∇(%YD)) · n dσ

= ε

∫
Ω−D

h(1−K(Y +
AB)−K(Y +

C )) dx.

Recall that YAB and YC are smooth and at the boundary of Ω−D they are allowed to take only
one of two values 1 or 0. Because the boundary of Ω−D is regular and YAB = 1− YC at this part
of ∂Ω−D which does not adhere to ∂Ω, we may assume, without loss of generality, that YAB = 1
and YC = 0 at ∂Ω−D \ ∂Ω. Since the smooth function does not permit the jumps and YABYC = 0
in Ω, YC must remain equal to 0 in the small neighbourhood of ∂Ω−D \ ∂Ω. In consequence

DC,η∇YC · n|∂Ω−D\∂Ω = 0,

moreover
Dη∇YAB · n|∂Ω−D\∂Ω = −Dη∇YD · n|∂Ω−D\∂Ω ≤ 0,

which is sufficient to repeat the argument from the case of diagonal diffusion with equal diffusion
coefficients, and therefore YD ≥ 0.



Chapter 3

Two species kinetics

We investigate the system of equations describing flow of two-component compressible gaseous
mixture in the periodic domain Ω = T3. The species A and B undergo an isothermal, reversible
chemical reaction

A� B. (3.1)

The above reaction can be formally obtained from (2.1) by assuming that the amounts of one of
reactants from the l.h.s. and of dilutant are much bigger than of the other species. Then, their
concentration may be assumed to be constant.
At first sight this situation seems to be simpler, than the one considered in the previous chapter,
however, now our main aim is to investigate the issue of the strong cross-diffusion phenomenon
occurring in majority of multicomponent fluids. A careful mathematical analysis of the simplest
model for binary mixture will be later on explored to describe more complex flows.

3.1 Introduction

To describe the dynamic of isothermally reacting binary mixture may we use system (1.2) with
decoupled energy equation. Thus, the set of state variables consists only of the total mass density
% = %(t, x), % = %A + %B, the velocity vector field u = u(t, x) and the species A mass fraction
YA = YA(t, x):

∂t%+ div(%u) = 0

∂t(%u) + div(%u⊗ u)− divS +∇π = 0

∂t(%YA) + div(%YAu) + div(FA) = %ω

 in (0, T )× Ω. (3.2)

Here, π = π(%, Y ) is the internal pressure, ω = ω(%, Y ) is the species A production rate, FA =
FA(%, Y ) denotes the diffusion flux of the species A and S = S(%,u) is the viscous part of stress
tensor.

We assume that the pressure π = π(%, Y ) obeys the following state equation

π(%, Y ) = πc(%) + πm(%, Y ), (3.3)

where πc(%) = %γ , γ > 1 is the barotropic part of the pressure also referred to as a ”cold pressure”.
By πm we denote the classical molecular pressure given by the constitutive equation

πm(%, Y ) =
∑
k∈S

pk = %

(
n∑
k=1

Yk
mk

)
, (3.4)

41
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where S = {A,B}, mk is the molar mass of the k-th species and we assume that mA 6= mB.
Note that we take the perfect gas constant R = 1.
The species mass flux FA yields diffusion effects due to the mole fraction gradients and pressure
gradients and is given in a general form

Fk = −
∑
l∈S

Ckldl, k ∈ S, (3.5)

with dk specified by (1.19). Supposing the following form of the matrix C :

C = C0(%, YA, YB)

(
YB −YA
−YB YA

)
, (3.6)

we verify, by use of (3.5), that

FA = −C0dA = −C0

πm

((
%B
%mA

+
%A
%mB

)
∇%A −

%A
%mB

∇%
)
,

FB = −C0dB = −C0

πm

((
%B
%mA

+
%A
%mB

)
∇%B −

%B
%mA

∇%
)
.

Note that such form of matrix C corresponds to the process in which both species play the
symmetric role and it satisfies all general properties listed in (1.20) and taken over from [45],
Chapter 7.
In addition, we assume that the diffusion coefficient C0 is proportional to the Boyle pressure
C0 ≈ πm (we take C0

πm
= 1).

An important consequence of (3.6) is that FB +FA = 0, therefore we can consider only the first
mass fraction as unknown and use the relation

YA + YB = 1, (3.7)

to evaluate the mass fraction of the remaining species.
The molar production rate ω is a Lipschitz continuous function. We will additionally postulate
existence of constants ω and ω such that

−ω ≤ ω(YA, YB) ≤ ω, for all 0 ≤ YA, YB ≤ 1, (3.8)

and we suppose
ω(YA, YB) ≥ 0 whenever YA = 0. (3.9)

The viscous stress tensor S is given by (1.15), where the viscosity coefficients µ(%), ν(%) are
C2(0,∞) functions satisfying restriction (2.8) together with

ν(%) = 2%µ′(%)− 2µ(%). (3.10)

Remark 3.1. The above condition is a necessary mathematical assumption, by which regularity
of the density can be improved. It was proposed by Bresch and Desjardins in [11] as an extension
of the particular case considered e.g. in [15], where µ(%) = %, ν(%) = 0.

Following Mellet and Vasseur [69], we stipulate that there exists positive constant µ′ ∈ (0, 1]
such that

µ′(%) ≥ µ′, µ(0) ≥ 0,

|ν ′(%)| ≤ 1
µ′µ
′(%),

µ′µ(%) ≤ 2µ(%) + 3ν(%) ≤ 1
µ′µ(%).

(3.11)
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In addition, for arbitrary small ε > 0 and γ ≥ 3 we suppose that

lim inf
%→∞

µ(%)

%
γ
3

+ε
> 0. (3.12)

The main difficulty concerning systems with viscosity coefficients vanishing when density
equals 0 is lack of information about the velocity vector field. It is no longer in L2((0, T ) × Ω)
as in the case for constant viscosity coefficients. In fact, it cannot even be defined on vacuum.
Although this degeneracy causes additional difficulties, it also contributes some benefits, if only
relation (3.10) is satisfied. It provides particular mathematical structure that yields global in time
integrability of ∇√%. This property was observed for the first time by Bresch, Desjardins and
Lin [15] for the Korteweg equations and for the 2-dimensional viscous shallow water model [10].
Later on, Mellet and Vasseur coupled these ideas with the additional estimate for the norm of %u2

in L∞(0, T ;L logL(Ω)) and proved the sequential stability of weak solutions to the barotropic
compressible Navier-Stokes system with the viscosity coefficients satisfying conditions (3.10-
3.12). Concerning the stability result, it is possible to extend this approach to treat the case of
selfgravitating [29] gases, however existence of regular approximate solutions in this framework
is still elusive. The main difficulty is to preserve the logarithmic estimate for the velocity at the
level of construction of solution. To the best of our knowledge, when no additional drag terms
are present, this is still an open problem.

Nevertheless, some progress has been achieved in the case when further assumption on the
zero Kelvin isothermal curve of the equation of state in the neighbourhood of small densities
is enforced. This strategy was proposed in the work of Bresch and Desjardins [13] for the heat
conducting fluids as a way to get close to a solid state in tension. Their condition was designed
to recover the standard cold component of the pressure %γ far from vacuum and to encompass
plasticity and elasticity effects of solid materials, for which low densities may lead to negative
pressures. By this modification the compactness of velocity can be obtained without requiring
more a priori regularity than expected from the usual energy approach. In this framework
the globally well posed system can be constructed by parabolic regularization of the total and
partial masses conservation equations and by adding to the momentum equation the capillarity
force regularizing the density together with the hyperdiffusive term providing integrability of
higher derivatives of velocity. Then, the existence of solutions follows from the fixed point
argument applied to the momentum equation combined with the standard theory for the semi-
linear parabolic equations of species production.

This is, in a sense, opposite with respect to systems with constant viscosity coefficients,
for which there is not enough information about density [62]. As it was mentioned in the
introduction, the main difficulty for such systems is to prove the strong convergence of the
density, necessary to pass to the limit in the nonlinear term %γ . However, this cannot be done
using only the a-priori estimates. In fact, one needs to replace the missing part of information by
compactness of quantity called the effective viscous flux. This in turn requires some knowledge
on the velocity field assured by the uniform ellipticity of the differential operator associated with
the viscous part of the stress tensor.

The objective of this chapter is to investigate the issue of large data existence of solutions
to system (3.2). Let us emphasize that the model we consider is consistent with principles of
continuum mechanics and does not violate the second law of thermodynamics when the heat
conductivity is taken into account. In contrast, the presence of the species concentration in the
state equation and approximation of the diffusion flux by the Fick law would result in the entropy
production rate which may fail to be non-negative, see (1.14). This, in turn, would contradict
thermodynamic admissibility of the process. In consequence, to be phisically consistent, one
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has to deal with more general form of diffusion (3.5) leading to a new type of degeneration in
the system (3.2) which involves the second space derivatives of %. Therefore, more regularity
for the density, than we can prove for the Navier-Stokes-type systems with constant viscosity
coefficients, is needed. Here, the theory developed in [15], [69] is applied as a possible way to
overcome this difficulty.

In the first part of this chapter we establish the sequential stability of weak solutions to
system (3.2) i.e. the closedness of the family of solutions bounded by a priori bounds in the
framework of weak formulation. Then, we complement this result by constructing regular enough
approximate solutions which preserve the mathematical structure of the system, but only when
further restriction on the pressure is postulated.

3.2 Sequential stability of solutions

In what follows we will prove that provided the sequence of sufficiently smooth solutions to system
(3.2) has been constructed, it converges to weak solution specified in the definition below. This
procedure consist of deriving several a-priori estimates from which a sufficient compactness can
be deduced in order to pass to the limit in the weak formulation of the problem. This procedure
is usually the last step of the proof of existence of solutions, regarded as a most difficult one and
it is a strong motivation to look for a suitable approximation of the original system.

3.2.1 Weak formulation and main result

We consider system (3.2) with the initial conditions

%(0, ·) = %0, %u(0, ·) = (%u)0 = m0, %YA(0, ·) = (%YA)0 = %0
A,

%0(x) ≥ 0, and 0 ≤ %0
A(x) ≤ %0(x) a.e. on Ω.

(3.13)

The weak solutions to (3.2-3.12) and (3.13) are specified by the following definition.

Definition 3.2. A triple (%,u, YA) is said to be a weak solution of (3.2-3.12) supplemented with
the initial data (3.13) if:

% ∈ L∞(0, T ;L1 ∩ Lγ(Ω)),
√
% ∈ L∞(0, T ;H1(Ω)),

√
%u ∈ L∞(0, T ;L2(Ω)),

√
µ(%)∇u ∈ L2(0, T ;L2(Ω)),

% ≥ 0, 0 ≤ YA ≤ 1, a.e. in (0, T )× Ω,
√
%∇YA ∈ L2(0, T ;L2(Ω)),

and equations of system (3.2) hold in the following sense:
1. The continuity equation {

∂t%+ div(
√
%
√
%u) = 0

%(0, x) = %0(x)

is satisfied in the sense of distributions.
2. The weak formulation of the momentum equation∫

Ω
m0 · φ(0, x) dx+

∫ T

0

∫
Ω

(
√
%(
√
%u) · ∂tφ+

√
%u⊗√%u : ∇φ) dx dt

+

∫ T

0

∫
Ω
p(%, YA, YB) div φ dx dt−

∫ T

0
〈2µ(%)D(u),∇φ〉 dt−

∫ T

0
〈ν(%) divu,div φ〉 dt = 0
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holds for any smooth, compactly supported test function φ(t, x) such that φ(T, ·) = 0. In this
formula, the last two terms should be understood as

〈2µ(%)D(u),∇φ〉 = −
∫

Ω

µ(%)
√
%

√
%uj∂iiφj dx− 2

∫
Ω
µ′(%)

√
%uj∂i

√
%∂iφj dx

−
∫

Ω

µ(%)
√
%

√
%ui∂jiφj dx− 2

∫
Ω
µ′(%)

√
%ui∂j

√
%∂iφj dx

and
〈ν(%) divu,div φ〉 = −

∫
Ω

ν(%)
√
%

√
%ui∂ijφj dx− 2

∫
Ω
ν ′(%)

√
%ui∂i

√
%∂jφj dx.

3. The weak formulation of the mass balance equation for species A∫
Ω
%0
A · ψ(0, x) dx+

∫ T

0

∫
Ω

(
√
%YA
√
%u · ∂tψ +

√
%YA
√
%u · ∇ψ) dx dt

+

∫ T

0
〈FA,∇ψ〉 dt =

∫ T

0

∫
Ω
%ωψ dx dt

is satisfied for any smooth, compactly supported test function ψ(t, x) such that ψ(T, ·) = 0, where
the last term on the left hand side (l.h.s.) denotes

〈FA,∇ψ〉 =
1

mA

∫
Ω
%YA∆ψ dx+

2

mA

∫
√
%YA∇

√
% · ∇ψ

+

(
1

mA
− 1

mB

)∫
Ω

√
%Y 2

A∇
√
% · ∇ψ dx− 1

2

(
1

mA
− 1

mB

)∫
Ω
%Y 2

A∆ψ dx.

We can now formulate our main result.

Theorem 3.3. Let γ > 1 and let µ(%), ν(%) be two C2(0,∞) functions satisfying (3.10-3.12).
Assume that {%n,un, YA,n}n∈N is a sequence of smooth solutions to (3.2-3.12) satisfying weak
formulation in the sense of Definition 3.2 and the energy-entropy inequalities (3.18), (3.20) and
(3.26), with the initial data

%n(0, ·) = %0
n, %nun(0, ·) = %0

nu
0
n = m0

n, %nYA,n(0, ·) = %0
nY

0
A,n = %0

A,n,

satisfying

infx∈Ω %
0
n(x) > 0, %0

n → %0 in L1(Ω), %0
nu

0
n → (%u)0 in L1(Ω),

0 ≤ Y 0
A,n ≤ 1, %0

nY
0
A,n → (%YA)0 in L1(Ω),

together with the following bounds∫
Ω

(
1
2%

0
n

∣∣u0
n

∣∣2 + 1
γ−1

(
%0
n

)γ − 1
mB

%0
n log %0

n

)
dx <∞,

∫
Ω

1
%0
n

∣∣∇µ (%0
n

)∣∣2 dx <∞,∫
Ω %

0
n

(
Y 0
A,n

)2
dx <∞,

∫
Ω %

0
n

(
1 +

∣∣u0
n

∣∣2) ln
(

1 +
∣∣u0
n

∣∣2) dx <∞.
(3.14)

Then, up to a subsequence, {%n,
√
%nun, YA,n} converges strongly to the weak solution of the

problem (3.2-3.12) in the sense of the above definition. More precisely, we have

%n → % strongly in C0(0, T ;L
3
2 (Ω)),

√
%nun →

√
%u strongly in L2(0, T ;L2(Ω)),

%nun → %u strongly in L2(0, T ;L1(Ω)),

YA,n → YA strongly in Lp(0, T ;Lp(Ω)),
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for any p finite and any T > 0.

We have divided the proof into two parts that are presented separately in the following
subsections.

3.2.2 A priori estimates

In this section we present the a priori estimates, being derived for a sequence of smooth solutions
(%n,un, YA,n) to (3.2-3.12); we skip the subindex n when no confusion can arise.
We start with the conservation of mass. Integrating the continuity equation over Ω we deduce
that

d

dt

∫
Ω
% dx = 0,

i.e. knowing that
∫

Ω %
0(x) dx = M , we deduce that

∫
Ω %(t, x) dx = M for any t ∈ [0, T ].

Moreover, since % is smooth and %0 > 0, we have the following estimate

%(τ, x) ≥ inf
x∈Ω

%0(x) exp

(
−
∫ τ

0
‖divu‖L∞(Ω)dt

)
, (3.15)

in particular % > 0.

Correspondingly, the sum of masses of both species must be conserved, in particular we have
the following lemma (a kind of weak maximal principle).

Lemma 3.4. For any smooth solution of (3.2) we have

YA, YB ≥ 0 on Ω× (0, T ), (3.16)

and
YA + YB = 1. (3.17)

Proof. Let φε be a sequence of smooth functions such that

supp φε ⊂ Ω−T , 0 ≤ φε ≤ 1, φε(x) = 1 for dist((t, x), ∂Ω−T ) ≥ ε,

where Ω−T = {(t, x) ∈ ((0, T )× Ω) : YA(t, x) < 0}.1
Multiplying the species mass balance equation by φε and integrating over (0, T )× Ω we obtain

−
∫

Ω−T

%YA∂tφε dx dt−
∫

Ω−T

%YAu · ∇φε dx dt+

∫
Ω−T

1

mA
YA∇% · ∇φε dx dt

+

∫
Ω−T

1

mA
%∇YA · ∇φε dx dt−

∫
Ω−T

YA∇πm(%, Y ) · ∇φε dx dt =

∫
Ω−T

%ω(Y )φε dx dt.

Observe that when ε → 0+ then the four-component vector (∂tφε,∇φε) approximates −n =
−(nt,nx), which is the inter normal vector to the boundary of Ω−T , so we get∫

∂Ω−T

%YAnt dSt,x +

∫
∂Ω−T

%YAu · nx dSt,x −
∫
∂Ω−T

1

mA
YA∇% · nx dSt,x

−
∫
∂Ω−T

1

mA
%∇YA · nx dSt,x +

∫
∂Ω−T

YA∇πm(%, Y ) · nx dSt,x =

∫
Ω−T

%ω(Y ) dx dt.

1If Ω−T is not a regular domain, we may use the Sard theorem [92] and the Implicit Function Theorem to find
a sequence of sets Ω−T,δn = {(t, x) ∈ ((0, T )×Ω) : YA(t, x) < δn} for δn > 0, such that ∂Ω−T,δn is as smooth as YA,
and pass with δn → 0+.
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Now, due to the fact that YA|∂Ω−T
= 0 all but the penultimate integral from the l.h.s. vanish and

we are left only with

−
∫
∂Ω−T

1

mA
%∇YA · nx dSt,x =

∫
Ω−T

%ω(Y ) dx dt.

Due to assumption (3.9), the r.h.s. of the above equality is nonnegative. On the other hand, we
know that ∂YA

∂n

∣∣∣
∂Ω−T

is positive, hence the l.h.s. must be nonpositive. Therefore, the only possi-

bility is that the Lebesgue measure of the set Ω−T is equal 0. In particular, in view of smoothness
of YA we have (3.16) and then, the similar token applied to the continuity equation enables to
verify (3.17).�

In the next step we present the usual energy approach to the second equation of system (3.2)
which leads to the following equality.

Lemma 3.5. The following equality holds for any smooth solution of (3.2)

d

dt

∫
Ω

(
1

2
%|u|2 +

1

γ − 1
%γ − 1

mB
% log %

)
dx+

∫
Ω

2µ(%)|D(u)|2 dx

+

∫
Ω
ν(%)|divu|2 dx−

∫
Ω
%YA

(
1

mA
− 1

mB

)
divu dx = 0. (3.18)

Proof. We test the momentum equation by u and integrate by parts. �
Transforming the last term from the l.h.s. of (3.18), we can derive some useful bounds. First

observe that due to Lemma 3.2.2 we may apply the Cauchy inequality (with ε) to estimate∫
Ω
%YA

(
1

mA
− 1

mB

)
divu dx

≤
∫

Ω

%
1
2

µ(%)
1
2

µ(%)
1
2 | divu|%

1
2 dx ≤ ε

∫
Ω

%

µ(%)
µ(%)| divu|2 dx+ c(ε)

∫
Ω
% dx.

The last term is controlled since % ∈ L∞(0, T ;L1(Ω)), while the first one is absorbed by the l.h.s.
of (3.18) provided that

µ(%) ≥ c%m for % > 1, m ≥ 1,
µ(%) ≥ c%n for % ≤ 1, n ≤ 1

and that ε is sufficiently small.
Indeed, since 2µ(%) + 3ν(%) ≥ µ′µ(%) and (divu)2 ≤ 3|D(u)|2 thus, taking ε sufficiently small
we get

d

dt

∫
Ω

(
1

2
%|u|2 +

1

γ − 1
%γ − 1

mB
% log %

)
dx+

∫
Ω
µ(%)|D(u)|2 + ν(%)(divu)2 dx ≤ c.

Therefore, due to (3.19) and (3.11), we have the following estimate

‖√%u‖2L∞(0,T ;L2(Ω)) + ‖%‖γL∞(0,T ;Lγ(Ω)) + ‖
√
µ(%)D(u)‖2L2(0,T ;L2(Ω)) ≤ c. (3.19)

In order to proceed we need to find some better estimate of the norm of density than in
L∞(0, T ;Lγ(Ω)). It will be a consequence of integrability of gradient of √% obtained by a
modification of entropy inequality proved for the first time by Bresch and Desjardins [10]. We
will roughly recall the most important steps from the original proof and focus on the new features
of the system. More details can be found in the last section, in the proof of Lemma 3.17.
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Lemma 3.6. Let µ(%), ν(%) be two C2(0,∞) functions satisfying (3.10) and (3.11). Then, any
smooth solution of (3.2) satisfies

d

dt

∫
Ω

(
1

2
%|u +∇φ(%)|2 +

1

γ − 1
%γ − 1

mB
% log %

)
dx+

∫
Ω
∇φ(%) · ∇π(%, Y ) dx

+
1

2

∫
Ω
µ(%)|∇u−∇Tu|2 dx−

∫
Ω
%YA

(
1

mA
− 1

mB

)
divu dx = 0

(3.20)

for φ such that ∇φ(%) = 2µ
′(%)∇%
% .

Proof. We start with the following observation

d

dt

∫
Ω
%u · ∇φ(%) dx =

∫
Ω
∇φ(%)∂t(%u) dx+

∫
Ω

(div(%u))2φ′(%) dx, (3.21)

where the first term on the r.h.s. may be evaluated by multiplying the momentum equation by
∇φ(%) and integrating by parts∫

Ω
∂t(%u)∇φ(%) dx

= −2

∫
Ω
∇φ(%) · ∇µ(%) divu dx−

∫
Ω
∇φ(%) · ∇π(%, Y ) dx−

∫
Ω
∇φ(%) div(%u⊗ u) dx

−
∫

Ω
(2µ(%) + ν(%))∆φ(%) divu dx+ 2

∫
Ω
∇u : ∇φ(%)⊗∇µ(%) dx.

(3.22)

Next, multiplying continuity equation by |∇φ(%)|2 we get the following ”renormalized” version

d

dt

∫
Ω

1

2
%|∇φ(%)|2 dx

= −
∫

Ω
%∇u : ∇φ(%)⊗∇φ(%) dx+

∫
Ω
%2φ′(%)∆φ(%) divu dx+

∫
Ω
% (∇φ(%))2 divu dx.

(3.23)

From (3.21), (3.22) and (3.23) we therefore deduce

d

dt

∫
Ω

(
%u · ∇φ(%) +

1

2
%|∇φ(%)|2

)
dx+

∫
Ω
∇φ(%) · ∇p(%, Y ) dx

= −
∫

Ω
∇φ(%) div(%u⊗ u) dx+

∫
Ω

(div(%u))2φ′(%) dx.

(3.24)

Now, the r.h.s. may be transformed into the form

−
∫

Ω
∇φ(%) div(%u⊗ u) dx+

∫
Ω

(div(%u))2φ′(%) dx

=

∫
Ω
ν(%)(divu)2 dx+

∫
Ω

2µ(%)|D(u)|2 dx− 1

2

∫
Ω
µ(%)|∇u−∇Tu|2 dx

and thus (3.18) summed up with (3.24) implies (3.20). �

To make use of this lemma we should verify that all the negative contributions from the l.h.s.
and the whole r.h.s. are bounded. Note that, for instance, the pressure term is equal to

∇φ(%) · ∇π(%, Y )

= γµ′(%)%γ−2|∇%|2 + µ′(%)

(
YA
mA

+
YB
mB

)
%−1|∇%|2 + µ′(%)

(
1

mA
− 1

mB

)
∇% · ∇YA (3.25)
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where the first two parts have a positive sign on the l.h.s. of (3.20), while to control the last
term we need the following result.

Lemma 3.7. For any smooth solution of (3.2) we have

d

dt

∫
Ω

1

2
%Y 2

A dx+
1

max{mA,mB}

∫
Ω
%|∇YA|2 dx

≤
∫

Ω
%|ω(Y )|YA dx+

1

4

(
1

min{mA,mB}
− 1

max{mA,mB}

)∫
Ω
|∇% · ∇YA| dx.

(3.26)

Proof. Multiplying the species mass balance equation by YA and integrating over Ω we deduce

d

dt

∫
Ω

1

2
%Y 2

A dx+

∫
Ω

(
1− YA
mA

+
YA
mB

)
%|∇YA|2 dx

=

(
1

mB
− 1

mA

)∫
Ω
YA(1− YA)∇% · ∇YA dx+

∫
Ω
%ω(Y )YA dx.

Now, since 0 ≤ YA ≤ 1 and we have 1−YA
mA

+ YA
mB
≥ 1

max{mA,mB} and YA(1− YA) ≤ 1
4 . �

To estimate the r.h.s. of (3.26) we use the Cauchy inequality∫
Ω
|∇% · ∇YA| dx ≤ c(ε)

∫
Ω

|∇%|2

%
dx+ ε

∫
Ω
%|∇YA|2 dx

with ε < 4 min{mA,mB}
max{mA,mB}−min{mA,mB} . And thus, we can integrate (3.26) with respect to time to get

‖√%YA‖2L∞(0,T ;L2(Ω)) + ‖√%∇YA‖2L2(0,T ;L2(Ω))

≤ c‖YA‖L∞((0,T )×Ω)‖%‖L∞(0,T ;L1(Ω)) + c(mA,mB) ‖∇√%‖2L2(0,T ;L2(Ω)) .
(3.27)

Hence, the assertion of Lemma 3.6 gives rise to the following inequality

d

dt

∫
Ω

(
1

2
%|u +∇φ(%)|2 +

1

γ − 1
%γ − 1

mB
% log %

)
dx+

∫
Ω
γµ′(%)%γ−2|∇%|2 dx

+

∫
Ω
µ′(%)

(
YA
mA

+
YB
mB

)
%−1|∇%|2 dx+

1

2

∫
Ω
µ(%)|∇u−∇Tu|2 dx

≤
(

1

mA
− 1

mB

)∫
Ω
%|divu| dx+

(
1

mA
− 1

mB

)∫
Ω
µ′(%)|∇%||∇YA| dx.

(3.28)

The first term from the r.h.s is bounded on account of Lemma 3.5. In order to estimate last
term we use the Cauchy inequality (with ε) to show∫

Ω
µ′(%)∇% · ∇YA dx ≤ c(ε)

∫
Ω

(µ′(%))2

%
|∇%|2 dx+ ε

∫
Ω
%|∇YA|2 dx.

So, the Gronwall-type argument applied to the first integral coupled with (3.27) applied to the
second one yields boundedness of the l.h.s. of (3.28). In particular, since the initial data satisfy
(3.19), we can integrate (3.28) with respect to time to obtain

‖√%u‖2L∞(0,T ;L2(Ω)) + ‖µ′(%)∇√%‖2L∞(0,T ;L2(Ω)) + ‖%‖γL∞(0,T ;Lγ(Ω))

+ ‖
√
µ′(%)%γ−2∇%‖2L2(0,T ;L2(Ω)) + ‖

√
µ(%)A(u)‖2L2(0,T ;L2(Ω)) ≤ c,

(3.29)
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where we denoted A(u) = 1
2

(
∇u−∇Tu

)
.

Now, one can check that via the Sobolev imbedding theorem we have

1

c2
s

‖%
γ
2 ‖2L2(0,T ;L6(Ω)) ≤ ‖%

γ
2 ‖2L2(0,T ;H1(Ω)) ≤ ‖∇%

γ
2 ‖2L2(0,T ;L2) + ‖%‖γL∞(0,T ;Lγ(Ω)) (3.30)

where cs is the constant from the Sobolev inequality. Moreover, applying the interpolation
inequality we obtain

‖%γn‖L 5
3 ((0,T )×Ω)

≤ ‖%γn‖
2
5

L∞(0,T ;L1(Ω))
‖%γn‖

3
5

L1(0,T ;L3(Ω))
≤ c. (3.31)

Our ultimate goal before the limit passage is dedicated to better integrability of velocity.

Lemma 3.8. Let assumptions (3.10), (3.11) be valid. Then for any δ ∈ (0, 2) the smooth solution
of (3.2) satisfies

d

dt

∫
Ω

%

2
(1 + |u|2) ln(1 + |u|2) dx+

µ′

2

∫
Ω
µ(%)(1 + ln(1 + |u|2))|D(u)|2 dx ≤ c

∫
Ω
µ(%)|∇u|2 dx

+ c

∫
Ω

(
π(%, Y )2%−

δ
2

µ(%)

) 2
2−δ

dx


2−δ

2 (∫
Ω
%(2 + ln(1 + |u|2))

2
δ dx

) δ
2

. (3.32)

Proof. We follow the same strategy as in the work of Mellet and Vasseur [69] (Lemma 3.2).
Multiplying the momentum equation by (1 + ln(1 + |u|2))u and employing (3.11) we verify∫

Ω

1

2
%∂t((1 + |u|2) ln(1 + |u|2)) dx+

∫
Ω

1

2
%u · ∇(1 + |u|2) ln(1 + |u|2) dx

+ µ′
∫

Ω
µ(%)(1 + ln(1 + |u|2))|D(u)|2 dx

≤ −
∫

Ω
(1 + ln(1 + |u|2))u · ∇π(%, Y ) dx+ c

∫
Ω
µ(%)|∇u|2 dx.

(3.33)

Multiplying continuity equation by 1
2(1 + |u|2) ln(1 + |u|2) and integrating by parts∫

Ω

1

2
∂t%(1 + |u|2) ln(1 + |u|2) dx =

∫
Ω

1

2
%u · ∇(1 + |u|2) ln(1 + |u|2) dx,

so the first two terms from the l.h.s. of (3.33) give d
dt

∫
Ω

1
2%(1 + |u|2) ln(1 + |u|2) dx. To control

the r.h.s. of (3.33) we first integrate by parts∣∣∣∣∫
Ω

(1 + ln(1 + |u|2))u · ∇π(%, Y ) dx

∣∣∣∣
≤
∣∣∣∣∫

Ω

2uiuk
1 + |u|2

∂iukπ(%, Y ) dx

∣∣∣∣+

∣∣∣∣∫
Ω

(1 + ln(1 + |u|2)) divu π(%, Y ) dx

∣∣∣∣ ,
then using the Hölder and Cauchy inequalities we show the following estimate∫

Ω
(1 + ln(1 + |u|2))u · ∇π(%, Y ) dx

≤
∫

Ω
µ(%)|∇u|2 dx+

1

2
µ′
∫

Ω
µ(%)(1 + ln(1 + |u|2))|D(u)|2 dx

+ c

∫
Ω

(2 + ln(1 + |u|2))
(π(%, Y ))2

µ(%)
dx.
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Hence (3.32) is obtained by applying to the last term from above the Hölder inequality with
p = 2

2−δ , q = 2
δ (1

p + 1
q = 1) and δ ∈ (0, 2). �

Observe that due to (3.29) the r.h.s. of (3.32) may be partially controlled, we know in particular
that

d

dt

∫
Ω

1

2
%(1 + |u|2) ln(1 + |u|2) dx ≤ c

∫
Ω

(
(π(%, Y ))2%−

δ
2

µ(%)

) 2
2−δ

dx


2−δ

2

+ c. (3.34)

Next, since µ(%) > µ′%, thus %(1 + |u|2) ln(1 + |u|2) is bounded in L∞(0, T ;L1(Ω)) if only
(π(%, Y ))2%−1− δ

2 belongs to L1((0, T ) × Ω). By virtue of Lemma 3.2.2 and estimate (3.31) this
is true for γ < 3, otherwise the boundedness of the r.h.s. of (3.34) follows from the additional
assumption (3.12).

3.2.3 Passage to the limit

In the previous section we showed uniform estimates for the sequence of of smooth solutions
{%n,un, Yn}n∈N under assumption that the initial data satisfy (3.19). For convenience of the
reader we list all of them once more

‖%n‖L∞(0,T ;L1(Ω)∪Lγ(Ω)) ≤ c, (3.35)
‖%γn‖

L
5
3 ((0,T )×Ω)

≤ c, (3.36)

‖√%nun‖L∞(0,T ;L2(Ω)) ≤ c, (3.37)
‖%n|un|2 ln(1 + |un|2)‖L∞(0,T ;L1(Ω)) ≤ c, (3.38)

‖Yn‖L∞((0,T )×Ω) ≤ c, (3.39)
‖∇√%n‖L∞(0,T ;L2(Ω)) ≤ c, (3.40)
‖√%n∇un‖L2(0,T ;L2(Ω)) ≤ c, (3.41)
‖√%n∇Yn‖L2(0,T ;L2(Ω)) ≤ c. (3.42)

In this section we present the proof of Theorem 3.3. It will be split into several steps.

1. Convergence of
√
%n

Lemma 3.9. If µ(%) satisfies (3.11), then for a subsequence we have
√
%n →

√
% a.e. and L2((0, T )× Ω) strongly.

Moreover %n → % strongly in C(0, T ;L
3
2 (Ω)).

Proof. By (3.35) and (3.40) we see that √%n ∈ L∞(0, T ;H1(Ω)). Next, from the renormal-
ized continuity equation coupled with (3.37) and (3.41) we also get that ∂t

√
%n is bounded in

L2(0, T ;H−1(Ω)). Hence, the Aubin-Lions lemma implies strong convergence on every compact
subset in L2((0, T )× Ω).
In order to proceed we observe that by the Sobolev imbedding theorem √%n ∈ L∞(0, T ;L6(Ω)).
Therefore, from the continuity equation ∂t%n ∈ L∞(0, T ;W−1, 3

2 (Ω)) which together with bound-
edness of ∇%n in L∞(0, T ;L

3
2 (Ω)) establishes compactness of {%n} in C0(0, T ;L

3
2 (Ω)).

2. Convergence of the pressure
In view of (3.36) and by the fact that %γn converges almost everywhere to %γ , we deduce that %γn
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converges strongly to %γ in L1((0, T )× Ω).
Concerning the molecular pressure, since %n ∈ L∞(0, T ;L3(Ω)), thus (3.39) implies

%nYA,n is bounded in L∞(0, T ;Lp(Ω))

for any p ∈ [1, 3]. Additionally, note that the space gradient of %nYA,n equals

∇(%nYA,n) = YA,n∇%n +
√
%n
√
%n∇YA,n

and is bounded in L2(0, T ;Lq(Ω)) for q ∈ [1, 3
2 ], therefore %nYA,n ∈ L2(0, T ;W 1, 3

2 (Ω)).
Now, let us verify that the time derivative

∂t(%nYA,n) = − div(%nYA,nun)− div(FA,n) + %nωn is bounded in L2(0, T ;W−1, 3
2 (Ω)).

Indeed, as %nunYA,n =
√
%nun

√
%nYA,n belongs to L∞(0, T ;Lq(Ω)) and

FA,n =
1

mA
∇(%nYA,n)−

YA,n
mA
∇(%nYA,n)−

YA,n
mB
∇(%n(1− YA,n))

is bounded in L2(0, T ;Lq(Ω)) for q ∈ [1, 3
2 ] we have, by the Aubin-Lions lemma, compactness of

{%nYA,n} in L2(0, T ;Lp(Ω)) for p ∈ (1, 3).

3. Strong convergence of YA,n
As a consequence of the last result we have (up to a subsequence) that %nYA,n converges a.e. to
some %A and we define YA = %A

% . Moreover, since %n converges a.e. to % it can be easily deduced

that YA,n =
%nYA,n
%n

converges a.e. to YA whenever {%(t, x) 6= 0}. As a matter of fact this is also
true in the set {%(t, x) = 0} on account of (3.39) and the Fatou lemma. In particular, we have a
strong convergence of YA,n in Lp(0, T ;Lp(Ω)) for any p finite.

4. Convergence of the convective term
Having proved strong convergence of density and the additional estimate for velocity (3.38),
convergence in the convective and the viscosity terms can be shown identically as in the work of
Mellet & Vasseur [69]. Below we recall their final result.

Lemma 3.10. Let p ∈ [1, 3
2), then up to a subsequence we have

%nun →m a.e. in (0, T )× Ω and strongly in L2(0, T ;Lp(Ω)),
√
%nun →

m
√
%

strongly in L2((0, T )× Ω).

In particular, we have m(t, x) = 0 a.e. on {%(t, x) = 0} and there exists a function u(t, x) such
that m(t, x) = %(t, x)u(t, x) and

%nun → %u strongly in L2(0, T ;Lp(Ω)),
√
%nun →

√
%u strongly in L2((0, T )× Ω).

Moreover, we have

µ(%n)D(un)→ µ(%)D(u) in D′((0, T )× Ω),

ν(%n) divun → ν(%) divu in D′((0, T )× Ω).
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3.3 First level of approximation-construction of solution

In this section we present a possible approach to the issue of solvability of system (3.2). As it
was already announced the strategy requires either to consider additional friction of the form
%|u|u or to modify the cold component of the pressure in the regime of small densities.

The second way seems more natural as ultimately we want to investigate the full system
describing the motion of chemically reacting and heat conducting fluids for which it is not so
evident that in the degenerated regimes (of low temperatures and densities) the medium behaves
as a fluid. For further discussion on this topic we refer to [13] and references therein.

From now on πc denotes a continuous function such that

π′c(%) =

{
c%−4k−1 for % ≤ 1, k > 1,
%γ−1 for % > 1, γ > 1

(3.43)

for some constant c > 0. By this modification, the compactness of velocity can be obtained with-
out Lemma 3.8, so to construct the approximate solution one should only care about preserving
the structure (3.20). The basic idea is contained already in the work [12] and consists of intro-
ducing the smoothing operator δ%∇

(
µ′(%)∆2s+1µ(%)

)
with s sufficiently large, inspired from the

capillarity forces [15]. In the next step we improve regularity of velocity using the biharmonic
operator η∆2u. Finally, to get the estimate for the norm of ∆s+1% in L2((0, T ) × Ω) at the
level of Faedo-Galerkin approximation, we also need to regularize the the continuity equation by
adding ε∆%.

At the points when construction of approximate solution does not differ much from the case of
single-component barotropic flow we present only main arguments and give the reference where
all the details can be found. For the sake of simplicity we assume that µ(%) = %, ν(%) = 0.

For the constant parameters ε, η, κ1, κ2, δ > 0 (we skip all the indexes when no confusion
can arise) we will be looking for a set of four functions (%,u, %A, %B) satisfying the following
regularization of the original system.
1. Approximate continuity equation:

∂t%+ div(%u)− ε∆% = 0, (3.44)

with the initial condition
%(0, x) = %0

δ(x), (3.45)

where
%0
δ ∈ C2+ν(Ω), inf

x∈Ω
%0
δ(x) > 0. (3.46)

2. The Faedo-Galerkin approximation for the weak formulation of the momentum balance:∫
Ω
%u(T )φφφ dx−

∫
Ω
m0φφφ dx+ η

∫ T

0

∫
Ω

∆u ·∆φφφ dx dt−
∫ T

0

∫
Ω

(%u⊗ u) : ∇φφφ dx dt

+

∫ T

0

∫
Ω

2%D(u) : ∇φφφ dx dt−
∫ T

0

∫
Ω
πκ2(%, %A, %B) divφφφ dx dt

− δ
∫ T

0

∫
Ω
%∇∆2s+1% ·φφφ dx dt+ ε

∫ T

0

∫
Ω

(∇% · ∇)u ·φφφ dx dt = 0

(3.47)

satisfied for any test function φφφ ∈ Xn, where Xn = span{φφφi}ni=1 where {φφφi}∞i=1 is an orthonormal
basis in L2(Ω), such that φφφi ∈ W 2,2(Ω) for all i ∈ N. The regularized internal pressure is equal



54 CHAPTER 3. TWO SPECIES KINETICS

to
πκ2(%, %A, %B) = πc(%) +

(
%A√
%mA

+
%B√
%mB

)
κ2

√
%.

3. The species mass balance equations with truncated and regularized coefficients:

∂t%A − ε∆%A + div(%Au)− div

((
%+
B

%mA
+

%+
A

%mB

)
κ1

∇%A −
(

%+
A

%mB

)
κ1

∇%
)

= %ωκ1 ,

∂t%B − ε∆%B + div(%Bu)− div

((
%+
A

%mB
+

%+
B

%mA

)
κ1

∇%B −
(

%+
B

%mA

)
κ1

∇%
)

= −%ωκ1 ,
(3.48)

we set

%+
i =


0 if %i < 0,
%i if 0 ≤ %i < %,
% if % ≤ %i,

for i ∈ S. (3.49)

The initial conditions are

%A(0, x) = %0
A,δ(x), %B(0, x) = %0

B,δ(x),

%0
A,δ, %

0
B,δ ∈ C2+ν(Ω), %0

A,δ + %0
B,δ = %0

δ .
(3.50)

Moreover, the restriction %A(t, x) + %B(t, x) = %(t, x) is satisfied for (t, x) ∈ [0, T ]× Ω.

The operators f → fκi , κi = (κit, κ
i
x), i = 1, 2 are the standard smoothing operators that apply

to the variables x and t in the case of functions %, %A, %B. However, the regularization over time
in (3.48) means that instead of %, %A, %B we consider their continuous extensions respectively in
the class VR that will be specified later on. We also assume that the supports of these extensions
are contained in the time-space cylinder (−2T, 2T )× Ω. Hence we define

fκ(s, y) = (f ∗ ζκx) ∗ ψκt =

∫
R
ψκt(s− τ)

∫
T3

ζκx(y − z)f(τ, z) dz dτ,

where
ζκx(y) =

1

κ3
x

ζ

(
y

κx

)
and ζ(y) is a regularizing kernel

ζ ∈ C∞c (T3), supp ζ ⊂ (−1, 1)3, ζ(y) = ζ(−y) ≥ 0,

∫
T3

ζ(y) dy = 1.

Similarly, we define a regularizing kernel for the time coordinate

ψ ∈ C∞c (R), supp ψ ⊂ (−1, 1), ψ(s) = ψ(−s) ≥ 0,

∫
R
ψ(s) ds = 1, ψκt(s) =

1

κt
ψ

(
s

κt

)
.

We start with the proof of well posedness of our approximate system.

Theorem 3.11. Let ε, κ1, κ2, η, δ be fixed positive parameters. Approximate problem (3.44-3.50)
admits a strong solution {%,u, %A, %B} belonging to the regularity class

% ∈ C([0, T ];C2+ν(Ω)), ∂t%,∈ C([0, T ];C0,ν(Ω)), inf
[0,T ]×Ω

% > 0, u ∈ C1([0, T ], Xn),

%i ∈ L∞(0, T ;W 1,2(Ω)), ∂t%i,∆%i ∈ L2((0, T )× Ω), i ∈ {A,B}, %A + %B = %.
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Proof. The strategy of the proof is following:

1. We linearize system (3.48).

2. We set u ∈ C([0, T ];Xn) for which we find the mappings u 7→ %(u) and u 7→ (%A(u), %B(u))
determining the unique solution to the continuity equation and the species mass balance
equations.

3. For sufficiently small time interval [0, τ0] we find the unique solution to the momentum
equation applying the Banach fixed point theorem. Then we extend the existence result
for the maximal time interval.

4. We recover the semi-linear system (3.48) using a version of Leray-Schauder fixed point
theorem.

The proof will be given in the following subsections.

3.3.1 Continuity equation

Here we present the argument for existence of smooth, unique solution to problem (3.44-3.46) in
the situation when the vector field u(x, t) is given and belongs to C([0, T ];Xn).
The following result can be proven by the Galerkin approximation and the well known statements
about the regularity of linear parabolic systems (for the details of the proof see [36], Lemma 3.1).

Lemma 3.12. Let u ∈ C([0, T ];Xn) for n fixed and let %0
δ ∈ C2+ν(Ω), ν ∈ (0, 1) be such that

0 < %0 ≤ %0 ≤ %0 <∞.

Then there exists the unique classical solution to (3.44-3.46), i.e. % ∈ V[0,T ], where

V[0,T ] =

{
% ∈ C

(
[0, T ];C2+ν(Ω)

)
,

∂t% ∈ C
(
[0, T ];C0,ν(Ω)

)
.

}
(3.51)

Moreover, the mapping u 7→ %(u) maps bounded sets in C([0, T ];Xn) into bounded sets in V[0,T ]

and is continuous with values in C
(

[0, T ];C2+ν′(Ω)
)
, 0 < ν ′ < ν < 1.

Finally,

%0e−
∫ τ
0 ‖divu‖∞dt ≤ %(τ, x) ≤ %0e

∫ τ
0 ‖ divu‖∞dt for all τ ∈ [0, T ], x ∈ Ω. (3.52)

3.3.2 Linearized species mass balance equations

In this subsection we shall prove the existence of solutions to the linearization of system (3.48).
For %̃A, %̃B ∈ L∞

(
0, T ;W 1,2(Ω)

)
fixed, u and %(u) satisfying the assumptions and assertion

of Lemma 3.12, we investigate the following system of linear parabolic equations with smooth
coefficients

∂t%A − ε∆%A + div(%Au)− div

((
%̃+
B

%mA
+

%̃+
A

%mB

)
κ1

∇%A −
(

%̃+
A

%mB

)
κ1

∇%

)
= % (ω (%̃A))κ1

,

∂t%B − ε∆%B + div(%Bu)− div

((
%̃+
A

%mB
+

%̃+
B

%mA

)
κ1

∇%B −
(

%̃+
B

%mA

)
κ1

∇%

)
= −% (ω (%̃A))κ1

.

(3.53)
The existence of unique solution to system (3.53) with the initial conditions (3.50) is stated in
the following lemma.
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Lemma 3.13. Let κ1 > 0 and assumptions of Lemma 3.12 be satisfied. Suppose that %0
A,δ, %

0
B,δ ∈

C2+ν(Ω), then the problem (3.53) with the initial data (3.50) possesses the unique strong solution
(%A, %B) belonging to the regularity class

(
V[0,T ]

)2.
Moreover, the mapping u 7→ (%A(u), %B(u)) maps bounded sets in C([0, T ];Xn) into bounded sets

in
(
V[0,T ]

)2 and is continuous with values in
(
C([0, T ];C2+ν′(Ω))

)2
.

In addition

%A + %B = %. (3.54)

Proof. Existence of unique classical solution can be shown using classical results about solvability
of the linear parabolic Cauchy problem with variable coefficients:

L(t, x, ∂∂t ,
∂
∂x)u =

∂tu−
∑n

i,j=1 ai,j(t, x) ∂2u
∂xi∂xj

+
∑n

i=1 ai(t, x) ∂u∂xi + a(t, x)u = f(t, x) in (0, T )× R3,

u(0, ·) = u0.

A relevant existence theory for such systems, not only within the framework of continuously
differentiable functions but also for the Sobolev spaces can be found in the book of Ladyženskaja,
Solonnikov and Uralceva [57]. Here, however, it is more convenient to apply the result from the
analytic semigroup theory taken over from the book of Lunardi [63], which requires merely
continuity of coefficients with respect to time.

Theorem 3.14 (Theorem 5.1.9 in [63]). Let all the coefficients of operator L and f be uniformly
continuous functions belonging to C0,ν([0, T ]×R3), with 0 < ν < 1, and let u0 ∈ C2+ν(R3). Then
the above problem has a unique solution from the class u ∈ C1,2+ν([0, T ]×R3) which satisfies the
inequality

‖u‖C1,2+ν([0,T ]×R3) ≤ c
(
‖f‖C0,ν([0,T ]×R3) + ‖u0‖C2+ν(R3)

)
. (3.55)

Note, in particular, that the assertion of Lemma 3.12 guaranties uniform continuity in the time
interval [0,T] of the ”worst” term proportional to ∆% which plays the role of force in system (3.53).
Thus, the existence of regular, unique solution belonging to the class

(
V[0,T ]

)2 is straightforward.
The continuity of the mapping u 7→ (%A(u), %B(u)) follows from uniqueness of solution in the
class

(
V[0,T ]

)2, compact embeddings in the spaces of Hölder continuous functions and the Arzelà-
Ascoli theorem.

The proof of (3.54) follows by subtracting both equations of (3.48) from the approximate
continuity equation, we obtain

∂tξ − ε∆ξ + div(ξu)− div

((
%̃+
B

%mA
+

%̃+
A

%mB

)
κ1

ξ

)
= 0,

ξ(0, x) = 0,

(3.56)

where we denoted ξ = %− %A− %B. The unique solution of the resulting system must be, due to
the initial condition, equal to 0 for (t, x) in [0, T ]× Ω.
By this remark, the proof of Lemma 3.13 is complete. �
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3.3.3 Momentum equation

Now we prove that there exists T = T (n) and u ∈ C([0, T ];Xn) satisfying (3.47). To this purpose
we apply the fixed point argument to the mapping

T : C([0, T ];Xn)→ C([0, T ];Xn), T [u](t) =M%(t)

[
Pnm

0 +

∫ t

0
PnN (u)(s)ds

]
, (3.57)

where Pn is the orthogonal projection of L2(Ω) onto Xn,

N (u) = −div(%u⊗ u) + div(2%D(u)) +∇πκ2 − δ%∇∆2s+1%+ η∆2u + ε(∇% · ∇)u

and
M% [·] : Xn → Xn,

∫
Ω
%M% [w]φ dx =< w, φ >, w, φ ∈ Xn.

First, observe that PnN (u)(t) is bounded in Xn for t ∈ [0, T ]. Using the equivalence of norms
on the finite dimensional space Xn we can easily check that

‖PnN (u)‖Xn ≤ c
[
‖u‖Xn + ‖%‖L∞(Ω)

(
‖u‖2Xn + ‖u‖Xn

)
+ ‖%‖γL∞(Ω) + ‖%‖L∞(Ω) + ‖%‖L∞(Ω)‖%‖W 4s+3,∞(Ω)].

(3.58)

To justify that the last term on the r.h.s. is bounded, one needs to know that the unique solution
% to the approximate continuity equation (3.44) is more regular than it was indicated in Lemma
3.12. More precisely, using the fact that u is actually smooth with respect to space, we can put
the term div(%u) to the r.h.s. of (3.44) and then bootstrap the procedure leading to regularity
(3.51), see e.g. [57], Chapter IV. By this argument, the term Pn%∇∆2s+1% in the approximate
momentum equation makes sense, i.e. it is bounded in L1(0, T ;Xn).
Concerning the operatorM%, it is easy to see that provided %(t, x) ≥ % > 0, one has

‖M%‖L(Xn,Xn) ≤ %−1.

Moreover, sinceM% −M%′ =M%′

(
M−1

%′ −M
−1
%

)
M% we verify that

‖M%(t) −M%′(t)‖L(Xn,Xn) ≤ c%−2‖(%− %′)(t)‖L1(Ω)

for t ∈ [0, T ]. Thus, by virtue of continuity of mappings u→ %(u) and u→ (%A(u), %B(u)) and
the estimates established in Lemmas 3.12 and 3.13 one can check that T [u] maps the ball

BR,τ0 =

{
u ∈ C([0, τ0], Xn) : ‖u‖C([0,τ0],Xn) ≤ R,u(0, x) = Pn

(
m0

%0
δ

)}
into itself and it is a contraction, for sufficiently small τ0 > 0. It therefore possesses the unique
fixed point satisfying (3.47) on the time interval [0, τ0]. In view of previous remarks, the proof
of this step can be done by a minor modification of the procedure described in [85], Section 7.7,
so we skip this part.
Additionally, the time regularity of u may be improved by differentiating (3.57) with respect to
time and estimating the norm of the resulting r.h.s. in Xn, so we get

u ∈ C1([0, τ0], Xn).

This is the crucial information that enables to extend this solution to the maximal time
interval [0, T ]. Indeed, provided the system enjoys the estimates independent of τ0, we can
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iterate the local construction of solution described above to get the solution for any T > 0. The
existence of such a bound is based on the energy estimate and a bound from below for the density
(3.52). Both of them can be derived analogously to [85], so for the sake of consistency, we recall
here only the idea of the proof.

We first differentiate (3.47) with respect to t, then we observe that it is possible to use u as
a test function, we obtain

d

dt

∫
Ω

(
1

2
%|u|2 +

δ

2
|∇2s+1%|2 + %ec(%)

)
dx+

∫
Ω

(
2%|D(u)|2 + η|∆u|2 + δε|∆s+1%|2

)
dx

≤
∫

Ω

(
%A√
%mA

+
%B√
%mB

)
κ2

√
%divu dx, (3.59)

where %2 dec(%)
d% = πc(%).

Applying the Cauchy inequality (with λ) we see that the r.h.s. may be bounded as follows∣∣∣∣∣
∫

Ω

(
%A√
%mA

+
%B√
%mB

)
κ2

√
% divu dx

∣∣∣∣∣ ≤ λ
∫

Ω
%| divu|2 dx+ c(λ, κ2)

≤ 3λ

∫
Ω
%|D(u)|2 dx+ c(λ, κ2), (3.60)

where the last inequality in (3.60) follows by the following observation

(divu)2 =
3∑

i,j=1

∂iui∂juj ≤
3∑

i,j=1

1

2

(
(∂iui)

2 + (∂juj)
2
)
≤ 3|D(u)|2.

Hence, for λ sufficiently small, the r.h.s. of (3.59) can be absorbed by the l.h.s. and we get
several, uniform in time estimates, in particular

√
%u ∈ L∞(0, T ;L2(Ω)),

√
η∆u ∈ L2(0, T ;L2(Ω)). (3.61)

From these bounds, using the estimate for %π(%) and the Korn-Poincaré inequality we deduce
boundedness of the L2(0, T ;W 2,2(Ω)) norm of u. Next, by the equivalence of norms of u we
actually have that u ∈ L2(0, T ;Xn) also u ∈ L2(0, T ;W 1,∞(Ω)). Therefore the bounds from
below and above for % can be derived exactly as in the proof of estimate (3.52) from Lemma
3.12. This in turn allows us to explore the uniform estimate on %|u|2 following from (3.59) to
show the boundedness of u in C([0, T ];L2(Ω)). Having this, we can again take advantage of
equivalence of norms, to deduce that we have uniformly in time

‖u‖C([0,T ];Xn) ≤ c.

At this point we can return to the procedure of construction of local in time solution and repeat
it until we reach an approximate solution defined on [0, T ] for arbitrary large, but finite T > 0,
exactly as in [85], Section 7.7.

From this we can deduce boundedness of the L2(0, T ;W 2,2(Ω)) norm of u.

3.3.4 Nonlinear equations of species mass conservation

Completing the proof of Theorem 3.11 requires to check that the original system (3.48) can be
recovered. To this purpose we will need the following version of the fixed point theorem (for the
proof see e.g. [44], Theorem 11.3)
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Theorem 3.15. Let T : X → X be a continuous, compact mapping, X a Banach space. Let for
any λ ∈ [0, 1] the fixed points λT u = u, u ∈ X be bounded. Then T possesses at least one fixed
point in X.

We will apply it to the mapping

T : W[0,T ] ×W[0,T ] →W[0,T ] ×W[0,T ], T (%̃A, %̃B) = (%A, %B),

where (%A, %B) is a unique, global in time solution to system (3.53) and W[0,T ] denotes the
following class of functions

W[0,T ] = {L2(0, T ;W 2,2(Ω)) ∩ L∞(0, T ;W 1,2(Ω))}. (3.62)

For κ1 fixed we show the boundedness of T in the class
(
V[0,T ]

)2 using Theorem 3.14, moreover,
the obtained solution is unique. Therefore, proving compactness and continuity of this mapping
in C([0, T ];C2+ν′(Ω)) follows exactly as in the proof of Lemma 3.13.
The only assumption of the theorem above that needs to be checked is that any fixed point to
λT (%A, %B) = (%A, %B) is bounded for λ ∈ [0, 1]. This identity rewrites as

∂t%A −

(
ε+

(
%+
B

%mA
+

%+
A

%mB

)
κ1

)
∆%A +

(
u−∇

(
%+
B

%mA
+

%+
A

%mB

)
κ1

)
∇%A + divu%A

= λ% (ω (%A))κ1
− λ div

((
%+
A

%mB

)
κ1

∇%

)
, (3.63)

and similarly for the species B. So, we first multiply the above equation by %A and we get:

d

dt

∫
Ω

%2
A

2
dx+

∫
Ω

(
ε+

(
%+
B

%mA
+

%+
A

%mB

)
κ1

)
|∇%A|2 dx

=

∫
Ω
%Au · ∇%A dx+ λ

∫
Ω

(
%+
A

%mB

)
κ1

∇% · ∇%A dx+ λ

∫
Ω
%ωκ1%A dx. (3.64)

The right hand side can be estimated due to assumed regularity of %,u and by the definition of
ω (%A), we obtain∣∣∣∣∣
∫

Ω
%Au · ∇%A dx+ λ

∫
Ω

(
%+
A

%mB

)
κ1

∇% · ∇%A dx+ λ

∫
Ω
%ωκ1%A dx

∣∣∣∣∣
≤ ‖u‖L∞(Ω)‖%A‖L2(Ω)‖∇%A‖L2(Ω) + c‖∇%A‖L2(Ω)‖∇%‖L2(Ω) + cω‖%‖L∞(Ω)‖%A‖L1(Ω), (3.65)

where the r.h.s. is absorbed by the l.h.s. after application of the Cauchy inequality. The same
holds for %B. Next, multiplying (3.63) by ∂t%A we get∫

Ω
|∂t%A|2 dx+

ε

2

d

dt

∫
Ω
|∇%A|2 dx+

1

2

d

dt

∫
Ω

(
%+
B

%mA
+

%+
A

%mB

)
κ1

|∇%A|2 dx

= −
∫

Ω
(∇%A · u ∂t%A + %A divu ∂t%A) dx− λ

∫
Ω

div

((
%+
A

%mA

)
κ1

∇%

)
∂t%A dx

+
1

2

∫
Ω
∂t

(
%+
B

%mA
+

%+
A

%mB

)
κ1

|∇%A|2 dx+ λ

∫
Ω
%ωκ1∂t%A dx.
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By the properties of mollifiers, regularity of % and u we can estimate the r.h.s., note, however,
that this cannot be done independently of κ.
Reassuming, we have shown that

ess sup
t∈(0,T )

‖%A‖2W 1,2(Ω) +

∫ T

0
‖∂t%A‖L2(Ω) dt ≤ c(κ1) (3.66)

and from this we may deduce that also

‖∇2%A‖L2((0,T )×Ω) ≤ c(κ1). (3.67)

Moreover, the fixed point satisfies %A + %B = %, so the proof of Theorem 3.11 is now complete.
�

3.4 Second level of approximation

In this section we first derive the estimates uniform with respect to κ1 and then subtract subse-
quences in order to let κ1 → 0 in the approximate system. Having this, we prove that the species
densities %A, %B are nonnegative, which is necessary to remove truncations from the coefficients
of system (3.48). The last part of this section is devoted to the limit passage with the dimension
of the Faedo-Galerkin approximation. Observe that the final regularity of solutions does not
allow to test the momentum equation by u, it is, however, sufficient to use ∇ log % instead and
hence we end up with the Bresch-Desjardins estimate, as it was announced in the introduction.

3.4.1 Passage to the limit κ1, κ2 → 0

From what was written in the previous section, we deduce that the first energy estimate holds
independently of κ1, thus we have

‖√%κ1uκ1‖L∞(0,T ;L2(Ω)) + ‖√%κ1∇uκ1‖L2(0,T ;L2(Ω)) + ‖√η∆uκ1‖L2(0,T ;L2(Ω))

+ ‖
√
εδ∆s+1%κ1‖L2(0,T ;L2(Ω)) + ‖

√
δ∇∆s%κ1‖L∞(0,T ;L2(Ω)) + ‖πc(%κ1)‖L∞(0,T ;L1(Ω)) ≤ c. (3.68)

By this we see that the construction of %κ1(uκ1) performed in Lemma 3.12 can be repeated. In
particular, the sequence %κ1 is uniformly separated from 0 as long as n is fixed.
In addition, repeating estimate (3.64) we verify that also

‖%A,κ1 , %B,κ1‖L∞(0,T ;L2(Ω)) + ‖%A,κ1 , %B,κ1‖L2(0,T ;W 1,2(Ω)) ≤ c. (3.69)

Thus, the time derivatives of %A,κ1 , %B,κ1 can be estimated in L2(0, T ;W−1,2(Ω)) directly from
(3.53).

Having n fixed, all the norms of uκ1 are equivalent and the limit function u ∈ C([0, T ];Xn),
thus passage to the limit in the continuity equation is trivial and the limit % ∈ V[0,T ] on account
of Lemma 3.12. Concerning the species mass balance equations, the Aubin-Lions argument can
be applied and we get compactness of %A,κ1 in L2(0, T ;Lq(Ω)) for q < 6, in particular %A,κ1 → %A
a.e. on (0, T ) × Ω. By this and the bounds from (3.68) we easily check that the limit equation
of mass conservation of species A

∂t%A + div(%Au)− ε∆%A − div

((
%+
B

%mA
+

%+
A

%mB

)
∇%A −

(
%+
A

%mB

)
∇%
)

= %ω, (3.70)

is satisfied in the sense of distributions on (0, T )×Ω, but the standard density argument enables
to extend the class of test functions to L2(0, T ;W 1,2(Ω)). Moreover, due to (3.69) the initial
condition is satisfied in the sense of distributions on Ω. Similarly for %B.
The passage to the limit in the momentum equation is straightforward.
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3.4.2 Non-negativity of partial densities

Our next goal is to deduce from the form of system (3.44-3.50) that for κ = 0 the limit functions
%A, %B satisfy not only the mass constraint (3.54) but also they are nonnegative a.e. in (0, T )×Ω.

We have

Lemma 3.16. Let δ, ε, η > 0, n be fixed natural number and let (%,u, %A, %B) be a solution to
(3.44-3.50) with κ = 0 as specified above. Then

%A = %+
A, %B = %+

B a.e. in (0, T )× Ω.

Proof. In what follows, we focus only on the proof of nonnegativity of %A, the case of %B can be
shown analogously. By virtue of (3.69), we are allowed to test (3.70) with a function (%A−+l)q−1,
l > 0, q ∈ (1, 2], where

%A− =

{
−%A if %A < 0,

0 if 0 ≤ %A,

and then pass to the limit l → 0+. Observe that %+
A%A− = 0 and %+

B%A− = %%A− in case when
%A < 0 or %+

B%A− = 0 for %A ≥ 0, thus

− 1

q

d

dt

∫
Ω
%qA− dx− 4ε(q − 1)

q2

∫
Ω

∣∣∣∇%q/2A−

∣∣∣2 dx− 4(q − 1)

mAq2

∫
Ω

∣∣∣∇%q/2A−

∣∣∣2 dx

= (1− q)
∫

Ω
u · ∇%A−%q−1

A− dx+

∫
Ω
%ω

(
%A
%

)
%q−1
A− dx. (3.71)

Since %A− ≥ 0 enforces ω
(
%A
%

)
≥ 0, we can put the last term from the r.h.s. to the l.h.s., so

multiplying the above expression by −1 we get

1

q

d

dt

∫
Ω
%qA− dx+

4ε(q − 1)

q2

∫
Ω

∣∣∣∇%q/2A−

∣∣∣2 dx+
4(q − 1)

mAq2

∫
Ω

∣∣∣∇%q/2A−

∣∣∣2 dx+

∫
Ω
%ω

(
%A
%

)
%q−1
A− dx

=
2(q − 1)

q

∫
Ω
u · ∇%q/2A−%

q/2
A− dx. (3.72)

Now, the r.h.s. may be bounded by use of the Cauchy inequality∣∣∣∣∫
Ω
u · ∇%q/2A−%

q/2
A− dx

∣∣∣∣ ≤ ‖u‖L∞(Ω)

(
ε‖∇%q/2A−‖

2
L2(Ω) + c(ε)‖%q/2A−‖

2
L2(Ω)

)
and the first of the resulting terms is absorbed by the l.h.s. of (3.72) provided 4

mAq2 >
2ε‖u‖∞

q ,
while the other is bounded since %A ∈ L∞(0, T ;L2(Ω)).
Further, as the three last terms from the l.h.s. of (3.72) are nonnegative we get that d

dt

∫
Ω %

q
A− dx ≤

c(q − 1), thus, passing to the limit q → 1+ and integrating by time we conclude that∫
Ω
%A−(t) dx ≤

∫
Ω
%A−(0) dx.

Since the integrant from the r.h.s. is equal to 0 a.e. in Ω, there must be %A−(t, x) = 0 a.e. in
(0, T )× Ω. �
Obviously, positiveness of species masses coupled with (3.54) leads to the following inequality

0 ≤ %A, %B ≤ %, a.e. in (0, T )× Ω.

This fact allows us to verify that the estimates uniform with respect to κ1 are in fact uniform
with respect to κ2. Therefore passage to the limit κ2 → 0 can be performed identically as the
previous one.
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3.4.3 Passage to the limit with dimension of the Galerkin approximation

Observe that the estimates derived in the previous section are independent of n. In particular,
due to bounds from (3.68) we deduce that

un → u weakly in L2(0, T ;W 2,2(Ω)), (3.73)

and
%n → % weakly in L2(0, T ;W 2s+2,2(Ω)), (3.74)

at least for a suitable subsequence. In addition the r.h.s. of the linear parabolic problem

∂t%n − ε∆%n = div(%nun),

%n(0, x) = %0
δ ,

is uniformly bounded in L2(0, T ;L6(Ω)) and the initial condition is sufficiently smooth, thus,
applying the Lp − Lq theory to this problem we conclude that {∂t%n}∞n=1 is uniformly bounded
in L2(0, T ;L6(Ω)). Thus, the standard compact embeddings imply %n → % a.e. in (0, T )×Ω and
therefore passage to the limit in the approximate continuity equation is straightforward. Having
that, we can also identify the limit for n → ∞ in all terms of the momentum equation, except
for the convective term, the additional capillarity force and the pressure.

To handle the first one observe that

%nun → %u weakly in L∞(0, T ;L2(Ω)),

due to the uniform estimates (3.68) and the strong convergence of the density. Next, one can
show that for any φ ∈ ∪∞n=1Xn the family of functions

∫
Ω %nun(t)φ dx is bounded and equi-

continuous in C([0, T ]), thus via the Arzelà-Ascoli theorem and density of smooth functions in
L2(Ω) we get that

%nun → %u in C([0, T ];L2
weak(Ω)). (3.75)

Finally, by the compact embedding L2(Ω) ⊂ W−1,2(Ω) and the weak convergence of un (3.73)
we verify that

%nun ⊗ un → %u⊗ u weakly in L2((0, T )× Ω).

Concerning the capillarity term, we first rewrite it in the form∫
Ω
%n∇∆2s+1%n · φ dx =

∫
Ω

∆s div (%nφ) ∆s+1%n dx.

Due to (3.74) and boundedness of the time derivative of %n, we infer that

%n → % strongly in L2(0, T ;W 2s+1,2(Ω)), (3.76)

thus ∫
Ω

∆s div (%nφ) ∆s+1%n dx→
∫

Ω
∆s div (%φ) ∆s+1% dx,

for every φ ∈ ∪∞n=1Xn. Moreover, by the penultimate estimate of (3.68) and since the set ∪∞n=1Xn

is dense in W 2s+1(Ω), this convergence holds for all φ ∈ L2(0, T ;W 2s+1(Ω)).
Passage to the limit in the molecular part of the pressure is an easy task, since due to (3.69)
there exist the subsequences such that

%k,n → %k, weakly in L2(0, T ;W 1,2(Ω)), k ∈ S.
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So the only uncertain part is the nonlinear barotropic pressure. Its strong convergence is a
consequence of pointwise convergence of the density, and the bounds from (3.68). Taking s
sufficiently large we can show that the density is separated from 0 uniformly with respect to all
approximation parameters except for δ. Indeed, since by the Sobolev embedding ‖%−1‖L∞(Ω) ≤
c‖%−1‖W 3,k(Ω) for k > 1 and

‖∇3%−1‖Lk(Ω) ≤ (1 + ‖∇3%‖L2k(Ω))
3(1 + ‖%−1‖L4k(Ω))

4,

is bounded on account of (3.68), provided that 2s+ 1 ≥ 4, we have

‖%−1‖L∞((0,T )×Ω) ≤ c(δ) a.e. in (0, T )× Ω. (3.77)

By this observation, passage to the limit n → ∞ in the species mass balance equations may be
performed identically as the passage κ1 → 0 from the previous subsection.

Note that, due to the weak lower semicontinuity of convex functions we can pass to the limit
in (3.59). Indeed, by the strong convergence of density and velocity we check that∫

Ω

(
1

2
%n|un|2 +

δ

2
|∇2s+1%n|2 + %nec(%n)

)
dx→

∫
Ω

(
1

2
%|u|2 +

δ

2
|∇2s+1%|2 + %ec(%)

)
dx

(3.78)
in the sense of distributions on (0, T ) and for any smooth, nonnegative function ψ ∈ C∞([0, T ])
we have∫ T

0
ψ

∫
Ω

2%|D(u)|2 dx dt+ η

∫ T

0
ψ

∫
Ω
|∆u|2 dx dt+ δε

∫ T

0
ψ

∫
Ω
|∆s+1%|2 dx dt

≤ lim inf
n→∞

∫ T

0
ψ

∫
Ω

2%n|D(un)|2 dx dt+ η

∫ T

0
ψ

∫
Ω
|∆un|2 dx dt+ δε

∫ T

0
ψ

∫
Ω
|∆s+1%|2 dx dt.

(3.79)

Similar argument can be applied to the integral form of the energy inequality which i now satisfied
for a.a. τ in (0, T )∫

Ω

(
1

2
%|u|2 +

δ

2
|∇2s+1%|2 + %ec(%)

)
(τ) dx+

∫ τ

0

∫
Ω

2%|D(u)|2 + η|∆u|2 + δε|∆s+1%|2 dx dt

≤
∫

Ω

(
1

2
%0|u0|2 +

δ

2
|∇2s+1%0|2 + %0ec(%

0)

)
dx+

∫ τ

0

∫
Ω

(
%A
mA

+
%B
mB

)
divu dx dt (3.80)

and the r.h.s. is bounded.
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3.5 Third level of approximation

As an outcome of Section 3.4 we obtain the weak solution to the following system

∂t%+ div(%u)− ε∆% = 0,

∂t(%u) + div(%u⊗ u)− div(2%D(u)) +∇π − δ%∇∆2s+1%+ ε(∇% · ∇)u + η∆2u = 0,

∂t%A − ε∆%A + div(%Au)− div
((

%B
%mA

+ %A
%mB

)
∇%A −

(
%A
%mB

)
∇%
)

= %ω,

∂t%B − ε∆%B + div(%Bu)− div
((

%A
%mB

+ %B
%mA

)
∇%B −

(
%B
%mA

)
∇%
)

= −%ω,

(3.81)

where the first equation holds a.e. on (0, T ) × Ω, and the remaining ones are satisfied in the
sense of distributions. Moreover, it results from the construction that

0 ≤ %A, %B ≤ %, and %A + %B = % a.e. in (0, T )× Ω

and the energy inequality (3.59) is satisfied in the sense of distributions on (0, T ).

3.5.1 Estimates independent of ε, η and δ

At this level of approximation, it is relatively easy to derive the Bresch-Desjardins inequality. In-
deed, as we know now that % ∈ L2(0, T ;W 2s+2,2(Ω))∩L∞((0, T )×Ω) and u ∈ L2(0, T ;W 2,2(Ω))∩
L∞(0, T ;L2(Ω)) we can differentiate the approximate continuity equation with respect to x to
observe that ∇% satisfies the following system

∂t(∇%)− ε∆(∇%) = −∇ div (%u),

∇%(0, x) = ∇%0
δ .

(3.82)

Since the r.h.s. of (3.82) is bounded in L2((0, T )×Ω), we can again apply the maximal Lp−Lq
theory for such problems to deduce that ∂t∇% ∈ L2((0, T )× Ω). Hence, the function ∇φ = 2∇%%
belongs to W 1,2(0, T ;L2(Ω))∩L2(0, T ;W 2s+1,2(Ω)), thus it is an admissible test function for the
approximate momentum equation (3.81)2.
Our next aim is to prove the following inequality:

Lemma 3.17. We have

d

dt

∫
Ω

(
1

2
%|u +∇φ(%)|2 +

δ

2
|∇∆s%|2 + %ec(%)

)
dx+

∫
Ω
∇φ(%) · ∇π(%, %A) dx

+
1

2

∫
Ω
%|∇u−∇Tu|2 dx+

∫
Ω

(
2δ|∆s+1%|2 + δε|∆s+1%|2

)
dx+ η

∫
Ω
|∆u|2 dx

≤ −ε
∫

Ω
(∇% · ∇)u · ∇φ dx+ ε

∫
Ω

∆%
|∇φ|2

2
dx+ ε

∫
Ω
%∇φ(%) · ∇

(
φ′(%)∆%

)
dx

− ε
∫

Ω
div(%u)φ′(%)∆% dx− η

∫
Ω

∆u · ∇∆φ(%) dx+

∫
Ω

(
%A
mA

+
%B
mB

)
divu dx

(3.83)

in D′(0, T ), where ec(%) =
∫ %

0 y
−2πc(y) dy ≥ 0.

Proof. The basic idea of the proof is to find the explicit form of the term:

d

dt

∫
Ω

(
1

2
%|u|2 + %u · ∇φ(%) + %|∇φ(%)|2

)
dx. (3.84)
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For this purpose we first multiply the approximate continuity equation by |∇φ(%)|2
2 and we obtain

the following sequence of equalities

d

dt

∫
Ω

1

2
%|∇φ(%)|2 dx

=

∫
Ω

(
%∂t
|∇φ(%)|2

2
− |∇φ(%)|2

2
div(%u) + ε

|∇φ(%)|2

2
∆%

)
dx

=

∫
Ω

(
%∇φ(%) · ∇

(
φ′(%)∂t%

)
− |∇φ(%)|2

2
div(%u) + ε

|∇φ(%)|2

2
∆%

)
dx

=

∫
Ω

(
ε%∇φ(%) · ∇

(
φ′(%)∆%

)
− %∇u : ∇φ(%)⊗∇φ(%) + ε

|∇φ(%)|2

2
∆%

)
dx

−
∫

Ω

(
|∇φ(%)|2

2
div(%u) + %u⊗∇φ(%) : ∇2φ(%) + %∇φ(%) · ∇

(
φ′(%)%divu

))
dx

=

∫
Ω

(
ε%∇φ(%) · ∇

(
φ′(%)∆%

)
− %∇u : ∇φ(%)⊗∇φ(%) + ε

|∇φ(%)|2

2
∆%

)
dx

+

∫
Ω

(
%u∆φ(%) · ∇φ(%) +

|∇φ(%)|2

2
div(%u)− div(%u⊗∇φ(%)∇φ(%))

)
dx

+

∫
Ω

(
%2φ′(%)∆φ(%) divu + % |∇φ(%)|2 divu

)
dx

=

∫
Ω

(
ε%∇φ(%) · ∇

(
φ′(%)∆%

)
− %∇u : ∇φ(%)⊗∇φ(%) + ε

|∇φ(%)|2

2
∆%

)
dx

+

∫
Ω

(
%2φ′(%)∆φ(%) divu + % |∇φ(%)|2 divu

)
dx.

(3.85)

In the above series of equalities, each one holds pointwisely with respect to time due to the
regularity of % and ∇φ. This is not the case of the middle integrant of (3.84), for which one
should really think of weak in time formulation. Denote

V = W 2s+1,2(Ω), H = L2(Ω) and v = %u, h = ∇φ.

We know that v ∈ L2(0, T ;H) and its weak derivative with respect to time variable v′ ∈
L2(0, T ;V ∗), where V ∗ denotes the dual space to V . Moreover, h ∈ L2(0, T ;V ), h′ ∈ L2(0, T ;H∗).
Now, let vm, hm denote the standard mollifications in time of v and h respectively. By the prop-
erties of mollifiers we know that

vm,v
′
m ∈ C∞(0, T ;H), hm,h

′
m ∈ C∞(0, T ;V ),

and
vm → v in L2(0, T ;H), hm → h in L2(0, T ;V ),

v′m → v′ in L2(0, T ;V ∗), h′m → h′ in L2(0, T ;H∗).
(3.86)

For these regularized sequences we may write

d

dt

∫
Ω
vm · hm dx =

d

dt
(vm,hm)H = (v′m,hm)H + (vm,h

′
m)H . (3.87)

Using the Riesz representation theorem we verify that v′m ∈ C∞(0, T ;H) uniquely determines
the functional Φv′m ∈ H

∗ such that

(v′m, ψ)H = 〈Φv′m , ψ〉H∗,H ∀ψ ∈ H.
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Since H∗ ⊂ V ∗ densely, this functional belongs to V ∗ in the sense

〈Φv′m , ψ〉V ∗,V =

∫
Ω
v′m · ψ dx ∀ψ ∈ V.

Therefore, by identification of H and H∗, the first term on the r.h.s. of (3.87) can be understood
as

(v′m,hm)H = 〈v′m,hm〉H∗,H = 〈v′m,hm〉V ∗,V .
For the second term from the r.h.s. of (3.87), we use the Riesz representation theorem to write

(vm,h
′
m)H = 〈vm,h′m〉H,H∗

and thus we obtain

−
∫ T

0
(vm,hm)Hψ

′ dt =

∫ T

0
〈v′m,hm〉V ∗,V ψ dt+

∫ T

0
〈vm,h′m〉H,H∗ψ dt ∀ψ ∈ D(0, T ).

Observe, that both integrants from the r.h.s. are uniformly bounded in L1(0, T ), thus, using
(3.86), we let m→∞ to obtain

d

dt
(v,h)H = 〈v′,h〉V ∗,V + 〈v · h′〉H,H∗ in D′(0, T ).

Coming back to our original notation, this means that the operation

d

dt

∫
Ω
%u · ∇φ(%) dx =

∫
Ω
∂t(%u) · ∇φ dx+

∫
Ω
%u · ∂t∇φ dx (3.88)

is well defined and is nothing but equality between two scalar distributions. By the fact that
∂t∇φ exists a.e. in (0, T )× Ω we may use approximate continuity equation to write∫

Ω
%u · ∂t∇φ dx =

∫
Ω

(div(%u))2φ′(%) dx− ε
∫

Ω
div(%u)φ′(%)∆% dx, (3.89)

whence the first term on the r.h.s. of (3.88) may be evaluated by testing the approximate
momentum equation by ∇φ(%)

〈∂t(%u),∇φ〉V ∗,V

= −
∫

Ω
2%∆φ(%) divu dx+ 2

∫
Ω
∇u : ∇φ(%)⊗∇% dx− 2

∫
Ω
∇φ(%) · ∇%divu dx

−
∫

Ω
∇φ(%) · ∇π(%, %A) dx+ δ

∫
Ω
%∇∆2s+1% · ∇φ(%) dx

−
∫

Ω
∇φ(%) · div(%u⊗ u) dx− η

∫
Ω

∆2u · ∇φ(%) dx− ε
∫

Ω
(∇% · ∇)u · ∇φ(%) dx.

(3.90)

Recalling the form of φ(%) it can be deduced that the combination of (3.85) with (3.88-3.90)
yields

d

dt

∫
Ω

(
%u · ∇φ(%) +

1

2
%|∇φ(%)|2

)
dx+

∫
Ω
∇π(%, %A) · ∇φ(%) dx+ 2δ

∫
Ω
|∆s+1%|2 dx

= −
∫

Ω
∇φ(%) div(%u⊗ u) dx+

∫
Ω

(div(%u))2φ′(%) dx− 2λ

∫
Ω

∆s∇(%u) : ∆s∇2% dx

− ε
∫

Ω
div(%u)φ′(%)∆% dx− η

∫
Ω

∆u · ∇∆φ(%) dx+ ε

∫
Ω

|∇φ(%)|2

2
∆% dx

− ε
∫

Ω
(∇% · ∇)u · ∇φ(%) dx+ ε

∫
Ω
%∇φ(%) · ∇

(
φ′(%)∆%

)
dx.

(3.91)
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It is then easy to check that the first two terms from the r.h.s of (3.91) can be transformed into∫
Ω

[
(div(%u))2φ′(%)−∇φ(%) div(%u⊗ u)

]
dx =

∫
Ω

[
2%|D(u)|2 − 1

2
%|∇u−∇Tu|2

]
dx,

and thus, the assertion of Lemma 3.17 follows by adding (3.59) to (3.91). �

Our next aim is to derive uniform estimates from inequality (3.83). To this purpose we will
integrate it with respect to time. For any ψm ∈ D(0, T ), the first term from the l.h.s. of (3.83)
equals∫ T

0

d

dt

∫
Ω

(
1

2
%|u +∇φ(%)|2 +

δ

2
|∇∆s%|2 + %ec(%)

)
dx ψm dt

= −
∫ T

0

∫
Ω

(
1

2
%|u +∇φ(%)|2 +

δ

2
|∇∆s%|2 + %ec(%)

)
ψ′m dx dt. (3.92)

Now, choosing a sequence of ψm ∈ D(0, τ) such that ψm → 1 pointwisely in (0, τ), ψm → 0
pointwisely in [τ, T ), 0 < τ < T we see that ψ′m approximates the inner normal vector to the
boundary of the time interval [0, τ ]. In other words, it generates two Dirac distributions at the
ends of [0, τ ]. Thus, using the fact that

t 7→
∫

Ω

(
1

2
%|u +∇φ(%)|2 +

δ

2
|∇∆s%|2 + %ec(%)

)
dx ∈ C([0, τ ]),

we let m→∞ in (3.92) and from (3.83) we get∫
Ω

(
1

2
%|u +∇φ(%)|2 +

δ

2
|∇∆s%|2 + %ec(%)

)
(τ) dx+

∫ τ

0

∫
Ω
∇φ(%) · ∇π(%, %A) dx dt

+

∫ τ

0

∫
Ω

(
1

2
%|∇u−∇Tu|2 + 2δ|∆s+1%|2 + δε|∆s+1%|2 + η|∆u|2

)
dx dt

≤
∫

Ω

(
1

2
%|u +∇φ(%)|2 +

δ

2
|∇2s+1%|2 + %π(%)

)
(0) dx+ ε

∫ τ

0

∫
Ω
∇% · ∇u · ∇φ dx dt

+ ε

∫ τ

0

∫
Ω

∆%
|∇φ|2

2
dx dt+ ε

∫ τ

0

∫
Ω
%∇φ(%) · ∇

(
φ′(%)∆%

)
dx dt

− ε
∫ τ

0

∫
Ω

div(%u)φ′(%)∆% dx dt− η
∫ τ

0

∫
Ω

∆u · ∇∆φ(%) dx dt.

(3.93)

The only nonpositive contribution to the l.h.s. of (3.93) is contained in the second integral,
as we can not determine the sign of the part corresponding to molecular pressure. However, we
have ∫

Ω
∇φ · ∇πm(%, %A) dx =

∫
Ω

(
2|∇%|2

%mB
+

(
1

mA
− 1

mB

)
2∇% · ∇%A

%

)
dx

moreover,(
1

mA
− 1

mB

)∫
Ω

∇% · ∇%A
%

dx =

(
1

mA
− 1

mB

)∫
Ω

(
|∇%|2

%
+∇% · ∇YA

)
dx (3.94)

and ∣∣∣∣∫
Ω
∇% · ∇YA dx

∣∣∣∣ ≤ c(ε)∫
Ω

|∇%|2

%
dx+ ε

∫
Ω
%|∇YA|2 dx. (3.95)
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To control the second term we proceed by the same lines as in the proof of Lemma 3.7. Mimicking
the steps leading to (3.27), we use YA = %A

% ∈ L
2(0, T ;W 1,2(Ω)) as a test function in (3.70), we

obtain∫
Ω

1

2
%Y 2

A(T ) dx+

(
ε+

1

max{mA,mB}

)∫ T

0

∫
Ω
%|∇YA|2 dx dt

≤
∫

Ω

1

2
%Y 2

A(0) dx+

∫ T

0

∫
Ω
%|ω(Y )|YA dx dt+ c

∫ T

0

∫
Ω
|∇% · ∇YA| dx dt. (3.96)

Hence, by the Cauchy inequality, we can justify that the L1(Ω) norm of %|∇YA|2 is controlled by
the L1(Ω) norm of |∇%|

2

% independently of the approximation parameters, so we end up with∫
Ω
|∇φ · ∇πm(%, %A)| dx ≤ c(mA,mB)

∫
Ω

|∇%|2

%
dx.

Finally, the Gronwall-type argument can be applied to absorb this term by the l.h.s. of (3.83).
Concerning terms from the r.h.s of (3.93), the first of them can be estimated as follows∣∣∣∣ε∫

Ω
∇% · ∇u · ∇φ dx

∣∣∣∣ ≤ 2ε‖∇u‖L6(Ω)‖%−1‖∞‖%‖2W 1,6/5(Ω)
.

The Sobolev imbedding implies that for c(s)ε < η and s sufficiently large we have∣∣∣∣ε∫
Ω
∇% · ∇u · ∇φ dx

∣∣∣∣ ≤ η

3
‖∆u‖2L2(Ω) + c(ε)‖%−1‖2L∞(Ω)‖%‖

4
H2s+1(Ω)

and the last term is bounded uniformly in time due to (3.80) provided ε = ε(δ). For the second
term we may write∣∣∣∣ε∫

Ω
∆%
|∇φ|2

2
dx

∣∣∣∣ ≤ 4ε‖%‖H2(Ω)‖%−1‖2L∞(Ω)‖%‖
2
H1(Ω) ≤ c(ε)‖%‖

3
H2s+1(Ω)‖%

−1‖2L∞(Ω)

and the same argument leads to boundedness uniformly in time provided ε is sufficiently small
with respect to δ.
The third term is even easier since∣∣∣∣ε ∫

Ω
%∇φ∇(φ′∆%) dx

∣∣∣∣ = 4ε

∫
Ω

(∆%)2

%
dx ≤ c(ε)‖%‖2H2s+1(Ω)‖%

−1‖L∞(Ω).

By the definition of φ the fourth term equals

−ε
∫

Ω
div(%u)φ′(%)∆% dx = −ε

∫
Ω

(2 divu∆%+ u · ∇φ∆%) dx,

hence we have∣∣∣∣−ε∫
Ω

div(%u)φ′(%)∆% dx

∣∣∣∣ ≤ cε (‖u‖W 1,6(Ω)‖%‖H2(Ω) + ‖u‖∞‖%−1‖∞‖%‖H1‖%‖H2

)
and for ε sufficiently small with respect to η the r.h.s. is bounded by

η

3
‖∆u‖22 + cε

(
‖%‖2H2s+1(Ω) + ‖%−1‖2L∞(Ω)‖%‖

4
H2s+1(Ω)

)
.
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Finally, we estimate the last term in (3.93)∣∣∣∣η ∫
Ω

∆u · ∇∆φ(%) dx

∣∣∣∣ ≤ √η‖∆u‖L2(Ω)
√
η‖∇∆φ(%)‖L2(Ω),

where

∇∆φ(%) =
2∇∆%

%
− 2(∇% · ∇)∇%

%2
− 2(∇% · ∇)∇%

%2
− 2∆%∇%

%2
+

4|∇%|2∇%
%3

.

For s sufficiently large we may show that

‖∇∆φ(%)‖L2(Ω) ≤ (1 + ‖%‖H2s+1(Ω))
3(1 + ‖%−1‖L∞(Ω))

6

and on account of (3.80) , (3.77) both terms from the r.h.s. are bounded for all time.

Summarizing, from the Bresch-Desjardins relation we can additionally deduce that

∇√% ∈ L∞(0, T ;L2(Ω))
√
δ∆s+1% ∈ L2(0, T ;L2(Ω))

uniformly withe respect to ε, η, δ. Moreover, in view of (3.43) we can write∫
Ω
∇φ(%) · ∇πc(%) dx = 2

∫
Ω
π′c(%)

|∇%|2

%
dx

= 8k

∫
{x∈Ω:%≤1}

%−4k−2|∇%|2 dx+ 2γ

∫
{x∈Ω:%>1}

%γ−2|∇%|2 dx

≥
∫
{x∈Ω:%≤1}

|∇ξ(%)−2k|2 dx+

∫
{x∈Ω:%>1}

|∇%γ/2| dx,

where ξ is smooth and such that ξ(y) = y for y ≤ 1/2 and ξ(y) = 0 for y > 1. So, by the entropy
equality (3.93) we obtain additionally that

∇ξ(%)−2k ∈ L2((0, T )× Ω), ∇%γ/2 ∈ L2((0, T )× Ω2),

where Ω2 = {x ∈ Ω : % > 1}. Moreover, via the Sobolev imbedding theorem we show that

1

c2
‖%

γ
2 ‖2L2(0,T ;L6(Ω2)) ≤ ‖%

γ
2 ‖2L2(0,T ;H1(Ω2)) ≤ ‖∇%

γ
2 ‖2L2(0,T ;L2(Ω2)) + ‖%‖γL∞(0,T ;Lγ(Ω2))

where c is the constant from the Sobolev inequality.
Furthermore, by a simple interpolation one gets

‖%γεη‖L 5
3 ((0,T )×Ω)

≤ ‖%γεη‖
2
5

L∞(0,T ;L1(Ω))
‖%γεη‖

3
5

L1(0,T ;L3(Ω))
≤ c.

3.5.2 Passage to the limit ε, η → 0

It turns out that the limit passages with ε and η can be done in one step. Indeed, by the previous
estimates we can extract subsequences, such that

η∆uεη, ε∇%εη → 0 strongly in L2((0, T )× Ω),

and assuming suitable relation between ε and η also

ε∇%εη∇uεη → 0 strongly in L1((0, T )× Ω).
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After remarks from the previous section, the only questionable limit passage at this level is due
to the convective term of momentum equation, since we need to justify the strong convergence
of the velocity. The argument for this is that the lower bound on the density depends only on δ
and is uniform with respect to ε, η. Therefore we have boundedness of ∇uεη in L2((0, T ) × Ω).
To improve the time regularity observe that from the approximate continuity equation we can
bound the norm of ∂t(%εηuεη) in Lp(0, T ;H−k(Ω)) for some k = k(s) > 0 and p > 1. Then, using
the Aubin-Lions lemma we get that %εηuεη → mδ when ε, η → 0, strongly in L2((0, T ) × Ω),
which, due to the convergence of %εη to % and of %−1

epη to %−1 almost everywhere, implies the
strong convergence of uεη to u in L2(0, T ;Lq(Ω)), q < 6.

3.5.3 Passage to the limit δ → 0

Here we lose the uniform bound from below for the density, so the strong convergence of velocity
can not be deduced by the procedure described above. Nevertheless, we can still use the Hölder
inequality to verify

‖∇u‖Lp(0,T ;Lq(Ω)) ≤ c(Ω)
(

1 + ‖∇ξ(%)−2k‖L2((0,T )×Ω)

)
‖√%∇u‖L2((0,T )×Ω),

where 1
p = 1

2 + 1
2·2k·2 ,

1
q = 1

2 + 1
6·2k·2 . After applying the Sobolev imbedding we thus obtain

u ∈ Lp(0, T ;Lq
∗
(Ω)), p =

8k

4k + 1
, q∗ =

24k

4k + 1
, k > 1. (3.97)

This in turn implies that for 0 ≤ ε ≤ 1/2 we have the following estimate

‖√%u‖Lp′ (0,T ;Lq′ (Ω)) ≤ ‖%‖
1/2−ε
L∞(0,T ;Lγ(Ω))‖

√
%u‖2εL∞(0,T ;L2(Ω))‖u‖

1−2ε
Lp(0,T ;Lq∗ (Ω))

,

where p′, q′ are given by 1
p′ = 1−2ε

p , 1
q′ = 1/2−ε

γ + 2ε
2 + 1−2ε

q∗ . Taking ε > 1/10 we have p′, q′ > 2
and the argument for strong convergence of √%δuδ from previous section applies verbatim.

Remark 3.18. The final information about the velocity obtained from this procedure is (3.97).
Note that it could be improved by assuming faster growth of the barotropic pressure in the areas of
small densities than −%−4k. However, this still would not be sufficient to repeat the logharithmic
estimate performed in the section dedicated to sequential stability of weak solutions.

The result achieved in this section can be stated as follows.

Theorem 3.19. Let Ω be a periodic box T3. Let us assume that the viscosity coefficients µ(%) = %,
ν(%) = 0 and the structural properties (3.3-3.9), (3.43) be satisfied. The initial data %0,u0, %0

A

satisfy (3.13) together with the following bounds∫
Ω

(
1

2

∣∣(%u)0
∣∣2

%0
+ %0ec

(
%0
))

dx <∞,
∫

Ω

∣∣∇%0
∣∣2

%0
dx <∞.

Then there exists a global in time weak solution to (3.2) in the sense of Definition 3.2.
Moreover, the following regularity properties hold:

% ∈ L∞(0, T ;L1 ∩ Lγ(Ω)),
√
% ∈ L∞(0, T ;H1(Ω)), % > 0 a.e. on (0, T )× Ω,

√
%u ∈ L∞(0, T ;L2(Ω)),

√
%∇u ∈ L2(0, T ;L2(Ω)), u ∈ Lp(0, T ;Lq

∗
(Ω)),

√
%∇YA ∈ L2(0, T ;L2(Ω)), 0 ≤ YA ≤ 1 a.e. on (0, T )× Ω,

where p, q∗ are given by (3.97).



Chapter 4

Reaction-diffusion equations for n
species

In the following chapter we investigate only the reaction-diffusion equations of species

∂t%k + div(%ku) + div(Fk) = %ωk, k = 1, ...n, (4.1)

keeping the thermodynamical framework originating from the general theory of mixtures. Our
main motivation is to show a possible extension of the procedure from Section 3.3 to treat more
complex system describing the motion of n-component chemically reacting mixture, where all
the reactions might be reversible.

4.1 Introduction

The basic property of system (4.1) is that the sum of equations gives the time evolution of the
total mass of the mixture, the so called continuity equation

∂t%+ div(%u) = 0 (4.2)

which is hyperbolic. So, the mathematical description of the flow of n-component mixture leads
to a degenerate parabolic equations with hyperbolic deviation.

The main obstacle to apply the classical approach [2,23,57] for systems of parabolic equations,
is the structure of diffusion fluxes. They form an elliptic operator, however not diagonal, even
not symmetric. Thus any direct technique of renormalization of the system is not admissible as
it is the case for the scalar system [88]. The only possibility is to employ the information con-
cerning the entropy production (1.14); then we deal with the symmetric matrix Dkl (1.21) which
is positive definite over a subspace of co-dimension 1. It follows that the whole mathematical
analysis should be done in terms of log pk instead of %k. This approach is effective, since it guar-
antees immediately that the densities of gas components will be nonnegative. Using a suitable
approximation we are allowed to obtain existence through the Galerkin approximation, and then
passing to subsequent limits we find the solution of the original problem. The compactness of
the approximate sequence is guaranteed due to uniform L logL bounds and an extra information
about the whole density %. The last fact allows to control the regularity of space derivatives of
solutions.

We discuss our model in terms of velocity, which in our case is given and is relatively smooth,
particularly we are guaranteed that the continuity equation admits unique solutions. The last
feature requires that divu ∈ L2(0, T ;L∞(Ω)). On the other hand, the density is assumed to be
regular; e.g. the final information derived from Section 3.4 would be enough.

71
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Recall that for the Navier-Stokes-type of compressible fluids models, the thermodynamical
concept of entropy is of great importance [36, 64, 72, 84] as it provides majority of all available
estimates. Following this path, one may expect the same for the multicomponent flows, still sub-
ject to a similar type of conservation laws [5,38]. Regrettably it turns out that the approximation
of the diffusion flux by the Fick law and the presence of the species concentrations in the state
equation leads to difficulties in determining the sign of production of entropy associated with
the diffusive process. Roughly speaking, one should be able to deduce directly from the form of
Fk that the part of entropy production (1.14) associated with species diffusion is nonnegative.
In particular, the following condition must be fulfilled

−
∫

Ω

n∑
k=1

Fk
mk
· ∇ log pk dx ≥ 0. (4.3)

In consequence, to be physically consistent, one has to deal with a more complicated form of
diffusion (1.18) leading to degeneration in system (4.1).

The systems of parabolic PDEs with strong cross-diffusion are also present in the population
or the chemotaxis models [19, 43], for which the existence of certain Lyapunov functional often
allows to introduce the entropy variables. Rewriting the system in terms of these variables usually
leads to a symmetric and positive diffusion matrix, which may also help in proving nonnegativity
or even L∞ bounds. An overview of these methods can be found in [16].

To finish the introductory part, let us mention three possible interpretation of our result.

• If system (4.1) is a part of the large model, where %, %k, u are determined each other like
in the previous chapter, then our result can be viewed as an auxiliary tool giving hints how
to proceed with the full system.

• For the simplest case u ≡ 0 the density % is a given fixed function and the model takes into
account just diffusion, neglecting the effects of transport. A relevant local-in-time existence
result for such model has been obtained by Bothe [9].

• If the velocity field is given, the chemical reactions have no influence on the speed of
particles, they do not produce any internal force (pressure like force). Such model is
admissible for “cold” reactions, where we do not observe any rapid changes of energy.

4.2 Notation and Main Result.

We assume that Ω is a periodic box in R3, Ω = T3 and we supplement system

∂t%k + div(%ku) + div(Fk) = %ωk, k = 1, ...n, (4.4)

with the initial conditions

%k(0, ·) = %0
k(·), %0

k ≥ 0,
n∑
k=1

∫
Ω
%0
k dx =

∫
Ω
%0 dx = M0. (4.5)

Remark 4.1. From the point of view of present chapter, there are no obstacles to assume the
Neumann boundary conditions Fk · n|∂Ω = 0 together with the impermeability of boundary ∂Ω,
meaning u · n|∂Ω = 0. However, the higher regularity of the density that we assume here, has
been so far proven only for the periodic domains [113], so we stick to this restriction.
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We now detail our assumptions on the diffusion flux Fk and the species production terms ωk,
k = 1, . . . , n.

General conditions on Fk
In case of isothermal chemical reactions and lack of external forces, the diffusion fluxes can be
written in the following form

Fk = −C0

n∑
l=1

Ckldl, k = 1, ...n, (4.6)

where C0, Ckl are multicomponent flux diffusion coefficients satisfying (1.20) and dk = (d1
k, d

2
k, d

3
k)

is the species k diffusion force

dik = ∇xi
(pk
π

)
+

(
pk
π
− %k

%

)
∇xi log π. (4.7)

In the above formula π = πm denotes the internal pressure which now consist only of the
molecular part

π(%1, . . . , %n) =
n∑
k=1

pk(%k) =
n∑
k=1

%k
mk

.

Since the chemical reactions considered in this chapter may be completely reversible, the sym-
metric role is given to all of the species. Therefore, to fix the idea, we shall concentrate on the
following explicit form of C

C =


Z1 −Y1 . . . −Y1

−Y2 Z2 . . . −Y2
...

...
. . .

...
−Yn −Yn . . . Zn

 , (4.8)

where Zk =
∑n

i=1
i6=k

Yi. For the sake of simplicity, we assume that C0 = π.

Remark 4.2. Note that the matrix C is singular since CY = 0 and is not symmetric in general.

Remark 4.3. It is easy to check that by the expressions for the diffusion forces (4.7) and the
properties of C one can rewrite (4.6) into the following form

Fk = − (∇pk − Yk∇π) = −
n∑
l=1

Ckl∇pl. (4.9)

Species production rates
For the isothermal reactions, the species production rates are functions of the species mass
fractions only. We will additionally assume that they are Lipschitz continuous with respect to
%1, . . . , %n and that there exist positive constants ω and ω such that

−ω ≤ ωk(%1, . . . , %n) ≤ ω, for all 0 ≤ Yk ≤ 1, k = 1, . . . , n; (4.10)

moreover, we suppose that

ωk(Y1, . . . , Yn) ≥ 0 whenever Yk = 0. (4.11)
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We also anticipate the mass constraint between the chemical source terms

n∑
k=1

ωk = 0. (4.12)

Another restriction that we postulate for chemical sources is dictated by the second law of
thermodynamics, which asserts that the entropy production associated with any adimissible
chemical reaction is nonnegative. In particular, ωk must enjoy condition (1.24). For fixed positive
ϑ and equal constant-pressure specific heats for all the species, this condition may be translated
into the following one ∫

Ω

n∑
k=1

log pkωk%

mk
dx ≤ c, (4.13)

which allows us to control the source term in the main estimate (4.26). Here and subsequently
c denotes a constant that may differ throughout the paper and, if it is not marked otherwise,
depends only on the data.

Remark 4.4. From (4.6) and (1.20) it follows that F = (F1, . . . ,Fn)T ∈ R(C) = U⊥, therefore,
taking the scalar product between F and U it can be deduced that

n∑
k=1

Fk = 0, (4.14)

which together with (4.12) leads to the continuity equation for %

∂t%+ div(%u) = 0, %0 =
n∑
k=1

%0
k. (4.15)

In particular, the total mass of the mixture is conserved∫
Ω
%(t) dx = M0, for a.a. t ∈ (0, T ).

Main result
The main result of this paper is the following.

Theorem 4.5. Let % be a sufficiently smooth solution of (4.15) such that % is bounded in
L2(0, T ;W 1,2(Ω)). Moreover, let 0 < infΩ %

0 ≤ supΩ %
0 < ∞. Let u ∈ L∞((0, T ) × Ω) be fixed

such that divu ∈ L2((0, T );L∞(Ω)). Assuming (4.10–4.8) problem (4.4-4.5) admits a global in
time weak solution, such that

%k ≥ 0 a.e. in (0, T )× Ω,
n∑
k=1

∫
Ω
%k(t) dx = M0.

Furthermore, the following regularity properties hold:

%k ∈ C([0, T ];L logLweak∗(Ω)) and ∇√%k ∈ L2((0, T )× Ω), k = 1, . . . , n.

Remark 4.6. To maintain consistency with the existence results from the previous chapter one
should rather work with √% instead of %, since it is only possible to show integrability of ∇√%.
Note that we actually need that √% ∈ L2(0, T ;W 1,2(Ω)) but due to assumptions on u and %0 it
is equivalent with the assumption in the theorem.
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Remark 4.7. Note that assuming u much more regular, we would be able to recover the regularity
of the density % required in Theorem 4.5. Note, however, that in practical applications, except
for very special situations, such a regularity is not possible to obtain.

The rest of this chapter is devoted to the proof of this theorem. The strategy is to add the
standard regularization terms and then to employ the Galerkin method for the system rewritten
in terms of so-called entropy variables.

4.3 Existence of solutions

4.3.1 Galerkin approximation

Our aim is to construct the weak solution to the semi-linear parabolic problem

(δ + erk)∂trk + div(erku)− div ((δ + εerk)∇rk) + divFk
mk

= %ωk
mk

,

rk(0, x) = r0
k,

(4.16)

for every k = 1, . . . , n, (t, x) ∈ [0, T ]×Ω, and for any given, smooth (as in Theorem 4.5) vector u.
To this purpose we will employ the Galerkin technique. We denote by N the (finite) dimension
of the approximation. The aim (achieved in the next section) will be to pass with N →∞. More
precisely, we assume that rk,N has the following structure

rk,N =
N∑
i=1

aik,N (t)hi(x), (4.17)

where the functions {hi}i∈N form an orthogonal basis of the Hilbert space W 1,2(Ω), they are
smooth and orthonormal with respect to the scalar product (·, ·) in L2(Ω). We look for the
coefficients aik,N (t), t ∈ [0, T ], k = 1, . . . , n, i = 1, . . . , N such that

aik,N (0) = (r0
k, hi) (4.18)

and the following equality is satisfied∫
Ω
∂t(δrk,N + erk,N )hl dx

= −
∫

Ω
div

(
erk,Nu− (δ + εerk,N )∇rk,N +

Fk,N
mk

)
hl dx+

∫
Ω

%Nωk
mk

hl dx, (4.19)

for any l = 1, . . . , N . Here,

%N =

N∑
k=1

mkerk,N (4.20)

and Fk,N is given in (4.23) below. We have

Theorem 4.8. For any N ∈ N there exist uniquely determined functions r1,N , . . . , rn,N of the
form (4.17) satisfying (4.18) and (4.19). Moreover, there exists a constant c depending only on
T and the initial data, such that
√
δ‖rk,N‖L∞(0,T ;L2(Ω)) + ‖erk,N rk,N‖L∞(0,T ;L1(Ω)) +

√
δ‖∇rk,N‖L2((0,T )×Ω)

+
√
ε‖∇
√
erk,N ‖L2((0,T )×Ω) +

n∑
k=1

∥∥∥∥ Fk,N√
mkerk,N

∥∥∥∥
L2((0,T )×Ω)

≤ c.
(4.21)
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Proof. This task is equivalent with solving the set ofN ODEs corresponding to each of n equations
of the system (4.19)

δȧlk,N (t) +

N∑
i=1

ȧik,N (erk,Nhi, hl) = −Xk,N (rk,N , hl) +

(
%Nωk
mk

, hl

)
, (4.22)

with the initial conditions given by (4.18). In the above formula %N is given by (4.20), ȧ(t) is
time derivative of a(t), and

Xk,N (rk,N , hl) =

∫
Ω

div

(
erk,Nu− (δ + εerk,N )∇rk,N +

Fk,N
mk

)
hl dx,

Fk,N = −(∇erk,N − Yk,N
n∑
j=1

erj,N∇rj,N ) = −
n∑
j=1

Ckj,Nerj,N∇rj,N . (4.23)

The matrix CN is given by

CN =


Z1,N −Y1,N . . . −Y1,N

−Y2,N Z2,N . . . −Y2,N
...

...
. . .

...
−Yn,N −Yn,N . . . Zn,N

 ,

where Yj,N =
mjerj,N
%N

, and Zk,N =
∑n

i=1
i6=k

Yi,N .
Observe that since the matrix Xk,N involves all n functions rk,N , we should solve the system

of N · n ODEs simultaneously. To this purpose, we rewrite system (4.22) using the vector
Ak,N (t) = (a1

k,N (t), . . . , aNk,N (t))T into the following form

(δI + Bk,N (t)) Ȧk,N (t) = −Xk,N (rk,N , h
N ) +

(
%Nωk
mk

, hN
)
, k = 1, . . . , n, (4.24)

where I is the identity matrix, (Bk,N )ij =
∫

Ω erk,Nhihj dx,

Xk,N (rk,N , h
N ) = (Xk,N (rk,N , h1), . . . ,Xk,N (rk,N , hN ))T

and (%Nωkmk
, hN ) = ((%Nωkmk

, h1), . . ., (%Nωkmk
, hN ))T .

It is easy to see that the matrix δI + Bk,N (t) is invertible for any δ > 0; indeed erk,N is a
nonnegative function, thus the time-dependent bilinear form

Bk,N [hi, hj ; t] = (Bk,N )ij =

∫
Ω
erk,Nhihj dx

is symmetric and positive-semidefinite. Next, using the following property of the block diagonal
matrixes 

A1,N 0 . . . 0
0 A2,N . . . 0
...

...
. . .

...
0 0 . . . An,N


−1

=


A−1

1,N 0 . . . 0

0 A−1
2,N . . . 0

...
...

. . .
...

0 0 . . . A−1
n,N

 ,

we invert the (n ·N)× (n ·N) matrix that stands in front of the time derivative of system (4.24)
and therefore, problem (4.22) can be replaced by the following one

Ȧk,N (t) = − (δI + Bk,N (t))−1 Xk,N (rk,N , h
N ) + (δI + B(t))−1

(
%Nωk
mk

, hN
)
. (4.25)
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Before we apply the classical result on solvability of the ODE system we check whether the right
hand side of (4.25) is Lipschitz with respect to ak,l(t) for all k = 1, . . . , n, l = 1, . . . , N . This
is true on account of the fact that a finite composition of the polynomials and the exponent
functions is a Lipschitz function, at least locally with respect to time. Therefore, for sufficiently
short time interval [0, τ) there exists uniformly continuous (with respect to time) solution to
problem (4.22).

In order to obtain the global in time solution any a priori estimate on rk,N is needed, because
on a finite dimensional space all norms are equivalent. To this end we use in (4.19) the test
function rk,N (we multiply each of the equations by alk,N (t) first, and then we sum them with
respect to l = 1, . . . , N). Integrating by parts we obtain the following equality

n∑
k=1

d

dt

∫
Ω

(
δ
r2
k,N

2
+ erk,N rk,N − erk,N

)
dx+

n∑
k=1

∫
Ω

(
(δ + εerk,N )|∇rk,N |2 −

Fk,N
mk
∇rk,N

)
dx

= −
n∑
k=1

∫
Ω
erk,N divu dx+

n∑
k=1

∫
Ω

%Nωk
mk

rk,N dx. (4.26)

The only problematic term on the left hand side is the last one. However, since
∑n

k=1 Fk,N = 0
– see (4.14) – we write

n∑
k=1

 Fk,N
mkerk,N

Yk,N

n∑
j=1

erj,N∇rj,N

 = 0

and therefore the last term on the left hand side of (4.26) may be written as follows

−
n∑
k=1

Fk,N
mk
∇rk,N = −

n∑
k=1

Fk,N
mkerk,N

∇erk,N

= −
n∑
k=1

Fk,N
mkerk,N

∇erk,N − Yk,N n∑
j=1

erj,N∇rj,N


=

n∑
k=1

F2
k,N

mkerk,N
≥ 0.

(4.27)

Thus, to get the estimates one only needs to control the right hand side of (4.26). Substituting
in (4.13) pk = erk,N and % = %N we deduce that the last term on the right hand side of (4.26) is
bounded

n∑
k=1

∫
Ω

%Nωk
mk

rk,N dx ≤ c.

For the remaining one we have

n∑
k=1

∫
Ω
|erk,N divu| dx ≤ ‖divu‖∞

n∑
k=1

∫
Ω
erk,N dx.
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We are now at the position to deduce that (4.26) implies

n∑
k=1

d

dt

(
‖δr2

k,N + erk,N rk,N − erk,N ‖L1(Ω)

)
+

n∑
k=1

(
δ‖∇rk,N‖2L2(Ω) + ε‖∇

√
erk,N ‖2L2(Ω) +

∥∥∥∥ Fk,N√
mkerk,N

∥∥∥∥2

L2(Ω)

)

≤ c
n∑
k=1

(1 + ‖ divu‖L∞(Ω)‖erk,N ‖L1(Ω)).

(4.28)

Because the term r2
k,N is nonnegative and erk,N rk,N is bounded from below, divu ∈ L2(0, T ;L∞(Ω)),

we get using the Gronwall argument estimate (4.21). As was already announced, this estimate
allows us to repeat the procedure described before in order to extend the solution to the whole
time interval [0, T ]. �

Although the above construction corresponds only to particular projection of the original
problem it is clear that the final estimate is completely independent of N . This is the key
argument in the limit passage; derivation of the other uniform estimates is a purpose of the next
subsection.

4.3.2 Passage to the limit N →∞.

Our next goal is to derive bounds uniform with respect toN for fixed δ, ε > 0 and u as in Theorem
4.5. We have already mentioned that estimate (4.21) obtained in the previous subsection does
not depend on the dimension of Galerkin approximations. In particular, we have that

|∇erk,N | ≤ 2|∇
√
erk,N |

√
erk,N (4.29)

is bounded in L2(0, T ;L1(Ω)), thus, by the Sobolev imbedding, erk,N is bounded in L2(0, T ;L
3
2 (Ω)).

Returning to (4.29) we get
‖∇erk,N ‖

L
4
3 (0,T ;L

6
5 (Ω))

≤ c; (4.30)

using once more the Sobolev imbedding theorem and the bound in L∞(0, T ;L1(Ω)) we end up
with

‖erk,N ‖
L

5
3 ((0,T )×Ω)

≤ c(ε). (4.31)

Having this, we can return to (4.29) to deduce

‖∇erk,N ‖
L

5
4 ((0,T )×Ω)

≤ c(ε). (4.32)

Apart from that, the limit passage requires also some further estimates providing compactness
with respect to time.

Lemma 4.9. There exists a constant c depending on the initial data, T , and the parameter ε
such that

δ‖∂trk,N‖
L

5
4 (0,T ;W−1, 54 (Ω))

≤ c. (4.33)

Proof. We take any φ ∈ W 1,5(Ω) ⊂ W 1,2(Ω) such that ‖φ‖W 1,5(Ω) ≤ 1 and decompose it into
φ = φ1+φ2, where φ1 is an orthogonal projection of φ (with respect to the scalar product induced
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by the norm of the space L2(Ω)) onto the subspace spanned by the vectors {h1, . . . , hN}. Using
φ1 as a test function in (4.19) we show that∫

Ω
∂t(δrk,N + erk,N )φ1 dx

=

∫
Ω

(
erk,Nu− (δ + εerk,N )∇rk,N +

Fk,N
mk

)
· ∇φ1 dx+

∫
Ω

%Nωk
mk

φ1 dx

≤
n∑
k=1

(
‖u‖L∞(Ω)‖erk,N ‖L 5

4 (Ω)
+ δ‖∇rk,N‖

L
5
4 (Ω)

+ ε‖∇erk,N ‖
L

5
4 (Ω)

)
‖φ1‖W 1,5(Ω)

+ c
n∑
k=1

(∥∥∥∥ Fk,N√
mkerk,N

∥∥∥∥
L2(Ω)

‖
√
erk,N ‖

L
10
3 (Ω)

+ ‖erk,N ‖
L

5
4 (Ω)

)
‖φ1‖W 1,5(Ω).

(4.34)

Then we have

‖∂trk,N (t, ·)‖
W−1, 54 (Ω)

= sup
φ∈W 1,5(Ω);‖φ‖≤1

∣∣∣ ∫
Ω
∂trk,N (t, ·)φ dx

∣∣∣
= sup

φ∈W 1,5(Ω);‖φ‖≤1

∣∣∣ ∫
Ω
∂trk,N (t, ·)φ1dx

∣∣∣ =

∫
Ω

∣∣∂trk,N (t, ·)ϕ1

∣∣dx
for some ϕ1 ∈W 1,5

0 (Ω) ∩ Lin{h1, . . . , hN}. Hence

‖∂trk,N (t, ·)‖
W−1, 54 (Ω)

≤ sup
φ∈W 1,5(Ω)∩Lin{h1...hN};‖φ‖≤1

1

δ

∣∣∣ ∫
Ω

(δ + erk,N (t,·))∂trk,N (t, ·)φ dx
∣∣∣ (4.35)

and due to estimate (4.34) we end up with ‖∂trk,N‖
L

5
4 (0,T ;W−1, 54 (Ω))

≤ c(ε)
δ . �

Our goal in the remaining part of this subsection is to examine the limit for N → ∞. The
above lemma allows us to apply the Aubin-Lions lemma in order to extract the subsequences
which satisfy (4.16) in the limit. Indeed, for the sequence rk,N we deduce from (4.21) that it is
possible to extract a subsequence such that

rk,N → rk weakly∗ in L∞(0, T ;L2(Ω)),
∇rk,N → ∇rk weakly in L2((0, T )× Ω),

∂trk,N → ∂trk weakly in L
5
4 (0, T ;W−1, 5

4 (Ω)),
rk,N → rk strongly in L2(0, T ;Lp(Ω)), p < 6;

(4.36)

in particular, there exists a subsequence rk,N which converges to rk a.e. on (0, T ) × Ω. This,
together with (4.33) and the boundedness of space gradient of erk,N implies

∇erk,N → ∇erk weakly in L2(0, T ;L1(Ω)) ∩ L
5
4 ((0, T )× Ω),

erk,N → erk strongly in Lq((0, T )× Ω), q < 5
3 ,

(4.37)

at least for a chosen subsequence.
Next we recall basics facts from the theory of Orlicz spaces. For more details as well as proofs
of results below see e.g. [55], Chapter 3 or [1], Chapter 8.
For the following pair of complementary Young functions

Φ(t) = et − 1; Ψ =

{
0 for 0 ≤ t < 1,
t(log t− 1) + 1 for t ≥ 1,
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we consider the Orlicz spaces LΦ(Ω), LΨ(Ω) := L logL(Ω) and the space EΦ(Ω), which is the
closure of bounded measurable functions on Ω in LΦ(Ω). In particular, EΦ(Ω) is separable and
(EΦ(Ω))∗ = LΨ(Ω). Therefore, we can extract a subsequence such that

erk,N → erk weakly∗ in L∞(0, T ;L logL(Ω)),

where by weak∗ convergence we mean that 〈erk,N , φ〉 → 〈erk , φ〉 for each φ ∈ L1(0, T ;EΦ(Ω)).
Moreover, by (4.21) we deduce that for all η ∈ D(Ω) the functions t →

∫
Ω rk,N (t)η dx form a

bounded equicontinuous sequence in C[0, T ]. Hence, the weak∗ convergence of rk,N , erk,N may
be improved, using the Arzelá-Ascoli theorem and the density of D(Ω) in Lp for p ∈ [1,∞) and
in EΦ(Ω), to the following

rk,N → rk in C([0, T ];L2
weak(Ω)),

erk,N → erk in C([0, T ];L logLweak∗(Ω)),
(4.38)

which gives sense to the initial conditions for rk and erk .
Finally, as erk,N > 0 on [0, T ] × Ω, mje

rj,N

%N
is bounded in L∞((0, T ) × Ω) and so, the pointwise

convergence of erk,N for any k = 1, . . . , n implies that

mjerj,N

%N
→ mjerj∑n

k=1mkerk
strongly in Lp((0, T )× Ω), p <∞.

Therefore we get also the convergence of Fk,N . Summarizing, the result achieved in this section
can be stated as follows.

Lemma 4.10. Let the assumptions of Theorem 4.5 be fulfilled and let %k,N , k = 1, . . . , n be the
unique solution to the approximate problem (4.19) constructed in Theorem 4.8. Then there exists
a subsequence Nl → +∞ such that the limit functions rk = limNl→∞ rk,Nl satisfy system (4.16)
in the sense of distributions.

4.3.3 Estimates independent of δ, passage to the limit δ → 0.

In what follows, we will denote by rk,δ, k = 1, . . . , n, the solution to the approximate problem
(4.16), constructed in the previous subsection. The next step of the proof is to let δ → 0+ in order
to eliminate the artificial time derivative as well as the δ-dependent parabolic regularization in
(4.16). To this aim, we first need to derive some uniform bounds sufficient to deduce compactness
of the nonlinear terms, which is the subject of the present subsection. We start by proving the
energy inequality.

Lemma 4.11. Let δ, ε > 0, then the solution to (4.16) enjoys the following estimate

sup
t∈(0,T )

n∑
k=1

‖
(
δr2
k,δ + erk,δrk,δ

)
(t)‖L1(Ω)

+

n∑
k=1

{∫ T

0
δ‖∇rk,δ‖L2(Ω) + ε‖∇

√
erk,δ‖2L2(Ω) +

∥∥∥∥ Fk,δ√
mkerk,δ

∥∥∥∥2

L2(Ω)

dt

}
≤ c, (4.39)

for a constant c that depends only on the initial data and T .

Proof. Due to the pointwise convergence of rk,N and erk,N , see (4.36),(4.37), we have∫
Ω

(
δ
r2
k,N

2
+ erk,N rk,N − erk,N

)
dx→

∫
Ω

(
δ
r2
k,δ

2
+ erk,δrk,δ − erk,δ

)
dx
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in the sense of distributions on (0, T ). Moreover, we know that ∇rk,N converges to ∇rk,δ weakly
in L2((0, T )× Ω), thus, due to lower semicontinuity of convex functions we have∫ T

0

∫
Ω
|∇rk|2 dx dt ≤ lim inf

N→∞

∫ T

0

∫
Ω
|∇rk,N |2 dx dt.

The same argument can be also applied for the nonlinear terms ∇
√
erk,N and Fk,N√

mkerk,N
. �

Having obtained the uniform estimates, we can return to our original problem. We define
the solution to (4.4) in the following way

%k,δ := mkerk,δ , k = 1, . . . , n.

Hence, (4.39) gives rise to the following estimate

ess sup
t∈(0,T )

∫
Ω

(log pk,δ(t))
2 dx+

∫ T

0

∫
Ω
|∇ log pk,δ|2 dx dt ≤ c(δ),

which is equivalent to positivity of partial densities

%k,δ > 0 a.e. in (0, T )× Ω, k = 1, . . . , n.

We may now repeat arguments leading to (4.33). More precisely, as we can now test by any
function from the space L5(0, T ;W 1,5(Ω)), due to a similar argument as in (4.34) and (4.35)
we control ∂trk,δ and ∂t(δrkδ + erk,δ); thus we also control its difference. Hence, uniformly with
respect to δ we have

δ‖∂t log pk,δ‖
L

5
4 (0,T ;W−1, 54 (Ω))

+ ‖∂tpk,δ‖
L

5
4 (0,T ;W−1, 54 (Ω))

≤ c. (4.40)

From (4.39) it follows also that the sequence √pk,δ is uniformly bounded in L2(0, T ;W 1,2(Ω)).
Therefore, using again the Aubin-Lions lemma, we show that %k,δ = pk,δmk converges to %k for
δ → 0 pointwisely on (0, T )×Ω. This together with the uniform estimates from (4.39) allows us
to deduce the following convergences when δ → 0:

δ log
%k,δ
mk
→ 0 strongly in L∞(0, T ;L2(Ω)),

δ∇ log
%k,δ
mk
→ 0 strongly in L2((0, T )× Ω),

%k,δ → %k strongly in Lq((0, T )× Ω), q < 5
3 ,

∇%k,δ → ∇%k weakly in L2(0, T ;L logLweak∗(Ω)) ∩ L
5
4 ((0, T )× Ω),

%k,δ → %k in C([0, T ];L logLweak∗(Ω)).

(4.41)

Moreover
%j,δ∑n
k=1 %k,δ

→ %j∑n
k=1 %k

strongly in Lp((0, T )× Ω), p <∞,
%k ≥ 0 a.e. in (0, T )× Ω, k = 1, . . . , n,

(4.42)

and due to a similar argument as in the previous section we obtain that

Fk,δ → Fk weakly in Lp((0, T )× (Ω)),

for some p > 1, where Fk depends on the limit functions %1, . . . , %n as specified in (4.6).

This is the last argument in favor to let δ → 0 in the approximate system (4.16), we have
thus proved the following result.
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Lemma 4.12. The limit quantities %k, k = 1, . . . , n satisfy

∂t%k + div(%ku)− ε∆%k + div(Fk) = %ωk, k = 1, ...n, (4.43)

in the sense of distributions on (0, T )× Ω.

In addition, denoting % =
∑n

k=1 %k, and summing (4.43) with respect to k = 1, . . . , n, the
properties (4.12), (4.14) lead to the following equation

∂t%+ div(%u)− ε∆% = 0. (4.44)

This equation is, due to the previous lemma, satisfied in the same sense as system (4.43), together
with the initial condition %(0, x) = %0 =

∑n
k=1 %

0
k(x) for a.a. x ∈ Ω.

On the other hand, provided u and the initial data are sufficiently smooth (as in Theorem 4.5 is
enough), we can identify % with %ε – the unique classical and positive solution to the initial-value
problem

∂t%ε + div(%εu)− ε∆%ε = 0, %ε(0, x) = %0,

constructed by means of the usual Galerkin approach within the standard L2 theory, the boot-
strap argument and the maximal Lp − Lq regularity applied to the problem (cf. [85], Sections
7.6.3-7.6.7)

∂t%ε − ε∆%ε = f := −div(%εu), %ε(0, x) = %0. (4.45)

In particular, we know that any solution of (4.43) satisfies

n∑
k=1

%k = %ε a.e. in (0, T )× Ω.

4.3.4 Estimates independent of ε

This part of the proof is dedicated to derivation of estimates independent of ε and to the last
limit passage ε→ 0. The departure point is an analogue of (4.39)

sup
t∈(0,T )

n∑
k=1

‖pk,ε log pk,ε(t)‖L1(Ω) +
n∑
k=1

{
ε

∫
Ω
‖∇√pk,ε‖2L2(Ω) dx+

∫ T

0

∥∥∥∥ Fk,ε√
%k,ε

∥∥∥∥2

L2(Ω)

dt

}
≤ c,

(4.46)
where the constant c does not depend on ε, and the fact that Yk,ε =

%k,ε
%ε
, k = 1, . . . , n satisfy

0 ≤ Yk,ε ≤ 1,

n∑
k=1

Yk,ε = 1.

As we see, it is not so clear whether we have any additional space regularity of solutions. Indeed,
to repeat the arguments from the previous limit passage, one needs to show that the quantities
∇√%k,ε, k = 1, . . . , n are controllable independently of ε. To this end, we investigate more
carefully the last term in (4.46). We have the following result.

Lemma 4.13. Let assumptions of Theorem 4.5 be fulfilled and let estimate (4.46) be valid. Then,
for any k = 1, . . . , n the solution to the approximate problem (4.43) satisfies

‖∇√%k,ε‖L2((0,T )×Ω) ≤ c, (4.47)

where the constant c does not depend on ε.
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Proof. Using (4.9) we deduce from (4.46) that

n∑
k=1

∫ T

0

∫
Ω

F2
k,ε

%k,ε
dx dt =

n∑
k=1

∫ T

0

∫
Ω

(πεdk,ε)
2

%k,ε
dx dt ≤ c. (4.48)

To exploit this estimate we first recall the following property of the species diffusion forces

πdiε = π


di1,ε
di2,ε
...

din,ε

 =


Z1,ε −Y1,ε . . . −Y1,ε

−Y2,ε Z2,ε . . . −Y2,ε
...

...
. . .

...
−Yn,ε −Yn,ε . . . Zn,ε

 ·

∇xip1,ε

∇xip2,ε
...

∇xipn,ε

 = Cε∇xipε, (4.49)

where pε denotes the n dimensional vector (p1,ε, . . . , pn,ε)
T and ∇pε = (∇p1,ε, . . . ,∇pn,ε)T .

So, inserting it to (4.48) we obtain∫ T

0

∫
Ω

n∑
k=1

(Cε∇pε)2
k

%k,ε
dx dt ≤ c. (4.50)

The matrix Cε is degenerated as the vector Yε = (Y1,ε, . . . , Yn,ε)
T belongs to its kernel, so estimate

(4.50) does not imply integrability of ∇pk,ε for all k = 1, . . . , n, at the same time. However, as
we know that

∑n
k=1 %k,ε coincides with the classical unique solution to (4.44) %ε, we can use the

assumption on higher regularity of %ε to control the full gradient of pε. Indeed, note that the
matrix Cε possesses n− 1 eigenvectors vm = (vm1 , . . . , v

m
n )t, m ∈ {1, . . . , n− 1}

vml =


−1 for l = m,

1 for l = n,
0 for l 6= m,n,

corresponding to the eigenvalue 1. Therefore, denoting

Cε(t, x)∇xipε(t, x) := (∇xipε(t, x))I , for (t, x) ∈ [0, T )× Ω,

we have, for every (k, i)-th coordinate of ∇pε(t, x), (k, i) ∈ {1, . . . , n} × {1, 2, 3}, the following
decomposition

(∇xipε(t, x))k = (∇xipε(t, x))Ik + αi(t, x)Yk,ε(t, x), (4.51)

where αi(t, x)Yk,ε(t, x) is the k-th coordinate of the projection of vector ∇xipε(t, x) ∈ Rn on the
nullspace of matrix Cε(t, x), which is spanned by the vector Yε(t, x). Next, multiplying (4.51)
by mk and summing over k ∈ {1, . . . , n} one gets

αi =
∇xi%ε∑n

k=1mkYk,ε
−
∑n

k=1mk(∇xipε)Ik∑n
k=1mkYk,ε

.

Combining this with (4.51) we can express each of the gradients of partial pressures in terms of
known quantities

∇xipε = (∇xipε)I +

(
∇xi%ε∑n

k=1mkYk,ε
−
∑n

k=1mk(∇xipε)Ik∑n
k=1mkYk,ε

)
Yε. (4.52)

Next, due to the first equality in (4.9) we can write

F2
k,ε

%k,ε
=
|∇pk,ε|2

%k,ε
− 2

Yk,ε∇pk,ε · ∇πε
%k,ε

+
Y 2
k,ε|∇πε|2

%k,ε
,
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which is bounded L1((0, T )× Ω) for every k = 1, . . . , n, on account of (4.48). Therefore, by the
Cauchy inequality, ∫ T

0

∫
Ω

|∇pk,ε|2

%k,ε
dx dt ≤ c

(
1 +

∫ T

0

∫
Ω

Y 2
k,ε|∇πε|2

%k,ε
dx dt

)
. (4.53)

Since ∇πε =
∑n

k=1(∇pε)k and
∑n

k=1(Yε)k = 1, we can use (4.52) and (4.50) to estimate the
right hand side of the above inequality. We have∫ T

0

∫
Ω

Y 2
k,ε|∇πε|2

%k,ε
dx dt =

∫ T

0

∫
Ω

Y 2
k,ε|
∑n

k=1(∇pε)k|2

%k,ε
dx dt

≤
∫ T

0

∫
Ω

Y 2
k,ε

%k,ε

(
|
n∑
k=1

(∇pε)Ik|2 +
|∇%ε|2

(
∑n

k=1mkYk,ε)
2 +
|
∑n

k=1mk(∇pε)Ik|2

(
∑n

k=1mkYk,ε)
2

)
dx dt.

(4.54)

Next, denoting mmax = max{m1, . . . ,mn} and mmin = min{m1, . . . ,mn}, the first term from
the right hand side of (4.54) can be estimated as follows

∫ T

0

∫
Ω

Y 2
k,ε

%k,ε

∣∣∣∣∣
n∑
k=1

(∇pε)Ik

∣∣∣∣∣
2

+
|
∑n

k=1mk(∇pε)Ik|2

(
∑n

k=1mkYk,ε)
2

 dx dt

≤
∫ T

0

∫
Ω

Yk,ε
%ε

(
n∑
k=1

∣∣(∇pε)Ik∣∣2 +
m2
max

∑n
k=1

∣∣(∇pε)Ik∣∣2
m2
min

)
dx dt

≤
∫ T

0

∫
Ω

Yk,ε
%ε

(
1 +

m2
max

m2
min

) n∑
k=1

%k,ε
∣∣(∇pε)Ik∣∣2
%k,ε

dx dt ≤ c
∫ T

0

∫
Ω

n∑
k=1

∣∣(∇pε)Ik∣∣2
%k,ε

dx dt,

(4.55)

which is bounded due to (4.50).
The second integral on the right hand side of (4.54) can be bounded since Yk,ε ≤ 1 for any
k = 1, . . . , n ∫ T

0

∫
Ω

Y 2
k,ε

%k,ε

|∇%ε|2

(
∑n

k=1mkYk,ε)
2 dx dt ≤ c

∫ T

0

∫
Ω

|∇%ε|2

%ε
dx dt.

Returning to (4.53), we have thus shown that∫ T

0

∫
Ω

|∇pk,ε|2

%k,ε
dx dt ≤ c

(
1 +

∫ T

0

∫
Ω

|∇%ε|2

%ε
dx dt

)
.

Using Lemma 4.14 below we control ∇%ε in L2((0, T ) × Ω) independently of ε; due to the
properties of the initial value (strict positivity) we therefore also control ∇√%ε in the same
space. The proof of the lemma is finished. �

Lemma 4.14. Under the assumptions of Theorem 4.5, there exists c independent of ε such that
for any ε ∈ (0, 1]

‖%− %ε‖L2(0,T ;W 1,2(Ω)) ≤ c,

where % is the unique solution to (4.2) and %ε is the unique solution to (4.44).

Proof. We have
∂t(%ε − %) + div(u(%ε − %))− ε∆(%ε − %) = ε∆%,



4.3. EXISTENCE OF SOLUTIONS 85

with (%ε−%)(0, x) = 0. Testing equation above by %ε−% and recalling that ‖%‖L2(0,T ;W 1,2(Ω)) <∞,
we get the result. �

This is the final argument that allows us to repeat the procedure described for the limit
passage δ → 0 in order to eliminate the last regularizing term from (4.43). The proof of Theorem
4.5 is now complete. �
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Chapter 5

The heat-conducting mixture of n
species

The aim of this chapter is to prove sequential stability of the weak variational entropy solutions to
the general system described in the introduction to this thesis. The task is hence to generalize the
result from Chapter 3, Section 3.2 to the case of heat-conducting mixture of n gaseous species. As
we have seen, the proof of sequential stability of weak solutions is a last step in the complete proof
of existence of solutions and provides the first argument in favor of construction of an approximate
scheme. The key mathematical tool here is the entropy dissipation method combined with
another energy-inequality, found for the Navier-Stokes system with density-dependent viscosity
coefficients by Bresch and Desjardins [12].

5.1 Introduction

Recall that, to describe the flow of n-component chemically reacting compressible mixture, when
no external force is present, we use the following system of equations

∂t%+ div(%u) = 0

∂t(%u) + div(%u⊗ u)− divS +∇π = 0

∂t(%E) + div(%Eu) + div(πu) + divQ− div(Su) = 0

∂t%k + div(%ku) + div(Fk) = %ϑωk, k ∈ {1, ..., n}


in (0, T )× Ω. (5.1)

Here, Ω = T3 and we supplement the above system by the constitutive relations (1.5-1.19) and
(1.23-1.24) taken over from Section 1.3.3. The only difference is the ”cold” component of the
pressure πc. Similarly to Section 3.3 we introduce particular modification in the neighborhood
of small densities. Namely, we assume that πc is a continuous function satisfying the following
growth conditions

π′c(%) =

{
c1%
−γ−−1 for % ≤ 1,

c2%
γ+−1 for % > 1,

(5.2)

for positive constants c1, c2 and γ−, γ+ > 1. It was proposed in [13] to encompass plasticity and
elasticity effects of solid materials, for which low densities may lead to negative pressures. By
this modification the compactness of velocity at the last level of approximation can be obtained
without requiring more a priori regularity than expected from the usual energy approach [69].

87
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The global-in-time existence and asymptotic stability of solutions to system (5.1), supple-
mented with physically relevant constitutive relations, was established by Giovangigli [45], Chap-
ter 9, Theorem 9.4.1. He considered, for instance, generic matrix Ckl relating the diffusion
deriving forces dk to the species diffusion fluxes

Fk = −
n∑
l=1

Ckldl + Soret effect, k = 1, ...n, (5.3)

which is singular CY = 0, Y = (Y1, . . . , Yn)T , Yk = %k
% , k = 1, . . . , n, and is not symmetric

in general. His result holds provided the initial data are sufficiently close to an equilibrium
state. Our main motivation is to focus on the case of arbitrary large data. It should be however
emphasized that many simplifications are assumed in the present model, in comparison to [45]. In
particular, we will concentrate only on the diffusion effects due to the mole fractions and pressure
gradients and restrict to particular form of matrix C satisfying properties (1.20). Following [110]
we also suppose that the matrix Dkl = Ckl

%Yk
, k, l = 1, . . . , n is symmetric and coercive on the

hyperplanes which do not contain the vector Y . This assumption is consistent with the second
law of thermodynamics which postulates non-negativity of the entropy production rate associated
with diffusive process.

Due to our knowledge, so far there is no result concerning global-in-time existence of solutions
for systems with general diffusion (5.3). Here we present the first step in this direction – the proof
that, provided the sequence of sufficiently smooth approximate solutions has been constructed, we
are able to extract a subsequence, whose limit satisfies a suitable weak formulation of (5.1). Let us
emphasize that we use the framework of weak variational solutions, that is to say the total energy
balance is replaced by the entropy inequality and the global total energy balance. These solutions
were introduced by Feireisl and Novotný to study solvability and various asymptotic limits of
the Navier-Stokes-Fourier system [36]. Within this definition weak solutions may dissipate more
kinetic energy than, if there are any, the classical ones. However, it can be verified that this
”missing energy” is equal to 0 provided the weak solution is regular enough and satisfies the total
global energy balance. Moreover, in [37] the authors proved the weak-strong uniqueness of such
solution, meaning that it coincides with the strong solution, emanating from the same initial
data, as long as the latter exists.

The issue of existence of global weak solutions to the Navier-Stokes equations for heat con-
ducting compressible fluids was also addressed in [13]. Under additional assumption on the ”cold”
component of the pressure, similar to (5.2), the authors proved sequential stability of weak solu-
tions. Unfortunately, obtainment of analogous result for the full system (5.1) seems to be much
more involved, mainly due to the strong coupling between the internal energy equation and the
degenerated equations for species. This is the main obstacle in preserving sufficient regularity of
the temperature required to perform the limit passage in the weak formulation of energy balance.

The outline of this chapter is the following. In the next section we specify the structural
properties for the transport coefficients and postulate several simplifications. In Section 5.3, we
define the notion of weak variational solutions and state the main result of the paper. The key a
priori estimates are derived in Section 5.4 together with some further estimates and positivity of
the absolute temperature. Finally, the last step of the proof of Theorem 5.5 – the limit passage
– is performed in Section 5.5.

5.2 Main hypotheses

In what follows we give a list of hypotheses and assumptions on the initial conditions and the
form of various coefficients appearing in the fluxes of system (5.1).
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Initial data

The choice of quantities describing the initial state of system (5.1) is dictated by the weak
formulation of the problem, which is specified in Definition 5.4 below. We take

%(0, ·) = %0, %u(0, ·) = (%u)0, %s(0, ·) = (%s)0,
∫

Ω %E(0, ·) dx =
∫

Ω(%E)0 dx,

%k(0, ·) = %0
k, for k = 1, . . . , n, in Ω.

(5.4)

In addition, we assume that %0 is a nonnegative measurable function such that∫
Ω
%0 dx = M0,

∫
Ω

1

%0

∣∣∇µ (%0
)∣∣2 dx <∞, (5.5)

and the initial densities of species satisfy

0 ≤ %0
k(x), k = 1, . . . , n,

n∑
k=1

%0
k(x) = %0(x), a.e. in Ω. (5.6)

Further, the initial temperature ϑ0 is a measurable function such that

ϑ0(x) > 0 a.e. in Ω, ϑ0 ∈W 1,∞(Ω)

and the following compatibility condition is satisfied

(%s)0 = %0s(ϑ0, %0
1, . . . , %

0
n), (%s)0 ∈ L1(Ω). (5.7)

Finally, we require that the initial distribution of the momentum is such that

(%u)0 = 0 a.e. on {x ∈ Ω : %0(x) = 0} and
∫

Ω

∣∣(%u)0
∣∣2

%0
dx <∞

and the global total energy at the initial time is bounded∫
Ω

(%E)0 dx =

∫
Ω

(∣∣(%u)0
∣∣2

2%0
+ %0e(%0, ϑ0, %0

1, . . . , %
0
n)

)
dx <∞. (5.8)

Transport coefficients

(i) The viscosity coefficients µ and ν in the stress tensor S (1.15) are functions of the density
only. The density dependent viscosity appears when one derives the compressible Navier-Stokes
equations using the Chapman-Enskog expansion [4]. Starting from the classical Boltzmann
equation one obtains an expression for µ which is proportional only to the square root of the
absolute temperature. If the flow is isentorpoic, this dependence may be translated into the
dependence on the density µ(%) = %(γ−1)/2, see [51], [29].

Here, as in Chapter 3, we assume that the viscosity coefficients µ = µ(%), ν = ν(%) are
C1(0,∞) functions related by

ν(%) = 2%µ′(%)− 2µ(%), (5.9)
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which is strictly a mathematical constraint allowing to obtain better regularity of %, see [10].
In addition, they enjoy the following bounds

µ′ ≤ µ′(%) ≤ 1
µ′ , µ(0) ≥ 0,

|ν ′(%)| ≤ 1
µ′µ
′(%),

µ′µ(%) ≤ 2µ(%) + 3ν(%) ≤ 1
µ′µ(%),

(5.10)

for some positive constant µ′.

Remark 5.1. The assumption µ′ ≤ µ′(%) is not optimal, but it makes the proof much eas-
ier, however the bound from above is essential in order to get integrability of several important
quantities. For further discussion on this topic we refer to [69].

(ii) The heat conductivity coefficient κ = κ(%, ϑ) from definition of the heat flux Q (1.23) is
a C1([0,∞)× [0,∞)) function which satisfies

κ0(1 + %)(1 + ϑα) ≤ κ(%, ϑ) ≤ κ0(1 + %)(1 + ϑα). (5.11)

In the above formulas κ0, κ0, α are positive constants and α ≥ 2.

(iii) As was announced in the introduction, in definition of the species diffusion fluxes Fk
(1.18), we restrict to an exact form of the flux diffusion matrix C compatible with the set of
mathematical assumptions postulated in [45]. The prototype example is the same as studied in
the previous chapter, namely

C =


Z1 −Y1 . . . −Y1

−Y2 Z2 . . . −Y2
...

...
. . .

...
−Yn −Yn . . . Zn

 , (5.12)

where Zk =
∑n

i=1
i 6=k

Yi. Concerning the diffusion coefficient C0 from (1.18) we assume that it is

a continuously differentiable function of ϑ and % and that there exist positive constants C0, C0

such that
C0%(1 + ϑ) ≤ C0 ≤ C0%(1 + ϑ). (5.13)

Remark 5.2. One of the main consequences of (5.12) is that

n∑
k=1

Fk = 0. (5.14)

Remark 5.3. Note that (5.12) also implies that the vector of species diffusion forces d =
(d1, . . . ,dn)T is an eigenvector of the matrix C corresponding to the eigenvalue 1 and we re-
cast that

Fk = −C0

n∑
l=1

Ckldl = −C0dk = −C0

πm
(∇pk − Yk∇πm) = −C0

πm

n∑
l=1

Ckl∇pl. (5.15)

The species production rates
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We assume that ωk are continuous functions of Y bounded from below and above by the
positive constants ω and ω

−ω ≤ ωk(Y ) ≤ ω, for all k = 1, . . . , n; (5.16)

we also suppose that

n∑
k=1

ωk = 0, and ωk(Y ) ≥ 0 whenever Yk = 0. (5.17)

From the second law of thermodynamics, the process is admissible only if the entropy pro-
duction rate (1.14) is nonnegative, thus necessarily one has

n∑
k=1

gk%ωk ≤ 0. (5.18)

Without loss of generality, we may also assume that

• The formation energies and entropies are constant estk , s
st
k = const.

• The perfect gas constant R = 1, the constant-volume specific heats are constant equal for
all species

cvk = cv for all k = 1, . . . , n. (5.19)

• The standard quantities: the temperature, pressure and concentration are rescaled and
equal one

ϑst = pst = Γst = 1.

5.3 Weak formulation and main result

In this subsection we define a notion of weak variational entropy solutions to system (5.1) and
then we formulate our main result.

Definition 5.4. We will say {%,u, ϑ, %1, . . . , %n} is a weak variational entropy solution provided
the following integral identities hold.
1. The continuity equation∫

Ω
%0φ(0, x) dx+

∫ T

0

∫
Ω
%∂tφ dx dt+

∫ T

0

∫
Ω
%u · ∇φ dx dt = 0 (5.20)

is satisfied for any smooth function φ(t, x) such that φ(T, ·) = 0.
2. The balance of momentum

∫
Ω

(%u)0 · φ(0, x) dx+

∫ T

0

∫
Ω

(%u · ∂tφ+ %u⊗ u : ∇φ) dx dt

+

∫ T

0

∫
Ω
π(%, ϑ, Y ) div φ dx dt−

∫ T

0
S : ∇φ dt = 0 (5.21)
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holds for any smooth test function φ(t, x) such that φ(T, ·) = 0.
3. The entropy equation∫

Ω
%0s(ϑ0, %0

1, . . . , %
0
n)φ(0, x) dx+

∫ T

0

∫
Ω
%s∂tφ dx dt+

∫ T

0

∫
Ω
%su · ∇φ dx dt

+

∫ T

0

∫
Ω

(
Q

ϑ
−

n∑
k=1

gk
ϑ
Fk

)
· ∇φ dx dt+ 〈σ, φ〉 = 0 (5.22)

is satisfied for any smooth function φ(t, x), such that φ ≥ 0 and φ(T, ·) = 0, where σ ∈
M+([0, T ]× Ω) is a nonnegative measure such that

σ ≥ S : ∇u
ϑ

− Q · ∇ϑ
ϑ2

−
n∑
k=1

Fk
mk
· ∇
(gk
ϑ

)
−

n∑
k=1

gk%ωk.

4. The global balance of total energy∫
Ω

(%E)0 dx φ(0) +

∫ T

0

∫
Ω
%E dx ∂tφ(t) dt = 0 (5.23)

holds for any smooth function φ(t), such that φ(T ) = 0.
5. The weak formulation of the mass balance equation for the k-th species∫

Ω
%0
k · φ(0, x) dx+

∫ T

0

∫
Ω

(%k∂tφ+ %ku · ∇φ) dx dt−
∫ T

0

∫
Ω
Fk · ∇φ dx dt

=

∫ T

0

∫
Ω
%ϑωkφ dx dt, (5.24)

k = 1, . . . , n, is satisfied for any smooth test function φ(t, x) such that φ(T, ·) = 0.
In addition we require that

%, %k ≥ 0, k = 1, . . . , n,
n∑
k=1

%k = %, and ϑ > 0, a.e. on (0, T )× Ω. (5.25)

In this definition the usual weak formulation of the energy equation (1.4) is replaced by the
weak formulation of the entropy inequality and the global total energy balance (5.22)+(5.23).
Note however that the entropy production rate has now only a meaning of non-negative measure
which is bounded from below by the classical value of σ. Nevertheless, a simple calculation
employing the Gibbs formula (1.8) shows that whenever the solution specified above is sufficiently
regular, both formulations are equivalent. In particular the entropy inequality (5.22) changes
into equality, see e.g. Section 2.5 in [34].

We are now in a position to formulate the main result of this chapter.

Theorem 5.5. Assume that the structural hypotheses (1.5-1.19), (1.23-1.24) and (5.9-5.19) are
satisfied. Suppose that {%N ,uN , ϑN , %k,N}∞N=1, k = 1, . . . , n is a sequence of smooth solutions to
(5.1) satisfying the weak formulation (5.20-5.25) with the initial data

%N (0, ·) = %0
N , (%u)N (0, ·) = (%u)0

N , (%s)N (0, ·) = (%s)0
N ,
∫

Ω(%E)N (0, ·) dx =
∫

Ω(%E)0
N dx,

%k,N (0, ·) = %0
k,N , for k = 1, . . . , n, in Ω
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satisfying (5.5-5.8), moreover

infx∈Ω %
0
N (x) > 0, infx∈Ω ϑ

0
N (x) > 0,

%0
N → %0, (%u)0

N → (%u)0, (%s)0
N → (%s)0, (%E)0

N → (%E)0, %0
k,N → %0

k in L1(Ω).
(5.26)

Then, up to a subsequence, {%N ,uN , ϑN , %k,N} converges to the weak solution of problem (5.1)
in the sense of Definition 5.4.

The proof of this theorem can be divided into two main steps. The first one is dedicated
to derivation of the energy-entropy estimates which are obtained under assumption that all the
quantities are sufficiently smooth. The next step is the limit passage, it consists of various
integrability Lemmas combined with condensed compactness arguments.

5.4 A priori estimates

In this section we present the a priori estimates for {%N ,uN , ϑN , %k,N}∞N=1 which is a sequence
of smooth functions solving (5.1). As mentioned above, assuming smoothness of solutions, we
expect that all the natural features of the system can be recovered. The following estimates are
valid for each N = 1, 2, . . . but we skip the subindex when it does not lead to any confusion.

5.4.1 Estimates based on the maximum principle

To begin, observe that the total mass of the fluid is a constant of motion, meaning∫
Ω
%(t, x) dx =

∫
Ω
%0 dx = M0 for t ∈ [0, T ]. (5.27)

Moreover if solution is sufficiently smooth, a classical maximum principle can be applied to the
continuity equation in order to show that %N (t, x) ≥ c(N) > 0, exactly as in (3.15).

Next, by a very similar reasoning we can prove non-negativity of ϑ on [0, T ]× Ω.

Lemma 5.6. Assume that ϑ = ϑN is a smooth solution of (5.1), then

ϑ(t, x) ≥ c(N) > 0 for (t, x) ∈ [0, T ]× Ω. (5.28)

Proof. Any solution to (5.1) which is sufficiently smooth is automatically a classical solution of
the system 

∂t%+ div(%u) = 0,

∂t(%u) + div(%u⊗ u)− divS +∇π = 0,

∂t(%e) + div(%eu) + divQ = −π divu + S : ∇u,

∂t%k + div(%ku) + div(Fk) = %ϑωk, k ∈ {1, ..., n},

(5.29)

where we replaced the total energy balance by the internal energy balance, see (1.4). Let us hence
reformulate it in order to obtain the equation describing the temperature. Subtracting from the
third equation of (5.29) the component corresponding to the formation energy we obtain

∂t(%(ec + em)) + div(%(ec + em)u) +

n∑
k=1

div(cpkϑFk)− div(κ(%, ϑ)∇ϑ)

= −π divu + S : ∇u− %ϑ
n∑
k=1

estk ωk, (5.30)
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where we used the species mass balance equations. Next renormalizing the continuity equation
and employing the relation between ec and πc (1.7) we get the temperature equation

∂t(%em) + div(%emu) +

n∑
k=1

div(cpkϑFk)− div(κ(%, ϑ)∇ϑ)

= −πm divu + S : ∇u− %ϑ
n∑
k=1

estk ωk, (5.31)

where, in accordance with hypotheses (5.10), the second term on the r.h.s. is nonnegative. Con-
sequently, (5.28) is obtained by application of the maximum principle to the above equation,
recalling that infx∈Ω ϑ

0
N (x) > 0. �

An analogous result for partial masses is stated in the following lemma.

Lemma 5.7. For any smooth solution of (5.1) we have

%k(t, x) ≥ 0 for (t, x) ∈ [0, T ]× Ω, k ∈ {1, . . . , n}. (5.32)

Moreover
n∑
k=1

%k(t, x) = %(t, x) for (t, x) ∈ [0, T ]× Ω. (5.33)

Proof. We integrate each of equations of system (5.1) over the set {%k < 0}. Assuming that the
boundary i.e. {%k = 0} is a regular submanifold we obtain

d

dt

∫
{%k<0}

%k dx−
∫
{%k=0}

∂pk
∂n

dSx +

∫
{%k=0}

%k
%

∂πm
∂n

dSx =

∫
{%k<0}

%ϑωk dx.

Since ∂pk
∂n

∣∣
{%k=0} ≥ 0 and ωk

∣∣
{%k<0} ≥ 0 we find∫
{%k<0}

%k(T ) dx ≥
∫
{%k<0}

%0
k dx = 0,

thus |{%k < 0}| = 0, for every k = 1, . . . , n. When {%k = 0} is not a regular submanifold we
construct a sequence {εl}∞l=1 such that εl → 0+ and {%k = εl} is a regular submanifold and pass
with εl to zero.
The proof of (5.33) follows by subtracting the sum of species mass balances equations from the
continuity equation. The smooth solution of the resulting system must be, due to the initial
conditions (5.6), equal to 0 on [0, T ]× Ω. �

As a corollary from this Lemma we recover relation (1.3), moreover we have the following
estimate

‖Yk‖L∞((0,T )×Ω) ≤ 1, k = 1 . . . , n. (5.34)

5.4.2 The energy-entropy estimates

The purpose of this subsection is to derive a priori estimates resulting from the energy and entropy
balance equations. The difference comparing to estimates obtained in the previous subsection is
that now we look for bounds which are uniform with respect to N . We start with the following
Lemma.
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Lemma 5.8. Every smooth solution of (5.1) satisfies

d

dt

∫
Ω
%

(
1

2
|u|2 + e

)
dx = 0. (5.35)

Proof. Integrate the third equation of (5.1) with respect to the space variable and employ the
periodic boundary conditions. �

Assuming integrability of the initial conditions (5.8) the assertion of the above lemma entails
several a priori estimates:

‖√%u‖L∞(0,T ;L2(Ω)) ≤ c,

‖%ec(%)‖L∞(0,T ;L1(Ω)) + ‖%ϑ‖L∞(0,T ;L1(Ω)) + ‖%‖L∞(0,T ;L1(Ω)) ≤ c.
(5.36)

It is well known that these natural bounds are not sufficient to prove the weak sequential stability
of solutions, not even for the barotropic flow. However, taking into account the form of viscosity
coefficients (5.9), (5.10), further estimates can be delivered.

Lemma 5.9. For any smooth solution of (5.1) we have

d

dt

∫
Ω

1

2
%|u|2 dx+

∫
Ω
S : ∇u dx =

∫
Ω
π(%, ϑ, Y ) divu dx. (5.37)

Proof. Multiply the momentum equation by u and integrate over Ω. �
The above lemma can not be used to deduce the uniform bounds for the symmetric part of the
gradient of u immediately as it was done in Section 3.2.2. The reason for that is lack of sufficient
information for ϑ, so far we only know (5.36). However, it is still possible to derive the following
analogue of (3.20).

Lemma 5.10. Any smooth solution of (5.1) satisfies the following identity

d

dt

∫
Ω

1

2
%|u +∇φ(%)|2 dx+

1

2

∫
Ω
µ(%)|∇u−∇Tu|2 dx =

−
∫

Ω
∇φ(%) · ∇π(ϑ, %, Y ) dx+

∫
Ω
π(%, ϑ, Y ) divu dx, (5.38)

for φ such that ∇φ(%) = 2µ
′(%)∇%
% .

Proof. The rough idea of the proof is the following. The terms from the l.h.s. of this equal-
ity can be evaluated by multiplication of the momentum equation by ∇φ(%) and the continuity
equation by |∇φ(%)|2. Then one has to combine these equivalences with the balance of kinetic en-
ergy (5.37) and include (5.9) to see that some unpleasant terms cancel. For more details we refer
to the proof of Lemma 3.17 in Chapter 3 or to the original work of Bresch and Desjardins [10] . �

To control the r.h.s. of (5.37) and (5.38) one needs i.a. to estimate the gradient of ϑ. To this
purpose we take advantage of the entropy balance (1.13), we have the following inequality

Lemma 5.11. For any smooth solution of (5.1) we have∫ T

0

∫
Ω

S : ∇u
ϑ

dx dt+

∫ T

0

∫
Ω

κ|∇ϑ|2

ϑ2
dx dt+

∫ T

0

∫
Ω

n∑
k=1

πmF
2
k

C0ϑ%k
dx dt

−
∫ T

0

∫
Ω

n∑
k=1

gk%ωk dx dt ≤ c. (5.39)
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Proof. Combining the third equation of (5.1) with the Gibbs relation (1.8) we derive the entropy
equation

∂t(%s) + div(%su) + div

(
Q

ϑ
−

n∑
k=1

gk
ϑ
Fk

)

=
S : ∇u
ϑ

− Q · ∇ϑ
ϑ2

−
n∑
k=1

Fk · ∇
(gk
ϑ

)
−

n∑
k=1

gk%ωk. (5.40)

Integrating it over space and time we obtain

∫ T

0

∫
Ω

(
S : ∇u
ϑ

− Q · ∇ϑ
ϑ2

−
n∑
k=1

Fk · ∇
(gk
ϑ

)
−

n∑
k=1

gk%ωk

)
dx dt =

∫
Ω
%s(T ) dx−

∫
Ω

(%s)0 dx,

where the l.h.s. can be transformed using (1.9) and (1.23) into

∫ T

0

∫
Ω

S : ∇u
ϑ

dx dt+

∫ T

0

∫
Ω

κ|∇ϑ|2

ϑ2
dx dt−

∫ T

0

∫
Ω

n∑
k=1

Fk
mk
· ∇ log pk dx dt

−
∫ T

0

∫
Ω

n∑
k=1

gk%ωk dx dt =

∫
Ω
%s(T ) dx−

∫
Ω

(%s)0 dx. (5.41)

The first two terms on the l.h.s. of (5.41) have a good sign, the same holds for the last one due
to (5.18). Non-negativity of the third one follows from (5.14) and (5.15)

−
n∑
k=1

Fk
mk
· ∇ (log pk) = −

n∑
k=1

Fk
ϑ%Yk

∇pk = −
n∑
k=1

Fk
ϑ%Yk

(∇pk − Yk∇πm) =
n∑
k=1

πmF
2
k

C0ϑ%k
≥ 0.

Thus, it remains to control the positive part of %s(T ) and the negative part of (%s)0. From
definition of the entropy (1.10) and assumption (5.19) we get

%s =

n∑
k=1

%Yks
st
k +

n∑
k=1

cv%k log ϑ−
n∑
k=1

%k
mk

log
%k
mk

, (5.42)

therefore∫
Ω

[%s(T )]+ dx ≤ c
∫

Ω
%(T ) dx+ c

∫
Ω
%ϑ(T ) dx−

n∑
k=1

∫
Ω

%k
mk

log
%k
mk

(T ) dx. (5.43)

The two first terms from the r.h.s. are bounded due to (5.36), whereas to estimate the positive
part of the last one we essentially use the assumption that Ω is a bounded domain. Thus, the
positive part of −x log x is bounded by a constant, and thus integrable over Ω. �

In the rest of Section 5.4 we show how to use Lemmas 5.10 and 5.11 in order to derive uniform
estimates for the sequence of smooth solutions {%N ,uN , ϑN , %k,N}∞N=1 to system (5.1).
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5.4.3 Estimates of the temperature.

One of the main consequences of (5.39) is that for κ(%, ϑ) satisfying (5.11) we have the following
a priori estimates for the temperature

(1 +
√
%)∇ log ϑ, (1 +

√
%)∇ϑs ∈ L2((0, T )× Ω), (5.44)

where s ∈ [0, α2 ] and α ≥ 2. To control the full norm of ϑs in L2(0, T ;W 1,2(Ω)) we will apply the
following version on the Korn-Poincaré inequality (see e.g. Theorem 10.17 in [85]):

Theorem 5.12. Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume that r is a non-negative
function such that

0 < M0 ≤
∫

Ω
r dx,

∫
Ω
rγ dx ≤ K, for a certain γ > 1.

Then
‖ξ‖W 1,p(Ω) ≤ C(p,M0,K)‖∇ξ‖Lp(Ω) +

∫
Ω
r|ξ| dx,

for any ξ ∈W 1,p(Ω).

Recalling (1.7), (5.2), (5.36) and (5.44) one can check that the assumptions of the above
theorem are satisfied for ξ = ϑ, r = % and p = 2. Therefore, the Sobolev imbedding gives
the estimate of the norm of ϑ in L2(0, T ;L6(Ω)), and so, due to the boundedness of ∇ϑ

α
2 in

L2((0, T )× Ω), one gets
ϑ
α
2 ∈ L2(0, T ;W 1,2(Ω)). (5.45)

5.4.4 Estimates following from the Bresch-Desjardin equality

The aim of this subsection is to derive estimates following from (5.37) and (5.38). Summing
these two expressions we obtain

d

dt

∫
Ω

1

2
%|u|2 +

1

2
%|u +∇φ(%)|2 dx+

∫
Ω
S : ∇u dx+

1

2

∫
Ω
µ(%)|∇u−∇Tu|2 dx

= −
∫

Ω
∇φ(%) · ∇π(ϑ, %, Y ) dx+ 2

∫
Ω
π(%, ϑ, Y ) divu dx. (5.46)

We first need to justify that the terms from the r.h.s. are bounded or have a negative sign so
that they can be moved to the l.h.s. The main problem is to control the contribution from the
molecular pressure. It will require to couple the entropy estimate (5.39) with the analogue of
comparison principle whose mechanism of action was illustrated in Lemma 3.7 for the simplest
two-component mixture and then generalized to the case of n isothermally reacting species in
Chapter 4. We start with the proof of analogue of (4.52) from the previous chapter.

Denoting
C∇xip = (∇xip)I , (5.47)

where

p =

 p1
...
pn

 and ∇p =

∇p1
...
∇pn

 , (5.48)
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we obtain, for every k-th coordinate k ∈ {1, . . . , n} and every i-th space coordinate i ∈ {1, 2, 3},
the following decomposition

(∇xip)k = (∇xip)Ik + αiYk. (5.49)

Next, multiplying the above expression by mk and summing over k ∈ {1, . . . , n} one gets

αi =
∇xi(%ϑ)∑n
k=1mkYk

−
∑n

k=1mk(∇xip)Ik∑n
k=1mkYk

.

Returning (5.49) we can express the full gradients of partial pressures in terms of gradients of
temperature, density and the gradient of ”known” part of the pressure

∇p = (∇p)I +

(
∇(%ϑ)∑n
k=1mkYk

−
∑n

k=1mk(∇p)Ik∑n
k=1mkYk

)
Y. (5.50)

As was announced, we will use the above expression in order to control the molecular part of the
pressure from the r.h.s. of (5.46).

Estimate of ∇π(%, ϑ, Y ) · ∇φ. Using definition of φ (see Lemma 5.10) and (1.5) we obtain

∇φ(%) · ∇π(%, ϑ, Y ) = µ′(%)π′c(%)
|∇%|2

%
+
∇µ(%) · ∇πm

%
. (5.51)

The first term is non-negative due to (5.2), so it can be considered on the l.h.s. of (5.46) and we
only need to estimate the second one. Since ∇πm =

∑n
k=1(∇p)k and

∑n
k=1(Y )k = 1, we may

use (5.50) to write∫
Ω

∇µ(%) · ∇πm
%

dx =

∫
Ω

∇µ(%) ·
∑n

k=1(∇p)Ik
%

dx+

∫
Ω

∇µ(%) · ∇%ϑ∑n
k=1 %kmk

dx

+

∫
Ω

∇µ(%) · ∇ϑ%∑n
k=1 %kmk

dx−
∫

Ω

∇µ(%) ·
∑n

k=1mk(∇p)Ik∑n
k=1 %kmk

dx =
4∑
i=1

Ii. (5.52)

Note that I2 is non-negative, so we can put it to the l.h.s. of (5.46).
Next, I1 and I4 can be estimated in a similar way, we have

∫
Ω

|∇µ(%)||
∑n

k=1(∇p)Ik|
%

dx ≤ ε
∫

Ω

|∇µ(%)|2ϑ
%

dx+ c(ε)

∫
Ω

|
∑n

k=1(∇p)Ik|2

ϑ%
dx, (5.53)

so for ε sufficiently small, the first term can be controlled by I2 thanks to (5.10). Concerning
the second integral, from (5.39) we have∫ T

0

∫
Ω

n∑
k=1

πmF
2
k

C0ϑ%k
dx dt ≤ c. (5.54)

Using (5.15), the integral may be transformed as follows∫ T

0

∫
Ω

n∑
k=1

C0(C∇p)2
k

πmϑ%k
dx dt ≤ c, (5.55)

thus, due to (5.47) and (5.13), the integral over time of the r.h.s. of (5.53) is bounded.
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For I3 we verify that∣∣∣∣∇µ(%) · ∇ϑ %∑n
k=1 %kmk

∣∣∣∣ ≤ c(ε)κ(%, ϑ)
|∇ϑ|2

ϑ2
+ ε

%ϑ2

κ(%, ϑ)

|∇µ(%)|2

%
,

and the first term is bounded in view of (5.44) whereas boundedness of the second one follows
from the Gronwall inequality applied to (5.46). Indeed, note that, due to (5.11), %ϑ2

κ(%,ϑ) is bounded
by some positive constant.

Estimate of π(%, ϑ, Y ) divu. By virtue of (1.5) and (1.7) and the continuity equation∫
Ω
π(%, ϑ, Y ) divu dx = − d

dt

∫
Ω
%ec(%) dx+

∫
Ω
%ϑ

(
n∑
k=1

Yk
mk

)
divu dx.

Furthermore, by the Cauchy inequality∣∣∣∣∣
∫

Ω
%ϑ

(
n∑
k=1

Yk
mk

)
divu dx

∣∣∣∣∣ ≤ c‖Yk‖L∞(Ω)

ε‖√µ(%) divu‖2L2(Ω) + c(ε)

∥∥∥∥∥ %ϑ√
µ(%)

∥∥∥∥∥
2

L2(Ω)

 .

Since µ(%) ≥ µ′%, we may write∥∥∥∥∥ %ϑ√
µ(%)

∥∥∥∥∥
L2(Ω)

≤ c‖%ϑ2‖
1
2

L1(Ω)
≤ c‖%‖

1
2

L
3
2 (Ω)
‖ϑ‖L6(Ω). (5.56)

On account of (5.45), ϑ ∈ L2(0, T ;L6(Ω)). Moreover, the Sobolev imbedding theorem implies
that ‖%‖

L
p
2 (Ω)

≤ c
∥∥∥∇µ(%)√

%

∥∥∥
L2(Ω)

for 1 ≤ p ≤ 6, hence the Gronwall inequality applied to (5.46)

implies boundedness of (5.56), whence the term ε‖
√
µ(%) divu‖2L2(Ω) is then absorbed by

∫
Ω S :

∇u dx from the l.h.s. of (5.46).
Resuming, we have proven the following inequality:

ess sup
t∈(0,T )

∫
Ω

(
1

2
%|u|2 + %ec(%) +

1

2
%|u +∇φ(%)|2

)
(t) dx+

∫ T

0

∫
Ω
µ′(%)π′c(%)

|∇%|2

%
dx dt

+ (1− ε)
∫ T

0

∫
Ω

ϑ∇µ(%) · ∇%∑n
k=1 %kmk

dx dt+

∫ T

0

∫
Ω

(
S : ∇u +

1

2
µ(%)|∇u−∇Tu|2

)
dx dt ≤ c.

(5.57)

Uniform estimates. Taking into account all the above considerations, we can complement the
so-far obtained estimates as follows∥∥∥√ϑ%−1∇%

∥∥∥
L2((0,T )×Ω)

+
∥∥∥√π′c(%)%−1∇%

∥∥∥
L2((0,T )×Ω)

≤ c, (5.58)

moreover ∥∥∥∥∇µ(%)
√
%

∥∥∥∥
L∞(0,T ;L2(Ω))

≤ c. (5.59)

Concerning the velocity vector field, in addition to (5.36) we have

‖
√
µ(%)∇u‖L2((0,T )×Ω) +

∥∥∥√µ(%)ϑ−1∇u
∥∥∥
L2((0,T )×Ω)

≤ c. (5.60)
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5.4.5 Estimates of species densities

Finally, we can take advantage of the entropy estimate (5.39) which together with (5.59) may be
used to deduce boudedness of gradients of all species densities.

Lemma 5.13. For any smooth solution of (5.1) we have∥∥∥√1 + ϑ∇√%k
∥∥∥
L2((0,T )×Ω)

≤ c. (5.61)

Proof. First, using Remark 5.3 we may write

πmF
2
k

C0ϑ%k
=
C0|∇pk|2

πm%kϑ
− 2

YkC0∇pk · ∇πm
πm%kϑ

+
Y 2
k C0|∇πm|2

πm%kϑ
,

which is bounded in L1((0, T )× Ω) on account of (5.54). Clearly,∫ T

0

∫
Ω

C0|∇pk|2

πm%kϑ
dx dt ≤ c

(
1 +

∫ T

0

∫
Ω

Y 2
k C0|∇πm|2

πm%kϑ
dx dt

)
. (5.62)

The r.h.s. of above can be, due to (5.50), estimated as follows∫ T

0

∫
Ω

Y 2
k C0|∇πm|2

πm%kϑ
dx dt =

∫ T

0

∫
Ω

YkC0|
∑n

k=1(∇p)k|2

πm%ϑ
dx dt

≤ c
∫ T

0

∫
Ω

C0

πm%ϑ

∣∣∣∣∣
n∑
k=1

(C∇p)k

∣∣∣∣∣
2

+
|∇(%ϑ)|2

(
∑n

k=1mkYk)
2 +
|
∑n

k=1mk(C∇p)k|2

(
∑n

k=1mkYk)
2

 dx dt, (5.63)

which is bounded thanks to (5.44), (5.55) and (5.58). In consequence, (5.62) is bounded. Re-
calling assumptions imposed on C0 (5.13) and the form of molecular pressure πm, we deduce
that ∫ T

0

∫
Ω

C0(1 + ϑ)|∇%k|2

%k
dx dt ≤ c

(
1 +

∫ T

0

∫
Ω

(1 + ϑ)%k|∇ϑ|2

ϑ2
dx dt

)
and the r.h.s. is bounded, again by (5.34) and (5.44). �

5.4.6 Additional estimates.

In this subsection we present several additional estimates based on imbeddings of Sobolev spaces
and the simple interpolation inequalities.

Further estimates of %. From (5.2) and (5.58) we deduce that there exist functions ξ1(%) = %
for % < (1 − δ), ξ1(%) = 0 for % > 1 and ξ2(%) = 0 for % < 1, ξ2(%) = % for % > (1 + δ), δ > 0,
such that

‖∇ξ−
γ−
2

1 ‖L2((0,T )×Ω), ‖∇ξ
γ+

2
2 ‖L2((0,T )×Ω) ≤ c,

additionally in accordance to (5.36) we are allowed to use the Sobolev imbeddings, thus

‖ξ−
γ−
2

1 ‖L2(0,T ;L6(Ω)), ‖ξ
γ+

2
2 ‖L2(0,T ;L6(Ω)) ≤ c. (5.64)

Remark 5.14. Note in particular that the first of these estimate implies that

%(t, x) > 0 a.e. on (0, T )× Ω. (5.65)
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Similarly, combination of (5.59) with (5.36) leads to

‖%
1
2 ‖L6(Ω) ≤ c

∥∥∥∥∇µ(%)
√
%

∥∥∥∥
L2(Ω)

,

and therefore
% ∈ L∞(0, T ;L3(Ω)). (5.66)

Estimate of the velocity vector field. We use the Hölder inequality to write

‖∇u‖Lp(0,T ;Lq(Ω)) ≤ c
(

1 + ‖ξ1(%)−1/2‖
L2γ− (0,T ;L6γ− (Ω))

)
‖√%∇u‖L2((0,T )×Ω), (5.67)

where p = 2γ−

γ−+1
, q = 6γ−

3γ−+1
. Therefore, Theorem 5.12 together with the Sobolev imbedding

imply

u ∈ L
2γ−

γ−+1 (0, T ;L
6γ−

γ−+1 (Ω)). (5.68)

Next, by a similar argument

‖u‖Lp′ (0,T ;Lq′ (Ω)) ≤ c
(

1 + ‖ξ1(%)−1/2‖
L2γ− (0,T ;L6γ− (Ω))

)
‖√%u‖L∞(0,T ;L2(Ω)), (5.69)

with p′ = 2γ−, q′ = 6γ−

3γ−+1
. By a simple interpolation between (5.68) and (5.69), we obtain

u ∈ L
10γ−

3γ−+3 (0, T ;L
10γ−

3γ−+3 (Ω)), (5.70)

and since γ− > 1, we see in particular that u ∈ L
5
3 (0, T ;L

5
3 (Ω)).

Strict positivity of the absolute temperature. We now give the proof of uniform with
respect to N positivity of ϑN .

Lemma 5.15. Let {ϑN}∞N=1 be the sequence of smooth functions satisfying estimates (5.36) and
(5.44), then

ϑN (t, x) > 0 a.e. on (0, T )× Ω. (5.71)

Proof. The above statement is a consequence of the following estimate∫ T

0

∫
Ω

(
| log ϑN |2 + |∇ log ϑN |2

)
dx dt ≤ c, (5.72)

which can be obtained, again by application of Theorem 5.12 with ξ = log ϑN and r = %N . It
remains to check that we control the L1(Ω) norm of %| log ϑ|. By (5.22) we have∫

Ω
(%NsN )0 dx ≤

∫
Ω
%NsN (T ) dx,

thus substituting the form of %s from (5.42) we obtain

−cv
∫

Ω
%N log ϑN (T ) dx ≤

n∑
k=1

∫
Ω
%k,Ns

st
k (T ) dx−

n∑
k=1

∫
Ω

%k,N
mk

log
%k,N
mk

(T ) dx−
∫

Ω
(%NsN )0 dx

and the r.h.s. is bounded on account of (5.34), (5.66) and the initial condition. On the other
hand, the positive part of the integrant %N log ϑN is bounded from above by %NϑN which belongs
to L∞(0, T ;L1(Ω)) due to (5.36), so we end up with

ess sup
t∈(0,T )

∫
Ω
|%N log ϑN (t)| dx ≤ c, (5.73)

which was the missing information in order to apply Theorem 5.12. This completes the proof of
(5.72). �
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5.5 Passage to the limit

In this section we justify that it is possible to perform the limit passage in the weak formulation
of system (5.1). We remark that we focus only on the new features of the system, i.e. the molec-
ular pressure and multicomponent diffusion, leaving the rest of limit passages to be performed
analogously as in Chapter 3.

5.5.1 Strong convergence of the density and passage to the limit in the
continuity equation.

Exactly as in Section 3.2.3 Lemma 3.9 we have

Lemma 5.16. If µ(%) satisfies (5.10), then for a subsequence we have
√
%N →

√
% a.e. and strongly in L2((0, T )× Ω). (5.74)

Moreover %N → % strongly in C([0, T ];Lp(Ω)), p < 3.

In addition, due to (5.70), one can extract a subsequence such that uN → u weakly in
L

5
3 ((0, T )× Ω). Thanks to this we can let N →∞ in the continuity equation to obtain (5.20).

5.5.2 Strong convergence of the species densities.

Analogously we show the strong convergence of species densities. We have

Lemma 5.17. Up to a subsequence the partial densities %k,N , k = 1, . . . , n converge strongly in
Lp(0, T ;Lq(Ω)), 1 ≤ p <∞, 1 ≤ q < 3 to %k. In particular

%k,N → %k a.e. in (0, T )× Ω. (5.75)

Moreover %k,N → %k in C([0, T ];L3
weak(Ω)).

Proof. The estimate (5.61) together with (5.34) and (5.66) give the bound for the space gradients
of %k,N , k = 1, . . . , n

∇%k,N = 2∇√%k,N
√
%k,N is bounded in L2(0, T ;L

3
2 (Ω)). (5.76)

Moreover, directly from the equation of species mass conservation we obtain

∂t(%k,N ) := −div(%k,NuN )− div(Fk,N ) + %Nωk,N ∈ L
2α
α+1 (0, T ;W−1, 6α

4α+1 (Ω)). (5.77)

Indeed, the most restrictive term is the diffusion flux, which can be rewritten as

Fi,N = − C0

πm,N

(
∇ϑN

%i,N
mi

+∇%i,N
ϑN
mi
− Yi,N

n∑
k=1

∇ϑN
%k,N
mk
− Yi,N

n∑
k=1

∇%k,N
ϑN
mk

)
. (5.78)

Due to (5.34) we have that

C0

πm,N

∣∣∣∣∣∇ϑN %i,Nmi
− Yi,N

n∑
k=1

∇ϑN
%k,N
mk

∣∣∣∣∣ ≤ c (|∇ log ϑN |+ |∇ϑN |) %N ,
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which is bounded in L2(0, T ;L
3
2 ) on account of(5.44) and (5.66). Similarly,

C0

πm,N

∣∣∣∣∣∇%i,N ϑNmi
− Yi,N

n∑
k=1

∇%k,N
ϑN
mk

∣∣∣∣∣ ≤ c√(ϑN + 1)%N

n∑
k=1

∣∣∣√ϑN + 1∇√%k,N
∣∣∣ ,

thus, according to (5.61) it remains to control the norm of
√

(ϑN + 1)%N in Lp((0, T ) × Ω) for
some p > 2. By (5.45) and (5.66) we deduce that %NϑN ∈ Lα(0, T ;L

3α
α+1 (Ω)), so (5.77) is verified.

In this manner we actually proved that the sequence of functions

{t→
∫

Ω
%k,Nφ dx}∞N=1, φ ∈ C∞c (Ω)

is uniformly bounded and equicontinuous in C([0, T ]), hence, the Arzelá-Ascoli theorem yields∫
Ω
%k,Nφ dx→

∫
Ω
%kφ dx in C([0, T ]).

Since %k,N is bounded in L∞(0, T ;L3(Ω)) and due to density argument, this convergence extends
to each φ ∈ L

3
2 (Ω).

Finally, the Aubin-Lions argument implies the strong convergence of the sequence %k,N to %k in
Lp(0, T ;Lq(Ω)) for p = 2, q < 3, but due to (5.34) and (5.66) it can be extended to the case
p <∞. �

5.5.3 Strong convergence of the temperature.

From estimate (5.45) we deduce existence of a subsequence such that

ϑN → ϑ weakly in L2(0, T ;W 1,2(Ω)), (5.79)

however, time-compactness cannot be proved directly from the internal energy equation (1.4).
The reason for this is lack of control over a part of the heat flux proportional to %ϑα∇ϑ. This
obstacle can be overcome by deducing analogous information from the entropy equation (5.40).

We will first show that all of the terms appearing in the entropy balance (5.40) are nonnegative
or belong to W−1,p((0, T )× Ω), for some p > 1.
Indeed, first recall that due to (5.42)

|%NsN | ≤ c

(
%N + %N | log ϑN |+

n∑
k=1

%k,N | log %k,N |

)

and

|%NsNuN | ≤ c

(
|%NuN |+ |%N log ϑNuN |+

n∑
k=1

|%k,N log %k,NuN |

)
,

whence due to (5.36), (5.66) and (5.72) we deduce that

{%NsN}∞N=1 is bounded in L2((0, T )× Ω), (5.80)

moreover
{%NsNuN}∞N=1 is bounded in L2(0, T ;L

6
5 (Ω)). (5.81)
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The entropy flux is due to (1.9) and (1.23) equal to

Q

ϑ
−

n∑
k=1

gk
ϑ
Fk =

κ(%, ϑ)∇ϑ
ϑ

+
n∑
k=1

skFk.

The first part can be estimated as follows∣∣∣∣κ(%N , ϑN )∇ϑN
ϑN

∣∣∣∣ ≤ |∇ log ϑN |+ |%N∇ log ϑN |+ |ϑα−1
N ∇ϑN |+ |%Nϑα−1

N ∇ϑN |,

where the most restrictive term can be controlled as follows |%Nϑα−1
N ∇ϑN | ≤ |

√
%Nϑ

α
2
N ||
√
%N∇ϑ

α
2
N |,

which is bounded on account of (5.44) provided %NϑαN is bounded in Lp((0, T ) × Ω) for p > 1,
uniformly with respect to N . Note that for 0 ≤ β ≤ 1 we have %NϑαN = (%NϑN )β%1−β

N ϑα−βN ,

where (%NϑN )β , %1−β
N , ϑα−βN are uniformly bounded in L∞(0, T ;L

1
β (Ω)), L∞(0, T ;L

3
1−β (Ω)) and

L
α

α−β (0, T ;L
3α
α−β (Ω)), respectively. Therefore{

κ(%N , ϑN )∇ϑN
ϑN

}∞
N=1

is bounded in Lp(0, T ;Lq(Ω)), (5.82)

for p and q satisfying 1
p = α−β

α , 1
q = β+ 1−β

3 + α−β
3α . In particular p, q > 1 provided 0 < β < α

2α−1 .

The remaining part of the entropy flux is equal to

n∑
k=1

sk,NFk,N =
n∑
k=1

Fk,N
mk

+ cv

n∑
k=1

log ϑNFk,N −
n∑
k=1

Fk,N
mk

log
%k,N
mk

,

where the middle term vanishes due to (5.14). The worst term to estimate is thus the last one,
we rewrite it using (5.15) in the following way

−
Fi,N
mi

log
%i,N
mi

=
C0∇pi,N
πm,Nmi

log
%i,N
mi
−
%i,N
%N

C0∇πm,N
πm,Nmi

log
%i,N
mi

for i = 1, . . . , n. Both parts have the same structure, so we focus only on the first one, we have

C0

πm,N

∣∣∣∣∇pi,Nmi
log

%i,N
mi

∣∣∣∣ ≤ c|√(ϑN + 1)%i,N log %i,N ||
√
ϑN + 1∇√%i,N |

+ c
√
%N (|∇ log ϑN |+ |∇ϑN |) |

√
%i,N log %i,N |.

Using (5.44), (5.45), (5.61) and (5.66) we finally arrive at{
n∑
k=1

sk,NFk,N

}∞
N=1

is bounded in Lp((0, T )× (Ω)), for 1 < p <
4

3
. (5.83)

We are now ready to proceed with the proof of strong convergence of the temperature. To
this end we will need the following variant of the Aubin-Lions Lemma.

Lemma 5.18. Let gN converges weakly to g in Lp1(0, T ;Lp2(Ω)) and let hN converges weakly
to h in Lq1(0, T ;Lq2(Ω)), where 1 ≤ p1, p2 ≤ ∞ and

1

p1
+

1

q1
=

1

p2
+

1

q2
= 1. (5.84)
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Let us assume in addition that

∂gN

∂t
is bounded in L1(0, T ;W−m,1(Ω)) for some m ≥ 0 independent of N (5.85)

‖hN − hN (·+ ξ, t)‖Lq1 (Lq2 ) → 0 as |ξ| → 0, uniformly in N. (5.86)

Then gNhN converges to gh in the sense of distributions on Ω× (0, T ).

For the proof see [62], Lemma 5.1.

Taking gN = %NsN and hN = ϑN we verify, due to (5.80), (5.45) and (5.79) , that conditions
(5.84), (5.86) are satisfied with p1, p2, q1, q2 = 2. Moreover, for m sufficiently large L1(Ω) is
imbedded into W−m,1(Ω), thus by the previous considerations, condition (5.85) is also fulfilled.
Therefore, passing to the subsequences we may deduce that

lim
N→∞

%Ns(%N , ϑN , YN )ϑN = %s(%, ϑ, Y )ϑ.

On the other hand, %N converges to % a.e. on (0, T ) × Ω, hence %s(%, ϑ, Y )ϑ = %s(%, ϑ, Y )ϑ, in
particular, we have that

n∑
k=1

%k
mk

ϑ + cv% log ϑ ϑ −
n∑
k=1

%k
mk

log
%k
mk

ϑ =
n∑
k=1

%k
mk

ϑ + cv%log ϑ ϑ −
n∑
k=1

%k
mk

log
%k
mk

ϑ. (5.87)

Combining Lemma 5.17 with (5.79) we identify

n∑
k=1

%k
mk

ϑ−
n∑
k=1

%k
mk

log
%k
mk

ϑ =
n∑
k=1

%k
mk

ϑ−
n∑
k=1

%k
mk

log
%k
mk

ϑ,

so (5.87) implies that %log ϑϑ = %log ϑϑ. This in turn yields that log ϑϑ = log ϑϑ a.e. on
(0, T )× Ω, since % > 0 a.e. on (0, T )× Ω, which, due to convexity of function x log x, gives rise
to

ϑN → ϑ a.e. on (0, T )× Ω. (5.88)

5.5.4 Limit in the momentum equation, the species mass balance equations
and the global total energy balance

Having proven pointwise convergence of sequences {%N}∞N=1, {%k,N}∞N=1 and {ϑN}∞N=1 we are
ready to perform the limit passage in all the nonlinear terms appearing in the momentum equa-
tion, the species mass balance equations and the total global energy balance.

(i) Limit in the convective term. Estimate (5.68) implies that for 0 ≤ ε ≤ 1/2 we have

‖√%u‖Lp′ (0,T ;Lq′ (Ω)) ≤ ‖%‖
1/2−ε
L∞(0,T ;L3(Ω))

‖√%u‖2εL∞(0,T ;L2(Ω))‖u‖
1−2ε

L
2γ−
γ−+1 (0,T ;L

6γ−
γ−+1 (Ω))

, (5.89)

where p′, q′ are given by 1
p′ = 1−2ε

2γ−
γ−+1

, 1
q′ = 1/2−ε

3 + 2ε
2 + 1−2ε

6γ−
γ−+1

. Taking ε > 1
2(γ−+1)

we have

p′, q′ > 2, provided γ− > 1, so the convective term converges weakly to %u⊗ u in Lp((0, T )×Ω)
for some p > 1. To identify the limit, we prove the following lemma.
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Lemma 5.19. Let p > 1, then up to a subsequence we have

%NuN → %u in C([0, T ];L
3
2
weak(Ω)),

%NuN ⊗ uN → %u⊗ u weakly in Lp((0, T )× Ω).

Proof. We already know that %N converges to % a.e. on (0, T ) × Ω. Moreover, due to (5.68),
up to extracting a subsequence, uN converges weakly to u in Lp(0, T ;Lq(Ω)) for p > 1, q > 3.
Therefore, the uniform boundedness of the sequence %NuN in L∞(0, T ;L

3
2 (Ω)) implies that

%NuN → %u weakly∗ in L∞(0, T ;L
3
2 (Ω)).

Now, we aim at improving the time compactness of this sequence. Using the momentum equation,
we show that the sequence of functions

{t→
∫

Ω
%NuNφ dx}∞N=1

is uniformly bounded and equicontinuous in C([0, T ]), where φ ∈ C∞c (Ω). But since the smooth
functions are dense in L3(Ω), applying the Arzelà-Ascoli theorem, we show (5.90).

On the other hand, uN is uniformly bounded in Lp(0, T ;W 1,q(Ω)) for p > 1, q > 3
2 , so it

converges to u weakly in this space. Since W 1,q(Ω), q > 3
2 is compactly embedded into L3(Ω),

by (5.90), we obtain (5.90). �

(ii) Limit in the stress tensor.

Lemma 5.20. If µ(%), ν(%) satisfy (5.10), then for a subsequence we have

µ(%N )D(uN )→ µ(%)D(u) weakly in Lp((0, T )× Ω)
ν(%N ) divuN → ν(%) divu weakly in Lp((0, T )× Ω)

for p > 1. (5.90)

Proof. Due to (5.67), there exists a subsequence such that

∇uN → ∇u weakly in Lp(0, T ;Lq(Ω)) for p > 1, q >
3

2
.

Moreover µ(%N ), ν(%N ) are bounded in L∞(0, T ;L3(Ω)), on account of (5.10). Thus, (5.90) fol-
lows by application of Lemma 5.16. �

(iii) Strong convergence of the cold pressure. It follows from estimates (5.36) combined
with (5.64) and the Sobolev imbedding theorem that

‖πc(%N )‖
L

5
3 ((0,T )×Ω)

≤ ‖πc(%N )‖
2
5

L∞(0,T ;L1(Ω))
‖πc(%N )‖

3
5

L1(0,T ;L3(Ω))
≤ c. (5.91)

Having this, strong convergence of %N implies convergence of πc(%n) to πc(%) strongly in Lp((0, T )×
Ω) for 1 ≤ p < 5

3 .

(iv) Convergence of the diffusion terms. In the proof of Lemma (5.17) it was shown in
particular that

{Fk,N}∞N=1 is bounded in L
4
3 ((0, T )× (Ω)).
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By the weak convergence of ∇%k,N , ∇ϑN to ∇%k, ∇ϑ, respectively, deduced from (5.76) and
(5.79) together with (5.75), (5.88) and (5.65) we check that it is possible to let N → ∞ in all
terms of (5.78). In other words, we have

Fk(%N , ϑN , %k,N )→ Fk(%, ϑ, %k) weakly in L
4
3 ((0, T )× Ω), k ∈ {1, . . . , n}.

The convergence results established above are sufficient to perform the limit passage in the
momentum, the total global energy balance and the species mass balance equations and to
validate, that the limit quantities satisfy the weak formulation (5.21),(5.23) and (5.24).

5.5.5 Limit in the entropy inequality

In view of (5.80-5.83) and the remarks from the previous subsection, it is easy to pass to the
limit N →∞ in all terms appearing in (5.22), except the entropy production rate σ.
However, in accordance with (5.39) we still have that

√
µ(%N )

ϑN

(
∇uN + (∇uN )T − 2

3
divuN

)
∞

N=1

is bounded in L2((0, T )× Ω).

Moreover, by virtue of (5.67), (5.74) and (5.88) we deduce√
µ(%N )

ϑN

(
∇uN + (∇uN )T − 2

3
divuN

)
→
√
µ(%)

ϑ

(
∇u + (∇u)T − 2

3
divu

)
weakly in L2((0, T )× Ω). Evidently, we may treat all the remaining terms
√

2
3µ(%N ) + ν(%N )

ϑN
divuN


∞

N=1

,

{√
κ(%N , ϑN )

ϑN
∇ϑN

}∞
N=1

,

{√
πm(ϑN , YN )√
C0%k,NϑN

Fk,N

}∞
N=1

in the similar way using the fact that they are linear with respect to the weakly convergent
sequences of gradients of uN , ϑN and %k,N . Thus, preserving the sign of the entropy inequality
(5.22) in the limit N →∞ follows by the lower semicontinuity of convex superposition of oper-
ators.

Our ultimate goal is to show that the limit entropy %s attains its initial value at least in the
weak sense. We have the following result

Lemma 5.21. Let %,u, ϑ, %1, . . . , %n be a weak variational entropy solution to (5.1) in the sense
of Definition 5.4. Then the entropy %s satisfies

ess lim
τ→0+

∫
Ω

(%s) (τ)φ dx→
∫

Ω
(%s)0φ dx, ∀φ ∈ C∞(Ω). (5.92)

Proof. As a consequence of (5.22) we know that∫
Ω

(%s(ϑ, %k))(τ
+)φ dx ≥

∫
Ω

(%s(ϑ, %k))(τ
−)φ dx,

where φ ∈ C∞(Ω), φ ≥ 0 and (%s(ϑ, %k))(τ
+) ∈ M+(Ω), τ ∈ [0, T ), (%s(ϑ, %k))(τ

−) ∈ M+(Ω),
τ ∈ (0, T ] are the one sided limits of %s(τ). Note that due to (5.73) %s ∈ L∞(0, T ;L1(Ω)),
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thus for any Lebesgue point of τ 7→ %s(τ, ·) these signed measures coincide with a function
%s(τ, ·) ∈ L1(Ω) which satisfies (after some manipulations, cf. [85], Theorem 3.2)∫

Ω
%s(τ)φ dx− 〈σ, φ〉

=

∫
Ω

(%s)0φ dx−
∫ τ

0

∫
Ω
%su · ∇φ dx dt+

∫ τ

0

∫
Ω

(
Q

ϑ
−

n∑
k=1

gk
ϑ
Fk

)
· ∇φ dx dt, (5.93)

for any test function φ ∈ C∞(Ω), φ ≥ 0 where σ ∈ M+([0, T ] × Ω) is a nonnegative measure
such that

σ ≥ S : ∇u
ϑ

− Q · ∇ϑ
ϑ2

−
n∑
k=1

Fk
mk
· ∇
(gk
ϑ

)
−

n∑
k=1

gk%ωk.

In order to show (5.92) we thus need to justify that σ is absolutely continuous with respect to
Lebesgue measure on [0, τ ]× Ω. To this end we use in (5.93) a test function φ = ϑ0, we get∫

Ω
%s(τ)ϑ0 dx−

〈
σ, ϑ0

〉
=

∫
Ω

(%s)0ϑ0 dx+

∫ τ

0

∫
Ω
H · ∇ϑ0 dx dt, (5.94)

where, on account of (5.81-5.83)

H = %su +
Q

ϑ
−

n∑
k=1

gk
ϑ
Fk ∈ Lp((0, T )× Ω), for some p > 1. (5.95)

Now, testing (5.23) with φm ∈ C∞[0, T ) such that φm → 1 pointwisely in [0, τ), φm → 0
pointwisely in [τ, T ), 0 < τ < T and passing to the limit with m, we obtain∫

Ω

(∣∣(%u)0
∣∣2

2%0
+ %0e(%0, ϑ0, %0

1, . . . , %
0
n)

)
dx =

∫
Ω

(
|%u|2

2%
+ %e(%, ϑ, %1, . . . , %n)

)
(τ) dx. (5.96)

Combining (5.94) with (5.96), we thus get∫
Ω

(
|%u|2

2%
(τ)−

∣∣(%u)0
∣∣2

2%0

)
dx+

∫
Ω

[
%e(τ)− ϑ0%s(τ)

]
−
[
%0e0 − ϑ0(%s)0

]︸ ︷︷ ︸
I∗

dx+
〈
σ, ϑ0

〉
= −

∫ τ

0

∫
Ω
H · ∇ϑ0 dx dt. (5.97)

By the Fatou lemma

lim inf
τ→0+

∫
Ω

(
|%u|2

2%
(τ)−

∣∣(%u)0
∣∣2

2%0

)
dx ≥ 0,

in addition
lim
τ→0+

∫ τ

0

∫
Ω
H · ∇ϑ0 dx dt = 0

on account of (5.95). Moreover, recalling (1.6), (1.10) and (5.19), we recast I∗ as follows

I∗ =
n∑
k=1

(estk −ϑ0sstk )(%k(τ)−%0
k)+ϑ

0
n∑
k=1

[
%k
mk

log
%k
mk

(τ)−
%0
k

mk
log

%0
k

mk

]
+
[
%ec(%)(τ)− %0ec(%

0)
]

+ cv
[
%ϑ(τ)− %0ϑ0 − % log ϑ(τ) + %0 log ϑ0

]
=

4∑
i=1

Ii. (5.98)



5.5. PASSAGE TO THE LIMIT 109

Evidently
∫

Ω (I1 + I2 + I3) dx → 0 in view of weak continuity of % and %k, k = 1, . . . , n. Con-
cerning the last term, we have

I4 = cv %(τ)
[
ϑ(τ)− log ϑ(τ)− ϑ0 + log ϑ0

]︸ ︷︷ ︸
≥0

+cv(%(τ)− %0)(ϑ0 − log ϑ0),

therefore
lim
τ→0+

∫
Ω
I4 dx ≥ 0.

Since the entropy production rate is always nonnegative, (5.97) together with above remarks
yields ess limτ→0+

〈
σ, ϑ0

〉
= 0, whence

ess lim
τ→0+

σ[[0, τ ]× Ω] = 0. �
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Chapter 6

Appendix

In this chapter we give statements of nowadays classical lemmas and theorems, which were used
in proofs of the previous results.

The following two theorems are extensively used in whole the thesis:

Theorem 6.1 (Arzelà-Ascoli). Let Ω ⊂ RN be compact and X a compact topological metric
space endowed with a metric dX . Let {vn}∞n=1 be a sequence of functions in C(Ω;X) which is
equi-continuous, that is, for any ε > 0 there is δ > 0 such that

dX [vn(y), vn(z)] ≤ ε provided |y − z| < δ independently of n = 1, 2, . . . .

Then {vn}∞n=1 is precompact in C(Ω;X), that is, there exists a subsequence (not relabeled)
and a function v ∈ C(Ω;X) such that

sup
y∈Ω

dX [vn(y), v(y)]→ 0 as n→ 0.

For the proof see [53], Chapter 7, Theorem 17.

W now present a version of the celebrated Aubin-Lions lemma [27, 59]. For more criteria of
relative compactness of sequence of functions in Lp(0, T ;B), where B is a Banach space we refer
to [97].

Theorem 6.2 (Aubin-Lions). Let X,B, Y be Banach spaces and X ⊂ B ⊂ Y with compact
imbedding X → B. Suppose also that X and Y are reflexive spaces. For 1 < p, q <∞ let

W = {v ∈ Lp(0, T ;X); ∂tv ∈ Lq(0, T ;Y )},

where the time derivative is defined in the sense of distributions on (0, T ).
Then the imbedding W ⊂ Lp(0, T ;B) is compact.

The Bogovskii operator. We first recall definition of spaces introduced by Temam in [102].

Definition 6.3. Let Ω be a bounded domain in RN , N ≥ 2 and 1 < p, q <∞. We set

Eq,p(Ω) =
{
g ∈ (Lq(Ω))N : div g ∈ Lp(Ω)

}
,

‖g‖Eq,p(Ω) = ‖g‖Lq(Ω) + ‖div g‖Lp(Ω),

and
Eq,p0 (Ω) = C∞0 (Ω)

Eq,p(Ω)
.
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Next, let us consider a problem
divu = f in Ω,
u = 0 at ∂Ω,

(6.1)

for a given function f , such that
∫

Ω f dx = 0.
Solution to problem (6.1) in a bounded, Lipschitz domain is given by so called Bogovskii operator
introduced in [8]. In the following lemma we recall its main properties.

Lemma 6.4. Let Ω ∈ RN be a bounded Lipschitz domain.
Then there exists a linear operator BΩ = (B1

Ω, . . . ,BNΩ ) such that:
(i)

BΩ : Lp(Ω)→
(
W 1,p

0 (Ω)
)N

, 1 < p <∞,

where
Lp(Ω) =

{
f ∈ Lp(Ω) :

∫
Ω
f dx = 0

}
;

(ii) for f ∈ Lp(Ω)
divBΩ(f) = f a.e. in Ω;

(iii) for f ∈ Lp(Ω)
‖∇BΩ(f)‖Lp(Ω) ≤ c(p,Ω)‖f‖Lp(Ω), 1 < p <∞;

(iv) if f = div g, where g ∈ Eq,p0 (Ω) with some 1 < q <∞, then

‖BΩ(f)‖Lq(Ω) ≤ c(q,Ω)‖g‖Lq(Ω), 1 < p <∞;

(v) if f ∈ C∞0 (Ω) and
∫

Ω f dx = 0, then BΩ(f) ∈ (C∞0 (Ω))N .

For the proof of this lemma, we refer the reader to [85], Lemma 3.17. An extension of the
existence theory for (6.1) to the class of solutions which need not have a trace at the boundary
can be found in [21].

The double Riesz transform. In what follows we recall some of basic properties of the double
Riesz transform R = ∇ ⊗ ∇∆−1 and the inverse divergence operator A = ∇∆−1 defined as
follows

Aj [v] =
(
∇∆−1

)
j
v = −F−1

(
iξj
|ξ|2
F(v)

)
, (6.2)

Ri,j [v] = ∂iAj [v] =
(
∇⊗∇∆−1

)
i,j
v = F−1

(
ξiξj
|ξ|2
F(v)

)
. (6.3)

Here, the inverse Laplacian is identified through the Fourier transform F and the inverse Fourier
transform F−1 as

(−∆)−1(v) = F−1

(
1

|ξ|2
F(v)

)
.

Lemma 6.5. The operator R is a continuous linear operator from Lp(R3) into Lp(R3) for any
1 < p <∞. In particular, the following estimate holds true:

‖R[v]‖Lp(R3) ≤ c(p)‖v‖Lp(R3) for all v ∈ Lp(R3).

The operator A is a continuous linear operator from L1(R3) ∩ L2(R3) into L2(R3) + L∞(R3),
and from Lp(R3) into L

3p
3−p (R3) for any 1 < p < 3. Moreover,

‖∇A[v]‖p ≤ C(p)‖v‖p, 1 < p <∞.
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The proof of this lemma can be found e.g. in [36], Section 10.16. For more information about
the operators defined by means of Fourier multiplier we refer the reader to [99], Chapters III and
IV.

In what follows we present two important properties of commutators involving Riesz operator.
The first result is a straightforward consequence of the Div-Curl lemma (see [101]), its proof can
be found in [32], Lemma 5.1.

Lemma 6.6. Let

Vε ⇀ V weakly in Lp(R3), rε ⇀ r weakly in Lq(R3),

where
1

p
+

1

q
=

1

s
< 1.

Then
VεR(rε)− rεR(Vε) ⇀ VR(r)− rR(V) weakly in Ls(R3).

The next lemma can be deduced from the general results of B.Bajšanski and R.Coifman [3],
and R.Coifman and Y.Meyer [20].

Lemma 6.7. Let w ∈ W 1,r(R3) and V ∈ Lp(R3) be given, where 1 < r < 3, 1 < p < ∞,
1
r + 1

p −
1
3 <

1
s < 1. Then for all such s we have

‖R[wV]− wR[V]‖Wα,s(R3) ≤ c(s, p, r)‖w‖W 1,r(R3)‖V‖Lp(R3),

where α is given by α
3 = 1

s + 1
3 −

1
p −

1
r .

Here, Wα,s(R3) for α ∈ (0,∞) \ N denotes the Sobolev-Slobodeckii space (see e.g. [103]).
For the proof of this fact see [36], Section 10.17 and the references therein.

Renormalized continuity equation. The following result is a consequence of technique in-
troduced and developed by DiPerna and Lions [24]. Applying it to the continuity equation
(extended by 0 outside Ω) we obtain the following result

Lemma 6.8. Let % ∈ Lp(R3), p ≥ 2, % ≥ 0, a. e. in Ω, u ∈ W 1,2
0 (R3) satisfy the continuity

equation
div(%u) = 0

in the sense of distributions on R3, then the pair (%,u) solves the renormalized continuity equation
(2.14) in the sense of distributions on R3 where b(·) is specified as follows:

b ∈ C([0,∞) ∩ C1((0,∞)),
lims→0+(sb′(s)− b(s)) ∈ R,

|b′(s)| ≤ Csλ, s ∈ (1,∞), λ ≤ p
2 − 1.

The best general reference here is [36], Section 10.18, see also [85].



114 CHAPTER 6. APPENDIX

Maximal Lp−Lq regularity of parabolic equations. Below we recall the well known result
about the Maximal Sobolev Regularity of parabolic problem in the whole space{

∂tu−∆u = f in (0, T )× RN ,
u(0, x) = u0(x) in (0, T )× RN . (6.4)

The relevant results for systems with general boundary conditions can be found in the book of
Amann [2].
In the following, we put

E0 = Lq
(
RN
)
, E1 = W 2,q

(
RN
)

and E1−1/p = (E0, E1)1−1/p,p,

where the symbol (·, ·)1−1/p,p denotes the corresponding (1 − 1/p, p)-interpolation space (=
Bq

2−2/p,p

(
RN
)
, cf. [7], Corollary 4.13).

Theorem 6.9. Let 1 < p, q <∞. Given any u0 ∈ E1−1/p, f ∈ Lp(0, T ;E0), the Cauchy problem
(6.4) has a unique solution u ∈ Lp(0, T ;E1) ∩W 1,p(0, T ;E0), and

sup
t∈(0,T )

‖u(t)‖E1−1/p
+ ‖∂tu‖Lp(0,T ;E0) + ‖∆u‖Lp(0,T ;E0) ≤ c

(
‖f‖Lp(0,T ;E0) + ‖u0‖E1−1/p

)
for some positive constant c = c(p, q).

This theorem follows from Theorem 4.10.2, Theorem 4.10.7 and Remark 4.10.9 in Amann [2].
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