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Abstra
tWe study in�nite games where one of the players always has a positional(memory-less) winning strategy, while the other player may use a history-dependent strategy. We investigate winning 
onditions whi
h guarantee su
ha property for all arenas, or all �nite arenas. We establish some 
losure prop-erties of su
h 
onditions, whi
h give rise to the XPS 
lass of half-positionalwinning 
onditions, and dis
over some 
ommon reasons behind several knownand new positional determina
y results. We show that this property of half-positional determina
y is de
idable in single exponential time for a given pre-�x independent ω-regular winning 
ondition. We exhibit several new 
lassesof half-positional winning 
onditions: the 
lass of 
on
ave 
onditions (for �-nite arenas), the 
lasses of monotoni
 
onditions and geometri
al 
onditions(for all arenas). Keywordsautomata, in�nite games, omega-regular languages, positional strategies,winning 
onditions AMS Classi�
ation:68Qxx Theory of 
omputing68Q45 Formal languages and automata68Q60 Spe
i�
ation and veri�
ation91Axx Game theory91A05 2-person games91A43 Games involving graphs
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Stresz
zenieBadamy gry niesko«
zone, w który
h jeden z gra
zy ma zawsze pozy
yjn¡(bezpami�
iow¡) strategi� wygrywaj¡
¡, pod
zas gdy drugi gra
zy mo»e u»y-wa¢ strategii zale»nej od historii. Badamy warunki zwy
i�stwa gwarantuj¡
etak¡ wªasno±¢ dla wszystki
h aren, oraz dla wszystki
h sko«
zony
h aren.Pokazujemy warunki domkni�
ia tej klasy warunków zwy
i�stwa, prowadz¡
edo klasy XPS warunków póªpozy
yjny
h, a tak»e znajdujemy wspólne powodydla kilku znany
h i nowy
h wyników doty
z¡
y
h pozy
yjnej determina
ji.Pokazujemy, »e wªasno±¢ póªpozy
yjnej determina
ji danego ω-regularnegowarunku zwy
i�stwa jest rozstrzygalna w 
zasie wykªadni
zym. Pokazu-jemy kilka nowy
h klas warunków póªpozy
yjny
h: warunki wkl�sªe (dla arensko«
zony
h), monotoni
zne i geometry
zne (dla aren o dowolnej mo
y).Sªowa klu
zoweautomaty, gry niesko«
zone, j�zyki omega-regularne, strategie pozy
yjne,warunki zwy
i�stwaKlasy�ka
ja wedªug ACM:68Qxx Teoria obli
ze«68Q45 J�zyki formalne i automaty68Q60 Spe
y�ka
ja i wery�ka
ja91Axx Teoria gier91A05 Gry dla 2 gra
zy91A43 Gry zwi¡zane z grafami
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Chapter 1Introdu
tionThe theory of in�nite games is relevant for 
omputer s
ien
e be
ause of itspotential appli
ation to veri�
ation of intera
tive systems. In this approa
h,the system and environment are modeled as players in an in�nite game playedon a graph (
alled arena) whose verti
es represent possible system states.The players (
onventionally 
alled Eve and Adam) de
ide whi
h edge (statetransition, or move) to 
hoose; ea
h edge has a spe
i�
 
olor. The desiredsystem's behavior is expressed as a winning 
ondition of the game � thewinner depends on the sequen
e of 
olors whi
h appear during an in�niteplay. If a winning strategy exists in this game, the system whi
h implementsit will behave as expe
ted. Positional strategies (i.e. depending only onthe position, not on the history of play � also 
alled memoryless) are ofspe
ial interest here, be
ause of their good algorithmi
 properties whi
h 
anlead to an e�
ient implementation. Among the most often used winning
onditions are the parity 
onditions, whi
h admit positional determina
y forboth players ([Mos91℄, [EJ91℄, [M
N93℄).In�nite games are also strongly linked to automata theory. Parity 
ondi-tion is a very important notion in both �elds � in�nite games and automataon in�nite stru
tures. Winning 
onditions in games 
an often be e�e
tivelyexpressed as ω-regular languages. This allows results from one �eld to beused in another. For example, positional determina
y of parity games isused in the modern proofs of Rabin's 
omplementation theorem for �niteautomata on in�nite trees with parity a

eptan
e 
ondition.However, not always it is possible to express the desired behavior as aparity 
ondition. An interesting question is, what properties are enough forthe winning 
ondition to be positionally determined, i.e. admit positionalwinning strategies independently on the arena on whi
h the game is played.Re
ently some interesting 
hara
terizations of su
h positionally determinedwinning 
onditions have been found ([CN06℄, [GZ05℄). Another interesting5




hara
terization of �nitely positional 
onditions 
an be found in [GZ04℄. Fora survey of re
ent results on positional determina
y see [Gra04℄.Our work attempts to obtain similar 
hara
terizations and �nd interest-ing properties (e.g. 
losure properties) of half-positionally determined win-ning 
onditions, i.e. ones su
h that all games using su
h a winning 
onditionare positionally determined for one of the players (us, say), but the otherplayer (environment) 
an have an arbitrary strategy. We give uniform argu-ments to prove several known and several new half-positional determina
yresults. As we will see, some results on positional determina
y have naturalgeneralizations to half-positional determina
y, but some do not. This makesthe theory of half-positional 
onditions harder than the theory of positional
onditions. We also exhibit some large 
lasses of half-positionally determinedwinning 
onditions.1.1 OverviewChapter 2 In this 
hapter we begin with some examples of in�nite games,with positional and non-positional winning strategies. Then we pro
eedto introdu
e the basi
 de�nitions and notions we will be using throughoutthe thesis, like winning 
onditions, arenas, games, strategies, and positionalstrategies. We introdu
e basi
 determina
y types, like positional and half-positional determina
y. We de�ne a half-positional winning 
ondition as onewhi
h admits positional strategy for Eve no matter what arena is this winning
ondition used on, and dis
uss how this 
lass of half-positional winning 
on-ditions 
hanges for various 
lasses of arenas that appear in literature (arenas
an have labels on edges, on positions, or on only a subset of positions).Chapter 3 In this 
hapter we present tools whi
h 
an be used to prove(half-) positional determina
y of many winning 
onditions in an uniform way.We start with some basi
 properties of positional strategies. Although theseproperties are most interesting for positional strategies, we present the proofin a more abstra
t way whi
h also en
ompasses arbitrary strategies. Theseproperties are quite well known by the resear
hers in this �eld, and are thereason why we 
on
entrate on pre�x independent winning 
onditions (as theyneed not work for pre�x dependent winning 
onditions). Then, we use theseproperties to show Lemma 3.5, whi
h we will use to show half-positionaldetermina
y of many winning 
onditions in the sequel. Again, Lemma 3.5 ispresented in an abstra
t way, thus it 
an be used to prove both half-positionaland positional determina
y. We use Lemma 3.5 to prove that if W is (half-)positional, then so is W ∪WBS (Theorem 3.7); the latter winning 
ondition6



says that Eve wins if she wins W or if 
olors from S appear in�nitely manytimes. (WBS is a Bü
hi 
ondition: Eve wins i� 
olors from S appear in�nitelymany times.) Theorem 3.7 leads to an alternative proof that the parity
onditions are positionally determined. We 
on
lude Chapter 3 by quotingand generalizing some previously known 
hara
terizations [CN06, GZ05℄ ofpositional and �nitely positional winning 
onditions.Chapter 4 We present a simple 
ombinatorial property, 
on
aveness, whi
hguarantees �nite (but not in�nite) half-positional determina
y. Namely, awining 
ondition is 
on
ave i� whenever Adam wins if the sequen
e of 
olorsduring an in�nite play is w1 or w2, he also wins for all shu�es of w1 and
w2. This result is strongly related to its positional 
ounterpart from [GZ04℄about fairly mixing payo� mappings. We also note show relations betweenour theorem and the result from [MT02℄ about positive winning 
onditionsand persistent strategies.Chapter 5 Here, we generalize the mean payo� game to many dimensions.In our game, we let our set of 
olors be C = [0, 1]d; our winning 
onditionsare de�ned in terms of the sequen
e whose n-th term is the average of the�rst n 
olors visited during our in�nite play. We say that Eve wins WF (A)i� ea
h 
luster point of this sequen
e is in A ⊆ C, and she wins WF ′(A) i�at least one 
luster point is in A. We investigate for whi
h A's the winning
onditions WF (A) and WF ′(A) are 
on
ave, 
onvex, weakly 
on
ave andweakly 
onvex (as de�ned in Chapter 4), and for whi
h A's they are (�nitely)half-positional or positional. Namely, WF ′(A) is �nitely half-positional for
A whi
h is a 
omplement of a (geometri
ally) 
onvex subset of C, and, forin�nite arenas, WF (A) is half-positional for A = [0, 1/2) (Theorem 5.7).Chapter 6 In this Chapter we explore the links between games and au-tomata theory. We de�ne a monotoni
 automaton as one whose set of statesis Q = {0, . . . , n}, and whose transition fun
tion is monotoni
. In The-orem 6.6 we show that a winning 
ondition WM A de�ned in terms of amonotoni
 automaton A is half-positional. Further results of this 
hapterdeal with ω-regular winning 
onditions, i.e., ones de�ned in terms of a DFAwith parity a

eptan
e 
ondition. In Theorem 6.9 we show that if su
h a
ω-regular winning 
ondition is not half-positional, then this fa
t is witnessedby a very simple witness arena, namely one in whi
h Eve has a 
hoi
e inonly one position, and she has a 
hoi
e between only two moves there. Thenwe use this 
hara
terization in Theorem 6.10 to present an algorithm whi
hde
ides half-positional determina
y for an ω-regular winning 
ondition; this7



algorithm runs in single exponential time. We 
on
lude this 
hapter withPTIME de
idability of 
on
avity of ω-regular winning 
onditions.Chapter 7 In Chapter 7 we present one of the questions whi
h motivatedour resear
h: is a �nite (
ountable) union of half-positional winning 
ondi-tions also half-positional? In Theorem 7.2 we show that this fails for un
ount-able unions: We show an example of an un
ountable family of half-positionalwinning 
onditions (in fa
t, even positional, and very simple � Bü
hi and
o-Bü
hi) whose union is not half-positional. The 
onje
ture is still open for�nite and 
ountable unions, but we have some partial results. We de�ne sus-pendable winning strategies, whi
h, intuitively, allow the player using themto sometimes suspend using them, and return to them later; and the playerwill still win if he is doing that 
orre
tly. We de�ne positional/suspendablewinning 
onditions as ones whi
h admit positional winning strategies forEve and suspendable winning strategies for Adam. We show that some ofthe previously mentioned half-positional winning 
onditions are in fa
t posi-tional/suspendable, namely, 
o-Bü
hi 
onditions, monotoni
 
onditions, andsome of the geometri
al 
onditions. In Theorem 7.10 we have shown that aunion of 
ountably many positional/suspendable winning 
onditions is alsopositional/suspendable. We pro
eed with de�ning yet another 
lass of win-ning 
onditions, XPS (extended positional/suspendable winning 
onditions),whi
h 
ontains all positional/suspendable and parity winning 
onditions, andis 
losed under �nite union, and interse
tion with 
o-Bü
hi 
onditions. This
lass 
ontains most (or all?) of half-positional winning 
onditions mentionedin this thesis, and in Theorem 7.12 we have shown that all XPS winning
onditions are half-positional. We 
on
lude this 
hapter with Theorem 7.13,whi
h shows that ea
h winning 
ondition that 
an be presented as a �niteunion of monotoni
 and 
on
ave winning 
onditions is half-positional.Chapter 8 Here we investigate games where we 
annot use a positional(memoryless) strategy, and we require another, weaker property for Eve'sstrategy instead. We investigate how some of our results from the previous
hapters 
an be extended to these weaker kinds of strategies. There are twokinds of su
h strategies. One possibility is to use the smallest amount ofmemory possible. We present a de�nition of a strategy with memory, andshow that it is possible to 
al
ulate the smallest (
hromati
) memory size for
ω-regular winning 
onditions (Theorems 8.13 and 8.14). The se
ond possi-bility is persistent strategies, as introdu
ed in [MT02℄. Just like a positionalstrategy, a persistent strategy always uses the same move in ea
h position;however, 
ontrary to a positional strategy, this move is de
ided not before8



game, but when the play visits this position for the �rst time. We show someexamples (8.19, 8.20) of winning 
onditions whi
h are half-persistent, butnot half-positional for some 
lasses of arenas, and we show Theorem 8.24,whi
h is a generalization of Theorem 3.7 (about taking an union with a Bü
hi
ondition) for half-persistent strategies. This 
hapter is a work in progressand has more open paths than the previous 
hapters.Chapter 9 We re
olle
t all the open problems and areas of further resear
hwhi
h have arisen during the work on this dissertation.Finally, on page 87 there is a notation index whi
h lists all the notation
ommonly used thorough the thesis, together with their meanings and pagenumbers where they have been de�ned. Also at the end of the thesis is theusual index and bibliography.1.2 A
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Chapter 2PreliminariesIn this 
hapter we de�ne all the basi
 notions we are working with. Westart with an example of a game, then we de�ne games, arenas, and win-ning 
onditions in general. Then we pro
eed to de�ning plays, strategies,and determina
y. We introdu
e determina
y types, like positional and half-positional determina
y. Finally, we show three types of arenas whi
h appearin literature, and dis
uss how these types di�er regarding positional strate-gies.2.1 ExampleBefore giving the general de�nition of an in�nite game, we show a typi
alexample of a game.A B C
D E F Eve

Adam7 2389 2 574 4The pi
ture above shows an arena the game is played on. The squaresand diamonds are 
alled positions; diamonds represents Eve's positions andsquares represent Adam's positions.The game starts by pla
ing a token in one of the available positions. It
an be either Eve's position or Adam's position. The owner 
hooses one ofthe moves (arrows) available from this position and moves the token to the11



position whi
h is pointed to by the arrow. For example, if we start in B,Eve 
an 
hoose either to go to A (whi
h is also her position), or to Adam'spositionC (either by arrow labeled with 2, or by arrow labeled with 3). Now,this new position 
an again be either Eve's position or Adam's position �the owner de
ides the next move to be taken, and so on.In this example, the play never ends: de
isions made by both playersde�ne an in�nite play. Now, there is a winning 
ondition whi
h says whowill win, depending on the sequen
e of 
olors (i.e. labels) of moves whi
hhave been used during the in�nite play.In the game above we 
ould use the parity 
ondition: Eve wins i� thegreatest number appearing in�nitely often is even. Otherwise, Adam is thewinner. A B C
D E F Eve

Adam7 2389 2 574 4By analyzing the game, we 
an �nd out that Adam has a winning strategy.In position C, always go to F (there is no other option anyway); Eve willhave to go to E. In the position E, go to D, and in D, go to A. Now, Eve willhave to return to D, as it is her only option. In position D, Adam alwaysde
ides to go to A; thus, the sequen
e of 
olors (ex
ept the beginning) willbe: 8, 9, 8, 9, . . . and Adam will win.Note that this strategy of Adam has the following property: in ea
hposition, always the same move is used. This is 
alled a positional strategy.Another example of a game follows. Now, Adam wants both letters a and
b to appear in�nitely often in the sequen
e of 
olors obtained from a play.A B C Dabab a babBy analyzing the game, we get that Adam 
an win if the game starts inthe positions A and B (an example winning strategy: when moving from Ato B, he alternates between the two moves available, so he wins no matter12



what Eve is doing), and Eve 
an win if the game starts in C and D (in Cshe goes to D via b, and in D she goes to C also via b).Note that Eve's winning strategy in C and D is positional, while Adam'swinning strategy inA andB is not. That's what we mean by a half-positionalgame (or winning 
ondition): from ea
h position, either Eve has a positionalwinning strategy, or Adam has an arbitrary winning strategy.2.2 GamesIn this se
tion we formally de�ne games, arenas, and strategies.We 
onsider perfe
t information antagonisti
 in�nite games played bytwo players, 
alled 
onventionally Adam and Eve. Many names are used inliterature (Alter and Ego, Abelard and Eloise, . . . ); if the players are notjust named 0 and 1 (or I and II), usually they start with E and A, be
ausethey are asso
iated with quanti�ers ∃ (Eve) and ∀ (Adam).Let C be a set of 
olors (possibly in�nite). We use the standard notationand terminology from the theory of formal languages (or ω-languages) for�nite and in�nite sequen
es of 
olors. Thus, �nite or in�nite sequen
es of
olors are sometimes 
alled words, and sets of words are sometimes 
alledlanguages. We sometimes identify 
olors with words of length 1, and wordswith languages with 1 element. |w| is the length of word w, and w|n is the�rst n letters of the word w. ǫ is an empty word (of length 0). C∗ and
Cω are the sets of all �nite and in�nite words over C, respe
tively. Fortwo words v ∈ C∗ and w ∈ C∗ ∪ Cω, vw is a 
on
atenation of v and w(|vw| = |v| + |w|). A word v is a pre�x of a word w i� w = vu for some
u, and a su�x of w i� w = uv. For two languages L1 and L2 (L1 ⊆ C∗),
L1L2 = {vw : v ∈ L1, w ∈ L2}. For a language L ⊆ C∗, Ln is 
on
atenationiterated n times: L0 = {ǫ}, Ln+1 = LnL, L∗ is ⋃

n∈ω Ln. Πiwi = w1w2w3 . . .is an in�nite 
on
atenation, and Lω = {Πiwi : wi ∈ L}.An arena over C is a tuple G = (PosA, PosE , Mov), where:
• Elements of Pos = PosE ∪ PosA are 
alled positions; PosA and PosEare disjoint sets of Adam's positions and Eve's positions, respe
tively.
• Elements of Mov ⊆ Pos×Pos× (C ∪ {ǫ}) are 
alled moves; (v1, v2, c)is a move from v1 to v2 
olored by c. We denote source((v1, v2, c)) = v1,

target((v1, v2, c)) = v2, rank((v1, v2, c)) = c. We will write moves as
v1

c
→ v2 instead of (v1, v2, c).

• ǫ denotes an empty word; a move v
ǫ
→ w is viewed as 
olorless. How-ever, there is a restri
tion on ǫ-moves: an arena is not allowed to 
ontainin�nite paths 
onsisting only of them.13



We say that an arena G′ = (Pos′A, Pos′E, Mov′) is a subarena of G =
(PosA, PosE , Mov) i� Pos′A ⊆ PosA, Pos′E ⊆ PosE , Mov′ ⊆ Mov.In our notation, Pos means the set of positions in the arena G. If anotherarena appears, say, G0, then the set of positions in this game is denoted byeither adding a respe
tive index to Pos (say, Pos0), or by treating Pos as anoperator (say, Pos(G0)). Analogous notational 
onvention is used for the sets
Play and Win, whi
h are de�ned later.A game is a pair (G, W ), where G is an arena, and W is a winning
ondition. A winning 
ondition W over C is a subset of Cω whi
h is pre�xindependent, i.e., u ∈ W ⇐⇒ cu ∈ W for ea
h c ∈ C, u ∈ Cω. We namespe
i�
 winning 
onditions WA, WB , . . . .Note that, 
ontrary to some other works, when we 
onsider winning 
ondi-tions in this thesis, we mean pre�x independent subsets of Cω. O

asionally,we might use a game (G, W ) where W is not pre�x independent; we will thenexpli
itly 
all W a pre�x dependent winning 
ondition.As in the example above, the game (G, W ) 
arries on in the following way.The play starts in some position v1. The owner of v1 (e.g. Eve if v1 ∈ PosE)
hooses one of the moves leaving v1, say v1

c1→ v2. If the player 
annot 
hoosebe
ause there are no moves leaving v1, he or she loses. The next move is
hosen by the owner of v2; denote it by v2
c2→ v3. And so on: in the n-thmove the owner of vn 
hooses a move vn

cn→ vn+1. If c1c2c3 . . . ∈W , Eve winsthe in�nite play; otherwise Adam wins.A player 
an also resign instead of making a move; in this 
ase, this playerimmediately loses. This option is used when there is no move possible fromthe 
urrent position; thus, ea
h player immediately loses in his or her ownposition with no moves. The 
ase when a player resigns is usually trivial,so there is no need to 
onsider it in our proofs (resigning is never a winningmove; a position with no moves 
orresponds to an ∃ or ∀ quanti�er over anempty set).A play in the arena G is a path in the arena graph. A play 
an be�nite (the length of play |π| is in ω) or in�nite (|π| = ω). We denote theset of all plays by Play, and Play∞, PlayF , PlayA, PlayE ⊆ Play are in�niteplays, �nite plays, and �nite plays whi
h end in Adam's and Eve's positions,respe
tively. We identify �nite plays with (some) elements of Pos ∪Mov+(Pos represents plays whi
h have just started and 
ontain no moves yet, and
Mov+ are non-empty �nite sequen
es of 
olors), and in�nite plays with someelements of Movω. Although plays are not exa
tly sequen
es of moves (sin
eplays of length 0 are always in a spe
i�
 position, and there is a restri
tionthat the next move has to start where the previous one �nished), we willsometimes use the same terminology and notation for them as for sequen
es,like pre�x, su�x, 
on
atenation, et
. By source(π) and target(π) we denote14



the initial and �nal position of the play, respe
tively (obviously in�nite playshave no target). Thus, for a play of length 0 (we have just started in aposition π = v ∈ Pos) we have source(π) = target(π) = v, otherwise wehave source(π) = source(π1), target(πn) = source(πn+1), and target(π|π|)
= target(π).2.3 StrategiesA strategy for player X (i.e. X ∈ {Eve, Adam}) is a partial fun
tion
s : PlayX → Mov. Intuitively, s(π) for π ending in PosX says what X shoulddo next. We say that a play π is 
onsistent with strategy s for X if for ea
hpre�x π′ of π su
h that π′ ∈ PlayX the next move is given by s(π′), or π′ = πif s(π′) is not de�ned (i.e. the player X resigns).A strategy s is winning (for X) from the position v if s(π) is de�ned forea
h �nite play π starting in v, 
onsistent with s, and ending in PosX , andea
h in�nite play starting in v 
onsistent with s is winning for X. A strategyis winning from M ⊆ Pos i� it is winning from ea
h v ∈ M .A strategy s is positional if it depends only on target(π), i.e., for ea
h�nite play π we have s(π) = s(target(π)).De�nition 2.1 Let (G, W ) be a game, and X be a player. The winningset of X, WinX, is the set of positions from whi
h X has a winning strategy.2.4 Determina
yDe�nition 2.2 A game is determined if for ea
h position v one of theplayers has a winning strategy from v, i.e., WinE ∪WinA = Pos.A game is positionally determined i� for ea
h position one of theplayers has a positional winning strategy from this position.A game is half-positionally determined i� for ea
h position eitherEve has a positional winning strategy from this position, or Adam has (any)winning strategy from this position.A game is 
o-half-positionally determined i� for ea
h position eitherAdam has a positional winning strategy from this position, or Eve has (any)winning strategy from this position.A winning 
ondition W is determined, positional, (
o-) half-po-sitional i� for ea
h arena G the game (G, W ) is determined, positionallydetermined, (
o-) half-positionally determined, respe
tively.15



A winning 
ondition W is �nitely determined, positional, (
o-) half-positional i� for ea
h �nite arena G the game (G, W ) is determined, posi-tionally determined, (
o-)half-positionally determined, respe
tively.All games with a Borel winning 
ondition are determined [Mar75℄, butthere exist (exoti
) games whi
h are not determined.We have introdu
ed 8 
lasses of winning 
onditions (so far). Although inthis thesis we fo
us on (�nitely) half-positional winning 
onditions, severalof our results 
an be stated and proven in a very similar way for ea
h of these
lasses. To avoid repeating a similar result several times, we introdu
e thefollowing notions.De�nition 2.3 A basi
 arena type is a 
lass of arenas γ su
h that if Gis in γ and G′ is a subarena of G, then G′ is also in γ.Most of natural 
lasses of arenas have this property, however, there areinteresting arena types whi
h are not basi
, for example, arenas whi
h aretransition graphs of pushdown automata [Wal96, BSW03℄.De�nition 2.4 A basi
 determina
y type D = (αE, αA, γ) is given bythree parameters:
• αE � a 
lass of admissible strategies for Eve (positional or arbitrary),
• αA � a 
lass of admissible strategies for Adam (positional or arbitrary),
• γ � a basi
 arena type.We say that a strategy of player X is a D-strategy i� it is in the 
lass

αX. We say that an arena is a D-arena i� it is in the 
lass γ.We say that a game (G, W ) is D-determined i� for every starting po-sition one of the players has a D-strategy.We say that a winning 
ondition W is D-determined if for every D-arena G the game (G, W ) is D-determined.This de�nition en
ompasses all the 
lasses of games and winning 
on-ditions mentioned in De�nition 2.2. In parti
ular, a winning 
ondition ishalf-positional i� it is D-determined for D = (positional, arbitrary, arbi-trary).Note that if a game (G, W ) is (αE, αA, γ)-determined, then its dual gameobtained by using the 
omplement winning 
ondition and swit
hing the rolesof players is (αA, αE, γ)-determined. Thus, W is (αE , αA, γ)-determined i�its 
omplement is (αA, αE , γ)-determined.Sometimes, we will work with other 
lasses of strategies than arbitraryand positional, and use an even more general de�nition.16



De�nition 2.5 A determina
y type D = (αE, αA, γ) is given by threeparameters: 
lasses of admissible arenas for both players αA and αE, and a
lass of arenas γ. D-strategies, D-arenas, D-determined games and winning
onditions are de�ned similarly.2.5 Types of ArenasIn the games de�ned above, the moves are 
olored, and it is allowed to havemoves without 
olors. In the literature, several types of arenas are studied.
• ǫ-arenas (C), like the ones des
ribed above.
• Move-
olored arenas (B). In this setting ea
h move has a 
olor assigned;moves labeled with ǫ are not allowed.
• Position-
olored arenas (A). In this setting, 
olors are assigned to po-sitions rather than to moves. Instead of Mov ⊆ Pos×Pos×C we have

Mov ⊆ Pos × Pos and a fun
tion rank : Pos → C. As in (B), ea
hposition has a 
olor assigned. The winner of a play in su
h games isde�ned similarly as for move-
olored arenas.Aab 
d e
Ba a

b b
 

C

a b
 d
a b

If we take a position-
olored arena and 
olor ea
h move p with the 
olor
rank(source(p)), we obtain an equivalent move-
olored arena (this 
onstru
-tion is illustrated on the pi
ture). Therefore position-
olored arenas are asub
lass of move-
olored arenas. Obviously, move-
olored arenas are alsoa sub
lass of ǫ-
olored arenas. When speaking about a determina
y typewhere we restri
t arenas to position-
olored or move-
olored arenas, or wewant to emphasize that we allow ǫ-arenas, we add the letter A, B or C (e.g.A-half-positional 
onditions when we restri
t to position-
olored arenas).17



Hen
e C-half-positional 
onditions are a sub
lass of B-half-positional 
on-ditions, and B-half-positional 
onditions are a sub
lass of A-half-positional
onditions. The in
lusion between A-half-positional and B-half-positional
onditions is proper: there is no way to transform a move-
olored arena intoa position-
olored one su
h that nothing 
hanges with respe
t to positionalstrategies (we 
an split a position into several new positions a

ording to
olors of moves whi
h 
ome into them, but then we obtain new positionalstrategies whi
h were not positional previously). Indeed, we know examplesof winning 
onditions whi
h are A-positional but not B-positional. One ofthem is C∗(ab)∗, where C = {a,b}; for position-
olored arenas we knowfrom our 
urrent position to whi
h 
olor we should move next (when we arein position of 
olor a, we should move to b, and vi
e versa), but not foredge-
olored arenas, as is shown by the arena below. (We don't give fullproofs, sin
e we don't have introdu
ed ne
essary te
hniques yet; a full proofis given later for example 8.19, whi
h is based on the same idea.) Anotherexample is min-parity [GW06℄. B-positional determina
y has been 
hara
-terized in [CN06℄; this result 
an be easily generalized to ǫ-arenas. Positionaldetermina
y on ǫ-arenas has been studied in [Zie98℄.Aa bThe question whether the in
lusion between C-half-positional 
onditionsand B-half-positional 
onditions is proper remains open. (However, Example8.19 in Se
tion 8.5 about persistent strategies presents a winning 
onditionwhi
h admits positional strategies for A-arenas, only persistent strategies(De�nition 8.17) for B-arenas, but not even persistent strategies for C-arenas;thus, for persistent strategies the in
lusion is proper.)Note that, when 
onsidering half-positional determina
y of winning 
on-ditions on arenas with ǫ labels, there is no di�eren
e whether we label po-sitions or moves. Indeed, for ea
h move-
olored ǫ-arena, if we repla
e ea
hmove v1 → v2 
olored with c by v1 → v → v2, 
olor v with c, and leaveall the original positions (i.e., v1, v2 et
.) 
olorless, we obtain an equivalentposition-
olored ǫ-arena � strategies in one arena 
an be interpreted in theother one.In this thesis, we 
on
entrate on ǫ-arenas sin
e we think that this 
lassgives the least restri
tion on arenas. As the example above, C∗(ab)∗, sug-gests, positional strategies for move-
olored games are �more memoryless�than for position-
olored games sin
e they do not even remember the last18




olor used, although winning 
onditions for position-
olored games (like min-parity) may also be interesting. As we will see in the sequel, allowing ourarenas to 
ontain ǫ-moves � despite potential greater generality of su
h are-nas � usually does not make our proofs harder, and sometimes even makesthem easier and more natural.2.6 ExtensionsIn some papers a more general situation is investigated, where instead of awinning 
ondition we have a payo� mapping u : Cω → R. In su
h gamesEve's and Adam's goals are respe
tively maximization and minimization of
u(c1c2c3 . . .). The payo� mapping 
an be intuitively interpreted as the quan-tity of money whi
h Eve wins from Adam. Payo� mapping is a generalizationof the winning 
ondition (we 
an get the equivalent payo� mapping by takingthe 
hara
teristi
 fun
tion of a winning 
ondition).
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Chapter 3Basi
 ToolsIn this 
hapter we present our basi
 tools and the most important positionalwinning 
onditions. In the �rst se
tion we prove some well known propertiesof positional (and also not ne
essarily positional) strategies in games withpre�x independent winning 
onditions. In the next se
tion, we use themto prove Lemma 3.5 whi
h will be used in many proofs of half-positionaldetermina
y of various winning 
onditions. Then, we present Bü
hi and
o-Bü
hi 
onditions, and a 
losure property regarding them (Theorem 3.7).In the last se
tion we show how our results 
an be used to immediatelygive an alternative proof for positional determina
y of the parity 
ondition.We also 
ite and generalize some interesting fa
ts regarding parity 
onditions.3.1 Naturalness of Determina
y TypesIn this se
tion we will show some well known basi
 properties and de�ni-tions whi
h apply to strategies in games with pre�x independent winning
onditions. Pre�x independen
e of W is very important for these properties.Although they are of most interest for positional strategies, they are true forarbitrary ones (i.e., not ne
essarily positional) too, so we prove them in ageneral way, for all basi
 determina
y types (see page 16).De�nition 3.1 Let G = (PosE, PosA, Mov) be an arena, and X be a player.For M ⊆ Pos, let NextX(M) be the set of all X's positions from whi
h atleast one move rea
hes M , and all opponent's positions from whi
h all movesrea
h X. Let AttrX(N) be the least M ⊆ Pos (with respe
t to in
lusion) su
hthat M ⊇ N and M ⊇ NextX(M).Intuitively, AttrX(M) (�attra
tor�) is a set of positions from whi
h X hasa strategy to rea
h M . It 
an be obtained as the least �xpoint of the operator
Next?

X(M) = M ∪NextX(M) whi
h 
ontains the set N .21



De�nition 3.2 Let G = (PosE , PosA, Mov) be an arena, and X be a player.Let M ⊆ Pos, and s be a strategy for X. Then M [s] is the set of all positionswhi
h o

ur in some play starting from M and 
onsistent with s.Theorem 3.3 Ea
h basi
 determina
y type D has the following propertiesfor ea
h arena G, player X, and winning 
ondition W :
• (forward) If X has a winning D-strategy s from M , then X has awinning D-strategy from M [s].
• (ba
kward) If X has a winning D-strategy s from M , then X has awinning D-strategy from AttrX(M).
• (globalization) Let S be a set of D-strategies for X su
h that ea
h s ∈ Sis winning from U(s) ⊆ Pos. Then X has a winning D-strategy from⋃

s∈S U(s).
• (ex
ision) Let s be a winning D-strategy from M for X, and M =

AttrX(M) = M [s]. Let G′ be the game obtained by removing all thepositions in M . Then if a player Y (either X or opponent) has awinning D-strategy from a set M ′ in the game (G′, W ), then Y alsohas a winning D-strategy from M ′ in G.De�nition 3.4 We say that a determina
y type D is natural if it has allproperties from Theorem 3.3.Proof of Theorem 3.3 The forward 
ondition is obvious from pre�xindependen
e.To prove the globalization 
ondition, assume that S is well ordered, S =
{sα}α<γ. Sin
e the forward 
ondition is satis�ed, we 
an assume withoutloss of generality that U(sα) = U(sα)[sα] (if this is not satis�ed, let U =
U(sα)[sα] 6= U(sα); from forward 
ondition we know that there is a strategy
s′ whi
h is winning in U ; we repla
e sα with s′ and let U(s′) = U). Thestrategy s winning from ⋃

α U(sα) is as follows. Let π ∈ PlayX . Let α be thesmallest ordinal for whi
h target(π) ∈ U(sα). Let π′ be the longest su�x of
π for whi
h source(π′) is also in U(sα). Then s(π) = sα(π′).We will show that s is indeed winning. Let π ∈ Play∞ be 
onsistent with
s. Let αn be α whi
h was used for the �nite pre�x π|n (i.e. after the nthmove). Sin
e U(sα) = U(sα)[sα], our strategy never leaves U(sαn

) in the nthmove, and thus αn is a non-in
reasing sequen
e. Hen
e, there exists a m su
hthat ∀n ≥ m αn = αm. Sin
e our strategy, ex
ept the �rst m moves, plays
onsistently with sαm
, and W is pre�x independent, X wins the play π.22



To prove the ba
kward 
ondition, we 
an use the forward 
ondition toassume that M = M [s]. Note that if X has a winning D-strategy from M ,then X has a winning D-strategy from Next?
X(M) = M∪NextX(M). Indeed,if the position v ∈ (NextX(M)−M) ∩ PosE, the strategy is to use the movewhi
h witnesses v ∈ NextX(M), and then to use Eve's strategy in M . In

v ∈ (NextX(M) −M) ∩ PosA, just let Adam do a move and 
ontinue usingour strategy in M .The least �x point AttrX(M) 
an be obtained by iterating Next?
X(M)(possibly requiring a trans�nite number of iterations). Thus, by iterating,we obtain that X has a winning strategy in AttrX(M) (using e.g. the glob-alization 
ondition for trans�nite steps).To show the ex
ision 
ondition, we have to �nd the strategy from M ′ inthe original arena G. The strategy is to use s′ until Y 's opponent de
idesto leave G′ � i.e. enter M . Sin
e we assumed that M = AttrX(M), this ispossible only for X = Y . In this 
ase, Y also has a winning strategy s in M ,whi
h he or she 
an use.3.2 An Useful LemmaLemma 3.5 Let D be a natural determina
y type. Let W ⊆ Cω be a winning
ondition. Suppose that, for ea
h non-empty D-arena G over C, there existsa non-empty subset M ⊆ PosG su
h that in game (G, W ) one of the playershas a D-strategy winning from M . Then W is D-determined.Equivalently, instead of taking a non-empty subset M , we 
ould say thatthere exists a position v ∈ PosG su
h that in game (G, W ) one of the playershas a D-strategy winning from v. Although that wording might be simplerto understand, we will use the wording above, sin
e that is how our lemmawill be used. A
tually, when we use our lemma to show half-positional de-termina
y, we will usually show that either Adam has a winning strategyeverywhere, or Eve has a positional winning strategy in a non-empty subset.Proof of Lemma 3.5 Let G = (PosA, PosE , Mov) be a D-arena.The idea of the proof is as follows. From our hypothesis we know thatwe 
an determine the winner and his D-strategy in some positions in G. Weremove these positions from G and we use our hypothesis again, determiningthe winner in some other set of positions. We iterate (possibly needing atrans�nite number of iterations) until we remain with an empty set. Whendone 
orre
tly, this leads to determining the winner in the whole G, togetherwith D-strategies in (G, W ). 23



We will de�ne (possibly trans�nite) sequen
es Pα ⊆ Pos, Mα ⊆ Pos, Gαof subarenas, Xα of players, and sα of strategies in the following way.Let P0 = Pos. The sequen
es end when Pα = ∅. Otherwise, let Gα =
(PosA∩Pα, PosE∩Pα, Mov∩Pα×Pα×C). From our hypothesis we know thatthere exists a player Xα and a subset Mα ⊆ Pα su
h that Xα has a winning D-strategy sα in Gα from Mα. (Of 
ourse, there 
an be many possible 
hoi
es of
Mα, Xα and sα �we 
an 
hoose any one of them). Without loss of generalitywe 
an assume that Mα = Mα[sα] and Mα = AttrX(Mα) (we use forwardand ba
kward 
onditions to �x Mα and sα in 
ase if it is not true). Also let
Pα+1 = Pα −Mα, and for a limit ordinal λ, let Pλ =

⋂
α<λ Pα.Let Y be any of the players. We will 
onstru
t the sequen
e of Y 's D-strategies s′α, su
h that s′α is winning from ⋃

γ<α:Xγ=Y Mγ . For a limit ordinal
α, s′α 
an be obtained from s′γ , for γ < α, by the globalization 
ondition.Otherwise, we obtain s′α+1 using the ex
ision and globalization 
onditions on
s′α and sα.This sequen
e of strategies ends with sY = s′β. Thus, for ea
h player Ywe have found a D-strategy sY winning from MY =

⋃
γ<β:Xγ=Y Mγ . We have

MA ∪ME =
⋃

γ<β Mγ = Pos, hen
e the game is D-determined.3.3 Bü
hi and Co-Bü
hi ConditionsDe�nition 3.6 For S ⊆ C, WBS is the set of in�nite words where elementsof S o

ur in�nitely often, i.e. (C∗S)ω. Winning 
onditions of this formare 
alled Bü
hi 
onditions. Complements of Bü
hi 
onditions, WB ′
S =

C∗(C − S)ω are 
alled 
o-Bü
hi 
onditions.Theorem 3.7 Let D be a basi
 determina
y type. Let W ⊆ Cω be a winning
ondition, and S ⊆ C. If W is D-determined, so is W ∪WBS.Proof of Theorem 3.7 We will show that the assumption of Lemma3.5 holds. Let our arena be G = (PosE, PosA, Mov). S-moves are moves psu
h that rank(p) ∈ S.Let G′ be G with a new position ⊤ added. The position ⊤ belongs toAdam and has no outgoing moves, hen
e Adam loses here. For ea
h S-move
p we 
hange target(p) to ⊤.Sin
e Adam immediately loses after doing an S-move in G′, the winning
onditions W and W ∪ WBS are equivalent for G′, i.e. a play is winningin the game (G′, W ) i� it is winning in the game (G′, W ∪WBS). Thus, astrategy is winning in (G′, W ) i� it is winning in (G′, W ∪WBS), and we 
an24



use D-determina
y of W to �nd the winning sets Win′
E , Win′

A and winning
D-strategies s′E, s′A in G′.Suppose Win′

A 6= ∅. We 
an see that sin
e Adam's strategy wins in G′from a starting position in Win′
A, he also wins in G from there by usingthe same strategy (the game G′ is �harder� for Adam than G). Thus theassumption of 3.5 holds (we take M = Win′

A).Now suppose that Win′
A = ∅. We will show that in the game G Eve hasa winning D-strategy s in Pos everywhere, hen
e the assumption of Lemma3.5 holds as well (we take M = Pos).The strategy is as follows. For a �nite play π we take s(π) = sE(π′), where

π′ is the longest �nal segment without any S-moves, unless when sE(π′) is amove to ⊤. In this 
ase, there had to be at least one S-move from target(π′)in G, and Eve makes one of them.The strategy s is positional if sE is positional. Let π be a play 
onsistentwith s. There are two possibilities: there is either �nite or in�nite number of
S-moves in π. If the number is in�nite, then Eve wins (as she wins WBS). Ifthe number is �nite, then π = π0π

′, where π0 ends with the last S-move (pos-sibly π0 is empty). Hen
e, π′ does not 
ontain any S-moves and is 
onsistentwith sE, thus Eve also wins π′, and also π be
ause of pre�x independen
e.Therefore, s is indeed a winning D-strategy.Note that, by duality, Theorem 3.7 shows that if W is D-determined,then so is W ∩WB ′
S.Although this proof works for all basi
 determina
y types, there are nat-ural generalized determina
y types for whi
h it fails. Indeed, the determina
ytype of positional/suspendable winning 
onditions (see page 61 later) is nat-ural, but the 
laim of Theorem 3.7 is false for them. On the other hand, inSe
tion 8.5 about persistent strategies later we present natural determina
ytypes for whi
h the 
laim of Theorem 3.7 is true, although it has to be provenin a di�erent way.3.4 Parity ConditionsThe parity 
ondition of rank n is the winning 
ondition over the set of
olors C = {0, 1, . . . , n} de�ned with
WPn = {w ∈ Cω : lim sup

i→∞
wi is even}. (3.1)This is one of the most important 
lassi
al winning 
onditions. Manyproofs of its positional determina
y are already known. Theorem 3.7 imme-diately gives yet another one: it is enough to start with an empty winning25




ondition (whi
h is positionally determined) and apply Theorem 3.7 and itsdual n times.It is worth to remark that in 
ase of in�nite arenas the parity 
onditionsare the only ones whi
h admit positional determina
y.Theorem 3.8 Let W ⊆ Cω be a winning 
ondition. The following propertiesare equivalent:1. W = h−1(WPn) for some h : C → {0, 1, . . . , n}, where by h(w) for
w ∈ Cω we mean the word v su
h that vn = h(wn) (we 
all su
h a Wa generalized parity 
ondition);2. W is positionally determined;3. (G, W ) is positionally determined for ea
h arena G over C where either
PosE = ∅ or PosA = ∅;4. Let Wf = {u ∈ C+|uω ∈ W}. We have W ω

f ⊆ W and (C+ −Wf)
ω ⊆

Cω −W .The equivalen
e of (1) and (2) has been shown in [CN06℄. Note that thistheorem works only in 
ase of edge-
olored arenas (B) and ǫ-arenas (C), notposition-
olored arenas (see Se
tion 2.5 for de�nitions of arena types, andexamples of A-positional winning 
onditions).Proof1→2 is a simple generalization of a well known fa
t � namely, posi-tional determina
y of parity games ([Mos91℄, [EJ91℄, [M
N93℄). As men-tioned above, it 
an be also shown by applying Theorem 3.7 and its dual ntimes.2→3 is obvious (a spe
ial 
ase).2→4 is proven in [CN06℄ (as Lemma 7). A
tually, only one-player arenasare used in the proof, so we get 3 → 4.2→1 is proven in [CN06℄. However, the assumption (2) is never usedex
ept the proof of Lemma 7 (i.e., impli
ation 2→4) and Lemma 9. So, toshow 4 → 1, we only have to prove Lemma 9 using 
ondition (4)1.Lemma 3.9 (Lemma 9 from [CN06℄) Assume that Condition (4) fromTheorem 3.8 is true. Then for any L, L′ ⊆ C+ we have
∀v ∈ L′ ∃u ∈ L uv ∈ Wf i� ∃u ∈ L∀v ∈ L′uv ∈ Wf1The fa
t that Lemma 9 is a 
onsequen
e of 
ondition (4) has been noti
ed by HugoGimbert. 26



Proof of Lemma 3.9 (←) is obvious. To prove (→), assume to the
ontrary that for ea
h u ∈ L there exists v ∈ L′ su
h that uv /∈ Wf . Wede�ne sequen
es vn ∈ L′ and un ∈ L by indu
tion. Let u1 be any element of
L. Let vn ∈ L′ be su
h that unvn /∈Wf . Let un+1 be su
h that vnun+1 ∈Wf .The word v1u2v2u3 . . . ∈ W ω

f ⊆ W (by (4)). On the other hand, the word
u1v1u2v2 . . . ∈ C+ −Wf

ω ⊆ Cω−W (by dual in (4)). This is a 
ontradi
tion,sin
e W is pre�x independent.In the 
ase of �nite arenas there are more positional winning 
onditions,and we don't have neither 2→4 nor 2→1. For example, the winning 
ondition
WF (A) from Se
tion 5 below, where A and its 
omplement are both 
onvexsets, is �nitely positional. However, we have equivalen
e of (2) and (3) (avery elegant result from [GZ05℄).
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Chapter 4Con
ave Winning ConditionsIn the following 
hapters, we give some examples of half-positionally de-termined winning 
onditions. We start by giving a simple 
ombinatorialproperty whi
h guarantees �nite half-positional determina
y.4.1 De�nitionDe�nition 4.1 A word w ∈ C∗ ∪ Cω is a shu�e of words w1 and w2, i�for some sequen
e of words (un), un ∈ C∗

• w =
∏

k∈N
uk = u0u1u2u3u4u5u6u7u8 . . .,

• w1 =
∏

k∈N
u2k+1 = u1u3u5u7 . . .,

• w2 =
∏

k∈N
u2k = u0u2u4u6 . . ..De�nition 4.2 A winning 
ondition W is 
onvex if as a subset of Cω it is
losed under shu�es, and 
on
ave if its 
omplement is 
onvex.Example 4.3 Parity 
onditions (in
luding Bü
hi and 
o-Bü
hi 
onditions)are both 
onvex and 
on
ave.Proposition 4.4 Con
ave winning 
onditions are 
losed under union. Con-vex winning 
onditions are 
losed under interse
tion.Example 4.5 Let C = {a,b, c}. The winning 
ondition WB ′

{a} ∪WB ′
{b}(
o-Bü
hi 
ondition (De�nition 3.6); in other words, Eve wins i� at least oneof letters a and b appears �nitely often) is 
on
ave, but not 
onvex.29



Example 4.6 Let C be an in�nite set. The following winning 
onditionsare both 
onvex and 
on
ave:
• Exploration 
ondition: the set of all v in Cω su
h that {vn : n ∈ ω} isin�nite.
• Unboundedness 
ondition: the set of all v in Cω su
h that no 
olorappears in�nitely often.De
idability and positional determina
y of these 
onditions on (in�nite)pushdown arenas where ea
h position has a distin
t 
olor has been studiedin [Gim04℄ (exploration 
ondition) and [BSW03℄, [CDT02℄ (unboundedness
ondition).Another example, whi
h justi�es the names 
onvex and 
on
ave, is givenin Chapter 5 below.4.2 Half-positional Determina
yTheorem 4.7 Con
ave winning 
onditions are half-positionally �nitely de-termined.The proof goes by indu
tion over Mov, and is based on the followingidea. Let v be Eve's position, with outgoing moves p1, p2, . . .. Suppose thatEve 
annot win by using only one of these moves. Then, sin
e the winning
ondition is 
on
ave, she also 
annot win by using many of these moves �be
ause it 
an be written as a shu�e of subplays that appear after ea
h move

p1, p2, . . ., and Adam wins all of these plays.Proof of Theorem 4.7 Let W ⊆ Cω be a 
on
ave winning 
onditionin the game (G, W ), where G = (PosA, PosE , Mov). A proof by indu
tion on
|Mov|.Let v be a position belonging to Eve, where she has more than one move.If there are no su
h positions, the game (G, W ) must be half-positionallydetermined from de�nition. 30



v . . .
Let M be a set of Eve's possible moves from v. Let M = M1∪M2, where

M1 and M2 are non-empty and disjoint. Let Gi = (PosA, PosE , Mov−M3−i),
GA = (PosA, PosE, Mov −M).From the indu
tion hypothesis we know that the games (G1, W ), (G2, W )and (GA, W ) are half-positionally determined. Let Wini

E and Wini
A bewinning sets for Eve and Adam, respe
tively, in the games (Gi, W ) for

i ∈ {1, 2, A},and let si and ti be the winning strategies of Eve in Wini
Eand Adam in Wini

A, respe
tively, in these games. Suppose si is a positionalstrategy for i ∈ {1, 2, A}.First, assume that v ∈ WinE
i for some i. In this 
ase the strategy si isalso winning for Eve in the set WinE

i in the arena G (sin
e the only di�eren
ebetween Gi and G is that Eve has more possibilities in G). On the otherhand, ti is a winning strategy for Adam in the set WinA
i in the arena G, sin
eea
h play 
onsistent with ti is winning for Adam and therefore must not gothrough v (by pre�x independen
e, Eve would win otherwise), hen
e Eve isunable to use her additional possibilities.Now, assume that v ∈ WinA

1 and v ∈ WinA
2 . Sin
e v ∈ WinA

i , Adam isable to win ea
h play in Gi whi
h goes through v. Therefore the winningsets in Gi are the same as in GA (again, pre�x independen
e). Therefore, if
v ∈ WinA

1 and v ∈ WinA
2 , we have WinA

1 = WinA
2 (sin
e both of them areequal to WinA

A) and WinE
1 = WinE

2 .Similarly to Adam's strategy in the �rst 
ase, Eve's (positional) strategy
s1 remains winning for Eve in the set WinE

1 in the game G. We will show awinning strategy for Adam in the set WinA
1 .Let π = π1 . . . πm be a �nite play. We will present π as a shu�e of twoplays π(1) and π(2), where π(i) is a play in Gi.Let K = dom π = {1, . . . , m}. Let Sv = {k ∈ K : source(πk) = v}. Wede�ne the fun
tion f : K → {1, 2} in the following way. If k < min Sv, we31



take f(k) = 1. Otherwise, f(k) = i i� πk′ ∈ Mi, where k′ is the greatestelement of Sv su
h that k′ ≤ k.For i = 1, 2, let π(i) = Πk∈Kπ
[f(k)=i]
k , where w[φ] denotes w if φ is true,and the empty word ǫ otherwise. One 
an easily see that π, as a word over

Mov, is then a shu�e of π(1) and π(2).It 
an be easily 
he
ked that π(i) is a play. For j = f(m) we have
target(π(j)) = target(π). Let t(π) = tj(π(j)). If Adam 
onsistently playswith the strategy t, the plays π(i) are 
onsistent with ti for i = 1, 2.We 
he
k that t is indeed a winning strategy for Adam in the set WinA

1 inthe game (G, W ). Let π be an in�nite play 
onsistent with t. Like for �niteplays, π is a shu�e of π(1) and π(2). Hen
e rank(π), the sequen
e of 
olors inthe play π, is a shu�e of rank(π(1)) and rank(π(2)). The plays π(i) for i = 1, 2are either �nite or winning for Adam (as they are 
onsistent with ti). If π(i)is �nite, π(3−i) is in�nite and winning for Adam; from pre�x independen
eof W we get that π is also winning for Adam. If both plays are in�nite,
rank(π(1)) /∈ W and rank(π(2)) /∈ W ; from 
on
avity of W we get that also
rank(π) /∈W .This theorem gives yet another proof of �nite positional determina
y ofparity games, and also �nite half-positional determina
y of unions of familiesof parity 
onditions (where ea
h parity 
ondition may use a di�erent rankfor a given 
olor). Half-positional determina
y of Rabin 
onditions (�niteunions of parity 
onditions) over in�nite arenas has been proven in [Kla92℄(see also [Gra04℄, and Theorem 7.12 in this thesis).Note that, in general, 
on
avity does not imply half-positional determi-na
y over in�nite arenas � for examples see Chapter 5 below, and alsoExample 4.6 and Theorem 7.2. Also, half-positional determina
y (even overin�nite arenas) does not imply 
on
avity � examples 
an be found in Chap-ters 5 and Se
tion 6.2 (Proposition 6.7 and the note above it). These twofa
ts are espe
ially visible in the table in Se
tion 5.5, whi
h 
ompares (amongothers) two very similar winning 
onditions, one of whi
h is 
on
ave but not(in�nitely) half-positional, while the other is in�nitely half-positional but not
on
ave (only weakly). A0 1Con
avity does not for
e any bound on the memory required by Adam.Indeed, let x ∈ [0, 1]−Q, C = {0, 1}, and 
onsider the game (G, W ), where
G is the arena with one Adam's position A and two moves A→ A 
olored 032



and 1 respe
tively, and let W be the set of sequen
es (cn) su
h that ∑n
i=1 ci/nis not 
onvergent to x. This winning 
ondition is 
on
ave (Theorem 5.1 inChapter 5 below), but Adam obviously requires unbounded memory here.A related property has been shown in [MT02℄: a winning 
ondition W is
alled positive i� its 
omplement is 
losed under supersequen
es (i.e., shu�eswith Cω). Theorem 3 from [MT02℄ says that games with positive winning
onditions admit persistent winning strategies for Eve. A winning strategy

s is persistent i� s(π1) equals s(π1π2) whenever target(π1) = target(π1π2)(i.e., Eve always 
hooses the same move from ea
h position, but she 
ande
ide whi
h move she takes not before game, but when the game enters thisposition). Positiveness is a stronger property than 
on
avity (for example,the parity 
ondition is 
on
ave, but not positive), and persisten
e is a weakerproperty than positionality; however, we are not limited to �nite arenas(persistent strategies are not interesting on �nite arenas, see Corollary 8.23later). There will be more about persistent strategies in Se
tion 8.5 later.4.3 Weakening the Con
avity ConditionIn [GZ04℄ a result similar to Theorem 4.7 has been obtained in the 
ase offull positional determina
y. To present it, we need the following de�nition:De�nition 4.8 A winning 
ondition W is weakly 
onvex i� for ea
h se-quen
e of words (un), un ∈ C∗, if1. u1u3u5u7 . . . ∈ W ,2. u2u4u6u8 . . . ∈ W ,3. (⋆) ∀i (ui)
ω ∈W ,then u1u2u3u4 . . . ∈W .A winning 
ondition W is weakly 
on
ave i� its 
omplement is weakly
onvex.In the 
ase of normal 
onvexity there is no (⋆).[GZ04℄ de�nes fairly mixing payo� mappings; in the 
ase of pre�x inde-pendent winning 
onditions fairly mixing resolves to the 
onjun
tion of weak
on
avity and weak 
onvexity. Theorem 1 from [GZ04℄ says that games on�nite arenas with fairly mixing payo� mappings are positionally determined.Unfortunately, weak 
on
avity is not enough for half-positional �nite de-termina
y. 33



Proposition 4.9 There exists a weakly 
on
ave winning 
ondition, WQ ,whi
h is not half-positionally �nitely determined.E A0101Proof Let C = {0, 1}. For w ∈ Cω let Pn(w) be the number of 1'samong the �rst n letters of w, divided by n. The winning 
ondition WQ isa set of w su
h that Pn(w) is 
onvergent and its limit is rational. It 
an beeasily seen that for ea
h u ∈ C+ we have uω ∈ WQ . Therefore (⋆) is neversatis�ed for the 
omplement of WQ , hen
e WQ is a weakly 
on
ave winning
ondition. However, WQ is not half-positionally determined. Consider thearena with two positions E ∈ PosE, A ∈ PosA, and moves E
0
→ A, E

1
→ A,

A
0
→ E and A

1
→ E. If Eve always moves in the same way, Adam 
an 
hoosethe moves 0 and 1 in an irrational proportion, ensuring his vi
tory. However,Eve wins by always moving with the 
olor opposite to Adam's last move �the limit of Pn(w) is then 1/2.Note that the given WQ satis�es the even stronger 
ondition obtained byrepla
ing ∀i by ∃i in (⋆) in De�nition 4.8.
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Chapter 5Geometri
al ConditionsIn this 
hapter we show some half-positional determina
y results for geo-metri
al 
onditions, whi
h are based on the ideas similar to that used bythe mean payo� game (sometimes 
alled Ehrenfeu
ht-My
ielski game). Wealso show the relations between geometri
al 
onditions and 
on
ave winning
onditions.5.1 De�nitionLet C = [0, 1]d (where [0, 1] is the real interval; we 
an also use any 
ompa
tand 
onvex subset of a normed spa
e). For a word w ∈ C+, let P (w) be theaverage 
olor of w, i.e., 1
|w|

∑|w|
k=1 wk. For a word w ∈ Cω, let Pn(w) = P (w|n)(w|n � an n-letter pre�x of w).Let A ⊆ C. We want to 
onstru
t a winning 
ondition W su
h that

w ∈W whenever the limit of Pn(w) belongs to A. Sin
e not every sequen
ehas a limit, we have to de�ne the winner for all other sequen
es.Let WF (A) be a set of w su
h that ea
h 
luster point of Pn(w) is anelement of A. Let WF ′(A) be a set of w su
h that at least one 
luster pointof Pn(w) is an element of A. Note that WF ′(A) = Cω −WF (C − A).As we will see, for half-positional determina
y the important propertyof A is whether the 
omplement of A is 
onvex � we will 
all su
h sets A
o-
onvex (as 
on
ave usually means �non-
onvex� in geometry).Geometri
al 
onditions have a 
onne
tion with the mean payo� game,whose �nite positional determina
y has been proven in [EM79℄. In themean payo� game, C is a segment in R and the payo� mapping is u(w) =
lim infn→∞ Pn(w). If A = {x : x ≥ x0} then u−1(A) (�Eve wants x0 or more�)is exa
tly the geometri
al 
ondition WF (A). Of 
ourse, the dual payo�, de-�ned with u(w) = lim supn→∞ Pn(w), 
orresponds to WF ′(A). (In 
ase of35



�nite arenas it does not matter whether we take lim sup or lim inf, sin
e ifboth players use optimal strategies, the sequen
e Pn(w) will be 
onvergent.However, things 
hange for in�nite arenas.)Geometri
al 
onditions are a generalization of su
h winning 
onditions toa larger 
lass of sets A and C.5.2 Con
ave and ConvexIn this se
tion we show how notions of 
onvexity and 
on
avity of winning
onditions, introdu
ed in Chapter 4 (De�nition 4.2), are related to geomet-ri
al 
onvexity of the set A.Theorem 5.1 We have:1. WF ′(A) is weakly 
onvex i� A is a 
losed 
onvex subset of C.2. WF ′(A) is 
onvex i� A is a trivial subset of C (i.e., A = ∅ or A = C).3. WF ′(A) is weakly 
on
ave i� A is a 
o-
onvex subset of C.4. WF ′(A) is 
on
ave i� A is a 
o-
onvex subset of C.5. WF (A) is weakly 
onvex i� A is a 
onvex subset of C.6. WF (A) is 
onvex i� A is a 
onvex subset of C.7. WF (A) is weakly 
on
ave i� A is an open 
o-
onvex subset of C.8. WF (A) is 
on
ave i� A is a trivial subset of C.To prove it, we need the following lemmas:Lemma 5.2 If A is a 
onvex subset of C then WF (A) is 
onvex.ProofNow, suppose A is 
onvex; we will show that WF (A) is 
onvex.Let w3 be a shu�e of w1 and w2, where w1, w2 ∈ WF (A). Let Bk, for
k = 1, 2, be a set of 
luster points of Pn(wk), and B3 be the 
onvex hull of
B1∪B2. Sin
e B1 ⊆ A and B2 ⊆ A, also B3 ⊆ A. All the sets B1, B2, B3 are
ompa
t. Let δk

n be the distan
e of Pn(wk) from the set Bk for k = 1, 2, 3.The sequen
e (δk
n) 
onverges to 0 for k = 1, 2. We will show that (δ3

n) also
onverges to 0. 36



Let ǫ > 0. Let N be a number su
h that for all n ≥ N we have δ1
n < ǫand δ2

n < ǫ. Let n > ND/ǫ, where D is the diameter of C, i.e., the maximumdistan
e between two 
olors. The word w3|n is a shu�e of w1m and w2|m′ forsome m + m′ = n. One 
an easily show the following:
Pn(w0) =

m

n
Pm(w1) +

m′

n
Pm′(w2). (5.1)For k = 1, 2, let Pm(wk) = bk + xk, where bk ∈ Bk and |xk| = δk

m. Let
b0 = m

n
b1 + m′

n
b2, x0 = m

n
x1 + m′

n
x2. From (5.1) we have Pn(w3) = b0 + x0.From the de�nition of B3, b0 ∈ B3. From the de�nition of x0 we have that

δ3
n ≤ |x0| ≤

m

n
|x1|+

m′

n
|x2| =

m

n
δ1
m +

m′

n
δ2
m′ . (5.2)If m < N , m

n
δ1
m is smaller than m

n
D. Sin
e m < N and n ≥ ND/ǫ,we have m

n
δ1
m < ǫ. If m ≥ N , we have δ1

m < ǫ, so also m
n
δ1
m < ǫ. By thesame reasoning we have that the se
ond 
omponent is also smaller than ǫ.Therefore δ3

n is smaller than 2ǫ for ea
h n ≥ ND/ǫ, hen
e the sequen
e δ3
n isindeed 
onvergent do 0. Thus, all 
luster points of (Pn(w3)) must be in B3.Lemma 5.3 If A is a 
losed 
onvex subset of C then WF ′(A) is weakly
onvex.Proof Let v1 = w1w3 . . . and v2 = w2w4 . . . be two words su
h that v1,

v2, and wω
i are all in WF ′(A). We have to show that v3 = w1w2w3w4 . . .is also in WF ′(A). Let xn = P (w1w2w3 . . . wn); (xn) is a subsequen
e of

(Pn(v3)), so to show that (Pn(v3)) has a 
luster point in A, it is enough toshow that (xn) has a 
luster point in A. However, ea
h xn is in A, sin
e xna 
onvex 
ombination of P (w1), . . . , P (wn), and P (wi) = lim Pn(wω
i ) ∈ A.Sin
e A is 
losed, (xn) must have a 
luster point in A.Lemma 5.4 (a) If A is a non-trivial subset of C then WF ′(A) is not 
onvex.(b) If A is not 
losed then WF ′(A) is not weakly 
onvex.Proof Let x ∈ A. To show (b), let yn be a sequen
e of elements of A
onvergent to y /∈ A. To show (a), just take yn = y /∈ A.Consider the in�nite words u, v, w produ
ed by the following (non-termi-nating) algorithm. Start with u = x, v = x, w = xx (
on
atenation). For

n = 1, 2, . . . : Let l be the length of u. Append xnl to u, ynnl
n to v, (xyn

n)nlto w. Let l be the length of v. Append xnl to v, ynnl
n to u, (xyn

n)nl to w.37



It 
an be easily seen that w is a shu�e of u and v. However, x is a
luster point of both u and v, but the only 
luster point of w is y. Thus, w /∈
WF ′(A), but u, v ∈ WF ′(A), so WF ′(A) is not 
onvex. In 
ase (b), we areshu�ing only powers of x and yn; their in�nite repetitions xω, yω

n ∈WF ′(A)(lim Pn(xω) = P (x) = x ∈ A), hen
e WF ′(A) is not even weakly 
onvex.Proof of Theorem 5.1 If A is trivial, obviously WF ′(A) is 
onvex.If A is not 
onvex, let x, y ∈ A su
h that z = kx + (1 − k)y /∈ A for
k ∈ [0, 1]. Obviously, the in�nite words xω and yω are inWF (A) and WF ′(A),but we 
an shu�e them to obtain a word w su
h that Pn(w) is 
onvergentto z, thus w /∈WF (A) and w /∈WF ′(A).These two simple fa
ts, together with the lemmas above, are enough toprove all items above. (Note that items 3, 4, 7, 8 are dual to items 1, 2, 5,6.) Note that in this theorem we assumed that ea
h element of our spa
e
[0, 1]d is allowed as a 
olor of a move. The things may 
hange if we restri
tour 
olor set C. For example, for C = [0, 1], W = WF ′([0, 1] − Q) is notweakly 
onvex from the theorem above. However, for C = {0, 1}, W ∩Cω isweakly 
onvex, sin
e there is no word w su
h that wω ∈W .5.3 Positional Determina
yBy Theorems 5.1 and 4.7, if A is 
o-
onvex then WF ′(A) is 
on
ave and thus�nitely half-positionally determined. However, the situation is di�erent forin�nite arenas.Proposition 5.5 If A is a non-trivial subset of C then WF ′(A) is not half-positionally determined.Proof of Proposition 5.5 Let x ∈ C − A, y ∈ A. Consider the gamewith two positions A and E where one 
an 
hoose a move. A is Adam'sposition, E is Eve's position. In the position E Eve 
an 
hoose a path goingto A through k edges of 
olor y, for ea
h integer k ≥ 1. Similarly, in A Adam
an 
hoose a path to E by k edges of 
olor x, for all integers k ≥ 1.38



E A
x

xx

xxx. . .
y

yy

yyy
. . .

If Eve is using a positional strategy, always 
hoosing the move generatingthe path yk, Adam 
an win 
hoosing xnk in the n-th round. In this 
ase thelimit of Pn(w) in x, hen
e Adam wins.However, Eve 
an win by using a non-positional strategy. This strategyis to 
hoose the move generating ynk in the round n, where k is the numberof x's generated in the last move of Adam. This ensures that y is a 
lusterpoint of Pn(w), hen
e Eve wins.Proposition 5.6 If A is not open then WF (A) is not half-positionally de-termined.
E x1 x2 x3 . . .

Proof of Proposition 5.6 Let x = limn→∞ xn, where x ∈ A and
xn /∈ A. Consider the game with only one Eve's position E and moves E →E labeled xn for ea
h positive integer n. Eve has only non-positional winningstrategies here.5.4 Simple Open SetIn this se
tion we show that WF (A) is half-positional for very simple 
losedsets A. The problem remains unsolved for more 
ompli
ated sets.39



Theorem 5.7 Let C = [0, 1], A = [0, 1/2). The 
ondition
WF (A) = {w : lim sup Pn(w) < 1/2}is half-positional.Proof of Theorem 5.7Let G = (PosA, PosE , Mov) be an arena. Consider the following pre�xdependent winning 
ondition for x ∈ [0, 1]:

WLx = {w : ∀nPn(w) ≤ x} (5.3)Let Lx = WinE(G,WLx), i. e. the set of positions v su
h that thereexists a winning strategy for Eve in the game starting from the position v.We will use the following lemma:Lemma 5.8 Let x < 1/2. In Lx Eve has a positional winning strategy in
(G,WF (A)).To apply Lemma 3.5 it remains to prove that if Lx is empty for ea
h
x < 1/2 then Adam has a winning strategy everywhere. Let (an) be anin
reasing sequen
e 
onvergent to 1/2. The strategy is as follows:
• For ea
h i = 1, 2, . . . :� Let t be the 
urrent time (i.e., length of the play so far), and

v be the 
urrent position. Sin
e v /∈ Lai
, we know that Adamhas a strategy whi
h guarantees that after some time t′ we get

P (w) > ai, where w is the 
olor word obtained from time t to t′.Adam uses this strategy until this happens.If Adam uses this strategy, we get an in�nite play whose 
olor word is
w = w1w2w3 . . ., where P (wi) > ai. One 
an easily 
he
k that, for ea
h i,there will be a t su
h that Pt(w) > ai. Thus, lim sup Pn(w) is at least 1/2.Proof of Lemma 5.8Let (Gx,WP1) (WP 1 is the parity 
ondition over C = {0, 1}) be the gamewhere:
• Posx

X = PosX ×R for X ∈ {A, E},
• For ea
h move v

t
→ w ∈ Mov and z ≥ 0 we have a move (v, z)

0
→

(w, z + x− t) in Movx, 40



• For ea
h move v
t
→ w ∈ Mov and z < 0 we have a move (v, z)

1
→ (w, z)in Movx.The number z in position (v, z) ∈ Posx de�nes Eve's reserve. Eve winsall in�nite plays where this reserve does not fall beyond 0 (if z falls beyond0, then it stays there).The plays in (Gx,WP1) 
an be proje
ted to (G,WLx). And vi
e versa, aplay in (G,WLx) starting in v 
an be raised to a play in (Gx,WP 1). One 
aneasily show that proje
ting and raising plays preserves the winner, providedthat in (Gx,WP1) we start in (v, 0) for some v. Hen
e Lx = {v : (v, 0) ∈

WinE(Gx,WP1)}.The parity 
ondition WP1 is positionally determined, thus the game
(Gx,WP1) we 
onstru
ted is positionally determined. Let s′ be a posi-tional strategy winning in WinE(Gx,WP 1). Clearly if z1 ≤ z2 then (v, z1) ∈
WinE(Gx,WP1) implies (v, z2) ∈ WinE(Gx,WP1). Let M be the set of vsu
h that (v, z) ∈ WinE(Gx,WP1) for some z ≥ 0; we have Lx ⊆ M . Let
x < y < 1/2. Consider the following strategy in M :

s(v) = π(s′(v, z(v) + (y − x))) (5.4)where π is the proje
tion from Movx to Mov, and
z(v) = inf{z : (v, z) ∈WinE(Gx)}. (5.5)Let (Gy,WP 1) be a game 
onstru
ted analogi
ally to (Gx,WP 1). One
an easily 
he
k that ea
h game starting in v ∈M whi
h is 
onsistent with sproje
ts to some play in (Gy,WP1) winning for Eve and starting in (v, z(v)).Hen
e the play in (G,WF (A)) satis�es the winning 
ondition WF (A).This theorem 
an be generalized to the following:Corollary 5.9 Let A = f−1({x ∈ R : x < 0}) for some a�ne fun
tion

f : C → R. Then, the 
ondition WF (A) is half-positional.Proof Let a0 = min f(C), a1 = max f(C). Let h be su
h that 0 ≤
1/2 + ha0 ≤ 1/2 + ha1 ≤ 1. Let G′ be the arena like G, ex
ept that werepla
e ea
h 
olor c with t(c) = 1/2 + hf(c). By our assumption, G′ is anarena over [0, 1], and one 
an easily 
he
k that Eve wins a play in (G,WF (A))i� she wins the 
orresponding play in (G′,WF ([0, 1/2))).41



5.5 SummaryThe following table summarizes what we know about 
on
avity and half-positional determina
y of geometri
al 
onditions. In every point ex
ept No. 0we assume that A is non-trivial, i.e. ∅ 6= A 6= C. The �rst two 
olumns spe
ifyassumptions about A and whether we 
onsider WF (A) or WF ′(A), and thelast three answer whether the 
onsidered 
ondition is 
on
ave and whether ithas �nite and/or in�nite half-positional determina
y. Negative answer meansthat the answer is negative for all sets A in the given 
lass; the question markmeans that the given problem has not been solved yet (but we suppose thatthe answer is positive).No. A 
ondition 
on
avity �nite in�nite0 trivial WF
′(A) or WF (A) yes yes yes1 not 
o-
onvex WF
′(A) or WF (A) no no no2 
o-
onvex WF

′(A) yes yes no3 
o-
onvex, not open WF (A) no yes? no4 
o-
onvex, open WF (A) weak only yes? yes?5 [12 , 1] ⊂ [0, 1] WF (A) weak only yes yesNote that, for any set A whi
h is 
o-
onvex and non-trivial, WF ′(A)is �nitely half-positionally determined, but not in�nitely half-positionallydetermined. This shows a big di�eren
e between half-positional determina
yon �nite and in�nite arenas.
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Chapter 6Games and Finite AutomataIn�nite games are strongly linked to automata theory. An a

epting run ofan alternating automaton (on a given tree) 
an be presented as a winningstrategy in a 
ertain game between two players. Parity games are relatedto automata on in�nite stru
tures with parity a

eptan
e 
ondition. Forexample, positional determina
y of parity games is used in modern proofs ofRabin's 
omplementation theorem for �nite automata on in�nite trees withMüller (or, equivalently, parity) a

eptan
e 
ondition. See [GTW02℄ for morelinks between in�nite games, automata, and logi
.In this 
hapter we 
on
entrate on the links between our subje
t and �niteautomata. Winning 
onditions are languages of in�nite words over C, andmany of those whi
h are used in theory and pra
ti
e are ω-regular. Exam-ples in
lude parity 
onditions, Rabin 
onditions (unions of parity 
onditions),and Müller 
onditions (whi
h are de�ned in the terms of 
olors whi
h appearin�nitely often). There are many equivalent de�nitions of the 
lass of ω-regular languages, whi
h generalizes the 
lass of regular languages of �nitewords. We will use deterministi
 �nite automata with parity a

eptan
e
ondition � a language L ⊆ Cω is ω-regular if it is a

epted by an au-tomaton of this kind. Other de�nitions use ω-regular expressions (whi
h area very e�e
tive method of expressing ω-regular languages, and are used inmany pla
es in this thesis), other kinds of automata (e.g. nondeterministi
Bü
hi automata), or notions of logi
. It is a well known fa
t that the 
lassof ω-regular languages is 
losed under operations su
h as union, interse
tion,negation, and homomorphi
 preimages and images. Sin
e �nite automataprovide ni
e �nite des
riptions for ω-regular languages, it is possible to givealgorithms whi
h 
he
k properties of an ω-regular winning 
ondition, giventhe automaton that a

epts it.First, we present the de�nition of a DFA with parity a

eptan
e 
ondition.In the next se
tion we show a 
lass of half-positional winning 
onditions43



de�ned using a �nite automaton (on �nite words). In the next two se
tions weshow what 
an be said about �nite half-positional determina
y of a winning
ondition whi
h is ω-regular. Pre
isely, we show that if an ω-regular winning
ondition is not half-positional then this is witnessed by a very simple arena,whi
h will lead us to an algorithm whi
h de
ides whether given winning
ondition is �nitely half-positional. In the last se
tion we show that 
on
avityof an ω-regular language is also de
idable.6.1 De�nitions and Pre�x Independen
eWe start by de�ning a DFA with parity a

eptan
e 
ondition.De�nition 6.1 A deterministi
 �nite automaton (DFA) on in�nitewords with parity a

eptan
e 
ondition is a tuple A = (Q, qI , δ, rank),where Q is a �nite set of states, qI ∈ Q the initial state, rank : Q →
{0, . . . , d}, and δ : Q × C → Q. We extend the de�nition of δ to δ :
Q × C∗ → Q by δ(q, ǫ) = q, δ(q, wu) = δ(δ(q, w), u) for w ∈ C∗, u ∈ C.For w ∈ Cω, let q0(w) = qI and qn+1(w) = δ(qn, wn+1) = δ(qI , w0 . . . wn+1).We say that the word w ∈ Cω is a

epted by A i� lim supn→∞ rank(qn(w))is even. The set of all words a

epted by A is 
alled language a

epted by
A (or, re
ognized by A) and denoted LA.Sin
e we are speaking about ω-regular winning 
onditions whi
h are pre�xindependent, we 
an assume that our automaton has additional properties� strong 
onne
tedness and irrelevan
e of initial state.Proposition 6.2 Let A = (Q, qI , δ, rank).(a) If A′ = (Q, q′I , δ, rank) where q′I = δ(qI , u) for u ∈ L∗, then w ∈ LA′i� uw ∈ LA.(b) If L(Q′,q,δ,rank) does not depend on q ∈ Q then LA is pre�x independent.(
) If A is strongly 
onne
ted (i.e. for ea
h q, q′ ∈ Q′ there is a word
w ∈ C∗ su
h that δ(q, w) = q′), and LA is pre�x independent, then L(Q,q,δ,rank)does not depend on q ∈ Q.(d) If LA is pre�x independent, then there is a subset Q′ ⊆ Q and q′I ∈ Q′su
h that LA = LA′ for A′ = (Q′, q′I , δ, rank), and A′ is strongly 
onne
ted,.Proof (a) qm+n(uw) = δ(qI , w|m+n) = δ(δ(qI , u), w|n) = q′n(w).(b) Let u ∈ C∗ be a word of length m, and w ∈ Cω. From (a) we easilyget that w ∈ LA i� uw ∈ LA.(
) Let A′ = (Q, q′, δ, rank). Let w0 be a word su
h that q′ = δ(qI , w0).We have w ∈ LA′ i� w0w ∈ LA, whi
h is equivalent to w ∈ LA.44



(d) Like in the proof of (
) we 
an 
hange the initial state. If some statesare not rea
hable from the 
urrent initial state, we 
an remove them fromout automaton. Repeat until the obtained automaton is strongly 
onne
ted.Strong 
onne
tedness is not su�
ient for pre�x independen
e � for ex-ample, the language (b∗
ab

∗
a)∗bω ⊆ {a,b}ω is not pre�x independent, but it
an be re
ognized with a strongly 
onne
ted automaton with 2 states. Pre�xindependen
e of an ω-regular language 
an be 
he
ked using standard te
h-niques from automata theory (building automata re
ognizing LA − LA′ and

LA′ − LA, for ea
h automaton A′ with 
hanged initial state, and testing itsemptiness).6.2 Monotoni
 AutomataIn this se
tion we show yet another 
lass of half-positionally determinedwinning 
onditions whi
h is based on an idea 
oming from automata theory,and guarantees half-positional determina
y even for in�nite arenas. We needto introdu
e a spe
ial kind of deterministi
 �nite automaton (on �nite words).De�nition 6.3 A monotoni
 automaton A = (n, δ) over an alphabet Cis a deterministi
 �nite automaton (on �nite words) where:
• the set of states is Q = {0, . . . , n};
• the initial state is 0, and the a

epting state is n;
• the transition fun
tion δ : Q × C → Q is monotoni
 in the �rst 
om-ponent, i.e., if q ≤ q′ then δ(q, c) ≤ δ(q′, c).A
tually, we need not require that the set of states is �nite. All the resultspresented here ex
ept for Theorem 7.13 and the remark about �nite memoryof Adam 
an be proven with a weaker assumption that Q has a minimum(initial state) and its ea
h non-empty subset has a maximum.The fun
tion δ is extended to C∗ as in De�nition 6.1; this extension isstill monotoni
. By LA we denote the language a

epted (re
ognized) by A,i.e., the set of words w ∈ C∗ su
h that δ(0, w) = n.Example 6.4 Let C = {a,b, c}. Monotoni
 automata 
an re
ognize the fol-lowing languages: C∗

a
nC∗, C∗

a
n−1

bC∗, C∗
ba

n−1C∗. Monotoni
 automata
annot re
ognize the following languages: C∗
a

2
b

2C∗, C∗
babC∗, C∗

bacC∗.45
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C∗

ba
3C∗The pi
tures illustrate automata re
ognizing these languages, for n =

4. (To show that the other languages are not re
ognizable by monotoni
automata, one 
an use e.g. Theorem 6.6 or Proposition 6.7 below.)De�nition 6.5 Amonotoni
 
ondition is a winning 
ondition of the form
WM A = Cω − Lω

A for some monotoni
 automaton A.Note that if w ∈ LA then uw ∈ LA for ea
h u ∈ C∗. Hen
e LA = C∗LA,thus LA and WM A are pre�x independent for ea
h A. Also, Lω
A is equal to

LA(C∗LA)ω = (LAC∗)ω, hen
e without a�e
ting WM A we 
an assume that
δ(n, c) = n for ea
h c.Theorem 6.6 Any monotoni
 
ondition is half-positional.46



In Se
tion 8.2 we analyze memory required by Adam to win in his winningset.Proof of Theorem 6.6Let A = (n, δ) be a monotoni
 automaton, and G = (PosA, PosE , Mov)be an arena. We will show that the game (G,WM A) is half-positionallydetermined.We will 
onstru
t a new game on the arena G′ = (Pos′A, Pos′E , Mov′)over the set of 
olors C ′ = {0, 1} with the parity 
ondition WP1, where
Pos′X = PosX × Q. For ea
h move v1

c
→ v2 in G, in G′ we have moves

(v1, q)
c′
→ (v2, δ(q, c)) for ea
h q ≤ n; c′ = 0 for q < n and 1 for q = n. (Weassumed that δ(n, c) = n, whi
h means that after rea
hing q = n Adam willwin, unless the play ends �nitely.)The game (G′,WP1) is positionally determined, therefore Pos′ 
an besplit into the winning sets of both players, Win′

A and Win′
E, and in Win′

E wehave a positional winning strategy for Eve, s′ : Win′
E → Mov. Let M ⊆ Posbe the set of v su
h that (v, 0) ∈Win′

E .There are two 
ases:1. M = ∅. We will show that Adam has a winning strategy in (G,WM A)from ea
h position. This strategy is implemented by the followingalgorithm:
• Let v1 be the starting position (after R1 = 0 moves);
• For i = 1, 2, 3, . . .:
• After Ri moves we are in position vi. In G′, Adam has a strategyensuring rea
hing from (vi, 0) to some state belonging to the set

N = {(v, n) : v ∈ G}. Adam uses a proje
tion of this strategy(ignoring Ri moves whi
h have been made before rea
hing vi),until he rea
hes N in G′. Let vi+1 be the vertex rea
hed in G.The word w 
reated by 
olors of moves made in meantime satis�es
δ(0, w) = n.The word 
reated between the Ri-th and Ri+1-th move belongs to LA,therefore the in�nite word 
reated during the whole play does not be-long to WM A.2. M 6= ∅. We will show that Eve has a positional winning strategy in

(G,WM A) for ea
h starting position v0 ∈M .Note that if q1 < q2 and (v, q2) ∈Win′
E then also (v, q1) ∈Win′

E. (Thesituation with smaller q is better for Eve.) For v ∈ M we denote by
H(v) the greatest q for ea
h (v, q) ∈Win′

E.47



We de�ne Eve's positional strategy in the game (G,WM A) in the set
M in the following way: for v ∈M , s(v) = α(s′(v, H(v))), where α(p′)for a move p′ ∈ Mov′ is the move in Mov su
h that p′ is derived from p(in 
ase if there are many su
h moves, α(p′) 
an be any one of them).Let π be a play 
onsistent with the strategy s, and vi = target(πi)for i > 0. Let qi = δ(0, v1v2 . . . vi) be the state of the automaton whenrea
hing vi. We will show by indu
tion that for all i we have qi ≤ H(vi),and therefore qi < n and vi ∈ M . Obviously q0 = 0 ≤ H(v0). Now,assume that qi ≤ H(vi); we will show that qi+1 ≤ H(vi+1).Suppose vi ∈ PosE. This means that vi+1 = target(s(vi)), and thus,
target(s′(vi, H(vi))) is (vi+1, q) for some q. Sin
e qi ≤ H(vi), qi+1 =
δ(vi+1, rank(s(vi))), q = δ(H(vi), rank(s(vi))), and δ is monotoni
, wehave qi+1 ≤ q. On the other hand, we know that (vi+1, q) ∈ Win′

E,therefore q ≤ H(vi+1). Hen
e indeed qi+1 ≤ H(vi+1).Now, suppose vi ∈ PosA. Then vi+1 = target(p) for some move pfrom vi. The move p gives rise to moves p1 = ((vi, qi)
0
→ (vi+1, qi+1))and p2 = ((vi, H(vi))

0
→ (vi+1, q)) in Mov′. Sin
e qi ≤ H(vi), bymonotoni
ity of δ we obtain qi+1 ≤ q. We also have q ≤ H(vi+1), sin
eotherwise Adam 
ould leave Eve's winning set in G′ (using the move

p2).Sin
e for ea
h i we have qi ≤ H(vi) < n, the word v1v2 . . . has to belongto WM A.Half-positional determina
y follows from Lemma 3.5.From this theorem, together with Example 6.4 above, one 
an see thate.g. WAn, the 
omplement of the set of words 
ontaining an in�nitely manytimes, is monotoni
, and thus half-positionally determined.For n = 1 the set WAn is just a 
o-Bü
hi 
ondition. However, for n > 1it is easily shown that WAn is not (fully) positionally determined, and alsothat it is not 
on
ave. For example, for n = 2 the word (bababbabab)ω isa shu�e of (bbbaa)ω and (aabbb)ω .Proposition 6.7 All monotoni
 
onditions are weakly 
on
ave.Proof Let A = (n, δ) be a monotoni
 automaton. We will show astronger property, namely that, for ea
h sequen
e of words w1, w2, . . ., if
∀iw

ω
i ∈ Lω

A, then w1w2w3 . . . ∈ Lω
A. (We don't use the assumption that

w1w3w5 . . . ∈ Lω
A and w2w4w6 ∈ Lω

A.)48



We will assume that δ(n, c) = n for ea
h c.Sin
e wω
i /∈ WM A, we have that δ(q, wi) > q for ea
h q < n. Otherwise,if for some q we had δ(q, wi) ≤ q, then, from monotoni
ity of δ, δ(q′, wi) ≤ qfor ea
h q′ ≤ q, thus A will not a

ept any pre�x of wω

i , be
ause we will neverrea
h the state n starting from the state 0 ≤ q.Hen
e δ(0, wm+1wm+2wm+3 . . . wm+n) = n for ea
h m ∈ N. Thus, theword w1w2w3 . . . is indeed in Lω
A, and is not in WM A.Proposition 6.8 Monotoni
 
onditions are 
losed under �nite union.Proof It 
an be easily shown that Cω − WA1

∪ WA2
= Lω

A1
∩ Lω

A2
=

(C∗LA1
)ω∩(C∗LA2

)ω = (C∗LA1
C∗LA2

)ω = (LA1
LA2

)ω. The language LA1
LA2is re
ognized by the monotoni
 automaton As = (n1 +n2, δ), where δ(q, c) =

δ1(q, c) for 0 ≤ q < n1 and δ(n1 + q, c) = n1 + δ2(q, c) for 0 ≤ q ≤ n2.Monotoni
 
onditions are not 
losed under other Boolean operations.6.3 Simplifying the Witness ArenaTo show that �nite half-positional determina
y of winning 
onditions whi
hare pre�x independent ω-regular languages is de
idable, we �rst need to showthat if W is not �nitely half-positional, then it is witnessed by a simple arena.Theorem 6.9 Let W be a winning 
ondition a

epted by a deterministi
�nite automaton with parity a

eptan
e 
ondition
A = (Q, qI , δ, rank : Q→ {0 . . . d})(see De�nition 6.1). If W is not �nitely half-positional then there is a witnessarena (i.e. su
h that Eve has a winning strategy, but no positional winningstrategy) where there is only one Eve's position, and only two moves fromthis position. (There is no restri
tion on Adam's moves and positions.)Proof Let G be any �nite witness arena. Without loss of generalitywe 
an assume that Eve has a winning strategy everywhere (otherwise werestri
t our arena to Eve's winning set). First, we will show how to redu
ethe number of Eve's positions to just one. Then, we will show how to removeunne
essary moves.Let G0 = (PosA × Q, PosE × Q, Mov0) and G1 = (PosA × Q, PosE ×

Q, Mov1) where for ea
h move v1
c
→ v2 in G and ea
h state q we have 
or-responding moves (v1, q)

c
→ (v2, δ(q, c)) in Mov0 and (v1, q)

rank(q)
→ (v2, δ(q, c))49



in Mov1. The three games (G, W ), (G0, W ) and (G1,WPd) are equivalent:ea
h play in one of them 
an be interpreted as a play in ea
h another, andthe winner does not 
hange for in�nite plays.More spe
i�
ally, the 
orresponden
e between G0 and G is based on re-pla
ing ea
h position v by a set U(v) = {(v, q) : q ∈ Q}. For ea
h element wof U(v) if there is a move v
c
→ v′, then there exists a move w

c
→ w′ for some

w′ ∈ U(v′). Also, if there is a move w
c
→ w′ for some w ∈ U(v), w′ ∈ U(v′),then there is a move v

c
→ v′.Between G0 and G1, the only di�eren
e is the rank fun
tion, thus playsin one of them 
an be interpreted as plays in the other in the obvious way.(There is a slight te
hni
al di�
ulty, as it is possible that several moves in

G0 
orrespond to the same move in G1. Then, we 
an pi
k any of them wheninterpreting a play in G1 as a play in G0.) To see that the winner does not
hange, take a play π = π0π1π2 . . . in G0, and let (vi, qi) = source(πi). In thegame G0 the 
olor of πi is ci, and the 
olor of the 
orresponding move in G1 is
rank(qi). From de�nition of G0, by indu
tion we have qi = δ(qI , c1c2 . . . ci), soEve wins i� lim sup rank(qi) is even � whi
h agrees with the parity 
onditionin G1.Sin
e Eve has a winning strategy in (G, W ), she also has a winning strat-egy in (G1,WPd). This game is positionally determined, so she also has apositional strategy here. She 
an use the 
orresponding positional strategyin (G0, W ) too.Let s be Eve's positional winning strategy in G0. Let

N(s) = {v : ∃q1∃q2 π1(target(s(v, q1))) 6= π1(target(s(v, q2)))},i.e. the set of positions where s is not positional as a strategy in G. Sin
ethe arena is �nite, we 
an assume without loss of generality that there is nopositional winning strategy s′ in G0 su
h that N(s′) ( N(s).If N(s) was empty, then we 
ould use s as a positional strategy in G, whi
hwould 
ontradi
t our assumption that G is a witness arena. Let v0 ∈ N(s).We 
onstru
t a new arena G2 from G0 in two steps.First, merge {v0}×Q into a single position v0. Eve 
an transform s into awinning (non-positional) strategy s1 in this new game � the only di�eren
eis that in v0 she needs to remember in what state q she is 
urrently, and movea

ording to s(v0, q).Then, for all Eve's positions ex
ept v0, remove all moves whi
h are notused by s (and thus by s1). Eve still wins by s1, sin
e she did not lose anyoptions used by s1. Now, transfer all Eve's positions ex
ept v0 to Adam. Evestill wins by s1, sin
e there was no 
hoi
e in these positions.Thus, we obtained an arena G2 with only one Eve's position v0, whereshe has a winning strategy from v0. 50



Eve has no winning positional strategy in G2. Indeed, suppose that su
ha strategy exists. Then it 
an be simulated without 
hanging the winner(in the natural way) by a strategy s2 in G, positional in all positions ex
ept
N(s) − {v0}. Let G∗ be G without moves whi
h are not used by s2 � s2remains a winning strategy on G∗. Let G0

∗ be the arena obtained from G∗in the same way as we obtained G0 from G. Let s3 be Eve's positionalwinning strategy on G0
∗ (whi
h exists sin
e Eve had a winning strategy on

G∗); as a strategy on G0, it is also winning, and has N(s3) ( N(s). This
ontradi
ts our assumption that N(s) is minimal, so Eve has no winningpositional strategy in G2,Hen
e we have found a witness arena where |PosE| = 1. (Note that we
an assume that Eve has at most |Q| moves here � Eve's positional winningstrategy on G0 
annot use more than |Q| moves from positions derived from
v0, so unused moves 
an be safely removed.)Now, suppose that G is an arbitrary witness arena with only one Eve'sposition. We will 
onstru
t a new arena with only two possible moves forEve. The 
onstru
tion goes as follows:
• We 
onstru
t G0 as before.
• We start with G3 = G0. Let s be Eve's winning strategy in G3.
• For ea
h of Eve's |Q| positions in G3, we remove all moves ex
ept theone whi
h is used by s.
• (⋆) Let v1 and v2 be two Eve's positions in G3.
• We merge Eve's positions v1 and v2 into one, v0.
• Eve still has a winning strategy everywhere in this new game (by a rea-soning similar to one we used for G2). We 
he
k if Eve has a positionalwinning strategy.
• If yes, we remove the move whi
h is not used in v0, and go ba
k to(⋆). (Two distin
t Eve's positions in G3 must still exist � if we wereable to merge all Eve's positions into one, it would mean that G waspositionally determined.)
• Otherwise G3 is now a witness arena. In all Eve's positions ex
ept v0there is only one move, so we 
an safely transfer them to Adam, and

G3 will remain a witness arena.
• In G3 we have now only one Eve's position (v0) and only two Eve'smoves � one inherited from v1 and one inherited from v2.51



6.4 De
idabilityTheorem 6.10 Let W be a (pre�x independent) ω-regular winning 
onditionre
ognized by a DFA with parity a

eptan
e 
ondition
A = (Q, qI , δ, rank : Q→ {0 . . . d})with n states. Then �nite half-positional determina
y of W is de
idable intime nO(n2).Proof It is enough to 
he
k all possible witness arenas whi
h agreewith the hypothesis of Theorem 6.9. Su
h arena 
onsists of (the only) Eve'sposition E from whi
h she 
an move to A1 by move p1 or to A2 by move

p2. Sin
e we are working on ǫ-arenas (see Se
tion 2.5), we 
an assume that
Ai 6= E, and also that these two moves are ǫ-moves; otherwise we add a newAdam's position �in the middle of the move� and 
onne
t it with an ǫ-move.Adam has a 
hoi
e of word w by whi
h he will return to E from Ai. (Ingeneral it is possible that Adam 
an 
hoose to never return to E. However,if su
h in�nite path was winning for Eve, he would not 
hoose it, and if itwould be winning for Adam, Eve would never hope to win by 
hoosing tomove to Ai, thus she would always have to 
hoose the other move, and thusour arena wouldn't be a witness.) Let Li be the set of all possible Adam'sreturn words from Ai to E.Let T (w) : Q → {0, . . . , d} × Q be the fun
tion de�ned as follows:
T (w)(q) = (r, q′) i� δ(q, w) = q′ and the greatest rank visited during thesetransitions is r. The fun
tion T (w) 
ontains all the information about w ∈ Liwhi
h is important for our game: if T (w1) = T (w2) then it does not matterwhether Adam 
hooses to return by w1 or w2 (the winner does not 
hange).Thus, instead of Adam 
hoosing a word w from Li, we 
an assume that Adam
hooses a fun
tion t from T (Li) ⊆ T (C∗) ⊆ (Q× {0, . . . , d})Q.For non-empty R ⊆ {0, . . . , d}, let bestA(R) be the priority whi
h is thebest for Adam, i.e. the greatest odd element of R, or the smallest even oneif there are no odd priorities in R. We also put bestA(∅) = ⊥.For T ⊆ (Q× {0, . . . , d})Q, let

U(T )(q1, q2) = bestA({d : ∃t ∈ T t(q1) = (d, q2)}).Again, the fun
tion Ui = U(T (Li)) : Q ×Q→ {⊥, 0, . . . , d} 
ontains all theinformation about Li whi
h is important for our game � if Adam 
an go52



from q1 to q2 by one of two words w1 and w2 having the highest priorities
d1 or d2, respe
tively, he will never want to 
hoose the one whi
h is worse tohim.Our algorithm 
he
ks all possible fun
tions Ui. For this, we need toknow whether a parti
ular fun
tion U : Q × Q → {⊥, 0, . . . , d} is of form
U(T (Li)) for some Li. This 
an be done in following way. We start with
V (q, q) = ⊥. Generate all elements of T (Li). This 
an be done by doing asear
h (e.g. breadth �rst sear
h) on the graph whose verti
es are T (w) andedges are T (w)→ T (wc) (T (wc) obviously depends only on T (w)). For ea
hof these elements, we 
he
k if it does not give Adam a better option than
U is supposed to give � i.e. for some q1 we have T (wc)(q1) = (q2, d) and
d = bestA(d, U(q1, q2)). If it does not, we add T (w) to our set T and update
V : for ea
h q1, T (wc)(q1) = (q2, d), we set V (q1, q2) := bestA(d, V (q1, q2)).If after 
he
king all elements of T (Li) we get V = U , then U = U(T ).Otherwise, there is no L su
h that U = U(T (L)).The general algorithm is as follows:
• Generate all possible fun
tions U of form U(T (L)).
• For ea
h possible fun
tion U1 des
ribing Adam's possible moves afterEve's move p1 su
h that Eve 
annot win by always moving with p1:
• For ea
h U2 (likewise):
• Che
k if Eve 
an win by using a non-positional strategy. (This is doneeasily by 
onstru
ting an equivalent parity game whi
h has 3|Q| ver-ti
es: {E, A1, A2} ×Q.) If yes, then we found a witness arena.Time 
omplexity of the �rst step is O(dO(|Q|2)(d|Q|)|Q||C|) (for ea
h of

dO(|Q|2) fun
tions, we have to do a BFS on a graph of size (d|Q|)|Q|). Theparity game in the fourth step 
an be solved with one of the known algorithmfor solving parity games, e.g. with the 
lassi
al one in time O(O(|Q|)d/2).This is done O(dO(|Q|2)) times. Thus, the whole algorithm runs in time
O(dO(|Q|2)|Q||Q||C|).In the proof above the witness arena we �nd is an ǫ-arena: we did notassign any 
olors to moves p1 and p2. If we want to 
he
k whether the given
ondition is A-half-positional or B-half-positional (see Se
tion 2.5), similar
onstru
tions work. For B-half-positional determina
y, we need to not only
hoose the sets U1 and U2, but also 
hoose spe
i�
 
olors c1 and c2 for bothmoves p1 and p2 in the algorithm above, and take 
are of the 
ase when
A1 = E or A2 = E. For A-half-positional determina
y, we need to 
hoose53



spe
i�
 
olors for targets of these two moves, and also a 
olor for Eve'sposition E.On
e we know that an ω-regular winning 
ondition W is indeed �nitelyhalf-positional, we 
an use the following algorithm to solve a game.Proposition 6.11 Suppose that G is an arena with n positions, and W is�nitely half-positional and ω-regular, given by a DFA with parity a

eptan
e
ondition on in�nite words using s states and d ranks.Then the winning sets for Eve and Adam in the game (G, W ) 
an befound in time O((ns)d/2), and Eve's positional strategy 
an be found in time
O((ns)d/2t), where t =

∑
v∈PosE

log |vMov|, where |vMov| is the number ofmoves outgoing from v.Proof As in the proof of Theorem 6.9, we transform our game (G, W )(with n positions) into a parity game (G2,WPd) (with ns positions). Win-ning sets and positional strategies in su
h a game 
an be determined in time
O((ns)d/2) (see e.g. [GTW02℄).To obtain Eve's strategy, we use the following redu
tion of the problem of�nding Eve's positional winning strategy to the problem of �nding the win-ning sets for both players (whi
h a
tually works for all �nitely half-positionalwinning 
onditions � not only ω-regular ones). If we remove Eve's movewhi
h is not used by her winning strategy, WinE does not 
hange. Thus, we
an try to remove half of moves outgoing from one of Eve's positions, andsee if WinE 
hanges � if yes, then Eve should use one of removed moves,otherwise Eve should use one of the remaining moves. We 
ontinue doingthis until only one move remains in ea
h Eve's position.6.5 ω-regular Con
ave ConditionsThe following proposition shows that 
on
avity (see Chapter 9) is de
idablefor ω-regular language in polynomial time. As shown in Theorem 4.7, 
on
avewinning 
onditions are �nitely half-positional.Proposition 6.12 Suppose that a winning 
ondition W is given by a DFAwith parity a

eptan
e 
ondition using s states and d ranks. Then there existsa O(s6d3|C|) algorithm determining whether W is 
on
ave (or 
onvex).De�nition 6.13 For q1, q2, q3, r1, r2, r3 ∈ Q, n1, n2, n3 ∈ {⊥, 0, . . . , d}, wesay that P (q1, r1, n1, q2, r2, n2, q3, r3, n3) i� there exists a word w3 ∈ C∗ beinga shu�e of w1 and w2 su
h that for ea
h k ∈ {1, 2, 3} we have δ(qk, wk) = rk,54



and nk is the greatest rank of states appearing while the automaton works on
wk starting from qk, i.e. nk = maxwk=uv rank(δ(qk, u)). In 
ase if wk = ǫ wetake nk = ⊥.Lemma 6.14 LA is not 
onvex i� for some q1, q2, q3, m1, m2, m3, n1, n2, n3we have P (qI , q1, m1, qI , q2, m2, qI , q3, m3) and P (q1, q1, n1, q2, q2, n2,
q3, q3, n3) and n1, n2 are even and n3 is odd. (⊥ is 
onsidered neither evennor odd.)Proof(←) Let u1, u2 and u3 be the words from 6.13 whi
h are witnesses for
P (qI , q1, m1, qI , q2, m2, qI , q3, m3), and v1, v2 and v3 be the words whi
h arewitnesses for P (q1, q1, n1, q2, q2, n2, q3, q3, n3). Let wk = ukv

ω
k . It 
an beeasily shown that w3 is a shu�e of w1 and w2 and w1, w2 ∈ LA but w3 /∈ LA.(→) Suppose that LA is not 
onvex, i.e., w3 is a shu�e of w1 and w2, and

w3 /∈ LA.Let f : ω → {1, 2} be a fun
tion su
h that wk = Πnw3
n
[f(n)=k] for k = 1, 2.(As on page 32, w[φ] denotes w if φ, ǫ otherwise.)Let q3

0 = qI , q3
n+1 = δ(q3

n, w
3
n+1). For k = 1, 2 let qk

0 = qI , qk
n+1 =

δ(qk
n, w

k
n+1) if f(n + 1) = k, and qk

n otherwise. Let Sk = lim sup qk for
k = 1, 2, 3.Sin
e w1, w2 ∈ LA and w3 /∈ LA, we have that S1 and S2 are both even,but S3 is not. It 
an be easily shown that there exist some a, b su
h that forall k = 1, 2, 3 we have qk(a) = qk(b), and ∃m ∈ {a . . . b}rank(qk

m) = Sk.Let qk = qk(a) and nk = Sk for k = {1, 2, 3}. It 
an be easily seen thatour hypothesis holds.Proof of Proposition 6.12 As we 
an see, to determine if LA is 
onvexit is enough to 
ompute the predi
ate P and 
he
k the 
ondition given inLemma 6.14. Now, P satis�es the following rules: (∨ means maximum,where ⊥ is smaller than everything else)
• (1) For ea
h q1, q2, q3, P (q1, q1,⊥, q2, q2,⊥, q3, q3,⊥);
• (2) For ea
h q1, r1, n1, q2, r2, n2, q3, r3, n3, c, if the predi
ate P satis�es

P (q1, r1, n1, q2, r2, n2, q3, r3, n3) and δ(r1, c) = s1 and δ(r3, c) = s3 then
P (q1, s1, n1 ∨ rank(s1), q2, r2, n2, q3, s3, n3 ∨ rank(s3)).
• (3) For ea
h q1, r1, n1, q2, r2, n2, q3, r3, n3, c; if the predi
ate P satis�es

P (q1, r1, n1, q2, r2, n2, q3, r3, n3) and δ(r2, c) = s2 and δ(r3, c) = s3 then
P (q1, r1, n1, q2, s2, n2 ∨ rank(s2), q3, s3, n3 ∨ rank(s3)).55



Rule (1) 
orresponds to taking ǫ as the word w3 from De�nition 6.13, andrules (2) and (3) 
orrespond to adding one letter c to w1 and w2, respe
tively.Now, the algorithm of 
omputing P is as follows: whenever we dis
overthat P (q1, r1, n1, q2, r2, n2, q3, r3, n3) for some parameters, we 
lose it under(2) and (3); our initial knowledge is given by (1). If P (q1, r1, n1, q2, r2, n2,
q3, r3, n3), then our algorithm will �nd it out � by using a sequen
e of ap-pli
ations of rules (1), (2) and (3) whi
h 
orresponds to the words w1, w2, w3(from De�nition 6.13). Also, if our algorithm �nds out that P (q1, r1, n1,
q2, r2, n2, q3, r3, n3), we 
an re
onstru
t the words w1, w2, w3 by analyzingthe sequen
e of appli
ations of rules whi
h our algorithm used.
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Chapter 7Unions of Half-positionalWinning ConditionsIn Theorem 3.7 we have shown that a union of any half-positional winning
ondition and a Bü
hi winning 
ondition is half-positional. In Proposition4.4 we have shown that a union of 
on
ave winning 
onditions is also 
on
aveand thus also half-positional. In Proposition 6.8 we have shown that a unionof �nitely many monotoni
 
onditions is also monotoni
 and thus also half-positional. It is a known fa
t that Rabin winning 
onditions, whi
h are �niteunions of parity 
onditions, are half-positional [Kla92℄.All these fa
ts suggest that the following holds.Conje
ture 7.1 Let W be a (�nite, 
ountable, . . . ) family of (�nitely) half-positional winning 
onditions. Then ⋃
W is a (�nitely) half-positional win-ning 
ondition.This 
onje
ture, whi
h was one of the main motivations of our resear
h, isstill an open problem. Note again that we assume pre�x independen
e here.It is very easy to �nd two pre�x dependent winning 
onditions whi
h arepositionally determined, but their union is not half-positionally determined.In the �rst se
tion, we show that this 
onje
ture fails for non-
ountableunions and in�nite arenas, even for su
h simple 
onditions as Bü
hi and 
o-Bü
hi 
onditions. In the se
ond se
tion, we present a broad 
lass of winning
onditions whi
h is 
losed under 
ountable union, and in
ludes some of thepreviously mentioned winning 
onditions. In the third se
tion we present ayet broader 
lass of winning 
onditions, whi
h has even more 
losure prop-erties (although is known to be 
losed only under �nite union). In the lastse
tion we show one more example where this 
onje
ture holds � a union ofa monotoni
 and a 
on
ave 
ondition.57



7.1 Un
ountable UnionsTheorem 7.2 There exists a family of 2ω Bü
hi 
onditions su
h that itsunion is not a half-positionally determined winning 
ondition.There exists a family of 2ω 
o-Bü
hi 
onditions su
h that its union is nota half-positionally determined winning 
ondition.Proof
E A0

(0, r) : r ∈ N

A1

(1, r) : r ∈ N

A2

⋆

(2, r) : r ∈ N

A3

(3, r) : r ∈ NLet I = ωω.Our arena G over C = ω × ω ∪ {⋆} 
onsists of one Eve's position E andin�nitely many Adam's positions (An)n∈ω. In E Eve 
an 
hoose n ∈ ω andgo to An by move E
⋆
→ An. In ea
h An Adam 
an 
hoose r ∈ ω and returnto E by move An

(n,r)
→ E.For ea
h y ∈ I, let Sy = {(n, yn) : n ∈ ω} ⊆ C, and S ′

y = C − Sy − {⋆}.Let WA1 =
⋃

y∈I WBSy
, WA2 =

⋃
y∈I WB ′

S′

y
.The games (G,WA1) and (G,WA2) are not half-positionally determined.Let (nk) and (rk) be n and r 
hosen by Eve and Adam in the k-th round,respe
tively. If Eve always plays nk = k, she will win both the 
onditions

WBSy
and WB ′

S′

y
, where yk = rk. However, if Eve plays with a positionalstrategy nk = n, Adam 
an win by playing rk = k.7.2 Positional/suspendable ConditionsDe�nition 7.3 A suspendable winning strategy for player X is a pair

(s, Σ), where s : PlayX → Mov is a strategy, and Σ ⊆ PlayF , su
h that:
• s is de�ned for every �nite play π su
h that target(π) ∈ PosX ∩WinX ,where WinX is X's winning set;58



• every in�nite play π that is 
onsistent with s from some point1 t has apre�x π′ longer than t su
h that π′ ∈ Σ and target(π′) ∈WinX ;
• Every in�nite play π that has in�nitely many pre�xes in Σ is winningfor X.We say that a player X has a suspendable winning strategy in M ⊆

G i� he has a suspendable winning strategy and M ⊆WinX .Intuitively, if at some moment X de
ides to play 
onsistently with s, theplay will eventually rea
h Σ; Σ is the set of moments when X 
an temporarilysuspend using the strategy s and return to it later without a risk of ruininghis or her vi
tory, as long as the play did not leave X's winning set.A suspendable winning strategy is a winning strategy fromWinX , be
ausefrom the 
onditions above we know that ea
h play whi
h is always 
onsistentwith s has in�nitely many pre�xes in Σ, and thus is winning for X.De�nition 7.4 A winning 
ondition W is positional/suspendable if forea
h arena G in the game (G, W ) Eve has a positional winning strategy fromher winning set WinE and Adam has a suspendable winning strategy in hiswinning set WinA, and WinE ∪WinA = Pos.Example 7.5 The 
o-Bü
hi 
ondition WB ′
S is positional/suspendable.Proof Adam wants to rea
h 
olors from the set S in�nitely often. Weknow that both players have positional winning strategies in their winningsets. Adam's suspendable winning strategy in WinA is (s, Σ), where s is hispositional winning strategy, and π ∈ Σ i� rank(play|π|) ∈ S.We know that if Adam plays 
onsistently with s from some moment, thenhe eventually rea
hes S, whi
h means that he 
an suspend using s and dowhatever he wants. If the play does not leave WinA, he 
an de
ide to 
ontinueusing s and rea
h S again. If he repeats suspending and 
ontinuing in�nitelymany times, S is rea
hed in�nitely many times, thus Adam wins.Example 7.6 The Bü
hi 
ondition WBS for ∅ ( S ( C is not positional/sus-pendable.1That is, for ea
h pre�x u of π whi
h is longer than t and su
h that target(u) ∈ PosX ,the next move is given by s(u). 59



Proof Aa bWithout loss of generality, C = {a,b}, S = {a}. Adam has a winningstrategy from ea
h position in the arena above. However, he has no suspend-able strategy: if he suspends s in�nitely many times, it is possible that theplay used the move of 
olor a in�nitely times while s �was not wat
hing�,whi
h means that Eve wins.Although no Bü
hi 
onditions, and thus no parity 
onditions WPn for
n > 1, are positional/suspendable, winning 
onditions with this propertyare 
ommon. Some of 
onditions whi
h we have previously shown to behalf-positional are a
tually positional/suspendable.Theorem 7.7 Let C = [0, 1], A = [0, 1/2). The 
ondition WF (A) = {w :
lim sup Pn(w) < 1/2} given in Theorem 5.9 is positional/suspendable.Proof Consider Adam's strategy given in the proof of 5.9. That strategyled us to a word w = w1w2w3 . . ., where P (wi) > ai. If we allow an initialsegment to be played not a

ording to this strategy, we will get a word
w = uwiwi+1 . . . instead. Still, there will be a t su
h that Pt(w) > ai; and we
an suspend at time t. Thus, lim sup Pn(w) is still at least 1/2.Note that WF (A1) ∪WF (A2) usually is not equal to WF (A1 ∪ A2), soa union of positional/suspendable 
onditions given above usually is not ofform WF (A) itself.Theorem 7.8 Any monotoni
 
ondition (Theorem 6.6) is positional/sus-pendable.Proof Again, Adam's strategy given in the proof of 6.6 is suspendable,be
ause he 
an suspend his strategy after ea
h step of the iteration. Co-Bü
hi
ondition is a spe
ial 
ase of this.For the next theorem, we need the following lemma.Lemma 7.9 Let W be a winning 
ondition. Suppose that, for ea
h non-empty arena G, either there exists a non-empty subset M ⊆ G where Eve hasa positional winning strategy from M , or Adam has an suspendable winningstrategy everywhere. Then W is positional/suspendable.60



Proof Let G be an arena. From Lemma 3.5 for half-positional winning
onditions we know that W is half-positional, and Pos = WinE ∪WinA. Let
G′ be the subarena with positions Pos′X = PosX∩WinA and all moves betweenthis positions. From our hypothesis we know that Adam has a suspendablewinning strategy everywhere in G′. This strategy is also a suspendable win-ning strategy in WinA in G.This lemma 
ould also be proven in a di�erent way. Our de�nitionsallow us to de�ne new determina
y types D (see page 15), of (�nitely) po-sitional/suspendable winning 
onditions. By methods similar to Theorem3.3 we 
an show that su
h D's are natural, and thus, Lemma 3.5 holds forthem. Lemma 7.9 is then a spe
ial 
ase of Lemma 3.5. However, theorem3.7 does not, as ∅ is a positional/suspendable winning 
ondition, while theBü
hi 
ondition is not.Theorem 7.10 A union of 
ountably many positional/suspendable 
ondi-tions is also positional/suspendable.Proof of Theorem 7.10 Let {W1, W2, . . .} be a 
ountable set of posi-tional/suspendable 
onditions. We will use Lemma 7.9.If for some i we have M ⊆ WinE(G, Wi), then Eve also wins from M in
(G,

⋃
i Wi) as well, by using the same positional strategy.Now assume that, for ea
h i, we have WinE(G, Wi) = ∅, hen
e for every

i, Adam has a suspendable strategy (si, Σi) in (G, Wi). We will de�ne asuspendable Adam's strategy (s, Σ) winning everywhere in (G,
⋃

i Wi).Let (ik)k∈ω be a sequen
e where every index i appears in�nitely often. Byindu
tion on the length of play π, we de�ne s(π), as well as whether π ∈ Σor not. Let π be a play whose exa
tly k proper pre�xes are in Σ. Then,
s(π) = sik(π), and π ∈ Σ i� π ∈ Σik .Intuitively, the strategy of Adam is to �rst play 
onsistently with si1until Σi1 happens, then (after a possible suspension) play 
onsistently with
si2 until Σi2 happens, and so on. Sin
e every Σi happens in�nitely manytimes (be
ause every index appear in�nitely often in (ik)k∈ω), Adam winsea
h Wi, and thus wins ⋃

i Wi.7.3 Extended Positional/suspendable ConditionsIn this se
tion we present a 
lass of half-positional winning 
onditions whi
hgeneralizes both positional/suspendable 
onditions and Rabin 
onditions.61



De�nition 7.11 The 
lass of extended positional/suspendable (XPSfor short) 
onditions over C is the smallest set of winning 
onditions that
ontains all Bü
hi and positional/suspendable 
onditions, is 
losed under in-terse
tion with 
o-Bü
hi 
onditions, and is 
losed under �nite union.This 
lass 
ontains most of half-positional winning 
onditions mentionedin this thesis. Using the given operations, we 
an obtain Bü
hi and 
o-Bü
hi
onditions, parity 
onditions (indu
tively by taking a union with Bü
hi, orinterse
tion with 
o-Bü
hi 
ondition), Rabin 
onditions (by taking a �niteunion of parity 
onditions), monotoni
 
onditions, and so on. A
tually, allthe spe
i�
 winning 
onditions whi
h have been proven in this thesis to bein�nitely half-positional are XPS 
onditions.Theorem 7.12 All XPS 
onditions are half-positional.The proof is a modi�
ation and generalization of proof of half-positionaldetermina
y of Rabin 
onditions from [Gra04℄.Proof Let W be an XPS 
ondition. The proof is by indu
tion over
onstru
tion of W.We know that Bü
hi 
onditions and positional/suspendable 
onditionsare half-positional.If W is a �nite union of simpler XPS 
onditions, and one of them is aBü
hi 
ondition WBS, then W = W ′ ∪WBS. Then W ′ is half-positionalsin
e it is a simpler XPS 
ondition, and from Theorem 3.7 we get that W isalso half-positional.Otherwise, W = W ′ ∪
⋃n

k=1(Wk ∩ WB ′
Sk

), where W ′ is a positional/suspendable 
ondition, Wk is a simpler XPS 
ondition, and WB ′
Sk

is a 
o-Bü
hi 
ondition. (It is also possible that there is no W ′, but it is enoughto 
onsider this 
ase sin
e it is more general. A union of a �nite number ofpositional/suspendable 
onditions is also positional/suspendable by Theorem7.10.) To apply Lemma 3.5 we need to show that either Eve has a positionalwinning strategy from some position in the arena, or Adam has a winningstrategy everywhere.If Eve has a winning strategy from some position in (G, W ′), then shehas a positional strategy, and the same strategy is winning in (G, W ), whi
his what we need.For m = 1, . . . , n let W (m) = W ′ ∪Wm ∪
⋃

k 6=m(Wk ∩WB ′
Sk

). We knowthat W (m) is half-positional sin
e it is a simpler XPS 
ondition.Let G be an arena.Let Pm be the set of Sm-moves, i.e., moves in G with 
olors from Sm.
Am = source(Pm) ∩ PosA is the set of Adam's positions from whi
h he 
an62



immediately make a Sm-move. Bm = AttrA(Am) is the set of Adam's posi-tions from whi
h he has a strategy to rea
h Am. Now, let Hm be the subgraphof G obtained by removing all the positions in Bm, and all the moves in Pm.If Eve has a winning strategy from some position v in (Hm, W (m)), thenshe also has a positional strategy, and she 
an use the same strategy in (G, W )� sin
e the play is in Hm, no Sm-moves will be made during the in�nite play,thus she will also win W . (Adam is unable to exit Hm, sin
e all the positionsfrom whi
h he would be able to do so have been removed.)Assume that Eve has no winning strategy from any position in the game
(Hm, W (m)), and no winning strategy from any position in (G, W ′). ThenAdam has the following winning strategy in (G, W ).
• Sin
e WinE(G, W ′) = ∅, we have WinA(G, W ′) = Pos, and sin
e W ′is positional/suspendable, Adam has a suspendable winning strategy

(s, Σ) in the game (G, W ′). Adam uses s until the play rea
hes Σ.
• For m = 1, . . . , n:� Let v be the 
urrent position.� (⋆) If v ∈ Hm then Adam uses his winning strategy s′m in the game

(Hm, W (m)). (Adam forgets what has happened so far in order touse s′m.) If Eve never makes a move whi
h does not belong to Hmthen Adam wins. Otherwise, he stops using s′m after a move p outof Hm is made.� (⋆⋆) There are two 
ases: rank(p) ∈ Sm or target(p) ∈ Bm. Inthe se
ond 
ase, in Bm, we know that Adam has a strategy whi
hfor
es rea
hing Am; Adam uses this strategy. Then, in Am, Adamuses a Sm-move. (Thus, in both 
ases, a Sm-move is made.)
• Repeat.If ultimately the game remains in the step (⋆) of the strategy above forsome m, then Adam wins sin
e he is using a winning strategy in (Hm, W (m)).Otherwise, Adam wins W ′ (sin
e he 
orre
tly resumed using his suspendablestrategy in (G, W ′) in�nitely many times) and all the 
o-Bü
hi 
onditions

WB ′
Sm

for m = 1, . . . , n (sin
e a Sm-move is always done in the step (⋆⋆),hen
e he also wins W ⊆W ′ ∪
⋃n

k=1 WB ′
Sk
.63



7.4 Combining Con
ave and Monotoni
 Condi-tionsIn this se
tion we investigate how our 
onje
ture about unions of half-posi-tional 
onditions works for 
on
ave (Chapter 4) and monotoni
 (Se
tion 6.2)
onditions.In the beginning of this 
hapter we have noted that arbitrary unions of
on
ave 
onditions and �nite unions of monotoni
 
onditions are also in these
lasses, and thus are also half-positional. A 
ountable union of monotoni

onditions is not ne
essarily de�ned by a single monotoni
 automaton, but,from Theorem 7.10, it is still positional/suspendable; however, a union of 
ar-dinality 2ω of monotoni
 
onditions need not be half-positionally determined,as shown by Theorem 7.2 (
o-Bü
hi 
onditions are monotoni
).As a 
on
lusion of this 
hapter, we will show the following theorem, whi
hsolves the union problem for a union of a monotoni
 and a 
on
ave winning
ondition. Sin
e both 
on
ave and monotoni
 winning 
onditions are 
losedunder �nite union, we obtain that Conje
ture 7.1 is true for the 
lass ofwinning 
onditions 
ontaining all monotoni
 and 
on
ave winning 
onditions,and 
losed under �nite union.Theorem 7.13 Let W1 ⊆ Cω be a 
on
ave winning 
ondition, and A be amonotoni
 automaton. Then the union W = W1∪WM A is a half-positionally�nitely determined winning 
ondition.Proof Let G = (PosA, PosE, Mov). A proof by indu
tion on |Mov|. Wede�ne v, M = M1 ∪M2, G1, G2, WinA
i , and ti exa
tly like in the proof ofTheorem 4.7. We will show a winning strategy for Adam in the set WinA

1 inthe 
ase when v ∈ WinA
1 = WinA

2 ; all other 
ases are done just like in theproof of Theorem 4.7.Let n be the a

epting state of A, and qk(n, c) = n for ea
h c ∈ C. Fora play π, we de�ne sequen
es of states (qk(π))k and (rk(π))k by indu
tion:
q0(π) = 0; rk(π) = 0 if qk(π) = n and source(πk+1) = v, and qk(π) otherwise;and qk+1(π) = δ(rk(π), rank(πk+1)). We 
an see that if the play π visits vin�nitely many times, then rank(π) /∈WM A i� qk(π) = n for in�nitely manyvalues of k.Let K = domπ. Let Sv = {k ∈ K : source(πk) = v}. We de�ne thefun
tion f : K → {1, 2} × Q in the following way. If k < min Sv, we take
f(k) = (1, 0). Otherwise, let k′ be the greatest element of Sv su
h that
k′ ≤ k, and f(k) = (i, qk′(π)) where πk′ ∈Mi.Let π(i,q) = Πk∈Kπ

[f(k)=(i,q)]
k . Thus, we have 
ut the play π into segmentswhi
h start and end in v (ex
ept possibly the last in�nite one), and presented64



π as a shu�e of plays π(i,q). (A shu�e of more than two words is de�ned inan obvious way.)Now, we 
an de�ne Adam's strategy: for a �nite play π of length m, let
t(π) = tj(π(j,q)), where (j, q) = f(m). If Adam 
onsistently plays with thestrategy t then, for ea
h i = 1, 2 and ea
h q ∈ Q, all plays π(i,q) are 
onsistentwith ti.We 
he
k that t is indeed a winning strategy for Adam in the set WinA

1 .Let π be an in�nite play 
onsistent with t; we have to show that rank(π) /∈W1and rank(π) /∈WM A.For ea
h (i, q) we have rank(π(i,q)) /∈W1, sin
e this play is 
onsistent with
ti, whi
h is a winning strategy. Hen
e, from 
on
avity of W1, and the fa
tthat π is a shu�e of π(i,q) for all i = 1, 2 and q ∈ Q, we get that rank(π) /∈W1.Let S ∈ {1, 2} × Q be the set of all (j, q) su
h that f(m) = (j, q) forin�nitely many values of m. Let (js, qs) be the element of S with the greatestvalue of qs. Assume qs < n, otherwise rank(π) /∈WM A is obvious.Adam wins the play π′ = π(js,qs) sin
e it is 
onsistent with tjs

. The play
π′ is in�nite. Let S ′

v = {k ∈ ω : source(π′
k) = v}. If S ′

v is �nite, this meansthat π and π′ have a 
ommon su�x (as we don't return to v we are stu
k in
π(js,qs)), and from the pre�x independen
e of WM A Adam wins π. Otherwise
π′ visits v in�nitely many times, and hen
e qk(π

′) = n for in�nitely manyvalues of k.For m ∈ S ′
v let m+ = min{m′ ∈ S ′

v : m′ > m}, and Pm be the segment ofplay from m + 1-th to m+-th move.Let M be the set of m's su
h that qm+(π′) = δ(rm(π′), Pm) > qs and
rm(π′) ≤ qs. Sin
e rank(π′) /∈ WM A, and thus qm(π′) rea
hes n in�nitelymany times, after whi
h rm(π′) is reset to 0, the set M is in�nite.Ea
h segment Pm appears also in play π after some m′-th move, where
qm′(π) = qs. For m ∈ M , after m′ + |Pm moves of play π, we are ba
k in v,and we have
qm′+|Pm|(π) = δ(qm′(π), rank Pm) = δ(qs, rank Pm) ≥ δ(rm(π′), rank Pm) > qs.Hen
e, we have found that, in π, after m′ + |Pm| moves, we are ba
k in
v, with the automaton state greater than qs. Sin
e this is true for ea
h m inthe in�nite set M , we are ba
k in v with the automaton state greater than
qs in�nitely many times, whi
h 
ontradi
ts the de�nition of S.
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Chapter 8Beyond Positional StrategiesWhen it is impossible to win the game with a positional strategy, it is stillpossible that we 
an win using a strategy whi
h is not positional, but hassome other, weaker property. In this 
hapter we present two kinds of su
hstrategies. We answer some questions regarding these strategies, but it is
urrently an area of resear
h and many questions remain open.The �rst kind is strategies with memory. When it is impossible to win thegame using no memory, we 
an still hope to use the smallest possible amountof memory states. We present two kinds of memory: normal (�
haoti
�) and
hromati
. We estimate memory required by the other player for the winning
onditions whi
h were introdu
ed before.The se
ond kind is persistent strategies, whi
h are �almost� positional.8.1 Strategies with MemoryDe�nition 8.1 Amemory for a game (G, W ) is a pairM = (M, µ), where
M represents possible memory states, and µ : M×Mov → M is thememoryupdate fun
tion. We extend µ as usual to µ : M ×Mov∗ →M .A strategy with memory M is a fun
tion ŝ : PosX × M → Mov.We say that ŝ is winning from position v and initial memory state mi� the strategy ŝm given by ŝm(π) = ŝ(target(π), µ(m, π)) is winning from v.We say that ŝ is winning from position v i� it is winning from ea
h initialmemory state m ∈M .The usual de�nition of memory and a strategy with memory from litera-ture, e.g., in [DJW97℄, where memory required to win a game with a Müllerwinning 
ondition is 
al
ulated, is a bit di�erent: initial memory state isde
lared in the memory. We have de
ided to for
e our strategy with memoryto win from all memory states. A

ording to the following proposition, the67




hoi
e of de�nition does not matter as far as the winning sets are 
on
erned,be
ause if our strategy wins from some position from only some memorystates, then it 
an be �xed to win from all of them.Proposition 8.2 Let (G, W ) be a game. Suppose that ŝ is strategy for Xwith memory M winning from a position v ∈ Pos and memory state m.Then there exists a strategy ŝ′ for X with memory M′ = (M, µ′) winningfrom v and ea
h memory state.Proof Let S ⊆ M be the set of memory states m′ for whi
h there is aplay π 
onsistent with ŝm, whi
h goes through v in memory state m′ (i.e.,there is a pre�x π′ of π su
h that target(π′) = v and µ(m, π′) = m′). Frompre�x independen
e we get that ŝ is also winning from v from ea
h memorystate m′ ∈ S.For m′ /∈M , we 
hange our strategy in v in the following way: ŝ′(v, m′) =
ŝ(v, m); µ′(v, m′) = µ(v, m). For other positions and memory states ŝ′ and
µ′ behave exa
tly like ŝ and µ.It 
an be easily seen that ea
h play 
onsistent with ŝ′m′ for m′ ∈ S will bealso 
onsistent with sm′ , and ea
h play 
onsistent with ŝ′m′ for m′ /∈ S will be
onsistent with sm. Sin
e these strategies are winning, ŝ′ is also a winningstrategy from v.Our de�nitions allow us to 
onstru
t new determina
y types, whi
h re-quire one or both players to have a strategy with memory of �nite size, or astrategy with memory of size n. These determina
y types are natural (thanksto our 
hoi
e of de�nition), and additionally, the 
laim of Theorem 3.7 is alsotrue for them.De�nition 8.3 For a winning 
ondition W and player X, let mmX(W ) bethe smallest n su
h that for ea
h arena G the player X 
an win in WinX(G)using a strategy with memory of size n.Example 8.4 Let WQ be the winning 
ondition from the proof of Proposi-tion 4.9, and G be an arena with one Adam's position and two moves, whi
hare 
olored 0 and 1. Then Adam has a winning strategy in (G,WQ), but hasno winning strategy with memory of any �nite size.Positive examples will be shown in the next se
tion.68



8.2 Chromati
 MemoryAs we 
an see, this standard de�nition of memory is strongly dependent onthe arena. Sin
e in this thesis we are interested in properties of winning
onditions rather than games, we need memory whi
h 
ould be de�ned re-gardless of the arena. As we will see, su
h 
hromati
 memory has some ni
eproperties. Below is the natural de�nition.De�nition 8.5 We say that a memory M is 
hromati
 if it depends onlyon 
olors of the moves, i.e. there exists a fun
tion µ̂ : M ×C →M su
h that
µ(m, p) = m when rank(p) = ǫ, and µ(m, p) = µ̂(m, rank(p)) otherwise.A strategy with 
hromati
 memory (M, µ̂) is a strategy with memory
(M, µ) where µ is a 
hromati
 memory given by µ̂. As usual, we extend µ̂ to
µ̂ : M × C∗ →M .Proposition 8.6 Let W be an ω-regular winning 
ondition, re
ognized by astrongly 
onne
ted DFA A = (Q, qI , δ, rank).Then both players have strategies with 
hromati
 memoryM = (Q, δ) intheir winning sets.Proof Positional winning strategies in the game (G1,WP d) de�ned in theproof of Theorem 6.9 
an be interpreted as strategies with su
h a 
hromati
memory. Sin
e A is strongly 
onne
ted, the initial memory state is indeedirrelevant (Proposition 6.2).Proposition 8.7 Let W = WM A be a monotoni
 winning 
ondition, where
A = (n, δ). Then Adam has a winning strategy with 
hromati
 memory
M = ({0, . . . , n− 1}, µ̂) in his winning set, where µ̂(k, c) = δ(k, c) mod n.Proof Adam's strategy given in the proof of Theorem 6.6 
an be interpretedas a strategy with su
h a 
hromati
 memory.De�nition 8.8 For a winning 
ondition W and player X, let mmχ

X(W ) bethe smallest n su
h that for ea
h arena G X 
an win in WinX(G) using astrategy with 
hromati
 memory of size n.Determina
y types whi
h require using a 
ertain 
hromati
 memory stru
-tureM are natural, and hypothesis of Theorem 3.7 also works for them. (Ifwe require a 
hromati
 memory of given size, we don't get a natural determi-na
y type, as using di�erent 
hromati
 memory stru
tures in various partsof the arena breaks the globalization 
ondition for them.)The following simple proposition gives a ni
e property of mmχ
X .69



Proposition 8.9 Let W be a winning 
ondition su
h that mmχ
X(W ) = n.Then there is a single 
hromati
 memory MW of size n su
h that, for ea
harena G, and ea
h starting position v0 in G, X 
an win in WinX(G) using

MW .Proof Let T be the set of all 
hromati
 memoriesM, whereM = (M, µ)and M = {0, . . . , n−1}. This set is �nite and it 
ontains all possible memoriesof size n (up to isomorphism).For an arena G and a position v in WinX(G), let U(G, v) ⊆ T be the setof all memories M ∈ T su
h that X 
an win in G from v using M. Sin
e
mmχ

X(W ) = n, and T 
ontains all possible 
hromati
 memories, we knowthat U(G, v) is non-empty.We have to show that there exists a 
hromati
 memory MW su
h thatfor all G and v we haveMW ∈ U(G, v).Assume to the 
ontrary that for ea
hM ∈ T there exists an arena G(M)and a winning position v(M) su
h thatM /∈ U(G(M), v). We 
an assumethat G(M1) and G(M2) are disjoint forM1 6=M2.Let G =
⋃

M∈T G(M), and G0 be G plus one additional position v0 fromwhi
h X's opponent 
an 
hoose to go to any position in WinX(G). Still, wehave that U(G0, v0) is non-empty; letM ∈ U(G0, v0).We have a 
ontradi
tion � in x0 X's opponent 
an de
ide to go to v(M)in G(M), and we know that X has no winning strategy usingM from v(M).If we restri
t ourselves to A-arenas, we have the following results. A-arenas (see Se
tion 2.5) are arenas su
h that 
olors appear in (all) positionsinstead of edges. Equivalently, for ea
h position v, ea
h move from v has thesame 
olor rank(v) 6= ǫ.Proposition 8.10 Let W be a winning 
ondition over C, andM = (M, µ̂)be a 
hromati
 memory.Let W ×M be a winning 
ondition over C ×M su
h that
(c0, m0)(c1, m1)(c2, m2) . . . ∈W ×Mi� the following two 
onditions are satis�ed: c0c1c2 . . . ∈ W, and, for almostall k's, we have µ̂(mk, ck) = mk+1.Then Eve 
an win in her winning set in ea
h A-arena using 
hromati
memoryM i� W ×M is A-half-positional.Proof First, suppose that W ×M is A-positional. Let G be an A-arena.Create the new arena G′ su
h that Pos′X = PosX ×M , and for ea
h m ∈Mand move v

c
→ w ∈ Mov, we have a move (v, m)

(m,c)
→ (w, µ̂(m, c)) in Mov′.70



It 
an be easily seen that, for any m ∈ M , Eve wins a play π in (G, W )from position v i� she wins its 
orresponding play in (G′, W × M) fromposition (v, m). Thus, we have WinX(G′, W ×M) = WinX(G, W ) × M .Also, if Eve has a positional strategy in (G′, W ×M) from (v, m) for all m,it 
an be interpreted as a strategy with 
hromati
 memoryM from v in G.Now, suppose that Eve 
an win in her winning set in ea
h A-arena using
M. We will show that W ×M is A-half-positional, using Lemma 3.5 forA-half-positional winning 
onditions: we will show that, for ea
h arena G,either Adam has a winning strategy everywhere in (G, W ×M), or Eve hasa winning positional strategy from some position v0.Let G be an arena. Let v0 be a position from whi
h Eve has a win-ning strategy s in game (G, W × M) su
h that for ea
h play π of rank
(c0, m0)(c1, m1)(c2, m2) . . . starting in v0 and 
onsistent with s we have, forea
h k, µ̂(mk, ck) = mk+1.If there is no su
h v0, then Adam wins everywhere. Indeed, it meansthat in ea
h position Adam has a strategy t to either fail W , or to for
e (*)
µ̂(mk, ck) 6= mk+1 for some k. Thus, if Adam restarts his strategy t afterea
h (*), he will win.Let G1 be a subarena of all positions and moves whi
h 
an be used in aplay starting in v0 
onsistent with s. Let G2 be the arena over C obtainedfrom G1 by repla
ing ea
h 
olor (c, m) by c; it 
an be easily seen that a play
π in (G1, W ×M) is winning i� its respe
tive play in (G2, W ) is winning(µ̂(mk, ck) = mk+1 is guaranteed by 
onsisten
y with s). Sin
e Eve hasa winning strategy in G1 from v0, she also has a winning strategy in G2from v0, and by assumption, in G2 she has a winning strategy from v0 with
hromati
 memory M , ŝ.Now, in G1 she 
an use the positional strategy s(v) = ŝ(v, m), where
rank(v) = (c, m). (Note that we 
an de�ne a strategy in su
h a way only forA-arenas.) We 
an see that this strategy is winning.Proposition 8.11 De�ne mmχ,A

E (W ) exa
tly like mmχ
E(W ), ex
ept that werestri
t to A-arenas only. Then, if Conje
ture 7.1 holds for A-arenas, then

mmχ,A
E (W1 ∪W2) ≤ mmχ,A

E (W1)mmχ,A
E (W2).Proof LetMi, for i = 1, 2, be the memory of size mmχ

E(Wi) su
h that forea
h A-arena G, Eve has a winning strategy in WinE(G) using Mi. (Weknow that su
hMi exists from Proposition 8.9 (relativized to A-arenas).)De�ne M = M1 ×M2 in the natural way, i.e. if Mi = (Mi, µ̂i) thenthenM = (M, µ̂), where M = M1 ×M2, and
µ̂((m1, m2), c) = (µ̂1(m1, c), µ̂2(m2, c)).71



It 
an be easily seen that M is a good 
hromati
 memory for both W1and W2 (i.e. in ea
h A-arena G Eve has a winning strategy in WinE(G) using
M). Thus, by Proposition 8.10, W1×M and W2×M are A-half-positional.By Conje
ture 7.1, their union, whi
h is W ×M, is also A-half-positional.Again by Proposition 8.10,M is good for W .Unfortunately, we have no proofs for 
orresponding fa
ts for C-arenas.8.3 Chromati
 Memory RequirementsIn this se
tion, we extend Theorems 6.9 and 6.10 to 
al
ulate 
hromati
memory requirements for a ω-regular winning 
ondition.De�nition 8.12 We say that an arena G adheres to 
hromati
 memory
M = (M, µ̂) i� there is a fun
tion φ : Pos → M su
h that for ea
h move
v

c
→ w in G we have φ(w) = µ̂(φ(v), c).Theorem 8.13 Let W be a winning 
ondition a

epted by a deterministi
�nite automaton with parity a

eptan
e 
ondition A = (Q, qI , δ, rank : Q →
{0 . . . d}) (see De�nition 6.1), andM be a 
hromati
 memory. Let a witnessarena be an arena G su
h that in game (G, W ) from some position vI Evehas a winning strategy, but not a winning strategy whi
h usesM as memory.Then, if there exists a witness arena, then there exists a witness arena Gsu
h that G adheres toM, and Eve has only one position in G, and only twomoves from here.Proof Let G0 = (PosA, PosE , Mov) be a witness arena. Let vI ∈ Pos bea position where Eve has a winning strategy, but not a strategy usingM.Let mI ∈M be the state su
h that no strategy usingM is winning whenstarting from position vI and memory state mI . We 
an assume that su
h a
mI exists. Otherwise, for ea
h m there is a strategy ŝm : PosE ×M → Mov.Suppose that the set of memory states is ordered with <. We 
an de�nea global winning strategy with memory M in the following way: ŝ(v, m) =
ŝi(m)(v, m), where i(m) is the smallest (a

ording to <) memory state inwhi
h rea
hing position v in memory state m is possible in a play 
onsistentwith ŝi(m) starting from v and i(m). (If rea
hing v in memory state m isimpossible at all, we 
an leave ŝ(v, m) unde�ned.) It 
an be easily 
he
kedthat su
h a ŝ is indeed a winning strategy from v0, 
ontrary to our assumptionthat G0 is a witness arena. (This proof is similar to the proof of globalization
ondition, Theorem 3.3.) 72



First, we 
onstru
t an arena G1 su
h that G1 adheres to M. Let G1 =
(Pos1

A, Pos1
E , Mov1), where Pos1

X = PosX ×M and
Mov1 = {((v1, m1), (v2, m2), c) : (v1, v2, c) ∈Mov ∧ µ̂(m1, c) = m2}.One 
an easily 
he
k that G1 is also a witness arena. (To show that G1adheres toM, take φ(v, p) = p.)If there was a positional strategy in G1 from (vI , mI), then we 
ould useit to 
onstru
t a strategy in G0 usingM from vI and mI ; we have assumedthat su
h strategy does not exist.Thus, G1 is also a witness arena against positionality of W . Thus, we
an now apply to it the same simpli�
ation whi
h we used in Theorem 6.9,obtaining a new arena G2 with only one Eve's position v1 and two moves,and adhering toM, with φ(v1) = mI (it 
an be seen that our simpli�
ationpreserves adheren
e), and where Eve has no positional strategy from v1.Eve has no winningM-strategy from position v1 and memory state mI .Otherwise, this strategy would be positional, sin
e G2 adheres toM � andwe know that Eve has no positional winning strategy.Theorem 8.14 Let W be a winning 
ondition a

epted by a deterministi
�nite automaton with parity a

eptan
e 
ondition A = (Q, qI , δ, rank : Q →

{0 . . . d}). Then mmχ
E(A) 
an be 
al
ulated in single exponential time.Proof We 
he
k all possible 
hromati
 memories of size up to |Q| untilwe �nd one whi
h works. There are O(|Q||Q||C|) su
h memories, and 
he
kingwhether memory works 
an be done in a way analogous to Theorem 6.10.8.4 Chromati
 Versus Chaoti
As we have seen, 
hromati
 memories have some ni
e properties, whi
h neednot hold for �
haoti
� non-
hromati
 memories. Do we lose something ifwe restri
t ourselves to 
hromati
 memories only? The natural question iswhether whenever we 
an win with a memory of size n, we 
an also win witha 
hromati
 memory of size n; in other words, does mmχ

X(W ) = mmX(W )?In the following examples, equality indeed holds, although it is not 
om-pletely trivial.Proposition 8.15 For the winning 
ondition WR = Cω − (C∗an)ω over
C = {a,b} we have mmA(WR) = mmχ

A(WR) = n.73



Note that the winning 
ondition given above is half-positional sin
e it isa monotoni
 
ondition (the monotoni
 automaton re
ognizes the language
C∗anC∗; see Example 6.4).Proof The language C∗anC∗ is re
ognized by an automaton with states
{0, . . . , n} (the state is equal to the number of as at the end of our word;the automaton is shown in Example 6.4). Thus, from Proposition 8.7,
mmχ

A(WR) ≤ n.We also know that mmA(WR) ≤ mmχ
A(WR). It is enough to show anarena whi
h requires n memory states in the non-
hromati
 
ase.We will 
onstru
t our arena from gadgets, i.e. subgraphs whi
h performrequired simple operations. In the sequel of this proof, by state of a play πwe mean the 
urrent number of as at the end of rank(π).Let si be a syn
hronizer, i.e. a gadget whi
h sets the memory state to i.(This is just a sequen
e of moves of 
olors ba

i.)Let wi be a tra
ker, i.e. gadget su
h that when wi is entered by Adamin state ≥ i in�nitely many times, then Adam wins. (Again, this is just asequen
e of 
olors an−i.)In our arena, we will have only one Adam's position, A. Adam has tode
ide to move to one of n Eve's positions, E0, . . . , En−1. When Adam de
idesto go to Ej , then Eve 
an de
ide between wjs0 and, for j < n−1, sj+1. Bothof these gadgets return to A.The following pi
ture shows the arena for n = 4.
A E0

E1

E2

E3

a
4
b

ba

a
3
b

ba
2

a
2
b

ba
3

a
1
b

Adam wins i� the play enters wi in state ≥ i in�nitely many times.Suppose that Eve uses the reasonable strategy to never 
hoose wi when thememory state is≥ i (if she has a 
hoi
e); and if both moves have this property,
hoose the one whi
h sets the state to the lower value. Thus, if Eve is in Ej74



in memory state i, then she will 
hoose sj+1 if j ≤ i and j < n− 1, and wjs0otherwise.We 
an easily see that Adam has to make use of all his possible movesfrom A to win against Eve's strategy given above. Thus, he needs memoryof size n, sin
e there are so many available moves.Proposition 8.16 Let C = {a,b, c}. Let Wab = Wa ∩Wb, where
Wa = Cω − (C∗(ab∗)A)ω and Wb = Cω − (C∗(ba

∗)B)ω.Then we have mmA(Wab) = mmχ
A(Wab) = AB.Our winning 
ondition means that Adam wants to in�nitely many timessee A a's or B b's between two 
onse
utive o

urren
es of c.Note that we 
an easily see that Wa and Wb require memory of size Aand B, respe
tively (indeed, they are similar to WR from 8.15, ex
ept thatsome 
olors are renamed and some new 
olors are added whi
h do nothing).Thus, our memory size agrees with dual of Proposition 8.11 (we take Adaminstead of Eve, and interse
tion instead of union).Proof We will use the same gadget 
onstru
tion as in proof of Proposi-tion 8.15. It is enough to de�ne play states, and 
onstru
t the syn
hronizerand tra
ker gadgets, whi
h satisfy the required properties.Play state xB + y for 0 ≤ x < A, 0 ≤ y < B 
orresponds to seeing xletters a and y letters b after the last c.The syn
hronizer has a form of sxB+y = cax

b
y, and the tra
ker wxB+y isan Eve's position where she 
an 
hoose between a

A−1−x
b

B−y and a
A−x.8.5 Persistent StrategiesPositional strategies always use the same move in the same position. So dopersistent strategies � if Eve's position is visited several times during theplay, then she always uses the same move. However, they have an additionalpower over positional strategies. Positional strategy is written down beforethe game, so Adam may predi
t Eve's future moves and adapt his strategy.Not so for persistent strategies � where su
h a positional strategy is notwritten down, and thus Eve is able to �tri
k� Adam that she is using apositional strategy by using always the same move in the same position,while in fa
t she is 
hoosing the move during her �rst visit to ea
h position.Persistent strategies have been introdu
ed in [MT02℄; the result there is thatgames with positive winning 
onditions (i.e. su
h that their 
omplement is
losed under shu�es with Cω) admit persistent strategies for Eve.75



De�nition 8.17 A winning strategy s is persistent i� s(π1) equals s(π1π2)whenever target(π1) = target(π1π2).Persisten
e gives us new determina
y types (Se
tion 2.4).De�nition 8.18 A winning 
ondition W is half-persistent if it is in de-termina
y type (persistent, arbitrary, in�nite) (i.e. for ea
h arena and ea
hstarting position either Eve has a persistent winning strategy, or Adam hasa winning strategy). A winning 
ondition W is persistent if it is in deter-mina
y type (persistent, persistent, in�nite). As before, we add ��nitely� or�A-�, �B-�, �C-� when we restri
t admissible arenas (Se
tion 2.5).The following example shows that half-persisten
e is indeed a weakerproperty than half-positionality, at least for A-arenas and B-arenas.Example 8.19 Let C = ω × {a,b}. Let f : C × C → {0, 1, 2} be givenby f((n, c), (n′, c′)) = 2 if n′ 6= n + 1, f((2n, c), (2n + 1, c′)) = 1 i� c 6= c′,and 0 otherwise. Let W = {c1c2 . . . : lim sup f(cn, cn+1) is even}. Then W isB-half-persistent and A-half-positional, but not B-half-positional nor C-half-persistent.Proof We will �rst show that W is A-half-positional. Let G be an A-arena. If we 
olor ea
h move v → w with f(rank(v), rank(w)), we obtain aB-arena G′, and a play is winning in (G′,WP 2) (WP2 is the parity 
onditionover {0,1,2}) i� it is winning in (G, W ). We know that the (G′,WP2) ispositionally determined, hen
e so is (G, W ).To show that W is half-persistent, we 
an de�ne a strategy with (
hro-mati
) memory whi
h uses C as the set of memory states � it remembersthe last 
olor whi
h appeared in our play. We 
an prove that a strategy swith su
h a memory exists using a similar redu
tion to WP 2.Now, we 
an de�ne our persistent strategy s′: if we visit the same positionagain, then we do the same thing; otherwise, do what s suggests. Thisstrategy is winning, be
ause the only way for Adam to win is to have the�rst 
omponents of 
olor growing until in�nity, whi
h means that from somemoment positions do not repeat (it is important here that we are playingon a B-arena and not on a C-arena), and Eve always does what s suggests,whi
h is a winning strategy.
W is not B-half-positional, as shown by the following in�nite arena. IfEve is using a positional strategy, Adam 
an anti
ipate her 
hoi
e of a or bin position n + 1, and 
hoose the other letter in position n.76



0 1 2 3 4 ...(0, a)

(0,b)

(1, a)

(1,b)

(2, a)

(2,b)

(3, a)

(3,b)

(4, a)

(4,b)

W is also not C-half-persistent, as shown by the following in�nite arena.Ea
h multiple arrows represents a set of moves (we take ea
h n ∈ ω). If Eveuses a persistent strategy, she must de
ide to use either letters a or b, whi
hallows Adam to adjust his strategy to always use the other letter in positionA, while the numbers grow in the 
orre
t way.
A E

ab
(2n, a)

(2n,b)

(2n + 1, a)

(2n + 1,b)

Note that W is half-persistent although it is not positive (in the sense of[MT02℄: its 
omplement is not 
losed under shu�es with Cω).Example 8.20 Let C and f be like in Example 8.19. Let W1 = {c1c2 . . . :
lim sup f(cn, cn+3) is even}. Then W1 is B-half-persistent, but not even A-half-positional.Let W2 be the set of words w over C ∪ {⋆} su
h that two ⋆'s appear ina row in w in�nitely many times, or the word obtained from w by removingall ⋆'s, w′, satis�es w′ ∈ W . Then W2 is A-half-persistent but it is notB-half-persistent nor A-half-positional.Proof The reasoning is similar to one used in Example 8.19.We have no example of a winning 
ondition whi
h is C-half-persistent butnot C-half-positional, nor of a winning 
ondition whi
h is B-half-positionalbut not C-half-positional. Other than that, all 
ombinations of (A,B,C)-half-{positionality/persisten
e} are possible, as long as they obey obvious77



in
lusions (i.e., γ−half-positional implies γ−half-persistent, and having aproperty in a bigger 
lass of arenas implies having it in a smaller 
lass).Proposition 8.21 Determina
y types introdu
ed in this se
tion are natural.Before we will be able to prove an analogue of Theorem 3.7, we need thefollowing theorem.Theorem 8.22 Let D be one of determina
y types introdu
ed in this se
tion(whi
h requires persistent strategies for Eve). Let W be a winning 
ondition.Let G be a D-arena su
h that (G, W ) is D-determined. Let s be Eve's D-strategy winning from a position u. Suppose that there is a play starting in u
onsistent with s where Eve uses a move p in v ∈ PosE. Let G′ be an arenawhi
h is the same as G ex
ept that all moves from v ex
ept p are removed.Then (G′, W ) is also D-determined, and the winning sets in G and G′ areequal.Proof If Eve has a winning persistent strategy from w in G′, then it isalso a winning persistent strategy from w in G. Also, if Adam has a winning
D-strategy from w in G, then it is also a winning D-strategy from w in G′.So, it is enough to show that if Eve has a winning strategy s from w in G,then she has also a winning strategy from w in G′.Let π be a �nite play starting in u after whi
h Eve de
ides to use p (i.e.
target(π) = v, s(π) = p, and it is the �rst visit to v). Let M be the set ofall positions whi
h 
an be rea
hed in a play of whi
h π is a pre�x and whi
his 
onsistent with s.Eve's strategy s′ is as follows. Let π be a �nite play. While target(π)is not in M , play the same as s: s′(π) = s(π). The strategy 
hanges if theplay rea
hes M ; suppose that happens after a play π0. Sin
e target(π0) is in
M , we have a �nite play π1 from u su
h that target(π1) is in u, and π1 goesthrough p. In the following moves, Eve a
ts as if the play started with π1,not in π0: s′(π0π) = s′(π1π). Sin
e no position appearing before π0 was in
M , the play will never return to a position from before π0, so trading initialsegments won't break persisten
e.Corollary 8.23 A winning 
ondition is �nitely half-persistent i� it is �nitelyhalf-positional.Proof Let G be a �nite arena. We remove moves from Eve's winningset using Theorem 8.22 until only one move remains from ea
h position.The winning sets do not 
hange, and Eve's strategy in the result has to bepositional. This positional strategy works in G.78



Theorem 8.24 Let D be one of the determina
y types introdu
ed in thisse
tion or their duals. If W is D-determined, so is W ∪WBS.Proof The proof is also analogous to Theorem 3.7, but there is onedi�eren
e. In proof of Theorem 3.7, we de�ned a game G′, where Eve had a
D-strategy sE . Then, we used the strategy sE in the game G, by applying
sE to the longest su�x of s whi
h was a valid play in G.For basi
 determina
y types, the result was a D-strategy. However, it isnot so for persistent strategies: a previous visit in G 
ould have �xed Eve'smoves in some positions. To repair this problem, we use Theorem 8.22.Instead of using the strategy sE for the whole game G, we use the respe
tivestrategy for the game where some moves (a �nite number of them) are already�xed � Theorem 8.22 guarantees that su
h strategy exists.
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Chapter 9Con
lusionAs a 
on
lusion, we re
olle
t open problems whi
h are related to the resultspresented in this thesis.9.1 Closure under UnionWe would like to know more 
losure properties of the 
lass of half-positio-nally determined winning 
onditions. Spe
i�
ally, our Conje
ture 7.1 askswhether an union (�nite or 
ountable) of (�nitely) half-positional 
onditionsremains half-positional. It is known that an un
ountable union does not needto be half-positional (Theorem 7.2). In many spe
ial 
ases it is known thatunions of spe
i�
 half-positional 
onditions are half-positional (Theorem 3.7,Chapter 7).Spe
i�
ally, we know that all XPS 
onditions have this property (Theorem7.12), and that this 
lass is 
losed under �nite union. All half-positional win-ning 
onditions 
onstru
ted in this thesis (ex
ept 
on
ave 
onditions � thisis a property rather than a 
onstru
tion) fall in this 
lass; it is possible thatXPS 
aptures all the reasons for a winning 
ondition to be half-positional,and therefore all half-positional 
onditions are there.9.2 ω-regular ConditionsIn Theorem 6.10 we have shown that �nite half-positional determina
y ofwinning 
onditions is de
idable. We used the fa
t that if a winning 
onditionis not half-positional, then there is a very simple arena witnessing it (Theorem6.9); this fa
t was obtained via indu
tion over the number of Eve's positionswhere she has a 
hoi
e. However, what about in�nite half-positional deter-mina
y? In this 
ase we 
an no longer use our indu
tive argument. One 
an81



easily 
reate an in�nite arena where applying the method used in proof ofTheorem 6.9 leads to an arena where Eve no longer 
an win (after an in�nitenumber of steps).Also, the algorithm given in Theorem 6.10 is exponential, whi
h is notsatisfa
tory. It is possible that there is a simpler property whi
h also answerswhether a given ω-regular winning 
ondition is (�nitely) half-positional.9.3 Types of ArenasIn se
tion 2.5 we have introdu
ed three types of arenas. We have shownexamples of winning 
onditions whi
h are half-positional when restri
ted toposition-
olored arenas, but not on all edge-
olored arenas. We gave somearguments why we regard the broader 
lasses of arenas as more natural whendis
ussing positional determina
y.The problem remains whether a winning 
ondition whi
h is half-positionalwith respe
t to edge-
olored arenas has to be half-positional for all ǫ-arenas.9.4 Chromati
 MemorySe
tion 8.2 raises a problem about strategies whi
h are allowed to use mem-ory, but want to use as few memory states as possible. Is it always possibleto 
reate a memory of the smallest possible size whi
h also has a ni
e prop-erty of being independent from the arena, i.e. a 
hromati
 memory of size
mmX(W )? We already have an algorithm for 
al
ulating mmχ

X(W ) (The-orem 8.14), but not for mmX(W ) � a positive answer would mean thatwe don't need another one. This result 
ould potentially simplify proofs offurther results about strategies with memory.9.5 Geometri
al ConditionsThe results in Chapter 5 do not 
over all possible 
ases. We still do not knowwhether WF (A) is �nitely half-positionally determined for all 
o-
onvex sets
A, and whether it is half-positionally determined for all 
o-
onvex open sets
A. ForA's whi
h are unions of a �nite number of half-spa
es, e.g. A = A1∪A2,we 
annot obtain half-positional determina
y via Theorem 5.9 and Theorem7.10 (union of positional/ suspendable 
onditions), be
ause this does not leadto WF (A), but in general to a di�erent set: WF (A1 ∪ A2) says that ea
h
luster point is element of A1 ∪A2, and WF (A1)∪WF (A2) says that either82



ea
h 
luster point is an element of A1 or ea
h 
luster point is an element of
A2.9.6 ExtensionsAnother area of resear
h is to extend our results to more general settings.There are several possible extensions.One of them is examining payo� mappings or preferen
e relations insteadof winning 
onditions, whi
h allow a game to have a wide spe
trum of resultsinstead of win or lose. See Se
tion 2.6, and also [GZ04℄, [GZ05℄, [EM79℄.We 
an also try to relax our requirement of pre�x independen
e. If wehope for positional strategies, then the most important thing about pre�xindependen
e is that the past should not alter what is good for us in thefuture: if v1w1 is better than v1w2 for a player, then v2w2 
annot be betterthan v2w1 for v1, v2, w1, w2 ∈ C∗. We 
ould also use a stronger version: w1is better than w2 i� ww1 is better than ww2. Monotone preferen
e relationsare de�ned in [GZ05℄ in a similar way.So far, we have either 
onsidered all possible arenas or restri
ted to �nitearenas only. However, there are more examples of interesting 
lasses of are-nas. One example is push-down graphs, whi
h are in�nite, but have a �niterepresentation. Another one is in�nite arenas with �nite bran
hing. And of
ourse, more resear
h of position-
olored arenas would be useful.Another generalization is sto
hasti
 games. In addition to Eve's positions(where a �good� player de
ides) and Adam's positions (where a �bad� playerde
ides), these games also allow random positions, where a move is de
idedrandomly. In this setting we are interested in optimal strategies, whi
h leadto the greatest possible probability of winning, or the greatest expe
ted valueof payo� in 
ase of payo� mappings. Several new papers by Gimbert andZielonka, e.g. [GZ07℄, explore this setting.
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Notation indexThese tables present the 
ommonly used notation. In ea
h table a relevantpage number is given for ea
h notation.The �rst table lists the usual names for arbitrary obje
ts of given 
lass.More obje
ts of the same 
lass are named by adding indexes or primes (e.g.strategies are named s, s′, s1 et
.).
k, l, m, n integer
α, β, γ, λ ordinal
c 
olor 13
W winning 
ondition 13
G arena 13
X player (Adam or Eve) 13
L language of �nite or in�nite words 13
π play 14
s strategy 15
D determina
y type 16
p move 13
M subset of Pos 21
u, v, w positions or words (�nite or in�nite) 13
M memory 67Names of spe
i�
 winning 
onditions:
WBS Bü
hi 
ondition, WBS = C∗(SC∗)ω 24
WB ′

S 
o-Bü
hi 
ondition, WB ′
S = C∗(C −

S)ω

24
WF (A) universal geometri
al 
ondition 35
WF ′(A) existential geometri
al 
ondition 35
WM A monotoni
 
ondition 46
WPn parity 
ondition over {0, . . . , n} 25
WQ example from Page 3487



Formal language and automata notation:
C set of 
olors 13
a, b, c default names of 
olors in examples
L1L2 
on
atenation 13
L∗ Kleene iteration of L 13
Lω in�nite iteration of L 13
|w| length of the word w 13
w|n �rst n letters of w 13
ǫ an empty word 13
v[φ] v if φ is true, ǫ otherwise 32
Q automaton's set of states 44
qI automaton's initial state 44
δ automaton's transition fun
tion 44
rank parity automaton's rank fun
tion 44
LA language re
ognized by automaton A 44Notation spe
i�
 for games:
A, E Adam and Eve 13
Pos set of positions (Pos = PosE ∪ PosA) 13
Mov set of moves 13
v

c
→ w a move from v to w of 
olor c 13

source(p) sour
e (v) of a move p 14
target(p) target (w) of a move p 14
rank(p) 
olor (c) of a move p 14
Play set of all plays (in�nite, ending on X'sposition) 14
Play∞ set of in�nite plays 14
PlayX set of plays ending in X's position 14
source(π) sour
e (�rst position) of π 14
target(π) target (last position) of π 14
rank(π) sequen
e of 
olors in π 14
WinX X's winning set 15
(αE, αA, γ) a determina
y type 16
NextX(M) next move operator 21
AttrX(M) attra
tor 21
M [s] forward 
losure 21
P (w) average 
olor in w 35
Pn(w) average 
olor in w|n 35
Σ suspension set 58
mmX(W ) minimum size of memory 6888



mmχ
X(W ) minimum size of 
hromati
 memory 69

mmχ,A
X (W ) minimum size of 
hromati
 memory forA-arenas 71

m ∈M a memory state 67
µ memory update fun
tion 67
µ̂ 
hromati
 memory update fun
tion 69
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Index
ω-regular winning 
ondition, 44Adam, 13adhere, 72antagonisti
, 13arena, 13edge-
olored, 82move-
olored, 17, 82position-
olored, 17, 83simplifying, 49, 72types, 17, 82witness, 49, 72attra
tor, 21automaton, 5deterministi
, 43�nite, 43monotoni
, 45pushdown, 16Bü
hi 
ondition, 24, 57, 59, 61basi
 determina
y type, 16
hromati
 memory, 69
losed set, 36
losure, 81under union, 81
losure properties, 24, 57, 61
o-Bü
hi 
ondition, 24, 59, 61, 64
o-
onvex, 35
olor, 13
ompa
t subset, 35
on
atenation, 13
on
ave 
ondition, 29, 36, 57, 64
onsistent, 15


onvex 
ondition, 29, 36, 37de
idability
on
avity, 54�nite half-positional determina
y,52determina
y, 15determina
y type, 16basi
, 16natural, 22, 60, 68, 69, 78determined 
ondition, 15deterministi
 �nite automaton, 43DFA, 43Ehrenfeu
ht-My
ielski game, 35epsilon, 13, 17Eve, 13exploration 
ondition, 30extended positional/suspendable 
on-dition, 61extensions, 19, 83�nite automaton, 43monotoni
, 45game, 13Ehrenfeu
ht-My
ielski, 35mean payo�, 35sto
hasti
, 83geometri
al 
ondition, 35, 60, 82half-persistent 
ondition, 76half-positional 
ondition, 13, 15initial state, 4491



language, 13logi
, 43Müller 
ondition, 43, 67mean payo� game, 35memory, 67, 82
hromati
, 69update fun
tion, 67monotoni
 automaton, 45monotoni
 
ondition, 46, 57, 60, 64move, 13natural determina
y type, 22, 60, 68,69, 78normed spa
e, 35open set, 36parity 
ondition, 12, 25, 29payo� mapping, 19, 83persistent 
ondition, 76persistent strategy, 33, 75play, 14position, 13positional 
ondition, 15positional/suspendable 
ondition, 59positive 
ondition, 33pre�x, 13pre�x independent, 14, 83Rabin 
ondition, 43, 57, 61regular 
ondition, 44, 81shu�e, 29state, 44initial, 44sto
hasti
 game, 83strategy, 15persistent, 33, 75positional, 15suspendable, 58winning, 15with memory, 67

subarena, 14su�x, 13suspension set, 58transition fun
tion, 44trivial subset, 36unboundedness 
ondition, 30union, 49, 57
onje
ture, 57positional/suspendable, 61union 
ondition, 29veri�
ation, 5weakly 
on
ave 
ondition, 33, 36, 48weakly 
onvex 
ondition, 33, 36, 37winning 
ondition, 14Bü
hi, 24, 57, 59, 61
o-Bü
hi, 24, 59, 61, 64
on
ave, 29, 36, 57, 64
onvex, 29, 36, 37determined, 15exploration, 30extended positional/suspendable,61geometri
al, 35, 60, 82half-persistent, 76half-positional, 13, 15Müller, 43, 67monotoni
, 46, 57, 60, 64parity, 12, 25persistent, 76positional, 15positional/suspendable, 59positive, 33Rabin, 43, 57, 61regular, 44, 81unboundedness, 30union, 29weakly 
on
ave, 33, 36, 48weakly 
onvex, 33, 36, 3792



XPS, 61, 81winning set, 15witness arena, 49, 72word, 13XPS 
ondition, 61, 81
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