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Abstract

We study infinite games where one of the players always has a positional
(memory-less) winning strategy, while the other player may use a history-
dependent strategy. We investigate winning conditions which guarantee such
a property for all arenas, or all finite arenas. We establish some closure prop-
erties of such conditions, which give rise to the XPS class of half-positional
winning conditions, and discover some common reasons behind several known
and new positional determinacy results. We show that this property of half-
positional determinacy is decidable in single exponential time for a given pre-
fix independent w-regular winning condition. We exhibit several new classes
of half-positional winning conditions: the class of concave conditions (for fi-
nite arenas), the classes of monotonic conditions and geometrical conditions
(for all arenas).
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Streszczenie

Badamy gry nieskoriczone, w ktorych jeden z graczy ma zawsze pozycyjna
(bezpamieciowa) strategie wygrywajaca, podczas gdy drugi graczy moze uzy-
wac strategii zaleznej od historii. Badamy warunki zwyciestwa gwarantujace
taka wlasnosé dla wszystkich aren, oraz dla wszystkich skoriczonych aren.
Pokazujemy warunki domkniecia tej klasy warunkow zwyciestwa, prowadzace
do klasy XPS warunkéw potpozycyjnych, a takze znajdujemy wspolne powody
dla kilku znanych i nowych wynikéw dotyczacych pozycyjnej determinacji.
Pokazujemy, ze wlasno$é potpozycyjnej determinacji danego w-regularnego
warunku zwyciestwa jest rozstrzygalna w czasie wykladniczym. Pokazu-
jemy kilka nowych klas warunkow potpozycyjnych: warunki wkleste (dla aren
skoriczonych), monotoniczne i geometryczne (dla aren o dowolnej mocy).

Stowa kluczowe

automaty, gry nieskonczone, jezyki omega-regularne, strategie pozycyjne,
warunki zwyciestwa

Klasyfikacja wedlug ACM:

68Qxx Teoria obliczen

68Q45 Jezyki formalne i automaty
68Q60 Specyfikacja i weryfikacja
91Axx Teoria gier
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Chapter 1

Introduction

The theory of infinite games is relevant for computer science because of its
potential application to verification of interactive systems. In this approach,
the system and environment are modeled as players in an infinite game played
on a graph (called arena) whose vertices represent possible system states.
The players (conventionally called Eve and Adam) decide which edge (state
transition, or move) to choose; each edge has a specific color. The desired
system’s behavior is expressed as a winning condition of the game — the
winner depends on the sequence of colors which appear during an infinite
play. If a winning strategy exists in this game, the system which implements
it will behave as expected. Positional strategies (i.e. depending only on
the position, not on the history of play — also called memoryless) are of
special interest here, because of their good algorithmic properties which can
lead to an efficient implementation. Among the most often used winning
conditions are the parity conditions, which admit positional determinacy for
both players (|[Mos91|, [EJ91], [McN93]).

Infinite games are also strongly linked to automata theory. Parity condi-
tion is a very important notion in both fields  infinite games and automata
on infinite structures. Winning conditions in games can often be effectively
expressed as w-regular languages. This allows results from one field to be
used in another. For example, positional determinacy of parity games is
used in the modern proofs of Rabin’s complementation theorem for finite
automata on infinite trees with parity acceptance condition.

However, not always it is possible to express the desired behavior as a
parity condition. An interesting question is, what properties are enough for
the winning condition to be positionally determined, i.e. admit positional
winning strategies independently on the arena on which the game is played.
Recently some interesting characterizations of such positionally determined
winning conditions have been found (J[CNO06|, [GZ05]). Another interesting



characterization of finitely positional conditions can be found in |GZ04]. For
a survey of recent results on positional determinacy see [Gra04].

Our work attempts to obtain similar characterizations and find interest-
ing properties (e.g. closure properties) of half-positionally determined win-
ning conditions, i.e. ones such that all games using such a winning condition
are positionally determined for one of the players (us, say), but the other
player (environment) can have an arbitrary strategy. We give uniform argu-
ments to prove several known and several new half-positional determinacy
results. As we will see, some results on positional determinacy have natural
generalizations to half-positional determinacy, but some do not. This makes
the theory of half-positional conditions harder than the theory of positional
conditions. We also exhibit some large classes of half-positionally determined
winning conditions.

1.1 Overview

Chapter 2 In this chapter we begin with some examples of infinite games,
with positional and non-positional winning strategies. Then we proceed
to introduce the basic definitions and notions we will be using throughout
the thesis, like winning conditions, arenas, games, strategies, and positional
strategies. We introduce basic determinacy types, like positional and half-
positional determinacy. We define a half-positional winning condition as one
which admits positional strategy for Eve no matter what arena is this winning
condition used on, and discuss how this class of half-positional winning con-
ditions changes for various classes of arenas that appear in literature (arenas
can have labels on edges, on positions, or on only a subset of positions).

Chapter 3 In this chapter we present tools which can be used to prove
(half-) positional determinacy of many winning conditions in an uniform way.
We start with some basic properties of positional strategies. Although these
properties are most interesting for positional strategies, we present the proof
in a more abstract way which also encompasses arbitrary strategies. These
properties are quite well known by the researchers in this field, and are the
reason why we concentrate on prefix independent winning conditions (as they
need not work for prefix dependent winning conditions). Then, we use these
properties to show Lemma 3.5, which we will use to show half-positional
determinacy of many winning conditions in the sequel. Again, Lemma 3.5 is
presented in an abstract way, thus it can be used to prove both half-positional
and positional determinacy. We use Lemma 3.5 to prove that if W is (half-)
positional, then so is W U WBg (Theorem 3.7); the latter winning condition
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says that Eve wins if she wins W or if colors from S appear infinitely many
times. (WBg is a Biichi condition: Eve wins iff colors from S appear infinitely
many times.) Theorem 3.7 leads to an alternative proof that the parity
conditions are positionally determined. We conclude Chapter 3 by quoting
and generalizing some previously known characterizations |CN06, GZ05| of
positional and finitely positional winning conditions.

Chapter 4 We present a simple combinatorial property, concaveness, which
guarantees finite (but not infinite) half-positional determinacy. Namely, a
wining condition is concave iff whenever Adam wins if the sequence of colors
during an infinite play is w; or ws, he also wins for all shuffles of w; and
wy. This result is strongly related to its positional counterpart from [GZ04]
about fairly mixing payoff mappings. We also note show relations between
our theorem and the result from [MT02| about positive winning conditions
and persistent strategies.

Chapter 5 Here, we generalize the mean payoff game to many dimensions.
In our game, we let our set of colors be C' = [0,1]¢; our winning conditions
are defined in terms of the sequence whose n-th term is the average of the
first n colors visited during our infinite play. We say that Eve wins WF(A)
iff each cluster point of this sequence is in A C C, and she wins WF'(A) iff
at least one cluster point is in A. We investigate for which A’s the winning
conditions WF(A) and WF'(A) are concave, convex, weakly concave and
weakly convex (as defined in Chapter 4), and for which A’s they are (finitely)
half-positional or positional. Namely, WF’'(A) is finitely half-positional for
A which is a complement of a (geometrically) convex subset of C, and, for
infinite arenas, WF(A) is half-positional for A = [0,1/2) (Theorem 5.7).

Chapter 6 In this Chapter we explore the links between games and au-
tomata theory. We define a monotonic automaton as one whose set of states
is @ = {0,...,n}, and whose transition function is monotonic. In The-
orem 6.6 we show that a winning condition WM 4 defined in terms of a
monotonic automaton A is half-positional. Further results of this chapter
deal with w-regular winning conditions, i.e., ones defined in terms of a DFA
with parity acceptance condition. In Theorem 6.9 we show that if such a
w-regular winning condition is not half-positional, then this fact is witnessed
by a very simple witness arena, namely one in which Eve has a choice in
only one position, and she has a choice between only two moves there. Then
we use this characterization in Theorem 6.10 to present an algorithm which
decides half-positional determinacy for an w-regular winning condition; this



algorithm runs in single exponential time. We conclude this chapter with
PTIME decidability of concavity of w-regular winning conditions.

Chapter 7 In Chapter 7 we present one of the questions which motivated
our research: is a finite (countable) union of half-positional winning condi-
tions also half-positional? In Theorem 7.2 we show that this fails for uncount-
able unions: We show an example of an uncountable family of half-positional
winning conditions (in fact, even positional, and very simple Biichi and
co-Biichi) whose union is not half-positional. The conjecture is still open for
finite and countable unions, but we have some partial results. We define sus-
pendable winning strategies, which, intuitively, allow the player using them
to sometimes suspend using them, and return to them later; and the player
will still win if he is doing that correctly. We define positional/suspendable
winning conditions as ones which admit positional winning strategies for
Eve and suspendable winning strategies for Adam. We show that some of
the previously mentioned half-positional winning conditions are in fact posi-
tional /suspendable, namely, co-Biichi conditions, monotonic conditions, and
some of the geometrical conditions. In Theorem 7.10 we have shown that a
union of countably many positional /suspendable winning conditions is also
positional /suspendable. We proceed with defining yet another class of win-
ning conditions, XPS (extended positional/suspendable winning conditions),
which contains all positional /suspendable and parity winning conditions, and
is closed under finite union, and intersection with co-Biichi conditions. This
class contains most (or all?) of half-positional winning conditions mentioned
in this thesis, and in Theorem 7.12 we have shown that all XPS winning
conditions are half-positional. We conclude this chapter with Theorem 7.13,
which shows that each winning condition that can be presented as a finite
union of monotonic and concave winning conditions is half-positional.

Chapter 8 Here we investigate games where we cannot use a positional
(memoryless) strategy, and we require another, weaker property for Eve’s
strategy instead. We investigate how some of our results from the previous
chapters can be extended to these weaker kinds of strategies. There are two
kinds of such strategies. Ome possibility is to use the smallest amount of
memory possible. We present a definition of a strategy with memory, and
show that it is possible to calculate the smallest (chromatic) memory size for
w-regular winning conditions (Theorems 8.13 and 8.14). The second possi-
bility is persistent strategies, as introduced in [MT02|. Just like a positional
strategy, a persistent strategy always uses the same move in each position;
however, contrary to a positional strategy, this move is decided not before



game, but when the play visits this position for the first time. We show some
examples (8.19, 8.20) of winning conditions which are half-persistent, but
not half-positional for some classes of arenas, and we show Theorem 8.24,
which is a generalization of Theorem 3.7 (about taking an union with a Biichi
condition) for half-persistent strategies. This chapter is a work in progress
and has more open paths than the previous chapters.

Chapter 9 We recollect all the open problems and areas of further research
which have arisen during the work on this dissertation.

Finally, on page 87 there is a notation index which lists all the notation
commonly used thorough the thesis, together with their meanings and page
numbers where they have been defined. Also at the end of the thesis is the
usual index and bibliography.
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Chapter 2

Preliminaries

In this chapter we define all the basic notions we are working with. We
start with an example of a game, then we define games, arenas, and win-
ning conditions in general. Then we proceed to defining plays, strategies,
and determinacy. We introduce determinacy types, like positional and half-
positional determinacy. Finally, we show three types of arenas which appear
in literature, and discuss how these types differ regarding positional strate-
gies.

2.1 Example

Before giving the general definition of an infinite game, we show a typical
example of a game.

Adarmn

) — S
4

The picture above shows an arena the game is played on. The squares
and diamonds are called positions; diamonds represents Eve’s positions and
squares represent, Adam’s positions.

The game starts by placing a token in one of the available positions. It
can be either Eve’s position or Adam’s position. The owner chooses one of
the moves (arrows) available from this position and moves the token to the
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position which is pointed to by the arrow. For example, if we start in B,
Eve can choose either to go to A (which is also her position), or to Adam’s
position C (either by arrow labeled with 2, or by arrow labeled with 3). Now,
this new position can again be either Eve’s position or Adam’s position
the owner decides the next move to be taken, and so on.

In this example, the play never ends: decisions made by both players
define an infinite play. Now, there is a winning condition which says who
will win, depending on the sequence of colors (i.e. labels) of moves which
have been used during the infinite play.

In the game above we could use the parity condition: Eve wins iff the
greatest number appearing infinitely often is even. Otherwise, Adam is the
winner.

Adarmn

D— S E 1 ‘@
1

By analyzing the game, we can find out that Adam has a winning strategy.
In position C, always go to F (there is no other option anyway); Eve will
have to go to E. In the position E, go to D, and in D, go to A. Now, Eve will
have to return to D, as it is her only option. In position D, Adam always
decides to go to A; thus, the sequence of colors (except the beginning) will
be: 8,9,8,9, ... and Adam will win.

Note that this strategy of Adam has the following property: in each
position, always the same move is used. This is called a positional strategy.

Another example of a game follows. Now, Adam wants both letters a and
b to appear infinitely often in the sequence of colors obtained from a play.

b
a b

By analyzing the game, we get that Adam can win if the game starts in
the positions A and B (an example winning strategy: when moving from A
to B, he alternates between the two moves available, so he wins no matter
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what Eve is doing), and Eve can win if the game starts in C and D (in C
she goes to D via b, and in D she goes to C also via b).

Note that Eve’s winning strategy in C and D is positional, while Adam’s
winning strategy in A and B is not. That’s what we mean by a half-positional
game (or winning condition): from each position, either Eve has a positional
winning strategy, or Adam has an arbitrary winning strategy.

2.2 Games

In this section we formally define games, arenas, and strategies.

We consider perfect information antagonistic infinite games played by
two players, called conventionally Adam and Eve. Many names are used in
literature (Alter and Ego, Abelard and Eloise, ...); if the players are not
just named 0 and 1 (or T and IT), usually they start with E and A, because
they are associated with quantifiers 3 (Eve) and V (Adam).

Let C be a set of colors (possibly infinite). We use the standard notation
and terminology from the theory of formal languages (or w-languages) for
finite and infinite sequences of colors. Thus, finite or infinite sequences of
colors are sometimes called words, and sets of words are sometimes called
languages. We sometimes identify colors with words of length 1, and words
with languages with 1 element. |w| is the length of word w, and wj, is the
first n letters of the word w. € is an empty word (of length 0). C* and
C“ are the sets of all finite and infinite words over C, respectively. For
two words v € C* and w € C* U C%¥, vw is a concatenation of v and w
(Jow| = |v| + |Jw|). A word v is a prefix of a word w iff w = vu for some
u, and a suffix of w iff w = wv. For two languages L; and L, (L; C C%),
LiLy ={vw:v € Ly,w € Ly}. For a language L C C*, L" is concatenation
iterated n times: L = {e}, L""' = L"L, L* is |, ., L". Ilw; = wiwsws. ..
is an infinite concatenation, and L = {IL;w; : w; € L}.

An arena over C' is a tuple G = (Posy, Posg, Mov), where:

e Elements of Pos = Posg U Posy are called positions; Pos, and Posg
are disjoint sets of Adam’s positions and Eve’s positions, respectively.

e Elements of Mov C Pos x Pos x (C'U{e}) are called moves; (vy,vs, ¢)
is a move from vy to ve colored by ¢. We denote source((vy, va, ¢)) = vy,
target((vy, vg, ¢)) = vy, rank((vy,ve,¢)) = ¢. We will write moves as
v; > vy instead of (v, vy, c).

€ . .
e ¢ denotes an empty word; a move v — w is viewed as colorless. How-
ever, there is a restriction on e-moves: an arena is not allowed to contain
infinite paths consisting only of them.
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We say that an arena G’ = (Pos/y, Posy, Mov') is a subarena of G =
(Posy4, Posg, Mov) iff Pos'y C Posy, Posl; C Posg, Mov' C Mov.

In our notation, Pos means the set of positions in the arena G. If another
arena appears, say, G°, then the set of positions in this game is denoted by
either adding a respective index to Pos (say, Pos”), or by treating Pos as an
operator (say, Pos(G")). Analogous notational convention is used for the sets
Play and Win, which are defined later.

A game is a pair (G,W), where G is an arena, and W is a winning
condition. A winning condition W over C'is a subset of C* which is prefiz
independent, i.e., u € W <= cu € W for each ¢ € C,u € C*. We name
specific winning conditions WA, WB, ....

Note that, contrary to some other works, when we consider winning condi-
tions in this thesis, we mean prefix independent subsets of C'“. Occasionally,
we might use a game (G, W) where W is not prefix independent; we will then
explicitly call W a prefiz dependent winning condition.

As in the example above, the game (G, W) carries on in the following way.
The play starts in some position v;. The owner of v; (e.g. Eve if v; € Posg)
chooses one of the moves leaving vy, say v; = vs. If the player cannot choose
because there are no moves leaving vy, he or she loses. The next move is
chosen by the owner of vy; denote it by vy = v5. And so on: in the n-th
move the owner of v,, chooses a move v,, -5 Upa1. If cieocs ... € W, Eve wins
the infinite play; otherwise Adam wins.

A player can also resign instead of making a move; in this case, this player
immediately loses. This option is used when there is no move possible from
the current position; thus, each player immediately loses in his or her own
position with no moves. The case when a player resigns is usually trivial,
so there is no need to consider it in our proofs (resigning is never a winning
move; a position with no moves corresponds to an d or V quantifier over an
empty set).

A play in the arena G is a path in the arena graph. A play can be
finite (the length of play |7| is in w) or infinite (|7| = w). We denote the
set of all plays by Play, and Play_, Play,, Play 4, Play, C Play are infinite
plays, finite plays, and finite plays which end in Adam’s and Eve’s positions,
respectively. We identify finite plays with (some) elements of Pos U Mov"
(Pos represents plays which have just started and contain no moves yet, and
Mov™ are non-empty finite sequences of colors), and infinite plays with some
elements of Mov®. Although plays are not exactly sequences of moves (since
plays of length 0 are always in a specific position, and there is a restriction
that the next move has to start where the previous one finished), we will
sometimes use the same terminology and notation for them as for sequences,
like prefix, suffix, concatenation, etc. By source(w) and target(m) we denote
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the initial and final position of the play, respectively (obviously infinite plays
have no target). Thus, for a play of length 0 (we have just started in a
position 1 = v € Pos) we have source(m) = target(m) = v, otherwise we
have source(m) = source(m), target(m,) = source(m,;1), and target(7|,|)
= target(m).

2.3 Strategies

A strategy for player X (i.e. X € {Eve,Adam}) is a partial function
s : Play y — Mov. Intuitively, s(7) for 7 ending in Posy says what X should
do next. We say that a play 7 is consistent with strategy s for X if for each
prefix 7’ of 7 such that 7’ € Play v the next move is given by s(7’), or 7’ =7
if s(7’) is not defined (i.e. the player X resigns).

A strategy s is winning (for X) from the position v if s(7) is defined for
each finite play 7 starting in v, consistent with s, and ending in Posy, and
each infinite play starting in v consistent with s is winning for X. A strategy
is winning from M C Pos iff it is winning from each v € M.

A strategy s is positional if it depends only on target(n), i.e., for each
finite play m we have s(7) = s(target(m)).

Definition 2.1 Let (G,W) be a game, and X be a player. The winning
set of X, Winy, is the set of positions from which X has a winning strategy.

2.4 Determinacy

Definition 2.2 A game is determined if for each position v one of the
players has a winning strategy from v, i.e., Wing U Winy = Pos.

A game is positionally determined iff for each position one of the
players has a positional winning strateqy from this position.

A game is half-positionally determined iff for each position either
FEve has a positional winning strategy from this position, or Adam has (any)
winning strateqy from this position.

A game is co-half-positionally determined iff for each position either
Adam has a positional winning strategy from this position, or Eve has (any)
winning strateqy from this position.

A winning condition W is determined, positional, (co-) half-po-
sitional iff for each arena G the game (G, W) is determined, positionally
determined, (co-) half-positionally determined, respectively.
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A winning condition W is finitely determined, positional, (co-) half-
positional iff for each finite arena G the game (G, W) is determined, posi-
tionally determined, (co-)half-positionally determined, respectively.

All games with a Borel winning condition are determined [Mar75], but
there exist (exotic) games which are not determined.

We have introduced 8 classes of winning conditions (so far). Although in
this thesis we focus on (finitely) half-positional winning conditions, several
of our results can be stated and proven in a very similar way for each of these
classes. To avoid repeating a similar result several times, we introduce the
following notions.

Definition 2.3 A basic arena type is a class of arenas v such that if G
is in vy and G’ is a subarena of G, then G’ is also in 7.

Most of natural classes of arenas have this property, however, there are
interesting arena types which are not basic, for example, arenas which are
transition graphs of pushdown automata [Wal96, BSWO03|.

Definition 2.4 A basic determinacy type D = (ag,aa,7) is given by
three parameters:

o ap — a class of admissible strategies for Eve (positional or arbitrary),
o a4 — a class of admissible strategies for Adam (positional or arbitrary),

e v — a basic arena type.

We say that a strategy of player X is a D-strategy iff it is in the class
ayx. We say that an arena 1s a D-arena iff it is in the class 7.

We say that a game (G, W) is D-determined iff for every starting po-
sition one of the players has a D-strategy.

We say that a winning condition W is D-determined if for every D-
arena G the game (G, W) is D-determined.

This definition encompasses all the classes of games and winning con-
ditions mentioned in Definition 2.2. In particular, a winning condition is
half-positional iff it is D-determined for D — (positional, arbitrary, arbi-
trary).

Note that if a game (G, W) is (ag, a4, y)-determined, then its dual game
obtained by using the complement winning condition and switching the roles
of players is (aa, ap, v)-determined. Thus, W is (ag, aa,v)-determined iff
its complement is (a4, g, v)-determined.

Sometimes, we will work with other classes of strategies than arbitrary
and positional, and use an even more general definition.
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Definition 2.5 A determinacy type D = (ag,aa,7) is given by three
parameters: classes of admissible arenas for both players as and ag, and a
class of arenas . D-strategies, D-arenas, D-determined games and winning
conditions are defined similarly.

2.5 Types of Arenas

In the games defined above, the moves are colored, and it is allowed to have
moves without colors. In the literature, several types of arenas are studied.

e c-arenas (C), like the ones described above.

e Mowve-colored arenas (B). In this setting each move has a color assigned;
moves labeled with € are not allowed.

e Position-colored arenas (A). In this setting, colors are assigned to po-
sitions rather than to moves. Instead of Mov C Pos x Pos x C we have
Mov C Pos x Pos and a function rank : Pos — C. As in (B), each
position has a color assigned. The winner of a play in such games is
defined similarly as for move-colored arenas.

A B C

® O

If we take a position-colored arena and color each move p with the color
rank(source(p)), we obtain an equivalent move-colored arena (this construc-
tion is illustrated on the picture). Therefore position-colored arenas are a
subclass of move-colored arenas. Obviously, move-colored arenas are also
a subclass of e-colored arenas. When speaking about a determinacy type
where we restrict arenas to position-colored or move-colored arenas, or we
want to emphasize that we allow e-arenas, we add the letter A, B or C (e.g.
A-half-positional conditions when we restrict to position-colored arenas).
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Hence C-half-positional conditions are a subclass of B-half-positional con-
ditions, and B-half-positional conditions are a subclass of A-half-positional
conditions. The inclusion between A-half-positional and B-half-positional
conditions is proper: there is no way to transform a move-colored arena into
a position-colored one such that nothing changes with respect to positional
strategies (we can split a position into several new positions according to
colors of moves which come into them, but then we obtain new positional
strategies which were not positional previously). Indeed, we know examples
of winning conditions which are A-positional but not B-positional. One of
them is C*(ab)*, where C' = {a, b}; for position-colored arenas we know
from our current position to which color we should move next (when we are
in position of color a, we should move to b, and vice versa), but not for
edge-colored arenas, as is shown by the arena below. (We don’t give full
proofs, since we don’t have introduced necessary techniques yet; a full proof
is given later for example 8.19, which is based on the same idea.) Another
example is min-parity |[GWO06|. B-positional determinacy has been charac-
terized in [CNOG6]; this result can be easily generalized to e-arenas. Positional
determinacy on e-arenas has been studied in [Zie98].

aCADb

The question whether the inclusion between C-half-positional conditions
and B-half-positional conditions is proper remains open. (However, Example
8.19 in Section 8.5 about persistent strategies presents a winning condition
which admits positional strategies for A-arenas, only persistent strategies
(Definition 8.17) for B-arenas, but not even persistent strategies for C-arenas;
thus, for persistent strategies the inclusion is proper.)

Note that, when considering half-positional determinacy of winning con-
ditions on arenas with e labels, there is no difference whether we label po-
sitions or moves. Indeed, for each move-colored e-arena, if we replace each
move v; — vy colored with ¢ by v1 — v — vy, color v with ¢, and leave
all the original positions (i.e., vy, vy etc.) colorless, we obtain an equivalent
position-colored e-arena — strategies in one arena can be interpreted in the
other one.

In this thesis, we concentrate on e-arenas since we think that this class
gives the least restriction on arenas. As the example above, C*(ab)*, sug-
gests, positional strategies for move-colored games are “more memoryless”
than for position-colored games since they do not even remember the last
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color used, although winning conditions for position-colored games (like min-
parity) may also be interesting. As we will see in the sequel, allowing our
arenas to contain e-moves  despite potential greater generality of such are-
nas  usually does not make our proofs harder, and sometimes even makes
them easier and more natural.

2.6 Extensions

In some papers a more general situation is investigated, where instead of a
winning condition we have a payoff mapping u : C* — R. In such games
Eve’s and Adam’s goals are respectively maximization and minimization of
u(cieacs . . .). The payoff mapping can be intuitively interpreted as the quan-
tity of money which Eve wins from Adam. Payoff mapping is a generalization
of the winning condition (we can get the equivalent payoff mapping by taking
the characteristic function of a winning condition).
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Chapter 3

Basic Tools

In this chapter we present our basic tools and the most important positional
winning conditions. In the first section we prove some well known properties
of positional (and also not necessarily positional) strategies in games with
prefix independent winning conditions. In the next section, we use them
to prove Lemma 3.5 which will be used in many proofs of half-positional
determinacy of various winning conditions. Then, we present Biichi and
co-Biichi conditions, and a closure property regarding them (Theorem 3.7).

In the last section we show how our results can be used to immediately
give an alternative proof for positional determinacy of the parity condition.
We also cite and generalize some interesting facts regarding parity conditions.

3.1 Naturalness of Determinacy Types

In this section we will show some well known basic properties and defini-
tions which apply to strategies in games with prefix independent winning
conditions. Prefix independence of W is very important for these properties.
Although they are of most interest for positional strategies, they are true for
arbitrary ones (i.e., not necessarily positional) too, so we prove them in a
general way, for all basic determinacy types (see page 16).

Definition 3.1 Let G = (Posg, Posa, Mov) be an arena, and X be a player.
For M C Pos, let Nextx (M) be the set of all X’s positions from which at
least one move reaches M, and all opponent’s positions from which all moves
reach X. Let Attrx (N) be the least M C Pos (with respect to inclusion) such
that M O N and M 2O Nextx(M).

Intuitively, Attrx (M) (“attractor”) is a set of positions from which X has
a strategy to reach M. It can be obtained as the least fixpoint of the operator
Nexty (M) = M U Nextx (M) which contains the set N.
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Definition 3.2 Let G = (Posg, Posa, Mov) be an arena, and X be a player.
Let M C Pos, and s be a strategqy for X. Then M]|s| is the set of all positions
which occur in some play starting from M and consistent with s.

Theorem 3.3 Fach basic determinacy type D has the following properties
for each arena G, player X, and winning condition W :

e (forward) If X has a winning D-strateqy s from M, then X has a
winning D-strategy from M|s].

o (backward) If X has a winning D-strategy s from M, then X has a
winning D-strategy from Attrx(M).

e (globalization) Let S be a set of D-strategies for X such that each s € S
is winning from U(s) C Pos. Then X has a winning D-strategy from

Uses U(s).

o (excision) Let s be a winning D-strategy from M for X, and M =
Attrx (M) = M][s]. Let G' be the game obtained by removing all the
positions in M. Then if a player Y (either X or opponent) has a
winning D-strategy from a set M' in the game (G',W), then Y also
has a winning D-strategy from M’ in G.

Definition 3.4 We say that a determinacy type D is natural if it has all
properties from Theorem 3.3.

Proof of Theorem 3.3 The forward condition is obvious from prefix
independence.

To prove the globalization condition, assume that S is well ordered, S =
{Sa}ta<y- Since the forward condition is satisfied, we can assume without
loss of generality that U(s,) = U(sa)[sa) (if this is not satisfied, let U =
U(sa)[sa] # U(sqa); from forward condition we know that there is a strategy
s’ which is winning in U; we replace s, with ¢ and let U(s") = U). The
strategy s winning from | J, U(s,) is as follows. Let m € Play y. Let a be the
smallest ordinal for which target(n) € U(s,). Let ©’ be the longest suffix of
7 for which source(n’) is also in U(s,). Then s(m) = s, (7).

We will show that s is indeed winning. Let 7w € Play_, be consistent with
s. Let a, be o which was used for the finite prefix 7, (i.e. after the nth
move). Since U(s,) = U(sqa)[Sa), our strategy never leaves U(s,,, ) in the nth
move, and thus «,, is a non-increasing sequence. Hence, there exists a m such
that Vn > m «, = «,,. Since our strategy, except the first m moves, plays
consistently with s, _, and W is prefix independent, X wins the play .
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To prove the backward condition, we can use the forward condition to
assume that M = M[s]. Note that if X has a winning D-strategy from M,
then X has a winning D-strategy from Next (M) = M U Nextx(M). Indeed,
if the position v € (Nextx (M) — M) N Posg, the strategy is to use the move
which witnesses v € Nexty (M), and then to use Eve’s strategy in M. In
v € (Nextx (M) — M) N Posya, just let Adam do a move and continue using
our strategy in M.

The least fix point Attryx(M) can be obtained by iterating Next% (M)
(possibly requiring a transfinite number of iterations). Thus, by iterating,
we obtain that X has a winning strategy in Attryx (M) (using e.g. the glob-
alization condition for transfinite steps).

To show the excision condition, we have to find the strategy from M’ in
the original arena GG. The strategy is to use s’ until Y’s opponent decides
to leave G’ — i.e. enter M. Since we assumed that M = Attry (M), this is
possible only for X =Y. In this case, Y also has a winning strategy s in M,
which he or she can use. ]

3.2 An Useful Lemma

Lemma 3.5 Let D be a natural determinacy type. Let W C C¥ be a winning
condition. Suppose that, for each non-empty D-arena G over C, there exists
a non-empty subset M C Posg such that in game (G, W) one of the players
has a D-strategy winning from M. Then W is D-determined.

Equivalently, instead of taking a non-empty subset M, we could say that
there exists a position v € Posg such that in game (G, W) one of the players
has a D-strategy winning from v. Although that wording might be simpler
to understand, we will use the wording above, since that is how our lemma
will be used. Actually, when we use our lemma to show half-positional de-
terminacy, we will usually show that either Adam has a winning strategy
everywhere, or Eve has a positional winning strategy in a non-empty subset.

Proof of Lemma 3.5 Let G = (Posga, Posg, Mov) be a D-arena.

The idea of the proof is as follows. From our hypothesis we know that
we can determine the winner and his D-strategy in some positions in G. We
remove these positions from G and we use our hypothesis again, determining
the winner in some other set of positions. We iterate (possibly needing a
transfinite number of iterations) until we remain with an empty set. When
done correctly, this leads to determining the winner in the whole GG, together
with D-strategies in (G, W).
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We will define (possibly transfinite) sequences P, C Pos, M, C Pos, G,
of subarenas, X, of players, and s, of strategies in the following way.

Let Py = Pos. The sequences end when P, = (). Otherwise, let G, =
(PosaNP,, PosgNP,, MovN P, x P, x ). From our hypothesis we know that
there exists a player X, and a subset M, C P, such that X, has a winning D-
strategy s, in G, from M,. (Of course, there can be many possible choices of
M,, X, and s,  we can choose any one of them). Without loss of generality
we can assume that M, = M,[s,] and M, = Attrx(M,) (we use forward
and backward conditions to fix M, and s, in case if it is not true). Also let
P.i1 = P, — M,, and for a limit ordinal A, let Py = ., Pa-

Let Y be any of the players. We will construct the sequence of Y’s D-
strategies s/, such that s/ is winning from U,Y<Q:X7:Y M,,. For a limit ordinal
@, s, can be obtained from s/, for v < a, by the globalization condition.
Otherwise, we obtain s, ; using the excision and globalization conditions on
s! and s,.

This sequence of strategies ends with sy = s/’@. Thus, for each player Y
we have found a D-strategy sy winning from My = Uv<ﬂ:Xw:Y M,. We have

MsUMg = Uv<ﬁ M., = Pos, hence the game is D-determined. ]

3.3 Biichi and Co-Biichi Conditions

Definition 3.6 For S C C, WBg is the set of infinite words where elements
of S occur infinitely often, i.e. (C*S)¥. Winning conditions of this form
are called Biichi conditions. Complements of Biichi conditions, WB'y =
C*(C — S)* are called co-Biichi conditions.

Theorem 3.7 Let D be a basic determinacy type. Let W C C* be a winning
condition, and S C C. If W is D-determined, so is W U WBg.

Proof of Theorem 3.7 We will show that the assumption of Lemma
3.5 holds. Let our arena be G = (Posg, Posa, Mov). S-moves are moves p
such that rank(p) € S.

Let G’ be G with a new position T added. The position T belongs to
Adam and has no outgoing moves, hence Adam loses here. For each S-move
p we change target(p) to T.

Since Adam immediately loses after doing an S-move in G’, the winning
conditions W and W U WBg are equivalent for G’, i.e. a play is winning
in the game (G, W) iff it is winning in the game (G',W U WBg). Thus, a
strategy is winning in (G', W) iff it is winning in (G', WU WBg), and we can
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use D-determinacy of W to find the winning sets Win',, Win’y and winning
D-strategies s, s’y in G-

Suppose Win'y # (. We can see that since Adam’s strategy wins in G’
from a starting position in Win',, he also wins in G from there by using
the same strategy (the game G’ is “harder” for Adam than G). Thus the
assumption of 3.5 holds (we take M = Win',).

Now suppose that Win', = (. We will show that in the game G Eve has
a winning D-strategy s in Pos everywhere, hence the assumption of Lemma
3.5 holds as well (we take M = Pos).

The strategy is as follows. For a finite play 7 we take s(7) = sg(n’), where
7" is the longest final segment without any S-moves, unless when sg(7’) is a
move to T. In this case, there had to be at least one S-move from target(n’)
in (G, and Eve makes one of them.

The strategy s is positional if sg is positional. Let 7 be a play consistent
with s. There are two possibilities: there is either finite or infinite number of
S-moves in 7. If the number is infinite, then Eve wins (as she wins WBg). If
the number is finite, then 7 = mo7’, where 7y ends with the last S-move (pos-
sibly 7 is empty). Hence, 7’ does not contain any S-moves and is consistent
with sg, thus Eve also wins 7/, and also m because of prefix independence.
Therefore, s is indeed a winning D-strategy. [ ]

Note that, by duality, Theorem 3.7 shows that if W is D-determined,
then so is W N WBY.

Although this proof works for all basic determinacy types, there are nat-
ural generalized determinacy types for which it fails. Indeed, the determinacy
type of positional /suspendable winning conditions (see page 61 later) is nat-
ural, but the claim of Theorem 3.7 is false for them. On the other hand, in
Section 8.5 about persistent strategies later we present natural determinacy
types for which the claim of Theorem 3.7 is true, although it has to be proven
in a different way.

3.4 Parity Conditions

The parity condition of rank n is the winning condition over the set of
colors C'={0,1,...,n} defined with

WP, = {w € C* : limsup w; is even}. (3.1)

1— 00

This is one of the most important classical winning conditions. Many
proofs of its positional determinacy are already known. Theorem 3.7 imme-
diately gives yet another one: it is enough to start with an empty winning
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condition (which is positionally determined) and apply Theorem 3.7 and its
dual n times.

It is worth to remark that in case of infinite arenas the parity conditions
are the only ones which admit positional determinacy.

Theorem 3.8 Let W C C% be a winning condition. The following properties
are equivalent:

1. W = Y (WP,) for some h : C — {0,1,...,n}, where by h(w) for
w € C¥ we mean the word v such that v, = h(w,) (we call such a W
a generalized parity condition);

2. W is positionally determined;

3. (G, W) is positionally determined for each arena G over C where either
Posg =0 or Posy = 0);

4. Let Wy = {u € C*lu® € W}. We have W¢ C W and (C* — W;)* C
cY —Ww.

The equivalence of (1) and (2) has been shown in [CN06|. Note that this
theorem works only in case of edge-colored arenas (B) and e-arenas (C), not
position-colored arenas (see Section 2.5 for definitions of arena types, and
examples of A-positional winning conditions).

Proof

1—2 is a simple generalization of a well known fact — namely, posi-
tional determinacy of parity games (|[Mos91|, [EJ91|, [McN93]|). As men-
tioned above, it can be also shown by applying Theorem 3.7 and its dual n
times.

2—3 is obvious (a special case).

2—4 is proven in [CN06| (as Lemma 7). Actually, only one-player arenas
are used in the proof, so we get 3 — 4.

2—1 is proven in |[CNO6|. However, the assumption (2) is never used
except the proof of Lemma 7 (i.e., implication 2—4) and Lemma 9. So, to

show 4 — 1, we only have to prove Lemma 9 using condition (4).

Lemma 3.9 (Lemma 9 from [CNO6]) Assume that Condition (4) from
Theorem 3.8 is true. Then for any L, L' C C* we have

Voe L' Jue L uve Wyiff Ju e LVv € L'uv € Wy

!The fact that Lemma 9 is a consequence of condition (4) has been noticed by Hugo
Gimbert.
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Proof of Lemma 3.9 (<) is obvious. To prove (—), assume to the
contrary that for each w € L there exists v € L’ such that uv ¢ W;. We
define sequences v,, € L' and u,, € L by induction. Let u; be any element of
L. Let v, € L' be such that u,v, ¢ Wy. Let u,1 be such that v,u,41 € Wy.
The word viugvouz ... € W¢ C W (by (4)). On the other hand, the word
U v UV . .. € CT =W, C C¥—W (by dual in (4)). This is a contradiction,
since W is prefix independent. [

In the case of finite arenas there are more positional winning conditions,
and we don’t have neither 2—4 nor 2—1. For example, the winning condition
WF(A) from Section 5 below, where A and its complement are both convex
sets, is finitely positional. However, we have equivalence of (2) and (3) (a
very elegant result from |GZ05|).
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Chapter 4

Concave Winning Conditions

In the following chapters, we give some examples of half-positionally de-
termined winning conditions. We start by giving a simple combinatorial
property which guarantees finite half-positional determinacy.

4.1 Definition

Definition 4.1 A word w € C* U CY is a shuffle of words wy, and w,, iff
for some sequence of words (uy,), u, € C*

o W= [[,cnur = vourupusUsUsUCUTUS - . .,
® wy = erN Uk+1 = UTUIUSUT . . .,
o wy =[], cn Uok = UoUaUyls . . ..

Definition 4.2 A winning condition W is convex if as a subset of C* it is
closed under shuffles, and concave if its complement is conver.

Example 4.3 Parity conditions (including Biichi and co-Biichi conditions)
are both convexr and concave.

Proposition 4.4 Concave winning conditions are closed under union. Con-
vex winning conditions are closed under intersection.

Example 4.5 Let C' = {a,b,c}. The winning condition WB',, U WB,,
(co-Biichi condition (Definition 3.6); in other words, Eve wins iff at least one
of letters a and b appears finitely often) is concave, but not convet.
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Example 4.6 Let C' be an infinite set. The following winning conditions
are both convex and concave:

e Exploration condition: the set of all v in C¥ such that {v, : n € w} is
infinite.

e Unboundedness condition: the set of all v in C* such that no color
appears infinitely often.

Decidability and positional determinacy of these conditions on (infinite)
pushdown arenas where each position has a distinct color has been studied
in |[Gim04| (exploration condition) and [BSWO03|, [CDT02| (unboundedness

condition).

Another example, which justifies the names conver and concave, is given
in Chapter 5 below.

4.2 Half-positional Determinacy

Theorem 4.7 Concave winning conditions are half-positionally finitely de-
termined.

The proof goes by induction over Mov, and is based on the following
idea. Let v be Eve’s position, with outgoing moves p1, ps,.... Suppose that
Eve cannot win by using only one of these moves. Then, since the winning
condition is concave, she also cannot win by using many of these moves
because it can be written as a shuffle of subplays that appear after each move
D1, P2, - - -, and Adam wins all of these plays.

Proof of Theorem 4.7 Let W C C“ be a concave winning condition
in the game (G, W), where G = (Posa, Posg, Mov). A proof by induction on
|Mov]|.

Let v be a position belonging to Eve, where she has more than one move.
If there are no such positions, the game (G, W) must be half-positionally
determined from definition.
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Let M be a set of Eve’s possible moves from v. Let M = M; U M,, where
M, and M, are non-empty and disjoint. Let G* = (Posy, Posg, Mov — M3_;),
G4 = (Posy, Posg, Mov — M).

From the induction hypothesis we know that the games (G', W), (G*, W)
and (G4, W) are half-positionally determined. Let Win%, and Win, be
winning sets for Eve and Adam, respectively, in the games (G', W) for
i € {1,2, A},and let s; and t; be the winning strategies of Eve in Win’,
and Adam in Win’, respectively, in these games. Suppose s; is a positional
strategy for ¢ € {1,2, A}.

First, assume that v € WinZ for some i. In this case the strategy s; is
also winning for Eve in the set Win” in the arena G (since the only difference
between G; and G is that Eve has more possibilities in G). On the other
hand, ¢; is a winning strategy for Adam in the set Winf in the arena G, since
each play consistent with ¢; is winning for Adam and therefore must not go
through v (by prefix independence, Eve would win otherwise), hence Eve is
unable to use her additional possibilities.

Now, assume that v € Win7" and v € Winj. Since v € Win#}, Adam is
able to win each play in G; which goes through v. Therefore the winning
sets in (G; are the same as in G4 (again, prefix independence). Therefore, if
v € Win{' and v € Wing, we have Win{' = Wing' (since both of them are
equal to Win4) and Win¥ = WinZ.

Similarly to Adam’s strategy in the first case, Eve’s (positional) strategy
s; remains winning for Eve in the set Win®” in the game G. We will show a
winning strategy for Adam in the set Winf.

Let m = m ... m, be a finite play. We will present 7 as a shuffle of two
plays (1) and m), where 7(;) is a play in G;.

Let K =dom 7w = {1,...,m}. Let S, = {k € K : source(my) = v}. We
define the function f : K — {1,2} in the following way. If k¥ < min S,, we
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take f(k) = 1. Otherwise, f(k) = i iff my € M,;, where k' is the greatest
element of S, such that &’ < k. .

For i = 1,2, let 7 = erKﬂ,[gf(k):Z}, where w® denotes w if ¢ is true,
and the empty word € otherwise. One can easily see that 7, as a word over
Mov, is then a shuffle of 7(;) and 7).

It can be easily checked that ;) is a play. For j = f(m) we have
target(m(j)) = target(m). Let t(m) = t;(n(;)). If Adam consistently plays
with the strategy ¢, the plays m(; are consistent with ¢; for ¢+ = 1, 2.

We check that ¢ is indeed a winning strategy for Adam in the set Winf in
the game (G,W). Let 7 be an infinite play consistent with ¢. Like for finite
plays, 7 is a shuffle of 71y and 7(9). Hence rank(r), the sequence of colors in
the play , is a shuffle of rank(n(;)) and rank(m()). The plays 7 for i = 1,2
are either finite or winning for Adam (as they are consistent with ¢;). If 7,
is finite, m(3_; is infinite and winning for Adam; from prefix independence
of W we get that 7 is also winning for Adam. If both plays are infinite,
rank(7m)) ¢ W and rank(m)) ¢ W; from concavity of W we get that also
rank(mw) ¢ W. n

This theorem gives yet another proof of finite positional determinacy of
parity games, and also finite half-positional determinacy of unions of families
of parity conditions (where each parity condition may use a different rank
for a given color). Half-positional determinacy of Rabin conditions (finite
unions of parity conditions) over infinite arenas has been proven in [Kla92]
(see also |Gra04|, and Theorem 7.12 in this thesis).

Note that, in general, concavity does not imply half-positional determi-
nacy over infinite arenas — for examples see Chapter 5 below, and also
Example 4.6 and Theorem 7.2. Also, half-positional determinacy (even over
infinite arenas) does not imply concavity — examples can be found in Chap-
ters 5 and Section 6.2 (Proposition 6.7 and the note above it). These two
facts are especially visible in the table in Section 5.5, which compares (among
others) two very similar winning conditions, one of which is concave but not
(infinitely) half-positional, while the other is infinitely half-positional but not
concave (only weakly).

o CHE )

Concavity does not force any bound on the memory required by Adam.
Indeed, let x € [0,1] — Q, C' = {0, 1}, and consider the game (G, W), where
(G is the arena with one Adam’s position A and two moves A — A colored 0

32



and 1 respectively, and let TV be the set of sequences (c,,) such that " | ¢;/n
is not convergent to x. This winning condition is concave (Theorem 5.1 in
Chapter 5 below), but Adam obviously requires unbounded memory here.
A related property has been shown in [MTO02|: a winning condition W is
called positive iff its complement is closed under supersequences (i.e., shuffles
with C*¥). Theorem 3 from [MT02| says that games with positive winning
conditions admit persistent winning strategies for Eve. A winning strategy
s is persistent iff s(m) equals s(mmy) whenever target(m) = target(m;ms)
(i.e., Eve always chooses the same move from each position, but she can
decide which move she takes not before game, but when the game enters this
position). Positiveness is a stronger property than concavity (for example,
the parity condition is concave, but not positive), and persistence is a weaker
property than positionality; however, we are not limited to finite arenas
(persistent strategies are not interesting on finite arenas, see Corollary 8.23
later). There will be more about persistent strategies in Section 8.5 later.

4.3 Weakening the Concavity Condition

In [GZ04] a result similar to Theorem 4.7 has been obtained in the case of
full positional determinacy. To present it, we need the following definition:

Definition 4.8 A winning condition W is weakly convex iff for each se-
quence of words (uy,), u, € C*, if

1. ULU3UsUT . .. € W,
2. UaUgUUS - . . € W,

3. (*) V1 (ul)“ € W,

then ULULU3Uy . . . € Ww.
A winning condition W is weakly concave iff its complement is weakly
convew.

In the case of normal convexity there is no (x).

|GZ04| defines fairly mizing payoff mappings; in the case of prefix inde-
pendent winning conditions fairly mizing resolves to the conjunction of weak
concavity and weak convexity. Theorem 1 from [GZ04] says that games on
finite arenas with fairly mixing payoff mappings are positionally determined.

Unfortunately, weak concavity is not enough for half-positional finite de-
terminacy.
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Proposition 4.9 There exists a weakly concave winning condition, W@,
which is not half-positionally finitely determined.

1
0

Proof Let C = {0,1}. For w € C¥ let P,(w) be the number of 1’s
among the first n letters of w, divided by n. The winning condition W) is
a set of w such that P,(w) is convergent and its limit is rational. It can be
easily seen that for each u € C* we have u¥ € WQ. Therefore (%) is never
satisfied for the complement of W@, hence W@ is a weakly concave winning
condition. However, W() is not half-positionally determined. Consider the

arena with two positions £ € Posg, A € Pos,, and moves F BN A E EN A,

AL Eand AL E. If Eve always moves in the same way, Adam can choose
the moves 0 and 1 in an irrational proportion, ensuring his victory. However,
Eve wins by always moving with the color opposite to Adam’s last move

the limit of P,(w) is then 1/2. n

Note that the given W satisfies the even stronger condition obtained by
replacing Vi by 3¢ in () in Definition 4.8.
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Chapter 5

Geometrical Conditions

In this chapter we show some half-positional determinacy results for geo-
metrical conditions, which are based on the ideas similar to that used by
the mean payoff game (sometimes called Fhrenfeucht-Mycielski game). We
also show the relations between geometrical conditions and concave winning
conditions.

5.1 Definition

Let C = [0,1]¢ (where [0, 1] is the real interval; we can also use any compact
and convex subset of a normed space). For a word w € C*, let P(w) be the
average color of w, i.e., ﬁ Z'sz‘l wy. Fora word w € C¥, let P,(w) = P(wy,)
(w,  an n-letter prefix of w).

Let A C C. We want to construct a winning condition W such that
w € W whenever the limit of P,(w) belongs to A. Since not every sequence
has a limit, we have to define the winner for all other sequences.

Let WF(A) be a set of w such that each cluster point of P,(w) is an
element of A. Let WF'(A) be a set of w such that at least one cluster point
of P,(w) is an element of A. Note that WF'(A) = C¥ — WF(C — A).

As we will see, for half-positional determinacy the important property
of A is whether the complement of A is convex  we will call such sets A
co-convez (as concave usually means “non-convex” in geometry).

Geometrical conditions have a connection with the mean payoff game,
whose finite positional determinacy has been proven in [EM79|. In the
mean payoff game, C' is a segment in R and the payoff mapping is u(w) =
liminf, o Po(w). If A= {z:2 > z0} then u"'(A) (“Eve wants z or more”)
is exactly the geometrical condition WF(A). Of course, the dual payoff, de-
fined with u(w) = limsup,,_, ., P.(w), corresponds to WF'(A). (In case of
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finite arenas it does not matter whether we take limsup or liminf, since if
both players use optimal strategies, the sequence P,(w) will be convergent.
However, things change for infinite arenas.)

Geometrical conditions are a generalization of such winning conditions to
a larger class of sets A and C.

5.2 Concave and Convex

In this section we show how notions of convexity and concavity of winning
conditions, introduced in Chapter 4 (Definition 4.2), are related to geomet-
rical convexity of the set A.

Theorem 5.1 We have:

1. WF'(A) is weakly convez iff A is a closed convex subset of C.

2. WF'(A) is convex iff A is a trivial subset of C' (i.e., A=( or A=C).
3. WF'(A) is weakly concave iff A is a co-convez subset of C.

4. WF'(A) is concave iff A is a co-convex subset of C.

5. WF(A) is weakly convex iff A is a convex subset of C.

6. WF(A) is convex iff A is a convex subset of C.

7. WF(A) is weakly concave iff A is an open co-convex subset of C.

8. WF(A) is concave iff A is a trivial subset of C.

To prove it, we need the following lemmas:

Lemma 5.2 If A is a convex subset of C' then WF(A) is conver.

Proof

Now, suppose A is convex; we will show that WF(A) is convex.

Let w3 be a shuffle of wy and wsy, where wy,wy € WF(A). Let By, for
k =1, 2, be a set of cluster points of P,(wy), and Bz be the convex hull of
By UB,. Since By € Aand By C A, also B3 C A. All the sets By, By, By are
compact. Let §% be the distance of P,(wy) from the set By, for k = 1,2,3.
The sequence (6%) converges to 0 for k = 1,2. We will show that (62) also
converges to 0.
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Let € > 0. Let N be a number such that for all n > N we have 6} < €
and §2 < e. Let n > ND/e, where D is the diameter of C, i.e., the maximum
distance between two colors. The word ws, is a shuffle of w;,,, and wy),, for
some m + m' = n. One can easily show the following:

Py (wp) = %Pm(wl) + %’Pm/(w). (5.1)

For k = 1,2, let P, (wy) = b, + x5, where b, € By and |z;| = 6. Let
bo = "by + %bQ, Ty = Ty + %@. From (5.1) we have P,(ws) = by + xo.
From the definition of Bs, by € Bs. From the definition of xy we have that

/ /
83 < |zl < D] + Llan) = Dot + g2 (5.2)
n n n n

If m < N, %5; is smaller than %D. Since m < N and n > ND/e,
we have %(5;1 < e If m > N, we have 6} < ¢, so also %5; < €. By the
same reasoning we have that the second component is also smaller than e.
Therefore 62 is smaller than 2¢ for each n > ND/e, hence the sequence 4?7 is
indeed convergent do 0. Thus, all cluster points of (P, (w3)) must be in Bj.
|

Lemma 5.3 If A is a closed convexr subset of C' then WF'(A) is weakly
COnver.

Proof Let v; = wyws... and vy = wawy ... be two words such that vy,
vy, and w¥ are all in WF'(A). We have to show that v3 = wjwswswy. ..
is also in WF'(A). Let x, = P(wjwows...w,); (x,) is a subsequence of
(P, (v3)), so to show that (P,(vs)) has a cluster point in A, it is enough to
show that (x,) has a cluster point in A. However, each x,, is in A, since z,,
a convex combination of P(wy),..., P(w,), and P(w;) = lim P,(wy) € A.
Since A is closed, (x,) must have a cluster point in A. |

Lemma 5.4 (a) If A is a non-trivial subset of C' then WF'(A) is not convex.
(b) If A is not closed then WE'(A) is not weakly convez.

Proof Let x € A. To show (b), let y, be a sequence of elements of A
convergent to y ¢ A. To show (a), just take y, =y ¢ A.

Consider the infinite words u, v, w produced by the following (non-termi-
nating) algorithm. Start with « = =, v = x, w = xa (concatenation). For
n=1, 2, ...: Let [ be the length of u. Append z™ to u, y™ to v, (zy™)™
to w. Let [ be the length of v. Append z™ to v, y™ to u, (zy™)™ to w.
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It can be easily seen that w is a shuffle of u and v. However, = is a
cluster point of both u and v, but the only cluster point of w is y. Thus, w ¢
WF'(A), but u,v € WF'(A), so WF'(A) is not convex. In case (b), we are
shuffling only powers of « and y,; their infinite repetitions 2*,y% € WF'(A)
(lim P, (2¥) = P(z) = 2 € A), hence WF’'(A) is not even weakly convex. m

Proof of Theorem 5.1 If A is trivial, obviously WF’'(A) is convex.

If A is not convex, let z,y € A such that z = kx + (1 — k)y ¢ A for
k € [0,1]. Obviously, the infinite words z* and y* are in WF(A) and WF'(A),
but we can shuffle them to obtain a word w such that P,(w) is convergent
to z, thus w ¢ WF(A) and w ¢ WF'(A).

These two simple facts, together with the lemmas above, are enough to
prove all items above. (Note that items 3, 4, 7, 8 are dual to items 1, 2, 5,
6.) u

Note that in this theorem we assumed that each element of our space
0, 1] is allowed as a color of a move. The things may change if we restrict
our color set C. For example, for C' = [0,1], W = WF'(]0,1] — Q) is not
weakly convex from the theorem above. However, for C' = {0,1}, WNC¥ is
weakly convex, since there is no word w such that w* € W.

5.3 Positional Determinacy

By Theorems 5.1 and 4.7, if A is co-convex then WF’'(A) is concave and thus
finitely half-positionally determined. However, the situation is different for
infinite arenas.

Proposition 5.5 If A is a non-trivial subset of C' then WF'(A) is not half-
positionally determined.

Proof of Proposition 5.5 Let x € C'— A,y € A. Consider the game
with two positions A and E where one can choose a move. A is Adam’s
position, E is Eve’s position. In the position E Eve can choose a path going
to A through £ edges of color y, for each integer k£ > 1. Similarly, in A Adam
can choose a path to E by k edges of color x, for all integers k£ > 1.
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If Eve is using a positional strategy, always choosing the move generating
the path y*, Adam can win choosing 2"* in the n-th round. In this case the
limit of P,(w) in x, hence Adam wins.

However, Eve can win by using a non-positional strategy. This strategy
is to choose the move generating y"* in the round n, where k is the number
of x’s generated in the last move of Adam. This ensures that y is a cluster
point of P,(w), hence Eve wins. [

Proposition 5.6 If A is not open then WF(A) is not half-positionally de-

termined.

Proof of Proposition 5.6 Let z = lim,_, x,, where x € A and
x, ¢ A. Consider the game with only one Eve’s position E and moves E —
E labeled z,, for each positive integer n. Eve has only non-positional winning
strategies here. ]

5.4 Simple Open Set

In this section we show that WF(A) is half-positional for very simple closed
sets A. The problem remains unsolved for more complicated sets.
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Theorem 5.7 Let C'=[0,1], A=[0,1/2). The condition
WF(A) = {w : limsup P,(w) < 1/2}

1s half-positional.

Proof of Theorem 5.7
Let G = (Posa, Posg, Mov) be an arena. Consider the following prefix
dependent winning condition for z € [0, 1]:

WL, ={w:V,P,(w) <z} (5.3)

Let L, = Wing(G, WL,), i. e. the set of positions v such that there
exists a winning strategy for Eve in the game starting from the position v.
We will use the following lemma:

Lemma 5.8 Let © < 1/2. In L, Eve has a positional winning strateqy in
(G, WF(4)).

To apply Lemma 3.5 it remains to prove that if L, is empty for each
x < 1/2 then Adam has a winning strategy everywhere. Let (a,) be an
increasing sequence convergent to 1/2. The strategy is as follows:

e Foreachi=1, 2, ...:

— Let ¢ be the current time (i.e., length of the play so far), and
v be the current position. Since v ¢ L,,, we know that Adam
has a strategy which guarantees that after some time ¢’ we get
P(w) > a;, where w is the color word obtained from time ¢ to t'.
Adam uses this strategy until this happens.

If Adam uses this strategy, we get an infinite play whose color word is
w = wiwaws . .., where P(w;) > a;. One can easily check that, for each i,
there will be a ¢ such that Pi(w) > a;. Thus, limsup P,(w) is at least 1/2. m

Proof of Lemma 5.8
Let (G*, WPy) (WP is the parity condition over C' = {0, 1}) be the game

where:
e Pos%, = Posx x R for X € {A, E},

e For each move v 5 w € Mov and z > 0 we have a move (v, 2) RN
(w,z+x —t) in Mov”®,

40



¢ 1
e For each move v — w € Mov and z < 0 we have a move (v, z) — (w, 2)
in Mov”.

The number z in position (v, z) € Pos” defines Eve’s reserve. Eve wins
all infinite plays where this reserve does not fall beyond 0 (if z falls beyond
0, then it stays there).

The plays in (G*, WPy) can be projected to (G, WL,). And vice versa, a
play in (G, WL,) starting in v can be raised to a play in (G*, WP;). One can
easily show that projecting and raising plays preserves the winner, provided
that in (G*, WP;) we start in (v,0) for some v. Hence L, = {v: (v,0) €
Wing(G*, WP1)}.

The parity condition WP, is positionally determined, thus the game
(G*, WPy) we constructed is positionally determined. Let s’ be a posi-
tional strategy winning in Wing(G*, WP;). Clearly if z; < z; then (v, z1) €
Wing(G®, WPy) implies (v, z9) € Wing(G®, WP;). Let M be the set of v
such that (v, z) € Wing(G®, WP,) for some z > 0; we have L, C M. Let
r <y < 1/2. Consider the following strategy in M:

s(v) = 7(s'(v, 2(v) + (y — 2))) (5.4)

where 7 is the projection from Mov® to Mov, and
z(v) =inf{z: (v,2) € Wing(G")}. (5.5)

Let (GY, WP;) be a game constructed analogically to (G*, WP;). One
can easily check that each game starting in v € M which is consistent with s

projects to some play in (GY, WP;) winning for Eve and starting in (v, z(v)).
Hence the play in (G, WF(A)) satisfies the winning condition WF(A). =

This theorem can be generalized to the following:

Corollary 5.9 Let A = f'({x € R : z < 0}) for some affine function
f:C — R. Then, the condition WF(A) is half-positional.

Proof Let ap = min f(C),a; = max f(C). Let h be such that 0 <
1/2 4+ hay < 1/2+4 ha; < 1. Let G’ be the arena like G, except that we
replace each color ¢ with ¢(¢) = 1/2 4+ hf(c). By our assumption, G’ is an
arena over [0, 1], and one can easily check that Eve wins a play in (G, WF(A))
iff she wins the corresponding play in (G', WF([0,1/2))). u
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5.5 Summary

The following table summarizes what we know about concavity and half-
positional determinacy of geometrical conditions. In every point except No. 0
we assume that A is non-trivial, i.e. ) # A # C. The first two columns specify
assumptions about A and whether we consider WF(A) or WF'(A), and the
last three answer whether the considered condition is concave and whether it
has finite and /or infinite half-positional determinacy. Negative answer means
that the answer is negative for all sets A in the given class; the question mark
means that the given problem has not been solved yet (but we suppose that

the answer is positive).

No. A condition concavity  finite infinite
0 trivial WF'(A) or WF(A) yes yes yes
1 not co-convex  WF'(A) or WF(A) no no no
2 co-convex WF'(A) yes yes no
3 | co-convex, not open WF(A) no yes? no
4 co-convex, open WF(A) weak only  yes? yes?
5 [£,1] C [0,1] WF(A) weak only  yes yes

Note that, for any set A which is co-convex and non-trivial, WF'(A)
is finitely half-positionally determined, but not infinitely half-positionally
determined. This shows a big difference between half-positional determinacy

on finite and infinite arenas.

42



Chapter 6

Games and Finite Automata

Infinite games are strongly linked to automata theory. An accepting run of
an alternating automaton (on a given tree) can be presented as a winning
strategy in a certain game between two players. Parity games are related
to automata on infinite structures with parity acceptance condition. For
example, positional determinacy of parity games is used in modern proofs of
Rabin’s complementation theorem for finite automata on infinite trees with
Miiller (or, equivalently, parity) acceptance condition. See |[GTWO02| for more
links between infinite games, automata, and logic.

In this chapter we concentrate on the links between our subject and finite
automata. Winning conditions are languages of infinite words over C', and
many of those which are used in theory and practice are w-regular. Exam-
ples include parity conditions, Rabin conditions (unions of parity conditions),
and Miiller conditions (which are defined in the terms of colors which appear
infinitely often). There are many equivalent definitions of the class of w-
regular languages, which generalizes the class of regular languages of finite
words. We will use deterministic finite automata with parity acceptance
condition a language L C (Y is w-regular if it is accepted by an au-
tomaton of this kind. Other definitions use w-regular expressions (which are
a very effective method of expressing w-regular languages, and are used in
many places in this thesis), other kinds of automata (e.g. nondeterministic
Biichi automata), or notions of logic. It is a well known fact that the class
of w-regular languages is closed under operations such as union, intersection,
negation, and homomorphic preimages and images. Since finite automata
provide nice finite descriptions for w-regular languages, it is possible to give
algorithms which check properties of an w-regular winning condition, given
the automaton that accepts it.

First, we present the definition of a DFA with parity acceptance condition.
In the next section we show a class of half-positional winning conditions
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defined using a finite automaton (on finite words). In the next two sections we
show what can be said about finite half-positional determinacy of a winning
condition which is w-regular. Precisely, we show that if an w-regular winning
condition is not half-positional then this is witnessed by a very simple arena,
which will lead us to an algorithm which decides whether given winning
condition is finitely half-positional. In the last section we show that concavity
of an w-regular language is also decidable.

6.1 Definitions and Prefix Independence
We start by defining a DFA with parity acceptance condition.

Definition 6.1 A deterministic finite automaton (DFA) on infinite
words with parity acceptance condition is a tuple A = (Q, qr, 0, rank),
where @ 1s a finite set of states, qf € Q the initial state, rank : @) —
{0,...,d}, and § : Q x C — Q. We extend the definition of § to § :
Q xC* — Q by d(q,€) = ¢q,0(q,wu) = §(6(q,w),u) for w € C*,u € C.
For w € C¥, let qo(w) = q; and gni1(w) = 3(qn, Wnt1) = 6(qr, wo . . . Wpy1)-
We say that the word w € C*¥ is accepted by A iff limsup,,_, . rank(g,(w))
is even. The set of all words accepted by A is called language accepted by
A (or, recognized by A) and denoted L.

Since we are speaking about w-regular winning conditions which are prefix
independent, we can assume that our automaton has additional properties
strong connectedness and irrelevance of initial state.

Proposition 6.2 Let A = (Q, qr, 6, rank).

(a) If A" = (Q, q}, 6, rank) where ¢; = 6(qr,u) for w € L*, then w € Las
iff uw € La.

(b) If L(qy q,6,rank) does not depend on q € Q then L, is prefiz independent.

(c) If A is strongly connected (i.e. for each q,q' € Q' there is a word
w € C* such that 6(q,w) = ¢'), and Ly is prefiz independent, then L q 5 rank)
does not depend on q € Q).

(d) If L, is prefiz independent, then there is a subset Q' C Q and q; € Q'
such that Ly = Las for A" = (Q’, q}, 0,rank), and A" is strongly connected,.

Proof (a) gun(uw) = d(qr, w|m+n) = 6(d(qr, u), wln) = ¢, (w).

(b) Let u € C* be a word of length m, and w € C*. From (a) we easily
get that w € L, iff uw € Ly.

(c) Let A" = (Q,¢,0,rank). Let wy be a word such that ¢ = 6(qz, wo).
We have w € L4 iff wow € Ly, which is equivalent to w € Ly4.
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(d) Like in the proof of (¢) we can change the initial state. If some states
are not reachable from the current initial state, we can remove them from
out automaton. Repeat until the obtained automaton is strongly connected.
]

Strong connectedness is not sufficient for prefix independence — for ex-
ample, the language (b*ab*a)*b* C {a, b}“ is not prefix independent, but it
can be recognized with a strongly connected automaton with 2 states. Prefix
independence of an w-regular language can be checked using standard tech-
niques from automata theory (building automata recognizing L4 — L4 and
Ly — L4, for each automaton A’ with changed initial state, and testing its
emptiness).

6.2 Monotonic Automata

In this section we show yet another class of half-positionally determined
winning conditions which is based on an idea coming from automata theory,
and guarantees half-positional determinacy even for infinite arenas. We need
to introduce a special kind of deterministic finite automaton (on finite words).

Definition 6.3 A monotonic automaton A = (n,d) over an alphabet C
is a deterministic finite automaton (on finite words) where:

e the set of states is Q = {0,...,n};
e the initial state is 0, and the accepting state is n;

e the transition function § : Q) x C' — @ is monotonic in the first com-
ponent, i.e., if ¢ < ¢ then 6(q,c) < (¢, c).

Actually, we need not require that the set of states is finite. All the results
presented here except for Theorem 7.13 and the remark about finite memory
of Adam can be proven with a weaker assumption that () has a minimum
(initial state) and its each non-empty subset has a maximum.

The function ¢ is extended to C* as in Definition 6.1; this extension is
still monotonic. By L4 we denote the language accepted (recognized) by A,
i.e., the set of words w € C* such that §(0, w) = n.

Example 6.4 Let C' = {a,b,c}. Monotonic automata can recognize the fol-
lowing languages: C*a"C*, C*a" 'bC*, C*ba" 'C*. Monotonic automata
cannot recognize the following languages: C*a’b*C*, C*babC*, C*bacC*.
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C*ba3C*

The pictures illustrate automata recognizing these languages, for n =
4. (To show that the other languages are not recognizable by monotonic
automata, one can use e.g. Theorem 6.6 or Proposition 6.7 below.)

Definition 6.5 A monotonic condition is a winning condition of the form
WM 4 = C¥ — L4 for some monotonic automaton A.

Note that if w € L then uw € Ly for each u € C*. Hence Ly = C*L 4,
thus L4 and WM 4 are prefix independent for each A. Also, L4 is equal to
La(C*LA)Y = (LaC*)¥, hence without affecting WM 4 we can assume that
d(n,c) = n for each c.

Theorem 6.6 Any monotonic condition is half-positional.
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In Section 8.2 we analyze memory required by Adam to win in his winning
set.

Proof of Theorem 6.6

Let A = (n,d) be a monotonic automaton, and G = (Pos4, Posg, Mov)
be an arena. We will show that the game (G, WM ,) is half-positionally
determined.

We will construct a new game on the arena G’ = (Pos)y, Posy, Mov')
over the set of colors C' = {0,1} with the parity condition WPy, where
Pos'y = Posx x Q. For each move vy 5 vy in G, in G’ we have moves

(v1,q) “, (v2,0(q, c)) for each ¢ < mn; ¢ =0 for ¢ < n and 1 for ¢ =n. (We
assumed that 0(n,c) = n, which means that after reaching ¢ = n Adam will
win, unless the play ends finitely.)

The game (G’, WPy) is positionally determined, therefore Pos’ can be
split into the winning sets of both players, Winy and Win',, and in Win’, we
have a positional winning strategy for Eve, s’ : Win%, — Mov. Let M C Pos
be the set of v such that (v,0) € Win/.

There are two cases:

1. M = (. We will show that Adam has a winning strategy in (G, WM 4)
from each position. This strategy is implemented by the following
algorithm:

e Let vy be the starting position (after R; = 0 moves);
e Fori=1,23,...

e After R; moves we are in position v;. In G', Adam has a strategy
ensuring reaching from (v;,0) to some state belonging to the set
N = {(v,n) : v € G}. Adam uses a projection of this strategy
(ignoring R; moves which have been made before reaching v;),
until he reaches N in G'. Let v;,1 be the vertex reached in G.

The word w created by colors of moves made in meantime satisfies

3(0,w) = n.

The word created between the R;-th and R, ;-th move belongs to L4,
therefore the infinite word created during the whole play does not be-
long to WM 4.

2. M # (). We will show that Eve has a positional winning strategy in
(G, WM 4) for each starting position vy € M.

Note that if ¢; < g2 and (v, g2) € Win', then also (v,q;) € Win,. (The
situation with smaller ¢ is better for Eve.) For v € M we denote by
H(v) the greatest ¢ for each (v,q) € Win',.
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We define Eve’s positional strategy in the game (G, WM ,4) in the set
M in the following way: for v € M, s(v) = a(s'(v, H(v))), where a(p)
for a move p’ € Mov’ is the move in Mov such that p’ is derived from p
(in case if there are many such moves, a(p’) can be any one of them).

Let m be a play consistent with the strategy s, and v; = target(m;)
for i > 0. Let ¢; = 0(0,v1vy . ..v;) be the state of the automaton when
reaching v;. We will show by induction that for all i we have ¢; < H(v;),
and therefore ¢; < n and v; € M. Obviously ¢o = 0 < H(vg). Now,
assume that ¢; < H(v;); we will show that ¢;11 < H(viyq).

Suppose v; € Posg. This means that v;,; = target(s(v;)), and thus,
target(s'(v;, H(v;))) is (viy1,q) for some q. Since ¢; < H(v;), qiy1 =
d(viy1, rank(s(v;))), ¢ = 0(H (v;), rank(s(v;))), and 0 is monotonic, we
have ¢;y1 < ¢. On the other hand, we know that (v;i1,q) € Win'g,
therefore ¢ < H(v;11). Hence indeed ¢;11 < H(vi11).

Now, suppose v; € Posy. Then v,y = target(p) for some move p

from v;. The move p gives rise to moves p; = ((v;, ¢;) A (Vit1,Giv1))
0 . .

and py = (v, H(1:)) > (viy1,q) in Mov'. Since ¢ < H(vy), by

monotonicity of 6 we obtain ¢;1; < g. We also have ¢ < H(v;41), since

otherwise Adam could leave Eve’s winning set in G’ (using the move

P2).

Since for each ¢ we have ¢; < H(v;) < n, the word vyvs ... has to belong
to WMA

Half-positional determinacy follows from Lemma 3.5.
]

From this theorem, together with Example 6.4 above, one can see that
e.g. WA, the complement of the set of words containing ™ infinitely many
times, is monotonic, and thus half-positionally determined.

For n = 1 the set WA,, is just a co-Biichi condition. However, for n > 1
it is easily shown that WA, is not (fully) positionally determined, and also
that it is not concave. For example, for n = 2 the word (bababbabab)“ is
a shuffle of (bbbaa)“ and (aabbb)“.

Proposition 6.7 All monotonic conditions are weakly concave.

Proof Let A = (n,d) be a monotonic automaton. We will show a
stronger property, namely that, for each sequence of words wy,ws, ..., if
Vawy € LY, then wjwows... € LY. (We don’t use the assumption that

wiwaws ... € L4 and wywswg € LY.)
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We will assume that §(n, ¢) = n for each c.

Since w¥ ¢ WM 4, we have that §(q,w;) > ¢ for each ¢ < n. Otherwise,
if for some ¢ we had 6(q,w;) < g, then, from monotonicity of d, §(¢', w;) < ¢
for each ¢’ < ¢, thus A will not accept any prefix of wy, because we will never
reach the state n starting from the state 0 < g.

Hence 6(0, Wy 1Wimi2Wmys - . - Witn) = n for each m € N. Thus, the
word wiwsews . .. is indeed in LY, and is not in WM 4. [

Proposition 6.8 Monotonic conditions are closed under finite union.

Proof It can be easily shown that C¥ — Wy, U Wy, = LY N LY, =
(C*La))“N(C*La,)* = (C*La,C*La,)* = (La,La,)*. The language L4, L4,
is recognized by the monotonic automaton Ay = (ny + ny, d), where (g, ¢) =
91(q,c) for 0 < ¢ < ny and 6(ny + ¢, ¢) = ny + d2(q, ¢) for 0 < ¢ < ny. [

Monotonic conditions are not closed under other Boolean operations.

6.3 Simplifying the Witness Arena

To show that finite half-positional determinacy of winning conditions which
are prefix independent w-regular languages is decidable, we first need to show
that if W is not finitely half-positional, then it is witnessed by a simple arena.

Theorem 6.9 Let W be a winning condition accepted by a deterministic
finite automaton with parity acceptance condition

A=(Q,qr,drank: Q — {0...d})

(see Definition 6.1). If W is not finitely half-positional then there is a witness
arena (i.e. such that Eve has a winning strategqy, but no positional winning
strateqy) where there is only one Eve’s position, and only two moves from
this position. (There is no restriction on Adam’s moves and positions.)

Proof Let G be any finite witness arena. Without loss of generality
we can assume that Eve has a winning strategy everywhere (otherwise we
restrict our arena to Eve’s winning set). First, we will show how to reduce
the number of Eve’s positions to just one. Then, we will show how to remove
unnecessary moves.

Let G° = (Posy x Q,Posg x Q,Mov") and G' = (Poss x Q,Posg x

c .
Q,Movl) where for each move v; — v, in G and each state ¢ we have cor-

responding moves (v1,q) — (v2,0(q,c)) in Mov® and (vy, q) renk(a) (v2,d(q,¢))
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in Mov'. The three games (G, W), (G°, W) and (G', WP,) are equivalent;
each play in one of them can be interpreted as a play in each another, and
the winner does not change for infinite plays.

More specifically, the correspondence between G° and G is based on re-
placing each position v by a set U(v) = {(v,q) : ¢ € @Q}. For each element w
of U(v) if there is a move v - v/, then there exists a move w > w' for some
w' € U(v'). Also, if there is a move w - w’ for some w € U(v),w' € U(v'),
then there is a move v 5 v/

Between GY and G, the only difference is the rank function, thus plays
in one of them can be interpreted as plays in the other in the obvious way.
(There is a slight technical difficulty, as it is possible that several moves in
G correspond to the same move in G'. Then, we can pick any of them when
interpreting a play in G' as a play in G°.) To see that the winner does not
change, take a play m = mymmo . .. in G°, and let (v;, ¢;) = source(m;). In the
game G the color of 7; is ¢;, and the color of the corresponding move in G! is
rank(q;). From definition of G, by induction we have ¢; = §(qs, cico - . . ¢;), S0
Eve wins iff lim sup rank(g;) is even — which agrees with the parity condition
in G'.

Since Eve has a winning strategy in (G, W), she also has a winning strat-
egy in (G', WP,). This game is positionally determined, so she also has a
positional strategy here. She can use the corresponding positional strategy
in (G° W) too.

Let s be Eve’s positional winning strategy in G°. Let

N(s) = {v: 1 3q2 m (target(s(v, q1))) # mi(target(s(v, ¢2)))},

i.e. the set of positions where s is not positional as a strategy in G. Since
the arena is finite, we can assume without loss of generality that there is no
positional winning strategy s’ in G such that N(s") C N(s).

If N(s) was empty, then we could use s as a positional strategy in GG, which
would contradict our assumption that G is a witness arena. Let vy € N(s).
We construct a new arena G? from G° in two steps.

First, merge {vo} X @ into a single position vy. Eve can transform s into a
winning (non-positional) strategy s; in this new game — the only difference
is that in vy she needs to remember in what state g she is currently, and move
according to s(vg, q).

Then, for all Eve’s positions except vy, remove all moves which are not
used by s (and thus by s1). Eve still wins by s;, since she did not lose any
options used by s;. Now, transfer all Eve’s positions except vy to Adam. Eve
still wins by sy, since there was no choice in these positions.

Thus, we obtained an arena G? with only one Eve’s position vy, where
she has a winning strategy from vy.
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Eve has no winning positional strategy in G2. Indeed, suppose that such
a strategy exists. Then it can be simulated without changing the winner
(in the natural way) by a strategy s, in G, positional in all positions except
N(s) — {w}. Let G, be G without moves which are not used by ss  s9
remains a winning strategy on G,. Let G be the arena obtained from G,
in the same way as we obtained G° from G. Let s3 be Eve’s positional
winning strategy on G? (which exists since Eve had a winning strategy on
G.); as a strategy on G, it is also winning, and has N(s3) € N(s). This
contradicts our assumption that N(s) is minimal, so Eve has no winning
positional strategy in G2,

Hence we have found a witness arena where |Posg| = 1. (Note that we
can assume that Eve has at most || moves here — Eve’s positional winning
strategy on Gy cannot use more than |()| moves from positions derived from
Vo, so unused moves can be safely removed.)

Now, suppose that G is an arbitrary witness arena with only one Eve’s
position. We will construct a new arena with only two possible moves for
Eve. The construction goes as follows:

e We construct G as before.
e We start with G® = G°. Let s be Eve’s winning strategy in G3.

e For each of Eve’s |Q| positions in G®, we remove all moves except the
one which is used by s.

e (x) Let v; and vy be two Eve’s positions in G3.
e We merge Eve’s positions v; and v, into one, vg.

e Eve still has a winning strategy everywhere in this new game (by a rea-
soning similar to one we used for G*). We check if Eve has a positional
winning strategy.

e If yes, we remove the move which is not used in vy, and go back to
(%). (Two distinct Eve’s positions in G® must still exist  if we were
able to merge all Eve’s positions into one, it would mean that G was
positionally determined.)

e Otherwise G? is now a witness arena. In all Eve’s positions except vy
there is only one move, so we can safely transfer them to Adam, and
G? will remain a witness arena.

e In G® we have now only one Eve’s position (vy) and only two Eve’s
moves  one inherited from v; and one inherited from v,.
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6.4 Decidability

Theorem 6.10 Let W be a (prefiz independent) w-reqular winning condition
recognized by a DFA with parity acceptance condition

A=(Q,q,drank : Q — {0...d})

with n states. Then finite half-positional determinacy of W 1is decidable in

. 2
time nP®°),

Proof It is enough to check all possible witness arenas which agree
with the hypothesis of Theorem 6.9. Such arena consists of (the only) Eve’s
position E from which she can move to A; by move p; or to Ay by move
po. Since we are working on e-arenas (see Section 2.5), we can assume that
A; # E. and also that these two moves are e-moves; otherwise we add a new
Adam’s position “in the middle of the move” and connect it with an e-move.
Adam has a choice of word w by which he will return to £ from A;. (In
general it is possible that Adam can choose to never return to £. However,
if such infinite path was winning for Eve, he would not choose it, and if it
would be winning for Adam, Eve would never hope to win by choosing to
move to A;, thus she would always have to choose the other move, and thus
our arena wouldn’t be a witness.) Let L; be the set of all possible Adam’s
return words from A; to E.

Let T'(w) : @ — {0,...,d} x @ be the function defined as follows:
T(w)(q) = (r,q) iff §(¢,w) = ¢ and the greatest rank visited during these
transitions is 7. The function T'(w) contains all the information about w € L;
which is important for our game: if T'(w;) = T'(w2) then it does not matter
whether Adam chooses to return by w; or ws (the winner does not change).
Thus, instead of Adam choosing a word w from L;, we can assume that Adam
chooses a function ¢ from T(L;) C T(C*) C (Q x {0,...,d})%.

For non-empty R C {0,...,d}, let best*(R) be the priority which is the
best for Adam, i.e. the greatest odd element of R, or the smallest even one
if there are no odd priorities in R. We also put best*(f)) = L.

For T C (Q x {0,...,d})?, let

U(T)(q1,42) = best™({d : 3t € T t(q1) = (d, 32)})-

Again, the function U; = U(T(L;)) : Q x @ — {L,0,...,d} contains all the
information about L; which is important for our game if Adam can go
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from ¢ to go by one of two words w; and ws having the highest priorities
dy or do, respectively, he will never want to choose the one which is worse to
him.

Our algorithm checks all possible functions U;. For this, we need to
know whether a particular function U : @ x @ — {L,0,...,d} is of form
U(T(L;)) for some L;. This can be done in following way. We start with
V(q,q) = L. Generate all elements of T(L;). This can be done by doing a
search (e.g. breadth first search) on the graph whose vertices are T'(w) and
edges are T'(w) — T'(we) (T (we) obviously depends only on T'(w)). For each
of these elements, we check if it does not give Adam a better option than
U is supposed to give  i.e. for some ¢; we have T(wc)(q1) = (go,d) and
d = best®(d,U(qi1, q2)). If it does not, we add T'(w) to our set T and update
V: for each g, T(we)(q1) = (qo,d), we set V(qi,q2) := best*(d, V(qi, g2)).
If after checking all elements of T'(L;) we get V = U, then U = U(T).
Otherwise, there is no L such that U = U(T'(L)).

The general algorithm is as follows:

e Generate all possible functions U of form U(T'(L)).

e For each possible function U; describing Adam’s possible moves after
Eve’s move p; such that Eve cannot win by always moving with p;:

e For each U, (likewise):

e Check if Eve can win by using a non-positional strategy. (This is done
easily by constructing an equivalent parity game which has 3|Q| ver-
tices: {E, Ay, Ay} x Q.) If yes, then we found a witness arena.

Time complexity of the first step is O(d°1@") (d|Q[)I9!|C]) (for each of
d°U9P) functions, we have to do a BFS on a graph of size (d|Q])!?). The
parity game in the fourth step can be solved with one of the known algorithm
for solving parity games, e.g. with the classical one in time O(O(|Q])%?).
This is done O(d°U®")) times. Thus, the whole algorithm runs in time
O(de1eP|Q[1el ). =

In the proof above the witness arena we find is an e-arena: we did not
assign any colors to moves p; and po. If we want to check whether the given
condition is A-half-positional or B-half-positional (see Section 2.5), similar
constructions work. For B-half-positional determinacy, we need to not only
choose the sets U; and Us, but also choose specific colors ¢; and ¢y for both
moves p; and po in the algorithm above, and take care of the case when
Ay = F or Ay, = E. For A-half-positional determinacy, we need to choose
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specific colors for targets of these two moves, and also a color for Eve’s
position E.

Once we know that an w-regular winning condition W is indeed finitely
half-positional, we can use the following algorithm to solve a game.

Proposition 6.11 Suppose that G is an arena with n positions, and W 1is
finitely half-positional and w-regular, given by a DFA with parity acceptance
condition on infinite words using s states and d ranks.

Then the winning sets for Eve and Adam in the game (G, W) can be
found in time O((ns)¥?), and Eve’s positional strateqy can be found in time
O((ns)¥?t), where t = log [vMov|, where |[vMov| is the number of
moves outgoing from v.

vePosg

Proof As in the proof of Theorem 6.9, we transform our game (G, W)
(with n positions) into a parity game (G?, WP,) (with ns positions). Win-
ning sets and positional strategies in such a game can be determined in time
O((ns)¥?) (see e.g. [GTWO02]).

To obtain Eve’s strategy, we use the following reduction of the problem of
finding Eve’s positional winning strategy to the problem of finding the win-
ning sets for both players (which actually works for all finitely half-positional
winning conditions not only w-regular ones). If we remove Eve’s move
which is not used by her winning strategy, Wing does not change. Thus, we
can try to remove half of moves outgoing from one of Eve’s positions, and
see if Wing changes — if yes, then Eve should use one of removed moves,
otherwise Eve should use one of the remaining moves. We continue doing
this until only one move remains in each Eve’s position. [ ]

6.5 w-regular Concave Conditions

The following proposition shows that concavity (see Chapter 9) is decidable
for w-regular language in polynomial time. As shown in Theorem 4.7, concave
winning conditions are finitely half-positional.

Proposition 6.12 Suppose that a winning condition W is given by a DFA
with parity acceptance condition using s states and d ranks. Then there exists
a O(s°d®|C) algorithm determining whether W is concave (or conver).

Definition 6.13 For q1,q¢,q3,71,72,73 € Q, ny,ng,n3 € {L,0,...,d}, we

say that P(q1,r1,n1, G, T2, N2, q3,73,n3) iff there exists a word wsz € C* being
a shuffle of wy and we such that for each k € {1,2,3} we have §(qx, wy) = 1y,
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and ny 1s the greatest rank of states appearing while the automaton works on
wy starting from qy, i.e. Ny = MaXy, —u, rank(d(qx, w)). In case if w, = € we
take n, = L.

Lemma 6.14 L, is not convex iff for some q1,qo, g3, m1, Mo, M3, N1, N, N3

we have P(qr,qi,m1, qr,q2;m2, qr,qs,m3) and P(q,q,m1, G2, q2, N2,
43, q3,n3) and ny,ny are even and ng is odd. (L is considered neither even

nor odd.)

Proof

(«) Let uy, up and uz be the words from 6.13 which are witnesses for
P(qr,q1,m1, qr,q2, M2, qr,q3, m3), and vy, v and v be the words which are
witnesses for P(qi,q1,n1, G2,q2,n2, ¢3,q3,n3). Let wy = ugpvy. It can be
easily shown that ws is a shuffle of wy and wy and wy, ws € L4 but wy ¢ Ly.

(—) Suppose that L, is not convex, i.e., w? is a shuffle of w! and w?, and
w3 ¢ LA.

. k 3[f(n)=k|

Let f:w — {1,2} be a function such that w" = I, w; for k=1,2.
(As on page 32, w!?! denotes w if ¢, € otherwise.)

Let @3 = a1, ¢y = 0(qy,wyyy). For kb = 1,2 let qf = q1, gy =
S(gk,wk ) if f(n+1) = k, and ¢F otherwise. Let S* = limsupg® for
k=123

Since w',w? € Ly and w® ¢ L4, we have that S and S? are both even,
but S? is not. It can be easily shown that there exist some a, b such that for
all k =1,2,3 we have ¢*(a) = ¢*(b), and Im € {a...b}rank(q") = S*.

Let & = ¢*(a) and n, = S* for k = {1,2,3}. It can be easily seen that
our hypothesis holds. ]

Proof of Proposition 6.12 As we can see, to determine if L4 is convex
it is enough to compute the predicate P and check the condition given in
Lemma 6.14. Now, P satisfies the following rules: (V means maximum,
where L is smaller than everything else)

e (1) For each q1, 2, g3, P(C]1>Q1,J—> 42, q2, L, Q3,Q3>J—);

e (2) For each q1,71,n1, Go,72,N2, q3,73, N3, ¢, if the predicate P satisfies
P(q1,71,n1, G2,72,n2, q3,73,n3) and d(ry, ¢) = s; and (rs, ¢) = s3 then
P(qq,51,m Vrank(sy), g2,72,n2, g3, 53,13 V rank(ss)).

e (3) For each q1,71,n1, Go,79,n2, q3,73,n3,c; if the predicate P satisfies
P(q1,71,n1, G2,72,n2,q3, 73,n3) and (rqe, ¢) = sg and (rs, ¢) = s3 then
P(q1,71,n1, q2,52,m9 V rank(ss), ¢s, s3,ng V rank(ss)).
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Rule (1) corresponds to taking € as the word ws from Definition 6.13, and
rules (2) and (3) correspond to adding one letter ¢ to w; and ws, respectively.

Now, the algorithm of computing P is as follows: whenever we discover
that P(q1,71,n1, q2,72,M2, q3,73,n3) for some parameters, we close it under
(2) and (3); our initial knowledge is given by (1). If P(q1,71,n1, G2, 72, N2,
3,73, n3), then our algorithm will find it out — by using a sequence of ap-
plications of rules (1), (2) and (3) which corresponds to the words wy, ws, w3
(from Definition 6.13). Also, if our algorithm finds out that P(qy,r1,n1,
(2,72, M2, q3,73,n3), we can reconstruct the words wy, we, w3 by analyzing
the sequence of applications of rules which our algorithm used. [
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Chapter 7

Unions of Half-positional
Winning Conditions

In Theorem 3.7 we have shown that a union of any half-positional winning
condition and a Biichi winning condition is half-positional. In Proposition
4.4 we have shown that a union of concave winning conditions is also concave
and thus also half-positional. In Proposition 6.8 we have shown that a union
of finitely many monotonic conditions is also monotonic and thus also half-
positional. It is a known fact that Rabin winning conditions, which are finite
unions of parity conditions, are half-positional [Kla92].
All these facts suggest that the following holds.

Conjecture 7.1 Let W be a (finite, countable, ...) family of (finitely) half-
positional winning conditions. Then W is a (finitely) half-positional win-
ning condition.

This conjecture, which was one of the main motivations of our research, is
still an open problem. Note again that we assume prefix independence here.
It is very easy to find two prefix dependent winning conditions which are
positionally determined, but their union is not half-positionally determined.

In the first section, we show that this conjecture fails for non-countable
unions and infinite arenas, even for such simple conditions as Biichi and co-
Biichi conditions. In the second section, we present a broad class of winning
conditions which is closed under countable union, and includes some of the
previously mentioned winning conditions. In the third section we present a
yet broader class of winning conditions, which has even more closure prop-
erties (although is known to be closed only under finite union). In the last
section we show one more example where this conjecture holds  a union of
a monotonic and a concave condition.
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7.1 Uncountable Unions

Theorem 7.2 There exists a family of 2 Biichi conditions such that its
union is not a half-positionally determined winning condition.

There exists a family of 2¥ co-Biichi conditions such that its union is not
a half-positionally determined winning condition.

Proof
*
A
E Aol |A1| |Ay]| |As
r):reN
creN
reN
(3,r):reN
Let [ = w>.

Our arena G over C' = w x w U {*} consists of one Eve’s position E and
infinitely many Adam’s positions (A, ),cn. In E Eve can choose n € w and
go to A, by move F = A,. In each A, Adam can choose r € w and return
to E by move A, ity E.

For each y € I, let S, = {(n,y,) :n €w} C C,and S, = C — S, — {x}.
Let WAy = U, WBs,. WAy = U, WBY, .

The games (G, WA;) and (G, WA,) are not half-positionally determined.
Let (ng) and (rx) be n and r chosen by Eve and Adam in the k-th round,
respectively. If Eve always plays n, = k, she will win both the conditions
WBs, and WBf%, where vy, = r;. However, if Eve plays with a positional
strategy nx = n, Adam can win by playing r, = k. ]

7.2 Positional /suspendable Conditions

Definition 7.3 A suspendable winning strategy for player X is a pair
(s,%), where s : Playy — Mov is a strategy, and 3 C Playp, such that:

e s is defined for every finite play m such that target(m) € Posxy N Winy,
where Winy 1s X ’s winning set;
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e cvery infinite play 7 that is consistent with s from some point' t has a
prefiz ™ longer than t such that 7" € ¥ and target(n’) € Winy;

o Fuvery infinite play m that has infinitely many prefizes in X is winning

for X.

We say that a player X has a suspendable winning strategy in M C
G iff he has a suspendable winning strateqy and M C Winy.

Intuitively, if at some moment X decides to play consistently with s, the
play will eventually reach XJ; 3 is the set of moments when X can temporarily
suspend using the strategy s and return to it later without a risk of ruining
his or her victory, as long as the play did not leave X’s winning set.

A suspendable winning strategy is a winning strategy from Winy, because
from the conditions above we know that each play which is always consistent
with s has infinitely many prefixes in X, and thus is winning for X.

Definition 7.4 A winning condition W is positional/suspendable if for
each arena G in the game (G, W) Eve has a positional winning strateqy from
her winning set Wing and Adam has a suspendable winning strateqy in his
winning set Win 4, and Wing U Winy = Pos.

Example 7.5 The co-Biichi condition WDB's is positional/suspendable.

Proof Adam wants to reach colors from the set S infinitely often. We
know that both players have positional winning strategies in their winning
sets. Adam’s suspendable winning strategy in Winy, is (s, %), where s is his
positional winning strategy, and 7 € ¥ iff rank(play.|) € S.

We know that if Adam plays consistently with s from some moment, then
he eventually reaches S, which means that he can suspend using s and do
whatever he wants. If the play does not leave Win 4, he can decide to continue
using s and reach S again. If he repeats suspending and continuing infinitely
many times, S is reached infinitely many times, thus Adam wins. [ |

Example 7.6 The Biichi condition WBg for() C S C C' is not positional /sus-
pendable.

!That is, for each prefix u of m which is longer than ¢ and such that target(u) € Posx,
the next move is given by s(u).
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Proof

aCADb

Without loss of generality, C' = {a,b}, S = {a}. Adam has a winning
strategy from each position in the arena above. However, he has no suspend-
able strategy: if he suspends s infinitely many times, it is possible that the
play used the move of color a infinitely times while s ,was not watching”,
which means that Eve wins. [ ]

Although no Biichi conditions, and thus no parity conditions WP, for
n > 1, are positional /suspendable, winning conditions with this property
are common. Some of conditions which we have previously shown to be
half-positional are actually positional /suspendable.

Theorem 7.7 Let C' = [0,1], A = [0,1/2). The condition WF(A) = {w :
limsup P, (w) < 1/2} given in Theorem 5.9 is positional/suspendable.

Proof Consider Adam’s strategy given in the proof of 5.9. That strategy
led us to a word w = wywaws . .., where P(w;) > a;. If we allow an initial
segment to be played not according to this strategy, we will get a word
W = ww;w;yq - .. instead. Still, there will be a ¢ such that P,(w) > a;; and we
can suspend at time ¢. Thus, limsup P,(w) is still at least 1/2. [

Note that WF(A;) U WF(Ay) usually is not equal to WF(A; U As), so
a union of positional /suspendable conditions given above usually is not of

form WF(A) itself.

Theorem 7.8 Any monotonic condition (Theorem 6.6) is positional/sus-
pendable.

Proof Again, Adam’s strategy given in the proof of 6.6 is suspendable,
because he can suspend his strategy after each step of the iteration. Co-Biichi
condition is a special case of this. [

For the next theorem, we need the following lemma.
Lemma 7.9 Let W be a winning condition. Suppose that, for each non-
empty arena G, either there exists a non-empty subset M C G where Eve has

a positional winning strateqy from M, or Adam has an suspendable winning
strategy everywhere. Then W is positional/suspendable.
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Proof Let G be an arena. From Lemma 3.5 for half-positional winning
conditions we know that W is half-positional, and Pos = Wing U Winy. Let
G’ be the subarena with positions Pos’y = PosxNWin,4 and all moves between
this positions. From our hypothesis we know that Adam has a suspendable
winning strategy everywhere in GG'. This strategy is also a suspendable win-
ning strategy in Winy in G. ]

This lemma could also be proven in a different way. Our definitions
allow us to define new determinacy types D (see page 15), of (finitely) po-
sitional /suspendable winning conditions. By methods similar to Theorem
3.3 we can show that such D’s are natural, and thus, Lemma 3.5 holds for
them. Lemma 7.9 is then a special case of Lemma 3.5. However, theorem
3.7 does not, as () is a positional /suspendable winning condition, while the
Biichi condition is not.

Theorem 7.10 A union of countably many positional/suspendable condi-
tions is also positional/suspendable.

Proof of Theorem 7.10 Let {W;,Ws,...} be a countable set of posi-
tional /suspendable conditions. We will use Lemma 7.9.

If for some ¢ we have M C Wing(G, W;), then Eve also wins from M in
(G,UU; W;) as well, by using the same positional strategy.

Now assume that, for each i, we have Wing(G, W;) = (), hence for every
i, Adam has a suspendable strategy (s;,%;) in (G, W;). We will define a
suspendable Adam’s strategy (s, ¥) winning everywhere in (G, J, W;).

Let (ix)rew be a sequence where every index ¢ appears infinitely often. By
induction on the length of play 7, we define s(m), as well as whether 7 € ¥
or not. Let m be a play whose exactly k£ proper prefixes are in . Then,
s(m)=s; (m),and T € Niff r € ¥, .

Intuitively, the strategy of Adam is to first play consistently with s;
until 3;, happens, then (after a possible suspension) play consistently with
s;, until X;, happens, and so on. Since every Y; happens infinitely many

times (because every index appear infinitely often in (ix)ge,), Adam wins
each W;, and thus wins (J, W;. ]

7.3 Extended Positional /suspendable Conditions

In this section we present a class of half-positional winning conditions which
generalizes both positional /suspendable conditions and Rabin conditions.
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Definition 7.11 The class of extended positional/suspendable (XPS
for short) conditions over C' is the smallest set of winning conditions that
contains all Biichi and positional/suspendable conditions, is closed under in-
tersection with co-Biichi conditions, and is closed under finite union.

This class contains most of half-positional winning conditions mentioned
in this thesis. Using the given operations, we can obtain Biichi and co-Biichi
conditions, parity conditions (inductively by taking a union with Biichi, or
intersection with co-Biichi condition), Rabin conditions (by taking a finite
union of parity conditions), monotonic conditions, and so on. Actually, all
the specific winning conditions which have been proven in this thesis to be
infinitely half-positional are XPS conditions.

Theorem 7.12 All XPS conditions are half-positional.

The proof is a modification and generalization of proof of half-positional
determinacy of Rabin conditions from [Gra04].

Proof [Let W be an XPS condition. The proof is by induction over
construction of W.

We know that Biichi conditions and positional /suspendable conditions
are half-positional.

If W is a finite union of simpler XPS conditions, and one of them is a
Biichi condition WBg, then W = W' U WBg. Then W' is half-positional
since it is a simpler XPS condition, and from Theorem 3.7 we get that W is
also half-positional.

Otherwise, W = W' U (J,_, (W), N WB ), where W' is a positional/
suspendable condition, W}, is a simpler XPS condition, and Wng is a co-
Biichi condition. (It is also possible that there is no W’ but it is enough
to consider this case since it is more general. A union of a finite number of
positional /suspendable conditions is also positional /suspendable by Theorem
7.10.) To apply Lemma 3.5 we need to show that either Eve has a positional
winning strategy from some position in the arena, or Adam has a winning
strategy everywhere.

If Eve has a winning strategy from some position in (G, W’), then she
has a positional strategy, and the same strategy is winning in (G, W), which
is what we need.

Form =1,...,n let W™ = W' UW,, U, (We N WBY,). We know
that W™ is half-positional since it is a simpler XPS condition.

Let G be an arena.

Let P,, be the set of S,,-moves, i.e., moves in G with colors from S,,.
A,, = source(P,,) N Posy is the set of Adam’s positions from which he can
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immediately make a S,,-move. B,, = Attrs(A,,) is the set of Adam’s posi-
tions from which he has a strategy to reach A,,. Now, let H,, be the subgraph
of G obtained by removing all the positions in B,,, and all the moves in P,,.

If Eve has a winning strategy from some position v in (H,,, W), then
she also has a positional strategy, and she can use the same strategy in (G, W)
— since the play is in H,,, no S,,-moves will be made during the infinite play,
thus she will also win . (Adam is unable to exit H,,, since all the positions
from which he would be able to do so have been removed.)

Assume that Eve has no winning strategy from any position in the game
(H,,, W), and no winning strategy from any position in (G,¥W’). Then
Adam has the following winning strategy in (G, W).

e Since Wing(G, W’) = ), we have Win, (G, W’) = Pos, and since W’
is positional /suspendable, Adam has a suspendable winning strategy
(s,X) in the game (G,W'). Adam uses s until the play reaches X.

e Form=1,...,n:

— Let v be the current position.

— (x) Ifv € H,, then Adam uses his winning strategy s/, in the game
(H,,, W) (Adam forgets what has happened so far in order to
use s,..) If Eve never makes a move which does not belong to H,,
then Adam wins. Otherwise, he stops using s/, after a move p out
of H,, is made.

— (%*) There are two cases: rank(p) € S, or target(p) € B,,. In
the second case, in B,,, we know that Adam has a strategy which
forces reaching A,,; Adam uses this strategy. Then, in A,,, Adam
uses a S,,-move. (Thus, in both cases, a S,,-move is made.)

e Repeat.

If ultimately the game remains in the step (x) of the strategy above for
some m, then Adam wins since he is using a winning strategy in (H,,, W(m)).
Otherwise, Adam wins W’ (since he correctly resumed using his suspendable
strategy in (G, W’) infinitely many times) and all the co-Biichi conditions
WBY, for m = 1,...,n (since a Sp,-move is always done in the step (%x),
hence he also wins W C W/ U J;_, WB, . ]
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7.4 Combining Concave and Monotonic Condi-
tions

In this section we investigate how our conjecture about unions of half-posi-
tional conditions works for concave (Chapter 4) and monotonic (Section 6.2)
conditions.

In the beginning of this chapter we have noted that arbitrary unions of
concave conditions and finite unions of monotonic conditions are also in these
classes, and thus are also half-positional. A countable union of monotonic
conditions is not necessarily defined by a single monotonic automaton, but,
from Theorem 7.10, it is still positional /suspendable; however, a union of car-
dinality 2* of monotonic conditions need not be half-positionally determined,
as shown by Theorem 7.2 (co-Biichi conditions are monotonic).

As a conclusion of this chapter, we will show the following theorem, which
solves the union problem for a union of a monotonic and a concave winning
condition. Since both concave and monotonic winning conditions are closed
under finite union, we obtain that Conjecture 7.1 is true for the class of
winning conditions containing all monotonic and concave winning conditions,
and closed under finite union.

Theorem 7.13 Let W7 C C¥ be a concave winning condition, and A be a
monotonic automaton. Then the union W = WU WM 4 is a half-positionally
finitely determined winning condition.

Proof Let G = (Posga, Posg, Mov). A proof by induction on [Mov|. We
define v, M = M; U My, G1, G, Winf, and t; exactly like in the proof of
Theorem 4.7. We will show a winning strategy for Adam in the set VVinf1 in
the case when v € Win{' = WinZ; all other cases are done just like in the
proof of Theorem 4.7.

Let n be the accepting state of A, and gx(n,c) = n for each ¢ € C. For
a play 7, we define sequences of states (g (7)), and (ry(7)), by induction:
qo(m) = 0; r(7) = 0 if gx(7) = n and source(my41) = v, and g () otherwise;
and gp1(m) = 0(rp(m), rank(m11)). We can see that if the play 7 visits v
infinitely many times, then rank(w) ¢ WM 4 iff gx(7) = n for infinitely many
values of k.

Let K = domnm. Let S, = {k € K : source(m,) = v}. We define the
function f : K — {1,2} x @ in the following way. If £ < min S, we take
f(k) = (1,0). Otherwise, let k' be the greatest element of S, such that
kK <k, and f(k) = (i, qu (7)) where mp € M;.

Let () = erKw,Ef(k):(i’q)]. Thus, we have cut the play 7 into segments
which start and end in v (except possibly the last infinite one), and presented
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7 as a shuffle of plays m
an obvious way.)

Now, we can define Adam’s strategy: for a finite play 7 of length m, let
t(m) = t;(7(,q), where (j,q) = f(m). If Adam consistently plays with the
strategy ¢ then, for each 7 = 1,2 and each ¢ € @, all plays m(; o) are consistent
with ;.

We check that ¢ is indeed a winning strategy for Adam in the set Win‘f‘.
Let 7 be an infinite play consistent with ¢; we have to show that rank(r) ¢ W,
and rank(m) ¢ WM 4.

For each (i, q) we have rank(7; ) ¢ Wi, since this play is consistent with
t;, which is a winning strategy. Hence, from concavity of Wj, and the fact
that 7 is a shuffle of 7(; ) for alli = 1,2 and ¢ € Q, we get that rank(m) ¢ W;.

Let S € {1,2} x @ be the set of all (j,q) such that f(m) = (j,q) for
infinitely many values of m. Let (js, g5) be the element of S with the greatest
value of ¢s. Assume g5 < n, otherwise rank(mw) ¢ WM 4 is obvious.

Adam wins the play 7’ = 7(j, 4,) since it is consistent with ¢;,. The play
7’ is infinite. Let S] = {k € w : source(m},) = v}. If S is finite, this means
that 7 and 7’ have a common suffix (as we don’t return to v we are stuck in
T(js.q5)): and from the prefix independence of WM 4 Adam wins m. Otherwise
7' visits v infinitely many times, and hence g (7') = n for infinitely many
values of k.

For m € S let m™ = min{m’ € S/ : m’ > m}, and P,, be the segment of
play from m + 1-th to m™-th move.

Let M be the set of m’s such that g,+(7") = 0(rn(7'), Pn) > ¢s and
rm(7) < gs. Since rank(n’) ¢ WM 4, and thus g, (7") reaches n infinitely
many times, after which r,,(7’) is reset to 0, the set M is infinite.

Each segment P,, appears also in play 7 after some m/-th move, where
G (T) = qs. For m € M, after m’ + |P,, moves of play 7, we are back in v,
and we have

i.g)- (A shuffle of more than two words is defined in

G 1|Py| (1) = (g (), rank Pp,) = 0(gs, rank P,,) > 0(r.(7'), rank Pp,) > gs.

Hence, we have found that, in 7, after m’ + | P,,| moves, we are back in
v, with the automaton state greater than g,. Since this is true for each m in
the infinite set M, we are back in v with the automaton state greater than
s infinitely many times, which contradicts the definition of S. ]
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Chapter 8

Beyond Positional Strategies

When it is impossible to win the game with a positional strategy, it is still
possible that we can win using a strategy which is not positional, but has
some other, weaker property. In this chapter we present two kinds of such
strategies. We answer some questions regarding these strategies, but it is
currently an area of research and many questions remain open.

The first kind is strategies with memory. When it is impossible to win the
game using no memory, we can still hope to use the smallest possible amount
of memory states. We present two kinds of memory: normal (“chaotic”) and
chromatic. We estimate memory required by the other player for the winning
conditions which were introduced before.

The second kind is persistent strategies, which are “almost” positional.

8.1 Strategies with Memory

Definition 8.1 A memory for a game (G, W) is a pair M = (M, i), where
M represents possible memory states, and j : M xMov — M is the memory
update function. We extend p as usual to p: M x Mov*® — M.

A strategy with memory M is a function 5 : Posx x M — Mov.
We say that s is winning from position v and initial memory state m
iff the strategy S,, given by S,,(m) = S(target(w), u(m, m)) is winning from v.
We say that s is winning from position v iff it is winning from each initial
memory state m € M.

The usual definition of memory and a strategy with memory from litera-
ture, e.g., in [DJW97|, where memory required to win a game with a Miiller
winning condition is calculated, is a bit different: initial memory state is
declared in the memory. We have decided to force our strategy with memory
to win from all memory states. According to the following proposition, the
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choice of definition does not matter as far as the winning sets are concerned,
because if our strategy wins from some position from only some memory
states, then it can be fixed to win from all of them.

Proposition 8.2 Let (G, W) be a game. Suppose that s is strategy for X
with memory M winning from a position v € Pos and memory state m.
Then there exists a strategy S for X with memory M' = (M, ") winning
from v and each memory state.

Proof Let S C M be the set of memory states m’ for which there is a
play 7 consistent with §,,, which goes through v in memory state m’ (i.e.,
there is a prefix 7’ of 7 such that target(n’) = v and p(m,n’) = m'). From
prefix independence we get that 5 is also winning from v from each memory
state m’ € S.

For m’ ¢ M, we change our strategy in v in the following way: §'(v,m’') =
S(v,m); p'(v,m") = p(v,m). For other positions and memory states ' and
i/ behave exactly like s and p.

It can be easily seen that each play consistent with 5 , for m’ € S will be
also consistent with s,,/, and each play consistent with 5/, for m’ ¢ S will be
consistent with s,,. Since these strategies are winning, §’ is also a winning
strategy from v. [ ]

Our definitions allow us to construct new determinacy types, which re-
quire one or both players to have a strategy with memory of finite size, or a
strategy with memory of size n. These determinacy types are natural (thanks
to our choice of definition), and additionally, the claim of Theorem 3.7 is also
true for them.

Definition 8.3 For a winning condition W and player X, let mmx (W) be
the smallest n such that for each arena G the player X can win in Winy (G)
using a strategy with memory of size n.

Example 8.4 Let W() be the winning condition from the proof of Proposi-
tion 4.9, and G be an arena with one Adam’s position and two moves, which
are colored 0 and 1. Then Adam has a winning strategy in (G, WQ), but has
no winning strateqy with memory of any finite size.

Positive examples will be shown in the next section.
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8.2 Chromatic Memory

As we can see, this standard definition of memory is strongly dependent on
the arena. Since in this thesis we are interested in properties of winning
conditions rather than games, we need memory which could be defined re-
gardless of the arena. As we will see, such chromatic memory has some nice
properties. Below is the natural definition.

Definition 8.5 We say that a memory M is chromatic if it depends only
on colors of the moves, i.e. there exists a function pi : M x C'— M such that
p(m, p) = m when rank(p) = €, and p(m, p) = fa(m, rank(p)) otherwise.

A strategy with chromatic memory (M, i) is a strategy with memory
(M, ) where v is a chromatic memory given by 1. As usual, we extend ji to
w:MxC*— M.

Proposition 8.6 Let W be an w-reqular winning condition, recognized by a
strongly connected DFA A = (Q, qr, d, rank).

Then both players have strategies with chromatic memory M = (Q,0) in
their winning sets.

Proof Positional winning strategies in the game (G, WP,) defined in the
proof of Theorem 6.9 can be interpreted as strategies with such a chromatic
memory. Since A is strongly connected, the initial memory state is indeed
irrelevant (Proposition 6.2). n

Proposition 8.7 Let W = WM 4 be a monotonic winning condition, where
A = (n,0). Then Adam has a winning strategy with chromatic memory
M= ({0,...,n—1},11) in his winning set, where ji(k,c) = §(k, c) mod n.

Proof Adam’s strategy given in the proof of Theorem 6.6 can be interpreted
as a strategy with such a chromatic memory. ]

Definition 8.8 For a winning condition W and player X, let mm?% (W) be
the smallest n such that for each arena G X can win in Winy (G) using a
strategy with chromatic memory of size n.

Determinacy types which require using a certain chromatic memory struc-
ture M are natural, and hypothesis of Theorem 3.7 also works for them. (If
we require a chromatic memory of given size, we don’t get a natural determi-
nacy type, as using different chromatic memory structures in various parts
of the arena breaks the globalization condition for them.)

The following simple proposition gives a nice property of mm?.
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Proposition 8.9 Let W be a winning condition such that mm% (W) = n.
Then there is a single chromatic memory My, of size n such that, for each
arena G, and each starting position vy in G, X can win in Winy (G) using

My

Proof Let T be the set of all chromatic memories M, where M = (M, p)
and M = {0,...,n—1}. This set is finite and it contains all possible memories
of size n (up to isomorphism).

For an arena G and a position v in Winy (G), let U(G,v) C T be the set
of all memories M € T such that X can win in G from v using M. Since
mm’ (W) = n, and T contains all possible chromatic memories, we know
that U(G,v) is non-empty.

We have to show that there exists a chromatic memory My, such that
for all G and v we have My, € U(G,v).

Assume to the contrary that for each M € T there exists an arena G(M)
and a winning position v(M) such that M ¢ U(G(M),v). We can assume
that G(M;) and G(My) are disjoint for M; # M.

Let G = U yer G(M), and Gg be G plus one additional position vy from
which X’s opponent can choose to go to any position in Winy (G). Still, we
have that U(Gy, vg) is non-empty; let M € U(Gy, ).

We have a contradiction  in zg X’s opponent can decide to go to v(M)
in G(M), and we know that X has no winning strategy using M from v(M).
|

If we restrict ourselves to A-arenas, we have the following results. A-
arenas (see Section 2.5) are arenas such that colors appear in (all) positions
instead of edges. Equivalently, for each position v, each move from v has the
same color rank(v) # e.

Proposition 8.10 Let W be a winning condition over C, and M = (M, i)
be a chromatic memory.
Let W x M be a winning condition over C' x M such that

(Co,mo)(cl,ml)(CQ,mg) L EW XM

ioff the following two conditions are satisfied: cocica ... € W, and, for almost
all k’s, we have [i(my, c) = M.
Then Eve can win in her winning set in each A-arena using chromatic

memory M iff W x M s A-half-positional.

Proof First, suppose that W x M is A-positional. Let GG be an A-arena.

Create the new arena G’ such that Pos'y = Posy x M, and for each m € M

(m,c)

and move v = w € Mov, we have a move (v,m) — (w,i(m,c)) in Mov'.
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It can be easily seen that, for any m € M, Eve wins a play 7 in (G, W)
from position v iff she wins its corresponding play in (G', W x M) from
position (v,m). Thus, we have Winx (G, W x M) = Winyx(G,W) x M.
Also, if Eve has a positional strategy in (G', W x M) from (v, m) for all m,
it can be interpreted as a strategy with chromatic memory M from v in G.

Now, suppose that Eve can win in her winning set in each A-arena using
M. We will show that W x M is A-half-positional, using Lemma 3.5 for
A-half-positional winning conditions: we will show that, for each arena G,
either Adam has a winning strategy everywhere in (G, W x M), or Eve has
a winning positional strategy from some position vy.

Let G be an arena. Let vy be a position from which Eve has a win-
ning strategy s in game (G, W x M) such that for each play 7 of rank
(co,mo)(c1,mq)(c2, ms) ... starting in vy and consistent with s we have, for
each ]{Z, ﬁ(mk, Ck) = Mp41-

If there is no such vy, then Adam wins everywhere. Indeed, it means
that in each position Adam has a strategy ¢ to either fail W, or to force (*)
p(my, cg) # myyq for some k. Thus, if Adam restarts his strategy t after
each (*), he will win.

Let G; be a subarena of all positions and moves which can be used in a
play starting in vy consistent with s. Let G5 be the arena over C' obtained
from G by replacing each color (¢, m) by ¢; it can be easily seen that a play
7w in (G1,W x M) is winning iff its respective play in (G5, W) is winning
(f(my, ck) = myyq is guaranteed by consistency with s). Since Eve has
a winning strategy in (7 from vy, she also has a winning strategy in G5
from vy, and by assumption, in (G5 she has a winning strategy from v, with
chromatic memory M, s.

Now, in G; she can use the positional strategy s(v) = s(v,m), where
rank(v) = (¢,m). (Note that we can define a strategy in such a way only for
A-arenas.) We can see that this strategy is winning. [ ]
Proposition 8.11 Define mm’é’A(W) exactly like mm’, (W), except that we
restrict to A-arenas only. Then, if Conjecture 7.1 holds for A-arenas, then
mm 4 (W U W) < mmS? (W7 )mm ™ ().

Proof Let M,, for i = 1,2, be the memory of size mm}(W;) such that for
each A-arena G, Eve has a winning strategy in Wing(G) using M;. (We
know that such M; exists from Proposition 8.9 (relativized to A-arenas).)

Define M = M; X My in the natural way, i.e. if M; = (M;, ;) then
then M = (M, 1), where M = M; x Ms, and

ﬁ((mlv m2)7 C) - (ﬁl (mlv C)v ﬁQ(m% C))
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It can be easily seen that M is a good chromatic memory for both W,
and W5 (i.e. in each A-arena G Eve has a winning strategy in Wing(G) using
M). Thus, by Proposition 8.10, W; x M and W5 x M are A-half-positional.
By Conjecture 7.1, their union, which is W x M, is also A-half-positional.
Again by Proposition 8.10, M is good for W. ]

Unfortunately, we have no proofs for corresponding facts for C-arenas.

8.3 Chromatic Memory Requirements

In this section, we extend Theorems 6.9 and 6.10 to calculate chromatic
memory requirements for a w-regular winning condition.

Definition 8.12 We say that an arena G adheres to chromatic memory
M = (M, ) iff there is a function ¢ : Pos — M such that for each move
v 5w in G we have ¢p(w) = (¢ (v), c).

Theorem 8.13 Let W be a winning condition accepted by a deterministic
finite automaton with parity acceptance condition A = (Q,qr, 0, rank : QQ —
{0...d}) (see Definition 6.1), and M be a chromatic memory. Let a witness
arena be an arena G such that in game (G, W) from some position v; FEve
has a winning strateqgy, but not a winning strateqy which uses M as memory.
Then, if there exists a witness arena, then there exists a witness arena G
such that G adheres to M, and Eve has only one position in G, and only two
moves from here.

Proof Let Gy = (Posa, Posg, Mov) be a witness arena. Let vy € Pos be
a position where Eve has a winning strategy, but not a strategy using M.

Let m; € M be the state such that no strategy using M is winning when
starting from position v; and memory state m;. We can assume that such a
my exists. Otherwise, for each m there is a strategy s,, : Posg x M — Mov.
Suppose that the set of memory states is ordered with <. We can define
a global winning strategy with memory M in the following way: S(v,m) =
Sitm)(v,m), where i(m) is the smallest (according to <) memory state in
which reaching position v in memory state m is possible in a play consistent
with 5,4, starting from v and i(m). (If reaching v in memory state m is
impossible at all, we can leave 5(v, m) undefined.) It can be easily checked
that such a 5'is indeed a winning strategy from v, contrary to our assumption
that Gy is a witness arena. (This proof is similar to the proof of globalization
condition, Theorem 3.3.)
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First, we construct an arena (G; such that G, adheres to M. Let G| =
084, Posz, Mov"), where Posy = Posx X an
Pos!;, Posy,, Mov'), where Posy = P M and

Mov' = {((v1,m1), (v2,m2), ¢) : (v1,v2,¢) € Mov A Ji(my, c) = my}.

One can easily check that G is also a witness arena. (To show that Gy
adheres to M, take ¢(v,p) = p.)

If there was a positional strategy in G, from (v, my), then we could use
it to construct a strategy in Gg using M from v; and m;; we have assumed
that such strategy does not exist.

Thus, G is also a witness arena against positionality of W. Thus, we
can now apply to it the same simplification which we used in Theorem 6.9,
obtaining a new arena (G5 with only one Eve’s position v; and two moves,
and adhering to M, with ¢(v1) = m; (it can be seen that our simplification
preserves adherence), and where Eve has no positional strategy from vy.

Eve has no winning M-strategy from position v; and memory state m;.
Otherwise, this strategy would be positional, since G5 adheres to M — and
we know that Eve has no positional winning strategy. ]

Theorem 8.14 Let W be a winning condition accepted by a deterministic
finite automaton with parity acceptance condition A = (Q, qr,0,rank : QQ —
{0...d}). Then mmY(A) can be calculated in single exponential time.

Proof We check all possible chromatic memories of size up to |@| until
we find one which works. There are O(|Q|/?!Il) such memories, and checking
whether memory works can be done in a way analogous to Theorem 6.10. m

8.4 Chromatic Versus Chaotic

As we have seen, chromatic memories have some nice properties, which need
not hold for “chaotic” non-chromatic memories. Do we lose something if
we restrict ourselves to chromatic memories only? The natural question is
whether whenever we can win with a memory of size n, we can also win with
a chromatic memory of size n; in other words, does mm*% (W) = mmy (W)?

In the following examples, equality indeed holds, although it is not com-
pletely trivial.

Proposition 8.15 For the winning condition WR = C¥ — (C*a™)“ over
C ={a,b} we have mmy(WR) = mm(WR) = n.
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Note that the winning condition given above is half-positional since it is

a monotonic condition (the monotonic automaton recognizes the language
C*a"C*; see Example 6.4).

Proof The language C*a"C™ is recognized by an automaton with states
{0,...,n} (the state is equal to the number of as at the end of our word;
the automaton is shown in Example 6.4). Thus, from Proposition 8.7,
mm’ (WR) < n.

We also know that mmu(WR) < mm¥(WR). It is enough to show an
arena which requires n memory states in the non-chromatic case.

We will construct our arena from gadgets, i.e. subgraphs which perform
required simple operations. In the sequel of this proof, by state of a play 7
we mean the current number of as at the end of rank(7).

Let s; be a synchronizer, i.e. a gadget which sets the memory state to <.
(This is just a sequence of moves of colors ba'.)

Let w; be a tracker, i.e. gadget such that when w; is entered by Adam
in state > ¢ infinitely many times, then Adam wins. (Again, this is just a
sequence of colors a™ %)

In our arena, we will have only one Adam’s position, A. Adam has to
decide to move to one of n Eve’s positions, Ey, ..., F,_1. When Adam decides
to go to F;, then Eve can decide between w;sy and, for j <n—1, s;;;. Both
of these gadgets return to A.

The following picture shows the arena for n = 4.

Adam wins iff the play enters w; in state > i infinitely many times.
Suppose that Eve uses the reasonable strategy to never choose w; when the
memory state is > ¢ (if she has a choice); and if both moves have this property,
choose the one which sets the state to the lower value. Thus, if Eve is in I}
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in memory state ¢, then she will choose s;4; if 7 <7 and j <n—1, and w;sg
otherwise.

We can easily see that Adam has to make use of all his possible moves
from A to win against Eve’s strategy given above. Thus, he needs memory
of size n, since there are so many available moves. ]

Proposition 8.16 Let C' = {a,b,c}. Let Wop, = Wa N Wy, where
Wa = C¥ — (C*(ab*)*)* and Wy, = C¥ — (C*(ba*)?)~.
Then we have mm 4 (Wap) = mm’y(Wap) = AB.

Our winning condition means that Adam wants to infinitely many times
see A a’s or B b’s between two consecutive occurrences of c.

Note that we can easily see that W, and W}, require memory of size A
and B, respectively (indeed, they are similar to WR from 8.15, except that
some colors are renamed and some new colors are added which do nothing).
Thus, our memory size agrees with dual of Proposition 8.11 (we take Adam
instead of Eve, and intersection instead of union).

Proof We will use the same gadget construction as in proof of Proposi-
tion 8.15. It is enough to define play states, and construct the synchronizer
and tracker gadgets, which satisfy the required properties.

Play state B +y for 0 < x < A, 0 < y < B corresponds to seeing x
letters a and y letters b after the last c.

The synchronizer has a form of s,p, = ca®b?, and the tracker w,p4, is
an Eve’s position where she can choose between a?~1=*b®~¥ and a?~*. m

8.5 Persistent Strategies

Positional strategies always use the same move in the same position. So do
persistent strategies — if Eve’s position is visited several times during the
play, then she always uses the same move. However, they have an additional
power over positional strategies. Positional strategy is written down before
the game, so Adam may predict Eve’s future moves and adapt his strategy.
Not so for persistent strategies where such a positional strategy is not
written down, and thus Eve is able to “trick” Adam that she is using a
positional strategy by using always the same move in the same position,
while in fact she is choosing the move during her first visit to each position.
Persistent strategies have been introduced in [MT02]; the result there is that
games with positive winning conditions (i.e. such that their complement is
closed under shuffles with C*) admit persistent strategies for Eve.
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Definition 8.17 A winning strategy s is persistent iff s(my) equals s(mims)
whenever target(m;) = target(mms).

Persistence gives us new determinacy types (Section 2.4).

Definition 8.18 A winning condition W is half-persistent if it is in de-
terminacy type (persistent, arbitrary, infinite) (i.e. for each arena and each
starting position either FEve has a persistent winning strateqy, or Adam has
a winning strategy). A winning condition W is persistent if it is in deter-
minacy type (persistent, persistent, infinite). As before, we add “finitely” or
“A-7, “B-", “C-” when we restrict admissible arenas (Section 2.5).

The following example shows that half-persistence is indeed a weaker
property than half-positionality, at least for A-arenas and B-arenas.

Example 8.19 Let C = w x {a,b}. Let f : C x C — {0,1,2} be given
by F((n,c), (1, ¢) = 2 if ol 0+ 1, f((2n,0), @n+1,¢)) = 1iff ¢ £ ¢,
and 0 otherwise. Let W = {cico ... : limsup f(cn, chy1) is even}. Then W is
B-half-persistent and A-half-positional, but not B-half-positional nor C-half-
persistent.

Proof We will first show that W is A-half-positional. Let G be an A-
arena. If we color each move v — w with f(rank(v),rank(w)), we obtain a
B-arena (', and a play is winning in (G', WP3) (WP is the parity condition
over {0,1,2}) iff it is winning in (G, W). We know that the (G, WP,) is
positionally determined, hence so is (G, W).

To show that W is half-persistent, we can define a strategy with (chro-
matic) memory which uses C' as the set of memory states it remembers
the last color which appeared in our play. We can prove that a strategy s
with such a memory exists using a similar reduction to WPs.

Now, we can define our persistent strategy s’: if we visit the same position
again, then we do the same thing; otherwise, do what s suggests. This
strategy is winning, because the only way for Adam to win is to have the
first components of color growing until infinity, which means that from some
moment positions do not repeat (it is important here that we are playing
on a B-arena and not on a C-arena), and Eve always does what s suggests,
which is a winning strategy.

W is not B-half-positional, as shown by the following infinite arena. If
Eve is using a positional strategy, Adam can anticipate her choice of a or b
in position n 4 1, and choose the other letter in position n.

76



W is also not C-half-persistent, as shown by the following infinite arena.
Each multiple arrows represents a set of moves (we take each n € w). If Eve
uses a persistent strategy, she must decide to use either letters a or b, which
allows Adam to adjust his strategy to always use the other letter in position
A, while the numbers grow in the correct way.

(2n,a)

(2n+1,b)

(2n+1,a) 2

Note that T is half-persistent although it is not positive (in the sense of
[MTO02]: its complement is not closed under shuffles with C*).

Example 8.20 Let C' and f be like in Exzample 8.19. Let Wi = {cica. .. :
limsup f(cn, cnrs) is even}. Then Wy is B-half-persistent, but not even A-
half-positional.

Let Wy be the set of words w over C'U {x} such that two *’s appear in
a row in w infinitely many times, or the word obtained from w by removing
all x’s, w', satisfies w' € W. Then Wy is A-half-persistent but it is not
B-half-persistent nor A-half-positional.

Proof The reasoning is similar to one used in Example 8.19. ]

We have no example of a winning condition which is C-half-persistent but
not C-half-positional, nor of a winning condition which is B-half-positional
but not C-half-positional. Other than that, all combinations of (A B,C)-
half-{positionality /persistence} are possible, as long as they obey obvious
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inclusions (i.e., y—half-positional implies y—half-persistent, and having a
property in a bigger class of arenas implies having it in a smaller class).

Proposition 8.21 Determinacy types introduced in this section are natural.

Before we will be able to prove an analogue of Theorem 3.7, we need the
following theorem.

Theorem 8.22 Let D be one of determinacy types introduced in this section
(which requires persistent strategies for Eve). Let W be a winning condition.
Let G be a D-arena such that (G, W) is D-determined. Let s be Eve’s D-
strategy winning from a position u. Suppose that there is a play starting in u
consistent with s where Eve uses a move p in v € Posg. Let G' be an arena
which is the same as G except that all moves from v except p are removed.
Then (G',W) is also D-determined, and the winning sets in G and G' are
equal.

Proof If Eve has a winning persistent strategy from w in G’, then it is
also a winning persistent strategy from w in G. Also, if Adam has a winning
D-strategy from w in G, then it is also a winning D-strategy from w in G’.
So, it is enough to show that if Eve has a winning strategy s from w in G,
then she has also a winning strategy from w in G'.

Let m be a finite play starting in u after which Eve decides to use p (i.e.
target(m) = v, s(m) = p, and it is the first visit to v). Let M be the set of
all positions which can be reached in a play of which 7 is a prefix and which
is consistent with s.

Eve’s strategy s’ is as follows. Let 7 be a finite play. While target(m)
is not in M, play the same as s: s'(7) = s(m). The strategy changes if the
play reaches M; suppose that happens after a play 7. Since target(m) is in
M, we have a finite play m; from w such that target(m;) is in w, and m goes
through p. In the following moves, Eve acts as if the play started with 7y,
not in my: §'(momw) = '(mym). Since no position appearing before 7y was in
M, the play will never return to a position from before 7y, so trading initial
segments won’t break persistence. ]

Corollary 8.23 A winning condition is finitely half-persistent iff it is finitely
half-positional.

Proof Let G be a finite arena. We remove moves from Eve’s winning
set using Theorem 8.22 until only one move remains from each position.
The winning sets do not change, and Eve’s strategy in the result has to be
positional. This positional strategy works in G. ]
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Theorem 8.24 Let D be one of the determinacy types introduced in this
section or their duals. If W is D-determined, so is W U WBg.

Proof The proof is also analogous to Theorem 3.7, but there is one
difference. In proof of Theorem 3.7, we defined a game G’, where Eve had a
D-strategy sg. Then, we used the strategy sg in the game G, by applying
sg to the longest suffix of s which was a valid play in G.

For basic determinacy types, the result was a D-strategy. However, it is
not so for persistent strategies: a previous visit in GG could have fixed Eve’s
moves in some positions. To repair this problem, we use Theorem 8.22.
Instead of using the strategy sg for the whole game GG, we use the respective
strategy for the game where some moves (a finite number of them) are already
fixed — Theorem 8.22 guarantees that such strategy exists. ]
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Chapter 9

Conclusion

As a conclusion, we recollect open problems which are related to the results
presented in this thesis.

9.1 Closure under Union

We would like to know more closure properties of the class of half-positio-
nally determined winning conditions. Specifically, our Conjecture 7.1 asks
whether an union (finite or countable) of (finitely) half-positional conditions
remains half-positional. It is known that an uncountable union does not need
to be half-positional (Theorem 7.2). In many special cases it is known that
unions of specific half-positional conditions are half-positional (Theorem 3.7,
Chapter 7).

Specifically, we know that all XPS conditions have this property (Theorem
7.12), and that this class is closed under finite union. All half-positional win-
ning conditions constructed in this thesis (except concave conditions  this
is a property rather than a construction) fall in this class; it is possible that
XPS captures all the reasons for a winning condition to be half-positional,
and therefore all half-positional conditions are there.

9.2 w-regular Conditions

In Theorem 6.10 we have shown that finite half-positional determinacy of
winning conditions is decidable. We used the fact that if a winning condition
is not half-positional, then there is a very simple arena witnessing it (Theorem
6.9); this fact was obtained via induction over the number of Eve’s positions
where she has a choice. However, what about infinite half-positional deter-
minacy? In this case we can no longer use our inductive argument. One can
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easily create an infinite arena where applying the method used in proof of
Theorem 6.9 leads to an arena where Eve no longer can win (after an infinite
number of steps).

Also, the algorithm given in Theorem 6.10 is exponential, which is not
satisfactory. It is possible that there is a simpler property which also answers
whether a given w-regular winning condition is (finitely) half-positional.

9.3 Types of Arenas

In section 2.5 we have introduced three types of arenas. We have shown
examples of winning conditions which are half-positional when restricted to
position-colored arenas, but not on all edge-colored arenas. We gave some
arguments why we regard the broader classes of arenas as more natural when
discussing positional determinacy.

The problem remains whether a winning condition which is half-positional
with respect to edge-colored arenas has to be half-positional for all e-arenas.

9.4 Chromatic Memory

Section 8.2 raises a problem about strategies which are allowed to use mem-
ory, but want to use as few memory states as possible. Is it always possible
to create a memory of the smallest possible size which also has a nice prop-
erty of being independent from the arena, i.e. a chromatic memory of size
mmy (W)? We already have an algorithm for calculating mm? (W) (The-
orem 8.14), but not for mmx (W) — a positive answer would mean that
we don’t need another one. This result could potentially simplify proofs of
further results about strategies with memory.

9.5 Geometrical Conditions

The results in Chapter 5 do not cover all possible cases. We still do not know
whether W F(A) is finitely half-positionally determined for all co-convex sets
A, and whether it is half-positionally determined for all co-convex open sets
A. For A’s which are unions of a finite number of half-spaces, e.g. A = AjUA,,
we cannot obtain half-positional determinacy via Theorem 5.9 and Theorem
7.10 (union of positional / suspendable conditions), because this does not lead
to WF(A), but in general to a different set: WF(A; U As) says that each
cluster point is element of A; U Ay, and WF(A;) UW F(A,) says that either
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each cluster point is an element of A; or each cluster point is an element of

As.

9.6 Extensions

Another area of research is to extend our results to more general settings.
There are several possible extensions.

One of them is examining payoff mappings or preference relations instead
of winning conditions, which allow a game to have a wide spectrum of results
instead of win or lose. See Section 2.6, and also |GZ04|, |GZ05|, [EMT79|.

We can also try to relax our requirement of prefix independence. If we
hope for positional strategies, then the most important thing about prefix
independence is that the past should not alter what is good for us in the
future: if viw; is better than vyws for a player, then vow, cannot be better
than vew, for vy, vy, wy, we € C*. We could also use a stronger version: w;
is better than ws iff ww; is better than wwy. Monotone preference relations
are defined in [GZ05] in a similar way.

So far, we have either considered all possible arenas or restricted to finite
arenas only. However, there are more examples of interesting classes of are-
nas. One example is push-down graphs, which are infinite, but have a finite
representation. Another one is infinite arenas with finite branching. And of
course, more research of position-colored arenas would be useful.

Another generalization is stochastic games. In addition to Eve’s positions
(where a “good” player decides) and Adam’s positions (where a “bad” player
decides), these games also allow random positions, where a move is decided
randomly. In this setting we are interested in optimal strategies, which lead
to the greatest possible probability of winning, or the greatest expected value
of payoff in case of payoff mappings. Several new papers by Gimbert and
Zielonka, e.g. [GZ07|, explore this setting.
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Notation index

These tables present the commonly used notation. In each table a relevant
page number is given for each notation.

The first table lists the usual names for arbitrary objects of given class.
More objects of the same class are named by adding indexes or primes (e.g.
strategies are named s, s', s; etc.).

k,l, m, n  integer

a, B, v, A ordinal

c color 13
|44 winning condition 13
G arena 13
X player (Adam or Eve) 13
L language of finite or infinite words 13
s play 14
5 strategy 15
D determinacy type 16
p move 13
M subset of Pos 21
u, v, w positions or words (finite or infinite) 13
M memory 67

Names of specific winning conditions:

WBg Biichi condition, WBg = C*(SC*)* 24
WB' co-Biichi condition, WBy = C*(C' — 24
S)

WF(A) universal geometrical condition 35
WF'(A) existential geometrical condition 35
WM 4 monotonic condition 46
wpr, parity condition over {0,...,n} 25
440, example from Page 34
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C

a, b, c
LyLy
I*

Lw

|w

w‘n

€

!9

Q

qr
1)

rank
La

A E
Pos

Mov

v w
source(p)
target(p)
rank(p)
Play

Play .
Play y
source(m)
target(m)
rank(m)
Winx

(g, aa,7)
NextX (M)
AttI'X (M)
M{s]

P(w)

P, (w)

by

mmy (W)

Formal language and automata notation:

set of colors

default names of colors in examples
concatenation

Kleene iteration of L

infinite iteration of L

length of the word w

first n letters of w

an empty word

v if ¢ is true, € otherwise
automaton’s set of states
automaton’s initial state
automaton’s transition function
parity automaton’s rank function
language recognized by automaton A

Notation specific for games:

Adam and Eve

set of positions (Pos = Posg U Pos,)
set of moves

a move from v to w of color ¢
source (v) of a move p

target (w) of a move p

color (c¢) of a move p

set of all plays (infinite, ending on X’s

position)

set, of infinite plays

set of plays ending in X's position
source (first position) of 7
target (last position) of 7w
sequence of colors in 7
X’s winning set

a determinacy type

next move operator
attractor

forward closure

average color in w
average color in wy,
suspension set

minimum size of memory
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13

13
13
13
13
13
13
32
44
44
44
44
44

13
13
13
13
14
14
14

14

14
14
14
15
16
21
21
21
35
35
58
68



minimum size of chromatic memory
minimum size of chromatic memory for
A-arenas

a memory state

memory update function

chromatic memory update function
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67
67
69
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Index

w-regular winning condition, 44

Adam, 13

adhere, 72

antagonistic, 13

arena, 13
edge-colored, 82
move-colored, 17, 82
position-colored, 17, 83
simplifying, 49, 72
types, 17, 82
witness, 49, 72

attractor, 21

automaton, 5
deterministic, 43
finite, 43
monotonic, 45
pushdown, 16

Biichi condition, 24, 57, 59, 61
basic determinacy type, 16

chromatic memory, 69
closed set, 36
closure, 81

under union, 81
closure properties, 24, 57, 61
co-Biichi condition, 24, 59, 61, 64
co-convex, 35
color, 13
compact subset, 35
concatenation, 13
concave condition, 29, 36, 57, 64
consistent, 15
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convex condition, 29, 36, 37

decidability

concavity, 54

finite half-positional determinacy,

52

determinacy, 15
determinacy type, 16

basic, 16

natural, 22, 60, 68, 69, 78
determined condition, 15
deterministic finite automaton, 43

DFA, 43

Ehrenfeucht-Mycielski game, 35

epsilon, 13, 17

Eve, 13

exploration condition, 30

extended positional /suspendable con-
dition, 61

extensions, 19, 83

finite automaton, 43
monotonic, 45

game, 13
Ehrenfeucht-Mycielski, 35
mean payoff, 35
stochastic, 83

geometrical condition, 35, 60, 82

half-persistent condition, 76
half-positional condition, 13, 15

initial state, 44



language, 13
logic, 43

Miiller condition, 43, 67
mean payoff game, 35
memory, 67, 82

chromatic, 69

update function, 67
monotonic automaton, 45
monotonic condition, 46, 57, 60, 64
move, 13

natural determinacy type, 22, 60, 68,
69, 78
normed space, 35

open set, 36

parity condition, 12, 25, 29
payoff mapping, 19, 83
persistent condition, 76
persistent, strategy, 33, 75
play, 14

position, 13

positional condition, 15
positional /suspendable condition, 59
positive condition, 33
prefix, 13

prefix independent, 14, 83

Rabin condition, 43, 57, 61
regular condition, 44, 81

shuffle, 29

state, 44
initial, 44

stochastic game, 83

strategy, 15
persistent, 33, 75
positional, 15
suspendable, 58
winning, 15
with memory, 67

subarena, 14
suffix, 13
suspension set, 58

transition function, 44
trivial subset, 36

unboundedness condition, 30
union, 49, 57

conjecture, 57

positional /suspendable, 61
union condition, 29

verification, 5

weakly concave condition, 33, 36, 48
weakly convex condition, 33, 36, 37
winning condition, 14

Biichi, 24, 57, 59, 61

co-Biichi, 24, 59, 61, 64

concave, 29, 36, 57, 64

convex, 29, 36, 37

determined, 15

exploration, 30

extended positional /suspendable,

61

geometrical, 35, 60, 82

half-persistent, 76

half-positional, 13, 15

Miiller, 43, 67

monotonic, 46, 57, 60, 64

parity, 12, 25

persistent, 76

positional, 15

positional /suspendable, 59

positive, 33

Rabin, 43, 57, 61

regular, 44, 81

unboundedness, 30

union, 29

weakly concave, 33, 36, 48

weakly convex, 33, 36, 37
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XPS, 61, 81
winning set, 15
witness arena, 49, 72
word, 13

XPS condition, 61, 81
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