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Abstract.

This PhD Thesis is devoted to various systems of partial differential equations describing
cellular movement. First, we consider a model of chemorepulsion. We prove global existence
and uniqueness of regular solutions in dimension 2. For dimensions 3 and 4 we prove the global
existence of weak solutions. The convergence to steady states is shown in all the cases. Fur-
thermore, in the two dimensional case we provide the explicit rate of convergence to the steady
states. Second, we perform an extensive study of existence, uniqueness and asymptotic behavior
in 2-dimensional domains for a reduced system of partial differential equations of degenerate
type describing tumour invasion. Moreover, we show all the possible positive solutions to the
stationary problem associated to such a system. Finally, we study the steady-states, global
well-possedness and asymptotic behaviour of some models related to tissue invasion that were
proposed in [A.J. Perumpanani, J. Norbury, J.A. Sherratt and H.M, A two parameter family of
travelling waves with a singular barrier arising from the modeling of matrix mediated malignant
invasion, Physica D 126 (1999) pp. 145–159] and [M.A.J. Chaplain, A.R.A. Anderson, Math-
ematical modelling of tissue invasion, in: L. Preziosi (Ed.), Cancer Modelling and Simulation,
Chapman & Hall/CRT, 2003, pp. 269-297].

AMS Classification. 35B40, 35K50, 35K57, 35K65, 92C17.
Keywords. Asymptotic behaviour, Chemotaxis, Global existence, Haptotaxis.



Abstrakt.

Rozprawa doktorska poświęcona jest badaniu kilku układów równań różniczkowych cząstko-
wych (RRCz) opisujących ruch komórek. W rozdziale 2 bada się model chemorepulsji. Dowodzi
się globalnego istnienia i jednoznaczności regularnych rozwiązań w wymiarze 2. W wymiarach
3 i 4 dowodzi się globalnego istnienia słabych rozwiązań. Zbieżność do rozwiązań stacjonarnych
pokazana jest w każdym przypadku. Następnie, w przypadku 2–wymiarowym podaje się jawnie
współczynnik zbieżności. W rozdziale 3 formułuje się twierdzenia o istnieniu, jednoznaczności
oraz zachowaniu asymptotycznym, w obszarach 2–wymiarowych, dla zredukowanego układu
RRCz, typu zdegenerowanego, opisującego inwazję nowotworu. Ponadto identyfikuje się wszy-
stkie możliwe dodatnie rozwiązania zagadnienia stacjonarnego. W rozdziale 4 bada się rozwiąza-
nia stacjonarne, globalne istnienie, jednoznaczność oraz zachowanie asymptotyczne dla pewnych
modeli opisujących inwazję nowotworu na otaczającą tkankę. Modele te były zaproponowane w
pracach [A.J. Perumpanani et al, Physica D, (1999)] oraz [M.A.J. Chaplain, A.R.A. Anderson,
w: L. Preziosi (Ed.), Cancer Modelling and Simulation, Chapman & Hall/CRT, 2003].

Klasyfikacja AMS. 35B40, 35K50, 35K57, 35K65, 92C17.
Słowa kluczowe. Zachowanie asymptotyczne, Chemotaksja, Globalne istnienie, Haptotaksja.
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Notations
During this work we will use the following basic notations. Also, during this work, we will
introduce some additional notations. Sometimes, in order to allow a more fluent reading, we
will also remind some of these notations during the work.

• N denotes the spatial dimension.

• C denotes a positive constant that may vary from line to line.

• IN stands for the natural numbers excluding the element zero.

• If A is a set then A stands for the closure of A.

• Ω ⊂ IRN denotes a bounded domain with regular boundary, C3 will be enough during all
the text.

• |Ω| stands for the N-dimensional Lebesgue measure of Ω.

• QT := Ω× (0, T ).

• Ck(Ω) is the set of functions k− differentiable in Ω.

• ∂Ω is the boundary of Ω.

• |∂Ω| denotes the N − 1-dimensional Lebesgue measure of ∂Ω.

• n stands for the outward unit normal vector to ∂Ω.

• W k,p(Ω) is the Sobolev Space of functions k− times differentiable in the distributional
sense whose derivatives are Lp(Ω). The Hilbert space W k,2(Ω) will be usually denoted by
Hk(Ω).

• ‖ · ‖p stands for the norm in the space Lp(Ω), p ∈ [1,∞].

• ‖ · ‖k,p denotes the norm in the space W k,p(Ω).

• If u is a function in Ω, u :=
1
|Ω|

∫

Ω
u.

• Let X a Banach space then Lp(0, T ;X) stands for the space of measurable functions from
(0,t) in X such that ‖ · ‖X ∈ Lp(0, T ).

• Let X is a Banach space, C([0, T );weak−X) denotes the space of measurable functions
from [0, T ] in X which are continuous respect to time for the weak topology of X.

• Cα+k,(α+k)/2(QT ) stands for the Hölder space of exponents α+ k, (α+ k)/2 with respect
to the spatial and time variables, respectively, in QT (see, preliminaries of Chapter 3).

Inequalities.
Here we collect various important inequalities that it will be used during this work. We will
frequently use the following Gagliardo-Nirenberg inequality (see [34,40])

(1) ‖w‖p ¬ C‖w‖θ1,2‖w‖1−θr with θ =
N
r − N

p

1− N
2 + N

r
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which holds true for all w ∈ H1(Ω), p ∈ [1, 2N/(N − 2)) and r ∈ [1, p]. Also in various places
we will use the Csiszar-Kullback inequality (see [14])

(2)
1

2u
‖u− u‖21 ¬

∫

Ω
u ln

(
u

u

)
dx

Finally, we state the Poincare-Wintinger inequality (see [10]). If u ∈ W 1,p(Ω), then there
exists a constant C > 0 such that

(3) ‖u− u‖p ¬ C‖∇u‖p,

for all p ∈ [1,+∞].



CHAPTER 1

Introduction

One of the most important features of living systems is that they interact with the envi-
ronment in which they reside. The way of interaction frequently involves movement toward or
away from an external stimulus, and such a response is called a taxis. Taxis can be positive or
negative, depending on whether it is toward or away from the external stimulus. Many different
types of taxis are known, for example aerotaxis, chemotaxis, haptotaxis, phototaxis... In many
cases, taxis can be considered as a survival mechanism (see [61]).

During this Ph.D. Thesis we will assume that the organisms respond to the spatial gradient
of the stimulus. Moreover, we will suppose that the organisms diffuse in the environment. In
some cases, we will assume a proliferative term, denoting the birth and death of the organisms.
To be more precise, throughout this work, the equation that describes the movement of the
organisms is given by 1

ut = ∆u︸︷︷︸
Diffusion

±∇ · (u∇φ(v))︸ ︷︷ ︸
Taxis

+ f(u, v)︸ ︷︷ ︸
Reaction

u : concentration of the organisms
v : concentration of the stimulus or signal

An extra equation for v is needed. We will consider a diffusive equation for v in Chapter 2
while in Chapters 3,4 we assume that v does not have diffusion.

While the taxis term can lead to aggregation, the diffusive term always has a dispersive
effect. Therefore, a natural question can be addressed: which term is the dominant, the taxis
term or the dispersive one?

1The precise properties of the real functions χ and f will depend on the model, at this stage we skip these
properties.

1
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Probably one of the most famous models in mathematical biology is the Keller-Segel sys-
tem. Such a model was proposed in [44] in order to describe a very particular stage in the life
of many species of cellular slime molds, the aggregative stage. At this stage, the amoeba begin
to aggregate in a number of “collecting point” or centers. At each center a slug forms, migrates
and eventually forms a multicellular fruiting body ( [44] pg. 399). The aggregation is induced
by the presence of a chemical substance produced by some of the amoebas. This particular case
of taxis, the one induced by a chemical, is called chemotaxis.

The original model proposed by Keller-Segel consist of four equations, they proved insta-
bility results for a reduced system of two equations. A particular case of this reduced system
is the following one

(1.1)

{
ut = ∇ · (∇u− u∇φ(v))
εvt = ∆v − v + u

u : amoeba concentration
v : chemical concentration

It was not till 1992 when the first rigorous results for (1.1) with ε = 0 and φ a linear
function, called chemosensitivity, were given. In their paper [41] Jäger and Luckhaus showed
that the solutions to (1.1) may blow-up in finite time in the two-dimensional case. Later on,
in a series of papers [59, 60, 35, 6, 29] the different authors studied (1.1) for ε = 0, 1 with linear
chemosensitivity functions and in [7,65] for nonlinear chemosensitivity functions, mainly loga-
rithmic functions2.

In order to avoid the possibility of blow-up for the Keller-Segel system different mechanisms
have been proposed. The first one, called volume filling, was proposed by Hillen and Painter
in [36,37], see also [49,77,12,18]. Another way of preventing blow-up was to assume a stronger
diffusive effect for u, see for instance [46,71,13,9].

In other words, in the system (1.1) with linear chemosensitivity functions and spatial di-
mension two the diffusive term and the taxis term are in almost equilibrium i.e. global existence
or blow-up is possible and it depends on the initial concentration of u, i.e. u0.

While most of the authors have focused in the chemoattractive case, that is, the movement
is towards regions of high chemical concentration, only few results are known for the chemore-
pulsive one. In Chapter 2, motivated by [68], we deal with this case. To be more precise, in
Chapter 2 we study the following problem

2It should be noted that in [65] the author changed the second equation for vt = ∆v − v + φ′(v)u.



3

(1.2)





ut = ∆u︸︷︷︸
Diffusion

+ ∇ · (u∇v)︸ ︷︷ ︸
Chemotaxis

in Ω× (0, T ),

τ vt = D ∆v︸ ︷︷ ︸
Diffusion

− βv︸︷︷︸
Decay

+ u︸︷︷︸
Production

in Ω× (0, T ),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× (0, T ),

(u, v)(x, 0) = (u0, v0)(x) in Ω,

where Ω is an open, bounded subset of IRN with smooth boundary ∂Ω, n denotes the outward
unit normal vector to ∂Ω and the parameters τ , D and β are positive real numbers.

If τ = 0 (that is, there is no term vt in the second equation of (1.2)), it is quite easy to
see that no finite time blow-up can take place (at least for N ¬ 3). In fact much more is true
and it was proved in [54,55] that solutions exist globally, are uniformly bounded and converge
with an exponential rate to the steady state. A similar result would be expected to be valid
for (1.2) but, surprisingly, does not seem to be so easy to prove due to the lack of estimates
on vt. In particular, global existence of solutions is established in [68] under rather artificial
conditions. Indeed, for N = 2, they require D and ‖u0‖1 to fulfil some conditions (cf. [68, A1-
A3]). These conditions allow them to construct a Lyapunov functional for (1.2) in the spirit of
that constructed in [29] for the chemoattractive case. For N  3 solutions exist globally only
under a smallness condition on the initial data in Lp(Ω) with p > N/2 + 1. To the best of our
knowledge, no further result seems to be available for (1.2).

In Chapter 2 we improve the above-mentioned results in the following directions. First, in
space dimension N = 2 we prove the global existence and uniqueness of uniformly bounded
smooth classical solutions without any restriction on the initial data and parameters. In the
higher space dimension N = 3, 4, we are only able to establish the global existence of weak
solutions. In addition, we prove that there exists a unique steady state up to the mass con-
straint and it is spatially homogeneous. Our approach relies on the observation that there is a
natural Lyapunov functional associated to (1.2), from which several estimates can be deduced.
However, it does not provide any control on vt and does not allow us to obtain smooth classical
solutions in space dimension N  3.

Easily can be checked that our results remains true whatever the values of the positive real
numbers τ,D and β are, therefore, we set from now on

τ = D = β = 1.

Since the existence results depend strongly on the space dimension, we separate the statements
of the results according to the value of N (see, Theorem 2.15).

Theorem 1.1. Let N = 2. If (u0, v0) are non-negative functions in W 1,p0(Ω) for some p0 > 2
then there exists a unique global in time smooth classical solution to (1.2). Moreover,

lim
t→+∞(u, v)(·, t) = (u, v) in C2(Ω; IR2) with u = v =

1
|Ω|

∫

Ω
u0 dx.
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Furthermore, the rate of convergence is exponential.

The proof of Theorem 1.1 has various steps. First, based on the abstract theory for quasilin-
ear parabolic systems developed in [3] we prove local well-possedness of solutions. Then, using
the Lyapunov functional

F (u, v) =
∫

Ω

(
u lnu+

|∇v|2
2

)

we obtain some crucial estimates of solutions to (1.2) independently of time. Those estimates are
enough in the two dimensional case to show, based on the regularization of parabolic problems,
that the solutions are global and regular in time independently of the size of (u0, v0). Moreover,
the Lyapunov functional F plays a fundamental role in the convergence to the steady-state.

The estimates provided by the Lyapunov functional F does not seem enough in higher
dimensions to obtain global regular solutions (independently of the size of (u0, v0)). However,
the bounds given by the function F will allow us to prove existence of global weak L1 solutions.
We recall the definition of global weak L1 solutions here for the reader’s convenience (see
Definition 2.1).

Definition 1.2. A global weak solution to (1.2) is a pair of non-negative functions

(u, v) ∈ C([0,∞);weak − L1(Ω; IR2))

such that

∇u,∇v, u∇v ∈ L1(Ω× (0, T )),

and
∫

Ω
(u(t)− u0) ϕ dx+

∫ t

0

∫

Ω
(∇u+ u ∇v) · ∇ϕ dxds = 0,

∫

Ω
(v(t)− v0) ϕ dx+

∫ t

0

∫

Ω
(∇v · ∇ϕ+ (v − u) ϕ) dxds = 0,

for each t  0 and ϕ ∈W 1,∞(Ω) (we recall that τ = D = β = 1).

Now, we formulate the precise statements in the higher dimensional case (see Theorems
2.18 and 2.19).

Theorem 1.3. Let N = 3. If (u0, v0) are non-negative functions in W 1,p0(Ω) for some p0 > 3,
then there exists a global weak solution (u, v) to (1.2) which satisfies also

(u, v) ∈ L5/4(0, T ;W 1,5/4(Ω; IR2))

for any T > 0. Moreover, recalling that u and v are defined in Theorem 1.1, we have

lim
t→+∞

[∫

Ω
(u(t)− u) φ dx+ ‖v(t)− v‖2

]
= 0

for each φ ∈ L∞(Ω).
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Theorem 1.4. Let N = 4. If (u0, v0) are non-negative functions in W 1,p0(Ω) for some p0 > 4,
then there exists a global weak solution (u, v) to (1.2). Moreover,

lim
t→+∞

[∫

Ω
(u(t)− u) φ dx+ ‖v(t)− v‖2

]
= 0

for each φ ∈ L∞(Ω).

In the proofs of Theorems 1.3 and 1.4 we will define a regularized problem to the original
problem (1.2), see (2.3), and we will show the existence of global solutions to (1.2) by a com-
pactness method.

Finally let us mention that the previous existence results do not seem to extend to space
dimension N  5: this is due to the fact that we can not assure u∇v ∈ L1(Ω× (0, T )), for every
T > 0 if N  5. In particular, if N = 4 then we only have u∇v ∈ L1(Ω × (0, T )). Therefore,
we will have to apply the Dunford-Pettis Theorem as well as the Vitali convergence Theorem
in the compactness method. Since, those results are not standard we will state them in the
beginning of Chapter 2.

In Chapter 2 the signal or stimulus diffuses in the environment, however there are cases in
which the stimulus is strictly localized, for example the ants, which follow trails left by prede-
cessors, myxobacteria (see, [61]) or in the cancer invasion. The chapters 3 and 4 are devoted to
study systems that share this property.

In Chapter 3 we will consider the following problem

(1.3)





ut = ∇ · (∇u− u∇w) + δu(1− u) in Ω× (0, T ),
wt = −uw in Ω× (0, T ),
∂u

∂n
− u∂w

∂n
= 0 on ∂Ω× (0, T ),

(u(x, 0), w(x, 0)) = (u0(x), w0(x)) in Ω,

with Ω ⊂ IR2 a bounded domain whose boundary is regular and δ is a non-negative constant.
For δ = 0 the problem (1.3), as we will see later on, can be consider as a simplified model of
invasion. Also (1.3) is a particular case of the models that were proposed in [42] in order to
describe bacterial movement. Previously, a version of the problem (1.3) was studied by Rascle
in [67] (see also [66]) with the boundary condition replaced by

(1.4)
∂u

∂n
= 0.

Additionally he takes a positive constant as initial condition for the function w, w0(x) ≡ w0 > 0
and the reaction term δu(1−u) is substituted by a function f(u,w) which satisfies the following
condition

(1.5) ∃L > 0, ∀u ∈ IR, ∀w > 0, |f(u,w)| 6 L |u| .

Under the previous hypothesis, it has been shown (see [66], [67]) that the problem (1.3) has a
unique classical global solution in the one-dimensional case.
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In more than one-dimensional space there are some recent results concerning the existence
of global weak solutions when f ≡ 0, Ω = IRN and the initial data satisfy some conditions on
the size [20–22]. If the term −uw, is replaced by a general function g(u,w) = ϕ(u,w)h(u,w),
satisfying the following conditions

(1.6)
ϕ(u,w) > 0 if (u,w) ∈ H := [u1, u2]× [w1, w2],
h(u1, w1) = h(u2, w2) = 0,

for some constants 0 ¬ u1 < u2, w1 < w2, furthermore,

(1.7)
ϕ, h ∈ C1,
∂h

∂u
> 0 ,

∂h

∂w
+ u

∂h

∂u
< 0 in H,

then, in [28] is shown the existence of a unique global classical solution for all initial data
(u0, w0) ∈ int (H). Moreover, if additionally ϕ ≡ 1 then the solution for large times goes to
( 1
|Ω|
∫

Ω u0,
1
|Ω|
∫

Ωw0) in L2 (without rate), where |Ω| denotes the N -dimensional Lebesgue mea-
sure of Ω. Finally, let us mention [32, 33] where problems similar to (1.3) were studied on the
real line.

Our aim in Chapter 3 is to prove global existence and uniqueness of classical solution to
problem (1.3) in the two-dimensional case and also to present the asymptotic behaviour of the
solution. To be more precise we prove the following:

Theorem 1.5. Let 0 < l < 1, Ω ⊂ IR2 be a bounded domain with C l+2 boundary ∂Ω. If

(u0, w0) ∈
(
C l+2(Ω)

)2
, u0  0, w0 > 0, u0 6= 0 and the compatibility condition

∂u0

∂n
= u0

∂w0

∂n

is satisfied for every x ∈ ∂Ω, then the problem (1.3) has a unique global positive solution

defined on an interval [0,+∞) ⊂ IR and (u,w) ∈
(
C l+2,l/2+1(Ω× (0, t))

)2
, for all t ∈ [0,+∞).

Moreover, if δ = 0, then

(1.8) lim
t→+∞ ‖u− u‖2 = 0 , lim

t→+∞ ‖w‖2 = 0.

Furthermore, if u0 > 0 then,

(1.9) lim
t→+∞ ‖u(t)− uδ‖1 ¬ Ce−θt , lim

t→+∞ ‖w‖∞ ¬ Ce
−θ′t,

where θ, θ′ are positive constants and

(1.10) uδ :=





1
|Ω|

∫

Ω
u0 if δ = 0,

1 if δ > 0.

The proof of Theorem 1.5 is carried out as follows. First, we show local existence of solutions,
this is done in a similar way as in [66, 67]. The main difficulty to overcame with respect to
those papers is the different boundary condition. Then, in order to obtain the global existence
theorem, suitable bounds of the solutions are given. However, by contrast with the chapter 2,
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the lack of spatial regularization effect in the w-equation demands tedious estimates. In those
estimates as in the previous chapter the Lyapunov function

F (u,w) =
∫

Ω
u(lnu− 1) +

1
2

∫

Ω
w−1|∇w|2

associated to (1.3) plays an important role. For δ = 0 such a Lyapunov function was introduced
in [20] although somehow is hidden in [67]. In the asymptotic behaviour of the solutions since,
for δ > 0, the L1-norm of u is not preserved in time then the proof is more involved than in
the previous model. In fact, we are aware about few papers concerning the entropy method in
which the L1 norms of the solutions is not preserved, for example [23, 24]. We will show ex-
ponential decay towards a steady-state. Unfortunately we require u0 > 0 and we do not know
how to avoid this assumption but we would like to remark that such an assumption has been
also encountered in [73]3.

In chapter 3, we also study the steady-state problem. In particular we give explicitly all the
solutions to the steady-state problem (see Section 3.4.1). More precisely:

Theorem 1.6. The positive solutions to the stationary problem associated to (1.3) are given
by

(u∗, w∗) = (0, w̃) , w̃ ∈ P2,

(u∗, w∗) = (1, 0) , if δ > 0,

(u∗, w∗) = (k, 0) , if δ = 0,

where k > 0 is a constant and P2 = {z ∈W 1,∞(Ω) : z  0, z 6= 0}.

Let us stress two facts. First, our concept of solutions to the steady-state problem demands
w ∈ W 1,∞(Ω). Second, uw = 0 does not imply u = 0 or w = 0. A simple countersample is
provided by the the characteristic functions u = χ[0,1), w = χ[1,2] on the interval [0, 2].

Finally, the last chapter of the Ph.D. is devoted to a general model of cancer invasion that
covers the models presented in [63,15]. The model reads

(1.11)





ut = ρ∆u︸ ︷︷ ︸
Diffusion

− ∇ · (uχ(v)∇v)︸ ︷︷ ︸
Haptotaxis

+ µu(1− u− v)︸ ︷︷ ︸
Proliferation

in Ω× (0, T ),

vt = − γmv︸ ︷︷ ︸
Degradation

in Ω× (0, T ),

mt = ∆m︸︷︷︸
Diffusion

− βm︸︷︷︸
Decay

+ αug(v)︸ ︷︷ ︸
Production

in Ω× (0, T ),

ρ
∂u

∂n
− uχ(v)

∂v

∂n
=
∂m

∂n
= 0 on ∂Ω× (0, T ),

(u, v,m)(x, 0) = (u0, v0,m0)(x) in Ω,

u : concentration of cancer cells
v : concentration of the extracellular matrix (ECM)

3The key of such a restriction in [73] is in (5.4)
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m : concentration of the matrix degrading enzymes

where Ω ⊂ IR3 is a bounded regular domain, g, χ ∈ C2(IR+) and α, β, γ, ρ denote positive
parameters. The interpretation of the model is as follows, cancer cells on contact with the
ECM produce matrix degrading enzymes which degrade the ECM. Then, the cancer cells move
towards the gradient of the matrix via a taxis movement called haptotaxis.

Observe that if the production and decay rates of the proteolytic enzymes, denoted by α

and β respectively, are much faster than the motility, that is α� 1, β � 1, then dividing by β
we get

β−1mt = β−1∆m−m+
α

β
ug(v)

and, since β is large then β−1 is small. Therefore, heuristically, we can claim m ' α
βug(v) and

in the particular case g, χ = 1 we recover (1.3).

In our knowledge, first models of tissue invasion were proposed in [30] and [62]. In [30] the
authors developed a Lotka-Volterra competition model for the cancer and normal cells. They
also considered the acidity of the microenvironment through a reaction-diffusion equation for
the ion H+. The paper [62] deals with a complex system of six reaction-diffusion equations with
transport terms. Later on, have appeared simpler models in a series of papers [64], [63], [53]
in which the authors study travelling waves or they perform some numerical simulations. In
the last years, Chaplain and Lolas proposed another models of tissue invasion in [16] and [17].
The main novelty of this papers is the inclusion of a chemotaxis term for the cancer cells and
a remodelling term for the ECM. Finally, more recently in [31] the authors consider a model
for tissue invasion that take into account the cell-cell adhesion via a nonlocal term in the hap-
totaxis term.

In most of the papers related to tissue invasion the authors solve the system numerically.
We are just aware about few papers that deal with the analytical properties of such systems.
In [72] and [57] the authors showed the existence of a local solution of some models of tissue
invasion that were proposed in [63] and [15] respectively. The paper [75] contains a global ex-
istence and uniqueness result for a simplified version of a model proposed by Anderson in [5]
and in [76] Walker has proved the global existence and uniqueness of a model of invasion that
also consider the age of the cells. Finally, in [47] the author showed mathematical relationships
between different scales of the model proposed in [15].

Concerning to the steady-state problem in chapter 4 we show explicitly, as we did in the
previous chapter, all positive solutions to (1.11), under the restriction v ∈W 1,∞(Ω), if g(s) = s

or g(s) = 1 (see Section 4.3). To be more precise, we have:
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Theorem 1.7. For g(v) = 1 the positive steady-states of (1.11) are given by

(u∗, v∗,m∗) = (0, ṽ, 0) , ṽ ∈ P2,

(u∗, v∗,m∗) =
(
k, 0,

βk

α

)
, if µ = 0,

(u∗, v∗,m∗) =
(

1, 0,
β

α

)
, if µ > 0,

where k > 0 is a constant and P2 =: {z ∈W 1,∞(Ω) : z  0, z 6= 0}.

Theorem 1.8. Assume g(v) = v, then the positive solutions to (1.11) are given by

(u∗, v∗,m∗) = (0, ṽ, 0) , ṽ ∈ P2,

(u∗, v∗,m∗) = (k, 0, 0) , if µ = 0,

(u∗, v∗,m∗) = (1, 0, 0) , if µ > 0.

where k > 0 is a constant.

For the local existence theorem of (1.11) we apply the theory of linear semigroups. We also
show the continuity of the solution respect to the initial data (see Corollary 4.7).

Theorem 1.9. Let ν ∈
(

1
2

+
3
2p
, 1
)

, p ∈ (3, 6) and Xν
p := D((−∆ + I)ν). Suppose that the

initial data satisfies

x0 := (u0, v0,m0) ∈ H1(Ω)×W 1,∞(Ω)×Xν
p := Y,

then there exists τ(‖x0‖Y) such that the problem (1.11) has a unique solution

(1.12)

u ∈ C ([0, τ ];H1(Ω)
) ∩ C1 ((0, τ);W 1,∞(Ω)

)
,

v ∈ C ([0, τ ];W 1,∞(Ω)
) ∩ C1 ((0, τ);W 1,∞(Ω)

)
,

m ∈ C
(
[0, τ ];Xν

p

)
∩ C1

(
(0, τ);Xν

p

)
∩ C ((0, τ);W 2,p(Ω)

)
.

Moreover, the solution depends continuously on the initial data. Furthermore, if
u0(x), w0(x),m0(x)  0 then u(x, t), w(x, t),m(x, t)  0 for all (x, t) ∈ Ω× (0, τ ].

We would like to point out that a similar model of invasion was considered in [75]. However,
by contrast with [75, Lemma 2.1], the explicit knowledge of v is not used in the proof of the
local existence. Next, in order to show global existence in time of the solutions to (1.11), we
use suitable bounds of the solutions. It should be noted that the presence of the m-equation
provokes a faster way of improving the regularity than in the previous model. Therefore, by
contrast with the previous chapter, we will also show global existence independently of the size
of the initial data in the 3-dimensional case. In the asymptotic behaviour the solutions we will
focus on the cases g(s) = 1 and g(s) = s. The absence of a Lyapunov function for (1.11) causes
new difficulties. We overcame these difficulties thanks to a careful estimates of the solutions.
In particular, for the asymptotic behaviour, (see Theorems 4.23 and 4.25) we have:

Theorem 1.10. Let g(v) = 1, τ > 0, t  τ , any given initial data (u0, v0,m0)  0, v0 > 0,
u0 > 0 in the class Y and v0 < 1 if µ > 0. Then the solution to (1.11) (u, v,m) satisfies that,
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• if µ = 0,

(1.13) ‖u(t)− u‖Xν
p
¬ Ce−θt, ‖v(t)‖1,∞ ¬ Ce−δt, ‖m(t)− (β/α)u‖1,∞ ¬ Ce−θ′t

with θ, δ, θ′ > 0 and u =
1
|Ω|

∫

Ω
u0,

• if µ > 0,

(1.14) ‖u(t)− 1‖Xν
p
¬ Ce−θt, ‖v(t)‖∞ ¬ Ce−δt, ‖m(t)− β/α‖¬Ce−ρ′t,

with ρ′ > 0.

Theorem 1.11. Let g(v) = v, τ > 0, t  τ and any given initial data u0, v0,m0  0, v0 > 0,
u0 > 0 in the class Y. Then the solution to (1.11) satisfies,

• if µ = 0,

(1.15) lim
t→+∞ ‖u(t)− u‖22 = 0, lim

t→+∞ ‖v(t)‖2 = 0, lim
t→+∞ ‖m(t)‖22 = 0

• if µ > 0,

(1.16) lim
t→+∞ ‖u(t)− 1‖22 = 0, lim

t→+∞ ‖v(t)‖2 = 0, lim
t→+∞ ‖m(t)‖22 = 0,

under the additional condition v0 < 1.



CHAPTER 2

A chemorepulsion system

Through this chapter we consider a model of chemorepulsion. We prove global existence
and uniqueness of regular solutions in dimension 2. For N = 3, 4 we prove the global existence
of weak solutions. The convergence to steady states is shown in all the cases. Furthermore, in
the two dimensional case we provide the explicit rate of convergence to the steady states.

2.1. Preliminaries

In this chapter we consider a chemorepulsion model which is derived in [68] and reads

(2.1)





ut = ∆u︸︷︷︸
Diffusion

+ ∇ · (u∇v)︸ ︷︷ ︸
Chemotaxis

in Ω× (0, T ),

vt = ∆v︸︷︷︸
Diffusion

− v︸︷︷︸
Decay

+ u︸︷︷︸
Production

in Ω× (0, T ),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× (0, T ),

(u, v)(x, 0) = (u0, v0)(x) in Ω,

where Ω is an open and bounded subset of IRN with smooth boundary ∂Ω, N  2 and n denotes
the outward unit normal vector to ∂Ω.

Let us first remind some notations. The norm in the space Lp(Ω), 1 ¬ p ¬ ∞, is denoted
by ‖·‖p. The classical Sobolev space is denoted by Wm,p(Ω) for 1 ¬ p ¬ ∞ and m  1
and the associated norm by ‖ · ‖m,p. The notation H1(Ω) is also used for the Hilbert space
W 1,2(Ω). If X is a Banach space, X ′ denotes its topological dual space. If k  1, the set of
Ck-smooth functions which vanish on the boundary of Ω is denoted by Ck0 (Ω). Finally, if T > 0,
C([0, T ];weak−L1(Ω)) denotes the space of functions from [0, T ] in L1(Ω) which are continuous
with respect to time for the weak topology of L1(Ω).

Next, we remind the concept of global weak solution for (2.1).

11
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Definition 2.1. A global weak solution to (2.1) is a pair of non-negative functions

(u, v) ∈ C([0,∞);weak − L1(Ω; IR2))

such that
∇u,∇v, u∇v ∈ L1((0, T )× Ω),

and
∫

Ω
(u(t)− u0) ϕ dx+

∫ t

0

∫

Ω
(∇u+ u ∇v) · ∇ϕ dxds = 0,

∫

Ω
(v(t)− v0) ϕ dx+

∫ t

0

∫

Ω
(∇v · ∇ϕ+ (v − u) ϕ) dxds = 0,

for each t  0 and ϕ ∈W 1,∞(Ω).

From the Definition 2.1 easily follows that a global weak solution (u, v) to (2.1) satisfies

(2.2) ‖u(t)‖1 = ‖u0‖1 and ‖v(t)‖1 = e−t ‖v0‖1 + (1− e−t) ‖u0‖1 for t  0.

Since we will use the compactness method in the L1−setting. Let us state, for the reader’s
convenience, Dunford-Pettis Theorem and the Vitali convergence Theorem. In order to do that
the following definitions will be needed (see [27, section 2.1.2]).

Definition 2.2. Let (X,M, µ) be a measure space and let un, u : X → IR be measurable
functions.

a) {un} is said to converge to u almost uniformly if for every ε > 0 there exists a set E ⊂M
such that µ(E) < ε and {un} converges to u uniformly in X \E;

b) {un} is said to converge to u in measure if for every ε > 0,

lim
n→∞µ({x ∈ X : |un(x)− u(x)| > ε}) = 0.

Remark 2.3. If {un} converges to u almost uniformly, then it converges to u in measure.

Definition 2.4. Let (X,M, µ) be a measure space. A family F of measurable functions u :
X → [−∞,∞] is said to be

a) equi-integrable if for every ε > 0 there exists δ > 0 such that
∫

E
|u|dµ ¬ ε

for all u ∈ F and for every measurable set E ⊂ X with µ(E) ¬ δ.

b) p-equi-integrable, p > 0, if the family of functions {|u|p : u ∈ F} is equi-integrable.

Now, we state the following version of Dunford-Pettis Theorem, see [10], and the Vitali
convergence Theorem.

Theorem 2.5. Dunford-Pettis Theorem. Let (X,M, µ) be a measure space with µ finite.
A family F ⊂ L1(X) is relatively compact in the weak topology of L1 if and only if F is
equi-integrable.
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Theorem 2.6. Vitali converge Theorem. Let (X,M, µ) be a measure space, let 1 ¬ p <∞,
and let un, u : X → IR be measurable functions. Then {un} converges to u in Lp(Ω) if and only
if

a) {un} converges to u in measure;

b) {un} is p-equi-integrable;

c) for every ε > 0 there exists E ⊂ X with E ∈M such that µ(E) <∞ and
∫

X\E
|un|pdµ ¬ ε

for all n.

Remark 2.7. Observe that condition iii) is satisfied if X has finite measure.

Remark 2.8. In our case we will apply Vitali convergence Theorem for X = Ω × (0, T ) and
µ the Lebesgue measure. Taking into account that µ(Ω× (0, T )) <∞ then if un → u pointwise
almost everywhere we have, by the Egoroff Theorem that such a convergence is, in fact, almost
uniformly and also in measure. Therefore, in our setting, if we want to show that a sequence
un of functions in L1 converges to u in the strong topology of L1 we have just to show the
equi-integrability and the pointwise convergence to u.

This chapter is organized as follows. The next section is devoted to the local existence and
positive steady states. In section 3 we deal with the two dimensional case and finally in section
4 we study the higher dimensional case.

2.2. Local well-posedness and positive steady-states.

First, for each ε  0, we define the following perturbation of (2.1):

(2.3)





uεt = ∆uε +∇ · (uε(1− εuε)∇vε) in Ω× (0, T ),
vεt = ∆vε − vε + uε in Ω× (0, T ),
∂uε

∂n
=
∂vε

∂n
= 0 on ∂Ω× (0, T ),

(uε, vε)(x, 0) = (u0, v0)(x) in Ω.

Observe that (2.1) is obtained by taking ε = 0 in (2.3).

Theorem 2.9. Let p0 > n and consider the initial condition (u0, v0) ∈ W 1,p0(Ω; IR2) with
u0, v0  0. Then the system (2.3) has a local unique classical solution

(uε, vε) ∈ C(Ω× [0, t+ε ); IR2) ∩ C∞(Ω× (0, t+ε ); IR2)

and uε(x, t), vε(x, t)  0 for each (x, t) ∈ Ω × [0, t+ε ), t+ε denoting the maximal existence time.
Moreover, ‖uε(t)‖1 and ‖vε(t)‖1 satisfy (2.2) for t ∈ [0, t+ε ).

If there is a function ω : (0,∞)→ (0,∞) such that, for each T > 0,

‖(uε(t), vε(t))‖∞ ¬ ω(T ), 0 < t < min {T, t+ε },

then t+ε = +∞. In particular, if ε ∈ (0, ε0] with 1/ε0 = max {‖u0‖∞, ‖v0‖∞} then 0 ¬ uε, vε ¬
1/ε and thus t+ε = +∞.
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Note that 1/ε0 = max {‖u0‖∞, ‖v0‖∞} is finite thanks to the continuous embedding of
W 1,p0(Ω) in L∞(Ω). Therefore, given (u0, v0) ∈ W 1,p0(Ω; IR2) with u0, v0  0, (2.3) has a
global classical solution for ε > 0 sufficiently small.

Proof. For δ > 0 we define the set D0 := (−δ,+∞) × (−δ,+∞), y = (vε, uε), and ajk ∈
C∞(D0,L(IR2)), 1 ¬ j, k ¬ n, by

a = ajk(y) = (arsjk)1¬r,s¬2 :=

(
1 0

uε(1− εuε) 1

)
if j = k,

ajk(y) = 0 if j 6= k. Next for z ∈ D0 we introduce the operators

A(y)z :=
n∑

j,k=1

−∂j(ajk(y)∂kz), B(y)z :=
n∑

j,k=1

νj · ajk(y)∂kz,

and the function f ∈ C∞(D0; IR2)

f(y) :=

(
uε − vε

0

)
.

With these notations (2.3) reads

∂ty +A(y)y = f(y),
B(y)y = 0,

y(0) = (v0, u0).

Since (A,B) is of separated divergence form in the sense of [3, Example 4.3 (e)], then the
boundary-value operator (A,B) is normally elliptic. We can therefore apply [3, Theorem 14.4
and Corollary 14.7] to conclude that (2.3) has a unique maximal classical solution

y = (vε, uε) ∈ C(Ω× [0, t+ε ); IR2) ∩ C∞(Ω× (0, t+ε ); IR2).

Moreover, since (with the notations of [3, Section 15]) D2 = (0,+∞)×{0} and a21
jj = uε(1−εuε)

1 ¬ j ¬ N , a21
jk = 0, a12

jk = 0 for j 6= k, 1 ¬ j, k ¬ N and all these coefficients vanish on D2 we
can apply [3, Theorem 15.1] to conclude that uε(t)  0 for [0, t+ε ). Next the non-negativity of
vε follows from the standard maximum principle for parabolic equations. The global existence
criterion can be deduced from [3, Theorem 15.5]. Finally, if ε ∈ (0, ε0), writing the equation
solved by −uε + 1/ε, we see that we are in a position to apply [3, Theorem 15.1] to establish
that uε ¬ 1/ε. The similar upper bound for vε is then a straightforward consequence of the
classical comparison principle.

We next turn to the existence of a Lyapunov functional for (2.3) which is the cornerstone
of our analysis.

Lemma 2.10. For ε ∈ [0, ε0] and 0 ¬ s < t < t+ε the solution (uε, vε) to (2.3) satisfies the
following equality

(2.4) Fε(uε(t), vε(t))− Fε(uε(s), vε(s)) = −
∫ t

s

∫

Ω

(
|∇uε|2

uε(1− εuε) + |∆vε|2 + |∇vε|2
)
dxdτ
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where Fε is given by

Fε(u, v) =
∫

Ω

(
u lnu+

1
ε

(1− εu) ln(1− εu) +
|∇v|2

2

)

if ε > 0 and

F0(u, v) =
∫

Ω

(
u lnu+

|∇v|2
2

)
.

Proof. On the one hand, multiplying the first equation of (2.3) by lnuε − ln (1− εuε) and
integrating with respect to space, we obtain

(2.5)
d

dt

∫

Ω

(
uε lnuε +

1
ε

(1− εuε) ln(1− εuε)
)
dx = −

∫

Ω

|∇uε|2
uε(1− εuε) dx−

∫

Ω
∇uε · ∇vε dx.

On the other hand, multiplying the second equation of (2.3) by −∆vε and integrating with
respect to space, we obtain

(2.6)
1
2
d

dt

∫

Ω
|∇vε|2 dx = −

∫

Ω
|∆vε|2 dx−

∫

Ω
|∇vε|2 dx+

∫

Ω
∇uε · ∇vε dx.

The expected result then follows by adding (2.5), (2.6) and integrating in time.

As a consequence of Lemma 2.10 we have the following useful inequality.

Corollary 2.11. For ε ∈ [0, ε0] and t ∈ [0, t+ε ), the solution (uε, vε) to (2.3) satisfies
∫

Ω

(
uε(t)| lnuε(t)|+ |∇v

ε(t)|2
2

)
dx+

∫ t

0

∫

Ω

(
|∇uε|2
uε

+ |∆vε|2 + |∇vε|2
)
dxds ¬ C0,

where C0 depends only on Ω and F0(u0, v0).

Proof. On the one hand, since

r +
1
ε

(1− εr) ln (1− εr)  0 for r ∈
[
0,

1
ε

]
,

2r ln r  −2
e

for r ∈ [0, 1] ,

we deduce from (2.2) that

Fε(uε(t), vε(t)) 
∫

Ω

(
uε(t) lnuε(t)− uε(t) +

|∇vε(t)|2
2

)
dx


∫

Ω

(
uε(t)| lnuε(t)|+ |∇v

ε(t)|2
2

)
dx−

(
‖u0‖1 +

2|Ω|
e

)
.

On the other hand,
|∇uε|2

uε(1− εuε) 
|∇uε|2
uε

,

and Corollary 2.11 follows from Lemma 2.10 and the previous two inequalities.

Next, for ε = 0, we may proceed as in [29, Lemma 2.1] to establish a connection between
F0(u0, v0) and the right-hand side of (2.4).
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Lemma 2.12. If ε = 0, the condition

(2.7) sup
t∈[0,t+0 )

‖u0‖N/2 ¬ A

for some A > 0 ensures that the functional G given by

G(u, v) =
∫

Ω

(
u ln

(
u

u

)
+

1
2

∫

Ω
|∇v|2

)
dx

satisfies the following decay property

0 ¬ G(u0(t), v0(t)) ¬ G(u0, v0)e−αt for t ∈ [0, t+0 ),

the positive constant α depending only on Ω and A.

Proof. Taking ϕ = u0

u0
and applying Jensen’s inequality with the probability measure dµ =

u0

‖u0‖1
dx we get

(2.8)
∫

Ω
u0 ln

(
u0

u0

)
dx = ‖u0‖1

∫

Ω
ϕ lnϕdµ 

(∫

Ω
ϕdµ

)
ln
(∫

Ω
ϕdµ

)
= 0.

Next, recalling that
r ln r − r + 1 ¬ (r − 1)2 for r  0

and taking into account (2.2), we obtain from the Sobolev, Poincaré and Hölder inequalities
that

∫

Ω
u0(t) ln

(
u0(t)

u0

)
dx ¬ u0

∫

Ω


u

0(t)

u0
− 1 +

(
u0(t)

u0
− 1

)2

 dx

¬ 1

u0

∥∥∥u0(t)− u0
∥∥∥

2

2

¬ C
∥∥∥∇

(
u0(t)− u0

)∥∥∥
2

2N/(N+2)

¬ C

∥∥∥∥
√
u0(t) ∇

√
u0(t)

∥∥∥∥
2

2N/(N+2)

¬ C
∥∥∥u0(t)

∥∥∥
N/2

∥∥∥∥∇
√
u0(t)

∥∥∥∥
2

2

¬ AC

∫

Ω

|∇u0(t)|2
u0(t)

dx.

Consequently

G(u0(t), v0(t)) ¬ 1
α

∫

Ω

(
|∇u0(t)|2
u0(t)

+ |∇v0(t)|2
)
dx, t ∈ [0, t+0 ).

We then obtain from Lemma 2.10 that

d

dt
G(u0, v0) =

d

dt
F0(u0, v0) ¬ −αG(u0, v0),

which completes the proof.
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Theorem 2.13. The only non-negative stationary solutions to (2.1) in W 1,p0(Ω) for p0 > N

are the pairs (m,m) for m ∈ [0,∞).

Proof. Assume that (u0, v0) ∈W 1,p0(Ω; IR2) for p0 > N is a stationary solution to (2.1). Then
t+0 = +∞ by Theorem 2.9 and it follows from Lemma 2.12 that 0 ¬ G(u0, v0) ¬ G(u0, v0)e−αt

for each t  0, whence G(u0, v0) = 0. Consequently,

∇v0 = 0 and u0 ln

(
u0

u

)
= 0 a.e. in Ω

with u = ‖u0‖1/|Ω|, from which we conclude that u0 = u and v0 is a constant. Taking into
account the second equation in (2.1) implies that (u0, v0) = (m,m) for some non-negative real
number m.

2.3. The two-dimensional case.

In this section, we assume that N = 2 and put (u, v) = (u0, v0) to simplify the notations,
(u0, v0) being the solution to (2.3) with ε = 0 on [0, t+0 ) given by Theorem 2.9. We recall that,
thanks to Theorem 2.9, it is sufficient to establish L∞-bounds for (u, v). The following lemma
is a first step in that direction.

Lemma 2.14. Let p  2 and T > 0. Then there exists a positive constant C1(p, T ) depending
only on Ω, u0, v0, p, and T such that

‖u(t)‖p ¬ C1(p, T ) for t ∈ [0, t+0 ) ∩ [0, T ].

Proof. We first observe that Lemma 2.10 implies that

(2.9)
∫ t

0

∫

Ω
|∆v|2 dxdt ¬ F0(u0, v0) +

|Ω|
e

for t ∈ [0, t+0 ).

We next multiply the first equation of (2.1) by (p + 1)up, integrate with respect to the space
variable and apply the Gagliardo-Nirenberg inequality (1). We thus obtain

d

dt

∥∥∥u(p+1)/2
∥∥∥

2

2
= − 4p

p+ 1

∥∥∥∇(u(p+1)/2)
∥∥∥

2

2
+ p

∥∥∥up+1∆v
∥∥∥

1

¬ −2
∥∥∥∇(u(p+1)/2)

∥∥∥
2

2
+ p

∥∥∥u(p+1)/2
∥∥∥

2

4
‖∆v‖2

¬ −2
∥∥∥∇(u(p+1)/2)

∥∥∥
2

2
+ C p

∥∥∥u(p+1)/2
∥∥∥

1,2

∥∥∥u(p+1)/2
∥∥∥

2
‖∆v‖2

¬ −
∥∥∥∇(u(p+1)/2)

∥∥∥
2

2
+
∥∥∥u(p+1)/2

∥∥∥
2

2
+ Cp2

∥∥∥u(p+1)/2
∥∥∥

2

2
‖∆v‖22.

Owing to (2.9) we may apply the Gronwall lemma and complete the proof of Lemma 2.14.

Theorem 2.15. Let N = 2. If (u0, v0) are non-negative functions in W 1,p0(Ω) for some p0 > 2
then there exists a unique global in time smooth classical solution to (2.1). Moreover,

lim
t→+∞(u, v)(·, t) = (u, v) in C2(Ω; IR2) with u = v =

1
|Ω|

∫

Ω
u0 dx.

Furthermore, the rate of convergence is exponential.
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Outline of the proof. Owing to Lemma 2.14 we may proceed as in [60, Section 4] and use
Moser’s iteration technique [1] to show that, for every T > 0,

‖u(t)‖∞ + ‖v(t)‖∞ ¬ C(T ) for t ∈ [0, t+0 ) ∩ [0, T ].

According to the global existence criterion from Theorem 2.9, we have thus shown that t+0 =
+∞. In addition,

(u, v) ∈ C(Ω× [0,∞); IR2) ∩ C∞(Ω× (0,∞); IR2),

while LaSalle’s invariance principle and (2.2) ensure that (u(t), v(t)) converges towards (u, v)
as t→∞. For the rate of convergence we may apply Lemma 2.12 thanks to (2.2) and use the
Csiszár-Kullback-Pinsker inequality (see, e.g., [14] and the references therein) to obtain

1
2u
‖u− u‖21 ¬ G(u(t), v(t)) ¬ G(u0, v0)e−αt,

and hence the exponential convergence in L1(Ω).

Since u is a constant and ∇·(u∇v) is bounded, the exponential convergence in L∞ may next
be proved by Moser’s iteration technique [1]. Parabolic estimates then yield the exponential
convergence in W 2,p(Ω) for p > n.

2.4. Global weak solutions in higher space dimensions.

This section is devoted to the proofs of Theorems 1.3 and 1.4. Both are based on a com-
pactness method. Namely, we shall prove that at least a subsequence of the classical solutions
(uε, vε) to (2.3) converge in suitable topologies towards a (weak) solution to (2.1) as ε→ 0. As
a first step we deduce some bounds on (uε, vε) from Corollary 2.11 and Sobolev embeddings.

Lemma 2.16. Let T > 0. The sequences (uε)ε and (vε)ε enjoy the following properties:

(uε)ε is bounded in L(N+2)/(N+1)(0, T ;W 1,(N+2)/(N+1)(Ω)),(2.10)

(uεt)ε is bounded in L1(0, T ;C1
0 (Ω)′),(2.11)

(vε)ε is bounded in L(N+2)/N (0, T ;W 2,(N+2)/N (Ω)),(2.12)

(vε)ε is bounded in L∞(0, T ;W 1,2(Ω)) ∩ L2(0, T ;W 2,2(Ω)),(2.13)

(vεt)ε is bounded in L(N+2)/N (Ω× (0, T )),(2.14)

(uε∇vε)ε is bounded in L(2N+4)/3N (Ω× (0, T )).(2.15)

Proof. Consider ε ∈ (0, ε0). We first recall that

(2.16) ‖uε(t)‖1 ¬ K for t ∈ [0, T ]

by (2.2), whereK denotes a constant independently of ε and T . Next, since∇√uε = ∇uε/(2√uε),
we have from (2.16) and Corollary 2.11 that

∫ T

0

∥∥∥
√
uε(t)

∥∥∥
2

1,2
dt ¬ K.
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The continuous embedding of W 1,2(Ω) in L2N/(N−2)(Ω) then entails that

(2.17)
∫ T

0
‖uε(t)‖N/(N−2) dt ¬ K(T ).

Interpolating between (2.16) and (2.17) we obtain

(2.18)
∫ T

0
‖uε(t)‖pNp/(Np−2) dt ¬ K(T, p) for p ∈ [1,∞].

In particular, the choice p = (N + 2)/N gives

(2.19)
∫ T

0

∫

Ω
(uε)(N+2)/N dxdt ¬ K(T ).

Next, by Corollary 2.11, (2.19) and the Hölder inequality, we have

∫ T

0

∫

Ω
|∇uε|(N+2)/(N+1) ¬

(∫ T

0

∫

Ω

|∇uε|2
uε

)(N+2)/(2N+2) (∫ T

0

∫

Ω
(uε)(N+2)/N

)N/(2N+2)

¬ K(T ).

We have thus established (2.10). The bounds (2.12) and (2.14) follow from the second equation
of (2.3), (2.19) and classical parabolic regularity results (see, [50]) while Corollary 2.11 and
(2.2) ensure that (2.13) holds true. We then deduce from (2.13) and the Sobolev embedding
that (∇vε)ε is bounded in both L∞(0, T ;L2(Ω)) and L2(0, T ;L2N/(N−2)(Ω)), whence

(2.20)
∫ T

0
‖∇vε‖p2Np/(Np−4) dt ¬ K(T, p) for p ∈ [2,∞]

by interpolation. Combining this estimate for p = 2(N + 2)/N with (2.19) yields (2.15).

Consider finally φ ∈ C1
0 (Ω). It follows from the first equation of (2.3) and Corollary 2.11

that
∣∣∣∣
∫

Ω
uεtφdx

∣∣∣∣ ¬
∫

Ω
|∇uε| |∇φ| dx+

∫

Ω
uε(1− εuε)|∇vε| |∇φ| dx

¬ C ‖∇uε‖(N+2)/(N+1) ‖∇φ‖∞ + ‖uε‖2 ‖∇vε‖2 ‖∇φ‖∞
¬ C(T )

(
‖∇uε‖(N+2)/(N+1) + ‖uε‖2

)
‖∇φ‖∞.

Therefore,
‖uεt‖C1

0 (Ω)′ ¬ C(T )
(
‖∇uε‖(N+2)/(N+1) + ‖uε‖2

)
,

and the right-hand side of the above inequality is bounded in L1(0, T ) by (2.17) since N/(N −
2)  2 for N = 3, 4. The proof of Lemma 2.16 is then complete.

We next turn to the relative compactness of the sequences (uε)ε and (vε)ε. More specifically,
we have the following result:

Lemma 2.17. There are non-negative functions

u ∈ L(N+2)/(N+1)(0, T ;W 1,(N+2)/(N+1)(Ω)) ∩ C([0, T ];C1
0 (Ω)′), u(0) = u0,

v ∈ L∞(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) ∩ L2(0, T ;W 2,2(Ω)), v(0) = v0,
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and a subsequence of (uε)ε and (vε)ε (not relabeled) such that

uε −→ u in Lp(Ω× (0, T )) ∩ C([0, T ];C1
0 (Ω)′) for p ∈

[
1,
N + 2
N

)
,

vε −→ v in L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)),

and ∫

Ω
(v(t)− v0) ϕ dx+

∫ t

0

∫

Ω
(∇v · ∇ϕ+ (v − u) ϕ) dxds = 0

for each t ∈ [0, T ] and ϕ ∈W 1,∞(Ω).

Proof. In view of (2.10) and (2.11), we see that (uε)ε is relatively compact in L(N+2)/(N+1)(Ω×
(0, T )) by the Aubin-Lions lemma [52, Théorème 5.1]. In fact we can strengthen this claim due
to (2.19) and deduce that

(2.21) (uε)ε is relatively compact in Lp(Ω× (0, T )) for any p ∈
[
1,
N + 2
N

)
.

Similarly, it follows from (2.13), (2.14), and [70, Corollary 4] that

(2.22) (vε)ε is relatively compact in C([0, T ];L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)).

Owing to (2.21) and (2.22) we easily obtain the convergences claimed in Lemma 2.17, the
convergence of (uε)ε in C([0, T ];C1

0 (Ω)′) being a consequence of (2.11), (2.16), and the Ascoli
theorem. It is then straightforward to pass to the limit as ε→ 0 in the second equation of (2.3)
to deduce the last assertion of Lemma 2.17.

It remains to pass to the limit as ε → 0 in the first equation of (2.3), the main difficulty
being the nonlinear term uε(1−εuε)∇vε. At this point the difference between N = 3 and N = 4
shows up: indeed, though we know that

(2.23) uε(1− εuε)∇vε −→ u∇v a.e. in Ω× (0, T )

by Lemma 2.17 (after possibly extracting a further subsequence), we only have an L1-bound
for this term when N = 4 by (2.15) and this is not sufficient to have strong convergence. Such
a difficulty is not encountered when N = 3 and we now complete the proof of Theorem 2.18.

Theorem 2.18. Let N = 3. If (u0, v0) are non-negative functions in W 1,p0(Ω) for some p0 > 3,
then there exists a global weak solution (u, v) to (2.1) which satisfies also

(u, v) ∈ L5/4(0, T ;W 1,5/4(Ω; IR2))

for any T > 0. Moreover, recalling that u and v are defined in Theorem 2.15, we have

lim
t→+∞

[∫

Ω
(u(t)− u) φ dx+ ‖v(t)− v‖2

]
= 0

for each φ ∈ L∞(Ω).
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Proof. According to (2.15), the sequence (uε(1− εuε)∇vε)ε is bounded in L10/9(Ω × (0, T ))
and thus weakly compact in L1(Ω× (0, T )). Since it also converges a.e. in Ω× (0, T ) by (2.23),
we are in a position to apply the Vitali theorem and conclude that

uε(1− εuε)∇vε −→ u∇v in L1(Ω× (0, T )).

In view of Lemma 2.17 it is then straightforward to let ε→ 0 in the first equation of (2.3) and
conclude that (u, v) is a weak solution to (2.1) in the sense of Definition 2.1.

We next turn to the convergence towards steady states. We first recall that the L1-norms
of (u, v) are given by (2.2). It follows from Lemma 2.17 and weak compactness arguments that
we may pass to the limit as ε→ 0 in the inequality stated in Corollary 2.11 to obtain that

(2.24)
∫

Ω

(
u(t)| lnu(t)|+ |∇v(t)|2

2

)
dx+

∫ t

0

∫

Ω
4
(∣∣∇√u∣∣2 + |∆v|2 + |∇v|2

)
dxds ¬ C0.

Next, we take 0 = t0 ¬ t1 ¬ ... ¬ tk with tk → +∞ and we define

uk(·, t) = u(·, t+ tk)− < u0 >, t ∈ (0, 1)

vk(·, t) = v(·, t+ tk)− < v(t+ tk) > t ∈ (0, 1)

where < · > denotes the mean value. Therefore by the Dunford-Pettis Theorem and (2.24) we
infer

(2.25) (uk(0), vk(0))→ (u∞, v∞) weak-L1(Ω)× L2(Ω).

Then, taking into account that

(∫

Ω
|∇u|dx

)2
¬ C

∫

Ω

|∇u|2
u

dx

and (2.24) we deduce

(2.26) (∇uk,∇vk)→ (0, 0) strong in L2(0, 1;L1(Ω))× L2(0, 1;H1(Ω)).

Hence by the Poincare-Wirtinger inequality

(2.27) (uk, vk)→ (0, 0) strong in L1(0, 1;L1(Ω)).

On the other hand, using the definition of a weak solution, the embeddings W 1,1(Ω) in L4/3(Ω),
W 1,2(Ω) in L2(Ω) and (2.26) we prove

(2.28) lim
k→+∞

sup
t∈[0,1]

∣∣∣∣
∫

Ω
(uk(t)− uk(0))ϕdx

∣∣∣∣ = 0 ∀ϕ ∈W 1,∞(Ω)

(2.29) lim
k→+∞

sup
t∈[0,1]

∣∣∣∣
∫

Ω
(vk(t)− vk(0))ϕdx

∣∣∣∣ = 0 ∀ϕ ∈W 1,∞(Ω).

In view of (2.28), (2.29) and a.e. convergence coming from (2.27) we can identify the limits in
(2.25) as zero.
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Theorem 2.19. Let N = 4. If (u0, v0) are non-negative functions in W 1,p0(Ω) for some p0 > 4,
then there exists a global weak solution (u, v) to (2.1). Moreover,

lim
t→+∞

[∫

Ω
(u(t)− u) φ dx+ ‖v(t)− v‖2

]
= 0

for each φ ∈ L∞(Ω).

Proof. In that case the weak compactness in L1(Ω× (0, T )) of (uε(1− εuε)∇vε)ε is no longer
guaranteed by (2.15) and we thus have to find an alternative way to prove it. To this end,
we aim at applying the Dunford-Pettis theorem and first notice that (uε)ε actually enjoys a
stronger property than (2.2), namely

(2.30) sup
t∈[0,T ]

{∫

Ω
uε(t)| lnuε(t)| dx

}
¬ C0

by Corollary 2.11. Thanks to this property, we can establish the uniform integrability of
(uε(1− εuε)∇vε)ε. Indeed, let E ⊂ Ω × (0, T ) and R > 1. We obtain from (2.18) with p = 2,
(2.20) with p = 2, and (2.30) that

∫ ∫

E
uε(1− εuε)∇vε dxdt ¬

∫ ∫

E
uε∇vε dxdt

¬ R

∫ ∫

E
∇vε dxdt+

∫ ∫

E
uε1(R,∞) (uε)∇vε dxdt

¬ CR|E|1/2 +
∫ T

0

∥∥∥uε1(R,∞) (uε)
∥∥∥

4/3
‖∇vε‖4 dt

¬ CR|E|1/2 + sup
t∈[0,T ]

{∥∥∥uε(t)1(R,∞) (uε(t))
∥∥∥

1

}
‖uε‖L2(0,T ;L4/3(Ω)) ‖∇vε‖L2(0,T ;L4(Ω))

¬ CR|E|1/2 +
C

lnR
sup
t∈[0,T ]

{‖uε(t)| lnuε(t)|‖1}

¬ CR|E|1/2 +
C

lnR
,

where

1(R,+∞)(u) :=

{
u if u > R,
0 if u ¬ R.

Letting first |E| → 0 and then R→∞ we end up with

lim
|E|→0

sup
ε∈(0,ε0)

{∫ ∫

E
uε(1− εuε)∇vε dxdt

}
= 0,

which ensures the weak compactness of (uε(1− εuε)∇vε)ε in L1(Ω × (0, T )) by the Dunford-
Pettis theorem. Recalling (2.23) we may apply again the Vitali theorem to conclude that

uε(1− εuε)∇vε −→ u∇v in L1(Ω× (0, T )).

We then argue as in the proof of Theorem 2.18 to show that (u, v) is a weak solution to (2.1)
in the sense of Definition 2.1 and that (u(t), v(t)) converges towards (u, v) in the expected
topologies.



CHAPTER 3

The simplified invasion model

In this chapter we perform an extensive study of existence, uniqueness and asymptotic
behavior for (3.1)-(3.5) (see below) in 2-dimensional domains. Moreover, we show, under the
assumption w ∈W 1,∞(Ω), all the possible positive solutions to the stationary problem associ-
ated to (3.1)-(3.5).

3.1. Preliminaries

Let Ω ⊂ IRN be a domain with smooth boundary ∂Ω ∈ C l+2
(
IRN−1

)
and T > 0. We

consider the cylindrical domain denoted by QT = Ω × (0, T ) with lateral surface ∂QT =
∂Ω× (0, T ).

In this chapter we are going to study a initial-boundary problem for a parabolic-degenerate
system of equations which have the general form:

∂u

∂t
= a∆u− b∇ · (uw−α∇w) + f(u,w) x ∈ Ω, t ∈ IR+(3.1)

∂w

∂t
= −kwβu x ∈ Ω, t ∈ IR+(3.2)

∂u

∂n
− uw−α∂w

∂n
= 0 x ∈ ∂Ω, t ∈ IR+(3.3)

u(x, 0) = u0(x) > 0 t ∈ IR+(3.4)

w(x, 0) = w0(x) > 0 t ∈ IR+(3.5)

where a, b and k are positive constants, β > 1, β > α > 0, Ω ⊂ IRN is a bounded domain with
smooth boundary ∂Ω and n denotes the unit outward normal vector of ∂Ω.

We are using in this chapter the standard notation of functional spaces. Lp(Ω) and Wm,p(Ω)
with 1 6 p 6∞, m > 1 are the Lebesque and Sobolev spaces of functions in Ω, respectively. For
a general Banach space X, its norm is denoted by ‖·‖X . The space Lp(0, T ;X) is the Banach
space of all Bochner measurable functions f : (0, t)→ X such that ‖f‖X ∈ Lp(0, T ).

23
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For 0 < l < 1 we denote by C l+i,l/2+i/2(QT ), i = 1, 2 the Hölder space of exponents
l + i and l/2 + i/2 with respect to x and t respectively of continuous and bounded functions
{f(x, t)} defined on QT , provided with continuous and bounded derivatives {Dr

tD
s
xf(x, t)} for

2r + |s| 6 i. It is endowed with the norm given by

|f |(l+i)QT
:=

∑

2r+|s|=i
〈Dr

tD
s
xf〉(l)x,QT +

∑

max{0,i−1}62r+|s|6i
〈Dr

tD
s
xf〉((l−2r−|s|)/2+i/2)

t,QT
+

+
∑

062r+|s|6i
max

(x,t)∈QT
|Dr

tD
s
xf |

where

〈f〉(l)x,QT := sup
(x,t),(x′,t)∈QT
|x−x′|6ρ0

|f(x, t)− f(x′, t)|
|x− x′|l , 〈f〉(l/2)

t,QT
:= sup

(x,t),(x,t′)∈QT
|t−t′|6ρ0

|f(x, t)− f(x, t′)|
|t− t′|l/2

.

The norm depends on ρ0, but changing this constant leads to an equivalent norm.

Throughout this chapter we denote by C, Ci (i = 1, 2, ...) positive constants which are inde-
pendent of time, but we shall indicate explicitly on which other parameters they are dependent,
if it will be the case. The constants C are not necessarily the same at different occurrences.

Some properties for the norms in the Hölder spaces which will be used often in the next
section are given below. Since the proofs are standard, but tedious, we omit the details.

Lemma 3.1. If f(x, t) ∈ C l+2,l/2+1(QT ), 0 < l < 1, then we have:

(i) ∂f
∂t ∈ C l,l/2(QT ),

(ii) ∂f
∂xj
∈ C l+1,l/2+1/2(QT ), j = 1, ..., N ,

(iii) ∆f ∈ C l,l/2(QT ),

(iv) ∂f
∂n ∈ C l+1,l/2+1/2(QT ), where n denotes the unit outward normal vector of ∂Ω.

Lemma 3.2. If f(x, t) ∈ C l+2,l/2+1(QT ), 0 < l < 1, then F (x, t) =
∫ t

0 f(x, s) ds ∈ C l+2,l/2+1(QT ).
Moreover,

(3.6) |F |(l+2)
QT

6 C max
{
T, T (1−l)/2

}
|f(x, t)|(l+2)

QT
+ |f(x, 0)|(l)QT .

Lemma 3.3. If f, g ∈ C l+i,l/2+i/2(QT ), 0 < l < 1, then fg ∈ C l+i,l/2+i/2(QT ) and

(3.7) |fg|(l+i)QT
6 C |f |(l+i)QT

|g|(l+i)QT

for i = 0, 1, 2.

Lemma 3.4. ( [67], Lemma 1) Let ϕ,ψ : QT → K ⊂ IRN , where K is a compact in IRN , be two

functions in
(
C l+2,l/2+1(QT )

)N
and let f ∈ C3(K). Then f ◦ϕ and f ◦ψ are in C l+2,l/2+1(QT )

and we have

(3.8) |f ◦ ϕ− f ◦ ψ|(l+2)
QT

6 Φ ‖f‖C3(K)

(
|ϕ− ψ|(l+2)

QT

)γ

where γ = min {l/2, 1− l} and Φ = Φ(|ϕ|(l+2)
QT

, |ψ|(l+2)
QT

) is an increasing function on both its
arguments.
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The remaining of this section is devoted to some general results for the existence of solutions
for parabolic equations. We consider the problem:

∂u

∂t
−∆u+

N∑

i=1

ai(x, t)
∂u

∂xi
+ a(x, t)u = F (x, t) (x, t) ∈ QT(3.9)

∂u

∂n
− u∂g

∂n
(x, t) = G(x, t) (x, t) ∈ ∂ΩT(3.10)

u(x, 0) = u0(x) x ∈ Ω(3.11)

Let us remark that, if we make the change of variables

v(x, t) = u(x, t)e−g(x,t)

the system (3.9)-(3.11) becomes:

∂v

∂t
−∆v +

N∑

i=1

bi(x, t)
∂v

∂xi
+ b(x, t)v = F̃ (x, t) (x, t) ∈ QT(3.12)

∂v

∂n
= G̃(x, t) (x, t) ∈ ∂ΩT(3.13)

v(x, 0) = v0(x) x ∈ Ω(3.14)

where the coefficients are given by:

bi(x, t) = ai(x, t)− 2
∂g

∂xi
(x, t), 1 6 i 6 N(3.15)

b(x, t) = a(x, t) +
∂g

∂t
(x, t)−∆g +

N∑

i=1

ai(x, t)
∂g

∂xi
(x, t)−

N∑

i=1

(
∂g

∂xi
(x, t)

)2

(3.16)

F̃ (x, t) = F (x, t)e−g(x,t)(3.17)

G̃(x, t) = G(x, t)e−g(x,t)(3.18)

v0(x) = u0(x)e−g(x,0)(3.19)

Theorem 3.5. ( [66], Theorem II.2) Let 0 < l < 1 and Ω ⊂ IRN be a domain with the boundary
∂Ω ∈ C l+2 and 0 < T <∞. We suppose that the following hypothesis are satisfied:

• the coefficients bi(x, t) (1 6 i 6 N), b(x, t) belong to the space C l,l/2(QT );

• F̃ (x, t) ∈ C l,l/2(QT ), G̃(x, t) ∈ C l+1,l/2+1/2(∂ΩT ) and v0(x) ∈ C l+2(Ω);

• the compatibility condition ∂v
∂n(x, 0) = G̃(x, 0) is satisfied for every x ∈ ∂Ω.

Then the problem (3.12)-(3.14) has a unique solution v(x, t) ∈ C l+2,l/2+1(QT ) which verifies

(3.20) |v|(l+2)
QT

6 Θ
(∣∣∣F̃

∣∣∣
(l)

QT
+
∣∣∣G̃
∣∣∣
(l+1)

∂ΩT
+ |v0|(l+2)

Ω

)

where Θ = Θ(T, µ(T )) is an increasing function on T and on the quantity

µ(T ) =
N∑

i=1

|bi(x, t)|(l)QT + |b(x, t)|(l)QT .
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Theorem 3.6. Let 0 < l < 1 and Ω ⊂ IRN be a domain with the boundary ∂Ω ∈ C l+2 and
0 < T <∞. We suppose that the following hypothesis are satisfied:

• the coefficients ai(x, t) (1 6 i 6 N), a(x, t) belong to the space C l,l/2(QT );

• F (x, t) ∈ C l,l/2(QT ), G(x, t) ∈ C l+1,l/2+1/2(∂ΩT ), g(x, t) ∈ C l+2,l/2+1(∂ΩT ) and u0(x) ∈
C l+2(Ω);

• the compatibility condition ∂u0
∂n − u0

∂g
∂n(x, 0) = G(x, 0) is satisfies for every x ∈ ∂Ω.

Then the problem (3.9)-(3.11) has a unique solution u(x, t) ∈ C l+2,l/2+1(QT ) which satisfies

(3.21) |u|(l+2)
QT

6 Ψ
(
|F |(l)QT + |G|(l+1)

∂ΩT
+ |u0|(l+2)

Ω

)

where Ψ = Ψ
(
T, |g|(l+2)

QT
, µ(T )

)
is an increasing function in T, in |g|(l+2)

QT
and in the quantity

µ(T ) =
N∑

i=1

|bi(x, t)|(l)QT + |b(x, t)|(l)QT

where bi(x, t) (1 6 i 6 N), b(x, t) are given by (3.15), (3.16).

Proof. The existence and the uniqueness of the solution is proved in [48], Chapter IV, Theorem
5.3. The only thing that we want to point out is the increasing dependence of the function Ψ
on its arguments.

From Lemma 3.3 we obtain

|u(x, t)|(l+2)
QT

=
∣∣∣v(x, t)eg(x,t)

∣∣∣
(l+2)

QT
6 C |v(x, t)|(l+2)

QT

∣∣∣eg(x,t)
∣∣∣
(l+2)

QT

Now, taking into account (3.20) and Lemma 3.4, we obtain immediately the relation (3.21).

This chapter is organized as follows.

In Section 2, the proof of local existence in time and uniqueness of classical solution is
accomplished by applying a fixed point argument in a suitable functional space. In order to
prove the global existence in time of the classical solutions, in Section 4, we establish a priori
bounds of the solutions. The last section is devoted to study the steady-state problem and the
asymptotic behaviour of the solutions.

3.2. Local existence in time and uniqueness of classical solutions

In order to simplify the presentation of the results, we consider in what follows the case
α = 0, β = 1. The more general case β > 1, β > α > 0 can be treated similarly, the estimates
being more tedious. We consider, without loss of generality, the normalized system (3.1)-(3.5),



3.2. Local existence in time and uniqueness of classical solutions 27

which means a = b = k = 1, with a logistic growing source term, more precisely

∂u

∂t
= ∆u−∇ · (u∇w) + δu(1− u) x ∈ Ω, t ∈ IR+(3.22)

∂w

∂t
= −wu x ∈ Ω, t ∈ IR+(3.23)

∂u

∂n
− u∂w

∂n
= 0 x ∈ ∂Ω, t ∈ IR+(3.24)

u(x, 0) = u0(x) > 0 t ∈ IR+(3.25)

w(x, 0) = w0(x) > 0 t ∈ IR+(3.26)

where δ > 0.

In this Section we follow the arguments of Rascle [66], [67], but because in our case the
boundary condition is different and the function f does not satisfy the condition (1.5), we
briefly give the proof for the local existence for the sake of completeness.

Let us remark that, we can rewrite the initial problem (3.22)-(3.26):

∂u

∂t
= ∇ · (∇u− u · ∇ (w0e

−ϕ))+ δu

(
1− ∂ϕ

∂t

)
(3.27)

∂u

∂n
= u

∂

∂n

(
w0e

−ϕ)(3.28)

u(x, 0) = u0(x)(3.29)

ϕ =
∫ t

0
u(x, s)ds(3.30)

We consider now the following linear problem in the variable u

∂u

∂t
= ∆u−

N∑

i=1

ai(x, t)
∂u

∂xi
− a(x, t)u x ∈ Ω, t ∈ IR+(3.31)

∂u

∂n
= u

∂g

∂n
x ∈ ∂Ω, t ∈ IR+(3.32)

u(x, 0) = u0(x) > 0 t ∈ IR+(3.33)

where the coefficients are given by

g(x, t) =
(
w0(x)e−ϕ(x,t)

)
(3.34)

ai(x, t) =
∂

∂xi

(
w0(x)e−ϕ(x,t)

)
=

∂g

∂xi
(3.35)

a(x, t) = ∆
(
w0(x)e−ϕ(x,t)

)
− δ

(
1− ∂ϕ

∂t
(x, t)

)
=

= ∆g − δ
(

1 + g−1∂g

∂t

)
(3.36)

Theorem 3.7. Let 0 < l < 1, Ω ⊂ IRN be a domain with C l+2 boundary ∂Ω and 0 < T <∞.
We suppose that the following hypothesis are satisfied:

• φ ∈ C l+2,l/2+1(QT ), w0 ∈ C l+2(Ω), u0 ∈ C l+2(Ω), u0  0, w0  0, u0 6= 0, w0 6= 0;

• the compatibility condition ∂u0
∂n (x) = u0(x) ∂g∂n(x, 0) is satisfied for every x ∈ ∂Ω.
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Then the problem (3.31)-(3.33) has a unique positive solution u(x, t) ∈ C l+2,l/2+1(QT )
which verifies

(3.37) |u|(l+2)
QT

6 Ψ |u0|(l+2)
Ω

where Ψ = Ψ
(
T, |g|(l+2)

QT
, µ(T )

)
is an increasing function in T, in |g|(l+2)

QT
and in the quantity

(3.38) µ(T ) =
N∑

i=1

|ai|(l)QT +
∣∣∣∣
∂g

∂t
− δ

(
1 + g−1∂g

∂t

)∣∣∣∣
(l)

QT

Proof. Taking into account the properties of the norm in Hölder spaces (see Lemma 3.1,
Lemma 3.4), we have

ai(x, t) ∈ C l,l/2(QT ), i = 1, ..., N

a(x, t) ∈ C l,l/2(QT )

g(x, t) ∈ C l+2,l/2+1(QT )

so by Theorem 3.6 we obtain that the problem (3.31)-(3.33) has a unique solution u(x, t) ∈
C l+2,l/2+1(QT ). Moreover, taking into account (3.35), (3.36), this solution verifies (3.37).

The positivity of the solution is a consequence of the maximum principle for linear parabolic
equations.

We shall prove now the local existence of the solution for the problem (3.1)-(3.5) using a
fixed point argument. We consider the set

(3.39) X(T, σ) =
{
φ ∈ C l+2,l/2+1(QT ); |φ|(l+2)

QT 6 σ, φ > 0, φ 6= 0, φ(·, 0) = 0
}

where σ is some positive constant. We define the following operators

S : X → C l+2,l/2+1(QT )

S(φ) = u

where u is the unique solution of the problem (3.31)-(3.33), and

R : C l+2,l/2+1(QT )→ C l+2,l/2+1(QT )

R(u) = ϕ

where ϕ is given by the relation (3.30).

Let us observe that, in order to find a solution of the problem (3.27)-(3.30), it is enough to
find a fixed point for the application

R ◦ S : X → C l+2,l/2+1(QT )

(R ◦ S) (φ) = R(u) = ϕ

Theorem 3.8. Let 0 < l < 1, Ω ⊂ IRN be a domain with C l+2 boundary ∂Ω. We consider
satisfied the hypothesis of Theorem 3.7 and, moreover, we pick σ > 0 such that |u0|(l)Ω < σ/2.
Then for every ζ > 0 there exists T0 > 0 such that, for all τ ∈ (0, T0] the following properties
are true:
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(i) the closed set X(τ, σ) is invariant with respect to R ◦ S;

(ii) the operator R◦S satisfies the following inequality in X(τ, σ) with respect the norm |·|(l+2)
QT

:

(3.40) |(R ◦ S) (φ)− (R ◦ S) (ψ)|(l+2)
Qτ

6 ζ
(
|φ− ψ|(l+2)

Qτ

)γ

where γ = min {l/2, 1− l}. Therefore, R ◦ S has a unique fixed point φ in X(τ, σ).

Proof. (i) Let T > 0, taking into account Lemma 3.2, for every 0 < τ 6 T , we have

(3.41) |(R ◦ S) (φ)|(l+2)
Qτ

= |ϕ|(l+2)
Qτ

6 C max
{
τ (1−l)/2, τ

}
|u|(l+2)

Qτ
+ |u0|(l)Qτ

where C is a constant independent on τ .

Because u(x, t) is the unique solution of problem (3.31)-(3.33) and taking into account
Theorem 3.7 and relation (3.37), we obtain from (3.41)

|(R ◦ S) (φ)|(l+2)
Qτ

6 C max
{
τ (1−l)/2, τ

}
Ψ
(
τ, |g(x, t)|(l+2)

Qτ
, µ(τ)

)
|u0|(l+2)

Ω +

+ |u0|(l)Qτ(3.42)

Now, in order to estimate the function Ψ
(
τ, |g|(l+2)

Qτ
, µ(τ)

)
which appears in (3.42), first we

estimate µ(τ). We obtain, taking into account Lemma 3.1,

(3.43) µ(τ) 6 C |g|(l+2)
Qτ

+ δ |φ|(l+2)
Qτ

+ δ

where C is a constant independent on τ . The norm |g|(l+2)
Qτ

can be estimated using Lemma 3.4
and finally we obtain

(3.44) |g|(l+2)
Qτ

6 C1

(
|w0(x)|(l+2)

Qτ
+ σ

)γ

where C1 = C1(|w0(x)|(l+2)
Qτ

, σ) and γ = min {l/2, 1− l}.
We obtain from (3.43) and (3.44)

(3.45) µ(τ) 6 C2 + δσ + δ

where C2 = C2

(
|w0(x)|(l+2)

Qτ
, σ
)
.

From Theorem 3.7 we know that the function Ψ is increasing on τ , |g|(l+2)
Qτ

and µ(τ), so we
obtain from (3.44) and (3.45) for 0 < τ 6 T

(3.46) Ψ
(
τ, |g(x, t)|(l+2)

Qτ
, µ(τ)

)
6 Ψ

(
τ, C1

(
|w0(x)|(l+2)

Qτ
+ σ

)γ
, C2 + δσ + δ

)
=: χ(σ)

Finally, from (3.42), we obtain

|(R ◦ S) (φ)|(l+2)
Qτ

6 C max
{
τ (1−l)/2, τ

}
χ(σ) |u0|(l+2)

Ω + |u0|(l)Qτ <

< C max
{
τ (1−l)/2, τ

}
χ(σ) |u0|(l+2)

Ω +
1
2
σ

It follows that for τ > 0 sufficiently small X(τ, σ) is invariant with respect to R ◦ S. Let
T1 > 0 be sufficiently small, such that, for all 0 < τ 6 T1, X(τ, σ) is invariant with respect to
R ◦ S.
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(ii) Let φ, φ ∈ X(T1, σ) and

U = R (u) = (R ◦ S) (φ)

U = R (u) = (R ◦ S) (ψ)

It is easy to see that the function z = u− u satisfies the problem

∂z

∂t
= ∆z −

N∑

i=1

ai(x, t)
∂z

∂xi
− a(x, t)z + F (x, t)

∂z

∂n
= z

∂g

∂n
+G(x, t)

z(x, 0) = 0

where

F (x, t) = ∇u · ∇
(
w0e

−φ − w0e
−ψ
)

+

+ u∆
(
w0e

−φ − w0e
−ψ
)
δu

∂

∂t
(φ− ψ)

G(x, t) = u
∂

∂n

(
w0e

−φ − w0e
−ψ
)

Let us notice that

G(x, 0) = v(x, 0)
∂

∂n

(
w0e

−φ(x,0) − w0e
−ψ(x,0)

)
= 0

so the function z(x, t) = (u− u) (x, t) satisfies the compatibility condition

∂z

∂n
(x, 0)− z(x, 0)

∂g

∂n
= G(x, 0)

We obtain, taking into account the Theorem 3.6

|(R ◦ S) (φ)− (R ◦ S) (ψ)|(l+2)
Qτ

6 C3 max
{
τ (1−l)/2, τ

}
Ψ (σ) |u0|(l+2)

Qτ

(
|φ− ψ|(l+2)

Qτ

)γ

where γ = min {l/2, 1− l} and C3 = C3(σ). By taking τ sufficiently small the inequality (3.40)
follows. We choose T0 < T1 such that (i) and (ii) are fulfilled for all τ ∈ (0, T0].

Next we define the following two sequences

un = S(ϕn)

ϕn+1 = R(un) = (R ◦ S)(ϕn)

where ϕ0 ∈ X(T0, σ). Then, from above considerations, the sequence (ϕn)n∈IN is a Cauchy
sequence, so it converges to an element ϕ, which is a fixed point of R ◦S. The inequality (3.40)
implies the uniqueness of this fixed point.

From the continuity of the application S we obtain that the sequence (un)n∈IN converges to
u = S(ϕ). It is easy to see that (u, ϕ) is the unique solution of the problem (3.27)-(3.30) on
the interval [0, T0].
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Theorem 3.9. Let 0 < l < 1, Ω ⊂ IRN be a domain with C l+2 boundary ∂Ω. If (u0, w0) ∈(
C l+2(Ω)

)2
, u0  0, w0  0, u0 6= 0, w0 6= 0 and the compatibility condition ∂u0

∂n = u0
∂w0
∂n is

satisfied for every x ∈ ∂Ω, then the problem (3.22)-(3.26) has a unique positive solution defined

on an interval [0, T ) ⊂ IR and (u,w) ∈
(
C l+2,l/2+1(Qt)

)2
, for all t ∈ [0, T ).

Proof. From Theorem 3.8 we deduce the existence and the uniqueness of the solution of the
problem (3.22)-(3.26) on Ω× [0, τ1] with τ1 sufficiently small. Repeating the previous argument,
we can extend this solution on an interval [τ1, τ2] and so on, each interval having the length
given by the fact that R ◦S fulfill the conditions (i) and (ii) in Theorem 3.8. It is obvious that
the compatibility condition is satisfied at each step. We obtain in such a way a solution defined
in an interval [0, t) ⊂ IR, 0 < t 6∞.

In order to prove the uniqueness of the solution, it is enough to notice that each classical
solution of the problem (3.22)-(3.26) can be regarded, locally, as a fixed point of a map analogue
to R◦S. The uniqueness of such a fixed point implies the uniqueness of the solution.

3.3. Global existence in time

In this Section we prove that the solution (u,w) of the problem (3.22)-(3.26) in a two-
dimensional bounded domain Ω ⊂ IR2 is globally defined in time. For this we start calculating
a priori bounds. These bounds will be used for proving that the solution u of the system (3.31)-
(3.33) belong to a suitable Hölder space. The regularity is then successively ameliorated until
obtaining a bound of |u(·, t)|(l+2)

Ω ¬ C(t), where C(t) < +∞ if t < Tmax. As the length of

the existence interval obtained in Theorem 3.7 depends uniformly on |u0|(l+2)
Ω , this bound will

imply that the maximal interval of definition of the solution is [0,∞).

In what follows, sometimes the function arguments are omitted. Also, the variable t belongs
to the maximal time interval of existence of the classical solution (u, v) of the problem (3.22)-
(3.26). Moreover, in this section, since we prolong the solution given by Theorem 3.7, we assume
the same conditions on the initial data as in Theorem 3.7.

3.3.1. A Lyapunov function for the system

The results obtained in this Subsection do not depend of the dimension of the space, they
are valid in a domain Ω ⊂ IRN , N > 1.

Proposition 3.10. The total mass of the solution u is bounded

(3.47)
∫

Ω
u(x)dx 6 max {1,M0}

where M0 =
∫
Ω u0(x)dx = ‖u0‖L1(Ω) represents the initial mass.

Proof. Taking into account the boundary condition (3.24) and integrating the equation (3.22)
over Ω, we can easily deduce

∫

Ω

ut(x, t)dx = δ

∫

Ω

u(x, t)dx− δ
∫

Ω

u2(x, t)dx,

and applying Jensen’s inequality and Gronwall lemma we obtain the estimate (3.47).
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Remark 3.11. 1. Since the solution u is nonnegative, a consequence of the property (3.47) is
that u satisfies an a priori L1 estimate uniform in time

‖u‖L∞(0,t;L1(Ω)) =
(∥∥∥u1/2

∥∥∥
L∞(0,t;L2(Ω))

)2
6 C4

for all t > 0, where C4 = max {1,M0} > 0.

2. Let us observe that, from (3.23)

w(x, t) = w0(x)e−
∫ t

0
u(x,s)ds

In particular, for w0(x) > 0 we obtain

0 < w(x, t) 6 w0(x)

for all t > 0, which implies

‖w‖L∞(0,t;L∞(Ω)) 6 ‖w0‖L∞(Ω) .

Let (u, v) be the solution of (3.22)-(3.26). We introduce the following two functionals

F (u,w) :=
∫

Ω
u(lnu− 1)dx+

1
2

∫

Ω
w−1 |∇w|2 dx(3.48)

D(u,w) :=
∫

Ω
u−1 |∇u|2 dx+

β

2

∫

Ω
uw−1 |∇w|2 dxds+ δ

∫

Ω
u (u− 1) lnudx(3.49)

and we show that F (u,w) is a Lyapunov function for the system (3.22)-(3.26).

Lemma 3.12. We have

(3.50)
d

dt
F (u,w) = −D(u,w) 6 0

and the functional F (u,w) is bounded from below, i.e. there is a constant C > 0 such that

(3.51) F (u,w) > −C

for all t > 0.

Proof. We formally differentiate F with respect to t:

d

dt
F (u,w) =

∫

Ω
ut(lnu− 1)dx+

∫

Ω
utdx+

1
2
d

dt

∫

Ω
w−1 |∇w|2 dx

Multiplying the equation (3.22) by lnu and formally integrating on Ω (in fact we multiply by
ln(u+ ε), ε > 0 and after integration ε→ 0), we obtain
∫

Ω
ut(lnu− 1)dx =

∫

Ω
∆u(lnu− 1)dx−

∫

Ω
∇ · (u∇w)(lnu− 1)dx+ δ

∫

Ω
u(1− u)(lnu− 1)dx

and taking into account the equality
∫

Ω
utdx = δ

∫

Ω
u (1− u) dx
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we obtain
∫

Ω
ut(lnu− 1)dx = −

∫

Ω
u−1 |∇u|2 dx+

∫

Ω
∇u · ∇wdx+ δ

∫

Ω
u(1− u) lnudx−

∫

Ω
utdx

We estimate now the second term from the right-hand side in the last equality taking into
account (3.23):

∫

Ω
∇u · ∇wdx = −1

2
d

dt

∫

Ω
(w−1 |∇w|2)− 1

2

∫

Ω
uw−1 |∇w|2

so, we have
∫

Ω
ut(lnu− 1)dx = −

∫

Ω
u−1 |∇u|2 dx− 1

2
d

dt

∫

Ω
(w−1 |∇w|2)− 1

2

∫

Ω
uw−1 |∇w|2 +

+ δ

∫

Ω
u(1− u) lnudx−

∫

Ω
utdx

which means
d

dt
F (u,w) = −D(u,w) 6 0

In order to prove (3.51), let us observe that for all u > 0, u (lnu− 1) > −1 holds and we obtain

(3.52) F (u,w) =
∫

Ω
u(lnu− 1)dx+

1
2

∫

Ω
w−1 |∇w|2 dx > − |Ω|

In fact, all terms in F are bounded from below (it is easy to see that u lnu > −e−1).

From now on we assume the following additional condition for the initial data:

(H) F (u0, w0) < +∞.

Proposition 3.13. If (H) is satisfied then there exists a positive constant C5 such that

(3.53)
∫

Ω
u lnudx < C5

where C5 = F (u0, w0) + max{1, ‖u0‖L1(Ω)}

Proof. From (3.50) we obtain, after integration in [0, t]

(3.54) F (u,w) 6 F (u0, w0)

and taking into account (3.47) we have
∫

Ω
u lnudx 6

∫

Ω

u(lnu− 1)dx+
1
2

∫

Ω
w−1 |∇w|2 dx+

∫

Ω
udx 6

6
∫

Ω
u0(lnu0 − 1)dx+

1
2

∫

Ω
w−1

0 |∇w0|2 dx+ max
{

1, ‖u0‖L1(Ω)

}

Remark 3.14. We point out that if
∫

Ω u0 lnu0 is bounded, we also obtain u0 ∈ L1(Ω) because

‖u0‖L1(Ω) =
∫

Ω
u0dx 6

∫

Ω
(u0 lnu0 + 1) dx.
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Corollary 3.15. If (H) is satisfied then the functional F (u,w) and all its terms are bounded
independently of t > 0.

Proposition 3.16. If there exists a positive constant C such that the positive function u satisfy
∫

Ω
u lnudx < C

then

(3.55) lim
k→∞

‖uk‖L1(Ω) = 0

uniformly with respect to t > 0, where uk = (u− k)+.

Proof. Let k > 1. We define the set

Ωk = {x ∈ Ω : u(x) > k}
we have

‖uk‖L1 =
∫

Ωk
(u− k) dx 6

∫

Ωk
udx 6 1

ln k

∫

Ωk
u lnudx 6

6 1
ln k

(∫

Ω
u lnudx−

∫

Ω\Ω1

u lnudx

)
6 C6

1
ln k

where C6 =
(
C + e−1 |Ω|). The last inequality implies (3.55).

3.3.2. Estimates in Lp, 1 < p <∞
Considering the following change of variables

v(x, t) = u(x, t)e−w(x,t)

the system (3.22)-(3.26) becomes

∂v

∂t
= ∆v +∇v · ∇w + ewv2w + δv(1− vew) x ∈ Ω, t ∈ IR+(3.56)

∂w

∂t
= −ewwv x ∈ Ω, t ∈ IR+(3.57)

∂v

∂n
= 0 x ∈ ∂Ω, t ∈ IR+(3.58)

v(x, 0) = u0(x)e−w0(x) = v0(x) > 0 t ∈ IR+(3.59)

w(x, 0) = w0(x) > 0 t ∈ IR+(3.60)

From now on, for simplicity of notation we write vk instead of (v − k)+, where k > 0.
Moreover, we assume during the rest of the chapter that

(H2) Ω ⊂ IRN ,with N ¬ 2.

Proposition 3.17. If (H) and (H2) are satisfied then there exists a constant

C7 = C7(p, ‖v0‖Lp(Ω) , ‖w0‖L∞(Ω))

independent of time such that the solution of the system (3.56)-(3.60) satisfies

‖v‖Lp(Ω) 6 C7, 1 6 p < +∞.
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Proof. Testing the equation (3.56) with pvp−1
k ew, k > 0, p > 1, gives

d

dt

∫

Ω
vpke

w = −p(p− 1)
∫

Ω
vp−2
k ew |∇vk|2 + δp

∫

Ω
vp−1
k [vew(1− vew)]

+ (p− 1)
∫

Ω
e2wwvp+1

k(3.61)

Taking into account the identity

∣∣∣∇
(
v
p/2
k

)∣∣∣
2

=
p2

4
vp−2
k |∇vk|2

we obtain from (3.61)

d

dt

∫

Ω
vpke

w = −4(p− 1)
p

∫

Ω
ew
∣∣∣∇
(
v
p/2
k

)∣∣∣
2

+

+
∫

Ω
pkew [keww + δ (1− kew)] vp−1

k +

+
∫

Ω
ew [(2p− 1)keww + δp (1− 2kew)] vpk+

+
∫

Ω
e2w [(p− 1)w − δp] vp+1

k(3.62)

Since 0 < w(x, t) 6 w0(x) and ew(x,t) > 1 for all t > 0, we obtain from (3.62)

d

dt

∫

Ω
vpke

w 6 −4(p− 1)
p

∥∥∥∇
(
v
p/2
k

)∥∥∥
2

L2(Ω)
+ C8

∫

Ω
vp−1
k +

+ C9

∫

Ω
vpk + C10

∫

Ω
vp+1
k(3.63)

where C8, C9 and C10 are given by

C8 = C8(p, k, δ, ‖w0‖L∞) = pk

[
k

(
e2‖w0‖L∞ ‖w0‖L∞ − δ

p

p− 1

)
+ δ

(
e‖w0‖L∞ +

k

p− 1

)](3.64)

C9 = C9(p, k, δ, ‖w0‖L∞) = p

[
2p− 1
p

k

(
e2‖w0‖L∞ ‖w0‖L∞ − δ

p

p− 1

)
+ δ

(
e‖w0‖L∞ +

k

p− 1

)](3.65)

C10 = C10(p, δ, ‖w0‖L∞) = (p− 1)
(
e2‖w0‖L∞ ‖w0‖L∞ − δ

p

p− 1

)(3.66)

Adding the term σ

∫

Ω
vpk, where σ > 0 is a constant, on both sides of the last inequality, we

obtain

d

dt

∫

Ω
vpke

w + σ

∫

Ω
vpk 6 −4(p− 1)

p

∥∥∥∇
(
v
p/2
k

)∥∥∥
2

L2(Ω)
+ C8

∫

Ω
vp−1
k +

+ [C9 + σ]
∫

Ω
vpk + C10

∫

Ω
vp+1
k(3.67)
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We estimate now the last two terms from (3.67) using Gagliardo-Nirenberg’s inequality and
taking into account the positivity of v. We have

∫

Ω
vpk =

∥∥∥∥v
p
2
k

∥∥∥∥
2

L2(Ω)
6 C11(Ω)

∥∥∥∥v
p
2
k

∥∥∥∥
H1(Ω)

∥∥∥∥v
p
2
k

∥∥∥∥
L1(Ω)

(3.68)

∫

Ω
vp+1
k =

∥∥∥∥v
p
2
k

∥∥∥∥
2(p+1)
p

L
2(p+1)
p (Ω)

6 C12(Ω)
∥∥∥∥v

p
2
k

∥∥∥∥
2

H1(Ω)
‖vk‖L1(Ω)(3.69)

We put estimates (3.68), (3.69) on (3.67) and we apply the Cauchy’s inequality. We obtain

d

dt

∫

Ω
vpke

w + σ

∫

Ω
vpk 6 −4(p− 1)

p

∥∥∥∥∇
(
v
p
2
k

)∥∥∥∥
2

L2(Ω)
+ C8

∥∥∥vp−1
k

∥∥∥
L1(Ω)

+

+ [C9 + σ]
∥∥∥∥v

p
2
k

∥∥∥∥
2

L2(Ω)
+ C10C12

∥∥∥∥v
p
2
k

∥∥∥∥
2

H1(Ω)
‖vk‖L1(Ω) 6

6
[
−4(p− 1)

p
+ C10C12 ‖vk‖L1(Ω)

] ∥∥∥∥∇
(
v
p
2
k

)∥∥∥∥
2

L2(Ω)
+ C8

∥∥∥vp−1
k

∥∥∥
L1(Ω)

+

+ C11

[
C9 + σ + C10C12 ‖vk‖L1(Ω)

] ∥∥∥∥v
p
2
k

∥∥∥∥
H1(Ω)

∥∥∥∥v
p
2
k

∥∥∥∥
L1(Ω)

6

6
[
−4(p− 1)

p
+ C10C12 ‖vk‖L1(Ω) + ε

] ∥∥∥∥∇
(
v
p
2
k

)∥∥∥∥
2

L2(Ω)
+ C8

∥∥∥vp−1
k

∥∥∥
L1(Ω)

+

+ ε

∥∥∥∥v
p
2
k

∥∥∥∥
2

L2(Ω)
+

1
4ε

{
C11

[
C9 + σ + C10C12 ‖vk‖L1(Ω)

]}2
∥∥∥∥v

p
2
k

∥∥∥∥
2

L1(Ω)
(3.70)

In order to estimate the second term from the right-hand side of (3.70), we apply Young’s
inequality and we obtain for ε > 0:

(3.71) vp−1
k 6 1

p
ε−p +

p− 1
p

ε
p
p−1 vpk

Now, choosing ε small enough such that ε < min {σ/2, 2(p− 1)/p} and putting (3.71) on (3.70),
we get

d

dt

∫

Ω
vpke

w +
σ

2

∫

Ω
vpk 6

6
[
−4(p− 1)

p
+ C10C12 ‖vk‖L1(Ω) + ε

] ∥∥∥∥∇
(
v
p
2
k

)∥∥∥∥
2

L2(Ω)
+

1
p
ε−pC8 |Ω|+

+
1
4ε

{
C11

[
C9 + σ +

p− 1
p

ε
p
p−1C8 + C10C12 ‖vk‖L1(Ω)

]}2 ∥∥∥∥v
p
2
k

∥∥∥∥
2

L1(Ω)

Taking into account the Proposition 3.16, we can choose k sufficiently large such that the

coefficient of
∥∥∥∥∇

(
v
p
2
k

)∥∥∥∥
2

L2(Ω)
is negative. In this way, the last inequality becomes

(3.72)
d

dt

∫

Ω
vpke

w +
σ

2

∫

Ω
vpk 6 C13

∥∥∥∥v
p
2
k

∥∥∥∥
2

L1(Ω)
+

1
p
ε−pC8 |Ω|

where

C13 = C13(p, k, δ, ‖w0‖L∞ , σ, ε, ε,Ω) =

=
1
4ε

{
C11

[
C9 + σ +

p− 1
p

ε
p
p−1C8 + C10C12 ‖vk‖L1(Ω)

]}2
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Since
∫

Ω
vpke

w 6 e‖w0‖L∞
∫

Ω
vpk, we obtain from the last inequality

d

dt

∫

Ω
vpke

w +
σ

2e‖w0‖L∞

∫

Ω
vpke

w 6 C13

∥∥∥∥v
p
2
k

∥∥∥∥
2

L1(Ω)
+

1
p
ε−pC8 |Ω|

and applying Gronwall’s inequality

(3.73)
∫

Ω
vpk 6

∫

Ω
vpke

w 6 max

{∫

Ω
(v0 − k)p+ e

w0 ,
2e‖w0‖L∞

σ

[
C13

∥∥∥∥v
p
2
k

∥∥∥∥
2

L1(Ω)
+

1
p
ε−pC8 |Ω|

]}

We will show by induction for all p = 2j , with j ∈ IN, that

‖vk(t)‖Lp(Ω) 6 C

where C is a constant independent of t.

Let us remark that, taking into account Proposition 3.10, we have

(3.74) ‖vk(t)‖L1(Ω) 6
∫

Ω

udx 6 max {1,M0}

Let p = 2j , and suppose that ‖vk(t)‖L2j−1 (Ω) = ‖vk(t)‖Lp/2(Ω) is uniformly bounded, the bound
being independent of t > 0. We obtain from (3.73) that ‖vk(t)‖L2j (Ω) is bounded, j ∈ IN. We
conclude, taking into account the imbedding of Lp (Ω) spaces, that

‖vk‖L∞(0,t;Lp(Ω)) 6 C14, for every 1 6 p <∞

where C14 = C14(p, ‖v0‖Lp(Ω) , ‖w0‖L∞(Ω)) is a positive constant, independent of t > 0.

Finally, we obtain

‖v‖Lp(Ω) 6 2
(
‖vk(t)‖pLp(Ω) + kp |Ω|

)1/p

and we conclude the proof of Proposition 3.17.

Remark 3.18. The above estimates depends strongly on the dimension of the space.

The above estimates are done in the case when C8, C9, C10 are positive. If one or several
of these constants are negative (for example, when δ > p−1

p e2‖w0‖L∞ ‖w0‖L∞, p > 1), the result
remains true, the upper bound being slightly modified.

3.3.3. Estimates in L∞

Proposition 3.19. If (H) and (H2) are satisfied then the solution to the system (3.56)-(3.60)
satisfies

‖v‖L∞(0,∞;L∞(Ω)) 6 C

where the constant C will be determined later.

Proof. We introduce the following sets

Ωk(t) = {x ∈ Ω; v(x, t) > k}
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where k is a positive constant. Let us observe that, taking into account (3.74) and choosing
p = 2, the relation (3.70) becomes

d

dt

∫

Ω
v2
ke
w + σ

∫

Ω
v2
k 6

6
[
−2 + C10C12 ‖vk‖L1(Ω) + ε

]
‖∇vk‖2L2(Ω) + ε ‖vk‖2L2(Ω) +

+
{
C8 +

1
4ε
‖vk‖L1(Ω)

[
C11

(
C9 + σ + C10C12 ‖vk‖L1(Ω)

)]2} ‖vk‖L1(Ω)(3.75)

We estimate the last term of the right-hand side of the last inequality using Hölder’s inequality
and the Sobolev embedding

‖vk‖L1(Ω) 6 ‖vk‖L4(Ω) |Ωk|3/4 6 C15 ‖vk‖H1(Ω) |Ωk|3/4

where C15 is a constant independent of t. Using this inequality and Cauchy’s inequality, we
obtain from (3.75)

d

dt

∫

Ω
v2
ke
w + σ

∫

Ω
v2
k 6

6
[
−2 + C10C12 ‖vk‖L1(Ω) + ε+ ε′

]
‖∇vk‖2L2(Ω) +

(
ε+ ε′

) ‖vk‖2L2(Ω) +

+
C2

15

4ε′

{
C8 +

1
4ε
‖vk‖L1(Ω)

[
C11

(
C9 + σ + C10C12 ‖vk‖L1(Ω)

)]2}2
|Ωk|3/2(3.76)

We choose ε and ε′ small enough such that ε + ε′ < min {1, σ/2}. Taking into account the
Proposition 3.16, it follows that there exists a k1 > 0 sufficiently large such that, for every

k > k1, the coefficient of
∥∥∥∥∇

(
v
p
2
k

)∥∥∥∥
2

L2(Ω)
is negative. Taking into account (3.74) we obtain from

(3.76)

(3.77)
d

dt

∫

Ω
v2
ke
w +

σ

2

∫

Ω
v2
k 6 C16 |Ωk|3/2

for all k > k1, where

C16 = C16(k, δ, ‖w0‖L∞ ,M0) =

=
C2

15

4ε′

{
C8 +

1
4ε

max {1,M0} [C11 (C9 + σ + C10C12 max {1,M0})]2
}2

Moreover
∫

Ω
vpke

w 6 e‖w0‖L∞
∫

Ω
vpk, so we obtain

(3.78)
d

dt

∫

Ω
v2
ke
w +

σ

2e‖w0‖L∞

∫

Ω
v2
ke
w 6 C16 |Ωk|3/2

One can notice, using (3.64), (3.65) and (3.66), that C16 is a polynomial of degree 4 in k. Let α
be the dominant coefficient. It is a constant depending only on the initial data of the system.
Now, we try to get rid the dependence on k of C16. Representing the Lq-norm with the use of
the level sets, we have (see [25,69])

∫

Ω
vq+1 = (q + 1)

∫ ∞
0

sq |Ωs| ds, q > 1
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We obtain, using these facts, a bound for the right-hand side of the inequality (3.78).
Namely, taking into account Proposition 3.17, we get

(k − 1)q |Ωk| <
∫ k

k−1
sq |Ωs| ds <

∫ ∞
0

sq |Ωs| ds =
1

q + 1
‖v‖q+1

Lq+1(Ω) < C17

where C17 is a constant independent of t. From the last inequality, taking q = 16, we obtain

(k − 1)4 |Ωk|1/4 < C
1/4
17

It follows that there exists k2 > 0 such that for every k > k2,

C16 |Ωk|1/4 < (α+ 1)C1/4
17 = C18

which implies, from (3.78)

(3.79)
d

dt

∫

Ω
v2
ke
w +

σ

2e‖w0‖L∞

∫

Ω
v2
ke
w 6 C18 |Ωk|5/4

Since v0 ∈ L∞(Ω), there exists k3 > 0 such that ‖vk(0)‖ = 0 for all k > k3. For k >

max{k1, k2, k3}, we deduce from (3.79)

(3.80) ‖vk(t)‖2L2(Ω) 6
∥∥∥ew/2vk(t)

∥∥∥
2

L2(Ω)
6 2C18e

‖w0‖L∞

σ

(
1− e−

σ

2e‖w0‖L∞
t
)(

sup
t>0
|Ωk(t)|

)5/4

On the other hand, taking into account that Ωl ⊂ Ωk for l > k > 0, then

(3.81) ‖vk(t)‖2L2(Ω) >
∫

Ωl(t)
v2
k > (l − k)2 |Ωl(t)|

Taking the supremum on t > 0 in the last relation, (3.80) implies

(l − k)2 sup
t>0
|Ωl(t)| 6 2C18e

‖w0‖L∞

σ

(
sup
t>0
|Ωk(t)|

)5/4

for l > k > max{k1, k2, k3}. Obviously the function k 7→ supt>0 |Ωk(t)| is decreasing, so we can
apply [26, Lemma 4.1]. It follows that there exists

k0 = max{k1, k2, k3}+

(
211C18e

‖w0‖L∞

σ

)1/2

|Ω|1/8

such that

sup
t>0
|Ωk(t)| = 0

for all k > k0. This concludes the proof.

Remark 3.20. The L∞ bound can also be proved using the iterative technique of Alikakos [2].
We have chosen the method presented here (inspired by an idea of Gajewski and Zacharias [29])
mainly for aesthetic reasons.
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3.3.4. Estimates for ∇v and ∆v

3.3.5. A priori estimates

Lemma 3.21. If the hypothesis (H) and (H2) are satisfied, then we have

‖vt‖L2(Qt) 6 C20(3.82)

‖∇v‖L2(Ω) 6 C20 for all t > 0(3.83)

where C20 is a constant independent on t.

Proof. Taking ewvt as test function in the equation (3.56) and integrating in space, we obtain

(3.84)
∫

Ω
ewv2

t = −1
2

∫

Ω
ew

∂

∂t

(
|∇v|2

)
+
∫

Ω
ew
[
ewv2w + δv (1− vew)

]
vt

We estimate now every term of the right-hand side of (3.84). The first one is

(3.85) −1
2

∫

Ω
ew

∂

∂t

(
|∇v|2

)
= −1

2
d

dt

∫

Ω

(
ew |∇v|2

)
− 1

2

∫

Ω
e2wvw |∇v|2

In order to estimate the last term we take into account the following inequalities
∫

Ω
e2wwv2vt 6 1

2

∫

Ω
ewv2

t −
1
2
e2‖w0‖L∞(Ω) ‖w0‖L∞(Ω) ‖v‖3L∞(Ω)

∫

Ω

∂w

∂t
(3.86)

δ

∫

Ω
ewvvt 6 δ

2
d

dt

∫

Ω
ewv2 − δ

2
e‖w0‖L∞(Ω) ‖v‖2L∞(Ω)

∫

Ω

∂w

∂t
(3.87)

−δ
∫

Ω
e2wv2vt 6 −δ

3
d

dt

∫

Ω
e2wv3(3.88)

Substituting (3.85), (3.86), (3.87) and (3.88) into (3.84), we have
∫

Ω
ewv2

t +
d

dt

∫

Ω
ew |∇v|2 6 −e‖w0‖L∞(Ω) ‖v‖2L∞(Ω)

[
e‖w0‖L∞(Ω) ‖w0‖L∞(Ω) ‖v‖L∞(Ω) +

+δ]
d

dt

∫

Ω
w + δ

d

dt

∫

Ω
ewv2 − 2δ

3
d

dt

∫

Ω

e2wv3

We integrate the last inequality with respect the time on [0, t] and we obtain

(3.89)
∫ t

0

∫

Ω
ewv2

s +
∫ t

0

d

ds

∫

Ω
ew |∇v|2 6 C19

where

C19 = e‖w0‖L∞(Ω) ‖v‖2L∞(0,t;L∞(Ω))

[
e‖w0‖L∞(Ω) ‖w0‖L∞(Ω) ‖v‖L∞(0,t;L∞(Ω)) +

+ δ]
∫

Ω
w0 + δe‖w0‖L∞(Ω) ‖v‖2L2(Ω) +

2δ
3

∫

Ω
e2w0v3

0

Finally, from (3.89) we obtain
∫ t

0

∫

Ω
v2
s +

∫

Ω
ew |∇v|2 6

∫

Ω
ew0 |∇v0|2 + C19

The last inequality implies (3.82) and (3.83) where C20 =
(∫

Ω e
w0 |∇v0|2 + C19

)1/2
.
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Lemma 3.22. If the hypothesis (H) and (H2) are satisfied, then we have

(3.90) ‖∆v‖L1(0,t;L2(Ω)) 6 e (n+ 1)!k(T0)

for all t ∈ [0,min {(n+ 1)T0, T}], n ∈ IN, where k(T0) is a constant independent on t which
will be given later.

Proof. From (3.56) we obtain

(3.91)
∫ t

0
‖∆v‖L2(Ω) 6

∫ t

0
‖vt‖L2(Ω) +

∫ t

0
‖∇w · ∇v‖L2(Ω) +

∫ t

0
‖h(v, w)‖L2(Ω)

where
h(v, w) = ewv2w + δv(1− vew)

We estimate the first term in the right-hand side of (3.91) using (3.82) and the Hölder inequality

(3.92)
∫ t

0
‖vt‖L2(Ω) 6 t1/2

(∫ t

0

∫

Ω
|vt|2

)1/2

6
√
C20 t

1/2

We estimate the second term in the right-hand side of (3.91) with the Hölder inequality

(3.93) ‖∇w · ∇v‖L2(Ω) 6 ‖∇w‖L4(Ω) ‖∇v‖L4(Ω)

In what follows, we are going to obtain an estimate for ‖∇w‖L4(Ω). We deduce from the equation
(3.57) the relation

∇wt = −ewwv∇w − ewv∇w − eww∇v
Multiplying this last relation by ∇w |∇w|2 and after that integrating in Ω, we get

d

dt
‖∇w‖L4(Ω) 6 C21 ‖∇v‖L4(Ω)

where C21 = e‖w0‖L∞(Ω) ‖w0‖L∞(Ω). From the last inequality we obtain by integration

(3.94) ‖∇w‖L4(Ω) 6 C22 + C21

∫ t

0
‖∇v‖L4(Ω)

where C22 = ‖∇w0‖L4(Ω). Taking into account (3.94), the estimate (3.93) becomes

(3.95) ‖∇w · ∇v‖L2(Ω) 6 C22 ‖∇v‖L4(Ω) +
C21

2
d

dt

[∫ t

0
‖∇v‖L4(Ω)

]2

We estimate now every term in the last inequality. In order to estimate the first term of (3.95)
we use the Cauchy inequality and the Gagliardo-Nirenberg inequality

(3.96) C22 ‖∇v‖L4(Ω) 6 C22C23 ‖∆v‖1/2L2(Ω) ‖∇v‖
1/2
L2(Ω) 6 ε ‖∆v‖L2(Ω) +

(C22C23)2

4ε
‖∇v‖L2(Ω)

In order to estimate the second term of (3.95), we obtain from Hölder inequality and (3.83)

[∫ t

0
‖∇v‖L4(Ω)

]2

6
[∫ t

0
C23 ‖∆v‖1/2L2(Ω) ‖∇v‖

1/2
L2(Ω)

]2

6

6 C2
23t

1/2
(∫ t

0
‖∆v‖L2(Ω)

)(∫ t

0

∫

Ω
|∇v|2

)1/2

6 C2
23

√
C20t

∫ t

0
‖∆v‖L2(Ω)(3.97)
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Finally, after integration of (3.95) on [0, t] and taking into account (3.96) and (3.97), we obtain

∫ t

0
‖∇w · ∇v‖L2(Ω) 6 ε

∫ t

0
‖∆v‖L2(Ω) +

(C22C23)2

4ε

∫ t

0
‖∇v‖L2(Ω) +

+
C21C

2
23
√
C20

2
t

∫ t

0
‖∆v‖L2(Ω)(3.98)

We estimate the last term of (3.91) with the use of Proposition 3.17.
∫ t

0
‖h(v, w)‖L2(Ω) 6 e‖w0‖L∞(Ω) ‖w0‖L∞(Ω)

∫ t

0
‖v‖2L4(Ω) + δ

∫ t

0
‖v‖L2(Ω) + δe‖w0‖L∞(Ω)

∫ t

0
‖v‖2L4(Ω) =

= δ

∫ t

0
‖v‖L2(Ω) + e‖w0‖L∞(Ω)

[
δ + ‖w0‖L∞(Ω)

] ∫ t

0
‖v‖2L4(Ω) 6 C24t(3.99)

where C24 = δ ‖v‖L2(Ω) + e‖w0‖L∞(Ω)
[
δ + ‖w0‖L∞(Ω)

]
‖v‖2L4(Ω).

Taking into account (3.92), (3.98) and (3.99) we estimate now ‖∆v‖2L2(Ω) from (3.91)

∫ t

0
‖∆v‖L2(Ω) 6

√
C20t

1/2 + ε

∫ t

0
‖∆v‖L2(Ω) +

(C22C23)2

4ε

∫ t

0
‖∇v‖L2(Ω) +

+
C21C

2
23
√
C20

2
t

∫ t

0
‖∆v‖L2(Ω) + C24t

or, thanks to (3.83)

(3.100)

(
1− ε− C21C

2
23
√
C20

2
t

)∫ t

0
‖∆v‖L2(Ω) 6

√
C20t

1/2 + t

[
(C22C23)2

4ε

√
C20 + C24

]

We take ε = 1
4 and t sufficiently small such that

1− ε− C21C
2
23
√
C20

2
t > 1

2
=⇒ t 6 1

2C21C2
23
√
C20

= T0

which implies from (3.100)

(3.101)
∫ t

0
‖∆v‖L2(Ω) 6 2

√
C20t

1/2 + 2
[
(C22C23)2√C20 + C24

]
t = k(t)

In this way we have obtained the boundedness of
∫ t
0 ‖∆v‖L2(Ω) for all t ∈ [0,min {T0, T}]. This

bound depends on the initial data considered in τ0 = 0. We can repeat the same procedure
taking the initial data on a generic τ . We obtain
(3.102)
(

1− ε− C̃21C
2
23
√
C20

2
(t− τ)

)∫ t

τ
‖∆v‖L2(Ω) 6

√
C20 (t− τ)1/2+(t− τ)




(
C̃22C23

)2

4ε

√
C20 + C̃24




where

C̃21 = e‖w(x,τ)‖L∞(Ω) ‖w(x, τ)‖L∞(Ω) 6 C21(3.103)

C̃22 = ‖∇w(x, τ)‖L4(Ω)(3.104)

C̃24 = δ ‖v‖L2(Ω) + e‖w(x,τ)‖L∞(Ω)
[
δ + ‖w(x, τ)‖L∞(Ω)

]
‖v‖2L4(Ω) 6 C24(3.105)
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If T0 < T let us take τ = T0. Taking into account (3.94) (which is true for all t ∈ [0, T0]) and
(3.97), we have

(3.106) C̃2
22 = ‖∇w(x, T0)‖2L4(Ω) 6

[
C22 + C21

∫ T0

0
‖∇v‖L4(Ω)

]2

6 2C2
22 + C21

∫ T0

0
‖∆v‖L2(Ω)

Using (3.103), (3.105), and(3.106), the inequality (3.102) becomes
(

1− ε− C21C
2
23
√
C20

2
(t− T0)

)∫ t

T0

‖∆v‖L2(Ω) 6
√
C20 (t− T0)1/2 +

+ (t− T0)

{
C2

23
√
C20

4ε

[
2C2

22 + C21

∫ T0

0
‖∆v‖L2(Ω)

]
+ C24

}
(3.107)

We take ε = 1
4 and t sufficiently small such that

1− ε− C21C
2
23
√
C20

2
(t− T0) > 1

2
=⇒ t 6 1

2C21C2
23
√
C20

+ T0 = 2T0

which implies, from (3.107)

∫ t

T0

‖∆v‖L2(Ω) 6 k(t− T0) +
1
T0

(t− T0)
∫ T0

0
‖∆v‖L2(Ω)

The last relation is true for all t ∈ [T0,min {2T0, T}]. More generally, we obtain

(3.108)
∫ t

nT0

‖∆v‖L2(Ω) 6 k(t− nT0) +
n

T0
(t− nT0)

∫ nT0

0
‖∆v‖L2(Ω)

for all t ∈ [nT0,min {(n+ 1)T0, T}], if n ∈ IN is such that nT0 < T .

Let us observe that
n

T0
(t− nT0) 6 n

and for the function k(t) given by (3.101) we have

k(t− nT0) 6 k(T0)

for all t ∈ [nT0,min {(n+ 1)T0, T}]. Thus, the inequality (3.108) becomes

∫ t

nT0

‖∆v‖L2(Ω) 6 k(T0) + n

∫ nT0

0
‖∆v‖L2(Ω)

for all t ∈ [nT0,min {(n+ 1)T0, T}].
Finally, for all t ∈ [0,min {(n+ 1)T0, T}], taking into account (3.101), we obtain

∫ t

0
‖∆v‖L2(Ω) 6 (n+ 1)!k(T0)

(
1
2!

+ ...+
1

(n+ 1)!

)
+ (n+ 1)!

∫ t

0
‖∆v‖L2(Ω) 6

6 (n+ 1)!
(

1 +
1
2!

+ ...+
1

(n+ 1)!

)
k(T0) 6 e (n+ 1)!k(T0)
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Remark 3.23. This inequality holds for all 0 < t < T , and n is maximal with the property
nT0 6 t. We emphasize that the bound in terms of n is equivalent with a bound in terms of t,
of the same type. Hence we obtain

(3.109)
∫ t

0
‖∆v‖L2(Ω) 6 Ψ(t)

where Ψ is a increasing function of the time t having the properties lim
t↘0

Ψ(t) = 0, lim
t↗T

Ψ(t) <∞
for all T finite.

Henceforth Ψ will stand for a generic function of t having the above properties.

Lemma 3.24. If the hypothesis (H) and (H2) are satisfied, then we have
∫ t

0
‖∇v‖Lp(Ω) 6 Ψ(t)

for 2 6 p <∞.

Proof. Taking into account the Gagliardo-Nirenberg inequality and the Cauchy inequality we
obtain the following estimate

∫ t

0
‖∇v‖

L2j (Ω) 6
∫ t

0
‖∆v‖L2(Ω) +

C2
25

4

∫ t

0
‖∇v‖

L2j−1(Ω)

for j = 2, 3, .... The last inequality implies

∫ t

0
‖∇v‖

L2j (Ω) 6
1−

(
C2

25
4

)j−1

1− C2
25
4

∫ t

0
‖∆v‖L2(Ω) +

(
C2

25

4

)j−1 ∫ t

0
‖∇v‖L2(Ω)

From (3.83) and (3.90) we obtain for j = 2, 3, ... and for all t ∈ [0,min {(n+ 1)T0, T}]
∫ t

0
‖∇v‖Lp(Ω) 6 Ψ(t)

for 2 6 p <∞.

Lemma 3.25. If the hypothesis (H) and (H2) are satisfied, then we have
∫ t

0
‖∇w‖Lp(Ω) 6 Ψ(t)

for 1 < p <∞.

Proof. We deduce from the equation (3.57)

∇wt = −ewwv∇w − ewv∇w − ew∇v
Multiplying this last relation by ∇w |∇w|p−2 and after that integrating in Ω, we have

d

dt
‖∇w‖Lp(Ω) 6 e‖w0‖L∞(Ω) ‖w0‖L∞(Ω) ‖∇v‖Lp(Ω)

From the last inequality we obtain by integration in time

‖∇w‖Lp(Ω) 6 ‖∇w0‖Lp(Ω) + e‖w0‖L∞(Ω) ‖w0‖L∞(Ω)

∫ t

0
‖∇v‖Lp(Ω)

which proves the lemma.
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Lemma 3.26. If the hypothesis (H) and (H2) are satisfied then

(3.110) u ∈ Cα+1,(α+1)/2(QT ), for every T > 0.

Proof. We consider the equation (3.56) together with (3.58) and (3.59) as a linear problem in
the general form (3.12)-(3.14), considering

bi(x, t) =
∂w

∂xi
(x, t), i = 1, 2

b(x, t) = ewwv + δ(1− vew)

F̃ (x, t) = G̃(x, t) = 0

The above estimates show that the hypothesis of , [48, Chapter 4, Theorem 9.1]) are fulfilled,
see also [66, Theorem II.3]. This implies that for q > 2 we have

(3.111) v ∈ C2−4/q,1−2/q
(
QT

)

Thanks to the Sobolev embedding, w ∈ L∞(0, T ;Cα(Ω)). Therefore,

(3.112)

‖w(t)‖C1+α(Ω) ¬ ‖w0‖C1+α(Ω) +
∫ t

0
‖ewwβv‖C1+α(Ω)

¬ ‖w0‖C1+α(Ω) + C

∫ t

0
‖ewwβ‖C1+α(Ω)‖v‖C1+α(Ω)

¬ ‖w0‖C1+α(Ω) + C(t)
∫ t

0
‖w‖C1+α(Ω)

Next, Gronwall’s Lemma entails w ∈ C([0, T ];Cα+1(Ω)). This fact together with
wt ∈ C([0, T ];Cα+1(Ω)), that is a consequence of the equality wt = −ewvw, assures w ∈
Cα+1,(α+1)/2(QT ).

Now ∂w
∂xi
∈ Cα,α/2(QT ) and thanks to [48, Chapter 4, section 5] v ∈ Cα+2,(α+2)/2(QT ).

Next we can argue as in (3.112) and get w ∈ Cα+2,(α+2)/2(QT ). Therefore we have reached the
desired bound of |u|(l+2)

Qt
.

3.4. Steady states and asymptotic behaviour of global solutions

3.4.1. Steady states

In this Section we study the steady states of (3.22)-(3.23) with the no-flux boundary con-
dition (3.24). So, we consider the following stationary problem:

0 = ∆u−∇ · (u∇w) + δu(1− u) x ∈ Ω, t ∈ IR+(3.113)

0 = wu x ∈ Ω, t ∈ IR+(3.114)

∂u

∂n
= 0 x ∈ ∂Ω, t ∈ IR+(3.115)

Observe that, after the change of variables, v = e−wu the system (3.113) - (3.115) reads

−∆v −∇w · ∇v = δv(1− vew) x ∈ Ω, t ∈ IR+(3.116)

veww = 0 x ∈ Ω, t ∈ IR+(3.117)

∂v

∂n
= 0 x ∈ ∂Ω, t ∈ IR+(3.118)
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Definition 3.27. We say that (v, w) are positive solutions to (3.116) - (3.118) if (3.116) -
(3.118) are satisfied a.e. and

(v, w) ∈ (P1 ∪ {0})× (P2 ∪ {0}) , (v, w) 6= (0, 0) ,

with
P1 :=

{
z ∈W 2,p(Ω) : p > N, z  0, z 6= 0, ∂z

∂n = 0 on ∂Ω
}

P2 := {z ∈W 1,∞(Ω) : z  0, z 6= 0},
for some p > N .

Remark 3.28. Assume w 6= 0, δ > 0 then the positive solutions to (3.116)- (3.118) satisfies

(3.119) L1(w)z := −∆z −∇z · ∇w + e−wvz > 0 ,
∂z

∂n
= 0.

Moreover,

(3.120) σ1(L1(w)) = σ1(L2(w) + e−wv) > σ1(L2(w)) = 0,

where σ1(L1(w)) stands for the principal eigenvalue of L1(w) with Neumann boundary condi-
tion. Thanks to (3.119) and (3.120) the strong maximum principle (Theorem 2.4 in [4]) entails
v ∈ int(P1).

Theorem 3.29. The positive solutions to (3.116)-(3.118) are given by

(v∗, w∗) = (0, w̃) , w̃ ∈ P2,

(v∗, w∗) = (1, 0) , if δ > 0,

(v∗, w∗) = (k, 0) , if δ = 0.

where k is a positive constant.

Proof. Case 1.- Assume w = 0 then

• if δ = 0 taking v as a test function in (3.116) we obtain that v = k, k > 0 any constant.

• if δ > 0 v = 1 is a positive solution to (3.116). Moreover, since the function

f : [0,∞)→ IR, f(s) = δs(1− s)

is continuous on [0,∞) and the function u 7−→ f(s)/s, δ > 0 is decreasing on (0,∞).
Then, thanks to Lemma 1 in [11], is the only possible positive solution.

Case 2.- Assume w 6= 0 then

• if δ = 0 taking v as a test function in (3.116) we get v = k, k  0. Therefore, if k 6= 0 the
condition (3.117) can not be satisfied and if k = 0 any w ∈ P2 is a positive solution.

• if δ > 0 then either v = 0 or, thanks to Remark 3.28, v ∈ int(P2).

– if v = 0 then any w ∈ P2 is a positive solution.

– if v ∈ int(P2) then, from (3.117) we get w = 0 a contradiction with the assumption.
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3.4.2. Asymptotic behaviour

The purpose of this section is to study the large time behaviour of the solutions to (3.22)-
(3.23). In particular we will concentrate on the large time behaviour of the trajectories of such
a system. The key property for our results is the “energy” equality (3.50).

Remark 3.30. The equality (3.50) provides us, under the condition F (u0, w0) < +∞, with
the estimates

(3.121)
∫ t

0

∫

Ω
uw−1|∇w|2 ¬ C ,

∫ t

0

∫

Ω
u−1|∇u|2 ¬ C , ∀t > 0.

Thanks to (3.121) and the estimates w ¬ w0, u ¬ C we obtain

(3.122)
∫ t

0

∫

Ω
u|∇w|2 ¬ C ,

∫ t

0

∫

Ω
|∇u|2 ¬ C , ∀t > 0.

Lemma 3.31. Let τ, k > 0 and y ∈ C(τ,+∞) ∩ L1(τ,+∞), y′ ∈ L1(τ,+∞). If

lim
t→+∞

∫ t+k

t
(|y(s)|+ |y′(s)|)ds = 0

then lim
t→+∞ |y(t)| = 0.

Proof. Assume lim
t→+∞ |y(t)| 6= 0, then there exists a sequence {tn}n∈IN, tn → +∞, such that

|y(tn)| > C > 0 , ∀n  n0.

We pick 0 < θ ¬ k, then for all n  n0 we have

||y(tn + θ)| − |y(tn)|| ¬ |y(tn + θ)− y(tn)| ¬
∫ tn+θ

tn
|y′(s)|ds ¬

∫ tn+k

tn
|y′(s)|ds

Therefore |y(s)| > C/2 for all s ∈ [tn, tn + k], n  n0. The last inequality is a contradiction
with

lim
n→+∞

∫ tn+k

tn
|y(s)|ds = 0.

Theorem 3.32. Let δ = 0, if (u0, w0) ∈
(
C2+α(Ω)

)2
, u0  0, w0 > 0 with F (u0, w0) < +∞

then,

(3.123) lim
t→+∞ ‖u− u‖2 = 0 , lim

t→+∞ ‖w‖2 = 0.

Proof. We are going to apply Lemma 3.31 with y(t) =
∫
Ω(u − u)2(t)dx. Taking into account

the Poincare-Wintinger inequality and Remark 3.30 we get

(3.124)
∫ ∞

0

∫

Ω
(u− u)2 ¬ C

∫ ∞
0

∫

Ω
|∇u|2 ¬ C.
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On the other hand, thanks to the Hölder’s inequality, Young’s inequality and the uniform bound
in L∞ of u, we have

(3.125)

∣∣∣∣
d

2dt

∫

Ω
(u− u)2

∣∣∣∣ =
∣∣∣∣
∫

Ω
|∇u|2 +

∫

Ω
u∇u · ∇w

∣∣∣∣

¬
∫

Ω
|∇u|2 +

∫

Ω
|u∇u · ∇w|

¬
∫

Ω
|∇u|2 +

1
2

∫

Ω
u|∇u|2 +

1
2

∫

Ω
u|∇w|2

¬ (1 + C)
∫

Ω
|∇u|2 +

1
2

∫

Ω
u|∇w|2 ,

so, thanks to Lemma 3.31, we infer that for t → +∞, u(·, t) → u in L2(Ω). From (3.23) we
have

(3.126)

d

2dt

∫

Ω
w2 + u

∫

Ω
w2 =

∫

Ω
(u− u)w2

¬
(∫

Ω
(u− u)2

)1/2 (∫

Ω
w4
)1/2

¬ w0

(∫

Ω
(u− u)2

)1/2 (∫

Ω
w2
)1/2

¬ C
∫

Ω
(u− u)2 + ε

∫

Ω
w2.

Therefore, after integrating (3.126) in time, we infer

(3.127)
∫ ∞

0

∫

Ω
w2 ¬ C,

Moreover, arguing as in (3.126) we get

(3.128)
∫ ∞

0

∣∣∣∣
d

dt

∫

Ω
w2
∣∣∣∣ ¬ C.

Hence, for t→ +∞, w(·, t)→ 0 in L2(Ω).

In what follows we will study also the case δ > 0 and we will provide an estimate of the
rate of convergence to the equilibrium.

Lemma 3.33. Let (u0, w0) ∈
(
C2+α(Ω)

)2
, w0 > 0. If u0 > 0 then u(t) > 0 for all t > 0.

Proof. We know that

(3.129) vt = e−w∇ · (ew∇v) + δv(1− vew) + v2eww.

On multiplying (3.129) by ew(v − k)− with k a positive constant to be fixed later on, we get

(3.130)

d

2dt

∫

Ω
ew(v − k)2

− = −
∫

Ω
ew|∇(v − k)−|2 + δ

∫

Ω
ew(v − k)−v(1− vew)+

+
∫

Ω
v2e2ww(v − k)− − 1

2

∫

Ω
e2wv(v − k)2

−.

In order to show that the right-hand side of (3.130) is non-negative it is enough to prove that

(3.131) δew(v − k)−v(1− vew) ¬ 0.



3.4. Steady states and asymptotic behaviour of global solutions 49

Observe that for k sufficiently small kew ¬ 1, therefore (3.131) is true for such a choice of k.
Since the right-hand side of (3.130) we obtain

(3.132) ew(t)(v(t)− k)2
− ¬ ew0(v0 − k)2

−.

Taking into account that u0 > 0 then v0 > 0. Hence v0 > θ > 0 and for 0 < k < θ we get
v(t) > 0.

Theorem 3.34. Assume the same hypothesis as in Theorem 3.32 together with the additional
condition u0 > 0 then

(3.133) lim
t→+∞ ‖u(t)− u‖1 ¬ Ce−θt , lim

t→+∞ ‖w‖∞ ¬ Ce
−θ′t,

for any θ, θ′ > 0.

Proof. Observe that w(x, t) = w0(x)e−
∫ t

0
u, thus, applying Lemma 3.33 we get

lim
t→+∞ ‖w‖∞ ¬ Ce

−θ′t.

For the convergence of u we use the following argument. It is not difficult to infer that

(3.134)
d

dt
G(u(t), w(t)) = −D(u(t), w(t))

with

(3.135) G(u(t), w(t)) :=
∫

Ω
u(t) ln

(
u(t)
u

)
dx+

1
2

∫

Ω
w(t)−1|∇w(t)|2dx

and D was defined in (3.49). We know that for r  0

(3.136) r ln r − 1 + r ¬ (r − 1)2

Therefore, putting r = u/u and thanks to the Poincare-Wintinger inequality we have

(3.137)

∫

Ω
u ln

(
u

u

)
= u

∫

Ω
r ln r + u

∫

Ω
(r − 1)

¬ u
∫

Ω
(r − 1)2

=
1
u

∫

Ω
(u− u)2

¬ Cpw
u

(∫

Ω
|∇u|

)2

=
4Cpw
u

(∫

Ω
|u1/2∇u1/2|

)2

¬ 4Cpw
u

(∫

Ω
u

)(∫

Ω
|∇u1/2|2

)

= |Ω|Cpw
∫

Ω
u−1|∇u|2

On the other hand, taking ϕ = u/u and applying Jensen’s inequality with the probability
measure dµ = u

‖u‖1dx we get

(3.138)
∫

Ω
u ln

(
u

u

)
dx = ‖u‖1

∫

Ω
ϕ lnϕdµ 

(∫

Ω
ϕdµ

)
ln
(∫

Ω
ϕdµ

)
= 0
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Hence, thanks to (3.137), (3.138) and Lemma 3.33 we obtain

(3.139) min

{
1

|Ω|Cpw , ρ
}
G(u(t), w(t)) ¬ D(u(t), v(t))

with u(t)  ρ. Finally the statement of the Theorem follows from the Csiszar-Kullback inequal-
ity.

Theorem 3.35. Assume δ > 0, (u0, w0) ∈
(
C2+α(Ω)

)2
, u0 > 0, w0 > 0. Then,

(3.140) lim
t→+∞ ‖u− 1‖2 ¬ Ce−θ′′t , lim

t→+∞ ‖w‖∞ ¬ Ce
−θ′t,

for any θ′, θ′′ > 0.

Proof. The convergence for w is exactly as in Theorem 3.34. We know that

(3.141)
d

dt
H(t) = −D(t)

with

(3.142) H(u,w) :=
∫

Ω
u(lnu− 1) + 1 +

1
2

∫

Ω
w−1|∇w|2.

Taking into account Lemma 3.33 we have u(t)  ρ. This fact together with the inequality
ln s ¬ s− 1 for s  0 provide us with the following

(3.143)
D(u,w)  ρ

2

∫

Ω
w−1|∇w|2 + δρ(u− 1) lnu

 ρ

2

∫

Ω
w−1|∇w|2 + δρ(u(lnu− 1) + 1)  min{ρ, δρ}H(u(t), w(t))

Therefore, H(t) ¬ H(0)e−βt, β = min{ρ, δρ}. In particular, since u(lnu− 1) + 1  0 we have

(3.144)
∫

Ω
w−1|∇w|2 ¬ H(0)e−βt.

Let 0 < θ′′ < min{δρ, β}. On multiplying (3.22) by u− 1 and integrating in the space variable
we obtain

(3.145)

d

dt

∫

Ω
(u− 1)2 = −2

∫

Ω
|∇u|2 + 2

∫

Ω
u∇u · ∇w − 2

∫

Ω
(u− 1)2

¬ (εC − 2)
∫

Ω
|∇u|2 + C

∫

Ω
w−1|∇w|2 − θ′′

∫

Ω
(u− 1)2

¬ Ce−βt − θ′′
∫

Ω
(u− 1)2

From (3.145) it is not difficult to conclude the Theorem.



CHAPTER 4

The invasion model

The aim of this chapter is to study the steady-states, global well-possedness and asymptotic
behaviour of some models related to tissue invasion that were proposed in [63] and [15]. Basically
we prove local well-possedness with the use of semigroup theory, we prolong the solutions via
a suitable bounds on the solutions and for the asymptotic behaviour we use again suitable
estimates on the solutions.

4.1. Introduction

In this chapter we will focus on some models of tissue invasion, more concretively we will
study in detail the models proposed in [63] and [15].

Along the chapter Ω ⊂ IR3 is a region in which the tumour cells, ECM and proteolytic
enzymes lies. We assume that Ω is bounded, connected and has a regular boundary. We denote
by u, v and m the concentration of cancer cells, ECM and proteolytic enzymes respectively.
The model reads

(4.1)





ut = ∆u︸︷︷︸
Diffusion

− ∇ · (uχ(v)∇v)︸ ︷︷ ︸
Haptotaxis

+ µu(1− u− v)︸ ︷︷ ︸
Proliferation

in Ω× (0, T ),

vt = − mv︸︷︷︸
Degradation

in Ω× (0, T ),

mt = ∆m︸︷︷︸
Diffusion

− m︸︷︷︸
Decay

+ ug(v)︸ ︷︷ ︸
Production

in Ω× (0, T ),

∂u

∂n
− uχ(v)

∂v

∂n
=
∂m

∂n
= 0 on ∂Ω× (0, T ),

(u, v,m)(x, 0) = (u0, v0,m0)(x) in Ω,

where χ and g are given functions the following conditions

(4.2) χ ∈ C1(IR), χ, χ′ is globally Lipchitz, χ  0
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and

(4.3) g ∈ C(IR), g is globally Lipchitz, g  0

It should be noted that we are assuming that many of the biological parameters are just 1. The
only reason for that is the simplification of the notation. Most of our results does not depend
on those parameters, we will just point out the differences, if there any, for different values of
the parameters.

The chapter is organized as follows. In section 2 we give some preliminaries and notations.
Section 3 is devoted to the stationary problem associated to (4.1). In section 4 we prove local
existence and the non-negative of solutions for non-negative initial data. In section 5 we show
that the solution constructed in the previous section can be prolonged in time till infinity. In the
last section we show the convergence to the steady-states even with explicit rate of convergence
in some cases.

4.2. Preliminaries and notations

In this section we collect some tools and notations that will be used along the chapter. We
denote by Cν(Ω) the space of Hölder continuous functions. By Lp(Ω), W k,p(Ω), p  1 we denote
the Lebesgue space and Sobolev spaces of functions on Ω with the usual norms ‖·‖p, ‖·‖k,p and
W k,2(Ω) = Hk(Ω). If X is a Banach space with norm ‖·‖X , for T > 0 we denotes by Lp(0, T ;X)
the Banach space of all measurable functions u : (0, T ) → X such that ‖u(·)‖X ∈ Lp(0, T ).
If G is an interval of real numbers, the notation C(G,X) stands for the space of continuous
functions with values in X. If f ∈ L1(Ω) then u denotes the mean value, i.e. f := 1

|Ω|
∫
Ω f . The

principal eigenvalue to the problem
{
−∆φ+ a(x)φ = λφ in Ω,
∂φ
∂n = 0 on ∂Ω.

is denoted by σ1(−∆+a(x),N ). Throughout the chapter C will denote a generic constant that
may vary from line to line.

Let p ∈ (1,∞), we define the operator

Apu := −∆u+ u

with domain

D(Ap) :=
{
u ∈W 2,p(Ω) :

∂u

∂n
= 0 on ∂Ω

}

Since Re σ(Ap)  1, where σ(Ap) stands for the spectrum of Ap, then Ap possesses fractional
powers, Aβp . Let

Xβ
p := D(Aβp ),

then the following embedding properties are known, (see, [34, Theorem 1.6.1])

(4.4)
Xβ
p ↪→W k,q(Ω) for k − d

q < 2β − N
p , q  p

Xβ
p ↪→ Cν(Ω) for 0 ¬ ν < 2β − N

p .
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Since Ap is a sectorial operator, then

S(t) := e−tAp

defines an analytical semigroup in Lp(Ω). The operator S(t) has the following properties,
1) In [34, Theorem 1.3.4] it is stated that

(4.5) ‖S(t)‖L(Lp,Lp) ¬ Ce−δt,

with δ ∈ (0, 1).
2) We have

(4.6) AαpS(t) = S(t)Aαp on D(Aαp ),

Moreover, combining (4.6) with (4.5) we obtain

(4.7) ‖S(t)‖L(Xβ
p ,X

β
p ) ¬ Ce−δt.

3) For u ∈ Lp(Ω), (see, [34, Theorem 1.4.3]), we have

(4.8) ‖S(t)u‖
Xβ
p
¬ Cβt−βe−δt‖u‖p, t > 0, δ ∈ (0, 1).

4.3. Positive steady-states

In this section we will describe the positive solutions to

(4.9)





0 = ∇ · (∇u− uχ(v)∇v) + µu(1− u− v) in Ω,
0 = −mv in Ω,
0 = ∆m−m+ ug(v) in Ω,

∂u

∂n
− uχ(v)

∂v

∂n
=
∂m

∂n
= 0 on ∂Ω.

Observe that after the change of variables

(4.10) w := uz, z := e−
∫ v

0
χ(s)ds.

the system (4.9) reads

(4.11)





0 = ∆w + χ(v)∇w · ∇v + µw(1− z−1w − v) in Ω,
0 = mv in Ω,
0 = ∆m−m+ wz−1g(v) in Ω,

∂w

∂n
=
∂m

∂n
= 0 on ∂Ω.

Since we are interested basically in the models given in [15] and [63] we assume that g(v) = 1
and g(v) = v respectively.
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Definition 4.1. We say that (w, v,m) are positive solutions to (4.11) if

(w, v,m) ∈ (P1 ∪ {0})× (P2 ∪ {0})× (P1 ∪ {0}) , (w, v,m) 6= (0, 0, 0) ,

with
P1 :=

{
z ∈W 2,p(Ω) : p > N, z  0, z 6= 0, ∂z

∂n = 0 on ∂Ω
}

P2 := {z ∈W 1,∞(Ω) : z  0, z 6= 0}
Theorem 4.2. Assume g(v) = 1, then the positive solutions to (4.11) are given by

(w∗, v∗,m∗) = (0, ṽ, 0) , ṽ ∈ P2,

(w∗, v∗,m∗) = (k, 0, k) , if µ = 0,

(w∗, v∗,m∗) = (1, 0, 1) , if µ > 0.

where k > 0 is any constant.

Proof. Case 1.- Assume w = 0. Taking into account that σ1(−∆ + 1,N ) > 0 then the unique
solution to (4.11)3 is m = 0. Now, for µ  0 we can see that (0, ṽ, 0) with ṽ ∈ P2 are positive
solutions to (4.11).
Case 2.- Assume u 6= 0. Applying the strong maximum principle to (4.11)3, see for instance [4,
Theorem 2.4], we deduce m ∈ int(P1), then from (4.9)2, we get v = 0. Now, we distinguish
between two cases.

• If µ = 0, then from (4.11)1 we have

(4.12)

{
−∆w = 0 in Ω
∂w
∂n = 0 on ∂Ω

Taking w as a test function in (4.12), we obtain that w = k is constant. Finally, from
(4.11)3 we get m = k. Therefore, (k, 0, k) are positive solutions to (4.11).

• If µ > 0, then it is clear that w = 1 is a solution to (4.9)3. The uniqueness of positive
solution follows by a standard result, see for example [56, Theorem 2]. Therefore, (1, 0, 1)
is a positive solution to (4.11).

Theorem 4.3. Assume g(v) = v, then the positive solutions to (4.11) are given by

(w∗, v∗,m∗) = (0, ṽ, 0) , ṽ ∈ P2,

(w∗, v∗,m∗) = (k, 0, 0) , if µ = 0,

(w∗, v∗,m∗) = (1, 0, 0) , if µ > 0.

where k > 0 is any constant.

Proof. Case 1.- wz−1v = 0 then m = 0, therefore mv = 0 independently of v. Let us observe
that w satisfies (mv = 0).

(4.13) −∇ · (z−1∇w) = µwz−1(1− wz−1) ,
∂w

∂n
= 0.

Now, we consider two cases,
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• µ = 0. Taking w as a test function in the weak formulation of (4.13) we obtain w = k,
k  0.

– if k = 0 then v ∈ P2. So, (0, ṽ, 0), ṽ ∈ P2 are solutions to (4.11).

– if k > 0. Then, taking into account that ke
∫ k

0
χ(s)dsv = 0, then v = 0. Therefore,

(k, 0, 0) with k > 0 are solutions to (4.11).

• µ > 0.

– If w = 0 then (0, ṽ, 0) with ṽ ∈ P2 are solutions to (4.11).

– If w 6= 0 then from the strong maximum principle w ∈ int(P1). Therefore we have
to take v = 0 in order to fulfill wz−1v = 0. Then reasoning as in Theorem 4.2 we
conclude w = 1. So, (1, 0, 0) is a solution to (4.11).

Case 2.- wz−1v 6= 0 is exactly as in the case 2.- in Theorem 4.2.

Remark 4.4. From Theorems 4.2, 4.3 we can easily recover the steady-states for the system
(4.9).

Remark 4.5. We would like to point out that if the m-equation i.e. (4.9)3 is of the form
mt = ∆m − βm + αu with α > 0, β > 0 then the steady-states differs from the case that we
have treated in Theorem 4.2 (α = β = 1). In this case the positive steady-states of (4.9) are
given by

(u∗, v∗,m∗) = (0, ṽ, 0) , ṽ ∈ P2,

(u∗, v∗,m∗) =
(
k, 0,

βk

α

)
, if µ = 0,

(u∗, v∗,m∗) =
(

1, 0,
β

α

)
, if µ > 0.

The proof of this fact easily follows from Theorem 4.2.

4.4. Local existence and non-negativity

As we did for the steady-states problem it is convenient to transform the system (4.1) in
the following manner

(4.14) w := uz, z := e−
∫ v

0
χ(s)ds.

Therefore, in terms of the variables w, v,m the system (4.1) becomes

(4.15)





wt = ∆w + χ(v)∇w · ∇v + µw(1− z−1w − v) + wχ(v)mv in Ω× (0, T ),
vt = −mv in Ω× (0, T ),
mt = ∆m−m+ wz−1g(v) in Ω× (0, T ),

∂w

∂n
=
∂m

∂n
= 0 on ∂Ω× (0, T ),

(w, v,m)(x, 0) =
(
u0e
−
∫ v0

0
χ, v0,m0

)
(x) in Ω.

Next, the local existence theorem for (4.15) is formulated.



56 Chapter – 4. The invasion model

Theorem 4.6. Let γ ∈
(

1
2

+
3
2p
, 1
)

, p ∈ (3, 6). Suppose that the initial data satisfies

y0 := (w0, v0,m0) ∈ Y := X
1/2
2 ×W 1,∞(Ω)×Xγ

p ,

then there exists τ(‖y0‖Y) such that the problem (4.15) has a unique solution

(4.16)

w ∈ C
(
[0, τ ];X1/2

2

)
∩ C1

(
(0, τ);X1/2

2

)
∩ C((0, τ);W 2,p(Ω)) ,

v ∈ C ([0, τ ];W 1,∞(Ω)
) ∩ C1 ((0, τ);W 1,∞(Ω)

)
,

m ∈ C
(
[0, τ ];Xγ

p

)
∩ C1

(
(0, τ);Xγ

p

)
∩ C ((0, τ);W 2,p(Ω)

)
.

Moreover, the solution depends continuously on the initial data, i.e. if u(u0) and u(u0) are the
solutions to (4.15) with initial data u0 and u0 respectively then

‖u(u0)− u(u0)‖
C

(
[0,τ ];X1/2

2

)
×C([0,τ ];W 1,∞(Ω))×C([0,τ ];Xγ

p )
¬ C‖u0 − u0‖Y.

Proof. The proof of the theorem it is based on a standard contraction argument. Let T > 0,
t ¬ T , R > 0 and

(4.17) θ(w, v,m) := w + χ(v)∇w · ∇v + µw(1− z−1w − v) + wχ(v)mv.

We consider the spaces
XT := C

(
[0, T ];X1/2

2

)
,

YT := C
(
[0, T ];W 1,∞(Ω)

)
,

ZT := C
(
[0, T ];Xγ

p

)
,

the operator

F(w, v,m) :=



F1(w, v,m)
F2(w, v,m)
F3(w, v,m)




with F1, F2, F3 given by

F1(w, v,m) := S(t)w0 +
∫ t

0
S(t− s)θ(w, v,m)ds ,

F2(w, v,m) := v0 −
∫ t

0
mv ds ,

F3(w, v,m) := S(t)m0 +
∫ t

0
S(t− s)

(
wz−1g(v)

)
ds .

and the closed set

BT
R := {(w, v,m) ∈ XT × YT × ZT : ‖w − w0‖XT + ‖v − v0‖YT + ‖m−m0‖ZT ¬ R}.

For a fixed R we try to find τ0 such that F(Bτ0
R ) ⊂ Bτ0

R . Let (w, v,m) ∈ BT
R and t ¬ T . Having

in mind that w0 ∈ X1/2
2 and (4.8), we obtain

(4.18)
‖F1(w, v,m)− w0‖X1/2

2
¬ R

4
+
∫ t

0
‖S(t− s)θ(w, v,m)‖

X
1/2
2

¬ R

4
+
∫ t

0
(t− s)−1/2e−δ(t−s)‖θ(w, v,m)‖2.
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Thanks to (4.2), (4.4) and taking into account that X1/2
2 = H1(Ω), we estimate

(4.19) ‖F1(w, v,m)− w0‖XT ¬
R

4
+ C(R, ‖w0‖1,2, ‖v0‖1,∞, ‖m0‖Xγ

p
)T 1/2.

Also, we have

‖F2(w, v,m)− v0‖1,∞ ¬
∫ t

0
‖v‖1,∞‖m‖1,∞.

Therefore, by (4.4) we deduce

(4.20) ‖F2(w, v,m)− v0‖YT ¬ C(R, ‖v0‖1,∞, ‖m0‖Xγ
p
)T

In the same manner, by (4.3) and the embedding H1(Ω) ↪→ Lp(Ω), we obtain

(4.21) ‖F3(w, v,m)− w0‖ZT ¬
R

4
+
C(R, ‖w0‖1,2, ‖v0‖1,∞, ‖m0‖Xγ

p
)

1− γ T 1−γ .

Finally, thanks to (4.19), (4.20) and (4.21) we can choose 0 < T = τ0 small enough in order to
obtain F(Bτ0

R ) ⊂ Bτ0
R . Moreover, if t < τ0 then F(Bt

R) ⊂ Bt
R.

In what follows we try to have the following estimate

(4.22) ‖F(u)− F(u)‖X ¬ C‖u− u‖X,

where C < 1, X := Xt × Yt × Zt and u,u ∈ X. Basically the proof is as the proof of F (Bt
R) ⊂

(Bt
R). We have

(4.23) ‖F1(w, v,m)− F1(w, v,m)‖Xt ¬ t1/2C(R, ‖w0‖1,2, ‖v0‖1,∞, ‖m0‖Xγ
p
)‖u− u‖X,

(4.24) ‖F2(w, v,m)− F2(w, v,m)‖Xt ¬ tC(R, ‖v0‖1,∞, ‖m0‖Xγ
p
)‖u− u‖X,

(4.25) ‖F3(w, v,m)− F3(w, v,m)‖Xt ¬ t1−γ
C(R, ‖w0‖1,2, ‖v0‖1,∞, ‖m0‖Xγ

p
)

1− γ ‖u− u‖X.

Thus, choosing t = τ small enough we obtain the estimate (4.22).

Let t0 ∈ (0, τ) fixed, then [34, Lemma 3.5.2] entails

(4.26)
d

dt
w(·, t0) ∈ Xα

2 ,
d

dt
m(·, t0) ∈ Xα

p

for any α < 1. Therefore, by (4.26) we obtain

(w,m) ∈ C1((0, τ);X1/2
2 )× C1((0, τ);Xγ

p ).

Next, we rewrite the first equation of (4.15) in the following form

(4.27) −∆w − b · ∇w + w = f − ∂w

∂t

with b ∈ (L∞(Ω))N and f ∈ L2(Ω). Therefore, from the elliptic regularity, we get w(·, t0) ∈
H2(Ω). Now, with the estimate w(·, t0) ∈ H2(Ω), and the Sobolev embedding, we can repeat
again the same procedure, but with f ∈ Lp(Ω), thus

w ∈ C((0, τ);W 2,p(Ω)).
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In the same manner we have
m ∈ C((0, τ);W 2,p(Ω)).

Now, we prove the continuity of the solutions respect to the initial data. Let R > 0 large
enough to have u(u0),u(u0) ∈ Bτ

R. We have

(4.28)
‖u(u0)− u(u0)‖X ¬ ‖S(t)(w0 − w0)‖Xτ + ‖v0 − v0‖Yτ + ‖S(t)(m0 −m0)‖Zτ+

+ ‖F(u(u0))− F(u(u0))‖X.

Taking into account (4.7) and the contractivity of F we get

(4.29) ‖u(u0)− u(u0)‖X ¬ C‖u0 − u0‖Y +K‖u(u0)− u(u0)‖X,

with K < 1. Thus, the proof is finished.

From Theorem 4.6 we easily get the local existence Theorem for the original system (4.1).
We have just to observe that

w(x, t) = u(x, t)z(x, t).

Therefore w0 ∈ H1(Ω), if u0 ∈ X1/2
2 = H1(Ω) and v0 ∈W 1,∞(Ω). Then we apply Theorem 4.6

obtaining the regularity on (w, v,m). Finally the regularity of u can be recover having in mind
that, for t > 0

u(x, t) = w(x, t)z(x, t),

with w(·, t), z(·, t) ∈W 1,∞(Ω).

Corollary 4.7. Let γ ∈
(

1
2

+
3
2p
, 1
)

, p ∈ (3, 6). Suppose that the initial data satisfies

x0 := (u0, v0,m0) ∈ H1(Ω)×W 1,∞(Ω)×Xγ
p ,

then there exists τ(‖x0‖Y) such that the problem (4.1) has a unique solution

(4.30)

u ∈ C ([0, τ ];H1(Ω)
) ∩ C1 ((0, τ);W 1,∞(Ω)

)
,

v ∈ C ([0, τ ];W 1,∞(Ω)
) ∩ C1 ((0, τ);W 1,∞(Ω)

)
,

m ∈ C
(
[0, τ ];Xγ

p

)
∩ C1

(
(0, τ);Xγ

p

)
∩ C ((0, τ);W 2,p(Ω)

)
.

Moreover, the solution depends continuously on the initial data.

Remark 4.8. We would like to point out that in our proof of local existence, by contrast with
[75, Lemma 2.1], we are not using the explicit knowledge of v. In particular, our method still
valid for v-equations of the form vt = f(m, v), with f satisfying suitable regularity assumptions.

In rest of the section we will show the non-negativity of the solutions to (4.1) for non-
negative initial conditions.

Theorem 4.9. Let T < Tmax, with Tmax the maximal existence time of the solutions to (4.1)
in the sense given in Corollary 4.7. If u0(x), v0(x),m0(x)  0 then

u(x, t), v(x, t),m(x, t)  0, ∀(x, t) ∈ QT .



4.5. Global Existence 59

Proof. We take, as a test function u−, in the weak formulation of the first equation of (4.1),
then

(4.31)

d

2dt

∫

Ω
u2
− = −

∫

Ω
|∇u−|2 +

∫

Ω
u−∇v · ∇u− + µu2

− − µu3
−

¬ −1
2

∫

Ω
|∇u−|2 + (µ+

1
2
‖∇v‖2∞,QT )

∫

Ω
u2
− − µ

∫

Ω
u3
−.

In order to estimate the last term in the right-hand side of (4.31) we use Gagliardo-Nirenberg
and Young inequalities. Thus,

(4.32) ‖u−‖33 ¬ ε‖∇u−‖22 + ε‖u−‖22 + C(ε)‖u−‖62.

Finally, taking into account that ‖u−‖42,QT ¬ C, we can put the estimate (4.32) in (4.31) and
conclude with Gronwall Lemma that u− ≡ 0 in QT . Next, we know that

(4.33) v(x, t) = v0(x)e−
∫ t

0
m(x,s)ds,

therefore v(x, t)  0 in QT . Finally, since ug(v)  0, the non-negativity of m follows from the
standard maximum principle for parabolic equations.

From now on, in the rest of the chapter we will assume that (u0(x), v0(x),m0(x))  0.

4.5. Global Existence

In order to show that Tmax = +∞, where Tmax denotes the maximal interval of existence,
we have just to show that

(4.34) ‖(u, v,m)‖XT×YT×ZT ¬ C(T ),

with C(T ) < ∞, for all T > 0. Basically the method is the following. We apply the Corollary
4.7, this gives us a solution till a time t1 > 0, then we can apply again the Corollary 4.7 with
initial data

(u0, v0,m0) = (u(·, t1), v(·, t1),m(·, t1)).

Therefore, recursively we have an increasing sequence of times tk, k ∈ IN and thanks to (4.34)
tk → +∞. This method provides us with the existence of solution on [0, T ]. It should be stressed
that, a priori, we do not have uniqueness of solution on [0, T ] for any given T > 0 because the
Corollary 4.7 just assure uniqueness in Bt

R for t small. However, this difficulty can be solved
with the following argument. Let u1,u2 two solutions of (4.1). We define the set A by

A := {t ∈ [0, T ] : u1(·, t) 6= u2(·, t) in Y}.

Assume A 6= ∅, then there exists t∗ = inf A and t∗ > 0, thanks to Corollary 4.7. Hence, t∗−ε 6∈
A, for all ε > 0. Now, applying Corollary 4.7 at time t∗− ε we obtain that u1(·, t) = u2(·, t) for
all t ∈ [0, t∗ + k] with k > 0, contradicting the definition of t∗. Therefore A = ∅, concluding
the uniqueness result.

Lemma 4.10. For every t ∈ (0, Tmax), we have

‖u(t)‖1 ¬ max{|Ω|, ‖u0‖1} , ‖v(t)‖∞ ¬ ‖v0‖∞ , ‖w(t)‖1 ¬ C , ‖m(t)‖θ ¬ C ,

for all θ < 3.
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Proof. Integrating (4.1)1 in space we get

(4.35)
d

dt

∫

Ω
u = µ

∫

Ω
u(1− u− v).

Having in mind that v  0, u  0 and the inequality

‖u‖21 ¬ ‖u‖22|Ω|,

we have from (4.35) that

(4.36)
d

dt
‖u(t)‖1 ¬ µ‖u(t)‖1 − µ

|Ω|‖u(t)‖21.

Finally, solving the differential inequality (4.36) we have the boundedness of u. The boundedness
of v cames from the fact that vt ¬ 0. Taking into account that w = uz, we obtain

‖w(t)‖1 ¬ ‖u(t)‖1‖z(t)‖∞.

Since ‖z(t)‖∞ ¬ 1 we get the boundedness of w. The last bound it is just the parabolic
regularity, see for instance, [40, Lemma 4.1].

Lemma 4.11. Let τ > 0 as in Corollary 4.7. Then for every t ∈ (τ/2, Tmax) and every
p ∈ (1,∞) we have

(4.37) ‖u(t)‖p ¬ C(p).

Proof. From (4.15)1, we know that

(4.38) wt = z∇ · (z−1∇w) + µw(1− wz−1 − v) + wχ(v)mv.

On multiplying (4.38) by pwp−1z−1 we get

(4.39) wtpw
p−1z−1 = ∇ · (z−1∇w)pwp−1 + µpwpz−1(1− z−1w − v) + pwpχ(v)mvz−1.

After integrating (4.39) in space, we deduce

(4.40)

d

dt

∫

Ω
z−1wp = −4(p− 1)

p

∫

Ω
z−1|∇wp/2|2 + µp

∫

Ω
wpz−1(1− z−1w − v)+

+ (p− 1)
∫

Ω
z−1χ(v)wpmv.

Having in mind that z−1  1 and the estimate ‖v(t)‖∞ ¬ C then,

(4.41)
d

dt

∫

Ω
z−1wp ¬ −4(p− 1)

p

∫

Ω
|∇wp/2|2 + µp

∫

Ω
z−1wp + C(p− 1)

∫

Ω
wpm.

In what follows we estimate the last integral in the right-hand side with the use of Hölder and
Gagliardo-Nirenberg inequalities

(4.42)

µp

∫

Ω
wpm ¬ µp‖wp/2‖22j‖m‖j′

¬ C‖wp/2‖2θ1,2‖wp/2‖2(1−θ)
2/p ‖m‖j′

¬ ε‖wp/2‖21,2 + C
(
‖wp/2‖2(1−θ)

2/p

)q′
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where θ ∈ (0, 1) and q′, j′ stands for the dual exponents of q and j respectively. Observe that
in order to fulfill the requirements of the Gagliardo-Nirenberg inequality we have to pick j < 3.
On the other hand, from Lemma 4.10 we should take j > 3/2, thus j ∈ (3/2, 3) and

(4.43) µp

∫

Ω
wpm ¬ ε‖wp/2‖21,2 + C.

Adding k‖wp/2‖22 on both sides of (4.41) and thanks to the estimate (4.43) we get

(4.44)
d

dt

∫

Ω
z−1wp + k‖wp/2‖22 ¬

(
ε− 4(p− 1)

p

)
‖∇wp/2‖22 + (µpC + k + ε)‖wp/2‖22 + C.

In order to have uniform estimates in time we apply again Gagliardo-Nirenberg inequality
together with the young inequality to the last term in (4.44), this gives us

(4.45)
d

dt

∫

Ω
z−1wp +

k

2
‖wp/2‖22 ¬

(
2ε− 4(p− 1)

p

)
‖∇wp/2‖22 + C.

Finally using the fact that 1 ¬ z−1 ¬ C we obtain

(4.46)
d

dt

∫

Ω
z−1wp + C1

∫

Ω
z−1wp ¬ C2

with C1, C2 positive constants. Hence

(4.47)
∫

Ω
z−1(t)wp(t) ¬ C, ∀t ∈ (τ/2, Tmax).

Taking into account that z−1  1, we conclude the proof.

Remark 4.12. In order to cover the case p = ∞ in Lemma 4.11 we can use the Moser’s
technique, see [2]. Since, such a technique is standard and we have done something similar with
a different method in the previous chapter we skip the proof.

Lemma 4.13. Let p, γ as in Corollary 4.7. Then, for every t ∈ (τ/2, Tmax) we have

(4.48) ‖m(t)‖Xγ
p
¬ C.

Proof. For t ∈ (τ/2, Tmax) we know that

(4.49) m(t) = S(t)m(τ/2) +
∫ t

τ/2
S(t− s)ug(v) ds.

Therefore,

(4.50)

‖m(t)‖Xγ
p
¬ ‖AβpS(t)m(τ/2)‖p +

∫ t

τ/2
‖AβpS(t− s)ug(v)‖p ds

¬ C
(
τ

2

)−β
‖m(τ/2)‖p +

∫ t

τ/2
(t− s)−βe−δ(t−s)‖ug(v)‖p ds.

Finally, taking into account Lemma 4.11 we can easily conclude the Lemma.

Lemma 4.14. For every t ∈ (0, Tmax) we have

(4.51) ‖v(t)‖1,∞ ¬ Ct.
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Proof. Calculating explicitly the solution to (4.1)2 we get

(4.52) v(x, t) = v0(x)e−
∫ t

0
m.

Thus,

(4.53) ∇v = e−
∫ t

0
m
(
∇v0 − v0

∫ t

0
∇m

)
.

Next, taking into account Lemma 4.13 and the local existence Theorem, we can obtain the
desired result bounding (4.52) and (4.53) in L∞(Ω× (0, Tmax)).

In order to proof the last Lemma of the section we will use the following generalization of
Gronwall Lemma. This Lemma can be found, for example in [74]. We state it for the reader’s
convenience.

Lemma 4.15. For all t  0, let three functions λ, φ, u be given such that λ is integrable and
nonnegative, φ is absolutely continuous and u is continuous. If u(t) ¬ φ(t) +

∫ t
0 λ(s)u(s)ds,

then

u(t) ¬
∫ t

0
φ′(s)exp

(∫ t

s
λ(r)dr

)
ds+ φ(0)exp

(∫ t

0
λ(r)dr

)
.

Lemma 4.16. For t ∈ (τ/2, Tmax) we have

(4.54) ‖u(t)‖1,2 ¬ C(t).

Proof. First we observe that since u = wz and ‖z(t)‖1,∞ ¬ C for all t ∈ (0, Tmax) then it is
enough to prove that ‖w(t)‖1,2 ¬ C for all t ∈ (τ/2, Tmax). Next, we know that for t  τ/2 we
have

(4.55) w(x, t) = S(t)w(τ/2) +
∫ t

τ/2
S(t− s)θ(w, v,m) ds ,

with θ given in (4.17). Then, thanks to the information provided by the preceding lemmas, we
obtain

(4.56)

‖w(t)‖1,2 ¬ C +
∫ t

τ/2
(t− s)−1/2e−δ(t−s)‖θ(w, v,m)‖2 ds

¬ C1 + C2

∫ t

τ/2
(t− s)−1/2e−δ(t−s)s‖∇w‖2 ds

¬ C1 + C2

∫ t

τ/2
(t− s)−1/2e−δ(t−s)s‖w‖1,2 ds.

Finally the result follows from the generalized Gronwall Lemma.

Remark 4.17. A particular consequence of the previous lemmas are the uniform bounds in
time

‖u‖L∞(Ω×(0,∞)) ¬ C , ‖v‖L∞(Ω×(0,∞)) ¬ C , ‖m‖L∞(Ω×(0,∞)) ¬ C .
Therefore, it is not possible to have blow-up in L∞-norm even at infinity.

Remark 4.18. Under the assumption

(T ) m(x, t) > δ > 0 for all (x, t) ∈ Ω× [τ,+∞).

all the bounds of the previous Lemmas are independent of time. In fact, as we will see in the
next section, under the assumption (T ) we will prove even more.
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4.6. Asymptotic behaviour

In order to prove the convergence to the steady states, we will need an additional estimate
on the solutions to (4.1). Basically, the key of this convergence is the strong decay of ‖∇v(t)‖22
in time. In the proof of this decay we will use a tricky calculus that unfortunately oblige us to
pick v0(x) > 0 for all x ∈ Ω. Moreover we assume and additional hypothesis. Later on, we will
provide sufficient conditions on the initial data u0 in order to fulfill this additional hypothesis.

Lemma 4.19. Let τ > 0, v0 > 0. Assume that

(4.57) m(x, t)  δ > 0, ∀t  τ

then for all t  τ we have

(4.58)
∫

Ω
|∇v(t)|22 ¬ Ce−kt,

for all 0 < k < δ.

Proof. On one hand, from (4.1)2 we know

(4.59)
d

dt

∫

Ω
|∇v1/2|2 = −

∫

Ω
m|∇v1/2|2 − 1

2

∫

Ω
∇m · ∇v.

On the other hand from (4.1)3 we have

(4.60)
∫

Ω
mtv = −

∫

Ω
∇m · ∇v −

∫

Ω
mv +

∫

Ω
ug(v)v.

Therefore,

(4.61)
1
2

∫

Ω
∇m · ∇v =

d

2dt

∫

Ω
mv − 1

2

∫

Ω
vtm+

1
2

∫

Ω
mv − 1

2

∫

Ω
ug(v)v.

Using (4.61) in (4.59) we get

(4.62)
d

dt

∫

Ω
|∇v1/2|2 +

∫

Ω
m|∇v1/2|2 =

d

2dt

∫

Ω
mv +

1
2

∫

Ω
m2v +

1
2

∫

Ω
mv − 1

2

∫

Ω
ug(v)v.

Now, thanks to (4.57), (4.62) is estimated as follows

(4.63)

d

dt

(
ekt
∫

Ω
|∇v1/2|2

)
¬ ekt d

dt

∫

Ω
mv +

ekt

2

∫

Ω
m2v +

ekt

2

∫

Ω
mv − ekt

2

∫

Ω
ug(v)v

¬ d

dt

(
ekt
∫

Ω
mv

)
+
ekt

2

∫

Ω
m2v +

ekt

2

∫

Ω
mv.

After integrating between τ and t (4.63) we obtain

(4.64)
ekt
∫

Ω
|∇v1/2(t)|2 ¬ ekτ

∫

Ω
|∇v1/2(τ)|2 +

ekt

2

∫

Ω
mv − ekτ

2

∫

Ω
m(τ)v(τ)+

+
1
2

∫ t

τ

(∫

Ω
m2v

)
eksds+

1
2

∫ t

τ

(∫

Ω
mv

)
eksds.

Since v(x, t) = v(x, τ)e−
∫ t
τ
m and m(x, t)  δ then

(4.65) v(x, t) ¬ Ce−δt.
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Putting the estimate (4.65) in (4.64) and keeping in mind the uniform estimates of m in
L∞(Ω× (0,+∞)) we get

(4.66) ekt
∫

Ω
|∇v1/2(t)|2 ¬ C.

Finally, from (4.66) and taking into account that 1/v  1/M , with M = supΩ v0(x) we conclude
the Lemma.

Lemma 4.20. Let g(v) = 1.

• If µ = 0 and u0 > ε > 0 then (4.57) is satisfied.

• If µ > 0, u0 > ε > 0 and v0 < 1 then (4.57) is satisfied.

Proof. We know that

(4.67) wt = z∇ · (z−1∇w) + µw(1− wz−1 − v) + wχ(v)mv.

Let us take δ > 0, a constant to be fixed later on. On multiplying (4.67) by (w − δ)− and
integrating in the space variable we get

(4.68)

d

2dt

∫

Ω
z−1(w − δ)2

− = −
∫

Ω
z−1|∇(w − δ)−|2 + µ

∫

Ω
wz−1(w − δ)−(1− wz−1 − v)+

+
∫

Ω
wχ(v)mvz−1(w − δ)− − 1

2

∫

Ω
z−1χ(v)mv(w − δ)2

−.

Assume µ = 0 then the right-hand side of (4.68) is nonpositive, thus

(4.69) z(t)−1(w(t)− δ)2
− ¬ z−1

0 (w0 − δ)2
−.

Since u0 > ε > 0 then w0 > ε′ > 0. Thus, taking δ = ε′ we get w(t)  ε′ for all t  0. So
u(t)  ε′ for all t  0.
Assume µ > 0. In order to show that u(t)  ε′ for all t  0 we have just to prove that

(4.70) µwz−1(w − δ)−(1− wz−1 − v) ¬ 0.

Observe that we can claim that wz−1 < ε just taking δ sufficiently small. Otherwise, the left-
hand side of (4.70) would be zero. Therefore if v0 < 1 then v0 + ε < 1 and v+ ε < 1 because v is
non-increasing in time. Thus, we have proved (4.70). Next, thanks to the property u(t)  ε′ > 0
for all t  0 we can conclude, from the maximum principle that m  m̃ with m̃ the solution to
the parabolic problem

(4.71)





m̃t −∆m̃+ m̃ = ε′ in Ω× (0,∞),
∂m̃
∂n = 0 on ∂Ω× (0,∞),
m̃(x, 0) = m0(x) in Ω.

Now, (4.57) holds taking into account that m̃ > δ for all t  τ > 0 because of the strong
maximum principle.

Remark 4.21. Let us point out that in Lemma 4.20 we have proved additionally that under
conditions u0 > 0 and 0 < v0 < 1 if µ 6= 0 then u(t)  ε′ independently of the value of g.
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Now, we state our first large time behaviour result that refers to the case g(v) = 1

Theorem 4.22. Let g(v) = 1, τ > 0, t  τ , any given initial data (u0, v0,m0)  0, v0 > 0,
u0 > 0 in the class Y and v0 < 1 if µ > 0. Then the solution to (4.1) (u, v,m) satisfies that,

• if µ = 0,

(4.72) ‖u(t)− u‖22 ¬ Ce−θt, ‖v(t)‖∞ ¬ Ce−δt, ‖m(t)− u‖22 ¬ Ce−αt

with θ, δ, α > 0 and u =
1
|Ω|

∫

Ω
u0,

• if µ > 0,

(4.73) ‖u(t)− 1‖22 ¬ Ce−θt, ‖v(t)‖∞ ¬ Ce−δt, ‖m(t)− 1‖22 ¬ Ce−ρt,

with ρ > 0.

Proof. First, Lemma 4.20 gives us (4.57) and from there, using the explicit formula of v we
get v(x, t) ¬ v0(x)e−δt. In what follows we distinguish between two cases.
Case 1.- Assume µ = 0. We know that

(4.74) (u− u)t = ∇ · (∇u− uχ(v)∇v).

On multiplying (4.74) by u− u and integrating in space we get

(4.75)

d

2dt

∫

Ω
(u− u)2 = −

∫

Ω
|∇u|2 +

∫

Ω
uχ(v)∇v · ∇u

¬ (ε− 1)
∫

Ω
|∇u|2 + C

∫

Ω
|∇v|2.

Next, the Poincare-Wintinger inequality gives us

(4.76)
2(1− ε)
Cpoin

∫

Ω
(u− u)2 ¬ 2(1− ε)

∫

Ω
|∇u|2,

where Cpoin is a constant coming from the Poincare inequality. Putting the estimate (4.76) in
(4.75) we obtain

(4.77)
d

dt

∫

Ω
(u− u)2 + θ

∫

Ω
(u− u)2 ¬ C

∫

Ω
|∇v|2

with θ < min{k, 2(1−ε)
Cpoin

}. Therefore, owing to Lemma 4.19, we obtain

(4.78)
d

dt

(
eθt
∫

Ω
(u− u)2

)
¬ e(θ−k)t.

Since, θ < k then

(4.79) ‖u(t)− u‖22 ¬ Ce−θt.

From (4.1)3 we have

(4.80) (m− u)t = ∆m− (m− u) + u− u.
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After multiplying (4.80) by m− u and applying Hölder inequality we get

(4.81)
d

dt

∫

Ω
(m− u)2 + α

∫

Ω
(m− u)2 ¬ C

∫

Ω
(u− u)2,

with α < min{1, θ}. Now, this case can be easily concluded if we take into account (4.79).
Case 2.- µ > 0. On multiplying (4.1)1 by u− 1 and integrating in the space variable we obtain

(4.82)

d

2dt

∫

Ω
(u− 1)2 = −

∫

Ω
|∇u|2 +

∫

Ω
uχ(v)∇v · ∇u− µ

∫

Ω
u(u− 1)2 − µ

∫

Ω
u2v + µ

∫

Ω
uv

¬ (ε− 1)
∫

Ω
|∇u|2 + C

∫

Ω
|∇v|2 − µδ

∫

Ω
(u− 1)2 + C

∫

Ω
e−δt.

Owing to Lemma 4.20 we have

(4.83)
d

dt

(
eθt
∫

Ω
(u− 1)2

)
¬ Ce(θ−k)t + Ce(θ−δ)t.

For any θ < min{µδ, k}. Next, (4.83) leads us to

(4.84) ‖u− 1‖22 ¬ Ce−θt.
For the estimates on m we have just to repeat the calculations that we have done for the case
µ = 0.

The next Theorem shows that the convergence to the steady-states is, in fact, in stronger
norms.

Theorem 4.23. Let g(v) = 1, p ∈ (2,+∞), β < 1 and µ  0 then, under conditions of
Theorem 4.22, we have

(4.85) ‖m− uµ‖Xβ
p
¬ Ce−θt, ‖v‖1,∞ ¬ Ce−δt, ‖u− uµ‖1,∞ ¬ Ce−θt, t  τ > 0.

for any θ, δ > 0 and

(4.86) zµ :=

{
z if µ = 0,
1 if µ > 0.

Proof. We will provide the proof only for µ > 0. The case µ = 0 follows in a similar way. From
the uniform bound in L∞ for m we get

(4.87) ‖m(t)− 1‖pp =
∫

Ω
|m(t)− 1|p ¬ C

∫

Ω
|m(t)− 1|2 ¬ Ce−αt

Observe that arguing in the same manner for u we obtain ‖u(t) − 1‖pp ¬ e−γt. Since 1 is the
solution to 




zt −∆z + z = 1 in Ω× (0,+∞),
∂z
∂n = 0 on ∂Ω× (0,+∞),
z(x, 0) = 1 in Ω.

then 1 = S(t)1 +
∫ t
τ S(t− s)1. Therefore,

(4.88)

‖m(t)− 1‖
Xβ
p
¬ Cτ−βe−δt‖m(τ)− 1‖p +

∫ t

τ
‖S(t− s)(w − 1)‖

Xβ
p

¬ Cτ−βe−δt +
∫ t

τ
(t− s)−βe−δt‖u− 1‖p

¬ Cτ−βe−δt + Ce−min{δ,θ}t
∫ t

τ
(t− s)−β

¬ Cτ−βe−δt + Ce−min{δ,θ}t(t− τ)1−β.
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Since, for p > 3 and β ∈
(

1
2 + 3

2p , 1
)
, Xβ

p ↪→ C1(Ω) then

(4.89) ‖∇m‖∞ ¬ Ce−kt,

with k < min{δ, θ}. For v, we know that v ¬ v0e
−δt. On the other hand,

(4.90) ∇v = e−
∫ t

0
m
(
∇v0 − v0

∫ t

0
∇m

)
.

Therefore, taking into account (4.89), we have

(4.91) ‖∇v‖∞ ¬ e−δt
(
‖∇v0‖∞ +

C‖v0‖∞
k

(1− e−kt)
)
.

We claim that there exist θ′ > 0 such that

(4.92) ‖w − 1‖22 ¬ Ce−θ
′t.

Observe that it is enough to prove that ‖w − u‖22 ¬ Ce−θ
′′t for any θ′′ > 0.

(4.93)

∫

Ω
(w − u)2 =

∫

Ω
w2(1− z−1)2

¬ C
∫

Ω
(1− z−1)2

= C

∫

Ω
(e
∫ v

0
χ − e0)2

¬
∫

Ω
C

∣∣∣∣
∫ v

0
χ(s)ds

∣∣∣∣
2

¬
∫

Ω
C

(
max

s∈[0,maxΩ v0(x)]
χ(s)

)2

v2

and thanks to (4.73), the estimate(4.92) holds. Thus,

(4.94) ‖w − 1‖p ¬ Ce−ρt.

Moreover, we know that

(4.95) w(t)− 1 = S(t)(w(τ)− 1) +
∫ t

τ
S(t− s)(θ(w, v,m)− 1)ds,

where θ was defined in (4.17). Now, we pick p > 3 and β < 1 such that Xβ
p ↪→W 1,∞(Ω), then

(4.96)

‖w − 1‖Xγ
p
¬ Cτ−βe−δt‖w(τ)− 1‖p + C

∫ t

τ
(t− s)−βe−δ(t−s)‖θ(w, v,m)− 1‖pds

¬ Cτ−βe−δt + C

∫ t

τ
(t− s)−βe−δ(t−s)(‖w − 1‖p + ‖∇v‖∞ + ‖1− u‖p + 2‖v‖∞)ds

and from (4.96) it is not difficult to deduce that

‖u− 1‖1,∞ ¬ Ce−θ′′′t.
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Remark 4.24. We point out that if the m-equation i.e. (4.9)3 is of the form mt = ∆m−βm+αu
with α > 0, β > 0 then, Theorem 4.23 differs slightly. In particular, we have

(4.97) ‖m− (β/α)uµ‖Xβ
p
¬ Ce−θt, ‖v‖1,∞ ¬ Ce−δt, ‖u− uµ‖1,∞ ¬ Ce−θt, t  τ > 0.

In the rest of the section we deal with the case g(v) = v. By contrast with the case g(v) = 1
we will just prove convergence to the steady-states without any rate. In order to do that we
will use the Lemma 3.31.

Theorem 4.25. Let g(v) = v, τ > 0, t  τ and any given initial data u0, v0,m0  0, v0 > 0,
u0 > 0 in the class Y. Then the solution to (4.1) satisfies,

• if µ = 0,

(4.98) lim
t→+∞ ‖u(t)− u‖22 = 0, lim

t→+∞ ‖v(t)‖2 = 0, lim
t→+∞ ‖m(t)‖22 = 0

• if µ > 0,

(4.99) lim
t→+∞ ‖u(t)− 1‖22 = 0, lim

t→+∞ ‖v(t)‖2 = 0, lim
t→+∞ ‖m(t)‖22 = 0,

under the additional condition v0 < 1.

Proof. On multiplying (4.1)3 by m and thanks to the uniform bound on u in L∞(Ω× (τ,+∞))
we obtain

(4.100)
d

2dt

∫

Ω
m2 +

∫

Ω
m2 +

∫

Ω
|∇m|2 ¬ C

∫

Ω
vm.

Next, taking into account that mv = −vt, we can integrate (4.100) in (τ,+∞) and obtain

(4.101)
∫ +∞

τ

∫

Ω
m2 ¬ C ,

∫ +∞

τ

∫

Ω
|∇m|2 ¬ C.

From (4.101) easily follows

(4.102)
∫ +∞

τ

∣∣∣∣
d

dt

∫

Ω
m2
∣∣∣∣ ¬ C

Therefore, thanks to (4.101) and (4.102), we can apply Lemma 3.31 with y(t) =
∫

Ωm
2. For the

convergence of v we take (4.62)

(4.103)
d

dt

∫

Ω
|∇v1/2|2 +

∫

Ω
uv2 +

∫

Ω
m|∇v1/2|2 =

d

2dt

∫

Ω
mv +

1
2

∫

Ω
m2v +

∫

Ω
mv.

Thanks to the uniform bound of m in L∞(Ω× (τ,+∞)) we can argue exactly as in (4.100) and
we deduce that

(4.104)
∫ +∞

τ

∫

Ω
uv2 ¬ C.

Now, having in mind Remark 4.21, we get from (4.104)

(4.105)
∫ +∞

τ

∫

Ω
v2 ¬ C.
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The bound (4.105) together with

(4.106)
∫ +∞

τ

∣∣∣∣
d

2dt

∫

Ω
v2
∣∣∣∣ ¬ C

∫ +∞

τ

∫

Ω
−vt ¬ C

and Lemma 4.21 conclude that lim
t→+∞ ‖v(t)‖22 = 0. Now, we distinguish between two cases.

Case 1.- µ = 0. We know that w satisfies

(4.107) (w − u)t = z∇ · (z−1∇w) + µw(1− wz−1 − v) + wχ(v)mv.

On multiplying (4.107) by w − u and integrating in space we get

(4.108)

d

2dt

∫

Ω
z−1(w − u)2 = −

∫

Ω
z−1|∇w|2 +

∫

Ω
wz−1χ(v)mv(w − u)−

− 1
2

∫

Ω
z−1χ(v)mv(w − u)2

¬ −
∫

Ω
z−1|∇w|2 + C.

∫

Ω
mv

Taking into account that mv = −vt then, after integrating in time (4.108), we have

(4.109)
∫ +∞

τ

∫

Ω
z−1|∇w|2 ¬ C.

Having in mind (4.109) it is not difficult to obtain

(4.110)
∫ ∞
τ

∣∣∣∣
d

dt

∫

Ω
z−1(w − u)2

∣∣∣∣ ¬ C.

Since 1 ¬ z ¬M , then in order to apply Lemma 3.31 it is enough to prove

(4.111)
∫ +∞

0

∫

Ω
(w − u)2.

In fact, having in mind that

(4.112)
∫ +∞

τ

∫

Ω
(w − u+ u− w)2 ¬

∫ +∞

0

∫

Ω
(w − w)2 +

∫ +∞

0

∫

Ω
(u− w)2

we have just to show that
∫+∞
τ

∫
Ω(u− w)2 ¬ C. Therefore

(4.113)

∫ +∞

τ

∫

Ω
(u− w)2 =

1
|Ω|

∫ +∞

τ

(∫

Ω
w(1− z−1)

)2

¬ C

|Ω|
∫ +∞

τ

∫

Ω
(1− z−1)2

=
C

|Ω|
∫ +∞

τ

∫

Ω
(e
∫ v

0
χ − e0)2

¬ C

|Ω|
∫ +∞

τ

∫

Ω
C

∣∣∣∣
∫ v

0
χ(s)ds

∣∣∣∣
2

¬ C

|Ω|
∫ +∞

τ

∫

Ω
Cv2

From (4.113) and taking into account (4.105) we conclude

(4.114) lim
t→+∞ ‖w − u‖

2
2 = 0.
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Finally, since w → u strong in L2 then u→ u strong in L2.
Case 2.- µ > 0. On multiplying (4.67) by w − 1 we obtain
(4.115)

d

2dt

∫

Ω
z−1(w − 1)2 = −

∫

Ω
z−1|∇w|2 + µ

∫

Ω
wz−1(1− wz−1 − v)(w − 1)+

+
∫

Ω
wz−1χ(v)mv(w − 1)− 1

2

∫

Ω
z−1χ(v)mv(w − 1)2

¬ −
∫

Ω
z−1|∇w|2 − µ

∫

Ω
wz−1(w − 1)2 + µ

∫

Ω
w2z−1(1− z−1)(w − 1)−

− µ
∫

Ω
wz−1v(w − 1) + C

∫

Ω
−vt.

Having in mind that w  θ > 0 (see Remark 4.21) and applying Young’s inequality in (4.108)
we get

(4.116)

d

2dt

∫

Ω
z−1(w − 1)2 + (µθ − 2ε)

∫

Ω
z−1(w − 1)2 +

∫

Ω
z−1|∇w|2 ¬ C

∫

Ω
(1− z−1)2+

+ C

∫

Ω
v2 + C

∫

Ω
−vt.

After integrating (4.116) in time and owing to (4.113), (4.105) we infer

(4.117)
∫ +∞

τ

∫

Ω
z−1(w − 1)2 +

∫ +∞

τ

∫

Ω
z−1|∇w|2 ¬ C

From (4.117) and (4.115) we can deduce

(4.118)
∫ ∞
τ

∣∣∣∣
d

dt

∫

Ω
z−1(w − u)2

∣∣∣∣ ¬ C

and conclude, thanks to Lemma 3.31, that w → 1 strong in L2. Finally, the convergence of w
together with the strong convergence in L2 of w to u finishes the proof of the Theorem.
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