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Abstract

The thesis addresses three problems arising from mass spectrometry

(MS) data processing. It describes computational methods for solving

them and stochastic models that formalize some of them.

The first problem is redundancy elimination in liquid chromatography

MS (LC-MS) images of peptides. An algorithm for isotopic envelopes

detection based on the sweeping method is presented. It consists of

grouping peaks corresponding to different isotopic versions of the same

particle kind and automatic determination of the charge of the group.

A dynamic programming algorithm is given that proposes amino acid

composition for a given weight of a peptide which helps to asses the

quality of isotopic envelopes.

Two solutions are presented to the second problem — the problem

of LC-MS spectra alignment. The first one estimates retention time

shifting and scaling with a Metropolis-Hastings algorithm. The sec-

ond one uses a two stage clustering approach consisting of a DBSCAN

algorithm pass and gaussian mixture model based clustering (estima-

tion is based on the Expectation-Maximization algorithm).

The last problem is inferring peptidase activity from LC-MS data.

Firstly, a bayesian model based on the chemical master equation for

exopeptidases is presented together with a Metropolis-Hastings algo-

rithm for parameter estimation. The model is tested on synthetic

and real datasets. Then an extended version is developed that han-

dles also endopeptidases and integrates knowledge from the MEROPS

peptidase database. Parameter estimation involves solving non-linear

least squares problem.



Key words: stochastic modeling, proteomics, Metropolis-Hastings

algorithm, Expectation-Maximization, liquid chromatography mass

spectrometry, mass spectra alignment, peptidase activity, chemical

master equation, triangular matrix exponentiation

ACM classification: J.3 Biology and genetics



Acknowledgements

Firstly, I would like to express my gratitude to Anna Gambin — my

advisor — for guiding me, showing patience and understanding for my

non-scientific passions and continuous encouragement to complete this

project. I also thank all my co-authors, for without them this work

would not have been possible. I am grateful to all my friends and col-

leagues whom I work with for creating such great atmosphere. I have

really enjoyed the time spent with you. Finally, I thank my family for

the support they have been giving me throughout this journey.

The research described here was supported by the Ministry of Sci-

ence and Higher Education grants PBZ-KBN-088/P04/2003, KBN-3-

T11F-021-28, PBZ-MNiI-2/1/2005, N N301 065236, N N206 356036

and the Integrated Regional Operational Programme financed the Eu-

ropean Social Fund and the Polish Government. The computational

resources were provided by the CoE BioExploratorium project: WKP

1/1.4.3/1/2004/44/44/115.



Contents

1 Introduction 1

2 Mass spectra preprocessing 7

2.1 LC-MS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 1D spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 2D spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Peak picking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Isotopic envelopes detection . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Noise Filtering . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Isotopic Cluster Identification . . . . . . . . . . . . . . . . 15

2.3.3 Automated Charge Determination . . . . . . . . . . . . . . 18

2.3.4 Isotopic model (mass decomposition) . . . . . . . . . . . . 19

2.3.5 Mass and Volume Calculation . . . . . . . . . . . . . . . . 22

2.3.6 Automated interpretation results . . . . . . . . . . . . . . 22

3 Mass spectra alignment 27

3.1 Alignment via retention time transformation . . . . . . . . . . . . 28

3.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Solution through the Metropolis–Hastings algorithm . . . . 29

3.1.3 Alignment results . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Alignment via clustering . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Model based clustering . . . . . . . . . . . . . . . . . . . . 37

3.2.2 DBSCAN algorithm . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Retention time correction . . . . . . . . . . . . . . . . . . 44

3.2.4 Feature selection and False Discovery Rates . . . . . . . . 44

v



CONTENTS

3.2.5 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.7 Visual validation . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.8 Classification based validation . . . . . . . . . . . . . . . . 51

4 Proteolytic activity modelling 59

4.1 Stationary model for exopeptidase activity . . . . . . . . . . . . . 62

4.1.1 Model description . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Estimation procedure . . . . . . . . . . . . . . . . . . . . . 70

4.1.3 Model testing . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.4 Validation on LC-MS data . . . . . . . . . . . . . . . . . . 74

4.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Time dependent model for peptidase activity . . . . . . . . . . . . 79

4.2.1 Cleavage process . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.2 Matrix exponentiation . . . . . . . . . . . . . . . . . . . . 85

4.2.3 Estimation procedure . . . . . . . . . . . . . . . . . . . . . 87

4.2.4 MEROPS – a peptide cleavage database . . . . . . . . . . 87

4.2.5 Results and conclusions . . . . . . . . . . . . . . . . . . . 90

5 Conclusions 95

Bibliography 97

vi



Chapter 1

Introduction

According to (RNCOS, 2010) the market for bioinformatics will grow annually

by 24% during years 2011–2013. The report indicates that proteomics will be-

come a significant contributor to this growth as a result of the rise of interest in

personalized medicine.

One of the technologies that help in understanding proteomics is mass spec-

trometry (MS). It offers the possibility of performing exhaustive analyses of com-

plex mixtures containing thousands of molecules in a single experiment. A typical

mass spectrometer ionizes the molecules forming the mixture being analyzed, then

separates them according to their mass-to-charge ratio by an electromagnetic field

and finally measures their quantity using a detector. Mass spectrometers differ

in the implementations of these stages (Fenn et al., 1989; March, 2000; Marshall

et al., 1998). Such experiments produce large amounts of data and therefore can

only be interpreted with help of a computer running specialized algorithms. This

thesis presents solutions for various problems that come along the road from raw

mass spectrometry data to biological conclusions.

The results of this thesis are two-fold:

• Computational methods for a set of problems related to mass spectrometry

data were developed using the frameworks of Expectation Maximization,

Markov chain Monte Carlo Metropolis-Hastings sampling and dynamic pro-

gramming.
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1. INTRODUCTION

• The biological process of peptide proteolysis was captured into a stochastic

model with input from mass spectrometry data and biological databases.

It is formalized as a variant of the chemical master equation.

As a byproduct also some insights into the triangular matrix exponentiation are

presented that can be turned into a dynamic programming algorithm.

Interdisciplinary studies, such as this require interaction of people with differ-

ent backgrounds ranging from physicians, bioinformaticians and biostatisticians

with experience in various methods of data processing and analysis to wet lab-

oratory technicians. While working on my thesis I had a great opportunity to

cooperate with leading experimental labs — with the team led by prof. Micha l

Dadlez from the Institute of Biochemistry and Biophysics of Polish Academy of

Sciences and the team led by prof. Jerzy Ostrowski from the Maria Sk lodowska-

Curie Institute of Oncology. All the MS data used in this thesis come from one

of these two labs.

The first part deals with MS data preprocessing which consists of noise re-

duction and redundancy elimination. A raw spectrum can be thought of as a

function R → R (see Fig. 2.1) or R2 → R (LC-MS, i.e. liquid chromatography

mass spectrum; see Fig. 2.3) while useful information is the position and height

of peaks of this function. The first step is therefore producing a list of peaks

(it is often called peak picking) and grouping peaks corresponding to the same

particles differing in charge or isotopic version. Chapter 2, based on (Gambin

et al., 2007), proposes procedures for solving these problems. After an introduc-

tion to LC-MS data and dealing with the peak picking problem with the use

of NMR (Nuclear Magnetic Resonance) software package NMRPipe (Delaglio

et al., 1995) our approach to isotopic envelopes detection (i.e. grouping peaks

from different isotopic versions of the same particle) is described. The novelty

of this approach lies in looking at a 2D spectrum (LC-MS) as a whole. It is

a substantial generalization of the THRASH method (Horn et al., 2000) which

was designed for 1D data. Besides being involved in the conceptual design of

our procedure (a variant of the sweeping method) I created a dynamic program-

ming algorithm that proposes amino acid composition for a given weight of a

peptide. The method described here was implemented as the mz2m software tool

2



available at http://mz2m.sourceforge.net (Krzysztof Kowalczyk is the main

author) which was used by the MS laboratory of the Institute of Biochemistry

and Biophysics of Polish Academy of Sciences.

Chapter 3 deals with the problem of mass spectra alignment. Formal state-

ments of this problem may vary but the essence is to provide a way to compare two

or more mass spectra. In order to do that signals coming from the same particles

in different spectra must be identified. It is a crucial step in medical diagnostics

applications. Lange et al. (2008) present an overview and comparison of LC-MS

alignment procedures. Some approaches bypass the feature extraction stage (i.e.

pick peaking) and work with raw LC-MS data by warping the retention time di-

mension (Bylunda et al., 2002; Prince and Marcotte, 2006), the majority however

try to align discrete objects (peaks) (Lange et al., 2007; Li et al., 2005; Smith

et al., 2006). The main source of problems is large between-experiment variabil-

ity of retention times due to imperfections in liquid chromatography technology.

Two solutions to the LC-MS alignment problem are presented in this thesis: affine

transformations of the retention times and clustering based on gaussian mixtures.

In the first method I use fk(t) = akt + bk functions indexed by the spectra

being aligned to correct the retention times. I define a criterion for optimization

over the a and b parameters which favors the transformations where peaks have

many neighboring peaks from other spectra. The Metropolis-Hastings algorithm

(Hastings, 1970) is used as the optimization procedure. We applied this method

in (Kluge et al., 2009), the paper however did not describe the details of the

algorithm.

The second method (Gambin et al., 2006;  Luksza et al., 2009) is as far as

we know the first application of model based clustering to LC-MS proteomic

data. Such methodology was previously used with transcriptomic data (Yeung

et al., 2001), but we were facing a significantly harder task due to much larger

size of the computational problem. We decided to break clustering into two

stages. In the first stage we obtain preliminary clusters from the DBSCAN (Es-

ter et al., 1996) algorithm and in the second stage we tackle smaller problems

with gaussian mixtures, i.e. we estimate parameters of the mixture using the

Expectation-Maximization algorithm (Dempster et al., 1977; Minka, 1998). We

compare 9 variants with different parametrizations of the covariance matrix for

3
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1. INTRODUCTION

the gaussian distributions and the method from the XCMS package (Smith et al.,

2006). I implemented some of the variants and was involved in conceptual work

on the model.

It is difficult to judge the quality of the alignments because we do not know the

ground truth. Besides visual comparison we employ the False Discovery Rates

concept (Benjamini and Hochberg, 1995) to assess different alignments in the

context of patient classification problem.

Chapter 4 concentrates on modeling proteolytic activity, i.e. the process of

cutting peptides by enzymes. It is an important topic due to the role of this

process in neoplastic diseases (Villanueva et al., 2006b).

Medical diagnostics based on mass spectra of blood samples is difficult, be-

cause of large variability of images caused by ex-vivo proteolysis. Paradoxically,

one can try to take advantage of the differences in the proteolytic activity between

samples. To this aim we built a two component bayesian model (Kluge et al.,

2009) that formalizes amino acid chain cleaving. The first component describes

peptide degradation resulting from exopeptidase1 activity, while the second one

handles acquisition of the concentrations of peptides from LC-MS data. It is

assumed that the process is in the stationary state. We design and implement a

Metropolis-Hastings algorithm for sampling from the model’s posterior distribu-

tion. We test it on synthetic datasets and real colorectal cancer datasets.

The second part of Chapter 4 is based on (Gambin and Kluge, 2010) and de-

scribes a new version of the proteolysis model that handles cuts at arbitrary sites

of the amino acid chains (i.e. it covers both exopeptidases and endopeptidases2)

and describes the system in time (process stationarity is not assumed). Moreover

peptidase cleavage patterns from the MEROPS database (Rawlings and Barrett,

2000) are integrated into the model. The estimation procedure and the error

model for LC-MS readings is simplified — we use the L-BFGS-B algorithm (Lu

et al., 1994) in order to solve a non-linear least squares problem.

1Exopeptidases are enzymes that cleave a single amino acid from an end of an amino acid

chain.
2Endopeptidases cleave somewhere in the middle (i.e. not at the ends) of an amino acid

chain.
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One of the subroutines used by the estimation procedure is triangular matrix

exponentiation that solves a linear differential equations system. We give a re-

cursive formula for the entries of the resulting matrix, which can be translated

into a dynamic programming algorithm. It could be especially useful in symbolic

computations3. We did not see such characterization of the triangular matrix

exponentiation in the literature.

I was involved in all stages of the proteolysis modeling project. I implemented

our methods and computational experiments. To the best of our knowledge these

are the first models built specifically with peptidase activity in mind for LC-MS

data with potential applications to medical diagnostics.

3In our implementation a function from one of the R software package (Team, 2009) libraries

is used.
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Chapter 2

Mass spectra preprocessing

Raw data files produced by mass spectrometers are far from being interpretable

biologically or chemically. These are simply lists of mass-to-charge ratios of par-

ticles interacting with a detector (hitting it or passing near it depending on the

mass spectrometry technology used). If the machine is fitted with a liquid chro-

matography column, then also particles’ passage time through the column (known

as the retention time) is recorded, which corresponds to hydrophobicity. In order

to save space, this information is usually binned along the mass-to-charge ratio

and the retention time dimension and only counts of particles in each bin are

produced.

If these data are to shed light on biological processes, they have to be presented

from a biologically meaningful point of view. This may include determining what

peptide sequences are present in a sample or grouping signals that correspond to

the same peptide.

Section 2.1 introduces and describes LC-MS data. Section 2.2 deals with

pick peaking which is the problem of converting a sampled continuous signal into

a list of peaks. A brief description is presented of how we cope with this problem

using the NMRPipe (Delaglio et al., 1995) package. For the isotopic envelopes

detection problem custom software was developed by Krzysztof Kowalczyk with

parts written by me. The results were published in (Gambin et al., 2007) and are

described in Section 2.3.

7



2. MASS SPECTRA PREPROCESSING
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Figure 2.1: A 1-dimensional mass spectrum. On the horizontal axis is the mass-

to-charge ratio (in thomsons), on the vertical – the intensity, i.e. the number

of particles (in unspecified units). Peaks can be seen corresponding to parti-

cles with specific mass-to-charge ratio. Only a part of the spectrum is shown

(about 1.5% of the domain) as the mass-to-charge ratio ranges in our data from

300 Th to 2000 Th.

2.1 LC-MS data

2.1.1 1D spectra

First, a 1-dimensional mass spectrum will be described. In a raw form this is

simply a list of mass-to-charge ratios of particles that interacted with the detec-

tor. The detector however is not perfect and small deviations in mass-to-charge

ratios occur. Furthermore this list is binned in order to save space so only counts

of particles in each bin are available. The spectrum is usually depicted as a func-

tion R → R as in Fig. 2.1 which is the result of interpolating the counts in

bins. The horizontal axis corresponds to the mass-to-charge ratio given in minus

thomsons (1 Th = 1 Da
e

, where 1 Da (dalton) is the atomic mass unit and 1 e is

the electron charge). Peaks of this function correspond to particles with specific

mass-to-charge ratio. Their height (or volume) roughly describes the amount of

8



2.1 LC-MS data
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Figure 2.2: An isotopic envelope of a single peptide consisting of six peaks (addi-

tional three small peaks are noise). The leftmost peak is the monoisotopic peak,

i.e. corresponding to particles with no 13C atoms (12C atoms only). Next peak

(the largest one) corresponds to particles with exactly one 13C atom. The peaks

are spaced 1
4
Th apart indicating that the particles have charge −4 e.

the particles, but we do not specify the units this amount is expressed in.

Many authors do not distinguish 1 Th from −1 Th. We also will not, since

this work deals exclusively with positive (proton) charges and it will not lead to

confusion.

Usually one sees groups of peaks spaced closely and regularly. These are

the isotopic envelopes (see Fig. 2.2). Each peak in such group corresponds to

a particle with the same atomic composition and the same charge but having

different mass due to different isotopic composition.

Peptides are composed of carbon, hydrogen, nitrogen, oxygen, phosphorus

and sulfur atoms. All of them come in multiple isotopic versions differing in the

number of neutrons and mass in consequence. Many of those versions occur rarely

in nature and can be ignored. A particle that consists only of the most abundant

(principle) isotopes is called monoisotopic. Most common carbon isotopes are
12C with 6 neutrons (98.9% of carbon atoms in nature) and 13C with 7 neutrons

9



2. MASS SPECTRA PREPROCESSING

(1.1% of carbon atoms in nature).

Shape of each envelope can be inferred given the atomic composition of a par-

ticle. Assume a particle with n carbon atoms is considered. The peaks in its

isotopic envelope are shaped like a binomial distribution with parameters n (the

number of trials) and 0.011 (success probability), i.e. a particle can be treated as

composed of independently chosen isotopic versions of each carbon atom. This

scheme can be generalized to include more isotopes, however it is not needed in

applications considered in this thesis.

Peaks in an isotopic envelope are spaced 1
ch

Th apart, where ch is the number

of additional protons attached (each having charge −1 e) while the particle was

passing through the spectrometer. This number can vary depending on the mass

spectrometry technology used. In data sets considered here one can observe

particles with charges in range −8 e to −1 e. Therefore a single particle type (the

same peptide) can have a few isotopic envelopes, each corresponding do a different

charge. The mass-to-charge ratios of peaks in those envelopes can be computed

easily given the atomic composition of a particle, as long as one remembers to

take into account masses of additional protons.

The mass-to-charge ratio range of the data depends on the spectrometer

settings. The range for the data presented in this section’s figures was set to

300 Th to 2000 Th. The data was obtained from human blood plasma samples

and was provided by the Mass Spectrometry Laboratory of the Institute of Bio-

chemistry and Biophysics of Polish Academy of Sciences.

2.1.2 2D spectra

Previous paragraphs describe a 1-dimensional mass spectrum. When dealing with

a complex peptide mixture such as blood plasma a 1-dimensional spectrum can be

hard to interpret, because images of different particles are crowded together. In

order to decrease the overlap one can stratify the mixture according to particles’

hydrophobicity and produce a separate spectrum for each stratum. To accomplish

this task the spectrometer can be fitted with a liquid chromatography column.

The passage time of a particle through the column is highly correlated with its

hydrophobicity. As particles leave the column, mass spectrometer repeatedly

10



2.1 LC-MS data
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Figure 2.3: A 2-dimensional liquid chromatography mass spectrum. Only

a part of the spectrum is shown (about 0.007% of the domain) as the reten-

tion time (particles’ passage time through the liquid chromatography column)

ranges from 1 s to 4920 s and the mass-to-charge ratio ranges in our data from

300 Th to 2000 Th.
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2. MASS SPECTRA PREPROCESSING
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Figure 2.4: Distortions along the retention time (vertical) axis. Three indepen-

dently produced spectra from the same sample (red, green and blue colors) are

shown overlayed. Groups of peaks corresponding to the same peptides in different

samples are clearly visible. Samples cannot be aligned perfectly by linear trans-

formations along the retention time axis. In the upper left part and the lower

part blue peaks are above red while in the middle part the order is reversed.

produces 1-dimensional spectra, which can be combined to form a 2-dimensional

liquid chromatography mass spectrum (LC-MS, see Fig. 2.3).

The measurement accuracy of the new dimension (called the retention time)

is not very reliable. Moreover one can witness significant non-linear distortions

along this dimension when comparing two LC-MS runs of the same sample (e.g.

the order of peaks’ projections onto the retention time axis may change between

two spectrometer runs), which is illustrated on Fig. 2.4.

12



2.2 Peak picking

2.2 Peak picking

NMRPipe (Delaglio et al., 1995) software package was designed for processing and

analyzing NMR (Nuclear Magnetic Resonance) spectroscopic data (Keeler, 2005).

After file format conversion however, some of its components can be applied to

mass spectra. In the initial stage of data processing we used (Gambin et al.,

2007) the NMRPipe package to improve the signal-to-noise ratio by eliminating

high frequency signals with the 2D Fourier transform. In the next stage we took

advantage of NMRPipe’s 2D pick peaking procedure. The outcome was a list of

coordinates of peaks in the spectrum with the signal strength (i.e. peak’s height

and volume).

Results obtained with NMRPipe were compared with recently proposed XCMS

package (Smith et al., 2006) which also provides procedures for filtering and peak

picking as well as matching peaks across samples and retention time correction.

The XCMS package is included in the Bioconductor open source software project

for the R programming language (Gentleman et al., 2004). We compared the ef-

ficiency and sensitivity of these two approaches, i.e. XCMS and NMRpipe (data

not shown). Our observations are in favor of the NMR tool because of the more

flexible visualization functions and the suitability for high-throughput processing.

Further work is based on peak lists generated with the NMRPipe tool.

We assume that after the peak picking stage an LC-MS data set is a list of

triples

(mzp, rtp, intp)p

where:

• p ranges over all peaks in the data set,

• mzp is peak’s p mass-to-charge ratio,

• rtp is peak’s p retention time,

• intp is peak’s p intensity (i.e. height or volume).

13



2. MASS SPECTRA PREPROCESSING

2.3 Isotopic envelopes detection

The main goal of this processing step is to reduce the list of peaks present in

a single LC-MS dataset into a list of the monoisotopic peptide masses. In the

peak list each peptide is described by several peaks corresponding to different

charge states of the peptide and different isotopic compositions. Hence, initially

the list contains much redundancy. We eliminate the redundancy by determining

monoisotopic mass and charge of each peptide signal. This process consists of

the following steps:

1. noise filtering,

2. clustering into isotopic envelopes,

3. automated charge determination,

4. monoisotopic mass calculation,

which were implemented in our mz2m program (Gambin et al., 2007) available

at http://mz2m.sourceforge.net.

There is a large body of research dealing with automated charge determi-

nation. Zhang and Marshall (1998) proposed Z-Score algorithm, which uses a

scoring scheme to assign charges to ions. The other method described by Senko

et al. (1995b) is based on the Patterson and Fourier transforms for selected areas

of the spectrum. For deconvolution (i.e. finding out which peaks correspond to

the same molecules) Senko et al. (1995a) proposed the averagine method, based

on fitting an isotopic distribution from spectrum to theoretical distribution. This

method is appropriate for large molecules (10-20 kDa). Horn et al. (2000) pro-

posed the algorithm THRASH based on both Patterson and Fourier transforms

and the averagine method. For small peptides the problem of grouping isotopic

peaks is relatively easy because the monoisotopic peak is usually the highest or

the second highest. In our method we incorporate the ideas from (Senko et al.,

1995b) and (Horn et al., 2000) and adapt them to a two dimensional setting.

14
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2.3 Isotopic envelopes detection
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Figure 2.5: Distribution of signal abundance in a single blood serum peptidome:

the cutoff threshold is calculated to filter out overrepresented small peaks.

2.3.1 Noise Filtering

Noise filtering performed during preprocessing phase has to be refined at the

beginning of our algorithm to eliminate peaks corresponding to spurious signals.

To this aim we simply discard peaks with height below the threshold T . The

value of T is established based on analysis of the distribution of peaks’ height in

a given sample (Fig. 2.5).

The threshold is fixed to filter out small peaks with comparable height. To

this aim we approximate the density function f of peaks’ height distribution and

set T to be the solution of the equation f ′(T ) = −1. Figure 2.5 is a typical

example of f ’s shape so in practice one may assume that such T is well defined.

2.3.2 Isotopic Cluster Identification

At this stage our algorithm operates on the list of peaks computed during the pre-

processing phase. Peaks are represented by several parameters: mass-to-charge

15



2. MASS SPECTRA PREPROCESSING

ratio, retention time, intensity (i.e. height or volume). During peak clustering we

take into account general properties of peptide isotopic clusters. We scan our 2D

input dataset from left to right (direction of increasing mass-to-charge ratios) and

examine peaks in the vertical stripe of 1 Th width (a variant of sweeping method,

see Fig. 2.6). The position of the right border of the stripe is determined by the

mass-to-charge ratio of the peak being examined (we call it the active peak).

active peak

1 Th

active
clusters

m/z

retention
time

inactive
cluster

Figure 2.6: Sweeping method. Clusters of peaks marked with light green (active

clusters) are candidates for extending with the active peak (marked with red).

The cluster marked with dark green (inactive cluster) is outside the 1 Th stripe

and cannot be extended.

We assume that all peaks to the left of the active peak (i.e. having lower

mass-to-charge ratio) have already been clustered. All peaks to the right of the

active peak will be considered in the next steps.

We call a cluster active when its last peak (i.e. the one with the highest

mass-to-charge ratio) is in the currently considered stripe. We maintain the data

structure containing the list of active isotopic clusters.
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2.3 Isotopic envelopes detection

Our goal is to assign an active peak to one of the active clusters. The first

step is to select from the set of the active clusters those which could be extended

by our active peak.

The criteria for the peak fitting to an isotopic cluster are the following:

• distance between the peak and the cluster (i.e. between the peak and the

rightmost peak in the cluster) in the domain of retention time should be

smaller than the predefined threshold,

• the shape of the isotopic cluster extended by the active peak should pass

user predefined filter (see below; by shape we mean the relative height,

positions and the number of peaks in the cluster).

As the filter for the isotopic cluster we investigate here the proportions of

the height of two neighboring peaks. We compute the possible extreme values

for these proportions by considering polyserine and polyphenyloalanine peptides

and we filter out clusters having these proportions outside computed values. In

fact these extreme values are further relaxed to encompass sulphur containing

peptides. Our algorithm is designed to deal with small peptides. Hence only

two possibilities for monoisotopic peak position are considered by the algorithm:

either the first or the second peak in the isotopic cluster can be the highest one.

The behavior of the algorithm depends on the number of candidate active

isotopic clusters:

• if there is no candidate cluster for the active peak, we form a new cluster

containing this peak,

• if here is exactly one candidate cluster we extend it with the active peak,

• if more than one candidate cluster exists we assign the active peak to the

cluster whose monoisotopic peak is the highest (such a situation is quite

rare but it happens when the signal coming from one peptide is artificially

split in the domain of the retention time (c.f. Fig. 2.7)).
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2. MASS SPECTRA PREPROCESSING

Figure 2.7: Artificial peak separation in the retention time domain. Isotopic

envelopes visualized by the Sparky tool (Goddard and Kneller, 2006). Peaks

found by NMRPipe are depicted as black Xes. Horizontal axis — mass-to-charge

ratio, vertical axis — retention time, height is color coded increasing from red to

blue.

2.3.3 Automated Charge Determination

We have implemented two versions of this step, simple and fast and a more

sophisticated one. The simple version uses only information from the peak spacing

in the isotopic clusters as prepared in the previous step and it can be viewed as

a variation of the Z-Score method from (Zhang and Marshall, 1998). We assume

that the charge is simply the reciprocal of the distance between two adjacent

peaks in the isotopic cluster. We count results for each possible space interval

and choose the most frequent value as the charge.

This method is very fast but also susceptible to errors especially when there
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2.3 Isotopic envelopes detection

are artifacts and split peaks in the spectrum. This method also cannot determine

charges for overlapping isotopic envelopes.

The second method is a variation of the method from (Senko et al., 1995b).

It operates on a list of clusters and a raw mass spectrum. The original method is

designed for 1D spectra. Here we use the isotopic clusters found in the previous

step to approximate the coordinates of isotopic clusters in the spectrum. We

perform the projection of the isotopic cluster in the direction of the retention

time and use the combination of Patterson and Fourier transform for the mass-

to-charge ratios of the isotopic cluster to determine the charge.

First we compute the Patterson transform of the part of the projected spec-

trum f containing the cluster:

Pf (∆M) =
∑
i

f(Mi −
∆M

2
) ∗ f(Mi +

∆M

2
)

where ∆M is the inverse of charge, Mi are mass-to-charge ratios and the sum

ranges over the location of the isotopic cluster. If a clear maximum can be found,

we output 1
∆M

as the charge, otherwise we look for a maximum in the Fourier

transformed data.

2.3.4 Isotopic model (mass decomposition)

Recall that our procedure is designed to deal with small peptides (up to 5000 Da).

For such data the averagine model by Senko et al. (1995a) might not be suitable.

In order to estimate the significance of the cluster we fit its group of peaks to the

estimated theoretical isotopic distribution calculated for the given monoisotopic

mass. This step is coupled with the mass and charge determination.

We start with the assumption that the first visible peak in the isotopic cluster

corresponds to the monoisotopic mass. If this assumption turns out to be false,

the first visible peak in the spectrum is assumed to be the second in the theoretical

envelope (i.e. corresponding to the isotope containing one neutron more than the

monoisotopic version).

From the putative mass-to-charge ratio and the charge determined in the

previous step we calculate the monoisotopic mass. Then we perform mass de-

composition, i.e. we guess the atomic composition for the given mass.
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Figure 2.8: The distribution of peptides’ abundance for a given monoisotopic

mass and precision ε = 0.01. This graph does not seem to be a function, but

it is in fact — for each mass there exists exactly one point corresponding to

the number of different atomic compositions. This function behaves very non-

continuously — different visible curves arise from combinatorial properties of

mass decomposition problem, namely, some masses have much larger amount of

possible atomic compositions than others.

Our mass decomposition procedure works as follows. Let m be a monoisotopic

mass of a peptide. First, we find candidates for atomic compositions of this

peptide: each candidate can be represented as a vector of length 5, storing the

numbers of atoms of C, H, N, O and S. Mass of each candidate can differ from

m by at most ε and has to represent a chain of amino acids.

In order to be able to efficiently find compositions of masses up to M , we per-

form the following preprocessing. Let mh be the mass of the heaviest amino acid

considered. We generate all compositions of peptides with mass not exceeding
M
2

+ mh, sort them by mass and store in a vector v. To answer a query m, for
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2.3 Isotopic envelopes detection

mass ε # candidate compositions

1428.65 0.0001 1

0.001 14

0.01 123

0.1 1157

Table 2.1: The number of candidate atomic compositions for lysozyme peptide

mass measured with different precision (ε).

each element of v we check if there exists an element in v, such that the sum of

masses of those two elements differs from m by at most ε (precision parameter).

For small peptides our procedure gives a reasonable number of candidate

atomic compositions (c.f. Table 2.1 and Fig. 2.8).

For each candidate atomic composition of a given monoisotopic mass we calcu-

late theoretical isotopic distribution using dynamic programming technique and

fit the experimental data (i.e. isotopic cluster determined in the previous step).

To estimate the quality of fit the figure-of-merit (FOM) value is calculated as

follows (Horn et al., 2000):

FOM =
k∑

n[(An − ωIn) + (ωV )2]
(2.1)

where:

• An is the abundance of then nth peak in the theoretical isotopic distribution,

• In is the observed signal intensity at the point corresponding to the nth

isotopic peak,

• V is the maximum value in the valley between adjacent peaks (in the interval

from 1
3

to 2
3

of the distance between consecutive peaks),

• ω is the normalization factor,

• k is the number of values compared (i.e. all peaks and valleys in the isotopic

cluster).
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type of sample # of samples min max mean stddev

CF (peaks) 59 25613 108831 63032 16147

CF (masses) 59 1341 5244 3361 821

CC (peaks) 40 57719 213178 124225 53629

CC (masses) 40 2657 8227 5250 2250

Table 2.2: Mass and peak statistics. CF – cystic fibrosis dataset, CC – colorectal

cancer dataset.

The normalization factor scales the intensities such that the average intensity

from three most abundant peaks in the theoretical distribution equals the av-

erage intensity for three corresponding peaks from experimental spectrum. The

exception is made for very small masses when the first peak, being the most

abundant one, is used to scale the distribution.

The best fit is selected for further analysis. Its FOM has to exceed some

user-predefined threshold.

2.3.5 Mass and Volume Calculation

To determine the monoisotopic mass one needs to know the charge of the isotopic

cluster and the coordinates of the monoisotopic peak. Both these values are

determined in the previous step by the best fit to the theoretical isotopic model

(i.e. the fit with the greatest FOM value). The volume, corresponding to the

abundance of the peptide, is calculated as the sum of volumes for all peaks in the

isotopic cluster.

2.3.6 Automated interpretation results

The goal of our mz2m program is to calculate the list of peptides in the sam-

ple identified by their mass and retention time. The program has been tested on

several datasets. Before starting analysis of complex peptide mixtures many rela-

tively simple samples have been processed for calibration of the whole procedure.

These samples include tryptic digest of bovine serum albumin (BSA), lysozyme

and cytochrome C.
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2.3 Isotopic envelopes detection

To demonstrate the application of the LC-MS for large-scale analysis the

following sets of complex peptide mixtures were processed (c.f. Table 2.2):

• blood plasma samples from cystic fibrosis (CF) children and their healthy

family members (59 samples),

• blood serum samples from colorectal cancer (CC) patients and healthy

donors (40 samples).

To estimate the quality of our algorithm several tests were performed. How-

ever, the main goal was to verify the following two aspects which are crucial for

medical applications.

• how many peptide signals were missed by the automated processing,

• how many peptide signals were interpreted incorrectly.

The best way of validation here was visual inspection of the results (Fig. 2.9).

For the fragments of some samples all peptide signals were manually counted and

interpreted with the assistance of the Sparky visualization tool (Goddard and

Kneller, 2006). The result has been compared to the program output. Table 2.3

presents the number of interpreted peptide signals and the number of errors. We

consider four types of errors: false positives, missing peptides, incorrect charge

and incorrect mass calculation. The program misses about 6% of all peptides and

returns about 6% peptides with incorrect mass. The incorrect interpretation of

the charge is closely related to very strong signal deformation (c.f. Fig. 2.7). We

want to emphasize that the peptide list generated by our algorithm contains only

about 2% of false positives (possibly experimental and software artifacts).
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2. MASS SPECTRA PREPROCESSING

Figure 2.9: Masses and charges calculated by our mz2m program for the fragment

of the spectrum. Peaks are marked as black crosses, small arrow denotes the

monoisotopic peak in each isotopic cluster, the monoisotopic mass (M) and charge

(Q) are given for each identified peptide.

mean variance

peptides manually counted 377 14

peptides correctly described by the program 321 10

false positives 8 7

incorrect charges 5 3

incorrect masses 25 1.4

peptides not found 26 1.4

Table 2.3: Error statistics for 3 manually tested datasets.
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2.3 Isotopic envelopes detection

Our procedure can efficiently process LC-MS spectra with sensitivity suffi-

cient for medical applications such as searching for biomarkers for diagnostics

(screening and prognostic tests).

An interesting open question is how to deal with more dimensions. A chal-

lenging problem is to design a framework for multidimensional mass spectrometry

based on different separation techniques (Janini et al., 2005; Shvartsburg et al.,

2005).

The method can also be useful for LC-MS based differential proteomics, in

which quantitative comparison of protein levels in two samples is made possible

by labeling peptides in one of the samples by a stable isotope (Figeys et al.,

2001; Twigger et al., 2005; Valkenborg and Burzykowski, 2011), e.g. it allows to

differentiate between 16O and 18O labeled species in an automated way and to

quantitate peptide ratios.
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Chapter 3

Mass spectra alignment

One of the most common tasks one needs to perform on multiple mass spectra

is to point peaks (or monoisotopic peaks or isotopic envelopes depending on the

form of input) corresponding to one another in different spectra. This step is

crucial in medical diagnostics applications where blood plasma or serum samples

from many individuals are analyzed separately by a mass spectrometer. Even

when multiple analyses of the same sample are conducted the results differ as

each spectrometer run produces some drifts and distortions both along the mass-

to-charge ratio axis and the retention time axis (the latter causing much more

trouble). Lange et al. (2008) present an overview and comparison of LC-MS

alignment procedures.

Two approaches to this problem are presented in Sections 3.1 and 3.2. The

first one performs retention time stretching and shifting while the second one

employs peak clustering via a two stage procedure consisting of a DBSCAN (Ester

et al., 1996) pass and gaussian mixture model based clustering. Results from

Section 3.2 were published in (Gambin et al., 2006) and ( Luksza et al., 2009). The

method from Section 3.1 was used in (Kluge et al., 2009) but was not described

in detail.
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3. MASS SPECTRA ALIGNMENT

3.1 Alignment via retention time transforma-

tion

Errors on the mass-to-charge ratio axis are orders of magnitude lower than on

the retention time axis, therefore only the retention time axis will be considered

in this section. The idea presented here is to apply a linear transformation along

this axis separately for each sample (mass spectrum), so that each peak has near

neighbors in other samples. Linear transformations are certainly not enough to

obtain a perfect alignment. Looking closely into two LC-MS data sets one can

find matching pairs of peaks that are ordered along the retention time axis in

a way that one sample cannot be obtained from the other by applying a linear

transformation. In many situations however a linear transformation gives a great

improvement in the alignment.

A specific situation that we have in mind here is the HPLC (High Performance

Liquid Chromatography) column replacement. Even at first sight samples before

and after the replacement look very different. Applying our procedure roughly

corrects the discrepancies. We will use a data set comprising LC-MS samples

from 3 batches separated by the HPLC column replacement and one additional

sample with peptide list from a tandem LC-MS experiment1. The list can be

ignored when thinking about the problem — it is just a convenient way to assign

peptides (amino acid sequences) to peaks when one can form a set of peptides

expected in the samples. It will find use in Section 4.1.

3.1.1 Problem statement

Let P be the set of all peaks from the set of all samples S. We write mzp, rtop, rtp,

chp, sp for p ∈ P to denote mass-to-charge ratio, original retention time, corrected

retention time, charge and peak’s p sample respectively. We assume that rt is

a linear function of rto, i.e.:

rtp = asp rtop +bsp .

1Tandem MS (also called MS/MS) is a technique where particles undergo at least two sep-

aration steps with fragmentation in-between. It can be used to sequence proteins (i.e. obtain a

sequence of amino acids composing a protein).
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3.1 Alignment via retention time transformation

We define a criterion to be optimized over the a and b parameters. In a perfect

alignment peaks corresponding to the same isotopic versions of the same peptides

with the same charges in different samples should coincide. For each peak, we

therefore try to count peaks from other samples in its neighborhood and favor

the alignments with greater total counts.

For p ∈ P, s ∈ S and a parameter w > 0 let Nw(p, s) be the set of peak’s p w-

neighbors along the mass-to-charge ratio axis with matching charge in sample s,

i.e.:

Nw(p, s) = {q ∈ P | sq = s, chq = chp, |mzq−mzp | ≤ w}

and Dw(p, s) be the distance on the retention time axis to the nearest neighbor

in sample s:

Dw(p, s) =

{
min{| rtq− rtp | | q ∈ Nw(p, s)}, if Nw(p, s) 6= ∅,
0, if Nw(p, s) = ∅.

After experimenting with different values of the w parameter, we set it to 0.075.

Low Dw(p, s) value indicates that peak p has a corresponding peak in sample s.

Informally speaking we set our objective to minimizing the expression:

F (a, b) = −
∑

p∈P,s∈S

arctan(Dw(p, s))

over a and b. The arctan function is used to dampen the effect of distant peaks

on the score.

In order to make the above problem well defined we:

• fix
∑

s∈S as = |S| as otherwise a would approach 0,

• add the G(b) = − 1
2d

∑
s∈S b

2
s term to the objective expression as otherwise

adding an arbitrary constant to b would keep the objective invariant.

3.1.2 Solution through the Metropolis–Hastings algorithm

In practice we will not try to find an exact minimum but be content with sampling

(a, b) from the distribution with density proportional to exp (F (a, b) +G(b)).

Note that technically, this procedure can be viewed as sampling from a pos-

terior distribution with density f(a, b | rto) implied by defining:
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• the likelihood density as

f(rto | a, b) ∝ exp (F (a, b)) ,

• the prior distribution on a
|S| as a uniform distribution on a simplex,

• the prior distribution on bs as a normal distribution with mean 0 and vari-

ance d for each s ∈ S independently.

We apply the Metropolis–Hastings algorithm (Hastings, 1970) to perform sam-

pling. The move proposals are generated by executing with equal probability one

of the two following steps:

1. changing a:

• generate s1, s2 ∈ S, s1 6= s2 uniformly,

• generate (a′s1 , a
′
s2

) ∼ Dirichlet
(
c
as1
|S| , c

as2
|S|

)
|S|, where c is a parameter

of the algorithm and was set to 1000 after some tuning,

• set a′s to as for s /∈ {s1, s2},

• propose transition (a, b) 7→ (a′, b),

2. changing b:

• generate s1 ∈ S uniformly,

• generate b′s1 ∼ Normal (bs1 , d),

• set b′s to bs for s 6= s1,

• propose transition (a, b) 7→ (a, b′).

A standard acceptance rule is used, i.e. transition proposal (a, b) 7→ (a′, b′) is

accepted with probability

min

{
f(a′, b′ | rto)

f(a, b | rto)

p((a, b) 7→ (a′, b′))

p((a′, b′) 7→ (a, b))
, 1

}
,

where p denotes the proposal density.
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3.1 Alignment via retention time transformation

3.1.3 Alignment results

The procedure was used to align 126 LC-MS blood plasma spectra. Additionally

a list of peptide sequences annotated with mass, charge and retention time was

included as the 127th sample. The list was based on a separate MS/MS exper-

iment. This addition will be helpful at a later stage (Section 4.1), where peaks

corresponding to specific peptide sequences will be needed.

The spectra came in 3 batches having 29, 30 and 67 samples respectively. The

batches were collected at different time periods separated by the HPLC column

replacement.

The procedure was run for 2 ∗ 106 steps. Figure 3.1 documents this run by

showing the score (the F function), a and b in successive steps. Figure 3.2 shows

the final values of a and b. Estimated parameters stabilized after 106 steps. One

can easily identify batches of samples evolving together and producing similar

final parameter values. This behavior shows that an HPLC column replacement

produces significant changes in the LC-MS spectrum which is consistent with our

experience.

It is hardly possible to compute meaningful statistics describing alignment

quality when the true alignment is not known, therefore we turn to visual valida-

tion of the results. Figure 3.4 shows 29 LC-MS samples from one batch before and

after the linear retention time correction with our procedure. Two distant parts

of the spectra are depicted before and after alignment, each showing a signifi-

cant improvement. Figure 3.3 depicts alignment results across batches (2 spectra

from each of the 3 batches). Clearly alignment within batches is better than the

alignment between batches.
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Figure 3.1: Evolution of the a (top) and b (middle) parameters during 2∗106 steps

of the alignment algorithm run. The a and b parameters correspond respectively

to scaling and shifting samples along the retention time axis. Evolution of the

score (the F function) is shown at the bottom.
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Figure 3.2: Final values after 2 ∗ 106 steps of the alignment algorithm run of the

a and b parameters corresponding respectively to scaling and shifting samples

along the retention time axis.

As mentioned before mass spectra alignment needs to be performed whenever

one wishes to compare information from different mass spectrometer runs. This

particular method was used as a preprocessing stage for applications described in

Section 4.1 and the results of the computations presented here are in fact exactly

the ones used in Section 4.1.
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Figure 3.3: Peaks with charge −2 e from a fragment of 6 LC-MS spectra (2 spectra

from each of the 3 batches). Different spectra are marked with different colors.

Additionally shape corresponds to batches.
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Figure 3.4: Peaks with charge −2 e from two fragments (top, bottom) of 29

LC-MS spectra from a single batch before and after the linear retention time

correction. Different spectra are marked with colors (colors are recycled as only 7

colors are used). At the top, groups of peaks corresponding to isotopic envelopes

of the same peptides in different samples can be distinguished after the alignment

— a clear improvement from the state before the alignment. The improvement

at the bottom picture is not as striking. This may be attributed to the fact

that are almost no isotopic envelopes in this region. Notice however that vertical

strings of peaks are much more vivid after the alignment, indicating that that

the transformation moved corresponding peaks closer together.
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3.2 Alignment via clustering

One of the possible approaches to the peak alignment problem is to apply a well

known clustering algorithm. All monoistopic peaks from all samples can be

treated as the input to such procedure, producing a grouping into subsets as the

output. Each subset corresponds to one particle type (peptide) with a specific

charge.

Here model based clustering via gaussian mixtures (Fraley and Raftery, 1998)

will be explored. Due to efficiency reasons a two stage procedure will be proposed.

The first stage is fast and produces a coarse clustering. The second stage is

the model based clustering itself performed on each cluster from the first stage

independently, producing more refined clusters.

The data actually being clustered are the mass-to-charge ratio and retention

time pairs denoted by (xpmz , xp rt)p∈P . The intensities are not taken into account

since usually there is no reason for a peptide to have the same intensities in two

different samples.

This approach is already computationally demanding so we will not extend it

further, despite the fact that some deficiencies can be pointed out. Firstly, one

could complicate the model to include the fact that each peptide can have versions

with different charges. Although no easy way is known to determine the relative

intensities of differently charged versions a priori, those ratios should probably

be the same in all samples. Leveraging this fact an enhanced procedure could

make use of the intensity information. Another direction would be to constrain

the number of peaks from each sample in a cluster to at most 1, however one

has to remember that peak picking phase is not perfect, e.g. it can erroneously

split one peak into two peaks. Finally the pick peaking and spectra alignment

procedures could be integrated, but that would require enormous computational

power.

In fact, due to efficiency reasons the model based clustering cannot be applied

to the entire set of peaks directly. We propose the following two-stage procedure:

1. preliminary partitioning of the data set into non-overlapping subsets of

moderate sizes,
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3.2 Alignment via clustering

2. application of the model based clustering to each subset separately.

In the first step of the clustering DBSCAN algorithm (Ester et al., 1996) is used,

in the second step different models are fitted, description of which is provided in

Section 3.2.1.

In order to improve the quality of the alignment and minimize the impact of

the retention time deviations, the whole procedure is run repeatedly interleaved

with the retention time correction procedure from the XCMS package (Smith

et al., 2006) described in Section 3.2.3.

3.2.1 Model based clustering

The idea underlying model based clustering (Fraley and Raftery, 1998) is that

each observation is an independent sample generated from a population of dis-

tributions. The observer does not know the origins of observations and tries to

infer them, thus producing a clustering.

For each isotopic version of each peptide with a specific charge (denoted by r)

we assume that peak locations are gaussian distributed with mean (µrmz , µr rt)

and a diagonal covariance matrix Σr. The diagonality is motivated by the fact

that errors in measurements along the mass-to-charge ratio axis and the retention

time axis are independent since the first is due to the spectrometer itself and the

second is due to the HPLC column.

A covariance matrix Σ can be written as λB, where λ > 0 is a scalar and B is

a diagonal matrix having detB = 1. This factorization is a convenient form to

describe various parametrizations. The λ parameter corresponds to the cluster’s

volume and B to its shape. We investigate the following models:

Σr = λrBr – the most general diagonal model, where the volumes and shapes

are allowed to vary between clusters,

Σr = λB – a model where clusters have identical shape and volume,

Σr = λrB – a model where clusters have identical shape but their volumes may

vary,
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Σr = λBr – a model where all the clusters have the same volume but their

shapes may vary,

Σr =

(
c2

mz 0
0 c2

rt

)
– a model with fixed variances c2

mz , c
2
rt ,

Σr =

(
c2

mz 0
0 σ2

rt

)
– a model with fixed variance c2

mz and unknown retention

time variance σ2
rt same for every cluster,

Σr =

(
c2

mz 0
0 σ2

r rt

)
– a model with fixed variance c2

mz and unknown retention

time variance σ2
r rt specific to each cluster.

The likelihood for a mixture of gaussian distributions can be expressed as:

f(x | τ, µ,Σ) =∏
p∈P

R∑
r=1

τr
1

2π |Σr|
1
2

exp

(
−1

2
(xp − µr)TΣ−1

r (xp − µr)
)
.

The MCLUST (Fraley and Raftery, 2002) package was used to estimate the

parameters in the first four models.

Following (Fraley and Raftery, 2007), in the last three models we place an in-

verse gamma prior on σ2
rt (or σ2

r rt independently for r = 1, . . . , R) with hyperpa-

rameters νP
2

(shape) and
ξ2P rt

2
(scale) where νP = 3, ξ2

P rt = var(x· rt )
R2 (the empirical

data variance along the retention time coordinate divided by the square of the

number of components) and assume that µr come independently for r = 1, . . . , R

from a Gaussian distribution with parameters µP (mean) and Σr
κP

(covariance

matrix) where µP =
∑
p∈P xp

|P | (the empirical mean of the data), κP = 0.01.

The weights τ1, . . . , τR are also unknown. We use a uniform prior for them

(i.e. a Dirichlet distribution with parameters 1, . . . , 1).

Our goal is to find the maximum a posteriori estimator for the τ , µ and Σ

parameters.

Parameter estimation

Computing the parameters τ1, . . . , τR, µ1, . . . , µR,Σ1, . . . ,ΣR that maximize the

posterior density (MAP estimator) is rather problematic in case of the Gaussian
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3.2 Alignment via clustering

mixture model. The Expectation-Maximization (EM) algorithm (Dempster et al.,

1977; Minka, 1998) was designed to solve this kind of problems.

For conciseness in the next few paragraphs we will denote the peak data by x

(i.e. xp = (mzp, rtp)) and the model parameters by θ (i.e. θr = (τr, µr,Σr)).

Therefore the goal is to find:

argmax
θ

f(θ | x) = argmax
θ

f(x | θ)f(θ),

where f(θ) is the prior density on θ. Alternatively we can of course search for:

argmax
θ

[ln f(x | θ) + ln f(θ)] .

The EM algorithm requires pointing additional variables which will be denoted

by z. In the case of gaussian mixtures it is convenient to define variables zp ∈
{1, . . . , R} as the cluster (i.e. the peptide) peak p ∈ P belongs to.

We will use the equality f(x | θ) =
∑

z f(x, z | θ) to introduce the z variable

into the objective function, then introduce arbitrary weights 0 < wz < 1 such

that
∑

z wz = 1 and finally apply Jensen’s inequality to the logarithm function

in order to obtain a lower bound on the objective function:

ln f(x | θ) + ln f(θ) = ln
∑
z

f(x, z | θ) + ln f(θ)

= ln
∑
z

wz
f(x, z | θ)

wz
+ ln f(θ)

≥
∑
z

wz ln
f(x, z | θ)

wz
+ ln f(θ).

Note that the inequality above is valid for all parameters θ and weights w.

The EM algorithm is a procedure that starts with an arbitrary value of θ

(or w) and iterates two steps:

• E-step – for fixed θ find w yielding the tightest bound (in fact this bound

touches the objective function),

• M-step – for fixed w find θ maximizing the lower bound,

until convergence to a local maximum (it may depend on the starting point).
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E-step

In order to perform the E-step we fix θ and optimize the lower bound over w.

It is a constrained (
∑

z wz = 1) maximization problem that can be solved2 by

introducing the Lagrange multiplier λ. For fixed z, differentiating the Lagrange

function for the lower bound with respect to wz yields:

ln
f(x, z | θ)

wz
− wz

wz
f(x, z | θ)

f(x, z | θ)
w2
z

+ λ = ln
f(x, z | θ)

wz
+ λ− 1.

Therefore the best lower bound is obtained for:

wz = eλ−1f(x, z | θ) =
f(x, z | θ)∑
z f(x, z | θ) =

f(x, z | θ)
f(x | θ) = f(z | x, θ).

In the specific case of gaussian mixtures we have:

wz = f(z | x, θ) =
∏
p∈P

f(zp | x, θ).

For fixed p and r we define (it will be needed in the M-step):

wpr =
∑

z : zp=r

wz = f(zp | x, θ)
∣∣∣
zp=r

(3.1)

∝ τr
1

2π |Σr|
1
2

exp

(
−1

2
(xp − µr)TΣ−1

r (xp − µr)
)
, (3.2)

which can be simply computed by evaluating the cluster densities at the data

points.

M-step

For the purpose of lower bound optimization over θ for fixed w we maximize :∑
z

wz ln f(x, z | θ) + ln f(θ). (3.3)

In the case of gaussian mixtures we postulate that points are drawn indepen-

dently, i.e. f(x, z | θ) = f(x | z, θ)f(z | θ) =
∏

p∈P f(xp | zp, µzp ,Σzp)f(zp | τ) =

2We need to keep in mind the 0 < wz < 1 inequalities, but the solution will turn out to

satisfy them.
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∏
p∈P f(xp, zp | θ). Since we assume that (µ,Σ) and τ are independent a priori

we have f(θ) = f(τ)f(µ,Σ) and the (3.3) expression can be rewritten as:

∑
z

wz
∑
p∈P

ln f(xp, zp | θ) + ln f(θ)

=
∑
z

wz

R∑
r=1

∑
p : zp=r

ln f(xp, zp | θ) + ln f(θ)

=
R∑
r=1

∑
p∈P

∑
z : zp=r

wz ln f(xp, zp | θ) + ln f(θ)

=
R∑
r=1

∑
p∈P

wpr ln f(xp, zp | θ)
∣∣∣
zp=r

+ ln f(θ)

=
R∑
r=1

[∑
p∈P

wpr ln f(xp | zp, µr,Σr)
∣∣∣
zp=r

]
+ ln f(µ,Σ)

+
R∑
r=1

∑
p∈P

wpr ln f(zp | τ)
∣∣∣
zp=r

+ ln f(τ).

Now maximization can be carried out independently for τ and (µ,Σ). The

solution depends on the model and the priors used. In our case (see Section 3.2.1

for the description of the priors — in particular the κ, ξ and ν hyperparameters)

for the last three models (not covered by the MCLUST package):

• since τ ∼ Dirichlet (1, . . . , 1) the corresponding subexpression to maximize

is simply
∑R

r=1

∑
p∈P wpr ln τr and the maximum is at:

τ ∗r =

∑
p∈P wpr∑R

r=1

∑
p∈P wpr

,

• maximization over the µ parameters yields:

µ∗r =

∑
p∈P wprxp + κPµP∑

p∈P wpr + κP
,
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• maximization over the σ parameters yields (depending on the model):

σ2∗
r rt =

∑
p∈P wpr(xp rt − µ∗r rt)

2 + κP(µ∗r rt − µP rt)
2 + ξ2

P rt∑
p∈P wpr + 1 + νP + 2

or

σ2∗
rt =

∑R
r=1

∑
p∈P wpr(xp rt − µ∗r rt)

2 + κP
∑R

r=1(µ∗r rt − µP rt)
2 + ξ2

P rt

|P |+R + νP + 2
.

Ultimately the EM algorithm proposes a value θ∗ as a guess for argmaxθ f(θ | x).

The assignment of points to clusters is based on the probabilities w∗pr = f(zp | x, θ∗)
∣∣∣
zp=r

,

i.e. point p is assigned to cluster argmaxr=1,...,R w
∗
pr. Moreover, these values can

be treated as certainty measure — if one is interested in high-quality clusters one

can sieve out elements with low probabilities.

Number of clusters

The issue of choosing the number of clusters and the appropriate model parametriza-

tion can be reduced to the problem of model selection. Bayesian Information

Criterion (BIC) (Haughton, 1988; Schwarz, 1978) for model M is defined as:

BIC = −2 ln fM(x | θ∗M) + #M lnn

where:

• #M is the number of parameters of the model M (it depends on the number

of clusters),

• θ∗M is the MAP estimate3 of the parameters of the model M ,

• n is the number of observations in the data.

In order to choose the number of clusters one fits many models, each with

different number of clusters, and picks the one with the lowest BIC value.

3Usually it is the MLE estimate. Fraley and Raftery (2007) proposed to replace it with the

MAP estimate.
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3.2.2 DBSCAN algorithm

The DBSCAN algorithm (Density-Based Spatial Clustering of Applications with

Noise) (Ester et al., 1996) was designed for finding clusters in spatial data, such

as satellite images and protein structure data (Ester et al., 1996; Ng and Han,

1994). This algorithm applies a local clustering criterion — clusters are defined

as dense regions in the data space which are separated by regions of low object

density, called noise. Each cluster can have an arbitrary shape and the objects

inside a cluster region may be arbitrarily distributed.

In order to describe what the DBSCAN algorithm produces, three definitions

are introduced:

1. a point q is directly density-reachable from a point p if it is in p’s ε-

neighborhood, and if p is surrounded by sufficiently many points (at least

minPts) such that one may consider p and q to be part of a cluster,

2. a point q is density-reachable from a point p if there is a sequence of points

starting with p and ending with q such that the next point is directly

density-reachable from the previous point,

3. two points p and q are density-connected if there is a point o such that o

and p as well as o and q are density-reachable.

The notion of density-connected points is introduced since the relation of density-

reachable is not symmetric (because q might not have sufficiently many neighbors

to be considered a cluster element).

A subset of points is called a cluster if it satisfies two properties:

• all points within the subset are mutually density-connected,

• all points density-connected to any point of the subset are part of the subset

as well.

Note that the resulting clustering depends on two parameters – ε and minPts

through the definition of points being directly density-reachable.
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3.2.3 Retention time correction

Retention time deviations are often too significant for the correct peak alignment

be possible. Due to this fact Smith et al. (2006) propose an iterative procedure

that comprises multiple steps of peak alignment alternated with the retention

time correction. This procedure is implemented in the XCMS package (Smith

et al., 2006).

In this method for retention time correction it is assumed that in the input

peak alignment one can find a number of reasonable peak clusters called well

behaved groups. Those groups have at most one observation from the majority of

samples (the number defining the ”majority” is a parameter). It is very probable

that such clusters are properly matched and can be used as standards for the

correction. The well behaved groups are usually distributed evenly over the sig-

nificant portions of the retention time. For each such cluster the median retention

time is calculated. Apart from this, deviation from this median is also computed

for each sample. Since it may happen that two peaks with similar retention times

and different masses show different deviations, authors approximate the devia-

tions using a local regression fitting method loess (Cleveland et al., 1992) which

uses segmented low-order polynomial. Subsequently the fitted functions are used

to correct the retention times of the original peaks.

There are many other approaches to the problem of retention time correction

(see e.g. (Jaitly et al., 2006)). We have decided to use the procedure implemented

in the XCMS package due to its availability and to make a fair comparison to the

XCMS peak alignment method.

3.2.4 Feature selection and False Discovery Rates

A few concepts related to feature selection and classification problems will be

introduced here briefly. They will help in validation of the peak clustering re-

sults. An idea will be explored that properly aligned mass spectra enable further

reasoning (e.g. classification of mass spectra from healthy donors and diseased

patients).
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3.2 Alignment via clustering

T-test

The most commonly used test for location problems is the t-test. It comes in

several variants differing in the assumptions about the distributions being com-

pared.

We will use the independent two sample unequal variance version. Assume

that points x1, . . . , xn and points y1, . . . , ym are independent draws from two

normal distributions. The null hypothesis is that the two distributions’ means

are equal and the statistic is:
x− y√
s2x
n

+
s2y
m

, (3.4)

where x =
∑n
i=1 xi
n

is the estimator of the mean, s2
x =

∑n
i=1(xi−x)2

n−1
is the unbiased

estimator of the variance. The value of this statistic can be used to rank features.

Random Forest feature selection

Random Forest (Breiman, 2001) is an example of a classification meta-algorithm

that employs an ensemble of a sufficiently large number of possibly weak yet

independent classifiers. In case of Random Forest the base classifier is a decision

tree.

Decision tree is a binary tree with internal nodes labeled by a feature and

a threshold. Leaves of decision tree are labeled by the class. A data point that

is to be classified travels from the root to a leaf at each node heading left or

right depending on the feature exceeding the threshold. In the Random Forest

algorithm the class of a data point is determined by voting of a decision tree set.

Each decision tree in the Random Forest algorithm is built independently

according to the same iterative procedure. The basic step of this procedure is

leaf splitting (it will be described in a moment). Let N be the total number of

points (i.e. from both classes), M be the number of features. Fix m << M . In

order to grow a decision tree the following steps are conducted:

• sample N data points with replacement as a training set for the tree,

• start with a single node tree (the node corresponds to the whole training

set),
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• repeat until no leaf needs splitting:

– pick a leaf that needs splitting,

– select m features randomly,

– split the node using the best feature (out of m selected) and threshold.

In order to split a leaf one considers points in the training set that reach this

leaf. The leaf needs splitting only if more than one class has a representative in

this point set. The splitting consists of picking the feature and the threshold that

discern the classes best according to a criterion (e.g. Gini impurity, information

gain).

For each decision tree the set of points not used to build the tree is called

the out-of-bag set and can be used to assess feature importance. Out-of-bag

points are put down the tree and percentage of votes for the correct class is

computed. For each feature, the same procedure is repeated but with the values

of this feature permuted randomly. The difference between the percentages in

both cases (original and permuted) is used to rank the features.

False Discovery Rates

Feature selection is usually conducted by scoring attributes individually with

a statistic. We use the t-test and Random Forest feature scoring for this purpose.

Then a particular level of the score is chosen as a threshold and attributes ex-

ceeding this threshold are declared significant. However, the issue of selecting an

appropriate threshold is problematic. It is hard to assess what level yields statis-

tically significant selections, i.e. the ones that are unlikely to occur by chance.

The first thing that needs to be defined is the type I error we wish to control

in the multiple hypotheses testing scheme. Here we use the False Discovery Rates

(FDR) (Benjamini and Hochberg, 1995) which can be defined as:

FDR = E

[
V

R

]
, (3.5)

where:

• V is the number of rejected true null hypotheses,

46



3.2 Alignment via clustering

• R is the total number of rejected null hypotheses.

Since there is a problem with this definition when R = 0 the FDR is declared as

0 in that case4.

In order to estimate the FDR we use the procedure from (Storey and Tib-

shirani, 2003). Let t be the critical value for the statistic (i.e. if the statistic

for a feature exceeds t we select that feature). Let T be the number of features

with statistics exceeding t. The decision attribute values are randomly permuted

R times and the same number (number of features with statistics exceeding t)

is computed for each permutation. Let us denote those numbers by Ti where

i = 1, . . . , R. The FDR estimator is given by the formula:

F̂DR(t) =

∑R
i=1 Ti
TR

.

The t threshold can subsequently be chosen for which the FDR value is sufficiently

low.

3.2.5 Data set

Data was provided by the Mass Spectrometry Laboratory from the Institute of

Biochemistry and Biophysics of Polish Academy of Sciences. The mass spectrom-

eter used in the experiments was an ElectroSpray Ionization Fourier Transform

Ion Cyclotron Resonance (ESI-FTICR) coupled with an HPLC retention column.

The data set comprised mass spectra acquired from plasma samples of col-

orectal cancer patients. Apart from the patient data, control samples were also

collected from healthy donors and analyzed with the mass spectrometer. The

colorectal cancer data set consisted of 40 spectra, 23 samples corresponding to

patients and 17 to healthy donors. Blood samples were collected from patients

and age-matched healthy controls. For plasma collection K3 E (Greiner Bio-One

Cat. No. 455036) tubes supplemented with EDTA were used and after collec-

tion samples were centrifuged at 2800 g for 15 min at 4 ◦C. Obtained plasma

was aliquoted in 200 µl portions, frozen in liquid nitrogen and stored at −70 ◦C

for further use. For analysis, plasma aliquots were centrifuged through a 5 kDa

4Also positive FDR (pFDR) was proposed in (Storey, 2003) as E
[
V
R | R > 0

]
.
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or 30 kDa (or both) cutoff filtration membrane (Millipore Ultrafree-MC) in the

presence of 20% acetonitrile as a chaotropic agent. Membrane was thoroughly

washed with 25% acetonitrile prior to use. To the filtrate the internal standard

was added. An HPLC purified peptide (200 pg in each experiment) obtained from

tryptic digest of lysozyme (FESNFNTQATNR, molecular mass 1428.65 Da) was

used as an internal standard.

The raw data in mzXML file format was preprocessed using the XCMS pack-

age (Smith et al., 2006) from the Bioconductor project (Gentleman et al., 2004).

We used mz2m (Gambin et al., 2007), a program for mono-isotopic peak detec-

tion, to obtain a list of peak coordinates, i.e. mass-to-charge ratios and reten-

tion times of the most abundant molecules. In total, there were 155294 mono-

isotopic peaks detected in 40 samples. The time range of detected peaks was

922.6 s to 4871.3 s (15.4 min to 81.2 min) and the mass-to-charge ratio range was

−1499.33 Th to −300.127 Th (c.f. Fig. 3.5).

Figure 3.5: Colorectal cancer data, peaks from 40 samples presented as points in

two-dimensional space. Retention time dimension units are seconds.
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Figure 3.6: Colorectal cancer data clustered with the DBSCAN algorithm, εm =

5, εrt = 30, minPts = 10. Picture on the right presents fragment of the data in

greater detail. The cluster colors are recycled.

3.2.6 Results

We tested our approach on the LC-MS dataset. The DBSCAN procedure was

run with the following parameters:

• εmz = 5, εrt = 30 — describing neighborhood size, i.e. point p is point’s q

ε-neighbor if and only if |xpmz − xqmz | < εmz and |xp rt − xq rt| < εrt ,

• minPts ∈ {0, 10} — the minimal number of points in the neighborhood

needed to form a cluster,

• the upper limit for size of a preliminary cluster was 1000 elements.

In case of minPts = 0 no peaks are treated as noise, even the ones in the very

sparse regions. For minPts = 10 we assume that some of the peaks might have

noise origins. Of course another explanation for their origins can be that they

in fact correspond to real peptides, but the retention time drift was so big, that

they cannot be aligned to any peaks in this iteration. Hopefully, excluding them

at this stage does not necessarily mean they they will never be properly aligned.
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If retention time correction step (discussed in Section 3.2.3) is performed after

the clustering step the drifts might become smaller.

There were 9026 preliminary groups obtained with parameter minPts = 0 and

8216 with minPts = 10 (c.f. Fig. 3.6). In the latter case 3076 points were marked

as noise.

All the models were fitted within each of the preliminary clusters in the second

stage of the algorithm. At one time the same model was assumed in all the

preliminary clusters. Hence, model selection problem was solely to select the

appropriate number of clusters, the one that minimizes the BIC value. For a

preliminary cluster of size n (1 ≤ n ≤ 1000) clusterings of the number of clusters

from interval [n/40, n/10] were compared (40 is the number of samples).

In case of the models with fixed covariance matrix, the standard deviation on

mass-to-charge ratios (cmz) was set to 0.04, which was selected after consultations

with experienced mass spectrometer operators. We tested fixed retention time

deviations (crt) of 50, 100 and 200 seconds. Apart from the mentioned models,

we also fitted both models where the retention time deviation was estimated by

the algorithm.

The initial cluster assignments that are being improved with the EM algo-

rithm were obtained with the model-based hierarchical algorithm. Implementa-

tion from the MCLUST (Fraley and Raftery, 2002) R package was used. The

model assumed in the hierarchical algorithm was λI which stands for identical,

spherical clusters. The original clusters are rather ellipsoidal than spherical and

hence model λB, identical diagonal clusters, would be more appropriate but was

not implemented. To overcome this problem, the dimensions, which are given in

different units, had to be properly scaled. It was established with empirical tests

that dividing the retention time values by 100 results in reasonable clusters.

3.2.7 Visual validation

We show an example of a preliminary cluster obtained from the DBSCAN al-

gorithm and different clusterings resulting from different parametrizations (see

Fig. 3.7). Peaks corresponding to the same peptide are expected to form elon-

gated groups along the retention time axis with rather small variance along the

50



3.2 Alignment via clustering

mass-to-charge ratio axis. One can see that the less constrained models detected

clusters that should not occur in nature — elongated along the mass-to-charge

ratio axis. The remaining models had fixed mass-to-charge ratio deviation and

hence the clusters look more as expected. The differences between the three mod-

els with fixed retention time deviations (50, 100 and 200 seconds) are small on

the whole set and they do not differ much in case of this subset. The clusterings

of the last two models also share some clusters with those three, however they

are more similar to each other than to any other model.

3.2.8 Classification based validation

The quality of alignments was also evaluated by assessing the False Discovery

Rates (FDR) for two feature selection methods. These methods were applied in

order to pick the features that discern samples from two groups well. The idea

underlying this procedure was that properly aligned mass spectra enable further

reasoning while random-like aligned mass spectra should contain less biologically

relevant information.

FDR comparison of the models

The goal of feature selection is to extract aligned peaks, that best discern classes

of samples.

In all the experiments reported here there were 500 permutations performed

for the t-test. In case of the Random Forest based feature selection there were

100 permutations performed. For each model there were 1000 trees grown, each

time the m parameter was equal to the square of the total number of attributes.

Figure 3.8 shows FDR plots for each of the clusterings for the t-test and

Random Forest based feature selection. For a given statistic score threshold

(horizontal axis) one prefers methods with lower FDR.

The differences between models are small. Moreover, t-test and Random

Forest model rankings are not consistent. The λBk model is best in the t-test

ranking which is surprising since according to the visual analysis (Fig. 3.7) it

produces strange looking clusters. On the other hand the Random Forest ranking
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3. MASS SPECTRA ALIGNMENT

parameter name description value set

minfrac minimum fraction of samples necessary 0 (to avoid

in at least one of the sample classification bias)

groups

minsamp minimum number of samples necessary 0

in at least one of the sample

groups

bw bandwidth (standard deviation) default value

of gaussian smoothing

kernel applied to the

peak density chromatogram

mzwid width of overlapping mass-to-charge 0.01, 0.02,

ratio slices used for creating peak 0.04, 0.08,

density chromatograms and 0.10, 0.20,

grouping peaks across samples 0.50

max maximum number of groups identified default value

in a single mass-to-charge ratio slice

Table 3.1: Different parametrizations for the XCMS clustering method.

seems consistent with the visual analysis — the models with the mass-to-charge

ratio deviation fixed outperform the rest.

FDR comparison with the XCMS package with retention time correc-

tion

We compared performance of alignments acquired with our method to the group-

ing proposed in the XCMS package (Smith et al., 2006). In the XCMS algorithm

we used several parametrizations as listed in Table 3.1. For both methods we

applied the same filtering criterion: clusters that did not contain at least 3 peaks

were sieved out. To estimate the effect of retention time drift on the quality of

clustering we have repeated all experiments with one iteration of the retention

time correction.

We performed one iteration of the retention time correction with all the mod-

els. The same procedure was applied for the XCMS clustering for different
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3.2 Alignment via clustering

mzwid Before ret. time corr. After ret. time corr.

Number Fraction Number Fraction

0.01 60187 0.388 57942 0.373

0.02 52510 0.338 50145 0.323

0.04 45614 0.294 42790 0.276

0.08 40412 0.26 38204 0.246

0.1 38632 0.249 36370 0.234

0.2 33756 0.217 31925 0.206

0.5 30232 0.195 29722 0.191

Table 3.3: Number of rejected peaks for the XCMS clustering results for different

values of the mzwid parameter.

parametrizations (see Table 3.1). The FDRs for the t-test and Random For-

est based feature selection after the retention time correction are illustrated in

the lower part of Fig 3.9.

Model Before ret. time corr. After ret. time corr.

Number Fraction Number Fraction

a 19858 0.128 14558 0.094

b 25805 0.166 21376 0.138

c 22261 0.143 18398 0.118

d 20950 0.135 16182 0.104

e 29376 0.189 23214 0.149

f 29366 0.189 21502 0.138

g 29326 0.189 20741 0.134

h 29909 0.193 23092 0.149

i 30029 0.193 22353 0.144

Table 3.2: Number of rejected peaks. Explanation of model names: a) λkBk, b)

λB, c) λkB, d) λBk, e) – i) all the models have deviation in the mass-to-charge

ratio dimension fixed to 0.04, retention time deviations are: e) 50, f) 100, g) 200,

h) estimated from the data, the same for every cluster, i) estimated from the data

for each cluster.

Once again the differences are small. The number of clusters produced by all
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3. MASS SPECTRA ALIGNMENT

the methods is roughly on the same level (data not shown) but significantly more

peaks are filtered out in case of the XCMS than the other methods (see Tables 3.2

and 3.3).

Conclusions

Overall, models with both mass-to-charge ratio and retention time deviations

fixed seem to be the best choice. They produce reasonably looking clusters and

are ranked well with the Random Forest based feature selection FDRs. Moreover

they outperform the XCMS package with less peaks being filtered out.
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3.2 Alignment via clustering

a) λrBr b) λB c) λrB
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Figure 3.7: Example of clustering acquired for one of the preliminary clusters

from Figure 3.6 of size 999. a) – i) stand for fitted models: a) λrBr, b) λB, c)

λrB, d) λBr, e) – i) models have deviation in the m/z dimension fixed to 0.04,

retention time deviations are: e) 50, f) 100, g) 200, h) estimated from the data,

the same for every cluster, i) estimated from the data for each cluster.
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3. MASS SPECTRA ALIGNMENT

t-test Random Forest
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Figure 3.8: The FDR statistic computed for the t-test and the Random Forest

based feature selection. The horizontal axis shows different values of the score

threshold, the vertical axis shows the FDR values. a) – i) stand for fitted models:

a) λkBk, b) λB, c) λkB, d) λBk, e) – i) all the models have deviation in the mass-

to-charge ratio dimension fixed to 0.04, retention time deviations are: e) 50, f)

100, g) 200, h) estimated from the data, the same for every cluster, i) estimated

from the data for each cluster.
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3.2 Alignment via clustering

t-test Random Forest
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Figure 3.9: The FDR statistic computed for the t-test and the Random Forest

based feature selection. Lower plots show the FDRs for alignments after the

retention time correction. Upper plots show the FDRs before the retention time

correction for comparison. The horizontal axis shows different values of the score

threshold, the vertical axis shows the FDR values. Explanation of model names:

a) λkBk, b) λB, c)λkB, d) λBk, e)–i) all the models have fixed deviation of the

mass-to-charge ratio dimension to 0.04, retention time deviations are: e) 50, f)

100, g) 200, h) estimated, the same for all clusters, i) estimated, varying between

clusters. The outcome of the XCMS clustering (with different parametrizations)

is also plotted.
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Chapter 4

Proteolytic activity modelling

With basic spectra processing problems solved one may begin thinking about

biologically meaningful questions. One area of interest might be peptidase activ-

ity. Peptidases (or proteases, proteinases) are enzymes that break peptide bonds

linking amino acids in a peptide chain. The discovery of the causative genetic

underpinnings of cancer has been a focus of biomedical research for decades, but

the multigenic nature of cancer has hindered progress in understanding the un-

derlying mechanisms that lead to a specific disease phenotype. The contribution

of proteolysis in processes of tumor invasion and metastasis has been recognized

many years ago and the overall consensus is that protease biology represents

a fertile ground for advances that will be clinically useful (Matrisian and Sledge,

2003). Using peptide degradation pattern for the diagnostic purposes seems bio-

logically sound as the amount of peptides in the circulation changes dynamically

according to the physiological or pathological state of an individual. Moreover,

it was reported that the degradation enzymes affect the dynamics of signaling

pathways (Reznik and Fricker, 2001). The objective of this chapter is to develop

mathematical tools and computational methods to describe proteolytic activity.

Modern biotechnology offers efficient techniques for large-scale measurements

of molecular activity characterizing numerous cellular processes. Besides experi-

mental techniques for high-throughput analysis, various formal methods and al-

gorithmic approaches were proposed for molecular modeling (Turner et al., 2004):

directed graphs (particles are at the nodes, reactions are edges), Bayesian net-

works (the nodes correspond to random variables describing e.g. gene expression
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4. PROTEOLYTIC ACTIVITY MODELLING

levels), boolean networks (the objects under the study can be in either the ac-

tive or inactive state), ordinary differential equations (Guldberg-Waage law) and

partial differential equations (taking the cell space structure into account). The

stochastic dynamics of a mixture of molecular species interacting through dif-

ferent biochemical reactions can be accurately modelled by the chemical master

equation (CME) (Pahle, 2009), i.e. the system of differential equations describing

the evolution of a stochastic process.

All those formalisms are quite general (can describe many kinds of reactions),

but their computer implementations are not efficient enough for systems with

large numbers of molecules. This obstacle is crucial for stochastic modeling,

where the standard approach to solving the CME is via computationally expensive

simulations (Pahle, 2009). The analytic solutions of the CME were obtained

only in very limited cases of a monomolecular reaction systems (Jahnke and

Huisinga, 2007) (all reactions of the form A → B), or a slightly more complex

system allowing binary reactions (Gelenbe, 2008) (binary reactions have the form

A+B → C).

While modeling proteolytic activity one has to consider substrings of a peptide

as a result of cutting. Thus a single protein can give rise to tens of thousands

of molecule kinds (if every substring needs to be taken into account). Also the

presence of splitting reactions prevents from obtaining analytic solutions. The

authors of (Moles et al., 2003) discuss parameter fitting methods in differential

equations models and emphasize the computational difficulty of the problem.

Therefore, even though there exists a large body of research concerning mod-

eling enzymatic reaction systems with differential equations, see e.g. (Ciliberto

et al., 2007), the stochastic framework is rarely considered. A rare exception is

the model proposed recently in (Goldobin and Zaikin, 2009) for the problem of

protein degradation in macromolecular complex called proteasome.

Organization of the chapter

Section 4.1 is based on (Kluge et al., 2009). To our knowledge it was the first

formal approach to modeling exopeptidase (peptidases that cut only one amino

acid from an end of a peptide chain) activity from liquid chromatography mass
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spectrometry samples. A statistical model of peptidome degradation is designed

and a Metropolis-Hastings algorithm for Bayesian inference of model parame-

ters is proposed. The model is successfully validated on a real LC-MS dataset.

Our findings support the hypotheses about disease-specific exopeptidase activity,

which can lead to new diagnostic approach in clinical proteomics.

Section 4.2 is based on (Gambin and Kluge, 2010). It generalizes the model

from Section 4.1 by considering cuts at arbitrary sites of peptide chains (i.e. in ad-

dition to exopeptidases also endopeptidases are handled). Moreover, proteolytic

activity is modeled in time by studying the evolution of the underlying stochastic

process before reaching equilibrium (we no longer need to assume a constant flow

of long peptide sequences into the system). The model uses peptidase cleavage

pattern data from the MEROPS database (Rawlings and Barrett, 2000) and is

tested on a simulated dataset.
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4. PROTEOLYTIC ACTIVITY MODELLING

4.1 Stationary model for exopeptidase activity

With the development of proteomic analytic technologies, especially mass spec-

trometry (MS), great hopes for early diagnostics of cancer were expressed (Petri-

coin et al., 2002). However, the initial optimism has encountered strong criticism.

The criticism was addressed not against the idea of using protein profiles as a di-

agnostic tool but against poor quality of data obtained from SELDI type detectors

and non-reproducibility of experimental conditions (Diamandis, 2003, 2004).

Moreover, despite years of intensive MS analysis, only a small number of pro-

teins have been validated as cancer biomarkers. Also the MS samples where

characterized as highly unstable, mainly because of ex-vivo proteolytic process-

ing (Marshall et al., 2003; Verrills, 2006). Changes in protein profiles can be

generated simply by the amount of time between sample draw and analysis. Sur-

prisingly this obstacle gives rise to a completely new approach enthusiastically

described as “spinning biological trash into diagnostic gold” (Liotta and Petricoin,

2006).

In (Diamandis, 2006) the advantages and limitations of clinical peptidomics

were summarized. The authors proposed to characterize the proteolytic activity,

as it could lead to better patient discrimination. Therefore our research objective

was to build a mathematical model of exopeptidase activity and to check whether

the model exhibits differences between samples from healthy donors and diseased

patients.

In a typical LC-MS experiment a complex mixture of peptides is separated us-

ing liquid chromatography coupled on-line with electrospray mass spectrometer.

After appropriate preprocessing (see Chapters 2 and 3) each detected peptide is

characterized by two coordinates – its molecular mass-to-charge ratio and reten-

tion time value.

Much work has already been invested into detection of molecular mass biomark-

ers for various pathologies and diagnostic procedures have been suggested (Adam

et al., 2002; Geurts et al., 2005; Jacobs and Menon, 2004; Li et al., 2002; Lilien

et al., 2003; Tibshirani et al., 2004; Wu et al., 2003; Yu et al., 2005). Unfortu-

nately, it is extremely hard to obtain stable MS results reproducible over time

and across different laboratories (Hu et al., 2005). Often the differences in sample
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4.1 Stationary model for exopeptidase activity

collection or sample handling protocol affect the proteome to a degree that can

dominate biological changes. Also the ex-vivo peptide degradation process was

regarded as a serious obstacle in MS analysis.

Recently a novel way of diagnosing cancer was suggested in (Villanueva et al.,

2006a,b). The authors postulate, that the diagnostic peptides originate after

ex-vivo exoproteolytic processing of high abundance protein fragments. Para-

doxically, these findings indicate that inhibition of proteolysis in ex-vivo samples

could limit biomarker discovery. See also (Koomen et al., 2005) for the infor-

mation on the peptidome degradation process analyzed with the use of mass

spectrometry technology.

Using peptide degradation pattern for the diagnostic purposes seems biolog-

ically sound as the amount of peptides in the circulation changes dynamically

according to the physiological or pathological state of an individual. Moreover, it

was reported that the degradation enzymes (especially exopeptidases) affect the

dynamics of signaling pathways (Reznik and Fricker, 2001).

Even though there exists a large body of research concerning modeling enzy-

matic reaction systems with differential equations, see e.g. (Ciliberto et al., 2007),

to the best of our knowledge this work is the first attempt to build a model specif-

ically with exopeptidase activity in mind.

Results summary

We propose a comprehensive statistical and computational framework for anal-

ysis of peptide degradation patterns in LC-MS samples. In our approach the

exopeptidase activity is modeled as a continuous time Markov process. The sta-

tionary distribution of this process is proved to be a product of Poisson laws.

A Metropolis-Hastings (Hastings, 1970) sampler is implemented to estimate the

parameters of the model. These correspond to the rates of cleavage for different

amino acids. The model is tested on simulated data and validated on a colorectal

cancer dataset. Parameter estimates for diseased patients and healthy donors

differ significantly and allow for accurate classification. Moreover, the estimated

differences in activity of proteolytic enzymes in cancer and healthy samples cor-

relates with experimentally verified activity of metallopeptidases in colorectal

63
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cancer development (Leeman et al., 2003; Masaki et al., 2001). The scheme of

data processing and analysis workflow is depicted in Fig. 4.1.

LC-MS patient samples

sequences of precursor peptides
from MS/MS patient samples

spectra alignment
extraction of observations

cleavage graph construction

cleavage graph

cleavage graph
filled with real observations

estimation of model parameters

estimated real normalized
cutting intensities

estimated artificial normalized
cutting intensities

artificial
cutting intensities

exopeptidase activity analysis
patient classification

artificial observations generation

cleavage graph
filled with artificial observations

estimation procedure evaluation

Figure 4.1: Data processing and analysis workflow.

Availability

The source code (R with C) of our estimation procedure is freely available at

http://bioputer.mimuw.edu.pl/papers/exopep. The site also contains addi-
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4.1 Stationary model for exopeptidase activity

tional figures and peptide sequences generating the cleavage graph.

4.1.1 Model description

Our model has two main components: the first one describes the cleavage (peptide

degradation) process itself, while the second accounts for imperfections at the

data acquisition stage.

Model for the cleavage process

⋆

FT

FTS

TS

FTSS

TSS

SS

FTSST

TSST

SST

ST

FTSSTS

TSSTS

SSTS

STS

SSTSY

STSY

TSY

SY

†

Figure 4.2: The cleavage graph for 2 precursor peptides FTSSTS and SSTSY

with source and sink nodes added.
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Peptide sequences whose proteolysis we wish to model give rise to a graph (V , E),

which we will call the cleavage graph. Nodes V of this graph correspond to all

peptide subsequences of length at least 2. A directed edge from node i to j is

placed if subsequence j can be obtained from subsequence i by cutting off a single

amino acid from the N-terminus or the C-terminus. Each edge is labeled with

the amino acid being cut off and the terminus it is being cut off from, thus the

set R of possible labels has 20× 2 elements. The label for edge i→ j is denoted

by r(i, j). We assume that the labeling and structure of the cleavage graph is

known. An exemplary cleavage graph is presented in Fig. 4.2.

It is helpful to think of the peptide subsequences as particles placed at nodes of

the cleavage graph and moving along its edges. Then the probabilistic dynamics

of the cleavage process is described by the following intensities of transition:

• particles are created at node i with intensity a?i,

• every particle placed at i can move to j with intensity ar(i,j) independently

of all other particles, provided that there exists an edge i→ j,

• every particle placed at i can be annihilated with intensity ai† independently

of all other particles.

We refer to the (ar)r∈R parameters as the cutting intensities.

More formally, let random variable Xi(t) denote the number of particles at

node i ∈ V at time t and write X(t) = (Xi(t))i∈V . We regard (X(t), t ≥ 0) as

a homogeneous Markov process in the space of configurations x = (xi)i∈V , xi ∈
{0, 1, . . . }. We use the standard notation for restricted configurations, writing

e.g. x−i = (xk)k∈V : k 6=i. The process has the following intensities of transition

(x 6= x′):

Q(x, x′) =


a?i if x′i = xi + 1, x′−i = x−i for some i,

ar(i,j)xi if x′j = xj + 1, x′i = xi − 1,

and x′−i−j = x−i−j for some i→ j,

ai†xi if x′i = xi − 1, x′−i = x−i for some i.

We assume that the process reached the equilibrium state. At each node, we

are interested in the distribution of the number of particles. Perhaps surprisingly,
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4.1 Stationary model for exopeptidase activity

we can prove that those numbers are independent and each one follows a Poisson

distribution.

Proposition 1 (Equilibrium distribution) The process (X(t)) has the equi-

librium (stationary) distribution π given by:

π(x) =
∏
i∈V

eλi
λxii
xi!

,

where the configuration of intensities (λi)i∈V is the unique solution to the following

system of “balance” equations:

∑
k→i

λkar(k,i) + a?i = λi

(∑
i→j

ar(i,j) + ai†

)
for every i ∈ V .

Note that it is easy to solve the system of “balance” equations recursively starting

from the nodes without parents. The proposition can be proved by simply check-

ing the global balance condition (i.e. that for every configuration x the equality∑
x′ 6=x π(x)Q(x, x′) =

∑
x′ 6=x π(x′)Q(x′, x) holds).

The above description of the cleavage process is valid for any directed acyclic

graph. Since we are concerned with exopeptidase activity modeling, we impose

some restrictions. Let Vin be the set of nodes that have no parents. We set a?i

to 0 for i ∈ V \Vin and ai† to 0 if node i has children. If i has no children then αi†

is expressed as a sum of two elements from {ar | r ∈ R}, corresponding to the

amino acids on both ends of subsequence i.

In order to go further with the description of the model, we need to change

the parameterization a little bit. Write b?i = s1a?i for i ∈ V , where s1 =
∑

i∈V a?i

forcing
∑

i∈V b?i = 1 and similarly br = s2ar for r ∈ R, where s2 =
∑

r∈R ar

forcing
∑

r∈R br = 1. Now we can express λi as sµi, s = s2
s1

for i ∈ V where µi

depend only on (br)r∈R and (b?k)k∈Vin . We place a Gamma prior with parame-

ters (Sshape, Srate) on s and a Dirichlet prior with parameters (Br)r∈R on (br)r∈R

and (B?i)i∈Vin on (b?i)i∈Vin . Since we are interested in relative intensities only, our

goal is to estimate (br)r∈R, which we will call the normalized cutting intensities.
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Model for data acquisition

Ideally, after the data preprocessing step one would get an exact reading on the

numbers of particles corresponding to every possible subsequence present in the

cleavage graph. In reality we must deal with many kinds of experimental errors.

First of all, many readings are missing. We can see which readings are missing

and which are not. A vector of binary variables (εi)i∈V indicates the non-missing

readings.

Some of the non-missing readings may be incorrect, meaning that they are

taken from the wrong peaks from the LC-MS spectra, and have little to do with

the peptides mentioned in the cleavage graph. This information is hidden and

modeled by the δ variables coming from a Bernoulli process with success proba-

bility q.

Moreover, assuming that each correct reading is a sample from a Poisson

distribution would imply low relative errors for readings from high peaks. This

is clearly not realistic in case of the LC-MS data. Therefore, we assume that

correct readings yi for i such that δi = 1 come from independent log-normal

distributions with parameters lnxi and τ (see Eqn. (4.1)), where x is the hidden

realization of the cleavage process. Incorrect readings yi for i such that δi =

0 come independently from a background distribution with density bg. This

density is estimated from the data (all mono-isotopic peak intensities in an LC-

MS sample).

Note that from now on we define δi, xi and yi only for i ∈ V such that εi = 1.

When we write i : δi = 1 we mean only those indices i, for which δi is defined.

When we write x we mean (xi)i : εi=1, etc.

Posterior distribution

The dependence structure of the variables in the hierarchical Bayesian model is

shown in Fig. 4.3. The posterior distribution can be written as:

f(s, b?, b, δ, x | y) ∝ f(y | s, b?, b, δ, x)f(s, b?, b, δ, x)

= f(y | δ, x)f(δ)f(x | s, b?, b)f(s)f(b?)f(b),
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(Br)r∈R

(br)r∈R∼
Dir((Br)r∈R)

(B⋆i)i∈Vin

(b⋆i)i∈Vin∼
Dir((B⋆i)i∈Vin)

Sshape, Srate

s ∼ Gamma(Sshape, Srate)

λi = λi(s, b⋆, b) for i ∈ V (ǫi)i∈V q

δi ∼ Bern(q) for i : ǫi = 1xi ∼ Poiss(λi) for i : ǫi = 1 τ

yi ∼ LogNormal(xi, τ) for i : δi = 1
yi ∼ Background for i : δi = 0

Figure 4.3: The hierarchical Bayesian model of cleavage activity and data acqui-

sition.

where:

f(y | δ, x) =
∏

i : δi=0

bg(yi)
∏

i : δi=1

1

yiτ
√

2π
e−

(ln yi−ln xi)
2

2τ2 , (4.1)

f(δ) = q|{i | δi=1}|(1− q)|{i | δi=0}|,

f(x | s, b?, b) = s
∑
i xi
∏
i

µxii
xi!

e−sµi ,

f(s) = sSshape−1S
Sshape

rate e−Srates

Γ(Sshape)
,

f(b) =
Γ
(∑

r∈RBr

)∏
r∈R Γ(Br)

∏
r∈R

bBr−1
r ,

f(b?) =
Γ
(∑

i∈Vin B?i

)∏
i∈Vin Γ(B?i)

∏
i∈Vin

bB?i−1
?i .
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Integrating out s yields:

f(x | b?, b) =

∫ ∞
0

f(x | s, b?, b)f(s) ds

=

∫ ∞
0

s
∑
i xi

(∏
i

µxii
xi!

exp(−sµi)
)
sSshape−1S

Sshape

rate exp(−Srates)

Γ(Sshape)
ds

=

(∏
i

µxii
xi!

)
S
Sshape

rate

Γ(Sshape)

Γ (Sshape +
∑

i xi)

(Srate +
∑

i µi)
Sshape+

∑
i xi∫ ∞

0

sSshape+
∑
i xi−1 (Srate +

∑
i µi)

Sshape+
∑
i xi exp (−s (Srate +

∑
i µi))

Γ (Sshape +
∑

i xi)
ds

=

(∏
i

µxii
xi!

)
S
Sshape

rate

Γ(Sshape)

Γ (Sshape +
∑

i xi)

(Srate +
∑

i µi)
Sshape+

∑
i xi
,

since the expression under the last integral is the density of the gamma distribu-

tion. By summing out δ we obtain:

f(y | x) =
∑

δ∈{0,1}|{i | εi=1}|

f(y | δ, x)f(δ)

=
∑

δ∈{0,1}|{i | εi=1}|

( ∏
i : δi=0

bg(yi)

)( ∏
i : δi=1

1

yiτ
√

2π
exp

(
−(ln yi − lnxi)

2

2τ 2

))
(1− q)|{i | δi=0}|q|{i | δi=1}|

=
∏

i : εi=1

(
(1− q)bg(yi) + q

1

yiτ
√

2π
exp

(
−(ln yi − lnxi)

2

2τ 2

))
.

Finally we can write:

f(b?, b, x | y) ∝ f(y | x)f(x | b?, b)f(b)f(b?).

4.1.2 Estimation procedure

We wish to estimate the (br)r∈R parameters. The closed form of the expres-

sion f(b?, b, x | y) was derived in the previous section. Since we are unable to

integrate out b? and x, we use the Metropolis–Hastings (Hastings, 1970) algo-

rithm with the standard acceptance rule to sample (b?, b, x) from the posterior

distribution.
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4.1 Stationary model for exopeptidase activity

Transition proposal is generated by selecting with equal probability one of the

three following rules:

1. changing b?:

• generate i, j ∈ Vin, i 6= j uniformly,

• generate

(b′?i, b
′
?j) ∼ (b?i + b?j)Dir(c b?i

b?i+b?j
+ 1, c

b?j
b?i+b?j

+ 1),

where c is a parameter of the procedure,

• set b′?k to b?k for k /∈ {i, j},
• propose transition (b?, b, x) 7→ (b′?, b, x),

2. changing b (analogously to changing b?),

3. changing x:

• generate i such that εi = 1 uniformly,

• generate x′i ∼ LogNormal(lnxi, d),

where d is a parameter of the procedure,

• set x′k to xk for k 6= i,

• propose transition (b?, b, x) 7→ (b?, b, x
′).

4.1.3 Model testing

Compositional data analysis

The normalized cutting intensities lie on a simplex. The theory for analysis of

such data (termed compositional data analysis) is summarized in (Aitchison and

Egozcue, 2005). In short, it consists of interpreting the simplex as a Euclidean

linear vector space and then applying standard analysis techniques. We use the

following concepts:

• the centered log ratio transform of a point (zi)i=1,...,n on a simplex is defined

as:

clr(z) =

(
ln

zi
g(z)

)
i=1,...,n

,

where g denotes the geometric mean,
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4. PROTEOLYTIC ACTIVITY MODELLING

• the Aitchison distance is the Euclidean distance between clr-transformed

points,

• the analogue of the expected value of a variable (Zi)i=1,...,n on a simplex is

the Aitchison mean defined as:

C ((exp E[lnZi])i=1,...,n) ,

where C denotes rescaling of the components so that their sum is 1,

• the analogue of principal component analysis is well defined (it amounts to

performing PCA on clr-transformed data).

Testing on synthetic datasets

Three datasets (readings for the nodes of the cleavage graph) were generated

according to the model with parameters B?i = 2 for i ∈ Vin, Br = 2 for r ∈ R,

s = 106, τ = 0.2. Based on each of these datasets another dataset was derived by

selecting nodes with correct readings with q = 0.7. Readings at all other nodes

were resampled as being incorrect, each with λ parameter selected uniformly

from (λi)i∈V . Thus we have two version of each of the three datasets – with and

without incorrect readings.

The Metropolis–Hastings algorithm was run with parameters c = 80 (for

changing b? and b) and d = 0.05 (for changing x) for 3× 106 iterations to recover

the (br)r∈R parameters.

Initial b? and b were sampled from the Dirichlet priors. Initial xi parameters

were sampled from the log-normal distributions with parameters ln yi, τ .

During the algorithm run the same Dirichlet priors and τ as during data gen-

eration were used. The Sshape, Srate parameters were set to 0 and the q parameter

was set appropriately to 1 or 0.7. On each dataset eight independent algorithm

runs were conducted (therefore in total there were 3×2×8 algorithm runs), each

time with randomly selected 90% of the readings hidden as missing data. This

was motivated by the fact that on real data only about 10% of the nodes of the

cleavage graph had readings.
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Figure 4.4: Clr-transformed normalized amino acid cutting intensities estimated

from an artificial dataset without (top) and with (middle) incorrect readings and

from a real dataset (bottom) based on 8 runs of the algorithm. The horizontal

axis is sorted by the true intensities marked with the thick black line (top, middle)

or by the Aitchison mean (bottom). Uppercase letters denote cutting from the

N-terminus, while lowercase – from the C-terminus. The width of the bars is

proportional to the number of appearances of the corresponding amino acid in

the maximal vertices of the cleavage graph (i.e. the precursor peptides).

Results for one dataset with and without incorrect readings are presented in

Fig. 4.4. Results for other datasets look similarly and are available as supple-

mentary materials. Clearly the estimates for data without incorrect readings are

very accurate. Since the estimates for data with incorrect readings are visually

less appealing, we computed the Aitchison distance (see Section 4.1.3) between

the averaged (over 8 runs using the Aitchison mean) estimated intensities and

the true intensities. The results were 3.12 (dataset in Fig. 4.4), 2.64 and 3.23. To

give those numbers some meaning, if we take independently two points from the

Dirichlet prior with parameters Br = 2 for r ∈ R, then with probability greater
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Figure 4.5: Cumulative distribution function of the Aitchison distance between

two points taken independently from the Dirichlet prior with parameters Br = 2

for r ∈ R. Three vertical lines mark the distances between true and estimated

intensities from synthetic datasets.

than 0.999 the Aitchison distance is greater than 4.5 (see Fig. 4.5).

4.1.4 Validation on LC-MS data

Colorectal cancer dataset

LC-MS and MS-MS data was provided by the Mass Spectrometry Laboratory of

the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences.

The mass spectrometer used in the experiments was an ElectroSpray Ionization

Fourier Transform Ion Cyclotron Resonance (ESI-FTICR) coupled with an HPLC

retention column.

The dataset comprised mass spectra acquired from serum samples for col-

orectal cancer patients. Apart from the patient data, control samples were also

collected from healthy donors and analyzed with the mass spectrometer. The

colorectal cancer dataset consisted of 29 spectra, 15 samples corresponding to

diseased patients and 14 to healthy donors.
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4.1 Stationary model for exopeptidase activity

Cleavage graph construction

For the construction of the cleavage graph we start with the information about

successfully sequenced peptides from a LC-MS/MS experiment. This information

covers a little over 1000 peptides and is comprised of peptide mass, mass-to-

charge ratio, retention time, charge, amino acid sequence, protein of origin, and

optionally the information about the oxidation for each peptide. For simplicity,

the oxidated molecules are omitted. The set of vertices of the cleavage graph

is defined using all other maximal sequences (i.e. the precursor peptides; they

can be found in the supplementary materials) and their subsequences. It has

39544 elements, including 243 maximal vertices. This graph is fixed in all our

experiments (both on artificial and real data).

Data preprocessing

For each spectrum we used the mz2m program (see Section 2.3) to obtain a list of

mono-isotopic peak coordinates (m/z values and retention times) together with

their charges and intensities.

For each cleavage graph vertex encoded by amino acid sequence we need to

find a corresponding signal in the spectrum. One can easily compute mass of the

sequence and consider mass-to-charge ratios for charge z ∈ {1, . . . , 8} (greater

charges do not occur in the data). There is a problem however with the re-

tention time. As we mentioned, the retention time is readily available for some

sequences. We use this information to train the Random Forest regression algo-

rithm (Breiman, 2001) to predict the retention time from the amino acid compo-

sition.

The lists of mono-isotopic peaks from spectra together with the list describing

the nodes of the graph were aligned by applying to each list a linear transforma-

tion along the retention time axis as described in Section 3.1.

Assuming we know the retention time and several possible mass-to-charge

ratios for a given sequence, we find peaks nearest to those locations on the LC-

MS spectrum. The Euclidean metric is used with the retention time scaled by

10−2. Signals which are further than 0.05 or with charge mismatch are discarded.
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Intensities of the rest are summed and returned as the observed value at a suitable

node of the cleavage graph.

We are aware that there are many factors influencing the intensity measure-

ments (Mallick et al., 2007) (for instance isoelectric point). We leave integrating

this knowledge into the model for the future, especially as we already have a com-

ponent that accounts for inexact readings (generating y from x, cf. Fig. 4.3).

Testing on real dataset

In order to illustrate the applicability of the model to real data we analyzed the

colorectal cancer dataset. We show that our model can be used to discriminate be-

tween diseased patients and healthy donors. In each of the 29 samples about 90%

readings in the nodes of the cleavage graph were missing. Since there were only

about 0.7% nodes with readings from all samples, it is not straightforward to

bypass the model parameters estimation and perform classification directly on

the data (one would have to deal somehow with the missing data). Therefore we

leave comparison with other classification methods as a topic for further research,

but we stress that our model can provide insights into the peptide degradation

process.

The estimation algorithm was run 8 times on each sample with the q parameter

set to 0.7 and all other parameters as described in the previous section. Figure 4.4

shows that the results are quite consistent (additional figures can be found in the

supplementary materials). Obtained intensities were averaged over these 8 runs

using the Aitchison mean.

Figure 4.6 shows the data projected on the first three principal components

(accounting for almost 75% of total variance). The first and third components

are heavily influenced by Cysteine cutting intensity (see loadings on Fig. 4.6) and

do not discriminate samples well. The second component is the only one signifi-

cant in this respect (Bonferroni corrected p-value from Kolmogorov-Smirnov test

below 0.01). We tried to confirm whether it carries the information about the

altered pattern of exopeptidase activity.
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Figure 4.6: Scatter plot of the colorectal cancer dataset for the first three principal

components and the corresponding loadings. Healthy donors are marked with

black circles. Diseased patients are marked with red triangles. Uppercase letters

denote cutting from the N-terminus, while lowercase – from the C-terminus.

To determine the hypothetical enzymes involved, we scanned MEROPS data-

base (Rawlings and Barrett, 2000) for peptidases cleaving the specific bond (e.g.

Threonine, Valine and Histidine from C-terminus, Phenylalanine and Aspartic

acid from N-terminus, see Fig. 4.6). Resulting list contains many metallopepti-

dases, which are experimentally verified as crucial for colorectal cancer develop-

ment (Leeman et al., 2003; Masaki et al., 2001).

We also investigated whether patient classification based on clr-transformed

normalized cutting intensities can be performed. Using the SVM classifier (Schöl-
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kopf and Smola, 2002) with linear kernel, the .632+ bootstrap (Efron and Tib-

shirani, 1997) error estimate based on 1000 bootstrap replicates was 12.4%. We

repeated the whole procedure 1000 times with class labels permuted randomly.

The average .632+ bootstrap error estimate was 54.5% with standard devia-

tion 12.5%, suggesting that cutting intensities indeed contain information about

patient state (and perhaps that the .632+ estimator is too pessimistic).

4.1.5 Conclusions

Up to our knowledge, this work represents the first attempt to model the protein

degradation process from LC-MS data. We described a mathematical framework

allowing for adequate statistical modeling. The model was extensively tested on

suitably chosen artificial datasets, as well as on real LC-MS samples.

The outcome of computational experiments is very promising. The estimation

procedure yielded robust results even when dealing with errors and missing values

in the input data. Moreover, the accurate classification results for colorectal

cancer patients suggest diagnostic potential of the model.

On the other hand, we are aware of the problems with reproducibility of

the LC-MS experiments. Two more datasets were at our disposal. They were

collected at different times and processed with different HPLC columns. After

preliminary analyzes we decided however to base the presentation of our model

only on one dataset, because the results were hard to compare between different

datasets. We believe that better LC-MS spectra alignment procedures would

decrease the variability between the datasets.

Recently, new diagnostic test has been proposed to compare proteolytic activ-

ities within individual proteome of two groups of biological samples (Villanueva

et al., 2008). It tracks degradation of artificial substrates under strictly controlled

conditions. We plan to adopt our model to this setting and infer the hypotheses

on the activity of postulated but as yet unidentified exopeptidases.

Finally, some concerns may be raised regarding the cleavage process stationar-

ity assumption, especially as it is hard to strictly control the time between sample

collection and MS analysis. In Section 4.2 we will modify our model to remove

this assumption.
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4.2 Time dependent model for peptidase activity

4.2 Time dependent model for peptidase activ-

ity

We develop a comprehensive mathematical model describing the activity of pep-

tide cutting enzymes (peptidases). Our model enables parameter inference from

mass spectrometry data. The dynamics of peptide degradation is described by

means of biochemical reactions network. It is widely accepted that stochastic-

ity is an inherent property of such systems, therefore we model the network of

proteolytic reactions as a Markov process, whose evolution is described by the

chemical master equation (CME).

In Section 4.1 we have proposed a mathematical model for exopeptidase activ-

ity by means of the CME. The general idea was similar to the one described here

— to track the numbers of peptide particles as they are being cut into smaller

sequences. To keep things simple we postulated a constant flow of long peptide

sequences into the system and looked only at the stationary state of the cleavage

process. We restricted ourselves to enzymes operating near the ends of peptides

(exopeptidases) which allowed us to obtain an analytic solution. In particular,

we characterized the stationary solution of the CME as a product of Poisson dis-

tributions. The model was tested in simulations and gives good predictions on

colorectal cancer dataset, but it suffers from two significant limitations. Firstly,

it considers only peptidases cutting one amino acids from the end of the peptide.

Secondly, it assumes stationarity of the proteolysis process which does not make

sense when one considers time series data.

In this section we address these two problems. Firstly, we integrate our model

with peptidase database MEROPS (Rawlings and Barrett, 2000) and model en-

dopeptidase activity as well. Secondly, we model proteolytic activity in time by

studying the evolution of the underlying stochastic process before reaching equi-

librium (we no longer need to assume a constant flow of long peptide sequences

into the system).

Although allowing the endopeptidase cuts (i.e. splitting reaction of the form

A → B + C) complicates the model, we managed to characterize the time-

evolution of peptide population (i.e. expected configuration of a Markov process).

We derive the system of differential equations which describes the dynamics of
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means from the CME. The solution of the system is obtained by matrix exponen-

tiation. For this problem we propose an original combinatorial approach which

is interesting for its own sake and can be applied to a wide class of biochemical

reactions systems.

The model parameters corresponding to the activity of specific enzymes are

fitted to minimize the discrepancy between the expected amount of peptides

calculated from the model and the readouts from mass spectra. The outcome of

computational experiments performed on simulated datasets is very promising.

The estimation is efficient even in the presence of erroneous or missing readouts

and the model is capable of inferring the enzyme concentration levels.

In Section 4.1 we used a Markov Chain Monte Carlo method to estimate

enzyme cutting intensities. In particular, the Metropolis-Hastings algorithm was

applied to sample parameters from the posterior distribution. In this approach

we decided to apply a generic quasi-Newton method for parameter estimation

in order to avoid writing a custom sampler and reduce the complexity of error

modeling.

Our main results can be summarized as follows:

• proposing a rigorous model for proteolytic activity inferred from mass spec-

trometry data,

• giving an explicit representations of means for proteolytic reactions network,

• describing a new matrix exponentiation algorithm,

• suggesting a method for the estimation of model parameters.

In Section 4.2.1 we introduce the mathematical model of serum proteolysis

process and present a method to calculate expected values of peptide amounts

in time. Section 4.2.2 deals with matrix exponentiation. The approach to model

parameters estimation is described in Section 4.2.3. The method for incorporating

the biological information about proteolytic events into the model is presented in

Section 4.2.4. Finally, Section 4.2.5 contains results of experiments and discussion

of further research.
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4.2.1 Cleavage process

Peptide sequences whose proteolysis we wish to model give rise to a bipartite

multidigraph, which we call the cleavage graph. The first set of nodes of this

graph corresponds to all subsequences of the peptides considered. We call them

peptide nodes, and denote by V . The second set of nodes, called event nodes,

corresponds to all possible proteolytic events. By proteolytic event we mean the

cleavage of a specific substrate at a specific site made by a specific peptidase.

Hence each event node is labelled by a peptidase, and has one ingoing edge

(leading from the substrate of proteolysis) and two outgoing edges (leading to

peptide prefix and suffix obtained by cutting the substrate at a single site).
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Figure 4.7: The cleavage graph for the precursor peptide MSFTLTNK (alco-

hol dehydrogenase fragment). Proteolytic events are taken from the MEROPS

database (Rawlings and Barrett, 2000).
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It is helpful to think of the peptide subsequences as particles placed at peptide

nodes of the cleavage graph. The particles are moving along the edges of the graph

according to the Petri net operational semantics, i.e. the transition (event node)

consumes one substrate particle, and produces two particles (prefix and suffix of

the substrate). As every transition needs exactly one token to occur, our system

belongs to the subclass of communication-free nets (Esparza, 1997).

We assume that the labeling and structure of the cleavage graph is known.

In Section 4.2.4 we show how to assign specific enzymes to event nodes. An

exemplary cleavage graph is presented in Figure 4.7.

In the exemplary graph four proteolytic events which engage three peptidases

are depicted. For u, v, w ∈ V we use the notation u = v † w when peptides v

and w can be obtained directly by cutting u (v is a non-empty strict prefix and

w is a non-empty strict suffix of u). The operation † can be viewed as string

concatenation. To identify a cleavage site we write simply v † w.

Denote by P the set of all peptidases whose activity is modeled. Coefficients

ρpvw (for peptidase p ∈ P and cleavage v†w) put over the event nodes in Figure 4.7

correspond to the affinity between the peptidase cleavage pattern and the cleav-

age site (we call them affinity coefficients). They are defined for every possible

cleavage v † w and calculated at the graph construction stage (see Section 4.2.4

for details).

Our ultimate goal is to estimate peptidase cutting intensities vector c =

(cp)p∈P . We assume that the propensity of a given peptidase p to perform the

cleavage v †w is proportional to its overall intensity cp weighted with the appro-

priate affinity coefficient (i. e. ρpvw). The cleavage intensity for a given site v † w
is a weighted sum of intensities of all peptidases considered in our model.

To define the probabilistic dynamics of the cleavage process more formally, let

random variables Xi(t) denote the number of particles at peptide node i ∈ V at

time t and write X(t) = (Xi(t))i∈V . We regard (X(t), t ≥ 0) as a homogeneous

Markov process in the space of configurations x = (xi)i∈V , xi ∈ {0, 1, . . . }. Denote

by ρvw the vector of all peptidase affinity coefficients for the cleavage v † w (for

convenience if v † w /∈ V then define ρvw = 0). Define εz for z ∈ V as a vector of

dimension |V| with only one non-zero coordinate corresponding to the vertex z.
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4.2 Time dependent model for peptidase activity

The process has the following intensities of transition from state x to state x′

where x 6= x′:

Qxx′ =

{
cTρvwxu if x′ = x− εu + εv + εw and u = v † w ,

0 otherwise.

We are interested in the distribution of this process at finite time points.

The model of exopeptidase activity presented in Section 4.1 allowed for the

full characterization of the underlying Markov process. In the present setting

the splitting reactions corresponding to endopeptidase proteolytic events make

the system behavior more complex. Especially, there are no analytic results for

Markov processes modeling such systems. In our approach we focus on time

evolution of the expected numbers of particles.

Consider the probability distribution characterizing the time evolution of

a Markov process (X(t))t>0:

P (x, t) = P(X(t) = x).

The distribution P is the solution of the chemical master equation:

∂

∂t
P (x, t) =

∑
y 6=x

(QyxP (y, t)−QxyP (x, t))

=
∑
u=v†w

cTρvw [(xu + 1)P (x+ εu − εv − εw, t)− xuP (x, t)]

=
∑
u=v†w

cTρvw[x′uP (x′, t)− xuP (x, t)],

where x′ = x + εu − εv − εw, i.e. x′ denotes a configuration before the cleavage

v † w.

Denote by Eq (t) the expected number of instances of peptide q at time t. We
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have from the chemical master equation above:

Eq (t) =
∑
x

xqP (x, t),

d

dt
Eq (t) =

∑
x

xq
∂

∂t
P (x, t)

=
∑
x

xq
∑
u=v†w

cTρvw [(xu + 1)P (x+ εu − εv − εw, t)− xuP (x, t)]

=
∑
u=v†w

cTρvw

[∑
x

xq(xu + 1)P (x+ εu − εv − εw, t)−
∑
x

xqxuP (x, t)

]

=
∑
u=v†w

cTρvw

[∑
x

(x− εu + εv + εw)qxuP (x, t)−
∑
x

xqxuP (x, t)

]
=
∑
u=v†w

cTρvw
∑
x

(−εu + εv + εw)qxuP (x, t).

Now observe that for all q /∈ {u, v, w} the summands are zero (as (−εu+εv+εw)q =

0) and consider three cases: v = q, w = q and u = q (the first two may overlap if

v = w = q). The following holds:

d

t
Eq (t) =

∑
u=q†w

cTρqw Eu (t) +
∑
u=v†q

cTρvq Eu (t)−
∑
q=v†w

cTρvw Eq (t) . (4.2)

The first two summands correspond to the creation of particle q from u by per-

forming two kinds of cleavages: q † w or v † q, i.e. the word q can form a suffix

or a prefix of u. The third summand corresponds to the consumption of the

particle q. It happens when q is cleaved at some site.

We introduce the notation q → v if v can be directly obtained by cutting q,

i.e. v is a non-empty strict prefix or a non-empty strict suffix of q. Note that

q → v means that there exists the cleavage site q = v † w or q = z † v or both.

Denote by λuq the intensity of creating q from u by a single cleavage of the

form u = q † w or u = v † q, i.e. λuq = cT(ρqw + ρvq). Let λqq = −∑q=v†w c
Tρvw,

i.e. minus the intensity of consuming q in all cleavages involving this peptide.

Note that the following equality holds:

λqq = −1

2

 ∑
q=v†w

λqv +
∑
q=z†v

λqv −
∑
q=v†w
q=z†v

λqv

 = −1

2

∑
q→v

λqv.
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Now the equations (4.2) have the following form:[
d

dt
Eq (t) =

∑
u→q

λuq Eu (t) + λqq Eq (t)

]
q∈V

. (4.3)

The solution of the system of linear constant coefficient ordinary differential equa-

tions like (4.3) is given by:

E (t) = E (0)T exp(Λt), (4.4)

where E (t) = (Ev (t))v∈V , E (0) = (Ev (0))v∈V and matrix Λ = (λvw)v,w∈V . The

matrix exponentiation in Equation (4.4) can be computed by dozens of meth-

ods (Moler and Loan, 2003) that originate from mathematical analysis, matrix

theory or approximation theory. Here we propose a new method, which can

be a tempting alternative to existing ones1, as long as the coefficient matrix is

triangular.

4.2.2 Matrix exponentiation

Define relation < on all subsequences as a transitive closure of the relation →,

i.e. v < u ⇐⇒ v is a non-empty substring of u. We also write v ≤ u when

v < u or v = u.

Notice that the system (4.3) can be solved by processing equations in the

topological order (in terms of the ≤ partial order, starting from the maximal

elements). One can postulate (or check) that the solution can be written as:

Eu (t) =
∑
v≥u

buv exp(λvvt), where buv =
∑
w≥v

auvw Ew (0) . (4.5)

This way Eu (t) =
∑

w≥v≥u auvw exp(λvvt) Ew (0). Define auvw = 0 when w ≥ v ≥
u does not hold. Now we can write those equations in vectorized form:

Eu (t) = E (0)T
∑
v≥u

auv exp(λvvt),

1In our implementation a function from one of the R software package (Team, 2009) libraries

is used.
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where auv = (auvw)w∈V . Notice that
∑

v≥u auv exp(λvvt) corresponds to the u-th

column of the matrix exp(Λt).

The auvw for w ≥ v ≥ u coefficients are real numbers that can be calculated

from the system of equations (4.3):

d

dt
Eu (t) = λuu Eu (t) +

∑
w→u

λwu Ew (t)

= λuu Eu (t) +
∑
w→u

λwu
∑
v≥w

bwv exp(λvvt)

= λuu Eu (t) +
∑

v≥w→u

λwubwv exp(λvvt).

Solving the differential equation yields:

Eu (t) =

[
Eu (0)−

∑
v>u

1

λvv − λuu
∑

v≥w→u

λwubwv

]
exp(λuut)

+
∑
v>u

1

λvv − λuu
∑

v≥w→u

λwubwv exp(λvvt),

which gives a recursive formula for the b coefficients (see Equation (4.5)):

buv =
1

λvv − λuu
∑

v≥w→u

λwubwv for v > u,

buu =

[
Eu (0)−

∑
v>u

buv

]
,

and, in consequence, for the a coefficients (again see Equation (4.5)):

auvw =
1

λvv − λuu
∑

v≥z→u

λzuazvw for w > v > u, (4.6)

auuw = −
∑

w≥v>u

auvw for w > u, (4.7)

auuu = 1. (4.8)

The recursive equations (4.6), (4.7) and (4.8) can be translated into a dynamic

programming algorithm. They let us solve the system of differential equations (4.3)

and simultaneously define the exp(Λt) matrix. Since they exploit the structure of

the ≤ partial order, they might be preferred to the more general methods. Good

implementation would use efficient data structures for partial order traversal to

compute the sums above.
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4.2.3 Estimation procedure

In this section we describe our approach to estimation of the peptidase cutting

intensities (i.e. the vector c = (cp)p∈P , where P is the set of peptidases considered

in the model). Assume that we have a series of mass spectra analyzed at time

points t1, . . . , tk at our disposal. For every sequence v ∈ V recall that xv(ti)

denotes the amount of the v peptide observed in mass spectra at time point ti.

Denote by Vobs
i the set of sequences observed in the spectra at time point ti.

From equation (4.4) we calculate Ev (t) as a function of parameters c and

E (0) = (Ev (0))v∈V .

Our goal is to find values c∗ and E (0)∗ that minimize the discrepancy between

the expected amount of peptides calculated in the model and the amount of

peptides observed in the mass spectra, i.e.

(c∗,E (0)∗) = arg minc,E(0)Φ(c,E (0))

with constraints:
Ev (0) > 0 for all v ∈ V ,
cp > 0 for all p ∈ P ,

where the objective function Φ(c,E (0)) is defined as follows:

Φ(c,E (0)) =
∑
i

∑
v∈Vobs

i

[Ev (ti)− xv(ti)]2 .

We solve the above constrained minimization problem using the BFGS method

implemented in R – a state-of-the-art, freely available statistical software pack-

age (Team, 2009). BFGS is a popular quasi-Newton method named for its dis-

coverers Broyden, Fletcher, Goldfarb and Shanno (Nocedal and Wright, 1999) To

handle the inequality constraints we use the limited-memory modification of the

BFGS proposed in (Lu et al., 1994).

4.2.4 MEROPS – a peptide cleavage database

To assign the appropriate affinity coefficients ρvw to all event nodes v † w of

the cleavage graph we have to fix the set of peptidases included in the model

(denoted by P). This can be e.g. the set of all human proteolytic enzymes stored
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in databases like MEROPS (Igarashi et al., 2007; Rawlings and Barrett, 2000) or

some smaller set of enzymes when we have some knowledge about the digestion

of investigated peptides mixture.

Consider single event node v †w. For each peptidase p ∈ P we have to deter-

mine the affinity coefficient ρpvw. To this aim we look in the MEROPS database

for the knowledge about all reported proteolytic events for this peptidase. Every

proteolytic event stored in the MEROPS database is characterized by the follow-

ing information: the name of the peptidase, the name of the substrate cleaved

and the amino acid composition of the neighborhood of the cleavage site. It is

widely assumed that the propensity of a given peptidase to cleave in the given

locus depends only on four amino acids to the left and four amino acids to the

right of the cleavage site.
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Figure 4.8: Graphical representation of the transposed affinity matrices for

trypsin and pepsin. Each row corresponds to a position relative to the cleav-

age site and shows the probabilities of seeing each amino acid (estimated from

the MEROPS database).

The information from the MEROPS database about the proteolytic events

involving p is summarized in a 20×8 matrix. We call this matrix an affinity matrix

and denote it by Fp. The rows of Fp correspond to amino acids (letters from the

alphabet Σ) and columns to the positions in the cleaved pattern (see Figure 4.8).
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4.2 Time dependent model for peptidase activity

We define Fp(i, j) as the fraction2 of events such that amino acid i ∈ Σ is at

position j ∈ {−4,−3,−2,−1, 1, 2, 3, 4} relative to the cleavage site.

Some cleavages are performed near the end of the peptide sequence. Denote

the fraction of database events having exactly k ∈ {1, 2, 3, 4} amino acids to the

left of the cleavage site as φleft
pk (the part to the right of the cleavage site may be

arbitrary), i.e. let “∗” denote any amino acid and “−” the lack of amino acids in

a cleavage pattern and let:

• φleft
p1 be the fraction of −−− ∗ † sites,

• φleft
p2 be the fraction of −− ∗ ∗ † sites,

• φleft
p3 be the fraction of − ∗ ∗ ∗ † sites,

• φleft
p4 be the fraction of ∗ ∗ ∗ ∗ † sites.

Analogously define the φright
p vector.

To calculate the coefficient ρpvw for peptidase p and cleavage v † w let kleft =

min{|v|, 4}, where |v| is the length of v, and analogously kright = min{|w|, 4}.
Let v be a string of amino acids v[kleft], . . . , v[1] and w a string of amino acids

w[1], . . . , w[kright]. We estimate ρpvw as:

ρpvw = φleft
pkleft

kleft∏
j=1

Fp(v[j],−j)
kright∏
j=1

Fp(w[j], j) φright
pkright

.

Using the formula above we make a simplifying assumption that amino acids

in the successive positions of cleavage pattern are independent of each other.

This is along the lines of commonly used representation of patterns in biological

sequences called PSSM (position-specific scoring matrix).

2It is quite probable that the set of proteolytic events used to built affinity matrix F does not

include a particular example actually existent in nature, hence it is usual to add a pseudocount,

corresponding to a uniform Bayesian prior.
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Figure 4.9: Time evolution of a population of peptides started from 1 unit of

VAHRFKDLGEEN particles. As time passes all subsequences of length at least 2

get cut and all that remain is 2 units of a single amino acid sequence E (since

there are two E amino acids in VAHRFKDLGEEN) and 1 unit of every other

single amino acid sequence.

4.2.5 Results and conclusions

Our model has been extensively tested on simulated datasets. In this section

we present the results obtained for modeling the activity of two proteolytic en-

zymes: trypsin and pepsin. Trypsin is a peptidase that specifically cleaves at

the carboxylic side of lysine and arginine residues. The distribution of Lys and

Arg residues in proteins make this enzyme useful for fragmenting long and heavy

chains before a mass spectrometry analysis. Pepsin is most efficient in cleaving

peptide bonds between hydrophobic and preferably aromatic amino acids such as

phenylalanine, tryptophan, and tyrosine. It was the first animal enzyme to be

discovered. Recently it is used in an on-line enzymatic digestion MS technique for

rapid monitoring of chemical exposures after a terrorist or military attack with

chemical agents (Carol-Visser et al., 2008).

The human serum albumin protein fragment VAHRFKDLGEEN has been

90



4.2 Time dependent model for peptidase activity

digested in silico by trypsin and pepsin according to our model. Figure 4.9 illus-

trates the time evolution of the population of peptides from time 0 to 127. The

starting expected amount of the VAHRFKDLGEEN peptide was set to 1 and all

its subsequences to 0. The coefficients ρvw were calculated from affinity matrices
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Figure 4.10: The graphical representation of the matrix Λ = (λvw)v,w∈V for pep-

tide VAHRFKDLGEEN.

for trypsin and pepsin (see Figure 4.8). The cutting intensities ctryps and cpeps

were both set to 5 × 107. The structure of the cleavage graph is encoded in the

matrix Λ presented in Figure 4.10. The cleavage u = v †w gives raise to non-zero

parameters λuv and λuw. The matrix Λ has a triangular form, because the cutting

operation always shortens the involved sequence.

The expected amounts of peptides were taken for time points 0, 1, 3, 7, 15, 31, 63

and 127 and perturbed data was simulated by adding gaussian noise with standard

deviation 0 (no perturbation), 0.1, 0.2 or 0.3. This step reflects the measurement

errors in MS technology. Next a fraction (0%, 20% or 40%) of readings was
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randomly selected for removal from the datasets to mimic missing readings (i.e.

corresponding to not being able to find a peak in the LC-MS spectrum for a given

peptide). Thus in total there were 4 × 3 combinations of the perturbation level

and missing readings number. For each combination 8 datasets were generated.

For each of the 96 datasets the L-BFGS-B method implemented in the function

optim in R (Team, 2009) was run 8 times in order to recover the true cutting

intensities (ctryps, cpeps) and the true expected amounts of peptides at time 0

(denoted by E (0)). The objective was to minimize the Φ function defined in

Section 4.2.3. Best results (in terms of the Φ function) out of 8 runs were taken.

The accuracy of the estimation procedure depends on the introduced noise level,

as depicted in Figure 4.11.

The outcome of the modeling is very promising: the parameter estimation is

robust to the noise in the data and it can handle datasets with missing values. The

validation of our model on real data is planned. To this end we intend to tune the

model using time series of good quality tandem mass spectrometry experiments

for a very simple system (e.g. a single protein digested by one enzyme). After

successful model tuning on easy experimental data we would like to cope with

complex peptide mixtures, like human serum samples. It is worth noting that

the peptidase activity model described in this paper has the potential to diagnose

pathological states, particularly to predict cancer spread, as during the metastasis

many proteolytic enzymes are engaged in the extracellular matrix digestion.
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Figure 4.11: The influence of errors on the accuracy of the estimation procedure.

Each boxplot is based on 8 datasets. The true c is a vector (5 × 107, 5 × 107).

The true E (0) is a vector of 76 zeroes and 1 one.
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Chapter 5

Conclusions

In this thesis computational methods have been proposed for problems related to

LC-MS data processing.

For the problem of isotopic envelopes detection and interpretation an efficient

procedure based on the sweeping method has been developed. Its novelty is in

looking at a 2-dimensional spectrum as a whole. The procedure has been imple-

mented and shows sensitivity sufficient for medical applications such as searching

for biomarkers. The software has been used by the MS laboratory of the Institute

of Biophysics and Biochemistry of the Polish Academy of Sciences.

Two procedures have been presented that perform LC-MS spectra alignment.

The problem is non-trivial due to large size of the datasets. The first method es-

timates retention time shifting and scaling with a Metropolis-Hastings algorithm,

while the second one uses the Expectation-Maximization algorithm for gaussian

mixture model based clustering inside preliminary clusters obtained from a DB-

SCAN algorithm run. Both strategies are efficient enough to be used with real

LC-MS datasets.

A framework based on the chemical master equation for inferring proteolytic

activity from LC-MS data has been introduced. To my knowledge it is the first

attempt to explicitly model the process of proteolysis from the LC-MS readings

of the quantities of the peptides being cut. Two versions of the framework have

been proposed. The first one assumes stationarity of the proteolysis process and

handles endopeptidases only. The second extends the first one by describing the
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process in time (stationarity assumption is no longer needed), handling endopep-

tidases and integrating knowledge from the MEROPS peptidase database.

A big open challenge is the integration of different stages of MS processing

and incorporation of knowledge from external sources (e.g. databases). One could

imagine for example a framework where the isotopic envelopes detection is coupled

with spectra alignment, so that low quality isotopic envelopes are enhanced by

observing their similarity to envelopes in other spectra. As a result the quality

of alignment can also be improved and both stages benefit from each other. Such

mutual dependence can be captured by a bayesian model and is in fact the basis of

estimation procedures like Gibbs sampling and Expectation-Maximization. With

increasing computational power at our disposal we will be able to build bigger

models having components for capturing different aspects of data resulting in

increased quality of predictions.
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