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Abstract

Our purpose is to investigate mathematical properties of some systems of nonlinear
partial differential equations where the nonlinear term is monotone and its behaviour
- coercivity /growth conditions are given with the help of some general convex function
defining Orlicz spaces.

Our first result is the existence of weak solutions to unsteady flows of non-Newtonian
incompressible nonhomogeneous (with non-constant density) fluids with nonstandard
growth conditions of the stress tensor. We are motivated by the problem of anisotropic
behaviour of fluids which are also characterised by rapid shear thickness. Since we are
interested in flows with the rheology more general than power-law-type, we describe
the growth conditions with the help of an z—dependent convex function and formulate
our problem in generalized Orlicz (Musielak-Orlicz) spaces.

As a second result we give a proof of the existence of weak solutions to the problem of
the motion of one or several nonhomogenous rigid bodies immersed in a homogenous
non-Newtonian fluid. The nonlinear viscous term in the equation is described with the
help of a general convex function defining isotropic Orlicz spaces. The main ingredient
of the proof is convergence of the nonlinear term achieved with the help of the pressure
localisation method.

The third result concerns the existence of weak solutions to the generalized Stokes
system with the nonlinear term having growth conditions prescribed by an anisotropic
N —function. Our main interest is directed to relaxing the assumptions on the
N —function and in particular to capture the shear thinning fluids with rheology close
to linear. Additionally, for the purpose of the existence proof, a version of the Sobolev—
Korn inequality in Orlicz spaces is proved.

Last but not least, we study also a general class of nonlinear elliptic problems, where
the given right-hand side belongs only to the L' space. Moreover the vector field is
monotone with respect to the second variable and satisfies a non-standard growth con-
dition described by an z-dependent convex function that generalizes both LP(*) and
classical Orlicz settings. Using truncation techniques and a generalized Minty method
in the functional setting of non reflexive spaces we prove existence of renormalized
solutions for general L'-data. Under an additional strict monotonicity assumption
uniqueness of the renormalized solution is established. Sufficient conditions are speci-
fied which guarantee that the renormalized solution is already a weak solution to the
problem.






Streszczenie

Naszym celem jest zbadanie matematycznych wtasnosci pewnych uktadéw nieli-
nowych réwnan rézniczkowych czastkowych, dla ktorych czton nielinowy jest mono-
toniczny a jego warunki wzrostu i koercytywnosci zadane sa za pomoca pewnej ogdlne;j
funkcji wypuktej, definiujacej przestrzenie Orlicza.

Naszym pierwszym rezultatem jest istnienie stabych rozwiazan dla niestacjonarnego
przeptywu niescisliwej, niejednorodnej (gestosé nie jest stala) cieczy nienewtonowskiej
z niestandardowymi warunkami wzrostu dla tensora naprezen. Motywacja do badan
jest problem anizotropowego zachowania ptynéw charakteryzujacych sie wzrostem lep-
kosci wraz ze wzrostem wartosci naprezenia. JesteSmy zainteresowani reologia ogol-
niejsza niz typu potegowego, dlatego zadajemy warunki wzrostu za pomoca wypuklej
funkcji zaleznej od z i formulujemy problem w uogélnionych przestrzeniach Orlicza
(Musielaka-Orlicza).

Jako kolejny rezultat przedstawiamy dowod istnienia stabych rozwiazan dla problemu
ruchu jednego lub kilku niejednorodnych cial sztywnych zanurzonych w jednorodnej
niescisliwej cieczy nienewtonowskiej. Nieliniowy czton lepkosciowy w réwnaniu jest
opisany przy wykorzystaniu ogoélnej funkcji wypuktej definiujacej izotropowe przestrze-
nie Orlicza. Gléwna cze$¢ dowodu polega na wykazaniu zbiezno$ci cztonu nielinowego,
co osiagamy za pomoca metody lokalnego cisnienia.

Trzecia czesé badari dotyczy istnienia stabych rozwiazan dla uogdlnionego systemu
Stokesa z nielinowym cztonem o warunkach wzrostu opisanych przez anizotropowa N —
funkcje. Nasza uwaga skierowana jest na oslabienie zalozeni na N—funkcje, poniewaz
chcielibyémy uwzglednié¢ w naszych badaniach ptyny nienewtonowskie, ktérych lepkosé
maleje pod wplywem $cinania i ktérych reologia zblizona jest do liniowej. Ponadto, w
celu przeprowadzenia dowodu, wyprowadzamy nieréwnos¢ typu Korna-Sobolewa dla
przestrzeni Orlicza.

W ostatniej czesci pracy studiujemy ogdlng klase nieliniowych probleméw elipty-
cznych, gdzie dana prawa strona nalezy jedynie do przestrzeni L'. Co wiecej, pole
wektorowe jest monotoniczne wzgledem drugiej zmiennej i spelnia niestandardowe
warunki wzrostu zadane przez, zalezng od x, funkcje wypukly. Tak postawiony
problem uogdlnia zaréwno rozwazania dla zagadnienia sformutowanego w przestrzeni
LP®) jak i w klasycznych przestrzeniach Orlicza. Wykorzystujac metode obcieé¢ oraz
“trik Minty’iego” uogoélniony dla przestrzeni nierefleksywnych udowadniamy istnienie
rozwigzan zrenormalizowanych z danymi w L'. Przy dodatkowym zalozeniu $cistej
monotonicznosci wykazujemy réwniez jednoznacznos$é rozwigzan. Podajemy takze
warunki gwarantujace, ze rozwiazanie zrenormalizoane jest stabym rozwiazaniem pro-
blemu.
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CHAPTER 1

Introduction

Our main goal is to contribute to the mathematical theory of fluid mechanics
and abstract theory of renormalized solutions to elliptic equations. In particular
we are interested in existence of different types of solutions to nonlinear partial
differential equations. The studies will be undertaken for the case of rather general
growth conditions for the highest order term. This formulation requires a general
framework for the function space setting. The problems will be considered in Orlicz
and Musielak-Orlicz spaces. The level of generality of our considerations will have a
crucial significance on the applied methods. Hence we will investigate isotropic and
anisotropic cases as well as space homogeneous and nonhomogeneous cases of growth
conditions. This is a natural generalization of the numerous recent studies appearing
on Lebesgue, generalized Lebesgue and Sobolev spaces, which may be considered as
a particular case of our approach. Together with the advance in methods for partial
differential equations we will develop the theory of function spaces. The framework
of Sobolev-Orlicz spaces is well developed only in the case of classical Orlicz spaces,
namely defined by an A/ ~function (a continuous, convex, superlinear, nonnegative
function, which will be defined in Chapter dependent on the absolute value of
the vector and independent of the space variable z, usually considered under some
additional condition on the growth of an AN/~function (we mean here the so-called Ay—
conditions on M or on the Fenchel-Young conjugate M*, which we define precisely
later). This is the analytical basis which can be used also in other fields applying
the Orlicz space functional setting like variational inequalities, homogenization of
elliptic and parabolic equations and many others. One can distinguish various cases
of N—functions:

isotropic N—function, i.e. M : R, — R,

anisotropic N'—function, namely dependent on the whole vector

M:R" > R,,

inhomogeneous in space, namely x dependent N —function
M:QxR"—>R,,

rapidly or slowly growing N —functions (lack of the Aj—assumption on M
or on the conjugate M*).

Extending the analytical tool in these directions is not only beneficial to the top-
ics considered in this thesis but can also contribute to other problems mentioned
above, where the phenomena of anisotropy and/or space nonhomogeneity may be
of an interest. It is important to underline that in the case when an N —function
is isotropic, homogeneous, both M and M* satisfy the As—condition, then most of

12



CHAPTER I. INTRODUCTION

the properties, even such fine properties like continuity of singular Riesz operators
or Marcinkiewicz interpolation theorem follow analogously to the case of L? spaces,
cf. [29].

We consider a large class of problems capturing flows of non-Newtonian fluids
with non-standard rheology. We want to include the phenomena of viscosity chang-
ing under various stimuli like shear rate, magnetic or electric field. This forces us to
use space nonhomogeneous anisotropic Orlicz spaces. Our investigations are directed
to existence and properties of solutions.

Substantial part of our considerations is motivated by a significant shear thicken-
ing phenomenon. Therefore we want to investigate the processes where the growth
of the viscous stress tensor is faster than polynomial. Hence N —function defining a
space does not satisfy the As—condition.

Within the thesis we consider the existence of weak solutions to four problems.
At the beginning our attention is directed to incompressible fluids with non-constant
density. We include the case of different growth of the stress tensor in various
directions of the shear stress and possible dependence on some outer field.

The second problem concerns the motion of rigid bodies in shear thickening fluid.
The bodies have a nonhomogeneous structure and are immersed in a homogenous
incompressible fluid. Omitting in this case the assumption of Aj,—conditions has
physical motivations. The requirement for avoiding collisions is a high enough in-
tegrability of the shear stress (at least in L*). Hence it is natural to consider an
N—function of high growth e.g. exponential.

The presence of convective term in both of the mentioned problems allowed us
to consider only shear thickening fluids. If we assume that the flow is slow, then it is
reasonable to neglect the convective term. Therefore we are able to investigate the
flow of shear thinning fluid described by a generalized Stokes system. The growth
of the viscous stress tensor can be close to linear and is prescribed by an anisotropic
N—function whose complementary does not satisfy the A;—condition.

Last but not least we concentrate on a general class of elliptic equations with
right hand side integrable only in L' space. We extend the theory of renormalized
solutions to the setting of Orlicz spaces given by a nonhomogeneous anisotropic
N —function with non polynomial upper bound.

In order to give the reader better insight into the results we give here short
overview of the considered problems.

The main part of the thesis deals with a problem of the flow of a non-Newtonian
fluid with non-standard rheology. Therefore we consider materials whose properties
can be described not only by the dependence on constant viscosity. In our research
we take under consideration the fact that it can change significantly under vari-
ous stimuli like shear rate, magnetic or electric field. Our investigation concerns
existence and properties of solutions to systems of equations coming from fluid me-
chanics. We concentrate on the case of an incompressible fluid for which equations

13



CHAPTER I. INTRODUCTION

can take the following form
0o+ divy(ou) =0 in  (0,7) x Q,
(1.0.1) oi(ou) + divy(ou @ u) — div,S(Du) + Vop = of in  (0,7) x Q,
divyqu =0 in  (0,7) x Q,

where u denotes the velocity field of a fluid, ¢ - its density; p is a pressure; € is a
bounded domain in R? with sufficiently smooth boundary; T' < co; f is a given outer
force; Du = %(Vmu + VZTu) is the symmetric part of the velocity field. The first
equation is the continuity equation, the second — momentum equation and the last
one stands for incompressibility condition. We assume no-slip boundary condition
(zero Dirichlet boundary condition).

In order to close the system we have to state the constitutive relation, rheology,
which describes the relation between S and Du. In our considerations we do not
want to assume that S has only polynomial-structure, i.e. S ~ (k + |Du|)?"?Du or
S ~ (k + |Dul?)*=2/2Du (where x > 0). Standard growth conditions of the stress
tensor, namely polynomial growth, see e.g. |58, [92]

[S(Du)| < ¢(1 + |Dul?)”~2/%|Duy|
S(Du) : Du = ¢(1 + |Du)?) P~/ |Dulf?

can not suffice to describe nonstandard behaviour of the fluid. Motivated by the
significant shear thickening phenomenon we want to investigate the processes where
the growth is faster than polynomial and possibly different in various directions
of the shear stress. Also the case of growth close to linear can be covered in this
way. A viscosity of the fluid is not assumed to be constant and can depend on
density and full symmetric part of the velocity gradient. Therefore we formulate the
growth conditions of the stress tensor using a general convex function M called an
N —function (the definitions of an N —function M and its complementary function
M* appear in Section similarly as in [72] 74, 75, [76, [78), [79), 131], 133
134, 135]. Now we are able to describe the effect of rapidly shear thickening and
shear thinning fluids. Therefore we formulate growth/coercivity conditions in the
following way:

(1.0.3) S(z,Du) : Du > c{M(z,Du) + M*(x,5(x,Du))}

where M is an N—function, and therefore a quite general convex function.

In classical case, i.e. with polynomial growth conditions, the proper space setting
is standard Lebesgue and Sobolev spaces. In our considerations condition ([[.0.3])
forces us to use Orlicz, Orlicz-Sobolev spaces, defined by the N —function. We want
to emphasise that we do not want to assume that M satisfies the so-called Ao—
condition. Therefore we lose a wide range of facilitating properties of function spaces
that one normally works with. Namely, if M does not satisfy the As—condition then
our spaces are not reflexive, separable, smooth functions are not dense with respect
to the norm. The lack of such assumption is a reason of many delicate and deep
handicaps. Therefore we need to obtain the result using more sophisticated methods
than in the classical case.

(1.0.2)
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CHAPTER I. INTRODUCTION

In Chapter [[V] we investigate the evolutionary equation for the flow of an incom-
pressible non-Newtonian fluid which can take the form of the system . The first
step of the proof of existence of a weak solution is the Galerikn approximation for the
considered problem and existence of an approximate solution. The main difficulty
then is to show the proper convergences in nonlinear terms. The result is achieved by
a monotonicity method adapted to non-reflexive spaces [131], [75] and the compen-
sated compactness method. We want here to extend the existence theory for flows
of non-Newtonian incompressible fluids to a more general class than polynomial
growth conditions by formulating the problem in Orlicz setting as in |72}, [75), 131].
Moreover, we want to complete the theory the reader can find therein, by including
the continuity equation 1 to the considered system and dependence of S on
density of the fluid (density is not assumed to be constant). Additionally we are
able to obtain better time regularity of solution than in |58, 59, (72, [75], namely in
a Nikolskii space. The existence of a weak solution accordant to Definition is
stated in Theorem [[V.1.2] Chapter [[V]is based on [133] by Wroblewska-Kamirska
and partially on methods and results from [131], [75].

Using the result mentioned above, in Chapter [V|] we consider the problem of
motion of one or several nonhomogeneous rigid bodies immersed in a homogeneous
non-Newtonian fluid occupying a bounded domain. Therefore the fluid flow in the
system is of -type which is completed with the equations describing the motion
of rigid bodies. We use here the fact, proved by Starovoitov, that two rigid objects
do not collide if they are immersed in a fluid of viscosity significantly increasing with
increasing shear rate. The method we use in order to solve the problem is, in the first
step, to replace the rigid object by a fluid of high viscosity becoming singular in the
limit. This idea was developed by Hoffman [80] and San Marin at al. [I13]. Since
we consider an incompressible fluid, the existence and estimates for the pressure
function are not crucial from the point of existence of weak solutions. This is due
to the fact that in a weak formulation the pressure function disappears. In this case
we have to localise the problem only in the fluid part of the system. Therefore we
need to deliver the decomposition and local estimates also for the pressure function.
To this end we use the Riesz transform which in general is not continuous from
Orlicz space to itself (it is the case if the N —function and its complementary satisfy
the As—condition). Therefore the space where the part of our pressure function is
regular is larger than the space containing the nonlinear viscous term. Moreover
we are not able to use theorems of Marcinkiewicz type and interpolation theory
in the same form as in Lebesgue or Sobolev spaces. For this reason the passage
in terms associated with the regular part of the pressure function is much more
demanding than in [56]. The result concerning existence of a weak solution to the
above problem is formulated in Theorem [V.3.1] Chapter [V] is based on the result
achieved in [134], 135] by Wroblewska-Kamiriska.

In the above two problems the presence of a convective term div(u®u) enforces
at least polynomial growth of tensor S with respect to Du. With these assumptions
we are able to investigate only the case of shear thickening fluids. This motivates
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CHAPTER I. INTRODUCTION

us to consider the generalized Stokes system:
oru — div,S(Du) + V,p=f in (0,7) x Q,

1.0.4
(104) div,u =0 in (0,7) x Q.

In particular the considerations of the above problem, which the reader can find in
Chapter [V]] allow us to investigate the case of shear thinning fluids, whose viscosity
decreases when the shear rate increases. Let us notice that if we assume that the flow
is slow, the density is constant and so the system stated in can be reduced
to . The problem is considered in anisotropic Orlicz spaces. In the proof
we need to provide the type of the Korn-Sobolev inequality for anisotropic Orlicz
spaces when the As—condition is not satisfied. We show also that the closure of
smooth functions with compact support with respect to two topologies is equal: the
convergence of symmetric gradients in modular and in weak star topology in Orlicz
space. Then we are able to give the formula for integration by parts. The existence
of a weak solution to the problem ([.0.4) is stated in Theorem [VI.1.1] The result
of Chapter [VI| the reader can also find in [76] by Gwiazda, Swierczewska-Gwiazda
and Wroblewska-Kaminska.

The last part of our research, namely Chapter [VII|is addressed to the theory of
renormalized solutions to elliptic problems associated with the differential inclusion

B(-,u) —div (a(-, Vu) + F(u)) 3 f,

where f € L'(Q). The vector field a(-, -) is monotone in the second variable and sat-
isfies a non-standard growth condition described by an xz-dependent convex function,
ie.

(L.0.5) a(z,§) - § = ca{ M*(z, a(z,£)) + M(z,£)} — ao(x)

for a.a. x € Q and all £ € R%, where ag is some nonnegative integrable function. The
above condition generalizes both LP(*) and classical Orlicz settings.

The concept of renormailzed solutions allows us to solve the problem of well-
posedness under very general assumptions which do not provide existence of weak
solutions. This notion was introduced by P.-L. Lions and DiPerna in [44] for the
study of the Boltzmann equation. The concept was also applied to fluid mechanics
models by P.-L. Lions, cf. [91] and plays a crucial role in existence and regularity
theory of systems capturing density dependent flows.

The studies will be undertaken for the case of rather general growth conditions
of the highest order nonlinear term. The results obtained in the frame of this thesis
generalize the existing theory for equations with only L' integrable right-hand side.
Up to our knowledge, growth and coercivity conditions for nonlinear term are more
general than already known results. Namely we capture a wider class of operators by
stating the problem in nonhomogeneous anisotropic Orlicz spaces. This is a natural
generalization of numerous recent studies appearing on LP(*) spaces, which may be
considered as a particular case of our framework. Applying the methods of renormal-
ized solutions is crucial due to L' terms appearing in the equations. Our main result
of this part, existence of a renormalized solution to for any L'-data f, the
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CHAPTER I. INTRODUCTION

results on uniqueness of renormalized solutions (see Definition [VII.2.3]) and on exis-

tence of weak solutions (see Definition [VII.2.1)), are formulated in Theorem [VII.3.1]

Theorem and in Proposition respectively. Chapter [VII] is based on
the joint work of Gwiazda, Wittbold, Wréblewska-Kaminska and Zimmermann [79].

For a detailed description of the above problems, the state of the art and moti-
vation we refer the reader to Chapters [[V] [V], [VI] [VI]| respectively.

In order to present some of well known results concerning application of Or-
licz space setting we recall some existing analytical results concerning the abstract
parabolic problems in non-separable Orlicz spaces with zero Dirichlet boundary
condition. Donaldson in [46] assumed that the nonlinear operator is an elliptic
second-order, monotone operator in divergence form. The growth and coercivity
conditions were more general than the standard growth conditions in LP, namely
the N—function formulation was stated. Under the assumptions on the A —function
M: & << M(|¢]) (i.e., £ grows essentially less rapidly than M(|¢[)) and M* satis-
fies the Ay—condition, existence result to parabolic equation was established. These
restrictions on the growth of M were abandoned in [50].

The review paper [97] by Mustonen summarises the monotone-like mappings
techniques in Orlicz and Orlicz—Sobolev spaces. The authors need essential mod-
ifications of such notions as: monotonicity, pseudomonotonicity, operators of type
(M), (S+), et al. The reason is that Orlicz-Sobolev spaces are not reflexive in gen-
eral. Moreover, the nonlinear differential operators in divergence form with standard
growth conditions are neither bounded nor everywhere defined.

One of the main problems in our considerations is that the As;—condition can
not be satisfied and we lose many facilitating properties. An interesting obstacle
here is the lack of the classical integration by parts formula, cf. [65] Section 4.1].
To extend it for the case of generalized Orlicz spaces we would essentially need that
C®—functions are dense in Ly (Q) and Ly (Q) = Lp(0,7T; L (2)). The first one
only holds if M satisfies the Ay—condition. The second one is not the case in Orlicz
and generalized Orlicz spaces. We recall the proposition from [46] (although it is
stated for Orlicz spaces with M = M([€])).

Proposition 1.0.1. Let I be the time interval, Q =< R4, M = M(|¢]) an N —function,
Ly(I x Q), La(1; L () the Orlicz spaces on I x Q0 and the vector valued Orlicz

space on I respectively. Then
Ly(I x Q) = Ly (1; Ly (2)),
if and only if there exist constants ko, k1 such that
(1.0.6) koM™ (s)M ™ (r) < M~ (sr) < ks M~ (s)M 1 (r)
for every s = 1/|I| and r = 1/|9|.

One can conclude that ([[.0.6)) means that M must be equivalent to some power p,
1 < p < . Hence, if ([.0.6) should hold, very strong assumptions must be satisfied
by M. Surely they would provide Ly (Q) to be separable and reflexive.
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CHAPTER II

A few words about notation

Within the whole thesis we will use the following notation: €2 stands for bounded
domain in R?, (0,7) is a time interval and Q := (0,T) x Q.

The following notation for function spaces is introduced
D(2) := {p e C*(Q) | ¢ has compact support contained in 2}
V() := {p e D(Q) |divyp = 0}.
Moreover, by LP, WP we mean the standard Lebesgue and Sobolev spaces respec-
tively and

(11.0.7)

L3,(Q) := the closure of V w.r.t. the | - |z2-norm

(IL0.8) 1
Wiy (Q2) := the closure of V w.r.t. the [V(-)|p-norm.

Let W=7 = (W, P)*, Wd;}’p, = (Wol,’dpiv)*- By p’ we mean the conjugate exponent
to p, namely zla + 7% = 1.

We will use Ciyear([0,T]; L2(€2)) in order to denote the space of functions u €
L*(0,T; L*(2)) which satisfy (u(t), ) € C([0,T]) for all p € L*(Q).

If X is a Banach space of scalar functions, then X¢ or X%*¢ denotes the space of
vector- or tensor-valued functions where each component belongs to X. The symbols
LP(0,T; X) and C([0,T]; X) mean the standard Bochner spaces.

Finally, we recall that the Nikolskii space N*?(0,T; X) corresponding to the
Banach space X and the exponents a € (0,1) and p € [1, 0] is given by

NP0, T; X) :={fe L0, T;X) : sup h *|mf— f”LP(()’T_h;X) < w0},

0<h<T

where 7, f(t) = f(t + h) for a.a. t € [0,T — h].
By (a,b) we mean {, a(x) - b(z)dz and {a,b) denotes the duality pairing.
By 7.7 we denote the scalar product of two vectors, i.e.

d
£-n= Zfﬂh
i=1

for € = (&,...,&) e RYand g = (n1,...,14) € R? and "2 stands for the scalar
product of two tensors, i.e.

for & = [&;]i=1,..d,j=1...a € R and 5 = [1; j]iz1,..a,j=1....a € R



CHAPTER III

Orlicz spaces

ITI.1. Notation

In the following chapter we introduce the notation and present some properties
of Orlicz spaces. Since within the whole thesis we use various generalizations of
Orlicz spaces: isotropic and anisotropic Orlicz spaces, Musielak-Orlicz spaces, we
start with basic definition of an N —function and then generalize it.

Definition ITI.1.1. A function M : R, — R, is said to be an isotropic N —function

if it is a continuous, real-valued, non-negative, convex function, which has super-

linear growth near zero and infinity, i.e., lin%@ = 0 and lim @ = o0, and
T—>

T—>0
M(r) =0 if and only if 7 = 0.
Definition III.1.2. The complementary function M* to a function M is defined by
M* (<) = sup (r¢ — M(7))

T€R+

forceR,.

Definition ITI.1.3. A function M : R" — R, is said to be an anisotropic N —fun-

ction if it is a continuous, real-valued, non-negative, convex function, which has

superlinear growth near zero and infinity, i.e., é1|m % = 0 and lim % = o0,
—0

|€[—00
M(—€) = M(&) and M (&) = 0 if and only if € = 0.

Definition III.1.4. The complementary function M* to an anisotropic N —function
function M is defined by

M*(§) = sup (n-&§— M(§))
neRn”
for £ e R™.
Definition ITI.1.5. Let Q be a bounded domain in R?. A function M : OxR™ — R
is said to be a generalized N —function if it satisfies the following conditions

(1) M is a Carathéodory function such that M (z,&) = M (z,—€) a.e. in  and
M(z,€&) =0 if and only if € =0,
(2) M(x,€) is a convex function w.r.t. &,

(3)

(ITL.1.1) Mz, &)

11m
g—o0 ||

=0 for every x € (),
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(4)
. M(x,€)
(IT1.1.2) e

Definition III.1.6. The complementary function M* to a generalized N —function
M is defined by

(111.1.3) M*(x,€) = s (& -n—M(z,8)

=oo for every x € Q.

forne R", z €.

Remark III.1.7. Within the thesis we use two forms of a generalized N'—function,
depending on the considered problem, i.e. M(z,&) : Q x RE? — R and M(z,§) :
Q x ]Rd — R.

The complementary function M* is also an N—function (see [117]).
Let I be a time interval, 2 < R? be a bounded set and Q = I x€). The generalized
Orlicz class Ly(Q;R™) is the set of all measurable functions &€ : @ — R™ such that

J Mz, £(t, 2)) dadt < .
Q

Note that £/(Q;R") is a convex set and it need not be a linear space.
Let us denote m* such that
m*(r) = essinf inf M*(x,&).
(1) = 58 Jof ceatlly=, M (0 8)
and let us assume that m* is an N— function and there exists an N/—function m =
m(|€|) complementary to m*. Then we have m*(|€]) < M*(x,€) and M(x,¢) <
m(|€|). Therefore M maps bounded sets into bounded sets, which shows that

(I11.1.4) LP(Q;R™) S L (Q;R™).

In order to provide existence of such functions m* and m, which are N'—functions, it

is enough to assume that M and M* satisfy ([I1.1.1HII1.1.2) uniformly w.r.t. x € Q,

namely M satisfies

M M
lim sup (z.£) =0, lim inf (z.£) = o0

€1-0 sy [€] €lsooze  [€]
and the same assumption concerns M™.
The generalized Orlicz space (or Musielak-Orlicz space) L (Q;R™) is defined as
the set of all measurable functions & : () — R"™ which satisfy

f M(z, M(t, 7)) dudt — 0 asA — 0.
Q

Remark III.1.8. If we consider an isotropic or an anisotropic N —function, then
in analogous way we can define respectively isotropic and anisotropic Orlicz spaces.
Obviously corresponding definitions and properties which are stated below can be
rewritten for less general case of isotropic and anisotropic N'—functions.
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Definition IT1.1.9. Let & € Ly (Q;R™). Then the Luxemburg norm is defined by
t
(IIL.1.5) |€] 3 = inf {A >0 | f M <x ¥> dadt < 1} .
Q

Definition IT1.1.10. Let & € L/ (Q;R™). Then the Orlicz norm is defined by
(II1.1.6) €3, = sup {J & -ndxdt | ne Lyx, J M(x,n(t,z))dedt < 1} :
Q Q

Orlicz and Luxemburg norm are equivalent. The proof in a less general case,
namely for M(x, &) := M(x, |£]), can be found in [96].
In general, Ly (Q;R") is neither separable nor reflexive. Finally, because of the

superlinear growth of M (see (III.1.2)), there holds

(IT1.1.7) Ly (Q;R™) < LY(Q; R™).
Let us denote by Ep(Q;R") the closure of all bounded measurable functions
defined on ) with respect to the Luxemburg norm | - [ao. It turns out that

En(Q;R™) is the largest linear space contained in the Orlicz class £/(Q; R™) such
that
En(Q;R") € Ly(Q;R") < Ly (Q;R™),

where the inclusion is in general strict.
The space Ejy(Q;R") is separable and C{°(Q;R?) is dense in Ej(Q;R").

Theorem III.1.11. The generalized Orlicz space is a Banach space with respect to
the Orlicz norm (II1.1.6) or the equivalent Luxemburg norm (II1.1.5).

Proor. We will prove the completeness w.r.t Orlicz norm. Let {£;}72; be a
Cauchy sequence in Ly (Q;R™) such that for all € > 0 there exists J. > 0 such that

(IIL18)  sup U n- (€ — &) dedt | ne EM*(Q),J M* (e, m) dadt < 1} <e
Q Q
holds for all 7, j > J.. Let A > 0 be such that
J M*(z,m) dzdt < 1 for all g e L=(Q: R™), |nl < A.
Q

By plugging

J

&—¢&; .
n={ Ve T&7E
0 otherwise

into (II1.1.8)) we obtain
f € — & dudt < = for all i,j > J..
Q A
Therefore {£,}52, is a Cauchy sequence in L'(Q;R™). Hence, by the Fatou lemma
| e—g) nldode = | tm (€~ ) mldsde < timint | (&, ~&,)-nl dode <=
Q Q 1—00 1—>00 Q

Thus § € Ly (Q;R") and |[€ — &, — 0 with j — co. This completes the proof. [
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Proposition IT1.1.12 (Fenchel-Young inequality). Let M be an N —function and
M* the complementary to M. Then the following inequality is satisfied

(IIL.1.9) € -l < M(z,§) + M*(x,m)
for all&,m e R™ and a.a. x € ).

Lemma II1.1.13 (Generalized Holder inequality). Let M be an N —function and
M* its complementary. Then

(III.1.10) U £ -ndx
Q
where £ € Ly (Q;R™) and n € Ly« (Q;R™).

< 2/ €]l nr [l are,

PROOF. From Proposition [[II.1.12| by putting & = E(t D p= "(t’xi we obtain

€l ||TI||M

£(t,2)m ( £t >> ( n(t,z >)
dzdt < M dad M dad
f 1€l HTIHM* “<f € ”L Tl ) 458

We finish the proof of (IIL.1.10)) by multiplying the above inequality by |&| as|| 7] ar+-
0]

Theorem II1.1.14. The space Ly« (Q;R™) is a dual space of Ey(Q;R™), namely
(Exi(@R")* = Lage (Q5R).

Before we prove Theorem [[II.1.14] we will state the following
Lemma III.1.15. Let n € Ly« (Q;R™). The linear functional F,, defined by

(IIT.1.11) F,(&) = f & -ndxdt

Q
belongs to the space (Ep(Q;R™))* and its norm in that space fulfills
(IL.1.12) | Ell < 2(nars.

PROOF. It follows from Hélder inequality (II1.1.10) that

[ Fn (&)1 < 2[&arlnlla
holds for all € € L/ (Q;R"™) confirming the inequality (III.1.12]). O

PROOF. (of the Theorem Lemma has already shown that any
element n € Ly« (Q); R™) defines a bounded linear functional F,, on Ej;(Q;R™) which
is given by . It remains to show that every bounded linear functional on
Eyn(Q;R™) is of the form F;, for any n € Ly+(Q;R™).

Let F € (Eym(Q;R™))*. We define a measure A on the measurable subsets S of
Q

A(S) = F(rls)
where g denotes the characteristic function of S, 7€ R", |7| = 1. Let

Afr) = ESLE: M(z,§)
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be an auxiliary function and r € [0,00). This function is required to generalise the
approach presented in [I]. Since

1
J M (x,Al (i) I[S‘r> dxdt <J sup M (x,Al (—) 7') dxdt
Q 5] S (ta)es 5]

(IT1.1.13) 1
< o S 17
L 5]
we have
c|F
— < S V7 7Than-
(I11.1.14) A = [F(Ls)l < | Fllirlslv < Z=ran

Since the right-hand side of ([II.1.14)) converges to zero when |S| converges to
zero, the measure A is absolutely continuous w.r.t. Lebesgue measure. By Radon-
Nikodym and Riesz theorems, cf. [128], A can be expressed in the form

Ma:Ln@@mm

for some 7 integrable on (). Therefore

H@zﬁfﬂﬂMt

holds for measurable bounded functions &.

If &€ € Ey(Q;R™) we can find a sequence of measurable functions &; which
converges a.e. to & and satisfies |§;| < |€| on Q. Since |, - n| converges a.e to |€ - 1|,
Fatou’s lemma yields

U £ ndxdt‘ < J |€ - m| dedt < liminfj |&; - m| dxedt
Q Q 1—>00 Q

< lim inf 20 |arlmlare < 20€ ar s
Hence the linear functional

Fn<£>=fQ£-ndx

is bounded on Ejy/(Q) when n € Ly« (Q). Since F,, and F' achieve the same values
on the measurable, simple functions (a set which is dense in Ej/(Q)) they agree on
Ey(Q) and the proof is completed. O

The functional
o(§) = f M (z,&(x)) dadt
Q

is a modular in the space of measurable functions & : ) — R™ in the sense of [87,
p. 208].
A sequence {z7}%, converges modularly to z in Ly(Q;R™) if there exists A > 0

such that ;
f M(x,z _z> dedt —> 0 as j — .
0 A
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We will write 27 25 2 for the modular convergence in L/ (Q;R™).

Definition II1.1.16. We say that an AN —function M satisfies the Ay,—condition if
for some nonnegative, integrable on €2 function g;; and a constant holds Cy; > 0

(IT1.1.15) M(x,2€) < CpyM(z,€) + gu(z) for all € e R" and a.a. x € Q.

Proposition I11.1.17. If an N —function M does not satisfy the Ay—condition, then

o The space Ly/(Q;R™) is not separable.
o The space Ly/(Q;R™) is not reflezive.
o The space of smooth functions C* is not dense in the space Ly(Q;R™).

The proof can be found in [1]) for the case of isotropic N'—functions.
Proposition II1.1.18. In particular, if holds, then
En(Q;R") = Ly (Q;R")
(see [1l, 87, 118]).

The As—condition is rather restrictive. Nevertheless, for a measurable function
p:Q — (1,0) the LP®) spaces (generalized Lebesgue spaces) are included in the
generalized Orlicz spaces framework with M(x, &) = [¢[P®) and with the classical
assumption 1 < essinf,eq p(z) < p(z) < esssup,.q p(z) < 0o both |- [P and |- [P'(®),
where p/'(z) = p(z)/(p(z) — 1) a.e. in , satisfy the Ay—condition.

More information for the case of x-dependent generalized N —function can be
found in [117, 118, 132] and for less general AN'—functions in [87), [96].

I11.2. Properties and useful facts

Let us recall some general properties of Orlicz spaces, see e.g. [96] and technical
facts which can be found also in |72} (75, 133].

We recall an analogue to the Vitali’s lemma, however for the modular conver-
gence instead of the strong convergence in LP.

Lemma II1.2.1. Let 27 : Q — R" be a measurable sequence. Then 2z in
Ly (Q; R™) modularly if and only if 27 — z in measure and there exists some X > 0
such that the sequence {M (-, \z7)} is uniformly integrable, i.e.,

lim (supj M(x, )\zj)dxdt) = 0.
R \ jeN J{(t.):|M(z 29)|= R}

PROOF. Note that 2/ — z in measure if and only if M (-, ZJ/\’Z) — 0 in measure

for all A > 0. Moreover the convergence z/ — z in measure implies that for all
measurable sets A < @ it holds

lim inff M(z,27) dzdt = f M (x, z) dzdt.
A A

J—0
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Note also that the convexity of M implies

2z —z 2 z
-~ < = el
jAM (x, ;) ) dzdt < fAM <x, 2)\> dxdt + jAM (x, 2)\) dzdt.

Hence by the classical Vitali’s lemma for f7(z) = M (x, zJT_Z) we obtain that f7 — 0

strongly in L'(Q). O
Lemma II1.2.2. Let M be an N —function such that
lim inf Mz, €)

€] o0 2€Q |§|

and for all j € N let §, M(z,z7) dvdt < c. Then the sequence {27}, is uniformly
integrable.

PROOF. Let us define 6(R) = minjg_g in£ Ml(g"g). Then for all j € N it holds
xe

f Mz, 2(t, 2)) dadt > 5(R)f 29(¢, 2)| dadt.
{(t,x):|z7 (t,z)| =R} {(t,x):|z9(t,z)| =R}

Since the left-hand side is bounded, then we obtain

‘ c
supf |27 (t, x)|dzdt < :
JeN J{(t,2): 2 (t,0)|=R) i(R)
Using condition ([II.1.2]) we obtain uniform integrability. O

Proposition 111.2.3. Let M be an N—function and M* its complementary func-
tion. Suppose that the sequences ¥’ : QQ — R™ and ¢’ : Q — R" are uniformly

bounded in Ly (Q;R™) and Ly« (Q; R™) respectively. Moreover wji Y modularly
in Ly (Q;R™) and quﬂ @ modularly in Ly« (Q;R™). Then p? ¢’ — ap- ¢ strongly
in LYQ).

PROOF. Due to LemmallII.2.1|the modular convergence of {1’} and {¢’} implies
the convergence in measure of these sequences and consequently also the convergence

in measure of the product. Hence it is sufficient to show the uniform integrability
of {1’ - ¢’}. Notice that it is equivalent with the uniform integrability of the term

{i{’—f . %} for any A, Ao > 0. The assumptions of the proposition give that there

exist some Ay, Ay > 0 such that the sequences

Pr(e)p e foe ()]

are uniformly integrable. Hence let us use the same constants and estimate with the
help of the Fenchel-Young inequality

Y ¢ A ¢

— - —| <Mz, — M* | x,—}.

N ) AT,

Obviously the uniform integrability of the right-hand side provides the uniform
integrability of the left-hand side and this yields the assertion. O
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Proposition I11.2.4. Let ¢/ be a standard mollifier, i.e., 0 € C®(R), o has a com-
pact support and { o(T)dr = 1, 0(t) = o(—t). We define ¢’ (t) = jo(jt). Moreover
let « denote a convolution in the variable t. Then for any function 1 : Q — R? such

that b € L'(Q;R™) it holds
(&) =) (t,x) > P(t,x) in measure.
PROOF. For a.a. x € § the function ¥ (-, z) € L*(0,T) and ¢’ =¥ (-,x) — (-, )
in L'(0,T) and hence ¢’ = ¢ — 1) in measure on the set (0,7) x Q. 0

Proposition III1.2.5. Let ¢/ be defined as in Proposition |II1.2.4), let M be an
N—function and ¥ : Q — R™ be such that ¥ € Ly (Q;R™). Then the sequence
{M(z, " =)} is uniformly integrable.

PRrROOF. We start with an abstract fact concerning uniform integrability. Namely,
the following two conditions are equivalent for any measurable sequence {27}

(a) Ve >0 36>0: supsup §, |2/ (x)dzdt <e,

jeN |A|<s
(b)Ve>0 36>0: %DSQ ‘|zj(x)| - 3| dedt <,
where we use the notation
|€|+ = maX{Oaf}'

The implication (a) = (b) is obvious. To show that also (b) = (a) holds let us
estimate

. 1 , 1
sup supf 2| dxdt < sup |A]| - — —i—supj 2| ——| dzdt
jeN |A|<s A| | \A\<6| | VO jen Q| | Vol
, 1
<Vo+ supj |2/| — —=| dadt.
JjeN JQ@ \/5+

Notice that since M is a convex function, then the following inequality holds for all
0>0

1 1

(I1.2.1) L ‘M(m,d)) - 5| dadi> L ‘M(a:, o) -

Finally, since ¥ € £/(Q;R"), then also SQ |M (z, 1) — \/ig|+ dzdt is finite and hence
taking supremum over j € N in ([11.2.1)) we prove the assertion. U

Remark II1.2.6. The same proofs for Propositions[III.2.4]and [[T1.2.5| work if instead
of a standard mollifier ¢* we will take

1 . 1
oy = EH(T)[Oyh] or ¢, = E]](T)[,hm

dxdt.

+

+

with h > 0.

Lemma I11.2.7. Let Q) be a bounded domain, (0,T) be time interval, Q = (0,T) x Q
and M be an isotropic N'—function satisfying Definition [II1.1.1] s.t. M((|-[)'/?) is

26



CHAPTER III. ORLICZ SPACES I1I.2. PROPERTIES AND USEFUL FACTS

conver. If f(t,x) € Ly (Q), i.e. |flag < o, then fe Ly (0,T; LP(Q)), i.e.

! Lf(E ) e
1oz ony = inf{/\>0: f M(f) dt<1}<oo
0

PROOF. If f € Ly(Q), then there exists 0 < A\ < oo such that

J J <|Q| |f”)|> dadt < 1.

Employing the Jensen inequality, using the non-negativity, the convexity of M and
M((] -])*/7), and that M (0) = 0 we infer the following

LTM U £t ) |de)l> 4 — LTM<(AL%|J o) |pdx)l> "y

ol Lo e ()
- ﬁ LT LM <—|Q|;|J;(t’x)|> dadt < 1.

Since M (|- |'/?) is convex and f € Ly ((0,T) x Q), we notice that f e LP((0,T) x ),
hence f € LP(0,T; L*(Q2)). Consequently t — f(t,z) is measurable which provides
Bochner measurability of the function f. Therefore we obtain the statement and
fe Ly(0,T; LP(R2)). O

Now we want to introduce the Riesz transform in an Orlicz space, which will be
used later as a tool in the local pressure method in Chapter [V]

Let 3,7 € (0,00) and 7 € [0,00). Let us denote by L_,,,s(¢2) the Orlicz space
associated with the N'—function M(7) = 7(log(r + 1))” and by L(,)(Q) the Orlicz
space associated with the N —function which asymptotically, i.e. for sufficiently

large 7, behaves like M(7) = exp(r7). Note that L_ 10g? (1) = B 1,46(2) and
(EE(V) (Q))* = L'rlog;l/'Y (Q) and (LTlogﬁ (Q))* = Le(l/ﬂ) (Q)7
hold, see [87].

Let R;; stand for a "double" Riesz transform of an integrable function g on R?,
which can be given by a Fourier transform F as

(IIIQZ) lej[g] = fil (%) .7:[9] = invminlgu (2 .7 = 172737

Alg(z) = F~! (—_1) Flo| - JR 9w g,

€] s |z —y
27
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Lemma II1.2.8. Let Q be a bounded domain, let b : R? — R be a multiplier, o be
a multi-index such that |o| < 2 and

€[*IDb(e)] < C <.
Then for any 8 > 0 there exists a constant c(8) such that for all g € L, 6+ (€2)

(11123) ”(]:_lb]:)[g]HTlogﬁ < C(ﬁ)Hg”TbgﬁJr1
where g is extended to be 0 on R3\Q.

We recall here the proof given by Erban in [52].

PROOF. The standard Mikhlin multiplier theorem (see e.g. [19] Chapter 6])
provides that F~1bF is bounded as a mapping
FWF : L*(R*) —» L*(R?) and F~'bF : L'(R?*) — LY"*(R?),
where L® stands for a Lorenz spaceﬂ Employing the result from [71], Theorem

B.2] (see also [32]) we conclude that there exists a constant ¢(5) such that (I11.2.3))
is satisfied. O

Corollary II1.2.9. Let Q2 be a bounded domain. Then for any f > 0 and g €
LTlogﬁ‘*'1 (Q)

(11124) HRiJ [g] |Q ”Tlogﬁ < C(ﬁ) ||g||7'10gﬁ+1 :

Remark IT1.2.10. Let M be an arbitrary isotropic N'—function. If f € L (R3),
then | f1ala5) < Iy es)- Indeed,

1Bl LrwB

:inf{)\>0 : JBM(%) dxél}:inf{)\>0 : JRBM(ﬁ) ]lexél}

< inf{A o [ w (i) dr < 1} 1 e
R3 A

where the inequality is provided by non-negativity of M.

Proposition II1.2.11. Let M be an isotropic N —function and let M satisfy the
Ag—condition. Then M(7) < C|7|*, 7 = 19, for some C' > 0 and o > 0, and its
complementary function M* satisfies M*(¢) = DI|C|?, ¢ = (o > 0 for some D > 0
and > 1.

The above proposition can be found with the proof in [105, Chapter II| as
Corollary 5.

Proposition II1.2.12. Let M* be a generalized N -function and let M* satisfy
Ag—condition (I1.1.15)) with the function gy € L* (). Then there exist v > 0 and
¢ > 0 such that

M, €) = clg|™"
for all € € RY such that |&| = |&,| for some &, with |€,] > 0.

Lie. g e L™ iff sup, om(c, g) < o0, where m(o, g) = |{z : |g(z)| > o}
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PROOF. Let
m*(r) = esssup sup M*(z,§)
7eQ €eR, €|=r
Obviously m* is an N —function and satisfies Ay—condition for sufficiently large r.
Using Proposition we infer that there exists a complementary N —function
m = m(|£]) to m* and constants v > 0 and ¢ > 0 such that m(|&(x)|) = c|€|'™ for
€eRYs.t. |€] = |€]. According to the definition of m*, M*(z,£&(z)) < m*(|&(z)|)
for a.a. x € Q. Thus m(|€]) < M(x,€) and for all measurable functions € : Q — R%,
we obtain
M (x,€) = clg[""

for all € € RY such that |€| = [&,]. O

Remark II1.2.13. Let us remark that at most polynomial growth i.e if M (z,§) <
c1|€|? for some ¢; and g € (1,0), does not imply, that M satisfies Ay—condition. For
the counterexample see [105].

Theorem II1.2.14. Let Q be a bounded domain with a Lipschitz boundary. Let M
be an isotropic N —function satisfying Ao-condition and such that M is quasiconvex
for some v € (0,1). Then, for any f € Ly (Q) such that

J fdx =0,
Q
the problem of finding a vector field v : Q — R? such that
divo = f inQ
v=0 on o

has at least one solution v € Ly (S RY) and Vv € Ly (;R>9). Moreover, for some

positive constant c
| wopar < | arqspa

For the proof see e.g. [127, [42].
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CHAPTER IV

Existence result for unsteady flows of nonhomogeneous
non-Newtonian fluids

IV.1. Introduction and formulation of the problem

We wish to investigate and understand mathematical properties of the motion of
incompressible, nonhomogeneous non-Newtonian fluid, which can be described by
the system of equations:

o0+ divy(ou) =0 in Q,
or(ou) + div,(ou ® u) — div,S(t, z, 0,Du) + V,p = of in Q,
div,u =0 in @,

(IV.1.1) u(0,2) =up in £,

Q(va) = 0o n Qa
u(t,z) =0 on (0,7) x 09,

where o0 : Q — R is the mass density, u : Q — R3 denotes the velocity field,
p: Q — R the pressure, S the stress tensor, f : Q — R? given outer sources. The
set < R? is a bounded domain with a regular boundary 02 (of class, say C**",
v > 0, to avoid unnecessary technicalities connected with smoothness). We denote
by @ = (0,T) x €2 the time-space cylinder with some given 7" € (0, 4+0). The tensor
Du = {(V,u + VZu) is a symmetric part of the velocity gradient.

It is supposed that the initial density is bounded, i.e.,

(IV.1.2) 0(0,-) = 00 € L*(Q)
and
(IV.1.3) 0<0s <po(x) <" <+ foraa.xell.

There have been many studies concerning the mathematical analysis of time-
dependent flows of nonhomogeneous, incompressible fluids depending on or inde-
pendent of density.

Our interest is directed to the phenomena of viscosity increase under various
stimuli: shear rate, magnetic or electric field. Particularly we want to focus on shear
thickening (STF) and magnetorheological (MR) fluids. Both types of fluid have the
ability of transferring rapidly from liquid to solid-like state and this phenomenon is
completely reversible, and the time scale for the transmission is of the order of a
millisecond. The magnetorheological fluids [136] found their application in modern
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suspension system, clutches or crash-protection systems in cars and shock absorbers
providing seismic protection.

In particular we are interested in fluids having viscosity which increases dra-
matically with increasing shear rate or applied stress, i.e. we want to consider shear
thickening fluids, which can behaves like a solid when it encounters mechanical stress
or shear. STF moves like a liquid until an object strikes or agitates it forcefully.
Then, it hardens in a few milliseconds. This is the opposite of a shear-thinning
fluid, like paint, which becomes thinner when it is agitated or shaken. The fluid is a
colloid, consists of solid particles dispersed in a liquid (e.g. silica particles suspended
in polyethylene glycol). The particles repel each other slightly, so they float easily
throughout the liquid without clumping together or settling to the bottom. But the
energy of a sudden impact overwhelms the repulsive forces between the particles —
they stick together, forming masses called hydroclusters. When the energy from the
impact dissipates, the particles begin to repel one another again. The hydroclusters
fall apart, and the apparently solid substance reverts to a liquid.

Possible application for fluids with changeable viscosity appears in military ar-
mour. The so-called STF-fabric produced by simple impregnation process of e.g.
Kevlar makes it applicable to any high-performance fabric. The resulting material
is thin and flexible, and provides protection against the risk of needle, knife or bullet
contact that face police officers and medical personnel [49), 81, [90].

As follows from we assume that the traceless part S of the Cauchy stress
tensor depends on the density and due to the principle of objectivity the extra stress
tensor depends on the velocity gradient only through the symmetric part Du. On
one hand we want to be able to consider constitutive relations which are invariant
w.r.t. translations and rotations perpendicular to one chosen direction and on the
other hand allow that in this specific direction properties of the material can be
different than with respect to others.

One of the example is a magnetorheological fluid, which consists of the magnetic
particles suspended within the carrier oil distributed randomly in suspension under
normal circumstances. When a magnetic field is applied, the microscopic particles
align themselves along the lines of magnetic flux. In the fluid contained between
two poles, the resulting chains of particles restrict the movement of the fluid, per-
pendicular to the direction of flux, effectively increasing its viscosity. Consequently
mechanical properties of the fluid are anisotropic.

On the other hand we can consider the constitutive relation for fluids with depen-
dence on outer field, in particular, we mean electrorheological fluids. In this case,
from representation theorem it follows that the most general form for the stress
tensor S (cf. [111]) is given by

S=E®E +a,D+a3sD? +ay(DEQE + EQDE) + as(D’ EQ E + EQD’E)
where «;, 7 = 1,...,5 may be functions of invariants

|E|?, trD? trD°, tr DE® E), tr (D’EQ E).
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Then it is easy to show that for ¢« = 1, 3, 5, a; = 0 the stress tensor in the form
(IV.1.4) S=trD*’D + |[tr (D’ E® E)|°(DE® E + EQDE)

is thermodynamically admissible (i.e. S : D > 0), satisfies a principle of material
frame-indifference and is monotone. Moreover, without loss of generality for E =
(1,0,0) it can be calculated that the standard growth conditions: |S(D, E)| < ¢(1 +
ID))P~1,S(D, E) : D > ¢|DJ is not satisfied, because the tensor S possesses growth of
different powers in various directions of D. From mechanical point of view though the
minimal assumptions are satisfied. For this reason we can not exclude constitutive
relation of anisotropic behaviour like .

In our considerations we do not want to assume that S has only p-structure, i.e.
S ~ u(o)(k + |Du)P"2Du or S ~ u(p)(x + |Dul?)P=22Du (where k > 0 and y is
a nonnegative bounded function). Standard growth conditions of the stress tensor,
namely polynomial growth, see e.g. [58, [92]

Sz, &) < (1 + g 2]
S(x,€) €= c(1+ €)1l

can not suffice to describe our model. Motivated by this significant shear thicken-
ing phenomenon we want to investigate the processes where growth is faster than
polynomial and possibly different in various directions of the shear rate. We do not
assume that a viscosity the fluid is constant. Moreover, we take under considera-
tions the case of the viscosity depending on density and full symmetric part of the
gradient. Therefore we formulate the growth conditions of the stress tensor with the
help of general convex function M called a generalized N —function similarly like in
[72), 74, [75], 76, (78, [79, 131], 133, 134, 135]. Now we are able to describe the
effect of rapidly shear thickening fluids.

We assume also that the stress tensor S : (0,7) x Q x R, x R3X3 — R3%3 satisfies

Sym Sym
(Rg’;n?l’ stands for the space of 3 x 3 symmetric matrices):

(IV.1.5)

S1: S(t,x, 0,K) is a Carathéodory function (i.e., measurable function of ¢, x
for all o > 0 and K € R and continuous function of ¢ and K for a.a.
xr € Q) and S(t, z, 0,0) = 0.

S2: There exist a positive constant c., N'—functions M and M* (which de-
notes the complementary function to M) such that for all K € R3X3 o > 0

and a.a. t, x € () it holds o
(IV.1.6) S(t, 7, 0,K) : K = c{M (2, K) + M*(2,S(t, 7, 0, K))}.

3x3
sym’

[S(t,z,0,Ky) —S(t,z,0,Ks)] : [Ki — Kz] = 0.

We can observe that the case of stress tensors having convex potentials (ad-
ditionally vanishing at 0 and symmetric w.r.t. the origin) significantly simplifies
verifying condition S2. For finding N —functions M and M* we take an advantage
of the following relation

(IV.1.7) ME)+ M*(VM(&)) =& : VM)
32
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holding for all € € RSXH?, cf. [1I09]. This corresponds to the case when the Fenchel-
Young inequality for N functions becomes an equality. Once we have a given func-

tion S, for simplicity consider it in the form S(D'u,) = 2,u(|Du|2)Du then choos-

ing M(z,&) = S‘ﬂ ) da provides that is satisfied with a con-
stant ¢ = 1. For such chosen M we only need to Verify Whether the N —function—
conditions, i.e, behaviour in/near zero and near infinity, are satisfied. The mono-
tonicity of S follows from the convexity of the potential.

Our assumptions can capture shear dependent viscosity function which includes
power-law and Carreau-type models which are quite popular among rheologists,
in chemical engineering, and colloidal mechanics (see [94] for more references).
Nevertheless we want to investigate also more general constitutive relations like
non-polynomial growth S ~ |Du|?In(1 4+ |Du|) or of anisotropic behaviour e.g.
Si,j ~ | : |pij [Du]m, ?;, ] = 1, 2,3

The appropriate spaces to capture such formulated problem are generalized Or-
licz spaces, often called Orlicz-Musielak spaces. We also allow the stress tensor to
depend on x, this provides the possibility to consider electro- and magnetorheolog-
ical fluids and significant influence of magnetic and magnetic field on the increase
of viscosity. Thus we use the generalized Orlicz spaces, often called Orlicz-Musielak
spaces (see [96] for more details). For definitions and preliminaries of A/'—functions
and Orlicz spaces see Section [[II.1] Contrary to [96] we consider the N'—function
M not dependent only on |£|, but on whole tensor €. It results from the fact that the
viscosity may differ in different directions of symmetric part of velocity gradient Du.
Hence we want to consider the growth condition for the stress tensor dependent on
the whole tensor Du, not only on |[Du|. The spaces with an AN/~function dependent
on vector-valued argument were investigated in [117, 118, 126].

An example of a generalized Orlicz space is a generalized Lebesgue space, in
this case M(z,€) = [£[P™®. These kind of spaces were applied in [111] to the
description of flow of electrorheological fluid. The standard assumption in this work
was 1 < pg < p(r) < pyp < 00, where p € C*() is a function of an electric field
E, ie. p = p(|E)?), and py > % in case of steady flow, where d > 2 is the
space dimension. The As—condition is then satisfied and consequently the space is
reflexive and separable. One of the main problems in our model is that the Ay—
condition is not satisfied and we lose the above properties. Later in [41] the above
result was improved by Lipschitz truncations methods for LP(*) setting for S, where
d +2 < p(+) < oo was log-Holder continuous and S was strongly monotone.

The mathematical analysis of time dependent flow of homogeneous non-Newto-
nian fluids with standard polynomial growth conditions was initiated by Ladyzhen-
skaya |88, [89] where the global existence of weak solutions for p = 1+ (2d)/(d + 2)
was proved for Dirichlet boundary conditions. Later the steady flow was considered
by Frehse at al. in [60], where the existence of weak solutions was established for
the constant exponent p > d +27 d = 2 by Lipschitz truncation methods.

Wolf in [130] proved existence of weak solutions to unsteady motion of an in-
compressible fluid with shear rate dependent viscosity for p > 2(d + 1)/(d + 2)
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without assumptions on the shape and size of 2 employing an L*—test function and
local pressure method. Finally, the existence of global weak solutions with Dirichlet
boundary conditions for p > (2d)/(d+2) was achieved in [43] by Lipschitz truncation
and local pressure methods.

Most of the available results concerning nonhomogeneous incompressible fluids
deal with the polynomial dependence between S and |Du|. The analysis of non-
homogeneous Newtonian (p = 2 in ([V.1.5)) fluids was investigated by Antontsev,
Kazhikhov and Monakhov [10] in the seventies. P.L. Lions in [91] presented the
concept of renormalized solutions and obtained new convergence and continuity
properties of the density.

The first result for unsteady flow of nonhomogenous non-Newtonian fluids goes
back to Fernandez—Cara [57], where existence of Dirichlet weak solutions was ob-
tained for p = 12/5 if d = 3, later existence of space-periodic weak solutions for p > 2
with some regularity properties of weak solutions whenever p > 20/9 (if d = 3) was
obtained by Guilién-Gonzalez in [70]. Frehse and Ruzicka showed in [59] existence
of a weak solution for generalized Newtonian fluid of power-law type for p > 11/5.
Authors needed also existence of the potential of S. Recent results concerning fluids
where the growth condition is as in for p = 11/5 belong to Frehse, Malek
and Ruzicka [58]. The novelty of this paper is the consideration of the full thermo-
dynamic model for a nonhomogeneous incompressible fluid. Particularly in |58 59|
the reader can find the concept of integration by parts formula, which we adapted
to our case. Also more details concerning references can be found therein.

First results concerning non-Newtonian fluid with the assumption that S is
strictly monotone and satisfies conditions S1.-S2. were established by Gwiazda
et al. [72] for the case of unsteady flow. The stronger assumption on S was crucial
for the applied tools (Young measures). This restriction was abandoned in [131]
by Wroblewsk-Kamiriska for the case of steady flow and in [75] by Gwiazda et al.
for unsteady flow. The authors used generalization of Minty trick for non-reflexive
spaces. The above existence results were established for p > 11/5 in [75], but
without including in the system the dependence on density.

Summarising, we want to extend the existence theory for flows of non-Newtonian
incompressible fluids to a more general class than polynomial growth conditions
[58, 59] by formulating the problem in nonhomogeneous in space anisotropic Orlicz
setting as in [72), [75], 31]. Moreover, we want to complete the results the reader
can find therein by including continuity equation 1 to the considered system
and dependence of S on density of the fluid, namely we do not assume that density
is constant. Additionally we are able to obtain better regularity of solution in time
than in [58|, 59, 72, [75], 131], namely in the Nikolskii space.

In order to state the main result of the chapter we start with the following
definition of a weak solution:

Definition IV.1.1. Let gy satisfies assumptions (TV.1.2)), (IV.1.3)), ug € L3, (2; R?)
and f e LY (0,T; L” (Q;R?)). Let S satisfy conditions S1.-S3. with an A/~function
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M such that for some ¢ > 0, C >0 and p= % M satisfies

M(z,€) = clefP — C

for a.a. 2 € Q and all € € R3S
We call the pair (g, u) a weak solution to ([V.1.1) if

0 < o4 <o(t,x) < o* foraa. (t,z) e Q,

0e C([0,T]; L(2)) for arbitrary ¢ € [1,00),

Gro € L0, T (WHr/Cr2y)

we LP(0,T; Ly, (4 R?) n LP(0, T Wy % (4 R%)) n NV22(0, T L3, (4 R?)),
Du e Ly(Q;R) and  (ou,v) € C([0,T1]) for all 9 € LZ; (4 R?)

and

(IV.1.8) LT (G0, 2) — (ou,V,z)dt =0

for all z € L™(0,T; W' (Q)) with r = 5p/(5p — 3), i.e.
f f 001z + (ou) - Vyzdedt = f 0z(82) — 0z(s1) dx
s1 JQ Q

for all z smooth and sy, s9 € [0,7], s; < s and
T
— J f ou-Oyp —ou®u : Vo +S(t,x, 0,Du) : D dadt
0 Jo

T
= j j of - pdxdt + f ooug - p(0)dx  for all p € D((—o0,T); V),
0 Jo Q
and initial conditions are achieved in the following way

(IV.1.9) tl_i}gl+ lo(t) = ool Laay + |u(t) — wo|72q) = 0 forarbitrary g € [1,0).

Theorem IV.1.2. Let M be an N —function satisfying for some ¢ > 0, C' =0 and

(IV.1.10) D= %

the condition

(IV.1.11) M(x,€) = clglr - C

for a.a. x € and all € € R;“’;rg Let us assume that the conjugate function
(IV.1.12) M* satisfies the Ay — condition and |£l‘igloo glCIelsf) % = ®

Moreover, let S satisfy conditions S1.-S3. and wy € L3 (4 R3), 0o € L*(Q) with
0 < 0. < 00(2) < 0* < +0 for a.a. € Q and f € LP(0,T; L” (Q;R?). Then there
exists a weak solution to (IV.1.1]).
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In the following chapter we consider the flow in the domain of space dimension
d = 3, just for the brevity. The existence result can be easily extended to the case

of arbitrary d > 2 and p > 3:;1_3_ The chapter is based on [133] by Wro6blewska-

Kaminska and partially on [131] by Wréblewska-Kamiiiska and [75] by Gwiazda,
Swierczewska-Gwiazda, Wroblewska-Kaminiska, see also [78].

In Section our main result of existence of weak solutions to the system
(IV.1.1)) is proved.

IV.2. Proof of Theorem [IV.1.2] - Existence of weak solutions

IV.2.1. Uniform estimates. Let {w"}®_ , be a basis of Wol”dpiv(Q;R?’) con-
structed with the help of eigenfunctions of the problem
(@i @)s = Ni(wi, ) for all € Wi,
where

Wosﬁiv = the closure of V w.r.t. the W*?(Q2)-norm

and ((+, -))s denotes the scalar product in W(fﬁiv. We assume that s > 3 and then the
Sobolev embedding theorem provides

(IV.2.1) We=12(Q) — C(Q).

Moreover the basis is orthonormal in L?*(Q2; R?) (see [94, Appendix]).
We denote

L2 = span{w’, ..., w"}

and define orthonormal projection P" : L3  — L(Qj’iz by P'u = >  (u,w")w" for

every n € N. Let us seek for an approximate solution 4" of the system ([V.1.1]) in
the following form of finite sums

(IvV.2.2) u"(t,z) = Z off (t)w’ (x)

forn =1, 2,... with the unknown coefficients o7 € C([0,71]), j = 1, 2,..., n, while
o™ is the solution of the continuous problem

oro" + div,(0"u") = 0,
0"(0) = o
with g € C1(Q) and u™ solves the Galerkin system
("0, W) + (0" (V,u™)u", w’) + (S(t, z, 0", Du"),Dw’) = (0" f", w)
u"(0) = P (uo)
for all 1 < j <n and a.a. t € |0,7]. We assume additionally that

(IV.2.3)

(IV.2.4)

ul — ug strongly in L3, (Q;R?),
(IV.2.5) 0y — 0o strongly in L*(),
on € C1(2) and o, < o) < 0*
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and
(IV.2.6) f* — f strongly in LP'(0,T; L” (Q; R?)).

Let us note that since our approximate solution w” satisfies (IV.2.3)), (IV.2.4)); for
1 <7 < nis equivalent to

<6t(g_)”u”), wj> — ("u" @u", V,w') + (S(t, z, 0", Du™),Dw’)
= (0" f" W)

and consequently after integrating over the time interval (0,7") we have

(IV.2.7)

T

fo (o(0"u"), W’y — (o"u" @ u", V,w) + (S(t,z, 0", Du"),Dw’) dt
(IV.2.8) T |
- | @srwia

0

for all 1 < 7 < n and ([V.2.3) satisfies also
T

(IV.2.9) J (0", z) — (0"u",V,2) dt =0
0

for all z € LI(0, T; WhH(Q)) with ¢ € [1,0).

Before we prove existence of the approximate solution we want to show that
some uniform w.r.t. n a priori estimates are valid and to present some of their
consequences which we will use later.

In the first step we concentrate on equations ([V.2.3]). Since (IV.2.1) holds,

we will use standard techniques for the transport equation and apply the method
of characteristics. We notice that ([V.2.3) is an equation of the first order w.r.t.
0"(t,z). We solve the Cauchy problem

dy"(t,z) _ . oo
(IV.2.10) - wyta)
y"(0,z) =z,

with the help of Carathéodory’s theory. The system ([V.2.10]) defines the so-called
characteristics associated with (IV.2.3). Note that for every ¢t € [0,T] the map

x +— y"(t,x) is a diffeomorphism of 2 onto 2. Using this fact and div,u" = 0 we

can see that the solution of (IV.2.3) is given by

(IV.2.11) "t y"(t, x)) = of ().
Since ([V.2.11) is satisfied and according to assumptions on gj we obtain that
(IvV.2.12) 0 <04 <0"(t,x) < 0" <+ forall(t,z) e Q.

For later consideration let us note that the Alaoglu-Banach theorem provides exis-
tence of a subsequence such that

0" — o weaklyin LI(Q) forany g € |1, o0),
0" = o weakly—(*) in L%(Q).
37
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If we multiply (IV.2.4) by o, sum up over j and use (IV.2.3), we get

1d

T Q "lu”? dx + (S(t, z, 0", Du™),Du™) = (o" f*, u")
Using the Holder, the Korn—Poincaré and the Young inequalities, the assumption

(IV.1.11) and (IV.2.12)) we are able to estimate the right-hand side of (IV.2.14)) in

the following way

(IV.2.14)

n n * n|p Ce n
(IV215)  [("f" u")] < oo 0 DD + f M (z,Du") dz.
Q

Integrating (IV.2.14) over the time interval (0, sg), using estimates (IV.2.15) and
({IV.2.12)), the coercivity conditions (IV.1.6)) on S, continuity of P™ uniformly w.r.t.
n and strong convergence f" — f in LP (0, T; L¥ (2;R?)) we obtain

(IV.2.16)

1 0 c
J §Qn(so)|u”(30)|2 dz + J J %M(.T, Du") + ¢.M*(z,S(t, z, 0", Du™)) dzdt
Q 0o Jo

1
< CQ(QJ Ce, C, Q*7p7 ||f||LP’(O,T;LP/(Q))) + §Q*”u0”%2(ﬂ)7
where Cy is a nonnegative constant independent of n and dependent on the given
data. Noticing that Ey«(Q; R3X3) is separable, (Ejy+)* = Ly and using the Alaoglu-

Sym
Banach theorem we obtain for suitable subsequence, as a direct consequence of

(TV.2.16), that

(IV.2.17) Du” 5 Du  weakly—(*) in Ly (Q; R2*3).

Sym

Moreover, the condition (IV.1.11)) provides that {Dwu"}>_; is uniformly bounded in
the space LP(Q;R**?) for p > &

T
(IV.2.18) f IDu [y dt < C

and hence there exists a subsequence such that
(IV.2.19) Du” — Du weakly in LP(Q;R**%).

According to the Korn inequality we also obtain

(IV 2.20) L IV i < C

and

(TV.2.21) u" —u weaklyin LP(0,T, W,k (Q:R?)).
Using we deduce that

(IV.2.22) IS(t,z, 0", Du")| 1) < C.

Moreover, we get that the sequence {S(¢,z, ¢, Du™)}>_, is uniformly bounded in
Orlicz class Ly«(Q; R3*3). Consequently for a subsequence we infer that

(IV.2.23) S(-,0",Du") 5§ weakly—(*) in Ly (Q;RED).
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Applying Lemma [[I1.2.2| an using assumption ([V.1.12))s we conclude the uniform

integrability of the sequence. Consequently there exists a tensor S € L'(Q;R?*?)
and a subsequence {S(-, 0", Du™)}>_, such that

(IV.2.24) S(-,0",Du") =S weakly in L'(Q;R**®),
Furthermore (IV.2.16)) and (IV.2.12)) provide

sup " (t)[12q) < C.
te[0,T]

sup [ o™ (8)|w" ()| 11y < C,
te[0,T]

(IV.2.25)

where C' is a positive constant dependent on the size of data, but independent of n.
It follows immediately that for some subsequence

(IV.2.26) u" 5w weakly—(*) in L*(0, T; L, (4 R?)).
In particular, from (IV.2.25)); follows that there exists constant Cpg s.t.
(IV227) ”un”L‘I(O,T;L?ﬁV(Q)) < CB fOI' q = 1.

Since the sequence {u"}*_; is uniformly bounded in L*(0,T}; Wol’ﬁ'iv(Q;R:g)) the
Gagliardo-Nirenberg-Sobolev inequality provides uniform boundedness in the space
LP(0,T; L?P/G-P)).  Standard interpolation (see e.g. [108, Proposition 1.41]) of
L*(0,T; L?) and LP(0,T; L?/G=P)) (this particular argument deals with the case
p < 3, the case p = 3 can be treated easier e.g. with the Poincaré or the Morrey
inequality) gives us

T

(IV.2.28) f [t < Cp for 1< r < 5p/3
0
for some constant Cp, therefore from (IV.2.12)) and (IV.2.28) we infer also
g 5p/3

(IV.2.29) L o[22, gt < .
Consequently we can take a subsequence satisfying
(IV.2.30) u" — u  weakly in L(0, T; L**/3(Q; R?))
and there exist subsequence {o"u"}*_, and gu € L*/3(0, T; L°"/3(€2; R?)) such that
(IV.2.31) o"u" — gu weaklyin L0, T; L**3(Q; R?)).

Using (IV.2.12)), (IV.2.20) and (IV.2.28)) and applying the Holder inequality, we
obtain

T

11
J|(Q"u”®u",vxu”)|dt<0 — ng
0

(here is the restriction for the exponent p stated in (IV.1.10)).
Using ([V.2.29) it follows from ([V.2.9) that

T
(IV.2.32) J 16,0" |72 dt < C.
0

(W1.5p/(5p=3) )%
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Hence the Alaoglu-Banach theorem provides existence of a subsequence such that

(IV233) ath N atQ Weakly in L5p/3(0’ T; (Wl,5p/(5p—3))*).

IV.2.2. Existence of approximate solution. On the basis of estimates pro-
ved in Subsection [[V.2.1] we will show the existence of solutions of ([V.2.4)) and
(IV.2.3) using Schauder’s fixed point theorem for the operator

A:BcY -B:a" —>u"

where Y := L9(0,T; LY(Q; R?)) n LI(0, T; L™ (Q; R?)), ¢ = 2p is equipped with the
norm of the space L9(0,T; L?(2; R?)) and B is the closed ball which will be defined
later. For given u" € B the element Au" = u" is a solution of the problem

8," + div, (3"@") = 0,
IV.2.34 . §
( ) Q (O) = QOa
("0u™, W) + (3" [V,u"]a", w’) + (S(t,z, 3", Du"),Dw’) = (5" f", w’),

It means that in the first step we find solution " of the linear problem (IV.2.34])
and next we look for the vector w", solution of the linearization ([V.2.35)) of the
system ([V.2.4)).

The equation ([V.2.35) can be rewritten as a system of ordinary differential
equations (the reader can find the details in [10}, 92} [93]). We obtain local in time
solvability according to Peano’s existence theorem for ordinary differential equations.
The global solvability is provided by the a’priori estimates where u” is
replaced by w" in suitable places.

Let us take @" € B := Bg,(0), where B¢, (0) is a ball and Cp is a constant
from (IV.2.28). Inequalities 2p’ < 5p/3 for p = 11/5 assure that Y > B. Previous
estimates (I[V.2.27) and ([V.2.28) provide that A maps B into B. Using ([V.2.25)),
and (IV.2.20) we deduce that u” € L®(0,T; L3 (4 R?))  LP(0, T; Wol”dpiv(Q;R?’)).
The continuity of the operator A results from the theorem on continuous dependence
of the solutions of the Cauchy problem on the coefficients and right-hand
side. Now the main difficulty is to show compactness of the operator A. Similarly
as in [10} [59] our plan is to prove that

(IV.2.35)

T—5
(IV.2.36) f [ (5 + 6) — u (5|2 ds — 0 as 8 — 0
0
is satisfied. According to [115 Theorem 5| and parabolic embedding theorem A(B)
is a compact subset of Y. Applying Schauder’s fixed point theorem we deduce that
there exists a fixed point " and the corresponding density ¢" which solve the system
({Iv.2.3), (IV.2.4).

To show (IV.2.36) we will follow [10, Chap.3. Lemma 1.2] with some modifi-
cations concerning a change from L?-structure for LP-structure and additional one
concerning the nonlinear term controlled by nonstandard condition .
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Letusfixdand s,0 <d <T,0<s<T—9. Next we test at time t by
u"(s+0)—u"(s) and integrate the equation over time interval (s, s+¢) w.r.t. time t.
Using the integration by parts formula w.r.t. time, the equality ¢,0" = —div,(o"u")
and obvious identity

"(s+0)u"(s+0)—o(s)u"(s) = ¢"(s+0)[u"(s+0) —u"(s)[+[0"(s+0) — 0" (s)[u"(s)
we get

(IV.2.37)
L 0"(s +0)u"(s +0) —u"(s)]* + [0"(s +0) — &"(8)]u"(s) - [w" (s +0) — u"(s)] dw

! L div, (8" ()@ (D) (1) - [ (s + 8) — w"(s)] dadt
" ;SJF L "(O[Vau"()]a"(t) - [u"(s + 6) — u"(s)] dzdi
| || St 7).Da" @) Dl (s -+ 8) = w ()] o

Féf (O£ (1) - [ (s + 8) — w(s)] ddt.

Now, let us test (IV.2.34)) at time ¢ by u"(s) - (u™(s + ) —u™(s)) and integrate the
equation over time interval (s,s + d) w.r.t. ¢ to obtain

fﬂ[@%s 18) = () un(s) - [u(s + 6) — uh(s)] da
= Js L div, (0" (t)u" (t))u"(s) - [u"(s + 0) — u"(s)] dzdt.

Substituting the above relation into ([V.2.37)) and using some obvious manipulations,
ie.

(IV.2.38) — (2" ()[Vau"(s)]a"(
— (0" (t)u"(s) @ " (t), Vi[u"(s + 3) — u"(s)])
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and ([V.2.12)) we get

[u”(s +6) — u"(s)] L2 do

N

i{| — JH O(Hu"(s) @u(t) - Vi[u"(s + ) —u"(s)] dadt

L
[ rowneuo Vs o) - wean

T oo s+ o) - o) dea
[ st 0,05 @) Dl + ) iz
) :m L GO (1) - [ (s + ) — w"(s)] dadt]}.

Next we integrate over (0,7 — ¢) w.r.t. time s and we intend to show that for any

of the ten addends Ij(s), k = 1,2,...,10 on the right-hand side of (IV.2.39)), the
following inequalities are valid

T—0
(IV.2.40) f I (s)ds < kif(9) for k=1,2,...,10,

0

where 6(6) — 0 as § — 0 and constant xj, is independent of 0. To estimate the first
six integrals let us employ ([V.2.12)), the Holder inequality, the assumption that

g = 2p’ and the fact that A maps B into B. Employing additionally the Young and

Jensen inequality and following obvious relation Sg - % §+5 )dtds < So s) ds for

a(t) = 0 for one of representative terms we obtain

| fom j . L I (Dun(s) @ W (1) - Vo' (s + 0) dudtds|

T—6
< Q*J J ™ ()| @” (8) | o) IVew" (s + 6) | Lr () dEds
0 s
T—96 1 111 s+4 ~ q 1
<00 [ T Ol + —\5 f i (e dt| + L1905+ 8) 8, s
0 q q s p
0

L0 L1l .
< do 5llu()ll Y H (D74 dt+—IIVU(S+5)HLP<Q> ds

1 n -~ n
< 0¢" (a”u (S)H%q(o,T;Lq(Q)) + 5““ (s )”Lq orLa@) T HV u LP(OTLP(Q)))
< 51(5.
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Next we deal with nonlinear viscous term. Using the Fubini theorem, the Fenchel-
Young inequality (Proposition [lI1.1.12]) and the Jensen inequality we get the follow-
ing estimates

| LH J " L S(t,z, 5" (1), D@ (£)) : Du(s + 6) dadids|
_ 5LT_6 L {‘% LS+5S(t,x, 5" (£), D" (£))dt - Du" (s + 5)‘} dads
<5 L H L {M* (m % f”su, 2 5'(b), Dfa”(t))dt> M (2, Du(s + 5))} dods

< 5L L” {% Y (,S(t, , 8" (t), D@"(¢))) dt + M (w,Du"(s + 5))} dsdz

s

< L {LT M* (x,S(t,z, 0"(s),Du"(s))) ds + LT(S M (z,Du"(s +9)) ds} dz
< Kad,

where k5 is uniform w.r.t. n.

Using assumptions on f" and ([V.2.20) we deduce

T—6 ps+o
| f J f ") f () - u"(s + ) dedtds]
0 s Q
T—6 o
1
< dp* f {—,
0 p
* ]‘ n o ]_ nip
<00 EHf (s + 5)HLP'(O,T;LP'(Q)) + ]—9Hu [Loomioi) | < K30

We proceed with the second source term in a similar way. Summarising all of the
above estimates for integrals on the right-hand side of (IV.2.39) we prove (IV.2.306])

and existence of approximate solution w".

1 5+0
= I PLOT

+ |u"(s + (5)||Lp(g)} ds

Remark IV.2.1. Since we already know that {u"}_; is uniformly bounded in
L*(0,T; L%, (Q;R?)) and above considerations show that for any approximate solu-
tion of (IV.2.3)), (IV.2.4) we obtain

1
57

where k is independent of n and §. Therefore, as a byproduct, we obtain that
{u"}*_, is uniformly bounded in Nikolskii space N'/22(0,T; L2, (Q;R?)).

-5 1/2
L ||u"(s+5)—u"(s)§2m)ds) <k

IV.2.3. Strong convergence of 0" and wu”. Since at this moment we have
existence of approximate solution to (IV.2.3|-[[V.2.4)) and the previous considerations
show ([V.2.36]) uniformly w.r.t. n, we get by [115, Theorem 3| that

(IV.2.41) u" — u strongly in L?(Q;R?).
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Using (IV.2.12), (IV.2.13) and (IV.2.33) the Aubin-Lions lemma provides that
(IV.2.42) 0" — o strongly in C([0, T]; W~L%/3(Q)).

If we employ the same methods like Lions et al. in [45], [91] Chapter 2|, we are
able to deduce that

(IV.2.43) o" — o stronglyin C([0,T]; L)) forallg € [1,00) and a.e.in Q,
and also

(IV.2.44) lirél+ lo(t) = oollagey =0 forallg e [1, ),
t—

which is the first part of the initial condition ([V.1.9)). To give the reader a view of
main steps we list some of them.

Using the fact that div,u” = 0 we see that the so-called strong and weak
form of the transport equation coincide, i.e. equation (IV.2.3) is equivalent to
00" —u, V0" = 0in a weak sense. Consequently with the concept of renormalized

solutions to the equation ([V.2.9)), it is possible to strengthen ([V.2.42)). First, we

need the time-space version of the Friedrichs commutator lemma (see [54, Corol-
lary 10.3],[45]). Since g € L9(0, T; L4(R)) for g € [1,0) and w € LP(0, T; WP (Q; R?)),
then

div, (o¢ * (0"u")) — div, ((oc * 0")u™) > 0 in L'(Q)
for r such that é —I—% = % € (0, 1], where o, is the standard mollifying operator acting
on the space variable.

Additionally since ¢" > g, and continuity equation ([V.2.3) is satisfied, then o"

satisfies renormalized continuity equation, namely
(IV.2.45) 0:b(0") + div, (b(0™)u") =0

in a weak sense for b € C''([0,00)) n W(0, 00) which vanishes near zero (see [45],
[64, Appendix]|). Next we are able to prove that

0" e C([0,T]; LY(2)) for g€ [1,0).

With the above information at hand following [45] or [91] we can prove (IV.2.43)).
The task now is to show that

(IV.2.46) o"u" — ou weaklyin L1(0,T; LY(Q; R*)) forall ¢ € [1, 5p/3].

Indeed, (IV.2. 43 provides that o™ converges strongly to o in L5 0,T; L= (;RY),
where v € [0,00). This together with (IV.2.30)) implies

T T
hmJ Jgu”-godxdt—hm (0", u" go)dtzj (o,u-¢)dt

n—ao n—a0 0
J J ou - pdxdt
5p 5p
for every ¢ € (L5+: (0, T; L5+ (Q;R3)))*, where &(y Therefore ([V.2.31

infers that (IV.2.46]) holds. Finally from (IV.2.33) and m we conclude that
o and wu satisfy (IV.1.8]).
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Additionally previous considerations imply, by using the test function of the form

Ny, e0)h, h € WLop/Gp=3) in (IV.1.8)), partial integration w.r.t. time and the density
of W1oP/r=3) in L1 that o e C([0,T]; L=,,), i.e. forall he L' and all 0 < t, < T
we have

(IV.2.47) lim (o(t), h) = (o(to), h).

t—to

Using (IV.2.41) and (IV.2.28) we infer by interpolation inequalities that
(IV.2.48) u" —u strongly in L"(Q;R?) for all r € [1,5p/3) and a.e. in Q.
Summarising (IV.2.48), (IV.2.12) and (IV.2.30), (IV.2.43),

g”u” Qu" — pu®u weakly in LTI(O, T, W_l”"') for r sufficiently large,

ie. 142 —I— 2 < 1, with arbitrary ¢ € [1,00). Density argument and ([V.2.21])
pr0v1des

(IV.2.49) u"@u" — pu®u weakly in L7 (0, T; de}p) for p = 11/5.
In particular we obtain
(IV.2.50)
T
lim J J oO'u" @u" : pdadt = J J ou®u : pdxdt for p € D((—0,T); V).

IV.2.4. Integration by parts. For any function z (for which integrals below
have sense) and for h > 0 we denote

1 rh
() = 2)(t,z) := EJ z(t + 7, 2)dr,
0

(6, 2)(t,x) := % Jh z(t + 7, x)dr,

where * means convolution w.r.t. time variable. Let us define also
2(t + h,x) — 2(t, )

Dty =
z . ,
B t,x) — z(t — h, )
D"y .= Z(’ LAy
- h

Then it is easy to observe that
(IV.2.51) Oy(6, +z) = DTz and 0y(6y #z) = D"z,

Let us take h > 0 and 0 < sy < s < T such that h < min{sg, T —s}. We multiply
each equation in the system (IV.2.7) by

oy, (05 * aj(t)) isy,e)),
next we sum up over j = 1,...,7, where 7 < n and integrate this sum over time inter-
val (0,T). Noticing that &, « (5, *u’) Ns,.0)) = 2551 7 * (75, # (1)) Liye))w ()
let
7 def ~ ~_ i
T oy # (0, *u') Ls,5))
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with A < min{sq, T'— s}. Since

L (o u™), uh df = f a3y » ("), (57 » )1 ) I,

and ¢ < n we get in the limit as n — oo
(IV.2.52)

[ @ .oz - wiar = | [ (o) Vot

T T
— J J S : Du dadt + J- f of -ultdzdt.
0o Ja 0 Ja

Indeed, let us notice that for fixed h and i it is provided that "¢, Du/* € L*. Then
the convergence process in the first term on the left-hand side of is provided
by the fact that &, *u’ is locally Lipschitz w.r.t. time variable and holds.
In terms on the left-hand side we use respectively (IV.2.49)), (IV.2.23)) (obviously

L* < Ey) and ([V.2.6) with (TV.2.43).

Our aim now is to use a test function in ([V.2.52))

def ~ ~_
P26 (6, 2 u) D)

with 0 < h < min{sg,T — s}. For this purpose define the truncation operator
T s R3*3 — R3*3 such that

_ K |K|<m,
T = { e =

Observe the following identity
s T
J (@G, * (o)), (G, *u')) dt = f f (ou®@u) : Vyu dodt
S0 0 JQ
rT o _ )
+ J (T (S) —S) : Du™ dadt

(IV.2.53) Jo Ja
rT o )
— f T (S) : DuM daxdt
0 JQ
rT

+ J of -udxdt.
0o Ja

J

Let us concentrate now on the right-hand side of ([V.2.53) and investigate the first
and the last term.

The sequence {u*}® | is weakly convergent to u” in LP(0, T’; T/Voly’dpiv (2; R3)) when
i — o0. Note that if p = 4, then since ¢ is bounded we infer that SOT folou@u) -
Vult dzdt — SOT {olou®u) - V,u dadt as i — .

Since f € L¥' (0, T; L' (Q; R?)) we treat in the same way the source term to obtain
that § §, of : u dadt — §) {, of : u" dzdt as i — oo.
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Now we show convergence process in the second term on the right-hand side of
(IV.2.53). We fix k£ € N and using the Fenchel-Young inequality, the convexity of
M and that M* satisfies the Ay—condition (see ([V.1.12)) with some nonnegative
integrable function g+ (see ) we estimate the integral

T
J J (T (S ) : D] dadt < J J M*(z,2%(T,,(S) — S)) dadt
0o Jo
’ L, i
+J J M(:p,?Du ") dadt
0o Ja
T
(IV.2.54) < C;;*J J M*(z, Trn(S) = S) dadt
. 0o Jo
0

I A
+ o J J M (z,Du") dzdt.
28 Jo Jo

Inequality (IV.2.16)) and Proposition [[11.2.5|provide that for each 0 < A < min{sy, T—
s} it holds

supsupf J M(x,Du") dzdt < C,
€N

where C' is a nonnegative constant independent of ¢ and h. Consequently we infer
that

1
lim — supsupj J M (z,Du”") dzdt = 0.
k—o0 2K 1eN
Due to the convexity and symmetry of M* and that M*(z,0) = 0 a.e. it holds

that

M*(z, Tr(S) —S) < M*(x,S).
Since M* satisfies the Ay—condition and S is an element of £+ (Q; Rg;n?;) the above
inequality yields by the Lebesgue convergence theorem that SQ M*(z, T, (S)—S) dzdt
converges to zero as m — co. Hence

k—00 m—a0

lim lim J- J O M* (2, T (S) = S) + kgnrs (2) L5, 1) my dodt = 0.
s0 JQ

Then we can pass to the limits in the second and the third term on the right-hand
side of (IV.2.53)) (together with (IV.2.54))) consecutively with ¢ — oo, m — oo and
k — co.

Now we will concentrate on the left hand-side term of ([V.2.52). Let us notice
that as ou € L*(0,T; L*(%;R?)), 7, * ou is a Lipschitz function w.r.t. the time
variable, hence 0,(d, = pu) € L*(0,T; L*(;R?)). By (IV.2.26) and letting i — oo
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we obtain

S
L, ::f J(ﬁt(ah v (ow)) - (67 »w) dadt

s0 JQ

(IV.2.55) :
= J J ((QU®U)  Vou' =S :Du + of -uh) dxdt =: Ry,.
so vQ

In order to pass with A — 0" we conclude form ([V.2.51)) that

Ly, = f f (D "(ou)) - (7, *u)dxdt.
so vQ
Moreover notice that

L= | D7) @ )+ (O ol = 1) ) e

_ f ﬁzg-%ﬁtw; sul”+ (6, + (ow) - (V, (w(t —h) - (65, +u))) dadt,

where we used ([V.2.51) and relation D™"p = —div,(5; * (ou)), which is provided
by the fact that the couple (o, u) solves the continuity equation ;0 + div,(ou) =0
in a weak sense. Inserting z = %|5; +u|? into the weak formulation of the continuity
equation, which means that for all sy, s € [0,T], so < s

f S f (o(r) - du2(r) + o(rYu(r) - Vaz(r)) dadr = f o(s) - 2(5) — o(s0) - =(s0) da

Q

(for all z € L"(0,T; WLT) with r = 5p/(5p —3) and 0,z € L1*°(0, T'; L'+°)) we obtain

ofs0) - (5165 » w(so) ) d

L= | o) (Gl - u()P)de - |

Q

S 1 .
—f L(Qu) (Vo + uf?) dudt
s0

N f L (37 + (ow)) - (Vs [u(t — h) - (57 »w)]) dadt.

Let us notice that &, *u converges strongly (locally in time) to w in L?(0, T'; L*(Q; R?))
and in L°P/3(0, T; L°?/3(Q; R?)) and V,5, *u converges strongly (locally in time) to
V.u in LP(0,T; LP(Q; R3*3)) as h — 0T. The same arguments are valid for transla-
tion 7_p,u = u(t — h). Then by the Holder inequality letting h — 07 in the above
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we obtain for almost all sy and s in (0, T)

lim Ly —f f ou) V |u|?) dzdt
S0

h—0+

o(s,2)|ul(s, z)*dz — = | o(so,z)|u(se, z)|* dz
(IV.2.56) "2 L 2 L

:f Jgu@u:vxudxdt
so JO

1 1
+ —J o(s, 2)|u(s, z)*dz — = J o(s0, )|u(sg, x)|* d.
2 Ja 2 Jo

Next we consider the right-hand side of and pass with A — 07. First
we investigate the convergence of the term SSO $olou ® u : V,u) dedt. Since con-
dition provides that Du € LP(0,T; LP(2;R**3)) and due to the Korn
inequality V,u € LP(0,T; LP(€; R**3)), we have that also the sequence V,u" =
V. (61 # (65, * u)l(sy,s)) is uniformly bounded in LP(0, T; LP(Q; R**%)). Hence we
obtain, for subsequence if needed,

hmf f ou®u: V,u" dxdt—J J(gm@u:VIu)dxdt.

h—0+
Since f € LP (0, T; L (Q;R?)) and p satisfies (IV.2.12) in the same way we conclude
(IV.2.57) lim J J (of) -u"dzdt = J J of - udxdt.
h—0+ so JQ so v

Let us concentrate now on the term

J J ((6, *Du)ly,.q))) dxdt—f J : (6, * Du) dzdt.

Sequences {5 * S}, and {7, * Du}, converge in measure on @ due to Proposi-
tion [[TI.2.4] Moreover, since M and M* are convex nonnegative functions, then the
weak lower semicontinuity and estimate ([V.2.16]) provide that the integrals

T T
(IV.2.58) f f M (z,Du)dxdt and f f M*(z,S) dzdt
0 0 Jo

are finite. Hence Proposition [I11.2.5implies that the sequences {7} * S}, and {5; =
Du},, are uniformly integrable and hence according to Lemma [[I1.2.1| we have

g, # Du—5Du modularly in L (Q; RS,

Sym
5, +S5S  modularly in Ly (Q; R,
Applying Proposition [[II.2.3] allows to conclude

(IV.2.59) lim f f : (6, *Du)dadt = J J S : Du dzdt.
sg JQ

h—0*+
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Summarising arguments ([V.2.56)), (IV.2.59)) and ([V.2.57) we are able to pass
to the limit in (IV.2.52)) and we obtain

(IV.2.60)
5 |, et olutsnf i+ [ [ 5:Dudsa
Q

Lfgf udxdt + = f o(s0, ) |u(sg, z)|? dz.

IV.2.5. Continuity w.r.t. time in the weak topology and the initial
condition. Using the already proved properties of the density and the velocity
field, namely ¢ € C([0,T], L%(2)) for q € [1,00) and w € C(0,T; L3 (Q;R?)), it
we are lead to a conclusion that (o(-)u(-), ) is continuous at s; € (0,7") for all
peW:? “Jiv> in other words, ou € C(0, T (Wg d21v)* ) or

weak

lim (o(s2)u(sz) — o(s1)u(s1), @) = 0.

§2—81

Since w € L*(0,T; L3 (4 R?)), 0 € C([0,T]; L)) for g € [1,00) and W(fﬁiv is
dense in L3 , we observe that ou € C([0,T]; L3, (€;R?)). As a consequence we

div,weak

have
(IV.2.61) lim (o(s1)u(s1) — gotto, @) =0 for all @€ L%,
Integrating (IV.2.14) over time interval (0, s;), using that (S(¢, z, o",Du™),Du") is
nonnegative (because of monotonicity and that S(-,-,-,0) = 0) and taking the limit
as n — o0 we obtain

s1
(IV.2.62) (o(s1), [u(s1)*) = (2(0), [w(0)]*) < 2J (of ,u)dt

0

If we employ obvious identity

IV o(s1)( )| T2y = (0(s1) [uls1)?) — 2(a(s1)u(s1), wo) + (o(s1), uol?),
then the second part of property (IV.1.9)) is an easy consequence of (IV.2.62)) and

(IV.2.63)
v o(s1)( — )| 720y = (0(51), [u(s1)]*) = 2(e(s1)u(s1), uo) + (o(s1), [uo|*)

= (o(s1), |U(51)|2) — (00, |U0| ) — 2(o(s1)u(s1) — oo, uo) + (0(s1) — 0o, |U0|2)

<2 LSl(gf, w) dt — 2(o(s1)u(s1) — ooto, ug) + (0(s1) — 00, [uol?).

Letting s; — 07 in ([V.2.63)) using (IV.2.61)), (IV.2.47) and (of,w) € L'(0,T; L*(£2))
we can conclude that

(IV264> hHl H\/ 51 HLQ(Q = 0.
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Hence this implies together with ([V.2.12)) the second part of (IV.1.9). Above argu-
ments and (IV.2.63), (IV.2.64) provide also the fact which we will use later:

(IV.2.65) lim (os1), [u(s1)[*) = (eo, |uol?).

IV.2.6. Monotonicity method. Using the property (IV.2.65)) and letting sg —
0 in (IV.2.60) we obtain

%L ols, o, x)|2dx+f JS Du dzdt
Jjgf wdzdt + = jgo(q;)mo(x”adx

Additionally integrating (IV.2.14)) over the interval (0,s) allows to conclude by
[V.235), ([V.2.6), ([V.2.43), [[V.2.46), ([V.2.48) that

1f@(sx)|u(sx| dx—i—hmffStxg, ") : Du" dzdt
Q

2 n—00

:L L of -udxdt + §L 00(2) [ (z)]? da.

Consequently we obtain

(IV.2.66) lim supf J S(t,z, 0",Du") : Du" dzdt < J J S : Dudadt.
Q 0 Jo

n—a0

By Q° we will mean the set (0,s) x Q. Since S is monotone, then we have
(IV.2.67) f (S(t,z, 0", w) — S(t, 2, 0", Du")) : (w — Du™) dwdt > 0

for all w € L*(Q;R3*3). Observe that also S(t,z, 0",w) € L®(Q;R3*3). We prove
this by contradiction, i.e. let us suppose that S(t, z, ¢",w) is unbounded. Then,

since M is nonnegative, by ([V.1.6)), it holds
W] > M*(x,S(t, x, 0", wW))
TSt omw)|

The right-hand side tends to infinity as |S(¢,z, o",w)| — oo by ([V.1.12),, which
contradicts that w € L*(Q;R3*3). Now employing continuity of S w.r.t. the
third variable and ([V.2.12) we obtain uniform boundedness of {S(t,z, 0", W)},
w.r.t n. Together with boundedness of (° this gives uniform 1ntegrab111ty of a se-
quence {M*(S(t,z, 0",w))}>_,. Lemma [II1.2.1| and (IV.2.43)) provide modular con-
vergence of the sequence. Slnce M* satisfies the As—condition, then the modular and
strong convergence in Ly« coincide (see [87]) and hence S(t, x, o™, w) — S(¢, z, o, w)
strongly in L,;«. Therefore by we deduce

(IV.2.68) lim S(t,x, 0", w) : Du™ dzdt = S(t,x, 0,w) : Dudxdt.
n—o0 QS Qs
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Before passing to the limit with n — oo, we rewrite ([V.2.67))
S(t,x, 0",Du") : Du™ dzdt
QS
> S(t,x,0",Du") :wdzdt + | S(t,z,0",w) : (Du" —w) dzdt.
QS QS
hence (IV.2.19)), (IV.2.24), (IV.2.66)), (IV.2.68) give

S:Dudxdt > | S:wdzdt+ | S(t z,0,w): (Du—w)dadt
Q° Q° Q*
and consequently

(IV.2.69) f (S(t.2, W) —S) : (w— D) dadt > 0.

Let £ > 0 and denote by
Qr ={(t,x) e Q° : |Du(t,z)| < k a.e. in Q°}
and let 0 < 7 <1 be arbitrary and h > 0
w = (Du)lg, + hvlg,,
where v € L*(Q; R3*3) is arbitrary. By (IV.2.69)), we have

—J (S(t,z,0,0) —5) : Dudadt + hj (S(t,z, 0,Du + hv) —§) : vdzdt > 0.
Q\Q; Qj

Note that S(t,z, 0,0) = 0. Obviously
f S :Dudxdt = J (S : Du)lgeg, dzdt.
Q\Q; Q

By Proposition [[II.1.12] and (IV.2.58)) we obtain

J S : Dudzdt < .
Q

Then as ¢ — o0 we get
(S:Du)lgag, —> 0 ae. in Q.
Hence by the Lebesgue dominated convergence theorem
lim S : Dudxdt = 0.
TEJeNQ:
Letting ¢ — oo in ([V.2.6) and dividing by h, we get

J (S(t,x, 0,Du + hv) —S) : vdaxdt = 0.
Qj
Since Du + hv — Du a.e. in ); when h — 0" and S(¢, z, o,Du + hv) is uniformly
bounded in L*(Q;; R**?), |Q;| < oo, by the Vitali lemma we conclude

S(t,z,0,Du + hv) — S(t, x, 0,Du) in L'(Q;; R**?)
52



CHAPTER IV. NONHOMOGENOUS FLUIDS IV.2. EXISTENCE

and
f (S(t,z, 0,Du + hv) —S) :vdzdt — | (S(t,z,0,Du) —S) : vdzdt
Qj Qj
when A — 07. Consequently,

f (S(t,, 0,Du) —§) : vdwdt > 0
Q

J

for all ve L®(Q;R3*3). The choice

v { _—\:gi533:§\ for S(t,z,0,Du) # ?,
0 for S(t,z,0,Du) =S,
yields
J IS(t, x, 0,Du) — S|dxdt < 0.
Hence “
(IV.2.70) S(t,z,0,Du) =S a.e. in Q.

Since j was arbitrary, ([V.2.70)) holds a.e. in @°. Since it holds for almost all s such
that 0 < s < T, we conclude that S = S(¢, z, o,Du) a.e. in Q.
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CHAPTER V

Existence result for the motion of several rigid bodies in an
incompressible non-Newtonian fluid

V.1. Introduction

We want to investigate the mathematical properties of motion of one or several
non-homogenous rigid bodies immersed in a homogeneous incompressible viscous
fluid which occupies a bounded domain 2 < R3. In particular we are interested
in fluids having viscosity which increases dramatically with increasing shear rate or
applied stress, i.e. we want to consider shear thickening fluids and as in Chapter [[V]
we formulate the growth conditions of the stress tensor using quite general convex
function M called an isotropic N —function. Fore more references and more detailed
description of our motivation we refer the reader to the Chapter [[V]

We assume that the viscous stress tensor S depends on the symmetric part of
the gradient of the velocity field w in the following way: S : R3X3 — R3X3 satisfies

sym Sym
(Rg’;nf stands for the space of 3 x 3 symmetric matrices):
(V.1.1) S(0)=0, S=S(Du) is continuous,
(V.1.2) (S©-Sm): (¢-n) = 0foran g #n, e Ry

and there exist a positive constant ¢, an isotropic N —functions M (Definition [[I1.1.1))
and M* (M* denotes the complementary function to M) such that for all £ € RS>
it holds

(V.1.3) S(€) - € = c{M(E]) + M*(IS(E))}-

Additionally we assume that the N —function M satisfies an additional growth con-
dition

(V.1.4) 1| P < M() < coexpmi(|-]) forp=4, B>0
where ¢y, ¢y are some positive constants, the complementary function
(V.1.5) M* satisfies the Ay — condition

and

(V.1.6) M(|-]3) is convex.

The appropriate spaces to capture such formulated problem are isotropic Orlicz
spaces.

The motion of the body during and before the contacts with boundary of the
domain ) was studied by Starovoitov. In particular, the author gives sufficient
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conditions which imply the impossibility of the collision with rigid object, see [120],
Theorem 3.2.], i.e.:

cl: the domain Q < R3 as well as the rigid bodies in its interior have bound-
aries of class C11;
c2: the p — th power of the velocity gradient is integrable, with p > 4.

Therefore any contact of rigid body with the boundary of domain or with other
one or several rigid bodies does not occur. We just need to assume that it was not
present in initial time and consider certain class of non-Newtonian fluids, where the
contact can be eliminated by the phenomenon of shear-thickening.

We want to investigate the motion of several rigid bodies in a non-Newtonian
incompressible fluid. To construct the solution we use penalization method devel-
oped by Hoffmann and Starovoitov [80], and San Martin et al. [113], which is based
on the idea of approximating rigid objects of the system by the fluid of very high
viscosity becoming singular in limiting consideration. To avoid some technical diffi-
culties we assume that fluid density is constant in the approximate “fluid” part (this
assumption is avoided in [113], where 2-D case of a Newtonian fluid is investigated).

There are two main difficulties we have to face in the proof of the existence result,
more precisely in the proof of the sequential stability of the approximate solutions:
1. strong compactness of the approximate velocities on the time-space cylinder in
L? space;

2. passing to the limit in the nonlinear term — i.e. in viscous stress tensor by means
of the monotonicity method.

To solve the first problem, similarly as San Martin et al. in [113], we use the
Aubin-Lions argument applied to a suitable projection of the velocity field onto the
“space of rigid velocities”. It is worth to notice that no-collision result by Starovoitov
[120] significantly simplifies our analysis. Namely we are ensured that bodies do
not penetrate each other and the boundary. We will notice that positive distance
between the bodies and boundary is always kept and any sharp cones do not appear
in the fluid part.

As in the previous chapter, the principal difficulty here is caused by the fact
that we consider the problem in Orlicz-space setting and we do not assume that the
As—condition is satisfied as we want to investigate the case of shear thickening fluids
of rheology more general then of power-law type. For this reason the spaces we work
with lose many facilitating properties, which have been mentioned in Chapters [[[ITT,

The latter problem, inherent to the theory of non-Newtonian fluids, is that we
have to identify the nonlinear term on "fluid” part of time-space cylinder. Therefore
the problem is more delicate as the monotonicity argument must be localised to the
“fluid” part of the system. We take the idea of Wolf [130], localise the pressure and
represent it as a sum of a regular and a harmonic part. Following Feireisl et al. [56]
we construct the pressure function with the help of Riesz transform which gives a
result more suitable for non-standard growth conditions and such an approach can
be easily adapted to more general constitutive relations for S. The main difference
from any previous works in this direction is, due to nonstandard growth conditions,
that we are in Orlicz-space setting. Besides the difficulties mentioned above, the
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Riesz transform in general can not be well defined on Orlicz space to itself. If M
and M* do not satisfy the Ay—condition it can happen that it is continuous from one
Orlicz space to another one, with a modular of essentially slower growth. Therefore
the pressure localisation method appears to us to be more difficult.

We want to emphasise that we achieve the existence result for the problem of mo-
tion of rigid bodies in non-Newtonian fluids with non-polynomial growth conditions.
This allows us to consider a situation of non-power-law fluids, where constitutive
relation can be more general than considered in [56].

Our main result, formulated below in Theorem [V.3.1] concerns the existence
of weak solutions of the associated evolutionary system, where, in accordance with
[120], collisions of two or more rigid objects do not appear in a finite time unless
they were present initially, which considerably simplified analysis of the problem.
The chapter is based on [134), [135] by Wroblewska-Kamiriska.

The chapter is organised as follows: some preliminary considerations, weak for-
mulation and basic notation of the investigated problem are summarised in Sec-
tion V.2l The main result is formulated in Section [V.3] as Theorem [V.3.1l The
remaining part of the chapter contains the proof of the existence result. In Sec-
tion the approximate problem is introduced by replacing the bodies by the fluid
of high viscosity. Section contains the artificial viscosity limit. In Section
previous arguments are recalled to provide the limit for the regularized velocity field.

V.2. Preliminaries, weak formulation

We state the following problem: let 2 < R3 be an open bounded domain with
a sufficiently smooth boundary 02, occupied by an incompressible fluid containing
rigid bodies. Each rigid body in the considered system is identified with the con-
nected subset of Euclidean space R®. The initial position of the rigid bodies is given
through a family of domains

S;cR3 i=1,...,n,
which are diffeomorphic to the unit ball in R3. To avoid additional difficulties the
boundaries of all rigid bodies are supposed to be sufficiently regular, namely there

exists &y > 0 such that for any x € 8S; there are two closed balls B, B of radius
do such that

(V.2.1) re B™nB™, B"™cS;, B™cR\S,.

The same assumption concerns the considered physical space Q < R?, occupied
by the fluid and containing all rigid bodies. In particular, € is supposed to be a
bounded domain such that for any x € 0 there are two closed balls B™, Bt of
radius dy such that

(V.2.2) reB™nB™ B™cQ B™cR\Q,
The motion of the rigid body 5; is represented by the associated mapping n,
n, =n,;(t,x), te[0,T), xR n,(t-): R* - R is an isometry for all ¢ € [0,T)
and n,(0,7) =z forallz e R*, i=1,...,n.
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Therefore, the position of the body S; at a time ¢ € [0,T) is given by the following
formula

In the above terms we introduce domains @/ and Q* respectively as a fluid and a
rigid part of the time-space cylinder in the following way:

Q° = | {(t,x) | te[0,T], ze Si(t)} @ :=Q\Q".

In the present work the concept of weak solutions is based on the Eulerian
reference system and on a class of test functions which depend on the position of
the rigid bodies. This idea was introduced by Judakov [85] (see also Desjardins and
Esteban [39], 40|, Galdi [66], 67|, Hoffmann and Starovoitov [80], San Martin et al.
[113] , Serre [114]). Let us denote the velocity field of the system by u : Q — R?
and introduce decomposition for a fluid and a rigid velocity as follows

w' =uwon @’ and wu’=wonQ’

In our considerations we assume no-slip boundary conditions for the velocity on
all surfaces and the velocity of the fluid on the boundary of each rigid body S;
(1 =1,...,n) is supposed to coincide with the velocity of rigid object. Namely

w/(t,z) =00n dQ and u’/(t,z) = ul(t,z) on 0S;(t)

forallt e [0,T] and i = 1,...,n. To be more precise, if we consider the mass density
0 = o(t,x) and the velocity field u = w(t,z) at a time t € (0,7") and the spatial
position x € €2, then those functions satisfy the following integral identities

T
(V.2.4) f J (g&tcp + ou - VISO) dadt = —f oo dz
0 Jo Q

for any test function ¢ € C1([0,T) x ), and

T
f J (Qu-atcer ou®@u:Dp —S: Dcp) dxdt
(V.2.5) 0 JQ

T
= —J J QVIF-Lpdxdt—J OoUg - pdx
0 Jo Q

for any test function ¢ € CH([0,T) x ;R3),
(V.2.6) ol ) € [RM](1),
which is associated with the position of rigid bodies, i.e.
[RM](t) = {¢p € CH{QR?) | divep =0 in ©,
D¢ has compact support on Q\ U}, S;(t)}.

The symbol S denotes the viscous stress tensor determined through (V.1.1]-|V.1.6)),
V. F is a given potential driving force and oy, ug stand for the initial distribution
of the density and the velocity, respectively.

o7

(V.2.7)
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The tensor Du is called also a deformation rate tensor as u stands for velocity
field. The kernel of this tensor consists of rigid vector field. Assume that S is a
connected domain in R? and u : S — R3 is a velocity field. Then Du = 0 in S if and
only if there exists a vector a € R? and an antisymmetric tensor A € R? x R? such
that u(z) = a + Az for z € S. The proof of this fact can be found for instance in
[124]. Velocity of the above form corresponds to rigid motion. Thus, it is possible
to specify rigid bodies by the condition that the deformation rate tensor vanishes in
the domains corresponding to the bodies.

In order to close the system we have to specify the relation between the velocity
u and the motion of solids given by isometries 1,. This can be formulated as follows.
As the mappings 7,(t, -) are isometries on R3, they can be written in the form

n;(t,z) = z;(t) + O;(t)x,
where O;(t) € SO(3) (i.e. it is a matrix satisfying O70; = Id). The position z;(t)
denotes the position of the center of mass of S; at a time ¢ and
x;(t) = LJ 0s,(t, z)x dx,
i J3;(t)

where
m; = f 0s,(t,x) dx
Si(t)

is the total mass of ith rigid body of a mass density og,. We say that the velocity
field w is compatible with the family of motions {n,,...,n,} if
(V.2.8) u(t,z) = u¥(t,x) = U;(t) + Qi(t)(x — (1)) for a.a. x € Si(t), i =1,...,n

for a.a. t € [0, T), where u” is solid velocity, U;(t) denotes the translation velocity
and Q - the angular velocity of the body s.t.

(V.2.9) L) = U0, (%Oﬁ))OiT(t) — Qi(t) a.a. on (0,T).

de™
V.3. Main result
Let us formulate now the main existence result of this chapter.

Theorem V.3.1. Let Q be a bounded domain in R® and let the following assump-
tions be satisfied:

e The initial position of the rigid bodies is given through a family of open sets
S; < Q c R3,S; diffeomorphic to the unit ball fori=1,...,n,

where both 0S;, 1 =1,...,n, and 02 belong to the reqularity class specified
by (V.2.1), (V.2.3).

dist[S;, S;] > 0 fori # j, dist[S;, R3\Q] > 0 for anyi,j =1,...,n.

The viscous stress tensor S satisfies hypotheses (V.1.1-[V.1.5).

The isotropic N -function M satisfies conditions (V.1.4-|V.1.6) with p > 4
and the complementary function M* to M satisfies the Ay—condition.

The given forces F' € WH®(Q).
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o The wnitial distribution of the density is given by

o5 = const > 0 in O\, Si,

00 =
0s, on S;, where gg, € L*(Q)), essinfg, 05, >0, i =1,...,n,

while the initial velocity field wy satisfies
ug € L*(Q;R?), divoug = 0 in D'(Q), Dug = 0 in D'(S; R*?) fori=1,...,n.
Then there exist a density function o,

0€ C([0,T]; L'(2)), 0 < ess igf o(t,-) < esssup o(t,-) < oo for all t € [0,T7,
Q

a family of isometries {n,;(t,-)} 1, n;(0,-) = 1d, and a velocity field u,
we L0, T; L% (Q;R?) A LP(0, T; Wy P (4 R?)), Du e Ly (Q;R*?),

compatible with {n;}7_, in the sense specified in (V.2.8), (V.2.9), such that o, u
satisfy the integral identity (V.2.4) for any test function p € CX([0,T) x Q), and the
integral identity (V.2.5) for any ¢ satisfying (V.2.6}), (V.2.7).

The aim of this chapter is to prove Theorem [V.3.1]

V.4. Approximate problem

The first step of the proof is to approximate the rigid objects by a fluid of a
very high viscosity. For this reason we introduce a penalization problem and the
construction of weak solutions is based on a two-level approximation scheme that
consists of solving the system of equations:

(VA1) 010 + div. (ouls) = 0,
(V.4.2) or(ou) + div,(ou ® [u]s) + Vap = div([p:]sS) + oV F — x:u,
(V.4.3) Ocpte + divg (pe[uls) =0,

(V.4.4) div,u =0,

where p is a scalar function denoting the pressure. Moreover we regularise the vector
field in (V.4.1) and (V.4.3)) with a standard regularizing kernel. Namely for § such
that 0 < &y (dg is as in Section |V.2)) the symbol

[uls = ws = u

stands for a spatial convolution with
1
(V.4.5) ws(x) = 5 (|%|> :
where w € C*(R?), suppw < B(0, 1),
w(z)>0for x e B(0,1), w(z)=w(—x), J w(z)de =
B(0,1)
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As Q is bounded, we can assume that Q < [—L, L]? for a certain L > 0 and consider

system (V.4.1]-[V.4.4) on the spatial torus
T ==L, Dl

Then all quantities are assumed to be spatially periodic with period 2L, in particular
we extend the initial velocity field uy by 0 outside of 2 and density by o; — constant
density of the fluid. We also extend the outer force in such a way that F' € Wh*(T).

The system (V.4.1]-[V.4.4)) is supplemented with the initial conditions

(V.4.6) 0 <0(0,-) = eos = o5 + Z 05,65
i=1
where
00,5 — 0o strongly in L'(T) asd — 0
and

(V.4.7) o0s, € D(S;), 0s;6(x) =0 whenever dist[x,dS;] <0 < g, fori=1,...,n.

Similarly, we prescribe e—dependent artificial "viscosity” p : (0,7) x T — R with
initial data given by

1 n
V.4.8 0,) = poe =14+ — "
( ) 12(0,+) = po, - ZM&

i=1
where
ps, € D(S;), ps,(x) = 0 whenever dist[z, 05;] < 9,
(V.4.9)
ps,(x) > 0 for x € S;, dist[xz,0S;] >0 fori=1,...,n.

The "viscosity" p can be identified as the penalization introduced by Hoffmann and
Starovoitov [80] and San Martin et al. [113], where the rigid bodies are replaced
by the fluid of high viscosity becoming singular for ¢ — 0.

Furthermore, we penalize also the region out of the set 2 and we take

1 _
(V.4.10) Xe =—X, XED(T), x>00n T\, x =01in .

.=
€

The parameters ¢ and  are small positive numbers. In the above formulation an
additional parameter dp > § > 0 has been introduced to keep the density constant
in the approximate fluid region in order to construct the local pressure.

For fixed ¢ > 0 and 0 > 0 we report the following existence result that can
be proved by means of the monotonicity argument for nonreflexive spaces (for the
existence result without regularization of the velocity field see Chapter [[V|or [133]
and for partial results in the Sobolev space setting see Frehse et al. [58), [59] and in
the Orlicz space setting Gwiazda et al. [72), [75] and Wroblewska-Kamiriska [131]):

Proposition V.4.1. Suppose that p = 4. Let the initial distribution of o, u be given
through - , with fired € > 0, g > 0 > 0. Moreover, assume that
(V.4.11) uw(0,) =ug, v T, uge L*(T;R?), div,up =0 in D'(T;R?),
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and x., F' € C*(T), where x. is determined by .

Then the problem - , supplemented with the initial data -
, possesses a (weak) solution o, u, w satisfying

0, e C([0,T]; LX(T)),
0 < essinfq o(t, ) < esssupg o(t, *) < o for all t € [0,T],
0 < essinfq u(t, ) < esssupg pu(t, ) < oo for allt € (0,7,
we L0, T; L*(T;R3)) n LP(0, T; W'P(T;R3)), Due Ly (Q;R3*3).

In addition, the solution satisfies the energy inequality

1 z 4
J —olul*(2) dz + f J [16c]5S : Voudadt + J f Xe|u)? dzdt
T 2 s JT s JT

(V.4.12) . .
< f —olul*(s)dz + f J oV, F -udzdt
T 2 s JT

for a.a. 0 < s <z <T including s = 0.
The weak formulation of the equation (V.4.2)) is represented by the integral
identity

T
(V.4.13) f f ou - Oyp + o(u ® [uls) : Ve dadt
o JT

T T T
= f J [14c]sS : D dxdt — f J oV F - pdxdt — J J Xeu - pdxdt
o JT o JT o JT

—J Qo,6Uq * LP(Oa ) dz
-

which is satisfied for any test function ¢ € D([0,T) x T;R3), div,e = 0.

Using the continuity equation (V.4.1)), assumption (V.1.3)), the Young and the
Sobolev inequality and condition (V.1.4)) we easily deduce also that the following
inequality is satisfied

(V.4.14)
[ getubears [ [ aludsar s aoae s [ [ o (s~ 5) a1 (Dul) asar

+f J Xelul? dzdt < C(F, uo, 00)
0 JT
T

fora.a. 0<2z<
Let us notice that due to the method of characteristics applied to (V.4.3), the
artificial "viscosity" p. = 1 on [0, 7] x 7. Hence the Lh.s. of (V.4.14) is nonnegative.
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V.5. Artificial viscosity limit
V.5.1. Notation. For a family {5;}I", of precompact subsets of €2, we denote

i,5=1,..., n, i1#£j i=1,..., n
We define a signed distance to the boundary of a subset S of Q by
dbg(z) = dist[z, R*\S] — dist[x, S].

We say that a sequence of sets S, converges to S in the sense of boundaries and

denote it by

Sp—2 S,

if
(V.5.2) dbg,(z) — dbg(z) uniformly for  belonging to compact subsets of R>.

In similar way as San Martin et al. [I13] and Feireisl et al. [56], we introduce [S]s
called the 0—kernel and ]S[s - the d—neighbourhood of the set S, i.e.:

(V.5.3) [S]s = db3'((5,00)),  15Ts= dbz!((~5,0)).
Moreover, we define for k > 0

W(ﬁ’jiv = closureyrr(gre) {v € DG R?) | div,v = 0},
and

KFP(S) = {v € Wé‘f;ﬁv | Dv = 0 in D'(S; Rg)} ., where S is an open subset of (2.
For p = 2 and the Hilbert space Wéf :i2iv the symbol

P*(S) denotes the orthogonal projection of Wéf 2

(V.5.4)
onto the closed subspace K"%(S).

V.5.2. Uniform estimates and the continuity equation. Let us denote
by {0-, fte, U} =0 the family of approximate solutions associated with the problem
- [V.4.9). For the brevity of the notation we omit the dependence of this
sequence on ¢. The existence of such a family of solutions is assured by Proposition
[V.4.1] In the first step we fix § > 0 and identify the limit for ¢ — 0. The limit for
d will be shortly shown in Section [V.6]

At first we show briefly how the continuity equation behaves as € — 0.
As we noticed already, the method of characteristics applied to gives us that
ite = 1. Hence following the estimates we infer that

(V.5.5) f M (Du.) dzdt < ¢
0,T)xT
and together with the assumption ([V.1.4) this gives
(V.5.6) J IDu. P dzdt < c.
(0,T)xT
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Let us notice that the estimate (V.4.14) provides that

j f |lu|dx < c.
0 JTM\Q

Without loss of generality we can assume that |7\ > 0, therefore employing the
general version of the Korn inequality (see [54], Theorem 10.16]) we obtain

lwe oo awreery) < ¢
By the Alaoglu-Banach theorem we obtain that for a subsequence
(V.5.7) u, — u weakly in LF(0, T; WHP(T;R?))

and additionally div,u = 0 a.e. on (0,7) x 7. Next, the regularized sequence
{[ue]s}eso satisfies
(V.5.8)

[u.]s = [u]s weakly-(*) in LP(0, T; W (T;R?)) and div,[u]s = 0 a.e. in (0,T)xT.
Furthermore, employing together with (V.4.12)), we infer
(V.5.9) u = 0 a.e. in the set (0,7) x (T\Q2) as ¢ — 0.
Since (Q is regular (see ([V.2.2])), we get in the sense of traces
ulon =0

and therefore
we LP(0,T; Wk (0 R?))
(we mean here u|(o,1)x0)-

Let us recall now the stability result for solutions to the transport equation
obtained in [55] Proposition 5.1]:

Proposition V.5.1. Let v, = v,(t,x) be a sequence of vector fields such that

{v,}°_, is bounded in L*(0,T; WH*(R* R?)).
Let m,(t,-) : R® — R? be the solution operator corresponding to the family of char-
acteristic curves generated by v, i.e.

%nn(t,x) = v, (t,n,(t,2)), n,00,2) =z for every v € R®.

Then passing to subsequences, as the case may be, we have

v, = v weakly-(*) in L*(0,T; WH*(R?; R?))
and

1, (t, ") = n(t,-) in Cioe(R?) uniformly for t € [0,T]

as n — o0, where 1 is the unique solution of

% (t,2) = v(t,n(t, ), n(0,2) =z, zeR>
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In addition, let S, < R3 be the sequence of sets s.t. Sn—b>S and let us define
1, (t, Sy) = S,(t). Then

(V.5.10) S, ()2 S(t)

with S(t) = n(t, S), meaning dbg, ) — dbgqy in Cioc(R?) uniformly with respect to
te[0,T].

Now let us notice that since {g.}.~o solve the transport equation (V.4.1)) with
regular transport coefficients ([u.]s € L®(0,T; Wh*(T)) , we can use Proposition
IV.5.1 and (V.5.8)) to conclude that

(V.5.11) 0- — oin C([0,T] x T).

Moreover due to the method of characteristics for all ¢ € [0, T

(V.5.12) inf pp 5 < inf p.(¢, ) < sup o-(t, x) < sup oo,
zeT zeT zeT zeT
and
(V.5.13) inf pp s < inf o(t,z) < sup o(t, ) < sup gps.
z€T z€T xeT xeT
Employing once more inequality (V.4.12) we obtain
(V.5.14) u. > u weakly-(*) in L*(0,T; L*(T;R?)) as ¢ — 0.

Using a strong-weak argument together with (V.5.8), (V.5.11]) we obtain, that the
limit density o satisfies the equation of continuity in a weak sense

(V.5.15) Oro + divy(g[uls) =0in (0,7) x T

provided o has been extended by o; outside of 2. Once more, according to Propo-
sition and assumption (V.4.7) we notice that the density is constant in the

approximation of the fluid region, i.e.

(V.5.16) 0 = 0y on the set ((O,T) X Q)\ U On(t, [Sils)s

te[0,T] i=1
where [S;]s is the d-kernel (see (V.5.3))) and 7 is a solution of
(V.5.17) om(t,x) = [uls(t,n(t,z)), n0,z) = .

V.5.3. Position of the rigid bodies. Next we identify the position of rigid
bodies.

Let us remark as in [I13] that if w is a rigid velocity field in the set S, then
[u]s = w for all x in S for which dbg(z) > 4.

The replacement of u. by [u.]s in allows to obtain better results on
characteristics of transport equations. Moreover, we are able to obtain a rigid motion
as ¢ — 0, without passing to the limit w.r.t. § due to the above remark.

Here we follow [56] and just for convenience of the reader we recall briefly some
of the steps.

Step 1: First let us recall that |-[s, [-]., denote respectively the §—neighbourhood
and the w—kernel defined in (V.5.3). We notice that the kernels [S;]., and their
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images n(t, [S;].,,) are non-empty connected open sets since 0 < 0 < w < do/2 (o
has been introduced in (V.2.1)).

Directly from the hypothesis (V.4.8)) and (V.4.9)) we infer
(V.5.18) p.(0,2) — 00 as € — 0 uniformly for z € [Si], i=1,...,n, w>w >4

Since 7, is determined as the unique solution (due to regularity of [u.]s) of the
problem

(V.5.19) om.(t, z) = [uc]s(t, n.(t, ), n.(0,2) =z,
convergence (V.5.18|) provides that
(V.5.20)  p.(t,z) — oo uniformly for ¢t € [0,T], z € n.(¢,[Si]o), i =1,...,n.

According to (V.5.10)) in Proposition
(V.5.21)

n(t,[Si]w) € n.(t,[Si].) for sufficiently small € > 0 and for §y/2 > w > ' > 4.

Hence from (V.5.20)) we deduce
(V.5.22)

pe(t, x) — oo as € — 0 uniformly for t € [0, T], = € n(t,[Si]s), fori=1,... n.
Therefore we infer that
[pe]s — o0
uniformly on compact subsets of
{te[0,T], xen(t, [S].)ls} i=1,...,n.
Consequently, we deduce from the estimate that

(V.5.23)  Du. — Du =0 a.a. on the set U U]n(t, [Si]w)[s for any w > 0,

te[0,7] i=1

where n is determined by (V.5.17)).
Step 2: Using now ([V.5.23) we deduce that the limit velocity w coincides with a

rigid velocity field 4% on the —neighbourhood of each of the sets n(t, [S;]..), where

w>0d,1=1,...,n. Since the rigid velocity fields coincide with their regularizations,

namely [u® |5 = u%, we conclude that

(V.5.24) u(t,z) = ui(t,z) = [u]s(t,x) for t € [0, T], xen(t, [S]s), i =1,...,n.
Accordingly, by (V.5.17)), (V.5.24]) we infer the existence of a family of isometries

n,(t,), t€[0,T],i=1,...,n,n(0,-) = Id, such that

(V.5.25) n,;(t, [Si]s) = n(t, [Si]s) for all t € [0, T], i =1,...,n.

Moreover by (V.5.23)) the mappings {n,}!~; are compatible with the velocity field u

and with the rigid bodies {S;}; in the sense stated in (V.2.8), (V.2.9). In particular,
hypothesis (V.5.16)), (V.5.24) and the assumption gy = const provide that (V.5.15))

reduces to
(V.5.26) 0ro + div,(ou) =01in (0,7) x T.
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Step 3: Now we concentrate on the momentum equation. Since n, for i =

1,...,n are isometries, ([V.5.25)) implies
Ini(¢, [Sils)[s= mi(t, i), i = 1,....n.

Hence [p.]s converges uniformly locally to 1 in the complementary of | Ji_, S;(t) for
any t € [0,T]. According to estimates (V.4.14) and properties of regularization we
notice that

(V.5.27) u. @ [u.]s — u® [u]s weakly in L*(0,T; L*(£; R?)).
Together with (V.5.11]) and by a weak-strong argument we obtain
(V.5.28) o-u. ® [u:]s — o(u @ [u]s) weakly in L*(0, T; L*(Q; R?)).

Employing again the estimate (V.4.14) and recalling that p. > 1in [0,7) x T we
get

(V.5.29) S. =S weakly—(*) in Ly« ([0, T] x T;R3*?),

due to properties of an N—function M* (convexity and superlinear growth) the
Dunford-Pettis lemma provides

(V.5.30) S. — S weakly in L'([0,T] x T;R**?)
Moreover by (V.5.11)), (V.5.13) and (V.5.14) we infer
(V.5.31) o-u. — ou weakly-(*) in L*(0,T; L*(T;R?)).

Finally letting ¢ — 0 in the momentum equation (V.4.13)) we deduce that
(V.5.32)

T —
J J ou - Opp + o(u ® [uls) : Ve dadt
0 JO

T T
= J J S : Dy dazdt — J J oV, F - pdxdt — J 005U - (0, ) dx
0 Jo 0o Jo Q

for any test function ¢ € CL([0,T)xQ), ¢(t,-) € [RM](t), where [RM](t) is defined

by (V.2.7) with
Si(t) =m;(t,S;), i=1,...,n.

V.5.4. Convergence of the velocities. Our next goal is to identify the weak
limit in (V.5.27)), namely we want to show that

(V.5.33) u. — u in L*(0,T; L*(Q; R?)).

Let us notice that due to and the Sobolev embedding theorem we obtain
the desired convergence in space but there is still a possibility for oscillations of the
velocity fields {u.}.~o in time.

As it was already pointed out, according to the result obtained by Starovoitov
[120, Theorem 3.1|, the collisions of two rigid objects do not appear. It is provided
by the fact we consider the fluid which is incompressible and the velocity gradients
are assumed to be bounded in the Lebesgue space LP, with p = 4. Originally in
[120] this statement was proven only for one body in a bounded domain, but it is
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easy to observe that this result can be extended to the case of several bodies (what
is also mentioned therein). Hence we infer

(V.5.34) U ) > 0 uniformly for ¢ € [0, 7],

(where d is defined by (V.5.1) in Section [V.5.1)). Setting Sf(t) = n_.(t,S;) (see
(V.5.19)) and according to Proposition we have

(V.5.35) d[O SE(t)] = d. — d in C[0,T7.

Since the contacts of rigid bodies or bodies with boundary do not occur, to prove
compactness of the sequence {u.}.~o, we can use the same method as in [113}, [56],
namely by employing projection of momentum on a space of rigid velocities.

Since

Sf(t)—b> S;(t) uniformly with respect to t € [0,T], i =1,...,n,
we obtain, for any fixed o > 0, and all € < €y(0) small enough
(V.5.36) Si(t) <|S: ()]s, Si(t) <]Si(t)]s, forallte[0,T], i=1,...,n.

Let us now recall the following result of Feireisl et al. [56].

Lemma V.5.2. Given a family of smooth open sets {S;}7_, < Q, 0 < k < 1/2, there
exists a function h : (0,00) — RY s.t. h(oc) — 0 when o — 0 and for arbitrary
vE Wol”giv(Q; R3) :
(V.5.37)
k
\v—P(£y&oyﬁwmm%<c@D<>Lmﬁﬁmma+hw>mwm@wﬂ
with a constant 0 < ¢ < oo. Moreover, h and ¢ are independent of the position of S;

inside Q as long as d[|J._, Si] > 20y.
The projection P* is defined by (V.5.4).

Next using the local-in-time Aubin-Lions argument we show the following

Lemma V.5.3. For all 0 > 0 sufficiently small, and 0 < k < 1/2, we have

lim f: L o.u. - P ( Q] Si(t) [c,) [u.] dzdt = LT L ou - Pk CJ ) ] dadt.

The idea of the proof follows [56, 113].

PROOF. Let us fix o > 0. According to (V.5.36)) there exists €o(c) such that for
all € < g¢ it holds

n

i) = UISi 0o, U S:0) = GLIS Oz for all t e [0,7]

i=1 i=1
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If we apply the Proposition to the sequence {[u.]s}.., with u. € L*(0,T; L?)
we notice that m, is Lipschitz continuous in time. Hence we infer that there exists
7 > 0 (dependent on ¢) and a subdivision of the time interval 0 < 7 < 27 < ... <
J1 =T such that for arbitrary ¢t € I; := [j7, (j + 1)7] we have

(V.5.38) U Si(t) < (J1Si(G7) o2 U Si(j7) < [ 150 o e-

=1 =1

To be more precise, if we take Lip as a Lipschitz constant of the function ¢t — n(t, x),
then there exists 7 < o/(2Lip) which satisfies (V.5.38)).

Our goal now is to infer from the momentum equation (V.4.13) that
(V.5.39)

PO (u?zl]Si(t) [g> [0-u.] is precompact in L*(I;; [ICR’Z(U?:JSZ'UT) [0/2) N Wosﬁiv} )
for any k <1 and s > 2 (then W*=1? < L*®).
First, let us fix one of the intervals [,,, 7 = 1,...,J and in the momentum

equation let us take as a test function &, which is equal to zero if t ¢ I, and such
that

£eKM? (U?:I]Si(jT)[g/g) A Wosﬁiv for all t € I;.
Using estimates ([V.4.14]) we deduce from the momentum equation (V.4.13|) that

f f 0:u-0i€ dxdt‘ < C|€| LW 2 A2 ) for all £ > ¢.
m Q ,div

According to the above relation we infer that

{0P° (UL 1S:(0)0) [e-ucl}
is bounded in L'(I}; [ICM (U?:l]si(jT) [0/2) a Wgﬁiv]

*

).
Moreover, since g.u. is bounded also in L*(I,, x T), then the sequence
{P(UL1]Si(B)]o) [-ue]}e is bounded in L*(I;; K% (V7L1]1S:(57)[o/2))-
Since the inclusion
K22 (U1 1S:(7) [o2) < K (U11]8:(5T) [0/2)]* is compact for 0 < k < 1,

the Aubin-Lions argument provides that the sequence

{P° (UI1]Si(t)[o) [0t }en0 is precompact in L*(I;; [K*? (u?zl]Si(jT)[U/Q)]*).
Furthermore by we have that

(V.5.40) PO(Ui]Sit)]o) oeue] — PO (ViLi]Si(8)]) [ou]
strongly in L? I;; ko2 Ul 1S:i(7)| 62 Yfor0 <k <1.
Tiey relatio(n prolid(ejs e )] ) -
(V541 P (OISle) PHUISOL) = P (O 1S0L)
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for all t € I; and 0 < k < 1. Since P° (U?,]15:(j7)[s/2) is self-adjoint in L*(Q) and
by

L_ Lgaug P (U ]Si (1) o) [ue] dadt
= JI JQ PO (U?:I]Si(jT)[J/Q) [ocu.] - Pk((u?zl]Si(t) [») [ue] dzdt
- f[ (P (Ui 18:(7) o) ], PR (UL 1S: (D)) [1e]) o )

J

Then by (V.5.40) and as w. — w in L*(0,T; L*(T)) we get

lim (qug, PF (U 1S:()],) [UE])L2(Q) d

e—0 I;
=t [ (P (VIS e) o). P (OIS0 ) o
- | (e P OISO []) )
Summing up the relation as above from j = 1 to j = J we obtain the desired
conclusion of Lemma [V.5.3] O
Combining Lemma and Lemma we deduce
T T
(V.5.42) limf f o.|u.|? dzdt :f f oluf? dzdt
==0Jo Ja 0o Jo

which can be shown exactly step by step as in [56l, Section 5.2] or [98], Section 6.1].
Therefore we achieve the conclusion ([V.5.33)).
Indeed, for a fixed k € (0,1/2) and for sufficiently small ¢ > 0, ¢ > 0 we set

rT

L (QE|'U/5|2 — g|u|2) dodt = I5(0) + I(0) — I5(0),

Jo
where

(o) = JT j; (ggue . pF (u;“;l]sos)[g) [u.] — ou - P* (u?zl]S(t)[g) [u]) dedt

T
L) = || o (PH(UmIS0L) u] ~ w) dod,
0 Ja
and
T
5@ = || oo (P(or 1800 ) fud - u.) dad
0 Jo
Next let us notice that Lemma provides

lir% If(c) =0 for all o sufficiently small.
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As we L2(0,T; K" (U, Si(t))) by Lemma [V.5.2] we infer
f f (P i) [u] — w)? dadt < h(o J J sy derdlt,

provided that there are no contacts of two bodies or of the rigid body and the
boundary of the set 2. Therefore we obtain

I(c) >0 aso—0
Recalling that {g.u.}.~o is bounded in L®(0,T; L*(€;R?)), we have

T
I5(0) <c j IPH (U180 ) [t] = ) pvaqns) A

Since |S;(¢)[,<]S(¢)[20 We obtain also

150) < o [ 1P (SO ] = ) s

for e > 0 sufficiently small. Applying again Lemma | with w.(t,-) for arbitrary
t € [0,T] and € > 0 sufficiently small we have that

T n_ T
f [(P* (D 1S5 (O ) Tt =100) sy e < e Y f Du.* dudt) +cTh(20).
0 i=1v0 St
The first term on the right hand side converges to zero as Du. — 0 on | J;" , Si(¢)
and a.a. t € [0,T], and {Du.}.~¢ is uniformly integrable in L?*(Q) since (V.5.6)
holds. Finally if we pass to the limit with ¢ — 0 we obtain that

limsup I°(0) < C(T)h(20) + Iz(o)

E—CO

whenever ¢ is small enough. Letting 0 — 0 we achieve the relation (V.5.42).

V.5.5. Convergence in the nonlinear viscous term. Our main goal now
is to prove convergence in the nonlinear viscous term in the "fluid” part of the time-
space cylinder (0,7) x Q. As p = 1 on the fluid part and boundaries S,, — S, we
can choose for a sufficiently small epsilon small cylinders contained in the fluid part
of the time-space cylinder ();. Thus in order to obtain this result we consider the
equation (V.4.13)) on the set I x B such that I < (0,7) is a time interval and a
spatial ball |[B| < 1 and B < Q\ v, S;(t) for t € I. By we can assume
that o = o5 in I x B. In particular, we have

T
(V.5.43) f J ofte - O + (0rue ® [uc]s —S(Du.)) : Vypdadt =0
o Jo

for any ¢ € D(I x B;R3?), div,p = 0.

We cannot test the above equation with a function with non-zero support on Q)*,
as neither the penalizing term p.S(Du.) nor p.Du. can be controlled. At this stage
of our investigations, the problem must be localised in the fluid part separately from
the rigid bodies. Therefore we introduce a "local” pressure

(V544) D = Dreg + atpharma
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where p,eg enjoys the same regularity properties as the sum of the convective and
the viscous terms in case of power-law fluids (see [56]), while pharm is a harmonic
function. If the tensor S satisfies only conditions (V.1.I)-(V.1.3) and an isotropic
N —function M does not satisfy the Ay—condition, then the regularity of p, can
be lower than the regularity of the viscous term, what in fact makes the problem
different from any previous considerations in this field.

The concept of local pressure was developed by Wolf [130, Theorem 2.6]. How-
ever our construction is based on Riesz transform as in [56] and it is more suitable
for application to problems with non-standard growth conditions.

We start with formulation of the following lemma:

Lemma V.5.4. Let B c R? be a bounded domain with a reqular C* boundary and
I = (to,t1) be a time interval. Let m* and m’ be N —functions given by m*(r) =
7log? ™ (7+1) for some B > 0 and m' (1) = 7log?(7+1) forT € R,. Moreover let M*
be an N'—function such that cym*(1) < M*(7) < co|7|* for some positive constants
c1, co. Assume that U € L®(I; L*(B;R?)), div,U = 0, and T € Ly« (I x B;R3*3)
satisfy the integral identity

(V.5.45) f f (U O+ T chp) dzdt =0
1JB

for all ¢ € D(I x B;R?), div,p = 0.
Then there exist two functions

Preg € Ll (I; LM’ (B))v

pharm(ta ) € Dl(B)y A:t:pharm =0 Dl([ X B)a J pharm(t7 ) dr =0
B

satisfying
(V.5.46) f J (U O+ T Vmgo) dadt = f J (pharmé‘tdivxcp + pregdivx<p> dadt
IJB I1JB

for any ¢ € D(I x B;R3). Additionally,

(V.5.47) Ipregll oz, By < ()| Tz, w1xBir3<3)
and
(V.5.48) p(t, )| € C*(B"), where B' cc B,

(V549) b |1 sy < ', 1, B) ([T e rxmmn + U ez oz ).

PROOF. To begin with, the “regular” component of the pressure p., is identified

as
3

Preg(t,) =R :T = Z Rij[Ti;1(t,-) in R® for a.a. te I,
ij=1
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where R denotes the "double” Riesz transform (see 1111.2.2: Jand T = [T} ]ic123.=123
has been extended to be zero outside of B. Using ([[II.2.4]) we obtain that the map-

pings

Rijlp : Lm#(B) — L,y(B) are bounded for 4, j = 1,2, 3.
As a consequence we get in the following way
(V.5.50)
Ipreel i, 8y = IR Tlvae, 3y < M) Tloe, ) < (M), <8,
where we use the fact that Ly«(I x B;R3*3) < LY(I; Ly« (B; R3*?)) (see the proof

of [46, Corollary 1.1.0]).
Moreover,

(V.5.51) J Preg AV dx = f T: V%) dz for any v € D(B).
B B

On the other hand, (V.5.45|) provides that we can redefine U w.r.t. time on the set
of zero measure such that the mappings

t J U -pdx e C([ty, t1]) for any 1 € D(B;R?), div,yp = 0.
B

Particularly, we infer that the Helmholtz projection H[U] belongs to the space

Clyea([to, t1]; L*(B; R?)). Therefore after taking in (V.5.45) ¢(t, x) = n(t)1p(z) such
that n € D([to,t1)), ¥ € D(B;R?), div,1 = 0 it follows that

L [L(U(t ) =U(to, ")) .¢dx]am dt—L [JB (f T(s,") ds) vy dx]&tndt .

0

Employing Lemma 2.2.1 from [119], there exists a pressure p = p(t, -) such that
(V.5.52)

fB(U@, Y= Ulty, ) -9 da — f

B

(fT(S,-) ds) : Vatp do :f Pt )divyap da

0 B

for all t € I and all 9» € D(B;R3). Note that the term on the right-hand side is
measurable and integrable w.r.t. time variable, since the left-hand side is measurable
and integrable. Moreover for a.a. t e [

(V.5.53) J p(t,-)dz =0 and p(t,) e D'(B).

Testing (V.5.52)) by ¢,(, ¢ € D(I) and integrating over the time interval I and
setting (t, z) = ((t)e(x) we conclude that

(V.5.54) f J (U O+ T chp) dzdt = f J poydiv,p dxdt
1JB 1JB

for any ¢ € D(I x B;R?).
Let us define the harmonic pressure as

(V.5.55) Phamm (£, 1) = p(t, ) + (ft lpreg(r, ) = % JB Preg(T ) dx] dr).
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Now we intend to show that ppam(t,-) is a harmonic function for any ¢. To this end,
we take ¢ = Vv, v € D(B) in (V.5.52)) and compare the resulting expression with
(V.5.51)), (V.5.55) and use that div,U = 0. If we insert (V.5.55)) in (V.5.54), we
infer (V.5.46]).

Finally Weyl’s lemma (see e.g. [121]) ensures that the function ppam is regular
locally in B, i.e. pharm € C®(B’), where B’ c= B. Hence we obtain (V.5.48)).

Moreover according to (V.5.55)), (V.5.52)) we show that (V.5.49) holds. Indeed,
let us recall first the following result concerning the Bogovski operator in the space
of bounded mean oscillations BMO[]: Let v: B - R® f: B - R, fe L*(B) and
SB f = 0. Then there exists at least one solution satisfying div,v = f in the sense
of distributions. Furthermore

[v|Bro + [VevlBrmo < ¢ flw

and N - v|sp = 0 in the sense of generalized traces for some constant C' > 0 (more
details can be found in [35] and see also in [38], 127], it can be shown also via
Calderon-Zygmund operators and results of Peetre). Moreover let us notice that
BMO(B) < Ly(B) with m(r) = exp(r) — 1 for 7 € (0,0) (see |14, Chapter 5.7]),
Li#(B) € Ly and Li(B) € Ly,y#, where m'® is a complementary function to the
N —function m’. Then we use in a test function 1) such that

1
div,y = (sgnp — EJ sgnp) e L*(B).
B

Considering (V.5.52) with the above results, the Holder inequality, generalized
Holder inequality ([I1.1.10)) and noticing that Ly« S L,,« < L, we obtain that
(V.5.56) ess su}) Ip(t, )| Ls < c(B, M) {HUHLUJ([;LQ(B)) + HT||LM(1X3)} .

te

Therefore ([V.5.55)) and (V.5.47) provide ([V.5.49). 0J

Remark V.5.5. The assumption for the lower bound for an N —function M*, i.e.
m*(1) = 7log’ (1 +1) < M*(7) for 7 € R, B > 0, implies that we have to assume

also that M(7) < ceXp(Tﬁ) — ¢ for some nonnegative constant ¢ (see )

Now we apply Lemma with the N'—function M*, with U := psu. and
T = pru. ® [uc]s — S(Du.). Accordingly, for any ¢ > 0, there exist two scalar
functions pre,, Pham Such that

(V.5.57)  pleg € LYI; L,y(B)), pfom € L*(I; LY(B)) are uniformly bounded

and pp,.., is a harmonic function w.r.t. z, i.e.

Apiarm = 07 f piarm(t; ) = O, Vtel.
B

IBMO(9) is a space of locally integrable functions such that sup ﬁ Splf(x)— \%I S5 f(y)dy|dx <
B
o0, where supremum is taken over all balls in €
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Moreover the following is satisfied

(V.5.58)
T
f f [(gfua + VeDharm) - O + (05w ® [uc]s — S(Du.) + prol) ngo] dxdt = 0
0 Jo

for any test function ¢ € D(I x B;R?).

The standard estimates provide that pf, s uniformly bounded in L%(I; W.22(B)),
moreover we already know that uw. € LP(I, W?(B)). The equation (V.5.58)) provides
that

|0 (0yue + vﬂﬁplalarm)”Ll(I;(WS’Q(B))*) <6
where s > 5/3. Then the Lions-Aubin argument gives us that
(V.5.59) 01Ue + Vabharm — 058 + VoPham in L?(1; L*(B';R?)),

for arbitrary B’ cc B as ¢ — 0.

By (V.5.33)), the velocity field {u.}.~¢ is precompact in L*(0,T; L*(; R?)), hence
we infer that
(V.5.60) Valharm — VaDharm in L*(I; L2(B'; RY)).

As the argument is valid for any B’, our goal now is to let € — 0 in ([V.5.58]).

First we recall that the sequence {S(Du.)|;xp}-~0 satisfies

(V.5.61) S(Du.) =S weakly(*) in Lys«(I x B;R®*3),

Sym

or S(Du.) — S weakly in L'(I x B;R33).

Sym

Let us recall that u.|;x 5 and S(Du.)|;« g are uniformly bounded in L?(I; W?(B;R?))
and Ly« (I x B;R3*3) respectively. Hence classical embedding theorem provides
that T° = (oju. ® [u.]s — S(Du.))|rxp is uniformly bounded in Ly« (I x B;R3*?).
Therefore there exists some T € Ly«(I x B) such that

T 5T weakly—(*) in Ly« (I x B;R¥3).

Moreover, since R; ; is a linear operator, using the properties of difference quotients,
we show that for any function ¢ € W' (B) possessing compact support contained
in an open set B, there holds

IR [¢1lBlwrr By < ¢ Pllwrrsy for any 7€ (0, 00),

where on the left- hand side ¢ is prolonged by zero, preserving the norm. Hence the
functions R, ;0,, i, ¢ = 1,2, 3 are sufficiently regular in order to obtain

ffz zz 35901 dxdt—’JvJ‘ZT;szzﬁ @l]dl'dt as e — 0
=1
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Finally by (V.5.33)), (V.5.61) and (V.5.59), (V.5.62) passing with ¢ — 0 in ([V.5.58))
we get

(V.5.63)

3
J f [(Qf’u, + Vmpharm) . 8tcp + (qu ® [’u,](; — §) : VxQO] + Z TVMRZ,Z&%QOZ dxdt = 0
I1JB

i=1

for any test function ¢ € D(I x B;R3).
Our aim is to use (V.5.58) and (V.5.63) with strong convergence (V.5.60) to

characterise nonlinear viscous term using monotonicity methods for nonreflexive
spaces as in Chapter [[V|and in |75}, 131], 133].
To this end we take for any sg, s; € I and sufficiently small h

W =0p* (]1(30781)(0h * T(Qf,u’g + vlpiarm))) Wlth any r € D(B)

as a test function in ([V.5.58)). Here * stands for convolution in the time variable with
regularising kernel oy, (i.e. 0 € C*(R), suppo € B1(0), o ), §po(t)dt
on(t) = +0(3)). Since u.|p € L*(I;W'?(B)) and pfmm € LOO([ VV;?(B)) we infer
that

o * (Lsg.s1)(0n * T(05Ue + ViDham))) € C(I; L*(B;R?))  for any r € D(B).

Then we obtain that
(V.5.64)

S1
f J op * (S(Du.) — opu: @ [uc]s — pfegl) cop# (Ve (r(opue + ViDiam))) dadt

=s1

— _f rlon = (0fue + VP dz ‘ for any sg, s; € 1.
2 B t=sg

Let us pass to the limit with h — 0 and ¢ — 0 and start with the right-hand side of
(V.5.64)). The relation (V.5.59) provides that

t=s1 t=s1

= lim T|(qug + vxplalarm)|2 dz

t=s0 e—0

lim lim 7“|c7h + (0pue + Vo Dharm) |* d

e—0h—0 t=so

t=s1

1
= _J T|qu+vmpharm| dx
2 Jp

t=sg

for any Lebesgue point in [0,7"]. AS pparm is @ harmonic function on B, standard
elliptic estimates provide that

r(0fue + VaDham) € LP(I; W (B;R?)) n L*(1; L*(B; R?)),

while
oru. ® [u.]s € LV (I; L¥ (B; R?)).
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Employing m we obtain

mmmj\[amgm% [u]s)) : (on * (Vo (r(05te + Vo)) dadt

e—0 h—0

_ hmf L (0rtue ® [ues) : (T (07t + V) dad

e—0 50

- Jsl JB (oru® [uls) - (Vi (r(ofu + Vipnam))) dadt.

Now we concentrate on the third term on the left-hand side of (V.5.64)). Since
Dhapm 18 harmonic and div,u. = 0, we obtain

f J op #* (pfegl) L Op * V:): (T(qus + vxpiarm)) dzdt

S0 B
S1

(V.5.65) = J f (0h * Diog) (o0 * diva(r(opte + Vopham))) dadt
so JB

S1
= J f Ohp * pfego-h * (vxT ' (qua + vaiarm)) dadt.
so JB

Let us consider the first term on the right-hand side of (V.5.65). Employing the
estimate (V.5.5)) and assumption (V.1.6) by Lemma [[II.2.7] we infer
IDue|| 1, 015047y < -
The generalized version of Korn inequality [54, Theorem 10.16] gives us
e a0 iwracry < oo
Since 4 > dim(B) = 3,
luelaromoem) < .

Hence u.|rxp € Ly(I; WH(B;R3)) < Ly (I; C(B;R3)) < Ly (I x B;R3). Using the
definition of p,, and the property (R;;)* = (R;;) we get

E: J (01 * Pieg) (on * (Var - (0pue))) dadt

[ [ tons X RN Do (T

1,7=1

J J Z {on = T7;(t, x) Hon = Rji [Var - (05ue)]} dadt

zgl

Since V,r - (oju.) € Ly (I; WH*(B)) and r € D(B), in particular supp V,r cc B,
using the properties of difference quotients, see e.g [48] and if we extend V,r- (osu.)
by zero on the whole space R? preserving the norm, then we deduce that

IRl Var - (opu)llsl o) < 1| Ryl Var - (0pue)l|slwiam) < co Var - (opue) [wias)
for all t € I. Consequently we have
Rm[vxr : (que)“B S L]M([7 C(B)) for ’l,j = 1, 2, 3.
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Let us denote

(V.5.66) b® = [bij]izlv?vi”vﬂ':lﬁﬁ = [Efj]i:1,2,3,j:1,2,3

and notice that {b°}.. is uniformly bounded in Ly« (I x B;R3*3). Hence
(V.5.67) b* — b weakly in L'(I x B;R**%).

Moreover let us denote

(V.5.68) we = [w;i]i=172,3,j=172,3 = [R;i[Var - (que)]]z‘=1,2,3,j=1,2,3

which is uniformly bounded in Ly (I; W4 (B;R3*3)).

Now let us converge with h — 0. Since for any € > 0, b* € Ly«(I x B;R3*3)
and w® € Ly (I;C(B;R3*3)) < Ly(I x B;R3*3), then there exist Ay, A, € (0,00)
such that b®/\, € Ly« (I x B;R¥*3) and w¢/\,, € Ly(I x B;R**?). Due to Propo-
sition we obtain that

op +b® — b in measure as h — 07,

op * WS — W  in measure as h — 0.

and {M*(oy, =b®/\y)}ns0, {M(0h *W"/A\y)}h=0 are uniformly integrable by Proposi-
tion [[T[.2.5] Therefore by Lemma we obtain

o+ b 25 b° modularly in Ly (I x B;R¥3) as h — 0,
oW =5 we modularly in Ly (I x B;R¥3) as h — 0.

Consequently by Proposition we get

(V.5.69) ﬁnlj ‘[(ah*bﬂ:(ah*mf)dxdtzzj‘ f b+ wF dardt
B so ¥vB

h—0
s0
Using the following interpolation
(V.5.70) [WE e () < WP 3 gy [WP ] 22

with @ = 1—Xand L = 4 + 152 (see [125] Section 2.3.1, 2.4.1, 4.3.1, 4.3.2), we
can find such A (A € (0, 7) for space dimension 3) that W‘”(B) is continuously
embedded in L*(B) (see [1]). Therefore for any fixed K > 0

| | e —w))daae < 1Bl | 2w () = wt) )
<11 [ A (eI W (2) = w(O) W 0) = WD) ) = I

As w® — w strongly in L*(I x B) (as go; = const in I x B)

(V.5.71)

lwe(t) —w(t)| 25y = 0 in measure on I.

As (V.5.68)) holds, w* —w e L*(I; W'*(B)) and consequently

&
el [W(t) —w(t)|wrom > o} < =
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for some c independent of €. Then
Iwe () — w(t)||;7 1y |lW (1) — w(t)||22(3) — 0 in measure on /.

Continuity of M gives that
(V.5.72) M {CKHWE(t) w(t) |7 1 )Hwa(t) —w(t)||22(3)} — 0 in measure on /.

Next we show uniform integrability of

{M (cKHWE(t) w(t) [0 s IWE () — W(t)mQ(B)) }5>0

in L'(I). Let us denote R = cK|W® — W/ .»(;,22(5) and let us notice that for any
subset £ < [ an A€ (0,1)

| a1 (Riwe 0 w2 )

-| M (Riw (1)~ w(t) [y )
{te B [we () ~w(t) [y 14, ) SR/}

M (R (t) = w(t) [l )

+] (
{teB - [we (1)~ w(t) |10 ) > R}

20— e 1_%
< B (RO [ (jwe) - wiollid ) .

Let us notice that the first term on the right-hand side depends linearly on the
DY
measure of the set F. It remains to show that {M <||w5(t) = w(t)Hll/Vli(B))} is
e>0

uniformly integrable in L'(I). Indeed, as M is an N —function (in particular is
convex) and for A € (0, 1) the following assertion holds by de 'Hopital’s rule

M(r)

— > 0 as 7 — 0.
M(r'2)

_a
Consequently M (st(t) — w(t)||‘1/V1?4(B)) is uniformly integrable in L' (7). Summaris-
ing we obtain that
(V.5.73)

M(cKuwf(t) w(t) [ )Hwe(t)—w(t)ngzw)) is uniformly integrable in L'(I).

By (V.5.72) and (V.5.73) the Vitali lemma provides that the right-hand side of
(V.5.71)) converges to 0. Consequently

(V.5.74) Kw*- Kw  modularly in Ly(I x B).

According to Lemma [[T11.2.1| { M (KwW*)}.~¢ is uniformly integrable in L'(I x B) and
passing to subsequence if necessary

(V.5.75) w®—>w ae inl xB.
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Our next step is to show the uniform integrability of {b°:w®}..o in L'(I x B). By
the Fenchel-Young inequality and convexity of M* for K > 1 it follows that

1
|JJ b® : w® dzdt| = JJ —b® : Kw® dzdt
1JB 1Jp K
1
< J j —M*(b%) dzx dt + f f M(Kw*) dzdt
1) K 1JB

As K is arbitrary and {M(Kw?)}.~¢ is uniformly integrable in L'(I x B) we obtain
the assertion that {b° : w®}.-( is uniformly integrable in L'(I x B). Moreover as

(V.5.67) and (V.5.75) hold we infer that
ll—rf(l)J J. Z Rji[Var - (u.)]) dedt

z]l

J f Z Ti(t, %)) (Rji [Vor - (w)]) dadt.

4,7=1

Then the second term on the right hand side of ([V.5.65) can be treated in a

similar way, since py,,,, 1S @ harmonic function and r € B. Finally we infer

lim lim J f o}, * (pfegl) cop # Vi (T(epte + VaDia,)) dodt

e—0 h—w

J f Z Z] v " (qu + Vazpharm)] dzdt.

231

It remains to show how the viscous term behaves in the limit A — 0 and ¢ — 0,
i.e.

f f o +*S(Du.) : oy, * V, (rosu.) dadt

(V.5.76) .

= J J op *S(Du.) : o+ (Vyropue + r(ofVyue)) dedt
B

As S(Du.)|;xp € Ly+(I x B;R¥3) and wu.|;xp € Ly (I; WH(B;R?)) < Ly (I x
B;R3), we proceed in a similar way as in passing to the limi with h — 0.
Then we proceed exactly as with b and w® in order to converge with ¢ — 0.
Therefore we obtain

lim limf J (on, #*S(Du.)) : o * (Varosue +r(0fVaue)) dedt
o JB

e—0 h—0 s

(V.5.77) = limf J S(Du.) : (Vuropu. + r(ofVyu.)) dadt
B

e—0 s

= f J S: Vrojudzdt + hmJ J S(Du.)r(ofV,u.) dzdt
S0 B
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Summarising ((V.5.77)) and previous consideration, passing to the limit first with
h — 0 and next with ¢ — 0 in (V.5.64]) we have

(V.5.78)
51 1
1111% J S(Du.) : (r(ofV,u.))dedt = 5 J ?loju + ViPharm|” dx

t=s1

t=sg

f f : Vrgpudadt +J J (eru®fuls) : (Va (r(osw + Vapharm))) dedt

+£ JB Z T;j(t,x)R;j; [Var - u] dadt

Using

O, * O, * r(a:)(gfue + Vzpiarm)
as a test function in the limit equation (V.5.63)) and after passing with ¢ — 0 and
h — 0 we are allow to conclude that

| ], 6 emotm): 9. el + Vo)

3
(V.5.79) — > TiR;i [Var - (05 + Vipharm)] dadt
i,j=1

S1

1
= _J r|(gfu + prharm)|2dx ‘ for any Sg, S1 € I.
2 B t=sgo

Finally we conclude from (V.5.78|) and (V.5.79) that
lim supf J rS(Du.) : V,u. dzdt < J J rS: Vyudzdt for a.a. s, s; €1
B B

e—0

and by the monotonicity argument for nonreflexive spaces used in Chapter [V]or in
[75], 13T], 33| we obtain

(V.5.80) S(Du.) — S(Du) a.e. in I x B.

V.5.6. Conclusion. Considerations given in two preceding sections provide,

that (V.5.32)) reduces to

T
(V.5.81) f J ou - Opp + o(u ® [uls) : Ve dadt
0 Jo

T T
= f f S(Du) : D dzdt — f J oV, F - pdxdt — J 005U + (0, ) dz
0 Jo 0 JT T
for any test function ¢ € C1([0,T) x Q), ¢(t,-) € [RM](t), with
[RM](t) = {¢p € C.(%URY) | divegp = 0in O,
D¢ has compact support on Q\ U™, S;(t)},

where
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Furthermore, the limit solution satisfies the energy inequality

(V.5.82)
1 T 1 4
J L oluf(r) dx+f Js ; Dudxdt<f L olul(s) dx+f f oV, F - udadt
Q 2 s JOQ T 2 s JQ
for any 7 and a.a. s € (0,7") including s = 0.

V.6. The limit passage 6 — 0

In the last section we pass to the limit with 6 — 0 in the system of equations
(V.5.26)), (V.5.81) and in the corresponding family of isometries {n,}? ; describing
the motion of rigid bodies. Hence we denote the associated sequences of solutions
by {05, us, {0} }i1}s=0-

Observe now that the initial data pg, s in (V.4.6) can be taken in such a way
that

|0s,.sL=) < ¢, 0f + 05,5 = 0s;, as 6 — 0 in L'Q),i=1,...,n,

where {og, }_, are the initial distributions of the mass on the rigid bodies in Theorem
. Then the theory for transport equation developed by DiPerna and Lions [45]
provides that

0s — 0 strongly in C([0,T]; L'(Q2)) as § — 0.
According to energy inequality , we obtain that for a subsequence if neces-
sary

us — u weakly in LP(0, T; WP (Q; R?))

where us as well as the limit velocity u are divergence-free. Hence the continuity
equation ([V.5.26|) reduces to a transport equation

0o+ u-V,o=0.

Following step by step the arguments given in previous sections we complete the
rest of the convergence process. The compactness of the velocity and convergence
in convective term can be done by combining arguments form previous sections
and Chapter see also [39], [56]. The convergence in nonlinear viscous term is
completed by the same arguments as in Section [V.5.5]
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CHAPTER VI

Generalized Stokes system

VI.1. Introduction

Our interest is directed to the generalized Stokes system

(VI.1.1) ou — div,S(t,x,Du) + V,p=f in (0,T) x Q,
(VI.1.2) div,u =0 in (0,7) x €,
(VI.1.3) u(0,2) =uy in Q,

(VI.1.4) u(t,z) =0 on (0,7) x 08,

where 2 < R? is an open, bounded set with a sufficiently smooth boundary 052,
(0,T) is the time interval with T' < o0, Q = (0,T) x Q, u : Q — R? is the velocity
of a fluid, p : @ — R the pressure and S +Ip is the Cauchy stress tensor. We assume
that S satisfies the following conditions

(S1) Sis a Carathéodory function (i.e., measurable w.r.t. ¢t and = and continuous
w.r.t. the last variable).

(S2) There exists an anisotropic N—function M : R%4 — R, (Definition [[11.1.3)

sym
and a constant ¢ > 0 such that for all £ € REx!
(VI15) S(t,2.£) - £ > e(M(€) + M*(S(t,.6))

where M is an anisotropic N — function
(S3) For all £,p € R¥*4 and for a.a. t, r€ Q

Sym

(S(t7x7§) - S(ta $,'f])) : (6 - 77) = 0.

By conditions (S1) — (S3) we can capture a wide class of models. Our particular
interest is directed here to the rheology close to linear in at least one direction. We
do not assume that the A'— function satisfies the Ay—condition in case of star-
shaped domains. For other domains we need to assume some conditions on the
upper growth of M, however this does not contradict with a goal of describing the
rheology close to linear. There is a wide range of fluid dynamics models obeying
these conditions, we mention here two constitutive relations: Prandtl-Eyring model,
cf. [53], where the stress tensor S is given by

ar sinh(A\|Du|)

= D
S= T Du] DY
and modified Powell-Eyring model cf. [103]
In(1 + A\|Du
S = nwDu + (7o — %)WDU
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where 7o, 19, A, m are material constants. Our attention in the present chapter is
particularly directed to the case 17, = 0 and m = 1.

Both models are broadly used in geophysics, engineering and medical applica-
tions, e.g. for modelling of glacier ice, cf. [83], blood flow, cf. [106, 107| and many
others, cf. [31], 101, 116, 137].

Our considerations concern the simplified system of equations of conservation of
mass and momentum. Indeed, the convective term div,(u ® u) is not present in
the equations. The motivation for considering such a simplified model is twofold. If
the flow is assumed to be slow, then the inertial term div,(u ® u) can be assumed
to be very small and therefore neglected, hence the whole system reduces to a
generalized Stokes system (VI.1.1))-(VI.1.2)). Another situation is the case of simple
flows, e.g. Poisseuille type flow, between two fixed parallel plates, which is driven by
a constant pressure gradient (see [82]). With regards to blood flows the importance
of considering simple flows arises since the geometry of vessels can be simplified to a
flow in a pipe. The analysis of both models in steady case (also without convective
term) through variational approach was undertaken by Fuchs and Seregin in [63],[64].

The equations (VI.1.1))-(VI.1.2)) with additional convective term div,(u ® u) in
have been extensively studied in Chaters and e.g. in [72], [75], 131,
133|, 135]. The appearance of the convective term enforced the restriction for the
growth of an N -function, namely M(-) = ¢| - |? for some exponent ¢ > %. Such a
formulation allowed to capture shear thickening fluids, even very rapidly thickening
(e.g. exponential growth). In the present chapter we are able to skip the assumption
on the lower growth of M (and consequently the bound for M*), which opens a
possibility to include flows of different behaviour, in particular shear thinning fluids.

The present chapter consists of a new analytical approach to the existence prob-
lem. In the previous studies the main reason to assume that M* satisfies the
As—condition was providing that the solution is bounded in an appropriate Sobolev
space WH4(Q2) which is compactly embedded in L?*(2). However, as a byproduct, we
gained that Ly« (Q; Rg;nﬁl) = Eys(Q; Rgl;rg) is a separable space. The naturally aris-
ing question is whether the existence of solutions can still be proved after omitting
the convective term and relaxing the assumptions on M and M*. The preliminary
studies in this direction were done for an abstract parabolic equation, cf. [73]. Also
the convergence of a full discretization of quasilinear parabolic equation can be found
in [51] by Emmrich and Wroblewska-Kaminska. In the present chapter we give a
non-trivial extension of these considerations for the system of equations.

We study the problem in two different cases. In the first case the domain is
star-shaped and the N -function is anisotropic with absolutely no restriction on the
growth. In the second case arbitrary domains with a sufficiently smooth boundary
are considered. We define two functions m, m : R, — R as follows

m(r) = min  M(E),
EERE €] =r
m(r) == max M(§).

geR% €=
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The existence result is formulated under the control of the spread between m and

m.
We define the space of functions with symmetric gradient in Ly (€; R%*¢), namely

sym
BDy(Q) := {ue L'(Q;RY) | Du € Ly (Q; RN},

sym
The space BD(§2) is a Banach space with a norm
lwlBDue) == [wliie) + [Dulx
and it is a subspace of the space of bounded deformations BD(2), i.e.
BD(Q) := {ue L'(;RY) | [Dul;; € M(Q), fori,j =1,...,n},
ou; 6uj
ox; 6_951)
According to [123, Theorem 1.1.] there exists a unique continuous operator 7, from
BD(Q) onto L'(dQ; R?) such that the generalized Green formula
(VI.1.6)
0 0
QJ $[Du); ; dx = —J ¢ + u=—— ¢ dz + | ¢ (volw)v; +vo(uj)v;) dH
Q ’ al'l ax] o0
holds for every ¢ € C1(2), where v = (vy, ..., vy) is the unit outward normal vector
on 052 and ~o(u;) is the i-th component of vo(u) and H9 ! is the (d — 1)—Hausdorff
measure. Such a 7 is a generalization of the trace operator in Sobolev spaces to
the case of BD space. If additionally u € C(Q;R?), then vo(u) = ulsq. In case of
u € VVO1 ’I(Q; R?) this coincides with the classical trace operator in Sobolev spaces.

Understanding the trace in this generalized sense we define the subspace and the
subset of BD () as follows

BDuo($2) := {u e BDyu(Q) | y0(u) = 0},
BDyo() := {ue BDy(Q) | Du e Ly (4 RED) and ~p(u) = 0}.

sym

where M(Q) denotes the space of bounded measures on 2 and [Du); ; = 3(

Let us define also
BDy(Q) :={ue L'(Q;RY) | Du € Ly (Q; R}

sym
and the corresponding subspace
BDo(Q) := {u e BDy(Q) | 10(u) = 0}

where 7y has the following meaning

(8 a9
2 L ¢[Du];; dzdt = L( el 5%) dadt

+ J ¢ (vo(ui)vj + yo(u;)v;) dH 't
(0,T) x 09

for all p € C*(Q). If u € BDy;(Q), then for a.a. t € (0,T) we have u(t,-) € BDy(Q).
For such vector fields it is equivalent that w € BD )y o(Q) and that w(t,-) € BDjo(2)
for a.a. t € (0,7). By [123] Proposition 1.1.] there exists an extension operator
from BD(Q) to BD(R?) and consequently we are able to extend the functions from
BDj10(Q) by zero to the function in BDy ([0, T] x RY).
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CHAPTER VI. GENERALIZED STOKES SYSTEM VI.2. SOBOLEV-KORN INEQUALITY

In what follows, the closure of D(£2;R?) with respect to two topologies will be
considered, i.e.

(1) modular topology of Ly (Q;R¥*4) which we denote by Y, namely

sym

(VL.1.8)

Yo' ={ue L*(0,T; L, (% RY)), Du e Ly (@R | 3 {w/}2, = D((—0,T); V) :
w! o in L*(0,T; L3, (;RY)) and Du/ - Du modularly in Ly (Q; Rg;n‘f)}

(2) weak—(*) topology of L (Q; Rg;n‘f), which we denote by Z}, namely

(VL.1.9)

Zyt ={uwe L*(0,T; L3, (;RY), Du € Ly (Q; REY) | 3 {w'}2, < D((—o0,T); V) :
w S win L%(0,T; L2, (Q;RY) and Du’/ 2 Du weakly star in LM(Q;RS;ISI)}.

The main result of this chapter concerns the existence of weak solutions to the initial
boundary value problem (VI.1.1)-(VI.1.4).

Theorem VI1.1.1. Let condition D1. or D2. be satisfied

(D1) Q is a bounded star-shaped domain,
(D2) Q is a bounded non-star-shaped domain and

(VL1.10) (r) < em((m(r)) 7T + r2 + 1)

for all r € Ry, and m satisfies Ay—condition.

Let M be an N—function and S satisfy conditions (S1)-(S3). Then, for given ug €
L% (Q;RY) and f € B (Q;RY) there exists uw € ZM such that

j —u - Op +S(t,z,Du) : Dpdzdt = f f-pdxdt — J uop(0) dzx
Q Q Q

for all ¢ € D(—0,T; V).

This chapter is organized as follows: Section is devoted to the Sobolev-
Korn-type inequality in Orlicz spaces. In Section we concentrate on showing
that the spaces Y and Z}¥ defined above coincide and how this fact is used in the
integration by parts formula. The last section contains the proof of Theorem [VI.1.1]
which essentially bases on the facts proved in previous sections.

VI1.2. Variant of the Sobolev-Korn inequality

Numerous classical results (e.g. Poincaré, Sobolev, Korn inequalities) have been
generalized from Lebesgue and Sobolev spaces to Orlicz spaces. Among others we
find results of Cianchi on the Sobolev inequality, see [33 [34]. Other interesting
results concern the embeddings of a very particular type of Orlicz-Sobolev space,
namely BLD(Q) := {u € L}(Q;R?) | |[Du| € L,,(2)} where L,,(Q) is defined by the
function m(&) = £In(€ +1),& € R, cf. Bildhauer and Fuchs [62].
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The Korn inequality is a standard tool used in problems arising from fluid me-
chanics to provide an estimate of the gradient by symmetric gradient in appropriate
norms. The generalization of the Korn inequality, namely

L m(|V,u|)dr < CL m(|Du|) dx

is valid for the case of m and m* satisfying the Ay—condition, see e.g. [61]. Since
this is not the case of our considerations we will concentrate on generalizing the
result of Strauss, cf. [122], namely

]

to the case of integrability of appropriate N/ —functionsE] Indeed the following fact
holds:

Lemma VI.2.1. Let m be an N —function and Q be a bounded domain, Q@ <
[—%, ]9, and w € BDyo(). Then

474

(V12.1) (Dl o, o < Calm(Duplssoy

it < PUlie

The proof is presented in two parts. First, we show the validity of (VI.2.1)) for
u € X, where

X(Q) = {p e CHQURY), Lm(leoD dz < o0}

and then the result is extended for u € BD,;(€2).

PrROOF. Step 1.

Assume that u € X () and suppu < [—1, 1]%. Let us denote 64 = (1,1,...,1). Then

by the mean value theorem in the integral form (see e.g. [4]) it follows

r0
uz(a:)zj Z&ula:—i—s&l J Z&ulas—l—sédd
zj 1
and
d 0 d 1 d
wi(r) = Ojui(x + s64) ds = — f Ojui(x + s04) ds.
izl J-3 1121 0 1121
Hence

QZdlui(:z:) :J Z (Ojui(x + s64) + Ouj(x + sdq)) ds

2@,] 1

= J Z (0ju;(x + sdq) + Giuj(x + s64)) ds

i,7=1

'In the current section the A'—function has the same properties as before with only one difference
- it is defined on R, . To help the reader distinguish this case, we will denote it in this chapter
with a small letter m, contrary to M defined on RZX9

sym *
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and consequently we obtain

d 1 4q
U u@l < [ 3 oyule+ 582 + duuyla + 5] ds.
i=1 “24,j=1

Applying N-function m : R, — R, to the above inequality, using convexity of m

and the Jensen inequality (here we use the fact that the support of w is in [—1, $]9)

101
we observe that

()

1 | & T
(J_ m (Z Z |0jui(x + s64) + Oiuj(x + séd)|> ds> :

3,j=1

N

o=

Let e = (0,...,0,1,0,...,0) be a unit vector along the zj-axis and fr = 05 — e, =
(1,..,1,0,1,...,1) for k € {1,...,d — 1}. Obviously

d 0 d 0
ui(x) = f Z Ojui(xr + sfy)ds + Orug (T + sey) ds
i=1 —3 ij=litk,j#k —3
b :
= — J Z Ojui(z + sfy)ds — J Orug(x + sey) ds.
0 i j=1,i£k,j#k 0
Consequently
(V1.2.2)

1
d—1

<m<|2ui<x>|>> <

1 d N
[J m <i Z |0jui(x + sf) + Ou;(x + sfi)| + %|6kuk(:p + sek)|> ds] a1

i,j=1,i%k j#k

1 dil % 1 d
< <_) [J m <— E |6]uz(x + ka) + @u](x + 3fk)|>
2 _1 2.~
1,j=1,i%#k,j#k

+m (Oyun(o + sep)]) ds]

1

< (%)0[ <f m G i |(9jul-(x+sfk)+5¢uj(x+sfk)|>>d1

1,5=1i#k,j#k
1

m (|Geun(x + sex))) ds> 7 |

N
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1

Next, we multiply expression (m(| N (;E)|)) " by itself d times and conclude
that

_d_

| (m (ﬁwn)) iy
< OLW <F ( Z |0;u:(z + $04) + Oyu;(z + séd)|> ds> =

2,7=1
d-1 1 ] d T
k=1 -3 ij=1,ik,j#k

1

(VI2.3) + (J- m (|Opur(x + seg)|) ds) - ] dz;...dzg

= OZJRd (Jél ( ”ZU@ i (T + 50g) +6u](1:+s5d)|> ds >dll

1

ﬁ (f m(% Z Iﬁjui(“sfk)+6iuj(x+sfk)|>> 7

k=1,keo ij=1,i#k,j#k

-1 1 P

n (J m (|Opur(x + seg)|) ds) dzy...dxg
k=1,k¢o 3

where ¢ runs over possible subsets of {1,2,...,d — 1}. Since suppw < [—1, 1|%, then
by the Fubini theorem it is easy to notice that

d

JRd (m <|Zd;U|)> B das...dzg

< CZa: <JRd m <i Z |0jui(x) + 6Zu](x)|> dx) _

(VI.2.4) e 1
d—1 1 d 1
(L@ m (5 Z |0juwi(x) + Opu,; (ac)|> dx)
k=1,keo ij=1i7k,j#k
-1 diil
I1 (f m (|6eu(z))) dx) |
k=1k¢go \YR?
In a similar way, by integration over lines (1 —1,1,....,—1) etc., instead of these we
can obtain the same bound for any |m (37, vz(x)uz)HdL/d;fd 11) (ra) Where v; € {£1,0}.
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Now, let v; vary by setting v;(z) = sgnu;(z), and then

fRd (m <é |u’(x>|>> B dz;...dzq < JRd (m <é |Uz($)uz($)|>> - dzy...dzy

has the same bound (up to a constant 2¢). Indeed, let T = {v = (71,72,73) : Vi €
{-1,0,1},:=1,2,3}, A, = {r e R" : sgnu;(x) = v;(x) = v, ¢ = 1,2,3}. Estimates
(VI.2.2), (VI.2.4) are also valid if we integrate over any measurable subset of R?
instead of the whole R?. One easily observes that {A,}, is a division of R? on
measurable subsets. Obviously

D vi@)ug(@)] = > vi(@)ui(z) = 0.

i=1 i=1

Thus

JRd |Zd: vil@)ui(w)| do = Z L |Zdlvi(l')ui(ﬂf)| dz

i=1 ex Ay o1
d
-y f S fos(w)us (o) | da = Ty
FeY YAy i=1

where v;(x) is constant on any subset of division {A,},. Hence all expressions in
summation over v are positive and independent of v;(x). Therefore we obtain

L=)> L zd] |u; ()| da = fé; |ug ()| da

~yeY v i=1

and on the other hand

I < zdf (S vi(w)ue()]) da
R? i—1
Finally we deduce that
d d
| @ de <2 [ (| Y vas(o)]) do,
RE 35 R4 i—1
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In the end, since the geometric mean of nonnegative numbers is no greater than

the arithmetic mean, we estimate the right hand side of (VI.2.4)

JRd (m(| Zi“ﬂ)) - day...dzg

[dem (i i |Ojui() + 5ZUJ(I)|> dx

i,j=1

)
Q
[
SN

(VI1.2.5) y

+ y fRd m <% Z |0jui(x) + 5Zuj(x)|> dz

1,5=1,i#k,j#k

1 1 4
+ J m (—|§kuk(a:)|) dx] Y
Rd 2

k=1,k¢c

Since m is convex and m(0) = 0, then

I < CZ;[% JRdm (% Z: |0jui(x) + ézuj(x)|> dz

o 2,7=1
d [ 4l
(VI2.6) k:dl,klar Rd ij=1,i#k,j#k d
- . 4
+ j m (§|5kuk(:v)|> dm] o
k=1 k¢o YR?
1 T
< [K(d)f m <— Z |0;ui(x) + 0'3Zu](x)|> dx] -
Rd 2 ig=1
Step 2. o .
Let [—1, 1] © Q o Q and D(Q; R?) be the set of smooth functions in R? with support
in Q. Step 1 provides that u € D(Q; RY) with suppu € [-1, 1]? satisfies
(VL.2.7) [ (DIl 4, gy < Calm{IDul) 1 es)-

To deduce the validity of (V1.2.7) for all uw € BD;;(€2), we extend u by zero outside
of the set Q. Obviously u € BD;o(€2). Now w can be regularized as follows

u () = 0. * u(r)

where € < %dist (6@, ) and p. is a standard mollifier, the convolution being done
w.r.t. z. Since uf(z) is smooth with compact support in Q, inequality is
provided for u®. Passing to the limit with ¢ — 0 yields that u* — u, Du® — Du
a.e. in R? and the continuity of an N'—function m provides that m(|u|) — m(|ul),
m(|Duf|) — m(|Du|) a.e. in R%
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To conclude the strong convergence in L'(Q) of the sequence {m(|uf])}.~o we
start with an abstract fact concerning uniform integrability. Observe that the fol-
lowing two conditions are equivalent for any measurable sequence {27},

(VI1.2.8) Ve>0 35>0: sup sup J |27 (z)] dz < e,
JeN Acq,jAj<s JA
, 1
VI.2.9 Ve>0 d6>0: supf Z(x)] — —=| dx<e,
(VL29) wp | (120 -
where
|€|+ = maX{Oaf}'

The implication (VI.2.8)=(VI.2.9) is obvious. To show that also (VI.2.9)=(VI.2.8)
holds let us estimate

dx

+

; 1
|27 — —

Vo

, 1
sup sup J |27| dz < sup |A|- —= + supf
JEN |A|<5 JA |A|<6 Vo jeN JO

<\/5—|—s.upj~
Q

JeN

dzx.

+

|Zj|_i
Ve

Since m is a convex function, the following inequality holds for all § > 0

(V1.2.10) f L s J !
4 Q

m(lul) — —= m(lo” + uf) — —=
0 Vo Vo
Finally, since {5 m(|u|)dz < co, then also {5 |m(|u|)— \/ig|+dx is finite and hence tak-
ing supremum over € > 0 in (VI.2.10) we prove uniform integrability of {m(|u®|)}.~o.
The same considerations are valid for {m(|Du°|)}.~o. Finally, by the Vitali lemma
we conclude that

dzx.

+

m(|u®|]) — m(Ju|) strongly in L'(R?),
m(|Duf|) — m(|Du|) strongly in L*(R%).
Consequently, the limit w satisfies inequality (VI1.2.7)).
O

Remark VI.2.2. If Q) is bounded, we can rescale the space variables. Then we have

Im((ehl, 2 ) < Calm(CDul)| 1o,

where C). is a constant dependent on the jacobian of rescaling.

VI1.3. Domains and closures

In the present section we concentrate on the issue of closures of smooth functions
w.r.t. various topologies. In the introduction we defined the spaces YM and Z}7.
Our interest is directed to the equivalence between these two spaces. The simplest
proof is provided in the case of star-shaped domains. For extending the result
for arbitrary domains with regular boundary, the set €2 is considered as a sum of
star-shaped domains. In this case the Sobolev-Korn inequality provides an
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essential estimate. Another requirement appearing for non-star-shaped domains is
the constrain on the spread between m and m and also on the growth of m, i.e. the
condition (D2) in Theorem

In the present section integration by parts is also considered as the main issue,
where the equivalence between the spaces Y¥ and Z}! is crucial.

Lemma VI.3.1 (star-shaped domains). Let M : R%¢ — R, be an N -function,

Sym

Q be a bounded star—shaped domain and YM, ZM be the function spaces defined by

[T12.8) and (VLY. Then Y — 2.

Moreover, zfu € YO ,X € EM*(Q RdXd), f e Lyx(Q;RY) and

sym
(VL3.1) Gu—div,x = f in D'(Q),
then

1
) ey — 5 hu(0)age f f x : Dudzdf — f f F-udadt

for a.a. sg, s: 0<sg<s<T.

PROOF. Since the modular topology is stronger than weak-star, obviously we
have YM < ZM. Therefore we focus on proving the opposite inclusion, namely

(V1.3.2) 7 cyM.

To reach this goal we want to extend u by zero outside of Q to the whole R? and
then mollify it. To extend w we observe that Z}' < BDj;¢(Q). By definition it
is obvious that each u € Z}! is an element of BD(Q), hence let us concentrate on
showing that it vanishes on the boundary. Recall that for w formula is
satisfied. Take a sequence {u*}%® | of compactly supported smooth functions with
the properties prescribed in the definition of the space Z}!. After inserting this
sequence into (VI.1.7)) we obtain

M dedt = — 00, 499
(V1.3.3) QJQ ¢|Du”]; ; dadt = JQ (uj o + u; 6%) dzdt

Now we can easily pass to the weak-star limit in (VI.3.3]) because of the linearity of
all terms. As a consequence we conclude that the boundary term vanishes.

Next we introduce w”, where the index A for any function v is understood as
follows

(VI.3.4) v Mt x) = v(t, Mz — x0) + 20)

where zy is a vantage point of Q and A € (0,1). Let ) = %dist (02, A\Q) where
={y = Mz — z0) + 79 | x € Q}. Define then

(VL.3.5) wMe(t,x) = o5+ ((0- * uMt, z)) L(so.s))

where ¢.(z) = % 0(%) is a standard regularizing kernel on R? (i.e. g € CP(R?), o has

a compact support in B(0, 1) and SRd g z)dz =1, o(z) = o(—x)) and the convolution
is done w.r.t. space Varlable T, e < and 05(t) = o(%) is a regularizing kernel on

R (i.e. 0 € C*(R), o has a compact support and {, o(7)dr = 1,0(t) = o(—t)) and
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convolution is done w.r.t. time variable ¢t with § < min{sg, 7'—s}. The approximated
function u®*¢ also has zero trace.
First we pass to the limit with ¢ — 0 and hence

Du’M 2% Dul? in L1(Q; R™9).
For a.a. t € [0,T] the function Du’*¢(t, ) € LY(Q; R%*¢) and
0+ DU (t, ) <=5 Dul(t, ) in L'(Q; R
and hence
0- * Du?* =% Du’ in measure on the set [0,7] x €.

To show the uniform integrability of {M (Du®*¢)}.~, we use the analogous ar-
gumentation as in the proof of Lemma [VI.2.1} i.e. the equivalence of the following
two conditions for any measurable sequence {z7}

() Ve>0 36>0: sup sup §4127(t, x)| dedt < e,
JeN AcQ, |A|<0

b) Ve>0 36>0: su ‘zjt,ac —L‘ dzdt < e
») S [t ) ~ 5

Notice that since M is a convex function, then the following inequality holds for all
>0

(VL.3.6) JQ ‘M(DUM) _ Mié

1
dzdt > J ‘M 0. * Dud) — —|  dadt.
0 ( ) val,

Finally, since fDu’* € L£(Q;RL*4) for some B > 0, then also SQ | M (BDu?) —

sym

\/L§|+ dxdt is finite and hence taking supremum over € € (0, %) in (VI.3.6) we prove

that the sequence {M (BDu®"¢)} ¢ is uniformly integrable.
Finally, Lemma [[I[.2.1] provides that

+

Du*¢ 229 Dy modularly in Ly (Q; Rg;ngll)-

Next, we pass to the limit with A — 1 and obtain that
Du’* 224 Dufd in Ll(Q; ]RdXd)

and

Du®* 224 Do’ modularly in L (Q; R%*9).

sym

To converge with § — 07 we employ similar arguments as for convergence with
e — 0. Finally we observe that Y = Z}7.

The forthcoming part of the proof is devoted to the integration by parts formula.
Let us define now

(VL3.7) N (1, x) 1= 05 (05 0o # Nt 7)) Tiggs))
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where ¢ < £ and 0 < %min{so, T — s}. We test each equation in (VI.3.1)) by u®*¢
(which is a sufficiently regular test function)

(VI.3.8)

T T
f J u = 05) - 0w AE os) dzdt = f f X: Du? dzdt — f J f- u?™ dzdt.
S0 0 Q 0 Q

The left-hand side of (VI.3.8) is equivalent to { §,(u = 05) - (ut « di05) dzdt, hence

to pass to the limit with ¢ — 0 and A — 1 we use the fact that u» = w in
L®(0,T; L3, (2;RY)). To handle the right-hand side of (VI.3.8) we use the results

shown in the first part of the proof. For proving the convergence of the term Sép SQ f
u®M¢ dzdt we apply Lemma [VI.2.1| to m and observe that

(st aamyetiar) <o [ mioute s

for a.a. t € [0,T]. Consequently the Holder inequality implies that

J J (Jud (¢, 2)])) dadt < CMJ J (IDu’ (¢, z)|) dedt.

Using definition of m we obtain

(VL.3.9) jj ([0 (1, ) dadt < cgdf jM WM (¢, ) dadt.

Hence (VI.3.9) provides that modular convergences

0 A1 .
Du’* =25 Du®,  Du’ 225 Dul in Ly (Q; REYY)

sym
imply that
w29 u, u? 22l 8 modularly in L,,(Q; Rd).

Using Proposition for N-functions m* and m we obtain

e—0,\—>1

lim J f-uM dedt = J f - u’ dzdt.
Q

In a similar way Proposition [[TI.2.3] for A'—functions M and M* provides the con-
vergence

lim x : DulMe dzdt = J x : D’ dzdt.
e—0,A—>1 Q Q

Note that for all 0 < sg < s < T' it follows

S S 1 d
(ag*u)-ét(a(;*u)dxdtzj L s ey dt
LJ L 5 241 @)
1 2 1 2
= Los uls) By — 3l » uloo) o

94



CHAPTER VI. GENERALIZED STOKES SYSTEM VI.3. DOMAINS AND CLOSURES

We pass to the limit with § — 0 and obtain for almost all sy, s (namely for all
Lebesgue points of the function u(t)) the following identity

(VI3.10) I f f (s 05) - Oy(w » o) dadlt — Hu( ) By — Hu(so)HLz(Q)

holds. Observe now the term

LT J, @5+ (05 Du) 1)) st = [ | (o530 ¢ (05« Dy .

Both of the sequences {05 = Xx}s and {os*Du}s converge in measure on (). Moreover,
the assumptions u € YM and x € £+(Q; R¥*4) provide that the integrals

sym

LT L M(Du)dzdt and L L M*(x) dadt

are finite. Hence using the same method as before we conclude that the sequences
{M* (05 =x)}s and {M (05 * Du)}s are uniformly integrable and by Lemma [[I1.2.1

we have

o5 *Du—5Du  modularly in Ly (Q; REXE,

Sym
0§ * XE’X modularly in Ly« (Q; R;‘l;ﬂ‘f).
Applying Proposition 3| allows to conclude
(VI.3.11) (lsin%J f o5 *X) : (05 * Du) dzdt = J J X : Dudzdt.
Y Jso 50

In the same manner we treat the source term, just instead of the A —function M
we consider m. Hence we have

LT J;) I (o5 ((05 #u) N5, 5)))dxdt = LZ .[9(06 s f) - (o5 + w)dadt.

Then we observe that

0’ » u—>u modularly in L,,(Q;R?),

o0 f£> Ff modularly in L« (Q;R%).

and we conclude that

(V1.3.12) lim f L(aé # f) - (00 » u)dadt = f L f - udadt.

6—0

Combining (VI.3.10), (VL.3.11)) and (VI.3.12) we obtain after passing to the limit
with €, A and ¢ in (VI.3.8]) that

1 1 S S
(VIB13) L ()l — glulso) e + f f X : Dudadt — f f f - udedt
50 JQ so v

for almost all 0 < sg < s <T. O
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Lemma VI.3.2 (Non-star-shaped domains with the control of anisotropy). Let M

be an N —function such that m(r) < cm((m(r))”l%1 + |r|2 + 1) forr € Ry and let
m satisfy the Ago—condition. Let Q) be a bounded domain with a sufficiently smooth

boundary, Y, ZM be the function spaces defined by and . Then
YM = Z).
Moreover, let w e Y, x € La+(Q;RE:Y), f € L+ (Q;R?) and

(VIL.3.14) ou—divyx = f in D'(Q).
Then

1 1
§||u(s)||%2(9) — §||'u, S0 ||L2 f f X : Dudzdt —J J f-udzdt
S0 S0

holds for a.a. sg, s: 0 < s9g<s<T

PROOF. Already for Lipschitz domains there exists a finite family of star-shaped
domains {€;};c; such that
Q=Jo

i€
see e.g. [99]. We introduce the partition of unity #; with 0 < 0; < 1,06; €
D), suppb; = Q;, >, 0i(x) = 1 for x € Q. Applying Lemma [VI.2.1} to m,

we obtain

d
E=
f (m(|ju™* (¢, 2)[)) 77 dz < Ca (J m(|Du’*(t, x))) dl‘)
Q
for a.a. t € [0,T] (here u®*¢ is defined as in (VI.3.5)). Consequently

J, e, LT(L(MGDU(S’A’e(tax)Ddx)dildt.

Using definition of m and the assumption that T" < co we obtain
(VL.3.15)
L

J‘_[ W1 ) )7 dadt < .f (J'A4 WL, x))dx) st

_d_

C&dwp(fﬂl 5“@x»m>d3

te[0,T

To show boundedness of the right-hand side of (VI.3.15) for fixed § we use the Jensen
inequality, the Fubini theorem and nonnegativity of M in the following way

L M (Du ¢ (t, z)) dz < J N M (Dus(t — 7,2))0s(7) drdz

(VI1.3.16) = JBJ L M (Due(t — 1, 2))os(1) dedr

< o5l o ) IM (Du™) | L1, 0
< o5l oy IM (Du9) | 1 q)-
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Since m(r) < ¢ ((m(r ))di +|r|> + 1) and V.0 € L*(Q; RY) we obtain

(D(u‘s”\)ﬁﬁ)s—i—%(U‘S@Vxei)A’E—i—§(Vx9i®u5)>"5 = D(u‘SQi) € Ly ((0,7) le,RdXd)

Sym
where 2; = supp 0;.

We observe now the function u®¢(¢,z) = >, 0c * {(05 U ﬂ(so,s)) 01-}/\, where
{-}} is defined by (VI.3.4)). Since u’** is in general not divergence-free, we introduce
for a.a. t € (0,T) the function @*¢(t,-) € L %(Q;Rd) which for a.a. t € (0,7) is a
solution to the problem B

divee™ =Y 0o # {(05# u I ) - Vi)' in Q
i€J
@™ =0 on 0N
Existence of such ¢*¢ is provided by Theorem [[11.2.14 applied to the A/-function

m% which satisfies the Ay—condition. The quasiconvexity condition is obviously
satisfied with v = d%dl. Then we follow the case of star-shaped domains to complete

the proof, but instead of the sequence defined by (VI.3.5)), we consider

6>\8 = Z Oc * Os * U ]1(5075)) 07,}/\ — QOA’E(ZE)
ieJ

It remains to show that (¢ vanishes in the limit as A — 1 and ¢ — 0. Indeed,

Theorem implies the estimate

f m (D ) de < f Mm% (V™) de

f mt (| 0o { (05 u Q) - Vubi} )

i€J

for a.a. t € (0,T). Let us integrate (VI.3.17)) over the time interval (0, 7). Since for
every i € J the sequence

(V1.3.17)

d
A md-T

Oc * {(0’5 * U ]1(5075)) : Vxe } —> (05 U ]1(50 s) ) : Vxei modularly in L %(Q)

ase > 0and A - land ), (05 * U Il(8075)) - V.0; = 0, we immediately conclude
that )

Z 0c # { (05 * u Lsy ) - Vb } 250 modularly in L 4 (Q)

i€J m
as € —» 0 and A — 1. Consequently

d
d

(VL3.18) D™ 25 0 modularly in L s (Q;R™).

Employing the same argumentation, instead of the function defined by (VI.3.7)),
we test (VI.3.14]) with

(V1319) C67A7E(t>$) = Z Qa*{gé * (05 U ]1(80,3)) 91’})\_06* (05 * QOA,a(ta IL') Il(so,s)) .
i€J
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that the second term on the right-hand side of (| converges to zero, i.e., the
following three limits vanish

Passing to the limit with A — 1 and ¢ — 0 in (VI.3.8) it again remains to show
V1.3.19)

rs

lim (u = o5) - O (05 + @V (t, 2) ]1(5075)) dxdt = 0,
e—0,A—1 Jsg JQ
T r
(V1.3.20) lim X : 05 % (05 D™ (t, ) Ly ) dadt =0,
e—0,A—1 Jo Ja
T r
lim fros (o5 @M (t, 1) L)) dadt = 0.
e—0,A—1 Jo Jo

To show (VI.3.20); we apply Theorem [[II.2.14] with the AN'~function m = | - |* and

the Poincaré inequality, which allow to conclude that

e € A
(VI.3.21) @™ r2(0) < 1| Vo™ 12(0) < 2| ng* {(o5 *w Mgy 0)) - Vabi} 2
ieJ
for a.a. t € (0,T). Since the term on the left-hand side of (VI.3.20)); is equivalent to
Sjo §o(ux0s) - (cp’\75 # (9t05) dadt, we pass to the limit using the fact that

Z 0 * {(05 * U ]1(5078)) . Vaﬂi}/\ 20 weakly—(*) in L®(0,T; L*(2)),

€
thus
o™ 0 weakly—(*) in L(0, T; L2(Q; RY))

ase — 0and A — 1.
Since Dp™* converges modularly to zero in L o (Q; R¥Xd) (see (VI.3.18)),

sym

m(r) < cm((m(r))d%l + |r|* + 1) and (VIL.3.21)) holds, then M (aD¢g*¢) is uniformly
integrable with some a > 0. Moreover, by Lemma the modular convergence

in Lm e (Q; Rg;n‘f) to zero implies the convergence in measure to zero. Hence using

again Lemma with a function M we conclude that De*¢ — 0 modularly in
Ly (Q;RExD) as e — 0 and A — 1. Therefore (VI.3.20), is satisfied.

Finally, the convergence passage in (VI.3.20f)3 is a consequence of . It
implies that V,¢*¢ — 0 modularly in L,,(Q;R%9) and since ¢ = 0 on 092 we
obtain ¢*¢ — 0 modularly in L,,(Q;R?) as ¢ — 0 and A\ — 1.

Now we follow the case of star-shaped domains to complete the proof. O

V1.4. Existence result

The first part of the proof is standard. However we recall it for completeness of
the chapter.
We construct Galerkin approximations to (VI.1.1)) - (VI.1.4)) using basis {w;},
k

k
%

consisting of eigenvectors of the Stokes operator. We define u* = > a
i=1

(t)w;, where
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al(t) solve the system

J iuk-wi —i—J S(t,z,Du’) : Dw,; dz = J f-w;dz,
odt Q Q

(VI.4.1)

where i = 1,...,k and by P* we denote the orthogonal projection of L3 (€;R?)
on conviws, ..., ws}. Multiplying each equation of (VI1.4.1)) by o (), summing over
1 =1,...,k we obtain

1d
2dt

The Fenchel-Young inequality, the Holder inequality, Lemma and convexity
of the N'—function provide that

f f-ufdz| < f "SR U
0 ql ¢ 2¢
2¢ ¢
Lm <c|f|> $+Lm(25|u |> ’
d—1

~ 2¢C 1 E
(VL4.3) < | m* (—C|f|> dz + |Qf U m (/') dgg)

Jo c Q 2c

< - d n -
m(cu0m+mw?Lmequ

JQ

(V1.4.2) |20y + f S(t,z,Du") : Du” dr = J f-uFda.
Q Q

2c c i

dx

r

< | m* (%|f|> dz + EJ M (Du) dz.
C 2 Q

JQ

In the above considerations we choose a constant such that max(|Q|2Cy, 5) < &< oo,
where Cy is coming from Lemma [VI.2.1] The last inequality follows from the fact
that M is a convex function, M(0) = 0 and 0 < ¢ < 1, which is an obvious
consequence of combining with the Fenchel-Young inequality. Integrating
over the time interval (0,¢) with ¢ < T, using estimate (VI.4.3) and the

coercivity condition (S2) on S we obtain

t t
%uk(t)%Q(Q) 4 gJ f M(Dub) dxdt+cf j M*(S(t, z, Dut)) ddt
(V1.4.4) 0 0 e

! . 2 L, o
< | | mr i+ Sl
for all £ € (0,7]. Hence there exists a subsequence such that

Du® % Du  weakly—(*) in Ly (Q; RE%)

sym
and
S(, .’Duk) Sy weakly—(*) in Ly« (QSRS;H?)'
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Moreover from (VI.4.4)) we conclude the uniform boundedness of the sequence {u*}%
in the space L®(0,T; L3, (Q; R?)) and as an immediate conclusion, we have at least
for a subsequence

ub 5w weakly—(*) in L*(0,T; L3, (Q; RY)).
After passing to the limit we obtain the following limit identity

(VI.4.5) —f u-&tgodxdt—i—f x : Dpdxdt = J f- cpdxdt—f u - (0, ) dx
Q Q Q Q

for all p € D((—0,T); V).
In the remaining steps we will concentrate on characterizing the limit x. Since
the weak-star and modular limits coincide, Lemma for star-shaped domains

or Lemma |VI.3.2| for non—star—shaped domains and the equality (VI.4.5)) provide

1
(VI46)  lu(s) aey — 5 hulso) ey f f x : Dudzdt — f f F - udedt

for a.a. 0 < sg < s < T. To pass to the limit with sy — 0 we need to establish
the weak continuity of in L?(;RY) w.r.t. time. For this purpose we consider

again the sequence { } and provide uniform estimates. Let ¢ € L*(0, T} ngv)
”(pHL"(O,T;Wé’inV) 1 Where

Wgﬁiv = closure of V w.r.t. the W"?(2)—norm

where r > 4 + 1 and observe that

< > <— P >: —LS(t,x,Duk) . D(P*y) da:—l—JQf.(pk(P) b

Since HPkcpHWr,z_ < lelyre and Wr=12(Q) c L*(Q2) we estimate as follows
(VL.4.7)
U f S(t, z, Du*) : D(P*y) dxdt‘ f IS(t, -, D) | 11 (e ID(Prep) | e ey It

T
f (8 D) s [Pl < | 150D gz,

C||S(7 ,D’U; )HLl(Q H‘P”L’ OTWT(? )

and

[ [ £ Prodnt] < [ 1510 Prolieond

VI14.8
(VI48) <o [ loelP el at < [ 1l lelgs, @
0 ’ 0 ’

<c|fle@lelieormwrz, -
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The assumptions on f and uniform estimates for S(-, -, Du*) in a proper Orlicz class

provide integrability of the above functions. Hence we conclude that 9% is bounded
in L'(0,T;V*). By m ) and assumptions on f there exists a constant C >0
such that

sup JQ [M(S(t,z,Du*) + m*(|f])] dzdt < C.

keN

Consequently using the Jensen inequality we obtain

Sup|Q|f m(IS(t, - D11 y) + m* (1f | re)] dt < C

and hence we conclude by Lemma that there exists a monotone, continuous
function L : R, — R, with L(0) = 0 which is independent of k£ and

J (IS(t, -, Du) 110y + | FlLrey) dt < L(|s1 — s2)

1

for any s, s5 € [0,T]. Consequently, estimates (VI.4.7)-(VI.4.8) provide that

52/ duk >
du? dt‘<L(|sl—82l)
(G

for all ¢ with supp ¢ < (s1,52) = [0,T] and e 0w S < 1. The following

estimates

o o) = (2l

& & 52 du
= sup [(u(s1) — u(s2),9)| = sup ,IP
vewid, Wl <1

Il e <1
0,div

< sup{f
0

imply that
(VI.4.9) sup |[uf(s,) —u (SQ)H(WTQ ye < L([s1 = sa]).

keN 0,div

D) at s el < 1 sww o < (5150

Since u € L*(0,T; L3, (£;RY)), we can choose a sequence {s)};, si — 0 as i — oo.
Thus {u(s})}; is weakly Convergent in L2, (Q;R?). The estimate provides
that the family of functions w”® : [0,T] — (W 2 )* is equicontinuous. Using the
uniform bound in L= (0, T; L3, (€2; R?)) and the compact embedding L3, (Q;R?) cc
(ngiv)* we conclude by means of the Arzela-Ascoli theorem that the sequence
{uF} | is relatively compact in C([0,T]; (Wgﬁiv)*) and u € C([0,T7; (Wgﬁiv)*).
Consequently we obtain that

(V1.4.10) u(sp) =3 u(0) in (W)
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The limit coincides with the weak limit of {w(s})}2, in L3 (Q;R?) and hence we
conclude

(VL4.11) lim inf [l (s0) |20y > [to]l22(0)-

Let s be any Lebesgue point of w. Integrating (VI.4.2)) over the time interval (0, s)
gives

(VL.4.12)
lim supf J S(t,z,Duf) : Du” dzdt
Q

k—o0

) 1 !
:fo Lf'ud%dH o ol E2o) = liminf 2 |a(s)[72 0
< Frudrdt + 5ol o) — 5 lw(s)[Z)

0 JQ

VTA1T)
< liminf <J Jf uda:dt+—||u( )iz HU( )||L2(m>

Z—)w

UEEE: T ij Du dzdt = jjx Du dzdt.

1—00
The monotonicity of S yields
(V1.4.13) f f (t,,9) — S(t, z,Dub)) : (v — Dub) dzdt > 0
for all v e L*(Q;R**%). Using (V1.4.12) and m we follow the same steps as

in Chapter [[V]or in [75], [131] to show x = S(¢,z,Du) a.e. in Q.
0
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CHAPTER VII

Renormalized solutions of nonlinear elliptic problems

VII.1. Introduction

Let © be a bounded domain in R? (d > 1) with a sufficiently smooth boundary
0€2. Our aim is to show existence and uniqueness of renormalized solutions to the
following nonlinear elliptic inclusion

Bz, u) —div (a(x, Vyu) + F(u)) 3 f in Q,

u =0 on 012,
with a right-hand side f € L*(2). The function F : R — R is assumed to be locally
Lipschitz and a : Q x R? — R? satisfies the following assumptions:

(A1): a(-,-) is a Carathéodory function.

(A2): there exist a generalized N/-function M : Q x R? — R, (see Definition
below), a constant ¢, € (0,1] and a nonnegative function ag € L'(£2)
such that

(VIIll) a’('xas) €= CG{M*(:U7 a(:v,ﬁ)) + M(.Z', S)} - ao(l’)
for a.a. x € Q) and for every & € R?, where M* is the conjugate function to
M (see relation (III.1.3)).
(A3): a(-,-) is monotone, i.e.,
(VIL1.2) (a(z, &) —a(z,n) - (§—n) =0

for a.a. x € Q and for every &, n e RY.

(£, f)

Moreover, we assume that the complementary function

M*
(VIL.1.3) M* satisfies the Ay — condition and  lim inf M (w,§) =0
€—oze ||

and there exist ¢ > 0, v > 0 and &, € R? such that
(VIL.1.4) M(z,€) = cl¢|'

for a.a. @ € Q and for € € R €] = |€,]. Let us notice that if the function
gu € L*(Q) in the definition of the As—condition for M* (see (III.1.15])), then

(VIL.1.4) is a consequence of the assumption (VII.1.3) (see Proposition [II11.2.12]).

However, no growth restriction is made on the N'—function M itself.
An example of an operator a satisfying our assumptions with an A —function
M which does not satisfy the Ay—condition is as follows:

a(z,§) = ay(x)& exp(ay (33)51)2 + az ()& eXP(CLQ(l')fl)Z,
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Mz, ) = 5 (explar (1) + explan (1))
where aq,as : 0 — R are measurable functions strictly greater than zero and £ =
(517 52) € R?.
As to the nonlinearity 3 in the problem (E, f) we assume that 5 : Q x R — 28\ ¥
is a set-valued mapping such that, for almost every z € Q, B(xz,-) : R — 28\¢¥ is a
maximal monotone operator with 0 € 3(z,0). Moreover, we assume that

(VIL1.5) 31 e LY(Q)

for each [ € R, where 8° denotes the minimal selection of the graph of 3. Namely
Bo(x,1) is the minimal in the norm element of 5(x,1),

Bo(z,l) =inf{|r| | re R and r e B(z,1)}

There already exists a vast literature on problems of this type. Most of the
literature has been devoted to the study of the case where the vector field a satisfies
a polynomial growth (and coerciveness) condition. A model example of this type
is the homogeneous Dirichlet boundary value problem for the p-Laplacian A, (u) =
div,(|Vu[P~2Vu), i.e. the equation

Bz, u) — Ay(u) — div, F(u) 3 f.

It is well-known, even in this particular case, that for L!-data a weak solution may
not exist in general or may not be unique. In order to obtain well-posedness for this
type of problems the notion of renormalized solution has been introduced by DiPerna
and Lions for the Boltzmann equation in [44] and by Murat [95], and Boccardo [25]
for elliptic equations with integrable data. The existence of renormalized solutions
to corresponding parabolic problem was considered by Blanchard et al. [21], [23].
At the same time for nonlinear elliptic problems with the right-hand side in L!
the equivalent notion of entropy solutions have been developed independently by
Bénilan et al. in [I5]. During the last two decades these solution concepts have
been adapted to the study of various problems of partial differential equations. We
refer to [3], [5]-[9], [16], [20]-[25], |30, 37, 4], 104] among others.

More general problems involving vector fields satisfying variable growth and
coerciveness condition of type

a(z,€)- &= NeP® — c(x)
la(z,€)| < d(x) + plg]P™

for a.a. x € Q, for every & € RY, where \, u > 0, p : Q — R is a measurable variable
exponent with 1 < p~ < p(z) < p* < oo for a.a. v € Q, ce L'(Q), d e LF®(Q)
have already been considered. For results on existence of renormalized solutions of
elliptic problems of type (F, f) with a(-,-) satisfying a variable growth condition
we refer to [27), [129] (for related results see also |11, 2], 112]). Note that vector
fields satisfying this type of variable exponent growth and coerciveness condition fall
into the scope of our study (with M(x,&) = ci|€[P®), M*(x, &) = co|€[P'™®, where
P(x) = p(2)/(p(x) = 1), e = (1/p(2))(@(@)P™), ez = 1/(p'()(q(2))" ™), ¢: @ > R
is measurable and 0 < ¢~ < ¢(x) < ¢© < o0). However, our setting is more general as
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we do not impose a growth restriction on M. Let us note that the functional setting
for this type of problems involves variable exponent Lebesgue and Sobolev spaces
LP@)(Q) and W, (I)(Q) which, for the range of exponents the authors considered,
are separable, reflexive Banach spaces and thus standard monotonicity methods,
adapted to the renormalized case, can be used in this case. The LP(®)-spaces, in
general, are not stable by convolution and smooth functions may fail to be dense in
WirE)(Q) (at least if p(-) is not log-Holder continuous). This fact does not lead to
further difficulties in the study of the above-mentioned works as the authors settle
the problem in the energy space VVOl #() (Q) which, by definition, is the norm closure
of D(Q) in WHr@)(Q).

Anisotropic effects were considered in problems of type (FE, f) with constant
exponents in [13), 24] and with variable exponents in [100] (see also [86]), where
the existence of a renormalized solution was provided with g = 0, F' = 0. It was
assumed that the vector field a(z, &) = (a1(z,&), ..., aq(x,&)) with components
a; - 2 x R — R satisfies the following coerciveness and growth assumptions

pi(z)

a;(x,r)r = A|r
iz, 7)| < di(w) + plrP

for a.a. x € Q, for every r € R, where A\, > 0, p; : Q > R, i = 1,...,d are contin-
uous variable exponents with 1 < p;” < pi(z) < p;” < d for all z € Q, d; € L¥®(Q).
Moreover, the p; ,p;, i = 1,...,d satisfy some restrictive compatibility conditions.

Choosing the N —function M (x, &) = ZL &|P®) the two conditions above can be
rewritten in the form of our general growth assumption (A2). Therefore our setting
also includes and extends the anisotropic case. Let us note that the functional set-
ting in the above mentioned papers involves the anisotropic Sobolev spaces W, (Q)

and the anisotropic variable exponent Sobolev space W,™* (@) (Q), p=(p1,---,pa),
respectively. According to the restrictions on the exponents p;, made by the authors,
these Banach spaces are separable and reflexive, and the elliptic operator acts as a
bounded monotone operator on this space into its dual. Therefore classical varia-
tional theory can be applied to prove existence of weak solutions in this case for,
say, bounded data f. Moreover existence of renormalized solutions can be proved by
approximation, using truncation techniques and Minty’s monotonicity trick adapted
to the renormalized setting.

Problems of type (£, f]) involving vector fields with nonpolynomial (for instance,
exponential) growth have also already been considered in the literature. Typically,
the growth condition is expressed by a classical isotropic N'—function M : R, — R,
not depending on the space variable z and only depending on the modulus |£] of the
vector €, as, for example, in [2], A8]. The functional setting in these works involves
the classical Orlicz spaces Lj(2) and Orlicz-Sobolev spaces WLy (Q2) which fail
to be reflexive if M and M* do not satisfy the Ay—condition (see Chapter or
[1]). In this case, existence of approximate solutions follows from the theory of
monotone operators in Orlicz-Sobolev spaces as developed by Gossez and Mustonen
in [69]. The arguments used to prove the convergence of such approximate solutions
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to a renormalized solution of (£, f) are based on an approximation property in
Orlicz-Sobolev spaces proved by Gossez in [68, Theorem 4|. The author shows
that it is possible to approximate the gradient of an Wy Ly (€)-function in modular
convergence by a sequence of gradients of smooth functions, compactly supported
in Q.

The setting considered in this chapter includes and generalizes variable exponent,
anisotropic and classical Orlicz settings (at least in the case when the latter is built on
an N—function M whose complementary function M* satisfies the Ay—condition).
The function M which describes the growth condition of the vector field a is a
generalized N'—function. The corresponding generalized Orlicz spaces Ly (Q;R9),
often called Orlicz-Musielak spaces (see [96]) have been introduced in [117), [118].
Let us recall that in general, if M and M* do not satisfy the As—condition these
spaces fail to be separable or reflexive. In the setting of generalized Orlicz spaces,
due to the a-dependence of the N —function, a result similar to Gossez [68] can
not be achieved. As in the case of generalized Lebesgue spaces convolution with a
smooth compactly supported kernel may fail to be a bounded operator.

Our techniques to overcome these difficulties are inspired by previous chapters
and former works [29, [72], [75], 131, 133]. The authors considered equations in-
volving vector fields satisfying general non-standard growth conditions of type (A2)
with a generalized N —function M (x,&). All these works are motivated by fluid
dynamics.

Gwiazda et al. in [74] studied a steady and in [72] a dynamic model for non-
Newtonian fluids under an additional strict monotonicity assumption on the vec-
tor field. The authors used Young measure techniques in place of a monotonicity
method. The additional assumption of strict monotonicity allows to conclude that
the measure-valued solution is a Dirac delta and hence a weak solution. A similar
method is used in the variable exponent setting in [6].

A version of the Minty-Browder trick adapted to the setting of generalized Orlicz
spaces was introduced in [131] by Wroblewska-Kamiriska (and later see [75), 133]
and Chapter in the framework of non-Newtonian fluids. As we do not as-
sume strict monotonicity of a(-, ), we have to employ the generalized monotonicity
method of [I31] (see also Chapter [[V] Using the Galerkin method with smooth
basis functions we can thereby prove existence of a weak solution u. of some ap-
proximate problem (F., f.) with f. € L®(2). In a second step we show that a
subsequence of the approximate solutions u. converges to a renormalized solution
of problem (£, f]). In this step we combine truncation techniques and the general-
ized monotonicity method of [I31]. Thereby, it is possible to overcome a difficulty
that arises from the possible lack of reflexivity of Lj/(Q;R?) and which consists in
passing to the limit in expressions of the form §, f.(z) - g(x) dz when g € Ly (Q; R?)
and the sequence { f.}.-¢ only converges weak-(*) in Ly« (£; R?) to some function f.

The chapter is organized as follows: in Section we introduce the notions of
weak and also renormalized solution for problem (£, f]). Our main result, existence
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of a renormalized solution to (E, f]) for any L'-data f, and the results on unique-
ness of renormalized solutions and on existence of weak solutions, are collected in
Section [VII.3] The proof of existence of renomalized solution is in Section [VIL.4]
the uniqueness is shown in Section and existence of a weak solution proved in

Section [VIL6L

VII.2. Notation
VII.2.1. The energy space. Let us introduce the linear space
Vi={p e L, () | e}, © D(Q) such that V; = Vein Ly(:RY) as j — oo},
V' endowed with the norm
lelv = IVelue, weV
is a Banach space. Moreover for v > 0
Vo {pe Wy (Q) | Vo e Ly(%RY)

where — denotes continuous embedding. If A : R — R is a Lipschitz function
such that h(0) = 0 and w € V, then also h(u) € V. Note that if M* satisfies
the Ap—condition and if ¢ € L®(Q) and ¢ € Ly+(Q;RY), it follows that gp €
,CM* (Q7Rd)

VII.2.2. Notation. For any v : 2 — R and k& > 0, we denote {|u] < (<,>,>
,=)k} for the set {x € Q : |u(x)| < (<,>,=,=)k}. For r € R by sign,(r) we mean
the usual (single-valued) sign function, signf (r) = 1 if 7 > 0 and signj (r) = 0 if
r < 0. Let hy(r) : R — R be defined by

(VIL.2.1) hy(r) = min(({+1—|r|)", 1)

for each r € R and [ > 0. For any given k£ > 0, we define the truncation function
T, : R — R by

—k ifr<—k
Ty(r) := roif|r] <k
Eifr>k

VII.2.3. Weak solutions.

Definition VII.2.1. A weak solution to (E, f]) is a pair of functions (u,b) € V' x
LY(Q) satisfying b(z) € B(z,u(x)) ae. in Q such that a(x, Vu) € Ly(Q;RY),
F(u) € Ly+(Q;R?Y) and

(VIL.2.2) b—div(a(-,Vu) + F(u)) = f inD'(Q).

Corollary VIL.2.2. If (u,b) is a weak solution to (E,f) and additionally u €
L®(Q), then F(u) € L*(;RY) and consequently F(u) € Ly (Q;RY). If more-
over M satisfies the Ao—condition, then the growth assumption on a(x,Vu) implies
that a(-, Vu) € Ly« (Q;RY).
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Indeed, from (VII.1.1) it follows that
: 9
(VIL.2.3) %a(m, VU)C—VU = co{M*(z,a(x,Vu)) + M(z,Vu)} — ap(z)

for ¢, € (0,1] and ap € L'(Q) nonnegative. Now, using the Fenchel-Young inequality

(II1.1.9) to estimate the left-hand side of (VII.2.3)) we arrive at
(VIL.2.4)

Mz, Zalr, Vu) + Mz, f—avu) + ap(z) = o (M* (z, alz, Va)) + Mz, V).

Now, since M* is convex, M*(z,0) =0 and 0 < ¢, < 1, from (VII.2.4) we obtain
2 2

(VIL.2.5) — (M(m, —Vu) + ao(m)) > M*(z,a(x,Vu)).
Ca C(l

If M satisfies the Ay—condition, then Vu € Ly (Q;RY) = L/(Q;RY) = Ep (2 RY)
implies %Vu € Ly(Q;R?) and the assertion follows by integrating (VIL.2.5). In
general, u € V- n L*(Q)) does not imply that

2
J M(x, —Vu)dz < c0.
Q Ca

VII1.2.4. Renormalized solutions.

Definition VII.2.3. A renormalized solution to (F, f]) is a function u satisfying
the following conditions:
(R1): u: 2 — R is measurable, b € L'(Q) and b € B(x,u(z)) for a.a. x € Q.
(R2): For each k > 0, Tj.(v) € V, a(x, VTi(u)) € Ly (2;RY) and

(VIL.2.6) L bh(u)p dz + L (a(z, Vu) + F(u)) - V(h(w)p) dz L Fh(u)pda

holds for all h € C}(R) and all p € V'~ L®(Q).
(R3): S{l<‘u|<l+1} a(z,Vu)-Vudr — 0 as | — oo.

Remark VII.2.4. Since u is only measurable, Vu may not be defined as an element
of D'(2). However, it is possible to define a generalized gradient Vu in the following
sense: There exists a measurable function v :  — R?, such that v = VT, (u) on
{lu| < k} for all £ > 0. Therefore all the terms in (VIL.2.6) are well-defined (see [15]
for more details).

Remark VII.2.5. If (u,b) is a renormalized solution to (E, f]), then we get

a(z, VT (u)) - VTi.(u) € L'(Q)
for all £ > 0 by applying the generalized Holder inequality. If M satisfies the Ag—
condition, Ty(u) € V implies VT (u) € Ly (Q;RY) = L (Q;RY) = Ep(Q; RY) and
using the same arguments as in Corollary it follows that
(VIL2.7) a(z, VTi(u)) € Lys(;RY).

Hence if M satisfies the As—condition, the assumption (VII.2.7)) in Definition|VII.2.3
can be dropped.
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Remark VII.2.6. If (u,b) is a renormalized solution to (F, f)) such that u € L*(Q),
it is a direct consequence of Definition |[VII.2.3| that u is in V' and since (VII.2.6|)
holds with the formal choice h =1, (u,b) is a weak solution.

Indeed, let @ € D and choose h(u)p as a test function in (VIL2.6). Since
u € L*()), we can pass to the limit with [ — oo and find that u solves (£, f]) in the
sense of distributions.

VII.3. Main results

Our results are stated as follows: In this section we will state existence and
uniqueness of renormalized solutions to (£, f)) in the two following theorems. In
Proposition [VIL.3.3] we give conditions on ag and f such that the renormalized
solution to m is a weak solution. In the next sections of this chapter we will
present the proofs.

Theorem VII.3.1. Let M be an N —function satisfying condition and let a
complementary function M* to M satisfy the Ao—condition. Moreover, let a satisfy
conditions (A1) - (A3) and F be locally Lipschitz. Let § be a mazimal mono-
tone operator with 0 € 8(x,0) and with minimal selection B° satisfying assumption
(VIL1.5). Then for any f € L*(Q) there exists at least one renormalized solution u

to the problem (E, f)).

Theorem VII.3.2. Let assumptions of Theorem[VII.3.1] be satisfied. Moreover, let
B QxR — 2% be such that B(x,-) is strictly monotone for almost every z € €.

For f e L*(Q) let (u,b), (a, b) be renormalized solutions to (E, f). Then u =i and
b=b.
Proposition VII.3.3. Let assumptions of Theorem|VIL.5.1| be satisfied and let (u, b)

be a renormalized solution to (E, f)). Moreover, assume that (A2) is satisfied with
ap € L®(Q) and the right-hand side f is in L4(Q). Then u e V n L®(Q) and thus,

in particular, u is a weak solution to (£, f)).
VII.4. Proof of Theorem [VII.3.1] - Existence

The following section will be devoted to the proof of Theorem and we
will divide it into several steps.

VII.4.1. (£, f.) - approximation of the problem (£, f|). First we intro-
duce the approximate problem to (F, f|), namely

le(ﬁs(xa Tl/s(us))) — div (a’(xv Vue) + F(Tl/s(us))) = Tl/a(f) in {2
u =0 on 0f2

where for each € € (0, 1], 8. : Q@ x R — R denotes the Moreau-Yosida approximation
|I| (see |28]) of B in the second variable. In particular f.(-,T1/:(-)) is a single-valued,

(E., fo)

L5 (z,u) = %Js(x,u) where J¢ is locally Lipschitz, with Lipschitz coefficient 1/e and J(x,u) =
Sg B(x,t) dt, moreover 8°(-, k) — B(-, k) a.e. in Q and for all k.
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monotone (with respect to the second variable, for a.a. z € Q) Carathéodory func-
tion.

VII.4.2. Existence of solutions to the problem (£, f.) - Galerkin ap-
proximation. We will show that there exists at least one weak solution u. to our

approximate problem (E., f.) with f. = T1,.(f) € L*(2) in the sense of Definition
VIL2.1l

We start with the Galerkin approximation. Let {w;}?, be a basis built by the eigen-
functions of the Laplace operator with zero Dirichlet boundary conditions. Let us
look for an approximate solution of the form

(VIL.4.1) uy = Z ciw; forneN
i=1
with ¢}' € R such that
(VIL4.2)
J T e (Be (2, T je(ul)) Jw; do + f (a(z, Vul) + F(Ty.(u?))) - Vw; dz
Q Q

= f Tl/a(f)wi dx
Q

for i = 1,...,n. Multiplying (VIL.4.2) by c¢f and summing over i = 1,...,j with

J < n we obtain

(VIL.A4.3)

L Tl/s(ﬁg(x,Tl/E(u?)))ug dx + L (a(x, Vul) + F(Tl/s(u?))) V! dz

= j Tl/a(f)ug dz.
Q

The existence of such an approximate solution to the Galerkin approximation u.
can be obtained by the lemma about zeros of a vector field [48], Chapter 9]|. Since
F(T).(-)) is a Lipschitz function, applying the Stokes theorem it follows that for
7 =n the term

J (F(Ty-(ul))) - Vul dz = 0.

Q

Hence for 5 = n we have

(VIL.4.4) J Ty (Be(, Thyje(ul)) )ul do + f a(x,Vul)-Vuldr = f Ty (f)ul d.
0 Q Q

We want to estimate the right-hand side of (VII.4.4)). Employing the Poincaré
inequality, assumption (VII.1.4) and the Young inequality we infer

jﬂ Ty (Pt dz < ca Thje(£) oo |0l 10
(VILA.5)

Ca N
< v(eqs ca)|Taje(f) | e + 5 (Jﬂ M(x,Vul)dx + c)
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where ¢4 > 0 is the constant from the Poincaré inequality and ~(cq,c,) > 0, ¢ > 0

are constants independent of n > 0. Combining (VII.4.5) with (VII.4.4)), using

the coercivity condition (VIL1.1) on a(-,-) and neglecting the nonnegative term
T/ (Be(w, Tyje(ul)))ul gives

| eV do s, | Mo aln Tu) o
Q Q

(VIL.4.6) oo
< ’}/(Cd, Ca)HTl/E(f)”Lao + % + J Clo(l’) dl’
Q
Consequently, passing to a subsequence if necessary, from (VII.4.6) we obtain
(VIL4.7) Vul 2 Vu, weakly—(*) in Ly (€; R?)
and

(VIL4.8) a(z,Vul) = o weakly—(*) in Ly« (€;R?) for some a € Ly (Q;RY).
The condition (VII.1.4)) provides that {Vu!}*_, is uniformly bounded in the space

n=1
LY (Q;RY), hence by the Poincaré inequality the sequence {u?}%_; is uniformly

bounded in W, "'*"(Q). Therefore

(VIL.4.9) Vu" — Vu, weakly in L' (Q; R?),
(VIL.4.10) u” — u, strongly in L'*t"(Q)
and

(VIL.4.11) uy — u. a.e. in (L

Let us notice that for a fixed € € (0, 1] and almost all z € Q the function g.(z,-)
is a Carathéodory function and we have that

|8:(x, Ty je (ul))| < max(B8°(x, 1/e), —B%(x, —1/e)) a.e. in Q
where, according to (VIL.1.5)), 8° is integrable. Then this together with (VII.4.11])

and the Lebesgue dominated convergence theorem provide
(VIL.4.12) Th/e(B(, T je(ul))) = Tiye(B=(z, Tije(ue))) strongly in L*'(€2).

Since F'(+) is continuous we obtain

(VIL.4.13) F(Ty.(ul)) = F(T1)s(u.)) a.e. in Q.
As F(T'/-(u?)) is uniformly bounded with respect to k > 0, i.e.
(VIL.4.14) ||F(T]_/5(u?))||LfX‘(Q;Rd) < sup |F(1)|<e¢

T€[—1/e,1/e]

where the constant ¢ > 0 is independent of n € N and as €2 is bounded, (VII.4.11]) and
the continuity of F'(-) together with the Lebesgue dominated convergence theorem
provide that

(VIL.4.15) F(Tve(u?)) — F(Ty(u.)) strongly in L'(;R?) as n — o.
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Recall that if M is a generalized N —function, then M* is also an N/ —function. This,

(VIL.4.6) and assumption (VII.1.3), allow us to apply Lemma [[I1.2.2{to M* and con-

clude the uniform integrability of {a(-, Vul)}>_,. Hence according to the Dunford-
Pettis theorem we have the weak precompactness of the sequence {a(z, Vu?)}> | in
LY(Q;RY). Therefore a € L'(Q; R?) and passing to a subsequence when necessary

(VIL.4.16) a(-,Vu") — a weakly in L'(Q;R?) as n — 0.

Using (VI1.4.12), (VIIL.4.15)), (VII.4.16]) and letting n — oo in (VII.4.3) gives
(VIL4.17)

JQ Tl/s(ﬁe(x7 Tl/a(us)))ug dz + J;Z (a + F(Tl/a(us))) : vug dr = JQ Tl/s(f)ug dx.

Since (VI1.4.17)) is also satisfied for all test functions from the basis {w;},, density
arguments give us that u. and a satisfy

Tl/E(BE(Ia Tl/a(us))) —div (a + F(Tl/a(us))) = Tl/a(f) in D,(Q)

The last step is to identify the vector a. Let us notice that the convective term
on the left-hand side of vanishes when 7 — oo by the Stokes theo-
rem. Since M, M* are convex and nonnegative functions, the weak lower semi-
continuity of M and M* together with imply that a € Ly+(;RY),
Vu, € Ly(;RY) respectively. Since M* satisfies the A,—condition it follows
that Ly (4 RY) = Ly« (Q;RY) = Eps(Q;RY) is a separable space. Therefore,
a+F (T (u.)) € By (Q;RY) and since (B« (; RY))* = Ly (;RY), using
and we can pass to the limit with 7 — oo in and obtain

(VIL4.18) L Ty (B, Ty () e do + L

o - Vu.dr = J T (f)ue da.
Q

Now we apply the monotonicity trick for non reflexive spaces to obtain
a = a(z,Vu.) a.e. in (.
First note that for ¢ € L®(; RY) it follows that a(x,¢) € Ly+(Q;R?). Indeed,
with the same arguments as in Corollary [VII.2.2]it follows that
2 2
(VIL.4.19) f M*(z,a(z,{))dx < — | M(x,—¢) + ap(z)dz
Q Ca JO Ca

and for ¢ € L®(Q;RY) the integral on the right-hand side of (VII.4.19) is finite.
Passing to a subsequence if necessary, for n — oo from (VII.4.4)) we get

lim | a(z,Vul)- - Vu!dr = lim <J The(f)ul do — J Ty (Be(x, Thje(ul)))ul dx)
Q Q

n—0o0 0 n—00

:J Ty (f)u. dx—f Ty (B, Ty (u.)) e de
Q Q

which together with (VII.4.18|) provides

(VII.4.20) lim | a(z,Vul)-Vulde = J o - Vu.dz.

k= Jo Q
112



CHAPTER VII. RENORMALIZED SOLUTIONS VIL.4. EXISTENCE

Since a(z, ) is monotone
(VIL4.21) (a(z,¢) —a(z,Vul)) - ((—Vul) =0

a.e. in Q and for all ¢ € L®(Q;RY). Integrating (VIL4.21), using a(x,¢) €
L= (4 RY) = Eys(RY) and (VIL4.20) to pass to the limit with n — oo we
obtain

(VI1.4.22) f (a(z,¢) — @) - (¢ — Vo) dz > 0.
Q
For [ > 0 let
={reQ:|Vu(r)] <l ae. inQ}.
Now let 0 < j < i be arbitrary, z € L*(Q; R?) and h > 0. Inserting

¢ = (Vu)lg, + hzlg,,

into (VII.4.22)) we get
(VI1423) — f (a(z,0) — a) - Vu. dz + hJ (a(z, V. + hz) — @) - zdz > 0.
\Q Q;

Note that by (VIL.1.1) M*(z,a(x,0)) < ag(x) a.e. in Q and from the Fenchel-Young
IM.19)

inequality (III.1.9)) it follows that
(VI1.4.24) f la(x,0) - Vu,| dz < J ao(z) + M(x,Vu,)dz.
Q Q

Since Vu, € L£/(€;R?) the right-hand side of (VII.4.24)) is finite and consequently
a(z,0) - Vu. € L'(Q).

As a € Ly+(QRY) and Vu, € L3(Q;RY) it follows immediately by ([IL.1.9) that
a - Vu, is in L}(Q2). Therefore, by the Lebesgue dominated convergence theorem,
the first term on the left-hand of (VII.4.23)) vanishes for i — co. Passing to the limit

with ¢+ — o0 in (VIL.4.23) and dividing by h we get
j (a(z,Vu. + hz) —a) - zdz = 0.
Q

Note that a(z,Vu. + hz) — a(x,Vu.) ae. in Q; when h — 0. Moreover, for
0<h<l1
(VIL4.25)

J M*(z,a(x,Vu. + hz))dr < — sup f M(x Vua + hz)) + ap(x) dz

Ca 0<h<1

and the right-hand side of (VIL4.25)) is bounded since Vu, + hz is uniformly (in h)
bounded in L*(;; R?) and according to M (x, %(Vus + hz)) is bounded.
Hence it follows from Lemma that {a(x, Vu. + hz)};, is uniformly integrable.
Note that |€2;| < oo, hence by the Vitali lemma it follows that

a(z,Vu. + hz) — a(z,Vu.) in L'(Q;RY)
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for h — 0™ and therefore

lim | (a(z,Vu. +hz)—a) zdz = J (a(z,Vu.) — a) - zdx.

h—0 Q; Q;
Consequently,
J (a(z,Vu,) —a)-zdx =0
Q

J

for all z € L®(;RY). Substituting

~ la(@,Vue)—af

alzVue)—a g a(r,Vu.) —a #0
z =
0 ifa(z,Vu.) —a =0

into the above, we obtain

J la(z, Vu.) — adz < 0.
Q;

Hence

(VII.4.26) a(r,Vu:) = a a.e. in Q.
Since j is arbitrary (VII.4.26]) holds a.e. in €.

VII.4.3. A priori estimates.

Lemma VIIL.4.1. For 0 <e <1 and f € L'(Q) let u. € V be a weak solution to

(Ee, o). Then

(VI1.4.27) J M(z, VTi(u)) de < kSl + a0z
Q
and
(VI1.4.28) f M*(z, ale, VTi(w))) de < k|| + a0l
Q

holds for any k > 0. Moreover, for any [ > 0,

(VIL.4.29) J a(z,Vu.) - Vu. dz < J |f| dz
{I<|ue|<i+1} {i<|uel}

holds for all € € (0,1].

Remark VII.4.2. Using LemmallIl.2.2} (VII.1.4)), (VIL.4.27)), (VIL.4.28) and (VIL.1.3),
we deduce that the sequences

(VIL4.30)
{a(z, VT (u:))}es0, {VTi(us)}eso are uniformly integrable in L'(2; RY)

w.r.t. € > 0 for any fixed k£ € N.
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PROOF. Testing in (E., f.)) by Tk(u.) yields
J Ty (Be(, Tyje(ue))) Ti(ue) do + J (a(m, VTi(u:)) + F(Tl/g(ua))) - VTi(u.) dex
Q Q

_ L Ty ()T (ue) da.

As the first term on the left-hand side is nonnegative and the integral over the
convection term vanishes, by (VII.1.1)) and the Holder inequality we get

o | OF (@ a(e. VT @) + M(e, VI2) do < ko) + laolisco
Q

where ¢, € (0, 1], and therefore (VII.4.27) and (VII.4.28)) holds.
Let us define g; : R — R by

1 ifr<—(+1)
r+l if —(I+1)<r<-I
gi(r) =Ty (r) = Ty(r) = 0 if |r] <
r—1 itl<r<li+1
1 ifl+1<r.

Using ¢;(u.) as a test function in the problem (£, f.) we obtain

JQ Tl/s(ﬂa(xa Tl/s(ue)))gl(ua) d$+ J [a(x, vua) + F(Tl/s(ua))] ' VQI(UE) dzx

_ f Tye(F)gn(ue) da.

As the first term on the left-hand side is nonnegative and the convection term
vanishes, we find that

(VIL4.31) f (e, VT (1) - Vi (us) da < J If|de.
{I<|uc|<I+1} {i<|ucl}
Let us notice that (VII1.4.29)) is equivalent to (VII1.4.31]). O
Corollary VII1.4.3. There ezists a function v : R, — R, such that lim+ y(r) =0
r—0
and
(VI1.4.32) f a(x,Vu,) - Vu.dx < ~(Cl™")
{l<|ue|<l+1}

for any e € (0,1], where C is independent of € and l. Moreover
(VI1.4.33) Hlue| = 1} <177C
holds for C(v,d, f) independently of €.

PROOF. Let us concentrate on . Note that

{luel = B3| = [{[Ti(uc)| = 1],
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then by the Chebyshev, the Poincaré inequality and (VII.1.4), (VII.4.27) we obtain

14+v
HWAzMsJ”ﬂEﬁL—m
Q l1+1/

< Clna)l 0 [ VT do < Cd) (1 ey + ool o)l
Q

Since f € L'(Q), there exists v : R, — R, such that lim ~(r) = 0 and for any subset

r—0+t

E of Q holds {, |f| + |ao|dz < (| E|). Hence (VII.4.31)) provides (VII.4.32). O

VII.4.4. Convergence results. The a priori estimates in Lemma [VI[.4.T] and
Corollary imply the following convergences as £ — 0:

Proposition VII.4.4. For e € (0,1] and f € L*(Q) let u. € V be a weak solution
of . Then there exists a Lebesque measurable function u :  — R with
Ti(u) € Wa'™(Q), VTi(u) € Ly (4 RY) such that for a subsequence of {uc}emq

(VI1.4.34) us — u a.e. in S,
where
(VIL.4.35) Hlu| > 1} < Cl™.

for any 1 > 0. Moreover,

(VII.4.36) Ti(us) — Ti(u) strongly in LP(Q) for p e [1,00) and a.e. in §,

(VI1.4.37) VTi(ue) — VTi(u) weakly in L' (Q; RY),

(VII1.4.38) VTi(us) = VT (u) weakly—(*) in Ly (;R?),

for any ke N and

(VIIL.4.39) a(r, VTi(u.)) = a(z, VT (u)) weakly—(*) in Lyp(S;R?).
for any k € N.

PROOF. Applying directly Lemma[VII.4.1]and (VII.1.4) together with the Sobo-
lev embedding theorem we obtain (VII1.4.36)), (VI1.4.37)), (VI11.4.38). Moreover there
exists ay, € Ly+(92; R?) such that

(VIL.4.40) a(r, VTi(u.)) = ay weakly—(*) in Ly« (Q;R?) as ¢ — 0.

In (VII.4.36)) we choose by the diagonal method a subsequence such that the
convergence in (VIL.4.36)) holds for any k € N (g; is still indicated by ¢). Obviously
the same subsequence can be taken in (VIL4.37), (VIL.4.38) and (VIL.4.40).

Since holds for any k£ € N we obtain ((VII.4.34)) where u is the Lebesgue

measurable function which may take values +0o0. By (|

lim inf [{[uc| > 1} = [{u| > 1}]

and using ((VII.4.33)) we obtain (VII.4.35).
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We intend to show now that
(VIL.4.41) oy = a(x, VTi(u))
a.e. in 2. The proof of (VII.4.41]) is divided into several steps.

Step 1. Let us introduce the auxiliary sequence which we can choose from the

Galerkin approximation of (E, f.) as follows: us = uly,,) with § = d(n) = 1>0

such that Ty (us) € W, () for each ¢ and

(VIL.4.42) us — u a.e. in )

(VIL.4.43) VTi(us) = VT (u) weakly—(*) in Ly (€;R?),
(VI1.4.44) VTi(us) — VT (u) weakly in L'(Q; R?),

Step 2. In order to obtain (VII.4.41)) we show

(VI1.4.45) lim s$1p L a(x,VTi(u.)) - VI (u.) dz < L oy, - VTi(u)de.

To this end we fix k,1 > 0, take ¢ = hy(us)(Ti(ue) — Ti(us)) as a test function in

and obtain:
L T1je(Be(, Tyye(ue))) [Pa(ue)(Tio(ue) — Ti(us))] d

+ f a(x,Vu.) -V [h(u) (T (us) — T (us))] de
(VII.4.46) f
+ L F(The(ue)) - V [hiue) (Ti(ue) — Ti(us))] da

_ f Ty (f) [ () (Ti(2) — Ti(ug))]
We denote by

0 1 2 3
[e,é + 15,5 + Iz—:,é = [5,6'

First we focus on easier terms - I%5, I2; and I25. As

Iy = L Ty je(Be(a, T (ue))) [ (ue) (Ti(ue) — Ti(us))] da

for £ > 0 small enough, using (VII.4.36]), (VIL.1.5), the Lebesgue dominated conver-
gence theorem and the property (VII.4.42)) we get

lim lim I?; =
6—0e—0 7

Let us write
2 21 2,2
I€,5 - [E,é + Ie,é’
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where
= | ) D) ~ T de
Y= | PO00) - Vuchi() (Tufud) = Tilus)) do.
For € > 0 small enough we have

2 = | P (w0) - V() = Tl de

therefore by (VIL.4.36)), (VII.4.37) and (VII.4.44) it follows that

c e 121
lim lim /25 = 0.
0—0e—0 ’

Now let us write

Tl+1(us)
122 = L div < J F(r)h(r) dr) (T(u2) — Te(us)) da,

0

hence from Gauss-Green theorem for Sobolev functions it follows that

gi--| j( () dr - 9 (Ty(ue) — Ta(ug)) da,

and therefore we also get

llmhmIQ? =0

d—0e—0

from (VIT4.36), (VIT4.37) and (VIL.4.43).

Moreover, since

[ () (T (ue) — Ti(us))| < 2k

and |[T1/:(f)] < |f| a.e. in Q, by (VIL.4.30), the Lebesgue dominated convergence
theorem and (VII.4.42)) it follows that

lim lim 135 = 0.
0—0e—0

Finally we concentrate on the most difficult term 17 ;.
I€1 = a €, VUE Vhl(ug) [(Tk(ug) - Tk(U5))] dx

+ | a(x,Vu,) - h(u:)V|Ti(u:) — T (us)] dz

5> b
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Applying (VII1.4.32) we infer

I
sup sup |5
0 e€(0,1]

= sup sup f a(x, VTi(ue)) - VI (ue)| [(Te(ue) — Ti(us))] [ da
0 ee(0,1] J{l<|ue|<l+1}

< sup sup 2k | a(z, VT (u.) - VT (u.) da
d e€(0,1] {I<]ue|<l+1}

< 2ky(CLTY)
therefore

(VI1.4.47) lim sup sup |I15] = 0.
I=0 § ce01]

Then the above considerations for (VII.4.46|) provide

(VIL4.48)
lim sup lim sup lim sup f a(z, VTo(u) - ha(u)V(Th(u2) — Ty(us)) d < 0.
l—0o0 d—0 e—0 (9]
Note that for { > k
(VIL.4.49)
f alz, VTi(u.)) - V(Th(u.) — Ty(us)) de — f hu(u)a(z, 0) - VTy(ug) da
Q {luc|>1}

_ L a(z, VTi(u)) - hi(u)V (Te(us) — To(ug)) da.

Let us now concentrate on the second term of (VII.4.49)) and notice that
ﬂ{\u5|>l} = X weaklyf* in LOO(Q),

where x € L®(Q) and x € sign™(|u.| — 1) a.e. in Q. As (VIL4.34) holds and A, is
bounded, a(z,0) € Ly+(Q;R?) = Ey+(Q; R?Y) and, for fixed §, VT (us) € L®(Q; RY),

we obtain

lim hi(us)a(z,0) - VI (us)dr = L xhi(w)a(z,0) - VT (us) de.

0 Jjuel>)
Then by (VIL.4.43) and since xh;(u)a(z,0) € Ey(Q; R?) we get

i | hu(w)a(a.0) - VT (us) de - L Yhu(u)a(z, 0) - VTy(u) de.

6—0

As x = 0 on the set {|u| < [}, the right-hand side in the above vanishes.

Since VT (us) € L*(2;R?), we can now combine (VIL.4.48) with (VI1.4.49) and
(VIT.2.45)

pass to the limit with ¢ — 0 and next with § — 0 in order to obtain
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Step 3. Since a(x,-) is monotone we have

f alz, VTi(u.)) - VTik(u) de
(VI1.4.50) @

> f a(z, VTi(u)) - Cd + f a(r,¢) - (VTx(uz) — ¢) da

for ¢ € L®(Q;RY). Note that a(x, ) € Ep«(;R?).
Letting ¢ — 0 in (VIL.4.50) and using (VIL.4.40), (VII.4.38)) and (VII.4.45) we

achieve

(VIL4.51) L(a(m, ¢)—ag)- (¢ — VTi(u))dz = 0.

Then in the same way as in the previous section we will use the monotonicity trick
in order to obtain that

oy = a(z, VIi(u)) ae. in Q.
U

Remark VII.4.5. If a(z,&) is strictly monotone, from (VII.4.48)) and (VII.4.49)

we can deduce the convergence of VT (u.) to VT (u) a.e. on Q for e — 0. More
precisely, by the above considerations it can be shown the a.e. convergence

(VIL.4.52) a(x,VTi(u.)) — a(z,VTi(u)) - V(Ti(u:) — Tp(u)) — 0

when ¢ — 0. For more details we refer the reader to the proof of Lemma 3.2 in
[72] (based on Young measures) or to the proof of Lemma 4.1 in [I31] (based on
classical arguments as in [36]).

Moreover, proceeding step by step as in [72, Lemma 3.2] or [131], Lemma 4.1],
in the strictly monotone case, it can be shown that

VT (ue) 2> VT, (u) in modular in Ly (Q: RY)
and
a(x, VTk(ua))£> Va(z, Ti(u)) in modular in L+ (Q;RY).

VII.4.5. Renormalized solutions to (E, f)) with f € L'. Now we will show
existence of the renormalized solution and finish the proof of Theorem [VII.3.1l From
the Galerkin approximation of (£, f.)) again we can choose a sequence us = ULy

with § = §(n) = £ > 0 such that

(VIL.4.53) us — u a.e. in €,
(VIL4.54) VTi(us) = VT (u) weakly—(*) in Ly (Q;RY),
(VIL.4.55) Vh(us) = Vh(u) weakly—(*) in L;(Q;R%)

for all h e C}{Q) as § — 0.
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Testing
T /e (B (2, Th e (ue))) — div (a(:z:, Vu.) + F(Tl/s(ug))) =T1.(f)

by hi(ue)h(us)d, where ¢ € Wy ™(Q), h € CHQ) and h; is defined by (VIL2.1) we
get

L T e (B, Toye(ue))) huue) i (us)d da + L a(z, Vue) - V [hi(ue)h(us)g] dx

¥ f F(Ty () -V [hu(u)h(us)] da = f Ty (f) [ () h(us)g]

and we denote the above the above equality by

0 1 2 13
s+ 1os+ 125 =125,

£

Note that in [ 27511 the term wu, can be replaced by T}, 1(u.). For fixed [, the sequence
{(Be(x, T4 1(ue)) }eso is a.e. bounded in © by max(8°(x,l + 1), —%(z, —1 — 1)) and,
by (VIL.1.5), this function is in L'(Q). It follows that there exists b; such that

(VIL.4.56) Bo(, (Tiy1(u.))) — by weakly in L'(€2) for fixed | € R.
Moreover we also have
Th/e(B:(-s Ti1(ue))) — by weakly in L'(2) for fixed [ € R.

Note that hj(u:)h(us)¢ is bounded uniformly (with respect to ¢ > 0) in L*(f2),

hence using (VII1.4.34) and the Egorov theorem applied to {h;(u.)}.~o, combining
this with uniform integrability of {T3/.(8-(x, T1/-(uc)))hi(ue) h(us)d}e~0, We obtain

.
lim s, = | bih(u)h(us)pdz =: I),.
e JO

Now the Lebesgue dominated convergence theorem provides

.
llsim I3, = | bih(u)h(u)pda = I}

—0 JQ

Since there exists m > 0 such that h has compact support in [—m, m], for all [ > m
we obtain

I = j bih(u)g dz.
Q
We continue the investigation of llirn I? in Section [VII.4.6|
—0
Observe that

s = L a(x,VT.1(u:)) - Vh(ue)h(us)pdx

(VIL4.57)
+ f a(x, VTii1(ue))h(us) - V[h(us)o] de =: ];’il + Ial”;l,
Q

where

(VIL4.58)
sup L] < |l |l 1e(@) sup J |a(z, Vi1 (ue)) - Vi (ue)| d.
{I<|ue|<l+1}

€(0,1] €€(0,1]
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Using Corollary [VII.4.3[ from (VII.4.58]) it follows that

(VIL.4.59) lim sup lim sup |I€1”51J| = 0.

l—o0 § e—0

By (VII.4.28)), (VIL.4.39) and Lemma it follows that a(z, VT 1 (u.)) —
a(r, VT (u)) in LY(Q;RY). Moreover, hj(u.) — hy(u) a.e. in Q, |y(u.)| < 1 and
V(h(us)p) € L®(Q;RY). Applying the Egorov theorem to {h;(u.)}.~0 and using
the uniform integrability of the sequence {a(x, VT +1(us))hi(u.) - V[h(us)p]}eso it
follows that

(VIL4.60) lim 112, = f (2, Vi1 () () ((ug)) dar =: 112
Q

e—0

Since a(z, VT.1(u))hi(u) € Eys«(Q;R?), using (VIL.4.55) we can pass to the limit
with 6 — 0 and obtain

6—0

(VILA61) lim 112 = JQ a(, VT () he(w)V (h(w)$) do =: T2

For [ > m, where m is such that supp h < [-m, m], from (VIL.4.61) we get
e L a(z, Vi)V (h(u)o) dz.

For ¢ such that 1/e > [ 4+ 1 we have

Py = | FTiaw) - Viu)h(us)ods
(VI1.4.62) ¢

+ J F(Ti1(u2))hy(ue) - V[h(us)o] de =: If;(s{l + Ifﬁl.
Q

Since VTi11(u:) — VTiyi(u) weakly in L'+7(Q;RY) and as F(Tjy(u.))h)(u:) —
F(Ti 1 (w)Rh)(u) in LP(;RY) for p = (1 + v)' we have

lim Iflsl,z =1lim | F(Ty1(u))hy(ue) VT (ue)h(us)d dx
Q

e—0 = e—0

_ LF(TM<u>>h;<u>vm1<u>h<ua>¢dx-

By Lebesgue dominated convergence theorem

(VIT.4.63) lim lim 1%, = J F (T2 () )V Ty (1) (1) ot
Q

0—0e—0

Choosing m > 0 such that supph < [—-m,m], T;41 can be replaced by T, in
(VIL4.63) and since hj(u) = hj(T,,(uw)) = 0 for [ +1 > m it follows that

(lsimlin%lf’;l =0forl>m—1.
50e—0 &%

Since F'(T}1(+))h(+) is uniformly bounded, the a.e. convergence of {u.}.~o and
the Vitali lemma provide that F(Tj,1(u.))hi(u.) — F(Ty 1 (u))hy(u) in LP(Q;R?)
for any p € [1, 20), thus
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lim 122, = L F(Thor (w)ha(w) - V[ (ug)6] de.

e—0

As V[h(us)p] = V[h(u)p] in Ly (;R?) and F is locally Lipschitz continuous, we
find that

(VIL4.64) lim i 127, = J F(Thor (w)hu(w) - V[h(u)e] da.
—0e— 0
Again, for m > 0 such that supph c |[-m,m], T;y1 can be replaced by T, in
(VIL4.64) and hy(u) = h(T(u)) = 1 for [ > m. Rewriting (VII.4.64)) we obtain
(lslr% 111% [E’“ J F(u (u)p] dx for [ > m.

Applying the Lebesgue dominated convergence theorem we get

lim lim lim /25, = lim lim lim Tl/e(f)hl(us)h(u(;w dz = f fh{u)pdz.
Q

l—00 6—0e—0 l—00 6—0e—0

VII1.4.6. Subdifferential argument. Since §(z,-) is maximal monotone for
almost all x € €, there exists j : 2 x R — R, such that

B(x,r) = 0.j(x,r) for all r € R, a.e. in .
For 0 < e <1 let us define 5. : 2 x R - R by

| . 1 ,
]5(37,7’) - Eelﬂg{j(xvs) + 2_8|T o S| }

According to [28], j. has the following properties:

i.) je is a Carathéodory function.
ii.) For any 0 < ¢ < 1, je(z,r) is convex and differentiable with respect to
r € R, moreover

Orje(x, 1) = Be(x,r) for all r e R and any 0 < ¢ < 1 and a.e. in .

i13.) je(z,7) 1 j(x,r) pointwise in R as e — 0 and a.e. in €.

From ii.) it follows that

(VII465> jg(l', 7“) = jg(l', Tl/e(ue)) + (7“ - Tl/a(us))ﬁs(x; Tl/e(us))

holds for all » € R and almost everywhere in 2. Let E < () be an arbitrary
measurable set and 1g its characteristic function. We fix ¢y > 0. Multiplying
(VIL.4.65) by hi(u.)1g, integrating over Q2 and using ii.), we obtain

(VIL.4.66)

Lm, i) do > f o, Ty () ) + (= T () () B, T ()

for all r € R and all 0 < ¢ < min(e, ;). Passing to the limit with € — 0, and then

with g — 0 in (VII.4.66)) we obtain from (VII.4.66) and by (VII.4.56))
(VIL4.67) Jjlx,r) = jlx,u) + b(r —u)
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for all r € R almost everywhere in {|u| < [} and therefore b, € B(x,u) a.e. in {|u] < 1}.
Note that b, = b, a.e. on {|u| < m} for all | = m > 0. Moreover u is measurable
and finite a.e. in Q. Thus the function b : Q@ — R defined by b = b; on {|u| < I} is
well-defined and measurable with b € 8(z,u) a.e. in Q. Next, we use hy(ue) 1T} (ue)
as a test function in m Applying Corollary [VII.4.3 m to the diffusion term the
Stokes theorem to the convection term and neglecting nonnegative terms we can
pass to the limit with ¢ — 0 and obtain

k

According to (VIL.4.67)), bsigng (ue)hi(u) = |bi|hy (u) a.e. in Q. Moreover, |b;|h;(u) —
|b| a.e. in € for [ — co. Therefore, passing to the limit with & — oo in (VII.4.68))
and using the Fatou lemma we find

Q

(VIL.4.69) f bl dz < | f] 1),
Q

and be L1(Q).

VII.4.7. Conclusion of Theorem [VII.3.1l Gathering all convergence results
from Subsection it follows finally that u satisfies
(VILA.70)
j (bih(u)é + (a(z, Vu) + F(u))V(h(u)$)) dz + lim sup lim sup I (” f fh(u)pdz
[9) 6—0 e—0

foralll > m—1> 0, ¢ € Wy *(Q) and h € C}(R) such that supp h < [—m, m], where

I is defined in (VIL.4.57). Thanks to (VI.4.59) and (VII.4.69) we can pass to the
limit in (VIL.4.70)) and obtain (VIL.2.6 for all o € Wy OO(Q) and arbitrary h € C1(R).

Moreover, from (VIL4.34) and it follows that (u, b) satisfies (R1). From
(VII.4.38)) and (VII.4.39) we have Tk( ) e VAL®(Q) and a(z, VTi(u)) € Ly (Q; RY)
for all £ > 0. Using that the gradients of functions in V' can be approximated by
smooth functions in the weak-+ topology of Ly (Q;R?) we finally arrive at

(VILATI) L bh(w) de + (alz, V) + F(u)V (h(w)d) de = L Fh(u)pda

for all ¢ € V. n L®(Q) and h € C}(R), hence (u,b) satisfies (R2). Finally, from
(VIIL.4.32)) with classical arguments we obtain (R3) and the proof of Theorem|VIIL.3.1

is complete.

Remark VII.4.6. The assumption that the function F' is locally Lipschitz contin-
uous is not crucial. In the proof of Theorem only the continuity of F' is
needed. However, the uniqueness of renormalized solutions is an open problem if F
is only continuous. If a = a(&) does not depend on the space variable z and F' is
only continuous, uniqueness can be proved by the method of doubling variables.
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VII.5. Proof of Theorem - Uniqueness
We will need the following

Lemma VIL5.1. For f, fe LY Q) let (u,b), (it,b) be the renormalized solutions to
(E, f) and (E, f) respectively. Then

(VIL5.1) J (b — b)signd (u — @) dz < J (f — f)signg (u — @) da.
Q Q

PROOF. The proof follows the same lines as in the classical L? and LP() setting
(see [129]). For 6 > 0, let H; be a Lipschitz approximation of the signj -function.
Since (u, b), (@,b) are renormalized solutions, it follows that Tj,(u), Ti41 () € V A
L*(Q) for all I > 0. Hence Hy (T741(u) —Ti41(2)) is in VA L®(Q) for all §,1 > 0 and
therefore is an admissible test function. Now, we choose Hj (Tj1(u) — Tj+1(w)) as
a test function in the renormalized formulation with h = h; for (u,b) and for (i, b)
respectively. Subtracting the resulting equalities, we obtain

(VIL5.2) s+ s+ Ils + I's + 1D = I,
and
1l = L (bhu(u) — Bhu(@)) Hy (Tio (0) — Thor (2) dlr,
7 = L (R(w)a(z, Vu) - Vu — H(@)a(z, Vi) - V) Hi (Ti (u) — T () da,
= 5] (utate, Vo) = (@ate. V) - V(T (0) =~ Tia @) do
i = | R @ - Vu= B@P@) - VO H (Tia(w) = Trea(@) de.
13 = % L (hu(w)F(w) — (@) F(@)) - V (Toss (w) — Tran (@) da,
= | () = Fu@) By (T (0) = T (0) o,

where K := {0 < Tj1(u) — Tj41(a) < 0}. Using the same arguments as in [129],
i.e. neglecting the nonnegative part of Il% and using that F' is locally Lipschitz

continuous, we can pass to the limit with 6 — 0. Using the energy dissipation
condition (R3) we can pass to the limit with [ — o0 and obtain (VIL5.1)). O

Now we are in the position to give the proof of Theorem [VII.3.2;
Assuming f = f, from Lemma [VIL.5.1f we get

(VIL.5.3) J (b — b)signg (u — 1) dz <0,
Q

hence (b—b)signg (u—1a) = 0 almost everywhere in Q. Now, let us write Q = Q;08y,
where Q= {x € Q: signg (u(z) — a(z)) = 0}, Qy:={x e Q: (b(x) —b(x)) = 0}.
Since r — [(x,7) is strictly increasing for a.e. x € ), we can define the function
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B;1: R — R such that 8,'(r) = s for all (r,s) € R? satisfying that r € 5(z, s) for
almost every = € Q. For a.e. € Qy we have b(x) = b(x), hence u(z) = 8,1 (b(z)) =
B:Y(b(x)) = a(x). Therefore, u(x) = a(z) a.e. in Qy and signi (u — @) = 0 a.e.
in €. Interchanging the roles of v and @ and repeating the arguments, we get
signd (& —u) = 0 a.e. in Q and we finally arrive at « = @ a.e. in Q. Now, we
write the renormalized formulation for (u,b) and (i, b) respectively. Subtracting the

resulting equalities, we obtain

L(b —bh(u)pdr =0

for all h € C}(R) and all p € D(Q). Choosing h(u) = hy(u) and passing to the limit

with [ — oo we obtain that b = b a.e. in €.

VII.6. Proof of Proposition - Weak solutions
The proof of Proposition [VIL.3.3| follows along the same lines as in [129].

From Remark [VII.2.6|it follows that it suffices to prove u e L*(2):

Note that for e,k > 0, h(u)iT.(u — Tj(u)) is an admissible test function in
VII.2.6). Neglecting positive terms and passing to the limit with [ — oo, we use
VII.1.1) to obtain
(VIL6.1)

1 —
_J caM (2, Vu)de < (f”d (qb(k:))(d n/d
{k<|ul<k+e}

g

¢(k) — o(k +¢) >
laolo )

3

where ¢(k) := [{|u| > k}| for £ > 0. Now we apply similar arguments as in [17].
Continuous embedding of W' (Q) into L¥@=1(Q) and the Holder inequality provide
that

(VIL6.2)

1 k) — ok + )\ @7 (1 T4
T~ Te(w) | o < (¢< ) = o )) (_ f Tl dm) |
eCua 1 {h<|u|<k-+e}

€ 9

where C; > 0 is the constant coming from the Sobolev embedding. From ([VII.1.4])
it follows that
1

(VIL.6.3) - J [Vul"™ dx <
€ Nk<|u|<k+e}

1

CCLE

f caM (z,Vu) dx,
(k<|u|<k+e}

hence from (VIL.6.1)), (VIL.6.2)) and (VII.6.3) we deduce

1
o T = T, <

(VILG6.4) 1 |
(M = ))H (i (f la ((y) v 4 G Z ok +e) w)) o

€ 9
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From ([VIL.6.4) and Young’s inequality with a > 0 it follows that
(VIL.6.5)

L (v _ (@-vja\ _ Sk) = ¢k + )
g O+ N = B (U a (000 ) Pl <o,
where

1 |aolls ot
C = + > 0.
(04(1+V)'(1 +v) cco 14+v

The mapping (0,00) 3 k — ¢(k) is non-increasing and therefore of bounded vari-

ation, hence it is differentiable almost everywhere on (0,00) with ¢’ € L{ (0, 0).

Since it is also continuous from the right, we can pass to the limit with ¢ — 0 in

(VIL.6.5) to find
(VIL6.6) C"(p(R) 1 4 ¢/ (k) <0
for almost every k > 0 and a > 0 chosen so small that

C” 1 a1+y
- (C’dC (1 +v)Cecq ”fd> =0

Now, the conclusion of the proof follows by contradiction. We assume that ¢(k) > 0
for each £k > 0. For k > 0 fixed, we choose ky < k. Multiplying (VIL.6.6) by

é(@b(k’))*(d*l/d) it follows that

d

(VIL6.7) %ZC” + o ((p(s)™) <0

for almost all s € (ko,k). The left hand side of (VIL6.7)) is in L'(ko, k), hence
we integrate (VIL.6.7)) over (ko, k). Moreover, since ¢ is non-increasing, integrating
(VIL.6.7) over the interval (kg, k) we get

(VIL6.8) (p(k)) M < pko)* + éc"(k;o — k).

Thanks to the second term on the right-hand side of (VII.6.8|), we conclude that
there exists k; > ko such that (¢(k))? < 0 for all k > k; > ky. Therefore ¢(k) =0
for all £k > ki > k¢ and the assertion follows.
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