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Abstract

Our purpose is to investigate mathematical properties of some systems of nonlinear
partial differential equations where the nonlinear term is monotone and its behaviour
- coercivity/growth conditions are given with the help of some general convex function
defining Orlicz spaces.
Our first result is the existence of weak solutions to unsteady flows of non-Newtonian
incompressible nonhomogeneous (with non-constant density) fluids with nonstandard
growth conditions of the stress tensor. We are motivated by the problem of anisotropic
behaviour of fluids which are also characterised by rapid shear thickness. Since we are
interested in flows with the rheology more general than power-law-type, we describe
the growth conditions with the help of an x–dependent convex function and formulate
our problem in generalized Orlicz (Musielak-Orlicz) spaces.
As a second result we give a proof of the existence of weak solutions to the problem of
the motion of one or several nonhomogenous rigid bodies immersed in a homogenous
non-Newtonian fluid. The nonlinear viscous term in the equation is described with the
help of a general convex function defining isotropic Orlicz spaces. The main ingredient
of the proof is convergence of the nonlinear term achieved with the help of the pressure
localisation method.
The third result concerns the existence of weak solutions to the generalized Stokes
system with the nonlinear term having growth conditions prescribed by an anisotropic
N�function. Our main interest is directed to relaxing the assumptions on the
N�function and in particular to capture the shear thinning fluids with rheology close
to linear. Additionally, for the purpose of the existence proof, a version of the Sobolev–
Korn inequality in Orlicz spaces is proved.
Last but not least, we study also a general class of nonlinear elliptic problems, where
the given right-hand side belongs only to the L1 space. Moreover the vector field is
monotone with respect to the second variable and satisfies a non-standard growth con-
dition described by an x-dependent convex function that generalizes both Lppxq and
classical Orlicz settings. Using truncation techniques and a generalized Minty method
in the functional setting of non reflexive spaces we prove existence of renormalized
solutions for general L1-data. Under an additional strict monotonicity assumption
uniqueness of the renormalized solution is established. Sufficient conditions are speci-
fied which guarantee that the renormalized solution is already a weak solution to the
problem.

3





Streszczenie

Naszym celem jest zbadanie matematycznych własności pewnych układów nieli-
nowych równań różniczkowych cząstkowych, dla których człon nielinowy jest mono-
toniczny a jego warunki wzrostu i koercytywności zadane są za pomocą pewnej ogólnej
funkcji wypukłej, definiującej przestrzenie Orlicza.
Naszym pierwszym rezultatem jest istnienie słabych rozwiązań dla niestacjonarnego
przepływu nieściśliwej, niejednorodnej (gęstość nie jest stała) cieczy nienewtonowskiej
z niestandardowymi warunkami wzrostu dla tensora naprężeń. Motywacją do badań
jest problem anizotropowego zachowania płynów charakteryzujących się wzrostem lep-
kości wraz ze wzrostem wartości naprężenia. Jesteśmy zainteresowani reologią ogól-
niejszą niż typu potęgowego, dlatego zadajemy warunki wzrostu za pomocą wypukłej
funkcji zależnej od x i formułujemy problem w uogólnionych przestrzeniach Orlicza
(Musielaka-Orlicza).
Jako kolejny rezultat przedstawiamy dowód istnienia słabych rozwiązań dla problemu
ruchu jednego lub kilku niejednorodnych ciał sztywnych zanurzonych w jednorodnej
nieściśliwej cieczy nienewtonowskiej. Nieliniowy człon lepkościowy w równaniu jest
opisany przy wykorzystaniu ogólnej funkcji wypukłej definiującej izotropowe przestrze-
nie Orlicza. Główna część dowodu polega na wykazaniu zbieżności członu nielinowego,
co osiągamy za pomocą metody lokalnego ciśnienia.
Trzecia część badań dotyczy istnienia słabych rozwiązań dla uogólnionego systemu
Stokesa z nielinowym członem o warunkach wzrostu opisanych przez anizotropową N–
funkcję. Nasza uwaga skierowana jest na osłabienie założeń na N–funkcję, ponieważ
chcielibyśmy uwzględnić w naszych badaniach płyny nienewtonowskie, których lepkość
maleje pod wpływem ścinania i których reologia zbliżona jest do liniowej. Ponadto, w
celu przeprowadzenia dowodu, wyprowadzamy nierówność typu Korna-Sobolewa dla
przestrzeni Orlicza.
W ostatniej części pracy studiujemy ogólną klasę nieliniowych problemów elipty-
cznych, gdzie dana prawa strona należy jedynie do przestrzeni L1. Co więcej, pole
wektorowe jest monotoniczne względem drugiej zmiennej i spełnia niestandardowe
warunki wzrostu zadane przez, zależną od x, funkcję wypukłą. Tak postawiony
problem uogólnia zarówno rozważania dla zagadnienia sformułowanego w przestrzeni
Lppxq jak i w klasycznych przestrzeniach Orlicza. Wykorzystując metodę obcięć oraz
”trik Minty’iego” uogólniony dla przestrzeni nierefleksywnych udowadniamy istnienie
rozwiązań zrenormalizowanych z danymi w L1. Przy dodatkowym założeniu ścisłej
monotoniczności wykazujemy również jednoznaczność rozwiązań. Podajemy także
warunki gwarantujące, że rozwiązanie zrenormalizoane jest słabym rozwiązaniem pro-
blemu.

5





Acknowledgment

I would like to emphasise my gratitude to two people without whom this
work would not come into being – to my parents. Thank you for your support,
your love you give us and which is between both of you. I am also thankful to
Przemek that I have met him on my way and that he is here, next to me.
I appreciate Piotr Gwiazda – my supervisor – his scientific and personal sup-
port, his open mind and patience, that he always believes in my abilities and
takes care of all the aspects of my scientific development.
I would also like to thank Šarka Nečasova and Eduard Feireisl for their help in
preparing Chapter V, scientific support and fruitful discussions during my stay
at the Academy of Sciences of the Czech Republic in Prague. For the coop-
eration on Chapter VII I would like to thank Petra Wittbold and Aleksandra
Zimmermann. I am grateful also to Agnieszka Świerczewska-Gwiazda for coop-
eration on Chapter VI and her scientific support during my studies.
Finally, I would like to thank all the friends I met on my scientific path. I will
not mention them by name as the list would be long.
I was supported by Foundation for Polish Science as a Ph.D student in the Inter-
national Ph.D. Projects Programme operated within the Innovative Economy
Operational Programme 2007-2013 (Ph.D. Programme: Mathematical Methods
in Natural Sciences) and by grant no 6113/B/H03/2011/40 of National Science
Centre.





Podziękowania

Chciałabym podziękować w sposób szczególny osobom, bez których ta praca
nigdy by nie powstała - moim rodzicom. Za ich nieustające wsparcie, miłość,
którą nam dają i ofiarowują sobie nawzajem.
Dziękuję Przemkowi za to, że spotkałam go na swojej drodze i za to że jest tu
obok mnie.
Dziękuję swojemu promotorowi - Piotrowi Gwieździe za nieustanną wiarę w
moje możliwości, wsparcie naukowe i osobiste, za zawsze otwarty umysł i dużą
cierpliwość oraz opiekę nad moim naukowym rozwojem.
Wyrazy wdzięczności kieruję również do Šarki Nečasovej i Eduarda Feireisla za
pomoc w tworzeniu rozdziału V, wsparcie naukowe i owocne dyskusje podczas
mojego pobytu w Czeskiej Akademii Nauk w Pradze. Za współpracę nad os-
tatnim rozdziałem pracy dziękuję Petrze Wittbold i Aleksandrze Zimmermann.
Za współpracę nad VI rozdziałem oraz czujne oko nad całym doktoratem chcia-
łabym podziękować Agnieszce Świerczewskiej-Gwieździe.
Dziękuję również wszystkim przyjaciołom, których spotkałam na swojej
naukowej ścieżce. Nie wymienię ich tutaj z imienia, ponieważ lista byłaby zbyt
długa.
Na koniec dziękuję Fundacji Nauki Polskiej za wsparcie, które otrzymałam
jako stypendystka w ramach międzynarodowych projektów doktoranckich real-
izowanego ze środków funduszy europejskich Programu Operacyjnego Innowa-
cyjna Gospodarka 2007-2013 oraz Narodowemu Centrum Nauki za wsparcie na
realizację projektu badawczego w postaci grantu nr 6113/B/H03/2011/40.





Contents

Chapter I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter II. A few words about notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter III. Orlicz spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
III.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
III.2. Properties and useful facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter IV. Existence result for unsteady flows of nonhomogeneous non-
Newtonian fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

IV.1. Introduction and formulation of the problem . . . . . . . . . . . . . . . . . . 30
IV.2. Proof of Theorem IV.1.2 - Existence of weak solutions . . . . . . . . . . 36

Chapter V. Existence result for the motion of several rigid bodies in an
incompressible non-Newtonian fluid . . . . . . . . . . . . . . . . . . . . . 54

V.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
V.2. Preliminaries, weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
V.3. Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
V.4. Approximate problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
V.5. Artificial viscosity limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
V.6. The limit passage δ Ñ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter VI. Generalized Stokes system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
VI.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
VI.2. Variant of the Sobolev-Korn inequality . . . . . . . . . . . . . . . . . . . . . . . 85
VI.3. Domains and closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
VI.4. Existence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter VII. Renormalized solutions of nonlinear elliptic problems . . . . . . . 103
VII.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
VII.2. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
VII.3. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
VII.4. Proof of Theorem VII.3.1 - Existence . . . . . . . . . . . . . . . . . . . . . . . 109
VII.5. Proof of Theorem VII.3.2 - Uniqueness . . . . . . . . . . . . . . . . . . . . . . 125
VII.6. Proof of Proposition VII.3.3 - Weak solutions . . . . . . . . . . . . . . . . . 126

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

11



CHAPTER I

Introduction

Our main goal is to contribute to the mathematical theory of fluid mechanics
and abstract theory of renormalized solutions to elliptic equations. In particular
we are interested in existence of different types of solutions to nonlinear partial
differential equations. The studies will be undertaken for the case of rather general
growth conditions for the highest order term. This formulation requires a general
framework for the function space setting. The problems will be considered in Orlicz
and Musielak-Orlicz spaces. The level of generality of our considerations will have a
crucial significance on the applied methods. Hence we will investigate isotropic and
anisotropic cases as well as space homogeneous and nonhomogeneous cases of growth
conditions. This is a natural generalization of the numerous recent studies appearing
on Lebesgue, generalized Lebesgue and Sobolev spaces, which may be considered as
a particular case of our approach. Together with the advance in methods for partial
differential equations we will develop the theory of function spaces. The framework
of Sobolev-Orlicz spaces is well developed only in the case of classical Orlicz spaces,
namely defined by an N –function (a continuous, convex, superlinear, nonnegative
function, which will be defined in Chapter III) dependent on the absolute value of
the vector and independent of the space variable x, usually considered under some
additional condition on the growth of anN –function (we mean here the so-called ∆2–
conditions on M or on the Fenchel-Young conjugate M�, which we define precisely
later). This is the analytical basis which can be used also in other fields applying
the Orlicz space functional setting like variational inequalities, homogenization of
elliptic and parabolic equations and many others. One can distinguish various cases
of N –functions:


 isotropic N –function, i.e. M : R� Ñ R�

 anisotropic N –function, namely dependent on the whole vector
M : Rn Ñ R�,


 inhomogeneous in space, namely x dependent N –function
M : Ω� Rn Ñ R�,


 rapidly or slowly growing N –functions (lack of the ∆2–assumption on M
or on the conjugate M�).

Extending the analytical tool in these directions is not only beneficial to the top-
ics considered in this thesis but can also contribute to other problems mentioned
above, where the phenomena of anisotropy and/or space nonhomogeneity may be
of an interest. It is important to underline that in the case when an N –function
is isotropic, homogeneous, both M and M� satisfy the ∆2–condition, then most of
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CHAPTER I. INTRODUCTION

the properties, even such fine properties like continuity of singular Riesz operators
or Marcinkiewicz interpolation theorem follow analogously to the case of Lp spaces,
cf. [29].

We consider a large class of problems capturing flows of non-Newtonian fluids
with non-standard rheology. We want to include the phenomena of viscosity chang-
ing under various stimuli like shear rate, magnetic or electric field. This forces us to
use space nonhomogeneous anisotropic Orlicz spaces. Our investigations are directed
to existence and properties of solutions.

Substantial part of our considerations is motivated by a significant shear thicken-
ing phenomenon. Therefore we want to investigate the processes where the growth
of the viscous stress tensor is faster than polynomial. Hence N –function defining a
space does not satisfy the ∆2–condition.

Within the thesis we consider the existence of weak solutions to four problems.
At the beginning our attention is directed to incompressible fluids with non-constant
density. We include the case of different growth of the stress tensor in various
directions of the shear stress and possible dependence on some outer field.

The second problem concerns the motion of rigid bodies in shear thickening fluid.
The bodies have a nonhomogeneous structure and are immersed in a homogenous
incompressible fluid. Omitting in this case the assumption of ∆2–conditions has
physical motivations. The requirement for avoiding collisions is a high enough in-
tegrability of the shear stress (at least in L4). Hence it is natural to consider an
N –function of high growth e.g. exponential.

The presence of convective term in both of the mentioned problems allowed us
to consider only shear thickening fluids. If we assume that the flow is slow, then it is
reasonable to neglect the convective term. Therefore we are able to investigate the
flow of shear thinning fluid described by a generalized Stokes system. The growth
of the viscous stress tensor can be close to linear and is prescribed by an anisotropic
N –function whose complementary does not satisfy the ∆2–condition.

Last but not least we concentrate on a general class of elliptic equations with
right hand side integrable only in L1 space. We extend the theory of renormalized
solutions to the setting of Orlicz spaces given by a nonhomogeneous anisotropic
N –function with non polynomial upper bound.

In order to give the reader better insight into the results we give here short
overview of the considered problems.

The main part of the thesis deals with a problem of the flow of a non-Newtonian
fluid with non-standard rheology. Therefore we consider materials whose properties
can be described not only by the dependence on constant viscosity. In our research
we take under consideration the fact that it can change significantly under vari-
ous stimuli like shear rate, magnetic or electric field. Our investigation concerns
existence and properties of solutions to systems of equations coming from fluid me-
chanics. We concentrate on the case of an incompressible fluid for which equations
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CHAPTER I. INTRODUCTION

can take the following form
Bt%� divxp%uq � 0 in p0, T q � Ω,

Btp%uq � divxp%ub uq � divxSSSpDDDuq �∇xp � %f in p0, T q � Ω,

divxu � 0 in p0, T q � Ω,

(I.0.1)

where u denotes the velocity field of a fluid, % - its density; p is a pressure; Ω is a
bounded domain in Rd with sufficiently smooth boundary; T   8; f is a given outer
force; DDDu � 1

2
p∇xu � ∇T

xuq is the symmetric part of the velocity field. The first
equation is the continuity equation, the second – momentum equation and the last
one stands for incompressibility condition. We assume no-slip boundary condition
(zero Dirichlet boundary condition).

In order to close the system we have to state the constitutive relation, rheology,
which describes the relation between SSS and DDDu. In our considerations we do not
want to assume that SSS has only polynomial-structure, i.e. SSS � pκ � |DDDu|qp�2DDDu or
SSS � pκ � |DDDu|2qpp�2q{2DDDu (where κ ¡ 0). Standard growth conditions of the stress
tensor, namely polynomial growth, see e.g. [58, 92]

|SSSpDDDuq| ¤ cp1� |DDDu|2qpp�2q{2|DDDu|
SSSpDDDuq : DDDu ¥ cp1� |DDDu|2qpp�2q{2|DDDu|2(I.0.2)

can not suffice to describe nonstandard behaviour of the fluid. Motivated by the
significant shear thickening phenomenon we want to investigate the processes where
the growth is faster than polynomial and possibly different in various directions
of the shear stress. Also the case of growth close to linear can be covered in this
way. A viscosity of the fluid is not assumed to be constant and can depend on
density and full symmetric part of the velocity gradient. Therefore we formulate the
growth conditions of the stress tensor using a general convex function M called an
N�function (the definitions of an N�function M and its complementary function
M� appear in Section III.1) similarly as in [72, 74, 75, 76, 78, 79, 131, 133,
134, 135]. Now we are able to describe the effect of rapidly shear thickening and
shear thinning fluids. Therefore we formulate growth/coercivity conditions in the
following way:

(I.0.3) SSSpx,DDDuq : DDDu ¥ c tMpx,DDDuq �M�px,SSSpx,DDDuqqu
where M is an N –function, and therefore a quite general convex function.

In classical case, i.e. with polynomial growth conditions, the proper space setting
is standard Lebesgue and Sobolev spaces. In our considerations condition (I.0.3)
forces us to use Orlicz, Orlicz-Sobolev spaces, defined by the N –function. We want
to emphasise that we do not want to assume that M satisfies the so-called ∆2–
condition. Therefore we lose a wide range of facilitating properties of function spaces
that one normally works with. Namely, if M does not satisfy the ∆2–condition then
our spaces are not reflexive, separable, smooth functions are not dense with respect
to the norm. The lack of such assumption is a reason of many delicate and deep
handicaps. Therefore we need to obtain the result using more sophisticated methods
than in the classical case.

14



CHAPTER I. INTRODUCTION

In Chapter IV we investigate the evolutionary equation for the flow of an incom-
pressible non-Newtonian fluid which can take the form of the system (I.0.1). The first
step of the proof of existence of a weak solution is the Galerikn approximation for the
considered problem and existence of an approximate solution. The main difficulty
then is to show the proper convergences in nonlinear terms. The result is achieved by
a monotonicity method adapted to non-reflexive spaces [131, 75] and the compen-
sated compactness method. We want here to extend the existence theory for flows
of non-Newtonian incompressible fluids to a more general class than polynomial
growth conditions by formulating the problem in Orlicz setting as in [72, 75, 131].
Moreover, we want to complete the theory the reader can find therein, by including
the continuity equation (IV.1.1)1 to the considered system and dependence of SSS on
density of the fluid (density is not assumed to be constant). Additionally we are
able to obtain better time regularity of solution than in [58, 59, 72, 75], namely in
a Nikolskii space. The existence of a weak solution accordant to Definition IV.1.1 is
stated in Theorem IV.1.2. Chapter IV is based on [133] by Wróblewska-Kamińska
and partially on methods and results from [131, 75].

Using the result mentioned above, in Chapter V we consider the problem of
motion of one or several nonhomogeneous rigid bodies immersed in a homogeneous
non-Newtonian fluid occupying a bounded domain. Therefore the fluid flow in the
system is of (I.0.1)-type which is completed with the equations describing the motion
of rigid bodies. We use here the fact, proved by Starovoitov, that two rigid objects
do not collide if they are immersed in a fluid of viscosity significantly increasing with
increasing shear rate. The method we use in order to solve the problem is, in the first
step, to replace the rigid object by a fluid of high viscosity becoming singular in the
limit. This idea was developed by Hoffman [80] and San Marin at al. [113]. Since
we consider an incompressible fluid, the existence and estimates for the pressure
function are not crucial from the point of existence of weak solutions. This is due
to the fact that in a weak formulation the pressure function disappears. In this case
we have to localise the problem only in the fluid part of the system. Therefore we
need to deliver the decomposition and local estimates also for the pressure function.
To this end we use the Riesz transform which in general is not continuous from
Orlicz space to itself (it is the case if the N –function and its complementary satisfy
the ∆2–condition). Therefore the space where the part of our pressure function is
regular is larger than the space containing the nonlinear viscous term. Moreover
we are not able to use theorems of Marcinkiewicz type and interpolation theory
in the same form as in Lebesgue or Sobolev spaces. For this reason the passage
in terms associated with the regular part of the pressure function is much more
demanding than in [56]. The result concerning existence of a weak solution to the
above problem is formulated in Theorem V.3.1. Chapter V is based on the result
achieved in [134, 135] by Wróblewska-Kamińska.

In the above two problems the presence of a convective term divpubuq enforces
at least polynomial growth of tensor SSS with respect to DDDu. With these assumptions
we are able to investigate only the case of shear thickening fluids. This motivates
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CHAPTER I. INTRODUCTION

us to consider the generalized Stokes system:

Btu� divxSSSpDDDuq �∇xp � f in p0, T q � Ω,

divxu � 0 in p0, T q � Ω.
(I.0.4)

In particular the considerations of the above problem, which the reader can find in
Chapter VI, allow us to investigate the case of shear thinning fluids, whose viscosity
decreases when the shear rate increases. Let us notice that if we assume that the flow
is slow, the density is constant and so the system stated in (I.0.1) can be reduced
to (I.0.4). The problem is considered in anisotropic Orlicz spaces. In the proof
we need to provide the type of the Korn-Sobolev inequality for anisotropic Orlicz
spaces when the ∆2–condition is not satisfied. We show also that the closure of
smooth functions with compact support with respect to two topologies is equal: the
convergence of symmetric gradients in modular and in weak star topology in Orlicz
space. Then we are able to give the formula for integration by parts. The existence
of a weak solution to the problem (I.0.4) is stated in Theorem VI.1.1. The result
of Chapter VI the reader can also find in [76] by Gwiazda, Świerczewska-Gwiazda
and Wróblewska-Kamińska.

The last part of our research, namely Chapter VII is addressed to the theory of
renormalized solutions to elliptic problems associated with the differential inclusion

βp�, uq � div pap�,∇uq � F puqq Q f,
where f P L1pΩq. The vector field ap�, �q is monotone in the second variable and sat-
isfies a non-standard growth condition described by an x-dependent convex function,
i.e.

(I.0.5) apx, ξq � ξ ¥ catM�px,apx, ξqq �Mpx, ξqu � a0pxq
for a.a. x P Ω and all ξ P Rd, where a0 is some nonnegative integrable function. The
above condition generalizes both Lppxq and classical Orlicz settings.

The concept of renormailzed solutions allows us to solve the problem of well-
posedness under very general assumptions which do not provide existence of weak
solutions. This notion was introduced by P.-L. Lions and DiPerna in [44] for the
study of the Boltzmann equation. The concept was also applied to fluid mechanics
models by P.-L. Lions, cf. [91] and plays a crucial role in existence and regularity
theory of systems capturing density dependent flows.

The studies will be undertaken for the case of rather general growth conditions
of the highest order nonlinear term. The results obtained in the frame of this thesis
generalize the existing theory for equations with only L1 integrable right-hand side.
Up to our knowledge, growth and coercivity conditions for nonlinear term are more
general than already known results. Namely we capture a wider class of operators by
stating the problem in nonhomogeneous anisotropic Orlicz spaces. This is a natural
generalization of numerous recent studies appearing on Lppxq spaces, which may be
considered as a particular case of our framework. Applying the methods of renormal-
ized solutions is crucial due to L1 terms appearing in the equations. Our main result
of this part, existence of a renormalized solution to (I.0.5) for any L1-data f , the
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CHAPTER I. INTRODUCTION

results on uniqueness of renormalized solutions (see Definition VII.2.3) and on exis-
tence of weak solutions (see Definition VII.2.1), are formulated in Theorem VII.3.1,
Theorem VII.3.2 and in Proposition VII.3.3 respectively. Chapter VII is based on
the joint work of Gwiazda, Wittbold, Wróblewska-Kamińska and Zimmermann [79].

For a detailed description of the above problems, the state of the art and moti-
vation we refer the reader to Chapters IV, V, VI, VII respectively.

In order to present some of well known results concerning application of Or-
licz space setting we recall some existing analytical results concerning the abstract
parabolic problems in non-separable Orlicz spaces with zero Dirichlet boundary
condition. Donaldson in [46] assumed that the nonlinear operator is an elliptic
second-order, monotone operator in divergence form. The growth and coercivity
conditions were more general than the standard growth conditions in Lp, namely
the N –function formulation was stated. Under the assumptions on the N�function
M : ξ2   Mp|ξ|q (i.e., ξ2 grows essentially less rapidly than Mp|ξ|q) and M� satis-
fies the ∆2�condition, existence result to parabolic equation was established. These
restrictions on the growth of M were abandoned in [50].

The review paper [97] by Mustonen summarises the monotone-like mappings
techniques in Orlicz and Orlicz–Sobolev spaces. The authors need essential mod-
ifications of such notions as: monotonicity, pseudomonotonicity, operators of type
pMq, pS�q, et al. The reason is that Orlicz–Sobolev spaces are not reflexive in gen-
eral. Moreover, the nonlinear differential operators in divergence form with standard
growth conditions are neither bounded nor everywhere defined.

One of the main problems in our considerations is that the 42–condition can
not be satisfied and we lose many facilitating properties. An interesting obstacle
here is the lack of the classical integration by parts formula, cf. [65, Section 4.1].
To extend it for the case of generalized Orlicz spaces we would essentially need that
C8�functions are dense in LMpQq and LMpQq � LMp0, T ;LMpΩqq. The first one
only holds if M satisfies the ∆2–condition. The second one is not the case in Orlicz
and generalized Orlicz spaces. We recall the proposition from [46] (although it is
stated for Orlicz spaces with M �Mp|ξξξ|q).
Proposition I.0.1. Let I be the time interval, Ω � Rd,M �Mp|ξ|q an N–function,
LMpI � Ωq, LMpI;LMpΩqq the Orlicz spaces on I � Ω and the vector valued Orlicz
space on I respectively. Then

LMpI � Ωq � LMpI;LMpΩqq,
if and only if there exist constants k0, k1 such that

(I.0.6) k0M
�1psqM�1prq ¤M�1psrq ¤ k1M

�1psqM�1prq
for every s ¥ 1{|I| and r ¥ 1{|Ω|.

One can conclude that (I.0.6) means thatM must be equivalent to some power p,
1   p   8. Hence, if (I.0.6) should hold, very strong assumptions must be satisfied
by M . Surely they would provide LMpQq to be separable and reflexive.
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CHAPTER II

A few words about notation

Within the whole thesis we will use the following notation: Ω stands for bounded
domain in Rd, p0, T q is a time interval and Q :� p0, T q � Ω.

The following notation for function spaces is introduced
DpΩq :� tϕ P C8pΩq |ϕ has compact support contained in Ωu
VpΩq :� tϕ P DpΩq | divϕ � 0u.(II.0.7)

Moreover, by Lp,W 1,p we mean the standard Lebesgue and Sobolev spaces respec-
tively and

L2
divpΩq :� the closure of V w.r.t. the } � }L2-norm

W 1,p
0,divpΩq :� the closure of V w.r.t. the }∇p�q}Lp-norm.

(II.0.8)

Let W�1,p1 � pW 1,p
0 q�, W�1,p1

div � pW 1,p
0,divq�. By p1 we mean the conjugate exponent

to p, namely 1
p
� 1

p1
� 1.

We will use Cweakpr0, T s;L2pΩqq in order to denote the space of functions u P
L8p0, T ;L2pΩqq which satisfy puptq, ϕq P Cpr0, T sq for all ϕ P L2pΩq.

If X is a Banach space of scalar functions, then Xd or Xd�d denotes the space of
vector- or tensor-valued functions where each component belongs toX. The symbols
Lpp0, T ;Xq and Cpr0, T s;Xq mean the standard Bochner spaces.

Finally, we recall that the Nikolskii space Nα,pp0, T ;Xq corresponding to the
Banach space X and the exponents α P p0, 1q and p P r1,8s is given by

Nα,pp0, T ;Xq :� tf P Lpp0, T ;Xq : sup
0 h T

h�α}τhf � f}Lpp0,T�h;Xq   8u,

where τhfptq � fpt� hq for a.a. t P r0, T � hs.
By pa, bq we mean

³
Ω
apxq � bpxqdx and xa, by denotes the duality pairing.

By ” �” we denote the scalar product of two vectors, i.e.

ξ � η �
ḑ

i�1

ξiηi

for ξ � pξ1, . . . , ξdq P Rd and η � pη1, . . . , ηdq P Rd and ” :” stands for the scalar
product of two tensors, i.e.

ξξξ : ηηη �
ḑ

i,j�1

ξi,jηi,j

for ξξξ � rξi,jsi�1,...,d, j�1,...,d P Rd�d and ηηη � rηi,jsi�1,...,d, j�1,...,d P Rd�d.
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CHAPTER III

Orlicz spaces

III.1. Notation

In the following chapter we introduce the notation and present some properties
of Orlicz spaces. Since within the whole thesis we use various generalizations of
Orlicz spaces: isotropic and anisotropic Orlicz spaces, Musielak-Orlicz spaces, we
start with basic definition of an N –function and then generalize it.

Definition III.1.1. A functionM : R� Ñ R� is said to be an isotropic N�function
if it is a continuous, real-valued, non-negative, convex function, which has super-
linear growth near zero and infinity, i.e., lim

τÑ0

Mpτq
τ

� 0 and lim
τÑ8

Mpτq
τ

� 8, and
Mpτq � 0 if and only if τ � 0.

Definition III.1.2. The complementary function M� to a functionM is defined by

M�pςq � sup
τPR�

pτς �Mpτqq

for ς P R�.

Definition III.1.3. A function M : Rn Ñ R� is said to be an anisotropic N�fun-
ction if it is a continuous, real-valued, non-negative, convex function, which has
superlinear growth near zero and infinity, i.e., lim

|ξ|Ñ0

Mpξq
|ξ| � 0 and lim

|ξ|Ñ8
Mpξq
|ξ| � 8,

Mp�ξq �Mpξq and Mpξq � 0 if and only if ξ � 0.

Definition III.1.4. The complementary function M� to an anisotropic N –function
function M is defined by

M�pξq � sup
ηPRn

pη � ξ �Mpξqq

for ξ P Rn.

Definition III.1.5. Let Ω be a bounded domain in Rd. A functionM : Ω�Rn Ñ R�
is said to be a generalized N�function if it satisfies the following conditions

(1) M is a Carathéodory function such that Mpx, ξq �Mpx,�ξq a.e. in Ω and
Mpx, ξq � 0 if and only if ξ � 0,

(2) Mpx, ξq is a convex function w.r.t. ξ,
(3)

(III.1.1) lim
|ξ|Ñ0

Mpx, ξq
|ξ| � 0 for every x P Ω,
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(4)

(III.1.2) lim
|ξ|Ñ8

Mpx, ξq
|ξ| � 8 for every x P Ω.

Definition III.1.6. The complementary function M� to a generalized N –function
M is defined by

(III.1.3) M�px, ξq � sup
ξPRn

pξ � η �Mpx, ξqq

for η P Rn, x P Ω.

Remark III.1.7. Within the thesis we use two forms of a generalized N –function,
depending on the considered problem, i.e. Mpx, ξq : Ω � Rd�d

sym Ñ R and Mpx, ξq :

Ω� Rd Ñ R.

The complementary function M� is also an N –function (see [117]).
Let I be a time interval, Ω � Rd be a bounded set and Q � I�Ω. The generalized

Orlicz class LMpQ;Rnq is the set of all measurable functions ξ : QÑ Rn such that»
Q

Mpx, ξpt, xqq dxdt   8.
Note that LMpQ;Rnq is a convex set and it need not be a linear space.
Let us denote m� such that

m�prq � ess inf
xPΩ

inf
ξPRn,|ξ|�r

M�px, ξq.

and let us assume that m� is an N – function and there exists an N –function m �
mp|ξ|q complementary to m�. Then we have m�p|ξ|q ¤ M�px, ξq and Mpx, ξq ¤
mp|ξ|q. Therefore M maps bounded sets into bounded sets, which shows that

(III.1.4) L8pQ;Rnq � LMpQ;Rnq.
In order to provide existence of such functions m� and m, which are N –functions, it
is enough to assume that M and M� satisfy (III.1.1-III.1.2) uniformly w.r.t. x P Ω,
namely M satisfies

lim
|ξ|Ñ0

sup
xPΩ

Mpx, ξq
|ξ| � 0, lim

|ξ|Ñ8
inf
xPΩ

Mpx, ξq
|ξ| � 8

and the same assumption concerns M�.
The generalized Orlicz space (or Musielak-Orlicz space) LMpQ;Rn) is defined as

the set of all measurable functions ξ : QÑ Rn which satisfy»
Q

Mpx, λξpt, xqq dxdtÑ 0 asλÑ 0.

Remark III.1.8. If we consider an isotropic or an anisotropic N –function, then
in analogous way we can define respectively isotropic and anisotropic Orlicz spaces.
Obviously corresponding definitions and properties which are stated below can be
rewritten for less general case of isotropic and anisotropic N –functions.
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Definition III.1.9. Let ξ P LMpQ;Rnq. Then the Luxemburg norm is defined by

(III.1.5) }ξ}M � inf

"
λ ¡ 0 |

»
Q

M

�
x,
ξpt, xq
λ



dxdt ¤ 1

*
.

Definition III.1.10. Let ξ P LMpQ;Rnq. Then the Orlicz norm is defined by

(III.1.6) }ξ}oM � sup

"»
Q

ξ � η dxdt | η P LM� ,

»
Q

Mpx,ηpt, xqq dxdt ¤ 1

*
.

Orlicz and Luxemburg norm are equivalent. The proof in a less general case,
namely for Mpx, ξq :�Mpx, |ξ|q, can be found in [96].

In general, LMpQ;Rnq is neither separable nor reflexive. Finally, because of the
superlinear growth of M (see (III.1.2)), there holds

(III.1.7) LMpQ;Rnq � L1pQ;Rnq.
Let us denote by EMpQ;Rnq the closure of all bounded measurable functions

defined on Q with respect to the Luxemburg norm } � }M,Q. It turns out that
EMpQ;Rnq is the largest linear space contained in the Orlicz class LMpQ;Rnq such
that

EMpQ;Rnq � LMpQ;Rnq � LMpQ;Rnq,
where the inclusion is in general strict.

The space EMpQ;Rnq is separable and C8
0 pQ;Rdq is dense in EMpQ;Rnq.

Theorem III.1.11. The generalized Orlicz space is a Banach space with respect to
the Orlicz norm (III.1.6) or the equivalent Luxemburg norm (III.1.5).

Proof. We will prove the completeness w.r.t Orlicz norm. Let tξju8j�1 be a
Cauchy sequence in LMpQ;Rnq such that for all ε ¡ 0 there exists Jε ¡ 0 such that

(III.1.8) sup

"»
Q

η � pξi � ξjq dxdt | η P LM�pQq,
»
Q

M�px,ηq dxdt ¤ 1

*
  ε

holds for all i, j ¡ Jε. Let λ ¡ 0 be such that»
Q

M�px,ηq dxdt ¤ 1 for all η P L8pQ;Rnq, }η}8 ¤ λ.

By plugging

η �
#
λ
ξi�ξj
|ξi�ξj | if ξi � ξj

0 otherwise
into (III.1.8) we obtain»

Ω

|ξi � ξj| dxdt ¤ ε

λ
for all i, j ¥ Jε.

Therefore tξju8j�1 is a Cauchy sequence in L1pQ;Rnq. Hence, by the Fatou lemma»
Q

|pξ� ξjq �η| dxdt �
»
Q

lim
iÑ8

|pξi� ξjq �η| dxdt ¤ lim inf
iÑ8

»
Q

|pξi� ξjq �η| dxdt   ε.

Thus ξ P LMpQ;Rnq and }ξ� ξj}M Ñ 0 with j Ñ 8. This completes the proof. �
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Proposition III.1.12 (Fenchel-Young inequality). Let M be an N�function and
M� the complementary to M . Then the following inequality is satisfied

(III.1.9) |ξξξ � ηηη| ¤Mpx,ξξξq �M�px,ηηηq
for all ξξξ,ηηη P Rn and a.a. x P Ω.

Lemma III.1.13 (Generalized Hölder inequality). Let M be an N–function and
M� its complementary. Then

(III.1.10)
����»

Ω

ξ � η dx

���� ¤ 2}ξ}M}η}M� ,

where ξ P LMpQ;Rnq and η P LM�pQ;Rnq.
Proof. From Proposition III.1.12 by putting ξ � ξpt,xq

}ξ}M , η � ηpt,xq
}η}M�

we obtain»
Q

����ξpt, xq}ξ}M
ηpt, xq
}η}M�

���� dxdt ¤
»
Q

M

�
x,
ξpt, xq
}ξ}M



dxdt�

»
Q

M�
�
x,
ηpt, xq
}η}M�



dxdt ¤ 2.

We finish the proof of (III.1.10) by multiplying the above inequality by }ξ}M}η}M� .
�

Theorem III.1.14. The space LM�pQ;Rnq is a dual space of EMpQ;Rnq, namely
pEMpQ;Rnqq� � LM�pQ;Rnq.

Before we prove Theorem III.1.14, we will state the following

Lemma III.1.15. Let η P LM�pQ;Rnq. The linear functional Fη defined by

(III.1.11) Fηpξq �
»
Q

ξ � η dxdt

belongs to the space pEMpQ;Rnqq� and its norm in that space fulfills

(III.1.12) }Fη} ¤ 2}η}M� .

Proof. It follows from Hölder inequality (III.1.10) that

|Fηpξq| ¤ 2}ξ}M}η}M�

holds for all ξ P LMpQ;Rnq confirming the inequality (III.1.12). �

Proof. (of the Theorem III.1.14) Lemma III.1.15 has already shown that any
element η P LM�pQ;Rnq defines a bounded linear functional Fη on EMpQ;Rnq which
is given by (III.1.11). It remains to show that every bounded linear functional on
EMpQ;Rnq is of the form Fη for any η P LM�pQ;Rnq.

Let F P pEMpQ;Rnqq�. We define a measure λ on the measurable subsets S of
Q

λpSq � F pτ ISq
where IS denotes the characteristic function of S, τ P Rn, |τ | � 1. Let

Aprq � sup
xPΩ,|ξ|�r

Mpx, ξq
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be an auxiliary function and r P r0,8q. This function is required to generalise the
approach presented in [1]. Since»

Q

M

�
x,A�1

�
1

|S|


ISτ



dxdt ¤

»
S

sup
pt,xqPS

M

�
x,A�1

�
1

|S|


τ



dxdt

¤
»
S

1

|S| ¤ 1,

(III.1.13)

we have

(III.1.14) |λpSq| � |F pτ ISq| ¤ }F }}τ IS}M ¤ c}F }
A�1p1{|S|q .

Since the right-hand side of (III.1.14) converges to zero when |S| converges to
zero, the measure λ is absolutely continuous w.r.t. Lebesgue measure. By Radon-
Nikodym and Riesz theorems, cf. [128], λ can be expressed in the form

λpSq �
»
S

ηpt, xq dxdt

for some η integrable on Q. Therefore

F pξq �
»

Ω

ξ � η dxdt

holds for measurable bounded functions ξ.
If ξ P EMpQ;Rnq we can find a sequence of measurable functions ξi which

converges a.e. to ξ and satisfies |ξi| ¤ |ξ| on Q. Since |ξi �η| converges a.e to |ξ �η|,
Fatou’s lemma yields����»

Q

ξ � η dxdt

���� ¤ »
Q

|ξ � η| dxdt ¤ lim inf
iÑ8

»
Q

|ξi � η| dxdt

¤ lim inf
iÑ8

2}ξi}M}η}M� ¤ 2}ξ}M}η}M� .

Hence the linear functional
Fηpξq �

»
Q

ξ � η dx
is bounded on EMpQq when η P LM�pQq. Since Fη and F achieve the same values
on the measurable, simple functions (a set which is dense in EMpQq) they agree on
EMpQq and the proof is completed. �

The functional
%pξq �

»
Q

Mpx, ξpxqq dxdt

is a modular in the space of measurable functions ξ : Q Ñ Rn in the sense of [87,
p. 208].

A sequence tzju8j�1 converges modularly to z in LMpQ;Rnq if there exists λ ¡ 0
such that »

Q

M

�
x,
zj � z
λ



dxdtÑ 0 as j Ñ 8.
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We will write zj MÑ z for the modular convergence in LMpQ;Rnq.
Definition III.1.16. We say that an N�function M satisfies the ∆2–condition if
for some nonnegative, integrable on Ω function gM and a constant holds CM ¡ 0

(III.1.15) Mpx, 2ξq ¤ CMMpx, ξq � gMpxq for all ξ P Rn and a.a. x P Ω.

Proposition III.1.17. If an N–function M does not satisfy the ∆2–condition, then

 The space LMpQ;Rnq is not separable.

 The space LMpQ;Rnq is not reflexive.

 The space of smooth functions C8 is not dense in the space LMpQ;Rnq.

The proof can be found in [1]) for the case of isotropic N –functions.

Proposition III.1.18. In particular, if (III.1.15) holds, then

EMpQ;Rnq � LMpQ;Rnq
(see [1, 87, 118]).

The ∆2–condition is rather restrictive. Nevertheless, for a measurable function
p : Ω Ñ p1,8q the Lppxq spaces (generalized Lebesgue spaces) are included in the
generalized Orlicz spaces framework with Mpx, ξq � |ξ|ppxq and with the classical
assumption 1   ess infxPΩ ppxq ¤ ppxq ¤ ess supxPΩ ppxq   8 both | � |ppxq and | � |p1pxq,
where p1pxq � ppxq{pppxq � 1q a.e. in Ω, satisfy the ∆2–condition.

More information for the case of x-dependent generalized N�function can be
found in [117, 118, 132] and for less general N�functions in [87, 96].

III.2. Properties and useful facts

Let us recall some general properties of Orlicz spaces, see e.g. [96] and technical
facts which can be found also in [72, 75, 133].

We recall an analogue to the Vitali’s lemma, however for the modular conver-
gence instead of the strong convergence in Lp.

Lemma III.2.1. Let zj : Q Ñ Rn be a measurable sequence. Then zj MÝÑzzz in
LMpQ;Rnq modularly if and only if zj Ñ z in measure and there exists some λ ¡ 0
such that the sequence tMp�, λzjqu is uniformly integrable, i.e.,

lim
RÑ8

�
sup
jPN

»
tpt,xq:|Mpx,λzjq|¥Ru

Mpx, λzjq dxdt



� 0.

Proof. Note that zj Ñ z in measure if and only ifM
�
�, zj�z

λ

	
Ñ 0 in measure

for all λ ¡ 0. Moreover the convergence zj Ñ z in measure implies that for all
measurable sets A � Q it holds

lim inf
jÑ8

»
A

Mpx, zjq dxdt ¥
»
A

Mpx, zq dxdt.
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Note also that the convexity of M implies»
A

M

�
x,
zj � z
λ



dxdt ¤

»
A

M

�
x,
zj

2λ



dxdt�

»
A

M
�
x,
z

2λ

	
dxdt.

Hence by the classical Vitali’s lemma for f jpxq �M
�
x, z

j�z
λ

	
we obtain that f j Ñ 0

strongly in L1pQq. �

Lemma III.2.2. Let M be an N�function such that

lim
|ξ|Ñ8

inf
xPΩ

Mpx, ξq
|ξ| � 8

and for all j P N let
³
Q
Mpx, zjq dxdt ¤ c. Then the sequence tzju8j�1 is uniformly

integrable.

Proof. Let us define δpRq � min|ξ|�R inf
xPΩ

Mpx,ξq
|ξ| . Then for all j P N it holds»

tpt,xq:|zjpt,xq|¥Ru
Mpx, zjpt, xqq dxdt ¥ δpRq

»
tpt,xq:|zjpt,xq|¥Ru

|zjpt, xq| dxdt.

Since the left-hand side is bounded, then we obtain

sup
jPN

»
tpt,xq:|zjpt,xq|¥Ru

|zjpt, xq|dxdt ¤ c

δpRq .

Using condition (III.1.2) we obtain uniform integrability. �

Proposition III.2.3. Let M be an N�function and M� its complementary func-
tion. Suppose that the sequences ψj : Q Ñ Rn and φj : Q Ñ Rn are uniformly
bounded in LMpQ;Rnq and LM�pQ;Rnq respectively. Moreover ψj MÝÑψ modularly
in LMpQ;Rnq and φj M�ÝÑφ modularly in LM�pQ;Rnq. Then ψj �φj Ñ ψ �φ strongly
in L1pQq.

Proof. Due to Lemma III.2.1 the modular convergence of tψju and tφju implies
the convergence in measure of these sequences and consequently also the convergence
in measure of the product. Hence it is sufficient to show the uniform integrability
of tψj � φju. Notice that it is equivalent with the uniform integrability of the term!
ψj

λ1
� φj
λ2

)
for any λ1, λ2 ¡ 0. The assumptions of the proposition give that there

exist some λ1, λ2 ¡ 0 such that the sequences"
M

�
x,
ψj

λ1


*
and

"
M�

�
x,
φj

λ2


*
are uniformly integrable. Hence let us use the same constants and estimate with the
help of the Fenchel-Young inequality����ψj

λ1

� φ
j

λ2

���� ¤M

�
x,
ψj

λ1



�M�

�
x,
φj

λ2



.

Obviously the uniform integrability of the right-hand side provides the uniform
integrability of the left-hand side and this yields the assertion. �
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Proposition III.2.4. Let %j be a standard mollifier, i.e., % P C8pRq, % has a com-
pact support and

³
R %pτq dτ � 1, %ptq � %p�tq. We define %jptq � j%pjtq. Moreover

let � denote a convolution in the variable t. Then for any function ψ : QÑ Rd such
that ψ P L1pQ;Rnq it holds

p%j �ψqpt, xq Ñ ψpt, xq in measure.

Proof. For a.a. x P Ω the function ψp�, xq P L1p0, T q and %j �ψp�, xq Ñ ψp�, xq
in L1p0, T q and hence %j �ψ Ñ ψ in measure on the set p0, T q � Ω. �

Proposition III.2.5. Let %j be defined as in Proposition III.2.4, let M be an
N�function and ψ : Q Ñ Rn be such that ψ P LMpQ;Rnq. Then the sequence
tMpx, %j �ψqu is uniformly integrable.

Proof. We start with an abstract fact concerning uniform integrability. Namely,
the following two conditions are equivalent for any measurable sequence tzju

(a) @ε ¡ 0 Dδ ¡ 0 : sup
jPN

sup
|A|¤δ

³
A
|zjpxq| dxdt ¤ ε,

(b) @ε ¡ 0 Dδ ¡ 0 : sup
jPN

³
Q

���|zjpxq| � 1?
δ

���
�

dxdt ¤ ε,

where we use the notation
|ξ|� � maxt0, ξu.

The implication paq ñ pbq is obvious. To show that also pbq ñ paq holds let us
estimate

sup
jPN

sup
|A|¤δ

»
A

|zj| dxdt ¤ sup
|A|¤δ

|A| � 1?
δ
� sup

jPN

»
Q

����|zj| � 1?
δ

����
�

dxdt

¤
?
δ � sup

jPN

»
Q

����|zj| � 1?
δ

����
�

dxdt.

Notice that since M is a convex function, then the following inequality holds for all
δ ¡ 0

(III.2.1)
»
Q

����Mpx,ψq � 1?
δ

����
�

dxdt ¥
»
Q

����Mpx, %j �ψq � 1?
δ

����
�

dxdt.

Finally, since ψ P LMpQ;Rnq, then also
³
Q
|Mpx,ψq � 1?

δ
|� dxdt is finite and hence

taking supremum over j P N in (III.2.1) we prove the assertion. �

Remark III.2.6. The same proofs for Propositions III.2.4 and III.2.5 work if instead
of a standard mollifier %j we will take

σ̃�h �
1

h
1lpτqr0,hs or σ̃�h �

1

h
1lpτqr�h,0s

with h ¡ 0.

Lemma III.2.7. Let Ω be a bounded domain, p0, T q be time interval, Q � p0, T q�Ω
and M be an isotropic N�function satisfying Definition III.1.1 s.t. Mpp| � |q1{pq is
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convex. If fpt, xq P LMpQq, i.e. }f}M,Q   8, then f P LMp0, T ;LppΩqq, i.e.

}f}LM p0,T ;LppΩqq :� inf

"
λ ¡ 0 :

» T

0

M

�}fpt, �q}LppΩq
λ



dt ¤ 1

*
  8

Proof. If f P LMpQq, then there exists 0   λ   8 such that» T

0

»
Ω

M

�
|Ω| 1p |fpt, xq|

λ

�
dxdt ¤ 1.

Employing the Jensen inequality, using the non-negativity, the convexity of M and
Mpp| � |q1{pq, and that Mp0q � 0 we infer the following» T

0

M

�
1

λ

�»
Ω

|fpt, xq|p dx


 1
p

�
dt �

» T

0

M

�� |Ω|
λp|Ω|

»
Ω

|fpt, xq|p dx


 1
p

�
dt

¤ 1

|Ω|
» T

0

»
Ω

M

�� |Ω|
λp
|fpt, xq|p


 1
p

�
dxdt � 1

|Ω|
» T

0

»
Ω

M

�� |Ω|
λp
|fpt, xq|p


 1
p

�
dxdt

� 1

|Ω|
» T

0

»
Ω

M

�
|Ω| 1p |fpt, xq|

λ

�
dxdt   1.

Since Mp| � |1{pq is convex and f P LMpp0, T q�Ωq, we notice that f P Lppp0, T q�Ωq,
hence f P Lpp0, T ;LppΩqq. Consequently t ÞÑ fpt, xq is measurable which provides
Bochner measurability of the function f . Therefore we obtain the statement and
f P LMp0, T ;LppΩqq. �

Now we want to introduce the Riesz transform in an Orlicz space, which will be
used later as a tool in the local pressure method in Chapter V.

Let β, γ P p0,8q and τ P r0,8q. Let us denote by Lτ logβpΩq the Orlicz space
associated with the N�function Mpτq � τplogpτ � 1qqβ and by LepγqpΩq the Orlicz
space associated with the N�function which asymptotically, i.e. for sufficiently
large τ , behaves like �Mpτq � exppτ γq. Note that Lτ logβpΩq � Eτ logβpΩq and�

EepγqpΩ
�q� � Lτ log1{γ pΩq and

�
Lτ logβpΩq

�� � Lep1{βqpΩq,
hold, see [87].

Let Ri,j stand for a "double" Riesz transform of an integrable function g on R3,
which can be given by a Fourier transform F as

(III.2.2) Ri,jrgs � F�1

�
ξiξj
|ξ|2



Frgs � ∇xi∇xj∆

�1g , i, j � 1, 2, 3,

where

∆�1gpxq � F�1

��1

|ξ|2


Frgs �

»
R3

gpyq
|x� y|dy.
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Lemma III.2.8. Let Ω be a bounded domain, let b : R3 Ñ R be a multiplier, α be
a multi-index such that |α| ¤ 2 and

|ξ||α||Dαbpξq| ¤ C   8 .

Then for any β ¡ 0 there exists a constant cpβq such that for all g P Lτ logβ�1pΩq
(III.2.3) }pF�1bFqrgs}τ logβ ¤ cpβq}g}τ logβ�1

where g is extended to be 0 on R3zΩ.

We recall here the proof given by Erban in [52].

Proof. The standard Mikhlin multiplier theorem (see e.g. [19, Chapter 6])
provides that F�1bF is bounded as a mapping

F�1bF : L2pR3q Ñ L2pR3q and F�1bF : L1pR3q Ñ L1,8pR3q,
where L1,8 stands for a Lorenz space1. Employing the result from [71, Theorem
B.2] (see also [32]) we conclude that there exists a constant cpβq such that (III.2.3)
is satisfied. �

Corollary III.2.9. Let Ω be a bounded domain. Then for any β ¡ 0 and g P
Lτ logβ�1pΩq
(III.2.4) }Ri,jrgs|Ω}τ logβ ¤ cpβq}g}τ logβ�1 .

Remark III.2.10. Let M be an arbitrary isotropic N�function. If f P LMpR3q,
then }f |B}LM pBq ¤ }f}LM pR3q. Indeed,
}f |B}LM pBq

� inf

"
λ ¡ 0 :

»
B

M

�
f1lB
λ



dx ¤ 1

*
� inf

"
λ ¡ 0 :

»
R3

M

�
f

λ



1lB dx ¤ 1

*
¤ inf

"
λ ¡ 0 :

»
R3

M

�
f

λ



dx ¤ 1

*
� }f}LM pR3q,

where the inequality is provided by non-negativity of M.

Proposition III.2.11. Let M be an isotropic N–function and let M satisfy the
∆2–condition. Then Mpτq ¤ C|τ |α, τ ¥ τ0, for some C ¡ 0 and α ¡ 0, and its
complementary function M� satisfies M�pζq ¥ D|ζ|β, ζ ¥ ζ0 ¡ 0 for some D ¡ 0
and β ¡ 1.

The above proposition can be found with the proof in [105, Chapter II] as
Corollary 5.

Proposition III.2.12. Let M� be a generalized N -function and let M� satisfy
∆2�condition (III.1.15) with the function gM P L8pΩq. Then there exist ν ¡ 0 and
c ¡ 0 such that

Mpx, ξq ¥ c|ξ|1�ν
for all ξ P Rd such that |ξ| ¥ |ξ0| for some ξ0 with |ξ0| ¡ 0.
1i.e. g P L1,8 iff supσ σmpσ, gq   8, where mpσ, gq � |tx : |gpxq| ¡ σu|
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Proof. Let
m�prq � ess sup

xPΩ
sup

ξPRd, |ξ|�r
M�px, ξq

Obviously m� is an N�function and satisfies ∆2–condition for sufficiently large r.
Using Proposition III.2.11 we infer that there exists a complementary N�function
m � mp|ξ|q to m� and constants ν ¡ 0 and c ¡ 0 such that mp|ξpxq|q ¥ c|ξ|1�ν for
ξ P Rd s.t. |ξ| ¥ |ξ0|. According to the definition of m�, M�px, ξpxqq ¤ m�p|ξpxq|q
for a.a. x P Ω. Thus mp|ξ|q ¤Mpx, ξq and for all measurable functions ξ : Ω Ñ Rd,
we obtain

Mpx, ξq ¥ c|ξ|1�ν
for all ξ P Rd such that |ξ| ¥ |ξ0|. �

Remark III.2.13. Let us remark that at most polynomial growth i.e if Mpx,ξξξq ¤
c1|ξξξ|q for some c1 and q P p1,8q, does not imply, that M satisfies ∆2–condition. For
the counterexample see [105].

Theorem III.2.14. Let Ω be a bounded domain with a Lipschitz boundary. Let M
be an isotropic N–function satisfying ∆2-condition and such that Mγ is quasiconvex
for some γ P p0, 1q. Then, for any f P LMpΩq such that»

Ω

f dx � 0,

the problem of finding a vector field v : Ω Ñ Rd such that
divv � f in Ω

v � 0 on BΩ

has at least one solution v P LMpΩ;Rdq and ∇v P LMpΩ;Rd�dq. Moreover, for some
positive constant c »

Ω

Mp|∇v|q dx ¤ c

»
Ω

Mp|f |q dx.

For the proof see e.g. [127, 42].

29



CHAPTER IV

Existence result for unsteady flows of nonhomogeneous
non-Newtonian fluids

IV.1. Introduction and formulation of the problem

We wish to investigate and understand mathematical properties of the motion of
incompressible, nonhomogeneous non-Newtonian fluid, which can be described by
the system of equations:

Bt%� divxp%uq � 0 in Q,

Btp%uq � divxp%ub uq � divxSSSpt, x, %,DDDuq �∇xp � %f in Q,

divxu � 0 in Q,

up0, xq � u0 in Ω,

%p0, xq � %0 in Ω,

upt, xq � 0 on p0, T q � BΩ,

(IV.1.1)

where % : Q Ñ R is the mass density, u : Q Ñ R3 denotes the velocity field,
p : Q Ñ R the pressure, SSS the stress tensor, f : Q Ñ R3 given outer sources. The
set Ω � R3 is a bounded domain with a regular boundary BΩ (of class, say C2�ν ,
ν ¡ 0, to avoid unnecessary technicalities connected with smoothness). We denote
by Q � p0, T q�Ω the time-space cylinder with some given T P p0,�8q. The tensor
DDDu � 1

2
p∇xu�∇T

xuq is a symmetric part of the velocity gradient.
It is supposed that the initial density is bounded, i.e.,

(IV.1.2) %p0, �q � %0 P L8pΩq
and

(IV.1.3) 0   %� ¤ %0pxq ¤ %�   �8 for a.a. x P Ω.

There have been many studies concerning the mathematical analysis of time-
dependent flows of nonhomogeneous, incompressible fluids depending on or inde-
pendent of density.

Our interest is directed to the phenomena of viscosity increase under various
stimuli: shear rate, magnetic or electric field. Particularly we want to focus on shear
thickening (STF) and magnetorheological (MR) fluids. Both types of fluid have the
ability of transferring rapidly from liquid to solid-like state and this phenomenon is
completely reversible, and the time scale for the transmission is of the order of a
millisecond. The magnetorheological fluids [136] found their application in modern
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suspension system, clutches or crash-protection systems in cars and shock absorbers
providing seismic protection.

In particular we are interested in fluids having viscosity which increases dra-
matically with increasing shear rate or applied stress, i.e. we want to consider shear
thickening fluids, which can behaves like a solid when it encounters mechanical stress
or shear. STF moves like a liquid until an object strikes or agitates it forcefully.
Then, it hardens in a few milliseconds. This is the opposite of a shear-thinning
fluid, like paint, which becomes thinner when it is agitated or shaken. The fluid is a
colloid, consists of solid particles dispersed in a liquid (e.g. silica particles suspended
in polyethylene glycol). The particles repel each other slightly, so they float easily
throughout the liquid without clumping together or settling to the bottom. But the
energy of a sudden impact overwhelms the repulsive forces between the particles –
they stick together, forming masses called hydroclusters. When the energy from the
impact dissipates, the particles begin to repel one another again. The hydroclusters
fall apart, and the apparently solid substance reverts to a liquid.

Possible application for fluids with changeable viscosity appears in military ar-
mour. The so-called STF-fabric produced by simple impregnation process of e.g.
Kevlar makes it applicable to any high-performance fabric. The resulting material
is thin and flexible, and provides protection against the risk of needle, knife or bullet
contact that face police officers and medical personnel [49, 81, 90].

As follows from (IV.1.1) we assume that the traceless part SSS of the Cauchy stress
tensor depends on the density and due to the principle of objectivity the extra stress
tensor depends on the velocity gradient only through the symmetric part DDDu. On
one hand we want to be able to consider constitutive relations which are invariant
w.r.t. translations and rotations perpendicular to one chosen direction and on the
other hand allow that in this specific direction properties of the material can be
different than with respect to others.

One of the example is a magnetorheological fluid, which consists of the magnetic
particles suspended within the carrier oil distributed randomly in suspension under
normal circumstances. When a magnetic field is applied, the microscopic particles
align themselves along the lines of magnetic flux. In the fluid contained between
two poles, the resulting chains of particles restrict the movement of the fluid, per-
pendicular to the direction of flux, effectively increasing its viscosity. Consequently
mechanical properties of the fluid are anisotropic.

On the other hand we can consider the constitutive relation for fluids with depen-
dence on outer field, in particular, we mean electrorheological fluids. In this case,
from representation theorem it follows that the most general form for the stress
tensor SSS (cf. [111]) is given by

SSS � α1E bE � α2DDD� α3DDD2 � α4pDDDE bE �E bDDDEq � α5pDDD2E bE �E bDDD2Eq

where αi, i � 1, . . . , 5 may be functions of invariants

|E|2, trDDD2, trDDD3, tr pDDDE bEq, tr pDDD2E bEq.
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Then it is easy to show that for i � 1, 3, 5, αi � 0 the stress tensor in the form

(IV.1.4) SSS � |trDDD2|3DDD � |tr pDDD2E bEq|6pDDDE bE �E bDDDEq
is thermodynamically admissible (i.e. SSS : DDD ¥ 0), satisfies a principle of material
frame-indifference and is monotone. Moreover, without loss of generality for E �
p1, 0, 0q it can be calculated that the standard growth conditions: |SSSpDDD,Eq| ¤ cp1�
|DDD|qp�1, SSSpDDD,Eq : DDD ¥ c|DDD|p is not satisfied, because the tensor SSS possesses growth of
different powers in various directions of DDD. From mechanical point of view though the
minimal assumptions are satisfied. For this reason we can not exclude constitutive
relation of anisotropic behaviour like (IV.1.4).

In our considerations we do not want to assume that SSS has only p-structure, i.e.
SSS � µp%qpκ � |DDDu|qp�2DDDu or SSS � µp%qpκ � |DDDu|2qpp�2q{2DDDu (where κ ¡ 0 and µ is
a nonnegative bounded function). Standard growth conditions of the stress tensor,
namely polynomial growth, see e.g. [58, 92]

|SSSpx,ξξξq| ¤ cp1� |ξξξ|2qpp�2q{2|ξξξ|
SSSpx,ξξξq : ξξξ ¥ cp1� |ξξξ|2qpp�2q{2|ξξξ|2(IV.1.5)

can not suffice to describe our model. Motivated by this significant shear thicken-
ing phenomenon we want to investigate the processes where growth is faster than
polynomial and possibly different in various directions of the shear rate. We do not
assume that a viscosity the fluid is constant. Moreover, we take under considera-
tions the case of the viscosity depending on density and full symmetric part of the
gradient. Therefore we formulate the growth conditions of the stress tensor with the
help of general convex function M called a generalized N�function similarly like in
[72, 74, 75, 76, 78, 79, 131, 133, 134, 135]. Now we are able to describe the
effect of rapidly shear thickening fluids.

We assume also that the stress tensor SSS : p0, T q�Ω�R��R3�3
sym Ñ R3�3

sym satisfies
(R3�3

sym stands for the space of 3� 3 symmetric matrices):
S1: SSSpt, x, %,KKKq is a Carathéodory function (i.e., measurable function of t, x

for all % ¡ 0 and KKK P R3�3
sym and continuous function of % and KKK for a.a.

x P Ω) and SSSpt, x, %,000q � 000.
S2: There exist a positive constant cc, N�functions M and M� (which de-

notes the complementary function to M) such that for all KKK P R3�3
sym, % ¡ 0

and a.a. t, x P Q it holds

(IV.1.6) SSSpt, x, %,KKKq : KKK ¥ cctMpx,KKKq �M�px,SSSpt, x, %,KKKqqu.
S3: SSS is monotone, i.e. for all KKK1,KKK2 P R3�3

sym, % ¡ 0 and a.a. x P Ω

rSSSpt, x, %,KKK1q � SSSpt, x, %,KKK2qs : rKKK1 �KKK2s ¥ 0.

We can observe that the case of stress tensors having convex potentials (ad-
ditionally vanishing at 000 and symmetric w.r.t. the origin) significantly simplifies
verifying condition S2. For finding N�functions M and M� we take an advantage
of the following relation

(IV.1.7) Mpξξξq �M�p∇Mpξξξqq � ξξξ : ∇Mpξξξq
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holding for all ξξξ P R3�3
sym, cf. [109]. This corresponds to the case when the Fenchel-

Young inequality for N –functions becomes an equality. Once we have a given func-
tion SSS, for simplicity consider it in the form SSSpDDDuq � 2µp|DDDu|2qDDDu, then choos-
ing Mpx,ξξξq � Mpξξξq � ³|ξξξ|2

0
µpαααq dααα provides that (IV.1.6) is satisfied with a con-

stant c � 1. For such chosen M we only need to verify whether the N�function–
conditions, i.e, behaviour in/near zero and near infinity, are satisfied. The mono-
tonicity of SSS follows from the convexity of the potential.

Our assumptions can capture shear dependent viscosity function which includes
power-law and Carreau-type models which are quite popular among rheologists,
in chemical engineering, and colloidal mechanics (see [94] for more references).
Nevertheless we want to investigate also more general constitutive relations like
non-polynomial growth SSS � |DDDu|p lnp1 � |DDDu|q or of anisotropic behaviour e.g.
SSSi,j � | � |pij rDDDusi,j, i, j � 1, 2, 3.

The appropriate spaces to capture such formulated problem are generalized Or-
licz spaces, often called Orlicz-Musielak spaces. We also allow the stress tensor to
depend on x, this provides the possibility to consider electro- and magnetorheolog-
ical fluids and significant influence of magnetic and magnetic field on the increase
of viscosity. Thus we use the generalized Orlicz spaces, often called Orlicz-Musielak
spaces (see [96] for more details). For definitions and preliminaries of N�functions
and Orlicz spaces see Section III.1. Contrary to [96] we consider the N�function
M not dependent only on |ξξξ|, but on whole tensor ξξξ. It results from the fact that the
viscosity may differ in different directions of symmetric part of velocity gradient DDDu.
Hence we want to consider the growth condition for the stress tensor dependent on
the whole tensor DDDu, not only on |DDDu|. The spaces with an N –function dependent
on vector-valued argument were investigated in [117, 118, 126].

An example of a generalized Orlicz space is a generalized Lebesgue space, in
this case Mpx,ξξξq � |ξξξ|ppxq. These kind of spaces were applied in [111] to the
description of flow of electrorheological fluid. The standard assumption in this work
was 1   p0 ¤ ppxq ¤ p8   8, where p P C1pΩq is a function of an electric field
E, i.e. p � pp|E|2q, and p0 ¡ 3d

d�2
in case of steady flow, where d ¥ 2 is the

space dimension. The 42–condition is then satisfied and consequently the space is
reflexive and separable. One of the main problems in our model is that the 42–
condition is not satisfied and we lose the above properties. Later in [41] the above
result was improved by Lipschitz truncations methods for Lppxq setting for SSS, where
2d
d�2

  pp�q   8 was log-Hölder continuous and SSS was strongly monotone.
The mathematical analysis of time dependent flow of homogeneous non-Newto-

nian fluids with standard polynomial growth conditions was initiated by Ladyzhen-
skaya [88, 89] where the global existence of weak solutions for p ¥ 1� p2dq{pd� 2q
was proved for Dirichlet boundary conditions. Later the steady flow was considered
by Frehse at al. in [60], where the existence of weak solutions was established for
the constant exponent p ¡ 2d

d�2
, d ¥ 2 by Lipschitz truncation methods.

Wolf in [130] proved existence of weak solutions to unsteady motion of an in-
compressible fluid with shear rate dependent viscosity for p ¡ 2pd � 1q{pd � 2q
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without assumptions on the shape and size of Ω employing an L8–test function and
local pressure method. Finally, the existence of global weak solutions with Dirichlet
boundary conditions for p ¡ p2dq{pd�2q was achieved in [43] by Lipschitz truncation
and local pressure methods.

Most of the available results concerning nonhomogeneous incompressible fluids
deal with the polynomial dependence between SSS and |DDDu|. The analysis of non-
homogeneous Newtonian (p � 2 in (IV.1.5)) fluids was investigated by Antontsev,
Kazhikhov and Monakhov [10] in the seventies. P.L. Lions in [91] presented the
concept of renormalized solutions and obtained new convergence and continuity
properties of the density.

The first result for unsteady flow of nonhomogenous non-Newtonian fluids goes
back to Fernández–Cara [57], where existence of Dirichlet weak solutions was ob-
tained for p ¥ 12{5 if d � 3, later existence of space-periodic weak solutions for p ¥ 2
with some regularity properties of weak solutions whenever p ¥ 20{9 (if d � 3) was
obtained by Guilién-González in [70]. Frehse and R ‌užička showed in [59] existence
of a weak solution for generalized Newtonian fluid of power-law type for p ¡ 11{5.
Authors needed also existence of the potential of SSS. Recent results concerning fluids
where the growth condition is as in (IV.1.5) for p ¥ 11{5 belong to Frehse, Málek
and R ‌užička [58]. The novelty of this paper is the consideration of the full thermo-
dynamic model for a nonhomogeneous incompressible fluid. Particularly in [58, 59]
the reader can find the concept of integration by parts formula, which we adapted
to our case. Also more details concerning references can be found therein.

First results concerning non-Newtonian fluid with the assumption that SSS is
strictly monotone and satisfies conditions S1.-S2. were established by Gwiazda
et al. [72] for the case of unsteady flow. The stronger assumption on SSS was crucial
for the applied tools (Young measures). This restriction was abandoned in [131]
by Wróblewsk-Kamińska for the case of steady flow and in [75] by Gwiazda et al.
for unsteady flow. The authors used generalization of Minty trick for non-reflexive
spaces. The above existence results were established for p ¥ 11{5 in [75], but
without including in the system the dependence on density.

Summarising, we want to extend the existence theory for flows of non-Newtonian
incompressible fluids to a more general class than polynomial growth conditions
[58, 59] by formulating the problem in nonhomogeneous in space anisotropic Orlicz
setting as in [72, 75, 131]. Moreover, we want to complete the results the reader
can find therein by including continuity equation (IV.1.1)1 to the considered system
and dependence of SSS on density of the fluid, namely we do not assume that density
is constant. Additionally we are able to obtain better regularity of solution in time
than in [58, 59, 72, 75, 131], namely in the Nikolskii space.

In order to state the main result of the chapter we start with the following
definition of a weak solution:

Definition IV.1.1. Let %0 satisfies assumptions (IV.1.2), (IV.1.3), u0 P L2
divpΩ;R3q

and f P Lp1p0, T ;Lp
1pΩ;R3qq. Let SSS satisfy conditions S1.-S3. with an N –function
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M such that for some c ¡ 0, rC ¥ 0 and p ¥ 11
5
M satisfies

Mpx,ξξξq ¥ c|ξξξ|p � rC
for a.a. x P Ω and all ξξξ P R3�3

sym.
We call the pair p%, uq a weak solution to (IV.1.1) if

0   %� ¤ %pt, xq ¤ %� for a.a. pt, xq P Q,
% P Cpr0, T s;LqpΩqq for arbitrary q P r1,8q,
Bt% P L5p{3p0, T ; pW 1,5p{p5p�3qq�q
u P L8p0, T ;L2

divpΩ;R3qq X Lpp0, T ;W 1,p
0,divpΩ;R3qq XN1{2,2p0, T ;L2

divpΩ;R3qq,
DDDu P LMpQ;R3�3

symq and p%u,ψq P Cpr0, T sq for all ψ P L2
divpΩ;R3q

and

(IV.1.8)
» T

0

xBt%, zy � p%u,∇xzq dt � 0

for all z P Lrp0, T ;W 1,rpΩqq with r � 5p{p5p� 3q, i.e.» s2

s1

»
Ω

%Btz � p%uq �∇xz dxdt �
»

Ω

%zps2q � %zps1q dx

for all z smooth and s1, s2 P r0, T s, s1   s2 and

�
» T

0

»
Ω

%u � Btϕ� %ub u : ∇xϕ� SSSpt, x, %,DDDuq : DDDϕ dxdt

�
» T

0

»
Ω

%f �ϕ dxdt�
»

Ω

%0u0 �ϕp0q dx for all ϕ P Dpp�8, T q;Vq,

and initial conditions are achieved in the following way

(IV.1.9) lim
tÑ0�

}%ptq � %0}LqpΩq � }uptq � u0}2
L2pΩq � 0 for arbitrary q P r1,8q.

Theorem IV.1.2. Let M be an N�function satisfying for some c ¡ 0, rC ¥ 0 and

(IV.1.10) p ¥ 11

5

the condition

(IV.1.11) Mpx,ξξξq ¥ c|ξξξ|p � rC
for a.a. x P Ω and all ξξξ P R3�3

sym. Let us assume that the conjugate function

(IV.1.12) M� satisfies the ∆2 � condition and lim
|ξ|Ñ8

inf
xPΩ

M�px, ξq
|ξ| � 8.

Moreover, let SSS satisfy conditions S1.-S3. and u0 P L2
divpΩ;R3q, %0 P L8pΩq with

0   %� ¤ %0pxq ¤ %�   �8 for a.a. x P Ω and f P Lp1p0, T ;Lp
1pΩ;R3q. Then there

exists a weak solution to (IV.1.1).
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In the following chapter we consider the flow in the domain of space dimension
d � 3, just for the brevity. The existence result can be easily extended to the case
of arbitrary d ¥ 2 and p ¥ 3d�2

d�2
. The chapter is based on [133] by Wróblewska-

Kamińska and partially on [131] by Wróblewska-Kamińska and [75] by Gwiazda,
Świerczewska-Gwiazda, Wróblewska-Kamińska, see also [78].

In Section IV.2 our main result of existence of weak solutions to the system
(IV.1.1) is proved.

IV.2. Proof of Theorem IV.1.2 - Existence of weak solutions

IV.2.1. Uniform estimates. Let tωnu8n�1 be a basis of W 1,p
0,divpΩ;R3q con-

structed with the help of eigenfunctions of the problem

ppωi,ϕqqs � λipωi,ϕq for all ϕ P W s,2
0,div,

where
W s,2

0,div � the closure of V w.r.t. the W s,2pΩq-norm
and pp�, �qqs denotes the scalar product in W s,2

0,div. We assume that s ¡ 3 and then the
Sobolev embedding theorem provides

(IV.2.1) W s�1,2pΩq ãÑ CpΩq.
Moreover the basis is orthonormal in L2pΩ;R3q (see [94, Appendix]).

We denote
L2,n

div :� spantω1, ...,ωnu
and define orthonormal projection P n : L2

div Ñ L2,n
div by P nu :� °n

i�1pu,ωiqωi for
every n P N. Let us seek for an approximate solution un of the system (IV.1.1) in
the following form of finite sums

(IV.2.2) unpt, xq :�
ņ

j�1

αnj ptqωjpxq

for n � 1, 2, . . . with the unknown coefficients αnj P Cpr0, T sq, j � 1, 2, . . . , n, while
%n is the solution of the continuous problem

Bt%n � divxp%nunq � 0,

%np0q � %n0
(IV.2.3)

with %n0 P C1pΩq and un solves the Galerkin system

p%nBtun,ωjq � p%np∇xu
nqun,ωjq � pSSSpt, x, %n,DDDunq,DDDωjq � p%nfn,ωjq

unp0q � P npu0q
(IV.2.4)

for all 1 ¤ j ¤ n and a.a. t P r0, T s. We assume additionally that

un0 Ñ u0 strongly in L2
divpΩ;R3q,

%n0 Ñ %0 strongly in L8pΩq,
%n0 P C1pΩq and %� ¤ %n0 ¤ %�

(IV.2.5)
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and

(IV.2.6) fn Ñ f strongly in Lp
1p0, T ;Lp

1pΩ;R3qq.
Let us note that since our approximate solution un satisfies (IV.2.3), (IV.2.4)1 for
1 ¤ j ¤ n is equivalent to@Btp%nunq,ωjD� p%nun b un,∇xω

jq � pSSSpt, x, %n,DDDunq,DDDωjq
� p%nfn,ωjq(IV.2.7)

and consequently after integrating over the time interval p0, T q we have» T

0

@Btp%nunq,ωjD� p%nun b un,∇xω
jq � pSSSpt, x, %n,DDDunq,DDDωjq dt

�
» T

0

p%nfn,ωjq dt

(IV.2.8)

for all 1 ¤ j ¤ n and (IV.2.3) satisfies also

(IV.2.9)
» T

0

xBt%n, zy � p%nun,∇xzq dt � 0

for all z P Lqp0, T ;W 1,qpΩqq with q P r1,8q.
Before we prove existence of the approximate solution we want to show that

some uniform w.r.t. n a priori estimates are valid and to present some of their
consequences which we will use later.

In the first step we concentrate on equations (IV.2.3). Since (IV.2.1) holds,
we will use standard techniques for the transport equation and apply the method
of characteristics. We notice that (IV.2.3) is an equation of the first order w.r.t.
%npt, xq. We solve the Cauchy problem

dynpt, xq
dt

� unpt, ynpt, xqq
ynp0, xq � x,

(IV.2.10)

with the help of Carathéodory’s theory. The system (IV.2.10) defines the so-called
characteristics associated with (IV.2.3). Note that for every t P r0, T s the map
x ÞÑ ynpt, xq is a diffeomorphism of Ω̄ onto Ω̄. Using this fact and divxu

n � 0 we
can see that the solution of (IV.2.3) is given by

(IV.2.11) %npt, ynpt, xqq � %n0 pxq.
Since (IV.2.11) is satisfied and according to assumptions on %n0 we obtain that

(IV.2.12) 0   %� ¤ %npt, xq ¤ %�   �8 for all pt, xq P Q.
For later consideration let us note that the Alaoglu-Banach theorem provides exis-
tence of a subsequence such that

%n á % weakly inLqpQq for any q P r1,8q,
%n

�á % weakly–(*) in L8pQq.(IV.2.13)
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If we multiply (IV.2.4) by αnj , sum up over j and use (IV.2.3), we get

(IV.2.14)
1

2

d

dt

»
Ω

%n|un|2 dx� pSSSpt, x, %n,DDDunq,DDDunq � p%nfn,unq
Using the Hölder, the Korn-Poincaré and the Young inequalities, the assumption
(IV.1.11) and (IV.2.12) we are able to estimate the right-hand side of (IV.2.14) in
the following way

(IV.2.15) |p%nfn,unq| ¤ C1pΩ, cc, c, %�, pq}fn}p1Lp1 pΩq �
cc
2

»
Ω

Mpx,DDDunq dx.

Integrating (IV.2.14) over the time interval p0, s0q, using estimates (IV.2.15) and
(IV.2.12), the coercivity conditions (IV.1.6) on SSS, continuity of P n uniformly w.r.t.
n and strong convergence fn Ñ f in Lp1p0, T ;Lp

1pΩ;R3qq we obtain

»
Ω

1

2
%nps0q|unps0q|2 dx�

» s0

0

»
Ω

cc
2
Mpx,DDDunq � ccM

�px,SSSpt, x, %n,DDDunqq dxdt

¤ C2pΩ, cc, c, %�, p, }f}Lp1 p0,T ;Lp1 pΩqqq �
1

2
%�}u0}2

L2pΩq,

(IV.2.16)

where C2 is a nonnegative constant independent of n and dependent on the given
data. Noticing that EM�pQ;R3�3

symq is separable, pEM�q� � LM and using the Alaoglu-
Banach theorem we obtain for suitable subsequence, as a direct consequence of
(IV.2.16), that

(IV.2.17) DDDun
�á DDDu weakly–(*) in LMpQ;R3�3

symq.
Moreover, the condition (IV.1.11) provides that tDDDunu8n�1 is uniformly bounded in
the space LppQ;R3�3q for p ¥ 11

5

(IV.2.18)
» T

0

}DDDun}pLppΩq dt ¤ C

and hence there exists a subsequence such that

(IV.2.19) DDDun á DDDu weakly in LppQ;R3�3q.
According to the Korn inequality we also obtain

(IV.2.20)
» T

0

}∇xu
n}pLppΩq dt ¤ C

and

(IV.2.21) un á u weakly in Lpp0, T,W 1,p
0,divpΩ;R3qq.

Using (IV.2.16) we deduce that

(IV.2.22) }SSSpt, x, %n,DDDunq}L1pQq ¤ C.

Moreover, we get that the sequence tSSSpt, x, %n,DDDunqu8n�1 is uniformly bounded in
Orlicz class LM�pQ;R3�3q. Consequently for a subsequence we infer that

(IV.2.23) SSSp�, %n,DDDunq �á SSS weakly–(*) in LM�pQ;R3�3
symq.
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Applying Lemma III.2.2 an using assumption (IV.1.12)2 we conclude the uniform
integrability of the sequence. Consequently there exists a tensor SSS P L1pQ;R3�3q
and a subsequence tSSSp�, %n,DDDunqu8n�1 such that

(IV.2.24) SSSp�, %n,DDDunq á SSS weakly in L1pQ;R3�3q.
Furthermore (IV.2.16) and (IV.2.12) provide

sup
tPr0,T s

}unptq}2
L2pΩq ¤ C,

sup
tPr0,T s

}%nptq|unptq|2}L1pΩq ¤ C,
(IV.2.25)

where C is a positive constant dependent on the size of data, but independent of n.
It follows immediately that for some subsequence

(IV.2.26) un
�á u weakly–(*) in L8p0, T ;L2

divpΩ;R3qq.
In particular, from (IV.2.25)1 follows that there exists constant CB s.t.

(IV.2.27) }un}Lqp0,T ;L2
divpΩqq ¤ CB for q ¥ 1.

Since the sequence tunu8n�1 is uniformly bounded in Lpp0, T ;W 1,p
0,divpΩ;R3qq the

Gagliardo-Nirenberg-Sobolev inequality provides uniform boundedness in the space
Lpp0, T ;L3p{p3�pqq. Standard interpolation (see e.g. [108, Proposition 1.41]) of
L8p0, T ;L2q and Lpp0, T ;L3p{p3�pqq (this particular argument deals with the case
p   3, the case p ¥ 3 can be treated easier e.g. with the Poincaré or the Morrey
inequality) gives us

(IV.2.28)
» T

0

}un}rLrpΩqdt ¤ CB for 1 ¤ r ¤ 5p{3

for some constant CB, therefore from (IV.2.12) and (IV.2.28) we infer also

(IV.2.29)
» T

0

}%nun}5p{3
L5p{3pΩqdt ¤ C.

Consequently we can take a subsequence satisfying

(IV.2.30) un á u weakly inL5p{3p0, T ;L5p{3pΩ;R3qq
and there exist subsequence t%nunu8n�1 and %u P L5p{3p0, T ;L5p{3pΩ;R3qq such that

(IV.2.31) %nun á %u weakly in L5p{3p0, T ;L5p{3pΩ;R3qq.
Using (IV.2.12), (IV.2.20) and (IV.2.28) and applying the Hölder inequality, we
obtain » T

0

|p%nun b un,∇xu
nq| dt ¤ C ðñ p ¥ 11

5

(here is the restriction for the exponent p stated in (IV.1.10)).
Using (IV.2.29) it follows from (IV.2.9) that

(IV.2.32)
» T

0

}Bt%n}5p{3
pW 1,5p{p5p�3qq� dt ¤ C.
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Hence the Alaoglu-Banach theorem provides existence of a subsequence such that

(IV.2.33) Bt%n á Bt% weakly inL5p{3p0, T ; pW 1,5p{p5p�3qq�q.
IV.2.2. Existence of approximate solution. On the basis of estimates pro-

ved in Subsection IV.2.1 we will show the existence of solutions of (IV.2.4) and
(IV.2.3) using Schauder’s fixed point theorem for the operator

Λ : B � Y Ñ B : ũn Ñ un

where Y :� Lqp0, T ;LqpΩ;R3qq X Lqp0, T ;L2,n
divpΩ;R3qq, q � 2p1 is equipped with the

norm of the space Lqp0, T ;LqpΩ;R3qq and B is the closed ball which will be defined
later. For given ũn P B the element Λũn � un is a solution of the problem

Bt%̃n � divxp%̃nũnq � 0,

%̃np0q � %n0 ,
(IV.2.34)

p%̃nBtun,ωjq � p%̃nr∇xu
nsũn,ωjq � pSSSpt, x, %̃n,DDDũnq,DDDωjq � p%̃nfn,ωjq,

unp0q � P npu0q.
(IV.2.35)

It means that in the first step we find solution %̃n of the linear problem (IV.2.34)
and next we look for the vector un, solution of the linearization (IV.2.35) of the
system (IV.2.4).

The equation (IV.2.35) can be rewritten as a system of ordinary differential
equations (the reader can find the details in [10, 92, 93]). We obtain local in time
solvability according to Peano’s existence theorem for ordinary differential equations.
The global solvability is provided by the a’priori estimates (IV.2.16) where un is
replaced by ũn in suitable places.

Let us take ũn P B :� BCBp0q, where BCBp0q is a ball and CB is a constant
from (IV.2.28). Inequalities 2p1 ¤ 5p{3 for p ¥ 11{5 assure that Y � B. Previous
estimates (IV.2.27) and (IV.2.28) provide that Λ maps B into B. Using (IV.2.25)1

and (IV.2.20) we deduce that un P L8p0, T ;L2,n
divpΩ;R3qq X Lpp0, T ;W 1,p

0,divpΩ;R3qq.
The continuity of the operator Λ results from the theorem on continuous dependence
of the solutions of the Cauchy problem (IV.2.35) on the coefficients and right-hand
side. Now the main difficulty is to show compactness of the operator Λ. Similarly
as in [10, 59] our plan is to prove that

(IV.2.36)
» T�δ

0

}unps� δq � unpsq}2
L2pΩq dsÑ 0 as δ Ñ 0

is satisfied. According to [115, Theorem 5] and parabolic embedding theorem ΛpBq
is a compact subset of Y . Applying Schauder’s fixed point theorem we deduce that
there exists a fixed point ũn and the corresponding density %̃n which solve the system
(IV.2.3), (IV.2.4).

To show (IV.2.36) we will follow [10, Chap.3. Lemma 1.2] with some modifi-
cations concerning a change from L2-structure for Lp-structure and additional one
concerning the nonlinear term controlled by nonstandard condition (IV.1.6).
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Let us fix δ and s, 0   δ   T , 0 ¤ s ¤ T � δ. Next we test (IV.2.35) at time t by
unps�δq�unpsq and integrate the equation over time interval ps, s�δq w.r.t. time t.
Using the integration by parts formula w.r.t. time, the equality Bt%̃n � �divxp%̃nũnq
and obvious identity

%̃nps�δqunps�δq�%̃psqunpsq � %̃nps�δqrunps�δq�unpsqs�r%̃nps�δq�%̃npsqsunpsq

we get

»
Ω

%̃nps� δq|unps� δq � unpsq|2 � r%̃nps� δq � %̃npsqsunpsq � runps� δq � unpsqs dx

�
» s�δ

s

»
Ω

divxp%̃nptqũnptqqunptq � runps� δq � unpsqs dxdt

�
» s�δ

s

»
Ω

%̃nptqr∇xu
nptqsũnptq � runps� δq � unpsqs dxdt

�
» s�δ

s

»
Ω

SSSpt, x, %̃nptq,DDDũnptqq : DDDrunps� δq � unpsqs dxdt

�
» s�δ

s

»
Ω

%̃nptqfnptq � runps� δq � unpsqs dxdt.

(IV.2.37)

Now, let us test (IV.2.34) at time t by unpsq � punps� δq �unpsqq and integrate the
equation over time interval ps, s� δq w.r.t. t to obtain

»
Ω

r%̃nps� δq � %̃npsqsunpsq � runps� δq � unpsqs dx

� �
» s�δ

s

»
Ω

divxp%̃nptqũnptqqunpsq � runps� δq � unpsqs dxdt.

Substituting the above relation into (IV.2.37) and using some obvious manipulations,
i.e.

pdivxp%̃nũnqunpsq, runps� δq � unpsqsq �
� p%̃nptqr∇xu

npsqsũnptq, runps� δq � unpsqsq
� p%̃nptqunpsq b ũnptq,∇xrunps� δq � unpsqsq

(IV.2.38)
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and (IV.2.12) we get

}unps� δq � unpsq}2
L2pΩq dx ¤

1

%�
t| �

» s�δ

s

»
Ω

%̃nptqunpsq b ũnptq �∇xrunps� δq � unpsqs dxdt

�
» s�δ

s

»
Ω

%̃nptqunptq b ũnptq �∇xrunps� δq � unpsqs dxdt

�
» s�δ

s

»
Ω

%̃nptqr∇xu
npsqsũnptq � runps� δq � unpsqs dxdt

�
» s�δ

s

»
Ω

SSSpt, x, %̃nptq,DDDũnptqq : DDDrunps� δq � unpsqs dxdt

�
» s�δ

s

»
Ω

%̃nptqfnptq � runps� δq � unpsqs dxdt|u.

(IV.2.39)

Next we integrate over p0, T � δq w.r.t. time s and we intend to show that for any
of the ten addends Ikpsq, k � 1, 2, . . . , 10 on the right-hand side of (IV.2.39), the
following inequalities are valid

(IV.2.40)
» T�δ

0

Ikpsq ds ¤ κkθpδq for k � 1, 2, . . . , 10,

where θpδq Ñ 0 as δ Ñ 0 and constant κk is independent of δ. To estimate the first
six integrals let us employ (IV.2.12), the Hölder inequality, the assumption that
q � 2p1 and the fact that Λ maps B into B. Employing additionally the Young and
Jensen inequality and following obvious relation

³T�δ
0

1
δ

³s�δ
s

aptq dtds ¤ ³T
0
apsq ds for

aptq ¥ 0 for one of representative terms we obtain

|
» T�δ

0

» s�δ

s

»
Ω

%̃nptqunpsq b ũnptq �∇xu
nps� δq dxdtds|

¤ %�
» T�δ

0

» s�δ

s

}unpsq}LqpΩq}ũnptq}LqpΩq}∇xu
nps� δq}LppΩq dtds

¤ δ%�
» T�δ

0

#
1

q
}unpsq}qLqpΩq �

1

q

����1δ
» s�δ

s

}ũnptq}LqpΩq dt

����q � 1

p
}∇xu

nps� δq}pLppΩq
+

ds

¤ δ%�
» T�δ

0

"
1

q
}unpsq}qLqpΩq �

1

q

1

δ

» s�δ

s

}ũnptq}qLqpΩq dt� 1

p
}∇xu

nps� δq}pLppΩq
*

ds

¤ δ%�
�

1

q
}unpsq}qLqp0,T ;LqpΩqq �

1

q
}ũnpsq}qLqp0,T ;LqpΩqq �

1

p
}∇xu

n}pLpp0,T :LppΩqq



¤ κ1δ.
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Next we deal with nonlinear viscous term. Using the Fubini theorem, the Fenchel-
Young inequality (Proposition III.1.12) and the Jensen inequality we get the follow-
ing estimates

|
» T�δ

0

» s�δ

s

»
Ω

SSSpt, x, %̃nptq,DDDũnptqq : DDDunps� δq dxdtds|

� δ

» T�δ

0

»
Ω

"����1δ
» s�δ

s

SSSpt, x, %̃nptq,DDDũnptqqdt �DDDunps� δq
����* dxds

¤ δ

» T�δ

0

»
Ω

"
M�

�
x,

1

δ

» s�δ

s

SSSpt, x, %̃nptq,DDDũnptqqdt


�M px,DDDunps� δqq

*
dxds

¤ δ

»
Ω

» T�δ

0

"
1

δ

» s�δ

s

M� px,SSSpt, x, %̃nptq,DDDũnptqqq dt�M px,DDDunps� δqq
*

dsdx

¤
»

Ω

"» T

0

M� px,SSSpt, x, %̃npsq,DDDũnpsqqq ds�
» T�δ

0

M px,DDDunps� δqq ds

*
dx

¤ κ2δ,

where κ2 is uniform w.r.t. n.
Using assumptions on fn and (IV.2.20) we deduce

|
» T�δ

0

» s�δ

s

»
Ω

%̃nptqfnptq � unps� δq dxdtds|

¤ δ%�
» T�δ

0

#
1

p1

����1δ
» s�δ

s

}fptq}Lp1 pΩq dt

����p
1

� }unps� δq}LppΩq
+

ds

¤ δ%�
�

1

p1
}fnps� δq}p1

Lp1 p0,T ;Lp1 pΩqq �
1

p
}un}pLpp0,T ;LppΩqq



¤ κ3δ

We proceed with the second source term in a similar way. Summarising all of the
above estimates for integrals on the right-hand side of (IV.2.39) we prove (IV.2.36)
and existence of approximate solution un.

Remark IV.2.1. Since we already know that tunu8n�1 is uniformly bounded in
L2p0, T ;L2

divpΩ;R3qq and above considerations show that for any approximate solu-
tion of (IV.2.3), (IV.2.4) we obtain

1

δ1{2

�» T�δ

0

}unps� δq � unpsq}2
L2pΩq ds


1{2
¤ κ

where κ is independent of n and δ. Therefore, as a byproduct, we obtain that
tunu8n�1 is uniformly bounded in Nikolskii space N1{2,2p0, T ;L2

divpΩ;R3qq.
IV.2.3. Strong convergence of %n and un. Since at this moment we have

existence of approximate solution to (IV.2.3 - IV.2.4) and the previous considerations
show (IV.2.36) uniformly w.r.t. n, we get by [115, Theorem 3] that

(IV.2.41) un Ñ u strongly in L2pQ;R3q.
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Using (IV.2.12), (IV.2.13) and (IV.2.33) the Aubin-Lions lemma provides that

(IV.2.42) %n Ñ % strongly inCpr0, T s;W�1,5p{3pΩqq.
If we employ the same methods like Lions et al. in [45], [91, Chapter 2], we are

able to deduce that

(IV.2.43) %n Ñ % strongly inCpr0, T s;LqpΩqq for all q P r1,8q and a.e. inQ,

and also

(IV.2.44) lim
tÑ0�

}%ptq � %0}LqpΩq � 0 for all q P r1,8q,
which is the first part of the initial condition (IV.1.9). To give the reader a view of
main steps we list some of them.

Using the fact that divxu
n � 0 we see that the so-called strong and weak

form of the transport equation coincide, i.e. equation (IV.2.3) is equivalent to
Bt%n�un∇x%

n � 0 in a weak sense. Consequently with the concept of renormalized
solutions to the equation (IV.2.9), it is possible to strengthen (IV.2.42). First, we
need the time-space version of the Friedrichs commutator lemma (see [54, Corol-
lary 10.3],[45]). Since % P Lqp0, T ;LqpΩqq for q P r1,8q and u P Lpp0, T ;W 1,p

div pΩ;R3qq,
then

divx pσε � p%nunqq � divx ppσε � %nqunq Ñ 0 in LrpQq
for r such that 1

q
� 1

p
� 1

r
P p0, 1s, where σε is the standard mollifying operator acting

on the space variable.
Additionally since %n ¥ %� and continuity equation (IV.2.3) is satisfied, then %n

satisfies renormalized continuity equation, namely

(IV.2.45) Btbp%nq � divx pbp%nqunq � 0

in a weak sense for b P C1pr0,8qq XW 1,8p0,8q which vanishes near zero (see [45],
[54, Appendix]). Next we are able to prove that

%n P Cpr0, T s;LqpΩqq for q P r1,8q.
With the above information at hand following [45] or [91] we can prove (IV.2.43).

The task now is to show that

(IV.2.46) %nun á %u weakly inLqp0, T ;LqpΩ;R3qq for all q P r1, 5p{3s.
Indeed, (IV.2.43) provides that %n converges strongly to % in L

5p
3�γ p0, T ;L

5p
3�γ pΩ;R3q,

where γ P r0,8q. This together with (IV.2.30) implies

lim
nÑ8

» T

0

»
Ω

%nun �ϕ dxdt � lim
nÑ8

» T

0

p%n,un �ϕq dt �
» T

0

p%,u �ϕq dt

�
» T

0

»
Ω

%u �ϕ dxdt

for every ϕ P pL 5p
6�ε p0, T ;L

5p
6�ε pΩ;R3qqq�, where εpγq P r0, 5p

3
q. Therefore (IV.2.31)

infers that (IV.2.46) holds. Finally from (IV.2.33) and (IV.2.46) we conclude that
% and u satisfy (IV.1.8).
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Additionally previous considerations imply, by using the test function of the form
1lpt1,t2qh, h P W 1,5p{p5p�3q in (IV.1.8), partial integration w.r.t. time and the density
of W 1,5p{p5p�3q in L1, that % P Cpr0, T s;L8weakq, i.e. for all h P L1 and all 0 ¤ t0 ¤ T
we have

(IV.2.47) lim
tÑt0

p%ptq, hq � p%pt0q, hq.
Using (IV.2.41) and (IV.2.28) we infer by interpolation inequalities that

(IV.2.48) un Ñ u strongly in LrpQ;R3q for all r P r1, 5p{3q and a.e. in Q.

Summarising (IV.2.48), (IV.2.12) and (IV.2.30), (IV.2.43),

%nun b un á %ub u weakly in Lr
1p0, T ;W�1,r1q for r sufficiently large,

i.e. 1
q
� 6

5p
� 1

r
  1, with arbitrary q P r1,8q. Density argument and (IV.2.21)

provides

(IV.2.49) %nun b un á %ub u weakly in Lp
1p0, T ;W�1,p1

div q for p ¥ 11{5.
In particular we obtain
(IV.2.50)

lim
nÑ8

» T

0

»
Ω

%nun b un : ϕ dxdt �
» T

0

»
Ω

%ub u : ϕ dxdt for ϕ P Dpp�8, T q;Vq.

IV.2.4. Integration by parts. For any function z (for which integrals below
have sense) and for h ¡ 0 we denote

pσ̃�h � zqpt, xq :� 1

h

» h

0

zpt� τ, xq dτ,

pσ̃�h � zqpt, xq :� 1

h

» 0

�h
zpt� τ, xq dτ,

where � means convolution w.r.t. time variable. Let us define also

D�hz :� zpt� h, xq � zpt, xq
h

,

D�hz :� zpt, xq � zpt� h, xq
h

.

Then it is easy to observe that

(IV.2.51) Btpσ̃�h � zq � D�hz and Btpσ̃�h � zq � D�hz.

Let us take h ¡ 0 and 0   s0   s   T such that h ¤ mints0, T �su. We multiply
each equation in the system (IV.2.7) by

σ̃�h � ppσ̃�h � αijptqq 1lps0,sqq,
next we sum up over j � 1, . . . , i, where i ¤ n and integrate this sum over time inter-
val p0, T q. Noticing that σ̃�h � ppσ̃�h �uiq 1lps0,sqq �

°i
j�1 σ̃

�
h � ppσ̃�h �αijptqq 1lps0,sqqωjpxq

let
uh,i

def� σ̃�h � ppσ̃�h � uiq 1lps0,sqq
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with h ¤ mints0, T � su. Since» T

0

@Btp%nunq,uh,iD dt �
» T

0

@Btpσ̃�h � p%nunqq, ppσ̃�h � uiq1lps0,sqqD dt,

and i ¤ n we get in the limit as nÑ 8

» s

s0

@pBtpσ̃�h � %uqq, pσ̃�h � uiqD dt �
» T

0

»
Ω

p%ub uq : ∇xu
h,i dxdt

�
» T

0

»
Ω

SSS : DDDuh,i dxdt�
» T

0

»
Ω

%f � uh,i dxdt.

(IV.2.52)

Indeed, let us notice that for fixed h and i it is provided that uh,i, DDDuh,i P L8. Then
the convergence process in the first term on the left-hand side of (IV.2.52) is provided
by the fact that σ̃�h �ui is locally Lipschitz w.r.t. time variable and (IV.2.46) holds.
In terms on the left-hand side we use respectively (IV.2.49), (IV.2.23) (obviously
L8 � EM) and (IV.2.6) with (IV.2.43).

Our aim now is to use a test function in (IV.2.52)

uh
def� σ̃�h � ppσ̃�h � uq 1lps0,sqq

with 0   h   mints0, T � su. For this purpose define the truncation operator
T̄m : R3�3 Ñ R3�3 such that

T̄mpKKKq �
"

KKK |KKK| ¤ m,
m KKK

|KKK| |KKK| ¡ m.

Observe the following identity» s

s0

@pBtpσ̃�h � p%uqq, pσ̃�h � uiqD dt �
» T

0

»
Ω

p%ub uq : ∇xu
h,i dxdt

�
» T

0

»
Ω

pT̄mpSSSq � SSSq : DDDuh,i dxdt

�
» T

0

»
Ω

T̄mpSSSq : DDDuh,i dxdt

�
» T

0

»
Ω

%f � uh,i dxdt.

(IV.2.53)

Let us concentrate now on the right-hand side of (IV.2.53) and investigate the first
and the last term.

The sequence tuh,iu8i�1 is weakly convergent to uh in Lpp0, T ;W 1,p
0,divpΩ;R3qq when

i Ñ 8. Note that if p ¥ 11
5
, then since % is bounded we infer that

³T
0

³
Ω
p%u b uq �

∇xu
h,i dxdtÑ ³T

0

³
Ω
p%ub uq �∇xu

h dxdt as iÑ 8.
Since f P Lp1p0, T ;Lp

1pΩ;R3qq we treat in the same way the source term to obtain
that

³T
0

³
Ω
%f : uh,i dxdtÑ ³T

0

³
Ω
%f : uh dxdt as iÑ 8.
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Now we show convergence process in the second term on the right-hand side of
(IV.2.53). We fix k P N and using the Fenchel-Young inequality, the convexity of
M and that M� satisfies the ∆2�condition (see (IV.1.12)) with some nonnegative
integrable function gM� (see (III.1.15)) we estimate the integral» T

0

»
Ω

|pT̄mpSSSq � SSSq : DDDuh,i| dxdt ¤
» T

0

»
Ω

M�px, 2kpT̄mpSSSq � SSSqq dxdt

�
» T

0

»
Ω

Mpx, 1

2k
DDDuh,iq dxdt

¤ Ck
M�

» T

0

»
Ω

M�px, T̄mpSSSq � SSSq dxdt

� k

» T

0

»
Ω

gM�pxq1lt|SSSpt,xq|¡mu dxdt

� 1

2k

» T

0

»
Ω

Mpx,DDDuh,iq dxdt.

(IV.2.54)

Inequality (IV.2.16) and Proposition III.2.5 provide that for each 0   h ¤ mints0, T�
su it holds

sup
h

sup
iPN

» T

0

»
Ω

Mpx,DDDuh,iq dxdt   C,

where C is a nonnegative constant independent of i and h. Consequently we infer
that

lim
kÑ8

1

2k
sup
h

sup
iPN

» T

0

»
Ω

Mpx,DDDuh,iq dxdt � 0.

Due to the convexity and symmetry of M� and that M�px, 0q � 0 a.e. it holds
that

M�px, T̄mpSSSq � SSSq ¤M�px,SSSq.
SinceM� satisfies the ∆2�condition and SSS is an element of LM�pQ;R3�3

symq, the above
inequality yields by the Lebesgue convergence theorem that

³
Q
M�px, T̄mpSSSq�SSSq dxdt

converges to zero as mÑ 8. Hence

lim
kÑ8

lim
mÑ8

» s

s0

»
Ω

Ck
M�M�px, T̄mpSSSq � SSSq � kgM�pxq1lt|SSSpt,xq|¡mu dxdt � 0.

Then we can pass to the limits in the second and the third term on the right-hand
side of (IV.2.53) (together with (IV.2.54)) consecutively with i Ñ 8, m Ñ 8 and
k Ñ 8.

Now we will concentrate on the left hand-side term of (IV.2.52). Let us notice
that as %u P L8p0, T ;L2pΩ;R3qq, σ̃�h � %u is a Lipschitz function w.r.t. the time
variable, hence Btpσ̃�h � %uq P L8p0, T ;L2pΩ;R3qq. By (IV.2.26) and letting i Ñ 8
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we obtain

Lh :�
» s

s0

»
Ω

pBtpσ̃�h � p%uqq � pσ̃�h � uq dxdt

�
» s

s0

»
Ω

�
p%ub uq : ∇xu

h � SSS : DDDuh � %f � uh
	

dxdt �: Rh.

(IV.2.55)

In order to pass with hÑ 0� we conclude form (IV.2.51) that

Lh �
» s

s0

»
Ω

pD�hp%uqq � pσ̃�h � uq dxdt.

Moreover notice that

Lh �
» s

s0

»
Ω

p%D�huq � pσ̃�h � uq � ppD�h%qupt� hqq � pσ̃�h � uq dxdt

�
» s

s0

»
Ω

% � 1

2
Bt|σ̃�h � u|2 �

�
σ̃�h � p%uq

� � �∇x

�
upt� hq � pσ̃�h � uq

��
dxdt,

where we used (IV.2.51) and relation D�h% � �divxpσ̃�h � p%uqq, which is provided
by the fact that the couple (%, u) solves the continuity equation Bt%� divxp%uq � 0
in a weak sense. Inserting z � 1

2
|σ̃�h �u|2 into the weak formulation of the continuity

equation, which means that for all s0, s P r0, T s, s0   s

» s

s0

»
Ω

p%pτq � Btzpτq � %pτqupτq �∇xzpτqq dxdτ �
»

Ω

%psq � zpsq � %ps0q � zps0q dx

(for all z P Lrp0, T ;W 1,rq with r � 5p{p5p�3q and Btz P L1�δp0, T ;L1�δq) we obtain

Lh �
»

Ω

%psq � p1
2
|σ̃�h � upsq|2q dx�

»
Ω

%ps0q � p1
2
|σ̃�h � ups0q|2q dx

�
» s

s0

»
Ω

p%uq � p1
2
∇x|σ̃�h � u|2q dxdt

�
» s

s0

»
Ω

�
σ̃�h � p%uq

� � �∇x

�
upt� hq � pσ̃�h � uq

��
dxdt.

Let us notice that σ̃�h �u converges strongly (locally in time) to u in L2p0, T ;L2pΩ;R3qq
and in L5p{3p0, T ;L5p{3pΩ;R3qq and ∇xσ̃

�
h �u converges strongly (locally in time) to

∇xu in Lpp0, T ;LppΩ;R3�3qq as hÑ 0�. The same arguments are valid for transla-
tion τ�hu � upt � hq. Then by the Hölder inequality letting h Ñ 0� in the above
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we obtain for almost all s0 and s in p0, T q

lim
hÑ0�

Lh �
» s

s0

»
Ω

p%uq � p1
2
∇x|u|2q dxdt

� 1

2

»
Ω

%ps, xq|ups, xq|2 dx� 1

2

»
Ω

%ps0, xq|ups0, xq|2 dx

�
» s

s0

»
Ω

%ub u : ∇xu dxdt

� 1

2

»
Ω

%ps, xq|ups, xq|2 dx� 1

2

»
Ω

%ps0, xq|ups0, xq|2 dx.

(IV.2.56)

Next we consider the right-hand side of (IV.2.55) and pass with h Ñ 0�. First
we investigate the convergence of the term

³s
s0

³
Ω
p%u b u : ∇xu

hq dxdt. Since con-
dition (IV.1.11) provides that DDDu P Lpp0, T ;LppΩ;R3�3qq and due to the Korn
inequality ∇xu P Lpp0, T ;LppΩ;R3�3qq, we have that also the sequence ∇xu

h �
∇x

�
σ̃�h � ppσ̃�h � uq1lps0,sqq

�
is uniformly bounded in Lpp0, T ;LppΩ;R3�3qq. Hence we

obtain, for subsequence if needed,

lim
hÑ0�

» s

s0

»
Ω

p%ub u : ∇xu
hq dxdt �

» s

s0

»
Ω

p%ub u : ∇xuq dxdt.

Since f P Lp1p0, T ;Lp
1pΩ;R3qq and % satisfies (IV.2.12) in the same way we conclude

(IV.2.57) lim
hÑ0�

» s

s0

»
Ω

p%fq � uh dxdt �
» s

s0

»
Ω

%f � u dxdt.

Let us concentrate now on the term» T

0

»
Ω

SSS : pσ̃�h � ppσ̃�h �DDDuq1lps0,sqqq dxdt �
» s

s0

»
Ω

pσ̃�h � SSSq : pσ̃�h �DDDuq dxdt.

Sequences tσ̃�h � SSSuh and tσ̃�h � DDDuuh converge in measure on Q due to Proposi-
tion III.2.4. Moreover, since M and M� are convex nonnegative functions, then the
weak lower semicontinuity and estimate (IV.2.16) provide that the integrals

(IV.2.58)
» T

0

»
Ω

Mpx,DDDuq dxdt and
» T

0

»
Ω

M�px,SSSq dxdt

are finite. Hence Proposition III.2.5 implies that the sequences tσ̃�h � SSSuh and tσ̃�h �
DDDuuh are uniformly integrable and hence according to Lemma III.2.1 we have

σ̃�h �DDDu
MÝÑDDDu modularly in LMpQ;R3�3

symq,
σ̃�h � SSS

M�ÝÑSSS modularly in LM�pQ;R3�3
symq.

Applying Proposition III.2.3 allows to conclude

(IV.2.59) lim
hÑ0�

» s

s0

»
Ω

pσ̃�h � SSSq : pσ̃�h �DDDuq dxdt �
» s

s0

»
Ω

SSS : DDDu dxdt.
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Summarising arguments (IV.2.56), (IV.2.59) and (IV.2.57) we are able to pass
to the limit in (IV.2.52) and we obtain

1

2

»
Ω

%ps, xq|ups, xq|2 dx�
» s

s0

»
Ω

SSS : DDDu dxdt

�
» s

s0

»
Ω

%f � u dxdt� 1

2

»
Ω

%ps0, xq|ups0, xq|2 dx.

(IV.2.60)

IV.2.5. Continuity w.r.t. time in the weak topology and the initial
condition. Using the already proved properties of the density and the velocity
field, namely % P Cpr0, T s, LqpΩqq for q P r1,8q and u P Cp0, T ;L2

divpΩ;R3qq, it
we are lead to a conclusion that p%p�qup�q, ϕ̃q is continuous at s1 P p0, T q for all
ϕ̃ P W s,2

0,div, in other words, %u P Cp0, T ; pW s,2
0,divq�weakq or

lim
s2Ñs1

p%ps2qups2q � %ps1qups1q, ϕ̃q � 0.

Since u P L8p0, T ;L2
divpΩ;R3qq, % P Cpr0, T s;LqpΩqq for q P r1,8q and W s,2

0,div is
dense in L2

div, we observe that %u P Cpr0, T s;L2
div,weakpΩ;R3qq. As a consequence we

have

(IV.2.61) lim
s1Ñ0

p%ps1qups1q � %0u0, ϕ̃q � 0 for all ϕ̃ P L2
div.

Integrating (IV.2.14) over time interval p0, s1q, using that pSSSpt, x, %n,DDDunq,DDDunq is
nonnegative (because of monotonicity and that SSSp�, �, �,000q � 000) and taking the limit
as nÑ 8 we obtain

(IV.2.62) p%ps1q, |ups1q|2q � p%p0q, |up0q|2q ¤ 2

» s1

0

p%f ,uq dt.

If we employ obvious identity

}
a
%ps1qpups1q � u0q}2

L2pΩq � p%ps1q, |ups1q|2q � 2p%ps1qups1q,u0q � p%ps1q, |u0|2q,
then the second part of property (IV.1.9) is an easy consequence of (IV.2.62) and

}
a
%ps1qpups1q � u0q}2

L2pΩq � p%ps1q, |ups1q|2q � 2p%ps1qups1q,u0q � p%ps1q, |u0|2q
� p%ps1q, |ups1q|2q � p%0, |u0|2q � 2p%ps1qups1q � %0u0,u0q � p%ps1q � %0, |u0|2q
¤ 2

» s1

0

p%f ,uq dt� 2p%ps1qups1q � %0u0,u0q � p%ps1q � %0, |u0|2q.

(IV.2.63)

Letting s1 Ñ 0� in (IV.2.63) using (IV.2.61), (IV.2.47) and p%f ,uq P L1p0, T ;L1pΩqq
we can conclude that

(IV.2.64) lim
s1Ñ0

}
a
%ps1qpups1q � u0q}2

L2pΩq � 0.
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Hence this implies together with (IV.2.12) the second part of (IV.1.9). Above argu-
ments and (IV.2.63), (IV.2.64) provide also the fact which we will use later:

(IV.2.65) lim
s1Ñ0

p%ps1q, |ups1q|2q � p%0, |u0|2q.

IV.2.6. Monotonicity method. Using the property (IV.2.65) and letting s0 Ñ
0 in (IV.2.60) we obtain

1

2

»
Ω

%ps, xq|ups, xq|2 dx�
» s

0

»
Ω

SSS : DDDu dxdt

�
» s

0

»
Ω

%f � u dxdt� 1

2

»
Ω

%0pxq|u0pxq|2 dx.

Additionally integrating (IV.2.14) over the interval p0, sq allows to conclude by
(IV.2.5), (IV.2.6), (IV.2.43), (IV.2.46), (IV.2.48) that

1

2

»
Ω

%ps, xq|ups, xq|2 dx� lim
nÑ8

» s

0

»
Ω

SSSpt, x, %n,DDDunq : DDDun dxdt

�
» s

0

»
Ω

%f � u dxdt� 1

2

»
Ω

%0pxq|u0pxq|2 dx.

Consequently we obtain

(IV.2.66) lim sup
nÑ8

» s

0

»
Ω

SSSpt, x, %n,DDDunq : DDDun dxdt ¤
» s

0

»
Ω

SSS : DDDu dxdt.

By Qs we will mean the set p0, sq � Ω. Since SSS is monotone, then we have

(IV.2.67)
»
Qs
pSSSpt, x, %n,wwwq � SSSpt, x, %n,DDDunqq : pwww �DDDunq dxdt ¥ 0

for all www P L8pQ;R3�3q. Observe that also SSSpt, x, %n,wwwq P L8pQ;R3�3q. We prove
this by contradiction, i.e. let us suppose that SSSpt, x, %n,wwwq is unbounded. Then,
since M is nonnegative, by (IV.1.6), it holds

|www| ¥ M�px,SSSpt, x, %n,wwwqq
|SSSpt, x, %n,wwwq| .

The right-hand side tends to infinity as |SSSpt, x, %n,wwwq| Ñ 8 by (IV.1.12)2, which
contradicts that www P L8pQ;R3�3q. Now employing continuity of SSS w.r.t. the
third variable and (IV.2.12) we obtain uniform boundedness of tSSSpt, x, %n,wwwqu8n�1

w.r.t n. Together with boundedness of Qs this gives uniform integrability of a se-
quence tM�pSSSpt, x, %n,wwwqqu8n�1. Lemma III.2.1 and (IV.2.43) provide modular con-
vergence of the sequence. SinceM� satisfies the ∆2–condition, then the modular and
strong convergence in LM� coincide (see [87]) and hence SSSpt, x, %n,wwwq Ñ SSSpt, x, %,wwwq
strongly in LM� . Therefore by (IV.2.17) we deduce

(IV.2.68) lim
nÑ8

»
Qs

SSSpt, x, %n,wwwq : DDDun dxdt �
»
Qs

SSSpt, x, %,wwwq : DDDu dxdt.
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Before passing to the limit with nÑ 8, we rewrite (IV.2.67)»
Qs

SSSpt, x, %n,DDDunq : DDDun dxdt

¥
»
Qs

SSSpt, x, %n,DDDunq : www dxdt�
»
Qs

SSSpt, x, %n,wwwq : pDDDun �wwwq dxdt.

hence (IV.2.19), (IV.2.24), (IV.2.66), (IV.2.68) give»
Qs

SSS : DDDu dxdt ¥
»
Qs

SSS : www dxdt�
»
Qs

SSSpt, x, %,wwwq : pDDDu�wwwq dxdt

and consequently

(IV.2.69)
»
Qs
pSSSpt, x, %,wwwq � SSSq : pwww �DDDuq dxdt ¥ 0.

Let k ¡ 0 and denote by

Qk � tpt, xq P Qs : |DDDupt, xq| ¤ k a.e. in Qsu
and let 0   j   i be arbitrary and h ¡ 0

www � pDDDuq1lQi � hvvv1lQj ,

where vvv P L8pQ;R3�3q is arbitrary. By (IV.2.69), we have

�
»
QszQi

pSSSpt, x, %,000q � SSSq : DDDu dxdt� h

»
Qj

pSSSpt, x, %,DDDu� hvvvq � SSSq : vvv dxdt ¥ 0.

Note that SSSpt, x, %,000q � 000. Obviously»
QszQi

SSS : DDDu dxdt �
»
Q

pSSS : DDDuq1lQszQi dxdt.

By Proposition III.1.12 and (IV.2.58) we obtain»
Q

SSS : DDDu dxdt   8.

Then as iÑ 8 we get

pSSS : DDDuq1lQszQi Ñ 0 a.e. in Q.

Hence by the Lebesgue dominated convergence theorem

lim
iÑ8

»
QszQi

SSS : DDDu dxdt � 0.

Letting iÑ 8 in (IV.2.6) and dividing by h, we get»
Qj

pSSSpt, x, %,DDDu� hvvvq � SSSq : vvv dxdt ¥ 0.

Since DDDu � hvvv Ñ DDDu a.e. in Qj when h Ñ 0� and SSSpt, x, %,DDDu � hvvvq is uniformly
bounded in L8pQj;R3�3q, |Qj|   8, by the Vitali lemma we conclude

SSSpt, x, %,DDDu� hvvvq Ñ SSSpt, x, %,DDDuq in L1pQj;R3�3q
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and »
Qj

pSSSpt, x, %,DDDu� hvvvq � SSSq : vvvdxdtÑ
»
Qj

pSSSpt, x, %,DDDuq � SSSq : vvvdxdt

when hÑ 0�. Consequently,»
Qj

pSSSpt, x, %,DDDuq � SSSq : vvvdxdt ¥ 0

for all vvv P L8pQ;R3�3q. The choice

vvv �
#
� SSSpt,x,%,DDDuq�SSS

|SSSpt,x,%,DDDuq�SSS| for SSSpt, x, %,DDDuq � SSS,

0 for SSSpt, x, %,DDDuq � SSS,

yields »
Qj

|SSSpt, x, %,DDDuq � SSS|dxdt ¤ 0.

Hence
(IV.2.70) SSSpt, x, %,DDDuq � SSS a.e. in Qj.

Since j was arbitrary, (IV.2.70) holds a.e. in Qs. Since it holds for almost all s such
that 0   s   T , we conclude that SSS � SSSpt, x, %,DDDuq a.e. in Q.
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CHAPTER V

Existence result for the motion of several rigid bodies in an
incompressible non-Newtonian fluid

V.1. Introduction

We want to investigate the mathematical properties of motion of one or several
non-homogenous rigid bodies immersed in a homogeneous incompressible viscous
fluid which occupies a bounded domain Ω � R3. In particular we are interested
in fluids having viscosity which increases dramatically with increasing shear rate or
applied stress, i.e. we want to consider shear thickening fluids and as in Chapter IV
we formulate the growth conditions of the stress tensor using quite general convex
functionM called an isotropic N�function. Fore more references and more detailed
description of our motivation we refer the reader to the Chapter IV.

We assume that the viscous stress tensor SSS depends on the symmetric part of
the gradient of the velocity field u in the following way: SSS : R3�3

sym Ñ R3�3
sym satisfies

(R3�3
sym stands for the space of 3� 3 symmetric matrices):

(V.1.1) SSSp000q � 000, SSS � SSSpDDDuq is continuous,

(V.1.2)
�

SSSpξξξq � SSSpηηηq
	

:
�
ξξξ � ηηη

	
¥ 0 for all ξξξ � ηηη, ξξξ,ηηη P R3�3

sym

and there exist a positive constant c, an isotropic N –functionsM (Definition III.1.1)
and M� (M� denotes the complementary function to M) such that for all ξξξ P R3�3

sym

it holds

(V.1.3) SSSpξξξq : ξξξ ¥ cctMp|ξξξ|q �M�p|SSSpξξξq|qu.
Additionally we assume that the N –function M satisfies an additional growth con-
dition

(V.1.4) c1| � |p ¤Mp�q ¤ c2 exp
1

β�1 p| � |q for p ¥ 4, β ¡ 0

where c1, c2 are some positive constants, the complementary function

(V.1.5) M� satisfies the ∆2 � condition

and

(V.1.6) Mp| � | 14 q is convex.

The appropriate spaces to capture such formulated problem are isotropic Orlicz
spaces.

The motion of the body during and before the contacts with boundary of the
domain Ω was studied by Starovoitov. In particular, the author gives sufficient
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conditions which imply the impossibility of the collision with rigid object, see [120,
Theorem 3.2.], i.e.:

c1: the domain Ω � R3 as well as the rigid bodies in its interior have bound-
aries of class C1,1;

c2: the p� th power of the velocity gradient is integrable, with p ¥ 4.
Therefore any contact of rigid body with the boundary of domain or with other
one or several rigid bodies does not occur. We just need to assume that it was not
present in initial time and consider certain class of non-Newtonian fluids, where the
contact can be eliminated by the phenomenon of shear-thickening.

We want to investigate the motion of several rigid bodies in a non-Newtonian
incompressible fluid. To construct the solution we use penalization method devel-
oped by Hoffmann and Starovoitov [80], and San Martin et al. [113], which is based
on the idea of approximating rigid objects of the system by the fluid of very high
viscosity becoming singular in limiting consideration. To avoid some technical diffi-
culties we assume that fluid density is constant in the approximate “fluid” part (this
assumption is avoided in [113], where 2-D case of a Newtonian fluid is investigated).

There are two main difficulties we have to face in the proof of the existence result,
more precisely in the proof of the sequential stability of the approximate solutions:
1. strong compactness of the approximate velocities on the time-space cylinder in
L2 space;
2. passing to the limit in the nonlinear term – i.e. in viscous stress tensor by means
of the monotonicity method.

To solve the first problem, similarly as San Martin et al. in [113], we use the
Aubin-Lions argument applied to a suitable projection of the velocity field onto the
“space of rigid velocities”. It is worth to notice that no-collision result by Starovoitov
[120] significantly simplifies our analysis. Namely we are ensured that bodies do
not penetrate each other and the boundary. We will notice that positive distance
between the bodies and boundary is always kept and any sharp cones do not appear
in the fluid part.

As in the previous chapter, the principal difficulty here is caused by the fact
that we consider the problem in Orlicz-space setting and we do not assume that the
42–condition is satisfied as we want to investigate the case of shear thickening fluids
of rheology more general then of power-law type. For this reason the spaces we work
with lose many facilitating properties, which have been mentioned in Chapters I,III.

The latter problem, inherent to the theory of non-Newtonian fluids, is that we
have to identify the nonlinear term on ”fluid” part of time-space cylinder. Therefore
the problem is more delicate as the monotonicity argument must be localised to the
“fluid” part of the system. We take the idea of Wolf [130], localise the pressure and
represent it as a sum of a regular and a harmonic part. Following Feireisl et al. [56]
we construct the pressure function with the help of Riesz transform which gives a
result more suitable for non-standard growth conditions and such an approach can
be easily adapted to more general constitutive relations for SSS. The main difference
from any previous works in this direction is, due to nonstandard growth conditions,
that we are in Orlicz-space setting. Besides the difficulties mentioned above, the
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Riesz transform in general can not be well defined on Orlicz space to itself. If M
andM� do not satisfy the ∆2�condition it can happen that it is continuous from one
Orlicz space to another one, with a modular of essentially slower growth. Therefore
the pressure localisation method appears to us to be more difficult.

We want to emphasise that we achieve the existence result for the problem of mo-
tion of rigid bodies in non-Newtonian fluids with non-polynomial growth conditions.
This allows us to consider a situation of non-power-law fluids, where constitutive
relation can be more general than (IV.1.5) considered in [56].

Our main result, formulated below in Theorem V.3.1, concerns the existence
of weak solutions of the associated evolutionary system, where, in accordance with
[120], collisions of two or more rigid objects do not appear in a finite time unless
they were present initially, which considerably simplified analysis of the problem.
The chapter is based on [134, 135] by Wróblewska-Kamińska.

The chapter is organised as follows: some preliminary considerations, weak for-
mulation and basic notation of the investigated problem are summarised in Sec-
tion V.2. The main result is formulated in Section V.3 as Theorem V.3.1. The
remaining part of the chapter contains the proof of the existence result. In Sec-
tion V.4 the approximate problem is introduced by replacing the bodies by the fluid
of high viscosity. Section V.5 contains the artificial viscosity limit. In Section V.6
previous arguments are recalled to provide the limit for the regularized velocity field.

V.2. Preliminaries, weak formulation

We state the following problem: let Ω � R3 be an open bounded domain with
a sufficiently smooth boundary BΩ, occupied by an incompressible fluid containing
rigid bodies. Each rigid body in the considered system is identified with the con-
nected subset of Euclidean space R3. The initial position of the rigid bodies is given
through a family of domains

Si � R3, i � 1, . . . , n,

which are diffeomorphic to the unit ball in R3. To avoid additional difficulties the
boundaries of all rigid bodies are supposed to be sufficiently regular, namely there
exists δ0 ¡ 0 such that for any x P BSi there are two closed balls Bint, Bext of radius
δ0 such that

(V.2.1) x P Bint XBext, Bint � Si, Bext � R3zSi.
The same assumption concerns the considered physical space Ω � R3, occupied
by the fluid and containing all rigid bodies. In particular, Ω is supposed to be a
bounded domain such that for any x P BΩ there are two closed balls Bint, Bext of
radius δ0 such that

(V.2.2) x P Bint XBext, Bint � Ω, Bext � R3zΩ.
The motion of the rigid body Si is represented by the associated mapping ηi
ηi � ηipt, xq, t P r0, T q, x P R3, ηipt, �q : R3 Ñ R3 is an isometry for all t P r0, T q

and ηip0, xq � x for all x P R3, i � 1, . . . , n.
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Therefore, the position of the body Si at a time t P r0, T q is given by the following
formula

(V.2.3) Siptq � ηipt, Siq, i � 1, . . . , n.

In the above terms we introduce domains Qf and Qs respectively as a fluid and a
rigid part of the time-space cylinder in the following way:

QS :�
¤

i�1,...,n

 pt, xq | t P r0, T s, x P Siptq( Qf :� QzQS.

In the present work the concept of weak solutions is based on the Eulerian
reference system and on a class of test functions which depend on the position of
the rigid bodies. This idea was introduced by Judakov [85] (see also Desjardins and
Esteban [39, 40], Galdi [66, 67], Hoffmann and Starovoitov [80], San Martin et al.
[113] , Serre [114]). Let us denote the velocity field of the system by u : Q Ñ R3

and introduce decomposition for a fluid and a rigid velocity as follows

uf � u on Qf and uS � u on QS.

In our considerations we assume no-slip boundary conditions for the velocity on
all surfaces and the velocity of the fluid on the boundary of each rigid body Si
(i � 1, . . . , n) is supposed to coincide with the velocity of rigid object. Namely

uf pt, xq � 0 on BΩ and uf pt, xq � uSi pt, xq on BSiptq
for all t P r0, T s and i � 1, . . . , n. To be more precise, if we consider the mass density
% � %pt, xq and the velocity field u � upt, xq at a time t P p0, T q and the spatial
position x P Ω, then those functions satisfy the following integral identities

(V.2.4)
» T

0

»
Ω

�
%Btϕ� %u �∇xϕ

	
dxdt � �

»
Ω

%0ϕ dx

for any test function ϕ P C1
c pr0, T q � Ωq, and» T

0

»
Ω

�
%u � Btϕ� %ub u : DDDϕ� SSS : DDDϕ

	
dxdt

� �
» T

0

»
Ω

%∇xF �ϕ dxdt�
»

Ω

%0u0 �ϕ dx

(V.2.5)

for any test function ϕ P C1
c pr0, T q � Ω;R3q,

(V.2.6) ϕpt, �q P rRM sptq,
which is associated with the position of rigid bodies, i.e.

rRM sptq �  
φ P C1

c pΩ;R3q | divxφ � 0 in Ω,

DDDφ has compact support on Ωz Yn
i�1 Siptq

(
.

(V.2.7)

The symbol SSS denotes the viscous stress tensor determined through (V.1.1 - V.1.6),
∇xF is a given potential driving force and %0, u0 stand for the initial distribution
of the density and the velocity, respectively.
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The tensor DDDu is called also a deformation rate tensor as u stands for velocity
field. The kernel of this tensor consists of rigid vector field. Assume that S is a
connected domain in R3 and u : S Ñ R3 is a velocity field. Then DDDu � 000 in S if and
only if there exists a vector a P R3 and an antisymmetric tensor AAA P R3 � R3 such
that upxq � a � AAAx for x P S. The proof of this fact can be found for instance in
[124]. Velocity of the above form corresponds to rigid motion. Thus, it is possible
to specify rigid bodies by the condition that the deformation rate tensor vanishes in
the domains corresponding to the bodies.

In order to close the system we have to specify the relation between the velocity
u and the motion of solids given by isometries ηi. This can be formulated as follows.
As the mappings ηipt, �q are isometries on R3, they can be written in the form

ηipt, xq � xiptq �OOOiptqx,
where OOOiptq P SOp3q (i.e. it is a matrix satisfying OOOT

i OOOi � IdIdId). The position xiptq
denotes the position of the center of mass of Si at a time t and

xiptq � 1

mi

»
Siptq

%Sipt, xqx dx,

where
mi �

»
Siptq

%Sipt, xq dx

is the total mass of ith rigid body of a mass density %Si . We say that the velocity
field u is compatible with the family of motions tη1, . . . ,ηnu if
(V.2.8) upt, xq � uSipt, xq � U iptq�QQQiptqpx�xiptqq for a.a. x P Siptq, i � 1, . . . , n

for a.a. t P r0, T q, where uSi is solid velocity, U iptq denotes the translation velocity
and QQQ - the angular velocity of the body s.t.

(V.2.9)
d

dt
xiptq � U iptq,

� d

dt
OOOiptq

	
OOOT
i ptq � QQQiptq a.a. on p0, T q.

V.3. Main result

Let us formulate now the main existence result of this chapter.

Theorem V.3.1. Let Ω be a bounded domain in R3 and let the following assump-
tions be satisfied:


 The initial position of the rigid bodies is given through a family of open sets

Si � Ω � R3, Si diffeomorphic to the unit ball for i � 1, . . . , n,

where both BSi, i � 1, . . . , n, and BΩ belong to the regularity class specified
by (V.2.1), (V.2.2).


 distrSi, Sjs ¡ 0 for i � j, distrSi,R3zΩs ¡ 0 for any i, j � 1, . . . , n.

 The viscous stress tensor SSS satisfies hypotheses (V.1.1 - V.1.3).

 The isotropic N–function M satisfies conditions (V.1.4 - V.1.6) with p ¥ 4
and the complementary function M� to M satisfies the ∆2�condition.


 The given forces F P W 1,8pΩq.
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 The initial distribution of the density is given by

%0 �
$&% %f � const ¡ 0 in Ωz�n

i�1 Si,

%Si on Si, where %Si P L8pΩq, ess infSi %Si ¡ 0, i � 1, . . . , n,

while the initial velocity field u0 satisfies

u0 P L2pΩ;R3q, divxu0 � 0 in D1pΩq, DDDu0 � 0 in D1pSi;R3�3q for i � 1, . . . , n.

Then there exist a density function %,

% P Cpr0, T s;L1pΩqq, 0   ess inf
Ω
%pt, �q ¤ ess sup

Ω
%pt, �q   8 for all t P r0, T s,

a family of isometries tηipt, �quni�1, ηip0, �q � Id, and a velocity field u,

u P L8p0, T ;L2
divpΩ;R3qq X Lpp0, T ;W 1,p

0 pΩ;R3qq, DDDu P LMpQ;R3�3q,
compatible with tηiuni�1 in the sense specified in (V.2.8), (V.2.9), such that %, u
satisfy the integral identity (V.2.4) for any test function ϕ P C1

c pr0, T q�Ωq, and the
integral identity (V.2.5) for any ϕ satisfying (V.2.6), (V.2.7).

The aim of this chapter is to prove Theorem V.3.1.

V.4. Approximate problem

The first step of the proof is to approximate the rigid objects by a fluid of a
very high viscosity. For this reason we introduce a penalization problem and the
construction of weak solutions is based on a two-level approximation scheme that
consists of solving the system of equations:

(V.4.1) Bt%� divxp%rusδq � 0,

(V.4.2) Btp%uq � divxp%ub rusδq �∇xp � divxprµεsδSSSq � %∇xF � χεu,

(V.4.3) Btµε � divxpµεrusδq � 0,

(V.4.4) divxu � 0,

where p is a scalar function denoting the pressure. Moreover we regularise the vector
field in (V.4.1) and (V.4.3) with a standard regularizing kernel. Namely for δ such
that δ   δ0 (δ0 is as in Section V.2) the symbol

rusδ � ωδ � u
stands for a spatial convolution with

(V.4.5) ωδpxq � 1

δ3
ω

� |x|
δ



,

where ω P C8pR3q, suppω � Bp0, 1q,

ωpxq ¡ 0 for x P Bp0, 1q, ωpxq � ωp�xq,
»
Bp0,1q

ωpxq dx � 1.
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As Ω is bounded, we can assume that Ω � r�L,Ls3 for a certain L ¡ 0 and consider
system (V.4.1 - V.4.4) on the spatial torus

T � rp�L,Lq|t�L,Lus3.
Then all quantities are assumed to be spatially periodic with period 2L, in particular
we extend the initial velocity field u0 by 0 outside of Ω and density by %f – constant
density of the fluid. We also extend the outer force in such a way that F P W 1,8pT q.

The system (V.4.1 - V.4.4) is supplemented with the initial conditions

(V.4.6) 0   %p0, �q � %0,δ � %f �
ņ

i�1

%Si,δ,

where
%0,δ Ñ %0 strongly in L1pT q as δ Ñ 0

and

(V.4.7) %Si P DpSiq, %Si,δpxq � 0 whenever distrx, BSis   δ   δ0, for i � 1, . . . , n.

Similarly, we prescribe ε�dependent artificial ”viscosity” µ : p0, T q � T Ñ R with
initial data given by

(V.4.8) µp0, �q � µ0,ε � 1� 1

ε

ņ

i�1

µSi ,

where

(V.4.9)
µSi P DpSiq, µSipxq � 0 whenever distrx, BSis   δ,

µSipxq ¡ 0 for x P Si, distrx, BSis ¡ δ for i � 1, . . . , n.

The ”viscosity" µ can be identified as the penalization introduced by Hoffmann and
Starovoitov [80] and San Martin et al. [113], where the rigid bodies are replaced
by the fluid of high viscosity becoming singular for εÑ 0.

Furthermore, we penalize also the region out of the set Ω and we take

(V.4.10) χε � 1

ε
χ, χ P DpT q, χ ¡ 0 on T zΩ, χ � 0 in Ω.

The parameters ε and δ are small positive numbers. In the above formulation an
additional parameter δ0 ¡ δ ¡ 0 has been introduced to keep the density constant
in the approximate fluid region in order to construct the local pressure.

For fixed ε ¡ 0 and δ ¡ 0 we report the following existence result that can
be proved by means of the monotonicity argument for nonreflexive spaces (for the
existence result without regularization of the velocity field see Chapter IV or [133]
and for partial results in the Sobolev space setting see Frehse et al. [58, 59] and in
the Orlicz space setting Gwiazda et al. [72, 75] and Wróblewska-Kamińska [131]):

Proposition V.4.1. Suppose that p ¥ 4. Let the initial distribution of %, µ be given
through (V.4.6 - V.4.9), with fixed ε ¡ 0, δ0 ¡ δ ¡ 0. Moreover, assume that

(V.4.11) up0, �q � u0, x P T , u0 P L2pT ;R3q, divxu0 � 0 in D1pT ;R3q,
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and χε, F P C8pT q, where χε is determined by (V.4.10).
Then the problem (V.4.1 - V.4.4), supplemented with the initial data (V.4.6 -

V.4.9), possesses a (weak) solution %, µ, u satisfying

%, µ P Cpr0, T s;L1pT qq,

0   ess infΩ %pt, �q ¤ ess supΩ %pt, �q   8 for all t P r0, T s,

0   ess infΩ µpt, �q ¤ ess supΩ µpt, �q   8 for all t P r0, T s,

u P L8p0, T ;L2pT ;R3qq X Lpp0, T ;W 1,ppT ;R3qq, DDDu P LMpQ;R3�3q.
In addition, the solution satisfies the energy inequality»

T

1

2
%|u|2pzq dx�

» z

s

»
T
rµεsδSSS : ∇xu dxdt�

» z

s

»
T
χε|u|2 dxdt

¤
»
T

1

2
%|u|2psq dx�

» z

s

»
T
%∇xF � u dxdt

(V.4.12)

for a.a. 0 ¤ s   z ¤ T including s � 0.

The weak formulation of the equation (V.4.2) is represented by the integral
identity

(V.4.13)
» T

0

»
T
%u � Btϕ� %pub rusδq : ∇xϕ dxdt

�
» T

0

»
T
rµεsδSSS : DDDϕ dxdt�

» T

0

»
T
%∇xF �ϕ dxdt�

» T

0

»
T
χεu �ϕ dxdt

�
»
T
%0,δu0 �ϕp0, �q dx

which is satisfied for any test function ϕ P Dpr0, T q � T ;R3q, divxϕ � 0.
Using the continuity equation (V.4.1), assumption (V.1.3), the Young and the

Sobolev inequality and condition (V.1.4) we easily deduce also that the following
inequality is satisfied

»
T

1

2
%|u|2pzq dx�

» z

0

»
T
ccrµεsδM� p|SSS|q dxdt�

» z

0

»
T
cc

�
rµεsδ � 1

2



M p|DDDu|q dxdt

�
» z

0

»
T
χε|u|2 dxdt ¤ CpF,u0, %0q

(V.4.14)

for a.a. 0 ¤ z ¤ T .
Let us notice that due to the method of characteristics applied to (V.4.3), the

artificial "viscosity" µε ¥ 1 on r0, T s�T . Hence the l.h.s. of (V.4.14) is nonnegative.
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V.5. Artificial viscosity limit

V.5.1. Notation. For a family tSiuni�1 of precompact subsets of Ω, we denote

(V.5.1) drtSiuni�1s � inf

"
inf

i,j�1,...,n, i�j
distrSi, Sjs, inf

i�1,...,n
distrSi, BΩs

*
.

We define a signed distance to the boundary of a subset S of Ω by

dbSpxq � distrx,R3zSs � distrx, Ss.
We say that a sequence of sets Sn converges to S in the sense of boundaries and
denote it by

Sn
bÝÑS,

if

(V.5.2) dbSnpxq Ñ dbSpxq uniformly for x belonging to compact subsets of R3.

In similar way as San Martin et al. [113] and Feireisl et al. [56], we introduce rSsδ
called the δ�kernel and sSrδ - the δ�neighbourhood of the set S, i.e.:

(V.5.3) rSsδ � db�1
S ppδ,8qq, sSrδ� db�1

S pp�δ,8qq.
Moreover, we define for k ¥ 0

W k,2
0,div � closureWk,ppΩ;R3q

 
v P DpΩ;R3q | divxv � 0

(
,

and

Kk,ppSq �
!
v P W k,p

0,div | DDDv � 0 in D1pS;R3q
)
, where S is an open subset of Ω.

For p � 2 and the Hilbert space W k,2
0,div the symbol

PkpSq denotes the orthogonal projection of W k,2
0,div

onto the closed subspace Kk,2pSq.(V.5.4)

V.5.2. Uniform estimates and the continuity equation. Let us denote
by t%ε, µε,uεuε¡0 the family of approximate solutions associated with the problem
(V.4.1 - V.4.9). For the brevity of the notation we omit the dependence of this
sequence on δ. The existence of such a family of solutions is assured by Proposition
V.4.1. In the first step we fix δ ¡ 0 and identify the limit for ε Ñ 0. The limit for
δ will be shortly shown in Section V.6.

At first we show briefly how the continuity equation (V.4.1) behaves as ε Ñ 0.
As we noticed already, the method of characteristics applied to (V.4.3) gives us that
µε ¥ 1. Hence following the estimates (V.4.14) we infer that

(V.5.5)
»
p0,T q�T

M pDDDuεq dxdt ¤ c

and together with the assumption (V.1.4) this gives

(V.5.6)
»
p0,T q�T

|DDDuε|p dxdt ¤ c.
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Let us notice that the estimate (V.4.14) provides that» z

0

»
T zΩ

|u| dx ¤ c.

Without loss of generality we can assume that |T zΩ| ¡ 0, therefore employing the
general version of the Korn inequality (see [54, Theorem 10.16]) we obtain

}uε}Lpp0,T ;W 1,ppT qq ¤ c

By the Alaoglu-Banach theorem we obtain that for a subsequence

(V.5.7) uε á u weakly in Lpp0, T ;W 1,ppT ;R3qq
and additionally divxu � 0 a.e. on p0, T q � T . Next, the regularized sequence
truεsδuε¡0 satisfies
(V.5.8)
ruεsδ �á rusδ weakly-(*) in Lpp0, T ;W 1,8pT ;R3qq and divxrusδ � 0 a.e. in p0, T q�T .
Furthermore, employing (V.4.10) together with (V.4.12), we infer

(V.5.9) u � 0 a.e. in the set p0, T q � pT zΩq as εÑ 0.

Since Ω is regular (see (V.2.2)), we get in the sense of traces

u|BΩ � 0

and therefore
u P Lpp0, T ;W 1,p

0,divpΩ;R3qq
(we mean here u|p0,T q�Ω).

Let us recall now the stability result for solutions to the transport equation
obtained in [55, Proposition 5.1]:

Proposition V.5.1. Let vn � vnpt, xq be a sequence of vector fields such that

tvnu8n�1 is bounded in L2p0, T ;W 1,8pR3;R3qq.
Let ηnpt, �q : R3 Ñ R3 be the solution operator corresponding to the family of char-
acteristic curves generated by vn, i.e.

B
Btηnpt, xq � vnpt,ηnpt, xqq, ηnp0, xq � x for every x P R3.

Then passing to subsequences, as the case may be, we have

vn
�á v weakly-(*) in L2p0, T ;W 1,8pR3;R3qq

and
ηnpt, �q Ñ ηpt, �q in ClocpR3q uniformly for t P r0, T s

as nÑ 8, where η is the unique solution of
B
Btηpt, xq � vpt,ηpt, xqq, ηp0, xq � x, x P R3.
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In addition, let Sn � R3 be the sequence of sets s.t. Sn
bÝÑS and let us define

ηnpt, Snq � Snptq. Then
(V.5.10) Snptq bÝÑSptq
with Sptq � ηpt, Sq, meaning dbSnptq Ñ dbSptq in ClocpR3q uniformly with respect to
t P r0, T s.

Now let us notice that since t%εuε¡0 solve the transport equation (V.4.1) with
regular transport coefficients (ruεsδ P L8p0, T ;W 1,8pT q) , we can use Proposition
V.5.1 and (V.5.8) to conclude that

(V.5.11) %ε Ñ % in Cpr0, T s � T q.
Moreover due to the method of characteristics for all t P r0, T s
(V.5.12) inf

xPT
%0,δ ¤ inf

xPT
%εpt, xq ¤ sup

xPT
%εpt, xq ¤ sup

xPT
%0,δ,

and

(V.5.13) inf
xPT

%0,δ ¤ inf
xPT

%pt, xq ¤ sup
xPT

%pt, xq ¤ sup
xPT

%0,δ.

Employing once more inequality (V.4.12) we obtain

(V.5.14) uε
�á u weakly-(*) in L8p0, T ;L2pT ;R3qq as εÑ 0.

Using a strong-weak argument together with (V.5.8), (V.5.11) we obtain, that the
limit density % satisfies the equation of continuity in a weak sense

(V.5.15) Bt%� divxp%rusδq � 0 in p0, T q � T
provided % has been extended by %f outside of Ω. Once more, according to Propo-
sition V.5.1 and assumption (V.4.7) we notice that the density is constant in the
approximation of the fluid region, i.e.

(V.5.16) % � %f on the set
�
p0, T q � Ω

	
z

¤
tPr0,T s

n¤
i�1

ηpt, rSisδq,

where rSisδ is the δ-kernel (see (V.5.3)) and η is a solution of

(V.5.17) Btηpt, xq � rusδpt,ηpt, xqq, ηp0, xq � x.

V.5.3. Position of the rigid bodies. Next we identify the position of rigid
bodies.

Let us remark as in [113] that if u is a rigid velocity field in the set S, then
rusδ � u for all x in S for which dbSpxq ¡ δ.

The replacement of uε by ruεsδ in (V.4.3) allows to obtain better results on
characteristics of transport equations. Moreover, we are able to obtain a rigid motion
as εÑ 0, without passing to the limit w.r.t. δ due to the above remark.

Here we follow [56] and just for convenience of the reader we recall briefly some
of the steps.

Step 1: First let us recall that s�rδ, r�sω denote respectively the δ�neighbourhood
and the ω�kernel defined in (V.5.3). We notice that the kernels rSisω and their
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images ηpt, rSisωq are non-empty connected open sets since 0   δ   ω   δ0{2 (δ0

has been introduced in (V.2.1)).
Directly from the hypothesis (V.4.8) and (V.4.9) we infer

(V.5.18) µεp0, xq Ñ 8 as εÑ 0 uniformly for x P rSisω1 , i � 1, . . . , n, ω ¡ ω1 ¡ δ.

Since ηε is determined as the unique solution (due to regularity of ruεsδ) of the
problem

(V.5.19) Btηεpt, xq � ruεsδpt,ηεpt, xqq, ηεp0, xq � x,

convergence (V.5.18) provides that

(V.5.20) µεpt, xq Ñ 8 uniformly for t P r0, T s, x P ηεpt, rSisω1q, i � 1, . . . , n.

According to (V.5.10) in Proposition V.5.1
(V.5.21)
ηpt, rSisωq � ηεpt, rSisω1q for sufficiently small ε ¡ 0 and for δ0{2 ¡ ω ¡ ω1 ¡ δ.

Hence from (V.5.20) we deduce
(V.5.22)
µεpt, xq Ñ 8 as εÑ 0 uniformly for t P r0, T s, x P ηpt, rSisωq, for i � 1, . . . , n.

Therefore we infer that
rµεsδ Ñ 8

uniformly on compact subsets of

tt P r0, T s, x Psηpt, rSisωqrδu, i � 1, . . . , n.

Consequently, we deduce from the estimate (V.4.14) that

(V.5.23) DDDuε Ñ DDDu � 0 a.a. on the set
¤

tPr0,T s

n¤
i�1

sηpt, rSisωqrδ for any ω ¡ δ,

where η is determined by (V.5.17).
Step 2: Using now (V.5.23) we deduce that the limit velocity u coincides with a

rigid velocity field uSi on the δ�neighbourhood of each of the sets ηpt, rSisωq, where
ω ¡ δ, i � 1, . . . , n. Since the rigid velocity fields coincide with their regularizations,
namely ruSisδ � uSi , we conclude that

(V.5.24) upt, xq � uSipt, xq � rusδpt, xq for t P r0, T s, x P ηpt, rSisδq, i � 1, . . . , n.

Accordingly, by (V.5.17), (V.5.24) we infer the existence of a family of isometries
ηipt, �q, t P r0, T s, i � 1, . . . , n, ηp0, �q � Id, such that

(V.5.25) ηipt, rSisδq � ηpt, rSisδq for all t P r0, T s, i � 1, . . . , n.

Moreover by (V.5.23) the mappings tηiuni�1 are compatible with the velocity field u
and with the rigid bodies tSiuni�1 in the sense stated in (V.2.8), (V.2.9). In particular,
hypothesis (V.5.16), (V.5.24) and the assumption %f � const provide that (V.5.15)
reduces to

(V.5.26) Bt%� divxp%uq � 0 in p0, T q � T .
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Step 3: Now we concentrate on the momentum equation. Since ηi for i �
1, . . . , n are isometries, (V.5.25) implies

sηipt, rSisδqrδ� ηipt, Siq, i � 1, . . . , n.

Hence rµεsδ converges uniformly locally to 1 in the complementary of
�n
i�1 Siptq for

any t P r0, T s. According to estimates (V.4.14) and properties of regularization we
notice that

(V.5.27) uε b ruεsδ á ub rusδ weakly in L2p0, T ;L2pΩ;R3qq.
Together with (V.5.11) and by a weak-strong argument we obtain

(V.5.28) %εuε b ruεsδ á %pub rusδq weakly in L2p0, T ;L2pΩ;R3qq.
Employing again the estimate (V.4.14) and recalling that µε ¥ 1 in r0, T q � T we
get

(V.5.29) SSSε
�á SSS weakly–(*) in LM�pr0, T s � T ;R3�3q,

due to properties of an N�function M� (convexity and superlinear growth) the
Dunford-Pettis lemma provides

(V.5.30) SSSε á SSS weakly in L1pr0, T s � T ;R3�3q
Moreover by (V.5.11), (V.5.13) and (V.5.14) we infer

(V.5.31) %εuε á %u weakly-(*) in L8p0, T ;L2pT ;R3qq.
Finally letting εÑ 0 in the momentum equation (V.4.13) we deduce that

» T

0

»
Ω

%u � Btϕ� %pub rusδq : ∇xϕ dxdt

�
» T

0

»
Ω

SSS : DDDϕ dxdt�
» T

0

»
Ω

%∇xF �ϕ dxdt�
»

Ω

%0,δu0 �ϕp0, �q dx

(V.5.32)

for any test function ϕ P C1
c pr0, T q�Ωq, ϕpt, �q P rRM sptq, where rRM sptq is defined

by (V.2.7) with
Siptq � ηipt, Siq, i � 1, . . . , n.

V.5.4. Convergence of the velocities. Our next goal is to identify the weak
limit in (V.5.27), namely we want to show that

(V.5.33) uε Ñ u in L2p0, T ;L2pΩ;R3qq.
Let us notice that due to (V.5.7) and the Sobolev embedding theorem we obtain
the desired convergence in space but there is still a possibility for oscillations of the
velocity fields tuεuε¡0 in time.

As it was already pointed out, according to the result obtained by Starovoitov
[120, Theorem 3.1], the collisions of two rigid objects do not appear. It is provided
by the fact we consider the fluid which is incompressible and the velocity gradients
are assumed to be bounded in the Lebesgue space Lp, with p ¥ 4. Originally in
[120] this statement was proven only for one body in a bounded domain, but it is
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easy to observe that this result can be extended to the case of several bodies (what
is also mentioned therein). Hence we infer

(V.5.34) dr
n¤
i�1

Siptqs � dptq ¡ 0 uniformly for t P r0, T s,

(where d is defined by (V.5.1) in Section V.5.1). Setting Sεi ptq � ηεpt, Siq (see
(V.5.19)) and according to Proposition V.5.1 we have

(V.5.35) dr
n¤
i�1

Sεi ptqs � dε Ñ d in Cr0, T s.

Since the contacts of rigid bodies or bodies with boundary do not occur, to prove
compactness of the sequence tuεuε¡0, we can use the same method as in [113, 56],
namely by employing projection of momentum on a space of rigid velocities.

Since

Sεi ptq bÝÑSiptq uniformly with respect to t P r0, T s, i � 1, . . . , n,

we obtain, for any fixed σ ¡ 0, and all ε   ε0pσq small enough

(V.5.36) Siptq �sSεi ptqrσ, Sεi ptq �sSiptqrσ, for all t P r0, T s, i � 1, . . . , n.

Let us now recall the following result of Feireisl et al. [56].

Lemma V.5.2. Given a family of smooth open sets tSiuni�1 � Ω, 0   k   1{2, there
exists a function h : p0, σ0q Ñ R� s.t. hpσq Ñ 0 when σ Ñ 0 and for arbitrary
v P W 1,p

0,divpΩ;R3q :
(V.5.37)���v � Pk

� n¤
i�1

sSirσ
	
v
���
W 1,kpΩ;R3q

¤ c
�
} DDDpvq }L2p�ni�1 Si;R3�3q � hpσq}v}W 1,ppΩ;R3q

	
with a constant 0   c   8. Moreover, h and c are independent of the position of Si
inside Ω as long as dr�n

i�1 Sis ¡ 2σ0.

The projection Pk is defined by (V.5.4).

Next using the local-in-time Aubin-Lions argument we show the following

Lemma V.5.3. For all σ ¡ 0 sufficiently small, and 0   k   1{2, we have

lim
εÑ0

» T

0

»
Ω

%εuε � Pk
� n¤
i�1

sSiptqrσ
	
ruεs dxdt �

» T

0

»
Ω

%u � Pk
� n¤
i�1

sSiptqrσ
	
rus dxdt.

The idea of the proof follows [56, 113].

Proof. Let us fix σ ¡ 0. According to (V.5.36) there exists ε0pσq such that for
all ε   ε0 it holds

n¤
i�1

Siptq �
n¤
i�1

sSεi ptqrσ{2,
n¤
i�1

Sεi ptq � Yn
i�1sSptqrσ{2 for all t P r0, T s.
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If we apply the Proposition V.5.1 to the sequence truεsδuε¡0 with uε P L8p0, T ;L2q
we notice that ηε is Lipschitz continuous in time. Hence we infer that there exists
τ ¡ 0 (dependent on σ) and a subdivision of the time interval 0   τ   2τ   ...  
Jτ � T such that for arbitrary t P Ij :� rjτ, pj � 1qτ s we have

(V.5.38)
n¤
i�1

Siptq �
n¤
i�1

sSipjτqrσ{2,
n¤
i�1

Sipjτq �
n¤
i�1

sSiptqrσ{2.

To be more precise, if we take Lip as a Lipschitz constant of the function tÑ ηpt, xq,
then there exists τ   σ{p2Lipq which satisfies (V.5.38).

Our goal now is to infer from the momentum equation (V.4.13) that
(V.5.39)
P0

�
Yn
i�1sSiptqrσ

	
r%εuεs is precompact in L2pIj;

�
Kk,2

�
Yn
i�1sSipjτqrσ{2

	
XW s,2

0,div

��
q

for any k   1 and s ¡ 5
2
(then W s�1,2 � L8).

First, let us fix one of the intervals Im, j � 1, . . . , J and in the momentum
equation let us take as a test function ξ, which is equal to zero if t R Im and such
that

ξ P K1,2
�Yn

i�1sSipjτqrσ{2
�XW s,2

0,div for all t P Ij.
Using estimates (V.4.14) we deduce from the momentum equation (V.4.13) that����»

Im

»
Ω

%εuεBtξ dxdt

���� ¤ C}ξ}L8pIj ;W 1,2XW s,2
0,divq for all ε ¡ ε0.

According to the above relation we infer that BtP0 pYn
i�1sSiptqrσq r%εuεs

(
ε¡0

is bounded in L1pIj;
�
Kk,2

�Yn
i�1sSipjτqrσ{2

�XW s,2
0,div

��q.
Moreover, since %εuε is bounded also in L2pIm � T q, then the sequence

tP0 pYn
i�1sSiptqrσq r%εuεsuε is bounded in L2pIj;K0,2

�Yn
i�1sSipjτqrσ{2

�q.
Since the inclusion

K0,2
�Yn

i�1sSipjτqrσ{2
� � �

Kk,2
�Yn

i�1sSipjτqrσ{2
��� is compact for 0   k   1,

the Aubin-Lions argument provides that the sequence

tP0 pYn
i�1sSiptqrσq r%εuεsuε¡0 is precompact in L2pIj;

�
Kk,2

�Yn
i�1sSipjτqrσ{2

���q.
Furthermore by (V.5.31) we have that

(V.5.40) P0 pYn
i�1sSiptqrσq r%εuεs Ñ P0 pYn

i�1sSiptqrσq r%us
strongly in L2pIj;

�
Kk,2

�Yn
i�1sSipjτqrσ{2

���q for 0   k   1.
The relation (V.5.38) provides

(V.5.41) P0
�Yn

i�1sSipjτqrσ{2
�
Pk pYn

i�1sSiptqrσq � Pk pYn
i�1sSiptqrσq
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for all t P Ij and 0   k   1. Since P0
�Yn

i�1sSipjτqrσ{2
�
is self-adjoint in L2pΩq and

by »
Ij

»
Ω

%εuε � Pk pYn
i�1sSiptqrσq ruεs dxdt

�
»
Ij

»
Ω

P0
�Yn

i�1sSipjτqrσ{2
� r%εuεs � PkppYn

i�1sSiptqrσq ruεs dxdt

�
»
Ij

�
P0

�Yn
i�1sSipjτqrσ{2

� r%εuεs,Pk pYn
i�1sSiptqrσq ruεs

�
L2pΩq dt

Then by (V.5.40) and as uε á u in L2p0, T ;L2pT qq we get

lim
εÑ0

»
Ij

�
%εuε,Pk pYn

i�1sSiptqrσq ruεs
�
L2pΩq dt

� lim
εÑ0

»
Ij

�
P0

�Yn
i�1sSipjτqrσ{2

� r%εuεs,Pk pYn
i�1sSiptqrσq ruεs

�
L2pΩq dt

�
»
Ij

�
%u,Pk pYn

i�1sSiptqrσq rus
�
L2pΩq dt

Summing up the relation as above from j � 1 to j � J we obtain the desired
conclusion of Lemma V.5.3 �

Combining Lemma V.5.2 and Lemma V.5.3 we deduce

(V.5.42) lim
εÑ0

» T

0

»
Ω

%ε|uε|2 dxdt �
» T

0

»
Ω

%|u|2 dxdt

which can be shown exactly step by step as in [56, Section 5.2] or [98, Section 6.1].
Therefore we achieve the conclusion (V.5.33).

Indeed, for a fixed k P p0, 1{2q and for sufficiently small ε ¡ 0, σ ¡ 0 we set» T

0

»
Ω

�
%ε|uε|2 � %|u|2

	
dxdt � Iε1pσq � I2pσq � Iε3pσq,

where

Iε1pσq �
» T

0

»
Ω

�
%εuε � Pk

�
Yn
i�1sSptqrσ

	
ruεs � %u � Pk

�
Yn
i�1sSptqrσ

	
rus

	
dxdt

I2pσq �
» T

0

»
Ω

%u �
�
Pk

�
Yn
i�1sSiptqrσ

	
rus � u

	
dxdt,

and

Iε3pσq �
» T

0

»
Ω

%εuε �
�
Pk

�
Yn
i�1sSiptqrσ

	
ruεs � uε

	
dxdt.

Next let us notice that Lemma V.5.3 provides

lim
εÑ0

Iε1pσq � 0 for all σ sufficiently small.
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As u P L2p0, T ;Kk,ppYn
i�1Siptqqq by Lemma V.5.2 we infer» T

0

»
Ω

|pPk
�
Yn
i�1 Siptq

	
rus � uq|2 dxdt ¤ hpσq2

» T

0

»
Ω

}u}2
W 1,ppΩ;R3q dxdt,

provided that there are no contacts of two bodies or of the rigid body and the
boundary of the set Ω. Therefore we obtain

I2pσq Ñ 0 as σ Ñ 0

Recalling that t%εuεuε¡0 is bounded in L8p0, T ;L2pΩ;R3qq, we have

Iε3pσq ¤ c

» T

0

}Pk
�
Yn
i�1sSiptqrσ

	
ruεs � uεq}2

Wk,2pΩ;R3q dt.

Since sSiptqrσ�sSεi ptqr2σ we obtain also

Iε3pσq ¤ c

» T

0

}pPk
�
Yn
i�1sSεi ptqr2σ

	
ruεs � uεq}2

Wk,2pΩ;R3q dt

for ε ¡ 0 sufficiently small. Applying again Lemma V.5.2, with uεpt, �q for arbitrary
t P r0, T s and ε ¡ 0 sufficiently small we have that» T

0

}pPk
�
Yn
i�1sSεi ptqr2σ

	
ruεs�uεq}2

Wk,2pΩ;R3q dt ¤ c
� ņ

i�1

» T

0

»
Si
|DDDuε|2 dxdt

	
�cThp2σq.

The first term on the right hand side converges to zero as DDDuε Ñ 0 on
�n
i�1 Siptq

and a.a. t P r0, T s, and tDDDuεuε¡0 is uniformly integrable in L2pQq since (V.5.6)
holds. Finally if we pass to the limit with εÑ 0 we obtain that

lim sup
εÑ8

Iεpσq ¤ CpT qhp2σq � I2pσq
whenever σ is small enough. Letting σ Ñ 0 we achieve the relation (V.5.42).

V.5.5. Convergence in the nonlinear viscous term. Our main goal now
is to prove convergence in the nonlinear viscous term in the ”fluid” part of the time-
space cylinder p0, T q � Ω. As µ � 1 on the fluid part and boundaries Sn Ñ S, we
can choose for a sufficiently small epsilon small cylinders contained in the fluid part
of the time-space cylinder Qf . Thus in order to obtain this result we consider the
equation (V.4.13) on the set I � B such that I � p0, T q is a time interval and a
spatial ball |B| ¤ 1 and B � Ωz Yn

i�1 Siptq for t P I. By (V.5.16) we can assume
that % � %f in I �B. In particular, we have

(V.5.43)
» T

0

»
Ω

%fuε � Btϕ� p%fuε b ruεsδ � SSSpDDDuεqq : ∇xϕ dxdt � 0

for any ϕ P DpI �B;R3q, divxϕ � 0.
We cannot test the above equation with a function with non-zero support on Qs,

as neither the penalizing term µεSSSpDDDuεq nor µεDDDuε can be controlled. At this stage
of our investigations, the problem must be localised in the fluid part separately from
the rigid bodies. Therefore we introduce a ”local” pressure

(V.5.44) p � preg � Btpharm,
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where preg enjoys the same regularity properties as the sum of the convective and
the viscous terms in case of power-law fluids (see [56]), while pharm is a harmonic
function. If the tensor SSS satisfies only conditions (V.1.1)-(V.1.3) and an isotropic
N�function M does not satisfy the ∆2�condition, then the regularity of preg can
be lower than the regularity of the viscous term, what in fact makes the problem
different from any previous considerations in this field.

The concept of local pressure was developed by Wolf [130, Theorem 2.6]. How-
ever our construction is based on Riesz transform as in [56] and it is more suitable
for application to problems with non-standard growth conditions.

We start with formulation of the following lemma:

Lemma V.5.4. Let B � R3 be a bounded domain with a regular C3 boundary and
I � pt0, t1q be a time interval. Let m� and m1 be N�functions given by m�pτq �
τ logβ�1pτ�1q for some β ¡ 0 andm1pτq � τ logβpτ�1q for τ P R�. Moreover letM�

be an N�function such that c1m
�pτq ¤ M�pτq   c2|τ |2 for some positive constants

c1, c2. Assume that U P L8pI;L2pB;R3qq, divxU � 0, and TTT P LM�pI � B;R3�3q
satisfy the integral identity

(V.5.45)
»
I

»
B

�
U � Btϕ�TTT : ∇xϕ

	
dxdt � 0

for all ϕ P DpI �B;R3q, divxϕ � 0.
Then there exist two functions

preg P L1pI;Lm1pBqq,

pharmpt, �q P D1pBq, ∆xpharm � 0 in D1pI �Bq,
»
B

pharmpt, �q dx � 0

satisfying

(V.5.46)
»
I

»
B

�
U � Btϕ�TTT : ∇xϕ

	
dxdt �

»
I

»
B

�
pharmBtdivxϕ� pregdivxϕ

	
dxdt

for any ϕ P DpI �B;R3q. Additionally,

(V.5.47) }preg}L1pI;Lm1 pBqq ¤ cpm1q}TTT}LM� pI�B;R3�3q

and

(V.5.48) ppt, �q|B1 P C8pB1q, where B1 �� B,

(V.5.49) }pharm}L8pI;L1pBqq ¤ cpm1, I, Bq
�
}TTT}LM� pI�B;R3q � }U}L8pI;L2pB;R3qq

	
.

Proof. To begin with, the “regular” component of the pressure preg is identified
as

pregpt, �q � R : TTT �
3̧

i,j�1

Ri,jrTi,jspt, �q in R3 for a.a. t P I,
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whereR denotes the ”double” Riesz transform (see (III.2.2)) andTTT � rTi,jsi�1,2,3;j�1,2,3

has been extended to be zero outside of B. Using (III.2.4) we obtain that the map-
pings

Ri,j|B : Lm�pBq Ñ Lm1pBq are bounded for i, j � 1, 2, 3.

As a consequence we get (V.5.47) in the following way
(V.5.50)
}preg}L1pI;Lm1 pBqq � }R : TTT}L1pI;Lm1 pBqq ¤ c1pm1q}TTT}L1pI;LM� pBqq ¤ c2pm1q}TTT}LM� pI�Bq,

where we use the fact that LM�pI �B;R3�3q � L1pI;LM�pB;R3�3qq (see the proof
of [46, Corollary 1.1.0]).

Moreover,

(V.5.51)
»
B

preg∆ψ dx �
»
B

TTT : ∇2ψ dx for any ψ P DpBq.

On the other hand, (V.5.45) provides that we can redefine U w.r.t. time on the set
of zero measure such that the mappings

t ÞÑ
»
B

U �ψ dx P Cprt0, t1sq for any ψ P DpB;R3q, divxψ � 0.

Particularly, we infer that the Helmholtz projection HrU s belongs to the space
Cweakprt0, t1s;L2pB;R3qq. Therefore after taking in (V.5.45) φpt, xq � ηptqψpxq such
that η P Dprt0, t1qq, ψ P DpB;R3q, divxψ � 0 it follows that»
I

� »
B

pUpt, �q�U pt0, �qq �ψ dx
�
Btη dt�

»
I

� »
B

� » t

t0

TTTps, �q ds
	

: ∇xψ dx
�
Btη dt � 0.

Employing Lemma 2.2.1 from [119], there exists a pressure p � ppt, �q such that
(V.5.52)»

B

pU pt, �q �Upt0, �qq �ψ dx�
»
B

� » t

t0

TTTps, �q ds
	

: ∇xψ dx �
»
B

ppt, �qdivxψ dx

for all t P I and all ψ P DpB;R3q. Note that the term on the right-hand side is
measurable and integrable w.r.t. time variable, since the left-hand side is measurable
and integrable. Moreover for a.a. t P I

(V.5.53)
»
B

ppt, �q dx � 0 and ppt, �q P D1pBq.

Testing (V.5.52) by Btζ, ζ P DpIq and integrating over the time interval I and
setting ϕpt, xq � ζptqψpxq we conclude that

(V.5.54)
»
I

»
B

�
U � Btϕ�TTT : ∇xϕ

	
dxdt �

»
I

»
B

pBtdivxϕ dxdt

for any ϕ P DpI �B;R3q.
Let us define the harmonic pressure as

(V.5.55) pharmpt, �q � ppt, �q �
� » t

t0

�
pregpτ, �q � 1

|B|
»
B

pregpτ, �q dx

�
dτ

	
.
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Now we intend to show that pharmpt, �q is a harmonic function for any t. To this end,
we take ψ � ∇xγ, γ P DpBq in (V.5.52) and compare the resulting expression with
(V.5.51), (V.5.55) and use that divxU � 0. If we insert (V.5.55) in (V.5.54), we
infer (V.5.46).

Finally Weyl’s lemma (see e.g. [121]) ensures that the function pharm is regular
locally in B, i.e. pharm P C8pB1q, where B1 �� B. Hence we obtain (V.5.48).

Moreover according to (V.5.55), (V.5.52) we show that (V.5.49) holds. Indeed,
let us recall first the following result concerning the Bogovski operator in the space
of bounded mean oscillations BMO 1 : Let v : B Ñ R3, f : B Ñ R, f P L8pBq and³
B
f � 0. Then there exists at least one solution satisfying divxv � f in the sense

of distributions. Furthermore

}v}BMO � }∇xv}BMO ¤ c}f}8
and N � v|BB � 0 in the sense of generalized traces for some constant C ¡ 0 (more
details can be found in [35] and see also in [38, 127], it can be shown also via
Calderón-Zygmund operators and results of Peetre). Moreover let us notice that
BMOpBq � L rmpBq with rmpτq � exppτq � 1 for τ P p0,8q (see [14, Chapter 5.7]),
L rmpBq � LM and L rmpBq � Lm1� , where m1� is a complementary function to the
N�function m1. Then we use in (V.5.52) a test function ψ such that

divxψ �
�

sgn p� 1

|B|
»
B

sgn p



P L8pBq.

Considering (V.5.52) with the above results, the Hölder inequality, generalized
Hölder inequality (III.1.10) and noticing that LM� � Lm� � Lm1 we obtain that

(V.5.56) ess sup
tPI

}ppt, �q}L1pBq ¤ cpB,Mq  }U}L8pI;L2pBqq � }TTT}LM pI�Bq
(
.

Therefore (V.5.55) and (V.5.47) provide (V.5.49). �

Remark V.5.5. The assumption for the lower bound for an N�function M�, i.e.
m�pτq � τ logβ�1pτ �1q ¤M�pτq for τ P R�, β ¡ 0, implies that we have to assume
also that Mpτq ¤ c exppτ 1

β�1 q � c for some nonnegative constant c (see (V.1.4)).

Now we apply Lemma V.5.4 with the N�function M�, with U :� %fuε and
TTT :� %fuε b ruεsδ � SSSpDDDuεq. Accordingly, for any ε ¡ 0, there exist two scalar
functions pεreg, pεharm such that

(V.5.57) pεreg P L1pI;Lm1pBqq, pεharm P L8pI;L1pBqq are uniformly bounded

and pεharm is a harmonic function w.r.t. x, i.e.

∆pεharm � 0,

»
B

pεharmpt, �q � 0, @ t P I.

1BMOpΩq is a space of locally integrable functions such that sup
B

1
|B|

³
B
|fpxq� 1

|B|

³
B
fpyqd y|dx  

8, where supremum is taken over all balls in Ω
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Moreover the following is satisfied
(V.5.58)» T

0

»
Ω

�
p%fuε �∇xp

ε
harmq � Btϕ� p%fuε b ruεsδ � SSSpDDDuεq � pεregIIIq : ∇xϕ

�
dxdt � 0

for any test function ϕ P DpI �B;R3q.
The standard estimates provide that pεharm is uniformly bounded in L8pI;W 2,2

loc pBqq,
moreover we already know that uε P LppI,W 1,ppBqq. The equation (V.5.58) provides
that

}Btp%fuε �∇xp
ε
harmq}L1pI;pW s,2

0 pBqq�q   c,

where s ¡ 5{3. Then the Lions-Aubin argument gives us that

(V.5.59) %fuε �∇xp
ε
harm Ñ %fu�∇xpharm in L2pI;L2pB1;R3qq,

for arbitrary B1 �� B as εÑ 0.
By (V.5.33), the velocity field tuεuε¡0 is precompact in L2p0, T ;L2pΩ;R3qq, hence

we infer that

(V.5.60) ∇xp
ε
harm Ñ ∇xpharm in L2pI;L2pB1;R3qq.

As the argument is valid for any B1, our goal now is to let ε Ñ 0 in (V.5.58).
First we recall that the sequence tSSSpDDDuεq|i�Buε¡0 satisfies

(V.5.61) SSSpDDDuεq �á SSS weakly–(*) in LM�pI �B;R3�3
symq,

or SSSpDDDuεq á SSS weakly in L1pI �B;R3�3
symq.

Let us recall that uε|I�B and SSSpDDDuεq|I�B are uniformly bounded in LppI;W 1,ppB;R3qq
and LM�pI � B;R3�3q respectively. Hence classical embedding theorem provides
that TTTε � p%fuε b ruεsδ � SSSpDDDuεqq|I�B is uniformly bounded in LM�pI � B;R3�3q.
Therefore there exists some TTT P LM�pI �Bq such that

TTTε �á TTT weakly–(*) in LM�pI �B;R3�3q.
Moreover, since Ri,j is a linear operator, using the properties of difference quotients,
we show that for any function φ P W 1,rpBq possessing compact support contained
in an open set B, there holds

}Ri,jrφs|B}W 1,rpBq ¤ c}φ}W 1,rpBq for any r P p0,8q,
where on the left-hand side φ is prolonged by zero, preserving the norm. Hence the
functions Ri,iBxiϕi, i � 1, 2, 3 are sufficiently regular in order to obtain»

I

»
B

pεregIII : ∇xϕ dxdt �
»
I

»
B

pR : TTTεqIII : ∇xϕ dxdt

�
»
I

»
B

3̧

i�1

T εi,iRi,irBxiϕis dxdtÑ
»
I

»
B

3̧

i�1

Ti,iRi,irBxiϕis dxdt as εÑ 0

(V.5.62)
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Finally by (V.5.33), (V.5.61) and (V.5.59), (V.5.62) passing with εÑ 0 in (V.5.58)
we get
(V.5.63)»
I

»
B

�
p%fu�∇xpharmq � Btϕ� p%fub rusδ � SSSq : ∇xϕ

�
�

3̧

i�1

Ti,iRi,iBxiϕi dxdt � 0

for any test function ϕ P DpI �B;R3q.
Our aim is to use (V.5.58) and (V.5.63) with strong convergence (V.5.60) to

characterise nonlinear viscous term using monotonicity methods for nonreflexive
spaces as in Chapter IV and in [75, 131, 133].

To this end we take for any s0, s1 P I and sufficiently small h

ϕ � σh � p1lps0,s1qpσh � rp%fuε �∇xp
ε
harmqqq with any r P DpBq

as a test function in (V.5.58). Here � stands for convolution in the time variable with
regularising kernel σh (i.e. σ P C8pRq, suppσ P B1p0q, σp�tq � σptq, ³R σptq dt � 1,
σhptq � 1

h
σp 1

h
q). Since uε|B P L2pI;W 1,2pBqq and pεharm P L8pI;W 1,2

loc pBqq we infer
that

σh � p1lps0,s1qpσh � rp%fuε �∇xp
ε
harmqqq P CpI;L2pB;R3qq for any r P DpBq.

Then we obtain that

» s1

s0

»
B

σh �
�
SSSpDDDuεq � %fuε b ruεsδ � pεregIII

�
: σh � p∇x prp%fuε �∇xp

ε
harmqqq dxdt

� 1

2

»
B

r|σh � p%fuε �∇xp
ε
harmq|2 dx

���t�s1
t�s0

for any s0, s1 P I.

(V.5.64)

Let us pass to the limit with hÑ 0 and εÑ 0 and start with the right-hand side of
(V.5.64). The relation (V.5.59) provides that

lim
εÑ0

lim
hÑ0

»
B

r|σh � p%fuε �∇xp
ε
harmq|2 dx

���t�s1
t�s0

� lim
εÑ0

»
B

r|p%fuε �∇xp
ε
harmq|2 dx

���t�s1
t�s0

� 1

2

»
B

r|%fu�∇xpharm|2 dx
���t�s1
t�s0

.

for any Lebesgue point in r0, T s. As pharm is a harmonic function on B, standard
elliptic estimates provide that

rp%fuε �∇xp
ε
harmq P LppI;W 1,ppB;R3qq X L8pI;L2pB;R3qq,

while

%fuε b ruεsδ P Lp1pI;Lp
1pB;R3qq.
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Employing (V.5.59) we obtain

lim
εÑ0

lim
hÑ0

» s1

s0

»
B

pσh � p%fuε b ruεsδqq : pσh � p∇x prp%fuε �∇xp
ε
harmqqqq dxdt

� lim
εÑ0

» s1

s0

»
B

p%fuε b ruεsδq : p∇x prp%fuε �∇xp
ε
harmqqq dxdt

�
» s1

s0

»
B

p%fub rusδq : p∇x prp%fu�∇xpharmqqq dxdt.

Now we concentrate on the third term on the left-hand side of (V.5.64). Since
pεharm is harmonic and divxuε � 0, we obtain» s1

s0

»
B

σh �
�
pεregIII

�
: σh �∇x prp%fuε �∇xp

ε
harmqq dxdt

�
» s1

s0

»
B

�
σh � pεreg

� pσh � divxprp%fuε �∇xp
ε
harmqqq dxdt

�
» s1

s0

»
B

σh � pεregσh � p∇xr � p%fuε �∇xp
ε
harmqq dxdt.

(V.5.65)

Let us consider the first term on the right-hand side of (V.5.65). Employing the
estimate (V.5.5) and assumption (V.1.6) by Lemma III.2.7 we infer

}DDDuε}LM p0,T ;L4pT qq   8.
The generalized version of Korn inequality [54, Theorem 10.16] gives us

}uε}LM p0,T ;W 1,4pT qq   8.
Since 4 ¡ dimpBq � 3,

}uε}LM p0,T ;CpT qq   8.
Hence uε|I�B P LMpI;W 1,4pB;R3qq � LMpI;CpB;R3qq � LMpI �B;R3q. Using the
definition of pεreg and the property pRi,jq� � pRj,iq we get» s1

s0

»
B

pσh � pεregq pσh � p∇xr � p%fuεqqq dxdt

�
» s1

s0

»
B

tσh �
3̧

i,j�1

Ri,jrTi,jspt, xqutσh � p∇xr � p%fuεqqu dxdt

�
» s1

s0

»
B

3̧

i,j�1

tσh � T εi,jpt, xqutσh �Rj,i r∇xr � p%fuεqsu dxdt

Since ∇xr � p%fuεq P LMpI;W 1,4pBqq and r P DpBq, in particular supp∇xr �� B,
using the properties of difference quotients, see e.g [48] and if we extend ∇xr �p%fuεq
by zero on the whole space R3 preserving the norm, then we deduce that
}Rj,ir∇xr � p%fuεqs|B}CpBq ¤ c1}Rj,ir∇xr � p%fuεqs|B}W 1,4pBq ¤ c2}∇xr � p%fuεq}W 1,4pBq
for all t P I. Consequently we have

Ri,jr∇xr � p%fuεqs|B P LMpI;CpBqq for i, j � 1, 2, 3.
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Let us denote

(V.5.66) bbbε � rbεi,jsi�1,2,3, j�1,2,3 :� �
T εi,j

�
i�1,2,3, j�1,2,3

and notice that tbbbεuε¡0 is uniformly bounded in LM�pI �B;R3�3q. Hence
(V.5.67) bbbε á bbb weakly in L1pI �B;R3�3q.
Moreover let us denote

(V.5.68) wwwε � �
wεj,i

�
i�1,2,3, j�1,2,3

:� rRj,ir∇xr � p%fuεqssi�1,2,3, j�1,2,3

which is uniformly bounded in LMpI;W 1,4pB;R3�3qq.
Now let us converge with h Ñ 0. Since for any ε ¡ 0, bbbε P LM�pI � B;R3�3q

and wwwε P LMpI;CpB;R3�3qq � LMpI � B;R3�3q, then there exist λb, λw P p0,8q
such that bbbε{λb P LM�pI � B;R3�3q and wwwε{λw P LMpI � B;R3�3q. Due to Propo-
sition III.2.4 we obtain that

σh � bbbε Ñ bbbε in measure as hÑ 0�,

σh �wwwε Ñ wwwε in measure as hÑ 0�.

and tM�pσh � bbbε{λbquh¡0, tMpσh �wwwε{λwquh¡0 are uniformly integrable by Proposi-
tion III.2.5. Therefore by Lemma III.2.1 we obtain

σh � bbbε
M�ÝÑ bbbε modularly in LM�pI �B;R3�3q as hÑ 0,

σh �wwwε MÝÑ wwwε modularly in LMpI �B;R3�3q as hÑ 0.

Consequently by Proposition III.2.3 we get

(V.5.69) lim
hÑ0

» s1

s0

»
B

pσh � bbbεq : pσh �wwwεq dxdt �
» s1

s0

»
B

bbbε : wwwε dxdt

Using the following interpolation

(V.5.70) }wwwε}Wα,rpBq ¤ c}wwwε}1�λ
W 1,4pBq}wwwε}λL2pBq

with α � 1 � λ and 1
r
� λ

2
� 1�λ

4
(see [125] Section 2.3.1, 2.4.1, 4.3.1, 4.3.2), we

can find such λ (λ P p0, 1
7
q for space dimension 3) that Wα,rpBq is continuously

embedded in L8pBq (see [1]). Therefore for any fixed K ¡ 0»
I

»
B

MpKpwwwε �wwwqq dxdt ¤ |B|
»
I

MpK}wwwεptq �wwwptq}L8pBqq dt

¤ |B|
»
I

M
�
cK}wwwεptq �wwwptq}1�λ

W 1,4pBq}wwwεptq �wwwptq}λL2pBq
	

dt � I1.

(V.5.71)

As wwwε Ñ www strongly in L2pI �Bq (as %f � const in I �B)

}wwwεptq �wwwptq}L2pBq Ñ 0 in measure on I.

As (V.5.68) holds, wwwε �www P L1pI;W 1,4pBqq and consequently��tt P I : }wwwεptq �wwwptq}W 1,4pBq ¡ αu�� ¤ c

α
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for some c independent of ε. Then

}wwwεptq �wwwptq}1�λ
W 1,4pBq}wwwεptq �wwwptq}λL2pBq Ñ 0 in measure on I.

Continuity of M gives that

(V.5.72) M
!
cK}wwwεptq �wwwptq}1�λ

W 1,4pBq}wwwεptq �wwwptq}λL2pBq
)
Ñ 0 in measure on I.

Next we show uniform integrability of!
M

�
cK}wwwεptq �wwwptq}1�λ

W 1,4pBq}wwwεptq �wwwptq}λL2pBq
	)

ε¡0

in L1pIq. Let us denote R � cK}wwwε � www}L8pI;L2pBqq and let us notice that for any
subset E � I an λ P p0, 1q»

E

M
�
R}wwwεptq �wwwptq}1�λ

W 1,4pBq

	
dt

�
»
ttPE : }wwwεptq�wwwptq}W1,4pBq¤R2{λu

M
�
R}wwwεptq �wwwptq}1�λ

W 1,4pBq

	
dt

�
»
ttPE : }wwwεptq�wwwptq}W1,4pBq¡R2{λu

M
�
R}wwwεptq �wwwptq}1�λ

W 1,4pBq

	
dt

¤ |E|M
�
Rp1� 2

λ
p1�λqq

	
�
»
E

M
�
}wwwεptq �wwwptq}1�λ

2

W 1,4pBq

	
dt.

Let us notice that the first term on the right-hand side depends linearly on the
measure of the set E. It remains to show that

!
M

�
}wwwεptq �wwwptq}1�λ

2

W 1,4pBq

	)
ε¡0

is
uniformly integrable in L1pIq. Indeed, as M is an N�function (in particular is
convex) and for λ P p0, 1q the following assertion holds by de l’Hôpital’s rule

Mpτq
Mpτ 1�λ

2 q
Ñ 8 as τ Ñ 8.

ConsequentlyM
�
}wwwεptq �wwwptq}1�λ

2

W 1,4pBq

	
is uniformly integrable in L1pIq. Summaris-

ing we obtain that
(V.5.73)
M

�
cK}wwwεptq �wwwptq}1�λ

W 1,4pBq}wwwεptq �wwwptq}λL2pBq
	

is uniformly integrable in L1pIq.
By (V.5.72) and (V.5.73) the Vitali lemma provides that the right-hand side of
(V.5.71) converges to 0. Consequently

(V.5.74) Kwwwε MÝÑKwww modularly in LMpI �Bq.
According to Lemma III.2.1 tMpKwwwεquε¡0 is uniformly integrable in L1pI �Bq and
passing to subsequence if necessary

(V.5.75) wwwε Ñ www a.e. in I �B.
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Our next step is to show the uniform integrability of tbbbε : wwwεuε¡0 in L1pI � Bq. By
the Fenchel-Young inequality and convexity of M� for K ¡ 1 it follows that

|
»
I

»
B

bbbε : wwwε dxdt| �
»
I

»
B

1

K
bbbε : Kwwwε dxdt

¤
»
I

»
B

1

K
M�pbbbεq dx dt�

»
I

»
B

MpKwwwεq dxdt

As K is arbitrary and tMpKwwwεquε¡0 is uniformly integrable in L1pI �Bq we obtain
the assertion that tbbbε : wwwεuε¡0 is uniformly integrable in L1pI � Bq. Moreover as
(V.5.67) and (V.5.75) hold we infer that

lim
εÑ0

» s1

s0

»
B

3̧

i,j�1

�
T εi,jpt, xq

� pRj,i r∇xr � puεqsq dxdt

�
» s1

s0

»
B

3̧

i,j�1

pTi,jpt, xqq pRj,i r∇xr � puqsq dxdt.

Then the second term on the right hand side of (V.5.65) can be treated in a
similar way, since pεharm is a harmonic function and r P B. Finally we infer

lim
εÑ0

lim
hÑ8

» s1

s0

»
B

σh �
�
pεregIII

�
: σh �∇x prp%fuε �∇xp

ε
harmqq dxdt

�
» s1

s0

»
B

3̧

i,j�1

Ti,jpt, xqRi,jr∇xr � p%fu�∇xpharmqs dxdt.

It remains to show how the viscous term behaves in the limit hÑ 0 and εÑ 0,
i.e.

» s1

s0

»
B

σh � SSSpDDDuεq : σh �∇x pr%fuεq dxdt

�
» s1

s0

»
B

σh � SSSpDDDuεq : σh � p∇xr%fuε � rp%f∇xuεqq dxdt

(V.5.76)

As SSSpDDDuεq|I�B P LM�pI �B;R3�3q and uε|I�B P LMpI;W 1,4pB;R3qq � LMpI �
B;R3q, we proceed in a similar way as in (V.5.69) passing to the limi with h Ñ 0.
Then we proceed exactly as with bbbε and wwwε in order to converge with ε Ñ 0.
Therefore we obtain

lim
εÑ0

lim
hÑ0

» s1

s0

»
B

pσh � SSSpDDDuεqq : σh � p∇xr%fuε � rp%f∇xuεqq dxdt

� lim
εÑ0

» s1

s0

»
B

SSSpDDDuεq : p∇xr%fuε � rp%f∇xuεqq dxdt

�
» s1

s0

»
B

SSS : ∇r%fu dxdt� lim
εÑ0

» s1

s0

»
B

SSSpDDDuεqrp%f∇xuεq dxdt

(V.5.77)
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Summarising (V.5.77) and previous consideration, passing to the limit first with
hÑ 0 and next with εÑ 0 in (V.5.64) we have

lim
εÑ0

» s1

s0

»
B

SSSpDDDuεq : prp%f∇xuεqq dxdt � 1

2

»
B

r2|%fu�∇xpharm|2 dx
���t�s1
t�s0

�
» s1

s0

»
B

SSS : ∇r%fu dxdt�
» s1

s0

»
B

p%fub rusδq : p∇x prp%fu�∇xpharmqqq dxdt

�
» s1

s0

»
B

3̧

i,j�1

Ti,jpt, xqRj,i r∇xr � us dxdt

(V.5.78)

Using
σh � σh � rpxqp%fuε �∇xp

ε
harmq

as a test function in the limit equation (V.5.63) and after passing with ε Ñ 0 and
hÑ 0 we are allow to conclude that» s1

s0

»
B

�
SSS � %fub rusδ

	
: ∇x prp%fu�∇xpharmqq

�
3̧

i,j�1

Ti,jRj,i r∇xr � p%fu�∇xpharmqs dxdt

� 1

2

»
B

r|p%fu�∇xpharmq|2 dx
���t�s1
t�s0

for any s0, s1 P I.

(V.5.79)

Finally we conclude from (V.5.78) and (V.5.79) that

lim sup
εÑ0

» s1

s0

»
B

rSSSpDDDuεq : ∇xuε dxdt ¤
» s1

s0

»
B

rSSS : ∇xu dxdt for a.a. s0, s1 P I

and by the monotonicity argument for nonreflexive spaces used in Chapter IV or in
[75, 131, 133] we obtain

(V.5.80) SSSpDDDuεq Ñ SSSpDDDuq a.e. in I �B.

V.5.6. Conclusion. Considerations given in two preceding sections provide,
that (V.5.32) reduces to

(V.5.81)
» T

0

»
Ω

%u � Btϕ� %pub rusδq : ∇xϕ dxdt

�
» T

0

»
Ω

SSSpDDDuq : DDDϕ dxdt�
» T

0

»
T
%∇xF �ϕ dxdt�

»
T
%0,δu0 �ϕp0, �q dx

for any test function ϕ P C1pr0, T q � Ωq, ϕpt, �q P rRM sptq, with
rRM sptq � tφ P C1

c pΩ;R3q | divxφ � 0 in Ω,

DDDφ has compact support on Ωz Yn
i�1 Siptqu,

where
Siptq � ηipt, Siq, i � 1, . . . , n.
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Furthermore, the limit solution satisfies the energy inequality
(V.5.82)»

Ω

1

2
%|u|2pτq dx�

» τ

s

»
Ω

SSS : DDDu dxdt ¤
»
T

1

2
%|u|2psq dx�

» τ

s

»
Ω

%∇xF � u dxdt

for any τ and a.a. s P p0, T q including s � 0.

V.6. The limit passage δ Ñ 0

In the last section we pass to the limit with δ Ñ 0 in the system of equations
(V.5.26), (V.5.81) and in the corresponding family of isometries tηiuni�1 describing
the motion of rigid bodies. Hence we denote the associated sequences of solutions
by t%δ,uδ, tηδi uni�1uδ¡0.

Observe now that the initial data %Si,δ in (V.4.6) can be taken in such a way
that

}%Si,δ}L8pΩq ¤ c, %f � %Si,δ Ñ %Si as δ Ñ 0 in L1pΩq, i � 1, . . . , n,

where t%Siuni�1 are the initial distributions of the mass on the rigid bodies in Theorem
V.3.1. Then the theory for transport equation developed by DiPerna and Lions [45]
provides that

%δ Ñ % strongly in Cpr0, T s;L1pΩqq as δ Ñ 0.

According to energy inequality (V.5.82), we obtain that for a subsequence if neces-
sary

uδ Ñ u weakly in Lpp0, T ;W 1,ppΩ;R3qq
where uδ as well as the limit velocity u are divergence-free. Hence the continuity
equation (V.5.26) reduces to a transport equation

Bt%� u �∇x% � 0.

Following step by step the arguments given in previous sections we complete the
rest of the convergence process. The compactness of the velocity and convergence
in convective term can be done by combining arguments form previous sections
and Chapter IV, see also [39, 56]. The convergence in nonlinear viscous term is
completed by the same arguments as in Section V.5.5.
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CHAPTER VI

Generalized Stokes system

VI.1. Introduction

Our interest is directed to the generalized Stokes system

Btu� divxSSSpt, x,DDDuq �∇xp � f in p0, T q � Ω,(VI.1.1)
divxu � 0 in p0, T q � Ω,(VI.1.2)
up0, xq � u0 in Ω,(VI.1.3)
upt, xq � 0 on p0, T q � BΩ,(VI.1.4)

where Ω � Rd is an open, bounded set with a sufficiently smooth boundary BΩ,
p0, T q is the time interval with T   8, Q � p0, T q � Ω, u : Q Ñ Rd is the velocity
of a fluid, p : QÑ R the pressure and SSS� IIIp is the Cauchy stress tensor. We assume
that SSS satisfies the following conditions

(S1) SSS is a Carathéodory function (i.e., measurable w.r.t. t and x and continuous
w.r.t. the last variable).

(S2) There exists an anisotropic N –functionM : Rd�d
sym Ñ R� (Definition III.1.3)

and a constant c ¡ 0 such that for all ξξξ P Rd�d
sym

(VI.1.5) SSSpt, x, ξξξq : ξξξ ¥ cpMpξξξq �M�pSSSpt, x, ξξξqqq
where M is an anisotropic N� function

(S3) For all ξξξ,ηηη P Rd�d
sym and for a.a. t, x P Q
pSSSpt, x, ξξξq � SSSpt, x,ηηηqq : pξξξ � ηηηq ¥ 0.

By conditions pS1q�pS3q we can capture a wide class of models. Our particular
interest is directed here to the rheology close to linear in at least one direction. We
do not assume that the N� function satisfies the ∆2�condition in case of star-
shaped domains. For other domains we need to assume some conditions on the
upper growth of M , however this does not contradict with a goal of describing the
rheology close to linear. There is a wide range of fluid dynamics models obeying
these conditions, we mention here two constitutive relations: Prandtl-Eyring model,
cf. [53], where the stress tensor SSS is given by

SSS � η0
ar sinhpλ|DDDu|q

λ|DDDu| DDDu

and modified Powell-Eyring model cf. [103]

SSS � η8DDDu� pη0 � η8q lnp1� λ|DDDu|q
pλ|DDDu|qm DDDu
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where η8, η0, λ, m are material constants. Our attention in the present chapter is
particularly directed to the case η8 � 0 and m � 1.

Both models are broadly used in geophysics, engineering and medical applica-
tions, e.g. for modelling of glacier ice, cf. [83], blood flow, cf. [106, 107] and many
others, cf. [31, 101, 116, 137].

Our considerations concern the simplified system of equations of conservation of
mass and momentum. Indeed, the convective term divxpu b uq is not present in
the equations. The motivation for considering such a simplified model is twofold. If
the flow is assumed to be slow, then the inertial term divxpu b uq can be assumed
to be very small and therefore neglected, hence the whole system reduces to a
generalized Stokes system (VI.1.1)-(VI.1.2). Another situation is the case of simple
flows, e.g. Poisseuille type flow, between two fixed parallel plates, which is driven by
a constant pressure gradient (see [82]). With regards to blood flows the importance
of considering simple flows arises since the geometry of vessels can be simplified to a
flow in a pipe. The analysis of both models in steady case (also without convective
term) through variational approach was undertaken by Fuchs and Seregin in [63, 64].

The equations (VI.1.1)-(VI.1.2) with additional convective term divxpu b uq in
(VI.1.1) have been extensively studied in Chaters IV V and e.g. in [72, 75, 131,
133, 135]. The appearance of the convective term enforced the restriction for the
growth of an N -function, namely Mp�q ¥ c| � |q for some exponent q ¥ 3d�2

d�2
. Such a

formulation allowed to capture shear thickening fluids, even very rapidly thickening
(e.g. exponential growth). In the present chapter we are able to skip the assumption
on the lower growth of M (and consequently the bound for M�), which opens a
possibility to include flows of different behaviour, in particular shear thinning fluids.

The present chapter consists of a new analytical approach to the existence prob-
lem. In the previous studies the main reason to assume that M� satisfies the
∆2�condition was providing that the solution is bounded in an appropriate Sobolev
spaceW 1,qpΩq which is compactly embedded in L2pΩq. However, as a byproduct, we
gained that LM�pQ;Rd�d

symq � EM�pQ;Rd�d
symq is a separable space. The naturally aris-

ing question is whether the existence of solutions can still be proved after omitting
the convective term and relaxing the assumptions on M and M�. The preliminary
studies in this direction were done for an abstract parabolic equation, cf. [73]. Also
the convergence of a full discretization of quasilinear parabolic equation can be found
in [51] by Emmrich and Wróblewska-Kamińska. In the present chapter we give a
non-trivial extension of these considerations for the system of equations.

We study the problem in two different cases. In the first case the domain is
star-shaped and the N -function is anisotropic with absolutely no restriction on the
growth. In the second case arbitrary domains with a sufficiently smooth boundary
are considered. We define two functions m, m : R� Ñ R� as follows

mprq :� min
ξξξPRd�dsym ,|ξξξ|�r

Mpξξξq,

mprq :� max
ξξξPRd�dsym ,|ξξξ|�r

Mpξξξq.

83



CHAPTER VI. GENERALIZED STOKES SYSTEM VI.1. INTRODUCTION

The existence result is formulated under the control of the spread between m and
m.

We define the space of functions with symmetric gradient in LMpΩ;Rd�d
symq, namely

BDMpΩq :� tu P L1pΩ;Rdq | DDDu P LMpΩ;Rd�d
symqu.

The space BDMpΩq is a Banach space with a norm

}u}BDM pΩq :� }u}L1pΩq � }DDDu}M
and it is a subspace of the space of bounded deformations BDpΩq, i.e.

BDpΩq :� tu P L1pΩ;Rdq | rDDDusi,j PMpΩq, for i, j � 1, . . . , nu,
whereMpΩq denotes the space of bounded measures on Ω and rDDDusi,j � 1

2
p BuiBxj�

Buj
Bxi q.

According to [123, Theorem 1.1.] there exists a unique continuous operator γ0 from
BDpΩq onto L1pBΩ;Rdq such that the generalized Green formula
(VI.1.6)

2

»
Ω

φrDDDusi,j dx � �
»

Ω

�
uj
Bφ
Bxi � ui

Bφ
Bxj



dx�

»
BΩ

φ pγ0puiqνj � γ0pujqνiq dHd�1

holds for every φ P C1pΩq, where ν � pν1, . . . , νdq is the unit outward normal vector
on BΩ and γ0puiq is the i-th component of γ0puq and Hd�1 is the pd� 1q�Hausdorff
measure. Such a γ0 is a generalization of the trace operator in Sobolev spaces to
the case of BD space. If additionally u P CpΩ;Rdq, then γ0puq � u|BΩ. In case of
u P W 1,1

0 pΩ;Rdq this coincides with the classical trace operator in Sobolev spaces.
Understanding the trace in this generalized sense we define the subspace and the

subset of BDMpΩq as follows
BDM,0pΩq :� tu P BDMpΩq | γ0puq � 0u,

BDM,0pΩq :� tu P BDMpΩq | DDDu P LMpΩ;Rd�d
symq and γ0puq � 0u.

Let us define also

BDMpQq :� tu P L1pQ;Rdq | DDDu P LMpQ;Rd�d
symqu

and the corresponding subspace

BDM,0pQq :� tu P BDMpQq | γ0puq � 0u
where γ0 has the following meaning

2

»
Q

φrDDDusi,j dxdt � �
»
Q

�
uj
Bφ
Bxi � ui

Bφ
Bxj



dxdt

�
»
p0,T q�BΩ

φ pγ0puiqνj � γ0pujqνiq dHd�1dt

(VI.1.7)

for all φ P C1pQ̄q. If u P BDMpQq, then for a.a. t P p0, T q we have upt, �q P BDMpΩq.
For such vector fields it is equivalent that u P BDM,0pQq and that upt, �q P BDM,0pΩq
for a.a. t P p0, T q. By [123, Proposition 1.1.] there exists an extension operator
from BDpΩq to BDpRdq and consequently we are able to extend the functions from
BDM,0pQq by zero to the function in BDMpr0, T s � Rdq.
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In what follows, the closure of DpΩ;Rdq with respect to two topologies will be
considered, i.e.

(1) modular topology of LMpQ;Rd�d
symq, which we denote by Y M

0 , namely

Y M
0 �tu P L8p0, T ;L2

divpΩ;Rdqq, DDDu P LMpQ;Rd�d
symq | D tuju8j�1 � Dpp�8, T q;Vq :

uj
�á u in L8p0, T ;L2

divpΩ;Rdqq and DDDuj
MÝÑDDDu modularly in LMpQ;Rd�d

symqu

(VI.1.8)

(2) weak–(*) topology of LMpQ;Rd�d
symq, which we denote by ZM

0 , namely

ZM
0 �tu P L8p0, T ;L2

divpΩ;Rdqq, DDDu P LMpQ;Rd�d
symq | D tuju8j�1 � Dpp�8, T q;Vq :

uj
�á u in L8p0, T ;L2

divpΩ;Rdqq and DDDuj
�á DDDu weakly star in LMpQ;Rd�d

symqu.

(VI.1.9)

The main result of this chapter concerns the existence of weak solutions to the initial
boundary value problem (VI.1.1)–(VI.1.4).

Theorem VI.1.1. Let condition D1. or D2. be satisfied
(D1) Ω is a bounded star-shaped domain,
(D2) Ω is a bounded non-star-shaped domain and

(VI.1.10) mprq ¤ cmppmprqq
d
d�1 � |r|2 � 1q

for all r P R�, and m satisfies ∆2�condition.
Let M be an N�function and SSS satisfy conditions (S1)-(S3). Then, for given u0 P
L2

divpΩ;Rdq and f P Em�pQ;Rdq there exists u P ZM
0 such that»

Q

�u � Btϕ� SSSpt, x,DDDuq : DDDϕ dxdt �
»
Q

f �ϕ dxdt�
»

Ω

u0ϕp0q dx

for all ϕ P Dp�8, T ;Vq.
This chapter is organized as follows: Section VI.2 is devoted to the Sobolev-

Korn-type inequality in Orlicz spaces. In Section VI.3 we concentrate on showing
that the spaces Y M

0 and ZM
0 defined above coincide and how this fact is used in the

integration by parts formula. The last section contains the proof of Theorem VI.1.1,
which essentially bases on the facts proved in previous sections.

VI.2. Variant of the Sobolev-Korn inequality

Numerous classical results (e.g. Poincaré, Sobolev, Korn inequalities) have been
generalized from Lebesgue and Sobolev spaces to Orlicz spaces. Among others we
find results of Cianchi on the Sobolev inequality, see [33, 34]. Other interesting
results concern the embeddings of a very particular type of Orlicz-Sobolev space,
namely BLDpΩq :� tu P L1pΩ;Rdq | |DDDu| P LmpΩqu where LmpΩq is defined by the
function mpξq � ξ lnpξ � 1q, ξ P R�, cf. Bildhauer and Fuchs [62].
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The Korn inequality is a standard tool used in problems arising from fluid me-
chanics to provide an estimate of the gradient by symmetric gradient in appropriate
norms. The generalization of the Korn inequality, namely»

Ω

mp|∇xu|q dx ¤ c

»
Ω

mp|DDDu|q dx

is valid for the case of m and m� satisfying the ∆2�condition, see e.g. [61]. Since
this is not the case of our considerations we will concentrate on generalizing the
result of Strauss, cf. [122], namely

}u}
L

d
d�1 pΩq

¤ }DDDu}L1pΩq

to the case of integrability of appropriate N�functions.1 Indeed the following fact
holds:

Lemma VI.2.1. Let m be an N�function and Ω be a bounded domain, Ω̄ �
r�1

4
, 1

4
sd, and u P BDM,0pΩq. Then

(VI.2.1) }mp|u|q}
L

d
d�1 pΩq

¤ Cd}mp|DDDu|q}L1pΩq.

The proof is presented in two parts. First, we show the validity of (VI.2.1) for
u P X, where

XpΩq :� tϕ P C1
c pΩ;Rdq;

»
Ω

mp|DDDϕ|q dx   8u
and then the result is extended for u P BDM,0pΩq.

Proof. Step 1.
Assume that u P XpΩq and suppu � r�1

4
, 1

4
sd. Let us denote δd � p1, 1, ..., 1q. Then

by the mean value theorem in the integral form (see e.g. [4]) it follows

uipxq �
» 0

� 1
2

ḑ

j�1

Bjuipx� sδdq ds � �
» 1

2

0

ḑ

j�1

Bjuipx� sδdq ds

and
ḑ

i�1

uipxq �
» 0

� 1
2

ḑ

i,j�1

Bjuipx� sδdq ds � �
» 1

2

0

ḑ

i,j�1

Bjuipx� sδdq ds.

Hence

2
ḑ

i�1

uipxq �
» 0

� 1
2

ḑ

i,j�1

pBjuipx� sδdq � Biujpx� sδdqq ds

� �
» 1

2

0

ḑ

i,j�1

pBjuipx� sδdq � Biujpx� sδdqq ds

1In the current section the N�function has the same properties as before with only one difference
- it is defined on R�. To help the reader distinguish this case, we will denote it in this chapter
with a small letter m, contrary to M defined on Rd�dsym .
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and consequently we obtain

4|
ḑ

i�1

uipxq| ¤
» 1

2

� 1
2

ḑ

i,j�1

|Bjuipx� sδdq � Biujpx� sδdq| ds.

Applying N -function m : R� Ñ R� to the above inequality, using convexity of m
and the Jensen inequality (here we use the fact that the support of u is in r�1

4
, 1

4
sd)

we observe that�
m

�
|
ḑ

i�1

uipxq|
�� 1

d�1

¤
�» 1

2

� 1
2

m

�
1

4

ḑ

i,j�1

|Bjuipx� sδdq � Biujpx� sδdq|
�

ds

� 1
d�1

.

Let ek � p0, ..., 0, 1, 0, ..., 0q be a unit vector along the xk-axis and fk � δd � ek �
p1, ..., 1, 0, 1, ..., 1q for k P t1, ..., d� 1u. Obviously

ḑ

i�1

uipxq �
» 0

� 1
2

ḑ

i,j�1,i�k,j�k
Bjuipx� sfkq ds�

» 0

� 1
2

Bkukpx� sekq ds

� �
» 1

2

0

ḑ

i,j�1,i�k,j�k
Bjuipx� sfkq ds�

» 1
2

0

Bkukpx� sekq ds.

Consequently

�
mp|

ḑ

i�1

uipxq|q
� 1

d�1

¤

� » 1
2

� 1
2

m

�
1

4

ḑ

i,j�1,i�k,j�k
|Bjuipx� sfkq � Biujpx� sfkq| � 1

2
|Bkukpx� sekq|

�
ds
� 1
d�1

¤
�

1

2


 1
d�1 � » 1

2

� 1
2

m

�
1

2

ḑ

i,j�1,i�k,j�k
|Bjuipx� sfkq � Biujpx� sfkq|

�

�m p|Bkukpx� sekq|q ds
� 1
d�1

¤
�

1

2


 1
d�1

C
��» 1

2

� 1
2

m

�
1

2

ḑ

i,j�1,i�k,j�k
|Bjuipx� sfkq � Biujpx� sfkq|

�� 1
d�1

�
�» 1

2

� 1
2

m p|Bkukpx� sekq|q ds

� 1
d�1 �

.

(VI.2.2)
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Next, we multiply expression
�
mp|°d

i�1 uipxq|q
	 1
d�1 by itself d times and conclude

that »
Rd

�
m

�
|
ḑ

i�1

uipxq|
�� d

d�1

dx1...dxd

¤ C

»
Rd

�» 1
2

� 1
2

m

�
1

4

ḑ

i,j�1

|Bjuipx� sδdq � Biujpx� sδdq|
�

ds

� 1
d�1

d�1¹
k�1

��» 1
2

� 1
2

m

�
1

2

ḑ

i,j�1,i�k,j�k
|Bjuipx� sfkq � Biujpx� sfkq|

�� 1
d�1

�
�» 1

2

� 1
2

m p|Bkukpx� sekq|q ds

� 1
d�1 �

dx1...dxd

� C
¸
σ

»
Rd

�» 1
2

� 1
2

m

�
1

4

ḑ

i,j�1

|Bjuipx� sδdq � Biujpx� sδdq|
�

ds

� 1
d�1

d�1¹
k�1,kPσ

�» 1
2

� 1
2

m

�
1

2

ḑ

i,j�1,i�k,j�k
|Bjuipx� sfkq � Biujpx� sfkq|

�� 1
d�1

d�1¹
k�1,kRσ

�» 1
2

� 1
2

m p|Bkukpx� sekq|q ds

� 1
d�1

dx1...dxd

(VI.2.3)

where σ runs over possible subsets of t1, 2, ..., d� 1u. Since suppu � r�1
4
, 1

4
sd, then

by the Fubini theorem it is easy to notice that»
Rd

�
m

�
|
ḑ

i�1

ui|
�� d

d�1

dx1...dxd

¤ C
¸
σ

�»
Rd
m

�
1

4

ḑ

i,j�1

|Bjuipxq � Biujpxq|
�

dx

� 1
d�1

d�1¹
k�1,kPσ

�»
Rd
m

�
1

2

ḑ

i,j�1,i�k,j�k
|Bjuipxq � Biujpxq|

�
dx

� 1
d�1

d�1¹
k�1,kRσ

�»
Rd
m p|Bkukpxq|q dx


 1
d�1

.

(VI.2.4)

In a similar way, by integration over lines p1,�1, 1, ....,�1q etc., instead of these we
can obtain the same bound for any }mp°d

i�1 vipxquiq}d{pd�1q
Ld{pd�1qpRdq where vi P t�1, 0u.
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Now, let vi vary by setting vipxq � sgnuipxq, and then

»
Rd

�
m

�
ḑ

i�1

|uipxq|
�� d

d�1

dx1...dxd ¤
»
Rd

�
m

�
ḑ

i�1

|vipxquipxq|
�� d

d�1

dx1...dxd

has the same bound (up to a constant 2d). Indeed, let Υ � tγ � pγ1, γ2, γ3q : γi P
t�1, 0, 1u, i � 1, 2, 3u, Aγ � tx P Rn : sgnuipxq � vipxq � γi, i � 1, 2, 3u. Estimates
(VI.2.2), (VI.2.4) are also valid if we integrate over any measurable subset of Rd

instead of the whole Rd. One easily observes that tAγuγ is a division of Rd on
measurable subsets. Obviously

|
ḑ

i�1

vipxquipxq| �
ḑ

i�1

vipxquipxq ¥ 0.

Thus

»
Rd
|
ḑ

i�1

vipxquipxq| dx �
¸
γPΥ

»
Aγ

|
ḑ

i�1

vipxquipxq| dx

�
¸
γPΥ

»
Aγ

ḑ

i�1

|vipxquipxq| dx � I1

where vipxq is constant on any subset of division tAγuγ. Hence all expressions in
summation over γ are positive and independent of vipxq. Therefore we obtain

I1 �
¸
γPΥ

»
Aγ

ḑ

i�1

|uipxq| dx �
»
Rd

ḑ

i�1

|uipxq| dx

and on the other hand

I1 ¤ 2d
»
Rd
mp|

ḑ

i�1

vipxquipxq|q dx.

Finally we deduce that

»
Rd
mp

ḑ

i�1

|uipxq|q dx ¤ 2d
»
Rd
mp|

ḑ

i�1

viuipxq|q dx.
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In the end, since the geometric mean of nonnegative numbers is no greater than
the arithmetic mean, we estimate the right hand side of (VI.2.4)»

Rd

�
mp|

ḑ

i�1

ui|q
� d

d�1

dx1...dxd

¤ C
¸
σ

1

d

� »
Rd
m

�
1

4

ḑ

i,j�1

|Bjuipxq � Biujpxq|
�

dx

�
d�1̧

k�1,kPσ

»
Rd
m

�
1

2

ḑ

i,j�1,i�k,j�k
|Bjuipxq � Biujpxq|

�
dx

�
d�1̧

k�1,kRσ

»
Rd
m

�
1

2
|Bkukpxq|



dx

� d
d�1 � I2.

(VI.2.5)

Since m is convex and mp0q � 0, then

I2 ¤ C
¸
σ

1

d

�1

2

»
Rd
m

�
1

2

ḑ

i,j�1

|Bjuipxq � Biujpxq|
�

dx

�
ḑ

k�1,kPσ

»
Rd
m

�
1

2

d�1̧

i,j�1,i�k,j�k
|Bjuipxq � Biujpxq|

�
dx

�
d�1̧

k�1,kRσ

»
Rd
m

�
1

2
|Bkukpxq|



dx

� d
d�1

¤
�
Kpdq

»
Rd
m

�
1

2

ḑ

i,j�1

|Bjuipxq � Biujpxq|
�

dx
� d
d�1
.

(VI.2.6)

Step 2.
Let r�1

4
, 1

4
s � Ω̃ � Ω̄ and DpΩ̃;Rdq be the set of smooth functions in Rd with support

in Ω̃. Step 1 provides that u P DpΩ̃;Rdq with suppu P r�1
4
, 1

4
sd satisfies

(VI.2.7) }mp|u|q}
L

d
d�1 pRnq

¤ Cd}mp|DDDu|q}L1pRdq.

To deduce the validity of (VI.2.7) for all u P BDM,0pΩq, we extend u by zero outside
of the set Ω. Obviously u P BDM,0pΩ̃q. Now u can be regularized as follows

uεpxq :� %ε � upxq
where ε   1

2
dist pBΩ̃,Ωq and %ε is a standard mollifier, the convolution being done

w.r.t. x. Since uεpxq is smooth with compact support in Ω̃, inequality (VI.2.7) is
provided for uε. Passing to the limit with ε Ñ 0 yields that uε Ñ u, DDDuε Ñ DDDu
a.e. in Rd and the continuity of an N –function m provides that mp|uε|q Ñ mp|u|q,
mp|DDDuε|q Ñ mp|DDDu|q a.e. in Rd.

90



CHAPTER VI. GENERALIZED STOKES SYSTEM VI.3. DOMAINS AND CLOSURES

To conclude the strong convergence in L1pΩq of the sequence tmp|uε|quε¡0 we
start with an abstract fact concerning uniform integrability. Observe that the fol-
lowing two conditions are equivalent for any measurable sequence tzju8j�1

@ ε ¡ 0 D δ ¡ 0 : sup
jPN

sup
A�Ω̃,|A|¤δ

»
A

|zjpxq| dx ¤ ε,(VI.2.8)

@ ε ¡ 0 D δ ¡ 0 : sup
jPN

»
Ω̃

����|zjpxq| � 1?
δ

����
�

dx ¤ ε,(VI.2.9)

where
|ξ|� � maxt0, ξu.

The implication (VI.2.8)ñ(VI.2.9) is obvious. To show that also (VI.2.9)ñ(VI.2.8)
holds let us estimate

sup
jPN

sup
|A|¤δ

»
A

|zj| dx ¤ sup
|A|¤δ

|A| � 1?
δ
� sup

jPN

»
Ω̃

����|zj| � 1?
δ

����
�

dx

¤
?
δ � sup

jPN

»
Ω̃

����|zj| � 1?
δ

����
�

dx.

Since m is a convex function, the following inequality holds for all δ ¡ 0

(VI.2.10)
»

Ω̃

����mp|u|q � 1?
δ

����
�
dx ¥

»
Ω̃

����mp|%ε � u|q � 1?
δ

����
�
dx.

Finally, since
³
Ω̃
mp|u|qdx   8, then also

³
Ω̃
|mp|u|q� 1?

δ
|�dx is finite and hence tak-

ing supremum over ε ¡ 0 in (VI.2.10) we prove uniform integrability of tmp|uε|quε¡0.
The same considerations are valid for tmp|DDDuε|quε¡0. Finally, by the Vitali lemma
we conclude that

mp|uε|q Ñ mp|u|q strongly in L1pRdq,
mp|DDDuε|q Ñ mp|DDDu|q strongly in L1pRdq.

Consequently, the limit u satisfies inequality (VI.2.7).
�

Remark VI.2.2. If Ω is bounded, we can rescale the space variables. Then we have

}mp|u|q}
L

d
d�1 pΩq

¤ Cd}mp|CrDDDu|q}L1pΩq.

where Cr is a constant dependent on the jacobian of rescaling.

VI.3. Domains and closures

In the present section we concentrate on the issue of closures of smooth functions
w.r.t. various topologies. In the introduction we defined the spaces Y M

0 and ZM
0 .

Our interest is directed to the equivalence between these two spaces. The simplest
proof is provided in the case of star-shaped domains. For extending the result
for arbitrary domains with regular boundary, the set Ω is considered as a sum of
star-shaped domains. In this case the Sobolev-Korn inequality (VI.2.1) provides an
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essential estimate. Another requirement appearing for non-star-shaped domains is
the constrain on the spread between m and m and also on the growth of m, i.e. the
condition (D2) in Theorem VI.1.1.

In the present section integration by parts is also considered as the main issue,
where the equivalence between the spaces Y M

0 and ZM
0 is crucial.

Lemma VI.3.1 (star-shaped domains). Let M : Rd�d
sym Ñ R� be an N -function,

Ω be a bounded star-shaped domain and Y M
0 , ZM

0 be the function spaces defined by
(VI.1.8) and (VI.1.9). Then Y M

0 � ZM
0 .

Moreover, if u P Y M
0 , χχχ P LM�pQ;Rd�d

symq, f P Lm�pQ;Rdq and
(VI.3.1) Btu� divxχχχ � f in D1pQq,
then

1

2
}upsq}2

L2pΩq �
1

2
}ups0q}2

L2pΩq �
» s

s0

»
Ω

χχχ : DDDu dxdt �
» s

s0

»
Ω

f � u dxdt

for a.a. s0, s : 0   s0   s   T .

Proof. Since the modular topology is stronger than weak-star, obviously we
have Y M

0 � ZM
0 . Therefore we focus on proving the opposite inclusion, namely

(VI.3.2) ZM
0 � Y M

0 .

To reach this goal we want to extend u by zero outside of Ω to the whole Rd and
then mollify it. To extend u we observe that ZM

0 � BDM,0pQq. By definition it
is obvious that each u P ZM

0 is an element of BDpQq, hence let us concentrate on
showing that it vanishes on the boundary. Recall that for u formula (VI.1.7) is
satisfied. Take a sequence tuku8k�1 of compactly supported smooth functions with
the properties prescribed in the definition of the space ZM

0 . After inserting this
sequence into (VI.1.7) we obtain

2

»
Q

φrDDDuksi,j dxdt � �
»
Q

�
ukj
Bφ
Bxi � uki

Bφ
Bxj



dxdt(VI.3.3)

Now we can easily pass to the weak-star limit in (VI.3.3) because of the linearity of
all terms. As a consequence we conclude that the boundary term vanishes.

Next we introduce uλ, where the index λ for any function v is understood as
follows

(VI.3.4) vλpt, xq :� vpt, λpx� x0q � x0q
where x0 is a vantage point of Ω and λ P p0, 1q. Let ελ � 1

2
dist pBΩ, λΩq where

λΩ :� ty � λpx� x0q � x0 | x P Ωu. Define then

(VI.3.5) uδ,λ,εpt, xq :� σδ � pp%ε � uλpt, xqq 1lps0,sqq
where %εpxq � 1

εd
%px

ε
q is a standard regularizing kernel on Rd (i.e. % P C8pRdq, % has

a compact support in Bp0, 1q and ³Rd %pxq dx � 1, %pxq � %p�xq) and the convolution
is done w.r.t. space variable x, ε   ελ

2
and σδptq � 1

δ
σp t

δ
q is a regularizing kernel on

R (i.e. σ P C8pRq, σ has a compact support and
³
R σpτqdτ � 1, σptq � σp�tq) and
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convolution is done w.r.t. time variable t with δ   mints0, T�su. The approximated
function uδ,λ,ε also has zero trace.

First we pass to the limit with εÑ 0 and hence

DDDuδ,λ,ε
εÑ0ÝÝÑ DDDuδ,λ in L1pQ;Rd�dq.

For a.a. t P r0, T s the function DDDuδ,λ,εpt, �q P L1pΩ;Rd�dq and

%ε �DDDuδ,λpt, �q εÑ0ÝÝÑ DDDuδ,λpt, �q in L1pΩ;Rd�dq
and hence

%ε �DDDuδ,λ
εÑ0ÝÝÑ DDDuδ,λ in measure on the set r0, T s � Ω.

To show the uniform integrability of tMpDDDuδ,λ,εquε¡0 we use the analogous ar-
gumentation as in the proof of Lemma VI.2.1, i.e. the equivalence of the following
two conditions for any measurable sequence tzju

(a) @ ε ¡ 0 D θ ¡ 0 : sup
jPN

sup
A�Q, |A|¤θ

³
A
|zjpt, xq| dxdt ¤ ε,

(b) @ ε ¡ 0 D θ ¡ 0 : sup
jPN

³
Q

���|zjpt, xq| � 1?
δ

���
�

dxdt ¤ ε.

Notice that since M is a convex function, then the following inequality holds for all
θ ¡ 0

(VI.3.6)
»
Q

����MpDDDuδ,λq � 1?
θ

����
�

dxdt ¥
»
Q

����Mp%ε �DDDuδ,λq � 1?
θ

����
�

dxdt.

Finally, since βDDDuδ,λ P LMpQ;Rd�d
symq for some β ¡ 0, then also

³
Q
|MpβDDDuδ,λq �

1?
θ
|� dxdt is finite and hence taking supremum over ε P p0, ελ

2
q in (VI.3.6) we prove

that the sequence tMpβDDDuδ,λ,εquε¡0 is uniformly integrable.
Finally, Lemma III.2.1 provides that

DDDuδ,λ,ε
εÑ0ÝÝÑ DDDuδ,λ modularly in LMpQ;Rd�d

symq.
Next, we pass to the limit with λÑ 1 and obtain that

DDDuδ,λ
λÑ1ÝÝÑ DDDuδ in L1pQ;Rd�dq

and

DDDuδ,λ
λÑ1ÝÝÑ DDDuδ modularly in LMpQ;Rd�d

symq.
To converge with δ Ñ 0� we employ similar arguments as for convergence with
εÑ 0�. Finally we observe that Y M

0 � ZM
0 .

The forthcoming part of the proof is devoted to the integration by parts formula.
Let us define now

(VI.3.7) uδ,λ,εpt, xq :� σδ � ppσδ � %ε � uλpt, xqq 1lps0,sqq
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where ε   ελ
2
and σ   1

2
mints0, T � su. We test each equation in (VI.3.1) by uδ,λ,ε

(which is a sufficiently regular test function)

» s

s0

»
Ω

pu � σδq � Btpuλ,ε � σδq dxdt �
» T

0

»
Ω

χχχ : DDDuδ,λ,ε dxdt�
» T

0

»
Ω

f � uδ,λ,ε dxdt.

(VI.3.8)

The left-hand side of (VI.3.8) is equivalent to
³s
s0

³
Ω
pu � σδq � puλ,ε � Btσδq dxdt, hence

to pass to the limit with ε Ñ 0 and λ Ñ 1 we use the fact that uλ,ε �á u in
L8p0, T ;L2

divpΩ;Rdqq. To handle the right-hand side of (VI.3.8) we use the results
shown in the first part of the proof. For proving the convergence of the term

³T
0

³
Ω
f �

uδ,λ,ε dxdt we apply Lemma VI.2.1 to m and observe that�»
Ω

pmp|uδ,λ,εpt, xq|qq d
d�1 dx


 d�1
d

¤ Cd

»
Ω

mp|DDDuδ,λ,εpt, xq|q dxq

for a.a. t P r0, T s. Consequently the Hölder inequality implies that» T

0

»
Ω

pmp|uδ,λ,εpt, xq|qq dxdt ¤ CΩ,d

» T

0

»
Ω

pmp|DDDuδ,λ,εpt, xq|q dxdt.

Using definition of m we obtain» T

0

»
Ω

pmp|uδ,λ,εpt, xq|qq dxdt ¤ CΩ,d

» T

0

»
Ω

MpDDDuδ,λ,εpt, xqq dxdt.(VI.3.9)

Hence (VI.3.9) provides that modular convergences

DDDuδ,λ,ε
εÑ0ÝÝÑ DDDuδ,λ, DDDuδ,λ

λÑ1ÝÝÑ DDDuδ in LMpQ;Rd�d
symq

imply that

uδ,λ,ε
εÑ0ÝÝÑ uδ,λ, uδ,λ

λÑ1ÝÝÑ uδ modularly in LmpQ;Rdq.
Using Proposition III.2.3 for N -functions m� and m we obtain

lim
εÑ0,λÑ1

»
Q

f � uδ,λ,ε dxdt �
»
Q

f � uδ dxdt.

In a similar way Proposition III.2.3 for N�functions M and M� provides the con-
vergence

lim
εÑ0,λÑ1

»
Q

χχχ : DDDuδ,λ,ε dxdt �
»
Q

χχχ : DDDuδ dxdt.

Note that for all 0   s0   s   T it follows» s

s0

»
Ω

pσδ � uq � Btpσδ � uq dxdt �
» s

s0

1

2

d

dt
}σδ � u}2

L2pΩq dt

� 1

2
}σδ � upsq}2

L2pΩq �
1

2
}σδ � ups0q}2

L2pΩq.
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We pass to the limit with δ Ñ 0 and obtain for almost all s0, s (namely for all
Lebesgue points of the function uptq) the following identity

(VI.3.10) lim
δÑ0

» s

s0

»
Ω

pu � σδq � Btpu � σδq dxdt � 1

2
}upsq}2

L2pΩq �
1

2
}ups0q}2

L2pΩq

holds. Observe now the term» T

0

»
Ω

χχχ : pσδ � ppσδ �DDDuq 1lps0,sqqq dxdt �
» s

s0

»
Ω

pσδ �χχχq : pσδ �DDDuq dxdt.

Both of the sequences tσδ �χχχuδ and tσδ �DDDuuδ converge in measure on Q. Moreover,
the assumptions u P Y M

0 and χχχ P LM�pQ;Rd�d
symq provide that the integrals» T

0

»
Ω

MpDDDuq dxdt and
» T

0

»
Ω

M�pχχχq dxdt

are finite. Hence using the same method as before we conclude that the sequences
tM� pσδ �χχχquδ and tM pσδ �DDDuquδ are uniformly integrable and by Lemma III.2.1
we have

σδ �DDDu
MÝÑDDDu modularly in LMpQ;Rd�d

symq,
σδ �χχχ M�ÝÑχχχ modularly in LM�pQ;Rd�d

symq.
Applying Proposition III.2.3 allows to conclude

(VI.3.11) lim
δÑ0

» s

s0

»
Ω

pσδ �χχχq : pσδ �DDDuq dxdt �
» s

s0

»
Ω

χχχ : DDDu dxdt.

In the same manner we treat the source term, just instead of the N�function M
we consider m. Hence we have» T

0

»
Ω

f � pσδ � ppσδ � uq 1lps0,sqqqdxdt �
» s

s0

»
Ω

pσδ � fq � pσδ � uqdxdt.

Then we observe that

σδ � u mÝÑu modularly in LmpQ;Rdq,
σδ � f m�ÝÑf modularly in Lm�pQ;Rdq.

and we conclude that

(VI.3.12) lim
δÑ0

» s

s0

»
Ω

pσδ � fq � pσδ � uq dxdt �
» s

s0

»
Ω

f � u dxdt.

Combining (VI.3.10), (VI.3.11) and (VI.3.12) we obtain after passing to the limit
with ε, λ and δ in (VI.3.8) that

(VI.3.13)
1

2
}upsq}2

L2pΩq �
1

2
}ups0q}2

L2pΩq �
» s

s0

»
Ω

χχχ : DDDu dxdt �
» s

s0

»
Ω

f � u dxdt

for almost all 0   s0   s   T . �
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Lemma VI.3.2 (Non-star-shaped domains with the control of anisotropy). Let M
be an N�function such that mprq ¤ cmppmprqq

d
d�1 � |r|2 � 1q for r P R� and let

m satisfy the ∆2�condition. Let Ω be a bounded domain with a sufficiently smooth
boundary, Y M

0 , ZM
0 be the function spaces defined by (VI.1.8) and (VI.1.9). Then

Y M
0 � ZM

0 .
Moreover, let u P Y M

0 , χχχ P LM�pQ;Rd�d
symq, f P Lm�pQ;Rdq and

(VI.3.14) Btu� divxχχχ � f in D1pQq.
Then

1

2
}upsq}2

L2pΩq �
1

2
}ups0q}2

L2pΩq �
» s

s0

»
Ω

χχχ : DDDu dxdt �
» s

s0

»
Ω

f � u dxdt

holds for a.a. s0, s: 0 ¤ s0   s ¤ T .

Proof. Already for Lipschitz domains there exists a finite family of star-shaped
domains tΩiuiPJ such that

Ω �
¤
iPJ

Ωi

see e.g. [99]. We introduce the partition of unity θi with 0 ¤ θi ¤ 1, θi P
DpΩiq, supp θi � Ωi,

°
iPJ θipxq � 1 for x P Ω. Applying Lemma VI.2.1. to m,

we obtain »
Ω

pmp|uδ,λ,εpt, xq|qq d
d�1 dx ¤ Cd

�»
Ω

mp|DDDuδ,λ,εpt, xq|q dx


 d
d�1

for a.a. t P r0, T s (here uδ,λ,ε is defined as in (VI.3.5)). Consequently» T

0

»
Ω

pmp|uδ,λ,εpt, xq|qq d
d�1 dxdt ¤ Cd

» T

0

�»
Ω

pmp|DDDuδ,λ,εpt, xq|q dx


 d
d�1

dt.

Using definition of m and the assumption that T   8 we obtain

» T

0

»
Ω

pmp|uδ,λ,εpt, xq|qq d
d�1 dxdt ¤ Cd

» T

0

�»
Ω

MpDDDuδ,λ,εpt, xqq dx


 d
d�1

dt

¤ CT,d sup
tPr0,T s

�»
Ω

MpDDDuδ,λ,εpt, xqq dx


 d
d�1

.

(VI.3.15)

To show boundedness of the right-hand side of (VI.3.15) for fixed δ we use the Jensen
inequality, the Fubini theorem and nonnegativity of M in the following way»

Ω

MpDDDuδ,λ,εpt, xqq dx ¤
»

Ω

»
Bδ

MpDDDuλ,εpt� τ, xqqσδpτq dτdx

�
»
Bδ

»
Ω

MpDDDuλ,εpt� τ, xqqσδpτq dxdτ

¤ }σδ}L8pBδq}MpDDDuλ,εq}L1pBδ�Ωq

¤ }σδ}L8pBδq}MpDDDuλ,εq}L1pQq.

(VI.3.16)
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Since mprq ¤ cmppmprqq
d
d�1 � |r|2 � 1q and ∇xθ P L8pΩ;Rdq we obtain

pDDDpuδ,λqθλi qε�
1

2
puδb∇xθiqλ,ε� 1

2
p∇xθibuδqλ,ε � DDDpuδθiqλ,ε P LMpp0, T q�Ωi;Rd�d

symq,
where Ωi � supp θi.

We observe now the function uδ,λ,εpt, xq � °
iPJ %ε �

 �
σδ � u 1lps0,sq

�
θi
(λ, where

t�uλ is defined by (VI.3.4). Since uδ,λ,ε is in general not divergence-free, we introduce
for a.a. t P p0, T q the function ϕλ,εpt, �q P L

m
d
d�1

pΩ;Rdq which for a.a. t P p0, T q is a
solution to the problem

divxϕ
λ,ε �

¸
iPJ
%ε �

 �
σδ � u 1lps0,sq

� �∇xθi
(λ in Ω

ϕλ,ε � 0 on BΩ

Existence of such ϕλ,ε is provided by Theorem III.2.14 applied to the N -function
m

d
d�1 which satisfies the ∆2�condition. The quasiconvexity condition is obviously

satisfied with γ � d�1
d
. Then we follow the case of star-shaped domains to complete

the proof, but instead of the sequence defined by (VI.3.5), we consider

ψδ,λ,εpt, xq :�
¸
iPJ
%ε �

 �
σδ � u 1lps0,sq

�
θi
(λ �ϕλ,εpxq

It remains to show that ϕλ,ε vanishes in the limit as λ Ñ 1 and ε Ñ 0. Indeed,
Theorem III.2.14 implies the estimate»

Ω

m
d
d�1 p|DDDϕλ,ε|q dx ¤

»
Ω

m
d
d�1 p|∇xϕ

λ,ε|q dx

¤ c

»
Ω

m
d
d�1 p|

¸
iPJ
%ε �

 �
σδ � u 1lps0,sq

� �∇xθi
(λ |q(VI.3.17)

for a.a. t P p0, T q. Let us integrate (VI.3.17) over the time interval p0, T q. Since for
every i P J the sequence

%ε �
 �
σδ � u 1lps0,sq

� �∇xθi
(λ m

d
d�1ÝÑ �

σδ � u 1lps0,sq
� �∇xθi modularly in L

m
d
d�1

pQq
as ε Ñ 0 and λ Ñ 1 and

°
iPJ

�
σδ � u 1lps0,sq

� �∇xθi � 0, we immediately conclude
that ¸

iPJ
%ε �

 �
σδ � u 1lps0,sq

� �∇xθi
(λ m

d
d�1ÝÑ 0 modularly in L

m
d
d�1

pQq

as εÑ 0 and λÑ 1. Consequently

(VI.3.18) DDDϕλ,ε
m

d
d�1ÝÑ 0 modularly in L

m
d
d�1

pQ;Rd�dq.
Employing the same argumentation, instead of the function defined by (VI.3.7),

we test (VI.3.14) with

(VI.3.19) ζδ,λ,εpt, xq :�
¸
iPJ
%ε�

 
σδ �

�
σδ � u 1lps0,sq

�
θi
(λ�σδ��σδ �ϕλ,εpt, xq 1lps0,sq

�
.
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Passing to the limit with λ Ñ 1 and ε Ñ 0 in (VI.3.8) it again remains to show
that the second term on the right-hand side of (VI.3.19) converges to zero, i.e., the
following three limits vanish

lim
εÑ0,λÑ1

» s

s0

»
Ω

pu � σδq � Bt
�
σδ �ϕλ,εpt, xq 1lps0,sq

�
dxdt � 0,

lim
εÑ0,λÑ1

» T

0

»
Ω

χχχ : σδ �
�
σδ �DDDϕλ,εpt, xq 1lps0,sq

�
dxdt � 0,

lim
εÑ0,λÑ1

» T

0

»
Ω

f � σδ �
�
σδ �ϕλ,εpt, xq 1lps0,sq

�
dxdt � 0.

(VI.3.20)

To show (VI.3.20)1 we apply Theorem III.2.14 with the N –function m � | � |2 and
the Poincaré inequality, which allow to conclude that

(VI.3.21) }ϕλ,ε}L2pΩq ¤ c1}∇xϕ
λ,ε}L2pΩq ¤ c2}

¸
iPJ
%ε �

 �
σδ � u 1lps0,sq

� �∇xθi
(λ }L2pΩq

for a.a. t P p0, T q. Since the term on the left-hand side of (VI.3.20)1 is equivalent to³s
s0

³
Ω
pu � σδq �

�
ϕλ,ε � Btσδ

�
dxdt, we pass to the limit using the fact that¸

iPJ
%ε �

 �
σδ � u 1lps0,sq

� �∇xθi
(λ �á 0 weakly–(*) in L8p0, T ;L2pΩqq,

thus
ϕλ,ε

�á 0 weakly–(*) in L8p0, T ;L2pΩ;Rdqq
as εÑ 0 and λÑ 1.

Since DDDϕλ,ε converges modularly to zero in L
m

n
n�1

pQ;Rd�d
symq (see (VI.3.18)),

mprq ¤ cmppmprqq
d
d�1 � |r|2 � 1q and (VI.3.21) holds, then MpαDDDϕλ,εq is uniformly

integrable with some α ¡ 0. Moreover, by Lemma III.2.1 the modular convergence
in L

m
d
d�1

pQ;Rd�d
symq to zero implies the convergence in measure to zero. Hence using

again Lemma III.2.1 with a function M we conclude that DDDϕλ,ε Ñ 0 modularly in
LMpQ;Rd�d

symq as εÑ 0 and λÑ 1. Therefore (VI.3.20)2 is satisfied.
Finally, the convergence passage in (VI.3.20)3 is a consequence of (VI.3.18). It

implies that ∇xϕ
λ,ε Ñ 0 modularly in LmpQ;Rd�dq and since ϕ � 0 on BΩ we

obtain ϕλ,ε Ñ 0 modularly in LmpQ;Rdq as εÑ 0 and λÑ 1.
Now we follow the case of star-shaped domains to complete the proof. �

VI.4. Existence result

The first part of the proof is standard. However we recall it for completeness of
the chapter.

We construct Galerkin approximations to (VI.1.1) - (VI.1.4) using basis tωiu8i�1

consisting of eigenvectors of the Stokes operator. We define uk �
k°
i�1

αki ptqωi, where
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CHAPTER VI. GENERALIZED STOKES SYSTEM VI.4. EXISTENCE RESULT

αki ptq solve the system»
Ω

d

dt
uk � ωi �

»
Ω

SSSpt, x,DDDukq : DDDωi dx �
»

Ω

f � ωi dx,
ukp0q � P ku0.

(VI.4.1)

where i � 1, . . . , k and by P k we denote the orthogonal projection of L2
divpΩ;Rdq

on convtω1, . . . ,ωku. Multiplying each equation of (VI.4.1) by αki ptq, summing over
i � 1, . . . , k we obtain

(VI.4.2)
1

2

d

dt
}uk}2

L2pΩq �
»

Ω

SSSpt, x,DDDukq : DDDuk dx �
»

Ω

f � uk dx.

The Fenchel-Young inequality, the Hölder inequality, Lemma VI.2.1 and convexity
of the N�function provide that����»

Ω

f � uk dx

���� ¤ »
Ω

����2c̃c f � c2c̃uk
���� dx

¤
»

Ω

m�
�

2c̃

c
|f |



dx�

»
Ω

m
� c

2c̃
|uk|

	
dx

¤
»

Ω

m�
�

2c̃

c
|f |



dx� |Ω| 1d

�»
Ω

m
� c

2c̃
|uk|

	
dx


 d�1
d

¤
»

Ω

m�
�

2c̃

c
|f |



dx� |Ω| 1dCn

»
Ω

m
� c

2c̃
|DDDuk|

	
dx

¤
»

Ω

m�
�

2c̃

c
|f |



dx� c

2

»
Ω

M
�
DDDuk

�
dx.

(VI.4.3)

In the above considerations we choose a constant such that maxp|Ω| 1dCd, c2q   c̃   8,
where Cd is coming from Lemma VI.2.1. The last inequality follows from the fact
that M is a convex function, Mp0q � 0 and 0   c ¤ 1, which is an obvious
consequence of combining (VI.1.5) with the Fenchel-Young inequality. Integrating
(VI.4.2) over the time interval p0, tq with t ¤ T , using estimate (VI.4.3) and the
coercivity condition (S2) on SSS we obtain

1

2
}ukptq}2

L2pΩq �
c

2

» t

0

»
Ω

MpDDDukq dxdt� c

» t

0

»
Ω

M�pSSSpt, x,DDDukqq dxdt

¤
» t

0

»
Ω

m�p2c̃
c
|f |q dxdt� 1

2
}u0}2

L2pΩq,

(VI.4.4)

for all t P p0, T s. Hence there exists a subsequence such that

DDDuk
�á DDDu weakly–(*) in LMpQ;Rd�d

symq
and

SSSp�, �,DDDukq �á χχχ weakly–(*) in LM�pQ;Rd�d
symq.
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Moreover from (VI.4.4) we conclude the uniform boundedness of the sequence tuku8k�1

in the space L8p0, T ;L2
divpΩ;Rdqq and as an immediate conclusion, we have at least

for a subsequence

uk
�á u weakly–(*) in L8p0, T ;L2

divpΩ;Rdqq.
After passing to the limit we obtain the following limit identity

(VI.4.5) �
»
Q

u � Btϕ dxdt�
»
Q

χχχ : DDDϕ dxdt �
»
Q

f �ϕ dxdt�
»

Ω

u0 �ϕp0, xq dx

for all ϕ P Dpp�8, T q;Vq.
In the remaining steps we will concentrate on characterizing the limit χχχ. Since

the weak-star and modular limits coincide, Lemma VI.3.1 for star-shaped domains
or Lemma VI.3.2 for non-star-shaped domains and the equality (VI.4.5) provide

(VI.4.6)
1

2
}upsq}2

L2pΩq �
1

2
}ups0q}2

L2pΩq �
» s

s0

»
Ω

χχχ : DDDu dxdt �
» s

s0

»
Ω

f � u dxdt

for a.a. 0   s0   s   T . To pass to the limit with s0 Ñ 0 we need to establish
the weak continuity of u in L2pΩ;Rdq w.r.t. time. For this purpose we consider
again the sequence tduk

dt
u and provide uniform estimates. Let ϕ P L8p0, T ;W r,2

0,divq,
}ϕ}L8p0,T ;W r,2

0,divq ¤ 1, where

W r,2
0,div � closure of V w.r.t. the W r,2pΩq�norm

where r ¡ d
2
� 1 and observe thatB

duk

dt
,ϕ

F
�
B
duk

dt
, P kϕ

F
� �

»
Ω

SSSpt, x,DDDukq : DDDpP kϕq dx�
»

Ω

f � pP kϕq dx.

Since }P kϕ}W r,2
0,div

¤ }ϕ}W r,2
0,div

and W r�1,2pΩq � L8pΩq we estimate as follows

��� » T

0

»
Ω

SSSpt, x,DDDukq : DDDpP kϕq dxdt
��� ¤ » T

0

}SSSpt, �,DDDukq}L1pΩq}DDDpP kϕq}L8pΩq dt

¤ c

» T

0

}SSSpt, �,DDDukq}L1pΩq}P kϕ}W r,2
0,div

dt ¤ c

» T

0

}SSSpt, �,DDDukq}L1pΩq}ϕ}W r,2
0,div

dt

¤ c}SSSp�, �,DDDukq}L1pQq}ϕ}L8p0,T ;W r,2
0,divq

(VI.4.7)

and ��� » T

0

»
Ω

f � P kϕ dxdt
��� ¤ » T

0

}f}L1pΩq}P kϕ}L8pΩq dt

¤ c

» T

0

}f}L1pΩq}P kϕ}W r,2
0,div

dt ¤ c

» T

0

}f}L1pΩq}ϕ}W r,2
0,div

dt

¤ c}f}L1pQq}ϕ}L8p0,T ;W r,2
0,divq.

(VI.4.8)
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The assumptions on f and uniform estimates for SSSp�, �,DDDukq in a proper Orlicz class
provide integrability of the above functions. Hence we conclude that duk

dt
is bounded

in L1p0, T ;V �
r q. By (VI.4.4) and assumptions on f there exists a constant C ¡ 0

such that

sup
kPN

»
Q

�
MpSSSpt, x,DDDukq �m�p|f |q� dxdt ¤ C.

Consequently using the Jensen inequality we obtain

sup
kPN

|Ω|
» T

0

�
mp}SSSpt, �,DDDuk}L1pΩqq �m�p}f}L1pΩqq

�
dt   C

and hence we conclude by Lemma III.2.2 that there exists a monotone, continuous
function L : R� Ñ R�, with Lp0q � 0 which is independent of k and» s2

s1

�}SSSpt, �,DDDukq}L1pΩq � }f}L1pΩq
�

dt ¤ Lp|s1 � s2|q

for any s1, s2 P r0, T s. Consequently, estimates (VI.4.7)-(VI.4.8) provide that����» s2

s1

B
duk

dt
,ϕ

F
dt

���� ¤ Lp|s1 � s2|q

for all ϕ with supp ϕ � ps1, s2q � r0, T s and }ϕ}L8p0,T ;W r,2
0,divq ¤ 1. The following

estimates

}ukps1q � ukps2q}pW r,2
0,divq�

� sup
ψPW

r,2
0,div

}ψ}
W
r,2
0,div

¤1

��@ukps1q � ukps2q,ψ
D�� � sup

}ψ}
W
r,2
0,div

¤1

����B» s2

s1

dukptq
dt

,ψ

F����
¤ sup

"» T

0

����Bdukpτq
dτ

,ϕ

F���� dt : }ϕ}L8p0,T ;W r,2
0,divq ¤ 1, supp ϕ � ps1, s2q

*
imply that

(VI.4.9) sup
kPN

}ukps1q � ukps2q}pW r,2
0,divq� ¤ Lp|s1 � s2|q.

Since u P L8p0, T ;L2
divpΩ;Rdqq, we can choose a sequence tsi0ui, si0 Ñ 0� as iÑ 8.

Thus tupsi0qui is weakly convergent in L2
divpΩ;Rdq. The estimate (VI.4.9) provides

that the family of functions uk : r0, T s Ñ pW r,2
0,divq� is equicontinuous. Using the

uniform bound in L8p0, T ;L2
divpΩ;Rdqq and the compact embedding L2

divpΩ;Rdq ��
pW r,2

0,divq� we conclude by means of the Arzelà-Ascoli theorem that the sequence
tuku8k�1 is relatively compact in Cpr0, T s; pW r,2

0,divq�q and u P Cpr0, T s; pW r,2
0,divq�q.

Consequently we obtain that

(VI.4.10) upsi0q iÑ8ÝÑup0q in pW r,2
0,divq�.
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The limit coincides with the weak limit of tupsi0qu8i�1 in L2
divpΩ;Rdq and hence we

conclude
(VI.4.11) lim inf

iÑ8
}ups0q}L2pΩq ¥ }u0}L2pΩq.

Let s be any Lebesgue point of u. Integrating (VI.4.2) over the time interval p0, sq
gives

lim sup
kÑ8

» s

0

»
Ω

SSSpt, x,DDDukq : DDDuk dxdt

�
» s

0

»
Ω

f � u dxdt� 1

2
}u0}2

L2pΩq � lim inf
kÑ8

1

2
}ukpsq}2

L2pΩq

¤
» s

0

»
Ω

f � u dxdt� 1

2
}u0}2

L2pΩq �
1

2
}upsq}2

L2pΩq

pV I.4.11q¤ lim inf
iÑ8

�» s

si0

»
Ω

f � u dxdt� 1

2
}upsi0q}2

L2pΩq �
1

2
}upsq}2

L2pΩq

�
pV I.4.6q� lim

iÑ8

» s

si0

»
Ω

χχχ : DDDu dxdt �
» s

0

»
Ω

χχχ : DDDu dxdt.

(VI.4.12)

The monotonicity of SSS yields

(VI.4.13)
» s

0

»
Ω

pSSSpt, x, v̄̄v̄vq � SSSpt, x,DDDukqq : p̄v̄v̄v �DDDukq dxdt ¥ 0

for all v̄̄v̄v P L8pQ;Rd�dq. Using (VI.4.12) and (VI.4.13) we follow the same steps as
in Chapter IV or in [75, 131] to show χχχ � SSSpt, x,DDDuq a.e. in Q.

�
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CHAPTER VII

Renormalized solutions of nonlinear elliptic problems

VII.1. Introduction

Let Ω be a bounded domain in Rd (d ¥ 1) with a sufficiently smooth boundary
BΩ. Our aim is to show existence and uniqueness of renormalized solutions to the
following nonlinear elliptic inclusion

βpx, uq � div papx,∇xuq � F puqq Q f in Ω,

u � 0 on BΩ,
(E, f)

with a right-hand side f P L1pΩq. The function F : RÑ Rd is assumed to be locally
Lipschitz and a : Ω� Rd Ñ Rd satisfies the following assumptions:

(A1): ap�, �q is a Carathéodory function.
(A2): there exist a generalized N -function M : Ω�Rd Ñ R� (see Definition

III.1.5 below), a constant ca P p0, 1s and a nonnegative function a0 P L1pΩq
such that

(VII.1.1) apx, ξq � ξ ¥ catM�px,apx, ξqq �Mpx, ξqu � a0pxq
for a.a. x P Ω and for every ξ P Rd, where M� is the conjugate function to
M (see relation (III.1.3)).

(A3): ap�, �q is monotone, i.e.,

(VII.1.2) papx, ξq � apx,ηqq � pξ � ηq ¥ 0

for a.a. x P Ω and for every ξ, η P Rd.
Moreover, we assume that the complementary function

(VII.1.3) M� satisfies the ∆2 � condition and lim
|ξ|Ñ8

inf
xPΩ

M�px, ξq
|ξ| � 8

and there exist c ¡ 0, ν ¡ 0 and ξ0 P Rd such that

(VII.1.4) Mpx, ξq ¥ c|ξ|1�ν
for a.a. x P Ω and for ξ P Rd, |ξ| ¥ |ξ0|. Let us notice that if the function
gM P L8pΩq in the definition of the ∆2�condition for M� (see (III.1.15)), then
(VII.1.4) is a consequence of the assumption (VII.1.3) (see Proposition III.2.12).
However, no growth restriction is made on the N�function M itself.

An example of an operator a satisfying our assumptions with an N�function
M which does not satisfy the ∆2�condition is as follows:

apx, ξq � a1pxqξ1 exppa1pxqξ1q2 � a2pxqξ2 exppa2pxqξ1q2,
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Mpx, ξq � 1

2

�
exppa1pxqξ2

1q � exppa1pxqξ2
2q
�
,

where a1, a2 : Ω Ñ R are measurable functions strictly greater than zero and ξ �
pξ1, ξ2q P R2.

As to the nonlinearity β in the problem (E, f) we assume that β : Ω�RÑ 2RzH
is a set-valued mapping such that, for almost every x P Ω, βpx, �q : R Ñ 2RzH is a
maximal monotone operator with 0 P βpx, 0q. Moreover, we assume that

(VII.1.5) β0p�, lq P L1pΩq
for each l P R, where β0 denotes the minimal selection of the graph of β. Namely
β0px, lq is the minimal in the norm element of βpx, lq,

β0px, lq � inft|r| | r P R and r P βpx, lqu
There already exists a vast literature on problems of this type. Most of the

literature has been devoted to the study of the case where the vector field a satisfies
a polynomial growth (and coerciveness) condition. A model example of this type
is the homogeneous Dirichlet boundary value problem for the p-Laplacian ∆ppuq �
divxp|∇u|p�2∇uq, i.e. the equation

βpx, uq �∆ppuq � divxF puq Q f.
It is well-known, even in this particular case, that for L1-data a weak solution may
not exist in general or may not be unique. In order to obtain well-posedness for this
type of problems the notion of renormalized solution has been introduced by DiPerna
and Lions for the Boltzmann equation in [44] and by Murat [95], and Boccardo [25]
for elliptic equations with integrable data. The existence of renormalized solutions
to corresponding parabolic problem was considered by Blanchard et al. [21, 23].
At the same time for nonlinear elliptic problems with the right-hand side in L1

the equivalent notion of entropy solutions have been developed independently by
Bénilan et al. in [15]. During the last two decades these solution concepts have
been adapted to the study of various problems of partial differential equations. We
refer to [3], [5]-[9], [16], [20]-[25], [30, 37, 84, 104] among others.

More general problems involving vector fields satisfying variable growth and
coerciveness condition of type

apx, ξq � ξ ¥ λ|ξ|ppxq � cpxq
|apx, ξq| ¤ dpxq � µ|ξ|ppxq�1

for a.a. x P Ω, for every ξ P Rd, where λ, µ ¡ 0, p : Ω Ñ R is a measurable variable
exponent with 1   p�   ppxq   p�   8 for a.a. x P Ω, c P L1pΩq, d P Lp1pxqpΩq
have already been considered. For results on existence of renormalized solutions of
elliptic problems of type (E, f) with ap�, �q satisfying a variable growth condition
we refer to [27, 129] (for related results see also [11, 12, 112]). Note that vector
fields satisfying this type of variable exponent growth and coerciveness condition fall
into the scope of our study (with Mpx, ξq � c1|ξ|ppxq, M�px, ξq � c2|ξ|p1pxq, where
p1pxq � ppxq{pppxq � 1q, c1 � p1{ppxqqpqpxqqppxq, c2 � 1{pp1pxqpqpxqqp1pxqq, q : Ω Ñ R
is measurable and 0   q�   qpxq   q�   8). However, our setting is more general as
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we do not impose a growth restriction onM . Let us note that the functional setting
for this type of problems involves variable exponent Lebesgue and Sobolev spaces
LppxqpΩq and W 1,ppxq

0 pΩq which, for the range of exponents the authors considered,
are separable, reflexive Banach spaces and thus standard monotonicity methods,
adapted to the renormalized case, can be used in this case. The Lppxq-spaces, in
general, are not stable by convolution and smooth functions may fail to be dense in
W 1,ppxqpΩq (at least if pp�q is not log-Hölder continuous). This fact does not lead to
further difficulties in the study of the above-mentioned works as the authors settle
the problem in the energy space W 1,ppxq

0 pΩq which, by definition, is the norm closure
of DpΩq in W 1,ppxqpΩq.

Anisotropic effects were considered in problems of type pE, fq with constant
exponents in [13, 24] and with variable exponents in [100] (see also [86]), where
the existence of a renormalized solution was provided with β � 0, F � 0. It was
assumed that the vector field apx, ξq � pa1px, ξ1q, . . . , adpx, ξdqq with components
ai : Ω� RÑ R satisfies the following coerciveness and growth assumptions

aipx, rqr ¥ λ|r|pipxq
|aipx, rq| ¤ dipxq � µ|r|pipxq�1

for a.a. x P Ω, for every r P R, where λ, µ ¡ 0, pi : Ω Ñ R, i � 1, . . . , d are contin-
uous variable exponents with 1   p�i   pipxq   p�i   d for all x P Ω, di P Lp1pxqpΩq.
Moreover, the p�i , p

�
i , i � 1, . . . , d satisfy some restrictive compatibility conditions.

Choosing the N�function Mpx, ξq � °d
i�1 |ξi|pipxq the two conditions above can be

rewritten in the form of our general growth assumption (A2). Therefore our setting
also includes and extends the anisotropic case. Let us note that the functional set-
ting in the above mentioned papers involves the anisotropic Sobolev spaces W 1,p

0 pΩq
and the anisotropic variable exponent Sobolev space W 1,ppxq

0 pΩq, p � pp1, . . . , pdq,
respectively. According to the restrictions on the exponents pi, made by the authors,
these Banach spaces are separable and reflexive, and the elliptic operator acts as a
bounded monotone operator on this space into its dual. Therefore classical varia-
tional theory can be applied to prove existence of weak solutions in this case for,
say, bounded data f . Moreover existence of renormalized solutions can be proved by
approximation, using truncation techniques and Minty’s monotonicity trick adapted
to the renormalized setting.

Problems of type (E, f) involving vector fields with nonpolynomial (for instance,
exponential) growth have also already been considered in the literature. Typically,
the growth condition is expressed by a classical isotropicN�functionM : R� Ñ R�,
not depending on the space variable x and only depending on the modulus |ξ| of the
vector ξ, as, for example, in [2, 18]. The functional setting in these works involves
the classical Orlicz spaces LMpΩq and Orlicz-Sobolev spaces W 1LMpΩq which fail
to be reflexive if M and M� do not satisfy the ∆2�condition (see Chapter III or
[1]). In this case, existence of approximate solutions follows from the theory of
monotone operators in Orlicz-Sobolev spaces as developed by Gossez and Mustonen
in [69]. The arguments used to prove the convergence of such approximate solutions
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to a renormalized solution of (E, f) are based on an approximation property in
Orlicz-Sobolev spaces proved by Gossez in [68, Theorem 4]. The author shows
that it is possible to approximate the gradient of an W 1

0LMpΩq-function in modular
convergence by a sequence of gradients of smooth functions, compactly supported
in Ω.

The setting considered in this chapter includes and generalizes variable exponent,
anisotropic and classical Orlicz settings (at least in the case when the latter is built on
an N –function M whose complementary function M� satisfies the ∆2�condition).
The function M which describes the growth condition of the vector field a is a
generalized N�function. The corresponding generalized Orlicz spaces LMpΩ;Rdq,
often called Orlicz-Musielak spaces (see [96]) have been introduced in [117, 118].
Let us recall that in general, if M and M� do not satisfy the ∆2�condition these
spaces fail to be separable or reflexive. In the setting of generalized Orlicz spaces,
due to the x-dependence of the N�function, a result similar to Gossez [68] can
not be achieved. As in the case of generalized Lebesgue spaces convolution with a
smooth compactly supported kernel may fail to be a bounded operator.

Our techniques to overcome these difficulties are inspired by previous chapters
and former works [29, 72, 75, 131, 133]. The authors considered equations in-
volving vector fields satisfying general non-standard growth conditions of type (A2)
with a generalized N�function Mpx, ξq. All these works are motivated by fluid
dynamics.

Gwiazda et al. in [74] studied a steady and in [72] a dynamic model for non-
Newtonian fluids under an additional strict monotonicity assumption on the vec-
tor field. The authors used Young measure techniques in place of a monotonicity
method. The additional assumption of strict monotonicity allows to conclude that
the measure-valued solution is a Dirac delta and hence a weak solution. A similar
method is used in the variable exponent setting in [6].

A version of the Minty-Browder trick adapted to the setting of generalized Orlicz
spaces was introduced in [131] by Wróblewska-Kamińska (and later see [75, 133]
and Chapter IV) in the framework of non-Newtonian fluids. As we do not as-
sume strict monotonicity of ap�, �q, we have to employ the generalized monotonicity
method of [131] (see also Chapter IV. Using the Galerkin method with smooth
basis functions we can thereby prove existence of a weak solution uε of some ap-
proximate problem (Eε, fε) with fε P L8pΩq. In a second step we show that a
subsequence of the approximate solutions uε converges to a renormalized solution
of problem (E, f). In this step we combine truncation techniques and the general-
ized monotonicity method of [131]. Thereby, it is possible to overcome a difficulty
that arises from the possible lack of reflexivity of LMpΩ;Rdq and which consists in
passing to the limit in expressions of the form

³
Ω
fεpxq � gpxq dx when g P LMpΩ;Rdq

and the sequence tfεuε¡0 only converges weak-(*) in LM�pΩ;Rdq to some function f .

The chapter is organized as follows: in Section VII.2 we introduce the notions of
weak and also renormalized solution for problem (E, f). Our main result, existence
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of a renormalized solution to (E, f) for any L1-data f , and the results on unique-
ness of renormalized solutions and on existence of weak solutions, are collected in
Section VII.3. The proof of existence of renomalized solution is in Section VII.4,
the uniqueness is shown in Section VII.5 and existence of a weak solution proved in
Section VII.6.

VII.2. Notation

VII.2.1. The energy space. Let us introduce the linear space

V :� tϕ P L1
locpΩq | Dtϕju8j�1 � DpΩq such that ∇ϕj

�á ∇ϕ in LMpΩ;Rdq as j Ñ 8u.
V endowed with the norm

}ϕ}V � }∇ϕ}M,Ω, ϕ P V
is a Banach space. Moreover for ν ¡ 0

V ãÑ tϕ P W 1,1�ν
0 pΩq | ∇ϕ P LMpΩ;Rdqu

where ãÑ denotes continuous embedding. If h : R Ñ R is a Lipschitz function
such that hp0q � 0 and u P V , then also hpuq P V . Note that if M� satisfies
the ∆2�condition and if g P L8pΩq and ϕ P LM�pΩ;Rdq, it follows that gϕ P
LM�pΩ;Rdq.

VII.2.2. Notation. For any u : Ω Ñ R and k ¥ 0, we denote t|u| ¤ p ,¡,¥
,�qku for the set tx P Ω : |upxq| ¤ p ,¡,¥,�qku. For r P R by sign0prq we mean
the usual (single-valued) sign function, sign�0 prq � 1 if r ¡ 0 and sign�0 prq � 0 if
r ¤ 0. Let hlprq : RÑ R be defined by

(VII.2.1) hlprq � minppl � 1� |r|q�, 1q
for each r P R and l ¡ 0. For any given k ¡ 0, we define the truncation function
Tk : RÑ R by

Tkprq :�
$&% �k if r ¤ �k

r if |r|   k
k if r ¥ k.

VII.2.3. Weak solutions.

Definition VII.2.1. A weak solution to (E, f) is a pair of functions pu, bq P V �
L1pΩq satisfying bpxq P βpx, upxqq a.e. in Ω such that apx,∇uq P LM�pΩ;Rdq,
F puq P LM�pΩ;Rdq and
(VII.2.2) b� divpap�,∇uq � F puqq � f in D1pΩq.
Corollary VII.2.2. If pu, bq is a weak solution to (E, f) and additionally u P
L8pΩq, then F puq P L8pΩ;Rdq and consequently F puq P LM�pΩ;Rdq. If more-
over M satisfies the ∆2�condition, then the growth assumption on apx,∇uq implies
that ap�,∇uq P LM�pΩ;Rdq.
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Indeed, from (VII.1.1) it follows that

(VII.2.3)
ca
2
apx,∇uq 2

ca
∇u ¥ catM�px,apx,∇uqq �Mpx,∇uqu � a0pxq

for ca P p0, 1s and a0 P L1pΩq nonnegative. Now, using the Fenchel-Young inequality
(III.1.9) to estimate the left-hand side of (VII.2.3) we arrive at
(VII.2.4)

M�px, ca
2
apx,∇uqq �Mpx, 2

ca
∇uq � a0pxq ¥ catM�px,apx,∇uqq �Mpx,∇uqu.

Now, since M� is convex, M�px, 0q � 0 and 0   ca   1, from (VII.2.4) we obtain

(VII.2.5)
2

ca

�
Mpx, 2

ca
∇uq � a0pxq



¥M�px,apx,∇uqq.

If M satisfies the ∆2�condition, then ∇u P LMpΩ;Rdq � LMpΩ;Rdq � EMpΩ;Rdq
implies 2

ca
∇u P LMpΩ;Rdq and the assertion follows by integrating (VII.2.5). In

general, u P V X L8pΩq does not imply that»
Ω

Mpx, 2

ca
∇uq dx   8.

VII.2.4. Renormalized solutions.

Definition VII.2.3. A renormalized solution to (E, f) is a function u satisfying
the following conditions:

(R1): u : Ω Ñ R is measurable, b P L1pΩq and b P βpx, upxqq for a.a. x P Ω.
(R2): For each k ¡ 0, Tkpuq P V , apx,∇Tkpuqq P LM�pΩ;Rdq and

(VII.2.6)
»

Ω

bhpuqϕ dx�
»

Ω

papx,∇uq � F puqq �∇phpuqϕq dx �
»

Ω

fhpuqϕ dx

holds for all h P C1
c pRq and all ϕ P V X L8pΩq.

(R3):
³
tl |u| l�1u apx,∇uq �∇u dxÑ 0 as l Ñ 8.

Remark VII.2.4. Since u is only measurable, ∇u may not be defined as an element
of D1pΩq. However, it is possible to define a generalized gradient ∇u in the following
sense: There exists a measurable function v : Ω Ñ Rd, such that v � ∇Tkpuq on
t|u|   ku for all k ¡ 0. Therefore all the terms in (VII.2.6) are well-defined (see [15]
for more details).

Remark VII.2.5. If pu, bq is a renormalized solution to (E, f), then we get

apx,∇Tkpuqq �∇Tkpuq P L1pΩq
for all k ¡ 0 by applying the generalized Hölder inequality. If M satisfies the ∆2–
condition, Tkpuq P V implies ∇Tkpuq P LMpΩ;Rdq � LMpΩ;Rdq � EMpΩ;Rdq and
using the same arguments as in Corollary VII.2.2 it follows that
(VII.2.7) apx,∇Tkpuqq P LM�pΩ;Rdq.
Hence ifM satisfies the ∆2–condition, the assumption (VII.2.7) in Definition VII.2.3
can be dropped.
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Remark VII.2.6. If pu, bq is a renormalized solution to (E, f) such that u P L8pΩq,
it is a direct consequence of Definition VII.2.3 that u is in V and since (VII.2.6)
holds with the formal choice h � 1, pu, bq is a weak solution.

Indeed, let ϕ P D and choose hlpuqϕ as a test function in (VII.2.6). Since
u P L8pΩq, we can pass to the limit with l Ñ 8 and find that u solves (E, f) in the
sense of distributions.

VII.3. Main results

Our results are stated as follows: In this section we will state existence and
uniqueness of renormalized solutions to (E, f) in the two following theorems. In
Proposition VII.3.3 we give conditions on a0 and f such that the renormalized
solution to (E, f) is a weak solution. In the next sections of this chapter we will
present the proofs.

Theorem VII.3.1. LetM be an N–function satisfying condition (VII.1.4) and let a
complementary function M� to M satisfy the ∆2–condition. Moreover, let a satisfy
conditions (A1) - (A3) and F be locally Lipschitz. Let β be a maximal mono-
tone operator with 0 P βpx, 0q and with minimal selection β0 satisfying assumption
(VII.1.5). Then for any f P L1pΩq there exists at least one renormalized solution u
to the problem (E, f).

Theorem VII.3.2. Let assumptions of Theorem VII.3.1 be satisfied. Moreover, let
β : Ω � R Ñ 2R be such that βpx, �q is strictly monotone for almost every x P Ω.
For f P L1pΩq let pu, bq, pũ, b̃q be renormalized solutions to (E, f). Then u � ũ and
b � b̃.

Proposition VII.3.3. Let assumptions of Theorem VII.3.1 be satisfied and let pu, bq
be a renormalized solution to (E, f). Moreover, assume that (A2) is satisfied with
a0 P L8pΩq and the right-hand side f is in LdpΩq. Then u P V X L8pΩq and thus,
in particular, u is a weak solution to (E, f).

VII.4. Proof of Theorem VII.3.1 - Existence

The following section will be devoted to the proof of Theorem VII.3.1 and we
will divide it into several steps.

VII.4.1. (Eε, fε) - approximation of the problem (E, f). First we intro-
duce the approximate problem to (E, f), namely

T1{εpβεpx, T1{εpuεqqq � div
�
apx,∇uεq � F pT1{εpuεqq

� � T1{εpfq in Ω

u � 0 on BΩ
(Eε, fε)

where for each ε P p0, 1s, βε : Ω�RÑ R denotes the Moreau-Yosida approximation
1 (see [28]) of β in the second variable. In particular βεp�, T1{εp�qq is a single-valued,
1βεpx, uq � d

duJ
εpx, uq where Jε is locally Lipschitz, with Lipschitz coefficient 1{ε and Jpx, uq �³u

0
βpx, tq dt, moreover βεp�, kq Ñ βp�, kq a.e. in Ω and for all k.
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monotone (with respect to the second variable, for a.a. x P Ω) Carathéodory func-
tion.

VII.4.2. Existence of solutions to the problem (Eε, fε) - Galerkin ap-
proximation. We will show that there exists at least one weak solution uε to our
approximate problem (Eε, fε) with fε � T1{εpfq P L8pΩq in the sense of Definition
VII.2.1.
We start with the Galerkin approximation. Let tωiu8i�1 be a basis built by the eigen-
functions of the Laplace operator with zero Dirichlet boundary conditions. Let us
look for an approximate solution of the form

(VII.4.1) unε :�
ņ

i�1

cni ωi for n P N

with cni P R such that

»
Ω

T1{εpβεpx, T1{εpunε qqqωi dx�
»

Ω

�
apx,∇unε q � F pT1{εpunε qq

� �∇ωi dx
�
»

Ω

T1{εpfqωi dx

(VII.4.2)

for i � 1, . . . , n. Multiplying (VII.4.2) by cki and summing over i � 1, ..., j with
j ¤ n we obtain

»
Ω

T1{εpβεpx, T1{εpunε qqqujε dx�
»

Ω

�
apx,∇unε q � F pT1{εpunε qq

� �∇ujε dx

�
»

Ω

T1{εpfqujε dx.

(VII.4.3)

The existence of such an approximate solution to the Galerkin approximation unε
can be obtained by the lemma about zeros of a vector field [48, Chapter 9]. Since
F pT1{εp�qq is a Lipschitz function, applying the Stokes theorem it follows that for
j � n the term »

Ω

�
F pT1{εpunε qq

� �∇unε dx � 0.

Hence for j � n we have

(VII.4.4)
»

Ω

T1{εpβεpx, T1{εpunε qqqunε dx�
»

Ω

apx,∇unε q �∇unε dx �
»

Ω

T1{εpfqunε dx.

We want to estimate the right-hand side of (VII.4.4). Employing the Poincaré
inequality, assumption (VII.1.4) and the Young inequality we infer»

Ω

T1{εpfqunε dx ¤ cd}T1{εpfq}L8}∇unε }L1

¤ γpcd, caq}T1{εpfq}L8 � ca
2

�»
Ω

Mpx,∇unε q dx� c


(VII.4.5)
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where cd ¡ 0 is the constant from the Poincaré inequality and γpcd, caq ¡ 0, c ¡ 0
are constants independent of n ¡ 0. Combining (VII.4.5) with (VII.4.4), using
the coercivity condition (VII.1.1) on ap�, �q and neglecting the nonnegative term
T1{εpβεpx, T1{εpunε qqqunε gives

ca
2

»
Ω

Mpx,∇unε q dx� ca

»
Ω

M�px,apx,∇unε qq dx

¤ γpcd, caq}T1{εpfq}L8 � cac

2
�
»

Ω

a0pxq dx.

(VII.4.6)

Consequently, passing to a subsequence if necessary, from (VII.4.6) we obtain

(VII.4.7) ∇unε
�á ∇uε weakly–(*) in LMpΩ;Rdq

and

(VII.4.8) apx,∇unε q �á α weakly–(*) in LM�pΩ;Rdq for some α P LM�pΩ;Rdq.
The condition (VII.1.4) provides that t∇unε u8n�1 is uniformly bounded in the space
L1�νpΩ;Rdq, hence by the Poincaré inequality the sequence tunε u8n�1 is uniformly
bounded in W 1,1�ν

0 pΩq. Therefore
(VII.4.9) ∇unε á ∇uε weakly in L1�νpΩ;Rdq,

(VII.4.10) unε Ñ uε strongly in L1�νpΩq
and

(VII.4.11) unε Ñ uε a.e. in Ω.

Let us notice that for a fixed ε P p0, 1s and almost all x P Ω the function βεpx, �q
is a Carathéodory function and we have that

|βεpx, T1{εpunε qq| ¤ maxpβ0px, 1{εq,�β0px,�1{εqq a.e. in Ω

where, according to (VII.1.5), β0 is integrable. Then this together with (VII.4.11)
and the Lebesgue dominated convergence theorem provide

(VII.4.12) T1{εpβεpx, T1{εpunε qqq Ñ T1{εpβεpx, T1{εpuεqqq strongly in L1pΩq.
Since F p�q is continuous we obtain

(VII.4.13) F pT1{εpunε qq Ñ F pT1{εpuεqq a.e. in Ω.

As F pT1{εpunε qq is uniformly bounded with respect to k ¡ 0, i.e.

(VII.4.14) }F pT1{εpunε qq}L8pΩ;Rdq ¤ sup
τPr�1{ε,1{εs

|F pτq|   c

where the constant c ¡ 0 is independent of n P N and as Ω is bounded, (VII.4.11) and
the continuity of F p�q together with the Lebesgue dominated convergence theorem
provide that

(VII.4.15) F pT1{εpunε qq Ñ F pT1{εpuεqq strongly in L1pΩ;Rdq as nÑ 8.
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Recall that ifM is a generalized N�function, thenM� is also an N�function. This,
(VII.4.6) and assumption (VII.1.3)2 allow us to apply Lemma III.2.2 toM� and con-
clude the uniform integrability of tap�,∇unε qu8n�1. Hence according to the Dunford-
Pettis theorem we have the weak precompactness of the sequence tapx,∇unε qu8n�1 in
L1pΩ;Rdq. Therefore α P L1pΩ;Rdq and passing to a subsequence when necessary

(VII.4.16) ap�,∇unε q á α weakly in L1pΩ;Rdq as nÑ 8.
Using (VII.4.12), (VII.4.15), (VII.4.16) and letting nÑ 8 in (VII.4.3) gives
(VII.4.17)»

Ω

T1{εpβεpx, T1{εpuεqqqujε dx�
»

Ω

�
α� F pT1{εpuεqq

� �∇ujε dx �
»

Ω

T1{εpfqujε dx.

Since (VII.4.17) is also satisfied for all test functions from the basis tωiu8i�1, density
arguments give us that uε and α satisfy

T1{εpβεpx, T1{εpuεqqq � div
�
α� F pT1{εpuεqq

� � T1{εpfq in D1pΩq.
The last step is to identify the vector α. Let us notice that the convective term
on the left-hand side of (VII.4.17) vanishes when j Ñ 8 by the Stokes theo-
rem. Since M,M� are convex and nonnegative functions, the weak lower semi-
continuity of M and M� together with (VII.4.6) imply that α P LM�pΩ;Rdq,
∇uε P LMpΩ;Rdq respectively. Since M� satisfies the ∆2�condition it follows
that LM�pΩ;Rdq � LM�pΩ;Rdq � EM�pΩ;Rdq is a separable space. Therefore,
α�F pT1{εpuεqq P EM�pΩ;Rdq and since pEM�pΩ;Rdqq� � LMpΩ;Rdq, using (VII.4.7)
and (VII.4.10) we can pass to the limit with j Ñ 8 in (VII.4.17) and obtain

(VII.4.18)
»

Ω

T1{εpβεpx, T1{εpuεqqquε dx�
»

Ω

α �∇uε dx �
»

Ω

T1{εpfquε dx.

Now we apply the monotonicity trick for non reflexive spaces to obtain

α � apx,∇uεq a.e. in Ω.

First note that for ζ P L8pΩ;Rdq it follows that apx, ζq P LM�pΩ;Rdq. Indeed,
with the same arguments as in Corollary VII.2.2 it follows that

(VII.4.19)
»

Ω

M�px,apx, ζqq dx ¤ 2

ca

»
Ω

Mpx, 2

ca
ζq � a0pxq dx

and for ζ P L8pΩ;Rdq the integral on the right-hand side of (VII.4.19) is finite.
Passing to a subsequence if necessary, for nÑ 8 from (VII.4.4) we get

lim
nÑ8

»
Ω

apx,∇unε q �∇unε dx � lim
nÑ8

�»
Ω

T1{εpfqunε dx�
»

Ω

T1{εpβεpx, T1{εpunε qqqunε dx



�
»

Ω

T1{εpfquε dx�
»

Ω

T1{εpβεpx, T1{εpuεqqquε dx

which together with (VII.4.18) provides

(VII.4.20) lim
kÑ8

»
Ω

apx,∇unε q �∇unε dx �
»

Ω

α �∇uε dx.
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Since apx, �q is monotone

(VII.4.21) papx, ζq � apx,∇unε qq � pζ �∇unε q ¥ 0

a.e. in Ω and for all ζ P L8pΩ;Rdq. Integrating (VII.4.21), using apx, ζq P
LM�pΩ;Rdq � EM�pΩ;Rdq and (VII.4.20) to pass to the limit with n Ñ 8 we
obtain

(VII.4.22)
»

Ω

papx, ζq �αq � pζ �∇uεq dx ¥ 0.

For l ¡ 0 let
Ωl :� tx P Ω : |∇uεpxq| ¤ l a.e. in Ωu.

Now let 0   j   i be arbitrary, z P L8pΩ;Rdq and h ¡ 0. Inserting

ζ � p∇uεq1lΩi � hz1lΩj ,

into (VII.4.22) we get

(VII.4.23) �
»

ΩzΩi
papx, 0q �αq �∇uε dx� h

»
Ωj

papx,∇uε � hzq �αq � z dx ¥ 0.

Note that by (VII.1.1)M�px,apx, 0qq ¤ a0pxq a.e. in Ω and from the Fenchel-Young
inequality (III.1.9) it follows that

(VII.4.24)
»

Ω

|apx, 0q �∇uε| dx ¤
»

Ω

a0pxq �Mpx,∇uεq dx.

Since ∇uε P LMpΩ;Rdq the right-hand side of (VII.4.24) is finite and consequently

apx, 0q �∇uε P L1pΩq.
As α P LM�pΩ;Rdq and ∇uε P LMpΩ;Rdq it follows immediately by (III.1.9) that
α � ∇uε is in L1pΩq. Therefore, by the Lebesgue dominated convergence theorem,
the first term on the left-hand of (VII.4.23) vanishes for iÑ 8. Passing to the limit
with iÑ 8 in (VII.4.23) and dividing by h we get»

Ωj

papx,∇uε � hzq �αq � z dx ¥ 0.

Note that apx,∇uε � hzq Ñ apx,∇uεq a.e. in Ωj when h Ñ 0. Moreover, for
0   h   1
(VII.4.25)»

Ωj

M�px,apx,∇uε � hzqq dx ¤ 2

ca
sup

0 h 1

»
Ωj

Mpx, 2

ca
p∇uε � hzqq � a0pxq dx

and the right-hand side of (VII.4.25) is bounded since ∇uε � hz is uniformly (in h)
bounded in L8pΩj;Rdq and according to (III.1.4) Mpx, 2

ca
p∇uε � hzqq is bounded.

Hence it follows from Lemma III.2.2 that tapx,∇uε�hzquh is uniformly integrable.
Note that |Ωj|   8, hence by the Vitali lemma it follows that

apx,∇uε � hzq Ñ apx,∇uεq in L1pΩj;Rdq
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for hÑ 0� and therefore

lim
hÑ0

»
Ωj

papx,∇uε � hzq �αq � z dx �
»

Ωj

papx,∇uεq �αq � z dx.

Consequently, »
Ωj

papx,∇uεq �αq � z dx ¥ 0

for all z P L8pΩ;Rdq. Substituting

z �
#
� apx,∇uεq�α

|apx,∇uεq�α| if apx,∇uεq �α � 0

0 if apx,∇uεq �α � 0

into the above, we obtain »
Ωj

|apx,∇uεq �α| dx ¤ 0.

Hence

(VII.4.26) apx,∇uεq � α a.e. in Ωj.

Since j is arbitrary (VII.4.26) holds a.e. in Ω.

VII.4.3. A priori estimates.

Lemma VII.4.1. For 0   ε ¤ 1 and f P L1pΩq let uε P V be a weak solution to
(Eε, fε). Then

(VII.4.27)
»

Ω

Mpx,∇Tkpuεqq dx ¤ k}f}L1pΩq � }a0}L1pΩq

and

(VII.4.28)
»

Ω

M�px,apx,∇Tkpuεqqq dx ¤ k}f}L1pΩq � }a0}L1pΩq

holds for any k ¡ 0. Moreover, for any l ¡ 0,

(VII.4.29)
»
tl |uε| l�1u

apx,∇uεq �∇uε dx ¤
»
tl |uε|u

|f | dx

holds for all ε P p0, 1s.
Remark VII.4.2. Using Lemma III.2.2, (VII.1.4), (VII.4.27), (VII.4.28) and (VII.1.3)2

we deduce that the sequences
(VII.4.30)

tapx,∇Tkpuεqquε¡0, t∇Tkpuεquε¡0 are uniformly integrable in L1pΩ;Rdq
w.r.t. ε ¡ 0 for any fixed k P N.
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Proof. Testing in (Eε, fε) by Tkpuεq yields»
Ω

T1{εpβεpx, T1{εpuεqqqTkpuεq dx�
»

Ω

�
apx,∇Tkpuεqq � F pT1{εpuεqq

� �∇Tkpuεq dx

�
»

Ω

T1{εpfqTkpuεq dx.

As the first term on the left-hand side is nonnegative and the integral over the
convection term vanishes, by (VII.1.1) and the Hölder inequality we get

ca

»
Ω

pM�px,apx,∇Tkpuεqqq �Mpx,∇Tkpuεqqq dx ¤ k}f}L1pΩq � }a0}L1pΩq,

where ca P p0, 1s, and therefore (VII.4.27) and (VII.4.28) holds.
Let us define gl : RÑ R by

glprq :� Tl�1prq � Tlprq �

$''''&''''%
�1 if r ¤ �pl � 1q
r � l if � pl � 1q   r ¤ �l

0 if |r|   l
r � l if l ¤ r   l � 1

1 if l � 1 ¤ r.

Using glpuεq as a test function in the problem (Eε, fε) we obtain»
Ω

T1{εpβεpx, T1{εpuεqqqglpuεq dx�
»

Ω

�
apx,∇uεq � F pT1{εpuεqq

� �∇glpuεq dx

�
»

Ω

T1{εpfqglpuεq dx.

As the first term on the left-hand side is nonnegative and the convection term
vanishes, we find that

(VII.4.31)
»
tl |uε| l�1u

apx,∇Tl�1puεqq �∇Tl�1puεq dx ¤
»
tl |uε|u

|f | dx.

Let us notice that (VII.4.29) is equivalent to (VII.4.31). �

Corollary VII.4.3. There exists a function γ : R� Ñ R� such that lim
rÑ0�

γprq � 0

and

(VII.4.32)
»
tl |uε| l�1u

apx,∇uεq �∇uε dx ¤ γpCl�νq

for any ε P p0, 1s, where C is independent of ε and l. Moreover

(VII.4.33) |t|uε| ¥ lu| ¤ l�νC

holds for Cpν, d, fq independently of ε.

Proof. Let us concentrate on (VII.4.33). Note that

|t|uε| ¥ lu| � |t|Tlpuεq| ¥ lu|,
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then by the Chebyshev, the Poincaré inequality and (VII.1.4), (VII.4.27) we obtain

|t|uε| ¥ lu| ¤
»

Ω

|Tlpuεq|1�ν
l1�ν

dx

¤ Cpν, dql�p1�νq
»

Ω

|∇Tlpuεq|1�ν dx ¤ Cpν, dqp}f}L1pΩq � }a0}L1pΩqql�ν

Since f P L1pΩq, there exists γ : R� Ñ R� such that lim
rÑ0�

γprq � 0 and for any subset

E of Ω holds
³
E
|f | � |a0| dx ¤ γp|E|q. Hence (VII.4.31) provides (VII.4.32). �

VII.4.4. Convergence results. The a priori estimates in Lemma VII.4.1 and
Corollary VII.4.3 imply the following convergences as εÑ 0:

Proposition VII.4.4. For ε P p0, 1s and f P L1pΩq let uε P V be a weak solution
of (Eε, fε). Then there exists a Lebesgue measurable function u : Ω Ñ R with
Tkpuq P W 1,1�ν

0 pΩq, ∇Tkpuq P LMpΩ;Rdq such that for a subsequence of tuεuε¡0

(VII.4.34) uε Ñ u a.e. in Ω,

where

(VII.4.35) |t|u| ¡ lu| ¤ Cl�ν .

for any l ¡ 0. Moreover,

(VII.4.36) Tkpuεq Ñ Tkpuq strongly in LppΩq for p P r1,8q and a.e. in Ω,

(VII.4.37) ∇Tkpuεq á ∇Tkpuq weakly in L1�νpΩ;Rdq,

(VII.4.38) ∇Tkpuεq �á ∇Tkpuq weakly–(*) in LMpΩ;Rdq,
for any k P N and

(VII.4.39) apx,∇Tkpuεqq �á apx,∇Tkpuqq weakly–(*) in LM�pΩ;Rdq.
for any k P N.

Proof. Applying directly Lemma VII.4.1 and (VII.1.4) together with the Sobo-
lev embedding theorem we obtain (VII.4.36), (VII.4.37), (VII.4.38). Moreover there
exists αk P LM�pΩ;Rdq such that

(VII.4.40) apx,∇Tkpuεqq �á αk weakly–(*) in LM�pΩ;Rdq as εÑ 0.

In (VII.4.36) we choose by the diagonal method a subsequence such that the
convergence in (VII.4.36) holds for any k P N (εi is still indicated by ε). Obviously
the same subsequence can be taken in (VII.4.37), (VII.4.38) and (VII.4.40).

Since (VII.4.36) holds for any k P N we obtain (VII.4.34) where u is the Lebesgue
measurable function which may take values �8. By (VII.4.34)

lim inf
εÑ0

|t|uε| ¡ lu| ¥ |t|u| ¡ lu|
and using (VII.4.33) we obtain (VII.4.35).
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We intend to show now that

(VII.4.41) αk � apx,∇Tkpuqq
a.e. in Ω. The proof of (VII.4.41) is divided into several steps.
Step 1. Let us introduce the auxiliary sequence which we can choose from the
Galerkin approximation of pEε, fεq as follows: uδ � unεpnq with δ � δpnq � 1

n
¡ 0

such that Tkpuδq P W 1,8
0 pΩq for each δ and

(VII.4.42) uδ Ñ u a.e. in Ω,

(VII.4.43) ∇Tkpuδq �á ∇Tkpuq weakly–(*) in LMpΩ;Rdq,

(VII.4.44) ∇Tkpuδq á ∇Tkpuq weakly in L1�νpΩ;Rdq,
Step 2. In order to obtain (VII.4.41) we show

(VII.4.45) lim sup
εÑ0

»
Ω

apx,∇Tkpuεqq �∇Tkpuεq dx ¤
»

Ω

αk �∇Tkpuq dx.

To this end we fix k, l ¡ 0, take ϕ � hlpuεqpTkpuεq � Tkpuδqq as a test function in
(Eε, fε) and obtain: »

Ω

T1{εpβεpx, T1{εpuεqqq rhlpuεqpTkpuεq � Tkpuδqqs dx

�
»

Ω

apx,∇uεq �∇ rhlpuεqpTkpuεq � Tkpuδqqs dx

�
»

Ω

F pT1{εpuεqq �∇ rhlpuεqpTkpuεq � Tkpuδqqs dx

�
»

Ω

T1{εpfq rhlpuεqpTkpuεq � Tkpuδqqs dx.

(VII.4.46)

We denote (VII.4.46) by
I0
ε,δ � I1

ε,δ � I2
ε,δ � I3

ε,δ.

First we focus on easier terms - I0
ε,δ, I2

ε,δ and I3
ε,δ. As

I0
ε,δ �

»
Ω

T1{εpβεpx, Tl�1puεqqq rhlpuεqpTkpuεq � Tkpuδqqs dx

for ε ¡ 0 small enough, using (VII.4.36), (VII.1.5), the Lebesgue dominated conver-
gence theorem and the property (VII.4.42) we get

lim
δÑ0

lim
εÑ0

I0
ε,δ � 0.

Let us write
I2
ε,δ � I2,1

ε,δ � I2,2
ε,δ ,
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where

I2,1
ε,δ �

»
Ω

F pT1{εpuεqq �∇pTkpuεq � Tkpuδqqhlpuεq dx,

I2,2
ε,δ �

»
Ω

F pT1{εpuεqq �∇uεh1lpuεqpTkpuεq � Tkpuδqq dx.

For ε ¡ 0 small enough we have

I2,1
ε,δ �

»
Ω

F pTl�1puεqq �∇pTkpuεq � Tkpuδqqhlpuεq dx,

therefore by (VII.4.36), (VII.4.37) and (VII.4.44) it follows that

lim
δÑ0

lim
εÑ0

I2,1
ε,δ � 0.

Now let us write

I2,2
ε,δ �

»
Ω

div

�» Tl�1puεq

0

F prqh1lprq dr
�
pTkpuεq � Tkpuδqq dx,

hence from Gauss-Green theorem for Sobolev functions it follows that

I2,2
ε,δ � �

»
Ω

» Tl�1puεq

0

F prqh1lprq dr �∇pTkpuεq � Tkpuδqq dx,

and therefore we also get

lim
δÑ0

lim
εÑ0

I2,3
ε,δ � 0

from (VII.4.36), (VII.4.37) and (VII.4.43).
Moreover, since

|hlpuεqpTkpuεq � Tkpuδqq| ¤ 2k

and |T1{εpfq| ¤ |f | a.e. in Ω, by (VII.4.36), the Lebesgue dominated convergence
theorem and (VII.4.42) it follows that

lim
δÑ0

lim
εÑ0

I3
ε,δ � 0.

Finally we concentrate on the most difficult term I1
ε,δ.

I1
ε,δ � I1,1

ε,δ � I1,2
ε,δ �

»
Ω

apx,∇uεq �∇hlpuεq rpTkpuεq � Tkpuδqqs dx

�
»

Ω

apx,∇uεq � hlpuεq∇rTkpuεq � Tkpuδqs dx
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Applying (VII.4.32) we infer

sup
δ

sup
εPp0,1s

|I1,1
ε,δ |

� sup
δ

sup
εPp0,1s

»
tl |uε| l�1u

apx,∇Tl�1puεqq �∇Tl�1puεq| rpTkpuεq � Tkpuδqqs | dx

¤ sup
δ

sup
εPp0,1s

2k

»
tl |uε| l�1u

apx,∇Tl�1puεqq �∇Tl�1puεq dx

¤ 2kγpCl�νq
therefore

(VII.4.47) lim
lÑ8

sup
δ

sup
εPp0,1s

|I1,1
ε,δ | � 0.

Then the above considerations for (VII.4.46) provide
(VII.4.48)

lim sup
lÑ8

lim sup
δÑ0

lim sup
εÑ0

»
Ω

apx,∇Tkpuεqq � hlpuεq∇pTkpuεq � Tkpuδqq dx ¤ 0.

Note that for l ¡ k

»
Ω

apx,∇Tkpuεqq �∇pTkpuεq � Tkpuδqq dx�
»
t|uε|¡lu

hlpuεqapx, 0q �∇Tkpuδq dx

�
»

Ω

apx,∇Tkpuεqq � hlpuεq∇pTkpuεq � Tkpuδqq dx.

(VII.4.49)

Let us now concentrate on the second term of (VII.4.49) and notice that

1lt|uε|¡lu
�á χ weakly–* in L8pΩq,

where χ P L8pΩq and χ P sign�p|uε| � lq a.e. in Ω. As (VII.4.34) holds and hl is
bounded, apx, 0q P LM�pΩ;Rdq � EM�pΩ;Rdq and, for fixed δ,∇Tkpuδq P L8pΩ;Rdq,
we obtain

lim
εÑ0

»
t|uε|¡lu

hlpuεqapx, 0q �∇Tkpuδq dx �
»

Ω

χhlpuqapx, 0q �∇Tkpuδq dx.

Then by (VII.4.43) and since χhlpuqapx, 0q P EM�pΩ;Rdq we get

lim
δÑ0

»
Ω

χhlpuqapx, 0q �∇Tkpuδq dx �
»

Ω

χhlpuqapx, 0q �∇Tkpuq dx.

As χ � 0 on the set t|u|   lu, the right-hand side in the above vanishes.
Since ∇Tkpuδq P L8pΩ;Rdq, we can now combine (VII.4.48) with (VII.4.49) and

pass to the limit with εÑ 0 and next with δ Ñ 0 in order to obtain (VII.4.45).
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Step 3. Since apx, �q is monotone we have»
Ω

apx,∇Tkpuεqq �∇Tkpuεq dx

¥
»

Ω

apx,∇Tkpuεqq � ζ dx�
»

Ω

apx, ζq � p∇Tkpuεq � ζq dx

(VII.4.50)

for ζ P L8pΩ;Rdq. Note that apx, ζq P EM�pΩ;Rdq.
Letting ε Ñ 0 in (VII.4.50) and using (VII.4.40), (VII.4.38) and (VII.4.45) we

achieve

(VII.4.51)
»

Ω

papx, ζq �αkq � pζ �∇Tkpuqq dx ¥ 0.

Then in the same way as in the previous section we will use the monotonicity trick
in order to obtain that

αk � apx,∇Tkpuqq a.e. in Ω.

�

Remark VII.4.5. If apx, ξq is strictly monotone, from (VII.4.48) and (VII.4.49)
we can deduce the convergence of ∇Tkpuεq to ∇Tkpuq a.e. on Ω for ε Ñ 0. More
precisely, by the above considerations it can be shown the a.e. convergence

(VII.4.52) apx,∇Tkpuεqq � apx,∇Tkpuqq �∇pTkpuεq � Tkpuqq Ñ 0

when ε Ñ 0. For more details we refer the reader to the proof of Lemma 3.2 in
[72] (based on Young measures) or to the proof of Lemma 4.1 in [131] (based on
classical arguments as in [36]).

Moreover, proceeding step by step as in [72, Lemma 3.2] or [131, Lemma 4.1],
in the strictly monotone case, it can be shown that

∇Tkpuεq MÝÑ∇Tkpuq in modular in LMpΩ;Rdq
and

apx,∇Tkpuεqq M
�ÝÑ∇apx, Tkpuqq in modular in LM�pΩ;Rdq.

VII.4.5. Renormalized solutions to (E, f) with f P L1. Now we will show
existence of the renormalized solution and finish the proof of Theorem VII.3.1. From
the Galerkin approximation of (Eε, fε) again we can choose a sequence uδ � unεpnq
with δ � δpnq � 1

n
¡ 0 such that

(VII.4.53) uδ Ñ u a.e. in Ω,

(VII.4.54) ∇Tkpuδq �á ∇Tkpuq weakly–(*) in LMpΩ;Rdq,

(VII.4.55) ∇hpuδq �á ∇hpuq weakly–(*) in LMpΩ;Rdq
for all h P C1

c pΩq as δ Ñ 0.
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Testing

T1{εpβεpx, T1{εpuεqqq � div
�
apx,∇uεq � F pT1{εpuεqq

� � T1{εpfq
by hlpuεqhpuδqφ, where φ P W 1,8

0 pΩq, h P C1
c pΩq and hl is defined by (VII.2.1) we

get »
Ω

T1{εpβεpx, T1{εpuεqqqhlpuεqhpuδqφ dx�
»

Ω

apx,∇uεq �∇ rhlpuεqhpuδqφs dx

�
»

Ω

F pT1{εpuεqq �∇ rhlpuεqhpuδqφs dx �
»

Ω

T1{εpfq rhlpuεqhpuδqφs dx

and we denote the above the above equality by

I0
ε,δ,l � I1

ε,δ,l � I2
ε,δ,l � I3

ε,δ,l.

Note that in I0
ε,δ,l the term uε can be replaced by Tl�1puεq. For fixed l, the sequence

tpβεpx, Tl�1puεqquε¡0 is a.e. bounded in Ω by maxpβ0px, l � 1q,�β0px,�l � 1qq and,
by (VII.1.5), this function is in L1pΩq. It follows that there exists bl such that

(VII.4.56) βεp�, pTl�1puεqqq á bl weakly in L1pΩq for fixed l P R.
Moreover we also have

T1{εpβεp�, Tl�1puεqqq á bl weakly in L1pΩq for fixed l P R.
Note that hlpuεqhpuδqφ is bounded uniformly (with respect to ε ¡ 0) in L8pΩq,
hence using (VII.4.34) and the Egorov theorem applied to thlpuεquε¡0, combining
this with uniform integrability of tT1{εpβεpx, T1{εpuεqqqhlpuεqhpuδqφuε¡0, we obtain

lim
εÑ0

I0
ε,δ,l �

»
Ω

blhlpuqhpuδqφ dx �: I0
δ,l.

Now the Lebesgue dominated convergence theorem provides

lim
δÑ0

I0
δ,l �

»
Ω

blhlpuqhpuqφ dx :� I0
l .

Since there exists m ¡ 0 such that h has compact support in r�m,ms, for all l ¡ m
we obtain

I0
l �

»
Ω

blhpuqφ dx.

We continue the investigation of lim
lÑ8

I0
l in Section VII.4.6.

Observe that

I1
ε,δ,l �

»
Ω

apx,∇Tl�1puεqq �∇hlpuεqhpuδqφ dx

�
»

Ω

apx,∇Tl�1puεqqhlpuεq �∇rhpuδqφs dx �: I1,1
ε,δ,l � I1,2

ε,δ,l,

(VII.4.57)

where
(VII.4.58)

sup
εPp0,1s

|I1,1
ε,δ,l| ¤ }h}L8pΩq}φ}L8pΩq sup

εPp0,1s

»
tl |uε| l�1u

|apx,∇Tl�1puεqq �∇Tl�1puεq| dx.
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Using Corollary VII.4.3 from (VII.4.58) it follows that

(VII.4.59) lim
lÑ8

sup
δ

lim sup
εÑ0

|I1,1
ε,δ,l| � 0.

By (VII.4.28), (VII.4.39) and Lemma III.2.2 it follows that apx,∇Tl�1puεqq á
apx,∇Tl�1puqq in L1pΩ;Rdq. Moreover, hlpuεq Ñ hlpuq a.e. in Ω, |hlpuεq| ¤ 1 and
∇phpuδqφq P L8pΩ;Rdq. Applying the Egorov theorem to thlpuεquε¡0 and using
the uniform integrability of the sequence tapx,∇Tl�1puεqqhlpuεq � ∇rhpuδqφsuε¡0 it
follows that

(VII.4.60) lim
εÑ0

I1,2
ε,δ,l �

»
Ω

apx,∇Tl�1puqqhlpuq∇phpuδqφq dx �: I1,2
δ,l

Since apx,∇Tl�1puqqhlpuq P EM�pΩ;Rdq, using (VII.4.55) we can pass to the limit
with δ Ñ 0 and obtain

(VII.4.61) lim
δÑ0

I1,2
δ,l �

»
Ω

apx,∇Tl�1puqqhlpuq∇phpuqφq dx �: I1,2
l

For l ¡ m, where m is such that supp h � r�m,ms, from (VII.4.61) we get

I1,2
l � I1,2 �

»
Ω

apx,∇uq∇phpuqφq dx.

For ε such that 1{ε ¥ l � 1 we have

I2
ε,δ,l �

»
Ω

F pTl�1puεqq �∇hlpuεqhpuδqφ dx

�
»

Ω

F pTl�1puεqqhlpuεq �∇rhpuδqφs dx �: I2,1
ε,δ,l � I2,2

ε,δ,l.

(VII.4.62)

Since ∇Tl�1puεq á ∇Tl�1puq weakly in L1�νpΩ;Rdq and as F pTl�1puεqqh1lpuεq Ñ
F pTl�1puqqh1lpuq in LppΩ;Rdq for p � p1� νq1 we have

lim
εÑ0

I2,1
ε,δ,l � lim

εÑ0

»
Ω

F pTl�1puεqqh1lpuεq∇Tl�1puεqhpuδqφ dx

�
»

Ω

F pTl�1puqqh1lpuq∇Tl�1puqhpuδqφ dx.

By Lebesgue dominated convergence theorem

(VII.4.63) lim
δÑ0

lim
εÑ0

I2,1
ε,δ,l �

»
Ω

F pTl�1puqqh1lpuq∇Tl�1puqhpuqφ dx.

Choosing m ¡ 0 such that supph � r�m,ms, Tl�1 can be replaced by Tm in
(VII.4.63) and since h1lpuq � h1lpTmpuqq � 0 for l � 1 ¡ m it follows that

lim
δÑ0

lim
εÑ0

I2,1
ε,δ,l � 0 for l ¡ m� 1.

Since F pTl�1p�qqhlp�q is uniformly bounded, the a.e. convergence of tuεuε¡0 and
the Vitali lemma provide that F pTl�1puεqqhlpuεq Ñ F pTl�1puqqhlpuq in LppΩ;Rdq
for any p P r1,8q, thus
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lim
εÑ0

I2,2
ε,δ,l �

»
Ω

F pTl�1puqqhlpuq �∇rhpuδqφs dx.

As ∇rhpuδqφs �á ∇rhpuqφs in LMpΩ;Rdq and F is locally Lipschitz continuous, we
find that

(VII.4.64) lim
δÑ0

lim
εÑ0

I2,2
ε,δ,l �

»
Ω

F pTl�1puqqhlpuq �∇rhpuqφs dx.

Again, for m ¡ 0 such that supph � r�m,ms, Tl�1 can be replaced by Tm in
(VII.4.64) and hlpuq � hlpTmpuqq � 1 for l ¡ m. Rewriting (VII.4.64) we obtain

lim
δÑ0

lim
εÑ0

I2,2
ε,δ,l �

»
Ω

F puq �∇rhpuqφs dx for l ¡ m.

Applying the Lebesgue dominated convergence theorem we get

lim
lÑ8

lim
δÑ0

lim
εÑ0

I3
ε,δ,l � lim

lÑ8
lim
δÑ0

lim
εÑ0

»
Ω

T1{εpfqhlpuεqhpuδqφ dx �
»

Ω

fhpuqφ dx.

VII.4.6. Subdifferential argument. Since βpx, �q is maximal monotone for
almost all x P Ω, there exists j : Ω� RÑ R, such that

βpx, rq � Brjpx, rq for all r P R, a.e. in Ω.

For 0   ε ¤ 1 let us define jε : Ω� RÑ R by

jεpx, rq � inf
sPR
tjpx, sq � 1

2ε
|r � s|2u.

According to [28], jε has the following properties:
i.q jε is a Carathéodory function.
ii.q For any 0   ε ¤ 1, jεpx, rq is convex and differentiable with respect to

r P R, moreover

Brjεpx, rq � βεpx, rq for all r P R and any 0   ε ¤ 1 and a.e. in Ω.

iii.q jεpx, rq Ò jpx, rq pointwise in R as εÑ 0 and a.e. in Ω.
From ii.q it follows that
(VII.4.65) jεpx, rq ¥ jεpx, T1{εpuεqq � pr � T1{εpuεqqβεpx, T1{εpuεqq
holds for all r P R and almost everywhere in Ω. Let E � Ω be an arbitrary
measurable set and 1lE its characteristic function. We fix ε0 ¡ 0. Multiplying
(VII.4.65) by hlpuεq1lE, integrating over Ω and using iii.q, we obtain
(VII.4.66)»
E

jpx, rqhlpuεq dx ¥
»
E

jε0px, Tl�1puεqqhlpuεq�pr�Tl�1puεqqhlpuεqβεpx, T1{εpuεqq dx

for all r P R and all 0   ε   minpε0,
1
l
q. Passing to the limit with ε Ñ 0, and then

with ε0 Ñ 0 in (VII.4.66) we obtain from (VII.4.66) and by (VII.4.56)

(VII.4.67) jpx, rq ¥ jpx, uq � blpr � uq
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for all r P R almost everywhere in t|u| ¤ lu and therefore bl P βpx, uq a.e. in t|u| ¤ lu.
Note that bl � bm a.e. on t|u| ¤ mu for all l ¥ m ¡ 0. Moreover u is measurable
and finite a.e. in Ω. Thus the function b : Ω Ñ R defined by b � bl on t|u| ¤ lu is
well-defined and measurable with b P βpx, uq a.e. in Ω. Next, we use hlpuεq 1

k
Tkpuεq

as a test function in (Eε, fε). Applying Corollary VII.4.3 to the diffusion term, the
Stokes theorem to the convection term and neglecting nonnegative terms we can
pass to the limit with εÑ 0 and obtain

(VII.4.68)
»

Ω

bl
1

k
Tkpuqhlpuq dx ¤

»
Ω

|f | dx.

According to (VII.4.67), blsign0puεqhlpuq � |bl|hlpuq a.e. in Ω. Moreover, |bl|hlpuq Ñ
|b| a.e. in Ω for l Ñ 8. Therefore, passing to the limit with k Ñ 8 in (VII.4.68)
and using the Fatou lemma we find

(VII.4.69)
»

Ω

|b| dx ¤ }f}L1pΩq,

and b P L1pΩq.

VII.4.7. Conclusion of Theorem VII.3.1. Gathering all convergence results
from Subsection VII.4.5 it follows finally that u satisfies
(VII.4.70)»

Ω

pblhpuqφ� papx,∇uq �F puqq∇phpuqφqq dx� lim sup
δÑ0

lim sup
εÑ0

I1,1
ε,δ,l �

»
Ω

fhpuqφ dx

for all l ¡ m�1 ¡ 0, φ P W 1,8
0 pΩq and h P C1

c pRq such that supph � r�m,ms, where
I1,1 is defined in (VII.4.57). Thanks to (VII.4.59) and (VII.4.69) we can pass to the
limit in (VII.4.70) and obtain (VII.2.6) for all φ P W 1,8

0 pΩq and arbitrary h P C1
c pRq.

Moreover, from (VII.4.34) and (VII.4.35) it follows that pu, bq satisfies (R1). From
(VII.4.38) and (VII.4.39) we have Tkpuq P V XL8pΩq and apx,∇Tkpuqq P LM�pΩ;Rdq
for all k ¡ 0. Using that the gradients of functions in V can be approximated by
smooth functions in the weak-� topology of LMpΩ;Rdq we finally arrive at

(VII.4.71)
»

Ω

bhpuqφ dx� papx,∇uq � F puqq∇phpuqφq dx �
»

Ω

fhpuqφ dx

for all φ P V X L8pΩq and h P C1
c pRq, hence pu, bq satisfies pR2q. Finally, from

(VII.4.32) with classical arguments we obtain pR3q and the proof of Theorem VII.3.1
is complete.

Remark VII.4.6. The assumption that the function F is locally Lipschitz contin-
uous is not crucial. In the proof of Theorem VII.3.1 only the continuity of F is
needed. However, the uniqueness of renormalized solutions is an open problem if F
is only continuous. If a � apξq does not depend on the space variable x and F is
only continuous, uniqueness can be proved by the method of doubling variables.
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VII.5. Proof of Theorem VII.3.2 - Uniqueness

We will need the following

Lemma VII.5.1. For f, f̃ P L1pΩq let pu, bq, pũ, b̃q be the renormalized solutions to
pE, fq and pE, f̃q respectively. Then

(VII.5.1)
»

Ω

pb� b̃qsign�0 pu� ũq dx ¤
»

Ω

pf � f̃qsign�0 pu� ũq dx.

Proof. The proof follows the same lines as in the classical Lp and Lpp�q setting
(see [129]). For δ ¡ 0, let H�

δ be a Lipschitz approximation of the sign�0 -function.
Since pu, bq, pũ, b̃q are renormalized solutions, it follows that Tl�1puq, Tl�1pũq P V X
L8pΩq for all l ¡ 0. Hence H�

δ pTl�1puq�Tl�1pũqq is in V XL8pΩq for all δ, l ¡ 0 and
therefore is an admissible test function. Now, we choose H�

δ pTl�1puq � Tl�1pũqq as
a test function in the renormalized formulation with h � hl for pu, bq and for pũ, b̃q
respectively. Subtracting the resulting equalities, we obtain

(VII.5.2) I1
l,δ � I2

l,δ � I3
l,δ � I4

l,δ � I5
l,δ � I6

l,δ,

and

I1
l,δ �

»
Ω

�
bhlpuq � b̃hlpũq

�
H�
δ

�
Tl�1puq � Tl�1pũq

�
dx,

I2
l,δ �

»
Ω

�
h1lpuqapx,∇uq �∇u� h1lpũqapx,∇ũq �∇ũ

�
H�
δ

�
Tl�1puq � Tl�1pũq

�
dx,

I3
l,δ � 1

δ

»
K

�
hlpuqapx,∇uq � hlpũqapx,∇ũq

� �∇�
Tl�1puq � Tl�1pũq

�
dx,

I4
l,δ �

»
Ω

�
h1lpuqF puq �∇u� h1lpũqF pũq �∇ũ

�
H�
δ

�
Tl�1puq � Tl�1pũq

�
dx,

I5
l,δ � 1

δ

»
K

�
hlpuqF puq � hlpũqF pũq

� �∇�
Tl�1puq � Tl�1pũq

�
dx,

I6
l,δ �

»
Ω

�
fhlpuq � f̃hlpũq

�
H�
δ

�
Tl�1puq � Tl�1pũq

�
dx,

where K :� t0   Tl�1puq � Tl�1pũq   δu. Using the same arguments as in [129],
i.e. neglecting the nonnegative part of I3

l,δ and using that F is locally Lipschitz
continuous, we can pass to the limit with δ Ñ 0. Using the energy dissipation
condition (R3) we can pass to the limit with l Ñ 8 and obtain (VII.5.1). �

Now we are in the position to give the proof of Theorem VII.3.2:
Assuming f � f̃ , from Lemma VII.5.1 we get

(VII.5.3)
»

Ω

pb� b̃qsign�0 pu� ũq dx ¤ 0,

hence pb� b̃qsign�0 pu�ũq � 0 almost everywhere in Ω. Now, let us write Ω � Ω1YΩ2,
where Ω1 :� tx P Ω : sign�0 pupxq � ũpxqq � 0u, Ω2 :� tx P Ω : pbpxq � b̃pxqq � 0u.
Since r ÞÑ βpx, rq is strictly increasing for a.e. x P Ω, we can define the function
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β�1
x : R Ñ R such that β�1

x prq � s for all pr, sq P R2 satisfying that r P βpx, sq for
almost every x P Ω. For a.e. x P Ω2 we have bpxq � b̃pxq, hence upxq � β�1

x pbpxqq �
β�1
x pb̃pxqq � ũpxq. Therefore, upxq � ũpxq a.e. in Ω2 and sign�0 pu � ũq � 0 a.e.

in Ω. Interchanging the roles of u and ũ and repeating the arguments, we get
sign�0 pũ � uq � 0 a.e. in Ω and we finally arrive at u � ũ a.e. in Ω. Now, we
write the renormalized formulation for pu, bq and pũ, b̃q respectively. Subtracting the
resulting equalities, we obtain »

Ω

pb� b̃qhpuqϕ dx � 0

for all h P C1
c pRq and all ϕ P DpΩq. Choosing hpuq � hlpuq and passing to the limit

with l Ñ 8 we obtain that b � b̃ a.e. in Ω.

VII.6. Proof of Proposition VII.3.3 - Weak solutions

The proof of Proposition VII.3.3 follows along the same lines as in [129].

From Remark VII.2.6 it follows that it suffices to prove u P L8pΩq:

Note that for ε, k ¡ 0, hlpuq1
ε
Tεpu � Tkpuqq is an admissible test function in

(VII.2.6). Neglecting positive terms and passing to the limit with l Ñ 8, we use
(VII.1.1) to obtain
(VII.6.1)

1

ε

»
tk |u| k�εu

caMpx,∇uq dx ¤
�
}f}d pφpkqqpd�1q{d � φpkq � φpk � εq

ε
}a0}8



,

where φpkq :� |t|u| ¡ ku| for k ¡ 0. Now we apply similar arguments as in [17].
Continuous embedding ofW 1,1

0 pΩq into Ld{pd�1qpΩq and the Hölder inequality provide
that
(VII.6.2)

1

εCd
}Tεpu� Tkpuqq} d

d�1
¤
�
φpkq � φpk � εq

ε


 1
p1�νq1

�
1

ε

»
tk |u| k�εu

|∇u|1�ν dx


 1
1�ν

,

where Cd ¡ 0 is the constant coming from the Sobolev embedding. From (VII.1.4)
it follows that

(VII.6.3)
1

ε

»
tk |u| k�εu

|∇u|1�ν dx ¤ 1

ccaε

»
tk |u| k�εu

caMpx,∇uq dx,

hence from (VII.6.1), (VII.6.2) and (VII.6.3) we deduce
1

εCd
}Tεpu� Tkpuqq} d

d�1
¤

(VII.6.4)�
φpkq � φpk � εq

ε


 1
p1�νq1

�
1

cca

�
}f}d pφpkqqpd�1q{d � φpkq � φpk � εq

ε
}a0}8



 1
1�ν

.

126



CHAPTER VII. RENORMALIZED SOLUTIONS VII.6. WEAK SOLUTIONS

From (VII.6.4) and Young’s inequality with α ¡ 0 it follows that
(VII.6.5)

1

CdC
pφpk � εqqpd�1q{d � α1�ν

p1� νqCcca
�
}f}d pφpkqqpd�1q{d

	
� φpkq � φpk � εq

ε
¤ 0,

where
C :�

�
1

αp1�νq1p1� νq1 �
}a0}8
cca

α1�ν

1� ν



¡ 0.

The mapping p0,8q Q k ÞÑ φpkq is non-increasing and therefore of bounded vari-
ation, hence it is differentiable almost everywhere on p0,8q with φ1 P L1

locp0,8q.
Since it is also continuous from the right, we can pass to the limit with ε Ñ 0 in
(VII.6.5) to find

(VII.6.6) C2pφpkqqpd�1q{d � φ1pkq ¤ 0

for almost every k ¡ 0 and α ¡ 0 chosen so small that

C2 :�
�

1

CdC
� α1�ν

p1� νqCcca }f}d


¡ 0.

Now, the conclusion of the proof follows by contradiction. We assume that φpkq ¡ 0
for each k ¡ 0. For k ¡ 0 fixed, we choose k0   k. Multiplying (VII.6.6) by
1
d
pφpkqq�pd�1{dq it follows that

(VII.6.7)
1

d
C2 � d

ds

�pφpsqqp1{dq� ¤ 0

for almost all s P pk0, kq. The left hand side of (VII.6.7) is in L1pk0, kq, hence
we integrate (VII.6.7) over pk0, kq. Moreover, since φ is non-increasing, integrating
(VII.6.7) over the interval pk0, kq we get

(VII.6.8) pφpkqq1{d ¤ φpk0q1{d � 1

d
C2pk0 � kq.

Thanks to the second term on the right-hand side of (VII.6.8), we conclude that
there exists k1 ¡ k0 such that pφpkqq1{d ¤ 0 for all k ¡ k1 ¡ k0. Therefore φpkq � 0
for all k ¡ k1 ¡ k0 and the assertion follows.
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