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Abstract

The notion of similarity plays an important role in machine learning and artificial
intelligence. It is widely used in tasks related to a supervised classification, clustering,
an outlier detection and planning [7, 22, 57, 89, 153, 166]. Moreover, in domains such
as information retrieval or case-based reasoning, the concept of similarity is essential
as it is used at every phase of the reasoning cycle [1]. The similarity itself, however,
is a very complex concept that slips out from formal definitions. A similarity of
two objects can be different depending on a considered context. In many practical
situations it is difficult even to evaluate the quality of similarity assessments without
considering the task for which they were performed. Due to this fact the similarity
should be learnt from data, specifically for the task at hand.

In this dissertation a similarity model, called Rule-Based Similarity, is described
and an algorithm for constructing this model from available data is proposed.
The model utilizes notions from the rough set theory [108, 110, 113, 114, 115] to
derive a similarity function that allows to approximate the similarity relation in a
given context. The construction of the model starts from the extraction of sets of
higher-level features. Those features can be interpreted as important aspects of the
similarity. Having defined such features it is possible to utilize the idea of Tversky’s
feature contrast model [159] in order to design an accurate and psychologically
plausible similarity function for a given problem. Additionally, the dissertation shows
two extensions of Rule-Based Similarity which are designed to efficiently deal with
high dimensional data. They incorporate a broader array of similarity aspects into
the model. In the first one it is done by constructing many heterogeneous sets of
features from multiple decision reducts. To ensure their diversity, a randomized
reduct computation heuristic is proposed. This approach is particularly well-suited
for dealing with the few-objects-many-attributes problem, e.g. the analysis of DNA
microarray data. A similar idea can be utilized in the text mining domain. The second
of the proposed extensions serves this particular purpose. It uses a combination of
a semantic indexing method and an information bireducts computation technique to
represent texts by sets of meaningful concepts.

The similarity function of the proposed model can be used to perform an
accurate classification of previously unseen objects in a case-based fashion or to
facilitate clustering of textual documents into semantically homogeneous groups.
Experiments, whose results are also presented in the dissertation, show that the
proposed models can successfully compete with the state-of-the-art algorithms.

Keywords: Rule-Based Similarity, Similarity Learning, Rough Set Theory,
Tversky’s Similarity Model, Case-Based Reasoning, Feature Extraction

ACM Computing Classification (rev.2012): Computing methodologies 7→
Machine learning 7→ Machine learning approaches 7→ Instance-based learning.
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Streszczenie
Pojęcie podobieństwa pełni istotną rolę w dziedzinach uczenia maszynowego

i sztucznej inteligencji. Jest ono powszechnie wykorzystywane w zadaniach
dotyczących nadzorowanej klasyfikacji, grupowania, wykrywania nietypowych
obiektów oraz planowania [7, 22, 57, 89, 153, 166]. Ponadto w dziedzinach
takich jak wyszukiwanie informacji (ang. information retrieval) lub wnioskowanie
na podstawie przykładów (ang. case-based reasoning) pojęcie podobieństwa jest
kluczowe ze względu na jego obecność na wszystkich etapach wyciągania wniosków
[1]. Jednakże samo podobieństwo jest pojęciem niezwykle złożonym i wymyka się
próbom ścisłego zdefiniowania. Stopień podobieństwa między dwoma obiektami
może być różny w zależności od kontekstu w jakim się go rozpatruje. W praktyce
trudno jest nawet ocenić jakość otrzymanych stopni podobieństwa bez odwołania
się do zadania, któremu mają służyć. Z tego właśnie powodu modele oceniające
podobieństwo powinny być wyuczane na podstawie danych, specjalnie na potrzeby
realizacji konkretnego zadania.

W niniejszej rozprawie opisano model podobieństwa zwany Regułowym Modelem
Podobieństwa (ang. Rule-Based Similarity) oraz zaproponowano algorytm tworzenia
tego modelu na podstawie danych. Wykorzystuje on elementy teorii zbiorów
przybliżonych [108, 110, 113, 114, 115] do konstruowania funkcji podobieństwa
pozwalającej aproksymować podobieństwo w zadanym kontekście. Konstrukcja ta
rozpoczyna się od wykrywania zbiorów wysokopoziomowych cech obiektów. Mogą
być one interpretowane jako istotne aspekty podobieństwa. Mając zdefiniowane tego
typu cechy możliwe jest wykorzystanie idei modelu kontrastu cech Tversky’ego [159]
(ang. feature contrast model) do budowy precyzjnej oraz zgodnej z obserwacjami
psychologów funkcji podobieństwa dla rozważanego problemu. Dodatkowo,
niniejsza rozprawa zawiera opis dwóch rozszerzeń Regułowego Modelu Podobieństwa
przystosowanych do działania na danych o bardzo wielu atrybutach. Starają się
one włączyć do modelu szerszy zakres aspektów podobieństwa. W pierwszym
z nich odbywa się to poprzez konstruowanie wielu zbiorów cech z reduktów
decyzyjnych. Aby zapewnić ich zróżnicowanie, zaproponowano algorytm łączący
heurystykę zachłanną z elementami losowymi. Podejście to jest szczególnie wskazane
dla zadań związanych z problemem małej liczby obiektów i dużej liczby cech (ang.
the few-objects-many-attributes problem), np. analizy danych mikromacierzowych.
Podobny pomysł może być również wykorzystany w dziedzinie analizy tekstów.
Realizowany jest on przez drugie z proponowanych rozszerzeń modelu. Łączy
ono metodę semantycznego indeksowania z algorytmem obliczania bireduktów
informacyjnych, aby reprezentować teksty dobrze zdefiniowanymi pojęciami.

Funkcja podobieństwa zaproponowanego modelu może być wykorzystana
do klasyfikacji nowych obiektów oraz do łączenia dokumentów tekstowych w
semantycznie spójne grupy. Eksperymenty, których wyniki opisano w rozprawie,
dowodzą, że zaproponowane modele mogą skutecznie konkurować nawet z
powszechnie uznanymi rozwiązaniami.
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Chapter 1

Introduction

For many centuries the idea of similarity has inspired researchers from different fields,
in particular philosophers, psychologists and mathematicians. Since Plato and his
student, Aristotle, people have been trying to systematize the world around them
by creating ontologies and grouping similar objects, living organisms or natural
phenomena based on their characteristics. Over the years, many of the great
discoveries have been made by scientists and inventors who noticed some resemblance
between processes or objects, and on that basis formed a theory describing them.

Although human mind is capable of effortlessly assessing similarities between
objects, there is no single methodology of selecting or building similarity models
appropriate for a wide range of complex object classes and domains. This dissertation
deals with a problem of learning a similarity relation or constructing a similarity
function from data with a particular focus on high dimensional object domains. Apart
from an overview of several well-known similarity learning methods, a rule-based
model of similarity is proposed, whose flexibility allows to overcome many practical
issues related with the commonly used approaches. This model and its two extensions,
which are designed specifically to facilitate dealing with extremely high dimensional
objects, are tested in extensive experiments in order to show their practical usefulness.

1.1 Motivation and Aims
The ability to identify similar objects is believed to play a fundamental role in the
process of human decision making and learning [119, 125, 158]. Stefan Banach was
known to say that:

“Good mathematicians see analogies. Great mathematicians see analogies
between analogies.”

The notion of similarity itself, however, slips out from the formal scientific definitions
[51, 159]. Despite this fact, similarity or reasoning by analogy is being utilized by
numerous machine learning algorithms in applications ranging from a supervised
classification to unsupervised clustering and an outlier detection [1, 93, 157]. Knowing
how to discriminate similar cases (or objects) from those which are dissimilar in a
desired context would enable a more accurate classification and detection of unusual
or dangerous situations or behaviours. Unfortunately, due to difficulties related to

7



8 1. Introduction

an a priori selection of a similarity model, which are particularly apparent when
a metric space representation of objects is high dimensional, the performance of
similarity-based machine learning algorithms may be limited [15].

A scope of this dissertation is a problem of learning how to recognize whether two
objects are similar in a pre-specified context. A variety of methods have been used
in order to construct similarity models and define a relation which would combine
intuitive properties postulated by psychologists with a good performance in real-life
applications. Among those a huge share was based on distance measures. In that
approach, objects are treated as points in a metric space of their attributes and
the similarity is a non-increasing function of the distance between them. Objects
are regarded as similar if they are close enough in this space [15, 83, 160]. Such
models may often be improved by assigning weights to attributes which express their
importance to the model. Tuning those weights results in better fitting the relation to
a data set and can be regarded as an example of similarity learning. Algorithms for a
computationally efficient optimization of parameters for common similarity measures
were investigated by numerous researchers, e.g. [21, 53, 89, 102, 149, 166, 170, 171].

One may argue that the relation of this kind is very intuitive because objects which
have many similar values of attributes are likely to be similar. However, researchers
like Amos Tversky [41, 83, 159] empirically showed that in some contexts, similarity
does not necessarily have properties like symmetry or subadditivity which are implied
by distance measures. This situation occurs particularly frequent when we compare
objects of great complexity, often described by a large number of attributes. The
explanation for this may lie in the fact that complex objects can be similar in some
aspects and dissimilar in others. Hence, some additional knowledge about the context
is needed to decide which of the similarity aspects are more important [42, 159].

Moreover, the dependencies between local and global similarities may be highly
non-linear and in order to capture them it is necessary to extract some higher-level
features of objects. Since there usually are numerous possible features to consider,
this task can rarely be performed by human experts. Instead, the higher-level
characteristics of objects and methods for their aggregation need to be derived
from available data. Of course, as in all types of machine learning tasks, a
similarity learning algorithm needs to balance complexity and efficiency [93, 157].
The construction of an overly complex similarity model will take too much time and
resources to be applicable to real-life problems. Such a model may also be over-fitted
to available data and yield poor performance in assessing the similarity of new objects.

The aim of this dissertation is to address those issues by proposing a similarity
learning model called Rule-Based Similarity. The main motivation for that model
comes from Tversky’s works on the feature contrast model of similarity [159]. Instead
of embedding objects into a metric space of their attributes, in the proposed approach
the objects are represented by sets of higher-level features which can be more
semantically meaningful than the low-level attribute values. In the model, such new
features are defined by rules extracted from data, analogically to a rule-based object
representation discussed in [128]. Unlike in that approach, however, in Rule-Based
Similarity the new features are not treated as regular attributes but rather, they
are regarded as arguments for or against the similarity of the compared objects.
By combining the set representation with techniques developed within the theory of
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rough sets, the model tries to aggregate those arguments and to express the similarity
in a context dictated by a given task (e.g. supervised classification or semantic
clustering), and by other objects present in the data. In this way, the resulting
similarity function is more likely to reflect natural properties of similarity without
loosing its practical usefulness and reliability.

Due to the subjectivity and complexity of the similarity notion, those appealing
qualities can not be justified based only on theoretical properties and intuitions. The
second goal of this dissertation is to provide results of thorough experiments in which
the performance of Rule-Based Similarity was evaluated on many different data sets.
Usefulness of this model in practical tasks, such as a supervised classification and an
unsupervised cluster analysis, was compared with other similarity models as well as
to the state-of-the-art in a given domain. The results of those tests may be used as
arguments confirming the validity of the proposed model design.

1.2 Main Contributions
In the dissertation the problem of learning a similarity relation for a predefined data
analysis task is discussed. Expectations regarding the construction and general
properties of similarity models are formulated. Major challenges related to this
problem are characterised and some practical solutions are proposed. Finally, the
validity of the proposed methods is shown through extensive experiments on real-life
data. Hence the main contributions of this dissertation are threefold:

1. A discussion on properties of the similarity relation from the point of view of
data analysis and artificial intelligence.

2. A proposition of a similarity model and some construction algorithms that
combine intuitive expectations with efficiency in practical applications.

3. An implementation and an experimental evaluation of the proposed similarity
model on a wide range of data sets and in different use scenarios.

In particular, after reviewing observations of psychologists regarding the nature of
the similarity, definition of a proper similarity function is proposed in Section 3.1.3. It
aims at providing a more formal description of an abstract similarity function concept.
Intuitively, pairs of objects for which a proper similarity function takes high values
are more likely to be in the real similarity relation, relative to a predefined context.
An example of such a context can be a classification of objects from the investigated
domain. In that case, a similarity learning process can be guided by the fundamental
properties of the similarity for classification, which are stated in Section 3.1.2.

The context of a similarity assessment is imposed by a purpose for which the
evaluation is performed. It is also influenced by a presence of other objects. Those
general observations together with the computational effectiveness constitute a basis
for the desirable properties of similarity learning models which are given in Section
4.1. They are treated as requirements and a motivation for designing the similarity
model which is the main scope of this dissertation.

The proposed Rule-Based Similarity (RBS) model and its two extensions are
described in Section 4.3. Section 4.3.2 shows the construction of the basic version
of RBS, designed for learning the similarity in a classification context from regular
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data tables. Additionally, this section offers an intuitive interpretation of the model
and explains its relations with the rough set theory. An important aspect of
the construction of RBS is the computation of a decision reduct for each of the
decision classes occurring in the data. This often needs to be done for data sets
containing numerical attributes. Algorithm 2 shows how to compute a reduct in such
a case. Some of the basic mathematical properties of the RBS similarity function
are discussed in Section 4.3.3. In this section it is also shown that under certain
conditions the proposed function is a proper similarity function for a similarity
relation in the context of a classification.

The first extension of RBS, which is designed to efficiently handle extremely high
dimensional data sets, is presented in Section 4.3.4. Its core is an algorithm for the
computation of a diverse set of dynamic decision reducts (Algorithm 3). By combining
randomization with the greedy heuristic for the computation of reducts this algorithm
enables an efficient construction of robust sets of higher-level features. Due to the
diversity of the sets, those features correspond to different similarity aspects. The
similarity function which is proposed for this model, aggregates the local similarities
analogically to aggregations of classifier ensembles.

The second of the proposed extensions is described in Section 4.3.5. The purpose
of this model is to facilitate the similarity learning from textual corpora. Unlike the
previous models, unsupervised RBS does not require information regarding decision
classes and can be used for cluster analysis. To extract higher-level features it uses a
combination of Explicit Semantic Analysis with a novel algorithm for the computation
of information bireducts (Algorithm 4).

All the models proposed in this dissertation were thoroughly evaluated in
experiments described in Chapter 5. RBS was compared to several other similarity
learning techniques in the classification context on a variety of data tables. The tests
were performed on benchmark tables (Section 5.1) as well as on real-life microarray
data sets containing tens of thousands attributes (Section 5.2). Finally, tests with the
unsupervised RBS were conducted and their results were described in Section 5.3.

Most of the partial results of this dissertation were presented at international
conferences and workshops. They were published in conference proceedings and
respectable journals. For example, the publications related to the construction and
the applications of Rule-Based Similarity include [60, 61, 62, 64, 65, 67, 70]. There are
also several other research directions of the author that had a significant influence
on the design of the proposed similarity learning models. Among them, the most
important considered the problem of feature selection and learning with ensembles of
single and multi-label classifiers [63, 66, 68, 69, 71, 85, 141, 168]. Moreover, the
research on unsupervised version of Rule-Based Similarity was largely influenced
by the author’s previous work on the semantic information retrieval and Explicit
Semantic Analysis, which was conducted within the SYNAT project [72, 142, 155].

1.3 Plan of the Dissertation
The dissertation is divided into six chapters. This introductory chapter aims to
provide a brief description of the considered problem and to help a reader with
navigation through the remaining part of the text.

Chapter 2 is devoted to the theory of rough sets. Its main role is to introduce
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the basic concepts and notations used in the subsequent chapters. It is divided
into three main sections. Section 2.1 introduces the notions of information and
decision systems (Subsection 2.1.1). It also discusses fundamental building blocks
of the rough set theory such as the indiscernibility relation (Subsection 2.1.2) and
the notions of a concept, decision logic language and rules (Subsection 2.1.3). Section
2.2 explains the rough set view on the approximation of vague or imprecise concepts.
It gives the definition of a rough set and shows elementary properties of lower and
upper approximations (Subsection 2.2.1). Then, in Subsections 2.2.2 and 2.2.3,
there is a discussion on finding appropriate approximation spaces for constructing
approximations of concepts and relations. The last section of the second chapter
(Section 2.3) focuses on rough set methods for selecting informative sets of attributes.
It gives definitions of the classical information and decision reducts in Subsection
2.3.1, and then it reviews several extensions of this important notion, such as
approximate reducts, dynamic reducts (Subsection 2.3.2) and a novel concept of
decision bireducts (Subsection 2.3.3).

Chapter 3 introduces similarity as a relation between objects and discusses its
main properties. It also provides an overview of the most well-known similarity
models and gives examples of their practical applications. The chapter is divided into
three sections. The first one (Section 3.1) starts with a discussion on psychological
properties of similarity as a semantic relation in Subsection 3.1.1. After this
introduction, the importance of setting a similarity evaluation in a context which is
appropriate for a task is highlighted in Subsection 3.1.2. This discussion is followed
by definitions of a proper similarity function and similarity-based classification rules
in Subsection 3.1.3 and then, an overview of similarity model evaluation methods
is given in Subsection 3.1.4. The next section (Section 3.2) summarises the most
commonly used similarity models. The distance metric-based similarity modelling is
characterized in Subsection 3.2.1. Then, Subsection 3.2.2 explains Tversky’s feature
contrast model as an alternative to the distance-based approach. The section ends
with a brief description of hierarchical similarity modelling methods in Subsection
3.2.3. The chapter concludes with Section 3.3, which is a survey on applications of
similarity models in machine learning. It shows how the similarity can be employed for
a predictive data analysis and visualization (Subsection 3.3.1) and briefly discusses the
Case-Based Reasoning framework (Subsection 3.3.2). It ends with a usage example of
similarity functions for unsupervised learning in cluster analysis (Subsection 3.3.3).

Chapter 4 focuses on similarity learning methods. Its first section (Section 4.1)
defines the problem of similarity learning and lists some desirable properties of a good
similarity learning model. Section 4.2 presents examples of four popular approaches
to the similarity learning task. Subsection 4.2.1 summarises methods that use feature
extraction techniques in order to improve a similarity model by selecting attributes
which are relevant in a given context or by constructing new ones. Subsection 4.2.2
is an overview of a very popular approach that utilizes a genetic algorithm to tune
parameters of a predefined similarity function. Then, Subsection 4.2.3 shows how a
similarity relation can be induced and optimized in a tolerance approximation space.
The last example, given in Subsection 4.2.4, concerns a specific task of using Explicit
Semantic Analysis for learning a semantic representation of texts which can be used to
better evaluate their similarity. Section 4.3 describes the idea of Rule-Based Similarity
which is the main contribution of this dissertation. Subsection 4.3.1 discusses
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intuitions and motivations for this model. The following subsections (Subsection 4.3.2
and 4.3.3) reveal construction details of the model and describe its properties. The
next two subsections show how Rule-Based Similarity can be adjusted to efficiently
learn the similarity in contexts defined by two different tasks related to analysis of
high dimensional data. Namely, Subsection 4.3.4 focuses on similarity learning from
high dimensional data for a classification purpose and Subsection 4.3.5 deals with the
problem of unsupervised similarity learning for clustering of textual documents. The
last subsection of the chapter (Subsection 4.3.6) summarises the proposed models.

Chapter 5 provides results of experiments in which the proposed model was tested
on benchmark and real-life data sets. Each section of this chapter is devoted to a series
of experiments on different types of data. Section 5.1 investigates the performance
of Rule-Based Similarity in the context of classification on standard and high
dimensional data tables. First, Subsection 5.1.1 describes the data sets used in this
series of tests. Then, Subsection 5.1.2 briefly characterises the competing similarity
models and Subsection 5.1.3 discusses the results of the comparisons between them.
Section 5.2 presents the evaluation of the dynamic extension to Rule-Based Similarity
on microarray data. This section starts with Subsection 5.2.1 which discusses
general properties of microarrays as an example of extremely high dimensional
data. Subsection 5.2.2 shows how efficient Dynamic Rule-Based Similarity can
be for coping with the few-objects-many-attributes problem, in comparison to the
state-of-the-art in the microarray data classification. The last section of this chapter
(Section 5.3) presents an example of an application of the unsupervised extension to
Rule-Based Similarity. At the beginning, Subsection 5.3.1 explains the methodology
of the experiment and clarifies how the compared similarity models were evaluated.
Subsection 5.3.2 characterizes the models which were used in the comparison and
Subsection 5.3.3 summarises the results.

Finally, the last Chapter 6 concludes the dissertation. Section 6.1 draws a
summary of the discussed problems and Section 6.2 proposes some directions for
future development of the rule-based models of similarity.
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Chapter 2

Theory of Rough Sets

The theory of rough sets, proposed by Zdzisław Pawlak in 1981 [108], provides
a mathematical formalism for reasoning about imperfect data and knowledge
[113, 114, 115]. Since their introduction, rough sets have been widely used in
numerous real-life applications related to intelligent knowledge discovery, such as
classification, clustering, approximation of concepts, discovering of patterns and
dependencies in data [10, 71, 95, 112, 113, 114, 118, 130]. They were also used
for hierarchical modelling of complex objects [10, 103], as well as approximation of
relations and functions [112, 132, 156].

The notion of similarity has always been important for researchers in the field
of rough sets. Several extensions of the classical discernibility-based rough sets were
proposed, in which a similarity relation was used to generalized rough approximations
[43, 45, 114, 120, 133, 145, 146]. Similarity was also utilized in order to explain
relations between rough sets and fuzzy sets and interpret fuzziness in the rough
set setting [172]. On the other hand, some similarity measures were motivated by
the rough set theory [57].

In this dissertation similarity is viewed as a relation whose properties may
vary depending on a specific context. Since without any additional knowledge
the similarity can be regarded as an arbitrary relation, it needs to be learnt from
available data. The similarity relation is vague in nature [42, 90, 159]. For this
reason the rough set theory seems suitable for this purpose. It does not only offer
intuitive foundations for modelling complex relations, but also provides practical
tools for extracting meaningful features and defining important aspects of similarity
between considered objects [82, 118]. Those aspects often correspond to higher-level
characteristics or concepts which can also be vague. To better cope with such a
multi-level vagueness there were proposed models that combine the rough set and
fuzzy set theories into rough-fuzzy or fuzzy-rough models [33, 104, 105].

The similarity learning model described in this dissertation (Section 4.3) derives
from the theory of rough sets. To better explain their construction, the following
sections briefly overview selected aspects of the rough sets and introduce some basic
notation used in the remaining parts of this thesis. Section 2.1 gives definitions of
fundamental concepts, such as an information system or a decision rule. Section 2.2
provides an insight on approximation spaces and explains the basic principles of a
rough set approximation. Section 2.3 describes a rough set approach to the problem

13
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of data dimensionality reduction. In its last Subsection 2.3.3 the notion of reducts
is extended to bireducts and some interesting properties of decision bireducts are
discussed.

2.1 Introduction to Rough Sets

The theory of rough sets deals with problems related to reasoning about vagueness in
data [108]. Its main assumption is that with every object of the considered universe
Ω there is some associated information which can be represented in a tabular form
as attribute-value entries. Available objects which are characterized by the same
information are indiscernible - it is not possible to make any distinction between
them. Those elementary sets of indiscernible objects are used to model uncertainty
of vague concepts.

In this dissertation, every concept is associated with a set of objects X ⊂ Ω.
It is usually assumed that information regarding belongingness of objects to X is
available for at least a finite subset of objects U ⊂ Ω. This subset is called a training
set. When solving practical problems we are often interested in finding an accurate
but comprehensible description of a concept X in terms of features of objects from
the training set U . Ideally, this description should fit to all objects from Ω. In the
rough set terminology, the process of finding an appropriate description of a concept is
referred to as an approximation of X. In a more general context of machine learning,
this task is often called a classification problem. The most part of this dissertation is
focusing on similarity models which can be used to facilitate the classification.

Within the rough set approach, vagueness or vague concepts correspond to sets of
objects which can not be precisely described using available information. To enable
reasoning about such concepts, they are associated with two crisp sets which can be
unambiguously defined [113, 114, 115]. The first set is the largest possible subset of
available data that contains only objects which surely belong to the concept. The
second set is the smallest possible set which surely contains all objects belonging to
the concept in the available data. Together, those two set allow to handle vagueness
without a need for introducing artificial functions, as it is done in the fuzzy set theory
[173]. This section overviews the basic notions of the rough set theory which are used
in further parts of this dissertation.

2.1.1 Information and decision systems

In the rough set theory, available knowledge about object u ∈ U is represented as
a vector of information about values of its attributes. An attribute can be treated
as a function a : U → Va that assigns values from a set Va to objects from U . In a
vast majority of cases, such functions are not explicitly given. However, we can still
assume their existence if for any object from U we are able to measure, compute or
obtain in other way the corresponding values of its attributes.

All available information about objects from U can be stored in a structure called
an information system. Formally, an information system S can be defined as a tuple:

S =
(
U,A

)
(2.1)
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Table 2.1: An exemplary information system S (Table (a)) and a decision system Sd
with a binary decision attribute (Table (b)).

a1 a2 a3 a4 a5 a6 a7 a8

u1 1 2 2 0 0 1 0 1
u2 0 1 1 1 1 0 1 0
u3 1 2 0 1 0 2 1 0
u4 0 1 0 0 1 0 0 1
u5 2 0 1 0 2 1 0 0
u6 1 0 2 0 2 0 0 2
u7 0 1 1 2 0 2 1 0
u8 0 0 0 2 1 1 1 1
u9 2 1 0 0 1 1 0 0

(a)

a1 a2 a3 a4 a5 a6 a7 a8 d
u1 1 2 2 0 0 1 0 1 1
u2 0 1 1 1 1 0 1 0 1
u3 1 2 0 1 0 2 1 0 1
u4 0 1 0 0 1 0 0 1 0
u5 2 0 1 0 2 1 0 0 1
u6 1 0 2 0 2 0 0 2 0
u7 0 1 1 2 0 2 1 0 1
u8 0 0 0 2 1 1 1 1 0
u9 2 1 0 0 1 1 0 0 0

(b)

where U is a finite non-empty set of objects and A is a finite non-empty set of
attributes. The most common representation of the information system is a table
whose rows correspond to objects from U and columns are associated with attributes
from A. There are however some other information system representation forms [154].
A simple example of an information system represented in the tabular form is given
in Table 2.1.a (on the left).

It is usually assumed that information about values of all the attributes from A
can be obtained for any object, including those which are not present in U . In such
a case, those attributes are often called conditional attributes. However, there might
also exist some special characteristic of objects from U , which can be used to define
a partitioning of U into disjoint sets. Such a characteristic may correspond to, e.g.
belongingness of the objects to some concept. In this case, it is possible to define
an attribute, called a decision or class attribute, that reflects this characteristic. In
order to deliberately emphasize its presence, an information system with a defined
decision attribute is called a decision system and is denoted by Sd =

(
U,A ∪ {d}

)
,

where A∩{d} = ∅. A tabular representation of a decision system is sometimes called
a decision table and the disjoint sets of objects with different values of the decision
attribute are called categories or decision classes. Table 2.1.b shows an exemplary
decision system Sd with a binary decision attribute d (on the right).

Unlike in the case of conditional attributes, a value of a decision attribute may
be unknown for objects from Ω \ U . Therefore, the approximation of concepts (a
classification problem) can sometimes be restated as a prediction of decision attribute
values for objects which are not included in the training set. In many practical
applications, such as the topical classification of textual documents [68, 85], it might
be convenient to define more than one decision attribute. In such a case, a decision
system will be denoted by SD = (U,A ∪D), where D is a set of decision attributes
and A ∩D = ∅, and the prediction of the decision values will be called a multi-label
classification problem.

In many practical applications the assumption regarding availability of
information concerning values of conditional attributes in decision systems is not true.
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Real-life decision systems often have missing attribute values and some dedicated
techniques for analysing this kind of data have been developed within the theory of
rough sets [46, 86, 152]. The reasons for lack of partial information about particular
objects might be diverse. The semantics of different kinds of missing values have
also been studied [48, 49, 86]. Although this problem remains a vital research
direction, handling data with missing or vague information lies outside the scope
of this dissertation.

2.1.2 Indiscernibility relation

In the rough set theory objects from U are seen through the information that can be
used to describe them. This fact implies that in a case when information available
for two different objects does not differ (i.e. values on all attributes are the same),
those objects are regarded indiscernible.

Definition 2.1 (Indiscernibility relation).
Let S =

(
U,A) be an information system and let B ⊆ A. We will say that u1, u2 ∈ U

are satisfying the indiscernibility relation INDB with regard to the attribute set B iff
they have equal attribute values for every a ∈ B:

(u1, u2) ∈ INDB ⇔ ∀a∈Ba(u1) = a(u2).

Otherwise u1 and u2 will be regarded discernible.

It is easy to observe that the indiscernibility is in fact an equivalence relation in U
(i.e. it is reflexive, symmetric and transitive). An indiscernibility class of an object
u with regard to an attribute set B will be denoted by [u]B:

[u]B = {u′ ∈ U : ∀a∈B a(u′) = a(u)} . (2.2)

Therefore, using the indiscernibility relation it is possible to define a granulation
of objects described by an information system S into disjoint subsets. For any
B ⊆ A it will be denoted by U/B = {[u]B : u ∈ U}. For example, the
indiscernibility class of an object u1 with regard to {a1, a3} in the information
system from Table 2.1.a (on the left) is [u1]{a1,a3} = {u1, u6} and U/{a1, a3} ={
{u1, u6}, {u2, u7}, {u3}, {u4, u8}, {u5}, {u9}

}
.

Many different equivalence relations in U can be defined using different attribute
subsets. The indiscernibility relations with regard to single attributes can serve as a
basis for the construction of equivalence relations defined by any subset of attributes.
For any two subsets of attributes B,B′ ⊆ A and any u ∈ U , the following equations
hold:

[u]B =
⋂
a∈B

[u]{a} , (2.3)

[u]B∪B′ = [u]B ∩ [u]B′ , (2.4)

B ⊆ B′ ⇒ [u]B′ ⊆ [u]B . (2.5)

When constructing an approximation of a concept it is important to investigate
a relation between indiscernibility classes with regard to conditional attributes and
with regard to decision attributes.
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Definition 2.2 (Consistent decision system).
A decision system Sd = (U,A ∪D) will be called consistent iff

∀u∈U [u]A ⊆ [u]D. (2.6)

Otherwise Sd will be called inconsistent.

Several extensions of the indiscernibility notion can be found in the rough set
literature. For example, generalizations based on a tolerance relation [133, 135]
or a predefined similarity relation [45, 145, 146] have been proposed in order to
define better approximations of concepts. In other approaches the definition of
indiscernibility has been modified to facilitate generation of decision rules from
incomplete data [49, 86].

2.1.3 Descriptions and rules

The rough set theory is often utilized to provide description of concepts from the
considered universe. Any concept can generally be associated with a subset of objects
from U which belong or match to it. In general, decision attributes in a decision
system can usually be interpreted as expressing the property of belongingness to
some concept. Given some information (e.g. in the form of a decision system)
about characteristics (values of attributes) of objects corresponding to the considered
concept one may try to describe it using a decision logic language [109].

Decision logic language LA is defined over an alphabet consisting of a set of
attribute constants (i.e. names of attributes from A) and a set of attribute value
constants (i.e. symbols representing possible attribute values). The attribute and
attribute value constants can be connected using the equity symbol = to form
attribute-value pairs (a = v, where a ∈ A and v ∈ Va), which are regarded
as atomic formulas of the language LA. The atomic formulas can be combined
into compound formulas of LA using connectives from a set {¬,∧,∨,→,≡} called
negation, conjunction, alternative, implication and equivalence, respectively. If φ
and ψ are in LA, then ¬(φ), (φ ∧ ψ), (φ ∨ ψ), (φ → ψ) and (φ ≡ ψ) are in LA. The
atomic formulas of a compound formula (the attribute-value pairs) are often called
descriptors and the formula itself is sometimes called a description of some concept.

The satisfiability of a formula φ from LA by an object from an information system
S = (U,A), which is denoted by u �S φ or by u � φ if S is understood, can be defined
recursively:

1. u � (a = v)⇔ a(u) = v.

2. u � ¬φ⇔ not u � φ.

3. u � (φ ∧ ψ)⇔ u � φ and u � ψ.

4. u � (φ ∨ ψ)⇔ u � φ or u � ψ.

5. u � (φ→ ψ)⇔ u � (¬φ ∨ ψ).

6. u � (φ ≡ ψ)⇔ u � (φ→ ψ) and u � (ψ → φ).
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Each description (a formula) φ in a decision logic language LA can be associated with
a set of objects from U that satisfy it. This set is called ameaning of the formula in an
information system S = (U,A) and is denoted by φ(U) = {u ∈ U : u � φ}. Moreover,
we will say that a formula φ is true or consistent in S if and only if its meaning is
equal to the whole set U (i.e. φ(U) = U). Otherwise a formula is inconsistent in S.

It is worth noticing that an indiscernibility class of any object u described in S =
(U,A) can be expressed as a meaning of a formula in the language LA as [u]A = φ(U),
where φ =

(
a1 = a1(u) ∧ . . . ∧ ai = ai(u) ∧ . . . ∧ am = am(u)

)
, and m = |A|. Based

on equations 2.3, 2.4 and 2.5 this can be generalized to indiscernibility classes with
regard to any subset of attributes. For example, in the information system S from
Table 2.1.a the meaning of φ = (a1 = 1 ∧ a3 = 2) is φ(U) = {u1, u6} = [u1]{a1,a3}.
One example of a formula that is consistent in S is (a7 = 0 ∨ a7 = 1).

In the rough set data analysis, knowledge about dependencies between conditional
attributes and decision attributes of a decision system are often represented using
special formulas called decision rules.

Definition 2.3 (Decision rules).
Let A and D be conditional and decision attribute sets of some decision system.
Moreover, let LA∪D be a decision logic language and π be a formula of LA∪D. We will
say that π is a decision rule iff the following conditions are met:

1. π = (φ→ ψ),

2. φ and ψ are conjunctions of descriptors,

3. φ is a formula of LA and ψ is a formula of LD.

The right hand side of a decision rule π = (φ→ ψ) (i.e. ψ) will be called a consequent
or a successor of a rule and the left hand side will be called an antecedent or a
predecessor (i.e. φ). The antecedent of π will be denoted by lh(π) and the consequent
of π will be marked by rh(π). It is important to note that the above definition
of a decision rule is more specific than the original definition from [109]. In fact
the definition used in this dissertation corresponds to P-basic decision rules from
Pawlak’s original paper.

Decision rules aim at providing partial descriptions of concepts indicated by the
decision attributes. They can be learnt from a decision system and then used to
predict decision classes of new objects, provided that values of conditional attributes
of those objects are known. For example, from the decision system Sd shown in Table
2.1.b we can induce decision rules:

π1 =
(
(a4 = 0 ∧ a6 = 1)→ (d = 1)

)
and

π2 =
(
(a2 = 1 ∧ a3 = 1)→ (d = 1)

)
.

The meaning of π1 in Sd is the set π1(U) = {u1, u2, u3, u4, u5, u6, u7, u8} = U \ {u9},
whereas the meaning of π2 in Sd is π2(U) = U . The first rule is inconsistent in
Sd, whereas the second rule is true in Sd. However, the second rule is more general
than the first one, since meanings of the antecedents of those rules have different
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cardinalities: |lh(π1)(U)| = |{u1, u5, u9}| = 3, and |lh(π2)(U)| = |{u2, u7}| = 2. We
may say that those rules are true with different degrees in Sd, thus their predictive
power is different.

There is also a different type of rules within the rough set theory, which can be
particularly useful for analysing dependencies in data with multiple decision values,
namely, inhibitory rules [26].

Definition 2.4 (Inhibitory rules).
Let A and D be conditional and decision attribute sets of a decision system. Moreover,
let LA∪D be a decision logic language and π be a formula of LA∪D. We will say that
π is an inhibitory rule iff the following conditions are met:

1. π = (φ→ ¬ψ),

2. φ and ψ are conjunctions of descriptors,

3. φ is a formula of LA and ψ is a formula of LD.

An inhibitory rule tell us that an object which satisfies the predecessor of this
rule1 cannot belong to a pointed decision class. The inhibitory rules can be seen as
a complement to decision rules as they often provide means to classify objects which
are difficult to cover by the traditional rules [26]. They are particularly useful for
constructing classifiers in a presence of a highly imbalanced distribution of decision
values. It needs to be noted, however, that a cardinality of a set of all possible
inhibitory rules for a given data is usually much greater than that of all decision rules.

Usefulness of a rule for prediction of decision classes of new objects (or just
classification, in short) can be quantitatively assessed using rule quality measures.
There exist many measures that aim at evaluating the strength of dependency
between the antecedent and the consequent of rules [2, 24, 117]. However, the bigger
part of them is based on the notions of rule’s support and confidence. The support
of a rule π is defined as:

supp(π) =
|lh(π)(U)|
|U |

and the confidence of π is:

conf(π) =
|lh(π)(U) ∩ rh(π)(U)|

|lh(π)(U)|
= 1− |U \ π(U)|

|lh(π)(U)|
.

From the second equation it follows that the confidence factor of a rule π equals 1
iff the rule is consistent in Sd. To prove it, it is sufficient to show that U \ π(U) =
lh(π)(U) \ rh(π)(U). This equity, however, is a straight consequence of a definition
of the meaning of an implication:

u ∈ π(U)⇔ u �
(
lh(π)→ rh(π)

)
⇔ u �

(
¬lh(π) ∨ rh(π)

)
⇔

(
u ∈ U \ lh(π)(U)

)
∨
(
u ∈ rh(π)(U)

)
.

1In the remaining parts of this dissertation such objects will also be regarded to as matching the
rule.
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If so, then:

u ∈
(
U \ π(U)

)
⇔ u ∈

(
U \

(
U \ lh(π)(U)

))
∩
(
U \ rh(π)(U)

)
⇔ u ∈

(
lh(π)(U) \ rh(π)(U)

)
.

The confidence of a rule is often interpreted as an indicator whether the rule is
true. We may say that a rule is true in a degree corresponding to its confidence.
An example of a rule quality measure that, in a sense, combines the desirable
properties of the support and confidence coefficients is Laplace m-estimate defined as
laplacem(π) = |lh(π)(U)∩rh(π)(U)|+m·p

(|lh(π)(U)|+m , where m and p are positive parameters. Values
of m and p usually correspond to a number of decision classes, and prior probability
of the rh(π), respectively [34]. Unlike the confidence, this measure favours rules with
a higher support.

Intuitively, the support of a rule expresses how large data fragment the rule
describes, i.e. measures its generality, whereas the confidence says how often the rule
truly indicates consequent for objects belonging to the meaning of its antecedent. For
instance, the support of the rule π1 from the previous example is 3/9 = 1/3 and its
confidence is 2/3. At the same time the support and the confidence of π2 are 2/9 and 1,
respectively. In order to compare those rules we may also use the Laplace m-estimate
for m = 2 and p = 0.5: laplace2(π1) = 3/5 whereas laplace2(π2) = 3/4. Rough set
methods usually derive rules using descriptions of indiscernibility classes in Sd.

Each formula in the language LA corresponds to a unique set of objects but there
is no guarantee that for a given subset of objects X ⊂ U there exists a formula φ
whose meaning equals X. Moreover, several different formulas may have exactly the
same meaning in S. A set of objects represented in an information system S that
can be exactly described by some formula in a language LA is called a definable set
in S. More formally, the set X will be called definable in S = (U,A) iff there exists
a formula φ of the language LA, such that φ(U) = X. Subsets of U that are not
definable will be called undefinable. The family of all definable sets in S will be
denoted by DEF (S).

Concepts corresponding to undefinable sets can be approximated using definable
sets. A typical task in the rough set data analysis is to find an optimal approximation
of a predefined concept using knowledge represented by a decision system and describe
it using formulas, such as decision and inhibitory rules. Such an approximation is
usually expected to be accurate not only for known objects from U , but also for
the new ones which were not available when the approximation was learnt. For this
purpose many rough set techniques employ the Minimal Description Length (MDL)
principle and constrain the language used to describe and reason about the data.
This approach to the problem of approximating the undefinable sets is the most
characteristic feature of the rough set theory [110, 115].

2.2 Rough Set Approximations

In the rough set theory any arbitrary set of objects X can be approximated within an
information system S = (U,A) by a pair of definable sets App(X) = (X,X), called a
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rough set of X in S. The set X is the largest definable set which is contained in X.
Analogically, the set X is the smallest definable set which contains X. The sets X
and X are called a lower and upper approximation of X in S, respectively.

2.2.1 Lower and upper approximations

The lower and upper approximations can also be constructively defined using the
notion of indiscernibility classes. Let X ⊆ Ω represent an arbitrary concept. The
rough set of X in S = (U,A) with regard to a set of attributes B ⊆ A is a pair
AppB(X) = (X,X), where

X = {u ∈ U : [u]B ⊆ X},
X = {u ∈ U : [u]B ∩X 6= ∅}.

The sets X and X constructed for an attribute set B ⊆ A are called B-lower and
B-upper approximations and the pair AppB(X) = (X,X) is sometimes called a
B-rough set of X in S. However, when the set B is fixed (or irrelevant) we will call
the sets X and X simply the lower and upper approximations of X.

Of course, since an indiscernibility class of any object in U is a definable set
in S, the definitions of a rough set by definable sets and indiscernibility classes are
equivalent. The lower and upper approximations can also be defined in several other
equivalent ways, which might be convenient when dealing with specific problems
[118, 133]. The above definition makes it obvious that the lower approximation
of a concept can be described using predecessors of consistent rules, whereas the
description of the upper approximation may require some rules with the confidence
factor lower than 1. This fact will be used during the construction of a similarity
model proposed in Section 4.3.2.

For the classical definition of rough set and for any B ⊆ A, the lower and upper
approximations of X ⊆ U have several interesting properties:

(L1) X ∈ DEF (S) (U1) X ∈ DEF (S)

(L2) X ∈ DEF (S)⇒ X = X (U2) X ∈ DEF (S)⇒ X = X

(L3) X ⊆ X (U3) X ⊆ X

(L4) X = U \
(
U \X

)
(U4) X = U \

(
U \X

)
(L5)

(
X ∩ Y

)
= X ∩ Y (U5)

(
X ∪ Y

)
= X ∪ Y

(L6)
(
X ∪ Y

)
⊇ X ∪ Y (U6)

(
X ∩ Y

)
⊆ X ∩ Y

(L7) X ⊆ Y ⇒ X ⊆ Y (U7) X ⊆ Y ⇒ X ⊆ Y

(L8) X =
(
X
)

(U8) X =
(
X
)

(L9) X =
(
X
)

(U9) X =
(
X
)

where AppB(X) = (X,X). Proofs of those properties are omitted since they are
quite obvious and have already been presented in rough set literature (e.g. [110]).
The properties (L4) and (U4) show that the lower and upper approximations are, in a
sense, dual operations. In general, the other properties with the same number may be
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- an indiscernibility  
  class in S

- the positive
  region of "?"

- the negative
  region of "?"

- the boundary
  region of "?"

Figure 2.1: An exemplary rough set approximation of a concept.

regarded as dual. The properties (L1-2) and (U1-2) say that the two approximations
are definable set (also called crisp sets). The properties (L3) and (U3) imply that
for any set X, X ⊆ X ⊆ X. By the properties (L5-7) and (U5-7) it is shown
that the operations of the lower and upper approximation are monotonic with regard
to set inclusion, and the properties (L8-9), (U8-9) state that chains of rough set
approximations are stable.

A B-rough set of a given set X defines a partitioning of objects from an
information system into three disjoint sets called a B-positive region, B-boundary
region and B-negative region. The positive region corresponds to the lower
approximation of X - it contains objects that surely belong to the considered concept.
It is usually denoted by POSB(X). The boundary region BNDB(X) consists of
objects whose belongingness is unclear (relative to a given set of attributes). It
can be expressed as a difference between the upper and lower approximations:
BNDB(X) = X − X. Finally, the negative region NEGB(X) contains objects
that definitely do not belong to X, since they are outside its upper approximation:
NEGB(X) = U \X. Figure 2.1 shows rough set regions of an exemplary concept.

Zdzisław Pawlak in his early works on rough sets suggested an intuitive measure
of rough approximation accuracy:

α(AppB(X)) =
|X|
|X|

.

The accuracy measure α expresses how well a given concept is modelled by its rough
set. This measure is closely related to roughness of a set:
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ρB(X) =
|BNDB(X)|
|X|

= 1− α
(
AppB(X)

)
.

It is important to realize that the accuracy and roughness evaluate the rough
approximations only on the available objects from an information system.
Unfortunately, a close approximation on known data does not necessarily lead to
a reliable assessment of new cases due to the over-fitting problem [93, 157]. However,
those measures are still useful for tasks such as the feature selection, where they
can help evaluating the impact of including or excluding an attribute from a given
attribute set [94, 100, 174].

2.2.2 Approximation spaces

Although the rough set approximation of a concept is defined only for known objects
from S it can be easily extended to all objects from Ω by considering descriptions
of the lower and upper approximations. If the aim of the rough set analysis is to
create a predictive model, then the quality of approximation on previously unseen
cases is much more important than for the objects described in the decision table. To
ensure this property, it is often necessary to modify representation of objects in the
decision system by reducing unimportant or misleading attributes or by constructing
new ones which are more informative. Such an operation influences the shape of
the family of definable sets in S, i.e. it changes the approximation space [133, 135]
constructed for S.

More formally, an approximation space is a tuple A = (U, IND), where U is a
subset of known objects from Ω and IND ⊂ U × U is an indiscernibility relation
[133]. This notion can be generalized by introducing two important concepts, namely
an uncertainty function and a f -membership function.

Definition 2.5 (Uncertainty function).
Let U ⊆ Ω. A function I : U → P(U) will be called an uncertainty function iff the
following conditions are met:

1. ∀u∈Uu ∈ I(u).

2. u1 ∈ I(u2)⇔ u2 ∈ I(u1).

The uncertainty function assigns neighbourhoods to objects from the set U . The
conditions from Definition 2.5 imply that the uncertainty function defines a tolerance
relation, i.e. a relation that is reflexive and symmetric [133]. However, in rough set
literature this condition is sometimes weakened to consider any reflexive relation [102].

The sets defined by the uncertainty function may be utilized to measure a
degree in which an object belongs to a given concept. It is usually done using an
f -membership function.

Definition 2.6 (f -membership function).
Let U ⊆ Ω, I : U → P(U) be an uncertainty function, f : [0, 1] → [0, 1] be a
non-decreasing function and η : U × P(U)→ R be a function defined as:

ηI(u,X) =
|I(u) ∩X|
|I(u)|

.

A function µ = f(η) will be called an f -membership function.
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If f is an identity function, then the f -membership function will be called simply a
membership function. This type of an f -membership function coupled with a data
driven uncertainty function will be explicitly used in the construction of the similarity
model described in Section 4.3.

Having defined the uncertainty and the membership functions, a generalized
approximation space can be defined as a tuple A = (U, I, µ), where U is a subset
of known objects from Ω, I : U → P(U) is an uncertainty function and µ is an
f -membership function.

In the classical rough set theory, the uncertainty function I often associates objects
with their indiscernibility classes (i.e. I(u) = IB(u) = [u]B for B ⊆ A) and the
f -membership function has a form of µ(u,X) = µB(u,X) = |[u]B∩X|

|[u]B |
. For example,

if we consider the information system from Table 2.1.a and the uncertainty function
I(u) = [u]{a1,a2}, the neighbourhood of u2 would be I(u2) = {u2, u4, u7}. Furthermore,
a degree to which u2 belongs to the decision class with a label 1 with regard to I is
equal to µ

(
u2, {d = 1}(U)

)
= 2/3.

In this way, the function I can be used to generalize the indiscernibility relation
and define a new family of sets that can serve as building-blocks for constructing
approximations. Coupled with the rough membership function, it leads to a more
flexible definition of the lower and upper approximations:

X = {u ∈ U : µI(u,X) = 1} , (2.7)
X = {u ∈ U : µI(u,X) > 0} . (2.8)

Of course, if I is a description identity function, those definitions are equivalent to the
classical ones. There also exist further generalizations of rough approximations, such
as the variable precision rough set model [77, 175] which introduces an additional
parameter allowing to weaken the zero-one bounds in the above definitions.

The uncertainty function can be defined, for example, by combining
transformations of object representation space (the set of attributes) with the classical
indiscernibility. Such a transformation may include reduction of the information
describing objects to attributes which are truly related to the considered problem, as
well as an extension of the attribute set by new, often higher-level features.

2.2.3 Approximation of relations

The rough approximations allow not only to express the uncertainty about concepts
but also to model arbitrary relations between objects from Ω [132]. In fact, the notion
of approximation spaces was generalized in [132] to allow defining approximations of
sets in U = U1 × . . . × Uk, where Ui ⊂ Ω are arbitrary sets of objects. Since the
scope of this dissertation is on a similarity which can be seen as a binary relation (see
Chapter 3), only this type of relations will be considered in this section.

A binary relation r between objects from a given set U is a subset of a Cartesian
product of this set (r ⊆ U × U). Having a subset of objects from Ω we may try
to approximate an arbitrary binary relation r ⊆ Ω × Ω within the set U × U by
considering a generalized approximation space, defined as a tuple A2 = (U×U, I2, µ2),
where U ⊂ Ω, I2 : U × U → P(U × U) is a generalized uncertainty function and
µ2 :

(
U × U

)
×
(
P(U × U)

)
→ R is a generalized rough membership function.
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Figure 2.2: A graphical interpretation of as uncertainty function for approximation
of a binary relation. In this case a membership function value µ2

(
(u1, u2), r

)
could

be defined as a ratio between a size of the intersection of I2(u1, u2) and r, and the
size of whole I2(u1, u2).

The functions I2 and µ2 can be easily defined by an analogy with the case of
a regular approximation space. Their simplified graphical interpretation is shown
in Figure 2.2. However, the meaning of an indiscernibility class of a pair of objects
needs to be adjusted. In general, a pair (u1, u2) can be characterised by three possibly
different sets of features – features specific to u1, features specific to u2 and those
which describe u1 and u2 as a pair. This fact is utilized in a construction of the
Rule-Based Similarity (RBS) model proposed in Section 4.3. In this model, objects
are represented in a new feature space that allows for a robust approximation of a
similarity relation. Such approximation is likely to be precise not only on training
data but also in a situation when the model is used for assessment of resemblance of
the training cases to completely new objects.

Approximations of a binary relation may have two desirable properties that
indicate their quality, namely the consistence and covering properties defined below:

Definition 2.7 (Consistence property).
Let U ⊆ Ω and r be a binary relation in Ω. We will say that a binary relation r′ is
consistent with r in U iff the implication

(u1, u2) ∈ r′ ⇒ (u1, u2) ∈ r

holds for every u1, u2 ∈ U .
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Definition 2.8 (Covering property).
Let U ⊆ Ω and r be a binary relation in Ω. We will say that a binary relation r′

covers r in U iff the implication

(u1, u2) ∈ r ⇒ (u1, u2) ∈ r′

holds for every u1, u2 ∈ U .

A fact that a relation r′ is consistent with r in U will be denoted by r′ ⊆U r.
Analogically, a fact that r′ covers r in U will be denoted by r′ ⊇U r.

An approximation of a relation that has the consistence property can be seen as
a kind of a rough set lower approximation, whereas an approximation that covers a
binary relation can be treated as its upper approximation. Those two notions will
be used in Chapter 3 to characterize a class of similarity functions that is the main
scope of this dissertation.

2.3 Attribute Reduction

The problem of finding a representation of objects, which is appropriate in a
given task, can be seen as a process of adaptation of an approximation space,
therefore it is closely related to the rough sets in general. Zdzisław Pawlak wrote
in [111] that discovering redundancy and dependencies between attributes is one of
the fundamental and the most challenging problems of the rough set philosophy.
The rough set theory provides intuitive tools for selecting informative features
and constructing new ones. The most important of such tools are the notions of
information and decision reducts.

2.3.1 Rough set information reduction

In many applications information about objects from a considered universe has to
be reduced. This reduction is necessary in order to limit resources that are needed
by algorithms analysing the data or to prevent crippling their performance by noisy
or irrelevant attributes [50, 91, 93]. This vital problem has been in the scope of the
rough set theory since its beginnings [110, 113, 115] and has been investigated by
numerous researchers [69, 71, 94, 99, 100, 162].

Typically, in the rough set theory selecting compact yet informative sets of
attributes is conducted using the notion of indiscernibility, by computing so called
reducts [110, 131].

Definition 2.9 (Information reduct).
Let S = (U,A) be an information system. A subset of attributes IR ⊆ A will be called
an information reduct iff the following two conditions are met:

1. For any u ∈ U the indiscernibility classes of u with regard to IR and A are
equal, i.e. [u]A = [u]IR.

2. There is no proper subset IR′ ( IR for which the first condition holds.
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An information reduct IR can be interpreted as a set of attributes that are sufficient
to discern among as many objects described in S as the whole attribute set A. At
the same time the reduct is minimal, in a sense that no further attributes can be
removed from IR without losing the full discernibility property. Analogically, it is
possible to define a decision reduct DR for a decision system Sd:

Definition 2.10 (Decision reduct).
Let Sd =

(
U,A ∪ {d}

)
be a decision system with a decision attribute d that indicates

belongingness of objects to an investigated concept. A subset of attributes DR ⊆ A
will be called a decision reduct iff the following two conditions are met:

1. For any u ∈ U if the indiscernibility class of u relative to A is a subset of some
decision class, its indiscernibility class relative to DR should also be a subset of
that decision class, i.e. [u]A ⊆ [u]d ⇒ [u]DR ⊆ [u]d.

2. There is no proper subset DR′ ( DR for which the first condition holds.

Unlike in the definition of information reducts, a decision reduct needs only to sustain
the ability to discriminate objects from different decision classes. For example,
{a1, a3, a6} and {a3, a5, a6, a7} are information reducts of the information system
from Table 2.1.a while {a3, a5} and {a3, a6} are decision reducts of the corresponding
decision system.

The minimality of reducts stays in accordance with the Minimum Description
Length (MDL) rule. Depending on an application, however, the minimality
requirement for the reducts may sometimes be relaxed in order to ensure inclusion of
the key attributes to the constructed model. In some cases keeping relevant but highly
interdependent attributes may have a positive impact on model’s performance [50, 91].
For this reason within the theory of rough sets a notion of decision superreduct is
considered which is a set of attributes that discerns all objects from different decision
classes but does not need to be minimal.

Usually for any information system there are numerous reducts. In the rough
set literature there are described many algorithms for attribute reduction. The most
commonly used are the methods utilizing discernibility matrices and the boolean
reasoning [98, 100, 113, 131], and those which use a greedy or randomized search in
the attribute space [64, 71, 137, 140].

In [110] it is shown that a decision reduct can consist only of strongly and weakly
relevant attributes (it cannot contain any irrelevant attribute)2 if the available data
is sufficiently representative for the universe at scope. However, in real-life situations
this requirement is rarely met. Very often, especially when analysing high dimensional
data, some dependencies between attribute values and decisions are not general –
they are specific only to a given data set. In such a case attributes which are in fact
irrelevant might still be present in some decision reducts.

2.3.2 Generalizations of reducts

Many researchers have made attempts to tackle the problem of attribute relevance
in decision reducts. Apart from devising heuristic algorithms for performing the

2The strong and weak relevance of attributes is understood as in [81].
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attribute reduction that are more likely to select relevant features, a significant effort
has been made in order to come up with some more general definitions of the reducts.

It has been noticed that subsets of attributes which preserve discernibility of
a slightly lower number of objects from different decision classes than the whole
attribute set tend to be much smaller than the regular reducts. Usually objects that
are described with fewer attributes have larger discernibility classes which correspond
to more general decision rules. This observation motivated introduction of the notion
of an approximate decision reduct [96, 101, 140, 136, 138].

Definition 2.11 (Approximate decision reduct).
Let Sd =

(
U,A ∪ {d}

)
be a decision system with a decision attribute d and let ε be a

real non-negative number, ε ∈ [0, 1). Additionally, let |POSB(d)| denote the number
of objects whose indiscernibility classes with regard to an attribute set B ⊆ A are
subsets of a single decision class, i.e. |POSB(d)| = |{u ∈ U : [u]B ⊆ [u]d}|. A
subset of attributes ADR ⊆ A will be called an ε-approximate decision reduct iff the
following two conditions are met:

1. ADR preserves discernibility in Sd with a degree of 1− ε, i.e.
|POSADR(d)| ≥ (1− ε) · |POSA(d)|.

2. There is no proper subset ADR′ ( ADR for which the first condition holds.

Of course, for ε = 0 this definition is equivalent to the definition of regular decision
reducts. For the decision system from Table 2.1.b the attribute subsets {a1, a3} and
{a5, a6} are examples of the 0.3-approximate decision reducts.

The ε-approximate reducts can also be defined using differently formulated
conditions. For example, instead of relying on the sizes of positive regions of decision
classes, the approximate decision reducts can be defined based on the conditional
entropy [138] of an attribute set or the number of discerned object pairs [96]. In fact,
any measure of dependence between a conditional attribute subset and the decision,
which is monotonic with regard to inclusion of new attributes, can be used [140].

A different generalization of the decision reducts, called dynamic decision reducts,
has been proposed in [11]. In this approach a stability of a selected attribute set is
additionally verified by checking if all the attributes are still necessary when only
some smaller random subsets of objects are considered.

Definition 2.12 (Dynamic decision reduct).
Let Sd =

(
U,A∪{d}

)
be a decision system with a decision attribute d and let RED(Sd)

be a family of all decision reducts of Sd. Moreover, let ε and δ be real numbers such
that ε, δ ∈ [0, 1). A subset of attributes DDR ⊆ A will be called an (ε, δ)-dynamic
decision reduct iff for a finite set of all subsystems of Sd, denoted by SUB(Sd, ε),
such that for each S′d = (U ′, A, d) ∈ SUB(Sd, ε), U ′ ⊂ U and |U ′| ≤ (1− ε) · |U |, the
following two conditions are met:

1. DDR is a decision reduct of Sd (DDR ∈ RED(Sd)).

2. DDR is a decision reduct of sufficiently many S′d ∈ SUB(Sd, ε), i.e. |{S′d ∈
SUB(Sd, ε) : DDR ∈ RED(S′d)}| ≥ (1− δ) · |SUB(Sd, ε)|.
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Intuitively, if none of the attributes selected as belonging to a decision reduct is
redundant when considering only subsets of objects, then the reduct can be seen as
insensitive to data disturbances. Due to this characteristic the dynamic decision
reducts are more likely to define robust decision rules [9, 11]. Additionally, the
dynamic decision reducts tend to be more compact than the regular reducts. For
example, from two decision reducts DR1 = {a3, a5} and DR2 = {a1, a2, a8} of the
decision system

(
U,A∪{d}

)
from Table 2.1.b, only the first one is a (0.1, 0)-dynamic

decision reduct, since DR2 is not a reduct of a decision system S′d = (U \ {u4}, A, d).
Both of those generalizations of the decision reducts have been successfully used in

applications, such as constructing ensembles of predictive models [169], discovering of
approximate dependencies between attributes [101, 140] and attribute ranking [71].
In this dissertation it is also showed how the dynamic reducts can be utilized for
learning of a similarity function [65, 67] (see also Chapter 4). The definitions of
approximate and dynamic reducts for information systems can be given analogously
to those for the decision systems, thus they are omitted.

2.3.3 Notion of bireducts

The original definition of a decision reduct is quite restrictive, requiring that it should
provide the same level of information about decisions as the complete set of available
attributes. On the other hand, the approximate reducts, which are usually smaller
and provide a more reliable basis for constructing classifiers [140, 144], can be defined
in so many ways that selecting the optimal one for a given task is very difficult.
The choice of the method may depend on a nature of particular data sets and on
a purpose for the attribute reduction. Moreover, computation of the approximate
decision reducts may require tuning of some unintuitive parameters, such as the
threshold for a stopping criterion (ε).

Another issue with the approximate reducts is related to the problem of building
classifier ensembles [5, 30, 144, 151, 169]. Combining multiple classifiers is efficient
only if particular models tend to make errors on different areas of the universe at
scope. Although, in general, there is no computationally feasible solution that can
guarantee such a diversity, several heuristic approaches exist. For instance, one may
focus on the classifier ensembles learnt from reducts that include as different attributes
as possible. In this way one may increase stability of the classification and improve
the ability to represent data dependencies to the users. Unfortunately, the common
approximate reduct computation methods do not provide any means for controlling
which parts of data are problematic for particular reducts. As a result, when building
an ensemble where individual reducts are supposed to correctly classify at least 90%
of the training objects, we may fail to anticipate that each of the resulting classifiers
will have problems with the same 10% of instances.

To tackle the above challenges, a new extension of the original notion of a reduct
was proposed [70, 141], called a decision bireduct. In this approach the emphasis is
on both, a subset of attributes that describes the decision classes and a subset of
objects for which such a description is possible.

Definition 2.13 (Decision bireduct).
Let Sd =

(
U,A∪{d}

)
be a decision system. A pair (B,X), where B ⊆ A and X ⊆ U ,
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is called a decision bireduct, iff B is a decision reduct of a subsystem (X,A, d) and
the following properties hold:

1. B discerns all pairs of objects from different decision classes in X and there is
no proper subset C ( B for which such a condition is met.

2. There is no Y ) X such that B discerns all pairs of objects from different
decision classes in (Y,B, d).

It is important to realize that a decision subsystem (X,B, d) is always consistent
(all indiscernibility classes in (X,B, d) are subsets of the decision classes), regardless
of the consistency of the original system. However, a decision bireduct (B,X) can be
regarded as an inexact functional dependence in Sd linking the subset of attributes B
with the decision d, just as in a case of approximate reducts. The objects in X can be
used to construct a classifier based on B and the objects from U \X can be treated as
outliers. The computation of bireducts can be seen as searching for an approximation
space that allows to generate meaningful decision rules. Such rules are local, since
they are defined only for objects from X. However, by neglecting the potentially
noisy outliers, the rules induced from the decision bireducts (e.g. by considering
the indiscernibility classes of objects from X) are more likely to be robust [141]. It
has been noted that bireduct-based ensembles tend to cover much broader areas of
data than the regular reducts, which leads to better performance in classification
problems [141].



Chapter 3

Notion of Similarity

The notion of similarity has been in a scope of interest for many decades [41, 42,
51, 147]. Knowing how to discriminate similar cases (or objects) from those which
are dissimilar in a context of a decision class would enable us to conduct an accurate
classification and to detect unusual situations or behaviours. Although human mind is
capable of effortless assessing the resemblance of even very complex objects [58, 127],
mathematicians, computer scientists, philosophers and psychologist have not come
up with a single methodology of building similarity models appropriate for a wide
range of complex object classes or domains.

A variety of methods were used in order to construct such models and define a
relation which would combine an intuitive structure with a good predictive power.
Among those a huge share was based on some distance measures. In that approach
objects are treated as points in a metric space of their attributes and the similarity is
a decreasing function of the distance between them. Objects are regarded as similar if
they are close enough in this space. Such models may be generalized by introducing a
list of parameters to the similarity function, e.g. weights of attributes. Tuning them
results in the relation better fitting to a dataset. Algorithms for computationally
efficient optimization of parameters for common similarity measures in the context
of information systems were studied in, for instance, [102, 149, 171].

One may argue that the relation of this kind is very intuitive because objects
which have many similar values of attributes are likely to be similar. However, Amos
Tversky [41, 159] showed in empirical studies that in some contexts similarity does
not necessarily have features like symmetry or subadditivity which are implied by
distance measures. This situation occurs particularly often when we compare objects
of great complexity. The explanation for this may lie in the fact that complex objects
can be similar in some aspects and dissimilar in others. A dependency between local
and global similarities may be highly non-linear and in order to model it we need to
learn this dependency from the data, often relying on the domain knowledge provided
by an expert.

This chapter discusses general properties of the similarity understood as a binary
relation between objects from a considered universe. The following Section 3.1
introduces the notion of a similarity relation and explains some difficulties related
to the formal definition of this idea. In its last subsection (Section 3.1.4) it describes
how a performance of a similarity model can be quantitatively evaluated. Next,
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Section 3.2 briefly overviews the most commonly used approaches to the problem of
modelling the similarity relation. Its main focus is on showing the differences between
the distance-based model and the approach proposed by Amos Tversky [159, 160].
Finally, the last section in this chapter (Section 3.3) shows exemplary applications of
the similarity in fields such as Case-Based Reasoning and Cluster Analysis.

3.1 Similarity as a Relation

The similarity can be treated as a binary relation τ between objects from a universe
Ω. Importance of this relation is unquestionable. In fact, many philosophers and
cognitivists believe that the similarity plays a fundamental role in a process of learning
from examples as well as acquiring new knowledge in general [51, 58, 127, 158].
Unfortunately, even though a human mind is capable of assessing similarity of even
complex objects with a little effort, the existing computational models of this relation
have troubles with accurate measuring of the resemblance between objects.

3.1.1 Vagueness of a similarity relation

Numerous empirical studies of psychologists and cognitivists showed that human
perception of similar objects depends heavily on external factors, such as available
information, personal experience and a context [41, 42, 159]. As a consequence,
properties of a similarity relation may vary depending on both the universe and the
context in which it is considered (see, e.g. [42, 159]). The similarity relation can be
characterized only for a specific task or a problem. For instance, when comparing
a general appearance of people in the same age, the similarity relation is likely to
have a property of the symmetry. However, in a case when we compare people of
a different age this property would not necessarily hold (e.g. a son is more similar
to his father than the opposite). In a general case even the most basic properties,
such as the reflexivity, can be questioned [159]. Figure 3.1 shows a drawing from two
different perspectives. It can either be similar to itself or dissimilar, depending on
whether we decide to consider its perspective.

The subjective nature of a similarity assessment makes it impossible to perfectly
reflect the similarity using a single model. Capturing personal preferences would
require tailoring the model to individual users. This could be hypothetically possible
only if some personalized data was available and it would require some form of an
automatic learning method. Even though in many applications it is sufficient to model
similarity assessments of an “average user”, a model which is designed for a given task
and which takes into account the considered context, have much better chances to
accurately measure the resemblance than an a priori selected general-purpose model.

Additionally, due to the fact that it is impossible to determine any specific features
of the similarity without fixing its context, if no domain knowledge is available, it
may be treated as a vague concept. In order to model it, all properties of this
relation have to be derived from information at hand. Such information can usually
be represented in an information system. That is another argument motivating the
need for development of algorithms for learning domain-specific similarity relations
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Figure 3.1: A single drawing from two different perspectives.

from data. One possible approach to this task is to utilize the theory of rough sets
(see Chapter 2) to construct an approximation of τ , which will be denoted by τ ∗.

Within the rough set theory, relations can be approximated just as any other
concept (see Section 2.2.3). The problem of approximation of binary relations was
investigated by researchers since the beginnings of the rough sets [112, 132, 145]. If no
additional knowledge is available this task is much more difficult than, for instance, a
classification. It may be regarded as a problem of assigning binary decision labels to
pairs of instances from the universe Ω in an unsupervised manner, using information
about a limited number of objects described in available information system. It is
important to realize that the resulting approximation τ ∗ has to be reliable not only
for objects at hand but also for new ones. For this reason, in practical situations, in
order to properly approximate the similarity it is necessary to utilize some domain
knowledge and to specify a context for the relation.

3.1.2 Similarity in a context

Several independent studies showed how important is to consider an appropriate
context while judging a similarity between objects [42, 51, 147, 159]. Two stimuli
presented to a representative group of people can be assessed as similar or dissimilar,
depending on whether some additional information is given about their classification
or whether they are shown along with some other characteristic objects. For instance,
if we consider cars in a context of their class1, then Chevrolet Camaro will be more
similar to Ford Mustang than Ford Tempo. However, if we change the context to a
make of a car the assessment would be completely different.

A selection of the context for the similarity has a great impact on features or in
other words factors, that influence the judgements [42, 159]. In the previous example,
a feature such as a colour of a car would be irrelevant in the context of car’s class.

1The official classification of cars is discussed, e.g., in a Wikipedia article Car classification
(http://en.wikipedia.org/wiki/Car_classification).

http://en.wikipedia.org/wiki/Car_classification
http://en.wikipedia.org/wiki/Car_classification
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Nevertheless, it might be important in the context of a make of a car, since some car
paints could be exclusively used by specific car producers.

When constructing a similarity model for a given data, the context for the relation
can usually be inferred from a purpose which motivates performing the analysis.
If a task is to cluster the given data into subsets of closely related objects in an
unsupervised way and without any additional knowledge, then the context will
probably be a general appearance of objects. However, if we know that, for example,
the data describe textual documents, it is possible to consider them in a context of
their semantics (their meaning – see Section 5.3). Furthermore, if the similarity model
is created for a task such as a diagnosis of a specific condition based on a genetic
profile of tissue samples, then a classification into severity stages of the condition will
probably be the best context to choose (see experiments in Sections 5.1 and 5.2).
In the last case the information specifying the context will usually correspond to a
decision attribute in the data table.

It is also reasonable to consider similarity of two objects in a context of other
objects in the data. For instance, a banana will be more similar to a cherry when
considered in a data set describing dairy and meat products, vegetables and fruits,
than in a case when the data is related only to different kinds of fruits. In those two
cases, different aspects of the similarity would have to be taken into account, and as
a consequence, the same attributes of the fruits would have different importance.

In general, similar objects are expected to have similar properties with regard to
the considered context. Since in this dissertation the main focus is on the similarity
in the context of a classification, the above principle can be reformulated in terms of
the consistency of the similarity with the decision classes of objects2. More formally:

Definition 3.1 (Consistency with a classification).
Let Ω be a universe of considered objects and let d be a decision attribute which can
be used to divide objects from Ω into indiscernibility classes Ω/{d}. Moreover, let τ
denote a binary relation in Ω. We will say that τ is consistent with the classification
indicated by d iff the following implication holds for every u1, u2 ∈ Ω:

(u1, u2) ∈ τ ⇒ d(u1) = d(u2) .

The above property will be referred to as the main feature of the similarity for the
classification. It is also often assumed that a similarity relation in the context of a
classification needs to be reflexive, namely ∀u∈Ω(u, u) ∈ τ . Additionally, for objects
which are described by a set of conditional attributes A, the reflexivity is understood
in terms of indescernibility. In particular, we will say that τ is reflexive if and only
if ∀(u,u′)∈INDA(u, u′) ∈ τ . This assumption, however, can be true only if there are no
two objects in Ω which are identical in all aspects but belong to different decision
classes. Binary relations in Ω that have the above two properties will be regarded as
possible similarity relations in the context of the classification. The set of all such
relations will be denoted by:

R = {τ : τ ⊆Ω IND{d} ∧ τ ⊇Ω INDA} .

In the remaining parts of the dissertation it is assumed that one of such relations
τ ∈ R is fixed and considered as the reference similarity relation in the specified

2The consistency of two relations within a given set is defined in Section 2.2.3
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classification context. It should be noted, however, that different scenarios for
inducing this relation from data may or may not assume the availability of knowledge
regarding τ for the training data. In the second case, which applies to the similarity
model proposed in Section 4.3, only information about the properties of τ is utilized
in the learning process.

The property from Definition 3.1 can be used to guide the process of constructing
approximations of the relation τ . It infers that a desirable approximation τ ∗ should
also be consistent with the decision classes indicated by d. In practice, however, this
condition can be verified only for the known objects described in a decision system.
Moreover, in real life applications it may sometimes be slightly relaxed in order to
increase the recall of the approximation. Nevertheless, the knowledge that any set
of objects that are similar to a given one must have the same decision can be used
to limit a search space for features that can conveniently represent pairs of objects
in an approximation space, as discussed in Section 2.2.3. It is also the fundamental
assumption used in the construction of the Rule-Based Similarity in Chapter 4.

Although an approximation of a similarity in a context of classification can be
made only using known objects from a given decision system, it has to allow an
assessment of whether an arbitrary object from Ω \ U is similar to an object from
U . To make this possible, an assumption is made that for objects from Ω \U we can
retrieve values of their conditional attributes (without the need for referring to their
decision class, which may remain unknown).

There can be many approximations of a similarity relation for a given decision
table Sd =

(
U,A ∪ {d}

)
. For example, one can always define a trivial approximation

for which no pair of objects is similar or a naive one, for which only objects from U that
are known to belong to the same decision class can be similar. Therefore, in practical
applications it is crucial to have means to evaluate quality of an approximation and
estimate how close it is to the real similarity for the objects that are not described
in Sd, i.e. {u′ ∈ Ω : u′ /∈ U}. Since there is no available information regarding
those objects, the Minimum Description Length rule (MDL) is often used to select
the approximation which can be simply characterized but is sufficiently precise.

3.1.3 Similarity function and classification rules

In a variety of practical situations it is convenient to express a degree in which one
object is similar to another. For instance, in machine learning many classification
methods construct rankings of training objects based on their similarity to a
considered test case (e.g. the k nearest neighbours algorithm [15, 93, 102, 166]).

To assess the level of similarity between a pair of objects, a special kind of function
is used, called a similarity function. Usually, such a function for a considered data
set is given a priori by an expert for a whole Ω×Ω set, independently of the available
data and the context. Intuitively, however, a similarity function for an information
system S = (U,A) should be a function Sim : U×Ω→ R, whose values are “high” for
objects in a true similarity relation and becomes “low” for objects not in this relation.
Such a function could be used to define a family of approximations of the similarity
relation τ by considering the sets τSim(λ) = {(u1, u2) ∈ U × U : Sim(u1, u2) ≥ λ} for
any λ ∈ R. If a function Sim is appropriate for a given relation, then at least some of
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Table 3.1: A similarity relation in a context of classification for the objects from
the decision system depicted in Table 2.1.b (on the left) and a table with the
corresponding values of a similarity function (on the right).

τ =
{

(u1, u1), (u1, u7),
(u2, u2), (u2, u5),
(u2, u7), (u3, u3),
(u3, u7), (u4, u4),
(u4, u8), (u5, u2),
(u5, u5), (u5, u7),
(u6, u6), (u6, u8),
(u7, u1), (u7, u2),
(u7, u5), (u7, u7),
(u8, u4), (u8, u8),
(u9, u4), (u9, u9)

}

A similarity matrix:
u1 u2 u3 u4 u5 u6 u7 u8 u9

u1 1.00 0.50 0.42 0.09 0.51 0.23 0.66 0.09 0.09
u2 0.50 1.00 0.42 0.09 1.00 0.20 0.67 0.08 0.43
u3 0.42 0.42 1.00 0.00 0.42 0.00 0.62 0.00 0.32
u4 0.07 0.09 0.00 1.00 0.08 0.50 0.00 1.00 0.48
u5 0.50 1.00 0.42 0.09 1.00 0.20 0.66 0.08 0.12
u6 0.20 0.25 0.00 0.50 0.20 1.00 0.09 0.50 0.20
u7 0.68 0.66 0.60 0.00 0.66 0.07 1.00 0.00 0.00
u8 0.09 0.09 0.00 1.00 0.12 0.50 0.00 1.00 0.33
u9 0.09 0.50 0.32 0.50 0.11 0.20 0.00 0.33 1.00

the approximations τSim(λ) should be consistent with τ (see Definition 2.7) for available
data. To further formalize this notion for the purpose of this dissertation a concept
of a proper similarity function is proposed:

Definition 3.2 (Proper similarity function).
Let τ be a similarity relation between objects from Ω, U ⊆ Ω be a subset of known
reference objects and Sim : U × Ω → R be a function. We will say that Sim is a
proper similarity function for the relation τ within the set U iff there exist ε1, ε2 ∈ R,
ε1 > ε2, such that the following conditions hold:

1.
∣∣τSim(ε1)

∣∣ > 0 and τSim(ε1) ⊆U τ (see Def. 2.7),

2.
∣∣(U × U) \ τSim(ε2)

∣∣ > 0 and τSim(ε2) ⊇U τ (see Def. 2.8).

A value of a similarity function for a pair (u1, u2) will be called a similarity degree
of u1 relative to u2. Each of the sets τSim(λ) can be regarded as an approximation
of the similarity relation τ . The first condition from Definition 3.2 requires that,
starting from some ε1, all the approximations τSim(λ) defined by a proper similarity
function were subsets of the true similarity relation. It means that the precision of
the approximation defined as precτ (τSim(λ) ) =

|τSim
(λ)
∩τ |

|τSim
(λ)
| equals 1 for all λ ≥ ε1 such

that |τSim(λ) | > 0. One practical implication of this fact is that in the context of
classification, for sufficiently large λ, objects in each pair from τSim(λ) must belong to
the same decision class (see Definition 3.1).

The second condition in the definition of a proper similarity function requires that
there exists a border value ε2 such that all τSim(λ) for λ ≤ ε2 were supersets of the true
similarity relation τ . By an analogy to the rough sets, τSim(ε1) and τSim(ε2) can be treated
as a lower and upper approximation of the similarity, respectively (see Section 2.2).

Of course, one function can be a proper similarity function in one context but not
in the other. If a function Sim is a proper similarity function for a given similarity
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relation, we will say that this relation is approximable by Sim. For example, Table
3.1 shows a similarity relation between objects described in the decision system from
Table 2.1.b and a similarity matrix displaying values of some similarity function for
all the pairs of the objects. As one can easily notice, the relation τ is consistent
with the decision classes. Moreover, the similarity function used to generate the
matrix is a proper similarity function for τ within the considered set of objects
because for λ = 0.66 the corresponding approximation τSim(0.66) =

{
(u1, u1), (u1, u7),

(u2, u2), (u2, u5), (u2, u7), (u3, u3), (u4, u4), (u4, u8), (u5, u2), (u5, u5), (u5, u7), (u6, u6),
(u7, u1), (u7, u2), (u7, u5), (u7, u7), (u8, u4), (u8, u8), (u9, u9)

}
is consistent with τ and

for λ = 0.50 the approximation τSim(0.50) =
{

(u1, u1), (u1, u2), (u1, u5), (u1, u7), (u2, u1),

(u2, u2), (u2, u5), (u2, u7), (u3, u3), (u3, u7), (u4, u4), (u4, u6), (u4, u8), (u5, u1), (u5, u2),
(u5, u5), (u5, u7), (u6, u4), (u6, u6), (u6, u8), (u7, u1), (u7, u2), (u7, u3), (u7, u5), (u7, u7),
(u8, u4), (u8, u6), (u8, u8), (u9, u2), (u9, u4), (u9, u9)

}
covers the relation τ .

Is is worth to notice that a proper similarity function does not need to be
symmetric. For instance, in the previous example Sim(u1, u4) 6= Sim(u4, u1). It is
also important to realize that a similarity function does not need to be non-negative.
The negative values of a similarity function are usually interpreted as an indication
that the compared objects are more dissimilar than they are similar. However, the
majority of commonly used similarity functions are non-negative.

A similarity function allows to order objects from U according to their degree of
similarity to any given object from the considered universe. It is important to notice,
that the similarity function allows to compute the similarity coefficient of u from the
set of known objects U to any object from the universe Ω, given that it is possible
to determine its attribute values. In particular, information about a decision class
of the second object does not need to be available. That property may be used to
define several simple, case-based classification methods. For instance, if the available
training objects are described in a decision system Sd =

(
U,A∪{d}

)
, an object y ∈ Ω

can be assigned to a decision class of the most similar object from U :

1-NNSim(y) = d
(

argmax
u∈U

Sim(u, y)
)
. (3.1)

This formula can be easily generalized to a k-nearest neighbours classification by
introducing a voting scheme for deciding a class of the investigated case [23, 93,
107, 157, 166]. A voting scheme can also be applied in a case when in U there
are several objects which are equally similar to y and belong to different decision
classes. There are numerous voting schemes that aim at optimizing the classification
performance. A basic heuristic is a majority voting by the k most similar objects
from the system Sd. Some more complex voting schemes may additionally take into
account the actual similarity function values to weight the votes of the neighbours.
The relative “importance” of a vote may also be adjusted by considering empirical
probabilities of the decision classes.

A similarity function may also be used to define a slightly different kind of a
classification rule. In the λ-majority classification, an object y ∈ Ω is assigned to a
decision class which is the most frequent within the set of objects regarded as similar
to y. Particularly, if we denote Cλ(y) =

{
u ∈ U : Sim(u, y) ≥ λ

}
, then y can be

classified as belonging to one of the l decision classes d1, ..., dl of d using the formula:
λ-majoritySim(y) = argmax

dj∈{d1,...,dl}

∣∣{u ∈ U : u ∈ Cλ(y) ∧ d(u) = dj}
∣∣ . (3.2)
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The λ-majority classification assigns objects to a class with the highest number of
similar examples, according to an approximation of the similarity relation by the
set τSim(λ) . It also can make use of different voting schemes, such as object weighting
by a similarity degree or considering sizes of the decision classes. Some exemplary
similarity functions and their applications in the context of the classification task are
discussed in Section 3.3.1.

The ability to assess a similarity degree is also useful in an unsupervised data
analysis (see Section 3.3.3). For instance, various similarity functions are commonly
used by clustering algorithms to form homogeneous groups of objects. Moreover,
similarity functions may be more convenient to use for an evaluation of a similarity
model, since the implicit verification of a similarity relation approximation may
require checking all pairs of objects. More application examples of similarity functions
for supervised and unsupervised learning are discussed in Section 3.3.

3.1.4 Evaluation of similarity models

A similarity relation in a given context can be approximated using many different
methods. However, a quality of two different approximations will rarely be the same.
In order to be able to select the one which is appropriate for a considered problem
there have to be defined some means of measuring a compliance of the approximation
with the real similarity relation.

An objective evaluation of similarity assessment is a problem that has always
accompanied research on similarity models. Although there have been developed
many methods for measuring the quality of a similarity model, the most of them can
be grouped into three categories. The main criteria for this division is a required
involvement of human experts.

In the first category there are methods which measure compliance of the
assessment returned by a model with human-made similarity ratings. Such an
approach includes researches in which human subjects are asked to assess the
similarity between pairs of objects (called stimuli). Next, those assessments are
compared with an output of the tested model and some statistics measuring their
correspondence are computed. For instance, Tversky in [159] describes a study in
which people were asked about a similarity between particular pairs of countries.
As a part of this study, two independent groups of participants had to assess the
similarity degrees between the same pairs of countries, but with an inverse ordering
(i.e. one group assessed how similar is country A to B, whereas the second judged
the similarity of B to A). Based on those ratings, Tversky showed that there is a
statistically significant asymmetry in the average similarity judgements within those
two groups and used this finding as an argument for viability of his feature contrast
model (see Section 3.2.2). In a different study on the similarity of vehicles [159],
Tversky measured the correlation between the average assessments made by human
subjects and the results of his model. In this way he was able to show that taking
into account both common and distinctive features of objects, his model can better
fit the data than in a case when those sets of characteristics are considered separately.

The main advantage of this approach is that it allows to directly assess the viability
of the tested model to a given problem. Average assessments made by human subjects
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define the ground truth similarity relation which the model tries to approximate. By
using well-defined statistical measures of compliance between two sets of judgements
it is possible not only to objectively evaluate the model but also to quantitatively
compare it to different models and decide which one is better.

However, such a direct approach has some serious disadvantages. It usually
requires a lot of time and resources to gather a meaningful amount of data from
human participants. This does not only increase the overall cost of the model but
also limits the possible test applications to relatively small data sets. Additionally,
it is sometimes difficult to design an environment for manual assessment of the
similarity in a desired context. Since there are many factors that can influence human
judgement, the similarity ratings obtained in this way can be biased. Due to those
practical reasons, usage of this evaluation method is very rare for data sets with more
than a few hundreds of stimuli.

Table 3.2: Summary of typical similarity model evaluation methods.

Correlation with average similarity ratings
Advantages: Disadvantages:
– direct assessment of a model – requires human-made ratings
– simple and intuitive evaluation – deficiencies in data availability

– possibility of a context bias
Measures of compliance with constraints

Advantages: Disadvantages:
– semi-direct model assessment – requires experts to impose constraints

by labelling or grouping
– simpler for experts – possible inconsistencies

Measures of classification accuracy
Advantages: Disadvantages:
– no human involvement required – indirect model assessment
– no limitations on data availability or
quality

– can be used only in the context of
classification

– applicable for large data sets

The second category of similarity model evaluation methods consists of measures
that verify compliance of the tested model with constraints imposed by domain
experts. Usually, even when a data set is too large to evaluate similarity degrees
between every pair of objects, experts are able to define some rules that must be
satisfied by a good similarity model. Such rules may be either very general (e.g. less
complex objects should be more similar to the more complex ones than the opposite)
or very specific (e.g. object u1 and u2 must not be indicated as similar). The quality
of a model is then expressed as a function of a cardinality of a set of violated rules.

Experts may also provide some feedback regarding truly relevant characteristics
of some objects in the considered context. This information can be utilized to
heuristically assess the similarity degree of the preselected objects and those values
may be used as a reference during the evaluation of similarity models. In a more
general setting, this type of quality assessment can be used to measure quality
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in a semantic clustering task [70] and motivates the semi-supervised clustering
algorithms [4]. This approach is used in experiments described in Section 5.3 to
evaluate the similarity models for scientific articles, constructed in the context of
their semantic similarity.

The main advantage of this approach is that it is usually much more convenient
for experts to specify constraints rather than indicate exact similarity values. Since
such rules may be local and do not need to cover all pairs of objects, they might be
applied to evaluate a similarity model on a much larger data. One major drawback
is the possible inconsistency within the constraints defined by different experts. Also
the evaluation cost which is related to the employment of human experts cannot
be neglected.

Finally, the last category consists of methods that can only be applied in the
context of classification. Similarity models are often built in order to support
decision making or to facilitate a prediction of classes of new objects. If a model
is designed specifically for this purpose, it is reasonable to evaluate its performance
by measuring the quality of predictions made with a use of similarity-based decision
rules (see Definitions 3.1 and 3.2). Since the main feature of similarity in a context of
classification (Definition 3.1) imposes a kind of a constraint on desired assessments of
similarity, this approach can be seen as a special case of the methods from the second
category. However it differs in that, it does not need the involvement of human
experts.

The biggest advantage of this approach is the lack of restrictions on evaluation
data availability. It makes it possible to automatically test a similarity model even
on huge data sets, which makes the evaluation more reliable. Due to those practical
reasons this particular method was used in many studies, including [60, 64, 65, 67,
89, 102, 149]. It was also used in experiments conducted for the purpose of this
dissertation which are described in Sections 5.1 and 5.2. Table 3.2 summarizes the
above discussion on the methods for evaluation of similarity models.

3.2 Commonly Used Similarity Models

This section overviews the most commonly used similarity models. The presented
approaches differ in the constrains on the way they approximate the similarity
relation. For instance, the distance-based models restrict the approximations to
relations which are reflexive and symmetric. However, all the models discussed in
this section have one property in common. They can be used to approximate the
similarity in a way that is independent of a particular data domain or a context. For
this reason the resulting approximations are often not optimal and expert knowledge
is needed to decide whether it is worth to apply a selected model to a given problem.

3.2.1 Distance-based similarity modelling

The most commonly used in practical applications are the distance-based similarity
models. A basic intuition behind this approach is that each object from a universe Ω
can be mapped to some point in an attribute value vector space. It is assumed that
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in this space there is a metric defined which allows to assess a distance between any
two points. Such a metric will be called a distance function or a distance measure.

Definition 3.3 (Distance measure).
Let Ω be a universe of objects and let Dist : Ω × Ω → R+ ∪ {0} be a non-negative
real function. We will say that Dist is a distance measure if the following conditions
are met for all u1, u2, u3 ∈ Ω:

1. Dist(u1, u2) = 0⇔ u1 = u2 (identity of indiscernibles),

2. Dist(u1, u2) = Dist(u2, u1) (symmetry),

3. Dist(u1, u2) +Dist(u2, u3) ≥ Dist(u1, u3) (triangle inequality).

If the objects from Ω are described by attributes from a set A, then the first
condition can be generalized by considering the indiscernibility classes of u1 and
u2: Dist(u1, u2) = 0 ⇔ (u1, u2) ∈ INDA. This particular variation of the distance
measure definition will be used in the later sections. Moreover, if a given function
does not fulfill the third condition (the triangle inequality) but meets the other two
it is called a semidistance or a semimetric.

A typical example of a distance measure is the Euclidean distance, which is a
standard metric in Euclidean spaces:

DistE(u1, u2) =

√∑
a∈A

(
a(u1)− a(u2)

)2
. (3.3)

Another example of a useful distance measure is the Manhattan distance:

DistM(u1, u2) =
∑
a∈A

∣∣a(u1)− a(u2)
∣∣. (3.4)

Both of the above metrics are generalized by the Minkowski distances, which can be
regarded as a parametrized family of distance measures:

Distp(u1, u2) =
(∑
a∈A

∣∣a(u1)− a(u2)
∣∣p)1/p

. (3.5)

Figure 3.2 presents shapes of circles in spaces with Minkowski metric for different
values of the parameter p.

Figure 3.2: Shapes of circles in spaces with different Minkowski distances.

A different example of an interesting distance function in a R|A| space is the Canberra
distance:

DistC(u1, u2) =
∑
a∈A

|a(u1)− a(u2)|
|a(u1)|+ |a(u2)|

. (3.6)
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It is mostly used for data with non-negative attribute values scattered around the
centre since it has a property that its value becomes unity when the attributes are of
opposite sign.

All the above metrics work only for objects described by numeric attributes. There
are however numerous metrics which can be applied to cases with symbolic attributes.
The most basic of those is the Hamming distance:

DistH(u1, u2) = |{a ∈ A : a(u1) 6= a(u2)}|. (3.7)

Typically, the Hamming distance is used for the assessment of a proximity between
binary strings. It can also be utilized for comparison of any equally sized strings,
but in such a case the edit distance3 is more commonly employed, since it allows to
compare strings of different length.

Another example of a distance defined for objects with binary attributes is the
binary distance:

Distb(u1, u2) =
|{a ∈ A : a(u1) 6= a(u2)}|

|{a ∈ A : a(u1) 6= 0 ∨ a(u2) 6= 0}|
. (3.8)

The binary distance can be applied to any type of symbolic data after transformation
of each symbolic attribute to its binary representation.

A common choice of a measure in high dimensional numeric spaces is the cosine
distance. It measures the angle between two vectors:

Distarcc(u1, u2) = arccos(cos(u1, u2)) (3.9)

= arccos

( ∑
a∈A|

a(u1) · a(u2)√∑
a∈A

(
a(u1)

)2 ·
√∑

a∈A

(
a(u2)

)2

)
. (3.10)

The cosine between two vectors is equivalent to their scalar product divided by a
product of their norms. A distance defined in this way is a proper metric only for
points from (R+)|A| and lying on a sphere. To avoid computation of the arc-cosine,
in applications this distance function is simplified to a form:

Distc(u1, u2) = 1−

∑
a∈A|

a(u1) · a(u2)√∑
a∈A

(
a(u1)

)2 ·
√∑

a∈A

(
a(u2)

)2
. (3.11)

It needs to be noted, however, that Distc is only a semimetric.
The main advantage of the cosine distance is that it can be efficiently computed

even for extremely high dimensional but sparse data4. In such a case, representations
of all objects can be normalized by dividing all attribute values by a norm of the
corresponding vectors in Euclidean metric space. After this transformation, the
distance can be computed by multiplying only attributes with non-zero values for

3A value of the edit distance is equal to the minimal number of edit operations needed to
transform one string into another. It is often called the Levenshtein distance.

4Sparse data is data with little non-zero attribute values.
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both points and summing the results. For this reason the cosine distance is commonly
used in information retrieval [54, 122] and textual data mining [35, 55, 95].

It can be easily noted that the most of the above distance measures can be seen
as a composition of two functions. The first one is applied independently for each
of the attributes to measure how different their values are in the compared objects.
The second one aggregates those measurements and expresses the final distance. For
example, in a case of the Minkowski distance the first function is f(x, y) = |x − y|
and the second is Fp(x1, . . . , x|A|) =

( ∑
i=1,...,|A|

xpi
)1/p. Such functions are called a local

distance and a global distance, respectively. It can be shown that a large share of
distance measures can be constructed by composing a distance in a one-dimensional
space and a norm in a |A|-dimensional vector space (a proof of this fact can be found
e.g. in [59]). This fact is often called a local-global principle.

By applying different local distance types to attributes, it is possible to measure
distances between objects described by a mixture of numerical and nominal features.
One example of such a measure is the Gower distance. It uses the absolute value of
difference and the equivalence test for numerical and nominal attributes, respectively,
and then it aggregates the local distances using the standard Euclidean norm.

In the distance-based approach, a similarity is a non-increasing function of a
distance between representations of two objects. The transformation from a distance
to a similarity values is usually done using some simple monotonic function such as
the linear transform (Equation 3.12) or the inverse transform (Equation 3.13). Many
other functions, such as common kernels, can also be used.

Simlin(u1, u2) = C −Dist(u1, u2) (3.12)

Siminv(u1, u2) =
1

Dist(u1, u2) + C
(3.13)

In the above equations C is a constant, which is used to place the similarity values
into appropriate interval. Some other scaling methods can sometimes be additionally
applied to secure that the similarity values stay in a desired range for pairs of objects
from a given information system.

The usage of distance measures for computation of a similarity makes the resulting
model inherit some of the properties of metrics. For instance, any distance-based
approximation of the similarity will always have the property of reflexivity and
symmetry, which might be undesirable. Moreover, if a similarity function is based on
a globally predefined distance measure, it does not take into account the influence of
particular characteristics of objects in a given context and treats all the attributes
alike. The distinction between the local and global distances makes it possible to
partially overcome this issue by introducing additional parameters which express the
importance of the local factors to the global similarity. One example of such similarity
measure is based on the generalized Minkowski distance:

Distw,p(u1, u2) =
(∑
a∈A

wa ·
∣∣a(u1)− a(u2)

∣∣p)1/p

. (3.14)

In this model, the vector of parameters w = (wa1 , . . . , wa|A|) can be set by domain
experts or can be tuned using one of the similarity function learning techniques
discussed in Section 4.2.



44 3. Notion of Similarity

From the fact that any distance-based similarity approximation has to be reflexive,
it follows that a distance-based similarity function can be a proper similarity function
only in a case when the true similarity is also reflexive. In practical situations the
similarity may not have this property. For instance, when it is considered in the
context of classification and there are some inconsistencies in the data.

3.2.2 Feature contrast model

Although the distance-based similarity models were successfully applied in many
domains to support a decision making or to discover groups of related objects
(examples of such applications are given in Section 3.3), it has been noted that such
models are rarely optimal, even if they were chosen by experts. For instance, in [15]
the usefulness of classical distance-based measures for a classification task is being
questioned for data sets with a high number of attributes. Additionally, a priori given
distance-based similarity functions neglect a context for comparison of the objects.

Those observations were confirmed by psychologists studying properties of human
perception of similar objects [41, 42, 51, 159]. One of the first researchers who
investigated this problem was Amos Tversky. In 1977, influenced by results of his
experiments on properties of similarity, he came up with a contrast model [159].
He argued that the distance-based approaches are not appropriate for modelling
similarity relations due to constraints imposed by the mathematical features of
the distance metrics such as the symmetry or subadditivity [159, 160]. Even
the assumption about the representation in a multidimensional metric space was
contradicted [13, 83, 160].

For instance, the lack of symmetry of a similarity relation is apparent when
we consider examples of statements about similarity judgements such as “a son
resembles his father” or “an ellipse is similar to a circle”. Indeed, the experimental
studies conducted by Tversky revealed that people tend to assign a significantly
lower similarity scores when the comparison is made the other way around [159].
Moreover, even the reflexivity of the similarity is problematic, since in many situations
a probability that an object will be judged by people as similar to itself is different
for different objects [159].

In his model of a similarity Tversky proposed that the evaluation of a similarity
degree was conducted as a result of a binary features matching process. In this
approach, the objects are represented not as points in some metric space but as sets
of their meaningful characteristics. Those characteristics should be qualitative rather
than quantitative and their selection should take into consideration the context in
which the similarity is judged. For example, when comparing cars in a context of their
class (see discussion in Section 3.1.2) a relevant feature of a car could be that its size
is moderate but a feature its colour is red probably does not need to be considered.

Tversky also noticed that the similarity between objects depends not only on
their common features but also on the features that are considered distinct. Such
features may be interpreted as arguments for or against the similarity. He proposed
the following formula to evaluate the similarity degree of compared stimuli:

SimT (x, y) = θf(X ∩ Y )−
(
αf(Y \X) + βf(X \ Y )

)
, (3.15)
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where X and Y are sets of binary characteristics of the instances x, y, f is an interval
scale function and the non-negative constants θ, α, β are the parameters. In Tversky’s
experiments f usually corresponded to the cardinality of a set.

Tversky argued that if the ideal similarity function for a given domain sim meets
certain assumptions5, there exist values of the parameters θ, α, β and an interval scale
f that for any objects a, b, c, d, SimT (a, b) > SimT (c, d)⇔ sim(a, b) > sim(c, d).

Tversky’s contrast model is sometimes expressed using a slightly different formula,
known as the Tversky index:

SimT (x, y) =
θf(X ∩ Y )

θf(X ∩ Y ) + αf(Y \X) + βf(X \ Y )
. (3.16)

In this form values of the similarity function are bounded to the interval [0, 1]. For
appropriate values of the θ, α, β parameters and a selection of the interval scale
function, this formula generalizes many common similarity functions. For example,
if θ = α = β = 1 and f corresponds to the cardinality, Tversky index is equivalent
to Jaccard similarity coefficient or Jaccard index6. When θ = 1 and α = β = 0.5 the
Tversky’s formula becomes equivalent to the Dice similarity coefficient.

Depending on the values of θ, α, β the contrast model may have different
characteristics, e.g., for α 6= β the model is not symmetric. In Formula (3.15)
θf(X ∩ Y ) can be interpreted as corresponding to the strength of arguments for the
similarity of x to y, whereas αf(Y \X) + βf(X \ Y ) may be regarded as a strength
of arguments against the similarity. Using that model Tversky was able to create
similarity rankings of simple objects, such as geometrical figures, which were more
consistent with evaluations made by humans than the rankings constructed using
standard distance-based similarity functions. Still, it needs to be noted that in those
experiments, features to characterise the objects as well as the parameter settings
were either chosen manually or they were extracted from results of a survey among
volunteers who participated in the study. Although such an approach is suitable to
explore small data, it would not be practical to use it for defining relevant features
of objects described in large real-life data sets.

It is important to realize that in practical application, the features which can
be used to characterize objects in the contrast model are usually on a much higher
abstraction level than attributes from typical data sets. This fact makes it difficult
to apply Tversky’s model for predictive analysis of data represented in information
systems. The problem is particularly evident when the analysed data are high
dimensional. In such a case, manual construction of the important features is
infeasible, even for domain experts.

For instance, microarray data sets contain numerical information about expression
levels of tens of thousands genes. Within an information system, each gene
corresponds to a different attribute. For such data, the appropriate features to use for

5Tversky made assumptions regarding viability of the feature matching approach, about the
monotonicity of sim with regard to the common and distinct feature sets, the independence of the
evaluation with regard to the common and distinct feature sets, the solvability of similarity equations
and the invariance of the impact of particular feature sets on the similarity evaluation [159].

6It is easy to notice, that a function 1−Jaccard index corresponds to the binary distance discussed
in Section 3.2.1.
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Tversky’s model may be interpreted as questions about activity of a particular gene or
a group of genes, e.g.: Are the Cytochrome C related genes overexpressed? Since there
is a huge number of genes and a function of many of them still remains unknown,
experts are unable to manually select all the potentially important features of a given
data sample. Additionally, there can be exponentially many binary characteristics for
a data set and checking which of them can be used to characterize an object would
be inefficient computationally. Those are the main motivations for a development
of automated feature extraction methods and the similarity learning model which is
proposed in Section 4.3.

3.2.3 Hierarchical and ontology-based similarity models

Similarity models are often built for very complex objects or processes with a
predefined structure [6, 7, 10]. In such a case, a direct assessment of a similarity
can be problematic, because two complex objects are likely to be similar in some
aspects but dissimilar in other. Tversky’s contrast model tries to overcome this issue
by considering higher-level characteristics of objects and separately handling their
common and distinctive features.

However, as it was pointed out in Section 3.2.2, typical data stored in
information systems contain information only about relatively low-level, mostly
numeric attributes. In order to define the higher-level features either domain
knowledge or some learning techniques need to be employed. If the first eventuality is
possible (i.e., an analyst has access to expert knowledge about the domain of interest),
experts can provide description how to transform the attribute values into some more
abstract but at the same time more informative characteristics.

For very complex objects a one aggregation step in construction of new features
might be insufficient. Different features constructed from basic attributes might be
correlated or might still require some generalization before they are able to express
some relevant aspect of the similarity in a considered context. In this way, a whole
hierarchy of features can be built. Such a structure is sometimes called a similarity
ontology for a given domain.

Figure 3.3 shows a similarity ontology constructed for the car example discussed in
previous sections. It was constructed for one of the data sets used as a benchmark in
experiments described in Chapter 5 (i.e., the Cars93 data). In this particular context
(a class of a car) the similarity between two cars can be considered in aspects such
as capacity, driving parameters, economy, size and value. Those local similarities can
be aggregated to neatly express the global similarity, however the aggregation needs
to be different for objects from different decision classes. For instance, the size aspect
may be more important when assessing the similarity to a car from the Full-size class
than in a case when the comparison is made to a Sporty car.

For this reason, in the hierarchical approach to approximating the similarity
relation experts are required to provide local similarity functions and class-dependent
aggregation rules. In this way the experts can give the model desirable properties.
For example, even if only very simple distance-base local similarities are used for
computation of the similarity in each of the aspects, the resulting model can still be
not symmetric.
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Figure 3.3: An exemplary similarity ontology for comparison of cars in the context
of their type.

Some experiments with a hierarchical similarity models are described in [59, 60].
This approach was also successfully used for case-based prediction of a treatment
plan for infants with respiratory failure [7, 10]. In that study, expert knowledge was
combined with supervised learning techniques to assess the similarity of new cases in
different aspects or abstraction levels. The incorporation of medical doctors into the
model building process helped to handle the temporal aspect of data and made the
results more intuitive for potential users.

One major drawback of the hierarchical similarity modelling is that it is
extensively dependent on availability of domain knowledge. In the most of complex
problems such knowledge is not easily obtainable. Additionally, the construction of
a similarity ontology requires a significant effort from domain experts, which makes
the model expensive. On the other hand, due to a vague and often abstract nature
of the higher-level features which can influence human judgements of similarity, some
expert guidance seems inevitable. Due to this fact, in practical applications the
expert involvement needs to be balanced with automatic methods for learning the
similarity from data.

3.3 Similarity in Machine Learning

Similarity models play an important role among the machine learning techniques.
Their application ranges from supervised classification and regression problems to
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automatic planning and an unsupervised cluster analysis. In this section, three
major application areas of similarity models are discussed. They correspond to
similarity-based classification models (Section 3.3.1), case-base reasoning framework
(Section 3.3.2) and clustering algorithms (Section 3.3.3), respectively. Although the
presented list of examples is by no means complete, it shows how useful in practice
is the ability to reliably assess the similarity between objects.

3.3.1 Similarity in predictive data analysis and visualization

One of the most common application areas of the similarity modelling is the
classification task. Models of similarity in this context can actually be constructed for
two reasons. The first and obvious one is to facilitate classification of new, previously
unseen objects, based on available data stored in an information system.

The most recognized similarity-based classification algorithm is the k-nearest
neighbours [23, 89, 93, 107, 166]. It is an example of a lazy classification method which
does not have a learning phase. Instead, for a given test case, it uses a predefined
similarity measure to construct a ranking of the k most similar objects from a training
data base (the neighbours). In the classical approach the measure is based on the
Euclidean distance. The decision class of the tested object is chosen based on classes
of the neighbours using some voting scheme [23, 53, 107]. This approach can be seen
as an extension of the simplest similarity-based classification rule (Definition 3.1).
It can be generalized even further by, for example, considering the exact similarity
function values during the voting or assigning weights to training objects that express
their representativeness for the decision class. The k-nearest neighbours algorithm
can also be used to predict values of a numeric decision attribute (regression) or
to perform a multi-label classification [68]. However, in all those applications the
correct selection of a similarity model is the factor that has the biggest influence on
the quality of predictions.

The models of a similarity in the classification context may also be constructed
for a different purpose. The information about relations between objects from an
investigated universe is sometimes as important as the ability to classify new cases.
It can be used, for instance, to construct meaningful visualizations of various types
of data [84, 153]. Such visualizations can be obtained by changing the representation
of objects from original attributes to similarities. It allows to display the objects
in a graph structure or a low-dimensional metric space. Such a technique is called
multidimensional scaling (MDS) [13, 17].

Changing the representation of objects may also be regarded as a preprocessing
step in a more complex data analysis process. For example, similarity degrees to
some preselected cases can serve as new features. Such a feature extraction method
(see [91]) can significantly improve classification results of common machine learning
algorithms [22]. To make it possible, a proper selection of the reference objects is
essential. One way of doing this requires a selection of a single object from each
decision class, such that its average similarity to other objects from its class is the
highest. Another possibility is the random embedding technique [164] in which the
reference objects are chosen randomly and the quality of the selection is often verified
on separate validation data.
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3.3.2 Case-based Reasoning framework

The similarity-based classification can be discussed in a more general framework of
algorithmic problem solving. Case-based reasoning is an example of a computational
model which can be used to support complex decision making. It evolved from a
model of dynamic memory proposed by Roger Schank [125] and is related to the
prototype theory in cognitive science [119, 158].

A case-based reasoning model relies on an assumption that similar problems, also
called cases, should have similar solutions. It is an analogy to the everyday human
problem solving process. For example, students who prepare for a math exam usually
solve exercises and learn proofs of important theorems, which helps them in solving
new exercises during the test. The reasoning based on previous experience is also
noticeable in work of skilled professionals. For instance, medical doctors diagnose
a condition of a patient based on their experience with other patients with similar
symptoms. When they propose a treatment, they need to be aware of any past cases
in which such a therapy had an undesired effect.

In a typical case-based reasoning approach, each decision making or a problem
solving process can be seen as a cycle consisting of four phases [1] (see Figure 3.4).
In the first phase, called retrieve, a description of a new problem (case) is compared
with descriptions stored in an available knowledge base and the matching cases are
retrieved. In the second phase, called reuse, solutions (or decisions) associated with
the retrieved cases are combined to create a solution for the new problem. Then, in
the revise phase, the solution is confronted with the real-life and some feedback on its
quality is gathered. Lastly, in the retain phase, a decision is made whether the new
case together with the revised solution are worth to be remembered in the knowledge
base. If so, the update is made and the new example extends the system.

The notion of similarity is crucial in every phase of the CBR cycle. The cases
which are to be retrieved are selected based on their similarity degree to the new case.
Often, it is required that those cases were not only highly similar to the reference
object but that they were also maximally dissimilar to each other [1, 147]. In the
reuse phase, the similarity degrees may be incorporated into the construction of the
new solution, for example, as weights during a voting. Additionally, information
about similarities between solutions associated with the selected cases may be taken
into account during the construction of new ones. Next, during the revision of the
proposed solution, its similarity to the truly optimal one needs to be measured, in
order to assess an overall quality of the given CBR system and to find out what needs
to be improved in the future. Finally, when the corrected solution to the tested case
is ready, its similarity degrees to the cases from the knowledge base can be utilized
again to decide whether to save the new case or not.

It is worth mentioning that the classical k-NN algorithm can be seen as a very
basic CBR model [149], hence the similarity in a context of classification plays a
special role in the case-based modelling. However, case-based reasoning may be
used for solving much more complex problems than a simple classification, such as
treatment planning or recognition of behavioural patterns [6, 7, 10]. The rough set
theory has proven to be very useful for construction of CBR systems dedicated to
complex problem solving [47, 57, 145].
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Figure 3.4: A full Case-Based Reasoning cycle (based on a schema from [1]).

3.3.3 Similarity in cluster analysis

The concept of similarity is also used for solving problems related with unsupervised
learning. One example of such a task is clustering of objects into homogeneous groups
[78, 93, 157].

In the clustering task the similarity can be used for two reasons. Since
homogeneity of a cluster corresponds to the similarity between its members, similarity
measures are used by clustering algorithms to partition objects into groups. The most
representative example of such an algorithm is k-means [4, 78].

In the classical version of k-means objects are treated as points in the Euclidean
space and the similarity between points is identified with their proximity. However,
the algorithm can be easily modified to use any distance-based similarity function.
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Figure 3.5: An example of two clustering trees computed for the agriculture data
set using the agnes algorithm [78] with the single (on the left) and complete (on the
right) linkage functions.

A pseudo code of such a modification of k-means, called k-centroids, is given below
(Algorithm 1).

In typical implementations of k-means, when the similarity function is a linear
function of Euclidean distance between points, the selection of new cluster centres
is trivial. Coordinates of the new centres are equal to mean coordinates of the
corresponding cluster members. However, if some non-standard similarity functions
are used, the computation of the new centres requires solving an optimization problem
and may become much more complex. Therefore, in many cases it is more convenient
to use the k-medoids [78] algorithm which restricts the set of possible cluster centres
to actual members of the group. This algorithm is also known to be more robust
than k-means since it is not biased by outliers in the data [16, 78].

In the context of the clustering, it is also possible to consider a similarity between
groups of objects (clusters). This notion is especially important for algorithms that
construct a hierarchy of clusters. So-called hierarchical clustering methods, instead
of dividing the objects into a fixed number of groups, compute a series of nested
partitions with a number of groups ranging from 1 (all objects are in the same group)
to the total number of objects in a data set (every object is a separate group). Figure
3.5 shows an example of two clustering trees computed for the agriculture7 data set.

In the agglomerative approach to hierarchical clustering, at each iteration of the
algorithm two most similar groups are merged into a larger one (the bottom-up
approach). There can be many ways to estimate the similarity between two clusters.
Typically, it is done using some linkage function. The most commonly used linkage
functions are single linkage, average linkage and complete linkage [78, 157]. They
estimate the similarity between two groups by, respectively, the maximum, average

7This data set describes a relation between a percentage of the population working in agriculture
to Gross National Product (GNP) per capita in the old EU countries (in 1993).
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Algorithm 1: The k-centroids algorithm.
Input: an information system S = (U,A);

a desired number of clusters k;
a similarity function Sim : U × U → R;

Output: a grouping vector g = (g1, . . . , g|U |), where gi ∈ {1, . . . , k};
1 begin
2 endF lag = F ;
3 Randomly select k initial cluster centres cj, j = 1, . . . k;
4 while endF lag == F do
5 Assign each u ∈ U to the nearest (most similar)

cluster centre:
6 for i ∈ {1, . . . , |U |} do
7 gi = arg max

j

(
Sim(ui, cj)

)
;

8 end
9 Compute new cluster centres c̄j, j = 1, . . . k, such that∑

i:gi=j

(
Sim(ui, c̄j)

)
is minimal;

10 if ∀j∈{1,...,k}(c̄j == cj) then
11 endF lag = T ;
12 end
13 else
14 for j ∈ {1, . . . , k} do
15 cj = c̄j;
16 end
17 end
18 end
19 return g = (g1, . . . , g|U |);
20 end

and minimum from similarities between pairs of objects, such that one object is in
the first group and the other is in the second.

The second reason for using the similarity in the clustering task is related to the
problem of evaluation of a clustering quality. This issue can be seen as a complement
to the evaluation of similarity measures, which was discussed in Section 3.1.4. Given
reference values of similarity degrees between pairs of considered objects (for instance
by domain experts) it is possible to assess the semantic homogeneity of a grouping. It
can be done, for example, by using a function that is normally employed as an internal
clustering quality measure8 but with the reference similarities as an input. Such an
approach is utilized in experiments described in [70], as well as those presented in
Section 5.3 of this dissertation.

8A clustering quality measure is called internal if its value is based solely on the data that were
used by the clustering algorithm.



Chapter 4

Similarity Relation Learning Methods

The notion of similarity, discussed in the previous chapter, is a complex concept
whose properties are subjective in nature and strongly depend on a context in which
they are considered [13, 41, 83, 159, 160]. Due to this complexity, it is extremely
difficult to model the similarity based only on an intuition and general knowledge
about a domain of interest (see the discussion in Section 3.1). For decades this fact
has motivated research on methods which would allow to approximate a similarity
relation or to estimate values of a similarity function, using additional samples of data.

Many of the similarity learning methods concentrate on tuning parameters of
some a priori given (e.g. by an expert) similarity functions. This approach is most
noticeably present in the distance-based similarity modelling where the similarity
function is monotonically dependent on a distance between representations of objects
in an information system (for more details see Section 3.2.1). Distance measures can
usually be constructed using the local-global principle [59, 102, 149] which divides the
calculation of the distances into two phases – local, in which objects are compared
separately on each of their attributes, and global, in which the results of comparisons
are aggregated. This separation of the local and the global distance computation
allows to conveniently parametrize the function with weights assigned to the local
distances. Using available data and reference similarity values, those weights can be
tuned in order to better fit the resulting similarity model to the given task.

Although the distance-based models for learning the similarity relation are
predominant, they are not free from shortcomings. These defects are in a large part
due to the usage of distance-based similarity function which can be inappropriate
for modelling the similarity in a given context (see discussion in Sections 3.1.1,
3.1.2 and 3.2.2). Additionally, such an approach usually fails to capture higher-level
characteristics of objects and their impact on the similarity relation. These limitations
often lead to approximations of the similarity which are not consistent with human
perception [42, 159].

To construct an approximation of the similarity which would truly mimic
judgements of human beings it is necessary to go a step further than just relying
on lower-level sensory data. The similarity learning process needs to support
extraction of new higher-level characteristics of objects that might be important in
the considered context. Since such abstract features are likely to correspond to vague
concepts, some approximate reasoning methods need to be used in order to identify

53
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their occurrence in the objects. Additionally, the aggregation of local similarities
also needs to be dependent on data and should not enforce any specific algebraical
properties on the approximated relation.

In this chapter, a flexible model for learning the similarity relation from data is
proposed (in Section 4.3). This model, called Rule-Based Similarity (RBS), aims at
overcoming the issues related with the distance-based approaches. As a foundation,
it uses Tversky’s feature contrast model (Section 3.2.2). However, unlike the feature
contrast model, it utilizes the rough set theory to automatically extract higher-level
features of objects which are relevant for the assessment of the similarity and to
estimate their importance. In the RBS model the aggregation of the similarities in
local aspects is based on available data and takes into consideration dependencies
between individual features. The flexibility of this model allows to apply it in a
wide range of domains, including those in which objects are characterised by a huge
number of attributes.

In the subsequent sections some basic examples of similarity learning models are
discussed. Section 4.1 explains the problem of similarity learning and points out
desirable properties of a good similarity learning method. Section 4.2 is an overview of
several approaches to similarity learning which mostly focus on tuning distance-based
similarity functions. They utilize different techniques, such as attribute rankings,
genetic algorithms or optimization heuristics, to select important attributes or to
assign weights that express their relevance. On the other hand, Section 4.3 introduces
the notion of Rule-Based Similarity whose focus is on constructing higher-level
features of objects which are more suitable for expressing the similarity. Apart from
explaining the motivation for the RBS model and its general construction scheme,
some specialized modifications are presented. They adapt the model to tasks such
as working with high dimensional data or learning a similarity function from textual
data in an unsupervised manner.

4.1 Problem Statement

Similarity learning can be defined as a process of tuning a predefined similarity
model or constructing a new one using available data. This task is often considered
as a middle step in other data analysis assignments. If the main purpose for
approximating a similarity relation is to better predict decision classes of new
objects, facilitate planning of artificial agent actions or to divide a set of documents
into semantically homogeneous groups, the resulting similarity model should
help in obtaining better results than a typical baseline. Ideally, a process of
learning the similarity should be characterised by a set features which indicate
its practical usefulness.

The set of desirable similarity learning method properties include:

1. Consistence with available data.
An ability to fit a similarity model to available data is the most fundamental
feature of a similarity learning technique. It directly corresponds to an intuitive
expectation that a trained model should be more likely to produce acceptable
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similarity evaluations than an a priori given one. An outcome of a perfect
method should always be a proper similarity function (see Definition 3.2),
regardless of a data set. Moreover, this property should hold even for new
objects that were not available for learning. Unfortunately, such a perfect
method does not exist. A good similarity learning model, however, should aim
to fulfil this intuition and be consistent with available data.

2. Consistence with a context of the similarity that is appropriate for a given task.
A trained similarity model should also be consistent with a given context.
Hence, if the context is imposed by, for example, a classification task, the
resulting similarity model should be more useful for assigning decision classes
of new objects using one of the similarity-based decision rules (see Definitions
3.1 and 3.2 in Section 3.1.3) than the baseline. The verification of the precision
of such a classifier can be treated as a good similarity learning evaluation
method [149]. This particular approach is used in the experiments described
in the next chapter.

3. Ability to take into consideration an influence of objects from the data on
evaluation of the similarity.
As it was mentioned in Section 3.1.2, similarity between two given objects often
depends on the presence of other objects which are considered as a kind of a
reference for comparison. Similarity learning methods that are able to construct
a similarity model capable of capturing such a dependence are justifiable from
the psychological point of view and are more likely to produce intuitive results
[42, 51].

4. Compliance with psychological intuitions (e.g. regarding object representations).
Another desirable property of similarity learning models is also related to
intuitiveness of the resulting similarity evaluations. Assessments of similarity
obtained using constructed similarity function should be comprehensible for
domain experts. One way of ensuring this is to express the similarity in
terms of meaningful higher-level features of objects. Such features can be
extracted from data using standard feature extraction methods [91] as well
as with specialized methods such as decision rules [62, 65, 128] or semantic text
indexing tools [38, 155]. Not only can higher-level features help in capturing
aspects of similarity that are difficult to grasp from lower-level sensory data but
may also be used as a basis for a set representation of objects [51, 159]. Such
representation can be more natural for objects that are difficult to represent in
a metric space [41, 42, 159]. Moreover, by working with higher-level features
the similarity evaluation can be associated with resolving conflicts between
arguments for and against the similarity of given objects. Such an approach is
usually more intuitive for human experts.

5. Robustness for complex object domains (e.g. high dimensional data).
A good similarity learning method should be general enough to be possible to
apply in many object domains. Usually, a similarity model is efficient for some
data types while for others it yields unreliable results. The usage of a similarity
learning technique for tuning parameters of a model can greatly extend the
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range of suitable data types. However, applications of a similarity learning
method may also be confined. For instance, models with multiple parameters
are more vulnerable to overfitting when there is a limited number of available
instances in data (e.g. the few-objects-many-attributes problem [15, 139]).

6. Computational feasibility.
The last of the considered properties regards computational complexity of the
similarity learning model. The complexity of a model can be considered in
several aspects. A similarity learning method needs to be computationally
feasible with regard to the size of a training data set, understood in terms of
both, the number of available objects and the number of attributes. Either of
those two sides can be more important in specific situations. Many models,
however, are efficient in one of the aspects and inefficient in the other.
The scalability of a similarity learning model often determines its practical
usefulness.

Any similarity learning model can be evaluated with regard to the above
characteristics. In particular, Rule-Based Similarity described in Section 4.3 was
designed to possess all those properties.

4.2 Examples of Similarity Learning Models

The problem of similarity learning was investigated by many researchers from the field
of data analysis [21, 28, 47, 61, 74, 90, 102, 149, 170]. In the applications discussed in
Section 3.3, similarity functions which can be employed for a particular task can be
adjusted to better fit the considered problem. The main aim of such an adjustment is
to improve effectiveness of the algorithms which make use of the notion of similarity.

The commonly used similarity models (e.g. the distance-based models – see
Section 3.2.1) neglect the context for similarity. However, the vast majority of
similarity learning methods incorporate this context into the resulting model by, e.g.,
considering feedback from experts or by guiding the learning process using evaluations
of the quality of the model computed on training data. Thus, in a typical case, the
similarity learning can be regarded as a way of adaptation of a predefined similarity
model to the context which is determined by a given task.

The process of learning the similarity relation may sometimes be seen as a
supervised learning task. This is especially true when it can be described as a
procedure in which an omniscient oracle is queried about similarities between selected
pairs of objects to construct a decision system for an arbitrary classification algorithm
[47, 90]. However, in many cases, direct assessments of the degrees of similarity which
can be used as a reference are not available. In that situation, domain knowledge
or some more general properties of the similarity in the considered context have to
be used to guide the construction of the model. One example of such a property is
stated in Definition 3.1. Since the later approach can be regarded as more practical,
the following examples show similarity learning methods mainly designed to work in
such a setting.
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4.2.1 Feature extraction and attribute ranking methods

One of the most general methods for learning a similarity relation is to adjust the
corresponding similarity function to a given data set by assigning weights, selecting
relevant attributes or constructing new, more informative ones. Such weights can
be used in combination with standard generalizations of similarity functions (e.g. a
measure based on the generalized Minkowsky distance – see Section 3.2.1) to express
the importance of particular local similarities.

Research on attribute selection techniques has always been in a scope of interest
of the machine learning and data mining communities [94, 99, 100, 162]. The
dimensionality reduction allows to decrease the amount of computational resources
needed for execution of complex analysis and very often leads to better quality of the
final results [50, 74, 91]. The selection of a small number of meaningful features also
enables better visualizations and can be crucial for human experts who want to gain
insight into the data.

Feature selection methods can be categorised in several ways. One of those is
the distinction between supervised and unsupervised algorithms. The unsupervised
methods focus on measuring variability and internal dependencies of attributes in
data. As an example of such a method one can give Principle Component Analysis
[76] in which the representation of data is changed from original attributes to their
representation in a space of eigenvectors, computed by eigenvalue decomposition of
an attribute correlation matrix. The supervised methods information about decision
classes to assess the relevance of particular attributes. They can be further divided
into three categories, i.e. filter, wrapper and embedded methods [75, 81, 91].

The filter methods create rankings of individual features or feature subsets
based on some predefined scoring function. Ranking algorithms can be divided
into univariate and multivariate. The univariate rankers evaluate importance of
individual attributes without taking into consideration dependencies between them.
A rationale behind this approach is that a quality of an attribute should be related
to its ability to discern objects from different decision classes. As an example of
frequently used univariate algorithms one can give a simple correlation-based ranker
[52], statistical tests [87] or rankers based on mutual information measure [116].
The multivariate attribute rankers try to assess the relevance in a context of other
features. They explore dependencies among features by testing their usefulness in
groups (e.g. the relief algorithm [79]) or by explicitly measuring relateness of pairs
of attributes and applying the minimum-redundancy-maximum-relevance framework
[31, 116]. Another worth-noticing example of a multivariate feature ranker is the
Breiman’s relevance measure. It expresses the average increase of a classification
error resulting from randomization of attributes that were used during construction
of trees by the Random Forest algorithm [20, 32].

In the second approach, subsets of features are ranked based on the performance
of a predictive model constructed using those features. Attributes from the subset
which achieved the highest score are selected. Usually, the same model is used for
choosing the best feature set and making predictions for test data, because different
classifiers may produce their best results using different features. Due to the fact
that a number of all possible subsets of attributes is exponentially large, different
heuristics are being used to search the attribute space. The most common heuristics
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include top-down search [88], bottom-up search [165] and Monte Carlo heuristics such
as simulated annealing or genetic algorithms [129]. Although usually the wrapper
approach yields better results than the filter approach, its computational complexity
makes it difficult to apply for extremely high dimensional data.

Table 4.1: Summary of attribute selection methods.

Filter methods: Wrapper methods: Embedded methods:

• attributes or
attribute subsets
receive scores
based on some
predefined
statistic,

• scores of individual
attributes can be
used as weights,

• top ranked features
can be selected as
relevant.

• learning algorithms
are evaluated
on subsets of
attributes,

• many different
subset generation
techniques can be
used,

• the best subset is
selected.

• feature selection
can be an integral
part of a learning
algorithm,

• irrelevant
attributes may
be neglected,

• some new features
may be constructed
(internal feature
extraction).

The embedded methods are integral parts of some learning algorithm. For
instance, classifiers such as Support Vector Machine (SVM) [37, 163] can work in a
space of higher dimensionality than the original data applying the kernel trick [126].
Moreover, efficient implementations of classifiers such as Artificial Neural Networks
(ANN) [44, 167] automatically drop dimensions from the data representation if their
impact on the solution falls below a predefined threshold.

The application of an attribute selection or ranking algorithm for learning a
similarity may be dependent on its context. Practically all typical supervised feature
selection algorithms can be employed for tuning a similarity function if the similarity
is considered in the classification context. It is a consequence of the main feature of
similarity in that context (see Definition 3.1). If the similarity needs to be consistent
with decision classes, the more discriminative attributes are likely to be relevant in
a similarity judgement. However, in the case of similarity in the context of “general
appearance” unsupervised feature extraction methods need to be used.

4.2.2 Genetic approaches

Genetic algorithms (GA) [92] are another popular tool for learning the parameters
of similarity functions which are constructed using the local-global principle. The
idea of GA was inspired by evolution process of living beings. In this approach
parameters of the local similarities (e.g. their weights) and the aggregation function
are treated as genes and are arranged into genotypes of the genome (also called
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chromosomes). In this nomenclature, the similarity learning process corresponds to
searching for the most adapted genotype. The adaptation of a genotype to a given
problem is measured using a fitness function. Since in applications to similarity
learning a proper fitness function needs to be based on a similarity model evaluation
method, such as those discussed in Section 3.1.4, the GA-based similarity learning
may be regarded as a special case of the wrapper attribute ranking approach (see
Section 4.2.1). However, the flexibility of GA makes it particularly popular among
researchers from the case-base reasoning field [28, 74, 149].

In GA searching for the most adapted genotype is iterative. In each iteration,
which is also called a life-cycle or a generation, chromosomes undergo four genetic
operations, namely the replication (inheritance), mutation, crossover and elimination
(selection).

1. Replication – a selected portion of genotypes survives the cycle and is carried
out to the next one.

2. Mutation – a part of genotypes is carried out to the next generation with a
randomly modified subset of genes.

3. Cross-over – some portion of genotypes exchange a part of their genetic code
and generate new genotypes.

4. Elimination – a part of genotypes that were taken to the new population is
removed based on their values of a fitness function.

Figure 4.1 presents a schema of an exemplary genetic optimization process (a genetic
life-cycle). Initially, a random population of genotypes is generated, with each
genotype coding a set of parameters of a similarity function that is being tuned.
The genetic operations are repeatedly applied to consecutive populations until stop
criteria of the algorithm are met.

Exact algorithms for performing the genetic operations may vary in different
implementations of GA. However typically, the selection of genotypes to undergo
the replication, mutation and crossover is non-deterministic. It usually depends on
scores assigned by the fitness function. A common technique for selecting genotypes
is called the roulette wheel selection – every member of a population receives a
certain probability of being selected and the genotypes are chosen randomly from
the resulting probability distribution. The selection of genotypes for different genetic
operations is done independently, which means that a single genotype may undergo
a few different genetic operations. It can also be chosen several times for the same
operation type.

During the replication, selected genotypes are copied unchanged to the next
generation. The mutation usually involves random selection of a relatively small
subset of genes, which are then slightly modified and the resulting genotype is taken
to the next cycle. The crossover operation is usually the most complex. Its simplest
exemplary implementation may consist of swapping randomly selected genes between
two genotypes. If all parameters of a similarity function are numeric, it may also be
realized by computing two weighted averages of the parent genotypes. One which
gives more weight to genes from one parent and the second giving a higher weight
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Figure 4.1: A schema of a single genetic life-cycle.

to the other one. A more complicated variants of the crossover may include the
construction of completely new features that are used for measuring the similarity
or to define new local similarity measures [149]. The elimination of genotypes is
performed to maintain a desired size of a population. Most commonly, genotypes with
the lowest values of a fitness function are removed before starting a new life-cycle.
In some implementations however, this last phase of the cycle is also done in a
non-deterministic manner, using techniques such as the roulette wheel selection.

The most computationally intensive part of GA is the quality evaluation of
genotypes belonging to the population. In the context of the similarity learning,
the fitness function needs to assess a quality of a similarity function with parameters
corresponding to each genotype in the population. Those assessments are usually
performed using one of the methods discussed in Section 3.1.4 and they require a
comparison of similarity values returned by the tested models on a training data set
with some reference.

4.2.3 Relational patterns learning

A different model for learning the similarity relation from data was proposed among
the relational patterns learning methods [102]. This approach also employs the
local-global principle for defining approximations of the similarity. However, it differs
from the previously discussed methods in that it tries to directly approximate the
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Table 4.2: An exemplary data set describing a content of two vitamins in apples and
pears (the data were taken from [102]).

Vitamin A Vitamin C Fruit Vitamin A Vitamin C Fruit
1.0 0.6 Apple 2.0 0.7 Pear
1.75 0.4 Apple 2.0 1.1 Pear
1.3 0.1 Apple 1.9 0.95 Pear
0.8 0.2 Apple 2.0 0.95 Pear
1.1 0.7 Apple 2.3 1.2 Pear
1.3 0.6 Apple 2.5 1.15 Pear
0.9 0.5 Apple 2.7 1.0 Pear
1.6 0.6 Apple 2.9 1.1 Pear
1.4 0.15 Apple 2.8 0.9 Pear
1.0 0.1 Apple 3.0 1.05 Pear

similarity in a local distance vector space. The learning in the context of classification
is done through optimizing a set of parameters for an a priori given family of
similarity approximations. Since the usage of distance-based local similarities enforces
reflexivity and symmetry on the resulting approximation, this approach is highly
related to searching for optimal approximations in tolerance approximation spaces
[120, 133, 134].

The first step in relational patterns learning algorithms is a transformation of
data from an attribute value vector space into a local distance (or similarity) vector
space. This process for an exemplary fruit data set (Table 4.2) taken from [102] is
depicted on Figure 4.2.

Figure 4.2: An example of a transformation of the fruit data set (Table 4.2) from
the attribute value vector space to the local distance vector space. In the plot on the
left, the white squares correspond to apples and the black diamonds represent pears.
In the plot on the right, the squares correspond to pairs of instances representing
the same fruit, whereas the black circles are pairs of different fruits (an apple and a
pear).
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For each pair of objects from a decision system Sd =
(
U,A ∪ {d}

)
, all their

local distances (or sometimes local similarities) are computed. Those values are
used to represent the pairs in a new metric space, whose dimensionality is the same
as the total number of original attributes. A new binary decision attribute is also
constructed. It indicates whether the both of objects from the corresponding pair
belong to the same decision class of original data. This new data representation can
serve as an approximation space (see Section 2.2.3) for learning the similarity in the
context of classification (see Definition 3.1).

The selection of the most suitable approximation from a given family is performed
by searching for parameters that maximize the number of pairs with the same decision
(white squares in the right plot of Figure 4.2) included in the approximation while
maintaining the constraints resulting from Definition 3.1. One example of a family
of approximations is the parametrized conjunction in a form:

(x, y) ∈ τ ∗1 (ε1, . . . , ε|A|)⇔
∧
ai∈A

[
fai(x, y) < εi

]
, (4.1)

where A is a set of all conditional attributes, fai are local distance functions and εi are
parameters of the family. A different example of a useful family of approximations
the parametrized linear combination form:

(x, y) ∈ τ ∗2 (w0, . . . , w|A|)⇔
|A|∑
i=1

[
wi · fai(x, y)

]
+ w0 < 0, (4.2)

where wi, i = 0, . . . , |A| are parameters. Those two families of approximations differ in
geometrical interpretations of neighbourhoods they assign to the investigated objects.
In the first one, the captured similar objects need to be in a rectangular-shaped
area, whereas in the case of the second family, the neighbourhoods are diamond-like.
Several heuristics for learning semi-optimal sets of parameters for different families
of similarity relation approximations are shown in [102].

One disadvantage of the relational pattern learning approach is its computational
complexity. The transformation of the original decision system into a local distance
vector space requires O(n2) storage and computation time (n is the number of
objects in the decision system). In order to avoid such a big computational cost, the
transformation may be virtualized, i.e. it may not be physically performed but instead
the computation of local distances and new decision value may be done “on demand”
by the learning heuristic. Although such a solution decreases the space complexity,
it usually leads to a significant increase in the time complexity of the method.

Another solution is to approximate similarity only to a selected small subset of
objects from the decision system. This technique, called local approximation of the
similarity, might be efficient, especially when it is possible to distinguish a small
group of objects which are representative for the whole data.

4.2.4 Explicit Semantic Analysis

Many similarity learning models were proposed specifically to approximate a semantic
similarity in corpora of textual data [25, 35, 38, 55]. One of the most successful
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approaches aims at improving a representation of documents, so that it better
reflected a true meaning of the texts [25, 38]. With the new representation, the
similarity of two documents is estimated using standard similarity measures, such as
those described in Section 3.2.1.

One particularly interesting example of such a method is Explicit Semantic
Analysis (ESA), proposed in [38]. It is based on an assumption that any document
can be represented by predefined concepts which are related to the information that
it carries (its semantics). Those concepts can be then treated as semantic features of
documents. The process of choosing concepts that describe documents in the most
meaningful way can be regarded as a feature extraction task [91].

In the ESA approach, natural language definitions of concepts from an external
knowledge base, such as an encyclopaedia or an ontology, are matched against
documents to find the best associations. A scope of the knowledge base may be
general (like in the case of Wikipedia) or it may be focused on a domain related
to the investigated text corpus, e.g. Medical Subject Headings (MeSH)1 [161].
The knowledge base may contain some additional information on relations between
concepts, which can be utilized during computation of the “concept-document”
association indicators. Otherwise, it is regarded as a regular collection of texts with
each concept definition treated as a separate document.

The associations between concepts from a knowledge base and documents from
a corpus are treated as indicators of their relatedness. They are computed two-fold.
First, after the initial preprocessing (stemming, stop words removal, identification
of relevant terms), the corpus and the concept definitions are converted into the
bag-of-words representation. Each of the unique terms in the texts is given a set of
weights which express its association strength to different concepts.

Assume that after the initial processing of a corpus consisting of M documents,
D = {T1, . . . , TM}, there have been identified N unique terms (e.g. words, stems,
N-grams) w1, . . . , wN . Any text Ti in the corpus D can be represented by a vector
〈v1, . . . , vN〉 ∈ RN

+ , where each coordinate vj(Ti) expresses a value of some relatedness
measure for j-th term in the vocabulary (wj) relative to this document. The most
common measure for calculating vj(Ti) is the tf-idf (term frequency-inverse document
frequency) index (see [35]) defined as:

vj(Ti) = tfi,j · idfj =
ni,j∑N
k=1 ni,k

· log

(
M

|{i : ni,j 6= 0}|

)
, (4.3)

where ni,j is the number of occurrences of the term wj in the document Ti.
In the second step, the bag-of-words representation of concept definitions is

transformed to an inverted index which maps words into lists of K concepts,
c1, . . . , cK , described in a knowledge base. The inverted index is then used to perform
a semantic interpretation of documents from the corpus. For each text, the semantic
interpreter iterates over words that it contains, retrieves corresponding entries from
the inverted index and merges them into a vector of concept weights (association
strengths) that represent a given text.

1MeSH is a controlled vocabulary and thesaurus created and maintained by the United States
National Library of Medicine. It is used to facilitate searching in life sciences related article
databases.
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LetWi = 〈vj〉Nj=1 be a bag-of-words representation of an input text T , where vj is a
numerical weight of a word wj expressing its association to the text Ti (e.g. its tf-idf).
Let invj,k be an inverted index entry for wj, where invj,k quantifies the strength
of association of the term wj with a knowledge base concept ck, k ∈ {1, . . . , K}.
The new vector representation of Ti, called a bag-of-concepts, will be denoted by
Ci =

(
c1(Ti), . . . , cK(Ti)

)
, where

ck(Ti) =
∑

j:wj∈Ti

vj · invj,k (4.4)

is a numerical association strength of k-th concept to the document Ti. In Section 5.3,
texts will also be represented as a set of concepts with sufficiently high association
level denoted by Fi = {fk : ck(Ti) ≥ minAssock}. Those concepts will be treated
as binary semantic features of texts, such as those which are utilized by Tversky’s
contrast model [159] (see Section 3.2.2).

The representation of texts by sets of features can be easily transformed into
an information system S = (D,F ), where F =

⋃|D|
i=1 Fi. Each possible feature of

documents is treated as a binary attribute in S. The semantic similarity between
objects from S can be assessed using standard measures described in Section 3.2.
However, due to sparsity and high dimensionality of this representation, usually
spherical similarity functions, such as the cosine similarity, or set-oriented measures
as Jaccard index and Dice coefficient, are employed. In several papers it is
experimentally shown that this representation can yield better evaluations of the
similarity than the standard bag-of-words [38, 70, 155].

If the utilized knowledge base contains additional information on semantic
dependencies between the concepts, this knowledge can be used to further adjust the
vector (4.4). Moreover, if experts could provide feedback in the form of manually
labelled exemplary documents, some supervised learning techniques can also be
employed in that task [72]. However, particular methods for automatic tagging of
textual data are not in the scope of this research.

4.3 Rule-Based Similarity Model

This section presents a similarity learning model which is the main contribution of
this dissertation. The model, called Rule-Based Similarity (RBS), originally proposed
in [62] and reared in [61, 64, 65, 67, 70], was inspired by works of Amos Tversky. It
can even be seen as a rough set extension of the psychologically plausible feature
contrast model proposed in [159] (see also the discussion in Section 3.2.2).

Tversky’s model is extended in a few directions. In RBS, some basic concepts
from the rough set theory are used to automatically extract from available data,
features that influence the judgement of similarity. Additionally, the proposed
method for aggregation of local similarities and dissimilarities takes into consideration
dependencies between the induced features that occur in data. This allows for a more
reliable assessment of the importance of arguments for and against the similarity of
investigated objects. Finally, the simplicity and flexibility of RBS makes it useful in a
wide array of applications, including learning the similarity in a classification context
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from both regular and extremely high dimensional data. It can also be modified to
allow learning the semantic similarity of textual documents.

The following sections overview the construction of RBS in different application
scenarios. Section 4.3.1 explains the main motivation behind the model and points
out its relations to Tversky’s feature contrast model. Next, Section 4.3.2 shows how
the basic RBS model is constructed and then, Section 4.3.4 discusses an adaptation of
RBS to the case when data describing considered objects are high dimensional. The
last section (Section 4.3.5) shows how RBS can be adjusted to work in an unsupervised
fashion, especially for learning a similarity measure appropriate for assessment of the
similarity in a meaning of texts.

4.3.1 General motivation for Rule-Based Similarity

The similarity learning models discussed in Section 4.2 allow to fit a parametrized
similarity function or a family of approximation formulas to available data. This
process can be understood as an adjustment of a similarity relation to a desired
context. However, in case of the discussed methods this problem is reduced to tuning
parameters of a preselected similarity model. An approach like that has to result in
passing to the final model some properties which are not inferred from data and are
potentially unwanted.

The approach to learning the similarity represented by the commonly used
similarity models is usually based on an assumption that an expert is able to preselect
at least a proper family of similarity models. This family is expected to contain a
member which can sufficiently approximate the reality. Unfortunately, due to the
complexity of the concept of similarity, this assumption may be false. Additionally, in
some cases the family of possible approximations may be so large, that the extensive
parameter tuning is likely to terminate at some relatively weak local optimum or
even to overfit to training data while showing poor performance when used for new,
previously unknown objects.

This problem is particularly conspicuous when the analysed data set is high
dimensional. Typically, the number of parameters of a similarity learning model is at
least linearly dependent on the number of attributes in data. Hence, dimensionality
has a significantly adverse impact on a complexity of a model. Not only can very
complex models suffer from overfitting but they are also unintuitive and difficult to
interpret by experts.

Another important issue related with the similarity learning methods which
utilize the local-global principle is a difficulty with modelling dependencies between
local similarities/distances corresponding to different attributes. For instance, what
weights should be assigned to a group of highly correlated attributes which are
important for the similarity judgement individually? On one hand, each local
similarity is important so it should have a high weight. On the other hand, if all of
those local similarities are given a high weight, the final model can be biased towards
a single aspect of a similarity while neglecting other, possibly as relevant factors.

Moreover, in comparison to approximation of concepts, approximation of relations
often requires extraction of some additional higher-level characteristics related to
pairs of objects (see the discussion in Sections 2.2 and 3.1). Figure 4.3 shows a general
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Figure 4.3: A schema showing generalized tabular representations of an information
system for the purpose of learning a similarity relation. An information system on the
left is transformed into a relational pattern learning space represented on the right.

transformation schema of an information system that allows flexible learning of any
similarity relation. Apart from attributes that describe each object, the transformed
system may contain additional features that characterise two objects as a pair. Such
features may correspond to a variety of statistics or different aggregation types of
values of the original attributes. The models discussed in Section 4.2 simplifies
this transformation by narrowing the set of new characteristics to predefined local
similarities. Even though such a limitation is beneficial from the computational
complexity point of view, it may severely deteriorate the model’s ability to infer a
semantically meaningful similarity relation. It was confirmed in a number of empirical
studies that the introduction of higher-level features often significantly increases
performance of similarity models [7, 21, 38, 59, 60].

The need for extraction of meaningful qualitative features of objects for the
purpose of measuring their similarity was recognized by Tversky and motivated his
contrast model [159] (see Section 3.2.2). Tversky argued that people rarely think in
terms of exact numbers but instead they tend to operate on binary characteristics of
objects, such as an object is large or an object is round. In his model, objects were
represented by such higher-level features. For each pair, the features were divided
into those which are arguments for the similarity (the common features) and those
which constitute arguments against the similarity or, in other words, arguments for
dissimilarity of the objects from the pair. The RBS model is in a large part inspired
by this approach.

In Tversky’s experiments relevant characteristics of the compared stimuli were
usually defined by participants of the conducted study. However, for analysis of larger
real-life data sets, meaningful features need to be extracted automatically. Their
selection and influence on the final model needs to be dependent on a context of the
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similarity relation and, in particular, on other objects from the given data set. One of
the main aims of the RBS model is to facilitate this task using a rough-set-motivated
approach for approximation of relations (see Section 2.2.3).

Semantically meaningful higher-level features of objects can be extracted from
data using a rule mining algorithm [62, 128]. Unlike in [128], however, in RBS such
features are not only used for changing the representation of objects but are also
utilized to construct approximations of similarities to each object in a training data
set. A RBS similarity function value is derived from those approximations to allow
convenient modelling of the dependencies imposed by the presence of different objects
in the data (see the discussion in Section 3.1.2).

Another goal of RBS is to overcome the problem with selection of appropriate
weights for the contrast model. Instead of assigning globally defined importance
values to common and distinctive features of any pair, RBS aims at assessing
strength of all arguments for and all arguments against the similarity, relative to
an investigated pair. This approach allows RBS to better reflect the context in which
the similarity of given objects is considered.

Finally, a good similarity learning model need to be scalable. The scalability of
a model can be considered relative to a number of objects in the data as well as to a
number of attributes. Construction of RBS does not require investigating all pairs of
object during the learning, hence it is possible to approximate a similarity relation
from larger data. By utilizing basic notions from the theory of rough sets, RBS can
also be adapted to work with extremely high dimensional data.

In general, construction of a desired similarity learning model should include the
following steps:

1. The selection of an appropriate context for the similarity.

2. The extraction of features which are relevant in the given context (definition of
an approximation space).

3. The definition of a data-dependent similarity function that aggregates the
features, while considering the preselected context and types of compared
objects.

The next section shows how the RBS model implements these steps in order to
incorporate the properties discussed in Section 4.1.

4.3.2 Construction of the Rule-Based Similarity model

The Rules-based Similarity (RBS) model was developed as an alternative to the
distance-based approaches [62]. It may be seen as a rough set extension to the
psychologically plausible feature contrast model proposed by Tversky [159]. As in
the case of the contrast model, in RBS the similarity is assessed by examining
whether two objects share some binary higher-level features. Unlike in Tversky’s
approach, however, in RBS features that are relevant for a considered similarity
context are automatically extracted from data. Their importance is also assessed
based on available data, which allows to model the influence of information about
other objects on the similarity judgement (see the discussion in Section 3.1).
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The construction of RBS is performed in three steps. The schema from Figure 4.4
shows those steps in a case when the similarity is learnt in a classification context (the
context is defined by a decision attribute in a data set). Since originally the notion
of the RBS model was proposed for a classification purpose, that specific context will
be assumed for the remaining part of this section.

The first step involves transformation of raw attribute values, which often
are numerical, into a more abstract symbolic representation that resembles basic
qualitative characteristics of objects. As discussed in Sections 3.1 and 3.2.2, such
characteristics are more likely to be used by humans and are more suitable for an
assessment of a local similarity from a psychological point of view [42, 51, 119, 158,
159, 160]. For example, values of an attribute expressing a length of a car can be
transformed into intervals labelled as short, medium and long. Those new values are
easer to comprehend and utilize by humans in their judgements. Of course, semantics
of each of those values can be different for different people. It will also be dependent
on particular cars represented in the data. For the purpose of a practical data analysis,
however, it is often sufficient to apply a heuristic discretization technique to divide
numerical attribute values into intervals representing meaningful qualitative symbols.

The discretization can be combined with dimensionality reduction, e.g. by
using a discernibility-based discretization method described in [97] to compute a
set of symbolic attributes that discern all objects in the data (or nearly all in the
approximate case). In this approach a subset of attributes with a corresponding set
of cuts is selected from a larger attribute set in a greedy fashion. It is done using a
simple deterministic heuristic which starts with an empty set and iteratively adds the
most promising attributes with corresponding cuts until the decision determination
criterion is satisfied [71, 97]. Since the resulting set of discretized attributes discern all
or sufficiently many2 instances from different decision classes of the original decision
system, it can be easily adjusted to become a desired type of a reduct (definitions
of several types of reducts can be found in Section 2.3). For this purpose cuts that

2A desired number of discerned instances can be treated as a parameter that governs
the approximation quality.
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Algorithm 2: The calculation of a decision reduct from numerical data
Input: a decision system Sd =

(
U,A ∪ {d}

)
;

Output: a decision reduct DR ⊂ A coupled with sets of cuts for each
attribute from DR;

1 begin
2 DR = empty list; // an empty list of attributes
3 SC = empty list; // an empty list of selected cuts
4 CC = ∅; // a set of cut candidates
5 foreach a ∈ A do
6 Compute cut candidates CCa for the attribute a using

the guidelines from [97];
7 CC = CC ∪ CCa;
8 SC[a] = ∅;
9 end

10 i = 1; while there are conflicts in S′d = (U,DR′, d) do
11 Qmax = −∞;
12 foreach cut ∈ CC do
13 Q(cut) = quality of cut;
14 if Q(cut) > Qmax then
15 Qmax = Q(cut);
16 bestcut = cut;
17 besta = attribute a which corresponds to bestcut;
18 end
19 end
20 DR[i] = besta;
21 SC[a] = SC[a] ∪ bestcut;
22 end
23 foreach a ∈ DR do
24 if there are no conflicts in S′d = (U, (DR \ {a})′, d) then
25 DR = DR \ {a};
26 SC[a] = ∅;
27 end
28 end
29 return DR and SC;
30 end

are abundant need to be eliminated. Therefore such a method can be viewed as a
simultaneous supervised discretization and computation of decision reducts [71, 73].
This approach to the dimensionality reduction does not only boost the construction
of RBS, but is also helpful in identification of truly relevant local features. For those
reasons it was used in all experiments with RBS on numerical data presented in this
dissertation (see Sections 5.1 and 5.2). Algorithm 2 shows the procedure for classical
reducts which in this case are understood as irreducible sets of discretized attributes
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that discern all objects from different decision classes3 [71]. The algorithm assumes
that due to the presence of numerical attributes there is no inconsistency in the
original data table (i.e. there are no indiscernible objects).

In Algorithm 2, DR′ denotes a set of attributes from DR discretized using the
corresponding cuts from the list SC. To facilitate computations for high dimensional
data some randomness can be introduced to the generation of candidate cut. In
this way the algorithm can be employed for finding a diverse set of good quality
decision reducts [71, 69]. This approach was used in the extension to RBS which is
discussed in Section 4.3.4. The resulting set of attributes can also be a super-reduct
by skipping the attribute elimination phase in order to capture more, potentially
important similarity aspects.

Because a class or a type of an object may have a significant impact on its
similarity assessments to other objects in data [42, 159, 160], different sets of
important features need to be extracted for different decision classes. For this reason,
in a case when a decision attribute in data has more than two values, the discretization
and attribute reduction in RBS need to be performed separately for each decision
class, using the one-vs-all approach.

In the second step, higher-level features that are relevant for the judgement of
similarity are derived from data using a rule mining algorithm. Each of those features
is defined by the characteristic function of the left-hand side (the antecedent) of a
rule. In RBS, two types of rules are generated – decision rules (see Definition 2.3)
that form a set of candidates for relevant positive features, and inhibitory rules (see
Definition 2.4) which are regarded as relevant distinctive features. Depending on a
type of a rule, the corresponding feature can be useful either as an argument for or
against the similarity to a matching object.

The induction of rules in RBS may be treated as a process of learning aggregations
of local similarities from data. Features defined by antecedents of the rules express
higher-level properties of objects. For instance, a characteristic indicating that a car
is big may be expressed using a formula:

car_length = high ∧ car_width = high ∧ car_height = high .

The feature defined in this way approximates the concept of a big car. Such a concept
is more likely to be used by a person who assesses the similarity between two cars
in a context of their appearance, than the exact numerical values of lengths, widths
and heights. It can be noticed, for example, when people are explaining why they
think that two objects are similar. It is more natural to say that two cars are similar
because they are both big, than it is to say that one of them has 5, 034mm length,
1, 880mm width and 1, 438mm height; the other is 5, 164mm long, 1, 829mm wide
and 1, 415mm high, and the differences in the corresponding parameters are small.

The choice of the higher-level features in RBS is not unique. Different heuristics
for computation of reducts and different parameter settings of rule induction
algorithms lead to the construction of different feature sets. As a consequence, the
corresponding similarity approximation space changes along with the representation
of the objects. The new representation may define a family of indiscernibility classes

3A discretized attribute corresponds to a pair consisting of the original attribute and a set of
cuts that define nominal values (intervals).
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which is better fitted to the approximation of similarities to particular objects. In
this context, it seems trivial to say that some approximation spaces are more suitable
for approximating the similarities than others. Therefore the problem of learning the
similarity relation in RBS is closely related to searching for a relevant approximation
space [133, 134] (see also the discussion in Section 2.2).

More formally, let F+
(i) and F−(i) be the sets of binary features derived from the

decision and the inhibitory rules (see Definitions 2.3 and 2.4), respectively, generated
for i-th decision class:

F+
(i) =

{
φ :
(
φ→ (d = i)

)
∈ RuleSeti

}
,

F−(i) =
{
φ :
(
φ→ ¬(d = i)

)
∈ RuleSeti

}
.

RuleSeti is a set of rules derived from a reduct DRi associated with the i-th
decision class. The rule set may be generated using any rule mining algorithm but
it is assumed, that if not stated otherwise, RuleSeti consists of rules that are true
in S (their confidence factor is equal to 1 – see Section 2.1.3) and cover all available
training data, i.e. for every u ∈ U there exists π ∈ RuleSeti such that u � lhs(π).
Moreover, for efficiency in practical applications of the model it may be necessary to
require that the generated sets of rules RuleSeti be minimal. It means that there
is no rule π ∈ RuleSeti that could be removed without reducing the set of covered
objects or, in other words, for every π ∈ RuleSeti there exists u ∈ lhs(π)(U) which
is not covered by any other rule from RuleSeti.

A feature φ is also a decision logic formula, i.e. a conjunction of descriptors defined
over discretized attributes, that corresponds to an antecedent of some rule (see the
notation introduced in Section 2.1.3). We will say that an object u, described in a
decision system S = (U,A), has a feature φ iff u � φ. A set of all objects from U that
have the feature φ (the meaning of φ in S) will be denoted by φ(U).

In RBS a similarity relation is approximated by means of approximating multiple
concepts of being similar to a specific object. In the rough set setting, a similarity to
a specific object is a well-defined concept. In the proposed model, it consists of those
object from U which share with u at least one feature from the set F+

(i), where i is
assumed to be the decision class of u (d(u) = i):

SIM(i)(u) =
⋃

φ∈F+
(i)
∧u�φ

φ(U)

Analogically, the approximation of the dissimilarity to u is a set of objects from U
which have at least one feature from F−(i) that is not in common with u:

DIS0
(i)(u) =

⋃
φ∈F−

(i)
∧u2φ

φ(U)

For convenience, the set of objects that have at least one feature from F−(i) that is in
common with u will be denoted by:

DIS1
(i)(u) =

⋃
φ∈F−

(i)
∧u�φ

φ(U)
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To abbreviate the notation only SIM(u) and DIS(u) will be written when the
decision for an object u is known:

SIM(u) = SIM(d(u))(u); DIS(u) = DIS0
(d(u))(u)

It is worth noticing that within the theory of rough sets the set SIM(u) can be
seen as an outcome of an uncertainty function SIM : U → P(U) (see Definition 2.5).
A proof of this fact is quite trivial. From the definition of the set SIM(u) it follows
that u ∈ SIM(u). Moreover, if u1 ∈ SIM(u2), then there exists φ ∈ F+

(d(u2)) such
that u1 ∈ φ(U) ∧ u2 � φ. If so, then u1 � φ, thus d(u1) = d(u2) and u2 ∈ SIM(u1).

Analogically, the set DIS(u) is an outcome of a function DIS : U → P(U) which
can be seen as an opposite of SIM . The function SIM induces a tolerance relation in
U , whereas DIS induces a relation that can be called an intolerance relation. From
the definition, ∀u∈Uu /∈ DIS(u), i.e. the relation induced by DIS is anti-reflexive.
Moreover, this relation is asymmetric since for every u1, u2 ∈ U , if u1 ∈ DIS(u2)
then u2 /∈ DIS0

(d(u2))(u1).
The functions SIM and DIS are used for the approximation of the similarity and

the dissimilarity to objects from U . In the RBS model, the assessment of a degree in
which an object u1 is similar and dissimilar to u2 is done using two functions:

Similarity(u1, u2) = µsim
(
u1, SIMd(u1)(u2)

)
=

∣∣SIM(u1) ∩ SIMd(u1)(u2)
∣∣

|SIM(u1)|+ Csim
,

Dissimilarity(u1, u2) = µ̂dis
(
u1, DIS

1
d(u1)(u2)

)
=

∣∣∣DIS(u1) ∩DIS1
d(u1)(u2)

∣∣∣
|DIS(u1)|+ Cdis

.

In the above formulas Csim and Cdis are positive constants which can be treated as
parameters of the model. The function µsim : U × P(U) → [0, 1) can be seen as
a membership function from the rough set theory (see Definition 2.6). It measures
a degree in which an object u1 fits to the concept of the similarity to u2. The
function µ̂dis : U × P(U) → [0, 1) may be regarded as an anti-membership function
since it measures a degree in which u1 is not similar to u2 (i.e. is dissimilar to u2).
It is also worth noticing that if the assumptions regarding the consistency and the
coverage of the utilized rules are true, then for every u ∈ U , |SIM(u)| > 0 and
|DIS(u)| > 0, and the functions Similarity and Dissimilarity are well-defined for
every pair (u1, u2) ∈ U × Ω, even in a case when Csim = Cdis = 0.

The similarity function of the RBS model combines values of Similarity and
Dissimilarity for a given pair of objects. It can be expressed as:

SimRBS(u1, u2) = F
(
Similarity(u1, u2), Dissimilarity(u1, u2)

)
(4.5)

where F : R × R → R can be any function that is monotonically increasing with
regard to its first argument (i.e. a value of Similarity) and monotonically decreasing
with regard to its second argument (a value of Dissimilarity). One example of such
a function can be:

SimRBS(u1, u2) =
Similarity(u1, u2) + C

Dissimilarity(u1, u2) + C
(4.6)
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where C > 0 is a small constant, which is introduced to avoid division by zero and
to ensure that SimRBS(u1, u2) = 1 for u1, u2 which are neither similar nor dissimilar
(i.e. Similarity(u1, u2) = Dissimilarity(u1, u2) = 0). In this particular form the
RBS similarity function was used in experiments described in Sections 5.1 and 5.2.

Alternatively, a similarity degree in RBS could also be expressed as a simple
difference between the similarity and dissimilarity of two objects, as in the case of
Tversky’s model:

Sim′RBS(u1, u2) = Similarity(u1, u2)−Dissimilarity(u1, u2) (4.7)

In this form, the RBS function takes values between −1 and 1, with its neutral value
equal 0. An advantage of this function is that it does not need the additional constant
C. It can be easily shown that all the mathematical properties of SimRBS, which
are discussed in Section 4.3.3, are independent of the exact form of the function F as
long as the requirement regarding its monotonicity is met.

Depending on the type and parameters of a rule mining algorithm utilized for
the creation of the feature sets F+

(i) and F
−
(i), the sets SIM(u) and DIS(u) can have

different rough set interpretations (Figure 4.5). If all the rules are true in S, then
SIM(u) and DIS(u) would be equivalent to lower approximations of the concepts
of similarity and dissimilarity to u in U , respectively. Otherwise, if the rules with a
lower confidence coefficient were allowed, SIM(u) and DIS(u) would correspond to
upper approximations of the similarity and the dissimilarity to u. Their properties
and granulation may be treated as parameters of the model. In applications they can
be tuned to boost the quality of the induced relation. This tuning process can be
regarded as searching for the optimal approximation space (see Section 2.2.2).

Figure 4.5 shows a simplified graphical interpretation of the RBS model. The grey
area in the picture represents a concept of similarity to object u1 from the decision
class d(u1). The rectangles inside this region correspond to an approximation of
the concept of being similar to u1. They are defined by indiscernibility classes of
training objects that share at least one feature from F+

(d(u1)) with u1. Analogically,
the rectangles outside the decision class approximate the concept of the dissimilarity
to u1 and they contain instances from the set DIS0

d(u1)(u1). The local similarity
value of u2 to u1 in this example would be calculated as a ratio between a fraction of
the similarity approximation shared by u1 and u2, and a fraction of the dissimilarity
approximation which is characteristic only to u2. In Figure 4.5, areas corresponding
to those fractions are highlighted in blue and red, respectively.

The function SimRBS can be employed for the classification of objects from
unknown decision classes as it only uses information about the class of the first object
from the pair. New objects can be classified in a cased-based fashion, analogically
to the k-nearest neighbors algorithm. Exemplary similarity-based classification
functions are presented in Section 3.1.3.

4.3.3 Properties of the Rule-Based Similarity function

To illustrate the evaluation of the similarity in RBS, let us consider the decision
system from Table 4.3. Assume that we want to evaluate the similarity of Ford
Mustang to New_Car in a context of their appearance, which is judged by a given
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Figure 4.5: A graphical interpretation of an approximation of similarity to a single
object in RBS.

person. We know preferences of this person regarding cars (the classes of objects)
from our decision table but we have no information regarding the classification of
New_Car. During the construction of the RBS model, the data set describing the
selected cars was discretized and some consistent decision rules4 were induced for
each of the two possible classes. Since the decision for Ford Mustang is Nice, we
choose the positive features from the rules pointing at this class (i.e. rules in a
form of φ → Nice). The negative features are chosen among the rules indicating
the notNice decision.

Suppose that from the set of antecedents of the rules induced for the decision
Nice, two were matching New_Car : φ+

1 and φ+
4 . Additionally, there was one feature

derived from a rule classifying objects as notNice, that matched the tested car: φ−1 .
From the decision table we know that Ford Mustang has in common with New_Car
only the feature φ+

1 , so this feature is an argument for their similarity. In addition, the
feature φ−1 does not match Ford Mustang therefore this feature provide an argument
for dissimilarity of the compared cars. Although the rule φ+

4 does not match Ford
Mustang, it is not considered as an argument for the dissimilarity of the two cars

4Since there are only two decisions, inhibitory rules for one class correspond to decision rules for
the other.
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Table 4.3: An exemplary decision table displaying one’s preferences regarding general
appearance of selected cars. F+

Nice = {φ+
1 , φ

+
2 , φ

+
3 , φ

+
4 } and F−Nice = {φ−1 , φ−2 , φ−3 , φ−4 }.

Object: φ+
1 φ+

2 φ+
3 φ+

4 φ−1 φ−2 φ−3 φ−4 Decision
Ford Mustang 1 0 1 0 0 0 0 0 Nice
Toyota Avensis 0 0 0 0 1 1 0 1 notNice
Audi A4 0 0 0 0 1 0 1 0 notNice
Porsche Carrera 0 1 0 1 0 0 0 0 Nice
Mercedes S-Class 0 0 0 0 0 1 0 1 notNice
Chevrolet Camaro 0 1 1 0 0 0 0 0 Nice
Volkswagen Passat 0 0 0 0 0 1 1 0 notNice
Mitsubishi Eclipse 1 0 1 1 0 0 0 0 Nice

because the features from the set F+
Nice may only become arguments for the similarity.

Since two out of three cars which match to the features of Ford Mustang have the
feature φ+

1 and three out of four cars with decision notNice have the feature φ−1 , if
we set Csim = Cdis = 1, the RBS value equals:

SimRBS(FordMustang,New_Car) =
( 2

3 + Csim
+ C

)/( 3

4 + Cdis
+ C

)
=

(2 + 4C

4

)/(3 + 5C

5

)
=

5 + 10C

6 + 10C
.

For a very small value of C we get the value ≈ 5
6
. Since this value is lower than 1,

Ford Mustang should be considered dissimilar to New_Car.
The RBS model shares many properties with Tversky’s contrast model of the

similarity. In both models the evaluation of the similarity is seen as a feature matching
process. Objects from the data are represented by sets of qualitative features rather
than by vectors in an attribute space [159]. Furthermore, both models consider
features as possible arguments for or against the similarity and aggregate those
arguments during the similarity assessment.

The construction of RBS makes the resulting model flexible and strongly
data-dependent. As in the contrast model, in RBS the similarity function is likely to
be not symmetric, especially when the compared objects are from different decision
classes. Moreover, in a case of inconsistency of a data set (see Definition 2.2), a
relation induced using the RBS similarity function may be even not reflexive. This
fact is in accordance with the main feature of the similarity for the classification
(Definition 3.1). It also reflects a phenomena, that availability of information about
decision classes (types or predefined labels) of examined stimuli impacts human
judgements of the similarity [41, 42].

The similarity functions of RBS and the contrast model also have in common a
number of mathematical properties, such as the maximality of marginal values and
the monotonicity with regard to the inclusion of the feature sets:

Proposition 4.3.1. Let Sd =
(
U,A ∪ {d}

)
be a consistent decision system, U ⊆ Ω

and let SimRBS : U ×Ω→ R be a similarity function of the RBS model, constructed
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for Sd using rules that are true in Sd and cover all objects from U . The following
inequity holds for every u ∈ U and u′ ∈ Ω:

SimRBS(u, u) ≥ SimRBS(u, u′) .

Proof. To prove this inequity it is sufficient to show that Similarity(u, u) is maximal
and Dissimilarity(u, u) = 0 for every u ∈ U . Since the RBS model is constructed
from rules that cover all objects from U , |SIM(u)| > 0 and for any X ⊆ U we have:

Similarity(u, u) =
|SIM(u) ∩ SIM(u)|
|SIM(u)|+ Csim

≥ |SIM(u) ∩X|
|SIM(u)|+ Csim

.

Analogically, |DIS(u)| > 0 and since the utilized rules are true in Sd,DIS1
d(u)(u) = ∅.

If so, then

Dissimilarity(u, u) =

∣∣∣DIS(u) ∩DIS1
d(u)(u)

∣∣∣
|DIS(u)|+ Cdis

= 0 .

Proposition 4.3.2. Let Sd =
(
U,A∪{d}

)
be a consistent decision system, U ⊆ Ω and

let SimRBS : U × Ω→ R be a similarity function of the RBS model, constructed for
Sd using rules that cover all objects from U . In addition, let us consider objects u ∈ U
and u′, u′′ ∈ Ω, such that u′ and u′′ are represented by feature sets {Φ+

(d(u)),Φ
−
(d(u))}

and {Ψ+
(d(u)),Ψ

−
(d(u))}, respectively. The following implication holds for every u ∈ U :(

Φ+
(d(u)) ⊇ Ψ+

(d(u)) ∧ Φ−(d(u)) ⊆ Ψ−(d(u))

)
⇒ SimRBS(u, u′) ≥ SimRBS(u, u′′) .

Proof. To prove the above implication it is sufficient to show that for objects
considered in the proposition we have Similarity(u, u′) ≥ Similarity(u, u′′) and
Dissimilarity(u, u′) ≤ Dissimilarity(u, u′′).

Let us consider the sets Φ+
(d(u)) and Ψ+

(d(u)):

Φ+
(d(u)) ⊇ Ψ+

(d(u)) ⇒ SIM(d(u))(u
′) ⊇ SIM(d(u))(u

′′)

⇒
∣∣SIM(u) ∩ SIM(d(u))(u

′)
∣∣ ≥ ∣∣SIM(u) ∩ SIM(d(u))(u

′′)
∣∣

This and the fact that ∀u∈U |SIM(u)| > 0 implies that Similarity(u, u′) ≥
Similarity(u, u′′).

Analogically, if Φ−(d(u)) ⊆ Ψ−(d(u)) then DIS1
d(u)(u

′) ⊆ DIS1
d(u)(u

′′) and as a
consequence Dissimilarity(u, u′) ≤ Dissimilarity(u, u′′).

Proposition 4.3.3. Let Sd =
(
U,A ∪ {d}

)
be a consistent decision system, U ⊆ Ω

and let SimRBS : U ×Ω→ R be a similarity function of the RBS model, constructed
for Sd using rules that are true in Sd and cover all objects from U . In addition, let
us consider objects u, u′, such that d(u) = d(u′) = i and u, u′ are represented by
feature sets {Φ+

(i),Φ
−
(i)} and {Ψ

+
(i),Ψ

−
(i)}, respectively. The following implication holds

for any such u, u′ ∈ U :(
Φ+

(i) ⊇ Ψ+
(i) ∧ Φ−(i) ⊆ Ψ−(i)

)
⇒ SimRBS(u, u′) ≤ SimRBS(u′, u) .
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Proof. It is sufficient to show that for all objects u, u′ ∈ U considered in the
proposition, Similarity(u, u′) ≤ Similarity(u′, u) and Dissimilarity(u, u′) ≥
Dissimilarity(u′, u).

The second inequity is trivial due to the fact that d(u) = d(u′) and the rules are
true in Sd. In such a case DIS1(u) = DIS1(u′) = ∅ and Dissimilarity(u, u′) =
Dissimilarity(u′, u) = 0. To show the validity of the first inequity let us consider
u, u′ ∈ U described by feature sets Φ+

(i) and Ψ+
(i), respectively. We have:

Φ+
(i) ⊇ Ψ+

(i) ⇒ SIM(u) ⊇ SIM(u′)

⇒ SIM(u) ∩ SIM(u′) = SIM(u′) and
|SIM(u)| ≥ |SIM(u′)| .

If so, then:

Similarity(u, u′) =
|SIM(u) ∩ SIM(u′)|
|SIM(u)|+ Csim

=
|SIM(u′)|

|SIM(u)|+ Csim

≤ |SIM(u′)|
|SIM(u′)|+ Csim

= Similarity(u′, u) .

That concludes the proof.

The next proposition shows that the RBS similarity function is suitable for
constructing approximations of similarity relations in the context of classification.
Fundamental properties of such relations were discussed in Section 3.1.2. However,
before we can formulate this proposition we first need to prove a simple lemma:

Lemma 4.3.4. Let Π be a set of decision rules generated for a consistent decision
system Sd =

(
U,A ∪ {d}

)
and let Π1, Π2 denote two subsets of Π. Additionally, let

supp(Π1) =
⋃
π∈Π1

lhs(π)(U) and supp(Π2) =
⋃
π∈Π2

lhs(π)(U). If Π covers all objects
from U and is minimal in U , then

supp(Π1) ⊆ supp(Π2)⇔ Π1 ⊆ Π2 .

Proof. The implication Π1 ⊆ Π2 ⇒ supp(Π1) ⊆ supp(Π2) is trivial. To prove the
second implication, for a moment let us assume that the conditions from Lemma 4.3.4
are met and supp(Π1) ⊆ supp(Π2) but there exists a rule π ∈ Π1 such that π /∈ Π2.
In such a case, supp({π1}) ⊆ supp(Π1) ⊆ supp(Π2), so ∀u∈lhs(π)(U)∃π′∈Π2u � lhs(π′).
This, however, contradicts with the assumption that Π is minimal.

A direct consequence of Lemma 4.3.4 is that supp(Π1) = supp(Π2) ⇔ Π1 = Π2.
In the following proposition there will be an additional assumption regarding the

sets of rules RuleSeti used in the construction of the RBS model. Namely, apart
from the consistency, coverage and minimality of the rule sets, it will be assumed
that each RuleSeti is sufficiently rich to ensure the uniqueness of a representation by
the sets of new features of all objects which are discernible in the original decision
system Sd =

(
U,A ∪ {d}

)
. More formally, we will assume that for every u, u′ ∈ U

represented by new feature sets {Φ+
(i),Φ

−
(i)} and {Ψ

+
(i),Ψ

−
(i)}, respectively, u′ /∈ [u]A ⇔

(Φ+
(i) 6= Ψ+

(i)∨Φ−(i) 6= Ψ−(i)). This property corresponds to the solvability assumption in
Tversky’s contrast model [159]. It is worth noticing that for any consistent decision
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system Sd (see Definition 2.2) it is always possible to construct sets RuleSeti that
meet all of the above requirements. In the simplest case, it is sufficient to take the
rules whose predecessors correspond to descriptions of indiscernibility classes in Sd
and successors point out the corresponding decisions.

Proposition 4.3.5. Let τ be a similarity relation in a context of classification in
a universe Ω. Additionally, let Sd =

(
U,A ∪ {d}

)
be a consistent decision system,

U ⊆ Ω and let SimRBS : U × Ω → R be a similarity function of the RBS model,
constructed for Sd using rule sets, which have the properties of consistency, coverage,
minimality and uniqueness of a representation. The function SimRBS is a proper
similarity function for the relation τ within the set U .

Proof. Let us denote by τSimRBS(ε) a set of all pairs (u, u′) ∈ U × U for which
SimRBS(u, u′) ≥ ε. To show that the function SimRBS has the property of being
a proper similarity function (Definition 3.2) for the relation τ within the set U we
will give values of ε1 and ε2 such that for any u, u′ ∈ U we have:

SimRBS(u, u′) ≥ ε1 ⇒ (u, u′) ∈ τ (4.8)
(u, u′) ∈ τ ⇒ SimRBS(u, u′) ≥ ε2 (4.9)

and the sets τSimRBS(ε1) and U \ τSimRBS(ε2) are not empty.
We will start the proof by showing that if SimRBS(u, u′) =

F
(
Similarity(u, u′), Dissimilarity(u, u′)

)
for F that is increasing with regard to its

first argument and decreasing with regard to the second, then the implication 4.8 is
true for ε1 = F (simmax, 0), where simmax = max

u∈U

(
Similarity(u, u)

)
. In particular,

we will show that SimRBS(u, u′) ≥ F (simmax, 0) ⇔ (u′ ∈ [u]A ∧ u ∈ Umax), where
Umax = {u ∈ U : u = argmax

u∈U
|SIM(u)|}.

Since all utilized rules are consistent and they cover all objects from U , for any
u, u′ ∈ U we have Dissimilarity(u, u′) = 0 ⇔ d(u) = d(u′). Moreover, due to
the fact that Sd is consistent and the utilized rules uniquely represent the objects
from U , for any u ∈ U and u′ ∈ [u]A we have SIM(u′) = SIM(u). If so, then
u ∈ Umax ⇒ [u]A ⊆ Umax and

Similarity(u, u′) = Similarity(u′, u) =
|SIM(u)|

|SIM(u)|+ Csim
.

Thus, the inequity SimRBS(u, u′) ≥ F (simmax, 0) holds for every pair (u, u′) such
that u ∈ Umax and u′ ∈ [u]A.

On the other hand, let us imagine that there exist objects u, u′ ∈ U such that u /∈
Umax∨u′ /∈ [u]A and SimRBS(u, u′) ≥ F (simmax, 0)∨SimRBS(u′, u) ≥ F (simmax, 0)
(or, equivalently, Similarity(u, u′) ≥ simmax ∨ Similarity(u′, u) ≥ simmax).
If u /∈ Umax but u′ ∈ [u]A we get an inconsistency, because all u ∈ U for which
u′ ∈ [u]A and Similarity(u, u′) is maximal, by definition must belong to Umax. Now,
if it is true that u ∈ Umax∧u′ /∈ [u]A and Similarity(u, u′) ≥ simmax, then we have:

Similarity(u, u′) ≥ Similarity(u, u) ⇔
∣∣SIM(u) ∩ SIMd(u)(u

′)
∣∣ ≥ |SIM(u)|

⇔ d(u) = d(u′) ∧ SIM(u) = SIM(u′) .
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That also results in an inconsistency because, based on the assumption regarding the
minimality of the rule sets and Lemma 4.3.4, the objects u and u′ must have the
same representation by new features, and thus (u, u′) ∈ INDA (by the uniqueness of
a representation). Hence, the only possibility left is that u ∈ Umax ∧ u′ /∈ [u]A and
Similarity(u′, u) ≥ simmax. In such a case we would have:∣∣SIM(u′) ∩ SIMd(u′)(u)

∣∣
|SIM(u′)|+ Csim

≥ simmax ⇔ d(u) = d(u′) ∧ SIM(u′) ⊆ SIM(u) ∧

|SIM(u′)| ≥ |SIM(u)|
⇔ SIM(u) = SIM(u′) ,

which again contradicts with the assumption about the uniqueness of a representation
and proves that SimRBS(u, u′) ≥ F (simmax, 0) ⇔ (u′ ∈ [u]A ∧ u ∈ Umax). Since a
similarity relation in the context of a classification is assumed to be reflexive, it shows
that the implication 4.8 is true for ε1 = F (simmax, 0). Moreover, due to the fact that
U is finite, the maximum value of the function Similarity has to be taken by at least
one pair (u, u′) ∈ U × U , and thus τSimRBS(ε1) 6= ∅.

To show that there exists ε2 for which the implication 4.9 is true we will use the
fact that τ is assumed to have the main feature of the similarity for the classification
(see Definition 3.1). As we already noticed, due to the consistency and coverage of the
utilized rules we have Dissimilarity(u, u′) = 0 ⇔ d(u) = d(u′), and d(u) 6= d(u′) ⇒
Similarity(u, u′) = 0. If so, then for ε2 = F (0, 0) we get τSimRBS(ε2) ⊇U IND{d} ⊇U τ .
Moreover, since Dissimilarity(u, u′) > 0 for any pair (u, u′) ∈ U × U such that
d(u) 6= d(u′), we have U \ τSimRBS(ε2) 6= ∅. Thus it is sufficient to take ε2 = F (0, 0).

4.3.4 Rule-Based Similarity for high dimensional data

In the Rule-Based Similarity model the notion of decision reduct is used for finding
a concise set of attributes which can serve as building blocks for constructing
higher-level features. Nevertheless, it has been noted that a single reduct may fail to
capture all critical aspects of the similarity in a case when there are many important
“raw” attributes. To overcome this problem, an extension to RBS called Dynamic
Rule-Based Similarity (DRBS) was proposed [65, 67]. The main aim of the DRBS
model is to extend the original model by taking into consideration a wider spectrum
of possibly important aspects of the similarity.

During construction of the DRBS model, many independent sets of rules are
generated from heterogeneous subsets of attributes. In this way, the resulting
higher-level features are more likely to cover the factors that can influence similarity
or dissimilarity of objects (the positive and negative feature sets) from a domain
under scope. Within the model, the attributes that are used to induce the rules are
selected by computation of multiple decision reducts from random subsets of data.
This method can be seen as an analogy to the Random Forest algorithm [20], in
which multiple decision trees are constructed. In DRBS however, the rules derived
in this manner are not directly employed for classification but they are utilized to
define multiple RBS similarity functions. Those local models are then combined
in order to construct a single function which can yield a better approximation of
a similarity relation in the context of a classification.
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Algorithm 3: The computation of (ε, δ)-dynamic reducts in DRBS
Input: a decision system Sd =

(
U,A ∪ {d}

)
;

a parameter NoOfAttr << |A|;
parameters ε, δ ∈ [0, 1);
integers MaxDDR,MaxTry,NSets;

Output: a set of (ε, δ)-dynamic reducts DDRset;
1 begin
2 DDRset = ∅;
3 i = 0;
4 while |DDRset| < MaxDDR ∧ i < MaxTry do
5 Randomly draw NoOfAttr attributes from A and construct A′ ⊂ A,

|A′| = NoOfAttr;
6 Compute a decision reduct DR of S′d = (U,A′, d);
7 k = 0;
8 for j = 1 to NSets do
9 Randomly draw b(1− ε) · |U |c objects from U (without repetition)

and create S′′d = (U ′, DR, d);
10 if DR ∈ RED(S′′d) then
11 k = k + 1;
12 end
13 end
14 if k/NSets > 1− δ then
15 DDRset = DDRset ∪ {DR};
16 end
17 i = i+ 1;
18 end
19 return DDRset;
20 end

Although in all experiments described in this dissertation DRBS was implemented
using the (ε, δ)-dynamic decision reducts [9, 11] (see Definition 2.12), any kind of an
efficient dimensionality reduction technique, such as approximate reducts [136, 138]
or decision bireducts [141] could be used (see the definitions in Section 2.3). The
dynamic decision reducts, however, tend to be reliable even in a case when only a
few hundreds of objects are available for the learning and thus are suitable for coping
with the few-objects-many-attributes problem [64, 139].

Algorithm 3 shows an efficient procedure for computing (ε, δ)-dynamic decision
reducts. Although the algorithm does not give any guarantee as to the number
of returned dynamic reducts, in practical experiments with real-life data sets (see
Section 5.2) it has always successfully generated a sufficient number of reducts for
constructing a reliable DRBS model. Its advantage for the similarity learning is
that it naturally adjusts the number of generated local RBS models to the available
data. In particular, for reasonable values of ε and δ, the number of produced reducts
for data sets describing objects with many important similarity aspects is likely to
be higher than for those which describe simpler problems, characterised with fewer
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potentially important features.
The DRBS similarity function combines values of the local similarity functions.

Due to a partially randomized reduct construction process, the individual RBS models
represent more independent aspects of the similarity. That in turn results in a better
performance of their ensemble [126, 141, 169]. This particular characteristic makes
the DRBS model akin to the Random Forest algorithm where the final classification
is done by combining decisions of multiple decision trees, constructed from random
subsets of attributes and objects [20]. Unlike in the Random Forest, however, the
classification results which are based on DRBS do not lose their interpretability. For
each tested object we can explain our decision by indicating the examples from our
data set which were used in the decision-making process (i.e. the k most similar cases).
Equation 4.10 shows a basic form of a DRBS similarity function which averages
outputs of the N local RBS models:

SimDRBS(u1, u2) =
1

N
·
N∑
j=1

(
Sim

(j)
RBS(u1, u2)

)
, (4.10)

where Sim
(j)
RBS(u1, u2) is the value of the RBS similarity function for the j-th

decision reduct. This function can be easily modified to reflect relative importances
of individual RBS models:

SimwDRBS(u1, u2) =
ω(j) ·

∑N
j=1

(
Sim

(j)
RBS(u1, u2)

)
∑N

j=1 ω
(j)

. (4.11)

In the above equation, weights ω(j) correspond to quality of RBS models, which can
be estimated using some of the methods described in Section 3.1.4. For this purpose,
usually a part of objects from a learning set needs to be held back as a validation set.

DRBS introduces a few new parameters to the similarity model, of which the
most important are NoOfAttr and MaxDDR. They both govern the process of
randomized computation of reducts. The first one tells how many attributes are
randomly drawn from data for computation of a single reduct. The second one
sets maximal number of the reducts to be generated. Together, those parameters
influence the thickness of a coverage of truly important similarity aspects. Knowing
their values, it is possible to estimate a chance of an attribute to be considered for
inclusion into at least one reduct and the expected number of its occurrences within
the final set of reducts.

If by pattr we denote the ratio between NoOfAttr and the total number of
attributes in data (pattr = NoOfAttr

|A| ), the occurrence probability of an attribute attr
in at least one reduct and the expected number of its occurrences are equal:

p(attr) = 1−MaxDDR · (1− pattr)MaxDDR and E(attr) = MaxDDR · pattr,

respectively. In practice, these two quantities can be used to set reasonable values of
NoOfAttr and MaxDDR for a given data set.

Another two important parameters are ε and δ which have a significant impact
on properties of generated dynamic reducts. The higher ε and lower δ, the more
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robust are the resulting dynamic decision reducts. However, too restrictive values of
those parameters may cause a serious deterioration in a computational efficiency of
the algorithm or even prevent its completion.

Alternatively, if instead of dynamic reducts, the new feature sets were defined
using decision bireducts, many parameters of the DRBS model could be replaced by a
single ratio that governs the generation of random permutations (for more details refer
to [141]). In practical experiments with DRBS, however, only the approximations
derived from dynamic decision reducts have been used so far.

4.3.5 Unsupervised Rule-based Similarity for textual data

The idea behind the RBS model can also be applied to carry out unsupervised
similarity learning [70]. In particular, the RBS model was extended to facilitate
an approximation of a semantic similarity of scientific articles.

The construction of the model starts with assigning concepts from a chosen
knowledge base to a training corpus of documents. This can be done in an automatic
fashion with the use of methods such as ESA [38] (see Section 4.2.4). The associations
to the key concepts assigned to the documents can be transformed to binary features
and therefore, are suitable to use with the contrast model of similarity. However, a
direct application of this model would not take into consideration data-based relations
between concepts from the knowledge base and a potentially different meaning of
those relations for different documents. The problem of finding appropriate values
of parameters of the Tversky’s model would also remain unsolved. The proposed
extension of RBS aims to overcome those issues [70]. It is called the unsupervised
RBS model, since it can be seen as a continuation of the research on the similarity
learning model for high dimensional data [67].

Let F be a set of all possible semantic features of texts from a corpus D and let
Fi be a set of the most important concepts related to the document Ti, F =

⋃|D|
i=1 Fi.

The documents from D can be represented in an information system S = (D,F ),
as explained in Section 4.2.4. An example of such a system is shown in Table 4.4.
We can say that two documents described by this table have a common feature if
they both have value 1 in the corresponding column (e.g. the documents T1 and T2

have three common features: f2, f3 and f10). The binary attributes in this system
may correspond to tags assigned by experts or by discretizing numeric weights of
ontological entities generated using methods such as ESA.

In many practical applications, the numerical values of an association strength
between a concept and a document may be discretized into more than two intervals
in order to precisely model their bond. In this case, it is reasonable to define a few
binary features that represent consecutive intervals and remain dependent, in a sense
that if a feature is “highly related ” to a document then it is also “weakly related ”, but
not the opposite. Such an approach is popular in Formal Concept Analysis [40] and
allows to model a psychological phenomena that usually simpler objects are more
similar to the more complex ones than the other way around.

In order to find out which combinations of independent concepts comprise the
informative aspects of similarity, we could compute information reducts of S [110, 131]
or, to obtain more compact and robust subsets of F , some form of approximate
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information reducts [71, 138]. However, during the research on the unsupervised
RBS model the information bireducts were proposed [70] in order to limit its bias
toward common concepts and objects of negligible importance.

Information bireducts can be defined similarly to the decision bireducts (see
Section 2.3.3), however their interpretation is slightly different.

Definition 4.1 (Information bireduct).
Let S = (D,F ) be an information system. A pair (B,X), where B ⊆ F and X ⊆ D,
is called an information bireduct, iff B discerns all pairs of objects in X and the
following properties hold:

1. There is no proper subset C ( B such that C discerns all pairs of objects in X.

2. There is no proper superset Y ) X such that B discerns all pairs of objects in Y .

Just as in the case of decision bireducts, information bireducts do not allow any
inconsistencies in X. In a context of information bireducs, however, consistence is
understood as an ability to distinguish between any pair of objects in the selected set.

It is interesting to compare information bireducts with templates studied in the
association rule mining [96, 101] or concepts known from the formal concept analysis
[39, 40]. Templates aim at describing a maximum number of objects with the same
(or similar enough) values on a maximum number of attributes. Similarly, concepts
are defined as non-extendable subsets of objects that are indiscernible with respect
to non-extendable subsets of attributes. On the other hand, information bireducts
describe non-extendable subsets of objects that are discernible using irreducible
subsets of attributes. The templates and concepts might be seen as corresponding
to the most regular areas of data, while the information bireducts correspond to the
most irregular, chaotic or one might even claim – the most informative data. Hence,
information bireducts can be also called anti-templates or anti-concepts.

In a context of similarity learning, information bireducts can also be intuitively
interpreted as artificial agents that try to assess the similarity between given objects.
Each of such agents can be characterised by its experience and preferences. In a
bireduct, the experience of an agent is explicitly expressed by the set X – the set
of cases that the agent knows. The preferences of an agent are modelled in an
information bireduct by the set of attributes which are the factors taken into account
when the agent makes a judgement. Such an interpretation makes information
bireducts become an interesting tool for constructing similarity models from data.

For each bireduct BR = (B,X), B ⊆ F , X ⊆ D, we can define a commonality
relation in D with regard to BR. One example of such a relation can be ς|BR which
is defined as follows:

(Ti, Tj) ∈ ς|BR ⇐⇒ Tj ∈ X ∧
∣∣Fi|BR ∩ Fj|BR∣∣ ≥ p, (4.12)

where p > 0, Ti, Tj ∈ D and Fi|BR is a representation of Ti restricted to features from
B. Intuitively, two documents are in the commonality relation ς|BR if and only if one
of them is covered by the bireduct BR and they have at least p common concepts.
The commonality class of a document T with regard to BR will be denoted by IBR(T )
since it can be regarded as a specific type of an uncertainty function in the theory of
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Table 4.4: An information system S representing a corpus of nine documents, with
three exemplary bireducts.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

T1 1 1 1 0 0 0 0 0 1 1
T2 0 1 1 1 1 0 1 0 0 1
T3 1 1 0 0 0 0 1 0 0 0
T4 0 0 0 0 1 0 0 1 0 0
T5 1 0 1 0 1 1 0 0 0 0
T6 1 0 1 0 0 0 0 0 0 0
T7 0 1 1 0 0 1 1 1 0 0
T8 0 0 0 0 1 1 1 1 1 0
T9 1 1 0 0 1 0 0 0 1 0

Exemplary information bireducts:

BR1=({f2, f3, f8, f9},
{T1, T2, T3, T4, T6, T7, T8, T9})

BR2=({f3, f5, f7, f9},
{T1, T2, T3, T4, T5, T6, T7, T8, T9})

BR3=({f1, f2, f5},
{T2, T3, T5, T6, T7, T8, T9})

rough sets (see Definition 2.5). For instance, if we consider the information system
from Table 4.4 and the commonality relation defined by the formula (4.12) with p = 2,
then IBR1(T1) = {T1, T2, T7, T9} and IBR1(T5) = ∅.

It is important to realize that a commonality of two objects is something
conceptually different than indiscernibility. For example, the documents T5 and T6

are indiscernible with regard to the features from the bireduct BR1 but they are not
in the commonality relation since they have only one feature f3 in common.

A similarity model needs to have a functionality which allows it to be applied
for analysis of new documents. Typically, we would like to assess their similarity
to the known documents (those available during the learning phase) in order to
index, classify or assign them to some clusters. For this reason, in the definition
of the commonality relation only Tj needs to belong to X. This also makes it more
convenient to utilize information bireducts that explicitly define the set of reference
cases for which the comparison with the new ones is well defined.

The commonality relation (4.12) can be used to locally estimate the real
significance of arguments for and against the similarity of documents which are being
compared. Those arguments, i.e. sets of higher-level features of documents, can be
aggregated analogously to the case of the regular RBS similarity function (4.5). In
particular, the similarity of Ti to Tj with regard to a bireduct BR can be computed
using the following formula:

SimBR(Ti, Tj) =
|IBR(Ti) ∩ IBR(Tj)|
|IBR(Ti)|+ C

−
∣∣(X \ IBR(Ti)

)
∩ IBR(Tj)

∣∣
|X \ IBR(Ti)|+ C

. (4.13)

As in the case of the functions Similarity and Dissimilarity of the RBS model (see
Section 4.3.2), the constant C > 0 is added to avoid division by zero.

Since each information bireduct is a non-extendable subset of documents, coupled
with an irreducible subset of features that discern them, it carries maximum
information on a diverse set of reference documents. Due to this property, the
utilization of bireducts nullifies the undesired effect which common objects (or usual
features) would impose on sizes of the commonality classes and thus, on the similarity
function value. Moreover, such a use of the information bireducts in combination
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with the commonality relation (4.12) substitutes the need for manual tuning of
additional parameters. Instead, the relative intersection size of the commonality
classes locally expresses the relevance of arguments for similarity without a need for
considering additional parameters. By analogy, the importance of arguments against
the similarity is reflected by the relative size of a set that comprises those documents
which are not in the commonality class of the first document and are sufficiently
compliant with the second text.

Following the example from Table 4.4, the formula (4.13) can be used to compute
the similarity between any two documents from S with regard to a chosen bireduct
BRi. For instance, for a very small c, SimBR1(T1, T2) ≈ 3/4 − 0 = 0.75,
SimBR1(T1, T5) = 0 − 0 = 0 and SimBR1(T1, T8) ≈ 0 − 1/4 = −0.25. It is
worth noting that the proposed approach keeps the flexibility of the original RBS
model and does not impose any properties on the resulting similarity function.
Depending on the data and on the selection of τ |BR, the function SimBR may be
not symmetric (SimBR1(T2, T1) ≈ 0.8 6= SimBR1(T1, T2)), and even not reflexive
(SimBR1(T3, T3) = 0). In this case the lack of the reflexivity is a consequence of the
fact that T3 /∈ X, thus a meaningful assessment of the similarity to this document is
not possible. This flexibility of the model makes it consistent with observations made
by psychologists [159].

The utilization of information bireducts allows to conveniently model different
aspects of similarity. By analogy to the initial experiments with decision bireducts
[141], a set of information bireducts will cover much broader aspects of data than
an equally sized set of the regular information reducts. This allows to capture
approximate dependencies between features which could not be discovered using
classical methods and may contribute to the overall performance of the model.
The algorithm proposed in [141] for computation decision bireducts can be easily
adjusted to the case of information bireducts (Algorithm 4). The randomization
of the algorithm guarantees that its multiple executions will produce a diverse
set of bireducts.

To robustly evaluate similarity of two documents the agents need to interact by
combining their assessments. The simplest method of such an interaction is to average
votes of all agents. In such a case, the final similarity of Ti to Tj can be computed
using the following formula:

Sim(Ti, Tj) =

∑
k SimBRk(Ti, Tj)

#extracted bireducts
. (4.14)

For example, if for the information system S from Table 4.4 we consider information
bireducts BR1, BR2 and BR3, the final similarity of T1 to T2 would be equal to
Sim(T1, T2) = (0.75 + 0.05 + 0.3)/3 u 0.37.

The design of such a similarity function is computationally feasible and does
not require tuning of unintuitive parameters. It also guarantees that the resulting
similarity function keeps the flexibility and psychologically plausible properties.
Moreover, this kind of an ensemble significantly reduces the variance of similarity
judgements in a case when the available data set changes over time (e.g. new
documents are added to the repository) and increases model robustness.

However, some more sophisticated methods can also be employed for carrying out
the interaction between the agents (bireducts), in order to improve performance in



86 4. Similarity Relation Learning Methods

Algorithm 4: The calculation of an information bireduct of S = (D,F )

Input: an information system S = (D,F );
a random permutation σ : {1, ..., |D|+ |F |} → {1, ..., |D|+ |F |};

Output: an information bireduct (B,X), B ⊆ F , X ⊆ D;
1 begin
2 B = F ;
3 X = ∅;
4 for i = 1 to |D|+ |F | do
5 if σ(i) ≤ |F | then
6 if B \ {Fσ(i)} discerns all pairs in X then
7 B ← B \ {Fσ(i)}
8 end
9 end

10 else
11 if B discerns all pairs in X ∪ {Tσ(i)−K} then
12 X ← X ∪ {Tσ(i)−K}
13 end
14 end
15 end
16 return (B,X);
17 end

a given task or to reduce similarity computation costs. For instance, properties of
extracted bireducts can be used to select only those which will most likely contribute
to the performance of the model. The considered properties may include, e.g. a
number of selected features, a size of the reference document subset or an average
intersection with other bireducts [141]. Using such statistics in combination with
general knowledge about the data it is possible to decrease the number of bireducts
required for making consistent similarity assessments.

4.3.6 Summary of the Rule-Based Similarity models

The construction of the RBS model makes it flexible and allows to apply it in many
object domains. By its design, the model tries to incorporate all the plausible
properties of a similarity learning method listed in Section 4.1. For instance, if
the rules which are used for constructing the RBS and DRBS models are consistent,
the resulting similarity function is guaranteed to respect the fundamental feature
of a similarity relation in a classification context (see Definition 3.1). Hence, the
models are consistent with the training data. For unsupervised RBS this property
is difficult to verify in a general case. However, if the semantic concepts which
represent the documents are properly assigned (e.g. by experts or a well-trained
supervised algorithm), the consistence with data is a natural consequence. Moreover,
the similarity function of the RBS model is a proper similarity function if only the
data set is consistent and the utilized sets of rules meet a few general requirements
(i.e. they are consistent with the data, cover all objects, are minimal and allow to
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uniquely identify all objects that originally were discernible – see Section 4.3.3).
By its design RBS takes into consideration the context for evaluation of the

similarity. A value of the resulting similarity function depends on a decision class
of a referent object. The similarity values are also influenced by a presence of other
objects in the data. Due to the utilization of the rough sets (i.e. the use of notions
such as a reduct, an uncertainty and membership function, as well as the overall
approach which resembles searching for appropriate similarity approximation space),
the model is capable of automatically adapting itself to the data at hand. This
characteristic contributes to good performance of the RBS models in tasks such as
a supervised classification. This fact is confirmed by experiments on real-life data
which are described in the next Chapter 5.

The proposed model can be more intuitive for domain experts than typical
distance-based approaches. Unlike distance-based metrics, RBS does not enforce any
undesirable properties on the induced similarity relation. The set representation,
originally borrowed from Tversky’s feature contrast model, is more natural for
complex objects than the vector representation in a metric space. It is particularly
important in situations when the vectors representing objects would have to be
high dimensional and possibly sparse (e.g. typical bag-of-words representation of
textual documents). The set representation also allows to conveniently model the
phenomenon that the lack of some important characteristics in both of compared
objects is not an argument for their similarity. Moreover, RBS treats the evaluation
of similarity as a problem of resolving conflicts between arguments for and against
the similarity, which has an intuitive interpretation.

An important aspect of RBS models is their computational complexity. The
construction time of the models depends on particular algorithms used for extracting
higher level features. Thanks to the proposed extensions the model can be efficiently
built even for very high dimensional data sets. A bigger issue is related to a time cost
of a similarity assessment between a single pair of objects. Since the model considers
influence of other objects on the context, the computation cost of the RBS similarity
function can be in the worst case linear with regard to the number of objects in the
data. Since the corresponding cost for typical distance-based similarity functions is
constant, such models are easer to apply for analysis on data sets with many objects.
On the other hand, the bounded computation cost and robustness with regard to the
number of attributes (the sizes of higher-level feature sets can be limited by applying
simple filters on rule induction algorithms) makes RBS a useful tool for solving the
few-objects-many-attributes problem.
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Chapter 5

Experimental Evaluation of the
Rule-Based Similarity Model

This chapter presents the results of experiments in which Rule-Based Similarity was
used for constructing similarity models from various types of data. The aim of those
experiments was to demonstrate feasibility of the rule-based approach to the similarity
learning problem. Quality of the proposed model was evaluated using methods briefly
described in Section 3.1.4. Depending on the context in which a given similarity model
was meant to be applied (i.e. an object classification or a semantic similarity of texts),
its quality was judged based on a performance of the 1-nearest neighbour classifier or
on a conformity of the similarity function to feedback provided by domain experts.

The performance of the RBS model was additionally compared to several other
similarity models as well as to the state-of-the-art classifiers in the investigated
domain. For the sake of an in-depth analysis of the results, not only are the
raw evaluation values presented but also their statistical significance is given.
Although most of those results were already published and presented at respectful
conferences [61, 62, 64, 65, 67, 70], some new views at those tests are shown as
well. All the experiments described in this chapter were implemented and executed
in R System [121]. RBS and its extensions were coded in a native R language with
an exception of the discretization algorithm (see Algorithm 2 in Section 4.3.2), which
was supported by a C++ code. This code was executed through the .C interface
provided by R. The whole experimental environment, including the code, data sets
and documentation, that allows to conveniently repeat a major part of the conducted
experiments is available on request1.

The chapter is divided into three sections. The first one discusses the performance
of the original RBS model. In that section (Section 5.1), RBS was constructed
for several benchmark data sets from the UCI repository2 [36] and compared with
several common distance-based models. Next, Section 5.2 shows the evaluation of the
proposed model on microarray data sets which are an example of high dimensional
data. Finally, in Section 5.3 a case-study of semantic similarity learning from
biomedical texts is presented.

1janusza@mimuw.edu.pl
2UC Irvine Machine Learning Repository: http://archive.ics.uci.edu/ml/

89

http://archive.ics.uci.edu/ml/


90 5. Experimental Evaluation of the Rule-Based Similarity Model

5.1 Performance of Rule-Based Similarity in a
Classification Context

The original RBS model was tested on a range of benchmark data sets and compared
to several commonly used similarity models. Its performance was also verified on a
few high dimensional data sets to check its usefulness for learning a similarity relation
characterised by multiple possible aspects. This section describes the methodology
and presents the results of those test.

5.1.1 Description of the benchmark data sets

The first series of experiments with RBS was conducted on a set of six benchmark
data tables, from which five were downloaded from the UC Irvine Machine Learning
Repository [36] and one was taken from an R System library MASS [121] (the
Cars93 data). They concern domains such as classification of cars, handwritten
digits recognition, breast tumour diagnosis and recurrence risk assessment, automatic
assessment of nursery applications and Internet advertisements recognition.

A few basic characteristics of the utilized data sets are shown in Table 5.1. They
significantly differ in both, the number of objects and attributes. Three of the selected
data sets contain nominal attributes, whereas numeric attributes are present in five
tables. The Nursery data set was the only one containing purely nominal features.
The number of decision classes for each set ranged from two (the WDBC, WPBC
and InternetAds data sets) to ten (the Pendigits data).

Table 5.1: A brief summary of the benchmark datasets used in the experiments with
the original RBS model.

Data set: no.
instances

no.
attributes

numeric
attributes

nominal
attributes

no. decision
classes

Cars93 93 27 Yes Yes 6
Pendigits 10992 17 Yes No 10
WDBC 569 31 Yes No 2
WPBC 198 33 Yes No 2
Nursery 12958 9 No Yes 4
InternetAds 3279 1559 Yes Yes 2

Additional experiments were performed to assess usefulness of the RBS model
for the similarity learning from high dimensional data. For this series of tests,
four microarray data sets3 were selected along with the InternetAds data table
which was already used in the initial experiments. Two of the chosen microarray
data sets (PTC and Barrett) are smaller benchmark tables, whereas the two other
(HepatitisC and SkinPsoriatic) were obtained from the ArrayExpress repository4

3For more information on microarray data see Section 5.2.1.
4www.ebi.ac.uk/arrayexpress
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Table 5.2: A brief summary of microarray data sets used in the experiments.

Data set: no. samples
(instances)

no. genes
(attributes)

no. decision
classes

PTC 51 16502 2
Barrett 90 22277 3
HepatitisC 124 22277 4
SkinPsoriatic 180 54675 3

[106] and were created as a result of larger research projects (experiment accession
numbers E-GEOD-14323 and E-GEOD-13355, respectively).

A microarray analysis is an important source of high dimensional data. A
case-based approach to knowledge discovery from collections of microarrays is popular
due to scarcity of available data samples [14, 89, 171]. The construction of a reliable
similarity model for such a data type is usually a challenging task. Since each
data sample is described by numerous attributes (from a few thousands to a few
hundred thousands), it is difficult to select those relevant in the considered context.
The evaluation of RBS on microarray data was performed to check whether the
reduct-based construction of relevant features is effective for high dimensional data.

5.1.2 Compared similarity models

In the experiments, the RBS model was constructed for the classification context
(see Section 3.1.2 and Section 4.3.2), which was defined by the decision attributes
in the data sets. Several other similarity models were also constructed for each of
the decision tables. Some of them, such as the Euclidean distance-based model5 (the
Gower distance-based similarity, see Section 3.2.1), were unsupervised, whereas the
others utilized the information about classification of objects to adapt to the data.

Among the supervised similarity models used in this comparison, the most
important one was the distance-based model combined with a genetic algorithm
for learning parameters of local distances. This model will be called Genetic-Based
Similarity (GBS). This approach was described in more details in Section 4.2.2. The
genetic algorithm was coded in the native R language [121]. As the local distances
it used an absolute difference for numeric attributes and the equivalence test for the
nominal ones. The local distance values were aggregated using the Euclidean norm
(the Gower metric – see Section 3.2.1).

The value of the parameter that governs the population size (i.e. the number of
chromosomes) was set to 1000 for the smaller data sets and to 250 for the larger. The
probabilities of the replication, mutation and crossover operations for a particular
chromosome were computed using the roulette wheel selection technique, based on
a distribution of scores (fitness values) in the population. The exact copies of
the chromosomes chosen for replication were taken to the next generation. The
chromosomes which were chosen for mutation were randomly modified on a small

5For the data sets containing nominal attributes the Gower distance was used.
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Table 5.3: A summary of the models used in the experiments from Section 5.1.

Name: A short description of a model:
Gower A standard Gower distance-based similarity function.
Gower
+ FS

A Gower distance-based similarity function with a t-statistic filter
for selecting relevant attributes.

Minkowski
+ FS

A Minkowski distance-based similarity function combined with a
t-statistic attribute filter and a metric parameter learning wrapper.

GBS A genetic algorithm-based similarity function learning.
RBS The original Rule-Based Similarity model.

number of genes (the genes were also chosen at random) and added to the new
generation. Next, the chromosomes chosen to crossover were randomly matched in
pairs to produce two offspring. The new chromosomes were computed as a weighted
averages of the parent chromosomes. Finally, scores of the new generation members
were computed and the chromosomes with lower scores were eliminated so that the
size of the population did not exceed the starting value. In this way the selection of a
chromosome was not directly dependent on its fitness but instead, it was conditioned
on its ranking in the population.

Additionally, two different similarity learning models were implemented for the
experiments on the high dimensional data sets. Both of those models represented the
feature selection approach to similarity learning (see Section 4.2.1). The first one,
denoted by Gover+FS, was a combination of the Gower distance-based similarity
function with a filter attribute selection method. Relevant features were selected
using a t-statistic filter. The attributes were ranked according to average p-values of
a t-test (the lower the average, the higher the rank) that check equity of attributes’
values within pairs of decision classes. The final number of top-ranked attributes
for the model was decided using the leave-one-out cross-validation [18, 80] on the
available training data. This number was chosen within the range of 2 to 1000. The
second model, called Minkowski+FS, extended the first one by allowing to tune the
local distance aggregation function (the p parameter in the Minkowski’s aggregation
function, see Section 3.2.1). To increase the performance of all the distance-based
models, numeric attributes in the data sets were scaled before the experiments.

The RBS model was designed for each of the data sets as it was described in
Section 4.3. The relevant higher-level features were constructed from the attributes
constituting decision superreducts6. The attributes were selected and discretized
using a supervised greedy heuristic [71, 97] which was modified so that instead of
selecting only one cut at a time, the algorithm was able to simultaneously choose cuts
on several attributes that discern most of the samples from different decision classes.
The rules which define the higher-level features were discovered using the decision
apriori algorithm implemented in the arules R System library. Only consistent rules7
were considered with a minimal support factor set to minimum from 5 and 1% of a

6A decision superreduct is a set of attributes that discern all objects from different decision
classes but does not need to be minimal. See Section 2.3.1.

7A rule is called consistent or true if its confidence equals 1. See Section 2.1.3.
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total number of objects in a training set. Table 5.3 summarizes the similarity models
used in the experiments described in this section.

5.1.3 Evaluation method and discussion of the results

The quality of the compared similarity models was evaluated indirectly by measuring
classification performance of 1-NN classification rule (Definition 3.1) applied to the
corresponding similarity functions. This similarity model evaluation method was
discussed in Section 3.1.4. The classification accuracy (ACC), defined as:

ACC =
|{u ∈ TestSet : d̂(u) = d(u)}|

|TestSet|
, (5.1)

where TestSet is a set of test objects and d̂(u) is a prediction of a decision class
for an object u, was estimated using the 10-fold cross-validation technique [27]. The
cross-validation was repeated 12 times with different partitioning of data sets into
folds. Although in each cross-validation run the division of data was random, the
same partitioning was used for every tested similarity model in order to facilitate the
comparison of the evaluation results. The mean and standard deviations of model
accuracies were computed and the significance of differences in results was assessed
using the paired t-test with a 0.99 confidence level.

Table 5.5 shows the mean and standard deviation of accuracy obtained by
similarity models described in Section 5.1.2 for the regular data sets. Figure 5.1
also conveniently visualizes those results.

Table 5.4: A comparison of the classification accuracy (ACC) of the tested models.

Dataset: Gower acc. (%) GBS acc. (%) RBS acc. (%)
Cars93 63.44± 2.41 87.96± 1.11 89.25± 1.10
Pendigits 97.46± 0.21 98.57± 0.26 97.30± 0.55
WDBC 95.20± 0.31 95.66± 0.64 95.53± 0.48
WPBC 73.13± 1.25 76.25± 0.82 76.79± 0.85
Nursery 76.28± 0.39 78.35± 0.31 97.02± 0.05
InternetAds 96.52± 0.09 96.06± 0.44 96.07± 0.14

The classification accuracies of the similarity models on the benchmark data are
comparable. The RBS model achieved significantly better results on the data sets
containing nominal attributes, with an exception of the InternetAds data. Although
the accuracy of the RBS model for the most of datasets was slightly higher than the
accuracy of the GBS model, the difference was significant (p-value of a t-test was
lower than 0.01) only for Cars93, Nursery in favour of the RBS and Pendigits in
favour of the GBS. However, it is worth noticing that the time needed to perform the
tests was much shorter for the rule-based approach.

Comparing to the simple Gover distance-based approach, RBS turned out to be
more reliable for all data tables, except Pendigits and InternetAds. The average
classification accuracy of RBS was statistically higher (p-value of a t-test ≤ 0.01)
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Figure 5.1: A visualization of classification accuracy obtained by the compared
similarity models on the benchmark data sets.

for the Cars93, WPBC and Nursery data. Interestingly, the performance of RBS
was significantly lower than the performance of the Gower model for the InternetAds
data set. This fact can be treated as an argument for a hypothesis that the RBS
model may fail to capture all relevant aspects of similarity when the dimensionality
of a data set is high.

To further investigate this problem the second series of experiments was
conducted, in which the performance of RBS was compared to several distance-based
models on high dimensional data sets. Table 5.4 shows the results of those tests.
They are also displayed in Figure 5.2.

Table 5.5: A comparison of the classification accuracy (ACC) of several similarity
models for high dimensional data sets.

Dataset: Gower Gower+FS Minkowski+FS GBS RBS
InternetAds 96.52±0.09 96.79±0.14 96.75±0.12 96.06±0.44 96.07±0.14
PTC 84.31±1.41 96.08±1.67 98.04±0.77 95.74±1.95 98.04±1.31
Barrett 51.67±2.23 55.11±1.86 59.78±1.43 55.55±1.97 62.56±2.12
HepatitisC 86.36±1.66 84.54±1.58 85.08±1.06 84.83±1.38 86.58±0.83
SkinPsoriatic 71.17±1.50 70.83±2.13 69.50±2.39 72.17±1.56 79.00±1.12

The results seem to confirm a hypothesis that similarity learning may have a
significant impact on a quality of a similarity model for high dimensional data. For
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Figure 5.2: A visualization of classification accuracy obtained for the high dimensional
data sets.

the PTC and Barrett data the basic Gower distance-based model, which does not
adapt to particular data sets, achieved much lower accuracies than all other similarity
models. Moreover, the accuracy of the Gover model was lower than the accuracy
of RBS on every data table except InternetAds and the difference was statistically
significant for the PTC, Barrett and SkinPsoriatic data. On the other hand, its results
on the InternetAds and HepatitisC data sets show that even such a simple model may
be sufficient to obtain comparable, if not better, results to much more sophisticated
approaches, like the genetic algorithm-based similarity learning (GBS) or RBS.

Accuracy scores achieved by RBS were significantly higher (p-value < 0.01) than
those of other similarity learning models for the Barrett, HepatitisC and SkinPsoriatic
data. In particular, on average RBS turned out to be more reliable than GBS for
all data sets except InternetAds. The genetic approach does not work very well
for high dimensional data. Its probably due to the over-fitting problem which is
likely to happen when extensive supervised tuning is performed for models with
many parameters [93]. It has been observed, however, that for data sets with many
potentially important attributes (i.e. InternetAds, HepatitisC ) the results of RBS are
comparable to those of the much simpler models (Gower, Gower+FS). This, perhaps,
can be explained by the fact that RBS was using a much lower number attributes
than the other models (the total number of attributes used by RBS for a single data
set never exceeded 70, whereas for other models it often was more than ten times
greater). On one hand, this characteristic can be advantageous since it facilitates
interpretability of the model. On the other hand, however, it may deteriorate the
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performance of the model for complex classification problems, when the number of
important features is usually high.

5.2 Evaluation of the Dynamic Rule-Based
Similarity Model on Microarray Data

The construction of a similarity model for a high dimensional data may require
incorporation of numerous characteristics or factors that have an impact on similarity
judgements in a given context. The DRBS model was proposed in order to enable
working on multiple features during the construction of the model, while keeping the
reliability and flexibility of RBS which are provided by utilization of notions from the
theory of rough sets. This section shows some applications of DRBS to analysis of
several microarray data sets. It also presents the comparison of classification results
of the 1-NN algorithm which uses a DRBS-induced similarity function, and a few
state-of-the-art classifiers that are commonly employed for microarray data.

5.2.1 Microarrays as an Example of Real-Life High
Dimensional Data

The microarray technology allows researchers to simultaneously monitor thousands
of genes in a single experiment. In a microarray data set, specific microarray
experiments are treated as objects (e.g. tissue samples). The attributes of those
objects correspond to different genes and their values correspond to expression levels
– the intensity of a process in which information coded in a gene is transformed
into a specific gene product. Figure 5.3 visualizes a single microarray chip after an
experiment and its representation in a decision table.

In recent years, a lot of attention of researchers has been put into investigation of
this kind of data. That growing interest is largely motivated by numerous practical
applications of knowledge acquired from microarray analysis in medical diagnostics,
treatment planning, drugs development and many more [3]. When dealing with
microarrays, researchers have to overcome the problem of insufficient availability of
data. Due to very high costs of microarray processing, usually the number of examples
in data sets is limited to several dozens. This fact, combined with a large number
of examined genes, makes many of the classic statistical or machine learning models
unreliable and encourages researchers to develop specialized methods for solving the
few-objects-many-attributes problem [139].

Thorough experiments have been conducted to test the performance of the DRBS
model on 11 microarray data sets. All the data samples were downloaded from the
ArrayExpress8 repository. All the data available in the repository are in the MIAME9

standard [19]. To find out more about this open repository refer to [106]. Each of the
used data sets was available in a partially processed form as two separate files. The
first one was a data table which contained information about expression levels of genes

8www.ebi.ac.uk/arrayexpress
9Minimal Information About Microarray Experiment
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sampleID AFFX-3_at 3322_i_at 4969_s_at ... 22095_s_at 22379_at Diagnosis

GSM1.CEL 4.010 12.434 32.443 ... 1.665 12.434 3
GSM2.CEL 5.314 43.765 5.763 ... 3.567 7.645 2
GSM3.CEL 3.275 17.567 23.842 ... 0.657 12.446 2
GSM4.CEL 2.112 8.432 54.849 ... 87.656 45.324 1

... ... ... ... ... ... ... ...
GSM149. 

CEL
8.453 10.087 8.678 ... 2.986 9.656 3

Microarray data:
few-objects-many-attributes problem

≈40k genes (attributes)

Figure 5.3: A visualization of a microarray chip after an experiment (the top left
corner) and its representation in a decision system. The intensity of a colour of spots
at the chip reflects expression levels of the genes.

in particular samples and the second was a SDRF 10 file storing meta-data associated
with samples (e.g. decision classes). Entries in those files had to be matched during
the preprocessing phase. Figure 5.4 shows a standard microarray data preprocessing
schema.

The data sets used in experiments were related to different medical domains and
diverse research problems (the ArrayExpress experiment accession numbers are given
in parentheses):

1. AcuteLymphoblasticLeukemia (ALL) – the recognition of acute lymphoblastic
leukemia genetic subtypes (E-GEOD-13425).

2. AnthracyclineTaxaneChemotherapy (ATC) – the prediction of response to
anthracycline/ taxane chemotherapy (E-GEOD-6861).

3. BrainTumour (BTu) – diagnosis of human gliomas (E-GEOD-4290).

4. BurkittLymphoma (BLy) – the diagnostics of human Burkitts lymphomas
(E-GEOD-4475).

5. GingivalPeriodontits (GPe) – transcription profiling of human healthy and
diseased gingival tissues (E-GEOD-10334).

6. HeartFailurFactors (HFF) – transcription profiling of human heart samples with
different failure reasons (E-GEOD-5406).

10Sample and Data Relationship File
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Figure 5.4: A standard preprocessing schema for microarray data sets.

7. HepatitisC (HeC) – an investigation of a role of the chronic hepatitis
C virus in the pathogenesis of HCV-associated hepatocellular carcinoma
(E-GEOD-14323).

8. HumanGlioma (HGl) – the recognition of genomic alterations that underlie
brain cancers (E-GEOD-9635).

9. OvarianTumour (OTu) – the recognition of the ovarian tumour genetic subtypes
(E-GEOD-9891).

10. SepticShock (SSh) – profiling of critically ill children with the systemic
inflammatory response syndrome (SIRS), sepsis, and septic shock spectrum
(E-GEOD-13904).

11. SkinPsoriatic (SPs) – an investigation of genetic changes related to the skin
psoriasis (E-GEOD-13355).

Apart from matching the decisions to samples some additional preprocessing
was needed to remove those decision classes which were represented by less than
3 instances. The first 10 data sets were previously used in RSCTC’2010 Discovery
Challenge [168]. The eleventh set was previously used for the comparison of the
original RBS with distance-based similarity learning models in [64] (see Section 5.1).
A part of those data sets was also used in the preliminary experiments, in which a
developing version DRBS was compared to the original RBS model ([65]). Table 5.6
presents some basic characteristics of the data sets. They differ in the number of
samples (from 124 to 284), the number of examined genes (it varies between 22276
and 61358) and decision classes (2 to 5). Only data sets which contained more than
100 samples were used in the experiments with DRBS.

Some of the data sets have significantly uneven class distribution, with one
dominant class represented by majority of samples and a few minority classes
represented by a small number of objects. Typically, in microarray data, the minority
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Table 5.6: A brief summary of microarray data sets used in the experiments.

Data set: no. samples no. genes no. classes (& class distribution)
ALL 190 22276 5 (0.28, 0.23, 0.19, 0.23, 0.07)
ATC 160 61358 2 (0.59, 0.41)
BTu 180 54612 4 (0.28, 0.13, 0.14, 0.45)
BLy 221 22282 3 (0.20, 0.58, 0.22)
GPe 247 54674 2 (0.74, 0.26)
HFF 210 22282 3 (0.51, 0.41, 0.08)
HeC 124 22276 4 (0.14, 0.38, 0.15, 0.33)
HGl 186 59003 5 (0.57, 0.18, 0.08, 0.07, 0.10)
OTu 284 54620 3 (0.87, 0.06, 0.07)
SSh 227 54674 5 (0.47, 0.23, 0.12, 0.08, 0.10)
SPs 180 54675 3 (0.32, 0.36, 0.32)

classes are more interesting than the dominant one and this fact should be reflected
by the quality measure used to assess the performance of classification algorithms.
For this reason, the quality of the models employed in the experiments was evaluated
using the balanced accuracy (BAC) measure. This is a modification of the standard
classification accuracy (Eq. 5.1) which is insensitive to imbalanced frequencies of
decision classes. It is calculated by computing standard classification accuracies
(Accuracyi) for each decision class and then averaging the result over all classes
(d = 1, . . . , l). In this way, every class has the same contribution to the final result,
no matter how frequent it is:

ACCi =
|{u ∈ TestSet : d̂(u) = d(u) = i}|
|{u ∈ TestSet : d(u) = i}|

,

BAC =
( l∑
i=1

ACCi

)
/l , (5.2)

where l is a total number of decision classes, TestSet is a set of test samples and d̂(u) is
a prediction for a sample u. In a case of a 2-class problem with no adjustable decision
threshold, balanced accuracy is equivalent to Area Under the ROC Curve (AUC).
Thus, it may be viewed as a generalization of AUC for multi-class classification
problems. Balanced accuracy is insensitive to imbalanced class distribution. This
particular measure was used during RSCTC’2010 Discovery Challenge [168] to
evaluate solutions of participants and it is also used in the experiments described
further in this section.

5.2.2 Comparison with the state-of-the-art in the microarray
data classification

The performance of DRBS for microarray data sets was evaluated in two series of
experiments. In the first one, DRBS was compared to the original RBS model and
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three distance-based approaches. The distance-based models used different feature
selection techniques combined with a Minkowski distance-based similarity measure
(see Section 4.2.1) whose parameter p was automatically tuned on available training
data. The utilized feature selection methods were based on correlation test [52],
t-test [87, 91] and the relief algorithm [79], respectively. Table 5.7 shows the
results of this comparison for six data tables from the basic track of RSCTC’2010
Discovery Challenge [168]. The results are also visualized in Figure 5.5.
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Figure 5.5: Balanced classification accuracies of the compared similarity models.

Table 5.7: Results of different similarity models for microarray data sets. For each
table, the best score is marked in red and the second best is in blue. Mean and
standard deviation values are given.

Data set: 1-NN+corTest 1-NN+tTest 1-NN+relief RBS DRBS
ALL 89.4±2.4 93.6±2.3 92.7±1.7 86.2±1.7 92.9±0.8
BTu 54.8±1.0 54.8±2.8 63.3±2.1 61.3±2.7 68.7±1.0
GPe 74.4±1.9 77.9±1.6 78.5±2.5 79.5±1.8 88.5±1.6
HFF 50.9±2.3 53.2±2.9 55.0±1.9 54.1±1.1 70.6±2.2
HGl 50.9±2.3 51.2±3.3 51.6±1.8 46.4±1.9 64.8±1.3
SSh 43.4±3.2 45.7±2.2 45.8±2.4 42.4±2.3 47.8±1.7

avg. BAC 60.6±17.5 62.7±18.8 64.5±17.9 61.7±17.8 72.2±16.5

From the results of those experiments it is clearly visible that DRBS is a viable
improvement over RBS for high dimensional microarray data. Not only did DRBS
achieve better balanced accuracy than RBS for each of the data sets but also the
differences in their results were always statistically significant. Comparing to the
distance-based models, DRBS performed better for five out of six data sets. Only for
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Figure 5.6: A visualization of the classification accuracies obtained by the compared
algorithms.

the AcuteLymphoblasticLeukemia data (ALL) the average BAC score of 1-NN model
combined with the t-test filter turned out to be higher, yet even in that case, the
difference could not be marked as statistically significant. Unexpectedly, the most
reliable gene selection method for the distance-based models was the relief algorithm,
which was ranked second for four tables.

In the second series of experiments, the classification performance achieved with
a combination of DRBS and the simple classification rule from Definition 3.1 was
compared to the results of the Random Forest [20, 29] and SVM [37, 87] algorithms
which are considered as the state-of-the-art in the biomedical data domain. All
the models were implemented in R System ([121]). The DRBS model consisted
of (0.9, 0.95)–dynamic reducts (see Definition 2.12) constructed from 250 randomly
selected subsets of 5 ∗ b

√
|A|c genes, were |A| is a total number of genes (attributes)

in a data set. These values guaranteed that a probability of an inclusion of any
particular gene to at least one random subset was greater than 0.95 (see Section 4.3.4).
Those particular parameter values were chosen as a trade off between computational
requirements and robustness of the model. No tuning of the parameters was
performed during the experiments due to computation complexity reasons, but it was
observed that, for several different data sets, an increase in the number of random
subsets of genes usually leads to a slightly better classification quality.

Apriori algorithm from the arules package was used for the generation of the rule
sets for DRBS. The implementation of Random Forest from the package randomForest
was used with parameter settings recommended in [29]. Additionally, a balanced
version of RF model was checked in which empirical probabilities of decision classes
(computed on a training set) were used during the voting as a cut-off values. Support
Vector Machine was trained with a linear kernel. The implementation from the
package e1071 was used. Other parameters of SVM were set to values used by the
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Table 5.8: Results of the tests evaluated using the classification accuracy (ACC)
measure. For each data set, the best score is marked in red and the second best is in
blue. Mean and standard deviation values are given.

Data set: RF RFbalanced SVM DRBS
ALL 87.98± 0.97 88.77± 1.19 90.39± 0.96 91.71± 0.60
ATC 53.28± 2.90 49.64± 3.72 55.73± 2.78 51.35± 3.45
BTu 71.30± 1.26 66.44± 1.68 71.44± 1.45 72.08± 1.16
BLy 86.01± 1.65 86.05± 1.17 90.54± 1.79 89.89± 1.74
GPe 90.69± 1.02 86.50± 0.55 92.95± 0.90 89.57± 1.35
HFF 59.29± 1.75 56.03± 2.35 70.28± 1.81 62.54± 2.45
HeC 89.92± 1.52 87.16± 1.40 91.60± 1.80 91.26± 1.57
HGl 72.45± 1.91 61.74± 2.11 77.96± 1.23 72.76± 1.13
OTu 89.61± 0.41 64.91± 1.72 92.66± 0.52 86.27± 1.07
SSh 52.57± 1.53 44.49± 3.24 53.71± 2.48 52.31± 1.41
SPs 81.16± 1.47 82.64± 0.82 84.77± 1.45 82.69± 1.29

avg. ACC 75.84± 14.98 70.40± 16.44 79.27± 14.67 76.58± 15.42

winners of the advanced track of RSCTC’2010 Discovery Challenge [168]. No gene
selection method was used for any of the compared models.

The quality of the compared models was assessed using two different quality
measures – mean accuracy (ACC, Eq. 5.1) and balanced accuracy (BAC, Eq.
5.2). Those measures highlight different properties of a classification model. By
its definition, the balanced accuracy gives more weight to instances from minority
classes, whereas the standard mean accuracy treats all objects alike and, as a
consequence, usually favours the majority class. Depending on applications, each
of those properties can be useful, thus, a robust classification model should be able to
achieve a high score regardless of the quality measure used for the assessment. The
tests were performed using 5-fold cross validation technique. The experiments were
repeated 12 times for each of the data sets and models. This testing methodology has
been proved to yield reliable error estimates in terms of bias and standard deviation
(see [18, 27, 80]). The results in terms of the accuracy and the balanced accuracy are
given in Tables 5.8 and 5.9, respectively.

As expected, there were significant differences between performances of the models
depending on the quality measure used for the assessment. In terms of the accuracy,
SVM turned out to be the most reliable. It achieved the best score on 9 data sets,
whereas DRBS scored the best on 2 data tables. Different results were noted in
terms of the balanced accuracy – DRBS and Random Forest (the balanced version)
had the highest mean score on 4 sets, whereas SVM ranked first on 3 data sets.
Pairwise comparisons of the tested models are summarized in Tables 5.10 and 5.11.
For each pair, a number of data sets for which the model named in a column achieved
a higher average score is given.

The statistical significance of differences in the results between each of models
was verified using the paired Wilcoxon test. This particular statistical test was used



5.2 Evaluation of the Dynamic Rule-Based Similarity Model on Microarray Data103

ALL ATC BTu BLy GPe HFF HeC HGl OTu SSh SPs avg. all

RF
RFbalanced

SVM
DRBS

B
al

an
ce

d 
cl

as
si

fic
at

io
n 

ac
cu

ra
cy

 (
%

)
30

40
50

60
70

80
90

10
0

Figure 5.7: A visualization of the balanced classification accuracies obtained by the
compared algorithms.

Table 5.9: Results of the tests evaluated using the balanced accuracy (BAC) measure.
For each data set, the best score is marked in red and the second best is in blue. Mean
and standard deviation values are given.

Data set: RF RFbalanced SVM DRBS
ALL 79.34± 2.08 91.40± 1.25 84.68± 2.68 92.93± 0.77
ATC 47.28± 2.92 50.46± 4.08 52.92± 2.97 50.33± 3.39
BTu 63.93± 1.80 68.49± 1.83 65.88± 1.82 68.71± 1.04
BLy 79.15± 2.30 89.08± 1.32 86.65± 2.52 87.30± 2.17
GPe 85.88± 1.50 87.04± 0.70 88.76± 1.30 88.52± 1.59
HFF 51.98± 3.13 67.17± 1.72 70.62± 2.10 70.64± 2.18
HeC 86.42± 1.78 87.55± 1.36 89.28± 1.57 89.52± 1.55
HGl 46.35± 2.83 66.46± 1.43 59.49± 2.10 64.76± 1.32
OTu 51.79± 1.67 80.75± 2.23 71.8± 1.80 79.91± 2.25
SSh 38.08± 1.98 48.98± 2.94 44.51± 2.13 47.77± 1.68
SPs 81.32± 1.43 82.80± 0.80 84.87± 1.42 82.95± 1.29

avg. BAC 64.68± 18.16 74.56± 15.22 72.68± 15.59 74.85± 15.71

instead of the standard t-test because balanced accuracies of different classifiers are
not likely to have a normal distribution with equal variances. A null hypothesis
was tested that the true performance measurements obtained for the particular
data set have equal means. Due to a large number of the required comparisons a
Bonferroni correction was applied and each test was conducted on 0.9999 confidence
level. Differences in means were marked as significant (i.e. the null hypothesis was
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Table 5.10: A pairwise comparison of accuracies (ACC) of the tested models. Tables
show the number of data sets for which the model named in a column achieved a
higher score. The number of statistically significant wins is given in parentheses.

Method name:
lower\higher

RF
(higher)

RFbalanced
(higher)

SVM
(higher)

DRBS
(higher)

RF (lower) – 3 (1) 11 (9) 7 (4)
RFbalanced (lower) 8 (8) – 11 (11) 11 (9)
SVM (lower) 0 (0) 0 (0) – 2 (1)
DRBS (lower) 4 (1) 0 (0) 9 (6) –

rejected and a statistical proof was found that performance of one of the model is
higher) if the p-value11 of the test was lower than 0.01. The results of this comparison
are also shown in Tables 5.10 and 5.11 (in parentheses).

It is worth noticing that DRBS turned out to be the most stable classification
model – differences in its score in terms of the accuracy and the balanced accuracy
were the smallest of the tested models. For example, although SVM achieved the
highest average accuracy on all data sets (79.27), the average difference between
its accuracy and the balanced accuracy was 6.59. The value of the same statistic
for DRBS was 1.73, with average accuracy of 76.58 (it ranked second in terms of
the accuracy measure). DRBS achieved the highest average balanced accuracy of
74.85. This score was only slightly higher than the result of the second algorithm
– balanced Random Forest (74.56). The results of the Random Forest algorithms,
however, significantly differed with regard to the quality measures. The absolute
differences between average values of the two utilized indicators for the Random
Forest and balanced Random Forest models were 11.16 and 4.16, respectively. Those
results clearly show that DRBS can successfully compete with the state-of-the-art in
the microarray data classification.

Table 5.11: A pairwise comparison of balanced accuracies (BAC) of the models.
Tables show the number of data sets for which the model in a column achieved a
higher score. The number of statistically significant wins is given in parentheses.

Method name:
lower\higher

RF
(higher)

RFbalanced
(higher)

SVM
(higher)

DRBS
(higher)

RF (lower) – 11 (8) 11 (10) 11 (10)
RFbalanced (lower) 0 (0) – 5 (3) 6 (3)
SVM (lower) 0 (0) 6 (6) – 8 (5)
DRBS (lower) 0 (0) 5 (2) 3 (1) –

11The p-value of a statistical test is the probability of obtaining a test statistic value as extreme
as the observed one, assuming that the null hypothesis of the test is true.
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5.3 Unsupervised Similarity Learning from Textual
Data

This section demonstrates an application of the unsupervised RBS model for
computation of semantic similarity of texts. Reliable semantic similarity assessment
is crucial for numerous practical problems, such as information retrieval [54, 122],
clustering of documents or search results [55, 95], or multi-label classification of
textual data [68]. The usefulness of unsupervised RBS in one of those tasks, namely
document grouping, is verified on a corpus of scientific articles related to biomedicine.
The notion of information bireducts (see Section 2.3.3) is combined with Explicit
Semantic Analysis (ESA) (see Section 4.2.4) in order to extract important features
of the texts, and the performance of unsupervised RBS is compared to the cosine
similarity model.

5.3.1 Testing Methodology

The experiments were performed on a document corpus consisting of 1000 research
papers related to biomedicine which were downloaded from PubMed Central
repository [123]. The ESA algorithm, which was used for extracting semantic features
of the texts, was adapted to work with the MeSH ontology [161] and implemented in
R System [121]. Prior to the experiments, documents from the corpus were processed
with natural language processing tools from the tm and RStem libraries, and the
associations between the documents and the MeSH headings were precomputed12.
The documents were represented by bags-of-concepts (see Section 4.2.4) to construct
the unsupervised RBS model described in Section 4.3.5, as well as the other models
used for comparison (see Section 5.3.2).

Additionally, all of the documents were manually labelled by experts from the
U.S. National Library of Medicine (NLM) with the MeSH subheadings [161]. Those
labels represent a topical content of the documents and as such, they can serve as
means for evaluation of truly semantic relatedness of the texts (see Section 3.1.4). In
the presented experiments, they were used for computation of a semantic proximity
between the analysed documents, which is treated as a reference for the compared
similarity functions.

The semantic proximity was measured using F1-distance, defined as:

F1-distance(Ti, Tj) = 1− 2 · precision(Si, Sj) · recall(Si, Sj)
precision(Si, Sj) + recall(Si, Sj)

, (5.3)

where Si and Sj are sets of labels (MeSH subheadings) assigned by experts, that
represent documents Ti, Tj ∈ D, respectively, and

precision(Si, Sj) =
|Si ∩ Sj|
|Si|

, recall(Si, Sj) =
|Si ∩ Sj|
|Sj|

.

12The corpus used in the experiments is a subset of a data set prepared for JRS’2012 Data
Mining Competition [68, 72]. For more details on the contest and data preprocessing refer to
http://tunedit.org/challenge/JRS12Contest)

http://tunedit.org/challenge/JRS12Contest
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This particular measure was chosen since it is often used for evaluation of results in
the information retrieval setting [35, 78]. Although the evaluation of a similarity
measure by a distance metric may fail to capture some of the psychologically
important properties and underestimate its real quality, in this way it was possible to
quantitatively assess many similarity models and use those assessments to objectively
compare them (see Section 3.1.4).

The semantic proximity between two sets of documents is defined as an average
of F1-distance between each pair of texts from different sets:

semDist(D1, D2) =

∑
Ti∈D1,Tj∈D2

F1-distance(Ti, Tj)

|D1| · |D2|
. (5.4)

In experiments, three types of comparisons between the similarity models were
made. In the first one, for each of the models, its correlation with the semantic
proximity values (Eg. 5.3) was computed. This kind of evaluation is often used in
psychological studies where researchers try to measure the dependence between values
returned by their models and assessments made by human subjects [42, 148, 159]. It
is also commonly utilized in studies on semantic similarity of texts [38].

One disadvantage of this evaluation method is that the linear correlation does not
necessarily indicate the usefulness of the measure in practical applications such as
the information retrieval or clustering. For this reason, the second series of tests was
performed, which aimed at measuring semantic homogeneity of clusterings resulting
from the use of different similarity models. To each document in the corpus there was
assigned its average semantic proximity (Eg. 5.4) to other documents from the same
cluster and to the remaining texts. If for a division of data into k groups we denote
documents from a corpus D belonging to the same cluster as Ti by clusterTi , then
we can define a semantic homogeneity of Ti with regard to the semantic proximity
function semDist as:

homogeneity(Ti) =
B(Ti)− A(Ti)

max
(
A(Ti), B(Ti)

) , where

A(Ti) = semDist(Ti, clusterTi \ Ti) and
B(Ti) = semDist(Ti, D \ clusterTi).

If clusterTi \ Ti = ∅, then it is assumed that homogeneity(Ti) = 1. The average
semantic homogeneity of all documents can be used as a measure of clustering quality.
Since useful similarity models should lead to meaningful clustering results, the average
semantic homogeneity can be employed to intuitively evaluate the usefulness of the
compared similarity models for the clustering task.

Finally, in the last series of tests, it was measured how clustering separability
is influenced by different similarity models. Two hierarchical clustering algorithms,
agnes (AGglomerative NESting) and diana (DIvisive ANAlysis), were used in the
experiments. They are described in [78]. Those algorithms differ in the way they form
a hierarchy of data groups. Agnes starts by assigning each observation to a different
(singleton) group. In the consecutive steps, the two nearest clusters are combined to
form one larger cluster. This operation is repeated until there remains only a single
cluster. The distance between two clusters is evaluated using a linkage function (see
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the brief discussion in Section 3.3.3). To maximize the semantic homogeneity of the
clusters, in the experiments the complete linkage method was used.

The diana algorithm starts with a single cluster containing all observations. Next,
the clusters are successively divided until each cluster contains a single observation.
At each step, only a single group, with the highest internal dissimilarity is split.
Two different algorithms were used in the experiments to verify the stability of the
compared similarity models and avoid the bias towards a single clustering method.

Apart from a clustering hierarchy, those algorithms return agglomerative (AC)
and divisive coefficients (DC), respectively. These coefficients express conspicuousness
of a clustering structure in a clustering tree [78]. Although they are internal measures
and their value does not necessarily correspond to the semantic relatedness of objects
within the clusters, they can give an intuition on interpretability of a clustering
solution.

5.3.2 Compared Similarity Models

Four similarity models were implemented in R System [121] for the purpose of the
experiments. The unsupervised RBS was constructed as described in Section 4.3.5.
The documents from the corpus were given associations to MeSH headings using ESA.
An information system S = (D,F ) was constructed consisting of 1000 documents
described by a total of 25, 640 semantic features. During preprocessing, the features
which were not present in at least one document from the corpus D were filtered out
from further analysis. Numerical association values of each term were transformed
into four distinct symbolic values. The discretization was based on general knowledge
of the data (e.g. for each feature possible association values ranged from 0 to 1000)
and the cut thresholds were constant for every feature (i.e. they were set to = 0,
≥ 300, ≥ 700 and ≥ 1000).

From the discretized information system, 500 information bireducts (see Section
2.3.3) were computed using random permutations (see Algorithm 4). As expected,
they significantly differ in selection of features and reference documents. On average,
a bireduct consisted of 210 attributes (min = 173, max = 246), with each attribute
belonging on average to 9 bireducts (min = 1, max = 42). The average number
of documents in a single bireduct was 995 (min = 988, max = 1, 000), and each
document appeared on average in 498 bireducts (min = 489, max = 500). All of
the computed information bireducts were used for assessment of similarity by the
unsupervised RBS model.

Apart from the unsupervised RBS, for the sake of comparison three other
similarity models were implemented. The first one was the standard cosine
similarity. In this model, for documents Ti and Tj, represented by vectors Ci, Cj of
numerical association strengths to headings from the MeSH ontology (i.e. the vector
representation of bag-of-concepts described in Section 4.2.4), the cosine similarity is:

Simcos(Ti, Tj) = 1−Distc(Ci, Cj) , (5.5)

where Distc is the cosine distance function (see Section 3.2.1). This particular
measure is very often used for the comparison of texts due to its robust behaviour in
high dimensional and sparse data domains.
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The second reference model used in the comparison was also based on the cosine
similarity measure. However, unlike in the first one, its similarity judgements were
not based on the entire data but were ensembled from 500 local evaluations. Each of
those local assessments was made by the cosine similarity restrained to the features
selected by a corresponding information bireduct (the same as those used in the
construction of the unsupervised RBS model). The similarity function of this model
was:

Simens(Ti, Tj) =
500∑
l=1

Simcos(Ti|BRl , Tj|BRl), (5.6)

were T |BR is a document T represented only by features from BR. This model will be
called cosine ensemble. It was included in the experiments to investigate the impact
of the similarity aggregation technique utilized in unsupervised RBS, on the overall
quality of metric-based similarity.

The last reference model, which is called single RBS, was constructed using
the notion of a commonality relation (Formula 4.12) and the same aggregation
method as in the unsupervised RBS (Formula (4.13)). The only difference was that
it did not use bireducts to create multiple local sub-models but instead, it made
similarity assessments using the whole data set. Such a model can be interpreted
as a super-agent whose experience covers all available documents and who takes
into consideration all possible factors at once. It was used to verify whether the
bireduct-based ensemble approach is beneficial for the unsupervised RBS model.

5.3.3 Results of Experiments

In the experiments, the similarity models described in the previous section were used
to assess similarities between every pair of documents from the corpus. This allowed
to construct four similarity matrices, in which a value at an intersection of i-th row
and j-th column expressed similarity of the document Ti to Tj. The reference semantic
proximity matrix was also constructed using Formula (5.3), just as it is described in
Section 5.3.1.

Correlations measurements between the values from the similarity matrices
obtained for each similarity model and the semantic proximity values are displayed in
Table 5.12. Since similarity assessments made using different measures are likely to
come from different distributions, the Spearman’s rank correlation [148] was utilized
in this test to increase its reliability.

Table 5.12: The correlations between the tested similarity models and the semantic
proximity.

cosine cosine ensemble single RBS unsupervised RBS
0.155 0.153 0.144 0.186

The result of the unsupervised RBS in this test is much higher than results of other
models. It is interesting that the correlation of the third of the reference models
(the single RBS) with the semantic proximity was the lowest. This highlights the
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benefit from considering multiple similarity aspects in the RBS approach. On the
other hand, the difference between the two cosine-base similarity models is negligible
which suggests that the ensemble approach may be ineffective for spherical similarity
measures.

0 50 100 150

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

Number of clusters

A
ve

ra
ge

 s
em

an
tic

 h
om

og
en

ity

agnes RBS bireduct
diana RBS bireduct
agnes RBS single
diana RBS single
agnes Cosine single
diana Cosine single
agnes Cosine ensemble
diana Cosine ensemble
random clustering

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of clusters

A
ve

ra
ge

 s
em

an
tic

 h
om

og
en

ity
agnes RBS bireduct
diana RBS bireduct
agnes RBS single
diana RBS single
agnes Cosine single
diana Cosine single
agnes Cosine ens.
diana Cosine ens.
random clustering

Figure 5.8: The comparison of the average semantic homogeneity of clusterings
into a consecutive number of groups using different similarity models and clustering
algorithms. The plot on the left is a close up of the most interesting area from the
plot on the right. The clustering based on a randomly generated dissimilarity matrix
is given as the black dot-dashed line.

The second test involved the computation of two clustering trees for each of the
models using the agnes and diana algorithms [78]. Since their implementations from
the cluster library [121]) can work only with symmetric dissimilarity matrices, the
similarity matrix of each examined model had to be transformed using Formula (5.7):

dissMatrix = 1− (simMatrix+ simMatrixT )/2 , (5.7)

where simMatrix is a square matrix with similarity values, 1 is a square matrix
containing 1 at every position and ∗T is the transposition operation.

Figure 5.8 presents average semantic homogeneities (5.5) of clusterings into a
consecutive number of groups made using the compared similarity models. The plot
on the left is a close up to the area in the plot on the right which is marked by a
rectangle with dotted edges. This area corresponds to the most interesting part of
the plot because a clustering of documents into a large number of groups produces
small individual clusters and is very often difficult to interpret.

The results of this test show evident superiority of the unsupervised RBS similarity
over other models for grouping into 2 to 50 groups. Interestingly, in this interval, the
semantic homogeneity of the single RBS is also much higher than in the case of the
cosine-based measures. The maximum difference between the unsupervised RBS and
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the cosine similarity for the agnes algorithm is visible when the clustering is made
into 4 groups and is equal to 0.083. For the diana algorithm the difference is even
higher – when clustering is made into 10 groups it reaches 0.097. For clustering into
51 to approximately 150 groups the results, especially for the agnes algorithm, change
slightly in favour of the cosine similarity. The highest loss of the unsupervised RBS
was to the cosine ensemble model and reached 0.015 for division of data into 101
groups. Going further, the unsupervised RBS takes the lead again but the difference
is not that apparent. In Figure 5.8 there are also results of a clustering made using
a random dissimilarity matrix (as the black dot-dashed line). They can serve as a
reference since they clearly show that all of the investigated similarity models led to
much better results than the random clusterings.

The compared models differ also in the results of the internal clustering measures.
Table 5.13 shows the agglomerative (AC) and divisive (DC) coefficients of the
clustering trees obtained for each similarity model.

Table 5.13: Values of the internal clustering separability measures.

measure: cosine cosine ensemble single RBS unsupervised RBS
AC 0.33 0.37 0.55 0.58
DC 0.28 0.31 0.51 0.54

In this test, the clustering for the both RBS-based models significantly
outperformed the cosine similarity approaches. Higher values of the coefficients
indicate that the clusterings resulting from the use of the proposed model are clearer
(the groups of documents are better separated), thus, they are more likely to be
easier to interpret for experts and end-users. It is also worth noticing that the
both ensemble-based measures achieved higher internal scores than their single-model
counterparts.

Finally, some additional tests were performed to check how some additional
information about generated bireducts can be used for selecting relevant local
similarity models during the construction of unsupervised RBS. This can be seen
as a way of learning an optimal interaction scheme between artificial agents that try
to assess the similarity of given documents. In those experiments, the local RBS
models were sorted by the decreasing size of the corresponding bireducts13. Next, the
correlations between the semantic proximity matrix and the similarity assessments
(made using an unsupervised RBS model constructed from the first k bireducts)
were computed with k ranging from 1 to 500. The highest score was obtained for
a model consisting only of 10 bireducts – it reached 0.203 comparing to 0.186 when
all the bireducts were used (see Table 5.12). It seems that by using an additional
validation document set it would be possible to estimate the optimal number of
bireducts to be included into the model, and to increase its overall performance.
Moreover, considering a lower number of local models would have a positive impact
on the scalability of the proposed similarity learning process.

13A size of a bireduct is understood as a sum of cardinalities of its attribute set and its document
set.



Chapter 6

Concluding Remarks

This chapter concludes the dissertation and summarises the presented research on
similarity learning from high dimensional data. It also indicates some possible
research directions for future development of the described models and points out
some interesting application areas.

6.1 Summary

The dissertation discusses the problem of learning a similarity relation that reflects
human perception and is based on information about exemplary objects represented
in an information system. A special focus is on a situation when the considered
objects are described by many attributes and thus their typical representation in a
metric space would be extremely high dimensional. For such a case, the typically
used distance-based similarity models often fail to capture true resemblance between
compared objects [15, 159].

Following the research of Amos Tversky on general properties of a similarity
relation, a similarity model is proposed in which the metric representation of objects
is shifted to a representation by sets of features. In this model, which is called
Rule-Based Similarity (RBS), assessments of a similarity degree of a pair of objects
depend not only on a context in which the similarity is considered, but also on other
objects in the available data. This property remains consistent with observations
made by numerous psychologists [41, 42, 51, 83, 159].

The proposed similarity model utilizes notions from the theory of rough sets,
which is briefly discussed in Chapter 2. In fact, similarity learning in RBS can
be seen as a process of adjusting a similarity approximation space [120, 132, 133]
to better fit the desired context. Apart from the fundamental concepts of rough
sets, Chapter 2 outlines the rough set approach to selecting relevant attributes (i.e.
attribute reduction) and forming rules that represent knowledge about a given data
set. Those techniques are later applied in the RBS model for discovering sets of
higher-level features that influence similarity judgements.

The third chapter of this dissertation is devoted to the concept of similarity and
its general properties. A special emphasis is put on the necessity of fixing a context in
which the similarity of two objects is to be considered as it may greatly influence the
evaluation outcome (Section 3.1.2). An attempt is also made to form a definition of a

111
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similarity function that would meet intuitive expectations for a natural resemblance
measure. As a result, the definition of a proper similarity function is proposed in
Section 3.1.3, which is followed by a discussion of methods for the evaluation of a
similarity function quality. Additionally, Chapter 3 includes an overview of similarity
models that are typically employed for solving real-life problems and highlights the
essential differences between common distance-based similarity metrics and Tversky’s
feature contrast model [159]. It also shows application examples of similarity models
in a variety of machine learning tasks.

Chapter 4 focuses on techniques that allow learning a similarity relation or a
similarity function from data. It starts with an overview of desirable properties of a
similarity learning model and a presentation of several approaches to the problem of
adjusting a given distance-based similarity function to better fit a data set at hand,
by exploiting the local-global principle (Section 4.2). Then, Section 4.3 presents the
RBS model, which is the main contribution of this dissertation.

The motivation for RBS comes from observations of psychologists who noticed
that properties of similarity do not necessarily correspond to those of distance-based
models. In fact, in a specific circumstances every basic property of a distance-based
similarity relation can be questioned [41, 159]. On the other hand, some practitioners
noticed that non-metric representations of objects require defining their higher-level
characteristics [7, 51, 103] which often are not present in the original data. For
this reason, the construction procedure of RBS, described in Section 4.3.2, includes
an automatic feature extraction step that uses decision and inhibitory rules to
form sets of arguments for and against the similarity of given objects. During
assessment of the similarity, those arguments are aggregated analogically to the
contrast model. Unlike in that model, however, weights of the feature sets need not to
be set manually, but are derived from available data. Section 4.3.3 discusses several
plausible properties of the proposed model and shows that under certain conditions
its similarity function meets the definition of the proper similarity function for a
similarity in the context of a classification problem.

The original RBS model was extended in order to facilitate its application to
two different types of problems that typically involve dealing with high dimensional
data. The first extension, which is described in Section 4.3.4, is designed for learning
a similarity function in a context of a classification problem from data containing
tens thousands of attributes and possibly only a few hundreds of objects. Dynamic
Rule-Based Similarity (DRBS) utilizes the notion of dynamic decision reducts for
constructing multiple sets of features that may robustly represent different views or
aspects of the similarity. Those aspects are then aggregated using DRBS similarity
function by an analogy with the Random Forest algorithm [20].

The main purpose of the second extension, called unsupervised RBS (Section
4.3.5), is unsupervised rule-based learning of a semantic resemblance between texts.
In order to make it possible, the higher-level features of textual documents that
represent relevant aspects of their semantics are extracted using a combination
of Explicit Semantic Analysis (ESA) [38, 72] and a novel notion of information
bireduct [70, 141, 150]. Due to the utilization of the information bireducts, the
evaluation of similarity in the unsupervised RBS model can be interpreted as an
interaction between artificial agents who are characterised by different experience and
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preferences, and thus have different views on semantics of the compared documents.
Finally, Chapter 5 presents the results of experimental evaluation of different

RBS models for a wide array of data types. The performance of the original RBS
was compared to several distance-based similarity learning models on well-known
benchmark data tables acquired from UCI machine learning repository [36]. The
empirical quality evaluation of 1-nearest-neighbour classification revealed that RBS
can successfully compete with popular similarity models on standard data sets.
For high dimensional microarray data from ArrayExpress [106], not only did
DRBS significantly outperform other similarity models but it also achieved better
classification results in terms of the balanced accuracy measure than the Random
Forest and SVM algorithms, which are considered the state-of-the-art. Unsupervised
RBS was also tested and its usefulness for practical applications, such as document
clustering, was verified. Groupings constructed using this model turned out to be
more semantically homogeneous than those obtained from clustering using standard
methods.

6.2 Future Works
There are several possible directions for the future research on the rule-based models
of similarity. One idea is to focus on the incorporation of domain knowledge into the
model. For example, by using a dedicated similarity ontology it would be possible
to model similarity of complex objects or even behavioural patterns changing over
time [7, 8, 10, 60]. This kind of a domain knowledge may be effectively used to learn
the local similarity relations as well as to create even better higher-level features, e.g.
by merging those rules which are semantically similar. Moreover, the method for
aggregating arguments for and against the similarity of given objects that is used in
RBS is just one of many possibilities. In the future some other aggregation functions
could be tried. Such functions could even be learnt from data based on some auxiliary
knowledge or interactions with experts.

RBS may also serve as a means for extending notions of rough sets and rough
approximations. Currently, there exist several generalizations of rough sets that
are based on the notion of similarity [145, 146]. It might be interesting to
combine similarity-based rough sets with rough set-based similarity due to the
conforming philosophy of those two models. Such a combination can help in obtaining
approximations which are more intuitive for human experts and thus can be more
useful for real-life data analysis.

Another possible direction in research on RBS is to focus on scalability of the
model. In order to facilitate its practical applications in a wide array of domains,
scalability of RBS needs to be further enhanced. The scalability can be considered in
several aspects, e.g. in terms of a number of training and test objects or in terms of a
total number of attributes. Currently, the computational cost of RBS models strongly
depends on particular algorithms used for the discretization, attribute reduction and
extraction of rules. Having constructed an RBS model, the evaluation of similarity
between a single pair of objects can be done in a linear time with regard to the
number of extracted rules and objects. Moreover, since a value of RBS similarity
function can be computed by a single SQL query, even a sub-linear time complexity
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would be possible to achieve by utilization of modern analytical database technologies
[124, 143]. Therefore, an implementation of RBS that would be able to make use of
contemporary Relational Database Management Systems (RDBMS) would definitely
be helpful in real-life applications of the model.

An important factor in the scalability context is also the method for computation
of reducts that represent different aspects of the approximated similarity relation.
This problem is closely related to an efficient construction of reduct ensembles [141,
144]. The results of the recent research in this topic suggest that an incorporation of
auxiliary knowledge about clusterings of original attributes in data can greatly speed
up the computation of diverse sets of reducts [69].

Finally, it would be very useful to come up with a unified framework for developing
and testing similarity learning methods. Although there exist systems for data
analysis that make use of rough set methods for a feature subset selection and
extraction of rules, e.g. RSES and RSESlib [12] or Rosetta [56], there is no
environment allowing to conveniently combine those tools for the construction of
higher-level similarity models. Such an extension, for example in a form of a library
for increasingly popular R System [121], would definitely bring benefit to the rough
set community, as well as to other data mining researchers. Algorithms used in the
construction of RBS models combined with discretization and rule induction methods
implemented for the described experiments may serve as a starting point for this task.

Any further progress in the field of learning similarity relation from data would be
beneficial to researchers from many domains. This problem is especially important
in domains such as biomedicine, where efficient and more accurate models could
lead to discovering more effective and safer drugs or better planing of treatments
[3, 7, 37, 168]. The classical distance-based approach is often unable to deal with
the few-objects-many-attributes problem and the rule-based approach appears to be
a promising alternative.
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